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Abstract

The static correlation challenge, which results due to the degeneracy of molecular orbitals in

a system, is still a significant obstacle to electronic structure methods. This work investigates

hydrogen clusters in arrangements with particularly significant amounts of static correlation

using a cumulant functional theory, ∆NO. Analysis of the performance of ∆NO in conjunc-

tion with the on-top dynamic correlation functionals: Colle–Salvetti (CS) and opposite-spin

exponential-cusp and Fermi-hole correction (OF), shows that it performs better than func-

tionals that describe systems with a multi-reference and also single-reference wave function.

The potential energy surfaces (PESs) of H3 and H4 clusters are analyzed and compared to

B3LYP, CCSD(T), and full CI. The H3 dissociation curve computed using ∆NO is near

exact. Among the challenging systems, is the H4 cluster and its rectangle (D2h) to square

(D4h) geometry transition, which appears as a cusp in energy at θ = 90◦ on the PES for

methods with an inadequate description of static correlation. The vicinity of the cusp region

is the challenging part of the system, not only quantitatively but also qualitatively. The

dissociation curve of square H4 (D4h) is also computed where ∆NO calculated energies are

comparable to full CI energies. The ∆NO method effectively describes not only the linear

hydrogen systems but also the H4 D2h/D4h transition, and produces a cusp-free PES with

adequate description of occupancies.
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Chapter 1

Introduction

Today, theoretical and computational chemistry has become one of the main sources to

understand chemistry, biology, and physics. Computational chemistry is the application of

developed theoretical methods, which are based on the laws of physics and mathematics,

to predict properties, reaction pathways and energies of various systems. The development

of commercial electronic structure packages has made computational chemistry easy to use;

thus, scientists from different fields started using it in their research, where simulations now

complement theory and experiment to approach science with enhanced accuracy.

Through the years, crucial insights were provided via computational chemistry in cat-

alytic processes, reaction mechanisms, drug design and delivery, as well as other challenges

in science.1,2 However, there is one crucial factor that leads to method development: ac-

curacy and speed. Computational benchmarks prove that the development process is still

required to achieve closer accuracy to experimental results and mitigate the different chal-

lenges. These challenges include but not limited to predicting: reaction energy barriers and

electron correlation.

The applications of quantum mechanics (computational chemistry) have been growing

rapidly with an unparalleled impact to science. Hartree–Fock (HF) theory was able to

describe molecular geometries.3 Moreover, systems were properly described with density

functional theory (DFT) with lower computational cost and inclusion of electron correlation.4
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On the other hand, post–HF methods that are more accurate than both the former and the

latter theories, became the source of data comparable to experiment. However, with that

accuracy, the computational cost is daunting.

The aim of this thesis is to provide insights on the description of electron correlation in

small systems such as hydrogen clusters. Providing insights shall be described by our devel-

oped method, ∆NO. It is not just the idea to illustrate the energy in straight chain systems

by stretching them, but to distort molecular geometries as well, and therefore understand

how the ∆NO method performs.

This work describes the computational tests of the method over challenges that dominate

conventional methods; HF, DFT, and post–HF. The first chapter of the thesis is a brief

theoretical introduction. The second is a submitted chapter to the Journal of Chemical

Theory and Computation that includes derivation of the ∆NO method and the systems

used to test it. It should be noted, however, that deriving the mathematical equations is

not a purpose of this thesis, rather brief summary of them whenever necessary, as these are

found in any quantum chemistry book. The thesis is finalized by a summary and future

research chapter.

1.1 Theoretical Background

1.1.1 The Schrödinger Equation

Since the birth of quantum chemistry, the main dilemma was and still is solving the Schrödinger

equation. The time-independent, non-relativistic, Schrödinger equation is,

ĤΨ = EΨ (1.1)

where the molecular Hamiltonian, Ĥ, operates on the wave function of the system, e.g. atom

or molecule, Ψ, and returns an eigenvalue, which is the energy, E. All equations defined in

this thesis are given in atomic units.3 In Ĥ, there are five components of the total energy of
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the system,

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

(1.2)

The Laplacian operators, ∇2
i and ∇2

A, are the second derivative with respect to coor-

dinates of electron i and nucleus A, respectively. The mass ratio, MA, is of nucleus A to

the mass of an electron, and Z is the atomic number of the nucleus. The distance between

electrons and nuclei is; riA = |ri −RA|, whereas distance between electrons is; rij =
∣∣ri − rj

∣∣,
while distance between nuclei is; RAB = |RA −RB |. The first and second terms are the

kinetic energies of the electrons and nuclei, respectively. The third energy term represents

the interaction between electrons and nuclei. The final two terms are the electron–electron

Coulomb and nuclei-nuclei interactions.

1.1.2 The Variation Principle

In order to evaluate the performance of developed methods, it is critical to account for the

variational theorem and check whether the energy is variational or not. In general, the

energy is evaluated by taking the expectation value of Ĥ for a given trial wave function,

which leads to the ground state energy, E, of the trial wave function. For a wave function,

Ψo, the energy can be evaluated as,

〈Ψo|Ĥ|Ψo〉
〈Ψo|Ψo〉

= Eo (1.3)

Assuming there is an appoximate wave function, ψ, that is normalized and well-behaved

within the boundary conditions leads to,

〈ψ|ψ〉 = 1 (1.4)

then taking the expectation value of Ĥ results in an energy that is an upper bound to Eo,

〈ψ|Ĥ|ψ〉 = E ≥ Eo (1.5)
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For a ground state system, the variational principle states that the approximate energy

is always higher than the exact ground state energy. The equality, however, holds when

|ψ〉 = |Ψo〉 . Therefore, it is possible to evaluate the quality of the wave function based on

its calculated energy, where generally the lower it is, the better the wave function.

1.1.3 The Born–Oppenheimer Approximation

The Born–Oppenheimer approximation is based on the fact that the mass of nuclei is much

larger than the mass of electrons, and therefore, from an electronic perspective, electrons

in a molecule tend to move fast while nuclei remain fixed. The consequences of this is

that the molecular wave function is factored into nuclear and electronic wave functions,

Ψmol = ΨnucΨelec. This leads to two separate equations: one for the electronic motion and

the other is for the nuclear motion. The Hamiltonian of the electronic Schrödinger equation

is given by,

Ĥelec = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
(1.6)

The electronic wave function, Ψelec({ri}; {RA}), is dependent on the electronic coordi-

nates. Furthermore, it also parametrically depends on the nuclear coordinates, where differ-

ent orientations of the nuclei results in a different function Ψelec. The nuclear coordinates,

however, do not appear explicitly in Ψelec. The parametric dependence is also present in the

electronic energy, Eelec = Eelec({ri}; {RA}). The electronic Schrödinger equation is,

ĤelecΨelec = EelecΨelec (1.7)

where the molecular potential energy, U, is defined as,

U = Eelec +
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.8)

The problem of Equation 1.7 is the presence of the Coulomb repulsion term that makes

finding an exact solution to the equation unattainable for N > 1. The subscript elec drops
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from the equations as the Hamiltonians and wave functions that follow are considered are

electronic.

1.1.4 Hartree–Fock Theory

The HF is a simple approximation for a wave function describing a system of N electrons.

It approximates the wave function by a single Slater determinant (Equation 1.9), which

satisfies the antisymmetry of the electronic wave function, i.e., Pauli exclusion principle.

The antisymmetry ensures that the sign of the wave function changes due to the interchange

of two of the electronic coordinates, Ψ(x1,x2) = −Ψ(x2,x1). A Slater determinant is written

as,

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)
...

...
...

χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.9)

where 1√
N !

is a normalization factor, and the spin orbitals χ are functions of the spatial and

spin electronic coordinates, x = (r, ω). Each spatial orbital, ψ(r), can form two spin orbitals

with different spin functions, α(ω) or β(ω), by taking their product

χ =


ψ(r)α(ω)

or

ψ(r)β(ω)

(1.10)

Slater determinants meet the antisymmetry requirement, and thus, the electrons of the

wave function are indistinguishable.
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The HF energy is given by the expectation value of Ĥ, and the HF wave function, ΨHF ,

〈ΨHF|Ĥ|ΨHF〉 = EHF

=
N∑
i=1

hii +
1

2

N∑
i=1

N∑
j=1

Jij −Kij

(1.11)

where the first term is the one-electron energy term,

hii =

∫
χ∗i (x1)(−1

2
∇2
i −

∑
A

ZA
riA

)χi(x1)dx1 (1.12)

and the two-electron part consists of the Coulomb and exchange interactions, Jij and Kij,

respectively.

Jij =

∫∫
χ∗i (x1)χi(x1)

1

r12

χ∗j(x2)χj(x2)dx1dx2 (1.13a)

Kij =

∫∫
χ∗i (x1)χj(x1)

1

r12

χ∗j(x2)χi(x2)dx1dx2 (1.13b)

The HF equations can also be written in terms of the spatial orbitals, ψ(r), by expanding

and integrating over the spin from the integrals. The HF energy is expressed as,

EHF = 2

N/2∑
a=1

haa +

N/2∑
a=1

N/2∑
b=1

2Jab −Kab (1.14)

The energy expression is based on the double occupation of the molecular orbitals (MOs),

i.e., a closed-shell system. The one electron-energy, haa, and two-electron energy terms, Jab

and Kab, are defined in terms of of the spatial orbital, ψ(r).

Minimizing the energy (Equation 1.11) with respect to the orthonormal spin orbitals

derives the HF equations.

f̂(r1)ψi(r1) = εiψi(r1) (1.15)

where εi is the orbital energy and f̂ is the Fock operator, which is expressed as,

f̂(r1) = ĥ(r1) +

N/2∑
a=1

2Ĵa(r1)− K̂a(r1) (1.16)

6



where,

ĥ = −1

2
∇2

1 −
∑
A

ZA
r1A

(1.17a)

Ĵa(r1) =

∫
ψ∗a(r2)

1

r12

ψa(r2)dr2 (1.17b)

K̂a(r1) =

∫
ψ∗a(r2)

1

r12

P̂12ψa(r2)dr2 (1.17c)

and P̂12 is a permutation operator of electron labels.

In order to obtain a solution for the HF equations, Roothaan–Hall equations provide

a simple approach by introducing a set of known K basis functions, and expanding the

unknown MOs as a linear combination of basis functions, φ(r),

ψi =
K∑
ν=1

Cνiφν(r1) (1.18)

The linear expansion is substituted into the HF equation (Equation 1.15), and both

sides of the equation are multiplied by the basis function complex conjugate, φ∗µ(r1), and

integrated,

∑
ν

Cνi

∫
φ∗µ(r1)f̂(r1)φν(r1)dr1 = εi

∑
ν

Cνi

∫
φ∗µ(r1)φν(r1)dr1 (1.19)

This is a matrix equation recognized as Roothaan–Hall equation, where its integrated

form can be expressed in a compact matrix equation as,

FC = SCε (1.20)

where C is a K × K square matrix that represents the MO coefficients. Elements of the

Fock matrix are given by,

Fµν =

∫
φ∗µ(r1)f̂(r1)φν(r1)dr1 (1.21)

the overlap matrix is,

Sµν =

∫
φ∗µ(r1)φν(r1)dr1 (1.22)
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and ε is a diagonal matrix of the orbital energies. The approach of solving Roothaan’s

equation is known as self-consistent field (SCF) procedure, which is an iterative way to

solve the equation. It is initialized by a guess of the coefficient matrix and finalized by

the convergence of the energy or coefficients. However, the main drawback of the HF wave

function method is the neglected part of electron interactions, which can lead to rather

incorrect energy values.

1.1.5 Electron Correlation

The HF method approximates the wave function as a single Slater determinant, and thus,

it describes the exchange interaction between parallel spin electrons properly. HF treats

electron interactions at an average mean-field level, where each electron experiences the

generated field of other electrons. It does not correlate the interaction between parallel and

anti-parallel spin electrons, which is known as Coulomb correlation. Thus, HF is considered

useless in dealing with properties that are strongly influenced by electron correlation, e.g.,

dipole moments.

The difference between the HF energy from the exact energy value is recognized as the

electron correlation energy, Ec.
1,3

Ec = Eexact − EHF (1.23)

The exact energy, Eexact, is the non-relativistic energy, of the system and EHF is the HF

energy, within a complete limit of the basis set. Ec corresponds to a small fraction of the

total electronic energy.5 However, it is vital for calculating accurate reaction energies, bond

lengths, band gaps, and other properties.6 Furthermore, for a more convenient understanding

of Ec, it is sometimes partitioned into two parts; static correlation energy, Estat, and dynamic

correlation energy, Edyn.7–9

Ec = Estat + Edyn (1.24)

8



Static correlation, occurs when different electronic configurations, i.e., Slater determi-

nants have exact or near-degeneracy with the HF ground state configuration.1,10 It is also

referred to as near-degeneracy, nondynamic, and strong correlation.11–14 The main flaw is

the single Slater determinant, and if a multireference approach is utilized, then Estat would

be properly included. Dynamic correlation, however, is critical for the relative motion of

electrons. There are two parts of Edyn; the first is short-range, Esr-dyn,15 and describes the

electron–electron cusp; the second is long-range, Elr-dyn,16 which is necessary for describing

van der Waals interactions, which are referred to as dispersion,

Edyn = Esr-dyn + Elr-dyn (1.25)

There is no magical method or approach to use for all physical-chemical systems; however,

it is possible to provide one that is more accurate and efficient than current methods.

1.1.6 Density Functional Theory

The foundation for density functional theory (DFT) is set by the Hohenberg and Kohn17

theorems where the ground state electronic energy of a system is defined as a functional of

the total electron density, ρ(r).

E = E[ρ(r)] (1.26)

The Hohenberg–Kohn theorem states that for a system with an external potential, νext,

there is a uniquely determined ground state wave function, Ψo, as well as a unique one-

electron density, ρo(r).
17 Thus, the ground state energy, Eo, is also determined. Furthermore,

in order to obtain a variational functional, E[ρ(r)] ≥ Eo, certain constraints must be followed,

that include the non-negative condition on the electron density and integrating to the total

number of electrons in a system,

9



ρ(r) ≥ 0 (1.27a)∫
ρ(r)dr = N (1.27b)

The ground state energy of a non-degenerate system is expressed with two terms; the

external potential, νext[ρ(r)], and the universal functional, F [ρ(r)].

E[ρ(r)] = νext[ρ(r)] + F [ρ(r)] (1.28)

The lack of an applied field leads to the potential provided by the nuclei, Vne[ρ(r)],

νext[ρ(r)] = Vne[ρ(r)] = −
M∑
A=1

∫
ZA
r1A

ρ(r)dr1 (1.29)

The F [ρ(r)] term, which is independent of the external field, is a density functional that

includes both the total kinetic energy and Coulomb repulsion energy of the electrons.

F [ρ(r)] = T [ρ(r)] + Vee[ρ(r)] (1.30)

Both terms included in F [ρ(r)] exist, however, there is no known explicit form for them

and thus, F [ρ(r)] is an unknown functional. In order to tackle this issue, both terms in

F [ρ(r)] are approximated. The Kohn–Sham approach utilizes a system of non-interacting

electrons by using Kohn–Sham orbitals, χKSi (r), where the Kohn–Sham electron density,

ρKS(r), is equivalent to the ground state electron density, ρo(r). Consider a single Slater

determinant (Equation 1.9) of orthonormal χKSi ,

ρKS(r) =
N∑
i=1

|χKSi (r)|2 (1.31)

and total kinetic energy of,

Ts[ρ(r)] = −1

2

N∑
i=1

〈
χKSi (r1)

∣∣∣∇2
1

∣∣∣χKSi (r1)
〉

(1.32)
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The second term of Equation (1.30) is approximated using the classical Coulomb energy

term,

J [ρ(r)] =
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1r2 (1.33)

The errors made by these approximations of both terms are recognized in the exchange-

correlation energy functional, Exc, which has an unknown explicit form. Thus, Equa-

tion (1.30) can be re-expressed as,

F [ρ(r)] = Ts[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] (1.34)

The Exc[ρ(r)] includes a correction to the kinetic energy due to the interaction of electrons

in a non-interacting system, ∆T [ρ(r)], the self-interaction correction present in the Coulomb

energy term, e.g., J [ρ(r)] > 0 for a one-electron system, Equation (1.33), and the electron-

electron exchange as well as correlation effects, ∆Vee[ρ(r)].

Exc[ρ(r)] = (T [ρ(r)]− Ts[ρ(r)]) + (Vee[ρ(r)]− J [ρ(r)])

= ∆T [ρ(r)] + ∆Vee[ρ(r)]
(1.35)

Substituting Equations 1.29 and 1.34 into Equation (1.28), formulates the Kohn–Sham

energy functional,

E[ρ(r)] = Ts[ρ(r)] + Vne[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] (1.36)

The significance of this energy expression is that there are two exact terms, Ts[ρ(r)] and

Vne[ρ(r)], while the final term, Exc[ρ(r)], constitutes a small part of the total energy. The

energy expression, E[ρ(r)], is minimized with respect to χKSi (r), which yields the Kohn–

Sham orbital equation.

f̂KSi (r1)χKSi (r1) = εiχ
KS
i (r1) (1.37)
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where f̂KSi (r1) is the Kohn–Sham one-electron opreator.

f̂KSi (r1) = −1

2
∇2

1 −
M∑
A=1

ZA
r1A

+

∫
ρ(r2)

r12

dr2 +
δExc[ρ(r)]

δρ(r)
(1.38)

The final term, δExc[ρ(r)]
δρ(r)

, is the functional derivative of Exc with respect to ρ(r). Furthermore,

the approach of minimizing the energy in Equation 1.37 is similar to the HF Equation (1.15).

It also depends on the electron density, and the equations are solved similar to HF, using an

SCF approach, iteratively.

The simplicity in DFT is not restricted to its mathematical equations, but also to its

computational cost. Hybrid methods are comparable to HF, while pure methods are lower

in cost than HF. DFT is known as an exact theory, where the solution to the Kohn–Sham

equations give the exact ground state energy. However, due to the approximations made

to the unknown exchange-correlation energy term, the solutions provided and their energies

are approximate. Furthermore, these approximations excludes DFT from being variational.

Density functional approximations are known to accurately account for Esr-dyn term

(Equation 1.25). Although part of Edyn is properly described, the other part, Elr-dyn, repre-

sents another challenge to DFT. Each density functional approximation has its own accuracy

and limitation, depending on the system and the addressed questions. However, static cor-

relation remains a significant challenge to the theory. This is due to the fact that DFT, like

HF, utilizes a single Slater determinant, while in order to describe Estat, a multireference

approach must be devised.

1.1.7 Post Hartree–Fock Methods

Post–HF methods use the ground state HF Slater determinant as their basis. In configu-

ration interaction (CI), the wave function is considered as a linear combination of Slater

determinants with excitations from the occupied (a, b, c) to virtual (r, s, t) spin orbitals.

Φo = coΨo +
∑
ar

craΨ
r
a +

∑
a<b
r<s

crsabΨ
rs
ab +

∑
a<b<c
r<s<t

crstabcΨ
rst
abc + · · · (1.39)
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The possible excitations are based on the HF wave function, Ψo, where they include

but are not limited to single, Ψr
a, double, Ψrs

ab, and triple excitations,Ψrst
abc, multiplied by

their expansion coefficients, cra, c
rs
ab, etc. This constitutes the theory known as configuration

interaction (CI). The CI coefficients are found via the variation principle, and CI is variational

because Slater determinants are well-behaved and it is a linear combination. Once all possible

configurations in a given system are included in Φo (Equation 1.39), in the limit of a complete

basis set, the exact non-relativistic energy is reached, this is referred to as full CI.

Although it is possible to consider full CI, it is not feasible for use in large systems and

restricts its application to small ones, depending on the basis sets used. This is due to the

extensive computational resources required, where the cost is exponential with respect to

the number of basis functions. It is possible, however, to truncate the expansion to a limited

order or type of excitation, single (CIS), double (CISD), triple (CISDT), etc. The main

drawback of truncated CI wave functions is that they are no longer size-consistent.

Size-consistency is vital in chemistry, where a method is considered size-consistent when

the energy of non-interacting molecules (monomers) is equal to the sum of their individual

energies. For example, consider two non-interacting hydrogen molecules (H2 · · ·H2); the total

calculated energy is twice that calculated for the individual molecules,

E(H2−H2) = 2E(H2) (1.40)

The relative energy, ∆E, of this system at R = ∞ is exactly zero. Among the methods

that are size consistent are full CI, HF, Møller–Plesset (MPn), and coupled-cluster (CC)

theories.

The wave function in CC theory, ΨCC, is expressed as a cluster of a ground state HF

reference wave function,

ΨCC = eT̂Ψo (1.41)

where the exponential ansatz, eT̂ , results in products of excitations included directly in the
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wave function.

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ · · · (1.42)

The excitation operator, T̂ , is responsible for the operators acting on the HF wave function,

|Ψo〉. The sum of various operators (Equation 1.41) are included in T̂ ,

T̂ =
N∑
i=1

T̂i (1.43)

Thus, it excites electrons from the occupied to virtual spin orbitals. For example, the singles

excitation operator, T̂1, acting on the HF wave function is expressed as,

T̂1Ψo =
∑
ar

craΨ
r
a (1.44)

The excitations could be singles, doubles, triples, or quadruples, etc. Hence, the method

is defined by which excitation operators are included; CCS, CCSD, CCSDT, or CCSDTQ.

The most well-known CC method is CCSD(T), where the triple excitations are calculated

using perturbation theory. The advantage of using CC theory is its accuracy in computing

energy values, and it is also size consistent. However, the computational cost limits their

use to some degree, which depends on the system and basis functions. For example, the

computational cost of CCSD(T) scales as K7, where K is the number of basis functions,

which makes it rather expensive for molecules with more than 12 heavy atoms, which are

atoms other than hydrogen. Furthermore, although CC methods are size-consistent, which

is due to the presence of eT̂ , they are not variational. The calculated energy could be lower

than the exact, non-relativistic, energy.

Another post–HF method is Møller–Plesset perturbation theory, where the exact Hamil-

tonian, Ĥ, is partitioned into the unperturbed HF Hamiltonian operator, Ĥ0, and the per-

turbation operator, V̂ .

Ĥ = Ĥ0 + λV̂ (1.45)

where

Ĥ0 =
∑
i

f̂i (1.46)
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and V̂ is a correction term and defined as,

V̂ =
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

N∑
j=1

[Ĵj(i)− K̂j(i)] (1.47)

The ordering parameter, λ, determines the strength of perturbation. The energy can be

written as an expansion of energy corrections, En, where the total energy is the sum of the

these energy parts,

E = E0 + E1 + E2 + · · · (1.48)

The first-order energy, the first two terms of Equation (1.48) is given by,

EMP1 = E0 + E1

= 〈Ψ|Ĥ0|Ψ〉+ 〈Ψ|V̂ 1|Ψ〉

= 〈ΨHF|Ĥ|ΨHF〉

(1.49)

The first correction, V̂ , of the HF energy leads to actual treatment of Ec, which is

referred to as second-order (MP2), while other higher order corrections are know as third-

order (MP3), or fourth-order (MP4) energy. In the spin orbital basis, the energy expression

of MP2 is given as,

E(MP2) =
∑
i<j
a<b

|〈ij| |ab〉 |2

εi + εj − εa − εb (1.50)

where,

〈ij| |ab〉 = 〈ij|ab〉 − 〈ij|ba〉 (1.51a)

〈ij|ab〉 =

∫∫
ψ∗i (r1)ψj(r1)

1

r12

ψ∗a(r2)ψb(r2)dr1dr2 (1.51b)

1.2 Hartree–Fock Dissociation of Molecules

Hartree–Fock theory has different formalisms for treating electrons in a Slater determinant

(Equation 1.9); restricted (RHF), restricted open-shell (ROHF), and unrestricted (UHF).3,18

15



Figure 1.1: Description of an RHF singlet state, ROHF and UHF doublet states. Lines

indicate the energy of spatial orbitals.

For a closed-shell singlet system, the RHF constructs the determinant with the restriction

that each spatial orbital, ψ(r), has two electrons, one with α and one with β spin. For

an open-shell system, it is possible to be described with a restricted type wave functions

utilizing ROHF, see Figure 1.1. The more common approach is using UHF, which constructs

the determinant where the α and β spins can have different set of ψ(r). However, the spin

symmetry breaks, where the UHF wave function is no longer an eigenfunction of the spin

operator, Ŝ2, and is said to be spin contaminated. For an unrestricted singlet state, for

instance, the wave function contains contributions from higher states, i.e., triplet and quintet

multiplicities, that contaminate the wave function. This is also observed for doublet states,

where it is contaminated by higher order multiplicity components, i.e., quartet, sextet, etc.

Thus, in a spin contaminated wave function, the expectation value of Ŝ2 is high for a UHF

wave function, compared to the expected value calculated as < Ŝ2 >= S(S + 1).

In terms of the predicted energy, the UHF wave function predicts either lower than or

equal energy to ROHF.19 For singlet systems within reach of the equilibrium region, it is not

usually possible to obtain a lower energy using a UHF wave function. However, stretching
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Figure 1.2: Dissociation of H2 as a function of bond length. Selected basis set cc-pVTZ.

the bond beyond equilibrium, leads to the breakage of spin symmetry due to the mixing

of the lowest triplet state with the singlet ground state. The breaking symmetry point is

recognized as the Coulson–Fischer point on the PES.20

Considering H2, for example, at dissociation limit it has an equal mixture of covalent,

H·–H·, and ionic, H+–H−, bonding. For homolytic dissociation, the covalent contribution

should be completely dominant, where the dissociation limit has two separate H· radicals.

RHF, however, dissociates the bond with a 50% mixture of covalent and ionic contribution

at dissociation limit, and thus, the resulting energy is always higher than the UHF energy,

see Figure 1.2. This affects not only dissociation energies, but also leads to higher activation

energies. Furthermore, the equilibrium bond lengths are most likely shorter than expected.

This results in higher calculated vibrational frequencies as well. On the other hand, by break-

ing the spin symmetry, UHF wave function localizes the electrons on the nucleus. Moreover,

UHF partially accounts for Ec, where it generally increases as the bond is stretched. Com-

pared to full CI at equilibrium (R = 0.74 Å), the UHF energy is higher by 102 kJ mol−1. As

17



the spin symmetry breaks at R = 1.22 Å, UHF energies deviate from RHF until it becomes

consistent with full CI energies. At complete dissociation, RHF overestimates the energy by

555 kJ mol−1.
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Chapter 2

Performance of ∆NO Towards

Statically Correlated Hydrogen

Clusters

2.1 Introduction

The proper description of electron correlation remains a dominant challenge in quantum

chemistry.1–3 Density functional theory (DFT) became the common approach due to the

computational cost and inclusion of electron correlation energy (Ec), which is absent in

Hartree–Fock (HF).4,5 Both methods perform well in systems well-described by a single

determinant,6 however, they encounter difficulties in describing systems with severe static

correlation, i.e., multireference character.7 Hydrogen clusters (Hn where n = 3...50) are

well-known statically correlated systems, where molecular orbitals become degenerate upon

dissociation.7–14 They are a prototype for metal-to-insulator transition.15,16

The correlation energy (Ec) of a chemical system is defined as the difference between the

exact non–relativistic energy (Eexact) and the HF ground state energy (EHF) in the limit of

a complete basis set,17

Ec = Eexact − EHF (2.1)
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where it can be partitioned into two forms of correlation energy, static (Estat) and dynamic

(Edyn),18–24

Ec = Estat + Edyn (2.2)

Static correlation (also known as near-degeneracy, nondynamic, left-right, or strong corre-

lation)25–29 results from the near– or exact–degeneracy of the electron configurations with the

HF configuration.30,31 Description of static correlation is required in systems of multireference

character, i.e., dissociating molecules,32–35 radicals,36–39 transition metal complexes,40–43 and

excited states.44–47 Dynamic correlation, is the relative motion of electrons through space.

It can be decomposed into two components; short-range,48,49 which is required to describe

the electron–electron cusp, and long-range, which is required for dispersion interactions,50

Edyn = Esr-dyn + Elr-dyn (2.3)

Unrestricted Hartree–Fock (UHF)51 partially accounts for Estat,
31 but the wave function

is no longer an eigenfunction of Ŝ2. UHF results in lower energies when spin symmetry

is broken. DFT adapts the unrestricted formalism and can partially account for Estat.
52,53

Furthermore, it constructs the Slater determinant of Kohn-Sham orbitals and deals quite

well with Esr-dyn.54

A better way to describe systems of multireference character is to construct the wave

function as a linear combination of Slater determinants.55 Multireference self-consistent field

(MRSCF) method,56–59 for example, complete active space self-consistent field (CASSCF),60–62

mainly accounts for Estat and partially for Edyn. In order to obtain remaining Edyn, post–

HF methods are applied to the resulting multireference wave function, such as second-order

perturbation theory (PT2)63–66 and coupled-cluster.67–70 However, this can lead to double-

counting of Edyn.69

Post–HF methods, such as Møller–Plesset (MPn, n = 2, 3, . . .) perturbation theory,

coupled–cluster (CC) theory, deal with Ec well in some systems, but fail drastically in

other systems that are simple in chemistry, e.g., hydrogen clusters.71–74 Taking all possi-

ble excitations of the electrons (determinants) as a linear combination, corresponding to full

configuration interaction (full CI), achieves the exact answer.75,76 The downside of using
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these methods is the computational cost, which limits their application to rather simple

molecules.76 Combining post–HF wave functions for Estat with density functionals for Edyn,

faces the same above-mentioned double-counting issue.77–80

Recently,78,81 the advantage of combining MCSCF with an on-top two-electron density

functional to deal with static correlation and double counting emerged with multiconfig-

uration pair-density functional theory (MC-PDFT). The results are promising with lower

computational cost than multireference theory, such as MRCI and CASPT2.81

Improvements over CC theory,71,72 restricting to pair excitations in the cluster operator

T̂ , (i.e. pair coupled cluster doubles),80 and removing some parts73 from T̂ to treat static

correlation qualitatively treated the failure of traditional CC in stretching hydrogen clusters.

However, these CC treatments improve aspects, but leave out other parts of Estat.
71–73

A promising alternative approach in capturing both static and dynamic correlation en-

ergies are cumulant functional methods, which include density-matrix functional theory

(DMFT)38 and natural orbital functional theory (NOFT).82 DMFT is useful in reducing

the computational cost compared to wave function methods.83 NOFT has shown signs of

future success in some systems.84–86 Among the NOFT methods is Piris natural orbital

functional (PNOF) that captures static correlation in different systems.13,15,84,87

The ∆NO85 method, which is based on cumulant functional theory (CFT), combines

an effective cumulant functional for static correlation with an on-top two-electron density

functional,88,89 or more recently with post-HF functionals,90 for short-range dynamic corre-

lation. Unlike NOFT methods, which depend on the occupation numbers, ∆NO recovers

static correlation through the occupancy transferred between statically correlated natural

orbitals (NOs). Furthermore, the pairing of NOs is based on a small active space, which

improves efficiency.

In this work, systems known to be particularly challenging due to static correlation,

H3 and H4 clusters, are used to analyse the performance of ∆NO in conjunction with the

dynamic correlation functionals; Colle-Salvetti (CS),85,88,91 opposite-spin exponential-cusp

and Fermi-hole correction (OF),89,90 Furthermore, it is the aim of this work to provide more
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insights into the static correlation challenge through understanding the molecular orbitals

and their pairing.

Section 2.2 of this work includes a a brief summary of the ∆NO method. The challenging

hydrogen clusters and the methods applied are given in Section 2.3. The results for the

dissociation and deformation of the studied clusters are presented in Section 2.4. The final

Section (2.5) concludes the work presented here.

2.2 Theory

2.2.1 The ∆NO Method

The total electronic energy in CFT is constructed based on the cumulant expansion92 of

the two-electron reduced density matrix (2-RDM). Reduced density matrix (RDM) methods

consider the use of the one-electron (1-RDM) and two-electron (2-RDM) reduced density

matrix as a variable, it can also extend to 3-RDM, 4-RDM, etc. Defining the energy as a

functional of 2-RDM is not trivial since the integral elements do not necessarily correspond

to an anti-symmetric wave function. However, expressing the energy functional in terms of

the 1-RDM makes it easier to maintain an N -representable function.

The 1-RDM, γ̃, and 2-RDM, Γ̃, are expressed in terms of the N -electron wave function

as,

γ̃(x1,x
′
1) = N

∫
Ψ∗(x′1,x2,x3, . . . ,xN)Ψ(x1,x2,x3, . . . ,xN)dx2 . . . dxN (2.4a)

Γ̃(x1,x2,x
′
1,x

′
2) =

N(N − 1)

2

∫
Ψ∗(x′1,x

′
2,x3, . . . ,xN)Ψ(x1,x2,x3, . . . ,xN)dx3 . . . dxN

(2.4b)

where Ψ is a function of the spatial and spin coordinates, x = (r, ω). The diagonal of the γ̃

function is the one-electron density, and diagonal of the Γ̃ function is the two-electron density.

The 1-RDM is also obtained through the integration of one of the electronic coordinates of

the 2-RDM.
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The total energy expressed in terms of the 2-RDM is given as,

E[Γ̃] =

∫
[ĥγ̃(x1,x

′
1)]x′

1=x1
dx1 +

∫
Γ̃(x1,x2,x

′
1,x

′
2)

|r1 − r2|
dx1dx2 (2.5)

where the first term is the one-electron energy in which the operator ĥ includes the one-

electron kinetic, T , and potential energy, Vne, operators of M nuclei. Defining the energy

functional in terms of 1-RDM mitigates the N -representability issue by restricting the oc-

cupation numbers between 0 and 1, as well as their sum to N . The second term is the

two-electron integral that includes the energy of the electronic interactions, which is for-

mally an exact term, but approximated in CFT. This is achieved utilizing the cumulant

expansion,

Γ̃(x1,x2,x
′
1,x

′
2) = Γ̃(0)(x1,x2,x

′
1,x

′
2) + Γ̃cum(x1,x2,x

′
1,x

′
2) (2.6)

where Γ̃(0)(x1,x2,x
′
1,x

′
2) is the zeroth-order term of the 2-RDM expansion,

Γ̃(0)(x1,x2,x
′
1,x

′
2) =

1

2

[
γ̃(x1,x

′
1)γ̃(x2,x

′
2)− γ̃(x1,x

′
2)γ̃(x2,x

′
1)
]
. (2.7)

and Γ̃cum(x1,x2,x
′
1,x

′
2) is an unknown recognized as the cumulant. The energy can now be

re-expressed as,

E∆NO = E∆NO
0−1RDM + E∆NO

cum (2.8)

The zeroth-order 1-RDM energy includes contributions of the one-electron energy, hpp, that

contains the kinetic and nuclear potential operator of M nuclei. E∆NO
0−1RDM also contains the

two-electron energy term. In the basis of the natural orbitals, φp, and occupancies, np, for

open- and closed-shell systems, E∆NO
0−1RDM is given as,

(2.9)

E∆NO
0−1RDM =

cl∑
p

2nphpp +

op∑
p

nphpp +
cl∑
p

cl∑
q

nqnp
(
2Jpq −Kpq

)
+

cl∑
p

op∑
q

npnq
(
2Jpq −Kpq

)
+

op∑
p

op∑
q

npnq
2

(
Jpq −Kpq

)
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where

hpp =

∫
φ∗p(r)

−1

2
∇2 −

∑
A

ZA

rA

φp(r)dr (2.10a)

Jpq =

∫∫
φ∗p(r1)φ∗q(r2)φp(r1)φq(r2)

r12

dr1dr2 (2.10b)

Kpq =

∫∫
φ∗p(r1)φ∗q(r2)φq(r1)φp(r2)

r12

dr1dr2 (2.10c)

In order to construct the cumulant energy term, in the NO basis, Ψ∆NO, can be expressed

as an expansion of Slater determinants.

Ψ∆NO =
∑
I

cIΨI (2.11)

The electrons can be in their original orbital or in a virtual orbital in a form of 2n-tuply

excited determinants, ΨI .

ΨI = Ψpp̄qq̄rr̄ss̄...

īijj̄kk̄ll̄...
(2.12)

The product of factors for each double excitation from the active orbitals define the expansion

coefficients, cI .

cI = dpi d
q
jd
r
k . . . (2.13)

where the occupied are i, j, k, etc and the virtual are p, q, r, etc.

All elements in Equation (2.11) are defined, thus, the total ∆NO wave function is written

as

Ψ∆NO =
∑

pqrs...

(
dpi d

q
jd
r
k...
)

Ψpp̄qq̄rr̄ss̄...

īijj̄kk̄ll̄...
(2.14)

where the coefficient factors are defined in terms of occupancies of the NOs or the transfer

of electrons from the occupied to virtual NOs, ∆ip, as

dpi =
√
niδip −

√
∆ip (2.15)

The occupancy of orbitals, ni, that remains after the electronic transfer from an occupied to

virtual is expressed as,

ni = 1−
∑
p

∆ip (2.16)
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while the occupancy of a virtual is

np =
∑
p

∆ip (2.17)

and δip is the Kronecker delta.

In order to correspond to an N -electron wave function, the electronic transfer is restricted

between 0 and 1.

0 ≤ ∆ip ≤ 1 (2.18)

The total energy, E∆NO, is found by taking the expectation value of the Hamiltonian

with the ∆NO wave function, Ψ∆NO.〈
Ψ∆NO

∣∣∣Ĥ∣∣∣Ψ∆NO

〉
=
∑
I

d2
IHII +

∑
I 6=J

dIdJHIJ (2.19)

where the diagonal elements,
∑
I

d2
IHII, correspond to both the zeroth-order 1-RDM and the

electron pair correction energy terms of ∆NO.∑
I

d2
IHII = E∆NO

0−1RDM + E∆NO
pair (2.20)

In order to ensure that for fractional occupancies the 2-RDM wave function integrates

to the total number of electrons, N(N−1)
2

, the pair correction is introduced. In the NO basis,

the E∆NO
pair energy term is expressed as,

(2.21)E∆NO
pair =

∑
p

∑
q

ηpq
(
2Jpq −Kpq

)
where ηpq is a pair correction term that is used to remove fictitious correlation interactions

and defined as,

(2.22)
ηpq = δpqnp(1− np) + (1− δpq)(OpVq∆pq(nq − np −∆pq)

+ OqVp∆qp(np − nq −∆qp)− VpVq

∑
r

Or∆rp∆rq)

where O and V are vectors that indicate whether an orbital belongs to the occupied or
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virtual set.

O =



1

1

1
...

0

0

0
...



,V = 1−O (2.23)

where the 1 is a vector with all entries equal to 1.

The second part of the expectation value, Equation (2.19), is the correlation part, which

is the cross terms.∑
I 6=J

dIdJHIJ =
∑
pqr...

∑
p′q′r′...

(
dpi d

q
jd
r
k...
)(

dp
′

i d
q′

j d
r′

k ...
)〈

Ψpp̄qq̄rr̄ss̄...

īijj̄kk̄ll̄...

∣∣∣Ĥ∣∣∣Ψp′p̄′q′q̄′r′r̄′s′s̄′...
īijj̄kk̄ll̄...

〉
(2.24)

The ∆NO wave function is derived for disentangled pairing, which means that each active

occupied NO is paired with its own exclusive set of vacant orbitals. As a result, the only

terms that survive are those that involve the same active occupied orbital,∑
I 6=J

dIdJHIJ =
∑
p 6=v

∑
qr...

dpi d
v
i (d

q
jd
r
k...)

2Lpv +
∑
p6=v

∑
pr...

dqjd
v
j (d

p
i d
r
k...)

2Lqv + ... (2.25)

where Lpv is the time-inversion exchange energy integral and expressed as,

Lpv =

∫∫
φ∗p(r1)φ∗p(r2)φv(r1)φv(r2)

r12

dr1dr2 (2.26)

The sum of squares of the coefficient factors that are with the same active occupied

orbital yield one, ∑
p

(dpi )
2 =

∑
p

(δip

√
ni −

√
∆ip)2 = ni +

∑
p

∆ip = 1 (2.27)
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Substitution of the definition of the coefficient factors and simplification then leads to,∑
I 6=J

dIdJHIJ =
∑
p 6=v

(
√
niδip −

√
∆ip)(

√
niδiv −

√
∆iv)Lpv (2.28a)

E∆NO
stat = −

∑
ip

√
ni∆ip(Lip + Lpi) +

∑
p 6=q

∑
i

√
∆ip∆iqLpq (2.28b)

The energy of the ∆NO wave function then becomes,

(2.29)

〈
Ψ∆NO

∣∣∣Ĥ∣∣∣Ψ∆NO

〉
= E∆NO

0−1RDM + E∆NO
pair + E∆NO

stat

=
cl∑
p

2nphpp +

op∑
p

nphpp +
cl∑
p

cl∑
q

npnq(2Jpq −Kpq)

+
cl∑
p

op∑
q

npnq(2Jpq −Kpq) +

op∑
p

op∑
q

npnq
2

(Jpq −Kpq)

+
∑
p

∑
q

ηpq(2Jpq −Kpq) +
∑
pq

(
ζpq − ξpq

)
Lpq

where the coefficients of the static correlation term are defined as,

ζpq = VpVq

∑
r

√
∆rp∆rq (2.30a)

ξpq = OpVq

√
np∆pq + VpOq

√
nq∆qp (2.30b)

In order to ensure that bonds are dissociated properly in the framework of ∆NO, it

is necessary to include a correction (Equation 2.30) to the description of bond dissociation.

Therefore, high-spin correction (HSC) energy is introduced. HSC is necessary to increase the

pair density between parallel-spin electrons while decreasing the pair density of antiparallel-

spin electrons of statically correlated electron pairs. It ensures that in molecular dissociation,

the statically correlated electrons remain in a high-spin state locally on the separated atoms.

If the correction is missing, an average of both high- and low-spin states would be included,

which would lead to inaccurate computed energies.

E∆NO
HSC = −

∑
pq

κpqKpq (2.31)
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where

κpq = (OpOq + VpVq)
∑
r 6=s

ξprξqs + OpVq

∑
r(6=q)
s(6=p)

ξprξsq + VpOq

∑
r(6=q)
s(6=p)

ξrpξqs (2.32)

The final energy term, E∆NO
dyn , in the proposed cumulant energy is based on the on-

top two-electron dynamic correlation functionals; CS85,88,91 and OF.89,90 These functionals

account for short-range dynamic correlation energy, Esr-dyn; and thus, the long-range dynamic

correlation energy is still not implemented in ∆NO and remains for future work.

E∆NO
dyn = E∆NO

CS/OF (2.33)

Combining the derived energy terms leads to the final proposed ∆NO cumulant energy

expression.

E∆NO
cum = E∆NO

pair + E∆NO
stat + E∆NO

HSC + E∆NO
dyn (2.34)

2.3 Methods

Potential energy surfaces (PESs) of the dissociation of linear H3 (C∞v) and H4 (D∞h) and

square H4 (D4h) are analyzed as a function of internuclear distance (R) between the H

atoms, while the PES of H4 with rectangle to square geometry (D2h/D4h) is given as a

function of θ, which controls the angles between two adjacent H atoms, see Figure 2.1.

Such systems have been previously used to evaluate the performance of DFT, post–HF,

and other methods.25,93–95 Stretching systems of H3 and H4 becomes more challenging at

larger bond lengths where the multireference character becomes more substantial.71,96 As for

H4, transitioning from rectangle to square is more statically correlated, where if modelled

incorrectly, there is a cusp in energy at θ = 90.72–74

The absolute energies of full CI, B3LYP, and CCSD(T) methods were computed using

GAMESS,97 while the ∆NO calculations were performed using MUNgauss.98 The ∆NO

calculations include the aforementioned dynamic correlation functionals; CS and OF, cor-

responding to ∆NO–CS and ∆NO–OF, respectively. To properly recover correlation, the
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Figure 2.1: Challenging systems of H clusters. From top left, H3 C∞v, H4; D∞h, D4h and

D2h/D4h. R in Å.

Dunning’s correlation consistent, polarized valence, triple zeta basis sets (cc-pVTZ) is se-

lected for all calculations.99–101

2.4 Results and Discussion

For each linear H cluster (C∞v and D∞h) and H4 square (D4h) cluster, the performance of the

methods relative to full CI on the PES, equilibrium bond length (Re) and its corresponding

energy (E), dissociation energy (De), and difference in absolute energies (EFull CI−E∆NO) is

discussed. In addition to that, for the H4 D2h/D4h cluster, relative energy values (EFull CI[θ]−

E∆NO[θ]), and energy barrier is reported. The dissociation energy curves for the H3 molecule

by ∆NO, with both CS and OF dynamic energy functionals, full CI, and B3LYP are given in

Figure 2.2. Table 2.1 includes Re and energies calculated using the aforementioned methods.

Moreover, De are reported in Table 2.2.

The calculated Re at ∆NO is in agreement with full CI, where the difference does not

exceed 0.003 Å. On the other hand, the ∆NO–CS overestimates the dynamic correlation

energy where at Re, EFull CI − E∆NO–CS = 0.00441 (12 kJ mol−1). This is also reflected on

De = 465 kJ mol−1, which is overestimated by 11 kJ mol−1 due to double counting. The

∆NO–OF, however, is in excellent agreement with full CI where the difference in energy at
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Full CI
UB3LYP
ΔNO-CS
ΔNO-OF
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U(R)

Figure 2.2: Potential energy surface of H3 as a function of R (Å).

Re is 2 kJ mol−1, and De = 455 kJ mol−1 is comparable to full CI predicted value of 454 kJ

mol−1.

The dynamic correlation decays as the system is stretched, where at the dissociation limit,

∆NO–CS, similar to ∆NO–OF, coincides with the full CI curve, which means that ∆NO

properly describes the dissociation of the molecule and accounts well for Estat. UB3LYP

Table 2.1: Equilibrium bond lengths (Å) and minimum energies (hartree) of different hy-

drogen systems.

Full CI UB3LYP ∆NO–CS ∆NO–OF

Molecule Re E Re E Re E Re E

H3(C∞v) 0.743 -1.67227 0.744 -1.67213 0.741 -1.67668 0.740 -1.67307

H4(D∞h) 0.884 -2.27822 0.883 -2.28648 0.878 -2.2801 0.880 -2.27504

H4(D4h) 0.863 -2.10891 0.842 -2.12798 0.853 -2.1126 0.860 -2.10929
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n

Figure 2.3: Change in occupation numbers of statically correlated NOs of H3 as a function

of R (Å).

correctly predicts both of Re and energy, however, the dissociation energy, De = 461 kJ

mol−1, is slightly higher. It also dissociates the molecule rapidly, compared to full CI.

In the ROHF wave function, the first MO of H3 (HOMO-1) is doubly occupied, and the

second (HOMO) is singly occupied. The ∆NO method pairs the HOMO-1 with LUMO. The

transfer of electrons is initiated from HOMO-1, to the LUMO, see Figure 2.3. At around

1.000 Å, the change of occupancies occurs, and as the system is stretched, Estat increases

dramatically, whereas Edyn decreases significantly. At complete bond dissociation, 5.000 Å,

both orbitals are half filled, each with one electron (Figure 2.3). Moreover, the HOMO is

Table 2.2: Dissociation energies (kJ mol−1) of different hydrogen systems.

Molecule Full CI UB3LYP ∆NO–CS ∆NO–OF

H3(C∞v) 454 461 465 455

H4(D∞h) 732 764 734 721

H4(D4h) 288 349 298 289
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ΔNO-OF
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U(R)

Figure 2.4: Potential energy surface of H4 as a function of R (Å).

already filled with one electron, which means that degeneracy of the statically correlated

NOs occurs between HOMO, HOMO-1, and LUMO.

The dissociation energy curve for linear H4 molecule as a function of R is given in Fig-

ure 2.4. The system begins with a HF configuration of a2
gb

2
3u, while stretching the molecule,

both HF configurations of a2
gb

2
3u and a2

gb
2
2u become degenerate and equally important. Con-

ventional electronic struture methods fail to describe such system because of the single Slater

determinant nature.

The PES shows that the ∆NO–CS dissociates the molecule similar to full CI, whereas

∆NO–OF slightly falls under the full CI curve, 1.7 ≤ R ≤ 2.4, but recovers at complete

dissociation where Estat is dominant. ∆NO–CS predicts a somewhat lower value of Re =

0.878 Å to the value of full CI, this is also observed at ∆NO–OF where the Re is off by

0.004 Å. Although UB3LYP overestimates Edyn at equilibrium, the predicted Re = 0.883

Å is in agreement with full CI. In terms of energies, ∆NO is close to full CI where at Re,

EFull CI − E∆NO–CS = 0.00187 (5 kJ mol−1) and EFull CI − E∆NO–OF = 0.00318 (8 kJ mol−1).
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Figure 2.5: Potential energy surface of square H4 (D4h) as a function of R (Å).

In contrast, the predicted UB3LYP results are significantly lower than full CI energies by

22 kJ mol−1. This is also observed for the value of De where the energy is higher by 32 kJ

mol−1. As for ∆NO–CS, the calculated De is close to full CI, however, ∆NO–OF predicts a

lower value by 11 kJ mol−1.

The change in occupation numbers in H4 from b3u to b2u is qualitatively similar to H3

(Figure A.1), where all linear systems stretched in a similar regime exhibit this.

The dissociation energy curve for the square H4 (D4h) molecule as a function of R is given

in Figure 2.5. The predicted ∆NO–CS value of Re = 0.853 Å is lower by 0.010 Å than the

calculated at full CI (Table 2.1). The energy is also overestimated at that region, where it

could be attributed to the double counting of Ec, which also affects De that is overestimated

by 10 kJ mol−1 (Table 2.2). However, ∆NO–OF predicts Re = 0.860 Å, which is comparable

to the full CI value of 0.863 Å. This agreement is also obserevd for the absolute energies

as well as De, where the difference is negligible; 1 kJ mol−1. UB3LYP fails to describe this

system drastically. Although Re is far from full CI by 0.020 Å, the electronic energy is
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Figure 2.6: Potential energy surface of H4 (D2h/D4h), top left R = 0.8, 1.0 Å bottom left

R = 1.2, 1.5 Å, as a function of θ.

significantly higher by 50 kJ mol−1. Moreover, the calculated De value is higher by 61 kJ

mol−1.

The HF configuration of the square H4 (D4h) is a2
gb

1
2ub

1
3u. In using ∆NO, the selected

pairing for the electronic transfer is from ag to b1g, which occurs by stretching the system

up until all electrons are populated with one electron with a configuration of a1
gb

1
2ub

1
3ub

1
1g.

The transfer of electrons is qualitatively similar to H3, however, the change in occupation

numbers begin at 0.600 Å, see Figure A.2.

In Figure 2.6 the ∆NO PES of H4 (D2h/D4h) as a function of θ while R remains fixed is

compared to full CI, B3LYP, and CCSD(T). As the system’s radius increases, the potential

energies become flat and Estat is severe. The performance of different functionals is included

in this figure to show their general description of the energies. At θ = 70◦, the system has

a D2h point group with a HF configuration of a2
gb

2
3u. As θ is varied up to 90◦, the point
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Table 2.3: ∆E values (kJ mol−1) as a function of θ for H4 (D2h/D4h).

R = 0.8 Å R = 1.0 Å

θ◦ B3LYP† CCSD(T)† ∆NO–CS† ∆NO–OF† B3LYP† CCSD(T)† ∆NO–CS† ∆NO–OF†

70 −0.25 −0.42 −37.41 −4.98 −10.94 −0.39 11.09 −4.02

90 −88.52 5.25 −11.53 0.98 −119.56 16.54 4.82 0.56

R = 1.2 Å R = 1.5 Å

70 −29.08 −0.25 9.29 −0.98 −79.35 0.21 9.80 6.15

90 −154.31 27.80 2.50 3.92 −221.45 37.86 4.89 11.46

R = 1.7 Å R = 2.2 Å

70 −128.85 0.53 10.34 9.72 −273.24 0.63 −3.86 2.28

90 −274.35 35.94 6.08 13.65 −395.85 17.06 3.02 8.92

R = 3.0 Å

70 −433.13 — 0.36 3.16

90 −494.60 — 0.22 2.17

† ∆E[θ] = Full CI[θ] − X[θ]. — Does not converge.

group becomes D4h, where the system is completely symmetric and is described by degen-

erate orbitals with a HF configuration of a2
gb

1
2ub

1
3u. As it becomes dominated by degeneracy,

conventional methods; HF, DFT, CC, and MP2 fail to describe the smooth energies, such as

the calculated values by full CI, and represent the PES with a cusp in energy at θ = 90◦. The

transition from D2h to D4h is challenging since it becomes significantly statically correlated.

The predicted results of ∆NO are not only quantitatively right but also qualitatively,

where the energies are smooth in the vicinity of θ = 90◦. Furthermore, ∆NO–OF calculated

energies excel the predicted energies of ∆NO–CS with closer values to full CI, where the latter

underestimitaes U(θ = 70◦) by no more than 37 kJ mol−1, at different R values (Table 2.3).

However, at R ≥ 1.0 Å it exhibits an obvious change in energies, which is due to the fact

that the paired orbitals change symmetry for U(θ < 86◦) and another for U(86◦ ≥ θ ≤ 90◦).

The developed ∆NO theory captures these energies without a modification of orbital sets,

where ag is paired with b2u and b3u is with b1g. However, at certain points, the paired

orbitals symmetry changes upon optimization. This is initially observed at R = 1.0 Å, until
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Figure 2.7: Potential energy surface of H4 (D2h/D4h), top left counter clockwise R = 1.7,

2.2, 3.0 Å, as a function of θ.

R becomes equal to 2.0 Å, see Figures 2.6 and 2.7.

The qualitative performance of B3LYP is incorrect with a convex cusp in energy at

θ = 90◦, whereas CCSD(T) energies result in a concave cusp. Both methods lead to incorrect

results; however, for θ ≤ 80◦ the energies computed at CCSD(T) are close to full CI. On the

other hand, when R ≥ 3.0 Å it becomes difficult to converge CCSD(T) energies. Table 2.3

shows how the change in R affects the energies. Moreover, as R is increased and θ is varied

on the PES, U(θ), static correlation dominates even more and this improper description of

the PES by B3LYP and CCSD(T) increases significantly, not only qualitatively but also

quantitatively.

The difference in energy between B3LYP/CCSD(T) and full CI, ∆E[θ = 70◦], is negli-

gible. However, at R = 3.0 Å, ∆E[θ = 70◦ and 90◦] of B3LYP energies becomes -433 kJ

mol−1. Computed CCSD(T) energies remain consistent with full CI at θ = 70◦; however, as
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Table 2.4: The difference in absolute energies at θ = 90◦ and 70◦ (kJ mol−1) for H4

(D2h/D4h). Basis set aug-cc-pVDZ.

R (Å) Full CI∗ PNOF6∗ ∆NO–CS ∆NO–OF

0.8 288 310 346 331

1.0 257 289 267 256

1.2 205 242 215 203

∗ Reference74

the minimum cusp increases on the PES, ∆E[θ = 90◦] becomes larger reaching a value of 32

kJ mol−1, until the PES becomes flat at R = 2.2 Å where ∆E[θ = 90◦] = 17.06 kJ mol−1.

∆NO–OF shows considerable consistency compared to full CI at θ = 70◦, where ∆E[θ]

does not exceed 10 kJ mol−1, as R → 3.0 Å. At θ = 90◦, the performance is still adequate

(Figure 2.7), however, the only considerable difference in ∆E[θ] is at 1.5 and 1.7 Å, where

the calculated relative energy values are 11 and 13 kJ mol−1, respectively. This could be

attributed to the shift in energies at θ = 84◦ and 96◦. This is also observed in a natural

orbital functional method, PNOF6;74 however, in their case it is explained as having two

solutions of energies that are being combined. A comparison of energies relative to full CI is

made between PNOF6 and ∆NO in Table 2.4. The only case where PNOF6 deals with the

relative energies better is at R = 0.8 Å. However, at all other R values, ∆NO outperforms

PNOF6, where the relative energy barrier is in agreement with full CI.

2.5 Conclusions

The ∆NO method successfully deals with systems that require a multireference approach

effectively, while maintaining disjoint orbital pairing through the PESs investigated. It is

also superior to B3LYP and CCSD(T), particularly, in square H4 (D4h) and rectangle to

square (D2h/D4h).

The calculations made by ∆NO of equilibrium bond lengths, absolute and dissociation
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energies are H3 and H4 systems are accurate and in agreement with full CI. The occupation

numbers change smoothly with correct description of the PES given as function of bond

length. However, occupation numbers of H4 (D2h/D4h) are not entirely smooth. This is due

to the change in the paired orbitals symmetry that occurs from θ = 86◦ to θ = 94◦.

For linear systems, UB3LYP performs well for H3, however, its performance is less impres-

sive with H4. For H3, estimations made by ∆NO–OF are comparable to UB3LYP. For H4,

on the other hand, ∆NO exceeds the performance of UB3LYP, in terms of energies and equi-

librium bond lengths. This is due to the dynamic correlation functional, LYP, incorporated

in B3LYP, where it overcorrelates the energies as the number of electrons increases.

The significant challenge begins for B3LYP at the square H4 (D4h) cluster. Although

the qualitative description of the energies is incorrect to begin with because of the cusp in

energy that has been illustrated at θ = 90◦ , the energies are severely overcorrelated at the

equilibrium region and underestimated at the dissociation limit. Moreover, the computed

equilibrium bond length is higher than the predicted bond length of full CI. The CCSD(T)

method is not capable of describing this system as it does not converge. This is due to the

degeneracy of the orbitals, and the static correlation that increases as the bond length is

stretched. The predicted energies of ∆NO outperform these methods and compare to full

CI with correct dissociation of the molecule.

The PES of H4 (D2h/D4h) has been modelled smoothly by ∆NO that also shows a correct

molecular dissociation, unlike conventional methods which shows a cusp in energy at the

transition of D2h → D4h → D2h. Furthermore, ∆NO estimated energies are in agreement

with full CI, which shows that the dynamic correlation functionals reliable in accounting for

Edyn.
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Chapter 3

Summary and Future work

A major aspect of theoretical chemistry is making computational chemistry, i.e., the algo-

rithms behind the models, faster and more accurate. The number of developed computational

methods extends through the years to solve the problems that were or still are present. Al-

though to some scientists some issues were alleviated, like dispersion interactions, to others it

is still present; however, partial solutions were provided. Different electronic structure meth-

ods deal well with finding the ground state energy and studying specific properties of bond

lengths, band gaps, charge transfer, to name a few. Excited states, however, remain chal-

lenging, but insights in some systems were provided using time-dependent density-functional

theory (TDDFT). Other challenges include static correlation, which is still a significant one.

Various methods were dedicated to solving the issue of static correlation while account-

ing for dynamic correlation as well; however, it seems that whether it is accuracy that fails

to a specific point, the computational cost that tends to be expensive, or the difficulty of

the code to implement and test that makes some methods excruciating if not impossible to

use. For example, Becke 13 (B13) functional provided a solution to static correlation; how-

ever, the functional is complicated and has not been coded for self-consistent optimization,

i.e., Kohn–Sham equations. Some implementations, such as multiconfiguration pair-density

functional theory (MC-PDFT) and pair coupled cluster doubles (pCCD), seem successful;

however, testing remains the final outcome that shows whether a method is tackling the
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static correlation challenge or not. Among these successful methods and theories, ∆NO

saw light and is going through the testing section. It is a fact that has been presented in

this work that the performance of the functional is robust when it comes to systems that

are statically correlated. ∆NO accounts for dynamic correlation energies through dynamic

correlation functionals. The pairing used in ∆NO is sufficient to account for the needed

qualitative description of the investigated hydrogen clusters.

The analysis of the PES of hydrogen clusters studied led to a novel derivation of an

efficient ∆NO theory. In fact, investigating these hydrogen clusters aided in understanding

the pairing of the orbitals needed not only for the studied clusters, but also the future

works of some systems like twisted ethylene that can be modelled much easier than, for

example, square to rectangle H4. However, the selection of the NOs that needs to be paired

in order to describe a system properly remains a crucial part that needs improvement in

the method. This idea itself may have been developed or undergoing development through

machine learning, however, doing that requires a numerous amount of work, training, and

collecting data for the code. An idea originated in the Hollett group that will be developed

in the upcoming future that pairs the NOs based on momentum-balanced density. As a

matter of fact, achieving this idea and making it a reality and implementing into other codes

like GAMESS is by itself a milestone to electronic structure theory. ∆NO is attractive to

use not only due to its superb performance but also its cheap computational cost that scales

to NactK
4, where Nact is the active space or pairing of NOs and K4 is the basis functions.

The systems investigated herein seem simple in structure to chemists, however, it has

proven that it is more than that. The simple number of orbitals and their pairing provide

an idea how a larger molecule can actually be easier to model, for example, working on

stretching the square H4 with the premium performance of ∆NO shows how systems of

a similar geometry but larger number of electrons and nuclei, like cyclobutadiene, can be

studied somewhat easier.

To conclude, this work has presented significantly challenging systems to electronic struc-

ture methods of one- and two-dimensional hydrogen clusters. In general, the predicted ener-
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gies of linear hydrogen cluster over their studied PESs mimic the ones computed at full CI,

unlike conventional electronic structure methods, where it fails in dealing with them, partic-

ularly, the H4 (D4h) cluster. The ∆NO predicted potential energies of H4 D2h → D4h → D2h

are qualitatively smooth, which means that ∆NO captures static correlation properly. Fur-

thermore, the energies are comparable to full CI at certain bond lengths. There is still further

work required to test the method and provide insights into different challenges, ground state

systems for now, and excited states in the future.
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Appendix A

Appendix
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Figure A.1: Change of occupation numbers of statically correlated NOs of H4 as a function

of R.
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Figure A.2: Change of occupation numbers of statically correlated NOs of square H4 (D4h)

as a function of R.
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Figure A.3: Change in occupation numbers of statically correlated NOs of H4 (D2h/D4h) as

a function of θ, R = 3.0 Å.
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Table A.1: Absolute energy values (hartree) for H4 (D2h/D4h) at different θ and R values.

R = 0.8 Å R = 1.0 Å R = 1.2 Å

θ◦ Full CI ∆NO–CS ∆NO–OF Full CI ∆NO–CS ∆NO–OF Full CI ∆NO–CS ∆NO–OF

70 -2.216905602 -2.2026557874 -2.2150079363 -2.1984305684 -2.202656331 -2.1968989698 -2.1484699306 -2.1520092598 -2.1480953094

72 -2.2050940721 -2.1893289446 -2.2025256956 -2.1858734613 -2.189330732 -2.1837663206 -2.1370707346 -2.1399553054 -2.1363685642

74 -2.1928193673 -2.1759771286 -2.1894886101 -2.173412357 -2.1759786356 -2.1706246543 -2.1261357759 -2.128241501 -2.1250009607

76 -2.1801727759 -2.162628619 -2.1759497669 -2.1611142775 -2.1626170074 -2.1574907954 -2.1157049075 -2.1168662538 -2.1139843947

78 -2.1672568412 -2.1492687909 -2.1619550837 -2.1490646143 -2.1492587651 -2.1443771187 -2.1058344673 -2.1058115573 -2.1032968942

80 -2.1542058783 -2.1359137718 -2.1475163896 -2.1373872991 -2.1359056508 -2.1312848952 -2.0966121356 -2.0950661693 -2.0929298892

82 -2.1412273116 -2.1225666468 -2.1326776607 -2.126282101 -2.1225539006 -2.1182098398 -2.0881817344 -2.0845896415 -2.0828455492

84 -2.1286926985 -2.1092174875 -2.1184742733 -2.1160949833 -2.1092174881 -2.1074138281 -2.0807829796 -2.0753740245 -2.0757568105

86 -2.1173460242 -2.1046350641 -2.1114996344 -2.1074409555 -2.1046350644 -2.1029279706 -2.0748036862 -2.0725703913 -2.0730379871

88 -2.1087163695 -2.1018558218 -2.1071606756 -2.1013433808 -2.101855822 -2.1002129173 -2.0708024056 -2.0708918478 -2.0714118294

90 -2.1053124985 -2.1009216109 -2.1056870945 -2.0990881493 -2.100924217 -2.099300704 -2.0693760973 -2.0703287874 -2.0708692365

R = 1.5 Å R = 1.7 Å R = 2.2 Å

70 -2.0777097905 -2.0814418667 -2.0800511417 -2.0452012814 -2.0491390123 -2.0489035411 -2.0086505483 -2.007178862 -2.0095182926

72 -2.0696381115 -2.0729645734 -2.0719967654 -2.0395376039 -2.0431749111 -2.0433074304 -2.007035659 -2.0060714723 -2.0084024078

74 -2.062256075 -2.0650920054 -2.0645388445 -2.0345179018 -2.0378001383 -2.0382834992 -2.0057038866 -2.005163869 -2.0074829379

76 -2.0555440025 -2.0577778933 -2.057630882 -2.0300907386 -2.0329516574 -2.0337667544 -2.004606425 -2.0044244194 -2.0067300315

78 -2.0494903049 -2.0509791782 -2.0512223407 -2.026212074 -2.0285405486 -2.0296905476 -2.0037032093 -2.0038273884 -2.0061190734

80 -2.0440986142 -2.0446305874 -2.045264433 -2.0228493049 -2.0245051971 -2.0259940209 -2.0029622859 -2.0033521947 -2.0056308508

82 -2.0393986582 -2.0386906903 -2.039704665 -2.0199872995 -2.0208689437 -2.0226629061 -2.0023597291 -2.0029826452 -2.0052499418

84 -2.0354618208 -2.0339651431 -2.0363868547 -2.0176372346 -2.0179890371 -2.0208333982 -2.0018805269 -2.002706684 -2.0049648163

86 -2.0324181004 -2.032666366 -2.0351328336 -2.0158470054 -2.0172243978 -2.0200898661 -2.0015208592 -2.0025154913 -2.0047670138

88 -2.0304568558 -2.0318954209 -2.034387026 -2.0147039342 -2.0167734105 -2.0196504464 -2.001290726 -2.002402841 -2.0046503591

90 -2.0297737326 -2.0316355652 -2.0341372268 -2.0143073745 -2.0166238149 -2.0195044211 -2.0012101794 -2.0023625062 -2.0046086622

R = 3.0 Å

70 -1.9998190925 -1.9999549111 -2.0010232552

72 -1.9996896119 -1.9998172615 -2.0008252622

74 -1.999591737 -1.9997094544 -2.0006629828

76 -1.9995176063 -1.9996254222 -2.0005304294

78 -1.9994613423 -1.9995603232 -2.0004228246

80 -1.9994185683 -1.9995105053 -2.0003369961

82 -1.9993860663 -1.9994725809 -2.0002689205

84 -1.9993615683 -1.9994450287 -2.000218013

86 -1.9993437155 -1.9994261777 -2.0001823507

88 -1.9993322506 -1.9994149644 -2.0001611466

90 -1.9993281434 -1.9994106978 -2.0001534526
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Table A.2: The difference in absolute energies at θ = 90◦ and 70◦ (kJ mol−1) for H4

(D2h/D4h).

R (Å) Full CI B3LYP∗ CCSD(T)∗ ∆NO–CS ∆NO–OF

0.8 293 381 287 267 287

1.0 261 369 244 267 256

1.2 208 333 180 214 203

1.5 126 268 88 131 121

1.7 81 227 45 85 77

2.2 20 142 3 13 13

3.0 1 63 — 1 2
∗ Incorrect description of the PES. — Does not converge.
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