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Abstract

This thesis develops methods to identify periodic solutions to the n-body problem by

representing gravitational orbits with Fourier series. To find periodic orbits, a mini-

mization function was developed that compares the second derivative of the Fourier

series with Newtonian gravitation acceleration and modifies the Fourier coefficients

until the orbits match. Software was developed to minimize the function and identify

the orbits using gradient descent and quadratic curves. A Newtonian gravitational

simulator was developed to read the initial orbit data and numerically simulate the

orbits with accurate motion integration, allowing for comparison to the Fourier se-

ries orbits and investigation of their stability. The orbits found with the programs

correlate with orbits from literature, and a number remain stable when simulated.
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Chapter 1

Introduction

Gravity affects the motion of every body in the universe, from interstellar dust to

black holes, causing many fascinating patterns and motions to occur. Simulating the

entire universe is currently impossible, but simulating a limited number of bodies,

or n-body simulation, can lead to interesting results. A specific class of the n-body

problem is the periodic orbit in which all the bodies in the system follow a repeating

pattern of motion.

We will be searching for periodic solutions to the n-body problem. To facilitate

in finding periodic orbits, software was developed to generate and simulate potential

orbits.

The orbit generation software searches for orbits by defining the paths of po-

tential orbits with Fourier series and then iteratively modifying the Fourier series

coefficients to approach a potential solution. The modifications needed are deter-

mined by comparing the Fourier series orbits to orbits defined by Newton’s law of

1



2 Chapter 1: Introduction

universal gravitation. The difference between the two orbits is minimized over suc-

cessive iterations using a minimization function. We will look at how the function is

created and at the algorithms used to efficiently minimize it.

Once potential periodic orbits are generated, they are run in the n-body gravita-

tional simulator. We will observe the paths of the bodies under the effect of gravity,

and compare the results to the orbits defined by the generated Fourier series.



Chapter 2

Periodic Orbits

Periodic orbits are found in the Kepler two-body problem. In its most pure form a

periodic orbit is where some number of bodies, given a starting position and velocity,

move through space affected only by gravitational forces from the other bodies, and

all return to their original positions and velocities after some period of time. Nearly

periodic orbits can be loosely described within these parameters. In many natural

cases there is a large primary body with multiple secondary bodies orbiting it, such as

the planets orbiting the Sun. In other cases, there are two bodies in a periodic orbit

where one body is much more massive than the other, such as the Moon orbiting the

Earth. While forces are exerted on both bodies, the difference in mass results in the

larger body staying relatively stationary while the smaller body orbits around it on

an elliptical path. The point at which the smaller body is closest to the larger body

is the perihelion and is a convenient location to define as the start and end of each

period.

3



4 Chapter 2: Periodic Orbits

Other forms of orbits exist such binary or multiple star systems. In these cases

stars (or other large masses such as black holes) have a smaller order of magnitude

difference between their masses and larger movement can be observed in all the bodies,

in effect orbiting each other. The same gravitational laws controlling planets orbiting

a sun define the motions of these systems, but more exotic orbits may be present

when every body has a larger impact on each other.

In all systems the bodies can be seen as orbiting a center of mass, which is a

point where the weighted average of the masses of all the bodies in the system cancel

each other out. For example, in a two-body system where both masses are equal, the

center of mass will be the point halfway between the two masses. In cases where one

body is significantly larger than the other bodies in a system the center of mass may

be inside the larger body, but this is not a requirement and in cases of bodies with

masses of similar orders of magnitude, the center of mass will generally not be inside

any of the bodies.

2.1 Imperfect Orbits

Other orbits exist that do not fit the description quite as cleanly. A prime ex-

ample of such an orbit is that of Mercury and the Sun. Mercury is considered to

be in a periodic orbit around the Sun, as it continues to travel on a stable elliptical

orbit over a fixed period of time, but it does not come back to its original starting

point. This is referred to as its perihelion precession. Mazarico et al. [7] used data

from the MESSENGER probe to determine that Mercury has an orbit which takes
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87.969216879 days ±6 seconds. However, observational data has determined the per-

ihelion of Mercury precesses at a rate of 5599.74 ± 0.41 arcseconds per century [4].

Much of this precession can be explained due to the gravitational effects of the other

planets, but Einstein [5] showed that approximately 43 arcseconds per century can

be accounted for by effects described by the general theory of relativity. While this

precession of each orbit is small, it means that after a single orbit Mercury will not

return to its original location.

Even taking precession into account, after one full rotation of the Mercury’s peri-

helion around the Sun the perihelion will not be back at the same point it started. For

this to happen, the precession rate would need to be a perfect multiple of Mercury’s

orbit length. This shows that due to effects such as precession, simply searching for

orbits where all the bodies return to their exact initial locations excludes too many

possible orbits, and so some perturbation of orbits must be allowed to occur.

The same ideas used to define the movements of a planet around a star or multiple

star systems can be extended to apply to all celestial bodies such as planetary systems,

asteroids, and comets. For the purposes of this thesis, some restrictions will be placed

on the systems being used to focus on an idealized subset of the periodic orbits. All

of the bodies focused on will be of equal mass. This will simplify a number of the

formulas and concepts without any loss to the general ideas being proposed. All of

the methods used could be easily extended to bodies of differing mass. Additionally,

the period length of all orbits will be fixed as 2π. A period of any length could

realistically be used, but this assumption simplifies the Fourier series formulas that

will be discussed later, and a period of any length can be mapped to a period of
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length 2π. Other restrictions on the orbits will be defined in future sections as they

become relevant.



Chapter 3

Related Work

Periodic n-body orbits is currently a popular topic of research. A simple 3-body

stable system in an equilateral triangle following a circular path has been known since

it was found by Lagrange in 1772 [10], but other patterns were unknown until very

recently.

Chenciner and Montgomery [2] demonstrated a new family of 3-body, stable, pe-

riodic orbits in the form of a figure-eight. They showed that by minimizing the

difference between the potential and kinetic energy over the period of the orbit, they

could find an orbit path which was stable and periodic.

Simó [10] provided starting positions and velocities for the figure eight described

by Chenciner and Montgomery, and he discovered a number of new orbit systems

where the objects all followed the same path, which he called choreographies. He

expanded [11] on his findings and demonstrated how he found the minima of functions

to identify choreographic orbits and investigated [12] how small perturbations could

7



8 Chapter 3: Related Work

result in dynamic orbits which maintained stability.

Chunhua and Zhang [3] proved the existence of 2n-body (for n ≥ 2) stable periodic

orbits in R3 where the bodies follow two perpendicular circular paths. They did so

by defining a minimizer which determined the starting positions and velocities of the

points such that they followed periodic orbits, and then proving that the orbits were

stable and without collisions.

Roberts [9] analyzed the figure eight solution to determine its stability. He proved

it was linearly stable by reducing the problem with orbit symmetries and then ana-

lyzed the remaining problem using differential geometry to prove the reduced problem

was stable.

Zhang and Zhou [15] proved that there exists at least one periodic solution with-

out collisions for any number of bodies in an n-body system. They controlled their

functions so the orbits would fall into a similar pattern for any number of objects.

Zhang et al. [16] proved the existence of new stable orbits containing bodies with

non-uniform mass. Previous research had focused on bodies with uniform mass in

order to simplify the equations, but by adjusting the mass they were able to develop

new periodic orbits with unique shapes.

Vanderbei [13] discovered a large number of new periodic orbits, both chore-

ographed and not, by starting with random Fourier series and minimizing the dif-

ference between the potential and kinetic energies in the orbits until local minima

were found. He was able to find the known stable triangle and figure eight orbits, but

all of the other orbits he found proved to be unstable.

Šuvakov and Dmitrašinović [14] discovered new classes of 3-body orbits by cal-
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culating the topology of the orbits on the surface of a sphere and determining the

planar periodic orbits from the results.

Aarseth [1] describes different ways of writing n-body simulations. He provides

information on selecting simulation time steps and how to adjust them dynamically,

how to accurately represent a continuous system with discrete time steps and correct

for error, and how to determine the amount of error which accumulates in a simulation.

All of these works show that there are many possible methods available for finding

new periodic n-body orbits.



Chapter 4

Algorithm Concepts

This chapter will introduce some of the algorithms that were required for develop-

ing applications to find and simulate periodic n-body orbits. The concepts considered

include Runge-Kutta integration and an introduction to the Steepest Descent algo-

rithm.

4.1 Integration of Motion

An inherent problem with simulating gravitational orbit mechanics is that gravi-

tational motion is a continuous function, but simulations are based on discrete func-

tions. To reduce the errors that can very quickly add up during a simulation, a small

timestep is used. At each timestep the instantaneous position and velocity of each

body is known. With the positions the acceleration due to gravity can be calcu-

lated using Newton’s law of universal gravitation, and the requirement is to find the

position and velocity of each body at the next timestep.

10
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4.1.1 Euler Method of Integration

The first and simplest form of motion integration tried was to calculate using the

Euler method of integration which is used to solve first order differential equations of

the form x′(t) = f(t, x(t)) by breaking the time into some small number of steps and

having a step size h where h = 1/steps . The integration then iterates with the form

xn+1 = xn + hf(tn, xn)

tn+1 = tn + h

(4.1)

To solve for motion on the x-axis, this requires the initial position x0, initial

velocity v0. We can define the velocity as v(t) = x′(t) and the acceleration in a grav-

itational simulator is determined by Newton’s law of universal gravitation, indicated

as f(t, x(t)). We can now define the system as

d

dt

x(t)

v(t)

 =

 v(t)

f(t, x(t))

 (4.2)

Using Euler’s method we then get

xn+1 = xn + hvn

vn+1 = vn + hf(tn, xn(t))

tn+1 = tn + h

(4.3)

Euler’s method is considered to not be very accurate, so to try to get more accu-

racy, the number of steps can be increased (decreasing the step size). The primary

limitation of this method is that the acceleration due to gravity is only calculated once

at the beginning of each step, and then it is used as a constant over the entire step.
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This introduces error that can increase quickly. At the next timestep, the positions

and velocities will be slightly wrong, which will produce an incorrect gravitational

acceleration, causing the next timestep to be even more inaccurate.

4.1.2 Runge-Kutta Integration

A much more accurate method of integration is the Runge-Kutta method [8]. The

software uses the fourth-order Runge-Kutta method, also known as RK4. This starts

at time t0 with the initial position x0, initial velocity v0, and initial acceleration a0,

just as with the Euler method. It also uses a value h, which is the step size to take.

The algorithm starts with the definition of

x′ = f(t, x) (4.4)

Using xn at time tn, xn+1 can be calculated at time tn+h by calculating several steps

between tn and tn+h and using a weighted average of the values. It starts by first

calculating the first derivative at the start time which is

k1 = f(tn, xn) (4.5)

This gives the slope of the function at the beginning of the time interval, just as the

Euler method. Instead of using this slope over the full timestep, the result then gets

fed back into the equation at the half-way point between the start and end time as

k2 = f(tn +
h

2
, xn +

h

2
k1) (4.6)

This gives an approximation of the slope halfway through the interval. Feeding it

back into exactly the same formula at the midpoint results in another approximation
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of the slope at the midpoint, starting with a different initial slope. This gives

k3 = f(tn +
h

2
, xn +

h

2
k2) (4.7)

This second approximation at the midpoint is now used to determine the slope at the

end of the time interval with the formula

k4 = f(tn + h, xn + hk3) (4.8)

Now that the slope for the beginning, the end, and twice for the middle, a weighted

average of the slopes can be used to calculate the final answer of

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) (4.9)

Using this function gives a much more accurate representation of the behaviour of the

function without relying on the incredibly small time-steps that would be required

for the Euler method.

4.2 Steepest Descent

Press et al. [8] describe the steepest descent algorithm as taking a function at a

point, finding the gradient, or slope, of the function at that point which is the direc-

tion of steepest descent, and then following the gradient to the minimum along that

direction. This is repeated many times, recalculating the gradient and approaching

closer and closer to the minimum at each step. Given some function f(x), γ which is

a value to control how much influence the gradient has on each step, and the current

value x1, moving from a point x1 to point x2 on the function is done by calculating

x2 = x1 − γ∇f(x1) (4.10)
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There are some limitations to the steepest descent algorithm. It is able to quickly

and easily approach a minimum when starting from far away, but as it gets closer to

the minimum of the function, the minimization slows down and attempting to make it

speed up can cause the function to overshoot the minimum. Additionally, in complex

functions with a large number of parameters, modifying all the parameters to follow

a single gradient change may not approach the actual minimum of the function but

may simply cause the path to zigzag using many short line segments. Limitations

of the steepest descent algorithm and the modifications made to create a modified

gradient descent to find periodic orbits will be explored in greater detail in Chapter 6.



Chapter 5

The n-Body Problem and Periodic

Orbits

5.1 Newtonian Gravitation

Newton’s law of universal gravitation states that every body attracts every other

body along a line intersecting the two bodies with a force equal to

F = G
m1m2

r2
(5.1)

where F is the force between the two bodies, G is the gravitational constant defined

by the International Astronomical Union [6] as 6.67428× 10−11 N(m/kg)2, m1 is the

mass of the first body, m2 is the mass of the second body, and r is the distance

between the centers of masses of the bodies. This relationship holds for any bodies

in the universe, although due to the force falling off at a rate inversely proportional

to the square of the distance between the two bodies, distant objects exert much less

15
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force on each other compared to closer objects of the equivalent masses.

When there are only two bodies in a closed system, their motion is defined by

Kepler’s Laws. Given the positions, masses, and starting velocities of the two bodies,

their positions and velocities can be determined at any point in time.

Newtonian gravitation can be extended to multiple bodies via a simple summation

of the forces. Say there are n bodies 1, 2, ..., n with the positions on a plane of p1(t),

p2(t), ..., pn(t) at time t where

pi(t) =

xi(t)
yi(t)

 (5.2)

The force on body i by body j is

F i,j(t) = −G
(
pi(t)− pj(t)

)
mimj∣∣pi(t)− pj(t)∣∣3 (5.3)

where |pi(t) − pj(t)| is the distance between the two bodies. The total force on a

body is the sum of the forces from all the other bodies, defined as

F i(t) = −G
n∑
j=1
j 6=i

(
pi(t)− pj(t)

)
mimj∣∣pi(t)− pj(t)∣∣3 (5.4)

When there are 3 or more bodies, there is no general closed solution that can

determine the positions and velocities at any given point in time. Instead, the system

must be solved numerically given the starting values.

For each body, given that we know the position, we can define its velocity as

vi(t) =
∂

∂t
pi(t) (5.5)

and its acceleration as

ai(t) =
∂

∂t
vi(t) (5.6)
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Since the primary purpose of this research was to investigate the concepts of

periodic n-body orbits among equal-mass bodies so to simplify the equations and

reduce computational complexity, a few assumptions will be defined:

1. All distances between bodies will be on the order of magnitude of 1

2. The gravitational constant will be defined as G = 1

3. All the bodies will have an equal mass of mi = 1

4. All the bodies will exist on a single plane

5. The center of mass will be at the origin

By making these assumptions, the force on a body can be simplified to

F i(t) = −
n∑
j=1
j 6=i

pi(t)− pj(t)∣∣pi(t)− pj(t)∣∣3 (5.7)

and given F = ma and m = 1, finding F i provides us with the acceleration of each

body in the system. This can be split into separate x and y components as

Fix(t) = −
n∑
j=1
j 6=i

xi(t)− xj(t)(
(xi(t)− xj(t))2 + (yi(t)− yj(t))2) 3

2

Fiy(t) = −
n∑
j=1
j 6=i

yi(t)− yj(t)(
(xi(t)− xj(t))2 + (yi(t)− yj(t))2) 3

2

(5.8)

5.2 Fourier Series

A Fourier series is a method of defining a periodic function as a combination of

sines and cosines with coefficients. In its simplest form, an elliptical periodic orbit of
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length 2π could be defined using the Fourier series

z(t) = a0 + a1 cos t+ b1 sin t (5.9)

where 2a0 is an offset from the origin and the coefficients a1 and b1 control the size

and shape of the orbit.

To more easily calculate the complex orbits, the x and y components can be

separated out as

x(t) = a0 + a1 cos t+ b1 sin t (5.10)

and

y(t) = c0 + c1 cos t+ d1 sin t (5.11)

This was done in the software, with the x and y coefficients handled completely

independently.

In order to get more complex orbits, more terms must be added to the Fourier

series by adding more sine and cosine terms with coefficients. The position of a body

can be determined using the formula

z(t) = a0 + a1 cos t+ b1 sin t+ a2 cos 2t+ b2 sin 2t+ a3 cos 3t+ b3 sin 3t+ ... (5.12)

or in general

z(t) = a0 +
∞∑
k=1

[ak cos(kt) + bk sin(kt)] (5.13)

It is possible to perfectly represent any periodic orbit with an infinite number of

terms, however the software will have limits on the number of terms, which will be

discussed in Chapter 7.
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The Fourier series provides the position of a body in a periodic orbit at any point

in time. The first derivative of the series can be used to determine the velocity of the

body at any point in the orbit according to the Fourier series. This gives the formula

z′(t) = −a1 sin t+b1 cos t−2a2 sin 2t+ 2b2 cos 2t−3a3 sin 3t+ 3b3 cos 3t+ ... (5.14)

which can be generalized as

z′(t) =
∞∑
k=1

[−kak sin(kt) + kbk cos(kt)] (5.15)

Continuing on to the second derivative, the acceleration of the body according to

the Fourier series can be determined with the formula

z′′(t) = −a1 cos t−b1 sin t−4a2 cos 2t−4b2 sin 2t−9a3 cos 3t−9b3 sin 3t+ ... (5.16)

Finding the general form of this equation gives

z′′(t) = −
∞∑
k=1

[k2ak cos(kt) + k2bk sin(kt)] (5.17)

This acceleration formula will play a key role in identifying potentially stable orbits.

5.3 Orbit Categories

The orbits being considered will fall into one of two groups: choreographed orbits

and unchoreographed orbits. It is entirely possible for orbits from the two groups to

have the same behaviour, but they will be found in different manners.
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5.3.1 Choreographed Orbits

A choreographed orbit is one in which a single Fourier series can be used to define

the motion of all the bodies in the system. All of the bodies will follow the same path

and appear to be chasing each other. The positions of the bodies can be determined

using the same formula for all the bodies by simply offsetting the time used in the

formula by a fixed ratio along the period of the function. Given a series z(t) with a

period of 2π and n bodies, the position of each body i can be found by evaluating

pi(t) = z

(
t+

i · 2π
n

)
0 ≤ i < n (5.18)

For example, consider the simple case of 3 bodies moving in a circle around the

origin with a radius of 1 unit. In this case, the shape of the orbit can be defined using

the formulas x(t) = cos(t) and y(t) = sin(t). Using equation 5.18 the positions of

each body can be determined using the same formulas. At time t the positions would

be

x0 = cos(t) y0 = sin(t)

x1 = cos

(
t+

1 · 2π
3

)
y1 = sin

(
t+

1 · 2π
3

)
(5.19)

x2 = cos

(
t+

2 · 2π
3

)
y2 = sin

(
t+

2 · 2π
3

)
The same time offsetting may be done with the first and second derivatives of the

Fourier series to determine the velocities and accelerations of every body in the orbit.
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5.3.2 Unchoreographed Orbits

Unchoreographed orbits exist when each body has a separate Fourier series used to

describe its motion, z1(t), z2(t), etc. In this case the orbits as described by the Fourier

series are completely uncoupled from the orbits of the other bodies. To calculate the

values at a given time t, each function at t is calculated without any offsets. Given

the appropriate sets of Fourier series this of course may result in the same values as

a choreographed orbit, such as three sets of Fourier series which would result in the

identical orbits as the choreographed 3-body circle. However, it is also possible to

have much more diverse orbits, such as two bodies in a cross pattern with a third

body circling around it which will be seen in Chapter 8.



Chapter 6

Primary Algorithms

The concepts discussed can now be brought together to identify periodic orbits,

starting with the two distinct acceleration formulas as defined earlier. For the body

i, the first acceleration formula comes from finding the force due to Newtonian grav-

itation giving the equation

F i(t) = −
n∑
j=1
j 6=i

pi(t)− pj(t)∣∣pi(t)− pj(t)∣∣3 (6.1)

which can be split into the components

Fix(t) = −
n∑
j=1
j 6=i

xi(t)− xj(t)(
(xi(t)− xj(t))2 + (yi(t)− yj(t))2) 3

2

Fiy(t) = −
n∑
j=1
j 6=i

yi(t)− yj(t)(
(xi(t)− xj(t))2 + (yi(t)− yj(t))2) 3

2

(6.2)

The position of each body comes from

zi(t) = ai0 +
∞∑
k=1

[aik cos(kt) + bik sin(kt)] (6.3)

22
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which can be split into

xi(t) = ai0 +
∞∑
k=1

[aik cos(kt) + bik sin(kt)]

yi(t) = ci0 +
∞∑
k=1

[cik cos(kt) + dik sin(kt)]

(6.4)

The second acceleration formula is the second derivative of the Fourier series given

as

z′′i (t) = −
∞∑
k=1

[k2aik cos(kt) + k2bik sin(kt)] (6.5)

or in its separate components

x′′i (t) = −
∞∑
k=1

[k2aik cos(kt) + k2bik sin(jt)]

y′′i (t) = −
∞∑
k=1

[k2cik cos(kt) + k2dik sin(jt)]

(6.6)

6.1 Minimization Function

Looking at the two acceleration functions, the goal is to find the Fourier coefficients

such that z′′i (t) = F i(t) for all points on the orbit. One way of achieving this is to

define a new function to be minimized as

Ei(t) = (z′′i (t)− F i(t))
2 (6.7)

Note that the squaring of the vector is taken to mean that each component, i.e.,

the x and the y components of the orbit, is individually squared. This means the

vector formula can be split into the scalar formulas

Eix(t) = (z′′ix(t)− Fix(t))2

Eiy(t) = (z′′iy(t)− Fiy(t))2

(6.8)
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In order to describe a potentially stable periodic orbit with a Fourier series, these

function needs to be minimized independently to 0, approaching from a positive

value. If the acceleration as determined by Newtonian gravitation and the second

derivative of the Fourier series is equivalent along the entire period of the orbit, then

the Fourier series describes a periodic orbit.

To minimize this function, start by solving the Fourier series at a given time to

find the x and y coordinates of each body. In the case of choreographed orbits, the

Fourier series is solved using the time offsets as described in Section 5.3.1. In the case

of unchoreographed orbits, the series for each body is solved individually.

Substituting in the appropriate equations gives the function

Ei(t) =

− ∞∑
k=1

[k2aik cos(kt) + k2bik sin(kt)]−
n∑
j=1
j 6=i

pj(t)− pi(t)∣∣pj(t)− pi(t)∣∣3


2

(6.9)

Note that the negative sign from the Newtonian summation has been multiplied

through, causing the swapping of pi and pj. This was done to help some of the

simplifications when working with this formula.

6.2 Additional Constraints

Leaving the function as a comparison of the accelerations would work, but an

additional constraint can be added to the function to converge on a minimization

more rapidly. In order for a periodic orbit system to be stable, the center of mass of

all the bodies must not be accelerating, allowing for a frame of reference to be chosen

so the center of mass can be defined to be at the origin without loss of generality.
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This allows for the definition of a new function

g(t) =

(
n∑
i=1

pi(t)

)2

(6.10)

Note that just as how the main minimization function vector Ei(t) was handled

separately as the scalar Eix and Eiy , the constraint g(t) is also split into separate

components to be independently minimized to 0 as

gx(t) =

(
n∑
i=1

pix(t)

)2

gy(t) =

(
n∑
i=1

piy(t)

)2
(6.11)

A new term λ is also defined which will allows for tuning the influence the con-

straint has on the full function as we’re approaching a solution. Putting this all

together, the new function to minimize is now

φi(t) = Ei(t) + λig(t) (6.12)

When a solution is found, we will have

∂

∂λi
φi(t) = g(t) =

0

0

 (6.13)

6.3 Modified Gradient Descent

Given the function to minimize, φi(t), the next step is to define how to minimize

the function. This requires finding the gradient of the function, or ∇φi(t). One of the

complexities of the function being minimized is that modifying the coefficients of the

Fourier series not only changes the position and acceleration of the bodies, but the
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new position of each body will cause the Newtonian acceleration to also be changed

as well as modifying the center of mass. Due to this, following the gradient of the

function can be difficult, and the standard steepest descent algorithm from Section 4.2

is not sufficient, so we will create a modified gradient descent algorithm. In order to

minimize the function, each Fourier series coefficient will be handled separately.

The first step is taking the partial derivatives of φi(t) with respect to the Fourier

series coefficients. As an example, consider a 3-body choreographed system and look

at φ1(t) with respect to a12 which is the a2 coefficient for the Fourier series defining

p1(t). The other coefficients follow a similar form.

Start with the full function

φ1(t) = E1(t) + λ1g(t) (6.14)

Now take the partial derivative as

∂

∂a12

φ1(t) =
∂

∂a12

E1(t) +
∂

∂a12

λ1g(t) (6.15)

The two parts of the function φ1(t), that is the acceleration difference E1(t) and

the center of mass constraint λ1g(t), will be handled separately to simplify the writing

and then combined again afterwards. To keep the formulas manageable, define Di

for the ith body in an n-body system as

Di = −
∞∑
k=1

[k2a1k cos(kt) + k2b1k sin(kt)]−
n∑
j=1
j 6=i

pj(t)− pi(t)∣∣pj(t)− pi(t)∣∣3 (6.16)
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Expanding the partial derivative of the acceleration differences gives

∂

∂a12

E1(t) =
∂

∂a12

(D1)2

= 2D1

(
∂

∂a12

D1

)
= 2D1

(
− ∂

∂a12

∞∑
k=1

[k2a1k cos(kt) + k2b1k sin(kt)]

− ∂

∂a12

3∑
j=1
j 6=i

pj(t)− p1(t)∣∣pj(t)− p1(t)
∣∣3


= 2D1

(
−4 cos(2t)− ∂

∂a12

(
p2(t)− p1(t)

|p2(t)− p1(t)|3
+

p3(t)− p1(t)

|p3(t)− p1(t)|3

))
= 2D1

(
−4 cos(2t)− cos(2t)

(
3(p2(t)− p1(t))2

|p2(t)− p1(t)|5
− 1

|p2(t)− p1(t)|3

)
− cos(2t)

(
3(p3(t)− p1(t))2

|p3(t)− p1(t)|5
− 1

|p3(t)− p1(t)|3

))
(6.17)

This can be generalized for aik and bik , the kth Fourier coefficients a and b of

body i in a system with n bodies, to the equations

∂

∂aik
Ei(t) = 2Di

(
−k2 cos(kt)

− cos(kt)
n∑
j=1
j 6=i

(
3(pj(t)− pi(t))2∣∣pj(t)− pi(t)∣∣5 − 1∣∣pj(t)− pi(t)∣∣3

)
∂

∂bik
Ei(t) = 2Di

(
−k2 sin(kt)

− sin(kt)
n∑
j=1
j 6=i

(
3(pj(t)− pi(t))2∣∣pj(t)− pi(t)∣∣5 − 1∣∣pj(t)− pi(t)∣∣3

)

(6.18)

Looking at the partial derivative of the second part of the equation, the center of
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mass constraint, again using the coefficient a12 , gives

∂

∂a12

λ1g(t) =
∂

∂a12

λ1 (p1(t) + p2(t) + p3(t))2

= 2λ1 cos(2t)(p1(t) + p2(t) + p3(t))

(6.19)

In general, the partial derivatives for aik and bik in the center of mass constraint

for the kth Fourier coefficient of body i in a system with n bodies is

∂

∂aik
λig(t) = 2λi cos(kt)

(
n∑
j=1

pj(t)

)
∂

∂bik
λig(t) = 2λi sin(kt)

(
n∑
j=1

pj(t)

) (6.20)

Putting Equations 6.16, 6.18, and 6.20 together, finding the partial derivative for

a Fourier coefficient can be done with the formulas

∂

∂aik
φi(t) = 2

− ∞∑
l=1

[l2ail cos(lt) + l2bil sin(lt)]−
n∑
j=1
j 6=i

pj(t)− pi(t)∣∣pj(t)− pi(t)∣∣3


·

−k2 cos(kt)− cos(kt)
n∑
j=1
j 6=i

(
3(pj(t)− pi(t))2∣∣pj(t)− pi(t)∣∣5

− 1∣∣pj(t)− pi(t)∣∣3
))

+ 2λi cos(kt)

(
n∑
j=1

pj(t)

)

∂

∂bik
φi(t) = 2

− ∞∑
l=1

[l2ail cos(lt) + l2bil sin(lt)]−
n∑
j=1
j 6=i

pj(t)− pi(t)∣∣pj(t)− pi(t)∣∣3


·

−k2 sin(kt)− sin(kt)
n∑
j=1
j 6=i

(
3(pj(t)− pi(t))2∣∣pj(t)− pi(t)∣∣5

− 1∣∣pj(t)− pi(t)∣∣3
))

+ 2λi sin(kt)

(
n∑
j=1

pj(t)

)

(6.21)
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To minimize the function, the partial derivative with respect to λi is also required.

Finding the partial derivative gives

∂

∂λi
φi(t) =

(
n∑
j=1

pj(t)

)2

(6.22)

Note that when the center of mass is 0, ∂
∂λi
φi(t) will also be 0. This purpose of

adding the variable λi is to move the center of mass to the origin, so when the center

of mass is far from the origin, the constraint will have a large impact, but it no longer

affects the minimization function once the constraint is met.

Once the partial derivatives with respect to variables are found, they can be used

to modify the values of each variable. Changing a Fourier coefficient not only changes

the calculated acceleration due to the Fourier series, but it also moves the bodies in

the orbit, causing the Newtonian gravitation to change. Due to the chaotic nature

of the changes, only small steps may be made towards a minimum, which is done

by introducing a scaling factor h, the value of which will be discussed in Chapter 7.

Each variable is modified by subtracting the partial derivative of the minimization

function with respect to the coefficient, multiplied by h. For example, the coefficient

a12 would be modified as

a12 = a12 − h
∂φ1(t)

∂a12

(6.23)

6.4 Quadratic Curve Fitting

When starting with the modified gradient descent, the initial coefficient modifica-

tions causes the Fourier series and the resulting minimization function to be modified
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chaotically. After a number of iterations, the gradient descent will start stabilizing

and converging smoothly to a minimum. Once this happens, a point is quickly reached

where the convergence slows down. At this point another algorithm is introduced to

allow the program to more quickly jump towards a minimum. This function is a

quadratic curve fitting.

When the function is approaching a minimum, the curve of the function will

behave similar to a quadratic curve. We will fit a quadratic to the three most recent

values of the function, and then go directly to the minimum of the quadratic. This

will quickly bring us close to a minimum of the minimization function.

To do the curve fitting, a list of the previous coefficient values in the Fourier series

is maintained. At a point when the gradient descent function slows down, the previous

gradient functions are used to generate a quadratic curve that can be followed to the

minimum as follows.

Let C be the vector of all the coefficients in a Fourier series for a single dimension.

As a reminder, the x and y components of each orbit are handled independently by

separate Fourier series. For the quadratic curve fitting of a single body, the following

algorithm must be run twice: once for C being the vector of coefficients of the Fourier

series defining the x position of the body, and once for C being the coefficients of the

Fourier series defining the y position of the body.

We can now define a measure of fitness function as Φ. We start by defining three
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fitness functions as

Fitness(C0) = Φ0

Fitness(C1) = Φ1

Fitness(C2) = Φ2

(6.24)

where C0, C1, and C2 are the coefficients from the three previous steps during the

gradient descent function.

We define a new restricted quadratic function as

q(C) = a(C−C0) · (C−C0) + b(C−C1) · (C−C1) + c(C−C2) · (C−C2) (6.25)

where the dot product of two vectors r = (r0, r1, . . . , rm) and s = (s0, s1, . . . , sm) is

r · s = r0s0 + . . .+ rmsm (6.26)

Now we want to find C such that q(C0) = Φ0, q(C1) = Φ1, and q(C2) = Φ2. We

start by settingC toC0,C1, andC2 into q(C). Using the definitions in Equation 6.24

and cancelling out values we get

Φ0 = b(C0 −C1) · (C0 −C1) + c(C0 −C2) · (C0 −C2)

Φ1 = a(C1 −C0) · (C1 −C0) + c(C1 −C2) · (C1 −C2)

Φ2 = a(C2 −C0) · (C2 −C0) + b(C2 −C1) · (C2 −C1)

(6.27)

Before continuing we will introduce some shorthand for the dot products. We will

define Cab = (Ca −Cb) · (Ca −Cb) so, for example, C01 = (C0 −C1) · (C0 −C1).

It should also be noted that taking a dot product of a vector with itself gives us

the square of its magnitude, meaning that we can further simplify the number of

shorthand definitions since C01 = C10, C02 = C20, and C12 = C21.
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By combining these shorthand definitions, we now have the three functions

Φ0 = bC01 + cC02 (6.28)

Φ1 = aC01 + cC12 (6.29)

Φ2 = aC02 + bC12 (6.30)

To find the coefficients a, b, and c we start from Equation 6.30 to get

a =
Φ2

C02

− bC12

C02

(6.31)

Rearranging Equation 6.29 and substituting in Equation 6.31 we get

c =
Φ1

C12

− aC01

C12

=
Φ1

C12

− C01

C12

(
Φ2

C02

− bC12

C02

)
=

Φ1

C12

− Φ2C01

C02C12

+
bC01

C02

(6.32)

Now rearranging Equation 6.28, substituting in Equation 6.31 and Equation 6.32,

and cancelling terms we find

b =
Φ0

C01

− cC02

C01

=
Φ0

C01

− C02

C01

(
Φ1

C12

− Φ2C01

C02C12

+
bC01C12

C02C12

)
=

Φ0

C01

− Φ1C02

C01C12

+
Φ2C01C02

C01C02C12

− bC01C02

C01C02

=
Φ0

C01

− Φ1C02

C01C12

+
Φ2

C12

− b

=
Φ0

2C01

− Φ1C02

2C01C12

+
Φ2

2C12

(6.33)
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Substituting Equation 6.33 into Equation 6.31 results in

a =
Φ2

C02

− C12

C02

(
Φ0

2C01

− Φ1C02

2C01C12

+
Φ2

2C12

)
=
−Φ0C12

2C01C02

+
Φ1

2C01

+
Φ2

C02

− Φ2

2C02

=
−Φ0C12

2C01C02

+
Φ1

2C01

+
Φ2

2C02

(6.34)

Finally, substituting Equation 6.33 into Equation 6.32 we find

c =
Φ1

C12

− Φ2C01

C02C12

+
C01

C02

(
Φ0

2C01

− Φ1C02

2C01C12

+
Φ2

2C12

)
=

Φ0

2C02

+
Φ1

C12

− Φ1

2C12

− Φ2C01

C02C12

+
Φ2C01

2C02C12

=
Φ0

2C02

+
Φ1

2C12

− Φ2C01

2C02C12

(6.35)

In summary, we can now define the coefficients a, b, and c such that

a =
−Φ0C12

2C01C02

+
Φ1

2C01

+
Φ2

2C02

b =
Φ0

2C01

− Φ1C02

2C01C12

+
Φ2

2C12

c =
Φ0

2C02

+
Φ1

2C12

− Φ2C01

2C02C12

(6.36)

The next step is to find the minimum of the quadratic function from Equation 6.25

which is a function of a vector C. To minimize the function we want to find the

differential of q(C) where dq(C) = 0, using the gradient of the function ∇q(C),

giving

dq(C) = ∇q(C) · dC = 0 (6.37)

To find the minimization function’s Fourier coefficients such that the function is

minimized along the entire orbit, we want to all the components of ∇q(C) to be 0,

independent of dC.
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Finding the gradient ∇q(C) and setting it to 0 gives

∇q(C) = 2a(C −C0) + 2b(C −C1) + 2c(C −C2) = 0 (6.38)

Expanding and solving for the vector x, we can determine the new minimized

Fourier coefficients as

C =
aC0 + bC1 + cC2

a+ b+ c
(6.39)

Once this equation was implemented in software, it was discovered that it was

possible to run into situations where the denominator of a+ b+ c would be very close

to 0, causing numerical precision issues with 64-bit floating-point arithmetic. To help

resolve this issue, each time the quadratic is used, we pick the largest coefficient (a,

b, or c) and multiply the numerator and denominator by 1/coefficient. This results

in the equations

C =
C0 + b

a
C1 + c

a
C2

1 + b
a

+ c
a

when a > b, c

C =
a
b
C0 +C1 + c

b
C2

a
b

+ 1 + c
b

when b > a, c

C =
a
c
C0 + b

c
C1 +C2

a
c

+ b
c

+ 1
when c > a, b

(6.40)



Chapter 6: Primary Algorithms 35

For completeness, working out the fractions we get

b

a
=

Φ0

2C01
− Φ1C02

2C01C12
+ Φ2

2C12

−Φ0C12

2C01C02
+ Φ1

2C01
+ Φ2

2C02

=
C02

C12

(
Φ0C12 − Φ1C02 + Φ2C01

−Φ0C12 + Φ1C02 + Φ2C01

) (6.41)

c

a
=

Φ0

2C02
+ Φ1

2C12
− Φ2C01

2C02C12

−Φ0C12

2C01C02
+ Φ1

2C01
+ Φ2

2C02

=
C01

C12

(
Φ0C12 + Φ1C02 − Φ2C01

−Φ0C12 + Φ1C02 + Φ2C01

) (6.42)

b

c
=

Φ0

2C01
− Φ1C02

2C01C12
+ Φ2

2C12

Φ0

2C02
+ Φ1

2C12
− Φ2C01

2C02C12

=
C02

C01

(
Φ0C12 − Φ1C02 + Φ2C01

Φ0C12 + Φ1C02 − Φ2C01

) (6.43)

The inverse fractions (such as a/b) can be found by simply inverting the equations

as needed.

Additionally, if the quadratic fit degenerates to a linear function, it can cause

numerical issues. In this case, the quadratic fit is ignored until the function is no

longer linear.

By using the equations on each coefficient in the Fourier series, we are able to follow

a smooth quadratic curve to its minimum, quickly jump closer to a solution. Since the

curve fitting does not do any comparisons between Fourier and Newtonian acceleration

we cannot switch to this purely once we are moving towards a minimum. Instead

it is done as a single step once every number of iterations of the gradient descent

minimization. After each quadratic curve fitting, the gradient descent minimization

function takes over again and corrects for any over- or under-shooting of coefficient

modifications.

By alternating between both the modified gradient descent and the quadratic
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curve fitting functions, we are able to quickly and efficiently approach a minimum.



Chapter 7

Software

To identify potentially stable n-body orbits, three pieces of software are needed.

The first two pieces of software are for finding Fourier series which defined potentially

stable orbits; one is for generating choreographed orbits where a single set of Fourier

series defines the orbits of all the bodies, and the other is for generating unchore-

ographed orbits where each orbit is defined by its own set of Fourier series. The third

piece of software is a Newtonian gravitational simulator where the initial positions

and velocities of each body are defined, and thereafter all motion is determined by

standard Newtonian gravitation.

7.1 Generating Orbits

The two pieces of software for generating orbits are very similar, so they will be

discussed together. The main goal of the software is to find Fourier series that define

stable orbits for a given number of bodies. As seen in Section 5.2, the Fourier series

37
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is defined as

z(t) = a0 +
K∑
k=1

[ak cos(kx) + bk sin(kx)] (7.1)

An infinite Fourier series has K =∞, but in software an approximation must be

made of the infinite series so the programs start with a smaller number of coefficients.

Through experimenting with different initial numbers of coefficients, a good starting

point which allowed for a variety of different orbits to emerge while still being able

to minimize the function was K = 7. This initial value can be easily modified in the

programs and additionally may be increased dynamically as the programs run to refine

Fourier series. The coefficients are all initialized randomly in the range (−3.0, 3.0),

which was again found to be a good starting range through experimenting with ranges

of values between (−1, 1) and (−20, 20). The value of λ for the additional constraint

is set randomly in the range (0, 3.0), since it is required to be positive.

The programs start by initializing all of the coefficients and choosing the timesteps

to be considered during each main iteration of process. The timesteps cover the entire

period of the Fourier series. During each iteration of the program, the minimiza-

tion function from Equation 6.7, comparing the difference between the Fourier and

Newtonian acceleration, is evaluated at each timestep to determine if they match.

The results of the minimization function at each timestep are summed over all the

timesteps. The purpose of summing the results is so the Fourier series can be mod-

ified so the function is minimized along the entire length of the orbit curve. The

partial derivatives with respect to each coefficient, used to find the gradient with

Equation 6.21, are also summed over all the timesteps and the results are used to

update the coefficients for the next iteration of the program.



Chapter 7: Software 39

In order to quickly converge towards a solution, the programs initially use 31

timesteps in [0, 2π], which was a number that was found through experimenting to

be a good starting point. A prime number was chosen as the starting value because

the function is minimized at a finite number of points along the orbit, and choosing

a prime number ensures the time points are not broken up in an even number of

positions to reduce the chance of oscillations or fitting only specific intervals on the

series. Additionally, the timesteps are not evenly spaced. The period of 2π is broken

up into 31 equal intervals, and a random location in each interval is used as the

timestep value. In other words for timestep tl, where 0 ≤ l < 31, the time is randomly

assigned in the range

2π

31
l ≤ tl <

2π

31
(l + 1) (7.2)

The timesteps are used to find the partial derivatives at a number of points along

the orbit. To determine the modification needed for each Fourier coefficient, the

program finds the sum of the partial derivatives of the minimization function (using

Equation 6.21). The sum is then used with Equation 6.23 to find the new value of

the coefficient. For example, to modify the Fourier series for the second coefficient of

the first body using 31 timesteps and a scaling factor h, the new value would be

a12 = a12 − h
31∑
l=1

∂φ1(tl)

∂a12

(7.3)

The programs can be run in either fixed or variable timestep modes, each with ad-

vantages and disadvantages. In fixed timestep mode, the timestep points are defined

when the program starts and remain constant throughout the run of the program.

This allows for the program to initially fit the timesteps quicker while minimizing large
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initial oscillations when the Fourier coefficients are still far from a solution. However,

fixed timestep mode has the problem that it can overfit the set timesteps and oscil-

lations or large adjustments may be introduced when more timesteps are added. In

variable timestep mode, the timestep points are redefined after every minimization

loop. While this can initially cause more oscillations and moving towards an initial

possible solution is less likely, but once a potential solution is being approached it

reduces the oscillations that are introduced when more timesteps are added. In both

cases potential orbits were able to be identified and once additional Fourier series

coefficients and timesteps were added, the differences between the two approaches

were negligible.

To generate accurate results, the number of timesteps needs to be increased as

a solution is approached, to ensure the Fourier coefficients are not overfitting the

timesteps. Adding timesteps is done manually by the user as the function is mini-

mizing, the process of which is described in Section 7.1.2.

7.1.1 Main Program Loop

Once the initial Fourier coefficients and timesteps are defined, the main algorithm

loop begins using the formulas from Chapter 6. For each time through the loop, the

positions of each body is first evaluated at each time interval using the Fourier series

(again, the Fourier series uses independent vector coefficients for the x-position and

the y-position). As described in Section 5.3, there is a difference between finding the

orbits with the choreographed and unchoreographed orbits. In the choreographed
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orbits program, a single Fourier series with time offsets equally spaced along the

period of the orbit is used to find the positions. In the unchoreographed orbits, each

orbit has its own Fourier series.

Once the positions of each body at a given timestep is determined, the Newtonian

acceleration of each body can be determined using Equation 6.1 and the Fourier

acceleration, using the second derivative of the Fourier series, can be determined

using Equation 6.5.

With the positions and accelerations calculated, the minimization step may occur.

Initially, all of the minimization is done using the modified gradient descent algorithm

from Section 6.3. For each timestep, the partial derivatives with respect to each

Fourier coefficient and with respect to the constraint factor λ are determined. For

each coefficient the sum of the partial derivatives over all the timesteps is used to

modify the values for the next iteration using Equation 6.23. As the minimization

progresses, the values of all the coefficients from the previous three iterations are

stored in preparation for the quadratic curve fitting.

The quadratic curve fitting from Section 6.4 is not initially enabled, as the Fourier

coefficients start out at random values and may take a number of iterations before

the measurement of fitness function starts smoothly approaching a minimum. When

the function starts approaching a minimum, the user may enable the quadratic curve

fitting by enabling a checkbox in the user interface. Once enabled, every fifth time

through the main program loop the quadratic curve fitting algorithm is used instead

of the modified gradient descent minimization function.

After the quadratic curve fitting step is complete, it is common for the gradient
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descent scaling factor h to be too large which can cause oscillations. To prevent this

problem, after each quadratic curve fitting the gradient minimization is allowed to

run a single time. The squares of the differences between the Newtonian and Fourier

accelerations at each timestep are summed and compared to the sum of the squares

of the differences before the gradient descent step (but after the quadratic curve

fitting). If both the x-coordinate and y-coordinate differences got worse after a single

gradient step, or one coordinate got worse by more that 10 times the amount the other

coordinate improved, then the value of h, the gradient scaling factor, is reduced to

80% of its value. This can happen up to three times in a row in an attempt to reduce

the amount of oscillation. If, after reducing h three times, the coordinate differences

still are not improving, an additional set of Fourier coefficients (ai and bi) are added

to the end of each Fourier series being used. This allows for the Fourier series to be

further refined by the gradient minimization in an attempt to reduce error that may

be resulting from a too-coarse Fourier series.

The user may allow the programs to run as long as desired to allow the minimiza-

tion functions to refine the orbits. At any point, the user may press the “Dump”

button on the user interface which will write all of the Fourier series coefficients to a

file. This file can then be re-imported at a later time into the minimization program

to continue investigation into a particular periodic orbit, or can be loaded into the

Newtonian gravitation simulator to explore the actual orbit that has been generated.
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7.1.2 Additional User Control

In order to converge on a solution, the programs start with a limited number

of coefficients in the Fourier series, as well as a limited number of time increments

along the series to compare the bodies at. As a potential solution is approached, the

coefficients starts fitting these cases nicely but any other points along the series will

still be incorrect. When this happens, more coefficients and time increments need to

be added to refine the solution. Additionally, as a solution approaches a minimum,

the scaling factor h for the gradient minimization can cause the modifications to the

Fourier coefficients to overshoot the correct if it h stays too large. The programs

include additional ways for the user to mitigate these issues.

By clicking the “Add Var” button, two additional sets of coefficients (two a co-

efficients and two b coefficients) are added to the end of the Fourier series. These

additional values are initially set to 0, but they are allowed to move freely according

to the algorithm minimization algorithms. Adding these coefficients allows for more

fine-tuning of the curves, especially when the solution has small loops in it. Starting

the values at 0 ensures that adding more coefficients does not initially introduce wild

oscillations to the Fourier series.

The “Add Timesteps” button doubles the current number of timesteps being used

by the algorithm. If using variable timestep mode, the period 2π is divided into

double the intervals for randomly selecting the timesteps each iteration. If using fixed

timestep mode, all of the existing timesteps are maintained and a new set of timesteps

are randomly interspersed within the existing values, using the same interval ranges
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as the initial values.

The value of h can also be modified via user interface buttons. The user is able to

increase h by multiplying it by 2 for each click, or decrease it by dividing by 2 for each

click. Generally, h starts off larger but as a solution is approached, the user needs to

reduce the value of h in order to keep approaching a minimum without overshooting

it repeatedly and causing oscillations around the minimum.

Figure 7.1: Choreographed orbits with error overlay

(a) Orbit with large error (b) Orbit with small error

The user is also able to enable viewing of an overlay showing the difference between

the Newtonian and Fourier acceleration. In this mode, a triangle is overlaid on top of

the orbit for each timestep along the orbit. The points representing the position of the

body on the Fourier series orbit for a given timestep, the direction and magnitude

of the Fourier acceleration on the body, and the direction and magnitude of the

Newtonian acceleration on the body form the triangle. This means that in the case
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where the Fourier and Newtonian acceleration are equal, a straight line is drawn

from the point in the direction of the acceleration, but in the case where a large

difference exists there are distinct triangles drawn. An example of two choreographed

Fourier series orbits, one with a large amount of error and one with a small amount of

error, can be seen in Figure 7.1. Showing the error allows the user to visibly inspect

the existing error in the orbit function being minimized and adjust the number of

coefficients, number of timesteps, or the value of h in response. It also allows the user

to determine when the error is no longer being reduced enough through the gradient

minimization and the quadratic curve fitting is required.

7.1.3 Number of Variables

There are a large number of variables required in the minimization function. The

first set of variables is the coefficients of the Fourier series. The series is truncated at

some length K, which is initially set to 7. For both the x and y Fourier series, there

are K values of a, K values of b, plus the offset value a0. This gives a total of 4K + 2

coefficients for the Fourier series. In the case of choreographed orbits, each body uses

the same series, but for unchoreographed orbits with n bodies, each body has its own

Fourier series. In this case, there will be (4K + 2)n coefficients in total.

Additionally, for each Fourier minimization there will be a λ for both the x and

y minimization. With choreographed orbits this results in 2 values of λ, and in the

unchoreographed orbits we have 2n values of λ.

Two other variables are the scaling factor h and the number of timesteps. Neither
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of these are dependent on the number of coefficients or the type of orbit. The number

of timesteps will affect the number of comparisons required in each iteration of the

minimization algorithm, and so increasing the number of timesteps will affect the

running time, but the minimization function maintains running totals for partial

derivatives of the Fourier coefficients and so does not require additional variables

when increasing timesteps.

To evaluate the quadratic curve fitting, three iterations of Fourier coefficients must

be maintained to define the quadratic. Given that the choreographed orbits require

4K+2 coefficients and the unchoreographed orbits require (4K+2)n coefficients, the

quadratic curve fitting requires an additional set of 12K+6 and (12K+6)n variables

respectively.

Given a starting point of K = 7, a choreographed system with n = 3 would require

a total of 30 coefficients plus 2 values of λ, as well as an additional 90 coefficients

being maintained for the quadratic curve fitting. In an unchoreographed system, these

totals would increase to a total of 90 coefficients plus 6 values of λ for the gradient

minimization function, plus an additional 270 coefficients being maintained for the

quadratic curve fitting.

7.2 Newtonian Gravitation Simulator

In order to determine if an orbit is potentially stable, software was created to

accurately model the motion of bodies with an n-body Newtonian gravitation simu-

lator. Although the simulator can theoretically handle any number of bodies, it has
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been designed for only a handful in mind. Most of the orbits investigated have three

to six bodies in them. Every body adds complexity to the simulation and as such the

simulator is much more suited for a small number of bodies.

7.2.1 Initial Values

Every body in the simulation requires an initial position and velocity. Initially

these values were hard-coded into the program and recompiled, but as a greater

number of potential orbits were found this proved unwieldy, so an import function

was created. When the simulator starts, the user may choose a file that has been

outputted from the orbit generation software described in Section 7.1. These files

contain all of the Fourier coefficients used to define the orbits. In the case of the

choreographed orbits, a single Fourier series is used to determine the orbits of every

body using the time offsets described in Section 5.3.1. For the unchoreographed

orbits, the files contain a unique Fourier series for each body in the system and each

series is evaluated at time t = 0. The initial location of each body is determined by

evaluating the Fourier series, and the initial velocity is found using the first derivative

of the series. Once the initial positions of all the bodies have been calculated, the

center of mass of the system is calculated by summing the x and y positions of each

body. If the center of mass is offset from the origin, all the bodies are translated to

move the center of mass to the origin to allow for easier observation of the system.

The orbits defined by the Fourier series have an orbit period time of 2π. In

order to provide accurate simulation results, it was found that an initial timestep
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of tstep = 10−5 provided good results. The size of the timestep can change as the

simulation progress, which will be described further in the next section.

7.2.2 Main Program Loop

Once the simulation starts the motion of the bodies is solely defined by Newton’s

law of universal gravitation described in Section 5.1. As a reminder, for the purposes

of simplifying the calculations the gravitational constant is set to G = 1 and the mass

of each body is m = 1. At the beginning of each loop, the position and velocity of

each body is known.

To find the position and velocity of each body after a single timestep, the motion

of each body needs to be integrated over the timestep. As described in Section 4.1.1,

the initial tests using the Euler method of integration proved to be very inaccurate

within even a single period of simulation. To provide more accurate results, the

simulation uses the fourth order Runge-Kutta integration for the motion, known as

RK4, described in Section 4.1.2. This provides a much more accurate numerical

integration.

Each time through the main program loop, the position and velocity of each

body is used in the RK4 integration to find the positions and velocities after a single

timestep. The functions used in the RK4 integration are the standard position and

velocity formulas discussed in Section 4.1.

Once the new positions and velocities of each body have been calculated, the

program analyses the results to determine if the current timestep is small enough to
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provide accurate results. When the bodies in the simulation are further apart, a larger

timestep will provide accurate results due to the small variation in forces over the

length of the step while allowing the simulation to progress more rapidly. However,

as bodies near each other, the forces and acceleration can change very rapidly within

a single timestep. In this case, a large timestep will provide inaccurate results and so

a smaller and more accurate (albeit longer to simulate) timestep is needed.

To support shorter timesteps when bodies approach each other, the simulator is

able to adapt the timestep dynamically as the simulation progresses. To determine if

the timestep is too large, the RK4 integration of the system is run in reverse.

At each step of the simulation, each body starts with initial positions and velocities

x0 and v0. After the system has been calculated in the forward direction from ti →

ti+1, giving a timestep of tstep = |ti+1− ti|, each body has a new position and velocity

x1 and v1. Using the negative of the velocity to run the RK4 integration from

ti+1 → ti, starting with x1 and −v1 for the time tstep , the bodies end up at a position

x2. If the full system was calculated with a perfect continuous function, the result

would be x0 = x2. Since there is some approximation in the RK4 integration, there

may be some difference in the results.

If the difference in either the x or y position between the forward and backward

computations values is past an error threshold of 10−5 for any body in the system,

the timestep is too large. At that point, the timestep is divided by 2 and the motion

integration is recalculated. The process of comparing the forward and backward

motion integration repeats until the error is below the threshold, at which point the

simulation may continue iterating using the new timestep.
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To allow the simulation timesteps to slowly increase, to speed up the simulation as

the bodies move away from each other and the error decreases, the timestep is allowed

to increase by a factor of 10% for every 20 timestep iterations that do not pass the

error threshold. If the increase becomes too large or the bodies move closer and the

error threshold is surpassed, the timestep will again be shortened by the reverse RK4

integration logic.

Using the initial positions and velocities of the bodies based on the Fourier series

orbits generated via the minimization functions, the simulator can be used to run a

Newtonian simulation to investigate if the generated orbits are in fact stable. The

stability of the orbits is determined by observing the orbits over multiple periods of

the orbit. While it is possible for a periodic orbit to exist in seemingly chaotic motion,

the expected observation of a periodic orbit should closely match the orbit defined

by the Fourier series.
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Orbits Found

A number of potential choreographed and unchoreographed orbits were found

using the minimization programs. The orbits from the Fourier series, as well as the

resulting Newtonian simulation, are presented here using the software described in

Chapter 7.

For each orbit two images are presented. The images on the left are from the

minimization programs and show the orbits as defined by the Fourier series using

the minimized coefficients. Each minimization image is labeled with ε, the average

remaining difference of the goodness of fit minimization function from Equation 6.9

over all the timesteps. ε is defined as ε =
√
ε2x + ε2y where εx and εy are the minimiza-

tion function values in the x and y directions (since the Fourier series are handled

separately in the two directions). Larger values of ε may indicate an unstable or-

bit, such as when the minimization function results in a local minimum, but is not

definitive.

51
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The images on the right are from the Newtonian gravitation simulator. For the

simulation, the starting position of each body is found by evaluating the Fourier series

and the starting velocity of each body is found by evaluating the first derivative of

the Fourier series, both at time t = 0. As each body moves through the simulation, it

leaves a trail on the image so the complete orbits can be seen. The images from the

gravitation simulator are labeled with the value of t when they were taken (where a

single period is t = 2π).

The tables for each set of images contain the starting positions and velocities

determined for each body from the Fourier series. The Fourier series coefficients used

for the bodies in each system can be found in Appendix A.

There are three common possible results in the orbits presented. The first possi-

bility is when the Newtonian simulation results in an orbit that is able to maintain

stability for a number of periods, which indicates it has good potential to be a truly

stable orbit.

The second possible result is that the Newtonian orbit is not stable and quickly

becomes chaotic. In these cases, the minimization does not result in a stable Newto-

nian orbit. This can be due to an insufficient resolution in the timesteps or number of

coefficients of the Fourier series with an orbit that is very sensitive to perturbations,

or the minimization function getting stuck in a local minimum. Additionally, even the

buildup of the small error inherent in the floating-point arithmetic of the simulator’s

numerical integration can be enough to cause a sensitive orbit to decay.

The third possible result is when the orbit remains almost periodic, but the orbit

has some degree of precession. When this occurs, the simulation image does not
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match the Fourier series image, but the simulation orbit appears to follow the Fourier

series orbit with rotation added to the orbit. These orbits may significantly decay

after only a few periods, but in other cases they appear to remain stable. This orbit

precession will be discussed in Chapter 9.

It can be noted that a number of the orbits found are similar to the orbits found

by both Simó [11] and Vanderbei [13].

8.1 Choreographed Orbits

The bodies in each system in this section are determined by a single set of Fourier

series with each body starting at specific intervals along the period. The starting

offsets for each body around the orbit can be found using the formulas in Section 5.3.1.

Figure 8.1: Choreographed three-body circle

(a) ε = 2.8606e-26 (b) t = 8π
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Table 8.1: Choreographed three-body circle initial values

Body x y x′ y′

1 0.7548983603205632 -0.3514110697402242 -0.35141106974012876 -0.7548983603206323

2 -0.6817800937262974 -0.4780556224427804 -0.4780556224427675 0.6817800937264157

3 -0.07311826659426574 0.8294666921830046 0.8294666921828963 0.07311826659421666

Figure 8.2: Choreographed four-body circle

(a) ε = 8.6295e-25 (b) t = 8π

Table 8.2: Choreographed four-body circle initial values

Body x y x′ y′

1 -0.699242298027974 -0.6944467629710684 0.6944467629708051 -0.6992422980282715

2 0.6944467629708471 -0.6992422980282327 0.6992422980279377 0.694446762971098

3 0.699242298027974 0.6944467629710683 -0.6944467629708043 0.6992422980282715

4 -0.6944467629708471 0.6992422980282328 -0.6992422980279385 -0.694446762971098
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Figure 8.3: Choreographed three-body figure-eight

(a) ε = 2.5521e-4 (b) t = 8π

Table 8.3: Choreographed three-body figure-eight initial values

Body x y x′ y′

1 -0.07880227334416882 0.5570371897354746 0.15998292728488323 1.1593418791674066

2 0.5940359608209828 0.383319210563721 -0.5557289806160467 -0.9029539156799118

3 -0.5152336874768139 -0.9403564002991956 0.39574605333116347 -0.2563879634874948
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Figure 8.4: Choreographed four-body trefoil

(a) ε = 9.0811e-2 (b) t = 6π

Table 8.4: Choreographed four-body trefoil initial values

Body x y x′ y′

1 0.11661716221150759 -0.8628229948869036 0.48336456850271736 0.7305598083360698

2 -0.6963959862721382 0.6556306737971199 -0.2682255717908091 -0.1249827016194934

3 0.641932494625764 0.14183543304631654 0.8123289473484319 0.8218875611377845

4 -0.06215367056513341 0.06535688804346723 -1.0274679440603403 -1.4274646678543608
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Figure 8.5: Choreographed four-body chain

(a) ε = 9.9908e-2 (b) t = 2π

Table 8.5: Choreographed four-body chain initial values

Body x y x′ y′

1 -1.1844475691074707 0.5898810975762604 0.4087319255099535 0.39755580006528823

2 0.20705693570351705 -0.20720580654667664 1.3649438991518443 0.2819370010443289

3 1.1835106293686215 -0.5912376198019829 -0.4103624168353448 -0.39612196466777105

4 -0.20611999596466776 0.20856232877239902 -1.363313407826453 -0.2833708364418462
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Figure 8.6: Choreographed four-body inner loop

(a) ε = 1.4172e-3 (b) t = 2π

Table 8.6: Choreographed four-body inner loop initial values

Body x y x′ y′

1 -0.06415594629608656 0.15963611651760048 0.19231903002674716 0.498135742337882

2 -0.6332455383219576 -0.49885112427588185 0.8611257278494242 -1.0944264406332394

3 0.8905726094445537 -0.45444379724006034 0.386736125112952 0.9468444486242256

4 -0.19317112482650967 0.7936588049983417 -1.4401808829891232 -0.3505537503288683
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Figure 8.7: Choreographed five-body figure-eight

(a) ε = 2.4484e-3 (b) t = 2π

Table 8.7: Choreographed five-body figure-eight initial values

Body x y x′ y′

1 -0.5358076316429841 0.37180556472793874 0.9743317053313775 -1.096362116657104

2 0.7676771558912595 -0.867823428450871 0.08096334827522714 -1.0175492452692891

3 -0.031055488577342624 -1.2763443049957865 -0.6990773093771361 0.672388539946965

4 0.1675715831569598 0.3604411202596589 0.5493639322512589 1.5662040016531198

5 -0.36838561882789267 1.41192104845906 -0.9055816764807272 -0.12468117967369167
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Figure 8.8: Choreographed five-body pretzel loop

(a) ε = 7.3191e-2 (b) t = 1π

Table 8.8: Choreographed five-body pretzel loop initial values

Body x y x′ y′

1 -0.1580890992735324 0.5522601063500079 -0.3549681458323808 2.1208189974173686

2 0.2643361663758888 0.4777863235898944 -1.4815977423589528 -0.7930211016542689

3 0.1688808045879178 0.9563693451915746 1.2128692819240836 -1.0274109751221157

4 -0.5428002432275009 -0.8134290379137666 0.019545784227261165 -1.0338061864372619

5 0.2676723715372266 -1.17298673721771 0.604150822039989 0.7334192657962778
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Figure 8.9: Choreographed five-body trefoil

(a) ε = 3.0006e-1 (b) t = 2π

Table 8.9: Choreographed five-body trefoil initial values

Body x y x′ y′

1 -0.19303202724324267 0.4585444026490357 -0.622244545113255 -2.0430154410644796

2 0.10545527999486655 -1.190486988139539 0.9134832494681733 -0.3588341636318668

3 0.6860208939238829 -0.443093326526616 -0.5105853805336759 1.1737050359224457

4 -0.865708183987005 0.6396338125865522 -0.4008266738461247 -0.12489063559067837

5 0.2672640373114983 0.5354020994305673 0.620173350024882 1.3530352043645792
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8.2 Unchoreographed Orbits

Each body in this section is determined by a unique set of Fourier series. The

starting positions and velocities for each body are determined by solving the Fourier

series and its first derivative, respectively, at time t = 0 with no offsets for any body

as described in Section 5.3.2.

Figure 8.10: Three-body circle

(a) ε = 1.8446e-10 (b) t = 4π

Table 8.10: Three-body circle initial values

Body x y x′ y′

1 0.8064717222934421 0.20727055247344797 -0.20727366251751161 0.806466168737808

2 -0.5827339118953009 0.5947956312501173 -0.5947853254134745 -0.5827324482138609

3 -0.2237378103981412 -0.8020661837235651 0.8020589879309861 -0.22373372052394694



Chapter 8: Orbits Found 63

Figure 8.11: Three-body circled cross

(a) ε = 5.0704e-4 (b) t = 12π

Table 8.11: Three-body circled cross initial values

Body x y x′ y′

1 0.9092123039000347 -0.43040535790199963 0.47797186363889416 0.9089826224520586

2 -1.0229414945397166 0.3111968046982191 -0.06412936032621364 0.21850122248844084

3 0.11372919063968188 0.11920855320378049 -0.41384250331268047 -1.1274838449404994
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Figure 8.12: Three-body enveloped figure-eight

(a) ε = 7.4054e-1 (b) t = 4π

Table 8.12: Three-body enveloped figure-eight initial values

Body x y x′ y′

1 0.7275242381011939 -0.32099746440444415 0.42161865424089007 -1.182271917940274

2 -0.36268417274378945 0.5426769104001704 0.7884831954777513 0.29893144651911696

3 -0.36484006535740454 -0.22167944599572623 -1.2101018497186413 0.8833404714211572
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Figure 8.13: Four-body nuclear symbol

(a) ε = 2.2475e-3 (b) t = 4π

Table 8.13: Four-body nuclear symbol initial values

Body x y x′ y′

1 -0.5091966069861722 1.1420126037068834 -1.1449094769247894 -0.5602702750794802

2 -0.536844041872087 -0.8187464228819548 -0.04350261985812843 0.7708499999957881

3 0.15059481202038588 0.39389689651781934 1.247618869002686 0.32317677688965085

4 0.8954458368378734 -0.7171630773427479 -0.05920677221976818 -0.5337565018059588
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The final orbit, seen in Figure 8.14, was not found directly through the orbit

generator programs but was instead found while experimenting with different initial

ratios for the starting values. It is of particular interest because it remains stable for

five periods (t = 10π) before starting to unravel, which makes it more stable than

the choreographed circular orbit with small perturbations that will be presented in

Chapter 9.

Figure 8.14: Three-body offset rings

t = 10π

Table 8.14: Three-body offset rings initial values

Body x y x′ y′

1 0.0 0.8 -0.8 0.0

2 0.8 cos 2π
3

0.8 sin 2π
3

−0.8 sin 2π
3

0.8 cos 2π
3

3 0.8 cos 4π
3

0.8 sin 4π
3

−0.8 sin 4π
3

0.8 cos 4π
3
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Additional Observations

In developing the software and identifying potential periodic orbits, two interesting

observations were made which resulted in additional investigation. These were the

similarity of the figure-eight orbits to the Lemniscate of Bernoulli, and how perturbing

certain orbits results in adding precession to the orbit.

9.1 The Lemniscate of Bernoulli

The three-body figure-eight choreographed orbit has an interesting property in

that it closely resembles the Lemniscate of Bernoulli, and it is worth investigating if

they match up.

Jacob Bernoulli (1694) defined what is now called the Lemniscate of Bernoulli as

(x2 + y2)2 = 2a2(x2 − y2) (9.1)

where a is a constant defined by the focal points of the lemniscate and x and y are

67
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the coordinates on the lemniscate.

To determine the value of a, the starting values provided by Chenciner and Mont-

gomery [2] based on values determined by Carles Simó for a stable 3-body figure-eight

pattern were used. These values can be seen in Table 9.1. The figure-eight was run

through the Newtonian gravitation simulator and to find the value of x when one of

the bodies crosses the positive x axis (i.e. the x crossing furthest to the right when

y = 0). This gave a value of x = 1.0810170862565978. Putting this into the equation,

along with y = 0 results in a value of a = 0.7643945122705633.

Table 9.1: Initial values for figure-eight orbit

Body x y x′ y′

1 -0.97000436 0.24308753 0.93240737/-2 0.86473146/-2

2 0.97000436 -0.24308753 0.93240737/-2 0.86473146/-2

3 0 0 0.93240737 0.86473146

Using the value of a, an extra curve can be drawn on the simulation. This curve

is drawn by using the x-position of one of the bodies along with the value of a to

determine the y-position predicted by the lemniscate. The resulting output can be

seen in Figure 9.1.

In the figure, the light grey exterior curve is the one defined by the lemniscate

and the inner curve containing the three bodies is defined by the motion of the bodies

due to Newtonian gravitation.

While the figure-eight orbit is very similar that of the Lemniscate of Bernoulli,
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Figure 9.1: Figure-eight orbit with superimposed Lemniscate of Bernoulli

overlaying them shows a distinct difference between them. Modification of the con-

stant value a in an attempt to make the curves fit better at the minimum and maxi-

mum y positions would cause the curve to stop fitting at the minimum and maximum

x values, so it can be concluded that the Lemniscate of Bernoulli does not match the

lemniscate shape of the three-body figure-eight orbit.

9.2 Stable Precession of Periodic Orbits

As was seen in the orbits found in Chapter 8, as well as looking at the orbit

of Mercury as discussed in Section 2.1, it is possible for orbits to be stable with

precession. It is worth looking at how much an orbit can be perturbed before it no

longer remains stable, as this is a test for stability.

To see how a single body affects the system, a body in the system is modified

moved along a line passing through the origin and the initial position of the body.

Given the initial starting position v0 = (x0, y0), the body can be moved in or out to
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a new starting position by multiplying the position by a factor δ as

v1 = δv0 (9.2)

The first case to investigate is the three-body figure-eight choreographed orbit.

Again, starting with the values provided by Chenciner and Montgomery [2] as seen

in Table 9.1, the initial position of the first body is modified and then the Newtonian

simulation is allowed to run. Moving the first body in and out, and allowing the

simulation to run for a time, results in the orbit paths seen in Figure 9.2. In each

figure, the caption indicates the δ used to modify the initial position. The simulation

was allowed to run until t = 4 · 2π, or four complete periods and the paths each body

took is displayed in the figures.

As can be seen in the figures, shifting by up to ±3% does not introduce enough

error to cause the path to become chaotic and instead just introduces precession to the

orbit. Moving up to ±5% shift, the paths are slowly becoming chaotic but they stay

relatively stable for a large number of periods. At ±10% the paths are maintained

for a short period of time before becoming chaotic, but modifying the initial value by

±15% introduces too large an error. In the case of δ = 1.01, the figure-eight loops

precess much slower that in the case δ = 0.98 which causes the orbit overlaps to

appear much tighter.

The second case to investigate is the three-body choreographed circular orbits.

The initial positions of this orbit can be seen in Table 8.1. Again the initial position

of the first body was moved in and out by a factor of δ and the simulation was allowed

to run until t = 4 · 2π. From the resulting orbits in Figure 9.3 it can be seen that
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Figure 9.2: Precession of choreographed figure-eight orbits

(a) δ = 0.85
(b) δ = 0.9 (c) δ = 0.95

(d) δ = 0.98 (e) δ = 1.01 (f) δ = 1.03

(g) δ = 1.05 (h) δ = 1.1 (i) δ = 1.15
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even very small changes to the starting positions causes the paths to become chaotic

almost immediately. Unlike the figure-eight which remained stable at ±3%, a shift of

only ±0.0001% causes the paths to become chaotic after only two orbit periods.

Figure 9.3: Precession of choreographed circular orbits

(a) δ = 0.995 (b) δ = 0.997 (c) δ = 0.9999

(d) δ = 0.999999 (e) δ = 1.000001 (f) δ = 1.0001

As can be seen by the difference in stability between the figure-eight and the

circular orbits, the effects of modifying a single body’s position can vary greatly.

There is no obvious general rule that can be applied to determine the stability of

a system after modifying the initial conditions, and so any precession and stability
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analysis needs to be handled on a case-by-case basis.
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Future Work

There are a number of ways this work may be extended further. We found the

modified gradient descent was quick and provided acceptable results, but there are a

number of other n-variable minimizers that could be used. These could be used in

place of the modified gradient descent, or used in addition to it, such as was done with

the quadratic curve fitting. Additionally, the minimization could be more automated.

Determining when the function has been sufficiently minimized, and controlling the

scaling factor during iterations could be done algorithmically, to multiple minimiza-

tions to be run unattended.

Another addition to the minimization function would be to add additional con-

straints to allow for finer control over the minimization. One such constraint that

could be added would be to ensure that angular momentum is conserved.

Finally, a number of more advanced mathematical theorems and conditions could

also be applied to the systems to further investigate their stability. In the Newto-
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nian gravitational simulator, the Courant-Friedrichs-Lewy condition could be used to

formally determine the timestep size required for correct results. The virial theorem

could be used to analyze the kinetic and potential energy of the orbits to help deter-

mine their stability. Finally, a more rigorous analysis of stability could be attempted

for the orbits using the Hamilton-Jacobi equation and analyzing the eigenvalues of

the Hamiltonian system using Jacobi fields.
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Conclusion

Finding new n-body periodic solutions in gravitational orbits is an open problem.

Since the motion of each body must be solved iteratively, finding potentially stable

orbits cannot be done with a simple formula. A few orbits have been proven to be

stable, such as the choreographed circle and figure-eight, but many more potentially

stable orbits exist.

To identify potentially stable periodic orbits, we developed software that generates

Fourier series representing orbits. The software used a minimization function that

compares the Fourier series orbit with the Newtonian orbit at a number of points on

the period.

The minimization function began by calculating the second derivative of the

Fourier series at a number of points and comparing it to the Newtonian gravita-

tional acceleration on a body at that point. To find an orbit, the difference between

the Fourier and Newtonian acceleration needed to be minimized. An additional con-
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straint was added to the minimization function to keep the center of mass of all the

bodies at the origin.

The initial minimization was done with a modified gradient descent algorithm.

The partial derivative of the minimization function with respect to each Fourier coef-

ficient was determined and for each coefficient, the sum of its partial derivatives over

all the timesteps was used to update the coefficient for the next iteration.

Once a minimization function was smoothly approaching a minimum, the pro-

grams intersperse the descent algorithm with quadratic curve fitting. A quadratic

curve for each Fourier coefficient was generated using its values over three gradient

descent iterations and followed to its minimum, allowing the minimization function

to quickly jump closer to a minimum value of 0.

Once a potentially stable period orbit was identified, it was run through the devel-

oped Newtonian gravitational simulator using fourth order Runge-Kutta numerical

integration and variable timesteps for accuracy. The software found the starting po-

sitions and velocities of each body in a system by solving the Fourier series at time

t = 0. The path was then allowed to progress using only Newtonian gravitation

and the results were observed. In some cases the Fourier series orbits were interest-

ing but were actually local minimum, and the resulting Newtonian orbits proved to

not be stable. A number of stable periodic orbits were identified however, includ-

ing the choreographed circle and figure-eight which match findings other researchers

have made via alternate means. Some of the orbits found showed some amount of

precession while still remaining stable. We found that while some possible periodic

orbits became chaotic when a perturbation of the initial positions was introduced,
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other orbits were much more resilient and small perturbations only caused the orbit

to precess.

By using Fourier series to represent orbits and minimizing the difference between

the acceleration on each body due to the Fourier and Newtonian acceleration, we

were able to find a number of potential periodic solutions to the n-body problem.



Appendix A

Fourier Series Coefficients

The Fourier series for each orbit found are presented here. In each table the

“Index” column is the coefficient index in the Fourier series. The columns ax and bx

are the a and b coefficients for the x-position Fourier series and the columns ay and

by are the a and b coefficients for the y-position Fourier series. If the first coefficient

a0 is zero it is not included in the table. As a reminder, the Fourier series are in the

form

x = ax0 +
n∑
i=1

(axi cos(it) + bxi sin(it))

y = ay0 +
n∑
i=1

(ayi cos(it) + byi sin(it))

In the case of the choreographed orbits only a single Fourier series is used, with

time offsets used to determine the initial values for each body. For the unchore-

ographed orbits, the Fourier coefficients for each body are included.
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Table A.1: Choreographed three-body circle coefficients for Fig. 8.1

Index ax bx ay by

1 0.7548983603205649 -0.35141106974012754 -0.3514110697402252 -0.7548983603206388

2 -1.9150307611289275e-15 2.2360036541497445e-17 1.0746316306317935e-16 1.932412397911802e-15

3 -1.155278399273465e-16 1.586672222985794e-17 -1.2627005056661258e-16 1.4807338111954498e-16

4 2.1493226961371906e-16 -3.9623108916705373e-16 1.0344272047428232e-16 1.0469296740822034e-15

5 -2.192584409811363e-16 2.5454810690503273e-16 8.254995454316692e-16 -7.976576730858503e-17

6 5.892651453666586e-18 1.0799037031550896e-18 8.369160965856156e-18 -4.322064445878037e-18

7 8.911782171407457e-17 -1.162659174579948e-16 7.807524256218779e-17 3.5114136917452266e-16

8 7.351451010855196e-17 1.2505057795014027e-17 -1.2324568023800478e-16 -1.3037121716135135e-16

9 -9.067474666386747e-19 -6.187576736173928e-19 2.205967900199214e-18 -3.1383313572816968e-18

10 -6.310111074082526e-17 -4.4038817701780406e-18 1.0280602437442736e-16 -1.141116303043025e-16

11 4.990501404651108e-17 -6.338450189900628e-17 -2.3425608109295964e-16 2.6350610506766024e-17

12 -1.2351474069778525e-18 -1.8303978176322985e-18 -1.0695479637493678e-18 -2.1959375628251515e-19

13 -3.213383696043687e-17 4.0973510655277233e-17 -2.217178064646633e-17 -1.4646531101056533e-16

14 -1.7863484792721525e-17 1.4227484782168845e-18 3.5362666975103254e-17 1.8021048103201003e-17

Table A.2: Choreographed four-body circle coefficients for Fig. 8.2

Index ax bx ay by

1 -0.6992422980279646 0.6944467629708361 -0.6944467629710738 -0.6992422980282387

2 1.5840764845037316e-17 -8.547797029174964e-18 -6.495442789092932e-18 -1.403794758841306e-17

3 -9.406667479226474e-15 -1.0959228427744459e-14 5.393378284949609e-15 -6.647486558551395e-15

4 7.32438875740547e-20 1.4508423396636423e-18 8.942314337190109e-18 4.477261138816237e-17

5 -1.4887221202381589e-16 1.3104157746358994e-16 -7.626187904709564e-16 -1.4786812358819632e-15

6 3.9290057688780394e-17 4.9410497910460896e-17 -7.213582935186658e-18 9.67355169225502e-19

7 1.2996661417398896e-16 1.286000356713211e-16 6.176405986731774e-16 -7.588825995378119e-16

8 3.0225849181050846e-19 2.5963504256457734e-18 6.57937586869542e-16 -9.341535914296715e-16
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Table A.3: Choreographed three-body figure-eight coefficients for Fig. 8.3

Index ax bx ay by

1 0.2176530096583163 0.4456800765154419 0.42803565283137085 0.8751469569744517

2 -0.23766250591571017 -0.18519048182149087 0.12089459041179575 0.0941848697746536

3 3.0387249528375605e-5 3.7906119159809098e-6 -6.218346808909589e-6 -2.5609960843165065e-6

4 -0.048127890614614935 0.012128894572191067 0.024455443217361286 -0.006254982637285189

5 -0.008651189112234942 0.00733478889270486 -0.017173910560992767 0.014542744891938058

6 9.632850445794124e-7 -1.2498384463979924e-6 -8.463865878180795e-7 2.3093088649608327e-6

7 1.1574921606010391e-4 0.002597276853219944 2.2165415328532142e-4 0.005152471623695889

8 -0.0012459951314085815 -0.0023196020823530424 6.298973590986714e-4 0.0011477807001238456

9 5.058442834108797e-7 6.447192094018169e-7 2.0936288528594602e-8 3.1158760059785906e-8

10 -6.846983486635172e-4 -1.255756510266923e-4 3.5726881027828993e-4 6.269960769177977e-5

11 -1.7768877308305413e-4 5.7117130718706356e-5 -3.4401770372315257e-4 9.789521018362353e-5

12 2.1938148696231915e-8 -7.789613920687731e-8 4.55864106106472e-9 1.4790314679749991e-7

13 -2.1064322829912827e-5 3.8279878367731235e-5 -3.938878299959574e-5 9.061525979218574e-5
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Table A.4: Choreographed four-body trefoil coefficients for Fig. 8.4

Index ax bx ay by

1 -0.21818179023741846 -0.35180865345607926 -0.48561306784621855 0.2870460991118993

2 0.37374585031919794 0.37176324429184593 -0.37192954077433876 0.37229356291694715

3 0.00229609142978605 -0.01165194328584045 0.009024411281896221 -0.0386567325504359

4 7.859387119088035e-4 -1.982822519229455e-4 -7.413359053393541e-5 -2.480329675339246e-4

5 -0.04542724072143844 0.027982356901784067 -0.02363369068966606 -0.04031454068882473

6 0.007408609536063562 -0.008904830214951856 0.00792376228622713 0.007227263309350796

7 2.0254338691290524e-4 0.006048225169384902 0.0025957158013560876 -5.035959219868777e-4

8 1.5288298213605577e-5 6.17331987803343e-5 -1.3396052708293783e-5 9.412871403905804e-6

9 0.001637950643496527 0.002828962693452802 -0.0032170212459698604 0.0026298272304605946

10 -0.0014850192374428613 -6.435873268237417e-4 4.839192240845605e-4 -2.4300375717753174e-4

11 -0.004910382270007302 3.0630617541027e-4 -4.8416931469498134e-4 -0.005898932703098607

12 4.491838461506581e-6 5.677027432000256e-7 3.1003525992139407e-7 -6.320682296045191e-6

13 3.15611190925027e-4 -3.2512667392058624e-4 1.825950700073688e-4 2.993127056136419e-4

14 5.124471528160966e-4 -0.0030287279229078193 0.0032528260964720963 5.289283149106808e-4

15 1.7172895817895294e-4 0.0011367210333987328 -0.0011074805147649129 1.530335102923528e-4

16 2.7146304178585593e-6 -1.3920373423701747e-6 -2.038489117714004e-7 -3.709143354145493e-8

17 8.363733760260929e-4 3.325469272797656e-4 -4.0190041164145796e-4 9.611451724150175e-4

18 -8.244810235537325e-4 -5.2463123656415344e-5 7.430707865178096e-5 -8.052588812492951e-4

19 1.814734018591389e-4 -6.81827524013189e-5 1.5791550327611686e-5 1.3979552521784134e-4

20 -1.2871423966060112e-6 5.838569285997445e-6 3.839526994450627e-7 1.4069626587090317e-6

21 1.1589931637595746e-4 -2.971980428129216e-4 3.0325810682029907e-4 9.412280840780452e-5

22 -4.875051188044247e-6 1.569738711998738e-4 -1.4560735347721594e-4 -2.026681228712151e-5

23 1.6210408113961298e-4 1.3702601936543135e-4 -1.6743383690820477e-4 1.611501032036193e-4

24 -2.3610877332772047e-7 -1.739363279164875e-6 -1.14994442794577e-7 -5.209844632984745e-7

25 -6.733486219457434e-5 1.2428222400238723e-5 3.767601282346654e-5 -6.313784492935416e-5

26 -1.237332254104557e-4 7.686729830485e-5 -7.101034201239648e-5 -1.2825954795042834e-4

27 6.949500502864025e-5 -7.525049845425157e-5 7.82302714901067e-5 7.726540841769711e-5

28 6.495534577755363e-7 3.568520445209692e-6 -2.176252015042144e-7 -3.2194865932180116e-7

29 -2.0975339834326778e-5 -5.0989600551447665e-5 4.39177647163428e-5 -1.8695460170696717e-5

30 4.6029948153356503e-5 6.932253746775258e-5 -8.243713590064795e-5 5.2443272982306294e-5

31 4.5884605540394235e-6 -1.4445915568122353e-5 1.915102450381389e-5 -6.552312469119472e-6

32 -2.176543909467466e-6 -1.8699241326040297e-7 2.909514417026145e-7 -3.56073115058382e-7

33 -4.380202651794108e-5 2.297112024017074e-5 -5.196990687410373e-6 -3.1809098904028264e-5
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Table A.5: Choreographed four-body chain coefficients for Fig. 8.5

Index ax bx ay by

1 -1.1920168613261075 0.28140929021797434 0.5087071050154558 0.006696236539724962

2 -5.392227219497806e-4 -4.34675665239019e-4 -6.859069541201709e-4 5.661030167270081e-4

3 0.02253250259526173 0.09468487425989221 0.13254001983013455 0.1736262772085104

4 -2.951440502466351e-6 -3.760482912279364e-7 -3.3910192810265936e-6 2.5760975166475356e-6

5 -0.020956866137226422 -0.014793273517415224 -0.05238675763064296 -0.033586016150804664

6 7.830907518401013e-5 3.911491564682996e-7 1.3475650066669615e-6 -8.101306060272862e-5

7 0.006307707198408547 -0.02043561583234652 0.0031748190601258424 0.009705320499903513

8 2.1039054875041925e-7 -3.2224171807862937e-7 3.677357433875016e-9 8.897106583048406e-8

9 6.790239758091741e-5 0.00907732355760707 -0.0044535677438441 -0.002863462236650776

10 -7.80266699952667e-6 7.211265269670601e-6 7.538514259448851e-6 7.401641338516054e-6

11 1.4714795344197363e-4 -0.002981764032375554 0.003998366605273357 -0.0016808361419626992

12 4.1612608450513985e-8 2.881229115116096e-8 -7.061266283336499e-8 2.8644271511799302e-8

13 6.315973664745375e-4 0.0016612059846027552 -0.0015908586313868659 0.0014553620466306212

14 6.631187611873235e-8 -1.7659620952787435e-6 -1.8227892171240462e-6 -2.1592504206714135e-7

15 -9.724667558314082e-4 -6.683925073513836e-4 7.280221328777237e-4 -6.862541285493843e-4

16 3.8447740123237237e-8 3.1031133214241217e-9 2.767237079298632e-8 6.541386768415347e-9

17 5.960771691626762e-4 9.91580938900138e-5 -2.6025913720021147e-4 5.944783309444898e-4

18 2.1141640098545532e-7 2.708338120840619e-7 4.5076283424241014e-7 1.8504533275064162e-8

19 -3.6326523651359407e-4 -5.797615617368972e-5 3.2376542755910666e-5 -4.429946208132072e-4

20 1.383846040054533e-9 2.46938596547957e-8 1.8087991213102835e-8 2.6292380842987386e-9

21 1.1184033398329467e-4 -7.490829798550757e-5 1.1634533558011079e-4 2.842799979274052e-4

22 -3.277548815511649e-8 -1.4384011999788404e-8 1.2321234850965914e-7 6.57498341870955e-8

23 -7.868623683522561e-5 9.00969047111248e-5 -1.0049351902966427e-4 -1.0209907967735063e-4

24 -5.391912283127185e-9 -1.708128200377265e-9 2.5346974509248556e-8 -2.0621360891411e-8

25 2.4955597318615343e-5 -7.09391359008292e-5 9.376316521139023e-5 1.993034622274571e-5

26 3.2322307823984357e-9 -1.7674781866450824e-8 -1.661849576189965e-8 -8.110539266817182e-8

27 8.269119779097485e-6 7.97338783859528e-5 -9.217654600754323e-5 2.3846515581268222e-5

28 -2.422147104950989e-9 -2.4858034706023494e-9 1.0784724689615103e-8 5.108190014642779e-10

29 2.5817174649721484e-5 -2.3293834214391517e-5 3.653211881098584e-5 -5.527821474491722e-5

30 -6.214341199293822e-9 4.87714675492204e-9 -1.9790883787810198e-8 -2.8310765971632514e-9

31 -1.8884752088026874e-5 5.276242962534998e-6 -8.80833818698521e-6 8.169133519668523e-6

32 2.3215381796762767e-9 -4.291277537895737e-9 -1.088933729569972e-8 -1.0058142865842846e-8

33 -3.2838417678791586e-6 1.0948496934270798e-5 6.953551503336392e-6 -2.6221327001475526e-6

34 4.473662329509446e-9 3.654678031660191e-9 4.4985406870529455e-8 6.195902387807065e-9

35 -9.02555710358268e-6 -1.4156326021058792e-5 9.622179948899615e-6 -1.4309000130823149e-5

36 4.298846696218809e-9 -3.4514530414697616e-10 -1.8285684581648212e-8 4.346300920221835e-8

37 -1.3576300633508058e-5 -4.969299716295609e-6 8.354697741993223e-6 1.0144200293873792e-5



84 Appendix A: Fourier Series Coefficients

Table A.6: Choreographed four-body inner loop coefficients for Fig. 8.6

Index ax bx ay by

1 -0.5863637254644544 -0.20360823032495845 0.33464309023604566 -0.4694719281970928

2 0.4341835714607591 0.12067815222478132 -0.1389947873413346 0.42325194078268613

3 0.14818362461934828 0.018760715466636057 -0.015605158135815162 0.14951953529464898

4 -4.723324146224298e-5 8.77541932839509e-5 6.200167930525036e-5 -8.184085239244896e-5

5 -0.034038768838151816 0.007198819836347653 -0.009253846657856635 -0.03407943071923219

6 -0.021419337896183947 0.009389625113206717 -0.009237882323114847 -0.021378333713062303

7 -0.006171819473500474 0.003927862767383613 -0.004186099115290647 -0.00599066151122887

8 1.0411116866289987e-6 -6.0809110312426415e-6 -5.1167474296045686e-6 7.80474190606329e-6

9 9.279556866028861e-4 -0.0012276899060907542 0.0012046874537808363 8.937377340183751e-4

10 4.480922095973371e-4 -8.240347099208988e-4 8.408323759388756e-4 4.2002713526071036e-4

11 1.1449790446259833e-4 -2.561319987812255e-4 2.784924207022036e-4 7.245472896241279e-5

12 -1.126379580811363e-6 -5.023108934126972e-7 1.2194079643552831e-6 4.3992133445212936e-7

13 -1.2019573355569363e-5 3.8081112879623844e-5 -3.394475591916479e-5 5.840798876709223e-6

14 -5.358807398840856e-6 5.029786697856876e-6 -1.3828708612055842e-5 -3.251322352236467e-6

15 -1.374139490447088e-5 -4.357805225789137e-6 -5.3877825905035425e-6 -9.605405254860716e-6

16 -4.558427930562271e-7 6.049536337971546e-7 4.999597204263851e-7 -6.283517077358721e-7

17 1.145378817839415e-5 5.714361304455382e-7 4.611733929045024e-6 1.36992541024505e-6

18 3.7077856426902888e-6 -1.2363851485042517e-6 7.675818232199572e-7 8.309261607025398e-6

19 1.2490582017684216e-7 3.7461431879084772e-6 -4.126852806782228e-6 5.678203685902371e-6

20 6.19809673448354e-7 9.866791751998575e-8 -6.652041066647746e-7 -1.5856831322978314e-7

21 -8.162809671998237e-7 -2.6758055641570888e-6 -3.449053040149737e-7 -4.200909813764541e-6

22 -2.2369491150566556e-6 9.143789938271856e-7 2.3304044290766413e-6 -2.051546515774726e-6

23 2.3832543867921347e-6 1.0333002758473463e-6 3.1657122849923416e-6 1.6998741393078394e-6

24 1.531017494777801e-7 -2.245697728711411e-7 -1.6049325091245718e-7 2.7451160166070176e-7

25 -1.9276431599386903e-6 2.7364527885152825e-7 -2.534328550059829e-6 8.620772142870813e-7

26 3.176795589826954e-7 1.0046258188421226e-6 -9.910976547718265e-7 -7.500630932786538e-7

27 2.3425283303927393e-7 -1.995359009275045e-7 7.52653528169294e-8 -6.024836128508093e-7

28 -2.1744364882980707e-7 -8.344706571530263e-8 2.685646591340352e-7 4.44984469203522e-8

29 6.368998003124848e-7 -1.9062507069869206e-7 9.443793170968771e-7 -7.003197410489741e-8

30 4.982145447994164e-8 -1.08329853214548e-6 -6.138148432872726e-7 2.3436599189714984e-7

31 -1.8044160977274974e-6 -9.57512268919394e-7 -1.5750264408700995e-6 -1.526112555246664e-6

32 4.085323651914081e-8 8.968417159616096e-8 -9.455852439394777e-8 -8.166660951584981e-8

33 1.1507558481911302e-6 1.0999915686426583e-7 1.182416363019268e-6 1.355272695890821e-8

34 -1.1945355831502473e-7 5.233122156644593e-7 1.532318600275573e-6 7.844541705617454e-7

35 1.8041130555172197e-6 2.411043034880743e-6 1.5143140242490936e-6 2.957098365481605e-6

36 -7.145686242578804e-8 3.152787377880425e-7 -1.4427503005564479e-7 -4.749517630328291e-7

37 -2.169242078227881e-6 -1.322933798154378e-6 -3.2465808245045024e-6 -2.556412804808969e-7

38 -6.545626771976379e-7 5.43142555715863e-7 -8.422016319467004e-7 -2.0167245200721667e-7

39 -8.194121003264663e-7 1.9259054204258075e-6 -8.867378497724163e-7 1.9164723646451874e-6

40 1.0274209102531651e-7 2.2292407131528963e-7 -1.1162439446760669e-7 -2.995777268191457e-7

41 2.466671671046875e-7 -1.9579754357575778e-7 1.1599274019952291e-7 -5.76403321713268e-7

42 3.002861543746831e-7 -6.300530114522537e-7 -3.575548297244651e-7 -2.2634664652442708e-7

43 -7.789790533134595e-7 -1.290389270553542e-6 -7.721664615909525e-7 -1.5193368719432616e-6

44 1.6743269716360202e-6 1.0519079543884208e-6 -1.8279609455888973e-6 -1.1690940625332435e-6
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Table A.7: Choreographed five-body figure-eight coefficients for Fig. 8.7

Index ax bx ay by

1 -0.16365157403042543 0.3962041385194827 0.5242689043637169 -1.251850854937724

2 -0.3370742874318663 0.33372627739393157 -0.10587389156118429 0.10351043364209389

3 0.010301714843625112 -0.004212961348000595 -0.03315626666875662 0.013167227328670712

4 -0.03455684024836918 -2.8103839535126865e-4 -0.01103638632058648 -5.562646361063848e-4

5 -1.0751390222479793e-5 4.769467178640183e-6 -2.542708661679079e-5 -6.055707727052003e-6

6 -0.009979533614770202 -0.010373101851709227 -0.003118292396659717 -0.003210899947670573

7 5.185086058990445e-4 0.0014471833820078547 -0.001772422597406034 -0.004479995490086375

8 7.814352784050354e-5 -0.0032311786028543427 1.1179817454685592e-4 -9.777889010666539e-4

9 -4.647885122376092e-4 7.947422028956417e-4 0.001272702980716266 -0.0027602603242219315

10 3.959564465567611e-7 -5.152693597268808e-7 1.319267208888729e-6 -7.038440173930091e-7

11 -3.0180017449211186e-4 8.119201081629171e-5 9.880352105695067e-4 -4.1118238014750837e-4

12 -4.2836565592801416e-4 -1.8659098212908335e-5 -1.3479522352301433e-4 -2.4379055995300683e-5

13 -6.712235546221255e-5 -4.043337939627013e-5 2.3461800078285083e-4 1.1013164512411674e-4

14 -1.7827827724017085e-4 -1.9746095230382558e-4 -6.121581335928178e-5 -6.202549262863486e-5

15 5.988033448263989e-8 2.3480620274289608e-7 -1.497685040658491e-7 4.909091554346601e-7

16 -4.479516501733158e-7 -1.101411090657505e-4 1.645642656046875e-5 -2.4040665663433124e-5

17 -7.734124885007479e-6 1.1171773528815274e-5 1.9918487333957393e-5 -3.699479769503142e-5

18 2.046687978006187e-5 -1.8938434096760044e-5 7.566999416422887e-6 -4.6388797217784125e-6

19 -1.001646732002023e-5 1.7594014264574727e-6 2.88224626420575e-5 -1.28247294630325e-5

20 5.550643891536263e-9 -2.3312133167287148e-8 1.7376684934232406e-7 -8.827434373217093e-8

21 -1.5707325294289703e-6 -3.220803219384208e-6 8.022332376886483e-6 5.281686851442154e-6

22 -3.3284839235260187e-6 -4.023115850025911e-6 -1.1720447228946292e-6 -1.4607447656640968e-6

23 -1.8684769678405506e-7 -1.1441178136295095e-6 1.3241362134223397e-6 2.5675832455558576e-6

24 -5.90591332782866e-7 -3.0720285785143786e-6 1.8377792613645944e-6 -2.6513077377160676e-6

25 1.552437539787133e-7 3.350106735499737e-8 3.032629145539551e-7 1.2059791689741756e-7
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Table A.8: Choreographed five-body pretzel loop coefficients for Fig. 8.8

Index ax bx ay by

1 0.2600512129518242 0.05754854590023973 0.17883836955028115 1.109440779001036

2 -0.005641765457476541 -0.1266346913200789 0.31969166688641154 -0.09364753551580997

3 -0.23682966656936402 0.16478636708142944 0.13660366308249516 0.16685749768093436

4 -0.10693554022701625 -0.10846461089573393 -0.06604269315362374 0.07763600817969096

5 2.3371376929076318e-4 -1.4840943042795685e-4 3.600592992319922e-4 -4.9886667712044574e-5

6 -0.027074066080924105 -0.014297722106623374 -0.001632511864470335 0.011890864039471623

7 -0.0028030081475470844 0.013909986192491489 0.008001825640031077 0.0012600222060709326

8 -0.029392297143526976 -2.752874520883621e-4 0.0013645989640289863 0.023791687568252503

9 -0.0033921608458276436 -0.012796773258599715 -0.01618818868615238 0.0028457910006658184

10 2.9349958935760645e-5 -2.835497252175668e-5 2.1003038438442993e-5 -9.299468096470575e-6

11 -0.0012280197729411513 -0.0010938141240566155 -0.0028880951007931844 0.001710937041952022

12 -0.0014882473005725625 0.0015572660675133897 0.0020094412560131185 0.002073568194694982

13 -0.004202364988365959 -0.002593415159370602 -0.0028727692844175974 0.004382420798195334

14 0.0012139871933786524 -0.002856220889104768 -0.0023751210514776477 -7.799250168776344e-4

15 6.086027275904716e-7 5.324719181023139e-7 3.07338814283453e-6 4.0735283248848767e-7

16 1.8599673163299438e-5 -5.349969392634466e-4 -4.2542082609010054e-4 1.1283315891582947e-4

17 -6.230383654160546e-4 1.3386329887041183e-4 1.4573352047148413e-4 5.013703868821608e-4

18 -5.461157532402132e-4 -0.0010756987417290611 -9.721727279068121e-4 5.303488764039622e-4

19 4.664954333596062e-4 -4.606324628962489e-4 -4.460337398585181e-4 -5.154310547349268e-4

20 -4.906068259990713e-6 -2.2699652907939908e-7 -4.483128594825174e-6 5.53640969970624e-7

21 2.243164399341345e-5 -1.2292635831029643e-4 -1.229270906559646e-4 -8.553917933182316e-5

22 -1.2457708197123528e-4 -2.5951814487372657e-5 -5.294803182921705e-5 1.3048143147873057e-4

23 7.769657526757024e-6 -2.979838331249011e-4 -2.7751979519965525e-4 -1.4917384193464355e-5

24 2.1186497484312276e-4 -5.0287413637972705e-5 -4.6429510848813066e-5 -1.787434879131297e-4

25 -2.774487592087521e-7 -2.0995267986100378e-7 -2.530820401830415e-7 2.2923383344225515e-7

26 6.83843191740339e-5 -4.591397460176739e-5 -2.8311525638088687e-6 -1.872444876144334e-5

27 -2.1258225319618278e-5 -7.4081622829000435e-6 -3.6737066182843166e-5 1.765498014495811e-5

28 4.671760469327048e-5 -6.384065379901193e-5 -5.353559235901486e-5 -3.957576778806548e-5

29 6.0631692970336796e-5 2.4828029124699414e-5 2.408113024710073e-5 -5.325143736801293e-5

30 -9.17221305113645e-8 7.518041980927958e-7 -1.1876063057768395e-6 6.494531870999119e-7

31 2.8773768938686142e-5 8.712918531787415e-6 4.393442792461907e-6 -5.814555556980233e-6

32 -1.4730058038402322e-5 3.1536487779184154e-6 -9.41722116214297e-6 -2.950979069820752e-6

33 2.1491597865740416e-5 -1.7189651140782895e-5 -5.946260980082242e-6 -2.060491131931754e-5

34 1.0430716575805613e-5 2.3323782748779693e-5 2.097897540850491e-5 -1.0798738929758907e-5

35 -9.958720259411818e-9 1.2531944409787623e-6 -5.188571394614994e-8 1.384522759393017e-6

36 4.078750788650047e-6 1.4823409412636199e-5 -1.480412756006276e-6 -5.7394028114649124e-6

37 -7.854920410076386e-6 1.820178895601459e-6 -1.2627397160758256e-6 -7.06081666194709e-6

38 2.7416853298687293e-6 -9.654040477676302e-7 9.395210870953566e-6 -1.0017070136785061e-5
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Table A.9: Choreographed five-body trefoil coefficients for Fig. 8.9

Index ax bx ay by

1 0.020512312921712076 0.3315402529668549 0.050881773776277464 -0.912658807176195

2 -0.10849493250204766 -0.5714715102087544 0.4333504108776496 -0.14783638056784168

3 -0.08602538484987002 0.0520674030101522 -0.004212457206805521 -0.17473604172005247

4 0.011914032151299327 2.2992738957267875e-4 -0.03251815044797603 -0.006245160085559099

5 1.461837667248285e-4 -1.5974200684101331e-4 3.367538723590266e-4 -3.1170641665606965e-4

6 -0.0014406873317469335 -0.025075102417597285 0.02210507385673589 -0.002998832778496828

7 -0.02153513713928313 9.95062019377028e-4 -0.0016146134518039666 -0.020557922350274635

8 -2.6238847091858127e-4 0.006428553021973196 -0.004808888293012105 0.0016503905206129918

9 -5.449422624238472e-4 8.815927526749619e-4 0.0010640150149012339 -0.0026132547378914473

10 -7.320570166776272e-6 1.1576760375541459e-5 -8.578886565821875e-6 7.380330669921115e-6

11 -0.00318702904338432 1.1454294030459832e-4 5.797739204853349e-4 -0.003950447540710948

12 -2.7487582623374033e-4 0.0019807035033689293 -0.0018882118693909471 8.017859370399472e-5

13 -0.0019163289637130286 -6.595424093176794e-5 9.871981662135712e-4 -0.002543814148917482

14 -4.098794448144552e-4 0.002287523980393218 -0.0026297245915735696 -8.276178107786607e-4

15 3.897746011656107e-6 -6.944614040718093e-7 1.5832644218906636e-6 -1.80286550130598e-6

16 -4.581797617019268e-5 3.2169352675278024e-4 -3.614207034826104e-4 -6.68838182357426e-5

17 -0.0011730142731161523 -4.4352473687061145e-4 5.699659842140809e-4 -0.0012346593567045855

18 -5.623570331162263e-4 0.0015362993356759966 -0.0016189851253708668 -6.80321361117968e-4

19 5.66843638142207e-4 1.9956946819300357e-4 -2.057591750244331e-4 5.751860771597646e-4

20 -4.4550901301833354e-7 -1.1132589628563052e-6 -1.0250993701302292e-6 -1.2835601889737744e-6

21 -3.5555264621124074e-4 -2.137957126001533e-4 2.4453666739853537e-4 -3.6237009806418025e-4

22 -3.822817373871913e-4 6.71289029640319e-4 -6.625945811679489e-4 -3.901183916829599e-4

23 3.8346628880465657e-4 2.087817803956814e-4 -1.633336538832861e-4 3.6939896694250307e-4

24 -1.7070224269343697e-5 2.997925429112581e-6 -1.4783263805028812e-5 -6.26381958535967e-5

25 -8.032613751210515e-7 9.042932350562856e-8 -1.9306401198066466e-6 -1.1631293172652837e-7

26 -1.3538697419031794e-4 1.8066949957183285e-4 -1.8739306449626626e-4 -1.3993220526142198e-4

27 1.50503882087091e-4 1.1081980954948394e-4 -8.655992342811338e-5 1.5235094992997798e-4

28 -3.999418231635606e-5 1.532106292758917e-5 -4.3655974987490416e-5 -5.808081565813274e-5

29 8.164832983790772e-5 8.320267023968079e-5 -9.476037597444115e-5 9.10183359264538e-5

30 2.9301548791564023e-7 -4.211631589426431e-7 3.734120236928149e-7 -5.553204208308868e-7

31 4.152135310667031e-5 2.7445502058328748e-5 -3.0169821201317507e-5 2.702055093463697e-5

32 -4.159622524079175e-5 1.0575118407680011e-5 -3.890556661745416e-5 -5.1851334046087356e-5

33 5.764831941628786e-5 9.799998375083604e-5 -1.0276907954477884e-4 5.2170843393281195e-5

34 4.579748442786917e-5 -3.279795670183894e-5 2.7602354575120832e-5 4.680563135004926e-5

35 1.5038322525903967e-7 5.631568296621946e-7 1.5210580252729217e-7 1.246823177790435e-6

36 -2.264840564832622e-5 7.53874433636617e-6 5.758624233227442e-7 -2.3702218634270516e-5

37 2.784578947126513e-5 6.102090372126453e-5 -5.064503027607154e-5 2.8929156591768456e-5

38 3.731269483323855e-5 -2.464004622102332e-5 6.30874424170572e-5 4.7972007604451425e-5

39 -8.601953937633656e-6 -2.413918821151523e-6 7.569221427139716e-8 -2.258382714523404e-5

40 -1.2015247951539485e-7 -6.072677802277099e-8 4.382684419835515e-7 -1.039797346675782e-6

41 4.1843162692165935e-6 1.8909672868756703e-5 -2.1096667430378742e-5 8.330780107223321e-6

42 1.5331479015438242e-5 -8.478243036221689e-6 1.9718680183336463e-5 2.720626761510263e-5

43 -1.7034018274659808e-6 -1.4657865960152732e-6 2.6628648299113466e-6 3.039371697128631e-6

44 9.727526486200372e-6 -1.9192119663470965e-6 2.0842437149440007e-6 8.962628398293324e-6

45 1.4242664538777184e-8 -1.671618191268762e-7 3.289922400925879e-7 -4.556899519709534e-8

46 -2.592550285284001e-6 3.2061803888245005e-6 7.251120544363338e-7 -1.5300585352039073e-5
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Table A.10: Three-body circle coefficients for Fig. 8.10

(a) Coefficients for body 1

Index ax bx ay by

0 1.4605605023968157e-9 0.0 -1.4604536330254136e-9 0.0

1 0.8064727105693492 -0.20727782667716863 0.20727242775853796 0.8064688722555448

2 -8.472847859534296e-7 1.224933578021879e-6 -1.104850911400487e-6 -7.931864702838543e-7

3 -2.1157743277582987e-7 6.150853944624093e-7 -7.121988646216031e-7 -1.727908927179269e-7

4 -4.6755573177964155e-8 -9.458052550523652e-8 -4.614923286861201e-8 -1.3433251338603074e-7

5 2.09878953430838e-8 6.622607491352736e-10 5.364689753328171e-8 -1.4348112962101537e-8

6 2.8477043939111803e-8 2.5661054707540648e-8 1.2562608622713474e-8 2.737964533512327e-8

(b) Coefficients for body 2

Index ax bx ay by

0 -1.1879432059057798e-9 0.0 1.1880097959876623e-9 0.0

1 -0.5827363158047619 -0.594786384346318 0.594795274506634 -0.5827386900459348

2 1.7440760269745606e-6 2.6620532586167326e-7 3.025515799317771e-7 1.5930596686635705e-6

3 5.745816946874389e-7 -1.1108891998442633e-8 1.3536630154355804e-7 7.973737072982364e-7

4 3.312223656255306e-8 7.683642271047498e-8 1.3268944708880325e-8 1.1224514250099403e-7

5 2.1372295854366846e-8 2.2561733600274758e-8 7.573035673097334e-9 4.577280164888958e-8

6 -3.44712348301349e-8 8.268953573700722e-9 -2.6369254821170643e-8 2.3287734683263075e-8

(c) Coefficients for body 3

Index ax bx ay by

0 -2.7261729649103677e-10 0.0 2.724438370377538e-10 0.0

1 -0.22373660137859494 0.8020638323644752 -0.8020674648432556 -0.22372973941643787

2 -8.955580257976309e-7 -1.402275147920433e-6 7.848494475089005e-7 -8.279901051968732e-7

3 -3.566553231206447e-7 -6.091708361880141e-7 5.897233256862484e-7 -6.180727323600622e-7

4 9.116214030303089e-9 1.3990956143568473e-9 3.6905909239951186e-8 3.68896286642893e-8

5 -4.071301865038872e-8 -2.349780742374822e-8 -6.499011367284745e-8 -2.978348864830188e-8

6 8.646839389620824e-9 -3.175980293219664e-8 1.1193811379619509e-8 -5.259513354448923e-8
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Table A.11: Three-body circled cross coefficients for Fig. 8.11

(a) Coefficients for body 1

Index ax bx ay by

0 -2.1217845337777366e-7 0.0 -1.4669322080367649e-7 0.0

1 0.8960721489109486 0.4265128480864686 -0.42205074952576593 0.8888382827413434

2 2.2104931184610615e-5 3.666774942253576e-4 2.8753547241472486e-4 -9.075550963448619e-5

3 0.0046324542473141295 -9.685306736364869e-4 0.0015373407449030118 -0.004373519779609295

4 -4.48079494674178e-5 5.287768908781594e-5 1.3110651114526698e-4 8.279440215639287e-5

5 0.006265459228163849 0.008870750998035621 -0.008896698533359705 0.00624148934633266

6 -5.1956790336414215e-5 -2.0260515663783344e-5 -2.1721571625022914e-5 6.250047859495722e-5

7 1.3759126502136066e-4 -2.7173673294041318e-5 1.5234089352717233e-4 2.0761028520245264e-5

8 1.037031407243873e-5 -4.915807165648985e-6 1.5394939068988876e-5 -1.9020683848575475e-5

9 5.959123162488419e-5 6.432443788202887e-4 -6.96508600133468e-4 9.867424495206803e-5

(b) Coefficients for body 2

Index ax bx ay by

0 -1.1954023309410316e-7 0.0 5.1432316661146e-7 0.0

1 -1.0405448426949055 -0.1076789986856698 0.32817038504878787 0.14682047031772133

2 -7.202018245006315e-4 1.0818320895937176e-5 3.313878790497535e-4 -3.802380517952626e-4

3 0.020676305996031995 0.020130166915380422 -0.019646471362576783 0.025190990350168106

4 2.1135020626674982e-7 -1.0051477435522349e-4 -2.698400468480114e-5 -1.5060494903146494e-4

5 -0.004744798704371927 -0.005105624077232802 0.0040854299404422985 -0.0014245090226489014

6 6.156792172503539e-6 6.527171822549903e-5 3.390774580369679e-5 -3.4418062864506754e-5

7 3.768210673778716e-4 0.0012119961967867415 -0.001227493208695589 4.219336779966284e-4

8 -3.8126033441265335e-5 -2.6701401851250535e-5 -1.78883984371225e-5 5.291566035607207e-5

9 -6.24616380146515e-5 -3.580227455867407e-4 3.572682743170702e-4 8.57018397784925e-5

(c) Coefficients for body 3

Index ax bx ay by

0 3.317186864718768e-7 0.0 -3.6762994580778375e-7 0.0

1 0.13888351698141674 -0.32965952301639556 0.09626922685087222 -1.0379420306088813

2 -3.586816508525718e-4 3.2884311224027404e-4 -4.6373276390963456e-4 3.0104542006410167e-4

3 -0.02490460392178365 -0.01956914101609359 0.01814861405234655 -0.02079812539515158

4 -2.4339575379128998e-5 -1.8323688989749974e-4 -9.425725092864877e-5 6.46191177769445e-5

5 -0.0015748169324063049 -0.0037508737967153673 0.004802057739107326 -0.004806066169451975

6 9.625432631006567e-5 -2.0478336863141727e-5 -9.300025489386003e-6 -1.813252707547664e-5

7 -5.060740926712936e-4 -0.0012194562196326101 0.0010712834216137373 -4.388152814683785e-4

8 1.0331730812510423e-6 3.0559996899025294e-5 3.7862719737577806e-6 -2.3579316627902326e-5

9 7.009923318326339e-6 -2.0658178213792174e-4 3.444940770942545e-4 -1.4001009643516574e-4
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Table A.12: Three-body enveloped figure-eight coefficients for Fig. 8.12

(a) Coefficients for body 1

Index ax bx ay by

0 -3.1159325902201866e-4 0.0 -5.443673528215832e-4 0.0

1 0.6477686898149714 0.9375892666714728 -0.3191470606590699 -0.4994971080767887

2 0.036439822687458115 -0.14521611698324563 0.0779937025095896 -0.3255841270774089

3 0.05565415247309742 -0.04571711416003409 -0.03171840855375271 0.015851887003139272

4 -0.010715827294020958 -0.005767089443367684 -0.031007576678544643 -0.012086540176509489

5 0.001525230279319403 -0.004690661620688317 0.002236382244331799 -0.0019261313000684484

6 8.281169692053454e-5 -0.004332892140648124 -0.0011253426209546391 -0.007289056909350979

7 0.001657080976623897 -0.0018571325102033909 -0.0015389608086192217 0.001339305335274105

8 -9.410061496087491e-4 -7.397660389929571e-4 -0.0022393693325797955 -0.0016003841533587557

(b) Coefficients for body 2

Index ax bx ay by

0 0.0011794582131423063 0.0 -1.2108239835465657e-4 0.0

1 -0.4460156494065332 0.18912944533227496 0.26291200302428863 -0.08436462431542031

2 0.11546036023881161 0.12674270917193414 0.2366388969200578 0.2423008373255711

3 -0.04680060057789391 0.10029288197477984 0.019320562641299617 -0.05020183817087203

4 0.019680084302816533 6.515663832347175e-4 0.039649399818747426 2.2145737416079083e-4

5 0.0018144254651665183 0.006664568110750634 -0.0011380450799579494 -0.0019045700799537458

6 -4.59015848893161e-4 0.0014134494400341834 -0.0024337274111319415 0.0013825271411129507

7 -0.0032740987645638337 -0.0015421738763394548 0.0015715693045278843 4.5658702206963735e-4

8 -6.340132412972646e-4 0.0010406327080710325 1.8379673271669077e-4 0.0025585977217024514

(c) Coefficients for body 3

Index ax bx ay by

0 -8.678649541202876e-4 0.0 6.654497511762396e-4 0.0

1 -0.19463578864129 -1.1272582606146764 0.1322939564573432 0.5357418645539433

2 -0.14931391191574706 0.021345871874835602 -0.34313367380574894 0.05479796947284386

3 -0.008686408358809718 -0.059530673686566976 0.009230535140215991 0.045455270552813835

4 -0.007630668015606829 0.005465493442713141 -0.012475557714830679 0.012092327228980007

5 -0.0036970722181058936 -0.0021840885362476876 -2.2443143331555307e-4 0.003859661790706773

6 4.710719839683093e-4 0.0028676745994498072 0.0036722080561865777 0.005307808972838867

7 0.00156038855231301 0.0035220765648408116 1.975165947707879e-4 -0.0017996033651452687

8 0.001595311334538997 -3.494331317891348e-4 0.0020010141104992176 -0.0014071587139672043
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Table A.13: Four-body nuclear symbol coefficients for Fig. 8.13

(a) Coefficients for body 1

Index ax bx ay by

1 -0.5072560392632973 -1.1419176012269356 1.1367260791526612 -0.5230744127665182

2 0.0017026374446621646 -7.629290046163467e-4 0.0018503644581783943 3.567830988249491e-4

3 0.0010403168778698384 -8.740332374787062e-4 0.001085036887712877 0.0013456015328645687

4 -1.544976012068956e-5 -6.349329731980418e-5 -4.363070851729055e-4 1.715091020201528e-4

5 8.004292667737137e-4 5.918542000629317e-4 0.0011964685480012453 -0.0011085568536699033

6 1.545431127776888e-4 -1.1066704539734375e-4 -4.686139294899034e-5 -3.0359207156227812e-5

7 -0.005503258536169576 -2.9950683617379497e-5 -3.682054799405173e-5 -0.005511293241008536

8 -1.1793939123678094e-4 6.729515127041693e-5 1.0728563083771065e-5 -1.5898639767501724e-5

9 9.070310639800915e-6 -1.3689303826919773e-4 7.928989197103801e-5 -8.75259368698663e-5

(b) Coefficients for body 2

Index ax bx ay by

1 -0.5061841235108988 -0.04956602422852003 -0.8201946652388723 0.8423345182411991

2 -6.493096966616771e-4 0.002041364838710155 3.467320944143197e-4 -6.561717334275325e-4

3 -0.030186999855725274 0.010651073500584508 -0.006287621520648438 -0.02723244455068437

4 9.473602311653335e-5 5.588160055280728e-5 -1.6791604331728614e-5 -2.419244489013321e-4

5 -0.0013570468828405504 -0.0068628176724384905 0.006244305055920337 -8.16542891512311e-4

6 -1.520635320271948e-4 -7.476722688736255e-5 8.980180851346133e-5 9.988805889217246e-5

7 0.0017128822336416483 1.0917279544139478e-5 1.0101783631467704e-4 0.002041357079041868

8 -3.812533640325953e-5 -1.1066829057757682e-4 -6.967135341710783e-5 -8.413368024554176e-6

9 -7.307426621737814e-5 5.952697195099683e-4 -5.441551912386904e-4 -9.251056297942654e-5

(c) Coefficients for body 3

Index ax bx ay by

1 0.12338889436404332 1.1828679090352618 0.4203212152728146 0.20498214157677902

2 7.685034604680557e-5 -8.437686184554988e-4 -5.88325718275988e-4 -0.0014033017803456885

3 0.01904950874099774 0.017789593163947192 -0.02504872582839151 0.02237498129248939

4 -1.9966819631677595e-4 -1.0766329636716875e-5 2.2612148362459754e-4 1.4956016572790986e-5

5 0.00577051627553504 0.0023964816609092663 -0.0029718799141467273 0.006436637721162242

6 3.7112860254812385e-5 7.152706391909867e-5 5.5255582602836395e-5 1.5221141274419379e-5

7 0.0019630365320714212 2.083459062145638e-4 2.7631066954303064e-5 0.0018017646099293349

8 3.7829380467170654e-5 3.670612199885622e-5 8.24933651919153e-5 4.285318927726107e-5

9 4.8164876535732287e-4 -1.1877504236208507e-4 2.0848597605452372e-4 6.666813846214944e-4

(d) Coefficients for body 4

Index ax bx ay by

1 0.8899693322043268 0.008699625491285024 -0.7435807884956038 -0.5335370855016518

2 -0.0010156743842465266 -4.76616742036706e-4 -0.0014479802492393626 0.0012505133979280076

3 0.01011392285974696 -0.027596246202825574 0.03032121804248069 0.0034232369305808564

4 1.1834933380689016e-4 1.8145562443725688e-5 2.9766269831154327e-4 1.1507530605076966e-5

5 -0.005219985744873353 0.0038787378453081617 -0.00442410504088344 -0.004554344342263729

6 -3.638894315376717e-5 1.0979522268304609e-4 -8.909845439386874e-5 -5.626833793499864e-5

7 0.0018282585730035408 -1.8903649803794965e-4 -7.230138884501577e-5 0.0016990558217785164

8 1.1732716776039562e-4 6.2707299350935444e-6 -1.489883453417643e-5 -1.7576490707521562e-5

9 -4.1838718042661103e-4 -3.3716624320858334e-4 2.6258914856880654e-4 -4.740307036906672e-4
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