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ABSTRACT

The Angular correlation of the two-photon annihilation
of positrons in a number of condensed hydrocarbons and two
solid magnetic materials have been studied using a standard
parallel-slit apparatus.

Three different theoretical approaches have been
employed to obtain the momentum distributions in the hydro-=-
carbons. The first approach is to assume that the positron
wave function is constant. The momentum distributions are
then calculated for electrons in the C-C and C-H bonds,
using analytic SCF functions for atomic carbon orbitals and
Heitler-London-type functions for the two paired electrons
in the C-C and C-H bonds. The calculated results of this
low momentum plane wave approach for the positron fits well
with the experimental data except at the tail of the distri-

butions. The second approach is to assume that the positron

msr

1 where m; is

wave function is of the form “(r)=1 - e” 1

a parameter corresponding to the ith

atom. In the third
method, Y(r) is obtained by numerical integration from the
ground state radial Schrddinger equation. The results obtained
from the last two methods are in good agreement with the
experimental data. This suggests that the effect of the
positron wave function can not be ignored in the detailled

analysis of the observed momentum distribution in the hydro-

carbons.



The interpretation of the angular distribution for
Alnico is based on the contributions from the Ls and 3d
bands of this alloy.

A study of angular distribution obtained with the
perovskite crystals (Laij.B)MnO3 suggests that the positrons
annihilate exclusively with the 2s and 2p electrons of the

negative oxygen ions.



Chapter 1

Introduction

1.1 The Discovery of The Positron
oJ

The positron was first discovered by C. D. Anderson
in his experiments on particles produced by cosmic rays}
Anderson while taking Wilson cloud-chamber photographs of
" cosnilc ray frajectories when a magnetic field was applied
across the chamber, found pairs of tracks with the same
ionization density. Each track described a separate circle
in the magnetic field such that one path could be ascribed to
an electron and the other to a particle of electronic mass
but of positive electronic charge. Anderson called these
particles "positrons". Before the discovery of positrons,
Dirac had predicted the existence of positrons (actually
he originally theorized that these were pogitive protons)
in his ”hole theory”.2 According tb the Dirac theory,
the energy of the electron has both positive and negative
energy solutiohs, il.e., E=1Jp%§-m204. It was assumed that
all negative energy states (-mc2 to -oo) are normally occupied

by electrons. A positron appears as "hole" in these states

when an electron makes a transition to a positive energy level,

About a year after the discovery of the positrons
by Anderson, sources of positrons became plentiful and easily
obtainable as a result of the discovery by the Curie-Joliots

of the phenomenon of artificial or induced radioactivity.



1.2 The Annihilation of Slow Positrons

It is well known that the positron is the anti-
particle of the electron, and that these two particles
can be annihilated as a pair with the emission of gamma

3 that the probability of a

photons. It has been shown
positron annihilating in flight is %ess than 2% for initial
positron energies of~ 3 Mev. Therefore we shall discuss

here only the annihilation of slow positrons.

When a positron enters a condensed medium, it may
annihilate directly with an electron (so called "direct
annihilation") or it may capture an electron to form positronium.
Some evidence for the formation of positron compounds'as
well as positronlium compounds‘has also been found.l7

By the principle of conservation of momentum, at least
two photons must be involved in the annihilation process of-

a slow positron-electron pair. Annihilation by single photon
emission requires the presence of an external field. The
probability for one-photon and three or more photon annihilation
is very small compared with that for two-photon annihilation.
Ore and Powelll‘l have shown that the ratio of the three- to
two-bhoton annihilation cross section is 1/372.

Now consider the S-state positron-electron pair which
can exist in one of two substates, namely, the singlet state,

1 S

(0

S with spin zero, or the triplet state, with spin one.

O’ 1)
The higher orbital angular momentum states are not of interest

since in these states the positron and electron wave functions




do no overlap sufficiently for appreciliable annihilation to
occur.

According to Yang,6 the annihilation of a positron-
electron palr into two photons is only possible for an
annihilating pair in its singlet state. For it is well
known that the relative intrinsic parity is negative for

the positron-electron palr, i.e., PI==(;1). The charge
conjugation for the S-state positronéelectron system is
therefore Po= P Pq=(-1)(-1)5*1=(-1)5, where Py is the -
spin parity. The charge conjugation is positive for the
singlet state (S=0), and negative for the triplet state
(S: 1). Since the charge conjugation of the photon is
assigned to be negative, the singlet state should annihilate
into an even number of photons, and the triplet state into
an odd number of photons, by means of charge conjugation
invariance.

Recently, Berko et a15 have designed an experiment
to search for charge nonconservation in positron-electron
annihilation by measuring the three-photon decay of the
singlet state (18,). Their ratio of ('Sy—37%)/(*s;>27)

6

is less than 10 .

1.3 The Formation and the Basic Properties of Positronium

The possible existence of a bound state between a

positron and an electron was first postulated by Mohorovicic

in 1934.( Ruark gave this bound system the name ”positronium”?



The first experimental demonstration of the existence of
positronium was performed by Deutsch.9’1o

To first order, positronium can be treated as a
hydrogen atom, with the exception that the reduced mass 1s
now one half the electron mass. One thus obtains a "Bohr
radius" of a positronium atom ap==h2/pe2==2h2/me2=2ao=1.06ﬁ,
with a ground state energy'E==e2/2ap==e2/4ao==6.77ev.

There are two ground states of positronium: tThe
triplet state (ortho-bositronium) with electron;positron
spins parallel, and the singlet state (para-positronium)
with electron;positron spins anti-parallel. Since the triplet
state has three substates (m=1,0,-1) the statistical weight
of the triplet state is three times that of the singlet state,
i.e., ortho-positronium and para;positronium atoms are formed
in 3/4 and 1/4 of the cases respectively. According to the
same argument in the last section, ortho-positronium undergoes
3-photon annihilation, and para-positronium decays via 2-photon
emission.

The 1life times of para- and ortho-positronium have
peen calculated a8 1.25 x 10719 seconds and 1.4 x 10~ (seconds
respectively.

11

Ore postulated the following approximate relationship

for the probability (W) of positronium formation:

V. ~(V.=V.) v
L= P w2,
v, Vs




where V1 is the first excitation energy of the surrounding
molecules, Vi is the ionization energy of the molecules,
and Vp is the binding energy of positronium (=~ 6.77 ev in
free space; it may be slightly less in a solid).

The above equation can be understood as follows.
If the initial energy of the positron is E, positronium
formation is possible, provided E‘>Vi—Vp, As long as E
is greater than the ionizatipn energy (Vi) of the molecules
however, simple ionization through inelastic collision is
more likely than the formation of positronium. (If positronium
is formed, the fast moving positronium atoms are very
probably destroyed in the subsequent collisions.) If we
assume that the positron after the last ionization collision
has energy E between O and Vi’ then the fraction Vb/Vi of
these positrons can form positronium. This 1s the upper
1imit of probability for positronium formation. Since a
part of these positrons have energies above the lowest
electronic excitation energy of the molecules, this excitation,
along with inelastic scattering of the positrons, will compete
with positronium formation. If V17>vi-vb then there exists a
small energy region Vl—(Vi—Vb), the so-called "Ore gap" where
the formation of positronium is likely. The fraction

[Vl—(Vi~Vb)]/Wi becomes the lower bound for the probability

of positronium formation.



1.4 The Quenching of Positronium

12 "quenching" of positronium

Following Green and Bell,
will mean all possible processes introduced to shorten the
lifetime of the ortho;positronium, i.e., reduction of 3%
annihilation.

The possible positronium quenching processes are as
follows:

(1) The "pickoff" process: Due to the continual scattering
of positronium by the surrounding molecules, the positron
in ortho—bositronium may annihilate with an eleétron from

a molecule whose spin relative to the positron in the
positronium is anti—barallel. This process of "pickoff"
annihilation is now recognized generally to account for the
1ong;1ived component with a charateristic lifetime of about
109 seconds.

(2) Quenching by an external magnetic field: The states

of positronium are influenced by an external magnetic field.
The ground state of ortho-positronium (381) is about 8.4 x
10"4 ev. above the ground state of para-positronium (180).
If positronium presents itself in a constant magnetic field,
then the 180 and 381 levels are further split. This Zeeman

effect produces a quadratic upward energy shift in m=0 level

of ortho-positronium (BS The two levels m=:1 of the

1,0)'
triplet (381 +1) are unaffected by a magnetic field since

s~ .
there exist no 1SO—components of the same m value, with which

they could bombine.l3 On the other hand, in a magnetic field



the m=0 triplet state gets a small admixture of m= 0 singlet
state which 1s equivalent to an increased probability for

an ortho—para conversion.

(3) Paramagnetic quenching: The quenching of ortho-positronium
might occur not only from the action of an external field,

but also from the field of paramagnetic admixtures in the

14

experimental sample. However, Ore has shown that even

for as paramagnetic a gas as oxygen, the spin flip through
magnetic interaction would taker1O'5 seconds, which is two
orders of magnitude less than the rate of spontaneous 3-photon
decay. Ferrelll5 suggested that the result of paramagnetic
quenching of positronium is most likely due to "electron
exchange' collisions of positronium with paramagnetic ions

- or any molecules with unpaired electrons.

(4) Chemical quenching: This quenching process involves
various chemical reactions of positronium, such as the reaction
of oxidation, addition, and substitution. For ortho;positronium

all the processes indicated above reduce the lifetime to'vlo'lo

seconds.12’18

1.5 Experimental Methods of Studying Positron Annihilation

There are in general three methods which are widely
used in this fleld. We shall discuss first the measurement of
the triplet annihilation rate by a triple coincidence experiment.
Though this method is used less frequently than the others

because of 1its experimental complexity, it is the easilest



to interpret. The measurement of the triple coincidence

rate between the annihilation gamma photons tells us the

number of positron-electron pairs annihilating from the

triplet state. Whenever this rate i1s larger than 1/372

of the double photon rate which is predicted by the theory

for a random orientation of the spins which has been mentioned

previously, we assume that there is formation of positronium.
The second method is the measurement of the mean life-

time of positrons. The first lifetime determinations were

made in gases by Deutsch9 and this was followed by studiles

in solids by DeBenedetti et al.15 The discovery of two life-

16

timeS'Tl and Tp was made by Bell and Graham. It was assumed
that the short lifetime Yi corresgponded to the direct annihila-
tion and/or to annihilation of singlet positronium, and that
the longer meanlife Té revealed the presence of triplet
positronium. The intensity of the Té component, 12, can be
measured, thus gilving directly the percentage of triplet
positronium fbrmed, if all triplet is guenched and annihilates
with mean life To- From statistical considerations, triplet
positronium should be formed three times as freguently as
singlet positronlium and hence the percentage of singlet
positronium formed is equal to 12/3.

The third method ig the measurement of the angular
correlation of the two-photon annihilation radiation. When
a positron-electron pair at rest annihilates with the formation

2

of two-photon emission, an energy of 2mc~ is released where

m 1s the rest mass of electron and ¢ is the velocity of light.



To conserve momentum, these two photons, each having a
momentum mec, are emitted at 180-degree to each other in the
center of mass system. If the annihilating pair has some
momentum at the time of annihilation, then the photon pailr
will be emitted at angle differing from 180-degree by an
amount of the order v/c, where v is the velocity of the center
of mass of the annihilation pair. For low velocities this
departure of the angle between the direction of the photons
fpom 180 degrees is proportional to the component of momentum
of the annihilating pair which is parallel to the bisector

of the propagation direction. Thus, one may measure the
angular distribution of annihilation photons and convert

this to a momentum distribution of annihilation positron;
electron pairs.45 The detailed discussion with regard to

this will be made in chapter 2.

1.6 Positronium and Chemistry

At present, the application of positron annihilation
techniques covers two important fields, namely, chemistry
and solid state physics.

Observations of the formation and annihilation of
positronium in different media are of particular interest
for chemical physicists. The formation of positronium is
strongly related to the properties of the sample under
investigation, such as the ionization and electronic excitation

potentials, the elastic scattering cross-section, and the
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excitation of vibrational and rotational molecular levels,
Therefore the study of the probabilities of positronium
formation under different conditions provides a new method
of studying many elementary processes in chemistry.

Since positronium is the lightest hydrogen-like
atom and an elementary free radical, the study of triplet
positronium may shed light on the study of triplet states
of complex molecules, and the study of positronium compounds
may yield information on molecular energy levels and electron
transfer mechanisms. Because of the short lifetime of
positronium, it could provide a useful standard for
investigations of rapid chemical reactions.

Unfortunately, the work of positronium chemistry has
yvet to yileld significant results since there are only a few
groups of chemists currently involved in the positronium
research. However, as more chemists become familiar with
positron analysis as a tool one would hope more meaningful
experiments will be carried out.

Also of interest to the physicist is the experiment
on the angular correlation of the two-photon annihilation
radiation. The angular distribution of the photons yields
important information about the momentum distributions of
electrons involved in the chemical binding of molecular
systems. Therefore, one may be able to use these data to
check the calculated atomic and molecular orbital wave
functions, in hope that it may help to improve the molecular

orbital theory. On this basis, half of this wofk is concerned
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with the detailed investigation of the momentum distributions
of hydrocarbon molecular systems. It will be shown that the
caleulated momentum distribution functions are strongly
dependent on the choice of space wave functions and that

“+he use of accurate wave functions provides good agreement

between calculated and experimental momentum distributions.

1.7 Positron Annihilation and Solid State Physics

The study of positron annihilation in metallic solids
is probably the most fundamental application of positrons in
solid state physics. The results of the studies of the
angular distribution of annihilation radiation in metals
has yielded data consistent with the assumption of a Fermi

17,18 gy

energy distribution for conduction electrons.
since there are several other experimental methods19 which

can determine the Fermi surface, we can not say that these
positron results represent any great progress in our knowledge
of metals. But if one examines the methods currently being
used to determine the Fermi surface carefully, one will find
that in most of the methods, such as the de Haastan Alphen
effect, the magneto;acoustic effect, cyclotron resonance
effect, and the galvanomagnetic effect, etc., a magnetic

field is applied, producing a quantization of the electron
energy levels (Landau levels). The effects under consideration

are due to this quantization. In virtue of Heisenberg's

uncertainty principle, the product of an electron lifetime



12

in a given state by the energy uncertainty i1s of the order
of Planck's constant. The energy uncertainty must be kept
gsufficiently below the separation between the Landau levels,
or otherwige these levels would be blurred and no longer
defined, and the lifetime or relaxation time must therefore
be as long as possible. Methods based on the quantization of
Landau levels are thus only applicable to elements of
sufficlent purity, well;ordered alloys or intermetallic
compounds and require the use of very low temperatures.
In the methods, such as the anomalous skin effect, the sample
must also be a very pure and perfect single crystal, in order
to achieve a large electron mean free path. In contrast,
the positron annihilation method does not require specimens
of high purity or long electron mean free path, and thus
can apply to any disordered lattice, such as a randon solid
solution. This advantage may make it become one of the
useful techniques for examining Ferml surface and electron
structure of solids. 8Several alloys and liquid metals have
been examined by this technique.18 In this work, a ferro;
maghetic alloy, Alnico, has been studied by positron angular
corretation technique; a Fermi energy for this alloy is
determined. A detailled discussion of the result of this
experiment will be made in chapter 6.

The investigations of positron annihilation in a
complete series of rare earth elements indicated the number
of valence electrons per atom for each element.go’21 In the

studies of positron annihilation in magnhetized media, it was



22 that in beta decay positrons are longitudinally

proved
polarized due to nonconservation of parity. By measuring

the two-gamma angular correlation of polarized positron
annihilation in ferromagnhetic solids, one 1is able to obtain
the momentum distribution of spin aligned electrons in solids
studied, thus yilelding important information of the study of
ferromagnetism. The results in magnetized 1ron show23’24’18
that the 3d electrons of magnetized iron are polarized, in
agreement with the measurements from neutron diffraction,25
and also show that electrons in the conduction band have
an antiparallel polarization.

In addition to the study of metallic solids, a great
variety of nonmetallic samples have also been Investigated
with both angular correlation and lifetime measurements.
Among the nonmetallic elements which have been studied, the
single crystai graphite sample showed a most interesting
result in the angular distribution of the annihilation
radiation which depended considerablly on the direction of

orientation of the crystal and was accounted for in fterms

of electron orbital in the plane of the graphite and along

26

the axils perpendicular to the plane. In the studiles of
alkall halides, it is found that the angular distribution
of the annihilation radiation of these salts depends almost
exclusively on the nonmetallic ion (negative ion). This is

understandable since the positrons are attracted by negative

charges. In this work, an ionic crystal of perovskite
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(La 7Pb B)Mn03 has also been investigated, and the result
shows that most of the positrons are concentrated at the
site of the negative oxygen ions and annihilate with the

2s~ and 2p-like electrons of the 077 ions.
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Chapter 2

Experimental

2.1 General Description of Apparatus

A standard parallel slit angular correlation apparatus
has been used to measure the angular distribution of annihila-
tion photons. This apparatus has been described in detail
previously27 and therefore only the general description -

and modifications of the apparatus will be discussed here.

A, Mechanical

A diagram of the mechanical parts of the angular corre-
lation apparatus 1s shown in Figure 2.1. The basic mechanical
features are the source and sample housing, two gamma ray
detectors, and the associated collimating slits. All of these
components were mounted on two parallel aluminium "I" beams
which were approximately 20 feet long and placed one foot
apart and bolted with several cross bars.

The two gamma ray detectors were mounted on either
end of the "I" beam structure. One detector was fixed and the
other was movable. Both detectors were heavily shielded by
" lead, as shown in Figure 2.2b, to cut down the accidental
background rate from scattered gamma rays and from other
sources in the laboratory.

The source and the sample were shielded in a lead castle,

as shown in Figure 2.2a, being placed on the middle of the "I"
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FIGURE 2.1

The Angular Correlation Apparatus
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FIGURE 2.2

The Sample Housing (a) and the Movable Detector (b)
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FIGURE 2.3

The Sample Cell (a) and the Sample Housing (b)

For the Low Temperature Experiment
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beams, with collimating slits of widths 0.16 cm and 1.5 cm,
respectively, facing the fixed detector and the movable detector.
The purpose of these collimating slits was to reduce the

amount of scattered radiation reaching the detectors as well

as to shield the detectors from the source. Also, the width

of the fine slit, facing the fixed detector, can be used as

an effective width of the sample to calculate the geometrical
angular resolution of the apparatus. The detailed calculation
of the angular resolution of this apparatus will be made in
Appendix A,

To keep the collimating slits of the detectors aligned
Towards the sample as the movable detector progressed to
different positions, an aluminium beam, as shown in Figure 2.2,
which was reinforced by a set of three steel cables to both
ends of the beam, was extended from the front of the rotatable
steel plate to a pivot point directly under the sample. To
allow for the slight increase in the distance from the detector
to pivot point as the detector was moved off the center position,
the end of the aluminium beam was permitted to slide freely in

a hole in the pivot shaft.

B. Electronics

A block diagram of electronics is shown in Figure 2.4,
The detectors were Integral Assembly model 16MBA4/A-X and
consisted of 4" diameter, 1" thick NaI(Tl) crystals mounted

on 5018 HB photomultipliers with mu-metal shields. A positive



FIGURE 2.4

Block Diagram of the Apparatus
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high voltage (1100 volts) was provided for photomultipliers
by a Hamner NAO1 high voltage supply. Negative pulses, which
are of the order of one volt in amplitude, were fed from the
cathode followers in the detector heads to amplifiers, and
were amplified about five times and shortened to approximately
one microsecond.

Pulses from the amplifiers were fed to transistorized
single channel pulse height analysers set to select gamma
rays in the energy range between 0.1 and 0.5 Mev. The fast
rising narrow pulses were sent to a coincidence unit which
has a resolving time of about 150 nanoseconds. The resolution
time of the coincidence unit was determined by providing a
random source of gamma rays for each detector, and measuring the
chance coincidence counting rate and single counting rates,
NA and NB, for the two detectors. The resolution time, T, was

then calculated using the formula:
Chance coincidence counting rate==2TNAN .

A Technical Measurement Corporation Model SG-3A scaler was
used to record the number of coincidences.

When 1000 counts have been accumlated on the scaler,
through the "automatic unit" which has been described previously?7
the track motor is started and moves the movable detector to
its next position, simultaneously, the scaler stops counting
as the motor is running, and the scaler starts counting again

as soon as the motor stops while the detector has been driven
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to its new position. When the detector moves to the predeter-
mined end of its run in either direction (eg. 16 milliradians
on each side), it will reverse the direction automatically
by reversing switches in the automatic unit system. A Simplex
Interval Timer Type ET-100was used to print out the time
interval during each 1000 counts of coincidences.

All the electronic instruments were powered by a model

2000 S Sorensen A.C. voltage regulator.

2.2 Positron Sources

Most of the experimental work was done with two Na22
positron sources. Cu6lI was used occasionally when it was
avallable,

The first Na22 source was 10 millicuries in the form
of NaCl soiution obtained from the Radiochemical Center,
Amersham, England. The source had s high specific activity,
3 mc/mg, and was dissolved originally in 6 ml. of water.

The source was evaporated from solution, drop by drop, on a

3" diameter plastic button (which was prepared by machining
shallow, concentric circular grooves on it) mounted on the

end of a 10" long plastic rod, and then covereéd with a thin
piece of mica (2 mg/cm®) sealed around the sides of the button
wlth epoxy resin glue. It was estimated that about 80% of

the source was actually deposited on the plastic button as

the evaporation process was finished. The remainder was

left in the original source container, in the syringe, and
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in the hypodermic needle.

For the above reason as well as for the reason of
safety, the second Nal2 source we used was already mounted on
a perspex rod, as shown in Figure 2.5, in the Isotopes Labora-
tory, N,V, Philips-Duphar, Amsterdam, Nederland.

Ordinary Cu  foils measuring 3/4 x 1/2 x 0.005 inches
were prepared and sent to Pinawa, Atomic Energy of Canada Ltd.
for pile irradiation. Since (3116LL has a half-1ife of 12,9 hours,
some haste was necessary in making use df a foil after irradia-

tion. The activity when used in the experiment was greater

than 250 millicuries.

2.3 Sample Mounting

Ordinary liquid samples, e.g., hexane and decane, were
contained in a small brass tank with a 3/4" vertical face covered
with a thin mica window (1.5 mg/bm2) so that more than 95% of
the incident positrons could penetrate through the mica window
and annihilate in the liquid sample,

The methane sample was contained in an aluminum cell,
as shown in Figure 2.3a. The thickness of the aluminum window
was approximately 4 mg/cmg. The reason why one could not use
a thinner window was that it had to be strong enough to with-
stand evacuation of the cell to a pressure~l micron of Hg.

During the experiment the position of the sample cell
was adjusted so that the fixed detector could only see a portion

of the sample which was just inside the window and defined by
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the narrow collimating slit of the sample housing. Therefore,
no window correction was needed.

The solid samples, e.g., Alnico and (Pb.7La.3)MhO3,
were mounted on the end of a 3/ " brass rod using a special

mounting wax.

2.4 Distillation Apparatus and Methane Sample Preparation

A vacuum distillation apparatus was used for the
preparation of methane samples., A diagram of the apparatus
was shown in Figure 2.6. A glass tube connected the distilla-
tion apparatus to the sample cell.

Great care wags taken to prevent contamination of the
pure sample, High-vacuum stopcocks and ground glass Joints
were used with a minimum amount of high grade stopcock grease.

As shown in Figure 2.6, a mercury manometer safety
valve was' connected to the condensing tube and the sample
cell. A thin layer of vacuum pump oil was introduced above
the mercury column to prevent the diffusion of mercury vapor
into the rest of the appratus.

Research grade of methane gas was obtained from Matheson
of Canada, Ltd., Whithy, Ontario. This grade of methane is
of the highest purity that 1s available. It had a minimum
purity of 99.99 mole %.

After the whole system was evacuated to a pressure of
1 micron of Hg, the stopcocks between the sample cell and the

cold trap were closed, and methane gas was then condensed in



FIGURE 2.6

Distillation Apparatus
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the condensing tube. A dewar of liquid nitrogen was used to
cool the condensing tube. After a sufficient quantity Cv7cm3)
of CH4 was condensed, the valve of the gas cylinder and the
stopcock between the cylinder and the condensing system were
closed. When the sample cell in the sample housing was cooled
down to the temperature of —17700, the stopcock between the
sample cell and the condensing tube was opened, and the dewar
of liquid nitrogen around the condensing tube was lowered
down until the liquid nitrogen level Just merely touched the
bottom of the condensing tube. After the transfer was
completed, the condensing tube was closed, and the sample
cell then only connected to the mercury manometer safety
valve. During the sample preparation procedure, a dewar of

liéquid nitrogen was kept around the cold trap.

2.5 Temperature Regulation for Methane Sample

Liquid nitrogen was used to cool the CH4 sample.
The aluminum sample cell (Figure 2.3a) was attached to an
aluminum rod which extended downward into a reservoir dewar
of liquid nitrogen. Liquid nitrogen was transferred from
a 2b-liter storage dewar through a well-insulated stainless
steel tube to a small container attached to one side of the
sample cell. The liquid nitrogen then passed through a small
tube to the other side of the cell and then into the reservoir

dewar.
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A nitrogen level controller maintained the nitrogen
level in the reservoir dewar. A circult diagram for the
controller is shown in Figure 2.7.

The operation of the level controller will outlined.

A Keystone Type RL10XOL4-10K-315-S5 thermistor was used as

the nitrogen level sensor. When the nitrogen level was below
the sensor, the resistance of the thermistor, RT(~2OKQ), was
much smaller than Rl. The relay circuit was then open, the
solenoid valve was closed, and the electric air pump pumped

dry air into the liguid nitrogen storage dewar to build up

the pressure for transferring ligquid nitrogen into the reservoir
dewar. As soon as the nitrogen level in the reservoir dewar

was up to the thermistor, its resistance, R increased rapidly

T)
to ~200K(), This caused the transistors Ql and Q2 to turn on

and activate a relay opening switch S_ and closing SQ.' The

3
opening of S3 stopped the air pump and the closing of So opened
the solenoid valve to vent the storage dewar; the transfer

of liguid nitrogen then ceased. The liguid nitrogen in the .
regervoir dewar boiled-off slowly. As soon as its level was

lower than the thermistor, R_, was reduced to its original

T
value, and the relay circuit opened. Switches 82 and 83

Then returned to their original positions. The transfer of
the liquid nitrogen started again. The average time needed

for onetransfer cycle was 124 minutes. The system used about

one liter of liquid nitrogen per hour.
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FIGURE 2.7

The N2 Level Controller
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Additional temperature regulation provided by a SCR
(Silicon Controlled Rectifier) temperature controller was also
used. The circuit used was similar to the one originally
designed by McFee.29 In fact, for a particular position of
the liguid nitrogen level in the reservoir dewar, the tempera-
ture of the sample cell ocrdinarily reached its equilibrium
temperature within a day and remained constant even withous
the help of the SCRotemperature controller.

A copper;constantan thermocouple junction was epoxy
cemented to the sample cell. The reference junction was
kept at 0° ¢ in a dewar by a mixture of crushed ice and water.
A potentiometer was used to méasure the potential difference
between thermocouple Jjunctions. The temperature was obtained
from a thermocouple temperature vs. potential calibration
table.

During the experiment, the ligquid methane sample was
maintained at -17700 and the solid sample at -187°C. The
temperature deviation was less than 1°¢.

The sample housing was well-insulated by a styrofoam

box during the low temperature experiments.

2.6 Data Accumulation and Analysis

In almost all cases, at least ten and often twenty
or moreruns consisting generally of 1000 counts per point
between O to 10 milliradians, and of 100 counts per point

between 10 to 16 milliradians were taken on a sample. The



interval between the points was 0.907 milliradians except
for some organic liquid samples where the interval between
the points was 0.907/3 milliradians in the region between
;4 to +4 milliradians. The average time for a run was usually
about two days. A month or more was usually required to complete
the idnvestiagation of one sample.

Fach run was examined for any obvious irregularities
whibh might be caused by electronic drifts or power failures
in the building. If any irregularities were apparent, the
whole run was discarded. After a complete set of data had
been obtained, the total accumulated counts at each point
was divided by the total time requilred for the accumulation.
The data taken by Cu64 source were corrected for the exponential
decay of source itself., Each angular distribution was plotted
as counting rate vs. angle on semi-transparent graph paper.
This was placed over a light box and folded to bring the
points on either side of the distribution into as close
agreement as possible thus determining the center of the
distribution. In all cases, the angular distribution was
symmetric within the experimental uncertainty.

To analyze the observed data, first we have to make
a correction for the background distribution. The sources of
background counts in the angular distributions will be outlined.
The first was due to chance coincidences which contributed a
flat background of about 1% of the peak counting rate. This

was determined by moving the movable detector 20 milliradians
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off the 180;degree line so that coincidences from annihilations

in the sample or any parts near the source would not be registered.

Another measurement was also made by measuring the central

counting rate with no sample tank inserted. This was approxima-

tely the same as the counting rate at 20 milliradians determined

earlier. The background due to the window of the liguid sample

cell has been neglected by the arrangement described in

Section 2.3. Therefore only a correction for the background

due to thevvery low number of chance coincidences was made.
Because of the finite angular resolution of the appratus,

the background corrected angular distribution, C‘(Q), is

related to the true angular distribution, c(é), by the following

integral equation,

(2-1)  c'(Q) =fc(@')a(@'o_é>d@ - jc(@'o_@)a(g')dg',

where R(é) is therangular resolution function which has been
calculated and discussed in detail in Appendix A.

In almost all solid samples studied, the observed
angular distributions are quite broad, and since the samples
are more dense, this results in a small positron penetration
depth and a narrow resolution function. Therefore the resolution
function can be treated as a delta function, i.e., R(éo;g)zz
5(@0-@). Substitution of this into equation (2-1), yielded
C'(@O)==C(Q). Therefore no correction is needed for these broad
distribution curves.

For the liquid samples, the angular distributions are
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rather narrower. Therefore equation (2-1) must be solved for
c(0) to give the desired correction, and to do this, an
lterative numerical technique was used. Each iteration
generated an approximate solution Cn(Q), where n was the
iteration number. This approximate solution was obtained

from that of the preceding iteration by the relation:3o

E(@O-@)cn_l(@)d@
f”R(@)d@

(2-2) ¢, (65)=1Cp_1(00) +[c'(@o) -

For the zeroth approximation, i.e., the initial estimate of
c(e,), we used CO(QO)==C‘(QO). The iteration was continued
until some arbitrary degree of convergence was attained,

i.e., ¢, (0)=0C,_ (). Usually this occurred within the

first couple of iterations. The resulting correction to

the angular distributions for liquid methane, hexane and decane
are shown in Figure 2.8, 2.9, and 2.10 respectively.

Finally it is necessary to explain the physical meaning
of the measured angular distribution C(Q)= Following Stewart,18
let us define (D), the distribution of probability of finding
a pair of photons with momentum ﬁ in dP. Then the coincidence

counting C(©) obtained by the long slit type of apparatus is

¢(p,) =rE(5)dedpy ,

where p,=mecO. The Cartesian coordinates are defined as
follows: The origin of system 1s at the mid-point of a

line jointing the two detectors. The line is the x-axis.



The z-axis is parallel to the direction of motion of the
movable detector, and the y-axis, of course, is vertical.

If ~€(§) 1s an isotropic function, it can be easily

shown (see Section 3.3) that

1 d4d¢
P(p)::const.———~——£g§}

p, dp,

and that the momentum distribution, N(p), is

ac(p,,)

dp

N(p) = const. p,

z

In the following chapters the data will be presented
in either C(p) vs. B, or N(p) vs. p.

The slope of the angular distribution curve, dC/dp,

was generally taken directly from the difference of adjacent

measurements, viz.,

¢(p,) - clp, ;)

dp 1at p=(ptPy,_1)/2 PyPhoq

[ ac(p)

But in the higher momentum region where the statistics were
poor because of the very low counting rate in this region,

the slope was derived from a five-point least square f£it

of a parabola, viz.,

[ dC(p)} _ I?C(pn+2)+ C(p,,q) - Cloyq) - 2C(pn_2X}/io.
dp at p=p, “ ' ' |




FIGURE 2.8

Angular Distribution for Methane (CHu)

The open circles indicate the experimental data
for liquid methane (at -177°C) and the x's indicate the
experimental data for solid methane (at 418700). The dashed
curve indicates the distribution for liguid methane corrected

for finite angular resolution.
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FIGURE 2.9

Angular Distribution for Hexane (C6H14)

The dashed curve indicates the distribution corrected

for finite angular resolution.
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FIGURE 2.10

Angular Distribution for Decane (ClOHQQ)

The dashed curve indicates the distribution corrected

for finite angular resolution.
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Chapter 3

Positron Annihilation in Normal Hydrocarbon Systems. I.

Electron Momentum Distributions

3.1 General

When a positron enters a condensed hydrocarbon compound
1t may annihilate with an electron in the C-H bond or in the
C-C bond. From the measurement of the angular correlations of
the annihilating photons, one is able to obtain information
concerning the momentum distribution of electrons annihilating
with positrons. Very little theoretical work has been done on
momentum distributions either in atoms or molecules since the
early 1940's. Most of our knowledge of momentum distributions
for molecular systems comes from a series of papers given by
Coulson and Duncansom.:%l_37 The general method used to obtain
the momentum wave function consists of transforming the space
wave function to momentum coordinates according to the Dirac
transformation theory. Coulson and Duncanson used the Slater
type of hydrogen-like atomic wave functions to calculate the
momentum distribution in simple molecular systems. Kerr et a138
have used these results for the momentum distribution of the
electrons in C-H and C-C bonds td calculate the electron
momentum distribution in hexane and then they compared the
calculate curve to the momentum distribution of the annihilating
positron electron pairs observed from an angular correlation

experiment. The agreement was good except in the high momentum

region, where the theory predicts higher values than observed.
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To examine the reasons for such a discrepancy, in the next
section we recalculate the momentum distributions in C-C
and C-H bonds by using the analytic SCF functions of atomic
carbon orbitals calculated by L6wdin.39 It will be shown
that the use of these improved wave functions reduced the

discrepancy between theory and experiment by a factor of 2.

3.2 Calculation of Electron Momentum Distributions

Before going into the detailed calculations of the
momentum distributions of electrons in C-H bond and in C-C bond,
we first calculate the momentum distribution of electrons in

the hybrid atomic carbon orbitals.

A, The Momentum Distribution in the Hybrid Carbon Orbital

The hybrid orbitals of the carbon atom are described

by the wave function

Ys(C) +6Y5,(0)

J1+ 62

(3-1) wy(c) =

3

where ‘+éS(C) and ‘#ép(c) are the analytic SCF functions of

2s and 2p atomic orbitals and have the form
(3-2) lés(C)z {% Ay exp(-zpr) - r % By exp(-bkr’)}/lﬂﬂ“ ,

3
(3-3) H%p(C): {r;ixck exp(—ckr)}j%% coso.




10

The coefficients A,, By, Cy, ... etc. in equations (3-2) and

(3-3) are given tn Table 3.1.

TABLE 3.1
k 1 2 3
Ay 5.9095
ax 3.9471
By 2.5829 5.2230 L ,5676
by 1.4784 2.8493 7.7990
Cye 0.87935 3.3336 2.1226
Cp 1.0789 2,144k 5.9216

And 6, in equation (3-1), is called the coefficient of mixing.
For the tetrahedral bonding 6is equal to I?. In all our-
calculations we use atomic units with e=m=h =1, and c= 137.
According to the Dirac transformation, the momentum
wave function for the hybrid carbon orbitals can be written

as
(3-8) X, (B)=(2m)3/2 jexp(-iﬁ-%ww)df;

it NC(p)dp is the probability that the momentum lies between
p and p+dp, then we we have the momentum distribution function,

NC(p), which is the average of )%(ﬁ)*7%(§) over all directions




by

in the momentum space, i.e.,

Ny
(3-5) NC(p)=J X(8)Xo(B) 2 wpZsine@ de

o)
in which we have assumed that the momentum distribution is
isotropic. Here we define (r, 0, %) and (p,® ,% ) as space
coordinates and momentum coordinates respectively.

To solve the equation (3-4), it is convenient to expand
exp(-iP-¥) into normalized spherical harmonics referred to
some arbitrary fixed set of axes, and apply the addition
theorem, i.e.,

co R
(3-6)  exp(-ip- )= Ei(2lﬂ-1)(—i) ?K(OOSQ)EQ(COSC>)JX(pP):
where jﬂ(pr) 1s a spherical Bessel function, and P, (cos®)
and Bl(cose>) are Legendre's polynomials, then we substitute
equations (3-6), (3-1), (3-2) and (3-3) into equation (3-4)
and use orthogonality properties of the Legendre's polynomials,
i.e.,

Y e () © 5
P P d & —— ] E)
J-—l L x ,Q'(X) * o041 AL

we get
(3:51) X(B)= (20732 (14675 [ 2 [ 5 (pe)ig (0)rPar

L ,
. = . 2
+1 237 GCOSEDj Jl(pr)Rgp(C)r dr} |
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where R2S(C) and Rgp(C) are 2s and 2p radial wave functions
of carbon given in equations (3-2) and (3-3) respectively,

and the spherical Bessgl functions jo(pr) and jl(pr) are
o (pr)= sin(pr)/(pr) ,
i (pr)= sin(pr)/(pr)? - cos(pr)/(pr).
The integrations in equation (3-14') can.be easily

worked out by a standard method (see Appendix B). The final

result of Xn(P) is

(3-47) Xb(p)=;a§i§§ %%

[A 8y . (30% - p°)
oy PR
22 (bje + p°)

£ (aZ4p

73 2
+i——————J6 ° cos®2. C [ ck(Cl% - ) "k
1+ 6% k p(Cﬁﬂ-pQ)S p(cia—pg)

Therefore, the momentum distribution function of equation

(3-5) becomes

8p2 Qe (Bbi - p2>
(3-5') N (p)=——— z[A k0B ]
ST n(16®) | [ELE (82409 £ (b2 1 p?)3
2 2
+6°|2¢ [Ck(;k*?)g)" Cke J i
E S p(el+p?) p(cE +p°)°

]

2
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B, The Momentum Distribution in the Hydrogen 1ls Orbital

Similarly, the momentum distribution in the 1ls hydrogen
orbital, Nﬁ(p), can be easily worked out. The momentum wave

function is

X(3)= (2w)‘3/2Jexp(-i§.;) Y _(m)aF

where (H)=—l-exp(~r), is the 1s hydrogen wave function,
1s v

and

a1
(3-6) 155(0)= | D) KelB) 252 sino o
o}

g sin(pr) 2
=lkwp2 (EW)-B/éfJ%;exp(—r)-——————— L r24r
0 br
3297
w(1 4+ p?)"

C, The Momentum Distribution in the C-H Bond

We used the Heitler-London or valence bond (VB) wave
function for the two electrons that are paired to form the
C-H bond. This type of wave function is known to be a good
approximation for the covalent bond, such as the C-H bond is
supposed to be. If we number the electrons of the bond by

1 and 2, the wave function of the C-H bond, Y(C-H), is



Ly

«y(C;l)\V(H:Q) +Y(c:2) Y(H:1)

(3-7) Y(c-m)= m
CH

where SCH=i§ﬁ(C:1)“¥(H:1)dvl , is an overlap integral.

To calculate the momentum distribution, N(C-H), from
equation (3-7), using a method similar to that introduced by
Coulson, we first transform electron 1 Into momentum coordinates,

leaving electron 2 in space coordinates, i.e.,
X(By )= (22 [[exp(-15 ) Y(o-m)a?;
_ (2)"3/2 [0+ S%Hﬂ"%{fexp('i@'@ Y(c:1) g (mre)at,
[ 48, (g« ) 022 «rm:ndﬁl}
= [2(1 . sgﬂ)]-%{y%(ﬁl) Y(H:2) + exp(—igl' ECH)«J((o@)?%(ﬁl)}

?

where RCH is the length of the C-H bond, and then we average

;K(Ei,?é)fx(ﬁl,ﬁg) over all positions of electron 2, il.e.,
X(B) (B )= (X3, 7) (5.5 )a,
= o (B) A (B1) + Xg(By) Kn(By)+ 8y Ko (B)X(B)) e (-151 - )
+8gg o (B)) Hg(F)exn(38, 8 )] /[2(1+ 87 )]

This gives us the momentum space density of electron 1.
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Of course, the momentum space density of electron 2 is the
same as for electron 1. Therefore the momentum distribution

for the C-H bond is
(3-8)  w(c-m) :P«ﬁ)*x(ﬁ) 2w p? sine de
=[115(0) + T(p) + 250 Wen(P) ] / [2(1+ 85)]

where NC(p) and. NH(p) are given in equations (3-5') and

(3-6), respectively, and

16 (365-0°)
N (p)= — b Z[Ak w—_:k Y ————————32k_g 3]sin(pR )
bt ar, [1462 (1492)2 | K[ F (a +0°) (o) CH
2 _ 2
. e (e =3p7) Cye sin(pRap)
+J'§6“ch k Qk 5% - 5 D 2}'[008(1030}{) - ————C—}lJ
k flp(ep+p9)”  plep+pT) PRy ;

in which the value of RCH is taken to be 2.0 a.u. The overlap
intergral, SCH’ can be evaluated by a standard method (Appendix

¢).

D. The Momentum Distribution in the C-C bond

The calculation of the momentum distribution in'the
C-C bond, N(C-C), is similar to that for N(C-H). The C-C

bond is described by the wave function
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Y, (C:1) e (C:2) + (C:2) . (C:1)

3-9) (c-C) = —
( A J2(1+8%)

where Sab=fﬁé(0:1)“%b(0:1)dv1 , is an overlap integral,
and ’%é(c) and  (C) are the wave functions for the two carbon

atoms 1n the C-C bond.

The calculation of the Fourier transformation from
equation (3-9) follows similar lines to that for N(C-H).

First we transform number 1 electron into the momentum space,

B, Fp)= (22 [exp(-18): 7)) Y(o-0)aF,
= (217)'3/2 [2(1+s§b)] ‘%Uexp(-iﬁl- ?1a)“fg(0=1)“fg(0=2)d?la
+Jéxp[-i§1-(Fab+§zc)]}%(C:2)#%(C:l)d?ib}

= o s3] B K02 + em(ay R (2% 5]

7

where RCC is the length of the C-C bond, and then we average

;X(ﬁl,F2)ﬁx(51,Fé) over all positions of electron 2, i.e.,

AV ICANTCREAVICIEALE

=2, (B) Ko (Fy) [ 148, cos(p R cos@)] /(17 55).
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Then we have the momentum distribution in the C-C bond,
(5-10)  W(e-0)= [UB)A(F) 27p? sinode
= [ (0) + 8, W (0)] /2 s0)
C ab “ab ab’ ’

where Nc(p) is given in equation (3-5'), and

2 2
P)=—x— —— - .
2 (2062 | |1 Lk (202 T K (oo p7) bR,

+3 6'2 ZC [ “k . Ck(ci-spg)‘xl?[ Sin(pRCC)
A S pg)jjl PRy

g1
ECos(pRCC) 81n(pRCC) 1 ,

TR (R )

in which RCC is taken to be 2.9 a.u. N(C-C) and N(C-H) were

computed on IBM 360-65, and plotted in Figure 3.1.

3.3 Application to Positron Annihilation in Methane, Hexane,

and Decane

The probability that an electron with wave function
Y(?) will annihilate with a thermalized positron with wave

function y;(?) and yield a photon pair with center of mass
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momentum 5 is proportional to

(3-11) PV [HP) () exp(-13- F)a °

where the integration is over the entire sample. 1In the
usual parallel slit apparatus, as described in Chapter 2,
all photon pairs with a particular component of center-of-
mass momentum P are measured, and the counting rate is
proportional to

o0 oo

(3-12)  o(p,)= | [e(B)av,ap_

- =00

= 5D
:ff(p)2’rT‘PdP (pP= px+py).
(o]
2 2 2

If we put P+ p, =p and transform the variable to p, we get

(3-121)  o(p,) = ew[ﬂﬁ)mp

=%f°° N(p) ap

D, D

where N(p)=J;;('§)2-rrp2- sin® d® , is the momentum distribution
function ass&ﬁing f(ﬁ) is dsotropic, which is true only for
1liqguid and polycrystalline solid samples.

Now we can see the rélation between the observed

counting rate, C(p,), and the momentum distribution function,
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N(pz), by differentiating the above equation, finally we get

dc(p,)

dpz

(3-13) N(pz)=:—constant-pz

If we assume that the positron wave function is a plane wave
with small momentum, then “Y(F) is nearly constant everywhere
in the space. Therefore +Y(P) in equation (3-11) is now
equivalent to the electron momentum density, and N(p) is
egual to the electron momentum distribution function.

Now we are able to construct the total momentum distri-
bution for methane, hexane, and decane from the results of
Section 3.2, and compare tﬁese with the experimentsl results
obtained from positron annihilation data.

Since a methane molecule consists of four tetrahedral
C-H bonds, the momentum disﬁribution, N(Methane), is just
equal to N(C-H) in equation(3-8).

The momentum distributions for hexane and decane can
be obtained by considering that only eiectrons from C-H and
C-C bonds annihilate with the positrons and that annihilation is
equally probable for an electron from either of these bonds,

We will neglect the contribution due to carbon l1ls electrons
since the overlapping of wave functions of these core electrons
with that of positrons 1s very small. The ratios of the

number of electrons in C-H and C-C bonds for hexane and decane

are 28/10 and 44/18 respectively, therefore,
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1
N(Hexane):-——é—-[QS N(c-H) + 10 N(G-C)J s
3

1
N(Decane):—é—é——[LM N(c-H) + 18 N(C-—C)] .

The computed and experimental momentum distributions
for methane, hexane,and decane are shown in Figures 3.2, 3.3,
and 3.4 respectively. The calculated N(C-H) of Duncanson

and Coulson35 is also shown in Figure 3.2 for comparison.

3.4 Discussion

We assume that, prilor to annihilating, the positron
acquires an energy of ~0.1 ev. Calculations have been made
to estimate the thermalization time of positrons in metals.qO’ul
But no rigorous calculation has been made to predict the
thermalization time in non-metal or ligquids. An experimental
attempt to examine the question42 was inconclusive. The
calculations and experiments described in this Chapter are
based on the assumption that the energy of the positron is
near thermal and that all the momentum assigned to the annihi-
lating pair comes from the electron. This is consistent
with the general overall agreement between the calculated
N(p) curves and the experimental curves presented in this
Chapter.

The experimental curves for N(p) consist of a low

momentum part and a high momentum component. The tow
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momentum component which is primarily due to the annihilation

of singlet positronium can be fitted to a gaussilan. It was

seen in Chapter 1 that the percentage of singlet positronium
formed is I2/3 where 12, the amount of triplet positronium
formed, is obtained from the time spectra measurements.

Thus, if the low momentum component in the momentum distribution
does arise from the annihilation of singlet positronium, its
intensity, which we shall callhIL, should be equal to 12/3.

It has been shown38 that for several organic liguids the IL
obtained from the momentum distributions are consistent with

the 12/3 obtained from lifetime measurement. This supports

the view that the low momentum component is due to the self
annihilation of singlet positronium. The high momentum

component arises then from the annihilation of electrons bound

to the molecule with free positrons and the positrons of

triplet positronium.

The calculated curves fit well with experimental curves
except inthe higher momentum region. If the ~higher values
predicted by the calculation represent a real effect in this
region, then several points need discussing.

First, if thermalization of the positron had not occourred
by the time the electron and positron annihilated, then one
would expect the experimental curve to lie above the calculated
curves in those figures in the high momentum region. This 1s
not the case and supports the view that positron had a low

momentum contribution to make to the pair.
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Secondly, the positron wave function used in the calcu-
lations in this chapter is a plane wave which takes on the
value of a constant for small positron momentum. This could
be sensibly modified to include the interaction of positron
and the atomic nucleus by reducing the positron wave function
in the regions of space near the nucleus. This would correspond
to a reduction in magnitude of the product of the positron
and electron wave functions for high electron momentum. This

kind of modification will be discussed in the next chapter.



FIGURE 3.1
Calculated Electron Momentum Distributions

For C-H and C-C Bonds



0.8

0.2

— N(C-H)

~— N(C-C)




FIGURE 3.2

The Momentum Distribution for Methane

# % ————— The experimental points for liquid methane (—17700)
* ¥ —-eee " g s01id methane (-187°C)
A mmmmmem The theoretical curve (with “f(r)=1)

B e The calculated result of Duncanson and Coulson.
N(PS)—~-~A Gaussian to fit the low momentum component of

the liguid methane,
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FIGURE 3.3

<

The Momentum Distribution for Hexane

The open circles are the experimental points, and
the g01id line indicates the theoretical curve which is

the combination of curves A, B and C,

A ~--- N(P) (Gaussian).
B ~~—--§%~N(C—H)

C ---~<%% N(C-C)







FIGURE 3.4

The Momentum Distribution for Decane

The open circles are the experimental points, and
the so0lid line indicates the theoretical curve which is

the combination of curves A, B and C.

A ---- N(P,) (Caussian).
B ---- 22 y(c-H).

31
C == ,_3_9_.N(C-C).

1
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Chapter 4

Positron Annihilation in Normal Hydrocarbon Systems., II.

One-parameter Analytic Positron Wave Function

4L.,1 Form of Positron Wave Function

In Chapter 3, we have discussed the discrepancy
between theoretical and experimental curves in the higher

momentum region and stated that it was probably due to the

use of a constant positron wave function in the calculations.

In an attempt to explain the discrepancy, we introduce a

one-parameter positron wave functlon of the form

(4-1) Yr)=1 - exp(-mr)

where m, is a parameter corresponding to the ;1 th

the origin of r is at the center of the ith atom. Since

atom, and

the SCF electron wave functions are linear combinations of
exponentials, this analytic form for *K(r) is convenient
for momentum distribution calculations. When my is large,
e.g., ~10, Y(r)=1. This is the case of a plane wave type
with small positron momentum. *Y(r) also satisfies the

following conditions:
ﬂkgr)==0 when r—0;

and ’\f:(r):l, ’\h(r)'.—.o when 1 —» co.
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4,2 Calculations of Momentum Distributions of Annihilating

Positron Electron Pairs

From equation (3-11), the momentum wave function

for an annihilating positron-electron pair has the form

(h-2)  X(3)= (2732 [exp(-18-7) $(7) (F)a?

where ~(7) and Y (?) are the electron and the positron
wave functions respectively. Substituting equation (4-1)

into the above equation, we get

(4-27)  X(B) = (B) - X(D),
where

(4-3) 0 (3)= (M2 [exp(-13- ) Y(F)aF,  and
(48 SF) = (2m) ™ [exp(-18-) p(Dexs(-myr)aF.

The momentum distribution function for an annihilating

positron-electron pair then becomes
g N 5

(4-5) N(p)zf;«fs) UB) 2mp? sinede
)

=Jp¢(5)— (@] % (B)- X(B)]27p? sine ae .
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Now the momentum distribution function in the hybrid

carbon orbitals is
T
- AR LR R LAPre 2 .
(4-6) NC(p)=J[7(é(p)— )‘C(p)] [)(C(p)—)fg(pﬂ?ﬁp sin®@d®,
where _}%(ﬁ) is given in equation (3-4"), i.e.,

Iz [ a, (3b5-p°) ]
k

?Cc(p)_ﬂ,\/'l—?—g % 8 (al%-k p2)2 "k (b]i-r p2)3

° @Z_c [CK(CE—S ) °x ]
—=——= COS - .
ﬂjl%—&g k p(ciﬂ-pg)S p(c§4~p2)d

+1

and

- Z{A By ¥ g 3oy mg) 2-p° 3

no = _ B
F T A aem) % 2P T o)

J6 & >.c {(C ) [(eyerm ) 3p2] ‘xt e cos®
T eE F ok o[(eem)2+ 02 p(e,rm,)%pR)?

and the coefficents Ay, Bk, C,...etc. are given in Table 3.1.

After the integration in equation (4-6), we get

8p= a 3b°-p

2
1T(l+6'2) k (blgc-i-pg)s]
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a +m S(bk+mc)2—p2 j
- A ~ ~- B
%{k [(aom)®+p7]" ¢ [(bk+mc)2+p2]3]

._i_____{ _ (exlep-30%) ]

m(1+62) (k k[p<o§+p2>3 p(cZ +p?)?
5o (Ck?mc) [<Ck?mo)2—3pgj cp tm, |
K k[ o[(eyrm, )2+ 0] p[(ekmc)%p?]?} :

Similarly, the momentum distribution in the hydrogen

1ls orbital becomes

(4-7) W (p)= j Pe()- 2 (B)] " [Xy(B)- Ky(B)]2mp® sineae

(=4

= hmo? [2(3) - X (B)]*

~_3%ﬁ 1 1+m, 2
= { (14092 [1+m )P+ 02)

From equation (3-8), the momentum distribution #n

the C-H bond, N(C-H), can be written as

1
(4-8) N(C-H)zg—(i—:T—SCH) [1(0) + 10,(p) +2SCHNCh(p)] ,
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now NC(p) and NH(p) are given in equation (4-6') and (4-7)

regpectively, and
N * -
Nch(p)= J;l?%(p))h(p) eXp(-ip-RCH)

+)é(p) XH(p)eXp(:Lp R )]21Tp251n@do

16p [ 1 1+mh ]
= - - -
'lTRCH(1+62)2 (1+p2) [(1+mh)2+ p2J2

& (3b
" {[%(Ak (—ai_f;é—)é "k (b2+p2)3)

( (ak"'mc) B(bk-\»mc)g..
[

el %?%)%pﬁg—}% U%ﬁ%ﬂapﬁ3ﬂ83ﬂm%ﬁ

k

¢ <C 3p2) c
-+J§'6'{%%,ck( =7 = k2)2>

P(Ck*~p p(ckﬂ-p

(e, rm ) [(cprm )2- 2 Cp+ M,
- %Ck( 1) Loxme Bpj K )]

p[(eyrm,)?+ 7 p{(oyrm, )"+ 7]

sin(pr__)
X [cos<pRCH> - J_C_H_]}

PRap



Similarly, from equation (3-10), the momentum

distribution in the C-C bond can be written as

1
(1e9)  W(0-0)= - [ 5,00 + 5,0, (0]

where Nc(p) is now given in equation (4-6'), and

Nab(p)=Jﬂ)é(p)*ﬂé(p)cos(pRCCcos@))21Tp2-sinéado

8p2
T m(1+6°)

2 2

a (3b.-p=)
K K

> [p B

BLE (a2 +4p2)° (bii-p2)3]

Bt I 3(bk¢mc)2—p2 2 sin(pRye)
B k[Ak (a,+m )2+p2_]2 " [(b)rm Y3 p2 3} - R
k e k e’/ T ] e
o cy. Ck(ck -3p<)
+36° |5 ¢ [ . - ]
E “lp(c2+p2)"  p(c2+p?)3
2
s cprm, (ckfmc)[ﬂckfmc)z—Bp?]
- « -
K [;KCEmJ%pﬂgpﬁwgmgg+pﬂ3 J
y X;sin(pR ) . ECOs(pRCC) _ ESin(pRCC)J
PRy, (pR,,)? (pRec)3

62
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Momentum distributions N(C-H) and N(C-C) were computed
for different values of m, and m,s the parameter in the
positron wave functions corresponding to the hydrogen atom

and the carbon atom.

4.3 Results and Discussion

Figure 4.1 shows the calculated and experimental
results for the methane molecule, with mh==m0=:1.4 . (The
calculated curves with m =1.3%*0.3 and mc==1.4:t0.3, all
fit with experimental data to within the experimental
uncertainty.) Similar results for hexane and decane are
shown in Figures 4.2 and 4.3.

In all cases, the calculated N(p) curves are 1n good
agreement with the experimental curves. The discrepancy
presented in the last Chapter now has been removed by using
such a simple-minded positron wave function. This suggests
that in detailed analyses of momentum distributions one
must consider the Coulomb interaction of the positron with

the effective nuclear charge.
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FIGURE 4.1

The Momentum Distribution for Methane

The solid line indicates the calculated curve using

the one-parameter analytic positron wave function, with

parameters my =m,=1.4.






FIGURE 4.2

The Momentum Distribution for Hexane

The solid line indicates the calcula ted

mh= mc =1.Ll‘.

curve
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FIGURE 4.3

The Momentum Distribution for Decane

The solid line indicates the calculated curve

with m =m =1.4,
h c
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Chapter 5

Positron Annihilation in Normal Hydrocarbon Systems. IIT,.

" Positron Wave Function Obtained From

Schrodinger Equation

5.1 Calculations of Positron Wave HFunctions

In Chapter U4 we introduced a simple form for the
positron wave function and showed how this form leads to
reasonable results. We will now show how a more realistic
positron wave function may be obtained as a solution to the
ground state radial Schrddinger equation.

Since electron wave functions for the molecule have
been constructed from combinations of atomic orbitals, we
willl calculate the positron wave functions corresponding
to the individual atomic potentials. The electron-positron
wave function product for the molecule will then be combinations
of products for the individual atoms.

Recently, the thermal motion of positrons in metals
have been observed by Stewart et 61.50’51 However, the effect
of thermal momentum of the positron on the experimental data
would be small., We will neglect the thermal momentum of the
positron in this calculation. The positron-electron correlation
is also i1gnored.,

Now we will first conslder the interaction between a
positron and a carbon atom. The positron wave function, ﬁﬁ(r),

is the ground state solution of the Schrododinger equation, i.e.,
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(5-1) = % V) + v (2) Yilr) = EYr),

in which the potential V,(r) is taken to be that of a neutral
carbon atom calculated by Herman and Skillman52 (but with a
positive sign). Vc(r) is shown in Figure 5.1. The eigen-
value E is chosen to satisfy the boundary condition that

the slope of the wave function Vahish on the boundary surface

of the atom, i.e.,

’\k(r)': 0 atr=r, ,

in which LS is taken to be the average radius of tThe carbon
atom, i.e., rC=:<ﬂ%C)]r\’?(C)>==1.54 a.u. The wave function
for r>r, 1s taken to be unity. Thus ¥(r,)=1 is another
boundary condition for equation (5-1).

If we set R,(r)=r7(r), then equation (5-1) becomes
a second order differential equation with first derivative

missing, i.e.,

(5-2) R, (r) +2[E - 7 (r)]R,(r)= 0.

This equation was solved numerically by a familiar method.53
The result is shown in Figure 5.1.
Now we will consider the potential of hydrogen atom

seen by the positron. This potential has a form

1 1
(5-3) W (r)= — -— jo | ()| 2 am r2ar,




FIGURE 5.1

The Potential of the Carbon Atom and the Corresponding

Positron Wave Function
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FIGURE 5.2

The Potential of the Hydrogen Atom and the Corresponding

Positron Wave Function
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where the first term is the coulomb repulsion of the nucleus,
and the second term 1s due to the charge distribution of the
1ls electron. Now “%iS(H): TF% exp(-r), and equation (5-3) is
then

1

r 2
Vh(r):-—-- —_— 5 r exp(-2r)dr
r 1 Jo

=(2r+2+1/r)exp(-2r), which is shown in Figure 5.2,

so that equation (5-2) becomes

(5-4)  R,(#)'+ 2[5 - Ty(r)]R,(x)= 0
or R+(r)"+ Q[E - (2r~+2—+1/f)exp(-2fX]R+(r)=-o,

Again E is chosen to fit the boundary condition [R+(r)/f]‘= 0
at rETy, the average radius of hydrogen, i.e.,

ry = <ﬁ#(H)1r‘4#(H)>=1.50 a.u. This numerical positron

wave function 1s also shown in Figure 5.2. IBM Fortran IV

computer programs are included in Appendix D,

5.2 Calculations of Momentum Distributions of Annihilating

Positron Electron Pairs

A, The Momentum Distribution in the Hybrid Carbon Orbital

The electron wave function for the hybrid carbon

orbital is given in equation (3-1), i.e.,
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(c)= '%ES(C)i-GIY’Qp(C)
A e

The momentum wave function for an annihilating pair is then,

Ho()= (2132 [exp(-15. 31U (r)a?

1
" (2m) /2 ix 62

{Jexp(-iﬁ-f)“;gs(c)"h(r)d?

+ Sjexp(-ﬁ- #)%,(C) H(r)at }

Following the same calculation of equation (3-4'), we get

oo

(5-5) %,(B)= <en>-3/2<1+62>~%{<m>% jj(,(pr)RgS(c)«t(r)r?dr
~-i6 cos@-E(S‘n’)%J jl(pr)Rgp(C)’\h(r)rgdr} )

where RZS(C) and Rgp(C) dre 2s and 2p radial wave functions
of carbon. Jjo(pr) and ji(pr) are spherical Bessel functions.

Then the momentum distribution function NC(p) is

(5-6) Nc(p)=J§<C(ﬁ)*)éc(ﬁ)2wp2sin@d®

2p2

_ o2 2 2
S {XJ_(p) + 20,(p) }

where




(5-7) x1<p>=Jgo<pr>R2S<ow+<r)rgdr,

o0

(5-8)  x,(p)= jjl(pr)ﬁgp(c)’\h(r)rgdr.

B. The Momentum Distribution in the Hydrogen 1ls Orbital

Similarly, the momentum distribution in the hydrogen

1s orbital becomes

(5-9) Wy (o)=[4,(8)"% ($)2mPaine de

- mp’&]?g{@)ﬁ ,

where

(5-10)  %.(8)= (2)73/2 [[exp(- 13- )m) ()

o0

5 3, (pr)exp(-r) ,(r) %

o

2|

C. The Momentum Distribution in the C-H Bond

To calculate the momentum distribution of the photon
pairs due to positrons annihilating with electrons in the
C~H bond, we first transform the Fourier component of the

positron wave function overlapping with number 1 electron
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as we did in Chapter 3, i.e.,
X(By,2,)= (2m)73/2 [ exp(-18,- 7, YH(e-1) ,(5)a%y,

then we average‘x(ﬁl,?g)ﬁx(ﬁl,Fz) over all positions of the

number 2 electron, i.e.,

* - e * - -
X(Fy) 9<<p1>=f7é<p1,r2) KBy, ) dv,
Then adopting the result in Section 3.2C, the momentum
distribution, N(C-H), is

(5-11)  N(C-H) = jﬂﬁ)*x(ﬁ)zwpgsin@ d®

1 L
Gy ) et

where NC(p) and NH(p) are now given in equations (5-6) and

(5-9) respectively, and

ch(P) JQC (p)J_ J._.E p)cos(pRCHcos@))pr281n® d®
SX (p) f_:‘l::{—l—:‘—— cos® Xg(p)sin(pRCHcosED )2mp sine de@
22 p Sin(pRCH)
= W X (P){ 1(P)SlH(PRCH)+rGX2(p)[———g§;—— COS(pRCHﬂ}

in which Xl(p), X5(p) and Xu(p) are given in equations

(5-7), (5-8) and (5-10) respectively.
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D. The Momentum Distribution in the C-C Bond

Similarly, adopting the result in Section 3.2D, the
momentum distribution of annihilating pairs in the C-C bond

is
. . ar
(5-12) N(c-C) = Jﬂﬁ)%x(ﬁ)eﬁpgsm@ de
wnere X(3)K(B)= %(8)"2%(3) [1+ s c08(pRpgeos@)]
and Xo(8)= (2m)73/2 [exp(-18- )W) Hi(r)at.

Then equation (5-12) becomes

1
(5-121) N<c-c>=1—+—g—§;{NC<p>+ S5 Nan(P)]

where Ny(p) is given in equation (5-6), and

ope

——p——{xlm)?sin(pRCC)/(pRcc)+ 36%%5(p)?

N, (p)= o)

x[5in(pRye)/(PRyo) * 2c0s(pRyg) /(PR, )2 - 2sin(pRyg)/

(pRCC)3]j

in which Xl(p) and Xg(p) are given in equations (5-7) and

(5-8) respectively.

H
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5.3 Results and Conclusion

Since the calpulated positron wave functions are
numerical values, the\£5 entum distributions N(C-H) and
N(C-C) were evaluated numeriically by computer and plotted
in Figures 5.3 and 5.4 respectively. Results for methane,
hexane, and decane are shown in Figures 5.5, 5.6,and 5.7
respectively. In all cases, the calculated curves are in
a good agreement with the experimental data.

From the several different theoretical approaches
and their respective interpretations made in Chapters 3, L,
and 5, we can conclude that the peak of the higher momentum
component of the éxperimental data is the direct measurement
of the most probable momentum of covalent electrons in the
hydrocarbons, and that in the detailed analysis of the
observed momentum distribution, the effect of the positron

wave function can not be ignored.
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FIGURE 5.3

The Calculated Momentum Distribution N(C-H)

The dashed curve is the calculated N{C-H) with «h(r) =1,
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FIGURE 5.4

The Calculated Momentum Distribution N(C-C)
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The dashed curve is the calculated N(C-C) with 4h(r)= 1.
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FIGURE 5.5

The Momentum Distribution for Methane

The golid line indicates the result of present calculation,

and the dashed line is the calculated result with fh(r)z 1,
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FIGURE 5.6

The Momentum Distribution for Hexane

The solid line indicates the result of present calculation

for hexane, and curve A is the calculated result with 1h(r)= 1.

Curves B and C are N(C-H) and N(C-C) respectively

(present calculation).
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FIGURE 5.7

The Momentum Distribution for Decane

The solid line indicates the result of present calculation

ove A is the calculated result with ”*ir) =1,

for decane, and cu

Curves B and C are N(C-H) and N(C-C) respectively

(present calculation).
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Chapter 6

Positron Annihilation in Alnico and (La P S)MnOS

6.1 General

Positrons entering a metal are essentially thermalized
in a time short compared with their average 1ifetime.40’5o
The momentum of an annihilating positron electron pair is
therefore chiefly the momentum of the eiectron. The measure;
ment of this momentum 1s easily done by observing the angle
between the annihilation gamma rays. The positron samples
mainly the most loosely bound electrons in the solid and
also some of the core electrons. The problem of predicting
the positron electron annihilation possibilities for systems
containing serveral different types of atoms has been underQ
taken in this work. Samples under investigation were Alnico

and (La.7Pb.3)MnO3 crystals.

6.2 Results and Discussion

The experimental results for Alnico and (La _Pb 3)Mn03

7
are shown in Figure 6.2 and 6.3 respectively. Because of
the complicated and not well-understood potential energy in
the Hamiltonian, it is very difficult to make a reasonable
quantitative calculation of wave functions for electrons as
well as for positrons in these materials. Therefore, only

qualitative interpretations and semi-quantitative calculations

will be made in this Chapter.




A, Alnico

To understand the results for Alnico, i1t is helpful
to show the results for copper which have been studied
extensively by several authors.43’44’45 Figure 6.1 shows
present measurements for copper which are in agreement with
those of previous arthors. The experimental curve noted
by the closed circles has been fitted with a parabola,
corresponding to free electrons, at the low momentum region
as indicated by dotted curve A, The dotted curve B has
been calculated on the basis of annihilation of 3d Cu

Lh

electrons with a positron, having a form of

0(p) = (1432 +% 4 exn(-5?),

where f=j%=p and "a" is the 3d core radius. The intersection

of curves A and B then gives us a measure of the Ferml level
for Cu which from these experiments is 7.1 ev.

Now considering the case of Alnico I (12% Al, 20% Ni,
5% Co, 63% Fe), the contribution of Aluminum to the angular
correlation curve is mainly due to the conduction electrons,
since the probability of the core electrons of Al annihilating
with a positron is small even if compared with the d electrons
in Fe, Ni and Co. Moreover, the conduction electrons of Al
in Alnico are not truly "free" electrons since they are
coupled with Fe, Ni and Co. As seen from Figure 6.2, the para;
bolic portion of the angular correlation curve continues only

up to 3.5 milliradians whereas in the case of pure Al tThere is a
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good fit of inverted parabola to the experimental curve up
to the cutoff at the angle corresponding to the Fermi
vmomentum.AB
| Fe, N1 and Co also contribute conduction electrons to
the Alnico as well as Al. All "conduction electrons"(better

called outermost electrons) will behave the same way as far as the

positron is concerned. These electrons all behave like Us-

electrons and the total angular correlation curve can be considered = =

to be composed of two parts: a contribution by all the electrons
in the 4s band and a contribution due the 3d band in Fe, Ni

and Co (we are neglecting smatl contributions due to the core
electrons). Since the 3d wave functions of Fe, Ni and Co are
much alike we merely used one 3d wave function to calculate

the overlap with the positron wave function. When the contribu-~
tion due to the 3d electrons (curve A, in Figure 6.2) are
subtracted from the experimental curve (Figure 6.2,dotted

curve) the rest of the curve fits well to one calculated

from U4s hydrogen-like wave function, curve B, If we extend

the inverted parabola, curve C in Figure 6.2, to meet the
d-electron distribution as we did in copper, then the cutoff
point is at 5.9 milliradians (corresponding to 8.8 ev.).

This we call the free Fermi energy for Alnico, i1f there is

such a thing for this alloy. The calculated Fermi energy

of Al based on the electron gas model assuming 3 conduction
electrons per atom is 11.5 ev and the Fermi energies for

Fe, Ni and Co based on .7 conduction electron per atom are

in the range of 5 to 6 ev. When these four kinds of atoms
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are mixed and reach equilibrium the Fermi levels will be
the same and in the region between 5 to 11.5 ev. This is

consistent with our value of 8.8 ev from positron data.

B. (La_7Pb_3)Mn03

The ionic crystals LaMnO3 and PanO3 are antiferro-
magnetic semi-conductors. Mixed crystals of LaMnOS-PanOS
containing up to 30% of PanOB are ferromagnetic with pervoskite

l—cm‘:L at

structure and exhibit a conductivity of 102 ohm~™
this concentration. The properties of ferromagnetism and
conductivity in (La_7Pb.3)IVInO3 are accounted for by the
"double exchange process”ué

Experiments on the alkali halides have indicated that
the 2-photon angular correlations are almost independant of
the positive ionsazthat 1s, they are only dependant on the
negative lons. Theoretically then this is interpreted to
mean that in an ionic crystal the positron wave function is
concentrated about the negative ions and therefore the positrons
are most likely to annihilate with the outermost electrons
of the negative ions. In the (La

< . +
positive lons La*++, Pb++, vn ¥t

t h
7Pb.3)IVI'nO3 crystals the
and Mn* " are expected to
make little or no contribution to the angular correlations.
Most of the positrons are concentrated at the site of the

07" ions and annihilate with the 2s- and 2p-like electrons

of the 077 ions.
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The experimental angular correlation curves is-shown

in Figure 6.3. They can be fitted quite well to the functionqu

C(p)=cq(1+§2) exp(- §2) + chexp(- §2)
a

where §=}%:p and "a" is the 07~ radius which has been taken
as 1.4 A and p 1s the momentum of the annihilating pair.
The first term, cq(1+§°)exp(-$2), is plotted as curve A in
Figure 6.3 and corresponds to the 2p electrons while the second
terms, CQGXp(—§ 2) corresponds to the 28 electrons annihilating
with the positrons.

The sum of curves A and B fits the experimental curve
except at the higher momentum region where the calculated
curve drops faster than the experimental one. This discrepancy
might be removed by considering annihilations with the 3d
electrons of the transition elements or with core electrons
of the oxygen or some combination of these possibilities.
Umifortunately the discrepancy is so small that no clear cut
picture can be presented.

We can however say that positron annihilation with
the 3d electrons which is responsible for the ferromagnetic
properties is not significant. An experiment was performed
on the perovskite crystal in which angular correlation curves
were run with the magnetization vector‘first in the direction
of the positron beam entering the sample and then opposite

23,24

to the direction. Similar experiments on Fe and Ni

showed a considerable polarization effect while for the
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perovskite crystal considered here the angular distributions
were Iindependant of the orientation of the crystal in the
magnetic field. This leads us to conclude that there are
virtually no positrons annihilating with the magnetic Bd

electrons in (La.7Pb.3)Mh03.



FIGURE 6.1

The Angular Distribution for Cu

A ---- inverted parabola

B «-=- 2d electrons

pF——-— Ferml momentum
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FIGURE 6.2

- The Angular Distribution for Alnico

~=m= 3d electrons

m—— Us electrons

~-—-~ inverted parabola

--== Iintersection of curves A and C

89



°\°~°
N
0\
- e H
\ Alnico .
9\
[ ]
3\
@
\'\f{ Ve —
N \\
\. \e
\ ‘s
\
/‘\
\\ /\«\
\‘ C \ @\ _
\ \ e
\ vy ®
A D
A Y \
I i S N,
N TN,
\ AN
\\ 9\0\ -1
l\ %\s
~ \"\
\ ~ ~ @\Q\Q\o
2 4 6 8 10 2 14 6 18 20 -




FIGURE 6.3

The Angular Distribution for (La .Pb 3)MnO,

A ~---~ 2p electrons

B ~wew 28 electrons
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Appendix A

The Angular Resolution Function

In the following analysis, the origin of the
Cartesian coordinate system is at the mid-point of a line
jointing the two detectors. This line is the x-axis.

The z-axis is parallei to the direction of motion of the
movable detector.

We shall consider the resolution function in the z
direction assuming that the detectors extend to infinity
in the y direction (vertical).

For two sets ofslits of width s (i,e.,sz) at a distance
I, on either side of an infinitely thin source, the geometrical
resolution function is easily seen to by an isosceles triangle
with a base width of 2s. The "sourse" refers to the portion
of the sample in which the positrons annihilate. A single

isosceles ftriangle of unit height centered at z_. is given by

0o

zZ - Z
-————SL for ]z - zo| < 8
0 , for |z - z ) > s.

We will first assume that the sources of annihilation

radiation are uniformly distributed through a thickness d



o2

defined by the width of the fine collimating slit of the
sample housing (see Section 2.1A), so that all triangles are
given equal weight. Then the total resolution function 1s
given by

d

(a-2) R(z)=jd t(z,2,)az7= |

The evaluation of the above integration is dependent on
the values of' s and d. For s-d<d< s, which 1s the case
in our experiments, the integration in equation (A-2) can

be easily performed in three steps, viz.,

() Z+s Z, -2 (s+d+z)2 (drs)
R.(z)= 1 - dz = ' for -(d+s) < z < -d.
1 Jé [ S ] © 28 ’
Z Z-7 Z+8 A
R,o(z)= 1 - °laz . + 1 - =2 ]dz
2 :& [ S ] o J; [ S 0
28 - (s - d - 2)2
= , for -dg z <d-s.
28
zZ ~ Z, d 25" 4
RB(Z)-[d (1 - Jaz, + [ [1 - Jaz
F4 s IS]
72
=2d-( 1 - — - )y, for d-s £ g £gs-d.
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Actually, the assumption of a uniformly distributed
source 1s unrealistic. The intensity of the source is a
function of the penetration depth of positrons. On the
basis of experimental data, Gubernator and Flammersfeld48

have proposed an empirical relationship between the positron

range RY and its initial energy E+, viz.,
(A-3) = 29.7~(Z/A)-(R+)'6O (E' in kev. and R’ in mg/cm?).

The positron spectrum for Na22 has a maximum energy of .54 Mewv.
Because of the energy losses in passing through the windows

of the source and the sample cell, it is estimated that

positrons will have maximum energies about .4 Mev. when they
enter the effective sample region defined by the fine collimating
81it of the sample housing. Substitution of this value for
Et=400 kev into the above equation, yields the maximum range

+
R i.e,
m: 2

R

:nz[tx; ‘(A/Z)] 5/3

mg/cm
For example, in the case of liquid methane, the 1east dense
meterial studied, R;f=167 mg/cmg, corresponding to depth
of .40 cm.

The transmission curve for a continuous positron
spectrum is very nearly exponential (but hits a definite

zero at RE)%g Thus the intensity 6f positrons at depth z is

approximately



BT

ou

I = exp(-pz)

where the absorption coefficient p= 4.5/?; which is chosen

+

to bring I=0.01 for z==Rm This empirical relationship

between u and.Rm fits well to the experimental data of positrons
penetrating C, Al, Cu, Sn and Pb.49

Returning to the problem of the angular resolution
function, the triangular resolution functions must be weighted

by the factor of exp[-u(d-z_)/2] as z, varies from -d to d.

Therefore, the total resolution function is

d

(A;M) R(z) jg f(z,zo)ek(d‘zo)dzo

Z - 2z
O]ek(d—zo)dz

=j [1~

o
S

where k= -p/2=-L4.5/2R! .
For the case of s-d<d< s, the integration must be

performed in five steps in the following way.

R1<Z) _ j;s [1 ) %6~ Z]ek(d—zo)dz

O
3

:{?—k(z+s—d) - (1-zk~sk~dk)e2kd]/k2s, for -(d+s) ¢z ¢-d.
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R(a) = [ (1 - ===z 4 T L e Ro)ag

= [e"k( zes-d)_ ppkld-2) sk-zk-dk+1)e“F4] /x®s,

for -d¢ z 4£d-s.

d Z .~z
- )ek'(d Zo)dz + j (1 - =2— )ek(d—zo)dz
0 ” o

=4 8 8

- {(dk+1—sk+zk)-2ek(d‘z) + (sk-zk-dk+1)e* 3] AcBs,
for d-s¢z<s-d.

Z Z - Z d A4
R4(Z)= j (1 - _____o)ek(d—zo)dz N j (1 - —Q—)ek(d—zo)dz
Z-5 s © 7 5 0

- [(dk+1-sk-zk) s oi(d-28) eek(d'z)]/k2s,

for s-dsz<d

d zZ - 2z ;
Rg(z)= [ (1 - _—S_B)eK(d-ZoMZO

=[ek(d-z+s)_ (sk—zk+dk+1)] /kgs, for d¢ z<d+s.
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The results of equations (A-2) and (A-4) for liquid
methane sample have been plotted as R(6) vs. 6, where 0 =z/L
in milliradians, in Figure A.1 using s=d = .60 milliradians.
For comparison, both curves are normalized to the same height
at the peaks. The position of the peaks have been chosen as

the zero position of O,
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FIGURE A.1

The Angular Resolution Function

Amm e uniformly distributed source

B ---~ exponential distributed source
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Appendix B

Some Useful Integrals
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The following integrations are useful for the calcula-

tion of the momentum wave functions in Chapters 3 and 4.

(where D is the

o differential

(B—,l) jxn e—(a—-ik)xdx

_ (a-in)x * n

- [D - (a—ikS}X

~ o-(a-ik)x 1 }xﬁ
-(a-1k) "1 - D/(a-ik) | o
e—(a—ik)x D ne

= — |1+ + ot
(a-ik) (a-ik) (a-ik)
e-(a—ik_)x . an-—l n(n_l)xn_z

- (a-ik): [X +(a—ik)+ (a—ik)2+

B n}(a+ik)n+1
(azﬁ—kg)n+1

(B-2) I, = {xﬂ ™% sin(kx)dx = Im

..

<  operator, d/dx)



(it (arik)PF
= Tm

(a%+ k223

For n=1, 2, 3, and 4, In are given as follows:

2ak
I, = ——
1 (a2+k2)2
2(32%Kk-k3)
I_-

27 (a2+x?)3

6(4a3k—4ak3)
T =
3 (a2_+k2>4

ol (5a%-1082%3+15)
T

b 2 2
(2°+x°)°

(=]

. o0
(B-3) Rh::J%n e"3% cos(kx)dx = Re {;{Xne—(a-ik)x ax
. ) M O ’ o

_ Re{ru(aﬁik)n+l }.

(a2+ k2)n+1

For n=1, 2, 3, and 4, Rn are given as follows:

ag—k2

R
1 (22 + x2)°
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2(a°-3a%2)

(a2+ k2)3

6(a%-622%2 1

(a2 +k2)"

12(22-10a3Kk2) 5ak™)

(a2 +x2)°
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Appendix C

Evaluation of Overlap Integrals

Since the overlap integral involves two-center
integration, 1t is convenient to use prolate spheroidal

coordinates, (A, U4, P), defined by

+
N (1< A < o)
R
(r_ - =)
M= aRb , (-1 ¢ u ¢1)

(0sPpgam),

¢=

here we regard (ra,Qa,4>) as spherical polar coordinates

which then satisfy the relations,

(A ) = (- p)
r =-— (At s ro= — A - s
a o M b 5 M
AME 1 Apm-1
cos@é=—;:;7;‘, cosOy= T
o (3F-1)(1-42) o OE-1)(1-40)
sin Ga= 5 R sin Oy = 5>
(X + ) (Xx- )
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and hence,

I’a—}- Fb: R>\,
l"a— r‘bzR/M,

raly = (R/2)2( A2 - 42y,
and volume element dv=(R/2)3(A\°-/2)dxduds.

I. Evaluation of Sab Overlap Integral:

In equation (3-9), Sy, was defined as

(c-1) = =f“fé(0)”“}/b(0)dv

~ where ’4@(0) and V%(C) are wave functions corresponding
to the two carbon atoms‘centeréd at A and B respectively,

and have the form

P (Ca) +0 ()
WS R

qﬁs(cb)+%3}gp(cb)
() = 162

where & is the mixing coefficient.



Substituting the above equations into equation (¢c-1),

we get

(c-2) sab={ﬁés(ca)ﬁgs(ob)dv+ 6° f"ygp(ca)%p(cb)dv

N sﬁwgswa)’&gp(ob) r Byl el vl + 6

1 o }
= — +
— [t @1, + 61,

For simplifying the calculation, we will use the ordinary
Slater's orbital wave functions for “éS(C) and ‘HEP(C),

i.e.,

k5

(C)‘: ____re—k]f’,
(0= [

TR
, ~kr
egp(0)= - re coso,

where k=1.625 in a.u.

Now we will evaluate integrals Il’ 12 and I3 in

equation (C-2).
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(c-3) T, :P@S(ca)%s(cb)dv

5

k .

=—\r r e'k(ra+ rb) dv
3T ab

5 #° .
:%E_Jll Ji (R/Q)Q(AQ_HE)e—kRK’ (R/Q)B(Kg— Q)dkd/'ldﬁﬁ
2 » 2 1 )
o [l
3 ‘ 1 L1

- (o/2)° [ a,(1,d) 2A(1a>+-1—A(1a>]
_-:-2)—- [LI- L] "'3 2 3 5 0 s 2

where & =kR, R is the distance between two carbon atoms which

is taken to be 2.9 a.u., and

o0

' ~OA
A (1,0)= f e” AN aa
n 1

(see Appendix B)
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(c-b) 12=J'\}/2p(ca)lf’2p(cb)dv

12
= — Jrarbe'k(raJr rb) cosO,c0s0pdv
T

k> (1 em 5 ima OWH1) (au-1)
=?£ilf0 (R/?)Q(A -p#®)a G

X (R/2)3(»2-42)ardpdd

= 2(kR/2)5f1 dk[i du TN ()\/ﬁl)(/\/u-l)()@_/@)

2 8
= -2%— [Au(l,d) "'—;;‘ Ag(lad) + Ao(lyd)j .

(c-5) 1, - J Phao (C2) Bo(Cy) + Hp(Ca) Ha(op)] av

=—— |r r e_k(ra+rb) (cosea+coseb)dv
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1 el 2w _xma 2(A°-1) |
=:%i%7.£.[1.é (/2)5(\2-42) ™0 —5 o (1/2) (8- ) nauog
Ll' O

_ _(kR/g)BJl PN e‘mxjidy[(kg—l))\g/l -(Ag—l)/ﬁ]

Now for k =1.625, R=2.91, od=kR=4.73, and
Ap(1,4) =0.001867,
As(1,d) =0.002823,
Aq(l,og) = 0.004954,

we get I.=0.339 and T

1 =0.328, and therefore

2

S, =(0.339 - 0.328 62) /(1+62).

IT. Evaluation of Spy Overlap Integral:

The integral S o defined in equation (3—7) is given

C
as

scﬁfj#<c>vxn>dv



here again the atomic carbon wave function“f(c) is given

as

C)+6 g, (C)
J1+6g s

Yoy~ e

and YW(H) is the hydrogen wave function, i.e.,

1

V(H) = i e™th |
Then
: 1
(C-6) Spy= — {J“}gsw)*f(H)dws*}gp(CW(H)dv}
) .
" fize {B1+ GBg}’
and

1 - 1
B1=ifgs(0)y(H)dv = ;I(kB/B)ELSrCe—er e"th av

=—1€ (k5/3)%fl BN e'R(kw)?\/Qii apm o~R(k-1)4/2 (R/2)4

X 21 (arpu) (A2-4F)
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R3

=’:(k5/3)%£ an o RUEF1A/2 (a3 + 122 - 032 +a)/(k-1)

R3

 L(k-1)

(5/3)% [ang(1,0) + oay(1) = oay(3,6) + ang(14)]

where d=R(k+1)/2 , B=R(k - 1)/2 , and

b= ef (1/p S 1) - e Pas 1/B)
c=el(1 - o/8 + 2/g%) - =P (1+2/8 ~ 2/p%)
- el (1 3pr6/p2o6/pIrel (11 3/ + 6/87 + 6/83);

1D
~-kr -Irp
= = —— c
B, J%p(C)Y(H)dv pul 8 cos®, e e dv

12 oo 1 ,0m ' + '
:i% L L JO (/)" e WROH)/2 ROK/2 (1) (h2- 2 arapad

= 5 55(2/2)* o1y (1,00 + sny(1,0) + ar (10) - eng(n,e)]
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Now for k=1.625 and R=2.,0 (the length of the C-H bond),

we have d=2.625, [B=0.625,
a=1.32, b=-0,284, ¢c=0.398, d=0.51, and
A3(1,d) =0.09238, A2(1,0<) = 0.05667,

Al(l,d) =0.03813, Ao(l,o() =0.02762.

Substituting the above values into B1

1

——=(0.612 + 0.3076).

S P—— ;
CH J1+6

and B2, we get
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Appendix D

Fortran IV Computer Programs

I. Positron Wave Function
c CALCULATION OF POSITRON WAVE FUNCTION FROM EQ.(5-2).
¢
c THE NUMERICAL INTEGRATION PROCESS IS GIVEN IN REF.53.
C
c THE INTEGRATION INTERVAL IS 0.05 A,U.
C
C e b 6 0 0 @ 00 6 O O O 00 & C 0 O L P OO 0L IS OOV OO SO O T OO S PO O QO 0 O OB S B O OSSO
C
c
DIMENSION V(9§),X(9§),E(999),Y(99),YY(99),D2Y(99),
1D2YY(99), F(99),U(99
READ (1,15) (U(N), N=1,32)
15 FORMAT (10,F8.0)
c
C THE INPUT DATA U IS THE SELF-CONSISTEN POTENTIAL
c FROM REF.52, IN THE FORM OF U(R) = R-V(R)/(22).
c
x(1)= 0.0
DO 11 N= 2,32
VV=rLoAT(N)
X§N3=o.05%gvv-1,)
V(N)=12.*U(N)/xX{N)
11 CONTINUE
¢
¢ THE SYMBOL F DENOTES THE POSITRON WAVE FUNCTION,
C E IS THE EIGENVALUE, AND Y IS R+ IN EQ.(5-2).
c

DO 10 I=l$999

8?6025*(YY(M)+D2YY(M)/12.)

50 D2Y(M¥
2,%¥y(M)-v(J)+D2Y(M)




QO

60
30

-,

99
90

10

100
20

70
80
222

111

111

YY(L)=-2.%(E(I)-V(L))*Y(L)
Ap= ngL) -2, %YV (M) +vY(J)
D=ABS DQYY(M) AA)-0.0005
IF(D)60,60,40

D2YY(M)=AA

GO TO 50

F(L)= Y(L)/X(L)

CONTINUE
G=F(32)-F(31)-0.0001
IF(G)99,99, 10

WRITE (2 90) E(1)

FORMAT (12H EIGENVALUE=, F10.5)
GO TO 100

CONTINUE

NORMALIZATION OF THE WAVE FUNCTION,
DO 20 MM=2,32

F ()= (M) 77 ( 32)

WRITE (3,70)

FORMAT (1H /5(21H X F(x) )
WRITE (3,80) (x(N),F(N), N=1,32)

FORMAT (1H /5 1H ,F9.4, F11, 5))

WRITE (? 222)

FORMAT 1H 21H v(x) )
WRITE (3, 111? (x(w), V(N) N=2,32)

FORMAT (1H /5(1H ,F9.l, SFaL. 5))

END
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II. Momentum Distributions

c CALCULATIONS OF THE MOMENTUM DISTRIBUTIONS OF ANNIHILATING
C POSITRON ELECTRON PAIRS IN C-H AND C-C BONDS, (CHAPTER 5).
c
C e @ 2 0 0 0 B8 & H & § S O G 6 O O O & & 6 O O P O S DY O N O G O G S5 O U OO G O O S & OO0 ® 08 OO
c
DIMENSION W(555),PM(555),F1(555),F2(555),WW(555),FH(555),
. 1TNCC(555) , TNCH( 555)
c THE INPUT DATA W IS THE POSITRON WAVE FUNCTION FOR
c THE CARBON ATOM, AND WW IS FOR HYDROGEN .
c
C @ % ¥ 9 06 & O 84 O C O & O OV S 9 VL O O SO S O O OO S SO OO0 O T S S S ST OV GO
c
READ gl,log éW(N) N=1,32)
READ (1,10 (ww(i),N=130)
10 FORMAT (10F8.0)
o ,
c SAB TS THE CARBON-CARBON OVERLAP TINTEGRAL.
c
C SCH IS THE CARBON-HYDROGEN OVERLAP INTEGRAL.
c
c RCC IS THE LENGTH OF C~C BOND.
C
C RCH IS THE LENGTH OF C-H BOND.
c
C
SAB=§0.339—0.328*3.)/u.
SCH (0,612+0,307*SQRT(3.))/2.
RCC=2.01
RCH=2.00
DO 15 N=33, 401
15 W(N)=1.0
DO 16 NN=31,401
16 WW(NN)=1.1
DO 20 M=1,301
U=FLOAT(M
PM(M)=U%0,1
P=PM(M)*0.13700
DO 30 I=1,401
v FLOAT(T)
R=(V-1.0)*%0.05
c
c RHS IS THE HYDROGEN 1S ORBITAL WAVE FUNCTION,
c
c R2S IS THE CARBON 2S ORBITAL WAVE FUNCTION.,
c
c R2p IS THE CARBON 2P ORBITAL WAVE FUNCTION,
c

RHS=EXP(-R)
R2S=5.90950/EXP(3.94710%R) ~R*(2.58290/EXP(1.47840*R)
1+5,2230/EXP(2.84930%R) +4.56760/EXP(7.79900%R))
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R2P=R*(0.87935/EXP(1.07890%R) +3.33360/EXP( 2. 14440*R )+
12.12260/EXP(5,92160%R))

F1(I)=R*R23*W(I)*SIN(P*R) /P
F2(T)=ReP*W(I)*(SIN(P*R)~-P*R*COS(P*R))/(P*R)
FH(I)=R*RHS*WW(I)*SIN(P*R)/P

30 CONTINUE

THE INTEGRATION INTERVAL IS 0.05 A.U,

CALL QUADR(F1,401,0.05,8, IER)

X1=8

X1=ABS(X1)

XX1=X1%X1

CALL QUADR(F2,401,0.05,S, IER)

X2=3

X2=ABS(X2)

XX2=X2%X2

CALL QUADR(FH, 401,0.05,S, IER)

XH=S* 1, 4142/3,1416

XH=ABS(XH)

TNH =XH*XH*4 , %3 1416%P*P
TNC=2,*P*P*(XX1+3,*XXQ)/§3@1416%4.)

27=2,%1 U1L42*P*XH(X1*SIN(P*RCH) -3, ¥X2% (COS(P*RCH)
1-SIN(P*RCH) /(P*RCH))) /(2. *RCH)
YY=SIN§P*RCC%/§P*RCC +2.%COS(P*RCC) /(P*RCC)**2-
12.*3IN(P*RCC) /(P*RCC)*%3

TNCH IS THE MOMENTUM DISTRIBUTION IN THE C-H BOND,
TNCC IS THE MOMENTUM DISTRIBUTION IN THE C-C BOND.

TNCH§M§=§TNC+TNH+ 2.%SCH*ZZ) /(2.%(1.+3CH®*2))

TNCC(M TNC+SAB*2.*P*P*(XX1*SIN(P*RCC;/(u.%3,1416*9*300)
143, %3, *¥XX2*YY/( L, %3,1416)) ) /(1.4SAB**2

20 CONTINUE
WRITE (3,60)

60 FORMAT (1H /3
WRITE (3,70)

70 FORMAT (1H /3
END

37H  P(MRAD) N(C-C) N(Cc-H)))
PM(M), TNCC(M), TNCH(M),M=1,301)
1H ,F9.4,2E14.5))
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SUBROUTINE QUADR

PURPOSE
INTEGRATES A GIVEN TABULATED FUNCTION AT A SET OF
SPACED POINTS.

USAGE
CALL QUADR(Z,N,H, S, IER)

DESCRIPTION OF PARAMETERS
Z -A VECTOR OF LENGTH N CONTAINING THE VALUES OF
THE FUNCTION TO BE INTEGRATED
N ~-THE NUMBER OF FUNCTION VALUES TO BE INTEGRATED
H -THE RESULTANT VALUE OF THE COMPUTED INTEGRAL
JER ~RESULTANT ERROR CODE WHERE
TER=0 NO ERROR
JER=1 N LESS THAN 2
IER=2 H=0
METHOD
NUMERICAL QUADRATURE IS PERFORMED USING A 5 POINT
FORMULA UNTIL FEWER THAN 5 POINTS REMAIN, A 4,3,0R

2 POINT FORMULA IS THEN USED TO COMPLETE THE INTEGRATION.

9 9 3 6”2 606 ¢ 0063 008 O L0 DG00I QO DG SO O O8O I O QOB S SN C O S

SUBROUTINE QUADR(Z,N,H, S, IER)
DIMENSION Z(1)

S=,0

IF(N-1)32,32,33

TER=1

RETURN

IF(H)?M,?S,?M

TER=2

RETURN

IF(N-5)40, 38,38

CALCULATED USING 5 POINT FORMULA
DO 39 I=5,N,4
S=S4+7. ji(l u)+32 *¥7(I-3)+12.%2(1-2)+32.%Z(I-1)+7.*Z(1)
S=3%2, /L5
J=N»(N/L)*4+l
GO TO (45,50,47,48),J

CALCULATE USING 4 POINT FORMULA

S=8+.375%(Z(N=3)+3.%Z(N-2)+3,*Z(N-1)+Z(N))
G0 TO 50

CALCULATE USING 2 POINT FORMULA



47 S=8+(Z(N-1)+7(N)) /2.
GO0 TO 50

CALCULATE USING 3 POINT FORMULA
48 S=S+(Z(N-2)4+4.*Z(N-1)+2Z(N)) /3.
50 S=8*H
TER=0
RETURN
END
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