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ABSTRACT

Analytic expressions are obtained for
two-body forward and backward scatiering amplitudes:
by three different methods. The formalism is extended
40 scattering from a bound stabte assuming the particles
to be distinguishable, We give criteria for splitiing
+the scattering amplitudes into forward and backward
parts., The two-body impact parameter amplitudes and
sea%téring amplitudes are calculated at infermediate
energies by a phase-shift analysis and the results
extended to higher energies. Ve conclude that the
backward amplitude for proton-deuberon scatiering is
somewhat larger than predicted by other authors, The
applications of the theory are limited by our present
lack of detailed information of the high energy scattering

amplitudes,
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- CHAPTER I

" TNTRODUCTION

In this work we consider the description
of high energy scattering of particles. We are interested
in high energy scattering because at these energies the
wave lengths of incident particles are very small and the
particles therefore act as sensitive probes of the
structure of the target particles and of the mechanism
of short-range strong interactions. However, by high
energy we mean that the potential is still a valid
representation of the interaction between two systems.
The validity of Schrddinger equation is assumed at such
high energies.

At low energies experimental observatibns
are reasonably well understood in terms of the partial
wave expansion of the scattering amplitude. At high
energies however this description is not very useful
since, as the energy increases, large numbers of partial
waves must be included, making a reliable anal?sis
difficult. Also, large-angle cross—séctions are very
small compared with those in the forward direction,

which implies that strong cancellation between various



partial waves occurs, and hence the partial wave
analysis becomes very sensitive to approximations,

In recent years itwo descriptions of high
energy scattering have evolved, The first is a high
energy small angle approximation of the scatitering
amplitude called the eikonal approximation. It was Tirst

1)

proposed by Mdliére and subsequently developed by many

authorsz’3)° It describes a high energy particle

passing through a scatbtering region in a semi-classica
sense at an impact parameter b on a straight line
trajectory (see Fig. 1). The wave-funciion of the
particle undergoes a phase-change which can be calculat%d
from the complex potential, and from this phase-~change N
the scattering amplitude can be obtained, The second

high energy description is due to Blankenbecler and
Goldberger4) and contains only a high energy approximation
and has no angular restriction. However, to date, mos?
attention has been focussed on scattering in the forward
direction, The angular distributions at high energies

are characterised by a large forward peak and in some
instances also by a prominent backward peak. The

multiple scattering theory of Glauber, which is

developed in the eikonal approximation, is Very SucCCeggSe

ful in explaining the observed data in the Fforward



direction, The backward peak has noh, however,
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en explained as successfully, vet backward
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important since the Coulomb interaction
is negligible and the inherent largs momentum itransfer
means that backward scattering contains far more

short range information abouit the target than does
forward scattering at the same energy. The purpose

of this work is, thergibre, to formulate a Glauber-

Type eikonal model for backward as well as forward
scattering from a composite particle, It is a
relatively simple task to obtain forward and back-

ward scaitering amplitudes for a two-body system since
the criteria for splitting the scattering amplitude are
well defined, The problem of splitting the scattering
amplitude in the three-body system is not as simpleS)?
and the effect is farther compounded in multi-~-bodied
systems, The problem of splitting is connected with the
problem of definite signature. Signatures for scattering
of a two-body system are well defined, but we obtain
mixed signatures for scattering in a gemeral three-
body system, We will therefore resitrict our discussion
of the three-body system to the probleﬁ of scattering
from a bound state. This allows us to split the

scattering amplitude in a physically reasonable way,
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and to comstruct three-body scatbering amplitudes
from two-body amplitudes. We choose o apply our
results specifically $0 proton-deuteron scattering

ince this has arocused much interest in recent years,

0

Previous analyses of backward scaﬁterimg5’697) indicate
that a simple nucleon exchange diagram gives an
insufficient differential cross-section in the back-
ward direction in the Borm approximation. Several
calculationsT) have been performed using esoteric
components of the wave function of the deuteron which
supposedly help %o boost backward scattering, at least
qualitatively, However, %o our knowledge no unitarized
calculations for backward scattering have been per-

formed at high energies,

*OR % ¥ %

Chapter II is devoted +o two-body SCatm
tering. In Seection II.1 we present the basic formalism
used in the derivation of the scattering amplitudes, and
ih Section II,.2 we present criteria Ffor splitting
the scattering amplitude into its Forward and backward
parts, In Section II.3 we derive general off-energy-

shell forward and backward scattering amplitudes



corresponding to these obtained in the forward direcilon
by Glauber and by Blanksnbecler and Goldberger,

In Section IX.4 we give an alternative
method of deriving these scattering amplitudes, and
iiscuss why we may nobt sxtend the method directly
+0 three~body scattering, In Section II.5 we derive
the scattering amplitudes using an operator method
which we may extend to the three-body system, Finally
in Seection II1.6 we deduce the form of the unitarity
relations which these amplitudes satisfy in the high-
energy limit,

In Chapber III we consider scattering from
2 bound state., We derive the forward and backward
amplitudes and give criteria for splivting the amplitudes

in Section III.l. We then show how we may
approximate the amplitudes obbtained in order to make
their application to physical problems easier in Sectilon
IiT.2.

Chapter IV is devoted to applying the
two-body scattering analysis to proton-proion and
proton-nautron scattering and using these two-body
amplitudes to consiruct proton-deuteron differential

cross-sections., We have Ho make some assumpbions about



the ratio of real Ho imaginary parts of the two-body

ﬁ:"

scattering amplitudes, as these are not completely
determined by the differential cross-geciions., We
calculate the scattering amplitudes and profile funcitious
at intermediate energies using a partial wave analysis,
and use The conclusions we draw from these results as

a basis for our assumptions at high energy., We then
evaluate the proton-deuteron forward and backward dif-
ferential cross-sections,

We end this work with a discussion of
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TW0-BODY SCATTERING

11,1 Basic Approach

Our approach is based on the fadt that

the on-shell scattering amplitude for elastic scat-
tering of two spinless particles may be written in
terms of a Fourier-Bessel transform499 ),

i [
where k (= /S) and 6 are mémentum and scattering
angle in the cenitre of mass system and we have assumed
m=%=1 ., The variable % is +he negative of the momentum

transfer and is given by

%;:“HR}SQVL%.

and Jo is the zzroth order Bessel function. The parametexr
b is identified with the classical impact parameter

in the forward direction, but is otherwise quite genersl.
This.equation is exact and valid for all physical

values of energy and angle., Also, since the invariant
momentum transfer oceurs nabturally with the impact
parameter as a variable in the argument of the Bessel

function, this eguation may be readily extended to



include relativistic effects., The impact parameter

amplitude, or profile function

o

0 the pariial wave amplitude by

//1} (%)b> — ‘:) Z ( ? L_\_ l) _/,s! L(S) \) UYL ék\‘o\}
=G ' l\
D
whersa c
) \_,C/\/(SD
; LLS) = < —

This suggests that the impact parameter amplitude

may be represented by the form

(S, D)
{\(S;¥§> = @ —1

since using the relation

AR (20T (B) o
(5
one obbains
LS, o 2L Us) o

b



Y{s,b) iz given by the Glauber expression
SN0 o S gs
<) \
~ N ] j — i ‘ i -
A s b= —d L,\ = “,/ (‘:Z + 0 “‘)’
AV o ;
Vi o

where v is the velocity of +the rrojectile in the

3

5

¥ and V is the interaction potential.
This suggests that onz can analagously

write down the Glauber-typs representation for the

[
(o
S (V]

was therefors able $0 derive exactly solvable coupled

integral equations for the Forward and backward

scattering smplitudes in the eikonal approximation,

g3
scattering and no clear-cub criteria Tor splitting

the amplitude are given, There is no interpretation
of the direction of linesrization of the Green's funection
(see Appendixz B), and he doss not deal with the dife

flculties involved in extending his method %o n-body

ot

systems. We shell deal systematically with these problems,



- 10 -

Schwinger” eguation, This is an inhomogenous

@

integral eguation describing seattering, which may

be derived from the itime-independent Schroedinger

of

equation, It is satisfied by the stationary scatiter—

ing matrix ¢ and may be written in momentum space as

D=V R T | SRV (oD HLE e
OIN; =) =

2.1
where we have assumed m = @ = 1, Here, ke, and X,
are final and initial momenta in the centre of mass:
aysten, If the scattering is on the energy shell
l£€§ = “Eii = k&, but otherwise These nesed not be egual,

>

The particle interaction poitential is represented by V.
Normally, the potential is assumed to be a2 local,
spherically symmetric, direct potential., It may how-
ever also contain a2 term which exchanges the coordinates
of the particles (see Pig. 2). If we consider this
exchange potential also toc be local and spherically sym—
metric, we may express the poftential operator as

NS ‘\/’c\ A ;’9_“/\'@{‘

A\ i



- 11 e

Vike D = V(IR p-g) + N (Rpried) -

where the superscripis denote dirvect and exchange
potentials respectively., If we now substitute this
potential into the Lippmann-Schwinger equation (eg.2.1)
the scattering amplitude can be split into two paris.
This becomes clearer if we iterate the equation and

write down the first few terms:
(R RGRD) = VAR =) + VT Revd )
le FLLJL‘kFL"¥1“4rkC>:1ﬂ\%
)V d (RN VY “URerE ), VOl RY)2.3
\7\'d(\'”’ ~id %T

._\‘ >,
(1vﬂ
SEVAIQREN D
L

L VEUREDVE 1R rke)) + VI lgprE

.

Tet us consider these Terms in some detail,

Two of the second order terms are

ijﬂ PR Ve )V (- k) e e-rme)1 24
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s

Since the integration is performed over all space,we
may change the sign of the varisble without altering
the value of the integral. Hence,if we change the
integration variable in the second of these terms we
obtain .
A \Lﬂ”x\/w{(\‘ﬁ% C;D\/L‘X( \E{ ;@-L >(——V7 9\1 flTL&g]a\ 2 _4dg
(lﬁ\pj ok

which has the same form as expression 2,4a,

The remaining second order terms are

. , 10 5 ‘ PR |
_”l__’_ \CT)‘) \/j( \12{’ I \\(L‘x‘( \'\" \\., )L/ k\p C)] 2953

\ s -
PRV (LR )V (- ) Db (R e 2.5b

U\

el

IT we now change both the sign of the integration

P

variable and the sign of gf in these expressions we

ontain



R . ; - Sy -\
2N e . 7. W/ i T ?l"‘; e
1o (R Ve \"’@&-i};‘\)\!dk‘x‘zg’ﬁ:‘@dmzi“ ) ]

(Y 2,5¢

which has the same form as expressions 2.4a and 2.4b.
This similarity in terms may be observed %o all orders
in the potentials. We may use the fact that we have

t0o change bthe sign of gf in some of the terms to obtain
similarity to split the series, It splits into two
subseries, one containing an even number of factors VAte
and one contalning an odd number of such factors, Con-

12)

sequently, following Blankenbecler et al we may split

the amplitude into sven and odd parss

O) 2.6

{7

(B d = e (R kD v (&)

where the subscripis denote even and o0dd amplitudes,

These amplitudes then satisfy the eguations
i N g

and



- 14 -

| o/ ST (R R e )17
(e rd= VORG RO A Sc\w\ Lh(R )k

TolSEy = w3

",v;{\‘\(Lg K1) o (B R = V& (ReR %Ux)\\ﬁ}

We may then represent tke even and odd amplitudes by
Fredholm serie%ﬁwhich are uniformly convergent in the
upper half k-plane, The splitting of the scaiitering
amplitude in this way is closely connected with +©
idea of definite signatured amplitudes which are re-
guired for an analytic continuation into the complex
angular momentum plane., Thus, since we must make the
angular momentum continuous to obtain the impact
parameter amplitude, it is matural to divide the egu-

ation in this way.

"II.3 Derivation of Two-Body Scattering Ampliitudes

We now develop integral equations for
the scattering amplitudes with a fixed impact parameter
in terms of the matrix elements of the potentials. |
We are esgentially performing a Fourier-Bessel trans-—
form of eq. 2.7. We prefer to work with these trans-

forms as the equations are automatically exact at all
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paysical values of energy and angle as was discussad
in Section II.1. To this end we introduce the Fourier-

Bessel btransforms

F (Rped= b {” bdoTollk -k Lpp ) 5 g,

Eelkeke)= S}fbc‘\b?ﬂ ({RerRelib)Me (B, o, 2.8b
L26,R )

ltgre= T B Lo 2 4

DG . L B A U Ve
V() =l oo (R Bl Bel RO b, 12 ) 4.

whare Jo is the zeroth order Bessel function. The
choice of arguments of the Bessel functions is guided
by our previous discussion., Then by substituting

eq. 2.8 into eq., 2.7 we find



jﬁf%ﬁLC\' &.Jﬁ&&gﬁubb&“) thkbngi

' N S T
L iz, 2 7 Y ‘E‘Oc\\ox
=3 & \ilc\%{![_fi~¥i¢~t&] \(Cbé\b" £
o

2.9%9a

%) Balle, 0 ) Hell, ) @Jc‘ Rer 3ol 1 B¢ -R L) T, (el )+

el ML, B BT ke T

and

<G

[ BTzl D Lo, ) = B U)oy 120 =

g\m o= s L
- . ' 2.9
K(Pe)o ) He LR, RO Tydo LR - L) ol |+ )

Bl H (R4 20 ‘@g-v@fx;\s>3‘;ugf~m§>}



If we now dafine our coordinate system by
\.»\ :

L s v

e = (0,C)\)

Re = (3 Beos 4, cln Eaun @, Cos D)

AN : . . .
! = ( S b Cos, S snA | Cos (%5

we find

! j Al
| RI-kily = AR S&L’\/%:
b f | !
\ E’%«EL\\.L = 2R ces '1/7
where

N : S N e D
Cos@ = R Re = SinbsinBeas (£-x) ~ cosBass(d
We now wish to perform the angular integrations of

g, 2.9. There are four integrals involved

LE\'B e ol B =in@) o IR B5Lnfy) 2,108



P /

{4 VoW 2NV T LRV |
r‘:{ J g de (W o s& Jo(2Rb'cas2)
Ty

2 2,10b
L ?QA Al 4 N\ o B,
BN st deldR oo
i\"ﬂ‘) oL 2 W (A 2 2.10¢
[‘\‘%Sdﬁ\@ §O<2RQO es Q;%_} J c(l\i’ b Siun B}Q 2,104
but these fall into only two categories. Since
oS ('TY_:L(B = %Kf\ =S SN k’\:\::z(__) = oS
A X o pl

2g. 2,100 may be reduced t0 eg. 2,102 and eg. 2.104
t0 eq. 2,10c, If we denote 2,102 by I and 2.,10¢ by I°
we may evaluates these as (see Appendix A)

o3

I(kg\g’):&é}oc\\;@d £ W B b) Tl 2Reosin®)) , 10

Teghy= bl B BB T (2kebos )

2,11b



where
W
6{@&&#&%%&5,:ﬁ¥§?}dﬁr&hgﬁpgg\jL\ fﬁxn$)>4
s ‘ T do Jo & & 0w
+ 323 (B, %)
e E)
and
”i\/ v
910 ) ke SCos & b lycoss ) x
@/(Egﬂf\,’)\a’)b"»)b- 7\\5_[ js.u,u_as Jo(RRe /
2.12b
T (2B s ¢)
Here

27 =y vy ol W\ e mey co
BEE)= ke K7B7 - 2R Y W cosfcesgd

and

.. (2 5 . : d
SIL(E')Q):N—\O R TB VZRQ’\D(\D(\V\@/CAD

Thus, by swostituting eq. 2,11 in eq. 2.9 we find

-Vﬁq;b) Be L b i) + 2| KR K SER TGN
oc bj bdb{mﬁ\@\b 2) Pe (B i)+ 2,138
* B@k\%e) 2, SORUAENER 332&6{}%5‘@-5\5) b”) o) '



and
Y s 2 >/ Vo) O ly;j\l" Py btz 2 T
'%ti\gg)k%ﬁgift2§53(}§%){1ﬁéij“¥::~(%2_(ﬁ%l\,.(-~'§¢“L¢; A
' T
S AN , RN B Find i ‘) . ;
Xj\dc\\jj \(jl‘c\g*%gbtg%)bﬁj)acu)b) Re+ 2,13b
! L

& Bolp0h ) He L K WL RO {G (RpES ) )

These are exact equations for the scattering amplitudes

H, and H . Unfortunately it does nob seem possible

0 analytically integrate eq. 2.12 and we are Torced

) i . 153 s .
To make a hi g0 enexrgy ax)ora"lmai:lon 3/, FLS S1mMP-

o

lifies eqg, 2,11 =

&<-C ) (7§x Suﬂﬂiy3“(lﬁ%k>5wﬂg/axﬁ ‘)X'

- X 2.1da

”SL(,\ T>Sxﬁ43/kx?§Ey el

A Ror K220

To(AReWeng,) S b= Refib)
SZ?gkfb/




VI! = %J Q‘\ [ L\J\S\/ \)T (\;U\ O LN 6/ B T C\ \% b s g/)_U‘ “’Lg/v } *
—{

Ror K== 2,140
ij;(;l¥1ngS§jw§%i> éf(&;[m 3%2%9
T

So in the high energy limit the propagator Ifunciions

become

RN ) x (\4}4\\&\\(\’\3)” Slo-b) S (b=} j_ﬁ W) 2.15

GU\{ 2. \p o b) (kI Bb ) SUTD“J;* 5) 2,150

In consequence eq. 2,13 simplifies %0

HelRe b ) = Bal R o, R0 + g&qp:p,® -

2.16a

f Bl o )He( B, Reb k)
+ Bellgb, ) Ha(B, B b, ) i
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A
The eq. (2.16) could be solved by iteration. For
" A
-lik?, -

the purpose of iteration, weﬁwrite the eg. (2.16) in

a matrix notation

~1
HCR, b ki) /)) (b, bk)+5 [??,?,r e pt-ie ] B 1,5);“}/6;5 k)
Y (99 i7)
Pl 60

. 6? A |
where matrices H‘: ( he > f@’ ,) and 3 = ( 5 g ) LM&(%%MQJ
. De

with appropriate dependence of the variables as given in (2.17).

The solution of (2.17) is given by

H Chy, b, k)= Ak, bE)+ 2 W'k bk 2

where N+ 1ldterm is

’56 f’u{? I3
nH ¥ | e ¢ 7@ 4 (>)1a f/ H) ((), Mfel
Wk bby= (L)) T Bl bz)b( Zip &) D A
7 (ﬁ) L Z
Gorbrer - - 3Rk

There are 7T+2 equivalent ways of writing th& expression

(2.19) i.e.

¥iH, _ Ci/ &@})?{é) 15 Qf) '@% ?) ﬂ\((é /P?A/ ny;
Wk, b, k) (rj A TSy ] Vi, lerr)

K[‘?%» b, ) - B4 ,,/?/a 5,) /5(5;,,/‘”/,4 )
(Z}{-Z/’/Zfz'“/ - (}7,,_, flfze) pi-2c



7 4 .
i.e. there are E terms in the first bracket and n-t-1 in
the second bracket. If no approximations are made, then, of

course, the value of this expression will not depend upon how

this decomp051t1on is done. (-

- — — —_

{’7

; ~ A=) - 4

?z ’nf ’7—/-7-“"ff’f""‘éi'"/i 2=1,2 - (
-
%

- —
G F i F o ep = p AP =t Cas - m
ana 47 /,,+/j+;;/ i A+ gz

At

we make 'eikonal approximation' (see Appendix B) to the propagators

by writing

e é z R~ 2 . ) R
yi" L, —2€ = “5?/%/?;;"7/?‘26 2=, 2, ¢
%}ﬂ_ /ézz’l\{‘ = 'F;Z/&’L/PE/~Z‘¢: g=12e1, brz, - - ”N
Z —/

/
where ,ﬁg _pL Vd and.,i?g is the projection of 5 in the
direction 2; . Then next step is to assume that in the first
L

2
{ rungs of the ladder representation (Note that n+jth

order term can be represented by 77+1 ladders in the Feynmann
Ao :
diagram) essentially on the energy shell. Then an off-energy-
[alX¥7yr]

shell ‘kick;\and again for the remainingvﬂ—f rungs}the scattering

is on the energy shell; but the energy is now different from the

initial energy. Thus at high energies%@%&vm but é#f’?
L/V'l: 3% Fa 3 - Je ;

we have Z.J& and %:gﬁ mﬂ‘m%<zwﬁz and d%_%%

also for first ¢ rungs , (G, @éﬂ Lier) »9;5(@Lé;k ) and

for the last 7-¢ rungs hif,l#@i j+» - 6(Fu &/m X

We get

0
£ 5 Jﬁ—f—; [ 8k b4)
H(/‘Zfblz)f\’ ( 1‘; AP, R e € |

n--1

Bk bk [Blk ki RO Bl bibge, ')

Ed
Once we made the eikonal approximation, the value of H th

n

term depends on the value of ¢. (In the language of Feynmann



diagrams, this choice corresponds to the choice of vertex at

which over all momentum conservation is imposed. One can be

more sophisticated by assuming not jo nlv, one klc}flout a series

(_x.L‘-"L‘> ‘ 2

of kicks with off- -energy- shellA ,But 1nal result for on-
energy-shell will be independent of the procedure). To

overcome this, Levy and Sucherl® replaced it by average over ¢

i.e. s

e -7-/
H L s 1t
H = s 2 A

Since the product of B's is invariant under separate permutations
of ,bg we can sum over all such permutations in the integrand
and divide by their total no. 21 (m€)! . Thus we get

X - > N n ) g
e 4 & A 2—_ J % ‘” dﬂ; %'T j T //77:’ [ff;(/’,b,/e;}f
iy i

n L G
nEr @ 0-410)!] =i Btk potie STE e ferie

+A;

Py

» , _ n-¢4 o
< Blhy, bk LBk By k)] ik by, k)

where T, and 75 are permutations‘Z‘ZAfX andf"” . Using

result proven by Levy and Sucber1

rn ‘_‘___ ,’_62/35
| N / A
> 7 / dAp I 7
T At /
- Y el (i-e 2phtz ) 27t Q)
[ 5/::’ -2 7 Gand { éz -y
And ) T ) J Tk paie <A
$a Pk -te Ak Fot A
i
tve 6}“
- S n- P’J/.
where Ro = Gt 9

+ s
2L 5(@5__@4 [8(,27 LN BT ples
H™ (g b, ki = S DUk, bR g €76001 |

<

Hence we get H Ch}; !D, k’q'): /3(/14,6,/24)#—” ’ (}” |
X B—i(/le kf%/&) ﬂ(é;/ /Z’LZL, k) (Re)

-V

T &p

)

v
P 3k, AM[M k), bk, % i |
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The eqg. (2.20), then, is most general form of off-energy-
shell impact parameter amplitude. We shall, now,restrict ourselves
to on-energy-shell amplitude. In that situation eg. (2.20) takes

a much simpler form, i.e.
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Using the identity
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These expressions give us
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Bquation 2,25a reduces to the familiar Form obltained
by Blankenbecler and Goldberger if we neglect fterms
containing B . By substituting 2.25a and 2,25b inio

2,82 and 2.,8b we obitain the evsn and odd scatfering

amplitudes:

. 2.26a
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2.26Db

Clearly, the forward and backward profile
funections in eq. 2,23 are not the same as those in
eq. 2.26, since the Blankenbecler-Goldberger-type
amplitudes are derived in a high-energy approximaition,
while the Glauber-type amplitudes are derived in a small
angle nigh-energy limit, However a simple expansion
of these amplitudes in powers of 1/k reveals that o
second order they are the same, It is interesting
t0 note that althoughn the Glauber amplitude is derived
for small angles it appears to be valid at all angles
in the high-energy limit. This is due to the fact
that the first order term is equivalent to the Born

approximation which has no such angular restriction,

IT1.4 Alternative Derivation 1

We now derive eq. 2.23 by a different

method in which one can more readily see the physical
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reasons for splitting the amplivude into its forward
and backward parits. This derivation is done in con-
figuration space rather than momentum space., Therefore,

we Sake- the potential as

LHVIEy = V() S -sD)+ V() Flsar)

2.27
and we choose to work with the integral form of
Schrosdinger's equation, given by

- 4 0 de o —c)

WelD)- o5 au [de .

W < B 116 c < S 2,28
SRAE =

| x{ VA W)+ V() Wi (1) %

o W) R
If we now suppose that %%(r) can be split into forward

and backward waves

. Ce o R
Yl = & ¢ale) =+ e = () 2,29

where @+(xr) and @-(r) are slowly varying functions
with the boundary conditions

Gy (-00) =1

g_(w)=0

eq 2.28 becomes
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 Hence, changing variablies,eqg, 2.30 can be split into
two equations: one containing forward travelling
waves, and the other contalning backward travelli ng

waves as

3 i N B R

;o 5 \ . =
Bilr)= 1 - —&—,ﬁ‘—%(@ e % X
e !

2.31a
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1f we now integrate these expressions by parts,we

obtain
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Since, by assumption, Z+(r) and g-(r)
ars slowly varying funciions of » within the wave gsh
icle 1/k, we assume that Vg also varies

gslowly. Hence ,there will be a negligably small

region in which the exponential +term osecillates rapidly.

The largest conbtridbutions to the integrals come from
values of »" lying closs to the direction of X since
there the exponential 1% nearly statiorary, In fact,
the term conbaining the derivative of V@ can bs shown
explicitly to be of higher order in 1/k thaan the resi
of the expressioﬁq) Hence,in the equations for the

wave modulations we drop both the last terms and also
one of the terms obizained when taking the limit of

the 4 integration. This gives us the expressions

J

. \%3 ~ i . 5 Y VAN
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If we now take

and assume that v is in the zodirectisnﬁwe obtain

by differentiation

= “ii: ("\/’C\ G+ N ) 2,342
C\)Qi - _%7: (\ue_flyl A \/u¢_j 5. 340

()

since we have assumed that the potentials are spheri-

cally symmetric,

If we now define

_ . T A e
= NG (JFear Ve
-~

Y ~L K o) |
we ©obtain
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which may be written as

k- (dtﬁ) gfjf) - O
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Hence if we define

iy ]

Ab)=—f (VTR d

[} . » . ? "f:__ ,' —
and use the boundary coandition zhat'zivaﬁ}’(ije

obtain the solutions

\3

24

40y =0 e A9

~

>

. 1o ¢
g1 = e ¥ sin A

2.35b

2,37

2.,38a

Hence we may express the forward and backward scattering

amplitudes as
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These expressions are the same 23 eg. 2.23. This

result may not be easily extended to the three-~body
sSystem using the methods outlined above, as we encounter
several difficulties, The splitiing of the scattering
amplitude inte its forward and backward parts is non-
trivialB) for the thres-~body system and therefore the
direction of linearigaition of the Green's Tfunction

in each term is not clear, {(as in eq, 2.20). Also

the manipulation of the exchange potentials is cumber-

some as there are different exchange operators arising



from several different pairs of icles,  Henc

[{¥

?

N

although we may derive three-~body differential equations
corresponding 0 eq. 2,34 their solution is not easily

obtained, We will therefore give a third method of
deriving egq., 2,39 which can be readily exitended to the

three~hody system,

TI7.5 Alternative Derivation 2

To avoid some of the difficulties mentioned
in the previous section we exploit the fact that
Glaubsr theory may be reprzsented in operator form,

For this reason we prefer to freat the impact parameter
amplitude f@{sgb) a8 an operator containing various
permatation operators. The expectation value of the

Y

impact parameder amplitude then gives us the required

}

scattering amplitude, The space exchange operator

C

for the nucleon—nucleon system is related Lo the product

of spin and isospin exchange operators by

PPl P

o (.
q NN 2,40
where the superscripts. dencte the space in which

e

the coordinates are exchanged, and the subscripts
denote the particles which are permuted, Hence,

although in our derivation we ignore explicit spin



4]

nd isospin dependence, the method may 2asily be

extendad to incliude this depsadencs,

v o= vty voEpT 2,41

snd the impact parameter amplibtude is given bi
2 & 2o

N R :
p . b 4z V(e nz)
Tep) = o 5 dee” L 2.

g
N

Althouzgh tThe exponsnitisl in e 2.42 contains the
T q

EJ

space exchnange operator ?rs the profile function can
be reduced to a funection linear in the exchange operator
by expanding the sxponential ia a power series, Since
PP =1 2.43
where I is the identity operator we may recomvdine
the terms into two series involwving even and odd
numbers of the exchange operator. This gives
/{4(5)‘0) -—.:/{\\C(,S_)\D> ~ c—/f\b(,B)\’Dspr 544
°
where

.. CA (S50 A
/(\%(S;'\D) = cos A (s, 0) —| 2,452



and

and

We assume that the initial and final states may be
taken as plane waves, and by taking the expechation
value of the operator /T%s?b) with respect to these

states we get the scattering amplitude:

Defining the direct momentum transfer by

E]
A = k. ~ k. and the exchange momentum transfer by

2.45D

2.46a

2,46

2.47
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48
where
. 2\ (s, )
LT b v o) = Shat ks L.v o Qon-e ) > e
AN B = (T RN\ DC -
= L0 20) g 2,492
and
oQ
Ik K ) = ~hwkl bdb T o= 1 tﬁcs)b)
Jo 2,490
where we have defined s = kg, T o= ”(Ef - k)
= «=23{1l~c0s88), u = ”(§f+§i>2 = =23{1l+cos8)

and 43 + bt + u = 0, This is The same: resuli as we obtained
before,
Bafors we progress onto scattering from
a bound shate it is worthwhile investigating the
form bf the unitarity relations for the forward and

backward scattering amplitudes,as any approximations

in these amplitudes are restricied by unitarity.

I1.56 Unitarity

We may obtain the profile functions in

terms of the forward and backward scattering amplitudes



A “{'(%)\0)5 ":&-i.%a &C\’A e e CS) <) 2,503

2,50

These can be shown Lo satisfy a very simple form of
the mnitarity relation in the high-energy limit. It
has bheen considered that the principal disadvantage of
the impact parameter formalism as compared Lo the
partial wave expansion is its complicated unitarity
relationlg)c However there is no essential difference
between the theoretical calcunlations of partial wave
and impact parameter amplitudes if inelastic channels
are consideredlg)e The only difference is that a non-
zero imaginary part of the phase function does not
imply the opening of a reaction channel, whereas a
non-zero imaginary part of the partial wave phase shift
does, This is so because even in the case of elastic

scattering, the impact parameter of the outgoing

particle is not the same as that of the incoming particle.



completa our setv of dynamical eguations for th

tering amplitude., This requirement siates that

Tukleg ) =<2 (49 e RV HE ) 2m
Um’\

If we split the scattering matrix info its forward and

backward parts the relation becomes

fl}vL'%(:Sykhsw ~ wTiwvtxgs Lz ) =

. 2,52
F I s X . ¢ ,_ - N7T
(Uﬁighl g N
where
N
tlj = w2s{lwﬁggkj) i#j Loj=1,2,3

- AR
Uy = m25(1+£i kj)

The unitarity relation may be equivalently expressed

in terms of the two-body profile funciions as
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These integrals may be evaluated as before using
Appendix A,

The unitarity relation then beccomes

:[MLL e o) = S \Dc\bg T x

2.54
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where G and G are defined by eg. 2,12. Taking the
high energy limit for ¢ and G' as in eq, 2,15 the uni-

tarity relation finelly becomes

L% .
ABE. e V)2
:EM% ,}4 e ‘0)% L\( Ve \o)(rﬁs o)ﬂ >(>)‘v A g\g)o)J A

v-i\-

iﬁxL%"\ﬂjtg)‘b‘)% ?\1 G"( b)T\ (EN \\)\5 bf\/ﬁstj .
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A

These unitarity relations are consistent
with those derived by Blankenbecler and'Goldbergeré>
If the scattering ampliftudes are analytic in energy
then the determination of the profile functions is a
one-cut mapping problem involving only physical values
of energy. Although we may not integrate analytically
G and G', the fact that there exists an exact unitarity

statement (eq.2.54) shows that the Fourier-Bessel






Scattering from a Bound State

ITT.1 Derivation of Amplitudes

studied, We assume tvhat particle 1 1s the projectile,

and that particles 2 and 3 form a composite system. The
particles are all assumed to interact via local potentials
and we assume bthat the bound-stabe particles are
instantaneously "frozen" at the moment of impathl)o

Without this assumption, the methods used in the pre-

<
O

ious section may nov be extended to this system.
Howewver, by finally taking the expectation values of the
coordinates of the particles using the bound state wave
function, we are effectively taking their motion invo
agcount,

The initial and final states of the system

are then given by

Yilsp) = del0 e 3ola

Vels,p) = €e(e) & 3.1b

where QB(r) is the bound state wave function, The

centre of mass variables r and (O represent the separation
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e

between particles 2 and 3, and between particle 1 and the
contre of mass of 2 and 3 respectively (see Fig. 3). Ve
assume that all the particles are distinguishable, but

of egual mass, Hence particle 1 undergoes scattering
from two fixed scabtering centres located at +3r

with +the interaction given in operabor form by

\m:_jﬁiig%ﬁhr VdC\fD %Sﬂ) - 3.2a
and

e ( : Qm - "
VRV (e epsh) Pl + VT e )P 3z
woere the direc’t and exchange potentlals are denoted
by superseripts, and the subscript indicates the inier-

acting particles, Then we may consider the three~

body profile function to be an operator:
1= o

— :

(

3‘1?% . /}\/(w /OJ, 2 5 ‘) ¢ /\‘2/( g)“—‘_‘_y JBP"
1 | , 5 3.3
« L3 (s, (Q;L*‘/;wx.) + 2zl 5 ) Pay )

where bhe phase functions are given by
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This may be writiten in terms of the two-body profile

funecitions as

- F AL
A (160 () )+ i oA (TTa\) +

3.4
K A \\s b
TSNPy - ’pn_/( LA
wnere
e LX(s D) _
‘/(\‘\’;j: & T s (s, B) <) 3.5a
wb DLXQS)XD) . )
,r L;J = & Sene >\ LS) \O) 3.5b

The terms appearing in eg. 3.4 have a simple diagram-
matic representation which may be used o split the
equation into its forward and backward parts. The single
gcattering terms involve only one Factor /Pij and are
represented by Pig. 4a. The composite particle is
denoted by a double line, and the sguare vertex represents
the on-energy-shell two particle scattering amplitude

in the forward and backward direction., The double
scattering terms which contain two factors 423 are
analogously represented by Fig. 4b. Clearly we obtain

contributions to scattering in the forward direction

not only from particles which scatter forwards off both
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particles, but also from those waich scatter backwards

from both parsicles, Similarly, double scabiering

5

contribusions in the bvackward direction occcur whan

the incident particle scatters backwards off one particle
in the bound state system and forwards off the other,
Since the impact parameter amplitudes

represent scabttering in a small cone parallel or anti-
parallel to the incident direction, we may use tnese
diagrams 0 split eq. 3.4 into iis forward and backward

components, Then

whersa \
okt A (‘ B G__ [ ANFe 39 AN hﬁ)
\\€ = /2\1\7 4\“/{1%{; ol ll/ 3 V\?« o b3l EY
‘ 3.62
and
o — P ' n ‘ “L N
. P v 153 '/\ .’ ">
Y]

The physical criterion for splitting the amplitude

is equivalent to splitting it according to whether

each term comtains an even or odd number of factors Pﬁj”
We may now calculate the forward and

backward scattering amplitudes by taking the expectation

values of the profile funections with respect to the final

IS

and initial states given by eq. 3.1. We will work



in terms of the more familia f(l»:f k. ) where

| 200012 = ana in the two-bed

\x(A,.g;«:l |7 o= {’T and in the two-body system
‘s

f(}‘{_f9z-§l) = "'1/4 b(knql{i)
The three-body scattering amplitude is therefore given

by

”\LU:‘Q”Q"“ hﬁc\tu (5)/0)1/\(] (r)/))

- v(—Q
drvoX(e d ’\/\ ,C) é ol
Q\\Lg ¢ C /5( ’

where the integration is over all space, and hence The

forward and backward amplitudes are given by
. s o e e ()
ety > 0\ -~ - v - -
£ (ke ) = :Eg\gd% d i FACN N x
e ' " . Y '\: E xC‘/ /"’E}’f
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= T\ 4T \@\s“b P wdel)e 3.8b
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Ve choose to express the profile fuanctions
in terms of the itwo-body scattering amplitudes using
2. 2,50 since these are mors readily obtained experi-
mentally, If we now define the bound state form Factor
by

. . Y
;(;.9: d e )Z L‘

' 3.9
we may evaluate expressions 3.8a and 3.8b.

Since all the terms are evaluated in a
similar manner we will show explicitly the evaluation
of ome of them and then give the result for the rest,

Consider

v

Sd‘tt/ O>‘L B

J
/v'
.

t

RN ) o) e 7

Operating through the expression with the permutation

¥ .
operator Py, gilves

i(M””Jﬁf oL V)g/L% @lPﬂn ?>§ \1~(F7* &Jﬁ‘ 3,11

L A L.:u:d
N /r\}; ( 2+5e Y5 (,94;-) f (o) 7

If we now substitute eq, 2,50 in eq., 3.11 and use

A = (45 P gp)
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the expression becomes , \
- Jey IR A F A AR 199
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Then, performing some of the integrations we obtain
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We may evaluate the other terms similarly giving the

final result
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TIIT.2 Approximation of Three-Body Amplitudes

These expressions are exact within the
eikenal approximation. However, we now choose toO
ayproximate them so thai we may obtain them completely
in terms of the bound-state form factor rather than
the wave-functions, since this is more readily obtain~
able experimentally., It also allows us to express the
equations in a more elegant form, The approximation we

make;is consistent with those already made and agrees

5)

5

in substance with that of Bertocchi and Capella
ince most of the scattering at the energies we are
considering takes place within a small cone parallel
or antiparallel to the incident direction ,we assume

that if the component of any momentum parallel to the
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incident direction is small, then its Ttransverse

component is also small compared with the momentum

approximation gives us

o . L - q/‘_\—, i
(P leglda S(REETL) + SC 8T (B
(%, 860 § (5 e b 8 (75 1) %

k% , ' ) Y N
LT n o ng) (T Rimhkena)

& U

AR R

and
\ P .
wc@%“\ﬁ RIGAR rsfcﬁ ) Sk (T

36 : !(C\ N -
L J&ft ) ga\ 9 S(q-1Lh) L5 ()%

Q'K\D\ . 3.15b
. E}G\L - \1 B’ ol G
L o ) [ Slg w4571

The approximation has the effect of
slightly increasing the scattering amplitude, since
the functions uander the integral sign fall off more

slowly than before,
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CHAPTER IV

APPLICATIONS

IV,1l Nucleon-nuclzson Scatiering

As an application of the two-body forme
alism we have dsveloped in previous chapiters we consider
nueleon-nucleon scattering; in particular proton-proton
and proton—neutro&% forward and backward scabiering.,

The analysis does not contain explicit spin-dependence
but this dependence is taken into account indirectly
in the input parameters,

We shall first calculate the scattering
amplitudes at intsrmediate energies from partial waves
and then use the results as a basis for the assumpbtions
we must make about the high-snergy scatiering amplitudes
which are +0 a large extent unknown. Once we decide

the form of these amplitudes we may evaluate the profile

%We refer to proton-neutron differential cross-sections
although the experimental data used is from neutron-
proton experiments.

Clearly we cannot use data extracted from
proton-deunteron scattering data, which is the usual

method of obbaining proton-meufron data
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functions at high energiss and compare them with thossa
we obtain at intermediaie eanergies from a phase-ghift

analysis,

short discussion of the nucleon-nucleon experimental
situation whiech will provide some of the input parameters
in our three-body caleulations, Proton-proton differential
cross-sections are reasonably well known over a wide
range of energieszz)g The information about probon-
neutron differential cross-sections is somewhat sparce,
We restrict our discussion of the vehavior of nucleon-
nucleon differential cross-sechions to narrow cones

about the Fforward and baclkward directions, Since the

P-p elastic differential cross—gection is symmétric about
90 deg, (because of identity of particles), comments
about the forward p-p peak apply equally well +Ho the_
backward p-p peak., Also the Torward p-n diffraciion
peak is similar to that found in p-p elastic scattering,
and hence we may discuss these simultaneously., In +the
forward region the differential cross-~section decreases
approximately exponentially in t (= ~2k2(l - c0s8)), and
this region extends %o higher values of momentum transfer

as the energy increases., The diffraction peak shrinks
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then more slowly as the momentun
The data is welil

A

rapidly at first an
of the incident particle increases,
Titted by the exprsssion
N — ak
ar\ e
4.1

dr
(j,k QU /€=0
remains approximately constant, and a

wnere d
dt/+=0
increases with energy.
Backward proton-neutron scattering is,
rge-exchangs

however, complicated by the presence of cha
The backward peak falls off very rapidly

scatitering,
exchange momentum transfer inecreases and is

as the
fitted by a curve of the forms
A - %?) &}u
A alJu=co | L2
is energy dependent and is
beam

The parameler 4g )
du / u=0 -
proportional to the inverse sgquare of the incldent

momentum, whereas a passes through a maximum and then
This maximum occurs near the one-pion

2
decreases 3)a
threshold, but the mechanism of such a reaction is not

122)

These analybtic expressions for the two-
tial cross-sections are used in our cal-

yet clear,

g

body differen
culations with the parameters given in Table



TV.2 . Intermediats Bnergy Scattering Amvlitudes

We may calculate both the scatiering
amplitudes and the impact parameter amplitudes at
intermediate energieé partial wave analysis since

A
the necessary information is available befween 400 and
750 MeV24)a Then, as our formalism for the two-body
system holds at intermediate energies as well as high
energies we use our calculations as a basis for assumptions
we make about hign energy scatiering amplitudes,
Unforfunately we eannot directly calceculate the scat-
tering amplitudes in the 1 GeV enexrgy region since vhe

information is not available,

We may calculate the scabtering amplitude

s ) R
W§51ng Appendix D, and for

from the parvial waveéf
simplicity we restriect our calculations to the spin
independent part a(E,8) of the general scatbtering
matrix, The phase-ghifts wsed in the calculations

are tvaken from Macgregor e7% 3125)0 The results of the
calculation are shown in Fig, 5., The valués of the
real and imaginary parts of nucleon-nucleson scatiering
do not show very marked dependence on the

eanergy - ab OO and 180°, The forward and backward

real and imaginary parts of the proton-proton scattering
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amplitudes are not equal, as migh%t be expected of an

dentical particle system, since

e

&)+ male) = —§ ) v (=€) §

and we plot only a(®), and no% the spin-dependent
coefficient m(9). Hencs it is reasonable To assume
2t these energies and at these angles that the real
and imaginary parts of the scattering amplitudes vary
only slowly with energy.

It is possible Lo perform These calculations
at any energy up o 750 MeV, but we choose only a few
in the intermediate energy region tc illustrate the
results, o

We may also calculate the real and imagin-
ary parts of the isovector (I=1) and isoscalar (1=0)
parts of oroton-nsutron spin independent amplitudes.
This gives us a clear indication of the charge-exchange
behavior since this is caleulated from the difference
between the isovechor and isoscalar parts of the scat-
tering amplitudes. The results are shown in.Fige6a
Clearly, the difference between the ftwo curves shows

C ejnange exchermea)
that the real part of theﬁscattering amplitude is
dominant over much of the energy region, We use this

behavior later to argue that at high energies the
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charge-exchange amplitude may be taken $o be real, .

Since w2 have caleulated the real and
imaginary parits of the scattering amplitudes it is
relatively easy %o calculate the ratio
- \Reklee)

Ton (8, €) 4,3

This may also be obtained Trom the interference of the

m

£ (&)

Conlomb and nuclear interactions in the forward direction,
and the energy dependence of this ratio at © = 0° is
given in Pig. 7. Clezarly, as fthe energy increases the

{ne chage exchange ) .
ratios. for p-p and p—nﬁscattering oscillate to zero,
suggesting that at high energies the imaginary part of
the Torward scattering amplitude is dominant, We may
also ¢alculate from phase-shift analyses this ratio
at angles other than 0° and the +theorstical angulaxr
dependence of the ratio is shown in Fig, 8 éﬁ tWo
energies, 570 MeV and 750 MeV., This shows: that the
ratio o is virtually independent of angle in +this
energy region in the forward and backward directions,
and hence we may use the gsame value of « in our
calculations at different angles, This suggests that

it is quite plausible to assume thalt the same angular

behavior holds at high energies,
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The results of bhe phase—shift analysis®?)
are not to be taken absolutely, althougnh the analysis
is the best to date. There is still much work to be
done in this direction since, for example, the inelasti-
- ¢ity parameter is incorrectly included, aand the authors
themselves warn abous the accuracy of the results above

450 MeV,

1V.3.. High Energy Scattering Amplitudes

Due to the lack of experimental information
about high-energy scattering amplitudes, we make assump—
tions about them, based in part on the results of the
previous section, but also on general theoretical
arguments, We will consider first the forward p-p and
p-n scatbering amplitudes. IT the nucleon-nucledn
total oross—section remains constant with inereasing
energy, Or increases, as recent experiments suggest for
the proton-proton wotal cross~se@%ione6)? then, by the
optical theorem, the imaginary part of the forward
scattering amplitude increases at least linearly in k.
So @e may expect that at gufficiently high energiss
In $(0) greatly exceeds |Re £{0)] in the elastic dif-

fraction peak for both p~p and p-n scattering., It seems

that | Re $(0)| is negligible at the energies with which



we are goncerned, Since the proton-proiton system is
symmetric about G0 deg., we may make the same assumpiions
about the vackward p-p scattering amplitude as we do
about the forward amplibtuda.

We base ouxr assumpiions agboui the back-
ward p-n scatiering amplitude on ths form of the Torward p-n
charge-exchange amplitude, since these systems are
equivalent, The forward exchange amplitude is related

27)

by general isotopic-spin arguments to the difference
between the tof%al crossg-sections for p-p and p-n

o R
seatvering.

P (elpe) - Trle™)
jlﬂm/ Q%dn&ﬂ%Q, ) (f%ﬁ)q \ P 1.4

where [ is total cross-section., This botal cross-
section difference is very small at intermediate energies
and vanishes at hignh energies., Hence, at high energies
the imaginary part of the scaitering amplitude is
negligible compared with the real part., This con-
clusion is general and does not depend on any pariticular
charge exéhange model., Consequently, we take the
backward p-n scattering amplitude to be real,

These assumpbions about the scattering
amplitude are fairly reasonable at high energies.

Serber ses a completely imaginary optical potential



h ensrgy elastic p-p data with good results.
The assumpiion that the backward p-n amplitude is real
is comnsistent with Arushanovgg) who assumes this and
finds good qualitabtive agreement with the measured
differential cross-sections in the full angular range.
We also extend ouxr findings from the
intermediate energy results to assume that at high
energy the ratio of real to imaginary parts is independ-

ent of angle,

IV.4 Evaluation of Impact Parameter Amplitudes

We are now in a position to be able %o
Tind a functional form for the profile functions,
Under the assumptions made in the last three sections

we may write the p-p and p-n scattering amplitudes as

L’PQ (A) = h - 4.5a.
o . e ’ 7
EP\’\ Ur;-) = e Y

o L _QJO\:KPZ
b?? () = B 4.5¢
“ ‘ O »Q\Wz"
' <
Epn ()= 4.5a
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where A,C,D,a,c,d are assumed 0 be real comstanis,

Eg. 2,50 gives the profile funcitions
“in terms of the scattering amplitudes and henes taking
a Fourier-Bessel transform of the scalbtering amplitudes

wa obtain

‘°> “‘\0?7 ~
(W L coshgpl) -1 = Ao T )
@((RO» . | 4,08
WLFPQEQ Ny S
f? (gﬂb\& v
4,60
and
\43(' OO) "“bL/i
,(\ _ P C;Js>\\3.’\U°HJ’\ - C_;_Q,/ u-c
ST R 4,6¢
\ Lpalo) i — A
Tﬂfﬂ: 4L%¥@ uaxdfkgﬂtb§':*-§>gz Al
r %’K\O\Cl 4,64

From our assumptions about the scattering amplitudes we
know that in the Borm approximaiion both ?Lpp(b) and
}\pp(b) are imaginary and negative, and therefore

eqs, 4.6a and 4.6b give the constraint that

v o - b .\"3
?(WD?()D\ zx?g>K ) 7

This is eminenily reasonable as we expect the interactions
which give rise to forward and backward scattering %o

be equivalent. Hence the profile functions Ffor elastic



p=-p scattering are given by

T A TN ’_.\o/l;\’Ck z
}W,Q\g), peuo): %va} L+ B o |

G R 4.8
For p-n scattering we oblain the two profile functions
from eqs. 4.6c and 4,64 as
o _ ‘9A*d
>\'€‘(L(,\O)1~ < v\,li : De = S
R+ &&= LVQ) 4.92
and | BT
, gy -5
Yo (0) = —% tnl [ce \» Ve /%25
> 1 %r»c Lu\\ 24 4.9b

Obviously %pn(b) o >\pn(b) as the differential
cross-sections are not symmetric about 90 deg. and since
one potential is real and one imaginary. The Gaussian
form of the differential cross-section (eq. 4,1) is
obtained in the Born approximation from a Gaussian
potential, Egs. 4.8 and 4.9 therefore suggest that
the nucleon-nucleon interaction is similar to a Gaussian
interaction, Clearly both X A(p) and A (b) decrease
as b increases, which is to be expected, since nuclear
potentials are in general short range potentials.

The impact parameter amplitudes between
400 and 750 MeV may also be calculated from phase-
shift analyses (see Appendix D). The dependence of

the real and imaginary parts of the nucleon-pucleon
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profile functions on the impact parameter is shown

in Fig, %a., Clearly, the magnitudes of the real and
imaginary paris are almost equal for given b, and
their magnitudes increase with inecreasing 2nergy. AS
the impact parameter increases the real and imaginary
parts tend to zero., This is reasonable, since the
potential from which they are originally constructed ,
in practice, acts only over a small distance.

Our analysis is not completely spin-
independent, as we mentioned esrlier, as the nucleon-
nucleon amplitudes are constructed from contributions
from singlet and $riplet states (see Appendix D),
Again we may calculate the contribution of each state
using a standard partial wave analysis, and the results
ars shown in Fig, 9b. The real and imaginary parts
are almost equal in magnitude and tend to zero as the
impact parameber increases since the intsraction region
is finite in size. Their dependence on energy is
indicated in Fig. 10, and again the magnitude of the
real and imaginary parts increases with increasing
energy.

These results are consistent with the

behavior of our proposed impact parameter amplitudes
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given in egs., 4.8 and 4.9.

IV,5 Proton-deuberon Scattering

We are now in a position to‘be able %o
construct high energy proton-deuteron differential
cross-sections from the two-body scatfering amplitudes.
However we are constrained in this by the lack of detailed
information about the two-body scattering amplitudes and
our results can be only as good as the assumptions we

make and models we choose,

I7.5.1 The Deuteron FPorm Factor

In order to evaluate the proton~deuteron
differential cross—sections using eq. 3.15 we need to
know the form factor of the deuteron. Since, however,
neither the deuteron ground state wave function nor the
form factor are known very accurately, particularly for
small neutron-proton separations, we prefer to choose
a reasonable theoretical model., The non-relativistic
deuteron wave functions that are used in the prediction 6f
form factors,originate from solutions of the'Schroedinger
equation for the two-nucleon problem using various
nucleon interaction potentials., The success of the

wave functions may be measured by their ability to predict
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the elastic electron-deuteron scattering cross—-section
at large momentum transiers.

Several reasonably realistic deuteron
wave functions exist for low and intermediate energies.

They contain various D-state admixtures and hard and soft

o]

ores. The morse successful examples are those due to

30) 131) 32)

Hamada and Johnson Bresse , Feshbach and Lomon y
and Hulthén33)@ These models give reasonable values

for small momentum transfers, but the situation at large
momentum transfers, ie scattering in the backward direction,
ig far from clear. A recent comparisoﬁ%%f the Brei? and
Hulthén wave functions at low energy suggests that the
Hulthén wave function gives better agreecmen’t with
experiment at a scattering angle of 180 deg., although
at all other angles the daba seem to support a hard

core nypothesis. However at the energies with which

we are concerned the forms of the deuteron wave function
and form factor are unresolved,

An analysis of several simply plausible
high-energy deuteron wave funétions with a manageable
analytic form has been performed by Franco and Glauber35)9
They obtain a reasonable fit to experimental data in the

-

high-snergy region using the Gaussian wave function
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‘ N iaan AP — O bt
Do, = (o 1922 \7% -
)

4,10
The wvalues of the constants are those found by Verdes6)
using a variational technigue,
We may integrate eq., 4,10 immediately to
give the deuteron form factor

S
4,11

Since the deuteron wave function is derived from the
nucleon-nucleon interaction and we know that, in the
Born approximation, we may obtain the form of the two-
body amplitudes given by egs, 4.1 and 4.2 frbm a
Gaussian potential, it is consistent 40 use such a
Faussian wave function, and it also facilitates the
evaluation of several integrals. Also i% is‘not worth—
while to use a sopnisticated deuteron wave funciion
coﬁtaining a2 hard core or D-state admixture since we
have already had to make many assumptions about the
nmucleon-nuecleon scattering amplitudes, and such a

wave function would not significantly increase the

accuracy of our resulis,
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IV.5,2 Proton-Deuteron Differential Crosg-—sections

T1r

Ve now apply the thres-body formalism,
which was developed in Section III, to the calculation
of proton-deuteron differential cross-sections at an
incident proton energy of 1 GeV, 1.3 Ge¥, and 1.5 GeV,
We compare the theoretical results with the expsrimental
data of Bennett et 3137) and Coleman et a138>,v The
two=-body parameters used as input information are given
in Table 1, We attempt only to fit the first forward
p—d peak since our analysis is good only for small valuss
of momentum transfer, The results are shown in Figs. 11
and 12.

In the forward direction the calculated
curves at 1 GeV (Pig. 1lla) vary slightly from the
experimental results, although they agree at the optical
point. This shifting appears to be due to the assumphion
that the real part of the scattering amplitude in the
forward direction is negligible, This may be seen if
we adopt the paramelers for nucleon-pucleon scattering

39)

by Bassel and Wilkin wno include a real part of the

. e . _ _ ——
scattering amplitude (o\pp = q@n = ,325). These
parameters give a good fit to the data, Their analysis

is however performed at only one energy.



theoretical backward p-d differential

cross—section at 1 GeV (Pig. 122) appears Hto be in good
agreement with experiment. The curve however falls below
the experimental points if we use the parameters of
Bassel and Wilkin, and also if we add a small real part
to the forward scattering amplitude ( K= .3, .5)
and a small imaginary part to the backward p-n scattering
amplitude (/K = 1/.3,1/.5). A% all three energies the
inclusion of a small real and imaginary part in the
respective amplitudes lowers the theoretical predictions
of the backward differential cross-sections., This
arbitrary shifting of the predicted differential cross-
sections is due to our lack of precise knowledge of
high-energy scattering amplitudes,

It is interesting that, at 1.5 GeV (sesz Fig.
12¢) even with the inclusion of small real and imaginary

varts, the theoretical curve still rises above the
59677)

experimental data, since previous analyses have
always produced differential cross-sections which are too
low, Since the Gaussian form factor falls off-quite
fast, the single scattering terms are negligible in the
backward direction and the differential cross-section

is caused entirely by the interference terms. However

our avproximation of the deuteron wave function in the
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interference terms (see Appendix C) has the effect of
increasing the magnitude of the scattering amplitude,
s0 The backwards differential cross-sections depend
sensitively on:
i) +he bound-state wave funection ap-
proximation (see Appendix C)
ii) +the assumptions about the two-~body
scattering amplitudes
iii) +the choice of bound-state form fachor
Hence, the theory of backward scattering
developed in this work can not be critically tesited
until we know more about the probton-proton and proton-—

neutronscattering amplitudes.,
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CHAPTER ¥

DISCUSSION

We have rigorously derived expressions
for two-body off-energy-shell forward and backward scat-
tering amplitudes and used three different methods to
derive the correspbnding on-energy-shell amplitudes.
We have extended our formalism to obtain forward and
backward scattering amplitudes for scattering from a
composite system, in particular from a two-body state,
but by a method which is easily exiended to n-body composite
- 8ystems, Our expressionsvcontain only single and double
scattering terms similar to Glauber "cheoryz)e Our
amplitudes may also be derived from the multiple scat-
tering series of Faddeev equations4o) by linearizing
the Green's function as in Appenédix B, Our resulis,
however, are significantly different from those obtained
by Bhasin6), Since we assume thé particles to be
distinguishable we have no term corresponding to mass
exchange scattering, in which the incident particle

replaces one of the target particles as

4 (22) —y )+ 3 5.1
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In our formalism, the input is clearly
the forward and backward two particle scattering amplitudesy
giving a clear indication as to which of the terms contribute
to the forward direction and which to the backward direction
scattering. Bhasin's analysis is, however, based on
a second order approximation obtained from the Faddeev

equations40),

()ﬁ&: Cg‘ﬂgxl“é%§\‘¥2;,EXG”AAF‘
15

The amplitude for the pick-up process is given by

52

831, The multiple scattering series for this process is
obtained by iterating eq. 5.2.

\,\'70\: C%““’V\DB % t%\ x -
5.3

The zeroth order term (s - Ho) in such a rearrangement
series corresponds to the Born approximation for the
piék—up process (eq.5.1) and it is well known4o) that this
yields a peak in the backward direction, Bhasin how-
ever assumes that the first order term t3l contributes
only to backward scattering, and hence ths backward
amplitude is given entirely by U g ( ﬁ%c<) when it

is approximated to second ordero‘ This implicitly

ignores the contribution of the elastic scattering

amplitude U,, which also contains some of the same first
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particles, Such an assumpbion, however is in clear
disagreement with experiment, since such a backward
scattering peak has alrsady been oObserved in ﬁ -4
scattering4l)@

The shadow effect has, in our formalism,
contributions from both forward and backward elementary
particle scattering, as is clear from eq, 3.15. Hence
we expect our predicted cross-sectionSto be higher than

5)

those predicted by Bertocchi and Capella”™’, and this
is borne out by our vesults. There is clearly a need for
more nueleon-nucleon and proton-deunteron scattering in
the 200~-800 HMeV energy region., TFor example, although
there is a reasonable amount of backward p-d scattering
in the range 200-600 MeV, there is only om forward
scattering experiment in this energy range, at 580 MeV,
Proton-neutron charge exchange information is aiso
needed at many more energies than is presently available.
In conclusion, we have constructed a
complete high energy dynamics for forward and backward
scattering of elementary particles, but we are limited
in its application by our present lack of detailed

experimental information,



Table 1
Nuecleon-nucleon parameters used to calculate proton-
deuteron differential cross-—sections, EP is the
energy of the inciden?t proton in the proton-deuteron
system., The parameters given are obtained in a least

squares fitzz) to the data as:

bp
dr = CeCt
9
ag = Dedt
da

pn
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Table 1

Ep(Gev) A a C c D d

1,0 56,33 .87 53.88 7.53 127.4 57.63
1.3 147.51 6.27 73.61 10.54 54,65 38.64
1.5 151.40 6,31 80,10 10.95 41,41 33,20



Figure 1
Bikonal description of high energy scattering. The
incident particle passes through a scattering region
at impact parameter b, and is scattered through an

angle of 8.
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Eikonal description of high
energy scatfering




Feynmann diagran showing a direect interaction () and

a space exchange jnteraction (b) between Two particles.
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Feynmann diagram showing a direct
“inferaction (o) ond a space exchange
interaction (b) i

A/

(

\

FIG. 2a FIG. 2b
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Migure 3

;_
[

13

Geometry for fixed scatitering centre prodblem. The

article 1 is scabtered from fixed particles

}.J
=
[}
O
S
§:1,
s
s

2 and 3 at 3r and -3r respectively. The origin at

%
]

the centre of mass of the systemgﬁwgﬁmd 3.
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Geometry for fixed scattering
cenire problem

FG. 3




Figure 4
Single (2) and double (b) scattering terms in the
Torward and backward scattering amplitudes for scat-
tering from a boun& state, The incident particle
ig labelled 1, and particles 2 and 3 form a bound state

denoted by a double line. The square veriex represents

two-body scattering amplitudes,
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Figursa
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1

Real and imaginary parts of the spin independent part

3

of proton~-proton and proton-neutron amplitudes., Thej

are caleculasted in the forward and backward diregctions

ot

1 3] - ” O O
e at a scatiering angle of 0 and 1807,
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Real and imaginary parts of The isovestor and 1s50-
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spin independent smplitudes,
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Enerzy dependence of the ratio oF real to imaginary
parts of the micleon-nucleon scatbering amplitudes in

the Forward direction (& = 0°).



- B2 -

SRR

EEEE P

FTTTiH

E

Leb

- Ratio of «,;(8:0°) X

Ratio of . p(6=0°) ¥

ol it L

(KE in MeV)

REARN

R TN 1 T T B

IO

100 103

Lab energy (MeV)



Pigure 8
Angular dependence of the ratio of real and imaginary

parts of the nucleon-nucleon scattering amplitudes at

570 ¥MeV and 7H50MeV in the forward and backward directions.
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Figure S
Real and imaginary parts of the impact parametef ampli-—
tﬁdes for the nucleon-nucleon syshem at 750 MeV (a) in
the forward and backward directions, and (b) for singlet

and triplet states.
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Figgre 10

Real and imaginary parts of the impact parameter
amplitudes for a) proton-proton scattering b) proton~
neutron forward scattering and c¢) proton-neutron

backward scattering at 480 MeV, 570 MeV, and 750 MeV,
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Figure 11

Forward proton-deuteron differential cross-sections at (a)
=1 CGeV, (b) Bp =1.3 GeV, and (c) Ep = 1.5 GeV.

The solid line is the Htheoretical prediction for profton-

deuteron forward scattering and the dashed lines show

the conzrlbutlons of the single scattering terms FHT%V)E&QGW
and 55%@?\ 5 . The experimental points at 1 GeV are

those of Bennett et al37), and the parametbers usesd 0

fit the experimental points are given by Bassel and

wilkino?),
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APPENDIX 4

BVALUATION OF INTEGRALS T AND T°

We evaluate the integrals

TI= ;“ l&b i 30<2£{\9< unC\ T L\E N S_L,wg )

A,la
and
! it
___/l: Jf\j.g{ \)C(J\KQQ u&@) \SU(,’Q bg&,\’\ /g,,*’
A.lb
where cos® = sin(6)si n(%cos(@ - )+ cos@cos?
Using the reliation
5y
N - . L e G -
| T (2 2 - Rateosg)>{d f = 3 () Jol(B)
~ 0O (/ - Aag

we can evaluabte the integral
Qﬁ;/v , r .
» iy . - ' i P [ P ,\10 . !-’h' .-\ j e 3 .-‘ .

Substituting A.3 into A.la we cbibain
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which may be writiten as

Tl Wf&

A5
whers %_? = k§b°2 s Epn? 2kfﬁb"b"cos@/2wcosﬁ
Now if we define
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Similarly the integration of I?gf,ﬁ) follows and
we obtain
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LINEARTZATION OF THE GREEN'S FUNCTION

We consider the scatitering of two high-
energy particles, TILet us denotse by kX the relative
two~body centre of mass momentum of the system bhefore
the collision, and by}ﬁvthe reduced mass, The non-
interacting two-particle Hamiltonian is

%0 = g?i
= B.1

where p is the momentum operator in the cenirs of mass

frame., This may be rewritien as

Gzt P7= L (pr) (prk) vk’
©2u BN 7 B.2

If we consider scattering in the Torward direction

the inéoming particle passes largely'undeviate& through
the ftarget so that all the important contributing
intermediate states have momentum.values near kx so
that p + X 2k, Hence we may approximate the

Hamiltonian by one which is linear in P

ho %= = 2 'B.3

/
7



17 we let V represent the operator waich
describas the interaciion betwsen the target and the
incoming particle we may write the total eikonal

Hamiltonian as

h=h +7V B.4
and the resolvent for h is given by
1
g(z) = 7oz B.5

where 7 is 2 comple¥% number with Im 2z # O, and in the

limit Im(@)-> O, g(z) becomes the total Green's
function with energy Re(zh
Hence, if we define p = k + g where

g is small, then

O‘-—-,_.,.._.__._.J._....,_. B06
© 7 keq 4+ 1&

Similarly the equivalent backward linearigzed Green's

function is given by
' 1 B.T



- Ll ~

APPENDIX C

APPROXIMATION OF THE BOUND-STATE WAVE FUNCTION

Let us consider Tirst the single scattering
terms in the forward and backward three-body amplitudes
(eq. 3.14), Both of the single scattering terms are
exact in the forward direction, so we shall deal first
with the single scattering terms in the backward scatbering

emplitude. Consider the term from eg, 3.12
(eBedpalio e’ ds (p) ) excpf-tp- Cspm)eipsix
cnp Ip (REFHE) Y3 ke + L9-(e o) (.05 o

If we replace p by p + %.354;’ expression C,L becomes

(e dpdepdp g 2 (s B A8
X exp Et,@- “ C?\' Rt Ei}%—ii{- A= —\»TQH— LR+ o2
+ g (ien

Performing some of the integrations we obtain
(o sy dE (eon OB (X ET-2) %
~ S(F“»ﬂr@ S F"/ +Repr i/}ia{@c‘fl(;@iw E;‘/ |3 o3
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An approximation is now made of the arguments of the

delta funchions., We assume
R =-Tw=o
P = -Rew-lhkiy X bR ot
Bxpression C.3 then bscomes
fc\? 2208 (prrbee) Brlpity ) @E"Q(’ )
which becomes; using the Convolution theorem,

SEAISNC I -

Similarly the other single backward scatbtering term

C.5

may be evaluated,

Now let us consider the double scattering

terms, Consider the term taken from eg.3.12

| jc\io c\gvc\ﬁc\B?'&C}Jl‘”ﬁf 3 (p) Pel ) -ﬁff@ Qg-?v@}’ )
%Qx?i ~Cpepeipr) wlplo —ike G VL@;—%L\)}XC i
rxp§ LRoR + g (Rue B (el (e ‘K-:.‘HJ% |

If we replace p by £+%§f eand perform some of the infe-

grations this becomes



- 03 o

{2 SRR ES /Z’/':.;Qw i Pr o/‘ ’D/.>?<
[dpdp L dg B (porinto ol
% T“\TC(T} \[ (g\i) o ( ﬁ?“ﬁ—ﬁ@(\’g C?,\{»% eyt L Rdy) %

xQ* (;Y,L—r*r ~\—9L+gr) (%._L E_: ~r*’_§ %,:.L)

Then making the approximation from the delta functions

?n =W 0

/- RV ST j
pn= Re W RO =2 LR C.3
and performing some of the integrations we obtain

£ [dp ps T W) doCpLreied 62Tt

which finally becones
foe () Sty B ECe

The other second order terms mway be similarly approximated.



APPENDIX D

PARTIAL WAVE ANATYSTS

The most general form of the nucleon-
nuecleon amplitude is given by
M=oar (s u2) R e (VA (8 D)+
- A y - .
it ) (e5P) + (o O KY Er
. ~J
. A DN 5 A
+ Q\SL (& PY (= P) — (T (T3 x<\7\~

2 . . N . -
waere 31} and §° are Pauli spin matrices for particles 1

\ e N o . .
and 2, The unit vectors n, P, K are dafined in the

[

cenisre of mass systen by initial and final momenta
g J

k. and kX, a3
=1 —f
' , N b , N L
B _ Riv By A= Rix Re W= Be-Re
| R E(-\ lkon el \\@\C*EL\ D.2

The spin independent part of the amplitude a(E,8) is
given by
o =L (2 % Moot+Mse )
s D.3
Wnere the subscripts denote the two particle spin
projections in the initilal and final states (s denoies
singlet stase). |

For proion-proton scattering
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The expressions for proion-neutron scatter

D.4

Py

ing are similax,

=0
except that 2 . is replaced by 2
odd,exen L L=0
Here
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The impact parameter representation is

obtained by replacing
o0
D it {27 ) e P : - " " e .
! ""(CQ"—SC) = q ”D_‘t\y) - JC\ Do Q%A) \}2&;4\'\(\ )
o ! ‘ -

in D.4. PFor the provon-proton system we then get
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Subsitituting &g, D.5 into 2g. D.3 we obtain the impact

paramzier form of 2 as
— ' ,'. / f (*“'—‘—\ ht ‘\O\,{ B “\
Al B8 = ‘So\sd\o'j@ (=) A LSy b))

O 3\ ; ' " : ; ~{ L \ ny IR
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In a similar manner we may obftain the provon-neuitron

profile functiomns.





