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Abstract

Code-division multiple access (CDMA) increases the spectral efficiency of a commu-

nication system by allowing all users to share a common channel at the same time. To

provide multiple access, CDMA systems require a fämily of distinct signature wave-

f'orms to be assigned to diff'erent users. Since the limiting fãctor f'or such a system is

the inevitable multiple-access interf'erence (MAI) present at the receiver, it is impor-

tant to suppress the MAI in CDMA systems. This thesis f'ocuses mainly on signature

wavefbrm design as a means of suppressing the MAI. The novelty in the approach is

that the available bandwidth of the systems is explicitly incorporated into the design

process. In this way, this precious resource is most efficiently utiiized and hence a

benefit is achieved.

In the fìrst part of the thesis, signature wavef'orm design is considered f.or syn-

chronous CDMA systems equipped with either correlation or minimum mean-square

error (MMSE) receivers. The design criterion can be either to maximize the network

capacity (i.e., the maximum number of r"rsers) f'or a specified level of MAI, or to min-

imize the average MAI f'or a given number of users. Both the fïactional out-of-band

energy (FOBE) and the root-mean-squâre (RMS) bandwidth measures are examined.

Comparisons to signature wavef'orms constructed using diffêrent approaches are made

to quantify the superiority of the proposed signature waveforms. When the FOBE

bandwidth criterion is used, the generation of the proposed signature waveforms at

the receivers is quite complicated due to the involvement of the prolate spheroidal

wave fïrnctions. Thus a simplified receiver structure based on a Walsh signal space is

also developed for a practical use.
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In the second part, signature wavef'orms are designed to minimize the MAI in asgn-

chronous CDMA systems. The series expansion method is first applied to find the

optimal signature wavef'orms, where no special restriction is imposed on the struc-

ture of the signature wavefbrms. For a special class of asynchronous CDMA sys-

tems, known as direct-sequerce CDMA (DS-CDMA), the signature wavet'orms are

constrncted by modr"rlating a given chip waveform with the corresponding si,gnature

sequences. Furthermore, when random signature sequences are assumed, the MAI in

DS-CDMA systems is only afl'ected bv the shape of the chip waveform. In this thesis,

the nse of. multi,ple chip wavef'orms is also introduced as a means of suppressing MAI

in DS-CDMA systems. Optimal multiple chip wavef'orms are obtained using the series

expansion method. Finally, to evaluate the error perf'ormance of DS-CDMA systems

using random signature sequences and multiple chip waveforms, an expression f'or

error probabiiities is derived based on Holtzman's approximation and its accuracy is

verified with simulation results.
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Chapter 1-

Tntnoduction

The need f'or rnultiple access techniques arises when more than one user transmits

over the same medium. As an example, a multiple access technique is required in

cellular telephonv. In this example, the users are ceilular telephone customers and

the common medium is the range of radio fïequencies allocated f'or use by cellular

subscribers. Without multiple access techniques, only one caller would be able to

make a call at a given time. There are three common f'orms of multiple access, namely

fïequency division multiple access (FDN4A), time division multiple access (TDMA),

and code division multiple access (CDMA).

With the FDVIA technique, the available fiequency band is divided into disjoint

sub-bands and each of these sub-bancls is used to carry a single user's signal at the

same time. In a TDMA system, time slots are allocated to the users such that only

one user can transmit in a particular time slot over the same fïequency band. It is

important to point out that in both FDMA and TDMA systems, diff'erent users do not

incur any mutual interfèrence from each other. This is made possible by ensuring that

the signals transmitted by various users are mutually orthogonal, either in frequency

or in time. For a given signaling duration ? and a transmission bandwidth I4l, the

number of orthogonal users in both FDMA and TDMA systems is approximately

zWT, which is a fixed number f 1l.



In a CDN¡IA system, users are assigned difl'erent szgnature waueforms (or codes,

an older terminology fïom which the term CDMA originated [2]). Each user sends

her/his narrow-band data stream by modulating her/his own signature waveform.

All user signals are then transmitted over the same fïequency band and at the same

time. The signature wavefbrms are used to spread the bandwidth of the transmitted

signals over the entire fïequency band, and if they are well chosen, the corresponding

receivers (which have knowledge of these wavef'orms) can cle-spread the received signai

and recover the intended narrow-band data streams.

Technically, the users in CDMA systems can also be orthogonal if their signature

wavef'orms are orthogonal. However the important (and interesting) f'eature of CDMA

communications is that users are not necessarily orthogonal. This implies that the

number of users in CDMA systems is not hard-lirnited by 2WT as in FDMA or

TDMA systems and users can be aclded and removed fiom a CDMA system quite

easiiy. This property makes network planning and management in CDMA systems

much simpler.

Since the users are not necessarily orthogonal in CDMA systems, there is in-

teruser interf'erence or multiple access interf'erence (MAI) apart fïom the background

noise. This additional interf'erence limits perf'ormance, but due to the way time and

bandwidth resources are allocated, CDIVIA systems off'er higher capacity compared to

FDMA and TDMA systems [3]. The flexibility ancl higher spectral efficiency has made

CDMA the standard of choice f'or the air-interfãce in the third and fburth eenerations

(3G and aG) of wireless mobile systems [4, 5].

To further improve the spectral efficiency of CDMA systems, it is important to

suppress the MAI. Loosely speaking, there are three diff'erent methods f'or suppressing

MAI in CDMA systems: i) to design signature wavef'orms with MAl-suppression

capability f'or a given type of receiver; ii) to design efficient receivers f'or a given set

of signature wavef'orms and iii) to jointly design transmitters and receivers.



The topic of receiver design f'or CDMA systems has been very active in the past

fifleen years under the name of multi,user detecti,on. Perhaps this research area was

pioneered by the u'ork of Verdír in 1986 [6]. In [6] the author derives the optimal

multiuser receiver based on a maximum likelihood criterion and shows that there

is, in genelal, a huge gap in the perf'ormance between the conventional correlation

receiver and the optirnai receiver. It has also been shown that the complexity of the

optimal rnultiuser detector is exponential in the number of users and hence it is not

practical f'or implementation, even f'or a system with a moderate number of users [7].

To reduce the complexity of multiuser receivers, rnany diflèrent suboptimal detectors

have been proposed in the literature (see [8] and [9] f'or extensive reviews). It should be

noted, however, that when the suboptimal receivers are used, they are very sensitive

to the signature rvavef'orms and this makes signature wavef'orm design a more crucial

task in CDMA systerns. Regarding jclint transmitter and receiver design, this research

topic has just been recently introduced and there is relatively little work done on this

topic [10, 11, 12]. This thesis concentrates on signature wavef'orm design as a means

of suppressing MAI in CDMA systems. The design considers both synchronous and

asynchronous CDMA systems and under diffêrent bandwidth criteria.

1.1 Frevious \Mork and Thesis Contribution

CDMA systems can be either sgnchronous (S-CDMA) or asgnchronozs (A-CDMA)

and signature wavef'orm design must be considered f'or a particular system. Syn-

chronous systems assume that the rlsers' bit epochs are perfectly aligned at the re-

ceiver. This requires closed-loop timing control or providing the transmitters with ac-

cess to a common clock (such as the Global Positioning System) [2]. In asynchronous

CDMA systems, the users' time epochs are not aligned. The design of CDMA sys-

tems is considerably simplified if the users need not be synchronized. However the

spectral efficiency of asynchronous CDVIA systems is significantly lower than that of



the synchronous ones.

Conceptually, it is not necessary to place any specific structure on the signature

waveforms, as long as they satisfy the duration, bandwidth and energy constraints.

There is, however) a common and popular approach to constructing the signature

wavef'orms f'or both synchronous and a,synchronous CDMA systems. This approach

assumes that the space of signature wavef'orms is spanned by some set of orthonormal

basis fïnctions. Each signature wavefbrm is then constructed as a iinear combination

of basis fnnctions weighted by a s'ignature sequence. The length of each signature

sequence equals the dimensionaiity of the signature space (commonly referred to as

the processing gazn l/) which is controlled by the available bandwidth of the system.

Thus, given N and a set of basis fïrnctions, the design of signature waveforms is

essentially the design of signature sequences.

Signature sequence designs fbr S-CDMA systerns are studied in [13, 14,75], where

it is shown that the optimal sequences are the Welch bound equality (WBE) sequences

since they satisfy Welch's bound on the sum of the squared cross correlations of equal

energy sequences [13, i6]. The performance measure in [1a] is the the (information)

sum capacity of a S-CDMA system, whereas the network capacity, i.e., the maximum

number of users that can be accommodated in a system, is the perf'ormance criterion

in 115]. Recently, a generalization of the work in [1a] has been presented in [17]

to include the case of unequal-po\Mer users. It should be noted that the bandwidth

consideration is not explicitly specified in all of the above mentioned work, but rather

is taken into accottnt through the dimensionality of the signature space. In this thesis

we will extend the results of [15] by considering the bandwidth constraint to better

exploit this system resource. Using the property of the WBE sequences, the optimal

orthonormal basis functions f'or the construction of signature wavef'orms can be easily

identified.

Signature wavef'orm designs f'or S-CDMA systems are also considered in [18, 19,



20, 2Il, where either the root-mean-square (RMS) or fiactional out-of-band energy

(FOBE) bandwidth constraint [22] is explicitly specified in the design problems. In

particular, the authors in [18] and [19] f'ound the inf'ormation capacity region of a two-

user synchronous CDN4A system and the optimal pairs of signature waveforms that

achieve anv point inside the capacity region. In [20] the authors derive the signature

wavefbrms that maximize the total inf'ormation capacity and asymptotic efficiency of

a S-CDMA systern ltnder the RMS bandwidth constraint. Similar work considering

the FOBE bandwidth constraint appears in [21].

Unlike the above mentioned rn'ork which was concerned with the inf'ormation the-

ory aspects of a CDN4A communications channel, in this thesis the signature \Mave-

fbrms are designed to minimize the MAI at the outputs of the receivers. The band-

width constraint (which can be either RMS or FOBE bandwidth) is also explicitly

incorporated into the design process. The design is carried out for two diffèrent

types of receivers, namely the conventional correlation receiver and the minimum

mean-square error (MMSE) receiver. Furthermore, since under the FOBE band-

width criterion, the optimal signature wavef'orms are constructed from the prolate

spheroidal wave fïrnctions (PSWFs) [23, 24], the implementation of receivers operat-

ing with these signature wavef'orms is complicated. To overcome this disadvantage, a

simplified receiver is also developecl based on the Walsh signal space.

In A-CDMA systems, the signature wavef'orms are usually generated using signa-

ture seqnences shaped by an elementary chip wavefbrm. In binary transmission, the

signature sequences are binary sequences, whereas in M-ary modulation, the signa-

ture sequences are polyphase sequences (whose symbols are the complex Mth roots of

unity). The most popular polyphase sequences are the quadriphase sequences, corre-

sponding to quadrature phase shifT keying (PSK) modulation. Analysis of A-CDMA

systems leads to the consideration of various correlation f'unctions of the spreading

sequences [25, 26, 271. For signature sequences in A-CDMA systems, there are also



Welch bounds on the maximum magnitude (C-o*) and root-mean-square (RMS) mag-

nitude (C,.,".) of their correlation flnctions 127, 281. The sequences that achieves the

Welch lower bound on C,.,,.,. are ref'erred to as Welch-bound-equality (WBE) sequences

and they are of particularly importance in A-CDMA systems 174,271. It was shown

in [29] that finding WBtr sequeìlces is aimost trivially easy, f'or example almost all

linear codes (and their cosets) f'orm a WBtr seqr-lence set. In contrast, signal sets that

meet Welch bound on C,,'.* are not easy to find. Two examples are the binary Gold

code family [25] and the two fämilies (fãmilies "4 and B) of quadriphase sequences

f'ound in [30] . In l27l the optimal phases of 1ämily ,4 sequences are also obtained so

that the family satisfies the Welch bounds on C-u* and C.,,," simultaneously.

A difl'erent method of designing signature wavefbrms fbr A-CDMA systems that

does not rely on binarv or polyphase sequences has also appeared in [31]. The signa-

ture wavef'orms obtained in [31] are constrained to have a flat amplitude spectrum and

they are complex signals in general. Such a constraint requires that the cardinality

of the signature set be fairlv low so that they have good cross-correlation values.

This thesis also considers signature wavef'orm design f'or A-CDMA systems. The

signature wavefbrms are not assumed to have any specific structure and they are de-

signed to minimize the average MAI at the outputs of the correlation receiver. The

correlation receiver is pref'erred to other multiuser receivers in A-CDMA systems be-

cause the complexity of any multiuser detection is usually prohibitive in asynchronous

systems with a large number of users. Analogous to the design f'or S-CDMA systems,

here the bandwidth is also expiicitly incorporated into the design process.

Although there are signature sequences that perf'orm better than the random

signature sequences Ï26,27,30], the use of random signature sequences has been

widely adopted to analyze the perf'ormance of A-CDMA systems [32, 33, 34, 35]. With

random signature sequences, the MAI variance at the output of a correlation receiver



depends oniy on the chip pulse shape. Generally, the chip pulse can be either a time-

Iimited or a band-limited wavef'orm. Commonly used time-limited chip waveforms

are rectangular and half-sine pulses [36,37]. Other time-limited chip waveforms are

introduced and evaluated in [35, 38,39]. On the other hand, the square root raised

cosine pulse is the rnost popular bancl-limited wavef'orm [4, 5, 35]. It is widely expected

that the band-limited chip wavef'orms are more bandwidth efficient than the time-

limited ones, however this is not always true as shown in [35]. Another contribution

of this thesis is the proposal of using multiple chip wavef'orms instead of a single chip

wavefbrm as a, means of suppressing MAI. The study is restricted to the family of time-

limited chip wavef'orms but the idea can be easily extended to band-limited waveforms.

Optimal multiple chip wavefbrrns are obtained f'or the RMS bandwidth constraint,

although the methodology is also applicable f'or the FOBE bandwidth criterion. The

combinations of some commonly used chip wavef'orms are also evaluated to investigate

the advantage of the proposed scheme. Finally, to evaluate the performance of A-

CDMA systems employing random signature sequences and multipie chip waveforms,

an extension of Holtzman's approximation f'or error probabilities is aiso derived.

L"2 Thesis Outline

The rest of this thesis is organized as f'ollows. Chapter 2 fìrst describes the system

models f'or both S-CDMA and A-CDMA communications systems. For S-CDMA

systems, both the correlation and MMSE receivers are discussed in detail. For A-

CDMA systems, only the correlation receiver is considered. The chapter also defines

the RMS and FOBE bandwidths f'or CDMA systems, which will be used th¡oughout

the rest of the thesis.

In Chapter 3, signature wavef'orms f'or maximizing the network capacity of S-

CDMA systems are obtained under both the RMS and FOBB bandwidth constraints.



Based on the results in [15], the signature wavef'ornr.s are constructed from the Welch-

bound-equality (WBE) seqr.rences [13]. It is first shown that using the property of

the WBE sequences, the constraint on the bandwidth of signature wavef'orms can be

transf'ormed into the bandwidth constraint of the orthonormal basis f'unctions. Then

the optimal orthonormal bases are identified to be used with the WBE sequences.

Performance of the proposed signature wavef'orrns is compared to that of the subop-

timal signature wavef'orms (constnrcted fiom suboptimal basis fïrnctions) to quantify

the gain achieved by the proposed signature wavefbrms.

Chapter 4 also studies signature wavef'orm design fbr S-CDMA systems but under

a slightiy diff'erent scenario. Here the number of users is fixed and the signature

wavef'orms to minimize the muitipie access interf'erence (MAI) are f'ound. The design

is first carried out f'or the correlation receiver nnder both RMS and FOBE bandwidth

constraints. Then it is extended to include the MMSE receiver. Comparison to

suboptimal signature wavef'orms that are constructed from WBE sequences is also

made to quantify the superiority of the proposed signature waveforms.

Chapter 5 is concerned with the practicaÌ implementation of the linear receivers

when the signature wavef'orms are constructed fïom prolate spheroidal wave func-

tions (this happens when the FOBE bandwidth criterion is used). The structure of

the simplified receiver in a Walsh signal space is first developed. Then its perfor-

mance is evaluated based on the exact expression of error probability for S-CDMA

communications.

Chapter 6 is devoted to the design of signature and multiple chip waveforms f'or A-

CDMA systems. The chapter begins with the evaluation of the signal-to-interference

ratio (SIR) at the output of a correlation receiver in terms of the Fourier transforms

of the signature and chip waveforms respectively. These expressions suggest a method

to obtain the signature and chip wavef'orms through series expansion. The series ex-

pansion method can be appiied f'or both RMS and FOBE bandwidth constraints, but



fbr simplicity only the optimal signature wavef'orms and multiple chip waveforms are

presentecl f'or the case of RMS bandwidth. Additionally, this chapter also investigates

the combinations of several commonly used chip wavef'orms to study the gain achieved

by using multipie chip wavefbrrns.

An error probability calculation for A-CDMA systems using random signature se-

quences and double chìp wavef'orms is the topic of Chapter 7. The main contribution

of this chapter is to extend and evaluate the accuracy of an approximation previously

proposed by Holtzman [40]. This approximation is first extended to include an arbi-

trary stngle chip rvavefbrm. The accuacy of Holtzman's approximation f'or this case

is verified with the exact calculation derived in [3a]. Holtzman's approximation is

then developed fbr A-CDMA systems using double chip wavefbrms and its accuracy

is verified using computer simulation.

Finaily Chapter 8 draws conclusions and gives suggestions f'or further study.



Chapten 2

Signalling Over CÐVÏA Channels

This chapter reviews basic concepts in CDMA systems and serves as background

material f'or the subsequent chapters. Both the synchronous and asynchronous CDMA

channel models are discussed. Various receivers, including optimal, correlation and

minimum mean-sqr-rare error (MMStr) receivers are explained for S-CDMA systems.

For A-CDMA systems, only the correlation receiver is considered. The importance of

signature wavef'orm design f'or system perf'ormance is highlighted. This chapter also

discusses the bandwidth criteria used in the thesis.

2.L S-CDMA System Model

In a synchronous CDMA system, each user transmits an inf'ormation symbol in a

time interval 7 and over a bandwidth W by modulating its own distinct signature

waveform. Let K be the number of users and s¡(t), 0 < ú ( Z, be the signature

wavefbrm of the kth user whose energy is normalized to unity. Then the received

baseband signal in one symbol interval can be expressed as

K
/ ,\ \-1a(t) : )_r/puUutk(t)+n(t), 0<t<T

k:1

where b¡ is the inf'ormation symbol of the kth user (bn e An f'or some finite set of

ampiitudes An), p¡ is the received power of the kth user's signal and n(ú) is aclditive

(2.1)

10
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white Gaussian noise of spectral strength o2 : Nol2. To simplify the analysis it is

assumed that Ellfrl: 1 (by scaling the set of amplit¡des A¡ appropriately).

It can be shown that a sufficient statistic f'or demodulating the inf'ormation sym-

bols of K users is given by the K-vecto¡ y whose Àth component is the output of a

filter matched to s¡(ú) [2], i.e.,

¡T
at, : I y(t)s¡(t)dt, k:7,...,K.

.to

The sufficient statistic vector y : lAt,. . . ,ANfr can be written as

Y:RWl/'b+on

where one has the fbllowing:

(2.2)

(2.3)

ø R denotes the correlation matrix of the set of signature wavef'orms

rT
R: [Ro¡] : / s(ú)sr(¿)dú (2.4)

Jo

where s(¿) : lrr(¿),...,"r.(ú)]r is the signal set vector.

o b € {lbt,br,. . . ,bol'lbr, e A¡"} is the vector of inf'ormation symbols of all users.

For a binarv data symbol A¡: {+1, -1}.

ø n is a Gaussian vector of zero-mean and covariance matrix R, independent of

the transmitted symbols.

ø 'W' : diag(p1 ,p2,...,px).

When the signature space is spanned by an orthonormal set {rþr(t),...,úN(t¡¡,
0 < ¿ < ?, a diflèrent ly'-vector r of sufficient statistic can be obtained by projecting

the received signal g(ú) onto the orthonormal set. Let each user wavef'orm be written

âs 
A/

(2.5)
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then

r: f ,ñ.btst * om: SWi/2b I om
z---J v'- " - (2-6)
À:1

wheres¡:[s¡(1),...,sr(Iy')]risthesignaturesequenceofuserk,S:[rr,rr,...,sr]

is an N x 1( signature matlix and m is a Gaussian vector of zero-mean and identity

covariance matrix, independent of b. Note that since R : STS, it is easy to see from

(2.3) and (2.6) that

Y: STr (2.7)

The output of the matched filter in (2.2) can be decomposecl into three components

as f'ollows:

^'r
ut : I y(t)s¡,(t)rlt

Jo
KrT

\-T: ,/ptbx + L \/pibi I
i=l 'l O

i+k

^'r,

s¡ (t)s¡.(t)dt * 
J o 

n(t) s ¡(t)dt. (2.8)

MAI

in (2.8) the first component contains the desired sigrral of user k, the second compo-

nent is due to multiple-access interf'erence (MAI) from all other (K - 1) users and

the last component is due to the background noise.

Though the vector y in (2.3) is a sufficient statistic f'or detecting one or more

user inf'ormation symbols, the conventionai approach fbr demoduiating the vector b

in (2.3) has been to rely on correlation receivers (or single-user matched filters) as

f'ollows:

6r :sgn(Er), k : 7,...,K; or Ê :sgn(y). (2.e)

This approach simply neglects the presence of MAI since it assumes that the statis-

tical properties of MAI are similar to additive white Gaussian noise, and therefore

a correlation receiver should be near-optimal to combat such interference. This as-

sumption was proven wrong by the derivation and analysis of the optimal multiuser

detector in [6].
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The optimal multiusel detector searches f'or the most likely b in (2.3) that mini-

mizes the error probability, or equivalently maximizes the likelihood function

f )(b) : zbrwl/2y - ¡rÊ.¡ (2 10)

where Ê : W1/2F{WL/2, is the pov/er weightecl correlation matrix. Unf'ortunately,

fbr an arbitrary correlation matrix, no search algorithm is known for the optimal

multiuser detection whose computational complexity is polynomial in the number of

users. In fact the complexity of the search in (2.10) is exponential in the number

of users (O(2n) f'or binary transmission). The fbllowing structural constraints on

the correlation matrix or the signature wavef'orms are known to lead to polynomial

complexity of the optimal multiuser detection.

(i) Band-diagonal correlation matrix with small number of non-zero diagonals 
.;2, 

4Ll.

(ii) Non-positive cross-correlation among all pairs of signature wavefbrms lazl.

(iii) Tree structure of the signature wavef'orms where the signature waveforms in the

same subset are orthogonal [431.

However, the above constraints are rather restrictive and can be satisfied only in some

special scenarios of CDMA communication.

Recently, there has been consiclerable interest in linear multiuser detection [44,

45,46,47], where a linear filter, C, is introduced between the the bank of matched

filters and the bank of hard limiters (f'or detection of binary infbrmation) as shown in

Fig. 2.1. Although the linear multiuser cletector does not achieve minimum bit-error-

rate, it has been shown to satisf'y alternative optimization criteria such as asymptotic

efficiency or near-far resistance [44].

Note that the correlation receiver is the simplest linear multiuser detector ob-

tained by choosing linear filter C to be an identity matrix. i.e., C : I. On the other
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Figtrre 2.I: Linear multiuser receiver

hand, the decorrelating receiver [aa] is realizecl by setting C: R-1. in this man-
ner, the decorrelating receiver totaìly removes the N4AI simultaneously enhances the
background noise [44]. Another important linear multiuser receiver is the minimum
mean square error (MMSE) detector, whose linear fiiter C is obtained as follows (see

also [2] f'or a different treatment).

Let c[ : lCtt, . " ,Ct"rc] be the kth row of matrix C. The linear receiver f'or user

k can be written as

c,^(t\ :S. .o./+\ - ^T-l+\ck\L) : 
k"uttt 

(¿) : cr s(ú). (2.II)

The output of the linear detector f'or user k is,

zk : (.r(¿), s(¿)) : cly
t\: {p¡,b¡c[R* + Ð Jwb¡c[R¡ + øc[n e.r2)

l='-

where R¿ is the kth column of correlation matrix R. The mean-square value of Zn

can be decomposed into three diffèrent components as follows

K
E {zi} : pu ("Inu)'+ I p¡ G[r.¡)' + o2c[Rc¡. (2.r3)

j:r,i+k
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The first component accounts f'or the power of the desired signal of user k, the second

component is due to l4AI and the last component is caused by the background noise

due to correlation with c¡. As mentioned bef'ore, the correlation receiver neglects

the N¡IAI ancl chooses the linear filter to minimize the background noise, whereas the

decorrelating receiver neglects the background noise and chooses the ìinear filter to

minimize the N4AL In contr-ast, the MMSE receiver chooses the filter to minimize the

mean squarecl error -Ð{{"il" - r/pubu)'}. U.i,.g (2.3) ancl the assumption that the

data symbols fïom diff'erent users are independent of each other and of the background

noise, one then obtains

MSE,. : n{(c' -' 
r2ì

" t. Ä'Y-\/PkDk) Ì
: E { þI (Rwl/zn + øn) - J-pnbnl [("rt +lorwttzR) 

"* - ",/pott*]]
: ø {c[nw1/2bbrw1 /2F"c*- zcfRwt/'bJprlt^ + o2 c[nnt"* + prb'r]

: c[ (nwn + o2R) c* i pt - zp¡c[R¡.

Setting ôMSE¡/ôcr :0 gives

c* : (RwR + d2Il)-t p*R*

fïom which the linear filter C is

(2.15)

c: cr: (RwR+o2R)-'RW: (R+orw-t)-' (2.16)

Note that to obtain the above identity it has been assumed that the correlation matrix

R is invertible (or non-singular). If this is not the case, the p-inverse (pseudo-inversel)

should be usecl to sive

cu : (R\MR + o2R) prRr. (2.77)

rFor each nz x rz matrix A, there exists a unique rz x rn matrix A- satisfying the four properties:

(1) A-AA- : A- (2) AA-A : A
(3) (A-A)H : A*A (4) (AA-)H : AA- (H means Hermitian)

If AisdiagonalthenA*:llA'xx if A¡¡f 0,anclAkk:0if A¡¡:g.

(). 1 4\
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Frorr the expressions of the rnatrix C f'or ali the linear receivers discussed above

the fbllowing observation can be made regarding the required inf'ormation fbr their

implementation. The advantage of the correlation receiver is that its implementation

requires only the signature wavefbrm of the the user to be demoduiated. The decor-

relator, on the other hand, requires knowleclge of all users) signature wavefbrms to

demodulate any given user. The VIN4SE receiver too requires knowledge of all users'

signature wavef'orms, as well as requiring knowledge of the signal-to-noise ratios of all

users. The benefìt obtained fiom the requirement of more information fbr the receiver

implementation is the superiority in bit-error-rate perf'ormance of the corresponding

receiver [47].

One perf'ormance measrue used in this thesis is the signal-to-interf'erence ratio

(SIR) at the output of the linear multiuser cletector. This parameter is defined as the

ratio of the power in the decision statistic due to the desired signal to the total power

due to the interf'ering users plus the background noise. Thus, it f'ollows from (2.13)

that the SIR is given bv

sIRr, :
.9

Pr (cl Ru;"
(2.18)

ø2c[Rc¡ + Ðit;l p¡ (.I&)'
J7E

This is an intuitively useful measure of perf'ormance, particulariy when error control

coding is implemented. Among all linear receivers, the MMSE receiver maximizes

the signal-to-interfèrence ratio [2]. For the correlation and decorrelating receivers,

the SIR simplifies to

SIR¡, : (2.1e)

and

SIRr,: A#j;
respectively.

(2.20)
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Next it is shown that f'or the N4N4SE receiver, the SIR¡ can be expressed in terms of

MMSET, which is the MSEa in (2.1a) corresponding to the MMSE receiver. Rewrite

the SIR in (2.18) as f'ollows

SIRÀ :
.t

Pn (cl Ru;"
(2.2r)

E {Z'o} - rr (c[Ro)''

From the definition of the minimum mean-square error (MSE) in (2.14), the minimum

MSE at the output of tlie N41\4SE receiver fbr user k is

MMSEfr : E {(.Iy - ,/nuò'l
E {(.[Ð'] - zn {"[vr/pru*] + ø {nru\¡

E {Zi} - zp¡cfnt t pn.

On the other hand, by substituting c¿ from (2.15) into (2.14), MMSE¡ can

to be

(2.22)

be f'ound

MMSEfr : pt" -p?R; (nwn + o'R)-'Rr : nn (t - cIRÀ) . (2.23)

It then fbllows from (2.22)

SIRÈ

and (2.23) that E {Zl} : p¡cilR¡. Hence (2.21) becomes

Pr (cJR,')2 
- 

cIRt
prcfRr -rr (c[no)2 1-c[R¿

1 .,_ px 
1

i=IR. MMSEk - '' (2.24)

From equations (2.19), (2.20), (2.23) and (2.24) it is obvious that the SIR at the

output of each linear receiver can be further maximized by carefully selecting the

correlation matrix R through the design of signature wavef'orms {s1(ú), . . . , r,r.(¿)}.

This design problem will be addressed in Chapter 4 f'or the cases of correlation and
.o

IVlLVIS11 recervers".

2Signature waveform clesign for the decorrelatiug receiver can be carried out similarly.
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As is common in CDMA system analysis, it is the average performance rather than

the maximum (or worst case) perf'ormance that is of most interest as a performance

measure. The parameters that reflect this average perf'ormance are introduced next

f'or both correlation and MMSE receivers. For the correlation receiver, it fbllo\Ms

fTom (2.19) that maximizing SIR¡ is equivalent to minimizing (o'*IÉl prn?,)
\ J-rc - /

However, to design the signature wavef'orms to minimize this quantity f'or euery ùsel

k is a very difficr-rlt, if not an impossible task. Thus the aiternative criterion is to

minimize the total interf'erence parameter (TIP), defined as f'ollows

TIP :

: Ko2 +f lrin?i (2.25)
u:t 

l=L

Similarly, for the MMSE linear detector, although it is desirable to minimize MMSEÈ

in Q.2{ for every k, the alternative criterion is to minimize the total mean squared

error (TMSE), which is clefined as

å("'.å,,*,,)
I{K

KT{
TMSE : ! ir,rusnn : | (o* - p,*R[ (nwn + o2R) -' **)

k:r À:1

: tr(w) - ir ( lt + o2 (\MR)-']-'w) . (2.26)

To conclude this section, the f'ormulas to calculate the error probability f'or binary

signaling over synchronous CDMA channels are given next. Without loss of generality,

consider the detection of the first nser. The exact error probability is [a7]

p- 
- 

jI-I(

where rr : fp*lpr(CR)r*/ (CR)r, for k : 2,3,..., K. For large K the evaluation

q ( lT Gr¿),,, (t +,rur + "' +,*a*)\ 
(2.27)'\o 

/cRC[ ) 
\--'/

of the above equation is time consuming and the Gaussian approximation to P1 can
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I r f rEl
De r-lseo [4t]

(2.28)

where Q(') i. the compiementary unit cumulative Gaussian distribution, defined as

F,:Q(t+æ* +u|+ .,r] 
-1 'z)

Q@) : h l,* e-" /'cIt, z ) o.

a*$) : Ð Juu¡(i)s¡,(t - i.D cos(2r J"t ¡ 0n).

z:-oo

(2.2s)

It has also been shown in [a7] that the Gaussian approximation in (2.28) is

accurate fbr the MMSE receiver. This is in contrast to the bit-error-rate of

correlation receiver where the Gaussian approximation is quite loose f'or all but

Iow signal-to-noise ratios f48l.

2"2 A-CDMA Svstem Model

The model f'or asynchronous CDMA systems considered in this thesis is similar to the

one in [36, 37]. It should be noted, however, that there is a major difference in the

way the signature wavef'orms are constructed. Here, each signature waveform is not

constrained to consist of a sequence of rectangular pulses as in [36, 37], but rather it
can be of any shape. Later, the case where signature wavef'orms are constructed fïom

signature sequences and chip pulse(s) is also investigated. There are K users sharing

the same channel. The kth user transmits the f'ollowing passband spread-spectrum

signal over the channel of bandwidth W

very

the

very

(2.30)

In (2.30), P is the signal power (the comrnon power assumptio\ pt :. . . : pn : P

is made for simplicity but can be relaxed); l" is the carrier frequency; d¡ is the phase

introduced by the kth modulator and 7 is the symbol duration. The sequence {b¡(z)}
is the binary data sequence of user k. which is modeled as a sequence of independent

and identicallv clistributed (i.i.d.) random variables such that Pr{b¡(z) : +1} :
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Pr{b¡(z) - -1} : 712. The signature wavef'orms sÀ(¿), 1 < k 1 K, are time-

limited to 7 whose spectrum can occupy the entire bandr,vidth i4l. Furthermore these

signature wavef'orms are normalized so that3

^'lI U,.,,I silt)dt :'1 
,

Jo
k: 7,.. ., K. (2.3ï)

The received signal is

Kco

a(t) : Ð I Jzet rçt¡tk(t - iT - r¡) cos(2rJ"t + çk) + n(t)
¡'- r ,-_-

(2.32)

where r¡ and gA,, : 0¡, - 2rJ"r¡, are the delay and the overall phase shifT of the

kth user, which can be modeled as unif'orm random variables over [0,7] and [0,2r]
respectively. The noise n(ú) is additive white Gaussian noise (A\A/GN) with a two-

sided power spectral density of o2 : No12

As with S-CDMA systems, many multiuser receivers have been developed fbr A-

CDMA systems. However, oniy the correlation receiver is considered in this thesis.

The correlation receiver is pref'erred to other multiuser receivers because the com-

plexity of multiuser detection is usually prohibitive in systems with a large number of

users and therefbre a correlation receiver is stiil the only practical solution in many

A-CDMA systems.

Without loss of generality, consider the detection of the first inf'ormation symbol

of the kth user, i.e., ô¡(0). Also, since only relative delays and phases are imporranr

one can set r¡ : 0 and gn : 0 and the delays and phase shifTs of all other users are

interpreted with ref'erence to the kth user. Ignoring the double fiequency component

3Note that this normalization is difierent from the one in Section 2.1, where the signature wave-
forms are normalized to have unit energy. These different normalizations are convenient when
comparing our results with previous results fol S-CDMA and A-CDMA systems, respectively.
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al 2Íc, the output of the

: t/tlztuçqr+f nlz Ð It,¿*n (2.33)
i:L,¿lk

where n is a Gaussian randorn variable with zero mean and variance NsTf 4 and 1¡,¿

is the interf'erence causecl by the zth user, given bv

Z¡'

kth correlation receiver is [37]

rT
: I y(t)s¡.(t) cos(2tr J'"t)dt

Jo

The firnctions Æ¡,¿(r) and Rr¡(r) are the continuous-time partial cross-correlation

functions between the kth and the ith signature wavef'orms. These functions were

originaily introduced in [36] and can be written here as

Ik,¡ : 
fao1-r¡no, o(ro) + b¿Q)Rn,¿(r¿)] .or.pn.

Rn,¿(r) : f, sn(t)sr(t +T - r)dt

Ê-o,o(r) : l,' ,*1t¡ro(t - r)dt

(2.34)

(2.35)

(2.36)

fbr 0 < r 17.If k: z, then denote Rn(r): Rn,n(r) and A¡(r) : Rn,n(r).

In (2.33), the first term is the desired signal component, the second term is the

multiple access intert'erence (MAI) and the last term is due to the background noise.

It is obvious fïom (2.33) and (2.34) that the signature wavef'orms directly influence the

MAI. To maximize the SIR, it is desired to have signature wavef'orms that minimize

the MAI. This ploblem will be addressed in Chapter 6.

2.3 Bandwidth Considerations

When designing the set of signature wavefbrms f'or both S-CDMA and A-CDMA

systems, an important constraint is the available bandwidth. The issue of bandwidth

definition is discussed in this section.
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The bandwidth of a communication system is usually judged based on the power

spectral density (PSD) of the transmittecl signal. Two commonly used bandwidth

measures are the root-mean-square (RMS) and fractional out-of-band power (FOBP)

bandwidth 1221. Let P(/) be the PSD of the ecluivalent baseband transmitted signal

of either (2.1) (with eqr-ral-power users) or (2.32). The RMS bandwidth W of the

system is defined as

/ f* f2 P( f\d,f \ '/'w:l#t (2.37)
\ Jå Pn'rJ )

The system is said to have FOBE bandwidth W at level 4, 0 < r7 < 1, if

Ï1¡¿* P(f)dÍ

lffi<n (238)

When the user's data symbols are equally likelv and independent of each other and

from the other user's data symbols, it can be shown that P(/) is proportional to

DL, lsr (/)l' [49]. Thus the banclwidth of the received signai is determined by the

auerage bandwidth of the set of signature wavefbrms.

Let S¡(/) : .F{sr(ú)}, where -F{.} denotes the Fourier transf'orm. The RMS

bandwidth of the signature wavef'orm s¡(ú) is defined as,

(2.3e)

auero,ge RMS band-

1/2

hen the

a, qslt)) : + Éô, (,0(¿)) : I f /år'ls-lrlt'ay,\"r/ K?iv \u,{\0//- K? /ålSr(/)lra/

On the other hand the marimum RMS bandwidth b",^" (s(i)) of the set is

() 4|'\

(2.41)
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The fraction of the energy of s¡(t) lying outside the

is given by

fîequency interval l-W,W)

e (s¡(t)) : Ï,r,rru l^9r(/)l'd/
(2.42)/å lso("r)1,¿r

Let 0 < tl < 7 be arbitrary. The signai s¡(t) is saicl to have FOBE bandwidth of W aI

Ievel 4 if e (s¡(ú)) ( 4 and theref'ore the signal set is said to have a marimum FOBE

bandwidth W at level 4 if

max {e (r, (¿)) , . . . ,€ (s¡<(¿))} < t.

Similarly, the signal set has auerl,ge FOBE bandwidth W at level 4 if

(2.43)

(2.45)

',, 
: 

+Ðe(s¡(r)) 
: +p-W## =, (244)

fr:1

Given a correlation matrix R, the sets of signals that achieve either minimum

âverage RMS or minimum average FOBE bandwidth are of particular importance for

the designs in Chapter 4. The following proposition specifies these sets under the

RMS bandwidth constraint [50].

Proposit'ion 2.1 (Nuttall, 1968). Among all sets of vectors s(ú) ihat have the same

prescribed K x K unit-d'iaqon¿l correlation matrix R, the optimal signal set vector

that achieves the minimum average RMS bandwidth is given by

s(¿) : V^1/2o(ú)

where r\ : diag (Àr,..., Àn), À¿ ) À¿"r1, âr€ the ordered eigenvalues of R, V is the

matrix of eigenvectors of R in its singular-value decomposition R : Vz\VT and the

vector of basis functions iÞ(¿) is

Õ(¿) : [""(#),,'"(?),,sin(T)]' o<t<r (246)
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Furthermore the individual and average RMS bandwidths of the signals are given by

a2 (s¡(r)) : &(vnnvr)**
Ò'?(s(t)) : fu"fnn¡

where fI is a diagonal matrix with fl*n : ¡2.

[:,*##/(s)c* :xr(t)

(2.47)

(2.48)

A

A similar result has also been shown for the FOBE bandwidth constraint. Since

the result is given in terms of prolate spheroidal rn'ave functions, this fämily of f'unc-

tions is reviewed next. It was shown in [23, 24] that, the solutions to the f'ollowing

integral equation

(2.4e)

are the prolate spheroidal wave functions (PSWFs) {p¿(ú;c)}Ë0, where c: rWT.
The corresponding eigenvalues {xi (c)}f 0 are ordered so that

1 > Xo(c) > Xt(c) > .. . > 0. The PSWFs f'orm a cornplete orthonormal basis

f'or the space of all sqnare-integrable fïrnctions band-limited to l-W,W| The frac-

tion of energy oÍ ç¿(t; c) in the interval [-T l2,T l2] eqvals x¿@); thus the first pSWF

ço(t;c) is the one most concentrated in l-Tl2,Tl2| Moreover, among all the band-

Iimited signals orthogonal to cps(t), cp1(ú) is the most concentratedin[-Tl2,T12] and

so on. Further let

be the shifTed, normalized and time-truncated version of ç¿(t), then {@¿(ú;c)}po fbrm

a complete orthonormal basis f'or the space of time-limited (to [0, ?]), real square-

integrabie fïrnctions. The firnction Q¿(t;c) has out-ofiband energy (outside [-W,W))
equal to 1 - X¿, i.e., e(Ø¡.(t;c)) : 1- Xo. Also @6(ú;c) is the one most concentrated

in [-w,wl and among all the time-limited signals orthogonar to Q6(t), @1(ú) is the

?('-i,')
",r,', 

: 
{

, 0<t<T
otherwise

/=y^z

0,
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Figure 2.2: The first f'our shifTed, normalized and time-truncated PSWFs as orthonor-
mal bases

most concentrated in l-14/,W1, etc. As an example, the set of the first four shifTed,

normalized and time-truncated PSWFs corresponding to c : 4.0 are plotted in Fig.

2.2.

Results similar to that of Nuttall but under FOBE bandwidth constraint are stated

below [21].

Proposit'ion 2.2 (Fain and Varanasi, 1998). Among all the signal set vectors s(t) that

have the same prescribed K x K unit-diagonal correlation matrix R, the optimai signal

set vector that achieves the minimum average FOBE is given by

s(¿) : V^1/2ú(¿) (2.50)

where r\ : diag(À1,...,À¡<),À¿ ) À¿+1, are the ordered eigenvalues of R, V is the

matrix of eigenvectors of R in its singular-value decomposition R : VÂVT and
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the vector of basis firnctions ü(ú) contains the first K shifTed, normalized and time-

truncated PSWFs:

ü(ú) : lØo(t),Ør(t),...,Øx_t(¿)lt (2.51)

Furthermore the individual and average FoBtr of the signals are given by,

e (s¡(t)) : (vnevr)uu e.52)

e(s(t)) : |.r 1ne¡ (2.b3)

where E: diag(1 -Xo, I-Xt,...,1- Xx_t). a



Chapter 3

Signature \Maveforms for
Maxiuwizi*g the Network Capacity
of S-CDMA Systems

In some CDMA systems it is sufficient to maintain the SIR (hence the bit-error-

rate) for each user to be larger than some level a. In such systems the question of

interest is how many users can be simultaneously supported f'or given values of a and

available bandwidth I4l. Maximizing the number of users or the network capacity of

the S-CDMA systems by means of signature wavef'orms is the problem considered in

this chapter. The network capacity provided by proposed signature waveforms is also

compared to that of suboptimal signature wavef'orms. Throughout this chapter we

assume equai received power fbr all users, i.e., ptr: P, k - L,... , K. This assumption

implies that there is a pelf'ect power control.

3.1 Problem Formulation

The problem of characterizing the network capacity of S-CDMA systems can be for-

mulated as f'ollows.

Problem 3.1. Consider an S-CDMA system with either a correlation or MMSE re-

ceiver. GivenT,W,0 < a 17, P and0 <q < 1(thisparameterisf'orFOBE
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bandwidth only), find the largest set of signature wavef'orms {"r(¿), tr(t),..., ro(¿)}

snbject to (i) s¡(ú) :0 f'or ú < 0 ancl t>T; (ii) ,f sfl(t)at:1; (iii) SIRfr > a and

(iv) e(s(t)) < 17 (f'or FOBE bandwidth), or b(s(ú)) sw (f'or RMS bandwidth).

The above problem is diflicult to solve directly. However, by fïrrther restricting

the signature wavef'ornis to be spanned by a finite set of orthonormal basis functions,

this probiem can be solved in two steps as outlined below.

ø Step 1: Assume there exists a set of orthonormal basis f'unctions

{rþt(t),. . .,4,N(t); 0 < ú < 
"} 

f'or the construction of the signature wavef'orms.

Then the maximum numbet of users, K^u*, and the corresponding signature

sequences s¡ â.r€ obtained in terms of the dimension N of the signature space

and the SIR requirement a. This step does not take into account the bandwidth

constraint of the signattue set, hence it is valid f'or both bandwidth criteria.

n Step 2: The optimal basis fïrnctions f'or constructing the users' signature wave-

f'orms are identified according to each bandwidth criterion. By optimality is

meant the I'o'rgest set of orthonormal fïrnctions, which together with the signa-

ture sequences f'ound in Step 1, will give the set of signature wavef'orms whose

average bandwidth satisfies the corresponding criterion stated in (iv) above.

Step 1 is carried out in the next section fbr the MMSE receiver. However it will be

shown that with the resulting signature sequences, the VIMSE receiver becomes the

correlation receiver. Here we would like to point out that the results in Section 3.2

can be inf'erred fïom the results in [15] with some modifications. In [1b] the authors

allow the user's received power to be controlled at any level ancl find the optimal

power allocation. They also process the sufficient statistic r in (2.6) to obtain the

resuits. Here the received power of every user is fixed and the sufficient statistic y in
(2.3) is processed.
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3.2 Optimal Signature Sequences: WBE Sequences

To obtain the maximum network capacity of the system, first find the upper bound

on SIR fbr every user and the corresponding signature sequences that achieve that

upper bound. Comparing this upper bound with the SIR requirement a will give an

upper bouncl on the nnmber of nsers, hence the maxirnum network capacity f'ollows.

It can be seen fïom equafion (2.24) in Chapter 2 f,hat maximizing SIR¡ is equiv-

alent to minimizing N,{MSE¡ f'or k : 1,. . . , K. Instead of minimizing each MMSEÈ

individually, consider minimizing the sum of them, which is precisely the TMSE de-

fined in (2.26). It can be shown that when the sum is minimized, the individual

MMSEÀ will be all equal, hence each of them is also minimized, i.e., each SIR¿ will

be maximized.

When the signature wavef'orms are spanned by a set of ,n/ (,n/ < K) orthonormal

basis functions, they are cornpletely determined by the N x K signature matrix S.

Since R : STS has rank N < K, it is a singular matrix and has only 1ú nonzero

eigenvalues. Because R is non-invertible, the MMSE linear fiiter is given lry Q.I7)

and can be rewritten as f'ollows,

c : P (pn' + ø2R)- R. (3 i)

Using the decomposition R: Vr\VT and Rfr : VÂu¡ it can be shown that

c¡ : PV (rn + o'i)- uo (3 2)

Yr and

--
N

t-

MMSEÀ : 
" Lt 

- P,rI (rT+ "'^-)- '*]
KN1

TMSE : tMMSEfr : (K- ¡ú)P +Pt r. -A:1 -lr-t 
1^t' + t

(3 3)

where z\:diag(Àl,...,À¡r,0,...,0), u¡ is the /rth column of

Ï: diag(l, 1,...,1,0,...,0). The MiVISE¡ ancl the TMSE are given by

and

(3 4)
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where 1 : Plo2 is the signal-to-background noise ratio. Now the problem is to

find N positive eigenvalues {Àr,. . ., À¡¿} that minimize ffl=, #+f , subject to

Ðfl:r Àn : K. The Lagrange method can be usecl to show that the optimal eigenval-

ues are all equal to Kf N, i.e.,

(3 5)

Substitute z\ fiom (3.5) into (3.3) and note

N4N4sEfr:pfr-
L

that Àu¡ : RkÈ: 1. ThenuI

1
1@lN)+I

(3.6)

the SIR¡ are allwhich is independent of k. This together with (2.24) implies that

maximized and equal to

sIR-u* : (3 7)1@lN-1) +1

From the eigenvalues of the correlation matrix R one needs to find the l/ x K
signature matrix S such that R : SrS. Write the singular-value clecomposition of R
as follows,

R : V^VT : [vr, y2,...,v¡r]A[tr,rr,...,t¡<]T

: [r,,rr,...,v¡r] (#t) [t,,rr,...,v¡o]r : #OOt 
: srs (3 8)

where tur,Y2,...,v.K are the eigenvectors which are orthogonal to each other, i.e.,

v[v¡: õ(i- i) It is obvious fÏom the above equation thar S : l#çr, which

also implies that SST : fff. The 1{ sequences whose signature matrix satisfies

this equality are called the Welch bound equality (WBtr) sequences [13] since they

achieve Welch's lower bound on the sum of the squared cross correlations of unit

energy sequences [16]. The family of WBE sequences will be discussecl in more detail

in Chapter 4.
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The fäct that the MN4SE receiver simplifies to a correlation receiver when the

WBtr signature sequences are empioyed can be seen as f'ollows. From (3.2) the filter

f'or the MMSE receiver is

c: py (r,t+o'T) vr: 
=,'r!tr!,*,) uv^vr : =l*!l ..r-. (3 e)\ / P(hlN) t o' -- P(I{1N) * o'¿--

From the above expression ancl the fäct that R2 : ffR, ttr" output of the MMSE

filter can be shown to be a scaled version of the sufficient statistic y as f'ollows

1 : cy : 
-{.-------- 

(Ona+ of) : 
^, -*;--:---v (3.10)" p(I{lN)+o, \" --*' "-^/ p(KlN)io2'

where the noìse vector ñ has exactly the same statistics as the the noise vector n,

namely â, zero-mean Gaussian vector with covariance matrix R.

At this point, it is natural to ask a question about the performance of the decor-

relating receiver with WBE sequences, or more generally, about the design of optimal

signature sequences that maximize the SIR at the output of the decorrelating receiver.

Regarding the perfbrmance of the decorrelating receiver with WBE sequences, it can

be shown that the SIR, at the output of a decorrelating receiver is given by,

SIR¡, :
tilu¡ ru¡

(3.11)NIK+10-uflu¿)
Thus the perf'ormance of the decorrelating receiver depends on the matrix V in the

decomposition R: VAVr, which is usually not unique. When the number of users

K is a Hadamard dimension, orre can choose V to be the normalized Hadamard

matrix. With this choice of matrix V the SIR. in (3.11) reduces to (3.7), suggesting

that the decorrelating receiver in this case also becomes the correlation receiver.

Mathematically, this fâct can be easiÌy proven f'ollowing the same reasoning that

leads to (3.9) and (3.10).

The optimal design of signatrue sequences for the decorrelating receiver is not

available. This is mainly because no sensible design criterion f'or the decorrelating
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receiver could be established. However, such a design is of no practical importance

due to the fäct that the MN,{SE receiver maximizes the SIR among all the linear

receivers and with the optìmal WBE sequences, the MMSE receiver simplifies to the

correlation receiver.

Now returning to the condition SIRn.,o* ) a, one Ìras

K<N (r*!-"'\r\ \r'\r-ã- 
P)

Thus given the dimension 1/ of the signature space and the SIR requirement a f'or all

users, the largest number of users that can be supportecl in a S-CDMA system is

(3.13)

where lrl is the largest integer less than or equal to r.

The above equation shows that the maximum mrmber of users is directly propor-

tional to the dimension of the signature space. Therefore, to further maximize the

network capacity, one needs to identify the largest set of orthonormal basis f'unctions

for a given available bandwidth. This issue is addressed in the next section.

3.3 Optimal Othonormal Basis Functions

The optimal basis functions depend on what bandwidth criterion is used. In what

f'ollows the optimal basis f'unctions are first obtained fbr the FOBE bandwidth crite-

rion. The same approach is then applied to find the optimal basis functions under an

RMS bandwidth constraint.

3.3.1 FOBE Bandwidth Constraint

Define an ly' x ly' matrix whose (*,n) element is

K-.*: 
Lr (t 

*:-ç))

(3 12)

M,

Irf>l
M^n: VhU)ú"(Í),1.f, rn,n : 1,...,N (3.14)
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where Ü"(/) is the Fourier transf'orm of þ"(t) and x denotes the complex conjugate.

In terms of the vector ü(./) : [út(/),...,ür(/)]t, M can be written as

(3.16)

(3.15)

The above definition implies that M,,,, : e(1þ"(t)), the fractionai out-of'-band energy

of the ntli basis firnction. From (2.5),(2.42) and (3.14) it is not hard to verify that

e(s¡(t)) : s[Ms¡, hence the average FOBtr of the signature set defined in (2.4a)

becomes

IM: / ü-(l')v'(f )dÍ
.t f>lvvl

rtt11
e (s(r)) : ;t s[Ms¡, : ]tt (srnns) : ]tt (vrssr) .K? K \ / K \ /

fr:1

Now using the propertv that SSr : ffr rot WBE signature sequences, the FOBE

bandwidth constraint of the signature set can be expressed in terms of the bandwidth

constraint of the basis f'unctions as f'ollows,

e(s(r)) :f..1vr¡ :*Ë €(1þ^(t))<n (3.17)
n:I

Thus when the signature sequences are the WBE sequences, finding the optimal

basis functions is equivalent to finding the largest set of orthonormal functions whose

average FOBE satisfies (3.17). Equation (3.17) also allows one to identify the largest

set (with Nn."*) of orthonormal fïrnctions in terms of prolate spheroidal wave functions

(PSWFs). More precisely, by applving Proposition2.2 f'or the special case of R: I
one can select the Ìargest set of orthonormal functions to be the set of the first ly'-u*

functions {Ør(¿), Qr(t),. . ., ØN,,.*-1(ú)} whose eigenvaiues satisfy

1 N*t*r \- r,,lr) < 1

^r 
-L1 L^2\\)1rrmax I r 

^

I
-n{,- 

^Irrmâx

ly'-r* - 1\-) v;(c).
¿-¿ 

/Le\ /

i:0
(3.18)

From the above expression, it can be seen that the maximum dimension of the

signature space, ÄL,u*, depends only on the producr WT (through c: rWT), and so

does the user capacity Kn,* according to (3.13). Figure 3.1 plots # ll;ttt _ x¿k))
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Figure 3.1: Average FOBE of signature set based on pSWFs

versus l/ f'or some values of c. The eigenvalues corresponding to these values of c are

obtained fiom the data in 151] and they are also tabulated in Appendix A. Given 4,

the valne ly',',n* can be easily determined liom such a figure. The levels of r¡ : lgV
and r¡ : LTo are used later in Figs. 3.2 and 3.3 for this purpose.

3.3.2 RMS Bandwidth Constraint

Analogously, to deriving the optimal basis f'unctions under the RMS bandwidth con-

straint, define the fbllowing N x 1V matrix Q,

(3.1e)

Again using the fãct that SSr : #I, one can show that the constraint on the

average RMS bandwidth of the signature set can be written in terms of the bandwidth

constraint of the basis functions as f'oilows.

ð'z(s(r)) : *r.(n) <w2. (3.20)
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Since Q,rn : bt(1þ".(t)), n : I,2,...,N, the maximum number of orthonormal func-

tions, ly'*u*, is the largest integer satisfying [52]

(3.21)

One of the optimal sets of orthonormal firnctions is the set of sinusoids {sin (nnt l\}{21 .

Having constructed the signature wavef'orms fïom the WBB signature sequences

and the optimal basis functions, it is interesting to investigate the eff'ect of choosing

suboptimal basis firnctions on the network capacity of the S-CDMA systems. This is

studied in the next section.

3"4 Comparison with Suboptimal Signature Wave-
forms

The suboptimai basis fïrnctions considered here have the f'ollowine f'orm.

,þ¿(t) : p(t - iT"), 0 < i < ¡/ - 1 (3.22)

where p(ú) is some chip waveform limited to the chip interval [0, ?}] and ff p2(t)dt : t.

Thus the suboptimal basis fïnctions are just the delayed versions of some chip wave-

f'orm. The dimension of the signature space spanned by the delayed chip wavef'orms

is simply

N": lTf T"l : lWTlIAT"l. (3.23)

Theref'ore, to increase the dimension of the signature space (i.e., to increase the net-

work capacity of the system) one needs to minimize WT". However the minimum

vaiue WT. is limited by the bandwidth constraint of the signature set. Since the

bandwidth of every basis function is the same as that of the chip waveform p(t),

the bandwidth constraints in (3.17) and (3.20) become e(p(t)) I r¡ and, b(eþ\ < W
respectively.

WT>
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3.4.L FOBE Bandwidth Constraint

For a given ?, among all the chip wavef'orrns limited to [0, Q] the optimal chip wave-

form, which gives the smallest I4/7", is obviously the first normalized, time-truncated

and shifTed PSWF @¡(t) whose eigenvalue satisfies

yo(tTWT"):I-q. (3.24)

Solving the above equation gives the smallest WT". IÍ i4l is known, then T" can be

found and @6(t) can be realized. Denote the dimension of the signature space based

on this PSWF chip wavefbrm by ltfnt.

If the chip waveform is selected to be a rectangular pulse, which is common in

many CDMA systems,

( -+, o<t<r"
p(t): 1 {r"

|. 0, othcrwise
(3.25)

then it can be shown that the minimum IMT" is cletermined by the f'ollowing equation

, -, [*'" sinc2(z)dz : 4. (3.26)- _ 
lo

where sinc(r) : sin(trr) l(nz). Denote the dimension of the signature space based on

this rectangular chip wavef'orm by NJ""t.

Finally, another chip wavef'orm of interest is the half-sine wave

(3.27)

This wavef'orm can be shown to have the minimum RMS bandwidth among all the

wavefbrms limited to [0, 7"]. Furthermore, over a wide range of bandwidth, the energy

concentration of this wavef'orm is very close to that of the optimal chip waveform @s(ú)

[52]. The minimum WT, Íor this chip wavef'orm satisfies

p(t):{{r'*(E), o<t<r"
[ 0, othcrwise.

, - lo"' [,'". (" - Ð* sinc (, .;)]' o, : , (3.28)



òt

Similarly, denote the dimension of the signature space based on this half-sine chip

wavef'orm by N"""'.

Note that one always has N"o0t à N'""t and ly'"ont ì lú""tn, but the relation between

ly'j""t and ly'j"' depends on the value of 4. Commonly used values f'or 4 are l0To

and 7To, corresponding to the 90% and g9% bandwidth occupancies respectively [32].

Table 3.1 gives the valrtes oÍWT, f'ound from (3.24), (3.26) and (3.28) f'or these two

values of 2.

Table 3.1: Values of IMT" f'or various chip wavefbrms.

Optimal chip (@¡(t))
Rectangular chip

Half-sine chip

T: I0To T:|Yo
0.6750 1.1170
0.8487 10.2860
0.7769 1.1820

Figures 3.2 and 3.3 plot the values of /y'-.* and l/"s versus 2WT for r¡ : 197

and q : ITa respectively. The advantage of using optimal signature waveforms over

the suboptimal ones are clearly observed fiom such figures. Furthermore, the gain in

network capacity increases significantly as ?i decreases from ITYo to I%. Also it can

be seen fiom these two figures that .À/jin > ¡/j""t and the difl'erence becomes larger

f'or smaller value of 4. This relation between N"'i" and Nj""t is due to the f'ollowing

reasons. (i) The power spectral clensity (PSD) of the half:sine chip decays as l/l-4
while the PSD of tlie rectangular chip decays as l/l-2. (ii) For both 4 : ITo and,

n:70T0, the mainlobe of the PSD of either half'-sine chip or rectangular chip is well

contained in the FOBE bandwidth.

To obtain N-u* fiom (3.18) fbr difl'erent r.,Íhe eigenvalues {Xc(c)} are calculated

based on the data in [51]. For manv practical CDMA systems, the value of WT is
typically large (in the hundreds). Unf'ortunatelv data is not available on the behavior

of y¿(c) f'or large z and lar-ge c : rWT. However, f'or large WT one could use the
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Figure 3.4: Asymptotic gain of network capacity as a function of r¡.

f'ollowing close approximation [53]

¡/- 1

f x'(") e zWT.uo-

Thus the condition to fìrrd N,o,* in (3.18) becomes

^i -l wr 
I"n']ax- L(t-ù12)

(3.2e)

(3.30)

Note that in the above equation, (t-rt)lz plays the role of.WT. as in (3.23). Thus

dividing WT" by (t - n)lz gives the f'ollowing asymptotic gain (fbr rarge WT) in
network capacity when the optimal basis functions are used instead of suboptimal

ol]es)

-
drl

o€
-
=
(n

)v/'rÞrv rc.__ _r-n (3.31)

The asymptotic gain G is plottecl in Fig. 3.4 as a fïrnction of r¡. It can be seen that

when 4 is small, the time-truncated PSWF @6(t) and the half-sine wave have very

fãvorable WT, while the rectangular chip requires much larger WT" and, therefore is
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not efficient f'or constructing the signature space. On the other hand, when 4 is large

(n > I0%) all the chip wavef'orms have almost the same WT". Furthermore, it is
interesting to note that f'or large 4, the rectangular chip has a smaller WT. than the

half-sine chip even though the half-sine wave is a smoother firnction. This fact can

be explained as fbllows. Although the PSD of the half-sine chip decays f'aster than

that of the rectangular chip, its mainlobe is wider and lower in amplitude, theref'ore

it may require a wider bandwidth to contain a small amount of the required in-band

energy (i.e., when 4 is large).

In summary, Fig. 3.4 shows that there is always a gain of approximately 1.4 in

network capacity when using optimal basis functions against suboptimal ones f'or large

values of 4. For small values of 4 the gain becomes very significant. For example when

T : lTo a gain oÍ 2.2 can be achieved versus the PSWF chip ancl the half-sine wave

chip and a gain of 20.0 can be achieved over the rectansurar chio.

3.4.2 RMS Bandwidth Constraint

Since both the rectangular chip and the first PSWF are discontinuous fTnctions,

the RMS bandwidths of these wavef'orms are infinite. Thus the oniy chip waveform

considered under the RMS bandwidth criterion is the half-sine wave. Because the

minimum value of WT. fbr this chip wavefbrm is 1/2. one has

Nj'n : LwTlwT"J :2WT. (3.32)

From (3.21) and (3.32) one has the following relation between IV,',u* and ¡/:i' (f'or

Iarge WT)

¡¿sin-.@-c V s
(3.33)

This relation is plotted in Fig. 3.5. As can be seen fiom Fig. 3.b, an asymptotic

gain of about 1.73 is achieved by emploving optimal signature wavef'orms instead of

suboptimal ones constructed fïom the half-sine chip wavef'orm.
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3.5 Chapter Summary

We obtained the optimal basis functions f'or the construction of the bandwidth con-

strained signature wavef'orms in S-CDMA systems, where each user is equipped with

a MMSE receiver and network capacity is the perf'ormance criterion. Both FOBE and

RMS bandwidth criteria were considered. The network capacity of the systems was

characterized through the signaling duration 7, the available bandwidth I4l (with the

correspondittg ? f'or FOBE bandwidth) and the SIR requirement a. Comparison to

systems empioying the suboptimal signature wavef'orms, which are constructed fïom

the suboptimal, time-disioint basis functions showed a significant improvement in the

network capacity of the systems using the proposed signature waveforms. Since the

MMSE receiver becomes a correlation receiver when the signatrue sequences are WBE

sequences, all the results in this chapter are also applicable to S-CDMA systems that

use correlation receivers.



Chapter 4

MAl-Vlinirnized Signature
\Maveforms f,or S-CÐMA Systems

In Chapter 3 the signature wavef'orms were obtained to maximize the total number

of users of S-CDMA systems subject to the constraint on the available bandwidth as

well as the constraint on the minimum allowable value of sìgnal to interf'erence ratio

(SIR). In this chapter a diff'erent design problem is considered f'or S-CDMA systems.

Here, the question of interest is: given a fixed nnmber of users K, what signature

wavef'orms optimize the users' perf'orrnance sribject to a bandwidth constraint. The

optimization criterion chosen is minimization of mr-ritiple access interf'erence (MAI).

More precisely, the signature wavef'orms are designed to minimize either the TIP or

the TMSE defined in (2.25) and (2.26), corresponding to the correlation receiver or

the MMSE receiver respectively. In the special case when the number of user K is

the size of a Hadamard matrix then the optimal signature waveforms are obtained

to maximizethe individual SIR at the or"rtput of the underlying receiver. The design

is carried out under both RMS and FOBE bandwidth constraints. The performance

of the proposed signature wavefbrms is also compared to that of the suboptimal ones

constructed based on the Welch bound equality (WBB) sequences. In this chapter,

equal received power f'or all users is also assurned.

/1,
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4"L RMS Bandwidth Constrained Signature \Mave-
forms for Correlation Fùeceivers

As mentioned earlier, the clesign cr-iterion fbr the correiation receiver is to minimize

the TIP in (2.25). Define the f'oliowing total squared correlation (TSC) of the set of

all sisnature waveforrns

KK
TSC : \- \-,/ ',/--)

2KK:IÐ*?,(1,' 'uu"1'¡o') (4 1)

(4 )\

It is ciear fiorn (2.25) and (a.1) that the TIP f'or the correlation receiver can be written

AS

TIP: K(o' -P) +P.TSC.

Thus minimizing TIP is equivalent to minimizing TSC. The problem of designing

signature wavef'orms for a correlation receiver to have the minimum value of TSC

under the average RMS l¡andwidth constraint can be formulated as f'ollows.

Problem 4.1. Given T and W. Design a set of K signals {"r(¿),...,s6(t)} that

minimizes the TSC in (a.1) sr"rbject to the f'oilowing constraints. (i) Vk, s¡(ú) : 31ot

ú < 0 and t>T; (ii) 
"Ë s2^(t)dt:1, V,k; anct (iii) ö(s(t)) <W.

It should be noted that the above design problem for K : 2 has been solved

in [18] (where the solutions under the FOBE bandwidth constraint are also given).

Furthermore, it can be seen that the above problem is very similar to the problem

addressed in [20]. More precisely, in [20] the authors found signal sets whose cor-

relation matrix has a maximum determinant, but here we find the set of signature

wavef'orms whose correlation matrix gives the minimum sum of squares of its eigen-

values. The same approach as in [20] is used to transform the original problem into

new finite-dimensional f'ormulations.
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4.L.I Equivalent Froblems

Note that the TSC in (a.1) can be rewritten as,

KK
TSC : It (Rnr)' : tr (RRr) .

L-L .J-\

(4 3)

Let b2 (R) denote the squâre of the minimum bandwiclth of the optimal signal set

corresponding to the correlation matrix R. Then the f'ollowing propositions provide

diff'erent f'ormulations f'or Problem 4.1.

Propositi,on 4.I. Problem 4.1 is equivalent to Problem 4.2 below, which is stated in

terms of the correlation matrix R.

ProbLem 4.2. Find the correlation matrix R that minimizes tr(RRr) subject to

R > 0; R¿¡:1, VÆ; ô'(R) <W2. (4 L\

A

ProoJ. Let s1(t) be the solution to Problem 4.1 with the corresponding correlation ma-

trix R1. Let R2 be the solution to the Problem 4.2 Írom which s2(t) is found through

(2.45). The results of Nuttall (Proposition 2.1) and the constraints in Problem 4.1 im-

ply that b'(Rt) < ó'(rt(¿)) < I4l2. Since R1 satisfies the constraints in Problem 4.2,

one has tr(R1Rf) > tr(R2RI) O" the other hancl, since b2(s2(¿)) : ór(Rr) {Wr,
s2(ú) satisfies all the constraints in Problem 4.1, and hence tr(R2Rf) > tr(R1Rf).
Thus one concludes that tr(R1Rf) : tr(RzR]-) and the two problems yield signal

sets having the same minimum value f'or the TSC. n

Propositi'on 4.2. The signal design Problem 4.2 is equivalent to Problem 4.3 below,

which is stated in terms of the eigenvalues of the correlation matrix R.
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Problem 4.3. Fincl the set of eigenvalues {À1, . . . , À-¡.} that minimizes ![, Àfl, subject

tor

À¡)

tr(Â)

L<K<K;

(1{)-1tr(Àr) < wl: Qwr)2 (4 5\

A

ProoJ. The ordering constraint on the eigenvalues and the RMS bandwidth constraint

in Problem 4.3 are the consequences of Proposition 2.1. It is well known that the

eigenvalues of a non-negative definite matrix are non-negative and sum to tr(R) - K.

The f'act that the TSC can be expressed as the sum of squared eigenvalues of the

correÌation matrix is established below, using the orthogonality property of the matrix

V.

À¡+r I 0,

- K; and

TSC : tr(RRT) :II(VÀVTVIVT¡ :tr(VÂ2VT)
K

: tr(Â2vrv) :tr(Â2) :Ð^?

Algorithms to construct a correlation matrix which has a prescribed set of eigenvalues

and diagonal entries (here R is a unit-diagonal niatrix) are also known. One such

algorithm using the T-transJorm is provided in [17] and given in Appendix B f'or

ease of ref'erence. Another algorithm can be f'ound in [20]. Hence the equivalence of

Problem 4.2 and 4.3 is demonstrated.

Propositi,on 4.3. Problem 4.3 is equivalent to the f'ollowing problem.

Problem 4.4. Find the set of eigenvalues {À1, . . . , À¡<} that minimizeslf;:rÀfl, subject

to

^ 
> 0, tr(Â) :7ç, tr(ÂII) : KwT.

(4 6)

n

lRecall frorn Chapter 2.3 that ff is a K x K cliagonal matrix with fI¡¡ : ft2

(47\
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A

ProoJ'. As in [20], it is first shown that the ordering of the eigenvalues will be a

natural consequence of the optimization problem. Suppose that Ä minimizes tr(Ä2)

and satisfies ali the constraints of Problem 4.3 except f'or being well ordered. Assume

À¡ ( À¡11 f'or some 1 < k < 1{ and consider r\' that is obtained fiom r\ by modifying

only the two diagonal entries Ä;th and (k+t)tn as À/* : Àí+r : ()¿f À¡+r) 12. Thenit

can be verifiecl that tr(Â) : tr(À') : 1( ancl tr(Ä'fl) < tr(z\Il), but tr(z\"¡ < ttlz\'¡,

a contradiction.

Next it is shown that the inequality on the bandwidth constraint can be replaced

by an equality. Suppose there exists a solution Â to Problem 4.3 where all diagonal

entries are well orclerecl but with tr(Âfl) : tí|:r k2 À¡ : Kr| - e- < Kwf;. Except

f'or the trivial case when R : I, there always exists an integer 1 < k < K such

that À¡ - Àr+r : €r ) 0. Consider Â' obtained fïom A by modifying the kth

and (k + l)th diagonal entries as À'* - À¡ - ô and Ài+, : À¡+r -l- ô where ô :

min{e-l(2k+t),r¡12} > 0. Then it can be shown that rV satisfies all the constraints

in Problem 4.3 but tr(A'2) < tr(Â2), a contracliction. Hence the proof. n

4.L.2 Solutions

The f'ollowing proposition f'ollows fïom solving Problem 4.4.

Proposi,ti,on 4.4. Given T,W and K. If 1 < (2WT)2 < (K +I)(zK +I)16, then the

minimum total squared correlation (MTSC) of the set of K signals of duration 7 and

average RMS bandwidth less than or equal to I,4/ is

\4rsc : {: (, * ?=tf 
¡r + r)tz¡r + r) - ,0.(1Yl)']], \" - ¡/ \' (o\/ - 1)(¡ú + 1)(2^i + 1)(sN + IL) )

where l/ is the largest integer iess than or equal to K such that

l¿ Rl

r¿ qlw!: çzwr)' > (¡i + 1)(2{v- - 1)(2¡l + 1)

5(4¡i + 1)
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The MTSC is achieved by the signal set

E -,rl-,..("t\ ^...(2trt\ ^,^(*":\1', 0<t<T (4.10)s(ú) : 
1f |v,t,,, ["' (ä) , 'i,' (ä,J , ,.i' (:r ) )

where

ttK)¡

N+
1'

(/

;

¡\i

rl
UL

l/r

:

r\ : diag (Ài, .

. K (.Àr:¡\r-l-
\

for k : 1, . . .,

À,t : 0' f'or Å; =

1)(2N + 1) - 6QWr)21[(¡r + 1)(2¡l + 1) - j!:]
(N - 1)(N + 1)(2¡l + 1)(8¡ú + 11)

+I,...,K;

and V is any K x K orthogonal matrix such that V^Vr is a unit-diagonal matrix.

Ir QWr)2 > (K +l)(zK +L)16, then MTSC: K and the set of K orthonormal

signals achieves the minimum TSC.

If (2WT)2 < 1, then no signal of duration 7 and RMS bandwidth less than or

eqnal to W exists. A

ProoJ. It is well-knov/n that arnong all the signals time limited to 10,7], the signal

sin(ntlT) has the minirnum RMS bandwidth of w:IIQT). Thus when

wf; : (ZWT)' < 1 there exists no signal of duration 7 and RMS bandwidth less than

or equal to W. When w3 : l, K signals are identical to sin(rtlT) and MTSC : K2 '

If (2.48) is applied fbr R : I then the minirnum average RMS bandwidth of

Korthonormalsignalsisfr@(seealso[52]).Theref'ore,when
wl > (K+I)(2K+1) 16, an orthonormal signal set is always available and MTSC : K.

Nontrivial solutions f'or the optimal signal set exist only when

r<r3< (K +t)(2K +1)

To find the solutions to Problem 4.4,

now and f'orm the Lagrangian

O

ignore the nonnegativity

(4.11)

(4.12)

constraint of Â for

(å^--") (åo'^--*ú)-42
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By setting ALIA^k: 0 ones obtains

xr: ï,(o, + *rk') ' (4.13)

(4 14\

(4.15)

(4.16)

(4.18)

But

fïom

Lhe constraints in (4

(1
I at+6

¿ì1I at+5
\

which one can solve

-t
-2

.7)

(K

(ó1

fbr

K

J,¿\

give a set of linear equations

1 ì r,

t,f

'*I)a2 :

- r)*, :
a2 às fbilows

K)(2r

3K

and

+

¿

1)o,,2LLwO
I r7--;--1\7ãi\--^
\1\ -r r)\¿^ -t r)

C\1

The optimal eigenvalues are f'ound from (4.13) and are given by the f'ollowing formula

\ _1,5[(K+t)(2K+1) -6uil16+r)(zK+1) -6Æ21 7 IAk: L f , k:I,...rK.

(4.17)

Note that due to condition (4.72), a1 ) 0 and a2 < 0, hence the À¿ are well ordered

as required.

Now check the nonnegativitv constraint of Â. Because of the ordering of the À¡,

it is suffìcient to require that À7ç ) 0, which implies the f'oilowing

w!> (1{+t)(2K-I)(2K+r)
5(4K + 7)

If the above condition is not satisfied, simply set À¡¡ : 0 and solve the whole problem

again, but with only K - 1 variables À1,..., À¡ç-r. In general one can assume the

maximum number of nonzero eigenvalues to be i/ and require that l¡¿ ) 0. Then it
is not hard to see that l/ is determined by (4.9) and the new formuta f'or the optimal

eigenvalues is given by (a.11) as in the proposition. n
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Since V can be any K x K orthogonal matrix that satisfies the requirement that

V^Vr has unit diagonal entries, the set of optimal signals that achieves the MTSC

is not unique. As mentioned bef'ore, one method to generate the correlation matrix

R (hence the matrix V) is given in Appendix B. Furthermore, the optimal signals

have cliff'erent RN¡IS banchvidths except when the size of the set is a Hadamarcl matrix

dimension, as shown below.

From equation (4.13) one has

ÂfI: (zn2 - a1n) 14 lql

which implies

1

A2

IVz\fIVr : "V^2Vr-
A2
): av^2vT -A2

ln1]VAV I

A2

*'R.
A2

(4.20)

Because the matrix V^2VT does not necessarily have equal diagonal entries, it f'ollows

from (2.47) and (4.20) that the individuals RMS banclwidths of the optimal signals

are not all equal. Some signals have RMS bandwidths larger thanW and some have

smaller bandwidths. However when K is a Hadamard climension, V can be chosen

to be the normalized Hadamard matrix H whose components are +Llt/K and hence

H^Hr has unit cliagonal entries. With this choice of V, the matrix HÂ2Hr also

has equal diagonal entries "t å Dl.t:, Àfl and theref'ore all the signals in the optimal

set have the same RMS bandwidth of W .

Another interesting property of the optimal signal set whose cardinality is a
Hadamard dimension is that the set maximizes the individual SIR at the output

of each correlation receiver. This simply f'ollows fïom the fäct that with the choice
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V: H one has

K

Ðnï, : (RRt)u*: (v^2vr)Àk
;-1

1K: (Hn2rrr) ,.,,: I f .t
/ kk * Å^i 

e.21)

which is the same f'or everv k ancl theref'ore minimum. From (2.19) the new expression

f'or SIR¡ is as f'ollows,

sIRr, : K^/
(4.22)K(\ - .ù + 1ti.:, À3

Thus the SIR¡ is equal and maximized f'or every k.

The above discussion means that when 1{ is a Hadarnard matrix dimension, the

optimal signature wavef'orms can be obtained to maxirnize the individual SiR¡ f'or

every user. These optimal signature wavef'orms are also valid if Lhe marimznz RMS

bandwidth constraiut of the signature set defined in Q.al is considerecl. As a special

case, it can be verified that fbr a system with 1( : 2 users, Proposition 4.4 produces

the same result as in [18].

To conclude this section, an example to design f'our signals that achieve the MTSC

is given next. Note that when K:4, in order to have nontrivial solutions tlfr should

be in the range of (1, 1512). The MTSC is given below and it is plotted in Fig. 4.1

as a f'unction of the time-banclwidth product.

ttr": 

{

s fr+ 6-?'3)'1"l-' I 
I

16 L - 04- Srfi)il
T l'------gB--l
a fi + G5 - 2w'zò'?f"

L'-"J
A+

1S ,lr3< ff
Æ <.2< W
-rù - "- LI

#<r3<lPLt - ¿

E<*3

(4.23)

Erample 4.7. Let WT : 1.25, hence uB : 6.25. The optimal eigenvalues are found

to be 
^: 

diag(7.2519,1.7357,0.9419,0.670b) and MTSC:4.193g. when v is a
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Figure 4.1: Minimum TSC versus time-bandwidth product: K :4, RMS bandwidth
constraint.

normalized Hadamard matrix

1111
1 -1 1 -1
1 1 -1 -1
111a-L -1 --t -t

the optimal signals, all of which have the same RMS bandwidth of W : I.25lT, are

plotted in Fig. 4.2. Note that there are two pairs of signals which are mirror images

of each other about Tl2 inFig. 4.2. Optimal signals obtained from the matrix V
which is f'ound bv the recursive algorithm in Appendix B are plotted in Fig. 4.3. The

RMS bandwidths of these signals arc 7.17401T', 1.2g1glT, i-.J506lT ancl I.IT40lT
respectively.
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4"2 F OtsE Bandwidth Constrained Signature \Mave-
forms for Correlation Receivers

This section addresses the same problern of designing signal sets that achieve the

minintum value of TSC, but uncler the FOBE bandwidth measurement. The desien

problem can be statecl as fbllows.

ProbLem 4.5. Given T,W and 0 < q < 1. Design a set of K signals {"r(¿),..., "r(¿)}
that minimizes the TSC in (4.1) subject to the f'oilowing constraints. (i) Vk, s¡(ú) : 6,

f'or ú < 0 and t > T;(ii),Iot s'zrQ)at: 1, VÅ;; ancl (iii) e(s(t)) < a.

The methocl to solve the the above probiern is similar to the one presented in

Section 4.L Tor solving Problem 4.1. In particr-rlar, based on Proposition 2.2 it is

shown in Appendix C that Problem 4.5 is equivalent to the f'ollowing problem.

Problem 4.6. Find the set of eigenvalues {À1, . . . , À¡<} that minimizes f[, Àfl, subject

to2

A > 0; tr(z\) : K; tr(ÂE) : Krt. (A)4\

It can be seen that Problem 4.6 is basically the same as Problem 4.4 except for the

last constraint in (4.24). The f'ollowing proposition provides the solution to Problem

4n

Propositi,on 4.5. Given T, w, K and 0 < r¡< 1. If *D:í:i xt < r - r¡ 1¡s, then

the minimum total squared correlation (MTSC) of the set of K signals of duration ?
and average FOBE bandwidth at level 4 less than or equal to W is

Nirsc:#['.##ä]

u(¡r) :#f,r -xt)2, tr(N) :#Ï,t -xn)
È:0 - k:0

(4.25)

where

(4.26)

2Recall from Chapter 2.3 that E : cliag(1 - Xo, 1 - Xt,..., 1 - Xx-ù.
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and ¡/ is the largest integer less tharr or equal to K such that

(1 - x¡o-')(r(¡r) - n) < 
"(¡/) - nu(N).

The MTSC is achieved by ihe signal set

s(t) : vLr/2 [øo(¿), Ør(t),...,8t -r(t)l'

where

(4.27)

(4.28)

(Àt,...,À¡<);
('ir(¡/) -"(N)) +(o(.ni) -?)(1 -Xr-r) , k:1,...,ly';¡/ u'(N) - "(¡/)Àr:0, k:l/+I,...,K (4.2e)

and V is any K x K orthogonal matrix such that V^Vr is a unit-diagonal matrix.
rr ] ç-I{_1 ^.rr È Lk':o Xr > I - n, then MTSC : K and the set of K orthonormal signals

achieves the minimum TSC.

If 1 - T ) X.o, then no signal of duration 7 ancl FOBE bandwidth at level 4 less

than or equal to W exists. A

ProoJ. The proof is similar to the proof of Proposition 4.4. From the properties of

PSWFs it is known that the firnction ry's(ú;c) is the unique signal which has the

smallest FOBB of ¡6 among all signals of duration 7. Thus when 7 - r¡ ) X6 there

exists no signal of duration 7 and FOBE bandwidth at level 4 less than or equal

to W. When 1 - r7 : X0, K signals are identical to @6(f ;c) and MTSC : K2. By

applying Proposition2.2 Tor the case of an orthonormal set, i.e., R : I, the minimum

âverage FOBE of K signals satisfies

. K-L
e(s(t)) :;Ð(1 - xr).

k:0

Thus whe" þ>!í;'Xr , | - n, orthonormal signals are always available, hence

MTSC - K.

dia

K
/\:
\. -/\lt 

-

ag
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From the above discnssion, nontrivial solutions for

only when
1 I{-7

-i-5-xr<1- n{xo.I{ L'
fr:0

the optimal signal set exist

As in the proof of Proposition 4.4, first ignore the nonnegativity constraint on z\ and

f'orm the Lagrangian,

(4.31)

(4.32)

the above equations one

(4.30)

\
- x,t-r)À* - K, 

)
produce

K /t< \ /K
¿(^,ot,c,2) :IÀ|-o, (f 

^- 
-K|-*,[ÐftÀ:r \l':l / \r:r

Taking the derivative with respect to À¡ and setting it to 0

. 1.xu: z[*r + tr(1 - xu-t)] .

But the constraints in @.2Q give a set of linear equations

(
) *tri-a2u : 2q

l*'**" :2
where u: u(K) and u : u(K) are defined in (a.26). füom

can find
2(nu - u) 2(u - rÌ)at: -i _i and az: à _i

and the optimal eigenvalues are f'ound frorn (4.31) as

(4.33)

(4.34)
(nr-u)+(u-n)0-x¡-r)\. -/\li 

- u2-u

Note that, due to condition (4.30), one has u > n. Furthermore, by applying the

Cauchy-Schwarz inequality and fÏom the fäct that the \¡, are all distinct, one also has

u) u2, which together with u4 > 0 implies z ) u4. Thus one has û1 ) 0 and a2 < 0.

since 7 - xo < 1 - xt I ... < 1 - Xx_l,fïorn (4.31) it can be seen that the À¡ are

well ordered, as required.
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Now check the nonnegativity const¡aint of À. It suffìces to require that À7¡ ) 0,

which implies
na-u

,k¡<-l ) 1-r --j:-. (4.35)u-n
If the above condition is not satisfied, simply set À¡¡ : 0 and solve the whole probiem

again, but with only lf - 1 variables À1,. . . , ÀK*1. It can be shown that the number

of nonzero eigenvalues 1/ is given in @.27) ancl the corresponding f'ormula f'or the

optimal eigenvalues are given as in (4.29).

Similar to the case of RMS bandwidth, the f'ollowing observations can be made

regarding the optimal signature wavef'orms given by Proposition 4.5.

o The set of optimal signature wavef'orms is not unique due to the fäct that V

can be any K x K orthogonal matrìx that satisfies the requirement that V^VT
has unit diagonal entries.

o The optimal signature wavef'orms have different FOBEs, except when the size of

the set is a Hadarnard matrix dimension. Thus when K is a Hadamard matrix

dimension, the results of Proposition 4.5 are also valid if the marimum FOBE

bandwidth constraint of the set is considered.

o When the number of users is a Hadamard dimension, the optimal signature

wavef'orms can be obtained to maximize the individual SIR at the output of

each correlation recciver.

o As a special case, when K : 2 the results of Proposition 4.5 agree with the

results given in [18] f'or the minimum cross-correiation between two signals of

duration 7 and with FOBE banclwidths at level 17 less than or equal to W.

Finally, an example is given next to illustrate the design of the optimal sets of

four signals under the FOBE bandwidth constraint. The NiITSC is plotted in Fig. 4.4

as a function of uo:ZWT f'or various values of 4.
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Figure 4.4: Minimum TSC versus time-bandwiclth product: K : 4, FOBE bandwidth
constraint.

Erample 4.2. Consider c : nWT : 4.0 (or W : 7.273217) and \ : 0.I, thus ¡¡ :

9.9589 x 10-1 , Xr :9.12LIx 10-i, Xz : 5.1905 x 10-1, Xs : LI021x 10-1. Proposition

4.5 yields N : 3 and MTSC : 6.3551. The corresponding set of optimal eigenvalues

is {1.8580,L.6228,0.5192,0.0}. The optimal signal sets are shown in Fig. 4.5 and

Fig. 4.6 corresponding to two diff'erent ways of obtaining the matrix V.

4"3 Signature \Maveforms for MMStr Receivers

Sections 4.1 and 4.2 dealt with the design of signature wavef'orms f'or S-CDMA systems

when the correlation receiver is employed. Though simple, the correlation receiver

suflèrs fiom the near-far problem, i.e., the bit error rate of the correlation receiver

is sensitive to diffèrences in the received powers of the desired user and interfering

users [2]. Even when perf'ect power control is assumed, the bit error rate of the

correlation receiver is still orders of magnitucle fãr from optimal. As explained before,

t4

t2

r0
O(n
F
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this is dle to the correlation of users through their signature wavef'orms (even though

these signature wavef'orms have been optimally designed), which makes the interuser

interfèrence, not white Gaussian noise, the dominant degradation.

The linear MN/ISE receiver clescribed in Chapter 2 is a more sophisticated receiver

which accounts f'or the presence of the other interf'ering users in the CDMA chan-

nel. It has been shown that the MMSE receiver can dramatically improve the error

perf'ormance over the correlatìon receiver 144, 45, 46). When the MMSE receiver is

employed, the signature wavef'orms obtained in Sections 4.1 and 4.2 are no longer

optimal and therefbre new sets of signature wavef'orms f'or this type of receiver need

to be f'olrnd. This is preciselv the goal of this section.

The problem of designing signature wavef'orms f'or the MMSE receivers under

either RMS or FOBE banclwidth constraint can be stated similarly to Problems 4.1

and 4.5 respectively. The only difl'erence is due to the objective function. For the case

of MMSE receiver, the ob.jective is to minimize the TMSE given in (2.26). With the

perfect power-control assumption (i.e., Pk : P, k :7,. . . , K), (2'26) can be written

AS

rMSE : KP -",. ([t. Ë"-']-')

: KP-ri#:,
(4.36)

(4.37)
K

: P\-^ ¿-r (Plo2)À¡+1

K
: P \-1,.r),- -l 1l-1' L\t"N''/

¡r: I

where, as bef'ore, Àr, k - 1, . . . , K, are the eigenvalues of the correlation matrix R

and 1 : Plo2 is the signal-to-background noise ratio.

Following the same procedure as in Section 4.1, Appendix D shows that it is

possible to transf'orm the original design problem (stated in Problem D.1) into a new

finite-dimensional optimization problem f'or each bandwidth criterion. Let A - fI,
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u : w20 : (2WT)2 when the RMS bandwidth is considered and A : E, u : rl when

ihe FOBE bandwidth constraint is usecl. Then the finite-dimensional optimization

problem, under either an RMS or FOBE bandwidth constraint, can be formulated as

f'ollows.

Problem4.7. Fincl the set of eigenvalues {À1, . . . , À¡.} that minimizes !l(:r (lÀ* + 1)-1

subject to (i) Â > 0; (ii) tr(À) : K; and (iii) tL(ÂA): Ku.

To solve the above optimization problem, again the Lagrange method can be

used. However, closed-f'orm expressions f'or the solutions are not available due to

the fact that one obtains a system of nonlinear equations to solve f'or the Lagrange

muitipliers. Nevertheless, Proposition 4.6 below gives a procedure to fìnd optimal

signature waveforms. Note that in Proposition4.6, tn: k2, k:7,. '.,K if the RMS

bandwidth is considered and €r : 1 - Xr_t, k : 7,...,K if the FOBE bandwidth is

used.

Propos'it'ion 4.6. Given T, W, K and 0 < r7 < L (n is only required f'or FOBE

bandwidth). If €r 1 u 1 +(Ð:í:r{¡., then the set of K signais of duration ? with an

average bandwidth less than or equal Lo 14/ that minimizes the TMSE is given by

s(ú) : VA1/2f (¿) (4.38)

where

r(¿) :

and

I
I

,ßlrt"(fr) ,sin (T),...,sin (ry\', o(ú

lâo(t), Ør(t), . . ., Q,r-r(t))' ;

< T; fbr RMS bandwidth

f'or FOBE bandwidth

À:diag(Àt,...,À¡<);
./ f n

À1,:?-tlt/ 
,\V ot laz€P

(4.3e)-1) , k:1,...,K.
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The quantities 41,

Í

I
that satisfy ihe f'ol

a2 ãrê, the roots of the f'ollowing system of nonlinear equations3

Dít:, -+ : I{ (1rt2 :-yrtz¡
J at + aztr

tf:, €l 
= 

: Kr^/rl, i 1-t/z I[, €o
1/ úr1 -f a2(¡

lowing constraints.

(
) -*,
I
[ -€rctz

(4.40)

(4.41)

The matrix V is any K x 1{ orthogonal matrix such that V^VT is a unit-diagonal

matrix.
rr -- \ 1 s--1(It u ) fr >,1:r(¡, then the set of optimal signature wavef'orms is any set of

orthonormal signals.

IÏ u < {1, then there is no signal of duration 7 whose bandwidth is less than or

eqnal toW. A

The constraints on û1 and a2 in (4.41) are necessary and sufficient to have non-

negative À¿s, which is required. This can be easily verified based on the ordering of the

X¡s. The system of nonlinear equations given in (4.40), together with the constraints

of (4.4I), can be solved numerically in order to find the l¡s, which give the optimai

signature waveforms. If no solutions for a1 and a2 can be f'ound then simply set

À¡r : 0 and solve Problem 4.7 again but with only K - 1 variables À1,..., À¡<-r.

From equation (4.39), it can be shown that the optimal signature waveforms found

in Proposition 4.6 have different FOBEs, except when K is a Hadamard matrix di-

mension. Sirnilar to the TSC-minimized signature wavef'orms, when K is a Hadamard

matrix dimension, the TMSE-minimized signature waveforms can also be made to

maximize the individual SIR¡s in (2.2$. This can be verified as f'ollows. Substitute

R: vz\vr and R¡ : vÀu¡, where u¡ is the kth column of vT, into (2.23). using
3These two equations are to satisfy constraints (ii) and (iii) in Problem 4.7 respectively.
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the orthogonality propertv of V one can write MMSE¿ as

MNdSEk : p - ru[ (I * 7-t¡-t¡-t ru. (4 L)\

Now if v: H then the components of u¡ are trlt/K ancl the MMSEI becomes

IKMMStr,.- P_P:\--¡: /
I\ _¡__t

(4.43)1+ (7À¡)-1

Since MMSE¡s are the same f'or every ,k and their sum is minimized, the individual

MMSEÀ is also minimized. This implies that the SIR¡ in (2.24) is maximized and its

value is given by

SIRft : Ð;t:, rÀr(1 * rÀr)-'

-.

D;:, (1 + ?ÀÈ)-1

Note that there is a major diff'erence when finding the optimal signature wavef'orms

fbr the correiation receivers (Propositions 4.4 and 4.5) and fbr the MMSE receivers

(Proposition 4.6). The TSC-minimized signature set is f'ound independently fiom the

signal-to-noise ratio level 7, whereas the TMSE-minimized signature set needs to be

found f'or each value of 7. However, when 7 is large, the dependence on 7 of the

solutions given by Proposition 4.6 is very small, as shown in Tables 4.1 and 4.2 for

dift'erent bandwidth criteria. Figures 4.7 to 4.10 ptot the optimal signature waveforms

for diff'erent bandwidth measurements and various ways of obtaining matrix V. These

signature wavef'orms are all obtained by setting ? : 14d8.

Finally, we would like to point out that although this chapier only considers

signature wavef'orms designs f'or the correlation and MMSE receivers, the design for

the decorrelating receiver can be carried out similarly. From the expression of SIR

in (3.11), an obvious and sensible design criterion is to minimize \{-r(R-t)m :
tr (R-1), or in terms of the eigenvalues, to minimjze ft (^-i).

(4 44\
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Table 4.1: Dependence of the optimal eigenvalues on ?: K :4 and RMS bandwidth
of WT : 1.25.

7 (dB) À1 A2 À3 À4

lJ r.3177 1.0907 0.8781 0.7136
7 1.3194 1.0892 0.8769 0.7L45
8 1.3206 1.0882 0.8761 0.7151
I 7.3213 1.0875 0.8757 U. / l-5i)

10 l.3218 1.0871 0.8754 0.7757
11 1.3221 1.0869 0.8752 0.7159
T2 r.3223 1.0867 0.8750 0.7160
13 r.3224 1.0866 0.8750 0.7160
t4 7.3225 1.0865 0.8749 0.7161
15 r.3226 1.0865 0.8749 0.7767
16 r.3226 1.0864 0.8749 0.776r

Table 4.2: Dependence of the optimal eigenvaiues on 7: K : 4 and FOBE bandwidth
withc:4.0andn:0.1.

7 (dB) À1 À2 l-..J Àa

o 2.7397 0.7627 0.2967 0.2015
7 2.7695 0.7309 0.2938 0.2058
8 2.7887 0.7i05 0.2923 0.2085
q 2.8009 0.6975 0.2974 0.2702
10 2.8087 0.6892 0.2908 0.2173
11 2.8136 0.6840 0.2904 0.2L20
72 2.8167 0.6806 0.2902 0.2724
13 2.8787 0.6785 0.2901 0.2127
'tA

2.8199 0.6772 0.2900 0.2129
15 2.8207 0.6764 0.2899 0.2130
16 2.82t2 0.6759 0.2899 0.2131



o+

.)

lF\.'
. l.)
>)

fi

(n

Ð.- il\

cÙn
b¡

U)

1.5

lF
\1

>)

ñ
O U.)
d
I
c)^

'õv

€
r-05

-4

d
Fo -t

(n

-0.5 L

0

tlT

Figure 4.7: TMSE-minimized signature wavef'orms under RMS band\Midth constraint:
K : 4, WT :1.25 with V a Hadamârd matrix.

0.80.60.40.2

-1.51
0

tlr
Figure 4.8: TMSE-minimized signature wavef'orms under RMS bandwidth constraint:
K : 4, WT :1.25 with V obtained using the T-trans.form.

0.80.60.40.2



oÐ

t.-

t/

lta\\

"1 . .' I t'r *^'
/t :.
'i.. t : t,-, 

-r)'.

-l 0 0.2 0.4 
! tm 0.6 0.9 1

Ll f

Figure 4.9: TMSE-minimized signature \Mavef'orms under FOBE bandwidth con-
straint: K : 4, c: 4.0, rÌ :0.7 with V a Hadamard matrix.

2

lFl> 1.5

Þ>

"-
9l
Ø

.Ð"."
ç

-4

to-u.5
õ

a

lFr r{
>>

-o
I.IJ

d
OcD ilI

!U

-Å
< -0.5
ct-bo _l

(n

_1.5, ' ' I

0 0.2 0.4 0.6 0.8 I
tll:

Figure 4.10: TMSE-minimized signature wavef'orms under FOBE bandwidth con-
straint: K : 4, c: 4.0, T : 0.I \Ä/ith V obtained using the T-transform.



oo

4.4 Comparison with Suboptimal Signature \Mave-

forms Constructed from WBE Sequences

This section compares the performance of the optimal signature wavef'orms obtained

in the previous sections with that of suboptimal signature wavef'orms. The suboptimal

signature wavef'orms are constructed fïom Welch bound equality (WBE) sequences.

This fämily of sequences is discussed next.

4.4.L WBE Sequences and the Uniformly-Good Property

If the signature wavefbrms are constructed as linear combinations of some orthonormai

basis functions as in (2.5), then the TSC in (4.1) can be written in terms of signature

seouences as.
KK

TSC:tt("otrr)'.
i:r j:L

The lower bound of TSC fbr the set of K signatrue sequences,

(K >,n/) is given by Welch [16] to be

ssr : ffr

(4.45)

each of length .nú

(4.46)

The sequences that achieve Welch's bound on TSC are called Welch bound equality

(WBE) sequences [14]. The necessary and sufficient conditions f'or having WBE

sequences f'or a given K and ly' was first established in [13] as,

TSC>€
1V

(t L7\

where I is an lr/ x ,^ú identity matrix. In general, f'or given K and 1ú, the set of WBE

sequences is not unique. One such set is identified in terms of ti,ght Jiames in the

wavelets literature [54],

,, : f ftyl+,cos(f) ,sin(f) ,.. ,cos(=ç*) ,,t"(.Çu)]', r/odd
'" I l¡ r /( VF ¡cos¡p) ,sin(f) ,'..?cos (n,sin(]ff)]r, l/even
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Another set may be obtainecl by a recursive algorithm using the T-transform as

proviclecl in [17] (see Appenciix B). The construction oÍ bi,nørg WBE sequences fiom

linear codes can also be fbtrnd in [13].

It has been shown in Section 3.2 that the WBE signature sequences also minimize

the TSME at the o¡tpr:ts of the Mil4SE receivers. Furthermore, using WBE signature

sequences makes an MMSE receiver iclentical to a correlation receiver. When the

WBE sequences are usecl, the SiRs at the outputs of the MMSE (or correlation)

receivers are all equal ancl maximized. This property of WBE sequences is called the

¡nif'ormly-goocl property (UGP) in [13]. In terms of maintaining fairness among users'

UGP is clesirable. Unf'oltunately, the UGP does not hold f'or the TSC-minimized and

TSME-minimizecl wavefbrms in general. This property only holds when the number

of users K is a Haclamard matrix dimension as discussed in the previous sections.

When K is not a Haclamard matrix dimension, one way to maintain the UGP is

to assign the signature wavef'orms to rsers cgcli,callg atter each symbol interval. In

this way each user will see the same o,uero,qe interfêrence afïer K symbol intervals.

Another straightf'orwarcl way to have the UGP among the set of signature waveforms is

to constrrict the signature wavefbrms based on the WBE sequences. In this manner)

the UGP of the resulting signature set will be inherited from WBE sequence set.

This construction of signature wavef'orms is exactiy the same as the one considered

in Chapter 3 and is described in the next section.

4.4.2 Signature \Maveforms Constructed from WBE Sequences

As shown in Section 3.2, the maximum SIR at the output of each MMSE receiver

(or correlation receiver) is given by (3.7). On the other hand, the TSC and TMSE

assurne the t'ollowing expressions:

TSC: ry
¡/

(4.48)
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and

T\tstr : O, (, - 1Q{lN) + i) (ALq\

It f'olLows fiom the above two equations that it is necessary to maximize the dimension

/ü of the signature space to minimize TSC or TMSE. Based on the property of WBE

sequences, the maximum values of l/, called N-u*, have been determined in (3.18)

and (3.21) of Chapter 3 f'ol FOBE and RMS bandwidth criteria respectively.

Obviously, the price paid f'or inheriting the UGP fïom WBB sequences of the

suboptimal signature wavef'orms is the increase in TSC (or TMSE). In other words,

the TSC (or TMSE) of WBE sequence sets is always larger than the TSC (or TMSE)

of the optimal signature wavef'orms f'ound previously. This is illustrated in Figs. 4.11

and 4.72 f'or the TSC in S-CDN4A systems under RMS bandwidth constraint and with

K : L6 and K : 32 users respectively. In each of these two figures, both the absolute

values and the ratio of the TSCs achieved by the proposed signature waveforms and

the signature wavef'orms constructed fïom WBE sequences are shown. Note also that

the absolute values of TSCs are plotted using a log scale. The TSC achieved by the

suboptimal signature wavef'orms in these figures can be determined from (3.18) and

(4.48). They are given by

TSC : (4.50)
K'

l(,n.æwrv -z) r+l

As can be seen from Figs.4.11 and 4.I2, on the average, there is approximately

70% of TSC (i.e., total multipie access interference) that can be reduced by using the

optimal signature wavef'orms. This reduction of multiple access interfèrence provides

a significant improvement of bit error rate (BER) as shown in Figs. 4.13 and 4.74

for S-CDMA systems with K : 32 users and with two difl'erent vaiues of RMS

bandwidth (WT :0.8 and WT :0.9). The error probabilities plotted in these

fìgures are calculated based on the Gaussian approximation (equation (2.28)) and
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they are also averaged over all users. Also shown in Figs. 4.13 and 4.I4 are the

perfbrmances of TÌViSE-minimized signature wavef'orms, i.e., the signature wavef'orms

designed fbr MMSE receivers. R,ecall that the WBE sequences also minimíze the

TMSE. The improvement in BER is much larger f'or the MMSE receiver than for

the correlation receiver and this is due to the more complicated structure of the

MN4SE receivers. Furthermore, it can be observed fiom Figs. 4.13 and 4.I4 that the

improvement in BER provided by the proposed signature wavef'orms decreases as the

available bandwidth increases. If the available banclwidth is increased enough to aff'ord

orthogonal signature wavef'orms, then the perf'ormances of WBE, TSC-minimized and

TMSE-minimized signature wavef'orms are all the same and equal to that of the single-

user system.

Figures 4.15 and 4.16 show the improvement in BER when using the proposed

signature wavef'orms f'or the case of FOBE bandwidth constraint. The bandwidth

specifications used in these two figures are c : i0.0 (or 2WT : 6.37) and r¡: 0.1.

The error probability curves in Fig. 4.15 are obtained using both the exact formuia

and the Gaussian approximation of (2.27) and (2.28), respectively. On the other

hand, only the exact f'ormula is used f'or Fig.4.i6. In both Figs.4.15 and 4.16 the

BERs are averaged over all rmers. The inf'eriority of the WBE signature waveforms is

clear fÏom Figs. 4.15 and 4.16 and can be explained as follows. Using the Gaussian

approximation (2.28), the probabilitv ofrerror when using the WBE sequences equals

to Pu: Ç (\Æm;): Q (/ffitr). wrr"" the signal-to-noise ratio 7 is large,
/ 

-r'

one can approximate P" - A (/"5) For the system under consideration, there

can be up to l(r'u* : 6 orthogonal users, whose perf'ormance achieves the perf'ormance

of a single-user system. Howevet, adding one more user to the system (K :7) causes

P"= Q(JÐ:7.2 x 10-3 and aclding two users makes P" - A(r/3):4.16 x 10-2.

On the other hand, the TSCs of the optimal signature wavef'orms corresponding

to seven and eight users are 7.0149 and 8.9722 respectively. This means that the
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optimal signatrue wavefbrms are very close to orthogonal to maintain the good BER

perfbrmance.

Recall that the SIR perf'ormance of the TSC-minimized or TN4SE-minimized sig-

nature wavefbrms is not unifbrm over all nsers, except when the number of users is

the size of a Hadamard matrix. Thought in all the previous discussions the BER

is aueraged over all the users, here we would like to point out that the user-specific

BER perf'ormance of the proposed signature wavef'orms still outperf'orms the signature

wavef'orms constructed fïom WBE sequences in most of the cases. As an example,

Table 4.3 lists the SIRs at the outputs of both 1VIF and MMSE receivers for different

fämilies of signature waveforms at 1 : 74d8. The system under consideration has

c : 10 and 4 : 0.1 (which means there can be up to -ly'-u* : 6 orthogonal users).

When using the MF receivet, there are seven users in the system, whereas there are

eight users in the system using MMSE receiver. To compute the SIRs for either MF

or MMSB receiver, the matrix V is generated using the ?-transfbrm algorithm given

in [17] in order to realize the correlation matrix R. Note t]rat since a Hadamard ma-

trix of size eight exists, the correlation matrix R in this case can also be chosen as a

normalized Hadamard matrix so that the SiRs f'or all users are equal and individually

maximized.

As can be seen from Table 4.3, when a normalized Hadamard matrix H is not

available (or not used) f'or R, the SIRs are not unif'orm. Nevertheless, the difference

among SIRs is quite small and the worst SIR perf'ormance is still much better than

the uniform SIR perf'ormance of the WBE signature waveforms. This is further illus-

trated in Figs. 4.17 and 4.18, where the perf'ormance of WBE signature waveforms

is compared with the worst, the best and the average perf'ormances of the TSC-

minimized and TMSE-minimized signature waveforms respectively. In computing

the error probability fbr each user, the exact f'ormula in l47l has been used.
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Table 4.3: SIR¡ (in dB): CDMA systems with c : 10.0, rl :0.7 and 7 :74d8

User
Index

(,k)

MF Receiver
(K :7)

N4N/ISE Receiver (K : 8)

WBE
0ptimal

WBE Optirnal v tH V:-Fl
1 o.öÐ 13.77 4.28 12.80 13.19
o
L tl.ðÐ 13.71 4.28 12.80 13.19

t) 6.85 13.77 4.28 1q 1A
1ó. r¿t 13.19

6.85 1t i1It). f -L 4.28 13.25 13.19

L) 0.ðð 13.92 4.28 13.84 13.19

o 6.85 13.96 4.28 13.81 13.19

7 rl.ðÐ 13.77 4.28 13.77 13.19

8 4.28 12.80 13.19

4.5 Chapter Sumrnary

Bandwidth constrained signature wavef'orms that minimize the multipie access inter-

f'erence have been obtained f'or S-CDMA systems. Both the RMS or FOBE bandwidth

constraints were considered. For the correlation receivers, closed-f'orm expression for

the optimal signature wavefbrms exists, whereas f'or the MMSE receivers a set of

two non-linear equations (with constraints) can be numerically solved to realize the

optimal signature wavef'orms. The perf'ormance of the optimal signature waveforms

has been compared to that of the suboptimai ones constructed fïom WBE sequences.

It general, it has been demonstrated that the reduction in multiple access interfer-

ence achieved by the optimal signature wavefbrms can significantly improve the BER

perfbrmance in S-CDN4A systems.
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Chapter 5

Sirnplified Receiver in Walsh
Signal Space

It was shown in Chapters 3 and 4 that when the bandwidth constraint is the FOBE

bandwidth (which is typically a more practical measure than the RMS bandwidth),

the optimal signature wavefbrms are constructed as linear combinations of the nor-

malized, time-truncated and shifted prolate spheroidal wave functions (PSWFs). The

block diagram of the receiver in Fig. 2.1 implies that, in order to obtain the sufficient

statistic in the linear receiver, the signature wavef'orms need to be generated at the

receiver. However when the signature wavef'orrns are synthesized fîom the PSWFs,

this is obviously not a simple task, taking into account the complicated nature of

these functions.

This chapter is concernecl with the practical impiementation of the linear receiver

when such optimal signature wavef'orms are used. In particular, the same approach

as in [55, 56] of using a Walsh signal space to realize the simp]ified receiver is studied.

As pointed out in [55], there are two main advantages when using the Walsh signal

space:

(i) The Walsh functions fbrm an orthogonal, complete basis f'or the L2 signal space,

a space that includes all the signature wavef'orms of interest. This means that
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by increasing the dimensionality of the Waish signal space, the receiver perfor-

mance can approach th.e optimal perf'ormance (when no approximation f'or the

receiver is made).

(ii) Since the approximated (projected) signature wavef'orms in the Walsh signal

space are staircase fïnctions, the bank of the correlators (or matched filters) in

Fig. 2.1 can be replaced by an ordinary integrate-and-dump filter, f'ollowed by a

sampler which samples at a higher rate. The advantage of the latter operation

is that it is easier to implement in hardware.

It sholld be noted that the second advantage discussed above is considerably more

important when the whole vector of sufficient statistics y (or most of its elements) is

required at the receiver, f'or example as in an MN4SE receiver.

5.1 Structure of the Simplified Receiver

Let w(ú) : lwt(t),w2(t),...,wn(t)lr, 0 < t S T, be the basis vector for a Walsh

signal space of dimensi on L : 2D . Write the index k (k + 0) as f'ollows [55]

D-l
¡* : l.k¿zd (5 1)

d:0

where k¿ € {0,1} and D is the smallest integer such that koq 10. Then the Walsh

fÏnctions can be expressed in terms of coefficients k¿s as

,+\ - Í #ilí."s" ('o' lr"'Fl)' o < t < T
wk(t):1t:f - \ L r-)/ (5.2)

|. 0) otherwise

where sgn(r) - 1 if r ) 0and sgn(z) - -1 tf r <0. As an example, the fìrst eight

Walsh functions are plotted in Fig. 5.1 f'or T : L.0.

To obtain the simplified receivers, consider the approximation of the optimal sig-

nature wavef'orms using the first -L orthonormal Walsh fïrnctions as follows:

3(¿) : [A(¿), îr(t),...,3it(¿)]t : Aw(¿) (5 3)
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where S(¿) is the approximation of the optimal signature waveform vector

s(ú) : [rr(¿),..., rr.(ú)]t ancl the I{ x L coef{icient matrix A is given by

, t T-,A: I s(ú)w (¿)d¿.
.t0

(5.4)

Recall from the results established in Chapters 3 and 4 that the optimal signature

wavef'orm vector under FOBE banclwidth constraint can be commonly expressed as

s(¿) : srvlr¡ tù.ùi

where S is an N x K signature matrix and ü(ú) contains the first K shifled, normal-

ized and time-truncated PSWFs, i.e., ü(ú) : lØo(t),Ør(t),...,àn_r(ú)]t For rhe

signature wavef'orms obtained in Chapter 3, ly' < K and the columns of matrix S

are the WBE sequences. On the other hand, f'or the optimal signature wavefbrms in

Chapter 4 one has lú : K and the signature matrix S is given by Proposition 4.5.

It f'oilows from (5.3), (5.4) and (5.5) that

(5 6)

Thus the approximation of optimal signature wavefbrms is essentialiy the approxi-

mation of the first N shifTed, normalized and time-truncated PSWFs. Given L, Lhe

N x L matrix B : ff V1t;*t(Í)clú can be pre-computed and stored in the memory

at the receiver. Note also that A: SrB.

Having obtained the approximated signature wavef'orms at the receiver, the suf'-

ficient statistics at the output of the bank of matched fìlters (filter k is matched to

îÆ(ú)) in Fig. 2.1 can be calculated as f'ollows:

O: 
Io" s(t)3(t)dt : o 

.lo' sþ)w(t)dt. (5.7)

Since at any point in the interval [0, ?] the Walsh functions receive only one of the

two values +IlfT, the integration in the above equation shoulcl be very simple. Let
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the interval [0,7] be partitioned

I:0, 1,..., L-I. From (5.2)

constant in the lth sub-interval

into I sub-intervals and index these sub-intervals by

it can be seen that the kth Walsh firnction ,u¡(ú) is

UT I L, (I + I)T I L) and its value is given by

,n(l)

Define an

Then it is

: #'lI"* ('"' fr,z'. (,*;) å])

r.(¿+1)T / L

I s(t)dt: hft, k, : r,2,. . . , L
.J LT/L

LxLmatrixHsuch
not harcl to see that

L-r

(5 8)

(5.10)

rT

t,

that H¡¿ :'u)k_l(l - 1) and let h[ be its kth row.

(5 e)s(t)w¡(t)dt : f r*(¿)
t:0

where 
" 

: lïi/" s(t)dt, ï;ilt sQ)dt,. .., I[,-r¡r/Laft)dt]r. It fonows rïom (b.7) and

(5'9) that the approximated sufficient statistic can be procluced fiom ! as f'ollows

1: AHÍ: SrBHi.

It is important to realize that y can be generatecl fiom the received signal g(t) in a

very simple manner. It requires only one integrate-and-dump filter followed by a sam-

pler which samples the output at I time instants t : (I + r)Tl L,l : 0, 1,..., L - r.

This observation allows one to replace the linear receiver in Fig. 2.I by a simpler

structure which is shown in Fig. 5.2. We would like to point out here that the higher

sampling rate required in the simplified receivers shoulcl not be a ma.jor implementa-

tion problem. This is because the original sampling rate (in the receiver of Fig. 2.1)

is at the symbol late, which is typically quite lowl.

Technicaily, the approximated sufficient statistic i generated in (b.10) can be

made as close to the sufficient statistic y in (2.3) as desired by increasing the dimen-

sionality -L of the Walsh signal space. Thus it may be appropriate to refer to f as the

rln rnany current CDÀ44 systems, the sarnpling rate is equai to the "chip" rate, which is much
higher than the symbol rate.



81

6'(¿)

îr(¿)

în(¿)

Figure 5.2: A simplified linear receiver in Walsh signal space.

quasi-sufficient statistic. However, since the optimal signature waveforms are contin-

uous functions in (0, ?), the Walsh signal space has to have an infinite dimension to

truly represent all the signature wavef'orms. But this also implies an infinite number

of samples in one symbol duration 7, which is impossible in practice. Theref'ore,

although it can be approached as closeiy as desired by increasing -L, the sufficient

statistic can never be producecl by the receiver structure in Fig. 5.2. Obviously, an

important question is how small L can be so that near-optimal performance can be

achieved by the simplified receiver in Fig. 5.2. This is investigated in the next section.

5"2 Error Performance of the Sirnplified Receiver

In this section, the error perf'ormances of both simplified correlation and MMSE

receivers in the Walsh signal space are evaluated under various system configurations.

In particular, the performance of the first user in the system, who is considered to be

a typical user is evaluated. The calculation of error probability is based on the exact

f'ormula in (2.27). It should be noted that, f'or the simplified receiver, the correlation

matrix in (2.27) is given bv R : ffS1t¡sr(i)clr.

srsn (r1 C

o uasi-sufficient statistic
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Figs. 5.3 and 5.4 present the error perf'ormances of the simplifìed correlation and

MMSE receivers fbr a S-CDMA system loaded with six users and having a bandwidth

specifìcation of c: 10.0 and r7: 0.01, respectively. Shown in each of these figures are

the perf'olmance curves of the simplified receiver in Walsh signal spa,ces of diff'erent

dimensionalities. Also shown in each of tÌrese figures is the optimal perf'ormance

crlrve, i.e., the perf'ormance of the receiver in Fig. 2.1 when the true optimal signature

wavef'orms are available at the receivers. Similar error perf'ormances are presented in

Figs. 5.5 to 5.8 but for systems with bandwidth specification of c : 10.0, 4 : 0.7

and loacled with seven or eight nsers. l*lote tliat there can be up to five orthogonal

users in a S-CDMA system with c : 10.0 and r¡: 0.01, whereas increasing 4 to 0.1

increases the mrmber of orthogonal users to six.

It is clear fiom these figures that the optimal perfbrmance can be closely ap-

proached by increasing the dimensionality of the Walsh signal space. It also appears

from these figures that to achieve a near-optimal perf'ormance, the dimension of the

Walsh signal space needs to be increased as the nurnber of users in the system in-

creases. For example Figs. 5.3, 5.5, 5.7 show that L : 16 is sufficient to realize

a simplified correlation receiver if there are six users in the system, but it requires

L : 32 f'or the systems loaded with seven or eight users. Moreover, compared to the

simplified correlation receiver, the simplified MMSE receiver can be realized with a

smaller Walsh signal space in order to achieve a near-optimal performance. As an

example, Figs. 5.6 and 5.5 show that it requires L : 16 Walsh functions to approach

the optimal perfbrmance f'or the VIMSE receivers, but .L : 32 functions are needed

f'or the correlation receivers. Finally, the same observations hold f'or systems with

different FOBE bandwidth specifications and different number of users.
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5.3 Chapter Summary

A simplified linear (multiuser) receiver in Walsh signal space has been developed

fbr S-CDMA svstems. The need f'or this receiver structure arises from the fact that
the optimal signature wavef'orms under FOBE bandwidth constraint are generatecl

from the complicated prolate spheroidal wave fbnctions. Investigation of the error

perf'ormances of the simplified receivers show that the optimal perf'ormance can be

closely approached by increasing the dimensionality of the Walsh signal space. In
general, only a relatively small number of Walsh functions is required for the simplified

receiver to achieve a near-optimal perf'ormance.



84

.t
rñ

21416182022
7 (dB)

Figure 5.3: Error perf'ormance of the simplified correlation receiver in a CDMA sys-
tem: c: 10.0, n : 0.01 and 1{ : 6.

Figure 5.4: Error perfbrmance of
c:10.0,?:0.01 andK:6.

12 13 14 15

? (dB)

the simplified MMSE receiver

l6

in a CDMA system:



ðô

l0-

11.

Éll0'
rYì

l0-o

l0'

r^-8lL,, 
lõ ll t2 13 t4

r (dB)

Figure 5.5: Error perf'ormance of the simplifiecl correlatiorr
tem: c: 10.0, rl :0.I ancl K :7.

receiver in a CDMA svs-

l0-

r¿.

F.] IU
an

Figure 5.6: Error perf'ormance
c: 10.0, ¡l:0.I and K :7.

12 t3 14 15 16
7 (dB)

of the simpiified MMSE receiver in a CDMA system:



86

-ll0'

p¡ to-'
añ

_?
10"

12 14 t6 t8
r (dB)

Figure 5.7: Error perf'ormance of the simplified correlation receiver in a CDMA sys-
tem: c:10.0, T:0.7 andK:8.

l0'

d
Fl l0-"
añ

l0-6

Figure 5.8: Error perfbrmance of the simplified MMSE receiver in a CDMA system:
c:10.0, T:0.7 andK:8.

12 13 14

? (dB)



Chapter 6

Signature and Chip \Maveforrn
Design for A-CÐVIA SYstems

As discussed bef'ore, signature wavef'orm design f'or CDMA systems, especially f'or

asgnchronous systems, has received little attention. This chapter is a contribution to

this important area. Specificallv, signature waveform design is considered for asyn-

chronous CDMA systems equipped with a correlation receiver. The correlation re-

ceiver is pref'erred to other multiuser receivers because the complexity of multiuser

detection is usually prohibitive in asynchronous systems with a large number of users

and a correlation receiver is still the only practical solution.

As in the case of synchronous CDMA systems) a common and important perfbr-

mance measure f'or the correlation receiver is the signal-to-interf'erence ratio (SIR)'

In order to maximize the SIR,, it is necessary to minimize the variance of MAI at the

oltplt of each correlation receiver. Ideally, the signature waveforms should be de-

signed so that the MAI is zero. However this is likely impossible due to the limitation

of the transmission banclwiclth as well as the asynchronous nature of the transmitted

signals. Nevertheless, f'or a given transmission bandwidth, the set of signature wave-

f'orms that procLuces a minimum MAI is desired. Finding such signature wavef'orms is

preciseiy one goal of tliis chapter. To quantify the transmission bandwidth, both the
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RMS and FOBE bandwidth criteria can be used. If the FOBE bandwidth is consid-

ered, then the Fourier transf'orms of the optimal signature wavef'orms can be f'ound

through a series expansion in prolate spheroidal wave fïnctions, which is similar to

the approach in [32]. On the other hand, if the R.N4S bandwidth is used, then the

optimal signature wavefbrms can be fbuncl through a series expansion in sinusoids.

The signature wavef'orms obtained as described above essentially may admit any

shape as long as they are limited to the symbol cluration and have a specifìed energy.

There is, however, a popular f'orm of CDMA known as direct-sequence CDMA (DS-

CDMA) where more structure is imposed on the signature wavef'orms. In particular,

each signature wavef'orm is constructed by modulating a given chip wavef'orm with the

corresponding binary s'ignature sequence. Clearly with these signature waveforms, the

SIR at the output of each correlation receiver depends on both the signature sequences

and the shape of the chip wavef'orm employed. To maximize the SIR in this case, one

needs to jointly optimize the signature sequences and the chip wavef'orm. Recently,

random signature sequences have been widely used to analyze the performance of

DS-CDMA systems [32, 33,34,35,57]. Some reasons f'or using random signature

sequences are as f'ollows [34]. First, random signature sequences are ofTen used in an

attempt to match certain characteristics of extremely complex signature sequences

with a very long period. Second, random signature sequence models may serve as

substitutes f'or deterministic models when there is little or no information about the

structure of the signature sequences to be used. Finally, f'or a system with a large

number of users and very long signature sequences, the use of random signature

sequences remains the only hope to obtain computable closed-form expressions f'or

the system analysis. With random signature sequences, the average SIR depends

only on the chip pulse shape.

As mentioned in Chapter 1 the chip pulse shape can be either time-iimited or

band-limited. With band-limited chip wavef'orms, the signature wavef'orms are not
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time-limitecl to the svmbol interval 7. This means that the CDMA systems models

introduced in Chapter 2 need to be re-fbrmulatecl. The designs of band-limited chip

wavef'orms to minimize the MAI in A-CDN4A systems were stucliecl in [57, b8, 59, 60],

whereas the design of time-limited chip pulse appearecl in [32]. In this chapter onlv

the design of tiure-lirnited chip wavef'orms are consicrerecl.

It is important to note tliat when a time-limitecl single chip wavef'orm is used

and when the delavs between the desired user and the interf'ering users are exactly

multiples of the chip duration, the chip puise shape has no eff'ect on the MAI. In
such situations the MAI depends only on the cross correlations of the signature se-

quences, which can be large if the signatrue sequences aïe chosen randomly (or not
well designed, f'or deterministic signature sequences). Instead of using a single chip

wavefbrrn, stlppose that two orthogonal chip pulses are alternatively employed for
the construction of signature wavefbrms. Now if the delays of the interfèring users

are exactly odd multiples of the chip dnration, the signals from interfering users will
be orthogonal to that of the desired user (which means that the MAI is zero), no

matter what are the signature sequences (ranclom or deterministic). This discussion

is graphically illustrated in Fig. 6.1 where the signature wavef'orm of the kth user

(the desired user) and the signature wavef'orm of the .7th user (the interf'ering user)

delayed by one chip duration (7") are shown. In this particular exampie, the single

chip wavef'orm is a half:sinusoid and the double orthogonal chip waveforms are the

half-sinusoid and half'-cosine. Furthermore, fbr convenience, the maximum absolute

value of each chip wavef'orm is normalized to be one.

Motivated by the above observation, in this chapter we also introduce the use of
multiple chip wavef'orms as a means of reclucing MAI in asynchronous DS-CDMA
systems. Again, the series expansion method can be used to obtain the optimal chip

wavefbrms. Numerical results show that a significant gain can be achieved by using

multiple chip wavef'orms instead of a si'gle chip wavefbrm.
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The chapter is organized as f'oliows. In Section 6.1, the SiR at the outp¡t of the

correlation receiver is evaluated f'or both the asynchronous CDMA system and the

DS-CDN4A system using random signature sequences and multiple chip wavef'orms.

In each case, the SIR is expressecl in terms of the Fourier transf'orms of the signature

wavef'orms or the chip wavef'oïms respectively. These expressions suggest a method to
obtain the signature and chip wavef'orms via a selies expansion. Banclwidth constraint

and problems under consideration are discussed in Section 6.2. The series expansion

method is used to obtain optimal signature wavef'orms and multiple chip waveforms

in Section 6'3 and Section 6.4 respectively. Section 6.5 investigates the advantage of
multiple chip wavef'orms technique fbr sorne common chip wavef'orms. Finally, Section

6.6 summarizes the chaoter.

6"1 SIR, Evaluation

6.1.1 Asynchronous CDMA systems

Recall fÏom Section2.2 that the signal received over an A-CDMA channel is

a(t) JzrUult¡sk(t - iT - r¿) cos(2 r J"t * çn) + n(t) (6 1)

where 7¡ and tp¡, are the delay and the overall phase shifl of the frth user, which

are modeled as unifbrm random variables over 10, ?] and [0,2tr] respectively. The
noise n(t) is additive white Gaussian noise (AWGN) with a two-sided po\Mer spectral
density of N612. The output of the kth correlation receiver for the detection of ór(0)

isK

zk:\m,bk(0)T+\m t lt,¿*n (6.2)
i:1,¿fk

where n is a Gaussian random variable with zero mean and variance NsTf 4. The
random variable I¡r,¿ is the interfêrence causecl by the zth user and is relatecl to the

Kco
:\- \-

L L-J
À:1 i:-oo
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partial cross-correlation fïrnctions between the kth and the zth signature waveforms

through (2.34).

The random variables 1¡,¿ and n can be shown to be uncorrelated and have zero

mean. Furtherrnore, clue to the svmmetry involved, it can be assumed that b¡(0) : a1

was transmitted, thus the SIR. at the or"rtput of the kth correlation receiver is given

by

sIRu : lÛ(z\lbt9) : +L))2*--"^ 
var(Z¡lb¡(0) : +1)

: 
f(ffi) 

'+#,ä-"u'(ro'o)l (63)

where Eu : PT is the energy per symbol. Note that 1¡,¿ depends on the random

variables bi : [ôi(-1), bi(0)] , tp¿ aîd r¿. As usual, these random variables are assumed

to be mutually statistically independent, Ìrence the variance of 1¡,¿ can be computed

as f'ollows:

var(1¡,¿) : E,n {Er, (8,.,(13,)bn,ç¿,r¿))}

: 
+ I"l+ t," (l ,n,) a,,fo.,

: # l,' 1o7,,?) 
+ Êi,uç'¡]a' (6 4)

Though (6.4) is useful to evaluate the variance of MAI f'or a given set of signature

wavef'orms, it is not convenient to use when finding the optimal signature waveforms.

In what f'ollows, it is shown that var'(I¡,¿) can be written in terms of the Fourier

transf'orms of s¡(t) and s¿(ú). As will be seen later, the new expression f'or var(I¡,¿)

is very helpf'ul when f'ormulating and solving the optimization problem considered in

this chapter.

Since s¡(ú) and s¿(f) are time limitecl to [0, ?], it f'ollows thal R¡",¿(r) : ñ,¿,n(T -")
and ff Rfl,o(r)dr : [i rt.r1r\ar. Theref'ore the integral in (6.a) becomes

rT- - ¡T
I lR'u o(r) + ñ'u,çr¡l ¿, : IJo L '''-' 1 Jo

l*?o,n?) + Rl,¡,(r)) dr (6 5)



93

Define ut,¿(r): /å s¡(t)s¿(t+T - r)dú ancl letV¡,¿(f): F{u¡,,¿(r)}, where,F{.}

denotes the Fourier transf'orm. Since ,r,o(r) : sr(r) e ão(-r), where @ denotes the

convolution operation and l¿(r): s¿(r * 7), then Vn*(J): ^9r(/)SJ(¡)e-t2"Ír and

lvn,,(Í)l' : lSr(,f)Plscîl2. Let JQ):ul,ne) +ul,rft), then /(r) is time-timitect ro

l0,2Tl. Furtherrnore, it can be shown that ./(r) : IQT - r), i.e., /(r) is an even

fïrnction about 7. Since ,f (r) : R\,oî) + R!*(r) f'or 0 < r I T, the right hand side

(6 6)

of (6.5) can be written as

rT, - 1 r2T

J, lz?u,,?) + Rl,^.(r)l ar : ; J, lul.o(ò + u!,r(r)l ar

I roo: 
; J_*lvnn7)l' + lV,r(f)l') d/

: 
l_* ,srrÐl'lsn(Í)l'¿J.

|tow, combining (6.4), (6.5) and (6.6) gives

var(I¡,¿) : # | _**lt ulÐ1, lso( il1, df

and the SIR in (6.3) becomes

srR,,: ff+l *{ É [* Êuu)t,ts,(/)t,d/l
L\ ^¡. 

/ 27'3 u__uuuJ-*'*"" " I

(6 7)

(6 8)

6.r.2 Asynchronous DS-CDMA systems with Random sis-
nature Sequences

In this section, the model of asynchronous DS-CDMA systems using random signature

sequences and multiple chip wavef'orms is introduced. The SIR at the output of a

correlation receiver is also obtained as a fïrnction of the number of users, the processing

gain and the Fourier transfbrms of the multiple chip wavef'orms.

Let g{t), gz(t), . . . , gn(t) be D distinct chip wavefbrms each time-limited to [0, T"l

whose energies are normalized so that
fT"
I g?"@at :7", n'L: 7,2,. . . ,D.

.to
(6.e)
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Then the signatrue wavefbrm of user k is constructecl as f'ollows

II -1
sÈ(ú) : I lru(pr)sr(t- DjT") + s¡(D¡ +r)s2(t- (Dj + 1)?:)

j:0

+...+ sr(D.j+D-L)gn(t-(Dj +D- 1)"")] (6.10)

where sÀ : ["*(0),sr(l),...,r*(N - 1)] is modeled as a vector of i.i.d. random

variables taking values in {-1, +1} with equal probability. To simplify our analysis,

it has been assumed in (6.10) that the processing gain N : T lT"is an integer multiple

of D, i.e., ly' : DM.

To evaluate the SIR. in this case, the variance oÍ I¡,¿ in (6.3) needs to be re-

evaluated, taking into account the randomness of the signature sequences. That is,

var(I¡,¿) : E,o,"o {E,u lÛr,

: E"-,",{#lr'

the index ¿ of the delay r¿ in

: ,[i s¡(t)s¡,(t - r)clt and 7¡(

is an even firnction, time-lim

one has

(no,çt!,n1s6 si, bi, ço,ro))l|

l*\,nî) + R?,kî)ld,) .

(6.11) has been removed f'or simplicity.

Í) : f {u*(r)}. Then Vn(f): l,Sr(/)1,.

ited to [-T,T) and Ê¡(r) : un(r) for

(6.11)

Note that

LeIL u¡"(r)

Since 'u¡(r)

01r17,

, [' ñ,uqr¡R,çr¡a, : [' uuç,¡on(r)dr
Jo J-r

f*: I vt'U)VU)dJ
J -oo

: [* P*rÐfEnU)l',]Í.
J-æ

Comparing (6.6) and (6.12) Ieads to the f'ollowing iclentity,

fT- - fT^I ln?^,,fr) +nl,^.1r¡ldr:z | Ê.^.çr¡flçr1a".lo Jo

(6.72)

rNote that with this definition,,u¡(r) is difierent from u¡,¡(r) defined in Section 6.1.1.

(6.13)
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Thus (6.11) becomes

var(1¡,¿) :

e, {Êr{')} :

E"-,", 
{ + l,' fr.rØR od,}

+ l,' a"^ 
{R-rç¡ }"* {Ê,1';} a' (6 1L\

Tofirrtherevaiuate(6.14),letl: lrlT")betheintegerpartof rfT.andr:r-17".
ItfbllowsthatIandrarerandomvariablesunif'ormlyclistributedover{0, 1,...,¡¿-1}
and [0, [) respectively. Since the components of vector s¡ âr€ i.i.d. ranclom variables,

it is not hard to see that n,r{Ê.nlr)} ir r.o,rrero only when 0 ( r 17. (i.e.,when
I : 0). More precisely,

{ 
#1, î^?)' ifl:0

otherwise.
(6.15)

(6.16)

In (6'15), À^?): I:'g^(t)g,-(t-r)dt,0 ( r ( ?", isthepartiarcorrelationf'unction

of the chip wavef'orm g*(t). Thus the variance of I¡,¿ in (6.1a) can be written as follows

var(1¿ 1) : h l,' E-À^þ"r)' 
o,

which is rhe same for atr i (i + k). Let 1 : ;+ [i" (Ð!_:rî.*?))'d" b. th.
normalized znterJerence parameter, then the SIR in (O.S) is the same f'or every user

and given by

srR: ff*l-'*ou'r] 
'

(6.17)

Note that when n(t): gz(t):...: gn(t), / is j'st the normarized, mean-squared,

parti'al ch'ip correlatton defined in 132, 34] and the SIR in (6.17) agrees with the result
given in [34] f'or the single chip wavef'orm.

To fäcilitate the design of optimal multiple chip wavef'orms, it is convenient, as

in Section 6.1'1, to express the parameter I in terms of the Fourier transfbrms of
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the chip wavef'orms. This can be done as f'ollows. For m,:I,2,...,D,Iet u^(r):
lAg^(t)g*(t - r)d,t be the autocorrelation firrrction of the chip wavef'orm g^(t).

Then u*(r) is an even f'uncrion confined to [-7.,?}] with U*ff) : lG^(Í)12. Now

using the fäct thatÃ^(r): u^(r) f'or 0 < r {T"and applying Parseval's theorem

one has

t - 1 ['"(i¡,,-,\ r-- ' f''o \21 : ar: Jo \a'""^')) 
o',: ,4 1, (:"-,',J d'r

t rtr"/D \' t r*lD l': r / l\-", ¡_\l Àn_ L / Itu*(f)ldf2D2T: J-.\kum\t l 

) 
ut - rD2T: r-*l;- 

I

t r* / D \t: ,;4 1 l ! tc-r'tll') d'Í (6 18)
-c y_oo 

\m:l /

Again, when or(t): gz(t): ...: gn(t), (6.18) reduces to the normaiized integration

of the f'ourth power of the magnitude spectrum of the single chip waveform as shown

in [32] and [35].

6"2 Design Problems

6.2.L Design of Signature \Maveforms

Similar to the ca^se of synchronous systems, it is clesirecl to obtain the signature

wavef'orms that maximize the SIR in (6.3) f'or euerltuser. Again this is a very difficult

(if not an impossible) task. Thus an alternative objective, namely to minimize the

average MAI variance at the outputs of all correlation receivers is considered here.

The (normalized) average MAI variance is definecl by

1I{Ktl{KrcoJ: =Lt\-var(I¡,¿) : *\-\- l* ls,rr\ns¿U)lrdÍ- KT2 ? ? 2I{Ts .L L | ..t"rrL tÀ:1 r:1 k:t i=\ r -Øi+k i+tr

: #i i [* E*u)rÊcu)rdÍ (6 1e)
A:l ¿:¡-r1 J -co
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where J has been normalized to be independent of 7. Minimizing J ensures an

average perf'orrnance level over all users. It ìs conceivable that, when the number of

users K is fìxed, the minimum value of J clecreases as the transmission bandwidth of

the system increases. Thus, f'or a given bandwidih W, the optimal set of signature

wavef'orms is the one that minimizes J.

As in the case of S-CDMA systems, here both the RMS and FOBE bandwidths

can be considered. Recall that the energies of the signature wavef'orms in A-CDMA

systems are normalized to equal the symbol duration ? as in (2.31). Thus the RMS

and FOBE bandwidth constraints in (2.a0) and (2.44) become

J'ls*(:f)l'dJ' : w' (6.20)

and

1Kræ
-i-\- /
KT ? I-*

#Ðl,,r,ls¡(/) t'dr :'t (6.21)

respectiveiy. Now the design problem for signature wavef'orms in A-CDMA systems

with bandwidth constraint is as f'ollows.

Problem 6.1. Consider an asynchronous CDMA system equipped with a correlation

receiver. Given a signaling interval ? and a transmission bandwidthW, fìnd a set of

K signature wavef'orms {s1(t), s2(t), . . ., rr.(¿)} that minimize J in (6.19) subject to

the energy constraint of (2.31) and the R\4S bandwidth constraint of (6.20) (or the

FOBE bandwidth constraint of (6.21)).

6.2.2 Design of Multiple Chip \Maveforms

In asynchronous DS-CDMA systems using random signature sequences, the SIR is

the same fbr every user. It f'ollows fïom (6.17) that to maximize SIR, one needs to find

multiple chip wavef'orms to minimize / in (6.18). Furthermore, the chip wavef'orms

also determine the bandwidth of the svstem as discussed below.
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When the signature wavef'orms are constructed fiom random signature sequences

and multiple chip wavef'orms, the PSD of the transmitted signal in (2.32) can be

shown to be proportional to 1fl,: rlc^(.f)12. Thus the RMS bandwidth constraint is

as f'ollows:

lDroo

"-Ð | f'lc^(f)l"rJ:w2'
--tr'-I't-æ

Likewise, f'or 0 < n < l, the FOBE banclwidth constraint can be written as

n1"r+)- I lc^(,f)l'dÍ:,,t.DT, ?_J¡¿*

1D
lc(f)l': + T.lc-(¡)l'l,) ¿-r '

rn:l

(6.22)

(6.23)

From (6.18), (6.22) and (6.23) one may suggest that by choosing a single chip

wavef'orm with power spectral density

(6 )4\

then the SiR perf'orûrance of any choice of multiple chip wavef'orms can be obtained

by the corresponding single chip wavef'orm with the same bandwidth. This is not

possible in general. Granted one can readily obtain the energy density spectrum as

indicated in (6.2\. However to obtain the time wavef'orm g(t), one must also specify

the phase spectrum. The single chip wavefbrm g(t) obtainecl through the inverse

Fourier t¡ansf'orm of Gft) now will not be necessarily a time-li.mi,ted, (to the interval

[0,4]) f'unction as required. Though an analytical proof f'or this claim was not found

the f'ollowing conìecture, based on the above discussion ancl the numerical results in

Section 6.4.2 (see Fig. 6.10), is proposed.

coniecture 6.1. Given D arbitrary chip wavefbrms g{t), gz(t),. . ., go(t), each time-

Iimited to [0, ?"] whose energies are normalizecl to be 7". Let Gr (Í), Gr(f ), . . . , G nU)
be the corresponding Fourier transf'orms of these chip wavefbrms. Then it is not

always possible to generate a chip wavef'orm 9(ú) which is also time-limited to [0, f}]
whose Fourier transf'orm satisfies (6.24).
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Note that, if the restriction on time limitation is lifted, the expression of the inter-

f'erence parameter in (6.18) does not holcl f'or the single chip wavef'orm obtained via

(6.24). This is because f'or a chip wavefbrrr that spans multiple chip interval, there is

generallv a nonzero interchip interf'erence (ICI). It can be shown that the interf'erence

parameter fbr a chip wavef'orm whose support is longer than a chip interval is given

by [61],

r : h f* cutf dr + 
@+¡n7_ll:cos(2,rn,rr.)tc(/) rorl (6 2b)

where the second term accounts fbr the ICL

The design problem fbr multiple chip wavef'orms can be stated as follows.

Problem 6.2. Consider a K-user asvnchronous DS-CDMA system using random sig-

nature sequences and multiple chip wavef'orms. Given a signaling interval, T, and a

transmission bandwidth,W, find a set of D chip waveforms {gr(t),gr(t),...,gr(t)}
that minimize I in (6.18) subject to the energy constraint of (6.9) and the RMS

bandwidth constraint of $.22) (or the FOBE bandwidth constraint of (6.23)).

The two optimization problems stated in this section concern finite sets of time-

limited wavefbrms and they are very similar. The only difference lies in the objective

functions. These problems are very difficult to solve expiicitly due to the complexity

of the objectives and the constraints. Nevertheless, the expansion technique employed

in [32] can be applied here to simplify the design problems.

In [32] the authors obtain the optimal single chip wavef'orms for offset quadrature

DS-CDMA systems under bandwidth, phase and envelope constraints. The method

is to approximate the solution by using a finite series expansion over a complete set

of basis firnctions. As pointed out in [32], the choice of a proper set of basis functions

is very important to reduce the dimensionality of the equivalent discrete optimization

problem. Which basis set is chosen is governed by the bandwidth criterion under

consideration. If the FOBE bandwidth is used, it is suggested in [32] that the prolate
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spheroidal functions should be used to expand the Fourier transf'orms of the signature

wavefbrms (and chip wavef'orms respectively). For the RMS bandwidth constraint,

the set of time-tnrncated simrisoids {sin (nntlT) , 0 < t < T}7, is selected fbr the ex-

pansion of the signature wavef'orms (and chip wavefbrms respectively). This selection

is natural since the firnctions {sin(ntrtlT) ,0 < t < T}7, f'orm a complete set for all

cont'inuous functions time limited to [0,7] and, more importantly, they achieve the

minimnm RMS bandwidth [52]. For brevity of presentation, only the RMS bandwidth

constraint is pursued in this chapter.

6.3 Optimal Signature 'W-aveforms

6.3.1 Problem Simplification

Let tþ,(t) : J2fTsin(nrtlT)pr(ú), where pr(t): 1 f'or 0 < ¿ 1T and. pr(t) :0
otherwise. Then the RMS bandwidth of tþ"(t) is ô(,r/"(r)) : nlQT). To simplify

the calculation of the objective function in (6.19) introduce the shifTed (and possibly

negated) versions of tþ^(t), defined by2

,^ t* -r\ - I tG*'(W)' -T t¡ sT, ir n is
Y'n\v,t,- 

ì. 1ft"rn(Ð, _T.r<T,irn is

odd
(6.26)

even.

Let Õ,(/,f): f{ó"(t,T)}.Note that when n is odd, the f'unctionó,(t,T) is even,

hence Q"(f ,7) is a reai function. on the other hand, when n is even, þ,(t,T) is
an odd function and Õ,,(1,7) is purely imaginary. Write e^(f ,T): XíÍ,7) when

n : 2l - 1 and A".(f ,T) : .jVU, 7) when n : 21, then

(6.27)

where sinc(r) : sin(nr) l(nr).
2lnstead of þn(t), we write ó.(t,T) to ernphasizethat ón(t) has a duration of ?. Later þn(t,7")

is used to discuss th.e design of chip waveforms.

[ *,(t,T : rfibrn (fT - (r- 0 b)) *sinc(/z+ (t-05))]

I f U, tl : 1fr [rin"(f r - t) - sinc(/z + r)]
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Let Ç(t) : sx(t+T12) be the shified version of the signature wavef'orm tnft).Since

{Ó"(t)}Lt f'orms a complete set f'or all continuous functions that are time limited to

l-Tl2,Tl2],ãk(t) can be expanded as f'ollows

where the coeffìcients 16¿ anc). y¡¿ are given by ,¡t : I:lir1t"(t)ór,_r(ú,7)dú ancl

akt : 114',r1k(t)ó2t(t,T)dt. The RMS bandwiclrhs of s¡(ú) and 1¿(r) are rhe same.

They can be computed as shown below [b2],

t'?(s¡(t)) : ö'(0,(¿)) : ãW I_:,(*P;'"

(6.28)

(6.30)

(6.31)

(6.2e)
L:I

Due to the constraint on the system bandwidth in (6.20), it follows from (6.29)

that the coefficients r¡r¿ and E¡¿ should be very small when I is large. Therefore, for

all practical purposes, it is sufficient to truncate each sum in (6.28) to a finite length

of tr terms, that is

I 
-1

1æ
:

473 / ' L\" ') ek¿ -T aL gkIJ '

^z,r-\- t /' ar \- t /sr(ú) = ) .r,,,ór,-(t,T) + LAmózL(t,T).
l-r

Using the truncated expansion in (6.30), the constraints in (2.3L) and (6.20) can be

written in terms of r¡r¡ and y¡¡,, k : 7,2..., K and I : I,2,..., Las follows.

: Ð 1"3,u, (ózt_r(t,")) + y!,u2 (6r,(t,q)l

L
\-az o o\

Ll'i,+aít) :7, Ä;: 1,2,...,K

KL

Ð t l7t - t)' 
"?", 

+ a?sl,l : 4K (wr)2r.

and

(6.32)
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Appendix E also shows that the objective .r in (6.19) can be written in terms of

:r¡¿ and gr¡¿ (see Eqn. (tr 3)) Thus Problem 6.1 is now equivalent to the following

finite-dimensional optimization problem.

Problem 6.3. Find the 2I{ L coefficients íü¡¿ and Ukr, lt : I,2 . . . , K and I : 1,2, . . . , L,

that minimize J(L) in (E.3) subiect to the constraints in (6.31) and (6.32).

The above optimization problem can be solved numerically, fbr example, by means

of sequential quadratic programming routines. Here the program code was written

based on the MATLAB optimization toolbox and it is documented in a separate report

[62]. Since the number of users K is not controllable, to reduce the dimensionality of

the optimization problem, it is important to use as a small value for L as possible.

In general, such a value of I depends on the bandwidth-time product WT (dte to

the bandwidth constraint). No analytical expression was fbund to determine the

convergence properties of the approximation. Theref'ore a heuristic approach was

used. SimpÌy the approximated objective fïurtion J.(L) is plotted versus tr fbr each

value of RMS bandwidth considered. A judgement is then made regarding the value

of L at which J. (L) reaches an "asymptote" .

6.3.2 Numerical Examples

Some numerical results are given in this section to demonstrate the optimal signature

wavef'orms obtained fïom solving Problem 6.3. Although results f'or systems with a

Iarge number of users are of practical interest, solving Problem 6.3 f'or large K is quite

time consuming. For this reason only CDMA systems with K :2 and K : 4 are

examined as illustrative examples. The RMS bandwidth value ranges ftom 0.52517'

foI.TlT f'or the two-user system and fïom 0.61T to2.0lT f'or the four-user system.

Given the number of users and the R,MS bandwidth, diff'erent values of .L were used

in Problem 6.3 to obtain the corresponding signature wavefbrms and the minimum

value of the objective f'unction, namely J.(L). Plotting J.(L) versus -L reveals that,
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Figure 6.2: Influence of tr on the minimum value of the objective function, K :2.

fbr all RMS bandwidth values considered and f'or both the two-user and the f'our-

user systems, the asymptote of J.(L) is reached practically for L ) 4. For example,

Fig. 6.2 plots -r-(l) f'or two-user systems with wr :0.6 and wr :0.9, whereas

Fig. 6.3 plots J.(tr) f'or f'our-user systems with wr :1.4 and wT :2.0. Thus L : 4

is used f'or the remaining examples of this section to obtain the signature wavef'orms.

It should be noted, however, that f'or systems with a larger number of users and wider

bandwidth the value of tr may become large and theref'ore obtaining the solutions to
Problem 6.3 would become time consuming.

To evaluate the perf'ormance of the designed signature wavef'orms, the average MAI
variance (J) achieved by the optimal signature wavef'orms in two-user and fbur-user

systems is plotted in Figs. 6.4 and 6.5 respectively as a function of the time-bandwidth

prodnct WT. As expected, the MAI reduces as the bandwiclth increases. For a given

bandwidth, MAI increases as the number of users increases. In Figs. 6.4 and 6.b, the

perf'ormance of the designed signature wavefbrms is also compared with that of the

signature wavefbrms optimally designed for synchronous CDMA systems. Such design
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of signature wavef'orms has been considered in Chapter 4 with the same optimality

criterion and bandwidth constraint. For convenience, we shall refer to the wavef'orms

designed specificallv f'or A-CDMA systems in this chapter as the asynchronous s,igna-

ture waueJorms and the wavef'orms designed fbr S-CDMA systems in Chapter 4 as the

sgnchronous signature waueform* In each of Figs. 6.4 and 6.5 two curves are plotted

f'or the perf'ormauce of the synchronous signature waveforms: one over synchronous

systems and the other over asynchronous systems (system-mismatch situation).

As already known fiom Chapter 4, orthogonal signature wavef'orms are available in

S-CDMA systems when QWf)2 > (K + 1)(2K + 1)16. Theref'ore the MAI produced

by the synchronous signature wavefbrms in synchronous systems is zero when WT >

0.791 andWT > 1.369 as shown in Figs 6.4 and 6.5 respectively. Assuming that the

same orthogonal synchronous signature wavef'orms are used fbr iarger bandwidths,

then the MAI produced by the synchronous signature wavef'orms in asynchronous

systems stays the same fbr WT > 0.791 and WT > 1.369, as can be seen in Fies 6.4
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and 6.5 respectively. The superioritv of the asynchronous signature waveforms over

synchronous ones in asynchronous svstems is clearlv observed from Figs 6.4 and 6.b

f'or all values of RMS bandwidth under consideration.

It is also of interest to notice fiom Figs 6.4 and 6.5 that, for very small values of a

RMS bandwidth, the VIAI produced bv synchronous waveforms in synchronous sys-

tems is larger than that produced by the asynchronous wavef'orms in asynchronous

systems. This is counterintuitive since the perfbrmance of synchronous systems is

usually taken as the lower bound f'or the perf'ormance of the asynchronous ones. This

observation can be explained as f'ollows. When the bandwidth is very small, all the

signature wavefbrms possess very similar shapes (in order to satisfy the bandwidth

constraint). This means that the synchronous correlations among signature wave-

fbrms are very high, causing a huge MAI in synchronous systems. On the other

hand, the MAI in the asynchronous systems depends on the particular delays among

users and can be very small fbr certain delays. Theref'ore, after averaging over the

0.5
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variance J as a fïrnction of time-bandwidth product I4l7,

entire range of the delays (the symbol duration 7), the average MAI in asynchronous

systems can be significantly smaller than that in synchronous ones. Nevertheless,

when the bandwidth increases, the MAI in synchronous systems approaches zero

much fäster than that in asynchronous systems. In other words, it requires much

larger bandwidth f'or the asynchronous system to perf'orm at a satisfãctory level (i.e.,

when MAI is srnall) compared to that of synchronous systems) even though optimal

signature wavef'orms are used in both scenarios.

Finally, asynchronous signatnre wavef'orms f'or two-user and four-user systems are

demonstrated in Figs. 6.6 to 6.9 f'or selected values of RMS bandwidth occupancies.

Note that the signature wavef'orms in Figs. 6.7, 6.8 and 6.9 possess (even or odd)

symmetry about the midpoint of the symbol duration. The synchronous signature

wavef'orms f'or two-user synchronous systems are also shown in Figs. 6.6 and 6.T for

comparison' We would like to point out that these synchronous signature wavef'orms
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were first obtained in [18] to achieve each point inside the capacity region of the two-

user Gaussian multiple access channel. It turns out that they are also the optimal

signature wavef'orms that minimize the MAI in synchronous CDMA systems (see

Chapter 4).

6.4 Optimal Chip 'Waveforms

6.4.L Problem Simplification

Similar to signature wavef'orm design, the problem of designing multiple chip v/ave-

forms (Problem 6.2) can be reduced to a finite-dimensional optimization problem. To

this end, expand the delayed version of each chip wavefbrm as f'ollows

î*Q) : g^(t*7"12)
LL

ôr Ð r*,ór,-,.(t,7")+ t u*tözt(t',T"), ïn: 1,2,. . ., D (6.33)
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Figure 6.7: Optimal signature wavef'orms f'or synchronous and asynchronous CDMA
systems: K : 2 with RMS bandwidth of WT : 0.9.
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where rtnt : [11.',rî^(t)ör;r(t,7")dt and. E*¡ : ,111"]r1*Q)ózt(t,7")dt. using this

expansion, the constraints in (6.9) and (6.22) can be written in terms of r^¿ and. y^¿,

m : 7,2..., D and I : I,2,...,L,as f'ollows.

L
\-azoô\

L \""^t l A"^¿) :7", Tn : I,2,, . . , D

DL

(6.34)

and

I t lQt - r)' r?^, + aPE^) : 4D(wr")27.. (6.35)
m:I l:l

Furthermore, the ob.iective in (6.13) can also be expressed in termsoÍ r^¿ and g*¿ as

shown in Appendix F (see Eqn. (F.10)). Theref'ore Problem 6.2 is now equivalent to
the f'ollowing finite-dimensional optimization problem.

Problem 6.4. Fincl 2DLcoefhcients :r*¿andAmr,r.t7:!,2...,D and I :I,2,...,L,
that minimize I(D,I) in (F.10) subject to the constraints given in (6.3a) and (6.3b).

As f'or Problem 6.3, Problem 6.4 can be solved mrmerically. It should be noted,
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however, that the dimensionality of Problem 6.4 does not depend on the number of

ttsers) 1{, and it is usually much smaller than that of Problem 6.3. This is due to the

fbllowing two reasons. First, the number of unknowns in Probiem 6.4 depends only

on D and tr, which can be selected to achieve a comproïnise between perfbrmance and

complexity. Secondly, since the value of WT, is usually less than 3.0 f'or DS-CDMA

systems, a practical value of I in Problem 6.4 is much smaller than that in Problem

o.J.

Finally, the f'ollowing proposition justifies the advantage of using multiple chip

waveforms in DS-CDMA systems with random signature sequences.

Propositi,on 6.I. Consider a DS-CDMA system using random signature sequences and

D chip wavef'orms. Let the D chip wavef'orms be the solutions of Problem 6.4 for some

fixed value of L. Let I*(D,I) be the corresponding interfêrence parameter and rc be

an inteqer number. Then

I*(nD,L) < I.(D,L) (6.36)

A

ProoJ. The proof is trivial, by noting that the equality in (6.36) is achieved when using

rc copies of the set of D optimal chip wavef'orms f'or the set of nD chip waveforms. I

6.4.2 Numerical Results

Several multiple chip wavefbrms obtained fïom soiving Problem 6.4 are presented in
this section. Up to D :3 is considered. The values ofW arc ftom 0.5fT" Lo J.\fT.,
which is the range of interest for us. For this range of RMS bandwidth, it has been

determined that using L : 6 yields sufficient accuracy f'or optimal chip waveforms.

Numerical resttlts indicate that the improvement fiom using multiple chip wave-

forms over single chip wavef'orms is quite significant. This is illustrated in Fig. 6.10

where the interfêrence parameters 1 achieved by the optimal single, double and triple
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chip wavef'orms (denoted by 1r", 12" and 13¿ respectively) are plotted versus WT..

From Fig. 6.10 it can be seen that the iargest gain is achievecl by moving from a
single chip wavef'orm to double chip wavef'orms and there is not much improvement

with triple chip wavefbrms. A closer investigation of Fig. 6.10 reveals that, f'or a fixed

level of interf'erence 1, it is possible to save about t0% of the transmission bandwidth

when using double chip wavefbrms compared to a single chip wavef'orm. Fig. 6.10

therefbre also snpports Conjecture 6.1.

Fig. 6.11 plots the ratios Iz"lIrc ancl ft"f I¡ to compare the performances of mul-

tiple chip wavefbrms with that of a single chip wavef'orm but fiom a different perspec-

tive. Note that when W :0.517. there exists only one chip wavefbrm of duration

Q, nameiy the half'-sine waveform /ffisin(trtlT") pr.(t). Therefbre there is no ad-

vantage to use multiple chip wavef'orms f'or interf'erence suppression. However, as the

bandwidth increases, the interf'erence reduction capability of multiple chip wavef'orms

increases and saturates at about W : 2.417". At W : 2.4f 7", the interference can

be reduced by about 10% by using multiple chip wavef'orms instead of a single chip

wavefbrm.

It is also of interest to compare the perf'ormance of optimal chip waveforms (single,

double or triple) among themselves when varying the chip duration Q. For a fair

comparison, the bandwidth W and the symbol duration T are fixed. Since N : T f 7",

it follows from (6.17) that to maximize SIR, one needs to minimiz e IT", or equivalently

to minimize IWT". This parameter is plotted against WT.in Fig.6.123. It can be

seen that the perf'ormance improves witÌr increasing chip clurat íon T. and saturates at

about T.: I.4lW f'or the single chip wavefbrm and 2.41W f'or both double and trip
chip wavef'orms. Thus in general, there exists a minimum value of WT" for multiple

chip wavef'orms that minimizes the multiple access interfêrence. Note that the RMS

sNote that, since tÌre bandwidth expansion iras been taken into account in the param eter IWT",
theWT. axis in Figs. 6.12 ancl 6.13, in esserlce, is irrelevant for the comparison.
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bandwidihs of some common time-limited chip waveforms are relatively small, which

make them inefficient in terms of minimizing VIAI. Tliis is illustrated in Fig. 6.13

where lhe IWT, that is achieved by the raised cosine, Blackman and four-term odd

cosine series chip rn'avef'orms are shown (in the range of small WT"). The equations

f'or these chip wavef'orms can be f'ound in Section 6.5. Ii can be seen fïom Fig. 6.13

that the perf'ormance of the raised cosine chip is closest to that of the optimal single

chip, f'ollowed by the Blackman and cosine series chips.

The advantage of the proposecl optimal chip wavef'orms over the square-root raised

cosine (SRRC) wavef'orms with various roll-off factors can also be observed fïom

Fig. 6.13. lt{ote that a SRRC wavef'orm spans more than a chip interval. The SRRC

wavef'orm corresponding to a roll-off 1ãctor oT 0.22 is proposed f'or Wideband-CDMA

systems [63], whereas the chip shape used in ttie IS-95 standard is also similar to a

SRRC pulse [6a]. The expression f'or a SRRC pulse is given bV |.6bl

^/+\ _ 4þ cosf(t + B)rtlT"l + T"sin [(1 - p)rtlT"] lØ{Jt)y\t') - 7T L _ (4lLtlT")2
(6.37)

where {J (0 S 13 < 1) is the roll-off parameter. The square of the Fourier transform

(i.e., the energy spectrai density) of g(t) is [65]

( t, o<rr.7=þI _tJt__T;
G'u):\ +{'**,|+(trr -æ)]},æ<t/t <æ (638)

I[0, yl>W
To evaluate the perf'ormance of the SRRC chip wavef'orms one needs to calculate the

parameter IWT". The RMS bandwidth of an SRRC pulse can be easily shown to

satisfy

(6.3e)

Because an SRRC pulse spans more than one chip interval, its performance parameter

.I should be calculated based on (6.25). However, it is well known that the SRRC
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pnlses satisfy the Nyquist criterion, hence the ICI term in (6.25) disappears. The

interf'erence parameter 1 f'or the SRRC pulses therefbre is simply given by

lG(,f)lodl : (6 40)

From (6.39) and (6.40), the parameter IWT, assurnes the fbllowing expression

l\Ãl'l -t,/ ta 
-

(1 -/j)'+(i+É)3 (6.41)

t:ù [:
Iþ
,- B'

(;-f) t
2p2fr/2
--;l
T')

Finally, examples of optimal single, doubie and triple chip wavef'orms are plotted

in Figs. 6.74to 6.i6 f'or IMT":2.4. This value of WT" is chosen since it gives the

optimal chip duration f'or double and triple chip wavef'orms as discussed above. The

advantage of using optimal single and double chip waveforms in terms of bit error

rate is also shown in Figs. 6.77 and 6.18 for a CDMA system having K:32 users

and a RMS bandwidth value such that ,À/ : 32 if the optimal double chip wavef'orms

are nsed (i.e.,IAT :32 x 2.4). Note that Fig. 6.17 is obtained by using a standard

Gaussian approximation (GA) to the error probability (see Chapter 7), whereas the

improved Gaussian approximation developed in Chapter 7 is used to produce Fig

6.18. The standard GA uses only the parameter IWT" of the chip waveforms to

approximate the error probability and it is quite loose fbr high signal-to-noise ratios.

On the other hancl, the improved GA takes into account the actual shapes of the chip

wavef'orms (through their correlation functions) to approximate the error probability.

It will be shown in Chapter 7 that this approximation is very accurate. The relative

perf'ormances of diffèrent chip wavef'orm(s) given in Fig. 6.18 agree very well with the

values of parameter IWT, plotted in Fig. 6.13. It can be seen from Fig. 6.18 that, at

the BER level of 10-4, a gain of about 2dB in EtlNo can be attained by using the

optimal double chip wavef'orms.
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Figure 6.18: Improved Gaussian approximation of error probabilities of asynchronous
DS-CDMA systems using diff'erent chip wavef'orms: K: 32 with RMS bandwidth of
WT :32 x 2.4.

6.5 Combinations of Common Chip Waveforms

In the previous section, optirnal multiple chip wavefbrms have been obtained to mini-

mize MAI in asynchronous DS-CDMA systems under the RMS bandwidth constraint.

Given the technique of using multiple chip wavefbrms to combat MAI, the question

of interest is whether the advantage of this technique can be realized f'or commonly

used signatrire wavef'orms without relying on optimal chip wavef'orms. The answer

to this question is investigated in this section. More precisely, this section studies

double combinations of the f'ollowing common chip wavef'orms.

1) Rectangular pulse: p{t) : pr.(t), where pr"(t): 1 f'or 0 < ¿ 1T¿ andpr.(t) :0
otherwise.

.f.

añ

(fr) n,"Q)2) Half-sine: p2(t) : 1/2sin
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t lr,
Figure 6.19: Chip wavef'orms that are even abou| T"l2'

3) Raised cosine: p:(ú) : ßlt- cos (rylpr.(t).

4) Blackman [38] : p4Q): 
" [u, - k2 cos W) * À3 cos (Ð\pr.(t), where

c2 : (k? + k\l2 + k3l2)-r and k1 :0.42, kz: 0.5 and k3 : 0'08'

5) Four-term odd cosine series [39]: , , ,\f r l,-r¡, / 4rt \
ps(t) : 

10.868 
- 0.686 cos \ff ) - 0.14e."' ( ," /

6) Half-cosine: p6(ú) : Jr*. (4) pr"(t).

7) Fnll-sine: p(t): Jr.t" (ry) pr.(t).

Note that the first five chips are even about T"f 2, whlle the last two are odd. The

,,even" chip waveforms are plotted in Fig. 6.19 while the "odd" chip waveforms are

shown in Fig. 6.20.

The normalized interfêrence parameter, 1, is given in Table 6.1 fbr all combinations

of the above chip wavef'orms. As expected, using the even chips in combination with

- 0 033.". (ry) ]o*t,l

-a1
ltl

Õ

-

.cgÞ
o,'-ô5
rl



r20

t.5

- 
HalÈcosine

- - - Full-sine
Ic)r

'd
p

Ér ||I-j
r-1

hu
Þ
Þ-n<

rl
I

-l

0.2 0.4 0.6 0.8 I

tlT"

Figure 6.20: Chip wavef'orms that are odd about 7}/2'

the ocld chips recluces the interf'erence significantly (see columns 6 and 7 of Table

6.1). It is also of interest to note that using two odd chips oflers lower interference

comparecl to using two even chips. Howevet, it should be noted fïom Table 6.1 that

the huge redriction of interf'erence by using odd chip waveforms comes at the expense

of expanding the transmission banclwidth. As mentioned in the previous section, for

a fäir comparison of different chip wavefbrm combinations, the issue of bandwidth

needs to be taken into account ancl the quantity IWT" is the performance measure of

interest. Here the transmission banclwidth is quantified through the FOBE bandwidth

criterion which is governed bv Eqn. (6.23). The values of the time-bandwidth product

WT" Íor some typicai values of 4 are tabulated in Table 6.2. Based on Tables 6.1 and

6.2, the parameter IWT" is tabulated in Table 6'3'

From Table 6.3 one can see that, even when the eflèct of increasing the bandwidth

of the odcl chip is taken into account, it is still beneficial to combine the fìrll-cosine

chip (odd chip) with the even chips fbr most of the FOBE bandwidth criteria. The use
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of two even chips oflèrs better perf'ormance only when the requirement f'or fractional

out-of'-band power is very strict (n :0.1%). This is expected since, if 4 is very small,

the FOBE bandwidth of the full-cosine chip can be very large, which eventually offsets

the interf'erence reduction. However, if an odd chip with a narrower FOBE bandwidth

can be f'ound, then the advantage of combining an odd chip with an even chip should

remain even when T : O.ITa. Another observation is that, aithough the half-cosine

is an odd chip, it has a very iarge FOBE bandwidth (due to its discontinuties) when

4 is small (q < 10%). Hence there is no advantage to combine this odd chip with

other even chips in a system with a very strict requirement f'or fïactional out-of-band

energy.

Finally, Figs. 6.21 and 6.22 show the advantage of using double chip waveforms

over a single chip wavef'orm in terms of the bit error rate for systems with 4 : 70Ta and

T : LTo respectively. The error probabiiities are calculated based on the improved

Gaussian approximation derived later in Chapter 7. Note that in both cases, the

FOBE transmission bandwidth is selected so that the processing gain of the corre-

sponding system using a single raised cosine wavef'orm equals N : 64 (i.e., WT :
64 x 0.9507 for q : 7070 and WT : 64 x 1.4093 for r¡ : I%). The number of users

in both systems is K : B. The advantage of using double chip wavef'orms is clearly

observed from these fieures.

6.6 Chapter Summary

Two problems of designing signature waveforms and multiple chip wavef'orms for

asEnchronozs CDMA systems have been considered in this chapter. The bandwidth

constraint is explicitly taken into account in the design process so that the available

bandwidth of the system is optimally utilized. Appropriate performance parame-

ters have been derived for both design problems when correlation receivers are used.

These perf'ormance parameters are expressed in terms of the Fourier transf'orms of



722

6810121416
E¿,/¡fo (dB)

Figure 6.21: Error perf'ormance of asynchronous DS-CDMA systems using diff'erent
clrip wavefbrm combinations: K : 8 with FOBE bandwidrh of WT : 64 x 0.9501,
n : I0To'

8l0t2t4t6
Eål¡ro (dB)

Figure 6.22: Ðrror perf'ormance of asynchronous DS-CDMA systems using different
chip waveform combinations: K : 8 with FOBE bandwidth WT : 64 x 1.40g3,
n: ITo.

.l
Éì10'
an

tn'



723

Table 6.1: Values of 1 f'or all combinations of chip waveforms.

ø(t)
pt(t) 0.3333
pr(t)
ps(t)
pa(t)
ps(t)
pa(t)
pz(t)

pz(t) ps(t)

0.3086 0.2757
0.2933 0.2648

0.2406

ps(t) pa(t)

0.2960 0.1820
0.2826 0.1920
0.2556 0.1832
0.2364 0.7746
0.2724 0.1889

0.1920

ps(t)

0.2537
0.2447
0.2230
0.2073

pz(t)

0.1709
0.7792
0.1744
0.1692
0.7772
0.1877
0.1983

pi (ú)-rectangular, p2 (ú)-half-sine, p3 (ú)-raised cosine
pa(ú)-Blackman, ps(ú)-cosine series, po(¿)-Ìralf'-cosine, p7(ú)-f'ull-sine

the signature ancl chip wavef'orms, respectively, which fäcilitates the use of the series

expansion method to simplify design problems, The method is most effective for the

design of mriltiple chip wavef'o¡ms since the dimensionality of the optimization prob-

lem is small ancl independent of the number of users. For the design of signature

wavef'orms, the method generally involves solving an optimization problem whose cli-

mensionality increases with the number of users. Various design examples have also

been given to demonstrate the superiority of the optimally clesigned signature and

multiple chip wavef'orms. In particular, it has been shown that in DS-CDMA systems

with random signature sequences, either 70% of transmission bandwidth or l0% of

MAI can be reduced by using two chip wavef'orms instead of a conventional single

chip wavefbrm. Finally, the perf'ormance investigation of combining several commonly

used chip wavef'orms has been carried out to .justify the advantage of the proposed

technique. The technique of using multiple chip wavef'orms is very simple and can be

easiiy accommodated in many current DS-CDMA systems.



t24

Table 6.2: Values of WT"
values of 4.

f'or all combinations of chip wavef'orms and for diff'erent

(a) rt:1.0%

pt(t)
pt(t) 0.8487
pz(t)
ps(t)
pq(t)
ps(t)
pa(t)
pz(t)

pz(t) pt(t)

0.7885 0.9432
0.7769 0.8665

0.9501

p{t) p'(t)
1.0987 0.8381
0.9523 0.8070
1.0305 0.8946
1.1091 0.9784

0.8366

pe(t) pz(t)

1.6249 1.3257
7.7473 r.2026
t.2029 7.2304
1.3040 1.2750
1.1603 r.2I12
2.0669 r.467r

1.3564

(b) n: L%

ptlt)
p{t) 10.2860
pzlt)
pz(t)
pút)
Pslt)
pa(t)

Pzft)

ps(t) pa(t)

4.8336 15.1610
1.2472 10.0823
1.3811 10.0780
r.6265 10.0790
1.3055 9.9859

20.1467

pz(t)

5.247L
1.1820

pt(t)
K .)1 (,1

1.3490
1.4093

pq(t)
É. q1 É.^
tJ.L I¿+

1.5966
1.5720
1.6805

pz(t)

5.3346
7.7272
1.6834
1.7660
r.7714
9.1275
2.1971

@) ,t : o.t%

ptlt)

n(t) 37.1677
pz(t)

Pslt)
Pq,(t)

Ps(t)
pa(t)
pz(t)

pz(t)

31.0413
2.7355

pt(t)

31.0410
2.1640
7.7290

p¿(t)

31.0474
2.7662
2.0110
2.0689

ps(t)

31.0008
2.4237
2.3016
2.2778
2.4046

pa(t)

63.6900
31.8190
31.8191
31.8193
31.8018
31.8750

pz(t)

12.0099
3.5608
3.4474
3.4384
3.4148
18.2568
4.3127

p1 (ú)-rectangular, p2(ú)-half'-sine, p3(¿)-raised cosine
p4 (¿)-Blackman, pb (ú)-cosine series, p6 (¿)-half-cosine, p7 (f )-full-sine
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Table 6.3: Values of IWT" f'or all combinations of chip waveforms and f'or different
values of 4 (the bold entries highlight the best combinations).

(u) n : to%

Pr\t)
pt(t) 0.2829
pz(t)
ps(t)
p4t)
ps(t)
palt)
Pzlt)

pz(t) ps(t)

0.2434 0.2601
0.2279 0.2294

0.2286

pq(t) ps(t) pe(t)

0.2787 0.2487 0.2957
0.2330 0.2287 0.2791
0.2298 0.2287 0.2203
0.2299 0.2313 0.2276

0.2279 0.2192
0.3968

pz(t)

0.2266
0.2155
o.2L46
0.2757
o.2L46
0.2753

0.2690

(b) rt: I%

ø(t)
pt(t) 3.4286

Pzlt)
pz(t)
p+(t)
ps(t)
pa(t)

Pzft)

pz(t) ps(t)

1.6195 7.4379
0.3467 0.3572

0.3390

p+(t) ps(t)

1.3230 1.4308
0.3906 0.3524
0.3505 0.3530
0.3483 0.3845

0.3557

pe(t) pz(t)

2.7593 0.9117
1.9358 0.3095
1.8461 0.2936
1.7595 0.2988
1.8866 0.3139
3.8682 7.7128

0.4358

k) ,t : o't%

pt(t)

n(t) 10.38e0
pz(t)
ps(t)

P+(t)
Ps(t)
pa(t)
pz(t)

pz(t) ps(t)

9.5809 8.5580
0.8024 0.5730

o.4L59

p,,(t) ps(t)

7.8744 9.7762
0.5300 0.6849
0.4485 0.5884
0.4288 0.5385

0.6551

pa(t) pz(t)

i 1.5916 2.0525
6.1093 0.6381
5.8285 0.6013
5.5549 0.5817
6.0081 0.6051
6.1200 3.4259

0.8553

p1 (l)-rectangular, p2(t)-half-sine, p3 (ú)-raised cosine
pa (f)-Blackman, p5 (¿)-cosine series, po (ú)-haü:cosine, p7 (t)-f'ull_sine



Chapter 7

Erron Probabilities of
Asynchronous DS-CDMA Systems
using R,andofil Signat¡.rre SequeTlces

Perhaps the error probability is the most important perf'ormance inclex in any com-

munication systems. It is theref'ore important to calculate the error probabilities of

users in CDMA systems. For the synchronous CDN4A systems, this has been dis-

cussed in Chapter 2 where both the exact f'ormula and Gaussian approximation (GA)

are provided. The primary plrrpose of this chapter is to stucly the error probabili-

ties of asynchronous DS-CDMA systems r.rsing random signature sequences and the

multiple chip wavef'orms proposed in Chapter 6.

The exact calculation of the error probabilities of asynchronous DS-CDMA com-

munications systems is oflen intractable and computationally difficult due to the

complexity of a^synchronous CDMA systems. Thus, most previous work on this prob-

lem has concerned approximations and bouncls [36, 66, 67,, J3,40, 68, 69]. Among

these contributions, the approximation derived by Holtzman [40] seems very amrac-

tive since it is simple but it gives good accuracy. This approximation has been widely

used [68, 70,71] and is generally ref'erred to as the improved Gaussian approximation

(IGA). In [a0] the improved GA is originally obtained ancl evaluated f'or DS-CDMA

126
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systems using random signature sequences and a rectangular chip wavef'orm only.

It should be noted, however, that the chip wavefbrm influences the inter-user inter-

f'erence, and hence the error probabilities of DS-CDMA systems. In this chapter,

the Holtzman's approximation is first extended to include an arbitrary single chip

wavef'orm. More importantly, it is also applied to approximate the error probabilities

of DS-CDMA systems using double chip wavef'ormsl proposed in Chapter 6. Com-

parison to either an exact calculation (f'or the case of single chip wavef'orm) or a

simulation result (f'or the case of double chip wavef'orms) is also carried out to justify

the accuracy of Holtzman's approximation.

It is acknowledged that2 Yoon has also applied Holtzman's improved Gaussian

approximation f'or the case of arbitrarv chip wavef'orms [72]. More precisely the "ar-

bitrary" chip wavef'orms in l72l are bancl-limited chip wavefbrms and also constrained

to have no inter-chip interfêrence (ICI) and inter-bit-symbol interference (ISI). Since

the time-iimited wavef'orms are both ICI and ISI fiee, the result in [72] is also ap-

plicable to the time-limited chip wavefbrms. However, although the work in 172)

appears to be more general than the one developed in Section 7.7.7, the expression

of Holtzman's improved Gaussian approximation developed here is simpler and more

convenient than the one f'ound tn ï721f'or time-limited chip waveforms.

lRecall from Chapter 6 that there is a little gain by using more than double chip waveforms.
2The author wor.rld like to thank one of the members of the examinine committee who pointed

out reference f721.
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7 "L Error Probabilities for DS-CDMA Svstems with
Single Chip \Maveform

7.L.L Holtzman's Improved Gaussian Approximation

Using the result established in [33], the decision statistic at the output of the kth

correlation receiver can be written as

K
Zk:\m,ó1(0)T+1/ry t W¿cose¿tn (TI)

i,:1,i+k

where n is a Gaussian random variable with zero mean ancl variance NsTl . The

random variable l7¿ is given by

w¿:ÈrQo)P¿ + fu(r¡)Q, * (f'('n) + nr?o)) xn + (î,'?n) - nr?,))y (T.z)

recalling that, r¿: r¿-l¿T¿,1¿: lr¿f T"] and that these random variables are uniformly

distribnted over [0, Q) and {0, 1, . . . , ¡/- 1} respectively. In (7.2), the f'unctions åi(r)

and 1r (r) are the continuous-time, partial autocorrelation of the si,ngle chip wavef'orm,

g{t).The function 1,(r) was clefinecl in chapter 6 as 11(") : IT'gr(t)gr(t- r)dt,

and h1(") : Àr(7"- r) f'or 0 ( r < ?". The rand.om variables P¿ and Q¿ are uniform

on {0, 1}. The densities of X¿ and Y¿ are given in [33] but only their first and second

moments are needed in deriving the improved GA. Another important observation is

that W¿ depends or f¿, p¿ and a random variable l.Bl, which represents the number

of chip boundaries in the signature sequence of the first user (where a transition to

a diflêrent value occurs)3. Furthermore, given lBl, the random variables P¿, Q¿, X¿

and Y¿ are conditionally independent.

The second term of (7.1) is the multiple access interfèrence (MAI). The most

straightf'orward approximation to the error probabilities is the standard GA, where

the MAI is approximatecl by a Gaussian random variable. Using a Gaussian ap-

proximation, the error probability is given LV Pl : ø (14m), *h"re SIR is the

3More precisel¡ lBl is the carclinality of the set B which is defined in [331.



signal-to-interf'erence ratio at the output of the correlation receiver. The standard

GA is clearly verv simple but is not accurate, in general. As wili be seen later, it is
very optimistic when the signal to noise ratio increases.

Let r : lrt,r2...,rxl, g: [çt,g2,...,çx] and ù : var (MAIlr, ,p,l9l).Since ü
is a firnction of r, g and lBl, V can be thought of as a random variable. Let p, and ø

be the mean and standard deviation of ü, then the Holtzman's improved GA f'or the

error probabilities is as f'ollows [a01.

L29

(7.3)

(7.4)

P! :'50 (fr;' + 2¡t,l @r\l-''')
*äq ([tt' + 2(r, + t/sfl l@r\]-''')

1 /. --rlr\

"äA ( Lt;' + 2(t, - t/1o) l@r\] '- 
)

where Eu : PT is the energy per symbol and 7" : m one disadvantage of

Holtzman's IGA is that lr cànbe smaller than J\o (clepending on the particular values

of l/ and K) and theref'ore the last term in (7.3) cannot be evaluated. Nevertheless,

as ¡l and 1€o apptoach equality, the last term goes to zero and the second term

becomes dominant. In this chapter the iast term of (7.3) is set to zero whenever

tt < J\o.
The mean and standard deviation of ü can be f'ound as follows. Recall that the

random variables P¿, Q¿, X¿ and Y¿ are conditionally independent, given lfil. Fur-

thermore, these random variables have zero mean and variances E(pl) : E(e?): r,

E(x?llBl) : ¡i - lBl -7, E(Y¿2llBl) : lBl. Thus it can be shown from (7.2) rhat

ü : Dl1r, n+t Ln, where

Lo: !4[1 + cos(2p¿)]

are identically distributed and conditionally indeperrdent ranclom variables, given lBl.
Now fiom the fãct that the random variables r ancl (p are statistically inclependent

f" (a?f",1 + h??ò) + 2W- 1 - 2lll)Tlte¿)h1(r¿))
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and EflB,l) : (N - 1)12, E|Bl2):

n:

N(¡i - L) 14, it f'ollows that

(K - r)PT,
n1 ,

2N "ur (7.5)

and

, : #6 - Ð',' 1f,.,. 
L(p û1 - nt21. W^?l (T 6)

where

: 
+ l,^ h2,(r)dr : 

+ lo" 
î?{,)0,

: 
+ l,'î''1'¡n'ç'¡a'

u1 : 
+ .1,' þlr,l + nlç,s]' a,

ûr : 
+ I,'ñlç,¡n,ç,!a,

TI71

îtl

(7 7)

(7.8)

(7 e)

(7.10)

(7.11)

AII the above correlation parameters of the chip wavef'orm are normalized so that

they are independent of the chip duration, Q. AIso note that the standard GA is the

first term in (7.3) without the scaling fãctor 2f 3, i.e.,

Pf :n (þ' +5:,,,]-"')
This standard GA is also given in [34].

7.L.2 Exact Calculation

To evaiuate the accuracy of both the standard and improved GAs discussed in the

previous sub-section, the exact error probabitity derived in [34] is employed and re-

produced below.

P" : e (fit') .r r-r [* u-rsin z . exp l-u2 l(ztò) lt -g(u)) au 0.r2)' Jo
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(7.13)

(7.14)

6(")

,Þ¡0,"(r)

[Õr,,(r)]o-'

Í (N,r,u; r,0)drd0

f (N,n,u;r,0) : 
"o"lfinr(r)cosor] 

.o, liîrfrl.ora]
. .o'" 

{ # ln,?) +ît(")] .* ai

..or'Àr'-n-l 
{#lnrt l - î,(")] .ord} .

- 2\-NÐ (t-

:ä 
lo"'' lo'''

')

Although (7.12) is exact, only an approximation to P. canbe calculated due to the fäct

that tlre definite integral in (7.12) extends to infinity. However, since any desirable

value of the truncation and integration errors can be achieved, the results obtained

via (7 .12) are usually refèrred to as "exact" [341.

7.1.3 Numerical Examples

In this section the accuracy of the standarcl GA and Holtzman's improved GA are

evaluated f'or some of the common chip wavef'orms given in Section 6.b.

1) Rectangular pulse: g{t): pr"(t). For this wavef'orm one has h1(r): y,

îrçr¡ : T" - r, rL1 - 7f 3, îrr : 716, wt:71]15 ancl û1 : IlZ0.

2) Half-sin e: g{t) : 1/2 sin (H) ,r"ø. The autocorrelarion functions of this chip

wavef'orm are

(7.15)

(7.16)

(7 17\

h,(,) : -rcos (Ð+ &sir' (i)
î,,?) : (r"-,).", (ä) + & sin (i)

5l(ar2) + Ll6, ñt : 5l@n2) - Llr2.and nty:
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3) Raised Cosine: s{t) : ,Æ lr- cos (W\1pr.(t). It can be shown that theV ù L \ lc / l'^" '

autocorrelations of this wavef'orm are

and nz1 : 716 + 351 @8n") , îr, : I l12 - 351 @Br2) .

4) Btackrn an: !1(ú) : . ln, - nr*" (ry) f k3 cos Wlpr"ft), where

,' : (k?+k\l2+k'zBlÐ-r ancl k1 :0.42, kz:0.5 ancl k3:0.08. The partial

autocorrelations of the Blackman chip are as f'ollows:

h,.(,) : "'lr,;, . +.", (?) . +.", (i) - ry "^ (T)
k|T, .. (2trr\ , k2k3T" (2rr\ , k1k3T" (4rr\+ã:"" (, T / * Ë''" ( ¿ / * -#.'" (ãJ

_?kzlrl'T, ( 4m\ kïT" / 4¡rr\ 
| lr.ro¡J" tt"\n 

/* 8" t"'\ll /

î,,?) : ,'ln?tr"- r) + 9rr.- r)cos (Ð +$rr.- r)cos (T)
*ry "^ (T) - W"" (i) - ry* (ä)
-k'¡ksr"""(i) .'#s"(i) -W,'"(i) 

I2r \7") Jn _ \r.) 
çi.zt.

h,(,): 3,*I,*"(T)-fi",,e) (7 18)

î.,?) : ?,r"-o+!{r"-r)cos (T).*" (T) (7 1e)
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Table 7.1: Correlation parameters f'or diflêrent chip wavef'orms.

Tì71

3.333E-1
2.9338-1
2.4068-7
2.0738-r

U1

4.6678-1
4.2298-1
3.4378-7
2.949Ð-1

and the correlation parameters n?1 and íì\ are given by

nrt : cL¡sranlç+kz - ks) + 60gÀ;k3 + g60krk3 + 32k2k3

+ß2k?(4k3 + t'ï - Tzkr(+kl + r6k3r1, + r6k2k2| -,k3)

rT68kftr2 + r2kt? + Br2) + 3kÍ(3 + B2r\ll(2504tr2) (7.22)

îh : c4¡-szanfç4kz- k3) - 608k3ttr- s60krk3_ J2k2kt

-ß2k?(4k3 + n') + T2kr(4kg + r6k3r* + r6k2k3 -,kå)

å84kfr2 + r2ktel + 4r2)+ 3kå(-3 + 167rr)ll (2l04tr2). (7.2s)

Since obtaining the exact expressions of tr1 and û1 for the half-sine, raised-cosine

and Blackman \Mavef'orms is tedious, the values of these parameters are evaiuated

numerically. Thev are listed in Table 7.1.

The standard GA, Holtzman's improved GA and the exact calculation of the

error probabilities have been evaiuated f'or DS-CDMA systems using the above chip

wavefbrms and diff'erent values of l/ and K. For brevity of presentation, only the

numerical results f'or systems with 1/ : 31; K : Jand,^/ : 63; K : 6are presented in

Tables 7.2 and 7.3 respectively. As can be seen fiom these tables, the standard GA is

very conservative fbr high signal-to-noise ratios (EulNo > 8dB), whereas the accuracy

of Holtzman's improved GA should be acceptable f'or most values of the signal-to-

noise ratio. In general, the accuracy of the standard GA improves as the number

of users increases [67]. This is also observed from Tables 7.2 and, T.J. Comparing

Wavefbrm
Rectangular

Half'-sine
Raised cosine

Blackman

Tl"L1

1.667E-1

4.3328-2
9.453E-3
2.5538-3

U1

3.3338-2
3.2378-3
r.904F-4
7.4758-5
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the difl'erent chip wavef'orms under consideration shows that the Blackman chip gives

the best perf'ormance, f'ollowed by the raised cosine, the half'-sine and the rectangular

chips. However, it should be noted that this comparison is on the basis of an equal

processing gain l/, not an equal transmission bandwidth. For the latter case, the

reader is ref'erred to Section 6.5.



Rectangular
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Table 7.2: Error probabilities of a DS-CDN{A system: K:3 and ¡/:31.

4.248 4.248 4.248 4.188 4.188 4.188
L662 1.666 1.666 1.610 1.616 1.615
4.563 4.667 4.660 4.263 4.380 4.373
8.150 9.166 9.104 7.073 8.154 8.133
0.92r 1.430 7.406 0.698 1.196 1.2t7
0.707 2.333 2.241 0.427 1.866 2.014
0.446 5.067 4.500 0.194 3.921 4.464

Half'-sirre

P" Ps P{ P"

(P"G: Gaussian approximation, P!: Holtzman's approximation, P.: Exact calculatio¡)

pG PTI^e -e

4.109 4.109
7.543 7.549
3.883 3.999
5.801 6.809
0.468 0.878
0.202 r.r97
0.054 2.186

Raised cosine

Þ

4.109 4.060
i.548 L.502
3.993 3.653
6.874 5.083
0.922 0.356
1.429 0.119
3.137 0.021

Blackman

PcpHP-e 'e

4.060
1.507

ó.i0ô
6.0r2
0.702
0.854
1 D'7D
I.tJIÙ

4.060
1.507

3.759
6.030
u. /b5
1.106

2.299

x 10-2)
x 10-2)
x 10-3)
x iO-a)
x 10-a)
x 10-5)
x 10-6)



Rectangular Half'-sine

EulNo Py P! P" Pl P!
2 4.362 4.362
4 r.761 7.764

6 5.166 5.227
8 10.496 71.144
i0 1.493 1.866

72 7.647 3.051
74 1.706 6.207

Table 7.3: Erlor probabilities of a DS-CDMA system: K : 6 and l/ : 63.

4.362 4.289 4.289
1.764 1.697 1.700

5.225 4.775 4.844
rr.r23 8.948 9.638
1.859 1.103 1.466

3.041 0.974 2.772
6.797 0.747 4.085

(P"G: Gaussian approximation, P!: Holtzman's approximation, P"; Exact calculation)

PU PI
4.289 4.192
1.700 r.614
4.841 4.282
9.630 7.140
1.474 0.711
2.251 0.442
4.487 0.205

Raised cosine

P! P. Pl p:r pu

4.792 4.792 4.13i 4.131 4.131
7.617 1.677 7.562 1.565 1.565

4.351 4.349 3.985 4.052 4.050
7.785 7.785 6.133 6.727 6.731
1.006 7.027 0.524 0.770 0.788
1.230 7.332 0.250 0.809 0.991
1.923 2.359 0.078 1.083 1.475

Blackman

x 10-2
x 10-2
x 10-3
x 10-a
x 10-a
x 10-5
x 10-6



7 "2 Error Probabilities for DS-CDMA Systems with
Ðouble Chip \Maveforms

7.2.L Holtzman's fmproved Gaussian Approximation

For DS-CDN4A systems using double chip wavelbrms, the output of the kth correlation

receiver is also given as in (7.1). As shown in Appendix G, the random variables I4l¿

can be expressed in one of the f'ollou'ing two fbrms, depending whether l¿ is even or

not. If I¿ is euen then

w,:14r; : xo\r?,) + h1,2(r¿)f +Vþr?,) - nr,r(rn))

+ t'oÀ2Qn)-r Q¿fu,2(r¿)
r ^ 'l r / \ î , rl+ Un 
lhr,t("r) + n'(r)) + V¿ 

lll2,1("r) - nr(ro)) . (7.24)

On the other hand if l,¡ is odd, one has

W¡ : Wi : Xollrr,,(r'¿) + htQ)] +Yfio.r(ro) - ¿, ("0)]

+ Poî,r,r("n) + Q¿t"¿ír¿)

+ u,lnrçro¡ + 1,,r1r¿)] +VlnzQo) -î^,r?n)f . (7.25)

In 1.2\ and (7.25), the continuous partial cross-correlation fïnctions between the

two chip wavefbrms are defined as f'ollows

h^,.(r) : 
.lo' 

s^(t)s.Q + T. - r)dt

î^,.(r) : 
l,'" n,*{Ðn*U - r)dt

137

(7 
'^\

(7.27)

for m,n e {I,2} and f'or 0 < r ST". Also denoteh*(r) : h*,n(r) andh*(r) : h*,n(r)

when rn: n. Moreover, it is important to note that h*,r(r) :Àn,^(7.-r) and there-

f'ore one has the f'ollowing usefirl identity

l o'" 
nf ,,rr7îIo,oçr7 ar : I o' 

Ã1,*e) n!n,oe) dr (7.28)
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wlrere nL)n)f))q € {1,2} and k,l are any (positive) integer number.

From the definitions of the random variables X¡,, Y, P¿, Q¿, (J¿ and d given

in Appendix G, it is not hard to see that these random variables are mutually in-

dependent given lBl and lDl (which, respectively, are the cardinalities of sets B

and D defined in Appendix G). Furthermore, the random variables Wf andWno,

'i:7,...,k-I,lí + 1,.. .,K are also mutually independent. This fbllows fiom the

fäct that these random variables are firnctions of elements in disjoint subsets of mutu-

ally independent random variabies [33]. The random variables P¿ and Q¿ are uniformly

distributed over {0, 1}. Given lBl and lDl, the density fïrnctions of X¿, Y, (J¿ and,

V¿ can be determined bv elementary combinatorial arguments [33] but they are not

needed in deriving Holtzman's approximation f'or double chip waveforms. Only the

first and second moments of these random variables are important and they are given

by E(X¿) : E(Y) : E(Un) : E(V) :0, E(X?) : lÁl : N12- lBl- I, E(Yn\ : lBl,
E(U?) : lcl: Nl2 - lDl, E(U') : lDl. Furthermore, the firsr and second moments

of lBl and lDl can be shown to be E(lBl): (¡/ -2)14, E(lBlr): N(t/ -2)1t6,
E(lDl): Nl4 and E(lDl') : l/(N +2)116.

As in Section 7.I.7, define ü : var(MAIlr, g,lB| lDl) and let p and o be the

mean and standard deviation of Ü, respectively. Then the Holtzman's approximation

to calculate the error probabilities of DS-CDMA systems using double chip wavef'orms

is exactly the same as that used in (7.3). Thus it remains to determine ¡; and ø. The

random variable ü can be written as ü : Ðlrlr.o*utr¿, where

to: Ï[1 + cos(2tpz)]var (Wrlro,,lìl,lDl) . (7.2e)

Note that the random variables L¿s are identicaliy distributed and conditionally inde-

pendent, given lBl and lDl. Let di : var (Wîlrn,lBI, lrl) and B¿: var (Wf lro,lBl, IDI)
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Then it can be shown that

*¿ : IV¿rl+n1,,çr,7]*r(+- 1- 2rBr) î2e)h1,2(r¿), \¿ /
+ f, þlt,l + h',,,(",)] + , (+ - 2lrt) î1e)h2,1(r¿) (7 30)

r \L .,

þ¡ : I Vl,,(r'¿) + n?,(, ,)] *, (+ - 1 - 2lal) À2,1(r¿)h1e¡)r \z /

+ I Cl,(,",) + n3?)]., (+ - 2trl) î1,2e)h2(r¿) (7 31)
' \L ,/

Since lo takes even or odd integers of the set {0, 1, . . . , ¡i-1} with the same probability,

var (W¿lrr,lBl, lDl) equals a¿ or B, with probabiiity 1/2.

Now the meân of Ü can be obtained by averaging over the random variables rp¿,

r¿, lBl and lDl. It is given by

p: i E(Lo):(K_ r)E(L¿)
i.:t,i+k

: (* 
,^t)!" : f" h',el +î3?) +î1,,1,¡ +î?,,,1,¡16¡/ TÊ lo L

+hl(r) + hl(r) + h2r,r(r) + h3,Jr¡l a,
J

: LK-L)PT2r f'"f,2,, ,2¡t ìt,\ ît,,1 ,

s¡/ r: .1, Lhîl') + hiQ) + hi,2(r) i hí,r(r)l dr (7'32)

where the last equality f'ollows fiom (7.28). Define

TrL2: h ["' ln',(,) + h3") +îr7,r1,¡ +î'r,,(r)] a". (2.33)
.. C J U

Then it f'ollows fTorn (6.13) and (7.28) that rn2 : fr ïi. (nre) +À2e))' 0", which

is precisely the normalized interfêrence parameter, /, defined in Section 6.1.2. Now

the mean of ü can be written as

(K - r)PT2
I r.,J+,2N

TlTZ
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which is the same f'orm as in (7.5) f'or the case of single chip waveform. The variance

of \U is calculated as fbilows

o2: E(ú')-pt

: (K -L)E(r)+6 -1)(K -z)E(LiLj) - t" (7.35)

where'd and.7 are any index not equal to k and not equal to each other. The second

moment of -L¿ is given by

E(L?):# P@) + E(tt)l:ffi,* (7.36)

where the parameter ru¡¡ depends on ly' and it is given in (H.a) of Appendix H. The

correlation between L¿ and L¡ (i # 7) is given by

p2 (PT2\2
E(hL j) : ãlE(a¡,a¡) + E(a¿þ¡) + E(þ¿ai) + E([J¿þ¡)] : 2:'6ñíûN (7.37)

where û¡¿ is given in (I.7) of Appendix Ia. Now, combining (7.34), (7.36) and (7.37),

one has

PT2 -- ., /ô r

": ffitN - 7)t/z [6"+ (I{ - 2)ûN - 64(K - t)^7]'/'' (7'38)

Though the expressions f'or p" and ø obtained above appear to be complicated,

they are quite simple to evaluate. Also note that, although there are eight possible

correlation firnctions that can be defined f'or the two chip wavef'orms, only f'our of them

are needed in the evaluation of p, and o. Furthermore, if the chip wavef'orms g1(ú)

and g2(t) posses an (even or odd) symmetry about T"fZ,then only three correlation

functions are required and the expressions f'or u¡ and r1¡¿ significantly simplify to

(H.6) and (I.8), respectively. Finally, it is not hard to see that (7.34) and (7.38)

reduce to (7.5) and (7.6), respectivelv, when the two chip wavef'orms are identical,

i.e., gt(t) : gr(t).

4Note that lnz1 u)N and T1¡¡ have all been normalized to be independent of the chip duration, 7}.
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7.2.2 Numerical Examples

This section evaluates the accuracy of Holtzman's improved Gaussian approximation

derived in the previotts section fbr the case of double chip wavef'orms. The combina-

tions of two chip wavef'orms selected are "rectangLrlar/half-sine", "rectangular/raised-

cosine" and "rectanguiar/Blackman". Since the exact calculation of the error prob-

ability f'or the case of double chip wavef'orms is not available, the results produced

by standard GA and improved GA are compared with simulation results. The error

probabilities obtained by diflèrent methods are listed in Tables 7.4 and 2.5 f'or two

systems with lf :3; 1/:32 and K :6; N :64 respectively.

From Tables 7.4 and 7.5, simiiar observations as fbr the case of a single chip

wavef'orm can be made regarding the accuracy of the standard GA and improved

GA when the double chip wavef'orms are used. More specifically, the accuracy of the

improved GA is acceptable f'or all the signal-to-noise ratios, whereas the standard

GA is qnite loose for E6f Ns > 8clB. As f'or the single chip waveform, the improved

GA f'or double chip wavef'orms is clearly very simple to use once the double chip

waveforms are specified. This improved GA was used in Section 6.5 to evaluate the

error perfbrmânces of diff'erent combinations of double chip waveforms.

7.3 Chapter Summary

This chapter extends Holtzman's improved Gaussian approximation of error proba-

bility in asynchronous DS-CDMA systems to include both arbitrary single and double

chip wavef'orms. The accuracy of the approximation has also been verified by either

exact calcuìation or simulation results. Due to its simplicity and accuracy, the im-

proved GA is very attractive fbr evaluating the error perf'ormance of the asynchronous

DS-CDMA systems using the random signature sequences and multiple chip vyave-

fbrms proposed in Chapter 6.



Table 7.4: Error probabilities of DS-CDMA systems with double chip wavefbrms K :3 and N : 32.

EulNo Pf P{
2 4.196 4.196
4 7.677 r.622
6 4.305 4.397

8 7.220 8.079
10 0.727 7.725
72 0.460 1.581

14 0.220 2.939

Rect./Half-sine
p

Le

4.226 (x 10-2)
7.644 (x 10-2)
4.399 (x 10-3)
8.1i3 ( x 10-a)
1.159 ( x 10-a)
1.620 (x10-5)
3.213 (x 10-6)

Rect./Raised cosine
pC pII D

I^ I^ lo

4.149 4.749 4.r52
L.577 1.581 1.611

4.072 4.752 4.205
6.420 7.743 7.256
5.746 8.848 9.122
0.298 7.062 1.154
0.106 1.661 7.7r2

(P"G: Gaussian approxirnation, P!: Holtzman's approximation, P": Simulation)

( x i0-2)
( x 10-2)
( x 10-3)
( x 10-a)
( x 10-5)
( x 10-5)
( x 10-6)

Rect./Blackman

Pf P!
4.717 4.L77
1.550 1.553

3.920 3.992
5.919 6.557
4.874 7.457
2.784 7.930
0.062 1.084

È

Dre

4.124 (x 10-2)
1.593 (x 10-2)
3.983 (x 10-3)
6.516 (x 10-a)
7.832 (x10-5)
9.091 (x 10-6)
7.231 (x10-6)



Table 7.5: Error probabiliiies of DS-CDMA systems with double chip wavef'orms: K:6 ancl lü:64.

Rect./Half-sine

EulNo Pf P! P"

2 4.308 4.308 4.427
4 1.714 1.776 1.815

6 4.876 4.932 4.796
8 9.339 9.906 10.021
10 1.197 1.503 7.476

12 7.724 2.153 2.242
14 0.938 3.811 4.356

( x 10-2)
( x 10-2)
( x 10-3)
( x 10-a)
( x 10-a)
( x 10-5)
( x 10-6)

Rect./Raised cosine

Pf P! p"

4.248 4.248 4.290
7.662 1.664 1.718
4.567 4.616 4.662
8.164 8.642 8.657
0.925 1.161 1.119

0.712 7.407 7.424

0.450 2.070 2.432

(P"G: Gaussian approximation, P!: Holtzman's approximation, p": simulation)

x 10*2)
x 10-2)
x 10-3)
x 10-a)
x 10-a)
x 10-5)
x 10-6)

Rect./Blackman
pG pIt t)-e 'e Le

4.209 4.209 4.282
r.628 1.630 1.648
4.366 4.470 4.47r
7.435 7.856 8.034
7.699 9.662 9.497
0.511 1.031 1.104
0.262 1.314 7.223

( x 10*2)
( x i0-2)
( x i0-3)
(x 1o-'1)
( x 10-5)
( x 10-5)
( x 10-6)

É:



Chapter I
Conclusions and Snggestions f,or
Fbrther Study

8.1 Conclusrons

This thesis was mainly devoted to signature wavef'orm design to minimize the MAI

(or maximize the number of users f'or a given MAI level) in CDMA systems under a

bandwidth constraint. For synchronous CDVIA systems, closed-f'orm solutions were

obtained fbr the optimal signature wavef'orms under either FOBB or RMS bandwidth

constraints. ln general, the optimal signature wavef'orms were constructed based on

sinusoids when the RMS bandwidth is considerecl, whereas they were constructed fïom

prolate spheroidal wave firnctions under t,he FOBE bandwidth criterion. Comparisons

to other signature wavef'orm constructions showed significant improvements of the

proposed signature wavef'orms, both in terms of the network capacity and the bit

error rate performance. Due to the compiexity of the receiver working with prolate

spheroidal wave firnctions, a simplified receiver based on Walsh signal space uias

also developed f'or a more practical implementation. It was shown that, by using a

relatively small number of Walsh fìrnctions, the perf'ormance of the simplifìed receiver

can approach very closely that of the true receiver.

Signature wavefbrm design was also carried out fbr asynchronous CDMA systems

I44
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equipped with correlation receivers. The design procedure was based on the series ex-

pansion method. For the FOBE bandwidth constraint, it is suggested that the prolate

spheroidal wave fhnctions be used to expand the Fourier transf'orms of the optimal

signature wavefbrms. Orr the other hand, sinusoids were used to expand the optimal

signature wavef'orms under the RVIS bandwidth criterion. Although severai examples

were given to demonstrate the superiority of the proposed signature waveforms, this

method is quite time cousrtming, in general, f'or systems with a large number of users.

Nevertheless, the rnethod rvas successfully applied to find the optimal multiple chip

wavefbrms to minimize the MAi in asynchronous DS-CDMA systems using random

signature sequences. It was demonstrated that using double chip wavef'orms instead

of a sirrgle chip waveform can reduce the MAI by about I07o (corresponding to about

2.0d8 gain in EtlNo f'or a BER level of 10-a to 10-5) f'or a given bandwidth, or

conversely save about l0% oÍ the transmission bandwidth f'or a given MAI level.

Finally, to evaluate the error perf'ormance of the proposed DS-CDMA systems

using random signature sequences and double chip wavef'orms) an expression f'or error

probabilities was developed based on Holtzman's approximation. Since the derived

expression is very simpie and accurate, it is very usefïrl f'or a performance analysis of

the proposed DS-CDMA systems.

8"2 Suggestions for F\rrther Study

The signature wavef'orm designs have only been considered f'or additive white Gaus-

sian noise (AWGN) CDMA channels in this thesis. Since a f'ading channel is a more

practical model f'or wireless communications, it would be interesting to extend the de-

signs to fading CDMA channels. Furthermore, in both synchronous and asynchronous

CDMA systems, it has been assumed that perfêct power control can be implemented.

This assumption can be easily removed f'or the design of multiple chip waveforms

f'or DS-CDMA systems but not f'or the designs of the signature wavef'orms (for both



r46

synchronous and asynchronous CDMA systems) considered in this thesis. Therefore,

designing optimal signature wavefbrms f'or CDN¡IA systems with arbitrary received

power levels of all nsers remains to be studied.

The signature and chip wavef'orms considered in this thesis are limited to the fam-

ily of time-limited wavef'olms. Because rnost of practicai systems use band-limited

wavef'orms (such as the square root raised cosine), it is natural to extend the ideas

elaborated in this work to include the fâmilv of bancl-limited wavef'orms. Such exten-

sion would benefit the systems proposed f'or 3G (IN/IT2000, UMTS, etc.,).

In this thesis, the accuracy of the derived approximatioir of the error probability

f'or the case of double chip wavefbrms was verified with a computer simulation. It
would be usef'ul to obtain an exact expression of the error probabilities in this case.

Moreover, a semi-analytical approach combinecl with importance sampling, as in [69],

can be developed fbr an effìcient evaluation of the error probabilities f'or DS-CDMA

systems with double chip wavefbrms.

Recently, the technique of multicarrier CDMA has been received much attention

[58, 73, 74,75,76,77,78, 12]. Thus, designing optimal signature waveforms for

multicarrier CDMA seeûìs very attractive. In multicarrier CDMA, the transmission

bandwidth associated with an individual carrier is usually much smaller than the total

available bandwidth. This means that signature wavef'orm design using the series

expansion method is more eflêctive in this situation. However, it should be noted

that, in multicarrier CDMA systems, the signature wavef'orms need to be designed to

minimize not only the MAI caused by the signals of the users using the same carrier

but also the MAI causecl by the signals fïom the other carriers. This could make the

design problem more chailenging.

In this thesis the signature wavef'orms are optimally designed f'or a particular type

of (linear) receiver. It is believed that the users' perf'ormance in CDMA systems can

be further improved if the signature wavef'orms and the receiver are jointly designed. If
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the receiver is constrained to be a linear receiver, then an iterative procedure simiiar

to that proposed f'or joint optimization of the transmitter and receiver in CDMA

systems [10, 11, 72] mav be of interest.
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5.8317E-048
1.0233E-051
1.60148-055
2.24898-059
2.84988-063
3.27528-067
3.4293F-077
3.28498-075
2.BB97E-079
2.34258-083
1.75568-087
1.22008-091
7.8829tr-096
4.7480E-100
2.67228-704
1.40858-108
6.9666E-113
3.2407F'-117
1.41968-727
5.86908-126
2.29348-730
8.48428-135
2.9755E-139
9.90698-144
3.13568-148
9.4459E-153
2.7177E,-757

7.4265E'-162
7.94258-166
4.8574Ð-77r
r.1624tr-775
2.6645E-180
5.8560E-185
1.23508-189

1.88718-046
4.0881E-050
7.B983E-054
1.36938-057
2.74238-067
3.03958-065
3.9291E-069
4.64658-073
5.04628-077
5.0503E-081
4.67278-085
4.00888-089
3.19798-093
2.37808-097
1.6523E-101
1.07518-105
6.56548-110
3.76978-774
2.03908-118
7.04078-722
5.02098-727
2.29378-73r
9.9285E-136
4.0811E-140
7.59478-144
5.9309E-149
2.1019E-153
7.10698-158
2.29498-162
7.08498-167
2.09318-171
5.92368-776
1.6072E-180
4.1846E-185

1.62088-036
1.40458-039
7.08548-042
7.52748-046
4.7106E-049
2.6734F'-052
1.3824E-055

6.53918-059
2.8406E'-062
1.1372E-065
4.20878-069
1.44438-072
4.60858-076
1.3708E-079
3.8098E-083
9.9162E-087
2.42218-090
5.5630E-094
1.20368-097
2.45738-L07
4.742L8-705
8.6630E-109
1.50038-112
2.46698-776
3.85578-120
5.73598-124
8.1315E-128
1.0997E-131
1.4205E-135
1.754i8-139
2.07298-143
2.3466F,-L47
2.54678-757
2.65238-155

1.0485E-030
2,0445E-033
3.5552E-036
5.5476E-039
7.81748-042
9.9753E-045
1.1605E-047
1.23528-050
r.20748-053
1.08758-056
9.05618-060
6.99268-063
5.0203E-066
3.3598E-069
2.t0tLE-072
2.3776E,-075

6.76268-079
3.49478-082
1.7012E-085
7.8150E-089
3.39338-092
1.39488-095
5.4351E-099
2.07078-702
7.0710E-106
2.36688-109
7.5495E-113
2.29738-176
6.67658-720
1.85518-123
4.9325E,-127
1.25638-130
3.06788-i34
7.18878-138

n c: 4.0 c:5.0 c:6.0 c:7.0 c:8.0 c:9.0
0

1

2

.f
/+

9.9589E-001
9.12118-001
5.1905E-001
1.10218-001
8.82798-003

9.99358-001
9.7986E-00i
7.9992E-001
3.4356E-001
5.6016E-002

9.9990E-001
9.9606E-001
9.4017E-001
6.46798-001
2.07358-001

9.99988-001
9.9929E-001
9.85718-001
8.6457E-001
4.7705E-001

1.00008-000
9.9988E-001
9.9700E-001
9.6055tr-001
7.47908-007

1.00008-000
9.9998E-001
9.99428-001
9.9040E-001
9.1013E-001
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n ?-/(l c:5.0 c:6.0 c:8.0 c:9.0

o

7

8

I
10

11

72

Lf

74

15

10
1.7
LI

1B

19

20

27

22

23
,/1

25

26

27

28

29

30
,f _t

32

33
.J+

óÐ

36
.) F7
dr

38

39

40

41
A'

+J

44
Át
+Ð

40

3.8129E-004
1.09518-005
2.2786E-007
3.6066E-009
4.49388-011
4.52528-013
3.7603E-015
2.6228F'-017
1.5576E-019
7.97L7Ð-022
3.5519E-024
1.3906E-026
4.8217E'-029
1.4905E-031
4.1353E-034
1.03528-036
2.3503tr-039
4.86158-042
9.19928-045
1.59868-047
2.55998-050
3.7897E-053
5.2023E-056
6.6400E-059
7.90038-062
8.78328-065
9.1446E-068
8.93488-071
8.2085E-074
7.70398-077
5.8016E-080
4.47838-083
3.2724E-086
2.2670E'-089
1.4910E-092
9.32778-096
5.5470E-099
3.i455tr-102
1.7017E-105
8.7919E-109
4.34278-7t2
2.05288-115

4.18218-003
1.93318-004
6.35918-006
i.5823E-007
3.09178-009
4.87578-017
6.34038-013
6.9173E-015
6.4236F'017
5.1393E-019
3.5798E-021
2.19058-023
1.1869E-025
3.4047E-014
2.4865E-030
9.72748-033
3.4511E-035
1.1155E-037
3.29838-040
8.95608-043
2.24708-045
5.1842E-048
1.11208-050
2.27778-053
4.1230E-056
7.76248-059
1.16528-061
r.77898-064
2.5536E-067

3.453i8-070
4.4064Ð-073
5.37478-076
6.0683E-079
6.5687E-082
6.7502E-085
6.59428-0BB
6.13138-091
5.43258-094
4.59208-097
3.70718-100
2.8612E-103
2.11338-106

2.73878-002
1.9550E-003
9.4849E-005
3.4368E-006
9.73218-008
2.2190E-009
4.16628-077
6.55758-013
8.78048-015
1.0126E-016
1.0164E-018
8.96118-021
6.99518-023
4.8688tr-025
3.04058-027
1.71338-029
8.75448-032
4.07528-034
1.7354E-036
6.7865tr-039
2.44568-04I
8.r4728-044
2.5166E-046
7.22808-049
1.9351E-051
4.84098-054
1.13418-056
2.4933E-059

5.75428-062
1.00378-064
7.8443E-067
3.2034E-070
5.2670E-073
8.2100E-076
1.21498-078
1.70918-081
2.2883E-084
2.97978-087
3.55408-090
4.1315E-093
4.59188-096
4.8838E-099

7.7572Ð-001
1.3056E-002

9.06578-004
4.56248-005
7.7775tr-006
5.55268-008
1.42518-009
3.06228-011
5.59298-013
8.7927E-015
1.20278-016
1.44468-018
1.53598-020
7.45598-022
7.23878-024
9.49898-027
6.60858-029
4.1882E-031
2.42878-033
1.29268-035
6.34i1tr-038
2.87578-040
7.20928-042
4.7275Ð-045
7.72298-047
5.8667E-050
1.8708E-052

5.59868-055
1.57538-057
4.1756E-060
7.04448-062
2.4692Ð-065
5.52608-068
7.7725F'-070
2.36L78-073
4.5220F'-076
8.24128-079
1.43i28-081
2.3773E'-084
3.7522E'-087
5.67618-090
8.2173E-093

3.20288-001
6.07848-002
6.12638-003
4.78258-004
2.1663E-005

8.9304E-007
3.0137E-008
8.49668-010
2.0334E-011
4.1853E-013
7.4905E-015
7.7767F-076
1.6359E-018
2.02708-020
2.25308-022
2.25898-024
2.05358-026
1.70058-028
1.28808-030
8.95858-033
5.74128-035
3.40i38-037
1.86838-039
9.54198-042
4.54258-044
2.0205Ð-046
8.41658-049
3.29008-051
1.20928-053
4.1867E-056
1.3678E-058
4.22398-067
7.23478-063
3.4219E-066
9.0028E-069
2.2576E-07r
5.3598E-074
1.21588-076
2.6311E-079

5.4378E-082
1.07458-084
2.03178-087

5.99108-001
1.96948-001
3.05658-002
2.8466E-003
1.9231E-004
1.0194E-005
4.3974E,-007
1.5796E-008
4.80698-010
1.2565E-011
2.8534E-013
5.68438-015
1.00i78-016
1.57288-018
2.27458-020
2.87248-022
3.23798-024
3.39538-026
3.2563E-028
2.8675E-030
232658-032
1.7449E-034
1.21348-036
7.84448-039
4.7271E,-047
2.66168-043
1.4034F-045
6.9437E-048
3.23048-050
r.47578-052
5.85428-055
2.288L8-057
8.4660E-060
2.96968-062
9.8888E-065
3.1303E-067
9.4310E-070
2.7077F,-072

7.4163E,-075
7.94008-077
4.8516E-080
1.16118-082

I
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n ^-/1 ^ c:6.0 c:8.0 c:9.0
47

48

49

9.29528-779
4.03538-722
i.68108-125

1.49518-109
7.01428-772
6.6014E-116

4.9757F-102
4.86028-105
4.5555E-108

1.1395E-095

1.51508-098
1.9329E-101

3.6799E-090
6.39048-093
1.06498-095

2.66i78-085
5.8502E-088
1.2338E-090

n c : 10.0 c:12.0 --1/1 n 16.0 c : 18.0 c:20.0
0

2
Ð
r-)

4
(

o

7

B
q

10

11

72

r.)
74

15

16

T7

18

19

20

2T

22

23
'\ 't

OX
L¿

26

27

28

29

30

JI

32

33
ó+

JÐ

1.00008-000
1.00008-000
9.99898-001
9.97908-001
9.74468-007
8.25158-001
4.40158-001
1.1232E-001
7.4920E'-002
1.31468-003
B.B213E-005
4.76648-006
2.1340tr-007
8.0707tr-009
2.61708-010
7.36358-012
1.81598-013
3.9590E-015
7.68778-017
1.33818-018
2.10028-020
2.9878Ð-022
3.87078-024
4.5860E-026
4.9BB2E-028
4.99878-030
4.6302F,-032

3.97628-034
3.17458-036
2.36238-038
7.64248-040
1.0693E-042
6.53308-045
3.75288-047
2.03068-049
6.7227tr-038

1.0000E-000
1.00008-000
9.9994tr-001
9.9989E-001
9.98568-001
9.8365tr-001
8.81728-001
5.57338-001
1.8342E-001

3.10548-002
3.3744Ð-003
2.77428-004
1.84758-005
1.02828-006
4.87588-008
1.99808-009
7.1570E-011
2.2679E-072
6.35758-014
1.6002E-015
3.62898-017
7.45478-019
1.3939E-020
238278-022
3.7380E-024
5.4074E'-026
7.21328-028
8.9271E-030
1.02738-031
1.10178-033
1.10378-035
1.0352E-037
9.11318-040
7.54208-042
5.878BE-044
4.3238E-046

9.9999E-001
9.9999E-001
9.9999tr-001
9.9999E-001
9.9993E-001
9.9903tr-001
9.89628-001
9.2169E-001
6.6362E-001
2.72558-00r
5.77778-002
7.56038-003
7.3608E-004
5.8096E-005
3.85418-006
2.1927Ð-007
1.0846E-008
4.7180E-010
i.82088-011
6.2816E-013
1.94988-0i4
5.47708-016
1.3991E-017
3.2654E-019
6.9910E-021
r.37828-022
2.50978-024
4.23558-026
6.6427Ð-028
9.7068E-030
1.32508-031
1.6934E-033
2.0306E-035
2.2888E-037
2.4300E-039
2.4338E-041

9.9995E-001
9.9995tr-001
9.9995E-001
9.9995E-001
9.99958-001
9.9995E-001
9.99378-001
9.9345E-001
9.48978-001
7.5365E-001
3.74838-001
9.8343E-002
1.53268-002
1.7310E-003
7.5775F_004
1.2i178-005
8.0200E-007
4.6393E-008
2.3710E-009
1.0801E-010
4.4r78E,-012
1.6323E-013
5.47828-015
1.6782E-016
4.7119E-018
1.2173E-019
2.90378-027
6.41678-023
1.3173E-024
2.57928-026
4.4989E-028
7.52048-030
1.1791E-031
1.7379E-033
2.47228-035
3.15BBE-037

9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.99948-001
9.99948-001
9.99608-001
9.95888-001
9.67178-001
8.2538E-001
4.8298E-001
1.5521E-001
2.8697E-002
3.71618-003
3.8416E-004
3.3476E-005
2.52138-006
1.66618-007
9.76658-009
5.1225E-010
2.42098-0L7
1.0373E-012
4.0504E-014
1.4480E-015
4.7586E,-017
1.4428E-018
4.05008-020
1.05568-021
2.5618E-023

5.80388-025
1.23058-026
2.44648-028
4.5710E-030
8.0474F-032
1.33418-033

9.9993E-001
9.9993E-001
9.9993E-001
9.9993E-001
9.99938-001
9.9993E-001
9.9993E-001
9.9993E-001
9.99728-001
9.9736E-001
9,7906E-001
8.7968E-001
5.8877E-001
2.2896E-001
5.02458-002
7.4209E-003
8.59838-004
8.37378-005
7.06008-006
5.23778-007
3.45748-008
2.0484E-009
1.0972E-010
5.34478-072
2.37868-013
9.72018-015
3.6607E-016
t.27508-017
4.72t28-079
i.2396E-020
3.47888-022
9.73178-024
2.24728-025
5.1948E-027
1.13058-028
2.3202E-030
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n c : 10.0 n - 1) Ã c: I4.0 c : 16.0 c : 18.0 c:20.0
36
eÈ7¿l

38

39

40

4t
,,|,

+.f

44

+o

4T

48

49

5.0035E-054
2.28578-056
9.8991E-059
4.0699E-061
1.59068-063
5.9168E-066
2.09738-068
7.09248-07I
2.29058-073
7.07228-076
2.0896E-078
5.9142E-081
1.60488-083
4.1788E-086

3.00578-048
1.9778E-050
7.2337E'-052
7.30558-055
4.7726F-057
2.2031E-059
1.12488-061
5.47818-064
2.5481E-066
1.1330E-068
4.8274F-07r
1.9650E-073
7.6792E-076
2.8798E-078

2.30428-043
2.0646F-045
7.7536F'-047
r.47418-049
1.0837tr-051
7.90568-054
5.4949E-056
3.64348-058
2.3071E-060
1.39678-062
8.0905E-065
4.48968-067
2.38848-069
I.27928-07r

3.9086E-039
4.57808-041
5.0822E-043
5.3551E-045
5.3635E-047
5.1123E-049
4.6430E-051
4.02288-053
3.3282tr-055
2.63248-057
1.99228-059
1.44448-067
1.0039E-063
6.6949E-066

2.0918E-035
3.1039E-037
4.3649E-039
5.8265E-041
7.3907E-043
8.9218E-045
L.0262E-046
1.1259E-048
1.1795E-050
1.18138-052
1.13208-054
1.03908-056
9.1425E-059
7.71968-061

4.49828-032
8.25158-034
1.43448-035
2.3661E-037
3.7096E-039
5.53408-041
7.86448-043
1.06608-044
1.3798E-046
1.7071E-048
2.02088-050
2.29L78-052
2.4903Ð-054
2.59698-056

n c:24.0 c:26.0 c:28.0 c : 30.0 c : 35.0 c: 40.0

0

1

2

'J

4

o

7

8

I
10

11

12

13

74

lÐ

Itl

17

18

19

20

27

22
oe

,/1

9.99998-001
9.9999E-001
9.9999E-001
9.99998-001
9.99998-001
9.9999E-001
9.99998-001
9.99998-001
9.9999E-001
9.99998-001
9.9983E-001
9.9897E-001
9.9164E-001
9.46478-001
7.67328-007
4.16478-007
1.29i0E-001
2.48678-002
3.5542E-003
4.r970E-004
4.28268-005
3.8569E-006
3.10398-007
2.2528E-008
1.48538-009

9.99968-001
9.9996E-001
9.9996E-001
9.99968-001
9.9996tr-001
9.99968-001
9.99968-001
9.9996E-001
9.99968-001
9.9996E-001
9.9996E-001
9.99888-001
9.9931E-001
9.9476E-001
9.65128-001
8.33418-001
5.18858-001
1.90688-001
4.2240E-002
6.6919E-003
B.62r7E-004
9.5618E-005
9.3590E-006
B.i95BE-007
6.4841E-008

9.9997E-001
9.99978-001
9.9997E-001
9.99978-001
9.9997E-001
9.9997E-001
9.99978-001
9.9997E-001
9.9997E-001
9.99978-001
9.9997E-001
9.99978-001
9.9988E-001
9.9954E-001
9.9667E-001
9.77468-007
8.8389E-001
6.17688-001
2.67328-007
6.8527E-002
7.2067F-002
1.6912E-003
2.02728-004
2.14208-005
2.02658-006

9.9998E-001
9.99988-001
9.9998E-00i
9.9998E-001
9.99988-001
9.99988-001
9.9998E-001
9.9998E-001
9.99988-001
9.99988-001
9.9998E-001
9.99988-001
9.9998E-001
9.99898-001
9.9971E-001
9.97888-001
9.8561E-001
9.2093E-001
7.06918-001
3.5648E-001
1.06288-001
2.09098-002
3.18568-003
4.1i018-004
4.66338-005

9.9992E-001
9.99928-001
9.99928-001
9.99928-001
9.9992E-001
9.99928-001
9.99928-001
9.99928-001
9.9992E-001
9.99928-001
9.9992E-001
9.99928-001
9.9992E-001
9.9992E-001
9.9992E-001
9.99928-001
9.99928-001
9.9973E-001
9.98228-001
9.88348-001
9.36578-001
7.55858-001
4.22728-001
i.4288E-001
3.1566E-002

9.99948-001
9.99948-001
9.9994E-001
9.9994E-001
9.99948-001
9.99948-001
9.9994E-001
9.99948-001
9.99948-001
9.9994E-001
9.99948-001
9.9994E-001
9.9994E-001
9.99948-001
9.99948-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.9994E-001
9.99738-001
9.98528-001
9.9057E-001
9.49328-001
7.98338-001
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n ?-rAn c:26.0 c:28.0 c : 30.0 c : 35.0 c: 40.0

25

26

27

28

29

30

31
2.)

33

,f+
AK

JO

tlt

3B

39

40
41

4'--l
43 

1

I

¿.L l^rl
4jì 1--l
46 

1

I

47 
1

I

48l
I

4el

8.9457E-011
4.94798-012
2.5233E-013
1.19138-014
5.2233tr-016
2.73328-017
B.13B8E-019
2.90758-020
9.7489Ð-022
3.07438-023
9.1360E-025
2.5632F-026
6.80138-028
1.70938-029
4.0749E-031
9.22968-033
1.9884E-034
4.0799E-036
7.9830E-038
1.4912E-039
2.66188-041
4.54598-043
7.43408-045
1.1654E-046
1.75268-048

I

4.6678E-009
3.0759E-010
1.86448-011
7.04428-072
5.42328-074
2.6199E-015
1.18138-016
4.9826E-018
1.97098-019
7.32878-02r
2.56678-022
8.48278-024
2.6500E-025
7.8395E-027
2.r9g2B-028
5.85978-030
1.4848E-031
3.5821E-033
B.240BE-035
1.80958-036
3.79668-038
7.67978-040
7.4643F-04r
2.69678-043
4.76448-045

1.7339E-007
1.35218-008
9.66628-010
6.36748-011
3.BB14E-012
2.19718-013
1.1592E-014
5.7747F-076
2.63978-077
1.14508-018
4.6755Ð-020
1.80048-021
6.55068-023
2.25588-024
7.36418-026
2.28228-027
6.72548-029
1.8866E-030
5.04468-032
1.28728-033
3.13808-035
7.37678-037
1.63328-038
3.4935E-040
7.16758-042

4.73798-006
4.35708-007
3.65548-008
2.Bi52E-009
2.0009E-010
1.31778-011
8.0709E-013
4.6728F'-074
2.46688-0i5
1.23788-016
5.84078-018
2.59708-019
1.0904E-020
4.33078-022
1.6298E-023
5.82028-025
1.97558-026
6.3814tr-028
1.96418-029
5.7683E-031
1.6181E-032
4.3400E-034
1.11438-035
2.74068-037
6.46608-039

5.3270E-003
7.59238-004
9.54478-005
1.0796E-005
1.11128-006
1.04908-007
f .i360E-009
7.37798-070
5.5469E-011
3.8963E-012
2.56448-013
1.58628-014
9.24028-016
5.08048-017
2.6426F,-078
7.30228-079
6.0897E-021
2.70768-022
1.14588-023
4.62768-025
7.77928-026
6.5451E-028
2.30288-029
7.7601E-031
2.50648-032

4.87278-001
1.85258-001
4.55518-002
8.4174E-003
1.3055E-003
1.7876E-004
2.21188-005
2.49468-006
2.5935E-007
2.49788-008
2.23918-009
1.87578-010
1.4733E-011
1.0882E-012
7.57768-074
4.9861E-015
3.1066E-016
1.83628-017
1.0313E-018
5.5128E-020
2.80868-021
1.36558-022
6.3451E,-024
2.82038-025
r.2007F'-026



Appendix B

Constructi*g a Correlation Matrix
with Prescribed Ðiagonal Entries
and Eigenvalues

Let x be the vector of diagonal entries of a correlation matrix, R, and y be the

vector of its eigenvalues. A well-known condition for the existence of matrix R is
that vector y majorizesr vector x. Given x and y, a recursive procedure to construct

such a matrix R based on the T-transJornz is outlined below. For the justification of

this procedure, readers are ref'erred to [i71.

1) Initialization:

Let y(o) : y. Define z\ be a K x K cliagonal matrix having y(0) u, its diagonal.

Let V: I, and j :0.

2) Find the largest integer k such that gf) ) x:¡ and the smallest integer I such

that, y[i) ( r¿ ancl t > k.

Fincl ô : -it (g[j) - rk, rr - aÍj)) ancl ø : --År-
Define f,(i+r¡ : uru+l) : I, an K x K ,0":ri,-:::ix. Then set

rFor x, y € Ðt1(, one says that x is rnajorized by y (or y majorizes x) if (i) If=r *ta I Df:r yt¿1,

for k: 1,2,...K -l and (ii) D[r*t¿t : Ðl!vt¡.

i55
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Tfu*t) : TÍ/*t' :', Tli,*') : TÍl*t) : r * ø
u['**t) - u,f+tl : Ja, T[',nt) : Jt - a,TÍl*t) : -ú - u)

Compute y(j+t¡ :1(j+t;t1:), V: 1UU+t);rV and R: (U(i+l))r¡¡-(i+r).

If y(r+t) : x then go to 3), otherwise increase j - j f l and go back to 2).

3) Stop and output R and V.

The above recursive aigorithm is guaranteed to terminate aïter K - 1 steps at most

(corresponding to j : K - 2). The singular-value clecomposition of R is

R : Vr\Vr lB.1)

where V : [rr, y2,. . ., v¡r] is an orthogonal matrix of the eigenvectors of R.



Appesrdix C

The Equivalence of Problern 4"5
and Problern 4"b

Let e (R) clenote the minimum average FOBE of the optimal signal set corresponding

to the correlation matrix R. Then the proof consists of the following three steps.

ø The first step is to show that Problem 4.5 is equivalent to the following problem,

which is stated in terms of the correlation matrix R: Find the correlation matrix

R that minimizes tr(RRr) subject to (i) R à 0; (ii) Rg : I, Vk; (iii) e (R) < a'

Proving this fãct can be carried out similarly as f'or the proof of Proposition 4.1.

Note, however, that one now relies on Propositíon2.2 to deal with metric e (R)

instead of rncLric ö2(R).

o In the second step one needs to show that the design problem in Step 1 above is

equivalent to the fbliowing problem, which is stated in terms of the eigenvalues

of the correlation matrix R: Find the set of eigenvalues {À1, À2, . . . , À¡r} that

minimizesD:í:rÀfl,subìectto(i) À¡)À¡a1 >0, 1<k<1{; (ii) tr(À) :K;

and (iii) tr(z\e; < Kr1. Again, proving this equivalence is exactly the same as

the proof fbr Proposition 4.2 with the only exception that the ordering constraint

on the eigenvalues and the FOBE bandwidth constraint are the consequences

of Prooosition 2.2.

r57



158

This final step is to prove that the design problem in Step 2 is equivalent to

Problem 4.6. The proof is as fbllows. As in the proof of Proposition 4.3, it is

first shown that the ordering of the eigenvalues will be a natural consequence

of the optimization problem. Suppose that Á. minimizes tr(Ä2) and satisfies all

the constraints of the problem in Step 2 except fbr being well ordered. Assume

À¡ ( À¡a1 f'or some 7 < k < K and consider Â'obtained from A by modifying

only the kth ancl (k + t)ttr cliagonal entries as Ài : À'r+r : (À¡ + \n+t)12.

Then it can be verifiecl that tr(A) : tr(z\') : K and tr(Â'E) < tr(z\E), but

tr(À'2) < tr(Â2), a contradiction.

Next it is shown that the inequality on bandwidth constraint can be replaced

by the equality. Suppose there exists a solution A to the design problem in

Step 2 where all diagonal entries are well orclerecl but with tr(ÄE) : Ðf:r(1-
Xr-r)Àr : Kn - €n 1 Kr¡. Except f'or the trivial case when R : I, there always

existsaninteger 7<k < Ksuchthat Àt-À¡+l : €À ) 0' ConsiderrY obtained

fiom À by modifving the kth and (k + t)tn diagonal entries as À'* : Àr - ô and

À'r*r : À¡+r f ð where ô : min{erl(xu-, - xr),e¡f2} > 0' Then it can be

shown that rV satisfies all the constraints of the design problem in Step 2lní
tr(z\'2) < tr(Ä2), a contradiction. Hence the proof.



Appendix Ð

The Equivalence of Problem 4"7
and Problem Ð.1

The original clesign problem of optimal signatrue wavef'orms for MMSE can be stated

as f'ollows.

Problem D.1. Given T anð, W. Design a set of K signals {tt(¿) ,...,t*(t)} that

minimizes the TMSE in (a.36) subject to the f'ollowing constraints. (i) Vk, sk(¿) : 0

fort < 0 and t > T; (ii) "f s2r(t)dt:1, VÀ; ancl (iii) b(s(¿)) <W (forRMS

banclwidth) or e(s(t)) < a (f'or FOBE bandwidth).

Using the notation introduced in Section 4.3, the f'ollowing three steps justify the

equivalence of Problems D.1 and 4.7.

ø The first step is to shows that Problem D.1 is equivalent to the f'ollowing prob-

lem, which is statecl in terms of the correlation matrix R: Find the correlation

marrix R thar minimizes KP -ftr (tf * ^¡-rg-r1-t) subject to (i) R > 0; (ii)

RÀr: 1, Vk; (iii) b'z(R) SW2 (RMS), or e(R) S ri (FOBE). Proof of this fact

is similar to that of Proposition 4'1.

o The second step is to show that the signal design problem in Step 2 is equivalent

to the f'ollowing problem, which is stated in terms of the eigenvalues of the cor-

relation matrix R: Fincl the set of eigenvalues {À1, À2,.' ., À¡¡} that minimizes
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Ð:;:r(ryÀr+1)-l,sr.rbjectto(i) Àr à Àr+r > 0, 1 <k < 1{; (ii) tr(Â) : K; (iii)

tr(ÂA) 1 Ku. The proof of this fact is the sanie as the proof of Proposition 4.2.

Finallv one neecls to p¡ove that the clesign problem in Step 2 is equivalent

to problem 4.7. The proof is as f'ollows. As bef'ore, it is first shown that the

ordering of the eigenvalles is a natural consequence of the optimizat'ion problem.

Suppose that r\ rninimizes Ðít:r(1,Àr + 1)-1 and satisfies al1 the constraints of

problem in Step 2 except f'or being weli ordered. Assume À¡ ( À¡a1 fbr some

I < k ( K and consicler .¿\'obtainecl fiom Â. by rnodifying only the two diagonal

entries kth and (k + i)tn as À/u : Àí+i : (Àr + Àx*) 12. Then it can be verified

that ir(Â) : tr(À') : K ancl ir(Â'Â) < tr(Âa)' but ![,(rÀi + 1)-t <

Dí1r(ryr* + 1)-t, a contradiction'

Next it is shown that the inequality on bandwiclth constraint can be replaced

by the equality. Let A : cliag(dr, 62, . . ., ô7ç), where d¡ ( ð¡a1 f'or 7 < k < K '

S¿ppose there exists a solution r\ to problem in Step 2 where all diagonal entries

are well ordered but with tr(i\Â) :Ð!f:rô¡À¡: Ku - e, 1Ku. Except for

the trivial case when R : I, there always exists an integer 7 < k < K such

that Àr - Àr*, : €À ) 0. Consicler r\.' obtained fÏom Ä by modifying the kth

and (k + 1)th diagonal entries as À'* - Àt - ð* and À't+r : Àt+r * ô* where

ð* : min{€,1(6n+, - ô¡,), ,xl2} > 0. Then it can be shown that ¡\/ satisfies all

the constraints of problem in Step 2 but ÐL,(lfi + 1)-t . Ðf:rØÀ¡ * 1)-1,

a contradiction. Heuce the proof.



Appendix E

Objective F unction f,or Signature
Waveform Design

Let ,îfr(/) : f {1¡(t)}' From (6.30) one has

,3-tfl : Ð"u,F{óu-r(t,T)} + lurf {óu(t,T)}

LL
: Ðtu,X,(f, r) + ll,u*Y(Í,T). (E 1)

l- 1

Thus

It then fbllows from (6.19) that

lKKroo
r(L) : f.ñÐ Ð | .srrÐrv,u)rdr (E 3)

A:j j:A*lJ-æ
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tsk(/)l' : t3*(/),' : (å rmxt(r,Ð) . (å a,Y(r,")) (E 2)



ro¿

where

LLLL

lsft (/) l'lso(J)l'rlf : t t t t (r¡,¡:L¡^ix¿rixq) a4*,r,n(T)
1:l m:l P:1 q:t

LLLL
+ t t t I ("r'r"r'-u¡pu¿ò l3r,*,e,n(T)

l:l m:l p:l q:I
LLLL

+ t t t | (u u,u u*:ripr:is) À¿,*,o,n(T)

L:7 m:l p:l q:|
LLLL

+ t t t l,(uu,uu^u¡pa¿,) Fu^r,n(T). (E 4)

I:l ¡n:7 p:l q:l

The quantities a¿,-,o, r(T), l3r,*,o,n(T), À,,*,r,n(T) and ¡t¿,*,r,n(T),1,ffi,P,Q: L,2 " ', L,

in (E.a) are defìned as:

t:

aL,*,p,q(T)

Þ1,^,e,n(T)

À1,*,o,n(T)

Itt,*,r,n(T)

t:
L
t:
t:

xíf ,T) x*(Í, T) xr(f , T) x nu,r)d Í

xíf ,T)x*(,f ,T)Yo(f ,T)Y\U ,T)dÍ

Y(,f , T)Y^(Í, T) XoU, T) X nU, r) d f

Y(J, T)Y^u, r)Yr(Í, T)Ynu, r)d Í .

(8.5)

(E 6)

(E 7)

(E 8)

It should be noted that (E.4) is not the most efficient expression in terms of calculation

effort. However, what is important to point out here is that all the integrals involving

J(L) can be precomputed based on (6.27). For a more effìcient expression, each term



in (E.a) can be re'uvritten similarly as fbllows.

T,LLLLL
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l:I m:I P:I q:l
LLL

+2Ðt t (*"r,aoouun) ùuL,r,n(T)
l:I p:7 (I:p+l
LLL

-rr\- \- \-/, t\ '| '-l' - ,/---r ,/ . .L \^*lrtt,"Uip) lJt,m,p.p\] ¡

I:I m:l*I t¡:I
LLLL

+4t t tl{.t,trr*nru¿puh)Þtpp,n(T). (Eg)
l:l m:I*7 p:I q:p-t1.

t t t I (rt px*a¿pa¿q) þt',*'(T) : t Ð @7t ?r) {}t,t,r,o(r)
¿--r p:7



Appendix F

Objective Function for VÏultip1e
Chip \Mavefonrn Design

Rewrite (6.18) as f'ollows:

r : #^Ð [- G*u)rtu
LU tc 

m,:rl-@

lDDr@+-l\-t ¡ç^u)l'lc"(Í)l'df. (F1)
' n2.r3 / ' .L I t- I'r\r /t I

" -c rn:ln:m+7r-æ

The second term in the above eqr.ration can be expressed in terms of r^¡ and y*¿ in

exactly the same f'orm as (E.3) in Appenclix E. In particular' let J(L,p,T.) be the

expression in (E.3) when repiacing K by D and T by 7", that is

I 
D D rco ¡t¡¡).tn t¡xt).t,' J(LrPrT")

**Ðtllc*lilflc"(J)l'dÍ:f (F2)
" - c ¡n:I n:m+l .l -@

Ler G*U): f {î*(t)}. Then fÏom (6.33) one has

G-(Í): Ð r-txL(J,7.) + llu^,Y(f ,7") (F.3)

¿:1 l:r

164
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Thus the integral in the first term of (F.1) can be calculated as follows.

fæ ræ

J_*lc*u)rdf 
: 

J_*lr^Tt,tr
r* / L \n r* /J-: | (Ð''''x'(f '7")l 'rf + | (Ð,*'U(f ,7"J-- \ã / r_- \ã

*, [* (f,,^,*,(i,n))' (f,a^tYt(r,r"l) ¿r
'--\1:l / \¿:i /

The first tr.vo terms of (F.a) can be r,vritten as fotlows [32]

t- 6r,ilxt(/,4))"'or: t ry(a0,. ..,kr)frr|,
J-- \ã / Á.6,...,Ä.¿:!,¿=o A.¿:4 r:o

r* / ¿ \4 L

I (\u,,ùi7,4) ) cIJ: f x(ko,...,kr)fiuh,
'-- \ ¿:t / As....,Å'¿:f f=o kL=q r:o

'where

r(ko, ,kr): *r#Ar (l:ur,,ø,")d/)
/

and

Ì(Ä,0, .kr): ad#; (t."úr^, u,r)dj)
The l¿rst term of (F.4) can be expressed as

' f (f.-,,,(/,4))' (f,u^tYu,zl) ar
''-- \1:r / \1r /

: rfi i f {',,,,^n!r-pLt,nq) Þ,,,p,0(7").
l--1 n.:l p:I q:t

Finally, cornbining (F.1), (F 2), (F.4), (F.b), (F.6) ancl (F.9) gives

DLLI.L

I f Ðt Ð@,nr,,,,,'e,np?J^q) lù,,,r,n(,"¡. !!+e'(F.10)
nt:\ l.:7 n:I p:] q--I

r)-or

(F 4)

(F.5)

(F 6)

(F 7)

(F.8)

(F e)

1+_' D2T:



Appea'adåx G

Ðeråvatios? ofl W¿ for Ðowhle Chåp
&Maveflorryas

The expression f'or l4ruin (7.1) can be readilv obiainecl trom (2.34). It is given by

IM¿ : b¿(-I)R¡,,¿(r¿) + b¿Q)R,*.n?o) (G 1)

rvhere z¿ is the delay of the zth user's signal relative to the signal of the kth r-rser,

rvhich is the user of interest. Recall that l¿ : LtnlT,) and.r¿- r¿-IiT". At this point,

to sinrplify the notation) we set I : l¡ and r : T'i. When necessary, the appropriate

indexes of I and r can be restorecl.

Now if I is euen, then I,l,'; can be ivritten as

r I/2 ¿/2-I
W: : ö,(-i)Ln,,r('')f s¡(27)s¡(^r- t+2.j- 1) +i,(r) f s¡.(2j)s¿(N _t+zj)

ì-n
. r/2_r

+ lt2,7(r)Ðtu(2¡ +1)s¿(t/ - t+2.j)
J:0

- (N_t)/2_r
l^ \.' '

+ ó' (o) 
l 
ii,lr) t s¡ (27)s¡ (1 + 2 j)
' j:o
(N _r) l2_1

+ 1,rþ') I s¡Q,i + l)sr.(t +2j -j:o

t/2-rí- \-- I+ h"(r\ \' .c,.í?a -r l)s¿(l¡r - t +2j + 1)l' ,.¿\'/ 
.L "Ul-,1 | r/d¿\¡t ú r LJ I 

Ir-0 J

(N _r) /2_r
+ h2 {r) Ð s,Q.i)s¡(t + 2j + r)

J:0
(N_t)12_2

7) + ht.z(r) t s¿Qj + r)s¡(t + 2j
j:0

* r)]

(G 2)

r66



I\ote that the last f'our summations in (G.2) can be rewritten as f'ollows
(N -¿) l2-r N l2_r

I s¡Qj)s¡,(t +2j) : Ð t*Q¡)s¡(zj - t)

Theref'ore
r /2-1

W:: bn(-I) I'o(t+2j-t+
J:0

N/2-2
sr+ tt¡10) L s¡(2.j-l*

j:t/2

+ ô¿(-1)s¡(0)ro(l/-l-
tl2_1

+ U(-7) )- s,l.À/ + 2.7' -¿\ -, .L "r.x-
j:0

N/2_r

+ ó,(0) t s¡(2j - | lsn|j)î,,(") + s¡,(2j + r)hr¡@f .

j:L/2

j:o j:Il2
(N -t) /2-r N /2_r

t s¿(2.j)s¡,(t + 2.j + r) : Ð 'rej + L)s¿(2j - t) (c 4)
j:0 j:r/2

(N -t) /2-1 N l2_r

t s¿Qj+1)s¡(l+2.j+r) : Ð tre¡+r)s¿(z¡-l+r) (cb)
J:0 j:t /2

(N -L) /2-2 N /2_1

Ð s¿Q.j+1)s¡(t +2j+z) : Ð s¡,(zj)s¿(zj-l-1). (c.6)
j:o i:r/2+t

ro/

(G 3)

(G 7)

t¡ 
lsolz¡ + 2)hy2(r) + sk(2j + r)îz|¡l

As in [33], with the motivation of reducing complexity, it is important to consider

(G.7) conditioned on the signature sequence of the kth user and the random variable

l,i.e., {r*(r)}: {4(r)} and l:111i. even). In order ro simprify (G.z), define the

following N+ l random variables

t¡lsrçz¡ +2)h1,2(r) + sk(zj + rliz(r)]

1)fu,2(r) + b¿(0)s¿(l/ - 1)s¿(.n/ - I - qîr|)

- q 
ls rçz.i)îr?) + s ¡,(2¡ + r) h.2,1 (r)]

I un¡t1rnlv + 2.i -1+1)î¡(2.7 + 1), j :0,y 
$ - t

F,:) b¿Q)s¿(2j-1+Ðîk(2.j+r), j:!2,**t...$-z 
(,,"i - I

f b¿(o)s¿(,ni_ 1*1)aÀ(¡/-1), ¡:E- , ' (G'8)

I an1-r¡so(¡i - 1- l)afr(o), j : +
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and

Gr:{
b¿(0)s¿(2.j -Î\euçz¡ + t¡, i:L,**t...$-t

For any lm th. set {0, 2, . . . ,l - r}, the random variables { and G¡ are mutually

independent and satisfy

Pr(4 : +1) : pr(4 - -1) :Pr(G¡: +1) : Pr(G¡ : -t):;. (G 10)

Using the definitions of the random variables F, ancl G3 and the fäct that 4(i) : 1

fbr every j, (G.7) can be simplified to

N!3-2 Fa I

W: : Ð ,t prtù +1k(2.i + l)lkQi + 2)h1,2(r)J
j:0

+ Fy-,rî'20') -| F¡r hr,z(r)

N!l:' r ^ r
+ Ð ct lhr,'(r) +îk(2i)1k(2i + t)lzi(r)l .

j:0

Define the set A to be the set of a1l nonegative integers less than $ - t such that

în(2j + 1)1k(2.j + 2) : *1 ancl B to be the set of all nonegative integers less than

{ -t such that 1n(2j +7)1k(2j +2): -1. Similarly, define the set C to be the set

of ail nonegative integers less than f s.,.h thatî¡(2j)1n(2i + 1) : *1 and D to be

the set of all nonegative integers less than f r.rch that î¡"(2.j)în(2i * 1) : -1. It

f'oilowsfromthedefinitionsof thesetsA, B,C and Dthat (G.11) canbewrittenas

f'oilows

w: : Ð p, 
V,Ø+ h.r,z(r)] + t Fi V,Ø - n,,,?)f

j€A ieB

+ Fry-rÀz?) * Fa.hr,r(r)

+ Ðc,lhr,,(r)+1,(")] ¡ \- c,lnr,rçr¡-1'(")] . (c.12)
j€c ieD

(c e)

(G.11)
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Now restore the inclex z and clefine X¿: Ð¡roF¡,Y: Ð¡en F¡, Pt: Fv_r, Qn: Fl

and U¿ : Ð¡ec Gi,V : Ð¡en G¡. Then

rM: : xoþr?o) r ht,z(",)] + yþr?u) - n,,r(ro))

+ Poîz?o) * Q¿fu,2(r¿)

+ ,,lnr,,("n) +1,(",)] +Vlnz,çro) -î,(",)]

simiiarly, if I is odd, then it can be shown Lhatw¿ in (G.1) is given by

w: : xo\r,r("') + n'(",)] +Yþr,r(ru) - n'?u)f

+ Poltr,r(",) + Q¿ht(r¿)

+ unln2çro¡ +î.,,r(,0¡) + Vlnzçru) -î',,r?u)f .

Finaliy, define the f'ollowing random varibales

Then the density

pn(j) :

N/2-2

R: Ðgu?¡+I)lkQi+2)
J:0

N l2-r
q : \- ^ r\* .L s¡l'zl)s¡\'zl'r L).

J:L

functions of R and ,9 are given by

N-, N
') 2 -) 2'

(G.13)

(G.14)

(G.15)

(G.16)

- 1 (G.17)

(G.18)

N ¡/ .,¡y'
t', "''T - o'T(î-- i) zr-+ , i : r- f,,, -x-î- /

(,Ïù 
'-n ' i: -+ + +z'

\---/

Let | . I clenote the carclinality of the set. It is obvious that R : lAl - lBl and

^9: lCl -lrl. Furthermore,notethat lÁl +lBl :NlZ-1and lCl +lDl:N12.
Thus, given.R and.9, one has lÁl : (Nl2 - 1+ R)12, lBl : (Nlz-7- R)12,

lcl : wl2 + s)12 and lrl : (Nlz - s)12 This fact also implies that, in order to

obtain (G.13) and (G.14), it is not necessary to condition the signature sequence of

user k. It is sufficient to condition the two random variables .R and ^9 defìned above.



Appendix H

Derivation of, tl¡¿

For simplicity and without loss of accuracy, the index ¿ of the normalized delay, r¿, is

removed in this section. Using the first and second mornents of lBl and lDl given in

Section 7.2.1, it is not harcl to see that

E(a?nlr) : + þlrO + h?,,?)f' * [ þlr,l + n,],,ç,¡f'

+2 (¡/ - ÐÀ7Ø h?,r(r) + z wÀ"çr¡n",rçr¡

*{ Vzr,) + h,,,,?)f fr,lr,l + nl,,çr¡f
a,Ð

- 'u" þ,tr,s +1,;1,¡ + n!,,1,¡ + r,t,,?))
A

*lry l^' rnr2 r^
I z + 2(¡/ - 2))hT(r)h?,,(,)* L; + 2¡ll tzl(r)hl,'(r)

*{ TZVlî.?f¡ +î3e)n3,,Q) + hl,,(lî,??) + h?,,(r)tú,,(")] (H 1)

Likewise,

n(t?|,) : + ltØ + n|1,¡ +î!,,ç,7 +Àt,JÒ)

. [T + 2(¡i - rt)¡1,,Q)h2,(r) .l+* ttl] î1,,ç,¡nlç,¡

.+ þ3,,Øî1,,(r) +î,1,,(r)hl(r) + nlç,¡ñ1,,(r) + hl(r)h\?)l (H.2)
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Combining (H.1), (H.2) and using (7.28) produces

n@Ð + n@?) : 
+ lo'" l"{o?lr) + ø(Pllr)l dr

xr2 fT" ,: 
,{, J," l,,i|) + hf(r¡ +î1,,1r) +1,t,,1'¡] ar

N2 [7. yz fr" -n*T l, hl(r')t$(r)clr * î J, À1.,ç,tÀ',,,ç,¡a,

+¡/(N t 2) - 4 
[r" lo?(,) + h1Ø]î1,,1,¡a,T" Jo

.{ä2 l,'' ln?tÒ + h,3Ø)î1,,ç,¡a,

¡¡2 rT., ^ 12

; J, Ln?t"l 
+ hl(r) +1'1,,ç,¡ +1,',l(r)l- ar

, rT"
*+ J, ln?Ø + nlft¡) l*ñ?,,t s + (¡i - 2)î',,1r¡] ar

Comparing (H.3) and (7.36) gives

u¡¡ : + [^' { ln',n, + h?,çr) +î1,,q,7 +î3.,ç,¡)'
rc Jo t .

| +lnlQ)+h3?)l [fal,,'l *ffn;,r"1] 
]o'

If the chip wavef'orms are symnietrical arouncl T"f 2, it can be shown that

w¡¡ : 
+ l,' { Int,", +hl(r) +zî1,,ç,¡)'

+ $! ln?r,l + h?,(r)l¡l,,r,llo,

hr,z(r) : th2¡(r) (H 5)

where the sign is a plus if the two chip wavefbrms are both even or both odd about

7,12. Orherwise the sign is a minus. Therefbre (H.a) simplifies to
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Appendix f

Ðerivatiovr of û¡¿

From (7.30) and (7.31) one has

Thus

E(.,¿.,¡): ,: J, l,

.# [," (^7r,¡ + ni,,ç,1) o, Io' Ølr,l + h7,,(r)) a"

E (,,¿,,¡1r,,, ¡) : + þef,S + nl,rç, o¡f þlt,S + n?,r? )f
*[ \Zr,t) + tt!,,(r¿t] þlr",l + n',,Jùl

.[ 7:r,o) + h,Z,,o)]V,i@) + h?,^ù]

.T Vrn n) + h3,,?ù 
W??,) + nl,,ç,,¡f

+2 (N - \îr, Q o7 n1,2(r )î2 Q ) hr,z(, i)

+ztuîrîn)hr,r(fiî1Q)hr,r(r¡) (I.1)
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Similarlv. it can be shown that

Due to the symmetrY,

first obtain E (*oþ¡lr¿, r ¡)

it is obvious that E(a¿{J¡)

as fbllows

L73

(r.3)

: E({J¿o-¡). To calculate E(a¡B¡),

" 
@?,rr'r+ 

l'it"¡) a"]

úr,¡) d,

lrr,rçr¡t rçr)O"l

N2 t .. . ., ,1 l1r?,(rr\E(*ol)¡lr,,r¡): 4 lhílr,) + hi,r\r¿¡1 
L ¿1!\ J/

1y'2 f.n, .l f:-. t2t 'l*i V;fO + hi,,(ro)l lni,,çrt¡ + nilr¡))
--ôIy''f<r., . ,o , .l hr / \ t1r 'l*i lnttr¡) + há,(,)) lhi,,lri) + ni\r¡)J

lú2 f.n. .l l-:-. t2t rl+i lhi@ + hi,'('')l 
Lní,r(r¡) 

+ hiQi))

+2 (N - z)î2Q ¿) hr,r(, )Àr,, (r ¡) fu (r i)

+2 Nî 1 Q n) h z t ? ¡)î¡,2 (r ¡) h 2 (r ¡) .

^'l
+ hi(r¡)l

(r 4)
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Therefbre

E(*oþ¡): + lr' lr^ 
E(*oþ¡lr¿,r¡)dr¿dr¡

: ffi l,'" ça3r,s 
+ ni,,çr¡) o, 

lo^ (ü,,r,¡

-ffi 
1,"" 

(r\r,) + nl,1'¡) o, lo' (î,?,,r,s

.#, [,'' (rre) + h2,,,1'¡) a" l,'' @t,,n

.#, 
1,"" ça?r,l 

+ h',,,1"¡) a" 
1,"' 6,?,,u1

.',,!EA I o' 

" 

^,, 

o, n 1,2 (r ) dr I o'" 
^,,,( 

r ) h 1 ( r ) dr

.'# 
lo'' 

r,(,)h,,r(Òd, l, lrr,rç,¡nrçr1a,.

+ n?(r)) ¿r-"/

+ nTb)\ ¿r'' '/

+ nlç,¡) a,

+ nlQ)) ar

ll,'" 
n,t )î,,, ç,¡ a, * I,' î,,,, 1,¡ r,,,r" I o"]'

rT" ^ 1t
fu(r)hy2(r)0, * .ln fu,2(r)h,2(r)arl

(n?t"l + hl(r) +î!,,1,1 +î7,,{"1) a"]'

hl(r)crr lo" ntrro, * Io" 
À'r,rçr¡d, lr" n1,rr¡orf

tr!(r)ctr n l,' n\fÒd,)ll,'" ,r,,r dr r 
Io'" 

^t,,(")u"]

(r 5)

Now, by combining (I.2), (I.3), (I.5), using (7.28), and afTer some algebraic manipu-

lations one obtains

E(c"ic-¡) -l

¡¡z

ry
¡¡z

zE(a¿B¡) + E(þo[J¡):

ll," (ntr') *13,,r"1)
1'o"l + ¡¡z

4T",
^tc

¡¡z

1r
I

d"l
Ill,'" (n r't *î'?,,et)

,2(N -2)_T__Ã,

-c,

2N I f'.
"T lJ,

¡¡z I f'"* o: lJ,

*N'| ['"' T"' l.lo
¡¡z I fr"*o: 

lJ,
(r 6)



Comparing (L6) and (7.37) shows that

ûN : +ll,' (nzr,t +î2,,{"1) a']' * frll,'' (n*,t +Ài,,r4) a,)'

.+l/^ Q,z,,r,t+ ¡,?(')) o"l'* +ll,' (Ã?,,r,t + úr,\ a,f

.ffi 
| [," 

n,r,rÀ,,,ç,¡a, * 
.10"' 

î,,,,1,¡n,r"¡0"]'

."h ll,'' n,e)î,,2e)a, n 
.lo'" 

1,,,,ç,7n,ç,,."] 

".+ll,' (nlr,l + nlç,¡ +1,1,,1,¡+ 13,'r"l) a"]"

.+ll,^ hl(r)dr lo'' otn o, * 
l,'" 

Ã1,,ç,¡ar 
lo'" 

rt,,(")d"]

.+ll,' nlçr¡ar * |,' n3r,)d,)l[,'" 
^r,,r 

dr r 
Io'" ^t,,r'lo"] 

Q.T)

As fbr the ,u¡¿ used in Appendix H, when the chip wavef'orms are symmetrical around

T,f 2, the above expression f'or rî¡¿ simplifies to the f'ollowing expression

û¡¡ : +ll,^ Øzr,t +T,?,?))o,"l'* +ll,' (ntø +î?,,(,"1) a"]'

ltu

(r.8)

.ffi ll,' (n'Q) + h2(r)) A'''t"'o'l'

.+,11,' (nlo + nl1,¡ + zÀ?,,r,t) a,)'

.+ll,^ hl(r)dr 
lo" 

n n o, * (1,'1?,,(")0") 
]

.+ll,^ hz,çr¡dr * lo" n',tÒd,f 
lo'" 

î1,,ç,¡0,.
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