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Abstract

Voltage instability has been reported as the main cause for many blackouts and be-

come a major concern in power systems. This thesis deals with two specific areas

of voltage stability in on-line power system security assessment: small-disturbance

(long-term) and large-disturbance (short-term) voltage stability assessment. For each

category of voltage stability, both voltage stability analysis and controls are studied.

The overall objective is to use the learning capabilities of computational intelligence

technology to build up the comprehensive on-line power system security assessment

and control strategy as well as to enhance the speed and efficiency of the process with

minimal human intervention.

The voltage stability problems are quantified by voltage stability indices which mea-

sure the system for the closeness of current operating point to voltage instability. The

indices are different for small-disturbance and large-disturbance voltage stability as-

sessment. Conventional approaches, such as continuation power flow or time-domain

simulation, can be used to obtain voltage stability indices. However, these con-

ventional approaches are limited by computation time that is significant for on-line

computation. The Artificial Neural Network (ANN) approach is proposed to compute

voltage stability indices as an alternative to the conventional approaches. The pro-

posed ANN algorithm is used to estimate voltage stability indices under both normal

and contingency operating conditions.

The input variables of ANN are obtained in real-time by an on-line measurement sys-

tem, i.e. Phasor Measurement Units (PMU). This thesis will propose a suboptimal

approach for seeking the best locations for PMUs from a voltage stability viewpoint.
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The ANN-based method is not limited to compute voltage stability indices but can

also be extended to determine suitable control actions. In this thesis, it is demon-

strated that long-term voltage stability can be improved by re-scheduling real power

generation based on the sensitivity of the ANN approach.

Load shedding is one of the most effective approaches against short-term voltage

instability under large disturbances. The basic requirement of load shedding for re-

covering voltage stability is to seek an optimal solution for when, where, and how

much load should be shed. Two simulation based approaches are proposed for load

shedding to prevent voltage instability or collapse. In the first approach, a parti-

cle swarm optimization (PSO) algorithm is implemented which performs an efficient

search for a global optimization. In the second approach, a sensitivity based algo-

rithm is conducted through the sensitivity index of the load shedding buses. The

proposed approaches are presented using the New England 39-bus test system. The

second approach is found to be significantly faster than the first one and results in

considerable savings in computer resources for the test system with which the meth-

ods were compared.
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Chapter 1

Introduction

This chapter briefly reviews some concepts of power systems and background intro-

duction that are related to this thesis. The content includes the structure of on-line

power system security assessment, operating states, power system stability and con-

trol, on-line measurement, and computational intelligence techniques. In addition,

the motivation, objectives for the research, and the organization of the thesis are also

presented.

1.1 On-line Power System Security Assessment

Power systems often encompass large geographical areas. The interconnected power

networks are therefore very large, with tens of thousands of nodes, branches and

generating units. Facing with such a complex system whose operating point changes

frequently, system operation has become ever more challenging. Although a power

system is designed to operate safely under various circumstances, it is inevitable that

the system will experience insecure states. Recently, there have been a number of to-

1



2 Chapter 1. Introduction

tal and partial blackouts in many countries around the world [1, 2, 3, 4]. These events

have highlighted the importance of the secure and reliable operation of power systems.

Traditionally, system operators have depended heavily on the results of operational

planning studies conducted off-line to guide them through day-to-day operations [5].

In today’s complex systems, total reliance on this off-line approach has become im-

practical. This has raised the requirement for on-line approaches in power system

security assessments. The real-time assessment of the system’s security and reliabil-

ity levels, especially under unforeseen contingencies, is known as on-line power system

security assessment [6]. In order to quantify the impact of various contingencies on

the security of a given power system and execute preventive and corrective control

actions, the on-line approaches require the data from a centralized control center.

SCADA system complemented with PMU wide area measurement system can pro-

vide these necessary data. Figure 1.1 illustrates an example of the on-line power

system security assessment architecture [5].

The basic functions of an on-line dynamic security assessment system include the

following parts:

1. Take a snapshot of the power system operating point using an on-line measuring

system. This information includes instant breaker status.

2. Using the above information, assemble the system model relevant to the present

status.

3. Perform the security assessment.

4. Report and visualize the result of assessment.
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Figure 1.1: Components of on-line dynamic security assessment

5. Raise alarms when security issues are detected.

6. Identify security issues and make recommendations on control actions to alle-

viate them.

The main components are denoted by boxes drawn with dashed lines in Figure 1.1.

Four main components are considered and studied in this thesis: measurement, mod-

elling, computation, and control. The key parts of the main research focus of this

thesis are computation and control.

1.2 Power System Operating States

Power system security assessment is an analysis performed to determine whether,

and to what extent, a power system is reasonably safe from serious interference to its
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operation [7]. In the basic framework of security established in 1967 by DyLiacco [8],

the concept of system operating states was defined into three states: normal , emer-

gency, and restorative states. In 1978 Fink and Carlsen [9] extended the classification

of states to: normal, alert, emergency, in extremis, and restorative. Figure 1.2 shows

the five-state classification of power system operating states [10].

Normal

Restorative Alert

EmergencyExtreme
emergency

Control action

Disturbance

Figure 1.2: Power system operating states

In the normal state, a power system operates with an adequate security margin after

being subjected to the contingencies. All the important quantities for power system

operation are within their normal range.

The alert state arises when the security level falls below a certain limit of adequacy.

In this state all the constraints are still satisfied; however, system security has weak-

ened, so that a further increase in demand or another contingency may threaten the



5 Chapter 1. Introduction

power system operation and transit alert to a state of emergency or of extreme emer-

gency. When the system is in the alert state, preventive actions, such as generation

rescheduling or increased reserve, can be undertaken to restore the system to its nor-

mal state.

In the emergency state, the power system is still intact but the violation of constraints

is more severe. The emergency state usually follows the alert state when preventive

actions have not been undertaken or have not been successful. When a system is in

the emergency state, it is necessary to undertake effective protective and corrective

actions to restore it to the alert state or normal state. Some typical protective and

corrective actions are fault clearing, excitation control, generation tripping, and load

curtailment.

A power system can transit to the extreme emergency state from the emergency state

if the above control actions are not applied or are ineffective. In this state, the oper-

ating constraints are violated and the system security does not exist. Control actions,

such as load shedding, are aimed at saving as much of the system as possible from a

widespread blackout.

To return a power system from an extreme emergency state to an alert or normal

state, a restorative state is necessary in which power system operators perform control

actions in order to reconnect all the facilities and restore system loads. The system

can reach either the normal or the alter state, depending on the conditions.
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1.3 Power System Stability Classification

An important part of power system security is the system’s ability to withstand the

effects of contingencies. Hence, power system stability has been acknowledged as an

important problem in electric power system operation. Historically, transient insta-

bility has been the dominant stability problem on most systems, and has been the

focus of much of the industry’s attention concerning system stability. Due to the

declining investments in new generation and transmission facilities, the power system

has become stressed. In addition, new technologies and controls are used in highly

stressed operating conditions, and different forms of system instability have emerged

[11]. Figure 1.3, reproduced from [11], gives an overall picture of the power system

stability problem.

Power System 
Stability

Voltage 
Stability

Frequency 
Stability

Rotor Angle 
Stability

Large-
disturbance

Voltage Stability

Small-
disturbance

Voltage Stability

Transient 
Stability

Small-
disturbance

Angle Stability

Short Term

Short Term Long Term

Long Term Short Term

Figure 1.3: Classification of power system stability

Power system stability is a comprehensive and complex subject. This thesis will focus
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on voltage stability categories and its subcategories. A number of such voltage insta-

bility incidents have been experienced around the world. Many of them are described

in [2]. When the system is moving towards voltage instability, protection and con-

trols are required to mitigate this situation and finally restore the system to normal

operation [10]. As a consequence, voltage stability analysis and control in a power

system has become a major concern for power system planning and operation [12].

1.3.1 Small-disturbance Voltage Stability

According to the definition in [11], small-disturbance voltage stability refers to the

system’s ability to maintain steady voltages when subjected to small perturbations

such as incremental changes in system load. This form of stability is influenced by

the slower acting equipment such as tap-changing transformers, thermostatically con-

trolled loads, and generator current limiters. As this happens relatively slowly, it is

also called as long-term, or steady-state voltage stability. Instability is due to the

loss of long-term operating equilibrium, or a lack of attraction toward the stable

post-disturbance equilibrium when a remedial action is applied too late [12]. With

appropriate assumptions, system equations can be linearized for analysis, thereby

allowing the computation of valuable sensitivity information useful in identifying fac-

tors influencing stability [11].

1.3.2 Large-disturbance Voltage Stability

According to the definition in [11], large-disturbance voltage stability refers to the

system’s ability to maintain steady voltages following large disturbances such as sys-
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tem faults, loss of generation, or circuit contingencies. The time frame of interest

for this kind of voltage stability is in the order of several seconds; it is sometimes

called short-term voltage stability. This kind of voltage stability analysis requires the

solution of appropriate system differential equations that need time domain simula-

tion solutions of nonlinear response of the system after being subjected to a large

disturbance.

When using a simulation tool for large disturbance voltage stability analysis, an

appropriate portion of the load are represented by the dynamic load model (i.e. in-

duction motors) since dynamic modelling of loads is often essential to assess voltage

stability. In addition, generators, excitation system, governors, reactive compensa-

tion or diverse control devices, and disturbances need to be appropriately represented

in their detailed dynamic models spanning the study period of time.

1.4 Preventive and Corrective Control

From the viewpoint of security assessment, the first task is to analyze the security of

the current operating point. If the power system is in a normal state, the assessment

should report how close the system is to an insecure state to give the operator an

idea of what might happen. If the system moves to an alert state or to an emergency

state, the assessment should pass the information on to the remedial control com-

ponent [13]. This component assists the operator in executing remedial actions to

improve security of the power system operation. The remedial actions are commonly

classified into two categories: preventive actions and corrective actions [10].
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Preventive actions are designed to put the system in a state such that the occur-

rence of a credible disturbance does not make the system unstable. In practice, this

means operating the system prior to the contingency. A series of potential contingen-

cies with reasonable probability of occurrence are selected by contingency screening

methods, and preventive control actions are taken for those critical contingencies

based on stability indices. Preventive controls thus usually require operating the sys-

tem to a higher cost. Generation rescheduling, reactive compensation switching, using

emergency back-up reactive power reserve provided by synchronous generators, and

load reduction are some examples for preventive control actions. This thesis investi-

gates generation rescheduling to enhance the steady state voltage stability margin.

Corrective actions are intended to moderate the consequences of a disturbance and

are carried out only if this disturbance occurs. When an abnormal condition devel-

ops, some corrective actions must be taken to restore the system to normal operation.

System protection may contribute to stabilize the system in post-contingency first.

Then, the corrective actions, such as compensation switching, secondary voltage con-

trol, generation trip, or load shedding, may be taken into account in post-contingency

control. Load shedding is normally a “last resort” option but is the most effective

alternative to eliminate the detected fault and return the system to an acceptable

condition. The advantage of corrective control over preventive control is that it re-

duces the operating cost by acting only when the contingency occurs.
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1.5 Computational Intelligence - CI

Computational intelligence (CI) is an offshoot of artificial intelligence [14]. Intelli-

gence is the capability of a system to adapt its behavior to meet its goals in a range

of environments. It is a property of all purpose-driven decision-makers [15]. Com-

putational intelligence is a methodology involving computing that provides a system

with an ability to learn and/or to deal with new situations, such that the system is

perceived to possesses one or more attributes of reason, such as generalization, discov-

ery, association, and abstraction [16]. The IEEE computational intelligence society

categorizes computational intelligence into three broad subjects:

• Neural Networks

• Fuzzy Systems

• Evolutionary computation, which includes

– Evolutionary Algorithms

– Swarm Intelligence

This thesis utilizes two main computational intelligence techniques: artificial neural

network and particle swarm optimization.

1.5.1 Artificial Neural Network - ANN

An artificial neural network (ANN), sometimes called “neural network” (NN), is a

non-linear mathematical model or computational model that tries to simulate the

structure and functional aspects of biological neural networks. A major advantage

of the ANN approach is that the domain knowledge is distributed in the neurons,
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and information processing is carried out in a parallel distributed manner [17]. This

approach has many desirable properties and capabilities such as:

1. Nonlinearity. An ANN has been conceived as a method of figuring out the

nonlinear relationship between input and output variables. A neural network

is made up of interconnected neurons that are presented by proper nonlinear

function and weights. It simulates the highly interconnected, parallel computa-

tional structure with many relatively simple individual processing elements [16].

Power system includes many kinds of nonlinear devices and controls. There-

fore, the nonlinear computation capability of ANN is desirable in applications

in power systems.

2. Learning ability. ANN is an adaptive system that is able to learn these complex

relationships based on external or internal information that flows through the

network during the training phase. It adapts by altering the weight of connec-

tions in the network with an amount proportional to the difference between the

desired output and the actual output. Therefore, they can be used to model

complex relationships between inputs and outputs as well as to find patterns in

data.

3. Generalization. Generalization is an important characteristic of human cogni-

tion. A neural network should be able to perform this function. Generalization

in this case refers to the neural network sufficiently abstracting what it learns

in training and extending this to produce reasonable outputs for those inputs

not encountered during training.

4. Real Time Operation. Using current state-of-the-art solutions, the technical fea-

sibility of a neural network application in a real-time operation seems to depend
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on the appropriate understanding of the learning process to the problems. A

trained ANN can be used for on-line prediction because of its fast response and

very low computational times at the expense of comprehensive off-line studies.

The time spent on training the ANN is spent prior to the real time. Therefore,

the advantage of the time spend on training is available in real time. Having

spent the time to train the ANN, the trained ANN is then capable of estimating

the stability margin of an unseen system state. If an analytical method is used,

it has to acquire the present system state and execute the algorithm pertaining

to the analytical method. In this case, computing time is spent in real time.

These are the properties of neural networks that are most desirable for solving the

problem in this thesis. On the other hand, artificial neural networks also have some

disadvantages:

1. Black Box. Artificial neural networks act like “ Black Box Models ” with little or

no prior knowledge of the function included in itself [18]. The “Black Box” na-

ture of artificial neural networks makes it is difficult to determine how the ANN

will optimize weights between neurons to make a decision. Consequently, it is

hard to know which of the input features are important for the output results.

When applying neural networks to voltage stability analysis, this disadvantage

makes it impossible to seek the most important features to output through the

hidden ANN structure and weights. We have to develop other algorithms to

solve the problem.

2. Large Sample Size. Neural networks are data-driven techniques. Therefore,

data preparation is a critical step in building a successful neural network model.
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Without a good, adequate, and representative data set, it is impossible to de-

velop a useful, predictive ANN model. Thus, the reliability of ANN models

depends to a large extent on the quality of data [19]. Generally, a larger sam-

ple provides a better chance for ANN to adequately approximate the underlying

data structure. However, superfluous sample data can bring in noisy data which

causes estimation error. Therefore, obtaining sufficiently large sample size is a

challenge for a practical problem.

3. No On-line Training. The training of ANN requires a great deal of computa-

tional effort and is usually an off-line process.

The number of artificial neural network applications to electric power system prob-

lems has increased dramatically in the last few years as have its successes in a variety

of disciplines. [20] provides a comprehensive bibliographical survey in this field. In

this thesis, the terms artificial neural network, neural network and ANN are used

interchangeably.

1.5.2 Particle Swarm Optimization - PSO

Particle Swarm Optimization (PSO) is a population based stochastic optimization

technique developed by James Kennedy and Russell C. Eberhart in 1995 [21], in-

spired by the social behavior of bird flocking or fish schooling. PSO belongs to the

categories of swarm intelligence techniques and evolutionary algorithms for optimiza-

tion.

The particle swarm optimization algorithm models the movement of a swarm, in which

individuals are called “particles”, that finds a solution to an optimization problem in
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a search space. The position of a particle represents a candidate solution to the op-

timization problem at hand. Each particle searches for better positions in the search

space by changing its velocity according to rules originally inspired by behavioral

models of bird flocking. A better position is determined by personal best position of

each particle, so that potentially good solutions can be used to guide the construction

of the new solutions. Additionally, at swarm level, the best overall positions among

all particles is also recorded, and this position upon termination of the algorithm may

serve as the answer.

Particle swarm optimization has been used extensively in many fields, including func-

tion optimization, neutral network and system control. [22] provides a review of the

PSO technique, the basic concepts and different structures and variants, as well as

its applications to different optimization problems in power systems. Particle swarm

optimization technique has been verified to be robust for solving problems featuring

non-linearity, non-differentiability, multiple objective optimization, and high dimen-

sionality through adaptation [23]. A particle swarm approach is applied in this thesis

to seek for a load shedding scheme that serves as a control action actuated after a

contingency to restore the voltage stability. The PSO algorithm searches a problem

space of candidate load shedding locations and finds the optimal load shedding places

and associated amount.

1.6 On-line Measurement

On-line measurement takes a snapshot of power system conditions and acquires data.

Until now, critical nodes in transmission grids have usually been monitored using
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static or quasi-dynamic data based on rms measurements. Supervisory control and

data acquisition (SCADA) systems usually collect measurements of real and reactive

power in network branches, busbar voltages, and frequency at a few locations in the

system [13]. The power system is a highly interconnected system with generators

and loads that may be hundreds of miles away. A wide area protection and con-

trol (WAPaC) system is an advanced measurement technology to collect information

not available from contemporary SCADA technology [24, 25]. Wide area protection

and control systems measure wide-area or global signals and are essentially based on

new data acquisition technology called Phasor Measurement Unit (PMU). Figure 1.4

demonstrates a wide area measurement system that consists of phasor measurement

units deployed at geographically dispersed locations in the system [26].

Figure 1.4: A wide area measurement system
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The Phasor Measurement Units (PMU) is considered to be one of the most important

measuring devices in the future power systems. Figure 1.5 demonstrates the phasor

measurement capability at two remote locations due to GPS (Global Positioning Sys-

tem) synchronization. Phasor is a quantity with magnitude and phase angle with

respect to a reference that is used to represent a sinusoidal signal. The sinusoidal

signal can be bus voltage or line current. The phase angle of any node is displayed

as the phase angle measured by the PMU minus the phase of a specified reference

at a time, such as time = 0. The phase angle differences between two sets of phasor

measurements (i.e. δ1-δ2) is independent of the reference. The reference can be one

of the phasor measurements.

Phasor Representation

Bus 1 Bus 2

δ1 δ2

V2∠δ2

V1∠δ1

Time=0 Time=0

Figure 1.5: Synchronized phasor measurements at remote locations

Introduction of Phasor Measurement Units (PMU) has opened up new opportuni-

ties to implement more effective special protective and correction methods [27]. The
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distinction for PMU comes from its unique ability to monitor both magnitudes and

synchronized phase angles of voltages and currents from widely dispersed locations

in addition to more conventional quantities [28]. The synchronized phase angles were

once immeasurable but they provide vital information for stability analysis, to detect,

predict and mitigate voltage instability in large power networks [29].

1.7 Research Motivation

The operation of power systems has become more difficult in recent times. Power sys-

tems are operated closer to security limits, environmental and economical constraints

restrict the expansion of transmission network, and the need for long distance power

transfer has increased significantly. Voltage instability has become a major concern in

many power systems. Many blackouts due to voltage instability have been reported

in [2]. This has resulted in a continually increasing interest and study into voltage

stability or voltage security assessment.

When disturbances occur in a large power network, both local and system-wide con-

ditions influence voltage stability problems. Under abnormal conditions, it is chal-

lenging for operators to deal with large volumes of data, and then initiate the most

appropriate remedial actions. Therefore these security assessments should be done

on-line to get an accurate measure of the power system operating state and lead oper-

ators to make informed decisions on executing proper control actions when necessary.

A typical on-line security assessment (Figure 1.1) takes snapshots of the power sys-

tem variables. As not all the power system variables are measured, it is important
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to determine the most probable power flow state by using the state estimation for

the on-line stability calculation. The phase angle, which is the estimated value on

the state estimation, can be measured with precise time-synchronization by PMUs

(Phasor Measurement Units). PMU information can be integrated into the conven-

tional state estimation to improve the accuracy of measurement. We intend to use

new measured data provided by PMUs for on-line security assessment.

Off-line tools for the voltage security assessment consist of: 1. power flow based static

tools, such as the VSAT [30], CPFlow [31], 2. Quasi-Dynamic (Fast Time Domain)

simulation programs [32], 3. time-domain simulation (dynamic) tools, such as PSS/E

[33], TSAT [34]. However, these conventional approaches are limited by computation

time that is significant for on-line computation. This requires an intelligent system

that greatly improves security assessment computations. An intelligent system is able

to learn from situations previously encountered and employ this knowledge to new

situations rapidly. We intend to use intelligent techniques, such as ANN, to be an

integral part of on-line voltage security assessment.

The fundamental motivation of this research is to build up a comprehensive on-

line strategy for voltage stability analysis, voltage stability preventive and corrective

control. The strategy will do the following:

1. Apply the computational intelligence techniques to quickly and effectively esti-

mate voltage security;

2. Investigate how to employ new on-line measurement techniques, i.e., Phasor

Measurement Units, in intelligence based voltage security assessment;
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3. Provide solutions of control actions to maintain or restore the voltage stability

according to operating states.

1.8 Research Objectives

The objectives of this on-line voltage stability analysis and control strategy are to:

1. Investigate existing literature relating to voltage stability analysis methods.

This revealed that mainly two voltage stability categories should be consid-

ered (Figure 1.3). Therefore, the research is focused on both small-disturbance

voltage stability and large-disturbance voltage stability.

2. Identify the performance indices or voltage stability criteria that predicts the

proximity to voltage instability problems. These indices could be used either on-

line or off-line to help operators determine how far the system is to collapse. As

a result, voltage stability margin is used for long-term voltage stability analysis

under small disturbances and transit voltage dip is used for short-term voltage

stability analysis under large disturbances.

3. Investigate computation tools relating to voltage stability analysis methods.

Among the methods of estimating the voltage stability margin, the continua-

tion power flow method is selected for the on-line voltage stability application.

On the other hand, for large-disturbance voltage stability, it is important to

recognize that the voltage stability and rotor angle stability are coupled with

each other under contingencies [11]. The general structure of the system model

for voltage stability analysis is similar to that for transient stability analysis. A

time-domain simulation is an essential tool for this because the large-disturbance
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voltage stability is determined by the dynamic characteristics of generators,

loads, etc..

4. Develop a continuation power flow program to calculate the long-term volt-

age stability margin. In addition to the conventional power flow, the program

considers continuation techniques to overcome the singularity of the Jacobian

matrix when the system approaches stressful conditions. The program should

also include various types of constraints, static load models and tap changing

transformers that can have a significant impact on the small-disturbance voltage

stability phenomenon.

5. Develop a framework for combining the continuation power flow program with

an artificial neural network that involves the initial system operating points

measured by PMUs to calculate the voltage stability margin. Some important

aspects of ANN application need to be understood, such as: input feature

selection, sample data size, overfitting or underfitting, computation speed, and

accuracy measure.

6. Develop the ANN based approach and test it on a study system. Then, imple-

ment the approach on a practical power system to evaluate the feasibility and

reliability of the proposed approach for a real and large size system.

7. Apply the ANN based approach into the different contingency scenario (N-1

contingency scanning). According to the output of evaluation of voltage sta-

bility under N-1 contingency, the proper preventive control, such as generation

reschedule, needs to be employed to enhance voltage stability.

8. Develop a framework for combining time-domain simulation program with an

artificial neural network to determine the transient voltage dip under large dis-
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turbances. The transient voltage dip serves as short-term voltage instability

index.

9. Develop a load shedding scheme as a corrective action against short-term volt-

age instability under large disturbances. As a result, an optimal load shedding

solution makes an intelligent decision about: (i) where the most effective loca-

tions are for load shedding, and (ii) what is the minimal amount of load to be

shed for those selected shedding locations.

1.9 Organization of the Thesis

In Chapter 2, a Continuation Power Flow (CPF) program is developed. CPF can be

efficiently computed through parameterization techniques of continuation methods

[35]. It uses an iterative predictor-corrector scheme to find the solution path and

to determine the small-disturbance voltage stability limit for a certain load increase

pattern (loading direction). The program can handle various types of constraints and

models that can have a significant impact on the voltage stability phenomenon.

In Chapter 3, the developed CPF program is combined with the ANN approach to

calculate the voltage stability margin that serves as a voltage stability index. Bus

voltage magnitude and phase angle for individual buses are gathered from a power

flow program. The operating points data can also be obtained from on-line Phasor

Measurement Unit (PMU) devices. All the generating data is fed to an ANN to train

the neural network and to form the trained ANN that can be effectively applied to

on-line voltage stability assessment. Some important aspects of ANN application,

such as input feature selection, sample data size, overfitting or underfitting, com-
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putation speed and accuracy measure, are discussed using the 39-bus New England

study system. The proposed approach is also tested for a power system of practical

size.

In Chapter 4, several extended applications of the proposed ANN approach for small-

disturbance voltage stability and control are presented. They are optimal choice of

PMU locations, N-1 contingency scanning, and generation rescheduling. It is not

economic to install PMUs at all buses in a power system. When only a limited num-

ber of PMUs are used, it is important to locate them at the most effective positions

in the network. Thus, the optimal method of choosing PMU location is proposed

in this chapter. Since disturbances are inevitable in power systems, it is particularly

important for the proposed ANN approach to be able to estimate the voltage stability

margin after a contingency. Applying the ANN approach for various contingencies is

covered in this chapter. Moreover, the plan of generation rescheduling as a preventive

action to enhance voltage stability margin is also presented.

In Chapter 5, the ANN based algorithm is applied to predict short-term voltage sta-

bility under large disturbances. The main difference is that the ANN approach is

combined with a commercial time-domain simulation program to calculate transient

voltage dip which serves as the short-term voltage stability index under large distur-

bances.

If the system is facing the risk of voltage instability or voltage collapse, some cor-

rective actions must be carried out. Load shedding as a effective corrective action

needs to be developed in order to avoid risks of voltage instability. In Chapter 6, two
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simulation based approaches are proposed for load shedding to prevent voltage insta-

bility or collapse. The proposed approaches seek an optimization solution to make a

decision about where the most effective locations are for load shedding and how much

the minimal amount of loads is to be shed for those selected shedding locations. This

proposed algorithms are based on time domain simulation, with the dynamic devices

including voltage-dependant loads properly modelled.

Chapter 7 concludes the work carried out, main contributions, and suggestions for

future research in the area of power systems security assessment and control.

References used for conducting the research together with related literature are listed

under the Bibliography. The test systems data and some details of mathematical

derivation are presented in the Appendices.



Chapter 2

Small-disturbance Voltage Stability

Small-disturbance, or steady-state (static), voltage stability is concerned with the abil-

ity of a power system to maintain acceptable voltage following small perturbations,

such as gradual changes in load and generation. This chapter will start by reviewing

basic concepts of steady-state voltage stability in a simple radial system. Then, the

concept is extended to an interconnected power system. Continuation Power Flow

(CPF) is developed for the steady-state voltage stability solution of a network with

various static models of system components. The algorithm, procedures, and results

of the CPF program are presented in detail.

2.1 Basic Concepts in Power Flow

Power flow calculation is required for the analysis of steady state as well as dynamic

performance of power systems [10]. Such calculations involve voltage magnitude V ,

voltage phase angle θ, line active power P , and line reactive power Q, in the power

network for specific terminal operation conditions.

24
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There are three basic types of buses (nodes):

1. Slack bus: Voltage and phase angle are specified, and its angle serves as reference

for the angles of all other bus voltages. A slack bus is usually selected as the

bus with the largest generation capability.

2. Voltage controlled (PV ) bus: Active power and voltage magnitude are specified.

For example, generators, synchronous condensers, and static var compensators

can be set as PV bus.

3. Load (PQ) bus: Active power and reactive power are specified. For example,

all the buses except the PV buses and slack bus can be set this kind.

The network equations in terms of node admittance matrix at bus i can be given in

polar coordinates as below:

Pi = V 2
i Gii + Vi

∑

i6=k

Vk(Gikcosθik + Biksinθik)

Qi = −V 2
i Bii + Vi

∑

i6=k

Vk(Gikcosθik −Biksinθik) (2.1)

Where Yik = Gik + jBik is the ikth element of node admittance matrix Y , Vi(cosθi +

jsinθi) is the complex voltage at Bus i, θik = θi − θk is the voltage angle difference

of the conjoint buses, and Si = Pi + jQi is complex power.

When the Newton Raphson method is applied to solve the set of nonlinear equations

(2.1), we have a linearized model around the given operating point which can be

expressed as equation (2.2).
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Where J is Jacobian matrix which is a linear transformation of space of [∆θ ∆V ]

into space of [∆P ∆Q]. ∆P , ∆Q, ∆V and ∆θ represent incremental changes in bus

active power, reactive power, voltage magnitude and phase angle respectively.

2.2 Voltage Stability in a Simple Radial Network

To indicate voltage collapse phenomena and its corresponding physics mechanism as

well as some basic concepts, a simple radial network needs to be considered. This

radial network shown in Figure 2.1 has a constant voltage source, which represents

a synchronous machine with sufficient exciter support, a transmission line and an

On-load Tap Changing transformer (OLTC) to supply a load.

2.2.1 Relationship of Voltage, Current and Active Power to

Load Impedance

The voltage of the source is Es, the off-normal ratio of the transformer is k, the

impedance of the transmission line is ZL∠θ, load impedance is ZD∠φ. Appendix D

describes the derived equations of current, voltage and transmitted active power to

the load. The relationships, the normalized current I/Is, the normalized receiving

end voltage Vr/Es, and the normalized power supplied to the load Pr/Pr,max as a

function ZL/ZD, are shown in Figure 2.2. The plots in the figure are obtained by

setting tan θ = 10.0, cos φ = 0.95, and k = 0.9, 1.0, 1.1.



27 Chapter 2. Small-disturbance Voltage Stability

+
-

1 : kZL∠θ

ZD∠φ

Pr+jQr

sE&

I&

lV& rV&

Figure 2.1: A simple radial network with transformer
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0.95
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The following voltage stability phenomena and mechanism can be inferred from Figure

2.2:

1. When the load demand increases (effectively ZL/ZD increases) Pr increases

rapidly at first and then slowly before reaching a maximum, and finally de-

creases. This is thus a maximum value of active power that can be transmitted

through an impedance from a constant voltage source. The load voltage de-

creases and current increases with the load demand.

2. The operating points before the maximum value of power transmitted are nor-

mal (stable) operation conditions. In order to meet the increasing load demand

(effectively ZL/ZD increases), voltage source has to provide more power. After

passing the power transmitting peak (Pr,max), it goes into abnormal (unstable)

operation conditions. In this region the increasing load demand only results in

less power transmitted and the voltage tends to decrease to zero.

3. When the load is supplied by a transformer with OLTC, the tap-changer action

may lead to an unexpected voltage control. For a certain load demand, raising

the transformer ratio k has reduced the effective ZD seen from system side

and increased the effective ZL/ZD. This moves the operating point closer to

the power transmitting peak. Once the load demand is higher than the one

corresponding to maximum power, control of power by varying load would be

unstable. If load demand is fixed, the operation point jumps from A to B if

ratio k changes from 0.9 to 1.1 as shown in Figure 2.2. At Pr/Pr,max line where

A (k=0.9) is in stable region; but where B (k=1.1) is passed the peak point and

go into the unstable region. Therefore, though raising k obtains temporarily

higher load voltage it finally leads the system to voltage collapse.
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4. The maximum transmitted power Pr,max can be increased by increasing the

source voltage Es. In a real power system, the source voltage Es is not always

constant. When the limits of excitation system are reached, voltage source Es

drops. A shortage of voltage source limits the power transmitting when load

has high demand; hence, it can cause voltage instability.

5. The maximum transmitted power Pr,max can also be increased by increasing

load power factor (φ decrease). Therefore, the load characteristic has influence

on the maximum transmitted power. If the reactive compensating device is

used at load side that is equivalent to increase receiving end power factor and

thereby helps prevent voltage collapse in many situations.

2.2.2 P − V Curve of a Simple System

A more traditional method of illustrating the voltage stability phenomenon is to plot

the relationship between Vr and Pr (P − V curve). For the simple radial network in

Figure 2.1, the relationship of voltage and active power is expressed in the following

equation (2.3). The detailed derivation can be found in Appendix D.

V 2 =
1

2
−

(
1

tan θ
+ tan φ

)
P ±

√√√√√1

4
−

(
1

tan θ
+ tan φ

)
P −

(

1−
tan φ

tan θ

)2

P 2

(2.3)

Where V is the receiving end voltage, P is the transmitted real power at the receiving

end. θ is the transmission line impedance angle and φ is the load power factor angle.
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Figure 2.3: The Pr − Vr characteristics of the simple radial system

Observing Figure 2.3, there are two equilibrium solutions corresponding to the same

active power at the low loading. One is a high voltage solution and the other is a low

voltage solution. When the loading increases, the two solutions approach each other

and finally become one nose point.

Out of the two solutions, the higher voltage operating point is stable and the lower

voltage operating point is unstable. The power system can only operate on the upper-

half of P−V curve where the system dynamics act to restore the state to the operating

point when it is perturbed. On the other hand, any slight disturbances from the low

voltage operating point on the lower-half of P −V curve result in the operating state

moving away from the operating point towards the origin.
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The nose point of the P − V curve is named as the voltage stability limit.

2.3 Voltage Stability Index

For small-disturbance voltage stability, there are a number of voltage stability indices

that can assess the degree of voltage security and measure the severity of the voltage

stability problem. These indices are used to determine the closeness of an operating

point to the critical point [36]. Some proposed methods of calculating these indices

include singular vector [37, 38], saddle-node bifurcation [39], optimization method

[40] and continuation load flow [35, 31, 41], sensitivity factors [42], second order per-

formance index [43], the energy function method [44], modal analysis [45], voltage

stability L indicator [46], and V −Q curve [47].

Among these indices, the voltage stability margin is a quite straightforward and easily

understood index for the system operators. The operators can know how additional

real power can be safely and reliably transferred across the system, or how much

power can be transferred from one area to another over all transmission lines or paths

between those areas under specified system conditions. In utilities, this concept is

used as an indicator for the operator to know how far the stability limit is from the

current operating point in terms of megawatts [48]. The concept can be described

directly based on the construction of a P −V curve. Similar to the simple radial sys-

tem presented in Section 2.2.2, large interconnected power system has similar P − V

relationship.
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Figure 2.4 illustrates a P − V curve of a load bus. As explained in Section 2.2.2,

the upper part of the P − V curve is stable while the lower part is unstable under

steady state conditions. Consequently, normal operation is restricted to the upper

part of the curve. In Figure 2.4, the point A is an initial operating point. The point

B, which corresponds to the maximum real power delivered (nose point), is defined

as voltage stability limit. The distance between point A and B (in MW) is defined

as the voltage stability margin and serves as a voltage stability index. The voltage

stability index is expressed as below:

Pmargin = Pmax − P0 (2.4)

Voltage Stability Margin

A: Initial operating point

B: Voltage stability limit

PPo Pmax

V

Figure 2.4: P − V curve and voltage stability margin

With respect to the delivered active power (P ) variations, various power flow cases
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are computed to trace the P −V curve. If the conventional power flow model is used

for tracing the P − V curve, the operating point is incremented along the P − V

curve. However, the Jacobian matrix of equation (2.2) becomes singular close to the

voltage stability limit. Therefore, the voltage stability limit cannot be obtained using

conventional power flow programs due to convergence difficulties. The continuation

method is a mathematical path-following methodology used to solve systems of non-

linear equations. The continuation power flow algorithm modifies the conventional

power flow equations (2.2) to overcome the singularity of the Jacobian matrix. Con-

sequently, continuation power flow algorithms are able to obtain the voltage stability

margin when the system is moving toward a stressful condition [10]. This makes

the continuation method quite attractive in approximations of the critical point in a

power system [49].

2.4 Direction of Load and Generation

The general principle behind the continuation power flow is that by introducing a

load parameter into the conventional power flow equations, it is possible to apply a

locally parameterized continuation technique to the power flow problem [31, 35]. The

parameterized power flow equation takes the form given in equation (2.5).

F (V, θ, λ) = 0 (2.5)

where V represents a vector of bus voltage magnitudes, and θ represents a vector of

bus voltage angles. λ represents the parameter of load change.
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The goal of tracing P −V curve is to determine the extent to which the power system

can be loaded before reaching the voltage stability limit. For this problem, we can

increase the load step by step until the limit is reached. The load parameter λ is used

to increase the load.

The change of load with the parameter λ can be described by any one of the following

ways:

1. The real and reactive power of only one PQ load increase while other loads

remain constant.

2. The real and reactive power of PQ loads increase in a particular area while

other loads remain constant.

3. The real and reactive power of PQ loads increase in area A, the real and reactive

power of PQ loads decrease in area B, and the rest of the loads remain constant.

4. The real and reactive power of all PQ loads increase.

When the load is increased, the generation must be increased to meet the increased

demand. This can be done in many different ways. Generation dispatch with the

variation of load parameter λ can respond with one of the following methods.

1. Real power at only the slack bus increases with λ.

2. Real power at selected generator buses increases with λ.

3. Real power generated by all generators increases with λ.

The voltage stability margin depends on how the loads and generation are increased.

Generally, the loads on all nodes in a power system do not increase at the same rate.
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In practice, the load variation is estimated using load forecasting programs. In order

to accommodate the increased load, the power output of the generators also needs to

be increased. This uneven increase in the loading and generation can be modeled by:

Pg = Pg0 + λPgd

Pl = Pl0 + λPld (2.6)

Ql = Ql0 + λQld

Where Pg is a vector of active power generated by the generators excluding the slack

bus, Pl is a vector of active power delivered to the loads, and Ql is a vector of re-

active power delivered to the loads. Pg0, Pl0, and Ql0 represent the corresponding

quantities at the current operating point. The vectors Pgd, Pld, and Qld define the

direction of power change. λ is a parameter that defines the magnitude of loading

along the direction of load/generation increase.

The load forecast can be used to determine the loading direction (Pld) for the active

power P . The reactive power forecasts are generally not available. In the absence of

a reactive power forecast, a constant power factor can be used to obtain the reactive

power direction (Qld). The direction of generator power increase (Pgd) can be ob-

tained from the generation dispatch.
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2.5 Continuation Power Flow

Generally, to get power flow the network equation (2.1) needs to be solved. There are

different types of nodes in a power network. For the PQ nodes, P and Q are specified

(known); and for the PV nodes, P and the magnitude V are specified (known). The

boundary conditions imposed by different types of nodes make the problem non-linear

and therefore power flow equations (2.1) are solved iteratively using techniques such as

the Gauss-Seidel or Newton-Raphson method [10]. The iterations begin with guessed

values of the voltage magnitudes and angles at all load buses, and of the voltage angles

at all generator buses. Conventional power flow algorithms based on Newton-Raphson

or Gauss-Seidel techniques fail to converge when the operating point approaches the

nose point of the P −V curve. Numerically stable algorithms known as Continuation

Power Flow (CPF) technique have been proposed in [31, 35] to overcome this problem.

The basic principle of continuation power flow is to use an iterative predictor-corrector

scheme to trace the operating point on the P − V curve for a specified load increase

pattern [35]. As shown in Figure 2.5, starting at a normal load, the load parameter

λ can be increased by a tangent predictor to estimate an approximate solution. The

correction step then determines the exact solution for a conventional power flow.

2.5.1 Prediction Step

The prediction step plays a key role in determining a possible solution to be used

for the initial value of the power flow computation in the next step. The prediction

step estimates an approximately sized predictor along the tangent direction to the

solution path. The first task in the prediction step is to find out the tangent vector

through a process of differentiation of equation (2.5) to obtain equation (2.7).
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Voltage stability limit


Prediction Step


Correction Step


Figure 2.5: The predictor-corrector scheme of Continuation Power Flow

d[F (V, θ, λ)] = [Fv Fθ Fλ] ·




dV

dθ

dλ




= 0 (2.7)

In observing the above equation, there are n equations with n + 1 variables. Thus

one more equation is needed. This results in equation (2.8).




Fv Fθ Fλ

ek


 ·




dV

dθ

dλ




=




0

±1


 (2.8)

Where ek is a row vector with the only nonzero entry in the kth element which equals

one. If the kth element is positive, the tangent direction is increasing and a ‘+1’

should be used. If the kth element is negative, the tangent direction is decreasing and
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a ‘-1’ should be used.

The predictor can be found by solving equation (2.8) and find the new value for the

next step:




V ∗

θ∗

λ∗




=




V

θ

λ




+ σ ·




dV

dθ

dλ




(2.9)

Here σ is a scale to determine the step size. A constant value of σ is used in this thesis.

2.5.2 Correction Step

Using the predictor as an initial value of power flow, the correction step conducts

computation using the expanded parameterized power flow equations.

let

x =




V

θ

λ




, x ∈ Rn+1 (2.10)

Here, x is a (n + 1)-dimensional vector in the space of real variables (Rn+1).

In the correction step, a set of n + 1 equations is solved, as follows,
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


F (V, θ, λ)

xk − x∗k


 = [0] (2.11)

2.5.3 How to Select k

The index k appears in both prediction step and correction step. Mathematically, it

should correspond to the state variable that has the largest tangent vector component.

So, k is selected as,

xk :

[
ẋk

]
= max{

[
ẋ1, ẋ2, · · · , ˙xn+1

]
} (2.12)

2.5.4 Flowchart of CPF Program

The continuation power flow method adopted in this thesis is a combination of the

repeated power flow and predictor-corrector continuation method. It starts with

conventional power flow program and continues until non-convergence is encountered.

Then, it switches to continuation power flow to trace the P − V curve to the nose

point. A brief summary in the form of a flow chart is shown in Figure 2.6.

2.6 Factors that Impact Voltage Stability

Voltage stability problems normally occur in heavily stressed systems. In addition

to the strength of transmission network and power transfer level, the main factors

contributing to voltage collapse are [10]:

• Generator reactive power capability limits

• Undesired transformer tap changing
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Figure 2.6: The flow chart of Continuation Power Flow
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• Load characteristics

• Characteristics of reactive power compensating devices

The practical power system does not have infinite reactive power sources. Generator

reactive power capability limits have a very significant effect on voltage stability. If

the limitation on generator reactive power is reached, imposed mainly by maximum

excitation limiters, the generator will lose the capability of reactive power control. In

the continuation power flow program, the generator bus turns from PV bus to PQ

bus. Without considering the generator reactive power limit, the results would be

overly optimistic.

On-Load Tap Changers (OLTC) are widely used for voltage regulation in electricity

networks and their tap changing action should be included in continuation power

flow. Following some disturbances, transformer OLTCs try to restore their secondary

voltages. With each tap change operation, the resulting increment in load would

increase the MWs, the MVARs, and the losses, which sometimes causes a significant

voltage reduction at the high voltage side. The process eventually may lead to voltage

collapse. As a result, tap-changing operations should be frozen in some situations to

avoid the voltage instability.

Voltage stability is largely determined by load characteristics. It is necessary to study

load characteristics of different types of load when the system operates at different

voltage levels and especially at low voltage levels.

Voltage instability is essentially a local phenomenon. The starting point of some

power system blackouts is a local shortage of reactive power. Therefore, reactive
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power compensation is often the most effective way to prevent a voltage collapse.

Reactive compensation can include a mixture of shunt/serial capacitor banks, and/or

Static Var Compensation (SVC) and so on.

High-voltage direct-current (HVDC) transmission has advantages over AC transmis-

sion in special situations. HVDC systems have the capability to rapidly control the

transmitted power. Therefore, they have a significant impact on the stability of the

associated AC power systems. An understanding of the characteristics of the HVDC

systems is essential for the study of stability of the power system [10].

In performing comprehensive voltage stability studies, the following components have

been included in the system modelling of the developed continuation power flow

program.

• Generator Reactive Power Capability Limits

• OLTC Tap Transformers

• Static Loads

• Reactive Compensation Devices

• HVDC converters

2.7 Case Study

2.7.1 Validation of CPF Program

A commercial power flow program PSAT was used to validate the accuracy of the

CPF program which is written in MATLAB. PSAT is one of the components included



43 Chapter 2. Small-disturbance Voltage Stability

in the Dynamic Security Assessment Software DSAToolsTM [50], a toolset for power

system planning and operational studies, designed by Powertech Lab Inc. PSAT is a

fully featured yet conventional power flow program.

A 12-bus system [51] was used for comparison and its network and data are given

in Appendix A. PSAT was run repeatedly by increasing all the load in steps of 1%

(λ = 0.01). The discrete points were obtained along the P − V curve after several

computations by PSAT. When the load increased by 13% of the initial load (i.e. λ

was equal to 0.13), the power flow could not converge and computation stops. In

Figure 2.7, the star mark points are the results of PSAT.

Therefore, when the power flow of PSAT is getting close to the nose point, it is di-

vergent. The comparison between PSAT and CPF can only be done up to this point

of the power flow. The results obtained with both CPF and PSAT are presented in

Figure 2.7. The results show that the developed CPF program has identical points

to PSAT. Moreover, the CPF program enlarges the region of convergence leading to

the nose point of the P − V curve.

2.7.2 Generator Reactive Power Capability Limit

The developed continuation power flow program was applied on the New England

39-bus system to find the solution path along the P − V curve for a specified direc-

tion of load increase. The detailed data of the 39-bus system are given in Appendix

B. This case study was used to compute the voltage stability margin of a base case.

It was assumed that a uniform percentage load increase for all the loads and all the
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generators increase their real power output by the same percentage. Further, the

computation took into account the generator reactive power limits. Figure 2.8 shows

P − V curves for some selected buses.

In Figure 2.8, the curves labeled ’Bus 37’ and labeled ’Bus 30’ are generator buses.

At the beginning of load increase period, the generator buses maintain constant volt-

age at their reference setting level. When the load increases by 50% (λ = 0.5), the

generator ’Bus 37’ reaches its reactive power limit. After this point, its voltage de-

creases and does not keep constant as before. Soon, another generator labeled ’Bus

30’ reaches its reactive power limit at λ = 0.65. Then the voltages of all buses drop

rapidly and lead to eventual voltage collapse. At initial operating point (λ = 0),

the base load is 6472.5MW. At the critical point, (λ = 0.68), the maximum load is

10873.8MW. Therefore, for this initial operating point, the voltage stability margin

is 4401.3MW, with regard to the considered direction of load increase.
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Chapter 3

Predicting Voltage Stability

Margin Using ANN

This chapter combines ANN with the continuation power flow program in small-

disturbance voltage stability analysis to predict voltage stability margin. It has been

found that the bus voltage magnitudes and phase angles, which could be obtained

through the synchronized Phasor Measurement Units (PMUs), are the most appro-

priate input features to train a neural network. Two methods, comparison tests and

analytical method, are used to verify that voltage magnitudes and phase angles are

good inputs of ANN. Some additional aspects of ANN computation, such as sample

data size, overfitting or underfitting, computation speed, and accuracy measure are

discussed. The proposed approach is also tested for a power system of practical size.

47
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3.1 Framework of ANN Strategy

Continuation power flow can successfully compute voltage stability margin. How-

ever, the approach is limited by computation time which is significant for on-line

computation. The heavy and time-consuming computational workload is the main

disadvantage of the continuation power flow and makes it unsuitable for on-line usage

[52]. This calls up the computational intelligence technology which has attracted the

attention of researchers in a wide range of disciplines including computer science, en-

gineering, medicine, and business. Computational intelligence has the ability to learn

from the situations previously seen and apply this knowledge to unseen situations

rapidly. The Artificial Neural Network (ANN) is one of the most commonly applied

computation intelligence techniques.

In order for an ANN to imitate the function of continuation power flow, it is essential

to understand the process of how continuation power flow computes voltage stability

margin. The procedure involved in the determination of voltage stability margin is

shown in Figure 3.1.

The solution of the conventional power flow gives voltage magnitude V0, voltage angle

θ0, real power P0, and reactive power Q0, at the initial operating point for all nodes

in the network. In an on-line application, the above quantities are available from

the measurements. The continuation power flow program, starting from an initial

operating point, traces the P − V curve to the nose point. The corresponding nose

point is specified by Vcrit, θcrit, and λ. After that, the network equations calculate

the power Pmax and Qmax. Then the voltage stability margin is computed using (2.4).
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Figure 3.1: Process of computing voltage stability margin

When applying the ANN approach to estimate the voltage stability margin, ANN

replaces the computations shown in the shaded area in Figure 3.1 after having been

trained. An ANN can learn the mapping between the input quantities (V0, θ0,P0, and

Q0) and the output (voltage stability margin) from numerous sample mapping data

generated offline by the CPF program.

For a system with n buses, (2.1) can be expressed in vector format. Furthermore,

using the subscript 0 to denote the initial condition, equation (2.1) is expressed in
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vector format:

P0 = f(V0, θ0)

Q0 = g(V0, θ0) (3.1)

Equation (3.1) shows that once any two variables are known, the other two variables

can be obtained. Thus any two variables of V0, θ0, P0, and Q0 are sufficient to define

the operating point. This suggests that all four variables (V0, θ0, P0, and Q0) are

not required as inputs to the ANN. Since it is desirable to minimize the number of

inputs to ANN, the set of input variables that have the strongest relationship with the

output should be selected. Generally, the heuristic understanding of the problem is

used to select the best inputs. In the absence of such a priori knowledge, a systematic

study need to be done to select the best combination of input features.

3.2 Design of ANN

3.2.1 Multilayer Perceptron Network

Among the numerous artificial neural networks which have been proposed, the most

widely used type of neural network is the Multilayer Perceptron (MLP) Networks,

also known as the multilayer feed-forward network [53]. A feed-forward neural net-

work provides a general framework for representing non-linear functional mappings

between a set of input variables and a set of output variables. This is achieved by

representing the non-linear function of many variables in terms of compositions of

non-linear functions of a single variable, called activation functions [54].
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The architecture of a feed-forward neural network is shown in Figure 3.2. The ANN

consists of successive layers including an input layer, hidden layers and an output

layer of neurons. A circle represents a neuron. The line between two neurons repre-

sents the weight relationships. The connections only run from every neuron in one

layer to every neuron in the next layer, but with no other connections permitted.

The activation function is applied on each neuron of hidden layers. In this thesis the

activation function used is the Sigmoidal function which is shown in equation (E.3)

in Appendix E. The output layer is compared to a target and the derivatives of the

error is applied in a backpropagation process to adjust the weights [54].

Input Layer Hidden 
Layers

X1
X2
.
.
.
.

Xd-1
Xd

Output Layer

Target YForecast Y

+
error

Backpropagation 

+-

Weight
Adjustment

Figure 3.2: Multilayer Perceptron (MLP) Network structure and learning process

3.2.2 ANN Training Scheme

Figure 3.3 illustrates the complete process of designing an ANN based voltage stability

margin estimator. The three main steps of training the ANN are as follows:
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1. A large number of cases with different load/generation levels is randomly cre-

ated. The random cases are gathered through a conventional power flow pro-

gram to ensure that only the acceptable cases pass into the next step. This

process is used to generate sufficient training patterns for ANN training algo-

rithm.

2. A CPF program is used to generate the voltage stability margin which serves

as a voltage stability index for each input data. This is the target output of the

ANN to be trained.

3. The input features and output index are fed into the ANN training algorithm.

During the testing process, the trained ANN can be used to predict the voltage

stability index for cases unseen by the ANN.

3.2.3 Preparation of Training Data

In order to generate random operating points under normal operation of the power

system, random disturbances were added to the base case active and reactive power

of the loads and generators. Furthermore, small random disturbances were added to

the base case generator voltages magnitudes. The following model is used to generate

these random input data for the power flow [55]:

• For Load Buses

P i
L(k) = P i

L0

(
1 + 2∆PL

[
0.5− εi

PL(k)

] )
(3.2)

Qi
L(k) = Qi

L0

(
1 + 2∆QL

[
0.5− εi

QL(k)

] )
(3.3)
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Figure 3.3: ANN training process flow chart

• For Generator Buses

P i
G(k) = P i

G0

(
1 + 2∆PG

[
0.5− εi

PG(k)

] )
(3.4)

V i
G(k) = V i

G0

(
1 + 2∆V G

[
0.5− εi

V G(k)

] )
(3.5)

Where, P i
L(k), Qi

L(k), P i
G(k), and V i

G(k) are the load active power, load reactive

power, generator active power, and the generator voltage magnitude setting at the

ith bus for the kth randomly generated case. P i
L0, Qi

L0, P i
G0 and V i

G0 are the base case
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values of the corresponding variables. ∆PL, ∆QL, ∆PG, and ∆V G are the maximum

fractional perturbation of the load active power, load reactive power, generator active

power and the generator voltage magnitude respectively. In this study, ∆PL, ∆QL,

and ∆PG, were set to ±30%, and ∆V G of all generator and load buses was set to ±
3%. ε is a uniform independent random variables between 0 and 1.

If the expected variation of load on a particular bus is over 30%, the random distur-

bance range can be adjusted to accommodate that. In this thesis, we consider ± 30%

range of load variation to train the ANN. If the load variation in a 24 hours period

is within this range, a single ANN is sufficient to cover the 24 hour period. If the

variation is higher, say ± 60%, then two or three ANNs would be needed for different

times of the day, depending on the load forecast.

The randomly generated sets of initial operating points using the above model should

be verified by a power flow program to make sure that each of the cases has a fea-

sible power flow solution. The cases that passed through this screening process are

stored and used as input vectors for training the ANN. Target outputs of the ANN,

the voltage stability margin values corresponding to each case, were generated using

the CPF program. Starting from an initial operating point, the CPF program traces

P − V curve along a specified load direction up to the voltage collapse point, and

calculates the margin. After training an ANN, the trained ANN has the capability

to predict the voltage stability margin even when it encounters an unseen operating

point.
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3.2.4 Performance Measures

Two performance measures are used in this thesis to evaluate the performance of the

testing data, Mean Absolute Error (MAE) in (3.6) and Maximum Error in (3.7):

MeanError% =
1

M

M∑
i=1

|yi − y0|
y0

∗ 100% (3.6)

MaxError% =
max|yi − y0|

y0

∗ 100% (3.7)

Here, y0 is the target voltage stability margin obtained from the CPF program and yi

is the voltage stability margin estimated by the ANN. M is the number of unseen cases.

3.3 Selection of Input Features

Generally, ANN works as a black box model that relates inputs X and outputs Y ,

which represents a mathematical relationship, f : X → Y . It is crucial that we

use key physical parameters X contributing to the output Y in ANN models. Some

different sets of input variables to the ANN based on a heuristic understanding and

knowledge of the voltage stability problem are tested.



56 Chapter 3. Predicting Voltage Stability Margin Using ANN

3.3.1 Comparison of Four Sets of Input Features

The input vector X of ANN is composed of the variables that represent a base operat-

ing point. The voltage stability margin can be expressed as a function of any two (or

more) variables of V , θ, P , and Q that define a system operating point. The selection

of representative input features is important for the success of ANN application. In

[56], real and reactive power injections at all load buses are used as the inputs to

ANN. In [57], an input vector is formed by real power, reactive power and voltage

magnitude at generator and load buses. In [58], voltages, characteristic impedances of

load PQ buses and the total reactive power consumption are used as input variables.

The ANN input vector in [59] is formed by voltage magnitudes, active/reactive load

and generation, reactive reserve and OLTCs tap positions. The energy method for

voltage security assessment and P , Q, and Vg was adopted as input variables in [60].

[61] used generator terminal voltages, real/reactive power of the generators, reactive

power reserve of the generators and real/reactive power of the loads. However, none

of these methods consider phase angles as input variables. Phase angles are generally

thought of as less related to voltage stability.

In order to identify the best combination of inputs to the ANN, four different input

data combinations were tried out. These include

1. Voltage magnitudes

2. Net active and reactive power injections

3. Voltage magnitudes and reactive power

4. Voltage magnitudes and phase angles



57 Chapter 3. Predicting Voltage Stability Margin Using ANN

The fourth set of input features includes voltage phase angles, which is generally not

considered as an important parameter in the voltage stability research reported ear-

lier. It will be shown later; however, that the voltage phase angle is an important

feature. For on-line applications, the phase angles can be obtained through Phasor

Measurement Units (PMUs).

In order to train the ANNs, 3000 random operating points were generated using the

model described in Section 3.2.3 and verified by a power flow program. Another 100

cases were created and verified through the same method to be used as the testing

data to validate the performance of the trained ANN .

Figure 3.4 compares the accuracy of the estimated voltage stability margin (P Mar-

gin) by the ANNs trained with different input data combinations. The graphs plot

the ‘Target P margin’ against the ‘Forecasted P margin’ by the ANN, for the 100

unseen test cases. If the target P margin completely matches with the forecasted P

margin, all points should lie on the diagonal line. Table 3.1 lists the Maximum Error

% and Mean Absolute Error % for the 100 unseen test cases.

Table 3.1: ANN performance with different input feature sets
Feature Set 1 2 3 4

Max Error % 4.8370 3.3119 1.5177 0.6566
Mean Error % 1.1068 0.6400 0.3416 0.1205

Figure 3.4 and Table 3.1 show that the ANN that uses Feature Set 4, which includes

voltage magnitudes and phase angles of all buses, performs the best. This result

indicates that voltage magnitudes and angles are the most appropriate features for

ANN model. It is because phase angle is a good predictor of power flow and voltage
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Figure 3.4: The estimation of voltage stability margin with different input feature
sets for ANN
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is a good predictor of proximity to voltage collapse. Therefore, the ANN used for

predicting the voltage stability margin represents the following nonlinear relationship:




V0

θ0


 → Pmargin

3.3.2 Discussion of the Suitability of V and θ

Although the test results of four sets of input features have shown that voltage mag-

nitudes and phase angles are the most appropriate inputs of ANN to predict voltage

stability margin, it is important to analyze this further to ascertain the reason.

From equation (2.1), we know that there are four quantities associated with power

flow formulation: active power P , reactive power Q, voltage magnitude V , and volt-

age angle θ. Once either two variables are known, the other two variables can be

obtained by solving equation (2.1). Any two variables of V , θ, P , and Q are sufficient

to define the operating point and are necessary to be inputs of ANN.

There are six different ways to solve two quantities by knowing the other two quan-

tities as shown in Table 3.2. If voltage magnitude V and voltage angle θ are known,

active power P and reactive power Q can be directly computed by equation (2.1),

which is one-to-one mapping. If active power P and reactive power Q are known,

magnitude V and voltage angle θ can only be obtained by solving nonlinear equations

using iterative methods. As equation (2.1) is a quadratic equation of V , there exist

two real roots if the equation has real solutions. So, there are two V solutions for

the same P and Q, but only one is a feasible solution. That is to say, obtaining V
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and θ from known P and Q is one-to-many mapping. In addition, equation (2.1) has

trigonometric function of θ, the solution of which is not straightforward.

Table 3.2: Methods of solving two quantities by knowing the other two quantities
Known quantities Unknown quantities Solving Method

V and θ P and Q directly calculation by equation (2.1)
P and Q V and θ iterative method
P and θ V and Q 2nd order nonlinear equations
P and V Q and θ trigonometric nonlinear equations
Q and V P and θ trigonometric nonlinear equations
Q and θ P and V 2nd order nonlinear equations

The above description shows that variables V and θ uniquely define the operating

point so that they govern the voltage stability margin of a power system. Therefore,

V and θ are chosen as input features to the ANN.

3.4 Discussion of ANN Training

The designing and optimizing process of a neural network could be very complex. As

it is not the main focus of this research it will be given limited discussion. However,

some major concerns in designing and building an efficient neural network model are

discussed here.

3.4.1 Normalization

The input variables of an ANN are often of different types with different orders of

magnitude, such as voltage magnitude (p.u.) and voltage angle (degree/radian). This

is similar to the outputs such as voltage stability margin. It is necessary to normalize
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the inputs and outputs based on their different data ranges so that they always fall

within a specified range. For example, setting minimum -1 and the maximum +1 so

that all the data fall within the interval [-1, 1]. Assuming the continuous interval of

original variables is [a, b], the data is transformed to [-1,1] by the one to one mapping:

x∗ =
2(x− a)

(b− a)
− 1 (3.8)

After training and testing, the neural networks convert the outcome back into the

same units that are used for the original variables.

3.4.2 Overfitting or Underfitting

One purpose of ANN training is to exhibit good generalization, that is, to make

good predictions for new inputs that are not seen in the training phase. This high-

lights the need to optimize the complexity of the ANN model in order to achieve the

best generalization [54]. The complexity can be varied by changing the number of

hidden neurons and layers in the network. Selecting too few hidden units may re-

sult in underfitting and selecting too many hidden units may result in overfitting [62].

In order to select an optimum ANN model, five models having different numbers of

hidden neurons or layers are compared. For example, 77-3-1 means 77 elements in the

input layer, 3 neurons having sigmoidal activation functions in one hidden layer, and

an output layer with 1 neuron [63]. The rest may be deduced by the same analogy.

Five types of multilayer feed-forward networks are implemented for 39-bus system,
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namely 77-3-1, 77-5-1, 77-10-1, 77-2-2-1, 77-3-3-1. Each model includes the same

input layer and output layer but different hidden layers.

Table 3.3: Various neural network models
77-3-1 77-5-1 77-10-1 77-2-2-1 77-3-3-1

3000 Training MSE 0.0164 0.0130 0.0060 0.1786 0.0471
Data Time (s) 51.5345 73.4790 107.1339 37.0557 42.5802

Max Error % 0.4826 0.7633 0.3004 2.1846 1.1258
100 Testing Mean Error % 0.1269 0.1079 0.0749 0.3809 0.1953

Data Time (s) 0.2312 0.3532 0.4808 0.2423 0.3229

Table 3.3 shows the performance for the 5 configurations of ANN models. It is ob-

served that the more neurons there are in one hidden layer, the better the performance

it achieves. For example, the model with five neurons in the hidden layer has bet-

ter performance than the one with three neurons. The model with ten neurons in a

hidden layer has better performance than the one with three or five neurons. On the

other hand, once the networks have more hidden layers and turn to more complexity,

poor generalization capability happens. For the studied 39-bus system, a model with

two hidden layers does not perform well on the unseen data set due to the fact that

the system is overfitting. In the 39-bus study system, 77-10-1 results in the best

performance but its training time costs twice the time of 77-3-1 and 50% times more

than 77-5-1. When the ANN method is applied into a power systems of practical size,

it is necessary to balance between the performance and time in order to choose the

proper model for practical usage.
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3.4.3 Sampling Data Size

A common question in neural networks is “How much sample data do I need to train

the network?”. There are no simple rules to answer this question. It does definitely

need sufficiently large and representative data for the neural network to learn. How-

ever, the sampling data size is dependent on many factors related to the problem

being investigated such as feature selection and the neural network model.

Table 3.4: Sample size affect performance
Number Training Data Testing Data

of Samples Time (s) MSE Max Error % Mean Error %

500 41.7825 0.0707 1.0792 0.2011
1000 44.0347 0.029 0.5734 0.1493
1500 47.4860 0.0241 0.5480 0.1448
2000 49.0616 0.0227 0.6499 0.1390
2500 50.0683 0.0173 0.4946 0.1276
3000 51.5345 0.0164 0.4826 0.1269
3500 59.0836 0.0189 0.5041 0.1303
4000 143.7961 0.0186 0.5012 0.1302
4500 219.0792 0.0187 0.5039 0.1310
5000 390.8599 0.0227 0.4195 0.1408
5500 429.1512 0.0233 0.4408 0.1424
6000 469.3999 0.0234 0.4433 0.1427
6500 507.5562 0.0224 0.4200 0.1420
7000 549.0818 0.0232 0.4712 0.1423
7500 584.6677 0.0233 0.5016 0.1422
8000 620.0798 0.0232 0.4803 0.1424
8500 656.5283 0.0228 0.4526 0.1422
9000 697.0825 0.0227 0.4240 0.1422
9500 730.8148 0.0186 0.5328 0.1301
10000 762.3145 0.0183 0.5274 0.1293

Assuming the feature selection and the neural network’s algorithm and/or architec-

ture are specified, different amounts of sample data are used to train the ANN and

then tested on 100 unseen cases. The amounts of sample data was chosen from 500
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to 10000 input vectors. The result is shown in Table 3.4. Only the training perfor-

mance MSE is plotted in Figure 3.5 as the other performance measures are similar.

From Figure 3.5 one can conclude that 3000 sampling data is enough for this neural

network’s training.
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Figure 3.5: Training performance MSE for various sampling size

3.4.4 PMU Measurement Error

Voltage magnitudes and phase angles, which are found to be the best predictors of the

voltage stability margin, are obtained by PMU measurements. Although the PMUs

are precision level measurement units, there is a possibility that the signal processing

may introduce some errors in the phasor calculations. According to IEEE Standard

for Synchrophasors for Power Systems 2005 [64], the Total Vector Error (TVE) is

an important criteria that must be <1% under steady state conditions. The TVE is
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the “vector” difference between the exact applied signal and the measuring one. For

example, an exact input is defined precisely by its phasor representation, x = xr +jxi;

and its measuring representation is x∗ = x∗r + jx∗i . The expression of TVE can be

represented as [64]:

TV E =

√
(x∗r − xr)2 + (x∗i − xi)2

x2
r + x2

i

(3.9)

This PMU measurement induces voltage magnitude error ∆V i and phase angle error

∆θi into real values. Errors in magnitude ∆V i directly correlate to TVE and 1%

magnitude error without angle difference is 1% TVE. If the vectors have identical

unit magnitude then 0.57 degrees phase angle error is 1% TVE. The values of ∆V i

and ∆θi were randomly selected such that TVE ≤ 1%. The new inputs x∗i with

measurement error can be represented as equation (3.10) and are fed into the ANN.

V ∗
i = Vi(1 + ∆V i)

θ∗i = θi + ∆θi (3.10)

Table 3.5 depicts the Maximum Error % and Mean Error % for the unseen cases.

The results show that the ANN is still able to accurately estimate voltage stability

margins in the presence of PMU errors.

Table 3.5: Impact of PMU measurement error to voltage stability margin estimation
No measurement error With measurement error

Max Error % 0.6566 1.1222
Mean Error % 0.1205 0.2559
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3.5 A Case Study for a Large System

The proposed ANN based approach for voltage stability margin estimation is also

applied to the Alberta Interconnected Electric System which was acquired from the

Alberta Electric System Operator (AESO) website. The system consists of 1844 buses

of which 746 are load buses and 302 are generator buses. The base load capacity is

7151 MW and generation is 7529 MW. The initial operating points are computed by

PSAT [50], a commercial power flow analysis tool within Powertech’s DSAToolsTM

suite. The voltage stability margin is computed by the voltage security assessment

tool VSAT [30], which is also a key part of Powertech’s DSAToolsTM suite.

The random disturbance range uses the same pattern as described in Section 3.2.3

where the range of active and reactive power of load/generation are set to ±30% and

the range of generator voltage is set to ±3%. Among a number of random operat-

ing points generated by the pattern, 3000 initial operating points pass verification

of feasibility by PSAT. These verified 3000 cases are selected to perform the voltage

stability analysis in VSAT. In VSAT, the direction of the load increase is to scale all

the load of the whole system together to voltage stability margin. At the same time,

the generation of the whole system is dispatched to satisfy the increased load demand.

The credible operating points and their corresponding voltage stability margins of the

3000 cases need to be fed into an ANN as inputs and outputs for training the ANN.

The Alberta system has 1844 buses or 3688 voltage magnitudes and phase angles

that could be used as input features for the ANN. We selected only the buses whose

voltage levels are equal or higher than 138KV as input features. In total, 723 buses

are selected. Hence, 1446 (723x2=1446) voltage magnitudes and phase angles are
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used as inputs in the ANN. One hundred test cases generated by the same method

as the training cases are applied after training the ANN. The results of the voltage

stability margin estimation performance are shown in Figure 3.6.
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Figure 3.6: Voltage stability margin estimation for Alberta system

The mean error of the unseen cases for the AESO system is 5%, and is larger than

that for the 39-bus system (mean error <1%). The result shows that the ANN based

approach is feasible to be applied for a practical and large size power system. How-

ever, the accuracy of estimation for the practical system still needs to be improved.

There are three main reasons for the increased error. First, we have not tried to

optimize the ANN for the practical system. The same structure of ANN used for the

39-bus system is used for AESO system. A possible way to improve the accuracy is

to optimize the structure of the ANN. Second, the practical power system requires

a large number of inputs to properly represent them in voltage stability margin es-
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timation. We used only 723 buses out of 1844 buses as inputs for training an ANN,

which may account for the increase in the mean error. Third, the larger the system

is, the larger the size of training set that is required. For comparison, the practical

system uses the same size of training set (3000 cases) as the 39-bus system. If new

cases are added to the training set, the accuracy would be improved.

3.5.1 Computational Speed

An artificial neural network is a learning system in which the network is trained by

providing it with information of a specific system. Usually this training step requires

significantly higher processing time than what is needed to assess the system using a

single simulation.

The training time of both the 39-bus system and the Alberta system is recorded

in Table 3.6. For both systems, 3000 training sample data is employed for training

ANNs. All the computations are executed using a desktop PC, Intel Pentium Dual

CPU E2200 @ 2.20GHz. Table 3.6 shows that the practical system requires more

training and testing time than 39-bus system as the practical system has many more

inputs.

Table 3.6: ANN training CPU time
New England 39-bus System Alberta 1844-bus System

Training CPU Time (s) 146 4082

There is always a concern when applying ANN method into a practical system. The

major advantage of applying computational intelligence technique to replace the con-
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ventional analytical algorithms for voltage stability analysis is its feasibility of real-

time operation. ANN is able to sufficiently abstract what it learns in training and

extend this to produce reasonable outputs for those inputs not encountered during

training. Once trained, an ANN can predict the stability margin for a given set of

inputs very quickly as the calculations in the ANN do not involve any iteration as

in the case of using analytical methods. Therefore, practical utilization of the neural

network model should consider the computational speed after training.

The comparison of the computational speed of the analytical methods (continuation

power flow) and computational intelligence (ANN) has been studied as shown in Table

3.7. This Table demonstrates that using neural networks to estimate voltage stability

margin is much faster than the continuation power flow method. To predict margin

for a certain operating point, the computation time of neural networks is only 1%

of that required by the continuation power flow program. For the practical Alberta

system, the computation time of neural networks is 2.75% of that required by the

analytical method.

Table 3.7: Comparison of the computation time cost by CPF vs. trained ANN
Analytical Method Trained ANN
39-bus 1844-bus 39-bus 1844-bus

CPU Time (s) 3.53 4.0 0.04 0.11



Chapter 4

Further Applications of ANN

In this chapter, the applications of the ANN approach are further explored. First,

an ANN based approach to determine the best locations for PMUs is presented. Sec-

ond, the ANN approach is used to predict post-contingency voltage stability margin.

Finally, the preventive control for power system operating in alert state where the

voltage stability margin is not sufficient is investigated. In this application, the sen-

sitivity of the ANN approach is employed to reschedule generation for improving the

voltage stability margin.

4.1 Optimal Placement of PMUs

Real-time measurement of voltage magnitudes and phase angles requires the use of

PMUs and telecommunication infrastructure to support the data acquisition. The

gathered voltage magnitudes and phase angles from the monitoring system are the

inputs of the ANN for predicting the on-line voltage stability. If the ANN approach

requires voltage magnitudes and phase angles of all the buses over the power system,

71
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PMUs have to be installed on every bus. For example, the 39-bus system has 77

original input variables. It requires PMUs to be placed on every bus of the system to

obtain the 77 input features. However, installation of PMUs at all buses in a power

system is not economically justifiable. When only a limited number of PMUs are

used, it is important to locate them at most effective positions in the network.

4.1.1 Optimal PMU Location Algorithm

Selection of PMU locations can be viewed as the selection of a reduced set of input

features of the ANN while the prediction performance is not significantly degraded.

In selecting a subset of d features from a set of n total features, the only search

strategy that guarantees the optimum selection is an exhaustive search that tries all

possible combinations of variables. The number of possible combinations is given by

Cd
n =

n!

d!(n− d)!
. For example, if we want to select 5 PMU locations in the 39-bus

system, we need to try C5
39 =

39!

5!(39− 5)!
= 575757 combinations. Any real power

system is much larger than the 39-bus system and therefore, such an exhaustive

search is unrealistic. As a solution we propose to use less cumbersome “sequential

forward/backward selection (SFS/SBS)” algorithm [53] to determine the optimal in-

put feature set. The sequential forward selection (SFS) is used more often due to the

lower number of calculations involved.

SFS algorithm selects a best feature based on the quality criterion function from a

pool of candidate variables at the beginning of search. The best one is stored for

next selection. SFS obtains a chain of nested subsets of features by adding the locally
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Figure 4.1: The flow chart of Sequential Forward Selection (SFS)

best feature in the set [65]. The algorithm is shown in Figure 4.1 with a total of 10

features as a sample but it can be extended to any number of features.

In sequential forward selection (SFS) algorithm, an ANN with only one input is

considered at the beginning. An input feature from a pool of candidate features is

selected and the trained ANN is evaluated using a “quality criterion function”. The

feature that gives the best value for the quality criterion function is retained for the

next round of selection where the combinations of two input features are tried. The

SFS algorithm obtains a chain of nested subsets of features by adding the locally best

feature in the set.
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When the required number of features d is known, the total number of searches re-

quired in selecting d features from a set of n is n+(n−1)+(n−2)+...+(n−d+1). Thus

for selecting 5 PMU locations from 39 possibilities, it needs 39+38+37+36+35 = 185

searches to find the optimal combinations of features. In comparison to 575757 eval-

uations required in exhaustive search, SFS requires only 185 evaluations. The quality

criterion function used in this thesis was the “minimum of the maximum error in pre-

dicting voltage stability margin for 100 test cases”. The SFS algorithm is suboptimal,

as the optimal feature subset that provides the best performance needs not contain

the single best feature obtained earlier [66]. Although the selected combination of

features may not be the global optimum, the SFS algorithm always selects a set of

good input features.

4.1.2 Margin Estimation with Five PMUs

In the example presented here, it was assumed that only five PMUs are allowed in the

39-bus system. Application of the SFS algorithm described above resulted in the se-

lection of buses 5, 10, 11, 30, and 35 as the optimal locations for installation of PMUs.

Limiting of the number of PMUs reduced the number of inputs to the ANN from 77

to 10 (five voltage magnitudes and five phase angles). The performance of estimating

the voltage stability margin with a reduced set of input features is shown in Figure 4.2.

The difference of P margin between neural network output and target values is shown

in Figure 4.2. Compared to Figure 3.4 (d) which used 77 features, the performance

is reduced. Hence, a trade-off between costs and accuracy has to be made.
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Figure 4.2: Voltage stability margin estimation with optimally located five PMUs

4.1.3 Comparison of Different Approaches of Locating PMUs

Several other approaches to place the PMUs in the power system were also tested.

One approach is to place the PMUs in five buses with the largest load. It is clear that

the heavily loaded buses play an important role in system voltage stability. Another

option is to choose three heavily loaded buses and two buses with largest generation.

The third option is to choose the buses which are corresponding to the larger values

in the singular vector of Jacobian matrix.

Singular value (or eigenvalue) is a well known index to predict proximity to voltage

collapse problems. Its derivative vectors can be used to pinpoint critical buses in the

power system [36]. So the measurements at these locations are likely to carry more
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information on voltage stability. The detailed computation of singular value and sin-

gular vector can be found in Appendix D. In voltage stability assessment, the most

critical singular vector of Jacobian matrix is the one corresponding to the voltage

stability limit on the P −V curve. In power flow computation, when Jacobian matrix

reaches the singular point, both the singular value and its corresponding singular

vector are obtained. Ranking the singular vector is to rank the critical buses. The

top five buses corresponding to the entry in the singular vector were 7, 8, 12, 4, 15.

Therefore five PMUs were located on these five places.

Summarizing the above, four sets of PMU positions are chosen based on the above

mentioned four methods:

• SFS selects PMUs position: Bus 5, 10, 11, 30, 35.

• Five largest load buses (listed from largest to smallest MW): Bus 20, 8, 4, 16,

2 (or 3). Since Bus 2 and Bus 3 had the same amount of load, either was used.

• Three largest load buses: Bus 20, 8, 4; and two largest generator buses: Bus

39, 38.

• Larger value in the singular vector: Bus 7, 8, 12, 4, 15.

The results of the different PMU placement approaches are listed in Table 4.1. These

results show that the optimum locations obtained using SFS result in smaller error

measures compared with those locations obtained using other methods.
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Table 4.1: Comparison of PMUs location methods
MSE Max Error % Mean Error %

SFS
Bus 5, 10, 11, 30, 35 0.6074 3.2726 0.7485

5 Largest Load
Bus 2(/3), 4, 8, 16, 20 2.6624/2.7088 4.8062/4.7278 1.6485/1.7016

Largest 3 load and 2 GEN
Bus 4, 8, 20, 38, 39 2.6689 6.7030 1.6217

Sigular Vector
Bus 7, 8, 12, 4, 15 0.8899 3.7995 0.9135

4.1.4 Number of Measurements

Compared to the results shown in Figure 3.4 (d), which were obtained using the volt-

age magnitudes and phase angles of all buses as inputs, the performance shown in

Figure 4.2 is somewhat less accurate. Since the number of PMUs in the power systems

is limited, is it possible that we use the existing measurement signals along with the

PMU measurements? The following test is carried out to see if the prediction error can

be reduced by adding more PMUs or by adding traditionally available measurements,

such as voltage magnitudes V and reactive power Q. Table 4.2 compares the results of

voltage stability margin estimation for the 39-bus system with different sets of inputs:

1. Five voltage magnitude and angle measurements at the optimal locations,

2. Voltage magnitude and angle measurements at the 5 optimal locations plus

voltage magnitude and reactive power measurements at 5 additional locations,

3. Voltage magnitude and angle measurements at 10 locations which include the

5 optimal locations,

4. Voltage magnitude and angle measurements at all buses.
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Table 4.2: Comparison of P margin estimation with different number of measurements
5PMUs 5PMUs 10PMUs PMUs

+5V+5Q at all buses

No. of features 10 20 20 77
Max Error % 2.2614 1.5906 1.0779 0.6566
Mean Error % 0.6528 0.5816 0.4009 0.1205

Compared to the results of full features with PMUs at all buses, the performance

obtained with only five PMUs is somewhat less accurate. The prediction error can

be reduced by adding more PMUs or by adding traditionally available measurements,

such as voltage magnitudes V and reactive power Q as inputs to the ANN. Two tests

were carried out: (i) with V and Q measurements from buses 3, 4, 9, 13 and 37 in

addition to the five optimal locations mentioned above, and (ii) with PMU measure-

ments at all the locations considered in (i). The prediction errors with the full feature

set and the reduced feature sets are compared in Table 4.2. The results indicate that

a trade-off between the costs and the accuracy needs to be made in deciding the num-

ber of PMUs used. For the locations without PMUs, the traditional signals such as

reactive power can be used to enhance the prediction accuracy. Although the effect

of these conventional signals is not as good as the PMUs, they are better than none.

4.2 Post-Contingency Margin Estimation

The voltage stability margin estimation by ANN approach is not sufficient to help the

operator to determine the system security. Security of power system supposes that

the robustness of the system can be guaranteed in case of credible contingencies. It is

particularly important for the proposed ANN system to be able to estimate the volt-

age stability margin after a system disturbance or contingency [32]. The standard
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procedure in many utilities is to consider N-1 contingencies [67], which means the

normal system minus one element. The system restoration after a contingency often

requires removal of the faulted element, resulting in a new network configuration. Tra-

ditionally, the N-1 contingency analysis has been used for on-line stability assessment.

4.2.1 Approach for Post-Contingency Voltage Stability Mar-

gin Estimation

There are two possible approaches for handling the issue of predicting voltage stability

margin under different network configurations: (i) to train an ANN for each network

configuration, or (ii) to train a single ANN that can estimate the voltage stability

margin under all credible post-contingency network configurations. The second ap-

proach clearly has the advantage of not requiring a knowledge of the exact nature of

the contingency among a set of credible contingencies before estimating the voltage

stability margin. Here, the second approach is used, although training of an ANN

capable of handling all contingencies is challenging.

The procedures for generating the training data of the ANN for post-contingency

voltage stability margin estimation is similar to that described in Chapter 3. However,

instead of using normal operating points as inputs of ANN, the post-contingency

operating points are fed into ANN as inputs. The detailed steps are:

1. For each contingency, random initial operating points are generated using the

same procedure that is used under normal operation.

2. Verify the feasibility of these operating points by running a power flow on the
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post-contingency network.

3. These verified post-contingency operating points are used as inputs to the ANN.

4. The corresponding voltage stability margin values are computed using the CPF

program to be the target outputs for training the ANN.

4.2.2 Case Study

In this case study, the N-1 contingencies considered are the outages of transmission

lines. There are 35 transmission lines in the 39-bus system. Including a healthy

system, there would be 36 different system configurations. For each system configu-

ration, 400 random operating points are generated. This results in a total of 14,400

cases which need to be verified by power flow. If the post-contingency operating

points are obtained, they are fed into the ANN as inputs; the corresponding voltage

stability margins are the outputs. There are 360 cases (10 cases from each configura-

tion) which have been reserved as the testing data. The rest of the data are used for

training an ANN.

Figure 4.3 shows the voltage stability margin estimation performance for the unseen

testing cases. It shows that a single ANN can successfully estimate the voltage stabil-

ity margin under post-contingency situations, if the relevant N-1 contingencies were

considered in generating the training data.
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Figure 4.3: Voltage stability margin estimation under N-1 contingencies

4.3 Generation Rescheduling for Improving Voltage Stability

When the voltage stability margin is dropped below a comfortable level, especially

after some disturbances, some preventive and corrective control actions need to be

taken to mitigate a possible future voltage instability scenario. One possible control

action is the rescheduling of real power of generators. The generation dispatch sched-

ule divides the required generation capacity optimally among the available generators

considering various operating conditions [68]. If an unexpected event drives the sys-

tem close to voltage instability, the original generation dispatch may be modified to

enhance the voltage stability margin. However, it is required to select the best way

to change the generation output so that the voltage stability margin is improved.

The proposed method is to examine the sensitivity of the voltage stability margin to
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shifting of the real power output from one generator to another. Different pairs of

generators can be considered for shifting the power output and rank the pairs accord-

ing to the sensitivity. The sensitivity of the voltage stability margin to shifting of

real power generation can be quickly estimated using the ANN based voltage stabil-

ity margin estimator. Therefore, if the changes in real power output are within the

range of perturbations applied in generating the ANN training database, the already

trained ANN is able to give a good estimate of the voltage stability margin after

shifting the power output of a generator by a small amount. The change in voltage

stability margin due to shifting of 1.0 MW of real power is taken as the sensitivity,

which is used for ranking the control alternatives.

4.3.1 Application Example

In order to illustrate the application of the proposed use of ANN based scheme

for selecting the generation rescheduling to improve the voltage stability, the post-

contingency 39-bus system was used. In the N-1 contingency screen presented in

Figure 4.3, there are several cases which have low voltage stability margins after the

contingency. The worst case, that is the case with the least voltage stability margin,

was selected for this example. It was found that the worst case occurs when one

of the parallel lines between the buses 4 and 5 is removed. Meanwhile the closest

generator to the removed line is G31 and its real power output is high under the base

case generation dispatch.

The control actions considered are therefore shifting 50 MW of real power from Gen-

erator 31 to other generators. The voltage stability margin after shifting 50 MW
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was estimated by using the trained ANN. The results are shown in Table 4.3. The

voltage stability margins estimated by ANN are close to the actual voltage stability

margins (calculated by using CPF). The sensitivities are calculated by dividing the

corresponding changes in voltage stability margins by the amount of power shifted,

in this case by 50 MW.

Table 4.3: Sensitivity of voltage stability margin to generator rescheduling
Generator Margin Margin Sensitivity Sensitivity

Bus by CPF (p.u.) by ANN (p.u.) by CPF by ANN

Base Case 5.0627 4.9408
30 7.9337 7.8612 0.0574 0.0584
32 7.4146 7.0624 0.0470 0.0424
33 7.9081 7.7616 0.0569 0.0564
34 7.9209 7.7458 0.0572 0.0561
35 7.9337 7.7989 0.0574 0.0572
36 7.9209 7.7600 0.0572 0.0564
37 7.8184 7.6779 0.0551 0.0547
38 7.8376 7.7295 0.0555 0.0558
39 7.9581 7.8906 0.0579 0.0590

From Table 4.3, the sensitivity is highest for the case of shifting the real power output

from Generator 31 to Generator 39. Shifting 50 MW of generation would increase

the voltage stability margin by approximately 290 MW. Once the control actions are

ranked according to the sensitivity, other secondary considerations such as cost of

generation can be taken into account when making the final decision on the voltage

stability control action. The important fact to note is that the already trained ANN

is used to quickly determine the impact of control actions on improving the voltage

stability margin.



Chapter 5

An ANN for Assessment of

Large-disturbance Voltage Stability

In the previous chapters, the neural network method has been successfully applied to

small-disturbance voltage stability. Beginning in this chapter, the focus of the research

moves to large-disturbance voltage stability. The ANN based algorithm is applied to

predict a large-disturbance voltage stability index, i.e., transient voltage dip. The ANN

approach is combined with a commercial time-domain simulation program to calculate

transient voltage dip for given contingencies.

5.1 Overview

Large-disturbance voltage stability refers to the ability of a system to maintain steady

voltages following large disturbances such as system faults, loss of generation, or cir-

cuit contingencies [11]. The time frame of interest for this kind of voltage stability is

in the order of several seconds, and analysis requires solutions of appropriate system

84
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differential equations. In some literature, the term transient voltage stability is also

used to define the same situation. [11] recommended the term transient voltage sta-

bility not be used. Hence, large-disturbance voltage stability or short-term voltage

stability are used interchangeably in this thesis.

Determination of large-disturbance voltage stability requires the examination of the

nonlinear response of the power system over a period of time sufficient to capture the

performance and interactions of such devices as motors, underload transformer tap

changers, and generator field-current limiters. Traditionally, the large-disturbance

voltage stability analysis requires the use of time-domain simulation software, such

as Transient Security Assessment Tool (TSAT) [34]. TSAT is a software tool within

Powertechs DSAToolsTM suite which includes a nonlinear time-domain simulation

engine that gives accurate dynamic responses of a power system. When using a sim-

ulation program for short-term voltage stability simulations, appropriate portions of

the loads need to be represented with dynamic load models (i.e., induction motors)

since dynamic modelings of loads are often essential to assessing voltage stability. In

addition, generators, excitation system, governors, and reactive compensation should

be provided with detailed dynamic models as well for dynamic analysis to be per-

formed. After simulation, the transient voltage dip can be obtained as a quantifying

index.

Since a time-domain simulation program is very time consuming, the ANN based

method is employed to be an alternative to simulation because of its advantage of

fast computation speed. The selected simulation data is fed to a designed ANN to

train the neural network and to form a trained ANN. Once trained off-line, ANN can



86 Chapter 5. An ANN for Assessment of Large-disturbance Voltage Stability

effectively predict the dynamic voltage stability index using less computational time.

5.2 Large-disturbance Voltage Stability Index

Different indices are available to quantify the voltage stability of a power system [36].

Most of them are applied for small-disturbance (or named as steady state) voltage

stability as introduced in Chapter 2. A survey [69] on large-disturbance voltage sta-

bility indices currently applied or considered by various utilities, operating regions,

and countries indicated that transient voltage dip/sag criteria following fault clear-

ing is the most common used indicator. This criteria is currently applied by many

utilities/organizations such as the NERC/WECC Planning Standards document [70].

NERC is the North American Electric Reliability Council, and WECC is the Western

Electricity Coordinating Council. This thesis employs transient voltage dip criteria as

a quantifiable index from the NERC-WECC planning standard to assess short-term

voltage stability.

Figure 5.1 illustrates the definition of transient voltage dip that was taken from the

NERC/WECC Planning Standards document [70]. In a large interconnection power

network, voltage dip criteria is more convenient to use than power margin based crite-

ria [69]. The transient voltage dip is defined as the percentage of maximum deviation

of short-term voltage after voltage recovery following fault clearing over initial voltage

of each individual bus. The initial voltage is the pre-fault voltage, labeled “V0” in

Figure 5.1. Different buses of the system have different voltage trajectories so that

their transient voltage dips are also different. Figure 5.1 only demonstrates one bus

voltage. Among all the transient voltage dips of buses, the largest dip represents the
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Figure 5.1: WECC voltage performance parameters

severity of the post-contingency behavior. In this thesis, the largest transient voltage

dip among buses serves as the short-term voltage stability index. This is referred to

as “transient voltage dip” hereafter in this thesis.

According to the definition by the NERC-WECC planning standard, disturbances are

categorized into four performance levels: (A) no contingency, (B) an event resulting

in the loss of a single element, (C) events resulting in the loss of two or more elements,

and (D) an extreme event resulting in two or multiple elements removed or cascading

out of service conditions. The following is an abstract of the standard related to

voltage stability criteria.
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• Category A (No contingency)

Not applicable.

• Category B (Single Contingency)

The maximum transient voltage dip should not exceed 25% at load buses or

30% at non-load buses.

The transient voltage dip should not exceed 20% for more than 20 cycles at

load buses.

• Category C (Double Contingencies)

The maximum transient voltage dip should not exceed 30% at any bus. The

transient voltage dip should not exceed 20% for more than 40 cycles at load

buses.

• Category D (Multiple Contingencies)

No specific voltage dip/sag criteria.

According to the NERC/WECC Planning Standards, Category B and Category C

are applied for quantitatively assessing short-term voltage stability. However, there

is no significant difference for the essential method except that Category B considers

single contingency and Category C considers two or more contingencies occurring

concurrently. Category B type contingency, the only one considered in this research,

is a three phase to ground fault on a transmission line that is cleared after a certain

time period by tripping the faulted line. The time-domain simulation is performed

for each contingency to simulate system behavior during and post fault periods.
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5.3 Data Required for the Simulation

The short-term voltage stability index, which is the transient voltage dip, is evaluated

using the time-domain simulation. The following inputs should be provided to the

simulation program to determine the transient voltage dip:

1. The steady state operating points, those feasible operating points before the

occurrence of a contingency. They are referred to as the initial operating points.

2. The severity of the contingency. The fault location, fault type and fault duration

essentially define the severity of the contingency.

3. The system data. The system data includes transmission line data, generator

data, and other dynamic device data. The results of simulation depends heavily

on the accuracy of the these parameters of the system components.

The transient voltage dip is obtained by examining the voltage trajectories of all the

bus voltages in the power network. It is uniquely determined by the time-domain

solution and therefore determined by the above data.

Generally, power system simulation can be seen as solving a set of differential and

algebraic equations (5.1a, 5.1b). The differential equations (f) describe the dynamic

behavior of the generators and their associated control systems, dynamic loads or any

dynamic devices. The algebraic equations (g) describe the steady state behavior of

the transmission and distribution network and buses.
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ẋ = f(x, y, µ) (5.1a)

0 = g(x, y, µ) (5.1b)

Where, x is an n-vector describing the state variables of the system (generators and

loads), y is a vector of the algebraic variables (voltage/current magnitude and phase

angle) and µ represent the set of control system parameters of interest.

Three types of variables of equations (5.1a, 5.1b), x, y, and µ, are required to define

an operating point of a power system. For dynamic stability analysis of a power

system, initial operating points (y), state variables of system (x), and control pa-

rameters (µ) first need to be determined. Before the occurrence of a contingency,

the time derivative of all the state variables (ẋ) is zero. If the algebraic variables,

including the voltage/current magnitude and phase angle, are known, all the initial

values of state variables and control variables can be determined. If the voltage mag-

nitudes and phase angles of all the buses of the initial operating point in the network

are known, the current of the connected devices can be computed using the nodal

admittance matrix. Hence, the voltage magnitudes and phase angles at initial oper-

ating points uniquely determine the dynamic system behavior at the starting point of

time-domain simulation. In a power system study, we can select a certain number of

credible contingencies for the studied network, hence the contingency is known. For

a power system for analysis, the dynamic data, is known. Therefore, once we have

the information of voltage magnitudes and phase angles at the initial operation point,

the short-term voltage stability index (transient voltage dip) can be determined.
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5.4 Framework of ANN Approach

Figure 5.2 shows the procedures of computation of transient voltage dip by time-

domain simulation. In order to use neural networks to imitate the computation of

transient voltage dip, it is essential to understand the process of time-domain simu-

lation and the program that computes transient voltage dip.

Occasionally, a set of system data may or may not be the system real operating point.

To obtain the real operating point, it needs to be solved by the overall system equa-

tions (5.1a and 5.1b). After a time-domain simulation program successfully solves
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the equations, a balanced steady-state representation of operating point is obtained.

Later, this operating point is subjected to a contingency. The simulation program

determines the system response to this contingency within a period of time. After

simulation, a developed program in Matlab traces the trajectories of all of the bus

voltages to calculate the transient voltage dip for the given contingency.

When applying the ANN approach to determine the transient voltage dip, ANNs

should be able to replace all the computations shown in the block area of Figure

5.2. For each given contingency, a corresponding ANN is designed to work as a black

box model between input and output of the shadowed area. The voltage magnitudes

and phase angles at pre-contingency are adopted as input variables of the ANN. The

transient voltage dip at post-contingency is the output of the ANN.

Artificial neural network can be an alternative to time-domain simulation to predict

transient voltage dip only after being trained. The upper-part of Figure 5.2 illustrates

the procedures of ANN training strategy and generation of the input data. The input

variables are generated in two steps:

1. A number of random load and generation patterns are generated to obtain

operating point around the base operation points. The pattern uses the same

model described in Section 3.2.3.

2. The simulation program TSAT is applied to ensure the random data have ac-

ceptable dynamic simulation at steady state.

For the first step, random operating points are generated using the same procedure

that is used for long-term voltage stability margin estimation. For the second step,
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the verification step is different. A simulation program is applied in short-term volt-

age stability rather than a power flow program in long-term voltage stability. This

is because only verification of feasibility of the power flow data is not sufficient. The

dynamic data needs be included. It is important to perform a sanity check of the

data in time-domain simulation before doing any further studies.

A power flow should be solved before carrying out the dynamic simulation. The

power flow solution is used for the initialization of state variables of generators, ex-

citation system, and governors, as well as all the controlling devices and induction

motor loads. Since the TSAT program has a built-in power flow solver by enabling an

option of “solve base power flow before simulation”, it is applied directly to verify the

feasibility of these randomly generated operating points. Furthermore, all the initial

conditions are checked for violation of the controller limits.

5.5 Modeling for Time Domain Simulations

There is a vast amount of published technical literature dealing with the modeling

of the broad field of system components. Different mathematical representations of

power system components apply to different study problems. In order to study large-

disturbance voltage stability in the short term time frame, the following fast acting,

automatically controlled power system equipment are considered in the simulation:

• Synchronous machine

• Excitation system

• Power system stabilizer (PSS)
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• Prime mover

• Voltage-dependent load

• Induction motor

5.5.1 Synchronous Generator

Synchronous generators are the absolute dominating source in power systems. They

can generate active and reactive power independently and have an important role in

maintaining a good voltage profile across a power system. Therefore, an understand-

ing of their characteristics and accurate modeling of their dynamic performance are

of fundamental importance to the study of power system stability [10].

The theory and mathematical modeling of synchronous machines have been covered

in a number of books. While there are no nationally or internationally sanctioned

standards on the modeling of power system equipment, there are several data file

formats that have become quite widely used and recognized as convenient vehicles

for mechanizing the burdensome task of building up databases for simulations of in-

terconnected systems. The PSS/E [33] dynamics data file format may reasonably be

regarded as one of these widely recognized formats. PSS/E is the premier software

tool used by electrical transmission participants world-wide. Since TSAT accepts

PSS/E format, the generators’ dynamic data are present in PSS/E format.
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5.5.2 Excitation System

The basic function of an excitation system is to provide direct current to the syn-

chronous machine field winding. Therefore, the requirement is that the excitation

system supply and automatically adjust the field current of synchronous generators

to maintain the generator terminal voltage [10].

The primary role of an excitation system is to quickly respond to voltage variations

when disturbances occur in a power system. This control is local by nature since it

involves generator bus only [12]. Furthermore, the reference voltage setpoints V0 can

be adjusted based on large area control needs so that an appropriate voltage profile

can be maintained. Therefore, the appropriate excitation system modeling is impor-

tant in dynamic voltage stability studies. In this thesis, PSS/E excitation system

models are used.

5.5.3 Power System Stabilizer

The power system stabilizer uses auxiliary stabilizing signals to control the excitation

system so as to improve power system dynamic performance. Commonly used input

signals to the power system stabilizer are the shaft speed, terminal frequency, and

power. Power system dynamic performance is improved by the damping of system

oscillations. In this thesis, PSS/E power system stabilizer models are used.
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5.5.4 Prime Mover

The representation of prime movers, including turbines and speed governors, are

sometimes neglected in transient simulation studies. This is based on the assumption

that the time constant of prime mover is larger than the study period of interest. It

is important to note; however, that the time frame in which dynamic voltage insta-

bility occurs is usually in the range of several seconds, so that the prime mover may

take action during the length of simulation. Therefore, the prime movers need to be

represented using detailed models. In this thesis, PSS/E turbine and speed governor

system models are used.

5.5.5 Load Model

Load dynamic response is a key mechanism of power system voltage stability driving

the dynamic evolution of voltages and, in extreme cases, leading to voltage collapse

[71]. There are two broad categories of load models, namely, static and dynamic.

Both static and dynamic load are applied in this thesis.

Voltage Dependent Load

A composite system load can be expressed as exponential load model which reflects

the change of active and reactive power according to the change of voltage. The

following algebra equation can be used to represent the aggregate effect of different

types of load components [12]:
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In this equation (5.2),

P0/Q0 = Normal active/reactive power of load when the bus voltage

magnitude is V0

p1 − p3/q1 − q3 = Proportion of each component active/reactive power

nP1 − nP3/nQ1 − nQ3 = Exponent for active/reactive power.

Note that by setting these exponents of equation (5.2) to 0, 1, or 2, the load can

be represented by constant power, constant current, or constant impedance models,

respectively. This model is sometimes referred to as ZIP load which has been widely

used to represent the voltage dependency of loads. ZIP load comprises a large portion

of the load in this thesis.

Induction Motor Load

Induction motor loads have a significant impact for dynamic voltage stability studies

for the following reasons [12]:

• They are low power factor and consume a lot of reactive power

• They are fast restoring in the time frame of a second

• They are prone to stalling as a result of a reduction in applied voltage.
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The motor model uses TSAT format that holds a specified portion of the total load

as dynamic motor at a load bus. The initial active power of the induction machine is

specified as a percentage (P%) of the total active power at a load bus. For example,

assume that a load bus has 100 MW and 30 MVAR of load. A model is added at this

bus and holds 30% active power, P% = 30. Thus 30 MW and 9 MVAR of induction

motor load is assigned to this bus. The remaining load is to be represented with the

static model.

5.6 Software Implementation of Data Generation for ANN

Since the ANN-based approach requires large amounts of data for training an ANN,

it should be able to automatically collaborate with the commercial grade simulation

software. The flow chart of generation procedures used for the ANN-algorithm to call

TSAT simulation program is shown in Figure 5.3.

There are four programs written in MATLAB to call TSAT to complete the genera-

tion of input and output data for training an ANN. The main functions of the four

programs are:

1. Generate random operating points.

2. Create TSAT case files (with extension name .tsa).

3. Form a DOS (Disk Operating System) batch file to execute all the .tsa files for

TSAT batch mode.

4. Read TSAT binary result files to obtain the initial operating points and calculate

the transient voltage dip.
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Figure 5.3: Flow chart of generation of data used for the ANN algorithm
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A large number of cases with different load/generation levels are created randomly.

Random disturbances are added to the base case active and reactive power of the

loads and generators. Furthermore, small random disturbances are added to the base

case generator voltage magnitudes. This program is the same one used for steady

state voltage stability analysis.

A TSAT case is described by a tsa file which is an ASCII text file. A TSAT case file

contains the information necessary to run TSAT, includeing [34]:

• Scenario specifications

• Computation parameters

• Input data specifications

• Output files specifications

The scenario specifications data section is defined as the base scenario. The com-

putation parameters data section is used to specify simulation control parameters,

security criteria setting, etc. For detailed data range of each parameter setting, the

TSAT manual [34] can be referred to. In the input data specifications data section,

the randomly generated operating points (power flow data), dynamic data, monitor

data, and contingency data, etc., are specified individually. Output location and files

need to be specified individually in the output files specifications data section.

In this thesis, the TSAT batch version is utilized to deal with the large number of

TSAT cases. This version of TSAT has the same computational capabilities as the

GUI version, but it runs entirely in a batch mode. Therefore, a DOS batch file in-

cluding the DOS commands to run each TSAT case one by one in TSAT batch mode
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is created.

Basecase analysis simulation results in all scenarios and all contingencies processed

by TSAT are stored in the binary result file of the case, an extension “.bin” is always

appended to the result file name. For each contingency, TSAT stores simulation re-

sults of all monitored quantities specified in the monitor data. Quantities defined as

monitored variables are available to be acquired by a number of scripting languages,

such as VBScript, JScript and MATLAB. MATLAB is used to retrieve data from the

binary result files. The voltage magnitudes and phase angles of all buses at the steady

state (pre-fault) are achieved as input data for training the corresponding ANN. For

the contingencies simulation, all the bus voltages are scanned after fault clearing and

voltage recovery, and the voltage dip of each bus is found. The transient voltage dip

is saved as output for training an ANN.

5.7 Case Study

The proposed scheme is implemented in Matlab language with the time-domain sim-

ulations performed in TSAT. The New England 39-bus system is taken as the test

system. The network consists of 18 load buses, 10 generator buses, and 35 transmis-

sion lines. All the generators are modeled using PSS/E salient pole generator 5th order

model together with their exciters, stabilizers, and steam turbine governor models.

Bus 8 and 16 have 25% of power modeled as TSAT induction motor models and the

rest of the power is static ZIP load models. The other load buses are expressed as

static ZIP load models.
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5.7.1 Different Initial Operating Points

A case study is carried out for three different initial operating points under the same

contingency event. The contingency event is:

1. Simulation starts with no fault.

2. A three-phase to ground fault occurs at bus 8.

3. The fault is cleared by tripping line 8-9.

4. Total simulation time is 5 seconds.

The three different initial operating points in the 39-bus system are:

1. A base case

2. All the load and generation increased by 10%

3. All the load and generation increased by 20%

The results of simulation with load and generation at different levels are shown in

Figure 5.4. Graph (a) shows the bus voltages for the base case under the specified

contingency. Graph (b) shows the bus voltages when the load and generation in-

creased by 10% of base case, under the specified contingency. Graph (c) shows the

bus voltages when load and generation increased by 20% of base case, under the speci-

fied contingency. It is obvious that voltage instability happens in Graph (c) according

to the voltage dip criteria. As can be seen, different initial operating points impact

dynamic voltage stability differently under the same contingency.
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Figure 5.4: Bus voltage simulation at different load level
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5.7.2 Different Contingency Locations

The large disturbance considered in this study is a three phase to ground fault on

a transmission line, cleared 0.1s after fault inception by tripping the line. The total

simulation time period is five seconds. For a given contingency, the voltages of 39

buses vary differently so that they have 39 different voltage trajectories and different

transient voltage dips as shown in Figure 5.5. When the transient voltage dip is

small and within the voltage stability criteria (25%), the case is marked as healthy

for voltage stable. When the largest transient voltage dip is over the voltage stability

criteria (25%), the case is marked as voltage unstable.

Figure 5.5 shows the simulation results for the same original operating point, but for

different locations of the three phase fault. Graph (a) is the simulation result when

three phase fault occurs at bus 3 on line 3-18 and the line 3-18 is tripped. Graph

(b) is the simulation result when three phase fault occurs at bus 16 on line 16-17 and

the line 16-17 is tripped. Graph (c) is the simulation result when three phase fault

occurs at bus 21 on line 21-22 and the line 21-22 is tripped.

The simulation results show that different contingency locations affect significantly

the post-contingency voltage behavior. For the same initial operating point, the volt-

ages remain stable for a fault at bus 3. When the fault occurs at bus 16, some

transient voltage dips exceed the voltage dip criteria. These cases are classified as

voltage instability. When a contingency occurs at bus 21, there is a system voltage

collapse. In this thesis, situations (b) or (c) of Figure 5.5 are of the main interest.

A corrective action (load shedding) for mitigating the transient voltage dip will be

investigated in detail, later in this thesis.
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Figure 5.5: Bus voltage simulation at different contingency locations
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5.7.3 Estimation of Transient Voltage Dip by ANN

In order to apply ANN for predicting transient voltage dip, different sets of training-

test data need to be generated. A large number of operating points are randomly

generated within the range of ± 30% of the base case active and reactive power of

both load and generator. These random operating points are verified for valid initial

conditions. Therefore, 3,000 cases that pass the sanity verification are saved as initial

operating points for the simulation with a series of contingency events. A contingency

event is set as follows: a three-phase ground fault occurring at one end of a trans-

mission line, and then is cleared 0.1s after the fault inception by tripping the faulted

line. A total of 35 contingencies are considered. All the 3,000 cases are simulated

under each contingency in the contingency list and the bus voltage trajectories are

recorded. The initial operating points including voltage magnitudes and phase angles

are obtained and fed into an ANN as input features. The transient voltage dip is

sought on the corresponding voltage trajectories. The transient voltage dip of the

system is calculated and kept as the output target for each associated ANN. There

are an additional 100 sanity checked cases generated by the above method and used

for testing the ANNs.

There are 35 contingencies in the 39-bus study system. The ANN algorithm is used

for each contingency separately. Figure 5.6 presents the results of the estimated

transient voltage dip by two ANNs. The first ANN is designed for the contingency

occurring at the motor load bus 8 and the fault is cleared by tripping line 7 to 8. The

second ANN is designed for the contingency occurring at the motor load bus 16 and
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Figure 5.6: Transient voltage dip estimation by ANNs
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the fault is cleared by tripping line 16 to 17. In the figure, the x-axis represents the

maximum transient voltage dips in percentage of all the buses calculated by simula-

tion. The y-axis represents the corresponding forecasted maximum transient voltage

dips estimated by the ANNs. There are 100 testing cases in each graph. If the target

values completely match with the forecasted one, all points should lie on the diagonal

line. Figure 5.6 (a) and (b) show that ANN approach is able to estimate the transient

voltage dip accurately.



Chapter 6

On-line Corrective Control of

Large-disturbance Voltage Stability

In the last chapter, the neural network method has been successfully applied to predict

large-disturbance voltage stability. Upon detection of the imminent voltage instability

or voltage collapse, some corrective actions have to be carried out. Load shedding

is considered in this chapter as an effective corrective action. In this chapter, two

simulation based approaches, particle swarm optimization algorithm and sensitivity

based algorithm, are proposed to find the optimal load shedding .

6.1 Overview

Short-term voltage security or voltage collapse studies the system behavior under

large disturbances which may lead to a system blackout. Similar to long term voltage

security control against the small disturbances, there are two main forms of remedial

actions that can be armed for a large-disturbance voltage security control. They are

109



110 Chapter 6. On-line Corrective Control of Large-disturbance Voltage Stability

preventive control and corrective control. Preventive control is applied prior to any

contingency occurrence while corrective control is applied after the contingency has

occurred. Preventive control is a lot more costly than corrective control. Hence, if

the probability of occurrence of the contingency that poses the security threat is very

low, utilities prefer to resort to corrective control actions [7].

In large-disturbance voltage security analysis, the occurrence of contingency is un-

certain and might remain at very low probability; however, once it happens it may

be very severe. It is neither possible nor economical to design any preventive control

against a large disturbance. In order to prevent the voltage collapse after a large dis-

turbance, proper corrective actions need to be taken in addition to isolating faulted

components to maintain system security. A corrective action for short-term voltage

stability then has to be designed to mitigate the consequence of the abnormal con-

dition and provide acceptable system performance following any severe contingencies.

Load shedding is one of the most effective approaches against voltage instability [72].

If the available equipment protection and controls have been exhausted or there are no

more fast control actions available, the last but very effective option to prevent voltage

collapses will be the emergency load shedding. However, shedding loads means losing

revenue to both the utility and the customer; hence, it should only be considered

when there is a high risk of system instability. It is therefore important to develop an

algorithm to minimize the amount of load shedding. The basic requirement of load

shedding needs to answer three fundamental questions [12]:

• When should the load be shed?

• Where should the load be shed?
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• How much load should be shed?

Various research studies have proposed solutions to achieve load shedding schemes.

[73] proposed that the loads with lower voltage or greater voltage decay be shed sooner

so that locations of load shedding become dependent on the location of disturbance.

[74] used pre-defined tables that determine loads to shed first for the MW amount

at the time of request. [75] proposed a load shedding scheme by solving optimal

power flow (OPF) with different objective functions. [76, 77, 78] determined minimal

shedding required in a given location and delay, then determined which delay and

location yield the smallest MW amount. These existing load shedding schemes only

considered long-term voltage stability, neglecting the dynamic behavior of the loads

and system during and after disturbances. Hence, they are not designed for the short

term voltage stability after large disturbances.

It is important to search for an optimal load shedding scheme which determines the

minimal load shedding amount with due consideration for the shedding location and

time to stabilize the system after the occurrence of disturbance. For short-term volt-

age stability, load shedding action needs to be taken immediately after contingency.

Therefore, what needs to be determined are (i) the most effective location for load

shedding, and (ii) the amount of load to be shed. If a load shedding scheme is to be

obtained through the iterations of simulation runs with a series of sequentially or ran-

domly generated parameter sets of locations and shedding amount, the total number

of simulations will be too large and will result in unacceptable delays in load shedding.

To address these issues, two algorithms are developed and combined with the time-

domain simulation. The first approach is a particle swarm optimization (PSO) algo-
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rithm that performs an efficient global optimization search. The second approach is

a sensitivity based algorithm that is conducted through the sensitivity index of the

load shedding buses. As a result, an optimal load shedding solution makes a decision

about (i) where the most effective locations are for load shedding, and (ii) what is the

minimal amount of loads to be shed at the known breaker operation time for those

selected shedding locations.

6.2 Load Shedding Candidate Matrix

Before running a load shedding algorithm, the representation of the candidate load

shedding options must be defined. In our study, each option xi is a vector with the

dimension equal to NL which is the number of available load locations. Each option

can be represented as xi = (xi1, xi2, ..., xin). Each element of the vector xi is the

amount of a load to be shed in the specific option. For example, a candidate load

shedding scheme is

Load 1 Load 2 Load 3
Option 1 ( 10 0 30 )
Option 2 0 40 0
Option 3 0 20 20

The above matrix represents three load shedding options. The first option is to shed

Load 1 by 10MW and Load 3 by 30MW. The second option is to shed Load 2 by

40MW. The third option is to shed Load 2 by 20MW and Load 3 by 20MW. The

shedding amount of each load (xij) cannot exceed the load constrain that is the avail-

able load to be shed. The load constrain may or may not be the largest power. The

load constrain should be pre-defined according to the practical system conditions.
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For example, if a 100 MW load is all available to be shed, the relevant load constrain

is set to [0,100]; if a 100 MW load only has half the amount available to be shed, the

relevant load constrain is set to [0,50].

6.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is an algorithm modelled on swarm intelligence

aimed at finding a solution to an optimization problem in a search space. Particle

swarm optimization, having been proved to be a competitor to solve nonlinear opti-

mization problems, was introduced by Kennedy and Eberhart in 1995 [21]. A review

of the PSO technique [22] presents the basic concepts, different structures and vari-

ants, as well as its applications to different optimization problems in power systems.

In this thesis, the PSO algorithm explores a problem space of candidate load shedding

locations and found the load shedding solutions.

In particle swarm optimization, a swarm consisting of several particles moves in the

search space of an optimization problem. Each particle keeps track of its own at-

tribute. The most important attribute of the particles is their current positions,

represented by n-dimensional vectors. The position of a particle represents a candi-

date solution to the optimization problem at hand. Each particle searches for better

positions in the search space by changing its velocity according to set of rules. Ad-

ditionally, each particle also remembers its group’s best position, so that potentially

good solutions upon termination of the algorithm may serve as the answer of the

optimization problem.
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6.3.1 PSO Formulation

PSO belongs to the class of direct search methods used to find a solution to non-

linear optimization problems in a search space. A population of individuals defined

as random solutions in the problem space is initialized. These individuals (particles)

are candidate solutions which comprise a swarm. The swarm is typically modelled

by particles in hyperspace space (i.e., <n) that have a position (denoted by x) and a

velocity (denoted by v). These particles fly through hyperspace and adjust two es-

sential capabilities: their memory of their own best position (pbest) and knowledge of

the global best (gbest). Suppose the i-th particle is expressed as xi = (xi1, xi2, ..., xin)

in a n-dimensional space. This concept for particle flying can be formulated as:

vk+1
i = wk

i v
k
i + c1 · rand · (pbesti − xk

i )

+c2 · rand · (gbesti − xk
i ) (6.1)

xk+1
i = xk

i + vk+1
i (6.2)

where,

vk
i current velocity of particle i at iteration k,

vk+1
i updated velocity of particle i at iteration k+1,

xk
i current position of particle i at iteration k,

xk+1
i updated position of particle i at iteration k+1,
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pbesti best position of particle i at iteration k,

gbesti best position of the group i at iteration k,

wi inertia weight for velocity,

c1, c2 acceleration coefficients,

rand random number between 0 and 1.

xk

xk+1

pbest

gbest

vk

Search Space

Figure 6.1: A single particle movement within searching space

A single particle movement at iteration k is illustrated in Figure 6.1. A particle

movement is determined by three things: its current velocity, its best position and

the best position of its group. Inertia weight controls the exploration of the search

space and usually can be defined as equation (6.3). The initial large value of the

inertia weight (typically 0.9) allows the particles to move freely in order to find the

global optimum. Once the optimal region is found, the value of inertial weight can

be decreased (say 0.4) in order to narrow the search.
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wk
i = wmax −

wmax − wmin

maximum iterations
× k (6.3)

In addition, the condition boundary of both velocity and position can be specified

according to the characteristics of the problem. The boundary of position is limited

by the searching space. The boundary of velocity is determined by the space between

the current position and the target position. If velocity is too high, particles might

fly past good solutions. If velocity is too low, particles may not explore sufficiently

beyond local solutions [79]. In this thesis, the position boundary is set as the avail-

able amount for shedding of each potential load bus. The velocity boundary is set

as the largest distance from the current position to the available amount for shedding.

6.3.2 Objective Functions

The objective function provides a measure of the performance of each particle in the

problem solution. For a load shedding scheme, there are two essential objectives for

the short-term voltage stability challenges under a severe contingency: 1. maintain

the system stability by shedding some loads after the contingency occurs; and 2.

minimize the total amount of load shedding while not losing system stability. The

objective function is then expressed in equation (6.4) and (6.5).

When it is at risk of voltage unstable:

f1 = min(V dip(x1, x2, ..., xi, ..., xn)− 25%) (6.4)
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Where, V dip(x1, x2, ..., xi, ..., xn) expresses the transient voltage dip when the system

employs load shedding scheme (x1, x2, ..., xi, ..., xn) after contingency occurs.

When it is voltage stable:

f2 = min(
∑

(xi1, xi2, ..., xin)) (6.5)

When the power system is moving towards voltage instability or collapse, the target

is to bring the system back to voltage stability. The loads with most effective im-

pact on transient voltage dip are selected. Once the system is assessed to be stable,

meaning transient voltage dip is smaller than criteria, the target is changed to seek

the minimum load shedding amount of the selected loads.

6.3.3 Load Shedding Process with PSO

The PSO algorithm for load shedding, given in Figure 6.2, is to search for the optimal

places of load shedding and relevant minimum required amount at the known load

shedding time. The initial swarm (candidate load shedding places) are determined

by system operators based on their experience or use of the available loads in that

area. The procedure of PSO algorithm can be summarized as follows:

1. Initialize the particle swarm x0
i = (x0

i1, x
0
i2, ..., x

0
in) uniformly. The n-dimension

corresponds to the number of the candidate loads which are selected by ANN

sensitivity. Assign a random and uniform velocity v0
i for each particle.

2. For the initial swarm, run TSAT simulation program and calculate the voltage
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Figure 6.2: The PSO procedures for load shedding
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dip, then evaluate the initial swarm using the objective function as given by

(6.4) or (6.5).

3. Initialize x0
i as the personal best (pbest). The initial best x0

j is the global best

(gbest) of the entire swarm.

4. Start iteration k = 1.

5. If the objective function value is better than the personal best value (pbest) in

history, set current value as the new pbest. Update global best gbest with best

pbest.

6. Calculate the particle velocity using equation (6.1). If the velocity is beyond

the boundary, set it equal to the boundary. Calculate the position of particles

using equation (6.2). If the position is beyond the load constrain, limit it to

equal to the constrain.

7. Run TSAT simulation program and reevaluate the swarm using the objective

function as given by (6.4) or (6.5); go to step 5 if the maximum iterations or

minimum error criteria are not attained.

8. Output the global best (gbest) of the entire swarm, which is the optimal load

shedding scheme.

In the above procedures, once a swarm of load shedding schemes makes the studied

power system move from unsafe to safe, the particles of the swarm participating in

load shedding do not change anymore and only the value of the particles can change.

Then the objective function is moved to equation (6.5).
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6.4 Sensitivity Based Algorithm

The sensitivity based algorithm is divided into three sub-processes. In the first step,

small-disturbance analysis coupled with time-domain simulation is used to identify

sensitivity of the transient voltage dip to the shedding amount of the load. The sensi-

tivity indicates the best shedding location for a given scenario. In the second step, an

amount of load shedding obtained by the sensitivity in the first step is applied to the

selected load to approach the voltage stability criteria. In the third step, a process

of time-domain simulation is used to verify the effect of load shedding. After several

iterations of the three-step process, the optimal load shedding scheme can be found.

6.4.1 Sensitivity of Load Shedding Amount

The objective of a load shedding scheme is to restore the transient voltage dip within

25%. The sensitivity of the shedding amount of the load to the change of the transient

voltage dip is expressed in (6.6):

Sk =
Ak − Ak−1

Vdip,k − Vdip,k−1

(6.6)

After the sensitivity is known, the predicted load shedding amount is calculated

Ak+1 = Ak + Sk ∗ (criteria− Vdip,k) (6.7)
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Where,

Sk = sensitivity of the leading bus

at the kth iteration,

Ak = the load shedding amount of the leading bus

at the kth iteration,

Vdip,k = the transient voltage dip at the kth iteration,

criteria = 25%.

6.4.2 Load Shedding Process

A flow chart of the proposed load shedding process is illustrated in Figure 6.3.

This algorithm is based on the simulation and sensitivity of the load shedding amount

at each step. The relay time of each load that attends the load shedding scheme is set

in the simulation. The sensitivity finds out the best load shedding place at a certain

step, and the anticipated amount to be shed can be calculated. This anticipated

amount is applied in simulation for the next step. The procedure of algorithm can

be summarized as follows:

1. Initialize the load shedding options x0
i = (x0

i1, x
0
i2, ..., x

0
in) with small amount

of shedding at each load. The n-dimension corresponds to the number of the

candidate loads which attend load shedding scheme.

2. For all the options, run simulation program and calculate the transient voltage
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END

Figure 6.3: The sensitivity based algorithm combines with simulation
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dips, then select the best option which brings the smallest transient voltage dip.

3. If the best transient voltage dip is over the short-term voltage stability criteria,

the computation continues. Otherwise, the final load shedding scheme is found

and program ends.

4. For the best option selected in the last step, calculate the sensitivity by (6.6)

for the leading load. Predict the new load shedding amount of the leading load

by (6.7) for the next step. As long as the leading load has more power to be

shed, the other loads keep their current status in the option.

5. If the new shedding amount of the leading load is within its available amount

limit, the best option is kept and only the amount of the leading load is changed.

Then, only one load shedding option returns to step 2. The iteration continues.

6. If the new shedding amount of the leading load is over the available amount

limit of that load, two things are done: (i) set the load amount to the limit

value, and (ii) form a series of new load shedding options for the next step. The

new load shedding options have the same format: all the previous leading loads

employ their load constrains and the rest of load shed xMW one by one. Then,

go back to the step 2, the iteration continues.

In the above procedures, once a leading load having more power to be shed, only one

option including the leading load is used in the simulation. When the leading load

reaches its amount boundary and short-term voltage stability is still not achieved,

the rest of the loads have to combine with the previous leading loads respectively to

form a series of new options. This method greatly reduces the candidate options for

simulation, resulting in large savings in the number of simulations.
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6.5 Impact of Load Shedding Places

The load shedding place significantly affects the post-contingency transient voltage

dip. A voltage instability case, shown in Figure 5.5(b), is used as a sample. In this

case, the contingency occurs on line 16 to 17 and close to Bus 16. The load shedding

is activated 0.15s after fault happening on all the available load buses one by one. If

the same amount of power at different loads is shed, the results are different. Fig-

ure 6.4 shows a few results of transient voltage dips, which include the one without

shedding load and shedding load at different buses. If shedding Bus 4, the lowest

voltage is brought back to 0.75 and the transient voltage dip is smaller than criteria.

If shedding Bus 8, the transient voltage dip is 26% which is close to criteria but right

out of criteria. If shedding Bus 16, the result is almost exactly the same as the one of

no load shedding. From this specific case, the good load shedding place may not be

the load buses close to the fault location. In this example, although the fault occurs

near Bus 16 and on line 16 to 17, shedding load on Bus 16 does not help to recover

voltage stability.

6.6 Load Shedding Case I

6.6.1 PSO Algorithm

The proposed load shedding algorithms (PSO and sensitivity based method) have

been implemented respectively on a voltage instability case predicted by ANN, shown

in Figure 3.2 (b). The case is an incident with the transient voltage dip 36.2% when

a three-phase ground fault occurs close to motor load Bus 16 and trip line 16 to 17.

It supposes that the relays of all the load buses can be activated 0.15s after fault
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Figure 6.4: Impact of load shedding at different locations for a given contingency

happening if necessary. There are a total of 18 load buses and their bus numbers are:

3, 4, 7, 8, 12, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 39. In addition, it assumes

that all the 18 load buses are available to be shed till their maximum power limit.

The relevant load shedding boundaries are set to [0, maximum amount (i)]. Here, i

denotes any load bus.

Table 6.1 describes the detailed procedures of iteration by PSO algorithm. As a re-

sult, the combination shedding plan on four load buses (4, 7, 12, and 28 ) forms a

load shedding scheme. Bus 12 is a small load with a maximum of 7.5 MW. It is the

most effective load shedding place at the beginning of iteration. However, Bus 12

does not have sufficient load amount to be shed to stabilize the whole system under

the contingency. The PSO algorithm selects loads 4, 7, and 28 in the sequential

procedures. At the ninth iteration, the transient voltage dip changes from 25.48% to
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24.72% with 117.2MW total shedding amount so that the load shedding scheme at

the ninth iteration can restore the system from unsafe to reach the voltage stability

criteria. At this time, the objective function is changed to reduce the total load shed-

ding amount while still keeping voltage stability. At the 14th iteration, the total load

shedding amount reduces from 117.2MW to 107.9MW while the transient voltage dip

is still within voltage stability criteria. After the 14th iteration, the PSO algorithm

cannot find a better shedding scheme with less total load shedding amount but keep

the transient voltage dip within the criteria.

Table 6.1: Iteration of load shedding scheme for Case I by PSO
Iteration Shedding Places Shedding Amount Total Amt. Trans. Vdip

(Bus No.) (MW) (MW) (%)

0 0 0 0 36.2113
1 12 5.0 5.0 32.5288
2 12 7.5 7.5 31.0556
3 4,12 31.5,7.5 39.0 28.5285
4 4,7,12 6.2,41.2,7.5 54.9 27.8410
5 4,7,12,28 25.5,2.0,7.5,48.6 83.6 27.1272
6 4,7,12,28 29.1,28.3,7.5,6.5 71.4 26.8974
7 4,7,12,28 29.1,28.3,7.5,6.5 71.4 26.8974
8 4,7,12,28 39.0,42.4,7.5,12.6 101.5 25.4829
9 4,7,12,28 53.0,42.4,7.5,14.3 117.2 24.7208
10 4,7,12,28 46.1,57.1,7.5,0.0 110.7 24.8167
11 4,7,12,28 46.1,57.1,7.5,0.0 110.7 24.8167
12 4,7,12,28 46.1,57.1,7.5,0.0 110.7 24.8167
13 4,7,12,28 46.1,57.1,7.5,0.0 110.7 24.8167
14 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
15 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
16 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
17 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
18 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
19 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
20 4,7,12,28 44.2,55.4,7.5,0.8 107.9 24.9634
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Figure 6.5: Load shedding convergence characteristic for Case I by PSO

The objective functions of the PSO algorithm are plotted in Figure 6.5. The figure

has two y-axes. The left y-axis is the first objective function (6.4) and the right y-axis

is the second objective function (6.5). In the case study, the iteration runs up to 20

times. The transient voltage dip recovers within criteria at the ninth iteration. After

that, the algorithm switch from the first objective function to the second objective

function. It reduces the total amount of load shedding and maintain the transient

voltage dip within criteria. The load shedding amount does not change much after

the tenth iteration. In order to effectively execute the procedures of iteration, an

early stop criteria can be set in the iteration.
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6.6.2 Sensitivity Based Algorithm

Similar to the PSO algorithm, the sensitivity based algorithm is applied on the same

case. Table 6.2 shows the load shedding options and relative amount of the chosen

loads during each iteration. The initial amount of load shedding is 5MW of active

power and corresponding reactive power to keep the power factor unchanged for that

load. Bus 12 is the most effective load shedding place at first but it has only 7.5MW

power which can be shed. When a leading bus hits its load constrain, the other loads

shed 5MW each to form the new candidate options of load shedding for the next

iteration. After Bus 12 is totally shed (7.5MW), Bus 15 becomes the leading bus.

After shedding Bus 12 by 7.5MW and Bus 15 by 97.5MW, the transient voltage dip

reduced from 36.21% to 24.84% that restores the system to voltage stability.

Table 6.2: Iteration of load shedding scheme for Case I by sensitivity method
Iteration Shedding Places Shedding Amount Total Amt. Trans. Vdip

(Bus No.) (MW) (MW) (%)

0 0 0 0 36.2113
1 12 5.0 5.0 32.5288
2 12 7.5 7.5 31.0556
3 12, 15 7.5, 5.0 12.5 30.6301
4 12, 15 7.5, 71.2 78.7 26.2613
5 12, 15 7.5, 90.3 97.8 25.2734
6 12, 15 7.5, 97.5 105.0 24.8425

The total amount to be shed and the relative transient voltage dip of each itera-

tion are plotted in Figure 6.6. As can be seen, the transient voltage dip is reduced

within criteria at the sixth iteration. Hence, the case is restored to be voltage sta-

ble if performing the load shedding scheme on Bus 12 by 7.5MW and Bus 15 by

97.5MW, total load shedding 105MW, at 0.15s after the fault happening. A bus

voltage trajectory of pre- and post- load shedding in simulation is plotted in Figure
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Figure 6.6: Load shedding convergence characteristic for Case I by sensitivty method

6.7. The graph shows the load shedding scheme after the occurrence of contingency

can successfully and effectively prevent the system from tending to voltage instability.

6.7 Load Shedding Case II

6.7.1 PSO Algorithm

The proposed load shedding algorithms (PSO and sensitivity based method) have

been implemented respectively on another case predicted by ANN, shown in Figure

3.2 (a). The case is a voltage collapse incident with the transient voltage dip 99.3%

when a three-phase ground fault occurs close to motor load Bus 8 and trip line 8 to

9. In this case study, we still suppose all of the 18 loads can be shed. However, as

the initial operating points are different between Case I and Case II, the maximum
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Figure 6.7: The effect of load shedding scheme for Case I

amounts of 18 loads in Case II are different from those in Case I. The load shedding

relay time is still set at 0.15s after fault happening on all the candidate load buses.

Table 6.3 describes detailed procedures of iteration by the PSO algorithm. As can

be seen, the combination shedding plan on seven buses (8, 12, 16, 20, 25, 26, and

39) forms a load shedding scheme. At the 13th iteration, the transient voltage dip

changes from 25.09% to 24.93% with total shedding amount 376.5MW so that the

load shedding scheme at this iteration can restore the system from unsafe to voltage

stability. At this time, the objective function is changed to reduce the total load

shedding amount while still keeping voltage stability. At the 20th iteration, the total

load shedding amount is reduced from 376.5MW to 362.5MW while the transient

voltage dip is still within criteria.
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Table 6.3: Iteration of load shedding scheme for Case II by PSO
Iteration Shedding Places Shedding Amount Total Amt. Trans. Vdip

(Bus No.) (MW) (MW) (%)
0 0 0 0 99.2608
1 26 5.0 5.0 98.3500
2 26 5.0 5.0 98.3500
3 26 5.0 5.0 98.3500
4 26,39 6.8,91.0 97.8 98.3169
5 26,39 8.5,106.0 114.5 97.8458
6 12,26,39 8.6,7.5,30.1 46.2 95.9743
7 8,12,26,39 66.4,8.6,7.7,62.6 145.3 32.8908
8 8,12,26,39 88.4,8.6,8.3,74.1 179.4 31.4234
9 8,12,16,26,39 82.5,8.6,37.2,5.9,142.4 276.6 30.2154
10 8,12,16,25,26,39 118.0,8.6,6.3,39.1,7.8,126.7 306.5 27.7867
11 8,12,16,25,26,39 147.2,8.6,10.9,41.1,8.0,128.5 334.3 26.1410
12 8,12,16,25,26,39 168.2,8.6,14.3,42.5,8.2,129.7 371.5 25.0865
13 8,12,16,20,25,26,39 171.9,8.6,13.9,8.0,35.9,7.8,130.4 376.5 24.9251
14 8,12,16,20,25,26,39 171.9,8.6,13.9,8.0,35.9,7.8,130.4 376.5 24.9251
15 8,12,16,20,25,26,39 171.9,8.6,13.9,8.0,35.9,7.8,130.4 376.5 24.9251
16 8,12,16,20,25,26,39 171.9,8.6,13.9,8.0,35.9,7.8,130.4 376.5 24.9251
17 8,12,16,20,25,26,39 178.6,8.6,5.0,5.7,38.3,7.7,121.7 365.7 24.8800
18 8,12,16,20,25,26,39 178.6,8.6,5.0,5.7,38.3,7.7,121.7 365.7 24.8800
19 8,12,16,20,25,26,39 178.6,8.6,5.0,5.7,38.3,7.7,121.7 365.7 24.8800
20 8,12,16,20,25,26,39 176.4,8.6,5.4,5.3,37.8,7.6,119.9 362.5 24.9604

The objective functions of the PSO algorithm can be plotted in Figure 6.8. The figure

has two y-axes. The left y-axis is the first objective function (6.4) and the right y-

axis is the second objective function (6.5). To clearly show the procedures, we do not

abort the iteration and have the iteration runs up to 20 times. The transient voltage

dip recovers within criteria at the 13th iteration. After that, the algorithm switches

from the first objective function to the second objective function. It reduces the total

amount of load shedding and maintains the transient voltage dip within criteria.
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Figure 6.8: Load shedding convergence characteristic for Case II by PSO

6.7.2 Sensitivity Based Algorithm

Table 6.4 shows the load shedding options and relative amount of each iteration. The

initial amount of load shedding is 5MW of active power and corresponding reactive

power to keep the power factor unchanged of that load. When the leading buses hit

their load limits, these buses are completely shed. At the same time, the other loads

shed 5MW each to form the new candidate options of load shedding. Bus 26 is the

most effective load shedding place at the beginning. After completely shedding Bus

26 (153.5MW), Bus 12 becomes the leading bus. However, Bus 12 only has 8.6MW

to be shed which is not enough. After both Bus 26 and Bus 12 are completely shed,

Bus 7 is selected as the leading bus. After continually shedding 105.4MW at Bus 7,

the transient voltage dip is reduced within criteria with 24.99% dip. The final load

shedding scheme is obtained by shedding a total of 267.5MW which includes Bus 7
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(105.4MW), completely shedding Bus 12 (8.6MW) and Bus 26 (153.5MW).

Table 6.4: Optimal load shedding scheme during iteration for Case II by sensitivity
method

Iteration Shedding Places Shedding Amount Trans. Vol. Dip
(Bus No.) after limit (MW) (%)

0 99.2608
1 26 5.0 98.3500
2 26 153.5 98.1549
3 26, 12 153.5, 5.0 35.5570
4 26, 12 153.5, 5.9 34.5824
5 26, 12 153.5, 8.6 32.1422
6 26, 12, 7 153.5, 8.6, 5 31.7686
7 26, 12, 7 153.5, 8.6, 96.9 25.4781
8 26, 12, 7 153.5, 8.6, 105.4 24.9889

The total load shedding amount is 267.5 MW of the final scheme that brings 24.99%

transient voltage dip. The total amount to be shed and the relative transient voltage

dip at each iteration are plotted in Figure 6.9. The figure has two y-axes. The left

y-axis is the transient voltage dip and the right y-axis is the total amount of load

shedding. The transient voltage dip is reduced within criteria at the end of the eighth

iteration. The case is restored to be voltage stable by activating the load shedding

scheme after the fault happening. A bus voltage trajectory of pre- and post- load

shedding in simulation is plotted in Figure 6.10. The graph shows the load shedding

scheme obtained from the sensitivity based method can successfully and effectively

prevent the system from tending to collapse after the contingency occurs.
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Figure 6.9: Load shedding convergence characteristic for Case II by sensitivity method
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Figure 6.10: The effect of load shedding scheme for Case II
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6.8 Comparison of Two Algorithms

Both particle swarm optimization algorithm (PSO) and sensitivity based algorithm

are able to find a load shedding scheme that can restore the system from emergency

state to safe state after a severe contingency. However, the results of the load shed-

ding schemes are different. Table 6.5 presents some key factors that evaluate the

effect of the load shedding algorithm. Iteration is an incremental index to execute

each algorithm. No. of simulation defines the times of running time-domain sim-

ulation. Each iteration can include one or several potential load shedding plans that

need to be verified by simulation. For the PSO algorithm, each iteration includes 18

load shedding plans. For the sensitivity based algorithm, whenever selecting a new

leading bus, it needs 18 times of simulation. If the leading bus still has an available

amount to be shed, it only needs one simulation. The No. of simulation determines

most of the time to execute each algorithm. For example, if one simulation takes 2

seconds, 100 simulations need 200 seconds. If the algorithm requires 100 simulations,

it takes around 200 seconds to obtain the load shedding scheme with this algorithm.

Total shedding Amt.(MW) and Trans. vol. dip (%) are two main objectives

for the load shedding algorithms. No. of shed loads represent the number of loads

that attend the final load shedding scheme.

Table 6.5 indicates the following difference of PSO and sensitivity based algorithms:

1. The PSO algorithm usually uses fixed iteration steps. In the first few iteration

steps, the objective function of the PSO algorithm is to restore the system from

emergency state to safe state. After reaching this aim, the objective function is

changed to minimize the total load shedding amount in the later iteration steps.

The sensitivity based algorithm uses early stop rule that stops the iteration when
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Table 6.5: Comparison of PSO and sensitivity based algorithms
PSO Sensitivity

Case I

Iteration 20 6
No. of simulation 360 40
Total shedding Amt.(MW) 107.9 105.0
Trans. vol. dip (%) 24.96 24.84
No. of shed loads 4 2

Case II

Iteration 20 8
No. of simulation 360 59
Total shedding Amt.(MW) 362.5 267.5
Trans. vol. dip (%) 24.96 24.99
No. of shed loads 7 3

the sensitivity based algorithm finds a load shedding scheme that satisfies the

voltage stability criteria. The PSO algorithm needs more iterations than the

sensitivity based algorithm.

2. The PSO algorithm conducts more simulations than the sensitivity based algo-

rithm. Therefore, PSO takes more time to find the solution of load shedding

scheme than the sensitivity based algorithm. The PSO algorithm sets a certain

number of particles which are candidate solutions in the searching space. PSO

then conducts a simulation for each particle in each iteration. The sensitivity

based algorithm uses a variable number of simulations for each iteration. In

order to find a leading bus to shed load, the sensitivity based algorithm sheds

small amount for each candidate load that takes n (n = candidate loads) times

of simulation. Once the leading bus still has an available amount to be shed,

the sensitivity based algorithm only needs one simulation for shedding more on

that leading bus. Hence, even if the PSO algorithm uses the same iteration as

the sensitivity based algorithm, the PSO algorithm needs a higher number of

simulations.
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3. The PSO algorithm sheds higher load amount than the sensitivity based algo-

rithm in order to restore the system to maintain voltage stability after contin-

gency.

4. The PSO algorithm selects more loads to shed than the sensitivity based algo-

rithm in the final load shedding scheme.

Based on the above comparison, the sensitivity based algorithm has a faster and

more effective performance than the particle swarm optimization algorithm (PSO).

The sensitivity based algorithm uses less computation time to find the minimum load

shedding amount to maintain system voltage stability after the occurrence of contin-

gency.



Chapter 7

Conclusions

This chapter concludes the work carried out, discusses main contributions, and presents

thoughts for future research in the area of power systems security assessment and con-

trol.

7.1 General conclusions

In the thesis, two specific areas of research have been investigated under the power

system voltage stability enhancement. The two areas are small disturbance volt-

age stability and large disturbance voltage stability. The small disturbance voltage

stability has been discussed in Chapter 2 to Chapter 4 and the large disturbance

voltage stability has been discussed in Chapter 5 to Chapter 6. For each area of volt-

age stability, a combination algorithm of computational intelligence techniques and

conventional voltage stability assessment has been proposed. The reason for using

computational intelligence techniques is that they have the advantage at computa-

tional speed and are suitable for online application.

138
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The proposed combination algorithms not only predict how far the system is from

insecure, but also provide approaches to carry out actions of voltage stability controls.

The artificial neural network as the representative of computational intelligence tech-

niques is combined with continuation power flow to perform small disturbance volt-

age stability assessment. Furthermore, the applications of combinational algorithm

is applied in preventive control, such as generation reschedule, of small disturbance

voltage stability. Similarly, the artificial neural network technique is combined with

time domain simulation to perform large disturbance voltage stability assessment.

Furthermore, a load shedding algorithm is combined with time-domain simulation to

perform corrective control to prevent large disturbance voltage instability.

Continuation power flow, the method of assessing small-disturbance voltage stabil-

ity, is discussed in Chapter 2. Small-disturbance voltage stability is concerned with

a system’s stability to a progressive drop in voltage when increasing gradually in

load demand. The voltage stability margin is quite straightforward and an easily

understood index for this kind of voltage stability. The conventional power flow algo-

rithms are prone to convergence problems in calculating the voltage stability margin.

The continuation power flow overcomes this problem by reformulating the power flow

equations so that they remain well-conditioned at all possible loading conditions. The

equations are introduced and Continuation Power Flow (CPF) program is developed

in Matlab language. The CPF uses an iterative predictor-corrector scheme to find

the solution path and to determine the small-disturbance voltage stability limit for a

certain load increase pattern. The program can handle various types of constraints

and models which can have a significant impact on the voltage stability phenomenon.

A commercial power flow program, PSAT, is used to validate the correctness of CPF
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based on a 12-bus test system.

Since the continuation power flow is time consuming for large-scale power systems,

an online application requires faster tools. In Chapter 3, the previous developed CPF

program is used to generate training patterns for training an ANN to calculate the

voltage stability margin which serves as a voltage stability index. A major advantage

of the ANN approach is that ANN is able to sufficiently abstract what it learns in

training and extend this to produce reasonable outputs for those inputs not encoun-

tered during training. Once trained, an ANN can predict the stability margin for a

given set of inputs very quickly, as the calculations in the ANN do not involve any

iteration as in the case of using analytical methods. Therefore, the thesis proposes

the framework of ANN strategy including a complete process of training and testing

an ANN to predict voltage stability margin.

Generally, ANN works as a black box between inputs X and outputs Y , which repre-

sents a mathematical relationship: f : X → Y . It is crucial that we use key physical

parameters contributing to voltage stability in ANN models. Some different sets of

input variables to the ANN models based on a heuristic understanding and knowl-

edge of the problem are tested in ANN. Bus voltage magnitudes and phase angles of

individual buses are found to be the best input variables to predict voltage stabil-

ity margin in ANN. Phase angles are generally thought of as less related to voltage

stability. However, this research proposes to adopt voltage magnitudes and phase

angles as input features of ANN. In the test of different sets of inputs on the New

England 39-bus system, it significantly improves the accuracy of the estimation of

voltage stability margin.
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In Chapter 3, it was found that voltage magnitudes and phase angles are the proper

input variables for ANN. In addition to the tests, the importance of why voltage

magnitudes and phase angles as input features of ANN to predict real power mar-

gin was analyzed. Besides input variables selection, some important aspects of ANN

application were discussed based on the study system (the New England 39-bus sys-

tem). These were sample data size, overfitting or underfitting, computation speed

and accuracy measure. The proposed ANN based approach for voltage stability mar-

gin estimation was also applied to an Alberta Interconnected Electric System which

was acquired from the Alberta Electric System Operator (AESO) website. The sys-

tem consists of 1844 buses. We used the AESO system as an application example to

demonstrate the feasibility of the proposed method to predict the voltage stability

index of a large practical system.

In Chapter 4, several extended applications of the proposed ANN approach for small-

disturbance voltage stability and control were presented. The first application was

optimal placement of PMUs. The input variables for the proposed ANN based online

voltage stability monitoring system were the voltage magnitudes and the phase an-

gles. Real-time measurement of phase angles requires the use of Phasor Measurement

Units (PMUs) and telecommunication infrastructure to support the data acquisition.

When only a limited number of PMUs are used, it is important to locate them at the

most effective positions in the network. Selection of PMU locations can be viewed

as the selection of a reduced set of input features to the ANN while the prediction

error is not increased significantly. As sequential forward selection (SFS) algorithm

is proposed to determine the optimal input feature set. In comparison to exhaustive
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search, SFS largely reduces the number of searches and always selects a good input

feature set.

The second application is N-1 contingency scanning. Since disturbances are inevitable

in a power system, it is particularly important for the proposed ANN approach to

be able to estimate the voltage stability margin after a contingency. The system

restoration after a contingency often requires removal of the faulted element, result-

ing in a new network configuration. Usually separate ANNs are used for different

contingencies in order to achieve good performance of ANN. This thesis tackles this

drawback and deals with a single ANN for all the contingencies. The input variables

of post-contingency power flow are used to feed to ANN, which results in this compact

and efficient ANN approach.

The third ANN application of Chapter 4 is for generation rescheduling. Generation

rescheduling is applied as a preventive action to enhance voltage stability margin.

The method proposed is to examine the sensitivity of the voltage stability margin to

shifting of the real power output of one selected generator to another. The sensitivity

of the voltage stability margin to shifting of real power generation is calculated by the

already trained ANN. Therefore, it quickly selects the best way to change the gener-

ation output that maximizes the voltage stability margin under a given condition.

Large-disturbance voltage stability is an increasing, but often overlooked, industry

concern. Moreover, few studies have reported on how to execute corrective control

action after the contingency occurs if the system is short-term voltage instability.

Chapter 5 and Chapter 6 concentrate on analyzing the power system for short-term



143 Chapter 7. Conclusions

voltage stability and control under large-disturbances (contingencies).

In a large interconnection power network, transient voltage dip criteria is more con-

venient to use than power margin based criteria. Short-term voltage stability assess-

ment needs to consider the fast acting and automatically controlled dynamic power

system equipments. Generally speaking, time domain simulation is the most essen-

tial approach to provide insight into the dynamic behavior of those equipments and

calculate transient voltage dip after a contingency. However, time domain simula-

tion has been computationally challenging for online application. In Chapter 5, the

combination of the ANN method and a commercial time-domain simulation program

is developed to calculate transient voltage dip. The voltage magnitudes and phase

angles of pre-contingency operation conditions are used as input features to the ANN.

The transient voltage dip is the output of ANN. It has been shown that the proposed

ANN method for large-disturbance voltage stability assessment is promising.

When an ANN method predicts that the system may indeed move toward voltage in-

stability under a large disturbance, some remedial actions such as load shedding need

to be undertaken to preserve the system integrity. In order to carry out the remedial

action, two load shedding algorithms are developed in Chapter 6 to calculate the op-

timal load shedding locations and the associated minimum load shedding amount at

the known relay time of these loads. The first approach is a particle swarm optimiza-

tion (PSO) algorithm that performs an optimization search in the search space of an

optimization problem. The second approach is a sensitivity based algorithm that is

conducted through the sensitivity index of the load shedding buses. The sensitivity

is used to seek the leading bus. The anticipated load shedding amount of the leading
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bus is then calculated by sensitivity and verified in simulation aiming at approaching

the voltage stability criteria. As a result, both algorithms have provided a load shed-

ding scheme providing two important elements of load shedding: the load shedding

locations, and minimum shedding amount when the relay time is known. Both algo-

rithms are based on simulation so that all the dynamic behavior of the system before

and after subjecting it to large disturbances are considered. The simulation results

show that the load shedding algorithm leads to a satisfactory result which can recover

the potential unsafe system to voltage stability after the occurrence of contingencies.

7.2 Contributions

The goal for this thesis research is to develop a comprehensive on-line strategy for

voltage stability analysis, and for voltage stability preventive and corrective control,

through application of wide area measurements. The contributions of this thesis, with

respect to this goal, include the following:

1. Identifying the performance indices which predict proximity to voltage instabil-

ity problems for small-disturbance voltage stability analysis and large-disturbance

voltage stability analysis individually.

2. Developing a continuation load flow program to calculate the small-disturbance

voltage stability margin. The program considers continuous techniques to over-

come the singularity of Jacobian matrix when the system is approaching stress-

ful conditions. The continuation load flow program includes the features: gen-

erator reactive power capability limits; transformer tap changing; static load
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models; reactive compensation devices; and HVDC converters.

3. Developing a framework of artificial neural network method to calculate voltage

stability margin that can replace the continuation load flow program at on-line

application.

4. Proposing to use the voltage magnitudes and phase angles measured by PMUs

as the inputs for ANN. The selection of inputs is tested on the study system

and analyzed theoretically.

5. Implementing and testing the ANN approach on a practical power system with

over 1800 buses to evaluate the feasibility and reliability of the proposed ap-

proach in a real and large size system.

6. Applying the ANN based approach to determine the voltage stability margin

under the different N-1 contingency scenarios. According to the output of eval-

uation of voltage stability under N-1 contingency, the proper preventive control,

such as generation reschedule and generator second voltage control, are carried

out to enhance voltage stability based on sensitivity.

7. Proposing a sequential forward selection approach based on ANN to determine

the best locations for PMUs since only a limited number of PMUs can be

installed. The proposed algorithm significantly reduces the searching times as

compared to the exhausted searching algorithm.

8. Developing an ANN approach that involves the initial system operating points

measured by PMUs to predict transient voltage dip that is calculated by the

time-domain simulation. Since the simulation program is a commercial soft-

ware, the data exchange and simulation is incorporated in the developed ANN
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approach.

9. Developing two simulation based algorithms to find the load shedding scheme as

a corrective control for on-line large-disturbance voltage stability. Both of the

algorithms are executed based on time-domain simulation so that they are able

to investigate the dynamic behavior of the system before and after subjecting

it to large disturbances, in depth with all the dynamic devices and voltage-

dependant loads taking part in the short-term voltage instability.

These contributions have led to the following publications.

• Debbie Q. Zhou, U. D. Annakkage, and A. D. Rajapakse, “Online Monitoring

of Voltage Stability Margin Using an Artificial Neural Network”, Accepted for

publication in IEEE Transactions on Power Systems.

• Debbie Q. Zhou, Udaya D. Annakkage, and Athula Rajapakse, “Combination

of Computational Intelligence and Simulation for Online Prediction and Control

of Large-disturbance Voltage Stability”, to be submitted to IEEE Transaction

on Power Systems.

• Debbie Q. Zhou, Udaya D. Annakkage, and Athula Rajapakse, “An Online

Load Shedding Approach for Voltage Stability Enhancement,” CIGRE Canada

Conference on Power Systems, Toronto, October, 2009.

• Debbie Q. Zhou, Udaya D. Annakkage, and Athula Rajapakse, “Optimal Place-

ment of PMUs in a Wide Area Monitoring System Using an Artificial Neural

Network Based Technique”, CIGRE Canada Conference on Power Systems,

Winnipeg, October, 2008.
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• Debbie Q. Zhou and Udaya D. Annakkage, “Investigation of a Criterion for

Load Shedding Based on voltage stability indices”, CIGRE Canada Conference

on Power Systems, Calgary, August, 2007.

7.3 Suggestions for Future Research

The area of research presented in this thesis offers a wide range of projects that the

author would like to suggest for future studies.

The success of application of the artificial neural network for predicting voltage stabil-

ity indices is dependent on choosing voltage magnitudes and phase angles as inputs of

the ANN. The wide-area or global signals of voltage magnitudes and phase angles are

essentially based on synchronized data acquisition technology, e.g. Phasor Measure-

ment Units (PMUs). In this thesis, the input variables, voltage magnitudes and phase

angles, are computed by power flow program under different operating conditions. In

order to implement this ANN algorithm for real-time application, it is suggested to

use real-time data which are gathered by PMUs and the SCADA system. Such a

system can be tested on Real Time Digital Simulator (RTDS) before using in the real

power system. The power system with wide area measurement can be simulated on

RTDS and the signals can be sampled from the I/O of RTDS and fed to the ANN to

perform voltage stability assessment.

The artificial neural network is an adaptive system that is able to learn the complex

relationships based on external or internal information during the training phase.

Accurate training of a neural network algorithm requires a great computational ef-

fort. A practical power system usually consists of hundreds and thousands of nodes.
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Therefore, there are hundreds and thousands of nodes whose data are associated with

each operating condition. Faced with numerous input data, training an ANN is a big

challenge because the computer may not have enough memory available to run this

ANN training program. In addition as the training time increases, it becomes an

obstacle for on-line training. Hence, more research is necessary to deal with large

scale computing capabilities and for reducing the training time. One possible area

to explore is parallel computing which is a form of computation in which many cal-

culations are carried out simultaneously. Large problems can often be divided into

smaller ones, which are then solved in parallel.

When discussing the corrective control of the short-term voltage stability under large

disturbance, load shedding is employed as one of the important control actions. There

are new control actions that can be carried out at the emergency state. For example,

FACTS devices and multiterminal HVDC transmission have significant growth with

the development of the power industry. FACTS control devices provide new control

systems for existing transmission lines. HVDC systems have the ability to rapidly

control the transmitted power. Therefore, they have a significant impact on the

stability of the associated ac power systems [10]. These trends become a challenge

for the proper coordination of protection and control systems. It is interesting to

compare the different control actions and select the most effective and fast control

action to secure the system state of operation.



Appendix A

12-bus System Network

This appendix provides complete steady state data for a system.

Figure A.1 shows the 12-bus system network with some of the main data at base case

condition [51]. Table A.1 to Table A.3 are the system data.
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Figure A.1: 12 Bus Single Line Diagram
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Bus Pgen Qmax
gen Qmin

gen MBASE Vset

Number (MW) (MVar) (MVar) (MW) (p.u.)

9 509.123 330 -1100 800 1.04
10 500 300 -1000 700 1.02
11 200 440 -800 500 1.04
12 300 240 -600 500 1.02

Table A.1: Generation Data

Bus Pload(MW ) Qload(MV ar)

2 280 200
3 320 240
4 320 240
5 100 60
6 440 300

Table A.2: Load Data

Bus Shunt Q (MVar) Step Size

4 200 40
5 80 40
6 200 40

Table A.3: Switched Shunt Data
Bus Number R X B/2
From To (p.u.) (p.u.) (p.u.)

1 2 0.01144 0.09111 0.18261
1 6 0.03356 0.26656 0.55477
2 5 0.03356 0.26656 0.55477
3 4 0.01144 0.09111 0.18261
3 4 0.01144 0.09111 0.18261
4 5 0.03356 0.26656 0.55477
4 6 0.03356 0.26656 0.55477
7 8 0.01595 0.17214 3.28530

Table A.4: Transmission Line Data

Bus Number R X Transformer Tap Settings (p.u.)
From To (p.u.) (p.u.) Initial Max Min Step Size

1 7 0.0 0.01 1.0 1.1 0.9 0.00625
1 9 0.0 0.01 1.0 1.1 0.9 0.00625
2 10 0.0 0.01 1.0 1.1 0.9 0.00625
3 8 0.0 0.01 1.0 1.1 0.9 0.00625
3 11 0.0 0.01 1.0 1.1 0.9 0.00625
6 12 0.0 0.02 1.0 1.1 0.9 0.00625

Table A.5: Transformer Data



Appendix B

New England 39-bus System

Network

This appendix provides complete steady state data for the New England 39-bus sys-

tem [80].

Figure B.1 shows the system network with some of the main data at base case con-

ditions. Table B.1 to Table B.4 are system data.
Bus Pgen Qmax

gen Qmin
gen MBASE Vset

Number (MW) (MVar) (MVar) (MW) (p.u.)

30 250.000 500 -9999 300.000 1.04750
31 898.805 9999 -9999 612.000 0.98200
32 650.000 9999 -9999 765.000 0.98310
33 632.000 9999 -9999 700.000 0.99720
34 508.000 9999 -9999 613.000 1.01230
35 650.000 300 -9999 798.000 1.04930
36 560.000 9999 -9999 660.000 1.06350
37 540.000 9999 -9999 660.000 1.02780
38 830.000 9999 -9999 1151.000 1.02650
39 1000.000 9999 -9999 1200.000 1.03000

Table B.1: Generation Data
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Figure B.1: 39 Bus Single Line Diagram

Bus Number Pload(MW ) Qload(MV ar) Bus Number Pload(MW ) Qload(MV ar)

2 322.0 2.4 21 274.0 115.0
3 322.0 2.4 23 247.5 84.6
4 500.0 184.0 24 308.6 -92.2
7 233.8 84.0 25 224.0 47.2
8 522.0 176.0 26 139.0 17.0
12 8.5 88.0 27 281.0 75.5
15 320.0 153.0 28 206.0 27.6
16 329.4 32.3 29 283.5 26.9
18 158.0 30.0 31 9.2 4.6
20 680.0 103.0 39 1004.0 117.0

Table B.2: Load Data
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Bus Number R X B/2 Bus Number R X B/2
From To (p.u.) (p.u.) (p.u.) From To (p.u.) (p.u.) (p.u.)

1 2 0.0035 0.0411 0.6987 14 15 0.0018 0.0217 0.3660
1 39 0.0010 0.0250 0.7500 15 16 0.0009 0.0094 0.1710
2 3 0.0013 0.0151 0.2572 16 17 0.0007 0.0089 0.1342
2 25 0.0070 0.0086 0.1460 16 19 0.0016 0.0195 0.3040
3 4 0.0013 0.0213 0.2214 16 21 0.0008 0.0135 0.2548
3 18 0.0011 0.0133 0.2138 16 24 0.0003 0.0059 0.0680
4 5 0.0008 0.0128 0.1342 17 18 0.0007 0.0082 0.1319
4 14 0.0008 0.0129 0.1382 17 27 0.0013 0.0173 0.3216
5 6 0.0002 0.0026 0.0434 19 20 0.0007 0.0138 0.2548
5 8 0.0008 0.0112 0.1476 21 22 0.0008 0.0140 0.2565
6 7 0.0006 0.0092 0.1130 22 23 0.0006 0.0096 0.1846
6 11 0.0007 0.0082 0.1389 23 24 0.0022 0.0350 0.3610
7 8 0.0004 0.0046 0.0780 25 26 0.0032 0.0323 0.5130
8 9 0.0023 0.0363 0.3804 26 27 0.0014 0.0147 0.2396
9 39 0.0010 0.0250 1.2000 26 28 0.0043 0.0474 0.7802
10 11 0.0004 0.0043 0.0729 26 29 0.0057 0.0625 1.0290
10 13 0.0004 0.0043 0.0729 28 29 0.0014 0.0151 0.2490
13 14 0.0009 0.0101 0.1723

Table B.3: Transmission Line Data

Bus Number R X Transformer Tap Settings (p.u.)
From To (p.u.) (p.u.) Initial Max Min Step Size

2 30 0.0000 0.0181 1.0 1.1 0.9 0.00625
6 31 0.0000 0.0250 1.0 1.1 0.9 0.00625
10 32 0.0000 0.0200 1.0 1.1 0.9 0.00625
12 11 0.0016 0.0435 1.0 1.1 0.9 0.00625
12 13 0.0016 0.0435 1.0 1.1 0.9 0.00625
19 33 0.0007 0.0142 1.0 1.1 0.9 0.00625
20 34 0.0009 0.0180 1.0 1.1 0.9 0.00625
22 35 0.0000 0.0143 1.0 1.1 0.9 0.00625
23 36 0.0005 0.0272 1.0 1.1 0.9 0.00625
25 37 0.0006 0.0232 1.0 1.1 0.9 0.00625
29 38 0.0008 0.0156 1.0 1.1 0.9 0.00625

Table B.4: Transformer Data



Appendix C

Voltage Stability in Simple Radial

Network

Figure C.1 presents a simple radial network. This network has a constant voltage

source, which imitates a synchronous machine with sufficient exciter supporting, go

through a transmission line and On-load Tap Changing transformer (OLTC) to sup-

ply a load. Voltage source is Es, the off-normal radio of the transformer is k, the

impedance of the transmission line is ZL∠θ; load impedance is ZD∠φ.

The expression for current İ is

İ =
Ės

ŻL + ŻD

=
Es

ZL∠θ +
1

k2
ZD∠φ

(C.1)

The magnitude of the current İ is
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Figure C.1: A simple radial network with transformer

I =
k2Es√

k4ZL
2 + 2k2ZLZD cos(θ − φ) + ZD

2
(C.2)

The per unit of the current İ is given by

I/ISC =
k2ZLD√

1 +

[
2k2 cos(θ − φ)ZLD + k4Z2

LD

] (C.3)

Where,

ZLD =
ZL

ZD

, ISC =
ES

ZL

(C.4)

The receiving end voltage is expressed as,

V̇R = İ
ZD∠φ

k
(C.5)

The voltage of the first side of the tap change transformer is expressed as
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V̇P = Ės − İZL∠θ (C.6)

The per unit of the receiving end voltage is given by

VR/ES =
k

√
1 +

[
2k2 cos(θ − φ)ZLD + k4Z2

LD

] (C.7)

The per unit of the first side voltage is given by

VP /ES =
1

√
1 +

[
2k2 cos(θ − φ)ZLD + k4Z2

LD

] (C.8)

The transferring power in the transmission line is

PR + jQR = V̇R

ˆ̇I

k
=

I2ZD

k2
(cos φ + j sin φ) (C.9)

Substitute equation (C.2) to equation (C.9), get

PR =
k2ES cos φ

ZL

ZLD

1 +

[
2k2 cos(θ − φ)ZLD + k4Z2

LD

]

QR = PR tan φ (C.10)

If setting
dPR

dZLD

= 0, the maximum value of power can be calculated. When ZLD =
1

k2
,
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means ZD = k2ZL

PRmax =
E2

S cos φ

2ZL

[
1 + cos(θ − φ)

] (C.11)

QRmax = PRmax tan φ

PRmax of equation (C.11) is the maximum power which is transmitted from generator

to load. Normalizing PR and QR as below

PR/PRmax = QR/QRmax =

2k2ZLD

[
1 + cos(θ − φ)

]

1 +

[
2k2 cos(θ − φ)ZLD + k4Z2

LD

] (C.12)

The receiving end power for the load with k = 1 can be expressed,

PR + jQR = V̇R
ˆ̇IR = V̇R

ES − ˆ̇VR

ZL∠− θ
=

VRES cos θR − V 2
R + jVRESsinθR

XL

tan θ − jXL

(C.13)

To normalize active power, reactive power and load voltage, set,

p =
PRXL

E2
S

, q =
QRXL

E2
S

, v =
VR

ES

(C.14)

Substituting to equation (C.13) get,
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v cos θR = v2 +
p

tan θ
+ q

v sin θR =
q

tan θ
− q (C.15)

Eliminating θR from equation (C.15) obtain the following equation,

v4 +

(
2

tan θ
p + 2q − 1

)
v2 +

(

1 +
1

tan2 θ

)(
p2 + q2

)
= 0 (C.16)

Solve equation (C.16) and replace q by q = p tan φ, the relationship of voltage and

active power is,

v2 =
1

2
−

(
1

tan θ
+ tan φ

)
p±

√√√√√1

4
−

(
1

tan θ
+ tan φ

)
p−

(

1−
tan φ

tan θ

)2

p2

(C.17)



Appendix D

Eigenvalue and Singular-value

Decomposition

In the conventional power flow, the power flow equation by using the Newton-Raphson

technique has a linearized model around the given operating point which can be

expressed as equation (D.1),




∆P

∆Q


 =




∂P

∂θ

∂P

∂V

∂Q

∂θ

∂Q

∂V







∆θ

∆V


 = [J ]




∆θ

∆V


 (D.1)

Where J is Jacobian matrix which is a linear transformation of space of [∆θ ∆V ]

into space of [∆P ∆Q]. ∆P , ∆Q, ∆V and ∆θ represent incremental change in bus

active power, reactive power, voltage magnitude and phase angle respectively.

Letting J be a kxk square matrix
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J =




J11 J12 · · · J1k

J21 J22 · · · J1k

· · · · · · . . . · · ·
Jk1 Jk2 · · · Jkk




(D.2)

with eigenvalue λ, then the corresponding eigenvectors satisfy

J =




J11 J12 · · · J1k

J21 J22 · · · J1k

· · · · · · . . . · · ·
Jk1 Jk2 · · · Jkk







x1

x2

· · ·
xk




= λ




x1

x2

· · ·
xk




(D.3)

which can be written compactly as

JX = λX

or, J = X−1λX (D.4)

xi is the ith column right eigenvector which corresponding to eigenvalue λi.

Singular value decomposition takes a rectangular matrix (defined as A, where A is a

n x p matrix). The SVD theorem states:

An×p = Un×nSn×pV
T
p×p (D.5)
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Where

UT U = In×n

V T V = Ip×p (D.6)

Where the columns of U are the left singular vectors; S (the same dimensions as A)

has singular values; and V T has rows that are the right singular vectors.

The singular values are always real numbers. If the matrix A is a real matrix, then

U and V are also real.



Appendix E

Multilayer Percetron Networks

This appendix provides a basic concept of Multilayer Percetron Networks which is

applied in this report [81].

E.1 Model

Among the numerous artificial neural networks which have been proposed recently,

the most widely used type of neural network is the Multilayer Perceptron (MLP)

Networks, also known as the multilayer feed-forward network. This type of network

consists of the input, the hidden, and the output layers of neurons. A circle repre-

sents a neuron. The line between two neurons represents the weight relationships.

The output layer is compared to a target teacher and the error of them is applied in

a backpropagation process to adjust the weights. The graphical composition of the

neural network is shown in Figure E.1.

Each neuron performs two computations shown in Figure E.2: one is the weighted
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Figure E.1: Multilayer Neural Network Architecture

sum of its inputs which can be expressed as

netj =
d∑

i=1

xiwji + wj0 (E.1)

where the subscript i indexes units on the input layer or the upstream hidden layer,

j for the downstream successive hidden layer; wji denotes the weights at the hidden

unit j from input-to-hidden layer or up-level hidden layer to down-level hidden layer.

w0 is a single bias unit.

The other computation neuron performs, emitting an output that is a nonlinear func-

tion of its activation, f(net) as equation (E.2), where yj denotes the output layer or

the downstream successive hidden layer j.

yj = f(netj) (E.2)

The widely used activation function f(net) which is also applied in this thesis is
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Sigmoidal function. It is given as

yj =
1

1 + e−netj
(E.3)

where yi is the output of the neuron and vj is the weighted sum of all inputs and the

bias of neuron j.
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Figure E.2: Two computational steps in each neuron

E.2 Learning

A neural network learns about its objects through an iterative variation of connection

weights based on training patterns and desired output. Learning will be based on the

definition of a suitable error function, which is then minimized with respect to the

weights and biases. Usually a backpropagation algorithm is one of the simplest and

most general methods for evaluating the error function.

The back-propagation learning consists of a forward and a backward pass through the

different layers of the network. The algorithm is represented in the following steps:

1. Initialize the weights in the network (often randomly)
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2. Begin an iterative process

for each example set e in the training data

• forward pass

– Y = activation function is applied to the network, layer by layer, until

an output is produced in the network

– T = desired response or target output for e

– Calculate training error J = 1/2(T − Y )2 at the output units

• backward pass

– Compute ∆w for all weights from hidden layer based on gradient de-

scent ∆w = −η ∂J
∂w

. Coefficient η is the learning rate; it affects network

teaching speed.

– Update the weights in the network w′ = w + ∆w

end

3. Repeat until all examples are trained correctly or criteria to stop the program

are satisfied
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