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ABSTRACT

Detecting and monitoring the decline of balance and mobility skills is crucial,
especially for the elderly, as it may lead to falls causing injury, death, physical
dependence and/or hospitalization. This thesis is an attempt to investigate and develop
clinically relevant and objective tools to assess balance disorder.

Firstly, a parabolic model was used to estimate the center of body mass (COM)
trajectory during forward stepping, using the body segments’ accelerations, which were
measured by inexpensive and portable accelerometers placed on the trunk and swing leg.
Three different models (fuzzy inference model, sum-of-sines model and parabolic model)
were employed, using paced and voluntary forward stepping performed on different
support surfaces and with different speeds of stepping. The results are encouraging for
the use of the proposed model as a mean to estimate the COM trajectory during forward
stepping.

Secondly, trunk acceleration variability was studied in order to examine whether the
variability may indicate adaptability of human balance control. An increase in trunk
acceleration variability and significantly higher trunk acceleration variability in the M-L
direction than that in the A-P direction were found in one task only (stepping on a fixed
surface at a normal speed). The results showed that the variability may distinguish
normal stepping from other stepping tasks and the M-L trunk acceleration may represent
a different aspect of motor control from the A-P trunk acceleration.

Finally, the use of linear and nonlinear dynamic tools to extract characteristic features

of postural sway was investigated; sway path length and Rényi dimension, respectively.
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The center of foot pressure (COP) trajectory measured by Force Sensing Application
(FSA) mat during forward stepping was used as input signal. The results suggest that the
COP trajectories” Rényi dimension and sway path length provide different indications of

postural control system characteristics between different task demands.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Detecting and monitoring the decline of balance and mobility skills is crucial,
especially for the elderly, as it may lead to falls causing injury, death, physical
dependence and/or hospitalization. Good balance is important when performing
activities of daily living; this is particularly prevalent when walking outdoors and when
confronting stumbles, unexpected disturbances and various supporting surfaces [Rogers
et al., 2003]. To maintain balance, our central nervous system depends on spatial and
temporal information from internal and external reference frames. Information gathered
from the sensors is synthesized in the higher level cognitive system to maintain and
recover standing and walking balance [Allum and Honegger, 1998]. Balance impairment
and mobility limitations occur as a result of: a) a singular disorder or condition, such as
stroke, traumatic brain injury, diabetes or Parkinson’s disease, and b) the contribution of
several modest neuromuscular deficits, any one of which alone might not have caused
falling. Many factors can contribute to the degradation of our balance system, including
an aging-related decrease in sensory information and the processing of that information,
and frail conditions such as neurological and musculoskeletal disorders.

Falls are a major source of disability and death in the elderly. During the period from
1998 to 2003, fall-related hospitalization cases for the elderly in non-residential care

varied from 40,000 to 43,000 per year; in residential care, cases ranged from 6,000 to



9,000 per year [Scott ef al., 2005]. In Canada alone, more than 7,000 Canadians aged 65
and over died as a direct result of a fall during the period from 1997 {0 2002 [Scott ef al.,
2005].  Early diagnosis and detection of balance impairments are important for
management and prevention of further degradation and fall injuries. A practical analysis
system is required to assess the level of sensory information for diagnosis and detection
of sensory deficiencies. For a clinician to perform a routine assessment, the equipment
used must be portable, inexpensive and easy to use; however, this is generally not the
case. Although normal, firm and fixed surfaces are a task condition that is commonly
employed, unpredictable surfaces, such as a foam pad (sponge), need to be considered to
emulate an outdoor terrain environment. It is important to consider velocity conditions in
stepping or walking experiments, as the increased postural sway with speed is related to
increased postural instability which may result in a greater risk for falling [Rogers ef al.,
2003].

A common method of balance assessment is the use of a moving or servo-controlled
platform to disturb balance, such that the balance system can experience environmental
uncertainty. This can also be accomplished by using a dense foam pad (sponge) as the
support surface [Teasdale e al., 1991]. The center of foot pressure (COP), the center of
body mass (COM) and the acceleration profile of a body segment are measured using a
portable force mat, a VICON motion capture system and accelerometers, respectively.
The equipment used to capture the COM trajectory is expensive and not portable; hence,
it is not readily available for a routine clinical assessment. On the other hand,
accelerometers are relatively inexpensive and portable, but they do not provide the COM

trajectory. However, a recent study [Betker er al., 2006] has shown that the COM can be



estimated from the trunk acceleration during standing with small movements. One of the
main objectives of this thesis was to investigate whether the COM during forward
stepping can be estimated from the body segments’ accelerations.

Feedforward and feedback control systems, such as the human balance control system,
have a certain amount of inherent variability [Buzzi et al., 2003}. Even healthy systems
possess inherent variability, which allows for adaptation to new environments when
disturbances are encountered that affect mobility and postural stability. There are various
motor variability measures; trunk acceleration variability was chosen in this research, as
the trunk contribution to total body weight is more than any other body segments.
Inherent variability present in the human balance control system is not random but
deterministic and can be characterized via a nonlinear dynamics descriptor [Buzzi ef af.,
2003]. In this work, nonlinear dynamic tools were used to exiract characteristic features
of the COP trajectories during forward stepping.  Furthermore, the common linear
parameter of postural sway was also investigated for its distinction from the nonlinear

parameters.

1.2 OBJECTIVES

e Examimng the relationships between the COM trajectory and the body segments’
accelerations |

* Investigating whether the COM can be estimated from acceleration data

¢ Investigating motor variability as indicator of human balance control adaptation

* Investigating the characteristics of postural control using linear and nonlinear
parameters, namely the sway path length and Rényi dimension of the COP

trajectories, respectively



1.3 Scopg

The remainder of this thesis is subdivided into the following chapters. Chapter 2
provides an outline of the human postural control system and specifies the employed
protocols and models. Chapter 3 presents the experimental setup, protocol, data
acquisition, and the various modeling systems employed in this thesis. Chapter 4
demonstrates the results for relationship between the COM trajectories and body
acceleration, trunk acceleration variability, and of the linear and nonlinear measures of
the COP trajectories. Chapter 5 provides a discussion of the results obtained in this thesis.

Lastly, Chapter 6 presents conclusions and future work.



CHAPTER 2

HUMAN POSTURAL CONTROL

2.1 POSTURAL CONTROL AND BALANCE

The human body consists of multiple segments. The stability of each body segment
is the balance of multiple forces, including gravitational, ground reaction, motion-
dependent, and muscle forces [Winter, 1995]. Ata global level, a common definition of
human balance is the ability to control the position and motion of the centre of body mass
(COM) in relation to the base of support (BOS), during tasks such as standing, stepping,
walking, and running. Loss of balance occurs when the motion of the COM in relation to
the BOS exceeds certain stability limits [Pai es al., 2003]. Our balance is controlled by
two neural processes or systems: sensory systems for integrating internal and external
referenced spatial information and motor control systems, described in the following
subsections.

2.1.1 SENSORY SYSTEMS

The human body depends on various sources of spatial information to define the
relationship between internal and external references, with our actions being controlled
by feedforward and feedback processes. In terms of sensing the state of balance, spatial
information is provided to the integrative centres of the central nervous system (CNS) by
visual, vestibular, and somatosensory inputs [Winter, 1995].

As there is some overlap or redundancy in the types of spatial information provided

by the various sensory receptors, accurate organization of sensory information is critical



for maintaining balance. Poor sensory integration can fead to impairments in the COM
alignment and/or selection of movement strategies and eventually loss of balance [Jeka
and Lackner, 1995; Shumway and Cook, 1986].
2.1.1.1 VISUAL INPUT

Visual input provides the CNS with the position and motion of one body segment
relative to another segment in an internal body reference frame and the position of the
body in an external reference frame. However, visually derived motion cues have a
relative frame of reference, i.e. the relative information about the motion of the body in
its surrounding environment. Thus, visual input may provide inappropnate position and
motion cues relative to the actual position and motion of the body, which could initiate a
sensory conflict [Peterka, 2002].
2.1.1.2 VESTIBULAR INPUT

The vestibular sensory system is comprised of two major components: the semi-
circular canals which detect angular accelerations and the otolithic organs which detect
linear accelerations. Thus, the vestibular sensory system provides the CNS with
rotational movements and linear translations, which assist the body in understanding its
position relative to the absolute frame of reference [Peterka, 2002].
2.1.1.3 SOMATOSENSORY INPUT

Somatosensory input provides the CNS with the spatial information offered by
proprioceptors and exteroceptors, in intemal and external reference frames, respectively.
Proprioceptors, such as muscle spindles and joint afferents, provide the position and

motion of one body segment relative to another. Conversely, exteroceptors, such as



cutaneous (pressure) sensors of the foot, provide the position of the body relative to the
ground [Peterka, 2002].
2.1.1.4 SENSORY DEFICIENCY

Many factors can contribute to the degradation of our balance system, including a
decrease in sensory information or a deficiency in the central processing of spatial
information obtained from the sensory systems, which provide the external and internal
reference frames. Early diagnosis and detection of balance impairments are important for
management and prevention of functional decline and fall injuries.

The Sensory Organization Test (SOT) is designed to identify deficiencies in a
person’s use of the sensory systems that contribute to postural control [Nashner, 1971;
Peterka and Black, 1990]. The SOT distorts and/or eliminates visual and somatosensory
signals through calibrated sway referencing of the support surface and/or visual
surrounding.  The support surface and the visual surrounding inclinations are
synchronized to directly follow the persons’s anterior-posterior (A-P) body sway. By
controlling the usefulness of the sensory (visual and proprioceptive) information through
sway referencing and/or eyes open/closed conditions, the SOT protocol creates a Sensory
conflict situation by systematically eliminating useful visual and/or support surface
information. These conditions isolate vestibular balance control, as well as stress the
adaptive responses of the CNS. This evaluates the ability of a person to organize
dynamic visual, vestibular, and proprioceptive sensory input into useful information for a

stationary standing task.



2.1.2 MOTOR CONTROL SYSTEMS

Human movements are performed in a dynamic environment, where there is a
constant change in the demands placed on the CNS to maintain and restore balance or
stability during movement. The two control schemes used to regain postural balance are
discussed in the following sections.
2.1.2.1 FEEDFORWARD CONTROL

Human upright posture is intrinsically unstable and thus, the main purpose of the
CNS is to prevent balance loss that may cause falls or injuries. Balance loss will occur
when the instantaneous position and velocity of the COM with respect to the BOS
surpass stability limits. The CNS integrates sensory information to examine and revise
the current COM state and compares it with the stability limits. Based on prior
experience and memory for the COM state, the CNS then performs an appropriate action
in a feedforward control manner to oppose perturbation and prevent balance loss [Kuo,
2002; Pai et al, 2003]. Feedforward or predictive control plans the movement
beforehand to ensure stability and serves to proactively avoid the destabilizing effect of a
disturbance. 1In this pre-planned scheme, a learning effect improves the capability of
predicting disturbances. When these adjustments fail or an unexpected disturbance
occurs, the supporting system of feedback control mechanisms plays a role to maintain
postural balance [Dietz ef al., 1993; Huxham er al., 2001; Schiepatti and Giordano, 2002].
2.1.2.2 FEEDBACK CONTROL

There are many situations where we suddenly lose balance or stumble, i.e. we are
caught unawares by an unexpected disturbance. In such situations, timely feedback

mechanisms are responsible for rapid corrective balance reactions to restore stability and



prevent falls and/or protective reactions to reduce the risk of fall [Pavol er al., 2002].
Based on the intensity of the perturbation, different feedback control mechanisms may
apply to the system. Minor perturbations frequently require the response of an ankle
strategy. Stronger perturbations or a narrow support surface may require a hip strategy.
Instability or much stronger perturbations may require a step strategy, where the BOS is
shifted by taking a step away from the perturbation. These balance strategies are
described in detail in Section 2.3. The balance system is believed to satisfy various
demands by feedforward control, with feedback control playing an important role in case
of unexpected disturbance or unsuccessful feedforward control [Huxham er al., 2001;

Kuo, 2002].

2.2 PERTURBATION TYPES

The moving platform has been used to examine sensory and motor control processes
involved in balance control for nearly four decades. Different velocities, amplitudes
[Szturm et al., 1998] and directions [Henry et af., 1998; Carpenter ¢z af., 1999] of the
platform translations are used to systematically disturb balance by changing the position
of the COM relative to the BOS. Some studies have used platform translations to study
the feedforward mechanism, where the platform moves in a sinusoidal fashion; in this
case, the timing of the onsets and magnitude of the translations is more predictable.

In [Dietz ef al., 1993], sinusoidal platform translations of 0.5, 0.3 and 0.25 Hz, with a
constant amplitude of 12 cm, were used to study the feedforward mechanism. The most
important finding was the adaptation that took place to the changing frequencies of the
translations.  When the new platform translation frequency was applied, EMG and

biomechanical changes were seen for the next four cycles of the new frequency. Once
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this adaptive period was over, there were no si guificant EMG or biomechanical changes.
Hence, after the four adaptive cycles, a feedforward mechanism made prior adjustments
before the platform reached the tuming point, i.e. the time when the body changed
direction from travelling forward to backward or vice versa. A recent study [Schiepatti
and Giordano, 2002} demonstrated that an eyes closed condition has an entirely different
response than an eyes open condition, during sinusoidal forward and backward platform
translation at different oscillation frequencies. Subjects showed two basic modes of
coping with the predictable and sinusoidal platform motions, depending on the
availability of visual information.

On the other hand, many studies have used the moving platform to characterize and
evaluate reactive or feedback controls, where an unexpected perturbation in the form of a
sudden platform rotation or translation was applied to the body. When a body is
presented with an unexpected perturbation, there are three primary strategies or
compensatory reactions employed to maintain balance, depending on the magnitude of
the perturbation [Mille ef al., 2003]; these strategies are explained in Section 2.3.

In general, platforms can have either a fixed and firmm or compliant surface. Each has
its own uses and applications. Fixed, predictable, level and firm support surfaces are the
most common surfaces used for balance and walking assessment. However, different
surface conditions, such as compliant or uneven surfaces typical of outdoor terrains,
ﬁmMﬂmbm%mhMmemmpmwmaam@amm%mmmSw&%MMHMWn
that standing and balancing on a sponge surface can serve as an inexpensive and practical
tool to emulate the “sway-stabilizing” conditions of the Sensory Organization Test

(NeuroCom International Inc.) [Gill ef al., 2001; Teasdale s al., 1991]. Therefore, many
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researchers have used a foam pad (sponge) to disturb balance and emulate the uncertainty
of outdoor terrain [Cho and Kamen, 1998; Redfern et al., 1997; Runge et al., 1998]. The
foam pad introduces uncertainty into the system by distorting and delaying the signals
received by the cutaneous sensors and proprioceptors. Due to the distortion and delay,
the CNS has difficulty using the centre of foot pressure (COP) as a reference during the
balance corrections; hence, it is challenging for the CNS to estimate and determine the
necessary adjustments required to control the motion and position of the COM relative to
the BOS. Affordability and portability are the advantages of using the foam pad over
other methods which use the motorized or servo-controlled platform. Furthermore,
different sizes and shapes of foam pads can be obtained to allow various task conditions
for standing, stepping and walking. In [Allum et al., 2002], the foam pad’s performance
was compared to the SOT equipment; the foam pad was found to be a very efficient tool
for multi-directional perturbation.

The standing balance of young and older adults using a 5 cm thick foam pad as the
support surface was examined in [Teasdale ef al., 1991]. The postural sway behaviour of
the two groups was examined for 80 seconds under different support surface conditions
and with eyes opened/closed. Results showed that the distortion or elimination of one
class of sensory input was not sufficient to consistently differentiate between the young
and elderly adults; this was due to the fact that the remaining sensory inputs could
compensate for the lack of one sensor. However, the combined foam surface and eyes
closed conditions had a substantially greater effect on body sway parameters for the

elderly, when compared to those of the young adults.
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In terms of foot placement accuracy, another important factor in controlling balance
is the step velocity. A linear relationship between the approaching velocity and the
accuracy of the final foot placement was found in [Bradshaw and Sparrow, 2001], where
the effects of the approaching velocity were studied during walking, jogging and
sprinting towards an obstacle along a 10 m walkway. It was shown that the increased
postural sway with speed was related the increased postural instability, which may result
in a greater risk of falling [Rogers er al., 2003]; hence, it is important to consider the

velocity in stepping or walking experiments.

2.3 BALANCE STRATEGIES

The response to a disturbance is determined by the type, direction and nature of the
perturbation. Depending upon the degree of the perturbation, the reaction could be either
an in-place response or a stepping strategy. In minor perturbations of slow and small
amplitudes, generally an in-place strategy (ankle or hip strategy) is used, while in faster
and larger amplitude perturbations, a stepping strategy is used [Maki ef al., 1996; Pavol
and Pai, 2002].

2.3.1 ANKLE STRATEGY

Slow and minor perturbations lead to an ankle strategy, where the body acts as an
mverted pendulum with the ankle acting as the pivot point. As the movement of an
inverted pendulum is completely rigid with no breaks in the long segment, the lower
limbs and the trunk move in the same direction. The movement primarily takes place

-around the ankle joint [Nashner, 1976; Diener et a/., 1988; Horak ef al., 1989].
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2.3.2 HIP STRATEGY

For medium degrees of disturbances, a hip strategy is observed to maintain balance.
In this strategy, the body breaks up into a dual segment pendulum, with the head and
trunk comprising one segment and the lower limbs comprising the second. This strategy
involves plantar flexion movement around the ankle, causing the shank to move
backwards, and a flexion at the hip and trunk. Here the trunk counters the lower body as
the COM needs to be moved to a stable position [Runge ez al., 1999; Ko et al., 2001].
2.3.3 STEPPING STRATEGY

Another type of balance reaction, which is observed in response to a large
perturbation, is a stepping strategy. If the person is destabilized beyond the limits of in-
place strategies (ankle or hip strategy), he/she depends on the stepping strategy. Instead
of keeping the feet stationary, the person takes a quick step to move the BOS to
encompass the predicted COM position. In [Maki ez al., 1996], different directions and
magnitudes of perturbation were used to study how a perturbation affects the swing leg
selection and temporal characteristics of the swing trajectory. For large perturbations, the
possible ways to move the foot in a stepping reaction are: to take a small step with the
loaded leg, to take a step with the unloaded side, or to take multiple steps. Taking a step
with the unloaded side requires one to take the step across the body, i.e. relocate the BOS

towards the COM, which is moving in the opposite direction.
2.4 COM AND ITS RELATIONSHIP WITH BODY SEGMENTS' ACCELERATIONS

Good balance during stepping and walking is important to avoid falls causing injuries.
The need for good balance becomes more pronounced when walking outdoors, where

unexpected conditions, disturbances, and stumbles are inevitable. Stumbles and falls will
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oceur if the COM moves outside the BOS or has insufficient momentum to re-enter the
BOS. This is especially important during stepping where there is a single limb support
phase. The COM trajectory is often used as a key index of both mobility and balance
during stepping and walking; it is an important measure of stability in modeling the
human postural control system.

Currently the COM trajectories are computed by force plate and/or motion analysis
systems, which consist of reflective markers, infrared LED cameras and a motion
processing workstation. The system is very expensive and not portable and is thus
unavailable for a routine clinical assessment. A more affordable and portable system is
required for a routine clinical assessment. Several models were developed to estimate the
COM trajectories during standing [Chan, 1999; Barbier et al., 2003; Lapond ef al., 2004].
In {Chan, 1999], an approach for obtaining the COM from force plate data was
introduced; the horizontal COM position was obtained by double integrating the
horizontal ground reaction forces. An average correlation of 0.903 with a standard
deviation 0.091 was found. In [Barbier et al., 2003], force plate data was used to
compute the COM trajectory using an inverted pendulum model and the results were
compared with the actual COM trajectory obtained from a video motion capture system.
Their model estimated the COM trajectories within a root mean square (RMS) difference
of 0.9 mm and the correlation coefficients between the model and the video method were
above 0.8 in both the A-P and medial-lateral (M-L) directions. In [Lapond et al., 2004],
three methods were compared, which estimated the COM using a force plate and a 3-D
kinematic system; the methods were: a) the kinematic model, b) the double integration

technique (GLP), and ¢) the COP low-pass filter method (LPF). They considered four
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different standing tasks: a) quiet standing, b) one leg standing, c¢) voluntary oscillation
about the ankles, and d) voluntary oscillation about the ankles and hips. The GLP and
LPF models estimated the COM trajectories during quiet standing within a RMS
difference of 1.0 mm in both A-P and M-1. direction.

The force plate and video motion capture systems required to study the COM
trajectory in the aforementioned studies are expensive and not portable and thus, the
techniques are unavailable for a routine clinical assessment. On the other hand,
accelerometers are inexpensive and portable; however, they do not provide the COM
trajectory.

In [Wu and Ladin, 1996}, the 3-D kinematics of the human lower limb during
walking and running was studied, in order to examine the relative contribution of linear
acceleration measurements. The position, angular velocity, and linear acceleration of the
foot, shank, and thigh segments were measured to examine the segmental COM estimates.
It was found that the angular velocity and linear acceleration measurements can increase
the accuracy of COM estimates. This study suggests that the COM trajectory may be
successtully estimated by acceleration measurements of lower limb segments.

A recent study [Betker er al, 2006] showed that the COM trajectories could be
estimated using accelerometer data. Three models (neural network, adaptive fuzzy and
genetic sum-of-sines) were introduced to estimate the resultant COM trajectory using
trunk acceleration data, during standing with the hip strategy. Among the three models,
the genetic algorithm sum-of-sines model had superior performance and provided an

estimate of the resultant COM trajectory within an average error of 10%. This is an

_]5-



encouraging result for integrating the COM estimation models with a clinical assessment
system.

Some studies [Chan, 1999; Rarbier et al., 2006; Lapond et al , 2004] have attempted
to examine the COM trajectory during standing; however, there is little research studying
how the COM relates to body segment accelerations during forward stepping. The
kinematics of forward stepping is quite different from that of standing; the M-L
relocation of body weight support is tunctionally required for stepping, whereas the M-L ‘
COM is usually positioned around the centre above the BOS between the feet during
stationary standing [Rogers ef al, 2001]. In addition, when the swing foot is lifted for a
stepping procedure, the BOS is remarkably reduced to the area of the singly supported
foot. Body corrections are required in order to keep the body from falling towards the
swing foot. In order to reduce the possibility of falling laterally at the time of the foot lift,
the COM should be pushed toward the single supported side [Rogers er al., 2001]. Thus
it is uwseful to study balance control during forward stepping during different task

conditions prior to investigating steady state walking.

2.5 TRUNK ACCELERATION VARIABILITY

When compensating for any perturbation to retain stability, inherent motor variability
exists [Buzzi et al, 2003]. Increases in variability have been shown in less stable
systems, €.g. elderly with a history of frequent falls; hence, gait variability may provide
an indication of the lack of adaptability [Newell and Corcos, 1993]. Measures of gait
variability, such as vartability in step length, step width, speed, stance time and swing
time, have been examined as feasible indicators of balance control by many researchers

[Hausdorff er al., 1997; Maki, 1997; Gabell and Nayak, 1984; Sekiya et al., 1997;
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Grabiner et al., 2001; Stolze ef al., 2000].  As the trunk contributes to the tota] body
weight more than any other body segment, measures of variability regarding movements
of the trunk have been studied, [Moe-Nilssen and Helbostad, 2005] examined step width
variability and trunk acceleration variability in fit people and frail elderly, investigating
how the parameters distinguish between the two groups, Step width variability was
measured from footprints and trunk acceleration variability was measured by an unbiased
autocorrelation procedure.  Their results showed that trunk acceleration variability
classified 80% of the subjects correctly into their group, while step width variability did

not ditfer between groups.
2.6 CHARACTERISTICS OF THE COP

Instability will occur if the COM moves out of the BOS or if it has insufficient
momentum to regain the BOS. The COP is a useful indicator of this instability, as its
trajectory represents the balance reaction in both the frontal and Sagittal planes [Shan et
al., 2004; Szturm and Fallang, 1998; Coilins and De Luca, 1993; Gatev et al., 1999]. Itis
implicitly assumed that the postural sway indexed by the COP is a stationary process. In
addition, most studies have limited the analysis of the COP trajectory to standard
statistics. However the assumption of stationarity does not hold in all situations. Studies
have shown that many physiological systems (including postural sway) are chaotic
[Doyle er al., 2004; Yamada, 1995; Blaszczyk and W. Klonowski, 2001; Buzzi et al.,
2003; Hausdorff ez al., 2001]. Recent studies have developed analysis tools to evaluate
nonlinear and chaotic properties of the postural control systems [Doyle et al., 2004]. As
suggested in [Buzzi et al, 2003), feedforward and feedback control systems have a

certain amount of inherent variability, which is not random but deterministic, and can be
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characterized via nonlinear descriptors. Another study demonstrated that the COP
trajectories are chaotic [Yamada, 1995]. Fractal analysis of stride-to-stride fluctuations
in human gait rhythm was performed in [Hausdorff et al., 2001]; it was found that a
fractal pattern is present in stride fluctuations of healthy subjects during walking. Fractal
analysis of the COP trajectories using Higuchi’s algorithm [Higuchi, 1988] was
performed in [Blaszezyk and W. Klonowski, 2001]. A difference between the tasks was
found, when the subjects stood still on a firm surface with eves open and closed. The
results of these studies encourage the use of nonlinear dynamics in describing and
understanding variability and subsequently, in identifying balance disorder status. The
characteristics of postural control were investigated using COP sway path and nonlinear
parameters. The significance of nonlinear analysis to describe system characteristics as a
function of different task conditions and the advantage of nonlinear tools over linear

parameters are discussed.
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CHAPTER 3

METHODOLOGY

This chapter discusses the experimental design, the models describing the relationship
between the body accelerations and COM, and the nonlinear analysis of the COP
trajectories in comparison with linear analysis. The relationship between the COM
trajectories and the body accelerations was investigated through a fuzzy inference model,
a sum-of-sines model, and a parabolic model. The nonlinear characteristics of the COP
trajectories were evaluated using the Rényi dimension and spectrum, which were then

compared to the linear sway path used as linear parameter.

3.1 EXPERIMENTAL DESIGN

3.1.1 SUBJECTS

Nineteen young healthy subjects (aged 26.5 £ 2.22, 9 females) with no history of
neurological disorder or postural problems volunteered to participate in this study. Prior
to recruiting subjects, ethics approval was granted by the Ethics Committee, Faculty of
Medicine, the University of Manitoba. All subjects gave informed consent and were
briefed about the tasks and instrumentations before the experiments. Body indexes of
participating subjects, such as weight, height and Body Mass Index (BMI), of
participating subjects are given in Table 3.1; which provides the mean, standard deviation,

minimum, and maximum values for each body index is also given.
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Table 3.1 Averaged index of subjects.

Index Mean £ SD Minimum Maximum
Height (m) 1.69+0.10 1.56 1.90
Weight (kg) 67.01 = 14.15 47 96
BMI (kg/m®) 23.00 +2.82 18.36 28.05

3.1.2 EXPERIMENTAL SETUP

Two different 10 em thick foam pads were used to emulate the uncertainty of outdoor
terrain: No. 1 was of dimension 50.8 x 50.8 cm with a 25% indentation force deflection
of 62.64 kg and No. 2 was of dimension 50.8 x 50.8 cm with a 25% mdentation force
deflection of 31.82 kg. A 2 cm thick wooden board of dimension 25.4 x 40.64 cm was
placed on top of the foam pad in order to equally distribute the forces applied by the body
on the foam pad, which minimizes the effect of differences in body weight.

Vertical pressure forces were recorded with a thin flexible Force Sensing Application
(FSA) mat (Vista Medical Ltd., Winnipeg, MB, Canada) that was placed on top of the
foam pad. This 0.036 cm thick pressure mat of dimension 53 x 53 cm consists of a32 by
16 grid of piezo resistive sensors spaced 2.8575 cm apart, which were sampled at a
frequency of 25 Hz. The vertical COP in the A-P and M-L planes was then calculated as

the spatial centre of all the forces for the given mat.

Figure 3.1 Force Sensing Application (FSA) mat
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A VICON 460 motion capture system (Vicon Peak, Centennial, CO, USA) was
utilized for the whole body motion analysis. A total of 31 reflective markers were placed
on the subject’s anatomical positions representing whole body segments. Appendix A
depicts the detail of marker positions employed in this study. Six infrared LED cameras
captured 3-D motions, which the VICON motion capture system then processed to
provide kinematic data including segment positions, segment angles and the COM. The
sampling frequency was 120 Hz. As the VICON motion capture system is not equipped
with a trigger input channel, a custom circuit was designed to trigger it using the trigger

output from the FSA mat’s module box.

Figure 3.2 VICON motion capture system

Three miniature tri-axial S2-10G-MF accelerometers (Biometrics Ltd., Ladysmith,
VA, USA) of dimensions 2 x 1 x 1 cm and weight of 30 g were uftlized to record
segment movement. They were placed on the subject’s upper trunk close to the T2

vertebra, the shank of the stance leg, and the lateral malleolus of the swing leg. A total of



9 analogue signals (A-P, M-L and vertical directions for each accelerometer) were
digitized using the A/D converter card built into the VICON motion capture system; a
custom interfacing panel was employed to bridge between the analogue devices and the

VICON patch panel. The sampling frequency was 1080 Hz, as set by the manufacturer.

Figure 3.3 Biometrics $2-10G-MF accelerometer

3.1.3 PROTOCOL

Subjects were instructed to stand with their feet parallel, approximately 10 cm apart
on the fixed level firm surface. Next, they took a forward step with their right leg at a
normal self-paced speed and came to a complete stop for five seconds. They then
brought their swing leg back to the starting position in order to get prepared for the next
forward step. During backward stepping, they were allowed to look down to make sure
their right foot returned to the correct starting position as marked on the FSA pressure
mat, Once the subjects were set at the correct starting position, they were inétructed to
take another forward step. This process was repeated until the number of forward steps
listed in Table 3.1 was taken for each trial. For the next trial, subjects were instructed to
take 10 forward steps at a slow speed. Both of these stepping tasks were repeated on
foam pad No. 2. However, only the self-paced speed trial was performed on foam pad

No. 1. A rest period was given between each trial in order to prevent any factor resulting



from fatigue. A few practice steps were performed prior to each trial. To prevent
subjects from becoming fatigued, the total time of each experiment is supposed to should
be less than an hour. Due to this restriction, some trials were set to 10 forward steps
instead of 20. Table 3.2 lists the number of forward steps performed by a subject during

cach trial.

Table 3.2 Number of Forward Steps Performed by a Subject.

Trial Number of
Forward Steps
Fixed Surface, Normal Speed 20
Fixed Surface, Slow Speed 10
Foam Pad 1, Normal Speed 10
Foam Pad 2, Normal Speed 20 N
Foam Pad 2, Slow Speed 10

3.1.4 PRE-PROCESSING

The total number of stepping data coliected in this study was 133, i.e. seven per
subject. The trunk and swing acceleration data was decimated to a sampling rate of 120
Hz, which was that of the kinematic data. In order to account for physical differences
between the subjects, the data was normalized by subtracting the mean, and dividing by
the absolute maximum value. The COM trajectory computed by the VICON motion
capture system was found to be incomplete in a few trials; hence, those trials were
excluded from the COM estimation (Table 3.3). The vertical position of the ankle marker
was used to detect and extract the forward stepping phase, from swing foot lift to heel

strike.



Table 3.3 Number of Incomplete Trials.

Trial Number of .
Incomplete Trial

Fixed Surface / Normal Speed* 2/38
Fixed Surface / Slow Speed 0/19
Foam Pad 1 / Normal Speed 0/19
Foam Pad 2 / Normal Speed* 1/38
Foam Pad 2 / Slow Speed 1/19
Total 47133

Note: The trials that subjects performed 20 forward steps are marked with an asterisk (*).

3.2 MODELING PROCEDURE

This section describes: (a) the application of three different models (fuzzy inference
model, sum-of-sines model, and parabolic model) to investigate the relationship between
the COM trajectories and the body accelerations, plus a genetic algorithm was used to
update the model coefficients; (b} the application of trunk acceleration variability to
examine whether inherent motor variability exists in the system; and (c) the application
of nonlinear dynamics (Rényi dimension and spectrum) and a linear parameter (sway

path) to study the characteristics of the COP trajectory.

3.2.1 ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEM

A classical set is a set that totally includes or excludes any element. In this set, the
boundary is so strict that an element must be in either set X or set not—Y, However, there
are many occasions that this Boolean logic is not helpful, i.e. an element can be in
multiple sets. In such occasions, a fuzzy set is useful, as reasoning in fuzzy logic allows
for a generalization of the Boolean logic. For example, if the numerical value of 1 is
given to true and the numerical value of 0 is given to false, fuzzy logic allows in-between

values such as 0.25 and 0.847. A fuzzy inference system expresses the mapping from



input to output using fuzzy logic. The mapping provides a source to make a decision.
The process of fuzzy inference involves membership functions, logical operations and if-
then rules, which qualitatively develop the characteristics of conceptual knowledge and
interpret processes without precise quantitative analysis.

A membership function classifies how each input point is mapped to a degree of
membership between 0 and 1. The possibility of partial membership in a fuzzy set is
admitted. The membership function can be common functions, such as the piece-wise
linear function, the Gaussian distribution function, the sigmoid function, and the
trapezoidal function, or custom functions. Logical operations in fuzzy logic include a
standard truth table, such as AND, OR and NOT; however, the input values in fuzzy logic
can be a real number between 0 and 1. Thus, an AND truth table is defined by the
minimum operator, an OR by the maximum operator, and a NOT by the 1 - {Inpus}
operation. The if-then rules are used to formulate the conditional statements containing
fuzzy logic. An if-then rule consists of three distinct parts: a) fuzzifying the input, b)
applying the necessary fuzzy operators, and c¢) applying the results to the implication.
Finally, the resulting set is defuzzified to a single value. In the case where the if-then
rules of the system are known, they are used to define the membership functions.
However, if the if-then rules are unknown, the if-then statements can be obtained by
adaptively revising the parameters of the membership functions as described in [Jang,
1993].

The values of each input membership function are determined during the fuzzification.

The weight coefficient wy of each if-then rule is determined based on

W;e:HAms (G.1
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where A is the value of the input membership function. The normalized weight is then

computed based on

W=t (3.2)

where Ny is the number of if-then rules, and it is obtained by

Ny = I!—[Nk : (3.3)

k=]
where 7 is the total number of inputs, and N, is the number of input membership functions

for the input. The value of each output membership function f; is determined as a

function of w;. During defuzzification, the output of the system £ is defined as
~ Ny
F=3Wf. (3.4)
i=l

Then the membership function parameters can then be updated to adaptively optimize the
model.

There are two fuzzy inference methods: Mamdani-type and Sugeno-type. Mamdani-
type 1s the most commonly used fuzzy technique and is the fuzzy inference process that
has been described. The Sugeno-type fuzzy inference method is similar to the Mamdani-
type method; the first two parts of the fuzzy inference process, a) fuzzifying the inputs
and b) applying the fuzzy operator, are the same. The only difference is that the output
membership functions are linear or constant for the Sugeno-type method.

The Fuzzy logic toolbox along with custom scripts in MATLAB 7.0 Release 14
(MathWorks, Natick, MA, USA) was used. The inputs to the model were trunk and
swing leg accelerations, in the A-P and M-L directions. A generalized bell-shaped

membership function was selected through trial and error; the number of membership
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functions assigned to each input was 8, the number for which the system showed the best
performance. The number of epochs was set to 20 through trial and error. The model
was trained for each trial according to the leave-one-out procedure. The Sugeno-type
method was used for the fuzzy inference and a linear function was selected for the output

membership function; and these were set by the fuzzy logic toolbox.

3.2.2 SUM-OF-SINES MODEL

A sum of sinusoidal harmonics can be used to approximate a target function

H
d(t)=a, +Za” sin(na)ot+6,,), (3.5)

n=]
where / is the number of harmonics, ¢ are amplitude coefficients, wy is the fundamental
frequency on which the harmonics are based, 7 is time and @ represent phase shifts
[Winter, 1995]. In order to find the COM as a function of an input signal, not as a

function of time, the sum of sines model in (3.7) can be modified as follows:

COM(X)= ia” sin(f, X +6,), (3.6)

n=l
where COM (X) is the estimated COM as a function of the signal X [Betker et al., 2006].

Parameters H, a, 0 and f'will be determined by the genetic algorithm.

3.2.3 PARABOLIC MODEL
Forward step data was extracted from the actual COM and acceleration signals.
Preliminary investigation of the relationship between the acceleration signals and COM

suggested a parabolic mode] as the best fit as depicted in Figure 3.1. For a parabola

opening to the right with a vertex at (Xo, COM,), the equation in Cartesian coordinate is

(CoMm ~com,) =a(x - x,), G.7



Normalized amplitude

Normalized amplitude

Figure 3.4 Relationship between the COM and swing leg acceleration for a typical subject in (a) A-P
direction and (b) M-L direction; the relationship between the COM and trunk acceleration for a typical
subject in {c) A-P direction and (d) M-L direction.
where X is the independent variable and « is the latus rectum (the chord through a focus
parallel to the conic section directrix) [Coxeter, 1969]. Empioying equation (3.7) for the
COM estimation from acceleration data, the following equation was used to estimate the

A-P and M-L components of the COM from trunk and swing acceleration:

COM (X)) =2a, [X,~ X, +b,, (3.8)

where X); is body acceleration, a;; and by are the parameters to be estimated, the subscript
I represents trunk acceleration when i = 1 and swing leg acceleration when i = 2, and the

subscript j represents the A-P direction when j = 1 and the M-L direction when j=2



Due to the geometry of a typical parabola opening to the right, Xyjo can be estimated as

the minimum value of the independent variable. Then equation (3.8) becomes

COM (X ) =+a, /X, ~min(X,) +b,. (3.9)

A linear combination of two parabolic equations, i.e. trunk and swing leg acceleration,
was chosen to form the final relationship through a trial and error procedure. The

estimated COM is then

COM (X, . X, )=a|,COM (x,,) (3.10)
+a;jCéMj(ij)+b},

where g, and a;; are the updated coefficients of @; and a,,, respectively, and b is

equal to b, +b,,. The model parameters were estimated using two techniques: a genetic

algorithm and simulated annealing. Data from all subjects except one was used to
calibrate the model and the left-out data was used to test the performance of the model.

This leave-one-out procedure was repeated until every subject’s data was used for testing,

3.2.4 GENETIC ALGORITHM

A genetic algorithm is a stochastic global search method that imitates the natural
evolution process. It applies the survival of the fittest strategy to improve a set of
parameters for optimization and create a better approximation to a solution [Chipperfield
et al., v 1.2]. Genetic algorithm terminology includes gene (the basic building block,
representing variables), chromosome (string of genes), individuals (current or candidate
solutions), population (array of individuals), generation (each successive population),
parents (selected individuals in the cwrrent population), children (created individuals in

the next generation), fitness function (the objective function to optimize), and fitness
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value (the value of the fitness function for an individual). Individuals in the population
are encoded as chromoesomes to map the problem domain onto the decision domain. For
the purpose of mapping, the encoding type, upper and lower bounds, and precision should
be selected. The most common representation type for chromosomes is a binary string of
Os or 1s; however, there are various representation types, such as real value, alphabet or
Grey code. The number of bits required & should satisfy the relationship

L1107 <E”, (3.11)
where 7 is the length of the parameter calculated as L = UB — LB, where UB is the upper
bound, and LB is the lower bound, p is the precision and E is the base of the encoding
type [Michalewicz, 1996]. The chromosome is defined as a combination of the encoded
genes, and then a population of # individuals is randomly generated. In each generation,
N new individuals will be created according to the relationship

N=|P-G], (3.12)

where P is the number of individuals in the population and G is the generation gap
[Michalewicz, 1996]. The fitness value is then calculated for each individual in the
population.

The following steps are repeated for each generation until a stop criterion is satisfied:
1) select individuals to reproduce, based on their fitness values; 2) apply genetic
algorithm operations, such as crossover and mutation; 3) evaluate the fitness function for
each individual in the new generation,; and 4) insert fit individuals into the current
population to replace less fit individuals. In the first step, a fitness value that suggests the
degree of achievement is assigned to each individual by the fitness function. Individuals

that will be used for reproduction are selected from the population according to their
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fitness values. Selection methods include roulette wheel selection, rank selection,
tournament selection, local selection and truncation selection. In the second step, the
individuals selected reproduce to create new individuals by means of genetic operations,
such as crossover and mutation. Crossover occurs with the probability 2. and involves
random selection of crossover points. The children produced by the crossover share the
characteristics of their parents. Mutation alters randomly chosen mutation points of the

children resulting from the crossover with a given probability
P =—, (3.13)

where L. is the length of the chromosome [Michalewicz, 1996]. In the third step, the
fitness value is obtained for each individual that was reproduced by the genetic
operations. In the last step, less fit individuals in the current population are replaced by
more fit individuals. The selection of individuals for insertion into the new generation is
based on their fitness values.

The genetic algorithm toolbox [Chipperfield er al., v 1.2] with custom scripts in
MATLAB 7.0 Release 14 (MathWorks, Natick, MA, USA) was used. The encoding type
was (rey code with the base of the encoding type E was= 2, and the lower bound LB and
upper bound UB were defined as [-1, 1], with a precision p of 4; and these were chosen
through trial and error. Thus, a number of bits b of 15 was required to encode the
parameters according fo the criterion (3.4). A generation gap G of 0.9 was used, and the
fitness function used in this thesis was the mean square error (MSE)

MSE = —;}ui(com —com,), (3.14)

i=l
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where A is the length of the signal, COM is the actual COM trajectory and COM is the
estimated COM trajectory. The fitness function executes a linear ranking, based on

minimizing the MSE. The fitness value is

o=

/

PMSE,  i=P-1,...0, (3.15)

where S is the selective pressure, j is the original position of the individuals in the
population before ordering, and MSE; is the sorted MSE in ascending order at the ;"
position {Chipperfield er al., v 1.2]. A maximum generation number of 100 was chosen
through trial and error, and was used as the stopping criterion for training. The method
used to select individuals for reproduction was stochastic universal sampling (SUS). In
this method, each individual is mapped onto a segment of a line, such that each
individual's segment is equal in size to its fitness value. The distance between N pointers

is 1/ N and the first pointer p, is randomly generated between

1 P
{O,R}_-;F;J, (3.16)

while the rest of pointers are generated according to

pi:po%-—lN— i=1..,N-1. (.17

When the pointer value exceeds the sum of the fitness values, it proceeds to the next
available line segment on the far left side so that all pointer values lie on a line. The
individuals whose fitness values land at a pointer are selected to reproduce. The A
crossover probability P. of 0.85, and a mutation probability P,, of 0.088, computed from

equation (3.13), were used.



The estimation error between the target and estimated COM trajectories was

computed by

.. COM —com

-100%, (3.18)
COM

where COM and COM are the estimated and actual COM trajectories, respectively.
This error calculation was applied to all models. The mean and standard deviation of the

estimation error for each subject during each task condition was then calculated.

3.2.5 TRUNK ACCELERATION VARIABILITY

Trunk acceleration variability was measured using the amount of the correlation
coefficient at the first dominant peak of the trunk acceleration’s autocorrelation sequence
of the trunk acceleration. The period from zero to the first dominant peak of the trunk
acceleration autocorrelation sequence represents the phase shift equal to one step [Moe-
Nilssen and Helbostad, 2005]). The trunk acceleration variability from stride to stride
may be reflective of the specific motor control used to maintain the balance [Moe-Nilssen
and Helbostad, 2005]. Hence, in this study trunk acceleration variability was calculated
in both the M-L and A-P directions for all experiments and; the results were investigated
for any correlation with the COM modeling error. The mean and standard deviation of

trunk acceleration variability was then calculated among the subjects.

3.2.6 CHARACTERISTICS OF THE COP
3.2.6.1 RENYI DIMENSION AND SPECTRUM

The information dimension and correlation dimension are special cases related to the
generalized entropy concept, as introduced by mathematician Alfréd Rényi in 1955

[Kinsner, 2004]. Rényi generalized the entropy to any moment order q as
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1 N,
H, =7log2pj 0<g<cw, (3.19)
N =

where H, is the entropy at moment order ¢ and p} is the probability (relative frequency)

of the j* volume element at moment order g. If we assume a power-law relationship as

follows

[i P! ][“J S (3.20)

s

then the Rényi dimension spectrum D, is

N,
log (p})
D =1lim o

Tokeg - log(’l—) -

(3.21)

The Rényi dimension is called the similarity dimension Ds when g=0, the information
dimension D; when ¢=1, and the correlation dimension D¢ when ¢=2. Using the
algorithm presented in [Kinsner, 2004] for entropy-based dimensions, the Rényi
dimension at moment order ¢ from 0 to 9 was calculated, which was designed for use
with time series data such as the COP trajectory. Prior to applying the algorithm to real
data, the algorithm was verified using well-known fractals, such as Koch and Minkowski
curves simulated by executing L-system. The results showed that the algorithm was able
to explain up to 90% of the theoretical fractal dimensions of the Koch and Minkowski
curves.

Due to its concept of generalization, the Rényi dimension Dy can present the
fractal dimension at any moment order ¢. By combining the Rényi dimensions at
different moment orders, one can construct the Reényi spectrum as a function of moment

order q. The Renyi spectra calculated from the COP trajectories were investigated for
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any possible different pattern differences between task conditions, i.e. support surface or

stepping speed.

3.2.6.2 SWar PATH LENGTH

The sway path length, SP, is known as a linear clinical parameter that provides an
indication of the amount of the postural activity. As the following equation shows, the
sway path length presents the sum of the Euclidean distance between two sample points

in the COP trajectory, divided by the duration of measurement d7.

n+l H+l

Sp = o=l 3.22
dr (322)

S lcorss ~cor J +(cor ~copiy

As the sway path length provides a direct indication of the amount of the
posturographic activity, it was shown as one of the most valuable clinical parameters in
the analysis of human postural control for a variety of conditions [Baratto et al., 2002].
In this thesis, the sway path length was represented as a valid linear parameter of postural
activity; it will be compared it with nonlinear parameters, specifically the Rényi
dimension, to investigate whether there is any significant difference between them and/or

any advantage of utilizing nonlinear parameters over the linear ones.
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CHAPTER 4

RESULTS

4.1 COM 1N RELATION TO ACCELERATION

Figure 4.1 depicts the body accelerations of the trunk and swing leg, along with the
corresponding COM trajectory, of a forward step performed for two different tasks, for a

typical subject: 1) fixed surface at a normal speed; and 2) foam pad No. 2 at a slow speed.

Normalized Amplitude

20 40 60 80 T 20 40 80 80 100

Sampie [n]

Figure 4.1 COM, swing leg acceleration and trunk acceleration for a typical subject performed on: a fixed
surface at a normal speed in (a) A-P direction, (b) M-L direction and {c) resultant; and foam pad No. 2 ata

slow speed in (d) A-P direction, (e) M-1, direction and (f) resultant. One forward step is shown in the figure.
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The subsequent sections present the results for the adaptive fuzzy inference model,
genetic  algorithm  sum-of-sines model, and genetic algorithm parabolic model,

respectively.

4.1.1 ADAPTIVE FUZZY INFERENCE MODEL

An adaptive fuzzy inference model was trained and tested for each of the seven
stepping trials. The results for a typical subject for the task condition on a firm surface at
a normal speed in the A-P direction, M-L direction, and the resultant trajectory are shown
in Figure 4.2. The results for a typical subject for the task condition on foam pad No. 2 at
a slow speed in the A-P direction, M-L direction, and the resultant trajectory are shown in

Figure 4.3.
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Figure 4.2 Adaptive fuzzy inference model results: normalized actual and develeped COM trajectories in

(a) A-P direction, (b} M-L direction, and (c) resultant for a typical subject for the stepping task on a fixed

surface at a normal speed. For display purposes, the end point of the previous forward step is connected to

the start point of the next forward step.
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Figure 4.3 Adaptive fuzzy inference model results: normalized actual and developed COM trajectories in
(a) A-P direction, (b} M-L direction, and (¢) resultant for a typical subject for the stepping task on foam pad
No. 2 ata slow speed. For display purposes, the end point of the previous forward step is connected to the

start point of the next forward step.

Table 4.1 Adaptive Fuzzy Inference Model Error.

A-P direction M-I direction Resultant
Task Condition _

(Surface, Speed) Mean Min Max Mean Min Max Mean Min Max

£ 8D Error Error +=8D Error Error + 58D Error Error

Error (%) | (%) (%) | Error (%) | (%) | (%) | Error(%) | (%) (%)

Fixed, 145427 | 9.6 22,9 | 213+18 | 164 | 241 | 140428 | 95 20.4
Normal

FS]]";?, 13.643.6 | 79 | 214 | 21.8226 | 157 | 270 | 107223 | 67 | 140

FoamPad 1,100 51 1 a5 | 200 | 227430 160 | 283 | 112220 | 74 15.2
Normal

FoamPad2, 1 ysso0 | 113 | 208 | 216426 | 168 | 272 | 116123 | 73 19.9
Normal

F"a‘S“I (ijd 2, 146435 | 95 234 1 220437 1 120 | 272 | 113435 | 6.4 18.7
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Based on the leave-one-out procedure, the model was tested using the left-out data,
which was independent from the training data. This leads to testing the capability of the
model to generalize differences in step duration or shifts in the signal baseline. The mean,
standard deviation, minimum and maximum values of the adaptive fuzzy inference model
error for each task condition in the A-P direction, M-L direction, and for the resultant are

shown in Table 4.1.

4.1.2 GENETIC ALGORITHM SUM-OF-SINES MODEL

The genetic algorithm sum-of-sines model developed in [Betker et al., 2006] was
implemented to operate on single input. As swing leg and trunk accelerations are system
inputs in this thesis, each input was separately applied to the model. The following
sections describe two genetic algorithm sum-of-sines models for swing leg and trunk
acceleration, respectively.
4.1.2.1 SWING LEG ACCELERATION

A genetic algorithm sum-of-sines model for swing leg acceleration was trained and
tested for each of the seven stepping trials. The results for a typical subject for the task
condition on a firm surface at a normal speed in the A-P direction, M-L direction, and for
the resultant trajectory are shown in Figure 4.4, The results for a typical subject for the
task condition on foam pad No. 2 at slow a speed in the A-P direction, M-L direction, and
for the resultant trajectory are shown in Figure 4.5. Based on the leave-one-out
procedure, the model was tested using the left-out data which was independent from the
training data. This leads to testing the capability of the model to generalize differences in
step duration or shifts in the signal baseline. The mean, standard deviation, minimum

and maximum values of the genetic algorithm sum-of-sines model (for the swing leg)
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error for each task condition in the A-P direction, M-L direction, and for the resultant

trajectory are shown in Table 4.2,

Resultant

COM

i

ol B " i ; | .
160 200 300 400 500 600 700 800
Sample [n}

Figure 4.4 Genetic algorithm sum-of-sines model for the swing leg: normalized actual and developed COM
trajectories in {a) A-P direction, (b) M-L direction, and (¢) resultant for a typical subject for the stepping
task on a fixed surface at a normal speed. For display purposes, the end point of the previous forward step

is connected to the start point of the next forward step.
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Table 4.2 Genetic Algorithm Sum-of-Sines Model (Swing Leg Acceleration).

A-P direction M-L direction Resultant
Task Condition , .
(Surface, Speed) Mean Min Max Mean Min Max Mean Min Max
8D Error Error + 8D Error Error + 8D Error Error
Error (%) (%) (%) Error (%) {%0) (%) Error (%) (%) (%)
Fixed, 19.5+5.5 | 115 | 297 | 22,0458 | 11.5 | 354 | 205458 | 12.0 | 37.0
Nermal
Fixed, .
Slow 21.6+53 | 10,0 | 300 | 223234 | 142 | 273 | 154448 | 77 249
FoamPad L, {0000 | 128 | 384 | 215066 | 117 355 | 173437 | 117 | 238
Normal
FoamPad2, )\ 208458 | 105 | 353 | 214454 | 129 | 307 | 176643 | 123 | 354
Normal
FoamPad 2, o) 4 64| 120 | 363 | 232463 122 | 358 | 174448 | 65 253
Slow
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Figure 4.5 Genetic algorithm sum-of-sines mode] for the swing leg: normatized actual and developed COM

trajectories in (a) A-P direction, (b} M-L direction, and (¢) resultant for a typical subject for a stepping task

on foam pad No. 2 at a slow speed. For display purposes, the end point of the previcus forward step is

connected to the start point of the next forward step.
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4.1.2.2 TRUNK ACCELERATION

A genetic algorithm sum-of-sines model for the trunk acceleration was trained and
tested for each of the seven stepping trials. The results for a typical subject for the task
condition on a firm surface at a normal speed in the A-P direction, M-L direction, and for
the resultant trajectory are shown in Figure 4.6. The results for a typical subject for the
task condition on foam pad No. 2 at slow a speed in the A-P direction, M-L direction, and
for the resultant trajectory are shown in Figure 4.7. Based on the leave-one-out
procedure, the model was tested using the left-out data which was independent from the
training data. This leads to testing the capability of the model to generalize differences in
step duration or shifts in the signal baseline. The mean, standard deviation, minimum
and maximum values of the genetic algorithm sum-ofisines model (for the trunk
acceleration) error for each task condition in the A-P direction, M-L direction, and for the

resultant trajectory are shown in Table 4.3.
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Figure 4.6 Genetic algorithm sum-of-sines model for the trunk: normalized actual and developed COM
trajectories in (a) A-P direction, (b) M-L direction, and (c} resultant for a typical subject for the stepping
task on a fixed surface at a normal speed. For display purposes, the end point of the previous forward step

1s connected to the start point of the next forward step.
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Figure 4.7 Genetic algorithm sum-of-sines model for the trunk: normalized actual and developed COM

trajectories in (a) A-P direction, (b) M-L direction, and {c) resultant for a typical subject for the stepping

task on foam pad No. 2 at a slow speed. For display purposes, the end point of the previous forward step is

connected to the start point of the next forward step.

Table 4.3 Genetic Algorithm Sum-of-Sines Model (Trunk Acceleration).

A-P direction M-L direction Resultant
Task Condition . .
(Surface, Speed) Mean Min Max Mean Min Max Mean Min Max
+ 5D Error Error + SD Error Error + SD Error Error
Error (%) | (%) | (%) | Emor(%) | (%) | (%) | Error(%) | (%) | (%)
Fixed, 134427 | 87 19.8 | 19.743.7 | 138 | 28.5 | 203438 | 146 | 312
Normal
Fslfoe\f; 184=4.4 | 131 | 309 | 268+6.2 | 17.0 | 40.6 | 198456 | 11.1 | 31.0
FoamPad 1. | o eing | 124 | 240 | 178240 | 101 | 240 17.043.4 | 117 | 23.8
Normal
FoamPad2, e sina | 124 | 227 | 212556 | 123 | 340 183438 | 120 | 285
Normal
< b
roag‘lfvid T 186453 | 104 | 343 | 235457 | 122 | 358 | 169442 | 106 | 230
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4.1.3 GENETIC ALGORITHM PARABOLIC MODEL

Figure 4.8 depicts the parabolic relationship between the body accelerations (trunk
and swing leg) and COM, in A-P direction, M-L direction, and for the resultant,
Although the pattern of the parabolic relationship in the A-P direction is different from
the one in the M-L direction, it is rather consistent in each given direction. A genetic
algorithm was used to update the parameters that describe this parabolic relationship.

The following paragraphs describe the results for the model.

Normalized Amplitude

]

1

Sample [n]

Figure 4.8 The parabolic relationship between the COM and swing leg acceleration for a typical subject in
(a) the A-P direction, (b) the M-L direction, and (c} for the resultant, and between the COM and trunk

acceleration for a typical subject in (d) the A-P direction, {¢) the M-L direction, and (f) for the resultant.
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A genetic algorithm parabolic model for the trunk and swing leg accelerations was
trained and tested for each of the seven stepping trials. The results for a typical subject
for the task condition on a firm surface at a normal speed in the A-P direction, M-L
direction, and for the resultant trajectory are shown in Figure 4.9. The results for a
typical subject for the task condition on foam pad No. 2 at a slow speed in the A-P
direction, M-L direction, and for the resuliant trajectory are shown in Figure 4.10. Based
on the leave-one-out procedure, the model was tested using the left-out data which was
independent from the training data. This leads to testing the capability of the model to
generalize differences in step duration or shifts in the signal baseline. The mean,
standard deviation, minimum and maximum values of the COM model error for each task
condition in the A-P direction, M-L direction, and for a combination of the two directions

are shown in Table 4.4,
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Figure 4.9 Genetic algorithm parabolic model: normalized actual and developed COM trajectories in {a) A-
P direction, (b) M-L direction, and (c) resultant for a typical subject for the stepping task on a fixed surface
at a normal speed. For display purposes, the end point of the previous forward step is connected to the start

point of the next forward step.
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Figure 4.10 Genetic algorithm parabolic model: normalized actual and developed COM trajectories in (a)

A-P direction, {b) M-L direction, and (c) resultant for a typical subject for the stepping task on foam pad

No. 2 at a slow speed. For display purposes, the end point of the previeus forward step is connected to the

start point of the next forward step.

Table 4.4 Genetic Algorithm Parabolic Model.

A-P direction M-L direction Resultant
Task Condition :
(Surface, Speed) Mean Min Max Mean Min Max Mean Min Max
+ SD Error Error +£ 8D Error Error +SD Error Error
Error (%) (%) {%) Error (%) (%) (%) Error (%) (%) {%0)
Fixed, 57425 1 31 142 | 174450 | o8 294 | 97+22 | 59 15.5
Normal
I;;i% 8029 | 41 | 136 | 123%32 | 57 | 17.0 | 129447 | 63 | 222
FoamPadl, | g0.33 | 54 | 170 | 155648 | 99 | 257 | 1720545 | 03 | 265
Normal
FoamPad2, | 9500 | 48 | 135 | 154434 | 87 | 213 | 108240 | 58 | 230
Normal
3
Foaglizd-= 129428 | 83 | 165 | 176£52 | 113 | 257 | 141244 | 69 | 253
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4.2 TRUNK ACCELERATION VARIABILITY

Trunk acceleration variability was computed in both the A-P and M-L directions for
each task condition (Table 4.5). A statistically significant difference (»<0.05) in trunk
acceleration variability between the A-P and M-L directions was only found during the

first task condition; forward stepping on fixed surface at normal speed.

Table 4.5 Trunk Acceleration Variability.

A-P direction M-L direction
Task Condition
(Surface, Speed)
Mean+SD Min Max Mean+SD Min Max
Fixed, 0.3140.20 | <0.01 | 0.67 | 0.66:0.18 | 0.15 | 0.94
Normal*®
Fixed, 0274020 | <0.01 | 0.68 | 0264020 | <0.01 | 0.71
Slow
Foampad 1,4 40 013 | 013 | 059 | 0.37:0.17 | 0.04 | 064
Normal
Foampad2, = 4 360,16 | <0.01 | 068 | 0.29:0.18 | 0.03 | 0.6
Normal
Foals’[}op;dz’ 0.15£0.12 | <0.01 | 042 | 0.15:0.13 | <0.01 | 0.47

Note: The task condition with a significantly higher variability in the M-L direction than that in the A-P
direction is marked with an asterisk (¥).

4.3 CHARACTERISTICS OF THE COP

4.3.1 RENYI DIMENSION AND SPECTRUM

The averaged Rényi spectrum computed from the COP trajectories during forward
stepping at a moment order of ¢ ranging from 0 to 9 is shown in Figure 4.11. The Rényi
dimension at any moment order of ¢ can be obtained from the Rényi spectrum. The
Renyi dimensions for each task condition were between 1 and 2; this is as expected since
the Euclidean dimension D of the COP trajectory is larger than that of a line object (Dg

= 1), but smaller than that of a surface object (D = 2).
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Figure 4.11 The averaged Rényi spectrum of the COP trajectories during forward stepping is shown for: FF,

the task on the firm normal {ixed surface at a normal speed; FS, the task on the firm normal fixed surface at

a slow speed; SGF, the task on foam pad No. 1 at a normal speed; SYF, the task on foam pad No. 2 at a

normal speed; and SYS, the task on foam pad No. 2 at a slow speed.

Figure 4.12 depicts the averaged Rényi dimension at a moment order q of 2, which is

the correlation dimension D¢. The mean, standard deviation, minimum and maximum

values of the Rényi dimension D; for each task condition are presented in Table 4.6,

Table 4.6 Averaged Rényi Dimension at Moment Order qof2.

Task condition

(Surface, Speed) Mean + SD Minimum Maximum
Fixed, Normal 1.1835 +0.0448 1.0807 1.2176
Fixed, Slow 1.1764 = 0.0475 1.0699 1.2594
Foam pad 1, Normal 1.1729 % 0.0405 1.0592 1.2024
Foam pad 2, Normal 1.1724 4+ 0,0399 1.0691 1.2157
Foam pad 2, Slow 11857 + 0.0572 1.0340 1.2315 |
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Figure 4.12 The averaged Rényi dimensien D, for each task condition (mean = standard deviation) 1s
shown for: FF, the task on the firm normal fixed surface at a normal speed; FS, the task on the firm normal
fixed surface at a slow speed; SGF, the task on foam pad No. 1 at a normal speed; SYF, the task on foam

pad No. 2 at a normal speed; and SYS, the task on foam pad No. 2 at a slow speed.

4.3.2 SWAY PATH LENGTH

The averaged sway path length computed from the COP trajectories during forward
stepping for each task condition are shown in Figure 4.13. The sway path length was
decreased when the surface and/or speed condition was altered. The effect of surface
condition on sway path length was less evident than that of the speed condition. The
mean, standard deviation, minimum and maximum values of the sway path length for

each task condition are presented in Table 4.7.
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Figure 4.13 The averaged sway path length for each task condition (mean + standard deviation) is shown
for: FF, the task on the firm normal fixed surface at a normal speed; FS, the task on the firm normal fixed
surface at a slow speed; SGF, the task on foam pad No. 1 at a normal speed; SYF, the task on foam pad No.

2 at a normal speed; and SYS, the task on foam pad No. 2 at a slow speed.

Table 4.7 Averaged Sway Path Length of the COP Trajectory.

Task Condition Resultant

(Surface, Speed) Mean = 3D Minimum Maximum

Imm] {mm] {mm]

Fixed, Normal 721.5+£112.1 486.3 923.1

Fixed, Slow 5332+ 8§13 4435 721.0

Foam Pad 1, Normal 639.8 £ 133.0 446.4 844.6

Foam Pad 2, Nermal 671.8+ 1294 4255 861.1

Foam Pad 2, Slow 5547+ 885 4403 787.0

-53-



CHAPTER 5

DISCUSSION

The main findings of this thesis are as follows. As expected, the two task conditions,
support surface and stepping speed, provided ample environmental uncertainty to the
system. Three models were generated, among which the genetic algorithm parabolic
model showed the best performance for modeling the COM trajectories using the trunk
and swing leg accelerations. COM modeling error in the M-L direction was higher than
that in the A-P direction. An increase in trunk acceleration variability was found in one
task only, namely stepping on a fixed surface at a normal stepping speed. Trunk
acceleration variability in the M-L direction was significantly higher than that in the A-P
direction, when the subjects performed stepping on a fixed surface at a normal speed.
Between the tasks, there was no significant difference in the Rényi dimension of the COP
trajectories. However, a significant difference was found in the sway path length of the

COP trajectories between normal and slow speed stepping.

5.1 COM IN RELATION TO ACCELERATION

In order to examine the relationship between the COM trajectories and body
accelerations, video-based motion measurement system and accelerometers were utilized
in this thesis. The present results showed that body accelerations can be used to estimate
the COM trajectories. The use of accelerometer showed potential as it is portable and
much less expensive than fixed force plate and/or video-based motion measurement

system.  Thus an accelerometer system is available for daily clinical practice,
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independent of location or setting. However, various biomechanical models, e.g. models
developed in [Chan, 1999; Lapond et al., 2004, Barbier ef al., 2006], used fixed force
plate and/or video-based motion measurement system to estimate the COM trajectories.
As these systems are not portable but fixed, they are not available for a routine clinical
assessment. Therefore, the use of body accelerations on estimating the COM trajectories
has been a motivating research subject. In fact, many researchers [Morris, 1973; Kane et
al., 1974; Light er al., 1980; Gilbert et al., 1984] used the body segmental acceleration to
study the body segmental kinematics. [Wu and Ladin, 1996] showed that the linear
acceleration and angular velocity measurements play a dominant role in inereasing the
frequency range of the estimated COM; they concluded that the body segmental
accelerations can increase the accuracy of COM estimation. Recent studies [Mayagoitia
et al., 2002; Moe-Nilssen and Helbostad, 2004; Luinge and Veltink, 2005; Lyons ef al.,
2005; Karantonis er al., 2006] also used accelerometers to examine kinematics during
walking; their results demonstrated that data obtained from miniature mexpensive
accelerometers can approximate human kinematics during walking as accurately as a
video motion analysis system. In a recent study, [Betker ef al., 2006] showed that during
quiet stance the COM trajectory could be approximated using body acceleration: this is a
promusing result, indicating that the kinematics of human stepping tasks may also be
cstimated using an accelerometer system.  Although it showed potential, the
accelerometer system in this thesis depended on a kinematic parameter from video-based
motion measurement system, i.e. the vertical position of the ankle marker placed on
swing leg. This kinematic parameter was necessary to detect and extract the forward

stepping phase from swing foot lift to heel strike. In order to truly estimate the COM
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trajectories using body accelerations, a further study is required to be independent of
video-based motion measurement system.

During the single stepping task, two conditions were utilized in this thesis: support
surface and stepping speed. The compliant surface introduced an environmental
challenge into the system. A slower step speed was used to increase the duration of the
single support stance. Both of these conditions would increase task difficulty. The
present results show that the error in all models increased when a compliant surface was
used and when the step speed was slow. This was expected as CNS interpretation of
somatosensory information was distorted by the compliant surface and the increased
duration of the single support stance during slow stepping increased the balance
requirements. The use of the compliant surface on balancing task was investigated by
[Teasdale er al., 1991]; they have shown that standing and balancing on a compliant
surface is a difficult task for even healthy individuals with no history of balance problems.
[Lajoie et al, 1993] have suggested that reaction times when subjects were in single
support phase were significantly longer than those in double support phase; the
attentional (cognitive) demands increased with an increase in the balance requirements of
the single support stance. Therefore both of task conditions utilized in this thesis, i.e. the
compliant surface and slower step speed, provided environmental uncertainty to the
balance system.

Among the three developed models in this thesis, the genetic algorithm parabolic
model showed the best performance describing the COM trajectory’s relationship with
the trunk and swing leg acceleration. The genetic algorithm sum-of-sines model

performed well during quiet stance in [Betker ez al., 2006], but the present results showed
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that it did not performed well during forward stepping. This was expected as the pattern
of parabolic relationship between COM trajectories and body accelerations (depicted in
Figure 4.8) was observed. The mean error of the genetic algorithm parabolic model was
within 14.1%, while that of the genetic algorithm sum-of-sines model was within 20.5%
(trunk acceleration) and 20.3% (swing leg acceleration). The present results showed that
the model errors in the M-L direction were significantly greater than those in the A-P
direction; that might be a result of the increase in the M-L magnitude range of the body
segment motions, such as the swing foot. In order to prevail over the balance disturbance
and maintain stability, the swing foot trajectory should be modified to set the foot down
at a position that would establish a new base of support. In [Chou et al., 2003], a positive
correlation between increased COM motion in the M-L direction and the magnitude of
the swing foot trajectory in the M-L direction was observed. The finding of the increased
COM motion in the M-L direction is also addressed in [Greenspan et al., 1998), where
the importance of fall characteristics during walking were studied. They found that
compared to healthy elderly subjects, the elderly exhibiting symptoms of dizziness or
unsteadiness showed a significantly greater and faster motion of the COM in the M-L

direction.

5.2 TRUNK ACCELERATION VARIABILITY

Subjects were forced to use feedback controls and not feedforward predictions.
Balance task is implemented to examine how balance control system reacts to unexpected
disturbance or unsuccessful feedforward control. In order to challenge their balance
strategies in feedback control scheme, they were instructed not to look down during

forward stepping; otherwise visual information will help the CNS predict disturbances
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based on prior experience or memory. The use of feedback controls produces more
movement errors, which may cause increased variability in body segment motions, such
as trunk accelerations, and also increased COP excursions resulting in an increased COP
path length. However, according to the present findings, those increases did not happen
for all stepping tasks; a significant increase in trunk acceleration variability was found in
one task only: stepping on fixed surface and at normal stepping speed. ‘The COP path
length during stepping on a fixed surface at a normal speed was longer than that on the
foam pad at a slow speed. Due to the practice steps performed prior to each stepping task,
subjects knew the surface was altered to a less stable one. Hence, they consciously
became more cautious; this could have lead to less kinematic variability in the trunk
accelerations and a shorter COP path length.

This cautious behaviour was examined in [Menz et al., 2003a, Menz et al., 2003b,
Menz et al., 2003c], where subjects were asked to walk on a normal fixed surface and
then on a compliant/irregular surface. Their results showed that subjects’ speed and step
length were decreased when walking on the compliant surface, as compared to walking
- on the normal surface. This suggests that when walking on a compliant surface, subjects
perceived a threat to their stability and subsequently emploved a more conservative
pattern in attempt to minimize body movement. The destabilizing effect experienced
with a compliant/irregular surface on cautious behaviour was discussed in [Maclellan
and Patla, 2006], where movement strategy during self-paced walking on a visible
compliant surface was studied. They suggested that a person who previously experienced
a threatening environment would become more cautious when walking on a

compliant/irregular surface. Experience could assist the CNS to better predict the
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potential threat of the compliant/irregular surface and cause a more cautious stepping
pattern. In this case, the visual system plays a role in providing the characteristics of the
compliant surface prior to feedforward controls. This is similar to the present study
where the surface change was obviously visible and a few practice steps on altered
surface were performed.

In [Barak ef al, 2006], the elderly fallers showed increased kinematic variability
during walking when compared with non-fallers. It was concluded that increased
variability may be an important gait risk factor in the elderly with a history of falls.
[Moe-Nilssen and Helbostad, 2005] studied this increased variability particularly in trunk
accelerations, since the size and mass of the trunk segment are much greater than those of
the pelvis and legs; thus, trunk motion contributes to total body COM motion more than
any other body segment [Grabiner er al., 1993} According to [Moe-Nilssen and
Helbostad, 2005], the stride-to-stride variability in the M-L trunk acceleration may
represent a different aspect of motor control and it may provide the ability to discriminate
impaired balance control. The present findings, listed in Table 4.5, showed that trunk
acceleration variability in the M-L direction was significantly higher than that in the A-P
direction (p<0.05); this is consistent with the findings of [Moe-Nilssen and Helbostad,
2005]. However it was valid for only one task, namely stepping on a fixed surface at a
normal speed. This may suggest that the subjects became more cautious when they
performed more challenging task conditions and thus, there was less variability in body
motion during those tasks.

The results in Table 4.5 also showed that the lowest trunk acceleration variability was

observed during the most difficult task (stepping on foam pad No. 2 at a slow speed).
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However, balance control on a compliant surface is intuitively more difficult than on a
normal fixed surface. Thus, there is more variability in the body segment motions, which
may cause a higher modeling error. The results of the developed models (Tables 4.1 to
4.4) indicate that model errors in both the A-P and M-L directions increase with
compliant surfaces and the slow speed condition. This may idicate that trunk

acceleration variability has no effect on modeling error.

5.3 FRACTAL ANALYSIS OF THE COP

The Rényi dimension of the COP trajectory during forward stepping did not increase
with task difficulty, except for the task on foam pad No. 2 at a slow speed; in this case,
the Rényi dimension slightly increased. Also, there was no statistically significant
difference in the Rényi dimension between task conditions. Similar results were found in
[Han ef al., 2004], where the Rényi dimension of the control group remained constant,
except for a slight increase in the Rényi dimension for the most demanding task, where
somatosensory information was distorted by a foam pad surface and vision was
eliminated. An increase in the fractal dimension may indicate the use of less stable
control strategies or a higher tendency for instability [Doyle ez al, 2004 Blaszczyk and
Klonowski, 2001]. However, no significant increase in the fractal dimension may imply
that subjects participated in this thesis used stable control strategies, which agrees with
the subjects’ history free from neurological disorder or postural difficulties. For
comparison purpose, the Rényi dimension of patients during forward stepping would
further support the present results; it will strengthen the Rényi dimension’s feasibility in
detecting balance instability. The recruitment of patients group in a future study is then

recommended.
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In addition to the Rényi dimension, the linear measure, the sway path length, was
used to investigate any significant difference from the nonlinear measure, the Rényi
dimension. The present results showed that the sway path length did change with task
difficulty; the sway path length during forward stepping at normal speed was longer than
that at slow speed. This pattern may be affected by cautious behaviour that was
discussed in the previous section. When subjects perceived a threat to their balance
stability, they subsequently employed a more conservative pattern in attempt to minimize
body movement. The effect of cautious behaviour on the sway path length is greater than
that of the compliant surface. This may indicate that balance strategies are more affected
by cognitive system than environmental uncertainty. The pattern of the sway path length
in the present study was different from the one observed in [Han ef al., 2004] where the
sway path length duning quiet stance increased as the task difficulty increased. This was
expected as cautious behaviour is intuitively not the case in balance strategies during
quiet stance; as a response to disturbance during standing still, ankle, hip or stepping

strategy can be applied to maintain balance, depending on the degree of disturbance.

~6] -



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

This thesis aimed to develop a model of the COM trajectory during forward stepping
as a function of trunk and swing leg accelerations. It was shown that the genetic
algorithm parabolic model was able to estimate the COM trajectory within a mean error
of 12.9% in the A-P direction, 17.6% in the M-L direction, and 17.2% for the resultant
trajectory. The results are encouraging and pave the way for integrating the COM
models with a balance assessment system.

Furthermore, motor variability was measured to examine whether the variability may
indicate adaptability of human balance control. It was shown that the cautious behaviour
of subjects could have guided to less trunk acceleration variability and thus shorter sway
path length of the COP trajectories. Experience or knowledge could assist the CNS to
better predict the potential balance risk.

In addition, the linear and nonlinear measures of the COP trajectories were compared
to observe balance control behaviour of young healthy subjects. A significant difference
was found in the linear measure, the sway path length of the COP trajectories between
normal and slow speed stepping. The Rényi dimension, the nonlinear measure, did not
show any significant difference between tasks. However, given that all subjects were
young and healthy with no history of balance disorder, it is not conclusive to rule out the

Rényi dimension’s feasibility in detecting balance instability.



6.2 FUTURE WORK

Based on the developed model demonstrating the relationship between the COM
trajectory and body acceleration, the COM trajectory could be well explained by body
accelerations. However, the ankle position in the vertical direction was required to
extract the forward steps and this kinematic information was obtained via a video-based
motion analysis system. Having used a kinematic parameter from motion capture system
to extract forward stepping phase, it is not reasonable to claim the developed mode] is
able to independently estimate the COM trajectory using body accelerations; it is rather
an investigation of relationship between the COM trajectory and body accelerations,
Therefore study on the actual estimation of the COM trajectory using body accelerations,
without the use of kinematic parameter from motion capture system, is strongly
recommended as a future work.

Study on trunk acceleration variability revealed that subjects become more cautious
and tend to employ more conservative balance pattern when they encounter with a
balance threat. As all subjects participated in this thesis were young and healthy, the
effect of environmental uncertainty on the elderly and people with postural balance
problems is useful to further assist the present results. Investigating how patients or the
elderly react to a balance threat is recommended as a future work.

The present results showed that the COM model error in the M-I direction was
higher than that in the A-P direction. White noise from the data acquisition system may
affect higher COM model error in the M-L direction. However the CNS is believed to be
a dominant factor in higher error in the M-L direction; when the CNS received distorted

and/or delayed information from sensory systems, the postural control and balance
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strategy determined by the CNS would not succeed in all situations. Due to this
observation, further study on identifying and understanding a dominant source of higher
error in M-L direction during forward stepping is recommended as future work.

No significant increase in the Rényi dimension of the COP trajectories between
stepping tasks was found. However one can not exclude the Rényi dimension as the
indicator of instable balance strategies as all subjects in this thesis were young and
healthy. In order to further support that the Reényi dimension represents a significant
characteristic feature of instability, study on the Rényi dimension of patients or the
elderly during forward stepping is recommended as a future work. The sway path length

of patients during forward stepping is also recommended as a future work,
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APPENDIX A

Figure A.1 PLUG-IN-GAIT MARKER PLACEMENT

A.T UPPER BODY

A.1.1 HEAD MARKERS

LFHD Left front head (left temple)
RFHD Right front head (right temple)
Left back head
LBHD (in a horizontal plane of the front head markers)
RBHD Right back head
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A.1.2 TORSO MARKERS

C7 7" Cervical Vertebrac
T10 10™ Thoracic Vertebrac
CLAV Clavicle
STRN Sternum
Right back
RBAK (the middle of the right scapula)

A.1.3 ARM MARKERS

LSHO Lett shoulder
(the Acromio-clavicular joint)
RSHO Right shoulder
LUPA Left upper arm (between the elbow and shoulder
markers)
RUPA Right upper arm
LELB Left elbow (lateral epicondyle approximating elbow joint
axis}
RELB Right elbow
A.2 LOWER BODY
A.2.1 PELVIS
LAST Left ASIS
(Anterior Superior Iliac Spine)
RASI Right ASIS
(Anterior Superior Iliac Spine)
LPSI] Left PSIS
(Posterior Superior Iliac Spine)
RPSI Right PSIS
(Posterior Superior lliac Spine)

A.2.2 LEG MARKERS

[LKNE Left knee (the lateral epicondyle)
RKNE Right knee
LTHI Left thigh (the lower lateral 1/3 surface of the thigh}
RTHI Right thigh
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LANK Left ankle (the lateral malleolus along an imaginary line
that passes through the transmalleolar axis)

RANK Right ankle

LTIB Left tibial wand (the lower 1/3 of the shank to determine
the alignment of the ankle flexion axis)

RTIB Right tibial wand

A.2.3 FOOT MARKERS

LTOE Left toe (the second metatarsal head, on the mid-foot side
of the equinus break between fore-foot and mid-foot)

RTOE Right toe

LHEE Left heel (the calcaneous at the same height above the
plantar surface of the foot as the toe marker)

RHEE Right heel

-67 -



APPENDIX B

Specifications of Biometrics $2-10G-MF accelerometer

—
Output 0t0 £10G (0 to +98.1 m/s2), 3 channels labelled XY, Z
Mass 10g
Dimensions

19.0%12.7x10.9 mm (LengthxDepth>Height)

Case Material

Anodised aluminium

L

Cable Highly flexible grade, length 1800 mm
Supply Voltage 3.50 ~ 5.00 Vdc
Sensitivity +100mV/G
Cross Talk <5%
Accuracy Better than + 2% full scale
Bandwidth DC to 100 Hz
Filter 8 pole, 8" order 1.2 Elliptic
Direct connection to either DatalLINK or Datal.OG
Plugs 3xLemo OB series 4 pin plugs corresponding to channels
XY, Z
Shock Survival 500G
Resolution 0.0025 G
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