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Abstract

Osteoporosis is a degenerating disease which may cause a bone to break eventually. A

way of monitoring the situation is to employ X-ray Absorptiometry (XA) to assess if a dif-

ference has happened in bone’s mineral density. XA tests have been widely used as a bone

density test for the hip and spine, which can be a predictor of the likelihood of future breaks

in other bones. Bone density in other bones such as the lower arm, wrist, finger, or heel can

be measured through peripheral tests, also called screening tests, such as quantitative ultra-

sound (QUS). The results of screening tests for osteoporosis diagnosis are much less accurate

and cannot be compared with the results of an XA test. One of the reasons for the limitations

of QUS techniques in diagnosing bone loss is the lack of understanding of the mechanism of

ultrasound wave propagation through a porous, complex bone structure. Despite these issues,

some features of the QUS technique make it yet very appealing for bone loss detection. For

instance, QUS packages are smaller and portable in comparison to bulky MRI or X-ray tech-

niques. Also, they are relatively cheap, do not utilize harmful radiations, and are recognized

as a non-invasive technique.

This research aims to pave the way to understanding the biomechanical behavior of bone-

like porous materials, i.e. cancellous bones, subject to different types of acoustical waves.

First, the transient acoustic wave propagation in a bone-like porous material saturated

with a viscous fluid is investigated using Biot’s theory. Due to the interaction between the

viscous fluid and solid skeleton, the damping behavior is proportional to a fractional power of

frequency, i.e. the dynamic tortuosity was written in terms of fractional power of frequency.

Furthermore, to describe the viscous interaction of fluid and solid in the time domain, the

fractional derivative is used. The fast and slow waves, which are the solutions to Biot’s equa-

tions, are described by fractional calculus in the time domain. The reflection and transmis-

sion operators are expressed in the Laplace domain and inverted into the time domain using

Durbin’s numerical inversion. Once the numerical implementation is validated, the effects

of porosity and viscosity on the stress, and reflected and transmitted waves are investigated.

The results show that by increasing the porosity, the stress in a bone-like material filled with

either air or bone marrow increases. The transmitted pressure decreases by increasing the

porosity. The reflected pressure decreases for low viscous fluid when the porosity increases

while it increases when the viscosity of the fluid is high. In addition, the results show the

importance of taking into account the fractional derivatives in the transient wave propagation

in such porous media.
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Next, the effects of transverse acoustic waves in characterizing a bone-like porous medium

filled with a viscous fluid are analyzed for the first time. Scattering operators along with

stress fields are derived by using the standard Biot-JKD model. A short duration acousti-

cal pulse is applied to one side of a bone-like, porous medium so that both longitudinal and

transverse waves travel through the intermediate medium which is filled with a viscous fluid.

The reflection and transmission operators along with stresses in the medium are expressed in

terms of these waves. The numerical implementation is validated for the longitudinal wave

by comparison with the numerical simulation data found in the literature. The effects of the

transverse waves on the reflection and transmission coefficients as well as the stress field are

studied by considering different viscosities and porosities. It is shown that when the fluid

viscosity in the medium is relatively high (such as bone marrow), the effect of the transverse

wave dominates. However, this effect is negligible when the medium is filled with a rela-

tively low viscous fluid (such as air). Furthermore, it is shown that the role of transverse

waves in characterizing bone structures and bone loss is imperative since the acoustical re-

sponse of such media at specific frequencies can be triggered only by considering the effects

of transverse waves.

Then, a three-dimensional (3D) analytical solution is developed to study the acoustic

wave propagation through cancellous bone-like materials saturated with a viscous fluid. The

effect of dynamic tortuosity, especially in clinically relevant ultrasound frequency range, is

considered to investigate the effect of viscous exchange between the fluid and solid interac-

tions. The solution includes the effects of both fast and slow longitudinal waves as well as

transverse waves propagating through the medium. The scattering operators and radial dis-

placements are derived in terms of ultrasonic waveforms by applying the Helmholtz decom-

position. The effect of different porosities, wall thickness ratios, and frequencies of incident

waves on the radial displacement and scattering operators are investigated by considering

various incident wave angles at forward and sideward directions. The results demonstrate

that the incident wave angle has a significant effect on the radial displacement and scattering

operators regardless of the porosity, wall thickness ratio, and viscosity of pore fluid. Further-

more, the distribution pattern of the radial displacement and scattering operators in relatively

low frequency ranges is almost symmetric while asymmetric in relatively high frequency

ranges. It is also shown that the bone characterization using ultrasonic techniques is not only

based on the mineral density, as used currently by electromagnetic wave-based tools, but also

other biomechanical factors such as the porosity, viscosity of pore fluid, and wall thickness

ratio of a cancellous bone structure. Also, the pattern of the reflected pressure can be an
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indicator of the state (healthy versus osteoporosis) of a cancellous bone.

Keywords
Osteoporosis, Bone loss, Cancellous bone, Porous media, Viscous fluid, Wave propaga-

tion, Acoustic waves, High frequency, Biot-JKD’s theory, Fractional calculus, Incident wave.
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Chapter 1

Introduction

1.1 The Big Picture

The structure of the bone is porous and spongy. It consists of a solid skeleton and pores

which are filled with a viscous bone marrow. More precisely, the main formation of the bone

structure is composed of a compact layer, which is a dense tissue found on the outside of

a bone, and a spongy layer (cancellous bone) inside the bone structure, which is filled with

bone marrow. This combination of a dense tissue, spongy tissue and fluid make bone a unique

biological material.

Osteoporosis is recognized as a silent epidemic that reduces a bone’s tissue and mass and

increases its fragility. It mainly affects the spongy part of the bone particularly in hips, heels,

and vertebrae (Osterhoff et al., 2016). So, early detection of this pathological condition is of

paramount importance to ensure a proper treatment. In current practice, the only diagnostic

tool for osteoporosis is a bone density test. The bone density test measures approximately the

amount of bone mineral in the spine, hip, and sometimes other bones. The measured bone

density can be an indicator of the state of a bone: normal bone density or low bone density

(osteoporosis-osteopenia). Dual-energy X-ray absorptiometry (DXA) has been widely used

as a bone density test for the hip and spine (Ott, Kilcoyne, and Chesnut III, 1987). Measuring

bone density in the hip and spine is of paramount importance since the fracture risk for these

bones is greater. This can cause more serious health issues such as greater pain, longer

recovery time, and even permanent disability. Furthermore, DXA tests on the hip and spine

can be a predictor of the likelihood of future breaks in other bones. Bone density in other

bones such as the lower arm, wrist, finger, or heel can be measured through peripheral tests,

also called screening tests, such as peripheral dual-energy x-ray absorptiometry (pDXA) or

quantitative ultrasound (QUS). The results of screening tests for osteoporosis diagnosis are

much less accurate and cannot be compared with the results of a DXA test.

One of the reasons for the limitations of QUS techniques in diagnosing osteoporosis is the

lack of understanding of the mechanism of ultrasound wave propagation through a porous,
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complex bone structure. Despite these issues, some features of the QUS technique make

it yet very appealing for bone loss detection. For instance, QUS packages are smaller and

potable relative to bulky MRI or X-ray techniques. Also, they are relatively cheap, do not

utilize harmful radiations, and are recognized as a non-invasive technique.

In order to understand the mechanism of ultrasound wave propagation through the com-

plex structure of a cancellous bone, the biomechanical models considering the viscous in-

terchange between the viscous pore fluid and the solid skeletal frame should be developed.

One of the most prominent theories to study the wave propagation in porous materials satu-

rated with a fluid is the Biot theory of poroelasticity originally developed in the 1950s-1960s

(Biot, 1956d; Biot, 1941; Biot, 1955; Biot, 1956b; Biot, 1962b). Biot’s theory has been

widely used in oil and gas applications and geo-science testings. It has been also applied

to model the bone structure in several studies. For example, (Fellah et al., 2004a) studied

wave propagation in human cancellous bone at high frequency ranges based on the Biot-JKD

theoery. They used a slab immersed in water to model a bone. It should be noted that they

only investigated the effect of longitudinal wave propagating in porous media and neglected

the effect of transverse waves in their model. They considered the effect of porosity, den-

sity, shear modulus and viscosity on their scattering coefficients, describing the importance

of these parameters in the fast and slow waves. (Fellah et al., 2013) developed a temporal

model to describe wave propagation in porous media saturated with fluid using the Biot-JKD

theory by applying the dynamic tortuosity and fractional calculus to describe the viscous ex-

change between the pore fluid and solid skeletal frame. They also did not apply the effect

of transverse waves in their model and only investigated the effect of longitudinal waves in

solid and fluid phases. In addition, they just considered wave propagation in one direction

by using a slab as the bone model. (Sadouki, 2020) considered ultrasonic characteristic of

human cancellous bone using the Biot-JKD theory. They used inverse problem to estimate

three physical parameters such as porosity, tortuosity and viscous characteristic length, as

well as the mechanical parameters such as Young’s modulus and Poisson’s ratio of the solid

skeleton. They performed the tests on two samples of trabecular bone saturated with water.

They modeled bone as a slab in their theoretical model and they did not consider the effects

of transverse waves in their theoretical expression.

This research aims to specifically study

• the effect of transverse waves, in addition to longitudinal waves, on the acoustical

response of a bone-like porous material filled with a viscous fluid such as bone marrow.
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• the effect of both three-dimensional (3D) bone geometry and longitudinal and trans-

verse acoustical waves on the response of a cylindrical cancellous bone-like porous ma-

terial saturated with a viscous fluid by presenting a 3D biomechanical semi-analytical

model.

1.2 Thesis Statement and Contributions

1.2.1 Thesis Statement

The aims of this research is to consider the wave propagation in bone-like porous media

saturated with a viscous fluid using the Biot-JKD theory. The research has been implemented

in time and frequency domains. Due to the tortuosity effect on the viscous exchange between

the solid skeletal frame and pore fluid in high frequency ranges, the fractional calculus is

used to describe such viscous interactions. The modeling development carried out in this

research is divided into three parts. First, a transient biomechanical model is presented by

considering only the propagation of longitudinal acoustic waves in 1D. A sensitivity analysis

is performed to investigate the effect of biomechanical properties on acoustical response of

a bone-like porous slab. Then, the effect of transverse waves, in addition to longitudinal

waves, on ultrasonic response of a bone-like porous material when it is filled with a viscous

fluid is studied in 1D. To study the effect of bone’s geometry on acoustical response, a 3D

biomechanical model is developed for ultrasonic wave propagation within a bone-like porous

cylinder saturated with a viscous fluid.

1.2.2 Contributions

The contributions of this research are categorized into mathematical development and mod-

eling, and investigation for bone characterization as follows:

1.2.3 Mathematical Development and Modeling

• Develop the 1D and 3D semi-analytical solutions for wave propagation in bone-like

porous materials saturated with a viscous fluid such as bone marrow in order to con-

sider the effect of transverse waves in addition to longitudinal waves on acoustical

response of such materials.
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• Develop an ultrasonic analytical solution for bone-like porous materials by considering

the effect of tortuosity on viscous exchange between the viscous pore fluid and solid

skeletal frame in high frequency ranges by using fractional calculus.

1.2.4 Investigations

• Investigate the effect of transverse waves, in addition to longitudinal waves, on acous-

tical response of bone-like porous materials.

• Investigate the sensitivity of bone’s transmission and reflection coefficients on physical

and mechanical properties of bone-like porous materials such as porosity, tortuosity,

viscous characteristic length, Poisson’s ratio, and elastic modulus.

• Investigate the effect of tortuosity in high frequency ranges on frequency responses of

bone-like porous materials.
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Chapter 2

Literature Survey

In this chapter, a brief description of the pertinent literature of wave propagation in bone

structure is presented. Also, the structure of thesis for each chapter is explained.

The literature review is divided into three categories. First, the experimental work is

considered. Then the experimental and analytical work are investigated. Next, the description

of the experimental work compared with numerical work is explained. Subsequently, the gaps

in the literature regarding bone characterization using acoustic waves are identified and the

significance of this thesis in considering wave propagation within bone-like porous materials

filled with a viscous fluid and bone characterization is highlighted.

2.0.1 Experimental Studies

Ultrasonic techniques have been widely utilized for the diagnosis of bone loss. The initial

application of ultrasonic technique in clinical medicine dated back 1932 by considering the

pattern produced by reflection ultrasonic energy in bone tissues. However, the first in-vitro

study was carried out in 1953 by studying the bone conduction using ultrasonic technique

(Anast, Fields, and Siegel, 1958). (Siegel, Anast, and Fields, 1958) measured the velocity of

longitudinal waves across a broken bone by ultrasonic technique. (Horn and Robinson, 1965)

studied the ultrasonic measurement and concluded that the bone condition cannot be clearly

determined by the sound delay between measurements in intact and broken bones. So, they

suggested to study the effect of transverse waves to get more valuable information. Other

studies focused on determining the relationships between the resonant frequency and den-

sity of a bone (Selle and Jurist, 1966), the speed of sound and elasticity of a bone (Floriani,

Debervoise, and Hyatt, 1967), the amount of calcium inside the bone and its transmission

coefficients (Rich et al., 1966). The first studies on wave propagation in cancellous bones in

order to find a correlation between the ultrasonic parameters and physical-mechanical prop-

erties of a bone has been performed by (Abendschein and Hyatt, 1970). A large number of
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in-vitro and in-vivo ultrasonic tests on bones has been performed in the literature. The ex-

periments can be divided into two categories: the velocity measurements and the attenuation

measurements.

The speed of sound in cortical and cancellous bones was reported in a series of in-vitro

studies by (Lang, 1970; Shalanskii et al., 1976; Yoon and Katz, 1976; Barger, 1979; Lakes,

Yoon, and Katz, 1983) and in-vivo studies by (Jurist, 1970; Shalanskii et al., 1976; André et

al., 1980; Greenfield et al., 1981; Behari and Singh, 1981; McCartney and Jeffcott, 1987; Fry

and Barger, 1978). The evaluation of correlation between the velocity and other parameters

has been extensively studied in the literature as well. As an example, (Evans and Tavakoli,

1990) considered the correlation of calcium content of the bone with the speed of sound.

They obtained a correlation of 0.99 between the bone’s speed of sound and calcium content

for one of their samples while the correlation was so poor for other six samples. (Meunier

et al., 1982) investigated the correlation between the longitudinal wave velocity and the mod-

ulus of elasticity of a cortical bone as well as its density. (Avioli, 1988) compared the speed

of sound measured in a patella (kneecap) and its radius and found an identical correlation

between them. (Rossman et al., 1989) measured the speed of sound on os calcis when the

bone is intact and with mild bone loss. They compared their results with bone mineral den-

sity (BMD) obtained using photon absorptiometry on the proximal femur. It was shown that

in osteoporosis bone whose its BMD is significantly reduced, the speed of sound is lower.

(Garcia et al., 1978) measured the attenuation in a cortical bone for a frequency range of

2−8 MHz. They used short pulses as an incident wave and analyzed the transmitted signals

using the Fourier transform. (Fry and Barger, 1978) measured the insertion loss, sound speed,

and reflection loss of the cancellous part of human skulls. Measurements were performed in

a frequency range from 0.25 to 6 MHz. The results showed that the selection of an appro-

priate frequency range from 0.5 to 1 MHz, has significant influence on diagnostic imaging

and interrogation in the adult human skulls. Following their experiments, (Smith et al., 1979)

found that the attenuation increases to 1 MHz for 10−20 dB/cm and increases to 2 MHz for

50−60 dB/cm. (Langton, Palmer, and Porter, 1984) developed an ultrasonic method to mea-

sure the attenuation of a bone sample. Their technique is known as the Broadband Ultrasonic

Attenuation (BUA). They measured the transmission signals in bone samples immersed in

the water tank. The difference between these two types of signals is attributed to the bone

attenuation. Their results showed that the slope of the attenuation versus frequency for a bone

sample with bone loss (osteoporosis) is higher than that of a healthy bone.

(Poll, Cooper, and Cawley, 1986) studied the BUA and the single photon absorptiometry
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(SPA) tests on a wide range of patients with rheumatoid disease. They found a good corre-

lation of 0.8 between these two methods. (Hosie et al., 1987) evaluated the BUA technique

and found a correlation of 0.66 between the quantitative computed tomography (QCT) and

BUA of the distal radius. (Saha and Shafkey, 1987) found a correlation of 0.7 between the

density and attenuation of cadaver tibia. (Baran et al., 1988) experimentally showed that the

BUA can be effectively used for bone loss risk prediction in the hip and spine. (Evans et al.,

1988) compared the results obtained by the BUA with those obtained by the SPA and QCT

tests. The results showed a correlation of 0.45 between the BUA and the SPA for the Radius

and a correlation of 0.64 between the BUA and the QCT for the spine. (Rossman et al., 1989)

performed the same experiments for the radius and spine as they found a correlation of 0.65

between the BUA and the QCT for spine and BUA and SPA for radius. (McCloskey et al.,

1990) found a correlation of 0.66 between BUA and SPA and correlation of 0.72 between

BUA and QCT by considering normal and abnormal groups.

Due to the potentials of ultrasonic testing to assess non-invasively bone quality, a signifi-

cant attention to quantitative ultrasound has been made since 1990 (Williams, 1992; Williams

et al., 1996; Hosokawa and Otani, 1997; Hosokawa and Otani, 1998; Hughes et al., 1999;

Padilla and Laugier, 2000; Kaczmarek, Kubik, and Pakula, 2002; Lee, Roh, and Yoon, 2003;

Hughes et al., 2003; Fellah et al., 2004a; Kaczmarek, Kubik, and Pakula, 2005; Wear et al.,

2005; Sebaa et al., 2006b; Wear, 2007; Hughes et al., 2007; Pakula et al., 2008). (Cepollaro

et al., 2005; Otani, 2005; Pakula, Padilla, and Laugier, 2009) developed a method to evalu-

ate the detection of bone loss. They worked on trabecular bones and measured the speed of

sound and reducing attenuation as a function of frequency which is correlated with density.

Their work was accepted as a criterion for osteoporosis diagnosis. Other groups measured

the fast and slow longitudinal waves in trabecular bones (Langton, Palmer, and Porter, 1984;

Cepollaro et al., 2005; Otani, 2005; Mano et al., 2006). A lot of experimental tests regarding

wave propagation in bone has been performed. Some of them are influenced by the physical

properties of the pore fluid (fluid filled the pores) (Alves et al., 1996; Nicholson and Boux-

sein, 2002; Kaczmarek, Kubik, and Pakula, 2002), mechanical properties of porous medium

(Haïat et al., 2007b; Hoffmeister, Whitten, and Rho, 2000; Riekkinen et al., 2007), bone’s

anisotropy (Wear, 2000; Hughes et al., 2007; Wear, 2010), physical properties of porous

structure (Chaffaı et al., 2002; Padilla et al., 2008) and tortuosity of the medium and viscous

characteristic length (Pakula et al., 2008; Fellah et al., 2004a).

In addition to experimental methods, numerical simulations and analytical approaches

have a great potential in modeling of wave propagation in cancellous bone. In the next



8 Chapter 2. Literature Survey

section, a brief history of the application of analytical approaches in ultrasonic modeling of

cancellous bone is described.

2.0.2 Analytical Studies

Due to anisotropic and heterogeneous structure of the bone, especially, cancellous part of a

bone, characterizing bone, in-vivo or in-vitro, is difficult. As mentioned previosuly, the most

comprehensive theory for modeling wave propagation in porous media saturated with a fluid

is Biot’s theory. Biot’s theory has been widely used in oil and gas and geo-science appli-

cations (Biot and Willis, 1957; Biot, 1962b; Biot, 1962a) or in sound-proofing (Depollier,

Allard, and Lauriks, 1988). This theory has been also applied to model wave propagation in

porous bone structure. (Berryman, 1980) compared Biot’s theory with the measured speed

of fast longitudinal wave, slow wave, and shear wave in porous media saturated with water.

There is a good agreement between the results predicted by Biot’s theory with the results of

experiments. (McKelvie and Palmer, 1991) compared the attenuation of healthy bone and

osteoporotic bone versus frequency. The results showed that the attenuation in healthy bone

is much more than osteoporotic bone and also the attenuation in both increases by increas-

ing frequency. (Williams, 1992) used Biot’s theory to calculate the speed of sound in tibia

and femoral bovine cancellous bone. The results obtained by Biot’s theory showed a good

agreement with experimental results. (Lauriks et al., 1994) compared the fast longitudinal

wave in cancellous bone obtained by experiments to Biot’s theory. Their result showed a

good agreement between Biot’s theory and their experiments. (Hosokawa and Otani, 1997;

Hosokawa and Otani, 1998) modeled wave propagation through bovine cancellous bone in

order to determine the fast and slow waves by experiments. They also estimated the fast and

slow wave using Biot’s theory. While the measured speeds for fast and slow waves showed

a good agreement in both theory and experiments, some differences were observed in the

attenuation between Biot’s theory and the experimental results.

The analytical expression introduced by Biot is a relatively comprehensive approach for

elastic materials, but it still encountered some problems. For example, the thermal effect

in porous media has not considered in original Biot’s theory. In addition, it needs a large

number of parameters that need to be measured or estimated. (Attenborough, 1983) proposed

a theory to consider the thermal effect in porous media, but it did not include the effect of

the fast wave because the solid skeletal frame was considered as a rigid material. Later

on, (Roh, Lee, and Yoon, 2003) proposed a new theoretical model named modified Biot-

Attenborough (MBA) model. The model, in addition to fast and slow waves, is able to
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consider the viscous and thermal effect as well. It is expected that the MBA model can

be used to study the diagnosis of osteoporosis in cancellous bone. It should be noted that

they did not consider the effect of tortuosity in their model. (Schoenberg, 1984) proposed

the theoretical approach to model wave propagation in porous media. Schoenberg’s theory

requires less parameters to be estimated or measured with respect to Biot’s theory which is

an advantage for computational costs. But Schoenberg’s theory assumes the fluid is inviscid

and there is no prediction for viscous absorption. (Hughes et al., 1999) used a new stratified

model to model wave propagation in cancellous bone. They used Schoenberg’s theory in

their approach to predict wave properties. They perfomed in-vitro experiments on bovine

bone samples. Their results showed a qualitative agreement with Schoenberg’s theory.

Among the above-mentioned analytical predictions using Biot’s theory, it can be seen

that the experimental results showed a good agreement with Biot’s theory in predicting the

speed of fast or slow waves in cancellous bones. But, it still showed limitations related to the

viscous dissipation in porous media filled with viscous fluids. The original Biot’s theory was

modified by (Johnson, Koplik, and Dashen, 1987) in the late 1980s to address the limitations

of original Biot’s theory in this regard. This is of significant importance when it is aimed

to model the energy dissipation in the medium at different frequency ranges. The modified

theory, called Biot-JKD, introduces the concept of dynamic tortuosity, viscous characteristic

length, and dynamic permeability to describe the viscous dissipation occurring in the pores.

(Williams et al., 1996) expanded Biot’s theory using JKD formulation to consider the atten-

uation versus porosity at frequencies of 0.2 MHz and 0.6 MHz for cancellous bone when it

is filled with a relatively low and high viscous fluid. The results showed that the attenuation

increases by increasing the frequency and porosity. The rate of increase in relatively high

viscous fluid is much more then that of a relatively low viscous fluid. (Leclaire, Glorieux,

and Thoen, 1997) used Biot’s theory to determine acoustic parameters in high frequency by

discrepancy between experimental and analytical results for the attenuation. They did not

consider the JKD formulation in their analytical modeling. Also, they did not perform any

validation between their analytical and experimental results. (Fellah et al., 2004a) consid-

ered reflection and transmission coefficients in human cancellous bone in one direction in

frequency domain. They used a slab as a porous medium with two infinite dimensions filled

with water to model cancellous bone. They used Biot’s theory modified by the JKD for-

mulation to consider the effect of viscous exchange between the fluid and solid. They did

not consider the effect of transverse wave in their theoretical prediction. The experimental

results for fast and slow waves transmitted thorough the slab showed a good agreement with
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the theoretical prediction. (Sebaa et al., 2006a) considered transient wave propagation in the

porous slab using Biot-JKD’s theory. Fractional calculus was used to describe the viscous in-

teractions between fluid and solid structure. The porous slab had two infinite dimensions and

filled with water. They did not consider the effect of the transverse wave. They mentioned a

good agreement between their experimental results and theoretical prediction. (Sebaa et al.,

2006b) estimated the ultrasonic characteristics of cancellous bone by solving inverse prob-

lem using experimental data. They used the slab filled with water to model cancellous bone

and used Biot’s theory for their theoretical prediction. They also expanded Biot’s theory

using JKD formulation ((Johnson, Koplik, and Dashen, 1987)) to consider the effect of vis-

cous exchange between fluid and solid. They solved inverse problem numerically by the least

square method. They performed the minimization of the discrepancy between the transmitted

signals obtained by experiments and theory to estimate five parameters related to physical-

mechanical properties of the medium. (Hughes et al., 2007) considered wave propagation in

anisotropic tortuosity in cancellous bone. They used Biot’s theory and Schoenberg’s model

to consider the effect of viscosity and anisotropy, respectively. They generated Stratified Biot

Model by applying an angle-dependent tortuosity for the layered structure. Their proposed

model showed a good agreement in fast wave velocity between measured data and simula-

tion results. (Fellah et al., 2013) developed a temporal model to describe wave propagation

in the slab as a porous medium saturated with water using the Biot-JKD theory by applying

dynamic tortuosity and fractional calculus to describe the viscous exchange between the pore

fluid and solid skeletal frame. They also did not apply the effect of transverse wave in their

model and only investigated the effect of longitudinal waves in solid and fluid phases. They

used Green’s functions for fast and slow waves and compared them with their experimental

work. Their theoretical results showed a good agreement with the experimental results. in

the next section, the application of numerical simulations in modeling of wave propagation

in cancellous bone is discussed.

2.0.3 Numerical Studies

Computational techniques and tools helped researchers further analyze the mechanism of

wave propagation in complex bone structures and verify the robustness of their experimental

setup. Most of numerical simulations performed on cancellous bone has been carried out by

employing either finite-difference time-domain (FDTD) or finite element methods (FEM).

(Luo et al., 1999) considered wave propagation in cancellous bone using microCT model.

They found the wave speed as well as its attenuation, but they did not differentiate fast waves
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from slow waves in bone samples. (Hosokawa, 2005) applied finite-difference method using

Biot’s theory and considered the fast and slow waves propagation through bone samples. The

generation of fast and slow longitudinal waves using finite-difference time domain (FDTD)

simulation have been reported by (Bossy et al., 2005; Padilla et al., 2005; Padilla, Bossy,

and Laugier, 2006). They used 3D Synchrotron microtomography of trabecular bone for

their FDTD simulation. (Haïat et al., 2007b) used numerical solution to consider the effect

of microsctructure of trabecular bone as well as its material properties on QUS parameters.

(Nagatani et al., 2006; Nagatani et al., 2008) tried to confirm the capability of the FDDT

method in order to simulate wave propagation in cancellous bone using 3D x-ray CT images.

They also confirmed that the peak amplitude of the fast and slow waves showed accordance

with the experimental results. (Cardoso et al., 2003) expressed that the fast wave propagation

in trabecular bone is more dominant than slow wave and it can provide more information on

the trabecular structure. (Luo et al., 1999) analyzed 2-D visco-elastic wave propagation in the

bone. (Kaufman, Luo, and Siffert, 2003) studied 3D micro-tomography of human cancellous

bone in order to characterize material properties. (Bossy et al., 2005) computed 3-D wave

propagation in human cancellous bone saturated with water using a finite-difference time-

domain. They used 31 human specimens to obtain the material property needed for their

simulations. Their results show the monotonic increase of BUA and speed of sound (SOS)

with respect to the bone volume fraction and negative velocity dispersion. Following by their

work, (Haïat et al., 2007a) explained that negative velocity dispersion can be described by

multiple scattering effect. (Nagatani et al., 2008) examined the generation of fast wave by

experimental measurements and numerical solution using the FDTD method. They used X-

ray CT image to provide the bovine bone in their numerical simulation. Their experimental

and numerical results express that the attenuation of fast wave is higher in early state of prop-

agation. Then, it decreases gradually when wave propagates further in the bone. (Hosokawa,

2005) used finite-difference method in order to simulate the transient wave propagation in

bovine cancellous bone in two dimensions. They compared the speed of fast and slow waves

obtained by their FDTD with those of pertinent experiments by (Hosokawa and Otani, 1997).

There is a good agreement between the experimental and simulated values of the speeds of

fast and slow waves. (Nguyen and Naili, 2012) presented a finite element model to consider

anisotropic porous media filled with viscous fluid. Their results show the effect of anisotorpy

of bone on the reflection and transmission coefficients in cancellous bone specimen.

Micro-scale modeling of the wave propagation in bones using finite-difference time-

domain, especially, in cancellous bone, has been accepted as one of the applicable solutions,
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but there are still two disadvantages: (i) forming a new wave aircraft at the interface between

the solid skeletal frame and pore fluid; (ii) lack of a perfect-slip condition at the interface

between the solid skeletal frame and pore fluid. Therefore, another approach which can be

more efficient than FDTD in wave propagation for solid-fluid interaction in the cancellous

bone media would be the finite element method (FEM). The FEM has more advantages in the

analysis of elastic wave propagation in comparison with the FDTD (Marfurt, 1984; Zhang

and Verschuur, 2002). Also, it is worth nothing that the FEM has been used by several re-

searchers to model wave propagation in bone structures (Niebur et al., 2000; Adachi et al.,

2001; Goossens et al., 2008; Ridha and Thurner, 2013; Zhang, Tozzi, and Tong, 2014).

(Nguyen, Naili, and Sansalone, 2010) used FEM to model the transient wave propagation

in cancellous bone submerged in an acoustic fluid. Their FEM numerical results showed

that anisotropy of bone influences strongly the reflection and transmission coefficients. (Ilic,

Hackl, and Gilbert, 2010) used FEM modeling to consider the attenuation of wave prop-

agation in cancellous bone. Their numerical results show that the attenuation increases if

excitation frequency and material density increases. In addition, their results endorse the re-

sults obtained by experiments as well. (Vafaeian et al., 2014) used FEM to model 6 samples

of cancellous bone in order to calculate the speed of sound and broadband ultrasound atten-

uation. The evaluation of their numerical results with experimental results demonstrate the

capability of the FEM in modeling ultrasound wave propagation in water-saturated cancel-

lous bone. (Niebur et al., 2000) used FEM to simulate the reproduction of microstructure of

bone to consider bone failure or fracture. There are many reports in the literature regarding

the FEM application in different areas of wave propagation in multi-scale structure (Miehe,

Schotte, and Lambrecht, 2002; Ilić and Hackl, 2004; Pahr and Zysset, 2008).

While the numerical methods such as FEM and FDTD are powerful tools in modeling

of wave propagation in cancellous bones, they also have disadvantages. For example, the

tortuosity is a function of fractional exponent of time and it needs to be considered in the

modeling of transient wave propagation in porous media saturated with a viscous fluid. The

commercially available FEM software such as COMSOL uses a constant value for the tor-

tuosity effect in this regard. Moreover, there is a partial reflection of acoustic waves from

perfect matching layers to the model that provides a systematic error in results. The FDTD

also shows deficiencies in modeling of wave propagation in complex porous materials. In

addition, the FEM and FDTD require meshing the entire computational domain and it must

be sufficiently fine to solve both acoustics wavelength and geometrical features, which can

lead to an extensively large computational costs. Consequently, to the best of the author’s



2.1. Structure of the Thesis 13

knowledge, it is impertinent to simulate wave propagation in bone-like porous material using

either experimental work alone or the numerical solutions such as FDTD or FEM. So, in

this study several closed-form frameworks based on the Biot-JKD theory are developed to

analytically investigate the acoustic response of porous bone-like materials.

2.1 Structure of the Thesis

The style of each chapter is similar to a journal paper starting with an introduction which

includes literature review. Then, mathematical formulations, computational details, results

and discussion, and conclusion. References and appendices follow the conclusion. Since a

part of the mathematical development is common among all the chapters, so it is presented

in the corresponding appendices. A brief description of future work based on this research

are presented at the end. The outlines of the five chapters of this dissertation are as follows:

• Chapter 3 Transient Acoustic Wave Propagation in Bone-Like Porous Materials Us-

ing the Theory of Poroelasticity and Fractional Derivative: A Sensitivity Analysis

In this chapter, the transient acoustic wave propagation in a bone-like porous material

saturated with a viscous fluid is investigated using Biot’s theory. Due to the interaction

between the viscous fluid and solid skeleton, the damping behavior is proportional to

a fractional power of frequency. Thus, the dynamic tortuosity is written in terms of the

fractional power of frequency. Furthermore, to describe the viscous interaction of fluid

and solid in the time domain, the fractional derivative is used. The fast and slow waves,

which are the solutions to Biot’s equations, are described by fractional calculus in the

time domain. The reflection and transmission operators are expressed in the Laplace

domain and inverted into the time domain using Durbin’s numerical inversion. Once

the numerical implementation is validated, the effects of porosity and viscosity on the

stress, and reflected and transmitted waves are investigated. The results show that by

increasing the porosity the stress in a bone-like material filled with either air or bone

marrow increases. The transmitted pressure decreases by increasing the porosity. The

reflected pressure decreases for low viscous fluid when the porosity increases while

it increases when the viscosity of the fluid is high. In addition, the results show the

importance of considering the fractional derivatives in the transient wave propagation

in such porous materials.

• Chapter 4 An overview of the acoustic studies of bone-like porous materials, and the

effect of transverse acoustic waves
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The model presented in chapter 3 considers only the propagation of longitudinal waves

within the porous media. In this chapter, the effects of transverse acoustic waves in

characterizing a bone-like, porous medium filled with a viscous fluid are analyzed for

the first time. Scattering operators along with stress fields are derived by using the

standard Biot-JKD model. A short duration acoustical pulse is applied to one side

of a bone-like, porous medium so that both longitudinal and transverse waves travel

through the intermediate medium which is filled with a viscous fluid. The reflection

and transmission operators along with stresses in the medium are expressed in terms

of these waves. The numerical implementation is validated for the longitudinal wave

by comparison with the numerical simulation performed by (Fellah et al., 2004a). The

effects of the transverse waves on the reflection and transmission coefficients as well

as the stress field are studied by considering different viscosities and porosities. It

is shown that when the fluid viscosity in the medium is relatively high (such as bone

marrow), the effect of the transverse wave dominates. However, this effect is negligible

when the medium is filled with a relatively low viscous fluid (such as air). Furthermore,

it is shown that the role of transverse waves in characterizing bone structures and bone

loss is imperative since the acoustical response of such media at specific frequencies

can be triggered only by considering the effects of transverse waves.

• Chapter 5 Three-Dimensional Biomechanical Acoustics Modeling of Wave Propa-

gation through Cylindrical Bone-Like Porous Materials Saturated with Viscous Fluid

The acoustical analytical models presented in chapter 3 and chapter 4 are one dimen-

sional while in this chapter a three-dimensional acoustical model for bone is consid-

ered. In fact, chapter 5 describes a three-dimensional (3D) analytical solution for the

acoustic wave propagation through cancellous bone-like materials saturated with a vis-

cous fluid for the first time. The effect of dynamic tortuosity in high frequency ranges is

considered. The solution includes the effects of both longitudinal fast- and slow-waves

as well as transverse waves propagating through the medium. The scattering operators

and radial displacements are derived in the form of ultrasonic waveforms by applying

the Helmholtz decomposition. The effect of different porosities, wall thickness ratios,

and frequencies of incident waves on the radial displacement and scattering operators

are investigated by considering various incident wave angles at forward and sideward

directions. The results demonstrates that the incident wave angle has a significant ef-

fect on the radial displacement and scattering operators regardless of the porosity, wall

thickness ratio, and viscosity of pore fluid. Furthermore, the distribution pattern of the
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radial displacement and scattering operators in relatively low frequency ranges is al-

most symmetric while asymmetric in relatively high frequency ranges. It is shown that

the bone characterization using ultrasonic techniques is not only based on the mineral

density, as used currently by electromagnetic wave-based tools, but also other biome-

chanical factors such as the porosity, viscosity of pore fluid, and wall thickness ratio

of a cancellous bone structure. Also, the pattern of the reflected pressure can be an

indicator of the state (healthy versus osteoporosis) of a cancellous bone.

• Chapter 6 Conclusion and Potential of Future Research Plan In this chapter, the

contributions of this research along with the conclusions as well as the future research

plan are outlined.
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Chapter 3

Transient Acoustic Wave Propagation
in Bone-like Porous Materials Using
the Theory of Poroelasticity and
Fractional Derivative: A Sensitivity
Analysis

Abstract

The transient acoustic wave propagation in a bone-like porous material saturated with a vis-

cous fluid is investigated using Biot’s theory. Due to the interaction between the viscous

fluid and solid skeleton, the damping behavior is proportional to a fractional power of fre-

quency, i.e. the dynamic tortuosity was written in terms of fractional power of frequency.

Furthermore, to describe the viscous interaction of fluid and solid in the time domain, the

fractional derivative was used. The fast and slow waves, which are the solutions to Biot’s

equations, were described by fractional calculus in the time domain. The reflection and

transmission operators were expressed in the Laplace domain and inverted into the time do-

main using Durbin’s numerical inversion. Once the numerical implementation was validated,

the effects of porosity and viscosity on the stress, and reflected and transmitted waves were

investigated. The results showed that by increasing the porosity, the stress in a bone-like

material filled with either air or bone marrow increases. The transmitted pressure decreases

by increasing the porosity. The reflected pressure decreases for low viscous fluid when the

porosity increases while it increases when the viscosity of the fluid is high. In addition, the

results showed the importance of taking into account the fractional derivatives in the transient

wave propagation in such porous materials.
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3.1 Introduction

Bone is a rigid organ that supports and protects other organs, stores minerals, produces red

blood cells in its marrow, and supports mobility. This organ is very dynamic and metabol-

ically active with the ability for self-repair. The actual structure of the bone is porous and

spongy, consisting of a solid skeleton and pores filled with fluids. One of the most important

quantities in characterizing the bone structure is its porosity, which varies between 5% to

95% (Fritsch and Hellmich, 2007). Pores in a bone are not evenly distributed. Consequently,

any realistic model must be able to take into account the variation in porous properties of the

bone structure for reliable assessment of bone fracture risk under normal conditions (Ogam

et al., 2011; Fritsch and Hellmich, 2007).

One of the most popular theories in the literature to study the transient wave propagation

in porous media saturated with a viscous fluid, such as bones, is the theory of poroelasticity

originally proposed by (Biot, 1956d; Biot, 1941; Biot, 1955; Biot, 1956b; Biot, 1962b). The

Biot theory is able to model the interaction between two phases such as a solid skeleton and a

fluid by considering the viscous coupling effect. Biot’s theory considered the frictional drag

at the pore surface and included the inertia term.

The interaction between the bone marrow and solid skeleton in a bone subjected to a tran-

sient acoustic wave incident leads to a complex solution. Wave propagation in a trabecular

porous bone saturated with a viscous fluid using Biot’s theory has been studied by several re-

searchers (Hosokawa and Otani, 1997; Hosokawa and Otani, 1998; Haire and Langton, 1999;

Cardoso and Cowin, 2011; Fellah et al., 2004a; Sebaa et al., 2006b; Marutyan, Holland, and

Miller, 2006; Hughes et al., 2007; Pakula et al., 2008; Anderson et al., 2008; Mizuno et al.,

2009; Wear, 2010; Nelson et al., 2011). Furthermore, any change in bone characteristic due

to bone loss or osteoporosis can be diagnosed by the speed of ultrasonic wave and its attenua-

tion (Langton, Palmer, and Porter, 1984). (Cardoso et al., 2003) studied the wave propagation

in cancellous bones for bone characterization. They demonstrated a correlation between the

velocities of fast and slow waves with the porosity. They also mentioned that the presence of

two waves is necessary to obtain the accurate results and failure in accounting any of them

may lead to an inaccurate determination of bone properties.

Several studies related to the reflection and transmission of acoustic waves in cancellous

bone have been performed in the frequency domain. (Buchanan, Gilbert, and Ou, 2012)

considered a cancellous bone immersed in water and insonified by the acoustic pulse. As a

result, they derived the transfer function for reflection and transmission of both fast and slow
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waves. (Buchanan, Gilbert, and Khashanah, 2002; Buchanan, Gilbert, and Khashanah, 2004;

Buchanan and Gilbert, 2007; Sebaa et al., 2006b) investigated the recovery of a specimen

of cancellous bone immersed in water under an ultrasonic pulse. (Belhocine, Derible, and

Franklin, 2007) used a transition term method to compare the experimental and analytical re-

sults of reflection and transmission of a porous plate saturated with a fluid. (Johnson, Plona,

and Kojima, 1994) considered the ultrasonic properties such as reflection, transmission, at-

tenuation, and speed of waves in porous media saturated with water using two slabs with

different thicknesses.

It is more desirable to describe the transient wave propagation in porous media directly in

the time domain because of its suitable consistency with experimental measurements taken

by pulses of finite bandwidth and synthesizing pulse signals via Fourier transform. Some

work on the reflection and transmission of acoustic waves in porous media saturated with

a viscous fluid is performed in the time domain. (Caviglia and Morro, 2004) considered

the reflection and transmission of a multilayer slab. They assumed the layers are linearly

elastic, anisotropic, and homogeneous. (Szabo, 1994) investigated the attenuation of acoustic

waves propagating in a wide variety of lossy media. The results express that dispersion and

attenuation in a linear medium are accountable for the linear wave equation when the effect of

a causal convolutional propagation operator is included. Their work was restricted in media

with power-low attenuation, but it was shown that their approach is applicable to a broader

class of media (Norton and Novarini, 2003; Waters et al., 2000).

Due to the viscous interaction between the fluid and solid skeleton in a bone-like mate-

rial, the fractional derivatives must be used. A group of experimental observations relevant

to the phase interaction between the fluid and solid in a porous medium illustrates the signifi-

cant role of fractional derivative in the description of their mechanical properties (Bagley and

Torvik, 1986; Rossikhin and Shitikova, 1997; Caputo, 1976). (Fellah, Depollier, and Fellah,

2002) considered the wave propagation in rigid porous materials. They applied the fractional

calculus to describe the tortuosity of a medium and compressibility of the air in porous me-

dia. (Fellah and Depollier, 2000) studied wave propagation in porous media composed of a

rigid frame filled with air. They determined the porous medium parameters using direct and

inverse scattering problems. (Fellah et al., 2003) investigated the transient wave propagation

in a porous rigid frame slab which was isotropic and homogeneous. The transient model

took into account the thermal loss and viscosity of the medium. Finally, The transmission

and reflection responses of the medium to an incident pulse were derived. (Fellah et al.,
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2005) considered the transient wave propagation in a double-layered porous model. They in-

vestigated the tortuosity, viscosity, and thermal loss in their model using a time convolution

interpreted by the fractional derivative. (Fellah et al., 2010) used the fractional derivative to

describe the behavior of waves in a rigid porous structure. (Fellah et al., 2004b; Hanyga and

Rok, 2000; Fellah, Fellah, and Depollier, 2008) also showed that the damping and stiffness

of a porous material saturated with a viscous fluid are proportional to a fractional power of

frequency.

This chapter aims to investigate analytically the effects of porosity, and viscosity on the

stress, and reflected and transmitted pressures of a bone-like material using transient acous-

tic waves. This is a preliminary step to diagnose bone loss using Quantitative Ultrasound

techniques. In fact, any change in bone characteristics can be caused by a bone disease such

as osteoporosis. Since the spongy part of a bone is more prone to bone loss, this research

focuses on the propagation of acoustic waves in a cancellous bone-like material. The specific

organization of this chapter is as follows. The first section will address the mathematical

development of transient wave propagation in a cancellous bone-like material saturated with

a viscous fluid based on the Biot-JKD theory. As mentioned earlier, due to the viscous inter-

action between the solid skeleton and fluid, the damping effect has a fractional relation with

the frequency. Thereby, the fractional derivative is used in this formulation to describe the

damping in the time domain. Two eigenvalues of Biot’s equation are selected as the fast and

slow waves propagating in the cancellous bone-like material. Furthermore, the reflection and

transmission scattering operators are derived in the Laplace domain. Then, they are trans-

ferred to the time domain using the frequent run of Durbin’s numerical inversion. The validity

of the analytical results has been checked by comparing with the experimental model found

in the literature. Hence, the effect of mechanical properties on the stress and reflected and

transmitted pressures in a bone-like material is investigated through a case study. Next, the

closing remarks are listed. Finally, the appendices relevant to the mathematical development

are presented.

3.2 Mathematical Developments

In this section, a general configuration of the problem is defined first. Then, conventions

and common assumptions are given. The governing equations for the wave propagation in a

fully saturated bone-like porous material is presented. Furthermore, the effect of fractional

derivative is introduced. Then, the explicit forms for fast and slow fractional propagation
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waves are derived. The reflection and transmission coefficients in both Laplace and time

domains are obtained. Finally, the explicit forms for the stress in the solid skeleton and fluid

pressures are presented.

3.2.1 Problem Definition

A general schematic of the problem is illustrated in Figure 3.1. The domain is composed of

an elastic solid skeleton filled with a viscous fluid. Different types of material properties can

be assigned to each phase. An incident wave hits the left side of the medium, which will

propagate longitudinally through the medium. The constitutive equations are described next.

FIGURE 3.1: A schematic of the problem’s geometry

3.2.2 Conventions and Common Assumptions

In this study, the state variables are the displacement of the solid skeleton, ui, and the ab-

solute displacement of the pore fluid, Ui. The derived governing equations are based on the

following assumptions and conventions:

• The bone-like porous medium consists of the superposition of a continuum body con-

sisting of a deformable skeleton, s, and a porous space filled with a fluid, f .

• The poroelastic medium of the skeleton is homogeneous, isotropic and linear.

• The deformation gradient of the solid skeleton F is defined by F = I+∇u, in which

I is the second-order isotropic tensor with component δi j, where δi j is the Kronecker

delta. The symbol ∇ = (∂/∂x) always stands for the gradient operation with respect

to x = x(X, t), which is the Eulerian position vector at time t in a Cartesian coordinate

frame of orthonormal basis. Also, u is the displacement vector of the skeleton whose

initial and current positions are X and x (u=x-X).
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• The linearized form of Green-Lagrange strain tensor, ε , for infinitesimal deforamtion

is ε = 1
2

(
∂ut +∂u

)
. The skeleton’s volume dilatation εii is required to match the

variations of connected pore spaces (or porosity) φ because of the incompressibility of

solid particles.

3.2.3 Field Equations

The field equations describing wave propagation in a bone-like porous medium can be de-

rived for the state variables of the solid skeleton displacement, ui, and absolute fluid displace-

ment, Ui, as follows (Biot, 1956d).

ρ11
∂ 2u
∂ t2 +ρ12

∂ 2U
∂ t2 =P∇(∇.u)+Q∇(∇.U)−N∇× (∇×u), (3.1a)

ρ12
∂ 2u
∂ t2 +ρ22

∂ 2U
∂ t2 =Q∇(∇.u)+R∇(∇.U). (3.1b)

in which the generalized elastic constants P, Q, and R are defined as follows.

P =
Ks
(
Kb ((φ −1)K f +φKs)+(φ −1)2K f Ks

)
Ks (φKs− (φ −1)K f )−KbK f

+
4N
3
, (3.2a)

Q =
φKs

(
−Kb

Ks
−φ +1

)
−Kb

Ks
+ φKs

K f
−φ +1

, (3.2b)

R =
φ 2Ks

−Kb
Ks

+ φKs
K f
−φ +1

. (3.2c)

where φ , K f , Ks, and Kb are the porosity, bulk modulus of fluid, bulk modulus of solid

particles, and bulk modulus of porous skeleton, respectively. Additionally, N stands for

the shear modulus of the solid skeleton. The relationships between the above-mentioned

mechanical properties and the elastic constants are given as follows.

Ks =
Es

3−6vs
, Kb =

Eb

3−6vb
, N =

Eb

2vb +2
. (3.3)

in which Es, vs, Eb, and vb are the Young modulus and Poisson ratio of the solid and skeletal

frame, respectively.

The mass coefficients in Eq. 3.1, ρmn, are expressed in terms of densities of solid particles

ρs and pore fluid ρ f by

ρ11 +ρ12 = (1−φ)ρs, ρ12 +ρ22 = φρ f (3.4)
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Also the mass coupling between the fluid and solid skeleton is represented by ρ12 given by

ρ12 =−φρ f (α∞−1), (3.5)

in which α∞ stands for the tortuosity of the porous medium.

3.2.4 Fractional Derivative Effect

The interaction between the solid skeleton and pore fluid has an imperative role in damping of

acoustic waves in a porous medium. This effect is considered in a Complex parameter called

the dynamic tortuosity, α̃(ω), which is expressed as a fractional exponent of frequency, ω ,

as follows (Johnson, Koplik, and Dashen, 1987).

α̃(ω) = α∞

(
1+

2
Λ f

(
η

ω jρ f

) 1
2
)

(3.6)

in which Λ f is the length of viscous characteristic, indicating the pore size distribution, η is

the fluid viscosity, and j is the imaginary unit in the complex notation.

Applying the inverse Laplace transform to α̃(ω) in high frequency domain (i.e., ultra-

sonic applications) results in (Fellah and Depollier, 2000; Fellah et al., 2003)

α(t) = α∞

(
δ (t)+

2 t
−1
2

Λ f

(
η

πρ f

) 1
2
)
, (3.7)

where δ (t) is the Dirac function.

By substituting α(t) in Equation 3.5 and then Equation 3.5 in Equation 3.4 and inserting

the obtained temporal mass coefficients in Equation 3.1a and Equation 3.1b, we obtain

(
(1−φ)ρs +φρ f (at

−1
2 −1)

)
∗ ∂ 2u(t)

∂ t2 −φρ f (at
−1
2 −1)∗ ∂ 2U(t)

∂ t2 = (3.8a)

P∇(∇.u(t))+Q∇(∇.U(t))−N∇× (∇×u(t)),

−φρ f (at
−1
2 −1)∗ ∂ 2u(t)

∂ t2 +φρ f at
−1
2 ∗ ∂ 2U(t)

∂ t2 = (3.8b)

Q∇(∇.u(t))+R∇(∇.U(t)),
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in which ∗ stands for the convolution integral for two functions such as f (t) and g(t), which

is described as

( f ∗g)(x, t) =
ˆ t

0
f (τ)g(t− τ)dτ, (3.9)

and

a = α∞

(
δ (t)+

2
Λ f

(
η

πρ f

) 1
2
)

As it can be seen in Equation 3.8, it results in a convolution of t
−1
2 with a temporal

function. Thereby, this necessitates the application of fractional derivative of order n. There

are several definitions for fractional derivative including (Oldham and Spanier, 1974; Miller

and Ross, 1993; Butzer and Westphal, 2000; Yang, Ragulskis, and Taha, 2019; Yang, 2019;

Yang et al., 2017; Ostoja-Starzewski and Zhang, 2018; Yang, Feng, and Hong-Wen, 2019; Li

and Ostoja-Starzewski, 2019; YANG, 2018). In this paper, we formulate the problem using

(Gorenflo and Mainardi, 2008) which is defined by

Dn[ f (t)] =
dn f
dtn =

1
Γ(m−n)

ˆ t

0

f m(u)
(t−u)n+1−m du. (3.10)

in which f m stands for dm f/dtm, and Γ(m− n) represents the Gamma function; therefore,

we use an encyclopedic treatment of fractional calculus presented by (Samko, Kilbas, and

Marichev, 1993) given

Dn[ f (x)] =
1

Γ(−n)

ˆ t

0
(t−u)−n−1 f (u)du, (3.11)

in which 0≤ n < 1 and f (u) is a derivative of u with respect to time. Note that the fractional

derivative acts as a convolution integral operator in this model.

Subsequently, the tortuosity function in the field equations can be treated by using the

fractional derivative in the time domain as follows.

ρ11(t)∗
∂ 2u(t)

∂ t2 +ρ12(t)∗
∂ 2U(t)

∂ t2 = (3.12a)

P∇(∇.u(t))+Q∇(∇.U(t))−N∇× (∇×u(t)),

ρ12(t)∗
∂ 2u(t)

∂ t2 +ρ22(t)∗
∂ 2U(t)

∂ t2 = (3.12b)

Q∇(∇.u(t))+R∇(∇.U(t))
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where

ρ11(t) =φ (α(t)−1)ρ f − (φ −1)ρs, (3.13)

ρ12(t) =−φ (α(t)−1)ρ f ,

ρ22(t) =φ α(t)ρ f .

3.2.5 Compressional Displacement Potentials

The wave propagates in an elastic solid in two longitudinal and rotational forms. In this study,

we only consider the compressional (longitudinal) wave propagating through a bone-like

porous material, so φs and φ f are taken as the scalar compressional displacement potentials

for solid skeleton and fluid, respectively. Hence, the solid skeleton and fluid displacement

fields, u(t) and U(t), can be written as

u(t) = ∇φs(t), U(t) = ∇φ f (t), (3.14)

By substituting Equation 3.14 into Equation 3.12, we obtain

ρ11 ρ12

ρ21 ρ22

 ∂ 2

∂ t2

φs(t)

φ f (t)

+ϖ

 1 −1

−1 1

 ∂
3
2

∂ t
3
2

φs(t)

φ f (t)

= (3.15)

P Q

Q R

∇
2

φs(t)

φ f (t)

 ,

in which ϖ = 1
Λ f

2φρ f α∞

√
η

ρ f
.

The two eigenvalues for Equation 3.15, φ1(t) and φ2(t), which describe the fast and slow

compressional wave modes, can be derived by solving the following equationρ11
∂ 2

∂ t2 +ϖ
∂

3
2

∂ t
3
2

ρ12
∂ 2

∂ t2 −ϖ
∂

3
2

∂ t
3
2

ρ12
∂ 2

∂ t2 −ϖ
∂

3
2

∂ t
3
2

ρ22
∂ 2

∂ t2 +ϖ
∂

3
2

∂ t
3
2


φs(t)

φ f (t)

 (3.16)

−∇
2

P Q

Q R

φs(t)

φ f (t)

= 0.

By writing Equation 3.16 in the from of an eigenvalue matrix, we obtain

∇
2

φ1(t)

φ2(t)

=

λ1(t) 0

0 λ2(t)

φ1(t)

φ2(t)

 (3.17)
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in which

λi(t) =Ci
∂ 2φi(t)

∂ t2 +Di
∂

3
2 φi(t)

∂ t
3
2

+Gi
∂φi(t)

∂ t
, i = 1,2. (3.18)

The eigenvectors corresponding to these eigenvalues are

χi(t) = Ai +
Bi√
πt

, i = 1,2. (3.19)

where Ai, Bi, Ci, Di, and Gi are as follows.

Ai =
ρ1−2ρ5 +(−1)i

√
ρ2

1 −4ρ3

2ρ7
, (3.20)

Bi =

2ρ7

(
(−1)i(ρ1ρ2−2ρ4)√

ρ2
1−4ρ3

+ρ2−2ρ6

)
−2
(√

ρ2
1 −4ρ3−ρ1 +2ρ5

)
ρ6

4ρ2
7

Ci =
1
2

(
(−1)i

√
ρ2

1 −4ρ3 +ρ1

)
,

Di =
1
2

(−1)i (ρ1ρ2−2ρ4)√
ρ2

1 −4ρ3

+ρ2

 ,

Gi =
(−1)i

((
ρ2

1 −8ρ3
)

ρ2
2 +4ρ1ρ4ρ2−4ρ2

4
)

8
(
ρ2

1 −4ρ3
)

3/2
,

where ρi are in terms of acoustical and mechanical properties of porous media described as

follows.

ρ1 =
Pρ22−2ρ12Q+ρ11R

PR−Q2 , ρ2 =
ϖ(P+2Q+R)

PR−Q2 , ρ3 =
ρ2

12−ρ11ρ22

Q2−PR
,

ρ4 =
ϖ (ρ11−2ρ12 +ρ22)

PR−Q2 , ρ5 =
ρ12Q−ρ11R

Q2−PR
, ρ6 =

ϖ(Q+R)
PR−Q2 , (3.21)

ρ7 =
ρ22Q−ρ12R

Q2−PR
,

A complete expansion of Equation 3.20 is described in Appendix A by inserting ρi from

Equation 3.21 to Equation 3.20.

Accordingly, the eigenvalues for Equation 3.17 in a three-dimensional coordinate system

can be obtained by inserting Equation 3.18 to Equation 3.17 as follows.

∂ 2φi(t)
∂x2 +

∂ 2φi(t)
∂y2 +

∂ 2φi(t)
∂ z2 (3.22)

−Ci
∂ 2φi(t)

∂ t2 −Di
∂

3
2 φi(t)

∂ t
3
2
−Gi

∂φi(t)
∂ t

= 0, i = 1,2.
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Since we deal with one-dimensional wave propagation in a bone-like material in this study,

Equation 3.22 can be reduced to

∂ 2φi(t)
∂x2 −Ci

∂ 2φi(t)
∂ t2 −Di

∂
3
2 φi(t)

∂ t
3
2
−Gi

∂φi(t)
∂ t

= 0, i = 1,2. (3.23)

The first two terms in Equation 3.23, ∂ 2φi(t)
∂x2 −Ci

∂ 2φi(t)
∂ t2 , represent the propagation of both fast

and slow waves by neglecting the effect of tortuosity. The third term, Di
∂ 3/2φi(t)

∂ t3/2 , contains a

fractional derivative term with order of 3/2. This represents the viscous interaction between

the solid skeleton and fluid, which leads to an acoustic attenuation in a bone-like porous

medium. The last term in Equation 3.23 describes the acoustic attenuation due to viscosity

between fluid and solid by neglecting the effect of tortuosity. It is worth mentioning that the

signals containing high frequencies are mostly sensitive to the third term in Equation 3.23

because of the fractional derivative (Fellah et al., 2013). In addition, the last term also has

an influence on the acoustic attenuation and shall be considered for those transient signals

containing low frequency components (Fellah et al., 2004a).

The eigenvalues for Equation 3.17, φ1(t) and φ2(t), which correspond to the fast and slow

compressional waves, can be related to the scalar compressional potentials for solid skeleton

and fluid, φs(x, t) and φ f (x, t), using the following matrix form (Fellah et al., 2013),

φs(x, t)

φ f (x, t)

=

 I I

χ1(t) χ2(t)

∗
φ1(t)

φ2(t)

 . (3.24)

The eigenvalues corresponding to the fast and slow fractional waves propagating through a

bone-like porous medium can be derived by φ1(x, t) = G1(x, t) and φ2(x, t) = G2(x, t). The

expressions for G1(x, t) and G2(x, t) are provided in Appendix B. Thus, the expressions for

φs(x, t) and φ f (x, t) can be deduced as follows.

φs(x, t) = I ∗G1(x, t)+ I ∗G2(x, t) = G1(x, t)+G2(x, t) (3.25a)

φ f (x, t) =χ1(t)∗G1(x, t)+χ2(t)∗G2(x, t) (3.25b)

As mentioned above, the displacements of solid skeleton ui and fluid Ui can be obtained by

∇φs(x, t) and ∇φ f (x, t), respectively.
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Additionally, the stress tensors for the solid skeleton, σ s, and fluid, σ f , can be derived as

follows.

σ
s =((P−2N)∇u(t)+Q∇U(t))+N(∇u+∇uT ), (3.26a)

σ
f =−φ p f = (R∇U(t)+∇u(t)), (3.26b)

where p f is the fluid pressure. Note that the pressure field and normal stress are continuous

in boundaries.

The stress tensors for the solid skeleton and fluid phase in the Laplace domain can be

written as

σ̃
s(x,s) = (P−2N)

∂ 2φ̃s(x,s)
∂x2 +Q

∂ 2φ̃ f (x,s)
∂x2 +2N

∂ 2φ̃s(x,s)
∂x2 ,

σ̃
f (x,s) = R

∂ 2φ̃ f (x,s)
∂x2 +Q

∂ 2φ̃s(x,s)
∂x2 , (3.27)

Also, the strain tensor for the solid skeleton can be obtained for infinitesimal deformation

as ε = 1
2(∇u+∇uT ). A complete extension of strains are brought in Appendix C.

In the next section, the reflection and transmission of incident waves propagating through

a bone-like porous medium along with the boundary conditions are derived.

3.2.6 Reflection and Transmission Coefficients

When a normal sound wave in the fluid impinges on a porous medium, one part of the inci-

dent wave is reflected back to the fluid while another part of the incident wave is transmitted

into the porous medium. Since only the reflection and transmission induced by the normal in-

cident wave are investigated, there will be no shear effect in the medium. Also, the amplitude

of the reflection and transmitted waves can be determined based on the boundary conditions.

Figure 3.1 depicts the schematic of the problem’s geometry. Three propagating waves

such as incident wave, reflected wave, and transmitted waves are shown. In addition, a

homogeneous and isotropic elastic porous medium is considered between the span 0≤ x≤ L.

By impinging a wave pulse on the left side of the medium, the solid and fluid displace-

ments, ui and Ui, will be generated, respectively, in the porous medium according to Equa-

tion 3.12. As shown in Figure 3.1, the total pressure field at the left side of the medium x≤ 0

is the summation of the incident and reflected wave pressures given by

Ple f t(x, t) = Pinc
(

t− x
c0

)
+Pre f

(
t +

x
c0

)
, (3.28)
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in which Pinc, Pre f , and Ple f t are the incident wave, reflected wave, and total wave pressures

in the left side of the medium x≤ 0, respectively. Likewise, the transmitted wave pressure at

the right side of the medium is given by

Pright(x, t) = Ptr
(

t− x−L
c0

)
, (3.29)

where Ptr stands for the transmitted wave in the right side of the medium x≥ L.

The incident and scattered waves can be related to each other by the reflection, ℜ(τ),

and transmission, T (τ) kernel operators. In fact, the reflected and transmitted waves can

be obtained using the integration of the product of the incident wave pressure with their

operators represented by

Pre f (x, t) =
ˆ t

0
ℜ(τ)Pinc

(
t− τ +

x
c0

)
dτ, (3.30a)

Ptr(x, t) =
ˆ t

0
T (τ)Pinc

(
t− τ− L

c
− x−L

c0

)
dτ, (3.30b)

The kernel operators depend only on the material properties of the medium and are indepen-

dent of the input incident wave pressures. The integration in Equation 3.30 is taken over the

interval [0 t]. The lower limit starts from 0 meaning the incident wave hits the medium at

t = 0.

In order to solve Equation 3.30, the kernel operators, ℜ(τ) and T (τ), must be obtained

first. In the next section, these kernels are derived in the Laplace domain and then inverted to

the time domain using the inverse Laplace transform.

3.2.7 Reflection and Transmission Coefficients in Laplace Domain

In the left side of the medium, x≤ 0, where the incident wave hits the medium, the pressure

field can be written

P1(x, t) =
(

δ

(
t− x

c0

)
+ℜ(t)∗δ

(
t +

x
c0

))
∗Pinc(t), (3.31)

also, the pressure field in the right side of the medium, x≥ L is given

P3(x, t) =
(

T (t)∗δ

(
t− L

c
− x−L

c0

))
∗Pinc(t). (3.32)
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The pressure fields can be expressed in the Laplace domain by applying the Laplace trans-

form operator to P1(x, t) and P3(x, t). So,

P̃1(x,s) =L [P1(x, t)] =
(

exp
(
−s

x
c0

)
+ R̃(s)exp

(
s

x
c0

))
φ̃(s), (3.33a)

P̃3(x,s) =L [P3(x, t)] = T̃ (s)exp
(
−
(

L
c
+

x−L
c0

)
s
)

φ̃(s), (3.33b)

in which R̃(s), T̃ (s) and ϕ̃(s) are the Laplace transform of ℜ(t), T (t) and Pinc(t), respec-

tively.

Note that the pressure field and normal stresses at the boundaries of the medium (Wu,

Xue, and Adler, 1990) are continuous, so at x = 0 and x = L, we have

σ
f (0+, t) =−φP1(0−, t), σ

s(0+, t) =−(1−φ)P1(0−, t)

σ
f (L−, t) =−φP3(L+, t), σ

s(L−, t) =−(1−φ)P3(L+, t) (3.34)

Additionally, two more equations are needed to derive the scattering coefficients. There

is also a relationship between the acoustic velocities inside and outside of the medium as

V1(0−, t) = (1−φ)Vs(0+, t)+φVf (0+, t),

V3(L+, t) = (1−φ)Vs(L−, t)+φVf (0+, t), (3.35)

where V1 and V3 are acoustic velocity fields in x ≤ 0 and x ≥ L, respectively. They are

obtained using the Euler equation and field pressure around the medium given

∂Pi(x,s)
∂x

= ρ f sVi(x,s) i = 1,3 (3.36)

The acoustic velocities in fluid, Vf , and solid, Vs, are obtained by

u(t) = ∇φs(t)→ Vs(x,s) = s
(

∂ φ̃s(s)
∂x

)
,

U(t) = ∇φ f (t)→ Vf (x,s) = s
(

∂ φ̃ f (s)
∂x

)
. (3.37)

Finally, using Equation 3.23 and Equation 3.24 along with the boundary conditions (Equa-

tion 3.34 − Equation 3.37), the reflection and transmission coefficients in Laplace domain
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can be obtained as follows

R̃(s) =
s2(2ג

4(s)− 2ג
3(s))+1

(s3ג(s)−1)2− s22ג
4(s)

T̃ (s) =
2s(4ג(s))

s22ג
4(s)− (s3ג(s)−1)2 (3.38)

The expressions for (s)4ג and (s)3ג along with their temporal expressions of (s)4ג and (s)3ג

are derived next.

3.2.8 Temporal Reflection and Transmission Operators

The expressions for R̃(s) and T̃ (s) in Equation 3.38 can be decomposed to a simpler form,

R̃(s) =
1

1− s3ג(s)+ s4ג(s)
+

1
1− s(3ג(s)+ ((s)4ג

−1

T̃ (s) =− 2s4ג(s)
(s3ג(s)−1)2− s24ג

2(s)
(3.39)

in which

(s)3ג cosh(s)1ג=
(

l
√

λ̃1(s)
)
+ cosh(s)2ג

(
l
√

λ̃2(s)
)

(3.40)

(s)4ג +(s)1ג= (s)2ג

i(s)ג =(1+φ(χ̃i(s)−1))

√λ̃i(s)
2ρ f c0Ψ̃i(s)

sinh
(

l
√

λ̃i(s)
)

Ψ̃(s)

 i = 1,2

χ̃i(s) =Ai +
Bi√

s
i = 1,2

λ̃i(s) =Cis2 +Dis
√

s+Gis i = 1,2

(3.41)

It is worth mentioning that χ̃i(s) and λ̃i(s) are in the Laplace transform domain. The expres-

sions for Ψ̃i mentioned in Equation 3.41 for i = 1,2 are given by

Ψ̃1(s) =φ Z̃2(s)− (1−φ)Z̃4(s)

Ψ̃2(s) =−φ Z̃1(s)+(1−φ)Z̃3(s)

Ψ̃(s) =2
(
Z̃1(s)Z̃4(s)− Z̃2(s)Z̃3(s)

)
(3.42)
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in which Z̃1(s) to Z̃4(s) are written

Z̃1(s) =(P+Qχ̃1(s)) λ̃1(s)

Z̃2(s) =(P+Qχ̃2(s))λ̃2(s)

Z̃3(s) =(P+Rχ̃1(s))λ̃1(s)

Z̃4(s) =(P+Rχ̃2(s))λ̃2(s) (3.43)

Substituting Equation 3.41 to Equation 3.43, the expressions for the reflection and transmis-

sion coefficients in the Laplace transform domain can be obtained,

R̃(s) =−
2X̃(s)

(
Ỹ (s)−2e−2l

√
λ̃1(s)

)
−4Ỹ (s)e−2l

√
λ̃2(s)+ X̃(s)2 + Ỹ (s)2−1(

X̃(s)+ Ỹ (s)−1
)2 ,

T̃ (s) =−
4e−l

(√
λ̃1(s)+

√
λ̃2(s)

)(
X̃(s)el

√
λ̃2(s)+ Ỹ (s)el

√
λ̃1(s)

)
(
X̃(s)+ Ỹ (s)−1

)2 , (3.44)

where

X̃(s) =
Ψ̃1(s)
Ψ̃(s)

2sc0ρ f

√
λ̃1(s)(φ (χ̃1(s)−1)+1),

Ỹ (s) =
Ψ̃2(s)
Ψ̃(s)

2sc0ρ f

√
λ̃2(s)(φ (χ̃2(s)−1)+1) (3.45)

in which the expressions for Ψ̃1(s)
Ψ̃(s)

and Ψ̃2(s)
Ψ̃(s)

are

Ψ̃1(s)
Ψ̃(s)

=
φ(P+Q)+ χ̃2(s)(φ(Q+R)−R)−Q

λ̃1(s) 2(Q2−PR)(χ̃1(s)− χ̃2(s))
,

Ψ̃2(s)
Ψ̃(s)

=
φ(P+Q)+ χ̃1(s)(φ(Q+R)−R)−Q

λ̃2(s) 2(Q2−PR)(χ̃2(s)− χ̃1(s))
, (3.46)

The explicit forms for X̃(s) and Ỹ (s) are provided in Appendix C.

The Durbin method for the numerical inversion of Laplace transform is applied to derive

the transmission and reflection coefficients in the time domain (Durbin, 1974; Fan, Li, and

Yu, 2005) for the time span of [0, 2T0] (Hasheminejad and Mousavi-Akbarzadeh, 2013), as



32
Chapter 3. Transient Acoustic Wave Propagation in Bone-like Porous Materials Using the

Theory of Poroelasticity and Fractional Derivative: A Sensitivity Analysis

follows.

Λ(t) =
2eµt

T0

[1
2

Re(Λ̄(µ))+
N̂

∑
k=1

Re(Λ̄(µ + ik
2π

T0
)) (3.47)

cos
(

kt
2π

T0

)
− Im(Λ̄(µ + ik

2π

T0
))sin

(
kt

2π

T0

)]
,

in which µ is a real number and is greater than all of the singularities of Λ̄(s). One may

choose N̂ = 4000, µT0 = 7 and T0 = 2tmax = 1, when tmax is the maximum calculation time

(Hasheminejad and Alaei-Varnosfaderani, 2012).

The computations were performed using a desktop computer including Intel(R) Xeon(R)

with CPU E5-2630 at frequency 2.4GHz. Using a general MATLAB code, the numerical

solutions were obtained in a trial error manner. In fact, the number of modes increased and

looked for the stability in the numerical values of the computed solutions. In addition, the

computing was accelerated due to MATLAB parallel Toolbox and multicore processors.

3.3 Validation

To show the robustness and validity of the analytical development, the theoretical results are

compared with the experimental data provided by (Fellah et al., 2013). The first step is to find

an analytical time domain function that matches the time history of the experimental incident

signal. For this purpose, MATLABr Curve Fitting ToolboxTM 3.5.5 has been used to perform

a curve fitting on the experimental incident signal. In order to increase the accuracy of the

fitted function, a piecewise function was implemented. A fitted function can be given in a

sequence of intervals as

f (t) =



0 0≤ t < t1

g(t) t1 ≤ t < t2

h(t) t2 ≤ t < t3

0 t2 ≤ t < t3

(3.48)

in which t1 = 93.00 µs, t2 = 97.21 µs and t3 = 103.85 µs. Furthermore, the functions g(t)

and h(t) can be written as

g(t) =
8

∑
i=1

ai sin(bit + ci) (3.49a)
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Coeff. 1 2 3 4 5 6 7 8
a 0.143 0.521 0.065 0.907 0.679 -0.830 0.099 0.103
b 4713386 5894250 154833 12257416 7345705 12255557 9117472 14119574
c -11.727 15.178 60.377 -10.953 21.685 -155.249 -2.269 -43.706

TABLE 3.1: Coefficients in the fitted function f (t).

Coefficient 1 2 3 4
d 0.114 0.695 0.606 0.017
e 6068996 6389826 6459584 292003
f -133.011 -68.279 15.720 19.111

TABLE 3.2: Coefficients in the fitted function g(t).

h(t) =
4

∑
i=1

di sin(eit + fi) (3.49b)

where the coefficients of function g(t) such as ai,bi, ci, and h(t) including di,ei and fi

are provided in Table 3.1 and Table 3.2, respectively. Figure 3.2 illustrates the comparison

between the experimental signal and the analytical incident signals f (t).
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FIGURE 3.2: Comparison between the analytical and experimental incident
plane wave signals.

Equation 3.30 can be written in the convolution form (∗) as follows.

Ptr(x, t) = T (τ)∗Pinc(t)∗δ

(
t− L

c
− (x−L)

c0

)
(3.50)
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By taking the Laplace transform, Equation 3.50 can be written

P̃tr(x,s) = T̃ (s)exp
(
−
(

L
c
+

x−L
c0

)
s
)

P̃inc(s) (3.51)

in which P̃inc(s) can be replaced by L [ f (t)] = F̃(s). So,

F̃(s) = L [ f (t)]≡
ˆ t2

t1
g(t)e−stdt +

ˆ t3

t2
h(t)e−stdt→

F̃(s)≡
8

∑
i=1

{
− aie−st (ssin(tbi + ci)+bi cos(tbi + ci))

b2
i + s2

∣∣∣∣t=t2

t=t1

}
+

4

∑
i=1

{
− die−st (ssin(tei + fi)+ ei cos(tei + fi))

e2
i + s2

∣∣∣∣t=t2

t=t1

}
(3.52)

Finally, P̃tr(x,s) is derived as a function of x and s. Similarly, Ptr(x, t) will be found using

Durbin’s numerical inversion. Figure 3.3 illustrates a comparison between Ptr(x, t) derived

in this study and experimental incident signal provided by (Fellah et al., 2013).
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FIGURE 3.3: Comparison between the current study and the experimental
transmitted signal provided by (Fellah et al., 2013)
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3.4 Results and Discussion

In this section, the effect of viscosity and porosity on the stress, and reflected and transmitted

pressures in bone-like porous materials is investigated. The stresses and acoustic pressures

at the center of the medium x = L
2 are measured for air and bone marrow as pore fluids,

which have distinct acoustical properties. In this research, the following characteristics are

used for the bone specimen. The thickness 0.7cm, dynamic tortuosity α∞ = 1.06, viscous

characteristic length λ = 240.8× 10−6 µm, solid density ρs = 1960 kg
m3 , bulk modulus of

pore fluid k f = 2.28GPa, bulk modulus of elastic solid ks = 20GPa, bulk modulus of the

bone skeletal frame kb = 3.3 GPa, shear modulus of the frame N = 2.6GPa, fluid viscosity

for air η = 1.81× 10−5, air density ρ f = 1.225 kg
m3 , air bulk modulus, K f = 101000, bone

marrow density ρ f = 1.225, bone marrow viscosity η = 0.0018, bone marrow modulus K f =

2.28×109 GPa, Poisson ratio of the bone skeletal frame νb = 0.2, Poisson ratio of the elastic

solid νs = 0.37. All information regarding the bone specimen are taken from (Fellah et al.,

2013; Buchanan and Gilbert, 2007).

Figure 3.4 shows the time history of the stress induced in a bone-like porous material

filled with air subjected to the incident signal f (t) for φ = 0.6 and φ = 0.9. As shown, by

increasing the porosity, the stress amplitude in a porous medium filled with air increases.

This can be due to a decreased surface area when the porosity increases in a representative

elementary volume. Because of a very low viscosity of air, no attenuation of wave can be

seen in the bone’s response in Figure 3.4.
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FIGURE 3.4: The effect of porosity on the stress in a bone-like porous
medium filled with air

To study the effect of fluid viscosity on the wave attenuation, it is assumed that the bone-

like porous medium is filled with bone marrow. The stress amplitude with respect to time

for the porosities of 0.1, 0.7, and 0.9 is illustrated in Figure 3.5. As shown, by increasing the

porosity the stress amplitude decreases. It can be concluded that even though an increase in

porosity reduces the effective surface area and consequently increases the stress amplitude,

the wave attenuation due to the fluid viscosity decreases the stress amplitude in a bone-like

porous medium filled with bone marrow.
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FIGURE 3.5: The effect of porosity on the stress in a bone-like porous
medium filled with bone marrow

Figure 3.6 illustrates the time history of the transmitted acoustical pressure at the center

of the medium subjected to an incident signal for φ = 0.3, 0.6, and 0.9. As depicted, the

transmitted pressure amplitude reduces by increasing the porosity. In fact, the bulk of solid,

which is an important means to transfer the wave, is much more when the porosity is lower.

In the other words, for a constant volume, an increase in porosity reduces the bulk of the

solid part which can lead to a less transmission. Namely, it can be described that the speed of

transmitted waves decreases by an increase in porosity leading to a decrease in transmission.
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FIGURE 3.6: Transmitted pressure at the center of a bone-like porous
medium filled with air

The reflected pressure is also influenced by the porosity of the medium. Figure 3.7 depicts

the time history of the reflected pressure at the center of the porous medium filled with air

for φ = 0.3, 0.6, and 0.9. As illustrated, the amplitude of the reflected pressure increases

by increasing the porosity when the medium is filled with air. In fact, the solid part of the

medium decreases by increasing the porosity, so the transmission decreases and reflection

increases. Bear in mind that the pore fluid in Figure 3.7 is air with a negligible attenuation

effect on wave propagation.
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FIGURE 3.7: Reflected pressure at the center of the porous medium filled
with air

To study the effect of pore fluid viscosity on reflected and transmitted pressures, it is

assumed that the bone-like porous medium is filled with bone marrow. Figure 3.8 shows the

transmitted pressure in a porous medium filled with bone marrow for φ = 0.3, 0.6, and 0.9.

As illustrated, the transmitted pressure amplitude decreases by increasing the porosity. As

mentioned above, by increasing the porosity in a representative elementary volume less solid

medium will be available for the transmitted wave propagation.
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FIGURE 3.8: Transmitted pressure at the center of a bone-like porous
medium filled with bone marrow

To study the effect of pore fluid viscosity, in addition to the effect of porosity on the

transmitted pressure, it is assumed that the porous space in the medium is filled with bone

marrow having a higher viscosity in comparison to air (Figure 3.9).

Regarding Figure 3.8 and Figure 3.6, The behaviour of transmitted pressure for the

medium filled with bone marrow is almost identical to that of filled with air. That means

by increasing the porosity the transmitted pressure decreases. But the attenuation of trans-

mitted pressure in air is less than that of bone marrow. Additionally, Figure 3.7 and Figure 3.9

express that the reflected pressure for the medium filled with bone marrow decreases by in-

creasing porosity. It is because a part of the wave is damped due to the higher viscosity of

bone marrow with respect to air.

3.5 Conclusions

The transient wave propagation in bone-like porous media with an elastic structure is pre-

sented based on the Biot-JKD theory. The fractional derivatives are used to describe the

viscous behavior of solid and fluid interaction. Two fast and one slow waves as a solution of

Biot’s equations are derived. The reflected and transmitted scattering operators in the time
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domain are derived using Durbin’s numerical inversion for porous materials. The theoreti-

cal solution is in good agreement compared with experimental results for waves propagating

through a bone-like porous medium. It is shown that the stress in a cancellous bone is sensi-

tive to the porosity of the medium as well as the viscosity of the pore fluid. A higher porosity

makes more stresses in the medium due to a decrease in the surface area while the viscosity

of the pore fluid decreases stresses due to the attenuation of wave propagation. That means

that the response of an incident wave hitting a porous medium filled with air is different from

that filled with bone marrow. Similarly, the reflected and transmitted pressures in the porous

medium are influenced by porosity and viscosity. For a medium filled with a viscous fluid,

the transmitted pressure decreases by increasing the porosity. Also the reflected pressure de-

creases for low viscous fluid while it increases when the pores are filled with a fluid having a

higher viscosity.
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Chapter 4

An Overview of the Acoustic Studies
of Bone-like Porous Materials, and
the Effect of Transverse Acoustic
Waves

Abstract

The effects of transverse acoustic waves in characterizing a bone-like, porous medium filled

with a viscous fluid are analyzed for the first time. Scattering operators along with stress

fields are derived by using the standard Biot-JKD model. A short duration acoustical pulse

is applied to one side of a bone-like, porous medium so that both longitudinal and transverse

waves travel through the intermediate medium which is filled with a viscous fluid. The

reflection and transmission operators along with stresses in the medium are expressed in

terms of these waves. The numerical implementation is validated for the longitudinal wave by

comparison with the numerical simulation performed by (Fellah et al., 2004a). The effects of

the transverse waves on the reflection and transmission coefficients as well as the stress field

are studied by considering different viscosities and porosities. It is shown that when the fluid

viscosity in the medium is relatively high (such as bone marrow), the effect of the transverse

wave dominates. However, this effect is negligible when the medium is filled with a relatively

low viscous fluid (such as air). Furthermore, it is shown that the role of transverse waves

in characterizing bone structures and bone loss is imperative since the acoustical response

of such media at specific frequencies can be triggered only by considering the effects of

transverse waves.

4.1 Introduction

Osteoporosis is recognized as a silent epidemic that reduces a bone’s tissue and mass which

increases its fragility (Osterhoff et al., 2016). Several studies contend that the fragility and
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risk of a fracture in bone increases two or three times by decreasing the bone mineral density

(Stegman et al., 1992; Hui, Slemenda, and Johnston, 1989; Cummings et al., 1993). While

there is extensive relationship between bone mass and fracture, some other factors can par-

ticipate in fracture risk such as age and past fractures which are independent of bone mass

(Smith, Khairi, and Johnston, 1975; Krolner and Nielsen, 1982; Bohr and Schaadt, 1983).

With regards to the dependent and independent factors contributing to fracture risks in bones,

bone quality is defined as a property of bone which reflects a bone structure (Ross et al., 1991;

Hui, Slemenda, and Johnston, 1988).

The structure of the bone is porous and spongy. It consists of a solid skeleton and pores

which are filled with a viscous bone marrow. More precisely, the main formation of the bone

structure is composed of a compact layer, which is a dense bone tissue found on the outside

of a bone, and a spongy layer (cancellous bone) inside the bone structure, which is filled with

marrow. This particular property of bone including dense part, spongy part, and fluid part

makes it a unique tissue. One of the most important quantities in characterizing the bone

structure in a diagnosis of osteoporosis is its porosity, which varies between 5 to 95 percent.

Bone porosity varies not only in different bones, but also in the same bone. Consequently,

any realistic model must consider the variation in porous properties of bone structure for

reliable assessment of bone fracture risk under normal conditions.

There is an increasing need to improve the osteoporosis diagnosis and management.

In fact, early stage diagnosis is essential if important preventive measures are to be taken.

Among the many early osteoporosis detection methods available, Quantitative Ultrasound

(QUS) may have many advantages over other electromagnetic methods such as dual X-ray.

It can be small, which makes a portable unit a viable option. Further, it is relatively cheap

compared to a similar electromagnetic wave-based tools, is a non-invasive technique, and

does not employ harmful ionizing radiation.

Using ultrasound to image solid objects like bone, typically results in the generation of

two types of waves that can be measured and represent the raw imaging data. Longitudinal

waves are those that follow the contours of the object’s surface, while transverse waves travel

through a solid object. The mechanical properties of bone such as modulus of elasticity,

density, porosity, and the viscosity of fluid inside the bone would be important in osteoporosis

detection using ultrasound techniques since such factors affect the acoustic wave propagation

in the medium.

Several studies have been conducted in the literature to measure the elastic characteristics

of cancellous and trabecular bones (Ashman, Corin, and Turner, 1987; Ashman and Rho,
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1988; Yousefian et al., 2018; Langton, Palmer, and Porter, 1984). It is worth mentioning

that the study of wave propagation in a cancellous bone is a very complex task due to the

inhomogeneous nature of its structure.

One of the most prominent theories to study the wave propagation in porous materials

saturated with a fluid is the theory of Biot originally developed in the 1950s-1960s (Biot,

1956d; Biot, 1941; Biot, 1955; Biot, 1956b; Biot, 1962b). According to the theory of Biot,

two longitudinal waves appear in a porous medium subjected to an external solicitation. The

first longitudinal wave, called fast wave, is relevant to in-phase motion of solid skeleton while

the second longitudinal wave, called slow wave, is related to the out-phase motions of solid

skeleton and pore fluid.

This theory has been widely used in oil and gas applications and geo-science testings. The

Biot’s theory has been also applied to model the bone structure in several studies. For exam-

ple, (Lauriks et al., 1994) investigated the ultrasonic transmission pulses in bovine trabecular

bones using Biot’s theory. In this study, they measured the different parameters involved in

the Biot theory and made several simplified assumptions in their model. They observed a sat-

isfactory agreement between the theory and their experimental data obtained on water-filled

bone samples. (McKelvie and Palmer, 1991) explained the ultrasonic attenuation frequency

dependence of cancellous bones using Biot’s theory. Similarly, they made several assump-

tions and insufficiently defined the Biot parameters for cancellous bone to allow a complete

test of the model. They concluded that even though the qualitative trend between the theory

and measurements is in good agreement, the quantitative results are significantly deviant due

to imprecise parameters used in the model.

The wave propagation in human and bovine bones has been experimentally studied,

which validate the presence of the second longitudinal wave in such media. For instance,

(Lakes, Yoon, and Katz, 1983) studied the ultrasonic wave propagation in wet human and

bovine cortical bones and observed a new longitudinal waves. The speed of new longitudinal

waves was lower than ordinary longitudinal waves. They mentioned that the slow wave is

associated with the fluid motion in the bone pores. Furthermore, these two waves were deter-

mined independently in bovine cancellous bone (Hosokawa and Otani, 1997; Hosokawa and

Otani, 1998). (Cardoso et al., 2003) studied the wave propagation in cancellous bone for ma-

terial characterization. They demonstrated a correlation between velocities of fast and slow

waves with the porosity. They also mentioned that the presence of two waves is mandatory

to obtain the accurate results and failure in accounting any of them may lead to inaccurate

qualification of bone properties.
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In these studies, two important phenomena when a wave propagates through the porous

media were neglected: first, the effect of transverse waves were not considered; second, the

viscous exchange between the pore fluid and solid skeletal frame is ignored.

Considering the complex bone structure, the interaction between marrow and solid skele-

ton of a bone subjected to an acoustic incident can lead to a complex solution. In fact, to

model accurately the wave propagation in a porous medium filled with a viscous fluid, such

considerations are of paramount importance.

The original Biot’s theory was modified by (Johnson, Koplik, and Dashen, 1987) in the

late 1980s to address one of the limitations of Biot’s theory related to the viscous dissipation

in porous media filled with viscous fluids. This is of significant importance when it is aimed

to model the energy dissipation in the medium at different frequency ranges. The modified

theory, called Biot-JKD, introduces the concept of dynamic tortuosity, viscous characteristic

length, and dynamic permeability to describe the viscous dissipation occurring in the pores.

The wave propagation in trabecular and cancellous bones, as a porous medium saturated with

a viscous fluid, using the Biot-JKD theory has been studied in the literature (for example, see

(Fellah et al., 2004a; Hughes et al., 2007; Marutyan, Holland, and Miller, 2006; Sebaa et

al., 2006b; Pakula et al., 2008; Mizuno et al., 2009)). These studies focus mainly on the

effect of bone anisortopy, tortuasity, as well as viscous exchange between pore fluid and soid

skeletal frame on wave propagation in bones. However, the effect of transverse waves was

not considered in the above-mentioned studies.

It is worth mentioning that in original Biot’s theory, the wavelength is assumed to be

larger than the macroscopic geometry of medium to neglect the scattering effect. But when

the dimensions of pores in a cancellous bone is close to wavelength, the scattering effect

should be taken into account (Wear, 1999; Chaffaı et al., 2000; Luppé, Conoir, and Franklin,

2002). Considering the scattering effect is of paramount importance since it is assumed

that any change in bone characteristic due to bone loss or osteoporosis can be determined

by the speed of wave and its attenuation. For example, (Bennamane and Boutkedjirt, 2017)

proposed a theoretical approach combining both absorption and scattering to study ultrasonic

attenuation in bovine cancellous bone samples filled with water based on Biot’s analytical

model. They concluded that the predominant mechanism for attenuation in trabecular bone

is scattering. (Buchanan, Gilbert, and Ou, 2012) insonified the cancellous bone immersed

in water by an acoustic pulse and studied the reflection and transmission of both fast and

slow waves. Furthermore, they proposed a series of transfer functions for the reflection and

transmission of fast and slow waves propagating in poro-elastic medium filled with a fluid
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based on the Biot-JKD model.

Several studies concerning the reflection and transmission of acoustic waves in both time

and frequency domain have been performed for different media (Caviglia and Morro, 2004;

Szabo, 1994; Norton and Novarini, 2003; Waters et al., 2000). (Fellah et al., 2004a) studied

the effect of ultrasonic waves on reflection and transmission coefficients in human cancellous

bone at high frequency ranges based on the Biot-JKD theoery. They used a slab immersed

in water to model a bone. Similar to previous works, they only investigated the effect of

longitudinal wave propagating in porous media and neglected the effect of transverse waves

in their model . They considered the effect of porosity, density, shear modulus and viscosity

on their scattering coefficients, describing the importance of these parameters in the fast and

slow waves. (Fellah et al., 2013) developed a temporal model to describe wave propagation in

porous media saturated with fluid using the Biot-JKD theory by applying dynamic tortuosity

and fractional calculus to describe the viscous exchange between pore fluid and solid skeletal

frame. They also did not apply the effect of transverse wave in their model and only investi-

gated the effect of longitudinal waves in solid and fluid phases. They used Green’s function

for fast and slow waves and compared them with their experimental work. Their theoretical

results showed a good agreement with experimental results. (Hodaei, Rabbani, and Maghoul,

2020) presented an analytical transient acoustical model using JKD-Biot’s theory for a bone-

like porous medium saturated with viscous fluid. The fractional calculus is used to describe

the viscous exchange between the solid and fluid interaction. Their analytical model showed

a good agreement with the experimental data. They considered the effect of porosity and

viscosity on scattering operators along with stresses. Their results expressed that the stresses

in the porous medium is so sensitive to the medium’s porosity and pore fluid’s viscosity. In

addition, the porosity and viscosity have a significant influence on the scattering operators.

Briefly, in above-mentioned studies to consider scattering effects, either the effect of

transverse wave was neglected or the dynamic tortuosity was assumed constant. Addition-

ally, for those studies in time domain, which assume the dynamic tortuosity as a function of

frequency, it is needed to use the fractional calculus leading to higher computational efforts.

Consequently, it is preferred to solve the scattering equations using the Biot-JKD theory in

frequency domain to reduce calculation time and computational effort.

In this chapter, we aim to study the effect of transverse acoustic waves, in addition to

longitudinal waves, on the response of a bone-like porous material filled with a viscous fluid.

The reflection and transmission operators as well as stresses are expressed, for the first time,

by including the effect of transverse acoustic waves for different porosity and viscosity in
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frequency domain. The problem is solved in frequency domain because considering the

effect of both transverse acoustic waves and dynamic tortuosity as a function of frequency

needs a lower computational effort. This inclusion may be of great importance in predicting

any change in bone structure due to osteoporosis or bone loss.

The structure of this chapter is outlined as follows. The first section is related to math-

ematical formulations of wave propagation in a bone-like material saturated with a viscous

fluid in frequency domain based on the Biot-JKD theory of poroelasticity (Johnson, Koplik,

and Dashen, 1987). Then, the eigenvalues for governing equations are derived. These eigen-

values are selected as fast and slow waves in the bone-like material. The boundary conditions

at both sides of the medium, at x = 0 and x = L respectively, are described by pressure field,

acoustic velocity field, fluid and solid stresses. The analytical results are then verified in

comparison with the experimental data found in the literature. Next, the conclusion is drawn.

Finally, the appendices relevant to the mathematical formulation are presented.

4.2 Mathematical Developments

In this section, a general configuration of the problem is defined first. Then, conventions

and common assumptions are given. The governing equations for both longitudinal and

transverse waves propagating in a bone-like porous material saturated with a viscous fluid are

presented. The effect of transverse waves on the scattering operators in frequency domain

is considered. Then, the fast waves and slow waves are explicitly described. Finally, the

explicit forms for the stress fields in the medium are presented.

4.2.1 Problem Definition

A segment of a bone-like material representing a human femoral bone, as illustrated in Fig-

ure 4.1, is analytically studied. The domain is composed of poroelastic medium filled with a

viscous fluid. Different types of material properties are assigned to each phase. It is assumed

that the two dimensions of the geometry in Y and Z directions have an infinite length. This

isotropic-homogeneous porous medium is located in the region of 0≤ x≤ L. The wave prop-

agates in the XZ plane and along the X-axis. The incident wave as well as its scatterings are

shown in Figure 4.1.

An incident wave hits perpendicularly the left limit of the medium. This causes the

propagation of waves through the medium. While it is expected to have only longitudinal

wave in the medium due to the normal direction of the incident wave, the transverse wave also
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appears due to the viscous interaction between the pore fluid and solid within the medium.

The constitutive equations are described next.

FIGURE 4.1: Showing (a) schematic of the problem’s geometry, and (b) the
cancellous part of the bone

4.2.2 Conventions and Common Assumptions

In this study, the current state variables are the average macroscopic displacement of the solid

skeletal frame, ui, and the pore fluid, Ui. Number of assumptions and conventions are used

as follows.

• The bone-like porous medium consists of the superposition of a continuum body con-

sisting of a deformable skeleton, s, and a porous space filled with a fluid, f .

• The poroelastic medium of the skeleton is homogeneous, isotropic and linear.

• The deformation gradient of the solid skeleton F is defined by F = I+∇u, in which

I is the second-order isotropic tensor with component δi j, where δi j is the Kronecker

delta. The symbol ∇ = (∂/∂x) always stands for gradients with respect to x = x(X, t),

which is the Eulerian position vector at time t in a Cartesian coordinate frame of an

orthonormal basis. Also, u is the displacement vector of the skeleton whose initial and

current positions are X and x (u=x-X).

• The linearized form of the Green-Lagrange strain tensor, ε , for infinitesimal deforam-

tion is ε = 1
2

(
∂uT +∂u

)
. The skeleton’s volume dilatation εii is required to match the

variations of connected pore spaces (or porosity) φ because of the incompressibility of

solid particles.
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4.3 Modified Biot’s Theory

Field equations for the propagation of waves in a bone-like porous medium are derived re-

spectively for the state variables of the displacements of the solid skeleton, u, and the absolute

displacements of the pore fluid, U, as (Biot, 1956d).

ρ11
∂ 2u
∂ t2 +ρ12

∂ 2U
∂ t2 +b0

∂ (u-U)
∂ t

=P∇(∇.u)+Q∇(∇.U)−N∇× (∇×u), (4.1a)

ρ12
∂ 2u
∂ t2 +ρ22

∂ 2U
∂ t2 −b0

∂ (u-U)
∂ t

=Q∇(∇.u)+R∇(∇.U). (4.1b)

The ∇× is the Curl operator, and the term b0
∂(u-U)

∂ t is related to the friction force per unit

volume of the bulk material in the x direction. In fact, this force is exerted on the solid part by

the fluid in the direction of the wave motion. In the term b0
∂(u-U)

∂ t , b0 is the drag coefficient

which is related to the fluid’s viscosity,η , and the permeability of the porous medium, k0. In

addition, the relative displacement of the pore fluid, u−U , with respect to the solid skeleton

follows the Poiseuille type. So the validity of this term is limited to low frequency range

where the assumption of Poiseuille flow is valid and it will be neglected in high frequency

where the Poiseuille ’s law breaks down. In fact, in high frequencies, the fluid flow in porous

media follows the Navier-Stokes linearization by neglecting the effect of viscosity while the

effect of viscosity is more dominant in low frequency with respect to acceleration.

In high frequencies, the thickness of the viscous layer δ =
√

2η

ωρ0
is very thin with respect

to the low frequency due to the negligible effect of viscous exchange and the pore fluid does

not follow a potential flow pattern. Generally speaking, in low frequency ranges the effect of

viscosity is dominant, while the acceleration effect dominates in high frequency ranges (Biot,

1956a; Biot, 1956e). Subsequently, by removing the term b0∂ (u-U)/∂ t for the applications

in high frequency ranges, Equation 4.1a and Equation 4.1b are reduced to

ρ11
∂ 2u
∂ t2 +ρ12

∂ 2U
∂ t2 +=P∇(∇.u)+Q∇(∇.U)− (4.2a)

N∇× (∇×u),

and

ρ12
∂ 2u
∂ t2 +ρ22

∂ 2U
∂ t2 =Q∇(∇.u)+R∇(∇.U). (4.2b)
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It is possible to write Equation 4.2a and Equation 4.2b in frequency domain by applying

the Fourier transform function,

F̃(ω) = L [F(t)] =
ˆ

∞

−∞

exp(− jωt)F(t)dt (4.3)

then, Equation 4.2a and Equation 4.2b can be written in the frequency domain as

ρ̃11(ω)(−ω
2)u(X , t)+ ρ̃12(ω)(−ω

2)U(X , t) = (4.4a)

P∇(∇.u(X ,ω))+

Q∇(∇.U(X ,ω))−N∇× (∇×u(X ,ω)),

(4.4b)

ρ̃12(ω)(−ω
2)u(X , t)+ ρ̃22(ω)(−ω

2)U(X , t) =

Q∇(∇.u(X ,ω))+

R∇(∇.U(X ,ω)).

respectively.

The P, Q, and R in the above equations are generalized elastic constants. They are related

to measurable quantities such as porosity, bulk modulus of fluid, bulk modulus of solid, and

bulk modulus of porous skeletal frame given by K f , Ks, and Kb, respectively. Furthermore,

N is the shear modulus of the skeletal frame. The explicit relation of the generalized elastic

constants and the measurable quantities can be expressed as (Bourbie et al., 1987),

P =
Ks
(
Kb ((φ −1)K f +φKs)+(φ −1)2K f Ks

)
Ks (φKs− (φ −1)K f )−KbK f

+
4N
3
, (4.5a)

Q =
φKs

(
−Kb

Ks
−φ +1

)
−Kb

Ks
+ φKs

K f
−φ +1

, (4.5b)

R =
φ 2Ks

−Kb
Ks

+ φKs
K f
−φ +1

. (4.5c)

The porosity is defined by φ =
Vf
Vb

for an elastic porous matrix and a medium filled with

a compressible-viscous fluid having a statistical distribution for the interconnected pores.

Moreover, Vf and Vb are the respective volumes of the pores and bulk.



52
Chapter 4. An Overview of the Acoustic Studies of Bone-like Porous Materials, and the

Effect of Transverse Acoustic Waves

The mechanical properties of the solid and porous skeletal frame are given by

Ks =
Es

3−6vs
, Kb =

Eb

3−6vb
, N =

Eb

2vb +2
. (4.6)

in which Es, vs and Eb, vb are the elastic modulus and Poisson’s ratio of the solid and and

bulk, respectively. The relationship between the mass coefficients, ρmn, and the densities of

solid matrix, ρs, and the density of the pore fluid, ρ f , are given by

ρ11 +ρ12 = (1−φ)ρs, ρ12 +ρ22 = φρ f (4.7)

where ρ11,ρ12,ρ22 are time independent, effective densities (Allard and Daigle, 1994). In

addition, ρ12 represents the mass coupling between the fluid and solid which is given by

ρ12 =−φρ f (α∞−1) (4.8)

in which α∞ is the tortuosity of the porous medium. The α∞ relates the macroscopic flow

through the medium to the microscopic flow inside the pores. By using a homogenization

averaging technique (Smeulders, 1992) for high frequencies, α∞ is written as

α∞ =
< | vp |2 >
| v0 |2

(4.9)

in which <> represents the averaging operator, v0 is the macroscopic velocity of the pore

fluid, and vp is the corresponding microscopic velocity. If the macroscopic and microscopic

velocities are identical α∞ = 1 and there is no mass coupling factor, ρ12, between the fluid

and solid.

The acoustical behaviour of porous materials is related to the materials’ dynamic per-

meability and tortuosity. These factors depend on the pore fluid and they are completely

independent of the solid skeletal frame’s characteristics. The dynamic tortuosity depends

greatly on the frequency range of 0-6 MHz and its theoretical formulation is given by (John-

son, Koplik, and Dashen, 1987; Allard and Atalla, 1993; Lafarge et al., 1997).

α̃(ω) = α∞

1+
ηφ

jωα∞ρ f k0

√
(1− j

4k2
0ρ f ωα2

∞

ηΛ2φ 2 )

 , (4.10)

where j2 = −1, k0 is the permeability, η is the viscosity of the pore fluid, and Λ is the

length of the viscous characteristic defining the distribution of the size of pores in which

viscous exchanges occur. This parameter controls the effect of the pore fluid’s viscosity in
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the medium and it is related to the size of interconnections between pores as illustrated in

Figure 4.2 (Johnson, Koplik, and Dashen, 1987).

FIGURE 4.2: A schematic of viscous characteristic length in porous media

The flow regime of the pore fluid in a porous medium subjected to high frequencies can

be determined by the transient or critical frequency defined by

fc =
ηφ

2πak0ρ f
(4.11)

in which a is the characteristic of the size of a pore and its geometry. The flow inside the

pore for the frequencies less than fc follows Poiseuille’s law in which the viscosity of the

fluid is proportional to the relative velocity of motion between the solid skeleton and the

pore fluid (Biot, 1956c). The viscous layer for the frequencies greater than fc is not large

in comparison with the diameter of pores as Poiseuille’s law is not applicable and modeling

the viscous dissipation in this case becomes a complex task. It should be noted that the

application of Biot’s theory for pore geometries is limited to parallel walls and circular ducts

for 2D and 3D, respectively (Biot, 1956e) while considering the dissipation in the case of

random pores is proposed by (Johnson, Koplik, and Dashen, 1987) which led to the widely-

used Biot-JKD model. The breaking down of Poiseuille’s law for pores of flat and circular

shapes happens beyond the critical frequency (Biot, 1956e). This research is implemented for

high frequencies and exceeding the range of critical frequency, so that Equation 4.10 which

was initially developed by (Johnson, Koplik, and Dashen, 1987) is rewritten as

α̃(ω) = α∞

(
1+

2
Λ
(

η

ω jρ f
)

1
2

)
, (4.12)

It is worth mentioning that α̃(ω) has a critical role in the attenuation of acoustic waves in a

porous medium because it describes the viscous exchanges between the solid structure and

fluid (Johnson, Koplik, and Dashen, 1987). Consequently, the relationships for the mass
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coefficients in the frequency domain, ρmn(ω), of Equation 4.4 are

ρ̃11(ω) =ρ11 + Ξ̃(ω) (4.13a)

ρ̃12(ω) =ρ12− Ξ̃(ω) (4.13b)

ρ̃22(ω) =ρ22 + Ξ̃(ω) (4.13c)

Ξ̃(ω) =
2φ α∞

Λ

(
ρ f η

jω

) 1
2

4.4 Ultrasonic Waveforms

Waves can propagate in an elastic medium in longitudinal and transverse forms which are

defined by scalar and vector displacement potentials. According to the Helmholtz decompo-

sition, both u and U in Equation 4.4, can be presented as

u(X , t) = ∇φs(X , t)+∇×Ψs(X , t), U(X , t) = ∇φ f (X , t)+∇×Ψ f (X , t)(4.14)

The vector x can be written as x = x(X, t) where ~X = xî.

By substituting Equation 4.14 and Equation 4.13 in to Equation 4.4, then

(−ω
2)
(
ρ̃11(ω)(φ̃s(x,ω)+ Ψ̃s(x,ω))+ ρ̃12(ω)(φ̃ f (x,ω)+ Ψ̃ f (x,ω))

)
=

P∇

(
∇.
[
∇φ̃s(x,ω)+∇× Ψ̃ f (x,ω)

])
+Q∇

(
∇.
[
∇φ̃s(x,ω)+∇× Ψ̃ f (x,ω)

])
−N∇×∇×

(
∇φ̃ f (x,ω)+∇× Ψ̃ f (x,ω)

)
, (4.15a)

(−ω
2)
(

ρ̃12(ω)(∇φs(x, t)+∇×Ψs(x, t))+ ρ̃22(ω)(∇φ f (x, t)+∇×Ψ f (x, t))
)
=

Q∇

(
∇.[∇φs(x, t)+∇×Ψ f (x, t)]

)
+R∇

(
∇.[∇φ f (x, t)+∇×Ψ f (x, t)]

)
(4.15b)

Equation 4.15a and Equation 4.15b are equations of motion for the solid frame and pore

fluid, respectively, which include the scalar and vector displacement potentials. Due to the

statistical isotropy of medium, longitudinal and transverse waves can be decoupled by apply-

ing the divergence and curl operators in Equation 4.15. This procedure leads to the following
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independent equations in the frequency domain.

−ω
2
(

ρ̃11(ω)φ̃s(x,ω)+ ρ̃12(ω)φ̃ f (x,ω)
)
=∇

2
(

Pφ̃s(x,ω)+Qφ̃ f (x,ω)
)

(4.16a)

and

−ω
2
(

ρ̃12(ω)φ̃s(x,ω)+ ρ̃22(ω)φ̃ f (x,ω)
)
=∇

2
(

Qφ̃s(x,ω)+Rφ̃ f (x,ω)
)

(4.16b)

and

−ω
2
(

ρ̃11(ω)Ψ̃s(x,ω)+ ρ̃12(ω)Ψ̃ f (x,ω)
)
=−N∇×∇×

(
Ψ̃s(x,ω)

)
(4.16c)

with

−ρ̃12(ω)Ψ̃s(x,ω) =ρ̃22(ω)Ψ̃ f (x,ω) (4.16d)

A close inspection of Equation 4.16 shows that the longitudinal and transverse waves

are decoupled. Rewriting Equation 4.16a and Equation 4.16b in the linear form using matrix

form, φ̃s(x,ω) and φ̃ f (x,ω) can be derived. Similarly, Ψ̃s(x,ω) and Ψ̃ f (x,ω) can be obtained

by solving Equation 4.16c and Equation 4.16d. The matrix forms of Equation 4.16a and

Equation 4.16b are

−ρ11ω2 +A( jω)
3
2 −P∇2 −ρ12ω2−A( jω)

3
2 −Q∇2

−ρ12ω2−A( jω)
3
2 −Q∇2 −ρ22ω2 +A( jω)

3
2 −R∇2

φ̃s(x,ω)

φ̃ f (x,ω)

= 0. (4.17)

in which A = 1
Λ f

2φρ f α∞

√
η

ρ f
. Or, more simply,

∇
2

φ̃s(x,ω)

φ̃ f (x,ω)

= H

φ̃s(x,ω)

φ̃ f (x,ω)

 (4.18)

Details of H are given more conveniently in Appendix D. The interaction between the solid

skeleton and pore viscous fluid leads to the appearance of a second longitudinal wave in a

porous medium, which is called a slow wave. To obtain explicit forms of both the fast and
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slow longitudinal waves, Equation 4.18 is rewritten first in the matrix form

∇
2

φ̃1(x,ω)

φ̃2(x,ω)

=

λ̃1(ω) 0

0 λ̃2(ω)

φ̃1(x,ω)

φ̃2(x,ω)

 (4.19)

in which λ̃1(ω) and λ̃2(ω) are the eigenvalues of matrix H. Details are given in Appendix D.

As the incident wave travels in the medium along the X-axis, the φ̃1 and φ̃2 of the last equation

have the forms:

φ̃1(x,ω) = Φ̃11(ω)exp
[
−x
√

λ̃1(ω)

]
+ Φ̃12(ω)exp

[
x
√

λ̃1(ω)

]
(4.20a)

φ̃2(x,ω) = Φ̃21(ω)exp
[
−x
√

λ̃2(ω)

]
+ Φ̃22(ω)exp

[
x
√

λ̃2(ω)

]
(4.20b)

It is clear that both fluid and solid potentials, φ̃ f (x,ω) and φ̃s(x,ω), can be linked to the slow

and fast wave potentials, φ̃1(x,ω) and φ̃2(x,ω), using the eigenvectors of λ̃1(ω) and λ̃2(ω)

through the following matrix form

φ̃s(x,ω)

φ̃ f (x,ω)

=

 1 1

Ṽ1(ω) Ṽ2(ω)

φ̃1(x,ω)

φ̃2(x,ω)

 (4.21)

where Ṽ1(ω) and Ṽ2(ω) are the eigenvectors of the matrix H. Subsequently, the solution for

φ̃s(x,ω) and φ̃ f (x,ω) will be

φ̃s(x,ω) =φ̃1(x,ω)+ φ̃2(x,ω) (4.22a)

φ̃ f (x,ω) =Ṽ1(ω)φ̃1(x,ω)+Ṽ2(ω)φ̃2(x,ω) (4.22b)

Similarly, the solution for rotational waves can be derived as.

Ψ̃s(x,ω) = ψ̃1(ω)exp
[
− jx

√
χ(ω)

]
+ ψ̃2(ω)exp

[
x j
√

χ(ω)
]

(4.23)

A complete description of φ̃11(ω), φ̃12(ω), φ̃21(ω), φ̃22(ω),ψ̃1(ω), ψ̃2(ω), and χ̃(ω) is given

more conveniently in Appendix E. The reflection and transmission coefficients are derived

next.
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4.5 Reflection and Transmission Coefficients

When an incident wave travels through a fluid surrounding the medium and impinges upon

a porous medium filled with a viscous fluid, one part of the wave is reflected back into

the fluid and another part is transmitted into the porous medium. The transmitted wave is

composed of fast and slow longitudinal waves in addition to a transverse wave caused by

the viscous exchange between the solid skeleton and fluid in a porous medium subjected

to a high frequency incident wave. The amplitudes of reflected and transmitted waves will

depends upon travel direction.

As shown in Figure 4.1, an incident short acoustic pulse (in time domain) impinges upon

the left side of the fluid medium. The short pulse is a practical representation of Dirac Delta

function illustrated in Figure 4.3. This study is implemented in the frequency domain because

calculating dynamic tortuosity in time domain may necessitate using complicated fractional

calculus. As a matter of fact, all manipulations are performed much more easier in frequency

domain using the operational calculus mainly Fourier transform. Thereby, input short pulse

in time domain is transferred to the frequency domain using Fourier transform depicted in

Figure 4.4.
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FIGURE 4.3: The Input signal as a short pulse in the time domain
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FIGURE 4.4: The Input signal as a short pulse in the frequency domain

The pressure fields for both sides of the medium are derived as follows. At the left side

of the medium, in the region of x ≤ 0, the pressure field is the sum of the pressures induced

by incident and reflected waves as

Ple f t(x, t) = Pinc
(

t− x
c0

)
+Pre f

(
t +

x
c0

)
, (4.24)

where Ple f t(x, t) stands for the total pressure field at the left side of the medium, i.e. x ≤ 0.

Pinc is the pressure field induced by the incident wave. Pre f is the pressure field induced by

the reflected wave.

Similarly, the pressure field at the right side of the medium, i.e. L ≤ x, induced by the

transmitted wave can be obtained,

Pright(x, t) = Ptr
(

t− x−L
c0

)
(4.25)

in which Ptr represents the transmitted wave’s pressure at the right side of the medium.

With regards to ultrasonic standards for any material under an incident wave, the reflected

and transmitted pressures can be derived by integrating the product of reflection R(τ) and

transmission T (τ) operators by incident wave. So, The reflected and transmitted pressure
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filed are written

Pre f (x, t) =
ˆ t

0
R(τ)Pinc

(
t− τ +

x
c0

)
dτ (4.26a)

=R(t)∗Pinc(t)∗δ

(
t +

x
c0

)
Ptr(x, t) =

ˆ t

0
T (τ)Pinc

(
t− τ− L

c
− x−L

c0

)
dτ (4.26b)

=T (t)∗Pinc(t)∗δ

(
t− x−L

c0

)

Note that the kernel operators depend on the material properties of the medium. The

lower limit of the integration in Equation 4.26 is zero, which means that at τ = 0 the wave

impinges upon the medium. So Ple f t(x, t) and Pright(x, t) are expressed by the following

equations

Ple f t(x, t) =
(

δ

(
t− x

c0

)
+R(t)∗δ

(
t +

x
c0

))
∗Pinc(t) (4.27a)

Pright(x, t) =Ptr
(

t− x−L
c0

)
. (4.27b)

By taking the Fourier transform of Equation 4.27, the pressure fields at both sides of the

medium can be obtained in frequency domain, so

P̃le f t(x,ω) =F [Ple f t(x, t)] =
(

exp
(
− jω

x
c0

)
+ R̃(ω)exp

(
jω

x
c0

))
ϕ̃(ω), (4.28a)

P̃right(x,ω) =F [Pright(x, t)] = T̃ (ω)exp
(
− jω

x−L
c0

)
ϕ̃(ω) (4.28b)

in which P̃le f t(x,ω) and P̃right(x,ω) are the Fourier transform of Ple f t(x, t) and Pright(x, t),

respectively. Also, ϕ̃(ω) is the Fourier transform of Pinc(t).

Now, by applying these pressure fields, as boundary conditions, to left and right sides of

the medium, we will be able to find the reflection and transmission coefficients as explained

in the next section.
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4.5.1 Stress Fields

The σ s
i j and σ

f
i j are the normal stresses in the solid skeleton and fluid, respectively, and τi j is

the shear stress in the solid skeleton. These stresses can be written as

σ
s
i j =
(
(P−2N)ui, j +QUi, j

)
δi j +N(ui, j +u j,i), (4.29a)

σ
f

i j =−φ p f δi j = (RUi, j +Qui, j)δi j, (4.29b)

τi j =N(ui, j +u j,i) (4.29c)

in which p f represents the fluid pressure.

The stress amplitude in frequency domain can be written as follows.

| σ̃ s(x,ω) |= Pφ̃si,i(x,ω)+Qφ̃ f i,i(x,ω),

| σ̃ f (x,ω) |= Rφ̃ f i,i(x,ω)+Qφ̃si,i(x,ω),

| τ̃(x,ω) |= 2Nφ̃si,i(x,ω) (4.30)

By substituting Equation 4.22 and Equation 4.23 into Equation 4.30 and taking deriva-

tives with respect to x, the stress fields can be derived as

σ̃
s(x,ω) = P

[
λ̃1(ω)Φ̃11(ω)e−

√
λ̃1(ω)x + λ̃1(ω)Φ̃12(ω)e

√
λ̃1(ω)x+ (4.31a)

λ̃2(ω)Φ̃21(ω)e−
√

λ̃2(ω)x + λ̃2(ω)Φ̃22(ω)e
√

λ̃2(ω)x
]
+

Q
[
λ̃1(ω)Φ̃11(ω)Ṽ1(ω)e−

√
λ̃1(ω)x + λ̃1(ω)Φ̃12(ω)Ṽ1(ω)e

√
λ̃1(ω)x+

λ̃2(ω)Φ̃21(ω)Ṽ2(ω)e−
√

λ̃2(ω)x + λ̃2(ω)Φ̃22(ω)Ṽ2(ω)e
√

λ̃2(ω)x
]

σ̃
f (x,ω) = Q

[
λ̃1(ω)Φ̃11(ω)e−

√
λ̃1(ω)x + λ̃1(ω)Φ̃12(ω)e

√
λ̃1(ω)x+ (4.31b)

λ̃2(ω)Φ̃21(ω)e−
√

λ̃2(ω)x + λ̃2(ω)Φ̃22(ω)e
√

λ̃2(ω)x
]
+

R
[
λ̃1(ω)Φ̃11(ω)Ṽ1(ω)e−

√
λ̃1(ω)x + λ̃1(ω)Φ̃12(ω)Ṽ1(ω)e

√
λ̃1(ω)x+

λ̃2(ω)Φ̃21(ω)Ṽ2(ω)e−
√

λ̃2(ω)x + λ̃2(ω)Φ̃22(ω)Ṽ2(ω)e
√

λ̃2(ω)x
]
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τ̃(x,ω) = 2N
[
λ̃1(ω)Φ̃11(ω)e−x

√
λ̃1(ω)+ λ̃1(ω)Φ̃12(ω)ex

√
λ̃1(ω)+ (4.31c)

λ̃2(ω)Φ̃21(ω)e−x
√

λ̃2(ω)+ λ̃2(ω)Φ̃22(ω)ex
√

λ̃2(ω)−

χ̃(ω)e− jx
√

χ̃(ω)
(

ψ̃1(ω)+ ψ̃2(ω)e2 jx
√

χ̃(ω)
)]

As the pressure and stress fields at the boundaries of the medium are continuous (Wu,

Xue, and Adler, 1990), the relation between the pressure field and stresses at x = 0 and x = L

can be written as

σ̃
f (0+,ω) =−φ P̃le f t(0−,ω), (4.32)

σ̃
s(0+,ω) =− (1−φ)P̃le f t(0−,ω),

σ̃
f (L−,ω) =−φ P̃right(L+,ω),

σ̃
s(L−,ω) =− (1−φ)P̃right(L+,ω),

τ̃(0+,ω) =0,

τ̃(L−,ω) =0

By using Equation 4.31 and Equation 4.32, it is possible to obtain the 6 unknown vari-

ables Φ̃1(x,ω), Φ̃11(x,ω), Φ̃2(x,ω), Φ̃22(x,ω), ψ̃1(x,ω), and ψ̃2(x,ω). Hence, the displace-

ment potentials for the solid skeleton and pore fluid can be obtained. In addition, in order to

obtain the scattering operators, R̃(ω) and T̃ (ω), two more equations are still needed. This

can be achieved by considering the relation between the solid and fluid velocity fields and

the acoustic velocity field at the boundaries of the medium at x = 0 and x = L as follows.

Ṽ1(0−,ω) = (1−φ)Ṽs(0+,ω)+φṼf (0+,ω),

Ṽ3(L+,ω) = (1−φ)Ṽs(L−,ω)+φṼf (0+,ω), (4.33)

where Ṽ1 and Ṽ3 are the acoustic velocity fields at x = 0 and x = L, respectively. In fact,

Equation 4.33 explains that if the porosity, φ , approaches zero, the acoustic velocity field

will be equal to the velocity of solid and if there is no solid part, i.e. φ → 1 , then the

acoustical velocity field will be equal to the velocity of fluid. The acoustical velocity fields
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is obtained by considering the surrounding fluid field pressure and the Euler equation as,

∇P̃i(x,ω) =ρ f jωṼi(x,ω) i = le f t,right

V1(x) =−
ϕ̃(ω)e−

jωx
c0 (−1+ R̃(ω)e

2 jωx
c0 )

c0ρ f

V3(x) =
T̃ (ω)ϕ̃(ω)e−

jω(x−l)
c0

c0ρ f
(4.34)

Note that the fluid, Vf , and solid, Vs, velocity fields are derived using

u(x, t) = ∇φ̃s(t)+∇× ψ̃s(t)→ Ṽs(x,ω) = jω
(

∂ φ̃s(ω)

∂x
+

∂ψ̃s(ω)

∂x

)
,

U(x, t) = ∇φ̃ f (t)+∇× ψ̃ f (t)→ Ṽf (x,ω) = jω
(

∂ φ̃ f (ω)

∂x
+

∂ψ̃ f (ω)

∂x

)
(4.35)

By using the boundary conditions Equation 4.33, Equation 4.34 and the expressions for fluid

and solid velocity fields, Ṽs(x,ω) and Ṽf (x,ω), the transmission and reflection coefficients,

T̃ (ω) and R̃(ω), are derived as.

R̃(ω) =1/ϕ̃(ω)
[

jc0ρ f

(√
λ̃1(ω)ωΦ̃11(ω)−

√
λ̃1(ω)ωφΦ̃11(ω) (4.36)

+

√
λ̃1(ω)ωφṼ1(ω)Φ̃11(ω)−

√
λ̃1(ω)ωΦ̃12(ω)

+

√
λ̃1(ω)ωφΦ̃12(ω)−

√
λ̃1(ω)ωφṼ1(ω)Φ̃12(ω)+√

λ̃2(ω)ωΦ̃21(ω)−
√

λ̃2(ω)ωφΦ̃21(ω)+√
λ̃2(ω)ωφṼ2(ω)Φ̃21(ω)−

√
λ̃2(ω)ωΦ̃22(ω)+√

λ̃2(ω)ωφΦ̃22(ω)−
√

λ̃2(ω)ωφṼ2(ω)Φ̃22(ω)
)
+

1/(ρ22)
(

ϕ̃(ω)ρ22 + c0
√

χ̃(ω)ωφρ12Ψ̃1(ω)− c0
√

χ̃(ω)ωρ22Ψ̃1(ω)+

c0
√

χ̃(ω)ωφρ12Ψ̃2(ω)+ c0
√

χ̃(ω)ωρ22Ψ̃2(ω)−

c0
√

χ̃(ω)ωφρ22Ψ̃2(ω)
)]

,
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T̃ (ω) =
1

ϕ̃(ω)

[
( jc0ωρ f e−l

√
λ̃1(ω)−l

√
λ̃2(ω))

[√
λ̃1(ω)φΦ̃11(ω)el

√
λ̃2(ω)− (4.37)√

λ̃1(ω)φΦ12(ω̃)e2l
√

λ̃1(ω)+l
√

λ̃2(ω)+

√
λ̃2(ω)φΦ̃21(ω)el

√
λ̃1(ω)−√

λ̃2(ω)φΦ̃22(ω)el
√

λ̃1(ω)+2l
√

λ̃2(ω)−
√

λ̃1(ω)φΦ̃11(ω)Ṽ1(ω)

el
√

λ̃2(ω)+

√
λ̃1(ω)φΦ̃12(ω)Ṽ1(ω)e2l

√
λ̃1(ω)+l

√
λ̃2(ω)−

√
λ̃2(ω)φ

Φ̃21(ω)Ṽ2(ω)el
√

˜̃λ1(ω)+√
λ̃2(ω)φΦ̃22(ω)Ṽ2(ω)el

√
λ̃1(ω)+2l

√
λ̃2(ω)+

√
λ̃1(ω)Φ̃11(ω)(

−exp
(

l
√

λ̃2(ω)

))
+√

λ̃1(ω)Φ̃12(ω)e2l
√

λ̃1(ω)+l
√

λ̃2(ω)−
√

λ̃2(ω)Φ̃21(ω)el
√

λ̃1(ω)+√
λ̃2(ω)Φ̃22(ω)el

√
λ̃1(ω)+2l

√
λ̃2(ω)

]
+

c0
√

χ̃(ω)ωρ f exp
(
− jl
√

χ̃(ω)
)
(φρ12 +φρ22−ρ22)(

−ψ̃1(ω)+ ψ̃2(ω)exp
(

2 jl
√

χ̃(ω)
)

ρ22

]

4.6 Computational Details

The governing equations were implemented in a MATLAB code. Computations were per-

formed by using a desktop computer including Intel(R) Xeon(R) with CPU E5-2630 at 2.4

GHz. The computing effort was accelerated due to MATLAB parallel Toolbox and multicore

processors (Sharma and Martin, 2009).

4.6.1 Validation

To validate the analytical solutions, terms related to the transverse wave alone are neglected.

Consequently the transmission coefficient in the frequency domain which is based solely

on longitudinal waves can be compared directly with that derived by (Fellah et al., 2004a)

(Appendix G). Material properties used for the representation of a bone specimen are given

in Table 4.1. As shown in Figure 4.5, the transmission coefficients agree perfectly with the

results of (Fellah et al., 2004a).

4.7 Results and Discussion

The effects of the transverse acoustical waves on the response of bone-like porous materials

is considered in this section. First, the transmission and reflection coefficients with and

without terms related to the transverse acoustical waves are investigated and compared. Then
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Porosity φ = 0.83
Bulk Modulus of Pore Fluid K f = 2.28 GPa
Length of a Porous Medium L=0.007 m
Bulk Modulus of Solid Ks = 20 GPa
Dynamic Turtuosity α∞ =1.05
Bulk Modulus of a Porous Skeletal Frame Kb = 3.3 GPa
Characteristic Length of a Viscous Medium Λ = 5 µm
Density of Solid ρs = 1960 kg/m^3
Shear Modulus of Frame N = 2.6 GPa
Modulus of Elasticity of Solid Medium Es = 15 GPa
Modulus of Elasticity of Skeleton Medium Eb = 3.73GPa
Poisson’s ratio of Solid Medium νs = 0.37
Poisson’s ratio of Skeleton Medium νb = 0.35
Viscosity of a Fluid η = 0.001 kgm/s
Density of Pore Fluid ρ f = 1000 kg/m^3

TABLE 4.1: Mechanical properties of the bone resulting in Figure 4.5
.
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FIGURE 4.5: A comparison with the result of (Fellah et al., 2004a)
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the effects of porosity and pore fluid’s viscosity on the scattering operators are considered.

Subsequently, the sensitivity of the shear and normal stresses in a bone-like porous medium

are examined for different porosities and pore fluid’s viscosity ranges.

4.7.1 Material Properties

To study the importance of porosity on the acoustical response of bone structures, different

porosities ranging from 0.1 to 0.9 are considered. This indicates a range of bone conditions

from a very stiff state to sever structural deterioration due to bone loss. Furthermore, to

consider the effect of pore fluid’s viscosity, two different fluids including a relatively low vis-

cous (air) and high viscous (bone marrow) fluids are considered. The mechanical properties

of the human bone specimen presented in Table 4.1 are obtained from (Fellah et al., 2013;

Buchanan and Gilbert, 2007).

4.7.2 The Effect of Transverse Ultrasonic Waveform on Transmission Coeffi-

cient

The effect of transverse acoustical waves, generated in a bone-like medium subjected to an

incident short acoustic pulse, on the transmission coefficient is considered. The responses

of a bone specimen filled with a relatively high viscous material such as bone marrow are

illustrated in Figure 4.6. The bone specimen has a porosity of φ = 0.83 and is subjected to

a short-period sound pulse impinging normally upon the left side of the medium. The short

pulse causes an acoustical pressure and velocity within the material.

The transmission coefficient is calculated with and without the effects of the transverse

waves. As shown in Figure 4.6, the effect of transverse acoustical wave along with longitu-

dinal wave on the transmission coefficient is significant at 1.13, 2.38, and 3.51 MHz. These

picks in acoustical response of the bone specimen cannot be captured by considering only

the effect of longitudinal wave on the bone’s response. These picks, related to the excitation

of the system, appears due to including the effects of transverse waves. Thus, considering

the effects of both longitudinal and transverse waves will provide a more complete set of

information regarding the response of a bone structure at different frequency ranges.
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FIGURE 4.6: The effect of transverse waves on the transmission coefficient
for a bone-like, porous medium filled with bone marrow

4.7.3 The Effect of Porosity on Acoustical Response of Bone-Like Materials

Subjected to Ultrasonic Waveforms

The effect of porosity on the propagation of transverse acoustical waves in a bone-like

medium filled with bone marrow is discussed in this section. As discussed before, the poros-

ity range can describe the stage of bone loss and failure.

The variation of transmission coefficient by considering the effect of longitudinal wave

and transverse wave alone with respect to frequency for the porosities of 0.3, 0.6, and 0.83

is illustrated in Figure 4.7 and Figure 4.8, respectively. Furthermore, the effects of both

longitudinal wave and transverse waves on the acoustical response of the bone-like medium

are illustrated in Figure 4.9.

Regardless of the type of wave, these Figures illustrate that by increasing the porosity

from φ = 0.3 to φ = 0.83 for a medium filled with a relatively high viscous fluid (bone mar-

row), the transmission deceases. It is because by increasing the porosity in a Representative

Elementary Volume, the volume of the viscous bone marrow inside the pores increases so that

the transmitted wave inside the bone is attenuated noticeably due to an increase in damping
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FIGURE 4.7: Transmission coefficients for different porosities of a bone-
like medium filled with bone marrow. The effects of transverse waves are

neglected.

ratio.

To calculate the effect of damping ratio on the wave’s attenuation, as shown in Figure 4.7,

the points 1 and 2 at two consecutive picks for the longitudinal wave when the porosity is

φ = 0.3 is selected. Similarly, the points 3 and 4 for φ = 0.6 and points 5 and 6 for φ = 0.83

are chosen. Then the amplitude for these picks are obtained. Subsequently the damping ratio

is obtained by (Thomson, 2018):

ζ =
1

2π
Ln
(

xi

xi+1

)
. (4.38)

in which xi and xi+1 are the amplitudes of the first and second selected picks. For instance,

the amplitude for points 1 and 2 are x1 = 0.9255 and x2 = 0.8643, respectively. Thereby, the

damping ratio would be ζ0.3 = 0.019. By repeating this scenario for φ = 0.6 and φ = 0.83,

the damping ratio will be ζ0.6 = 0.0413 and ζ0.83 = 0.08252, respectively. Therefore, it can

be concluded that in a medium filled with a relatively high viscous pore fluid the damping

ratio increases by increasing the porosity which results in a wave attenuation.
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FIGURE 4.8: Transmission coefficients for different porosities of a bone-
like medium filled with bone marrow by considering the effects of transverse

wave alone.

To study the effect of porosity on the transmitted wave attenuation in a bone-like medium

filled with air, the transmission coefficient versus frequency is presented in Figure 4.10 and

Figure 4.11 by considering the effect of only longitudinal wave and both longitudinal and

transverse waves, respectively.

As shown, there is no significant difference in transmission coefficient between two fig-

ures. Thereby, it can be resulted that regardless of the porosity of the medium the behaviour

of the bone-like medium filled with a relatively low viscous fluid such as air is almost identi-

cal for transverse wave or longitudinal wave as one of these waveforms can provide sufficient

information.

Additionally, a comparison between Figure 4.7 and Figure 4.9 with Figure 4.10 and Fig-

ure 4.11 explains that while the porosity increases, the transmission coefficient decreases but

the rate of decreasing of transmission in a medium filled with bone marrow is lower than that

of filled with the air. Subsequently, it can be concluded that not only the porosity but also the

pore fluid’s viscosity affect the transmitted wave propagation in a porous medium.
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FIGURE 4.9: Transmission coefficients for different porosities in a bone-like
medium filled with bone marrow by considering the effects of both longitu-

dinal and transverse waves.

4.7.4 The Effect of Pore Fluid’s Viscosity on Acoustical Response of Bone-Like

Materials Subjected to Ultrasonic Waveforms

To study the influence of pore fluid’s viscosity on the ultrasonic waveforms, the transmission

coefficients for three different media composing a bone-like material including air, bone mar-

row and a stiff bone structure (SBS) are separately considered and compared. Figure 4.12

shows the transmission coefficients for three different media (air, bone marrow, and SBS) by

considering the effect of longitudinal wave alone. It can be observed that the transmission

coefficient in air is negligible and becomes zero at frequencies greater than 1 MHz due to

the air’s negligible stiffness. In fact, the main factor affecting the transmission of longitudi-

nal waves is the stiffness of the medium. Since, the stiffness of the air is insignificant, the

insignificant transmission occurs. Likewise, the transmission coefficient for a SBS is com-

pletely different due to its relatively high stiffness. Comparing the transmission coefficient

between the SBS and bone marrow shows that the transmission attenuation in SBS is almost
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FIGURE 4.10: Transmission coefficients for different porosities in a bone-
like porous medium filled with air by considering the effect of longitudinal

wave alone.
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FIGURE 4.11: Transmission coefficients for different porosities in a bone-
like porous medium filled with air by considering the effects of both longi-

tudinal and transverse waves.
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FIGURE 4.12: Transmission comparison in different media (air, bone mar-
row, and stiff bone structure) by considering the effects of longitudinal waves

alone.

negligible, while it is significant in bone marrow. This attenuation in the transmission coeffi-

cient for bone marrow is due to its relatively high viscosity and damping characteristics.

Figure 4.13 investigates the transmission coefficients for three different media (air, bone

marrow, and SBS) by considering the effect of transverse wave alone. Since the viscosity

of the air is relatively low and its shear modulus is effectively zero, the effect of transverse

wave in the air is negligible. The viscosity of the bone marrow with respect to the air is

relatively high as the transmission induced by the transverse waves is striking. Figure 4.13

shows a pick at 3.1 MHz while this pick is not triggered by longitudinal wave as illustrated in

Figure 4.12. Therefore, it can be resulted that in a relatively high viscous fluid the transverse

wave is important and neglecting this wave can lead to miss some valuable information.

By changing the medium phase from a fluid to a stiff bone structure, both longitudinal and

transverse waves appeared because of its relatively high stiffness and shear strength.

Figure 4.14 illustrates the effects of both longitudinal and transverse waves on the trans-

mission coefficient for three different media (air, bone marrow, and SBS). It can be seen that

the transmission coefficient in air is governed by the longitudinal waves at low frequencies.
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FIGURE 4.13: Transmission comparison in different media (air, bone mar-
row, and stiff bone structure) by considering the effects of transverse waves

alone.
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FIGURE 4.14: Transmission comparison in different media (air, bone mar-
row, and stiff bone structure) by considering the effects of both longitudinal

and transverse waves.

For frequencies greater than 1 MHz, the transmission coefficient becomes negligible.

The transmission coefficient in bone marrow and SBS is governed by the superposition

of both the longitudinal and transverse waves. It shows that the comprehensive study of

the acoustical response of viscous, stiff materials necessitates the consideration of both the

longitudinal and transverse waves.

To have a better insight into the effect of the pore fluid’s viscosity on the propagation

of transverse waves, the acoustical response of a bone-like medium filled with bone marrow

(Figure 4.8) is compared with the one filled with air (Figure 4.15) for φ = 0.83. It can be

seen that the transmission of transverse waves are very sensitive to the viscosity of the pore

fluid. The fluctuation trend in Figure 4.8 is very different from that of Figure 4.15 due to a

relatively higher viscosity of the bone marrow with respect to the air.

Furthermore, to evaluate the effect of the viscosity of the pore fluid on the transmission

coefficient, it is assumed that the bone-like porous medium is filled with air rather than bone

marrow. The variation of transmission coefficient with respect to frequency for this case

is plotted in Figure 4.16. As can be seen, the transmission coefficient in a medium filled
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FIGURE 4.15: Transmission coefficients for porosity φ = 0.83 for a bone-
like medium filled with the air by considering the effects of transverse wave

alone.
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FIGURE 4.16: The effect of transverse acoustical waves on the transmission
coefficients in a bone-like porous medium filled with air

with air by considering the effect of transverse wave alone and longitudinal-transverse waves

follows almost the same path. It can be concluded that for a medium filled with a relatively

low viscous fluid, considering the effect of transverse wave has no significant effect on the

bone response. Also, the effect of transverse wave in characterizing the bone-like materials

is highly sensitive to the viscosity of the pore fluid.

4.7.5 The Effect of Transverse Acoustical Waves on Reflection Coefficient

The effect of transverse and longitudinal waves on the reflection coefficient in a bone-like

porous material filled with air is illustrated in Figure 4.17. The bone specimen has a porosity

of φ = 0.9. As illustrated, there is essentially no significant difference in the reflection co-

efficient between the longitudinal wave and that of both longitudinal and transverse waves.

Figure 4.18 shows the effect of transverse wave on the reflection coefficient when the porosity

is constant and the porous medium is filled with a higher viscous fluid such as bone marrow.

In fact, By changing the pore fluid inside the medium from air to bone marrow, the response

is completely different. Subsequently, it can be concluded that the effect of transverse wave
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FIGURE 4.17: The effect of transverse wave on the reflection coefficient for
a porous medium filled with air
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FIGURE 4.18: The effect of transverse wave on the reflection coefficient in
comparison with longitudinal wave for a porous medium filled with bone

marrow, φ = 0.9

on the reflected wave front is significant when the porous medium is filled with a relatively

high viscous fluid such as bone marrow. This result was also confirmed for the transmission

coefficient.

Figure 4.19 illustrates the effect of transverse wave on the reflection coefficient when the

bone-like material has a porosity of φ = 0.6 and it is filled with bone marrow. By comparing

Figure 4.18 and Figure 4.19, it can be shown that the reflection coefficients increases by

decreasing the porosity which leads to more available solid medium for wave propagation.

In addition, the number of picks reduces by increasing the porosity because the volume of

bone marrow increases which leads to more damping and attenuation.

4.7.6 Stress Field in Bone-like Porous Media

This section shows the effect of different waves, porosity, as well as pore fluid’s viscosity

on the stress field in bone-like porous media. For this purpose, the stresses and acoustical

pressures at the middle of the porous medium, x = L
2 , are calculated for different porosities

as well as pore fluids which have distinct acoustical properties.
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FIGURE 4.19: The effect of transverse wave on the reflection coefficient for
a porous medium filled with bone marrow, φ = 0.6
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FIGURE 4.20: Normal stress created by differnt waves at the middle of a
bone-like porous medium filled with air, φ = 0.9

Figure 4.20 illustrates the normal stress in the middle of a bone-like, porous medium filled

with air by considering longitudinal and transverse waves for porosity φ = 0.9. It shows that

due to a relatively low viscosity of pore air, the transverse wave does not provide an imper-

ative effect on the stress field in the medium. In contrast, to consider the effect of viscosity,

it is assumed that the bone-like medium is filled with bone marrow. The normal stress field

is plotted for a porosity of φ = 0.3 in Figure 4.21. As illustrated, the transverse wave has

an influence on the normal stress field when the medium is filled with a relatively high vis-

cous fluid. Furthermore, it is observed that the normal stress amplitude severely decreases

in comparison with Figure 4.20. It is because the bone marrow causes more attenuation in

acoustical waves which leads to less stress.

More specifically, Figure 4.21 shows the effect of different porosity φ = 0.3 and φ =

0.9 on the wave attenuation in a medium filled with bone marrow. Additionally, the effect

of transverse wave on normal stress with respect to longitudinal wave is considered. By

comparing the amplitude of normal stress in Figure 4.20 and Figure 4.21 it can be concluded

that the viscosity of pore fluid has a significant effect on the amount of normal stress field in

bone-like porous medium. When the porous medium is filled with a relatively high viscous
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FIGURE 4.21: Normal stress created by different waves at the center of a
bone-like porous medium filled with bone marrow for different porosities
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fluid such as bone marrow, the porosity is very imperative in attenuating the stresses. In

fact, a comparison between parts a and b of Figure 4.21 shows the effect of porosity on the

amplitude of stress. The greater porosity makes more available viscous pore fluid which

results in a lower stress.

4.8 Conclusions

The ultrasonic waves in porous media saturated with a viscus fluid is developed based on

the Biot-JKD theory. Two types of longitudinal wave named fast and slow waves as well as

transverse wave obtained in the frequency domain are derived to calculate the reflection and

transmission coefficients along with stress fields. It is found that the scattering operators and

stress fields in a bone-like, porous medium are sensitive to the porosity of the medium and

the viscosity of the pore fluid. The effect of transverse wave on the stresses and scattering

operators for different porosity and viscosity are investigated as well. The results describe

that considering the transverse waves propagating in a bone-like porous medium filled with

a relatively high viscous fluid has a significant effect on the scattering operators. In contrast,

if the medium is filled with a lower viscous fluid such as air, no significant difference in

bone response is observed between different types of ultrasonic waves. Additionally, the

transmission and reflection coefficients are decreased severely by increasing the porosity in

a bone-like porous medium filled with bone marrow while there is no predominant behavior

when the medium is filled with air. Regarding the stress fields, the transverse wave has an

imperative effect on the stress in a porous medium filled with bone marrow whereas this

effect is virtually negligible when the pores are filled with air.
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Chapter 5

Three-Dimensional Biomechanical
Modeling of Cylindrical Bone-Like
Porous Materials Subject to Acoustic
Waves

Abstract

A three-dimensional (3D) analytical solution for the acoustic response of cancellous bone-

like porous materials saturated with a viscous fluid. The effect of dynamic tortuosity, espe-

cially in clinically relevant ultrasound frequency ranges, is considered to investigate the effect

of viscous interaction between the fluid and solid phases. The solution includes the effects

of both fast and slow longitudinal waves as well as transverse waves propagating through the

medium. The scattering operators and radial displacements are derived in terms of ultrasonic

waveforms by applying the Helmholtz decomposition. The effect of different porosities, wall

thickness ratios, and frequencies of incident waves on the radial displacement and scattering

operators are investigated by considering various incident wave angles at forward and side-

ward directions. The results demonstrates that the incident wave angle has a significant effect

on the radial displacement and scattering operators regardless of the porosity, wall thickness

ratio, and viscosity of pore fluid. Furthermore, the distribution pattern of the radial displace-

ment and scattering operators in relatively low frequency ranges is almost symmetric while

asymmetric in relatively high frequency ranges. It is shown that the bone characterization

using ultrasonic techniques is not only based on the mineral density, as used currently by

electromagnetic wave-based tools, but also other biomechanical factors such as porosity, vis-

cosity of pore fluid, and wall thickness ratio of a cancellous bone structure. Also, the pattern

of the reflected pressure can be an indicator of the state of a cancellous bone (healthy versus

osteoporosis).
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5.1 Introduction

Osteoporosis is often called the silent thief because bone loss occurs without symptoms and

can cause painful fractures, disability, and deformity Osterhoff et al., 2016. The risk of bone

fracture raises two-fold to three-fold by decreasing bone mass-dependent factors such as bone

mineral density Cummings et al., 1993; Stegman et al., 1992; Hui, Slemenda, and Johnston,

1989, or age and past fractures Hui, Slemenda, and Johnston, 1988; Ross et al., 1991. Al-

though bones are constantly being renewed naturally, this process becomes less efficient with

age and bone becomes very thin and weak over time. Factors related to bone structure and

composition contributing to bone strength and fracture risks are defined as bone quality. Such

factors are independent of bone mineral density Ross et al., 1991; Hui, Slemenda, and John-

ston, 1988.

The main structure of this organ is made up of three main types of bone tissues: cortical

(or compact) bone, cancellous (or spongy) bone, and bone marrow. Unlike cortical bone

which is mostly solid and the hardest type of bone, the structure of the cancellous bone is

spongy and is full of open sections called pores. The porous skeletal frame in the bone is

filled with marrow, nerves, and blood vessels. The porosity of a bone is one of the main

quantities used to characterize the strength of the bone structure. This may vary from 5% for

a healthy bone to 95% when the cancellous bone structure is affected by bone loss diseases

such as osteoporosis Fritsch and Hellmich, 2007.

Various approaches have been employed for osteoporosis detection Wear, Hoffmeister,

and Laugier, 2018; Lin and Lane, 2004. Quantitative ultrasound (QUS) for osteoporosis

detection has advantages over electromagnetic wave tools. For instance, QUS packages are

smaller and potable relative to bulky MRI or X-ray techniques. Also, they are relatively

cheap, do not utilize harmful radiations, and are recognized as a non-invasive technique. It

should be noted that the lack of understanding of the mechanism of ultrasound wave propa-

gation through a porous, complex bone structure is one of the reasons for the limitations of

QUS techniques in diagnosing osteoporosis.

Several researchers have been involved in measuring the elastic characteristics of a can-

cellous bone using different experimental setups Ashman, Corin, and Turner, 1987; Ashman

and Rho, 1988; Yousefian et al., 2018; Langton, Palmer, and Porter, 1984. In addition to

experimental work, several theoretical studies regarding wave propagation in porous media

saturated with different types of fluids (inviscid, viscous, co-existence of several fluids in

pores) have been developed Maghoul, Gatmiri, and Duhamel, 2011a; Maghoul, Gatmiri, and



5.1. Introduction 85

Duhamel, 2011b; Hughes et al., 1999; Roh, Lee, and Yoon, 2003; Lee, Roh, and Yoon, 2003;

McKelvie and Palmer, 1991; Lauriks et al., 1994; Hosokawa and Otani, 1997. The most pop-

ular theory which considers the wave propagation in porous media filled with a viscous fluid

is the poroelastic theory proposed by Biot (1956d), Biot (1941), Biot (1955), Biot (1956b),

and Biot (1962b). Biot’s theory predicts two longitudinal waves such as fast and slow waves.

The fast wave is relevant to the in-phase motion of fluid (fluid in pores) and solid (bare struc-

ture) and the slow wave is related to the out-phase motion of these phases. The presence of

slow and fast longitudinal waves, was shown by performing some experiments on human and

bovine bone samples Lakes, Yoon, and Katz, 1983; Hosokawa and Otani, 1997; Hosokawa

and Otani, 1998; Cardoso et al., 2003. Based on Biot’s theory, wave propagation in cancel-

lous bone structures filled with a viscous fluid has been studied in the literature. For example,

the speeds of fast and slow longitudinal waves as well as their attenuation were investigated

to predict the state of a bone Hosokawa and Otani, 1997; Hosokawa and Otani, 1998; Haire

and Langton, 1999; Cardoso and Cowin, 2011; Fellah et al., 2004a; Sebaa et al., 2006b;

Marutyan, Holland, and Miller, 2006; Hughes et al., 2007; Pakula et al., 2008; Anderson

et al., 2008; Mizuno et al., 2009; Wear, 2010; Nelson et al., 2011; Langton, Palmer, and

Porter, 1984.

Johnson, Koplik, and Dashen (1987) addressed the limitations of original Biot’s the-

ory regarding the energy dissipation in porous media filled with viscous fluids at different

frequencies. The modified theory, called Biot-JKD, reconstructed original Biot’s theory by

introducing the dynamic tortuosity, viscous characteristic length, and dynamic permeability

to consider the energy dissipation due to viscous exchanges between the pore fluid and solid

skeletal frame. Based on the Biot-JKD theory, several studies have been performed on the

wave propagation in cancellous bone structures filled with bone marrow by considering the

effect of dynamic tortuosity as an indication of viscous exchange between the solid skeletal

frame and the pore fluid (for example, see Fellah et al., 2004a; Hughes et al., 2007; Marutyan,

Holland, and Miller, 2006; Sebaa et al., 2006b; Pakula et al., 2008; Mizuno et al., 2009). It is

worth noting that the cancellous bone in the above-mentioned studies was analytically mod-

eled using a medium whose two dimensions have infinite lengths. Also, the effect of the

transverse wave was not investigated in these studies.

Any change in the speed or frequency content of acoustic waves in a cancellous bone

can be an indicator of an abnormality or bone loss, so considering the scattering effects in

osteoporosis detection is very important. Several studies have been performed to study the
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back-scattering and transmission of acoustical waves in cancellous bones. For instance, Ben-

namane and Boutkedjirt (2017) studied the attenuation of ultrasonic waves in bovine bone

using a theoretical approach including both scattering and dissipation. Their analytical ap-

proach was based on Biot’s model. They used 12 bovine cancellous bone samples immersed

in a water tank for the experiments, and measured ultrasonic attenuation at a frequency range

between 0.1 and 1 MHz. The attenuation due to absorption has been studied by Biot’s theory

and experimental data. They showed that the wave scattering due to the porous nature of

a cancellous bone is mainly responsible for ultrasonic attenuation. Buchanan, Gilbert, and

Ou (2012) studied the wave propagation in a cancellous bone insonified by a short pulse im-

mersed in the water. They derived the transmission and reflection coefficients of both slow

and fast waves using modified Biot’s theory.

Pakula, Padilla, and Laugier (2009) studied several human cancellous bone samples sat-

urated with water, marrow, and alcohol to investigate the energy absorption, wave scattering

and attenuation. They concluded that the pore fluid has no influence on the attenuation coeffi-

cient at ultrasonic frequency ranges between 0.35 and 1.2 MHz. Also, the ultrasonic attenua-

tion is mainly important due to the viscoelastic absorption of the cancellous bone structure. In

addition, the type of pore fluid determines the phase velocity. Gilbert et al. (2009) followed

the model proposed by Buchanan et al. (2003) and calculated the porosity of a cancellous

bone sample by the measured ultrasonic wave signals. They used a two-dimensional infi-

nite length porous slab for a cancellous bone surrounded by the cortical bone and muscles

phantoms. They performed their test in the water tank. Their results showed that the ultra-

sonic wave of a relatively high frequency can be used to determine accurately the porosity

of a bone sample. Nguyen, Naili, and Sansalone (2010) proposed an analytical model to

consider the transient wave propagation in a water-saturated cancellous bone. They used a

two-dimensional infinite length slab to model a bone. A finite element model was employed

to model an anisotropic porous medium saturated with water. The results showed that the

transmission and reflection characteristics are strongly dependent on the anisotropy of can-

cellous bones. Gilbert, Guyenne, and Ou (2012) studied the effect of the viscosity of the pore

fluid inside the cancellous bone on attenuation at ultrasound frequency ranges using the mod-

ified Biot theory. They used a one-dimensional model for cancellous bone immersed in the

water tank. It was concluded that the ultrasonic attenuation is a linear function of frequency

and significantly influenced by the viscosity of the interstitial fluid. Nguyen and Naili (2012)

considered the wave propagation in anisotropic cortical long bones using Biot’s theory and

a hybrid analytical and finite element methods. They derived a finite element formulation in
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the spectral domain for anisotropic structures of the cortical bone immersed in water. Their

results showed that the proposed hybrid approach can fairly simulate the wave propagation

in the poroelastic and anisotropic structure of cortical bones, especially in high frequencies.

Also, it was concluded that the velocity of the fast arrival signal is significantly influenced by

the porosity of the cortical bone.

Fellah et al. (2004a) studied ultrasonic wave propagation in cancellous bones. They used

a two-dimension infinite length porous slab to model a cancellous bone. They also consid-

ered the effect of dynamic tortuosity for viscous exchange between the solid skeletal frame

and pore fluid in high frequency ranges. The sensitivity of some parameters were investi-

gated. It was shown that the bulk modulus of the pore fluid and the viscous characteristic

length are sensitive to slow waves while the porosity, tortuosity, and bulk modulus of the

solid skeletal frame are sensitive to both fast and slow waves. They derived the scattering

operators for a cancellous bone-like sample for high frequency ranges by considering the

dynamic tortuosity based on the Biot-JKD theory. Buchanan, Gilbert, and Miao-jung (2011)

developed Fellah’s model by considering a cortical bone and muscles around the cancellous

bone. They modeled the cortical bone and muscles as elastic materials, and the cancellous

bone as a poroelastic material. They assumed that the pores of the cancellous bone are

filled with water. They did an analysis to determine which paths of reflection or transmis-

sion through the cancellous bone, cortical bone, and muscles have a significant sensitivity

to the received waveform. This information is useful for estimating the material properties

by employing an inverse algorithm. Grimes et al. (2012) used two types of longitudinal

waves, fast and slow waves, as an effective tool for detecting osteoporosis. They conducted

a test on a 4 mm thick cancellous bovine bone by generating an incident wave parallel to

the cancellous bone alignment. Their numerical solution was in good agreement with the

experimental results. Gilbert, Guyenne, and Li (2013a) proposed a visco-elastic model for

wave propagation through a cancellous bone. They used the turning band method to provide

a two-dimensional field for the distribution of pores in the medium. They used a second-

order staggered-grid finite difference method to solve velocity-stress equations. They also

studied the effect of porosity on some material properties such as Young’s modulus, Pois-

son’s ratio, and shear modulus. They obtained a good agreement between their proposed

model and the homogenization technique. They concluded that the attenuation of ultrasonic

waves depends not only on the viscous exchange in the pores but also heterogeneity of the

medium. Gilbert, Guyenne, and Li (2013b) modeled a cancellous bone using the solid-fluid

mixture theory. They showed that the amplitude of attenuation increases by an increase in
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frequency which is in agreement with the experimental data and pertinent literature Jacobs,

2000; Ilic, Hackl, and Gilbert, 2010; Ilic, Hackl, and Gilbert, 2011. Gilbert, Guyenne, and

Li (2014) numerically investigated ultrasonic attenuation through cancellous bone structures

reconstructed from CT-scan and random realization. They proposed an ultrasonic theoretical

expression for composite fluid-solid structures by a staggered-grid finite-difference scheme

in the time domain. They investigated the ultrasound attenuation with respect to excitation

frequency and structural porosity. Comparing results from these constructed bone structures

showed the significant effect of bone micro-structure involving rods and plates on ultrasound

attenuation. Sadouki et al. (2015) studied the wave propagation in cancellous bone using

Biot-JKD’s theory. They used a two-dimension infinite-length porous slab to model 1D wave

propagation within a cancellous bone. They studied the effect of dynamic tortuosity due to

viscous exchanges between the solid skeletal frame and pore fluid in high frequency ranges.

In their model, they ignored the effect of transverse waves on the frequency response of the

cancellous bone. They concluded that the sensitivity of the structural porosity and dynamic

tortuosity of the cancellous bone with respect to the reflected waves strongly depends on

the coupling between the fluid and solid phases of the cancellous bone. Chen, Gilbert, and

Guyenne (2018) presented a numerical study to determine the mechanical parameters of a

cancellous bone using acoustic waves. The cancellous bone was described as an isotropic

and homogeneous medium. In the formulations, it was assumed that the cancellous bone

sample is immersed in the water tank for the in-vitro experiments. Their model was able to

derive accurately some parameters such as porosity using an inverse scheme. It should be

noted that in the formulations, the dynamic tortuosity was assumed constant.

Hodaei, Rabbani, and Maghoul (2020) proposed an analytical model based on the Biot-

JKD theory for acoustic wave propagation through bone-like porous media saturated with

a viscous fluid. Similarly, they only considered the effect of longitudinal waves in their

transient analytical solution. They also employed fractional calculus to describe the damping

effect induced by the viscous exchange between the solid skeleton and pore fluid. Their

transient analytical model was verified by complementary experimental data. Subsequently,

they investigated the effect of structural porosity and pore fluid viscosity on solid and fluid

stresses as well as scattering coefficients. As a result, they demonstrated that the porosity and

pore fluid viscosity affect significantly the stress and scattering in a cancellous bone.

It is worth mentioning that in above-mentioned theoretical models, the cancellous bone-

like materials have been modeled using a porous slab saturated with water whose two di-

mensions have an infinite length. It was also assumed that the ultrasonic waves propagate in
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one direction via longitudinal waves. In other words, the effect of transverse waves on the

ultrasonic response of a cancellous bone-like medium is neglected.

In a recent work, Hodaei, Maghoul, and Popplewell (2020) presented, for the first time,

an analytical model using the Biot-JKD theory by considering the coupling effect of lon-

gitudinal and transverse waves on the reflected-transmitted pressure and stresses within a

cancellous bone-like material. In this model, the bone-like porous material has an infinite

length in two dimensions. It was shown that the effect of the transverse wave in character-

izing a cancellous bone-like material filled with a relatively low viscous pore fluid, such as

air, is negligible and the longitudinal wave can provide sufficient information. However, the

effect of the transverse wave propagating through a bone-like porous medium filled with a

relatively high viscous fluid, such as bone marrow, on reflected and transmitted pressures

as well as stresses is significant and should not be ignored. Subsequently, considering the

effect of the transverse wave in porous media interspersed with a relatively high viscous fluid

provides some information which cannot be triggered by longitudinal waves alone. More pre-

cisely, their results showed that considering the effects of transverse waves is of paramount

importance in characterizing the bone structures as the acoustical response related to some

specific information of cancellous bone is created only by investigating such waves.

In the light of the above, this paper aims to explore, for the first time, the effect of

both longitudinal and transverse acoustical waves on the response of a hollow cylindrical

cancellous bone-like porous material saturated with a viscous fluid by presenting a three-

dimensional (3D) biomechanical model. The analytical model is developed based on the

Biot-JKD theory of viscoporoelasticty. In this model, the dynamic tortuosity is considered

as a fractional exponent of frequency, so the analytical solution is found in the frequency do-

main due to lower computational costs and efforts. Consequently, the radial displacements,

reflected pressures, and transmitted pressures for various porosities and wall thickness ratios,

as an indicator of the bone condition (healthy versus osteoporosis), are described.

The structure of the paper is described as follows. First, after reviewing the literature, the

mathematical developments of ultrasonic waves propagating through a fluid acoustic field

and hollow cylindrical bone-like porous material saturated with a viscous fluid are presented

in the frequency domain. The eigenvalues for governing equations which are defined as the

squared complex wavenumbers are derived for longitudinal and transverse waves. Next, the

general solutions in cylindrical coordinates are obtained. Then, the boundary conditions for

inner and outer radii are described using the pressure field, fluid, and solid stresses and acous-

tic velocity field. The developed analytical model is then validated against the experimental
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data found in the literature as well as the FEM numerical results for simplified limit cases.

Finally, after discussing the results, the concluding remarks as well as appendices for the

mathematical developments are provided.

5.2 Mathematical Developments

In this section, a general configuration of the problem is defined. Then, conventions and

common assumptions are given. Next, the governing equations for acoustic waves propagat-

ing through a hollow cylindrical bone-like porous material saturated with a viscous fluid are

described. Finally, the radial displacement and the reflected-transmitted pressure versus the

wall thickness ratio and porosity for different frequencies are presented.

5.2.1 Problem Definition

Figure 5.1 illustrates a schematic of a hollow cylindrical cancellous bone-like porous material

with an infinite length. This can represent a human femoral cancellous bone, which is the

target of this study. The porous hollow cylinder is excited by a harmonic incident plane

wave. The structure consists of a poroelastic medium saturated with a viscous fluid such as

bone marrow while the hollow cavity is filled with air. The geometrical properties of the

cylindrical bone are specified by the inner radius of b, the outer radius of a, and the wall

thickness ratio of b/a. In this study, the cylindrical coordinate system (r, θ , z) is used in

which, r, θ and z express the radial, circumferential, and axial directions, respectively; the

(x,y,z) are the corresponding components of the Cartesian coordinate system.

The plane wave impinges upon the hollow cylindrical cancellous bone-like porous ma-

terial with an incident angle of γ . Figure 5.1 represents the reflected and transmitted waves

induced by the incident wave as well. Due to the incident wave impinging upon the medium,

two types of ultrasonic waveforms including the longitudinal and transverse waves propa-

gate through the cylindrical cancellous bone-like porous material. It should be noted that the

cavity inside the cylindrical bone is assumed to be anechoic as the wave inside the cavity

is an inward traveling wave. The inviscid acoustical media of outside and inside the hollow

cylindrical bone are characterized by the speed and density of v1, v3 and ρ1, ρ3, respectively.
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FIGURE 5.1: Left: Showing a 3D schematic of a cancellous bone-like
medium along with its porosity distribution. The incident wave impinged
upon the medium generates transmitted waves and reflected waves. Right:
Showing the cross-section of the hollow cylindrical cancellous bone-like
porous medium. γ designates the incident wave angle, and b and a are the

medium outer and inner radii, respectively.

5.2.2 Assumptions and Conventions

In this problem, the macroscopic displacement vectors of the pore fluid, Ui, and the solid

skeleton, ui, are the state variables. The conventions and assumptions are as follows.

• The cylindrical cancellous bone-like porous medium, as a continuum body, is com-

posed of a solid, deformable skeletal frame, s, filled with a viscous fluid, f .

• The poroelastic medium of the skeleton is isotropic, linear, and homogeneous.

• The deformation gradient of the solid skeletal frame, F, is described as F = I+∇u

in which I is the isotropic tensor of second-order with the Kronecker delta, δi j. The

symbol ∇ = (∂/∂r+ 1
r ∂/∂θ + ∂/∂z) is the gradient operator and r = r(r0, t) is the

Eulerian position vector at time t in a cylindrical coordinate system in an orthonormal

basis. Also, u is the displacement vector of the solid skeletal frame which has the

initial and current position vectors of r0 and r (u=r-r0), respectively.

• The linerized Green-Lagrange strain tensor, ε , is defined for infinitesimal deforma-

tion as ε = 1
2

(
∂uT +∂u

)
. Since the solid particles are incompressible, the volume

dilatation of solid skeletal frame εii is described to compensate the variations of inter-

connected pores (or porosity) φ .
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5.2.3 Governing Equations

Fluid Acoustic Field

A harmonic incident plane wave with the acoustical pressure pI
1 travels through the surround-

ing fluid (external acoustical medium) and impinges on the bone-like porous material. The

incident waves cause a reflected wave pR
1 from the cylindrical bone-like porous medium to

the external fluid medium and a transmitted wave into the cavity pT
3 of the medium.

The acoustic wave equations for the inviscid fluid surrounding the bone-like cylinder

(external acoustical medium) and filled the internal cavity can be written, respectively, as

follows.

c2
1∇

2 (pI
1 + pR

1
)
−

∂ 2
(

pI
1 + pR

1
)

∂ t2 = 0 (5.1a)

c2
3∇

2 pT
3 −

∂ 2 pT
3

∂ t2 = 0 (5.1b)

in which ∇2 is Laplacian operator in the cylindrical coordinate system and pR
1 and pT

3 are the

acoustical pressures of the reflected and transmitted waves, respectively. The mathematical

descriptions for the incident waves, the reflected waves, and the transmitted waves are given

in Appendix H.

Ultrasonic Waves in Cylindrical Cancellous Bone-Like Porous Medium

The Biot-JKD theory is employed to model acoustical wave propagation through a cancellous

bone-like porous medium in high frequency ranges as follows:

ρ11
∂ 2u
∂ t2 +ρ12

∂ 2U
∂ t2 =P∇(∇.u)+Q∇(∇.U)−N∇× (∇×u), (5.2a)

ρ12
∂ 2u
∂ t2 +ρ22

∂ 2U
∂ t2 =Q∇(∇.u)+R∇(∇.U) (5.2b)

in which u and U represent the state variables of solid and fluid displacement vectors in the

cylindrical coordinate system defined as u = (ur,uθ ,uz) and U = (Ur,Uθ ,Uz), respectively.

The symbols ∇, ∇. and ∇× are the gradient, divergence, and curl operators, respectively. N

is defined as the shear modulus of the solid skeletal frame. Moreover, ρi j(i, j = 1,2) are the

mass coefficients which relate the fluid and solid densities. P, Q, and R are poroelastic con-

stants related to some measurable quantities which are thoroughly explained in Appendix J.

Equation 5.2 can be written in the frequency domain by employing the Fourier transform

function with respect to time (Hodaei, Rabbani, and Maghoul, 2020). Thus, Equation 5.2 in
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the frequency domain will be

ρ̃11(ω)(−ω
2)u(r,ω)+ ρ̃12(ω)(−ω

2)U(r,ω) =P∇(∇.u(r,ω))+ (5.3a)

Q∇(∇.U(r,ω))−N∇× (∇×u(r,ω)),

ρ̃12(ω)(−ω
2)u(r,ω)+ ρ̃22(ω)(−ω

2)U(r,ω) =Q∇(∇.u(r,ω))+

R∇(∇.U(r,ω)). (5.3b)

in which ρ̃i j(ω) includes the term of dynamic tortuosity indicating the damping characteris-

tics of the medium given as,

α̃(ω) = α∞

(
1+

2
Λ

(
η

ω jρ f

) 1
2
)
, (5.4)

More explanations are provided in Appendix J.

5.2.4 Ultrasonic Waveforms

The ultrasonic waves propagate in poroelastic media with two longitudinal and transverse

wave types described by scalar and vector displacement potentials, respectively. Employing

the Helmholtz decomposition theorem, the displacement fields u and U in Equation 5.3, can

be expressed as

u = ∇φ
s(r,ω)+∇×Ψ

s(r,ω), U = ∇φ
f (r,ω)+∇×Ψ

f (r,ω) (5.5)

in which φ s(r,ω) and φ f (r,ω) express the longitudinal wave scalar potentials for the solid

skeletal frame and fluid, respectively, and Ψs(r,ω) and Ψ f (r,ω) are the transverse wave

vector potentials for the solid skeletal frame and fluid, respectively. Note that Ψs(r,ω) =

(ψs
r ,ψ

s
θ
,ψs

z ) and Ψ f (r,ω) = (ψ f
r ,ψ

f
θ
,ψ f

z ) with the condition ∇.Ψ(r,ω) = 0. By substituting

Equation 5.5 into Equation 5.3, one obtains

(−ω
2)
[
ρ̃11(ω)(φ̃ s(r,ω)+ Ψ̃

s(r,ω))+ (5.6a)

ρ̃12(ω)(φ̃ f (r,ω)+ Ψ̃
f (r,ω))

]
=

P∇

(
∇.
[
∇φ̃

s(r,ω)+∇× Ψ̃
f (r,ω)

])
+

Q∇

(
∇.
[
∇φ̃

s(r,ω)+∇× Ψ̃
f (r,ω)

])
−

N∇×∇×
(
∇φ̃

f (r,ω)+∇× Ψ̃
f (r,ω)

)
,
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(−ω
2)
[
ρ̃12(ω)(∇φ

s(r,ω)+∇×Ψ
s(r,ω)) (5.6b)

+ρ̃22(ω)(∇φ
f (r,ω)+∇×Ψ

f (r,ω))
]
=

Q∇

(
∇.[∇φ

s(r,ω)+∇×Ψ
f (r,ω)]

)
+

R∇

(
∇.[∇φ

f (r,ω)+∇×Ψ
f (r,ω)]

)
.

Equation 5.6 is defined as the equation of motion for the solid skeletal frame and fluid

including the scalar and vector displacement potentials. Since the medium is isotropic, the

longitudinal and transverse wave potentials can be decoupled by applying the divergence and

curl operators to both Equation 5.6a and Equation 5.6b. Then,

−ω
2
(

ρ̃11(ω)φ̃ s(r,ω)+ ρ̃12(ω)φ̃ f (r,ω)
)
=∇

2
(

Pφ̃
s(r,ω)+Qφ̃

f (r,ω)
)

(5.7a)

and

−ω
2
(

ρ̃12(ω)φ̃ s(r,ω)+ ρ̃22(ω)φ̃ f (r,ω)
)
=∇

2
(

Qφ̃
s(r,ω)+Rφ̃

f (r,ω)
)

(5.7b)

and

−ω
2
(

ρ̃11(ω)Ψ̃s(r,ω)+ ρ̃12(ω)Ψ̃ f (r,ω)
)
=−N∇×∇×

(
Ψ̃

s(r,ω)
)

(5.7c)

with

−ρ̃12(ω)Ψ̃s(r,ω) =ρ̃22(ω)Ψ̃ f (r,ω) (5.7d)

The scalar potentials φ̃ s(r,ω) and φ̃ f (r,ω) can be derived by rewriting Equation 5.7a and

Equation 5.7b in the linear matrix form as follows.

−ρ11ω2 +A( jω)
3
2 −P∇2 −ρ12ω2−A( jω)

3
2 −Q∇2

−ρ12ω2−A( jω)
3
2 −Q∇2 −ρ22ω2 +A( jω)

3
2 −R∇2

φ̃ s(r,ω)

φ̃ f (r,ω)

= 0. (5.8)

in which A = 1
Λ f

2φρ f α∞

√
η

ρ f
. Equation 5.8 can be rewritten in a more compact form,

∇
2

φ̃ s(r,ω)

φ̃ f (r,ω)

= M

φ̃ s(r,ω)

φ̃ f (r,ω)

 (5.9)
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where the components of matrix M are given in Appendix I. Using the corresponding eigen-

value problem, the explicit form of two longitudinal waves propagating through a porous

medium, fast and slow waves, can be derived. Hence, Equation 5.9 can be reformulated as

∇
2

φ̃1(r,ω)

φ̃2(r,ω)

=

δ̃ 2
1 (ω) 0

0 δ̃ 2
2 (ω)

φ̃1(r,ω)

φ̃2(r,ω)

 (5.10)

or,

∇
2
φ̃1,2(r,ω)+ δ̃

2
1,2(ω) = 0 (5.11)

in which δ̃ 2
1 (ω) and δ̃ 2

2 (ω) are the eigenvalues of matrix M and defined as the squared com-

plex wavenumbers for two fast and slow dilatational waves given in Appendix K.

The scalar potentials related to the fast and slow waves, φ̃1(r,ω) and φ̃2(r,ω), can be

associated with the scalar potentials related to the solid skeletal frame and fluid, φ̃ s(r,ω) and

φ̃ f (r,ω), respectively. After some algebraic manipulations in Equation 5.7a, Equation 5.7b

and Equation 5.11, we deduce the following matrix form

φ̃ s(r,ω)

φ̃ f (r,ω)

=

 1 1

µ̃1(ω) µ̃2(ω)

φ̃1(r,ω)

φ̃2(r,ω)

 . (5.12)

Therefore, the scalar potentials related to the solid skeletal frame and fluid, φ̃ s(r,ω) and

φ̃ f (r,ω), can be, respectively, written as,

φ̃
s(r,ω) =φ̃1(r,ω)+ φ̃2(r,ω) (5.13a)

φ̃
f (r,ω) =µ̃1(ω)φ̃1(r,ω)+ µ̃2(ω)φ̃2(r,ω) (5.13b)

where

µ̃i(ω) =
Pδ̃ 2

i (ω)−ω2ρ11

ω2ρ12−Qδ̃ 2
i (ω)

=
Qδ̃ 2

i (ω)−ω2ρ12

ω2ρ22−Rδ̃ 2
i (ω)

, i = 1,2. (5.14)

The vector potential functions for the solid skeletal frame and fluid, Ψ̃s(r,ω) and Ψ̃ f (r,ω),

can be derived similarly. In this case, following Equation 5.7c and Equation 5.7d, the equa-

tion of motion for the transverse wave propagating through the cancellous bone-like porous

medium will be as,

∇
2
Ψ̃

s(r,ω)+ δ̃
2
3 (ω)Ψ̃s(r,ω) = 0 (5.15)
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in which δ̃ 2
3 (ω) is the squared wave number for the transverse wave given by

δ̃
2
3 (ω) =

ω2

N

(
ρ̃11ρ̃22− ρ̃2

12
ρ̃22

)
. (5.16)

Furthermore, the ratio between the transverse wave vector potentials for the solid skeletal

frame and fluid can be written as,

µ3 =
Ψ̃s(r,ω)

Ψ̃ f (r,ω)
=−ρ22

ρ12
(5.17)

The general solutions for Equation 5.11 and Equation 5.15 in the cylindrical coordinate sys-

tem are given in Appendix L (Allard and Atalla, 2009).

Furthermore, the displacement field induced by an acoustic wave in a cylindrical cancel-

lous bone-like porous medium in the cylindrical coordinate is written

ur(r,θ ,z, t) =
∞

∑
n=0

un
r (r)cos(nθ)e j(ωt−Kzz) (5.18a)

Ur(r,θ ,z, t) =
∞

∑
n=0

Un
r (r)cos(nθ)e j(ωt−Kzz) (5.18b)

uθ (r,θ ,z, t) =
∞

∑
n=0

un
θ (r)sin(nθ)e j(ωt−Kzz) (5.18c)

Uθ (r,θ ,z, t) =
∞

∑
n=0

Un
θ (r)sin(nθ)e j(ωt−Kzz) (5.18d)

uz(r,θ ,z, t) =
∞

∑
n=0

un
z (r)cos(nθ)e j(ωt−Kzz) (5.18e)

Uz(r,θ ,z, t) =
∞

∑
n=0

Un
z (r)cos(nθ)e j(ωt−Kzz) (5.18f)

The components of the displacement vectors, un
r (r), Un

r (r), un
θ
(r), Un

θ
(r), un

z (r) and Un
z (r),

are more conveniently expanded in Appendix M. Accordingly, the components of the strain
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tensor in terms of displacement in the cylindrical coordinate system can be derived as,

εrr(r,θ ,z, t) =
∂ur(r,θ ,z, t)

∂ r
(5.19a)

εrz(r,θ ,z, t) =
1
2

(
∂ur(r,θ ,z, t)

∂ z
+

∂uz(r,θ ,z, t)
∂ r

)
(5.19b)

εrθ (r,θ ,z, t) =
1
2

(
∂ur(r,θ ,z, t)

∂θ
+

∂uθ (r,θ ,z, t)
∂ r

− uθ (r,θ ,z, t)
r

)
(5.19c)

εzz(r,θ ,z, t) =
∂uz(r,θ ,z, t)

∂ z
(5.19d)

εθθ (r,θ ,z, t) =
1
r

(
∂uθ (r,θ ,z, t)

∂θ
+ur(r,θ ,z, t)

)
(5.19e)

εzθ (r,θ ,z, t) =
1
2

(
∂uθ (r,θ ,z, t)

∂ z
+

1
r

∂uz(r,θ ,z, t)
∂θ

)
. (5.19f)

The solid stress, σ s
i j, and fluid stress, σ

f
i j, for a porous medium saturated with a viscous fluid

are obtained by (Fellah et al., 2004a)

σ
s
i j =(2N)εi j +

(
(P−N)∇.ui j +Q∇.Ui j

)
δi j, (i, j = r,θ ,z) (5.20a)

σ
f

i j =−φ p f δi j = (R∇.Ui j +Q∇.ui j)δi j, (5.20b)

in which δi j and p f stand for the Kronecker delta function and the fluid pressure, respec-

tively. The stress field for the solid skeletal frame and fluid can be derived by substituting the

displacement vector components (Equation 5.18) and the strain tensor components (Equa-

tion 5.19) into Equation 5.20. Thus, the components of the stress tensor, after some algebraic

manipulations, are written as

σrr(r,θ ,z, t) =
∞

∑
n=0

σ
n
rr(r)cos(nθ)e j(ωt−kzz) (5.21a)

σrθ (r,θ ,z, t) =
∞

∑
n=0

σ
n
rθ (r)sin(nθ)e j(ωt−kzz) (5.21b)

σrz(r,θ ,z, t) =
∞

∑
n=0

σ
n
rz(r)cos(nθ)e j(ωt−kzz) (5.21c)

σ
f (r,θ ,z, t) =

∞

∑
n=0

Sn(r)cos(nθ)e j(ωt−kzz) (5.21d)

where Sn(r) is the pore fluid pressure and σn
rr(r), σn

rθ
(r), σn

rz(r) express the stress in the

radial, circumferential, and axial directions, respectively. A detailed expansion of these com-

ponents are provided in Appendix N.
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A close look at Equation 5.21 and Equation 5.18 reveals that the stress and displacement

fields can be related to each other using the following matrix form described as

{σ}8×1 = {ϒ}8×8{C}8×1 (5.22a)

{u}8×1 = {Γ}8×8{C}8×1 (5.22b)

in which

C =
[
A1 A3 B1 B3 C1 C2 C3 C4

]
(5.23)

σ =
[
σrrr = a σrθ r = a σrzr = a σ f r = a σrrr = b σrθ r = b σrzr = b σ f r = b

]
(5.24)

u =
[
urr = a uθ r = a uzr = a Urr = a urr = b uθ r = b uzr = b Urr = b

]
(5.25)

where r = a and r = b are the outer and inner boundary radii of the cylindrical bone-like

porous medium. The vector C is obtained from Equation 5.22a and substituted into Equa-

tion 5.22b. Therefore, the relationship between the stress tensor and displacement vector

fields will be as,

{u}8×1 = [Q]8×8{σ}8×1 (5.26)

in which [Q]8×8 = [Γ]8×1[ϒ]
−1
8×1. The matrices ϒ and Γ are composed of the components of

the displacement vector and stress tensor fields. It should be noted that the displacement

field {u}8×1 can be derived by substituting the stress field {σ}8×1, Equation 5.21, into Equa-

tion 5.26 along with employing the boundary conditions. The explicit expansions of Qi j, Γi j

and ϒ
−1
i j are provided in Appendix O. The boundary conditions are derived next.

5.2.5 Acoustical Boundary Conditions

On the shared boundaries of the hollow cylindrical cancellous bone-like porous medium, the

relationship between the radial displacement and pore fluid pressure at r = a and r = b can

be written, respectively, as (Lee and Kim, 2002)

∂
(

pI
1(r,θ ,z, t)+ pR

1 (r,θ ,z, t)
)

∂ r
=−ρ1

∂ 2vp
a(r,θ ,z, t)

∂ t2 , r = a (5.27a)

∂ pT
3 (r,θ ,z, t)

∂ r
=−ρ3

∂ 2vp
b(r,θ ,z, t)

∂ t2 , r = b
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in which vp
a and vp

b are defined as the acoustic radial displacement fields at r = a and r = b

given by

vp
a(a,θ ,z, t) =(1−φ)ur(a,θ ,z, t)+φUr(a,θ ,z, t) (5.28a)

=
∞

∑
n=0

V pn
a (a,θ ,z, t)cos(nθ)e j(ωt−kzz)

vp
b(b,θ ,z, t) =(1−φ)ur(b,θ ,z, t)+φUr(b,θ ,z, t)

=
∞

∑
n=0

V pn
b (b,θ ,z, t)cos(nθ)e j(ωt−kzz) (5.28b)

where V pn
a and V pn

b are the acoustic displacement coefficients at r = a and r = b, respec-

tively. Additionally, the stresses at the boundaries of a hollow cylindrical cancellous bone

like porous medium where r = a and r = b can be defined as,

σrr(a,θ ,z, t) =− (1−φ)
(

pI
1(a,θ ,z, t)+ pR

1 (a,θ ,z, t)
)

(5.29a)

σrθ (a,θ ,z, t) =0 (5.29b)

σrz(a,θ ,z, t) =0 (5.29c)

σ
f (a,θ ,z, t) =−φ

(
pI

1(a,θ ,z, t)+ pR
1 (a,θ ,z, t)

)
(5.29d)

σrr(b,θ ,z, t) =− (1−φ)pT
3 (b,θ ,z, t) (5.29e)

σrθ (b,θ ,z, t) =0 (5.29f)

σrz(b,θ ,z, t) =0 (5.29g)

σ
f (b,θ ,z, t) =−φ pT

3 (b,θ ,z, t)

By substituting Equation 5.29 into Equation 5.26 and simplifying the equations, we can

derive the following matrix system given by

ur(r = a)

uθ (r = a)

uz(r = a)

Ur(r = a)

ur(r = b)

uθ (r = b)

uz(r = b)

Ur(r = b)



=



Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38

Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48

Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58

Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68

Q71 Q72 Q73 Q74 Q75 Q76 Q77 Q78

Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88





σrr(r = a)

σrθ (r = a)

σrz(r = a)

σ f (r = a)

σrr(r = b)

σrθ (r = b)

σrz(r = b)

σ f (r = b)



(5.30)
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Four unknown coefficients, ur(r = a), ur(r = b), Ur(r = a) and Ur(r = b), in Equa-

tion 5.30 can be simultaneously obtained in terms of transmission and reflection coefficients

denoted by pT
3n and pR

1n, respectively. In fact, by isolating the radial displacement components

along with their corresponding stress boundary conditions in Equation 5.30, the following

simplified matrix equation is obtained,


ur(r = a)

Ur(r = a)

ur(r = b)

Ur(r = b)

=


Q11 Q14 Q15 Q18

Q41 Q44 Q45 Q48

Q51 Q54 Q55 Q58

Q81 Q84 Q85 Q88




−(1−φ)pT

3 (r = a)

−φ pT
3 (r = a)

−(1−φ)(pR
1 + pI

1)(r = b)

−φ(pR
1 + pI

1)(r = b)

 . (5.31)

Therefore, the radial displacements at the inner and outer boundaries of a cylindrical bone-

like porous medium are obtained in terms of pT
3n and pR

1n as follows.

ur(b,θ ,z, t) = (φ −1)Q15(pI
1(a)+ pR

1 (a))− (5.32a)

φQ18(pI
1(a)+ pR

1 (a))+(φ −1)Q11 pT
3 (b)−φQ14 pT

3 (b)

ur(a,θ ,z, t) = (−1+φ)Q55(pI
1(a)+ pR

1 (a))− (5.32b)

φQ58(pI
1(a)+ pR

1 (a))+(−1+φ)Q51 pT
3 (b)−φQ54 pT

3 (b)

Ur(b,θ ,z, t) = (φ −1)Q45(pI
1(a))+ pR

1 (a))− (5.32c)

φQ48(pI
1(a))+ pR

1 (a))+(φ −1)Q41 pT
3 (b)−φQ44 pT

3 (b)

Ur(a,θ ,z, t) = (φ −1)Q85(pI
1(a))+ pR

1 (a))− (5.32d)

φQ88(pI
1(a))+ pR

1 (a))+(φ −1)Q81 pT
3 (b)−φQ84 pT

3 (b)

Moreover, ur(r = a) and ur(r = b) have a relationship with pT
3n, pR

1n by considering Equa-

tion 5.27 and Equation 5.28. Subsequently, it is possible to find pT
3n, pR

1n along with ur(r = a),

ur(r = b), Ur(r = a) and Ur(r = b). More precisely, the acoustic radial displacement fields vp
a

and vp
b can be derived by substituting Equation 5.32 into Equation 5.28. Then, by replacing

vp
a and vp

b into Equation 5.27 the following matrix equation for pT
3n, pR

1n is obtained

pR
1n

pT
3n

=

H11 H12

H21 H22

−1χ11

χ12

 . (5.33)
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Consequently, the amplitude of pT
3 and pR

1 are calculated as,

pT
3n =

χ12H11−χ11H21

H11H22−H12H21
(5.34a)

pR
1n =

χ11H22−χ12H12

H11H12−H12H21
. (5.34b)

The expansions of H11, H12, H21, H22, χ11, χ12 are provided in Appendix P.

5.2.6 Computational Implementation

The governing equations presented above were implemented in a computational code. The

computations were performed on a desktop computer powered by an Intel(R) Xeon(R) CPU

E5-2630 @ 2.4 GHz. The parallel computing toolbox and multicore processors were used to

speed up the computing effort (Sharma and Martin, 2009).

5.2.7 Validation

The analytical solutions for a bone-like porous material subjected to an acoustical wavefront

presented in this study were compared against simplified limit cases found in the literature

(Lee and Kim, 2003; Daneshjou et al., 2010; Talebitooti, Daneshjou, and Kornokar, 2016).

The first limit case presented in (Lee and Kim, 2003) studied sound transmission through

the cylindrical wall of a circular cylindrical cavity enclosed by a thin solid elastic shell sub-

jected to a plane incident wave. The second limit case presented in (Daneshjou et al., 2010)

dealt with acoustic transmission through an infinitely long and relatively thick FGM cylin-

drical shell composed of metal and ceramic (solid materials) with a power-law distribution

of volume fraction through the thickness. The shell was immersed in a fluid with an external

airflow and an oblique plane wave impinges on the external sidewall of the shell. The third

study presented in (Talebitooti, Daneshjou, and Kornokar, 2016) investigated sound trans-

mission through a poroelastic cylindrical shell in the presence of subsonic flow. To compare

our analytical solutions developed in this study for hollow cylindrical cancellous bone-like

porous materials subjected to an acoustical wavefront with the above-mentioned limit cases

(Lee and Kim, 2003; Daneshjou et al., 2010), the fluid components in the solutions are ne-

glected and the solutions are derived by approaching the porosity to zero. It is also worth

noting that in these studies, the transmission loss coefficient was derived in the frequency

domain for solid materials given as

T L = 10 log10

(
ΠI

ΠT

)
(5.35)
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where ΠI and ΠT are the incident and transmitted acoustic powers, respectively. More ex-

planation of ΠI and ΠT are provided in Appendix Q. Figure 5.2 illustrates an excellent

agreement for the transmission loss derived by the analytical solution presented in this study

and that of the literature. The dynamic tortuosity defined in our solution is a function of fre-

quency, so the transmission loss can be calculated even in the clinically relevant ultrasound

frequency range which has not been addressed before. The pertinent literature (Talebitooti,

Daneshjou, and Kornokar, 2016) used a constant dynamic tortuosity limiting the transmission

loss to relatively low frequency ranges. The material properties used for these validations are

given in Table 5.1.

 0.01  0.10  1.00 10.00
-20.00

  0.00

 20.00

 40.00

 60.00

 80.00

100.00

FIGURE 5.2: Comparison of the transmission loss calculated by the analyt-
ical solution presented in this study with the simplified limit cases found
in the literature for isotropic shell made of steel (Lee and Kim, 2003;
Daneshjou, Talebitooti, and Tarkashvand, 2017; Talebitooti, Daneshjou, and
Kornokar, 2016). The validation shown by this study and the previous liter-

ature evaluates the robustness of the proposed analytical expression.

Body external acoustical medium Cavity
Material Steel Air Air
Density ( kg/m^3) 7750 1.21 0.9389
Young’s Modulus (GPa) 190 - -
Poisson’s ratio 0.30 - -
Radius (m) 0.10 - -
Thickness (mm) 1.00 - -
Sound Speed (m/s) - 388 343
Incident Angle (degree) 45 - -

TABLE 5.1: Mechanical properties used in Figure 5.2.

In addition, the radial displacements and transmitted pressure obtained in this study are
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compared with a FEM analysis for a simplified limit case. For this purpose, COMSOL

Multiphysics software (Multiphysics, 1998) was employed to model wave propagation in

an elastic medium in the frequency domain. The elastic medium is a solid hollow cylinder

with no pores which has the same geometry and material properties of the model proposed

in the analytical expression, Table 5.1. It should be noted that since the solid hollow cylin-

der modeled in COMSOL does not have any pores filled with viscous fluid, all the terms

related to the viscous fluid removed from the proposed analytical solution derived in this

study and let the porosity approach zero φ → 0. Then, the radial displacement and transmit-

ted pressure obtained from COMSOL and the proposed analytical expression are compared.

Figure 5.3 shows the radial displacements of a solid hollow cylinder modeled by COMSOL

Multiphysics as well as a hollow cylindrical bone-like porous medium derived by the ana-

lytical solution presented in this study by neglecting the porosity and other terms related to

the pore fluid. Figure 5.3a describes the radial displacement at the point where the incident

wave impinges upon the cylinder (θ = 0) and Figure 5.3b shows the radial displacement at

the sideward direction, a right (90 degrees) angle with respect to the point of the incident

wave (θ = 90◦). As can be seen, there is a good agreement between the current study and

FEM results. Figure 5.4 illustrates the transmitted pressure inside the medium derived by

the current study and COMSOL Multiphysics software in the frequency domain. The results

show a good agreement between the transmitted pressure calculated in this study and FEM

numerical solution. It is worth mentioning that the same as other FEM software, COMSOL

has disadvantages such as difficulty in modeling infinitely large domains, running-time cost

and the numerical instability in high frequencies. Likewise, the module of dynamic tortuosity

defined in COMSOL is not a function of frequency, which means it is not able to compute

radial displacement and transmitted pressure in high frequency ranges.
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FIGURE 5.3: Figure (a) shows the radial displacement between the current
study and FEM numerical results at the point where the incident wave im-
pinges upon the cylinder θ = 0. Figure (b) shows the radial displacement
between the current study and FEM numerical results at the sideward di-
rection θ = π/2. A hollow cylinder modeled by COMSOL is solid (not
porous). Hence for comparison, porosity approaches zero and the terms re-
lated to pore fluid in the proposed analytical solution presented in this study

are removed.

Figure 5.5 and Figure 5.6 show the robustness of the proposed analytical solution by con-

sidering the effect of porosity and dynamic tortuosity. Figure 5.5 compares the transmission

coefficients of a cancellous bone-like porous material filled with water for a two-dimensional

porous slab with an infinite length, as presented by Fellah et al. Fellah et al., 2004a. In this

case, the radius of the hollow cylinder in our model is assumed large enough to disregard

the curvatures. The differences between the transmission coefficients obtained in this study

and the one proposed by Fellah et al., 2004a can be attributed to the geometrical simplifica-

tions made in our study to simulate wave propagation in a 2D porous slab with an infinite
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FIGURE 5.4: Comparison of the transmitted pressure obtained by the current
study and FEM numerical results for a simplified limit case. In this verifica-
tion, in the analytical solution derived in this study for a cylindrical bone-like
porous medium the porosity approaches zero φ → 0 and all the terms related
to pore fluid are removed. A hollow cylinder modeled in COMSOL is solid.

Material properties used for validation Fellah et al. (2004a) Bolton, Shiau, and Kang (1996)
Porosity φ = 0.83 φ = 0.9
Bulk modulus of pore fluid (GPa) K f = 2.28 K f = 101×10−6

Thickness (m) 0.007 0.00127
Dynamic tortuosity 1.05 α∞ 1.05
Bulk modulus of porous skeletal frame (GPa) Kb = 3.3 Kb = 3.83
Bulk modulus solid (GPa) Ks = 20 Ks = 4.6
Viscous characteristic length (µm) Λ = 5 Λ = 5
Density of solid (kg/m3) ρs = 1960 ρs = 30
Shear modulus of porous skeletal frame (GPa) N = 2.6 N = 0.92
Bulk Young’s modulus (GPa) Es = 15 Es = 2.76
Bulk Poisson’s ratio ν = 0.37 ν = 0.4
Viscosity of pore fluid (kgm/s) η = 0.001 η = 1.81×10−6

Density of pore fluid (kg/m3) ρ f = 1000 ρ f = 1.225

TABLE 5.2: Mechanical properties used for validation with Fellah et al.
(2004a) and Bolton, Shiau, and Kang (1996).

length. In addition, in the solutions proposed by Fellah et al. Fellah et al., 2004a for a 2D

porous slab with an infinite length, the effect of transverse waves was neglected. In spite

of the differences in these two models, the comparison between the two transmission coeffi-

cients shows that they follow the same trend in broadband frequencies. Similarly, Figure 5.6

compares the transmission loss obtained in this study with the ones presented by Bolton et

al. Bolton, Shiau, and Kang, 1996. Although the results are not exactly the same, however,

a good agreement between the results exists. Material properties used for both validation are

presented in Table 5.2 .
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FIGURE 5.5: Comparison of the transmission coefficient obtained in the
current study with the one presented by Fellah et al., 2004a for a 2D porous

slab with an infinite length and a porosity of φ = 0.83.
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FIGURE 5.6: Comparison of the transmission loss obtained in the current
study with the one presented by Bolton, Shiau, and Kang, 1996 for a panel

structure lined with elastic porous material and a porosity of φ = 0.9.
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Bulk modulus of pore fluid K f = 2 GPa
Inner and outer radii for cylinder medium a=0.015m, b=0.025 m
Bulk modulus of solid Ks = 20 GPa
Dynamic tortuosity α∞ =7.05
Bulk modulus of porous skeletal frame Kb = 3.3 GPa
Viscous characteristic length Λ = 5 µm
Density of solid ρs = 1960 kg/m^3
Shear modulus of porous skeletal frame N = 2.6 GPa
Modulus of elasticity of solid Es = 15 GPa
Modulus of elasticity of porous skeletal frame Eb = 3.73GPa
Poisson’s ratio of solid νs = 0.37
Poisson’s ratio of porous skeletal frame νb = 0.35
Viscosity of pore fluid η = 1.5 kgm/s
Density of pore fluid ρ f = 930 kg/m^3

TABLE 5.3: Mechanical properties of the bone-like porous material used in
this study.

5.3 Results and Discussion

The biomechanical model presented in this study is used to investigate the acoustical response

of a hollow cylindrical bone-like porous medium saturated with a viscous fluid. As mentioned

previously, it can be considered as a human femoral cancellous bone. An oblique plane wave

impinges upon the poroelastic cylinder with the incident angle of γ with respect to the x-axis

as shown in Figure 5.1. In this section, the radial displacements and transmitted-reflected

pressures are calculated first at different locations of the hollow cylindrical medium. Then,

the effect of porosity and wall thickness ratio as the indicators of bone conditions and bone

loss are considered. Accordingly, the acoustical response of a cancellous bone-like porous

structure with different porosities ranging from 0.0001 to 0.9 along with different selected

wall thickness ratios (b/a = 0.5,0.75,0.9) is investigated. The mechanical properties of the

hollow cylindrical cancellous bone-like porous material used in this study are similar to those

presented by (Fellah et al., 2013; Buchanan and Gilbert, 2007) and shown in Table 5.3.

5.3.1 Effect of wall thickness ratio and incident wave angle on radial displace-

ment response

The effect of wall thickness ratio on the radial displacement of a hollow cylindrical cancel-

lous bone-like porous medium saturated with bone marrow subject to acoustical waves is

investigated in this section. The porosity is assumed constant, φ = 0.0001, while the wall
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thickness ratio changes from 0.5 to 0.9. The effect of the wall thickness ratio on the radial

displacement is studied for different incident wave angles: γ = 0, γ = π/4 and γ = π/3.

Figure 5.7 displays the radial displacements versus a relatively low frequency narrow-

band which varies from 0 to 200 Hz. Figure 5.7a and Figure 5.7c illustrate the radial dis-

placements induced by an acoustical wave for the wall thickness ratio of b/a = 0.5 at two

different points located on the outer surface of the cylindrical bone-like material θ = 0 and

at sideward direction along θ = π/2, respectively. By comparing these figures, it can be

seen that the amplitude of the radial displacement of the cylindrical bone-like medium at

sideward direction along θ = π/2 is lower than that of forward direction θ = 0 regardless

of the angle of incident waves and wall thickness ratio. Increasing the wall thickness ra-

tio decreases the number of resonance peaks of the system for a given excitation frequency

range, (see Figure 5.7a to Figure 5.7b). In addition, the effect of γ is more significant by

an increase in the wall thickness ratio at θ = 0 while almost negligible at sideward direction

along θ = π/2. Therefore, it can be inferred that an increase in the incident wave angle from

γ = 0 to γ = π/3 at a relatively low frequency narrowband is important at θ = 0 and has no

significant influence on radial displacements at = π/2 regardless of the wall thickness ratio.

We consider the effect of frequency-dependent dynamic tortuosity,Equation 5.4, for the

first time, to consider the viscous exchange between the solid skeletal frame and pore fluid in

high frequency ranges, which has a significant effect on wave attenuation. We increase the

range of frequency and consider the effect of wall thickness ratio and the incident wave angles

on the radial displacement at forward direction θ = 0 and sideward direction along θ = π/2.

Figure 5.8 displays the radial displacements versus a relatively high frequency range for both

forward and sideward directions. It should be noted that the range of frequency for both

forward and sideward directions is selected in such a way to visibly distinguish the radial

displacements induced by different incident wave angles. As can be seen, at frequencies

around 200 kHz, the radial displacements at forward, θ = 0, and sideward, θ = π/2, direc-

tions are visibly distinguished for different angles of incident waves regardless of the wall

thickness ratio. A close look at Figure 5.8a to Figure 5.8b illustrates that by increasing the

incident wave angle from γ = 0 to γ = π/3, the radial displacements decrease regardless of

the wall thickness ratio. In addition, an increase in the wall thickness ratio leads to a decrease

in the number of resonance peaks of the system. The same trend can be observed in the other

subfigures in Figure 5.8.
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Figure 5.7 and Figure 5.8 show that the frequency response of radial displacement de-

creases by increasing the wall thickness ratio. Also, the wall thickness ratio can be consid-

ered as an indicator of the bone condition (healthy versus osteoporosis). The lower the wall

thickness ratio, the healthier a bone is. Thus, one can conclude that the wall thickness ratio,

regardless of the incident wave angle, affects the frequency response of the cylindrical bone-

like porous medium. Generally speaking, by increasing the wall thickness ratio, for example,

from 0.5 to 0.9, the number of resonance peaks of the system at θ = 0 and range of frequency

200.1-200.18 kHz decreases from 11 to 3 picks, and furthermore, the difference between the

resonant frequencies will be greater. Also, the incident wave angle has a more significant

effect on the radial displacement of the crown (point θ = 0) by increasing the wall thickness

ratio.
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FIGURE 5.7: Figures (a) and (b) show the radial displacements versus frequency at a rela-
tively low narrowband for the wall thickness ratio of b/a = 0.5 and b/a = 0.9, respectively,
where the wave impinges upon the forward direction, θ = 0, at the outer location of the
bone structure. Figures (c) and (d) show the radial displacements versus frequency at a rela-
tively low narrowband for the wall thickness ratio of b/a = 0.5 and b/a = 0.9, respectively,
where the wave impinges upon sideward direction, θ = π/2, at the outer location of the bone
structure. In these figures, the medium with a porosity of φ = 0.0001 is subject to different
incident wave angles: γ = 0, π/4 and π/3 shown in blue, red, and green lines, respectively.
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FIGURE 5.8: Figures (a) and (b) show the radial displacements versus frequency at a rela-
tively high narrowband for the wall thickness ratio of b/a = 0.5 and b/a = 0.9, respectively,
where the wave impinges upon forward direction, θ = 0, at the outer location of the bone
structure. Figures (c) and (d) show the radial displacements versus frequency at a relatively
high narrowband for the wall thickness ratio of b/a = 0.5 and b/a = 0.9, respectively, where
the wave impinges upon sideward direction, θ = π/2, at the outer location of the bone struc-
ture. In these figures, the medium with a porosity of φ = 0.0001 is subject to different
incident wave angles: γ = 0, π/4, and π/3 shown in blue, red, and green lines, respectively.

5.3.2 Effect of porosity on radial displacement response

Figure 5.9 displays the radial displacements of a hollow cylindrical cancellous bone-like porous medium

subjected to an incident acoustical wave with an incident angle of γ = 0. The results are presented for the

point located at the crown of the hollow cylinder (θ = 0) for the wall thickness ratios of 0.75 and 0.9 and

the porosities of 0.0001, 0.001, and 0.01.

As can be seen, by increasing the porosity of the cancellous bone-like porous medium saturated with

a relatively high viscous fluid (bone marrow) from φ = 0.0001 to φ = 0.01, the amplitude of the radial

displacement decreases regardless of the wall thickness ratio. As a matter of fact, by increasing the porosity

the stiffness of a porous structure decreases sharply. This can affect the frequency response of the medium
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subjected to an ultrasonic waveform in terms of radial displacement. Also, increasing the porosity will

provide more space for a viscous exchange between the viscous pore fluid (bone marrow) and the porous

skeletal frame, which results in more attenuation. However, it is worth noting that, considering the porosity

range studied in this section, the volume of the viscous pore fluid in comparison to the bulk volume is

negligible. Hence, the effect of porosity on the stiffness of the porous structure is more significant with

respect to the effect of viscous attenuation in the frequency response of the medium.

By comparing Figure 5.9a with Figure 5.9c as well as Figure 5.9b with Figure 5.9d, it can be concluded

that for the same porosity, for instance φ = 0.0001, the wall thickness ratio has a significant effect on the

frequency response of the cancellous bone-like material in terms of radial displacement. Subsequently,

the radial displacement of a cancellous bone-like material depends on not only the porosity but also the

wall thickness ratio. These two factors are among the most important parameters in determining the bone

conditions (healthy versus osteoporosis) as well. In the next section, the effective frequency range (low vs

high frequency ranges) along with other associated circumstances will be investigated.
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FIGURE 5.9: Figure (a) and (b) show the radial displacements for low and high frequency ranges, respectively. The wall thickness ratio of the
bone structure is 0.75 and the incident wave impinges upon the bone normally, γ = 0, at the forward direction at the outer location of bone, θ = 0.
Figures (c) and (d) show the radial displacements for low and high frequency ranges, respectively. The wall thickness ratio of the bone structure is
0.9 and the incident wave impinges upon the bone normally, γ = 0, at the forward direction at the outer location of bone, θ = 0. In these figures,

the radial displacements for the porosities of φ = 0.0001, φ = 0.001, and φ = 0.01 are shown in blue, red, and green lines, respectively.
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5.3.3 Effect of excitation frequency on angular radial displacement

In this section, the effect of excitation frequencies at 800 Hz, 8 kHz, and 200 kHz on the angular radial

displacement is investigated. Then, the effect of wall thickness ratios of 0.75, and 0.9 at different excitation

frequencies is studied. Next, the effect of different porosities of 0.1, 0.5, and 0.9 on the angular radial

displacement at different excitation frequencies is considered.

The effect of different excitation frequencies on the angular radial displacement for different porosities

and wall thickness ratio is illustrated in Figure 5.10. It shows that the amplitude of the radial displacement in

relatively low frequencies is higher than that of relatively high frequencies regardless of the wall thickness

ratio. In addition, the pattern of angular radial displacement in relatively low frequency is almost symmetric

while it is asymmetric in relatively high frequency.

Next, let consider the effect of porosity on the angular radial displacement. A comparison between

Figure 5.10a and Figure 5.10b shows the effect of different porosities for the wall thickness ratio of b/a =

0.75 on the angular radial displacements. As can be seen, by increasing the porosity from φ = 0.1 to φ = 0.9,

the radial displacement in each figure increases, but the rate of this increase for a higher frequency, 8 kHz,

is more significant than that of a lower frequency, 800 Hz. In fact, by increasing the porosity the stiffness

of the porous structure decreases, and subsequently the displacement increases. Note that the patterns are

mainly distributed uniformly along with the forward and backward directions. Considering a relatively

higher excitation frequency (f=200 kHz) as shown in Figure 5.10c, the radial displacement patterns are not

distributed uniformly. It is shown that there is a forward and backward direction regarding the porosity.

For example, for the porosity of φ = 0.1 and φ = 0.5, the pattern is mainly distributed along the backward

direction (i.e., along θ = 0 for an incident wave angle of γ = 0). However, it is distributed in forward

and backward direction for porosity φ = 0.9. In addition, the radial displacement decreases by increasing

porosity from 0.1 to 0.5 which causes more marrow inside the pores leading more attenuation. However,

the radial displacement increases by an increase in porosity from 0.5 to 0.9 due to a decrease in the stiffness

of the medium causing more displacement. It is worth noting that changing the porosity from 0.5 to 0.9

increases the amount of bone marrow inside the pores which can lead to more attenuation, but it has much

more influence on reducing the stiffness of medium.

The effect of wall thickness ratio is discussed next. Figure 5.10c and Figure 5.10f show the radial

displacements versus angular locations for the excitation frequency of f=200 kHz and the incident wave

angle of γ = 0 for the wall thickness ratios of b/a = 0.75 and b/a = 0.9. It can be seen that the radial

displacement pattern at the same excitation frequency and the same porosity but with different wall thickness

ratio is completely different. In fact, the stiffness of the bone structure is affected by a change in the

wall thickness ratio. Quantifying the bone condition requires that different parameters such as excitation
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frequency, wall thickness ratio, porosity, as well as the incident wave angle be considered. In other words,

the response of a bone-like porous material to a waveform depends on the combination of these factors.
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FIGURE 5.10: Figures (a), (b), and (c) show the angular displacements at the frequencies of 800 Hz, 8 kHz, and 200 kHz, respectively, for the wall
thickness ratio of 0.75. Figures (d), (e) and (f) show the angular displacements at the frequencies of 800 Hz, 8 kHz, and 200 kHz, respectively, for
the wall thickness ratio of 0.9. In these figures, the incident wave impinges upon the bone structure normally, γ = 0 and the radial displacements

for the porosities of φ = 0.1, φ = 0.5, and φ = 0.9 are shown in blue, red, and green lines, respectively.
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5.3.4 Effect of porosity and wall thickness ratio on the transmitted and reflected pressures

In this section, the transmitted and reflected pressures at relatively low frequency, 800 Hz, and high fre-

quency, 0.8 MHz, are studied. Then, the effect of wall thickness ratio of 0.5, 0.75, and 0.9 on the excitation

frequencies is studied. Next, the effect of different porosities of 0.1, 0.5, and 0.9 at different excitation

frequencies on the transmitted and reflected pressures is investigated.

Figure 5.11 and Figure 5.12 consider the transmitted and reflected pressures, respectively, with respect

to different excitation frequencies. It is shown that the magnitude of transmitted pressures at relatively high

frequencies is greater than that at a relatively low frequency range. Also, the magnitude of the reflected

pressures increases by an increase in the excitation frequency regardless of the porosity and wall thickness

ratio. In addition, the pattern of reflected and transmitted pressures are uniformly distributed at a relatively

low frequency range and it changes to the forward and backward directions or distributed directionally in a

relatively high frequency range.

To study the effect of porosity and wall thickness ratio on the transmitted and reflected pressures, a close

look at Figure 5.11 shows that the magnitude of the transmitted wave at the frequency of 800 Hz increases

by an increase in porosity regardless of the wall thickness ratio. It can be concluded that by increasing the

porosity the stiffness of the medium decreases which leads to an increase in the magnitude of transmitted

pressures. By the further increase in the excitation frequency to 0.8 MHz, it is observed that for the wall

thickness ratio of b/a = 0.5, Figure 5.11d, the growth of porosity increases the magnitude of transmitted

pressures, which is due to a decrease in the stiffness of the medium. However, the magnitude of transmitted

pressures for a medium with a wall thickness ratio of b/a = 0.75, Figure 5.11e, increases by increasing the

porosity from φ = 0.1 to φ = 0.5 and decreases when the porosity reaches to φ = 0.9. As a matter of fact,

increasing the porosity to φ = 0.5 causes a decrease in the stiffness of the medium leading to an increase

in the magnitude of the transmitted pressures. However, the growth of porosity from φ = 0.5 to φ = 0.9

increases the space for viscous exchange between the pore fluid (bone marrow) and the porous skeletal

frame which results in more attenuation and decreasing the magnitude of transmitted pressures. In addition,

for the wall thickness ratio of b/a = 0.9 as shown in Figure 5.11f, the stiffness of the medium severely

decreases by increasing the porosity which causes the magnitude of the transmitted pressure to increase.

Regarding the reflected pressures, it can be seen that at a relatively low frequency, 800 Hz, the pattern

is symmetric regardless of the wall thickness and porosity. In fact, the wall thickness ratio and the porosity

have no significant influence on the reflected pressures at the low frequency of 800 Hz. By increasing the

excitation frequency from 800 Hz to 0.8 MHz, the effect of wall thickness ratio as well as porosity is striking.

As can be seen, for the wall thickness ratios from b/a = 0.5 to b/a = 0.9, Figure 5.12d-Figure 5.12f, the

magnitude of reflected pressures decreases by increasing porosity from φ = 0.1 to φ = 0.5. In fact, the effect
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of damping increases when the viscous exchange between the pore fluid and skeletal frame increases in the

medium. The damping effect also increases by an increase in porosity from φ = 0.5 to φ = 0.9, however,

the rate of decrease in the stiffness of the medium is more than that of increasing the damping effect, so the

magnitude of reflected pressures decreases.
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FIGURE 5.11: Figures (a), (b), and (c) show the angular transmitted pressure at a relatively low frequency of 800 Hz for the wall
thickness ratios of 0.5, 0.75, and 0.9, respectively. Figures (d),(e), and (f) show the angular transmitted pressure at a relatively high
frequency of 0.8 MHz for the wall thickness ratios of 0.5, 0.75, and 0.9, respectively. The incident wave impinges upon the bone
structure normally, γ = 0. In these figures, the angular transmitted pressure for the porosities of φ = 0.1, φ = 0.5, and φ = 0.9 are

shown in blue, red, and green lines, respectively.
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FIGURE 5.12: Figures (a), (b), and (c) show the angular transmitted pressure at a relatively low frequency of 800 Hz for the wall
thickness ratios of 0.5, 0.75, and 0.9, respectively. Figures (d), (e), and (f) show the angular transmitted pressure at a relatively high
frequency of 0.8 MHz for the wall thickness ratio of 0.5, 0.75, and 0.9, respectively. The incident wave impinges upon the bone
structure normally, γ = 0. In these figures, the angular reflected pressure for the porosities of φ = 0.1, φ = 0.5, and φ = 0.9 are shown

in blue, red, and green lines, respectively.
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5.4 Concluding Remarks

The analytical modeling of a hollow cylindrical cancellous bone-like porous media saturated with a viscous

fluid and subjected to acoustic waves is developed based on the Biot-JKD theory. The radial displace-

ments and scattering operators are obtained using the well-known Helmholtz decomposition. The effect of

porosity, wall thickness ratio, incident wave angle, and excitation on the radial displacements and scattering

operators at different frequencies for forward θ = 0 and sideward θ = π/2 locations at the outer surface of

the hollow cylinder are investigated.

It is concluded that the radial displacement decreases by increasing the wall thickness ratio for low

porosities, and the radial displacement for the sideward direction is smaller than that of the forward direction

regardless of the thickness ratio and incident wave angle. In addition, by increasing the porosity the radial

displacement decreases because increasing the porosity results in an increase in viscous exchanges between

the pore fluid and solid skeletal frame leading to higher attenuations. Moreover, the effect of incident wave

angle on the radial displacement in relatively high frequencies is more significant than that in relatively low

frequencies regardless of the porosity. Also, the effect of the incident wave angle in the forward direction is

more significant than in the sideward direction regardless of the excitation frequencies.

In a relatively high frequency range, the angular radial displacement at lower wall thickness ratios raises

by increasing the porosity to φ = 0.5 and decreases for porosities higher than this threshold. However, for

higher wall thickness ratios, the angular radial displacement reduces by increasing the porosity to φ = 0.5

and increases for porosities higher than this threshold. It is worth noting that the pattern distribution of the

angular displacement in relatively low frequency ranges is symmetric while it is asymmetric in relatively

high frequencies regardless of the incident wave angle and wall thickness ratio.

It can be concluded that bone characterization using quantitative ultrasound techniques is not only based

on the mineral density, as used currently by electromagnetic wave-based tools, but also other biomechanical

factors such as the porosity, viscosity of pore fluid, and wall thickness ratio of a cancellous bone structure.

Moreover, the pattern distribution of the reflected pressure can be an indicator of the bone condition (healthy

versus osteoporosis or osteopenia) of a cancellous bone. The pattern distribution of the reflected-transmitted

pressure is symmetric for relatively low frequencies while it is directional for relatively high frequencies

regardless of the porosity and wall thickness ratio.

To investigate the bone condition (healthy versus osteoporosis), it is essential to consider different

biomechanical parameters such as porosity, wall thickness ratio, and the range of excitation frequency
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(low or high); the radial displacement and scattering operators of a bone specimen should be measured

at a relatively high frequency. Any asymmetric pattern distribution of radial displacements or asymmetric

or directional pattern distribution of both transmitted and reflected signals may be a sign of bone loss.
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Chapter 6

Conclusion and Future Work

In this research, the wave propagation in bone like-porous materials saturated with a viscous

fluid is studied in the time and frequency domains. The analytical solutions derived in this

research are based on the Biot-JKD theory. Accordingly, the effect of viscous exchange

between the solid skeletal frame and pore fluid has been considered.

In summary, the major contributions made in this research are as follows: (i) consid-

ering the effect of transverse waves, in addition to longitudinal waves, in characterizing a

porous bone-like material filled with a relatively low (e.g. air) or high viscous fluid (e.g.

bone marrow); (ii) developing a 3-D acoustical model using the Biot-JKD theory to model

coupled longitudinal and transverse wave propagation in porous bone-like media. The effect

of tortuosity in high frequency is also considered.

The limitation of this research are as follow: (i) considering the effect of cortical bone is

ignored;(ii) inside and outside the bone is filled with air and the effect of soft tissues such as

skins, muscles,and blood vessels are neglected; (iii) the shape and section of a three dimen-

sional model to mimic a bone in this study are limited to a cylinder and circle respectively;

(iv) it is assumed that the bone is isotropic and ultrasonic waves can be decoupled using

Helmholtz’s decomposition.

6.1 Recommendations for Future Work

The experimental acoustical tests, which was the last part of this PhD research, have been

interrupted due to the COVID-19 pandemic. Acoustical testing should be performed to ex-

perimentally investigate the effect of transverse waves on the response of a porous bone-like

material subject to acoustical waves, measure the transmitted and reflected waves, and thor-

oughly validate the 2-D and 3-D computational solvers developed in this study.

The recommendations for future work are as follows:

• Developing an analytical expression for cortical bone in addition to cancellous bone

and then comparing with in-vitro experimental results. The significance of considering
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cortical bone would be minimizing the systematic error in estimating bone character-

istics using inverse techniques.

• Developing an analytical expression for cortical-cancellous bone by considering the

soft tissue inside and outside a bone such as muscles, blood vessels, red-yellow bone

marrow and skin. The estimated parameters at this section can be compared with those

of obtained from ex-vivo experimental results.

• Developing an analytical expression for cortical-cancellous bone using canonical shape

with elliptical cross-section to mimic a real bone sample along with soft tissues.

• Finally, a wave field inversion algorithm should be developed for the processing of

in-vitro and in-vivo measurements and bone characterization using the computational

solvers.
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Appendix A

Coefficients in Eigenvalue and
Eigenvector Expressions used in
Chapter 3

The mathematical expressions for the coefficients used in the expressions of eigenvalues and
eigenvectors (Equation 3.20):

ρ1 =
A1+B1
C1+D1

(A.1)

A1 =Ks

[ EbK f (−2ρ12φ −ρ22(φ −1))
EbK f +3(2vb−1)Ks (−φK f +K f +φKs)

+
ρ11φ 2

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

]
,

B1 =
K2

s (3(φ −1)(2vb−1)K f (2ρ12φ +ρ22(φ −1))−ρ22φEb)

EbK f +3(2vb−1)Ks (−φK f +K f +φKs)

+
2ρ22Eb

3(vb +1)
,

C1 = φ
2Ks


Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)

3(1−2vb)Ks(φKs−(φ−1)K f )−EbK f
+ 2Eb

3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

 ,

D1 = φ
2Ks(

K2
f Ks (Eb−3(φ −1)(2vb−1)Ks)

2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 ).

ρ2 =
A2+B2
C2+D2

, (A.2)

A2 =−2ηα∞(
2φK f Ks (3(φ −1)(2vb−1)Ks−Eb)

EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )
),
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B2 =2ηα∞

[Ks
(
Eb ((φ −1)K f +φKs)−3(φ −1)2 (2vb−1)K f Ks

)
3(1−2vb)Ks (φKs− (φ −1)K f )−EbK f

+
φ 2Ks

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

+
2Eb

3(vb +1)

]
,

C2 = ΛφKs

√
η

ρ f

[ Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(1−2vb)Ks(φKs−(φ−1)K f )−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

]
,

D2 =−ΛφKs

√
η

ρ f

[ K2
f Ks (Eb−3(φ −1)(2vb−1)Ks)

2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2

]
.

ρ3 =
A3

B3−C3
, (A.3)

A3 = (ρ2
12−ρ11ρ22)/(φ

2Ks),

B3 =
K2

f Ks (Eb−3(φ −1)(2vb−1)Ks)
2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 ,

C3 =

Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(2vb−1)Ks((φ−1)K f−φKs)−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

.

ρ4 =
A4

B4−C4
, (A.4)

A4 =−(2η (ρ11−2ρ12 +ρ22)α∞)/(ΛφKs

√
η

ρ f
),

B4 =
K2

f Ks (Eb−3(φ −1)(2vb−1)Ks)
2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 ,

C4 =

Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(2vb−1)Ks((φ−1)K f−φKs)−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

.

ρ5 =
A5

B5+C5
, (A.5)
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A5 =
ρ11φ

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

−

ρ12K f (Eb−3(φ −1)(2vb−1)Ks)

EbK f +3(2vb−1)Ks (−φK f +K f +φKs)
,

B5 = φ(

Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(1−2vb)Ks(φKs−(φ−1)K f )−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

),

C5 =−
K2

f Ks (Eb−3(φ −1)(2vb−1)Ks)
2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 .

ρ6 =
A6

B6+C6
, (A.6)

A6 =2ηα∞

[ K f (Eb−3(φ −1)(2vb−1)Ks)

EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )

+
φ

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

]
,

B6 = Λ

√
η

ρ f
(

Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(1−2vb)Ks(φKs−(φ−1)K f )−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

),

C6 =−Λ

√
η

ρ f
(

K2
f Ks (Eb−3(φ −1)(2vb−1)Ks)

2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 .

ρ7 =
A7

B7+C7
, (A.7)

A7 =
ρ12φ

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

−
ρ22K f (Eb−3(φ −1)(2vb−1)Ks)

EbK f +3(2vb−1)Ks (−φK f +K f +φKs)
,

B7 = φ(

Ks(Eb((φ−1)K f +φKs)−3(φ−1)2(2vb−1)K f Ks)
3(2vb−1)Ks((φ−1)K f−φKs)−EbK f

+ 2Eb
3(vb+1)

− Eb
3Ks−6vbKs

+ φKs
K f
−φ +1

),

C7 =−φ(
K2

f Ks (Eb−3(φ −1)(2vb−1)Ks)
2

(EbK f +3(2vb−1)Ks (φKs− (φ −1)K f )) 2 ).
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Wave Functions used in Chapter 3

G̃1(x,s) =Φ̃1(s)e−x
√

λ̃1(s)+ Φ̃11(s)ex
√

λ̃1(s)

G̃2(x,s) =Φ̃2(s)e−x
√

λ̃2(s)+ Φ̃22(s)e−x
√

λ̃2(s)

Φ̃1(s) =ϕ̃(s)
Ψ̃1(s)
Ψ̃(s)

[
(1+ R̃(s))

(
1+

cosh
(

l
√

λ̃1(s)
)

sinh
(

l
√

λ̃1(s)
))− T̃ (s)

sinh
(

l
√

λ̃1(s)
)],

Φ̃11(s) =ϕ̃(s)
Ψ̃1(s)
Ψ̃(s)

[
(1+ R̃(s))

(
1−

cosh
(

l
√

λ̃1(s)
)

sinh
(

l
√

λ̃1(s)
))+ T̃ (s)

sinh
(

l
√

λ̃1(s)
)],

Φ̃2(s) =ϕ̃(s)
Ψ̃2(s)
Ψ̃(s)

[
(1+ R̃(s))

(
1+

cosh
(

l
√

λ̃2(s)
)

sinh
(

l
√

λ̃2(s)
))− T̃ (s)

sinh
(

l
√

λ̃2(s)
)],

Φ̃22(s) =ϕ̃(s)
Ψ̃2(s)
Ψ̃(s)

[
(1+ R̃(s))

(
1+

cosh
(

l
√

λ̃2(s)
)

sinh
(

l
√

λ̃2(s)
))+ T̃ (s)

sinh
(

l
√

λ̃2(s)
)],

λ̃1(s) =
1
2

[
−ρ1s2 +ρ2s

3
2 −
√
(ρ2

1 −4ρ3)s4 +2(ρ1ρ2−2ρ4)s
7
2 +ρ2

2 s3
]
,

λ̃2(s) =
1
2

[
−ρ1s2 +ρ2s

3
2 +

√
(ρ2

1 −4ρ3)s4 +2(ρ1ρ2−2ρ4)s
7
2 +ρ2

2 s3
]
,

χ̃1(s) =
ρ1−2ρ5−

√
ρ2

1 −4ρ3

2ρ7
+

(ρ2−2ρ6− ρ1ρ2−2ρ4√
ρ2

1−4ρ3
)2ρ7 +(ρ1−2ρ5−

√
ρ2

1 −4ρ3)2ρ6

4ρ2
7
√

s
,
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χ̃2(s) =
ρ1−2ρ5−

√
ρ2

1 −4ρ3

2ρ7
+

(ρ2−2ρ6 +
ρ1ρ2−2ρ4√

ρ2
1−4ρ3

)2ρ7 +(ρ1−2ρ5−
√

ρ2
1 −4ρ3)2ρ6

4ρ2
7
√

s
,

in which Ψ̃1(s)and Ψ̃2(s) and Ψ̃(s) are given in Equation 3.42 and Equation 3.43.
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Transmission and Reflection
Coefficients used in Chapter 3

X̃(s) = x0

√
λ̃1(s)

(
− (1λ̃2(s))(x1 +φλ̃2(s)x2)

)
(λ̃1(s)λ̃2(s)(x3x4− x5x6))

x0 = 2sc0ρ f

√
λ̃1(s)(φ(χ̃1(s)−1)+1)

x1 =
Esφ

2_2(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

x2 =
Esφ χ̃2(s)

(
−Eb(1−2vs)Es(1−2vb)

φ
+1
)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)

x3 =
Esφ χ̃1(s)

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)
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x4 =
Esφ

2χ̃2(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

x5 =
Esφ

2χ̃1(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

x6 =
Esφ χ̃2(s)

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)

Ỹ (s) = y0

√
λ̃2(s)

(
− (1−φ)λ̃1(s))(y1 +φλ̃1(s)y2)

)
(λ̃1(s)λ̃2(s)(y3y4− y5y6))

y0 = 2sc0ρ f

√
λ̃2(s)(φ(χ̃2(s)−1)+1)

y1 =
Esφ

2
χ̃1(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

y2 =
Esφ χ̃1(s)

(
−Eb(1−2vs)Es(1−2vb)

φ
+1
)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)
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y3 =
Esφ χ̃1(s)

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)

y4 =
Esφ

2χ̃2(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

y5 =
Esφ

2χ̃1(s)

3(1−2vs)
(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
Esφ

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)

y6 =
Esφ χ̃2(s)

(
−Eb(1−2vs)

Es(1−2vb)
−φ +1

)
3(1−2vs)

(
−Eb(1−2vs)

Es(1−2vb)
+ Esφ

3K f (1−2vs)
−φ +1

)+
EbEsφ

9K f (1−2vb)(1−2vs)
+

Es(1−φ)
(
− Eb(1−2vs)

Es(1−2vb)
−φ+1

)
3(1−2vs)

−Eb(1−2vs)
Es(1−2vb)

+ Esφ

3K f (1−2vs)
−φ +1

+
2Eb

3(vb +1)
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ẽ(x,s) =
∂ 2φ̃s(x,s)

∂x2 =
∂ 2
(

Φ̃1(x,s)+ Φ̃2(x,s)
)

∂x2 ,

ẽ(x,s) =
(a1a2 +a3a4 +a5a6−a7a8)ϕ̃(s)

a
,

a1 =ex
√

s(C1s+D1
√

s+G1)
([
− s(1−φ)

(
C1s+D1

√
s+G1

)
(A1Q+

B1Q√
s
+P)

]
+
[
sφ
(
C2s+D2

√
s+G2

)
(A2Q+

B2Q√
s
+P
])

,

a2 =
[
T̃ (s)csch

(
l
√

s
(
C1s+D1

√
s+G1

))
− (R̃(s)+1)

(
coth

(
l
√

s
(
C1s+D1

√
s+G1

))
−1
)]

,

a3 =e−x
√

s(C1s+D1
√

s+G1)
[
sφ
(
C2s+D2

√
s+G2

)
(A2Q+

B2Q√
s
+P)

− s(1−φ)
(
C1s+D1

√
s+G1

)
(A1Q+

B1Q√
s
+P)

]
,

a4 =
[
(R̃(s)+1)

(
coth

(
l
√

s
(
C1s+D1

√
s+G1

))
+1
)

−T̃ (s)csch
(

l
√

s
(
C1s+D1

√
s+G1

))]
,

a5 =ex
√

s(C2s+D2
√

s+G2)
[
s
(
C2s+D2

√
s+G2

)
(A1(R−φ(Q+R)))

+
B1(R−φ(Q+R))√

s
−2Pφ +P

]
,
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a6 =T̃ (s)csch
(

l
√

s
(
C2s+D2

√
s+G2

))
−(R̃(s)+1)

(
coth

(
l
√

s
(
C2s+D2

√
s+G2

))
−1
)
,

a7 =e−x
√

s(C2s+D2
√

s+G2)
[√

s
(
C2s+D2

√
s+G2

)
(A1
√

s+B1)(Qφ +R(φ −1))

+P
√

s(2φ −1)
]
,

a8 =(R̃(s)+1)
(

coth
(

l
√

s
(
C2s+D2

√
s+G2

))
+1
)

−T̃ (s)csch
(

l
√

s
(
C2s+D2

√
s+G2

))
,

a =2s
(
C1s+D1

√
s+G1

)(
A1Q+

B1Q√
s
+P
)

2

−2s
(
C2s+D2

√
s+G2

)(
A2Q+

B2Q√
s
+P
)(

A1R+
B1R√

s
+P
)
,

ε̃(x,s) =
∂ 2φ̃ f (x,s)

∂x2 =
∂ 2
(

χ̃1(x,s)Φ̃1(x,s)+ χ̃2(x,s)Φ̃2(x,s)
)

∂x2 ,

ε̃(x,s) =ϕ̃(s)λ̃1(s)χ̃1(x,s)
(b1 +b2)(b3 +b4 +b5 +b6)

b7 +b8

+ϕ̃(s)χ̃2(x,s)λ̃2(s)
(c1 + c2)(c3 + c4 + c5 + c6)

c7 + c8
,

b1 =− (1−φ)
(

C1s2 +D1s3/2 +G1s
)(

Q
(

A1 +
B1√

s

)
+P
)
,

b2 =φ

(
C2s2 +D2s3/2 +G2s

)(
Q
(

A2 +
B2√

s

)
+P
)
,

b3 =T̃ (s)
(
−csch

(
l
√

C1s2 +D1s3/2 +G1s
))

,

b4 =(R̃(s)+1)
(

coth
(

l
√

C1s2 +D1s3/2 +G1s
)
+1
)
,

b5 =T̃ (s)csch
(

l
√

C1s2 +D1s3/2 +G1s
)
,

b6 =(R̃(s)+1)
(

1− coth
(

l
√

C1s2 +D1s3/2 +G1s
))

,

b7 =2
(

C1s2 +D1s3/2 +G1s
)

2
(

Q
(

A1 +
B1√

s

)
+P
)

2,

b8 =
(

C1s2 +D1s3/2 +G1s
)(

C2s2 +D2s3/2 +G2s
)

(
Q
(

A2 +
B2√

s

)
+P
)(
−
(

R
(

A1 +
B1√

s

)
+P
))

,
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c1 =−φ

(
C1s2 +D1s3/2 +G1s

)(
Q
(

A1 +
B1√

s

)
+P
)
,

c2 =(1−φ)
(

C1s2 +D1s3/2 +G1s
)(

R
(

A1 +
B1√

s

)
+P
)
,

c3 =T̃ (s)
(
−csch

(
l
√

C2s2 +D2s3/2 +G2s
))

,

c4 = (R̃(s)+1)
(

coth
(

l
√

C2s2 +D2s3/2 +G2s
)
+1
))

,

c5 =T̃ (s)csch
(

l
√

C2s2 +D2s3/2 +G2s
)
,

c6 =(R̃(s)+1)
(

1− coth
(

l
√

C2s2 +D2s3/2 +G2s
))

,

c7 =
(

C1s2 +D1s3/2 +G1s
)

2
(

Q
(

A1 +
B1√

s

)
+P
)

2,

c8 =
(

C1s2 +D1s3/2 +G1s
)(

C2s2 +D2s3/2 +G2s
)

(
Q
(

A2 +
B2√

s

)
+P
)(
−
(

R
(

A1 +
B1√

s

)
+P
))

,

in which P, Q, R are mentioned in Equation 3.2. The coefficients A1, B1, C1, D1, and G1 are
used in Equation 3.20. ϕ is the Laplace transform of the incident wave Pinc. ℜ̃(s) and T̃ (s)
are the reflection and transmission operators in Laplace domain given in Equation 3.38 and
λ̃1(s), λ̃2(s), χ̃i(s), χ̃2(s) are eigenvalues and eigenvectors of Biot’s equations explicated in
details in Laplace domain in Appendix B.
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Appendix D

Eigenvalues and Eigenvectors
Coefficients used in Chapter 4

To solve Equation 4.17, it is preferred to separate variables and parameters by defining matrix
H illustrated in Equation 4.18. To derive the fast and slow longitudinal wave which propagate
in one direction in porous media, Equation 4.18 is written in the form of Equation 4.19.

H =

(
H11 H12
H21 H22

)
,

in which a complete extension of arrays of Matrix H is explained as

H11 = ω
2Qq

(
ρ12−

a√
jω

)
−ω

2Rr
(

ρ11 +
a√
jω

)
,

H12 = ω
2Qq

(
ρ22 +

a√
jω

)
−ω

2Rr
(

ρ12−
a√
jω

)
,

H21 = ω
2Qq

(
ρ11 +

a√
jω

)
−ω

2Pp
(

ρ12−
a√
jω

)
,

H22 = ω
2Qq

(
ρ12−

a√
jω

)
−ω

2Pp
(

ρ22 +
a√
jω

)
.

In addition, the extension of λ̃1(ω) and λ̃2(ω) mentioned in Equation 4.19 are written as

λ̃1(ω) =ρ11 +
1
2
√

ρ12,

λ̃2(ω) =ρ11−
1
2
√

ρ12,

Ṽ1(ω) =
aω2(−Pp+Rr)

ρ15
+[√

jω(ω2(ρ11Rr−Ppρ22)+
√
− jω2(ρ13 +ρ14))

]
ρ15

,

Ṽ2(ω) =
aω2(−Pp+Rr)

ρ15
−[√

jω(ω2(−ρ11Rr+Ppρ22)+
√
− jω2(ρ13 +ρ14))

]
ρ15

,
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It should be noted that Ṽ1(ω) and Ṽ2(ω) describe the relation between the potentials of fast
and slow waves with that of solid and fluid shown in Equation 4.21.

ρ11 =
1
2

aPp( jω)3/2 +aQq( jω)3/2 +
1
2

aRr( jω)3/2−

1
2

ω
2Ppρ22 +ω

2Qqρ12−
1
2

ω
2
ρ11Rr,

ρ12 =− jω3
[
a2(Pp+2Qq+Rr)2+

jω(Pp2
ρ

2
22−4Qqρ12(Ppρ22 +ρ11Rr)−

2Ppρ11ρ22Rr+4Ppρ
2
12Rr+4Qq2

ρ11ρ22 +ρ
2
11Rr2)+

2a
√

jω(Pp2
ρ22 +2Qq(−Ppρ12 +Ppρ22 +ρ11Rr−ρ12Rr)−

PpRr(ρ11 +4ρ12 +ρ22)+2Qq2(ρ11 +ρ22)+ρ11Rr2)
]
,

ρ13 =a2(Pp+2Qq+Rr)2 + jω(Pp2
ρ

2
22−4Qqρ12(Ppρ22 +ρ11Rr)−

2Ppρ11ρ22Rr+4Ppρ
2
12Rr+4Qq2

ρ11ρ22 +ρ
2
11Rr2),

ρ14 =2a
√

jω(Pp2
ρ22 +2Qq(−Ppρ12 +Ppρ22 +ρ11Rr−ρ12Rr)−

PpRr(ρ11 +4ρ12 +ρ22)+2Qq2(ρ11 +ρ22)+ρ11Rr2),

ρ15 =2ω
2
(

a(Qq+Rr)+
√

jω(Qqρ22−ρ12Rr)
)

In addition, the expressions Pp and Qq and Rr are written as,

Pp =
P

PQ−R2

and

Qq =
Q

PQ−R2

and

Rr =
R

PQ−R2 .
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Appendix E

Stresses, Transmission and Reflection
Coefficients used in Chapter 4

The extension of the coefficients used for solid, fluid, and shear stresses in a porous medium
based on both longitudinal and transverse waves.

Φ̃11(ω)
Φ̃12(ω)
Φ̃21(ω)
Φ̃22(ω)
ψ̃1(ω)
ψ̃2(ω)
T̃ (ω)
R̃(ω)


=



A11 A12 . . . A18
A21 . . . . .
. . . . . .
. . . . . .
. . . . . .

A81. . . . . A88



−1



(1−φ)ϕ̃(ω)
−φϕ̃(ω)

0
0

ϕ̃(ω)
c0ρ f

0
0
0



A11 = λ̃1(ω)P+ λ̃1(ω)QṼ1(ω), A12 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω),

A13 = λ̃2(ω)P+ λ̃2(ω)QṼ2(ω), A14 = λ̃2(ω)Pλ̃2(ω)QṼ2(ω),

A15 = ϕ̃(ω)(1−φ), A16 = 0, A17 = 0, A18 = 0,

A21 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω), A22 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω),

A23 = λ̃2(ω)Q+ λ̃2(ω)RṼ2(ω), A24 = λ̃2(ω)Q+ λ̃2(ω)RṼ2(ω),

A25 = φϕ̃(ω), A26 = 0, A27 = 0, A28 = 0,

A31 = λ̃1(ω)e−l
√

λ̃1(ω)(P+QṼ1(ω)), A32 = λ̃1(ω)el
√

λ̃1(ω)+(P+QṼ1(ω)),

A33 = λ̃2(ω)e−l
√

λ̃2(ω)(P+QṼ2(ω)), A34 = λ̃2(ω)el
√

λ̃2(ω)+(P+QṼ2(ω)),
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A35 = 0, A36 = (1−φ)ϕ̃(ω), A37 = 0, A38 = 0,

A41 = λ̃1(ω)e−l
√

λ̃1(ω)(Q+RṼ1(ω)), A42 = λ̃1(ω)el
√

λ̃1(ω)+(Q+RṼ1(ω)),

A43 = λ̃2(ω)e−l
√

λ̃2(ω)(Q+RṼ2(ω)), A44 = λ̃2(ω)el
√

λ̃2(ω)+(Q+RṼ2(ω)),

A45 = 0, A46 = φϕ̃(ω), A47 = 0, A48 = 0,

A51 = j
√

λ̃1(ω)(ωφṼ1(ω)−ωφ +ω), A52 = j
√

λ̃1(ω)(−ωφṼ1(ω)+ωφ −ω),

A53 = j
√

λ̃2(ω)(ωφṼ2(ω)−ωφ +ω), A54 = j
√

λ̃2(ω)(−ωφṼ2(ω)+ωφ −ω),

A55 =−
ϕ̃(ω)

c0
ρ f , A56 = 0,

A57 =
√

χ̃(ω)(
ωφρ12

ρ22
ωφ −ω), A58 =

√
χ̃(ω)(−ωφρ12

ρ22
−ωφ +ω),

A61 =

√
λ̃1(ω) jωe−l

√
λ̃1(ω)(φṼ1(ω)−φ +1),

A62 =

√
λ̃1(ω) jωe−l

√
λ̃1(ω)(−φṼ1(ω)+φ −1),

A63 =

√
λ̃2(ω) jωe−l

√
λ̃2(ω)(φṼ2(ω)−φ +1),

A64 =

√
λ̃2(ω) jωe−l

√
λ̃2(ω)(−φṼ2(ω)+φ −1),

A65 =0, A66 =
ϕ̃(ω)

c0ρ f
,

A67 =e− jl
√

χ̃(ω)
ω
√

χ̃(ω)(
φρ12

ρ22
+ωφ −1),

A68 =e jl
√

χ̃(ω)
ω
√

χ̃(ω)(
−φρ12

ρ22
−ωφ +1),

A71 = 2Nλ̃1(ω), A72 = 2Nλ̃1(ω), A73 = 2Nλ̃2(ω), A74 = 2Nλ̃2(ω),
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A75 = 0, A76 = 0, A77 =−2N χ̃(ω), A78 =−2N χ̃(ω),

A81 = 2Nλ̃1(ω)e−l
√

λ̃1(ω), A82 = 2Nλ̃1(ω)el
√

λ̃1(ω),

A83 = 2Nλ̃2(ω)e−l
√

λ̃2(ω), A84 = 2Nλ̃2(ω)el
√

λ̃2(ω),

A85 = 0, A86 = 0,

A87 =−2N χ̃(ω)e− jl
√

χ̃(ω),

A88 =−2N χ̃(ω)e jl
√

χ̃(ω),

Note that χ(ω) is written as

χ(ω) =
ω2

N

(
ρ̃11(ω)− ρ̃11(ω)2

ρ̃22(ω)

)
.
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Appendix F

Transmission and Reflection
Coefficients used in Chapter 4

The extension of the coefficients used for the bone structure, fluid, and shear stresses in a
porous medium based on both compression and shear waves.

Φ̃11(ω)
Φ̃12(ω)
Φ̃21(ω)
Φ̃22(ω)
ψ̃1(ω)
ψ̃2(ω)
T̃ (ω)
R̃(ω)


=



A11 A12 . . . A18
A21 . . . . .
. . . . . .
. . . . . .
. . . . . .

A71. . . . . A78
A81. . . . . A88



−1


(1−φ)ϕ̃(ω)
−φϕ̃(ω)

0
0

ϕ̃(ω)
c0ρ f

0
0
0



A11 = λ̃1(ω)P+ λ̃1(ω)QṼ1(ω), A12 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω),

A13 = λ̃2(ω)P+ λ̃2(ω)QṼ2(ω), A14 = λ̃2(ω)Pλ̃2(ω)QṼ2(ω),

A15 = ϕ̃(ω)(1−φ), A16 = 0, A17 = 0, A18 = 0,

A21 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω), A22 = λ̃1(ω)Q+ λ̃1(ω)RṼ1(ω),

A23 = λ̃2(ω)Q+ λ̃2(ω)RṼ2(ω), A24 = λ̃2(ω)Q+ λ̃2(ω)RṼ2(ω),

A25 = φϕ̃(ω), A26 = 0, A27 = 0, A28 = 0,

A31 = λ̃1(ω)e−l
√

λ̃1(ω)(P+QṼ1(ω)), A32 = λ̃1(ω)el
√

λ̃1(ω)+(P+QṼ1(ω)),

A33 = λ̃2(ω)e−l
√

λ̃2(ω)(P+QṼ2(ω)), A34 = λ̃2(ω)el
√

λ̃2(ω)+(P+QṼ2(ω)),
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A35 = 0, A36 = (1−φ)ϕ̃(ω), A37 = 0, A38 = 0,

A41 = λ̃1(ω)e−l
√

λ̃1(ω)(Q+RṼ1(ω)), A42 = λ̃1(ω)el
√

λ̃1(ω)+(Q+RṼ1(ω)),

A43 = λ̃2(ω)e−l
√

λ̃2(ω)(Q+RṼ2(ω)), A44 = λ̃2(ω)el
√

λ̃2(ω)+(Q+RṼ2(ω)),

A45 = 0, A46 = φϕ̃(ω), A47 = 0, A48 = 0,

A51 = j
√

λ̃1(ω)(ωφṼ1(ω)−ωφ +ω), A52 = j
√

λ̃1(ω)(−ωφṼ1(ω)+ωφ −ω),

A53 = j
√

λ̃2(ω)(ωφṼ2(ω)−ωφ +ω), A54 = j
√

λ̃2(ω)(−ωφṼ2(ω)+ωφ −ω),

A55 =−
ϕ̃(ω)

c0
ρ f , A56 = 0,

A57 =
√

χ̃(ω)(
ωφρ12

ρ22
ωφ −ω), A58 =

√
χ̃(ω)(−ωφρ12

ρ22
−ωφ +ω),

A61 =

√
λ̃1(ω) jωe−l

√
λ̃1(ω)(φṼ1(ω)−φ +1),

A62 =

√
λ̃1(ω) jωe−l

√
λ̃1(ω)(−φṼ1(ω)+φ −1),

A63 =

√
λ̃2(ω) jωe−l

√
λ̃2(ω)(φṼ2(ω)−φ +1),

A64 =

√
λ̃2(ω) jωe−l

√
λ̃2(ω)(−φṼ2(ω)+φ −1),

A65 =0, A66 =
ϕ̃(ω)

c0ρ f
,

A67 =e− jl
√

χ̃(ω)
ω
√

χ̃(ω)(
φρ12

ρ22
+ωφ −1),

A68 =e jl
√

χ̃(ω)
ω
√

χ̃(ω)(
−φρ12

ρ22
−ωφ +1),

A71 = 2Nλ̃1(ω), A72 = 2Nλ̃1(ω), A73 = 2Nλ̃2(ω), A74 = 2Nλ̃2(ω),
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A75 = 0, A76 = 0, A77 =−2N χ̃(ω), A78 =−2N χ̃(ω),

A81 = 2Nλ̃1(ω)e−l
√

λ̃1(ω), A82 = 2Nλ̃1(ω)el
√

λ̃1(ω),

A83 = 2Nλ̃2(ω)e−l
√

λ̃2(ω), A84 = 2Nλ̃2(ω)el
√

λ̃2(ω),

A85 = 0, A86 = 0,

A87 =−2N χ̃(ω)e− jl
√

χ̃(ω),

A88 =−2N χ̃(ω)e jl
√

χ̃(ω),

Note that χ(ω) is written as

χ(ω) =
ω2

N

(
ρ̃11(ω)− ρ̃11(ω)2

ρ̃22(ω)

)
.
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The transmission and reflection coefficients are given respectively by

T̃ (ω) =
1

ϕ̃(ω)

[
( jc0ωρ f e−l

√
λ̃1(ω)−l

√
λ̃2(ω))

[√
λ̃1(ω)φΦ̃11(ω)el

√
λ̃2(ω)

−
√

λ̃1(ω)φΦ12(ω̃)e2l
√

λ̃1(ω)+l
√

λ̃2(ω)+

√
λ̃2(ω)φΦ̃21(ω)el

√
λ̃1(ω)

−
√

λ̃2(ω)φΦ̃22(ω)el
√

λ̃1(ω)+2l
√

λ̃2(ω)−
√

λ̃1(ω)φΦ̃11(ω)Ṽ1(ω)el
√

λ̃2(ω)

+

√
λ̃1(ω)φΦ̃12(ω)Ṽ1(ω)e2l

√
λ̃1(ω)+l

√
λ̃2(ω)

−
√

λ̃2(ω)φΦ̃21(ω)Ṽ2(ω)el
√

˜̃λ1(ω)

+

√
λ̃2(ω)φΦ̃22(ω)Ṽ2(ω)el

√
λ̃1(ω)+2l

√
λ̃2(ω)

+

√
λ̃1(ω)Φ̃11(ω)

(
−exp

(
l
√

λ̃2(ω)

))
+

√
λ̃1(ω)Φ̃12(ω)e2l

√
λ̃1(ω)+l

√
λ̃2(ω)−

√
λ̃2(ω)Φ̃21(ω)el

√
λ̃1(ω)

+

√
λ̃2(ω)Φ̃22(ω)el

√
λ̃1(ω)+2l

√
λ̃2(ω)

]
+ c0

√
χ̃(ω)ωρ f exp

(
− jl
√

χ̃(ω)
)
(φρ12 +φρ22−ρ22)(

− ψ̃1(ω)+ ψ̃2(ω)exp
(

2 jl
√

χ̃(ω)
)

ρ22

)]
,

and

R̃(ω) =1/ϕ̃(ω)
[

jc0ρ f

(√
λ̃1(ω)ωΦ̃11(ω)−

√
λ̃1(ω)ωφΦ̃11(ω)

+

√
λ̃1(ω)ωφṼ1(ω)Φ̃11(ω)−

√
λ̃1(ω)ωΦ̃12(ω)

+

√
λ̃1(ω)ωφΦ̃12(ω)1−

√
λ̃1(ω)ωφṼ1(ω)Φ̃12(ω)1

+

√
λ̃2(ω)ωΦ̃21(ω)−

√
λ̃2(ω)ωφΦ̃21(ω)

+

√
λ̃2(ω)ωφṼ2(ω)Φ̃21(ω)−

√
λ̃2(ω)ωΦ̃22(ω)

+

√
λ̃2(ω)ωφΦ̃22(ω)−

√
λ̃2(ω)ωφṼ2(ω)Φ̃22(ω)

)
+1/(ρ22)

(
ϕ̃(ω)ρ22 + c0

√
χ̃(ω)ωφρ12Ψ̃1(ω)− c0

√
χ̃(ω)ωρ22Ψ̃1(ω)

+ c0
√

χ̃(ω)ωφρ12Ψ̃2(ω)+ c0
√

χ̃(ω)ωρ22Ψ̃2(ω)

− c0
√

χ̃(ω)ωφρ22Ψ̃2(ω)
)]

.
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Appendix G

Equations presented by (Fellah et al.,
2004a) as used in Chapter 4

The equations used by (Fellah et al., 2004a) are implemented to obtain the transmission
coefficient versus frequency by considering the longitudinal wave only. Figure 4.5 illustrates
their result.

T̃ (ω) =
2 jωρ f c0F̃4(ω)

( jωρ f c0F̃4(ω))2− ( jωF̃3(ω)−1)2 ,

in which

F̃i(ω) =
(
(1+φ(̃גi(ω)−1))

√
λ̃i(ω)

) 2Ψ̃i(ω)

sinh(
√

λ̃i(ω))

1
Ψ̃(ω)

i = 1,2,

F̃3(ω) =ρ f c0

(
F̃1(ω)cosh(l

√
λ̃1(ω))+ F̃2(ω)cosh(l

√
λ̃2(ω))

)
F̃4(ω) =F̃1(ω)+ F̃2(ω),

The expressions Ψ̃i(ω) are written as

Ψ̃1(ω) =φ Z̃2(ω)− (1−φ)Z̃4(ω),

Ψ̃2(ω) =(1−φ)Z̃3(ω)−φ Z̃1(ω),

Ψ̃(ω) =2(Z̃1(ω)Z̃4(ω)− Z̃2(ω)Z̃3(ω))

where Z̃i(ω) is written as

Z̃1(ω) =(P+Q̃1ג(ω))λ̃1(ω),

Z̃2(ω) =(P+Q̃2ג(ω))λ̃2(ω),

Z̃3(ω) =(Q+R̃1ג(ω))λ̃1(ω),

Z̃4(ω) =(Q+R̃2ג(ω))λ̃2(ω)

P, Q, R mentioned in Equation 4.5 are generalized elastic constants which are related to
measurable quantities such as porosity, bulk modulus of fluid, bulk modulus of solid, and
bulk modulus of porous skeletal frame. The terms of λ̃1(ω) , λ̃2(ω), (ω)1ג̃ , (ω)2ג̃ are
eigenvalues and eigenvectors of Biot’s matrix mentioned in the paper of (Fellah et al., 2004a)
given by
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λ̃1(ω) =
τ2( jω)3/2−ω2(τ1)

2
+

1
2

(
−
√

2( jω)7/2(τ1τ2−2τ4)+ τ2
2 ( jω)3 +ω4

(
τ2

1 −4τ3
))

λ̃2(ω) =
τ2( jω)3/2−ω2(τ1)

2
+

1
2

(
+
√

2( jω)7/2(τ1τ2−2τ4)+ τ2
2 ( jω)3 +ω4

(
τ2

1 −4τ3
))

(ω)1ג̃ =
−
√

τ
2
1 −4τ3 + τ1−2τ5

2τ7
−

2τ7

(
τ1τ2−2τ4√

τ2
1−4τ3

− τ2 +2τ6

)
4τ2

7
√

jω
+

2τ6

(
−
√

τ2
1 −4τ3 + τ1−2τ5

)
4τ2

7
√

jω
,

(ω)1ג̃ =
−
√

τ
2
1 −4τ3 + τ1−2τ5

2τ7
+

2τ7

(
τ1τ2−2τ4√

τ2
1−4τ3

+ τ2−2τ6

)
4τ2

7
√

jω
+

2τ6

(
−
√

τ2
1 −4τ3 + τ1−2τ5

)
4τ2

7
√

jω
,

The terms of τi are described as

τ1 =Ppρ22−2Qqρ12 +ρ11Rr,

τ2 =a(Pp+2Qq+Rr)

τ3 =(PpRr−Qq2)(ρ11ρ22−ρ
2
12)

τ4 =a(PpRr−Qq2)(ρ11−2ρ12 +ρ22)

τ5 =ρ11Rr−Qqρ12

τ6 =a(Qq+Rr)

τ7 =ρ12Rr−Qqρ22

It should be noted that ϕ̃(ω) is the Fourier transform of the incident wave Pinc.
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Appendix H

Waves used in Chapter 5

The harmonic incident plane wave in the cylindrical coordinate system can be expressed as
(Morse and Ingard, 1986),

pI
1(r,θ ,z, t) = p0

∞

∑
n=0

εn(−i)nJn(k1rr)cos(nθ)ei(ωt−k1zz)

in which pI
1 is the acoustical pressure of the incident wave, p0 is the amplitude of the incident

wave, and

εn =

{
1 n = 0,
2 n≥ 1,

k1r = k1cos(γ),k1z = k1sin(γ)

where εn, k1, Jn, and ω stand for Neumann factor, wave number in the external acoustical
medium, the cylindrical Bessel function of the first kind of integer order n, and the angular
frequency amplitude of the incident wave, respectively. Furthermore, k1 =

ω

c1
, n = 0,1,2, ...,

and i =
√
−1.

The reflected wave pR
1 , from the cylindrical bone-like porous medium to the external fluid

medium, and transmitted wave into the cavity pT
3 are given as (Morse and Ingard, 1986),

pR
1 (r,z,θ , t) =

∞

∑
n=0

pR
1nH2

n (k1rr)cos(nθ)ei(ωt−k1zz)

pT
3 (r,z,θ , t) =

∞

∑
n=0

pR
3nH1

n (k3rr)cos(nθ)ei(ωt−k3zz)

where H1
n and H2

n are the cylindrical Hankel functions of the first and second kind of integer
order n, respectively. In addition, since the wave motion at the boundaries of the acoustical
media and the cylindrical bone-like porous medium is driven by the incident-traveling wave,
the wave numbers in z direction, k1z and k3z, are equated to each other, so k1z = k3z. Therefore,
the following equations can be obtained as follows:

k jr =
√

k2
j − k2

jz, k j =
ω

c j
, j = 1,3
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Appendix I

Eigenvalues and Eigenvectors
Coefficients used in Chapter 5

M =

(
M11 M12
M21 M22

)
,

in which

M11 = ω
2Qq

(
ρ12−

A√
jω

)
−ω

2Rr
(

ρ11 +
A√
jω

)
,

M12 = ω
2Qq

(
ρ22 +

A√
jω

)
−ω

2Rr
(

ρ12−
A√
jω

)
,

M21 = ω
2Qq

(
ρ11 +

A√
jω

)
−ω

2Pp
(

ρ12−
A√
jω

)
,

M22 = ω
2Qq

(
ρ12−

A√
jω

)
−ω

2Pp
(

ρ22 +
A√
jω

)
.

where

Pp =
P

PQ−R2

and

Qq =
Q

PQ−R2

and

Rr =
R

PQ−R2

and

A =
1

Λ f
2φρ f θ∞

√
η

ρ f
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Appendix J

Biot-JKD Theory Presented in
Chapter 5

In Equation 5.2, P, Q, and R are poroelastic constants related to some measurable quantities
such as bulk modulus of solid, Ks, bulk modulus of porous skeletal frame, Kb, bulk modulus
of fluid, K f and medium porosity, φ . The porosity of medium is defined by the ratio of the
volume of the pore to the volume of elastic porous skeletal frame, φ =

Vf
Vb

.

P =
Ks
(
Kb ((φ −1)K f +φKs)+(φ −1)2K f Ks

)
Ks (φKs− (φ −1)K f )−KbK f

+
4N
3
,

Q =
φKs

(
−Kb

Ks
−φ +1

)
−Kb

Ks
+ φKs

K f
−φ +1

,

R =
φ 2Ks

−Kb
Ks

+ φKs
K f
−φ +1

.

The explicit relations between the mechanical properties of the medium and the measur-
able quantities in the laboratory are given by

Ks =
Es

3−6vs
, Kb =

Eb

3−6vb
, N =

Eb

2vb +2
. (J.1)

where Eb, Es and vb, vs are the modulus of elasticity and Poisson’s ratio of the bulk of porous
skeletal frame and the solid, respectively. The relation between the effective densities, ρi j

(i, j = 1,2), and the densities of solid matrix, ρs, and the pore fluid, ρ f , are

ρ11 +ρ12 = (1−φ)ρs, ρ12 +ρ22 = φρ f (J.2)

The mass coupling between the fluid and solid structure is described by ρ12 as,

ρ12 =−φρ f (α∞−1) (J.3)

where α∞ is defined as the medium turtuosity which relates the microscopic speed of flow
inside the pores to macroscopic speed of flow through the medium.

The dynamic turtuosity and permeability of porous medium may have a significant effect
on the acoustical response of the medium. They are related to the type of pore fluid and
greatly dependent on the range of frequency. In addition, they are totally independent of
the mechanical properties of the porous medium (Lafarge et al., 1997; Johnson, Koplik,
and Dashen, 1987; Allard and Atalla, 1993). The theoretical formulation for the dynamic
turtuosity developed by (Johnson, Koplik, and Dashen, 1987) for high frequency ranges is
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expressed as

α̃(ω) = α∞

(
1+

2
Λ

(
η

ω jρ f

) 1
2
)
, (J.3)

in which j2 =−1, η is viscosity of the fluid, and Λ is the viscous characteristic length which
controls the viscosity effect in the pores (Johnson, Koplik, and Dashen, 1987).

It is important to mention that α̃(ω) indicating the interaction and viscous exchanges
between the solid skeletal frame and pore fluid has a significant influence on the wave at-
tenuation in porous media (Johnson, Koplik, and Dashen, 1987). Accordingly, the effective
densities, ρi j(ω) in Equation 5.3 can be written for high frequency ranges by considering the
dynamic tortuosity as,

ρ̃11(ω) =ρ11 + (ω)ג̃

ρ̃12(ω) =ρ12− (ω)ג̃

ρ̃22(ω) =ρ22 + (ω)ג̃

(ω)ג̃ =
2φ α∞

Λ

(
ρ f η

jω

) 1
2
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Appendix K

Eigenvalues of Matrix M used in
Chapter 5

δ̃
2
1 (ω) =

ω2
(
−
√

∆+Pρ22−2Qρ12 +ρ11R
)

2(PR−Q2)

δ̃
2
2 (ω) =

ω2
(
+
√

∆+Pρ22−2Qρ12 +ρ11R
)

2(PR−Q2)

in which, ∆ is given by

∆ =(−Pρ22 +2Qρ12 +−Rρ11)
2−4

(
ρ11ρ12−ρ12

2)(PR−Q2)
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Appendix L

Solutions for Longitudinal and
Transverse Waves used in Chapter 5

The general solutions for Equation 5.11 and Equation 5.15 in the cylindrical coordinate sys-
tem are given in

φ̃1(r,ω) =
∞

∑
n=0

f1(r)cos(nθ)e j(ωt−kzz) (L.1)

φ̃2(r,ω) =
∞

∑
n=0

f2(r)cos(nθ)e j(ωt−kzz) (L.2)

ψ̃
s
r (r,ω) =

∞

∑
n=0

gr(r)sin(nθ)e j(ωt−kzz) (L.3)

ψ̃
s
θ (r,ω) =

∞

∑
n=0

gθ (r)cos(nθ)e j(ωt−kzz) (L.4)

ψ̃
s
z (r,ω) =

∞

∑
n=0

gz(r)sin(nθ)e j(ωt−kzz) (L.5)

in which the integers n and kz are the circumferential order of a wave mode and the axial
wavenumber, respectively. Also, the relations between the components of the transverse
wave vector potentials for the solid skeletal frame and fluid regarding Equation 5.17 can be
obtained by

ψ
f

r (r,ω) =µ3ψ
s
r (r,ω)

ψ
f

z (r,ω) =µ3ψ
s
z (r,ω)

ψ
f

θ
(r,ω) =µ3ψ

s
θ (r,ω)

Note that the coefficients in Equation L.1 to Equation L.5, f1(r), f2(r), gr(r), gθ (r), and
gz(r), are obtained by substituting Equation L.1 to Equation L.5 into Equation 5.11 and
Equation 5.15. Therefore, after some algebraic manipulations they are derived as

f1(r) =C1Jn(a1r)+C2Yn(a1r)
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f2(r) =C3Jn(a2r)+C4Yn(a2r)

gr(r) =A1Jn+1(a3r)+B1Yn+1(a3r)

gθ (r) =−A1Jn+1(a3r)−B1Yn+1(a3r)

gz(r) =A3Jn(a3r)+B3Yn(a3r)

where Jn and Yn are the Bessel functions of the first and second type of order n in the cylin-
drical coordinate system, respectively. In addition, a1, a2, a3 are the radial components of
the wavenumber given

a1 = δ̃
2
1 (r,ω)− k2

z

a2 = δ̃
2
2 (r,ω)− k2

z

a3 = δ̃
2
3 (r,ω)− k2

z
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Appendix M

Displacement Components in Radial
Directions used in Chapter 5

ur(r,θ ,z, t) =
∂φ s(r, t)

∂ r
+

1
r

∂ψs
z (r, t)
∂θ

−
∂ψs

θ
(r, t)

∂ z

=
∞

∑
n=0

un
r (r)cos(nθ)e j(ωt−Kzz)

Ur(r,θ ,z, t) =
∂φ f (r, t)

∂ r
+

1
r

∂ψ
f

z (r, t)
∂θ

−
∂ψ

f
θ
(r, t)

∂ z

=
∞

∑
n=0

Un
r (r)cos(nθ)e j(ωt−Kzz)

uθ (r,θ ,z, t) =
1
r

∂φ s(r, t)
∂θ

+
∂ψs

r (r, t)
∂ z

−
∂ψs

z (r, t)
∂ r

=
∞

∑
n=0

un
θ (r)sin(nθ)e j(ωt−Kzz)

Uθ (r,θ ,z, t) =
1
r

∂φ f (r, t)
∂θ

+
∂ψ

f
r (r, t)
∂ z

− ∂ψ
f

z (r, t)
∂ r

=
∞

∑
n=0

Un
θ (r)sin(nθ)e j(ωt−Kzz)

uz(r,θ ,z, t) =
∂φ s(r, t)

∂ z
+

1
r

(
∂ (rψs

θ
(r, t))

∂ r
− ∂ψs

r (r, t)
∂θ

)
=

∞

∑
n=0

Un
z (r)cos(nθ)e j(ωt−Kzz)

Uz(r,θ ,z, t) =
∂φ f (r, t)

∂ z
+

1
r

(
∂ (rψ

f
θ
(r, t))

∂ r
− ∂ψ

f
r (r, t)
∂θ

)

=
∞

∑
n=0

Un
z (r)cos(nθ)e j(ωt−Kzz)

in which,

un
r (r) =

1
r

[
(a1C1rJn−1(a1r)+a2C3rJn−1(a2r)+A3nJn(a3r)−

n(C1Jn(a1r)+C2Yn(a1r)+C3Jn(a2r)+C4Yn(a2r))+

B3nYn(a3r)+ r(a1C2Yn−1(a1r)+a2C4Yn−1(a2r)− irkz(A1Jn+1(a3r)+B1Yn+1(a3r))
]



Appendix M. Displacement Components in Radial Directions used in Chapter 5 155

un
θ (r) =

1
2

(
(a3A3−2iA1kz)Jn+1(a3r)−a3A3Jn−1(a3r)−a3B3Yn−1(a3r)

)
−

n(C1Jn(a1r)+C2Yn(a1r)+C3Jn(a2r)+C4Yn(a2r))
r

+(
a3

2
B3− iB1kz)Yn+1(a3r)

un
z (r)=−ikz(C1Jn(a1r)+C2Yn(a1r)+C3Jn(a2r)+C4Yn(a2r))−a3(A1Jn(a3r)+B1Yn(a3r))

Un
r (r) =

1
2r

(
a1C1µ1rJn−1(a1r)+a2C3µ2rJn−1(a2r)+2A3µ3nJn(a3r)+

r(a1C1µ1Jn+1(a1r)+a2C3µ2Jn+1(a2r))−2iA1kzµ3rJn+1(a3r)+

a1C2µ1rYn−1(a1r)−a1C2µ1rYn+1(a1r)+a2C4µ2rYn−1(a2r)+

2B3µ3nYn(a3r)−a2C4µ2rYn+1(a2r)−2iB1kzµ3rYn+1(a3r)
)

Un
θ (r) =

−1
r

(
C1µ1nJn(a1r)+C3µ2nJn(a2r)+a3A3µ3rJn−1(a3r)−A3µ3nJn(a3r)+

C2µ1nYn(a1r)+C4µ2nYn(a2r)+a3B3µ3rYn−1(a3r)−B3µ3nYn(a3r)
)

Un
z (r) =−ikz(C1µ1Jn(a1r)+C2µ1Yn(a1r)+C3µ2Jn(a2r)+C4µ2Yn(a2r))+

µ3(−A1a3rJn(a3r)+A1nJn+1(a3r)−a3B1rYn(a3r)+B1nYn+1(a3r))
r
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Appendix N

Solid and Fluid Stresses used in
Chapter 5

σ
n
rr(r) =

1
r2

[
−2a2C3NrJn−1(a2r)−2iNrJn−1(a3r)(A1kz(n+1)+ ia3A3n)−

+C1Jn(a1r)
(
−r2 (

δ
2
1 (P−2N +µ1Q)+2a1

2N
)
+2n2N +2nN

)
+

C3Jn(a2r)
(
−r2 (

δ
2
2 (P−N +µ2Q)+2a2

2N
)
+2n2N +2nN

)
−

2NJn(a3r)
(
iA1a3

2kzr2 +n(n+1)(a3A3−2iA1kz)
)

a3
−

2iNrYn−1(a3r)(+ia3B3n)+
(
− r2 (

δ
2
1 (P−N +µ1Q)+2a1

2N
))

C2Yn(a1r)

+C2Yn(a1r)(2n2N+2nN)−2a1C1NrJn−1(a1r)−2a1C2NrYn−1(a1r)

−2a2C4NrYn−1(a2r)+2iNrYn−1(a3r)(B1kz(n+1))

C4Yn(a2r)
(
−r2 (

δ
2
2 (P−N +µ2Q)+2a2

2N
)
+2n2N +2nN

)
−

2NYn(a3r)
(
ia3

2B1kzr2 +n(n+1)(a3B3−2iB1kz)
)

a3

]

σ
n
rθ (r) =

N
r2

[
−2a2C3nrJn−1(a2r)+2rJn−1(a3r)(a3A3− iA1kz(n+1))−

2a1C1nrJn−1(a1r)+2C1n(n+1)Jn(a1r)+2C3n(n+1)Jn(a2r)+

Jn(a3r)
(
a3

2r2(a3A3− iA1kz)−2n(n+1)(a3A3−2iA1kz)
)

a3
−

2a1C2nrYn−1(a1r)−2a2C4nrYn−1(a2r)+2C2n(n+1)Yn(a1r)+

2rYn−1(a3r)(a3B3− iB1kz(n+1))+2C4n(n+1)Yn(a2r)

Yn(a3r)
(
a3

2r2(a3B3− iB1kz)−2n(n+1)(a3B3−2iB1kz)
)

a3

]
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σ
n
rz(r) =

−iN
a3r

[
2a1a3C1kzrJn−1(a1r)+2a2a3C3kzrJn−1(a2r)−

2a3C1kznJn(a1r)+(−i)A1a3r(a3− kz)(a3 + kz)Jn−1(a3r)−
2a3C3kznJn(a2r)+n

(
a3A3kz+ iA1

(
a3

2−2kz2))Jn(a3r)+

2a1a3C2kzrYn−1(a1r)+2a2a3C4kzrYn−1(a2r)−
−2a3C2kznYn(a1r)−2a3C4kznYn(a2r)+ ia3B1r(a3−kz)(a3 +kz)Yn−1(a3r)+(

ia3
2B1 +a3B3kz−2iB1kz2)Yn(a3r)

]

Sn(r) =−C1δ1
2(Q+µ1R)Jn(a1r)−C3δ

2
2 (Q+µ2R)Jn(a2r)−

C2δ
2
1 (Q+µ1R)Yn(a1r)−C4δ

2
2 (Q+µ2R)Yn(a2r)
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Appendix O

Displacements and Stresses used in
Chapter 5

[Q]8×8 = [Γ]8×8[ϒ]
−1
8×8

[Γ]8×8 =

Γ11 · · · Γ18
...

. . .
...

Γ81 · · · Γ88


in which,

Γ11 =
a1bJn−1(a1b)−nJn(a1b)

b
, Γ12 =

a1bYn−1(a1b)−nYn(a1b)
b

Γ13 =
a2bJn−1(a2b)−nJn(a2b)

b
, Γ14 =

a2bYn−1(a2b)−nYn(a2b)
b

Γ15 =−ikzJn+1(a3b), Γ16 =−ikzYn+1(a3b), Γ17 =
nJn(a3b)

b

Γ18 =
nYn(a3b)

b
, Γ21 =−

nJn(a1b)
b

, Γ22 =−
nYn(a1b)

b
, Γ23 =−

nJn(a2b)
b

Γ24 =−
nYn(a2b)

b
, Γ25 =−ikzJn+1(a3b), Γ26 =−ikzYn+1(a3b)

Γ27 =
1
2
(a3Jn+1(a3b)−a3Jn−1(a3b)), Γ28 =

1
2
(a3Yn+1(a3b)−a3Yn−1(a3b))

Γ31 =−ikzJn(a1b), Γ32 =−ikzYn(a1b), Γ33 =−ikzJn(a2b)

Γ34 =−ikzYn(a2b), Γ35 =−a3Jn(a3b), Γ36 =−a3Yn(a3b), Γ37 = 0, Γ38 = 0

Γ41 =
a1bµ1Jn−1(a1b)−a1bµ1Jn+1(a1b)

2b
, Γ42 =

a1bµ1Yn−1(a1b)−a1bµ1Yn+1(a1b)
2b

Γ43 =
a2bµ2Jn−1(a2b)−a2bµ2Jn+1(a2b)

2b
, Γ44 =

a2bµ2Yn−1(a2b)−a2bµ2Yn+1(a2b)
2b

Γ45 =−ikzµ3Jn+1(a3b), Γ46 =−ikzµ3Yn+1(a3b), Γ47 =
µ3nJn(a3b)

b
, Γ48 =

µ3nYn(a3b)
b
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Γ51 =
aa1Jn−1(aa1)−nJn(aa1)

a
, Γ52 =

aa1Yn−1(aa1)−nYn(aa1)

a

Γ53 =
aa2Jn−1(aa2)−nJn(aa2)

a
, Γ54 =

aa2Yn−1(aa2)−nYn(aa2)

a

Γ55 =−ikzJn+1(aa3), Γ56 =−ikzYn+1(aa3), Γ57 =
nJn(aa3)

a
, Γ58 =

nYn(aa3)

a

Γ61 =−
nJn(aa1)

a
, Γ62 =−

nYn(aa1)

a
, Γ63 =−

nJn(aa2)

a
, Γ64 =−

nYn(aa2)

a

Γ65 =−ikzJn+1(aa3), Γ66 =−ikzYn+1(aa3), Γ67 =
1
2
(a3Jn+1(aa3)−a3Jn−1(aa3))

Γ68 =
1
2
(a3Yn+1(aa3)−a3Yn−1(aa3)), Γ71 =−ikzJn(aa1), Γ72 =−ikzYn(aa1)

Γ73 =−ikzJn(aa2), Γ74 =−ikzYn(aa2), Γ75 =−a3Jn(aa3), Γ76 =−a3Yn(aa3)

Γ77 = 0, Γ78 = 0, Γ81 =
aa1µ1Jn−1(aa1)−aa1µ1Jn+1(aa1)

2a

Γ82 =
aa1µ1Yn−1(aa1)−aa1µ1Yn+1(aa1)

2a
, Γ83 =

aa2µ2Jn−1(aa2)−aa2µ2Jn+1(aa2)

2a

Γ84 =
aa2µ2Yn−1(aa2)−aa2µ2Yn+1(aa2)

2a
, Γ85 =−ikzµ3Jn+1(aa3), Γ86 =−ikzµ3Yn+1(aa3)

Γ87 =
µ3nJn(aa3)

a
, Γ88 =

µ3nYn(aa3)

a

and

[ϒ]−1
8×8 =

ϒ11 · · · ϒ18
...

. . .
...

ϒ81 · · · ϒ88


−1

in which,

ϒ11 =
Jn(a1b)

(
b2
(
−
(

δ1
2(P−N +µ1Q)+2a1

2N
))

+2n2N +2nN
)

b2 −

−2a1bNJn−1(a1b)
b2
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ϒ12 =
Yn(a1b)

(
b2
(
−
(

δ1
2(P−N +µ1Q)+2a1

2N
))

+2n2N +2nN
)

b2 +

−2a1NYn−1(a1b)
b

ϒ13 =
Jn(a2b)

(
b2
(
−
(

δ2
2(P−N +µ2Q)+2a2

2N
))

+2n2N +2nN
)

b2 +

−2a2NJn−1(a2b)
b

ϒ14 =
Yn(a2b)

(
b2
(
−
(

δ2
2(P−N +µ2Q)+2a2

2N
))

+2n2N +2nN
)

b2 +

−2a2NYn−1(a2b)
b

ϒ15 =
4ikzn2NJn(a3b)

b2a3
+

4ikznNJn(a3b)
b2a3

−2ibkzNJn−1(a3b)
b2 +

−2ia3b2kzNJn(a3b)−2ibkznNJn−1(a3b)
b2

ϒ16 =
4ikzn2NYn(a3b)

b2a3
+

4ikznNYn(a3b)
b2a3

−2ibkzNYn−1(a3b)
b2 +

−2ia3b2kzNYn(a3b)−2ibkznNYn−1(a3b)
b2

ϒ17 =
2a3bnNJn−1(a3b)−2nNJn(a3b)−2n2NJn(a3b)

b2

ϒ18 =
2a3bnNYn−1(a3b)−2nNYn(a3b)−2n2NJn(a3b)

b2

ϒ21 =
N(2n(n+1)Jn(a1b)−2a1bnJn−1(a1b))

b2 , ϒ22 =
N(2n(n+1)Yn(a1b)−2a1bnYn−1(a1b))

b2

ϒ23 =
N(2n(n+1)Jn(a2b)−2a2bnJn−1(a2b))

b2 , ϒ24 =
N(2n(n+1)Yn(a2b)−2a2bnYn−1(a2b))

b2

ϒ25 =
4ikzn2NJn(a3b)

b2a3
+

4ikznNJn(a3b)
b2a3

−2ibkzNJn−1(a3b)
b2 +

−ia3b2kzNJn(a3b)− ibkznNJn−1(a3b)
b2
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ϒ26 =
4ikzn2NYn(a3b)

b2a3
+

4ikznNYn(a3b)
b2a3

−2ibkzNYn−1(a3b)
b2 +

−ia3b2kzNYn(a3b)− ibkznNYn−1(a3b)
b2

ϒ27 = N
(
a3

2b2Jn(a3b)−2n2Jn(a3b)+2a3bJn−1(a3b)−2nJn(a3b)
)

ϒ28 = N
(
a3

2b2Yn(a3b)−2n2Yn(a3b)+2a3bYn−1(a3b)−2nJn(a3b)
)

ϒ31 =−
iN(2a1a3bkzJn−1(a1b)−2a3kznJn(a1b))

a3b
, ϒ32 =−

iN(2a1a3bkzYn−1(a1b)−2a3kznYn(a1b))
a3b

ϒ33 =−
iN(2a2a3bkzJn−1(a2b)−2a3kznJn(a2b))

a3b
, ϒ34 =−

iN(2a2a3bkzYn−1(a2b)−2a3kznYn(a2b))
a3b

ϒ35 =−
iN
(
(−i)a3

3bJn−1(a3b)+ ia3
2nJn(a3b)+ ia3bkz2Jn−1(a3b)

)
a3b

−2ikz2nJn(a3b)
a3b

, ϒ36 =−
iN
(
(−i)a3

3bYn−1(a3b)+ ia3
2nYn(a3b)+ ia3bkz2Yn−1(a3b)

)
a3b

−2ikz2nYn(a3b)
a3b

ϒ37 =−
ikznNJn(a3b)

b
, ϒ38 =−

ikznNYn(a3b)
b

, ϒ41 =−δ1
2(Q+µ1R)Jn(a1b)

ϒ42 =−δ1
2(Q+µ1R)Yn(a1b), ϒ43 =−δ2

2(Q+µ2R)Jn(a2b)

ϒ44 =−δ2
2(Q+µ2R)Yn(a2b), ϒ45 = 0, ϒ46 = 0, ϒ47 = 0, ϒ48 = 0

ϒ51 =
Jn(a1a)

(
a2
(
−
(

δ1
2(P−N +µ1Q)+2a1

2N
))

+2n2N +2nN
)

a2 −

−2a1aNJn−1(a1a)
a2

ϒ52 =
Yn(a1a)

(
a2
(
−
(

δ1
2(P−N +µ1Q)+2a1

2N
))

+2n2N +2nN
)

a2 −

−2a1aNYn−1(a1a)
a2
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ϒ53 =
Jn(a2a)

(
a2
(
−
(

δ2
2(P−N +µ2Q)+2a2

2N
))

+2n2N +2nN
)

a2 +

−2a2NJn−1(a2b)
a

ϒ54 =
Yn(a2a)

(
a2
(
−
(

δ2
2(P−N +µ2Q)+2a2

2N
))

+2n2N +2nN
)

a2 +

−2a2NYn−1(a2b)
a

ϒ55 =
4ikzn2NJn(a3a)

a2a3
+

4ikznNJn(a3a)
a2a3

−2iakzNJn−1(a3a)
a2 +

−2ia3a2kzNJn(a3a)−2iakznNJn−1(a3a)
a2

ϒ56 =
4ikzn2NYn(a3a)

a2a3
+

4ikznNYn(a3a)
a2a3

−2iakzNYn−1(a3a)
a2 +

−2ia3a2kzNYn(a3a)−2iakznNYn−1(a3a)
a2

ϒ57 =
−2n2NJn(aa3)+2aa3nNJn−1(aa3)−2nNJn(aa3)

a2

ϒ58 =
−2n2NYn(aa3)+2aa3nNYn−1(aa3)−2nNJn(aa3)

a2

ϒ61 =
N(2n(n+1)Jn(aa1)−2aa1nJn−1(aa1))

a2 , ϒ62 =
N(2n(n+1)Yn(aa1)−2aa1nYn−1(aa1))

a2

ϒ63 =
N(2n(n+1)Jn(aa2)−2aa2nJn−1(aa2))

a2 , ϒ64 =
N(2n(n+1)Yn(aa2)−2aa2nYn−1(aa2))

a2

ϒ65 =
4ikzn2NJn(a3a)

a2a3
+

4ikznNJn(a3a)
a2a3

−2iakzNJn−1(a3a)
a2 +

−ia3a2kzNJn(a3a)−2iakznNJn−1(a3a)
a2

ϒ66 =
4ikzn2NYn(a3a)

a2a3
+

4ikznNYn(a3a)
a2a3

−2iakzNYn−1(a3a)
a2 +

−ia3a2kzNYn(a3a)−2iakznNYn−1(a3a)
a2

ϒ67 =
N
(
a2a3

2Jn(aa3)−2n2Jn(aa3)+2aa3Jn−1(aa3)−2nJn(aa3)
)

a2
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ϒ68 =
N
(
a2a3

2Yn(aa3)−2n2Yn(aa3)+2aa3Yn−1(aa3)−2nYn(aa3)
)

a2

ϒ71 =−
iN(2aa1a3kzJn−1(aa1)−2a3kznJn(aa1))

aa3
, ϒ72 =−

iN(2aa1a3kzYn−1(aa1)−2a3kznYn(aa1))

aa3

ϒ73 =−
iN(2aa2a3kzJn−1(aa2)−2a3kznJn(aa2))

aa3
, ϒ74 =−

iN(2aa2a3kzYn−1(aa2)−2a3kznYn(aa2))

aa3

ϒ75 =−iN

(
(−i)aa3

3Jn−1(aa3)+ ia3
2nJn(aa3)+ iaa3kz2Jn−1(aa3)

aa3
+

−2Nkz2nJn(aa3)

aa3

ϒ76 =−iN

(
(−i)aa3

3Yn−1(aa3)+ ia3
2nYn(aa3)+ iaa3kz2Yn−1(aa3)

aa3
+

−2Nkz2nYn(aa3)

aa3

ϒ77 =−
ikznNJn(aa3)

a
, ϒ78 =−

ikznNJn(aa3)

a

ϒ81 =−δ1
2(Q+µ1R)Jn(aa1), ϒ82 =−δ1

2(Q+µ1R)Yn(aa1)

ϒ83 =−δ
2
2 (Q+µ2R)Jn(aa2), ϒ84 =−δ2

2(Q+µ2R)Yn(aa2)

ϒ85 = 0, ϒ86 = 0, ϒ87 = 0, ϒ88 = 0
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Appendix P

Coefficients of H Matrix used in
Chapter 5

H11 = φ
2
ρ1Q51ω

2H(1)
n (bK3r)−φ

2
ρ1Q54ω

2H(1)
n (bK3r)−

φ
2
ρ1Q81ω

2H(1)
n (bK3r)+φ

2
ρ1Q84ω

2H(1)
n (bK3r)−

2φρ1Q51ω
2H(1)

n (bK3r)+φρ1Q54ω
2H(1)

n (bK3r)+

φρ1Q81ω
2H(1)

n (bK3r)+Q51ρ1ω
2H(1)

n (bK3r)

H12 = φ
2
ρ1Q55ω

2H(2)
n (aK1r)−φ

2
ρ1Q58ω

2H(2)
n (aK1r)−

φ
2
ρ1Q85ω

2H(2)
n (aK1r)+φ

2
ρ1Q88ω

2H(2)
n (aK1r)−

2φρ1Q55ω
2H(2)

n (aK1r)+φρ1Q58ω
2H(2)

n (aK1r)+

φρ1Q85ω
2H(2)

n (aK1r)+ρ1Q55ω
2H(2)

n (aK1r)+

1
2

K1rH
(2)
n−1(aK1r)−

1
2

K1rH
(2)
n+1(aK1r)

H21 = φ
2Q11ρ3ω

2H(1)
n (bK3r)−φ

2Q14ρ3ω
2H(1)

n (bK3r)−

φ
2
ρ3Q41ω

2H(1)
n (bK3r)+φ

2
ρ3Q44ω

2H(1)
n (bK3r)−

2φQ11ρ3ω
2H(1)

n (bK3r)+φQ14ρ3ω
2H(1)

n (bK3r)+

φρ3Q41ω
2H(1)

n (bK3r)+Q11ρ3ω
2H(1)

n (bK3r)+

1
2

K3rH
(1)
n−1(bK3r)−

1
2

K3rH
(1)
n+1(bK3r)

H22 = φ
2Q15ρ3ω

2H(2)
n (aK1r)−φ

2Q18ρ3ω
2H(2)

n (aK1r)−

φ
2
ρ3Q45ω

2H(2)
n (aK1r)+φ

2
ρ3Q48ω

2H(2)
n (aK1r)−

2φQ15ρ3ω
2H(2)

n (aK1r)+φQ18ρ3ω
2H(2)

n (aK1r)+

φρ3Q45ω
2H(2)

n (aK1r)+Q15ρ3ω
2H(2)

n (aK1r)
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χ11 = ρ1ω
2 ((1−φ)(εn p0(φ −1)Q55(−i)n(Jn(k1ra)))−

ρ1ω
2(1−φ)(εn p0φQ58(−i)n(Jn(k1ra))))+

ρ1ω
2(φ)(φ(εn p0(φ −1)Q85(−i)n(Jn(k1ra)))−

ρ1ω
2(φ)(εn p0φQ88(−i)n(Jn(k1ra)))−

1
2

εnk1r(−i)n p0(Jn−1(k1ra)− Jn+1(k1ra))

χ21 = ρ3ω
2(1−φ)(εn p0(φ −1)Q15(−i)n(Jn(k1ra)))−

ρ3ω
2(1−φ)(εn p0φQ18(−i)n(Jn(k1ra)))+

φ (εn p0(φ −1)Q45(−i)n(Jn(k1ra)))−
φ (εn p0φQ48(−i)n(Jn(k1ra)))
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Appendix Q

Transmission Loss used in Chapter 5

The transmission loss due to the propagation of acoustical waves through a cylinder can be
expressed as

T L = 10 log10

(
ΠI

ΠT

)
in which ΠI and ΠT are the incident and transmitted acoustic powers, respectively, given by

ΠI =
1
2

Re(
ˆ

A
pI

ν
∗dA)

in which Re(z), A, and ν are the real part of complex number z, the domain of integration
over the surface of the cylinder, and the radial particle velocity, respectively. Note that the
superscript “ ∗ ” is related to the complex conjugate of a complex number. Similarly, the
transmitted power is written as

ΠT =
1
2

Re(
ˆ

A
pT

ν
∗dS) =

1
2

Re
[ˆ

A
pT ∂ (ur)

∗

∂ t
dS
]



167

Bibliography

.

Abendschein, WALTER and GW Hyatt (1970). “33 Ultrasonics and Selected Physical Prop-
erties of Bone.” In: Clinical Orthopaedics and Related Research (1976-2007) 69, pp. 294–
301.

Adachi, Taiji et al. (2001). “Trabecular surface remodeling simulation for cancellous bone
using microstructural voxel finite element models”. In: J. Biomech. Eng. 123.5, pp. 403–
409.

Allard, J-F and Gilles Daigle (1994). Propagation of sound in porous media: Modeling sound
absorbing materials.

Allard, Jean and Noureddine Atalla (1993). Propagation of sound in porous media: modelling
sound absorbing materials 2e. John Wiley & Sons.

Allard, Jean and Noureddine Atalla (2009). Propagation of sound in porous media: modelling
sound absorbing materials 2e. John Wiley & Sons.

Alves, José Marcos et al. (1996). “Influence of marrow on ultrasonic velocity and attenuation
in bovine trabecular bone”. In: Calcified tissue international 58.5, pp. 362–367.

Anast, George T, THEODORE Fields, and IRWIN M Siegel (1958). “Ultrasonic technique
for the evaluation of bone fractures”. In: American Journal of Physical Medicine & Re-
habilitation 37.3, pp. 157–159.

Anderson, Christian C et al. (2008). “Interference between wave modes may contribute to
the apparent negative dispersion observed in cancellous bone”. In: The Journal of the
Acoustical Society of America 124.3, pp. 1781–1789.

André, Michael P et al. (1980). “Measurement of the velocity of ultrasound in the human
femur in vivo”. In: Medical physics 7.4, pp. 324–330.

Ashman, Richard B, James D Corin, and Charles H Turner (1987). “Elastic properties of
cancellous bone: measurement by an ultrasonic technique”. In: Journal of Biomechanics
20.10, pp. 979–986.

Ashman, Richard B and Jae Young Rho (1988). “Elastic modulus of trabecular bone mate-
rial”. In: Journal of biomechanics 21.3, pp. 177–181.

Attenborough, Keith (1983). “Acoustical characteristics of rigid fibrous absorbents and gran-
ular materials”. In: the Journal of the Acoustical Society of America 73.3, pp. 785–799.

Avioli, LV (1988). “Ultrasound transmission velocity in screening for bone fragility”. In: J
Bone Min Res 3, p. 215.

Bagley, Ronald L and Peter J Torvik (1986). “On the fractional calculus model of viscoelastic
behavior”. In: Journal of Rheology 30.1, pp. 133–155.



168 Bibliography

Baran, Daniel T et al. (1988). “Ultrasound attenuation of the os calcis in women with osteo-
porosis and hip fractures”. In: Calcified tissue international 43.3, pp. 138–142.

Barger, James E (1979). “Attenuation and dispersion of ultrasound in cancellous bone”. In:
Ultrasonic Tissue Characterization 11, pp. 197–201.

Behari, J and S Singh (1981). “Ultrasound propagation in ‘in vivo’bone”. In: Ultrasonics
19.2, pp. 87–90.

Belhocine, F, S Derible, and H Franklin (2007). “Transition term method for the analysis of
the reflected and the transmitted acoustic signals from water-saturated porous plates”. In:
The Journal of the Acoustical Society of America 122.3, pp. 1518–1526.

Bennamane, Abderrazek and Tarek Boutkedjirt (2017). “Theoretical and experimental study
of the ultrasonic attenuation in bovine cancellous bone”. In: Applied Acoustics 115,
pp. 50–60.

Berryman, James G (1980). “Confirmation of Biot’s theory”. In: Applied Physics Letters
37.4, pp. 382–384.

Biot, MA (1956a). “Theory of elastic waves in a fluid-saturated porous solid. 1. Low fre-
quency range”. In: J. Acoust. Soc. Am. 28, pp. 168–178.

Biot, Maurice A (1941). “General theory of three-dimensional consolidation”. In: Journal of
applied physics 12.2, pp. 155–164.

Biot, Maurice A (1955). “Theory of elasticity and consolidation for a porous anisotropic
solid”. In: Journal of applied physics 26.2, pp. 182–185.

Biot, Maurice A (1956b). “General solutions of the equations of elasticity and consolidation
for a porous material”. In: J. appl. Mech 23.1, pp. 91–96.

Biot, Maurice A (1956c). “Theory of propagation of elastic waves in a fluid-saturated porous
solid. I. Low-Frequency Range”. In: The Journal of the acoustical Society of america
28.2, pp. 179–191.

Biot, Maurice A (1956d). “Theory of propagation of elastic waves in a fluid-saturated porous
solid. II. Higher frequency range”. In: The Journal of the acoustical Society of america
28.2, pp. 179–191.

Biot, Maurice A (1956e). “Theory of propagation of elastic waves in a fluid-saturated porous
solid. II. Higher frequency range”. In: The Journal of the acoustical Society of america
28.2, pp. 179–191.

Biot, Maurice A (1962a). “Generalized theory of acoustic propagation in porous dissipative
media”. In: The Journal of the Acoustical Society of America 34.9A, pp. 1254–1264.

Biot, Maurice A (1962b). “Mechanics of deformation and acoustic propagation in porous
media”. In: Journal of applied physics 33.4, pp. 1482–1498.

Biot, Maurice A and DG Willis (1957). “The elastic coeff cients of the theory of consolida-
tion”. In: J Appl Mech 15, pp. 594–601.

Bohr, H and O Schaadt (1983). “Bone mineral content of femoral bone and the lumbar spine
measured in women with fracture of the femoral neck by dual photon absorptiometry.”
In: Clinical orthopaedics and related research 179, pp. 240–245.



Bibliography 169

Bolton, JS, N-M Shiau, and YJ Kang (1996). “Sound transmission through multi-panel struc-
tures lined with elastic porous materials”. In: Journal of sound and vibration 191.3,
pp. 317–347.

Bossy, Emmanuel et al. (2005). “Three-dimensional simulation of ultrasound propagation
through trabecular bone structures measured by synchrotron microtomography”. In: Physics
in Medicine & Biology 50.23, p. 5545.

Bourbie, T et al. (1987). “Acoustics of Porous Media”. In: The Journal of the Acoustical
Society of America 91.5, pp. 3080–3080.

Buchanan, James L and Robert P Gilbert (2007). “Determination of the parameters of cancel-
lous bone using high frequency acoustic measurements”. In: Mathematical and computer
modelling 45.3-4, pp. 281–308.

Buchanan, JAMES L, ROBERT P Gilbert, and KHALDOUN Khashanah (2002). “Recovery
of the poroelastic parameters of cancellous bone using low frequency acoustic interroga-
tion”. In: Acoustics, Mechanics, and the Related Topics of Mathematical Analysis. World
Scientific, pp. 41–47.

Buchanan, James L, Robert P Gilbert, and Khaldoun Khashanah (2004). “Determination of
the parameters of cancellous bone using low frequency acoustic measurements”. In: Jour-
nal of Computational Acoustics 12.02, pp. 99–126.

Buchanan, James L, Robert P Gilbert, and Y Ou Miao-jung (2011). “Wavelet decomposi-
tion of transmitted ultrasound wave through a 1-D muscle–bone system”. In: Journal of
biomechanics 44.2, pp. 352–358.

Buchanan, James L, Robert P Gilbert, and Miao-jung Ou (2012). “Transfer functions for a
one-dimensional fluid–poroelastic system subject to an ultrasonic pulse”. In: Nonlinear
Analysis: Real World Applications 13.3, pp. 1030–1043.

Buchanan, James L et al. (2003). “Transient reflection and transmission of ultrasonic wave
in cancellous bone”. In: Applied mathematics and computation 142.2-3, pp. 561–573.

Butzer, Paul L and Ursula Westphal (2000). “An introduction to fractional calculus”. In:
Applications of Fractional Calculus in Physics. World Scientific, pp. 1–85.

Caputo, Michele (1976). “Vibrations of an infinite plate with a frequency independent Q”.
In: The Journal of the Acoustical Society of America 60.3, pp. 634–639.

Cardoso, Luis and Stephen C Cowin (2011). “Fabric dependence of quasi-waves in anisotropic
porous media”. In: The Journal of the Acoustical Society of America 129.5, pp. 3302–
3316.

Cardoso, Luis et al. (2003). “In vitro acoustic waves propagation in human and bovine can-
cellous bone”. In: Journal of Bone and Mineral Research 18.10, pp. 1803–1812.

Caviglia, G and A Morro (2004). “A closed-form solution for reflection and transmission
of transient waves in multilayers”. In: The Journal of the Acoustical Society of America
116.2, pp. 643–654.

Cepollaro, Chiara et al. (2005). “In vivo performance evaluation of the Achilles Insight QUS
device”. In: Journal of Clinical Densitometry 8.3, pp. 341–346.



170 Bibliography

Chaffaı, S et al. (2000). “Frequency dependence of ultrasonic backscattering in cancellous
bone: Autocorrelation model and experimental results”. In: The journal of the Acoustical
Society of America 108.5, pp. 2403–2411.

Chaffaı, S et al. (2002). “Ultrasonic characterization of human cancellous bone using trans-
mission and backscatter measurements: relationships to density and microstructure”. In:
Bone 30.1, pp. 229–237.

Chen, Hua, Robert P Gilbert, and Philippe Guyenne (2018). “A Biot model for the deter-
mination of material parameters of cancellous bone from acoustic measurements”. In:
Inverse Problems 34.8, p. 085009.

Cummings, Steven R et al. (1993). “Bone density at various sites for prediction of hip frac-
tures”. In: The Lancet 341.8837, pp. 72–75.

Daneshjou, K, R Talebitooti, and A Tarkashvand (2017). “An exact solution of three-dimensional
elasticity for sound transmission loss through FG cylinder in presence of subsonic exter-
nal flow”. In: International Journal of Mechanical Sciences 120, pp. 105–119.

Daneshjou, K et al. (2010). “Analytical model of sound transmission through relatively thick
FGM cylindrical shells considering third order shear deformation theory”. In: Composite
Structures 93.1, pp. 67–78.

Depollier, Claude, Jean F Allard, and Walter Lauriks (1988). “Biot theory and stress–strain
equations in porous sound-absorbing materials”. In: The Journal of the Acoustical Society
of America 84.6, pp. 2277–2279.

Durbin, F (1974). “Numerical inversion of Laplace transforms: an efficient improvement to
Dubner and Abate’s method”. In: The Computer Journal 17.4, pp. 371–376.

Evans, JA and MB Tavakoli (1990). “Ultrasonic attenuation and velocity in bone”. In: Physics
in Medicine & Biology 35.10, p. 1387.

Evans, WD et al. (1988). “Ultrasonic attenuation and bone mineral density”. In: Clin Phys
Physiol Meas 9, pp. 163–165.

Fan, SC, SM Li, and GY Yu (2005). “Dynamic fluid-structure interaction analysis using
boundary finite element method–Finite element method”. In: Journal of Applied Me-
chanics 72.4, pp. 591–598.

Fellah, M, Zine El Abiddine Fellah, and C Depollier (2008). “Generalized hyperbolic frac-
tional equation for transient-wave propagation in layered rigid-frame porous materials”.
In: Physical Review E 77.1, p. 016601.

Fellah, Mohamed et al. (2013). “Transient ultrasound propagation in porous media using Biot
theory and fractional calculus: Application to human cancellous bone”. In: The Journal
of the Acoustical Society of America 133.4, pp. 1867–1881.

Fellah, ZE A et al. (2010). “Ultrasonic characterization of air-saturated double-layered porous
media in time domain”. In: Journal of Applied Physics 108.1, p. 014909.

Fellah, ZEA and C Depollier (2000). “Transient acoustic wave propagation in rigid porous
media: A time-domain approach”. In: The Journal of the Acoustical Society of America
107.2, pp. 683–688.



Bibliography 171

Fellah, ZEA, C Depollier, and M Fellah (2002). “Application of fractional calculus to the
sound waves propagation in rigid porous materials: validation via ultrasonic measure-
ments”. In: Acta Acustica united with Acustica 88.1, pp. 34–39.

Fellah, Zine El Abiddine et al. (2004a). “Ultrasonic wave propagation in human cancellous
bone: Application of Biot theory”. In: The Journal of the Acoustical Society of America
116.1, pp. 61–73.

Fellah, Zine El Abiddine et al. (2005). “A time-domain model of transient acoustic wave
propagation in double-layered porous media”. In: The Journal of the Acoustical Society
of America 118.2, pp. 661–670.

Fellah, Zine El Abidine et al. (2003). “Direct and inverse scattering of transient acoustic
waves by a slab of rigid porous material”. In: The Journal of the Acoustical Society of
America 113.1, pp. 61–72.

Fellah, Zine El Abidine et al. (2004b). “Verification of Kramers–Kronig relationship in porous
materials having a rigid frame”. In: Journal of sound and vibration 270.4-5, pp. 865–885.

Floriani, LP, NT Debervoise, and GW Hyatt (1967). “Mechanical properties of healing bone
by the use of ultrasound”. In: Surg. Forum. Vol. 18, pp. 468–470.

Fritsch, Andreas and Christian Hellmich (2007). “‘Universal’microstructural patterns in cor-
tical and trabecular, extracellular and extravascular bone materials: micromechanics-
based prediction of anisotropic elasticity”. In: Journal of Theoretical Biology 244.4,
pp. 597–620.

Fry, FJ and JE Barger (1978). “Acoustical properties of the human skull”. In: The Journal of
the Acoustical Society of America 63.5, pp. 1576–1590.

Garcia, BJ et al. (1978). “Ultrasonic attenuation in bone”. In: 1978 Ultrasonics Symposium.
IEEE, pp. 327–330.

Gilbert, Robert P, Philippe Guyenne, and Jing Li (2013a). “A viscoelastic model for random
ultrasound propagation in cancellous bone”. In: Computers & Mathematics with Appli-
cations 66.6, pp. 943–964.

Gilbert, Robert P, Philippe Guyenne, and Jing Li (2013b). “Simulation of a mixture model for
ultrasound propagation through cancellous bone using staggered-grid finite differences”.
In: Journal of Computational Acoustics 21.01, p. 1250017.

Gilbert, Robert P, Philippe Guyenne, and Jing Li (2014). “Numerical investigation of ultra-
sonic attenuation through 2D trabecular bone structures reconstructed from CT scans and
random realizations”. In: Computers in biology and medicine 45, pp. 143–156.

Gilbert, Robert P, Philippe Guyenne, and M Yvonne Ou (2012). “A quantitative ultrasound
model of the bone with blood as the interstitial fluid”. In: Mathematical and Computer
Modelling 55.9-10, pp. 2029–2039.

Gilbert, Robert P et al. (2009). “Computing porosity of cancellous bone using ultrasonic
waves, II: The muscle, cortical, cancellous bone system”. In: Mathematical and computer
modelling 50.3-4, pp. 421–429.



172 Bibliography

Goossens, Liesbet et al. (2008). “The correlation between the SOS in trabecular bone and
stiffness and density studied by finite-element analysis”. In: IEEE transactions on ultra-
sonics, ferroelectrics, and frequency control 55.6, pp. 1234–1242.

Gorenflo, Rudolf and Francesco Mainardi (2008). “Fractional calculus: Integral and differ-
ential equations of fractional order”. In: arXiv preprint arXiv:0805.3823.

Greenfield, MA et al. (1981). “Measurement of the velocity of ultrasound in human corti-
cal bone in vivo. Estimation of its potential value in the diagnosis of osteoporosis and
metabolic bone disease.” In: Radiology 138.3, pp. 701–710.

Grimes, Morad et al. (2012). “In vitro estimation of fast and slow wave parameters of thin tra-
becular bone using space-alternating generalized expectation–maximization algorithm”.
In: Ultrasonics 52.5, pp. 614–621.

Haïat, G et al. (2007a). “Modeling of velocity dispersion in trabecular bone: effect of multiple
scattering and of viscous absorption.” In:

Haïat, Guillaume et al. (2007b). “Variation of ultrasonic parameters with microstructure and
material properties of trabecular bone: a 3D model simulation”. In: Journal of Bone and
Mineral Research 22.5, pp. 665–674.

Haire, TJ and CM Langton (1999). “Biot theory: a review of its application to ultrasound
propagation through cancellous bone”. In: Bone 24.4, pp. 291–295.

Hanyga, Andrzej and Vladimir E Rok (2000). “Wave propagation in micro-heterogeneous
porous media: A model based on an integro-differential wave equation”. In: The Journal
of the Acoustical Society of America 107.6, pp. 2965–2972.

Hasheminejad, Seyyed M and Mahdi Alaei-Varnosfaderani (2012). “Vibroacoustic response
and active control of a fluid-filled functionally graded piezoelectric material composite
cylinder”. In: Journal of Intelligent Material Systems and Structures 23.7, pp. 775–790.

Hasheminejad, Seyyed M and Hessam Mousavi-Akbarzadeh (2013). “Three dimensional
non-axisymmetric transient acoustic radiation from an eccentric hollow cylinder”. In:
Wave Motion 50.4, pp. 723–738.

Hodaei, M, P Maghoul, and N Popplewell (2020). “An overview of the acoustic studies of
bone-like porous materials, and the effect of transverse acoustic waves”. In: International
Journal of Engineering Science 147, p. 103189.

Hodaei, M, V Rabbani, and P Maghoul (2020). “Transient acoustic wave propagation in
bone-like porous materials using the theory of poroelasticity and fractional derivative: a
sensitivity analysis”. In: Acta Mechanica 231.1, pp. 179–203.

Hoffmeister, BK, SA Whitten, and JY Rho (2000). “Low-megahertz ultrasonic properties of
bovine cancellous bone”. In: Bone 26.6, pp. 635–642.

Horn, CA and D Robinson (1965). “Assessment of fracture healing by ultrasonics”. In: Aus-
tralasian Radiology 9.2, pp. 165–167.

Hosie, CJ et al. (1987). “Comparison of broadband ultrasonic attenuation of the os calcis
and quantitative computed tomography of the distal radius”. In: Clinical Physics and
Physiological Measurement 8.4, p. 303.



Bibliography 173

Hosokawa, A (2005). “Simulation of ultrasound propagation through bovine cancellous bone
using elastic and Biot’s finite-difference time-domain methods”. In: The Journal of the
Acoustical Society of America 118.3, pp. 1782–1789.

Hosokawa, A and T Otani (1998). “Acoustic anisotropy in bovine cancellous bone”. In: The
Journal of the Acoustical Society of America 103.5, pp. 2718–2722.

Hosokawa, Atsushi and Takahiko Otani (1997). “Ultrasonic wave propagation in bovine can-
cellous bone”. In: The Journal of the Acoustical Society of America 101.1, pp. 558–562.

Hughes, Elinor R et al. (2003). “Estimation of critical and viscous frequencies for Biot theory
in cancellous bone”. In: Ultrasonics 41.5, pp. 365–368.

Hughes, Elinor R et al. (2007). “Investigation of an anisotropic tortuosity in a Biot model of
ultrasonic propagation in cancellous bone”. In: The Journal of the Acoustical Society of
America 121.1, pp. 568–574.

Hughes, Elinor Ruth et al. (1999). “Ultrasonic propagation in cancellous bone: A new strati-
fied model”. In: Ultrasound in medicine & biology 25.5, pp. 811–821.

Hui, Siu L, Charles W Slemenda, and C Conrad Johnston (1988). “Age and bone mass as
predictors of fracture in a prospective study.” In: The Journal of clinical investigation
81.6, pp. 1804–1809.

Hui, Siu L, Charles W Slemenda, and C Conrad Johnston (1989). “Baseline measurement
of bone mass predicts fracture in white women”. In: Annals of internal medicine 111.5,
pp. 355–361.

Ilic, S, K Hackl, and RP Gilbert (2011). “Application of a biphasic representative volume
element to the simulation of wave propagation through cancellous bone”. In: Journal of
Computational Acoustics 19.02, pp. 111–138.
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