Design and Use of an Electronic Sieve

by

Cameron Douglas Patterson

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Science
in
The Department of Computer Science

Winnipeg, Manitoba, 1983

(¢) Cameron Douglas Patterson, 1983

DESIGN AND USE OF AN ELECTRONIC SIEVE
BY

CAMERON DOUGLAS PATTERSON

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

J
© 1983

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ACKNOWLEDGEMENTS

The sieve project was initiated after a discussion with D.
H. Lehmer and Robert Coffin. Doug Kimelman, Gilles and
Gilbert Detillieux pafticipated in the design and
implementation of the software. Electronics problems were
solved with the ready assistance of Jim Reimer. Brad Day
helped to assemble the hardware. Glen Ditchfield’s wirelist
program aided construction immensely. Forbes Burkowski 1is
especially thanked, for he was an inexhaustible source of
advice and support throughout the project.

Hugh Williams is the patient user of the sieve, and he
arranged funding for its construction. The author
acknowledges the financial assistance of a Postgraduate
Scholarship from the Natural Sciences and Engineering

Research Council.

CONTENTS

ACKNOWLEDGEMENTS « « & & o o o o o o o o &

Chapter
I. INTRODUCTION &« v ¢ &+ o o o o o« o o o
1I. THE SIEVE PROBLEM . .+ v &+ ¢ + o « .

III. THE SIEVE DEVICE MODEL . . . +. + . .
Iv. DESCRIPTION AND JUSTIFICATION OF THE
Vl ’ HARDWARE . . L L] . » L] . . L]

Design Overview o+« o o « o o o o o
Physical Construction . . . « . .
Sieve Hardware Subsystems
Control Unit « o & o o o o & &
Host Interface + « o ¢ o o & o
Counter " e 6 e e & o o e e
Solution Detectors « « « o + o
Rings e e e & e e s s s e e
Clock System « o« o o o o o o &
Remote Control « + o o o o o o

VI. FIRMWARE » L] . . . 3 . .

Microprogramming Model
Sieve Control Unit e ¢ s s s e
Microinstruction Format . « o« o+ o
Sieve Instruction Set + + + « +«

VII. SOFTWARE] L] L]

The Sieve Command + « « ¢« « &« . &
The Sieve Background Monitor Sivmo
Sivdiag « v ¢ & 4 o 4 4 e e e .
Files « o o o o o o o & o o o o &

VIII. USER’S GUIDE TO THE SIEVE
Universal Command Attributes . .
Command Description Key . + +» .« &
Command Descriptions . + + « o .

Problem File Creation « « « o« o+

-

DESIGN

n . . 3
. . . .
L] . . .
. . . .
. . L] °

. 1iv
page
. 1
L] 2
. 5
. 8
L] 13
. 13
. 15
. 16
. 16
] 16
. 17
. 17
. 18
£] 18
. 19
. 20
. 20
. 23
. 24
. 29
. 33
. 33
. 34
E] 36
. 36
. 42
A
. 48
. 51
. 93

Filter Program Creation+ « + + .

IX. CONCLUSIONS . . « .« « .+ .

REFERENCES . . ¢ + « « o + &

LIST OF TABLES

Table

page

1. Lehmer’s S1@VES v 4 « o o o o o « o o o o s o o o o« « 6
2., Host Computer / Sieve Peripheral Division of

La'bOUr . 12

LIST OF FIGURES

e e

vii

e

L]

®

Figure

1. Basic Microengine Configuration

2. Protocol for Write from Host to Sieve
3. Protocol for Write from Sieve to Host
4., Sieve Command Hierarchy

page

. 21

o 47

Chapter I

INTRODUCTION

This document describes the wuse, evolution, design, and
construction of an electronic device called a sieve. The
device 1is a tool wused in number theory to solve sets of
linear congruences. The sieve performs 133 million
operations per second, where one operation is defined to be
the determination of whether an integer satisfies all
congruences., This speed 1is not attainable on any von
Neumann style computer currently known to the author.

There were no constraints upon the medium of
implementation for the sieve. As a result, hardware,
firmware, and software were created in a configuration that
fulfilled the deéign goals, Although it 1is necessary to
describe the sieve from several perspectives, the reader
should regard the sieve as a unified system.

Since the author does not have extensive training in
number theory, the applications of the sieve will not be
explored in depth. It is the intent of this document to
provide information to the users and maintainers of the

sieve system.

Chapter 1II

THE SIEVE PROBLEM

Let m «ee , m_be integers > 1, and relatively prime

m Kk

1> 72
in pairs. We specify permissible residues for each modulus

m,, as follows:
i

X

m
"
~
=]
o
o
=
bt
~

=1, 2, .. , ni<mi
The problem is to find a value for X that satisfies all
congruences simultaneously; further, X must be within a
certain range, say A £ X < B,

There are three classes of sieve problems. If n, = 1 for
all i (i.e. we specify only one residue for each modulus),
then X can be determined using the Chinese Remainder Theorem
(CRT). An example of this type of problem is:

X = 4 (mod 5)

X = 8 (mod 13)
X = 21 (mod 31)
There is only one solution in the range given by A = 0, B =

5%¥13%31 = 2015.
If the first k prime numbers are used as moduli, and we
specify all permissible residues except for zero (i.e. n, =

mi-l and rij = j), the resulting problem is the famous Sieve

3

of Eratosthenes. ©FEach X found cannot divide any of the L
Thus, 1if mk is the largest prime not greater than A =VB,

then all solutions in the range A to B will be prime. An

example .0f a prime-finding sieve is:

X =1 (mod 2)
X =1,2 (mod 3)
X =1,2,3,4 (mod 5)

X

[H]

1,2,3,4,5,6 (mod 7)
This sieve produces all the primes between 10 and 100.

If roughly half of the residues are specified for each
modulus (i.e. n, is approximately mi/2), then the problem is
called a quadratic-type sieve. The name 1s well-chosen,
since this situation arises when investigating second degree
Diophantine equations and quadratic residues. An arbitrary
X will have a 1 in 2 chance of satisfying a particular
congruence. Hence, X will have a 1 in 2k chance of
satisfying all k —congruences. The number of solutions
expected is therefore (B-A)/Zk. The following exemplifies a
quadratic=-type sieve:

X =1 (mod 3)

X

i

1,4 (mod 5)

i

X 1,2,4 (mod 7)
Even a large computer becomes overwhelmed when attempting
to enumerate all combinations of congruences in a

quadratic~type sieve. Such a sieve with k moduli represents

approximately ml*mz* o oo *mk/Zk sieve problems that can be

4

solved using the CRT. Typical quadratic-type sieves use the
first 35 prime numbers as moduli; this is the equivalent of
4*1046 CRT problems! Since a range 1is imposed on the
solutionrs, it is necessary to solve all CRT problems, and
check each result for inclusion in the range.

An alternative approach 1is to search sequentially the
numbers in the specified range for solutions. This
technique 1is acceptable as long as the search can proceed
quickly. Unfortunately, general-purpose computers must
serially apply the congruences to each number, and each
congruence may require several machine instructions. In the

next chapter, it will be shown how special-purpose hardware

allows all congruences to be tested simultaneously.

Chapter ITI

THE SIEVE DEVICE MODEL

D. H. Lehmer was the first to employ custom hardware for
solving the sieve problém. The connection between the
concept of a modulus and the physical world was
straightforward. If a closed loop or ring is divided into m
discrete sections, the ring can represent the modulus m.
After choosing which section of the ring will represent
residue 0, we proceed to distinguish those sections
corresponding to permissible residues in a given sieve
problem. A ring will be constructed for each modulus.
Finally, we will maintain a window on each ring that shows
only one section at a time.

The algorithm for running the sieve problem is as
follows:

1. Setup each ring so that the residue 0 section is in

the window.
2. Check if all sections in the windows are
distinguished. If so, we have a solution.

3. Shift all rings by one section.

4. Repeat from step 2.
When a solution is found, its value is the number qf times

that step 3 has been performed.

For

windows

the sake of speed, it is

inspected simultaneously,

desirable

to

6

have all

and all rings shifted

simultaneously. Table 1 lists the sieve devices that have

been constructed by Lehmer.

DATE

1926

1932

1936

1946 -

1960°s

1975

1982

TABLE 1

Lehmer’s Sieves

DESCRIPTION

bicycle chains

gears with photo-electric
solution detector

16-mm film
sieves on general-purpose
computers

ENIAC

SWAC

IBM 7094

ILLIAC IV

delay line

electronic shift register

memory-driven
microcomputer—-based
(under development)

TRIALS/SEC

60

5000

100,000

3,000,000

1,000,000

16,000,000

REFERENCES

It might appear that the speed of a sieve device 1is
limited strictly by the rate at which the rings can be
shifted. However, using an idea suggested in [5], it is
possible to test more than one number per ring shift., 1In a
ring of length m, one can get the effect of s shifts in one
shift time by loading the ring with residues in the order O,
s, 2%s, 3%s, ... (mod m); In order for all residues to be
contained in the sequence, m and s must be relatively prime.
A window is placed over residues 0, 1, 2, ++.. , 8-1 (mod m).
Hence, we initially have the value of the first s residues
for each modulus. After one left shift of the ring,
residues s, s+1, s+2, ... , 2s8-1 (mod m) appear in the
windows. Thus, we are checking for solutions s numbers per

shift time.

Chapter 1V

.

DESCRIPTION AND JUSTIFICATION OF THE DESIGN

Originally, it was planned to simply reconstruct the 1975
Berkeley electronic sievé, using a PDP11/03 microcomputer
system as the user interface. Later, it was considered
desirable to have a communications path between the 11/03
and a PDPI11/45 minicomputer system. This would provide
access to a variety of I/0 peripherals, more secondary
storage, and remote login. The final configuration omits
the 11/03 entirely; the sieve is a direct peripheral of the
11/45, The sieve has its own microprogrammed control unit,
and may be thought of as an array processor.

The above evolution is a consequence of the requirements
of the sieve. Some of the more important objectives - and
the ways of achieving them - are as follows:

1. The sieve must be capable of running unattended for
months at a time. In particular, power failures
should not require human intervention. The PDP11/45
automatically reboots when power resumes. The UNIBUS
initialization signal causes the sieve microcode to
enter a power-up sequence.

2. A user-friendly environment is required. The user is

not assumed to be a programmer, or to be familiar

9
with the host operating system. The wuser simply
deals with a workspace of active problems. Completed
problems are automatically archived in order to keep
the workspace uncluttered. The PDP11/45 UNIX system
facilitates providing the desired environment.
Additional tests may have to be performed by the host
computer on solufions detected by the sieve,. For
example, a user might wish to use moduli that are not
implemented 1In the sieve hardware. This was the
original motivation for including the PDP11/03 in the
sieve system architecture. It was feared that the
PDP11/45 system could not provide the Tresponse
required to keep the sieve from waiting. Increasing
the priority of the sieve process would be
unacceptable to the other users of the 11/45. As it
turns out, most sievebproblems do not require a great
deal of software testing. In addition, the superior
speed of the 11/45 over the 11/03 more than offsets
the fact that the 11/45 is not dedicated to servicing
sieve interrupts.

The sieve system must be reliable. The floppy
disk-based PDP11/03 has a greater likelihood of I/0
errors, and does mnot perform parity checking on
memory reads. The PDP11/45 system has an order of
magnitude greater Mean Time Between Fallure than the

11/03 system, even though the 11/45 system 1s more

10
complex. As well, the UNIX operating system has an

excellent record for robustness.

Versatility is deemed the most important attribute of the

sieve.

"Even speed is subordinate to this goal, although a

minimum speed of 100 million trials per second was enforced

during the design. Examples of some of the tradeoffs are:

1.

It was known 1in .advance that some problems would
require moduli other than those implemented 1in
hardware. As a result, a convenient and minimun
number of hardware moduli was used.

Solution counting cannot proceed at full sieve
hardware speeds, since the PDP11/45 is interrupted
for each solution. Although it would have been
possible to include solution counters in the sieve

hardware, the problems that required software moduli

could not exploit the solution counters. Eight
solution counters would be necessary - one for each
solution detector, The added hardware complexity

could not be justified.

The hardware ‘clock counter has a 100 day period.
Overflows are remembered in software.

The sieve can operate at a cycle time of 50 ns, but a
ring bit will flip on the average of once per day. A
60 ns cycle time was chosen, with the result that a

ring bit flips roughly once per month.

11
The checkpointing performed by the sieve background process
not only records the sieve hardware state, but verifies it
as well. Knowing the initial state of the rings, and how
far the.counter has advanced, it is easy to predict the new
contents of the rings. This checking gives the user
confidence that the sieve hardware 1is performing properly.
In addition, all sieve unit writes are immediately verified
by a read of the unit. Solutions generated by the sieve are
not verified by the sieve software, because this should
rightfully be done by independent software. Also, the extra
overhead would slow down the solution counting mode even
more.

Table 2 indicates the division of functions between the
sieve device and the host computer. An overriding concern
is to keep the communication between the two unitsv to a
minimum. Solutions require only 4 16-bit data transfers,
and the first provides the initial interrupt. Reads and
writes of m-bit rings are performed in r(m/l6) data

transfers.

12
TABLE 2

Host Computer / Sieve Peripheral Division of Labour

“

HOST RESPONSIBILITIES SIEVE RESPONSIBILITIES

user interface generate interrupts for
solutions,
counter overflow

integrity checks execute commands from host

initiate power up sequence operate as a complete
slave to the host (impose
no real-time constraints
upon it)

implement less common implement most common
moduli moduli

non-volatile data storage

Chapter V

HARDWARE

It was decided not to thoroughly describe the sieve hardware
in this document, because of the size and nature of the
description. The board layouts, wiring lists, and backplane
layouts remain in the possession of the author, and are
decodable only by him,

However, some high-level hardware documentation is
provided. The integrated circuit and packaging technology
chosen will be summarized. Each major subsystem of the
sieve will be characterized. A samplé of the wirelist
program output 1is dincluded in Appendix D. Finally, the
design circuit diagrams and the interrupt system timing

diagram are folded in a pocket inside the back cover.

5.1 DESIGN OVERVIEW

The rings defined in Chapter 3 are implemented as
recirculating shift registers. There are 32 of these,
corresponding in length to the first 32 prime numbers or
their powers. The first 4 rings have length 64, 81, 25, and
49 for two reasons:

1. a ring must be at least 8 bits long

2. this accomodates common moduli, such as 8.

14
Each one bit in a ring denotes a permissible residue. A
48-bit counter keeps track of the number of times that the
rings have been shifted. There are 8 solution detectors
(i.e. 8 numbers are tested per shift). A solution detector
is logically a 32-input AND gate. The sieve hardware has a
cycle time of 60 ns, and is completely synchronous. Maximum
speed is therefore one tfial every 60/8 = 7.5 ns, or 133
million trials per second.

A design requirement for the machine was that there be no
overrun of the rings when a solution is found. It 1is
undesirable to have to '"back up" the rings, in order to
continue the search for solutions. Hence, the sieve has to
"stop on a dime", rather than "coast to a stop". The rough
equivalent of momentum in electronics is the time required
for signals to propagate through gates and wires. Setup and
hold times must be respected. Global signals such as the
clock and interrupt lines have a large fanout, and require a
multi-level distribution tree. Such trees inevitably
introduce skewing of the signals in different parts of the
machine. In order to prevent overrun, the solution
detection logic has a 1-level pipeline. The rings are
shifted every cycle, although it takes 2 cycles for a
solution to halt the machine. The search for solutions
continues by restarting the rings and the solution detection

pipeline in unison.

15

5.2 PHYSICAL CONSTRUCTION

The sieve consists of over 400 integrated circuits, packaged
on three high density wirewrap boards. Advanced Schottky
and low-power Schottky TTL are used exclusively. The 8-bit
serial-in parallel-out shift registers are military grade,
for enhanced reliability. Unfortunately, longer length
serial—-out shift registeré could not be used, because of the
distribution of the 8 windows in a ring. Including a 35 amp
power supply and cooling fans, the sieve device occupies
about 2 cubic feet.

Although the sieve 1is tightly packaged, some taps from
the rings to the solution detectors are longer than they
should be, and signal relections occur., Those taps that
experience severe reflections have parallel resistor
termination at the receiving end. This does not eliminate
the problem, because of impedance mismatches along the taps
(impedance 1is hard to control on wirewrap boards and
backplanes).

Ripple in the power and ground distribution systems is a
problem, because of fhe large number of devices that are
clocked simultaneously. 1In order to reduce this ripple to a
safe level, boards were chosen that have nearly continuous
power and ground planes. There is at least one ceramic disc
decoupling capacitor per integrated circuit, and several
dozen tantalum electrolytic decoupling capacitors per board.
The power supply has approximately 0.2 farads of load

capacitance.

16
The wirewrap wire colour convention is as follows:
black : clock distribution
red : interrupt lines
blue : taps from rings to solution detectors

white : all else

5.3 SIEVE HARDWARE SUBSYSTEMS

5.3.1 Control Unit

The functions of this circuitry are described in Chapter 6.
Note that the control unit is clocked independently from the
other subsystems. The control unit is on the top board of

the rack.

5.3.2 Host Interface

The job of parallel-to-serial and serial-to-parallel
conversions is accomplished by 74199’s. A 74LS161A is used
to control the number of shifts. Line drivers and series
damping resistors are used for signals sent to the host,
Parallel resistor termination and line receivers improve the
fidelity of signals feceived from the host. These measures
allow for a flat cable léngth of 25 feet from the host
computer to the sieve (this is the maximum length allowed by
the DEC DR11-C parallel interface). All host dinterface

circuitry is on the top board of the rack.

17
5.3.3 Counter
The 48-bit counter is implemented by 12 4-bit synchronous
binary counters. The least significant counter is a 748161,
while the remainder are 74LS161A’s. Counter overflow 1is
detected when the most significant counter asserts 1its
Terminal Count output. The broadside load and read
capability of these chips.is exploited. For the purposes of
reading and writing, the counter is split wup into 3
individually addressable 16-bit units, The counter

circuitry is on the top board of the rack.

5.3.4 Solution Detectors

A solution detector is implemented by three parallel
13-input NAND gates, followed by an AOI gate. The result
implements the AND function with roughly a 12 ns propagation
delay. The output of the solution detectors is pipelined by
D-type flip-flops. All interrupt sources are ORed together
to form a single dinterrupt 1line. This signal is then
distributed via a l-level distribution tree to the AND gates
that drive the clock inputs of the rings and counter. The
other inputs to these AND gates are the clock line, and unit
select line. The solution detectors occupy the center

portion of the middle board in the rack.

18
5.3.5 Rings
All rings are implemented using AMD 25LS164DM’s. All shift
registers in a ring share the same clock driver. A 2-input
OR gate 'is spliced into a ring in order to write the ring.
The first ring 1is special in that for the purposes of
reading or writing, it appears as a single 64-bit
recirculating shift regisfer. However, it splits up into 8
8-bit recirculating shift registers while the sieve is
searching for a solution. This transformation is
accomplished by the use of a 2-input multiplexer between
adjacent shift registers. The first 8 rings are located on
the left side of the middle board. The next 12 rings are
located on the right hand side of the middle board. The
remaining 12 rings occupy the entire bottom board in the

rack.

5.3.6 Clock System

The clock signal for the host interface, counter, solution
detection pipeline, and rings is generated by an AMD 2925.
While the sieve 1is éearching for a solution, the crystal
frequency is used. During 1I/0 ‘operations, the crystal
frequency is divided by 10, and the single step facility of
the 2925 is exploited. This 2925 is located on the middle

board of the rack.

19

5.3.7 Remote Control

A handheld remote control box connects to the backplane of

the rack. Basically, it controls the operation of the AMD

2925 oseillator that clocks the control unit. The control

unit may be reset or single stepped from one

microinstruction to the mnext. A multiplexer defines the

signals affected by the remote control box when it is
" "

disconnected. The sieve will be in a run state when the

remote control box is disconnected.

Chapter VI

FIRMWARE

6.1 MICROPROGRAMMING MODEL

Microprogramming is the use of a programmed "engine" to
control a larger machine. A simple microengine
configuration is shown in Figure 1. The most important uﬁit
is the m word by n bit memory, which is the source of the
control signals. The memory is driven by a sequencer that
simply determines the mnext address to be dissued to the
memory. The next-~address selection defaults to the current
address + 1 (modulo m). Alternatively, the next address 1is
a function of addressing information in the current memory
word, external data signals, and addresses "remembered”" by
the sequencer. All of the control variations permitted on
von Neumann computers are usually avallable in
microprogramming: sequential, unconditional and cénditional
jumps, subroutine calls and returns, bounded and unbounded
loops, and even multi-way branches (case statements).

The "pipeline register" (Advanced Micro Devices’
terminology) exists to allow the microengine to operate
faster. Without 1it, the cycle time would include the access
time of the microprogram memory. The pipeline register

holds the current microinstruction, while the next

OPCODE

MAPPING
PROM

OE

AN

MAP

SEL

En— SEQUENCER

CC

MICROPROGRAM
MEMORY

PIPELINE
OE REGISTER

. CONTROL

Figure 1:

7 SIGNALS

Basic Microengine Configuration

21

22
microinstruction 1is being addressed in the memory. Thus,
the memory access time has been removed from the critical
path,

The use of microprogramming to generate control signals
in a digital machine is analagous to the use of structured
programming to manage control flow in software. In both
cases, a simple solution‘helps to solve a complex problem.
A structured approach to control has the following
advantages, in either a hardware or software environment:

1. The chances of coming up with a close-to-error-free
design are improved when fundamental constraints are
imposed upon control. Independently-designed modules
are more easily integrated.

2. Debugging 1s easier, because errors can be isolated.
Knowing that certain modules cannot interact helps to
narrow down the possibilities.

3. Fixes or enhancements can be made with more
confidence that we will not corrupt something already
working.

Thus, we see that all phases of a hardware or software

project benefit from controls on control.

23

6.2 SIEVE CONTROL UNIT

A schematic of the sieve control unit is given in the back
cover pocket, It {s very similar to the basic microengine
model fpreviously described. The Am2910 {is a ©bipolar
microprogram controller that can access up to 4K words of
microprogram. It executes 16 different microprogram address
modification instructions; The address provided on the Yi
outputs may come from the Di 1input pins, the internal
register/counter, microprogram counter, or stack. Five
Am27S829 512x8 bipolar PROM’s are arranged horizontally to
give an overall microprogram memory size of 512 40-bit
words. Am2920 octal registers are used to implement the
pipeline register. Finally, an Am2922 octal multiplexer and
an Am2920 allows the Am2910 to interrogate one of eight
values to determine the outcome of conditional instructions.
All clocked chips share the same 1 Mhz clock signal, which
is produced by an Am2925 system clock generator.

It should be noted that the sieve control unit runs
asynchronously with the rest of the machine. The control
unit does not influeﬁce the speed of the rings. In fact,
the control unit has a cycle time of 1000 ns, whereas the
rings have a cycle time of 60 ns. While the sieve is
seérching for a solution, the <control wunit polls for
assertion of the solution found signal, or for an
instruction from the host computer. If a solution occurs,

the rings and counter stop without assistance from the

24
control unit. Indeed, the control unit’s only functions are
to decode and execute instructions from the host computer,
and to Iinterrupt the host when a solution is detected.

-

6.3 MICROINSTRUCTION FORMAT

Each microinstruction field will be described in the
following manner:

field mnemonic (bit positions) : field description
A field mnemonic having an "@" suffix indicates the signal

is active low.

opcode (0~3) : Am2910 4instructions. Only 4 of the 16
possible dinstructions are used. They are: conditional
jump~to-subroutine, conditional jump-pipeline,

return-from-subroutine, and continue.

address (4-12) : Am2910 direct input to the register/counter
and multiplexer (i.e. pins DO - D8). Pins D9 - D11 of
the 2910 are tied low. This field 1is used to directly

access the 512-word microprogram memory.

me22@ (13) : Am2922 condition code multiplexer enable pin.

This pin 1is held low throughout the microprogranm.

re22@ (14) + Am2922 condition code multiplexer register
enable pin. This allows the 2922 selection inputs (that

are determined by the abc22 field) to be changed.

25

pol22 (15) : Am2922 condition code multiplexer polarity
control pin. A low value on the Am2910 condition code
input dimplies truth. A low value on pol22 inverts the

signal that passes through the 2922.

abec22 (16-18) : Am2922 condition code multiplexer input
selection pins. This field encodes the signal number

that the Am2910 wishes to interrogate.

reqa (19) : DRI11-C parallel interface "REQA" signal. It is
used to acknowledge the receipt of data, or the execution

of a command, by the sieve.

reqb (20) : DR11-C parallel interface "REQB" signal. It is
used to interrupt the host computer when the sieve has

data for it.

1e373 (21) : 745373 latch enable pin. This chip latches the
ring or counter unit number that i1s contained in an

instruction from the host computer to the sieve.
filler_ 1 (22) : Reserved for future use.

ccen@ (23) : Am2910 condition code enable pin. A high
signal forces all conditional instructions to be

unconditionally executed.

peoutbuf@ (24) : 74199 broadside load enable pins for the
DR11-C parallel interface output buffer. On the rising
edge of the clock, 16 data bits from the host computer to

the rings or counter are loaded into a pair of 74199°s.

26

peinbuf@ (25) : 74199 broadside load enable pins for the
DR11-C parallel interface 1input buffer. On the rising
edge-of the clock, 16 data bits from the counter to the

host computer are loaded into a pair of 74199°’s.

choose (26) : When asserted, only the unit (ring or counter)
that 1s selected in the unit number demultiplexer will
receive the clock signal. When deasserted, all units

receive the clock signal.

feed (27) : When asserted, data can be serially dintroduced
into a ring, or broadside-~loaded into a counter, on the
next rising edge of the clock. When deasserted, rings
recirculate the data and counters count up, on the next

rising edge of the clock.

dis _clk@ (28) : Prevents the sieve from halting due to

counter overflow.

halt@ (29) : This signal 1s the input to a D-type flip-flop
that is clocked sjnchronously with the rings and counter,
The output of this synchronous halt flip-flop jams the
sieve clock signal at the proper place in the clock
period. Assertion and deassertion of halt@ is the means
by which the control unit stops and starts the sieve

looking for a solution.

27
dis_l@ (30) : Prevents the sieve from halting due to a

solution detected on coincidence gate number 1.

dis_28@ (31) : Prevents the sieve from halting due to
solutions detected on coincidence gates 2 through 8. In
the current version of the microcode, this signal is
manipulated identically to dis_l@. However, by asserting
dis_28@ all the time, the sieve reverts to having just
one coincidence detector (i.e. it checks for solutions
one number at a time). This would allow the sieve to
operate -~ at one-eighth speed - should any but the

primary solution detector malfunction.

clk_halt@ (32) : Drives the run/halt pin of the Am2925
system clock generator. This master clock supplies the
rings, counter, and host interface unit. When clk_halt@
is deasserted, the clock is free-running (although it may
be jammed by solution detectors, counter overflow, or the
halt@ signal). When clk_halt@ is asserted, the clock may

be single-stepped.

clk_ss@ (33) : Causes the Am2925 master clock to produce a
single square wave. The period of this wave i{s ten times
the period of the free-running clock signal (i.e. the

single-step period is 600 ns).

set_halt@ (34) : Connected to the direct clear input of the
synchronous ﬁalt flip-flop. The output of this flip~flop

must be low before the clk halt@ signal is deasserted.

28

clr_halt@ (35) : Connected to the direct set input of the
synchronous halt flip-flop. The output of this flip-flop
must be high before the clk_ss@ signal 1s asserted. This

signal also clears the presence of solutions from the

solution detection pipeline.

cel99 (36) : Permits the.sieve master clock signal to reach

the 74199°s that are in the host interface unit.

pel61@ (37) : Permits a broadside load into the 74LS161A
that is wused to 1limit the number of times a ring is
cycled during a read or write ring operation. The load
is accomplished on the next rising edge of the master

clock.

cel61@ (38) : Permits the sieve master clock signal to reach
the 74LS161A that 1is used to limit the number of times a

ring is cycled during a read or write ring operation.

filler 2 (39) : Reserved for future use. Note that filler_ 1
is also available, and it is physically closer to the

backplane.

Appendix C contains a documented 1listing of the sieve

microprogram,

29

6.4 SIEVE INSTRUCTION SET

A DEC-supplied DR11-C parallel interface connects the sieve
device to the UNIBUS of the host computer. Instructions and
data are sent to the sieve, and data are received from the
sieve, in 16-bit parcels. The transmission of data from the
host computer to the sieve 1is done in lockstep, and 1is
acknowledged with a hanashake. The transmission of data
from the sieve to the host computer is interrupt driven, and
is also acknowledged with a handshake,. Figures 2 and 3
describe the communications protocol in detail.

The format of a sieve instruction is:

opcode (o) wunit number (n) shift count (¢) wunused
(3 bits) (6 bits) (4 bits) (3 bits)

least significant bits -=> most significant bits

The bit ordering 1s from the perspective of the host
computer., Data bits are used by the sieve beginning with
the most significant bits., Data bits are generated by the
sieve beginning with the least significant bits.

The opcode field specifies one of 8 possible instructions
for the sieve device to execute. The dinstructions will be
enumerated after the other fields are described.

The unit number field selects one of the rings (0=31), a
16-bit portion of the counter (32-34), or the output value

of the coincidence gates (35).

30

HOST SIEVE

(1) assembles command/data {polling for CSRO set}

(2) 1if REQA set, give
"synec error"

(3) write to DROUTBUF

(4) assert CSRO

{polling for REQA set} (5) executes command/data
when CSRO set

(6) asserts REQA

(7) if REQA not set after {polling for CSRO clear}
100 microseconds, give
"no response'" error

(8) deassert CSRO

(9) deassert REQA

Figure 2: Protocol for Write from Host to Sieve

The shift count determines the number of data bits to be
used in a read or write ring command. An encoded value of n
(where n 1is between 0 and 15) results 1in n+l1 data bit
shifts,

The instructions executed by the sieve are:

31

HOST SIEVE
(1) asserts REQB

(2) inférrupt generated {polling for CSR1l set}
by REQB

(3) read DRINBUF

(4) assert CSRI1 to
acknowledge data read

{polling for REQB clear} (5) deassert REQB

(6) 1f REQB set after
10 microseconds, give
"REQB stuck" error,
and disable interrupt
capability of REQB

(7) deassert CSRI

Figure 3: Protocol for Write from Sieve to Host

read ring (o = 0) : The host computer needs the value of the
next ¢ bits of ring number n. The sieve responds with
the data requested. Note that r(m/16) instructions are

required to read an m-bit ring.

read counter (o = 1) : The host computer needs the value of

counter unit n. The entire counter is 48 bits, but it is
broken up into 16-bit units for the purposes of reading

and writing.

32

write ring (o = 2) : The host computer needs to write ¢ bits

of data to ring number n. The data value is sent to the
sieve after it has acknowledged the instruction. Note
that'r(m/l6) instruction-data pairs are required to write

an m-bit ring.

write counter (o = 3) : The host computer needs to write to

counter unit n. A 16-bit data wvalue 1is sent after the

instruction is acknowledged.

go (o = 4) : The sieve is instructed to search for a
solution using all units. The sieve will interrupt the
host when a solution 1s found. This instruction should
be issued with n=35 so that the coincidence gate values

are presented during the interrupt.

only (o = 5) : The sieve 1s instructed to search for a
solution wusing only wunit number n. This instruction

permits isolated testing of units, and is therfore used

in diagnostics.

stop (o = 6) : This instruction causes a simple
ackowledgement. As a side effect, it terminates an
outstanding go or only command. Because of its

simplicity, it is also used to test if the sieve control

unit {s alive.

pulse (o = 7) : All sieve rings and the counter are

single~-stepped. This is a diagnostic instruction.

Chapter VII

SOFTWARE

The essential sieve software consists of three programs: the
"sieve" command, the sieve background process '"sivmon", and
the diagnostic program '"sivdiag". The characteristics of
these programs will ©be discussed. The files and data
Structures used by the above programs will also be

described.

7.1 THE SIEVE COMMAND

This interactive program is the sole user interface to the
sieve system - no other shell commands are required. Use of
the sieve command is documented in Chapter 8.

Error detection is a significant part of this program.
The return code of every I/0 system call and request for
memory 1is checked. Complete syntax and semantic error
checking is performed on all user input. If an error is
found, it is first reported to the user, and then as much
"cleaning up" is done as possible (e.g. outstanding memory
allocations are freed, files are closed, and the command is
terminated). The program never aborts itself.
Unfortunately, the multiprecision package aborts if a memory

allocation request fails.

34

As a precaution, copies are made of the queue and done
files before they are modified. These backups have the name
".../files/temp/backup.xxxxxx", where xxxxxx 1is obtained
from the "mktemp" UNIX utility. The backup of the queue
index and string files —remains in existence throughout
manage mode., A backup of the done index and string files 1is
made during execution of the retrieve command.

Signals must mnot be allowed to terminate the sieve
command . The hangup signal is dignored. The quit signal
will abort the sieve command, and should be used only to
debug the command. The interrupt signal sets a flag that is
interrogated by some commands. These signals are set to

their default value, though, before invocation of the editor

or a shell escape.

7.2 THE SIEVE BACKGROUND MONITOR SIVMON

The environment of sivmon is very different from the sieve
command . Sivmon is a non-interactive program that can send
messages to the user only indirectly through the log file.
The standard input, standard output, and standard error
files are not used. Much effort was expended to make sivmon
compact and efficient, since this process 1is ready or
running almost all the time,

The error-handling philosophy of sivmon 1is also very
different from that of the sieve command. There are two

classes of errors: recoverable and wunrecoverable. Only

35
queue file errors and unsuccessful sieve device commands are
considered wunrecoverable. An unsuccessful sieve device
checkpoint (e.g. a ring is found to have flipped bits)
causes d backup to the previous successful checkpoint, and
the range of numbers where the error occurred is retried.
The retry will be performed up to n times, where n is the
value of the constant MAXnN_BACKUP. If this 1limit is
exceeded, sivmon moves on to the next problem in the queue.

Both recoverable and unrecoverable errors generate a log
file message. The maximum number of recoverable errors
tolerated per invocation of the sivmon process is given in
the constant MAX N ERROR. If this maximum is exceeded, an
unrecoverable error 1is signalled. Unrecoverable errors
cause sivmon to abort with a core dump. Hence, sivmon
should execute in a directory that does not have nightly
"core" file removals.

Although precautions are taken, sivmon is not immune to
errors resulting from a system crash during an /0
operation. The results are unpredictable when sivmon is
reinvoked.

The monitor process ignores the hangup, interrupt, quit,
and broken pipe signals (a broken pipe is associated with
the filter program, and causes sivmon to terminate the
current problem with an error status). The terminate signal
causes sivmon to perform an orderly shutdown. Any

outstanding transaction with the filter program is allowed

36
to complete. In fact, the terminate signal may initiate a
new filter program transaction, if a potential solution is
encountered during the checkpoint.
7.3 SIVDIAG
Sivdiag is an unsophisticated interactive program to aid in
sieve hardware troubleshéoting. It cannot be run while
sivmon is active. Sivdiag gives the user manual control of
all sieve hardware functions, including some diagnostic
operations that are not used by sivmon. The help command
"?" provides a description of the functions available.
Sivdiag does not use the normal read and write system calls
to access the sieve device, since timeout errors will result
if the sieve device does not respond in a certain amount of
time. Communications protocol may be performed as slowly as
desired, thereby allowing the sieve device to be

single-stepped via its remote control box.

7.4 FILES
Note that the following file names are not fully qualified.
The directories for these files are assigned by the UNIX

administrators.

queue.index
This file contains problems that are accessible in
manage mode of the sieve command. There is a header

at the beginning to store global values that must be

37
remembered from session to session of the sieve
command (e.g. the last problem number assigned). The
fixed-length data defining each problem follows.
Problems are stored in order of execution by sivmon
(i.e. ascending problem number within descending
priority). This file and the queue.string file are
completely rewritten each time the sieve command’ s

manage mode 1is quit.

queue.string
This file contains the wvariable-length <character
string data defining each problem in the queue.index
file. There is a set of 5 character strings
associated with each problem. The character string
sets are in the same sequential order as the problems
in the queue.index file. Each character string is
terminated with a newline character, to aid manual

viewing and editing, should the need arise.

done,index
This file has the same format as queue.index, except
there is no header. It contains the fixed-length data
on problems that have a "done" status (i.e. it is an
archive). Whenever manage mnode of the sieve command
is quit, queue problems with a status of '"done" are
appended to this file. This file and the done.string
file are completely rewritten each time the retrieve

command is used.

38

done.string
This file is amnalagous in function to queue.string,

except that it works in conjunction with done.index.

sivmon.lock
This file exists only while the sivmon background
process is alive. It contains the process number of
sivmon, so that the sieve command can terminate
sivmon. It also performs a secondary function of

allowing only one sivmon process to run at a time.

sieve.lock
This is an empty file, wused to prevent multiple
concurrent invocations of the sieve command. It 1is
created at the beginning of the sieve command, and

removed when the command is quit.

sivmon.log
This is a text file, containing messages from sivmon
to the sieve command user. Sivmon appends messages to
this file. At the end of a sieve command session, the

user has the option of deleting the file.

problem/xxx
This file contains the binary equivalent of the user
ASCITI problem file whose wunqualified name is XXX.
Such a file is created by a successful test or ptest

command in the prepare mode of the sieve command.

39
Both the ASCII and binary problem files are deleted by
the destroy command. The binary problem file is read
into memory when sivmon starts on a problem that

specifies problem file xxx.

result/nnn
This file contains data generated from the execution
of problem number nnn by sivmon. This file is created
by sivmon the first time that it executes the problem,
There 1is a small fixed-length header at the beginning
of the file. Solutions follow in a variable~length
binary format. At the end of the file are the
solution count and c¢lock count values, which are in
the same format 'as solutions. Actual solution and
clock count values are determined by adding the
problem starting value (which is stored in the
queue.string or done.string files) to what is stored

in the result file.

temp/chkp.nnn
This file wexists only while sivmon 1is executing
problem nnn. The solution count and clock count are
stored in this file during every checkpoint. If the
system were to crash while problem nnn is running,
then the values in this checkpoint file will be used
to restart the problem. The solution count and clock

count are appended to "result/nnn", and

40
"temp/chkp.nnn" disappears when sivmon terminates the
problem, or when sivmon itself is forced to terminate.
Note that "temp/chkp.nnn" is necessary because
"result/nnn" 1is potentially growing all the time, as

solutions are appended to it,.

temp/spool.xxxxxx
This file contains ASCII text to be printed. It 1is
created when a sieve command user enters a command
that routes its output to the printer. "xxxxxx" is
filled in by the UNIX utility "mktemp". The file 1is

removed after the printing is complete.

temp/backup.xxxxxx
This is a temporary copy of a file such as
queue.index, queue.string, done.index, or done.string.
These backups are created and deleted automatically
during the execution of the sieve command. The user
can manually replace a damaged file with the backup,

if the backup stl1ll exists.

temp/hardbits
This file 1s created and deleted automatically during
execution of the test or ptest commands in prepare
mode of the sieve command. It contains the residue
bit strings of all hardware moduli encountered in the

problem file being translated.

41

temp/virtbits
This file 1Is created and deleted automatically during
execution of the test or ptest commands in prepare
mode of the sieve command. It contains the residue
bit strings of all virtual (non-hardware) moduli

encountered in the problem file being translated.

Chapter VIII

USER’S GUIDE TO THE SIEVE

A sieve user interacts with the machine strictly through
software. The command modes and commands are described
later in this chapter. The user need only have a
rudimentary knowledge of the UNIX operating system in order
to use the sieve, After logging 1in, the user should type
"sieye" in response to the shell prompt ("$ " in Version 7
of UNIX). After a delay, a colon (":") will appear as the
new prompt.
Messages may appear before the first colon prompt. These
messages are of the form:
date time problem # message type: text of message
These messages were generated by the background progranm
"sivmon" while it was running "problem #" at the date and
time specified. '"Message type'" is one of:
error : an abnormal situation occurred that was handled
by sivmon. Examples are: running out of memory,
file errors (except for the queue file), and
unsuccessful sleve checkpoints. Most errors
cause termination of the problem (with an error
status), and selection of the next problem in the

queue.

43
fatal : an abnormal situation occurred that caused sivmon
to abort,. Queue file I/0 errors and sieve
hardware errors are usually fatal.
"Text of message" succinctly describes the error context.

If any messages did appear, the user has the option of
saving them or deleting them when he exits from the sieve
command. If they are séved, then they will reappear the
next time that the sieve command 1is issued. Any new
messages will be appended to the previous messages.

The sieve software does not support multiple simultaneous
users. Errors could result if the sieve command was issued
while another sieve session was already in progress.
Therefore, the first action performed by the sieve command
is to check 1if the lockout file "sieve.lock'" exists in the
sieve file directory. If so, the command terminates with
the message

sieve command already in use by userid
where wuserid is the wuser identification of the person
currently using the sieve command. If the lockout file does
not exist then it isicreated, and remains in existence until
the user exits from the sieve command. Note that 1f the
sieve command was to end abnormally, no further sieve
sessions would be permitted. In this case, the lockout file
must be manually deleted.

It is suggested that the sieve command be issued only by

the "sieve'" userid. This promotes consolidation of all

44
sieve-related work. It also reduces the likelihood of a
problem with the preparation of problem files.
Qualification of a problem file name is not retained when
the bit string equivalent 1is created in the sieve file
directory. As an example, the preparation of a problem file
ending in "/cubres" will overwrite the bit string file for
any other problem file ending in "/cubres". Therefore, all

problem file names must be unique.

8.1 UNIVERSAL COMMAND ATTRIBUTES

Before describing the commands available in the sieve
program, the features common to all commands will be given:
1. Command names may be abbreviated, by omitting
characters from the right end of the name. The
abbreviation may continue wuntil the command name
becomes ambiguous, or wuntil just one character
remains. There are exceptions:
a) commands that destroy information must be spelled
out in full
b) if an ambiguous command matches a common command
name, then the common command name is assumed.
2. Command names may be in upper and/or lowercase.,
3. The operands to a command may be specified on the
same line as the command name, or they may be
omitted. Since blanks separate operands, and

operands are positional, only the rightmost operands

45

may be omitted. A prompt 1is made for required but
omitted operands.
Commands are separated by carriage returns and/or
semicolons. However, commands separated by
semicolons may not span sieve command modes.
The standard input to the sieve command may be
redirected to a scfipt file. Reprompts, though, will
accept their information from the terminal only.
Shell commands may be issued while in the sieve
command, A shell command is distinguished by an
exclamation mark as its first character. All
characters following the exclamation mark, and up to
but not including the carriage return are passed to
an invocation of the shell., When the shell command
terminates, another exclamation mark i{s displayed.

All data that is typed at the sieve command undergoes

syntactic checking before command execution starts,

A reprompt 1is made for syntactically incorrect

strings.

Control values may be typed in place of normal

values. Control values begin with the at sign.

@2 : help. It generates a brief description of
what may be entered at that point in the
command line. A prompt 1is then made for
the command or argument. Note that "@?"
in place of a command name gives the 1list

of commands.

46
@ or @ : explicit null. It has a special
significance to certain commands (e.g.
modify). It is different from just a
carriage return in that it dindicates that
a token has a null value.
@q or @Q : abort the command. Any reprompting will
cease.,

9. The hangup signal is ignored by the sieve command.
The quit signal (cntl=-backslash) aborts the sieve
command with a core dump. Note that this can trash
files, and should only be used to debug the sieve
command program.,. Scrolling of displays may be done
with the cntl-s and cntl-q keystrokes. Entire input
lines may be deleted with the cntl-u keystroke. The
point at which the interrupt signal takes effect in a
command is given in the individual command
descriptions.

The commands available to the sieve user form a
hierarchy, as illustrated in Figure 4. Command name
references in this éhapter will normally be qualified, in
order to indicate the appropriate mode (e.g. manage.list).

Appendix B illustrates the use of some of the common

commands.

edit

list manage

check$
clear
dlist
down$
dprint
kill
list
make
modify
print
priori
qlist
gprint
quit
retrie
up$

write

Figure 4: Sie

sieve
prepare print quit
date
destroy
ptest
quit
test
ty
ve

ve Command Hierarchy

47

48

8.2 COMMAND DESCRIPTION KEY

PROMPT

COMMAND

OPERANDS

The prompt which must be displayed before the

command name can be typed.

The full command name 1is given first. The
shortest ©possible abbreviation of the command

name follows in parentheses.

The command operands are given in the order
required. Square parentheses mean that the
enclosed operand may occur 0 or 1 times. Curly
parentheses mean that the enclosed operand may
occur 1 or more times. A vertical bar indicates
alternation. The type of each operand is
enclosed 1in parentheses, and follows the name
assigned to the operand. The operand types are:
number - an unsigned 1integer, containing an
arbitrary number of digits, and an

optional exponent of the form "en" or

"En" (n is an unsigned integer <
32768).
file name - a string of up to 100 characters. A

string containing special characters

may be enclosed in single or double

FUNCTION

BREAK

ERRORS

X3

49
quotes -~ the quotes will mnot be
considered as part of the string.
The following characters are
considered speclal: control
characters, blank, colon, semicolon,
exclamation mark, at sign.

literals - strings of characters enclosed in
quotation marks indicate specific
values that must be wused for an
operand (the quotation marks are not
actually entered). A list of
literals is separated by the
alternation symbol. Literals may be
abbreviated in the same manner as

command names.,

This section describes what the command is wused

for.

Indicates at what point the interrupt signal

(break or delete key) affects the command.

Specific error messages are given and explained,
or an error class may be given. The error

message classes are:

50
I/0 errors =~ error status returned by an
open, close, read, write, or
seek operation.
process errors - an "exec" system call failed.
no memory errors = the required amount of main
memory could not be allocated.
Note that theA above error types should rarely
occur, If such an error does occur, the command
is immediately aborted. If a list of operands
was supplied to the command, then those operands
following the operand where the error occurred
will not be processed. If commands were queued

with semicolons, then the queue is flushed.

51

8.3 COMMAND DESCRIPTIONS

PROMPT

COMMAND

OPERANDS

FUNCTION

n $ 1A}

sieve (sieve)

none

This command is typed to the shell. It causes
the sieve program to be loaded into memory and
executed. There is a typical delay of 15
seconds, and a maximum delay of 5 minutes, from
the time "sieve" is typed to the time that
anything is displayed on the terminal (this is
the time required for the background sieve
process to tidy up and exit). If the log file is
not empty, then its contents are displayed on the
terminal. Finally, the new prompt (":") is
issued, which invites the wuser to enter a
command. The standard input to the sieve command

may be taken from a script file by using the

redirection facility of the shell (e.g.
sieve <script). Reprompts and verifications,
though, accept their information from the

terminal only.

BREAK : No effect.

ERRORS :

I/0 errors

"had to use kill signal to terminate sivmon"

52

After 5 minutes from the time that the terminate

signal was sent to the sivmon process,

not exited. This situation may arise

filter program used by sivmon is processing

solution during the whole 5 minutes.
message was 1issued, sivmon was not

perform an orderly cleanup.

"sieve command already in use by userid"
The sieve command was not successful,

is already executing. This message

issued if the last sieve session

abnormally, In this case, the "sieve.lock"

must be manually deleted.

sivmon had

the

a

this

to

it

be

ended

file

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

53

edit (e)

[problem file] (file name)

The UNIX editor, ed, is invoked. The prompt
issued during the edit session is "E:". Problen
files are created and changed in this mode. For
information on how to use ed, consult the UNIX

user manual.

Same as in a normal ed session.

process errors

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

ERRORS

I/0 errors

list (1)

none

Displays the contents of

terminal.

Takes effect between lines

the log file at

of the log file.

54

the

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

ERRORS

I/0 errors

55

manage (m)

none

This command causes the sieve program to enter
manage mode, which contains the majority of
commands. The new prompt is "M:". In manage
mode, the wuser creates instances of problems,
schedules the problems, inspects results, and
performs ancilliary housekeeping operations. The
queue of problems 1is accessible only in this

mode.

No effect.

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

FERRORS

56

prepare (pre)

none

Causes the sieve program to enter prepare mode.
The prompt becomes "P:". 1In this mode, a problem
file is inspected for errors, and translated from
ASCII to Dbinary. This translation must be
performed before a problem file can be used by

the background sieve process.

No effect.

none

57

PROMPT g M

COMMAND : print (pri)

OPERANDS : none

FUNCTION : Produces a listing of the contents of the log

file on the line printer.

BREAK : No effect.

ERRORS

I/0 errors

process errors

"log file is empty"
No messages are contained in the log file, A

listing is not produced.

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

58

quit (q)

none

Causes the sieve program to terminate, and the
user 1is returned to the shell, If the 1log file
contains messages, then the user is asked if he
wants those messages to be deleted. The wvalid

responses are "yes" or "no".

No effect.

process errors

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

ERRORS

59

URVER

checks$ (checks$)

[time amount time wunits] (number "days"
"hours" "minutes" "seconds")
This command is used to interrogate the

checkpoint time interval (no operand supplied on
command line) or to alter the checkpoint time
interval (if operands are supplied on the command
line). During a checkpoint, the background sieve
process records on disk the state of the sieve
device, and verifies the contents of the sieve
hardware. The allowed checkpoint range is 1 to

65535 seconds. A suggested value is 30 minutes.

No effect.

"time must be > 0"

"amount of time is too big"

60

When resolved to seconds, time amount must be <

65536 seconds.

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

61

"I‘l . "

clear (cl1)

{problem #} (number)

This command can only be applied to problems in
the queue that have an "error" status, Their
status is changed to '"ready", thereby allowing
the problems to be executed. It is assumed that

the error cause has been fixed.

No effect.

problem # is too big

can’t find problem #

The specified problem # is not in the queue (note
that the done file 1is nut searched by this

command) .

roblem # doesn’t have an error status
probtem #

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAX

ERRORS

I/0 errors

62

1" },I: 1"

dlist (d1)

none

Dlist provides a display of the contents of the
done file, which is the graveyard for problems
that have completed. At the end of every manage
mode session, all problems that have a '"done"
status are automatically archived in the done
file. The done file is in order by time of
archival, not problem number. The data given for
a problem is the same as that provided by a

manage.qlist command.

Between problems.

no memory errors

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

63

UAVERL

down$ (down$)

none

This command prevents the background process
"sivmon" from automatically starting up when the
user exits the sieve command, or when UNIX
reboots. Down$S 1s wused only 1in exceptional
circumstances (such as when maintenance is to be
performed on the sieve hardware) or at the
discretion of the UNIX administrators. The up$

command undoes the effect of down$§.

No effect.

"already down"

A down$ command is already in effect.

64

PROMPT : "M

COMMAND : dprint (dp)

-

OPERANDS : none

FUNCTION : Same as dlist, except that the contents of the

done file are printed on the line printer.

BRREAYK : No effect.

ERRORS

I/0 errors

process errors

no memory errors

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

ERRORS

UBVERL

kill (kill)

{problem ﬁ} (number)

65

Kill removes problems with the specified problem

#’s from the queue of problems. All

solutions

collected for a problem are deleted. The effect

of kill cannot be wundone; hence, the

prompted for each problem # as follows:
kill problem # OK? Enter reply:

The wuser must answer '"yes" or '"no"

control value is interpreted as a "no").

should be exercised with this command.

After processing of a problem #

"problem # is too big"

"can’t find problem #"

The problem is not in the queue (note

done file is not searched).

user is

(a

quit

Caution

that

the

PROMPT

COMMAND

-

OPERANDS

FUNCTION

66

My, "

list (1)

{problem ﬁ} (number)

The 1list command displays information about

problem #’s in the queue. The following data are

given for a problem:

problem number

priority

status (new, ready, done, error)

recording mode (record, ﬁorecord)

problem file name

number of moduli used in the problem file

filter program name

starting value

stopping value

maximum number of solutions permitted

maximum time permitted
If the problem has a status other than "new'", the
following additional information is given:

solution count

clock count (how far the search for solutions
has progressed)

solutions

67

BREAK : Between solutions or problems.

ERRORS :

I/0 errors

no memory errors
"problem # is too big"

"can‘t find problem #"
The specified problem # is not in the queue (the

done file is not searched).

68

PROMPT s "M

COMMAND : make (ma)

-

OPERANDS : recording mode ("record" | "norecord")

problem file (file name)

of moduli (number)

filter program (file name)

start value (number)

stop value (number)

of solutions (number)

time amount (number)

time wunits ("days" | "hours" "minutes"

"seconds")

FUNCTION : The make command is used to create a new problem,
and enter it into the queue. The operands

supplied define the problem:

recording mode - "record" means record all solutions found.

"Norecord" means just keep the largest solution

found, and a count of all solutions.

problem file - the name of the problem file that specifies

the moduli and residues to be used.

69
ﬁ of moduli - allows the use of a subset of the moduli in

the problem file. Note that the order of use of

moduli is hardware-implemented moduli first, then
. software-~implemented moduli. This order may not
be the same as the order of moduli in the problem

file, However, the order within a modulus type

(hardware or software) is the same as in the

problem file. If you do not know how many moduli

are in the problem file, but vou want to use all

of them, enter the value 0.

filter program - the name of the program that will perform

additional tests on the potential solutions
generated by the sieve. If this facility is not

required, enter "-",

start value - the number from which the sieve is to begin

the search for solutions. This number will be
rounded down to a multiple of 8 (since the sieve

hardware checks for solutions 8 numbers at a

time).
stop value - the wupper limit to be imposed on the solution
search. This number will bw rounded up to a

multiple of 8.

f_gi solutions - the maximum number of solutions allowed.
Solutions must be accepted by the filter program

to be included in the solution count.

70

time amount, time units - the aggregate real time that the

problem will be permitted to run. The allowable

range is 1 to 2147483647 seconds.

A problem is terminated when any of the stop
value, maximum # of solutions, or time limit is exceeded, or
if any unrecoverable error occurs. These termination
criteria may be slightly exceeded, because of the pipelining
of sieve hardware and software. Problems are given a
default priority of 10. If all goes well, the message

problem # n entered successfully
is 1issued, where n 1s the number assigned to the new
problem. Problem numbers are'assigned sequentially from 1

to 2147483647, and are not reused.

BREAK : No effect.

ERRORS
I/0 errors
N0 MemOory errors

"problem fil. has not been prepared"

A binary version of problem file doesn’t exist.

"# of moduli to use (0 for all) is too big"

71
More moduli were requested then are contained in

the problem file.

"can’‘t find filter program"

*

"filter program is the wrong type of file"

The file specified is not an executable program.

"no execute permission for filter program"

The program does not have the appropriate mode

for invocation by the background sieve process.

"starting value is too big"
The number 1is too large to be stored (the

exponent is > 32767).
"stop value is too big"

"stop value must be >= starting value"

The sieve cannot run backwards.
"max # of solutions is too big"
"max # of solutions must be > 0"
"amount of time is too big"

"time must be > 0"

PROMPT

COMMAND

-

OPERANDS

FUNCTION

72

M.

modify (mo)

problem ﬁ (number)

recording mode ("record" | "norecord")

problem file (file name)

of moduli (number)

filter program (file name)

start value (number)

stop value (number)

of solutions (number)

time amount (number)

time units ("days" | "hours' "minutes"

"seconds")

This command allows the definition of a problem
to be changed. The operands following problem #
are the same as in the manage.make command. The
previous values for these operands are first
displayed. Next, 4+ prompt is made for the
operand values that were not on the command line.
The null control value ("@" or "@>") should be
specified for operands that are not to change

from their previous value. A common use of this

BREAK

ERRORS

"can’t

"can’t

"can’t

"can’t

"ecan’t

73
command 1is to extend the problem termination
criteria. Some operand changes are not permitted
for problems that have already run on the sieve

(e.g. changing the recording mode or start

value). All of the error checks performed by the

manage.make command are also performed by this
command . In éddition, the problem termination
operands may not be decreased below the values of
the wvariables that the termination operands
monitor. Application of the modify command to a
problem with an "error" or "done" status changes

the problem status to "ready".

No effect.,

As for manage.make command, plus:

1"

change

change

recording mode after problem has run

starting value after problem has run

back up stop value"

back up max # of solutions"

back up amount of time"

LA

PROMPT

COMMAND

.

OPERANDS

FUNCTION

BREAK

ERRORS

74

'II\)[. "
print (prin)
{problem #} (number)

Same as for the manage.list command, except that
the problem data are sent to the line printer.
Fach problem is started on a new page. The order
of problems appearing on the line printer may not
be the same as the order of operands in the print

command .

No effect. Consider issuing the "cprt'" command

to the shell.

As for manage.list, plus:

process errors

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

75

UEYERM

priority (prio)

priority value (number)

{problem ﬁ} (nﬁmber)

The priority command affects the scheduling of

the specified problem #’s within the queue. New

and ready problems are run in descending order by

priority wvalue. The highest priority is 32767,

and the lowest is 1. A priority of 0 prevents a
problem from running. Problems with equal

priority are run in ascending order by problem ﬁ.

No effect.

"priority # is too big"

"problem # is too big"

"can’t find problem #"

76
The specified problem is not in the queue (note
that the done file 1is not searched by this

command) .

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

77

”M:”

qlist (ql)

none

This command lists at the terminal the contents
of the queue file. The problems are listed in
scheduling order, except that some of the
problems may have a done or error status. The
data provided for each problem are:

problem #

priority

status (new, ready, error, done)

recording mode (record, norecord)

problem file name

of moduli used in the problem file

filter .program name

starting value

stopping value

maximum # of solutions permitted

maximum time permitted

Between problems.

ERRORS

none

78

79

PROMPT R VP

COMMAND : gprint (qp)

«

OPERANDS : none

FUNCTION : Oprint is equivalent to manage.qlist, except that

the output is routed to the printer.

BREAK : No effect,

ERRORS
I/0 errors

process errors

PROMPT

COMMAND

P

OPERANDS

FUNCTION

BREAK

ERRORS

1/0 errors

80

1t }1: 1"

quit (q)

none

This command terminates manage mode. The new
prompt will be ":". As a side effect, the queue
of problems is "thinned" (i.e. problems with a

status of "done" are moved to the done file).

lo effect.

81

PROMPT ¢ "M
COMMAND : retrieve (r)

OPERANDS : {problem #} (number)

FUNCTION : The retrieve command moves the specified problem
#’s from the done file back into the problem
queue., The status of these problems remains as
"done'"; hence, these problems will return to the
done file when manage mode is quit, unless the
problems are modified or killed. This command

can take a long time to execute, because of the

amount of I/0 performed.

BREAK : No effect,

ERRORS
I/0 errors

no memory errors
"problem # is too big"

"problem # is already in queue"

"problem # not found in done file"

82

83

PROMPT s MM

COMMAND : up$ (up$)

OPERANDS : none

FUNCTION : "Up$" permits the background sieve process to
begin execution when the wuser exits the sieve
command., It negates the effect of a manage.downs$

command.

BREAK : no effect.,

ERRORS

"already up"

An up$ command is already in effect.

PROMPT

COMMAND

-

OPERANDS

FUNCTION

BREAK

84

RAVIRRL

write (w)

text file (file name)

{problem ﬁ} (nﬁmber)

This command is functionally equivalent to the

manage.list command, except that the data on each

problem # is appended to the UNIX text file. The

file 1s created if it does not already exist.
This command finds several uses: The text file
created may be edited to remove unnecessary
information (such as all lines containing a
colon, and the "START PROBLEM" and "END PROBLEM"

delimiters) and leave just the solution values.

The text file may be subsequently printed. The

manage.print command begins each problem on a new
page; hence a write to a text file followed by a

shell "upr text file" saves paper. Finally, the

text file may be copied to tape or diskette, for

transportation to other computer installations.

RBetween problem #’s.

ERRORS

1/0 errors

«

NoO Memory errors
"problem # is too big"

"can’t find problem #"
The specified problem is

done file is not searched

not in the queue

by

this command).

85

(the

PROMPT

COMMAND

OPERAMNDS

FUNCTION

BREAK

86

1" 1"
P:

date (da)

{problem file} (file name)

Each operand 1is assumed to be the name of an
ASCIT problem file. Its last modification time
(LMT) is compared with the LMT of its
corresponding binary file (i.e. the one created
by a prepare.test or a prepare.ptest command).
If the LMT of the ASCII file is greater than the
LMT of the binary file, or if no binary file
exists, then the message

problem file is not current

is 1issued. This means that a prepare.test or
prepare.ptest command should be performed on

problem file in order for the binary version to

reflect the changes made to the ASCII version.
If this is not necessary, then the message issued
is

problem file is current

Retween problem file’s.

ERRORS

"problem file doesn’t exist"

-

A "stat" system call

not successful.

on the

designated file

87

was

PROMPT

COMMAND

OPERANDS

FUNCTION

BREAK

ERRORS

88

np.n

destroy (destroy)

{problem file} (file name)

This command removes both the ASCIT and binary of

each problem file specified. Each file name 1is

specified as follows:

destroy file name OK? Enter reply:

The user must answer "yes" or "no" at this point

(a quit control value is interpreted as a '"no").

n

The ASCII problem file is removed by the "rm

UNIX command.

After processing of a problem file,

process errors

"problem file doesn’t exist"

A "stat" system call did not succeed for the

specified file.

PROMPT

COMMAND

«

OPERANDS

FUNCTION

BREAK

ERRORS

89

" 1"
P

ptest (pt)

{problem file} (file name)

Same as for prepare.test, except that all
diagnostics are sent to the printer instead of
the terminal. This command would normally be
used only when there are too many error messages
to be easily viewed at the terminal. The name of

each problem file is displaved at the terminal,

just before it is processed,

Between statements in a problem file, and between

problem files.

As for prepare.test, plus:

process errors

PROMPT
COMMAND

OPERANDS

FUNCTION

BREAK

ERROPS

np,n

gquit (q)

none

Causes an exit from prepare

returned to the basic sieve

" 1t

its prompt of HEAN

No effect.

none

mode. The

command mnode,

90

user is

with

PROMPT : "p:"
COMMAND : test (t)
OPERANDS : {problem file} (file name)

FUNCTION : The test command causes each problem file

specified to be read and translated into a more
compact binary form. The translation occurs onlv

if no errors were detected in the problem file.

The binary version of the problem file is created

in a special directory that the user need not

know about. The original problem file 1is not

modified. For each problem file, a count of the

number of errors detected is displayed. If no
errors occurred, then a count of the number of

moduli encountered is also displaved.

BREAK : Between statements in a problem file, and between

problem files.

ERRORS

I/0 errors

no mMemory errors

syntax and semantic errors found in the problem file
All of these error messages begin with the line

number in which the error was detected.

"no hardware moduli collected"

lone of the valid moduli in the problem file are

implemented in the sieve’s hardware. At least
one such modulus is required for the background

sieve process to function properly.

8.4

PROBLEM FILE CREATION

The problem file contains the congruences

or more
created « by

utilities has

problems

the

to

user

been

be solved by the

through the editor.

created to produce

sieve.

the

93

to be used in one

It can be

A library of

quadratic

residues, quadratic non-residues, and cubic residues, in the

form of problem files (see programs '"qres" and "cres").

Such automatically-generated problem files may be edited by

the user, if necessary.

A problem file has a simple format. It consists of

statements, where a statement is a 1list of unsigned

integers, separated by "white space'" (tab, newline, or blank

characters), and terminated by a semicolon. The first

number in a statement is assumed to be the modulus, and the

remaining numbers are the residues desired for the modulus.

Any set of consecutive residues i through j inclusive may be

abbreviated as i:j or j:i. The maximum value of a modulus

is 32767; hence, residues may have values from 0 to 32766.

In Backus~Naur Form, the problem file syntax is:

problem file ::= {statement}

statement ::= modulus residue list ;

residue_list ::= {residue item}

residue_item t:= residue
residue : residue
modulus ::= number
residue ::= number
number 1= {digit}

digit se= 0 | 1] 2134156 7]s | 9
As an example, the congruence

X = 1,3,4,5,6,9 (mod 11)
is reprééented by the problem file statement

11 1 3:6 9,

Problem files can be annotated. All characters between a
"%" character and the endlof the line will be considered as
a comment. It is recommended that every problem file begin’
with a few comments that summarize the congruences.

The following format is suggested for problem files:
Moduli should be in ascending order. Each modulus begins on
a new line, and is followed by a tab character. The residue
list follows in ascending order. The residues or residue
ranges are separated by a single blank character. At most
ten residues should appear on a line. Each additional 1line
required for the residues should be indented by a tab
character. These rules make the moduli stand out, and
permit an easy count of the residues for a given modulus.
The problem file generation programs adhere to these rules.

All moduli in a problem file must be relatively prime, to
guard against inconsistencies. At least one modulus must be
implemented in the hardware of the sieve, since the hardware
initiates solutions. For a given modulus m, the number of
residues allowed is between 1 and m-1 inclusive. It is
senseless (and an error) to specify all m residues, since

this 1is the same as omitting the congruence altogether.

85
Finally, a particular residue may appear in the residue list
only once.

Appendix B contains an example of a problem file.

-

8.5 FILTER PROGRAM CREATION

A filter program may be specified for a problem. Its
purpose 1is to perform adaitional screening on numbers that
have been generated by the sieve. This allows arbitrary
tests to be applied to potential solutions before they are
recorded, thus conserving secondary storage. In addition,
the application of additional tests to a potential solution
is carried on concurrently with the sieve peripheral’s
search for the next potential solution. Thus, the sieve
peripheral is not necessarily idle while the filter program
is active.

All filter programs accept as their standard input a
multiple-precision binary-format number. Under Version 7 of
UNIX, the "mp" package’s MINT format is used. The standard
output of the filter program is an integer with the
following interpretagion:

< 0 : error. Sivmon will terminate the current problem

with an error status.

= 0 : the number is not a valid solution.

> 0 : the number 1is a valid solution.

Appendix B illustrates the format of a filter program.

Chapter IX

CONCLUSIONS

Two obvious ways of making an electronic shift register
sieve faster are increasing the clock speed, and increasing
the number of solution detectors. In this sieve, signal
delays are a significant part of the cycle time. The
specific problem is that some of the connections from the
ringg to the solution detectors are longer than they should
be, and signal reflections occur due to impedance
mismatches. These reflections must be allowed to damp out,
in order for correct solution detection.

It may seem that the number of windows per ring may be
arbitrarily increased, but there are limiting factors.
First, there is the space required by a solution detector (6
integrated circuits in this sieve). Second, solution
detectors have a large fan-in, and are therefore very
sensitive to input‘ signal skewing. As the number of
solution detectors increases, the clock speed will probably
be degraded. Finally, each solution detector must have a
connection to every ring; signal routing becomes a problem.

The author envisions the construction of a single, 40
ring, 1 billion trial per second sieve, having 16 windows

per ring, and a cycle time of 15 nanoseconds. ECL 1is the

97
only semiconductor 1logic capable of this speed. ECL
requires a controlled impedance environment, but this 1is
desirable for a sieve. Unlike TTL, ECL does not produce
large current spikes in the power plane when 1t changes
logic\ state; this 1s clearly advantageous when a large
number of devices are switching simultaneously.
Construction of the gigahertz sieve would be greatly
simplified if each ring could reside on a single chip. The
avallability of low=volume, custom ECL fabrication 1is
eagerly awaited.

A sieve has 1little use outside the field of number
theory. However, building a sieve in a new technology is an
excellent way to gain familiarity with that technology. The
sieve algorithm is simple, and can be implemented {in a
variety of ways, Electronics has not yet been fully

exploited., Optics promises even higher speeds,

REFERENCES

Lehmer, D. H, The Mechanical Combination of Linear
Forms, American Mathematical Monthly, v. 35, 1928, p.
114-121

Lehmer, D. H. A Photo-Electric Number Sieve, American
Mathematical Monthly, v. 40, 1933, p. 401-406

Lehmer, D. H. A Machine for Combining Sets of Linear
Congruences, Mathematische Annalen, v. 109, 1934, p.

661-667

Lehmer, D. H. The Sieve Problem for All-Purpose
Computers, Mathematical Tables and other Aids to

Computation, v. 7, 1953, p. 6~14

Cantor, D. G., Estrin, G., Fraenkel, A. S., Turn, R. A
Very High-Speed Digital Number Sieve, Mathematics of

Computation, v. 16, 1962, p. 141-154

Lehmer, D. H. An Announcement Concerning the Delay
Line Sieve DLS-127, Mathematics of Computation, v. 20,

1966, p. 645-646

Lehmer, D. H. A History of the Sieve Process, A
History of Computing in the Twentieth Century, Academic
Press, Inc., 1980, p. 445-456

: ;
E : i
H f H i :
: H ! ;
: [:
P i i
; .
i H 3 4
i ¢ : ¥
; } ; X
f 13 ; i
s ; ; :
; i s
3
: i
: K §
¢ : H : $
i : K ; ¥
[f
: : % i
- i :
h H P
§
§ E
{ :
i
:
‘ |
i
S s i

f‘,'
“
=4
[

Y

e B R i EAs ep

H
{
!
I
!
t
i
{
i

e ——

T,ii}w
,aﬁ;.&.xaak\.w;

Fol

J

AT e

w

soma

i .
wg(aﬂky TS
!

R Yo Oty

o

GRS

\515......:1.”

{
L /

i

A o B i Ty

0 3 gk o e R

H
3 4
P i
: §
i i
M
7 H
: i N
; :
V,
‘ :
£ H
i

W

3 Bty e ke 0 v i A b

: IR
% r
H . §
M i
i : i
8 {
: ;
T B ~.
: : {
: i
i B
: ;
! v 5
H i H

v
H

P s Bk R

H

B A L e i s s 1 0 R Pt i

b S i A S R A L N St P NP i RO RS e S

R [P o i i i 30 S s i
¥ 5 gt e 1 s 0 A5 A A A i o S = o St e
4 H 7 <
” : : i :
s N i H
i . I e
% { $ s
. H i 5
N i i e 5 e A 1 g o N T N N P R A (7 e 50
7 B b
¥ : 3
: HENE b N et i ke
5 ¥) .
H 3 SR e et , ;
,. 7 .
, i i
& H
3 3
T e
¥
Nl 3 H
H

B

A G R A e

)

RN

T -
i

e s

i..f:.<53.."{i...iﬁ.i.,z..c,Jx,»it(n«}!F_....?ii;:u
e g

Sinin 3 o i i s o

rixv,i;,i.ﬁ:e..l:e.ef,v.;f(..%l!lc..r;‘J..A\:.):.n» N it g fo 3 g g : - e 3 4

el :

At

e

Sy

o

i

1
5 ¥
y b
e

£

3

H

| H

&

¥ i

gy

3

i :
1 :

AN
i Rt
prene 3 e

N e

SEE R

IR O

s e i o N e i e SR e e

e A

e g S T YN S e Vg

s it

RRCREN USRS T B SRR

v S et

! e S e AT AP S o £ o e

: !
TR N Y3 N M s i 1 0 &
= H
: i
g i
¢ 2
§ i
- ; ‘ S e L o €50 5 8 5 50 o 515 A AT £ : 3 §
Y 1 1
i i N, et i R : ’
: o i £ o A P T o : FR
i £ :
e % 3
. e e o s i oS58t s 05 et Y PR . : 5
N i z
i B)
e e ot At s K i : : :
ooy i i i
3 3 - H :
: 3 i H
. i H ; s i
o e R S e A NS 5 A M 7 : : : 4
A ¥ :
: 3 ¥ : - 3 :
e i AT NI P 1 2o B ! : ! : ‘ ;
- - w . . H . % i
! ;
i A L S i 0 ¢ 5
: 3 N
H : ;
: : 0 b
i L ¢ i
H i - b

o e i

fRE

4 >

W. "

T 5

i !

{ b}

A | L :
T IR) L
ot oo
3 H T
RN P |

i ki S bl N, s £,

syaisin e 50

e A AR S AN e S S A e S

3
3
i
{
4
¥
i

IEY AEay S o

s s
ial [s T
N .

i)\\l,.“xxr?

-
2

s o s i

TORPE. I

1

2}

[ES TR

PO

L
i
1

wtghd

B

K88

I
{
o4
wf

i,’ P
,ij

~\},.,, ; \\\

i A
H
Aok

}
|

o i g
3 '5%
1 e

T RN

kY
E

N

L

S

P
.

/
i‘x

3

o,
m/'/

™y

(

 I—

\

—
— \
i

ST
| NS WU

]

%

TN

¥

o
——"

|

A
Lo

i

)
)

ﬂzi:‘

e
;
i
/
H
EH
i
!
:
;
i
H
EY
kY
%
\
%

o i

WY
R

st i it
£ S

mﬁA e e e

G

g

A

B
w0

P
g

Formsicink

Bl i,
R

Assinsrorgi st

ot

-

e

Ghsiiman

e

& ¢
o

PN

“Mm?,:%,,.“ .

%
1

W
|

S

R -

o
!
W
|

e

§
N

.
; :
! ;
b M :
4 7 :
! i ¥ i
: : i
H i : H :
% : { : : i s
» v v B H
i :

- R

.
{
/

)
LI S

%
A

ztr..yx.(w

H
i

§
f i
LR -%
i
: H
f &

3
: ¢
3

§

i

§
§
i

i
¢

H

A BN i

oy

e s)

i

s

-

/

 SUSPRRI. Y

Fomnimnmsaminy

¢
i1
i
H
;
H
i
i
§

;

G e e ey
o H X

B S

P e —

i

TSR

B AN 5530 N Sl T R S S O N R B NN

et . i e LS s e PN 0 AT

o 1 e

@

R—

et R e N 0 o147 B R AR SN

RS 7 N ST N e OB o S R T RO P Vit e BT &

ol viris

e e Y SR R A N e s R A el

S——

e ¢ PSPPSR AR T I NN AR N

e o

e e

N 57 o s RN S

H

H
et ARt S st S S £l R s sl mseats it ‘ !

: b i S5 i 5 N A A TS AN 708 :

e s R et s g G .- :

i 58T o A 05 A S 7 T

i i S A 5 D o 1 NS B SR S SN S .
- B R P i nrn . ;
e I : ; .
i o A R AT RN
e e S s Ny S S e R AN N R
- P DU
eSS s i e I e AN M

s

s s B ey

A ARG

S — .

it KD

¥

e z:....l'!tif?i,!\:wt!nhu,w

TN i A 5 RS S 0 W}AMa

o

- 38

e o "

e e

i

F < kS i i 2
H i i t i : ! 1 : : {
H i . 3 i ¥ : H
g i ; j ! ; i : i
H ¢ : : B i
: : i K : H
i i b H i
: i : E w
{ o W
: :
i
{
~
L
; -
14 o
i > P e
i
{
i
3
§
§ :
H 3
|
i
.

LT

ST iy

K>

W

[N —

S S PO

i i
H A,,'(,.\.ra..»xM
H .
¥ / ¢
¢ » o]
! ¢
P . !
: ! b ,
LA ; Lo ;
! : i i i i : :
: : I T B
¢ : H i :
7 g s i : H
: : ; . : ! :
: H 5 H H 2 i
: : : H : :
: : : : H } : H
; t P ; ; [
! } § i ; ; 5 { i ; i
K i : H H i H 1 H 4 B 3 s
; : v [[: T
[N T B [PR [T :
H : H : H] H P i :
: H H i i i i ; H 4
{ H 1 : 3 | H : d ;
H H ¢ } i ; RSP SISO R |
N H H H . { : H
i 3 : 3 ¥ R H
: I [
3 3 § i { g H
i i H § : 2 H i
m i H 3 i 3 i i H
[DA B I
; i i -~ i i :
w P
e
P i
i : : UV S
H H i {
| ; : i H
H H H { H S
: : oo
; i . i
H H
} §
M ¥
: o :
| Lo A
)i : ¢ ;
{ H i
: } } :
¢ : i : i
' m 3 :
5 : ‘ H H
M ¢ {
5 5
; : § :
i ; H i :
: B :
H H : 4 ¥
; 0 H :
L 1
b : i 2
[§
H 5
: {
! §
: :
i i ;
£ : }
: o H : :
H i N : 3 i
P I 3
| 3 S i
| ; O D i
4 2 3 H H & v
i P [S § Yol
3 § i § ; | ¢ . i
[i [B P
- S
i H)
H H 5 4
| i E H ;
H i H i
, P P
| { ! 5 H
: 3 4 i
; P ¢
5 3
§
|
,
STV WS -
| ; !
: i i g H : i .
: § i x5 N H : i : N
{ { | : h [4 & H
: A e 7o d
H 3 : H e i 3 : :
: H : : : : i H 5 ¥
: A S S S S s
i { ! 1 i : : :
A ; ;
S] :
% i :
H
3 ¢ v
[i
Lo f H
[i :
b : 3 3
A :
B ; 3 : i H
: i : H g
I - ;
H H H : i ! § 4
| PR : F i P ‘ :
: N ¢ H s 3 ¢ :
| £ : : ; ¢ : : :
I S o ;
| IS R N ; : ;
: H H Y : { 1 §
H ; H b H ¢ i : :
3 i H 1 1 3 b 3
: i : H M : : :
i i ! i ; : §
: ! N M : : i
| ; : i H :) 1 -
i ¢ : : :
H e i : ; i
§ : : g ! ;
W H H : N ﬂ N 3 Rttt i
i i ¢ B { j
| S R T § ‘
: i : H § ; ! :
P [S i i ! v i
’ A T P Lo
4 i H H H i {
H N : 3 ! H i
[b £ i R
7 i [3 I3

A AT AR DA 1 : §
H : ; :
i ; I H
i : i
s : ¥
H i i :
: 5
: : } !
i : ¢ H :
§ : : H
: H : H
: { i . :
H 1 : :
{ : : 5
§ & i ;
: 3 t
[T !
: : 3 : i
H b
{ ; .
N i N :
H t i . ¢
H i 4 b N
| PN
: i : H
i : P
[{ j
B ¢ H : .
P [R R
¢ : 5 : ¥
3 i H i {
i : i :
‘ [IO
¢ : 5
: E 3
» . H t i 4 i
H E
¢ §
e 2 i £ §
i H
i i
i . :
, Lo i
] { ¢ 3
! H i
; { Loy ! {
: i p i £
i ! i : : :
; £ { { ;
H] 1 ;
. H i H : i
: : { § :
H i { H {
H . i ; § : : f
Lo Lo A SR }
; . I S S S !
‘ P (I ;
: ; H 4 N 3 T § H
: : i ! H i H
i H 3 ¥ H H
: i i i ! i
f N 7 5 ¢ :
: B H i !) i
: 5 ! 3 H H <
: X H : P ;
K H 7 K i H i
H 3 N u : H B 1
P !]
: i } { ; :
: i ;
H ; ! : 3
: H i 3 ¢ ¢
R S T : I
: ; Loy : i { $
H Y S 1
: [: ! : : : :
- £ < W H i H ¥ H
i i : : { : 4
: : ; : H : H :
f : ‘ : 5 1 H
o B 2 : H H H
fod : L S
H . i : K : ¢ i H
ok il B N M f § i 3
o _ § H g : : i
3 4 H . ¥ H
o} ; : : E {
i P : : :
i N B 3
&

L

.»,.,,sur, o

:
K
¥
i
H

o i A

T

Sowsig

S i
T,
Mo,
¥azu4
o
o

>
[P alo—

o

N,
¥
H
f

]

¥

» ~

0 A A T

i
H
§
:
i
H
i
H
i
;
H
i
{
!

1
!
| ™
j.i:s.aﬂa!w M
i j
i i
‘ S i i A, o
W ~
o L
-
. 4\\\!\\ \\\ A A 0 e e
- \\\
T ! ,
m ;
| H
| i
P
S
V,iz,w e
7y
i M
.
¥) N : M .M
P
} i 3 -~ ”
R T~ e ,,.
) 5 et
. ‘0] V
¥ ! T
: N |
| i
i :
s
L

- ;

- H
e

o i
” B
i

H {

H :

§

¢

b i s

W

R L 5 A A8 b 0 et

; \\

THEs

!

Ve

Poc

- g
{ i %
Voot)
. Yy
S
o

G
S,
h\?\)a\\\

s

B s

' /....W;‘,W, m,wf,w.

S

N

P

S,

e

N

g

P,
P

o

.AIUI.P:
sp g e B

A e S L s

. i
& i

H

of 3

R N—

{
§

!

¥

JEOSSTR S
!

§

e,

i

H

i N A P £ A S e 6 v

P
i
1
i G
~4
¥
i
; i
: i
i ¢
H i
! |
: |
i i
m
i/xi! .
s
i
i
¢
¢
i
i
et
/i;l./v

s e i i 1 it N S il R

s

N T

R et
!
:

P

i s

7 i T 8y

. : 5 - : : \\\ 7
: : . i . S r .
B O i

SR g,
e N

)

N devimnfosimiam

B st A AP

S

it 857 e 0 O S

TR

e A b S e R N

(s o osstud

<

o xJ
!

e

i
Gy et
P, -

Ao . ﬂz..}i.t.}

i ez : aT.l,\E:&&

A‘v&: vt

NP

-

T‘-érz.i,is,.a,A

P :
H K

t

i
i :
: :
H i
i t

e

L e e,
a\/ N

:
3

R
< X

s s

P ——

LR it RS L
Garmatenersy,

e
¥
:
PR — . < oy

PSRN,

P i S

[— P 'e!..inaq\r,{ym..a‘?

<
-
d
n,
w

s

e

A dw i e iy Vot e I N - A £ * -
¢ ; e g 4
¥ .
& icsaine i imn e e o .
FLIERE——— i & S o
DY b g o Fov i i N
kS ” . ;
: .
RN Coeininge SN -
R S riitnsim V
i kA il b 5 1 5 i o v e,
e
S
ﬁ,laﬁ,;}z.fht%«xlit&fx) i . Gl : i A e , i

i
i

H
{
i
i

e poame e

JEA—

oy

e

X

.

Qﬂ. v : : R , ’ Cevia , Ssi.,!.zw,éx..f.t,%Iv:.. A AN P S

i A PR S AT TN D IR S P NN

RN,

R T
i i : :
kS H % i
H 4 Lo
3 : : i
oo 1
; K
{ L
! i
H : H
i] i
oo :
Lo ;
IFUT
3 i
{ ‘
[
T A}

i

i

i

i 8
; b T
: !
§ N
; L e
3 ” -
] w IR 2LY,
L e ot

: P . et
jo A T
Lo e O e e i e g j
i e i
s

i

D a3

R

Sty
}
i
e
j,-w«.‘...i,.ag« -
R
....3,
e
ey

K A—-;»,;.«.-v,»} :

3N
!
m .
!
i
1
i
i,

D
>
.

;
i
;
{
!
]
b
i
‘

p
]

P 2YD

poNIQIoNIe) €

-
o

l

B

N
L :

o

I
™~

H
| :

@ " Bremereinirre st
: ¢

i

H

i

i

;
]
i
|

e g g

SRS S

N s mn e

[T A

i

4

% m

i

i

}

&:r.r%&fy::*

K

¢

i

i

{

L i
P e B
o §
H

!

L

. i

Aoton e st A»é&&«\itka

Ay

TN

A
FCED

i
”
‘
}
e
A
gl IS

s
J,.r[a.

i
R

S S ,H.\

COUNT

s
i

[

SRRV

50 R A A b g T 3 e A i i g

i A B R e

< ; : H
S N |
[: i .
13 M 3 : :
! H i : : |
; H] H 1
i H 4 i !
w H : 3 N >
i M :
L f
3 ! :
! : :
§ i
%

o :

H

N !

L "~ H

S p i
i o A R i £ o

o s ey e

ST

¢ £ ,

B B

4 H

H [!

“ x 1
’ +

H i § o L

¥ H v 1

L 3 :

] i
i i
; H

< i

i i S et

e N i s e

{ :

' H

i i

i b

¥ H H

i i

& H

~]

~ o
S S,
4
et I R, w\

5_./ ;ql\a
e
,m.z..
Ly
AR ;
Sl oy ,
3% ! Aus/\ i
] N . .
T P N 3
~y ST ¢
i oY 1”‘! <
hY ~ bt 0 ;
7 o ol v
S N
A D :
b Ly o= ;
z =
o x o M
i ¢
;
-
5

SORETTENRC - Y

N
o :
z g
Lk w
) :
<
m T .,
. R T
p i
&
£ N 0 by >
4
.\»..WO o Y %
Q) A% = § ;
M i
13 !
TA e g omoms i * g
e A e T : ol
- i fai?
! Vo [,
\7.4’7: -~ ¥ . «\Jw
U ng & . : 3 o ,,,.u ’
3 7;. * . S
. i3 { : 5 - .
P i Pon v
K . ! o (EL ‘
L T ; v, ;
h. X : Yo :
4 t R . ¢
\M» A ¢ 1 Y :
Hi 3 Ly e :
i e e e H 3 . S el
W. | st O b
j : bdomn :
N F R VST RIEE : e
: b i T -
RS SR e o F
: S .
: : H 1 ® ‘n\.u
m, : L
j
X3

x ,
r.f : \M
. \ R (oot b
D :

3
? F .
i i
‘n.;;.;;w;,.. g

,(?,m;. e
g

W ARRSUE O
§

i
H
m |
3 3 - e
t g W % ;
& o * . ¢]
L . H 5 1 b
H : : :
Y [; ! i
R g ! : :
R ! ; .
i 1 { 2 ; :
3 b g <
: i B . 1 > H
w S : { 3 4 ; 4
H Aot i o S e 3 " g H
: . : : H
w : P
TS N EEENE
SRR e 3 i 3
: H ! v *
L i i % H
i ¢ !
i Pl
IR i H i
3 b ! H
3 { i 5 H
1 H H : |
oy P oo
“UO 1 5 i i V H
*. L
~ T { % 3
&~ N P R P :
Pid R B ;
3 i 3 3 :
. - - -t ;
o 4 i :
H i 5 : :
; ! ; i ;
' : i Y i
S “ 7 :
PR : ;
s v A 4 N
H ¢ :
i i i
¥ ; :
: N : ;
¥ b i BN
d i . § ;
: i § : i P
: i i
AN] ; b : ;
, ¢ . . ‘
v et -+ H *
| , P S W
| oy ik i § o
: o £ i !
s v ¢ B : 3)
E k! i §
: i : §
Y y H 4
t 3 ! 3
13 ¢ ¢ 3
¢ : N
o e e et 3 Lo ;
i ; i
i o :
- ; i C ;
3 : e B !
SR ; : : :
: : o d H
: 3 i, |
i : d
i
!
i
- g g ¢ - - ¥
(SR ;
i g e 3 i !
1 ; ~1 . O3y H 3 ? i 3
b ¢ N i ¥ ¢ , } 2
3 3 : ; : it 9 H i
; Ry A AR [RRE SR [
; § el i R S : !
% PR 5 H % i 5
d ki ; { _ R 3 < !
; i : : A e s g, N H
i : f RN SR : :
H 3 L . L : ! 3
4 ; fom 'y Y ; [N .
L3 ¥ : H £ i
i : :
b 3 l H :
W b i i !
i ; :
i
i

A R 0 0 P 0 A A e i A e

i H : 1%1(}}70\(“{"11” - H
: :) § : ;
i :
i 5
;zv :
¢ {

N R e

e S ot i s e i i

