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Abstract

New methods of attacking networks are being invented at an alarming rate, and

pure signature detection cannot keep up. The ability of intrusion detection systems to

generalize to new attacks based on behavior is of increasing value. Machine Learning

algorithms have been successfully applied to intrusion and fraud detection; however

the time and accuracy tradeoffs between algorithms are not always considered when

faced with such a broad range of choices. This thesis explores the time and accu-

racy metrics of a wide variety of machine learning algorithms, using a purpose-built

supervised learning dataset. Topics covered include dataset dimensionality reduction

through pre-processing techniques, training and testing times, classification accuracy,

and performance tradeoffs. Further, ensemble learning and meta-classification are

used to explore combinations of the algorithms and derived data sets, to examine the

effects of homogeneous and heterogeneous aggregations. The results of this research

are presented with observations and guidelines for choosing learning schemes in this

domain.
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Chapter 1

Introduction

1.1 Overview

The art of digital exploitation has proliferated in recent years. Since the advent

of online business transactions, and with the ever-increasing amount of potentially

sensitive personal and corporate data being transmitted over the Internet, computer

hacking has never been more profitable [Leeson and Coyne, 2006]. To combat this,

businesses, instituitions, and individuals are protecting intellectual property exten-

sively, using different physical and digital layers.

Attempts to breach security always leave some indication, however sparse, and

security researchers have devoted much time to documenting the patterns these indi-

cations take [Schultz and Shumway, 2001; Liu et al., 2010]. Armed with a knowledge

of these patterns, one has the ability to audit system states, network traffic, and

user logs to detect known patterns of attack. In order to detect these known at-

tack patterns, modern intrusion detection methods rely on signature and threshold

2
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analysis (i.e., matching specific and behavioral patterns respectively) using historical

traffic [Schultz and Shumway, 2001; Liu et al., 2010].

Signature and threshold analysis both look for patterns in datasets. Some of the

biggest challenges in applying pattern recognition algorithms to any problem domain

include finding an appropriate classification model for the domain, measuring classifi-

cation accuracy, and performing feature selection when faced with a problem domain

with a high dimension space [Guyon and Elisseeff, 2003; Patcha and Park, 2007]. Per-

formance can be relative to the feature sets that are chosen, depending on the number

of features in the feature space, and any possible correlations between the many fea-

ture combinations that are available for further examination. For example, if only

the payload is inspected, then well-known compromised hosts are treated the same

way as normal, uncompromised hosts. If only source address reputation is considered,

then newly-compromised hosts are trusted until their reputation has been updated.

In the domain of network intrusion detection, there is yet to be found a “golden egg”

- a one-size-fits-all solution - that is optimal for every feature set [Patcha and Park,

2007]. As we will see, modern research has found a number of plausible methods

to apply to the domain of behavior-based network intrusion detection, however each

individual analysis methodology appears to have particular strengths and weaknesses

to consider when attempting to learn network traffic behaviors.

My research explores this issue through an empirical study of various machine

learning algorithms using a dataset produced with anomaly detection in mind. The

testing methodology was designed so that a variety of machine learning algorithms,

each based on statistical and mathematical methods known to have particular strengths
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and weaknesses, could be tested against the dataset in an unbiased fashion. These ex-

periments are accomplished through a methodology encompassing data pre-processing,

running algorithms individually, ensemble learning (using multiple instances of the

same algorithm), and meta-classification (using a group of different algorithms). The

resulting performance metrics are then systematically examined for patterns that may

help determine which combinations of techniques are superior for intrusion detection,

given the limitations of real-world scenarios of computing power and time. In the

conclusion of this thesis, some guidelines are offered based on the observations made

through evaluation, so that future researchers may have an idea of which schemes are

best to start with before attempting to tune the individual algorithms for a specific

security application.

1.2 Terminology

This thesis discusses the concept of applying machine learning algorithms to learn

the difference between good and bad network data. Before exploring the rest of the

topics in this work, some terminology behind the domain should be discussed.

1.2.1 Ethics

In the context of this thesis, good network data is the result of transactions be-

tween two computers over a network for the legitimate purpose of conducting work

or research in sanctioned manner (a general concept used by others in the security

domain) [Bishop, 2005]. The datasets used later on classify good data as normal,

since the data is expected and is what administrators would not react to defensively.
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Bad network data, on the other hand, is data produced by transactions that are

fraudulent in nature, whether intentional or not Stolfo et al. [2000]. Fraud can be said

to be any activity that is conducted with intentional deception. Bad transactions have

no legitimate purpose, or worse, are designed to disrupt or illegitimately manipulate

services offered by another host residing on the network. Computer network intrusions

(a form of fraudulent activity) typically attempt to send data from one host to another

in order to illicit behavior that is detrimental to the people, processes, or technology

involved [Farid and Rahman, 2010; Bishop, 2005]. In order to detect fraud and system

intrusion at the network layer, network flow data is examined in order to determine

if it is suspected of being fraudulent in nature.

Although these intrusions are, unfortunately, expected, for the purpose of this

research they are classified as anomalies, since they are not expected to occur as part

of legitimate traffic, and therefore are warranted to cause a defensive reaction from

network administrators.

1.2.2 Traffic Data

Network flow data is the sum of all packets that consists of one transaction between

two hosts on a network, and can be described using a number of features (variables),

that in combination consists of that network flow’s overall behavior [Guyon and Elis-

seeff, 2003]. Considering we are interested in modeling network flow behavior, the

machine learning algorithms tested in this domain will be using the network data flow

features in order to come up with a way to predict whether or not flow data is normal

or anomalous based on past observances.
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1.2.3 Hypothesis Models

Machine learning algorithms operate on the concept of a hypothesis model [Mitchell,

1997]. A hypothesis is a statement made about reality based on currently known facts.

A model is a particular framework (at a point in time), that describes the correlation

between one or more input variables, and one or more output variables. A simple

example would be using temperature and humidity to predict good and bad weather.

The temperature and humidity would be considered input variables, and the classifi-

cation of “good”, or “bad” weather would be output variables. My hypothesis would

be the statement I make about the weather based on observable facts, whereas my

model is the framework (whether gut feeling or previous weather statistics input into

a formula) that I use in order to predict my hypothesis.

1.2.4 Machine Learning

There are two broad types of machine learning paradigms, based on the amount

of human interaction involved in the learning process; namely supervised and un-

supervised learning [Mitchell, 1997]. Supervised learning algorithms use previously

labeled training sets (both the input and output variables are defined) in order to

(hopefully) find a correlation between the input and output variables, and produce

accurate predictions based on future observations that are not labeled. Unsupervised

learning algorithms only provide the input variables, with the goal of finding patterns

in the data that may indicate some relationship between the input variables (such as

patterns) that can be used to find interesting correlations specific to the domain in

question.
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1.2.5 Purpose

My thesis will use supervised machine learning algorithms to produce a prediction

model capable of classifying normal and abnormal traffic. The observed network flow

data will contain traffic features, as well as a classification of whether each network

flow instance (each of which is comprised of multiple behavioral features) is normal, or

an anomaly. Using the constructed hypothesis model, previously unobserved network

flow data instances will be presented to the model for prediction. The model will

attempt to predict whether or not the instance is normal or anomalous, and the result

recorded. This will be repeated for all instances in the unobserved set to determine

how closely the created model represents reality, and thus the overall usefulness for

traffic classification.

1.3 Experimental Methods

The experiments used in this work are based on supervised learning techniques.

The experimental method includes various phases of data pre-processing, algorithm

training, and testing of the various algorithms available against labeled network flow

data. In order to accomplish this, three components are required. First, the approach

requires a dataset that is representative of a typical network (whether real or pro-

duced) including a variety of network flow samples that have a ratio of normal to

anomalous labels on which to train and test. Second, the machine learning algorithms

are required so that a hypothesis model can be established and future predications

can be made (the nature of these algorithms are explained in Section 1.3.2). Finally,
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the experiments require a method by which to systematically read the network data,

introduce it to the machine learning algorithms, create a learning model, and repeat-

edly run the model against unseen data in order to compare the algorithm’s prediction

abilities, as well as ability to generalize to unseen data in the hypothesis space.

1.3.1 Data Sets

Historically, the creation of a hypothesis model based on previously observed

network data has been a difficult task for many reasons, most of which boil down to

a lack of properly labeled data with which to test (explained further in Chapter 2).

Correctly labeling data as good or bad is a time consuming effort that is not easily

automated. Organizations that do take the time to label data for these purposes are

often under non-disclosure agreements or industry and government data protections

rules that do not allow sharing labeled data, so the use of such data to support

research is not possible. For this reason there are very few data sources that are

available for public consumption which come close to representing a “real” network

that contains both benign and malicious traffic.

For this reason the US-based Defense Advanced Research Projects Agency (DARPA)

Intrusion Detection Data Sets were created at the Massachusetts Institute of Tech-

nology (MIT) Lincoln Laboratory. These data sets, created in 1999, were designed

with intrusion detection testing in mind, using a simulated computer network that

closely resembled the Air Force Research Laboratory (AFRL/SNHS) network under

whose sponsorship the project took place. A modified version of this data (correct-

ing statistical inconsistencies found since creation) will be used for testing [Network
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Security Laboratory, 2012].

1.3.2 Machine Learning Algorithms

The algorithms used for evaluation in Chapter 4 are publicly available and are

already used in a multitude of industry applications, and have been highly refined

and optimized. The re-creation of these algorithms would be redundant from the

standpoint of this work, and thus a well-developed machine learning algorithm li-

brary framework was used instead. My experiments used varients of the Logistic Re-

gression [Xu et al., 2005], Naive Bayes Classifier [Khor et al., 2009], Support Vector

Machines [Mukkamala and Sung, 2003], K-nearest-neighbor [Faraoun and Boukelif,

2007; Chairunnisa et al., 2009], and Artificial Neural Networks (multi-level percep-

trons) [Ali et al., 2010; Vatisekhovich, 2009; Zilberbrand, 2009], commonly used in

Machine Learning.

1.3.3 Testing Framework

A number of robust machine learning frameworks were compared [Shogun, 2013;

Hall et al., 2009; Collobert et al., 2002] to find a suitable candidate to test a wide

range of well-known algorithms, with the ability to re-use models in a variety of

combinations for ensemble and meta-classification. After comparing the available

algorithms, and third-party programming support, I chose the Weka toolbox [Hall

et al., 2009; Witten et al., 2011], for development, as the graphics user interface, open

application programming interface, and documentation have been found to be robust,

peer-reviewed, and amenable to custom scripting.



Chapter 1: Introduction 10

1.4 Research Questions

This thesis compares a variety of machine learning algorithms, alone and in combi-

nation, capable of making classification predictions on network flow data. My research

attempts to answer the following questions:

1. Which algorithms have the fastest learning time? This is important to modify

complex models on-the-fly.

2. Which algorithms have the fastest prediction time? This is important to classify

network flows in high traffic environments.

3. Which algorithms have the highest accuracy using the dataset? How do we

measure accuracy in this context?

4. What is the effect of pre-processing (filtering) on the training and testing data?

5. Which is the appropriate algorithm in terms of performance and accuracy, for

the purposes of classifying network traffic?

6. Is the added complexity of more sophisticated single and ensemble learning

schemes worth the trade-off of runtime performance vs. classification accuracy?

Through data gathered from experiments and observations made during experi-

mentation, I will attempt to answer these research questions and provide insight for

future research into the problem domain.
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1.5 Summary

In this chapter I introduced the domain of fraud and intrusion detection, and the

terminology used within this domain, as well as the motivation for studying the topic

in depth. I also discussed the general methodology that will be used, and the dataset

to be tested against in order to predict each algorithm’s overall performance for the

problem domain.

The remainder of this document is outlined as follows. Chapter 2 offers an intro-

duction and brief history of auditing and intrusion detection, with related research

in the field of intrusion and anomaly detection using established behavior profiles,

and comparisons of the effectiveness of applying various machine learning techniques

to this problem domain. Chapter 3 outlines my experimental methodology used for

dataset pre-processing and algorithm evaluation. In Chapter 4, the algorithm exper-

iments are described in further detail, and the results of each algorithm, alone and

in a number of combinations, is systematically evaluated. Finally, Chapter 5 reviews

the contributions of this work, and outlines future research to be conducted.



Chapter 2

Background

2.1 Overview

Network security has an interesting history, with some of the earliest auditing

methodologies appearing in the 1980s [Anderson, 1980]. Since that time, many meth-

ods have been used to try to make this task easier. The ideas are fundamentally

the same, but the techniques become more sophisticated over time. This chapter

will discuss the background of ideas behind auditing and intrusion detection, as well

as fundamental machine learning models that can be employed. Some examples of

how these models have been applied will be discussed, as will the fundamental algo-

rithms behind the construction of these models. Some common algorithm evaluation

metrics will be introduced, and these metrics will be referenced as algorithms and

combinations of algorithms are compared and contrasted in future chapters.

12
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2.1.1 Anatomy of a Hack

According to McClure et al. [2005], sophisticated attacks will begin with a common

set of reconnaissance techniques — namely, footprinting, scanning, and enumeration

— before access or infection attempts. Footprinting involves a non-intrusive casing of

the target using open source searches and public queries. Scanning attempts, such as

ping sweeps and port scans, are used to elicit a response on listening services. Enu-

meration involves acquiring user accounts, file shares, and identifying specific software

on the target with known exploits. Once all of these steps have been completed, an

informed attempt can be made on the target to gain privileged access and work di-

rectly within the host. According to Ye [2008], at this point, the keys to moving

around and maintaining constant and undetected access involve privilege escalation,

architecture and information pilfering, rootkit installation, and log modifications.

2.1.2 Auditing

Efforts continue to be made to compromise secured systems, regardless of the host

or network security measures in place. Anderson [1980] predicted that an audit of the

system or data in question must be done by a trusted party using audit trails to

detect the possibility of an attempted or successful exploit. The main components

of modern audit systems include logging, analysis, and notification [Bishop, 2005].

Logging data involves capturing changes in host state, or the capture of packets in a

distributed environment.
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2.1.3 Analysis

After the data to be audited has been logged, an analyzer will look for patterns

matching a defined rule set. Each instance of suspicious data that matches a known

pattern will raise a red flag for the notifier. The notifier communicates the flagged

instance in a number of potential methods for manual intervention and response.

Audits are also usually done on individual host data or network traffic that crosses

an aggregated point. The amount of time it takes to audit data increases as the

complexity of software systems and the amount of transmitted network data increases.

Intrusion Detection Systems attempt to remedy this workload by automating the

audit process.

2.2 Intrusion Detection

2.2.1 Analysis Models

According to Bishop [2005], a good intrusion detection system detects a wide

variety of intrusions, in a timely fashion, and presents analysis results as simply and

accurately as possible, using any combination of anomaly detection, misuse modeling,

or signature detection to identify threats. Anomaly detection works by assuming that

attacks look out of the ordinary. Before we can find an anomaly, we need to map

out what is normal, and using thresholds look for traffic that is out of these bounds.

Misuse modeling looks for specific commands or actions that lead to a known misuse or

abuse of otherwise appropriate system states. Signature detection involves recognizing

patterns of known code states, that can put the system in an undesirable state when
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executed.

2.2.2 Traffic Scanning

One of the first steps in recognizing a remote attack is flagging suspicious activity

during the scanning phase of a remote attack. Properly classifying a remote host

as a scanner can then be done in two steps, namely, connection and host classifica-

tion [Allman et al., 2007]. Connection classification involves recording specific details

about attempted connections, including connection time and duration, host and des-

tination addresses, data transferred, and matching destination ports to well-known

services. Once the connection data has been used to classify the connection types,

the suspected remote host can be then be classified based on the fan out, or variety

and order by which local services are accessed.

Nychis et al. [2008] have found that through a series of synthetic anomalies such

as distributed network port scans, distributed denial of service floods, and bandwidth

floods, a more complicated approach to traffic analysis produces better results when

facing more sophisticated attacks. The caveat of using a complicated scanning system

is that there is a performance cost for such sophistication.

The following section reviews recent advancements in intrusion detection models,

to better understand how advanced profile analysis methods can be accomplished

without increasing resource overhead, and their original applications to ever-changing

network environments.
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2.3 Recent Research in Intrusion Detection and

Behavior Classification Systems

Intrusion Detection Systems (IDSs)and behavior classification have come a long

way since the inception of digital forensic auditing. Intrusion Detection Systems

cannot detect all types of intrusions, as attack permutations are constantly being

generated. Attack types can have many permutations, and static signatures do not

always work. The alternative to signature detection, namely threshold establishment

and monitoring, is used to detect the unknown.

A number of machine learning algorithms can be used to effect the classification

of normal and malicious network traffic, enhancing an IDS to be able to generalize

network traffic into “good” and “bad”, thereby avoiding the necessity to use exact

string matches [Chairunnisa et al., 2009]. These algorithms fall into two categories,

based on their use of supervised and unsupervised learning. Supervised learning

techniques require a human operator to classify a training set for the algorithm to

learn from. A testing set with known classifications is then used to verify the accuracy

of the learner. Unsupervised learning uses unlabeled data, and groups (clusters)

training samples by distinguishing features [Mitchell, 1997].

Supervised (also known as classification) algorithms include maximum entropy,

naive Bayes, support vector machines, K-nearest-neighbor, and neural networks [Mitchell,

1997]. These will be discussed below. Unsupervised (also known as clustering) al-

gorithms include categorical mixture models, K-means clustering, and hierarchical

clustering [Mitchell, 1997]. Since unsupervised algorithms create new classes based
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on feature similarity, and the focus of my research is on pre-defined classes, clustering

algorithms are mostly out of scope of this research, and will be explained further

where warranted.

Artificial Neural Networks can be applied with input nodes reading various net-

work feature sets [Faraoun and Boukelif, 2007; Farid and Rahman, 2010]. Ali et al.

[2010] accomplished this through an architectured approach consisting of network

sensor, event manager, response manager, and applied learning model.

K-Means and K-Nearest Neighbour algorithms [Chairunnisa et al., 2009; Portnoy,

2000; Portnoy et al., 2001; Zanero and Savaresi, 2004] have been used to reduce Neural

Network input selection, and to speed up overall learning time [Faraoun and Boukelif,

2007]. A centroid function can be used to choose the average and closest grouping of

new instances in order to effectively group training examples together. Testing sets

can then be classified based on which previously-established group they are closest

to.

Support Vector Machines (SVMs) can be successfully applied to binary classifica-

tion (i.e. classification into two categories) by dividing a p dimensional space with a

p − 1 dimensional hyperplane [Farid and Rahman, 2010; Gornitz et al., 2009]. Kloft

et al. [2008] have shown that SVMs can be used to automate feature selection, which

is important when dealing with multiple traffic header parameters, thus reducing

overall computation and increasing success.

Network traffic modeling and analysis in a security context has been largely

focused on static threshold-based anomaly detection, or known signature match-

ing. Giroire et al. [2008] found that traditional network-based profile models were
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not flexible enough to accommodate user profiles in a modern, roaming environment.

The way users behave at work, for example, differed from how they behave at home or

in public access points, rendering traditional uniform threshold detection less useful

in wireless environments.

Genetic algorithms (GAs), inspired by chromosomal duplication in biology, per-

mute parent signatures to find viable combinations of pattern detection rules. Pillai

et al. [2004] developed a core-plus-module framework called STAT (based on a state

transition analysis technique) to allow for a well-defined modular design of IDSs tai-

lored to specific environments and traffic-stream types. Farid and Rahman [2010]

compared Genetic Algorithms to other approaches such as Naive Bayes Classifiers

and K-Nearest Neighbors.

Yu et al. [2008] take a similar, but more flexible approach. Since attacks, hard-

ware, software, and operators change over time, using a static dataset for training

loses efficiency the longer the training data is use. They propose a system that tunes

the detection model on-the-fly based on two factors. The first factor considers how

many of the generated alarms the operator can handle, and throttles alarm output

to match the operator’s pace. The second factor tunes the alarm aggressiveness (sen-

sitivity) based on the accuracy of previous predictions, also determined by operator

feedback.

Reading traffic streams for anomalous behavior is usually accomplished by look-

ing for statistical outliers – for example using entropy. Entropy is the measure of

uncertainty associated with a random variable [Mitchell, 1997]. Traffic flow source

and destination, as well as flow size distributions, can be measured for the level of
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deviation from the norm to detect outliers. Xu et al. [2007, 2005, 2008] have shown

that general user profiles can be built by finding the traffic patterns unique to spe-

cific hosts using entropy-based approximation to single out signal noise, regardless of

sample size or duration. Using efficient data structures and algorithms, their system

efficiently deals with large amounts of information on high-speed links with minimal

resource overhead, while establishing new profiles as the network users evolve their

behaviors.

Other explored methods used for traffic classification include Decision Trees [Chairun-

nisa et al., 2009] and Plan Recognition Trees [Geib and Goldman, 2009]. Stolfo et al.

[2006] developed a method of social hierarchy mapping using a combination of traffic

data mining techniques and social psychology. Stolfo’s Email Mining Toolkit method

uses communication style and rate measurements to create social clique behavior

profiles aimed specifically at email use monitoring and forensics investigation. This

method, while powerful, is limited in the sense that it requires unhindered access to

the communications logs used to generate the profiles.

2.4 Dataset Pre-Processing

Feature selection, also known as dimensionality reduction, is a pre-processing step

that is applied to machine learning datasets before it is used in the training and

testing of a model [Mukkamala and Sung, 2003; Kloft et al., 2008; Khor et al., 2009].

One of the primary motivations, when using extremely large datasets is to remove

the features that may have little to no statistical correlation to each training instance

classification value, and thus have fewer features to process. This reduction in the
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number of features to process intuitively will increase the performance of the training

model in terms of total training run time, as there are fewer correlations to consider.

Another motivation behind feature selection is in the level of generalization by a

model [Refaeilzadeh et al., 2000]. When too many features are considered, there

exists the possibility of over-fitting the training dataset [Mitchell, 1997]. When over-

fitting occurs, the prediction accuracy will appear very high when testing against

similar datasets, however if new observations are made in a test set that don’t fit the

training data well, prediction accuracy will decrease, and overall generalizability of

the trained model is reduced.

Pre-processing generally falls into two categories: filter, and wrapper. A filter

pre-processor uses intrinsic features of the data in order to find an optimal subset of

features that better represent the dataset [Guyon and Elisseeff, 2003]. The variables

are in turn assigned a score, ranked according to their score, and the variables with

the highest scores are selected to represent the feature space. Guyon et al. point out

that this method may have the tendency to select redundant features: even though

the redundant features contribute to the ability to model the feature space, their

presence limits the algorithm from selecting other non-redundant features that could

make a better overall contribution.

A wrapper pre-processor uses a classifier on a limited amount of data in order

to evaluate which of the features contribute the most to overall classification accu-

racy [Mukkamala and Sung, 2003; Kloft et al., 2008; Khor et al., 2009]. This approach

is more expensive, and can be biased towards the classifier that is being used if the

classifier is not treated as a black box [Guyon and Elisseeff, 2003]; a-priori knowledge
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of the internals of the classifier must not influence the data supplied to it. The positive

trade off to this approach, however, is that it may produce better performance on the

resulting dataset [Guyon and Elisseeff, 2003]. Guyon et al. point out, however, that

attempting to find all combinations of sub-features is considered to an NP-hard prob-

lem and is not practical in real world use; it is computationally intractable. Efficient

search strategies have been devised to significantly reduce computational overhead,

while contributing a great deal to identifying the most relevant features [Bermejo

et al., 2010].

2.5 Machine Learning Methods

The following section will describe various approaches to machine learning. The

data sets previously described will sometimes have human involvement to decide

whether or not the data falls within specific classifications, or the algorithms are

trusted to decide how many classes there are, and which instances will belong to

which class.

2.5.1 Supervised vs Unsupervised Learning

The most common machine learning problems fall into two categories; namely

supervised, and unsupervised learning [Mitchell, 1997]. Supervised learning generally

consists of a supplied data sets that includes the correct classification of each instance.

Supplying the correct values to the learning function allows the trainer to supervise

the algorithm, which learns a model that represents the complete set of observed

instances and hopefully provides the ability to classify new, or previously unseen,
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instances correctly.

In contrast to supervised learning, unsupervised learning algorithms are supplied

the training datasets with an unknown classification, typically because no known

classification exists [Zanero and Savaresi, 2004]. Unsupervised algorithms, typically

clustering algorithms (such as K-means), are designed to look for feature clusters, or

groups and patterns of features that have some sort of correlation, or relationship.

These relationships can then be used to determine where a future dataset may fit into

the model developed from the previously supplied instances.

2.5.2 Supervised Learning vs Anomaly Detection

Anomaly detection is typically used when the features presented in the dataset

fit nicely into a Gaussian distribution (i.e., a Normal probability distribution), and

the features belonging to the positive class(es) are statistical outliers. The two main

differences between anomaly detection and standard supervised learning are the ratio

of positive to negative class examples, and the types of classes found in the data

sets [Farid and Rahman, 2010].

For example, in anomaly detection there is a very low number of positive examples

(suspicious traffic) found within thousands more negative examples (normal traffic).

Conversely, standard supervised learning would typically be expected to have rela-

tively even number of positive and negative examples (such as my training and testing

data sets explained in Chapter 3). It is worth noting the number of anomalous cases

could be artificially increased to balance the training sets for model creation.

In the context of fraud detection, normal behavior is considered to have a very
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high probability of occurring, whereas abnormal (or undesirable) behavior has a very

low probability of occurring. If the features that describe the behavior in question

can be normalized into a normal probability distribution, then it is possible to detect

anomalous features that are unusual in nature. A realistic example of this would be

polymorphic viruses, that one would hardly see occurring more than a small number

of times in order to evade signature-matching detection algorithms that have already

been trained to look for malicious patterns found in flow payloads [Bishop, 2005].

This presents a difficulty when training machine learning algorithms, as some

attack types do not necessarily follow the same pattern from a payload perspective,

yet the net behavior of the malware will generally perform the same series of actions.

In this sense, traditional anomaly detection algorithms may not work as desired, since

attack behaviors do not change over time; only the payload does. Attack behaviors

on the other hand will stay relatively consistent, and enough positive examples should

be present for the algorithm to get a sense of what a typical positive example will

look like; thus a future positive example is likely to look similar to the training set,

and the algorithm can be said to generalize fairly well to the problem domain.

2.6 Evaluation Metrics

In machine learning and statistics, there is a variety of methods used to evalu-

ate the performance of a classifier. This section will introduce and discuss the most

common evaluation metrics; the ideas of true and false positive and negative classifi-

cations, how they contribute to precision and recall, the F-Score, and finally the Re-

ceiver Operating Characteristic (ROC) curve. Training and testing paradigms such as
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holdout and cross-validation will also be examined for applicability to pre-processing,

training, and testing.

2.6.1 Algorithm Validation

According to Refaeilzadeh et al. [2009] a number of validation techniques have

been developed over time, such as Resubstitution Validation, Hold-Out Validation, K-

Fold Cross-Validation, Leave-One-Out Cross-Validation, and Repeated K-Fold Cross-

Validation. The most widely used form of cross validation for model parameter tuning

is k-fold cross validation. Cross Validation is a method used to compare the perfor-

mance of two or more machine learning algorithms, while relying on the same pool

of labeled test set data for both training and testing, yet doing so in a statistically

significant manner [Refaeilzadeh et al., 2009]. This is done such that an indicator

of algorithm accuracy can be obtained without using unseen test set data, so that

only the best hypothesis model configurations can be tested against the designated

testing set. K-fold cross validation involves dividing up the test dataset into k par-

titions, with each partition serving as the test set on one training experiment, while

the rest of the data is used as the training set to create the hypothesis model Mitchell

[1997]. The classification performance across all test sets is then averaged to find

the mean error. 10-fold cross validation remains the most widely-accepted method of

comparison in the Machine Learning community [Refaeilzadeh et al., 2009].

The correct form of cross validation should yield a close approximation to the

classification accuracy found on a new, unseen testing set, provided the sampling

methodology provides a close approximation to the real world distribution. This does
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not hold true, however, if the unseen test set contains enough instances found outside

of the previously trained hypothesis space.

The application of cross validation techniques to real world problems can be driven

by multiple goals. Some of these goals include algorithm performance estimation,

tuning model parameters, and ultimately model selection [Refaeilzadeh et al., 2009].

Hold-out validation [Refaeilzadeh et al., 2009] is an alternate method for algorithm

testing, typically used on algorithms whose parameters have been previously fixed.

The premise behind this testing is that training and preliminary testing will have

already occurred (typically through a training and validation set) with a holdout

dataset reserved for real world prediction estimation. The advantages of this method

include a purely independent training and testing dataset – however this can be an

issue when dealing with already small data sets, as well as a large variance in estimated

performance.

As described in Chapter 3, I will be using a combination of Cross-Valation and

Holdout-Validation techniques. Cross-Validation will be used to determine the most

suitable features for data pre-processing, and Holdout-Validation (with novel attacks)

will be used for testing each of the selected algorithms.

2.6.2 Confusion Matrices

Anomaly detection can be thought of as binary classification. The traffic is either

normal or abnormal. If a single prediction has two possible outcomes, and each can

be correct or incorrect, there are thus four possible combinations of predictions and

actual outcomes. Based on this, one way to view the performance of a classification
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algorithm, is through a confusion matrix, also known as a contingency table [Powers,

2007]. Considering the anomaly dataset, there are two classes for any prediction:

normal and anomaly. If we consider the classes and the correctness of each, we arrive

at a 2x2 matrix, as shown in Table 2.1.

Table 2.1: Example Confusion Matrix.

a b classified as
TP FP a = anomaly
FN TN b = normal

In this case, the first row represents all of the actual normal classified instances,

the second row represents the actual anomalous test instances, and each column

represents how those instances were classified during prediction. Reading into this

table, all correctly classified instances are in the top-left and bottom-right corners,

whereas the incorrectly classified instances are in the bottom-left or top-right corners,

and the total of all entries represents the cardinality of the entire dataset. In the case

of intrusion detection, as described above, a traffic anomaly is a positive sample (the

sample we are interested in), whereas normal traffic is negative.

Considering the confusion matrix in Table 2.1, if the actual class is normal, and

the predicted value is normal, then we have a true negative. In practice, we desire

this value to be as high as possible, as it signals everything is as it should be.

If the actual class is normal, and the predicted class is anomaly, we have a false

positive. In practice, we want this value to be as low as possible, as it represents

traffic that is normal, but was mistakenly classified as anomalous; these are the bane

of network administrators as they eat up valuable resources investigating traffic only

to realize there is nothing wrong.
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If the actual class is anomaly, and the predicted value is normal, then we have a

false negative. Just like false positives, we want this value to be as low as possible,

as it represents traffic that is not normal, but was mistakenly classified as normal;

possibly attacks that went “under the radar” so-to-speak.

Finally, if the actual class is anomaly, and the predicted value is anomaly, then we

have a true positive. These represent anomalies (possibly malicious traffic) that were

correctly flagged as such, and warrant either further investigation or outright blocking,

as they do no conform to some preset behavioral policy. In practice, although we do

not wish for very many of these, fraud and intrusion attacks are a reality and hence

we wish to catch as many as we can.

Based on the above description, we can define the False Positive Rate as

FPRate =
FP

Nn

where FP is the number of false positives observed, and Nn is the total number of

observed instances in the negative class.

As well, we can define the True Positive Rate as

TPRate =
TP

Np

where TP is the number of true positives observed, and Np is the total number of

observed instances in the positive class.

These values are interesting in and of themselves; however there are more inclusive

methods of calculating the relationship between these rates, as described in the next

section.
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2.6.3 Recall

Recall (or Sensitivity in other domains) is a measurement method found in data

mining used to demonstrate a model’s ability to pick up relevant positive instances

in a dataset [Powers, 2007; Fawcett, 2004]. The Recall ability of a model can be

calculated as

Recall =
TP

TP + FN

where FN is the number of false negatives observed. Since this value can be used

to demonstrate how good the model is at picking out positives, if this was the only

measurement being considered, then the model could cheat by always predicting the

positive class. In the case of the Zero-R algorithm, this would happen if the majority

of training instances seen were positive.

2.6.4 Specificity

Specificity is a measurement method found in data mining used to demonstrate

a model’s ability to pick up relavent negative instances in a dataset [Powers, 2007;

Fawcett, 2004]. The Specificity of a model can be calculated as

Specificity =
TN

TN + FP

Just as with Recall, if this was the only measurement being considered, then the

model could cheat by always predicting the negative class. In the case of the Zero-R

algorithm, this would happen if the majority of training instances seen were negative.



Chapter 2: Background 29

2.6.5 Precision

Precision (or Confidence in other domains) is a measurement method found in

data mining used to demonstrate the tradeoff in a model between the sensitivity of

picking up true positives, while balancing the false positives. [Powers, 2007; Fawcett,

2004]. The Precision ability of a model can be calculated as

Precision =
TP

TP + FP

This test is different from the other two as it is dependent on the proportion of positive

examples seen in the test set.

2.6.6 F-Score

The relationship between Precision and Recall, as previously observed, is not

mutually exclusive. There is a tradeoff between one and the other. The F-Score is

a method used in machine learning to compute the harmonized mean between the

previously defined Precision and Recall values of a model [Powers, 2007; Fawcett,

2004]. This score can be calculated as

F − Score = 2 · Precision ·Recall
Precision+Recall

and is typically used to determine the average between the two results. This

metric can be valuable in calculating the overall accuracy of a model, however it has

been shown that this method of calculation does not take the true negative rate into

account [Powers, 2007].
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2.6.7 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve is a method of measuring the

accuracy of a binary classifier by using the Recall (sensitivity) and the False Positive

rate (1−Specificity) as defined above [Fawcett, 2004]. This form of measurement has

been shown to be a more complete method than other traditional scoring algorithms,

at it takes all of the true/false positive/negative combinations into account [Fawcett,

2004; Walter, 2005]. The ROC curve, when considering a binary classifier, can be

visualized as a two dimensional graph, depicting the ratio between the true positive

rate and the false positive rate.

Considering point B in Figure 2.1 [Wikimedia, 2009], any model with a threshold

value of 0.5 would be considered on par with random guessing. A model, such as

that depicted in point C (lower-right), would have a higher false positive rate than

true positive rate, and would be considered worse than random guessing. Alternately,

points A and C’ (C-prime in the top-left being a mirror of C in the bottom-right)

successively approach what would be considered a perfect classifier, with consideration

to all positive and negative classes.

The Area under the ROC curve (AUC) can be calculated in a step-wise fashion, by

considering all of the instances seen, and plotting their TPR-to-FPR ratio as further

instances are observed during the testing phase. These points can then be connected,

and the area under this curve taken to form the AUC value. In practice, all of the

classifiers that perform better than random guessing will have an AUC between 0.5

and 1.0.
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Figure 2.1: Receiver Operating Characteristic

2.7 Machine Learning Algorithms

Having examined the methods by which we evaluate the outcomes of classification,

we can now turn to examining machine learning algorithms themselves. The machine

learning algorithms described below will form the basis for the experiments performed

in my thesis. The formulas in consideration will provide a basis for the specific

implementations used, with some consideration to how they are applied in the context

of my work.
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2.7.1 ZeroR

One of the simplest classifiers is the ZeroR [Mitchell, 1997] , or 0-R, which is

typically used as a baseline classifier against which other, more complicated, classifiers

are measured. The ZeroR classifier is unique in that it does not actually take into

account the features or attributes of the training data used to build the model. In

the case of supervised learning, ZeroR calculates the average value of the supplied

class (when numeric) or the mode of the supplied class (when nominal). This value

is then used every time a new test instance is given to the model.

Intuitively, the model prediction will have an accuracy roughly the same as the

most common class found in the training data, provided the training, holdout, and

cross validation random sampling contains the same distribution of classes. In the

my experimental test set, the attack types have been simply labeled as normal and

anomaly.

2.7.2 Naive Bayes

The Naive Bayes [Mitchell, 1997] algorithm uses Bayes’ Theorem to predict the

posterior probability of a class, given the presence of one or more features. Bayes’

Theorem can be shown as

P (c|x) =
P (x|c)P (c)

P (x)
[1]

[Mitchell, 1997]

where P (x|c) is the likelihood of feature x given class c, P(c) is the probability

of class c, and P (x) is the probability of feature x occurring. This algorithm is
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said to be naive because of the strong assumption that features are independent

from one another in a probabilistic sense. Despite this limitation, compared to other

more sophisticated algorithms, some researchers [iri, 2001] have found that it is fairly

competitive in predictive performance in general.

2.7.2.1 Learning Algorithm

When considering multiple features, calculating the posterior probability can be

stated as follows: given predictors x1, x2, ..., xn calculate the probability of the in-

stance belonging to each class, and then select the class with the highest probability.

Let c be a specific class, and X be the set of the features observed in the current

instance. This can then be shown as

P (c|X) = P (x1|c)× P (x2|c)× ...× P (xn|c)× P (c) [2]

[Mitchell, 1997]

This assumes that the effect of a feature x on any class c is independent of the

effect of other features on class c. In order to translate the trained feature space to

testing class prediction, the data must be transformed into a frequency table for each

feature, and then to a likelihood table.

Table 2.2 illustrates a sample breakdown of traffic classes by netflow protocol

found in all the instances used to train the model. Using this data, we can construct

the total frequencies for each feature against the classes. These totals can then be

used to create the likelihood table, Table 2.3:

Based on Table 2.3, we can calculate the probably of the traffic being normal
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Table 2.2: Traffic Frequency Table

Table 2.3: Traffic Likelihood Table

if the netflow protocol is tcp. The probability of class normal, P (c) = P (normal),

is approximately 67346/125979 = 0.53. The probably of seeing the tcp protocol,

P (x) = P (tcp), is approximately 102691/125979 = 0.86. And finally, the probability

of class normal given the presence of protocol feature tcp, or P (c|x = P (normal|tcp)

is approximately 53601/125979 = 0.43. These can now be combined, as seen above

in formula 1, to calculate the posterior probability, as P (c|x) = P (normal|tcp) =

0.43×0.53
0.86

= 0.27.

2.7.3 J48 Decision Tree

Decision trees are used to classify data by sorting the attributes and their values

in a tree fashion, with the leaves of the tree being the classification. The most basic
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example of decision tree algorithms are the ID3 and C4.5 [Quinlan, 1993] which uses

entropy and information gain (see Section 3.3.1.1) to recursively split the available

attributes into decisions that will decrease the entropy across all values associated

with that attribute. The result is such that the highest information gain split is at

the root node, all the way down to the values with the lowest near to the leaves.

2.7.3.1 Learning Algorithm

The C4.5 decision tree algorithm is based on the assumption that the features in

question are not uniformly distributed across all classifications. When the observed

value of a feature is uniformly distributed in a probability table, it is said to have a

low level of entropy (randomness) [Kotsiantis, 2007]. Considering Figure 2.2, if the

probability that variable X is 0.5, then that trial is said to have the highest degree

of uncertainty (e.g., flipping a fair coin), and therefore the H(X), or level of entropy,

approaches 1.

Consider a training dataset S = s1, s2, ... of classified instances. Each of the

instances contains a list of features in a p-dimensional vector x1,i, x2,i, ..., xp,i, such

that each xj is the list of the attributes of that instances, as well the class si belongs

to [Kotsiantis, 2007]. At each node of the tree, all of the attributes are tested for

their individual information gain (contribution to classification), and the attributes

are then split into their respective subsets depending on which classification they

belong to [Kotsiantis, 2007]. This is then recursively run on each successive list

derived from the original split until a base case is met [Kotsiantis, 2007]. The base

cases in consideration are [Kotsiantis, 2007]
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Figure 2.2: Binary Entropy Plot [Wikimedia, 2007a]

1. All of the instances in the list belong to the same class. A leaf node is then

created to choose that class.

2. All of the features in the sample have the same entropy. Create a decision node

higher up using the value of that class.

3. An instance of a previously unseen class is encountered. Create a decision node

higher up using the value of that class.

The pseudo code for creating a decision tree, taken from [Kotsiantis, 2007], can

be shown as:
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Algorithm 1 J48 Decision Tree

best attribute← 0

Check for a base case

for each attribute a in the set of attributes do

Find the normalized information gain from splitting the sublist by that attribute.

if a > best attribute then

best attribute ← a

else

get the next attribute a

end if

end for

Create a decision tree node that splits the set on best attribute

Recursively create the tree by calling J48 on the sublists for each branch



Chapter 2: Background 38

Once the decision tree is created, the list of p-dimensional attributes are then

compared to each node in the decision tree, until a leaf is hit, thus classifying that

instance [Kotsiantis, 2007].

2.7.4 Linear and Logistic Regression

Linear regression, as the name specifies, tries to find a function that intersects the

average of all supplied data points in order to predict a real-valued output (as opposed

to discrete valued output) [Mitchell, 1997]. The algorithm can be supervised, as the

training data in this case also supplies the known class (correct answer). Consider

the following variables:

1. m : the number of training examples

2. x : the input variables, or features of a training set

3. y : the output variables, or target classification value

In the case of univariate linear regression, a single training instance could be

denoted (x, y), where x is the input value, and y is the associated output value. In

the case of multiple training examples, the ith instance would be (x,(i) , y(i)) [Mitchell,

1997].

The hypothesis function, traditionally denoted h(x), represents our model of the

input and output variables [Mitchell, 1997]. The intention of the algorithm is to train

the model such that for any one or more input values x0, x1,+...+, xn, the accurate

output value y will be given [Mitchell, 1997].
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Each training set is given to the learning algorithm, that is responsible for gen-

erating a hypothesis function h [Mitchell, 1997]. When new instances of x are given

to function h, the function will hopefully output a prediction value y that is as close

possible to the correct outcome, should such a relationship exist between input value

x and output value y [Mitchell, 1997].

Figure 2.3: Linear Regression [Wikimedia, 2007c]

As seen in Figure 2.3 the line intersects as many of the instances as possible such

that given a new value x, the proper prediction of y can be generated.

2.7.4.1 Cost Function

Considering the θ parameters of the hypothesis function, how do we choose θ0 and

θ1 such that hθ(x) is as close to y for all (x, y)?

In the case of a binary classifier, the segmentation would ideally separate the two

classes we are interested in. The main question is, how do we choose the parameter

values for θ0 and θ1?. This is done with a formula called the cost function[Mitchell,
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1997]. The idea is to choose the values for θ0 and θ1 so that the hypothesis function

is close to y for all of our training examples (x,y). Such that we minimize [Ng, 2012]

Θ0,Θ1 =
m∑
i=1

(h0(x)i − y(i))2

The cost function is calculated based on the Squared Error between the expected

value y given input x, and the real value [Mitchell, 1997]. This error function has

been known to work well with most regression problems, and is found in many real-

world applications [Friedman et al., 1998]. It is also considered to be optimal in the

Bayesian-probabilistic sense Mitchell [1997].

By this we denote the cost function [Ng, 2012]

J(θ0, θ1) = 1/(2m)
m∑
i=1

(hθ(x)− y)2(1)

This equation is known as the squared error cost function [Mitchell, 1997], and

is mostly used for regression problems over one or more variables [Ng, 2012]. As

the input values are changed, and the value of J(θ1) goes as close to 0 as possible,

the model is said to be accurate with respect to the training data. This method

is also known as Gradient Descent when trying to find a global optimum (minimal

error) [Mitchell, 1997].

2.7.4.2 Gradient Descent

Gradient Descent is the method by which the learning algorithm attempts to find

a global minimum to the cost function [Mitchell, 1997]. This is performed over the

error gradient of the possible input space. If we consider the following equation [Ng,
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2012]

θj := θj − α(δ/(δθj))J(θ0, θ1)

we can see the value being assigned to θ is the current value of θ minus the partial

derivative of the adjusted cost function, at the rate of α. The α value is known as the

learning rate; a factor determining the amount of change during each iteration of the

gradient descent algorithm. Intuitively, if the value of α is too high, then the value

may oscillate across the desired global minimum (or optimal value of θ). Conversely,

if the value of α is too small, the algorithm will have undesirable performance as the

iterative steps are very small [Mitchell, 1997].

Substituting J(θ0, θ1) from the cost function gives us [Ng, 2012]

θj := θj − α(δ/(δθj))1/(2m)
m∑
i=1

(hθ(x)− y)2(1)

This is also known as a convex function, as gradient descent is always a “bow”

shape, and converges to a global optimum [Mitchell, 1997].

In the case of multiple variables, we want to update θ0, θ1, ..., θn simultaneously,

otherwise each computation of the error rate will use the partially changed vari-

ables [Ng, 2012]

θj := θj − α(δ/(δθj))J(θ0, θ1, ..., θn)

Linear regression is a simple algorithm that can be used to derive the numeric

value along multiple feature spaces, however in most forms it is limited to dealing with

regression (real valued) predictions, and is not well suited for classification problems
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which we are interested in [Ng, 2012]. As we will now see, a slight modification to

the training function can create a fairly powerful classification learner called logistic

regression [Mitchell, 1997].

2.7.4.3 Logistic Regression Cost Function

Logistic regression is a fairly popular algorithm used in classification, and can

handle both binary and multiple classes [Mitchell, 1997]. In this case we want to

predict yε{0, 1} for the binary class, based on the input x, using a threshold classifier:

if h0(x) ≥ 0.5, then y = 1.

To accomplish this, logistic regression will apply the sigmoid function. The sig-

moid function used in place of the hypothesis function [Ng, 2012]

h0(x) = 1/(1 + e−ΘT x)

The term x is controlled for each input feature. Considering the number of input

features for our dataset is relatively low (less than ten thousand), the Normal equation

can be used, which solves for each co-efficient in one step by using matrix algebra,

as opposed to the traditional method of trying to find a global minimum through

gradient descent, and testing multiple learning rates to avoid oscillation [Mitchell,

1997; Ng, 2012].

As shown in Figure 2.4, the logistic regression cost function has a sigmoid curve.

In the case of applying Logistic Regression to multiple classes (for example, two

classes), we can consider the predicted value y being an element of either 0, or 1,

where 0 is the negative class, and 1 is the positive class [Mitchell, 1997; Ng, 2012].
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Figure 2.4: Logistic Curve [Wikimedia, 2008a]

For this we use a threshold classifier, such that our hypothesis function hσ(x) >= 0.5

if y = 1, and hσ(x) <= 0.5 if y = 0 [Mitchell, 1997; Ng, 2012]. In other words,

0 <= hσ(x) <= 1 [Mitchell, 1997; Ng, 2012]. We can compute this function using the

logistic function, also known as the sigmoid function, in the context of the hypothesis

function [Mitchell, 1997; Ng, 2012].

The logistic regression function h(x) is estimating the probability that y = 1

based on the input features [Mitchell, 1997; Ng, 2012]. Non-linear predictions can be

obtained by using polynomial or higher order values for each feature [Mitchell, 1997;

Ng, 2012]. This can be accomplished in a number of ways, including higher-order

approximation on the same feature, and combining features together to create a new

feature altogether [Mitchell, 1997; Ng, 2012].

The addition of higher order or new features will have the tendency to make the

model more accurate [Ng, 2012], however this may also have the potential danger of

causing over-fitting of the training data, should too many higher-order features be

added to the model [Mitchell, 1997; Ng, 2012].
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The cost function for logistic regression is used to automatically fit the parameters

θ for each input variable [Mitchell, 1997; Ng, 2012]. It can be shown that the Square

Mean Error, when applied in a logistic fashion, is then [Mitchell, 1997; Ng, 2012]

1. Cost(h0(x), y) = −log(h0(x) if y = 1

2. Cost(h0(x), y) = −log(1− h0(x) if y = 0

This can also be written as [Ng, 2012]

Cost(h0(x), y) = −y · log(h0(x)− (1− y) · log(1− h0(x))

2.7.4.4 Logistic Regularization

Both linear and logistic regression can suffer from under-fitting (also known as a

high bias), as it assumes the relationships are usually linear, and will not consider

outliers very well [Mitchell, 1997; Ng, 2012]. On the other hand, using higher-order

polynomials (or quadratics), the model can cause over-fitting or high variance and

fit the training set too well [Mitchell, 1997; Ng, 2012]. Over-fitting the training set

then limits the model’s ability to generalize to new test instances [Mitchell, 1997;

Ng, 2012]. There are two general approaches to solving this. The first approach is

to reduce the overall number of features (manually, or automatically using feature

selection algorithms). The second approach is to keep all of the features, but use a

regularization value to reduce the weight of each one, so each one contributes a little

bit to predicting the class [Mitchell, 1997; Ng, 2012].
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2.7.5 K-Nearest Neighbour

The K-nearest-neighbor algorithm is an instance-based learning algorithm that

relies on the distance of each new sample to one or more previously seen instances in

a feature space for classification [Aha et al., 1991].

2.7.5.1 Algorithm

There are a variety of methods to calculate the distance between the new in-

stances, and the closest neighbours by proximity, including Euclidean, Manhattan,

and Minkowski [Aha et al., 1991]. The proximity distance calculation used in this

experiment is the Euclidean, given [Aha et al., 1991]

√√√√ n∑
i=1

(xi − yi)2

where n is the number of dimensions in the feature space for each point, and x

and y are the two points for which the distance is being calculated.

As seen in Figure 2.5, the new instance (green) must be classified. Based on

immediate proximity, the red class is closer than the blue class. However, based on a

larger radial diameter, there are more blue instances than red. Depending on the k

value, or number of nearest neighbours, the class of the newest instance may vary.

The issue when creating a feature space is whether or not the features can be

put in the same scale [Aha et al., 1991; Chairunnisa et al., 2009]. This is a bigger

issue for nominal attributes that numeric. Nominal attributes can first be put into

a numeric continuum, accomplished through encoding them by intervals [Aha et al.,

1991; Chairunnisa et al., 2009]. All numeric attributes can then normalized to fit the
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Figure 2.5: K-Nearest Neighbour Classification [Wikimedia, 2007b]

same scale.

2.7.6 Support Vector Machines

Support Vector Machines involve finding a plane of separation between two groups

of graphed instances such that the plane has a maximum margin between the groups.

This is done by finding an n−1 dimensional hyperplane in an n−dimensional space

to separate the two classes [Fradkin and Muchnik, 2000].

2.7.6.1 Algorithm

Considering two similar groups of instances in a two-dimensional feature space

space, Figure 2.6 illustrates three example planes of possible separation.

As shown in the figure, we see two distinctive classes. The H1 hyperplane does

not separate the two groups. The H2 hyperplane does separate the groups, but just
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Figure 2.6: SVM Seperating Hyperplanes [Wikimedia, 2012]

barely. The H3 hyper plan does separate the groups with the largest margin on each

side, such that new instances placed within the vicinity of their respective classes

would have the greatest chance of being classified correctly.

As shown in Figure 2.7, the selected hyperplane maximizes the margin between

the two disparate clusters of instances, and thus provides an optimal separation for

future classification of like-instances. This algorithm does have the ability to be more

efficient and powerful than both logistic regression and artificial neural networks [Ng,

2012].

For a binary classification support vector machine, let y be the target class of the

seen instance, hθ(x) be the hypothesis function of instance x. Then

1. if y = 1, we want hθ(x) to be ≈ 1, and θTx >> 0 [Ng, 2012]

2. if y = 0, we want hθ(x) to be ≈ 0, and θTx << 0 [Ng, 2012]

Considering the cost function [Ng, 2012]
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Figure 2.7: SVM Large Margins [Wikimedia, 2008b]

J(θ) = −y · log 1

1 + e−ΘT x
− (1− y) · log(1− 1

1 + e−ΘT x
)

Therefore if y = 1 (we want θTx >> 0), the cost function J(θ) ≈ −log · 1

1+e−ΘT x
[Ng,

2012].

Otherwise if y = 0 (and we want θTx >> 0), then J(θ) ≈ −log · (1 + 1

1+e−ΘT x
) [Ng,

2012].

which gives us the hypothesis [Ng, 2012]

hθ(x) = 1 if θTx >> 0, otherwise hθ(x) = 1

Let the cost function θTx = z. This means if the instances in question belongs

to class 1, the cost function z should be >> 1 (preferably much higher), while the

instances belonging to class 0 should produce a cost function z << 0 (preferably in the
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low negatives) [Mitchell, 1997; Ng, 2012; Fradkin and Muchnik, 2000]. Considering

the function is logistic, the cost function is roughly −2 << z << 2. This is termed the

Large Margin feature of the support vector, as it attempts to distance itself equally

from all instances, and in this example, have the largest Euclidean distance from

every point on the Cartesian plane simultaneously [Mitchell, 1997; Ng, 2012; Fradkin

and Muchnik, 2000].

2.7.6.2 Kernel Functions

Support Vectors Machines with a large margin work well if all of the features

are cleanly separated [Mitchell, 1997; Ng, 2012; Fradkin and Muchnik, 2000]. What

about cases in which they overlap, or form strange patterns? This can be solved

using a kernel function [Mitchell, 1997; Ng, 2012; Fradkin and Muchnik, 2000]. The

function can be exacted by two main methods. One is to encompass the feature

clusters through a polynomial cost function expression similar to which was seen in

logistic regression [Mitchell, 1997; Ng, 2012; Fradkin and Muchnik, 2000]. The other

method is to transform the feature space into a higher dimension such that linear

separation of the classes is much easier. The kernel function used to perform this

dimensional transformation in my experiments, as explained below, is the radial basis

function assuming a Gaussian distribution when viewing each feature point in a n−1

sub-plane to the n− dimensional hyperplane [Mitchell, 1997; Ng, 2012; Fradkin and

Muchnik, 2000].
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2.7.6.3 Pseudocode

The Support Vector Machine algorithm is typically executed as follows [Mitchell,

1997; Ng, 2012; Fradkin and Muchnik, 2000]:

Algorithm 2 Support Vector Placement

Define the maximum hyperplane

Margin Placement: extend the distance to non-linear classifications with a penalty

value

Produce the kernel function: map to highest dimension to classify with linear

decision surface (kernel function)

As described above, the SVM will attempt to find the maximum hyperplane by

calculating the distance between classes such that every instance in the plane has the

maximum distance from the hyperplane. The feature space is then mapped through

a kernel function such that the hyperplane can easily bisect the classes [Mitchell,

1997; Ng, 2012]. Having reviewed the concept of support vector machines, I will now

introduce the last of the single algorithms, the artificial neural network.

2.7.7 Artificial Neural Networks

2.7.7.1 Introduction

Modern neural networks are based on the structure of interconnected networks

of nodes, or neuron-like structures [Mitchell, 1997; Ali et al., 2010]. The neurons in

an artificial neural network are also referred to as units, or nodes [Mitchell, 1997;

Ali et al., 2010]. The simple neuron contains input signals, each signal representing a
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variable under consideration [Mitchell, 1997; Ali et al., 2010] to be passed through the

neuron’s function, ultimately producing an output signal [Mitchell, 1997; Ali et al.,

2010].

Figure 2.8: Perceptron with Sigmoid Function [Mitchell, 1997]

As demonstrated in figure 2.8, a network which has only one layer is known as a

perceptron, and is no different than a single-variable logistic function [Mitchell, 1997;

Ali et al., 2010]. The cumulative strength of the neuron’s inputs determines what the

activation level of the neuron is [Mitchell, 1997]. The node’s threshold function f(net)

determines what the neuron’s output is, depending on how high or low the activation

level is above or below the predefined threshold [Mitchell, 1997]. The output of a

simple neuron is usually 1 or -1, meaning yes or no [Mitchell, 1997]. This is a simple

model as the cumulative inputs’ sign determines the sign of the activation functions

result [Mitchell, 1997]. Some neurons have a bias input associated with it, which

always has an input of +1 or -1, regardless of what the other inputs are [Mitchell,

1997]. This in turn shifts where the neuron would be activated with regards to the

threshold function [Mitchell, 1997].
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2.7.7.2 Feed Forward Signal Propagation

Networks characteristics can be defined by the network topology, the learning

algorithm used, as well as the encoding scheme to normalize input variables suitable

for the neuron function [Mitchell, 1997; Ali et al., 2010]. The network topology is

the structured connection between all the neurons in the network [Mitchell, 1997; Ali

et al., 2010].

As shown in Figure 2.9, neurons can be combined together to form a network of

neurons, with the output values from the input layer (and subsequent layers) serving

as the input values for successive layers [Mitchell, 1997; Ali et al., 2010].

Figure 2.9: Neural Network with Layers [Mitchell, 1997]

As there can be multiple levels in the network, the input values will be calculated

by each neuron’s function, then signals are successively passed on to a second or even
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third layers [Mitchell, 1997; Ali et al., 2010]. In most problem domains, including

network data classification, the features (or input node values) may not all have equal

contribution to the desired output node value (the classification) [Mitchell, 1997].

Each node in a neural network will typically have a weight assigned to it, such that

once the network has been trained, the features with the highest information gain will

have the highest weights assigned to them [Mitchell, 1997; Ali et al., 2010]. Thus,

for each input xi a weight wi, (i = 1...n) is assigned which describes the connection

strength of each input [Mitchell, 1997; Ali et al., 2010]. When the variables are being

calculated for each layer (feed forward propagation), the function calculations will

eventually reach the output node(s) [Mitchell, 1997; Ali et al., 2010].

As described above, feed forward propagation will calculate an output classifica-

tion based on the input values supplied. However, in order to modify the model, the

connections between the neurons need to be adjusted [Mitchell, 1997], as described

in the next section.

2.7.7.3 Back Propagation Learning Algorithm

The back propagation learning algorithm used for neural networks determines how

the weights are adjusted after each iteration of training [Mitchell, 1997]. If the network

produces a desired output, the weights need not change. However, if the output

is not correct, the weights of each node must be modified depending on multiple

factors [Mitchell, 1997]. These connections are strengthened through the process of

back propagation [Mitchell, 1997].

Let c be a constant whose size determines the learning rate and d be the desired
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output value. The adjustment for the weight on the ith component of the input

vector, ∆wi, is given by [Mitchell, 1997]:

∆wi = c · (d−
∑

xi · wi) · xi

The change in weight is affected by the neurons last known output value
∑
xi · wi,

which is the signal produced by applying the sum of all inputs i (from 1..n) multiplied

by their respective weights to the threshold function [Mitchell, 1997]. This value is

then subtracted from the desired output d, and multiplied by the adjustment constant

c, and the last input value xi [Mitchell, 1997]. In simpler terms, the pseudocode to

change for the weight of input i(from [Mitchell, 1997]) is:

c ∗ (desired output − last output of neuron) ∗ (last input of i))

This change in weight is then repeated for every layer in the neural network, up

to and including the input layer [Mitchell, 1997]. One round of this back propagation

training algorithm is known as an epoch, and during the training of the network, will

typically be repeated until the gradient descent cost function (as described in Logistic

Regression) converges on a local (and hopefully global) minimum [Mitchell, 1997].

2.7.8 Summary

This section has described and considered the single learning algorithms that

were used in my research. The next section will consider ensemble learning, and

meta-classification using both homogeneous and heterogeneous models, and how this

can be applied to classifying data for network security.



Chapter 2: Background 55

2.8 Meta-Heuristic Learning Algorithms

The single learning algorithms in the previous chapter were all designed to search

a hypotheses space for a good hypothesis that fit the problem domain, and would

allow for hopefully better-than-average prediction. The term ensemble [Zhou, 2009]

in learning generally means using more than one prediction model in order to combine

multiple hypothesis spaces in the problem domain to increase the overall prediction

power.

Boosting and Bagging algorithms work by training multiple simple classifiers to

focus on different aspects of the dataset, with the intention of improving the overall

accuracy [Schapire, 1990; Witten et al., 2011].

Voting algorithms work in a similar manner by using multiple disparate classi-

fiers to overcome individual classifier weaknesses, however this method differs in that

classifiers of a different nature can be used together [Schapire, 1990; Witten et al.,

2011].

2.9 Boosting

Boosting algorithms are described by Schapire [1990] as the combination of mul-

tiple weak learners to successively increase the overall prediction power of the ensem-

ble, thus producing a stronger learner. It is used to reduce the bias of the overall

learner. After some initial research in leveraging systems, [Freund and Schapire,

1999] proposed the AdaBoost algorithm (described below), that successfully applies

new learners to previously misclassified samples, thereby increasing the strength of
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the ensemble they are added to once trained.

2.9.1 AdaBoost M1

The AdaBoost algorithm (short for Adaptive Boosting) proposed by Freund and

Schapire [1996], is considered to be statistically provable to significantly increase the

learning accuracy of weak learners – those that are only marginally improved over

chance. Freund and Schapire [1996] found it to contribute only a slight improvement

for more sophisticated algorithms such as C4.5 Freund and Schapire [1996]. They

also have two versions of the AdaBoost algorithm that do not make any difference

for binary classifiers, but will have a performance different for multiple class learners.

The general AdaBoost algorithm can be described as follows [Raul Rojas, 2013]:

Considering we have an attack instance xi, and a classifier kj, then every classifier

can submit an opinion on the class of the instance kj(xi), such that each opinion

is ∈ −1, 1. Note the opinions are either yes (1) or no (-1), not a result in a con-

tinuum. The opinions can be combined as a group K of experts with sign(C(xi)),

such that the sum is weighted depending on the previously observed accuracy of that

classifier [Raul Rojas, 2013]. Then the group of weighted opinions can be shown as:

C(xi) = α1k1(xi) + α1k1(xi) + ...+ αnkn(xi)

where n is the total number of classifiers present [Raul Rojas, 2013]. The constants

α1, α2, ..., αn are the weights assigned to each classifier. This can also be described as a

linear decision by each classifier, which is then combined into a non-linear (weighted)

sum for the final decision [Raul Rojas, 2013].
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C(xi) =
n∑
j=1

αjkj(xi)

In order to assign the weights to each classifier-instance pair, there is a penalty

cost eβ when a classifier is wrong on the training instance, and a reward e−β when it is

correct [Raul Rojas, 2013]. In this algorithm, β must be > 0 so that prediction failures

have a greater cost than prediction success [Raul Rojas, 2013]. The training algorithm

is run once for each classifier in the pool. Given training set T of instances xi and

labels yi, we can assign initial weights wi = 1 to all instances xi [Raul Rojas, 2013].

If we have M classifiers (M = n iterations), we can describe it as follows [Raul Rojas,

2013]:

Let W be the sum of weights of all the instances the classifier correctly classified,

and We the sum of all weights of the instances the classifier was incorrect. Then

For m = 1 to M

1. Select the classifier that minimizes the total weights of misclassified instances:

We =
∑

yi 6=km(xi)

wmi

2. Set the weight αm of the classifier to

αm = 1/2ln(
1− em
em

)

where em = We

W

3. Update the weights of the data points for the next iteration (m+ 1). If km(xi)

is a misclassification, we set

w
(m+1)
i = w

(m)
i e(αm) = w

(m)
i

√
1− em
em
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otherwise

w
(m+1)
i = w

(m)
i e(−αm) = w

(m)
i

√
em

1− em

This is then repeated for each m = 1, 2, ..., n [Raul Rojas, 2013]. After each suc-

cessive round, the classifier is added to the ensemble, and the remaining misclassified

instance weights are increased such that successive learners will put more emphasis

on learning those previously misclassified instances [Raul Rojas, 2013]. The end re-

sult is an ensemble of classifiers that are algorithmically homogeneous, but weighted

according to their individual contribution to a specific type of previously seen in-

stance [Raul Rojas, 2013].

2.10 Bagging

Bagging is an ensemble learning method used to reduce the variance found in

some learner/dataset combinations, that in turn can enhance the overall predictive

performance of that classifier [Breiman, 1996]. Breiman et al. proposed this system

as a way to generate a series of similar classifiers on training data derived from the

original set, called a boostrap sample (akin to stratified instance selection), and then

averaging the combined decision of those classifiers when tested on a new instance.

2.10.1 Learning Algorithm

The Bagging algorithm is different from Boosting in that instead of serializing

the learners, with the performance of each learner affecting how subsequent learners

are built, all of the learners are trained in parallel using a unique bootstrap sam-
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ple [Breiman, 1996].The bootstrap samples are generated by sub-sampling the orig-

inal training data with replacement so the resulting dataset is the same size as the

original dataset [Breiman, 1996]. The bagging algorithm used in my experiments is

derived from work by Breiman [1996], and can be described using pseudo-code [Zhou,

2009]:

Consider the dataset D containing instances (x1, y1), (x2, y2), ..., (xm, ym), the base

learning algorithm L, and the number of learning rounds T . Algorithm 3 describes

the process as

Algorithm 3 Calculate y = xn

for t = 1, ... , T do

Dt = Bootstrap(D); % Generate a bootstrap sample from D

ht = L(Dt)% Train a base learner ht from the bootstrap sample

end for

The resulting ensemble of learners is then consulted whenever a new instance is

seen, and their output values are averaged as [Breiman, 1996]:

H(x) = argmaxy∈Y
T∑
t=1

1(y = ht(x))

For the case of a binary classifier we see that the result will be true if the majority

of classifiers return true. But what about the case when there is an even number of

classifiers and there is a draw? Bagging includes a random initialization seed that is

consulted as a tie breaker in the unlikely event that this happens [Breiman, 1996].
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2.11 Voting

Ensembles differ slightly from other meta-classifiers in that traditional ensembles

use the same algorithm, whereas meta classification uses a logical meta-layer to com-

bine the results from different learners [Kittler et al., 1998; Kuncheva, 2004]. In this

section we consider how to combine multiple disparate models in order to combine the

strengths (and unfortunately potential weaknesses) of a disparate learning algorithms

through a technique called Voting.

Voting ensembles [Kittler et al., 1998; Kuncheva, 2004] are similar to Bagging

because they run multiple learners in parallel to one another. However, the learners

in Voting may be heterogeneous [Kittler et al., 1998; Kuncheva, 2004]. The Voting

algorithm used an Average of Probabilities combination rule, such that every included

classifier prediction had equal weighting [Kittler et al., 1998; Kuncheva, 2004].

2.12 Summary

There are many machine learning algorithms to choose from when considering the

problem of traffic classification for intrusion detection. As mentioned in this chapter,

each algorithm has various applications, as well as strengths and weaknesses. The

next chapter outlines the experimental environment that was used for testing various

machine learning algorithms.
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Experimental Methodology

3.1 Overview

The fundamental purpose of my research was to explore the performance trade-

offs of a variety of machine learning schemes in the network intrusion detection traffic

domain. The resulting analysis should answer the questions proposed in Chapter 1,

so that current and future researchers in the network security domain can more pro-

ductively apply machine learning while narrowing the large variety of algorithm and

dataset scheme options available. In order to accomplish this goal, a suitable experi-

mental methodology was designed with the following properties in mind:

1. Algorithms should be selected from a variety of statistical models in the machine

learning domain, so a proper representation of the fundamental options are

tested

2. The dataset against which the algorithms are tested should be a realistic rep-

61
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resentation of both normal and abnormal traffic, including zero-day attack in-

stances

3. Algorithm evaluation should be performed in an unbiased fashion, using an

experimental framework that support consistency and reliability

My research focus is on supervised learning algorithms, as I am interested in using

labeled instances to train each representative model, and testing the model against an

established test set to evaluate the potential predictive power of each model against

attacks that represent both previously seen and novel network behaviors. Both single

and ensemble learning algorithm schemes were evaluated to see which approach to

learning provides the best solution to the difficult task of network traffic classification

for security purposes.

Finding an appropriate dataset against which to test supervised learning algo-

rithms is a difficult task. A modern Network Security Laboratory [2012] derivation

of DARPA’s military network attack simulation dataset from the KDD Challenge

Cup 99 [1999] was used as a representation of network flows found in a realistic net-

work environment. This dataset, despite having origins dating back a decade, is still

being used today as it contains a variety of well-known attack type behavior repre-

sentative of similar attacks seen today, and through many years of analysis has been

fine tuned for more accurate machine learning evaluations such as the one presented

in this thesis.

The testing framework I developed started out as a design around a generic train-

ing and testing API that would be interfaced using publicly available algorithms

released in Java or C++. As mentioned in Chapter 1, my research questions revolved
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around the comparison of existing algorithms, and not the creation of novel machine

learning methods, and hence some time was spent in discovery of robust algorithms

that are adequate representative samples of what is currently used by the ML com-

munity. This exploration naturally led to several existing frameworks that already

supplied a fair number of robust algorithms. After spending some time in each of

these frameworks, I came to the conclusion that the Weka [Hall et al., 2009] frame-

work (developed at Waikato University) not only included well-developed and widely

vetted libraries, but also included a fairly robust data exploration and experimen-

tation framework that would satisfy the consistency and reliability attributes I was

after.

My experimental methodology follows five main phases to ensure a comprehensive

evaluation of the NSL-KDD dataset against the proposed algorithms. These steps

are:

1. pre-processing the dataset to take advantage of dimensionality reduction through

information gain;

2. training and testing single algorithms against each generated dataset;

3. bagging and boosting each of the algorithm-to-dataset combinations to evaluate

homogeneous ensemble learning;

4. testing meta-classification learning through a voting committee based on mul-

tiple heterogeneous hypothesis models already generated;

5. systematic evaluation of each training and testing round against standard error

evaluation metrics;
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The dataset generation, model parameter selection, and selected evaluation met-

rics will be further explained below. The algorithm evaluations then follow in Chap-

ter 4.

3.2 Evaluation Dataset

3.2.1 DARPA Intrusion Detection Evaluation Dataset

In 1998-1999 the Defense Advanced Research Projects Agency and Airforce Re-

search Laboratory provided funding to the Massachusetts Institute of Technology

Lincoln Lab MIT [2012] to create a body of network traffic flows that could be used

to evaluate the performance of network intrusion detection tools. These data sets

were revolutionary at the time due to the rarity of open source, labeled, and sizable

data samples for this very purpose. Lincoln Labs set up a network which closely

resembled the network used by the sponsoring United States Air Force, and operated

the network as if it were real; however the network was also attacked by a variety of

attack types.

3.2.2 KDD CUP ’99

This dataset was later used by the ACM Special Interest Group for Knowledge

and Data Discovery in a challenge to find the best known machine learning algorithm

for fraud and intrusion detection. Four Gigabytes of captured network packet head-

ers, representing almost two months worth of traffic, were compressed into network

flows. Stolfo et al. [2000] derived additional, high-level, flow features from this dataset
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that may help indicate normal and attack type data. According to the KDD-Cup 99

Dataset description, attacks largely fell into four main categories [KDD Cup, 2012]):

• DOS: denial-of-service — attacks designed to disrupt network services; e.g. syn

flood;

• R2L: remote-to-local — unauthorized access from a remote machine, e.g. guess-

ing password;

• U2R: user-to-root — unauthorized access to local superuser (root) privileges,

e.g., various “buffer overflow” attacks;

• Probing: surveillance and other probing, e.g., port scanning.

In order to further simulate what may be encountered in the real world, additional

attack types were added to the test data that were not found in the training data,

in order to help determine which challenging intrusion detection systems were able

to generalize to new attacks that may not have the same signature or behavior as

previously seen training categories.

In order to assist challenging participants, the data flow features were also offered

in the standard ARFF format. The following traffic flow features are provided for

reference: A list of basic TCP flow features can be found in Appendix A.1 A list

of content features that may indicate domain-specific behavior can be found in Ap-

pendix A.2 And a list of features calculated based on a two-second time window can

be found in Appendix A.3 The attack type allocation for the training and novel types

can be found in Appendix A.4.
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3.2.3 NSL-KDD Data Set Corrections

After a number of years of evaluation, researchers [McHugh, 2000; Tavallaee et al.,

2009b] found the data contained some artifacts due to the artificial attack data in-

jected into the TCP flows, and presented some issues of determining an appropriate

unit of analysis and problems associated with the use of the ROC method of anal-

ysis [McHugh, 2000]. Some statistical flaws were found in the original dataset that

cause bias in training and testing algorithms [McHugh, 2000], causing a skewed dis-

tribution of simulated attack types to bias the results. Many of these issues have been

demonstratively corrected – the NSL-KDD dataset [Tavallaee et al., 2009a] being one

example.

Due to these issues in properly identifying false-positive rates, a new dataset was

created by the Network Security Laboratory at the University of New Brunswick In-

formation Security Centre of Excellence. This dataset was deemed the NSL-KDD

Data Set [Network Security Laboratory, 2012], and was created for the purpose of

removing undesirable statistical artifacts. The dataset is reported to still have some

of the same issues as the original KDD dataset [Tavallaee et al., 2009b]. However,

due to the lack of alternative real-world datasets available for testing intrusion de-

tection systems, it is reasonable for this research experiment in order to compare

machine learning algorithms in the information security domain. Some of the im-

provements the NSL-KDD dataset has over the original KDD dataset are [Network

Security Laboratory, 2012]:

• It does not include redundant records in the training set, so the classifiers will

not be biased towards more frequent records.
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• There are no duplicate records in the proposed test sets; therefore, the perfor-

mance of the learners is not biased by the methods which have better detection

rates on the frequent records.

• The number of selected records from each difficulty level group is inversely

proportional to the percentage of records in the original KDD dataset. As a

result, the classification rates of distinct machine learning methods vary in a

wider range, which makes it more efficient to have an accurate evaluation of

different learning techniques.

• The number of records in the training and testing sets is reasonable, which

makes it affordable to run the experiments on the complete set without the

need to randomly select a small portion. Consequently, evaluation results of

different research works will be consistent and comparable.

The resulting dataset removed redundant records from both the training and test

set in order to remove the bias towards frequent and repetitive net flows typical in

an artificial network environment, allowing machine learning algorithms to observe

traffic more typically found in a spontaneous and ever-changing real world networking

environment, and hence improve the utility of the learned models, and the evaluation

of potential commercial products.
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3.3 Feature Selection and Dimensionality Reduc-

tion

Classifier accuracy largely depends on the quality of the information present in the

attributes that form a correlation to the target classes. Feature selection in Machine

Learning assumes that large feature sets may include redundant features. Removing

these features will increase the overall learning and prediction efficiency of the chosen

model. In order to select the best attributes in the feature space, we need to be

able to measure the quality, or contribution, each attribute contributes. The quality

of the information in each attribute can be quantified, using measurements such as

information gain, or entropy, and gain ratio. These measurements, described below,

are used to create the datasets used for further algorithmic testing.

Many of the machine learning libraries found in the Weka toolkit support the

use of filters and wrappers, and their effect to the algorithms will be considered in

terms of the performance metrics outlined below. Two examples of how the above

approach works involves applying a feature filter [Khor et al., 2009; Mukkamala and

Sung, 2003] by systematically removing one feature at a time to determine the overall

contribution (Information Gain) of each feature, and using only the highest ranking

features. Another example could apply a feature wrapper [Choubey et al., 1996;

Guyon and Elisseeff, 2003] by using the individual classifier to choose optimal feature

subsets and measuring the accuracy gain or loss.

The NSL-KDD train and test dataset has a relatively high number of classes;

feature spaces greater than 10 are generally considered large, and subject to the curse
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of dimensionality. Fortunately, as the traffic behavior descriptors created by Stolfo

et al. [2000] are universal to all traffic flow samples, there are no missing values for

any of the instances.

3.3.1 Pre-processing

Due to the relatively large number of attributes in this dataset, pre-processing

was performed in order to reduce the dimensionality of the dataset, and attempt

to narrow down the features to those which have the highest information gain, or

overall contribution to the classification models. Train and test set were put through

weka.filters.supervised.attribute.remove [Witten et al., 2011], to get rid of the last at-

tribute difficulty, which was artificially added by Network Security Laboratory [2012]

to allow future researchers to filter out attack types by difficulty, and improve overall

learning accuracy. Since the NSL-KDD study results will not be used as a factor

to limit instances to the easiest sets, my research includes attacks of every difficulty

(which lower test accuracy considerably) for the greatest realism possible.

As described in Chapter 2, the two primary methods of supervised attribute (fea-

ture) selection are filtering, and wrapping.

3.3.1.1 Information Gain Ratio

Information gain can be said to be the amount of predictive value that a specific

attribute has with respect to the target class [Mitchell, 1997]. If we understand the

conditional and independent probability with which each class occurs, both with and

without the presence of an attribute value, then we can state how much information
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is gained through that feature.

When considering Decision Trees 4.4, these attributes would be the ones placed

nearest to the top, as their selection has the greatest impact on what the final clas-

sification would be.

This can be stated through the following equation [Mitchell, 1997]:

InfoGain(Class, Attribute) = H(Class)−H(Class|Attribute)

Stated simply, the information gained through the correlation between a class

and an attribute is the difference between probability of the class occurring, and the

probability of the class occurring given the presence of that attribute [Mitchell, 1997].

The issue with this method of calculating information gain is present in the bias

towards features that have a relatively high number of values compared to those that

only have a few [Mitchell, 1997]. This is overcome by modifying how the implicit

decision tree construction is partitioned by penalizing those features that have a

greater range of possible values. This is done through split information, a method

of changing the calculated information gain based on how broadly and uniformly the

data is split within the attribute [Mitchell, 1997]. Given S, the collection of attribute

and class examples, and A, the set of all possible attributes, then split information

gain can be shown as [Mitchell, 1997]:

SplitInformation(S,A) = −
c∑
i=1

|Si|
|S|

log2
|Si|
|S|

where Sc are the c subsets of examples by partitioning S by the c-valued attribute

A [Mitchell, 1997]. The GainRatio can then be shown using the previous value of

Information Gain by
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GainRatio(S,A) =
InfoGain(S,A)

SplitInformation(S,A)

which is used for the purpose of deriving the filtered attribute set KDDTrain

GainRatio used the rest of these experiments. The specific search algorithm used is

the Best First search [Witten and Frank, 2005], used with the

weka.filters.supervised.attribute.GainRatio algorithm [Witten et al., 2011].

The top 10 features in Table 3.1 were selected based on their modified Information

Gain (Ratio), using 10-fold cross validation for evaluation.

Table 3.1: Information Gain Ratio Feature Selection.

Gain Index Feature
0.418 12 logged in
0.3739 26 srv serror rate
0.3399 4 flag
0.3327 25 serror rate
0.332 39 dst host srv serror rate
0.2673 30 diff srv rate
0.2648 38 dst host serror rate
0.2585 6 dst bytes
0.2313 5 src bytes
0.2243 29 same srv rate

3.3.1.2 Subset Evaluation

The second method of feature selection, known as wrapping, can be thought of as

a search technique to find the subset of features with the smallest error rate.

According to Hall [1998], this technique can be used to evaluate how a sub-

set of attributes affects the predictive ability of each feature. This supervised at-

tribute selection algorithm was run against the full KDDTrain dataset in order to
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derive the features that have the highest correlation with each other and the target

class, with lowest inter-correlation with features not contained in the subset. The

weka.attributeSelection.CfsSubsetEval [Witten et al., 2011] algorithm was used, with

a BestFirst search strategy.

SubsetEval was run against KDDTrain, using the training dataset as the test set.

The algorithm was run again using 10-fold Cross Validation, and it selected

the same attributes for all 10 folds, with the addition of 29 (same srv rate), 30

(diff srv rate), and 37 (dst hold srv diff host rate). Considering there may be a par-

tial correlation with the last few attributes, the 10-Fold Cross Validation results have

been used to generate a new dataset.

I ran it against the KDDTrainAttack NSL dataset, that contains all attack class

types instead of categorizing them as either anomaly/normal. Both the binary class

dataset and multiple class datasets using 10-fold Cross Validation generated the same

list of attributes with 100 percent confidence, validating the subsets with the highest

contribution. The Best First algorithm was run in forward mode, with a stale search

after 5 node expansions. 398 subsets were evaluated, with the merit of the best subset

found at 0.568.

Table 3.2: Subset Evaluation Feature Selection.

Gain Index Feature
10(100 %) 4 flag
10(100 %) 5 src bytes
10(100 %) 6 dst bytes
10(100 %) 12 logged in
10(100 %) 26 srv serror rate
1( 10 %) 29 same srv rate
9( 90 %) 30 diff srv rate
4( 40 %) 37 dst host srv diff host rate
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Based on the above results, I generated a new anomaly training set based on the

features shown in Table 3.2, that had a merit rating found in a majority of the cross

validation averaged over 10 folders.

3.4 Evaluation Methodology

The evaluation of machine learning algorithms on the DARPA attack data can

be done a number of ways. Considering the algorithms introduced in Chapter 2,

the following subsections explain how they were configured for use with each of the

datasets I generated, both single and in combination, as well as the framework and

environment in which they were trained and tested.

3.4.1 Test Platform

The experiments described below were performed on a computer with hardware

and software specifications shown in Table 3.3:

Table 3.3: Test Platform

Feature Value
Processor Intel i5-2540M @ 2.6GHz
Memory 4 Gigabytes
Operating System Windows 7 Pro. SP1
Weka v3.7.9 (Developer)

For the purpose of the Weka environment, the Java Virtual Machine was allocated

a 2 Gigabyte heap size to deal with the more sophisticated (and memory hungry)

models.
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3.4.2 Algorithm Configuration

There are a variety of machine learning and data mining-based classification algo-

rithms that have been used in this problem domain. In order to cover a broad range of

learning types, I have sampled algorithms from Logistic Regression [Xu et al., 2005],

Naive Bayes Classifier [Khor et al., 2009], Support Vector Machines [Mukkamala and

Sung, 2003], K-nearest-neighbor Algorithm [Faraoun and Boukelif, 2007; Chairun-

nisa et al., 2009], and Artificial Neural Networks [Ali et al., 2010; Vatisekhovich,

2009; Zilberbrand, 2009]. Additional configuration for the number of iterations and

instances were made to Boosting [Freund and Schapire, 1996; Schapire, 1990] and

Bagging [Breiman, 1996] respectively.

The following sections describe the parameters used in each algorithm:

3.4.2.1 Naive Bayes

The weka.supervised.bayes.NaiveBayes [Witten et al., 2011] algorithm was run

against each dataset using the default settings such that it compares the frequency

across all attributes to the class without assuming any conditional probabilities be-

tween classes, in other words complete independence.

3.4.2.2 J48 Decision Tree

The weka.supervised.trees.J48 [Witten et al., 2011] Decision Tree implemented in

Weka is an open source version of C4.5, and was run with the confidence factor (used

for later pruning the tree) set to 0.25, and the minimum number of instances per leaf

set to 2.
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3.4.2.3 Logistic Regression

Evaluation of logistic regression was done using the weka.classifiers.rule.Logistic

library [Witten et al., 2011], which is a standard implementation of the sigmoid func-

tion training through gradient descent. This library was run with the log-likelihood

ridge value of 1.0E − 8.

3.4.2.4 K-Nearest Neighbour

Evaluation of the instance-based learning algorithm (or K-Nearest Neighbour as it

is commonly called) was performed using the weka.classifiers.lazy.iBk [Witten et al.,

2011] library, which is a standard implementation of the K-NN training through

calculating nearest points in an n-dimensional euclidean plane. For the purpose of

this experiment, the independent variable k, being the number of grouped points

involved in the voting process, was initialized to 5 for initial training and testing,

with no distance weighting for penalization. This means that for every new instance

seen in the training and testing sets, the average class of the neighbouring 5 points

with the smallest euclidean distance was considered as the classification of the newly

seen instance.

3.4.2.5 Support Vector Machine

The LibSVM wrapper WLSVM [EL-Manzalawy and Honavar, 2005] , based on

the popular Sequential Minimal Optimization (SMO) algorithm in Weka, was used

for the support vector machine experiments. The WLSVM wrapper allows many

useful statistical performance information to be generated from the classifier. Testing
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involved training one binary classifier with each set of traffic features in full and

reduced through a filter and wrapper pre-processor. Considering the hyperplane used

to classify each parameter may be non-linear, I employed a radial basis function

kernel machine, as proposed by Aizerman et al. [1964], to improve the classification

boundary.

3.4.2.6 Artificial Neural Network

Evaluation of the multi-layer perceptron algorithm was done using the

weka.classifiers.functions.MultilayerPerceptron library [Witten et al., 2011], which is

a standard implementation of the sigmoid perceptron using Least Mean Squared cost

calculation, and gradient descent back-propagation.

The number of input nodes corresponds to the number of features in each training

set. Only one output node is required for anomaly detection. The number of hidden

layer nodes is generated by the following forumula:

attributes+ classes

2

The learning rate used was 0.3, and the learning momentum was 0.2. Backprop-

agation was cycled for 500 epochs per learning example.

3.4.2.7 Boosting Ensemble

As described in Chapter 2, the Boosting Freund and Schapire [1996]; Schapire

[1990] ensemble learner allows multiple homogeneous models to be combined, such

that successive iterations of the algorithm can learn on instances that were previously
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misclassified. For the purpose of this thesis, the weka.supervised.meta.AdaBoostM1 [Wit-

ten et al., 2011] classifier was run against each algorithm and dataset combination.

The number of maximum iterations was set to 10, using re-weighting on the instances

(as opposed to re-sampling). The weight threshold was set to 100.

3.4.2.8 Bagging Ensemble

As described in Chapter 2, the Bagging [Breiman, 1996] ensemble learner allows

multiple homogeneous models to be combined, such that multiple instances of the al-

gorithm can run in parallel on sub-sampled datasets, while averaging the classification

results amongst them.. For the purpose of this thesis, the weka.supervised.meta.Bagging [Wit-

ten et al., 2011] classifier was run against each algorithm and dataset combination.

The number of model instances was set to 10, using sub-sampling on the dataset.

3.4.2.9 Voting Meta-Classifier

As described in Chapter 2, the Voting meta-learner allows multiple heteroge-

neous models to be combined, such that the strengths (and weaknesses) of each

may conribute towards a final prediction value. For the sake of this thesis, the

weka.supervised.meta.Voting [Witten et al., 2011] classifier was tested against both

the best-in-class and worst-in-class learners from each dataset and algorithm combi-

nation.
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3.4.3 Model Validation

The Gain Ratio and Subset Evaluation pre-processing used 10-Fold Cross Valida-

tion in order find a high degree of confidence for the contribution of each attribute to

classification.

The Hold-out Validation method using the NSL-KDD designed training and test

sets (with novel attacks) was used for all algorithm and dataset pairs for final eval-

uation. Although 10-Fold Cross Validation would have been desirable in order to

explore the variance measurement for each algorithm-dataset learning scheme, this

was deemed unfeasible due to the overall number of schemes tested, and the amount

of time each scheme took to train. As cross validation in practice is typically used for

model tuning, this was also felt to be unnecessary since the algorithms tested were

using industry standard settings (as defined by [Witten et al., 2011]), and hyper-

parameter optimization was not a factor in the test methodology.

In the next section, I will explain the metrics that will be used in order to conduct

error analysis on each of the algorithms, and the method by which they can be

appropriately assessed for performance through visualization.

3.5 Evaluation Metrics

Considering each classifier, the experiments measure these dependent variables

through the use of receiver operative curve (ROC), and precision and recall mea-

surements, in order to determine the overall effectiveness of each algorithm. The

evaluation types will be outlined below
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3.5.1 Error Analysis

The experiment observation is described in terms of classification performance,

or accuracy. Classification performance in this context is measured in terms of true-

positive, false-positive, true-negative, and false-negative. These dependent measure-

ments are typically performed in terms of percentage of data sets identified over all

possible sets to be identified correctly, A measurement applicable to classification is

the concept of precision and recall Makhoul et al. [1999], which is used in the ROC

calculation as well as additional analysis.

3.5.2 Receiver Operating Characteristic

The relative operating curve (ROC) Farid and Rahman [2010] has been used to

compare the relationship between detection and false positive rates. The deciding

metric used to measure overall accuracy was the mean Area under the ROC. As

explained in Chapter 2, the Precision, Recall, and Specificity of each algorithm was

dependent on which of the classes was considered for the positive and negative label.

The Mean AUC, as used in my performance comparison, considers both scenarios,

and takes the average of the two values. The observed AUC deviation between the

classes were minimal or non-existent in most cases, and hence the AUC mean was

chosen as an all-encompassing measurement such that the positive and negative class

designations were not an issue.
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3.5.3 Training and Testing Time

Each of the algorithms was tested for overall training and test time. The absolute

times are highly dependent on the implementation platform, however the relative

times compared in Chapter 4 are a strong indicator of relative algorithm performance.

These metrics were analyzed according to their contribution for each algorithm. In

practice, the training time is not as important as the testing time. Model creation in

this case would be performed offline using already labeled data, whereas testing would

be on-line and produces an events-per-second metric that is a major consideration in

the intrusion detection industry.

3.6 Summary

In this chapter we have discussed the history and relevant research of intrusion

detection, and introduced the NSL-KDD dataset that will be evaluated. The pre-

processing methods for dataset dimensionality reduction using filter and wrapper

algorithms has been described, as well the various hold-out, and cross-validation

techniques. Algorithm evaluation will be performed using mean Area under Receiver

Operating Characteristic curve for general comparison.

In the next chapter I will discuss the algorithm evaluation for all supervised learn-

ing algorithms with the NSL-KDD dataset, in order to establish benchmark measure-

ments for each major type of algorithm found in contemporary Machine Learning.
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Algorithm Evaluation

4.1 Overview

General supervised machine learning algorithms provide a method for building

a prediction model using historical data comprised of attribute-classification sets.

This chapter will focus on the application of systematic model construction using

the machine learning experimental methodology outlined in Chapter 3 to determine

performance for the network intrusion domain, both individually and in combination.

The evaluation of the various algorithms investigates the performance of each individ-

ual learning algorithm, when applied to the original and pre-processed training and

testing data sets. For each dataset created, homogeneous ensemble learning sets are

tested for comparing the performance results to the previously evaluated individual

algorithms.

Each learning scheme (algorithm and database combination) applies a number

of independent, controlled, and dependent variables specific to the operation of that

81
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algorithm as defined in Chapter 2, according to an established testing methodology

as defined in Chapter 3, and describes the measured the outcome of each algorithm

according to the metrics previously defined.

The single classifiers that are evaluated in the first group are ZeroR [Witten et al.,

2011], Logistic Regression [Xu et al., 2005], Naive Bayes Classifier [Khor et al., 2009],

Support Vector Machines [Mukkamala and Sung, 2003], K-nearest-neighbor Algo-

rithm [Faraoun and Boukelif, 2007; Chairunnisa et al., 2009], and Artificial Neural

Networks (multi-level perceptrons) [Ali et al., 2010; Vatisekhovich, 2009; Zilberbrand,

2009].

Each individual classifier type will be described in terms of the mathematical

model used to enable supervised learning, the model parameters used in the experi-

ments, and a final evaluation of each model against the test sets.

My research explores the performance indicators established to demonstrate the

overall fitness of both individual classifier accuracy and weighing additional classi-

fiers, to demonstrate the feasibility of application to the network intrusion detection

domain. The boosting algorithms tested in this phase, to explore the possibility of

improvements over single-algorithm classification, include AdaBoost, Bagging, and

Voting.

Detailed performance metrics can be found in the following Appendices: Ap-

pendix B contains single classification results; Appendix C contains Boosting classi-

fication results; Appendix D contains Bagging classification results; and Appendix E

contains Voting classification results.
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4.2 Baseline Prediction with Zero-R

The ZeroR function in weka.classifiers.rules.ZeroR [Witten et al., 2011] was trained

against the full NSL-KDD training set. Since 50% of the training instances are clas-

sified as normal (that is, the mode of the nominal classes) Zero-R classifies every

test instance as normal. Averaging out over all test folds reveals exactly what one

would expect – the classifier correctly identifies the same ratio of normal-to-anomaly

as the training set, and in this case is correct roughly more than half the time; a truly

sub-optimal performing classifier.

This prediction model was trained in 1 second, and tested against the test set in

1 second, using the platform in Section 3.4.1.

4.2.1 Evaluation Configuration

As described in Chapter 2, ZeroR can be evaluated through a confusion matrix.

Considering the anomaly dataset, there are two classes – normal and anomaly. Con-

sidering all classes in a row by column matrix, this will produce a 2x2 matrix. The

confusion matrix produced is shown in Table 4.1:

Table 4.1: ZeroR Standard Confusion Matrix.

a b classified as
9711 0 a = normal
12833 0 b = anomaly

In this case, the first row represents all of the normal classified test instances, and

each column represents how those instances were classified. In the case of Zero-R,

because the algorithm defaults all instance classifications to the class that is seen the
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most often in training instances, there are only true positive, and no mis-classifications

as the “b” class. The training set, as seen earlier, had a larger number of normal class

instances, and thus is the class Zero-R will always select. Since the test set has more

anomalies than normal, the classifier performs worse than guessing (50%), and is

obviously a poor choice.

4.2.2 Feature Reduction Evaluation

The Zero-R algorithm was run against the Gain Ratio and Subset Evaluation

datasets, and in all three cases the mean AUC is consistently 0.5 across all datasets,

which is to be expected given the simple prediction of the class with highest occur-

rence being the normal class. Although feature reduction would make a difference in

accuracy for any other more complex classifier, feature reduction makes no difference

for ZeroR, as the features are not even considered as part of the training or testing

process.

4.2.3 Ensemble Evaluation

The ZeroR algorithm was run against the Boosting and Bagging meta-classifiers,

and in both cases, the results were identical to the single classifier. This intuitively

makes sense, since the classifier will make the same prediction, regardless of the fea-

tures or number of instances used, and hence serializing or parallelizing a homogeneous

ensemble will not change the accuracy.
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4.2.4 Summary

The ZeroR algorithm, as simple as it is, does provide us with a worst-case baseline;

using the testing set provided demonstrates that blindly selecting the class based on

the majority of seen classes in the training set can be worse than guessing, for example

when the majority of training classes becomes the minority in the test dataset. As

the results are identical regardless of pre-processing or ensemble setup, they are not

discussed further.

4.3 Naive Bayes

The weka.supervised.bayes.NaiveBayes [Witten et al., 2011] algorithm was run

against each dataset using the default settings required such that it compares the

frequency across all attributes to the class, without assuming any conditional prob-

abilities between classes - in other words, complete independence. An overview of

runtime performance is explained below.

4.3.1 Single Performance

4.3.1.1 Standard Dataset

The single Naive Bayes algorithm was run against the Standard dataset, and took

3 seconds to build, and less than a second to run, using the platform described in

Section 3.4.1.

Table 4.2 illustrates the results of the model accuracy using 10-fold Cross Valida-

tion against the training set. The following performance metrics were produced using
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Table 4.2: Naive Bayes Single Standard Training Confusion Matrix.

a b classified as
63106 4237 a = normal
7834 50796 b = anomaly

the standard dataset: the algorithm using the standard dataset produced a 0.904

average TP rate, and 0.101 FP rate. The average Precision and Recall measurements

were 0.905 and 0.904 respectively. The mean AUC is 0.966 (out of a possible 1.000).

Table 4.3: Naive Bayes Single Standard Testing Confusion Matrix.

a b classified as
9041 670 a = normal
4714 8119 b = anomaly

Considering the confusion matrix in Table 4.3, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.761 average

TP rate, and 0.198 FP rate. The average Precision and Recall measurements were

0.809 and 0.71 respectively. The mean AUC is much higher than the previously

seen ZeroR implementation, sitting at 0.908 (out of a possible 1.000), however it

is lower than the training set evaluation, since novel attacks were introduced that

were previously unseen (as expected). This trend is found with the majority of the

following algorithm and dataset combinations.

4.3.1.2 Gain Ratio Dataset

The single Naive Bayes algorithm was run against the Gain Ratio dataset, and

took less than a second to build and test, using the platform described in Section 3.4.1.

Considering the confusion matrix in Table 4.4, the following performance metrics
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Table 4.4: Naive Bayes Single Gain Ratio Confusion Matrix.

a b classified as
9537 174 a = normal
5893 6940 b = anomaly

were produced: the algorithm using the Gain Ratio dataset produced a 0.731 average

TP rate, and 0.208 FP rate. The average Precision and Recall measurements were

0.822 and 0.731 respectively. The mean AUC is slightly lower than the standard

dataset at 0.879.

4.3.1.3 Subset Evaluation Dataset

The single Naive Bayes algorithm was run against the Subset Evaluation dataset,

and took less than a second to build and test, using the platform described in Sec-

tion 3.4.1.

Table 4.5: Naive Bayes Single Subset Confusion Matrix.

a b classified as
9467 244 a = normal
5675 7158 b = anomaly

Considering the confusion matrix in Table 4.5, the following performance metrics

were produced: the algorithm produced a 0.737 average TP rate, and 0.205 FP rate.

The average Precision and Recall measurements were 0.82 and 0.737 respectively.

The mean AUC is in between the other two standard datasets with a value of 0.892.

Using a single classifier, the Standard dataset performed the best overall, with a

similar on-line test speed to the other two data sets.
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4.3.2 Boosting Performance

4.3.2.1 Standard Dataset

The Boosting Naive Bayes algorithm was run against the Standard dataset, per-

formed over 6 iterations. The model took 25 seconds to build, and two seconds to

test, using the platform described in Section 3.4.1. The build time was much higher

than the single classifiers offline training, and effectively halving the online detection

rate.

Table 4.6: Naive Bayes Boosting Standard Confusion Matrix.

a b classified as
9113 598 a = normal
5321 7512 b = anomaly

Considering the confusion matrix in Table 4.6, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.737 average

TP rate, and 0.214 FP rate. The average Precision and Recall measurements were

0.799 and 0.737 respectively. The mean AUC is much lower than the previously seen

Single classifier, sitting at 0.822. This trend is found with the other two data sets.

4.3.2.2 Gain Ratio Dataset

The Boosting Naive Bayes algorithm was run against the Gain Ratio dataset,

performed over 4 iterations. The model took 5 seconds to build, and less than a

second to test, using the platform described in Section 3.4.1. The build time was

roughly the same as the single classifiers offline training.

Considering the confusion matrix in Table 4.7, the following performance metrics
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Table 4.7: Naive Bayes Boosting Gain Ratio Confusion Matrix.

a b classified as
9041 670 a = normal
4714 8119 b = anomaly

were produced: the algorithm using the standard dataset produced a 0.731 average

TP rate, and 0.208 FP rate. The average Precision and Recall measurements were

0.822 and 0.731 respectively. The mean AUC is much lower than the previously seen

Single and Boosting classifiers, sitting at 0.764.

4.3.2.3 Subset Evaluation Dataset

The Boosting Naive Bayes algorithm was run against the Subset Evaluation

dataset, performed over 3 iterations. The model took 3 seconds to build, and less

than a second to test, using the platform described in Section 3.4.1.

Table 4.8: Naive Bayes Boosting Subset Confusion Matrix.

a b classified as
9467 244 a = normal
5675 7158 b = anomaly

Considering the confusion matrix in Table 4.8, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.737 average

TP rate, and 0.205 FP rate. The average Precision and Recall measurements were

0.82 and 0.737 respectively; this is roughly equivalent with the Single Classifier per-

formance. The mean AUC is lower than the previously seen Standard dataset, but

slightly higher than the Gain Ratio, sitting at 0.768.

Using a Boosting ensemble, the Naive Bayes classifier performed much worse than
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the Single version on all three datasets, while the train and test time was roughly the

same or higher depending on the dataset.

4.3.3 Bagging Performance

4.3.3.1 Standard Dataset

The Bagging Naive Bayes algorithm was run against the Standard dataset, with

10 parallel instances. The model took 9 seconds to build, and 3 seconds to test, using

the platform described in Section 3.4.1. The build time was in between the single and

boosting algorithms.

Table 4.9: Naive Bayes Bagging Standard Confusion Matrix.

a b classified as
9041 670 a = normal
4674 8159 b = anomaly

Considering the confusion matrix in Table 4.9, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.763 average

TP rate, and 0.196 FP rate. The average Precision and Recall measurements were

0.81 and 0.763 respectively. The mean AUC is much higher than the previously seen

Boosting classifiers, and only slightly higher than the Single algorithm, sitting at 0.91.

This trend is found with the other two data sets.

4.3.3.2 Gain Ratio Dataset

The Bagging Naive Bayes algorithm was run against the Gain Ratio dataset, with

10 parallel instances. The model took 3 seconds to build, and less than a second to
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test, using the platform described in Section 3.4.1. The build time was slightly higher

than the single classifiers offline training.

Table 4.10: Naive Bayes Bagging Gain Ratio Confusion Matrix.

a b classified as
9536 175 a = normal
5817 7016 b = anomaly

Considering the confusion matrix in Table 4.10, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.734 average

TP rate, and 0.206 FP rate. The average Precision and Recall measurements were

0.823 and 0.734 respectively. The mean AUC is at 0.878.

4.3.3.3 Subset Evaluation Dataset

The Bagging Naive Bayes algorithm was run against the Subset Evaluation dataset,

with 10 parallel instances. The model took 2 seconds to build, and less than a second

to test, using the platform described in Section 3.4.1.

Table 4.11: Naive Bayes Bagging Subset Confusion Matrix.

a b classified as
9465 246 a = normal
5656 7177 b = anomaly

Considering the confusion matrix in Table 4.11, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.738 average

True Positive rate, and 0.204 False Positive rate. The average Precision and Recall

measurements were 0.82 and 0.738 respectively; this is roughly equivalent with the

Single Classifier performance. The mean AUC is slightly lower than the previously
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seen Standard dataset, but slightly higher than the Gain Ratio, sitting at 0.891.

Using a Boosting ensemble, the Naive Bayes classifier performed much worse than

the Single version on all three datasets, while the train and test time was roughly the

same or higher depending on the dataset.

4.3.4 Summary

The mean area under the ROC for all Naive Bayes dataset and configuration is

shown in Figure 4.1.

Figure 4.1: Naive Bayes Area Under ROC

It is obvious that boosting does not fare nearly as well as the standard and bagging

implementations. Given all training and testing times, and the accuracy metrics, the

Bagging ensemble is superior in both time and accuracy to the Boosting algorithm

alternative, and roughly the same as the single algorithm, across all three data sets.

It is interesting to note that similar experiments performed by Caruana and

Niculescu-mizil [2006] have shown this algorithm may not fare as well as its boosting
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equivalent. However, against the NSL-KDD dataset, clearly the Single and Bagging

variants have a higher overall mean AUC.

4.4 J48 Decision Tree

The weka.supervised.trees.J48 [Witten et al., 2011] tree implemented in Weka is

an open source version of C4.5, and was run with the confidence factor (used for later

pruning the tree) set to 0.25, and the minimum number of instances per leaf set to 2.

The J48 decision tree evaluation, using the parameters described above, resulted in

the following performance metrics for each of the Raw, Gain Ratio, and SubsetEval

training and testing sets. The J48 algorithm performed the best with the Subset

Evaluation wrapper dataset, despite taking 30 seconds less than the raw dataset to

create the learning model,, using the platform described in Section 3.4.1.

4.4.1 Single Performance

4.4.1.1 Standard Dataset

The single J48 algorithm was run against the Standard dataset, took 35 seconds

to build, and less than a second to run, using the platform described in Section 3.4.1.

Table 4.12: J48 Single Standard Confusion Matrix.

a b classified as
9448 263 a = normal
3900 8933 b = anomaly

Considering the confusion matrix in Table 4.12, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.815 average
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True Positive rate, and 0.146 average False Positive rate. The average Precision and

Recall measurements were 0.858 and 0.815 respectively. The mean AUC is 0.84. This

value is much lower than the Naive Bayes counterpart, only surpassing the Boosting

variant thereof.

4.4.1.2 Gain Ratio Dataset

The single J48 algorithm was run against the Gain Ratio dataset, took 6 seconds

to build, and less than a second to test, using the platform described in Section 3.4.1.

It is much faster than the standard dataset.

Table 4.13: J48 Single Gain Ratio Confusion Matrix.

a b classified as
9383 328 a = normal
5090 7743 b = anomaly

Considering the confusion matrix in Table 4.13, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.76 average

True Positive rate, and 0.19 average False Positive rate, worse than the standard

dataset. The average Precision and Recall measurements were 0.825 and 0.76 re-

spectively, confirming the above results. The mean AUC is slightly lower than the

standard dataset at 0.813.

4.4.1.3 Subset Evaluation Dataset

The single J48 algorithm was run against the Subset Evaluation dataset, took

5 seconds to build, and less than a second to test, using the platform described in

Section 3.4.1, similar in time performance with the Gain Ratio filter.
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Table 4.14: J48 Single Subset Confusion Matrix.

a b classified as
9383 328 a = normal
5206 7627 b = anomaly

Considering the confusion matrix in Table 4.14, the following performance metrics

were produced: the algorithm produced a 0.755 average True Positive rate, and 0.194

average False Positive rate. The average Precision and Recall measurements were

0.823 and 0.755 respectively. The mean AUC is highest among the other two datasets

with a value of 0.867.

4.4.1.4 Single Algorithm Summary

Using a single classifier, the Subset Evaluation wrapper dataset performed the

best overall, with a similar on-line test speed to the other two data sets.

4.4.2 Booting Performance

4.4.2.1 Standard Dataset

The Boosting J48 algorithm was run against the Standard dataset, took 4 minutes

59 seconds to build, and less than a second to run, using the platform described in

Section 3.4.1.

Table 4.15: J48 Boosting Standard Confusion Matrix.

a b classified as
9433 278 a = normal
4715 8118 b = anomaly

Considering the confusion matrix in Table 4.15, the following performance metrics
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were produced: the algorithm using the standard dataset produced a 0.779 average

True Positive rate, and 0.175 average False Positive rate. The average Precision and

Recall measurements were 0.838 and 0.779 respectively. The mean AUC is 0.936, a

vast improvement over all of the single J48 classifiers.

4.4.2.2 Gain Ratio Dataset

The Boosting J48 algorithm was run against the Gain Ratio dataset, took 1 minute

9 seconds to build, and less than a second to test, using the platform described in

Section 3.4.1. It is much faster than the standard dataset.

Table 4.16: J48 Boosting Gain Ratio Confusion Matrix.

a b classified as
9335 376 a = normal
4626 8207 b = anomaly

Considering the confusion matrix in Table 4.16, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.778 average

True Positive rate, and 0.177 average False Positive rate, approximately the same as

the standard dataset. The average Precision and Recall measurements were 0.832

and 0.778 respectively, confirming the above results. The mean AUC is slightly lower

than the standard dataset at 0.904, not performing as well as the standard dataset

classifier.

4.4.2.3 Subset Evaluation Dataset

The single J48 algorithm was run against the Subset Evaluation dataset, took

45 seconds to build, and less than a second to test, using the platform described in
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Section 3.4.1. The build time was less than the Gain Ratio filter, with similar testing

time performance.

Table 4.17: J48 Boosting Subset Confusion Matrix.

a b classified as
9375 336 a = normal
4815 8018 b = anomaly

Considering the confusion matrix in Table 4.17, the following performance metrics

were produced: the algorithm produced a 0.772 average True Positive rate, and 0.181

average False Positive rate. The average Precision and Recall measurements were

0.831 and 0.772 respectively. The mean AUC is only slightly higher than the Gain

Ratio dataset, with a value of 0.907.

4.4.2.4 Boosting Summary

Using a Boosting classifier, the standard dataset produced the best mean AUC

overall against the test set. The training build time was far greater than the other

two datasets, with a slight increase for on-line test speed.

4.4.3 Bagging Performance

4.4.3.1 Standard Dataset

The Bagging J48 algorithm was run against the Standard dataset, took 4 minutes

11 seconds to build, and less than a second to run, using the platform described in

Section 3.4.1.

Considering the confusion matrix in Table 4.18, the following performance metrics
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Table 4.18: J48 Bagging Standard Confusion Matrix.

a b classified as
9437 274 a = normal
3395 9438 b = anomaly

were produced: the algorithm using the standard dataset produced a 0.837 average

True Positive rate, and 0.13 average False Positive rate. The average Precision and

Recall measurements were 0.87 and 0.837 respectively. The mean AUC is 0.907, also

a vast improvement over all of the single J48 classifiers.

4.4.3.2 Gain Ratio Dataset

The Bagging J48 algorithm was run against the Gain Ratio dataset, took 51

seconds to build, and less than a second to test, using the platform described in

Section 3.4.1. It is much faster than the standard dataset in both training and testing

time.

Table 4.19: J48 Bagging Gain Ratio Confusion Matrix.

a b classified as
9391 320 a = normal
5111 7722 b = anomaly

Considering the confusion matrix in Table 4.19, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset performed with a 0.759

average True Positive rate, and 0.19 average False Positive rate, slightly worse than

the standard dataset. The average Precision and Recall measurements were 0.826

and 0.759 respectively, confirming the above results. The mean AUC is slightly lower

than the standard dataset at 0.847, not performing as well.
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4.4.3.3 Subset Evaluation Dataset

The Bagging J48 algorithm was run against the Subset Evaluation dataset, took

41 seconds to build, and less than a second to test, using the platform described in

Section 3.4.1. The build time was less than the Gain Ratio filter, with faster testing

time performance.

Table 4.20: J48 Bagging Subset Confusion Matrix.

a b classified as
9386 325 a = normal
5105 7728 b = anomaly

Considering the confusion matrix in Table 4.20, the following performance met-

rics were produced: the algorithm produced a 0.759 average True Positive rate, and

0.19 average False Positive rate, exactly the same as the Gain Ratio filter dataset.

The average Precision and Recall measurements were 0.825 and 0.759 respectively,

confirming these results. The mean AUC is only significantly higher than the Gain

Ratio dataset, with a value of 0.912.

4.4.3.4 Bagging Summary

Using a Bagging classifier, the Subset Evaluation dataset produced the best mean

AUC overall against the test set. The training build time was the fastest compared

to the other two datasets, with the fastest on-line test speed at 0.11 seconds.
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Figure 4.2: J48 Decision Tree Area Under ROC

4.4.4 Summary

The mean AUC for all J48 classifiers is shown in Figure 4.2. The boosted J48

classifiers have the highest overall accuracy, with the lowest accuracy almost matching

the best accuracy found in the Bagging ensembles. Given all training and testing

times, and the accuracy metrics, the Boosting ensemble is superior in both time and

accuracy to the Single and Bagging algorithm alternatives using most of the datasets.

4.5 Linear and Logistic Regression

Evaluation of the logistic regression algorithm was done using the

weka.classifiers.rule.Logistic [Witten et al., 2011] library, that is a standard imple-

mentation of the sigmoid function training through gradient descent. This library

was run with the log-likelihood ridge value of 1.0E − 8.
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4.5.1 Single Performance

4.5.1.1 Standard Dataset

The single Logistic Regression algorithm was run against the Standard dataset,

and took 23 seconds to build, and 0.67 seconds to test, using the platform described

in Section 3.4.1.

Table 4.21: Logistic Regression Single Standard Confusion Matrix.

a b classified as
8882 829 a = normal
4542 8291 b = anomaly

Considering the confusion matrix in Table 4.21, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.762 average

True Positive rate, and 0.201 average False Positive rate. The average Precision and

Recall measurements were 0.803 and 0.762 respectively. The mean AUC is 0.749, and

is the lowest performing classifier of the Logistic Regression series.

4.5.1.2 Gain Ratio Dataset

The single Logistic Regression algorithm was run against the Gain Ratio dataset,

that took 5.78 seconds to build, and 0.78 seconds to test, using the platform described

in Section 3.4.1. It is much faster than the standard dataset.

Table 4.22: Logistic Regression Single Gain Ratio Confusion Matrix.

a b classified as
9493 218 a = normal
5111 7722 b = anomaly
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Considering the confusion matrix in Table 4.22, the following performance metrics

were produced: The single algorithm using the Gain Ratio dataset produced a 0.764

average True Positive rate, and 0.184 average False Positive rate, slightly better than

the standard dataset. The average Precision and Recall measurements were 0.834

and 0.764 respectively. The increased precision confirming the above results as the

average False Positive rate is where the performance gain took place, with the True

Positive rate staying approximately the same. The mean AUC is higher than the

standard dataset at 0.853, and clearly outperforms it in terms of overall accuracy,

build time, and test time.

4.5.1.3 Subset Evaluation Dataset

The single Logistic Regression algorithm was run against the Subset Evaluation

dataset, that took 4.79 seconds to build, and 0.19 seconds to test, using the platform

described in Section 3.4.1, similar in build time performance with the Gain Ratio

filter, but far faster than both of the others.

Table 4.23: Logistic Regression Single Subset Confusion Matrix.

a b classified as
9439 272 a = normal
5417 7416 b = anomaly

Considering the confusion matrix in Table 4.23, the following performance metrics

were produced: the algorithm produced a 0.748 average True Positive rate, and 0.198

average False Positive rate, slightly worse than the Gain Ratio dataset. The average

Precision and Recall measurements were 0.823 and 0.748 respectively, confirming

these results. The mean AUC is between the other two datasets with a value of
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0.803.

4.5.1.4 Single Algorithm Summary

Using a single classifier, the Gain Ratio wrapper dataset performed the best over-

all, with a similar on-line test speed to the other two data sets. Considering the 5%

drop in accuracy when using Subset Evaluation, it may not be worth the test time

performance increase.

4.5.2 Booting Performance

4.5.2.1 Standard Dataset

The Boosting Logistic Regression algorithm was run against the Standard dataset,

took 4 minutes 49 seconds to build, and 0.6 seconds to test, using the platform

described in Section 3.4.1.

Table 4.24: Logistic Regression Boosting Standard Confusion Matrix.

a b classified as
8918 793 a = normal
4982 7851 b = anomaly

Considering the confusion matrix in Table 4.24, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.744 average

True Positive rate, and 0.214 average False Positive rate. The average Precision and

Recall measurements were 0.793 and 0.744 respectively. The mean AUC is 0.931, a

vast improvement over all of the single Logistic Regression classifiers.
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4.5.2.2 Gain Ratio Dataset

The Boosting Logistic Regression algorithm was run against the Gain Ratio dataset,

took 37.63 seconds to build, and 0.35 seconds to test, using the platform described in

Section 3.4.1. It is much faster than the standard dataset.

Table 4.25: Logistic Regression Boosting Gain Ratio Confusion Matrix.

a b classified as
9496 215 a = normal
5357 7476 b = anomaly

Considering the confusion matrix in Table 4.25, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.753 average

True Positive rate, and 0.192 average False Positive rate, approximately the same as

the standard dataset. The average Precision and Recall measurements were 0.829

and 0.753 respectively, confirming the above results. The mean AUC is lower than

the standard dataset at 0.864, and not performing as well as the standard dataset

classifier despite being faster.

4.5.2.3 Subset Evaluation Dataset

The Boosting Logistic Regression algorithm was run against the Subset Evaluation

dataset, took 25.43 seconds to build, and 0.2 seconds to test, using the platform

described in Section 3.4.1. The build time was slightly less than the Gain Ratio filter,

with less testing time performance.

Considering the confusion matrix in Table 4.26, the following performance metrics

were produced: the algorithm produced a 0.748 average True Positive rate, and 0.198

average False Positive rate. The average Precision and Recall measurements were
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Table 4.26: Logistic Regression Boosting Subset Confusion Matrix.

a b classified as
9439 272 a = normal
5417 7416 b = anomaly

0.823 and 0.748 respectively. The mean AUC is only slightly lower than the Gain

Ratio dataset, with a value of 0.855.

4.5.2.4 Boosting Summary

Using a Boosting classifier, the standard dataset produced the best mean AUC

overall against the test set. The training build time was far greater than the other

two datasets, with a slight increase for on-line test speed. The Subset wrapper proved

to be the worst boosting classifier.

4.5.3 Bagging Performance

4.5.3.1 Standard Dataset

The Bagging Logistic Regression algorithm was run against the Standard dataset,

took 2 minutes 53 seconds to build, and 0.74 seconds to test, using the platform

described in Section 3.4.1.

Table 4.27: Logistic Regression Bagging Standard Confusion Matrix.

a b classified as
8889 822 a = normal
4670 8163 b = anomaly

Considering the confusion matrix in Table 4.27, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.756 average
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True Positive rate, and 0.205 average False Positive rate. The average Precision and

Recall measurements were 0.8 and 0.756 respectively. The mean AUC is 0.816, also

slightly less performance over all of the Boosting classifiers.

4.5.3.2 Gain Ratio Dataset

The Bagging Logistic algorithm was run against the Gain Ratio dataset, took

49.16 seconds to build, and 0.28 seconds to test, using the platform described in

Section 3.4.1. It is much faster than the standard dataset in both training and testing

time.

Table 4.28: Logistic Regression Bagging Gain Ratio Confusion Matrix.

a b classified as
9491 220 a = normal
5289 7544 b = anomaly

Considering the confusion matrix in Table 4.28, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.756 average

True Positive rate, and 0.19 average False Positive rate, approximately the same as

the standard dataset. The average Precision and Recall measurements were 0.83 and

0.756 respectively, confirming the above results. The mean AUC is slightly higher

than the standard dataset at 0.844.

4.5.3.3 Subset Evaluation Dataset

The Bagging Logistic algorithm was run against the Subset Evaluation dataset,

took 39.14 seconds to build, and 0.26 seconds to test, using the platform described in
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Section 3.4.1. The build time was less than the Gain Ratio filter, with only marginally

faster testing time performance.

Table 4.29: Logistic Regression Bagging Subset Confusion Matrix.

a b classified as
9397 314 a = normal
5323 7510 b = anomaly

Considering the confusion matrix in Table 4.29, the following performance metrics

were produced: the algorithm produced a 0.75 average True Positive rate, and 0.197

average False Positive rate, approximately the same as the Gain Ratio filter dataset.

The average Precision and Recall measurements were 0.821 and 0.745 respectively,

confirming these results. The mean AUC is only slightly lower than the Gain Ratio

dataset, with a value of 0.833.

4.5.3.4 Bagging Summary

Using a Bagging classifier, the Gain Ratio dataset produced the best mean AUC

overall against the test set. The training build time and testing time was only a little

bit slower compared to the other two datasets, and with a marginally higher AUC

score.

4.5.4 Logistic Summary

The mean AUC for all Logistic Regression classifiers can be seen in Figure 4.3.

As with the J48 classifiers, the boosted Logistic classifiers have the highest overall

accuracy, with the lowest accuracy almost matching the best accuracy found in the

Single classifier and Bagging ensembles. Boosting ensemble is superior in accuracy to
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Figure 4.3: Logistic Regression Area Under ROC

the Single and Bagging algorithm alternatives. However, this only applies using the

standard unmodified dataset. The testing time is faster than the single and bagging

ensembles on the same dataset, and is therefor the clear winner if only by virtue of

the average AUC ROC.

4.6 K-Nearest Neighbour

Evaluation of the instance-based learning algorithm (or K-Nearest Neighbour as it

is commonly called) was performed using the weka.classifiers.lazy.iBk [Witten et al.,

2011] library, which is a standard implementation of the K-NN training through

calculating nearest points in an n-dimensional Euclidean plane. For the purpose of

this experiment, the independent variable k, being the number of grouped points

involved in the voting process, was initialized to 5 for initial training and testing,

with no distance weighting for penalization. This means that for every new instance
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seen in the training and testing sets, the average class of the neighbouring 5 points

with the smallest Euclidean distance was considered as the classification of the newly

seen instance.

The algorithm was run on the Raw, GainRatio, and SubsetEval sets as explained

in the following subsections.

4.6.1 Single Performance

4.6.1.1 Standard Dataset

The single iBk algorithm was run against the Standard dataset, and took 0.03

seconds to build, and 6 minutes, 1 second to run, using the platform described in

Section 3.4.1.

Table 4.30: K-Nearest Neighbour Single Standard Confusion Matrix.

a b classified as
9351 360 a = normal
4534 8299 b = anomaly

Considering the confusion matrix in Table 4.30, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.783 average

True Positive rate, and 0.173 average False Positive rate. The average Precision and

Recall measurements were 0.836 and 0.783 respectively. The mean AUC was 0.846.

4.6.1.2 Gain Ratio Dataset

The single iBk algorithm was run against the Gain Ratio dataset, that took 0.02

seconds to build, and 2 minutes, 29 seconds to test, using the platform described in
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Section 3.4.1t. The build time was comparable to the standard dataset, however the

test time comparatively faster, considering the dimensionality reduction.

Table 4.31: K-Nearest Neighbour Single Gain Ratio Confusion Matrix.

a b classified as
9403 308 a = normal
4136 8697 b = anomaly

Considering the confusion matrix in Table 4.31, the following performance metrics

were produced: The single algorithm using the Gain Ratio dataset produced a 0.803

average True Positive rate, and 0.157 average False Positive rate, only slightly better

than the standard dataset based on weighted averages alone. The average Precision

and Recall measurements were 0.849 and 0.803 respectively. The mean AUC is slightly

lower than the standard dataset at 0.838, and only outperforms it in terms of testing

time.

4.6.1.3 Subset Evaluation Dataset

The single iBk algorithm was run against the Subset Evaluation dataset, that took

0.03 seconds to build, and 2 minutes, 17 seconds to test, using the platform described

in Section 3.4.1, similar in build time performance with the Gain Ratio filter, but far

faster than both of the others.

Table 4.32: K-Nearest Neighbour Single Subset Confusion Matrix.

a b classified as
9463 248 a = normal
4731 8102 b = anomaly

Considering the confusion matrix in Table 4.32, the following performance metrics
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were produced: the algorithm produced a 0.779 average True Positive rate, and 0.173

average False Positive rate. The average Precision and Recall measurements were 0.84

and 0.779 respectively, confirming these results. The mean AUC is nearly identical

with the Gain Ratio filter, having a value of 0.838.

4.6.1.4 Single Algorithm Summary

Using a single classifier, the Standard dataset performed the best overall, with a

similar training speeds, but took twice as long for on-line test speeds compared to

the other two data sets.

4.6.2 Booting Performance

4.6.2.1 Standard Dataset

The Boosting iBk algorithm was run against the Standard dataset, took 4 hours,

38 minutes, and 52 seconds to build over 4 iterations of the dataset, using the platform

described in Section 3.4.1. It took 30 minutes to test the model. This is obviously a

significantly increased amount of time.

Table 4.33: K-Nearest Neighbour Boosting Standard Confusion Matrix.

a b classified as
9351 360 a = normal
4534 8299 b = anomaly

Considering the confusion matrix in Table 4.33, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.783 average

True Positive rate, and 0.173 average False Positive rate. The average Precision and
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Recall measurements were 0.836 and 0.783 respectively. The mean AUC is 0.837,

performing worse than all of the single iBk classifiers.

4.6.2.2 Gain Ratio Dataset

The Boosting iBk algorithm was run against the Gain Ratio dataset, took 3 hours,

39 minutes, and 45 seconds to build over 6 iterations of the dataset, using the platform

described in Section 3.4.1. It took 15 minutes to test the model. Building was roughly

the same amount of time as the standard dataset, with the testing performing twice

as fast.

Table 4.34: K-Nearest Neighbour Boosting Gain Ratio Confusion Matrix.

a b classified as
9333 378 a = normal
3927 8906 b = anomaly

Considering the confusion matrix in Table 4.34, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.809 average

True Positive rate, and 0.154 average False Positive rate, approximately the same as

the standard dataset. The average Precision and Recall measurements were 0.849 and

0.809 respectively, confirming the above results. The mean AUC is slightly higher

than the standard dataset at 0.859, while still predicting twice as fast.

4.6.2.3 Subset Evaluation Dataset

The Boosting iBk algorithm was run against the Subset Evaluation dataset, took

4 hours, 11 minutes, and 31 seconds to build over 7 iterations of the dataset, using the

platform described in Section 3.4.1. It took 17 minutes to test the model. Training
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time was roughly between the other two data sets, with the testing performing two

minutes slower than Gain Ratio.

Table 4.35: K-Nearest Neighbour Boosting Subset Confusion Matrix.

a b classified as
9411 300 a = normal
3917 8916 b = anomaly

Considering the confusion matrix in Table 4.35, the following performance metrics

were produced: the algorithm produced a 0.813 average True Positive rate, and 0.149

average False Positive rate. The average Precision and Recall measurements were

0.855 and 0.813 respectively. The mean AUC is slightly higher than the Gain Ratio

and Standard datasets, with a value of 0.867.

4.6.2.4 Boosting Summary

Using a Boosting classifier, the Subset Evaluation dataset produced the best mean

AUC overall against the test set. The training build time was between the other two

datasets, with a slight increase for on-line test speed. The standard dataset proved

to be the worst for boosting the iBk classifier in all evaluation categories.

4.6.3 Bagging Performance

4.6.3.1 Standard Dataset

The Bagging iBk algorithm was run against the Standard dataset, took 0.77 sec-

onds to build, and 1 hour, 49 minutes, and 53 seconds to test, using the platform

described in Section 3.4.1.
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Table 4.36: K-Nearest Neighbour Bagging Standard Confusion Matrix.

a b classified as
9351 360 a = normal
4535 8298 b = anomaly

Considering the confusion matrix in Table 4.36, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.783 average

True Positive rate, and 0.173 average False Positive rate. The average Precision and

Recall measurements were 0.836 and 0.783 respectively. The mean AUC is 0.858,

with slightly more accurate performance over the Single classifiers, and similar to the

Boosting classifiers.

4.6.3.2 Gain Ratio Dataset

The Bagging iBk algorithm was run against the Gain Ratio dataset, took 0.69

seconds to build, and 1 hour, 1 minutes, and 54 seconds to test, using the platform

described in Section 3.4.1.

Table 4.37: K-Nearest Neighbour Bagging Gain Ratio Confusion Matrix.

a b classified as
9416 295 a = normal
4080 8753 b = anomaly

Considering the confusion matrix in Table 4.37, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.806 average

True Positive rate, and 0.154 average False Positive rate. The average Precision and

Recall measurements were 0.851 and 0.806 respectively, a slight increase compared to

the standard dataset. The mean AUC is slightly higher than the standard dataset at
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0.863.

4.6.3.3 Subset Evaluation Dataset

The Bagging iBk algorithm was run against the Subset Evaluation dataset, and

took 0.90 seconds to build and 1 hour, 26 seconds to test, using the platform described

in Section 3.4.1. The build time was greater than both the standard and the Gain

Ratio filter, with only marginally faster testing time performance.

Table 4.38: K-Nearest Neighbour Bagging Subset Confusion Matrix.

a b classified as
9455 256 a = normal
4671 8162 b = anomaly

Considering the confusion matrix in Table 4.38, the following performance metrics

were produced: the algorithm produced a 0.781 average True Positive rate, and 0.172

average False Positive rate. The average Precision and Recall measurements were 0.84

and 0.781 respectively, confirming these results. The mean AUC is slightly greater

than the other two datasets, with a value of 0.871.

4.6.3.4 Bagging Summary

Using a Bagging classifier, the Subset Evaluation dataset produced the best mean

AUC overall against the test set. The training build time was slightly higher than the

other datasets. Both filter and wrapper testing times were significantly faster than

the standard dataset, both having a marginally higher AUC score, demonstrating an

overall gain when performing dimensionality reduction.
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4.6.4 iBk Summary

The iBk training and testing times were slightly different than the previously

seen classifiers, in that single and Bagging training times were fairly quick. Boosting

training time was quite a bit longer (hours vs. minutes), and all of the ensemble

testing times were an order of magnitude longer. The AUC accuracy for all iBk

combinations are shown in Figure 4.4.

Figure 4.4: K-Nearest Neighbour Area Under ROC

Both the Gain Ratio filter and Subset Evaluation wrapper improved overall clas-

sification performance for ensembles. The opposite appears to hold true for the single

iBk instance, where the Standard dataset provides the highest overall accuracy. That

being said, the Subset Evaluation wrapper provided the best overall accuracy. The

boosting algorithm, given the serialized training of 4-to-7 weighted models, took the

longest for off-line model creation, and yet was significantly faster at on-line pre-

diction given the reduced number of models polled compared with the standard 10

parallel models used in Bagging.
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4.7 Support Vector Machines

The LibSVM wrapper WLSVM [EL-Manzalawy and Honavar, 2005], based on

the popular Sequential Minimal Optimization (SMO) algorithm in Weka, was used

for the support vector machine experiments. The WLSVM wrapper allows many

useful statistical performance information to be generated from the classifier. Testing

involved training one binary classifier with each set of traffic features in full and

reduced through a filter and wrapper pre-processor. Considering the hyperplane used

to classify each parameter may be non-linear, I employed a radial basis function

kernel machine, as proposed by Aizerman et al. [1964], to improve the classification

boundary. The results of running LibSVM against the raw, Gain Ratio, and Subset

Evaluation data sets for each single and ensemble combination are described in the

following subsections.

4.7.1 Single Performance

4.7.1.1 Standard Dataset

The single LibSVM algorithm was run against the Standard dataset, and took 2

hours, 8 minutes, and 14 seconds to build the model, and 4 minutes, 38 seconds to

test the model, using the platform described in Section 3.4.1.

Table 4.39: Support Vector Machine Single Standard Confusion Matrix.

a b classified as
9515 196 a = normal
6507 6326 b = anomaly

Considering the confusion matrix in Table 4.39, the following performance metrics
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were produced: the algorithm, using the standard dataset, produced a 0.703 average

True Positive rate, and 0.23 average False Positive rate. The average Precision and

Recall measurements were 0.808 and 0.703 respectively. The mean AUC was 0.736.

4.7.1.2 Gain Ratio Dataset

The single LibSVM algorithm was run against the Gain Ratio dataset, that took

29 minutes 32 seconds to build, and 39 seconds to test, using the platform described in

Section 3.4.1. Both the training and testing time was much faster than the standard

dataset.

Table 4.40: Support Vector Machine Single Gain Ratio Confusion Matrix.

a b classified as
9390 321 a = normal
5307 7526 b = anomaly

Considering the confusion matrix in Table 4.40, the following performance metrics

were produced: The single algorithm using the Gain Ratio dataset produced a 0.75

average True Positive rate, and 0.197 average False Positive rate; this is only slightly

better than the standard dataset based on weighted averages alone. The average Pre-

cision and Recall measurements were 0.821 and 0.75 respectively. The mean AUC is

higher than the standard dataset at 0.777, and only outperforms it in both prediction

accuracy and time metrics.

4.7.1.3 Subset Evaluation Dataset

The single LibSVM algorithm was run against the Subset Evaluation dataset,

that took 30 minutes 56 seconds to train, and 39 seconds to test, using the platform
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described in Section 3.4.1. This scheme was only slightly longer for build time, and

near identify test time compared with the Gain Ratio filter.

Table 4.41: Support Vector Machine Single Subset Confusion Matrix.

a b classified as
9390 321 a = normal
5271 7562 b = anomaly

Considering the confusion matrix in Table 4.41, the following performance metrics

were produced: the algorithm produced a 0.752 average True Positive rate, and 0.196

average False Positive rate, almost identical with the Gain Ratio filter The average

Precision and Recall measurements were 0.822 and 0.752 respectively, confirming

these results. The mean AUC is thus nearly identical with the Gain Ratio filter,

having a value of 0.778 and only detectable at 3 significant digits of measurement.

4.7.1.4 Single Algorithm Summary

Using a single classifier, the Standard dataset performed the worst overall. The

filter and wrapper datasets performed the best overall with nearly identical testing

times and overall prediction accuracy. The performance is so close, selecting a best

dataset would be difficult without further analysis into the effects of feature set se-

lection, optimization, or variance measurements over multiple folds.
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4.7.2 Booting Performance

4.7.2.1 Standard Dataset

The Boosting LibSVM algorithm was run against the Standard dataset, and took

16 hours, 28 minutes, and 51 seconds to build over 10 iterations of the dataset,

using the platform described in Section 3.4.1. It took 29 minutes 40 seconds to

test the model. Just as described earlier, for K-Nearest Neighbour, Boosting adds a

significantly increased amount of time.

Table 4.42: Support Vector Machine Boosting Standard Confusion Matrix.

a b classified as
9519 192 a = normal
6469 6364 b = anomaly

Considering the confusion matrix in Table 4.42, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.705 average

True Positive rate, and 0.228 average False Positive rate. The average Precision and

Recall measurements were 0.809 and 0.705 respectively. The mean AUC is 0.763,

having similar accuracy to the single SVM classifiers.

4.7.2.2 Gain Ratio Dataset

The Boosting LibSVM algorithm was run against the Gain Ratio dataset, and

took 9 hours, 13 minutes, and 7 seconds to build over 10 iterations of the dataset,

using the platform described in Section 3.4.1. It took 17 minutes 54 seconds to test

the model. Both training and testing were faster than the standard dataset.

Considering the confusion matrix in Table 4.43, the following performance metrics
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Table 4.43: Support Vector Machine Boosting Gain Ratio Confusion Matrix.

a b classified as
9370 341 a = normal
5344 7489 b = anomaly

were produced: the algorithm using the Gain Ratio dataset produced a 0.748 average

True Positive rate, and 0.199 average False Positive rate, a little better than the

standard dataset. The average Precision and Recall measurements were 0.819 and

0.748 respectively, confirming the above results. The mean AUC is slightly higher

than the standard dataset at 0.79, while still predicting nearly twice as fast.

4.7.2.3 Subset Evaluation Dataset

The Boosting LibSVM algorithm was run against the Subset Evaluation dataset,

and took 11 hours, 38 minutes, and 5 seconds to build over 10 iterations of the dataset,

using the platform described in Section 3.4.1. It took 21 minutes 13 seconds to test

the model. Training and test time was a few minutes longer than the Gain Ratio

dataset.

Table 4.44: Support Vector Machine Boosting Subset Confusion Matrix.

a b classified as
9369 342 a = normal
5322 7511 b = anomaly

Considering the confusion matrix in Table 4.44, the following performance metrics

were produced: the algorithm produced a 0.749 average True Positive rate, and 0.199

average False Positive rate. The average Precision and Recall measurements were

0.819 and 0.749 respectively. The mean AUC is identical with the Gain Ratio datasets,
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tied at value of 0.79. Just as was found with the single algorithm, additional testing

against the filter and wrapper methods would be required to distinguish any sort of

advantage of one over the other.

4.7.2.4 Boosting Summary

Just as was observed using a single classifier, the Standard dataset performed the

worst overall. The filter and wrapper datasets performed the best overall with nearly

identical testing times and overall prediction accuracy. All of the Boosting datasets

outperformed their single algorithm counterparts, while using the filter and wrapper

pre-processors performed best overall.

4.7.3 Bagging Performance

4.7.3.1 Standard Dataset

The Bagging LibSVM algorithm was run against the Standard dataset, and took

19 hours, 1 minutes, and 33 seconds to simultaneously build 10 instances of the model

on the dataset. It took 26 minutes 45 seconds to test the ensemble.

Table 4.45: Support Vector Machine Bagging Standard Confusion Matrix.

a b classified as
9517 194 a = normal
6517 6316 b = anomaly

Considering the confusion matrix in Table 4.45, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.702 average

True Positive rate, and 0.23 average False Positive rate. The average Precision and
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Recall measurements were 0.808 and 0.702 respectively. The mean AUC is 0.738,

with far less overall accuracy than the rest of the classifiers seen thus far, save a very

slight difference with the single algorithm run against the standard dataset.

4.7.3.2 Gain Ratio Dataset

The Bagging LibSVM algorithm was run against the Gain Ratio dataset,and took

2 hours, 56 minutes, and 10 seconds to simultaneously build 10 instances of the model

on the dataset, using the platform described in Section 3.4.1. It took 5 minutes 24

seconds to test the ensemble.

Table 4.46: Support Vector Machine Bagging Gain Ratio Confusion Matrix.

a b classified as
9383 328 a = normal
5323 7510 b = anomaly

Considering the confusion matrix in Table 4.46, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.749 average

True Positive rate, and 0.198 average False Positive rate. The average Precision and

Recall measurements were 0.82 and 0.749 respectively, with similar results to the

single algorithm. The mean AUC is higher than the standard dataset at 0.777, also

very similar to the single algorithm results.

4.7.3.3 Subset Evaluation Dataset

The Bagging LibSVM algorithm was run against the Subset Evaluation dataset

and took 3 hours, 15 minutes, and 29 seconds to simultaneously build 10 instances
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of the model on the dataset, using the platform described in Section 3.4.1. It took 5

minutes 55 seconds to test the ensemble.

Table 4.47: Support Vector Machine Bagging Subset Confusion Matrix.

a b classified as
9384 327 a = normal
5289 7544 b = anomaly

Considering the confusion matrix in Table 4.47, the following performance metrics

were produced: the algorithm produced a 0.751 average True Positive rate, and 0.197

average False Positive rate. The average Precision and Recall measurements were

0.821 and 0.751 respectively, confirming these results. The mean AUC is slightly

greater than the other two datasets, with a value of 0.778.

4.7.3.4 Bagging Summary

The bagging classifier produced almost identical average AUC compared to the

single algorithms, against all test datasets. Bagging works best using the filter and

wrapper datasets, and is outperformed in this regard by the Boosting equivalents.

Training against the standard set was the highest of all categories, however the pre-

processed datasets were less than their Boosting equivalents. Both filter and wrapper

testing times were significantly faster than the boosting equivalents, but much slower

than the single classifiers.

4.7.4 SVM Summary

The mean AUC values can be seen in Figure 4.5. It is fairly obvious that the Lib-

SVM classifier performs well with pre-processed data. Single, Boosting, and Bagging
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Figure 4.5: Support Vector Machines Area Under ROC

ensembles all performed better with the Gain Ratio and Subset Evaluation datasets

than the Standard unprocessed dataset. All Boosting algorithms performed better

than Single and Bagging training models under all datasets. The clear winner here

is the use of Boosting with pre-processed data. However, additional testing would

be required in order to establish any major tradeoffs between filter and wrapper

methodologies.

4.8 Artificial Neural Networks

Evaluation of the multi-layer perceptron algorithm was done using the

weka.classifiers.functions.MultilayerPerceptron [Witten et al., 2011] library, which is

a standard implementation of the sigmoid perceptron using Least Mean Squared cost

calculation, and gradient descent back-propagation.

The number of input nodes corresponds to the number of features in each training
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set. Only one output node is required for anomaly detection. The number of hidden

layer nodes is generated by the following formula:

attributes+ classes

2

The learning rate used was 0.3, and the learning momentum was 0.2. Back-

propagation was cycled for 500 epochs per learning example. The performance of

the neural network using the raw, Gain Ratio, and Subset Evaluation datasets is

described in the following subsections.

4.8.1 Single Performance

4.8.1.1 Standard Dataset

The single Multilayer Perceptron algorithm was run against the Standard dataset,

and took 2 hours, 11 minutes, and 49 seconds to build the model, and 9 seconds to

test the model, using the platform described in Section 3.4.1.

Table 4.48: Artificial Neural Network Single Standard Confusion Matrix.

a b classified as
9015 696 a = normal
4429 8404 b = anomaly

Considering the confusion matrix in Table 4.48, the following performance met-

rics were produced: The single multilayer perceptron algorithm, using the standard

dataset, produced a 0.733 average True Positive rate, and 0.189 average False Pos-

itive rate. The average Precision and Recall measurements were 0.815 and 0.773

respectively. The mean AUC was 0.788.
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4.8.1.2 Gain Ratio Dataset

The single multilayer perceptron algorithm was run against the Gain Ratio dataset,

and took 5 minutes 37 seconds to build, and 0.97 seconds to test, using the platform

described in Section 3.4.1. Both the training and testing time was much faster than

the standard dataset.

Table 4.49: Artificial Neural Network Single Gain Ratio Confusion Matrix.

a b classified as
9470 241 a = normal
5332 7501 b = anomaly

Considering the confusion matrix in Table 4.52, the following performance metrics

were produced: The single multilayer perceptron algorithm using the Gain Ratio

dataset produced a 0.753 average True Positive rate, and 0.193 average False Positive

rate; only slightly better than the standard dataset based on weighted averages alone.

The average Precision and Recall measurements were 0.827 and 0.753 respectively.

The mean AUC is higher than the standard dataset at 0.838, and outperforms the

single dataset in both prediction accuracy and time metrics.

4.8.1.3 Subset Evaluation Dataset

The single multilayer perceptron algorithm was run against the Subset Evaluation

dataset, that took 4 minutes 41 seconds to train, and 0.56 seconds to test, using the

platform described in Section 3.4.1. It performed the fastest in build time and test

time compared with the Standard data and and Gain Ratio filter.

Considering the confusion matrix in Table 4.56, the following performance metrics

were produced: the algorithm produced a 0.751 average True Positive rate, and 0.193
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Table 4.50: Artificial Neural Network Single Subset Confusion Matrix.

a b classified as
9527 184 a = normal
5440 7393 b = anomaly

average False Positive rate, almost identical with the Gain Ratio filter The average

Precision and Recall measurements were 0.83 and 0.751 respectively, confirming these

results. The mean AUC is the highest of the datasets, having a value of 0.878.

4.8.1.4 Single Algorithm Summary

Using a single classifier, the Standard dataset performed the worst overall. The

filter and wrapper datasets performed the best overall with the Subset Evaluation

dataset providing the highest accuracy, build time, and test time of the single algo-

rithm experiments.

4.8.2 Boosting Performance

4.8.2.1 Standard Dataset

The Boosting Multilayer Perceptron algorithm was run against the Standard

dataset, and took 6 hours, 45 minutes, and 14 seconds to build over 2 iterations

of the dataset, using the platform described in Section 3.4.1. It took 9 seconds to test

the model. Just as was observed for LibSVM algorithm, Boosting adds a significantly

increased amount of time to process the instances.

Considering the confusion matrix in Table 4.51, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.773 average
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Table 4.51: Artificial Neural Network Boosting Standard Confusion Matrix.

a b classified as
9015 696 a = normal
4429 8404 b = anomaly

True Positive rate, and 0.189 average False Positive rate. The average Precision and

Recall measurements were 0.815 and 0.773 respectively. The mean AUC is 0.792,

having a slightly more accurate AUC than the lowest of the single classifiers, the

standard dataset.

4.8.2.2 Gain Ratio Dataset

The Boosting Multilayer Perceptron algorithm was run against the Gain Ratio

dataset, and took 53 minutes, and 3 seconds to build over 8 iterations of the dataset,

using the platform described in Section 3.4.1. It took 0.78 seconds to test the model.

Both training and testing were faster than the standard dataset.

Table 4.52: Artificial Neural Network Boosting Gain Ratio Confusion Matrix.

a b classified as
9470 241 a = normal
5331 7502 b = anomaly

Considering the confusion matrix in Table 4.52, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.753 average

True Positive rate, and 0.193 average False Positive rate. The average Precision and

Recall measurements were 0.827 and 0.753 respectively, confirming the above results.

The mean AUC is moderately greater than the standard dataset at 0.847, while still

predicting nearly four times as fast. It is interesting to note the Precision of the
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Gain Ratio filter is greater than the standard dataset (fewer anomalies classified as

normal), while the Recall is lower (fewer anomalies classified as anomaly), but still

resulting in a greater AUC, considering the tradeoff.

4.8.2.3 Subset Evaluation Dataset

The Boosting Multilayer Perceptron algorithm was run against the Subset Eval-

uation dataset, and took 45 minutes, and 58 seconds to build over 8 iterations of the

dataset, using the platform described in Section 3.4.1. It took just 0.75 seconds to

test the model. Training and test time were both faster than the Gain Ratio dataset.

Table 4.53: Artificial Neural Network Boosting Subset Confusion Matrix.

a b classified as
9526 185 a = normal
5366 7467 b = anomaly

Considering the confusion matrix in Table 4.53, the following performance metrics

were produced: the algorithm produced a 0.754 average True Positive rate, and 0.191

average False Positive rate. The average Precision and Recall measurements were

0.831 and 0.754 respectively. The mean AUC is almost identical with the Gain Ratio

datasets, at 0.749. Additional testing against the filter and wrapper methods would

be required to distinguish any sort of advantage of one over the other.

4.8.2.4 Boosting Summary

Just as was observed using a single classifier, the Standard dataset performed the

worst overall. The filter and wrapper datasets performed the best overall with nearly

identical testing times and overall prediction accuracy. However, neither was as good
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as the Subset Evaluation wrapper on the single algorithm test. All of the Boosting

datasets outperformed their single algorithm counterparts.

4.8.3 Bagging Performance

4.8.3.1 Standard Dataset

The Bagging Multilayer Perceptron algorithm was run against the Standard dataset,

and took 22 hours, 34 minutes, and 13 seconds to simultaneously build 10 instances

of the model on the dataset. It took 23 seconds to test the ensemble. The increased

build time may seem counterintuitive, as the standard dataset feature space are the

same, however the Boosting ensemble classified the majority of the instances with

only 2 passes of the dataset, whereas the bagging still required construction of 10

models.

Table 4.54: Artificial Neural Network Bagging Standard Confusion Matrix.

a b classified as
9015 696 a = normal
4641 8192 b = anomaly

Considering the confusion matrix in Table 4.54, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.763 average

True Positive rate, and 0.197 average False Positive rate. The average Precision and

Recall measurements were 0.809 and 0.763 respectively. The mean AUC is 0.9, with

far greater accuracy than the rest of the classifiers seen thus far, save for a very slight

difference with the single algorithm run against the Subset Evaluation dataset.
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4.8.3.2 Gain Ratio Dataset

The Bagging Multilayer Perceptron algorithm was run against the Gain Ratio

dataset,and took 59 minutes, and 53 seconds to simultaneously build 10 instances of

the model on the dataset, using the platform described in Section 3.4.1. It took 0.95

seconds to test the ensemble.

Table 4.55: Artificial Neural Network Bagging Gain Ratio Confusion Matrix.

a b classified as
9528 183 a = normal
5708 7125 b = anomaly

Considering the confusion matrix in Table 4.55, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.739 average

True Positive rate, and 0.202 average False Positive rate. The average Precision and

Recall measurements were 0.824 and 0.739 respectively, with results similar to the

single algorithm. The mean AUC is higher than the standard dataset at 0.863, slightly

lower than the standard dataset due to a lower recall.

4.8.3.3 Subset Evaluation Dataset

The Bagging Multilayer Perceptron algorithm was run against the Subset Evalua-

tion dataset and took 50 minutes, and 10 seconds to simultaneously build 10 instances

of the model on the dataset, using the platform described in Section 3.4.1. It took

0.89 seconds to test the ensemble.

Considering the confusion matrix in Table 4.56, the following performance metrics

were produced: the algorithm produced a 0.749 average True Positive rate, and 0.194

average False Positive rate. The average Precision and Recall measurements were
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Table 4.56: Artificial Neural Network Bagging Subset Confusion Matrix.

a b classified as
9519 192 a = normal
5457 7376 b = anomaly

0.829 and 0.749 respectively, a slight improvement over the filter dataset. The mean

AUC is slightly lower than the standard dataset, with a value of 0.892.

4.8.3.4 Bagging Summary

Unlike the Single and Boosting algorithm runs, the Bagging ensemble performed

the best against the Standard dataset, and outperforms the Single and Boosting

variants across all data sets. All of the wrapper datasets were slower than the Single

and Boosting equivalents, due to the large difference in number of models being used.

4.8.4 Artificial Neural Network Summary

Figure 4.6: Artificial Neural Network Area Under ROC
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The mean AUC values are shown in Figure 4.6. It can be seen that the Multilayer

Perceptron network has a significant degradation in training time when using ensem-

ble algorithms, however, when dealing with high-dimensionality this tradeoff is largely

compensated for with an increase in precision and recall performance. Pre-processing

does not see as much of an improvement when using ensemble learning.

4.9 Committee Voting with Multiple Models

As described in Chapter 3, the Voting meta-learner allows multiple heteroge-

neous models to be combined, such that the strengths (and weaknesses) of each may

contribute towards a final prediction value. For the purpose of my research, the

weka.supervised.meta.Voting [Witten et al., 2011] classifier was tested against both

the best-in-class and worst-in-class learners from each dataset and algorithm combi-

nation.

4.9.1 Best Set Evaluation

The best-in-class algorithms were selected from the Standard, Boosting, and Bag-

ging ROC AUC value for each algorithm type. Let this set be called the Best Set.

Table 4.57 lists the algorithms selected to create the Best Set:

The Best Set models, previously created, were combined using an Average of

Probabilities, such that every classifier contributed towards the average. The final

result was then used to label the instance. As table 4.57 shows, a different set was

created for each of the Standard, Gain Ratio, and Subset Evaluation.
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Table 4.57: Classifiers for Best-Case Voting

Raw GainRatio Subset
NB (bag) NB NB
J48 (bos) J48 (bos) J48 (bag)
Log (bos) Log (bos) Log (bos)
iBk (bag) iBk (bag) iBk (bag)
SVM (bos) SVM (bos) SVM (bos)
ANN (bag) ANN (bag) ANN (bag)

4.9.1.1 Standard Dataset

The Best Class Voting committee was run against the Standard dataset, and took

20 seconds to assemble the model on the dataset, using the platform described in

Section 3.4.1. This combination utilized the previously built and serialized models

created in each trial. The ensemble took 1 hour, 58 minutes and 12 seconds to test

all instances.

Table 4.58: Voting Committee Best-Case Standard Confusion Matrix.

a b classified as
9407 304 a = normal
5136 7697 b = anomaly

Considering the confusion matrix in Table 4.58, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.759 average

True Positive rate, and 0.19 average False Positive rate. The average Precision and

Recall measurements were 0.826 and 0.759 respectively. The mean AUC was 0.945

— the greatest accuracy seen during the entire experiment at this point.
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4.9.1.2 Gain Ratio Dataset

The Best Class Voting committee was run against the Gain Ratio dataset, and

took 3 seconds to assemble the model on the dataset, using the platform described

in Section 3.4.1. This combination utilized the previously built and serialized models

created in each trial. The ensemble took 1 hour, 10 minutes and 41 seconds to test

all instances.

Table 4.59: Voting Committee Best-Case Gain Ratio Confusion Matrix.

a b classified as
9416 295 a = normal
4839 7994 b = anomaly

Considering the confusion matrix in Table 4.59, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.772 average

True Positive rate, and 0.18 average False Positive rate. The average Precision and

Recall measurements were 0.834 and 0.772 respectively. The mean AUC was slighly

lower than the standard dataset at 0.937.

4.9.1.3 Subset Evaluation Dataset

The Best Class Voting committee was run against the Subset Evaluation dataset,

and took 7 seconds to assemble the model on the dataset, using the platform described

in Section 3.4.1. This combination utilized the previously built and serialized models

created in each trial. The ensemble took 1 hour, 14 minutes and 7 seconds to test all

instances.

Considering the confusion matrix in Table 4.60, the following performance metrics

were produced: the algorithm produced a 0.764 average True Positive rate, and 0.185
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Table 4.60: Voting Committee Best-Case Subset Confusion Matrix.

a b classified as
9462 249 a = normal
5079 7754 b = anomaly

average False Positive rate. The average Precision and Recall measurements were

0.832 and 0.764 respectively, very similar to the filter dataset As with the Precision

and Recall, the mean AUC, with a value of 0.936, was almost identical with the Gain

Ratio dataset.

4.9.1.4 Best Set Summary

The Best Set Voting committee ultimately outperformed every homogeneous single

and ensemble learning algorithm system previously tested. This observation holds

true for all of the Standard, Gain Ratio, and Subset Evaluation data sets.

4.9.2 Worst Set Evaluation

The worst-in-class algorithms were selected from the Standard, Boosting, and

Bagging ROC AUC value for each algorithm type. Let this set be called the Worst

Set. Table 4.61 illustrates the algorithms selected to create the Worst Set:

Table 4.61: Classifiers for Worst-Case Voting

Raw GainRatio Subset
NB (bos) NB (bos) NB (bos)
J48 J48 J48
Log Log (bag) Log
iBk iBk iBk
SVM SVM (bag) SVM (bag)
ANN ANN ANN (bos)
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The Worst Set models, previously created, were combined using an Average of

Probabilities, such that every classifier contributed towards the average. The final

result was then used to label the instance. As illustrated in table 4.61, a different set

was created for each of the Standard, Gain Ratio, and Subset Evaluation.

4.9.2.1 Standard Dataset

The Worst Class Voting committee was run against the Standard dataset, and

took 4.32 seconds to assemble the model on the dataset, using the platform described

in Section 3.4.1. This combination utilized the previously built and serialized models

created in each trial. The ensemble took 8 minutes and 56 seconds to test all instances.

This discrepancy in testing times between Best and Worst class can be intuitively

attributed to the far few number of ensemble models that have been included in the

voting committee.

Table 4.62: Voting Committee Worst-Case Standard Confusion Matrix.

a b classified as
9361 350 a = normal
4791 8042 b = anomaly

Considering the confusion matrix in Table 4.62, the following performance metrics

were produced: the algorithm using the standard dataset produced a 0.722 average

True Positive rate, and 0.181 average False Positive rate. The average Precision and

Recall measurements were 0.83 and 0.772 respectively. The mean AUC was 0.882; not

as good as any of the Best Class committees, but definitely not the worst measurement

seen previously.
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4.9.2.2 Gain Ratio Dataset

The Worst Class Voting committee was run against the Gain Ratio dataset, and

took 2.19 seconds to assemble the model on the dataset, using the platform described

in Section 3.4.1. This combination utilized the previously built and serialized models

created in each trial. The ensemble took 6 minutes and 53 seconds to test all instances.

Table 4.63: Voting Committee Worst-Case Gain Ratio Confusion Matrix.

a b classified as
9417 294 a = normal
5178 7655 b = anomaly

Considering the confusion matrix in Table 4.63, the following performance metrics

were produced: the algorithm using the Gain Ratio dataset produced a 0.757 average

True Positive rate, and 0.191 average False Positive rate. The average Precision and

Recall measurements were 0.826 and 0.757 respectively. The mean AUC was slightly

higher than the standard dataset at 0.919.

4.9.2.3 Subset Evaluation Dataset

The Worst Class Voting committee was run against the Subset Evaluation dataset,

and took 2.05 seconds to assemble the model on the dataset, using the platform de-

scribed in Section 3.4.1. This combination utilized the previously built and serialized

models created in each trial. The ensemble took 7 minutes and 5 seconds to test all

instances; a little longer than the filter dataset.

Considering the confusion matrix in Table 4.64, the following performance metrics

were produced: the algorithm produced a 0.757 average True Positive rate, and 0.19

average False Positive rate, nearly indistinguishable from the Gain Ratio filter set.
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Table 4.64: Voting Committee Worst-Case Subset Confusion Matrix.

a b classified as
9467 244 a = normal
5228 7605 b = anomaly

The average Precision and Recall measurements were 0.829 and 0.757 respectively,

with a slightly higher Precision, not not quite as high as the Standard set. The mean

AUC, with a value of 0.892, was not as high as the Gain Ratio Dataset, but higher

than the Standard set.

4.9.2.4 Worst Set Summary

The Worst Set Voting committee favoured the Gain Ratio dataset. However, as

anticipated it was still outperformed by the Best Set voting committees in every

dataset. Despite the drastic reduction in training and test time, the overall ROC

AUC was only a few percentage lower than the Best Set voting committees.

4.9.3 Committee Voting Summary

As seen in figure 4.7, the Standard dataset performed the best overall, followed

closely by the Gain Ratio and Subset Evaluation, which had roughly the same per-

formance relative with one another. This demonstrates the power behind capitalizing

on the strengths of each single and ensemble classification systems, and appears to

be a systematic advantage despite the possible weaknesses contributed by the same

algorithms.

More interesting still, the Worst Set committees performed better than, or tied,

every previously observed homogeneous algorithm set tested on the Gain Ratio and
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Figure 4.7: Voting Area Under ROC

Subset Evaluation data sets. The Standard dataset showed a slightly different result,

as the Worst Set committee was outperformed by one of the homogeneous algorithm

sets in each class, with the exception of the iBk and SVM sets. That being said, the

Worst Set voting committee still outperformed the worst model found in every set by

a fairly large margin.

As was seen with the Best Set voting committee, this unique combination - de-

spite being composed of the worst-in-class models previously created - demonstrates

the power behind capitalizing on the strengths of each single and ensemble classifi-

cation systems. In this case, it appears the strengths help to overcome the obvious

classification weaknesses inherent in the worst-in-class models.
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4.10 Comparison of Results

The previous sections in this chapter have discussed the performance of each

algorithm and dataset combination from the perspective of each algorithm. This

section will take a more holistic view, comparing the performance of the algorithms

to one another, in terms of overall testing and training times as well as accuracy.

4.10.1 Training Time Comparison

The training times for each of the datasets used are illustrated in the following

Figures: Figure 4.8 illustrates all algorithms for the unmodified dataset; Figure 4.9

illustrates all algorithms for the Gain Ratio dataset; and Figure 4.10 illustrates all

algorithms for the Subset Evaluation dataset. All of the figures are sorted by seconds

in order from greatest to smallest, on a logarithmic scale for easier visualization.

Figure 4.8: Standard Dataset Training Time in seconds
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Figure 4.9: GainRatio Dataset Training Time in seconds

Figure 4.10: Subset Evaluation Dataset Training Time in seconds

The algorithm training times are widely distributed across every dataset. As ex-

pected, the more complex algorithms such as artificial neural networks and support

vector machines require more time to train than less complex algorithms such as deci-
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sion trees or logistic regression. This also applies to the ensembles for each algorithm

type, as expected. Also of note is that the Voting meta classifiers take far less time

than the rest, due to the utilization of models that have already been generated. Per-

formance in this case is limited by the meta-logic required to calculate the committee

results.

4.10.2 Testing Time Comparison

The testing times for each of the datasets used are illustrated in the following

Figures: Figure 4.11 illustrates all algorithms for the unmodified dataset; Figure 4.12

illustrates all algorithms for the Gain Ratio dataset; and Figure 4.13 illustrates all

algorithms for the Subset Evaluation dataset. All of the figures are sorted by seconds

in order from greatest to smallest, on a logarithmic scale for easier visualization.

Figure 4.11: Standard Dataset Testing Time in seconds
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Figure 4.12: GainRatio Dataset Testing Time in seconds

Figure 4.13: Subset Evaluation Dataset Testing Time in seconds

As with the training times, the algorithm test times are also widely distributed. It

is interesting to note that the voting ensembles take the longest, as there are multiple
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algorithms to consult. The previously more expensive learning algorithms, due to

their quick access (decision tree) and propagation (neural network), are somewhat

faster. The simplest of algorithms (naive Bayes) remains orders of magnitude faster.

The difference in testing time is much more apparent with pre-processed data, due

to drastic reduction in dimensionality.

4.10.3 AUC Comparison

The ROC AUC for each of the datasets used are illustrated in the following Fig-

ures: Figure 4.14 illustrates all algorithms for the unmodified dataset; Figure 4.15

illustrates all algorithms for the Gain Ratio dataset; and Figure 4.16 illustrates all

algorithms for the Subset Evaluation dataset. All of the figures are sorted by accuracy

in order from highest to lowest.

Figure 4.14: Standard Dataset AUC
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Figure 4.15: GainRatio Dataset AUC

Figure 4.16: Subset Evaluation Dataset AUC
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The difference in accuracy between algorithms is much less apparent than the

differences previously seen in the training and testing times. As discussed earlier, the

Majority Voting classifier does have the highest accuracy, but also at a much greater

cost. ZeroR, as expected, is the worst-case lower bound against which all others are

compared. The accuracy ordering of algorithms is not as distinguishable simply based

the use of ensembles, however they do fall into a similar ordering by accuracy across

datasets.

4.10.4 Training Time to AUC Tradeoff

As identified in the previous sections, the difference between testing time over the

algorithm and dataset combinations is orders of magnitude greater than the difference

in overall accuracy.

The ROC AUC to testing time comparison for each of the datasets used are

illustrated in the following figures: Figure 4.17 illustrates all algorithms for the un-

modified dataset; Figure 4.18 illustrates all algorithms for the Gain Ratio dataset;

and Figure 4.19 illustrates all algorithms for the Subset Evaluation dataset.

Similar to the ROC curve, the figures illustrate the tradeoff between time and

accuracy, with the most desirable algorithm combinations approaching the top-left of

the graph (high accuracy, low testing performance time). As observed with standard

dataset, the testing time distribution is more gradual over all algorithms, as opposed

to the pre-processed data with a more obvious clustering of expensive algorithms.

This demonstrates the relatively little difference in overall accuracy compared to the

extremely large difference in network flow processing performance.
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Figure 4.17: Standard AUC to Testing Time

Figure 4.18: Gain Ratio AUC to Testing Time
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Figure 4.19: Subset Evaluation AUC to Testng Time

4.11 Summary

This chapter reviewed a standard sample of machine learning algorithms, from the

simplistic Zero-R and Naive Bayes, to the more sophisticated and expensive Support

Vector Machine and Artificial Neural Network. I reviewed the effects of dimensionality

reduction on the overall training and testing time, as well as the effects of over-fitting

and generalization granted by selecting the proper dataset size for each algorithm.

These experiments were performed utilizing a large number of combinations in

order to demonstrate a number of factors. The basic confusion matrix was used to

derive more intelligent measuring tools such as the True Positive and False Positive

rate, the Precision and Recall, all of which can be combined into one summarized

score through the Receiver Operating Curve.

The evaluation considered the effects of ensemble learning techniques such as

serialized Boosting, and parallel Bagging, on each of the algorithm types. The pre-
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processed data sets — Standard, Gain Ratio, and Subset Evaluation — were tested

against all of the algorithm types, single and in ensemble combination, to measure

the overall accuracy as well as testing and training time taken for each combination,

allowing us to compare and contrast the effects of these combinations.

Finally, the Voting meta-classifier was used to combine homogeneous learning

models into a committee-based averaging system. The best and worst algorithms

produced by the homogeneous combinations were assembled into a heterogeneous

system, and using the lower and upper bounds of previously observed testing set

performance, demonstrated the power of using meta-classifiers to increase overall

accuracy.

These results produced a macro-view of machine learning learning experiments

utilizing the NSL-KDD training and testing datasets. The next chapter will revisit

the research questions introduced in Chapter 1, and attempt to answer each of these

given the observations just presented to the reader.



Chapter 5

Contributions and Future Research

5.1 Overview

The previous chapter explored the myriad choices available to the machine learning

community, from simple and complex algorithms, data pre-processing options, as well

as more advanced techniques of model combination through ensembles and meta-

classifications. In this chapter, the research questions proposed in Chapter 1 will

be revisited, and answered based on observed trends in performance. The learning

scheme results will be presented here so that the original questions can be answered,

and some simple rules will be derived to guide future experiments in this problem

domain.

152
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5.2 Observations

The original research questions, as well as some additional observations, are here

restated and explored in light of the experimentation findings from Chapter 4.

1. Which individual algorithms are the most accurate?

Based on the results of my experiments, the Naive Bayes learner had the highest

AUC (0.908) when used as a single algorithm against the standard high dimen-

sionality dataset. This learning scheme does not consider any form of dataset

pre-processing, or ensemble learning.

2. Which are the fastest algorithms by learning time?

Based on the results of my experiments, the iBk (K-Nearest Neighbour) learner

had the fastest learner build time (0.03 seconds) when used as a single algorithm

against the standard high dimensionality dataset.

3. Which are the fastest algorithms by testing time?

Based on the results of my experiments, the Logistic Regression learner had the

fastest learner test time (0.67 seconds) when used as a single algorithm against

the standard high dimensionality dataset.

4. What are the effects of pre-processing on the dataset, and overall time and

accuracy measurements?

As we discovered in Chapter 4, pre-processing the data based on information

gain, or subset evaluation, reduces redundant features that do not appear to
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individually contribute to learning accuracy through information gain, or de-

pendent features that do not contribute to any subset of features. As seen in

the majority of the experiments, applying pre-processing to the datasets does

increases the AUC by the following metrics.

Single algorithms using pre-processed data increased in accuracy in the majority

of the cases, with Subset Evaluation having the highest mean AUC of 83.93%

across all algorithms. Only Naive Bayes did not increase in AUC, and performed

the best on an unaltered dataset.

When using Boosting, only half of the algorithms favoured pre-processed data

(iBk, SVM, ANN), while the rest preferred unaltered data. The boosted single

dataset had the highest mean AUC of 84.68%

When using Bagging, the results are similar to the single algorithms: only Naive

Bayes preferred the original dataset. 66% of the algorithms preferred Subset

Evaluation, with a mean AUC of 86.28%.

From these results we can see that pre-processing has the greatest effect on

single and parallel learning models, where serialized resampling is not affected.

The greatest mean AUC gain was found in Subset Evaluation.

Every single algorithm scheme, without exception, produced a decrease in over-

all training and testing time when using a pre-processed dataset. This is, in-

tuitively, due to a reduction in overall computation costs when dealing with a

fewer number of dimensions.

5. What are the effects of ensembles on the standard and derived datasets?
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As the experiments in Chapter 4 demonstrated, resampling-based ensemble

learning is preferable compared to single algorithms in the majority of the cases.

This could be due to the reduction in over-fitting bias found in some of the more

sophisticated algorithms that use conditional probabilities. By training them

over different regions of the sample space this can be reduced.

For the standard dataset, every algorithm produced a higher AUC when using

boosting or bagging.

The Gain Ratio and Subset evaluation data sets also produced a higher AUC

when using boosting or bagging, with the exception of Naive Bayes which pre-

ferred the single algorithm over ensemble. 17 out of 18 algorithm-to-dataset

schemes tested (94%) preferred ensemble learning.

Of all the combinations tested, Boosting was preferred by 8 out of 18 (roughly

44%), Bagging preferred by 8 out of 18 (roughly 44%), with the single algorithm

on preferred by 2 out of 18 (roughly 12%) of the testing combinations.

Every tested ensemble scheme, with few exceptions, produced an increase in

overall training and testing time, due to the number of iterations over the

dataset when multiple models were produced serially (when boosting), and in

parallel (when bagging).

6. What are the effects of meta-classification on overall performance?

The experiments in Chapter 4 demonstrated the effect of voting through an

average of probabilities to demonstrate the effect of combining multiple hetero-

geneous algorithms.
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The Best Set Voting committe ultimately outperformed every homogeneous sin-

gle and ensemble learning algorithm system previously tested. This observation

holds true for all of the Standard, Gain Ratio, and Subset Evaluation data sets.

The Worst Set Voting committee favoured the Gain Ratio dataset. However, as

anticipated it was still outperformed by the Best Set voting committees in every

dataset. Despite the drastic reduction in training and test time, the overall ROC

AUC was only a few percentage lower than the Best Set voting committees.

More interesting still, the Worst Set committees performed better than, or

tied, every previously observed homogeneous algorithm set tested on the Gain

Ratio and Subset Evaluation data sets. The Standard dataset showed a slightly

different result, as the Worst Set committee was outperformed by one of the

homogeneous algorithm sets in each class, with the exception of the iBk and

SVM sets. That being said, the Worst Set voting committee still outperformed

the worst model found in every set by a fairly large margin.

As was seen with the Best Set voting committee, this unique combination, de-

spite being composed of the worst-in-class models previously created, demon-

strates the power behind capitalizing on the strengths of each single and ensem-

ble classification systems. In this case, it appears the strengths help to overcome

the obvious classification weaknesses inherent in the worst-in-class models.

7. How do we appropriately determine what the “best” algorithm is?

As we explored the concept of what matters when classifying network traffic,

multiple factors were a consideration. Some of these factors include the value of
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tradeoff between true positive, false positive, true negative, and false negative,

and how precision and recall can reflect the attribute choices through over-fitting

and bias. The overall variance of an algorithm can determine the confidence

we have in that particular scheme. However this can only be found through

multiple iterations of cross validation which is computationally expensive, or

utilizing a large number of unique datasets which is difficult to obtain. Training

and testing time can be extremely low with simple yet efficient algorithms,

or skyrocket when combining sophisticated algorithms. When processing and

classifying large streams of flow data, sometimes the most accurate learning

system isn’t even a consideration.

In domains where any false negatives can mean disaster, such as when dealing

with zero day attacks in network security, and potential for compromise, having

the highest traffic classification accuracy can be of paramount importance, with

compensatory controls such as traffic multiplexing to deal with high volumes

and keep up with instance classification requirements. In this case, a scheme

such as Logistic Regression resampling, or meta-classification through Voting,

produces even higher classification accuracy, with a sacrifice to the number of

instances processed per second.

When tasked with such a large hyper-parameter space within schemes, and the

multiple combinations of pre-processing and learning algorithm combinations,

it is a difficult task to definitively state that one solution is the best in every

scenario — the proverbial “Holy Grail” of machine learning in the network in-

trusion detection domain. If all the aforementioned factors are of consideration,
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then it may be helpful to consider the tradeoff of accuracy to time, and choose

the solution that encompasses the performance factors that are most important

to the problem domain.

5.3 Suggested Guidelines

Based on the above answers, it may be possible to suggest a number of simple

guidelines when choosing a machine learning scheme for network traffic classification

based on flow data behavior. The results discussed in Section 5.2 demonstrate that

the primary factors of classification scheme, as well as the pre-processing algorithm

chosen, have the biggest impact on expected classification performance. Considering

what has been discussed so far, I present a series of simple guidelines that may help

choose the best learning scheme to begin with, depending on the circumstances.

1. When there is no intention to run pre-processing or ensemble schemes, choose

Naive Bayes for classification (from Observation 1).

2. When learning time (model creation or updating) is the most important factor,

use Naive Bayes or iBk algorithms (from Observation 2).

3. When classification time (events per second) is the most important factor, use

Naive Bayes, Logistic Regression, or Multilayer Perceptrons (from Observation

3).

4. When the information gain of a dataset is unknown, choose Subset Evaluation

for pre-processing (from Observation 4).
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5. When time is not a factor, use ensemble learning to reduce overfitting, and

increase the accuracy of homogeneous algorithms (from Observation 5).

6. When overall AUC is the biggest factor with no concern about training or testing

time, use Voting meta classification with a committee of heterogeneous learning

models (from Observation 6).

7. When all of accuracy, training time, and testing time are factors of concern,

a simpler algorithm (Naive Bayes, J48 Decision Tree, or Logistic Regression)

will generally give the best overall tradeoff of accuracy to time. When accuracy

is the most important, a more sophisticated scheme like Voting is the most

appropriate (from Observation 7).

5.4 Contributions

My research is focused on the application of multiple machine learning algorithms

to network intrusion detection. The results of this application have shown an un-

derstanding of classification accuracy for each major supervised learning algorithm

type, as well as the effects of applying traditionally simple and sophisticated classifier

models to a raw, filtered, and wrappered feature set. My research has demonstrated

the effects of ensemble learning over all classifiers and pre-processed datasets, as well

as the cumulative effect of meta-heuristic voting systems on overall classification per-

formance in time and accuracy.

The major contributions of this work are as follows:

1. A training and testing methodology that has been used to test both individual
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and combined machine learning algorithms, covering areas such as the effects of

pre-processing, ensembles, and meta-heuristics. This methodology has covered

the staple components of machine learning in any domain, from the effects of

dimensionality reduction, algorithm parameter selection, and algorithm combi-

nations in a variety of ways.

2. A demonstrated correlation between features and overall classifier accuracy in

the NSL-KDD dataset. This demonstration has proved the efficacy of dataset

pre-processing.

3. An in-depth analysis of individual classifier performance metrics, such as pre-

cision, recall, bias, variance, and runtime. This analysis has shown the overall

performance improvement gains from the methodology above.

4. A novel analysis of boosting, bagging, and voting algorithms using a combi-

nation of weaker single classifiers, and stronger more sophisticated learning

schemes. This analysis has demonstrated which of the single classifier models

improve when combined for homogeneous serial learning subsets of mis-classified

feature sets, combinations into homogeneous parallel learning schemes, as well

as heterogeneous council voting for best-of-breed outcomes.

5. A demonstration of machine learning algorithm performance when faced with

novel attack types never seen in prior training sets.

The classification framework and algorithms used in my thesis can be adapted

to real-world flow data using similar flow data transformations, in combination with
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offline training and online testing. Real-world applications in high-performance com-

puting environments would likely include using classifier libraries that run natively

in the target architecture, along with optimizations to multi-threading where appli-

cable. However, assuming the observed traffic features are similar in nature to the

NSL-KDD sets used in my thesis, the accuracy and time tradeoffs would also re-

main similar. Some of these issues will be discussed in the next section, along with

possibilities for future analysis in the problem domain.

5.5 Future Research

This research involved the application of a large number of supervised learning

algorithms for the purpose of anomaly detection. My thesis covered a broad survey

of common tasks found in optimizing overall performance and tuning to the dataset

in question, as well as more sophisticated application of combining multiple machine

learning algorithms together.

The time and space requirements of this research have been limited by the ap-

propriate scope of research for a Master’s Thesis, as machine learning in itself is a

massive subject area with many smaller areas of specialization. While performing

this research, I have identified a number of possible future topics that would be in-

teresting to explore in continuance of my journey in network traffic classification for

the purpose of intrusion and fraud detection. Some of these topics are discussed in

the following subsections.



Chapter 5: Contributions and Future Research 162

5.5.1 Sub-Selective Ensembles

The voting ensemble learning experiments included the worst-of-breed and best-

of-breed classifiers from each algorithm and pre-processed dataset combination. There

were a total of six classifiers included in the voting structure. Considering the number

of classifiers used, all sub-sample voting combinations (approximately 720) would be

infeasible given the time frame available for experimentation. An experiment into

which voting combinations produced the best accuracy would be interesting given

the individual strengths and weakness in bias, variance, accuracy, and speed, of each

classifier type.

5.5.2 Hyper-Parameter Optimization

My research used the default (i.e., best practice) settings for most of the algorithms

tested, with a few deviations. Every algorithm is unique, and will perform differently

depending on the dataset in question. Some of the algorithms tested, such as Naive

Bayes, or J48, had very few options to consider when implementing them. Some of

the more sophisticated algorithms like SVM, or ANNs, have more parameters that are

tunable (such as learning rate, number of epochs, etc.). As discussed in Section 3.4.3,

individual algorithm tuning is typically done using 10-fold cross validation before

testing against the test set. In this thesis, most of the tuning was done on the macro-

scale; combining pre-processed data sets with ensemble combinations. Considering

the massive parameter space available to the more sophisticated algorithms, future

research could be performed into optimal methods of finding the right parameters for

each dataset/algorithm combination, in order to further increase the generalizability
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of the algorithms without sacrificing the bias or variance.

5.5.3 Unsupervised Behavior Profiling

This research focused on supervised learning, partially out of the convenience of

having a labeled dataset. Many real world environments do not have a labeled dataset,

in part due to the difficulty of identifying all malicious behavior (we wouldn’t want

to baseline our Intrusion Detection System to think attacks are normal), and partly

because widely available sanitized datasets are few and far between. Unsupervised

learning may hold the key to clustering behavior attributes together such that new

behaviors can be classified once existing profiles have been identified with a higher

degree of certainty.

5.5.4 Distributed Learning Architecture

The Weka Explorer environment was primarily used in order to perform the ex-

periments, with a single machine as the platform. Many of the models created during

my research took an excess of 20 hours to finish, and required a 2GB heap alloca-

tion. The serialized Voting models required an excess of 250MB each, given they are

built on multiple, equally complex ensembles. Some of the previously identified ex-

perimental models, such as Stacking [Wolpert, 1992] (a variant of serialized Boosting

using heterogeneous classifiers) would have been interesting to test, but were plainly

unfeasible given the computation power available against the higher dimensionality

of the raw datasets. Future research could utilize the distributed and multi-threaded

architecture made available through Weka and other test platforms in order to finish
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building models of this size and complexity.

5.5.5 Multiple-Class Attack Categorization

Anomaly detection in this domain only requires a binary classifier to flag traffic

as suspicious. As discussed in Section 3.2.2, the sample traffic was also available by

attack type class. Creating learners around all attack types for our purposes does

not make sense, given novel attacks types would not have a class assigned. However,

all attacks can be largely categorized into their macro behavior: for example, Denial

of Service, Reconnaissance, Local to Remote, and User to Root. Future research

could involve a similar testing methodology, but with an increased number of classes

to choose from when categorizing traffic. This would be useful in determining the

behavior type behind the anomaly, not just the presence of suspected fraud.

5.5.6 Real-Time Online Learning

My experiments involved processing training samples in large batches, which is

a behavior typically performed when a large amount of historical data is available.

Many real-world problems do not afford the convenience of a large historical dataset

for training purposes. Future research into real-time learning - for example a network

tap - would prove useful for environments that require a fresh deployment and learning

on-the-fly when network topologies suddenly change.
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5.5.7 Incremental Learning Rate Analysis

Most of the algorithms compatible with the Weka framework did not support

the Updatable interface, which would allow per-instance accuracy metrics to be ob-

served during training. This can, however, be dealt with by applying non-randomized

instance-based filters to train each algorithm, and observe the gain by incremental

size. Future research could involve developing Updatable interface support for a larger

proportion of the ML libraries in use.

5.6 Conclusion

In this thesis, I examined the application of a number of machine learning algo-

rithms in a supervised learning environment to a number of dataset combinations. My

experiments explored the effects of filter and wrapper preprocessing on the dataset,

and the effects on algorithm classification accuracy and time performance. My re-

search also explored the effects of running boosting and bagging ensemble learning, as

well as meta-classification through voting. Through these experiments, I have demon-

strated that it is possible to increase the overall performance of learning algorithms

in the network security domain. I have also demonstrated that various algorithm

combinations can have a detrimental effect on training and testing time, and that

researchers should be wary of the tradeoffs from choosing pre-processor, algorithm,

and learning scheme configuration. My research contributions have shown that there

is no “Holy Grail” for intrusion detection using current machine learning techniques,

but with foreknowledge an appropriate solution can be selected given known practical
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requirements.
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Appendix A

KDD Traffic Details

A.1 Basic TCP Connection Details

Table A.1: Basic TCP Connection Details

feature name description type
duration length (number of seconds) of the connection continuous
protocol type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http, telnet, etc. discrete
src bytes number of data bytes from source to destination continuous
dst bytes number of data bytes from destination to source continuous
flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous
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A.2 Content Features with a Connection (Domain

Knowledge)

Table A.2: Content Features with a Connection (Domain Knowledge)

feature name description type
hot number of “hot” indicators continuous
num failed logins number of failed login attempts continuous
logged in 1 if successfully logged in; 0 otherwise discrete
num compromised number of “compromised” conditions continuous
root shell 1 if root shell is obtained; 0 otherwise discrete
su attempted 1 if “su root” command attempted; 0 otherwise discrete
num root number of “root” accesses continuous
num file creations number of file creation operations continuous
num shells number of shell prompts continuous
num access files number of operations on access control files continuous
num outbound cmds number of outbound commands in an ftp session continuous
is hot login 1 if the login belongs to the “hot” list; 0 otherwise discrete
is guest login 1 if the login is a “guest”login; 0 otherwise discrete
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A.3 Traffic Features within a Two Second Time

Window

Table A.3: Traffic Features within a Two Second Time Window

feature name description type
count number of connections to the same host as the current

connection in the past two seconds
continuous

Note: The following features refer to these same-host
connections.

serror rate % of connections that have “SYN” errors continuous
rerror rate % of connections that have “REJ” errors continuous
same srv rate % of connections to the same service continuous
diff srv rate % of connections to different services continuous
srv count number of connections to the same service as the current

connection in the past two seconds
continuous

Note: The following features refer to these same-service
connections.

srv serror rate % of connections that have “SYN” errors continuous
srv rerror rate % of connections that have “REJ” errors continuous
srv diff host rate % of connections to different hosts continuous
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A.4 Attacks present in the DARPA 1999 Data Set

Table A.4: Attacks present in the DARPA 1999 Data Set

Attack Class Attacks in Training Set Additional Attacks in Test Set
Probe satan, portsweep, ipsweep, nmap. mscan, saint
DoS back, neptune, smurf, teardrop,

land, pod
apache2, mailbomb, processtable

R2L warezmaster, warezclient, ftp-
write, guesspassword, imap, mul-
tihop, phf, spy

sendmail, named, snmpgetattack,
snmpguess, xlock, xsnoop, worm

U2R rootkit, bufferoverflow, loadmod-
ule, perl

httptunnel, ps, sqlattack, xterm



Appendix B

Single Classification Results

Table B.1: Naive Bayes Results

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.761 0.198 0.809 0.761 0.759 0.572 0.908 0.882 0.83 2.03
Gain Ratio 0.731 0.208 0.822 0.731 0.723 0.557 0.879 0.844 0.32 0.63

Subset 0.737 0.205 0.82 0.737 0.731 0.562 0.892 0.872 0.20 0.41
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Table B.2: J48 Decision Tree

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.815 0.146 0.858 0.815 0.815 0.674 0.84 0.828 34.24 0.34
Gain Ratio 0.76 0.19 0.825 0.76 0.756 0.588 0.813 0.802 6.28 0.08

Subset 0.755 0.194 0.823 0.755 0.75 0.581 0.867 0.84 4.94 0.10

Table B.3: Logistic Regression

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.762 0.201 0.803 0.762 0.761 0.566 0.749 0.723 23.33 0.67
Gain Ratio 0.764 0.184 0.834 0.764 0.76 0.601 0.853 0.807 5.87 0.78

Subset 0.748 0.198 0.823 0.748 0.742 0.574 0.803 0.768 4.79 0.19

Table B.4: K-Nearest Neighbour

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.794 0.165 0.841 0.794 0.792 0.636 0.814 0.763 0.03 361.81
Gain Ratio 0.811 0.152 0.851 0.811 0.811 0.664 0.826 0.797 0.02 149.69

Subset 0.815 0.147 0.857 0.815 0.814 0.673 0.818 0.799 0.03 137.89

Table B.5: Support Vector Machines

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.703 0.23 0.808 0.703 0.691 0.516 0.736 0.691 7694.00 278.26
Gain Ratio 0.75 0.197 0.821 0.75 0.746 0.575 0.777 0.726 1461.97 309.99

Subset 0.752 0.196 0.822 0.752 0.748 0.578 0.778 0.728 1544.53 312.14
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Table B.6: Artificial Neural Networks

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.733 0.189 0.815 0.773 0.772 0.589 0.788 0.755 7909.46 9.49
Gain Ratio 0.753 0.193 0.827 0.753 0.748 0.584 0.838 0.803 337.77 0.97

Subset 0.751 0.193 0.83 0.751 0.745 0.584 0.878 0.857 281.82 0.56



Appendix C

Boosting Classification Results

Table C.1: Naive Bayes Results

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.737 0.214 0.799 0.737 0.734 0.54 0.822 0.803 24.96 1.79

Gain Ratio 0.731 0.208 0.822 0.731 0.723 0.557 0.764 0.719 4.54 0.37
Subset 0.737 0.205 0.82 0.737 0.731 0.562 0.768 0.721 3.02 0.20
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Table C.2: J48 Decision Tree

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.779 0.175 0.838 0.779 0.776 0.619 0.936 0.914 298.09 0.26
Gain Ratio 0.778 0.177 0.832 0.778 0.776 0.613 0.904 0.87 68.95 0.15

Subset 0.772 0.181 0.831 0.772 0.769 0.605 0.907 0.874 45.07 0.14

Table C.3: Logistic Regression

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.744 0.214 0.793 0.744 0.742 0.54 0.931 0.925 289.92 0.60
Gain Ratio 0.753 0.192 0.829 0.753 0.748 0.585 0.864 0.827 37.63 0.35

Subset 0.748 0.198 0.823 0.748 0.742 0.574 0.855 0.818 24.43 0.20

Table C.4: K-Nearest Neighbour

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.783 0.173 0.836 0.783 0.781 0.621 0.837 0.787 16732 1800.00
Gain Ratio 0.809 0.154 0.849 0.809 0.808 0.659 0.859 0.813 13185 926.00

Subset 0.813 0.149 0.855 0.813 0.812 0.669 0.867 0.823 15091 1076.00

Table C.5: Support Vector Machines

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.705 0.228 0.809 0.705 0.693 0.519 0.763 0.716 59331 1780
Gain Ratio 0.748 0.199 0.819 0.748 0.743 0.57 0.79 0.743 33187 1074

Subset 0.749 0.199 0.819 0.749 0.744 0.572 0.79 0.74 41885 1274
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Table C.6: Artificial Neural Networks

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time

Standard 0.773 0.189 0.815 0.773 0.772 0.589 0.792 0.738 24314 3.21
Gain Ratio 0.753 0.193 0.827 0.753 0.748 0.584 0.847 0.811 3183 0.78

Subset 0.754 0.191 0.831 0.754 0.749 0.589 0.845 0.808 2758 0.75



Appendix D

Bagging Classification Results

Table D.1: Naive Bayes Results

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.763 0.196 0.81 0.763 0.761 0.575 0.91 0.887 8.61 2.99

Gain Ratio 0.734 0.206 0.823 0.734 0.727 0.562 0.878 0.843 2.89 0.63
Subset 0.738 0.204 0.82 0.738 0.732 0.563 0.891 0.871 1.97 0.47
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Table D.2: J48 Decision Tree

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.837 0.13 0.87 0.837 0.837 0.707 0.907 0.9 250.77 0.38

Gain Ratio 0.759 0.19 0.826 0.759 0.755 0.588 0.847 0.827 51.01 0.18
Subset 0.759 0.19 0.825 0.759 0.755 0.588 0.912 0.888 41.42 0.11

Table D.3: Logistic Regression

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.756 0.205 0.8 0.756 0.755 0.558 0.816 0.722 173.26 0.74

Gain Ratio 0.756 0.19 0.83 0.756 0.751 0.589 0.844 0.805 49.16 0.28
Subset 0.75 0.197 0.821 0.75 0.745 0.575 0.833 0.796 39.14 0.26

Table D.4: K-Nearest Neighbour

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.783 0.173 0.836 0.783 0.781 0.621 0.858 0.837 0.77 6593.00

Gain Ratio 0.806 0.154 0.851 0.806 0.805 0.658 0.863 0.84 0.69 3714.00
Subset 0.781 0.172 0.84 0.781 0.779 0.624 0.871 0.848 0.90 3626.00

Table D.5: Support Vector Machines

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.702 0.23 0.808 0.702 0.69 0.516 0.738 0.692 68493 1605

Gain Ratio 0.749 0.198 0.82 0.749 0.745 0.573 0.777 0.727 10570 325
Subset 0.751 0.197 0.821 0.751 0.746 0.576 0.778 0.728 11729 355
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Table D.6: Artificial Neural Networks

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.763 0.197 0.809 0.763 0.762 0.574 0.9 0.882 81253 23.19

Gain Ratio 0.739 0.202 0.824 0.739 0.732 0.567 0.863 0.833 3594 0.95
Subset 0.749 0.194 0.829 0.749 0.744 0.582 0.892 0.886 3011 0.89



Appendix E

Voting Classification Results

Table E.1: Base-Case Voting Results

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.759 0.19 0.826 0.759 0.755 0.588 0.945 0.944 20.99 7092.00

GainRatio 0.772 0.18 0.834 0.772 0.769 0.609 0.937 0.923 3.16 4241.44
SubSet 0.764 0.185 0.832 0.764 0.76 0.599 0.936 0.938 7.94 4447.93
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Table E.2: Worst-Case Voting Results

Dataset TP FP Prec Recall F-Score MCC ROC Area PRC Area Build Time Test Time
Standard 0.722 0.181 0.83 0.772 0.769 0.605 0.882 0.841 4.32 536.38

GainRatio 0.757 0.191 0.826 0.757 0.753 0.587 0.919 0.887 2.19 413.84
SubSet 0.757 0.19 0.829 0.757 0.753 0.59 0.892 0.861 2.05 425.53
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