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ÀBSTRÀCT :

Human visuaì_ perception of grey-LeveJ- irnage infor¡nation
lacks sufficient sensitivity to adequately lnterpret irnages
Ín environrnents with severe 1ighting conditions. It has
been shown that irnage enhancernent can be acconplished by
grey-leveL regrading. present non-spatial inage regrading
techniques are irnage dependent and real-tine inplernentation
requires a priori knowledge about the lnput irnage. On the
other hand, present spatial technigues are ¡nore successfur
in inage independent applications but due to conputationat
intensity these techniques are not suited to rear_-tirne
appJ-lcations. The airn of this research work was to develop
a real-ti¡ne image independent image enhancenent technique.

fn this thesis a ner,J technique ca11ed ÀdaÞtive Histoqram
Reqradincr (ÀHR) is presented which has the hlgh speed and
low conputational cost of non-spatial techniques r.¡hi1e
remaining adaptive to handle a wide variety of input images
r,¡ithout a priori knowLedge of then. Thjs 1s achieved by
exarnining the grey-1eveJ. histograrn of an irnage and
perforrning feature characterizatíon ( fingerprinting) . The

image 1s then indirectJ_y segnented based on this
characteri zatíon and histograrn regrading is applied to each

region using local- criteria.
This AHR technique appears to work on atl j.rnages,

independent of their histograrn attributes. Its adaptive
ability gives excellent perfornance for general purpose



irnage enhancement appl icatlons \^¡here there is no prior
knowl-edge of the irnage. In a worêt caÊe scenarlo, there is
no degradation of the output inage becausê because no

regrading of the the input irnage is necessary. In other
ca6es, specifically where the input irnage has a ske$red

nulti-moda1 histogran, there appears to be a significant
improvenent resulting in a more natural appearance to the
output irnage. The êpeed and elegant sirnplicity of this
technique easily lends itÊelf to reaL-tine inplementation on

standard Pc type conputer eguiprnent.
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1. TNTRODUCTTON

The hunan vísion systeTn is a complex conbination of
irnage translation and image understandÍng, Through study of
the theories of perception it has been possibJ-e to isolate
characteristics of perception, but separating the eye and

the brain functions is dífficult because they are both
essential in the vision process. Many of the vision
functions are learned processes vJhich are unconscious and

based on how the brain judges the incorning information. For

exampl-e, the col-or yeIlow can be seen identically as both a

single (monochromatic) frequency of light or as a rnixture of
red and green light. Lightness is al-so a judgmental process,

our perception of illumination of sone object, relative to
the illurnination of the v¡hole viewing area. If the entire
viewing area is considered relative to our knowl-edge of
bright and dark, lhen it is possible to make a judgment

about lightness of the entire scene. These mental

calculatíons have been explained as cognitive explanatíons

because they assurne perception j-s based on unconscious

processes simiLar to conscious reasoning.

When our vision is put to the test of deterniníng
il-lumination of varíous level-s in a single image, ít woul-d

seen that our visual perception I,¡ould be capabLe of
distinguishing a large number of distínct brightness Levels

in a single irnage. However, the result is exactly the

oppositel6]. fn a singl-e image, the human vision system can

only perceive l-6 to 32 brightness levels, or grey-levels.



This rnay be due to the way in whích the brain processes the

visual- infornation, or the way the eyesr receptors respond

to the 1ight. Hochberg l_7 1, in L978 t expl-ained that the

receptors are not independent from one another, but rather,
the excitatíon of one receptor causes a negative excitation
of its neighbors. This was dernonstrated in 1978 by conzatez

and Wintz t6l in the illusion of Mach bands, named after
Ernst Mach who first described the illusion in l-865. This

effect nay aLso be involved in grey-leve1 resolution.

I.1 Problem Statenent :

since the hunan vision systen has poor sensitivity to
grey-1eveJ- infornatÍon, increasing the contrast between

consecutive grey-1eve1s in a digitized irnage aLso increases

the vÍsual- quality of that inage. Histogram nodificatíon
technÍques, which stretch certain ranges of the irnage

histograrn, are widely used as a standard technique Ín
digital ímage enhancenent.

The basic problen with â11- non-spatíaI techniques is
that they are dependent on the input inage. i,¡hat nethod to

apply, and hov¡ to apply it all depend on the type of

original irnage. If the range of irnage types is narrov¡ and

known in advance, such as parts on a conveyor beJ.t, then the

optinal method can be chosen prior to processing. As long as

the images rernain in this narrol¡, range of types, the

enhancernent will always be satísfactory.

In 1988, Mccol-lurn and Bor,¡rnan [ 12 ] presented a hardware



systen which ímpl-enents histograln nodification in real-tirne
using a linear equalization. Al-though the exarnple irnages are

greatl-y irnproved, they fall- into a narro\¡¡ category of irnage

types. The authors ackno\,¡ledged in their conclusions that
the most effective type of histogram modification is image

dependent, and suggested that the process could be

irnplernented as an interactive system. For general- purpose

applications hovrever, irnage types are not constraíned, and

optimal histograrn rnodification can only be performed on an

interactive basis. This precludes these techniquês for
interactive use only, which ís unsatisfactory for real-tine
generaL purpose applications.

Real-tíne irnage enhancenent, must be free fron any

interactive reguirenent, since hurnan response tírne is 1ong.

Non-spati.a1 techniques, such as Adaptive Histograrn
Equalizatíon, can perforn without hunan interactíon but
because they are spatial , they cannot be performed in real-
ti¡ne without an expensive conputÍng engíne.

An irnaqe histograrn is actually the sum of nany

distributions of varied shapes and sizes [I]. Each of these

distribut,ions corresponds to sone object or group of objects

and/or regions in the irnage. Sometines this is a single
object such as a satel-lite in space or sornetimes it rnay be

due to a texture created by rnany objects such as a forest or

rivers and lakes vie$/êd frorn space. A singJ-e irnage histogran

will- often consist of a number of peaks and valleys of

varied size and shape. Each peak r^/i11 usualLy result fron a



singl-e distribution and each valley corresponds to a

transitíon fron one dístribution to the next. Each

distributíon is referred to as a node of the histogran and

rnay be divided fron one or more regions j-n the irnage with
pixel-s of sirnilar grey-scale intensities,

The modes of a histogran rnay vary in size, but size does

not always indicate the reLative importance of the data ín
the nìode. If an object in a scene is small and the
contrasting background is relatively uniforn, then the

object \4tiLL correspond to a snaLL mode in the histogram next

to a large node, corresponding to the background. Histograrn

rnodification expands or compresses grey scales based so1e1y

on their nagnitude and therefore will redistribute a node

based only on its relative síze. As a resuLt, the object is
compressed at the expense of the background, which is the

reverse of what is desired.

For most kinds of irnages, histograrn modification is
successful in irnproving inage quality. There are, however,

some classes of inages which exhibít degraded or destroyed

quaJ-ity as a result of applying traditional histograrn

equalization techniques. Such is the case for certain kinds

of strongly nuÌti-nodal images which contain boÈh Ìarge and

srnal- l- rnodes in the sane histogran. An example of this is
shown in Figure 1. In this image the portion of the inage

occupied by satelLite is srnall in cornparison to the

background. The Histogram Equal-ized forn of this irnage Ís

shown in figure 2. Using conventional techniques the

background tends to affect the tranforrnation ¡nuch more than



the satell-ite creating undesireabl-e resul-ts. The problern is
to enhance infornation embedded in one region of an inage as

indicated by a local rnode of the histogram, !¡j-thout darnaging

inforrnatíon in another rnode of the irnage.





L.2 Research Goal-s:

When histogram nodificâtion in perforned, the rnodes in a

histogran are redistributed to approxirnate a desíred
funct,ion. The reasons for fail_ure of this technique under

sorne cond j-tlons give cl-ues as to how it coul_d be irnproved.

The research presented here addresses the shortconings of
standard technigues.

fn strongl-y nodal image histograrns, such as in rigure
3(a), the ¡nodes can often be directly equated to an object
in the J-mage space. Mu]ti-nodal histograms often result fron
irnages of objects on an uniforrn bríghtness background where

Èhe object represents only a srna1l portion of the irnage

area. The goal of the research is to create a general
procedure for isolating the modes of the histogran, l'hich
will- correspond to objects in the irnage, and regrade thern to
produce an improved inage. This approach \,rou1d be superior
to standard methods because ít v¡oul_d have the abitity to
adapt to any kind of input histogran, and therefore any

irnage .

Very often the object, viewed by the ca¡nera occupies only

a fractj-on of the j-rnage space, leaving the rest as a dark

(or 1íght) background. conventional. histogram modification
attenpts to irnprove image quality by redistributing grey-

level-s of the irnage such that the end result is a

cunulative Distribution Function (CDF) which is linear,
corresponding to a histogram with equal percentage of the



total area in each quantization level , as shown in Figure

3 (b) . Occasionally, the tern Histogran Equalizatíon is used

loosely to include other CDFts which are non-Linear. This is
the case with the DI-IRIS fmage processing software tI9 l.
Usually these include CDF's of 8e11, Cubic, Logarithrnic or
Exponential type distríbutions. A linear function ís rnost

often used because it equalizes the irnage vrithout
ernphasizing any particul.ar grey-scale range.

Each CDF accents the histograrn in a different way and

the choise is largely a subj ective one. A particular
funct.ion rnay be used if it. is known in advance what parts of
grey-scal-e range need to be accented, but this ís not

usual-Iy the case. The technigue int,egrates the histograrn;

wherever the cumulative histograrn is Less than the desired

function the grey-scal-e is conpressed., and r,¡herever the
cumulative histograrn exceeds the desired function, the grey-

scale is expanded,
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In thís thesis the histogram $¡ilt be considered as an

irnportant source of ínput information. The research is
dírected at using this knowledge to guide the rnodificalion
process as welL as infer basic attributes of the input
irnage. Inferences are made about the spatial nature of the

irnage from non-spatial histograrn data.

The goal- v¡as to create an adaptive general purpose

technique for image enhancement in real-tine applications. A

new nethod, [rhich we shall refer to as Adaptive Histoqram

Regradíncf (ÀHR) , lras created to address both the rnultinodal

irnages as wel-l- as inages hrhich can be processed by

conventional methods.

In AHR, each distinct node is ídentified ín advance and

the range of grey-Ieve1s corresponding to each rnode is
separated. This all-ows us to indirectly carve an irnage into
pieces, or segnent the inage, and then treat each piece as a
snaller irnage wíth its own histogran. By characterizing the

modes in the hístogram, the AHR technique can provide an

adaptíve expansion to the image, and sna1l modes whích

correspond to regions such as that of the satellite, are

considered independently, thereby conserving vital
inforrnation.

once the basic rules or heuristics are established, then

the goal- is to irnplenent these procedures in a cornputer

progran on a personal computer. If reasonable speed is
attained using a high 1eve1 cornputer program then

implenentation in dedicated hardware would be highl-y

10



feasibl-e since dedicated hardware ís rnany tines faster.

1.3 Thesis outtÍne:

clobal histograrn modification techniques treat the image

as a singJ-e entíty, but because of the dependency on the
input image, the results are sometírnes undesirable, or they
âre not optirnaJ-. Current non-spatiaL techniques do not
extract any characteristics froÌû the input histograrn, and

unpredictable results nay oÕcur if these histograrns arê very
different fron one another. Alternatives to non-spatial
techniques have segmented the irnage into regions and perforrn

a rnodification process on each region. Inage seg.¡nentation

can be perforrned in a number of ways. The irnage can be

broken down into a nunber of srnal_l-er rectangular cells and

then each cell- can be processed separately [8], or edge

detection can be used to deternine boundaries of regions and

each region can then be equalized t9l. Both techniques use

spatÍal information to perforrn the task, and thus then
require an extensive amount of cpu time, whích elininates
the ability to do real-tirne processinq on anything but
po\,¡erful- special purpose hardr^rare. If this segmentation
process can be carried out based only on the histogran then

real-tirne processing is possibJ.e on inexpensive general

purpose hardr^¡are.

Chapter three expl-aj-ns how the histogran can be broken

dohrn and analyzed using naxirna and minina. An algorithm is
presented for el-ininating histogran noise using a 1

l_1



dirnensional Ínplenentation of local averagÍng. The histograrn

analysis give important inforrnation for segrnentation of the

histograrn into several parts. A nethod for classífying each

node based on a vect,or representation sche:ne is presented,

HeuristÍcs t,o condense al-1 the segnented pieces ínto a few

distlnct nodes are also presented.

chapter four describes the regrading process of each

node based on the infor¡nation collected fronì histogram
analysi-s. Each mode is stretched and then fitted in the

histogran using both standard expansion rnethods and a new

rubber bandíng technique.

L2



2 . REI.,,ATED RESEARCH

2.1 Histogran Modíficatíon

Hunan visual perception has been a subj ect of rnuch

study, yet whíle the rnechanism behind irnage transfornation
and translation, the eye, is wel1 understood, the way in
which this ínfornation ís used by the brain is unclear.
Optical il-lusions are evidence that human vision is strongly
linked t,o the brainrs interpretation of the visual data. The

human eye is a ¡natrix of discrete eLements which provide
analog infornation to the brain. This v¡ou1d indicate that
visual infornation is Lirnited in its spatial resolution but
has an infinite number of brÍghtness IeveIs, however it has

been argued that brightness sensÍtivity is lirnÍted to the
cont,ext of the overall brightness. Hunan vision is an

adaptive process that should be considered, as an integral
part of the overall irnage processing systetn [3].

Due to the nature of the human vísual systern, ít Ís
possible to modify the grey level infor¡nation in an irnage in
order to enhance its visuaL perceptibility. Certaín types of
spatial operations have shown to irnprove irnage quality, but
their cornputational requirements put them out of reach for
economical real--tine image enhancement. other forns of
operatÍons which deal- only with the grey 1evel data, or

hisÈogram, have proven to be effective for econornical real-
tirne applications t121. These non-spatial operations are

L3



referred to as histogram rnodification techniques or
sornetirnes as histograin regradíng.

The early work fron I975 to 7977 in histograrn

rnodífication techniques is detailed by Hummel [9,9] . He

pointed out that since hunan visual perception has

difficulty in distinguishing l-ow contrast areas (possible

sensitivíty may onJ-y be 16-32 grey leve1s at any one tíme) ,
a grey l-evel- transforrnatíon may be used to increase visual
contrast. This increase in the contrast is considered to be

an art,ificiaL enhance¡nent because it provides no enhancenent

in the theoretic sense, but rather an irnproveÌnent in the

interpretation of the inage by the human vision systen [9].
Hunmel showed that rnodifying the histogran to produce a new

histogran whích is flat wil-l- achíeve this irnprovenent, in
rnany írnages this enhancenent can be quite drarnatic.

Sínce real grey-Ieve1 hístograns are discrete, and the

transformation is to be single valued, the simplest
histogram transformation ínvol-ved rnerging of grey-l-eve1s

together but no grey-1-eve1s could be broken up. This

technique, cal-led Histogran Equal-ization (HE) [9],
approxinates a flat histograrn function, In theory there is
only one v¡ay to equalize a hístogrant the irnage histograrn

nust be nodified so that it forms a completely flat
dlstribution. In reality the image and its histograrn

consists of discrete points. Unless some heuristícs are

irnplernented so that one grey-leveL may be distrÍbuted into

nany, an equalízed histogram can only be an approxi¡nation.

Subsequently, techniques to produce an even ffatter

r4



histograrn r,rere íntroduced. By introducing an algorithrn whÍch

can break up the prevÍous unbroken bins, and nap one grey-

level- ínto many, an extremely flat hístogran can be

realized. The nethod Írorks by exarnining the irnrnediate

neighborhood of a pixel- in question and based on these

neighbors decj-de whích bin to place it in. thís technique is
a special form of histograrn equalÍzation referred to as

Histocrram Flatteninq (HF) t9l, This method proved to havê

1ÍttÌe practical merit for several- reasons: the resul-ts of
histogran flattening look al-most identical- to histogrâm
equalizationi no infornation is added to the new image; it
has a tendency to f il-ter hígh frequency components in the

inage; and ít requires much nore cornputation than histogram

equaJ-ízation.

In the irnplenentation of either histogram equalization
or flattening there are several $rays ín which the pixels can

be napped into the target histogram. UsuâIly sotne regions

i4ti11 be expanded while others are compressed. Mapping

several grey-1eve1s into one grey-LeveL presents no

difficulty, however, when one rnust be rriapped into nany rules
nust be introduced ín order to decide v¡hich grey-leve1 a

pixel- shouLd be assigned. There are three rules for mapping

one grey-Ievel into many, as outl-ined by Pavlidis [14] in
1982.



1) ÀIways map each pixel into the rnidpoint of its new grey-

level- range. When one grey Level rnust be rnapped into three
grey-1eveIs then it vrould be napped into the rniddle grey-

l-evel and the other two would be l_eft unused. The resultíng
histogran stílI has an appearance of peaks and vaJ_leys, but
when it is integrated it approxinates a linear plot as

desired (due to the discrete nature of the histograrn the
plot ís a staircase which approxinates the linear functÍon).
This rnethod has the advantage of simplicity, speed and it
rnakes use of the fu11 dynarnic range. The disadvantage is
that not al-1 of the quantization l_evels are properLy

utilized.

2) Alvrays rnap each pixel randornly into its new grey scale

range. The resul-t of this process is to produce a flat
histogran which appears like the ¡nathemat,ical Ídeal_. Sínce

these pixels are assigned at randon this process offers only

ninor improvenent over the first rule. The advantage of the

random assignrnent is it uses all the quantization Ievels and

avoids any systenatíc errors resuLting from the need to make

a cholce. HoÌ,¡ever, it reguires about four tirnes as nuch

conputation as the first rule.

3) Examine the irnage in the immediate neighborhood of each

pixel-, caLculate the average value of a 3x3 natrix and then

assign the pixel to the grey-level which is cl-osest to this
value. Thê result of this equalization is a high guality



equalization since it uses spatial infornat,ion to help guide

the process. The najor drawback of thís operation is the
introduction of a 2 dirnensional ínage operatì_on, requiring
at l-east ten tines as nuch cornputation as the first ruLe.

Another side effect is a certain arnount of edge srnearing.

When a 3x3 matrix ís averaged it ímitates a low pass filter,
removing sone of the high frequency inforrnation in the
irnage .

The drawback of these last two types of histograrn
rnodification is that any irnprovenent, due to the grêy-sca1e

transfornatl-on depends on the input irnage. It ís possibl-e

that some input images nay be degraded by these
transformations , In order to get an optirnat output, Írnage a

subjective decision rnust be made by the observer. For this
reason, rnost j.rnage processing systens provide an ínteractj.ve
approach to histogran modification.

Sone reports have argued that if the huTnan retinal
syst,en is included ín the overall irnaging system, then an

Ínage which produces a flat distrÍbution as the output of
hu¡nan retinal recept,ors will provide the best visual
representation. Hurnan brightness perception is non-l_inear

function. Therefore, applying l-inear histogran equalization

to an irnage cannot achieve a linear perceived brightness,

since the cascade of linear and non-linear functions is non-

linear. Hurnan perception is generally understood to be

logarithmic. In 1977 it was suggested by Frei tsl that a
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transfornation which includes this brightness perception

would yield superior visual quality than that of a 1inear

method. The probLen with ¡nodeting hunan perception is its
dependency on the viewing condit,j-ons, rvhich are not known in
advance. An expression which rnost closely Tnatches human

perception was chosen and included, $rhich resul-ted in a

histograrn sirnilar to a hyperbol-ic funct,ion. This inethod is
referred to as Histograrn Hvperbolization (HH) [S]. Resul_ts

showed that hyperbolization produced irnages which were

consist,entl-y better than their hístograrn equalized
counterparts. The hyberbol-ic functíon results in a better
presentation of the irnage to the eye, but since HH is simpl-y

HE htith a different cDF, it suffers from atÌ the same

shortconings associated with HE.

The histograrn nodification techníques described up to
this point are considered to be optirnurn t¡hen the error
betv/een the output CDF and the desired cDF is rnÍnirnized.

Each of these nethods have a cost in terms of the amount of
inforrnation lost, (when grey-leve1s are cornpressed) and the

degree of contrast enhancenent (when grey-1eve1s are

stretched). There are some classes of images in which the

arnount of infor¡nation Ís lost disproportÍonately to the

degree of contrast enhancernent. This occurs when a portion

of t,he histograrn is stretched beyond what ís visuaJ-J-y

required for sufficient contrast. Any Ímage which has a

large uniform background wiLl create such a result.
A technique for balancing the error against the

infornation lost by a specified transfornation rltas



introduced by Kautsky et aI ttOl in 1984. A Smoothed

Histoqram Modífication (SHM) was achieved by balancing the
grey-Ieve1 modification between linear regrading, which is
also called contrast stretching or compression, and. a

transformation whích natches a specified reference
histogran. Snoothed regradings i¡ere d.emonstrated betr^reen two

cases: linear regrading and equalization, A padding
parameter was introduced, neasured frorn O to l, designed to
regulate the regrading between equalization (paildinq = g¡

and linear regradíng (padding = 1). The procedure was tested
on images of a forest frorn LANDSAT data, resuJ_ting in
drarnatical-l-y inproved irnages over both linear regrading and

histograrn equaJ- ization.
The selection of the padding factor for SHM is chosen

interactively by the user. This neans that a subjective
decisÍon nust be rnade by the user for each image in order to
achieve the best results. This precludes SHM to interactive
use only, and cannot be irnplenenÈed in real tirne without
sone forn of additional_ decisÍon rnaking built in to the
conputer .

2.2 Adaptíve Histogran Equal-ízation

Another nethod which is spatial in nature has shor,¡n that
breaking the irnage into nany smal-l-er inages is beneficial in
hist,ograrn equalization, allowing the equalization to be
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context sensitive rather than gJ-obal-. This nethod, r.¡hích is
referred to as Adaptive Histosran Equalization (AHE), is
described in its basic forrn by Hunnel t9l in 1977. Each

pixel ín question is napped based on the píxels in a region

surrounding it, which is referred to as its contextural

region. Thís technique, \^rhil-e providing sorìe advantages over

conventíonal non-spatial nethods, is sIo\^r and can over-

enhance noise in hornogeneous regions. Modified forms of

adaptive histograrn equalization were introduced by Pizer et

a] t8l cal-Ied Weiqhted AHE (WAHE) and Contrast Linited
(cliþped) AHE (CLAHE). WAHE offered littl-e irnprovement over

standard AHE, but CLAHE produced irnproved results and was

l-ess tirne consumj-ng to perform. These tine factors, however,

are rel-atíve to standard AHE v¡hich is extremeJ-y slow

cornpared to non-spatial techniques. lrlhen applied to an image

data set like those used in this thesis, processing tine on

a VAX II/780 in C language was about 2 minutes. This is ¡nuch

irnproved over previous inplernentations which needed about 20

ninutes .

Another forn of ÄHE ll¡as recently Íntroduced by Vossepoel

et aI t17l (1988), capable of addressing the problern of

over-enhancement of noise. This method was calLed Variable

Reqion Adaptive Histograrn Equalization (VRAHE) and \,torked by

combining several- histograns in neighboring regions, rather

than averaging it vrith a uniform distribution. This forrn of

ÀHE is said to produce preferabJ-e results over other forms

of AHE r¡rith approximateLy the

requirenents .
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In a variation of AHE, the hist,ogram of the contextural-

region is used to perforrn different enhancernent tasks. These

enhancernents $rere presented by chocia I3l in tgBB and he

described ho!¡ the hístogram of a region can be used to
detect edges, perforn smoothing and enhance ímages. fhis
v¡ork demonstrates that local- criteria can bê a very powerful

tool- for enhancement of images.

AHE is a powerful technique for image enhancenent, but
it is al-so slor¡ and does not fit the criterÍa of high speed

required for real-tine applicatÍons, To acheive the goal- of
speed and i:nage independ.ence a technÍque rnust be both non-

spatial and capable to extract enough irnage infor¡natíon to
be adaptive.

2.3 Histogram Fingerprinting

AlL related research in adaptive histograrn equal-izatíon

has shown that local criteria is very effective for image

enhancenent. Iterative Histogran Modification (IHM)

presented by Rosenfeld and Davís [16] in 1978 used histograrn

peaks to rapidly and ÍnexpensiveJ-y segrnent an inage into
regions of sirnilar grey Level ínÈensities. This v¡as achieved

by applying a one dírnensional equivaJ-ent of the curve

thÍnning al-goríthn to an Írnagers histograrn. After onJ-y a few

iterations, the process converges, sharpening the peaks of a

histogram into spikes and segnenting the irnage ínto distinct
regions. In ÄHR presented in this thesj-s, it will be shown
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how this same segmentation can be achieved without actually
modifying the hislogram. Rather than compressing all the
grey-1evel inforrnation, the inforrnation is retained and

segmented regions are represênted by pseudo-col_oring using

output lookup tabLes.

Even though the histograrn of an irnage contains no

spatial inforrnation, iterative histograrn modification proved

to be a fast and effective neans of segment,ing the írnage

using only the histograrn. This shows that there is an

intirnate correspondence between regions in 2-D space and

peaks of the histograrn in L-D space.

In some studies, it has been observed that zero-
crossings in l--D hístograrn space corresponded to contours in
2-D space, referred to as Scal_e-Space. Based on this
principle, Carlotto t1l in I7BT shovred that a histograin

coul-d be approxirnated by a sum of norrnal distributions,
I^rhere each of these conponents corresponded to objects
and/or textures present in the ímage. This process is called
histograrn fingerprínting. A histogran can be approximated in
increasing or decreasing accuracy based on the nunber of
conponents (rnodes) detected, where each mod.e corresponds to
a pair of zero-crossings. The histogran is approxinated by

sunníng a nornâl distríbution, of varying width and

rnagnitude, for every mode detected. fn his experimental

results the histogram v¡as analyzed at a scal-e t^rhich detected

5 rnodes, which rl,¡as considered J-ow enough to deterrnine the

components of interest. Since many of the nodes are very
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cl-ose to onê another, the tâils on either side of the nornal
distribution overlap one another. Carlottors approach ís
able to resolve rnodes v¡hÍch have a high degree of overlap by

using iterative estination and convergence testing. Ho\,¡ever,

when the irnage is to be segnented, a threshol-d point must be

chosen and the overlap in the nodes cannot be resolved in 2-
D space.

For practíca1 image segrnentation the process of
histogran fingerprinting is usefuL when rnodes are reasonably

distinct. Usually a histograrn will_ contain at most 5 large
rnodes ¡,¡hích are distinct. ff we consider two overlapping
modes as one distinct node, then irnage segmentation by a

sinple forrn of histograrn fingerprinting can be effective and

econo¡nica1ly achieved. Subsequent histograrn modification
using local- histogran criteria of these segnentêd regions
can be used for effícient rea]-tirne irrnage enhancenent.

23



3. HÏSTOGRAM ANALYSTS

3.1 The crey-level Hístograrn

A dígitized irnage is stored as a 2-D array of discrete
data poínts indicating the grey-level intensities at that
point ín the irnage. The indices for each of the dinensions

in the array are the cartesian coordinates of the poínt, Ín
the irnage space. If all the data points in the array are

sorted based on their value (grey-leve]) and then tâbulated,
a nev¡ array results which is one dÍrnension whose index is
grey-level Íntensities. Àn inage which has 256 grey-Ievel_s

would create an array of. 256 elements. Each of these
elenents is often referred to as a bín because the process

is ¡nuch like sorting different objects into discrete bins.
The new L-D array j-ndicates the frequency distributíon of
grey levels in the inage and Ís cal-l_ed the crev-I-,eveI

Histosram. Figure 4 is the exampl-ê irnage which wíII be used

to decribe the various aspects of AHR. Figure s is a

trirnodal histogram of the image in Figure 4. Each of the
peaks corresponds to a feature in the input irnage such as

the foan pad, the baII, the binder, or the v¡hite background

on which aL] the objects are resting.
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TheoreticaLly, an Ínfinite nurnber of imaqes can resol-ve

to this histograrn, but since our irnage has a finite
resolution, this nunber is also fínite. For purposes of
explanation ít is clearer to show exarnpJ-e histograns in the

continuous case. wherever the transformation must be

approxinated as in the discrete case, the nethod of
approxirnation is explained and the difference with the
continuous case wil-l- be descríbed as the quantization error.

L.,eL us consider sone important facts about irnage

histograrns in the foJ-lowing itens:

L) When an inage is reduced to a histogran all spatial
inforrnation about the image is lost.

2) There is a unique histograrn for any particular irnage but

many irnages may resoLve to the same histogran. For exanple,

if an object is noved around in a uniforn background the

hístogran v¡iI1 renain unchanged even though the irnages are

quite dÍfferent.

3) Most of the previous research papers discuss the

histograrn in terms of continuous-to-continuous
tran s forrnat i ons because it applies to the theory of
distributions and staÈistics.

4) when the theory is applied using conputer technol-ogy, the

transformation is adapted to the discrete-to-díscrete case.



5) The grey-level- histogran gives us information about the
j.magers contrast, which is descríbed by the overaLl spread

of the histogran data. If an image histograrn is narrow then

pixels are grouped Ín sÍnil-ar intensities and the image has

l-ow contrast. conversely, if a histograrn plot is hride then

the ímage has high contrast.

6) A histogran which has rnost of the pixels grouped at
either end of the grey scale is skewed. Corresponding i¡nages

v/il1 appear either overexposed (white ske$red) or
underexposed (black sker,red) .

7) Histograns often appear uneven and have peaks due to
regions in the image which have l- ov¡ contrast locally, but

wíth high contrast betr,¡een the regions.

3.2 ceneral Approach to Histogran Analysis

Adaptive Histogram Regrading (AHR) is a rnulti-step
process which first perforrns a sirnple histograln fínger-
printing procedure, and then uses the extracted Ínformation

to guide the regrading process. The entire process ís given

by the thÍrt.een steps sho$rn below, Steps t and 2 are pre-

processing perforned by the DT-IRIS hardware and software.

steps 3 thru 6 describe the hístograrn analysis stage of AHR.

The general procedure for sirnple histogran finger-printing



is a three step process, gíven by steps 3-5 below. The

regrading process, which consists of steps 7 thru 1l- is
described in the following chapter. Final-Ly the image is
rnodif ied in the post-processing of steps 12 and 13, again

perforrned by DT-IR]S.

1) Inage capture and digitization.
2) Hístograrn evaluation.

3) Histograrn srnoothing to rernove noise.

4) Deterrnínation of histograrn naxina and ìninirna.

5) Deternination of histograrn nodes.

6) Merging of non-distinct rnodes.

7) Segïent the irnage using scal-e-space ¡nethod.

8) Mode regrading by Loca1 grey-Ieve1 stretching.
9) Determine the nel,¡ üridth of the stretched mode.

10) Perforn optimal fitting of nev¡ nodes.

11) !'ít non-selected ranges.

12) Progran output Look-Up Table (LUT).

13) Apply output LUT to the Ínput irnage.

STEP 1: The irnage capture step is the procedure where an

irnage recorded by the camera is converted fron an analog

signal and digitized into a discrete matrix of discrete

values which can bê process by the computer system. This

stage of the process is performed by the on board circuitry
of the DT-IRfs Frane Grabber Board (or any other sinil-ar
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board), The inage is stored on the board in nenory buffers
as a two dÍnensional- array of inteqers representing grey-

level values of the capture irnage [19,20]. The display
converts these numbers contiuously into grey 1evel

Íntensities onto the írnage rnonitor. Figure 6 is a photograph

of the image monitor display.

STEP 2¡ In the second stage of the process the 2-D array of
grey_Ievel-s rnust be evaluated and converted into a one

dimensíona1 array r^/hich describes the densíty of pixels at

each grey-l-evel-. This task is performed by the DT-IRIS

Prograrnrning j-ibrary usíng a fast low-level- software routine

[20]. The histogran is displayed on the conputer screen in
black and white, as shohrn in Figure 7. For real-time
applicatíons this stage is usually implernented in hardware

so that this task ís perforned very fast. Adaptive Histogran

Regrading does not attenpt to address the image capture and

histograrn evaluation processes. Technology to perforn reaL-

tirne histogran evaluation is available and relatively
inexpens ive .

3.3 Sinp1e Histograrn Fingerprinting

ALthough the process of reducinq an irnage to its
histograrn dÍscards all spatial infornation, there is a great

deal of irnage infornation which can be inferred fron the

shape of the dÍstribution, and often this inforrnation is not

used to its ful-L potential . ïf the modes of a histograrn are
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considered in histograrn rnodification, ít is not necessary to
have knowl-edge of all the ¡nodes whích make up the histogram,

but rather to determine only the rnajor trends given by the

peaks and vaIlêys. Even if the norinal distributions which

nake up the histogram are knor,rn, onl-y those which do not

overLap other modes can be treated independently. Modes

whích overl-ap beyond a certain threshold cannot be

considered índependently since there is no spatial
inforrnation to separate then.

If the independent mod.es, or distinct nodes, of the

histogram are used to guide the rnodification process, the

process l^til1 become knowledge based and be able to adapt to
the entire range of possibl-e histograrns. Inages \,rhich are

strongl-y nulti-nodal contain several- ]-arge and/or small
peaks whÍch are the resul-t of many distinct nodes. The

indívíduaL modes T/¡hich ¡nake up the irnage in Figure 5 are shor¡rn

in figure 6. Each of these nodes can result fron one or nore

regions in the irnage which have conpressed grey scaLes, and

its síze indicates the total area of these reqions.
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Figure 6. Fingerprint of the Trimodal Inage.

There is no way to determine fron the histogram if a

given mode contains useful information or not. For this
reason, all rnodes must be considered in ÀHR. For exanple, a

satellite which 1s pictured in space (sèe Figure t) wÍI]
have a histograrn consisting of tv/o ¡nodes. One mode is very

J.arge and close to zero, corresponding to the large black

background. The other 1s snaII, only a fraction the size of
the large one, corresponding to tne satettite. Since the

satelLite is the part of the image lre are interested in, the

snalL mode is the irnportant one in the histograrn.

Conventional histograrn ¡nodification fails under these

conditÍons because it does not consider the irnportance of

the srnalI mode. Rather, it attempts to spread Èhe entíre

Hlstogror.r

31



bJ-ack background across thê 256 grey Ievels and compresses

the satellite infornation out of exístence.

Before the histogram can be rnodif ied using l-ocal-

criteria, it must be segmented Ínto smal-Ler pieces. This, in
turn, will also segnent the irnage based on grey sca]-e

ranges. The first step towards extracting the features fron
a histograrn ís to cat,egorize each of íts rnodes. By

segmenting the histogran into distinct ranges of grey-Levels

corresponding to each node, these ranges can be expanded

individually usÍnq the locaL criteria. This represents the

adaptíve part of the histogram expansion. The algorithn can

give equal consideration to the snal-l-er nodes as well as the

larger ones, and expansion can be based on properties of the

mode itself, not the global average,

STEP 3: The first procedure in sínple hístogran
fingerprinting, after capture and evaluation, is to filter
the histogran data with a l-D equival-ent of rnedian filtering
which will be referred to as Loca] Grey Scale Averasinq

(LcSÀ). A peculiarity vras observed in the enurneration of the

histograrn v¡hen using our equípment. The histograrn array is
very rrnoj-sytr and not a snooth function as expected. Studying

the histogram data reveal-ed that the odd and even grey-

levels contained the sanê patÈern but that one always

contained Írore pixels than the other. This is unexpected,

since there seens to be no difference in signifigance
between odd and even grey-J-evel-s. This probl-en Ís eLininated

once LcsA is appl ied.



Àn algorithn was designed to take the original histograrn

and snooth the grey-J-eve1 plot so that only the larger
trends rernain. fnstead of using a 3x3 element, a síng1e 3

el-enent filter is used because the histogran is onê

dirnensional . The algorithn takes each grey l_evel_ in the

source hístograrn and averages it with its nearest neighbor

on each side. There is one nodificatíon to this however.

WhiLe a 2-D filtering process cont,ributes to the next
operation, the new data set for LGSA is stored in a

Èernporary array before it is copied back in to the original_

array, preventing the nev¡ value from affectingi the next grey

IeveL. If not, the resuLts may becone skewed., especial_l_y if
rnore than one pass is perforrned. The following caLculation
is perforrned for each grey-Ieve1 ín the histogram:

new H[z] = (Htz-I1 + H[z] + Hlz+Il) / 3

OnIy the major trends in the histograrn are of interest
to the regrading process, so srnal-1er perturbations are first
renoved by a filtering procedure. The procedure is designed

to perform a singl-e pass averaging. If the rtnoíserr component

is large then LGSA can be applied iteratively until- onl-y the

najor conponents renain. LGSA converqes rapidl-y after three

iterations so the number of passes requíred, even for very

noisy histograns, is less than five.
9lhen the first derivative array is plotted on a graph

the effect of noisê ín the histograrn is very êvident, as
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shown in Figure 7 (a) . The spikes in the plot cause

difficul-ty in finding naxirna and ninima. As the trend plot
approaches zero the spikes cause false zero crossings which

are interpreted to be rnaxirna or minima in the histograÌn.

When LGSA is applied and the derívative array is then

recalcul-ated, the graph is nuch snoother as shown in Figure

7 (b) . LcSÀ is applied until the trend array has no spikes

and only smooth transitions fron positive to neqative
remain. The neÌ^¡ derivative can no$r be used to identify the

rnajor trends in the histogram by finding the zero crossings.

These zero crossÍngs $rl-11 nark all peaks and valleys in the

histograrn.





STEP 4! Thê next step is to determíne the location of the

maxirna and rninirna in the distribution. The first derivatÍve
of the grey-leveI histogram is calculated. In the continuous

case the rnaxirna will correspond to a zero point vrhere the

derivative switches fronr positive to negative and a minírnum

wj-11- correspond to a zero point where the derivatíve changes

from negative to positive. Each paÍr of minirna will define

the beginning and end points of a node in the histograrn.

In the discrete case it is not feasible to simply detect

the zero points because they nay fall between quantization

l-evels. After the histograrn has been snoothed by several

passes of LGSA, the first derivative of the histograrn is
recalculated. The algorithrn is rnodif ied to detect Èhe change

of sign instead of, zero points, and the naxi¡na and ninina
are approximated to the nearest guantization leveL. There

are three possible states for the first derivative. A change

fron one state to another indicates the presence of a zero

crossing,

(HIz+1] > HIz]) dHIz] > 0

(HIz+I] = HIz]) dtt¡z¡ = e

(Hlz+Ll < HIz]) dHIz] < 0

where H[z] is the histograrn array and dH[z] = Hlz+l-l -
H[z] and is an approxination for the derivative of Hlzl.

In a continuous function the naxina and ninina arê given

1) if
2) if

3) íf
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at the points v¡here the first derívative is zero. Since rlre

do not have a continuous function the zero points rnay fa1L

bet!¡een quantization leveLs. Therefore, rather than

searching for zeroes in the data, the algorithm fínds the

rnaxina and ninina by determíning where the derivative
changes sign (zero crossings) . The nÍnina are grouped into
pairs where each rninirnum represents the end of one mode and

the start of the next, characterizing all modes, no rnatter

how large or snal-l- they may be. The enurnerated nodes can

then be subjected to a set of rules or heuristícs to decide

whÍch of then need to be nerged.

3.4 Trend Anal-ysis

STEP 5! Not a1l nodes $riÌl contain useful irnage information.

Areas such as a uniforrn background \^¡i11 appear as a rnode but

contain no significant infornation. Modes of this type

appear as very talL sharp spikes ín the histograrn which

indicates a largê number of pÍxe1s t^ríth very few grey

Ievels. As a mode beconês narror¡¡er and more acute the arnount

of inforrnation whích can be enhanced becones 1ess,

Conversely, if a node becomês increasingly wider and

fl-âtter, the contrast infornation increases, but it begins

to approach an equalized state. Less enhancenent is possible

because l-ess is required. c1ear1y, as the characterístj-cs of

a node approaches either extreme case, the l-ess it can be

enhanced by expans ion.

There is a size 1i¡nitation on the
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allowed, because otherwise the algorithn wouLd adnit, those

which are only a single pixel in size. A nod,e can not be

included unless it neets minimurn requirernents for magnitude

and bandl^ridth (Blr7), for example, a rnagnitude of l-oo pixeLs

and a BW of 32 grey levels. All modes rneetíng these

requirernents wilt be considered for grey-l-evel regrading.

To forn a description of the basíc characteristics of a

rnodê and how it rel-ates to the regrading process, each mode

is approxirnated by a triangle whose points are represented

by the two ninirna forning the base, and the one rnaxirnurn

forning the tip of the triangle. The slope ând nagnitude of
each line can be represented by a vector quantity as shown

in Figure 8. The two sides are represented by the vectors VL

and V3 corresponding to the rise and faIl of each side. The

base of the triangle, forned by the vector V3 is sirnply the

sun of VI and V2. Only vectors Vl and V2 are required to
represent an single mode since the third (V3) can be

calcul-ated.
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fignrre 8. Vector Representation of a Sing1e Mode.

If the dHldz is positíve the grey Level is on the rlsing
edge of a nod.e, and lf dH/ d,z Is negatÍve then z is on the
falling edge of a mode. fn most casês this wiII work weIl,
but occasionally the slopes of the edges are so gradual near

the outer edges of the node that the algorithn may continue

lncluding grey levels in the ¡node further than is necessary

(due to the normal distribution of the node). The ends

contain very fev, pixels and occupy a large range of grey

leveLs. If they are included in the expansion they will
severely linit the available quantization levels in the

histograro. Àn example of characterlzation error is shown in
Figure 9 beLovr. The first node in the histograrn ís
irnproperly fingerprinted. Rather than EearchÍng for a change

in the sign of the slope, it is preferable to rnark the point

i",
Base
v3c.
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where the slope fa11s bej_ow a certain threshold.

Hlz)

Pixet
Count

GneY Level. Intensity z=e55

Figure 9. Mode Characterizat,ion Error.

rn addítion to finding naxina and ninina the algorithn
nust bê able to deal with these situations. The algorithn
has a threshold hrhÍch creates a dead band around zero. This
gives the algorlthn a degree of hysteresls so that only
sÍgnifícant slopes can trigger the Eelectlon process. The

algorithrn was nodified to calculate the fÍrEt derivative of
H[z] and conpare lts nagnitude rvith a threshold vatue. This
results in a ¡nore accurate marking of thê nìodes at the base.

Thresholding can aLso cause a problen if nolse in the
histograrn forces dHtzl to mornentarily falI below the
threshold value. The J-argest conponent of noj_se tends to
occur v¡hen the pixel counts are aLso large, at the top of
the peaks. Even with LGSA there can stil_l- be so¡ne degree of

Imoge Htstogr-on

Bii'äi$ iÌ--==.._\ _.4ca1\

40



perturbation near the peak of the node. on this point of the

histogram the modes stop sharpl-y vrith tittle or no fl-at
area, so appl-ying a threshold here would have littIe value.

A1so, modes ín this area have a large degree of
intersect,íon. !'7hen Heuristics, described in the next

sectJ-on, are applíed, these nodes will- always be rnerged with
another node. The threshold value nust change depending on

the height of the histograrn.

This is elininated by creating a threshold r{hich is
proportional to the nagnitude of the grey level . As the

magnitude of the grey l-eveÌ increases the requirenent for a

mode to be distinct also increases. If the threshold is
proportionaL to the magnitude of the peak then the al-gorlthrn

can autonaticaJ-Iy adjust for different cases, and the
resul-ting reliabilíty of the algorithn is greatJ-y improved.

The conditions for thresholding are:

IF H[z] > HAVG THEN threshold = k rt HAVG

ÏF H[z] <=HAVG THEN threshold = 0

Where HAVG = g1oba] average = 256K/256 = lK
and k is â constant percent fraction.

Figure 1o(a) and 10(b) shows mode characteri z ation on

the PC and the corresponding pseudocolor image.
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3.5 Mode Merging Using Heuristics

STEP 6: Depending on conditions ít nay not be desirabLe to
classify the range betr,reen two minima as a distínct mode. At

sorne rninirna the number of pixels may stili- be rel-atively
]-arge. This indicates that there are a large number of
pixels which have thê sane grey Levels ín two separate

modes. In order for a node to be distinct, it ¡nust have a

rnaximurn which is sufficiently larger than the neighboring

rninirna on either side. Otherv¡íse the degree of intersection
between nodes, as discussed earlier, is too J-arge for thern

to be considered for independent expansion. A set of
heuristics ¡nust be included in the algorithm so that nodes

which do not neet certain criteria can be eJ-irninated. Al-so,

those modes which intersect one another to the degree that
they cannot be considered separaÈe1y, rnust be nerged to forn
a nev, mode. Figure 11 is an exanple of a complex node.
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Gney Level Intensity

Figure 1l-. Exampte of a Multi-Peak Mode.

To characterize each mode, the verticaL conponent of the

two vectors is conpared to a single threshold value,

determined subjectively through experimentatlon. The result

of this cornparison is a binary value indicating greater than

or Less than the threshold. The total nunber of combinaÈions

resulting frorn these conparisons is 2 x 2! = 4 possible

Etates. These posslble states become the four rules which

classify the modes :
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RULE 1: (Bel-ov¡ Threshold)

IF node n has a rise < the threshold
AND rnode n has a faIl < the threshold
THEN node n is classífiêd TYPE 0.

RULE 2: (Black Skevred)

IF mode n has a rise > the threshold
AND node n has a faII < the threshold
THEN node n is classified TYPE 1.

RULE 3: (White Skewed)

IF mode n has a rise < the threshold
AND node n has a faIl > the threshol-d
THEN node n is classified TYPE 2.

RULE 4! ( Distinct)
IF node n has a rise > the threshol-d
AND nodê n has a faIl > the threshoÌd
THEN mode n is classified TYPE 3.

OnIy a type 3 rnode is considerêd to be distinct. To

sepârate the distinct nodes fron the rnode data, a set of
heuristics nust be appJ-íed to each node. The outcome should

be one of the following.

1) Accept it as a mode.

2) Discard Ít as insignificant
3) Merge it with node [n-]-l
4) Merge it with rnode [n+1]

The exanple shown in Fig 11, characterízes al-nost

all of the nerging conditions. Type 0 nodes are absorbed in

the rnerging process. The first node (type 1) is rnerged
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forhrard untiL it reaches a type 2 or type 3 node. Al1 type 0

and type I nodes are absorbed in the rnerging process

regardless of their nunber until a type 2 is reached,

creating a type 3. The merging process is not cornpleted in
the first step because a type 2 node is found ín the next 2

iterations, so the process nerges backward until it fínds a

type 1 or type 3 mode. When this is conplete it begins to

iterate forl^rard again. The entíre process is shown belo!¡'

The arrow represents the current elenent in the List that

the algorithrn is processing.

1)

2)

3)

4)

5)

6)

8)

e)

10)

10 r0 02 02

1100202

l_0 02 02

LO202

1202

302

302

302

32

Figure 12 (a) shows node rnerging of Figure 10 (a) and

12 (b) is the corresponding pseudocoLor irnage.
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3.6 Q FACTOR

Modes are characterized using the startÍng point
(origin) and two vector quantities, one describing the

rising edge and the other describÍng the falling edge of the

node. The relative rrsharpnessrr of a mode can be describe

using a tern adopted fron filter theory caIled Q factor. The

Q Factor can be cal-culated by comparing lhe average value of

the magnitude of the vertical cornponents of vectors VI and

V2 v¡ith the rnagnitude of horizontal component of V1+V2.

Q Factor = lvlyl + ìv2yl / lvrxl + lv2xl

If a filter had a sharp cutoff poin! it ís said to have

a high Q factor. However, if the cutoff is rnild it has a low

Q factor. For the purposes of rnode characteriz ation Ít is
used to describe the sharpness of the node. The Q factor for
a node can be calculated as the magnitude of the mode (peak

height) divided by the width of the mode in quantization

leveIs. An exanple of tvro nodes, one with a high Q Factor

and one with a l-ow Q Factor are shown in rigure L3. If Q is

small nurnber then that descríbes a mode which is very fl-at.

This kind of node v¡oul-d not bê affected by hístogran

redistribution since the pixels are aLready dístributed nore

or less equalIy. L.,ooking at the other end of the sca1e, if Q

is a very large nurnber, the mode rnay be expanded bu!
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probably would not result in a great irnprovernent since there
are very few grey leveÌs to expand.

Hlzl

P¡xet
Count

1024

z=0 Gney Level. lntensity

Figure 13. Exanple of Modes with LJarge and Sna1l e Factor.

The Q Factor therefore indicates 'hor,r much enhancernent is
possible in a particular node. Modes t¡ith e Factors at
either extre¡ne are poor candldates for expansion, wherêas

those lrhose Q Factors are in the medium range, are good

candidates. Àlthough this concept v¡as not fu1ly 1¡nplenented

in this thesis presentation, it could be a topic for further
irnprovement of the heuristícs. For exanple, a mode which has

â very high Q Factor near zero grey Ievel, for images in
space, is prirnarily the result of large black backgrounds.

Heuristics ¡TÌay be implenented to instruct the procedure to

Hts t o gron
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leave this mode unchanged

irnprovenent to the Ímage while

may be optirnized instead,

since it cannot offer any

the expansion of other nodes



4. HISTOGRÄM REGRADING

Extracting knowledge fron the input ímage histograrn was

explained in the previous chapter. In the rnode nerging
process, knowledge about the knowJ-edge (neta-knowledge) was

used to deterrnine what knowledge will be used to guide the

regrading process. fn this chapter it wil-] be sho!¡n how this
knov¡l-êdge can be used to indirectly segment the irnage Ínto
distinct nodes by the scale-space approach. The nodes are

then regraded, using a local- contrast stretching scheÌne

based on local criteria. After regrading, the new stretched

nodes are fitted to the output histograrn which is then

appJ.ied to the image, and results in a new output ínage.

In conventional non-spatía1 histogram ¡nodif ication
techniques the histograln of the ínput irnage is regraded so

that it is forced to an arbitrary abstract distribution. The

transfornation is usually perforned using the integral of

the histogran ca11ed the curnulative histogram or cunulative

Densitv Function (CDF). fn standard histograrn egualizatíon

thÍs CDF is a straight line corresponding to a linear
transformation. As díscussed in the literature, other forms

of CDF which are non-Iinear, such as hyperbolíc functions,

also give good results. In nore elegant non-spatial

techniques a conbination of l-inear regradíng (contrast

stretching) and a l-inear transformation (histogra:n

equalization) v¡ere used to alleviate sorìe of the problems
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associated srith the use of histograrn equalization,

The Adaptíve Histograrn Regrading (AHR) technique

presented here does not perforn any spatial segmentation,

but rather segments the histogra¡n into separate rnodes which

in turn indirectly segnents the inage by the scale-space

approach t1l. rt is possible to start wíth the entire
histogram and, to a certain extent, separate it into
histograns of the disj oint regions. These regional
histograrns can no$¡ be treated as separate entities and

expanded independently, based on local- characteristics. Then

the equalized regions can be recornbined to create a new

inage of irnproved quality over the conventíona3- histogram

rnodifÍcation.

The great advantage obtained fron the AHR technique is
that a histogram can be expanded dif ferentl-y depending on

the characteristics of the modes. Using heuristics it is
possible to nake inferences about the írnage based on the

quantity, location, size and shape information extracted

fron the histogram. These inferences can be used to guide

the expansion process so as to optirnize the rnapping of

pixels no matter vrhat type of input irnage is used. The

general approach to hístogran regrading has seven steps:



1) segnent the irnage using scale-space nethod.

2) Regrade each node using local grey-Ieve1 stretching.

3) Determine the ne\lr width of the stretched rnode.

4) Perforrn optirnal fitting of new rnodes.

5) Fit non-selected ranges.

6) Progran output L.,ook-Up Table (LUT) .

7) Apply output LUT to the Ínput irnage.

4.1 Inage Segrnentation using Scal-e-space

It has been observed in the Literature that a singJ-e

point in the I-D scal-e corresponds to a contour or set of

contours in the 2-D space. A rel-ief rnap is an exanple of

this correspondence, vJhere a single value on the elevation

scale traces out a contour on the map. The effect, referred

to as scale-space, has also been successfully used to
predict the finger-print of a histograrn in terrns of norrnal

distributions by carlotto t1l. If the I-D point is extended

to a range of seguential points, then the correspondinq 2-D

contours becone regions. on the relief rnap this would be the

same as filling in the region between two contours, or the

region within the ínnernost contours (such as hilltops) .

This correspondence !¡as successful-Iy exploited by Rosenfeld

and Davís t16l to segnent an irnage into distínct regions.

The resulting irnage is a rnap of the origínal inage using

single grey-levels.

For Adaptive Histogran Regrading, inage segrnentation is
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done using scale-space ín a rnanner sÍnilar to the Rosenfeld

and Davis approach [16]. The difference is that no thinning

is appJ-ied to the hístograrn, Instead, information about the

selected rnodes is used to nark each range of grey-leveIs

which will be segnented. The corresponding image will be

indirectly seglnented as a resul-t. when the ínage

segmentation is coloured usíng pseudo-colour some regions

appear very fragnented. Hor^rever, the segnentation is exact

because no one pixel can belong to more than one sel-ected

mode. The node characterization process is an example of

scale-space segmention. If rnode characterization is applíed

to the original- satell-ite irnage in Figure 1an imagê with

pseudo-colour is produced as shorvn Figure 14.
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4.2 Local Histograrn Stretching

At this poínt the sel-ected modes are part of the

knowledge base for regradíngi. How to go about the individual-

regrading however, is a different matter. At this stage

there are a nurnber of different ways that lhe selected nodes

can bê rêgraded. Many of these nethods came to rnind duríng

impJ- ernentat i on and testing. Hor,,¡ever, the scope of this
thesis could onJ-y al- l-ot¡, for irnplernentatÍon and testing of a

single nethod. It is of value to mention sorne of the other

methods because they could be good topics for extended study

of Àdaptive Histogran Regrading:

1) Treat each sel-ected node like a sma1l histogram. Then

apply standard histogran equalization to the range of grey-

levels corresponding to the mode. The equalized value used

is the average pÍxeI count within that range. This would be

the sirnplest nethod to irnplement on the conputer because it
is sirnply a serÍes of Linear histogram nodifications. Since

both stretching and compression is applied, the new node has

the same quantizatíon width as before and no fitting is

required. The rnain advantages of this techníque are

sinplicity and speed. output irnages, however, woul-d not be

optirnal because compression is not necessaríly perforned on

grey leve]s of l-owest perforrnance and inforrnation rnay be

lost.



2) Perforn a grovring operation on the range of each selected

mod.e so that the entire histogran is segmented. Then appfy

histogran equalization to each piece as descríbed ín ¡nethod

t. This woul-d have the advantage of utilizing the ful1

dyna:nic range, but Tflay not r¡rork well- if the histograin ís

highly skeued.

3) Regrade each rnode using grey-level stretchíng, but no

compression. Then perforJfi a fit on each stretched node to

ensure no two nodes are overl-apping. If conpression is
required to prevent clipping, scan the histogram for
unseLeõted ranges and perforrn cornpression. This has the

advantage of optirnizing the stretching and compression so

that ínforrnation loss is rninirnized. The dra!¡back is íts
cornp3-exity of irnpl ernentat i on , particularly f or the node

fitting process and cornpression.

In the \4rork presented hêrê, the third implernentation of

AHR r,ras usêd. Although it had high complexity, it offered

the ¡nost optirnal irnage guality, and the original goal of the

v¡ork vras to minimize inforrnation foss.

Histogran equalization expands certain ranges of the

histograrn and conpresses others. The cornpressÍon is
perforned to rnaintain the sane nunber of total- quantizatíon

levels, otherwise the new histograrn rnay have a greater

dynamic range than the hardware can realize. $lithout

compression nany Írnages wilt be clipped at either end of the
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grey scale range. If, for exampl-e, an expanded histograrn has

a total dynarníc range of 27o grey l-eveLs and the hardware is
capable of only 256 grey levels, then parts of the histogram

must be conpressed by 14 grey leve1s to avoid clipping.
Local grey-level stretching is performed using the sarne

one-to-rnany rnapping as Ín histogran equalizatj.on, because of

its sirnplícity and efficiency. In AHR, only stretching of

the modes is perforrned initially. The goal Ís to perform

rninimal compression of grey leveIs and ninirnize information

Loss. In some cases the overall- dynanic range may exceed

256 | rnaking it necessary to perforn sorne cornpression to
prevent the hístogran froÌn clipping at 255. Since we are

t,reating each Tnode in the histograrn separately, it is not

known hov¡ many grey leveIs ¡nust, be colttpressed untiÌ all of

the stretching has been calculated. The compression of

grey-J-evels to recover quantization levels, norrnally carried

by conventional rnethods, nust be perforned after mode

stretching and after the regraded modes are fitted to the

output histograrn. This is because it is not known which or

hovJ many grêy-l-evel-s nust be conpressed until- all the nodes

have been expanded.

Since thê regrading is now a l-ocal procedure, each mode

is treated l-ike a srnall histogran. Each of the modes shown

in the Figure l-5 can now be expanded independently,

enhancing theÍr grey scale ranges. I¡Tithin the boundaries of

the rnode, the average grey scale val-ue is calculated, which

ís then used to guide the regrading of the node. The nu¡nber
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of grey-leveLs for stretching is given by:

Htzl

P¡xel
Count

10?4

Figure l-5. Block Representation of Distinct Modes.

grey-Level value
new fi of grey-Ieve1s =

1ocaI average

v¡here the new number is rounded to the nearest integer.

Figure 15 shov¡s a trirnodal inage with boxes overlaÍd on

each selected node. These boxes represent .Èhe equalized

equivatent of each rnode, indicating the current quantization

width and local average. the Local average is uEed to
stretch the grey-J.evels with high pixel counts, as fn

histograrn equalization. Unlike histograrn equalization,
however, the grey-Levels r¿ith 1ow pixel counts are not

compressed, hencê the overalL guantization range íncreases.
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Each mode is stretched individually until- all Ìnodes of the

histograrn are complete. Usually the number of rnodes is no

nore than tr{o or three, and very rarely wílI this nunber

exceed five.

4.3 Expansion Factor

With conventionaL hístograrn equalization the stretching

and conpression of grey-level-s is perforrned on a gfobal

basis, and there is no flexÍbility to adjust thesê

processes. The equalization Ís controlled by the g1-oba1

average and, íf changed, vrill result in either
under-utiLi z ation of the dynarnic range or clipping at either
end. In AHE presented here, the regrading is carried out

first and follo$¡ed by cornpression. The anount of
compression required is deternined by the total- dynanic

range of the expanded hÍstogram and is adjusted accordingly.

This provides flexibility Ín nodifying the degree of

regradíng of each rnode. Rather than expand each node by its
local- average, the grey-J-evel stretching can be controlled

by a proportion of this average.

Nornatly the proportional factor is 100?, which

corresponds to the 1ocal average. This can be changed, for

exarnple Eo 9OZ, which woul-d result in a greater grey-Ieve1

stretching, or 1l-0? which would result in a snaller grey-

1evêl stretching. This factor will be defined as the

expansion factor. The relationship between the expansion
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factor and the expansion is inverse, sínce the smaLler the

expansion factor the greater the grey-level stretching and

vice versa, It can have any positive va1ue, but practícal

values fall within the range frorn 60? to f10å. In sone

cases, after the expanded nodes have been calculaÈed, the

sun of all blocks is greater thân the total nunber of leveIs

in the histogram. In that instance the expansion factor must

be adjusted to ensure that alt the nodes will fit in the

avail-able space.

4.4 Shifting stretched Modes

A probLem arises rvhen nodes are characterized, Tnerged

and then expanded by the criteria r.¡e hâve specífied. At

present the grey-level stretching is centered abou! the

rnidpoint of the mode. In the process of grey level
stretching the total number of quantization levels occupíed

by the node is increased (the rnode becornes wider). when two

modes l-ocated in irnmediate proximity to one another are

expanded then the extrernities, and sometirnes an entire ¡node

can overlap another mode. The bl-ocks, representing the area

of the rnodes occupied in Figure 15 becorne i,¡ider after

stretching. Figure 16 shows the block representation of the

modes in Fígure 15 after grey-IeveJ- stretchíng occurs and

denonstrates the overlap that occurs with two adj acent

rnodes. The nodes are stretched using an expansion factor of
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1008, which is eguivalent to expansion by the local average.

It is clear from the diagrarn the the blocks are no longer

separate fron onê another.

Gney Level Intensity

Figure 16. Exanple of ovêrlapping Modes.

overlap conditions are not desirable because they create

transitions of grey-levels fron one rnode to the next, which

then appears in the resulting inage as a contour 1ine,

corresponding to the Ecale-Êpace relationshlp betvreen I-D

and 2-D data sets. This transition adds artifactE to the

funage which lroul-d be interpreted by po6t processing as real

data. ç{hen the histograrn 1E expanded using the current
procedure, the very large peak due to tt¡e black background

almost conpletely envelopes the s¡naI1 node creatêd by the

satellite. The resul-ting irnage appears confused because of

the transition-created artifact in the irnage around the

satel l ite .
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To elirìninatê thís transition point, the expanded rnodes

need to be shifted so that vrhen napped, there is a snooth

transition fron one rnode to the next. By shifting the second

mode to the right, the íntensity of the brightest pixels in
node l is now a littLe l-ess than the darkest pixels in mode

2, elininating the transítion.

Example: Shifting Modes in a Bi-nodal Tnage.

Figure L7 sho\^ts a histogram for the image of a satellite
Ín space. The histogran for this irnage is distinctly birnodat

with one J.arge node near zero and another, but nuch snaller
one, ímnediatel-y next to it. iihen the systern was tested

using conventional histograrn equalization, it failed to
enhance the satellite and expanded the background ínstead.

The inage resulting frorn this grey-1eve1 stretchingi has the

background expanded and the satell-ite untouched. This is the

opposite of the desired resul-t and cJ-earl-y indicates that
the slze of each mode does not dictate the importance of the

node to the image. It ís unsatÍsfactory to use the g1obal

average, such as ín conventional histogram equalization to
control- the grey-level stretÕhing.
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Gney Level intens¡ty z=?55

Figure 17. Histogran of the fnage of a satel_l_ite in Space.

When the image was testêd using ÀHR qrithout any mode

shifting, the grey-Ieve1 stretching of the larger mode near

zero ended up conpletely enveloping the smaller mode

situated next to it as shown in Fig. 18 (a). The overal_I

grey-leveL stretching of the large mode was less than that
of hÍstogra¡n equaLization but sti1l enough to create a

strong transition frorn one to the other. The only lJay to
naintain the lntegrlty of the image is to shlft node 2 up to
end of node L as shown in Fig. Ig(b). point À and B have

been shifted to the right (white shlft,) to prevent node L

fro¡n enveloping node 2.
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(a) without shifting.

Grey Level. Intensity z=?53

(b) with shifting.
Expanded Histograrn of Satellite.



The general- approach to rnode regrading is:

1) Ca]cul-ate the anount of grey-level stretching that will
occur in each mode (i.e. how wide ít wilL be after grey-

1evel stretching)

2) Sum all- the expanded nodes and those regions which are to
be expanded in order to deternine the overall dynarnic range.

3) conpare this sun with the nurnber of quantization levels
available (in this case 256) and determine j-f it is ¡nore or

less. If it ís found to be larger, then we have a guaranteed

overlay condition and the grey-level- stretchíng of each rnode

Írust then be adjusled so that the sun is less than 256. This

can be done by increasíng the stretchÍng number. ïf it is
snalIer, then lhere is sufficient space to support the grey-

l-eve1 stretching and no changes need to be made.

4) Stack each stretched mode starting at zero on the output

histograrn so that they are all contiguous and no overlap

exists.

5) Appl-y an iterative relaxation al-gorithrn until each node

reaches an equil-ibriun and is as cfose to its original

l-ocation as possible without any overl-ap.

Handling conflicting conditions where the grey-Ievel
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stretching of one mode overlaps that of another node

requires heuristics to guíde the shifting process. The modes

rnust be juggled until they al-1 fit in the space without any

overlapping. The suln of all stretched grey-Ieve1 ranges nust

be l-ess than 256 grey level-s, otherwise there is no way to

achieve non overlappins conditions without clipping the

histogram. once this conditl-on Ís rnet, an algorithn nust be

applied to the histograrn data to shíft each node so that

none overlap.

The sirnplest way to prevent any overlap r^¡ould be to
position the first mode starting at zero, and then stack al-l

other nodes consecutíve1y, as shorvn in Fig 19. Study of the

problern reveals a nunber of conditions that can arise. If,
for example, there is a large gap between two nodes, sirnpl-e

stacking vrould unnecessarily close this gap and radically
al-ter the irnage .
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Figure 19. Blocks Representing Expanded Modes stacked at O.

Conditions llnit how the rnodes (represented by btocks as

shown in Fig. 18 can be shifted, and isolating all speciaL

caËes can be difficult. Some of them are llstêd belov¡:

1) A node 1s restricted v¡hen it has been moved to either
linit of the histogran. This occurs r.rhen the stop point is
equal to the upper Ii¡nlt or the start point is at the lower

Linlt.

2) À conflict condition is reached vrhen the stop polnt of

nìodeln] is greäter than the start point of node[n+].1. When

this occurs one or both ¡nust be shifted.

3) If tv¡o nodes are in conftict and one of thern is
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restricted then the

4) If one of the

ínsufficient space

as possibl-e.

other one must be moved.

shifted and there is
rnust be shifted as far

nodes is to

to do so then

5) If both modes are possibl-e candidates for shifting, then

the al-gorithm must decide r,rhÍch of the two shouLd be Tnoved.

one nethod which was considered to resolve Ì.¡hich mode

should be shifted hras to use the cunulative distribution
function íHlzJ. ff the value of iH[z] at the starting poÍnt

is greater than the theoretical average, then the renapped

mode shoul-d be shifted right. This would push iH[z] tov¡ard

a linear distribution as in hisÈogran equalization.
This nethod vrorks in sone cases, but fal1s short when the

rnode in question is very smalI. Tf the mode is snalI, it has

a Ìow total nurnber of pixels. This contributes littl-e to the

cunulative histograrn which may result in iHIz] having a

value l-ower than the average. This wouLd cause the rnode to

be pushed in the opposite direction, increasing the overlap

in order to increase iHlzl to its nor¡nal value.

These are just sorne of the considerations invoLved in

optirnizing the distribution. The problen quickly becomes

unwieldy because there are so nany special cases to

consider. This is not incorporated easily into an aJ-gorithrn

for the conputer.

be

ir

69



This problem should be

viewpoint. Rather than trying
cases which occur, ít would be

the shiftÍng process. These

conditions :

approached fron another

to isol-ate all- the specía1

better to define the goals of

are sumned up by just two

1) The histogran rnust have no overJ-apping modes.

2) Modes shoul-d be Ìocated as near as possible to Èheir

original- location.

Modes cannot overlap and they also cannot extend beyond

either end of the histogran. These conditÍons can be

simulated by blocks in the physÍcal world. The goal of the

al-gorithrn is to place the center of gravity of each bl-ock as

closel-y as possible !o its original location. This is not

alvrays possible since each node becones r¡ider when it is
expanded. T\4ro nodes which are located side by side cannot

overlap so it is írnpossible for both to rnaintain their
location unchanged, An algorithn nust place the blocks as

cl-osel-y as possibJ-e to the ideal and still avoid an overLap

conditÍon.

If we irnagine each block being pulted to the ideal by

some potential force then this force wiLl be a mini¡nun lthen

the blocks are in equilibriurn. Thís force could pul-l- the

block along a frictionLess floor until- the force dropped to
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zero as the block approached Íts ideal point, or untíL some

opposinq force fron a block pulling in the opposite

dírectÍon canceled it out. In the real lrorId this coul-d be

simulated by attaching a rubber band to each bl-ock and

releasing it. since each block contains a different nurnber

of pixeJ-s, eacb has a greater or l-esser irnportance to the

overall irnage. This weighting is expressed in the spríng

constant of each rubber band. This way the bands connected

to the l-arqer bl-ocks could generate a greater force than

those attached to srnaLLer ones. A representation of the

system would be as shown in Fig. 20(a).
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The blocks in Figure 20(b) represent the ne\^t modes after
they are expanded. The nodes have aLl been stacked starting
at zêro. The lines attached to each block represent

hypothetical rubber bands Ì.rhich puI1 on each block. The

spring constant of each rubber band is given by the rnass of

each block (given by the area of Ìnode) . Each rubber band is
attached to the center of gravity of each block at one end

and to the target center of gravity at the other end.

In this systen only the horizontal- coÌnponent of the

force, and the displacement are used !o calculate the force

on each block. Blocks would then be stacked starting at z=0

in the hístogran and then released, As the bl-ocks slide

across the frictionl-ess surface, the rubber bands are

rêl-axed until the system reaches an equilibríum state. Tn

this a3-gorithm only two rul-es apply.

1) when iterating from first to last, the aLgorithn

determines how nany bl-ocks will slide by checking to ensure

that the total force Fn ís always > 0.

2) If Filr <= 0 at any point then al-l- the bl"ocks to the left
of, and including the current iteration are fu1ly relaxed

and wilL not sLide any further.

Tn order to perforn the relaxation process in the

conputer, the algorithm needs a starting point. If the

blocks are staïted at their originat position, the algorithm
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wouLd need to perform a lot of jurnpíng forward and backl^rard.

This would not only sLov¡ the process but v¡ould be difficult
to iÌnplement. To strearnl-ine the process, it would be

preferabl-e to stack all the btocks initially at the botton

of the histograrn. This way the iteration process could

progress in one direction onLy. The algorithrn stops when all

the blocks have reached an equilibriurn state as shown in

figure 20 (b) .

Once the ne$¡ locatíons for the modes have been

determined, the next step is to nap all the modes ínto these

spaces. Each mode is expanded starting at the new start

point as deterrnined by Rubber Band Rel-axation (RBR). The

pixets are mapped by progranning each entry of the input

tookup table with the vaLue of its new l-ocation. After each

rnode has been expanded using the input LUT, a feedback

operation is perforrned on the image using the input LUT (or

input pal-ette as it j-s sometimes referred to). This perforns

the transfornation and the new equalized irnage appears in

the buffer and on the display screen.

Figures 2L(a) show the inage of a satellite in space in

its orignal form. Figure 21(b) shor^ts the same iinage with

Adaptive Histograrn Regrading applíed to the irnage' The

results speak for thenselves. Rather than destroying the

irnage as in conventional nethods, the irnage has been

enhanced as rnuch as possible without degradatíon.
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5. CONCLUSTONS AND RECOMMENDATTONS

5.1 Conclusions

l-) ÀLthough nany non-spatial histograrn modification
techníques have been sho\^¡n to improve the quality of irnages,

the improvement is hÍgh1y image dependent. Unless the irnage

characteristics are known prior to the histograrn

nodÍficatÍon, a subjective decision nust be rnade as to the

quality of the output irnage. This precludes these techniques

for real-tÍme general purpose applications.

2) AHR requires no a príori knov¡ledge of irnage

characteristics . It produces output results that are in the

vrorst case equivalent to the input inage, and in the best

case significantly improved over other histograrn

rnodification techniques.

3) Currently Adaptive Histogram Regrading is an effective
nethod for enhancenent applications in a qeneral purpose

environment.

4) Regrading of rnodes based

in preventing the problens

of grey-leve1s lhat often

histograrn equalization.

on local criteria is successful

associaÈed with over-stretching

occurrs when using conventional

fingerprinting a1l-ows the process to5) Sirnple histograrn
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successfully identify and enhance modes lJhich !/ere

previously too small and often compressed r4rhen using
conventional- techniques.

6) Although current conputationaL requirements do not permit

Ít, if irnpJ-emented in dedicated hardware, boÈh histogram

evaluation and ÀHR can be perforned in a real-tine
environment .

5.2 ReconTflendat íons

At this stage thêre are a number of different ways that
the selected rnodes can be regraded. Many of these rnethods

cane to nind during irnplernentation and testing. However, the

scope of this thesis could only allow for irnplenentation and

testing of a sinqle nethod. It Ís of value to mention t$¡o

other nethods because they couLd be good lopics for extended

study of Adaptive Histograrn Regrading:

1) Treat each selected mode Like a snall histogram. Then

appl-y standard histogram equaJ.ization to the range of grey-

levels corresponding to the node. Thê êquaLized vaLue used

is the avêrage pixêl count $rÍthin thaÈ range. This vrould be

the simplest nethod to implernent on the computer because it
is sirnply a series of Linear histogram modifications. Since

both stretching and compression is applied, the nel^t mode has

the sane quantízation wÌdth as before and no fittíng is



required. The main advantages of this technique are

sirnplicity and speed. output irnages, ho$rever, would not be

optinal because cornpression is not necessarily perforrned on

grey l-evel-s of lowest perfonnance and inforrnation rnay be

1ost.

2) Perforn a growing operation on the range of each selected

mode so that the entire histograrn is segrnented, Then apply

histogram equal-ization to each piece as described in nethod

1. This v¡ou1d have the advantage of utíÌizing the full-

dynamic range, but nay not hrork v¡el-l- if the histogra¡n is
highly sker¡ted.

DI-IRIS provides software routines for histogram

evaluation but there are thro slovr for real--tine
applications. Since the routine requires to nuctr tine (about

I second to process) , this vrould need to be changed to

implement AHR in real-time, but for denonstration it is
sufficient.
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GLOSSARY OF TERMÏNOI.,,OGY :

A/D CONVERTER:
Analog/Digital converter which changes anaJ-ogue signals
into digital sígna1s.

BTNARY SYSTEM:
A nurnerical systen with only two digits: 0 and 1. Àlso
caLled the two digit system.

BTT: A unit of inforrnation consisting of a single binary
digit.

BVTE:
Infornation consisting of I bitês.

COMPUTER:
An el-ectronic unit capabLe of perforning substantiaL
cornpuÈation and data processing.

FRAME BUFFER!
Memory storage for digitized inage data.

GREY SCALE:
A single level of i:nage brightness or greyness, described by
a binary number.

HÀRDWARE:
The physical- part of a computer.

IMAGE SENSING 3

Electronic recognition of patterns.

K!rrKilorr - the symbol for l-ooo (in cornputer terminoloSy it
refers to a guantity of 1024 or 2^l-o). A store capacity of
2K bits thus contains 2048 bits.

M:
Megarr- the symbol for lrooorooo. (in computer terminology

it refers to a quantity of 1024 x 1024 ot 2^2o).

MICROPROCESSOR:
A nass-produced nicroprocessor rnanufactured for a range of
different areas of appl ication.

PIXEL:
Short forn for ttPicture El-ementrr. The síng]-e srnallest unit
of a digitized irnage frane, whose value is represented in a
single byte.

RÃM3
RandoÍi-Access-Memory. A nenory in which inforrnation
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can be stored and l-ater erased. Nornal-]y used for
data storage in a processor system.

SOFTWARE:
Prograns, procedures and data pertaining to the
operatíon of a computer systerû.

WORD:
fnforrnation consisting of 2 bytes or l-6 bits.
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