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ABSTRACT:

Human visual perception of grey-level image information
lacks sufficient sensitivity to adequately interpret images
in environments with severe lighting conditions. It has
been shown that image enhancement can be accomplished by
grey-level regrading. Present non-spatial image regrading
techniques are image dependent and real-time implementation
requires a priori knowledge about the input image. On the
other hand, present spatial techniques are more successful
in image independent applications but due to computational
intensity these techniques are not suited to real-time
applications. The aim of this research work was to develop
a real~-time image independent image enhancement technique.

In this thesis a new technique called Adaptive Histogram
Regrading (AHR) is presented which has the high speed and
low computational cost of non-spatial technigues while
reméining adaptive to handle a wide variety of input images
without a priori knowledge of them. This is achieved by
examining the grey-level histogram of an image and
performing feature characterization (fingerprinting). The
image is then indirectly segmented based on this
characterization and histogram regrading is applied to each
region using local criteria.

This AHR technique appears to work on all images,
independent of their histogram attributes. Its adaptive

ability gives excellent performance for general purpose



image enhancement applications where there is no prior
knowledge of the image. In a worst case scenario, there is
no degradation of the output image because because no
regrading of the the input image is necessary. In other
cases, specifically where the input image has a skewed
multi-modal histogram, there appears to be a significant
improvement resulting in a more natural appearance to the
output image. The speed and elegant simplicity of this
technique easily lends itself to real-time implementation on

standard PC type computer eguipment.
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1. INTRODUCTION

The human wvision system is a complex combination of
image translation and image understanding. Through study of
the theories of perception it has been possible to isolate
characteristics of perception, but separating the eye and
the brain functions is difficult because they are both
essential in the vision process. Many of the vision
functions are learned processes which are unconscious and
based on how the brain judges the incoming information. For
example, the color yellow can be seen identically as both a
single (monochromatic) frequency of light or as a mixture of
red and green light. Lightness is also a judgmental process,
our perception of illumination of some object, relative to
the illumination of the whole viewing area. If the entire
viewing area is considered relative to our knowledge of
bright and dark, then it is possible to make a judgment
about lightness of the entire scene. These mental
calculations have been explained as cognitive explanations
because they assume perception 1s based on unconscious
processes similar to conscious reasoning.

When our vision is put to the test of determining
illumination of various levels in a single image, it would
seem that our visual perception would be capable of
distinguishing a large number of distinct brightness levels
in a single image. However, the result is exactly the
opposite[6]. In a single image, the human vision system can

only perceive 16 to 32 brightness levels, or grey-levels.



This may be due to the way in which the brain processes the
visual information, or the way the eyes' receptors respond
to the 1light. Hochberyg [7], in 1978, explained that the
receptors are not independent from one another, but rather,
the excitation of one receptor causes a negative excitation
of its neighbors. This was demonstrated in 1978 by Gonzalez
and Wintz [6] in the illusion of Mach bands, named after
Ernst Mach who first described the illusion in 1865. This

effect may also be involved in grey-level resolution.

1.1 Problem Statement:

Since the human vision system has poor sensitivity to
grey-level information, increasing the contrast between
consecutive grey-levels in a digitized image also increases
the visual quality of that image. Histogram modification
techniques, which stretch certain ranges of the image
histogram, are widely used as a standard technigque in
digital image enhancement.

The basic problem with all non-spatial techniques is
that they are dependent on the input image. What method to
apply, and how to apply it all depend on the type of
original image. If the range of image types is narrow and
known in advance, such as parts on a conveyor belt, then the
optimal method can be chosen prior to processing. As long as
the images remain in this narrow range of types, the
enhancement will always be satisfactory.

In 1988, McCollum and Bowman [1l2] presented a hardware



system which implements histogram modification in real-time
using a linear equalization. Although the example images are
greatly improved, they fall into a narrow category of image
types. The authors acknowledged in their conclusions that
the most effective type of histogram modification is image
dependent, and suggested that the process could be
implemented as an interactive system. For general purpose
applications however, image types are not constrained, and
optimal histogram modification can only be performed on an
interactive basis. This precludes these techniques for
interactive use only, which is unsatisfactory for real-time
general purpose applications.

Real~time image enhancement must be free from any
interactive requirement, since human response time is long.
Non-spatial techniques, such as Adaptive Histogram
Equalization, can perform without human interaction but
because they are spatial, they cannot be performed in real-
time without an expensive computing engine.

An image histogram is actually the sum of many
distributions of varied shapes and sizes [1]. Each of these
distributions corresponds to some object or group of objects
and/or regions in the image. Sometimes this is a single
object such as a satellite in space or sometimes it may be
due to a texture created by many objects such as a forest or
rivers and lakes viewed from space. A single image histogram
will often consist of a number of peaks and valleys of

varied size and shape. Each peak will usually result from a



single distribution and each valley corresponds to a
transition from one distribution to the next. Each
distribution is referred to as a mode of the histogram and
may be divided from one or more regions in the image with
pixels of similar grey-scale intensities.

The modes of a histogram may vary in size, but size does
not always indicate the relative importance of the data in
the mode. If an object in a scene is small and the
contrasting background is relatively uniform, then the
object will correspond to a small mode in the histogram next
to a large mode, corresponding to the background. Histogram
modification expands or compresses grey scales based solely
on their magnitude and therefore will redistribute a mode
based only on its relative size. As a result, the ocbiject is
compressed at the expense of the background, which is the
reverse of what is desired.

For most kinds of images, histogram modification is
successful in improving image quality. There are, however,
some classes of images which exhibit degraded or destroyed
guality as a result of applying traditional histogram
equalization techniques. Such is the case for certain kinds
of strongly multi-modal images which contain both large and
small modes in the same histogram. An example of this is
shown in Figure 1. In this image the portion of the image
occupied by satellite is small in comparison to the
background. The Histogram Equalized form of this image is
shown in figure 2. Using conventional techniques the

background tends to affect the tranformation much more than



the satellite creating undesireable results. The problem is
to enhance information embedded in one region of an image as

indicated by a local mode of the histogram, without damaging

information in another mode of the image.



Figure 1: Original Satellite Image

Figure 2. Histogram Equalized Satellite Image.



l.2 Research Goals:

When histogram modification in performed, the modes in a
histogram are redistributed to approximate a desired
function. The reasons for failure of this technique under
some conditions give clues as to how it could be improved.
The research presented here addresses the shortcomings of
standard techniques.

In strongly modal image histograms, such as in Figure
3(a), the modes can often be directly equated to an object
in the image space. Multi-modal histograms often result from
images of objects on an uniform brightness background where
the object represents only a small portion of the image
area. The goal of the research is to c¢reate a general
procedure for isolating the modes of the histogram, which
will correspond to objects in the image, and regrade them to
produce an improved image. This approach would be superior
to standard methods because it would have the ability to
adapt to any kind of input histogram, and therefore any
image.

Very often the object viewed by the camera occupies only
a fraction of the image space, leaving the rest as a dark
(or light) background. Conventional histogram modification
attempts to improve image quality by redistributing grey-
levels of the image such that the end result is a

Cumulative Distribution Function (CDF) which is linear,

corresponding to a histogram with equal percentage of the



total area in each quantization level, as shown in Figure
3(b). Occasionally, the term Histogram Equalization is used
loosely to include other CDF's which are non-linear. This is
the case with the DI-IRIS Image Processing software [19].
Usually these include CDF's of Bell, Cubic, Logarithmic or
Exponential type distributions. A 1linear function is most
often used because it equalizes the image without
emphasizing any particular grey-scale range.

Each CDF accents the histogram in a different way and
the choice 1is largely a subjective one. A particular
function may be used if it is known in advance what parts of
grey=-scale range need to be accented, but this is not
usually the case. The technique integrates the histogram;
wherever the cumulative histogram is less than the desired
function the grey-scale is compressed, and wherever the
cumulative histogram exceeds the desired function, the grey-

scale is expanded.
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In this thesis the histogram will be considered as an
important source of input information. The research is
directed at using this knowledge to guide the modification
process as well as infer basic attributes of the input
image. Inferences are made about the spatial nature of the
image from non-spatial histogram data.

The goal was to create an adaptive general purpose
technique for image enhancement in real-time applications. A

new method, which we shall refer to as Adaptive Histogram

Regrading (AHR), was created to address both the multimodal
images as well as images which can be processed by
conventional methods.

In AHR, each distinct mode is identified in advance and
the range of grey-levels corresponding to each mode is
separated. This allows us to indirectly carve an image into
pieces, or segment the image, and then treat each piece as a
smaller image with its own histogram. By characterizing the
modes in the histogram, the AHR technigue can provide an
adaptive expansion to the image, and small modes which
correspond to regions such as that of the satellite, are
considered independently, thereby <conserving vital
information.

Once the basic rules or heuristics are established, then
the goal 1is to implement these procedures in a computer
program on a personal computer. If reasonable speed is
attained using a high level computer program then

implementation in dedicated hardware would be highly

10




feasible since dedicated hardware is many times faster.

1.3 Thesis outline:

Global histogram modification techniques treat the image
as a single entity, but because of the dependency on the
input image, the results are sometimes undesirable, or they
are not optimal. Current non-spatial techniques do not
extract any characteristics from the input histogram, and
unpredictable results may occur if these histograms are very
different from one another. Alternatives to non-spatial
techniques have segmented the image into regions and perform
a modification process on each region. Image segmentation
can be performed in a number of ways. The image can be
broken down into a number of smaller rectangular cells and
then each cell can be processed separately [8], or edge
detection can be used to determine boundaries of regions and
each region can then be equalized [9]. Both techniques use
spatial information to perform the task, and thus then
require an extensive amount of CPU time, which eliminates
the ability to do real=-time processing on anything but
powerful special purpose hardware. If this segmentation
process can be carried out based only on the histogram then
real-time processing is possible on inexpensive general
purpose hardware.

Chapter three explains how the histogram can be broken
down and analyzed using maxima and minima. An algorithm is

presented for eliminating histogram noise using a 1

11



dimensional implementation of local averaging. The histogram
analysis give important information for segmentation of the
histogram into several parts. A method for classifying each
mode based on a vector representation scheme is presented.
Heuristics to condense all the segmented pieces into a few
distinct modes are also presented.

Chapter four describes the regrading process of each
mode based on the information collected from histogram
analysis. Each mode is stretched and then fitted in the
histogram using both standard expansion methods and a new

rubber banding technique.
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2. RELATED RESEARCH

2.1 Histogram Modification

Human visual perception has been a subject of much
study, yet while the mechanism behind image transformation
and translation, the eye, is well understood, the way in
which this information is used by the brain is unclear.
Optical illusions are evidence that human vision is strongly
linked to the brain's interpretation of the visual data. The
human eye is a matrix of discrete elements which provide
analog information to the brain. This would indicate that
visual information is limited in its spatial resolution but
has an infinite number of brightness levels, however it has
been argued that brightness sensitivity is limited to the
context of the overall brightness. Human vision is an
adaptive process that should be considered as an integral
part of the overall image processing system [3].

Due to the nature of the human visual system, it is
possible to modify the grey level information in an image in
order to enhance its visual perceptibility. Certain types of
spatial operations have shown to improve image quality, but
their computational reqguirements put them out of reach for
economical real-time image enhancement. Other forms of
operations which deal only with the grey level data, or
histogram, have proven to be effective for economical real-

time applications [12]. These non-spatial operations are

13



referred to as histogram modification technigues or
sometimes as histogram regrading.

The early work from 1975 to 1977 1in histogranm
modification techniques is detailed by Hummel [8,9] . He
pointed out that since human visual perception has
difficulty in distinguishing low contrast areas (possible
sensitivity may only be 16-32 grey levels at any one time),
a grey level transformation may be used to increase visual
contrast. This increase in the contrast is considered to be
an artificial enhancement because it provides no enhancement
in the theoretic sense, but rather an improvement in the
interpretation of the image by the human vision system [9].
Hummel showed that modifying the histogram to produce a new
histogram which is flat will achieve this improvement, in
many images this enhancement can be quite dramatic.

Since real grey-level histograms are discrete, and the
transformation is to be single valued, the simplest
histogram transformation involved merging of grey-levels
together but no grey-levels could be broken up. This

technique, called Histogram Egualization (HE) [o1,

approximates a flat histogram function. In theory there is
only one way to equalize a histogram; the image histogram
must be modified so that it forms a conmpletely flat
distribution. In reality the image and its histogram
consists of discrete points. Unless some heuristics are
implemented so that one grey=level may be distributed into
many, an egualized histogram can only be an approximation.

Subsequently, techniques to produce an even flatter

14



histogram were introduced. By introducing an algorithm which
can break up the previous unbroken bins, and map one grey-
level into many, an extremely flat histogram can be
realized. The method works by examining the immediate
neighborhood of a pixel in guestion and based on these
neighbors decide which bin to place it in. This technique is
a special form of histogram equalization referred to as

Histogram Flattening (HF) [9]. This method proved to have

little practical merit for several reasons: the results of
histogram flattening look almost identical to histogram
equalization; no information is added to the new image; it
has a tendency to filter high frequency components in the
image; and it requires much more computation than histogram
equalization.

In the implementation of either histogram equalization
or flattening there are several ways in which the pixels can
be mapped into the target histogram. Usually some regions
will be expanded while others are compressed. Mapping
several grey-levels into one dgrey-level presents no
difficulty, however, when one must be mapped into many rules
must be introduced in order to decide which grey-level a
pixel should be assigned. There are three rules for mapping
one dgrey-level into many, as outlined by Pavlidis [14] in

1982:

15



1) Always map each pixel into the midpoint of its new grey-
level range. When one grey level must be mapped into three
grey-levels then it would be mapped into the middle grey-
level and the other two would be left unused. The resulting
histogram still has an appearance of peaks and valleys, but
when it is integrated it approximates a linear plot as
desired (due to the discrete nature of the histogram the
plot is a staircase which approximates the linear function).
This method has the advantage of simplicity, speed and it
makes use of the full dynamic range. The disadvantage is
that not all of the gquantization levels are properly

utilized.

2) Always map each pixel randomly into its new grey scale
range. The result of this process is to produce a flat
histogram which appears like the mathematical ideal. Since
these pixels are assigned at random this process offers only
minor improvement over the first rule. The advantage of the
random assignment is it uses all the quantization levels and
avoids any systematic errors resulting from the need to make
a choice. However, it requires about four times as much

computation as the first rule.

3) Examine the image in the immediate neighborhocod of each
pixel, calculate the average value of a 3x3 matrix and then
assign the pixel to the grey-level which is closest to this

value. The result of this equalization is a high quality

16



equalization since it uses spatial information to help guide
the process. The major drawback of this operation is the
introduction of a 2 dimensional image operation, requiring
at least ten times as much computation as the first rule.
Another side effect is a certain amount of edge smearing.
When a 3x3 matrix is averaged it imitates a low pass filter,
removing some of the high frequency information in the

image.

The drawback of these last two types of histogram
modification is that any improvement due to the grey-scale
transformation depends on the input image. It is possible
that some input images may be degraded by these
transformations. In order to get an optimal output image a
subjective decision must be made by the observer. For this
reason, most image processing systems provide an interactive
approach to histogram modification.

Some reports have argued that if the human retinal
system is included in the overall imaging system, then an
image which produces a flat distribution as the output of
human retinal receptors will provide the best visual
representation. Human brightness perception is non-linear
function. Therefore, applying linear histogram equalization
to an image cannot achieve a linear perceived brightness,
since the cascade of linear and non-linear functions is non-
linear. Human perception is generally understood to be

logarithmic. In 1977 it was suggested by Frei [5] that a

17



transformation which includes this brightness perception
would yield superior visual quality than that of a linear
method. The problem with modeling human perception is its
dependency on the viewing conditions, which are not known in
advance. An expression which most closely matches human
perception was chosen and included, which resulted in a
histogram similar to a hyperbolic function. This method is

referred to as Histogram Hyperbolization (HH) [5]. Results

showed that hyperbolization produced images which were
consistently better than their histogram equalized
counterparts. The hyberbolic function results in a better
presentation of the image to the eye, but since HH is simply
HE with a different CDF, it suffers from all the same
shortcomings associated with HE.

The histogram wmodification techniques described up to
this point are considered to be optimum when the error
between the output CDF and the desired CDF is minimized.
Each of these methods have a cost in terms of the amount of
information lost (when grey-levels are compressed) and the
degree of contrast enhancement (when grey-levels are
stretched). There are some classes of images in which the
amount of information 1s lost disproportionately to the
degree of contrast enhancement. This occurs when a portion
of the histogram is stretched beyond what 1s visually
required for sufficient contrast. Any image which has a
large uniform background will create such a result.

A technique for balancing the error against the

information 1lost by a specified transformation was

18



introduced by Kautsky et al [10] in 1984. A Smoothed

Histogram Modification (SHM) was achieved by balancing the

grey-level modification between linear regrading, which is
also called contrast stretching or compression, and a
transformation which matches a specified reference
histogram. Smoothed regradings were demonstrated between two
cases: linear regrading and equalization. A padding
parameter was introduced, measured from 0 to 1, designed to
regulate the regrading between equalization (padding = 0)
and linear regrading (padding = 1). The procedure was tested
on images of a forest from LANDSAT data, resulting in
dramatically improved images over both linear regrading and
histogram equalization.

The selection of the padding factor for SHM is chosen
interactively by the user. This means that a subjective
decision must be made by the user for each image in order to
achieve the best results. This precludes SHM to interactive
use only, and cannot be implemented in real time without
some form of additional decision making built in to the

computer.

2.2 Adaptive Histogram Equalization

Another method which is spatial in nature has shown that

breaking the image into many smaller images is beneficial in

histogram equalization, allowing the equalization to be

19



context sensitive rather than global. This method, which is

referred to as Adaptive Histodgram Equalization (AHE), is

described in its basic form by Hummel [9] in 1977. Each
pixel in question is mapped based on the pixels in a region
surrounding it, which is referred to as its contextural
region. This technique, while providing some advantages over
conventional non-spatial methods, is slow and can over-
enhance noise in homogeneous regions. Modified forms of
adaptive histogram equalization were introduced by Pizer et

al [8] called Weighted AHE (WAHE) and Contrast Limited

(CLipped) AHE (CLAHE). WAHE offered little improvement over
standard AHE, but CLAHE produced improved results and was
less time consuming to perform. These time factors, however,
are relative to standard AHE which is extremely slow
compared to non-spatial techniques. When applied to an image
data set like those used in this thesis, processing time on
a VAX 11/780 in C language was about 2 minutes. This is much
improved over previous implementations which needed about 20
minutes.

Another form of AHE was recently introduced by Vossepoel
et al [1l7] (1988), capable of addressing the problem of
over—-enhancement of noise. This method was called Variable

Region Adaptive Histogram Equalization (VRAHE) and worked by

combining several histograms in neighboring regions, rather
than averaging it with a uniform distribution. This form of
AHE is said to produce preferable results over other forms
of AHE with approximately the same computational

requirements.

20



In a variation of AHE, the histogram of the contextural
region is used to perform different enhancement tasks. These
enhancements were presented by Chocia [3] in 1988 and he
described how the histogram of a region can be used to
detect edges, perform smoothing and enhance images. This
work demonstrates that local criteria can be a very powerful
tool for enhancement of images.

AHE is a powerful technigue for image enhancement, but
it is also slow and does not fit the criteria of high speed
required for real~time applications. To acheive the goal of
speed and image independence a technique must be both non-
spatial and capable to extract enough image information to

be adaptive.

2.3 Histogram Fingerprinting

All related research in adaptive histogram equalization
has shown that local criteria is very effective for image

enhancement. Iterative Histogram Modification (IHM)

presented by Rosenfeld and Davis [16] in 1978 used histogram
peaks to rapidly and inexpensively segment an image into
regions of similar grey level intensities. This was achieved
by applying a one dimensional equivalent of the curve
thinning algorithm to an image's histogram. After only a few
iterations, the process converges, sharpening the peaks of a
histogram into spikes and segmenting the image into distinct

regions. In AHR presented in this thesis, it will be shown
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how this same segmentation can be achieved without actually
modifying the histogram. Rather than compressing all the
grey-level information, the information is retained and
segmented regions are represented by pseudo-coloring using
output lookup tables.

Even though the histogram of an image contains no
spatial information, iterative histogram modification proved
to be a fast and effective means of segmenting the image
using only the histogram. This shows that there is an
intimate correspondence between regions in 2-D space and
peaks of the histogram in 1-~D space.

In some studies, it has been observed that zero-
crossings in 1-D histogram space corresponded to contours in

2-D space, referred to as Scale-Space. Based on this

principle, Carlotto [1] in 1987 showed that a histogram
could be approximated by a sum of normal distributions,
where each of these components corresponded to objects
and/or textures present in the image. This process is called
histogram fingerprinting. A histogram can be approximated in
increasing or decreasing accuracy based on the number of
components (modes) detected, where each mode corresponds to
a pair of zero-crossings. The histogram is approximated by
summing a normal distribution, of wvarying width and
magnitude, for every mode detected. In his experimental
results the histogram was analyzed at a scale which detected
5 modes, which was considered low enouch to determine the

components of interest. Since many of the modes are very

22



close to one another, the tails on either side of the normal
distribution overlap one another. Carlotto's approach 1is
able to resolve modes which have a high degree of overlap by
using iterative estimation and convergence testing. However,
when the image is to be segmented, a threshold point must be
chosen and the overlap in the modes cannot be resolved in 2-
D space.

For practical image segmentation the process of
histogram fingerprinting is useful when modes are reasonably
distinct. Usually a histogram will contain at most 5 large
modes which are distinct. If we consider two overlapping
modes as one distinct mode, then image segmentation by a
simple form of histogram fingerprinting can be effective and
economically achieved. Subsequent histogram modification
using local histogram criteria of these segmented regions

can be used for efficient real-time image enhancement.
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3. HISTOGRAM ANALYSIS

3.1 The Grey-Level Histogram

A digitized image is stored as a 2-D array of discrete
data points indicating the grey-level intensities at that
point in the image. The indices for each of the dimensions
in the array are the cartesian coordinates of the point in
the image space. If all the data points in the array are
sorted based on their value (grey-level) and then tabulated,
a new array results which is one dimension whose index is
grey-level intensities. An image which has 256 grey-levels
would create an array of 256 elements. Each of these
elements is often referred to as a bin because the process
is much like sorting different objects into discrete bins.
The new 1-D array indicates the frequency distribution of

grey levels in the image and is called the Grey-Level

Histogram. Figure 4 is the example image which will be used
to decribe the various aspects of AHR. Figure 5 is a
trimodal histogram of the image in Figure 4. Each of the
peaks corresponds to a feature in the input image such as
the foam pad, the ball, the binder, or the white background

on which all the objects are resting.
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Figure 4. Original Example Image
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Figure 5. Example Image Histogram.
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Theoretically, an infinite number of images can resolve
to this histogram, but since our image has a finite
resolution, this number is also finite. For purposes of
explanation it is clearer to show example histograms in the
continuous case. Wherever the transformation must be
approximated as in the discrete case, the method of
approximation is explained and the difference with the
continuous case will be described as the quantization error.

Let us consider some important facts about image

histograms in the following items:

1) When an image is reduced to a histogram all spatial

information about the image is lost.

2) There is a unique histogram for any particular image but
many images may resolve to the same histogram. For example,
if an object is moved around in a uniform background the
histogram will remain unchanged even though the images are

quite different.

3) Most of the previous research papers discuss the
histogram in terns of continuous~to=-continuous
transformations because it applies to the theory of

distributions and statistics.

4) When the theory is applied using computer technology, the

transformation is adapted to the discrete-to-discrete case.
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5) The grey-level histogram gives us information about the
image's contrast, which is described by the overall spread
of the histogram data. If an image histogram is narrow then
pixels are grouped in similar intensities and the image has
low contrast. Conversely, if a histogram plot is wide then

the image has high contrast.

6) A histogram which has most of the pixels grouped at
either end of the grey scale is skewed. Corresponding images
will appear either overexposed (white skewed) or

underexposed (black skewed).

7) Histograms often appear uneven and have peaks due to
regions in the image which have low contrast locally, but

with high contrast between the regions.

3.2 General Approach to Histogram Analysis

Adaptive Histogram Regrading (AHR) is a multi-step
process which first performs a simple histogram finger-
printing procedure, and then uses the extracted information
to guide the regrading process. The entire process is given
by the thirteen steps shown below. Steps 1 and 2 are pre-
processing performed by the DT-IRIS hardware and software.
Steps 3 thru 6 describe the histogram analysis stage of AHR.

The general procedure for simple histogram finger-printing
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is a three step process, given by steps 3-5 below. The
regrading process, which consists of steps 7 thru 11 is
described in the following chapter. Finally the image is
modified in the post-processing of steps 12 and 13, again

performed by DT-IRIS.

1) Image capture and digitization.

2) Histogram evaluation.

3) Histogram smoothing to remove noise.

4) Determination of histogram maxima and minima.

5) Determination of histogram modes.

6) Merging of non-distinct modes.

7) Segment the image using scale-space method.

8) Mode regrading by local dgrey-level stretching.
9) Determine the new width of the stretched mode.
10) Perform optimal fitting of new modes.

11) Fit non-selected ranges.

12) Program output Look-Up Table (LUT).

13) Apply output LUT to the input image.

STEP 1l: The image capture step 1is the procedure where an
image recorded by the camera is converted from an analog
signal and digitized into a discrete matrix of discrete
values which can be process by the computer system. This
stage of the process is performed by the on board circuitry

of the DT-IRIS Frame Grabber Board (or any other similar
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board). The image is stored on the board in memory buffers
as a two dimensional array of integers representing grey-
level values of the capture image [19,20]. The display
converts these numbers contiuocusly into grey 1level
intensities onto the image monitor. Figure 6 is a photograph

of the image monitor display.

STEP 2: In the second stage of the process the 2-D array of
grey_ levels must be evaluated and converted into a one
dimensional array which describes the density of pixels at
each grey-level. This task is performed by the DT-IRIS
Programming library using a fast low-level software routine
[20]. The histogram is displayed on the computer screen in
black and white, as shown in Figure 7. For real-time
applications this stage is usually implemented in hardware
so that this task is performed very fast. Adaptive Histogram
Regrading does not attempt to address the image capture and
histogram evaluation processes. Technology to perform real-
time histogram evaluation is available and relatively

inexpensive.

3.3 Simple Histogram Fingerprinting

Although the process of reducing an image to its
histogram discards all spatial information, there is a great
deal of image information which can be inferred from the
shape of the distribution, and often this information is not

used to its full potential. If the modes of a histogram are
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considered in histogram modification, it is not necessary to
have knowledge of all the modes which make up the histogran,
but rather to determine only the major trends given by the
peaks and valleys. Even 1if the normal distributions which
make up the histogram are known, only those which do not
overlap other modes can be treated independently. Modes
which overlap beyond a certain threshold cannot be
considered independently since there is no spatial
information to separate then.

If the independent modes, or distinct modes, of the
histogram are used to guide the modification process, the
process will become knowledge based and be able to adapt to
the entire range of possible histograms. Images which are
strongly multi-modal contain several large and/or small
peaks which are the result of many distinct modes. The
individual modes which make up the image in Figure 5 are shown
in Figure 6. Each of these modes can result from one or more
regions in the image which have compressed grey scales, and

its size indicates the total area of these regions.
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Figure 6. Fingerprint of the Trimodal Image.

There is no way to determine from the histogram if a
given mode contains useful information or not. For this
reason, all modes must be considered in AHR. For example, a
satellite which is pictured in space (see Figure 1) will
have a histogram consisting of two modes. One mode is very
large and close to zero, corresponding to the large black
background. The other is small, only a fraction the size of
the large one, corresponding to the sateilite. Since the
satellite is the part of the image we are interested in, the
small mode is the important one in the histogran.
Conventional histogram modification fails under these
conditions because it does not consider the importance of

the small mode. Rather, it attempts to spread the entire
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black background across the 256 grey levels and compresses
the satellite information out of existence.

Before the histogram c¢an be modified using local
criteria, it must be segmented into smaller pieces. This, in
turn, will also segment the image based on grey scale
ranges. The first step towards extracting the features from
a histogram 1is to categorize each of its modes. By
segmenting the histogram into distinct ranges of grey-levels
corresponding to each mode, these ranges can be expanded
individually using the local criteria. This represents the
adaptive part of the histogram expansion. The algorithm can
give equal consideration to the smaller modes as well as the
larger ones, and expansion can be based on properties of the

mode itself, not the global average.

STEP 3: The first procedure in simple histogram
fingerprinting, after capture and evaluation, is to filter
the histogram data with a 1-D equivalent of median filtering

which will be referred to as Local Grey Scale Averaging

(LGSA). A peculiarity was observed in the enumeration of the
histogram when using our equipment. The histogram array is
very "noisy" and not a smooth function as expected. Studying
the histogram data revealed that the odd and even grey-
levels contained the same pattern but that one always
contained more pixels than the other. This is unexpected,
since there seems to be no difference in signifigance
between odd and even grey-levels. This problem is eliminated

once LGSA is applied.
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An algorithm was designed to take the original histogram
and smooth the grey-level plot s=o that only the larger
trends remain. Instead of using a 3x3 element, a single 3
element filter 1is used because the histogram is one
dimensional. The algorithm takes each grey 1level in the
source histogram and averages it with its nearest neighbor
on each side. There is one modification to this however.
While a 2-D filtering process contributes to the next
operation, the new data set for LGSA 1is stored in a
temporary array before it is copied back in to the original
array, preventing the new value from affecting the next grey
level. If not, the results may become skewed, especially if
more than one pass is performed. The following calculation

is performed for each grey-level in the histogram:

new H[z] = (H[z-1] + H[z] + H[z+1]) / 3

Only the major trends in the histogram are of interest
to the regrading process, so smaller perturbations are first
removed by a filtering procedure. The procedure is designed
to perform a single pass averaging. If the "noise" component
is large then LGSA can be applied iteratively until only the
major components remain. LGSA converges rapidly after three
iterations so the number of passes required, even for very
noisy histograms, is less than five.

When the first derivative array is plotted on a graph

the effect of noise in the histogram is very evident, as
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shown in Figure 7(a). The spikes in the plot cause
difficulty in finding maxima and minima. As the trend plot
approaches zero the spikes cause false zero crossings which
are interpreted to be maxima or minima in the histogranm.
When LGSA is applied and the derivative array is then
recalculated, the graph is much smoother as shown in Figure
7(b). LGSA is applied until the trend array has no spikes
and only smooth transitions from positive to negative
remain. The new derivative can now be used to identify the
major trends in the histogram by finding the zero crossings.
These zero crossings will mark all peaks and valleys in the

histogram.

34



a) Before LGSA

b) After LGSA

Figure 7. Histogram of example image
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STEP 4: The next step is to determine the location of the
maxima and minima in the distribution. The first derivative
of the grey-level histogram is calculated. In the continuous
case the maxima will correspond to a zero point where the
derivative switches from positive to negative and a minimum
will correspond to a zero point where the derivative changes
from negative to positive. Each pair of minima will define
the beginning and end points of a mode in the histogram.

In the discrete case it is not feasible to simply detect
the zero points because they may fall between guantization
levels. After the histogram has been smoothed by several
passes of 1GSA, the first derivative of the histogram is
recalculated. The algorithm is modified to detect the change
of sign instead of zero points, and the maxima and minima
are approximated to the nearest quantization level. There
are three possible states for the first derivative. A change
from one state to another indicates the presence of a zero

crossing.

1) if (H[z+1] > H[z]) dH[z] > O

I
QQ

Il

2) if (H[z+1] = H[z]) &H[z]

A
(o]

3) if (H[2+1] < H[z]) dH[z]

Where H{z] 1is the histogram array and dH[z] = H[z+1l] -

H[z] and is an approximation for the derivative of H[z].

In a continuous function the maxima and minima are given
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at the points where the first derivative is zero. Since we
do not have a continuous function the zero points may fall
between dquantization levels. Therefore, rather than
searching for zeroes in the data, the algorithm finds the
maxima and minima by determining where the derivative
changes sign (zero crossings). The minima are grouped into
pairs where each minimum represents the end of one mode and
the start of the next, characterizing all modes, no matter
how large or small they may be. The enumerated modes can
then be subjected to a set of rules or heuristics to decide

which of them need to be merged.

3.4 Trend Analysis

STEP 5: Not all modes will contain useful image information.
Areas such as a uniform background will appear as a mode but
contain no significant information. Modes of this type
appear as very tall sharp spikes in the histogram which
indicates a large number of pixels with very few grey
levels. As a mode becomes narrower and more acute the amount
of information which can be enhanced becomes less.
Conversely, 1if a mode becomes increasingly wider and
flatter, the contrast information increases, but it begins
to approach an equalized state. Less enhancement is possible
because less is required. Clearly, as the characteristics of
a mode approaches either extreme case, the less it can be
enhanced by expansion.

There is a size limitation on the smallest modes
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allowed, because otherwise the algorithm would admit, those
which are only a single pixel in size. A mode can not be
included unless it meets minimum requirements for magnitude
and bandwidth (BW), for example, a magnitude of 100 pixels
and a BW of 32 grey levels. All modes meeting these
requirements will be considered for grey-level regrading.

To form a description of the basic characteristics of a
mode and how it relates to the regrading process, each node
is approximated by a triangle whose points are represented
by the two minima forming the base, and the one maximum
forming the tip of the triangle. The slope and magnitude of
each line can be represented by a vector quantity as shown
in Figure 8. The two sides are represented by the vectors V1
and V3 corresponding to the rise and fall of each side. The
base of the triangle, formed by the vector V3 is simply the
sum of V1 and V2. Only vectors V1 and V2 are regquired to
represent an single mode since the third (V3) can be

calculated.
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Figure 8. Vector Representation of a Single Mode.

If the dH/dz is positive the grey level is on the rising
edge of a mode, and if dH/dz is negative then z is on the
falling edge of a mode. In most cases this will work well,
but occasionally the slopes of the edges are so gradual near
the outer edges of the mode that the algorithm may continue
including grey levels in the mode further than is necessary
(due to the normal distribution of the mode). The ends
contain very few pixels and occupy a large range of grey
levels. If they are included in the expansion they will
severely 1limit the available guantization 1levels in the
histogram. An example of characterization error is shown in
Figure 9 below. The first mode in the histogram is
improperly fingerprinted. Rather than searching for a change

in the sign of the slope, it is preferable to mark the point
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where the slope falls below a certain threshold.
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Figure 9. Mode Characterization Error.

In addition to finding maxima and minima the algorithm
must be able to deal with these situations. The algorithm
has a threshold which creates a dead band around zero. This
gives the algorithm a degree of hysteresis so  that only
significant slopes can trigger the selection process. The
algorithm was modified to calculate the first derivative of
H{z]} and compare its magnitude with a threshold value. This
results in a more accurate marking of the modes at the base.

Thresholding can also cause a problem if noise in the
histogram forces dH[z] to momentarily fall below the
threshold value. The largest component of noise tends to
occur when the pixel counts are also large, at the top of

the peaks. Even with LGSA there can still be some degree of
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perturbation near the peak of the mode. On this point of the
histogram the modes stop sharply with little or no flat
area, so applying a threshold here would have little value.
Also, modes 1in this area have a large degree of
intersection. When Heuristics, described in the next
section, are applied, these modes will always be merged with
another mode. The threshold value must change depending on
the height of the histogranm.

This 1is eliminated by creating a threshold which is
proportional to the magnitude of the grey level. As the
magnitude of the grey level increases the requirement for a
mode to be distinct also increases. If the threshold is
proportional to the magnitude of the peak then the algorithm
can automatically adjust for different cases, and the

resulting reliability of the algorithm is greatly improved.

The conditions for thresholding are:

IF H[z] > HAVG THEN threshold = k * HAVG

IF H[z] <=HAVG THEN threshold 0
Where HAVG = global average = 256K/256 = 1K

and k is a constant percent fraction.

Figure 10(a) and 10(b) shows mode characterization on

the PC and the corresponding pseudocolor image.

41



(a) Histogram
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(b) Correspondlng pseudocolor image.

Figure 10. Mode Chracterization
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3.5 Mode Merging Using Heuristics

STEP 6: Depending on conditions it may not be desirable to
classify the range between two minima as a distinct mode. At
some minima the number of pixels may still be relatively
large. This indicates that there are a large number of
pixels which have the same grey levels in two separate
modes. In order for a mode to be distinct, it must have a
maximum which is sufficiently larger than the neighboring
minima on either side. Otherwise the degree of intersection
between modes, as discussed earlier, is too large for them
to be considered for independent expansion. A set of
heuristics must be included in the algorithm so that modes
which do not meet certain criteria can be eliminated. Also,
those modes which intersect one another to the degree that
they cannot be considered separately, must be merged to form

a new mode. Figure 11 is an example of a complex mode.
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Figure 11. Example of a Multi-Peak Mode.

To characterize each mode, the vertical component of the
two vectors is compared to a single threshold value,
determined subjectively through experimentation. The result
of this comparison is a binary value indicating greater than
or less than the threshold. The total number of combinations
resulting from these comparisons is 2 x 2! = 4 possible
states. These possible states become the four rules which

classify the modes:
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RULE

IFr
AND
THEN

RULE
IF
AND
THEN
RULE
IF
AND
THEN
RULE
IF

AND
THEN

1: (Below Threshold)

mode n has a rise < the threshold
mode n has a fall < the threshold
mode n is classified TYPE 0.

2: (Black Skewed)

mode n has a rise > the threshold
mode n has a fall < the threshold
mode n is classified TYPE 1.

3: (White Skewed)
mode n has a rise < the threshold

mode n has a fall > the threshold
mode n is classified TYPE 2.

4: (Distinct)
mode n has a rise > the threshold

mode n has a fall > the threshold
mode n is classified TYPE 3.

Only a type 3 mode is considered to be distinct. To

separate the distinct modes from the mode data,

a set of

heuristics must be applied to each mode. The outcome should

be one o

1) A
2) D
3) M

4) M

f the following.

ccept it as a mode.
iscard it as insignificant
erge it with mode [n-1]

erge it with mode [n+1)]

The example shown in Fig 11,

characterizes almost

all of the merging conditions. Type 0 modes are absorbed in

the merging process. The first mode (type 1)
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forward until it reaches a type 2 or type 3 mode. All type O
and type 1 modes are absorbed in the merging process
regardless of their number until a type 2 1is reached,
creating a type 3. The merging process 1is not completed in
the first step because a type 2 mode is found in the next 2
iterations, so the process merges backward until it finds a
type 1 or type 3 mode. When this is complete it begins to
iterate forward again. The entire process 1is shown below.
The arrow represents the current element in the 1list that

the algorithm is processing.

1) 10100202
A

2) 1100202
A

3) 100202
A
4) 10202
A
5) 1202
A
6) 302
A
7) 302
~
8) 302
A
9) 32
10) 3

A
Figure 12(a) shows mode merging of Figure 10(a) and

12 (k) is the corresponding pseudocolor image.
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(a) Histogram

(b) Pseudocolor image.

Figure 12. Mode Merging
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3.6 Q FACTOR

Modes are characterized using the starting point
(origin) and two vector gquantities, one describing the
rising edge and the other describing the falling edge of the
mode. The vrelative "Ysharpness" of a mode can be describe
using a term adopted from filter theory called Q factor. The
Q Factor can be calculated by comparing the average value of
the magnitude of the vertical components of vectors V1 and

V2 with the magnitude of horizontal component of V1+V2.

Q Factor = |V1y| + |V2y| / |V1x| + [V2x]|

If a filter had a sharp cutoff point it is said to have
a high Q factor. However, if the cutoff is mild it has a low
Q factor. For the purposes of mode characterization it is
used to describe the sharpness of the mode. The Q factor for
a mode can be calculated as the magnitude of the mode (peak
height) divided by the width of the mode in guantization
levels. An example of two modes, one with a high Q Factor
and one with a low Q Factor are shown in Figure 13. If Q is
small number then that describes a mode which is very flat.
This kind of mode would not be affected by histogram
redistribution since the pixels are already distributed more
or less equally. Looking at the other end of the scale, if Q

is a very large number, the mode may be expanded but
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probably would not result in a great improvement since there

are very few grey levels to expand.
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Figure 13. Example of Modes with ILarge and Small Q Factor.

The Q Factor therefore indicates how much enhancement is
possible in a particular mode. Modes with Q Factors at
either extreme are poor candidates for expansion, whereas
those whose Q Factors are in the medium range, are good
candidates. Although this concept was not fully implemented
in this thesis presentation, it could be a topic for further
improvement of the heuristics. For example, a mode which has
a very high @ Factor near zero grey level, for images in
space, is primarily the result of large black backgrounds.

Heuristics may be implemented to instruct the procedure to
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leave this mode unchanged since it cannot offer any
improvement to the image while the expansion of other modes

may be optimized instead.
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4, HISTOGRAM REGRADING

Extracting knowledde from the input image histogram was
explained in the previous chapter. In the mode merging
process, knowledge about the Xknowledge (meta-knowledge) was
used to determine what knowledge will be used to guide the
regrading process. In this chapter it will be shown how this
knowledge can be used to indirectly segment the image into
distinct modes by the scale-space approach. The modes are
then regraded, using a local contrast stretching scheme
based on local criteria. After regrading, the new stretched
modes are fitted to the output histogram which is then
applied to the image, and results in a new output image.

In conventional non-spatial histogram modification
techniques the histogram of the input image is regraded so
that it is forced to an arbitrary abstract distribution. The
transformation is usually performed using the integral of

the histogram called the cumulative histogram or Cumulative

Density Function (CDF). In standard histogram egqualization

this CDF is a straight line corresponding to a linear
transformation. As discussed in the literature, other forms
of CDF which are non-linear, such as hyperbolic functions,
also give good results. In more elegant non-spatial
technigques a combination of linear regrading (contrast
stretching) and a 1linear transformation (histogram

equalization) were used to alleviate some of the problems
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associated with the use of histogram equalization.

The Adaptive Histogram Regrading (AHR) technigque
presented here does not perform any spatial segmentation,
but rather segments the histogram into separate modes which
in turn indirectly segments the image by the scale-space
approach [l1]. It is possible to start with the entire
histogram and, to a certain extent, separate it into
histograms of the disjoint regions. These regional
histograms can now be treated as separate entities and
expanded independently, based on local characteristics. Then
the equalized regions can be recombined to create a new
image of improved quality over the conventional histogram
modification.

The great advantage obtained from the AHR technique is
that a histogram can be expanded differently depending on
the characteristics of the modes. Using heuristics it is
possible to make inferences about the image based on the
quantity, location, size and shape information extracted
from the histogram. These inferences can be used to guide
the expansion process so as to optimize the mapping of
pixels no matter what type of input image is used. The

general approach to histogram regrading has seven steps:
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1) Segment the image using scale-space method.

2) Regrade each mode using local grey-level stretching.
3) Determine the new width of the stretched mode.

4) Perform optimal fitting of new modes.

5) Fit non-selected ranges.

6) Program output Look-Up Table (LUT).

7) Apply output LUT to the input image.

4.1 Image Segmentation using Scale=-space

It has been observed in the literature that a single
point in the 1-D scale corresponds to a contour or set of
contours in the 2-D space. A relief map is an example of
this correspondence, where a single value on the elevation
scale traces out a contour on the map. The effect, referred
to as scale-space, has also been successfully used to
predict the finger-print of a histogram in terms of normal
distributions by Carlotto [1]. If the 1-D point is extended
to a range of sequential points, then the corresponding 2-D
contours become regions. COn the relief map this would be the
same as filling in the region between two contours, or the
region within the innermost contours (such as hilltops).
This correspondence was successfully exploited by Rosenfeld
and Davis [16] to segment an image into distinct regions.
The resulting image is a map of the original image using
single grey-levels.

For Adaptive Histogram Regrading, image segmentation is
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done using scale-space in a manner similar to the Rosenfeld
and Davis approach [16]. The difference is that no thinning
is applied to the histogram. Instead, information about the
selected modes is used to mark each range of grey=levels
which will be segmented. The corresponding image will be
indirectly segmented as a result. When the image
segmentation is coloured using pseudo=~colour some regions
appear very fragmented. However,the segmentation 1is exact
because no one pixel can belong to more than one selected
mode. The mode characterization process is an example of
scale-space segmention. If mode characterization is applied
to the original satellite image in Figure 1 an image with

pseudo-colour is produced as shown Figure 14.
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4.2 Local Histogram Stretching

At this point the selected modes are part of the
knowledge base for regrading. How to go about the individual
regrading however, is a different matter. At this stage
there are a number of different ways that the selected modes
can be regraded. Many of these methods came to mind during
implementation and testing. However, the scope of this
thesis could only allow for implementation and testing of a
single method. It is of value to mention some of the other
methods because they could be good topics for extended study

of Adaptive Histogram Regrading:

1} Treat each selected mode like a small histogram. Then
apply standard histogram equalization to the range of grey-
levels corresponding to the mode. The egualized value used
is the average pixel count within that range. This would be
the simplest method to implement on the computer because it
is simply a series of linear histogram modifications. Since
both stretching and compression is applied, the new mode has
the same quantization width as before and no fitting is
regquired. The main advantages of this technique are
simplicity and speed. Output images, however, would not be
optimal because compression is not necessarily performed on
grey levels of lowest performance and information may be

lost.
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2) Perform a growing operation on the range of each selected
mode so that the entire histogram is segmented. Then apply
histogram equalization to each piece as described in method
1. This would have the advantage of utilizing the full
dynamic range, but may not work well if the histogram is

highly skewed.

3) Regrade each mnode using grey-level stretching, but no
compression. Then perform a fit on each stretched mode to
ensure no two modes are overlapping. If compression is
regquired to prevent clipping, scan the histogram for
unselected ranges and perform compression. This has the
advantage of optimizing the stretching and compression so
that information loss is mninimized. The drawback is its
complexity of implementation, particularly for the mnode

fitting process and compression.

In the work presented here, the third implementation of
AHR was used. Although it had high complexity, it offered
the most optimal image quality, and the original goal of the
work was to minimize information loss.

Histogram equalization expands certain ranges of the
histogram and compresses others. The compression is
performed to maintain the same number of total quantization
levels, otherwise the new histogram may have a dgreater
dynamic range than the hardware can realize. Without

compression many images will be clipped at either end of the
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grey scale range. If, for example, an expanded histogram has
a total dynamic range of 270 grey levels and the hardware is
capable of only 256 grey levels, then parts of the histogran
must be compressed by 14 grey levels to avoid clipping.

Local grey-level stretching is performed using the sanme
one-to-many mapping as in histogram equalization, because of
its simplicity and efficiency. In AHR, only stretching of
the modes is performed initially. The goal is to perform
minimal compression of grey levels and minimize information
loss. In some cases the overall dynamic range may exceed
256, making it necessary to perform some compression to
prevent the histogram from clipping at 255. Since we are
treating each mode in the histogram separately, it is not
known how many grey levels must be compressed until all of
the stretching has been calculated. The compression of
grey-levels to recover quantization levels, normally carried
by conventional methods, must be performed after mode
stretching and after the regraded modes are fitted to the
output histogram. This is because it is not known which or
how many grey-levels must be compressed until all the modes
have been expanded.

Since the regrading is now a local procedure, each mode
is treated 1like a small histogram. Each of the modes shown
in the Figure 15 can now be expanded independently,
enhancing their grey scale ranges. Within the boundaries of
the mode, the average grey scale value is calculated, which

is then used to guide the regrading of the mode. The number
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of grey-levels for stretching is given by:
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Figure 15. Block Representation of Distinct Modes.

grey=level value
new # of grey-levels = eecccccmccccccncaca
: local average

where the new number is rounded to the nearest integer.

Figure 15 shows a trimodal image with boxes overlaid on
each selected mode. These boxes represent the equalized
equivalent of each mode, indicating the current quantization
width and local average. The local average is used to
stretch the grey-levels with high pixel counts, as in
histogram equalization. Unlike histogram egualization,
however, the grey-levels with low pixel counts are not

compressed, hence the overall quantization range increases.
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Each mode is stretched individually until all modes of the
histogram are complete. Usually the number of modes is no
more than two or three, and very rarely will this number

exceed five.

4.3 Expansion Factor

With conventional histogram equalization the stretching
and compression of dgrey-levels is performed on a global
basis, and there 1is no flexibility to adjust these
processes. The equalization 1s controlled by the global
average and, if changed, will result in either
under-utilization of the dynamic range or clipping at either
end. In AHE presented here, the regrading 1s carried out
first and followed by compression. The amount of
compression required is determined by the total dynamic
range of the expanded histogram and is adjusted accordingly.
This provides flexibility in modifying the degree of
regrading of each mode. Rather than expand each mode by its
local average, the grey-level stretching can be controlled
by a proportion of this average.

Normally the proportional factor is 100%, which
corresponds to the local average. This can be changed, for
example to 90%, which would result in a greater grey-level
stretching, or 110% which would result in a smaller grey-
level stretching. This factor will be defined as the

expansion factor. The relationship between the expansion
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factor and the expansion is inverse, since the smaller the
expansion factor the greater the grey-level stretching and
vice versa. It can have any positive value, but practical
values fall within the range from 60% to 110%. In sonme
cases, after the expanded modes have been calculated, the
sum of all blocks is greater than the total number of levels
in the histogram. In that instance the expansion factor must
be adjusted to ensure that all the modes will fit in the

available space.

4.4 Shifting Stretched Modes

A problem arises when modes are characterized, merged
and then expanded by the criteria we have specified. At
present the grey-level stretching is centered about the
midpoint of the mode. In the process of grey level
stretching the total number of guantization levels occupiled
by the mode is increased (the mode becomes wider). When two
modes located in immediate proximity to one another are
expanded then the extremities, and sometimes an entire mode
can overlap another mode. The blocks, representing the area
of the modes occupied in Figure 15 become wider after
stretching. Figure 16 shows the block representation of the
modes in Figure 15 after grey-level stretching occurs and
demonstrates the overlap that occurs with two adjacent

modes. The modes are stretched using an expansion factor of
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100%, which is equivalent to expansion by the local average.
It is clear from the diagram the the blocks are no longer

separate from one another.
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Figure 16. Example of Overlapping Modes.

Overlap conditions are not desirable because they create
transitions of grey-levels from one mode to the next, which
then appears in the resulting image as a contour 1line,
corresponding to the scale-space relationship between 1-D
and 2-D data sets. This transition adds artifacts to the
image which would be interpreted by post processing as real
data. When the histogram is expanded using the current
procedure, the very large peak due to the black background
almost completely envelopes the small mode created by the
satellite. The resulting image appears confused because of
the transition-created artifact in the image around the

satellite.
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To eliminate this transition point, the expanded modes
need to be shifted so that when mapped, there is a smooth
transition from one mode to the next. By shifting the second
mode to the right, the intensity of the brightest pixels in
mode 1 is now a little less than the darkest pixels in mode

2, eliminating the transition.

Example: Shifting Modes in a Bi-modal Image.

Figure 17 shows a histogram for the image of a satellite
in space. The histogram for this image is distinctly bimodal
with one large mode near zero and another, but much smaller
one, immediately next to it. When the system was tested
using conventional histogram equalization, it failed to
enhance the satellite and expanded the backdround instead.
The image resulting from this grey-level stretching has the
background expanded and the satellite untouched. This is the
opposite of the desired result and clearly indicates that
the size of each mode does not dictate the importance of the
mode to the image. It is unsatisfactory to use the global
average, such as in conventional histogram equalization to

control the grey-level stretching.
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Figure 17. Histogram of the Image of a Satellite in Space.

When the image was tested using AHR without any mode
shifting, the grey-level stretching of the larger mode near
zero ended up completely enveloping the smaller mode
situated next to it as shown in Fig. 18(a). The overall
grey=-level stretching of the large mode was less than. that
of histogram equalization but still enough to create a
strong transition from one to the other. The only way to
maintain the integrity of the image is to shift mode 2 up to
end of mode 1 as shown in Fig; 18(b). Point A and B have
been shifted to the right (white shift) to prevent mode 1

from enveloping mode 2.
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Figure 18. Expanded Histogram of Satellite.
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The general approach to mode regrading is:

1) Calculate the amount of grey-=level stretching that will
occur in each mode (i.e. how wide it will be after grey-

level stretching)

2) Sum all the expanded modes and those regions which are to

be expanded in order to determine the overall dynamic range.

3) Compare this sum with the number of quantization levels
available (in this case 256) and determine if it is more or
less. If it is found to be larger, then we have a guaranteed
overlay condition and the grey-level stretching of each mode
must then be adjusted so that the sum is less than 256. This
can be done by increasing the stretching number. If it is
smaller, then there is sufficient space to support the grey-

level stretching and no changes need to be made.

4) Stack each stretched mode starting at zero on the output
histogram so that they are all contiguous and no overlap

exists.

5) Apply an iterative relaxation algorithm until each mode
reaches an equilibrium and is as close to its original

location as possible without any overlap.

Handling conflicting conditions where the grey-level
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stretching of one mode overlaps that of another mode
reqguires heuristics to guide the shifting process. The modes
must be juggled until they all fit in the space without any
overlapping. The sum of all stretched grey-level ranges must
be less than 256 grey levels, otherwise there is no way to
achieve non overlapping conditions without clipping the
histogram. Once this condition is met, an algorithm must be
applied to the histogram data to shift each mode so that
none overlap.

The simplest way to prevent any overlap would be to
position the first mode starting at zero, and then stack all
other modes consecutively, as shown in Fig 19. Study of the
problem reveals a number of conditions that can arise. If,
for example, there is a large gap between two modes, simple
stacking would unnecessarily close this gap and radically

alter the image.
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Figure 19. Blocks Representing Expanded Modes Stacked at 0.

Conditions limit how the modes (represented by blocks as
shown in Fig. 18 can be shifted, and isoclating all special

cases can be difficult. Some of them are listed below:

1) A mode is restricted when it has been moved to either
limit of the histogram. This occurs when the stop point is
equal to the upper limit or the start point is at the lower

limit.

2) A conflict condition is reached when the stop point of
mode[n] is greater than the start point of mode[n+l]. When
this occurs one or both must be shifted.

3) If two modes are in conflict and one of them is

68



restricted then the other one must be moved.

4) If one of the modes is to be shifted and there is
insufficient space to do so then it must be shifted as far

as possible.

5) If both modes are possible candidates for shifting, then

the algorithm must decide which of the two should be moved.

One method which was considered to resolve which mode
should be shifted was to use the cumulative distribution
function iH[z]. If the wvalue of iH[z] at the starting point
is greater than the theoretical average, then the remapped
mode should be shifted right. This would push iH[z] toward
a linear distribution as in histogram equalization.
This method works in some cases, but falls short when the
mode in question is very small. If the mode is small, it has
a low total number of pixels. This contributes little to the
cumulative histogram which may result in iH[z] having a
value lower than the average. This would cause the mode to
be pushed in the opposite direction, increasing the overlap
in order to increase iH[z] to its normal value.

These are just some of the considerations involved in
optimizing the distribution. The problem duickly becomes
unwieldy because there are so many special cases to
consider. This is not incorporated easily into an algorithm

for the computer.
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This problem should be approached from another
viewpoint. Rather than trying to isolate all the special
cases which occur, it would be better to define the goals of
the shifting process. These are summed up by just two

conditions:

1) The histogram must have no overlapping modes.

2) Modes should be located as near as possible to their

original location.

Modes cannot overlap and they also cannot extend beyond
either end of the histogram. These conditions can be
simulated by blocks in the physical world. The goal of the
algorithm is to place the center of gravity of each block as
closely as possible to its original location. This is not
always possible since each mode becomes wider when it is
expanded. Two modes which are located side by side cannot
overlap so it is impossible for both to maintain their
location unchanged. An algorithm must place the blocks as
closely as possible to the ideal and still avoid an overlap
condition.

If we imagine each block being pulled to the ideal by
some potential force then this force will be a minimum when
the blocks are in equilibrium. This force could pull the

block along a frictionless floor until the force dropped to
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zero as the block approached its ideal point, or until some
opposing force from a block pulling in the opposite
direction canceled it out. In the real world this could be
simulated by attaching a rubber band to each block and
releasing it. Since each block contains a different number
of pixels, each has a greater or lesser importance to the
overall image. This weighting is expressed in the spring
constant of each rubber band. This way the bands connected
to the larger blocks could generate a greater force than
those attached to smaller ones. A representation of the

system would be as shown in Fig. 20(a).

71



HLz1 /] Image Histogram
Goal States
/\ Suspension
Line
f]_ / f2 . f3 fi;. Fu =§ -
1
Pixel
Count Rubber
353525 ~— Band Tnitial
7 State
1024———-———\—.—-_..~____ — e ]
z=0 Grey Level Intensity z=255
(a) Before Relaxation.
Hlz1 Image Histogram
£f,20 | £,50 Equilibrium
Pixel State
.Count
Fn = 0
1024 b e o L L — e
z=295

z=0 Grey Level Intensity

(b) After Relaxation.

Figure 20. Representation of Rubber Bands and Blocks
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The blocks in Figure 20(b) represent the new modes after
they are expanded. The modes have all been stacked starting
at zero. The 1lines attached to each block represent
hypothetical rubber bands which pull on each block. The
spring constant of each rubber band is given by the mass of
each block (given by the area of mode). Each rubber band is
attached to the center of gravity of each block at one end
and to the target center of gravity at the other end.

In this system only the horizontal component of the
force, and the displacement are used to calculate the force
on each block. Blocks would then be stacked starting at z=0
in the histogram and then released. As the blocks slide
across the frictionless surface, the rubber bands are
relaxed until the system reaches an equilibrium state. In

this algorithm only two rules apply.

1) When iterating from first to last, the algorithm
determines how many blocks will slide by checking to ensure
that the total force Fm is always > 0.

2) If Fm <= 0 at any point then all the blocks to the left
of, and including the current iteration are fully relaxed

and will not slide any further.

In order to perform the relaxation process in the
computer, the algorithm needs a starting point. If the

blocks are started at their original position, the algorithm
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would need to perform a lot of jumping forward and backward.
This would not only slow the process but would be difficult
to implement. To streamline the process, it would be
preferable to stack all the blocks initially at the bottom
of the histogram. This way the iteration process could
progress in one direction only. The algorithm stops when all
the blocks have reached an equilibrium state as shown in
figure 20(b).

Once the new 1locations for the modes have been
determined, the next step is to map all the modes into these
spaces. Each mode is expanded starting at the new start

point as determined by Rubber Band Relaxation (RBR). The

pixels are mapped by programming each entry of the input
lookup table with the value of its new location. After each
mode has been expanded using the input LUT, a <feedback
operation is performed on the image using the input LUT (or
input palette as it is sometimes referred to). This performs
the transformation and the new eqgualized image appears in
the buffer and on the display screen.

Figures 21(a) show the image of a satellite in space in
its orignal form. Figure 21(b) shows the same image with
Adaptive Histogram Regrading applied to the image. The
results speak for themselves. Rather than destroying the
image as in conventional methods, the image has been

enhanced as much as possible without degradation.
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(a) Before AHR.

(b) After AHR

Figure 21. Satellite Image.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

1) Although many non-spatial histogram modification
techniques have been shown to improve the quality of images,
the improvement is highly image dependent. Unless the image
characteristics are known prior +to the histogranm
modification, a subjective decision must be made as to the
quality of the output image. This precludes these technigues

for real-time general purpose applications.

2) AHR requires no a priori knowledge of 1image
characteristics. It produces output results that are in the
worst case equivalent to the input image, and in the best
case significantly improved over other  Thistogram
modification techniques.

3) Currently Adaptive Histogram Regrading is an effective
method for enhancement applications in a deneral purpose

environment.

4) Regrading of modes based on local criteria is successful
in preventing the problems associated with over-stretching
of grey-levels that often occurrs when using conventional

histogram equalization.

5) Simple histogram fingerprinting allows the process to
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successfully identify and enhance modes which were
previously too small and often compressed when using

conventional techniques.

6) Although current computational requirements do not pernit
it, if implemented in dedicated hardware, both histogram
evaluation and AHR can be performed in a real-time

environment.

5.2 Recommendatiocons

At this stage there are a number of different ways that
the selected modes can be regraded. Many of these methods
came to mind during implementation and testing. However, the
scope of this thesis could only allow for implementation and
testing of a single method. It is of value to mention two
other methods because they could be good topics for extended

study of Adaptive Histogram Regrading:

1) Treat each selected mode 1like a small histogram. Then
apply standard histogram equalization to the range of grey-
levels corresponding to the mode. The equalized value used
is the average pixel count within that range. This would be
the simplest method to implement on the computer because it
is simply a series of linear histogram modifications. Since
both stretching and compression is applied, the new mode has

the same quantization width as before and no fitting is
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reguired. The main advantages of this technigue are
simplicity and speed. Output images, however, would not be
optimal because compression is not necessarily performed on
grey levels of lowest performance and information may be

lost.

2) Perform a growing operation on the range of each selected
mode so that the entire histogram is segmented. Then apply
histogram equalization to each piece as described in method
1., This would have the advantage of utilizing the full
dynamic range, but may not work well if the histogram is

highly skewed.

DI-IRIS provides software routines for histogram
evaluation but there are two slow for real-time
applications. Since the routine requires to much time (about
1 second to process), this would need to be changed to
implement AHR in real-time, but for demonstration it is

sufficient.
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GLOSSARY OF TERMINOLOGY:

A/D CONVERTER:
Analog/Digital converter which changes analogue signals
into digital signals.

BINARY SYSTEM:
A numerical system with only two digits: 0 and 1. Also
called the two digit systemn.

BIT: A unit of information consisting of a single binary
digit.

BYTE:
Information consisting of 8 bites.

COMPUTER:
An electronic unit capable of performing substantial
computation and data processing.

FRAME BUFFER:
Memory storage for digitized image data.

GREY SCALE:
A single level of image brightness or greyness, described by
a binary number.

HARDWARE:
The physical part of a computer.

IMAGE SENSING:
Electronic recognition of patterns.

X:

"Kilo" - the symbol for 1000 (in computer terminology it
refers to a quantity of 1024 or 27~10). A store capacity of
2K bits thus contains 2048 bits.

M:
"Mega"- the symbol for 1,000,000. (in computer terminology
it refers to a quantity of 1024 x 1024 or 2~20).

MICROPROCESSOR:
A mass-produced microprocessor manufactured for a range of
different areas of application.

PIXEL:

Short form for "Picture Element". The single smallest pnit
of a digitized image frame, whose value is represented 1n a
single byte.

RAM:
Random-Access-Memory. A memory in which information
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can be stored and later erased. Normally used
data storage in a processor system.

SOFTWARE:
Programs, procedures and data pertaining to
operation of a computer system.

WORD:
Information consisting of 2 bytes or 16 bits.
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