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ABSTRACT

The Angular correlation of the two-photon annihilation

of posítrons in a number of condensed hydrocarbons and two

solid magnetic materials have been studied using a standard

para1le1-s1it aPParatus .

Three different theoretical approaches have 'oeen

employed to obtain the momentum distributions in the hydro-'.

carbons. The first approach is to assume that the positron

wave function is constant. The momentum distributions are

then calculated for electrons in the C-C and C-H bonds,

using analytic SCF functions for atomic carbon orbitals and

Heitler-London-type functions for the two paired electrons

in the C-C and C-H bonds. The calculated results of this

low momentum plane wave approach for the positron fits well

with the experimental data except at the tail of the distri-

butions. The second approach i-s to assume Lhat the positron

wave function is of the form f*(r) = f - e-mir where m1 is

a. parameter col?ï'esponcling to the ith atom. fn the third

methodr <|J") is obtained by numerical integration from the

ground state radial Schrödinger equation. The results obtained

from the last two methods are in good agreement with the

experimental data. This suggests thaf the effect of the

positron wave function can not be ignored in the detailed

analysis of the observed momentum distribution in the hydro-

c arbons .



The interpretation of the angular distributj-on for

Alnico is based on the contributions from the 4s and 3d

bands of this alloy.

A study of angular distribution obtained with the

perovskite crystals (La.rPf .3)MttO3 suggests t]nat the positrons

annihilate exclusively with the 2s and 2p electrons of the

negative oxygen ions.



Chapter l
fntroduc tion

L1 The Discc.¡erJr cf The Positron

The positron was first discovered by C. D. Anderson

in his experiments on particles produced by cosmi" 
"uyrJ

Anderson while taking l¡Iilson cloud-chamber photographs of
cosmic ray trajectories when a magnetic field vias applied

across the chamber, found pairs of tracks with the sarne

ionization density. Each irack described. a separate circle
in the magnetic field such Lhat one path could be ascribed to
an electron and the other to a particle of electronic mass

but of positive electronic charge. Anderson carled these

particles "po"itrons". Before the discovery of positrons,

Dirac had predicted the existenee of positrons (actua11y

he originally theorized Lhat these were poSitive protons)
rr. - 

¿)

in his "ho1e theory".' Accord.ing tb the Dirac theory,

the energy of the electron has both positive and negative

energy solutions, i.e., E=!Wrr2.4. rt was assumed that
all negative energy states (-*"2 to -.o) are normally occupiled.

by electrons. A positron appears as "hole" in these states

when an electron makes a transition to a positive energy leve1.

About a year after the discovery of the positrons

by Anderson, sources of positrons became plentiful and easily
obtainable as a result of the discovery by the curie-Joliots
of the phenomenon of artificial or induced radioactivity.
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1.2 The Annihilation of Slow Positrons

ft is well known that the positron is the anti-

particle of the electron, and that these two particles

can be annihilated as a pai-r with the emission of gamma

photons. ft has been shown3 trrat the probability of a

positron anni-hilating in flight is less than Zfu tor initial

positron energies of*l Mev. Therefore we shal1 discuss

here only the annihilation of slow positrons.

When a positron enters a condensed medium, it may

annihilate directly with an electron ("o called "direct
annihilation" ) o= it may capture an electron to form positronium.

Some evidence for the formation of positron compounds as

well as positroniurn compounds has also been found.17

By the principle of conservation of momenium, at least

two photons must be involved in the annihilation process of.

a slow positron-electron pair. Annihilation by single photon

emission requires the presence of an external field. The

probability for one-photon and three or more photon annihilation

is very smal1 compared with tlnat for two-photon annihilation.

Ore and Powetl4 have shown that the ratio of the three- to

two-photon annihilation cross section is \/ElZ.

Now consider the S-statc positron-electron pair which

can exist in one of two substates, namely, the singlet state,
1_ ?-SO, with spin zero, or the triplet state, ,Sl-, with spin one.

The higher orbital angular momentum states are not of interest

since in these states the positron and electron wave functions



?

do no overlap sufficiently for appreciable annihilation to

occr.lr.

According to Yang,6 the annihilation of a positron-

electron pair into two photons is only possible for arr

annj-hilating pair in its singlet state. For it is well

known LhaL the relative intrinsic parity is negative for
the positron-electron pair, i.e., PI: (-f). The charge

conjugation for the S-state positron-electron system is
therefor"Pc:PÏPS=(-1)(.r1S*r:(-1)S,whereP,isthe

spin parity. The charge conjugation j-s positive for the

singlet state (S = O), and negative for the triplet state

(S= f). Since the charge conjugation of the photon is
asslgned to be, negative, the singlet state should annihilate

into an even number of photons, and the triplet state j-nto

an odd number of photons, by means of charge conjugation

invariance.

Recently, Berko eb a15 have designed. an experiment

to search for charge nonconservation in posj-tron-electron

annihilation by measuring the three-photon decay of the

singlet state (lso). Their ratio of (1so_'3f )/(lso- 2r )

is less than 10-6.

1 . 3 _ The Iþrggt_1.gLjund _t!S Bas i c P r op e r:1.i eS o_L3.o s.i.tf on ium

The possible existence of a bound state between a

positron and an electron was first postulated by Mohorovicic

in 1934.' Ruark gave thís bound system the name "positroniumt'?



The first experimental demonstration of the existence of
q r.opositronium was performed by Deutsch./'-

To first order, positronium can be treated as a

hydrogen abom, with the exception Lhat the reduced mass is

now one half the electron mass. One thus obtai-ns a "Bohr

radius" of a positronium atom ^p:h2/p.2 = ZhZ/^e2=2ao=7.064,

with a ground. state energy E = e2/2an= "2/4uo= 
6.-(7ev ,

There are two ground states of positronj-um: the

triplet state (ortho-positronium) with electron-positron

spins para11el, and the singlet state (para-positronium)

with electron-positron spins anti-paralle1. Since the trì-plet

state has three substates (m=1rOr-1) the statistical weight

of the triplet state ís three times that of the singlet state,

i.e., ortho-positronium and para-positronium atoms are formed

in 3/4 and l/4 of the cases respectively. According to the

satne argument in the last section, ortho-positr,onium undergoes

J-photon anníhi-lati-on, and para-positronium decays via 2-photon

emis s ion .

The life times of para- and ortho-positronium have

'oeen calculatect aS I.25 x iO-lO seconds and 1.4 x lO-Tseconds

respectively.4

ore postulatedll the following approxÍmate relationship

for the probability (W) of positronium formation:

v" - (v".-v^) v.^
J- ' -L IJ' , 1,r ' 

p
\ '' \-t

V.
t_

TT"1
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where V, is the first e*citation energy of the surrounding

molecules, Vi is the i'oni-'zaLi-on energy of the molecules,

and V- is the binding energy of positronium (o 6.ff ev in
p

free space t it may be slightly less in a solid).

The above equation can 'be understood as fo11ows.

ff the initial energy of the positron is E, positronium

formation is possible, provided E tVi-Vp" As long as E

is greater than the ionization energy (Vi) of the molecules

however, simple ionization through inelastic collision is

more 1ike1y than the formation of positronium. (lf positronium

is formed, the fast moving positronium atoms are very

probably destroyed in the subsequent collisions. ) If we

assume that the positron after the last ionization collision

has energy E between O and Vr, then the fraction Vn/Vt ot

these positrons can form positronium. This is the upper

limit of probability for positronium formation. Since a

part of these positrons have energies above the lowest

electronic excitation energy of the molecules, this excitation,

along with inelastic scattering of the positrons, will compete

with positronium formation. If VrZ Vt-Vn then there exists a

small energy region vt-(vi-Vn), the so-called "Ore gap" where

the fornation of posi-tronium is likely. The fraction

[Vf-(Vi-Ve)J /V, becomes the lower bound for the probability

of positronium formation.



1r3 The. .Q_uenchjne. of_Positloniug

Following Green and Bel-lr 12 "quenching" of positronium

will mean all possible processes introduced to shorten the

lifetíme of the ortho-positronium, i.e., reduction of 3l
annihilation.

The possible positronium quenching processes are as

follows:
(f) The "pickoff" process: Due to the continual scattering

of positronium b/ the surrounding molecules, the positron

in ortho-positronium may annihilate with an electron from

a molecule whose spin relative to the positron in the

posítronium is anti--paral1el-. This process of "píckoff'Î
annihilation is now recognized generally to account for the

long-lived component with a charaLeristic lifetime of about

1o-9 seconds

(Z) Quenching by an external magnetic field: The states

of positronium are influenced by an external magnetic f ield.

The ground state of ortho-positronium (3S1) is about 8.4 x

1O-4 ev. above the ground. state of para-positronrun, (tt.).

Tf positronium presents itself in a constant magnetic fie1d,
1?then the 'SO and 'S1 levels are further sp1it. This Zeeman

effect produces a quadratic upward energy shift in m = O level

of ortho-positronium (3S" ^). The two levels m:t1 of the' fru'
triplet (3S1,r1) are unaffected by a magnetic field since

there exist no ttg-"omponents of the sarne m value, with which

they could Þombine.13 On the other hand, in a magnetic field
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the m=O triplet state gets a sma1l admixture of m=O singlet
state which is equivalent to an increased probability for
an ortho-para conversion.

(S) Paramagnetic quenching: The quenching of ortho-positronium

might occur not only from the action of an external field,
but also from the field of paramagnetic admixtures in the

experimental sample. However, 0""14 has shown trrat even

for as pararnagnetic a gas as oxygen, the spi-n flip through

magnetic interaction would Lake -10-5 seconds, which is two

orders of magnitude less than the rate of spontaneous J-photon

decay. tr'erre1115 suggested Lhat the result of paramagnetic

quenching of positronium is most likely due to "electron
exchange'r collisions of positronium with paramagnetic ions

or any molecules with unpaired electrons.

(4) Chemical quenching: This quenching process involves

various chemical reactiors of positronium, such as the reaction

of oxidati-on, addition, and substitution. For ortho-positronium

all the processes i-ndicated above reduce the lifetime Lo -1O-1O
añ rO

seconds .L¿'t LQ

1.5 Experi-mept?l EJhgjlg gf Stt;Lgyine Pgs_itr_olr Alnihilatio.n

There are in general three methods which are widely

used in this f ield. I¡ie shall discuss f irst the measurement of

thetriptet annihilation rabe by a triple coincidence experiment.

Though this method is used less frequently than the others

because of its experimental complexity, it is the easiest



to interpret. The measurement of the triple coincj-dence

rale between the annihilation gaÍxma photons tells us the

number of positron-electron pairs annih1lating from the

triplet state. Whenever this rate is larger than I/372

of the double photon raLe which i-s predicted by the theory

for a random orientation of the spins which has been mentioned

previously, we assume thaL there j-s formation of positronium.

The second method is the measurement of the mean life-

time of positrons. The first lifetime determinations were

made in gases by Deutschg and this was followed by studies

in solids by DeBenedetti et at.I5 The discovery of two life-

times T, and T2 was made by Bell and Grah^^.I6 ft wa.s assumed

that the short lifetime T1 corresponded to the direct annihila-

tion and./or to annihilation of singlet positronium., and Lhat

the longer meanl-ife T, revealed the presence of triplet
positronium. The intensity of the TZ "omponent, 

IZ, can be

measured, thus giving directly the percentage of triplet
positronium formed, if all triplet is quenehed and annihilates

with mean life Tr. F'rom statistical considerations, triplet
positronium should be formed three times as frequently as

singlet positronium and hence the percentage of singlet
positronirrm formed. is equal to fZß.

The third method ip the measurement of the angular

correlation of the two-photon annihj-lation radiation. \nlhen

a posi.tron-electron pair at rest annihilates with the formation

of two-photon emission, an energy of 2mc2 is released where

m is the rest mass of electron and c is the velocity of light.
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To conserve momentum, these two photons, each having a

momentum mc, are emitted at l8O-degree to each other in the

center of mass system. If the annihilating pair has some

momentum at the time of annihilation, then the photon pair

r,uill be emitted aL angle differing from l8O-degree by an

amount of the order u/c, Where v is the velocity of the center

of mass of the annihilation pair. For low velocities this

departure of the angle between the direction of the photons

fpom 1BO degrees is proportional to the component of momentum

of the annihilating pair whj-ch is para11el to the bisector

of the propagation direction. Thus, one may measure the

angular distribution of annihilation photons and convert

this to a momentum distribution of annihilation positron-

electron pairs.45 The detailed d.iscussion with regard to

this will be made in chaPter 2.

1.6 . Pos_ij_ronj-J:m .ald Clreq1stry

At present, the application of positron annihilation

techniques covers two important fields, namely, chemistry

and solid state physics.

Observations of the formation and annihilation of

positronium in different media are of particular interest

for chemical physicists. The formation of positronium is

strongly related to the properties of the sample under

investigation, such as the ionization and electronic excitation

potentials, the elastic scattering cross-section, and the
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excitation of vibrational and rotational- molecular levels.

Therefore the study of the probabilities of positronium

formaLion under different conditions provides a new method

of studying many elementary processes in chemistry.

Since positronium is the lightest hydrogen-1ike

atom and an elementary free radical, the study of triplet
positronium may shed light on the study of triplet states

of complex molecules, and the study of positronium compounds

may yield i-nformation on molecular energy levels and elecLron

transfer mechanisms. Because of the short lifetime of

positronium, it could provide a useful standard for
investigations of rapid chemical reactions.

Unfortunately, the work of positronium chemistry has

yet to yield significant results sinee there are only a few

groups of chemists currently involved in the positronium

research. However, as more chemists become familiar with

positron analysis as a tool one would hope more meaningful

experiments will be carried out.

Also of interest to the physicist is the experiment

on the angular correlation of the two-photon annihilation

radiation. The angular distribution of the photons yields

important information about the momentum distributions of

electrons involved in the chemical binding of molecular

systems. Therefore, one may be able to use these data to

check the calculated atomic and molecular orbi-tal wave

functions, in hope tlnat it may help to improve the molecular

orbital theory. On this basis, half of this work is concerned



11

with the detailed investigation of the momentum distributions

of hydrocarbon molecular systems. It will be shown LhaL the

calculated momentum distribution functj-ons aTe strongly

dependent on the choice of space wave functions and that

.the use of accurate WaVe functions provides good agreement

between calculated and experimenta! momentum distributions '

L7 Positron Rnniftilation and So]id Ftat SACS

The study of positron annihilation in metallic solids

is probably the most fundamental application of posltrons in

solid state physics. The results of the studies of the

angular distribution of annihilation radiation in metals

has yielded data consistent with the assumption of a Fermi

energy distribution for conduction electrons. lT' 18 But

since there are several other experimental methodsl9 which

can determine the Fermi surface, we can not say that these

positron results represent any great progress in our knowledge

of metals. But if one examj-nes the methods currently being

used to determine the Fermi surface carefully, one will find

LhaL in most of the methods, such as the de Haas-van Alphen

effect, the magneto-acoustic effect, cyclotron resonance

effect, and the galvanomagnetic effect , eLc ', a magnetic

field is applied, producing a quantization of the electron

energy l-evels (Landau 1eve1s). The effects under consideration

are due to this quantization. fn virtue of Heisenbergrs

uncertainty principle, the product of an electron lifetime
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in a given state by the energy uncertainty is of the order

of Planckts cons LanL. The energy uncertalnty must be kept

sufficiently below the separation between the Landau 1eve1s,

or otherwise these levels would be blurred and no longer

defined, and the lifetime or rel-axation time must therefore

be as long as possible. Methods based on the quantization of

Landau levels are thus only applicable to elements of

sufficient purity, well-ordered alloys or intermetallic

compounds and require the use of very low temperatures.

In the methods, such as the anomalous skin effect, the sample

must also be a very pure and perfect single crystal, in order

Lo achieve a large electron mean free path. fn contrast,

the positron annihilation method does not require specimens

of high purity or long electron mean free paLh, and thus

can apply to any disordered lattice, such as a randon solid

sol-ution. This advantage may make it become one of the

useful techniques for examining Fermi surface and electron

structure of solids. Several alloys and liquid metals have

been examined by this techniqu". lB fn this work, a ferro-

magnetic a11oy, Alnico, has been studied by positron angular

corretation technique; a F'ermi energy for this al1oy is

determined. A detailed discussion of the result of this

experiment will be made in chapter 6.

The investigations of positron annj-hilation in a

complete series of rare earLh elements indicated the number

of valence electrons per atom for each element .2o'2\ In the

studies of positron annihilation in magneLized media, it was
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ooproved" LT¡.at in beta decay positrons are longitudinally

polarized due to nonconservatlon of parity. By measuring

the two-gamma angular correlation of polarized positron

annihilation in ferromagnetic solids, one is able to obtain

the momentum distribution of spin aligned electrons in solids

studied, thus yielding important information of the study of

ferromagnetism. The results in magnetized iron show23'24']B

that the 3d el-ectrons of magnetized iron are polarized, i-'rt

agreement with the measurements from neutron diffrac Lion,z5

and also show Lhat electrons in the conduction band have

an antiparallel- polarization.

Tn addition to the study of metallic solids, a great

variety of nonmetallic samples have al-so been investigated

with both angular correlation and lifetime measurements.

Among the nonmetallic elements which have been studied, the

single crystal graphite sample showed a most interesting

result in the angular distribution of the annihilation

radiati-on whi.ch depended consiclerabl-Iy ol:l the dire'ction of

orientation of the crystal and was accounted for in terms

of electron o::bi-taI in the plane of the graphite and along
nÊ

the axis perpendicular to the pl ar\e.tu In the studies of

alkali halides , it is fou.nd Lha'b the ângrilsr C.istr-ibution

,f,f the annihi lation radiation of these salts depends allnost

exclusively on the nonmetallic ion (negative ion). This is

understandable since the positrons are attracted by negative

charges. fn this work, an ionic crystal of perovskite
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(ta.tPb.3)iunO3 t'ta" also been investigated, and the result

shows Lhat most of the positrons are concentrated aL the

site of the negative oxygen ions and annihilate with the

2s- and 2p-1ike electrons of the O-- ions.
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clepLpr ?
ExperimsLta.l

2 . 1_9enera1 .Dessr_i_ption of. Apparatus

A standard para1lel slit angular correlation apparatus

has been used to measure the angular distribution of annihila-

tion photons. This apparatus has been described in detail

previousty27 and therefore only the general d.escription

å.nd modif ications of the apparatus will be discussed here.

A. Mechanical

A d.iagram of the mechanical parts of the angular corre-

lation apparatus is shown in Figure 2.1. The basic mechanical

features are the source and sample housing, two gamma ray

detectors, and the associated collimating slits. All of these

components were mounted on two parallel aluminium ttI" beams

which were approxímately 20 feet long and placed one foot

aparL and bolted with several cross bars.

The two gamma ray detectors were mounted on either

end of the rrlrr beam structure. One detector was fixed and the

other was movable. Both detectors were heavily shielded by

lead, âs shown in Figure 2.2b, to cut down the accidental

background rabe from scattered gamma rays and from other

sources in the laboratory.

The source and the sample were shielded in a lead castle,

as shown in Figure 2.2a, being placed on the middle of the rr f rr
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F]GURE 2.1

The Angular Correl"ation Apparatus
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FIGT]RE 2.2

The Sample Housing (r) and the Movable Detector (¡)



(a)

(b)
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FIGURE 2,3

The Sample Cel1 (") and the Sample Housing (¡)

For the Low Temperature Experiment
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beams, with collimating slits of widths 0.16 cm and r.5 cn,

respectively, facing the fixed detector and the movable detector.
The purpose of these collimating slits was to reduce the

amount of scattered radiation reaching the detectors as well
as to shield the detectors from the source. A1so, the width
of the fine slit, facing the fixed detector, can be used as

an effective width of the sample to calculate the geometrical
angular resolution of the apparatus. The detailed calculati_on
of the angular resolution of this apparatus will be made in
Appendix A.

To keep the co11Ímating slits of the detectors aligned
towards the sample as the movable detector progressed Lo

different positions , àrt aluminium beam, as shown in Figure z.z,
which was reinforced by a set of three steel cables to both
ends of the beam, was extend.ed from the fronL of the rotatable
steel plate to a pivot point directly under the sample. To

allow for the slight increase in the distance from the detector
to pivot point as the detector was moved off the center position,
the end of the aluminium beam was permitted to slide freely in
a hole in the pivot shaft.

B. Electronics

A block diagram of electronics is shown in Figure z.u.
The detectors were rntegral Assembly model ßwn4/a-x and

consisted of 4" diameter, 1r' thick mar(tr) crystals mounted

on þo1B IIB photomultipliers with mu-metal shields. A positive
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FTGURE 2,4

Block Diagram of the Appa::atus
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high voltage ( rroo volts) was provided. for photomultipliers

by a Hamner N4o1 high voltage supply. Negative pulses, which

are of the order of one volt in amplitude, were fed from the

cathode followers in the detector heads to amplifiers, and

were amplified about five times and shortened to approximately

one microsecond.

Pulses from the amplifiers were fed to transistorized
si-ngle channel pulse height analysers set to select gamma

rays in the energy range between 0.1 and O.l Mev. The fast
rising narrow pulses i¡rere sent to a coincid.ence unit which

has a resolving time of about 1!O nanoseconds. The resolution
time of the coincidence unit was determined by providing a

random source of gamma rays for each cletector, and measuring the

chance coincidence counting rate and single counting rates,
NA and Ng, for the two detectors. The resolution time, T, was

then calculated using the formula:

Chance coj-ncidence counting rate: 2TN^N-.- fllr

A Technical Measurement corporation Mod.el sG-3A scaler was

used to record the number of coincidences.

When 1OOO counts have been accumlated on the scaler,
through the rrautomatic unit" which has been described previou"ry]7
the track motor is started and moves the movable detector to
its next position, simultaneously, the sc.aler stops counting

as the motor is running, and the scaler starts counting again

as soon as the motor stops while the detector has been driven
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to its new posi-tion. I,rrhen the detector moves to the ,oredeter-

mined end of its run in either direction (ug. 16 milliradians
on each side), it will reverse the direction automatically
by reversing switches in the automatic unít system. A simplex
rnterval Timer Type ET-loo was used to print out the time
interval during each looo counts of coincidences.

All the electronic instruments were powered. by a model
2OOO S Sorensen A.C. voltage regulator.

2*3_îl s 'itryg_Ëgg=" u s

Most of the experimentar work was done with two Na22

positron sources. crr64 *u" used. occasionally when it was

available.

The first Na22 source was lo millicuries in the form
of Nacl solution obtained from the Radiochemical center,
Amersham, England. The source had a high specific activity_,
3 mc/ne, and was dissolved originally in 6 mr. of water.
The source was evaporated from solution, drop by drop, on a
* diameter plastic button (which was prepared by machini-ng

sha11ow, concentric circular grooves on rt) mourÈted on the
end of a 10" long plastic rod, and then covered with a thin
piece of mica (e ng/cnz) sealed. around the sides of the button
with epoxy resin g1ue. ft was estimated that about Bofi or
the source was actually deposited on the plastic button as

the evaporation process was finished. The remainder was

left in the original source contai-ner, i-n the syr.inge.. and
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F IGüRE 2 "5

Positron source (Nt22)
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in the hypodermic needle.

tr'or the above reason as well as for the reason of
safety, the second Na22 source we used was already mounted on

a perspex rod, as shown in Figure 2.5, in the Tsotopes Labora-

Lory, N.V" Philips-Duphar, Amsterdam, Nederland.

Ordinary Cu foils measuring 3/4 " t/A x O.OO5 ínches

v\iere prepared and sent to Pinawa, Atomj-c Energy of Canad.a Ltd.
for pile irradiation. Since Crr64 tru., a half-life of :rZ,g hours,

some haste was necessary in making use of a foil after irradia-
tion. The activity when used in the experiment was greater

than 250 millicuríes.

z .-L.-Êese,ls- Je!l.J,us_

Ordinary liquid samplest a.g.t hexane and decane, were

contained in a smal1 brass tank with ^ 3/4" verbical face covered

with a thin mica window (r.¡ ng/crrlz) so that more than 95% ot
the incident positrons could penetrate through the mica window

and annihi-late in the liquid sample.

The methane sample was contained. in an aluminum ce1l,

as shown in Figure 2.3a. The thickness of the aluminum window

was approximately 4 mg/cnz. The reason why one could not use

a thinner window was that it had to be strong enough to with-
stand evacuation of the cell to a pressure-l micron of Hg.

During the experiment the position of the sample cel1

was adjusted so that the fixed detector could only see a portion
of the sample which was just inside the window and defined by
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the narrow collimating slit of the sample housing. Therefore,

no window correction was needed.

The solid. samples t e .g.: Alnico and (p¡ 
TLu.3)U,nOr,

uÍere mounted. on the end of ^ 3/4" brass rod using a special

mounting ftraJç.

2,4 Distillation Apparatus and Methane Sample Preparation

A vacuum distillatj-on apparatus was used for the

preparation of methane samples. A diagram of the apparatus

was shown in Figure 2.6. A glass tube connected the distilla-

tion apparatus to the sample cell.

Great care hias taken to prevent contamination of the

pure sample. High-vacuum stopcocks and ground glass joints

r¡rere used. with a minimum amountof high grade stopcock grease.

As shown in Figure 2.6, a mercury manometer safety

valve was'connected to the condensing tube and the sample

cell. A thin layer of vacuum pump oil was introduced above

the mercury column to prevent the diffusion of mercury vapor

into the rest of the appratus.

Research grade of methane gas was obtained from Matheson

of Canada, Ltd. , idhithy, Ontario. This grade of methane is

of the highest puriLy that is available. ït had a minimum

purity of 99 .99 mole % "

After the whole system was evacuated to a pressure of

1 micron of Hg, the stopcocks between the sample cell and the

cold trap were closed, and methane gas was then condensed in
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FTGURE 2.6

D j-stillation Apparatus
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the condensing tube. A dewar of liquid nitrogen was used. to
cool the condensing tube. After a sufficient quantity ç*7.m3)
of cH4 üras condensed, the valve of the gas cylinder a.nd the
stopcock between the cylinder and the condensing system were

closed. when the sample cel1 in the sample housing was cooled
down to the temperature of -tTToc, the stopcock between the
sample cell and the cond.ensing tube was opened, and the dewar

of liquid nitrogen around. the cond.ensing tube was lowered

down until the liquid nitrogen level just merely touched the
bottom of the condensing tube. After the transfer was

completed, the condensing tube was closed, and. the sample

ce1l then only connected to the mercury manometer safety
valve, During the sample preparation procedure, a dewar of
ldrquid nitrogen was kept around the cold trap"

å. 5__ Igrye rgt gI" Sleu!3! aW_ggr Sullees-qssp.le

Liquid nitrogen was used to cool the CH4 sample.

The aluminum sample cell (ntgure z.3a) was attached to an

aluminum rod which extended downward into a reservoir dewar

of liquid nitrogen. Liquid nitrogen was transferred. from
a ZJ-riter storage dewar through a well-j_nsulated stainless
steel tube to a smal1 container attached to one side of the
sample cell. The liquid nitrogen then passed through a sr¡all
tube to the other side of the cell and then into the reservoir
dewar.



2B

A ni-trogen level controller maintained the nitrogen
level in the reservoir dewar. A circuit diagram for the

controller is shown in tr'i_gure Z.T .

The operation of the level controller wil-l outlined.
A Keystone T¡rpe Rlloxo4-1oK-315-s5 thermj-stor was used as

the nitrogen level sensor. h/hen the nj-trogen leve1 was below

the sensor, the resistance of the thermistor, nr(-2oKo), T^ras

much smaller than Rr. The relay circuit was then open, the

solenoid valve was closed, and the electric air pump pumped

dry air into the liquid nitrogen storage d.ewar to build up

the pressure for transferring liquid nitrogen into the reservoir
dewar. As soon as the nitrogen level in the reservoir dewar

was up to the thermistor, its resistance, RT, increased. rapidly
to -2ooKC). This caused the transistors g1 and. e, to turn on

and activate a relay opening switch s, and closing s2. The

opening of s, stopped the air pump and the closing of s2 opened

the solenoid valve to vent the storage dewar; the transfer
of liquid nitrogen then ceased. The liquid nitrogen in the

reservoir dewar boiled-off slowly. As soon as its level was

lower than the thermistor, Rn was reduced to its original
value, and the relay circuit opened. Switches 52 and 53

then returned to their original positions. The transfer of
the liquid nitrogen started again. The average time needed

for pnetransfer cycle was 1| minutes. The systern used about

one liter of liquid nitrogen per hour.
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FTGURE 2.7

The N, Level Controll-er
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Additional temperature regulation provided by a SCR

(Siticon Controlled Rectifier) temperature controller was also

used. The circuit used was similar to the one originally
des,igned by Mcl'ee.29 In f ac|, for a particular position of
the liquid nitrogen 1evel in the reservoir dewar, the tempera-

ture of the sample cel1 ordinarily reached its equili-bri-um

temperature i¡¡ithin a day and rem¿lined constant even w-i-thou"i;

the help of the S0R.¡temperature contro_Ller.

A copper-constantan thermocouple junction was epoxy

cemenied to tire szrmple cel1 . The reference junc bion was

kept at Oo C in a dewar by a mixture of crushed i-ce and water.

A potentiometer was used to mêasure the pctential diffe::,ence

between thermocouple junctions. The bemperatu:i:e was obtained

from a therm,¡couple tempera'bure vs. potential cali_bration

'uable.

During the experiment, the- liquid methane sample was

maintained aL -177oC and the solid sample at -187oç. The

iemperature deviation was less LT-tan loC.

The sample housing was well-insulated by a styrofoam

box during the 1ow temperature experiments.

216 Pata. Sccum}lation_a39 .Ala1{sig

ïn almost all caseS, ãt least ten and often twenty

or moreruns consisting generally of 1OOO counts per poini
between O to 10 milliradians, and of 1OO counts per point

between lO Lo 16 milliradians were tair,.en on a sample. The
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interval between the points was O.9OT milliradians except

for some organic liquid sa:npies luirere the i,nterval between

the points was O.9O7/3 milliradians i-n the region between

-4 to + 4 milliradians. The average time for a run was usually
about two days. A month or more was usually required to complete

the únvestúgatôorir of one sample.

Eaah run was examined for any obvious irregularities
which might be caused by electronic drifts or power failures
in the building. Tf any irregularities were apparent, the

whole run was discarded. After a complete set of data had

been obtained, the Lotal accumulated counts at each point

ïras divided by the toLal time required for the accumulation.

The data taken ny Cu64 source were corcected for the exponential

decay of source itself. Each angular distribution was plotted

as counting rate vs. angle on semi-transparent graph paper.

This was placed over a light box and folded to bring the

points on either side of the distribution into as close

agreement as possible thus determining the center of the

di-stribution. In all cases, the angular distribution was

synrmetric within the experimental uncertainty.

To anaLyze the observed data, first we have to make

a correction f'or the background distribution. The sources of

background counts in the angular distributions will be outlined.

The first was due to chance coincidences which contributed a

flat background of about È% of the peak counting rate. This

hras determined by moving the movable detector 20 milliradians
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off the l8O-degree line so that coincidences from annihilations
in the sample or any parts near the source would not be registered.
Another measuremeni was also made by measuring the ceritral
counting raLe with no sample tank inserted. This was approxima-

tely the sa^Tne as the counting rate at 20 milliradians detern'rined

earlier. The background due to the window of the liquid sample

celi has been neglected by the arrangement described in
Section 2,3. Therefore only a correctj_on for the background

due to theivery low number of chance coincidences was made.

Because of the finite angular resolution of the appratus,

the background corrected angular d.istribuiion, Ct(O), is
related to the true angular distribution, C(e), by the following
integral equation,

where R(e) is ther angular resolution function whj-ch has been

calculated and discussed in detail in Appendix A.

ïn almost all solid samples studied, the observed

angular distributions are quite broad, and since the samples

are more dense, this results in a smal1 positron penetration

depth and a narrow resolution function. Therefore the resolution
function can be treated as a delta function, i.e., n(Oo-e)-
5(eo-e). Substi.tuhon of this into equation (Z-f), yielCcd

Ct(eo) =C(Oj. Therefcre no correction is needeC for these broad

distribution curves.

(z-r) c'(oJ = (r(e)n(o.,-o)de = ITCn.-n)n(e)oe,J^^ ., J* v

For the liquid samples , tb.e angular clistri_butions are
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Tathgr narîr'or¡rer. Therefore equation (z-r) must be solved for
C(e) to give the desired correction, and. to do this, àn

iterative numerical technique was used. Each iteration
generated an approxirnate solution crr(e.), where n was the

íteration number. This approximate sol_ution was obtained

from thaL of the preceding iteration by the relation:30

(z-z) cn(oo) - c,._1(e6)

F
\ n(eo-e)cn_r (e)oe ¡r-s -_l

For the zerotlt appr"oximation, i.ê., the initial estimate of
c(eo), we used co(oo)-ct(eo). The iteration was continued

until some arbitrary degree of convergence was attained.,

i.e", Crr(e") + Crr-1(eJ . Usually tkris occurred within the

first couple of iterations. The resulting correctúon to
the angular distributions for liquid methane, hexane and decane

are shown in Figure 2.8, 2.9, and 2.10 respectively.
Finally it is necessary to explain the physical meaning

of the measur.ed. angular d.istribu-tion C(e). Following Stewart, 18

1et us define f(Ë), the distribution of probability of finding
a pair of photons with momentum f, rn dfl. Then the coincidence

counting c(e) obtained by the long slit type of apparatus is

c(p") f(Ë)dpxdpu,

o 
Ic'1eo)

where pz= mcO.

follows: The

line jointing

'('
lr

J_o

Th

ig
ê

-æ
I

I

.-ó'

I

or:

the

e Cartesian Coordinates are defined as

in of system is at the mid-point of a

two de¡ectors. The line is the x-axis.
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The z-axis is para11e1 to the direction of motion of 'úhe

movable d.etector, and the y-axis, of course, is veriical-.
If f (Ë) is ar\ isotropic function, it can be easily

shown (see Section 3.3) that

f (p) : corrst
Ðdo

and tlnat the momentum distribution, m(p), is

dClo )
li(p) = cohst . p, J

dp-z

ïn the following chapters the data will_ be presented

in eitlrer C(p) vs. þ, or N(p) vs. p.

The slope of the angular distribution curve, ô,C/dp,

was generally taken directly from the difference of ad.jacent

measurements, viz.,

But in the higher momentum region where the statistics were

poor because of the very low counting raie in this region,

bhe slope was derived from a five-point least square fii
of a parabola, viz.,

r dc(p)r
ll-tt
L ap J at p=p' [t.(or,*2)+ c(pn*r) - c(pn-r) - zc(p"-e)] /rc.
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FTGURE 2.8

Angular Distribution for Methane (CH4)

The open circles -i.ndicaLe the experr'.mentaI data
for: 1:'-quid methane (at -rrToc) and the xrs jncljcate the
experinental data for solirl methane (at -r87oc). The d_ashed,

curve j-ndicates the distribution for. 1:iquid meihane copectecl
for fj-nite angular resolutíon"
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FIGURB 2.9

Angular Distribution for Hexane (C5m14)

Theclashedcurvej.ndj.catestheciistrilrutioncorrected

for finite angular resolution'
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FÏGI]RE 2.10

Angular Distribution for Decane (tr'Utrr)

The dashed curve indicates the distri-bution corrected

for finite angular resolution"
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çtlget"I 3

Posijlrro.n SILnihila_!ion .i_n Normal H_]rjl.rocarbon Systems. I.
Elec tron Momentum Dis tributions

3.1 _qeI|gqsl

I¡lhen a positron enters a condensed hydrocarbon compound

it may annihilate with an electron in the c-H bond or in the

C-C b,ond. tr'rom the measurement of the angular cor"relations of
the annihilating photons, one is able to obtaj-n information
concerning the momentum distribution of eleetrons annihilating
with positrons. Very little theoretical work has been done on

momentum distributions either in atoms or molecules since the

early 1940ts. Most of our knowledge of momentum distributions
for molecular systems comes from a series of papers given by

coulson and Duncanson.3r-3T rhe general method. used to obtain
the momentum wave function consists of transforming the space

r^iave function to momentum coordinates aecording to the Dirac

transformation theory. Coulson and Duncanson used the Slater
type of hydrogen-like atomlc wave functions to calculate the

,Q
momentum distribution in simple molecular systems. Kerr et alr"
have used these results for the momentum distribution of the

electrons in c-H and c-c bonds to calculate the electron

momentum distributj-on in hexane and then they compared the

calculate curve to the momentum distribution of the annihilating
positron electron pairs observed from an angular correlation
experiment. The agreement was good except in the high momentum

region, where the theory predicts higher values Lhan observed.



-"9

To examine the reasons for such a discrepancy, in the next

secti-on ftre recalculate the momentum distributions in c-c

and c-H bonds by using the analytic sctr' functions of atomic

carbon orbitals calculated by Löwdir-.39 It will be shown

that the use of these improved wave funetions reduced Ëhe

discrepancy between theory and experiment by a factor of z.

3. 2 Calculat !.on j?f Electron MomsLtgnlDistributions

Before going into the detailed calculations of the

momentum distributions of electrons in c-H bond and in C-C bond,

we first calculate the momentum distributi-on of electrons in
the hybrid atomic carbon orbitals.

The Momentum Distributi_on in the H rid Carbon Orbital

The hybrid orbitals of the carbon atom are described

by the wave function

(:-r1

ß-27

f(c):

'%n{')-

of

i=(c): Au exp(-arr) " I uu exp( -ou")J /Jm

13: Cose.
J¿+ti

¿
k

{+

{"
exp( -"u")J

f5={c) +6 %e(c)

Jr +-æ

where frr(c) and lrotct
2s and 2p atomic orbj_tals

are the

and have

analytic SCF functions

the form

(:-:) ck
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in equations (3-2) andThe coefficients Ak, Bk, Ck, etc

(¡-S) are given tn Table 3.f

TABLE 3.1

k 1 2 3

A'-
}L 5 .9095

ak 3.9471

Bk 2.5829 5 .2230 4.5676

b.
K r.4TB4 2.8493 T .7990

ck o.87935 c aaa6.
J . JJJV 2.]-226

ck 1. o7B9 2.1444 5 .9216

And 6, in equation (S-f), is called. the coefficient of mixing.

For the tetrahedral- bonding 6 is equal to J3. In all our

calculaLionS we use atomic units with ê=tTt=h=1, and c=I37.

According to the Dirac transformation, Llne momentum

wave function for the hybrid carbon orbitals can be written

o.ù

( s-+¡ lc(Ë) : (z"r)-3/2 
J ""n(-iË'Ë) Y(c)o?;

if NC(p)Op is the probability that the momentum lies between

p and p+dp, then we ijue have the momentum distribution function,

mr(n), which is the average ot lc(F)"l.(Ë) over all directions
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in the momentum space, i.e.,

(îf
(:-r) ll.(o)=)"Xr(il"/crc) 2t,p2sin@ d@

in which we have assumed that the momentum distribution is
isotropic. Here r^re define (r, O, g ) and (prO r e ) as space

coordinates and momentum coordinates respectively.
To solve the equation (s-+¡ , iL is convenient to expand

exp(-iË.Ë) into normalized spherical harmonics referred to
some arbitrary fixed set of axes, and apply the addj_tion

theorem, i.e.,

( s-e 1 exp( -iË.ñ)= 7-ey+ 1) ( -tf ro ( coso)p1 ( cos@ ) jn(pr),
!-=o

where ja(nr) is a spherical Bessel function, and pu(coso)

and P"(coso) are Legendrets polynomials, then we substitute
equations (3-6), (S-r1, (3-z) and (:-:) into equation (S-+1

and use orthogonality properties of the Legendre r s po1¡momia1s,

ia

we get

(3-4,) Xc(i)= en|-3/z (r+ s \-È I ,r l ,"f pr)Res(c)r2or
L/ -o

+ i 2.|3,, 6cos * 
Ï"*r-, 

(n=)Rep(cl"2o"l 
,



where nr"(c) ana nro(C) are 2s and

of carbon given in equations (3-2)

and the spherical Bessel functions

jo(nr)- sin(pr)/(pr) ,

jr( nr): sin( pr) /(pr) 2

2p radial

and (S-:)

jo(nr) and

cos( pr) /(pr)

\z

*urr" functions

respectively,
jr(nr) are

The integrations in equation ( S-4t) can be easily
worked out by a standard method ( see Appendix B) . The final
result of Zc(Ë) is

(s-4"' 7c(Ë): r@ ä[^- å* - Bk t. 2 2,,3
\0k+þ )

(snfl - p2)

16 õ (+';¡;7t cos@i tnl
p("fr"p2)3

c: _l
rÇ;7f)

"u("f; - :p2)

Therefore, the momentum distribution function of
(S-¡) becomes

Bp2 lt r ãt-
( s-¡,) N.(Þ)= 

un-.' 
o f lt t "k'', (1n62, 1là[-c¡;;uP 

- Bk

equation

(:nfl - nt)
(oî * p\a

+õ2
l+

e)

J

^ l"r("î-Ep2) "k ì"kLp(4;iT- p74-ætr)
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B_._ T_he M-olT:ntum Distrib.utio,n_,ln tlrs_Sydrogsn 1s gglital

Similarly, the momentum distribution in the ls hydrogen

orbital, N',(p), can be easily worked out. The momentum wave- H'-
function is

where

and

e¡-3/zla "rnç 
_"1 

*i'(p") 
4 r rld,

Jo4 " pr

L*(il-- (2,,,) -3/2J""o(-rd Ë) Yl"(H)o? ,

Yt-(H):Jî! exp(-r), is the ts hydrogen wave function,

I(s-01 m"(n, =Jo 1HG)"XH(Ê) 2,r p2 sin@ d@

t,2:4.îTp

3z p2

^lrrr(t+p')*

C. Ihe llomentum .D.isllily_tion in the C-H Bond

I¡le used the Heitler-London or valence bond (V¡) wave

function for the two electrons that are paired to form the

c-H bond. This type of wave function is known to be a good

approximation for the covalent bond, such as the c-H bond is
supposed to be. If we number the electrons of the bond by

1 and 2, the wave function of the C-H bond, V(C-H), is
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ß-t) Y(c-H)=
*(c'r) Y(H:2) +Vc'z) Y(H:1)

(
where Snrr= t "K a t r) Y(H: 1) dv1 , is an overlap integral.\/rr_ J

To calculate the momentum distribution, m(C-H), from

equation (S-f), using a method similar to that introd.uced by

Coulson, we first transform electron 1 into momentum coordinates,

leaving electron 2 in space coordinates, i.e.,

/Gt,ìr)- (z,r¡-3/z 
I "*n, -i{.?r) f(c-n)oÊ,

- ( eri) -3/2

*J"*n[-rñ, (ãu* t 
")]1(c:e) 

^f(u,tluË,J

- pf 1 * sfr") ff {%(p'r) 
^f(H:2) + exp( -iÈr. Ê.nP( czz)þrirÛ.

where Ran is fhe length of the C-H bond, and then we average

Vßy?ù"/(õ'ìr) over all positions of eLectron 2, i.e .,

lïr)vrø ¡= [vrdr, 
Ê, ) "7(i 

r,? 
") 

ai,

= frÊr)%(i) * Vn( di ) ?H( Þ', ) * t r, 7r( p'1 )2fu ( n', ) ""*n ç - ip'r. nr")

* sr' Zc ( dt ) 2r(o', ) "*o 
( iËr

lrt, * s6H)] -*{f""r, -'n,. 1) Y( c, r) 9(H: e)o7,

' Êr")] /þtr"

This gives us the momentum space density of electron 1.



0f course,

same as for
for the C-H

the momentum

electron 1.

bond is

space density

Therefore the

Lt5

of electron 2 is the

momentum distribution

( s-e1 rv(c-H):þføl

: 
þt(n)

"Xß). 2.' p2. sino do

* Nu(p) + 2s."
'ã")l

m"n(n) ] / lzçt n

lop
m"n(n)=

D. The Momentum Distribution in the C-C bond

The calculation of the

C-C bond, m(C-C), is similar
bond is described by the wave

momentum distribution in. the

to bhat for N(c-H). The c-C

function

where ma(n) ano N"(n) are given in equations (:-¡t) and

(S-01, respectively, and

.or"F (1+ p2)2

,= -._ _ [cr( "'n-zn')+J:sr'-[ffi;qs -

in which the value of

interEral. S . canbe. CH'

c).

sin(pRr")

]J

R is taken to
CH

evaluated by a

PRcs

be 2.O a.v. The overlap

standard method (Appendix
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ß-g) Y(c-c) =

^f"(c:r) Y¡(c:e) + !"(czz) fn(c:r)
"ln;#

rwhere Su¡=JYu( c : 1) Y5 ( c : 1) av1 , is an overlap integral,
and !u{C) and YO(a) are the wave functions for the two carbon

atoms in the C-C bond.

The calculation of the Fourier transformation from

equation (Z-g) fottows similar lines to LhaL for N(C-H).

First we transform number 1 electron into the momentum space,

ia

7ïr,?r) - (zn7-3/z 
lu*n(-iËr.Ft) ^l(c-c)oË,

- ( zu) -3/2[zq r*r!o)J -+{J"*t -iFr.Ër,) !^(r,1)l(c: e)uÊr"

( r --) ,-+
+Jexn L-.pr. ( rrd È.. )J "l^(, = 

z)Tn( c : r) u?io 
Ì

= þCr* slo \-f {%(d1)%(c:e) 
+ exp(-idr.Ècc)%( czz)/r(ó'l)}

where R* is the length of the C-C bond, and then we average

V(Èr,?)"tr(dr, ãr) over all positions of electron 2, i.e. ,

x6 r)\ti r)= [r, u r, ã r) 7G r, ì 
") 

au,
J

=Vr(dl)?c(d1) [t* srocos(nror."o"r l] /G* t]o).
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Then we have the momentum distribution in the C-C bond,

(:-ro1 2n p2 sine dø

/(t*u3o),

N(c-c, = þrË)?(ô)

: 
[t.(p) + sa¡ riro(o) 

J

where ma(o) is given in equation

Bp2 (l ( à,-
Nu¡(n)=( 

r..r, 1lã f- ê?f

+3621r..-[¿-*

(norr)t
2s in( oR )o"cc' I- ('-F-J

CC,

(3-5'), and

{sofl-o2) I It
Gþz-¡:,l¡

s in( nRra )

PRcc

a-

'I
s in( nR.. )

PRcc

2cos(oR )dA.t,t/

in which Ra, is taken to be 2.9 a.u. m(C-C) and W(c-U) were

computed on fBM 36O-65, and plotted in Figure 3.1.

3 . 3_. Application jo Pgs.itron Snqi.hilaj_igJi in Msj!.aqg-,_Hex.ane,

and Decane

The probability that an electron with wave function

l(þ) will annihilate with a thermalj-zed positron with uiave

functi-on y*(?) and yield a photon pair with center of mass

+
I

J'

"o{.2u-sv2)
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momentum È l" proportional to

( s-rr;

where the integration is over the entire sample. In the

usual para11e1 slit apparatus, as described in Chapter 2,

all photon pai-rs with a particular component of center-of-

mass momentum È are measured, and the counting rate is
proporti-onal to

*
f(f
,(

p

'(

J

:
f

l_)
tn

'f r
to

2

(:-rz¡ õ) ¿"o oo
''Jf 'r¡ J

) e-neor

c(pr) =)

=l
I

2
þo

(P=Ff," n$)

= ,n 
{ f(Ë)p¿p

_t-
-2

m( p)

--dpp

F
where N(p)= lff 0l 2 n p2.sino d@ , is the momentum distribution

Jo
function assuming f(Ë) is isotropic, which is true only for

liquid and polycrystalline solid samples.

Now we can see the rel-ation between the observed

counting rate, C(pr), and the momentum distribution function,

ff we put P2+ 2 and transform the variable to p, we get

(:-rz') c(p")

f;,
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N(p ), by

( s-rs)

differenti ating the above equation, finally we get

oc(p=)
N(o ) -- -constant.o

do

If v¡e assume that the positron wave function is a plane wave

with small momentum, then Y-(Ë) is nearly constant everywhere

in the space. Therefore f(Ë) in equation (¡-ff) i" now

equivalent to the electron momentum density, and N(p) is
equal to the electron momentum distribution function.

. Now we are able to construct the total momentum distri-
bution for methane, hexane, and decane from the results of

Section -?,2, and compare these with the experimental results
obtained from positron annihilation data.

Since a methane molecule eonsísts of four tetrahedral

C-H bonds, the momentum distribution, N(Methane), is just

equal to N(C-H) in equation(3-B).

The momentum distrlbutions for hexane and decane can

be obtained by considering tlnat only electrons from C-H and

C-C bonds anni-hilate with the positrons and that annihilation is
equall¡r probable for an electron from either of these bonds.

lde will neglect the contribution due to carbon ls electrons

since the overlapplng of wave functions of these core electrons

rvith thaL of positrons is very small. The ratios of the

number of electrons in C-H and C-C bonds for hexane and decane

are zB/fA and 44/tB respectively, therefore,
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1
N( Hexane )-- + [zs mC c-H) + ro m( u-r ) ] ,

3B

1
w(oecane):*[++ *f c-H) + 18 N(c-c) l

The computed and experimental momentum distributions
for methane, hexanerand decane are shown in Figures 3.2, 3.3,
and 1.4 respectively. The calculated N(C-H) of Duncanson

and Cou1ron35 is also shown in Figure 3.2 for comparison.

Àt.^-J.+ Ur_SCUSST_On

I¡le assume LhaL, prior to annihilating, the positron

acquires an energy of ^0.1 ev. Calculations have been made

to estimate the thermalization time of posi-trons in metalr.4Or41

But no rigorous calculation has been made to predict the

thermalizabi-on time in non-metal or liquids. An experimental
)-t"cattempt to examine the question'- was inconclusive. The

calculations and experiments described in this Chapter are

based on the assumption that the energy of the positron is
near thermal and that all the momentum assigned to the annihi-
lating pair comes from the electron. This is consistent

with the general overall agreement between the calculated

m(p) curves and the experimental curves presented in this
Chapter.

The experimental curves for N(p) consist of a low

momentum part and a high momentum component. The low
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momentum component which is primarily due to the annihi-lation

of singlet positronium can be fitted to a gaussian. It was

seen in Chapter 1 that the percentage of singlet positronium

formed is TZ/3 where IZ, the amount of triplet positronium

f ormed, is obtained from the ti-me spectra measurements.

Thus, if the low momentum component in the momentum distribution

does arise from the annihilation of singlet positronium, its

intensity, which we sha1l call fL, should be equal to TZ/3.

ft has been ,t o*n38 that for several organic liquids the Il

consistent with

This supports

obtained from the momentum distributions are

the fZß obtained from lifetime measurement.

the view Lhat the low momentum component is due to the self

annihilation of singlet positronium. The high momentum

component arj-ses then from the annihilation of electrons bound

to the molecule with free positrons and the positrons of

triplet positronium.

The calculated curves fit well with experimental curves

except inthe higher momentum region. ff the 'higher values

predicted by the calculation represent a real- effect in this

region, then several points need discussing.

First, if thermalization of the positron had not occourred

by the time the electron and positron annihilated, then one

would expect the experimental curve to lie above the calculated

curves in those figures in the high momentum region. This is

not the case and supports the view Lhat positron had a low

momentum contribution to make to the pair.
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secondly, L]ne positron wave funetion used in the calcu-
lations in this chapter is a plane wave which takes on the

value of a constant for small positron momentum. This coutd

be sensibly modified Lo include the interaction of positron
and the atomic nucleus by reducing the positron wave function
in the regions of space near the nucleus. This would correspond

to a reduction in magnitude of the product of the positron
and electron wave functions for high electron momentum. This

kind of modification will be discussed in the next chapter.
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FIGUP.E 3. T

Calculaied Bleetron l{omentum Distributions

1¡or C-FI and C-C Bonds
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FIGURB 3.2

The Momentum Distribution for Methane

+ { -The experimental po:lnts for 1ì.quid methane (-fZZoc)

rr sol ict methane ( - r8Zoc )

A --- The theoretical curve (wlth Y*(r) = f )

B -------The calculated result of Duncanson and Coulson.

n(p )----n Gaussian to fit the low momentum component of
i)

the liquid methane.
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FIGURE 3.3

The Momentum Distribution for Hexane

The open ci::cles are the experimental points, and

the solicl line indicates the theoretical curve which is
the combinati-on of curves A, B and C.

A ---- m(Ps) (caussian).

B ---- # *(c-H)

c å8 r(c-c)
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FTGURB 3.4

The Momentum Distribution for Deeane

The open circles are the experimental pofnts, and

the solid line inclicates the theoretical curve wh:ich is

the combination of cu.rves A, B and C 
"

A N(Ps) (caussian).

B ---- ff *,c-H),

c # "Cc-c).
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Chapter 4

Pos itron AnlL.iþ-i1,ation in_Normal H.ydro.carbglL_ ÊJS:!7Sms . If .

One-pe.rjmeter {Ljrlytic, Pos.itron 1¡lavs Func tion

4.f Form of Positron i¡lave Function

fn Chapter 3, we have discussed the discrepancy

between theoretical and experimental curves in the higher

momentum region and stated LhaL it üias probably due to the

use of a constani-, positron wave function in the calculations

fn an attempt to explain the discrepaflcyt we introduce a

one-para^rneter positron wave function of the form

(4-r) Y.(r) - 1 - exp(-ri"),

where m* is a parameter corresponding to the ith atom, andl-

the origin of r is at the center of the ith atom. Sj-nce

the SCF electron wave functions are linear combinations of
exponentials, this analyti-c form for !.(") is convenient

for momentum distribution calculations. I,rlhen m, is large,

e.g. , -jo, ^1.(") = r. This i-s the case of a plane T¡iave f,ype

!J") also satlsfies thewith small positron momentum.

following conditions:

fn(r) : o

\(r) = t,

when r->O;

f*(r) r= oand when f ---> oo.
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4 . 2 CjLlculati_oIrs_ of liomentlun Di$gibutjons of 4rL.nihi_l:Ltj-ng

Positron Electron Pairs

From equation (S-ff1, the momentum wave function
for an annihilating positron-electron pair has the form

(4-e) XG) : (zr)-3/2 
f"*n( -iË. i) y_(È) y.( i)oi

where ^f_(7) and Y-(F) are the etectron and the positron
wave functions respectively. substituting equati-on (4-r)
into the aloove equation, we get

(4-z'¡ VG):t,G) - fl(õ),

where

( 4-s ) ø(ñ) = (zn\-s/z 
F*n( -iñ .7) IJÈ)oñ, and

(4-4 ) )(õ) = (zr¡-3/zJ"*n(-id. È)T-(F)exp(-mrr)oã.

The momentum distribution function for an annihilating
positron-elèctron pair then becomes

(4-¡) m(p) = ü(È)r(Ð z . pz. sinod@
)o

(rr

= lvt(Ë)- i tø11" Lr'(ð)- itø¡2,p2 sin@ do .

J-
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Now the momentum distribution function in the hybrid

carbon orbitals is

(bfr. p2)3

and

" 2 tf^ ak+ mc

zcil)= -- ?¡.* L( uu* 
^")tz 

nffi- Bk ffil

ä'-{

( 
"kn*" ) [( ",0"r" ¡ 

e

"k* *"
cos@

')"n ["u"t")2*n

and the coefficents Ak, Bk, Ckr...etc. are

After the i-ntegration in equation (4-6)., wê

given

get

2
Jþ. -tt

in Table 3.1.

p'

( o?*nt) 3

(4-6) mr(o) =["U(Ë)- {cøl J" F¿(Ë)- lårø¡z,rp2sin@dcÐ,

where 7¿@ is given in equation (3-4"), i.e.,

z;ø=ftäþ- éu-Bk

,FE
-L-i-'-rffi6z

-:n'J

( sofr-nz,
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( a+mçln k c-àf-ffi-Bk 3(br* ^")2-o2
I ou*r" ) 

2"ne; s

From equation (:-S1 , tine momentum distribution ôn

the C-H bond, ttt(C-U), can be written as

rl

)"*pt)"

flc

ffic

+

k+

l-
14-

c

t(

zpzJ
2_

J

)

)

m
c---ñ
a-p

-+k

;
ãa

(
_L
*"+

m

c.It

+
l-LI

tcp

(

4'uI

ñ2 r t2 ^2tÕP l=^ ¡c¡\cU-JP) tk l

"('. " I t f; "*L;4;;p ;@.æF)

Similarly, the momentum distribution in the hydrogen

ls orbital becomes

(4-n m"(n l= 
J."lrrrÐ 

- zHG)] " [.\,(È) - ,î(Ë)] z ,r p2 sin@ d@

= 4,r v2 lzltøl - 4HG)J2

32p2 | t 1*rr., 1z= ', lG;;Tz ffiJ

rl

(4-s) m(c-H)=ra, 
O__--+J 

[*r,n) 
+Ns(p) *zsr"m"n(n)J ,
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now Nr(n) ano N"(n) are given in equation (4-0'1 and (4-T)

respectively, and

rT-
rrr"n(n) = ).W@ h(ð) "u*p( -iõ - ñr")

.Tr(il"/n{õ) 
"*pç 

ifr ñr"))r*p2sine> do

16p
=--'R (1*;ãË

ATÌ \
U¡1

r1t.-_
L 1r t n )''

a.
L<

@Fr

1+m
h

Ir+mn)2* pz)z

( nfr*p21 3
Ð
"kx 

{r+e,.

X 
þ".fpncs)

{ snfl-n2)

Ct-
K

n[("u**")t* pz;

ckl mc

)n'l'.

+Js c [2., f&If-'n1 -ry. Lk r.tnq"frlf-

")2-sv23

n( "î* p')'

sin(on.")-, I

'-* JJ
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Similarly, from equation (S-fO1, the momentum

distribution in the C-C bond can be written as

(4-g) N(c-c):;*. Iur(o) r su.bNus{n)]

where rur(n) is now given in equation (4-6t), and

f,
uuo(n) = 

) "k(o) 
"ft (p) cos(pRrrcos@ ) 2 npz. sin@ d@

Bp2

ll +i*.*ahT -Bkæ**l
,r( r * 62)

+3 62

- >¡-n. "k* t" 3(.--t"tt-tt lle. sin(pnec)-àtuæ-=nffil 
=;

=^ I "i< .u("1_:n2)-,
î "ntr< 

"5;z-,= 
- ;Gã;;zp-j

v,- 
sin(pR..) 

+ 
ecos(pRrr) zsin(pn..) 

1l/\ I nor, (norr)t (pncc)3 ) )
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Momentum d.istributions m(c-H) and N(c-c) were computed

for different val-ues of mn and m", the parameter in the
positron wave functions correspondi_ng to the hydrogen atom

and the carbon atom.

4 .,3 . ResIüts_ a]rd_Dis.cus!_ign

Figure 4. r shows the calculated and experimental
results for the methane molecule, with flh= flc: l-.4 (tfre
calculated curves with *h:1.3 tO.3 and m" =!.4 t O.3, all
fit with experimental data to within the experimental

uncertainty. ) simirar results for hexane and decane are

shown in Figures 4.2 and 4 S.
ïn all cases, the calculateo N(p) curves are in good

agreement with the experimental curves. The discrepancy
presented in the last chapter now has been removed by using
such a simple-minded positron wave functi-on. This suggests

that in detailed analyses of momentum d.istributions one

must consider the coulomb interacti-on of the positron with
the effective nuclear charge.
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PlcuRu 4.1

The Momentum Distribution for Methane

Thesolid}jneindj.catesthecalculatedcurveusing

theone-parajneteranalyticpositronv,Iavefunction,with
parameters mh = ffi" = f.4.
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FIGTAE 4 .2

The Momentu-m Dfstribution for Hexane

The solid 1i_ne inclicates the calcula ted curve

wlth flh = Hc = !.4.,
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FTGURE 4 " -7

The Momentum Distribution for Decane

The solid_ line indi_cates the calcu.lated cu_rve

with rt,- = fll : 1 .4 .Ilc
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Chapter 5

P.os itrollSn]rihilat_i.qn i.n Jüj¡gmal HydrocarbollËJ.stem.s . IJT-.

Positron ï¡lave Function Obtained From

Schrödinger Equation

5.t Calculatúons of Positron l¡Iave Functions

In Chapter 4 we introduced a simple form for the

posiiron wave function and showed how this form leads to

reasonable results. l,rle will now show how a more realistic
positron wave function may be obtained as a solution to the

ground state radial Schrödinger equation.

Since electron wave functions for the molecule have

been constructed from combinations of atomic orbitals: we

will calculate the positron wave functions corresponding

to the individual atomic potentials. The electron-positron

v'iave function product for the molecule will then be combinatj-ons

of products for the individual atoms.

Recently, the thermal motion of positrons in metals

have been observed by Stewart et s1.50'51 However, the effect
of thermal momentum of the positron on the experimental data

would be small. \¡Ie will neglect the thermal momentum of the

positron in this calculation. The positron-electron correlation
is also ignored

Now we will first consider the interaction between a

positron and a carbon atom. The positron wave function, !*("),
is the ground state solution of the Schrödinger equation, i.e.,



oÕ

(r-r) - Èv'*-(") + v"(") ^l-(") - nt'*(r),

in which the potential V"(r) is taken to be tinat of a neutral

carbon atom calculated by Herman and Ski11man52 (rut with a

positive sien). V"(r) is shown in Figure 5.L The eígen-

value E is chosen to satisfy the boundary condition LhaL

the slope of the wave function vanish on the boundary surface

of the aLom, i. e .,

tJ") 
t -- o at r=r. ,

in which r" is taken to be the average radius of the carbon

atom, i.e., ,.:(V(c) l" l9(c))= r.¡4 a.u. The wave function

f or r7r" is taken to be unity. Thus ^l*(r") = t is another

boundary condition for equation (¡-f).
rf we set n*(r) : r^lr(r), then equation (¡-r) becomes

a second order differential equation with first derivative

missing, i.e.,

This equation was solved numerically by a familiar metirod.53

The result is shown in Figure 5.I.
Now we will consider the potential of hydrogen atom

seen by the positron. This potential has a form

11rr(r-:) vn(r)- - -- t lyf"ll'unr?dr,r r Js

$-21 n*(r)" * ,F - vclr)] n*(r): o.
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FrGirRE 5.1

The Potentiar of the carbon Atom and the corcesponcling

Positron Wave Function
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FIGURB 5.2

The Potential of the Hydrogen Atom and the Corresponding

Positron ltlave l+unctrì-on
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I(r-+1 n*(r) + z[u - vi,(")Jn*(")= o

7I

where the first term is the coulomb repulsion of the nucleus,

and the second term is due to the charge di-stribution of the

1s electron. Now Yr_"(u)= rrå exp(-r), and equation (¡-s) is
then

14,.T2
vn(r)= - - - \ r exp(-2r)or

rTJO

= (zr + Z + t/")exp( -Zr), which is shown in tr'igure 5.2,

so thaL equation (f-Z) becomes

or n*(r) + e[n - (zr + z " l/r)exp( -z"))Rn(r): o.

Again E is chosen to fit the boundary condition [n*(") /rlt = o
aL r-"h, the average radius of hydrogehr i.e.,
rh = (.f(u)lrla'(H))=1.50 a.u. This numerical positron

ftiave function is also shor¡m in Figure 5,2. IBM tr'ortran IV
computer progratns are included i_n Appendix D.

5 . 2 C a1.cl-ilutÅons. gÍ Mom.e.qtlgq_listliluti.one of _AJyi_i!_i1at 
j_ng

Positron Electron Pairs

A ._Th.e_M.ggrentqm_Dis tri.bujjon_ in jlr_e Hybrid C arbgn OIbitaJ

The elecbron wave functi_on for the hybrid carbon

orbital is given in equation (¡-f) , i.e .,



t¿

n for an annihilating pair is then,

n (3-4'), we get

func tio

- -"/z l""
)

" sJ""n( -Ë.?) !ro(c)"þ.(')ui j

same calculation of equatio

cosø.2( sùÈ [,i r( 
pr)nro( c ) t( ") "20* j

ep(c) ar,e 2s and 2p radial wave functions

and j1(nr) are spherical Bessel functions.

mentum distribution function Ur(O) i=

^|{c)

The momentum wave

xc (È): '.p(-iË.i)t&)t'*(r)o?(z',)

{ f""r, 
- iË Ë ) !r=(c) "1.(r ) o?

(z+)3/2)Tr 62

Following the

$-s) /r(Ê) = (zù-3/z(r+ o \-È{,u",* Ji"f 
p")Re"(c)^1.(r)r2or

-t_ {>

where nru(c) and R

of carbon" jo(Or)

Then the mo

ß-al mr(o ) -- 
l%(Ë)"lc(Ê)e,rp2sin@ 

d@

+ 62xo(n I 
,J

J

zp? (

=J ^ lx"(p)zn(r+s2) [ t

where



(-1

$-r) xr( n) = -dr,
I.,P*)Re"(c)f*(r)r

x"( n r= 
F*rÈ 

) "?¿H( Ë ) anp

'lx^rÈ)l' '

= + fi"rpr)exp(-r)

2sino 
d@

XHG¡ = ( er) - t/' 
J""p( -iË. n)?(s) "h( r)oi

t*( ") "2o"

C" The Momentum D_istrj_bution in the C-H Boryl

To calculate the momentum distribution of the photon

pairs due to positrons annihilating with electrons i_n the

c-H bond¡ wê first transform the Fourier component of the

positron wave function overlapping with number 1 el-ectron

(¡-e ) xe(p) = 
Jir,pr)nro(c)ï-(")"2o".

B. The Momentum Distribution in the Hydr ls Orbital

similarly, the momentum distribution in the hycirogen

Is orbital becomes

$-g)

where

( r-ro¡

= 4¡lp
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as we did in ehapter 3, i.e,,

/.(Þ1,ì 
")= 

(2,r1- -z/z J ""o( -iËr. Ë1If( c-H) .l-('ì)d?1,

then we average X(Ë1,ir)"/(õr,ir) over aI1 positi-ons of the

number 2 elecbron, i.e.,

( ¡-rr) l¡( c-H) = ü-fil"/(È) z"rp2"in@ d@
Jo

J-1

Then adopting the result in Section 3.2C, the momentum

distribution, m(C-U), is

fl
N"r, ( p)= 

J%(p 
).u;ffi xr ( n ) c os ( pRr"c os @ ) 2,,p2" in e, d@

1 r ..ì= rlt., .il) t 
tn(p)o wn(n) + 2s'"N"r''(n)J

where lra(n) and lu*(o) are now given in equations (5-6) and

$-g) respectively, and

¡r3
" F"(p) ----s cos@ x2( n) sin(nRa*cos@ ) e"rp2sino d@

Jo 
" Iz nJt*s'

- ;þ l"{n){xr(p) "in(oRsH) *{T6 x2( o)[

in which xr(n), xr(n) ana 711(n) are gi-ven in equations

.t\
s r-n( pKcHJ

cos(r-rnùJ
PRcH

$-f), (¡-S) and (f-ro¡ respectively.
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Do The Momentum Distribution in the C-C Bond

Similarþ, adopting the result in Section 3.2D, the

momentum distri-bu'bion of annihilating pairs in the C-C bond

is

( r-ra¡ m(c-c) = fi,U, \lð)2,'pzsin@ d@

J.

where X@"X(È )= '4G)"/c1Ë) 
[r 

+ suocos(pR.rcos. ü ,

and 7c(È) = (zu) -3/' 
Iexp(-iË.?)Y(c)e4(r)oi.

Then equation (f-fe1 becomes

$-rr,', N(c-c)=;k{*r,p) t sa¡ uru(n{

where mr(o) iu given in equation (f-01, and

2n2
Nu¡(nl= 

6þ{*r,p) 
2"in(pn..),/(pncc) + 3e2x2(n) 2

xþinlpRcc)/(pncc) + 2cos(pncc)/(po.c)¿

in which xr(n) ano xr(n) are given in equations (n-f) and

(¡-g) respectively.

2sin( pasç) /
(o*rr)=] 

J,
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5.3 Rssglts_ ang .Concl_r-ts_io.n

cr*.^^^ the calculated positron wave functions areò IIÌU C

numerical values, the monentum distributions U(C-U) and.\
m(C-C) were evaluated numeÈ,ica11y by computer and plotted

in Figures 0.3 and 1.4 respecti-vely. Results for methane,

hexane, and decane are shown in Figures 5.5, J-6ranÔ, 5.7

respectively. fn all cases, the calcul-ated curves are in

a good agreement with the experimental data.

From the several different theoretical approaches

and their respective interpretations made in chapters 3, 4,

and 5, we can conclu<Íe LhaL the peak of the higher momentum

component of the eNperimental data i-s the direct measurement

of the most probable momentum of covalent electrons i-n the

hydrocarbons, and tlnaL in the detailed analysis of the

observed momentum distribution, the effect of the posj-tron

wave function can not loe ignored.
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FIGURE 5.3

The Calculatecl Momentum Distribution N(C-H)

The r-lasherl cu-r've is the calcul-atecl tri(C-n) wifl-r t.G) =f "
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FIGURB 5.4

The Calculated Momentum Distrj-bution N(C-C)

The dashed cu.r:\ue is the calculated N(C-C) with Ï(") = t"
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The l4omenlum

F'TGURB 5.5

Distribution for Methane

The solid l-r'-ne

and the d.ashed

in.d:Lcates the resul-t of

line is the calcul-ated

present calcu.lation,

result nj.th Y*(r) = f .
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Flcunn 5.6

The Momentum Di.stribution for Hexane

The solid line indicates the result of present calcut abion
for hexane, ancl curve A is the carcurated resurt v,rith .f*(") = t.

Curves g a.nd C are m(C-H) and N(C-C) respecbively
(present calculation) .
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FTGURE 5,7

The Momentum Distributíon for Decane

TheSolid]-ineinclicatestheresultOfpresentcalculatjon

for clecane, and cu.rve A is the calculated result l^Iith "ln(") =r'

Curves $ and Ç are N(c-H) and N(c-c) respectively

(p""sent calculation)'
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Cnaprg: 6

Positron Annihilation in Alnico and (fa.rpb.3)tUtrO,

6. f General

Positrons entering a metal are essentially thermalized

in a time short compared with their average lifetime .4Or5O

The momentum of an annihilating positron electron pair is
therefore chiefly the momentum of the electron. The measure-

ment of this momentum is easily done by observi_ng the angle

between the annihilation garlrma rays. The positron samples

mainly the most loosely bound electrons in the solÍd and.

also some of the core electrons. The problem of predicting

the positron electron annihilation possibilities for systems

containing serveral different types of atoms has been under-

taken in this work. samples under investi$ation were Alnico

and (La.rPb.3)M"03 crystals .

6.e Results and Discussion

The experimenLal results for Alnùco and (La.rpn.3)UnO,

are shown in Figure 6.2 and 6.3 respectively. Because of
the complicated and not well-understood. potential energy in
the Hamiltonlan, it is very difficult to make a reasonable

quantitative calculatÍon of wave functlons for electrons as

well as for positrons in these materials. Therefore, only
qualitative interpreiations and semi-quantitative calculations

will be made in this Chapter.
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A Alnico

To understand the results for Alnico, it is helpful

to show the results for copper which have been studied

extensively by several authors .43'44'45 Figure 6.t shows

present measurements for copper which are in agreement with

those of previous arthors. The experimental curve noted

by the closed circles has been fitted with a parabola,

corresponding to free electrons, aL the low momentum region

as indicated by dotted curve A. The dotted curve B has

been calculated on the basis of annihilation of 3d Cu

electrons with a posit"on,44 having a form of

c(p) - (t* 52 + + i4)"*p( -5'),

where f=ftn and rrarr is the 3d core rad.ius.

of curves A and B then gives us a measure of

for Cu which from these experiments is "(.t ev.

Now considering the case of Alnico I (tZ/" n' Zþy'" Ni'

5y'" Co, 63% Pe), the contribution of Aluminuin to tire angular

correlation curve is mainly due to the conduction electrons'

since the probability of the core electrons of A1 annihilating

with a positron is small even if compared with the d electrons

in Fe, Ni and Co. Moreover, the conduction electrons of A1

in Alnico are not truly " free" electrons since they are

coupled with Fe, Ni and Co. As seen from Figure 6.2, the para-

bolic portion of the angular correlation curve continues on15z

up to 3.5 milliradians whereas in the case of pure A1 there Ìs a

The intersection

the Fermi level
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good fit of inverted parabola to the experimental curve up

to the cutoff aL the angle corresponding to the tr'ermi

momentum.43

Fe, Ni and Co also contribute conduction electrons to
the Alnico as well as 41. All "conduction electrons"(better
called outermost electrons) will behave the salne way as far as the

positron is concerned. These electrons a1l behave like 4s-

electrons and the total angular correlation curve can be considered

to be composed of two parts: a contribution by all the electrons

in the 4s band and a contribution due the 3d band in Fe, Ni

and co (*u are neglecting sma'trl contributions due to the core

electrons). Since the 3d wave functions of Fe, Ni and Co are

much alike we merely used one 3d wave function to calculate
the overlap with the positron wave function. I¡lhen the contribu-
tion due to the 3d el-ectrons (curve A, in Fûgure 6.2) are

subtracted from the experimental curve (nigure 6.Zrdotted
curve) tfre rest of the curve fits well to one calculated

from 4s hydrogen-like wave function, curve B. If we extend

the inverted parabola, curve C in Figure 6.2, to meet the

d-electron distributûon as we did in copper, then the cutoff
point is aL J.) mlLliradians (corresponding to B.B ev.).
This we call the free Fermi energy for Alnico, if there is
such a thing for this a11oy. The calculated Fermi energy

of A1 based on the electron gas model assumi_ng 3 conduction

electrons per atom is 11.5 ev and the Fermi energi_es for
Fe, Ni and Co loased on .7 conduction electron per atom are

in the range of 5 Lo 6 ev. hihen these four kinds of atoms
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are mixed and reach

the sarne and in the

consistent with our

equilibrium the Fermi levels will be

region between I to 11.5 ev. This is
value of B.B ev from positron data.

B. (ra.rPn.3)u,"0,

The ionic crystals LaI4riO, and Pbl4:rO, are antiferro-
magnetic semi-conductors. Mixed crystals of LaivkrO3-PbMnO3

containing up to 30% of PbMnO3 are ferromagnetic with pervoskite

structure and exhibit a conductivity of 1)2 ohm-l-cm-l aL

this concentration. The properties of fercomagnetism and

conductivity in (La.rPU.3)tUtrO, are accounted for by the

'r d ouble exchange proces." 46

Experiments on the a1ka1i halides have indicated that
the 2-photon angular correlati-ons are almost independant of

the positive ions4ltirat is, they are only depend.ant on the

negative ions. Theoretically then this is interpreted to

mean that in an ioni-c crystal the positron wave function is
concentrated about the negative i-ons and therefore the positrons

are most 1ike1y to annj-hilate with the outermost electrons

of the negative ions. fn the (la -Pb -)i\ftro, crystals the' .( .s', J
positive ions Lu***, Pb**, Mn++nand l\¡ln***+are expected to

make little or no contribution to the angular correlations.
Most of the positrons are concentrated at the site of the

O-- ions and annihilate with the 2s- and 2p-like electrons

oI' tne u l_ons.
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tr'igure 6.3 . They can

B6

angular correlation curves is,shown

be fitted quite well to the function44an

c(p) = c1( r* I 
t) 

"*p( - f 
2) t crexp( - \')

where f=-p and rrarÌ is the 0-- radi-us which has been taken) 
-'{r)

as 1.4 A and p is the momentum of the annihilãting pair.

The first term, "r(r+!2)exp( -32), is plotted as curve A in
Figure 6.3 and corresponds to the 2p electrons while the second

terms¡ c2exp(-t1 corresponds to the 2s electrons annihj-lating

with the pos j-trons.

The sum of curves A and B fits the experimentaA curve

except at the higher momentum region where the calculated

curve drops faster than the experimental one. This discrepancy

might be removed by considering annj-hilations with the 3d

electrons of the transition elements or with core electrons

of the oxygen or some combination of these possibilities.

U,r¡-fortunately the discrepancy is so small that no clear cut

picture can be presented.

Inle can however say that positron anni-hilation with

the 3d electrons which is responsible for the ferromagnetic

properties j-s not significant. An experiment was performed

on the perovskite crystal in which angular correlation curves

were run wj-th the magnetization vector first in the direction

of the positron beam enterì-ng the sample and then opposite

to the direction. Similar experimentsz3rz4 on Fe and Ni

showed a considerable polarization effect while for the
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perovskite crystal considered here the angular dj-stributj_ons

were independant of the orientation of the crystal Ín the

magnetic field. This lead.s us to conclude that there are

virtually no positrons annihilating with the magnetic 3d

electrons in (la -p¡ ^)pinO_"' ,( .5' 3-
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FTGURE 6"1

The Angular Distributj-on for Cu

A ---- inverted Parabola

B ---- 3d electrons

P F'ermi momentum-F
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FTGURE 6.2

The Angular Distribution fo:: Alnico

A ---- 3d electrons

B ---- 4s elect::ons

C inverted parabola

D :lntersection of curves A and C



A ln ico

2014 16 tB

o

\
\
\

\
\tt
\tt

\ \\
' ¡\\\. 2\\c',

\.
\

\
-_---- \

o- -o
'o

l\
\q

\

\

6)

@

\ n.
,ot,D

\,1

/B
--/

- --"'1...

lo t2

p (mc x ro-3 )

o

2A

t6

c (P)

l2

tA
:.J



9o

FTGURE 6.3

The Angular Distribution for (fa.ren.3)U.rOa

A ---- 2p electrons

B ---- 2s electrons
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Appendix A

The Angular Resolution Function

In the follol^ring analysis, the origin of the

Car"tesian coordinate system is at the mid-point of a tine
jointing the two detectors . This line i_s the x-axis 

"

The z-axis is paralleI to the direction of motion of the

movable detector.
't¡le shaIl consider the resol-ution function in the z

direction assuming that the detectors extend to infinity
in the y direction (vertical).

For two sets of slits of width s (i "e.:sz) at a clistance

L on ej-ther side of an infinitely thÍn source, the geometrical

resolution function is easily seen to by an isosceles triangle
with a base width of 2s. The " sourse" refers to the portion
of the sample in which the positrons annihilate. A single
isosceles triangle of unit height centered at zo is given by

(a-r) r (z,zo) ={t l=l for lz - ,ol

, fo?lz-rol >s.

We will first assume Lhat the sources of annihilation
radiation are uniformly distributed through a thickness d



a2

defined by the width of the fine collimating slit of the

sample housing (see Section 2.14), so Lhat all triangles are

given equal weight. Then the Lotal resolution function is

given by

(a-z) otr)={ r(z,zo)dzo= J: (t
z-zt

1)u"osl

The evaluation of the above integration is dependent on

the values of' s and d. For s-d( d( s, which is the case

in our experiments, the integration in equation (A-Z) can

be easily performed in three steps, viz.,

z+s- z--z- (s+d+r)2
R.(z)= (" Ir - o far^ , ror -(o*s)<z <-d.-1' 2a L s J (J 

2s

Rr(z)= I= [r -?Ju", + "i,'¡, -T)u""

zs? - (s - d ù2
2s

z z - z- d , z - ,
n.(z)= f [r - -o]0" t I [r - 

-]u"o
--_ì'-' Jd t- = 

J o Jz L s

az2
=zo ( t 2s 2sd

for -d<z<d-s.

for d_s_(z(s_d.
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Actua11y, the assumption of a uniformly distributed
source is unrealistic, The intensity of the source is a

function of the penetration depth of positrons. 0n the

basis of exper-imentai data, GubernatoL: and F'1a^rnirrer.sfeld48

have proposed an empirical r.elationship between the positron
-++.range R- and its initial energy E', viz.,

(A-3) E+ : z9.f Q/a). (n* ) '60 (nn in kev. and R+ in ms/cmz) .

The positron specÈrum for Na22 has a niaximum energy of .54 Mev.

Because of the energy losses in passing 'uhrough the windows

of the source and the sample ce11, it is estimated that
positrons will have maximum energies about .4 Mev. when they

enter the effective sample region defined 'oy the fine collimating
slit of the sample housing. substitution of this value for
E*= 4OO kev into the above equation, yield.s the maximum range

t L.v. t
D+
.FT

m

o: =l+ (vzrJ"tm lz9.6 \ /
^¡é

mg/ cm

For example, in the case of liquid methane, the least dense

meterial studied, R*'m
of .40 cm.

D
=L6'( mg/em-, corresponding to depth

The transmission curve for a continuous positron

spectrum is very nearly exponential (nut hits a definite
zero at R;)19 Thus the intensity of positrons at depth z is
approximately
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,al- - exp \ -ltz )

where bhe absorption coefficient )s= 4.5/R.^ whích is chosen
m

to bring T: O.01 for ,:{. This empirical relationship
m

between u ano R,n fits well to the experimental data of positr.ons

penetrating C, 41, Cu, Sn anO P¡.49

Returning io the problem of the angular resolutíon
function, the triangular resolution functions must be weighted

by the factor of exp[-u(d-"o)/2] as zo varies from -d to d-

Therefore, the total resolution function is

d(a-+) n( ") = Ï, r(z,zo)"t(o-zo)¿=o
-Ll

f^-k(z+s-d)
=L=

=Å[r l;_3l]"*,d-zo)dzo

where tr = -¡t/z - -4 .5/2tln.

For the case of s-d < d < s, the iniegration must be

performed in five steps in the following T^ray"

z+s - ,o- z _, ]{ (O_zo) 
_Rr(z¡ - fu Ir --le^'* 

"u'uro

- (r-zk-sk-dk\"zkdl¡wz=, for -(o*s) -. z ( -d.
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nr(z): f (r - 1-- "o1"tr(o-zo)u"o * "it{t - 
zo-'¡uk(o-'o)uro

¿lasJzs

= L.-u( 
z*s-d) - e"k( d-z) -+ (sk-zk-dk+1).ç2nu|lnr",

for -d< z (d-s.

z
R=(z ): I" (r +¡"k(d-'o)oro + i" (r :':)"k(d-'o)oro

= [ar.*r-sk+zk) -zuk(o-') + ( sk-zk-ot+r) 
"2uk)¡w2=,

= [(oro*r -sk-zk)+ "k(d-z+s)

for d-s ( z -< s-d.

nu(")= j (r -"---t"1"k(d-'o)u=^* i(r -"o-')"u(u-'o)uro'z-s"oJzs

_ z"k(d_r)] /wzr,

for s-d(z<d

no(z): -[u (r - 
z - zo¡"k(o-zo) 

u"o
SS

=[uto(d-z+s)- (sk-zk+dro*r)] /v2*, for d.* z ( d+s.
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The results of equations (a-e) and (a-4) for liquid
methane sample have been plotted. as n(e) vs. e, where 8:z/L
in milliradians, in Figure 4.1 using s: d : .60 milliradi-ans.
For comparison, both curves are normalized to the salne height

at the peaks. The position of the peaks have been chosen as

the zevo position of O.
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FÏGURB A.1

The Angular Resolu.tÍon Function

.A----- uniformly dlstributed source

B ---- exponential distributed source
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AplsJ{Líx. B

Some Useful Integrals

The following integrations are useful for the calcula-

tion of the momentum wave functions in Chapters 3 and. 4.

(e-r)
"- 

( t-ik)x¿*

"-( 
t-it<)x 

¡

'l

f-
I wnere D ]-s tne

differential

operator, d,/dx)

D

"-( 
u-rk)x

t; - D/(a-ik) I ""1:

2
D*

[*

."1,
(a-ik

- ( a- it<)

^- ( a-ik)x
c

(a-ik )

-( a-ik)x

( a- ik)

n¡ ( a+lr)nt1
(u2 * n21n+1

-Dl1ç-+L* (a-ik)

-J

^ ¡..(a-ik)'
. "" -r""1:

n-1 / -\ n-2
f n nx n(n-I)x
I 

^ 
T 

- 

T ----------------ã -L (a-ik) (a-itr)'

T
n I;"t: u-(u- 

'u)" 
u,.](e-z) e-ax sin(t<x)o: fr= t'1
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I

ï

-ux 
"o* 

( rx) ox : o" { 1.],."- 
( a-ik)- u-JL¿)(e-:) R. _ f*" ", II. 

JO

:r^ I
"r' 

ì.

n1 (a+ik)n+1

(^2 * n21n+I

For n:1, 2, 3, and- 4, I^ are given as fol-lows:

2ak
-1 (a2*t<2)2

z(3azu.-ws)

6(4a3t<-4ak3)
--13- (u2*t2)4

T+t¡ _
4

24(5a4k-roa2t3+ t5)

/)oÃ
t - - L\)(a +K )

r n! (a+ik)n+l I
= Ret 

,"t. -tr"* J

For n=1: 2, 3, and 4, R' are given as follows:

2.oà -K-
"1 - (u2+lc42
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z(u3 -3uto2)_ :"2 (u2 o lr2)3

6(a4 -6a2tu2*u4)
R^3 - (u2*"rl-

tz( ̂
5 -tou3w?+Dat 

4)
f ! r.+ (u2 + t"2)'
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Appendi} C

Evaluation of Overlap ïntegrals

Since the overlap integral involves two-center

integration, it is convenient to use prolate spheroidal

coordinates, ( \, l, +), defined by

^-

( r^ + r,^)
<1 U (r

(r - r")
l-__.ã__" , (_r <F <1)

Q: # ,

(o < Q ( 2T ),

here we regard (rr,Or, f ) as spherical polar coordinates

which then satisfy the relations,

"^=; (¡+,u), *o= T 
(r-¡),

^/+ t xj/-I
coser= x.u^ , cosOS= ¡-/t

D (x2-r) (:-Êl o (r2-r) G-Êl
sin-ou= Ttf- , sin-e¡ = l;:;p-,



and hence,

raf rb- RÀ,

T-a- ro_R#,

,utb: G/z)'( n, - ,u2) ,

and volume element ov = ( n/z)S f* - Êlor.o¡rof .

I. Bvaluation of SoO Overlap Tntegral:

In equatíon (S-g), Su¡ was defined as

yr"(cr) +t%p(cu)

%(.) =
)T; dz

',h"(co)+sln(co)

sab = [Urc)%(c)ov

fr( c) :

( c-r)

where t"rc) an¿ %(c)
to the two carbon atoms

and have the form

are Ì^rave functions

centered at A and

corresponding

B respectively,
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where d is the mixing coefficient.



Substituting

we get

(c-z) q
ao l"/"r(c u)Y2p(cn ) dv: 

{["]'r,@ u) Yz=( c¡ ) ov +

the above equations into equation (c-f),

6'

the calculation, we

wave functions for

. uíWr"(cu) %nlro) t 'Yn{ru)Y2=Gvù""V1+ d2)

1t

For simplifying
Slaterr s orbital

-
1,,,
I K r---

Y"- ( c)= l- Te-nt' ,'LP /J 3TI

't,û
-^rre cosg,

where k-1.625 in a.u.

Now we will evaluate

equation (c-a).

will use the ordinary

Yr"(c) and n1'2n@),
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integrals 11, TZ and 13 in
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(c-:) rr - [^l,r=çc ^)%r( 
co)av

_ u' (, 
"-"-k(ra+ 

rb) u'
3fiJ A D

"5 f p (zn- 3" JrJ-r J o

2 ' ' E 
'* uo ft u, "-ffiÀ (^'-¡?)'= î (un/z)' J, J_r

(n/z)z ( * - pz)"-ffiÀ. (n/z)3 62 - Ê)dr.d¡df

4 F.¿ 2 1

= + $/z)t Iou( 
r,a ) +ar( 

t,c ) . ; ae(r,a )] ,

where 6(=kI¡ R i-s the distance between two carbon atoms which

i-s taken to be 2.9 4.u., and

a (t,a)- f "-o^re uo.nJ1

-de ( n n(n-l) n! ¡
= lf__ -r- -r T-l

o\ d' d2 d,tt J

(see Appendix B)



(c-4 ) rz= 
Prnrc u)Yzp( co)ov

= z(wn/a, r 
/r-oa Ii * "-ffin (^f *t) (xy -t) (n2 -¡,2)

Rr( r,a) + Ao( r,d )J

k5( -a= 
- 

lr r, e
1T,ß i ao 

t(i:¿+r5) (coso.acoso¡)dv

=; [ ;:fo"",n/z)'(n'' Ê) u

1B(r,a) - -5
5dr: ,,r Lo't

(c-r) ïE : 
J[Vrr(c,)%p(co) 

+ !"n(c^)^lz,(co)] ov

F
1-)

- + [ "r"nu-w(ru+ 
r¡) coso.coso¡dv-rr 

)q

x (n/z)3 (*- tz)oxo¡of

-tr¡¡.. (x¡+r) (¡/-r)

^2 -/a
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- k5 (*F Ên (n/z)'(nr-,ur)"-H^ #Ìrn/z)3t*-,Êld*¡d{Ittrri3 )7 J-1tg x'-y'

4 _(
- + (*tr)5 l- d\ e-ffiÀ f 

tu"[c 
,€-¡.Êy -trt-rll3]J¡ J1 J-t

- o.

Now for k:1 .625, R:2.9A, ol=kR=4.73, and

Ro( t,d ) = o. ootB67,

Rr(t,a) =o.oo2823,

4,,(l,d) =O.OO4954,
+

we get 11: 0.339 and TZ:O .328, and theref ore

sab = (o.339 - o.3zB 6')/(r+e2).

II. Evaluation of Sçg Overlap Integral:

The integral Sr" defined. in equation (:-Z) is given

s^f ["¡1 . )Y(n) ov
\J1.1 

J

AS



ro-(

here again lhe atomj-c carbon wave functionl(C) is given

dÐ

Y( c):

(c-6) sc'=
F;62

ano f(H) is the hydrogen wave function, i.e.,

1

Y(u) = -7 e-rh
Jfi

Then

lJr,( 
c )YtH) ov .' 

þrrc 
)-.t( ").{

{ "r" uur},

ur:þr(c)Y(H)ov : å r u5/z)L \,".-k"" 
e-rh dv

o¡, s-R( w-tV/z G/z)\

and

1 - I .*u 
o. 

"-R( 
u+t)x/z -

= ., ( úß)' J, uÀ e \¿L -/ ' 
)-t

x zr'(x*f)æ-Ê)



108

D3 -cir

=5 ç,"167È ( o¡. "-R(k+1)^/2 
(.ñ +b\2 - "f + ü/(ri-l)4J1

where oL=R(w+t)/2, þ=R(k - I)/2, and

ß -ßa-ã'-ê

b: uP Wp - 1) - .-PQ*t/p)

e: "É 
(r - z/p + z/pz) - e-þ (r + z/ø + z/pz)

d = eF (t - ,"/p+ 6/p2,- 6/p3)+"-Ê 1r + s/p * 6/p2 * 6/p3);

t--
Bz : 

IÇrrc 
)Y( H) dv : + Í " 

coso" "-k*" "-"h d,,

:q ft foG/")u "-ffi(^*/)/'-uT Jr Lt)o\!L/1/ 
v -n(x-v) /z (x¡+r) ñ ^ ñ ð,^d,tð,+

= ftF'@/z)u For(r,o) + aÃr(r,o) + onr(l,d) cAs(r,of .
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Now for k:1 .625 ano R:2,0 (tne length of the C-H bond),

we have d. =2.620, 13 =o .625,

a:I.32, b:-o.284, c=0.398, d=0.51, and.

A3(1,d) =o.09238, A2(1,"() = o .oi66T,

A1(1,r() =0.03813, Ao(1,d) = o .ozTbz.

Substituting the above values into B, and 8", we get

1
sc': -ffi t0.612 + o.3oZ õ ) .

Jl--tfð
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Appendix D

Fortran fV Computer Programs

ï. Positron Wave Function

OALCULATION 0F POSTTRON WAVE FUNCTION FROM EQ. ( 5-2) "

THE NUMERTCAL IITTBGRATTON PROCESS IS GilIEN IN REF,.53.

THE INTBGRATION INTERVAL rS 0.05 A.U.

DrrffiNSroN y(99),T( 9g), n( 999), v( gg), w( 99),D2y( 99),
rn2YY( 99 ) , F( 99 ) , u( 99)
READ (1,15) (U(W), N=1,32)

15 FORMAT (10,FB.O)

THB INPUT DATA U ]S TI{E SELF-CONSÏSTEN POTBNTIAL
FRoM REF.52, TN THE FoRM 0F u(R) = R.v(n)/(zz).

x(r) = o.o

c
C
(l

C

c
C

C

c
ñ

c
r1

c
c

c
c
U

DO 11 N= 2,32
W=¡'LOAT( N)
x(m)=0.05*(w-r.)
v( x) =!z ."u( iv) /x ( iri)

11 CONTTNUE

THE SY1VTBOL F DENOTES TTIE
E IS THE EIGENVALUE, AND

DO 10 I=1,999
A=FLOAT( I)
P(r)=A*0.005
v(r)=o"o
v( z) =0. ooOlo
¡'( r) =o. o
s'(z) :Y( z) /x(z)
YY(1)=O.O
w(e)= -z.x(B( r) -v( z) )"v( a)
DO 3O M=2,31

POSTTRON I¡IAVE FUNCTTON.
Y fS R+ IN EQ.(5-z).

J=M-1
L=M+1
D2yvrM) =0.

50 D2y( ù)=0. oo25x( w(iq) +D2yy( ¡vt) /tz.)
Y( t) =z.xy(u) -v( J) +pzY( M)
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40

6o
3o

trli+? ;î,i(r$+? ilTf *¿ ;T( ")
D=ABS(nzvv(iq) -aa) -o. ooo5
rp(p)6o,60,4o
nerr(M)=AR
GO TO 50
¡'(r)=Y(L) /x(r)
CONTTNUE
G=F( :z) _¡'( Sr ) _o. oool
r¡'( c) 99,99,ro
r{RrrE ( 3, go) B( r)
FORMAT (reH EIGENVALUE=r prO"¡)
GO TO 100
CONTTNUE

99
90

10
11

c

19o
20

To

BO

¿¿¿

111

NORMALTZATION OF THE

DO 20 MM=2.32
r ( uii,r1 = ry 

( rwr) 7¡ ( 
=z)I^iRlTE ( 3,70 )

FoRMAT (tu /r(zus x
wRïTE (:, Bo'¡ (x(lu),¡'(ll)
FoRMAr. ( rH />(m ,F9 .4,
I^IRTTE (3,222)
FoRMAT (tu ¡5çrt, x
r^rRrrB ( 3, 11'r) (x(rrl),v(N
FoRMAT (tn /n(m ,F9.4,
END

I^IAVB FUNCTION"

¡'(x) ) )
o N=1,32)
¡'rr,5) )

v(x) ) )
), N= a, -"a)prr. l) )



î
c
U

c
õ

(1

c
c
c
c
c

c
C
c
c
C

C

C

c
C

c

7r2

ïï. Momentum Distributions

CALCULATTONS OF THE MOMENTUM DTSTRTBUTIONS OF ANNTH]LATING
POSITRON ELECTRON PAIRS IN C-H AND C-C BONDS.(CHAPTBR 5).

o a e o a oo a a o a a oa aa o o a a a a a at ca a a. a a a a û. o o r a o a a a a a a a a a o a

DTMENSToN t¡l( 555), py( DDD) ,Ft(5j5), pe( 55j) ,ww(D5j), r'H( l55) ,
lrNcc (sfn), rmcs( 505)

THE INPUT DATA W ïS THE POSITRON I^IAVE FUNCTION FOR
THE CARBON ATOM, AND iiül^l fS FOR HYDROGEN .

o t a a aa c a a a¿ oa to ar a q a oaa a a o a o a a a oa oa a a a at a. a o

RBAD ( r, ro) (w(iv), N=1, 32)
READ (r, 1o) (wur(ll),1¡=r.30)

10 FoRMAT (ror8.o)

SAB TS THE CARBON-CARBON OVERLAP TNTEGRAL.

SCH ]S THE CARBON-HYDROGBN O\rBRLAP INTEGRAL.

RCC ÏS THE LENGTH OF C-C BOND"

RCH IS THE LENGTH OF C-H BOND.

sAB=( o. ¡¡g-0.328*? .) /4 .

scn ( o.6re+o.3oZ+Ésenr( ¡. )) /2.
RCC=Z "9I
RCH= 2. 00
DO 15 N=33,401

15 hl(N)=1.0
po 16 NN=31,4o1

16 ww(NN)= t. t
DO 20 M=1,301
U=¡'LOAT(M)
PM(M)=u*0,1
P=PM( M) "o . l37oo
DO 30 I=1,401
v Fr,ont( r)
6=(V-1.0)"0.05

RHS fS THB HYDROGEN 15 ORBITAL I^IAVE FUNCTTON.

RzS ïS TiïE CARBON 25 ORBïTAL i^rAVE FUNCTTON,

RZp fS THE CARBON 2P ORBITAL hrA]IE FUNCTTON.

RHS=EXP( -n)
R2s =5 .9o95o/Exp ( 3 .9AZro"R) -n" (2 .5\z9o/nxe ( r " 4Z84oxn )

I+5 .Z2-"o/nxv ( e " e+g¡o"R) +4 .>616o/øxp ( z. Z99oo*R) )

c
c
c
c
c
C
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!2p=Rl (o,.ïry_25/Exp-( r. pTeOo"n) +3 .S==6o/nxe( a. r444oxn)+
12 .I226O/EXP(5.92I6O-xR ) )

tr'r-( r)=nxnzs*ru( r) "srtti( Þ+n) /p
pz ( r) =R2pxr¡r( r ) : ( ÞrN( ÈTo ) -þ"ç*-s6s ( exn ) ) /( exn )pn( r ) = pxp¡s'ir^twt i ) tsÌirr( i ;Ð /i

30 CONTINUE

THE INTEGRATION TNTBRVAL rS O.O5 A.U"õ

c
cALL qUADR(rt, Aot, o. 05, s, ten)
XI=S
xr=aBS( x1 )
XXL=Xl*X1
CALL QUADR(re,401, o .o5,s, rnR)
:\¿-l)

xa =aes( xe)
xKz=X2xX2
cALL euApn(nH^, 4ot, o.05, s, tnR)
xu=sx t.Ltt\z/3. 1416
xH=aes(xH)
TNH=XH{-XH+4. *3 . 1416:y.pr+p
TNc =2. *pr(p)ê(xxr+3 . *XX2) /(5" r4r6x4 . )
zz=p .xt . U1-4z*p*xg(X1TS.Tñ( p*RcH) _3 . *xzo_( cos ( rxncu)

r-srri(Pj(RcH)/(ex'ncH) )) /(e. "ncil) 
' -

vY=SIN(p"nc0 )/(exncc )+2 . xcos ( Þxncc ) /( p*RCC )*-nz-
12 . "srN( P*Rcc )/( rxncc ) ""3

TNCH TS TTIE MOIIENTUM D]STRTBUT]ON fN THE C-H BOND.

TNCC ÏS T}TE MOMENTUM DISTRTBUTION TN TTIE C-C BOND.

TNcH(M) =(TNC+TNH+ a.xsc+x-zz) /( z.x(1. +scux+2) )
_ 

rrycc (u) = ( tivc+SAB*2 " 
xpxpl(xxí"Èrirr(Èxncc 

) /(U.í-S . r+rOàÉp*Rcc )r+3 . "3 ."xxa"w/( 4.*.8. j-416))) /(1 .+ÈAe,,.0, z)' '

20 cOIilrtNUB
tr,rnTTE ( 3,6o)

6o ¡'oRrrrRr. ( IH 1s(vry . p(ryap) 
. li(c-c) n(c-H) ) )!üRrrE ( 3, Zo). (pu(ru), tr'iic(vr), rxcu(irr), ù=r, Sor)

Zo FoRMAT (rH /3( lH , F9 .4,2rr4 "S))
END

c
d
U

c
C

C
l':



C

C
(/

c
r1

rr

C

c
C

C

C

C
11

\,

c
c

c
C

11

SIIBROUTÏNE SUADR

PIIRPOSE
ÏNTEGRATES A GTVEN TABULATED FUNCTTON AT A SET OF
SPACED POTNTS.

114

VALUBS OF

TNTEGRATED
TNTEGRAL

5 POINT
A 4,3,0R

TTIB INfEGRATÏON.

USAGE
CALL AUADR( Z, N, H, S, rBR)

DBSCR]PTION OF PARAMBTERS
Z -A \rECTOR OF LENGTH N CONTAINTNG THE

TÏTB FUNCTÏON TO BE TNTEGRATED
N .THE NÛ1VIBER OF FUNCTTON VALUES TO BE
H .THE RESULTANT VALUB OF THE COMPUTBD
ïER -RESULTANT ERROR CODE IiüHBRE

TER=O NO BRROR
ïtrR=l N LESS THAN 2
IER=2 H=O

METHOD
NUIVERTCAL QUADRAT1ME TS PERFORMED USTNG A
FORMULA UNTIL FBWER THAN 5 POTNTS RBMATN.
2 POINT FORIq{JLA TS THEN USED TO COMPLETE

c
c

ç1

U
r1

c
C

c

SUBROUTII\IE QUADR(Z, N, H, S, TBR)
DTIVENSTOIV Z(r)
S=, O

rF(N- I)32,32,33
32 ïER=1

RBTU1ìN
33 r¡'( ri) 34, 35, 3¿r
35 fER=2

RETURN
34 rF(N-5) 4o, ::8,38

CALCULATED USING 5 POINT FORMULA

38 D0 39 T=D,N'4
-"9 S=S+7 ,+z(b)t) +32 " "z ( I-3) +!Z "xz( r-z) +JZ .x't ( r-r) +T .xz(I)

R = Q{-2 /L,c,

4o J=Ñ-iÑ2,if;+-i
Go TO (tt1,1,o,4T,4B),J

CALCULATB USTNG 4 POTruT FORMULA

Ir5 s=s* "3TDx(z(u-3)+3. "z(u-z) ú,*-z(m-r)+z(u) )
G0 TO 50

CALCUI,ATE USING 2 PO]NT FORIqULA
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4T s=s+(z(ru-r) +z(x)) /2.
G0 T0 50

I
c CALCULATE üSING 3 POINT FORI\rilLA
c

4B s=s+ (z(li-e) +tt .xz(u-r) +z(N) ) /2 .

lO S=$xlI
ïER=O
RETUPTN
END
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