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Abstract

Code-division multiple access (CDMA) increases the spectral efficiency of a commu-
nication system by allowing all users to share a common channel at the same time. To
provide multiple access, CDMA systems require a family of distinct signature wave-
forms to be assigned to different users. Since the limiting factor for such a system is
the inevitable multiple-access interference (MAI) present at the receiver, it is impor-
tant to suppress the MAI in CDMA systems. This thesis focuses mainly on signature
waveform design as a means of suppressing the MAI. The novelty in the approach is
that the available bandwidth of the systems is explicitly incorporated into the design
process. In this way, this precious resource is most efficiently utilized and hence a
benefit is achieved.

In the first part of the thesis, signature waveform design is considered for syn-
chronous CDMA systems equipped with either correlation or minimum mean-square
error (MMSE) receivers. The design criterion can be either to maximize the network
capacity (i.e., the maximum number of users) for a specified level of MAI, or to min-
imize the average MAI for a given number of users. Both the fractional out-of-band
energy (FOBE) and the root-mean-square (RMS) bandwidth measures are examined.
Comparisons to signature waveforms constructed using different approaches are made
to quantify the superiority of the proposed signature waveforms. When the FOBE
bandwidth criterion is used, the generation of the proposed signature waveforms at
the receivers is quite complicated due to the involvement of the prolate spheroidal
wave functions. Thus a simplified receiver structure based on a Walsh signal space is

also developed for a practical use.

v



In the second part, signature waveforms are designed to minimize the MAI in asyn-
chronous CDMA systems. The series expansion method is first applied to find the
optimal signature waveforms, where no special restriction is imposed on the struc-
ture of the signature waveforms. For a special class of asynchronous CDMA sys-
tems, known as direct-sequence CDMA (DS-CDMA), the signature waveforms are
constructed by modulating a given chip waveform with the corresponding signature
sequences. Furthermore, when random signature sequences are assumed, the MAI in
DS-CDMA systems is only affected by the shape of the chip waveform. In this thesis,
the use of multiple chip waveforms is also introduced as a means of suppressing MAI
in DS-CDMA systems. Optimal multiple chip waveforms are obtained using the series
expansion method. Finally, to evaluate the error performance of DS-CDMA systems
using random signature sequences and multiple chip waveforms, an expression for
error probabilities is derived based on Holtzman’s approximation and its accuracy is

verified with simulation results.
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Chapter 1

Introduction

The need for multiple access techniques arises when more than one user transmits
over the same medium. As an example, a multiple access technique is required in
cellular telephony. In this example, the users are cellular telephone customers and
the common medium is the range of radio frequencies allocated for use by cellular
subscribers. Without multiple access techniques, only one caller would be able to
make a call at a given time. There are three common forms of multiple access, namely
frequency division multiple access (FDMA), time division multiple access (TDMA),
and code division multiple access (CDMA).

With the FDMA technique, the available frequency band is divided into disjoint
sub-bands and each of these sub-bands is used to carry a single user’s signal at the
same time. In a TDMA system, time slots are allocated to the users such that only .
one user can transmit in a particular time slot over the same frequency band. It is
important to point out that in both FDMA and TDMA systems, different users do not
incur any mutual interference from each other. This is made possible by ensuring that
the signals transmitted by various users are mutually orthogonal, either in frequency
or in time. For a given signaling duration 7" and a transmission bandwidth W, the
number of orthogonal users in both FDMA and TDMA systems is approximately
2WT, which is a fixed number [1].



In a CDMA system, users are assigned different signature waveforms (or codes,
an older terminology from which the term CDMA originated [2]). Each user sends
her /his narrow-band data stream by modulating her/his own signature waveform.
All user signals are then transmitted over the same frequency band and at the same
time. The signature waveforms are used to spread the bandwidth of the transmitted
signals over the entire frequency band, and if they are well chosen, the corresponding
receivers (which have knowledge of these waveforms) can de-spread the received signal

and recover the intended narrow-band data streams.

Technically, the users in CDMA systems can also be orthogonal if their signature
waveforms are orthogonal. However the important (and interesting) feature of CDMA
communications is that users are not necessarily orthogonal. This implies that the
number of users in CDMA systems is not hard-limited by 2WT as in FDMA or
TDMA systems and users can be added and removed from a CDMA system quite
easily. This property makes network planning and management in CDMA systems

much simpler.

Since the users are not necessarily orthogonal in CDMA systems, there is in-
teruser interference or multiple access interference (MAI) apart from the background
noise. This additional interference limits performance, but due to the way time and
bandwidth resources are allocated, CDMA systems offer higher capacity compared to
FDMA and TDMA systems [3]. The flexibility and higher spectral efficiency has made
CDMA the standard of choice for the air-interface in the third and fourth generations
(3G and 4G) of wireless mobile systems [4, 5].

To further improve the spectral efficiency of CDMA systems, it is important to
suppress the MAI. Loosely speaking, there are three different methods for suppressing
MAI in CDMA systems: i) to design signature waveforms with MAI-suppression
capability for a given type of receiver; ii) to design efficient receivers for a given set

of signature waveforms and iii) to jointly design transmitters and receivers.



The topic of receiver design for CDMA systems has been very active in the past
fifteen years under the name of multiuser detection. Perhaps this research area was
pioneered by the work of Verdu in 1986 [6]. In [6] the author derives the optimal
multiuser receiver based on a maximum likelihood criterion and shows that there
is, in general, a huge gap in the performance between the conventional correlation
receiver and the optimal receiver. It has also been shown that the complexity of the
optimal multiuser detector is exponential in the number of users and hence it is not
practical for implementation, even for a system with a moderate number of users [7].
To reduce the complexity of multiuser receivers, many different suboptimal detectors
have been proposed in the literature (see [8] and [9] for extensive reviews). It should be
noted, however, that when the suboptimal receivers are used, they are very sensitive
to the signature waveforms and this makes signature waveform design a more crucial
task in CDMA systems. Regarding joint transmitter and receiver design, this research
topic has just been recently introduced and there is relatively little work done on this
topic [10, 11, 12]. This thesis concentrates on signature waveform design as a means
of suppressing MAI in CDMA systems. The design considers both synchronous and

asynchronous CDMA systems and under different bandwidth criteria.

1.1 Previous Work and Thesis Contribution

CDMA systems can be either synchronous (S-CDMA) or asynchronous (A-CDMA)
and signature waveform design must be considered for a particular system. Syn-
chronous systems assume that the users’ bit epochs are perfectly aligned at the re-
ceiver. This requires closed-loop timing control or providing the transmitters with ac-
cess to a common clock (such as the Global Positioning System) [2]. In asynchronous
CDMA systems, the users’ time epochs are not aligned. The design of CDMA sys-
tems is considerably simplified if the users need not be synchronized. However the

spectral efficiency of asynchronous CDMA systems is significantly lower than that of



the synchronous ones.

Conceptually, it is not necessary to place any specific structure on the signature
waveforms, as long as they satisty the duration, bandwidth and energy constraints.
There is, however, a common and popular approach to constructing the signature
waveforms for both synchronous and asynchronous CDMA systems. This approach
assumes that the space of signature waveforms is spanned by some set of orthonormal
basis functions. Each signature waveform is then constructed as a linear combination
of basis functions weighted by a signature sequence. The length of each signature
sequence equals the dimensionality of the signature space (commonly referred to as
the processing gain N) which is controlled by the available bandwidth of the system.
Thus, given N and a set of basis functions, the design of signature waveforms is

essentially the design of signature sequences.

Signature sequence designs for S-CDMA systerns are studied in [13, 14, 15], where
it is shown that the optimal sequences are the Welch bound equality (WBE) sequences
since they satisty Welch’s bound on the sum of the squared cross correlations of equal
energy sequences [13, 16]. The perfbrmance measure in [14] is the the (information)
sum capacity of a SS-CDMA system, whereas the network capacity, i.e., the maximum
number of users that can be accommodated in a system, is the performance criterion
in [15]. Recently, a generalization of the work in [14] has been presented in [17]
to include the case of unequal-power users. It should be noted that the bandwidth
consideration is not explicitly specified in all of the above mentioned work, but rather
is taken into account through the dimensionality of the signature space. In this thesis
we will extend the results of [15] by considering the bandwidth constraint to better
exploit this system resource. Using the property of the WBE sequences, the optimal
orthonormal basis functions for the construction of signature waveforms can be easily
identified.

Signature waveform designs for S-CDMA systems are also considered in [18, 19,



20, 21], where either the root-mean-square (RMS) or fractional out-of-band energy
(FOBE) bandwidth constraint [22] is explicitly specified in the design problems. In
particular, the authors in [18] and [19] found the information capacity region of a two-
user synchronous CDMA system and the optimal pairs of signature waveforms that
achieve any point inside the capacity region. In [20] the authors derive the signature
waveforms that maximize the total information capacity and asymptotic efficiency of
a S-CDMA system under the RMS bandwidth constraint. Similar work considering
the FOBE bandwidth constraint appears in [21].

Unlike the above mentioned work which was concerned with the information the-
ory aspects of a CDMA communications channel, in this thesis the signature wave-
forms are designed to minimize the MAT at the outputs of the receivers. The band-
width constraint (which can be either RMS or FOBE bandwidth) is also explicitly
incorporated into the design process. The design is carried out for two different
types of receivers, namely the conventional correlation receiver and the minimum
mean-square error (MMSE) receiver. Furthermore, since under the FOBE band-
width criterion, the optimal signature waveforms are constructed from the prolate
spheroidal wave functions (PSWF's) [23, 24], the implementation of receivers operat-
ing with these signature waveforms is complicated. To overcome this disadvantage, a

simplified receiver is also developed based on the Walsh signal space.

In A-CDMA systems, the signature waveforms are usually generated using signa-
ture sequences shaped by an elementary chip waveform. In binary transmission, the
signature sequences are binary sequences, whereas in M-ary modulation, the signa-
ture sequences are polyphase sequences (whose symbols are the complex Mth roots of
unity). The most popular polyphase sequences are the quadriphase sequences, corre-
sponding to quadrature phase shift keying (PSK) modulation. Analysis of A-CDMA
systems leads to the consideration of various correlation functions of the spreading

sequences [25, 26, 27]. For signature sequences in A-CDMA systems, there are also



Welch bounds on the maximum magnitude (Cyax) and root-mean-square (RMS) mag-
nitude (Cims) of their correlation functions [27, 28]. The sequences that achieves the
Welch lower bound on Ciy,s are referred to as Welch-bound-equality (WBE) sequences
and they are of particularly importance in A-CDMA systems [14, 27]. It was shown
in [29] that finding WBE sequences is almost trivially easy, for example almost all
linear codes (and their cosets) form a WBE sequence set. In contrast, signal sets that
meet Welch bound on Ci,.x are not easy to find. Two examples are the binary Gold
code family [25] and the two families (families A and B) of quadriphase sequences
found in [30]. In [27] the optimal phases of family A sequences are also obtained so

that the family satisfies the Welch bounds on Cp.x and Chys simultaneously.

A different method of designing signature waveforms for A-CDMA systems that
does not rely on binary or polyphase sequences has also appeared in [31]. The signa-
ture waveforms obtained in [31] are constrained to have a flat amplitude spectrum and
they are complex signals in general. Such a constraint requires that the cardinality

of the signature set be fairly low so that they have good cross-correlation values.

This thesis also considers signature waveform design for A-CDMA systems. The
signature waveforms are not assumed to have any specific structure and they are de-
signed to minimize the average MAI at the outputs of the correlation receiver. The
correlation receiver is preferred to other multiuser receivers in A-CDMA systems be-
cause the complexity of any multiuser detection is usually prohibitive in asynchronous
systems with a large number of users. Analogous to the design for SS-CDMA systems,

here the bandwidth is also explicitly incorporated into the design process.

Although there are signature sequences that perform better than the random
signature sequences [26, 27, 30], the use of random signature sequences has been
widely adopted to analyze the performance of A-CDMA systems [32, 33, 34, 35]. With

random signature sequences, the MAI variance at the output of a correlation receiver



depends only on the chip pulse shape. Generally, the chip pulse can be either a time-
limited or a band-limited waveform. Commonly used time-limited chip waveforms
are rectangular and half-sine pulses [36, 37]. Other time-limited chip waveforms are
introduced and evaluated in [35, 38, 39]. On the other hand, the square root raised
cosine pulse is the most popular band-limited waveform [4, 5, 35]. It is widely expected
that the band-limited chip waveforms are more bandwidth efficient than the time-
limited ones, however this is not always true as shown in [35]. Another contribution
of this thesis is the proposal of using multiple chip waveforms instead of a single chip
waveform as a means of suppressing MAI. The study is restricted to the family of time-
limited chip waveforms but the idea can be easily extended to band-limited waveforms.
Optimal multiple chip waveforms are obtained for the RMS bandwidth constraint,
although the methodology is also applicable for the FOBE bandwidth criterion. The
combinations of some commonly used chip waveforms are also evaluated to investigate
the advantage of the proposed scheme. Finally, to evaluate the performance of A-
CDMA systems employing random signature sequences and multiple chip waveforms,

an extension of Holtzman’s approximation for error probabilities is also derived.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 first describes the system
models for both S-CDMA and A-CDMA communications systems. For S-CDMA
systems, both the correlation and MMSE receivers are discussed in detail. For A-
CDMA systems, only the correlation receiver is considered. The chapter also defines
the RMS and FOBE bandwidths for CDMA systems, which will be used throughout

the rest of the thesis.

In Chapter 3, signature waveforms for maximizing the network capacity of S-

CDMA systems are obtained under both the RMS and FOBE bandwidth constraints.



Based on the results in [15], the signature waveforms are constructed from the Welch-
bound-equality (WBE) sequences [13]. It is first shown that using the property of
the WBE sequences, the constraint on the bandwidth of signature waveforms can be
transformed into the bandwidth constraint of the orthonormal basis functions. Then
the optimal orthonormal bases are identified to be used with the WBE sequences.
Performance of the proposed signature waveforms is compared to that of the subop-
timal signature waveforms (constructed from suboptimal basis functions) to quantify

the gain achieved by the proposed signature waveforms.

Chapter 4 also studies signature waveform design for S-CDMA systems but under
a slightly different scenario. Here the number of users is fixed and the signature
waveforms to minimize the multiple access interference (MAI) are found. The design
is first carried out for the correlation receiver under both RMS and FOBE bandwidth
constraints. Then it is extended to include the MMSE receiver. Comparison to
suboptimal signature waveforms that are constructed from WBE sequences is also

made to quantify the superiority of the proposed signature waveforms.

Chapter 5 is concerned with the practical implementation of the linear receivers
when the signature waveforms are constructed from prolate spheroidal wave func-
tions (this happens when the FOBE bandwidth criterion is used). The structure of
the simplified receiver in a Walsh signal space is first developed. Then its perfor-
mance is evaluated based on the exact expression of error probability for S-CDMA

communications.

Chapter 6 is devoted to the design of signature and multiple chip waveforms for A-
CDMA systems. The chapter begins with the evaluation of the signal-to-interference
ratio (SIR) at the output of a correlation receiver in terms of the Fourier transforms
of the signature and chip waveforms respectively. These expressions suggest a method
to obtain the signature and chip waveforms through series expansion. The series ex-

pansion method can be applied for both RMS and FOBE bandwidth constraints, but



for simplicity only the optimal signature waveforms and multiple chip waveforms are
presented for the case of RMS bandwidth. Additionally, this chapter also investigates
the combinations of several commonly used chip waveforms to study the gain achieved
by using multiple chip waveforms.

An error probability calculation for A-CDMA systems using random signature se-
quences and double chip waveforms is the topic of Chapter 7. The main contribution
of this chapter is to extend and evaluate the accuracy of an approximation previously
proposed by Holtzman [40]. This approximation is first extended to include an arbi-
trary single chip waveform. The accuracy of Holtzman’s approximation for this case
is verified with the exact calculation derived in [34]. Holtzman’s approximation is
then developed for A-CDMA systems using double chip waveforms and its accuracy
is verified using computer simulation.

Finally Chapter 8 draws conclusions and gives suggestions for further study.



Chapter 2
Signalling Over CDMA Channels

This chapter reviews basic concepts in CDMA systems and serves as background
material for the subsequent chapters. Both the synchronous and asynchronous CDMA
channel models are discussed. Various receivers, including optimal, correlation and
minimum mean-square error (MMSE) receivers are explained for S-CDMA systems.
For A-CDMA systems, only the correlation receiver is considered. The importance of
signature waveform design for system performance is highlighted. This chapter also

discusses the bandwidth criteria used in the thesis.

2.1 S-CDMA System Model

In a synchronous CDMA system, each user transmits an information symbol in a
time interval 7" and over a bandwidth W by modulating its own distinct signature
waveform. Let K be the number of users and si(t), 0 < ¢ < T, be the signature
waveform of the kth user whose energy is normalized to unity. Then the received

baseband signal in one symbol interval can be expressed as

y(t) = D VBbs(t) +n(t), 0<t<T  (21)

where by is the information symbol of the kth user (b, € A for some finite set of

amplitudes Ay), py is the received power of the kth user’s signal and n(t) is additive

10
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white Gaussian noise of spectral strength 02 = Ny/2. To simplify the analysis it is
assumed that E[b}] = 1 (by scaling the set of amplitudes A, appropriately).

It can be shown that a sufficient statistic for demodulating the information sym-
bols of K users is given by the K-vector y whose kth component is the output of a

filter matched to si(t) [2], i.e.,

T
Yr — / y(t)Sk(t)dt, k= 1, sy K. (22)
JO

]T can be written as

The sufficient statistic vector y = [y1,..., ¥k
y = RWY?b + on (2.3)

where one has the following:

e R denotes the correlation matrix of the set of signature waveforms

T
R:mM:/st@& (2.4)
0
where s(t) = [s1(¢),...,sx(t)]" is the signal set vector.
e be {[b,by,...,bx]|"|by € Ay} is the vector of information symbols of all users.

For a binary data symbol A, = {+1,—1}.

e n is a Gaussian vector of zero-mean and covariance matrix R, independent of

the transmitted symbols.

e W = diag(p1,ps, ... , PKc)-

When the signature space is spanned by an orthonormal set {11(¢),...,¥n(t)},
0 <t < T, adifferent N-vector r of sufficient statistic can be obtained by projecting
the received signal y(t) onto the orthonormal set. Let each user waveform be written

as

su(t) = Z se(i)s(t), 0<t<T (2.5)
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then P
r=>_/Pbisy+om=SW"’b+om (2.6)

k=1
where s, = [s1(1), ..., s.(IV)]7 is the signature sequence of user k, S = [s1, Sg, . . ., Sk

is an N x K signature matrix and m is a Gaussian vector of zero-mean and identity

covariance matrix, independent of b. Note that since R = STS, it is easy to see from
(2.3) and (2.6) that

y=S'r (2.7)

The output of the matched filter in (2.2) can be decomposed into three components

as follows:

Yp = /0 y(t)si(t)de

K T T
— Vb + Y Vb /0 si(t)su(t)dt + /O n(t)su(£)dt. (2.8)
— MAI ’

In (2.8) the first component contains the desired signal of user k, the second compo-
nent is due to multiple-access interference (MAI) from all other (K — 1) users and
the last component is due to the background noise.

Though the vector y in (2.3) is a sufficient statistic for detecting one or more
user information symbols, the conventional approach for demodulating the vector b
in (2.3) has been to rely on correlation receivers (or single-user matched filters) as
follows:

o~

by = sen(ye), k=1,...,K; or b =sgn(y). (2.9)

This approach simply neglects the presence of MAI since it assumes that the statis-
tical properties of MAI are similar to additive white Gaussian noise, and therefore
a correlation receiver should be near-optimal to combat such interference. This as-
sumption was proven wrong by the derivation and analysis of the optimal multiuser

detector in [6].
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The optimal multiuser detector searches for the most likely b in (2.3) that mini-

mizes the error probability, or equivalently maximizes the likelihood function
Q(b) =2b"W%y — bTRb (2.10)

where R = WY2RW2, is the power weighted correlation matrix. Unfortunately,
for an arbitrary correlation matrix, no search algorithm is known for the optimal
multiuser detection whose computational complexity is polynomial in the number of
users. In fact the complexity of the search in (2.10) is exponential in the number
of users (O(2%) for binary transmission). The following structural constraints on
the correlation matrix or the signature waveforms are known to lead to polynomial

complexity of the optimal multiuser detection.
(i) Band-diagonal correlation matrix with small number of non-zero diagonals [2, 41].
(ii) Non-positive cross-correlation among all pairs of signature waveforms [42].

(iii) Tree structure of the signature waveforms where the signature waveforms in the

same subset are orthogonal [43].

However, the above constraints are rather restrictive and can be satisfied only in some
special scenarios of CDMA communication.

Recently, there has been considerable interest in linear multiuser detection [44,
45, 46, 47], where a linear filter, C, is introduced between the the bank of matched
filters and the bank of hard limiters (for detection of binary information) as shown in
Fig. 2.1. Although the linear multiuser detector does not achieve minimum bit-error-
rate, it has been shown to satisfy alternative optimization criteria such as asymptotic
efficiency or near-far resistance [44].

Note that the correlation receiver is the simplest linear multiuser detector ob-

tained by choosing linear filter C to be an identity matrix. i.e., C = I. On the other
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Figure 2.1: Linear multiuser receiver

hand, the decorrelating receiver [44] is realized by setting C = R~'. In this man-
ner, the decorrelating receiver totally removes the MAI simultaneously enhances the
background noise [44]. Another important linear multiuser receiver is the minimum
mean square error (MMSE) detector, whose linear filter C is obtained as follows (see
also [2] for a different treatment).

Let ¢ = [Ch1s - -, Cir] be the kth row of matrix C. The linear receiver for user

k can be written as K
cr(t) = Cuyss(t) = ¢fs(t). (2.11)
j=1

The output of the linear detector for user & is,

Zy = {e(t),y(t)) =cly

K
= /prbrcl Ry + Z VPibici R, +ocin (2.12)

i=1

ik

where Ry, is the kth column of correlation matrix R. The mean-square value of Z,

can be decomposed into three different components as follows
2 i 2
E{Z} =pe (6fRi)"+ D p; (cIR;)” + o2¢] Ry, (2.13)
J=Lisk
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The first component accounts for the power of the desired signal of user k, the second
component is due to MAI and the last component is caused by the background noise
due to correlation with c;. As mentioned before, the correlation receiver neglects
the MAI and chooses the linear filter to minimize the background noise, whereas the
decorrelating receiver neglects the background noise and chooses the linear filter to
minimize the MAI. In contrast, the MMSE receiver chooses the filter to minimize the
mean squared error F {(c;y — \/ﬁbk)2}. Using (2.3) and the assumption that the
data symbols from different users are independent of each other and of the background

noise, one then obtains
MSE, = E{(cly - voubi)’}
= E{[c; (RW'?b+on) — /pibi] [(on” + b WYR) ¢, — /Biby] }
= E{c,RW"’bb"W'Rc;, — 2c, RW"b/piby, + o’cinn’ ¢; + pb? }
= ¢; (RWR + 0’R) ¢, +pp — 20ic] Ry (2.14)
Setting OMSEy/dcy, = 0 gives
¢ = (RWR + (/*QR)_lka;C (2.15)
from which the linear filter C is
C=C" = (RWR+0’R) " RW = (R+ W) 7" (2.16)

Note that to obtain the above identity it has been assumed that the correlation matrix
R is invertible (or non-singular). If this is not the case, the p-inverse (pseudo-inverse?)

should be used to give

'For each m x n matrix A, there exists a unique n x m matrix A~ satisfying the four properties:

(1) ATAA~ = A~ (2) AATA=A
(3) (A‘A)H =A"A (4 (AA“)H = AA~ (H means Hermitian)

If A is diagonal then A, = 1/Ap; if Ag, #0, and A, =0 if Ay, = 0.
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From the expressions of the matrix C for all the linear receivers discussed above
the following observation can be made regarding the required information for their
implementation. The advantage of the correlation receiver is that its implementation
requires only the signature waveform of the the user to be demodulated. The decor-
relator, on the other hand, requires knowledge of all users’ signature waveforms to
demodulate any given user. The MMSE receiver too requires knowledge of all users’
signature waveforms, as well as requiring knowledge of the signal-to-noise ratios of all
users. The benefit obtained from the requirement of more information for the receiver
implementation is the superiority in bit-error-rate performance of the corresponding
receiver [47].

One performance measure used in this thesis is the signal-to-interference ratio
(SIR) at the output of the linear multiuser detector. This parameter is defined as the
ratio of the power in the decision statistic due to the desired signal to the total power
due to the interfering users plus the background noise. Thus, it follows from (2.13)

that the SIR is given by

pr (c{Ri)”

SIR = 2.T K T 2°
o*cy Rep + 3 5= pj (ciR;)

(2.18)

This is an intuitively useful measure of performance, particularly when error control
coding is implemented. Among all linear receivers, the MMSE receiver maximizes
the signal-to-interference ratio [2]. For the correlation and decorrelating receivers,

the SIR simplifies to

Pk
SIR; = = (2.19)
o+ S iR,
and
yZ3
SIRy, = ———— )
= Zm, (220

respectively.
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Next it is shown that for the MMSE receiver, the SIR;, can be expressed in terms of
MMSE,, which is the MSE,, in (2.14) corresponding to the MMSE receiver. Rewrite
the SIR in (2.18) as follows

P (c/Ry)”
E{72} —p ([ Ry)’

SIR, = (2.21)

From the definition of the minimum mean-square error (MSE) in (2.14), the minimum

MSE at the output of the MMSE receiver for user k is

MMSE, = E {(c{y - \/mk)Q}
E{(c;y)’} —2E{c[y/Drbe} + E {psb}}
= E{Z}} - 2prci Ry + pi. (2.22)

On the other hand, by substituting ¢, from (2.15) into (2.14), MMSEy, can be found
to be

MMSE;, = p — piR; (RWR 4+ 0”R) ™ Ry, = pi (1 — ¢/ Ry) . (2.23)

It then follows from (2.22) and (2.23) that E {Z?} = prc] Ry.. Hence (2.21) becomes

I Dk (C;—Rk>2 ci Ry
SIRe = — R,). 1-GR
peci Ry — pi (¢] Ri) kVk
1 Pk
1—¢/R; MMSE, (2.24)

From equations (2.19), (2.20), (2.23) and (2.24) it is obvious that the SIR at the
output of each linear receiver can be further maximized by carefully selecting the
correlation matrix R through the design of signature waveforms {s1(¢),...,sx(t)}.

This design problem will be addressed in Chapter 4 for the cases of correlation and

MMSE receivers?.

ZSignature waveform design for the decorrelating receiver can be carried out similarly.
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Asis common in CDMA system analysis, it is the average performance rather than
the maximum (or worst case) performance that is of most interest as a performance
measure. The parameters that reflect this average performance are introduced next
for both correlation and MMSE receivers. For the correlation receiver, it follows
from (2.19) that maximizing SIRy, is equivalent to minimizing (02 + Z%i ij,%j>.
However, to design the signature waveforms to minimize this quantity for every user
k is a very difficult, if not an impossible task. Thus the alternative criterion is to

minimize the total interference parameter (TIP), defined as follows

K K
e = 3 [ 3,
k=1 j=1
ik
K K
= K02+22ijﬁj. (2.25)

k=1 j=1
o

Similarly, for the MMSE linear detector, although it is desirable to minimize MMSE,,
in (2.24) for every k, the alternative criterion is to minimize the total mean squared

error (TMSE), which is defined as

K K
TMSE = > MMSE, =Y (pk - PR (RWR + ¢*R) "’ Rk)

k=1 k=1

= (W) — tr <[I +o2 (WR)™] ™

W) . (2.26)

To conclude this section, the formulas to calculate the error probability for binary
signaling over synchronous CDMA channels are given next. Without loss of generality,

consider the detection of the first user. The exact error probability is [47]

P, = 91-K Z Q N/ (CR)1,1 (1+ weby + -+ - + wibg)
ba,.. bge{—1,+1}K~-1 g ((ZI{CD)LI

(2.27)

where wi, = /pr/p1 (CR), ;. / (CR),, for k = 2,3,..., K. For large K the evaluation

of the above equation is time consuming and the Gaussian approximation to P; can
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be used [47]

B _o[7(CROL

-1/2
— Wit W 2.28
D1 (CR)Ll 2 K:’ ( )

where () is the complementary unit cumulative Gaussian distribution, defined as

_ L [T e
Q) = —= / P2t >0, (2.29)

It has also been shown in [47] that the Gaussian approximation in (2.28) is very
accurate for the MMSE receiver. This is in contrast to the bit-error-rate of the
correlation receiver where the Gaussian approximation is quite loose for all but very

low signal-to-noise ratios [48].

2.2 A-CDMA System Model

The model for asynchronous CDMA systems considered in this thesis is similar to the
one in [36, 37]. It should be noted, however, that there is a major difference in the
way the signature waveforms are constructed. Here, each signature waveform is not
constrained to consist of a sequence of rectangular pulses as in [36, 37], but rather it
can be of any shape. Later, the case where signature waveforms are constructed from
signature sequences and chip pulse(s) is also investigated. There are K users sharing
the same channel. The kth user transmits the following passband spread-spectrum

signal over the channel of bandwidth W

ye(t) = > V2Pb(i)si(t — iT) cos(2m fut + b). (2.30)
In (2.30), P is the signal power (the common power assumption p; = ... = p, = P

is made for simplicity but can be relaxed); f, is the carrier frequency; 8y is the phase
introduced by the kth modulator and T' is the symbol duration. The sequence {b;(7)}
is the binary data sequence of user k, which is modeled as a sequence of independent

and identically distributed (ii.d.) random variables such that Pr{by(i) = +1} =
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Pr{by(i) = —1} = 1/2. The signature waveforms s;(t), 1 < k& < K, are time-
limited to T" whose spectrum can occupy the entire bandwidth W. Furthermore these

signature waveforms are normalized so that®
T
/ ssdt=T, k=1,..., K. (2.31)
0

The received signal is

K o]
y() = > > V2Pb(i)si(t — iT — 1) cos(2 fut + p) + n(2) (2.32)
k=1 i=—o0
where 7, and ¢, = 6y — 2w f.7. are the delay and the overall phase shift of the
kth user, which can be modeled as uniform random variables over [0,7] and [0, 2]
respectively. The noise n(t) is additive white Gaussian noise (AWGN) with a two-

sided power spectral density of o2 = Ny/2.

As with S-CDMA systems, many multiuser receivers have been developed for A-
CDMA systems. However, only the correlation receiver is considered in this thesis.
The correlation receiver is preferred to other multiuser receivers because the com-
plexity of multiuser detection is usually prohibitive in systems with a large number of
users and therefore a correlation receiver is still the only practical solution in many

A-CDMA systems.

Without loss of generality, consider the detection of the first information symbol
of the kth user, i.e., b;(0). Also, since only relative delays and phases are important
one can set 7, = 0 and ¢ = 0 and the delays and phase shifts of all other users are

interpreted with reference to the kth user. Ignoring the double frequency component

*Note that this normalization is different from the one in Section 2.1, where the signature wave-
forms are normalized to have unit energy. These different normalizations are convenient when
comparing our results with previous results for S-CDMA and A-CDMA systems, respectively.
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at 2f., the output of the kth correlation receiver is [37]
T
Zy = / y(t)si(t) cos(2m ft)dt
0
K
= VP/20,(0)T ++/P/2 > ILii+n (2.33)
i=1ik

where n is a Gaussian random variable with zero mean and variance NoT'/4 and I ;

is the interference caused by the ith user, given by
Iig = [b(=1)Rii(73) + bi(0) Rig(m) | cos . (2.34)

The functions Ry ;(7) and ﬁm(T) are the continuous-time partial cross-correlation
functions between the kth and the ith signature waveforms. These functions were

originally introduced in [36] and can be written here as
Rii(r) = / sp(t)si(t +T — 7)dt (2.35)
Ris(m) = / sp(t)s;(t — 7)dt (2.36)

for 0 <7 <T. If k=1, then denote Ry(T) = Ry x(7) and ﬁk(ﬂ = ﬁkk(T)

In (2.33), the first term is the desired signal component, the second term is the
multiple access interference (MAI) and the last term is due to the background noise.
It is obvious from (2.33) and (2.34) that the signature waveforms directly influence the
MAI. To maximize the SIR, it is desired to have signature waveforms that minimize

the MAI This problem will be addressed in Chapter 6.

2.3 Bandwidth Considerations

When designing the set of signature waveforms for both S-CDMA and A-CDMA
systems, an important constraint is the available bandwidth. The issue of bandwidth

definition is discussed in this section.
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The bandwidth of a communication system is usually judged based on the power
spectral density (PSD) of the transmitted signal. Two commonly used bandwidth
measures are the root-mean-square (RMS) and fractional out-of-band power (FOBP)
bandwidth [22]. Let P(f) be the PSD of the equivalent baseband transmitted signal
of either (2.1) (with equal-power users) or (2.32). The RMS bandwidth W of the

system is defined as

W:<f[ f;P d/) . (2.37)

The system is said to have FOBE bandwidth W at level n, 0 < n < 1, if

J o PO
f P(f)df

When the user’s data symbols are equally likely and independent of each other and

< . (2.38)

from the other user’s data symbols, it can be shown that P(f) is proportional to
Zle 1S,(f)]? [49]. Thus the bandwidth of the received signal is determined by the
average bandwidth of the set of signature waveforms.

Let Sp(f) = F{sr(t)}, where F{-} denotes the Fourier transform. The RMS

bandwidth of the signature waveform s (¢) is defined as,

0 19 NETIRL
Jooo F218(f)] df] (2.39)

b(sul) = [f RRTR

Let s(t) = [s1(t),...,5x(t)]" be the signal set vector, then the average RMS band-
width b (s(¢)) of the signal set satisfies

Joo PPISK(HPAS
KZ (2.40)

R 6(0) = 58 el
K < 1S (HPAf

On the other hand the mazimum RMS bandwidth by.x (s(t)) of the set is

bmax (s(t)) = max {b(s1(t)),...,b(sx(t))}. (2.41)
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The fraction of the energy of si(t) lying outside the frequency interval [—W, W]

is given by
S 1Se(f)Pdf

SO 1SS
Let 0 < n < 1 be arbitrary. The signal s(t) is said to have FOBE bandwidth of W at

€ (sx(t)) = (2.42)

level 77 if € (sk(t)) < n and therefore the signal set is said to have a mazimum FOBE

bandwidth W at level 7 if

max {e(s1(t)),...,e(sk(t))} <. (2.43)
Similarly, the signal set has average FOBE bandwidth W at level n if

1 - >HSA )|2df
e(s(t)) = '[—{:; sk(t Kz |f| 1 © ISP <n (2.44)

Given a correlation matrix R, the sets of signals that achieve either minimum
average RMS or minimum average FOBE bandwidth are of particular importance for
the designs in Chapter 4. The following proposition specifies these sets under the
RMS bandwidth constraint [50].

Proposition 2.1 (Nuttall, 1968). Among all sets of vectors s(t) that have the same
prescribed K x K wunit-diagonal correlation matrix R, the optimal signal set vector

that achieves the minimum average RMS bandwidth is given by
s(t) = VAY2®(1) (2.45)

where A = diag (A1,..., k), A > A1, are the ordered eigenvalues of R, V is the
matrix of eigenvectors of R in its singular-value decomposition R = VAV and the

vector of basis functions ®(¢) is

2 ¢ 2 T
P(t) = \/; [sin (FT—) ,8in <-;—t> ,...,sin (%ﬂ)} , 0<t<T. (2.46)
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Furthermore the individual and average RMS bandwidths of the signals are given by

1
2 T
b (si(t)) = G (VATIVT) (2.47)
5 1
- = 2.
b” (s(t)) K(QT)Qtr(AH) (2.48)
where II is a diagonal matrix with I, = k2. A

A similar result has also been shown for the FOBE bandwidth constraint. Since
the result is given in terms of prolate spheroidal wave functions, this family of func-
tions is reviewed next. It was shown in [23, 24] that the solutions to the following

integral equation

/T/2 sin 27W (t — s)
Jorpp ()
are the prolate spheroidal wave functions (PSWFs) {p;(t;¢)}%,, where ¢ = 7WT.

fs)ds = xf(t) (2.49)

The  corresponding  eigenvalues  {x;(¢)}°, are ordered so  that
1 > xole) > xa(e) > ... > 0. The PSWFs form a complete orthonormal basis
for the space of all square-integrable functions band-limited to [~W, W]. The frac-
tion of energy of y;(t; c) in the interval [-T'/2,T'/2] equals x;(c); thus the first PSWF
¢o(t; ¢) is the one most concentrated in [-T'/2,T/2]. Moreover, among all the band-
limited signals orthogonal to @o(t), ¢1(¢) is the most concentrated in [-7/2,T/2] and

so on. Further let

0, otherwise

be the shifted, normalized and time-truncated version of ;(t), then {@i(t; ¢)}%2, form
a complete orthonormal basis for the space of time-limited (to [0,77]), real square-
integrable functions. The function @;(#; ¢) has out-of-band energy (outside [—W, W])
equal to 1 — x;, ie., e(@;(t;¢)) = 1 — x;. Also @p(t;c) is the one most concentrated

in [-W, W] and among all the time-limited signals orthogonal to @o(t), i (t) is the
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Figure 2.2: The first four shifted, normalized and time-truncated PSWFs as orthonor-
mal bases

most concentrated in [—-W, W], etc. As an example, the set of the first four shifted,
normalized and time-truncated PSWFs corresponding to ¢ = 4.0 are plotted in Fig.

2.2.

Results similar to that of Nuttall but under FOBE bandwidth constraint are stated
below [21].

Proposition 2.2 (Fain and Varanasi, 1998). Among all the signal set vectors s(t) that
have the same prescribed K x K unit-diagonal correlation matrix R, the optimal signal

set vector that achieves the minimum average FOBE is given by

s(t) = VAY2®(¢) (2.50)

where A = diag(A1,...,Ak), \; > Aiy1, are the ordered eigenvalues of R, V is the

matrix of eigenvectors of R in its singular-value decomposition R = VAV and
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the vector of basis functions W (¢) contains the first K shifted, normalized and time-
truncated PSWF's:
(t) = [Bo(t), Br (1), .., Pre_1 ()] . (2.51)

Furthermore the individual and average FOBE of the signals are given by,

e(si(t)) = (VAEVT) (2.52)

kk

e(s(t)) — %tr (AZ) (2.53)

where E = diag (1 — x0,1 — Xx1,---, 1 — XK-1)- A



Chapter 3

Signature Waveforms for
Maximizing the Network Capacity
of S-CDMA Systems

In some CDMA systems it is sufficient to maintain the SIR (hence the bit-error-
rate) for each user to be larger than some level a. In such systems the question of
interest is how many users can be simultaneously supported for given values of & and
available bandwidth W. Maximizing the number of users or the network capacity of
the S-CDMA systems by means of signature waveforms is the problem considered in
this chapter. The network capacity provided by proposed signature waveforms is also
compared to that of suboptimal signature waveforms. Throughout this chapter we
assume equal received power for all users, i.e., pr = P, k =1,..., K. This assumption

implies that there is a perfect power control.

3.1 Problem Formulation
The problem of characterizing the network capacity of S-CDMA systems can be for-

mulated as follows.

Problem 3.1. Consider an S-CDMA system with either a correlation or MMSE re-
ceiver. Given T, W, 0 < o < 1, P and 0 < n < 1 (this parameter is for FOBE

27
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bandwidth only), find the largest set of signature waveforms {s(t), s2(t), ..., sx(t)}
subject to (i) sx(t) = 0 for t < 0 and ¢ > T (ii) fOT s:(t)dt = 1; (iii) SIR; > «a and
(iv) €(s(t)) < n (for FOBE bandwidth), or b(s(t)) < W (for RMS bandwidth).

The above problem is difficult to solve directly. However, by further restricting
the signature waveforms to be spanned by a finite set of orthonormal basis functions,

this problem can be solved in two steps as outlined below.

e Step 1: Assume there exists a set of orthonormal basis functions
{¥1(t), ..., ¥n(t); 0 <t < T} for the construction of the signature waveforms.
Then the maximum number of users, K.y, and the corresponding signature
sequences sy, are obtained in terms of the dimension N of the signature space
and the SIR requirement «. This step does not take into account the bandwidth

constraint of the signature set, hence it is valid for both bandwidth criteria.

e Step 2: The optimal basis functions for constructing the users’ signature wave-
forms are identified according to each bandwidth criterion. By optimality is
meant the largest set of orthonormal functions, which together with the signa-
ture sequences found in Step 1, will give the set of signature waveforms whose

average bandwidth satisfies the corresponding criterion stated in (iv) above.

Step 1 is carried out in the next section for the MMSE receiver. However it will be
shown that with the resulting signature sequences, the MMSE receiver becomes the
correlation receiver. Here we would like to point out that the results in Section 3.2
can be inferred from the results in [15] with some modifications. In [15] the authors
allow the user’s received power to be controlled at any level and find the optimal
power allocation. They also process the sufficient statistic r in (2.6) to obtain the
results. Here the received power of every user is fixed and the sufficient statistic y in

(2.3) is processed.
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3.2 Optimal Signature Sequences: WBE Sequences

To obtain the maximum network capacity of the system, first find the upper bound
on SIR for every user and the corresponding signature sequences that achieve that
upper bound. Comparing this upper bound with the SIR requirement o will give an
upper bound on the number of users, hence the maximum network capacity follows.

It can be seen from equation (2.24) in Chapter 2 that maximizing SIRy, is equiv-
alent to minimizing MMSE;, for k£ = 1,..., K. Instead of minimizing each MMSE;
individually, consider minimizing the sum of them, which is precisely the TMSE de-
fined in (2.26). It can be shown that when the sum is minimized, the individual
MMSE, will be all equal, hence each of them is also minimized, i.e., each SIR; will
be maximized.

When the signature waveforms are spanned by a set of N (N < K) orthonormal
basis functions, they are completely determined by the N x K signature matrix S.
Since R = S'S has rank N < K, it is a singular matrix and has only N nonzero
eigenvalues. Because R is non-invertible, the MMSE linear filter is given by (2.17)

and can be rewritten as follows,

C=P(PR*+7’R) R. (3.1)
Using the decomposition R = VAV and R;, = VAuy it can be shown that

ce =PV (PA+ 1) w, (3.2)

where A = diag(A1,...,An,0,...,0), ug is the kth column of VT and
I= diag(1,1,...,1,0,...,0). The MMSE; and the TMSE are given by
N

MMSE;, = P [1 — Pu] (PT+ JQA_)_ uk} (3.3)

and
K

N
TMSE = Y MMSE; = (K —N)P+P
k=1 k=1

1
YA+ 1
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where v = P/o? is the signal-to-background noise ratio. Now the problem is to
find N positive eigenvalues {A1,..., Ay} that minimize 0 77/}:1-_—’ subject to
Z,{Ll Ar = K. The Lagrange method can be used to show that the optimal eigenval-

ues are all equal to K/N, i.e.,

A = diag( K/N,...,K/N,0,...,0). (3.5)
N

Substitute A from (3.5) into (3.3) and note that u] Au, = Ry = 1. Then

MMSE;, = P {1 - m} (3.6)

which is independent of k. This together with (2.24) implies that the SIR; are all

maximized and equal to

B v
SIRmaX_V(K/N_l)H. (3.7)

From the eigenvalues of the correlation matrix R one needs to find the N x K
signature matrix S such that R = STS. Write the singular-value decomposition of R

as follows,

R = VAVTZ[Vl,Vg,...,VK]A[VI,VQ,...,VK]T

= [vi,Va,...,Vy] (%I> [vi,vo,... ,VN]T =—-VV' =878 (3.8)

where vy, vy,..., vk are the eigenvectors which are orthogonal to each other, ie.,
v{v; = 6(i — j). It is obvious from the above equation that S = \/-%\Nﬂ, which
also implies that SST = %I. The K sequences whose signature matrix satisfies
this equality are called the Welch bound equality (WBE) sequences [13] since they
achieve Welch’s lower bound on the sum of the squared cross correlations of unit

energy sequences [16]. The family of WBE sequences will be discussed in more detail

in Chapter 4.
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The fact that the MMSE receiver simplifies to a correlation receiver when the
WBE signature sequences are employed can be seen as follows. From (3.2) the filter
for the MMSE receiver is

PIN/K) o POV/K)

P(K/N)+0” “PEm Y

C=PV (PA+U2I>_VT _

From the above expression and the fact that R? = KR, the output of the MMSE

filter can be shown to be a scaled version of the sufficient statistic y as follows

~ P . P
y=C 5 (\/ﬁRb + an) =3 pd (3.10)

YT PE/N) +o (K/N) +
where the noise vector N has exactly the same statistics as the the noise vector n,
namely a zero-mean Gaussian vector with covariance matrix R.

At this point, it is natural to ask a question about the performance of the decor-
relating receiver with WBE sequences, or more generally, about the design of optimal
signature sequences that maximize the SIR at the output of the decorrelating receiver.
Regarding the performance of the decorrelating receiver with WBE sequences, it can
be shown that the SIR at the output of a decorrelating receiver is given by,

B ~u)l Tuy,
N/K 4+ ~(1 —u/Tuy)

SIR;, (3.11)

Thus the performance of the decorrelating receiver depends on the matrix V in the
decomposition R = VAV, which is usually not unique. When the number of users
K is a Hadamard dimension, one can choose V to be the normalized Hadamard
matrix. With this choice of matrix V the SIR in (3.11) reduces to (3.7), suggesting
that the decorrelating receiver in this case also becomes the correlation receiver.
Mathematically, this fact can be easily proven following the same reasoning that
leads to (3.9) and (3.10).

The optimal design of signature sequences for the decorrelating receiver is not

available. This is mainly because no sensible design criterion for the decorrelating
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receiver could be established. However, such a design is of no practical importance
due to the fact that the MMSE receiver maximizes the SIR among all the linear
receivers and with the optimal WBE sequences, the MMSE receiver simplifies to the
correlation receiver.

Now returning to the condition SIRpax = @, one has

Ken(1+1-2 (3.12)
= a P/ '
Thus given the dimension N of the signature space and the SIR requirement « for all

users, the largest number of users that can be supported in a S-CDMA system is

Kmax = {N (1 + % - %;)J (3.13)

where |z] is the largest integer less than or equal to z.

The above equation shows that the maximum number of users is directly propor-
tional to the dimension of the signature space. Therefore, to further maximize the
network capacity, one needs to identify the largest set of orthonormal basis functions

for a given available bandwidth. This issue is addressed in the next section.

3.3 Optimal Othonormal Basis Functions

The optimal basis functions depend on what bandwidth criterion is used. In what
follows the optimal basis functions are first obtained for the FOBE bandwidth crite-
rion. The same approach is then applied to find the optimal basis functions under an

RMS bandwidth constraint.

3.3.1 FOBE Bandwidth Constraint

Define an N x N matrix M, whose (m,n) element is

M,., = / U ()W (f)df, mn=1...,N (3.14)
f>[W]
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where U, (f) is the Fourier transform of ,(t) and * denotes the complex conjugate.
In terms of the vector W(f) = [U1(f),..., Un(f)]T, M can be written as

M= [ w(HET(Hf (3.15)

f>w|

The above definition implies that M, = €(1,(t)), the fractional out-of-band energy
of the nth basis function. From (2.5),(2.42) and (3.14) it is not hard to verify that
e(sk(t)) = s Msy, hence the average FOBE of the signature set defined in (2.44)
becomes

K
e(s(t)) = %Z sy Ms;, = %tr (STMS) = %tr (MSST). (3.16)
k=1

Now using the property that SST = %’I for WBE signature sequences, the FOBE
bandwidth constraint of the signature set can be expressed in terms of the bandwidth

constraint of the basis functions as follows,

N
€(s(t)) = y-tr(M) = ¥ 2 ela(®) < (317)

Thus when the signature sequences are the WBE sequences, finding the optimal
basis functions is equivalent to finding the largest set of orthonormal functions whose
average FOBE satisfies (3.17). Equation (3.17) also allows one to identify the largest
set (with Npayx) of orthonormal functions in terms of prolate spheroidal wave functions
(PSWFs). More precisely, by applying Proposition 2.2 for the special case of R = I
one can select the largest set of orthonormal functions to be the set of the first Ny,

functions {Po(t), P1(t), - - ., Pn,..—1(t)} whose eigenvalues satisfy

N, N, -1
1 max max
- . —_n < (). )
Nomax + 1 Zi:o (@ <l-n<5— > xlo) (3.18)

max i=0

From the above expression, it can be seen that the maximum dimension of the
signature space, Npay, depends only on the product WT (through ¢ = 7WT), and so
does the user capacity Kpax according to (3.13). Figure 3.1 plots 7%7 Zi]igl(l —x:(c))
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Figure 3.1: Average FOBE of signature set based on PSWFs

versus [N for some values of c¢. The eigenvalues corresponding to these values of ¢ are
obtained from the data in [51] and they are also tabulated in Appendix A. Given 7,
the value N,y can be easily determined from such a figure. The levels of n = 10%

and 7 = 1% are used later in Figs. 3.2 and 3.3 for this purpose.

3.3.2 RMS Bandwidth Constraint

Analogously, to deriving the optimal basis functions under the RMS bandwidth con-

straint, define the following N x N matrix Q,
Q= [ Pt (3.19)

Again using the fact that SST = K I, one can show that the constraint on the
average RMS bandwidth of the signature set can be written in terms of the bandwidth

constraint of the basis functions as follows.

B (s(t)) = ]—if-tr(Q) < W2 (3.20)
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Since Qup = 0*(¥n(t)), n = 1,2,..., N, the maximum number of orthonormal func-

tions, Npyax, is the largest integer satisfying [52]

1 1

> = ~ ) 2
Wr > ¢ 5 (Momc+ 3 ) (M +) .21

Nmax

One of the optimal sets of orthonormal functions is the set of sinusoids {sin (nxt/T)} ==

Having constructed the signature waveforms from the WBE signature sequences
and the optimal basis functions, it is interesting to investigate the effect of choosing
suboptimal basis functions on the network capacity of the S-CDMA systems. This is

studied in the next section.

3.4 Comparison with Suboptimal Signature Wave-
forms

The suboptimal basis functions considered here have the following form.
it) =p(t—i1e), 0<i<N-1 (3.22)

where p(t) is some chip waveform limited to the chip interval [0, T}] and fOTc p(t)dt = 1.
Thus the suboptimal basis functions are just the delayed versions of some chip wave-
form. The dimension of the signature space spanned by the delayed chip waveforms
is simply

N, = |T/T.] = |WT/WT,]. (3.23)

Therefore, to increase the dimension of the signature space (i.e., to increase the net-
work capacity of the system) one needs to minimize WT,. However the minimum
value WT, is limited by the bandwidth constraint of the signature set. Since the
bandwidth of every basis function is the same as that of the chip waveform o(t),
the bandwidth constraints in (3.17) and (3.20) become e(p(t)) < n and b(p(t)) < W

respectively.
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3.4.1 FOBE Bandwidth Constraint

For a given 1, among all the chip waveforms limited to [0,7T,] the optimal chip wave-
form, which gives the smallest WT,, is obviously the first normalized, time-truncated

and shifted PSWF y(¢) whose eigenvalue satisfies
Xo(nWT,) =1-1n. (3.24)

Solving the above equation gives the smallest WT,. If W is known, then 7, can be
found and () can be realized. Denote the dimension of the signature space based
on this PSWF chip waveform by N2Pt.

If the chip waveform is selected to be a rectangular pulse, which is common in

many CDMA systems,

1
, 0<t< T,
pt) =4 VT (3.25)
0, otherwise

then it can be shown that the minimum WT, is determined by the following equation
WT.
1-— 2/ sinc?(x)dz = 7. (3.26)
0

where sinc(z) = sin(mz)/(7z). Denote the dimension of the signature space based on
this rectangular chip waveform by NTect,

Finally, another chip waveform of interest is the half-sine wave

p(t) = \/%Sin (;—’i) L Ostste (3.27)

0, otherwise.

This waveform can be shown to have the minimum RMS bandwidth among all the
waveforms limited to [0, T¢]. Furthermore, over a wide range of bandwidth, the energy
concentration of this waveform is very close to that of the optimal chip waveform @ (t)

[52]. The minimum WT, for this chip waveform satisfies

WTe 1 1\ 12
1-— / [sinc <x — 5) + sinc (7: + 5)} dz = 1. (3.28)
0
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Similarly, denote the dimension of the signature space based on this half-sine chip
waveform by NS,

Note that one always has NoP* > NI¢* and NP* > NSt hut the relation between
Nzt and N5™ depends on the value of . Commonly used values for n are 10%
and 1%, corresponding to the 90% and 99% bandwidth occupancies respectively [32].
Table 3.1 gives the values of WT, found from (3.24), (3.26) and (3.28) for these two

values of 7.

Table 3.1: Values of WT, for various chip waveforms.

n=10% n=1%

Optimal chip (@o(t))  0.6750 1.1170
Rectangular chip 0.8487 10.2860
Half-sine chip 0.7769  1.1820

Figures 3.2 and 3.3 plot the values of Nyax and Ngs versus 2WT for n = 10%
and n = 1% respectively. The advantage of using optimal signature waveforms over
the suboptimal ones are clearly observed from such figures. Furthermore, the gain in
network capacity increases significantly as n decreases from 10% to 1%. Also it can
be seen from these two figures that N$™ > N and the difference becomes larger
for smaller value of 7. This relation between N5 and NI is due to the following
reasons. (i) The power spectral density (PSD) of the half-sine chip decays as |f|™*
while the PSD of the rectangular chip decays as |f|72. (ii) For both 77 = 1% and
n = 10%, the mainlobe of the PSD of either half-sine chip or rectangular chip is well
contained in the FOBE bandwidth.

To obtain Ny from (3.18) for different 7, the eigenvalues {x;(c)} are calculated
based on the data in [51]. For many practical CDMA systems, the value of WT is
typically large (in the hundreds). Unfortunately data is not available on the behavior

of x;(c) for large ¢ and large ¢ = #WT. However, for large WT one could use the
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Figure 3.3: Dimensionality of signature space, 7 = 1%.



39

20

—-- against Rect. chip
- - - against Half—sine chip
— against the Optimal chip

18+

D4t

T

bt —
=] b
T T

Asymptotic Gain

SN A N

6 2 4 6 8 10 12 14 16 18 20 22

(%)

Figure 3.4: Asymptotic gain of network capacity as a function of 7.

following close approximation [53]

N-1

> xile) 2 2WT. (3.29)

i=0
Thus the condition to find Nyax in (3.18) becomes
wT
Nm X = 17 " ~x/al-
! l(l —n)/ QJ

Note that in the above equation, (1 —7)/2 plays the role of WT, as in (3.23). Thus

(3.30)

dividing WT, by (1—n)/2 gives the following asymptotic gain (for large WT) in
network capacity when the optimal basis functions are used instead of suboptimal
ones, .
G-k,

The asymptotic gain G is plotted in Fig. 3.4 as a function of . It can be seen that

(3.31)

when 7 is small, the time-truncated PSWF y(¢) and the half-sine wave have very

favorable WT, while the rectangular chip requires much larger W7, and therefore is
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not efficient for constructing the signature space. On the other hand, when n is large
(n > 10%) all the chip waveforms have almost the same W7.. Furthermore, it is
interesting to note that for large 7, the rectangular chip has a smaller W7, than the
half-sine chip even though the half-sine wave is a smoother function. This fact can
be explained as follows. Although the PSD of the half-sine chip decays faster than
that of the rectangular chip, its mainlobe is wider and lower in amplitude, therefore
it may require a wider bandwidth to contain a small amount of the required in-band
energy (i.e., when 7 is large).

In summary, Fig. 3.4 shows that there is always a gain of approximately 1.4 in
network capacity when using optimal basis functions against suboptimal ones for large
values of . For small values of 77 the gain becomes very significant. For example when
n = 1% a gain of 2.2 can be achieved versus the PSWF chip and the half-sine wave

chip and a gain of 20.0 can be achieved over the rectangular chip.

3.4.2 RMS Bandwidth Constraint

Since both the rectangular chip and the first PSWF are discontinuous functions,
the RMS bandwidths of these waveforms are infinite. Thus the only chip waveform
considered under the RMS bandwidth criterion is the half-sine wave. Because the

minimum value of WT, for this chip waveform is 1 /2, one has
N = |WT/WT,| = 2WT. (3.32)

From (3.21) and (3.32) one has the following relation between N, and NS (for
large WT)

1 Nmax _1. Nmax 1
NE® = \/( il 2)3( th, (3.33)

This relation is plotted in Fig. 3.5. As can be seen from Fig. 3.5, an asymptotic
gain of about 1.73 is achieved by employing optimal signature waveforms instead of

suboptimal ones constructed from the half-sine chip waveform.
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3.5 Chapter Summary

We obtained the optimal basis functions for the construction of the bandwidth con-
strained signature waveforms in S-CDMA systems, where each user is equipped with
a MMSE receiver and network capacity is the performance criterion. Both FOBE and
RMS bandwidth criteria were considered. The network capacity of the systems was
characterized through the signaling duration 7', the available bandwidth W (with the
corresponding 1 for FOBE bandwidth) and the SIR requirement «. Comparison to
systems employing the suboptimal signature waveforms, which are constructed from
the suboptimal, time-disjoint basis functions showed a significant improvement in the
network capacity of the systems using the proposed signature waveforms. Since the
MMSE receiver becomes a correlation receiver when the signature sequences are WBE
sequences, all the results in this chapter are also applicable to S-CDMA systems that

use correlation receivers.



Chapter 4

MAI-Minimized Signature
Waveforms for S-CDMA Systems

In Chapter 3 the signature waveforms were obtained to maximize the total number
of users of S-CDMA systems subject to the constraint on the available bandwidth as
well as the constraint on the minimum allowable value of signal to interference ratio
(SIR). In this chapter a different design problem is considered for S-CDMA systems.
Here, the question of interest is: given a fixed number of users K, what signature
waveforms optimize the users’ performance subject to a bandwidth constraint. The
optimization criterion chosen is minimization of multiple access interference (MAI).
More precisely, the signature waveforms are designed to minimize either the TIP or
the TMSE defined in (2.25) and (2.26), corresponding to the correlation receiver or
the MMSE receiver respectively. In the special case when the number of user K is
the size of a Hadamard matrix then the optimal signature waveforms are obtained
to maximize the individual SIR at the output of the underlying receiver. The design
is carried out under both RMS and FOBE bandwidth constraints. The performance
of the proposed signature waveforms is also compared to that of the suboptimal ones
constructed based on the Welch bound equality (WBE) sequences. In this chapter,

equal received power for all users is also assumed.

42
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4.1 RMS Bandwidth Constrained Signature Wave-
forms for Correlation Receivers

As mentioned earlier, the design criterion for the correlation receiver is to minimize
the TIP in (2.25). Define the following total squared correlation (TSC) of the set of

all signature waveforms

K

TSC = iZ(/ s;(t)s;(¢ dt)ZZZiRU (4.1)

i=1 j=1 =1 j=1

It is clear from (2.25) and (4.1) that the TIP for the correlation receiver can be written

as

TIP = K (¢* — P) + P - TSC. (4.2)

Thus minimizing TIP is equivalent to minimizing TSC. The problem of designing
signature waveforms for a correlation receiver to have the minimum value of TSC

under the average RMS bandwidth constraint can be formulated as follows.

Problem 4.1. Given T and W. Design a set of K signals {s;(¢),...,sx(¢)} that
minimizes the T'SC in (4.1) subject to the following constraints. (i) Vk, sx(t) = 0 for
t<0andt>T; (i fo si(t)dt = 1, Vk; and (iii) b(s(t)) < W.

It should be noted that the above design problem for K = 2 has been solved
in [18] (where the solutions under the FOBE bandwidth constraint are also given).
Furthermore, it can be seen that the above problem is very similar to the problem
addressed in [20]. More precisely, in [20] the authors found signal sets whose cor-
relation matrix has a maximum determinant, but here we find the set of signature
waveforms whose correlation matrix gives the minimum sum of squares of its eigen-
values. The same approach as in [20] is used to transform the original problem into

new finite-dimensional formulations.
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4.1.1 Equivalent Problems

Note that the T'SC in (4.1) can be rewritten as,

TSC=)» > (Ry)’=tr (RR). (4.3)

i=1 j=1

Let b” (R) denote the square of the minimum bandwidth of the optimal signal set
corresponding to the correlation matrix R. Then the following propositions provide

different formulations for Problem 4.1.

Proposition 4.1. Problem 4.1 is equivalent to Problem 4.2 below, which is stated in

terms of the correlation matrix R.

Problem 4.2. Find the correlation matrix R that minimizes tr(RR.") subject to
R>0; Ry =1, Vk; b (R)< W2 (4.4)
A

Proof. Let s;(t) be the solution to Problem 4.1 with the corresponding correlation ma-
trix R;. Let Ry be the solution to the Problem 4.2 from which s,(¢) is found through
(2.45). The results of Nuttall (Proposition 2.1) and the constraints in Problem 4.1 im-
ply that b*(R;) < b?(s1(t)) < W2. Since R, satisfies the constraints in Problem 4.2,
one has tr(RyR{) > tr(RyR]). On the other hand, since b%(sy(t)) = b%(R,) < W2,
So(t) satisfies all the constraints in Problem 4.1, and hence tr(RoR4 ) > tr(R;R]).
Thus one concludes that tr(R;R]) = tr(RyRg) and the two problems yield signal

sets having the same minimum value for the TSC. O

Proposition 4.2. The signal design Problem 4.2 is equivalent to Problem 4.3 below,

which is stated in terms of the eigenvalues of the correlation matrix R.
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Problem 4.3. Find the set of eigenvalues { A1, ..., A} that minimizes 21{;1 A2, subject

tol

M2 M1 20, 1<Ek<K;

tr(A) = K; and (K) 'tr(AID) < wd = QWT)2 (4.5)

Proof. The ordering constraint on the eigenvalues and the RMS bandwidth constraint
in Problem 4.3 are the consequences of Proposition 2.1. It is well known that the
eigenvalues of a non-negative definite matrix are non-negative and sum to tr(R) = K.
The fact that the TSC can be expressed as the sum of squared eigenvalues of the
correlation matrix is established below, using the orthogonality property of the matrix

V.
TSC = tr(RR") = (VAVTVAVT) = tr(VA®VT)
= tr(A2VTV) = tr(A?) = Zv (4.6)
Algorithms to construct a correlation matrix which has a prescribed set of eigenvalues
and diagonal entries (here R is a unit-diagonal matrix) are also known. One such
algorithm using the T-transform is provided in [17] and given in Appendix B for

ease of reference. Another algorithm can be found in [20]. Hence the equivalence of

Problem 4.2 and 4.3 is demonstrated. O

Proposition 4.3. Problem 4.3 is equivalent to the following problem.

Problem 4.4. Find the set of eigenvalues {1, ..., Ax } that minimizes Zszl A2, subject

to

A>0, tr(A)=K, tr(AIl) = Ku}. (4.7)

1Recall from Chapter 2.3 that Il is a K x K diagonal matrix with I, = k2.
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A

Proof. As in [20], it is first shown that the ordering of the eigenvalues will be a
natural consequence of the optimization problem. Suppose that A minimizes tr(A?)
and satisfies all the constraints of Problem 4.3 except for being well ordered. Assume
M < Agy1 for some 1 < k < K and consider A’ that is obtained from A by modifying
only the two diagonal entries kth and (k+1)th as A}, = A, ; = (Ax+Ax41)/2. Then it
can be verified that tr(A) = tr(A’) = K and tr(A'TT) < tr(AII), but tr(A’*) < tr(A?),
a contradiction.

Next it is shown that the inequality on the bandwidth constraint can be replaced
by an equality. Suppose there exists a solution A to Problem 4.3 where all diagonal
entries are well ordered but with tr(AIL) = Zf:l k2N, = Kw2 — €, < Kwd. Except
for the trivial case when R = I, there always exists an integer 1 < k& < K such
that Ay — A1 = €3 > 0. Consider A’ obtained from A by modifying the kth
and (k + 1)th diagonal entries as A\, = A\, — ¢ and A, = Apq1 + 6 where § =
min{e,/(2k+1),€ex/2} > 0. Then it can be shown that A’ satisfies all the constraints
in Problem 4.3 but tr(A’?) < tr(A?), a contradiction. Hence the proof. O

4.1.2 Solutions

The following proposition follows from solving Problem 4.4.

Proposition 4.4. Given T, W and K. If 1 < (2WT)? < (K 4+ 1)(2K + 1)/6, then the
minimum total squared correlation (MTSC) of the set of K signals of duration 7" and

average RMS bandwidth less than or equal to W is

K? 5[(N +1)(2N + 1) — 6(2WT)%°
MTSC= — |1 :
N ( (N —1)(N+1)(2N +1)(8N +11) (48)
where N is the largest integer less than or equal to K such that
w? = (QWT)? > (N +1)(2N —1)(2N + 1). (4.9)

5(4N +1)
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The MTSC is achieved by the signal set

-
s(t) = \/%VA”2 [sin (7%) ,sin (2—;E> ,...,sin (%)} , 0<t<T (4.10)

where

Azdiag(/\],...,/\K);

N (1+ 5(N + 1)(2N + 1) — 6(2WT)?] [(N + 1)(2N + 1) —6k2]>
FTN (N = 1)(N + 1)(2N + 1)(8N +11) ’
for k=1,...,N;

M =0, fork=N+1,...,K; (4.11)

and V is any K x K orthogonal matrix such that VAV is a unit-diagonal matrix.
If QWT)? > (K +1)(2K +1)/6, then MTSC = K and the set of K orthonormal
signals achieves the minimum TSC.
If (2WT)? < 1, then no signal of duration 7' and RMS bandwidth less than or
equal to W exists. A

Proof. Tt is well-known that among all the signals time limited to [0, T}, the signal
sin(nt/T) has the minimum RMS bandwidth of W =1/(2T). Thus when

= (2WT)? < 1 there exists no signal of duration T and RMS bandwidth less than
or equal to W. When wi = 1, K signals are identical to sin(nt/T") and MTSC = K*. 2

If (2.48) is applied for R = I then the minimum average RMS bandwidth of
K orthonormal signals is le\ﬂK + 1)(2K +1)/6 (see also [52]). Therefore, when
w2 > (K+1)(2K+1)/6, an orthonormal signal set is always available and MTSC = K.

Nontrivial solutions for the optimal signal set exist only when

1<w3<(K+1)é2K+1).

To find the solutions to Problem 4.4, ignore the nonnegativity constraint of A for

(4.12)

now and form the Lagrangian

K
A Oél,az }:/\,g — Q1 (Z >\k > — Q9 (Z k‘z/\k e Kw%) .

k=1
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By setting L /0A; = 0 ones obtains

A== (a1 + aok?) . (4.13)

[N

But the constraints in (4.7) give a set of linear equations

o+ (K + 12K + Day = 2

2 (4.14)
a1+ K2 43K —1)ay = 12wy

K+ DK +1)

from which one can solve for a; and a4 as follows

10 (X + 1)(2K + 1) — 6wd]
(K —1)(8K + 11)
60 [(K +1)(2K + 1) — 6w}

T TR -DE T DK + DBK +11)° (4.16)

The optimal eigenvalues are found from (4.13) and are given by the following formula

5[(K+1)(2K +1) — 6wi] [(K + 1)(2K + 1) — 6k7]

Ae =1+ (K —1)(K +1)(2K +1)(8K +11) ’

k=1,...,K.
(4.17)
Note that due to condition (4.12), a; > 0 and ay < 0, hence the \;, are well ordered
as required.
Now check the nonnegativity constraint of A. Because of the ordering of the A,
it is sufficient to require that Ax > 0, which implies the following

(K +1)(2K = 1)(2K +1)

2
>
Yo = 5K + 1)

(4.18)

If the above condition is not satisfied, simply set A = 0 and solve the whole problem
again, but with only K — 1 variables A;,...,Ax_;. In general one can assume the
maximum number of nonzero eigenvalues to be N and require that Ay > 0. Then it
is not hard to see that IV is determined by (4.9) and the new formula for the optimal

eigenvalues is given by (4.11) as in the proposition. O
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Since V can be any K x K orthogonal matrix that satisfies the requirement that
VAVT has unit diagonal entries, the set of optimal signals that achieves the MTSC
is not unique. As mentioned before, one method to generate the correlation matrix
R (hence the matrix V) is given in Appendix B. Furthermore, the optimal signals
have different RMS bandwidths except when the size of the set is a Hadamard matrix

dimension, as shown below.

From equation (4.13) one has

ATI= L (247 — 0,A) (4.19)

1£%)
which implies
T 2 2yT _ A T
VAIIV' = —VA*V' — —=VAV
(8%} (6%)]
_ ZypvT_%g (4.20)

(6%} o

Because the matrix VA2V does not necessarily have equal diagonal entries, it follows
from (2.47) and (4.20) that the individuals RMS bandwidths of the optimal signals
are not all equal. Some signals have RMS bandwidths larger than W and some have
smaller bandwidths. However when K is a Hadamard dimension, V can be chosen
to be the normalized Hadamard matrix H whose components are 41 /VK and hence
HAHT has unit diagonal entries. With this choice of V, the matrix HA?HT also

has equal diagonal entries of % ,{{:1 Ar and therefore all the signals in the optimal

set have the same RMS bandwidth of W.

Another interesting property of the optimal signal set whose cardinality is a
Hadamard dimension is that the set maximizes the individual SIR at the output

of each correlation receiver. This simply follows from the fact that with the choice
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V = H one has

K
ERI%J‘ - (RRT)M - (VAQVT)kk

K
= (HA™H"), = %Z A (4.21)
k=1

which is the same for every & and therefore minimum. From (2.19) the new expression

for SIRy, is as follows,

SIR;, = Ky (4.22)

K= +v i A
Thus the SIRy, is equal and maximized for every k.

The above discussion means that when K is a Hadamard matrix dimension, the
optimal signature waveforms can be obtained to maximize the individual SIR, for
every user. These optimal signature waveforms are also valid if the mazimum RMS
bandwidth constraint of the signature set defined in (2.41) is considered. As a special
case, it can be verified that for a system with K = 2 users, Proposition 4.4 produces
the same result as in [18].

To conclude this section, an example to design four signals that achieve the MTSC
is given next. Note that when K = 4, in order to have nontrivial solutions w2 should
be in the range of (1,15/2). The MTSC is given below and it is plotted in F ig. 4.1

as a function of the time-bandwidth product.

;

2\2

8 1+—QJ—(5_2“’)1 1<ui< 88
16 14 — 3wg) 28 . 2 63

1+ <<

MTSC = B="0=17 (4.23)

— 2wg 63 « . 2. 15
4 1+—I2©J—— T’?SwOS_Q"

4 l}gwg

Ezample 4.1. Let WT = 1.25, hence wi = 6.25. The optimal eigenvalues are found
to be A = diag(1.2519,1.1357,0.9419,0.6705) and MTSC = 4.1938. When V is a
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Figure 4.1: Minimum T'SC versus time-bandwidth product: X = 4, RMS bandwidth
constraint.

normalized Hadamard matrix

1 1 1 1

111 -1 1 =1
V=H-=-=

211 1 -1 1

1 -1 -1 1

the optimal signals, all of which have the same RMS bandwidth of W = 1.25 /T, are
plotted in Fig. 4.2. Note that there are two pairs of signals which are mirror images
of each other about 7'/2 in Fig. 4.2. Optimal signals obtained from the matrix V
which is found by the recursive algorithm in Appendix B are plotted in Fig. 4.3. The
RMS bandwidths of these signals are 1.1740/T, 1.2919/T, 1.3506/T and 1.1740/T

respectively.
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g
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(scaled by V/T)
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Signal Amplitude

t/T

Figure 4.2: TSC-minimized signature waveforms under RMS bandwidth constraint:
K =4, WT = 1.25 with V a Hadamard matrix.
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Figure 4.3: TSC-minimized signature waveforms under RMS bandwidth constraint:
K =4, WT = 1.25 with V obtained using the T-transform.
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4.2 FOBE Bandwidth Constrained Signature Wave-
forms for Correlation Receivers

This section addresses the same problem of designing signal sets that achieve the
minimum value of TSC, but under the FOBE bandwidth measurement. The design

problem can be stated as follows.

Problem 4.5. Given T', W and 0 < 7 < 1. Design a set of K signals {s;(¢),...,sx(t)}
that minimizes the T'SC in (4.1) subject to the following constraints. (i) Vk, si(t) = 0,
for t < 0and ¢t >T; (ii) f; s}(t)dt = 1, Vk; and (iii) e(s(2)) < .

The method to solve the the above problem is similar to the one presented in
Section 4.1 for solving Problem 4.1. In particular, based on Proposition 2.2 it is
shown in Appendix C that Problem 4.5 is equivalent to the following problem.

Problem 4.6. Find the set of eigenvalues {Ay, ..., A\ } that minimizes Z,I::l A%, subject

to?

A>0; tr(A)=K; tr(AE)= Kn. (4.24)

It can be seen that Problem 4.6 is basically the same as Problem 4.4 except for the
last constraint in (4.24). The following proposition provides the solution to Problem

4.6.

Proposition 4.5. Given T, W, K and 0 <n < 1. If 713’ Zf:—ol Xr < 1—n < xo, then
the minimum total squared correlation (MTSC) of the set of K signals of duration T

and average FOBE bandwidth at level 7 less than or equal to W is

_EL L V) —n)?
MTSC = — [1 ) UQ(N)} (4.25)
where N1 N
uw(N) = -]-lv— (1-x)?  o(N)= % (1= xe) (4.26)
k=0 k=0

?Recall from Chapter 2.3 that E = diag (1 — xo0,1 — X1,...,1 — XK~1)-
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and N is the largest integer less than or equal to K such that

(1= xn-1)(v(N) —n) < u(N) = nv(N). (4.27)
The MTSC is achieved by the signal set

s(t) = VA2 [5o(t), §1(8), -, Brea ()] (4.28)

where

A = diag(A1, ..., Ak);
K (pu(N) = u(N)) + (v(N) — ) (1 = xp-1) - :
)\k——]\-]: ’1)2(N)—'U,(N) y ]\,—1,...,N,

=0, k=N+1,.. K (4.29)

and V is any K x K orthogonal matrix such that VAV is a unit-diagonal matrix.
It }13 Zi{:_ol Xt = 1 —mn, then MTSC = K and the set of K orthonormal signals
achieves the minimum TSC.
If 1 — 7 > xo, then no signal of duration 7" and FOBE bandwidth at level 7 less

than or equal to W exists. A

Proof. The proof is similar to the proof of Proposition 4.4. From the properties of
PSWFs it is known that the function @y(¢;c) is the unique signal which has the
smallest FOBE of x, among all signals of duration 7. Thus when 1 — 1 > xo there
exists no signal of duration 7' and FOBE bandwidth at level n less than or equal
to W. When 1 —n = xo, K signals are identical to $o(¢;¢c) and MTSC = K?. By
applying Proposition 2.2 for the case of an orthonormal set, i.e., R = I, the minimum

average FOBE of K signals satisfies

K-1
1

(s(1)) = = > (1 - ).

k=0

Thus when 71{" Zf:_ol Xt = 1 —n, orthonormal signals are always available, hence

MTSC = K.



95

From the above discussion, nontrivial solutions for the optimal signal set exist

only when
K-1

EZXI';<1_77§XO- (4.30)
k=0

As in the proof of Proposition 4.4, first ignore the nonnegativity constraint on A and

form the Lagrangian,

K K K
LA joq,00) = Z/\z — o <Z e — K) — g <Z(1 — Xk—1)Ap — Kn> )
k=1 k=1

k=1

Taking the derivative with respect to A, and setting it to 0 produce

/\k = % [Oél -+ 012(1 — Xk—l)] . (431)

But the constraints in (4.24) give a set of linear equations

cvto = 2 (4.32)

ar+asy = 2

where u = u(K) and v = v(K) are defined in (4.26). From the above equations one

can find
2(nv — 2(v —
a; = ——(n%——u—) and ay = —(—12)—77) (4.33)
v —u v —u
and the optimal eigenvalues are found from (4.31) as

I

Note that, due to condition (4.30), one has v > 1. Furthermore, by applying the
Cauchy-Schwarz inequality and from the fact that the y;, are all distinct, one also has
u > v?, which together with vn > 0 implies w > vn. Thus one has oy > 0 and ag < 0.
Since 1 —xo < 1—x1 <...< 1= xg_1, from (4.31) it can be seen that the )\, are

well ordered, as required.
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Now check the nonnegativity constraint of A. It suffices to require that Ax > 0,
which implies
n —u
v—n
If the above condition is not satisfied, simply set A\x = 0 and solve the whole problem

Xk-12 1+ (4.35)

again, but with only K — 1 variables A;,..., Ax-;. It can be shown that the number
of nonzero eigenvalues N is given in (4.27) and the corresponding formula for the

optimal eigenvalues are given as in (4.29). O

Similar to the case of RMS bandwidth, the following observations can be made

regarding the optimal signature waveforms given by Proposition 4.5.

e The set of optimal signature waveforms is not unique due to the fact that V
can be any K x K orthogonal matrix that satisfies the requirement that VAV T

has unit diagonal entries.

e The optimal signature waveforms have different FOBEs, except when the size of
the set is a Hadamard matrix dimension. Thus when K is a Hadamard matrix
dimension, the results of Proposition 4.5 are also valid if the mazimum FOBE

bandwidth constraint of the set is considered.

e When the number of users is a Hadamard dimension, the optimal signature
waveforms can be obtained to maximize the individual SIR at the output of

each correlation receiver.

e As a special case, when K = 2 the results of Proposition 4.5 agree with the
results given in [18] for the minimum cross-correlation between two signals of

duration 7" and with FOBE bandwidths at level 7 less than or equal to W.

Finally, an example is given next to illustrate the design of the optimal sets of
four signals under the FOBE bandwidth constraint. The MTSC is plotted in Fig. 4.4

as a function of wy = 2WT for various values of 7.
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14 : : : : :

4
2WT

Figure 4.4: Minimum TSC versus time-bandwidth product: K = 4, FOBE bandwidth
constraint.

Ezample 4.2. Consider ¢ = aWT = 4.0 (or W = 1.2732/T) and n = 0.1, thus xo =
9.9589x 1071, 1 = 9.1211x 1071, o = 5.1905x 107}, x3 = 1.1021 x 10~!. Proposition
4.5 yields N = 3 and MTSC = 6.3551. The corresponding set of optimal eigenvalues
is {1.8580,1.6228,0.5192,0.0}. The optimal signal sets are shown in Fig. 4.5 and

Fig. 4.6 corresponding to two different ways of obtaining the matrix V.

4.3 Signature Waveforms for MMSE Receivers

Sections 4.1 and 4.2 dealt with the design of signature waveforms for S-CDMA systems
when the correlation receiver is employed. Though simple, the correlation receiver
suffers from the near-far problem, i.e., the bit error rate of the correlation receiver
is sensitive to differences in the received powers of the desired user and interfering
users [2]. Even when perfect power control is assumed, the bit error rate of the

correlation receiver is still orders of magnitude far from optimal. As explained before,
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Figure 4.5: TSC-minimized signature waveforms under FOBE bandwidth constraint:
K =4 ¢=4.0,n=0.1 with V a Hadamard matrix.
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Figure 4.6: TSC-minimized signature waveforms under FOBE bandwidth constraint:
K =4 ¢=4.0,n=0.1 with V obtained using the T-transform.
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this is due to the correlation of users through their signature waveforms (even though
these signature waveforms have been optimally designed), which makes the interuser
interference, not white Gaussian noise, the dominant degradation.

The linear MMSE receiver described in Chapter 2 is a more sophisticated receiver
which accounts for the presence of the other interfering users in the CDMA chan-
nel. Tt has been shown that the MMSE receiver can dramatically improve the error
performance over the correlation receiver [44, 45, 46]. When the MMSE receiver is
employed, the signature waveforms obtained in Sections 4.1 and 4.2 are no longer
optimal and therefore new sets of signature waveforms for this type of receiver need
to be found. This is precisely the goal of this section.

The problem of designing signature waveforms for the MMSE receivers under
either RMS or FOBE bandwidth constraint can be stated similarly to Problems 4.1
and 4.5 respectively. The only difference is due to the objective function. For the case
of MMSE receiver, the objective is to minimize the TMSE given in (2.26). With the

perfect power-control assumption (i.e., pp = P, k=1,..., K), (2.26) can be written

as
o? -
TMSE = KP — Ptr <{I + -—ﬁR"l} ) (4.36)
K
P
= KP-P
; P\, + o2
K 1 K
=Py ————— =P e+ D)7 .
where, as before, Ay, k= 1,..., K, are the eigenvalues of the correlation matrix R

and v = P/o? is the signal-to-background noise ratio.
Following the same procedure as in Section 4.1, Appendix D shows that it is
possible to transform the original design problem (stated in Problem D.1) into a new

finite-dimensional optimization problem for each bandwidth criterion. Let A = II,
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v =wi = (2WT)? when the RMS bandwidth is considered and A = &, v = n when
the FOBE bandwidth constraint is used. Then the finite-dimensional optimization
problem, under either an RMS or FOBE bandwidth constraint, can be formulated as

follows.

Problem 4.7. Find the set of eigenvalues {A1, ..., Ax } that minimizes Zi{_—_l (e + 17
subject to (i) A > 0; (ii) tr(A) = K;; and (iii) tr(AA) = Kv.

To solve the above optimization problem, again the Lagrange method can be
used. However, closed-form expressions for the solutions are not available due to
the fact that one obtains a system of nonlinear equations to solve for the Lagrange
multipliers. Nevertheless, Proposition 4.6 below gives a procedure to find optimal
signature waveforms. Note that in Proposition 4.6, {; = k* k=1,...,K if the RMS
bandwidth is considered and &, = 1 — xx—1, k= 1, ..., K if the FOBE bandwidth is

used.

Proposition 4.6. Given T, W, K and 0 < n < 1 (n is only required for FOBE
bandwidth). If £ <v < —ley Zi{:] &, then the set of K signals of duration T" with an
average bandwidth less than or equal to W that minimizes the TMSE is given by

s(t) = VAY?I(t) (4.38)
where
T(t) = \/% [sin (%), sin (22 ,...,sin (2)]", 0 <t <T; for RMS bandwidth
[Bo(t), 1(2), .. -, @K—l(t)]T ; for FOBE bandwidth
and

k vy (“(h—!—asz 1)) 17 ’ (4 39)
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The quantities ay, o are the roots of the following system of nonlinear equations®

K 1 - K (71/2 +7—1/2>

Ve Fask (4.40)
K 3 _ Kyﬂ/l/‘z + 7—1/2 Z}i(:l &

o asg,

that satisty the following constraints.

—ay < a; < v— (4.41)

—€xay < a1 < y—Ekan.
The matrix V is any K x K orthogonal matrix such that VAV is a unit-diagonal
matrix.
Ifv > _jl( Z}{{:l &k, then the set of optimal signature waveforms is any set of
orthonormal signals.
It v < &, then there is no signal of duration T" whose bandwidth is less than or

equal to W. A

The constraints on a; and @y in (4.41) are necessary and sufficient to have non-
negative \ys, which is required. This can be easily verified based on the ordering of the
XxxS. The system of nonlinear equations given in (4.40), together with the constraints
of (4.41), can be solved numerically in order to find the \;s, which give the optimal
signature waveforms. If no solutions for o; and ay can be found then simply set
Ax = 0 and solve Problem 4.7 again but with only K — 1 variables Aj,..., Ax_1.

From equation (4.39), it can be shown that the optimal signature waveforms found
in Proposition 4.6 have different FOBESs, except when K is a Hadamard matrix di-
mension. Similar to the TSC-minimized signature waveforms, when K is a Hadamard
matrix dimension, the TMSE-minimized signature waveforms can also be made to
maximize the individual SIRys in (2.24). This can be verified as follows. Substitute

R = VAV" and Ry, = VAu,, where u; is the kth column of VT, into (2.23). Using

3These two equations are to satisfy constraints (ii) and (iii) in Problem 4.7 respectively.
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the orthogonality property of V one can write MMSE, as
MMSE; = P — Pu] (I+47'A™)  u,. (4.42)

Now if V = H then the components of u;, are +1 / VK and the MMSE,, becomes

K K

1 1 P »
—p_piy P )1 44
MMSE; = P — P— ;:1: EYmwEi ;:1(1 + A (4.43)

Since MMSE;;s are the same for every k and their sum is minimized, the individual
MMSE;, is also minimized. This implies that the SIRy, in (2.24) is maximized and its

value is given by
K _
bt YL+ A 7
l]c{:1(1 + Y Ak)

Note that there is a major difference when finding the optimal signature waveforms

SIR, — 2= (4.44)

for the correlation receivers (Propositions 4.4 and 4.5) and for the MMSE receivers
(Proposition 4.6). The TSC-minimized signature set is found independently from the
signal-to-noise ratio level v, whereas the TMSE-minimized signature set needs to be
found for each value of . However, when ~ is large, the dependence on ~ of the
solutions given by Proposition 4.6 is very small, as shown in Tables 4.1 and 4.2 for
different bandwidth criteria. Figures 4.7 to 4.10 plot the optimal signature waveforms
for different bandwidth measurements and various ways of obtaining matrix V. These
signature waveforms are all obtained by setting v = 14dB.

Finally, we would like to point out that although this chapter only considers
signature waveforms designs for the correlation and MMSE receivers, the design for
the decorrelating receiver can be carried out similarly. From the expression of SIR
in (3.11), an obvious and sensible design criterion is to minimize Zk};l R, =

tr (R™1), or in terms of the eigenvalues, to minimize tr (A~?).
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Table 4.1: Dependence of the optimal eigenvalues on v: K = 4 and RMS bandwidth
of WT = 1.25.

B A [ X [ & [ M ]
6 1.3177 | 1.0907 | 0.8781 | 0.7136
7 1.3194 | 1.0892 | 0.8769 | 0.7145
8 1.3206 | 1.0882 | 0.8761 | 0.7151
9 1.3213 | 1.0875 | 0.8757 | 0.7155
10 1.3218 | 1.0871 | 0.8754 | 0.7157
11 1.3221 | 1.0869 | 0.8752 | 0.7159
12 1.3223 | 1.0867 | 0.8750 | 0.7160
13 1.3224 | 1.0866 | 0.8750 | 0.7160
14 1.3225 | 1.0865 | 0.8749 | 0.7161
15 1.3226 | 1.0865 | 0.8749 | 0.7161
16 1.3226 | 1.0864 | 0.8749 | 0.7161

Table 4.2: Dependence of the optimal eigenvalues on v: K = 4 and FOBE bandwidth
with c=4.0 and n = 0.1.

y@B) ] A T X T A [ A ]
6 2.7397 1 0.7627 | 0.2961 | 0.2015
7 2.7695 | 0.7309 | 0.2938 | 0.2058
8 2.7887 | 0.7105 | 0.2923 | 0.2085
9 2.8009 | 0.6975 | 0.2914 | 0.2102
10 2.8087 | 0.6892 | 0.2908 | 0.2113
11 2.8136 | 0.6840 | 0.2904 | 0.2120
12 2.8167 | 0.6806 | 0.2902 | 0.2124
13 2.8187 | 0.6785 | 0.2901 | 0.2127
14 2.8199 | 0.6772 | 0.2900 | 0.2129
15 2.8207 | 0.6764 | 0.2899 | 0.2130
16 2.8212 1 0.6759 | 0.2899 | 0.2131
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Figure 4.7: TMSE-minimized signature waveforms under RMS bandwidth constraint:
K =4, WT = 1.25 with V a Hadamard matrix.
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Figure 4.8: TMSE-minimized signature waveforms under RMS bandwidth constraint:
K =4, WT = 1.25 with V obtained using the T-transform.
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Figure 4.9: TMSE-minimized signature waveforms under FOBE bandwidth con-
straint: K =4, ¢ =4.0, n = 0.1 with V a Hadamard matrix.
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Figure 4.10: TMSE-minimized signature waveforms under FOBE bandwidth con-
straint: K =4, ¢ = 4.0, 7 = 0.1 with V obtained using the T-transform.
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4.4 Comparison with Suboptimal Signature Wave-
forms Constructed from WBE Sequences

This section compares the performance of the optimal signature waveforms obtained
in the previous sections with that of suboptimal signature waveforms. The suboptimal
signature waveforms are constructed from Welch bound equality (WBE) sequences.

This family of sequences is discussed next.

4.4.1 WBE Sequences and the Uniformly-Good Property

If the signature waveforms are constructed as linear combinations of some orthonormal
basis functions as in (2.5), then the TSC in (4.1) can be written in terms of signature

sequences as,
TSC=>"3(s]s;)" (4.45)

The lower bound of TSC for the set of K signature sequences, each of length N
(K > N) is given by Welch [16] to be
K2
TSC > — 4.
SC N (4.46)
The sequences that achieve Welch’s bound on T'SC are called Welch bound equality
(WBE) sequences [14]. The necessary and sufficient conditions for having WBE

sequences for a given K and N was first established in [13] as

K
T—-1 A4
SS & (4.47)

where I is an N x N identity matrix. In general, for given K and N, the set of WBE
sequences is not unique. One such set is identified in terms of tight frames in the

wavelets literature [54],

%[\/— cos(%ﬁ’”) sin(%’“),...,cos(%w W‘) n( (Nl >]T, N odd

5 =
\/:%; [cos (22£) , sin (£, ..., cos (£2E) ,sin (272‘%’”)] N even
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Another set may be obtained by a recursive algorithm using the T-transform as
provided in [17] (see Appendix B). The construction of binary WBE sequences from
linear codes can also be found in [13].

Tt has been shown in Section 3.2 that the WBE signature sequences also minimize
the TSME at the outputs of the MMSE receivers. Furthermore, using WBE signature
sequences makes an MMSE receiver identical to a correlation receiver. When the
WBE sequences are used, the SIRs at the outputs of the MMSE (or correlation)
receivers are all equal and maximized. This property of WBE sequences is called the
uniformly-good property (UGP) in [13]. In terms of maintaining fairness among users,
UGP is desirable. Unfortunately, the UGP does not hold for the TSC-minimized and
TSME-minimized waveforms in general. This property only holds when the number
of users K is a Hadamard matrix dimension as discussed in the previous sections.

When K is not a Hadamard matrix dimension, one way to maintain the UGP is
to assign the signature waveforms to users cyclically after each symbol interval. In
this way each user will see the same average interference after K symbol intervals.
Another straightforward way to have the UGP among the set of signature waveforms is
to construct the signature waveforms based on the WBE sequences. In this manner,
the UGP of the resulting signature set will be inherited from WBE sequence set.
This construction of signature waveforms is exactly the same as the one considered

in Chapter 3 and is described in the next section.

4.4.2 Signature Waveforms Constructed from WBE Sequences

As shown in Section 3.2, the maximum SIR at the output of each MMSE receiver
(or correlation receiver) is given by (3.7). On the other hand, the TSC and TMSE

assume the following expressions:

K2
TSC = (4.48)
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and

TMSE = K P (1 - W) . (4.49)

It follows from the above two equations that it is necessary to maximize the dimension
N of the signature space to minimize TSC or TMSE. Based on the property of WBE
sequences, the maximum values of N, called Ny, have been determined in (3.18)
and (3.21) of Chapter 3 for FOBE and RMS bandwidth criteria respectively.

Obviously, the price paid for inheriting the UGP from WBE sequences of the
suboptimal signature waveforms is the increase in TSC (or TMSE). In other words,
the TSC (or TMSE) of WBE sequence sets is always larger than the TSC (or TMSE)
of the optimal signature waveforms found previously. This is illustrated in Figs. 4.11
and 4.12 for the TSC in S-CDMA systems under RMS bandwidth constraint and with
K =16 and K = 32 users respectively. In each of these two figures, both the absolute
values and the ratio of the TSCs achieved by the proposed signature waveforms and
the signature waveforms constructed from WBE sequences are shown. Note also that
the absolute values of TSCs are plotted using a log scale. The TSC achieved by the
suboptimal signature waveforms in these figures can be determined from (3.18) and
(4.48). They are given by

K2

TSC = { (\/1 i 3) m J : (4.50)

As can be seen from Figs. 4.11 and 4.12, on the average, there is approximately

10% of TSC (i.e., total multiple access interference) that can be reduced by using the
optimal signature waveforms. This reduction of multiple access interference provides
a significant improvement of bit error rate (BER) as shown in Figs. 4.13 and 4.14
for S-CDMA systems with K = 32 users and with two different values of RMS
bandwidth (WT = 0.8 and WT = 0.9). The error probabilities plotted in these

figures are calculated based on the Gaussian approximation (equation (2.28)) and
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they are also averaged over all users. Also shown in Figs. 4.13 and 4.14 are the
performances of TMSE-minimized signature waveforms, i.e., the signature waveforms
designed for MMSE receivers. Recall that the WBE sequences also minimize the
TMSE. The improvement in BER is much larger for the MMSE receiver than for
the correlation receiver and this is due to the more complicated structure of the
MMSE receivers. Furthermore, it can be observed from Figs. 4.13 and 4.14 that the
improvement in BER provided by the proposed signature waveforms decreases as the
available bandwidth increases. If the available bandwidth is increased enough to afford
orthogonal signature waveforms, then the performances of WBE, TSC-minimized and
TMSE-minimized signature waveforms are all the same and equal to that of the single-

user system.

Figures 4.15 and 4.16 show the improvement in BER when using the proposed
signature waveforms for the case of FOBE bandwidth constraint. The bandwidth
specifications used in these two figures are ¢ = 10.0 (or 2W7T = 6.37) and n = 0.1.
The error probability curves in Fig. 4.15 are obtained using both the exact formula
and the Gaussian approximation of (2.27) and (2.28), respectively. On the other
hand, only the exact formula is used for Fig. 4.16. In both Figs. 4.15 and 4.16 the
BERs are averaged over all users. The inferiority of the WBE signature waveforms is
clear from Figs. 4.15 and 4.16 and can be explained as follows. Using the Gaussian
approximation (2.28), the probability of error when using the WBE sequences equals
to P, =@ (m) =@ ( W) . When the signal-to-noise ratio v is large,
one can approximate P, ~ @) <\/Kj{\_’—];> For the system under consideration, there
can be up to N,y = 6 orthogonal users, whose performance achieves the performance
of a single-user system. However, adding one more user to the system (K = 7) causes
P, ~ Q(+/6) = 7.2 x 1073 and adding two users makes P, =~ Q(V3) = 4.16 x 1072,
On the other hand, the TSCs of the optimal signature waveforms corresponding

to seven and eight users are 7.0149 and 8.9122 respectively. This means that the
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optimal signature waveforms are very close to orthogonal to maintain the good BER

performance.

Recall that the SIR performance of the TSC-minimized or TMSE-minimized sig-
nature waveforms is not uniform over all users, except when the number of users is
the size of a Hadamard matrix. Thought in all the previous discussions the BER
is averaged over all the users, here we would like to point out that the user-specific
BER performance of the proposed signature waveforms still outperforms the signature
waveforms constructed from WBE sequences in most of the cases. As an example,
Table 4.3 lists the SIRs at the outputs of both MF and MMSE receivers for different
families of signature waveforms at v = 14dB. The system under consideration has
¢ =10 and n = 0.1 (which means there can be up to Ny.x = 6 orthogonal users).
When using the MF receiver, there are seven users in the system, whereas there are
eight users in the system using MMSE receiver. To compute the SIRs for either MF
or MMSE receiver, the matrix V is generated using the T-transform algorithm given
in [17] in order to realize the correlation matrix R. Note that since a Hadamard ma-
trix of size eight exists, the correlation matrix R in this case can also be chosen as a
normalized Hadamard matrix so that the SIRs for all users are equal and individually

maximized.

As can be seen from Table 4.3, when a normalized Hadamard matrix H is not
available (or not used) for R, the SIRs are not uniform. Nevertheless, the difference
among SIRs is quite small and the worst SIR performance is still much better than
the uniform SIR performance of the WBE signature waveforms. This is further illus-
trated in Figs. 4.17 and 4.18, where the performance of WBE signature waveforms
is compared with the worst, the best and the average performances of the TSC-
minimized and TMSE-minimized signature waveforms respectively. In computing

the error probability for each user, the exact formula in [47] has been used.
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Table 4.3: SIR (in dB): CDMA systems with ¢ = 10.0, n = 0.1 and v = 14dB

User MF Receiver | MMSE Receiver (K = 8)
Index (K=T1) Optimal
(k) |[WBE |Optunal | WBE [VZH|V=H
1 6.85 13.71 4.28 12.80 13.19
2 6.85 13.71 4.28 12.80 13.19
3 6.85 13.71 4.28 13.14 13.19
4 6.85 13.71 4.28 13.25 13.19
) 6.85 13.92 4.28 13.84 13.19
6
7
8

6.85 13.96 428 | 13.81 13.19
13.71 4.28 | 13.17 13.19
- 4.28 | 12.80 13.19

6.85

4.5 Chapter Summary

Bandwidth constrained signature waveforms that minimize the multiple access inter-
ference have been obtained for S-CDMA systems. Both the RMS or FOBE bandwidth
constraints were considered. For the correlation receivers, closed-form expression for
the optimal signature waveforms exists, whereas for the MMSE receivers a set of
two non-linear equations (with constraints) can be numerically solved to realize the
optimal signature waveforms. The performance of the optimal signature waveforms
has been compared to that of the suboptimal ones constructed from WBE sequences.
It general, it has been demonstrated that the reduction in multiple access interfer-
ence achieved by the optimal signature waveforms can significantly improve the BER,

performance in S-CDMA systems.
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Figure 4.11: TSC achieved by the optimal signature waveforms and signature wave-
forms constructed from WBE sequences: K = 16, RMS bandwidth constraint.
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Figure 4.13: Error performance of WBE, TSC-minimized and TMSE-minimized sig-
nature waveforms in a S-CDMA system: K = 32 with RMS bandwidth of WT = 8.0.
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Figure 4.14: Error performance of WBE, TSC-minimized and TMSE-minimized sig-
nature waveforms in a S-CDMA system: K = 32 with RMS bandwidth of WT = 9.0.
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Figure 4.15: Error performances of WBE and TSC-minimized signature waveforms
in a CDMA system: ¢ = 10.0, n = 0.1 and K = 7.
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Figure 4.16: Error performances of WBE, TSC-minimized and TMSE-minimized
signature waveforms in CDMA systems: ¢ = 10.0, 7= 0.1 and K = 7 or K = 8.
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Figure 4.17: Worst-user error performance with TSC-minimized signature waveforms
in a CDMA system: ¢ = 10.0, n=0.1 and K = 7.
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Figure 4.18: Worst-user error performance with TMSE-minimized signature wave-
forms in a CDMA system: ¢ = 10.0, n = 0.1 and K = 8.



Chapter 5

Simplified Receiver in Walsh
Signal Space

It was shown in Chapters 3 and 4 that when the bandwidth constraint is the FOBE
bandwidth (which is typically a more practical measure than the RMS bandwidth),
the optimal signature waveforms are constructed as linear combinations of the nor-
malized, time-truncated and shifted prolate spheroidal wave functions (PSWFs). The
block diagram of the receiver in Fig. 2.1 implies that, in order to obtain the sufficient
statistic in the linear receiver, the signature waveforms need to be generated at the
receiver. However when the signature waveforms are synthesized from the PSWE's,
this is obviously not a simple task, taking into account the complicated nature of
these functions.

This chapter is concerned with the practical implementation of the linear receiver
when such optimal signature waveforms are used. In particular, the same approach
as in [55, 56] of using a Walsh signal space to realize the simplified receiver is studied.
As pointed out in [55], there are two main advantages when using the Walsh signal

space:

(i) The Walsh functions form an orthogonal, complete basis for the L, signal space,

a space that includes all the signature waveforms of interest. This means that

76



77

by increasing the dimensionality of the Walsh signal space, the receiver perfor-
mance can approach the optimal performance (when no approximation for the

receiver is made).

(ii) Since the approximated (projected) signature waveforms in the Walsh signal
space are staircase functions, the bank of the correlators (or matched filters) in
Fig. 2.1 can be replaced by an ordinary integrate-and-dump filter, followed by a
sampler which samples at a higher rate. The advantage of the latter operation

is that it is easier to implement in hardware.

It should be noted that the second advantage discussed above is considerably more
important when the whole vector of sufficient statistics y (or most of its elements) is

required at the receiver, for example as in an MMSE receiver.

5.1 Structure of the Simplified Receiver

Let w(t) = [wy(t), wa(t),...,wr(t)]T, 0 < ¢ < T, be the basis vector for a Walsh
signal space of dimension L = 2. Write the index k (k # 0) as follows [55]
D-1
k= kg2 (5.1)
d=0

where kq € {0,1} and D is the smallest integer such that kp_; # 0. Then the Walsh

functions can be expressed in terms of coeflicients ks as
ﬁ H(?:—Ol sgn <cos [ded%-trD , 0<t<T

0, otherwise

wi(t) = (5.2)

where sgn(z) = 1 if z > 0 and sgn(z) = —1 if < 0. As an example, the first eight
Walsh functions are plotted in Fig. 5.1 for T' = 1.0.
To obtain the simplified receivers, consider the approximation of the optimal sig-

nature waveforms using the first L orthonormal Walsh functions as follows:

3(t) = [51(), $2(8), ..., 5k (2)]" = Aw(t) (5.3)
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where S(t) is the approximation of the optimal signature waveform vector

s(t) = [51(t),...,sk(t)]" and the K x L coefficient matrix A is given by
T
A= / s(t)w (t)dt. (5.4)
Jo

Recall from the results established in Chapters 3 and 4 that the optimal signature

waveform vector under FOBE bandwidth constraint can be commonly expressed as
s(t) = ST (1) (5.5)

where S is an N x K signature matrix and ¥(¢) contains the first K shifted, normal-

ized and time-truncated PSWFs, i.e., W(t) = [Do(t), §1(t), .. .,@K_l(t)]T. For the

signature waveforms obtained in Chapter 3, N < K and the columns of matrix S

are the WBE sequences. On the other hand, for the optimal signature waveforms in

Chapter 4 one has N = K and the signature matrix S is given by Proposition 4.5.
It follows from (5.3), (5.4) and (5.5) that

3(t) =8" ( /0 ' \If(t)wT(t)dt> w(t) = STBw(t) = STE(¢). (5.6)

Thus the approximation of optimal signature waveforms is essentially the approxi-
mation of the first V shifted, normalized and time-truncated PSWFs. Given L, the
N x L matrix B = fOT U(t)w ' (t)dt can be pre-computed and stored in the memory
at the receiver. Note also that A = STB.

Having obtained the approximated signature waveforms at the receiver, the suf-
ficient statistics at the output of the bank of matched filters (filter k is matched to

5,(t)) in Fig. 2.1 can be calculated as follows:

G = /0 Y(E8(1)dt = A /O y(E)w ()t (5.7)

Since at any point in the interval [0,7] the Walsh functions receive only one of the

two values &1/+/T, the integration in the above equation should be very simple. Let



30

the interval [0, T be partitioned into L sub-intervals and index these sub-intervals by
[ =0,1,...,L — 1. From (5.2) it can be seen that the kth Walsh function wi(t) is
constant in the [th sub-interval [IT'/L, (I + 1)T/L) and its value is given by

1\ L
<cos[d2d <l+§>TD’ k,1=0,1,...,L—1.  (5.8)

Define an L x L matrix H such that Hy = wy_;(l — 1) and let h/ be its kth row.

Et)

d=0

Then it is not hard to see that

T L-1 (4+0T/L
/ YOt = 3wyl / y()dt=h§, k=1,2....L (59)
0 P Jir/
-
where ¥ = [fo /L t)dt, f?';‘FL/Ly t,. "’f(i—l)T/L y(t)dt] . It follows from (5.7) and

(5.9) that the approxnnated sufficient statistic can be produced from y as follows
y = AHy = STBHy. (5.10)

It is important to realize that ¥ can be generated from the received signal y(¢) in a
very simple manner. It requires only one integrate-and-dump filter followed by a sam-
pler which samples the output at L time instants t = (I 4+ 1)T/L, 1 =0,1,...,L — 1.
This observation allows one to replace the linear receiver in F ig. 2.1 by a simpler
structure which is shown in Fig. 5.2. We would like to point out here that the higher
sampling rate required in the simplified receivers should not be a major implementa-
tion problem. This is because the original sampling rate (in the receiver of Fig. 2.1)
is at the symbol rate, which is typically quite low!.

Technically, the approximated sufficient statistic § generated in (5.10) can be
made as close to the sufficient statistic y in (2.3) as desired by increasing the dimen-

sionality L of the Walsh signal space. Thus it may be appropriate to refer to ¥ as the

Tn many current CDMA systems, the sampling rate is equal to the “chip” rate, which is much
higher than the symbol rate.
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Figure 5.2: A simplified linear receiver in Walsh signal space.

quasi-sufficient statistic. However, since the optimal signature waveforms are contin-
uous functions in (0,7T), the Walsh signal space has to have an infinite dimension to
truly represent all the signature waveforms. But this also implies an infinite number
of samples in one symbol duration 7', which is impossible in practice. Therefore,
although it can be approached as closely as desired by increasing L, the sufficient
statistic can never be produced by the receiver structure in Fig. 5.2. Obviously, an
important question is how small L can be so that near-optimal performance can be

achieved by the simplified receiver in Fig. 5.2. This is investigated in the next section.

5.2 Error Performance of the Simplified Receiver

In this section, the error performances of both simplified correlation and MMSE
receivers in the Walsh signal space are evaluated under various system configurations.
In particular, the performance of the first user in the system, who is considered to be
a typical user is evaluated. The calculation of error probability is based on the exact
formula in (2.27). It should be noted that, for the simplified receiver, the correlation

matrix in (2.27) is given by R = Jo S)sT(t)de.
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Figs. 5.3 and 5.4 present the error performances of the simplified correlation and
MMSE receivers for a S-CDMA system loaded with six users and having a bandwidth
specification of ¢ = 10.0 and n = 0.01, respectively. Shown in each of these figures are
the performance curves of the simplified receiver in Walsh signal spaces of different
dimensionalities. Also shown in each of these figures is the optimal performance
curve, i.e., the performance of the receiver in Fig. 2.1 when the true optimal signature
waveforms are available at the receivers. Similar error performances are presented in
Figs. 5.5 to 5.8 but for systems with bandwidth specification of ¢ = 10.0, n = 0.1
and loaded with seven or eight users. Note that there can be up to five orthogonal
users in a S-CDMA system with ¢ = 10.0 and n = 0.01, whereas increasing 7 to 0.1

increases the number of orthogonal users to six.

It is clear from these figures that the optimal performance can be closely ap-
proached by increasing the dimensionality of the Walsh signal space. It also appears
from these figures that to achieve a near-optimal performance, the dimension of the
Walsh signal space needs to be increased as the number of users in the system in-
creases. For example Figs. 5.3, 5.5, 5.7 show that L = 16 is sufficient to realize
a simplified correlation receiver if there are six users in the system, but it requires
L = 32 for the systems loaded with seven or eight users. Moreover, compared to the
simplified correlation receiver, the simplified MMSE receiver can be realized with a
smaller Walsh signal space in order to achieve a near-optimal performance. As an
example, Figs. 5.6 and 5.5 show that it requires L = 16 Walsh functions to approach
the optimal performance for the MMSE receivers, but L = 32 functions are needed
for the correlation receivers. Finally, the same observations hold for systems with

different FOBE bandwidth specifications and different number of users.
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5.3 Chapter Summary

A simplified linear (multiuser) receiver in Walsh signal space has been developed
for S-CDMA systems. The need for this receiver structure arises from the fact that
the optimal signature waveforms under FOBE bandwidth constraint are generated
from the complicated prolate spheroidal wave functions. Investigation of the error
performances of the simplified receivers show that the optimal performance can be
closely approached by increasing the dimensionality of the Walsh signal space. In
general, only a relatively small number of Walsh functions is required for the simplified

receiver to achieve a near-optimal performance.



84

BER

_4|l — Optimal : :
10 T 1 1 i i I

12 14 16 18 20 22 24 26
v (dB)

Figure 5.3: Error performance of the simplified correlation receiver in a CDMA sys-
tem: ¢ = 10.0, n = 0.01 and K = 6.
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Figure 5.4: Error performance of the simplified MMSE receiver in a CDMA system:
¢=10.0, n =0.01 and K = 6.
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Figure 5.5: Error performance of the simplified correlation receiver in a CDMA Sys-

tem: ¢=10.0,7=10.1 and K = 7.
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Figure 5.6: Error performance of the simplified MMSE receiver in a CDMA system:

c=10.0,7=0.1 and

K=T.
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Figure 5.8: Error performance of the simplified MMSE receiver in a CDMA system:
c=10.0,7=0.1 and K = 8.



Chapter 6

Signature and Chip Waveform
Design for A-CDMA Systems

As discussed before, signature waveform design for CDMA systems, especially for
asynchronous systems, has received little attention. This chapter is a contribution to
this important area. Specifically, signature waveform design is considered for asyn-
chronous CDMA systems equipped with a correlation receiver. The correlation re-
ceiver is preferred to other multiuser receivers because the complexity of multiuser
detection is usually prohibitive in asynchronous systems with a large number of users

and a correlation receiver is still the only practical solution.

As in the case of synchronous CDMA systems, a common and important perfor-
mance measure for the correlation receiver is the signal-to-interference ratio (SIR).
In order to maximize the SIR, it is necessary to minimize the variance of MAI at the
output of each correlation receiver. Ideally, the signature waveforms should be de-
signed so that the MAI is zero. However this is likely impossible due to the limitation
of the transmission bandwidth as well as the asynchronous nature of the transmitted
signals. Nevertheless, for a given transmission bandwidth, the set of signature wave-
forms that produces a minimum MATI is desired. Finding such signature waveforms is

precisely one goal of this chapter. To quantify the transmission bandwidth, both the

87
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RMS and FOBE bandwidth criteria can be used. If the FOBE bandwidth is consid-
ered, then the Fourier transforms of the optimal signature waveforms can be found
through a series expansion in prolate spheroidal wave functions, which is similar to
the approach in [32]. On the other hand, if the RMS bandwidth is used, then the

optimal signature waveforms can be found through a series expansion in sinusoids.

The signature waveforms obtained as described above essentially may admit any
shape as long as they are limited to the symbol duration and have a specified energy.
There is, however, a popular form of CDMA known as direct-sequence CDMA (DS-
CDMA) where more structure is imposed on the signature waveforms. In particular,
each signature waveform is constructed by modulating a given chip waveform with the
corresponding binary signature sequence. Clearly with these signature waveforms, the
SIR at the output of each correlation receiver depends on both the signature sequences
and the shape of the chip waveform employed. To maximize the SIR in this case, one
needs to jointly optimize the signature sequences and the chip waveform. Recently,
random signature sequences have been widely used to analyze the performance of
DS-CDMA systems [32, 33, 34, 35, 57]. Some reasons for using random signature
sequences are as follows [34]. First, random signature sequences are often used in an
attempt to match certain characteristics of extremely complex signature sequences
with a very long period. Second, random signature sequence models may serve as
substitutes for deterministic models when there is little or no information about the
structure of the signature sequences to be used. Finally, for a system with a large
number of users and very long signature sequences, the use of random signature
sequences remains the only hope to obtain computable closed-form expressions for
the system analysis. With random signature sequences, the average SIR depends

only on the chip pulse shape.

As mentioned in Chapter 1 the chip pulse shape can be either time-limited or

band-limited. With band-limited chip waveforms, the signature waveforms are not
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time-limited to the symbol interval T. This means that the CDMA systems models
introduced in Chapter 2 need to be re-formulated. The designs of band-limited chip
wavetorms to minimize the MAT in A-CDMA systems were studied in [57, 58, 59, 60],
whereas the design of time-limited chip pulse appeared in [32]. In this chapter only

the design of time-limited chip waveforms are considered.

It is important to note that when a time-limited single chip waveform is used
and when the delays between the desired user and the interfering users are exactly
multiples of the chip duration, the chip pulse shape has no effect on the MAL In
such situations the MAT depends only on the cross correlations of the signature se-
quences, which can be large if the signature sequences are chosen randomly (or not
well designed, for deterministic signature sequences). Instead of using a single chip
waveform, suppose that two orthogonal chip pulses are alternatively employed for
the construction of signature waveforms. Now if the delays of the interfering users
are exactly odd multiples of the chip duration, the signals from interfering users will
be orthogonal to that of the desired user (which means that the MAI is Z€ro), no
matter what are the signature sequences (random or deterministic). This discussion
is graphically illustrated in Fig. 6.1 where the signature waveform of the kth user
(the desired user) and the signature waveform of the Jth user (the interfering user)
delayed by one chip duration (T,) are shown. In this particular example, the single
chip waveform is a half-sinusoid and the double orthogonal chip waveforms are the
half-sinusoid and half-cosine. Furthermore, for convenience, the maximum absolute

value of each chip waveform is normalized to be one.

Motivated by the above observation, in this chapter we also introduce the use of
multiple chip waveforms as a means of reducing MAI in asynchronous DS-CDMA
systems. Again, the series expansion method can be used to obtain the optimal chip
waveforms. Numerical results show that a significant gain can be achieved by using

multiple chip waveforms instead of a single chip waveform.
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Figure 6.1: Signature waveforms constructed from a single chip waveform (figures
and (b)) and from double orthogonal chip waveforms (figures (c) and (d)). T = 1.
and T/T, = 10.
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The chapter is organized as follows. In Section 6.1, the SIR at the output of the
correlation receiver is evaluated for both the asynchronous CDMA system and the
DS-CDMA system using random signature sequences and multiple chip waveforms.
In each case, the SIR is expressed in terms of the Fourier transforms of the signature
waveforms or the chip waveforms respectively. These expressions suggest a method to
obtain the signature and chip waveforms via a series expansion. Bandwidth constraint
and problems under consideration are discussed in Section 6.2. The series expansion
method is used to obtain optimal signature waveforms and multiple chip waveforms
in Section 6.3 and Section 6.4 respectively. Section 6.5 mnvestigates the advantage of
multiple chip waveforms technique for some common chip waveforms. Finally, Section

6.6 summarizes the chapter.

6.1 SIR Evaluation
6.1.1 Asynchronous CDMA systems

Recall from Section 2.2 that the signal received over an A-CDMA channel is

y(t) =D > V2Ph(i)sp(t — iT — 1) cos(2m fut + i) + n(2) (6.1)

k=1 i=—00

where 7, and ¢y, are the delay and the overall phase shift of the kth user, which
are modeled as uniform random variables over [0,7] and [0, 2] respectively. The
noise n(t) is additive white Gaussian noise (AWGN) with a two-sided power spectral
density of No/2. The output of the kth correlation receiver for the detection of bx(0)
is
K
Z=+/P/20(0)T +\/P/2 Y Ii+n (6.2)
i=1,ik

where n is a Gaussian random variable with zero mean and variance NoT'/4. The

random variable I ; is the interference caused by the ith user and is related to the
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partial cross-correlation functions between the kth and the ith signature waveforms
through (2.34).

The random variables I;; and n can be shown to be uncorrelated and have zero
mean. Furthermore, due to the symmetry involved, it can be assumed that by (0) = +1
was transmitted, thus the SIR at the output of the kth correlation receiver is given

by

2B\ 1 &
<]—V(—)—> +T§ Z var(ly.;) (6.3)

i=1,ik

_ [E(Zfbe(0) = +D)P _
SIR;, = var(Zy|bs(0) = +1)

where E, = PT is the energy per symbol. Note that [;; depends on the random
variables b; = [b;(—1), b;(0)], ¢; and 7;. As usual, these random variables are assumed
to be mutually statistically independent, hence the variance of I;; can be computed

as follows:

Var<Ik7i) = E”'i {E i (Ebz(‘[l%,z|b2’(o0w7-l))}

Rl s )l
_T.O 27_‘_'0 4 ki 2 T;
T

bi€{+1,~1}2

_ _231: 0 [R2 () + B2 ()] ar (6.4)

Though (6.4) is useful to evaluate the variance of MAI for a given set of signature
waveforms, it is not convenient to use when finding the optimal signature waveforms.
In what follows, it is shown that var(ly;) can be written in terms of the Fourier
transforms of s;(t) and s;(t). As will be seen later, the new expression for var(ly;)
is very helpful when formulating and solving the optimization problem considered in
this chapter.

Since si(t) and s;(t) are time limited to [0, 77, it follows that Ry (7) = Riw(T—7)
and fOT R} (T)dT = fOT ]/i\',f .(T)d7. Therefore the integral in (6.4) becomes

/OT [Ri,i(T) + ﬁi,i(’r)} dr = /O'T [Rii(7) + R: (7)) dr (6.5)
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Define vy ;(1) = [° si(t)s;(t + T — 7)dt and let Vii(f) = F{op(r)}, where F{}
denotes the Fourier transform. Since vy ;(7) = sx(7) ® 3;(—7), where ® denotes the
convolution operation and ;(7) = s;(7 + T, then Vi;(f) = Sp(f)SF(f)e 72"IT and
Vea(HP = [Sk(HPIS:(f)P. Let f(r)=v},(r) + v2,(7), then f(r) is time-limited to
[0,277]. Furthermore, it can be shown that f(7) = f(2T — 7), i.e., f(7) is an even
function about 7. Since f(7) = R} () + RZ,(7) for 0 < 7 < T, the right hand side

of (6.5) can be written as

T 2T
| B+ Rl = 5 [ ki) + o) ar

= 5 [ RaPP + Wit e
- [ Ispsorar (6.
Now, combining (6.4), (6.5) and (6.6) gives
(i) = 7 [ ISUPIS(PAs (6.7

and the SIR in (6.3) becomes

(%%) tors Y /:lsku')Prsi(f)Pdf} . (68)

i=litk Y~

SIRy =

6.1.2 Asynchronous DS-CDMA Systems with Random Sig-
nature Sequences

In this section, the model of asynchronous DS-CDMA systems using random signature
sequences and multiple chip waveforms is introduced. The SIR at the output of a
correlation receiver is also obtained as a function of the number of users, the processing
gain and the Fourier transforms of the multiple chip waveforms.

Let g1(t), g2(t), ..., gp(t) be D distinct chip waveforms each time-limited to [0, T¢]

whose energies are normalized so that

Te
/gfn(t)dt=Tc, m=12...,D. (6.9)
0
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Then the signature waveform of user k is constructed as follows

M-—1

Z sk(Dj)g1(t — DjT.) + sp(Dj + 1)gy(t — (Dj + 1)T.)

j=

+...+s(Dj+ D~ 1gp(t — (Dj+ D — 1)T,)] (6.10)

where s, = [5,(0),5(1),...,8:(N — 1)] is modeled as a vector of i.i.d. random
variables taking values in {—1,+1} with equal probability. To simplify our analysis,
it has been assumed in (6.10) that the processing gain N = T/T, is an integer multiple
of D,ie., N=DM.

To evaluate the SIR in this case, the variance of Iy; in (6.3) needs to be re-

evaluated, taking into account the randomness of the signature sequences. That is,

var(ly;) = Eg s {Er, [Eg, (B, (I8, 86 bs, 01, 7)) ] }
Es, s; {élT/OT [Ri.i(T) + R} (7)) dT}. (6.11)
Note that the index ¢ of the delay 7; in (6.11) has been removed for simplicity.
Let' wp(7) = [ si(t)si(t — 7)dt and Vi(f) = Flue(r )}. Then Vi(f) = |Se(£)]%.

Since vg(7) is an even function, time-limited to [~T,7) and Ry(r) = vp(7) for

0 <7<T, one has

2/OT }Azk(v')ﬁi(T)dT _ /_j vk (T)vs(T)dT

- /joVk(f)V%(f)df
= [ Isuprisrar (6.12)

Comparing (6.6) and (6.12) leads to the following identity,

/OT [Ri(7) + R} (7 7_2/ Ry(r (6.13)

"Note that with this definition, v (r) is different from v, (7) defined in Section 6.1.1.



95

Thus (6.11) becomes

var(ly;) = Sksz{ / Rl” }
_ */ Sk Rk { }d’]‘ (6.14)

To further evaluate (6.14), let I = |7/T,] be the integer part of 7/T, and r = 7 — IT..
It follows that [ and r are random variables uniformly distributed over {0,1,..., N — 1}
and [0, T;) respectively. Since the components of vector 8y, are i.i.d. random variables,
it is not hard to see that Fj, {Ek(T)} is nonzero only when 0 < 7 < T, (i.e., when

[ = 0). More precisely,

N D T e
~ 1 hn(r), ifl=0
B, {Run)} = { D2m=t ) (6.15)
0, otherwise.
In (6.15), f In(t)gm(t—7)dt, 0 < r < T, is the partial correlation function

of the Chlp wavetorm g,,(¢). Thus the variance of Iy, ; in (6.14) can be written as follows

N T (S i
var(l;) = 3 (Z P (7 ) dr (6.16)
1

~ 2
which is the same for all i (i # k). Let I = '52"7‘.3‘[0 < me1 Pm (7")) dr be the

normalized interference parameter, then the SIR in (6 3) is the same for every user

(%) —1+—K—]\7—1 }_1, (6.17)

Note that when g1(¢) = g2(t) = ... = gp(¢), I is just the normalized mean-squared

and given by

SIR =

partial chip correlation defined in [32, 34] and the SIR in (6.17) agrees with the result
given in [34] for the single chip waveform.
To facilitate the design of optimal multiple chip waveforms, it is convenient, as

in Section 6.1.1, to express the parameter I in terms of the Fourier transforms of
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the chip waveforms. This can be done as follows. For m =1,2,..., D, let U (T) =
L2 gm(t)gm(t — T)dt be the autocorrelation function of the chip waveform g,,(%).
Then un,(7) is an even function confined to [T, T,] with U, (f) = |Gm(f)[?. Now
using the fact that Em(f) = U (7) for 0 < 7 < T, and applying Parseval’s theorem

one has

¢ m=1 c =1
1 Te D 2 1 oo | D 2
= 2D2Tc3 /_TC T); um(T)> dr = 2D2T3 [m n%:l Um(f) df

- o | ZIGm<f>|2> . 6.15)

Again, when g1(t) = g2(t) = ... = gp(¢), (6.18) reduces to the normalized integration
of the fourth power of the magnitude spectrum of the single chip waveform as shown

in [32] and [35].

6.2 Design Problems
6.2.1 Design of Signature Waveforms

Similar to the case of synchronous systems, it is desired to obtain the signature
waveforms that maximize the SIR in (6.3) for every user. Again this is a very difficult
(if not an impossible) task. Thus an alternative objective, namely to minimize the
average MAI variance at the outputs of all correlation receivers is considered here.

The (normalized) average MAI variance is defined by

| KK 1 K E e
_ _ — 21 @, 2
T g i) = gmY GG
i£k T ik

o0

Se(HPIS(HIPAf  (6.19)

- Kljﬂsii/

k=1i=k+1" "~
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where J has been normalized to be independent of 7. Minimizing J ensures an
average performance level over all users. It is conceivable that, when the number of
users K is fixed, the minimum value of J decreases as the transmission bandwidth of
the system increases. Thus, for a given bandwidth W, the optimal set of signature
waveforms is the one that minimizes J.

As in the case of S-CDMA systems, here both the RMS and FOBE bandwidths
can be considered. Recall that the energies of the signature waveforms in A-CDMA
systems are normalized to equal the symbol duration T" as in (2.31). Thus the RMS
and FOBE bandwidth constraints in (2.40) and (2.44) become

1 & [
> | pisupras = w? (6.20)
k=1Y7%°
and
LS 2d 6.21
— Se(f = .
KT [, IS = (6.21)

respectively. Now the design problem for signature waveforms in A-CDMA systems

with bandwidth constraint is as follows.

Problem 6.1. Consider an asynchronous CDMA system equipped with a correlation
receiver. Given a signaling interval T" and a transmission bandwidth W, find a set of
K signature waveforms {s1(t), s2(t), ..., sx(t)} that minimize J in (6.19) subject to
the energy constraint of (2.31) and the RMS bandwidth constraint of (6.20) (or the
FOBE bandwidth constraint of (6.21)).

6.2.2 Design of Multiple Chip Waveforms

In asynchronous DS-CDMA systems using random signature sequences, the SIR is
the same for every user. It follows from (6.17) that to maximize SIR, one needs to find
multiple chip waveforms to minimize [ in (6.18). Furthermore, the chip waveforms

also determine the bandwidth of the system as discussed below.
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When the signature waveforms are constructed from random signature sequences
and multiple chip waveforms, the PSD of the transmitted signal in (2.32) can be
shown to be proportional to Zﬁ:l |G (f)[*. Thus the RMS bandwidth constraint is

as follows:

1 & e
57 2 / PAGwm()IPdf = W2 (6.22)
Cm=1Y

Likewise, for 0 < 7 < 1, the FOBE bandwidth constraint can be written as

D

G PdF =n. 6.23
Z/Wl (HPdf =7 (6.23)

m=1

1
DT,

From (6.18), (6.22) and (6.23) one may suggest that by choosing a single chip

waveform with power spectral density

D
GUIE =5 3 Gl (6.24)

then the SIR performance of any choice of multiple chip waveforms can be obtained
by the corresponding single chip waveform with the same bandwidth. This is not
possible in general. Granted one can readily obtain the energy density spectrum as
indicated in (6.24). However to obtain the time waveform g(t), one must also specify
the phase spectrum. The single chip waveform g(t) obtained through the inverse
Fourier transform of G(f) now will not be necessarily a time-limited (to the interval
[0, T,]) function as required. Though an analytical proof for this claim was not found
the following conjecture, based on the above discussion and the numerical results in

Section 6.4.2 (see Fig. 6.10), is proposed.

Congecture 6.1. Given D arbitrary chip waveforms gy(t), g2(t), ..., gn(t), each time-
limited to [0, T,] whose energies are normalized to be T,. Let G;(f), Ga(f), ..., Gp(f)
be the corresponding Fourier transforms of these chip waveforms. Then it is not
always possible to generate a chip waveform g(¢) which is also time-limited to [0, T]

whose Fourier transform satisfies (6.24). A
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Note that, if the restriction on time limitation is lifted, the expression of the inter-
ference parameter in (6.18) does not hold for the single chip waveform obtained via
(6.24). This is because for a chip waveform that spans multiple chip interval, there is
generally a nonzero interchip interference (ICI). It can be shown that the interference

parameter for a chip waveform whose support is longer than a chip interval is given

by [61],
= %5/:!0(}")1%14 o0 Z [/ cos(2rmfT,)|G(f)[Pdf|  (6.25)

where the second term accounts for the ICI.

The design problem for multiple chip waveforms can be stated as follows.

Problem 6.2. Consider a K-user asynchronous DS-CDMA system using random sig-
nature sequences and multiple chip waveforms. Given a signaling interval, T, and a
transmission bandwidth, W, find a set of D chip waveforms {g:(t), g2(t), ..., gp(t)}
that minimize I in (6.18) subject to the energy constraint of (6.9) and the RMS
bandwidth constraint of (6.22) (or the FOBE bandwidth constraint of (6.23)).

The two optimization problems stated in this section concern finite sets of time-
limited waveforms and they are very similar. The only difference lies in the objective
functions. These problems are very difficult to solve explicitly due to the complexity
of the objectives and the constraints. Nevertheless, the expansion technique employed
in [32] can be applied here to simplify the design problems.

In [32] the authors obtain the optimal single chip waveforms for offset quadrature
DS-CDMA systems under bandwidth, phase and envelope constraints. The method
is to approximate the solution by using a finite series expansion over a complete set
of basis functions. As pointed out in [32], the choice of a proper set of basis functions
Is very important to reduce the dimensionality of the equivalent discrete optimization
problem. Which basis set is chosen is governed by the bandwidth criterion under

consideration. If the FOBE bandwidth is used, it is suggested in [32] that the prolate
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spheroidal functions should be used to expand the Fourier transforms of the signature
waveforms (and chip waveforms respectively). For the RMS bandwidth constraint,
the set of time-truncated sinuisoids {sin (nnt/T),0 < ¢ < T}22 | is selected for the ex-
pansion of the signature waveforms (and chip waveforms respectively). This selection
is natural since the functions {sin (n7t/T"),0 < ¢ < T'}° | form a complete set for all
continuous functions time limited to [0, 7] and, more importantly, they achieve the
minimum RMS bandwidth [52]. For brevity of presentation, only the RMS bandwidth

constraint is pursued in this chapter.

6.3 Optimal Signature Waveforms
6.3.1 Problem Simplification

Let ,(t) = \/2/T sin(nnt/T)pr(t), where pr(t) = 1for 0 < ¢t < T and pr(t) =0
otherwise. Then the RMS bandwidth of 9, (t) is b(y,(t)) = n/(2T). To simplify
the calculation of the objective function in (6.19) introduce the shifted (and possibly
negated) versions of ¢, (¢), defined by?

2 ot T o, T o
o (t, T) = TCOS(T)’ '2‘—75_.7, if n is odd 696
n\“ 2 . nﬂ-t T T » ) (. )
VTsm< 7 >’ —5 <t< %5, if niseven.

Let @,(f,T) = F{¢n(t,T)}. Note that when n is odd, the function ¢, (¢, T is even,
hence @,(f,T) is a real function. On the other hand, when n is even, ¢,(t,T) is
an odd function and ®,(f,T) is purely imaginary. Write ®,(f,T) = X;(f,T) when
n=2l—1and ®,(f,T) = jYi(f,T) when n = 2, then

Xl(j7T) =
T =

[sinc(fT" — (I — 0.5)) + sinc(fT + (I — 0.5))]
[sinc(fT —I) — sinc(fT + 1))

(6.27)

S

where sinc(z) = sin(wz)/(nz).

*Instead of ¢y, (t), we write ¢, (t,T) to emphasize that $n(t) has a duration of T. Later ¢, (¢, T,)
is used to discuss the design of chip waveforms.
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Let 5k(t) = sk(t+T/2) be the shifted version of the signature waveform s, (¢). Since
{#n(t) }52, forms a complete set for all continuous functions that are time limited to

[=T/2,T/2], 3(t) can be expanded as follows

Zru%z 18, T) + Zykzd)gz t.T) (6.28)

=1

where the coefficients z; and yy; are given by z, = f 7728 Si(t)pau—1(t, T)dt and
= f_T/2 Sk(t)¢a(t, T)dt. The RMS bandwidths of s,(t) and §;(¢) are the same.
They can be computed as shown below [52],

T/2 ~ 2
b2(8k(t)) B bQ(@;(zﬁ)) B (27r1) 2T /_T/2 (dsgt(t)> a

= > [#b* (¢ur(t, 7)) + 22 (u(t, T))]

=1

1 & ,
= TZ (21 = 1)%z, + 4073 - (6.29)

Due to the constraint on the system bandwidth in (6.20), it follows from (6.29)
that the coefficients zy; and y;; should be very small when [ is large. Therefore, for
all practical purposes, it is sufficient to truncate each sum in (6.28) to a finite length

of L terms, that is

L L
Se(t) 2 Y mudu(t,T) + > yudu(t,T). (6.30)
=1 I=1
Using the truncated expansion in (6.30), the constraints in (2.31) and (6.20) can be
written in terms of zj; and yi, k=1,2..., K and [ =1,2,..., L as follows.
L
@b+l =T, k=12,... K (6.31)
1=1
and
K L
>N (@l -1)%2 + 4%}] = AK(WT)T. (6.32)

k=1 I=1
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Appendix E also shows that the objective J in (6.19) can be written in terms of
xp and yy (see Eqn. (E.3)). Thus Problem 6.1 is now equivalent to the following

finite-dimensional optimization problem.

Problem 6.3. Find the 2K L coefficients z; and yp;, k = 1,2...,Kand [l =1,2,..., L,
that minimize J(L) in (E.3) subject to the constraints in (6.31) and (6.32).

The above optimization problem can be solved numerically, for example, by means
of sequential quadratic programming routines. Here the program code was written
based on the MATLAB optimization toolbox and it is documented in a separate report
[62]. Since the number of users K is not controllable, to reduce the dimensionality of
the optimization problem, it is important to use as a small value for L as possible.
In general, such a value of L depends on the bandwidth-time product WT (due to
the bandwidth constraint). No analytical expression was found to determine the
convergence properties of the approximation. Therefore a heuristic approach was
used. Simply the approximated objective funtion J*(L) is plotted versus L for each
value of RMS bandwidth considered. A judgement is then made regarding the value
of L at which J*(L) reaches an “asymptote”.

6.3.2 Numerical Examples

Some numerical results are given in this section to demonstrate the optimal signature
waveforms obtained from solving Problem 6.3. Although results for systems with a
large number of users are of practical interest, solving Problem 6.3 for large K is quite
time consuming. For this reason only CDMA systems with K = 2 and K = 4 are
examined as illustrative examples. The RMS bandwidth value ranges from 0.525/T
to 1.1/T for the two-user system and from 0.6/7 to 2.0/T for the four-user system.
Given the number of users and the RMS bandwidth, different values of L were used
in Problem 6.3 to obtain the corresponding signature waveforms and the minimum

value of the objective function, namely J*(L). Plotting J*(L) versus L reveals that,
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Figure 6.2: Influence of L on the minimum value of the objective function, K = 2.

for all RMS bandwidth values considered and for both the two-user and the four-
user systems, the asymptote of J*(L) is reached practically for L > 4. For example,
Fig. 6.2 plots J*(L) for two-user systems with WT = 0.6 and WT = 0.9, whereas
Fig. 6.3 plots J*(L) for four-user systems with W7T = 1.4 and WT = 2.0. Thus [ = 4
is used for the remaining examples of this section to obtain the signature waveforms.
It should be noted, however, that for systems with a larger number of users and wider
bandwidth the value of L may become large and therefore obtaining the solutions to
Problem 6.3 would become time consuming.

To evaluate the performance of the designed signature waveforms, the average MAI
variance (J) achieved by the optimal signature waveforms in two-user and four-user
systems is plotted in Figs. 6.4 and 6.5 respectively as a function of the time-bandwidth
product WT'. As expected, the MAI reduces as the bandwidth increases. For a given
bandwidth, MAT increases as the number of users increases. In Figs. 6.4 and 6.5, the
performance of the designed signature waveforms is also compared with that of the

signature waveforms optimally designed for synchronous CDMA systems. Such design
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Figure 6.3: Influence of L on the minimum value of the objective function, X = 4.

of signature waveforms has been considered in Chapter 4 with the same optimality
criterion and bandwidth constraint. For convenience, we shall refer to the waveforms
designed specifically for A-CDMA systems in this chapter as the asynchronous signa-
ture waveforms and the waveforms designed for SS<CDMA systems in Chapter 4 as the
synchronous signature waveforms. In each of Figs. 6.4 and 6.5 two curves are plotted
for the performance of the synchronous signature waveforms: one over synchronous

systems and the other over asynchronous systems (system-mismatch situation).

As already known from Chapter 4, orthogonal signature waveforms are available in
S-CDMA systems when (2WT)? > (K + 1)(2K + 1)/6. Therefore the MAI produced
by the synchronous signature waveforms in synchronous systems is zero when WT >
0.791 and WT > 1.369 as shown in Figs 6.4 and 6.5 respectively. Assuming that the
same orthogonal synchronous signature waveforms are used for larger bandwidths,
then the MAI produced by the synchronous signature waveforms in asynchronous

systems stays the same for WT > 0.791 and WT > 1.369, as can be seen in Figs 6.4
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Figure 6.4: Minimum MALI variance J as a function of time-bandwidth product WT,
K=2.

and 6.5 respectively. The superiority of the asynchronous signature waveforms over
synchronous ones in asynchronous systems is clearly observed from Figs 6.4 and 6.5
for all values of RMS bandwidth under consideration.

It is also of interest to notice from Figs 6.4 and 6.5 that, for very small values of a
RMS bandwidth, the MAI produced by synchronous waveforms in synchronous sys-
tems is larger than that produced by the asynchronous waveforms in asynchronous
systems. This is counterintuitive since the performance of synchronous systems is
usually taken as the lower bound for the performance of the asynchronous ones. This
observation can be explained as follows. When the bandwidth is very small, all the
signature waveforms possess very similar shapes (in order to satisfy the bandwidth
constraint). This means that the synchronous correlations among signature wave-
forms are very high, causing a huge MAI in synchronous systems. On the other
hand, the MAT in the asynchronous systems depends on the particular delays among

users and can be very small for certain delays. Therefore, after averaging over the
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entire range of the delays (the symbol duration T), the average MAI in asynchronous
systems can be significantly smaller than that in synchronous ones. Nevertheless,
when the bandwidth increases, the MAI in synchronous systems approaches zero
much faster than that in asynchronous systems. In other words, it requires much
larger bandwidth for the asynchronous system to perform at a satisfactory level (i.e.,
when MAI is small) compared to that of synchronous systems, even though optimal

signature waveforms are used in both scenarios.

Finally, asynchronous signature waveforms for two-user and four-user systems are
demonstrated in Figs. 6.6 to 6.9 for selected values of RMS bandwidth occupancies.
Note that the signature waveforms in Figs. 6.7, 6.8 and 6.9 possess (even or odd)
symmetry about the midpoint of the symbol duration. The synchronous signature
waveforms for two-user synchronous systems are also shown in Figs. 6.6 and 6.7 for

comparison. We would like to point out that these synchronous signature waveforms
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were first obtained in [18] to achieve each point inside the capacity region of the two-
user Gaussian multiple access channel. It turns out that they are also the optimal
signature waveforms that minimize the MAI in synchronous CDMA systems (see

Chapter 4).

6.4 Optimal Chip Waveforms
6.4.1 Problem Simplification

Similar to signature waveform design, the problem of designing multiple chip wave-
forms (Problem 6.2) can be reduced to a finite-dimensional optimization problem. To

this end, expand the delayed version of each chip waveform as follows

./g\m(t) = gm(t + TC/Q)

L L
D Tmpua(t,T) + > ymbut, ),  m=1,2,...,D (6.33)
=1 =1

14
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Figure 6.8: Optimal signature waveforms for an asynchronous CDMA system: K =4
with RMS bandwidth of WT = 1.4.
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Figure 6.9: Optimal signature waveforms for an asynchronous CDMA system: K =4
with RMS bandwidth of WT = 2.0.

where z,,; = T}iiz Gm () dor—1(t, T,)dt and vy, = fT;/% Gm () (t, Te)dt. Using this

expansion, the constraints in (6.9) and (6.22) can be written in terms of z,y and g,

m=1,2...,Dand [ =1,2,...,L, as follows.

Mh

(z2y+yk) =T, m=12,...D (6.34)
=1
and
D L
DN 1 - 1)%2, + 4%2)] = AD(WTL)*T,. (6.35)
m=1 [=1

Furthermore, the objective in (6.18) can also be expressed in terms of Ty and Yy 88
shown in Appendix I (see Eqn. (F.10)). Therefore Problem 6.2 is now equivalent to

the following finite-dimensional optimization problem.

Problem 6.4. Find 2DL coefficients T, and 4y, m = 1,2. .. y,Dand [ =1,2,...,L,
that minimize /(D, L) in (F.10) subject to the constraints given in (6.34) and (6.35).

As for Problem 6.3, Problem 6.4 can be solved numerically. It should be noted,
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however, that the dimensionality of Problem 6.4 does not depend on the number of
users, K, and it is usually much smaller than that of Problem 6.3. This is due to the
following two reasons. First, the number of unknowns in Problem 6.4 depends only
on D and L, which can be selected to achieve a compromise between performance and
complexity. Secondly, since the value of WT, is usually less than 3.0 for DS-CDMA
systems, a practical value of L in Problem 6.4 is much smaller than that in Problem
6.3.

Finally, the following proposition justifies the advantage of using multiple chip

wavetforms in DS-CDMA systems with random signature sequences.

Proposition 6.1. Consider a DS-CDMA system using random signature sequences and
D chip waveforms. Let the D chip waveforms be the solutions of Problem 6.4 for some
fixed value of L. Let I*(D, L) be the corresponding interference parameter and x be

an integer number. Then

I*(kD,L) < I'(D, L) (6.36)

A

Proof. The proof is trivial, by noting that the equality in (6.36) is achieved when using

K copies of the set of D optimal chip waveforms for the set of KD chip waveforms. [

6.4.2 Numerical Results

Several multiple chip waveforms obtained from solving Problem 6.4 are presented in
this section. Up to D = 3 is considered. The values of W are from 0.5/T. to 3.0/T,
which is the range of interest for us. For this range of RMS bandwidth, it has been
determined that using L = 6 yields sufficient accuracy for optimal chip waveforms.
Numerical results indicate that the improvement from using multiple chip wave-
forms over single chip waveforms is quite significant. This is illustrated in Fig. 6.10

where the interference parameters I achieved by the optimal single, double and triple
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chip waveforms (denoted by Iy, I and I3, respectively) are plotted versus WT.,.
From Fig. 6.10 it can be seen that the largest gain is achieved by moving from a
single chip waveform to double chip waveforms and there is not much improvement
with triple chip waveforms. A closer investigation of Fig. 6.10 reveals that, for a fixed
level of interference I, it is possible to save about 10% of the transmission bandwidth
when using double chip waveforms compared to a single chip waveform. Fig. 6.10

therefore also supports Conjecture 6.1.

Fig. 6.11 plots the ratios I5./I1. and I3./I;, to compare the performances of mul-
tiple chip waveforms with that of a single chip waveform but from a different perspec-
tive. Note that when W = 0.5/T, there exists only one chip waveform of duration
Te, namely the half-sine waveform \/2/T,sin (nt/T.) pr,(t). Therefore there is no ad-
vantage to use multiple chip waveforms for interference suppression. However, as the
bandwidth increases, the interference reduction capability of multiple chip waveforms
increases and saturates at about W = 2.4/T,. At W = 2.4/T,, the interference can
be reduced by about 10% by using multiple chip waveforms instead of a single chip

wavelorm.

It is also of interest to compare the performance of optimal chip waveforms (single,
double or triple) among themselves when varying the chip duration 7,. For a fair
comparison, the bandwidth W and the symbol duration T are fixed. Since N = T/T,,
it follows from (6.17) that to maximize SIR, one needs to minimize IT}, or equivalently
to minimize JWT,. This parameter is plotted against W7, in Fig. 6.123. It can be
seen that the performance improves with increasing chip duration 7. and saturates at
about T, = 1.4/W for the single chip waveform and 2.4/W for both double and trip
chip waveforms. Thus in general, there exists a minimum value of WT, for multiple

chip waveforms that minimizes the multiple access interference. Note that the RMS

3Note that, since the bandwidth expansion has been taken into account in the parameter IW T,
the WT, axis in Figs. 6.12 and 6.13, in essence, is irrelevant for the comparison.
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bandwidths of some common time-limited chip waveforms are relatively small, which
make them inefficient in terms of minimizing MAIL This is illustrated in Fig. 6.13
where the JWT, that is achieved by the raised cosine, Blackman and four-term odd
cosine series chip waveforms are shown (in the range of small WT,). The equations
for these chip waveforms can be found in Section 6.5. It can be seen from Fig. 6.13
that the performance of the raised cosine chip is closest to that of the optimal single
chip, followed by the Blackman and cosine series chips.

The advantage of the proposed optimal chip waveforms over the square-root raised
cosine (SRRC) waveforms with various roll-off factors can also be observed from
Fig. 6.13. Note that a SRRC waveform spans more than a chip interval. The SRRC
waveform corresponding to a roll-off factor of 0.22 is proposed for Wideband-CDMA
systems [63], whereas the chip shape used in the IS-95 standard is also similar to a
SRRC pulse [64]. The expression for a SRRC pulse is given by [65]

_ 4B cos (1 + B)mt/T,] + Tesin[(1 — B)wt/T,] /(45t)

9t =7 1~ (45T,

(6.37)

where 3 (0 < § < 1) is the roll-off parameter. The square of the Fourier transform

(i.e., the energy spectral density) of g(t) is [65]

—

0<ifl< Lt
{1+eos | T (111 - 27|}, Spl << B8 (639)
, TER s
To evaluate the performance of the SRRC chip waveforms one needs to calculate the

parameter [WT,. The RMS bandwidth of an SRRC pulse can be easily shown to

*(f) =

(SR N T

satisfy

(1-8PF+(+p)P 261"
24 - w2} '

Because an SRRC pulse spans more than one chip interval, its performance parameter

I should be calculated based on (6.25). However, it is well known that the SRRC

WE:[ (6.39)
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pulses satisfy the Nyquist criterion, hence the ICI term in (6.25) disappears. The

interference parameter I for the SRRC pulses therefore is simply given by

=L Tieppar 8
=g [ lorar=5-5 (6.40)

From (6.39) and (6.40), the parameter /W7, assumes the following expression

1 ﬁ){ﬂ—ﬁ?+«r+m3_2y}m- (6.41)

[Wn:<§_§ 24 2

Finally, examples of optimal single, double and triple chip waveforms are plotted
in Figs. 6.14 to 6.16 for WT, = 2.4. This value of WT, is chosen since it gives the
optimal chip duration for double and triple chip waveforms as discussed above. The
advantage of using optimal single and double chip waveforms in terms of bit error
rate is also shown in Figs. 6.17 and 6.18 for a CDMA system having K = 32 users
and a RMS bandwidth value such that N = 32 if the optimal double chip waveforms
are used (i.e., WT = 32 x 2.4). Note that Fig. 6.17 is obtained by using a standard
Gaussian approximation (GA) to the error probability (see Chapter 7), whereas the
improved Gaussian approximation developed in Chapter 7 is used to produce Fig
6.18. The standard GA uses only the parameter IWT, of the chip waveforms to
approximate the error probability and it is quite loose for high signal-to-noise ratios.
On the other hand, the improved GA takes into account the actual shapes of the chip
waveforms (through their correlation functions) to approximate the error probability.
It will be shown in Chapter 7 that this approximation is very accurate. The relative
performances of different chip waveform(s) given in Fig. 6.18 agree very well with the
values of parameter IWT, plotted in Fig. 6.13. It can be seen from Fig. 6.18 that, at
the BER level of 1074, a gain of about 2dB in Ey/Ny can be attained by using the

optimal double chip waveforms.
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6.5 Combinations of Common Chip Waveforms

In the previous section, optimal multiple chip waveforms have been obtained to mini-
mize MAI in asynchronous DS-CDMA systems under the RMS bandwidth constraint.
Given the technique of using multiple chip waveforms to combat MAI, the question
of interest is whether the advantage of this technique can be realized for commonly
used signature waveforms without relying on optimal chip waveforms. The answer
to this question is investigated in this section. More precisely, this section studies

double combinations of the following common chip waveforms.

1) Rectangular pulse: p;(t) = pr,(t), where pr,(t) = 1 for 0 < ¢ < Tp and pr, (t) = 0

otherwise.

2) Half-sine: po(t) = v2sin (%1) pr,(t).



119

. Rect.

Chip Waveform Amplitude

Talfeme | N
- - - Raised cosine PN
---- Blackman N
—— Cosine series '

1 ! 1

0.4 0.6 0.8 1
t/T,

Figure 6.19: Chip waveforms that are even about T¢/2.

3) Raised cosine: ps(t) = \/g [1 — cos (%Eiﬂ pr,(1).
4) Blackman [38]: ps(t) = ¢ [kl — ko cos (%r) + k3 cos (47-1—)] pr,(t), where
= (k24 k3/2+k2/2)7! and ky = 0.42, ky = 0.5 and k3 = 0.08.

5) Four-term odd cosine series [39]:

4
ps(t) = {0 868 — 0.686 cos (27rt> 0.149 cos < ;t> — 0.033 cos (%ﬂ) ]PTC(t).

[

6) Half-cosine: ps(t) = 2008( )

7) Full-sine: p(t) = v/2sin <2771@> pr,(t).

Note that the first five chips are even about T,/2, while the last two are odd. The
“gven” chip waveforms are plotted in Fig. 6.19 while the “odd” chip waveforms are
shown in Fig. 6.20.

The normalized interference parameter, I, is given in Table 6.1 for all combinations

of the above chip waveforms. As expected, using the even chips in combination with
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the odd chips reduces the interference significantly (see columns 6 and 7 of Table
6.1). It is also of interest to note that using two odd chips offers lower interference
compared to using two even chips. However, it should be noted from Table 6.1 that
the huge reduction of interference by using odd chip waveforms comes at the expense
of expanding the transmission bandwidth. As mentioned in the previous section, for
a fair comparison of different chip waveform combinations, the issue of bandwidth
needs to be taken into account and the quantity IWT, is the performance measure of
interest. Here the transmission bandwidth is quantified through the FOBE bandwidth
criterion which is governed by Eqn. (6.23). The values of the time-bandwidth product
WT. for some typical values of 7 are tabulated in Table 6.2. Based on Tables 6.1 and
6.2, the parameter IWT, is tabulated in Table 6.3.

From Table 6.3 one can see that, even when the effect of increasing the bandwidth
of the odd chip is taken into account, it is still beneficial to combine the full-cosine

chip (odd chip) with the even chips for most of the FOBE bandwidth criteria. The use
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of two even chips offers better performance only when the requirement for fractional
out-of-band power is very strict (7 = 0.1%). This is expected since, if 7 is very small,
the FOBE bandwidth of the full-cosine chip can be very large, which eventually offsets
the interference reduction. However, if an odd chip with a narrower FOBE bandwidth
can be found, then the advantage of combining an odd chip with an even chip should
remain even when 7 = 0.1%. Another observation is that, although the half-cosine
is an odd chip, it has a very large FOBE bandwidth (due to its discontinuties) when
n is small (n < 10%). Hence there is no advantage to combine this odd chip with
other even chips in a system with a very strict requirement for fractional out-of-band
energy.

Finally, Figs. 6.21 and 6.22 show the advantage of using double chip waveforms
over a single chip waveform in terms of the bit error rate for systems with n = 10% and
n = 1% respectively. The error probabilities are calculated based on the improved
Gaussian approximation derived later in Chapter 7. Note that in both cases, the
FOBE transmission bandwidth is selected so that the processing gain of the corre-
sponding system using a single raised cosine waveform equals N = 64 (i.e., WT =
64 x 0.9501 for n = 10% and WT = 64 x 1.4093 for n = 1%). The number of users
in both systems is K = 8. The advantage of using double chip waveforms is clearly

observed from these figures.

6.6 Chapter Summary

Two problems of designing signature waveforms and multiple chip waveforms for
asynchronous CDMA systems have been considered in this chapter. The bandwidth
constraint is explicitly taken into account in the design process so that the available
bandwidth of the system is optimally utilized. Appropriate performance parame-
ters have been derived for both design problems when correlation receivers are used.

These performance parameters are expressed in terms of the Fourier transforms of
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Table 6.1: Values of I for all combinations of chip waveforms.

pi(t)  paAt)  ws(t)  pat)  ps(t)  pe(t)  pr(D)
pi(t) 0.3333 0.3086 0.2757 0.2537 0.2960 0.1820 0.1709

pa(t) 0.2933 0.2648 0.2447 0.2826 0.1920 0.1792
p3(t) 0.2406 0.2230 0.2556 0.1832 0.1744
pa(t) 0.2073 0.2364 0.1746 0.1692
ps(t) 0.2724 0.1889 0.1772
ps(t) 0.1920 0.1877
pr(t) 0.1983

p1(t)-rectangular, ps(¢)-half-sine, ps(t)-raised cosine
pa(t)-Blackman, ps(t)-cosine series, pg(t)-half-cosine, pr(t)-full-sine

the signature and chip waveforms, respectively, which facilitates the use of the series
expansion method to simplify design problems. The method is most effective for the
design of multiple chip waveforms since the dimensionality of the optimization prob-
lem is small and independent of the number of users. For the design of signature
waveforms, the method generally involves solving an optimization problem whose di-
mensionality increases with the number of users. Various design examples have also
been given to demonstrate the superiority of the optimally designed signature and
multiple chip waveforms. In particular, it has been shown that in DS-CDMA systems
with random signature sequences, either 10% of transmission bandwidth or 10% of
MALI can be reduced by using two chip waveforms instead of a conventional single
chip waveform. Finally, the performance investigation of combining several commonly
used chip waveforms has been carried out to justify the advantage of the proposed
technique. The technique of using multiple chip waveforms is very simple and can be

easily accommodated in many current DS-CDMA systems.
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Table 6.2: Values of WT, for all combinations of chip waveforms and for different
values of 7.

(a) n = 10%

pi(®)  pa(®)  ps(®) pa(t)  ps(®) pe(t)  pe(Y)

pi(t) 0.8487 0.7835 0.9432 1.0987 0.8381 1.6249  1.3257
pa(t) 0.7769 0.8665 0.9523 0.8070 1.1413 1.2026
p3(t) 0.9501 1.0305 0.8946 1.2029 1.2304
p4(t) 1.1091  0.9784 1.3040 1.2750
ps(2) 0.8366 1.1603 1.2112
s(t) 2.0660 1.4671

(b) n=1%

p1(t) p2(t) p3(t) pa(t) ps(t) pe(t) pr(t)

pi(t) 102860 52471 52154 52154 4.8336 151610 5.3346
pa(2) 1.1820  1.3490 1.5966 1.2472 10.0823 1.7272
3 (%) 14093 1.5720 1.3811 10.0780 1.6834
palt) 1.6805 1.6265 10.0790 1.7660
ps(t) 1.3055 9.9859  1.7714
6 (%) 20.1467  9.1275
pr(t) 2.1971

(¢) n=0.1%

pi(t) pa(t) p3(t) pa(t) ps(t) ps(t) pr(t)

pi(t) 311677 31.0413 31.0410 31.0414 31.0008 63.6900 12.0099
pa(t) 27355  2.1640 2.1662  2.4237 31.8190 3.5608
p3(t) 17290  2.0110 2.3016 31.8191 3.4474
palt) 2.0689 2.2778 31.8193 3.4384
ps(t) 2.4046 31.8018 3.4148
ps(t) 31.8750 18.2568
pr(t) 4.3127

p1(t)-rectangular, py(¢)-half-sine, p3(t)-raised cosine
pa(t)-Blackman, ps(t)-cosine series, pg(¢)-half-cosine, py(t)—full-sine
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Table 6.3: Values of IWT, for all combinations of chip waveforms and for different
values of n (the bold entries highlight the best combinations).

(a) n=10%

pi(t)  p(t)  mt) pu(t) ps(t) pe(t)  pr(t)

pi(t) 02829 0.2434 02601 0.2787 0.2481 0.2957  0.2266
pa(t) 0.2279 0.2294 0.2330 0.2281 0.2191  0.2155
ps(t) 0.2286 0.2298 0.2287 0.2203 0.2146
pa(t) 0.2299 0.2313 0.2276  0.2157
ps(t) 0.2279 0.2192 0.2146
ps(t) 0.3968  0.2753
pr(t) 0.2690

(b) n=1%

pi(t)  p(t)  ps(t)  pa(t)  ps() ps(?) pr(t)

pi(t) 3.4286 1.6195 1.4379 1.3230 1.4308 2.7593 0.9117
pa(t) 0.3467 0.3572 0.3906 0.3524 1.9358  0.3095
p3(t) 0.3390 0.3505 0.3530 1.8461 0.2936
pa(t) 0.3483 0.3845 1.7595  0.2988
ps(t) 0.3557 1.8866  0.3139
pe(t) 3.8682  1.7128
pi(t) 0.4358

(¢c)n=01%

pi)  pa(t)  ps(t)  palt)  ps(®) pe(t) pr(t)

pi(t) 10.3890 9.5809 8.5580 7.8744 9.1762 11.5916 2.0525
pa(t) 0.8024 0.5730 0.5300 0.6849 6.1093  0.6381
p3(t) 0.4159 0.4485 0.5884 5.8285  0.6013
pa(t) 0.4288 0.5385 5.5549  0.5817
ps(t) 0.6551 6.0081  0.6051
ps(t) 6.1200  3.4259
pr(t) 0.8553

p1(t)-rectangular, ps(t)-half-sine, p3(t)-raised cosine
p4(t)-Blackman, ps(t)-cosine series, pg(t)-half-cosine, pr(t)—full-sine



Chapter 7

Error Probabilities of

Asynchronous DS-CDMA Systems
using Random Signature Sequences

Perhaps the error probability is the most important performance index in any com-
munication systems. It is therefore important to calculate the error probabilities of
users in CDMA systems. For the synchronous CDMA systems, this has been dis-
cussed in Chapter 2 where both the exact formula and Gaussian approximation (GA)
are provided. The primary purpose of this chapter is to study the error probabili-
ties of asynchronous DS-CDMA systems using random signature sequences and the

multiple chip waveforms proposed in Chapter 6.

"The exact calculation of the error probabilities of asynchronous DS-CDMA. com-
munications systems is often intractable and computationally difficult due to the
complexity of asynchronous CDMA systems. Thus, most previous work on this prob-
lem has concerned approximations and bounds [36, 66, 67, 33, 40, 68, 69]. Among
these contributions, the approximation derived by Holtzman [40] seems very attrac-
tive since it is simple but it gives good accuracy. This approximation has been widely
used [68, 70, 71] and is generally referred to as the improved Gaussian approximation

(IGA). In [40] the improved GA is originally obtained and evaluated for DS-CDMA
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systems using random signature sequences and a rectangular chip waveform only.
It should be noted, however, that the chip waveform influences the inter-user inter-
ference, and hence the error probabilities of DS-CDMA systems. In this chapter,
the Holtzman’s approximation is first extended to include an arbitrary single chip
waveform. More importantly, it is also applied to approximate the error probabilities
of DS-CDMA systems using double chip waveforms' proposed in Chapter 6. Com-
parison to either an exact calculation (for the case of single chip waveform) or a
simulation result (for the case of double chip waveforms) is also carried out to justify

the accuracy of Holtzman’s approximation.

It is acknowledged that? Yoon has also applied Holtzman’s improved Gaussian
approximation for the case of arbitrary chip waveforms [72]. More precisely the “ar-
bitrary” chip waveforms in [72] are band-limited chip waveforms and also constrained
to have no inter-chip interference (ICI) and inter-bit-symbol interference (ISI). Since
the time-limited waveforms are both ICI and ISI free, the result in [72] is also ap-
plicable to the time-limited chip waveforms. However, although the work in [72]
appears to be more general than the one developed in Section 7.1.1, the expression
of Holtzman’s improved Gaussian approximation developed here is simpler and more

convenient than the one found in [72] for time-limited chip waveforms.

1Recall from Chapter 6 that there is a little gain by using more than double chip waveforms.
2The author would like to thank one of the members of the examining committee who pointed
out reference [72].
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7.1 Error Probabilities for DS-CDMA Systems with
Single Chip Waveform

7.1.1 Holtzman’s Improved Gaussian Approximation

Using the result established in [33], the decision statistic at the output of the kth
correlation receiver can be written as
K
Zk = \/P/20:(0)T +/P/2 > Wicosg;+n (7.1)
i=1,i#k
where n is a Gaussian random variable with zero mean and variance NoT/4. The

random variable W; is given by
W; = /le(Tz‘)Pz‘ + hi(r;) Qs + (ﬁl(ﬂ) + hﬂﬁ')) Xi+ (ﬁl(?“z) — hl("“i)) Y; (7.2)

recalling that, r; = 7,—l;T,, l; = |7;/T.| and that these random variables are uniformly
distributed over [0,7¢) and {0,1,..., N —1} respectively. In (7.2), the functions h;(r)
and Ry (r) are the continuous-time, partial autocorrelation of the single chip waveform,
g1(t). The function Ay (r) was defined in Chapter 6 as ﬁl(r) = fTT"' 91(t)g1(t — r)dt,
and hy(r) = ?Ll(Tc —r) for 0 < r < T.. The random variables P; and @; are uniform
on {0,1}. The densities of X; and Y; are given in [33] but only their first and second
moments are needed in deriving the improved GA. Another important observation is
that W; depends on r;, ¢; and a random variable | B|, which represents the number
of chip boundaries in the signature sequence of the first user (where a transition to
a different value occurs)®. Furthermore, given |B|, the random variables P;, Q;, X;
and Y; are conditionally independent.

The second term of (7.1) is the multiple access interference (MAI). The most
straightforward approximation to the error probabilities is the standard GA, where

the MAI is approximated by a Gaussian random variable. Using a Gaussian ap-

proximation, the error probability is given by PS = @ <\/ SIR), where SIR is the

#More precisely, | B is the cardinality of the set B which is defined in [33].
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signal-to-interference ratio at the output of the correlation receiver. The standard
GA is clearly very simple but is not accurate, in general. As will be seen later, it is
very optimistic when the signal to noise ratio increases.

Let r =[ry,m9...,7k], @ = @1, 02, ..., 0x] and ¥ = var (MAI|r, ¢, |B|). Since ¥
is a function of r, ¢ and |B|, ¥ can be thought of as a random variable. Let x and o
be the mean and standard deviation of ¥, then the Holtzman’s improved GA for the

error probabilities is as follows [40].

P =20 ([ +2u/(PT?)] )

1 -1/2
+5@ ([ + 200 V3o)P77) ")
1 -1/2
+50 (e + 20 V3o P79 ") (73)
where E, = PT is the energy per symbol and v, = %go—b' One disadvantage of

Holtzman’s IGA is that x can be smaller than /3¢ (depending on the particular values
of N and K) and therefore the last term in (7.3) cannot be evaluated. Nevertheless,
as p and v/30 approach equality, the last term goes to zero and the second term
becomes dominant. In this chapter the last term of (7.3) is set to zero whenever
p < V30

The mean and standard deviation of ¥ can be found as follows. Recall that the
random variables F;, @Q;, X; and Y; are conditionally independent, given |B|. Fur-
thermore, these random variables have zero mean and variances E(P?) = E(Q2) = 1,
E(X?||B|]) = N —|B| — 1, E(Y?||B|) = |B|. Thus it can be shown from (7.2) that
U = Zfi“# L;, where

Li— g [1+ cos(2¢;)] [N (?ﬁ(n) + h%(m) +AN—1— 2|B|)El(n)h1(m)] (7.4)

are identically distributed and conditionally independent random variables, given | B|.

Now from the fact that the random variables r and ¢ are statistically independent
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and E(|B]) = (N — 1)/2, E(|BJ?) = N(N — 1)/4, it follows that

K - 1)PT?
= L—Q—]\;“—WM (7.5)
and
PT? 3 3(N=1) K—2)(N—-1)_,]"
0= 5% (K —1)¥? [é— (2]\72 )w1 —m?+ ( ]2[(2 )mf (7.6)
where
L[ S 7
m, = —T—c-g i hl(T)ch":jf63 A hi(r)dr (7.7)
1 [T
’fl\ll - ﬁ hl(T’)hl(’f’)d’f‘ (78)
¢ JO
wy = 1 " [/f;z(r)-{_hf(r)]zdr (7.9)
75 o LT
LN
W, = 75 /. R3(r)A2(r)dr. (7.10)

All the above correlation parameters of the chip waveform are normalized so that
they are independent of the chip duration, 7,. Also note that the standard GA is the
first term in (7.3) without the scaling factor 2/3, i.e.,

~1/2
PY=Q <[fye"l + K]\; lml} ) . (7.11)

This standard GA is also given in [34].

7.1.2 Exact Calculation

To evaluate the accuracy of both the standard and improved GAs discussed in the
previous sub-section, the exact error probability derived in [34] is employed and re-

produced below.

P.=qQ (’yel/Q) + /000 u ' sinu - exp [—uQ/(Q’ye)] 1- E(u)} du (7.12)
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where
3 N-1oar s
b(u) = 9l-N ; ( - > [Py n(uw)]” (7.13)
4 /2 Te/2
By () = / / F(N,n,us 7, 6)drdo (7.14)
’ TTTC Jo 0

F(N,n,u;m,0) = cos [Ehl(r) cos 0] COS [%EI(T) cos 9}

T
-cos™ {% [hl(r) + /ﬁl(r)J cos 0}
-cos™ 1 {% [hl(r) - 31(7)] cos 6} : (7.15)

Although (7.12) is exact, only an approximation to P, can be calculated due to the fact
that the definite integral in (7.12) extends to infinity. However, since any desirable
value of the truncation and integration errors can be achieved, the results obtained

via (7.12) are usually referred to as “exact”[34].

7.1.3 Numerical Examples

In this section the accuracy of the standard GA and Holtzman’s improved GA are

evaluated for some of the common chip waveforms given in Section 6.5.

1) Rectangular pulse: ¢i(t) = pr,(t). For this waveform one has hi(r) = r,

hi(r) =T.—r, my = 1/3, @y = 1/6, wy = 7/15 and @y = 1/30.

2) Half-sine: g;(t) = v2sin (%) p1,(t). The autocorrelation functions of this chip

waveform are

hi(r) = —rcos (g) + %-;fsin (%) (7.16)
hi(r) = (T.—r)cos (Z%I) + %—sin (?) (7.17)

and m; = 5/(4n%) 4+ 1/6, My = 5/(4n?) — 1/12.
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3) Raised Cosine: ¢;(t) = \/g [1 — cos (ZT@H pr.(t). It can be shown that the

autocorrelations of this waveform are

2 1 2nr T. . (2
hl(’f’) = g’l" -+ 57" COs ( ;7 ) — % sin ( ;T> (718)
- 2 1 2mr 1. . 27r
hi(r) = g(Tc—r)Jrg(Tc—?")cos( T ) +—2—;r—s1n< T ) (7.19)

and m; = 1/6 + 35/(487?), my = 1/12 — 35/(48x?).

4) Blackman: ¢;(t) =c¢ [kl — ks cos (%i) + k3 cos <%ﬂ>] pr,(t), where
= (K} +k3/2+ k3/2)"" and ky = 042, ky = 0.5 and k3 = 0.08. The partial

autocorrelations of the Blackman chip are as follows:

2 9 2., -
e Pff A <)-—<><>
k2T k2k3T sin 2mr N k1ks T, n drr
Tc 2 Tc

kakch sin 47r + k%Tc sin dmr
— I
3 T, g DU\ T

(7.20)

k2 2nr k2 4drr
2(p. _2_ BT, —
2T, — ) + =2(T, — T)COS<T)+2(TC T)COS<T>

4 C

klkgT , 27rr AzT <in 2mr koksT. . [ 27r
- sin
T 3m T,

]u1]»3T . 47T7‘ 2k2A3T . 47y _kch . 4mr
T.) & T\ T,

(7.21)
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Table 7.1: Correlation parameters for different chip waveforms.

Waveform my m wq W1
Rectangular  3.333E-1 1.667E-1 4.667E-1 3.333E-2
Half-sine 2.933E-1 4.332E-2 4.229E-1 3.237E-3
Raised cosine 2.406E-1 9.453E-3 3.437E-1 1.904E-4
Blackman 2.073E-1 2.553E-3 2.949E-1 1.475E-5

and the correlation parameters m; and 7, are given by

my = c[BT6kY(4ky — ks) + 608k3ks + 960k2kZ + 32kqk3

+A32KT (4k5 + k2) — T2k (4K3 + 16k2ks + 16kok? — K3)

+T68K ™ + 12k3(3 + 872) + 3k3(3 + 321%)]/(230472) (7.22)
My = c'[—5T6k3(4ky — ks) — 608k ks — 960k2k2 — 32kyk3

—A432k}(4k5 + k3) + T2k (4K3 + 16k2ks + 16kok? — k3)

+384k{m? + 12k; (—3 + 4n%) + 3k5(—3 + 1672)]/(2304n%).  (7.23)

Since obtaining the exact expressions of w; and @ for the half-sine, raised-cosine
and Blackman waveforms is tedious, the values of these parameters are evaluated
numerically. They are listed in Table 7.1.

The standard GA, Holtzman’s improved GA and the exact calculation of the
error probabilities have been evaluated for DS-CDMA systems using the above chip
waveforms and different values of N and K. For brevity of presentation, only the
numerical results for systems with N = 31; K = 3and N = 63; K = 6 are presented in
Tables 7.2 and 7.3 respectively. As can be seen from these tables, the standard GA is
very conservative for high signal-to-noise ratios (E,/Ny > 8dB), whereas the accuracy
of Holtzman’s improved GA should be acceptable for most values of the signal-to-
noise ratio. In general, the accuracy of the standard GA improves as the number

of users increases [67]. This is also observed from Tables 7.2 and 7.3. Comparing
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the different chip waveforms under consideration shows that the Blackman chip gives
the best performance, followed by the raised cosine, the half-sine and the rectangular
chips. However, it should be noted that this comparison is on the basis of an equal
processing gain N, not an equal transmission bandwidth. For the latter case, the

reader is referred to Section 6.5.



Table 7.2: Error probabilities of a DS-CDMA system: K = 3 and N = 31.

Rectangular Half-sine Raised cosine Blackman
E,/Ny P& PH P, PG PH P, P& PH P, P& PH P,

€ € € (]

2 4.248 4.248 4248 4188 4.188 4.188 4.109 4.109 4.109 4.060 4.060 4.060
4 1.662 1.666 1.666 1.610 1.616 1.615 1.543 1.549 1.548 1.502 1.507 1.507
6 4.563 4.667 4.660 4.263 4.380 4.373 3.883 3.999 3.993 3.653 3.765 3.759
8 8.150 9.166 9.104 7.073 8.154 8.133 5.801 6.809 6.814 5.083 6.012 6.030
10 0.921 1.430 1.406 0.698 1.196 1.217 0.468 0.878 0.922 0.356 0.702 0.755
12 0.707 2333 2241 0427 1.866 2.014 0.202 1.197 1429 0.119 0.854 1.106
14 0.446 5.067 4.500 0.194 3.921 4.464 0.054 2.186 3.137 0.021 1.373 2.299

(PeG : Gaussian approximation, PEH : Holtzman’s approximation, P.: Exact calculation)

Gel



Table 7.3: Error probabilities of a DS-CDMA system: K = 6 and N = 63.

Rectangular Half-sine

E,/N, PS¢ P p pS pH

2 4.362 4.362 4.362 4.289 4.289
4 1.761 1.764 1.764 1.697 1.700
6 5.166  5.227  5.225 4.775 4.844
8 10.496 11.144 11.123 8.948 9.638
10 1.493 1.866 1.859 1.103 1.466
12 1.647 3.051 3.041 0.974 2.172
14 1.706  6.207 6.197 0.747 4.085

Fe

4.289
1.700
4.841
9.630
1.474
2.251
4.481

Raised cosine

Ps
4.192
1.614
4.282
7.140
0.711
0.442

0.205

PH
4.192
1.617
4.351
7.785
1.006
1.230
1.923

P

4.192
1.617
4.349
7.785
1.021
1.332
2.359

P&
4.131
1.562
3.985
6.133
0.524
0.250
0.078

H
.

4.131
1.565
4.052
6.727
0.770
0.809
1.083

Blackman

P,

4.131
1.565
4.050
6.731
0.788
0.991
1.475

(PE: Gaussian approximation, PX

: Holtzman’s approximation, P,:

Exact calculation)

9¢T
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7.2 Error Probabilities for DS-CDMA Systems with
Double Chip Waveforms

7.2.1 Holtzman’s Improved Gaussian Approximation

For DS-CDMA systems using double chip waveforms, the output of the kth correlation
receiver is also given as in (7.1). As shown in Appendix G, the random variables W;
can be expressed in one of the following two forms, depending whether /; is even or

not. If [; is even then
VVZ = Wie = Xl [ﬁg(’f’z) -+ hl,g(’f'i)] -+ Y; [ﬁg(’f‘z) — hl’g(’f’i)]
+  Piho(rs) + Qihaa(ri)
+ Ul [hgvl(’ri) + El('f'z)] —+ V; [hg’l(T’i) — /h\,l (7’1)] . (724)
On the other hand if /; is odd, one has
I/V7; = Wio = Xz P;,Q’l(?"i) —+ }11(7“1')] + Y; [};2’1(7’1') — hl(’f‘z):‘
-+ PilAzz,l(m) -+ Qihl(ri)
+ U [hz(ri) + ﬁl,g(ri)] +V [hg(m) _ Emm)] . (7.25)

In (7.24) and (7.25), the continuous partial cross-correlation functions between the

two chip waveforms are defined as follows
Fun(r) = / G (gt + T — r)dt (7.26)
o~ OTC
Fon(r) = / m(E)ga(t — r)dt (7.27)

form,n € {1,2} and for 0 < r < T,. Also denote hy, (1) = hpn(r) and Em(r) = ?Lm’n(T)
when m = n. Moreover, it is important to note that A, ,(r) = ﬁn,m(Tc —r) and there-
fore one has the following useful identity

T. R T
i hfn’n(r)h;’q(r)drz i hﬁ,m(r)hé,p(r)dr (7.28)
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where m,n,p,q € {1,2} and k, [ are any (positive) integer number.

From the definitions of the random variables X;, V;, B, Q;, U; and Y; given
in Appendix G, it is not hard to see that these random variables are mutually in-
dependent given |B| and |D| (which, respectively, are the cardinalities of sets B
and D defined in Appendix G). Furthermore, the random variables W¢ and W¢,
i=1,...,k—=1,k+1,..., K are also mutually independent. This follows from the
fact that these random variables are functions of elements in disjoint subsets of mutu-
ally independent random variables [33]. The random variables P; and Q; are uniformly
distributed over {0,1}. Given |B| and |D|, the density functions of X;, Y;, U; and
V; can be determined by elementary combinatorial arguments [33] but they are not
needed in deriving Holtzman’s approximation for double chip waveforms. Only the
first and second moments of these random variables are important and they are given
by E(X,) = E(Y;) = E(U;) = E(V}) = 0, B(X?) = |4 = Nj2— |B|~1, E(Y2) = | B],
E(U}) = |C| = N/2—|D|, E(V?) = |D|. Furthermore, the first and second moments
of |B| and |D| can be shown to be E(|B|) = (N — 2)/4, E(|B?) = N(N — 2)/16,
E(|D|) = N/4 and E(|D|*) = N(N + 2)/186.

As in Section 7.1.1, define ¥ = var (MAI|r, ,|B|,|D]|) and let & and ¢ be the
mean and standard deviation of U, respectively. Then the Holtzman’s approximation
to calculate the error probabilities of DS-CDMA systems using double chip waveforms
is exactly the same as that used in (7.3). Thus it remains to determine 1 and o. The
random variable ¥ can be written as ¥ = Zf__“ ) L;, where

P
LZ'Z—
4

[1 4+ cos(2¢;)]var (W;|r:, | B|, | D). (7.29)

Note that the random variables L;s are identically distributed and conditionally inde-

pendent, given | B and |D|. Let c;; = var (W¢|r;, |B|, |D|) and 8; = var (W¢|ry, | B, | D).
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Then it can be shown that

/ N —~
a = 5[ (rs) + B2 (s } +9 (E 1-2]B|) Ba (7)o ()
N N
+ 5 B + B, ()] +2(3 2|D|> P (r;)hoi (rs) (7.30)
N N R
/37', —= 7': gl —}—h2 ] +2<?—1—QIBI> h2,1(7nz)h1<7'z)
N oy N
+ 5} h12 T; +h2 Ti)| +2 2|D| hlg(n)hg(rz) (7.31)

Since [; takes even or odd integers of the set {0, 1,..., N—1} with the same probability,
var (Wil|r;, | B, | D]) equals a; or 3; with probability 1/2.
Now the mean of ¥ can be obtained by averaging over the random variables 0i5

i, |B| and |D|. It is given by

o= Z E(L;) = (K —1)E(L;)
i=1,i£k

K—1PI*1 [T[vy o~ o - R
- 16]37 TS /0 [h%(r)+h§(7‘)+hiz(7‘)+h§,1(7“)

—l—h%(r) + hg(r) + hig(?‘) + hgyl(r)] dr

K-1)PT?1 [T - R
- (—‘gzv)—"ﬁ A [h?(r) + ha(r) + Rl o (r) +h§,1(r)] dr  (7.32)

where the last equality follows from (7.28). Define

1 Te - .
M2 = s /0 {h%) +h(r) + hia(r) + hg,l(r)] dr. (7.33)

2
Then it follows from (6.13) and (7.28) that mq = Eg I ( (r)+ hg( )) dr, which
is precisely the normalized interference parameter, I defined in Section 6.1.2. Now
the mean of ¥ can be written as

(K — 1)PT?

H="3N

my (7.34)
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which is the same form as in (7.5) for the case of single chip waveform. The variance

of ¥ is calculated as follows

ol = E(U -/’
= (K -1)E(L?) + (K —1)(K - 2)E(L;L;) — ii* (7.35)

where ¢ and j are any index not equal to k& and not equal to each other. The second
moment of L; is given by

3P
64

3(PT?)?
128N

B(L2) = = [E(e}) + B(#)] = wy (7.36)

where the parameter wy depends on N and it is given in (H.4) of Appendix H. The

correlation between L; and L; (i # 7) is given by

) 2\2
E(L;L;) = 5_4 [E(aa;) + Elasfy) + E(Bics) + E(Bi6;)] = (2};6?1\/')2 2

(7.37)
where Wy is given in (1.7) of Appendix I*. Now, combining (7.34), (7.36) and (7.37),

one has
B PT?

= T (K =" [bun + (K — 2)dy — 64(K ~ 1)m] v (7.38)

g

Though the expressions for p and ¢ obtained above appear to be complicated,
they are quite simple to evaluate. Also note that, although there are eight possible
correlation functions that can be defined for the two chip waveforms, only four of them
are needed in the evaluation of p and o. Furthermore, if the chip waveforms g;(t)
and go(t) posses an (even or odd) symmetry about 7,/2, then only three correlation
functions are required and the expressions for wy and @Wy significantly simplify to
(H.6) and (I.8), respectively. Finally, it is not hard to see that (7.34) and (7.38)

reduce to (7.5) and (7.6), respectively, when the two chip waveforms are identical,

ie., g1(t) = go(t).

4Note that mg, wy and @y have all been normalized to be independent of the chip duration, T.
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7.2.2 Numerical Examples

This section evaluates the accuracy of Holtzman’s improved Gaussian approximation
derived in the previous section for the case of double chip waveforms. The combina-
tions of two chip waveforms selected are “rectangular/half-sine”, “rectangular/raised-
cosine” and “rectangular/Blackman”. Since the exact calculation of the error prob-
ability for the case of double chip waveforms is not available, the results produced
by standard GA and improved GA are compared with simulation results. The error
probabilities obtained by different methods are listed in Tables 7.4 and 7.5 for two
systems with K = 3; N = 32 and K = 6; N = 64 respectively.

From Tables 7.4 and 7.5, similar observations as for the case of a single chip
waveform can be made regarding the accuracy of the standard GA and improved
GA when the double chip waveforms are used. More specifically, the accuracy of the
improved GA is acceptable for all the signal-to-noise ratios, whereas the standard
GA is quite loose for Ey/Ny > 8dB. As for the single chip waveform, the improved
GA for double chip waveforms is clearly very simple to use once the double chip
waveforms are specified. This improved GA was used in Section 6.5 to evaluate the

error performances of different combinations of double chip waveforms.

7.3 Chapter Summary

This chapter extends Holtzman’s improved Gaussian approximation of error proba-
bility in asynchronous DS-CDMA systems to include both arbitrary single and double
chip waveforms. The accuracy of the approximation has also been verified by either
exact calculation or simulation results. Due to its simplicity and accuracy, the im-
proved GA is very attractive for evaluating the error performance of the asynchronous
DS-CDMA systems using the random signature sequences and multiple chip wave-

forms proposed in Chapter 6.



Table 7.4: Error probabilities of DS-CDMA systems with double chip waveforms: K = 3 and N = 32.

Rect./Half-sine Rect./Raised cosine Rect./Blackman
Ey,/Ng PS PH P, P& PH P, P& PH P,
2 4196 4.196 4.226 (x1072) 4.149 4.149 4.152 (x1072?) 4.117 4.117 4.124 (x1072

( ) ( ) (
4 1.617 1.622 1.644 ( ) 1577 1.581 1.611 ( ) 1.550 1.553 1.593 (
6  4.305 4.397 4.399 ( ) 4.072 4.152 4.205 ( ) 3.920 3.992 3.983 (
8 7.220 8.079 8.113 (x107%) 6.420 7.143 7.256 (x107%) 5.919 6.557 6.516 (x10~*
10 0.727 1125 1.159 ( ) 5.746 8.848 9.122 ( ) 4.874 7457 7.832 ( 5
12 0460 1581 1.620 ( ) 0.298 1.062 1.154 ( ) 2184 7.930 9.091 (
14  0.220 2939 3.213 ( ) 0.106 1.661 1.712 ( ) 0.062 1.084 1.231 (

(PS: Gaussian approximation, PY: Holtzman’s approximation, P.: Simulation)
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Table 7.5: Error probabilities of DS-CDMA systems with double chip waveforms: K = 6 and N = 64.

Ey/Ny

2
4
6
8
10
12
14

Rect./Half-sine

P?
4.308
1.714
4.876
9.339
1.197
1.124
0.938

P
4.308
1.716
4.932
9.906
1.503
2.153
3.811

Rect./Raised cosine

Pg
4.248
1.662
4.567
8.164
0.925
0.712
0.450

P,

4.290
1.718
4.662
8.657
1.119
1.424
2.432

Rect./Blackman

P&
4.209
1.628
4.366
7.435
7.699
0.511

0.262

Pe

4.282
1.648
4.471
8.034
9.491
1.104
1.223

%1072
%1072
x1073
%1074
x107°
%1073
%1076

AN TN TN TN N TN N
N N N N e e S

(PS: Gaussian approximation, PH

: Holtzman’s approximation, P: Simulation)
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Chapter 8

Conclusions and Suggestions for
Further Study

8.1 Conclusions

This thesis was mainly devoted to signature waveform design to minimize the MAI
(or maximize the number of users for a given MAI level) in CDMA systems under a
bandwidth constraint. For synchronous CDMA systems, closed-form solutions were
obtained for the optimal signature waveforms under either FOBE or RMS bandwidth
constraints. In general, the optimal signature waveforms were constructed based on
sinusoids when the RMS bandwidth is considered, whereas they were constructed from
prolate spheroidal wave functions under the FOBE bandwidth criterion. Comparisons
to other signature waveform constructions showed significant improvements of the
proposed signature waveforms, both in terms of the network capacity and the bit
error rate performance. Due to the complexity of the receiver working with prolate
spheroidal wave functions, a simplified receiver based on Walsh signal space was
also developed for a more practical implementation. It was shown that, by using a
relatively small number of Walsh functions, the performance of the simplified receiver

can approach very closely that of the true receiver.

Signature waveform design was also carried out for asynchronous CDMA systems
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equipped with correlation receivers. The design procedure was based on the series ex-
pansion method. For the FOBE bandwidth constraint, it is suggested that the prolate
spheroidal wave functions be used to expand the Fourier transforms of the optimal
signature waveforms. On the other hand, sinusoids were used to expand the optimal
signature waveforms under the RMS bandwidth criterion. Although several examples
were given to demonstrate the superiority of the proposed signature waveforms, this
method is quite time consuming, in general, for systems with a large number of users.
Nevertheless, the method was successfully applied to find the optimal multiple chip
waveforms to minimize the MAT in asynchronous DS-CDMA systems using random
signature sequences. It was demonstrated that using double chip waveforms instead
of a single chip waveform can reduce the MAI by about 10% (corresponding to about
2.0dB gain in E,/Ny for a BER level of 107* to 107°) for a given bandwidth, or
conversely save about 10% of the transmission bandwidth for a given MAI level.
Finally, to evaluate the error performance of the proposed DS-CDMA systems
using random signature sequences and double chip waveforms, an expression for error
probabilities was developed based on Holtzman’s approximation. Since the derived
expression is very simple and accurate, it is very useful for a performance analysis of

the proposed DS-CDMA systems.

8.2 Suggestions for Further Study

The signature waveform designs have only been considered for additive white Gaus-
sian noise (AWGN) CDMA channels in this thesis. Since a fading channel is a more
practical model for wireless communications, it would be interesting to extend the de-
signs to fading CDMA channels. Furthermore, in both synchronous and asynchronous
CDMA systems, it has been assumed that perfect power control can be implemented.
This assumption can be easily removed for the design of multiple chip waveforms

for DS-CDMA systems but not for the designs of the signature waveforms (for both
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synchronous and asynchronous CDMA systems) considered in this thesis. Therefore,
designing optimal signature waveforms for CDMA systems with arbitrary received
power levels of all users remains to be studied.

The signature and chip waveforms considered in this thesis are limited to the fam-
ily of time-limited waveforms. Because most of practical systems use band-limited
waveforms (such as the square root raised cosine), it is natural to extend the ideas
elaborated in this work to include the family of band-limited waveforms. Such exten-

sion would benefit the systems proposed for 3G (IMT2000, UMTS, etc.,).

In this thesis, the accuracy of the derived approximation of the error probability
for the case of double chip waveforms was verified with a computer simulation. It
would be useful to obtain an exact expression of the error probabilities in this case.
Moreover, a semi-analytical approach combined with importance sampling, as in [69],
can be developed for an efficient evaluation of the error probabilities for DS-CDMA
systems with double chip waveforms.

Recently, the technique of multicarrier CDMA has been received much attention
(58, 73, 74, 75, 76, 77, 78, 12]. Thus, designing optimal signature waveforms for
multicarrier CDMA seems very attractive. In multicarrier CDMA, the transmission
bandwidth associated with an individual carrier is usually much smaller than the total
available bandwidth. This means that signature waveform design using the series
expansion method is more effective in this situation. However, it should be noted
that, in multicarrier CDMA systems, the signature waveforms need to be designed to
minimize not only the MAI caused by the signals of the users using the same carrier
but also the MAI caused by the signals from the other carriers. This could make the
design problem more challenging.

In this thesis the signature waveforms are optimally designed for a particular type
of (linear) receiver. It is believed that the users’ performance in CDMA systems can

be further improved if the signature waveforms and the receiver are jointly designed. If
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the receiver is constrained to be a linear receiver, then an iterative procedure similar

to that proposed for joint optimization of the transmitter and receiver in CDMA

systems [10, 11, 12] may be of interest.
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9.9998E-001
9.9942E-001
9.9040E-001
9.1013E-001
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c=4.0

c=5.0

c=6.0

c=17.0

c=28.0

c=9.0

3.8129E-004
1.0951E-005
2.2786E-007
3.6066E-009
4.4938E-011
4.5252E-013
3.7603E-015
2.6228E-017
1.5576E-019
7.9711E-022
3.5519E-024
1.3906E-026
4.8211E-029
1.4905E-031
4.1353E-034
1.0352E-036
2.3503E-039
4.8615E-042
9.1992E-045
1.5986E-047
2.5599E-050
3.7897E-053
5.2023E-056
6.6400E-059
7.9003E-062
8.7832E-065
9.1446E-068
8.9348E-071
8.2085E-074
7.1039E-077
5.8016E-080
4.4783E-083
3.2724E-086
2.2670E-089
1.4910E-092
9.3217E-096
5.5470E-099
3.1455E-102
1.7017E-105
8.7919E-109
4.3427E-112
2.0528E-115

4.1821E-003
1.9331E-004
6.3591E-006
1.5823E-007
3.0917E-009
4.875TE-011
6.3403E-013
6.9173E-015
6.4236E-017
5.1393E-019
3.5798E-021
2.1905E-023
1.1869E-025
3.4047E-014
2.4865E-030
9.7274E-033
3.4511E-035
1.1155E-037
3.2983E-040
8.9560E-043
2.2410E-045
5.1842E-048
1.1120E-050
2.2177E-053
4.1230E-056
7.1624E-059
1.1652E-061
1.7789E-064
2.5536E-067
3.4531E-070
4.4064E-073
5.3147E-076
6.0683E-079
6.5687E-082
6.7502E-085
6.5942E-088
6.1313E-091
5.4325E-094
4.5920E-097
3.7071E-100
2.8612E-103
2.1133E-106

2.7387E-002
1.9550E-003
9.4849E-005
3.4368E-006
9.7321E-008
2.2190E-009
4.1662E-011
6.5575E-013
8.7804E-015
1.0126E-016
1.0164E-018
8.9611E-021
6.9951E-023
4.8688E-025
3.0405E-027
1.7133E-029
8.7544E-032
4.0752E-034
1.7354E-036
6.7865E-039
2.4456E-041
8.1472E-044
2.5166E-046
7.2280E-049
1.9351E-051
4.8409E-054
1.1341E-056
2.4933E-059
5.1542E-062
1.0037E-064
1.8443E-067
3.2034E-070
5.2670E-073
8.2100E-076
1.2149E-078
1.7091E-081
2.2883E-084
2.9197E-087
3.5540E-090
4.1315E-093
4.5918E-096
4.8838E-099

1.1572E-001
1.3056E-002
9.0657E-004
4.5624E-005
1.7775E-006
5.5526E-008
1.4251E-009
3.0622E-011
5.6929E-013
8.7927E-015
1.2027E-016
1.4446E-018
1.5359E-020
1.4559E-022
1.2381E-024
9.4989E-027
6.6085E-029
4.1882E-031
2.4281E-033
1.2926E-035
6.3411E-038
2.8757E-040
1.2092E-042
4.7275E-045
1.7229E-047
5.8667E-050
1.8708E-052
5.5986E-055
1.5753E-057
4.1756E-060
1.0444E-062
2.4692E-065
5.5260E-068
1.1725E-070
2.3617E-073
4.5220E-076
8.2412E-079
1.4312E-081
2.3713E-084
3.7522E-087
5.6761E-090
8.2173E-093

3.2028E-001
6.0784E-002
6.1263E-003
4.1825E-004
2.1663E-005
8.9304E-007
3.0137E-008
8.4966E-010
2.0334E-011
4.1853E-013
7.4905E-015
1.1767E-016
1.6359E-018
2.0270E-020
2.2530E-022
2.2589E-024
2.0635E-026
1.7005E-028
1.2880E-030
8.9585E-033
5.7412E-035
3.4013E-037
1.8683E-039
9.5419E-042
4.5425E-044
2.0205E-046
8.4165E-049
3.2900E-051
1.2092E-053
4.1867E-056
1.3678E-058
4.2239E-061
1.2347E-063
3.4219E-066
9.0028E-069
2.2516E-071
5.3598E-074
1.2158E-076
2.6311E-079
5.4378E-082
1.0745E-084
2.0317E-087

5.9910E-001
1.9694E-001
3.0565E-002
2.8466E-003
1.9231E-004
1.0194E-005
4.3974E-007
1.5796E-008
4.8069E-010
1.2565E-011
2.8534E-013
5.6843E-015
1.0017E-016
1.5728E-018
2.2145E-020
2.8124E-022
3.2379E-024
3.3953E-026
3.2563E-028
2.8675E-030
2.3265E-032
1.7449E-034
1.2134E-036
7.8444E-039
4.7271E-041
2.6616E-043
1.4034E-045
6.9437E-048
3.2304E-050
1.4157E-052
5.8542E-055
2.2881E-057
8.4660E-060
2.9696E-062
9.8888E-065
3.1303E-067
9.4310E-070
2.7077TE-072
7.4163E-075
1.9400E-077
4.8516E-080
1.1611E-082
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c=4.0

c=5.0

c=06.0

c=1.0

c=8.0

c=9.0

47
48
49

9.2952E-119
4.0353E-122
1.6810E-125

1.4951E-109
1.0142E-112
6.6014E-116

4.9757E-102
4.8602E-105
4.5555E-108

1.1395E-095
1.5150E-098
1.9329E-101

3.6799E-090
6.3904E-093
1.0649E-095

2.6617E-085
5.8502E-088
1.2338E-090

“ ¢ = 10.0

c=12.0

c=14.0

¢c=16.0

c=18.0

c=20.0

NolNo N B e NI &1 SETNENJU RN R S el | s

1.0000E-000
1.0000E-000
9.9989E-001
9.9790E-001
9.7446E-001
8.2515E-001
4.4015E-001
1.1232E-001
1.4920E-002
1.3146E-003
8.8213E-005
4.7664E-006
2.1340E-007
8.0707E-009
2.6170E-010
7.3635E-012
1.8159E-013
3.9590E-015
7.6871E-017
1.3381E-018
2.1002E-020
2.9878E-022
3.8707E-024
4.5860E-026
4.9882E-028
4.9987E-030
4.6302E-032
3.9762E-034
3.1745E-036
2.3623E-038
1.6424E-040
1.0693E-042
6.5330E-045
3.7528E-047
2.0306E-049
6.7227E-038

1.0000E-000
1.0000E-000
9.9994E-001
9.9989E-001
9.9856E-001
9.8365E-001
8.8172E-001
5.5733E-001
1.8342E-001
3.1054E-002
3.3744E-003
2.7742E-004
1.8475E-005
1.0282E-006
4.8758E-008
1.9980E-009
7.1570E-011
2.2619E-012
6.3575E-014
1.6002E-015
3.6289E-017
7.4547E-019
1.3939E-020
2.3827E-022
3.7380E-024
5.4014E-026
7.2132E-028
8.9271E-030
1.0273E-031
1.1017E-033
1.1037E-035
1.0352E-037
9.1131E-040
7.5420E-042
5.8788E-044
4.3238E-046

9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9993E-001
9.9903E-001
9.8962E-001
9.2169E-001
6.6362E-001
2.7255E-001
5.7771E-002
7.5603E-003
7.3608E-004
5.8096E-005
3.8541E-006
2.1921E-007
1.0846E-008
4.7180E-010
1.8208E-011
6.2816E-013
1.9498E-014
5.4770E-016
1.3991E-017
3.2654E-019
6.9910E-021
1.3782E-022
2.5097E-024
4.2355E-026
6.6427E-028
9.7068E-030
1.3250E-031
1.6934E-033
2.0306E-035
2.2888E-037
2.4300E-039
2.4338E-041

9.9995E-001
9.9995E-001
9.9995E-001
9.9995E-001
9.9995E-001
9.9995E-001
9.9937E-001
9.9345E-001
9.4897E-001
7.5365E-001
3.7483E-001
9.8343E-002
1.5326E-002
1.7310E-003
1.5775E-004
1.2117E-005
8.0200E-007
4.6393E-008
2.3710E-009
1.0801E-010
4.4178E-012
1.6323E-013
5.4782E-015
1.6782E-016
4.7119E-018
1.2173E-019
2.9037E-021
6.4167E-023
1.3173E-024
2.5192E-026
4.4989E-028
7.5204E-030
1.1791E-031
1.7379E-033
2.4122FE-035
3.1588E-037

9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9960E-001
9.9588E-001
9.6717E-001
8.2538E-001
4.8298E-001
1.5521E-001
2.8697E-002
3.7161E-003
3.8416E-004
3.3476E-005
2.5213E-006
1.6661E-007
9.7665E-009
5.1225E-010
2.4209E-011
1.0373E-012
4.0504E-014
1.4480E-015
4.7586E-017
1.4428E-018
4.0500E-020
1.0556E-021
2.5618E-023
5.8038E-025
1.2305E-026
2.4464E-028
4.5710E-030
8.0414E-032
1.3341E-033

9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.9972E-001
9.9736E-001
9.7906E-001
8.7968E-001
5.8877E-001
2.2896E-001
5.0245E-002
7.4209E-003
8.5983E-004
8.3737E-005
7.0600E-006
5.2371E-007
3.4574E-008
2.0484E-009
1.0972E-010
5.3441E-012
2.3786E-013
9.7201E-015
3.6607E-016
1.2750E-017
4.1212E-019
1.2396E-020
3.4788E-022
9.1317E-024
2.2472E-025
5.1948E-027
1.1305E-028
2.3202E-030
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c=10.0

c=12.0

c=14.0

c=16.0

c=18.0

c=20.0

36
37
38
39
40
41
42
43
44
45
46
47
48
49

5.0035E-054
2.2857E-056
9.8991E-059
4.0699E-061
1.5906E-063
5.9168E-066
2.0973E-068
7.0924E-071
2.2905E-073
7.0722E-076
2.0896E-078
5.9142E-081
1.6048E-083
4.1788E-086

3.0057E-048
1.9778E-050
1.2337E-052
7.3055E-055
4.1126E-057
2.2031E-059
1.1248E-061
5.4781E-064
2.5481E-066
1.1330E-068
4.8214E-071
1.9650E-073
7.6792E-076
2.8798E-078

2.3042E-043
2.0646E-045
1.7536E-047
1.4141E-049
1.0837E-051
7.9056E-054
5.4949E-056
3.6434E-058
2.3071E-060
1.3967E-062
8.0905E-065
4.4896E-067
2.3884E-069
1.2192E-071

3.9086E-039
4.5780E-041
5.0822E-043
9.3551E-045
5.3635E-047
5.1123E-049
4.6430E-051
4.0228E-053
3.3282E-055
2.6324E-057
1.9922E-059
1.4444F-061
1.0039E-063
6.6949E-066

2.0918E-035
3.1039E-037
4.3649E-039
5.8265E-041
7.3907E-043
8.9218E-045
1.0262E-046
1.1259E-048
1.1795E-050
1.1813E-052
1.1320E-054
1.0390E-056
9.1425E-059
7.7196E-061

4.4982E-032
8.2515E-034
1.4344E-035
2.3661E-037
3.7096E-039
5.5340E-041
7.8644E-043
1.0660E-044
1.3798E-046
1.7071E-048
2.0208E-050
2.2911E-052
2.4903E-054
2.5969E-056

” c=24.0

c=26.0

c=28.0

c¢=30.0

¢ =35.0

¢ =40.0 j

o
O W o0~ Uk W~ O3

DO B DO DD BN bt bt el e et el fed
W N O WO~ O LW N

9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9999E-001
9.9983E-001
9.9897E-001
9.9164E-001
9.4647E-001
7.6732E-001
4.1647E-001
1.2910E-001
2.4867E-002
3.5542E-003
4.1970E-004
4.2826E-005
3.8569E-006
3.1039E-007
2.2528E-008
1.4853E-009

9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9996E-001
9.9988E-001
9.9931E-001
9.9476E-001
9.6512E-001
8.3341E-001
5.1885E-001
1.9068E-001
4.2240E-002
6.6919E-003
8.6217E-004
9.5618E-005
9.3590E-006
8.1958E-007
6.4841E-008

9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9997E-001
9.9988E-001
9.9954E-001
9.9667E-001
9.7746E-001
8.8389E-001
6.1768E-001
2.6732E-001
6.8527E-002
1.2067E-002
1.6912E-003
2.0272E-004
2.1420E-005
2.0265E-006

9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9998E-001
9.9989E-001
9.9971E-001
9.9788E-001
9.8561E-001
9.2093E-001
7.0691E-001
3.5648E-001
1.0628E-001
2.0909E-002
3.1856E-003
4.1101E-004
4.6633E-005

9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9992E-001
9.9973E-001
9.9822E-001
9.8834E-001
9.3657E-001
7.5585E-001
4.2212E-001
1.4288E-001
3.1566E-002

9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9973E-001
9.9852E-001
9.9057E-001
9.4932E-001
7.9833E-001
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c=24.0

c=26.0

c=28.0

c=30.0

c=35.0

c¢=40.0

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

8.9457E-011
4.9479E-012
2.5233E-013
1.1913E-014
5.2233E-016
2.1332E-017
8.1388E-019
2.9075E-020
9.7489E-022
3.0743E-023
9.1360E-025
2.5632E-026
6.8013E-028
1.7093E-029
4.0749E-031
9.2296E-033
1.9884E-034
4.0799E-036
7.9830E-038
1.4912E-039
2.6618E-041
4.5459E-043
7.4340E-045
1.1654E-046
1.7526E-048

4.6678E-009
3.0759E-010
1.8644E-011
1.0442E-012
5.4232E-014
2.6199E-015
1.1813E-016
4.9826E-018
1.9709E-019
7.3287E-021
2.5667E-022
8.4827E-024
2.6500E-025
7.8395E-027
2.1992E-028
5.8597E-030
1.4848E-031
3.5821E-033
8.2408E-035
1.8095E-036
3.7966E-038
7.6197E-040
1.4643E-041
2.6967E-043
4.7644E-045

1.7339E-007
1.3521E-008
9.6662E-010
6.3674E-011
3.8814E-012
2.1971E-013
1.1592E-014
5.7147E-016
2.6397E-017
1.1450E-018
4.6755E-020
1.8004E-021
6.5506E-023
2.2558E-024
7.3641E-026
2.2822E-027
6.7254E-029
1.8866E-030
5.0446E-032
1.2872E-033
3.1380E-035
7.3167TE-037
1.6332E-038
3.4935E-040
7.1675E-042

4.7379E-006
4.3570E-007
3.6554E-008
2.8152E-009
2.0009E-010
1.3177E-011
8.0709E-013
4.6128E-014
2.4668E-015
1.2378E-016
5.8407E-018
2.5970E-019
1.0904E-020
4.3307E-022
1.6298E-023
5.8202E-025
1.9755E-026
6.3814E-028
1.9641E-029
5.7683E-031
1.6181E-032
4.3400E-034
1.1143E-035
2.7406E-037
6.4660E-039

5.3270E-003
7.5923E-004
9.5447E-005
1.0796E-005
1.1112E-006
1.0490E-007
9.1360E-009
7.3779E-010
5.5469E-011
3.8963E-012
2.5644E-013
1.5862E-014
9.2402E-016
5.0804E-017
2.6426E-018
1.3022E-019
6.0897E-021
2.7076E-022
1.1458E-023
4.6216E-025
1.7792E-026
6.5451E-028
2.3028E-029
7.7601E-031
2.5064E-032

4.8727E-001
1.8525E-001
4.5551E-002
8.4174E-003
1.3055E-003
1.7876E-004
2.2118E-005
2.4946E-006
2.5935E-007
2.4978E-008
2.2391E-009
1.8757E-010
1.4733E-011
1.0882E-012
7.5776E-014
4.9861E-015
3.1066E-016
1.8362E-017
1.0313E-018
5.5128E-020
2.8086E-021
1.3655E-022
6.3451E-024
2.8203E-025
1.2007E-026




Appendix B

Constructing a Correlation Matrix
with Prescribed Diagonal Entries
and Eigenvalues

Let x be the vector of diagonal entries of a correlation matrix, R, and y be the
vector of its eigenvalues. A well-known condition for the existence of matrix R is
that vector y majorizes! vector x. Given x and y, a recursive procedure to construct
such a matrix R based on the T-transform is outlined below. For the justification of

this procedure, readers are referred to [17].

1) Initialization:
Let y(® =y. Define A be a K x K diagonal matrix having y© as its diagonal.
Let V=1, and j = 0.

2) Find the largest integer k such that y,(cj S 7, and the smallest integer | such

that yl(j) <zrandl > k.

Find § = min(yY) — 2, 2 — ) and w = i) : )

A ‘ Ye — U
Define TU+) = UU+) =T, an K x K identity matrix. Then set

'For x,y € R¥, one says that x is majorized by y (or y majorizes x) if (i) °F_, X < S8 Yiil»
for k=1,2,... K — 1 and (ii) Zfilx[i] = Zfil Y-

155



156
T TG <, T =T =1
U(j+1) _ U(j+1) _ T(j+1) . \/1—_—‘ T(j+1) = —/1 =
e = Y Vw, Ty = W, L w

Compute yU+h) = TU+Dy0) vV = (UGN TV and R = (UUTD)TAUUHD,

If yU+1) = x then go to 3), otherwise increase j — j + 1 and go back to 2).

3) Stop and output R and V.

The above recursive algorithm is guaranteed to terminate after K — 1 steps at most

(corresponding to j = K — 2). The singular-value decomposition of R is
R=VAV' (B.1)

where V = [vy, vy, ..., V] is an orthogonal matrix of the eigenvectors of R.



Appendix C

The Equivalence of Problem 4.5
and Problem 4.6

Let € (R) denote the minimum average FOBE of the optimal signal set corresponding

to the correlation matrix R. Then the proof consists of the following three steps.

e The first step is to show that Problem 4.5 is equivalent to the following problem,
which is stated in terms of the correlation matrix R: Find the correlation matrix
R that minimizes tr(RRT) subject to (i) R > 0; (il) Ra = 1, VE; (ili) e(R) < 7.
Proving this fact can be carried out similarly as for the proof of Proposition 4.1.
Note, however, that one now relies on Proposition 2.2 to deal with metric ¢(R)

instead of metric b?(R).

e In the second step one needs to show that the design problem in Step 1 above is
equivalent to the following problem, which is stated in terms of the eigenvalues
of the correlation matrix R: Find the set of eigenvalues {\1, Ag,..., Ak} that
minimizes Zi{zl A2, subject to (i) Ae = A1 20, 1 <k < Kj (ii) tr(A) = K;
and (iii) tr(AZ) < Kn. Again, proving this equivalence is exactly the same as
the proof for Proposition 4.2 with the only exception that the ordering constraint
on the eigenvalues and the FOBE bandwidth constraint are the consequences

of Proposition 2.2.
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e This final step is to prove that the design problem in Step 2 is equivalent to

Problem 4.6. The proof is as follows. As in the proof of Proposition 4.3, it is
first shown that the ordering of the eigenvalues will be a natural consequence
of the optimization problem. Suppose that A minimizes tr(A?) and satisfies all
the constraints of the problem in Step 2 except for being well ordered. Assume
A < Apyq for some 1 < k < K and consider A’ obtained from A by modifying
only the kth and (k + 1)th diagonal entries as X, = N; = (Ar + Ary1)/2
Then it can be verified that tr(A) = tr(A’) = K and tr(A'8) < tr(AE), but

tr(A”?) < tr(A?), a contradiction.

Next it is shown that the inequality on bandwidth constraint can be replaced
by the equality. Suppose there exists a solution A to the design problem in
Step 2 where all diagonal entries are well ordered but with tr(AZ) = Zszl(l -
Xk—1) M = Kn— €, < Kn. Except for the trivial case when R =1, there always
exists an integer 1 < k < K such that A\ —A\g1 = €y > 0. Consider A’ obtained
from A by modifying the kth and (k + 1)th diagonal entries as A}, = Ay — § and
Nes1 = Mey1 + 6 where § = min{e;/(xr-1 — Xx),€2/2} > 0. Then it can be
shown that A’ satisfies all the constraints of the design problem in Step 2 but

tr(A’?) < tr(A?), a contradiction. Hence the proof.



Appendix D

The Equivalence of Problem 4.7
and Problem D.1

The original design problem of optimal signature waveforms for MMSE can be stated

as follows.

Problem D.1. Given T and W. Design a set of K signals {si(¢),...,sx(t)} that
minimizes the TMSE in (4.36) subject to the following constraints. (i) Vk, sk(t) =0
for t < 0 and t > T (ii) OT s2(t)dt = 1, Vk; and (ili) b(s(t)) < W (for RMS
bandwidth) or e(s(t)) < n (for FOBE bandwidth).

Using the notation introduced in Section 4.3, the following three steps justify the

equivalence of Problems D.1 and 4.7.

e The first step is to shows that Problem D.1 is equivalent to the following prob-
lem, which is stated in terms of the correlation matrix R: Find the correlation
matrix R that minimizes K P — Ptr ([I + 'y_lR_l]d) subject to (i) R > 0; (ii)
Ry, = 1, Vk; (iil) 8*(R) < W? (RMS), or ¢(R) <7 (FOBE). Proof of this fact

is similar to that of Proposition 4.1.

e The second step is to show that the signal design problem in Step 2 is equivalent
to the following problem, which is stated in terms of the eigenvalues of the cor-

relation matrix R: Find the set of eigenvalues {A1, Ag, ..., Ak} that minimizes
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K (9 +1)7% subject to () A = Aepr 2 0, 1 <k < K (i) tr(A) = X (i)
tr(AA) < Kv. The proof of this fact is the same as the proof of Proposition 4.2.

Finally one needs to prove that the design problem in Step 2 is equivalent
to Problem 4.7. The proof is as follows. As before, it is first shown that the
ordering of the eigenvalues is a natural consequence of the optimization problem.
Suppose that A minimizes Zi;l(y)\k +1)~! and satisfies all the constraints of
problem in Step 2 except for being well ordered. Assume A\ < Agy1 for some
1 < k < K and consider A’ obtained from A by modifying only the two diagonal
entries kth and (k+ 1)th as A, = N3 = (A + Ae1)/2. Then it can be verified
that tr(A) = tr(A’) = K and tr(A'A) < tr(AA), but 35, (v +1)7F <

,f:l('y/\k 4+ 1)71, a contradiction.

Next it is shown that the inequality on bandwidth constraint can be replaced
by the equality. Let A = diag(é1,02,. -, k), where &, < 84 for 1 <k < K.
Suppose there exists a solution A to problem in Step 2 where all diagonal entries
are well ordered but with tr(AA) = Zi{zl S = Kv — ¢, < Kv. Except for
the trivial case when R = I, there always exists an integer 1 < k < K such
that A\, — A1 = €5 > 0. Consider A’ obtained from A by modifying the kth
and (k + 1)th diagonal entries as A, = A, — 6% and Ay = App1 + 6* where
§* = min{e,/(6xs1 — Ox), €2/2} > 0. Then it can be shown that A’ satisfies all
the constraints of problem in Step 2 but S p (YA, +1)7! < S (Y1),

a contradiction. Hence the proof.



Appendix E

Objective Function for Signature
Waveform Design

Let Si(f) = F{8x(t)}. From (6.30) one has

o

z.

=
I

L L
> F{pua(t,T)} + > yuF{u(t,T)}
=1 =1

L L
= Zxlel(f’ T) +jzykzyi(f', T). (E.1)
=1 =1

Thus

2

e = Sk(f <sz1Xz f, T> + (ZyszZ(f,T)> . (E2)

It then follows from (6.19) that

-y [Csinmsoras (E3)

k=1 i=k+1
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where

0 L L L
/ ISk(f)|2iSz(j)|2df = Z Z Z Z (xklkaxipxiq) al,m,p,q(T)

- =1 m=1 p=1 g=1

L L L L
+ Z Z Z Z (TriTrmYipYiq) Bm.p.a (T)

=1 1 p=1 ¢=1

3
il
I
f

T
Mm
] =
] =

M- 3 M-
M 1
Mh

(yklykmxipxiq) )\l,m,p,q (T)
1

q

-

(yklykmyipyiq),U'l,m,p,q(T)' (E4)
1

Il
—
3
Il
o
3
il
it
ey
Il

The quantities a;.mp.q(T)s Bimpa(T), Mimpg(T) and piympo(T), I,m,p,q=1,2..., L,
in (E.4) are defined as:

e = [ KE DXl DX DXET ()
BimoalT) = | X(EDXnl LTI IS, T)AS (E.6)
NonaalT) = [ VLTIl £ T TV, TS (E.7)
pmselD) = [ VLDl £ TG DI T)AF (B3)

It should be noted that (E.4) is not the most efficient expression in terms of calculation
effort. However, what is important to point out here is that all the integrals involving

J(L) can be precomputed based on (6.27). For a more efficient expression, each term
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in (E.4) can be rewritten similarly as follows.

L L L L L L
z Z Z ’Eklwkmyzpyzq ﬁl m,p, q Z Z mklyzp /6[ l pp )
=1 m=1 p=1 g=1 =1 p=1
L L L
+2 Z Z Z mzl%pyzq) Bripa(T)
=1 p=1 ¢g=p+1
L L
+2 Z Z Z (mklkayzp) /jl mpp( )
=1 m=I[+1 p=1



Appendix F

Objective Function for Multiple
Chip Waveform Design

Rewrite (6.18) as follows:

- D2T3 Z / i4dj

le

D2T3Z Z / HPIGA()PAS. (F.1)

¢ m=ln=m+1v "

The second term in the above equation can be expressed in terms of Zpm; and Yy in
exactly the same form as (E.3) in Appendix E. In particular, let J (L, D,T,) be the
expression in (E.3) when replacing K by D and T by T, that is

Ay [Ceanroanra =222 @

¢ m=1n=m+1"

Let Gr(f) = F{Gm(t)}. Then from (6.33) one has

L L
Cn(f) = 2 Xo(£,T) + 5 D ymVi(f, Te)- (F.3)
=1 =1
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Thus the integral in the first term of (F.1) can be calculated as follows.

| iGatniiar = [ 1Gn(DI

- /_ Z (ixszl( £, Tc)>4df+ /_ : (i ymzYz(f,Tc)>
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4

df

/ <melx, >2<ZylefT)>2df, (Mj

The first two terms of (F.4) can be written as follows [32]

o L 4 .
/ (Z T Xi(f, Tc>> df = > Alko,..., Hx
- =1 k

C04eeny kL:Zleo k[—

o L 4
/ <Zymm(f, Tc)> df = > x(ko, ..., kL Hy
—® \il=1 ok

20 ye ey kL:Z[L:O k=4

where

41
’}’(ko,,/\"L) k—()'—l:-l—————(/ HXMde)

® =0

X(koy . kr) = AO'M </ TIv(, T)df) .

=0

and

The last term of (F.4) can be expressed as

w / L 2 /0 2
2/_ <Zym1X[(fvTc)> <Zyle;(f>Tc)> d.f

=1 =1

L L L L
=2 Z Z Z Z ($7nl$mnym.pqu) /Bl,n,p,q(TC)'

=1 p=1 ¢

=1
Fmaﬂy combining (F.1), ), (F.4), (F.5), (F.6) and (FQ) gives

(F.
I(D,L) = ! >

< (ko, . Ha: L+ x(ko, -
=4

1 & L
+D2T‘3 Z Z Z Z (:Emlfl/'mnympme) /Bl,n,p,q (Tc) + —J(—L—’—ZD’—T'C-)—

D

(F.9)

L
°L) H y%)
=0

(F.10)



Appendix G

Derivation of W, for Dauble Chip
Waveforms

The expression for W; in (7.1) can be readily obtained from (2.34). It is given by
W; = bi(—1) Rea(73) + b:(0) Ry s(73) (G.1)

where 7; is the delay of the sth user’s signal relative to the signal of the kth liser,
which is the user of interest. Recall that I; = |7;/ T.] and r; = 7, — ;T,. At this point,
to simplify the notation, we set [ = [; and r» = r;, When necessary, the appropriate
indexes of [ and 7 can be restored.

Now if [ is even, then W; can be written as

. 1/2 i/2—-1
We = bi(~1) [hlg(r)Zsk(%)si(N — 12— 1)+ hy(r) Y s1(25)si(N — 1+ 29)
J=0 7=0
1/2-1 1j2—1
+ hoa(r) D (25 + 1)sy(N — L+ 24) + hy(r) D k(2 + 1)si(N — 1425 + 1)]
=0 =0
: N (N=)/2~1 (N=1)/2-1
+ (0 [hl(r) $i(27)sk(L +29) + ho(r Z i(27)sk(l + 25+ 1)

o Ww=pe- (N—l)/ -2
+  ha(r) Z 8:(25 + D)sp(l + 25 + 1) + hio(r) 5:(27 + )sk(l + 27 + 2)}

=0 =0

(G.2)
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Note that the last four summations in (G.2) can be rewritten as follows

(N-0)/2—-1 N/2-1
> ssl+2) = > su(2i)si(25 1) (G.3)
§=0 g=1/2
(N=1)/2~ N/2—1
Z i2Hsel+27+1) = D su(2 + 1)si(25 — 1) (G.4)
j= =172
(N~1)/2-1 N/2-1
Y s+ sl +27+1) = > s+ 1)si(25 —1+1)  (G.5)
7=0 7=1/2
(N—1)/2—2 N/2-1
si2+Dse(l+2+2) = D s(2)s:i(25 — 1= 1). (G.6)
Jj=0 j=l/2+1
Therefore
1/2—1
Wg = by(—1) Z s;(N+2j—1+1) [sk(Qj + 2)h12(r) + sp(27 + 1)77,\2(7“)}
o2 )
+0(0) 3 2] ~14+1) 542 + Dhaalr) + (25 + Da(r)]
g=l/2
+ bi(=1)sk(0)s:(N — I = 1)hyo(r) + bi(0)sx (N — 1)si(N — 1 — 1)hy(r)
/21
+ bi(—1) Z si(N +2j —1) {sk(zj)/le(r) + 51,(25 + 1)h2,1(7”)J
j=0
N/2—1 R
£ 0(0) 3 52 1) [se(2)Ra(r) + 502 + Dhaa(r)] (G.7)
Jj=l/2

As in [33], with the motivation of reducing complexity, it is important to consider
(G.7) conditioned on the signature sequence of the kth user and the random variable
Lie, {si()} = 8()} and 1 =1 (T'is even). In order to simplify (G.7), define the

following N + 1 random variables

;

bi(~D)si(N +2j =T+ 1)5(2 +1), j=0,1...4 1
_ 11 N
F'j:< bZ(O)Sz(Qj l+1)8k(27+1) J ?‘\;?‘i‘l?— 2 (GS)
bi(0)si(N — 1= 1)3(N — 1), =41
| B:(~1)s:i(V — T~ 1)5,(0), i=4
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and
o bi(—1)s;i(N +25 — )3(2j +1), j=0,1 % 1 (G.9)
. A 0,1 |
bi(0)55(2) — DEL(24 + 1), i=4, % o

For any 7'in the set {0,2,..., —]g — 2}, the random variables F}; and G, are mutually

independent and satisfy

1

Pr(F; = +1) = Pr(F; = —=1) = Pr(G; = +1) = Pr(G; = -1) = 5 (G.10)

Using the definitions of the random variables F; and G; and the fact that 2(5) =1
for every 7, (G.7) can be simplified to

N/2—2
we = Zp[h2 ) + (27 + 1)5k(2 + 2)haa(r)]

+ F%_lhg(T)—{—F%th(r)
N/2—1

+ Z G [ (r) + 34(2)8(25 + Da(r oIk (G.11)

Define the set A to be the set of all nonegative integers less than 12\[— — 1 such that
56(27 + 1)8x(27 + 2) = +1 and B to be the set of all nonegative integers less than
12\7— — 1 such that 8,(27 + 1)5(2j +2) = —1. Similarly, define the set C' to be the set
of all nonegative integers less than %[— such that 5;(25)8:(2j + 1) = +1 and D to be
the set of all nonegative integers less than —]2\1 such that 8,(27)8x(27 +1) = —=1. It
follows from the definitions of the sets A, B, C and D that (G.11) can be written as

follows

we = S F [hQ )+ hoa(r ]+ZF [h2 hm(r)]

jeA jeEB

+ Fy_iha(r) + Fyhia(r)
3Gy [hoa () + Tl ]+ZG [hm M| (612

jec jeD
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Now restore the index 7 and define X; = ZjeA F;,Y; = ZjeB F;, P, = F%_l, Q;=Fxn
and U; = ZjeC Gy, Vi = ZjeD G;. Then
Wi = X [ﬁg(ﬂ) + h1,2(7"i)] +Y; [?L:z(?“z) - h1,2(7‘i)]
-+ P[ﬁg(’f‘z) + Qih1,2(7i>
U [hg,l(ri) + El(ri)] +V [hg,l(ri) - ﬁl(ri)} . (G.13)
Similarly, if  is odd, then it can be shown that W; in (G.1) is given by
Wy = X [/52,1(7’1') + hl(ﬁ‘)] +Y; [EQ,I(Ti) - hl(ﬂ')]
+ Pi/ﬁzg(?“i) + Qsha(rs)

U [halr) + Faa(r)] + Vi [Balr) = Raalrs)]. (G.14)

Finally, define the following random varibales

N/2-2

R = Y 52+ 1)5(2) +2) (G.15)
j=0
N/2—1

S = D S(2)E(25 + 1) (G.16)
=0

Then the density functions of R and S are given by

N
N P 1- - N N N N
pR(]) - (j_;_%Wl)Q z, .7_1“5‘,3_?2‘,---,'2——3,—2——1 (Gl?)
5 N N N _N
. 2 N A N v

Let | - | denote the cardinality of the set. It is obvious that R = |A| — |B| and
S = |C| — |D|. Furthermore, note that |A| + |B| = N/2 — 1 and |C| + |D| = N/2.
Thus, given R and S, one has |A| = (N/2 — 1+ R)/2, |B| = (N/2-1- R)/2,
|C| = (N/2+4 S)/2 and |D| = (N/2 — S)/2. This fact also implies that, in order to
obtain (G.13) and (G.14), it is not necessary to condition the signature sequence of

user k. It is sufficient to condition the two random variables R and S defined above.



Appendix H

Derivation of wy

For simplicity and without loss of accuracy, the index ¢ of the normalized delay, 5, is
removed in this section. Using the first and second moments of |B| and |D| given in

Section 7.2.1, it is not hard to see that

Bain) = 2 3500 + 1,0+ 2 R 42,0

+2(N — 2)R2(r)h 5 (r) + 2N K3 (r)h3 ,(r)

20 [+ 18,0)] [B2) + 13,00

N? [~ ~
= [h‘%(r) + Ry (r) + hiQ(r) + hgvl(r)]
+ {N; +2(N - 2)1 R2(r)h2,(r) + {N; + QN] R2(r)h3 ,(7)

o [RBOR) + RS, () + BV () + B2, (00R8,()] . (L)

Likewise,
2 — o~
B(B21r) = S (W) + B0r) + Bt () + ()]
2 N 2 ~
+ {NT +2(N - 2)} B3 (r)RA(r) + {NT + 2N)] R 5 (r)a(r)

o (BB () + B, 00R0) + RV () + MR . (B2)
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Combining (H.1), (H.2) and using (7.28) produces

1 [T
B(o}) + B(8) = /0 [E(af|r) + E(B]|r)] dr

NQ T 4 4 ~4 ~4
= o7 /0 [hl(r) + ha(r) + hl,Q(r) + 112’1(7)] dr

N2 Te N2 Te

+—T_ i h?("r‘)/‘n%(r)(‘lr—}——f~ ; ﬁg’l(r)ﬁfﬂ(r)dr

(N2 4y e B2, ()

T, R
+&]\;j—’——z)-/o [hff(r) + h%(r)] h%’Q(T‘)dT

N2
~ T,

r / C[R0) +B0)) [NR2 () + (N = 23] ar. (H3)

Te - —~ 2
/0 [12r) + Ba(r) + R(r) + T, ()] e

Comparing (H.3) and (7.36) gives

1

uy = 7% /0 TC{[h%(r)+h%(r>+ﬁ%,2(r)+ﬁ%,1(r)}2

1~ N — 2~
+ 4[h3(r) + R3(r)] [jv—hfﬂ(r) + Whg’l(r)} }dr. (H.4)
If the chip waveforms are symmetrical around 7,/2, it can be shown that

hia(r) = Hhyy(r) (H.5)

where the sign is a plus if the two chip waveforms are both even or both odd about

T./2. Otherwise the sign is a minus. Therefore (H.4) simplifies to

Te ~ 2
wy = % i {[h%(r>+h%(r>+2hi2(r>}
S—(iVN;-l—) [R3(r) + h3(r)] B2, (r) }dr. (H.6)



Appendix 1

Derivation of wy

From (7.30) and (7.31) one has

N? T2 2 72 2
Blowoglri, 1) = = [R30r0) + W2 r0)] [B3(rs) + B o(r7)|

o B + 5| [BRs) + B ()

o [ + ()] [B3(r) + b o(ry)

+—Zl-- ?L?(n) + h%,l(ﬁ')_ E%(Ty) + h.?z,l(rj)
F2(N — 2)ho(rs) b1 (ri) ha(ry) haa(r5)

+2N?L1(7"i)h2’1(Ti)/ﬁl(Tj)hgyl(Tj). (Il)

Thus

1 Te pTe
E(aiaj) = ﬁ/o /0 E(Oéi,Oéjl’l"i,’f'j)dTide

_ i\; [ / * (B) + 12,) drr ¥ gi { / * () + 1, 0) dr]

N2 /‘Tc % Tc N
+ R2(r) + Rh2,(r dr/ R2(r) + h2,(r) ) dr
g5 | (P +mda0)) dr [ (BH0) 1 ))

2

2 - 2) [ / " 32(r)111,2(7“)dr} i %FJ_V’_ [ [ Tcmr)hz,l(r)dr]z 1
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Similarly, it can be shown that

LTt
E(ﬁiﬂj):”ﬁ/o /0 E(B;, Bj|ri,3)dridr;

_ % [ /O - (A1) + B3(r)) dr} " i\; [ /0 - (B2 + 3()) drr

&

oo [ (a0 ar [ (Rate) i)

S22 ; 2) [ / o ()b (T)drr + 2 [ / - 31,2<r>h2<7~>d7~]2 S Wy

0

Due to the symmetry, it is obvious that E(e;08;) = E(Bs4). To calculate E (uf3;),

first obtain FE(a;0;|r;, 7;) as follows

ety = [0+ ] o+ 0]
+E4?; ng(n) + h%g(?‘i)] [/ﬁ%,z(ﬁ) + hz(""a)]
+NTQ L/ﬁ%('rl) + h%,l(ﬂ')] [/}\L%,l<rj) + h%(vy)}
N2 - -
+ h%(n) + h’%,l(ri)} ho(r;) + h%(rﬂ]

—I—QNi\ll(’l“i)hg’l(T’i)/ﬂl,z('l"j)hz(Tj>. (14)
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Therefore
Te Te
E(a;8;) = —-3/ / E(0ufs|ri, r5)dridr;
o Jo

- gi /0 " (B + 1,0 dn /0 (B, + ) ar
+ i\,}z /0 - (B(r) +12,0)) dr /O - (72 5(r) + h(r) ) dr
(Rr) + () dr /0 (R, ) + ) ar
T if /0 " (Br) + 1, ar /0 " (R ) + () dr
il /0 R haalr)r /Tcﬁm(r)hl(r)dr

: 0
ON [T Te
42 [ R haatr)dr [ Bua(hatrr
¢ 40 0

(L5)

Now, by combining (I.2), (I.3), (L.5), using (7.28), and after some algebraic manipu-

lations one obtains

E(oyoy) +2E(ai8j) + E(Bi5;) =

- [/f“(@@nﬁglu ] o U (”)drr
[ G ) o] + 25 [ <r>)drr

+3<—]\-;?_—2) [/OT ho (1) Ra (7 )dr+/ Bat () (r)dr]

0

oON 2

o [ /0 (Vo) + | /0 Tcﬁl,g(r)h,g(r)dr}
+ 2‘7;22 [ /0 - (h30) + B (r) + B2 o(r) +73,(n)) dr} 2

N2 Te Te Te Tc/\
+—T—2 [/0 R2(r)dr i ha(r)dr + hfz(r)dr/o h;l(r)dr}

0

+2‘7¥2 [ /O " Re(r)ar + OTC hg(r)er [ /O R, + /0 Tcﬁg’l(r)dfr}. (L6)
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Comparing (1.6) and (7.37) shows that

Wy = %g { /0 " (h%(r) +B§,1(r)) drr + %—6 [ /O " (hf(r) +ﬁ§2(7~)) drr
+%ﬂﬁﬂ@am+%mwﬂﬁg%Mn@@m+@my42

8(N —2 Te - Te 2
+ (N2Tcﬁ ) {/0 ho(r)he 1 (r)dr + A h,g,l(r)hl(r)dr]

+

3 Te ~ T. _ 2
NTS [/0 hi(r)hio(r)dr + ‘/0 }11,2(7‘)h2(7“)d7’}

9 Te = N 2
+7% /O (B30) + B3 + B2 o0) + B3 (1) dr]

4 Te Te Te Te
s /0 B2 (r)dr /O R2(r)dr + /0 B2, (r)dr /0 hg’l(r)dr}

2 Tc Te Tc/\ TCA
+g /0 hi(r)dr + /0 h%(r)dr] [ /O hi o (r)dr + /O h%’l(r)dr]. (1.7)

As for the wy used in Appendix H, when the chip waveforms are symmetrical around

T./2, the above expression for Wy simplifies to the following expression

Ty = % [ /0 " () + B,0) drj| n % [ / " (B) +72,) dr} 2
+19§-\%T;§1) [ /O - <h1(r) 4 hg(r))ﬁl,g(r)dr} 2

+ﬁL[Y%m+@m+ﬁ@m%ﬂ2

4 T AT, T, T. _ 2
-}-T—CG /0 h%(fr)dr/o h%(r)d?“—#(/() hiﬂr)dr)}

Te

T
—l—?@ /0 h%(r)dr -+

c L

h%(r)dr] R, (r)dr. (18)

0 0
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