
Task Level Parallelization of Irregular
Computations using OpenMP 3.0

by

Eid Albalawi

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

December 2013

c© Copyright 2013 by Eid Albalawi

Thesis advisor Author

Dr. Parimala Thulasiraman

Dr. Ruppa Thulasiram Eid Albalawi

Task Level Parallelization of Irregular Computations using

OpenMP 3.0

Abstract

OpenMP is a standard parallel programming language used to develop parallel

applications on shared memory machines. OpenMP is very suitable for designing

parallel algorithms for regular applications where the amount of work is known apriori

and therefore distribution of work among the threads can be done at compile time.

In irregular applications, the load changes dynamically at runtime and distribution

of work among the threads can only be done at runtime. In the literature, it has been

shown that OpenMP produces unsatisfactory performance for irregular applications.

In 2008, the OpenMP 3.0 version introduced new directives and features such as the

“task” directive to handle irregular computations. Not much work has gone into

studying irregular algorithms in OpenMP 3.0. In this thesis, I provide some insight

into the usefulness of OpenMP 3.0 for irregular problems.

ii

Contents

Abstract . ii
Table of Contents . iv
List of Figures . v
List of Tables . vi
Acknowledgments . vii
Dedication . viii

1 Introduction and Background 1
1.1 Thesis Overview . 5

2 OpenMP 3.0 7
2.0.1 Task directive . 10
2.0.2 The OpenMP 3.0 collapse feature 14

3 Breadth-First Search 16
3.1 Introduction and Background . 16
3.2 Related work . 20
3.3 My implementation . 23
3.4 Results . 27

4 All-Pairs Shortest Path 30
4.1 Introduction . 30
4.2 Related work . 33
4.3 My implementation . 34
4.4 Results . 35

5 Minimum Spanning Tree 38
5.1 Introduction . 38
5.2 Related work . 42
5.3 My implementation . 43
5.4 Results . 45

iii

iv

6 Conclusions and Discussion 47

7 Future work 51

Bibliography 53

List of Figures

2.1 Directive and Clauses . 8

3.1 Breadth-First Search traversal . 17
3.2 Graph example . 24
3.3 Asynchronous Breadth-First Search traversal 25
3.4 Remove the inefficient path . 25
3.5 BFS execution Time for SSAC#2 . 29
3.6 BFS execution Time for R-MAT . 29

4.1 APSP execution Time for SSAC#2 36
4.2 APSP execution Time for R-MAT . 37

5.1 MST execution Time for SSAC#2 . 46
5.2 MST execution Time for R-MAT . 46

v

List of Tables

3.1 The BFS execution time on SSAC#2 27
3.2 The BFS execution time on R-MAT 27

4.1 The APSP execution time on SSAC#2 36
4.2 The APSP execution time on R-MAT 36

5.1 The MST execution time on SSAC#2 45
5.2 The MST execution time on R-MAT 45

vi

Acknowledgments

Foremost, Thank you Allah first and last. Thank you Allah for everything you

gave me and for everything you did not give me, for everything you protected me

from that which I know and that which I am not even aware of. Thank you for

blessings that I did not even realize were blessings. Without your blessings, I would

not completed my thesis. Thank you for your guidance when I felt like I was slipping.

Thank you for everything else, because no matter how many things I try to list, at

the end of the day, I can not even come close to thank you enough.

I would like to express the deepest appreciation to my advisors, Dr. Parimala

Thulasiraman and Dr. Ruppa Thulasiram, for their attitude and able guidance dur-

ing my study in University of Manitoba. My sincere gratitude for their patience,

encouragement, motivation and continues support of my M.Sc. Study.

A special thanks to my mother “Aziza Albalawi”and to my sisters “Dr. Halah,

Modiy and Gadah Albalawi” and my brothers “Nader and Abdullah Albalawi” for

their emotion support during my journey here. Without their support and help, this

thesis would not be possible.

In addition, I want to thank “Omar Alhazmi”, “Rashed Alqahtani”, “Mohammed

Alluhybi” and “Bilal Ragoub” for being my best friends and share some unforgettable

memories here in Canada.

Finally, I would like to thank graduate students at the Department of Computer

Science for being friendly, helpful and supportive.

vii

This thesis is dedicated to in loving memory of my father, “ Mohammed

Albalawi”. I know you would be proud of me now.

viii

Chapter 1

Introduction and Background

Homogeneous multicore architectures have been used widely in the past decade.

This is due to the need of having machines with high performance that are more

powerful computationally than uniprocessor machines. In a homogeneous multi-core

architecture, many identical processors or cores work together to perform complex

tasks. Companies such as Intel, have moved toward increasing the processor’s power

by adding more cores on a single chip. Most of the commodity homogeneous archi-

tectures have many duplicated CPUs on a single chip with a shared memory. The

different CPUs interact with each other through shared variables.

Shared memory machines can be categorized as either Uniform Memory Access

(UMA) or Non-Uniform Memory Access (NUMA) architectures. In UMA machines,

the CPUs have the same access time to a shared primary memory. On the other

hand, each CPU in NUMA has its own memory. This memory can be accessed by

the CPU that it belongs to or , more slowly, by other CPUs. The memory access

time is, therefore, non-uniform. Modern homogeneous multicore architectures with a

1

Chapter 1. Introduction and Background 2

shared memory system are also multithreaded. The cores have the capabilities of han-

dling several threads concurrently. For example, Sun Niagara’s processor with eight

cores can execute 32 threads concurrently and supports fine-grained multithreading.

The Intel Nehalem microarchitecture that encompasses the Core i7 class of proces-

sors provide hyperthreading support in hardware and also introduced a distributed

shared memory architecture using the Intel QuickPath Interconnect (QPI). These

architectures exploit both instruction level parallelism and thread level parallelism.

There are many parallel programming languages or APIs that support a shared

memory paradigm. One such API is OpenMP (OpenMP [1998]). OpenMP specifies

a set of compiler directives and provides associated libraries to execute specific code

sequences in parallel and to divide the work among threads. OpenMP employs a fork-

join paradigm. The program starts with one thread called the master thread. Then,

whenever there is a parallel region in the program, the master thread invokes a set

of slave threads and distributes the work among them. This operation is called fork.

After forking, the threads are allocated to the processors by the runtime environment

and work concurrently to solve the problem. Once the slave threads have completed

their work, they are destroyed and the master thread continues until it encounters

another parallel region. This operation is called join.

OpenMP has been used extensively for regular applications. The data structures

used in these problems are structured (such as an array). The program flow and

memory access patterns are also very structured and are generally known apriori.

An example of a regular problem is matrix-vector multiplication, where A is a dense

matrix, x is a vector and b is the resultant vector. In this example, the computations

Chapter 1. Introduction and Background 3

or operations required to produce the output and the data access patterns are known

beforehand. On a multi-processor system, each processor can be assigned the same

vector x with a certain number of data elements (a row or a given number of rows)to

compute an element(s) in b. All processors perform the same computations to produce

the resultant vector but with different data sets. As a result, these problems can be

optimized to run on any type of architecture relatively easily. These problems are

also classified as data parallel applications.

The same is not true for irregular applications. Irregular applications rely on

pointer or graph-based data structures. Algorithms that are used to solve irregular

applications are referred to as irregular algorithms. Graph problems, list ranking

and unstructured grid problems are common examples of irregular computations. In

such computations (Zhang and Torrellas [1995]; Secchi et al. [2012]; Kulkarni et al.

[2007]; Nieplocha et al. [2007]), the data size changes dynamically at runtime, leading

to non-uniform memory access patterns and higher and unpredictable communica-

tion/synchronization latencies. The load or amount of work to be distributed to the

threads is not known apriori. We could consider the matrix-vector multiplication as

an irregular problem, if A is a sparse matrix. Since A is instance specific, the struc-

ture of A is unknown at compile time. A matrix is not necessarily the correct data

structure to use since there may be many 0’s in the matrix wasting memory resources.

Instead we might use in such problems, accesses to data often have poor spatial and

temporal locality leading to ineffective use of the memory hierarchy (Zhang and Tor-

rellas [1995]).

It is important to find efficient solutions in solving irregular problems. Irregular

Chapter 1. Introduction and Background 4

adaptive methods (Biswas and Strawn [1994]; Kulkarni et al. [2007]), for example,

have applications in many Science and Engineering problems. With multicores be-

coming very popular, having a standard programming language that addresses both

irregular and regular applications is very desirable. OpenMP is one such language.

The literature has been shown eg.(Süßand Leopold [2006]; Dedu et al. [2000]; His-

ley et al. [1999]) that OpenMP results in reduced performance when dealing with

irregular computations..

Several researchers have tried to overcome this issue (Wicaksono et al. [2011];

Labarta et al. [2001]; Wang et al. [2007]; Kulkarni et al. [2008]) by developing effi-

cient algorithms for irregular application in OpenMP by developing automatic par-

allelling compilers or by introducing new directives in OpenMP to handle irregular

applications.

The earlier versions of OpenMP were not meant to handle irregular computations

(Mattson [2003]). In 2008, the OpenMP 3.0 version introduced a directive called

“task” to help develop parallel algorithms for irregular applications. The directive

“task” creates independent work units to be executed. The task in OpenMP 3.0 is

nothing but a thread that can be created and destroyed as needed. It can also spawn

other tasks that is not possible in the previous versions of OpenMP. Spawning threads

this way allows dynamic creation of threads incorporating fine grained parallelism and

exploiting load balancing at runtime which is important for performance improvement

in irregular computations.

Chapter 1. Introduction and Background 5

1.1 Thesis Overview

Irregular problems are very challenging to solve on conventional parallel comput-

ers. On shared memory machines, OpenMP has been regarded as the standard API

to develop parallel algorithms. Earlier versions of OpenMP are not meant to handle

irregular computations. Version OpenMP 3.0 contains new features to tackle irregular

applications.

In this thesis, I consider three classic graph algorithms: All-Pairs Shortest-Path

(APSP), Breadth First Search (BFS) and Minimum Spanning Tree (MST). These al-

gorithms are described in Chapters 3, 4 and 5, respectively. An overview of OpenMP

3.0 is provided in Chapter 2.

The algorithms were implemented on the AMD Accelerated Processing Unit (APU)

8 quad-core machine. The clock speed of each core is 3.0MHz. There is 4GB of RAM

memory. I used the GCC4.4 compiler to compile and run the algorithm. I imple-

mented the algorithms on two types of graphs:

• R-MAT graphs: These are random graphs (Chakrabarti et al. [2004]) allowing

high and low degree vertices.

• SSCA#2 graphs: Graphs in this category (Bader and Madduri [2005])have high

connected cliques. The size of the cliques is distributed uniformly. Then, they

generate inter-clique edges with a chosen probability.

In the literature, most of the work using the OpenMP 3.0 task directive has

focused on implementing recursive algorithms such as Fibonacci sequences or merge-

Chapter 1. Introduction and Background 6

sort. These problems create an easy parent-child relationship and can be easily im-

plemented in using the task directive.

There were many challenges in using task level parallelism for graph algorithms.

Graph algorithms are pointer-based data structures and dynamically change at run-

time. Tasks (or threads) are created at runtime leading to load balancing issue. This

is one challenge. Second is that algorithms are not necessarily recursive and may

not reveal a parent-child relationship adaptable to task parallelization. In OpenMP

we start with the sequential algorithm, and modify the algorithm to work in parallel

by adding parallel directives, that is, it allows incremental parallelization. This is

not the case with the task directive. The input to the problem considered in this

thesis is a random graph. Therefore, task level parallelization is not straightforward

and algorithms have to be modified to take advantage of OpenMP task directives.

In breadth-first search algorithm, I developed an asynchronous task level parallelism

algorithm using the ideas from (Chandy and Misra [1982]). The MST was more

challenging. There was a sequential part and parallel part to Bor̊uvka’s MST algo-

rithm Bor̊uvka [1926]. I was able to apply task level parallelism to the parallel part

but due to the sequential nature of the other half of the algorithm, I implemented

the merge phase of Bor̊uvka’s algorithm sequentially. This idea is similar to those of

others (Chung and Condon [1996]) who have studied parallel Bor̊uvka’s algorithm.

Finally, Chapter 5 summarizes and discusses the results of the three algorithms

and provides my experiences with OpenMP 3.0 for irregular problems. The thesis

concludes with some future work in Chapter 6.

Chapter 2

OpenMP 3.0

OpenMP directives start with #pragma omp followed by the directive name. The

syntax of OpenMP directives is as follows:

#pragma omp directive name [clause[[,]clause]...]

There are many directives in OpenMP. For example, the “parallel” directive supports

Single Program Multiple Data (SPMD) model, a more coarse-grained approach, while

“parallel for” supports fine-grained parallelism. The “section” directive provides sup-

port for functional level parallelism. The “single” directive could be used to declare

instructions to be executed by only one thread.

A variable in OpenMP maybe be characterized as either “private” or “shared”.

A shared variable can be accessed by all threads while a private variable is accessible

only to the thread that declared it. By default all variables are shared unless declared

otherwise. Therefore, the scope of the variable is important in OpenMP.

Figure 2.1 (Dagum and Menon [1998]) shows which clauses are allowed with which

directives. OpenMP language constructs can be categorized as follows: control flow

7

Chapter 2. OpenMP 3.0 8

Figure 2.1: Directive and Clauses

directives, sharing variables, synchronization and runtime functions.

Control flow: Directives in this category control the flow of the program. parallel

and single are the most common directives that follow this category.

Sharing variables: Clauses such as firstprivate, lastprivate and default are in this

group. They specify the visibility of the variables to threads. As mentioned, all

variable are shared by default. Therefore, synchronizing variables appropriately

is important.

Synchronization: Major directives in this category are atomic, critical, barrier

and taskwait.

Runtime functions: There are also some predefined functions in the OpenMP li-

brary such as omp set num thread and omp get num thread.

OpenMP normally, provides incremental parallelization. That is, it allows a pro-

grammer to work with sequential code and incrementally change the blocks of code

Chapter 2. OpenMP 3.0 9

one at time to parallelize the code by adding parallel directives. We can easily remove

the parallel directives to get a sequential code or compile with a non-OpenMP aware

compiler. The earlier versions of OpenMP were very restrictive and the system was

optimized to support regular applications.

In 2008, the OpenMP version 3.0 introduced a directive called “task” to help with

developing parallel algorithms for irregular applications. The directive “task” creates

independent work units to be executed by threads. The task in OpenMP 3.0 combines

code and an associated data environment (Ayguadé et al. [2009]). All tasks are either

executed immediately if they are ready or postponed to a later time. Tasks that are

deferred are placed in a task pool. Threads pick up each task to execute from this

task pool until there are no more threads in the task pool. Tasks are either tied or

untied. Tied implies the task will be processed by one thread. If untied, more than

one thread maybe be allowed to process different parts of the code. Initially, all tasks

are tied.

In OpenMP 3.0, tasks can spawn other threads which was not possible in the

previous versions of OpenMP. Spawning threads allows dynamic creation of threads

incorporating fine grained parallelism and exploiting load balancing at runtime which

is important for performance improvement in irregular computations.

Another new feature is “collapse”. By adding “collapse” to a nested loop, it

combines into a single loop with fewer fork and join.

Chapter 2. OpenMP 3.0 10

2.0.1 Task directive

The tasking model was proposed in (Ayguadé et al. [2007]). As mentioned earlier,

a task has its own data environment besides its code. A task can be characterized

as wither explicit or implicit. When threads encounter a parallel region, a set of

implicit tasks will be generated and one task will be assigned to each thread. These

implicit tasks are therefore tied to each thread. Explicit tasks may be generated by

other tasks. Tasks execution can be synchronized using the taskwait directive. The

syntax for the task directive is as follows :

#pragma omp task [clause[[,]clause]...]

where the clause could be shared, private, firstprivate or lastprivate.

In previous versions of OpenMP, although task parallelism was implicitly provided

through the section directive, explicit programmer-specified parallelism did not ex-

ist. Also, incorporating task parallelism in previous versions of OpenMP, might not

actually provide any performance improvement due to synchronization barriers.

Consider the code example in Listing 2.1:

Listing 2.1: Sequential code for tree traversal

void traverse (Tree *tree)

{

if (tree->left)

traverse(tree->left);

if (tree->right)

traverse(tree->right);

process(tree);

Chapter 2. OpenMP 3.0 11

}

One way to parallelize this code is to use parallel regions as shown in Listing 2.2:

Listing 2.2: Parallel tree traversal with OpenMP 2.5

void traverse (Tree *tree)

{

#pragma omp parallel sections num_threads(2)

{

#pragma omp section

if (tree->left)

traverse(tree->left);

#pragma omp section

if (tree->right)

traverse(tree->right);

}

process(tree);

}

In OpenMP, #pragma omp parallel section is called a work-sharing construct. It

precedes a sequence of k blocks of code that may be executed concurrently by k

threads. Different blocks will be executed by different threads. There is an implied

barrier for synchronization at the end of parallel sections. It is possible for a thread to

execute more than one section if it is quick enough and the OpenMP implementation

permits it.

Chapter 2. OpenMP 3.0 12

In Listing 2.2, there are two independent “section” directives that are nested

within a “sections” directive. The enclosed section(s) of code are to be divided among

the threads in the team. Each section in Listing 2.2 is executed once by a thread in

the team. Since there are two sections, one thread is assigned to each section. In this

program due to the use of recursion, there will be too many parallel regions which

adds extra overhead and extra synchronization (Ayguadé et al. [2009]). Also, sections

cannot be nested and therefore not manual.

The same program can be done more efficiently in OpenMP 3.0 as shown in the

code fragment in Listing 2.3

Listing 2.3: More efficient parallel tree traversal with OpenMP 3.0

void traverse (Tree *tree)

{

if (tree->left)

#pragma omp task

traverse(tree->left);

if (tree->right)

#pragma omp task

traverse(tree->right);

process(tree);

}

The program in Listing 2.3 works much better than the code in OpenMP with many

parallel regions. Here, we are not restricted to only two threads as with the code in

Chapter 2. OpenMP 3.0 13

Listing 2.2. A thread is assigned to a task (with code and data). Each task produces

more tasks dynamically at runtime. Therefore, a thread that executes a task package

is a new instance of a task. The new tasks can be executed immediately by the same

thread or be executed at a later time by some other thread in the team. Threads can

also suspend the execution of a task and resume execution at a later time.

Despite the parent-child relationship between tasks, a parent task can finish ex-

ecution even before the child task has finished. This can be prevented by adding a

synchronization primitive. The code in Listing 2.4 depicts how to use the taskwait

directive to achieve this effect.

Listing 2.4: Using synchronization directive

void traverse (Tree *tree)

{

if (tree->left)

#pragma omp task

traverse(tree->left);

if (tree->right)

#pragma omp task

traverse(tree->right);

#pragma omp taskwait

process(tree);

}

Chapter 2. OpenMP 3.0 14

Please note that tasks can be nested inside parallel regions, inside other tasks

and inside worksharings.1. Therefore, tasks are composable. In the above example,

tasks are “tied” by default. Each task is always executed by the same thread. This

restriction can be lifted by declaring tasks as “untied”. This allows the tasks to

migrate between threads at any point. Although, this may increase performance,

programming is more complicated as the data scope must be carefully handled by the

programmer to avoid unsafe sharing of data.

2.0.2 The OpenMP 3.0 collapse feature

“Collapse” is a new feature in OpenMP 3.0. This feature gives programmers more

control to parallelize nested loops. Programmers just need to add “collapse” after

#pragma omp for. The syntax is as follows:

#pragma omp for ... collapse(N) ...

where N is the number of loop iterations that we want to collapse. Consider the code

in Listing 2.5:

Listing 2.5: Nested loops

for (i=0; i<N; i++)

for(j=0; j<k; j++)

work(i,j);

There are many ways to parallelize this nested loop with previous OpenMP versions.

One way is to parallelize the second loop. The code in Listing 2.6 shows one way to

1worksharings constructs, such as # omp for, allows the compiler to subdivide works among the
threads in an SPMD model

Chapter 2. OpenMP 3.0 15

parallelize this nested loop in previous versions of OpenMP:

Listing 2.6: Parallelizing nested loop with OpenMP 2.5

for (i=0; i<N; i++)

#pragma parallel for

for(j=0; j<k; j++)

work(i,j);

The program starts with i = 0. Forks k iterations and each iteration j is executed

by a thread for work(i,j). At the end, there is a join and the for is executed again.

There are N −1 forks and joins in total. OpenMP 3.0 overcomes this issue by adding

the collapse feature. The code Listing 2.7 illustrates this:

Listing 2.7: Parallelizing nested loop with OpenMP 3.0

#pragma parallel for collapse(2)

for (i=0; i<N; i++)

for(j=0; j<k; j++)

work(i,j);

Now, these two loops in Listing 2.7 are collapsed into one single loop and the iterations

are divided efficiently among the threads.

Chapter 3

Breadth-First Search

Breadth-first search is one of the well-known graph traversal techniques in graph

theory. Moore (Moore [1959]) developed the BFS algorithm while trying to find the

shortest path inside mazes. BFS works by dividing the vertices of the graph into

multiple levels. In this chapter, a brief introduction to the BFS algorithm is given,

followed by my parallel solution using task level parallelism. The implementation

details and results are discussed towards the end of the chapter.

3.1 Introduction and Background

For a given connected graph G = (V,E), V denotes the set of vertices in a graph

G, and E denotes the set of edges in G. BFS starts at the root vertex (level 0) and

explores all the neighbouring nodes connected to the root. These neighbouring nodes

are placed in level 1 (Figure 3.1). The algorithm then moves to these neighbouring

nodes in level 1 and explores all their unexplored neighbouring nodes, and places

16

Chapter 3. Breadth-First Search 17

Figure 3.1: Breadth-First Search traversal

these nodes in level 2. The algorithm continues until it finds what it is looking for.

The sequential BFS algorithm is shown in Algorithm 1.

Algorithm 1: BFS Algorithm

Input: G = (V,E)

begin

enqueue(Q, u) /* Insert the root */

while ! empty(Q) do

dequeue(Q, v)

for each vertex u connected to v do

visit u

enqueue(Q, u)

The BFS algorithm can also be used to find the shortest path from the root

(source) to all the vertices in the graph. That is, it finds a path from the source

vertex to all the vertices in the graph.

Chapter 3. Breadth-First Search 18

Here, besides having a boolean variable that indicates whether the vertex has

already been visited, another variable, called pred is needed to store or to record the

predecessor vertex (parent vertex) of the currently visited vertex. This predecessor

information can be used to backtrack from a vertex to the source to determine the

path and length of the shortest path.

The sequential algorithm for finding the shortest path using BFS is given in Al-

gorithm 2.

Algorithm 2: BFS Algorithm finding shortest path

Input: G = (V,E)

begin

visited(s)←− True

for each vertex v ∈ V do

visited(v)←− false

pred(v)←− −1

Enter s into empty queue Q

while ! empty(Q) do

dequeue(Q, v)

for each vertex u of v do

visited(u) = true

pred(u) = v

From Figure 3.1 and Algorithm 2, it can be seen that the BFS algorithm is syn-

chronous. That is, each level needs to be explored first before processing the next

level. Although, the nodes within a level can be explored in parallel, there is syn-

Chapter 3. Breadth-First Search 19

chronization between levels.

One way of implementing the parallel BFS in OpenMP 2.5 is as follows. One

thread examines the source vertex. The source vertex’s neighbouring vertices are

placed in a queue data structure. These are the vertices at level 1. The vertices may

be assigned to each thread or the work or computations of the vertices may be shared

among the threads depending on the number of nodes in the queue, which changes

dynamically at runtime. I call the vertices in the queue “active vertices”. The threads

working on the active vertices may in turn place the unexplored neighbouring vertices

in the queue (level 2). After the threads have finished executing the active vertices,

they synchronize before considering the next set of vertices in the queue. This process

continues until there are no more vertices in the queue.

The Algorithm 3 shows the high level OpenMP 2.5 implementation of BFS.

Algorithm 3: Parallel BFS Algorithm in OpenMP 2.5

Input: G = (V,E)

begin

enqueue(Q, u)

while ! empty(Q) do

dequeue(Q, v)

for each vertex u connected to v do in parallel

visit u

Synchronization barrier

enqueue(Q, u)

First, as can be seen there is synchronization overhead at each level. This leads

to many forks and joins. Also, there may be a data race problem if two threads

Chapter 3. Breadth-First Search 20

executing on two active vertices encounter the same unexplored neighbour. Here,

again, synchronization is required to control access to the shared data.

To avoid unnecessary synchronization, in this thesis, I develop an asynchronous

version of BFS using the ideas from Chandy and Misra (Chandy and Misra [1982]).

Chandy and Misra designed a theoretical distributed algorithm for finding single

source shortest paths. Their algorithm is asynchronous and iterative. In an asyn-

chronous algorithm, we can avoid level synchronization by allowing tasks to be created

and destroyed at runtime. However, termination detection in an asynchronous algo-

rithm is difficult. In Chandy and Misra [1982], the authors propose an interesting idea

for detecting termination in a distributed environment for the single source shortest

path problem.

The asynchronous BFS algorithm constructs a tree where each vertex in the tree

can be regarded as a task. I implement this algorithm in OpenMP 3.0 using the task

directive.

3.2 Related work

Bader and Madduri (Bader and Madduri [2006]) implemented BFS on a multi-

threaded architecture. Unlike previous implementations that consider load balancing

or distributed queue, they take advantage of the BFS characteristics. They used a

concept called level synchronization. Level synchronization takes vertices that belong

to a specific level to be processed in parallel. They keep track of all active vertices in

the graph at a given level. They used their algorithm on a scale free graph which is

representative of most real-world graphs. In this graph, the majority of the vertices

Chapter 3. Breadth-First Search 21

have small degree where the rest have large degree. Results show that their imple-

mentation takes less than 5 seconds with 400 million vertices and 2 billion edges of

scale free graph and achieved speedup of 30 times on 40 processors.

Later, Leiserson and Schardl (Leiserson and Schardl [2010]) used the level syn-

chronization concept also for the BFS problem using a data structure called bag data

structure. The idea of a bag is to store an unordered set of nodes that belong to a level

Lk. Therefore, a bag data structure can contain many such trees, each tree of size 2k

where k is the index in the bag. To find nodes that belong to the next level Lk+1, the

BFS algorithm performs a union-disjoint operation. The nodes in the bag (Lk) are

first split into two disjoint bags with some fraction of the nodes in one bag and the rest

in the current bag. The current bag is split again. This is done recursively creating

several smaller bags. Each of the smaller bags are then traversed (visited) in parallel

creating an output bag with nodes that belong to the next level Lk+1. Several such

output bags are created. The union operation is performed on the resulting output

bags to create single output bag with all nodes that belong to level Lk+1. Leiserson

and Schardl proposed a linked list to implement the bag and implemented their code

using Cilk++ (Blumofe et al. [1995]). In Cilk++, the threads manage two worksets,

the first is the current workset and the other is the next workset. In Leiserson and

Schardl’s algorithm, the current workset has all the nodes of the current level where

the next workset has all the nodes of the next level. Each thread takes one node from

the current workset, explores its neighbours and places the unvisited neighbours into

the next workset. Leiserson and Schardl study the complexity of their proposed data

structure for the BFS algorithm. Their algorithm runs in O((V +E)/P +D lg3(V/D))

Chapter 3. Breadth-First Search 22

where P is number of processors and D diameter of the graph G = (V,E).

Recently, John et al. (John et al. [2012]) implemented the BFS algorithm on the

Freeze Breeze Program eXecution Model (PXM) (John et al. [2012]). The main contri-

bution in the paper was to show the effectiveness of the model to exploit fine-grained

parallelism in irregular applications. The Freeze Breeze PXM follows a dataflow

model proposed by Dennis (Dennis [1975]). The model exploits fine-grained paral-

lelism. That is, the basic unit of parallelism in the PXM model is a task. The tasks

follow a spawn/join model. The master worker spawns many child workers which

may in turn spawn more child workers. In this model, the master has no interaction

with child workers and the child workers have no interaction with other workers in the

system until the join phase. This allows threads to be created independently of one

another so as many concurrent tasks as possible to exploit the parallelism available in

the algorithm. The Freeze Breeze PXM also proposes a tree-structured global virtual

memory model. The model is tested on some irregular computations such as BFS.

John et al. used standard BFS algorithm that uses queues to store the visited nodes.

They Implemented BFS on the Freeze Breeze PXM system without locking or atomic

operations for synchronization. They used Graph 500 benchmark specifications (gra)

with different graph sizes starting from 16 till 1024. The system was loaded with 40

processors. The system achieved a high performance peak that each processor able

to handle on average 242,847 edges per second.

The BFS algorithm has been regarded as one of the simplest yet most interesting

graph traversal algorithms that represents irregular computations. It has been used

as a benchmark to examine new architectures or runtime systems. For example, an

Chapter 3. Breadth-First Search 23

article by Tumeo et al. (Secchi et al. [2012]) like (John et al. [2012]) shows the power

of the Cray XMT multithreaded architecture for irregular applications through the

BFS algorithm.

3.3 My implementation

BFS can be done in parallel by processing all the vertices that belong to the same

level concurrently. However, for my solution, I developed an asynchronous parallel

method to make effective use of the “task” directive. There is a one-one mapping

between a vertex and a task. I designate vi as vertex i and its corresponding task as

Ti. I store the current distance and predecessor information of each of the vertices in

global shared memory as a vector (distance(v1), distance(v2), ..., distance(vn)). Note

that for my BFS algorithm, each edge has unit distance. Similarly, for predecessor

(pred(v1), pred(v2), ..., pred(vn)).

The algorithm works as follows. Assume the algorithm starts at the source vertex

v0 with distance = 0. This vertex will be represented as a task that is, T0. Note that

a task can be encapsulated as an individual entity with its own data set (that is, a

task Ti carries private data such as the distance (distancei)and predecessor (predi)

information for the individual vertex). Since this is an asynchronous algorithm, a

vertex may receive a shorter distance value from its neighbour at any point in time

during the execution of the algorithm. If the vertex’s distance information is updated

with a shorter distance then the task will send the updated information out to its

neighbouring nodes by spawning its neighbouring vertices as tasks. For example,

consider the graph in figure 3.2.

Chapter 3. Breadth-First Search 24

Figure 3.2: Graph example

Every vertex has three private variables which are Pred, dist and Ack which

indicates number of the acknowledgement from each neighbour. The source vertex

will explore its nighbour, then creates tasks for each nighbour and it updates its

private information (pred, dist and Ack). It happens that the current distance is

not the shortest distance. So, the vertex will check the shortest distance and when

it finds the shortest distance, it will eliminate all other distances. Figure 3.3 shows

that vertex 7 received 16 as a short distance from vertex number 4. However, this

is not the shortest path. The shortest path is through vertex number 3 with 10 as a

short distance. So, vertex 7 will update its dist to 10, changes pred to vertex 3 and

eliminates the path to vertex 4. Figure 3.4 depicts this scenario.

The process will be the same for all vertices till we reach to the end of the graph.

vertex will send back acknowledgment when Ack is 0 to its pred. The algorithm

finishes when Ack of the source vertex is 0. The asynchronous parallel BFS algorithm

Chapter 3. Breadth-First Search 25

Figure 3.3: Asynchronous Breadth-First Search traversal

Figure 3.4: Remove the inefficient path

is shown in Algorithm 4.

Chapter 3. Breadth-First Search 26

Algorithm 4: Parallel BFS Algorithm

Input: G = (V,E)

begin

distance(vi)←− ∅

Pred(vi)←−∞

numacki ←− 0

for vi ∈ V do in parallel

Create task ()

if Currentdistance < distancei then

if Numacki 6= 0 then

Send acknowledgment to Predi

Numack = Numack − 1

Synchronization barrier

Pred(vi = Parentvi) /* Update the predecessor */

distancei = Currentdistance /* Update the the distance */

Numack = Numack + numberofnieghborsofvi

if Numack = 0 then

Send acknowledgment to Predi

else

Send acknowledgment to Predi

Chapter 3. Breadth-First Search 27

3.4 Results

I used undirected graphs for our experiments. I start from 16 vertices and increase

the number of vertices to 4096. I compare with OpenMP 2.5 and newer OpenMP 3.0

versions for both types of graphs. The implementation is in seconds.

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.05 0.04
32 1.05 1.04
64 2.07 2.08
128 3.09 3.09
256 4.11 4.16
512 4.17 5.41
1024 4.38 5.28
2048 4.60 5.12
4096 5.43 7.80

Table 3.1: The BFS execution time on SSAC#2

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.06 0.12
32 1.85 1.13
64 1.76 1.05
128 1.75 1.11
256 1.81 1.17
512 2.35 3.29
1024 3.62 5.49
2048 5.14 7.49
4096 6.15 10.31

Table 3.2: The BFS execution time on R-MAT

Table 3.1 (Figure 3.5) and Table 3.2 (Figure 3.6) represent the execution times for

both OpenMP 3.0 and OpenMP 2.5 for the SSCA#2 and R-MAT graphs. In both

versions, the execution time of both OpenMP 3.0 and OpenMP 2.5 increase with

Chapter 3. Breadth-First Search 28

respect to problem size. This is understandable due to increase in overheads such as

communication or synchronization as problem size increases.

In OpenMP 3.0, for the SSCA#2 graph, the execution time for small problem size

is relatively same. There is some difference in the execution times when we reach 2048

vertices. In the OpenMP 2.5 version, there is synchronization at each level and the

active vertices in the queue are executed by a team of threads. For larger number of

vertices, the vertices would be partitioned among the threads and thereby producing

a coarse-grained implementation. However, due to synchronization overhead, there is

an increase in execution time. On the other hand, the proposed asynchronous BFS

algorithm exploits fine-grained parallelism. Each task is executed by one thread in

the team as the data becomes available for the thread. The number of tasks generated

increases or decreases relative to the graph size. However, fine-grained parallelism has

not affected significantly the execution time for large graphs.

In the R-MAT graph, the execution times in OpenMP 3.0 increases compared to

the execution times in OpenMP 2.5 until we reach 1024 vertices. This, I believe is

due to the randomness of the graphs generated. Synchronization does not affect the

algorithm running on OpenMP 2.5 for smaller graph sizes as we saw from the SSCA#2

graphs. Coarse-grained parallelism actually aids the performance of the algorithm in

OpenMP 2.5. In OpenMP 3.0, fine-grained parallelism deters performance for small

number of vertices, and in R-MAT this is exacerbated due to the randomness of the

graph (low and high vertices are mixed). As the number of vertices is increased in R-

MAT, the task-parallel algorithm performs better than the coarse-grained algorithm

executed in OpenMP 2.5. This is due to the synchronization overhead associated

Chapter 3. Breadth-First Search 29

with the parallel BFS algorithm running on OpenMP 2.5. Fine-grained or task-level

parallelism does not decrease performance of the algorithm. In the asynchronous

algorithm, tasks overlap computation with communication and the algorithm reduces

synchronization to a large extent.

For larger graphs, the asynchronous algorithm with task parallelism runs 1.6 times

faster than the algorithm running on OpenMP 2.5 with an efficiency of 40%.

0 1,000 2,000 3,000 4,000

0

2

4

6

8

Number of vertices

E
x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 3.5: BFS execution Time for SSAC#2

0 1,000 2,000 3,000 4,000

0

2

4

6

8

10

Number of vertices

E
x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 3.6: BFS execution Time for R-MAT

Chapter 4

All-Pairs Shortest Path

The All-Pairs Shortest Path (APSP) problem finds the shortest paths between

every pair of nodes in a graph. Unlike the BFS algorithm, there is some cost or weight

associated with each edge. The data structure is usually represented as a matrix and

may be sparse depending on the structure of the graph. The all-pairs shortest path

algorithm is chosen to illustrate or to explore the use of the “collapse” directive.

4.1 Introduction

The all-pairs shortest path algorithm finds the shortest paths from every vertex

to all other vertices in a graph. There are two common sequential algorithms used to

solve all-pairs shortest path problem: the Floyd-Warshall and Dijkstra algorithms.

Dijkstra’s algorithm is used to find the shortest path for a single vertex to

other vertices by checking the cost or weight of each path individually. So, it can

be used to solve APSP problem by applying Dijkstra’s algorithm on every vertex.

30

Chapter 4. All-Pairs Shortest Path 31

Dijkstra’s algorithm is inherently sequential. Therefore, it does not lend itself easily

to parallelization. Also, it does not exhibit loop level parallelism required to study

the collapse directive. Therefore, I considered the Floyd-Warshall algorithm.

Floyd-Warshall’s algorithm uses a 2D adjacency matrix, an associated weight or

cost to store the total distance cost from every vertex to every other vertex in the

graph. It basically consists of three loops. The inner loop computes the cost. The

pseudocode for sequential Floyd-Warshall’s algorithm is given in Algorithm 5:

Algorithm 5: Sequential Floyd-Warshall’s Algorithm

Input: G = (V,E)

begin

Cost(i, j)←−∞

Cost(i, j)←− Weight(i, j)

for i← 0 to n do

for j ← 0 to n do

for k ← 0 to n do

Cost(j, k) = min(Cost(j, k), Cost(j, i) + Cost(i, k))

Floyd-Warshall is a cubic-time algorithm. So, the processing time is high for

large graphs. One way of implementing the algorithm in parallel is by using dynamic

programming. The algorithm suggests a recursive rule for computing the shortest

paths. At each iteration, a partial solution which is optimal is found and stored in

a table. This partial solution is modified at each step until an optimal shortest path

solution is found.

In dynamic programming, there are two concerns: the memory requirement

Chapter 4. All-Pairs Shortest Path 32

of the table and the cost of synchronization at each iteration. To implement the

algorithm, we could use the dynamic programming technique or in OpenMP, we can

take advantage of loop level parallelism. One way is to allow the second inner loop

to compute in parallel.

We can parallelize Floyd-Warshall’s algorithm in OpenMP 2.5 as shown in algo-

rithm 6.

Algorithm 6: Parallel Floyd’s Algorithm using OpenMP 2.5

Input: G = (V,E)

begin

Cost(i, j)←−∞

Cost(i, j)←− Weight(i, j)

for i← 0 to n do

for j ← 0 to n do in parallel

for k ← 0 to n do

Cost(j, k) = min(Cost(j, k), Cost(j, i) + Cost(i, k))

In the above OpenMP example, the master thread executes the two outer loops

sequentially. For every i and j, n (k = 0 to n) iterations are forked which are

executed by the threads. If there are n threads, each iteration k will be executed

by n threads. At the end of the execution, the threads join or synchronize and then

the master thread resumes. If n is large, there are many forks and joins degrading

performance.

In section 4.3 I will discuss how to implement Floyd’s algorithm more efficiently

using OpenMP 3.0.

Chapter 4. All-Pairs Shortest Path 33

4.2 Related work

Venkataraman et al. (Venkataraman et al. [2003]) proposed a blocked version

of Floyd -Warshall’s algorithm to solve the all-pairs shortest path problem. Their

algorithm exploits cache locality to optimize performance. The algorithm divides the

initial adjacency matrix into blocks of B × B and each block processes individually

in B iterations. They tested their blocked algorithm on two different machines, a

Sun Ultra Enterprise 4000/5000 and a SGI O2. Their blocked algorithm delivered

a speedup between 1.6 to 1.9 for graphs between 480 to 3200 vertices on Sun Ultra

Enterprise 4000/5000 and from 1.6 to 2 on the SGI O2 for graphs between 240 to 1200

vertices.

Likewise, Ma et al. (Ma et al. [2010]) developed a parallel version of Floyd-

Warshall’s algorithm for multi-core architectures using Threading Building Blocks

(TBB). A TBB is a parallel programming model for C++ code. It is a runtime

based programming model that specifies tasks. The tasks are mapped to threads.

However, unlike Venkatraman et al., Ma et al. use task and data level parallelism

available in the algorithm to find all-pairs shortest-paths. The results reveal that the

parallel algorithm (uses up to 128 threads) surpasses both serial and single threaded

algorithms by 57.26% and 50.06% respectively.

Recently, Jasika et al. (Jasika et al. [2012]) used Dijkstra’s algorithm for APSP.

They used OpenMP to parallelize Dijkstra algorithm. They use the algorithm to find

the single source shortest path for every vertex. They compared the OpenMP imple-

mentation to an OpenCL implementation by Munshi [2009] and showed that there

was no gain in performance in the two implementations. This is due to the inherent

Chapter 4. All-Pairs Shortest Path 34

sequential nature of Dijkstra’s algorithm problems which makes this algorithm very

difficult to be efficiently parallelized.

4.3 My implementation

I used the new directive called “collapse” available in OpenMP 3.0 to handle the

nested loops. This directive deals efficiently with multi-dimensional loops. In other

words, it combines multiple loops into a single loop. Thus, by using the “collapse”

directive, I avoided the overhead of spawning threads within the nested loop in the

Floy-Warshall algorithm. Also, I created a task for each vertex and process them in

parallel since each vertex is independent of each other. If I collapsed the three nested

loops, number of chunks to be handled by thread will be high making it coarse-grained

algorithm. Instead, I collapsed the first two nested loop so the algorithm will be find-

grained algorithm. Algorithm 7 shows my parallel APSP algorithm using OpenMP

3.0.

Chapter 4. All-Pairs Shortest Path 35

Algorithm 7: Parallel APSP Algorithm

Input: G = (V,E)

begin

Cost(i, j)←−∞

Cost(i, j)←− Weight(i, j)

for i← 0 to n do in parallel collapse (2)

for j ← 0 to n do

Create task ()

for k ← 0 to n do

Cost(j, k) = min(Cost(j, k), Cost(j, i) + Cost(i, k))

4.4 Results

I used undirected graphs for our experiments. I started from 16 vertices and

increase the number of vertices to 4096. I compared OpenMP 2.5 to newer OpenMP

3.0 versions for both R-MAT and SSCA#2 graphs. The execution time is in seconds.

As shown in Table 4.1 and Table 4.2 and the subsequent Figures 4.1 and 4.2

respectively, the algorithm runs a bit slower on OpenMP 3.0 for small numbers of

vertices. However, for large numbers of vertices, the algorithm on OpenMP 3.0 sur-

passes the one on OpenMP 2.5 by 1.6 times and also achieved 40% efficiency. The

new collapse feature allows effective use of the OpenMP 3.0 threads. By collapsing

the loops we make more efficient use of the resources and also eliminate unnecessary

synchronization between the first two inner for loops that are collapsed.

Chapter 4. All-Pairs Shortest Path 36

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.002 0.001
32 0.003 0.001
64 0.01 0.004
128 0.03 0.01
256 0.11 0.07
512 0.53 0.50
1024 3.06 4.06
2048 19.59 31.81
4096 158.85 257.47

Table 4.1: The APSP execution time on SSAC#2

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.002 0.001
32 0.003 0.001
64 0.01 0.004
128 0.03 0.01
256 0.11 0.07
512 0.73 0.52
1024 4.08 3.91
2048 21.56 31.02
4096 154.21 251.12

Table 4.2: The APSP execution time on R-MAT

0 1,000 2,000 3,000 4,000

0

50

100

150

200

250

Number of vertices

E
x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 4.1: APSP execution Time for SSAC#2

Chapter 4. All-Pairs Shortest Path 37

0 1,000 2,000 3,000 4,000

0

50

100

150

200

250

Number of vertices
E

x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 4.2: APSP execution Time for R-MAT

Chapter 5

Minimum Spanning Tree

The Minimum Spanning Tree (MST) algorithm has applications in network op-

timization problems (Bertsekas [1992]; Ahuja et al. [1993]). MST constructs a tree

from a given graph. In particular, it constructs a spanning tree, which includes all the

vertices in the graph and total weight of the tree is minimized. A brute force method

of finding an MST in a graph requires exponential time . The most classical approach

is using a greedy technique. Greedy algorithms build the tree incrementally.

5.1 Introduction

Given a connected, weighted undirected graph G, MST finds a tree, T , such

that the tree contains all vertices of the graph and the total weight of the tree is

minimized. There are many algorithms to find MST.

Prim’s algorithm and Kruskal’s algorithm (Leiserson et al. [2001]) are well-known

algorithms to find a MST. Prim’s algorithm initially starts with a single vertex. It

38

Chapter 5. Minimum Spanning Tree 39

constructs a partial solution at each iteration by adding an edge (in turn a vertex)

to the existing partial solution as long as it does not form a cycle. The chosen edge

is of minimum weight connecting to the vertices in the existing partial solution. The

algorithm terminates when all the vertices have been added to the tree.

Algorithm 8 shows a sequential version of Prim’s algorithm (Neapolitan and

Naimipour [2004]):

Algorithm 8: Prim’s Algorithm

Input: G = (V,E)

begin

SetEdges← ∅

SetV ertex← v1

min←∞

for EveryV ertex do

dist[i]← weight[1][i]

for EveryV ertex do

if dist[i] < min then

min← dist[i]

V ertexNear ← i

Add CurruntEdge to SetEdges

for V ertexNear to CurrentV ertex do

if weight[i][V ertexNear] < dist[i] then

dist[i]← weight[i][V ertexNear]

SetV ertex← V ertexNear

Chapter 5. Minimum Spanning Tree 40

Kruskal’s algorithm on the other hand, builds a forest of subtrees. The algorithm

creates a set of disjoint subtrees of vertices. The trees are then merged if there is a

connecting edge of smallest weight between two subsets. The algorithm terminates

when there is one tree contains all the vertices.

Algorithm 9 shows a sequential implementation of Kruskal’s algorithm.

Algorithm 9: Kruskal’s Algorithm

Input: G = (V,E)

begin

Sort all edges by weight in increasing order

SetEdges← ∅

while Number of edges in SetEdges < disjoint subsets do

e← least weighted edge not yet in SetEdges

u← the first connected by vertex e

v← the second connected by vertex e

if u and v not in the same set then

merge u and v

Add e to SetEdges

return SetEdges

Prim’s algorithm is hard to parallelize. It is more sequential in nature. In

Kruskal’s algorithm the first part of the algorithm, the sorting part, can be paral-

lelized. However, it requires a bit more effort to parallelize the disjoint-union part

of the algorithm. A lot of synchronization is needed here since many threads want

to edges to the final set of edges. Also, in each step of Kruskal’s algorithm, only

two partial trees are merged. The level of concurrency in this algorithm, is therefore,

Chapter 5. Minimum Spanning Tree 41

limited.

There is another algorithm called, Bor̊uvka’s MST algorithm (Bader and Cong

[2006]). This algorithm is iterative and suited for parallelization.

Like Kruskal’s algorithm, it partitions the vertices into subtrees, creating a forest

of trees. By merging two or more vertices, the algorithm creates what is called a

supervertex. The vertices and all edges incident on the vertices are contracted into

one supervertex. Like Kruskal’s algorithm, Bor̊uvka’s algorithm selects one edge of

smallest weight coming out of a component for the merging process. The algorithm

merges components until there is one supervertex in the end.

In Bor̊uvka’s algorithm, in a single step, all the supervertices participate in the

merger allowing more concurrency, unlike Kruskal’s algorithm. Choosing multiple

edges in a single step to merge the components requires longer processing time and

is more complex.

Algorithm 10 illustrates a sequential implementation of Bor̊uvka’s algorithm.

Chapter 5. Minimum Spanning Tree 42

Algorithm 10: Bor̊uvka’s Algorithm

Input: G = (V,E)

begin

Supervertices← numberofvertices

Superverticesi ← vi

T ← ∅

while Supervertices 6= 1 do

for Eachvertex do

Find the smallest edge between vi and vj such that

Superverticesvi 6= Superverticesvj .

Put the smallest edge in T

Set Superverticesvj = Superverticesvi

Supervertices = Supervertices− 1

5.2 Related work

Bader and Cong. (Bader and Cong [2006]) introduced a non-deterministic shared

memory parallel MST algorithm by combining Bor̊uvka’s and Prim’s algorithms. At

the beginning, the algorithm starts with Prim’s algorithm from different vertices to

construct many sub-trees. Then, the algorithm uses Bor̊uvka’s algorithm to merge

these sub-trees to form an single spanning tree (also so-called a supervertex).

Setia et al. (Setia et al. [2009]) used the same idea of Bader and Cong to find

MST using Prim’s algorithm. The algorithm chooses random vertices as roots and

then concurrently each thread builds a subtree. Each node has a unique color which

indicates its thread id. A vertex is added into a tree by a thread if it does not belong

Chapter 5. Minimum Spanning Tree 43

to any other trees. However, when a thread wants to add a vertex to its tree and

the vertex belongs to another tree, both trees are merged into one tree and the root

is updated to the smaller id thread between the two trees. At the end, thread 0 will

have the MST. This algorithm achieved speedup of 2.64 for 4 threads on dense graph

with 5000 vertices.

Chung and Condon (Chung and Condon [1996]) implemented Bor̊uvka’s algo-

rithm on Thinking machine’s CM-5. Their implementation was straightforward to

measure the speedup of the algorithm on a homogeneous architecture. The speedup

obtained by their algorithm was about 4 for sparse graph of 64,000 vertices on 16

processors.

5.3 My implementation

I used Bor̊uvka’s algorithm for my parallel implementation of MST for a shared

memory architecture. This algorithm is a bit more complicated than others. The

algorithm partitions vertices into supervertices. At the beginning, each vertex is

regarded as a supervertex. Each supervertex is a task. The task contains information

about the vertex, its corresponding neighbours, and the code it needs to execute.

Each task selects a cheapest edge and determines which supervertex it should merge

with. Each task also determines the root of its subtree. Each task is executed by a

thread.

In the merging phase, although all the components can participate, creat-

ing one supervertex of two components requires a lot of synchronization. This,

I felt was not worthwhile doing since it will degrade performance and may be-

Chapter 5. Minimum Spanning Tree 44

have very poorly. In the literature (Chung and Condon [1996]) the merging

phase is done sequentially. Therefore, I sequentially implemented the merg-

ing step. After the merging step, the supervertices that were merged are

now task. Since each task consists of code and data, we can avoid ac-

cessing the global memory frequently to store the merged information. The

Parallel implementation of Bor̊uvka’s MST algorithm is given in Algorithm11.

Algorithm 11: Parallel Bor̊uvka Algorithm

Input: G = (V,E)

begin

Supervertices← numberofvertices

Superverticesi = vi

T ← ∅

while Supervertices 6= 1 do

for Eachvertexv do in parallel

Create task ()

Find the cheapest edge between vi and vj such that

Superverticesvi 6= Superverticesvj .

Put the cheapest edge in T

Synchronization barrier ()

Set Superverticesvj = Superverticesvi

Supervertices = Supervertices− 1

Chapter 5. Minimum Spanning Tree 45

5.4 Results

I used undirected graphs for our experiments. I start from 16 vertices and increase

the number of vertices to 4096. I compared OpenMP 2.5 to OpenMP 3.0 versions for

both R-MAT and SSCA#2 graphs. The execution time is in seconds.

In OpenMP 2.5, I used a coarse-grained single-program multiple data approach.

The vertices are partitioned among the threads and the threads execute the sequential

Bor̊uvka algorithm. I merge the supervertices and store the information in shared

memory. The algorithm, implemented in OpenMP 2.5, uses the parallel directive.

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.06 0.06
32 0.12 0.13
64 0.19 0.17
128 0.28 0.27
256 0.50 0.42
512 1.25 1.21
1024 2.82 2.14
2048 6.40 7.21
4096 17.30 21.66

Table 5.1: The MST execution time on SSAC#2

Number of vertices OpenMP 3.0 OpenMP 2.5

16 0.06 0.10
32 0.08 0.10
64 0.27 0.30
128 0.03 0.01
256 0.27 0.20
512 1.22 1.63
1024 3.31 4.20
2048 6.14 7.30
4096 13.90 28.10

Table 5.2: The MST execution time on R-MAT

Chapter 5. Minimum Spanning Tree 46

It can be seen from Table 5.1(Figure 5.1) and Table 5.2 (Figure 5.2) that OpenMP

3.0 implementation outperforms OpenMP 2.5 in general especially, in large number of

vertices. Due to synchronization of supervertices in shared memory, the OpenMP 2.5

execution times are higher. Since there were more than one supervertex participating

the merge step, synchronization overhead had a significant impact on the performance.

The average speedup attained is 1.6 times faster than OpenMP 2.5 with efficiency

40%. One reason for that is using the task directive for choosing the edges.

0 1,000 2,000 3,000 4,000

0

5

10

15

20

Number of vertices

E
x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 5.1: MST execution Time for SSAC#2

0 1,000 2,000 3,000 4,000

0

5

10

15

20

25

30

Number of vertices

E
x
ec

u
ti

on
ti

m
e

in
se

co
n
d
s

OpenMP 3.0
OpenMP 2.5

Figure 5.2: MST execution Time for R-MAT

Chapter 6

Conclusions and Discussion

One of the main contributions in my thesis is to provide some insight into the

usefulness of OpenMP 3.0 for irregular problems. OpenMP was meant for solving

scientific computing problems involving loops written in high level languages such as

C or C++. Algorithms that incorporate a regular data structure such as an array,

and provide lots of data parallelism can be efficiently implemented in OpenMP. An

example of such an algorithm is dense matrix multiplication. Most of the algorithms

that possess such regularity manifest themselves into loops. The bounds of the loops

are known at compile time and there are no real surprises at runtime in terms of

the computations being performed by the algorithms. Although OpenMP provides

many other types of compiler directives other than to exploit loop level parallelism,

the strength in OpenMP lies in solving problems that are loop based.

Irregular algorithms, on the other hand, commonly use pointer-based data struc-

tures which are unstructured, and data size changes at runtime require intermittent

load balancing among processors. The amount of computations may not be known

47

Chapter 6. Conclusions and Discussion 48

at compile time complicating matters further. On homogeneous multi-core architec-

tures, caches exacerbate the problem since access to memory in irregular algorithms

is not necessarily contiguous and frequent transfer of data between caches and mem-

ory would degrade performance (Zhang and Torrellas [1995]), a long studied issue.

From a software perspective, OpenMP (Mattson [2003]) was not meant for irregular

applications. To develop parallel algorithms for irregular computations, any parallel

language requires the ability to dynamically create and destroy threads under explicit

programmer control. This has now been incorporated in version 3.0 of OpenMP which

provides programmers with the flexibility to create and destroy threads in a paral-

lel region. This is done through the “task” directive, a new directive available in

OpenMP 3.0. Another feature provided in OpenMP 3.0 is the “collapse” feature.

This feature tries to reduce the number of forks and joins in nested loops by allowing

user to specify where loop joining is safe to apply. This is useful in some irregular

algorithms.

In this thesis, I explored the use of task parallelization on two graph problems

and the collapse feature on one loop based graph problem. I first considered the

Breadth-First Search (BFS) algorithm to find the shortest path from a root vertex

to all the other vertices in the corresponding graph. A synchronous BFS algorithm

creates too much synchronization overhead at each level of the algorithm. The number

of levels is unknown at runtime. I therefore developed an asynchronous version of the

algorithm which allows me to create tasks following a parent-child relationship. The

idea comes from (Chandy and Misra [1982]). The main issue in the implementation

was destroying tasks and their parents appropriately to avoid programs to terminate

Chapter 6. Conclusions and Discussion 49

abruptly. I have not seen any published work study this BFS implementation using

ideas from (Chandy and Misra [1982]). I was able to achieve up to 40% efficiency

over OpenMP 2.5.

Next, I tested the collapse feature of OpenMP 3.0. The purpose of the col-

lapse feature is to condense multiple nested loops into a single loop. To accomplish

this I used Floyd-Warshall’s all-pairs shortest-path algorithm. This algorithm nor-

mally works very slowly as the number of vertices increases. I used collapse with this

algorithm to combine the nested loops in the algorithm. Consequently, my imple-

mentation of Floyd-Warshall’s algorithm ran faster on OpenMP 3.0 by factor of 1.6

times. This was due to the reduction of forks and joins.

Finally, I chose the Minimun Spanning Tree (MST) problem to evaluate task par-

allelism on OpenMP 3.0. Bor̊uvka’s algorithm was chosen over Prim and Kruskal’s

algorithm. Here I used a different approach from BFS. I did not create a parent-child

relationship between tasks. Instead, each vertex was an independent task initially.

Each task encompasses some data and the code, in this case selecting the cheapest

edge. The tasks we combined to form supervertices and these supervertices then in

turn became new tasks. In this algorithm, I could not parallelize the whole algorithm

since there are some portions of the algorithm that were intrinsically sequential. Al-

though, it performed better than the OpenMP 2.5 version (which uses parallel regions

alone) the overall execution time increases for large number of vertices.

It was quite challenging to work with the task directive. Using the task directive

for recursive algorithms would be easier to work with. When the algorithms are non-

recursive, and are irregular, it would be more efficient to develop an approach that

Chapter 6. Conclusions and Discussion 50

can efficiently make use of task level parallelism rather than simply massaging the

existing algorithm to suit the task level parallelism features. This requires more effort

on the programmers part and moves away from adding just directives to sequential

code that OpenMP so easily allows one to do. The level of programming now is

more complicated, but due to the sharing of resources provided in shared memory

machines, the simplicity of understanding OpenMP, it is still worthwhile the effort to

consider OpenMP over other APIs for irregular problems.

Chapter 7

Future work

The work described in this thesis aimed to investigate the capability of OpenMP

3.0 to work with irregular problems. Through this thesis, I have shown that OpenMP

3.0 provides features for better handling of task oriented problems needed to handle

irregularity compared to the previous versions OpenMP 2.5.

For my immediate future work, I will consider the extension of OpenMP.

OpenMP 4.0 was launched in April 2013. OpenMP 4.0 provides support for SIMD

constructs for vectorization. This will allow implementing data parallel applica-

tions more efficiently. OpenMP 4.0 also enhances task level parallelism. Moreover,

OpenMP 4.0 gives more control over threads which leads to better locality for threads

and less false sharing between them which I believe may be helpful for irreguler ap-

plications which introduced dynamic threads creation.

The second choice is to use OpenACC (ope). OpenACC is, therefore, similar

to OpenMP in the sense that it also incorporates SIMD instructions that can be

implemented specifically on Nvidia GPUs. OpenACC is still in its infancy and not

51

Chapter 7. Future work 52

much research on its capabilities exists in the literature. One of the issues with

OpenACC is that it does not allow programmers to have control of threads, such as

destroying threads. As with OpenMP, OpenACC consists of compiler directives that

can be added to parallel regions and can be executed on the CPU or GPU cores or

both for handling loop level parallelization on vectorization. In the current version,

to run programs in OpenACC requires Nvidia CUDA enabled GPUs.

It would also be interesting to see how irregular problems can be implemented

in OpenACC. This would allow me to compare the performance of irregular problems

in OpenACC to CUDA (cud) implementations. CUDA is a well-known API for

accelerators. There is some work in graph problems (Solomon et al. [2010]) on Nvidia

GPUs already and the results have been impressive. I plan to implement the same

graph algorithms and compare the results to the CUDA performance results in the

literature.

Bibliography

Cuda. http://www.nvidia.ca/object/cuda_home_new.html.

The graph500 list. http://www.graph500.org/.

openacc. http://www.openacc-standard.org/.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, New Jersey, 1993.

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, E. Su, P. Unnikr-

ishnan, and G. Zhang. A proposal for task parallelism in OpenMP. In Proceedings

of the 3rd International Workshop on OpenMP: A Practical Programming Model

for the Multi-Core Era, Beijing, China, pages 1–12, 03–07 June 2007.

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. The design of OpenMP tasks. IEEE Transactions

on Parallel and Distributed Systems, 20(3):404–418, 2009.

D. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first

search and st-connectivity on the Cray MTA-2. In Proceedings of International

53

http://www.nvidia.ca/object/cuda_home_new.html
http://www.graph500.org/
http://www.openacc-standard.org/

Bibliography 54

Conference on Parallel Processing (ICPP 2006), Columbus, Ohio, USA, pages 523–

530, 2006.

D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the min-

imum spanning forest of sparse graphs. Journal of Parallel and Distributed Com-

puting, 66(11):1366–1378, November 2006.

D. A. Bader and K. Madduri. Design and implementation of the hpcs graph analysis

benchmark on symmetric multiprocessors. In Proceedings of the 12th International

Conference on High Performance Computing (HiPC 2005), Goa, India, pages 465–

476, 2005.

D. P. Bertsekas. Linear Network Optimization: Algorithms and Codes. The MIT

Press, 1992.

R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of three-

dimensional unstructured grids. Applied Numerical Mathematics, 13:437–452, 1994.

R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk: an

efficient multithreaded runtime system. In Proceedings of the 5th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPOPP 1995),

Santa Barbara, CA, USA, pages 207–216, 1995.

O. Bor̊uvka. About a certian minimal problem. Práca Moravské Pr̆irodovĕdecké

Spolec̆nosti, 3:37–58, 1926.

D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A Recursive Model for Graph

Bibliography 55

Mining. In Proceedings of the Fourth SIAM International Conference on Data

Mining (2004), Lake Buean Vista, FL, USA, 22–24 April 2004.

K. M. Chandy and J. Misra. Distribued computations on graphs: shortest path

algorithms. In Communications of the ACM, volume 25, pages 833–837, 1982.

S. Chung and A. Condon. Parallel implementation of Bro̊uvka’s minimum spanning

tree algorithm. In Proceedings of the 10th International Parallel Processing Sym-

posium (IPPS 1996), Honolulu, HI, USA, 15–19 April 1996.

L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

E. Dedu, S. Vialle, and C. Timsit. Comparison of OpenMP and classical multi-

threading parallelization for regular and irregular algorithms. In Proceedings of

Software Engineering Applied to Networking & Parallel/Distributed Computing

(SNPD 2000), Champagne-Ardenne, France, pages 53–60, 19–21 May 2000.

J. B. Dennis. Packet communication architecture. In Proceedings of the 1975 Sag-

amore Computer Conference on Parallel Processing, pages 224–229, 1975.

D. Hisley, G. Agrawal, P. Satya-narayana, and L. Pollock. Porting and performance

evaluation of irregular codes using OpenMP. In Proceedings of First European

Workshop on OpenMP (EWOMP 1999), Lund, Sweden, pages 47–59, 1999.

N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Nosovic. Dijkstra’s short-

est path algorithm serial and parallel execution performance analysis. In Proceeding

Bibliography 56

of the 35th International Convention on Information and Communication Technol-

ogy, Electronics and Microelectronics (MIPRO 2012), Opatija, Croatia, pages 1811

–1815, 21–25 May 2012.

T. S. John, J. B. Dennis, and G. R. Gao. Massively parallel breadth first search

using a tree-structured memory model. In Proceedings of the 2012 International

Workshop on Programming Models and Applications for Multicores and Manycores

(PMAM 2012), New Orleans, LA, USA, pages 115–123, 2012.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions. In Proceedings of the 2007 ACM SIG-

PLAN conference on Programming Language Design and Implementation (PLDI

2007), San Diego, CA, USA, pages 211–222, 2007.

M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and

P. Chew. Scheduling strategies for optimistic parallel execution of irregular pro-

grams. In Proceedings of the 20th Annual Symposium on Parallelism in Algorithms

and Architectures (SPAA 2008), Munich, Germany, pages 217–228, 2008.

J. Labarta, E. Ayguadé, J. Oliver, and D. Henty. New OpenMP directives for irregular

data access loops. Scientific Programming, 9(2,3):175–183, August 2001.

C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search

algorithm (or how to cope with the nondeterminism of reducers). In Proceedings of

the 22nd ACM symposium on Parallelism in Algorithms and Architectures (SPAA

2010), Thira, Santorini, Greece, pages 303–314, 2010.

Bibliography 57

C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to Algorithms.

The MIT press, 2001.

J. Ma, K. ping Li, and L. yan Zhang. A parallel floyd-warshall algorithm based on

TBB. In Proceedings of The 2nd IEEE International Conference on Information

Management and Engineering (ICIME 2010), Bangkok, Thailand, pages 429–433,

2010.

T. G. Mattson. How good is openmp. Scientific Programming, 11(2):81–93, 2003.

E. F. Moore. The shortest path through a maze. Bell Telephone System., 1959.

A. Munshi. The opencl specification. Khronos OpenCL Working Group, 1:l1–15,

2009.

R. E. Neapolitan and K. Naimipour. Foundations of Algorithms: Using Java Pseu-

docode. Jones & Bartlett Learning, 2004.

J. Nieplocha, A. Márquez, J. Feo, D. Chavarŕıa-Miranda, G. Chin, C. Scherrer, and

N. Beagley. Evaluating the potential of multithreaded platforms for irregular sci-

entific computations. In Proceedings of the 4th International Conference on Com-

puting Frontiers (CF 2007), Ischia, Italy, pages 47–58, 7–9 May 2007.

OpenMP. The OpenMP API specification for parallel programming. http://openmp.

org/wp/, 1998.

S. Secchi, A. Tumeo, and O. Villa. A bandwidth-optimized multi-core architecture for

irregular applications. In Proceedings of 12th IEEE/ACM International Symposium

http://openmp.org/wp/
http://openmp.org/wp/

Bibliography 58

on Cluster, Cloud and Grid Computing, (CCGrid 2012), Ottawa, ON, Canada,

pages 580–587, 13–16 May 2012.

R. Setia, A. Nedunchezhian, and S. Balachandran. A new parallel algorithm for min-

imum spanning tree problem. In Proceeding of the 16th annual IEEE International

Conference on High Performance Computing (HiPC 2009), Kochi, India, pages

1–5, 16–19 December 2009.

S. Solomon, P. Thulasiraman, and R. K. Thulasiram. Exploiting parallelism in iter-

ative irregular maxflow computations on GPU accelerators. In Proceedings of the

2010 IEEE 12th International Conference on High Performance Computing and

Communications (HPCC 2010), Melbourne, Australia, pages 297–304, 1–3 Septem-

ber 2010.

M. Süßand C. Leopold. Implementing irregular parallel algorithms with OpenMP. In

Proceedings of the 12th International Conference on Parallel Processing (Euro-Par

2006), Dresden, Germany, pages 635–644, 2006.

G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A blocked all-pairs shortest-

paths algorithm. Journal on Experimental Algorithmics, 8, December 2003.

J. Wang, C. Hu, J. Zhang, and J. Li. OpenMP extensions for irregular parallel appli-

cations on clusters. In Proceedings of the 3rd International Workshop on OpenMP:

A Practical Programming Model for the Multi-Core Era (IWOMP 2007), Beijing,

China, pages 101–111, 3–7 June 2007.

B. Wicaksono, R. C. Nanjegowda, and B. Chapman. A dynamic optimization frame-

Bibliography 59

work for OpenMP. In Proceedings of the 7th International Conference on OpenMP

in the Petascale Era (IWOMP 2011), Chicago, IL, USA, pages 54–68, 2011.

Z. Zhang and J. Torrellas. Speeding up irregular applications in shared-memory

multiprocessors: memory binding and group prefetching. In Proceedings of the

22nd annual international symposium on Computer architecture (ISCA 1995), S.

Margherita Ligure, Italy, pages 188–199, 1995.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction and Background
	Thesis Overview

	OpenMP 3.0
	Task directive
	The OpenMP 3.0 collapse feature

	Breadth-First Search
	Introduction and Background
	Related work
	My implementation
	Results

	All-Pairs Shortest Path
	Introduction
	Related work
	My implementation
	Results

	Minimum Spanning Tree
	Introduction
	Related work
	My implementation
	Results

	Conclusions and Discussion
	Future work
	Bibliography

