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Abstract

Studies were conducted to determine the vasoactive potential of

lysophosphatidylcholine (Lpc), a product of phospholipase A2 (pHr) catalyzed

deacylation of surfactant phosphatidylcholine (PC), to mediate a decrease in pulmonary

vascular resistance following exogenous surfactant replacement therapy in neonates with

respiratory distress syndrome (NRDS). lt is hypothesized that LPC, present in exogenous

surfactant and generated in the lung following surfactant administration, crosses the

epithelial-endothelial barrier of the premature lung to mediate vasodilation of the

pulmonary vasculature accounting for the clinically observed decrease in pulmonary

vascular resistance reported following exogenous surfactant replacement therapy.

ln vitro smooth muscle mechanics studies have demonstrated that LpC is an

equally effective endothelium-dependent vasorelaxant of the pulmonary vasculature of

both adult and newborn guinea pigs. LPC induced vasorelaxation is mediated by an

increase in intracellular smooth muscle cGMP, a result of both enhanced guanylate

cyclase (GC) and nitric oxide synthase (NOS) activity. ln the newborn guinea pig,

however, LPC induced vasodilation is mediated to a greater extent by the NOS pathway

compared to the adult which is more dependent on the GC pathway.

Studies addressing the susceptibility of the PC component of the exogenous

surfactant preparations Exosurf@ and Survanta@ to secretory-type pLA, deacy lation in vitro

revealed a pronounced difference. The PC component of the Survanta@ preparation was

readily deacylated by secretory PLA, yielding LPC whereas in the Exosurf@ preparation

the dipalmitoyl phosphatidylcholine (DPPC) component was completely resistant to

degradation. The absence of PLA, mediated degradation was due to the presence of

tyloxapol, a non-ionic inhibitor of secretory PHr, added to the Exosurf@ preparation to

facilitate rapid dispersion of DPpc in the lung following administration.

Analysis of secretory-type PLA, activity in tracheo-bronchial secretion (TBS)

vt



samples from neonates in the intensive care unit revealed that, although there was no

significant difference in average protein content between TBS samples from NRDS and

Non-NRDS neonates, NRDS infants demonstrated a significantly increased average pLA,

activity and standardized PLA, activity (p<0.05). Lung PLA, activity was also determined

to be significantly increased and a possible early marker for NRDS in severely premature

infants (24-29 weeks gestational age).

ln vivo lung-perfusion studies on adult guinea pigs demonstrated that intra-vascular

administration of LPC mediated vasodilation of the pulmonary vascular bed, confirming

the results observed in vitro. The intra-tracheal administration of LPC, however, resulted

in vasodilation of the pulmonary vasculature and decreased pulmonary arterial pressure

once in four preliminary trials conducted. This preliminary observation contradicts the

proposed hypothesis that LPC crosses the epithelial-endothelial barrier to mediate

pulmonary vasorelaxation but does not negate the possibility that LpC is responsible for

the decrease in pulmonary vascular resistance observed in infants following surfactant

administration. The lack of sufficient epithelial damage in our adult model, as observed

for infants in the clinical arena, as a consequence of the ventilation of surfactant deficient

lungs, may have allowed for decreased lung permeability and prevented diffusion of LpC

across the epithelial-endothelial barrier.

These studies have established the vasoactive potential of LPC on the pulmonary

vasculature, in vitro and in vivo, as well as the susceptibility of exogenous surfactant pC

to be degraded to LPC by secretory PLA, activity. A significant increase in secretory pLA,

activity of TBS samples was observed in neonates with NRDS, the infants most likely to

receive exogenous surfactant replacement therapy. Additional trials addressing the effect

of intra-tracheal adminstration of LPC on the pulmonary vasculature of a newborn, NRDS

deficient animal model with equivalent lung epithelial damage as observed in clinical

infants are required to completely satisfy and confirm the aforementioned hypothesis.

vii



Foreword

The introduction of exogenous surfactant therapy as a treatment for neonatal

respiratory distress syndrome (NRDS) has led to a revolution in neonatal intensive care

(Corbet and Long, 1992). Although a significant reduction in neonatal morbidity and

mortality has been noted since its inception, numerous concerns have been raised wíth

regaid to which exogenous surfactant preparation should be employed, how it should be

administered, its composition and the disparity between measured in vitro biophysical

activity, as determined by surface tension lowering properties, and report ed ín vivo

efficacy- Studies addressing these concerns have revealed numerous differences

between exogenous surfactant preparations, such as the rapid onset of action of naturally

derived surfactant preparations following adminstration (Horbar et al., 1g93). Although

once thought to be a beneficial quality, rapid onset of action may be detrimental to the

immature neonate by rapidly shunting blood from the brain to the lung (Long, 1g93a). As

well, there is a growing concern regarding the possible transmission of infectious agents,

such as bovine spongiform encephalitis, from naturally derived surfactant preparations to

treated individuals (Long, 1993a) as well as the possible development of antibodies to

protein components of these preparations, which may later inhibit endogenous surfactant

development (Holm and Waring, 1993). ln this regard, synthetic surfactants seem the

logical choice for the treatment of NRDS, however, they seem to lack the in vÍro qualities

of naturally derived surfactant preparations and may themselves contain potentially

harmful components.

Current trends in surfactant research are directed at developing "3rd generation,,

surfactant preparations, termed designer surfactants, which would combine the most

beneficial properties of both naturally derived, "1st generation" surfactant preparations and



synthet¡c, "2nd generation" surfactant preparations (Holm and waring, 1gg3). A
comprehensive understanding of the pulmonary surfactant system, particularly the fate of

administered exogenous surfactant components, is paramount in the achievement of this

goal.

It is the purpose of this research thesis to address the vasoactive potential of

lysophosphatidylcholine (LPC), a component of administered exogenous surfactant and

a product of surfactant degradation in the lung, following exogenous surfactant

administration. The objectives of the present study were to: 1) determine the vasoactive

potential of LPC on the pulmonary vasculature in vitro,2) determine the susceptibility of

exogenous surfactant to secretory-type phospholipase A2 (PLA2) activity in vitro, 3)

measure and quantify lung PLA, activity in tracheo-bronchial secretion samples from

premature infants and 4) determine the vasoactive potential of LpC in yivo and the

potential of LPC to cross the lung epithelial-endothelial barrier to mediate a vasoactive

response on the pulmonary vasculature. An understanding of the vasoactive potentíal of

LPC on the pulmonary vasculature following surfactant administration may assist in the

development of future designer surfactant preparations, especially those developed for

target patient populations such as term newborns with persistent pulmonary hypertension

syndrome (PPHN).



Literature Review

lntrod uction

During respiration the exchange of gas is mediated across an air-liquid interface

(Hill and Wyse, 19Bg). The broncho-alveolar units of the lung represent the only internal

site within the mammalian body where this interface is present (King, 1gB4). There is a

great discontinuity in energy at this interface, the free energy of the alveolar surface being

much greater than the free energy of the two bordering phases; the liquid film which lines

the alveoli and the air in the alveoli itself (King, 1982). Pulmonary surfactant, a lipo-

protein complex which forms a monolayer lining the inner surface of the lung, acts to

reduce surface tension in the alveoli by reducing the transmural pressure required to keep

alveoli inflated, thus mediating the large discontinuity in free energy existing at the alveolar

surface (Clements, 1977; King, 1984). Surfactant is a contraction of the term ,,surface

active agent".

Neonatal respiratory distress syndrome (NRDS), a condition affecting 3O,O0O -

50,000 prematurely born babies in North America yearly and associated with a high

degree of morbidity and mortality, is caused by a deficiency or impairment of pulmonary

surfactant synthesis and/or secretion resulting in decreased lung compliance and altered

pulmonary function (Mines, 1993). NRDS infants must expend tremendous amounts of

energy to inflate their stiff lungs, and following inflation the lungs tend to deflate very

quickly and to abnormally low volumes (Mines, 1993). As well, alveoli of differing sizes

are not stabilized and smaller alveoli tend to collapse and become airless after inspiration



(Mines, 1993), emptying their contents into larger alveoli. NRDS is also associated with

the maintenance of an abnormally high pulmonary vascular resistance after birth (Kääpä

et al., 1993). Gas diffusion becomes compromised as alveolar membranes become

thickened and fibrinous in a condition secondarily referred to as hyaline membrane

disease (HMD)' As a result of the surfactant deficiency, the infant becomes hypoxic,

hypei"capnic, acidotic, and exhausted (Mines, 1gg3).

NRDS occurs primarily as a consequence of lung immaturity as type-ll epithelial

cells, alveolar epithelial cells of the lung responsible for surfactant production and

secretion, have not completely developed and do not adequately synthesize and release

sufficient quantities of pulmonary surfactant following birth (Avery and Mead, 1g5g).

NRDS may be secondarily caused by a contamination of the functional surfactant

monolayer with serum proteins, such as albumin, which leak into the lung and perturb

proper surfactant function (lkegami et al.,1gg4).

Surfactant production begins in utero, components first appearing on the fetal

alveolar surface at 25 weeks gestation (Mines, 1993) and detectable in amniotic fluid

samples in amounts which change towards the end of gestation in a manner related to

fetal lung maturity (Cosmi and DiRenzo, 19BB). lndeed, the incidence of NRDS increases

dramatically as an infants gestational age at birth decreases. lnfants born at 30-32 weeks

gestational age experience a 2Oo/o incidence rate of NRDS, whereas infants born at 26-2g

weeks gestational age experience a 60-80% rate of incidence (Jobe and lkegami, 1gg7).

The mortality of infants with NRDS has decreased dramatically in recent years

concomitant with recent advances in fetal monitoring and new therapies for the treatment

of neonatal respiratory failure, including the accurate prediction of fetal lung maturity

(lecithin/sphingomyelin ratio) (Gluck et al., 1971), improved amniocentesis diagnostics



(Hallman, '1984), and enhancement of fetal surfactant ,yntf,"ri, and secretion via

antenatal maternal glucocorticoid therapy (Hawkins and DiRenzo, 1g86). No treatment

for NRDS, however, has had the impact of exogenous surfactant replacement therapy,

first proposed by Enhorning et at. (1978) and successfully tested on humans by Fujiwara

et al. (1980). Since its inception, exogenous surfactant therapy has revolutíonized

neonatal intensive care and the treatment of premature infants and is regarded as the

single greatest development in neonatology (Dunn, 19g4). Following the inception of

exogenous surfactant replacement therapy for treatment of NRDS in 1g90, the United

States observed the largest decrease in infant mortality ever recorded (Long, 1gg3b).

Pulmonary Surfactant Secretion and Clearance

The normal metabolism, secretion and clearance of pulmonary surfactant has been

detailed in several exceptional reviews (Ballard, 1989; Batenburg, 1gg2; Jobe, 1gg4;

Possmayer, 1989; stevens et al., lg8g; Van Golde, 1976; wright, 1990; wright and

Clements, 1987; Wright and Hawgood, 1989; Wright and Dobbs, 1991). Epithelial type-ll

cells (granular pneumocytes) of the alveoli are responsible for the synthesis, storage,

secretion and clearance of pulmonary surfactant (Batenburg and Van Golde, 1g79; Van

Golde, 1976) (Figure 1). Type ll cells are cuboidal epithelial cells which account for 15%

of all cells of the lung (40 cell types) (Crapo et al.,1gB3), yet cover <So/o of the alveolar

surface area (Dobbs, 1990). Surfactant lipids and proteins are synthesized in the rough

endoplasmic reticulum (RER) and assembled in the Golgi apparatus. Lipids are

specifically packaged into small lamellar bodies (LB) (Chevalier and Collet, 1972) and

proteins into multivesicular bodies (MVB), where they are both transported to growing

LB's. The mature LB's contain phospholipids, surfactant proteins A (OReilly ef a/., lgg3;
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Figure 1. Secretion and Clearance of Pulmonary Surfactant. Schematic diagram of the synthesis, secretion and clearance
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Walker et al.,1986), B (Weaver and Whitsett, 1989) and nyOrolytic enzymes (Chander and

Fisher, 1990) in an acidic environment (Chander et al.,1gBO). The hydrolytic enzymes

are isolated to the cylindrical core of the LB (Hook and Gilmo re, 1gg2) from which

phospholipid lamellae originate and appear to wrap around (Scarpelli, lgg9). The

presecretory LB's also act as temporary storage vesicles for lipid and protein material and

are eventually extruded by exocytosis into the extracellular fluid of the alveolar

microenvironment. The secretion of surfactant by type-ll cells is regulated locally by

increased tidal volumes, effecting a mechanical or shear stress on the epithelial cell layer,

and by increased ventilation rates, possibly altering intracellular pH (alkalosis) (Chander

and Fisher, 1990). Secretion is also stimulated by agonists for p-adrenergic,

purinoceptors and vasopressin receptors (Chander and Fisher, lggo). Through an

extracellular conversion process in the alveolar subphase, the contents of the LB's once

extruded expand to form tubularmyelin (TM) (Williams, 1977), a liquid crystal lattice-like

structure which is the contributing form to the generation of a surfactant monolayer (Gil

and Reiss, 1973). The mechanism which initiates this conversion presenfly remains

unclear, but observations in vitro suggest the requirement for calcium (Gil and Reiss,

1973; Sanders et a\.,1980). The processes which mediate the transformation of pC from

TM to the'surfactant monolayer also remain unclear, but it appears that phospholipids

other than dipalmitoyl phosphatidylcholine (DPPC) and phosphatidytgtycerol (pG) are

excluded.

Surfactant is potentially cleared from the alveolar microenvironment by uptake into

epithelial cells, including type-|, type-ll or tracheal epithelial cells, alveolar macrophages

and diffusion into the blood through the epithelial-endothelial barrier (Wright, 1990). The

uptake of surfactant by type ll epithelial cells constitutes the major route of surfactant



clearance (Wright and Clements, 1987). Surfactant internalized by type-ll cells via

endocytosis is either degraded and reutilized for synthesis of new lipids or recycled intact

by incorporation into lamellar bodies for resecretion (Hallm an et al.,1gB1). Factors which

determine the rate of surfactant internalization by type-ll cells are not completely clarified

but include the surfactant proteins (Wright, 1990), lipids (Chanderef a/., 1gB3), and known

stimr-ili of surfactant secretion including increased tidal volume and ventilation rates

(Oyarzún et a|.,1980).

Composition of Pulmonary Surfactant

The general chemical composition of natural pulmonary surfactant ís quite similar

in all mammalian models studied, being comprised of approximat ely 2% carbohydrate, g%

protein and 90% lipid (Harwood ef al., 1975; possmayer, 1gB4).

Lipid Component

Approximately 80-90% of the mass of pulmonary surfactant is composed of lipids

including phospholipids and neutral lipids (King and Clements, 1972). Most of the

phospholipid component is comprised of disaturated phosphatidylcholine (70-g0%) with

smalleramounts of PG, phosphatidylethanolamine, phoshatidylinositol, phosphatidylserine,

and sphingomyelin present (Possmayer, 1984). Of the PC component, 50-70% by weight

consists of DPPC, the major surface active component of pulmonary surfactant. DppC

consists of a small, polar, hydrophilic phosphocholine head and a nonpolar, hydrophobic

tail of two saturated palmitate residues bound to a glycerol backbone (Figure 2). pG, the

second most abundant phospholipid in surfactant accounting for 1 O% of the total lipid

(Rooney et al., 1974) acts to facilitate clearance of DPPC from the airspace (Oyarzún et
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a/., 1980) by stimulating lipid uptake by type-ll cells. Neutral lipid components include

cholesterol which accounts for less than 5% of surfactant mass and diacylglycerol which

accounts for less than 1% (King and Clements, 1972).

Synthesis of Dipalmitoyl Phosphatidylcholine (DPPC)

PC, the most investigated surfactant phospholipid, is synthesized de novo almost

exclusively by the incorporation of choline and phosphatidic acid in the cytidine

diphosphate (CDP)-choline pathway (Ballard, 19Bg; Possmayer, 19Sg) (Figure 3). Choline

is phosphorylated by choline kinase (EC 2.7.1.32) and activated via attachment of cytidine

S'-diphosphate (CDP) in a process mediated by choline-phosphate cytidylyl transferase

(EC 2.7.7.15) yielding CDP-choline (Batenburg, 1992). Phosphatidic acid is hydrolysed

to diacylglycerol by the action of phosphatidate phosphatase (EC 3.1.3.4). PC is

synthesized from both diacylglycerol and CDP-choline in a reaction catalyzed by choline

phosphotransferase (EC 2.7.8.2). lnvestigators addressing observed differences in the

rate of incorporation of radiolabeled palmitate residues into disaturated diacylglycerol and

DPPC suggested that not all surfactant DPPC is formed entirely de novo, as described

above, but is a product of PC remodelling as well (Post ef a/., 1983). PC remodelling

begins with the deacylation of an unsaturated fatty acid residue at the 2-position of a PC

molecule containing a palmitoyl moiety at the 1-position by PLA, (EC 3.1.1.4) yielding 1-

palmitoyl LPC. Reacylation of the 2-position is achieved with palmitoyl-CoA in a reaction

catalyzed by acyl Coenzyme A:LPC acyltransferase (LAT) (EC 2.3.1.23) or by

transacylation of two 1-palmitoyl LPC molecules in a reaction catalyzed by LPC:LPC

acyltransferase (Batenburg, 1992). Type-ll cells are highly enriched in LAT and the LAT

pathway is postulated to be the most important in the remodelling of PC (Van Heusden
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et at.,1980). The de novo pathway of DPPC synthesis accbunts for 45o/o of secreted

surfactant DppC whereas remodelling accounts for 55o/o (Den Breejen et al.,19Bg).

Protein ComPonent

proteins account for approximately 1 O% of the mass of pulmonary surfactant and

incluäe both serum and non-serum proteins (Whitsett, 1994). lt is not clear if serum

proteins are secreted by LB's or are present in alveoli as a result of leakage into air

Spaces. Four non-serum proteins, however, are unique surfactant components and play

an essential role in the metabolism and dynamics of pulmonary surfactant (Van Golde ef

at., 1gg4). These surfactant proteins have been the subject of several recent reviews

(Hawgood, 1989; Possmayer, 1988; Weaver, 1988; Weaver and whitsett' 1991)'

Surfactant Protein-A

The hydrophilic glycoprotein surfactant protein A (sP-A) (King, 1974; King and

Clements, 1g72; King et a1.,1973), the most abundant of the surfactant proteins, consists

of 1B monomers (26-36 kDa) arranged as a sulfhydryl dependent oligomer of six triple

helices (650 kDa) (Whitsett, 1994). Similar sP-A products are encoded by two different

mRNAs (Floros et al.,1gg5) and undergo considerable post-translational modifications in

the RER including siacylation (Katyal and singh, 1984), acetylation (Floros et al., 1985)'

sulfation (Weaver et al., 1982), glutamate carboxylation (Rannels et al', 1987) and

glycoslation (whitsett ef a/., 1985). SP-A has been localized to the Golgi apparatus, RER

and LB,s of epithelial type-ll cells, and is also produced and secreted by epithelial Clara

cells (Walker et al.,1986; Wright and Clements, 1987)'

ln the alveolar microenvironment SP-A is postulated to function in feedback

12



inhibition of surfactant phospholipid metabolísm, inhibiting the secretion of DppC from

type-ll cells (Dobbs et al., 1987; Kuroki et al., 19BB) and enhancing the uptake of

surfactant liposomes by type-ll cells (Rice et al., 1989; Wright et al., 1987). Sp-A has also

been localized by immunocytochemistry at or near the corners of the TM lattice suggesting

a role for SP-A in the organization of phospholipid in the alveolar microenvironment

(Walker et a|.,1986). ln the presence of Ca2*, SP-A potentiates the effect of Sp-B and

SP-C, increasing the adsorption rate of TM PC in the subphase to the surfactant

monolayer (Hawgood et a\.,1985; Hawgood ef at., 1997). sp-A is also proposed to play

a role in host defense. SP-A belongs to a group of proteins called collagenous C-type

lectins (collectins), which include congluttin and mannose binding protein, both which have

remarkable structural homology (amphipathic helical domains) and functional similarities

with SP-A and are implicated to play a role in non-antibody mediated host defense against

microbes (Whitsett, 19BB). lndeed, SP-A has been demonstrated to enhance the

phagocytotic activity of alveolar macrophages (Van lwaarden et al., lggo).

Surfactant Protein-B

The hydrophobic surfactant protein B (SP-B) is a basic peptide of 79 AA (Curstedt

et a|.,1988; Olafson ef al., 1987) which in non-reducing conditions exists as a sulfhydryl

dependent homodimer (18 kDa). The precursor form of SP-B (40-42 kDa) (Jacobs ef a/.,

1987) has been localized to the RER, Golgi apparatus, and MVB's of type-ll cells,

whereas the mature form has been isolated to the MVB's and LB's where it is co-secreted

with phospholipids into the alveoli (Voorhout et al.,1992). SP-B is highly surface active

and acts in cooperation with SP-A to increase the rate of adsorption of pC from TM in the

subphase to the surfactant monolayer (Hawgood et a|.,1987). Sp-B also enhances pC

13



uptake by type-ll cells (Rice et a1.,1989). SP-B is critical to lung function post-parturition

(Nogee et al., 1993) and its presence in amniotic fluid predicts normal lung function in

premature neonates (Pryhuber et al.,1991).

Surfactant Protein-C

The hydrophobic surfactant protein C (SP-C) exists as a disulfide dependent

homodimer. The precyrsor form of SP-C (20-22 kDa) is co-localized in type-ll cells with

precursor SP-B. Mature SP-C (5 kDa), which contains 1 or 2 palmitoyl groups linked to

cysteine residues at the NH, terminal, is highly localized in the LB's and co-secreted into

the alveoli with SP-B and phospholipid (Whitsett, 1994). SP-C, like SP-8, also acts to

increase the rate of PC adsorption from TM to the surfactant monolayer, but not as rapidly

as does sP-8. sP-c also enhances PC uptake by type-ll cells (Rice et a1.,1989).

Surfactant Protein-D

The hydrophilic glycoprotein surfactant protein D (SP-D), recently identified in rat

bronchoalveolar lavage (BAL) (Persson et at.,1988; Persson ef a/., 19Bg), is a multimer

of disulfide bonded trimers composed of 12,43 kDa polypeptides. Like sp-4, sp-D

contains a collagen-like domain at its amino terminal and is a member of the calcium-

dependent lectin protein family believed to play an important role in non-antibody mediated

host defense mechanisms (Scarpelli, 1990).

Biophysical Mechanism of Action

Ventilation is influenced by three properties of the lung: 1. compliance, or

distensibility of the lungs, 2. elasticity, or tendency of the lung to resist deformation and

14



3. surface tension (Leff and Schumacker, 1993). Surface tension occurs at the air-surface

interface of the liquid lining the alveoli as a consequence of the mutual attraction between

lateral liquid molecules at the liquid surface. Surface tension and tissue elasticity in the

lung produce an inward directed force which is directly proportional to surface tension but

inversely proportional to the radius of the alveoli (Figure 4). According to the Law of

LaPläce, alveoli of differing radii would thus have differing surface tensions, the smaller

the alveoli the greater the surface tension. Therefore smaller alveoli would have the

tendency to collapse and empty their contents into larger alveoli with a lower surface

tension. lt is the primary role of pulmonary surfactant to ensure that this does not occur.

DPPC, the major surface active component of surfactant (King, 1974), possesses the

biophysical structural properties to facilitate the disruption of surface tension. lts

hydrophobic and hydrophilic properties orient this molecule perpendicular to the surface

of a liquid with its hydrophilic polar head dissolved and its hydrophobic nonpolar tail

extending above the liquid surface. ln this orientation, DPPC facilitates the disruption of

the lateral mutual attraction between water molecules at the liquid surface and

consequently decreases alveolar surface tension. Pulmonary surfactant not only lowers

surface tension in the alveoli, but its surface tension lowering properties become improved

as the radius of each alveoli becomes smaller during expiration (Figure 5). DPPC, a solid

at normal body temperature, resists surface compression (Van Golde et al., 1994).

Consequently, as the alveoli become smaller during expiration and the surface tension of

the lung is expected to increase, the surface area of the lung becomes smaller and more

fluid unsaturated lipid molecules in the surfactant monolayer get "squeezed out" and the

DPPC film at the surface becomes more refined. The extent to which "squeeze out"

occurs is determined by the presence of acyl chain unsaturation and also by the rate of
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surface film compression (Pastrana-Rios ef al., 1994). The greater the decrease in

surface area of the lung, the greater the refinement of the monolayer and concomitan¡y

the greater the surface tension lowering properties of the surfactant monolayer. As the

DPPC resists surface compression, it also builds a film pressure which counteracts the

surface tension and tissue elasticity in the alveoli (Mines, 1993).

' Surfactant thus prevents alveoli from collapsing due to surface tension and tissue

elasticity. Even upon complete expiration the alveoli remain open with a residual volume

of air inside, thus decreasing the surface tension which has to be overcome during

inspiration. Therefore, the stabilization of the terminal airspaces becomes independent

of alveolar size (Mines, 1993). Recruitment of mixed film components into the surfactant

monolayer occurs as the surface area of the lung increases during inspiration (Wright and

Hawgood, 1989).

Surfactant is also proposed to be critical in the prevention of pulmonary edema

(Gil, 1985; Pattle, 1958) by decreasing the driving force for edema formation.

Efficacy of Exogenous surfactant as a Treatment for Neonatat
Respiratory Distress Syndrome (NRDS)

Exogenous surfactants utilized in the treatment of NRDS have been classifìed into

4 general categories depending on their origin; natural surfactants, modified natural

surfactants, artificial surfactants and synthetic natural surfactants (Jobe and lkegami,

1987). Exogenous surfactant treatment may be preventive through prophylactic

administration, which ensures early treatment, or through a rescue treatment protocol

following diagnosis of NRDS. ln recent years there has been a considerable number of

randomized controlled clinical investigations determining the benefit of single (Corbet ef

al, 1991a; corbet et al., 1991b; Horbar et al.,1989; Horbar et al., 1990; Kendig et al.,
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19BB; Kwong et a|.,1985; Soll et al., 1990; Stevenson et al., 1992), and multiple (Auten

et al., 1991; Hoekstra ef al., 1991; Liechty et al., 1991; Long et al., 1991) administration

regimens of synthetic and natural exogenous surfactants for the treatment of NRDS. As

well, trials comparing single vs. multiple regimens (Dunn et a1.,1990; Speer et al., 1gg2)

have also been completed. Comparison of these trials is extremely difficult and is further

comþlicated by the dosing protocol used (prophylactic or rescue), the surlactant type

incorporated (natural or synthetic), and the differing gestational ages and birth weights and

resultant degree of NRDS of enrolled infants. ln general, an improvement in lung function

and oxygenation was observed in the early period following a single dose administration

of exogenous surfactant (Corbet et al., 199'1a; Corbet et al., 1991b; Soll ef a/., 1990;

Kendig et al.,19BB; Kwong et a|.,1985). A decrease in mortality was obseryed in a few

of these trials (Corbet et al., 1991a; Soll ef a/., 1990). lt was suggested in one single

dose study that the benefits of multiple post-ventilatory doses of exogenous surfactant

would be required for optimal therapy (Kendig et al., 19BB). Multiple dosing studies

seemed to demonstrate a greater improvement in lung function and oxygenation

parameters of infants and a much lower incidence of NRDS during the first 72 hours

following administration (Kendig et al., 1989). lt was confirmed that treatment with multiple

doses of surfactant was more effective than single-dose treatment in sustaining improved

oxygenation and reducing overall mortality (Dunn et al., 1990; Hoekstra et al., 1991; Merrit

et al.,19B6a; Speer et a|.,1992; Ten Centre Study Group, 1987).

There has also recently been an interest in comparing the efficacy of synthetic

surfactant preparations with naturally derived surfactant preparations. There have been

3 clinical trials comparing the naturally derived surfactant preparation Survanta@ with the

synthetically derived Exosurf@ (Horbar et al.,1993; Mondalou ef al., 1994', Vermont Oxford
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Trials Network, 1994). Although results indicate that one preparation was not superior to

the other in the overall reduction in infant mortality, it appeared that the initial response

to treatment with naturally derived exogenous surfactant preparations, as measured by

Fto, and MAP, was quicker and more profound (Horbar et al., 1993). lt has been

suggested that this rapid response may be a consequence of the presence of the

hydrbphobic surfactant proteins SP-B and SP-C in the naturally derived preparations

(Dunn, 1994). ln general, studies of naturally derived preparations vs. synthetic

preparations indicated that infants treated with natural surfactants consistently required

less ventilatory support over the first few days of life (Dunn, 1994), but no differences in

the decrease of overall mortality were observed.

Effect of Surfactant on Pulmonary Hemodynamics

A decrease in pulmonary vascular resistance (PVR) following exogenous surfactant

administration has been reported in human neonates (Kääpä et al., 1992; Kääpä et al.,

1993). ln an immature baboon model of NRDS, a transient increase in lung blood flow

was observed following surfactant treatment and returned to pretreatment levels after 7

hours (Vidyasagar et a|.,1985). As well, a significant increase in the left-to-right shunt of

blood across the patent ductus arteriosus (PDA) was obseryed following surfactant

administration in an preterm lamb model of NRDS (Clyman et a1.,1982). The PDA acts

as a large communication corridor between the aorta, which exits the left ventricle, and

the pulmonary artery, which exits the right ventricle, in the neonate. Aortic and pulmonary

pressures are relatively equal across the PDA and any shunting of blood across the PDA,

be it left-to-right or right-to-left, is a consequence of changes of the vascular resistance

of the pulmonary or systemic vasculature (Rudolph, 1974). An increase in left-to-right
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shunting could therefore be due to increased systemic vasculàr resistance or decreased

PVR. The left-to-right shunting observed following exogenous surfactant administration

has been confirmed to be a result of decreased PVR (Clyman et al., 1982).

Although the underlying cause of the decrease in PVR following exogenous

surlactant replacement therapy presently remains unclear, numerous explanations for this

obseivation have been proposed. The reported decrease in PVR could strictly be a result

of extra-alveolar vessels becoming "uncollapsed" as lung mechanics improve following

surfactant administration. The recruitment of alveoli following exogenous surfactant

administration leads to an increase in alveolar volume which tends to stretch and distort

these collapsed vessels augmenting their diameter and minimizing their resistance (Leff

and Schumacker, 1993). Another plausible explanation is that exogenous surfactant

administration improves lung mechanics and oxygenation which concomitantly reverses

hypoxic pulmonary vasoconstriction (Leff and Schumacker, 1993). This improved

availability of oxygen may lead to oxygen-mediated pulmonary vasodilation and a resultant

decrease in PVR. lt has also been suggested that an improvement in respiratory acidosis

as a result of improved lung mechanics results in increased blood flow to the lungs

(Clyman et a|.,1982). These explanations for the decrease in PVR following exogenous

surfactant administration are based on the biophysical improvements in lung mechanics

afforded by surfactant.
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Hypothesis

It is the purpose of this thesis and the research reported herein to attempt to

address, on a pharmacological level, a thírd plausible explanation for the observed

decrease in PVR following exogenous surfactant administration. This thesis addresses

the hypothesis that surfactant replacement therapy in NRDS significantly reduces pVR

through endothelium-dependent LPC induced vasorelaxation of pulmonary arterial smooth

muscle. Potentially elevated secretory PLA, activity associated with NRDS and lung

inflammation may lead to deacylation of DPPC, present in exogenous surfactant, and

accumulation of LPC in the lung which diffuses across the epithelial-endothelial barrier and

mediates relaxation of the pulmonary vasculature.

Background and Rationale

The rationale for the testing of this hypothesis is based on the following

background information regarding the potential role of biochemical agents, including PLA,

and LPC, in NRDS.

Phospholipase Enzymes

Phospholipases constitute a diverse family of enzymes that catalyze the hydrolysis

of membrane phospholipids (Kais er et al., 1990). Pl-A, (phosphatide 2-acylhydrolase, EC

3.1.1.4) specifically hydrolyses the 2-acyl position of a glycerophospholipid yielding a

lysophospholipid and a free fatty acid (Vadas and Pruzanski, 1986). Two distinct forms

of PLA, occur in the lung: a secretory-type PLA, and a cytoplasmic-type pLAr. There are

two distinct forms of cytoplasmic-type PLA, limited to the cytosolic compartment in

association with the plasma membrane or within organelles of the vacuolar system
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(Kramer et at., 1990): 1) a Ca2.-independent, acidic pH optimum form identified in lamellar

bodies, the organelle for surfactant secretion and storage (Heath and Jacobson, 1976)

and 2) a Ca2.-dependent, alkaline pH optimum form associated with the lung microsomal

or mitochondrial fraction (Filgueiras and Possmayer, 1990; Chander et al., 1gB2). The

secretory-type PLAr, immunologically related to pancreatic PLA, is Ca2.-dependent (in

mM iange) with optimal activity at an alkaline pH (B.s) (Bennetet ar.,1990).

Lung phospholipases, especially the cytoplasmic-type PLA2, play an important role

in the remodelling and recycling of phospholipid components of pulmonary surfactant.

However, elevated or skewed levels of secretory-type PLAr, could potentially hydrolyse

the surfactant phospholipid component yielding increased concentrations of LPC and free

fatty acids as by-products in the lung, and potentially inactivate surfactant biophysical

activity. Elevated levels of PLA, activity in serum and in lung lavage has been reported

in adult respiratory distress syndrome (ARDS) (Romaschin et al.,1992) and in a rat model

of ARDS (Von Wichert et al., 1981). As well, the composition of pulmonary surfactant

from individuals with ARDS consistently demonstrates a decrease in phospholipid

concentration concomitant with an increase in LPC concentration, a trend which is

accordant with increased secretory Pßz activity in the lung (Gregory et al., 1991; Hallman

et a|.,1982; Petty et al., 1977). The deleterious effect of PLA, upon surfactant is further

supported by a 42% decrease in DPPC, associated with a S-fold increase in PLA, activity,

observed in lung lavage samples from dogs with induced pancreatitis (Das et al., 1987;

Morgan et a|.,1968).

Although attempts have been made to characterize lung secretory PLA, activity in

individuals with ARDS, limited data regarding the lung content and activity of secretory

PLA, in newborns with NRDS are available. NRDS is a condition primarily caused by
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deficiency of surfactant, but symptomatic and radiologic similarities with ARDS (Hallman

et al., 1982) suggest the potential forincreased PLA, activity in NRDS individuals as well.

Most, if not all, infants with NRDS are maintained on respiratory support.

Ventilation of surfactant-deficient lungs is associated with necrosis and desquamation of

airway 
"pithelium 

within minutes of ventilation causing epithelial lesions and triggering an

inflammatory response (Robertson, 19BB). secretory PLA, is a mediator of inflammatory

eicosanoid production, and plays an important role in the initiation and propagation of

inflammatory processes (pfeilschifter, '19g5; Vadas and pruzanski, 19go).

Lysophosphatidyrchorine (Lpc) Mediated vasoretaxation

PLA, catalyzes the deacylation of a variety of PC's resulting in the formation of

various forms of LPC, collectively known as lysolecithins. LpC's have been shown to be

endothelium-mediated vasorelaxants of the pulmonary (Bing and Saeed , 1gB7; Bing et al.,

19BB; Saíto ef a/., 19BB; Wolf ef a/., 1991) and systemic vasculature (Menon and Bing,

1991; Dudek et al., 19g3) both in vitro and in vivo. ln general, the degree of

vasorelaxation is dependent on LPC aliphatic chain length, those LpC,s with the longest

aliphatic chains possessing the greatest relaxing activity (Saito et al.,1ggg). palmitoyl

LPC, for example, has been shown to be a particularly effective systemic vasorelaxant in

vffro (Saito et al.,19BB). This LPC species is formed via PLA, catalyzed deacylation of

DPPC, the most widely used PC in artificial surfactant for the treatment of NRDS. lt is

also the principal surface-active ingredient of natural surfactant (Klaus et a:.,1961).
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Research Protocol Outline

The hypothesis that exogenous surfactant replacement therapy in NRDS leads to

a significant reduction in PVR through an endothelium dependent LPC induced

vasorelaxation of pulmonary arterial smooth muscle was tested with four independent

research protocols. LPC may be present in the exogenous surfactant itself, or may be

generated in the lung by increased levels of secretory PH'

1. ln vitro analysis of the vasoactive effects of LPC on putmonary arterial
preparations from newborn and adult guinea pigs. This study addressed the potential
age related vasoactive differences to LPC and the role of the endothelium in this
response. As well, the role of nitric oxide synthase (NOS) and guanylate cyclase (GC)
activity in the mediation of a vasoactive response to LPC was investigated in both adults
and newborns.

2. Determination of the secretory PLA, deacylation profile of the PC pool
present in two commercially available exogenous surfactant preparations, the
synthetic Exosurf@ and the naturally derived Survanta@. The LPC which mediates the
vasorelaxation of the pulmonary vasculature following exogenous surfactant administration
may be present in the surfactant as part of its composition or may be generated in the
lung by increased levels of secretory Pßr. This study addressed the potential
susceptibility of two exogenous surfactant preparations, currently employed in Canadian
hospitals for the treatment of NRDS, to secretory PLA, activity; the artificial surfactant
Exosurf@ neonatal (Burroughs Wellcome) and the modified natural surfactant Survanta@
beractant (Ross Laboratories).

3. Determination of lung secretory PLA, activity in pre-term infants suffering
from NRDS. Following exogenous surfactant treatment, greater amounts of LPC than
present in exogenous surfactant may be generated in the lung by secretory PLA2,
compounding the vasoactive potential of LPC. This study measured the relative levels of
secretory PH, activity from tracheo-bronchial secretions (TBS) samples obtained from
pre-term infants with NRDS in the neonatal intensive care unit (NICU) at the University of
Manitoba Health Sciences Centre (HSC) to determine any correlation between degree of
prematurity and the levels of secretory PLA, activity.

4. Determinat¡on of the effects of LPC on pulmonary vascular resistance
following ín vívo administration into the pulmonary vasculature and tracheal
instillation in lung ventilation/perfusion studies. This study attempted to confirm rn
vivo the effects of LPC on the pulmonary vasculature previously observed in vitro. As
well, this study attempted to determine the ability of for intra-tracheally administered LPC
lo cross the epithelial-endothelial barrier and mediate a vasoactive response within the
pulmonary vascular bed.

25



ln vitro Analysis of Lysophosphatidylcholine (LPc) on pu¡monary Arterial

Preparations

lntroduction

LPC, a product of PLA, (EC 3.1 .1 .4) hydrolysis of the acyl moiety at the 2-position

of PC, is an endothelium-dependent relaxant of precontracted systemic (Bing and Saeed,

1987; Bing et al.,19BB; saito et al., 1988; wolf et al., 1991) and pulmonary (Dudek ef a/.,

1993; Menon and Bing, 1991) arteries. This was determined following the observation

that melittin, an activator of PLAr, and thimerosal, an inhibitor of acyl-coenzyme

A:lysolecithin acyltransferase (EC 2.3.1.23), both induced endothelium-dependent

vasorelaxation in precontracted vascular preparations (Förstermann et al., 1986) (Figure

6). LPC, via its detergent properties, perturbs cell membrane architecture influencing

membrane receptor function and the activity of membrane associated enzymes (Bing ef

a/., 1993; Saito ef a/., 19BB). LPC modulates the activity of many enzymes (Kirschbaum

and Bosmann, 1973; Kirschbaum and Bosmann, 1974 Mookerjea and yung, 1gl4a;

Mookerjea and Yung, 1974b; Oishi ef a/., 1988; Sandermann, 1978; Shier and Trotter,

1976) including guanylate cyclase (GTP pyrophosphate-tyase (cyctizing)) (EC 4.6.1.2)

(Menon ef al., 1989; shier et al., 1976; white and Lad, 1975;zwiller et al., 1976). Lpc

induced vasorelaxation of precontracted smooth muscle preparations is accompanied by

an observed rise in cyclic guanosine 3',5'-monophosphate (cGMP) (Menon et al.,1g8g),

a well established intracellular mediator of vasodilation (Murad, 1986). Endothelium-

dependent LPC induced vasorelaxation is also mediated by endothelial derived nitric oxide

(Dudek et al., 1993). Recently, LPC has been shown to enhance the enzymatic activity

of nitric oxide synthase (NOS) (EC 1.14.13.39) from cultured aortic endothelial cells

(Ohashi et al., 1993). LPC-induced vasorelaxation, therefore, is likely mediated by the
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direct activation of guanylate cyclase (GC) leading to increased intracellular cGMp

production and smooth muscle relaxation or via alteration of NOS activity leading to

endothelium derived nitric oxide (EDNO) mediated increase in soluble guanylate cyclase

activity, increased intracellular cGMP production and smooth muscle relaxation (Figure 7).

Although unclear, it appears that increased cytoplasmic cGMP promotes the reduction of

intraÒellular Caz* concentration ([Ca2.],) through activation of cGMp-dependent protein

kinases which in turn phosphorylates phospholamban and cytoskeletal proteins which

upregulate Ca2.-ATPase activity on the sarcoplasmic reticulum and plasma membrane

lowering [Cat-], and promoting smooth muscle relaxation (Lincoln and Cornwell, 1993).

It has also been suggested that elevated cytosolic cGMP may inhibit inositol-1,4,5-

triphosphate (lP.) formation and lP. receptor activity, inhibiting the release of Ca2* from

the sarcoplasmic reticulum, and that cGMP decreases the sensitivity of contractile proteins

to increased [Ca2.]¡ (Lincoln et at., 1g94).

Although LPC-mediated vasorelaxation has been observed in precontracted

pulmonary arterial preparations from adult animal models there has been no attempt to

characterize the vasoactive potential of LPC in newborn pulmonary arterial preparations.

Evidence suggests that aging is associated with thinning and loss of endothelium (Bar,

1978; Stewart et al., 1987) and that endothelium-dependent vasorelaxation in the rat is

impaired in an age-related manner (Hongo et a1.,1988; Moritoki et al.,1g86; Soltis, lgBB).

The vasoactive potential of LPC on the pulmonary vasculature of the newborn is of

particular interest given the recent increase in usage and acceptance of exogenous

surfactant as a therapy for the treatment of NRDS. Exogenous surfactant preparations

contain tremendous amounts of PC in the form of DPPC, approximately 13 mg/ml of

surfactant. lndividuals may be administered up to 100 mg of phospholipids/kg birth weight

which is susceptible to PLA, degradation. Naturally derived exogenous surfactant
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in Lysophosphatidylcholine (LPC) Mediated Smooth Muscle Vasorelaxation. LpC has
been demonstrated to increase the activity of both endothelial NOS and GC activity. LpC
mediated smooth muscle vasorelaxation is associated with an íncrease in cyclic guanosine
monophosphate (CGMP), a well established intracellular mediator of vasorelaxation,
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and methylene blue (MB) are inhibitors of Nos and GC respectively.
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preparat¡ons, such as Survanta@, already contain LPC as parl of their composition

(Duncan et al., 1995).

The purpose of this study was to investigate, in vitro, potential differences in

vascular reactivity between precontracted newborn and adult guinea pig pulmonary arterial

preparations to LPC. Given that pulmonary endothelial NO production is developmentally

regulated (Shaul et al., 1993), we also investigated the role of NOS and GC in the

response of each.

Materials and Methods

Materials

L-c¿-LPC (derived from egg yolk), L-phenylephrine hydrochloride, acetylcholine

chloride (ACh), propranolol HCl, potassium chloride, sodium bicarbonate, sodium chloride,

dimethyl sulfoxide, Nc-monomethyl-L-arginine and methylene blue were purchased from

Sigma Chemical Co. (St. Louis, MO). Sodium phosphate monobasic, magnesium sulfate,

calcium chloride, and D-glucose anhydrous were purchased from Mallinckrodt division of

Anachemia Science (Winnipeg, MB). Ketalean" lketamine hydrochloride) was purchased

from MTC Pharmaceuticals (Cambridge, ON) and Rompunt (xylazine) obtained from

Bayvet Division, Chemagro Limited (Etobicoke, ON). Pentobarbitone sodium was

purchased from BDH lnc. (Toronto, ON).

Pulm onary Arterial Preparations

Female adult (800-1000 grams, >2 months of age) and newborn (90-110 grams,

<3 days of age) Hartley guinea pigs were studied under a protocol approved by the

University of Manitoba Ethics Committee on animal experimentation. Animals were

sedated with intramuscular injections of Rompun@ (xylazine) (5 mg/kg) and Ketalean@
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(ketamine hydrochloride) (20 mg/kg) prior to being anaestheiizeO with an intraperitoneal

injection of sodium pentobarbitone (30 mg/kg). Following sternotomy, the heart and lungs

were removed and immediately immersed in Krebs-Henseleit solution (115 mM NaCl,25

mM NaHCo3, 1.38 mM NaHPo4,4.51 mM KCl, 2.46 mM MgsooTHro, 1.91 mM caclr,

and 5.56 mM D-glucose anhydrous) at 37oC, saturated with 95% O¡ío/o CO2. Under a

dissècting microscope the pulmonary trunk was carefully freed of adhering adventitial

connective tissue, removed, and cut into transverse rings 1.5-2.5 mm in width. Care was

taken to ensure that the arterial rings were obtained from the medial portion of the

pulmonary trunk in order to avoid a preparation which contained the vestígial ductus

arteriosus in newborns and ligamentum arteriosum in adults. Arterial ring preparations

were immediately suspended from the magnesium arm of an electromagnetic isometric

force transducer by 7-0 braided silk (Ethicon Ltd), from a wire triangle to a fixed wire post

in a muscle bath chamber of 40 ml. The muscle bath was filled with Krebs-Henseleit

solution maintained at 37"C and constantly perfused with 95% Ozlío/o CO2. The

preparations were suspended at a resting tension of 2 mN for a one hour equilibration

period prior to experimentation.

Pharmacologic Smooth Muscle Mechanical Studies

Following equilibration, immediately prior to experimentation, the vessel bath

medium was renewed. All preparations were tested isometrically at their optimal length

which was determined by 2 supramaximal electric field stimulations (1B.BV, 12s, 60Hz) of

each preparation, 5 minutes apart, at 2 mN incremental preloads. The major function of

vascular smooth muscle is the regulation of vascular tone and resistance in which

shortening parameters are the important ones to study. The smooth muscle mechanical

studies were conducted under isometric conditions, however, because study of isotonic
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relaxation is problematic in that there is lack of a valid index which should be independent

of the load on the muscle and the muscles initial contractile element length which both

affect isotonic relaxation.

The optimal length (Lo) of each preparation was determined when the increase in

force generation to electrical stimulation at each increased preload was less than 1 Oo/o al

the previous preload. The force measured at Lo was considered to be maximal active

tension (Po). Vessel width, circumference, and weight were measured immediately

following the experimental protocol. Stress was normalized to the vessel segment cross

sectional area (weighUresting length) assuming a wall vessel density of 1.06 g/cm3.

Newborn and adult preparations were both tested under four experímental

conditions: 1) with endothelium intact (+f¡do), 2) with endothelium denuded (_Endo), 3)

with endothelium intact and NOS chemically inhibited with Nc-monomethyl-L-arginine

(+Endo(L-NMMA)), and 4) with endothelium intact and GC activity chemicalty inhibited with

methylene blue (+Endo(MB)). -Endo preparations had the endothelium physically

removed by gentle mechanical abrasion of the intimal surface with a tapered wooden

applicator stick. All preparations were precontracted with a concentration of phenylephrine

(PE) which was determined to induce a 50% maximal PE contraction (3x10-6 M). To

facilitate the maintenance of a steady tension plateau with PE, the B-blocker L-propranolol

(2x10's M) was added to the muscle chamber 30 minutes prior to PE precontraction to

eliminate non-specific B-adrenergic vasorelaxation. Chemical blockade of NOS activity

in +Endo(L-NMMA) preparations was achieved by pre-exposíng preparations to the L-

arginine analogue L-NMMA (1x10-3 M) 30 minutes prior to PE precontraction. Blockade

of GC activity in +Endo(MB) preparations was achieved by pre-exposing preparations to

methylene blue (MB) (10-10-10" M) prior to PE precontraction. When a steady tension

plateau was achieved following PE addition, cumulative doses of ACh (10-8-10-3 M) were

32



added to the muscle chamber as a means of confirming the integrity of the endothelium.

Following confirmation of endothelial integrity the preparation was washed, allowed to re-

equilibrate, precontracted, and exposed to cumulative doses of LpC (10-8-10" M). The

LPC used was derived from egg yolk and contained primarily palmitic (67.1%), stearic

(28'60/o), and oleic (1.8%) moieties of LPC. The LPCwas dissolved in 0.1 ml of dimethyl-

sulfoxide (DMSO) and 0.9 ml of Krebs-Henseleit, prior to being diluted into a graded

series, according to the method of Bíng and Saeed (1987). Addition of DMSO to the

muscle bath did not alter the achieved force tension plateau. Changes in smooth muscle

tension (Po) and length (Lo) were continuously monitored at a frequency of SHz and

recorded over the 35 minute duration of each experiment by means of a customized data

acquisition program (AT Lever Data Capture program - Cunningham Engineering).

Smooth muscle pharmacological responses to ACh and LPC are reported as

percent relaxation or contraction from the precontracted steady force-tension plateau

achieved following addition of the ø-adrenergic stimulant pE (3 x 10-6 M).

Histological Analysis

Following experimentation, vessel preparations were allowed to re-equilibrate and

fixed in'10% buffered formalin (Fisher's solution) and embedded in Tissueprep. 150"c¡

(Fisher Scientific) to allow transverse sectioning of each preparation. Sections (Spm) were

stained with Ehrlich's haematoxylin and counterstained with eosin to allow visualization

of endothelium (Humason, 1972).

Statistical Analysis

Results are reported as mean t SEM. The pulmonary arterial vessel

characteristics and smooth muscle mechanics were analyzed by analysis of variance
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(ANOVA). Dose response data were anaty zed by ANOVÀ

lndividual means were compared using multiple comparison

Signiflcance was accepted at p<0.0S.

for

by

repeated measures.

Newman-Keuls test.

Results

Vessel Propeñies

The vessel characteristics and smooth muscle mechanical properties of the

newborn and adult guinea pig pulmonary arterial preparations are described in Table 1.

There were no significant differences observed between the measured vessel parameters

of newborn +Endo and -Endo preparations or adult +Endo and -Endo preparations. All

adult preparations (+Endo and -Endo) differed significantly from all newborn preparations

(+Endo and -Endo) (p<0.05).

Determination of a 50o/o Maximal phenylephrine (pE) contraction

Both newborn and adult guinea pig pulmonary arterial preparations were exposed

to cumulative doses of PE to determine the concentration which elicited a SO% maximal

contraction (Figure 84, Figure gA). Figure 8A and 9A represents a plot of the percentage

of maximal PE contraction against concentration of PE. Figures BB and 98 represents

a plot of the percentage of maximal PE contraction, as determined from the regression

equation of plot BA and gA, against logarithmic concentration PE. A plot of the percent

maximal PE response against logarithmic concentration of PE revealed that in the

newborn guinea pig (Figure BB) a 50% maximal PE contraction was elicited with 1x'10-6

M PE. ln the adult guinea pig (Figure 9B), a 50% maximal contraction was obtained with

4x105 M PE. A concentration of 3x10'6 M PE was utilized to effect an approximate 50%

maximal PE contraction in both adult and newborn preparations.

34



Table 1. Vessel characteristics and smooth muscle mechanical properties f

Number of Vessels

Width (mm)

Circumference (cm)

Weight (mg)

Resting Length (mm)

Cross Sectional Area (mg/mm)

Maximum Force (mN)

Stress (mN/mm2)
Electrical
Phenylepherine

(3x10€ M)

*Ënoo

17

2.05r0.08

1.0010.04

12.15t1.86

6.1 610.1 3

2.05r0.35

15.9210.98

10.1 111 .09
16.9711 .60

Adult
-Endo

f Values are mean t S.E.
* p.0.05 as compared to all adult preparations

7

1 .9610.12

0.98r0.05

12.77t2.25

6.20r0.63

2.03t0.32

17 .38t1.75

9.43x1.04
14.9011.15

+Endo

* Newborn
-Endo

14

1.3910.06

0.52f.0.02

2.27t0.16

2.97f.0.11

0.7710.05

4.60x0.44

6.29r0.70
7.75t0.75

7

1 .4310.18

0.50+0.03

2.40t0.40

2.9310.18

0.8810.18

5.0611.02

6.45r1.02
7.44!0.83
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Figure 8. Dose Response Curve of Newbom Guinea Pig Main Pulmonary Arterial
Preparations to Phenylephrine (PE). (Al Three newbom pulmonary arterial preparations
were exposed to increasing cumulative doses of PE and the increase in force measured
at each concentration was plotted as a percentage of the maximal PE contraction
observed. (B) A plot of the LOG concentration of PE revealed that a 50% maximal PE
contraction was observed at 2x104M.
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Figure 9. Dose Response Gurve of Adutt Guinea Pig Main Pulmonary Arterial
Preparations to Phenylephrine (PE). (A) Three adult pulmonary arterial preparations were
exposed to increasing cumulative doses of PE and the increase in force measured at each
concentration was plotted as a percentage of the maximal PE contraction observed. (B)
A plot of the LOG concentration of PE revealed that a 50% maximal PE contraction was
observed at 6x10€M.
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Confirmation of Endothelial lntegrity

The confirmation of endothelium maintenance or denudation following dissection

was verified by the addition of cumulative molar doses of ACh to each precontracted

pulmonary arterial preparation and by histological analysis (Figure 10). Endothelial

presence was confirmed in both adult and newborn preparations by an observed

relaxation to ACh. A maximal relaxation of 23.8 r 6.8 % was observed in adult(+Endo)

preparations at 1O-5 M ACh, whereas in newborn(+Endo) preparations a maximal

relaxation of 26.7 14.7 % was observed at 10s M Ach (p<0.0S) (Figure 11). Endothelial

denudation abolished ACh mediated relaxation at these concentrations (Figure 1O),

yielding contraction s of 21.6 t 3.2 % in adult(-Endo) (pcO.05) preparations and 1 1.0 t 1.2

% in newborn(-Endo) (p<0.05) preparations. Maximal contraction for both adult and

newborn preparations was observed at 10-3 M ACh. A significant difference was

observed in maximal ACh confraction between adult(+Endo) (9.4 t 4.2 %) and (_Endo)

(27.9 t 3.0 %) preparations (p<0.05). This difference was not observed between

newborn(+Endo) (18.7 r 3.3 %) and (-Endoxls.o t 1.6 %) preparations (p<0.0s).

Lysophosphatidylcholine (LPC) lnduced Smooth Muscte Vasorelaxation

Precontracted adult and newborn pulmonary arterial preparations with endothelium

intact or denuded were exposed to cumulative molar doses of LpC (Figure 12). There

was no significant difference between adult(+Endo) and newborn(+Endo) preparations in

response to LPC (p<0.05) (Figure 13). A maximal relaxation of 66.5 t 4.3 o/o for

adult(+Endo) and 74.7 t6.1 o/o fornewborn(+Endo) preparations was observed at 10-4 M

(Figure 13). Endothelial denudation significantly suppressed, but never completely

inhibited, LPC induced relaxation at this concentration (Figure 12) in both adult(-Endo)

(14.9 t 4.2 %) (p<0.05) and newborn(-Endo) (15.2 t 4.8 %) (p<0.05) preparations (Figure



+ENDO / ACh
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difference was also observed between adult(+Endo(L-NMMA)) and'nãwborn(+Êndo(L_
NMMA)) pulmonary arterial preparations (. p<0.01).



13). Response to LPC following endothelial denudation was not significantly different

between adult (-Endo) and newborn (-Endo) preparations.

lnhibition of Nitric Oxide Synthase (NOS) Activity

Precontracted adult(+Endo(L-NMMA)) and newborn(+Endo(L-NMMA)) pulmonary

arterial preparations pre-incubated 30 minutes with 10.3 M L-NMMA, an inhibitor of NOS

activity, were exposed to cumulative molar doses of ACh and LPC. This concentration

of L-NMMA was observed to completely inhibit NO mediated ACh induced smooth muscle

relaxation in both adult(+Endo(L-NMMA)) and newborn(+Endo(L-NMMA)) preparations

(Figure 14). ln the adult(+Endo(L-NMMA)) ACh induced vasorelaxation was inhibited in

the presence of '10'3 M L-NMMA, yieldin g a 24.5 t 3.8 % contraction at 10-5 M ACh. This

was not significantly different from the 21.6t3.2% contraction observed at 1O-5 M ACH

in adult(-Endo) preparations (p<0.05).

lnhibition of NOS, however, did not completely suppress LPC mediated relaxation

at 10-a M, but significantly attenuated relaxation as compared with results observed in

adult(+Endo) and newborn(+Endo) preparations (Figure 12). A maximal relaxation of 42.5

t12.0 7o was observed at 10-a M LPC in adult(+Endo(L-NMMA)) preparations (p<0.05)

(Figure 13). At 10-4 M LPC, a maximal relaxation of 27.8 t 8.2 % was observed in

newborn(+Endo(L-NMMA)) preparations (p.o.OS) (Figure 13). Attenuation in relaxation

to LPC under NOS blockade was not as great, but significantly different between adult(-

Endo) (p<0.05) and newborn(-Endo) (p<0.05) preparations. There was a significant

difference observed in response to LPC at 10'a M between adult(+Endo(L-NMMA)) and

newborn(+Endo(L-NMMA)) preparations (p<0.05) (Figure 1 3).
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lnhibition of Guanylate Cyclase (GC) Activity

Precontracted adult(+Endo(MB)) and newborn(+6¡6o1¡ytB)) pulmonary arterial

preparations pre-incubated 20 minutes with varying concentrations (10-10-10-M¡ of MB, an

inhibitor of GC activity, were exposed to 1O-M LPC. There was no significant difference

in maximal LPC mediated relaxation in adult(+Endo) and newborn(+Endo) preparations

'in comparison to LPC relaxation observed in adult(+Endo(MB)) and newborn(+Endo(MB))

in the presence of 10-10 and 10'8M MB (Figure 15). Attenuation of LPC relaxation to 10M

LPC was equivalent in both adult(+Endo(MB)) and newborn(+E¡661¡y¡B)) preparations in

the presence of 10-6 and 10-r'r MB (Figure 15).

DISCUSSION

We have demonstrated that LPC is an effective vasorelaxant of both adult(+E¡fle¡

and newborn(+f¡6e¡ guinea pig pulmonary arterial preparations with maximal relaxation

observed at 10-aM (Figure 12, Figure 13). Significant inhibition in maximal LPC relaxation

was observed in both adult and newborn preparations in the presence of 10-3 M L-NMMA

(p<0.05) and following endothelial denudation (p<0.05) (Figure 12, Figure 13). There was

no significant difference in maximal LPC relaxation between adult(+E¡de¡ and

newborn(+Endo) preparations or adult(-Endo) and newborn(-Endo) preparations (p<0.05)

(Figure 13). However, significant age related differences were observed in degree of

inhibition of LPC relaxation in the presence of 1o-3 M L-NMMA between adult(+Endo(L-

NMMA)) and newborn(+E¡6o1¡-NMMA)) preparations (p<0.05) (Figure 13). Maximal LPC

relaxation (10-") was attenuated equally in both adult(+f ¡¿o(M B)) and

newborn(+Endo(MB)) preparations in the presence of increased concentrations (10 10-10 M¡

of MB (Figure 15). Accordingly, the most parsimonious explanation of these observations

is that LPC is an equally effective vasodilator of the pulmonary vasculature in both adult
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and newborn guinea pigs. LPC induced vasodilation is mediated by both GC and NoS

activity, however, in the newborn guinea pig the response is mediated to a greater extent

by the Nos pathway compared to the adult which is more dependent on the Gc pathway.

Both act via CGMP and the observed difference may be a reflection of developmental

differences in smooth muscle ca2.-ATPase activity between adult and newborn pulmonary

arterial preparations or differences in the direct activation of Ca2.-dependent K* channels

by NO (Bolotina et at.,1994).

At high concentrations LPC has a cytotoxic effect on cell membranes (Weltzien,

1979) causing electrophysiological perturbations (Kinnaird et al., lgBB) and cardiac

arrhythmias (corr et al., 197g; corr et al., 1gB4). we exposed our preparations to

maximal LPC concentrations of LPC at 10-a M, a concentration previously demonstrated

to decrease vascular resistance in vivo without producing arrhythmias or haemolysis (Bing

et al', 19BB) This concentration of LPC was also previously demonstrated to maximally

stimulate CDP-choline cholinephosphotransferase activity in rat liver microsomes

(Parthasarathy and Bauman, 1979). Naturally derived surfactant preparations may contain

as much as 500 nmoles LPC/ml of administered surfactant (Duncanet al.,1gg5). Aside

from containing quantities of LPC, the PC component of naturally derived surfactants is

susceptible to PLA, deacylation yielding additional LPC (Duncan et a;.,1995). Although

the fate of LPC in the pre-term lung following exogenous surfactant administration has not

been completely clarified, it is possible that some may reach the pulmonary vasculature.

Histological examination confirmed the presence or denudation of endothelium in

all preparations (Figure 10). However, as observed in arterial preparations from similar

pharmacological experiments (Furchgott and Zawad zki, 1gB0), unrubbed preparations

retained only 80-85% of their endothelial cells at the end of experimentation suggesting

minimal loss of endothelium during dissection, experimentation or fixation.
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It has been previously demonstrated in the adult guinea pig main pulmonary artery

with endothelium intact that ACh (10'6 M) mediated a vasorelaxation of 60% in

norepinephrine (1ot M) precontracted preparations (Sakuma et al., 19BB). ln the

presence of 0'25 mM L-NMMA this relaxation was inhibited approxim ately 62% yielding

a suppressed relaxation of 24% (Sakuma ef a/., 1988). ln our adult preparations with

endothelium intact maximal relaxation to ACh (10-5 M) yielded a relaxation of 23.8 t6.8%

following PE (3x'10t M) precontraction. ln the presence of 10-3 M L-NMMA this relaxation

was inhibited and a contraction of 24.5 *.4.5% was observed. ln the presence of 1mM

L-NMMA, LPc mediated relaxation at 1o-4 M was inhibited 66.0 t 2.4% in the

newborn(+Endo(L-NMMA)) preparation while yielding a 36.7 t 16.2% inhibition in the

adult(+Endo(L-NMMA)) preparation (Figure 13). These data woutd indicate that the

vasoactive response of the pulmonary vasculature to LPC in the newborn preparations is

more dependent on Nos activity compared with the adult.

' Age related differences to vasoactive agents have been previously reported

(Charpie et al', 1994; Moritoki ef a/., 1986). Age related differences in the endothelium

dependency of the vasoactive potential of serotonin and endothelin-1 have been observed

in human infant and adult vertebral arteries (charpie et al., 1g94). As well, an age related

decrease in vasodilator response to histamine has been reported in rat mesenteric arteries

(Moritoki et al., 1986).
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Secretory Phospholipase A, (PLAr) Deacylation of Surfactani enosphatidylchotine (pC)

lntroduction

ln recent years NRDS has been treated successfully with exogenous surfactanl

replacement therapy (Jobe and lkegami, 1gB7). Two surfactants curren¡y approved for

cliniial use in Canadian hospitals and employed in replacement therapy are Exosurf@ and

Survanta@. Exosurf@ is a completely synthetic surfactant comprised of BSo/o DppC, g%o

hexadecanol (cetyl alcohol), and 6% tyloxapol by weight (Phibbs et al.,1991; Tooley ef

al., 1987)' DPPC is the majoractive component of natural surfactant (King, 1974; King

and Clements, 1972; Klaus et al., 1961) responsible for lowering surface tension at the

air-alveolar interface. Hexadecanol acts as a spreading agent for DppC whereas

tyloxapol, a non-ionic surfactant, facilitates the dispersion of both DppC and hexadecanol

in the lung. Survanta@, a modified natural bovine surfactant, is comprised of phospholipid,

neutral lipids, fatty acids and surfactant associated proteins (SP-8, Sp-C) to which DppC,

palmitic acid, and tripalmitin have been added (Survanta@ intratracheal suspension

package insert).

The clinícal effectiveness, frequency and minímal required number of doses of

exogenous surfactant administration to preterm infants with NRDS have not been

completely clarified and some important differences between synthetic and animal derived

preparations have been reported. ln preterm infants with NRDS, a single prophylactic

dose of Exosurf@ resulted in reduced oxygen supplementation requirements over 72 hours

(Stevenson et al., 1992) whereas a much shorter duration of action has been observed

for animal-derived surfactant products (Kendig et al., 19BB; Merril et at.,1986a). ln the

case of calf lung surfactant extract, although a significant reduction in the need for oxygen
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supplementation and ventilatory support was observed, such improvement was only

evident 24 hours post-administration (Kendig et al., 19BB). ln trials conducted with human

amniotic fluid extract (Merrit et al., 1986a), 71% of the treated infants required

supplemental doses during the first 48 hours after birth due to increasing ventilatory

requirements. ln contrast to this apparent superiority of Exosurf@ to animal-derived

prodi'tcts, administration of this preparation in a preterm lamb model of NRDS was virtually

without effect upon lung compliance, oxygenation indices and mortality as compared to

the highly effective responses observed with Survanta@ (Cummings ef at., 19g2). The

factors accounting for the discrepancies in duration of action and efficacy are probably

complex and presently poorly understood yet may be related to differences in the

surfactant preparation composition, catabolism and inactivation within the lung.

Recent reports suggest that activation and/or inactivation of exogenous surfactant

preparations may be critical for their physiological efficacy. Recovery of the lung lavage

material 5 hours post-Exosurf@ and Survanta@ administration to a preterm lamb revealed

a much superior physiologic efficacy when readministered in a preterm rabbit model of

surfactant deficiency than the original exogenous surfactant used to treat the lambs

(lkegami et al.' 1993). These observations suggest either the presence of inhibitors or

absence of catalysts acting upon exogenously administered surfactant.

Many factors have been considered to play a role in the inactivation of exogenous

surfactant, including pH (Merrit et al., 1993) and proteins (Cockshutt and possmayer,

1991; Enhorning ef al., 1992; Fuchimukaiet al.,1987; Holm and waring, 1993; Holm ef

a/', 1988; Holm ef al., 1991; lkegami et al., 1984). ln vitro addition of hypochlorous acid,

which may be increased in some inflammatory lung diseases, to Survanta@ and Exosurf@

results in inactivation of surface tension lowering properties more so in the former
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preparation (Merrit et at., 1993). ln a lamb model of NRDS, Jobe ef a/. (1988)

demonstrated prolonged survival of lambs receiving exogenous, naturally derived

surfactant. The improvement in ventilation, however, was short lived due to the

inactivation of the surfactant by protein inhibitors present in the ainruays (lkegami et at.,

1 eB4).

' Among the proteins that may alter the biophysical properties of exogenously

administered surfactants, phospholipases are of great clinical relevance. pLA, hydrolyses

PC at the 2-acyl position yielding a single free fatty acid and a Lpc moiety. The inhibition

of pulmonary surfactant biophysical activity by PLA, and its by-products have been

demonstrated rn vitro (Cockshutt and Possmayer, 1gg1; Enhorning et a:.,1992; Holm ef

a/', 1991)' ln addition, there is evidence that natural surfactant inactivation by increased

alveolar levels of plasma PLA, may be involved in the pathogenesis of ARDs (Vadas,

1984; Vadas and Pruzanski, 1986). ln humans, plasma and lung broncho-alveolar fluid

from patients with ARDS have a high degree of PLA, activity (offenstadt et al., 1981;

Romaschin et al., 1992). This is further corroborated by observations from animal studies.

ln dogs, "ARDS like symptoms" were observed following intra-venous administration of

PLAr (Morgan ef a/., 1968). Experimentally induced acute pancreatitis in dogs lead to a

S-fold increase in PLA, activity from lung lavage samples and an associated decrease in

lung DPPC (Das ef al., 1987). lncreased lung levels of PLA, were also reported in rats

following induced septic shock and respiratory failure (Von Wicheri et al.,1gB1).

ln contrast, limited data on PLA, activity in the lung of newborns with NRDS and

the possible inactivation of exogenous surfactant by pLA, are available. Data from our

laboratory indicate that PLA, is present in the tracheal bronchial secretions of preterm

infants with RDS during the first days of life (Belik et a].,1994). We also have evidence
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that indicates PLA, is increased nearly 3-fold in infants with NRDS. yet litfle is known

about the susceptibility of the different exogenous surfactant preparations, utilized in the

treatment of these infants, to pLA, activity.

The purpose of this study was to evaluate the effect of a secretory-type, Caz.-

dependent, alkaline pH optimum form of PLA, on the rate of pc degradation, as measured

by LPc generation, in two exogenous surfactant preparations, the synthetíc Exosurf@ and

naturally derived survanta@. The effect of additions of components of Exosurf@, 6%

tyloxapol and/or g% hexadecanor, on pH, mediated Lpc generation was arso

investigated in preparations of survanta@ and pure synthetic Dppc.

Mater¡als and Methods

Materials

PLAz (Type-lll from bovine pancreas), cetyl alcohol (1-Hexadecanol), tyloxapol,

L-ø-DPPC, L-c¿-LPC, Tris (hydroxymethyl) aminomethane, calcium chloride, potassium

chloride, ammonium molybdate, and ascorbic acid were purchased from sigma chemical

Co' (St' Louis, Mo). Chloroform, methanol, acetíc acid (glacial), hydrochloric acid,

perchloric acid and potassium phosphate were purchased from Fisher scientific

(Edmontonì AB). Thin layer chromatography (TLc) plates (Whatman K6 silica gel 60 Å,

250pm layer thickness) were purchased from canLab Division of Baxter co. (winnipeg,

MB)' Survanta@ (beractant) was obtained from Ross Laboratories (Columbus, oH) and

Exosurf@ neonatal (colfosceril palmitate) was obtained from Burroughs Wellcome lnc.

(Kirkland, PQ).
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Preparation of Phospholipase A, (pLAr)

PLA, (Type-lll, bovine pancreatic) was prepared by resuspending 25 mg of

lyophilized PLA, into 500 ¡.rl of 50 mM Tris-HCr, pH 8.0, 3 mM cacl, buffer. From this a

50 pl aliquot was removed and diluted in 450 pl of the same buffer. A 56 ¡-rl aliquot of this

preparation was used in each assay to yield 3.36 Units Pl-A, activity/assay (0.672

UnitS/ml).

Assays for Phospholipase A, (PLAJ Mediated Lysophosphatidylcholine (LpC)
Generation in Exosurf@ and Survanta@

Ïhe material from 3 new vials of Exosurf@ or Survantat were flash frozen in liquid

nitrogen, lyophilized and resuspended in 5 ml of 50 mM Tris-HCl, pH 8.0, 3 mM cacl, at

a concentration of 10 mg/ml. Complete resuspension of the samples into mixed micelles

was achieved by bath sonication for 45 minutes. Care was taken to ensure the samples

were not exposed to temperatures exceeding 37"C during this period. The samples were

pre-incubated at 37oC for a period of ten minutes prior to administration of 3.36 Units pLA,

which initiated the start of the assay. lmmediately following PLA, addition and at various

intervals thereafter a 1 ml sample was removed and immediately placed into a test tube

with 3 ml of chloroform:methanol (2:1 v/v) and vortex-mixed to terminate the reaction. The

incubation was maintained at 37"C in an oscillating bath for the duration of the experiment.

A 500 pl aliquot of 1% KCI was added to each isolated sample in chloroform:methanol to

effect phase separation. Tubes were vortex-mixed and centrifuged at 2000 x g for 5

minutes. The upper aqueous phase was removed by aspiration and the organic phase

washed twice with another 500 pl of 1% KCl. The remaining isolated organic phase was

dried under nitrogen gas.
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Determination of the Effects of Tyloxapol and Hexadecanol on phospholipase A,(PLAr) Activity

To determine the effects of tyloxapol and hexadecanol on pLA, activity in

preparations of synthetic DPPC and Survanta@, LPC production over tíme was measured

in the presence of tyloxapol, hexadecanol or a combination of the two according to the

following protocol. Four new vials of Survanta@ were lyophilized, and the powder obtained

was pooled and mixed. 75 mg of Survanta@ or synthetic DPPC were resuspended in 5

ml of 50 mM Tris-HCl, pH 8.0, 3 mM CaCl, buffer. Preparations were also resuspended

in the presence of 5'29 mg of tyloxapol,7.01 mg of hexadecanol, ora combination of S.2g

mg tyloxapol and 7.01 mg hexadecanol. These values of tyloxapol and hexadecanol

comprised 6% and g% of the dry weight of the preparations respectively, approximately

the same percentage as reported for the synthetic Exosurf@ (phibbs et al., 1gg1). The

assays for all preparations were conducted as described above for Exosurf@ and

Survanta@.

lsolation of Lysophosphatidytchotine (LpC)

The dried organic phase for all samples was resuspended in 100 pl

chloroformlmethanol (2:1 vtv). A 25 ¡rl aliquot of the organic phase of each sample was

spotted on a 2.5 cm x 20 cm lane of a silica gel TLC plate, which had been cooled to

room temperature following heat activation over a 3 hour incubation period (145"C) to

remove moisture from the silica gel. A lane containing LPC standard was added to each

plate for identification. The plates were immediately developed in a solvent system

containing chloroform:methanol:acetic acid:water (50:30:B:3 vlvlvlv) for separation of LpC.

LPC was completely resolved from pc and migrated with an Rf value r 0.09-0.10. After
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complete drying, the plates were stained in an iodine chamber for lipid visualization. An

equal area of silica gel corresponding to LPC for each lane was removed and the

phosphorus mass measured.

Quantification of Lysophosphatidylcholine (LpC)

' LPC content was quantified by a modification of the sensitive lipid phosphorus

analysis of Rouser et al. (1969). ln brief, silica gel corresponding to LpC for each sample

was completely removed from the plate and collected into disposable 1O ml borosilicate

glass culture tubes. Potassium phosphate standards (range 1O to 200 nmoles) were

prepared. 450 pl of perchloric acid was added to each tube, covered with teflon tape to

prevent loss of perchloric acid fumes, and the lipid digested by heating at 180"C for 60

minutes. Following complete cooling, the reagents added, in order, to each sample were:

2.5 ml of double distilled H2O, 500 ¡tl of 2.5o/o ammonium molybdate, and 500 ¡tl of 10%

ascorbic acid. The tubes were vortex-mixed immediately following the addition of each

reagent' All preparations were subsequently incubated in hot water (95"C) for 15 minutes.

After complete cooling and a brief centrifugation period for sedimentation of the adsorbent

(5 minutes at 500 x g), the absorbance of all samples was read on a spectrophotometer

at a wavelength of 820 nm.

Statistical Analysis

Results are reported as mean t SEM. Data

repeated measures and multiple comparison by Fisher's

LPC generation rates were compared using Student,s

Significance was accepted at p < 0.05.

were analyzed by ANOVA for

least significant difference test.

t test for unpaired measures.
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Results

Phospholipase A, (PLAJ Mediated Lysophosphatidytcholine (LpC) Generation inPreparations of Exosurf@ and Survanta@

Preparations of Exosurf@ and Survanta@ (10 mg/ml) were incubated with pLA, for

up to 120 minutes. Generation of LPC in the Survanta@ preparations was non-linear with

a breakpoint at 30 minutes. This is consistent with previous observations of pLA,

mediated LPC generation (Gregory et at., 1991). LPC generation increased at a rate of

7.6 r' 2.3 nmol/min in the first 30 minutes and decreased to a rate of 1.6 t 0.2 nmol/min

for the remainder of the incubation period (p<0.05) (Figure 16). A maximum value of 376

t 84 nmoles of LPC was generated by 120 minutes. ln striking contrast, rhere was

negligible LPC generated over the entire duration of the experiment in the Exosurf@

preparations.

Effects of ryloxapol and Hexadecanol on phospholipase A, (pLAr) Mediated
Lysophosphatidylcholine (LpC) Generation

Preparations of synthetic DPPC (15 mg/ml) were incubated with pLA, for up to 120

minutes in the absence or presence of 6% tyloxapol, 9% hexadecanol or both and the

generation of LPC determined by TLC (Figure 17). The generation of LpC from synthetic

DPPC preparations was non-linear, however, with a breakpoint at 15 minutes. LpC

generation increased at a rate of 46.9 I 16.3 nmol/min during the fìrst 15 minutes and

diminished to a rate of 10.6 t 2.2 nmoltmin for the duration of the assay (p<0.05) (Figure

17, Figure 1B). A maximum of 1818 t247 nmoles of LPC was generated by 120 minutes.

Ïhis represented a 15.5 t2.5% hydrolysis of the initial concentration of DppC present.
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Addition of tyloxapol inhibited PLA, catalyzed deacylation of Dppc (Figure 17, Figure 1B),

yielding negligible Lpc generation by 120 minutes (12 t 3 nmoles).

Addition of hexadecanol to the synthetic DPPC preparation did not alter the rate

or amount of LPC generated over the two hour assay period compared to control (Figure

17, Figure 1B). LPC generation was also non-linear, increasing rapidly at 55.3 r 18.6

nmol/min during the first 15 minutes and declining to a rate of 1o.T x3.2 nmol/min forthe

remainder of the assay. A maximum of 1951 t 608 nmoles of LpC was generated by 120

minutes incubation.

Ïhe presence of both tyloxapol and hexadecanol attenuated LpC generation over

the 120 minute assay period (Figure 17, Figure 1B), similar to the results obtained for

preparations in which tyloxapol alone was added. A maximum of 13 t 1 nmoles of LpC

was generated by 120 minutes incubation.

Preparations of Survanta@ were incubated with PLA, for up to 120 minutes in the

absence or presence of 60/o tyloxapol, 9% hexadecanol or both and the generation of LpC

determined by TLC (Figure 19). ln the presence of PLAr, LpC generation was non-linear

increasing rapidly during the first 15 minutes of the assay at a rate of 1B.T t 5.1 nmol/min

and decreasing to 5.2 t 0.8 nmol/min for the remainder of the assay period (p<0.05),

yielding 829 t 154 nmoles of LPC generated by 120 minutes (Figure 19, Figure 2o). ln

the presence of tyloxapol, LPC generation over the two hour assay was significan¡y

attenuated compared to control values. LPC generation during the first 15 minutes was

2'B ¡ 1'2 nmol/min and was reduced to 1.0 t 0.1 nmol/min for the remainder of the assay

(p<0.05). After 120 minutes duration, 143 t 13 nmoles of LpC were generated in

Survanta@ preparations incubated with PLA, in the presence of tyloxapol as compared with
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Figure 19. Thin Layer Chromatognams of Phospholipase Az (PLA") Degradation of
Survanta@ Phosphatidylcholine (PC) in the Prcsence of Tytoxapol and/or Hexadecanol.
Thin layer chromatograms showing the effect of 6% hexadecanol (B), 9% tyloxapol (C),
and a combination of 6% tyloxapol and 9% hexadecanol (D), on Plá, mediated
generation of lysophosphatidylcholíne (LPC) in preparations of Suryanta@ (A). Note that
Survanta@ naturally contains LPC as part of its composition, but this LPC content is not
increased by Plá, deacylation in the presence of 60/o tyloxapol.

S urva ntaa+ Hexadeca nol



A,
og
o
E
?
-v

C)
o-
J

1 000

500

A

Figurc 20' Quantification of Phospholipase A" (PLAz) Degradation of survanta@ phosphatidylcholine (pG) in the presence
of ryloxapol and/or Hexadecanol. Quantification of the effect 

9f 6% tyloxapol (O), panel À, gyo Áexadecanol (tr), panel B, anda combination ot 6% tyloxapol and g% hexadecanol (o), Panel 
'c,'on 

secretory pH, mediated generation oflysophosphatidylcholine (Lpc) in preparations of survanta@ (o)'(1s mg/ml) ("o.o.ou, **p<0.01).

B

120 60 120

Time (min)

c



12 t 3 nmoles LPC in synthetic DPPC preparations incubated with tyloxapol.

ln the presence of hexadecanol, PLA, mediated LPC generation in the Survanta@

preparation over the two hour assay period was not significantly different from control

values (Figure 19, Figure20). LPC generation increased at a rate of 15.7 t 3.g nmol/min

during the first 15 minutes and decreased to a rate of 4.1 t1.3 nmol/min forthe duration

of th'e assay. A total of 639 t 2BB nmoles of LPC was generated by 120 minutes

incubation.

ln the presence of both tyloxapol and hexadecanol, PLA, mediated LpC generation

in Survanta@ preparations was significantly attenuated compared to control values (Figure

19, Figure 20). The rate of LPC generation observed during the first 1S minutes was 2.3

t 0.9 nmol/min, decreasing to a rate of 1.3 t 0.4 nmol/min for the remainder of the assay,

yielding 172 t 59 nmoles of LPC by 120 minutes. The rate and amount of LpC generated

in Survanta@ incubations containing tyloxapol and hexadecanol were not signifìcan¡y

different from trials in which tyloxapol was the only additive.

Effect of Tyloxapol and Hexadecanol on Lysophosphatidytcholine (Lpc) Separation
by Thin Layer Ghromatography (TLC)

Survanta@ is a natural preparation of bovine surfactant which contains LpC as part

of it's composition. ln order to exclude the possibility that the presence of tyloxapol and/or

hexadecanol influenced the separation and quantification of LpC, the amount of

extractable LPC was determined in Survanta@ preparations mixed with tyloxapol,

hexadecanol or both. Survanta@ preparations contained 564 t 1B nmoles of LpC. The

presence of tyloxapol, hexadecanol or both did not affect LPC separation by TLC or

quantification by the sensitive lipíd phosphorus assay.

63



Discussion

This study evaluated the susceptibility of preparations of Exosurf@ and Survanta@

to secretory type PLA, deacylation in vitro. We demonstrated that the pC component of

the Survanta@ preparation was readily susceptible to secretory pLA, deacylation whereas

in the Exosurf@ preparation there was negligible deacylation of the DppC component,

suggesting that one or more of its components protects its DPPC moiety from hydrolysis

by PLAr. Consequently, we investigated the effect of tyloxapol, hexadecanol and a

combination of both on LPC generation in preparations of Suryanta@ and pure synthetic

DPPC. We demonstrated that the addition of 6% tyloxapol (Figure 21) by weight to both

DPPC and Survanta@ preparations inhibited PLA, deacylatíon of synthetic DppC and

significantly attenuated deacylation of Survantat PC. Addition of g% hexadecanol did not

effect the rate of deacylation by PLA, in either synthetic DppC or Survanta*, but a

combination of both tyloxapol and hexadecanol corresponded with results observed by the

addition of tyloxapol alone.

Suppression of soluble PLA, activity by non-ionic detergents has been previously

reported. Bennet and coworkers (1990) demonstrated that other non-ionic detergents

such as Triton X-100, n-octylglucoside, and 3-((3-cholamidopropyl)-di-methyl-ammonio)-1-

propanesulfonate (CHAPS) inhibited the activity of a secretory PLAr, purified from guinea

pig lung and ímmunologically related to pancreatic Pl-Ar. Tyloxapol is a non-ionic

surfactant and the observed suppression of LPC generation when added to Survanta@ and

pure synthetic DPPC indicates that it too has an inhibitory effect upon secretory pLA,

activity. lnterestingly, addition of tyloxapol to the Survanta@ preparation at similar

concentrations as present in Exosurf@ did not completely suppress pLA, mediated LpC

generation. This evidence suggests that the PLA, inhibitory effect of this compound might
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be modulated by other substances present in Survanta@ such äs the apoproteins and free

fatty acids. Finally, the present data clearly indicate that hexadecanol, the other

component of Exosurf@ has no effect upon the rate of LPC generation from pC following

addition of PLA'.

The susceptibility of DPPC, the main component of exogenous and natural

surfâctants, to PLA, activity may have significant clinical implications. A 42% decrease

in DPPC, associated with a S-fold increase in PLA, activity, was observed in lung lavage

samples from dogs with induced pancreatitis (Das et a|.,1987). lt is also known that in

adults PH, activity is present in broncho-alveolar lavage (BAL) material and is

significantly increased in patients with respiratory conditions (Gregory et al.,1gg1). lt is

apparent that the enzyme is active in vivo as demonstrated by the 4-fold greater LpC

content, and corresponding decrease in DPPC content, in BAL material of patients with

respiratory failure (Hallman et a\.,1982). ln this study, the reported value of pLA, activity

in BAL from adult patients with various lung disease was in the order of 0.1 nmoles/mg

protein/min (Hallman et al., 1982). Limited data regarding the lung content and activity

of PLA, in newborns with RDS are available. Preliminary data from our laboratory (Belik

et a|.,1994) indicated that PLA, was present in TBS material from infants with RDS in the

order of 2-3 pmoles/mg protein/min. PH, activity appears to be markedly higher in adults

than in newborns, but direct comparisons between these two studies is difficult since the

phospholipid substrate used in each was different. ln the adult study, fnlOeeC was used

as a substrate for PH, activity whereas in the newborn study [14C]dipalmitoyl

phosphatidylglycerol ([r4C]DPPG) was used. lt is well documented that secretory-type

PLAt found in mammalian tissue exhibits a substrate preference for ¡14C1DppG over

fnloeec (Kinkaid and wilton, 1992; ono et al., 19BB; Verger et at., 1gB2). Differences
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in the volume of BAL and TBS material recovered may also play a role in the observed

differences.

lncreased secretory PLA, activity, in yiyo, could mediate significant DppC

deacylation rendering exogenous or even natural surfactant less physiologically active.

An exogenous surfactant preparation resistant to PLA, deacylation could possibly result

in loñger lasting surface tension lowering properties. This may account for the observation

that in premature infants with RDS administered exogenous surfactant on a single dose

regimen, the reduction in oxygen supplementation with Exosurft was much longer lasting

than with animal-derived products (Kendig et al., 1988; Merrit et al.,19B6a; Stevenson ef

al., 1992). ln the present study we have demonstrated that the presence of tyloxapol

confers the observed resistance to PS, mediated DPPC hydrolysis in Exosurf@.

DeAngelis and Findlay (1993) reported that upon administration, tyloxapol was retained

by the lung and released slowly, with a halÊlife of 5-6 days, into the systemic circulation.

This difference in duration of action between Exosurf@ and animal-derived products may

be a reflection of the presently observed differences in susceptibility Exosurf@ and

Survanta@ to PLA, mediated PC deacylation.

The present data indicate that Exosurf@ in vitro is resistant to PLA, deacylation and

thus perhaps superior to the Survanta@ preparation in this regard, yet the comparative

human and animal data on the physiological efficacy of these two preparations are not

fully supportive of my speculation. Two observations illustrate this point. Although

differences were observed in initial response to treatment, the reduction in morbidity and

mortality associated with the administration of these two preparations was of simifar

magnitude (Horbar et a|.,1993; Mondalou ef al., 1994). ln the premature lamb, Exosurf@

administration has been reported to be of no physiological value in comparison to
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Survanta@ (Cummings et al., 1gg2).

The mechanism by which tyloxapol inhibits PLA, mediated deacylation of DppC

is presently unknown. Clearly, in spite of inhibition of its enzymatic activity by tyloxapol,

the sole presence of PLA, should alter the biophysical properties of surfactants, as does

the presence of non-enzymatic serum proteins (Cockshutt et al., 1991; Fuchimukai ef a/.,

1987; Holm et al., 19BB). However, in a study on the inhibition of pulmonary surfactant

function by phospholipases, Holm ef a/. (1991) demonstrated that the inactivation of

surfactant biophysical activity was predominantly related to the effect of pLA, by-products,

LPC and fatty acid, on the surfactant monolayer rather than the PLA, mediated decrease

in DPPC, the principal surface active component. They reported a significant decrease

in surfactant biophysical activity at LPC concentrations representing 10% hydrolysis of

DPPc. Using pure synthetic DPPC in the present study, we demonstrated that control

preparations were hydrolysed 15.5 t 2.5% in the presence of 0.672 units pLAr/ml at 120

minutes incubation. According to Holm and coworkers (1991), this percentage of DppC

deacylation was enough to significantly compromise surfactant biophysical activity. yet,

in the presence of 6% tyloxapol, DPPC deacylation was completely inhibited suggesting

the potential maintenance of surfactant biophysical activity in the presence of pLAr. ln

this regard, the prevention of generation of products of DPPC deacylation by tyloxapol

may be a key to maintained surfactant biophysical activity.

Care must be exercised when extrapolating the present rn vrïro findings to the

clinical arena. The observed in vitro differences in PC deacylation may not occur in vivo

or be further modulated by other components of the alveolar micro-environment. Further

studies addressing the importance of PLAr-induced DPPC deacylation in newborns are

necessary before any clinical decisions relative to the superiority of tyloxapol containing
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versus tyloxapol free surfactant products is claimed.

ln conclusion, significant differences in the susceptibility of Exosurf@ and Survanta@

to secretory-type PLA, were observed. These differences were due to the presence of

tyloxapol, a non-ionic inhibitor of secretory-type PLA', in Exosurf@ which inhibits pLA,

mediated DPPC deacylation. This unique feature may explain the difference in duration

of action between Exosurf@ and animal derived products and may allow for a clinical

advantage in using tyloxapol containing surfactant preparations.
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Secretory Phospholipase A" (PLq)Activ¡ty in Tracheo{lronchial Secretion (TBS) Samptes

lntroduction

The inhibition of surfactant biophysical activity in vivo is mediated by many factors

including serum proteins, particularly enzymatic proteins such as phospholipases (Notter,

1984). PLA, is an important enzyme in the recycling and remodelling pathways of

pulmonary surfactant PC, however increased activity of secretory PLA, in association with

lung inflammation or bacterial infection are quite likely the cause of faster than normal

breakdown of surfactant.

BAL samples have been previously analyzed for determination of PLA, activity and

phospholipid profile in a limited numberof primarily adult patients (Hallman et al.,1gg2).

These studies have demonstrated a moderate increase in lysolecithin fraction and pLA,

activity, expressed on the basis of total BAL phospholipid, in the respiratory failure and

lung disease group compared to control groups. This study attempted to determine the

levels of secretory{ype PLA, levels in the lung of preterm infants with and without NRDS

by evaluating TBS samples collected during routine chest physiotherapy sessions. Merrit

et al. acknowledge that there are presently no means of performing BAL in sick preterm

infants, but TBS samples have yielded data which are consistent with BAL data (Merrit ef

a/., 1986b).

Materials and Methods

Study Patient Population

The study group used to evaluate the role of saline in tracheal suctioning consisted

of 18 term and pre{erm infants (Gest Age (GA) 33.1+1.0 weeks (meanrSE) (range 25-39
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weeks), Birth Weight (BW 2563.21246.5 grams (range 630-i9BO grams), postnatal Age

(PNA) 37.5+9.2 days (range 4-187 days)). lnfants enroled included any neonate with an

endotracheal tube in place and requiring chest physiotherapy irrespective of the primary

lung pathology.

The study group used to determine secretory-PlA, activity in tracheal bronchial

secrètions consisted of 35 term and preterm infants (GA 30.510.8 weeks (range 24-41

weeks), BW 1705.2t191.8 grams (range 485-4200 grams). Of the 35 infants enroled,2T

were pre-term (GA 28.510.7 weeks (range 24-35 weeks), BW 1218.2t121.9 grams (range

485-2860)) and I were term (GA 37.1t0.6 weeks (range 36-41 weeks), BW 3349.01308.4

grams (range 1500-4200 grams)). 26 infants (GA 29.0410.8g) were diagnosed with RDS

and 9 infants with complications otherthan RDS including PPHN and MAS. A total of 129

TBS samples were collected from all individuals and analyzed for secretory pLA, activity.

The number of samples collected from each individual was dependent on the duration of

stay in the NICU and the period of tracheal intubation; 26 individuals had <S TBS samples

in total collected, 5 individuals had >5 but <10 samples collected, and 4 individuals were

studied intensively over time having >10 samples collected.

Materials,

L-c-LPC, L-ø-DPPC, potassium chloride and calcium chloride were purchased from

Sigma Chemical (St. Louis, MO). Ecolite(+) scintillation cocktailwas purchased from ICN

Biomedicals (Mississauga, ON). L-3-phosphatidyl[N-methvl-tHlcholine,1 ,2-dipalmitoyl was

purchased from Amersham Life Science (Oakville, ON). Chloroform, methanol, acetic acid

were purchased from Fisher Scientific (Edmonton, AB). Thin layer chromatography (TLC)

plates were purchased from canlab Division of Baxter co. (winnipeg, MB).
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Tracheo-Bronchial Secretions (TBS)-Secretory Phospholipase A, (pLAr) Activity
Study

lnfants studied were intubated (nasally or orally) for ventilatory support. When

clinically indicated for pulmonary toilet, tracheal bronchial aspirations were performed by

endotracheal instillation of 0.5 to 1.0 ml of 0.9% NaCl and routine manual ventilation.

Following manual ventilation, suction catheters (No. 6F and BF) were introduced not

beyond the distal end of the endotracheal tube and secretions suctioned. Aspirates were

collected in 40 cc specimen traps (Sherwood medical). Up to 1.5 ml of saline was

aspirated through the catheter into the collection trap to rinse the aspirates from the side

wall of the catheter. The volume of sample recovered was recorded to allow quantification

of PLA, activity on a per mITBS recovered. Samples were refrigerated (4"C) immediately

following collection for a period not exceeding 6 hours.

Tra c heo-Bro n c hia I secretions (TBS)-saline tnstiilation stu dy

Ïwo tracheal bronchial secretion samples were collected, four hours apart, from

each infant during routine chest physiotherapy. The first sample was obtained as

described above and the second obtained at a subsequent session was also collected as

described above without saline instillation. The collection order was reversed when

samples were obtained from infants previously enroled. Samples were refrigerated (4"C)

immediately following collection for a period not exceeding 6 hours.

Determination of Protein Content

Tracheal bronchial secretion samples were transferred from aspirate specimen

traps and placed into 4ml flint glass vials. The aspirate traps were rinsed with 1 ml 0.9%
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NaCl solution also collected in the glass vials. The samples were frozen and maintained

at -80"C for no longer than 2 weeks prior to analysis. This storage period was previously

demonstrated not to significantly alter the PH, activity (Hallman et al., lgBZ).

Preparations were lyophilized and resuspended in 0.3 ml of ddHrO. A 20 ¡rl aliquot was

removed and the protein concentration determined using the Bio-Rad microassay

procèdure based on the method of Bradford (1976). Protein was determined using bovine

serum albumin as a standard.

Determination of Phospholipase A, (pLAr) Activity

Tracheal bronchial secretions (TBS) were analyzed for phospholipase A, activity

using a modified protocol of Tijburg and coworkers (1g91). The reaction mixture

contained, in a total volume of 1.0 ml, s0 mM TRrs-Hcl (pH g.0) 3mM caclr, 100-200 ¡.rg

of TBS protein, and 100 nmoles of dipalmitoyl phosphatidyl[N-methvl-tHlcholine substrate

(0.5 pCi/assay). The assay was incubated at 37"C in an oscillating bath for 60 minutes,

and was terminated by the addition of 2 ml of chloroform:methan ol (2:1 vlv). A 1 ml

aliquot of 1o/o KCI was added to the incubation mixture in chloroform methanol to effect

phase separation. Preparations were vortex-mixed and centrifuged at 2000 x g for S

minutes. The upper aqueous phase was removed by aspiration and the organic phase

washed twice with another 1 ml of 1% KCl. The remaining isolated organic phase was

dried under nitrogen gas.

lsolation of Lysophosphatidylcholine (LpC)

The dried organic phase for all samples was resuspended in 100 pl

chloroform/methanol (2:1 vlv). A 25 pl aliquot of the organic phase of each sample was
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spotted on a 2.5 cm x 20 cm lane of a silica gel TLC plate, which had been cooled to

room temperature following heat activation over a 3 hour incubation period (145"C) to

remove moisture from the silica gel. A lane containing LPC standard was added to each

plate for identification. The plates were immediately developed in a solvent system

containing chloroform:methanol:acetic acid:water (50:30:8:3 vlvlvlv) for separation of LPC.

LPC'was completely resolved from PC and migrated with an Rf value p 0.09-0.10. After

complete drying, the plates were stained in an iodine chamber for lipid visualization. An

equal area of silica gel corresponding to LPC for each lane was removed and placed into

scintillation vials with 5 ml counting scintillant (Ecolite@) and radioactivity measured in a

scintillation counter 24 hours later.

PLA, activity is expressed in units of picomoles (pmole) LPC generated/min

incubation/mg protein present in sample (pmole/min/mg). Standardized PLA, activity is

expressed in units of pmoles LPC generated/min incubation/mg protein present in

sample/volume of sample (pmole/min/mg/ml).

Statistical Analysis

Results are reported as meantsEM. Data were analyzed using Student's t-test

for paired, measures, Student's t-test for unpaired measures, and multi-way analysis of

variance (MANOVA) and multiple comparison by Newman Keuls test.

Results

Tra cheo-Bronchial Secretions (TBS)-Sa line lnstillation Stu dy

The TBS samples obtained following normal saline instillation prior to routine

tracheal suctioning of intubated neonates had a significantly greater protein content

74



(1.18*0.11 ¡rg/pl) compared to those TBS samples obtained without saline instillation

(0.9810.11 ¡.tg/¡rl) (p<0.05) (Figure 22 A). There was no signifÌcant difference observed

between protein content removal of TBS samples using saline instillation prior to

suctioning in term (1.27+0.12 pg/t¡l) and preterm (1.0910.18 pg/ul) infants (Figure 228).

Tracheo-Bronchial Secretions (TBS)-Secretory Phospholipase A, (PLAr) Activity
Study

The overall average of all TBS samples obtained following normal saline instillation

prior to routine tracheal suctioning demonstrated no significant difference in protein

content removalbetween intubated Non-RDS (1.0710.13 ¡rg/¡.rl)and RDS (0.85+0.06lig/pl)

neonates (Figure 23 A). However, intubated RDS infants did demonstrate a significantly

increased average PLA, activity (2.79t0.31 pmole/min/mg) compared with intubated Non-

RDS (1.33*0.20 pmole/min/mg) individuals (p<0.05) (Figure 23 B). As well, a significant

increase in standardized Pl-4, activity was also demonstrated between RDS (7.6810.93

pmole/min/mg/ml) and Non-RDS (3.10+0.71 pmole/min/mg/ml) individuals (p<0.05) (Figure

23 C).

PLA, activity was also determined to be an early marker for respiratory distress in

severely premature individuals as demonstrated by multi-way comparison of average PLA,

activity of three groups of individuals; 1) RDS - 24-29 weeks GA, 2) RDS - >30 weeks GA,

and 3) Non-RDS >30 weeks GA over three sampling time periods; 1) .Zq hours, 2) 24-72

hours, and 3) 73-200 hours post parturition (Table 2).

Discussion

The instillation of normal saline during routine collection of TBS samples yielded
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Table 2. Tracheal Bronchial Secretion Phospholipase A, Activity in premature Neonates.
Phospholipase A, activity is given as pmole/miñ/mglmi

Gestational Aqe Group

¡ NRDS 24-29 weeks
*l

I

L ¡¡nos >30 r¡¡eeks

Non-NRDS >30 $/eeks

{€*

* p<0.02, **p<0.03

<24 hours

8.84!2.47

3.5211.87

6.69r2.85

24-72 hours

11.5712.21

5.6513.49

2.59¡4.94

72-200 hours

5.2411.43

3.11i2.47

2.73r2.21



a greater amount of TBS, as quantif¡ed by protein concentration, compared to those

collected without saline (p<0.05). A greater recovery of TBS yield during tracheal

suctioning increases the efficacy of the procedure and possibly reduces the incidence of

lung atelectasis as a consequence of protein mediated inhibition of lung surfactant

biophysical activity. An equal benefit regarding the use of saline during tracheal

suctiôning was observed in both term and pre-term infants.

Although analysis of TBS samples revealed no significant difference in protein

content removed between intubated Non-RDS and RDS individuals, RDS individuals did

demonstrate a significantly increased average PLA, activity (p<0.05) as well as an

increased standardized PLA2 activity (p<0.05). TBS PLA2 activity was found to be

significantly increased, in the first 8% days (200 hours) of life, in severely premature RDS

infants born at <29 weeks GA compare to more mildly premature RDS infants (>30 weeks

GA) (p<0.02) and control Non-RDS infants (>30 weeks GA) (p<0.03).

The observation of increased PLA, activity in the lungs of RDS infants could be the

result of increased lung permeability associated with RDS allowing the introduction of

plasma proteins into the airspace or the result of the ventilation of surfactant deficient

lungs yielding desquamation of lung epithelium culminating in an inflammatory response

mediated by PLA, (Vadas and Pruzanski, 1989). The latter explanation seems most likely

as there was no significant difference between measurable protein content in TBS

samples from both RDS and Non-RDS infants. The PLA, which initiates the propagation

of an inflammatory response is a non-pancreatic, secretory PLA, (Vadas and Pruzanski,

1 e8e).

A natural, powerful inhibitor of secretory PLA, activity is uteroglobin (Levin et al.,

1986) , originally described as blastokinin, discovered in the rabbit uterus (Miele et al.,
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1987). lt is thought that its presence in the uterus confers protection to the fetal lung from

maternal inflammatory responses during gestation (Mukherjee et al., 1980). High levels

of uteroglobin have also been observed in neonatal TBS samples (Samuelsson et al.,

1987) and it is postulated that it functions in maintaining a balance between antigen,

prostaglandin and leukotriene activity in the tracheobronchial tree (Samuelsson et al.,

1987). lt is also hypothesised that uteroglobulin in the lung may be involved in the

prevention of NRDS by inhibiting PHz activity which degrades pulmonary surfactant

(Kaiser et a|.,1990). lt must, therefore, also be considered that the observed increase in

PLA, activity in RDS TBS samples may be a reflection of an altered or decreased

production of uteroglobulin in the tracheobronchial tree. Since the content of neither PLA,

nor uteroglobin were measured in the TBS samples, it is unknown whether the increased

PLA, activity is a reflection of the PLA, content or specific activity.
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Lun g Ventilation-Perfusion Studies

lntroduction

Lung ventilation-perfusion studies were conducted, according to a modification of

the protocol of Kraft et al. (1995), to determine the vasoactive potential of LPC

administered both intra-vascularly and intra-tracheally. The intravascular administration

of LPC was an in vivo confirmation of the results that were previously observed in vitro

with pulmonary arterial rings from the main branch of the pulmonary artery of adult and

newborn guinea pigs. The intratracheal administration of LPC was performed to

determine the potential of LPC to cross the epithelial-endothelial barrier to mediate

pulmonary vasodilation. Based on the observed endothelial-dependence of LPC to

mediate relaxation of vascular smooth muscle, it is hypothesized that LPC must cross both

the epithelial barrier within the lung and the endothelium which lines the vasculature to

mediate vasorelaxation. lt is unclear ¡f LPC may act on the basal aspect of the endothelial

cell to mediate vasorelaxation.

Material and Methods

Materials,

L-c¿-LPC palmitoyl (synthetic), L-phenylephrine hydrochloride, albumin (bovine, fraction

V), potassium chloride, sodium bicarbonate, sodium chloride were purchased from Sigma

Chemical Co. (St. Louis, MO). Sodium phosphate monobasic, magnesium sulfate,

calcium chloride, and D-glucose anhydrous were purchased from Mallinckrodt division of

Anachemia Science (Winnipeg, MB). Heparin sodium injection was obtained from Leo

Laboratories (Ajax ON). Exosurf@ neonatal (colfosceril palmitate) was obtained from
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Burroughs Wellcome lnc. (Kirkland, PO). Ketalean@ (ketamine hydrochloride) was

purchased from MTC Pharmaceuticals (Cambridge, ON) and Rompun@ (xylazine)obtained

from Bayvet Division, Chemagro Limited (Etobicoke, ON). Pentobarbitone sodium was

purchased from BDH lnc. (Toronto, ON).

Animal Preparation

Lung perfusion studies, modified from the protocol of Kraft et al. (1), were

performed on adult female guinea pigs (800-1000 grams) under a protocol approved by

the University of Manitoba Ethics Committee on animal experimentation. Animals were

sedated with an intramuscular injection of ketamine hydrochloride (30 mg/kg) and xylazine

(2.2 mglkg) prior to an administration of lidocaine hydrochloride (3 mg) in the upper

thoracic region. Following tracheostomy, an endotracheal tube (2 mm lD) was introduced

and the animalwas mechanically ventilated (Harvard Apparatus Respirator) with room air

al24 breaths/min (15 ml/breath). The chest cavity was immediately opened and, following

the removal of the pericardium, a canula was introduced into the main trunk of the

pulmonary artery at the junction of the pulmonary artery and the conus arteriosus through

an incision in the right ventricle. A second cannula was introduced into the left atrium

through an incision in the left ventricle. Both cannula were secured by ligature through

the right and left ventricles respectively.

Perfusion System

Two perfusion mediums, equilibrated with a gas mixture of 95o/o O2-5o/o CO, (pH

7.4), were incorporated in this study. The first, which consisted of Krebs-Henseleit

solution with heparin (5 Units/ml) was utilized to prepare the perfusion system prior to
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exper¡mentation and to flush the pulmonary vasculature of blood and blood borne

products. The second, recirculated perfusion medium consisted of Krebs Henseleit

solution containing 3% bovine serum albumin (BSA) pre-filtered with a 0.20 ¡.rm cellulose

acetate filter. The initial perfusion medium was delivered at a lowflow rate (1-1.5 ml/min)

until the exiting perfusate became blood free. The second perfusion medium was initially

delivered at 2 ml/min, but during experimentation was delivered at a flow rate of 5 ml/min.

The perfusion system consisted of a Masterflex@ peristaltic pump delivery system;

polyethylene tubing (lntramedico - lD 0.062", OD 0.082"), 2 in line bubble traps, an in line

fllter system and an in line pressure transducer (Gould P23lD). The perfusion medium

was maintained at 37oC via a servo controller (Fisher and Paykel) and the animal

preparation was also maintained at37oC for the duration of the experiment with an electric

blanket. The chest and tracheal region was covered with plastic wrap to conserve

humidity.

Changes in pulmonary vascular resistance were measured with an in line pressure

transducer and recorded at a frequency of 5 Hz by means of a customized data

acquisition program (AT Lever Data Capture Program - Cunningham Engineering).

lntra-Vasc u lar Perfusion of Lyso phosphatidylcho line (LPC)

Following the perfusion of the Krebs + 3% BSA medium through the preparation,

2 cumulative doses of PE (3x10-6 M) were added to the perfusate medium to effect an

increase in PVR. When the achievement and maintenance of an steady state increase

in pulmonary arterial pressure was observed, an intravascular dose of LPC (10'4 M) was

administered directly into the perfusate line as a 10 ml bolus. Care was taken to ensure

that the 10 ml LPC bolus was administered carefully so as not to alter the pulmonary
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arterial pressure. The perfusate medium exiting the preparation was collected for a 2

minute period following introduction of LPC and disposed to ensure that the recycled

perfusion medium remained free of LPC.

lntra-Trac hea I Adm inistration of Lys ophosp hatidylc h o line (LPC)

' LPC (50 mM) was administered intra-tracheally using 300 ¡rl Exosurf@, a synthetic

surfactant preparation which is LPC free, as a vehicle. The preparation was sonicated

and gently vortex-mixed to completely dissolve LPC into solution. The Exosurft-lpC

preparation was administered intermittently over 30 seconds, immediately following

exhalations to allow the proceeding inhalation of the respirator to "push" the Exosurf@-LPC

mixture into the lungs and facilitate an even distribution into each lung lobe. The

administration of 300 pl of Exosurfo alone acted as control trials.

Results

lntra-Va sc u lar Perfusion of Lysop h osphatidylch o line (LPC)

Baseline pulmonary arterial pressure was approximately 12 mmHg. The

intravascular adminstration of LPC in the ventilation perfusion model was performed twice

yielding a complete reversal of the increased PVR achieved with 6x10'6 M PE (40 mmHg)

during both trials (Figure 24A). The vasorelaxation and concomitant decrease in

pulmonary arterial pressure was short lived as the 10 ml bolus briefly passed through the

pulmonary vasculature. Following complete return of pulmonary arterial pressure to

baseline values and passage of the LPC through the pulmonary vasculature, the perfusion

of medium containing PE reached the vasculature and once again returned pulmonary

arterial pressure to increased PVR levels.
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lntra-Tra chea I Ad m in istratio n of Lysop hosp hatidylch o line (Lpc)

The intra-tracheal adminstration of Exosurf@ alone d¡d not alter pulmonary

hemodynamics, but did result in increased compliance of the lungs as determined by the

slight increase in the size of the lungs during inspiration. Four trials of intra-tracheally

administered LPC were conducted and an observed decrease in PVR was observed in

one of these (Figure 248) whereas no significant alteration in PVR was observed in the

remaining three.

Discussion

Vasodilation of the precontracted pulmonary vascular bed in vivo was observed

following the intravascular administration of LPC, confirming our results obtained in vitro

and previous rn srTu studies (Bing et al., 1988). This vasodilation was observed as a

complete reversal in the increased pulmonary arterial pressure achieved with 6x10'6 M pE.

A decrease in pulmonary arterial pressure following the intra{racheal administration of

LPC fortified doses of Exosurfo was observed only once in four trials. Although this

contradicts the hypothesis that LPC can cross the epithelial-endothelial barrier to mediate

relaxation of the pulmonary vasculature, it does not discredit the hypothesis. The intra-

tracheal a.dminstration of LPC was tested on an adult, non surfactant deficient guinea pig

animal model. The clinically reported decrease in pulmonary vascular resistance following

surfactant administration was observed in surfactant deficient pre-term infants suffering

NRDS (Kääpä ef a/., 1993) which were ventilated prior to the administration of exogenous

surfactant. The pre-term lung is highly permeable, compared to the adult lung, and tends

to leak large amounts of intravascular proteins into the ainaray after birth (Jobe et al.,

1983),aphenomenonwhichdecreaseswithadvancinggestational age(Jobeef a/., 1985).
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This would suggest the potential for diffusion of LPC across the epithelial-endothelial

barrier into the lung vasculature of the pre-term newborn as opposed to the adult. As

well, in the clinical studies infants were intubated and ventilated prior to the administration

of exogenous surfactant. The ventilation of the premature surfactant deficient lung prior

to the administration of surfactant is associated with irregular alveolar expansion and

necr'osis and desquamation of ainruay epithelium (Grossman et al., 1986; Robertson 19BB).

Breakdown of the epithelial barrier causes an increased permeability of the epithelial

barrier of the lung (Robertson, 19BB) which would facilitate the diffusion of LPC into the

pulmonary vasculature. ln our adult model, this could have possibly been achieved by

broncho-alveolar lavage of the lungs prior to ventilation or by the ventilation of the lungs

with ozone to facilitate epithelial damage.

Ïrace amounts of LPC administered with exogenous surfactant are rapidly

removed from the airspace of adult rabbits, partially by epithelial type-ll cells and

remodelled, with 60-80% efficiency, to PC (Seidner et al., 1988). ln the preterm lamb,

LPC is also removed from the airspace and remodelled to PC, in a much less efficient

manner than observed in the adult rats (lkegami et al., 19Bg). This may indicate an

increased loss of LPC from the lung into the vasculature following administration into the

preterm animal. Although the fate of LPC in the pre-term lung following exogenous

surfactant replacement therapy has not been completely clarified, it is possible that some

may cross the epithelial-endothelial barrier and reach the pulmonary vasculature.

Although the aforementioned explanations for the lack of an observed decrease

in pulmonary arterial pressure following intra-tracheal administration of LPC seem

reasonable, it must also be considered that LPC may not cross the epithelial/endothelial

barrier to the pulmonary vasculature at all or in sufficient concentration to yield

vasodilation of the pulmonary vasculature.
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Summary

It was the purpose of this research thesis to address the vasoactive potential of

LPC, a component of administered exogenous surfactant and a potential product of

surfactant degradation in the lung, following exogenous surfactant therapy to neonates

with NRDS (Figure 25).

Exogenous surfactant preparations contain DPPC as their main, active ingredient.

We have demonstrated, in vitro, that the naturally derived exogenous surfactant

preparation Survanta@ is readily deacylated by secretory PHz whereas the synthetic

exogenous surfactant preparation Exosurf@ is resistant to secretory PLA, activity. We

have also demonstrated that TBS samples from infants with RDS contain a significanfly

increased PLA, activity compared with Non-RDS infants.

It has been demonstrated that LPC is a potent vasodilator of the pulmonary

vasculature both rn vitro and in vivo. Although it has not been demonstrated that LpC is

capable of crossing the epithelial-endothelial barrier to mediate pulmonary vasorelaxation,

this is a reflection of the adult animal model used which is not a true reflection of the

ventilated, surfactant deficient preterm lung in which a decrease in PVR has been

observed following exogenous surfactant administration.

Limitations of the Study

Although this study has seemingly demonstrated the potential for LPC to be

generated in the NRDS lung and mediating a decrease in PVR by vasodilation of the

pulmonary vasculature, there are several inherent limitations to this study.

Due to the large calibre and relative ease with which preparations could be
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Figure 25. Pulmonary Vasoactive Poter¡tial of L¡rsophosphatidylcholine (LPCI.
Adminstration of surfactant, which contains large quantities of dipalmitoyl
phosphatidylcholine (DPPC), may be degraded in the lung by phospholipase A, (PHr)
yielding LPC which may transverse the epithelial-endothelial banier and mediate
pulmonary arterialvasodilation. Significantly increased levels of Pl-4, in tracheal bronchial
secretions [fBS) of infants with neonatal respiratory distress syndrome (NRDS) has been
demonstrated. The vasodilatory properties of LPC on the pulmonary vasculature has
been demonstrated in vitro and in vivo. The abilíty of LPC to transverse the epithelial-
endothelíal banier was not confirmed.



obtained and handled in vitro, smooth muscle mechanics studies to determine the

vasoactive potential of LPC were conducted on arteríal rings from the pulmonary trunk of

guinea pigs. The control of pulmonary vascular resistance, however, is mediated by the

pulmonary arterioles which are not only much smaller in scale but are also embedded

deep in the parenchyma of the lungs making them difficult to obtain and handle in vitro.

Preparations from the pulmonary trunk were therefore used with the assumption that their

vasoactive behaviour in the presence of PE, ACh and LPC were much the same as the

smaller pulmonary arterioles. The effect of the administration of PE and LpC

intravascularly on pulmonary arterial pressure in the lung ventilation perfusion model

supports this contention.

Analysis of the susceptibility of the exogenous surfactant preparations Exosurf@

and Survanta@ to secretory PLA, activily in vitro is based on the assumptions that the

increased lung PLA, activity associated with RDS is of a pancreatic isoform and that the

conditions in which the assays are conducted are similar to those present in vivo. The

increased lung Pl-A, activity, if a result of lung epithelial inflammation due to ventilation

as speculated, would primarily be of a secretory non-pancreatic isoform (Vadas and

Pruzanski, 1990). lt is assumed that the susceptibility of both Exosurf@ and Survanta@ to

pancreatic and non-pancreatic isoforms would be equivalent. The inference that the

results of this study would be similar to what is expected in vivo cannot be accepted with

a great deal of certainty. Surfactant exists as many forms in the lung, such as LB's, TM,

and relatively pure DPPC in the monolayer. PLA, will hydrolyse DPPC in the surfactant

monolayer itself (Enhorning ef al., 1992; Holm ef a/., 1991) but its potential to hydrolyse

other DPPC fractions of the surfactant remain unclear.

At present there are no means of performing broncho alveolar lavage (BAL) in
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intubated pre-term neonates. TBS samples were alternatively obtained for quantification

of PLA, activity as an indicator of PLA, activity in the alveolar microenvironment itself.

Although TBS samples may differ in their composition from BAL samples, Merritt et al.

(1986b) contend that TBS samples yield data comparable to that obtained with BAL

samples, used in the monitoring and cytopathology of lung disease. Although the use of

TBS'is limited and there is no certainty that the increased PLA, measured is a true

reflection of what is occurring in the lung, it is assumed that TBS samples are a

reasonable indicator of the alveolar microenvironment. Regardless, exogenous surfactant

must pass through the tracheobronchial tree during its administration into the lungs.

Lung ventilation perfusion studies were performed on adult, surfactant efficient,

guinea pig preparations. lt was assumed that the adult preparations would be a

representative model of the newborn, surfactant defìcient pre-term infants in which clinical

observations regarding decreased PVR following surfactant administration have been

made. Desquamation and inflammation of airway epithelium following ventilation of

surfactant-deficient lungs (Robertson, 19BS) and the permeability of the premature lung

(Jobe et al., 1983) suggest that the adult model incorporated in this study was not

reflective of the state of the lung of the premature, surfactant deficient pre-term and

probably a poor model to use in this regard.
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Conclusions

1a. This study demonstrated that lysophosphatidylcholine (LPC) is an effective,
endothelium dependent vasodilator of pulmonary arterial smooth muscle preparations rn
vitro from both adult and newborn guinea pigs.

I b. LPC induced vasorelaxation is mediated by both guanylate cyclase (GC) and nitric
oxide synthase (NOS) activity, however, in the newborn guinea pig the response ís
mediated to a greater extent by the NOS pathway compared to the adult which is more
dependent on the GC pathway.

2a. The^phosphatidylcholine (PC) component of the exogenous surfactant preparation
Survanta@ is readily susceptible to secretory-phospholipase A, (PLA,) deacylaiion in vitro
whereas the dipalmitoyl pho_sphatidylcholine (DPPC) component of the exogenous
surfactant preparation ExosurP is resistant,

2b. The resistance of Exosurfo DPPC to secretory-PH, deacylation is a reflection of the
presence of tyloxapol, a non-ionic surfactant component of Exosurf@ which facilitates rapid
adsorption of DPPC in the lung following administration.

3a. Saline instillation prior to tracheal suctioning of intubated neonates yields a greater
removal of tracheal bronchial secretions (TBS) in both term and pre-term infants than
tracheal suctioning without saline instillation, as quantified by TBS protein concentration.

3b' lnfants with respiratory distress syndrome (NRDS) have an increased PLA, activity
in their TBS samples compared to Non-NRDS infants.

4a. LPC administered into the pulmonary vasculature mediates a decrease in PVR.

4b. Preliminary investigations regarding intra-tracheal administration of LPC into the lung
of a ventilated, non-surfactant deficient adult guinea pig are too few to allow rigorous
analysis and significant conclusions to be drawn regarding the potential of LPC to cross
the epithelial-endothelial barrier to mediate a decrease in pulmonary vascular resistance.
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