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Abstract

Zero inflation occurs when the proportion of zeros of a model is greater than the proportion

of zeros of the corresponding Poisson model. This situation is very common in count

data. In order to model zero inflated count time series data, we propose the zero inflated

autoregressive conditional Poisson (ZIACP) model by the extending the autoregressive

conditional poisson (ACP) model of Ghahramani and Thavaneswaran (2009). The station-

arity conditions and the autocorrelation functions of the ZIACP model are provided. Based

on the expectation maximization (EM) algorithm an estimation method is developed. A

simulation study shows that the estimation method is accurate and reliable as long as the

sample size is reasonably high. Three real data examples, syphilis data Yang (2012), arson

data Zhu (2012) and polio data Kitromilidou and Fokianos (2015) are studied to compare

the performance of the proposed model with other competitive models in the literature.

Keywords: count data, times series of counts, zero inflation, Poisson, negative bino-

mial, EM algorithm, observation driven, parameter driven.
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Chapter 1

Introduction

1.1 Motivation

Count response variables that take non-negative integer values without explicit upper

bound are frequently encountered in empirical data analysis. Zero inflated data cannot be

modelled by the usual Poisson distribution. It became very popular over the last decade

to model zero inflated data using a mixture of a count distribution with a degenerate

distribution supported at zero. Real valued time series models, such as the generalized

autoregressive conditional heteroscedastic (GARCH) model, introduced by Bollerslev

(1986) have been used in many applications. The time varying mean of the Poisson process

have been modelled by Fokianos et al. (2009) and Ghahramani and Thavaneswaran (2009).

Modeling time varying parameters is very important in count time series analysis. When

modeling these parameters we may want to fully understand their behavior with respect

to time. Our interest is to estimate the fixed parameters that govern the behavior of these

time varying parameters of interest. When the conditional distribution of a time series is

a function of its past observations, then the series is said to be observation driven. For
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example consider the GARCH model below

yt =
√
htZt

ht = w +
∑p

i=1
αiy

2
t−i +

∑q

j=1
βjht−j, (1.1)

where Zt is a sequence of independent, identically distributed random variables with zero

mean and unit variance. Here ht is the time varying parameter which turns out to be

the conditional variance of the GARCH model. Essentially ht has been modeled as a

function of squared values of past observations and past values of itself. In general the

GARCH(p, q) model for a time series yt has the form (1.1). The corresponding ARMA

model for y2t can be written as

Φ(B)y2t = w + β(B)ut, (1.2)

where ut = y2t − ht is the martingale difference. We denote the variance of ut as σ2
u.

Φ(B) = 1 −
∑r

i=1 ΦiB
i, Φi = (αi + βi), β(B) = 1 −

∑q
i=1 βjB

j and r = max(p, q).

B is the back shift operator such that Byt = yt−1. This representation is used to obtain the

high order moments of the GARCH process yt.

Recently, a new class of models that appears to be more informative has been developed

by Harvey (2013), the generalized autoregressive score (GAS) models. Here the time

varying parameter is modeled as a function of past values of itself and past values of the

score resulting from the conditional likelihood. This model is very important since it has

most of the commonly used time series models as special cases. For example if f(yt|µt; θ)

follows the normal or the t−distribution and µt models the scale, then the GAS model

reduces to a normal GARCH or a t−GARCH, respectively. In the same way, if f(yt|µt; θ)

2



is a Poisson or a zero inflated Poisson and µt models the conditional mean, then the GAS

model reduces to the Poisson or a ZIP model with time varying parameter, respectively.

The Poisson and the negative binomial distribution are well noted for modelling count

data. The Poisson distribution in particular has the fundamental property that the mean

counts is equal to the variance of the counts. This property rarely holds in the case of a

zero inflated data. As such the normal/ordinary Poisson distribution fails to account for

the extra over dispersion in the data introduced by the inflation of the zero counts. This

situation is the motivation for the use of zero inflated models. In these models, the Poisson

and the negative binomial distributions are modified to be able to account for the extra

over dispersion exhibited by the zero inflated data. Therefore, there is need to develop

an efficient way of estimating model parameters to explain the zero inflated count time

series data. Failure to account for the zero-inflation in the data may lead to misleading

inference and unreliable predictions. There has also been concern whether zero inflated

distributions are necessary especially considering their estimation complexity. Particularly,

Allison (2012) argued that, the negative binomial distribution models zero inflated data

well enough so that it is not worth using the zero inflated distributions. He justified this

argument by examples on many different real datasets. The applications of zero-inflated

models have been found in many practical situations where excess zero observations are

generated. This thesis concentrates on efficient estimation strategies for analyzing zero

inflated count time series data which are mostly encountered in many biomedical and

public health applications. For example, when a rare infectious disease occurs overtime,

public health officials may be interested in monitoring the observed counts. Diseases with

low infection rates will normally exhibit a high incident of zeros (zero inflation). The

opposite is true that observed counts recorded can be very high during an outbreak.

3



1.1.1 Literature Review

Developments in the field of time series saw an interesting turn when for the first time

autoregressive conditional heteroskedasticity (ARCH) models were introduced by Engle

(see Engle and Russell, 1982). This idea was later generalized by Bollerslev (1986)

making the ARCH model a special case of the generalized autoregressive conditional

heteroskedasticity (GARCH) model. The first order GARCH (1,1) model of the time

varying volatility ht has the form

yt =
√
htZt (1.3)

ht = w + αy2t−1 + βht−1, ω > 0, α ≥ 0, β ≥ 0,

where Zt is a sequence of independent, identically distributed random variables with

zero mean and unit variance. The condition imposed on the model parameters α and

β ensures that the conditional variance ht is positive. The model (1.3) simplifies to the

ARCH model when β = 0. Here α and β are chosen in such a way that their sum is close

to one in order to ensure stationarity of the ARMA model in terms of y2t observations.

The integrated GARCH (IGARCH) model is obtained when their sum is one. GARCH

models have been the principal means of analyzing, modeling and monitoring volatility

changes especially for financial returns. The GAS models Creal et al. (2013) which are

similar to the GARCH models are observation driven models and form the latest family

of models that has been developed. In this new approach, the mechanism to update the

parameters over time is the scaled score of the likelihood function. This way of modeling

provides a unified and consistent framework for introducing time varying parameters in a

wide range of nonlinear models. The GARCH, autoregressive conditional duration (ACD),

autoregressive conditional intensity (ACI), and Poisson count models with time varying

4



mean are all special cases of the proposed GAS models . The conditional score drives the

dynamics of the model. These models have interesting features which make them easy to

deal with. The likelihood for these models are available in closed form thus allowing for

estimation and inference of the parameters of interest. In the next section, we provide an

outline of the Thesis.

1.1.2 Overview of the Thesis

The remainder of Chapter one summarizes some key concepts from Harvey’s book on

dynamic models for volatility and heavy tails (Harvey, 2013) to give the necessary back-

ground for the Thesis. A brief introduction to GAS models is then given, where we model

the conditional mean or the conditional variance as a function of past values of the process

and past values of the score which is based on the conditional likelihood. We then verify

the asymptotic distribution of the fixed parameters governing the dynamics of the model

as provided in Harvey (2013).

Chapter two provides a summary of the likelihood based inference for linear and

nonlinear Poisson autoregression of Fokianos et al. (2009) and conduct a simulation study

to demonstrate the efficiency of the modelling approach. We also describe the inference

procedure for the zero inflated Poisson (ZIP) distribution and later extend the ideas of the

Poisson autoregression as well as the ZIP distribution to estimate the parameters of the

zero inflated autoregressive conditional Poisson model (ZIACP).

Chapter three considers estimation of the parameters in the zero inflated Poisson

autoregression model for time series count data when there are many potential predictors

and some of them may not have influence on the response of interest. In the context of two

competing models where one model includes all covariates and the other restricts variable

5



coefficients to a linear restriction based on auxilliary information or prior knowledge. We

investigate the relative performances of shrinkage and pretest estimators with respect to

the unrestricted maximum likelihood estimator (UMLE). The asymptotic properties of

the pretest and shrinkage estimators including the derivation of asymptotic distributional

biases and risks are established. A Monte Carlo simulation study is conducted to examine

the relative performance of the shrinkage and pretest estimators with the UMLE.

Chapter four provides a conclusion to the Thesis and possible future reseach interests.

1.1.3 Generalized Autoregressive Score Models

If yt has a conditional distribution f(yt|µt; θ) and assuming we are interested in modeling

the conditional mean as a time varying parameter, then the GAS model has the form

yt ∼ f(yt|µt;θ) (1.4)

µt+1 = ω +

p∑
i=1

Aiut−i+1 +

q∑
j=1

Bjµt−j+1, (1.5)

where µt is the time varying parameter, θ is a vector of unknown fixed parameters. It is

possible for the conditional distribution (1.4) to depend on additional covariates. However,

for the sake of simplicity this will not be considered. If ut is a scaled score function, then

ut = kt ×
∂ log f(yt|µt; θ)

∂µt
, (1.6)

where kt is a user defined scaling matrix like the Fisher information matrix,

kt = −Et−1
(
∂ log f(yt|µt;θ)

∂µt

)(
∂ log f(yt|µt;θ)

∂µt

)>
.

6



1.1.4 Gaussian GAS models

If yt observations have conditional distribution such that the log-density is of the form

log f(yt|σ2
t ; θ) = − log(2π)

2
− log σ2

t

2
− y2t

2σ2
t

,

and σ2
t is the conditional variance of yt, then the score function can be obtained as

∂ log f(yt|σ2
t ; θ)

∂σ2
t

= − 1

2σ2
t

+
y2t

2σ4
t

,

=⇒ ∂2 log f(yt|σ2
t ; θ)

∂(σ2
t )

2
=

1

2σ4
t

− y2t
σ6
t

.

Therefore

− E
(
∂2 log f(yt|σ2

t ; θ)

∂(σ2
t )

2

)
=

1

2σ4
t

,

and
[
−E
(
∂2 log f(yt|σ2

t ;θ)

∂(σ2
t )

2

)]−1
= 2σ4

t .

If kt = 2σ4
t =⇒ kt × ∂ log f(yt|σ2

t ;θ)

∂σ2
t

= y2t − σ2
t = ut. We can write (1.5) as

σ2
t+1 = ω + A(y2t − σ2

t ) +Bσ2
t .

Therefore, when the observations follow a normal distribution and µt = σ2
t , the GAS(1,1)

model reduces to the GARCH(1,1) model. However, typically the GARCH(1,1) is param-

eterized as

7



µt+1 = ω + αy2t + βµt.

where α = A and β = B − A.

It is interesting to note that depending on the choice of link function, the parameteriza-

tion of the time varying parameter changes accordingly. For example, when µt = log(σ2
t ),

the score, the inverse of the fisher information matrix, and GAS(1,1) model for the

conditional distribution are,

∂ log f(yt|µt; θ)
∂µt

=
y2t

2exp(µt)
− 1

2

[
−E
(
∂2 log f(yt|µt; θ)

(∂σ2
t )

2

)]−1
= 2

µt+1 = ω + A

(
y2t

exp(µt)
− 1

)
+Bµt.

Taking into account that financial returns typically exhibit heavy tails i.e., extreme values

occur from time to time, the Dynamic Conditional Score models introduced by Harvey

(2013) shows how a radical change in the way GARCH models are formulated leads to a

resolution of many inherent problems associated with statistical theory.

1.1.5 Student’s t Distribution

The probability density function (pdf) of the t-distribution is given by,

f(y, µ, ϕ, ν) =
Γ((ν + 1)/2)

Γ(ν/2)

(
1 +

(y − µ)2

νϕ2

)−(ν+1)/2

ϕ, ν > 0, (1.7)
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where ν, φ and µ are the degree of freedom, scale, and location parameters, respectively.

Here Γ(.) is the gamma function. Moments exists only up to and including order ν − 1.

Since the distribution is symmetric, the mean is equal to the median which always exists.

The mean is finite when ν > 1. For ν > 2, the variance is

σ2 =

(
ν

ν − 2

)
ϕ2.

As a special case, the Cauchy distribution is a t- distribution with degree of freedom equal

to one and has no moments. Its pdf is

f(y) =
1

πϕ

(
1 +

(y − µ)2

ϕ2

)−1
.

Lemma 1. [Lemma 2 of Harvey (2013)] The expectation of the absolute value of a

standardized tν variate εt, raised to a power c is

E(|εt|c) = νc/2Γ(c/2 + 1/2)Γ(−c/2 + ν/2)/(Γ(1/2)Γ(ν/2), −1 < c < ν.

Proof. Since the ratio of two chi-square distributions results in an F distribution, the

problem reduces to finding the moment of the F distribution raised to the power c/2

Therefore referring to

E(F k) =
Γ(m+2k

2
)Γ(n−2k

2
)

Γ(m
2

)Γ(n
2
)

( n
m

)k
. (1.8)

For k = c/2,m = 1, n = ν.

E(|εt|c) = E({ε2t}c/2) = E({χ2
1/(χ

2
ν/ν)}c/2) = Γ((1 + c)/2)Γ((ν − c)/2)/(Γ(1/2)Γ(ν/2))νc/2.

9



Lemma 2. [Lemma 3 of Harvey (2013)] If a ∼ gamma(θ, α) and b ∼ gamma(θ, β)

with a and b independent of each other, then y = a/(b+ a) ∼ B(α, β).

Corollary 2.1. The variable (t2/ν)/(1 + t2/ν) has a B(1/2, ν/2) distribution whereas

1/(1 + t2/ν) has B(ν/2, 1/2) distribution.

Proof. t2/ν = χ2
1/χ

2
ν =⇒ (t2/ν)/(1 + t2/ν) =

χ2
1/χ

2
ν

1+χ2
1/χ

2
ν

=
χ2
1

χ2
1+χ

2
ν
, hence from lemma

(2) we have, (t2/ν)/(1+t2/ν) ∼ B(1/2, ν/2), similarly (1)/(1+t2/ν) = 1−(t2/ν)/(1+

t2/ν) = 1−B(1/2, ν/2) = B(ν/2, 1/2).

1.1.6 Maximum Likelihood Estimates

Suppose yt, t = 1, · · ·n is a set of independent observations, each from a distribution with

pdf f(yt;θ), where θ denotes a vector of parameters that is of interest. If the observations

are independent and identically distributed, the likelihood function reduces to the product

of the individual denstiy functions (Harvey, 2013). For practical and theoretical reasons it

is tractable to work with the logarithm of the likelihood function.

logL(θ; y1 · · · , yn) =
n∑
t=1

log f(yt;θ).

The maximum likelihood principle finds the value of θ that makes the sample most likely.

The global maximum likelihood estimator θ̂ maximizes logL(θ) over the full parameter

space. The estimate θ̂ can be obtained by solving the score equation below:

∂ logL(θ)

∂(θ)
= 0.

10



We can write the information matrix for a single observation as

I(θ0) = E0

(
∂ log f

∂θ

∂ log f

∂θ′

)
= −E0

(
∂2 log f

∂θ∂θ′

)
,

where the expectation is taken at the true value of the parameter θ denoted by θ0. The

full information matrix is {n× I(θ0)} for the independent case where n emphasizes the

sample size. Under certain regularity conditions such as the uniqueness of the maximum

likelihood estimate (MLE), the existence of moments to at least the third order, positive

definiteness of the Fisher information matrix, the MLE θ̂ is a consistent estimator of θ0

and it is asymptotically normal in the sense that
√
n(θ̂ − θ0) converges in distribution to

a multivariate normal with a zero vector mean and covariance matrix I−1(θ0) which is

positive definite, provided that the model is identifiable. In the case of a time series, by

means of a clever conditioning we could use the Partial Likelihood (PL) to transport the

inferential feature appropriate for independent data to dependent data. Consider a time

series yt, t = 1, · · ·n with the joint density fθ(y1, y2, y3, · · · , yn) where θ constitutes a

parameter vector. Suppose the existence of some auxiliary information (AI) that is known

throughout the period the time series was observed. Then we can write the likelihood as a

function of θ by the equation

fθ(y1, y2, y3, · · · , yn|AI) = fθ(y1|AI)
n∏
t=2

fθ(yt|y1, y2, y3, · · · , yt−1,AI) (1.9)

In the event that the auxiliary information is not available or irrelevant, it can be dropped

from equation (1.9), simplifying it to

fθ(y1, y2, y3, · · · , yn) = fθ(y1)
n∏
t=2

fθ(yt|y1, y2, y3, · · · , yt−1) (1.10)

11



using the Markovian assumption (See details, Kedem and Fokianos, 2005) the joint density

can be written as in

fθ(y1, y2, y3, · · · , yn) = fθ(y1)
n∏
t=2

fθ(yt|yt−1) (1.11)

We could ignore the first factor fθ(y1), as it does not depend on n and inference can be

made about θ based on the product term in (1.11)

1.1.7 Maximum Likelihood Estimation of Dynamic Linear Models

We consider initially a static model with only one parameter θ such that, the scaled score

ut is given by a product of a scalar k and the derivative of the loglikelihood fuction as in,

ut = k
∂ log f(yt; θ)

∂θ
, t = 1, · · · , n,

where k is a finite constant. The derivative ∂ log f(yt; θ)/∂θ is a random variable with

zero mean at the true parameter value, θ0 so as ut. Let σ2
u denote the variance of ut which

is finite under standard regularity conditions. The information quantity for this model for

a single observation can be written as below

I(θ0) = −E
(
∂2 log f

∂θ2

)
= E

[(
∂ log f

∂θ

)2]
= E(u2t )/k

2 <∞. (1.12)

Interestingly this information quantity does not depend on θ, the parameter of interest.

Condition 1 [Harvey (2013), page 32] The variance of the score in the static model is

finite and does not depend on θ0.

However, if θ is allowed to be a time varying parameter θt|t−1 (i.e., adopting the notation

12



in Harvey (2013)) such that it evolves over time as a function of past observations and

past values of the scaled score of the conditional distribution, and the conditional score

depends on past observations through θt|t−1, ∂ log f(yt|Yt−1;ψ)
∂ψ

can be broken down into two

parts as in

∂ log f(yt|Yt−1;ψ)

∂ψ
=
∂ log f(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

. (1.13)

where ψ are fixed parameters of the time varying parameter θt|t−1.

Lemma 3. [Lemma 5 of Harvey (2013)] Consider a model with a single time-varying

parameter, θt|t−1, which satisfies an equation that depends on variables which are fixed

at time t − 1. The process is governed by a set of fixed parameters, ψ. If Condition 1

holds, then the conditional score for the t-th observation, ∂ log ft(yt|Yt−1;ψ)/∂ψ is a

martingale difference at ψ = ψ0, with conditional covariance matrix

Et−1

(
∂ log ft(yt|Yt−1;ψ)

∂ψ

)(
∂ log ft(yt|Yt−1;ψ)

∂ψ

)>
= I ×

(
∂θt|t−1
∂ψ

∂θt|t−1
∂ψ′

)
,

(1.14)

t = 1, · · · , n where the information quantity, I , is constant over time and independent of

ψ.

Proof: Let θ = θt|t−1 evolve over time as a function of past observations and past

values of the scaled score of the conditional distribution. Since the conditional score

depends on past observations through θt|t−1, it can be written in two parts as

∂ log ft(yt|Yt−1;ψ)

∂ψ
=
∂ log ft(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

. (1.15)

Since the derivative of the time-varying parameter, i.e., ∂θt|t−1/∂ψ is fixed at time t− 1

and the expected value of the score in the static model is zero, the score (1.15) is a

13



martingale difference. The conditional covariance matrix is obtained by writing its outer

product as

(
∂ log ft(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

)(
∂ log ft(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

)>
(1.16)

=

(
∂ log ft
∂θt|t−1

)2(∂θt|t−1
∂ψ

∂θt|t−1
∂ψ′

)
.

Since θt|t−1 and its derivatives depend only on past information, the distribution of the

score conditional on available information at time t−1 is the same as its unconditional dis-

tribution and so time invariant. Taking the expectation of (1.16) conditional on information

available at time t− 1, Et−1(∂ log ft/∂θt|t−1)
2 is as in the static model considered above

and equal to the unconditional expectation in the static model, that is (1.12). Because

θt|t−1 is fixed at time t− 1 and hence static,

Et−1

[(
∂ log ft(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

)(
∂ log ft(yt; θt|t−1)

∂θt|t−1

∂θt|t−1
∂ψ

)′]

=

[
E

(
∂ log ft
∂θt|t−1

)2]∂θt|t−1
∂ψ

∂θt|t−1
∂ψ′

.

Corollary 3.1. [Corollary 4 of Harvey (2013)] The information matrix in the context

of Lemma 3 is

I(ψ) = I ×D(ψ),

where

D(ψ) = E

(
∂θt|t−1
∂ψ

∂θt|t−1
∂ψ′

)
.

Here we derive the information matrix at time t for the fixed parameters of the first
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order model

θt+1|t = δ + φθt|t−1 + κut, |φ| < 1, κ 6= 0, t = 1, · · · , n. (1.17)

Unless φ is known to be zero, the condition κ 6= 0 is necessary for model identifiability.

The condition |φ| < 1 ensures that the process is stationary and hence enables θt|t−1

to be expressed as an infinite moving average in terms of ut’s. Because the ut’s are

martingale differences and hence white noise, the process θt|t−1 is weakly stationary, with

an unconditional mean of ω = δ/(1− φ) and an unconditional variance κ2σ2
u/(1− φ2).

Rewriting (1.17) as

θt+1|t = ω(1− φ) + φθt|t−1 + κut, (1.18)

we have

∂θt+1|t

∂κ
= φ

∂θt|t−1
∂κ

+ κ
∂ut
∂κ

+ ut

∂θt+1|t

∂φ
= φ

∂θt|t−1
∂φ

+ κ
∂ut
∂φ

+ θt|t−1 − ω

∂θt+1|t

∂ω
= φ

∂θt|t−1
∂ω

+ κ
∂ut
∂ω

+ 1− φ.

But we can express ∂ut
∂κ

= ∂ut
∂θt|t−1

∂θt|t−1

∂κ
, ∂ut

∂φ
= ∂ut

∂θt|t−1

∂θt|t−1

∂φ
, ∂ut

∂ω
= ∂ut

∂θt|t−1

∂θt|t−1

∂ω
, so that

∂θt+1|t

∂κ
= xt

∂θt|t−1
∂κ

+ ut (1.19)

θt+1|t

∂φ
= xt

∂θt|t−1
∂φ

+ θt|t−1 − ω (1.20)

∂θt+1|t

∂ω
= xt

∂θt|t−1
∂ω

+ 1− φ, (1.21)
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where xt = φ+ κ ∂ut
∂θt|t−1

, t = 1, 2, · · · , n.

Condition 2 [Harvey (2013), page 35 ] For the static model, the score and its first

derivative, or equivalently ut and u′t, where u′t = ∂ut/∂θ, have finite second moments

and covariance that are time-invariant and do not depend on θ, that is, E(u2−kt u
′k
t ) <

∞, k = 0, 1, 2 · · · .

The implications of the preceding condition is that, E(utu
′
t) < ∞, E(u

′2
t ) < ∞ as

well as E(u2t ) <∞. In view of Condition 2, the expectations below are valid, in that they

are time invariant, the unconditional expectations can replace the conditional ones.

a = Et−1(xt) = φ+ κEt−1

(
∂ut
∂θt|t−1

)
= φ+ κE

(
∂ut
∂θ

)
. (1.22)

b = Et−1(x
2
t ) = φ2 + 2φκE

(
∂ut
∂θ

)
+ κ2E

(
∂ut
∂θ

)2

≥ 0.

c = Et−1(utxt) = κE

(
ut
∂ut
∂θ

)
.

Lemma 4. [Lemma 6 of Harvey (2013)] When the process for θt|t−1 starts in the infi-

nite past and provided that |a| < 1, the equations in (1.19) can be viewed as an AR(1)

process. Hence

E

(
∂θt+1|t

∂κ

)
= 0. t = 1, 2, · · · , n (1.23)

E

(
∂θt+1|t

∂φ

)
= 0.

E

(
∂θt+1|t

∂ω

)
=

1− φ
1− a

.

16



Theorem 5. [Theorem 1 of Harvey (2013)] Assume that Condition 2 holds and that

b < 1. Then the information matrix for a single observation is time-invariant and given by

I(ψ) = I ×D(ψ) = (σ2
u/k

2)(D(ψ)), (1.24)

where

D(ψ) = D

 κ
φ
ω

 =
1

1− b

A D E

D B F

E F C


with

A = σ2
u, B = k2σ2

u(1+aφ)
(1−φ2)(1−aφ) , C = (1−φ)2(1+a)

1−a , D = aκσ2
u

1−aφ , E = c(1−φ)
1−a , and

F = acκ(1−φ)
(1−a)(1−aφ) .

Proof. From (1.19) above, by squaring and applying expectation we obtain

∂θt+1|t

∂κ
= xt

∂θt|t−1
∂κ

+ ut,

(
∂θt+1|t

∂κ

)2

= x2t

(
∂θt|t−1
∂κ

)2

+ u2t + 2xtut
∂θt|t−1
∂κ

,

Et−1

(
∂θt+1|t

∂κ

)2

= b

(
∂θt|t−1
∂κ

)2

+σ2
u + 2c

∂θt|t−1
∂κ

,

Et−2Et−1

(
∂θt+1|t

∂κ

)2

= bEt−2

(
∂θt|t−1
∂κ

)2

+σ2
u + 2cEt−2

(
∂θt|t−1
∂κ

)
,

=⇒ lim
n→∞

(
∂θt+1|t

∂κ

)2

=
σ2
u

1− b
.
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Similarly from (1.20) we apply expection to the terms after squaring

∂θt+1|t

∂φ
= xt

∂θt|t−1
∂φ

+ θt|t−1 − ω,

Et−1

(
∂θt+1|t

∂φ

)2

= b

(
∂θt|t−1
∂φ

)2

+(θt|t−1 − ω)2 + 2a
∂θt|t−1
∂κ

(θt|t−1 − ω),

Et−2Et−1

(
∂θt+1|t

∂φ

)2

= bEt−2

(
∂θt|t−1
∂φ

)2

+
σ2
uk

2

1− φ2
+ 2aEt−2

(
∂θt|t−1
∂φ

(θt|t−1 − ω)

)
.

here we evaluate the expectations of
(
∂θt|t−1

∂φ

)2

and
(
∂θt|t−1

∂φ
(θt|t−1 − ω)

)
further and

substitute them back afterwards by writing θt|t−1 in ∂θt|t−1

∂φ
like the defining equation in

(1.17).

θt|t−1 = ω(1− φ) + φθt−1|t−2 + κut−1

θt|t−1 − ω = φ(θt−1|t−2 − ω) + κut−1

∂θt|t−1
∂φ

= xt−1
∂θt−1|t−2
∂φ

+ θt−1|t−2 − ω.

Therefore,

Et−2

(
∂θt|t−1
∂φ

(θt|t−1 − ω)

)
= Et−2

[(
xt−1

∂θt−1|t−2
∂φ

+ θt−1|t−2 − ω
)

× (φ(θt−1|t−2 − ω) + κut−1)

]
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=⇒ Et−2

(
∂θt|t−1
∂φ

(θt|t−1 − ω)

)
= φEt−2

(
xt−1

∂θt−1|t−2
∂φ

(θt−1|t−2 − ω)

)

+ Et−2

(
κut−1xt−1

∂θt−1|t−2
∂φ

)
+ φEt−2[(θt−1|t−2 − ω)2]

+ Et−2[κut−1(θt−1|t−2 − ω)]. (1.25)

The last term is zero and the penultimate term will eventually be zero as well. Therefore

(1.25) becomes

Et−2

(
∂θt|t−1
∂φ

(θt|t−1 − ω)

)
= aφEt−2

(
∂θt−1|t−2
∂φ

(θt−1|t−2 − ω)

)
+
φσ2

uκ
2

1− φ2
.

Since

|a| < 1 =⇒ E

(
∂θt|t−1
∂φ

(θt|t−1 − ω)

)
=

φσ2
uκ

2

(1− aφ)(1− φ2)
.

Therefore,

E

(
∂θt+1|t

∂φ

)2

=
1

1− b

[
σ2
uκ

2

1− φ2
+ 2a

(
φσ2

uκ
2

(1− aφ)(1− φ2)

)]

=
1

1− b

[
k2σ2

u(1 + aφ)

(1− φ2)(1− aφ)

]
.

∂θt+1|t

∂ω
= xt

∂θt|t−1
∂ω

+ 1− φ

(
∂θt+1|t

∂ω

)2

= (1− φ)2 + x2t

(
∂θt|t−1
∂ω

)2

+ 2(1− φ)xt
∂θt|t−1
∂ω

Et−1

(
∂θt+1|t

∂ω

)2

= b

(
∂θt|t−1
∂ω

)2

+ (1− φ)2 + 2a(1− φ)
∂θt|t−1
∂ω

=⇒ E

(
∂θt+1|t

∂ω

)2

=
(1− φ)2(1 + a)

1− a
.
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Since E
(
∂θt+1|t
∂ω

)
= 1−φ

1−a and now obtaining the cross terms of the information matrix

matrix

Et−1

(
∂θt+1|t

∂κ
.
∂θt+1|t

∂φ

)
= Et−1

[(
xt
∂θt|t−1
∂κ

+ ut

)(
xt
∂θt|t−1
∂φ

+ θt|t−1 − ω
)]

Et−1

(
∂θt+1|t

∂κ
.
∂θt+1|t

∂φ

)
= Et−1

[
x2t
∂θt|t−1
∂κ

∂θt|t−1
∂φ

+ utxt
∂θt|t−1
∂φ

+ xt(θt|t−1 − ω)
∂θt|t−1
∂κ

+ ut(θt|t−1 − ω)

]

Et−1

(
∂θt+1|t

∂κ
.
∂θt+1|t

∂φ

)
= b

(
∂θt|t−1
∂κ

∂θt|t−1
∂φ

)
+ c

∂θt|t−1
∂φ

+ a(θt|t−1 − ω)
∂θt|t−1
∂κ

.

(1.26)

But,

Et−2

(
(θt|t−1 − ω)

∂θt|t−1
∂κ

)
= Et−2

[(
xt−1

∂θt−1|t−2
∂κ

+ ut−1

)(
φ(θt−1|t−2 − ω) + κut−1

)]

Et−2

(
(θt|t−1 − ω)

∂θt|t−1
∂κ

)
= Et−2

[
xt−1

∂θt−1|t−2
∂κ

φ(θt−1|t−2 − ω)

+ xt−1ut−1κ
∂θt−1|t−2
∂κ

+ ut−1φ(θt−1|t−2 − ω) + κu2t−1

]

lim
n→∞

Et−n

(
(θt|t−1 − ω)

∂θt|t−1
∂κ

)
= aφ lim

n→∞

(
Et−n(θt−1|t−2 − ω)

∂θt−1|t−2
∂κ

)
+ κσau

=⇒ E

(
(θt|t−1 − ω)

∂θt|t−1
∂κ

)
=

κσ2
u

1− aφ
.
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Similarly from (1.26),

Et−1

(
∂θt+1|t

∂κ
.
∂θt+1|t

∂φ

)
=

1

1− b
(
κσ2

u

1− aφ
),

Et−1

(
∂θt+1|t

∂ω
.
∂θt+1|t

∂φ

)
= Et−1

[(
xt
∂θt|t−1
∂ω

+ 1− φ
)(

xt
∂θt|t−1
∂φ

+ θt|t−1 − ω
)]
,

=⇒ Et−1

(
∂θt+1|t

∂ω
.
∂θt+1|t

∂φ

)
= Et−1

[
x2t
∂θt|t−1
∂ω

∂θt|t−1
∂φ

+ (1− φ)xt
∂θt|t−1
∂φ

+ xt(θt|t−1 − ω)
∂θt|t−1
∂ω

+ (1− φ)(θt|t−1 − ω)

]
,

Et−1

(
∂θt+1|t

∂κ
.
∂θt+1|t

∂φ

)
= b

(
∂θt|t−1
∂ω

∂θt|t−1
∂φ

)
+ a(1− φ)

∂θt|t−1
∂φ

+ a(θt|t−1 − ω)
∂θt|t−1
∂ω

. (1.27)

Similarly as in above we can write,

E

(
(θt|t−1 − ω)

∂θt|t−1
∂κ

)
=

κc(1− φ)

(1− aφ)(1− a)
, (1.28)

=⇒ E

(
∂θt+1|t

∂ω
.
∂θt+1|t

∂φ

)
=

1

1− b

(
a(1− φ)κc

(1− aφ)(1− a)

)
.

1.1.8 Asymptotic Distribution

Given that ψ̂ is the maximum likelihood estimate (MLE) of the fixed parameters governing

the model of the time varying parameter considered above, the maximum likelihood
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estimator is the global maximum of the likelihood function and I−1(ψ0) is positive

definite, by the central limit theorem this is consistent and the limiting distribution of

√
n(ψ̂ − ψ) as n → ∞ is a multivariate normal with mean vector zero and covariance

matrix

V ar(ψ̂) = I−1(ψ0).

This implies that the asymptotic covariance matrix of ψ̂ is of the form (1/n)×V ar(ψ̂)

where the asymptotic standard error of an estimate is the square root of the corresponding

diagonal element of (1/n)× V ar(ψ̂).

1.1.9 Dynamic Student’s t Location Model

Here we consider the dynamic linear model, specifically the first order-case of the model

which is of the form,

yt = µt|t−1 + vt = µt|t−1 + exp(λ)εt, t = 1, · · · , n. (1.29)

µt+1|t = δ + φµt|t−1 + κut.

The prediction errors, vt in (1.29) by construction are independently and identically

distributed as t variates with mean zero and scale exp(λ). The error term εt is defined as a

serially independent standard t-variate. When the location is being considered as a time

varying parameter, it may be captured by a model in which the conditional distribution of

the observed series has a tν distribution with conditional median µt|t−1 (in this case since
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the tν is a symmetric distribution, the mean and median are same). Here the log-likelihood,

is given by

log f(yt;µt|t−1, ϕ, ν) = log Γ((ν + 1)/2)− 1

2
log π − log Γ(ν/2)

− 1

2
log ν − logϕ− ν + 1

2
log

(
1 +

(yt − µt|t−1)2

νϕ2

)
(1.30)

∂ log ft
∂µt|t−1

= (ν + 1)(νϕ2)−1
(

1 +
(yt − µt|t−1)2

νe2λ

)−1
(yt − µt|t−1)

=⇒ k = ν
ν+1

ϕ2. The scaled score function that drives the dynamics of the model has the

form

ut =

(
1 +

(yt − µt|t−1)2

νe2λ

)−1
vt, t = 1, 2, · · ·n, (1.31)

where vt = yt − µt|t−1 is the prediction error and ϕ = exp(λ) is the (time-invariant) scale.

The model requires that the degree of freedom ν be positive. Similarly the ut’s are also

iid as it is essentially a function of vt which is in itself random. Since the mechanism of

updating the parameters overtime depends on ut, it is worth elaborating on the properties

of ut that follow from its relationship with the beta distribution.

Proposition 6. [Proposition 7 of Harvey (2013)] The variable ut can be written

ut = (1− bt)(yt − µt|t−1), (1.32)

where bt =
(yt−µt|t−1)

2/ve2λ

1+(yt−µt|t−1)
2/ve2λ

, 0 ≤ bt ≤ 1, 0 < v < ∞ is distributed as a beta with

shape parameters 1/2 and ν/2, we donote this as B(1/2, ν/2). The ut’s are iid(0, σ2
u)
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and symmetrically distributed. Even moments of all orders exist and are given by

E(umt ) = νm/2emλ
B((1 +m)/2), (ν +m)/2))

B(1/2, ν/2)
, m = 2, 4, · · · . (1.33)

Proof: Since (yt− µt|t−1)/exp(λ) = εt has a standardized distribution, the distribution of

ut does not change with time and does not depend on µt|t−1. Because the distribution of

yt − µt|t−1 is symmetric about zero, the same applies to the distribution of ut as bt does

not depend on the sign of yt − µt|t−1.

The fact that bt follows a beta distribution is shown below, the term in the bracket in

(1.31) is equal to (1− bt). Now,

bt =
(yt − µt|t−1)2/νe2λ

1 + (yt − µt|t−1)2/νe2λ
, (1− bt) =

1(
1 + (yt − µt|t−1)2/νe2λ

) .
ut = ν1/2eλ(1− bt)(yt − µt|t−1)ν−1/2e−λ = ν1/2eλ(1− bt)εt/ν1/2.

u2t = νe2λ(1− bt)2ε2t/ν.

Since εt ∼ tν =⇒ ε2t = χ2
1/(χ

2
ν/ν) = ν.χ2

1/χ
2
ν , therefore ε2t/ν = χ2

1/χ
2
ν

u2t = νe2λ(1− bt)2χ2
1/χ

2
ν

= νe2λ
(

1

1 + (χ2
1/χ

2
ν)

)2

×(χ2
1/χ

2
ν) = νe2λ

(
χ2
ν

χ2
1 + χ2

ν

)2

×(χ2
1/χ

2
ν)

= νe2λ
(

χ2
ν

χ2
1 + χ2

ν

)(
χ2
1

χ2
1 + χ2

ν

)
= νe2λbt(1− bt)

u2t = ν2/2e2λb
2/2
t (1− bt)2/2

umt = νm/2emλb
m/2
t (1− bt)m/2, m = 2, 4, · · · .
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Hence from

E(bh(1− b)k) =
B(a+ h, b+ k)

B(a, b)
, h > −a, k > −b. (1.34)

E(umt ) = νm/2emλB((1+m)/2),(ν+m)/2))
B(1/2,ν/2)

, m = 2, 4, · · · .

Corollary 6.1. [Corollary 10 of Harvey (2013)] The variance of ut is

V ar(ut) = σ2
u = ve2λE(bt(1− bt)) =

ν2e2λ

(ν + 1)(ν + 3)
. (1.35)

and its fourth moment

E(u4t ) = ν2e4λE(b2t (1− bt)2) =
3v3(ν + 2)e4λ

(ν + 1)(ν + 3)(ν + 5)(ν + 7)
. (1.36)

Hence the kurtosis of ut is

kurtosis(ut) =
2(ν + 2)(ν + 3)(ν + 1)

ν(ν + 5)(ν + 7)
.

Proof: Since E(ut) = 0 =⇒ V ar(ut) = E(u2t ), therefore

E(u2t ) = ve2λE(bt(1− bt)) (1.37)

=
ν2e2λ

(ν + 1)(ν + 3)
.

From (1.34), E(u4t ) follows similarly. However, the kurtosis is,

kurtosis(ut) =
E(u4t )

(E(u2t ))
2

=
2(ν + 2)(ν + 3)(ν + 1)

ν(ν + 5)(ν + 7)
.
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The prediction error is vt = yt− µt|t−1 = εte
λ. The variance of the prediction error can be

written as

V ar(vt) = V ar(eλεt) = ν/(ν − 2)e2λ, ν > 2.

Since εt ∼ tv =⇒ ε2t = χ2
1/(χ

2
ν/ν) =⇒ ε2/ν = χ2

1/χ
2
ν .

Also (1 − bt) =

(
1 +

(yt−µt|t−1)
2

νe2λ

)−1
=⇒ (1 − bt) =

(
1 +

ε2t
ν

)−1
=⇒ (1 − bt) =

(
χ2
ν

χ2
1+χ

2
ν

)
. Using similar arguments we can also establish that bt =

(
χ2
1

χ2
1+χ

2
ν

)

It follows therefore that, utvt = (1 − bt)(yt − µt|t−1)
2 =⇒ utvt = νe2λ(1 −

bt)ε
2
t/v =⇒ utvt = νe2λ

(
χ2
ν

χ2
1+χ

2
ν

)
χ2
1

χ2
ν

= νe2λbt and hence from (1.34) we obtain

E(utvt) = E

(
ve2λbt

)
= (ν/(ν + 1))e2λ.
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Chapter 2

Poisson Autoregression

2.1 Introduction

Several authors have considered models for count time series eg., see Kedem and Fokianos

(2005). Very popular among these models that are discussed by the authors is the loglinear

model. If we consider Yt is conditionally Poisson distributed with mean λt, then for most

of the existing models log λt is regressed on past values of the response and/or covariates.

The loglinear model guarantees the positivity of the intensity parameter λt, which is a

necessary condition to be satisfied in the case of the Poisson distribution. These models

fall within the broad class of generalized linear time series models and their analysis

is based on partial likelihood inference. The estimation, diagnostics, assessment, and

forecasting based on these models are implemented in a straightforward manner with the

computation carried out in various existing statistical computing environments. Although

impressive gains have been made in this field of time series, an element that is largely

missing in these developments has been the possibility of an autoregressive feedback

mechanism in {λt}. A feedback of this nature is a key feature in state-space models such
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as the GARCH model for volatility. We expect these models to be parsimonious generally.

In this chapter, we study autoregeressive models of λt, both linear and nonlinear. More

specifically we regress λt on past values of the observed process and past values of itself.

Processes like this have been considered by Rydberg and Shephard (2000) and Streett

(2000). In this chapter, we summarize two classes of models. The first class is the simple

linear model that postulates that the conditional mean of the Poisson observed time series

is a linear function of its past values and lagged values of observed process. The second

class of models generalize the linear model by imposing a nonlinear stucture on both past

values of λt and lagged values of Yt. The main focus of this chapter is to understand the

likelihood based inference procedure of Fokianos et al. (2009) and how this procedure can

be extended to the zero inflated autoregressive conditional Poisson (ZIACP) model. The

chapter begins with a brief introduction to Poisson autoregression; writing its likelihood,

score function and information matrix. We then conduct a simulation study to evaluate the

finite sample performance of the MLE estimates of the parameters in the linear model. In

the linear case of the Poisson autoregression, the conditional mean is modeled linearly as

a function of its past values and past values of the observed Poisson process.

2.1.1 Linear Model

Consider the linear model

Yt|FY,λt−1 ∼ Poisson(λt), λt = γ + αλt−1 + βYt−1, (2.1)

for t ≥ 1 and where the parameters γ, α, β are assumed to be positive. This model

may be viewed as a special case of ACP model, specifically the ACP(1,1) model. It

is tempting for this model to be viewed as an integer valued GARCH model. This
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is because for the Poisson distribution, the conditional variance equals the conditional

mean, that is, E[Yt|FY,λt−1] = V ar[Yt|FY,λt−1] = λt. However, the proposed modeling is

based on the evolution of the mean of the Poisson, not on its variance see Fokianos

et al. (2009). Even though the vector of time-dependent covariates that influences the

evolution of (2.1) contains the unobserved process λt, the linear model still belongs to

the class of observation driven models defined by Cox et al. (1981). This is true because

the unobserved process λt can be expressed as a function of past values of the observed

process Yt, after repeated substitution. In particular, if Yt|FY,λt−1 ∼ Poisson(λt) then by

iterated expectation E(Yt) = E(E(Yt|FY,λt−1)) = E(λt) hence from (2.1) it follows that

E(Yt) = E(λt) ≡ µ =
γ

1− α− β
.

Here we write (2.1) in the form of an ARMA(1,1) by defining the martingale difference

ut = Yt − E(Yt|Ft−1) = Yt − λt, then from (2.1), λt = γ + αλt−1 + βYt−1 =⇒

Yt − (α + β)Yt−1 = γ + ut − αut−1. The ARMA(1,1) has an MA representation with ψ

weights as ψj = (α+ β)j−1β for j ≥ 1 and ψ0 = 1. Hence the autocovariance in terms of

ψ weights has the form

Cov(Yt, Yt+k) = µ{ψ0ψk + ψ1ψk+1 + ψ2ψk+2 + · · · }

= µ{β(α + β)k−1 + β2(α + β)k + β2(α + β)(α + β)k+1 + · · · }

=

{
(1−(α+β)2+β2)µ

1−(α+β)2 , k = 0
β(1−α(α+β))(α+β)k−1µ

1−(α+β)2 , k ≥ 1

The variance is given by the expression below,

V ar(Yt) = µ

(
1 +

β2

1− (α + β)2

)
,
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this implies that V ar(Yt) ≥ E(Yt) (overdispersion) with equality when β = 0. This can

be explained in the following way: including the past values of Yt in the evolution of λt

leads to overdispersion, which is a frequent phenomenon in count time series data.

2.1.2 Conditional Least Squares Estimate (CLSE)

for the Linear Model

By defining the martingale difference ut = Yt − E(Yt|Ft−1) = Yt − λt, we can write

(2.1) in the form of an ARMA(1,1) model as Yt − (α + β)Yt−1 = γ + ut − αut−1.

However, the ARMA(1,1) model in R by default uses a different parameterization where

the MA parameter is positive as in Yt − φYt−1 = γ + at + θat−1. Therefore comparing

this fit to the theoretical ARMA(1,1) model, we obtain α̂ = −θ̂ and β̂ = φ̂ + θ̂. Also

since α + β < 1, the Yt process is stationary. Hence the mean of Yt can be written as

µ = γ
1−φ =⇒ γ̂ = µ̂(1 − φ̂). Thus the CLSE is γ̂CLSE = µ̂(1 − φ̂), α̂CLSE = φ̂ + θ̂,

β̂CLSE = −θ̂ for γ, α and β, respectively.

2.1.3 Nonlinear Model

Consider the nonlinear model from Fokianos et al. (2009) below,

Yt|FY,λt−1 ∼ Poisson(λt), λt = f(λt−1) + b(Yt−1) (2.2)

for t ≥ 1, where f(.) and b(.) are known functions up to an unknown finite-dimensional

parameter vector and f, b : R+ → R+. The initial values Y0 and λ0 are fixed. Equation

(2.2) represents a general defination of which equation (2.1) forms a special case. We can
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obtain (2.1) from (2.2) by defining f(x) = γ + αx and b(x) = bx with γ, a, b > 0 and

x ≥ 0. We consider the nonlinear model,

Yt|FY,λt−1 ∼ Poisson(λt), λt = (a+ c exp(−γλ2t−1))λt−1 + bYt−1, (2.3)

which parallels the structure of the traditional exponential AR model (see Haggan and

Ozaki, 1981).

2.1.4 Likelihood Inference

Let θ = (γ, α, β)′ be a three dimensional vector of unknown parameters and θ0 =

(γ0, α0, β0) be the true value of the parameters. Then, the conditional likelihood function

for θ based on (2.1), given the starting value λ0 in terms of the observations Y1, · · · , Yn is

given by

L(θ) =
n∏
t=1

exp(−λt(θ))λYtt (θ)

Yt!

using λt(θ) = γ + αλt−1(θ) + βYt−1 and λt = λt(θ0). Therefore the log likelihood

function is

`(θ) =
n∑
t=1

`t(θ) =
n∑
t=1

(Yt log λt(θ)− λt(θ)). (2.4)

and the score function is defined by

Sn(θ) =
∂`(θ)

∂θ
=

n∑
t=1

∂`t(θ)

∂θ
=

n∑
t=1

(
Yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
, (2.5)

where ∂λt(θ)/∂θ is a three dimensional vector with components given by

∂λt
∂γ

= 1 + α∂λt−1

∂γ
, ∂λt

∂α
= λt−1 + α∂λt−1

∂α
, ∂λt

∂β
= Yt−1 + α∂λt−1

∂β
.
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The solution of Sn(θ) = 0 if it exists yields the conditional MLE of θ, denoted by

θ̂. However, since the score equation cannot be solved explicitly for the parameters of

interest, we resort to a direct numerical optimization using the optim function in R to

solve for the estimates of the parameters. Also the Hessian matrix is obtained by further

differentiation of the score function (2.5),

Hn(θ) = −
n∑
t=1

∂2`t(θ)

∂θ∂θ′

=
n∑
t=1

Yt
λ2t (θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
−

n∑
t=1

(
Yt

λt(θ)
− 1

)
∂2λt(θ)

∂θ∂θ′
. (2.6)

Theorem 7. [Theorem 3.1 of Fokianoset al. (2009)] Consider model (2.1) and as-

sume that at the true value θ0, α0 + β0 < 1. Then, there exists a fixed open neighborhood

O = O(θ0), with probability tending to 1, as n→∞, where the log-likelihood function

(2.4) has a unique maximum point θ̂. θ̂ is consistent and asymptotically normal,

√
n(θ̂ − θ0)

D−→ N (0,G−1),

where the matrixG is defined as G(θ) = E( 1
λt

(∂λt
∂θ

)(∂λt
∂θ

)′). A consistent estimator of G

is given by Gn(θ̂) where

Gn(θ) =
n∑
t=1

V ar

[
∂lt(θ)

∂θ
|Ft−1

]
=

n∑
t=1

1

λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
.

For the nonlinear model (2.3) with θ = (α, ψ, β, γ), the recursions for calculating

the score are given by

∂λt
∂a

=

(
1− 2γcλt−1 exp(−γλ2t−1)

∂λt−1

∂a

)
λt−1 +

(
a+ c exp(−γλ2t−1)

)
∂λt−1

∂a
,
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∂λt
∂c

=

(
1− 2γcλt−1

∂λt−1

∂c

)
exp(−γλ2t−1)λt−1 +

(
α + c exp(−γλ2t−1)

)
∂λt−1

∂c
,

∂λt
∂b

= a∂λt−1

∂b
+

(
1− 2γλ2t−1

)
c exp(−γλ2t−1)

∂λt−1

∂b
+ Yt−1,

∂λt
∂γ

= −c exp(−γλ2t−1)λ2t−1
(
λt−1 + 2γ ∂λt−1

∂γ

)
+ (a+ c exp(−γλ2t−1))

∂λt−1

∂γ
.

2.1.5 Simulation for the linear model

We conduct a simulation study to illustrate the performance of the MLE with respect to the

conditional least squares estimates (CLSE). Data is generated from the following model

Yt|FY,λt−1 ∼ Poisson(λt), λt = γ + αλt−1 + βYt−1.

We consider the true parameters (γ, α, β) = (0.3, 0.4, 0.5) with different sample sizes of

n = 200, 500, and 1000. We chose the model parameters α and β such that α + β < 1.

The CLSE is obtained by fitting the ARMA(1,1) model using the simulated data. Next we

use this CLSE estimates as an initial value to calculate the MLE using the same simulated

data. In order to obtain the MLE estimates, CLSE is used as an initial value for the optim()

function in R package. This optim() function requires the score function, the information

matrix, and the likelihood function as objects. It may be sensitive to initial values thus the

initial values for the parameters γ, α and β are chosen to be the CLSE. We evaluate the

performance of both the MLE and the CLSE by using the MSE criteria. The above process

is iterated 1000 times and in every iteration the CLSE and MLE are stored to calculate the

average estimates. The performance of MLE with respect to CLSE is evaluated using the
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relative mean squared error (RMSE) criteria. The RMSE is defined as

RMSE(θ̂CLSE, θ̂MLE) =
MSE(θ̂CLSE)

MSE(θ̂MLE)
,

where

MSE(θ̂) = V AR(θ̂) + (BIAS(θ̂))2.

Table 2.1 reports the CLSE, MLE, RMSE, skewness, kurtosis and p−value of the

Kolmogorov-Smirnov test. This table suggests that when the sample size is small (n =

200) the estimates are not very close to the true parameter values but when the sample size

is increased to 500 and 1000 the estimates become very close to the true parameters. In all

cases the MSE of the MLE is lower than that of the CLSE. That is, MLE outperforms the

CLSE. The skewness for a normal distribution is zero and since we expect the sampling

distribution of the estimates to be approximately normal, as the sample size increases the

skewness approaches zero (sixth column). Similarly in column seven, as the sample size

increases, the kurtosis approaches three, which is the kurtosis for the normal distribution.

The last column of the table reports p-values which is based on the Kolmogorov- Smirnov

test that compares the normality of the estimates based on 1000 simulations to a reference

distribution. In this case the reference distribution is the normal distribution. The null

hypothesis for the test is that the estimates are normally distributed.
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Table 2.1: Simulation results for model (2.1) when (γ,α0,β0)=(0.3,0.4,0.5). Parameters
are adapted as in Fokianos et al. (2009)

Parameters Sample size MLE CLSE RMSE Skewness Kurtosis p−value

γ 200 0.3729 0.3870 1.3510 0.9771 4.2308 0.0793
α 0.3716 0.3769 1.2086 −0.4746 4.3317 0.5616
β 0.4984 0.4869 1.2281 −0.0120 3.2101 0.9815

γ 500 0.3309 0.3359 1.4710 0.6701 3.9512 0.0521
α 0.3878 0.3910 1.3599 −0.0028 3.3476 0.8688
β 0.4996 0.4953 1.3955 −0.0211 3.0733 0.9623

γ 1000 0.3148 0.3166 1.5519 0.4662 3.3707 0.0468
α 0.3955 0.3957 1.2582 −0.1251 3.0360 0.8809
β 0.4987 0.4975 1.4005 −0.0738 2.8402 0.3935

In Table 2.1, the third and fourth columns report the means of the MLE and CLSE.

The fifth column reports the ratio of the MSE of CLSE to the MSE of the MLE. The other

three columns report sample skewness, sample kurtosis, and p-values of the Kolmogorov-

Smirnov test for normality.

2.1.6 Simulation for the nonlinear model

In this subsection, we report the results of a simulation study for the nonlinear model.

Data is generated from the model

Yt|FY,λt−1 ∼ Poisson(λt), λt = (a+ c exp(−γλ2t−1))λt−1 + bYt−1,
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with the true parameters (a, c, b, γ) = (0.25, 1.0, 0.65, γ) where γ = 0.5, 1.0, 1.5. In

estimating the parameter vector (a, c, b, γ) we proceed as follows. We first fit a linear

model to the simulated data to obtain starting values for both a and b, we then set the

initial value of c to some constant. We generated a grid of values for γ and for each

of these grid values we fit the nonlinear model with known γ. Finally, to maximize

the log-likelihood function over all (a, c, b, γ), we use as a starting value the value of γ

that yields the maximum likelihood from the previous step together with corresponding

coefficients. The above process is iterated 500 times and in every iteration the estimates

of a, c, b and γ are stored to calculate the average estimates. The MSE of the estimates is

also calculated based on the 500 estimates by computing the variance of the 500 estimates

and also the bias of each estimate with respect to its true parameter value. The MSE for

each estimate is stored for each iteration to calculate the average MSE estimates.

Table 2.2: Simulation results for the nonlinear model when sample size n = 500 and
where (a,c,b,γ)=(0.25,1,0.65,γ) as in Fokianos et al. (2009) with γ = 0.5, 1.0, 1.5

â ĉ b̂ γ̂ True γ

0.2326(0.0398) 1.1180(0.3088) 0.6656(0.0044) 0.5407(0.1174) 0.5

0.2606(0.0128) 1.0333(0.2545) 0.6604(0.0048) 1.0065(0.5543) 1.0

0.2513(0.0102) 1.0447(0.2676) 0.6602(0.0062) 1.5012(1.7605) 1.5

In Table 2.2, we only considered 500 iterations since it takes a long time for the

program to run and we found 500 iterations to give appropriate estimates.
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2.1.7 Zero Inflated Poisson (ZIP) distribution

Suppose we are interested in the distribution of the number of insects on a leaf of a tree.

The number of insects on a suitable leaf can be modeled by the Poisson distribution, see

Nanjundan and Naika (2013). If a leaf has insect on it then it is suitable for feeding and

if a leaf has no insect on it, then it may be due to its unsuitability or by chance variation

due to the Poisson distribution. The probability function of the number of insects y on any

observed leaf is

p(y;λ, ω) =

{
ω + (1− ω)e−λ, y = 0

(1− ω) e
−λλy

y!
, y = 1, 2, 3, · · ·

(2.7)

with λ > 0, 0 ≤ ω < 1, ω is the so called zero inflation parameter and when ω = 0,

p(y, λ, 0) turns out to be the usual Poisson distribution. Thus the distribution of Y is a

convex combination of the distribution degenerate at zero and a Poisson distribution with

mean λ. In the probability mass function (2.7), the zero inflation parameter ω can take

negative values, given that ω ≥ −eλ
(1−e−λ) , see Kharrati-Kopaei and Faghih (2011). In this

case, the frequency of zeroes is less than the one accounted for under the ordinary Poisson

distribution. This situation is described as a zero-deflated Poisson distribution (ZDP).

However, the zero deflated case rarely occurs in practice.

2.1.8 Maximum Likelihood Estimation for the ZIP Model

Let Y = (Y1, Y2, Y3, · · · , Yn) be a random sample with the probability mass function

specified in (2.7). Then the likelihood function is given by
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L(λ, ω|y) =
n∏
j=1

{ω + (1− ω)e−λ}1−t(yj)
{

(1− ω)
e−λλyj

yj!

}t(yj)
, (2.8)

where

t(yj) =

{
0, if yj = 0

1, if yj ≥ 1

It is obvious that the above likelihood does not yield closed form expressions for the MLE’s

of λ and ω. This suggests that the MLE’s of λ and ω have to be computed using a numerical

procedure. In this case, the EM algorithm is considered over the Newton Raphson method

as the latter may fail due to boundary problem, see McLeish and Small (1988) and Sprott

(1980). The EM algorithm is an iterative procedure to estimate the parameters of a model

which does not admit a closed form solution of the parameters of interest. This algorithm

finds solutions of the log-likelihood function corresponding to the local maxima. Given

that Y = y, the EM algorithm for maximizing `c(θ|Y ) is given by the following iterative

procedure. If θ(j) is the estimate of the EM algorithm at the jth iteration, then at the

j + 1 iteration the estimate is updated. This numerical procedure requires the likelihood

to be rewritten to accommodate missing data. We could introduce a Bernoulli random

variable Zt such that Zt = 0 when Yt = 0 is from a Poisson distribution and Zt = 1

when Yt = 0 is from the degenerate distribution. Because just the observed data has no

information on where zeroes are coming from, it is regarded as incomplete as such when

(y1, y2, · · · , yn) is augmented with (z1, z2, · · · , zn) then ((y1, z1), (y2, z2), · · · , (yn, zn))

becomes a complete data set whose likelihood is given by

Lc(λ, ω|y,u) =
n∏
j=1

ωuj{(1− ω)
e−λλyj

yj!
}1−uj ,
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where

uj =

{
Zj, if yj = 0,

0, if yj ≥ 1,

and is computable only if y1, y2, · · · , yn and z1, z2, · · · , zn are available. Hence the log of

the complete data likelihood becomes

logLc(λ, ω|y,u) =
n∑
j=1

uj logω +
n∑
j=1

(1− uj) log{(1− ω)
e−λλyj

y!
}, (2.9)

We could split equation (2.9) according to the defination of uj by substituting Zj in the

place of uj when the observed data is zero and zero in place of uj when the observed data

is a non-zero. Substituting uj in equation (2.9), we obtain,

logLc(λ, ω|y,u) =
∑
j:yj>0

{log(1− ω) + log
e−λλyj

y!
}+

∑
j:yj=0

Zj logω

+
∑
j:yj=0

(1− Zj) log{(1− ω)
e−λλyj

y!
}, (2.10)

In order to obtain the expected value of logLc(λ, ω|y,u) i.e., E{logLc(λ, ω|y,u)}, we

apply the expectation function E through (2.10). The result (2.11), is shown below,

E{logLc(λ, ω|y,u)} =
∑
j:yj>0

{log(1− ω) + log
e−λλyj

y!
}+

∑
j:yj=0

E(Zj) logω

+
∑
j:yj=0

(1− E(Zj)) log

[
(1− ω)

e−λλyj

y!

]
. (2.11)

In the EM algorithm, E(Zj) is replaced by the conditional expectation

E(Zj|λ0, ω0, Yj = 0) where λ0 and ω0 are the initial estimates of λ and ω, respectively.
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Thus

E(Zj|λ0, ω0, Yj = 0) = 0× P (Zj = 0|λ0, ω0, Yj = 0) + 1× P (Zj = 1|λ0, ω0, Yj = 0)

= P (Zj = 1|λ0, ω0, Yj = 0).

From Baye’s theorem,

P (Zj = 1|λ0, ω0, Yj = 0) =
P (Yj = 0|λ0, ω0, Zj = 1)P (Zj = 1|λ0, ω0)∑

zj=0,1

P (Yj = 0|λ0, ω0, Zj = zj)P (Zj = zj|λ0, ω0)
,

and so,

E(Zj|λ0, ω0, Yj = 0) =
ω0

ω0 + (1− ω0)e−λ0
= ψ,

which is a constant i.e., independent of j. Therefore, (2.11) becomes

E{logLc(λ, ω|y, u)} =
∑
j:yj>0

[
log(1− ω) + log

e−λλyj

y!

]
+
∑
j:yj=0

ψ logω

+
∑
j:yj=0

(1− ψ) log

[
(1− ω)

e−λλyj

y!

]
.

Assuming ψ is fixed and known, the next step of the algorithm requires maximizing

E{logLc(λ, ω|y,u)} for λ and ω by differentiating it with respect to λ and ω and equating

both to zero and solving for λ1 and ω1, the improved estimates of λ0 and ω0, respectively.

∂E{logLc(λ, ω|y,u)}
∂λ

=
∑
j:yj>0

[
−1 +

Yj
λ

]
+
∑
j:yj=0

(1− ψ)

(
−1 +

Yj
λ

)
= 0

=⇒

λ1 =

∑
j:yj>0

Yj

(1− ψ)n0 + ng
.
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Using ng = n− no we can write λ1 as

λ1 =

∑
j:yj>0

n− ψno
,

which estimates the number of Poisson observations. Similarly,

∂E{logLc(λ, ω|y,u)}
∂ω

=
∑
j:yj>0

−1

1− ψ
+
∑
j:yj=0

{ψ
ω
− (1− ψ)

(1− ω)
} = 0

=⇒ ω1 = n0ψ
n

. This expresses the proportion of zeroes times proportion of structural

zeroes among all zeroes. The n0’s denote the number of zero observations and ng the

number of non-zero observations. The expectation step is repeated by taking λ0 = λ1

and ω0 = ω1. After each iteration, the value of the log-likelihood (2.11) is evaluated

and the difference between this maximum value and the preceding maximum value is

taken. The convergence criterion is met when the absolute difference of the likelihoods

(i.e, succeeding and preceding) is ≤ 0.00001.

2.1.9 The Fisher Information Matrix

Let θ0 = (ω0, λ0)
′ be the true parameter values for the model and θ̂ as the corresponding

MLE estimates then, under certain regularity conditions as the sample size increases the

MLE θ̂ is a consistent estimator of θ0, and it is asymptotically normal in the sense that

√
n(θ̂ − θ0) converges to a normal distribution with a zero vector mean and covariance

matrix I−1(θ0) i.e.,

√
n(θ̂ − θ0) ∼ N(0, I−1(θ0)),

41



where I(θ0) constitutes the Fisher information matrix. Therefore the asymptotic variance

V ar(ω̂) and V ar(λ̂) of the estimates of ω and λ, respectively are given by

V ar(ω̂) =

(1− ω)

(
ω + (1− ω)e−λ − λωe−λ

)(
ω + (1− ω)e−λ

)
(1− e−λ)

(
ω + (1− ω)e−λ − ωλe−λ

)
− λe−2λ

. (2.12)

V ar(λ̂) =

λ

(
ω + (1− ω)e−λ

)
(1− e−λ)

(1− ω)

(
(1− e−λ)[ω + (1− ω)e−λ − ωλe−λ]− λe−2λ

) . (2.13)

Proof: From (2.7) taking the logarithm on both sides

log p(y;λ, ω) =

{
log{ω + (1− ω)e−λ}, y = 0

log(1− ω)− λ+ y log λ− log y! , y = 1, 2, 3, · · ·
(2.14)

∂ log p(y;λ, ω)

∂λ
=

{
−(1−ω)e−λ
ω+(1−ω)e−λ , y = 0

(−1 + y
λ
) , y = 1, 2, 3, · · ·

∂ log p(y;λ, ω)

∂ω
=

{
(1−e−λ)

ω+(1−ω)e−λ , y = 0
−1

(1−ω) , y = 1, 2, 3, · · ·

∂2 log p(y;λ, ω)

∂ω∂λ
=

{
e−λ

{ω+(1−ω)e−λ}2 , y = 0

0 , y = 1, 2, 3, · · ·

∂2 log p(y;λ, ω)

∂λ2
=

{
ω(1−ω)e−λ

{ω+(1−ω)e−λ}2 , y = 0
−y
λ2
, y = 1, 2, 3, · · ·
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∂2 log p(y;λ, ω)

∂ω2
=

{
−(1−e−λ)2

{ω+(1−ω)e−λ}2 , y = 0
−1

(1−ω)2 , y = 1, 2, 3, · · ·

Hence, we can get

E

(
∂ log p(y;λ, ω)

∂λ

)
=
−(1− ω)e−λ

ω + (1− ω)e−λ
× p(0;λ, ω)

+
∞∑
y=1

(−1 +
y

λ
)× (1− ω)p(y;λ, ω)

= −(1− ω)e−λ + (1− ω)− (1− ω)(1− e−λ) = 0.

By similar argument E
(
∂ log p(y;λ,ω)

∂ω

)
= 0 . Also

Iωω = E

[(
∂ log p(y;λ, ω)

∂ω

)]2
= −E

(
∂2 log p(y;λ, ω)

∂ω2

)

=
(1− e−λ)

(1− ω)

(
ω + (1− ω)e−λ

) .

Iλλ = E

[(
∂ log p(y;λ, ω)

∂λ

)]2

= −E
(
∂2 log p(y;λ, ω)

∂λ2

)
=

(1− ω)

(
ω + (1− ω)e−λ − ωλe−λ

)
λ

(
ω + (1− ω)e−λ

) .
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Iλω = E

(
∂2 log p(y;λ, ω)

∂λ∂ω

)
=

e−λ

ω + (1− ω)e−λ
.

Therefore the Fisher information matrix is given by,

I =

(
Iωω Iωλ
Iλω Iλλ

)
=

(
(1−e−λ)

(1−ω){ω+(1−ω)e−λ}
e−λ

ω+(1−ω)e−λ
e−λ

ω+(1−ω)e−λ
(1−ω)[ω+(1−ω)e−λ−ωλe−λ]

λ{ω+(1−ω)e−λ}

)
.

The inverse of the Fisher information matrix is given by

I−1 =

(
Σ11 Σ12

Σ21 Σ22

)
,

where

Σ11 =

(1− ω)

(
ω + (1− ω)e−λ − λωe−λ

)(
ω + (1− ω)e−λ

)
(1− e−λ)

(
ω + (1− ω)e−λ − ωλe−λ

)
− λe−2λ

,

Σ12 =

−λe−λ
(
ω + (1− ω)e−λ

)
(1− e−λ)

(
ω + (1− ω)e−λ − ωλe−λ

)
− λe−2λ

,

Σ22 =

λ

(
ω + (1− ω)e−λ

)
(1− e−λ)

(1− ω)

(
(1− e−λ)[ω + (1− ω)e−λ − ωλe−λ]− λe−2λ

) .
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2.1.10 Method of Moments Estimators for the ZIP Distribution

The first and second moments of Y having the probability mass function (2.7) are, respec-

tively

E(Y ) = (1− ω)λ

and

E(Y 2) = (1− ω)λ(1 + λ),

where Y = (Y1, Y2, Y3, · · · , Yn) is a random sample with the probability mass function

specified in (2.7), the MME’s of λ and ω are given by the following simultaneous equations

M1n = (1− ω)λ

and

M2n = (1− ω)λ(1 + λ)

with M1n = 1
n

∑n
j=1 Yj and M2n = 1

n

∑n
j=1 Y

2
j . Solving the simultaneous equations,

the MMEs of λ and ω are, respectively λ̂m = M2n

M1n
− 1 and ω̂m = 1 − M2

1n

M2n−M1n
. It

is true that P (M1n = 0) = {ω + (1 − ω)e−λ}n → 0, as n → ∞. In other words,

with probability tending to one as n becomes large M1n is not equal to zero. Similarly,

P (M1n = M2n)→ 0 as n→∞. Hence the problem of division by zero in these MMEs

doesn’t arise when n is sufficiently large.

It can be easily verified that if ω̂m > 0, then S2 > X̄ = M1n (i.e an overdispersion

case ) where S2 = M2n − M2
1n is the sample variance. Similarly if ω̂m < 0, then

S2 < X̄ = M1n (i.e an underdispersion case) and if ω̂m = 0 then S2 = X̄ = M1n (i.e an

equidispersion case ).
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We require ω̂m to test the Poisson against the ZIP distribution. ω̂m can be used to make

inferences based on its asymptotic distribution see Kharrati-Kopaei and Faghih (2011).

Theorem 8. Suppose that Y1, Y2, Y3, · · · , Yn are a random sample from the ZIP(ω, λ);

then

√
n

((
ω̂

λ̂

)
−
(
ω
λ

))
D−→ N(0,Σ)

,

where D−→ means convergence in distribution and

Σ =

(
(1− ω)(ωλ2 + 2)/λ2 2/λ

2/λ (λ+ 2)/(1− ω)

)
.

Proof: Let M =
∑n

i=1Ai where Ai =

(
Yi
Y 2
i

)
.

Ai’s are iid random vectors since the Yi’s are iid’s. In that case, we can write that,

1
n
M = 1

n

∑n
i=1Ai = Ān. From the multivariate version of the central limit theorem,

√
n(Ān − µ)

D−→ N2(0,Σ),

where µ = E(Ai) =

(
(1− ω)λ

(1− ω)(λ2 + λ)

)
and

Σ =

(
V ar(Yi) Cov(Yi, Y

2
i )

Cov(Y 2
i , Yi) V ar(Y 2

i )

)
=

(
σ11 σ12
σ21 σ22

)
,

with the elements of the variance covariance matrix Σ given by
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σ11 = λ(1− ω)(λ+ 1)− (1− ω)2λ2,

σ12 = σ21 = λ(1− ω)[λ2 + 3λ+ 1− (1− ω)(λ+ λ2)],

σ22 = λ(1− ω)[λ3 + 6λ2 + 7λ+ 1− (1− ω)λ(1− λ)2].

This implies that
√
n

((
M1n

M2n

)
−
(

(1− ω)λ
(1− ω)(λ2 + λ)

))
D−→ N(0,Σ).

To complete the proof, we rely on the following lemma.

Lemma 9 (Multivariate Delta Method). Assume that Y = (Yn1, Yn2, Yn3, · · · , Ynp)> is

ANP (µ, b2nΣ) with bn → 0 as n → ∞. Let g : Rp → Rm be real valued differentiable

at x = µ with g(x) = (g1(x), · · · , gm(x))′ and D =

(
dgi
dxj
|x=µ

)
for i = 1, · · · ,m and

j = 1, · · · , p having some non-zero elements. Then, g(xn) is ANm(g(µ), b2nDΣD′)

Using the multivariate delta method and defining g as

g(x, y) =

(
g1(x, y)
g2(x, y)

)
,

where g1(x, y) = 1 − x2

y−x , is continuous on {(x, y) : x 6= y} and g2(x, y) = y
x
− 1,

continuous on {(x, y) : x 6= 0}.

Hence (
g1(x, y)
g2(x, y)

)
∼ AN2

(
g(E(Yi), E(Y 2

i )),
1

n
DΣD′

)
.

According to the multivariate delta method, whereD 6=null matrix

g(E(Yi), E(Y 2
i )) =

(
ω
λ

)
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and

D =

(
dg1
dx

dg1
dy

dg2
dx

dg2
dy

)
=

(
−2λ−1
λ2

1
λ2

−(λ+1)
(1−ω)λ

1
λ(1−ω)

)
.

Therefore

DΣD′ =

(
(1− ω)(ωλ2 + 2)/λ2 2/λ

2/λ (λ+ 2)/(1− ω)

)
.

Hence the proof. Suppose we want to test H0 : ω = 0 ( the Poisson model) against

H1 : ω > 0 (the ZIP model). We can make use of the asymptotic distribution of ω̂

proposed by Kharrati-Kopaei and Faghih (2011). Given that

ω̂ ∼ N(ω, (1−ω)(ωλ
2+2)

nλ2
), under H0, ω̂ ∼ N(0, 2

nλ2
)

=⇒ ω̂ − 0√
2
nλ2

∼ N(0, 1).

Since λ is unknown in practice we use λ̂ which is a consistent estimator of λ. By Slutsky’s

Theorem,

T = λ̂ω̂

√
n

2
∼ N(0, 1).

Also we are only interested in positive values of ω, therefore we redefine ω as ω̂+ =

max{0, ω̂}. The test statistic becomes T = λ̂ω̂+
√

n
2
. It is reasonable to reject H0 when T

is large. When ω −→ 1, this means our data set has a lot of structural zeroes and as such Ȳ

and λ̂ may be zero. In this case we reject H0 and conclude that ω > 0.
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It is reasonable to reject H0 when T > Zα or when Ȳ = 0 or λ̂ = 0 where Zα is the

(1− α)th quantile of the standard normal distribution.

Proof: Since Zα > 0, the probability of rejecting H0 is bounded from below and above

by {1 − P (T > Zα)} and {1 − P (T > Zα) + P (Ȳ = 0) + P (λ̂ = 0)}, respectively.

However, as n tends to infinity the last two expression of the upper bound tends to zero

therefore under the null hypothesis, as n −→∞

P

(
{T > Zα} ∪ {Ȳ = 0} ∪ {λ̂ = 0}

)
−→ 1− (1− α) = α.

2.1.11 Confidence Interval

This subsection provides a detailed procedure of constructing a confidence interval for

ω ∈ [0, 1). If Y1, Y2, · · · , Yn is a random sample from ZIP(ω, λ) and ω̂+ = {0, ω̂} then as

n −→∞, a 100(1− α)% confidence interval of ω is given by

(
2ω̂+ + δ(1− 2/λ̂2)

2(1 + δ)

)
±

√
(2/λ̂2)δ − (ω̂+)2

(1 + δ)
+

(
2ω̂+ + δ(1− 2/λ̂2)

2(1 + δ)

)2

where δ = Z2
α/2/n (see Kharrati-Kopaei and Faghih, 2011)

Proof: we know that ω̂ ∼ N(ω, Vn(ω)) approximately for large n, where Vn(ω) =

(1−ω)(ωλ2+2)
nλ2

. But from Slutsky’s theorem

P

(
|ω̂+ − ω|√
Vn(ω)

< Zα/2

)
≥ P

(
|ω̂ − ω|√
Vn(ω)

< Zα/2

)
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Therefore we want to show that as n→∞

P

(
|ω̂+ − ω|√
Vn(ω)

> Zα/2

)
≥ (1− α).

By solving the inequality (ω̂+ − ω)2 > Z2
α/2Vn(ω), we obtain the result given above.

The confidence interval above is applicable when Ȳ 6= 0 and λ̂ 6= 0. However, if the

observed value of λ̂ or Ȳ is zero, we define ω = 1 and with these new conditions the

confidence interval above still has a coverage probability of at least (1− α) for large n.

Using the test statistic Wn = |ω̂+−ω0|√
Vn(ω)

, we can test the null hypothesis H0 : ω = ω0 against

the alternate H1 : ω 6= ω0. The null hypothesis is rejected at level α when Wn ≥ Zα/2.

Below is a Q-Q plot obtained based on the zero inflated Poisson distribution with zero

inflation parameter ω = 0.3 and Poisson intensity parameter λ = 2.5. We generated 1000

different ZIP samples and the MLE obtained using the EM algorithm. The Q-Q plots

below are based on 1000 estimates for sample sizes n = 25, 50, 100 and 250.
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Figure 2.1: Q-Q plots of the MLEs and MMEs of λ and ω when n = 25 each is drawn
from the ZIP distribution with λ = 2.5 and ω = 0.3.

51



−3 −1 1 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

  ωmme

−3 −1 1 3

1.
5

2.
0

2.
5

3.
0

3.
5

  λmme

−3 −1 1 3

0.
1

0.
2

0.
3

0.
4

0.
5

  ωmle

−3 −1 1 3

1.
5

2.
0

2.
5

3.
0

3.
5

  λmle

Figure 2.2: Q-Q plots of the MLEs and MMEs of λ and ω when n = 50 each is drawn
from the ZIP distribution with λ = 2.5 and ω = 0.3.
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Figure 2.3: Q-Q plots of the MLEs and MMEs of λ and ω when n = 100 each is drawn
from the ZIP distribution with λ = 2.5 and ω = 0.3.
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Figure 2.4: Q-Q plots of the MLEs and MMEs of λ and ω when n = 250 each is drawn
from the ZIP distribution with λ = 2.5 and ω = 0.3.
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Table 2.3: Results of estimates of the mean square error (MSE), kurtosis and skewness of
the parameter estimates associated with the ZIP distribution λ = 2.5 and ω = 0.3 .

Measure λmme ωmme λmle ωmle

Kurtosis 2.9114 3.1904 2.9240 2.7737

Skewness 0.0483 −0.1547 −0.0892 −0.0063

MSE 0.5337 0.0351 0.4144 0.0228

The results of Table 2.3 are based on a sample size of n = 25 and 1000 iterations. For

normality, we expect kurtosis to be 3 and skewness to be zero. For a sample size of only

n = 25, Table 2.3 suggests that the sampling distribution of the estimates are normal. This

results agrees with the Q-Q plot in Figure (2.4) above. The tables for sample sizes n = 50,

n = 100 and n = 250 are shown in the Appendix.

2.1.12 The Zero Inflated Autoregressive conditional Poisson

(ZIACP)(p, q) Linear Model

Recently Zhu (2012) studied the zero inflated count time series model by extending the

work of Fokianos et al. (2009). In the same year, Yang (2012) studied the autoregression

for zero inflated count time series loglinear model.

Let {Yt} be a time series of counts. We assume that, conditional on Ft−1, the random

variables Y1, · · · , Yn are independent, and the conditional distribution of Yt is specified by
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a ZIP distribution, that is,

Yt|Ft−1 ∼ ZIP (λt, w), λt = γ0 +
∑p

i=1
αiYt−i +

∑q

j=1
βjλt−j, (2.15)

where 0 < w < 1, γ0 > 0, αi ≥ 0, βj ≥ 0, i = 1, · · · , p , j = 1, · · · , q , p ≥ 0 .

Ft−1 is the σ-field generated by {Yt−1, Yt−2, · · · }. The above model is denoted as

ZIACP(p, q). The conditional mean and the conditional variance of Yt are given by

E(Yt|Ft−1) = (1− ω)λt and V ar(Yt|Ft−1) = (1− ω)λt(1 + ωλt), respectively. There-

fore, V ar(Yt|Ft−1) > E(Yt|Ft−1). It can also be shown that

V ar(Yt) = E(V ar(Yt|Ft−1)) + V ar(E(Yt|Ft−1)) = E((1− ω)λt(1 + ωλt))

+ V ar((1− ω)λt)

= (1− ω)E(λt) + ω(1− ω)(E(λt)
2) + (1− ω)2V ar(λt) > (1− ω)E(λt) = E(Yt),

which means that model (2.15) can handle integer-valued time series with overdispersion.

2.1.13 The ZIACP(p, q) Model in an ARMA form

We consider the case when p = 1 and q = 1. If we define the martingale difference ut as

ut = Yt − E(Yt|Ft−1) = Yt − λt(1 − ω) then from λt = γ0 + α1Yt−1 + β1λt−1 we can

write,

λt(1− ω) = (1− ω)γ0 + (1− ω)α1Yt−1 + (1− ω)β1λt−1

Yt − (1− ω)α1Yt−1 − β1Yt−1 = (1− ω)γ0 + ut − β1ut−1 (2.16)
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=⇒ Yt − φ1Yt−1 = (1 − ω)γ0 + ut − β1ut−1 where φ = β1 + (1 − ω)α1. Comparing

this model to the standard ARMA(1,1) model of the form Yt − φYt−1 = γ + at + θat−1

(We use this form of the model as it is the same form that is used for fit in the standard

R package which was used in the analysis) suggests that our initial estimate of β̂1 = −θ̂,

α̂1 = φ̂+θ̂
(1−ω̂) and since the ARMA(1,1) model has mean µ, µ = (1−ω)γ0

1−φ1 =⇒ γ̂0 = (1−φ̂)µ̂
(1−ω̂) .

For the case when p = 1 and q = 0, λt = γ0 + α1Yt−1 we generate initial values for

α0 and α1 by fitting an AR(1) model. The details are shown below. We rewrite the model

in the form of an AR(1) process by letting ut = Yt − E(Yt|F) = Yt − λt(1− ω)

λt(1− ω) = (1− ω)γ0 + (1− ω)α1Yt−1

Yt − (1− ω)α1Yt−1 = (1− ω)γ0 + ut

Yt − φYt−1 = (1− ω)γ0 + ut (2.17)

where φ = (1− ω)α1. Given that the Yt process is stationary i.e., |φ1| < 1, we can write

µ as µ = (1−ω)γ0
1−(1−ω)α1

=⇒ α̂1 = φ̂
1−ω̂ and γ̂0 = µ̂(1−φ̂)

1−ω̂ .

Theorem 10. Let {Yt} be a time series of counts such that Yt ∼ ZIACP(1,1) model, then

the marginal mean, variance and auto correlations are given by

µ = E(Yt) =
(1− ω)γ0

1− (1− ω)α1 − β1
,

V ar(Yt) =
1− 2(1− ω)α1β1 − β2

1

1− (1− ω)α2
1 − 2(1− ω)α1β1 − β2

1

(
µ+

ωµ2

1− ω

)
,

ρy(k) = [(1− ω)α1 + β1]
k−1 (1− ω)α1[1− (1− ω)α1β1 − β2

1 ]

1− 2(1− ω)α1β1 − β2
1

, k ≥ 1,

respectively.
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Proof: Given that Yt|Ft−1 ∼ ZIACP (1, 1), from (2.16) it has the form of an ARMA(1,1)

model with the autoregressive parameter φ = β1 + α1(1− ω) and the moving average

parameter θ = β1. After reparameterization, we have,

Yt − φYt−1 = γ + at − θat−1.

The expected value of Yt is given by,

E(Yt) =
(1− ω)γ0

1− (1− ω)αi − β1
.

Writing it in terms of ψ′js, ψj = φj−1(φ− θ) = [β1 + α1(1− ω)]j−1
(
α1(1− ω)

)
.

Also the variance is

V ar(Yt) = σ2
u

∞∑
j=0

ψ2
j ,

where,∑∞

j=0
ψ2
j = 1 + α2

1(1− ω)2 + [β1 + α1(1− ω)]2α2
1(1− ω)2

+ [β1 + α1(1− ω)]4α2
1(1− ω)2 + · · ·

= 1 + α2
1(1− ω)2{1 + [β1 + α1(1− ω)]2 + [β1 + α1(1− ω)]4 + · · · }

= 1 +
α2
1(1− ω)2

1− [β1 + α1(1− ω)]2
=

1− 2α1β1(1− ω)− β2
1

1− (1− ω)α2
1 − 2(1− ω)α1β1 − β2

1

.

But

σ2
u = V ar(Yt|FY,λt−1) = (1− ω)λt(1 + ωλt).
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Also from (2.15), E(Yt) = (1− ω)E(λt). Here λt is a function of past observations and

past values of itself. The distribution of λt conditional on information at time t− 1 is the

same as it’s unconditional distribution and so time invariant =⇒ λt → µ
1−ω . Therefore,

σ2
u = (1− ω)

µ

1− ω
(1 + ω

µ

1− ω
) =

(
µ+

ωµ2

(1− ω)

)
.

Hence,

V ar(Yt) =
1− 2(1− ω)α1β1 − β2

1

1− (1− ω)α2
1 − 2(1− ω)α1β1 − β2

1

(
µ+

ωµ2

1− ω

)
.

Finally, for the autocorelation function, we have

ρy(k) =

∑∞
j=0 ψj+kψj∑∞

j=0 ψ
2
j

,

where∑∞

j=0
ψj+kψj = α1(1− ω)[β + α1(1− ω)]k−1 + α2

1(1− ω)2[β + α1(1− ω)]k

+α2
1(1− ω)2[β + α1(1− ω)]k+2 · · ·

= α1(1− ω)[β1 + α1(1− ω)]k−1

+α2
1(1− ω)2[β1 + α1(1− ω)]k

(
1 + [β1 + α1(1− ω)]2

+[β1 + α1(1− ω)]4 + · · ·
)

=

α1(1− ω)[β1 + α1(1− ω)]k−1
(

1− α1β1(1− ω)− β2
1

)
1− (1− ω)α2

1 − 2(1− ω)α1β1 − β2
1

.

59



Therefore,

ρy(k) = [(1− ω)α1 + β1]
k−1 (1− ω)α1[1− (1− ω)α1β1 − β2

1 ]

1− 2(1− ω)α1β1 − β2
1

, k ≥ 1.

Hence the proof.

Similarly for the ZIACP (2) model i.e., p = 2 and q = 0 which has λt modeled as

λt = γ0 +α1Yt−1 +α2Yt−2 we generate initial valuesfor γ0 , α1 and α2 by fitting an AR(2)

model. The details are shown below.

Since λt = γ0 + α1Yt−1 + α2Yt−2 and ut = Yt − E(Yt|F) = Yt − λt(1 − ω) =⇒

λt(1− ω) = (1− ω)γ0 + (1− ω)α1Yt−1 + (1− ω)α2Yt−2.

Hence,

Yt − (1− ω)α1Yt−1 − (1− ω)α2Yt−2 = (1− ω)γ0 + ut

Yt − φ1Yt−1 − φ2Yt−2 = 1− ω)γ0 + ut

where φ̂1 = (1 − ω̂)α̂1 and φ̂2 = (1 − ω̂)α̂2, µ̂ = (1−ω̂)γ̂0
1−φ̂1−φ̂2

given that the Yt process is

stationary i.e., φ1 + φ2 < 1, φ1 − φ2 < 1 and −1 < φ2 < 1.

=⇒ α̂1 = φ̂1
1−ω̂ , α̂2 = φ̂2

1−ω̂ and γ̂0 = µ̂(1−φ̂1−φ̂2)
1−ω̂ .

Theorem 11. If {Yt} is a time series of counts such that Yt ∼ ZIACP(1) model, then the

marginal mean, variance and auto correlations are given by

µ = E(Yt) =
(1− ω)γ0

1− (1− ω)αi
,

V ar(Yt) =
(1− ω)γ0[1 + ωγ0 − (1− ω)α1]

[1− (1− ω)α2
1][1− (1− ω)α1]2

,

ρy(k) = [(1− ω)α1]
k, k ≥ 1,
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respectively.

Theorem 12. Let {Yt} be a time series of counts such that Yt ∼ ZIACP(2) model, then

the marginal mean and variance are given by

µ = E(Yt) =
(1− ω)γ0

1− (1− ω)(α1 + α2)
,

V ar(Yt) =
(1− ω)E(Yt) + ω[E(Yt)]

2

1− ω − (1− ω)2[1+(1−ω)α2

1−(1−ω)α2
α2
1 + α2

2]
,

respectively.

2.1.14 ZIACP Parameter Estimation

Let {Yt}ni=1 be a time series of counts generated from model (2.15) with p = 1 and

q = 1. Assume that zero observations come from a distribution with point mass at zero

i.e., structural zeros or from the Poisson distribution. We introduce a Bernoulli random

variable Zt such that Zt = 1 when Yt = 0 is from a degenerate distribution and Zt = 0

when Yt = 0 is from a Poisson process. Practically, Zt’s are not observed, and thus,

Zt’s are missing values. Let Z = (Z1, Z2, · · · , Zn),θ = (γ0, α1 · · · , αp, β1 · · · , βq)T =

(θ0, θ1, · · · , · · · , θp+q), and Θ = (ω,θT )T . The conditional likelihood function for the

complete data is given by

L(Θ) =
n∏
t=1

ωZt
(

(1− ω)
λYtt e

−λt

Yt!

)1−Zt
.

Therefore the conditional log-likelihood is

`c(Θ) =
n∑
t=1

{Zt logω + (1− Zt)[log(1− ω) + Yt log λt − λt − log(Yt!)]}.
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We can write the log-likelihood up to an additive constant as,

=⇒ `c(Θ) =
n∑
t=1

(1−Zt)(Yt log λt−λt)+
n∑
t=1

{Zt logω+(1−Zt) log(1−ω)}. (2.18)

The first derivative of the log-likelihood with respect to ω and θi are

∂`c
∂ω

=
n∑
t=1

(
Zt
ω
− 1− Zt

1− ω

)
. (2.19)

∂`c
∂θi

=
n∑
t=1

(1− Zt)
(
Yt
λt
− 1

)
∂λt
∂θi

. (2.20)

Clearly, the likelihood above is a function of the missing Zt values therefore `c cannot be

maximized directly. We therefore use the EM algorithm to estimate the parameters since

it will allow us to estimate the missing values. Obtaining an initial guess for the missing

data Zt is the basis for the E-step.

E(Zt|Yt = yt,Ft−1) = 1× P (Zt = 1|Yt = yt,Ft−1) + 0× P (Zt = 0|Yt = yt,Ft−1)

= P (Zt = 1|Yt = yt,Ft−1)

=
P (Zt = 1|Ft−1)P (Yt = yt|Zt = 1,Ft−1)

P (Yt = yt|Ft−1)

=

{
ω

w+(1−ω)e−λt , yt = 0

0, yt = 1, 2, 3, · · ·
.

E − step : We compute the conditional expectation Q(θ|θ(j)) of `c(Θ):

Q(θ|θ(j)) = E{`c(Θ)|y, θ(j)}

=
n∑
t=1

(1− Ẑt
(j)

)(Yt log λt − λt) +
n∑
t=1

{Ẑt
(j)

logω + (1− Ẑt
(j)

) log(1− ω)},
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where Ẑt
(j)

denotes the conditional expectation of Zt at the jth iteration.

M − step : In this step we find θ(j+1) that maximizes Q(θ|θ(j)). From (2.18) we can

maximize the two terms independently to obtain the maximum likelihood estimates of the

parameters.

n∑
t=1

(1− Ẑt
(j)

)(Yt log λt − λt) (2.21)

n∑
t=1

{Ẑt
(j)

logω + (1− Ẑt
(j)

) log(1− ω)}. (2.22)

Upon a careful look at the equation (2.21) we see a close relationship between this log-

likelihood and log-likelihood of the Poisson process considered under Poisson autoregres-

sion above. Therefore in oder to obtain the parameter estimates we modify the likelihood

and the conditional information matrix of the Poisson process by Fokianos et al. (2009).

The maximum likelihood estimates of (2.21) are obtained by solving numerically using

the optim() function in R. For (2.22) the maximum likelihood estimate of ω is obtained

trivially by equating its derivative with respect to ω to zero and solving for ω̂ in terms of

Ẑt.

2.1.15 Simulation studies

We conduct a simulation study to estimate the parameters of the ZIACP model. We

generate the ZIP data using the model below,

Yt|Ft−1 ∼ ZIP (λt, w), λt = γ0 + α1Yt−1 + β1λt−1, (2.23)

We consider true parameters of the model to be (ω, γ0, α1, β1) = (0.1, 1.0, 0.4, 0.3).

The simulated data is generated by first generating λt’s using its recursive formula
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above. The initial value of λt i.e., λ1 was chosen to be γ0. Next we generate data

from Uniform(0, 1) = U with sample size n. For all n sample data generated from the

uniform distribution, we test the condition whether or not a data point is less than or equal

to ω or greater than ω. When a data point is less than or equal to ω then our simulated

data is zero (point mass zero distribution). On the other hand when the data point from the

uniform distribution is greater than ω we generate the simulated data from the Poisson

distribution with the corresponding intensity parameter. Once we have the simulated data,

we fit the ZIACP model and estimate the parameters. In estimating the parameters of the

model, we use the EM algorithm above. We first estimate the missing data Zt’s by com-

puting its expected value according to the formula E(Zt|Yt = yt,Ft−1) = ω
w+(1−ω)e−λt .

We obtained the initial estimate of ω as the ratio of the number of zeros in the simulated

data to the total sample size. Next we generated λt’s using initial estimates of γ0, α1 and

β1. The initial estimates of γ0, α1 and β1 was obtained by fitting an ARMA(1,1) model

based on the simulated data. Based on the ARMA(1,1), initial values were calculated to be

β̂1 = −θ̂, α̂1 = φ̂+θ̂
(1−ω̂) and γ̂0 = (1−φ̂)µ̂

(1−ω̂) where φ̂ and θ̂ is the estimate of the AR parameter

and MA parameter of the ARMA(1,1) fit, respectively. With the missing data in place, we

obtained the MLE of ω as suggested by (2.22). Next, we obtained the MLE’s of γ0, α1

and β1 by adjusting the likelihood, the score and information matrix for the missing data

Zt as in (2.20) and (2.21). The above process is iterated 1000 times and in every iteration

the estimates of γ0, α1 and β1 is stored to calculate the average estimates. We evaluate the

estimates by computing the MSE and MADE as in Zhu (2012) .

MADE = 1/a
a∑
i=1

|Θ̂−Θ|
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where a is the number of iterations. The simulation process was also carried out for

different sets of parameters values as in (Zhu, 2012). The results are presented below.

The time series plot, histogram, ACF and PACF of the simulated data is shown in

Figure 2.5 (data was simulated based on the sample size n = 200).
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Figure 2.5: Time series Plot, ACF and PACF of ZIP data generated with the model
parameters {ω = 0.1, γ0 = 1, α1 = 0.4, β1 = 0.3} based on sample size n = 200.

The dispersion index is a measure of over dispersion that gives us an initial impression
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of the zero inflation in the data set. For the simulated data the dispersion index is 1.739

indicating the disparity between the mean and the variance of the data. This means that

the ordinary Poisson distribution will fail to model or explain such data accurately, hence

we resort to the ZIP distribution to model the count time series data. The table below

shows the maximum likelihood estimates (MLE) and its corresponding MADE and MSE

for different sample sizes.

Table 2.4: Simulation results obtained for the ZIACP (1, 1) model for the parameter
vectors (ω,γ0,α1,β1)=(0.1,1.0,0.4,0.3). Parameters are adapted as in Zhu (2012).

Parameters Sample size MLE MADE MSE
ω 200 0.1013 0.0216 0.0015
γ0 1.2635 0.3860 0.5025
α1 0.4275 0.0789 0.0194
β1 0.2460 0.1391 0.0638

ω 500 0.1000 0.0140 0.0006
γ0 1.1435 0.2333 0.1618
α1 0.4282 0.0537 0.0083
β1 0.2847 0.0842 0.0224

ω 1000 0.0998 0.0102 0.0003
γ0 1.1314 0.1794 0.0915
α1 0.4315 0.0424 0.0046
β1 0.2861 0.0582 0.0108
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Table 2.5: Simulation results obtained for the ZIACP (1, 1) model for the parameter
vectors (ω,γ0,α1,β1)=(0.15,2,0.3,0.2). Parameters are adapted as in Zhu (2012).

Parameters Sample size MLE MADE MSE
ω 200 0.1374 0.0250 0.0017
γ0 2.3811 0.7693 2.0222
α1 0.3011 0.0736 0.0173
β1 0.1213 0.2152 0.1554

ω 500 0.1380 0.0179 0.0008
γ0 2.1974 0.4671 0.7078
α1 0.3061 0.0465 0.0068
β1 0.1673 0.1333 0.0568

ω 1000 0.1384 0.0141 0.0005
γ0 2.1483 0.3411 0.3725
α1 0.3079 0.0328 0.0034
β1 0.1797 0.0928 0.0281

Tables 2.4 and 2.5 show the simulation results obtained for the ZIACP (1, 1) model

for the parameter vectors (ω,γ0,α1,β1)=(0.1,1,0.4,0.3) and (ω,γ0,α1,β1)=(0.15,2,0.3,0.2),

respectively . The Tables validate the ZIACP modelling procedure, in the sense that, the

estimates obatained are very close to the true parameter values used in the data generation.

The estimates become even better as the sample size increases. We also considered a

simulation study for the ZIACP(1) and ZIACP(2) model with different true parameter

vectors. The remainder of the simulation results have been provided in the Appendix.

Figures (2.6) and (2.7) show a Q-Q plot to demonstrate the normality of the estimates

obtained for the ZIACP(1,1) model.
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Figure 2.6: A Q-Q plot demonstrating normality of the ZIP estimates for the model
parameters {ω = 0.1, γ0 = 1, α1 = 0.4, β1 = 0.3} based on sample size n = 200.
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Figure 2.7: A Q-Q plot demonstrating normality of the ZIP estimates for the model
parameters {ω = 0.1, γ0 = 1, α1 = 0.4, β1 = 0.3} based on sample size n = 500.
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Figure 2.8: A Q-Q plot demonstrating normality of the ZIP estimates for the model
parameters {ω = 0.1, γ0 = 1, α1 = 0.4, β1 = 0.3} based on sample size n = 1000.

2.1.16 The Akaike Information Criterion (AIC) and Bayesian Infor-

mation Criterion (BIC)

In a pool of competing models, our interest is to select the best model based on the

information criterion. In the literature, the AIC and BIC has been used as a principal tool

for model selection. The AIC and BIC measure the quality of a statistical model relative
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to other competing models. They estimate the information that is lost when a model is

used to represent a physical process. This means that in a pool of competing models, we

will select the model with the smallest AIC and BIC. It is necessay to emphasize here

that, even though AIC and BIC helps us to select the best model based on the information

criterion, it does not guarantee an optimum model. Given a statistical model, if L is the

maximized value of the likelihood function and θ the number of estimated parameters in

the model, then we can calculate the AIC value of the model as below.

AIC = 2θ − 2 log(L̂).

The AIC is essentially a function of the likelihood. An important conclusion that can be

drawn based on the structure of the formula is that, the AIC value increases as the number

of estimated parameters in the model increase. This discourages overfitting as it is almost

certain that we will eventually obtain a good fit by increasing the parameters that we have

in our model. Below is a formula for the BIC

BIC = −2 log(L̂) + θ log(n)

where n is the number of observations in the data being considered.

2.1.17 Real Data Example - Syphilis Data Analysis

In this subsection we apply the estimation strategy to a real data set. This data is based on

public health surveillance for syphilis, a sexually transmitted disease that poses a major

health challenge in the United States. Yang (2012) studied this data where she modeled

the influence of autoregressive covariates and trend on the observed time series. The data

consists of the weekly number of syphilis cases reported in Maryland from 2007-2010.
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The series is extracted from the Centre for Disease Control (CDC) morbidity and mortality

weekly report. There are 209 observations. The empirical mean and variance of the data

are 3.4737 and 9.2794, respectively. The bar chart, ACF, and PACF for the number of

syphilis cases are shown in Figure 2.9. This figure shows that a large number of zeros are

observed over a total of 209 weeks.
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Figure 2.9: Plot of counts, Bar chart, ACF and PACF of syphilis cases
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From the bar chart above, the syphilis data is inundated with zeros as the longest bar

is for zero counts of syphilis cases. The empirical percentage of zeros in the series is

28.23%.

Table 2.6: Estimated parameters, AIC and BIC for syphilis counts

Model ω̂ γ̂0 α̂1 α̂2 β̂1 AIC BIC

ZIACP (1, 1) 0.2704 1.2715 0.1613 − 0.6183 868.7936 855.4243

ZIACP (1) 0.2714 4.1464 0.1971 − − 859.2112 849.1842

ZIACP (2) 0.2728 3.8094 0.1787 0.1109 − 890.4123 877.043

Poisson − 2.0347 0.2419 − 0.1722 1156.438 1166.465

Table 2.6 shows that the model ZIACP (1) has the lowest AIC and BIC values.

Another criterion that we want to use to assess the adequacy of the modelling approah is

by computing the mean and variance of the fitted model (i.e., using the formular for the

theoretical mean and variance and the parameter estimates) and comparing to the empirical

mean and variance of the data. The Empirical mean and variance of the data are 3.4737

and 9.2794, respectively. For the fitted ZIACP (1, 1) model, the mean Ê(Yt) based on

the estimated parameters is given by

Ê(Yt) = µ̂ =
(1− ω̂)γ̂0

1− (1− ω̂)α̂1 − β̂1
=

(1− 0.2704)× 1.2715

1− (1− 0.2704)× 0.1613− 0.6183
= 3.5137

This implies that the mean is over estimated by 0.04. Similarly we found the estimate of
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the variance,

̂V ar(Yt) =
1− 2(1− ω̂)α̂1β̂1 − β̂2

1

1− (1− ω̂)α̂2
1 − 2(1− ω̂)α̂1β̂1 − β̂2

1

(
µ̂+

ω̂µ̂2

1− ω̂

)

= 8.4282

̂V ar(Yt) underestimates the variance by 0.8512. The Table 2.7 below reports the estimates

of the moments from the fitted models.

Table 2.7: Estimates of the moments from the fitted models

Model Ê(Yt) ̂V ar(Yt) Ê(Yt)− E(Yt) | ̂V ar(Yt)− V ar(Yt)|

ZIACP (1, 1) 3.5137 8.4282 0.0400 0.8512

ZIACP (1) 3.5277 8.4009 0.0540 0.8785

ZIACP (2) 3.5092 8.4345 0.0355 0.8449

Poisson 3.4728 3.5971 -0.0009 5.6823

2.1.18 Analyzing Arson Data

We also consider a time series from the forecasting principles website (Zhu, 2012 also

used this data) at http://www.forecastingprinciples.com in the crime data section. The data

represents counts of arson cases in Pittsburgh. The data includes time series from January

1990 through December 2001, a total of 144 monthly observations. The empirical mean

and variance of the data are 1.0417 and 1.3829, respectively.
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Figure 2.10: Plots of counts, Bar chart, ACF and PACF of arson counts

The bar chart in Figure (2.10) suggests the arson data is zero inflated with 42.36%

zeros in the series. The figure also shows the ACF and PACF of the series. The estimated

parameters, AIC and BIC of the various fitted ZIACP models are given in the Table 2.8
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Table 2.8: ZIACP and Poisson models for arson counts data

Model ω̂ γ̂0 α̂1 α̂2 β̂1 AIC BIC

ZIACP (1, 1) 0.3638 0.2155 0.1446 − 0.8216 394.9082 383.0289

ZIACP (1) 0.3417 1.7369 0.0680 − − 390.8159 381.9065

ZIACP (2) 0.3259 1.4302 0.0568 0.2942 − 367.8608 355.9816

Poisson − 0.5763 0.3594 − 0.0899 409.5677 418.4771

Based on the AIC, BIC criteria and similar arguments above, the ZIACP (2) fits the

arson data better. Our method improves on the AIC and the BIC obtained for all the

models considered when compared to the results in Zhu (2012). Even though the same

EM algorithm procedure was used by Zhu (2012) as well, perhaps extending the work of

Fokianos et al. (2009) and obtaning results based on that made the difference.

Table 2.9: Estimates of the moments of the fitted models

Model Ê(Yt) ̂V ar(Yt) Ê(Yt)− E(Yt) | ̂V ar(Yt)− V ar(Yt)|

ZIACP (1, 1) 1.5867 3.2772 0.5450 1.8943

ZIACP (1) 1.1970 1.7798 0.1553 0.3969

ZIACP (2) 1.2629 2.1675 0.2212 0.7846

Poisson 1.0465 1.0571 0.0048 0.3258
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2.1.19 Polio Data Analysis

The polio data consists of monthly number of incidents of poliomyelitis in the USA during

the years 1970-1983. The data have been released by the US Centers for Disease and

Control and there are a total of n = 168 observations. The empirical mean and variance

of the dataset is 1.3333 and 3.5050, respectively.
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Figure 2.11: Plots of counts, Bar chart, ACF and PACF of Polio cases
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Table 2.10: ZIACP and Poisson models for Polio counts data

Model ω̂ γ̂0 α̂1 α̂2 β̂1 AIC BIC

ZIACP (1, 1) 0.2817 1.2174 0.4720 − 0.1551 463.7097 451.2138

ZIACP (1) 0.2811 1.5208 0.4948 − − 465.7242 456.3523

ZIACP (2) 0.3026 1.4289 0.4657 0.1000 − 529.7672 517.2714

Poisson − 0.6400 0.1837 − 0.3801 562.1346 571.5065

Table 2.11: Estimates of the moments of the fitted models

Model Ê(Yt) ̂V ar(Yt) Ê(Yt)− E(Yt) | ̂V ar(Yt)− V ar(Yt)|

ZIACP (1, 1) 1.7286 3.5535 0.3953 0.0485

ZIACP (1) 1.6969 3.4258 0.3636 0.0792

ZIACP (2) 1.6458 3.4441 0.3125 0.0609

Poisson 1.4672 1.7780 0.1339 1.7270

Table (2.10) gives a summary of the fitted model for the polio dataset. Based on the

AIC and BIC criteria, the ZIACP (1, 1) provides the best fit. Kitromilidou and Fokianos

(2015) considered a class of loglinear autoregressive model for the polio data. The AIC of
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their best fit model was 490.965. In that paper, the model (2.24) was chosen to provide the

best fit for the data . Below is the model

log λt = d+
5∑
j=1

bj log(1 + Yt−j) + βt/n+
2∑
s=1

{β1;ssin(ωst) + β2;scos(ωst)} (2.24)

The data analysis of their paper was done without paying any attention to the fact that

the polio data is zero inflated. This problem only suggests that analysing the polio dataset

from the point of view as a zero inflated data is relevant and provides a better fit than when

considered otherwise.

2.1.20 Exploring the ZIM and the pscl package in R

In this example we again model the number of syphilis counts as a function of the first

lagged value of the response and a trend component i.e., zim(counts ∼ bshift(counts >

0) + trend|trend). Here trend is defined by dividing each time point by 1000. The trend

induces extra zeros in the model. The results in Table 2.12 is based on the model where

we consider trend and lagged response as covariates .
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Table 2.12: Estimates of parameters of the loglinear model of the ZIP autoregression

Parameter Estimate(ZIM) Estimate(pscl) SE(ZIM) SE(pscl)

Intercept 1.48942 1.4894 0.11995 0.1199

Lag autoregression 0.22111 0.2211 0.10072 0.1007

Trend -1.01004 -1.0100 0.66687 0.6669

In Table 2.12, the associated AIC = 918.7806 and BIC = 935.4683 when using

the ZIM package and AIC = 916.7806, BIC = 930.1499 for the zeroinfl() in the pscl

package. p-value for the Intercept, lag autoregression and trend are, respectively< 2e−16,

0.02813 and 0.12987.

Table 2.13: Estimates of parameters of the logistic model of the ZIP autoregression

Parameter Estimate(ZIM) Estimate(pscl) SE(ZIM) SE(pscl)

Intercept -1.93321 -1.933 0.37196 0.372

Trend 8.60517 8.604 2.80827 2.808

In Table 2.13 the logistic model has AIC = 918.7806 and BIC = 935.4683 when

using the ZIM package and AIC = 916.7806, BIC = 930.1499 for the zeroinfl() in the

pscl package. p-value for the Intercept and trend are, respectively < 2.021e − 07 and
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0.002182. The two Tables (2.12) and (2.13) compare the estimates of the autoregressive

parameter obtained by using the R-packages ZIM and pscl. The two tables also report

the results when trend is considered as covariate. Even though the trend component is

significant, the AIC and BIC that comes with this result is still higher than that obtained in

the ZIACP modeling approach for the same real data set in Section 2.1.17.
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Figure 2.12: Plot of the zero inflation parameter ωt over time for the ZIP autoregression.

Based on the AIC and BIC criteria, the ZIACP models considered in Table 2.6 are

superior to the ZIP autoregressive model even though the trend component in the model

is significant. That notwithstanding, the ZIP autoregressive model ensures no parameter

restrictions, in the loglinear part of the model, we model the log of the intensity parameter.

However this is not true for the ZIACP models where the parameter space has to be

restricted in order to ensure that the intensity parameter is positive. In the autoregressive

model, the zero inflation parameter is defined as a time varying parameter ωt, a plot of ωt

is shown in Figure 2.12 . The mean of ωt is 0.2756 which is very close to ω̂ obtained from
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the ZIACP models.

Table 2.14: Estimates of parameters of the loglinear model of the ZINB autoregression

Parameter Estimate(ZIM) Estimate(pscl) SE(ZIM) SE(pscl)

Intercept 1.47240 1.4725 0.13873 0.1387

Lag autoregression 0.23164 0.2316 0.11522 0.1152

Trend -1.00364 -1.0038 0.77154 0.7714

In Table 2.14, the AIC = 915.4927 and BIC = 935.5179 when the ZIM package is

used and AIC = 911.4928, BIC = 924.8621 when the zeroinfl() in the pscl package is

used. p-value for the Intercept, lag autoregression and trend are, respectively < 2e− 16,

0.04438 and 0.19332.

Table 2.15: Estimates of the parameters of the Logistic Model of the ZINB autoregression

Parameter Estimate(ZIM) Estimate(pscl) SE(ZIM) SE(pscl)

Intercept -1.97940 -1.976 0.38563 0.385

Trend 8.71684 8.690 2.88697 2.885

The associated AIC and BIC for the logistic model in Table 2.15 when the ZIM
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package is used is 915.4927 and 935.5179, respectively and AIC = 911.4928, BIC =

924.8621 when zeroinfl() in the pscl package is used. p-value for the Intercept and trend

are, respectively 2.853e− 07 and 0.002533.
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Figure 2.13: Plot of the zero inflation parameter ωt over time for ZINB autoregression

In the case of ZINB autoregressive model, again the ZIACP models are superior.

However, based on the AIC and BIC criteria, we found that the ZINB autoregressive model

to be slightly better than the ZIP for the syphilis data. The ZIACP model particularly the

ZIACP(1,1) provides a better fit than ZIP and ZINB autoregression models. Again, the

mean of ωt is 0.2694.
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Table 2.16: Autoregressive model for syphilis data via glm function in the pscl package

Model AIC BIC

Poisson 1142.6174 1149.3021

Negative binomial 985.3994 992.0841

In Table (2.16) we fit the Poisson and the Negative binomial using the syphilis data via

the glm function in the pscl package. Below is the R code:

fm_pois <- glm(syph$a33 ˜ bshift(syph$a33>0) ,

data = counts1, family = poisson)

summary(fm_pois)

fm_pois

fm_nb <- glm.nb(syph$a33 ˜ bshift(syph$a33>0) ,

data = counts1)

summary(fm_nb)

fm_nb

From Table 2.16 we see that the AIC and BIC of the negative binomial is very close to the

zero inflated distributions considered in table 2.12. This is in line with the claim made in

Allison (2012) which suggests that for most datasets the negative binomial is as good as

the zero inflated distributions.
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Chapter 3

The Zero Inflated Poisson
Autoregression with Covariates (ZIPA)
Model

3.1 Introduction

Unitl now, we have considered the ZIP model without incorporating the effects of co-

variates. In chapter 3, we consider the ZIP model with covariates and construct pretest,

James-Stein shrinkage and positive shrinkage estimators for the vector of parameters. The

shrinkage strategy is a method that allows the researcher to improve estimation strategies

since it uses information from the insignificant covariates for estimating the coefficients

of the significant covariates. For more details, see Ahmed et al. (2012), Thomson et al.

(2014), and Hossain et al. (2009). In this situation, we may partition the regression pa-

rameter vector θ into two sub-vectors as θ = (θ>1 ,θ
>
2 )>, where θ1 and θ2 are assumed to

have dimensions k1 × 1 and k2 × 1, respectively, such that k = k1 + k2. We postulate a

restriction, θ2 = 0 which incorporates a variety of prior non-sample information about

the parameters. This situation occurs frequently when there is over-modelling and one
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wishes to remove the irrelevant part of the model, which in turn will increase the efficiency

of estimates of θ. On the other hand, when there is no prior non-sample information,

one could apply to model selection strategies and identify some of the coefficients being

practically zero. In this latter situation, as the final model need not be the true model, it is

still safer to resort to estimation methods which take into account the restriction induced

by the model selection criteria.

Based on the restriction, we build restricted MLE estimator for the restricted model.

In the context of two models where one includes all covariates and the other includes

a restriction. We optimally combine the estimates from the unrestricted and restricted

models to define shrinkage estimator. The pretest estimator can be obtained from either

the unrestricted model containing all coefficients or the restricted model stated by the null

hypothesis. We investigate the relative performances of shrinkage and pretest estimators

with respect to the unrestricted maximum likelihood estimator (UMLE). The asymptotic

properties of these estimators including the derivation of asymptotic distributional biases

and risks are established. A Monte Carlo simulation study is then undertaken in order to

compare the performance of these estimators with respect to UMLE.

3.1.1 Models and the proposed estimators

Consider the ZIP autoregression model by the adding covariates in the model of the

intensity parameter λt and the zero inflation parameter ωt i.e.,

ηt = log λt = xTt−1β (3.1)

and

ξt = logit(ωt) = zTt−1γ, (3.2)
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where β = (β1, · · · , βp)T and γ = (γ1, · · · , γq)T are the regression coefficients for

the log-linear ( 3.1) and the logistic parts ( 3.2), respectively. For convenience, we let

θ = (βT ,γT )T denote the k = (p+ q)-dimensional vector of unknown parameters.

In models (3.1) and (3.2) we are often interested in testing the following hypothesis:

H0 : θ2 = 0 versus HA : θ2 6= 0.

For a random sample, y = (y1, y2, · · · , yn), the log-likelihood function is given by

`(λ,ω;y) =
n∑
t=1

{
I(yt=0) log[ωt + (1− ωt)exp(−λt)]

+ I(yt>0)[log(1− ωt)− λt + yt log λt − log(yt!)]
}

=
n∑
t=1

{
I(yt=0) log[exp(x>t−1γ) + exp(−exp(x>t−1β))]

+ I(yt>0)[ytx
>
t−1β − exp(x>t−1β)− log(yt!)]

}
(3.3)

−
n∑
t=1

log(1 + exp(z>t−1γ)),

where I(·) is an indicator function, which is equal to 1 if the event is true and 0 otherwise.

The log-likelihood function (3.4) of the ZIPA model is quite complicated, especially as

the first term involves both β and γ. Also, the responses are from a mixture distribution

that includes both sets of the parameters ωt and λt. The computation thus becomes

quite challenging in terms of variance-covariance and accuracy when using the Newton-

Raphson algorithm. To avoid this complication, we use the EM algorithm to maximize the

log-likelihood function, see, Hall (2000) and Lambert (1992).
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The EM algorithm is based on a latent variable Ut (we use this new notation instead of

Zt for the missing values in order not to cause conflict with the covariates zt in the logistic

model and the Chapter 2). We could observe Ut = 1, when Yt is from the perfect zero state

(or first process) and Ut = 0, when Yt is from the Poisson state (or second process). To

formulate the log-likelihood for the complete data, we use the conditional probability:

Pr (Yt = yt, Ut = ut|xt−1, zt−1,β,γ)

= Pr (Yt = yt|Ut = ut,xt−1, zt−1,β,γ)× Pr (Ut = ut|xt−1, zt−1,β,γ)

=

(
exp(z>t−1γ)

1 + exp(z>t−1γ)

)ut

×
(

1

(1 + exp(z>t−1γ))
.
exp(−exp(ytx

>
t−1β))exp(x>t−1β))

yt!

)1−ut

.

Thus, the complete log-likelihood based on (Y,U) is

`c(β,γ;U ,xt−1, zt−1) = log

[
n∏
t=1

Pr (Yt = yt, Ut = ut|xt−1, zt−1,β,γ)

]

=
n∑
t=1

{utz>t−1γ − log(1 + exp(z>t−1γ))}

+
n∑
t=1

(1− ut)(ytx>t−1β − exp(x>t−1β)− log(yi!)) (3.4)

= `c1(γ;U ,xt−1, zt−1) + `c2(β;U ,xt−1, zt−1)

−
n∑
t=1

(1− ut) log(yt!)),

where `c1 =
∑n

t=1{utz>t−1γ − log(1 + exp(z>t−1γ))}, `c2 =
∑n

t=1(1 − ut)(ytx
>
t−1β −

exp(x>t−1β)), and U = {ut; t = 1, 2, · · · , n}.
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To implement the EM algorithm, we first initialize (β,γ). In the E-step, we use the

initial values of (β,γ) to calculate the expectation of Ut and use it as an estimate of Ut. In

the M-step, we use the estimate of Ut to maximize `c(β,γ;U ,xt−1, zt−1), which gives

the unrestricted maximum likelihood estimators for β and γ. The iteration l of the EM

algorithm requires the following steps.

E-Step: Estimate U (l)
t by using the means given γ(l) and β(l),

U
(l)
t = E(Ut|yt, γ(l),β(l))

= E(Ut = 1|yt, γ(l),β(l))

=
Pr(Yt = yt|Ut = 1)Pr(Ut = 1)

Pr(Yt = yt|Ut = 1)Pr(Ut = 1) + Pr(Yt = yt|Ut = 0)Pr(Ut = 0)

=

{
ωt

ωt+(1−ωt)exp(−λt) , yt = 0

0, yt ≥ 1,

=

{[
1 + exp(−exp(x>t−1β(l))− z>t−1γ(l))

]−1
, yt = 0

0, yt ≥ 1,

M-Step: Given Ut = U
(l)
t , maximize `c1(γ;U ,xt−1, zt−1) and `c2(β;U ,xt−1, zt−1) with

respect to γ and β, respectively:

γ(l+1) = argmin
γ
{−`c1(γ;U ,xt−1, zt−1)}

β(l+1) = argmin
β

{−`c2(β;U ,xt−1, zt−1)}

The iteration stops when θ = (β>,γ>)> converges, and the final estimate is denoted as

θ̂ = (β̂>, γ̂>)>, the unrestricted maximum likelihood estimator (UMLE).
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If the information matrix 1
n
I(β,γ) has a positive definite limit satisfying some regularity

conditions, as in the work of McCullagh (1984), the quantity
√
n
(
θ̂ − θ

)
is asymptot-

ically normally distributed with mean vector 0 and information matrix I−1(β,γ) (Lambert,

1992). The matrix I(β,γ) can be partitioned as

(
Iβ,β Iβ,γ
Iγ,β Iγ,γ

)

where the elements Iβ,β, I>β,γ = Iγ,β, and Iγ,γ are, respectively,

−E
[

∂2`

∂β∂β>

]
,−E

[
∂2`

∂β∂γ

]
, and − E

[
∂2`

∂γ∂γ>

]

with

∂2`

∂β∂β>
=

n∑
t=1

λt

{
1− y0,tωt(ωt + (1− ωt)(1 + λt)exp(−λt))

p20,t

}
x>t−1xt−1,

∂2`

∂γ∂γ>
=

n∑
t=1

ωt(1− ωt)
{

1− y0,texp(λt)

p20,t

}
z>t−1zt−1,

∂2`

∂β∂γ
=

∂2`

∂γ∂β
=

n∑
t=1

−y0,tωt(1− ωt)λtexp(−λt)
p20,t

x>t−1zt−1,

where p0,t = ωt + (1− ωt)exp(−λt) is the probability mass function of Yt|Ft−1 at zero

and 1{yt=0} = y0,t.

Suppose now that our interest is in estimating the parameters β and γ from (3.4) under

the restriction θ2 = 0. The steps of the EM-algorithm for estimating the parameters

using log-likelihood (3.4) under the above restriction are similar. The resulting estimator,

θ̃ = (β̃>, γ̃>)> is called the restricted maximum likelihood estimator (RMLE).

90



Theorem 13. [Y ang (2012)] For the ZIPA model defined above, the score function Sn(θ)

is given by

Sn(θ) =
∂ logL(θ)

∂θ
=

n∑
t=1

Ct−1vt(θ)

with Ct and vt(θ) defined as

Ct−1 =

[
xt−1 0

0 zt−1

]

and

vt(θ) =

[
v1,t(θ)
v2,t(θ)

]
=

[
yt − λt(1− ωty0,t

p0,t
)

ωt(
y0,t
p0,t
− 1)

]

where y0,t = 1{yt=0}.

Theorem 14. [Y ang (2012)]

The conditional information matrix of the ZIPA is given by,

Gn(θ) =
n∑
t=1

V ar{Ct−1vt(θ)|Ft} =
n∑
t=1

Ct−1Σt(θ)CT
t−1,

where Σt(θ) = V ar{vt(θ)|Ft−1} is a symmetric 2× 2 matrix with the elements.

Σt(θ) =

[
V ar(v1,t(θ)) Cov(v1,t(θ), v2,t(θ))

Cov(v2,t(θ), v1,t(θ)) V ar(v1,t(θ))

]
.

where

V ar(v1,t(θ)) =
(1− ωt)λt{exp(−λt) + ωt(1− (1 + λt)exp(−λt))}

p0,t
.
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V ar(v2,t(θ)) =
ω2
t (1− ωt)(1− exp(−λt))

p0,t
.

Cov(v1,t(θ), v2,t(θ)) =
−λtωt(1− ωt)exp(−λt)

p0,t
.

A detailed proof is provided in the Appendix. For convenience, we can partition the

information matrix as

Gn(θ) =

[
G11 G12

G21 G22

]
,

whereGij are positive-definite matrices when i = j.

The likelihood ratio test statistic will be used to test H0 : θ2 = 0. If θ̃ maximizes the

log likelihood of the ZIPA model under H0 of dimension k − k2 and θ̂ maximizes the log

likelihood of the ZIPA model under a alternative hypothesis HA of dimension k, then the

test statistic Dn is

Dn = 2[`(θ̂)− `(θ̃)]

= nθ̂>2 G22.1θ̂2. (3.5)

whereG22.1 = G22 −G21G
−1
11G12. Under the regularity conditions in Appendix and if

Gn(θ) is consistently estimated byGn(θ̂), then

D̂n = nθ̂>2 Ĝ22.1θ̂2 + oP (1),

is asymptotically χ2-distributed with k2 degrees of freedom when the null hypothesis

H0 : θ2 = 0 is true. (Lambert, 1992).
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3.1.2 The Pretest and Shrinkage Estimators

The pretest and shrinkage estimators are based on the test statistic Dn of (3.5) for testing

H0 : θ2 = 0. Specifically, the pretest estimator (PT) of θ is defined as

θ̂PT = θ̂ − (θ̂ − θ̃)I(D̂n ≤ χ2
k2,α

),

where I(A) is an indicator function of a set A, and χ2
k2,α

is the α-level critical value of

the approximate distribution of D̂n under H0. From the above definition, one can see that

if the data yield D̂n < χ2
k2,α

, then θ̂PT = θ̃, otherwise θ̂PT = θ̂. So the PT is indeed a

simple mixture of the UMLE and RMLE. In an ordinary two-step procedure, one would

test the hypothesis H0 : θ2 = 0 first, then based on the test result decide which estimator

should be adopted. The PT simply combines these two steps to form a single one. That

is, testing and estimation are done simultaneously. It is important to note here that θ̂PT

performs better than θ̂ in some important parts of the parameter space. For details, see

Hossain et al. (2009) and Ahmed et al. (2006).

Because of extreme choices for either the UMLE or RMLE, the pretest procedures

are not admissible for many models, even though they may improve upon UMLE, a

well-documented fact in the literature (Judge and Bock, 1978). In view of this limitation

we define a shrinkage estimator, which is a smoothed version of θ̂PT :

θ̂SE = θ̃ +
(

1− (k2 − 2)D̂−1n

)
(θ̂ − θ̃), k2 ≥ 3. (3.6)

This estimator is a weighted average of UMLE θ̂ and RMLE θ̃, where the weights are a

function of the test statistic for testing H0 : θ2 = 0.
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We note that when the test statistic D̂n is very small in comparison with k2 − 2,

i.e., when the ratio (k2 − 2)/D̂n is greater than one in absolute value, the shrinkage

estimator θ̂SE tends to shrink θ̂ overly towards θ̃ and reversing the sign of θ̂. By replac-

ing
(

1− (k2 − 2)D̂n
−1)

by
(

1− (k2 − 2)D̂n
−1)

+
in (3.6), where (x)+ = x1(x≥0), the

positive-part shrinkage estimator, θ̂PSE rectifies this problem. For details, see, Ahmed

et al. (2012).

3.2 Asymptotic Results

In this section, we consider the asymptotic behavior of an estimator θ̂∗, which could be

any one of the five estimators considered in this paper: θ̂, θ̃, θ̂PT , θ̂SE , and θ̂PSE . The

main concern here is to evaluate the performance of these estimators when θ2 is close to

the null vector, where θ = (θ>1 ,θ
>
2 )>. To derive any meaningful results we consider a

sequence of local alternatives

Kn : θ2 =
ω√
n
, (3.7)

where ω = (ω1, ω2, · · · , ωk2)> ∈ <k2 is a given vector of real numbers. In this frame-

work, θ= (θ>1 ,0
>)>, and the quantity ω√

n
is the magnitude of the distance between the

unrestricted model and the restricted model. For any fixed ω, this distance shrinks as the

sample size increases.

To study the asymptotic distribution risks (ADR) of the estimators, we define a
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quadratic loss function by using a positive definite matrixW , namely

L(θ̂∗;W ) =
[√

n(θ̂∗ − θ)
]>
W
[√

n(θ̂∗ − θ)
]
,

where θ̂∗ is any one of the five estimators. The usual quadratic loss is defined whenW is

chosen as I , the identity matrix. A generalW gives a loss function that weighs differently

for different θ’s.

We assume that the cumulative distribution function of θ̂∗ under Kn exists and can be

denoted as

F (x) = lim
n→∞

P
[√

n(θ̂∗ − θ) ≤ x|Kn

]
,

where F (x) is nondegenerate. The ADR of θ̂∗ is then defined as

ADR(θ̂∗;W ) =

∫
· · ·
∫
x>Wx dF (x)

= trace(WV ), (3.8)

where V =
∫
· · ·
∫
xx>dF (x) is the dispersion matrix for the distribution function F (x).

The shrinkage estimators are, in general biased, the bias, however is accompanied by

a reduction in variance. The asymptotic distributional bias (ADB) of an estimator θ̂∗ is

defined as

ADB(θ∗) = E
{

lim
n→∞

√
n(θ̂∗ − θ)

}
.

Under the local alternatives (3.7), the following theorems help the derivation and numerical

computation of the ADB and the ADR of the estimators.
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Theorem 15. If Iβ,γ is nonsingular and ∆ = ω>G22.1ω, then under the local alternatives

Kn in (3.7) and regularity conditions in Appendix (see Thomson et al., 2014), we have as

n→∞,

1.
√
nθ2

L−→ N(ω,G22.1).

2. The test statistic Dn in (3.5) converges to a non-central chi-squared distribution

χ2
k2

(∆) with k2 degrees of freedom and non-centrality parameter ∆.

Theorem 16. Let θ = (θ>1 ,0
>)>. Under the local alternative (3.7) and the assumed

regularity conditions in Appendix, the joint distributions are:

(i).

[
η1
η2

]
∼ N2k

([
0
ζ

]
,

[
G−111.2 Ω12

Ω21 Ω∗∗

])

(ii).

[
η1
η3

]
∼ N2k

([
0
−ζ

]
,

[
G−111.2 Σ12

Σ21 Σ∗∗

])
,

where η1 = limn→∞
√
n(θ̂−θ), η2 = limn→∞

√
n(θ̂− θ̃), η3 = limn→∞

√
n(θ̃−θ),

ζ = −G−111G12δ, Ω∗∗ = Ω12 = Ω>21 = G−111G12G
−1
22.1G21G

−1
11 , Σ∗∗ = Σ12 = Σ>21 =

G−111.2 −G−111G12G
−1
22.1G21G

−1
11 , andG11.2 = G11 −G12G

−1
22G21.

The outline of the proof is given in Nkurunziza and Chen (2013).

Theorem 17. Using the definition of ADB, Theorem 15, and regularity conditions in
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Appendix (see Ahmed et al., 2012), the ADBs of the estimators are,

ADB(θ̂) = 0

ADB(θ̃) = ζ

ADB(θ̂PT ) = −Ψk2+2

(
χ2
k2,α

,∆
)
ζ

ADB(θ̂SE) = −(k2 − 2)E
(
χ−2k2+2,α(∆)

)
ζ

ADB(θ̂PSE) = ADB
(
θ̂SE

)
− ζ [Ψk2+2((k2 − 2),∆)]

+ (k2 − 2)ζE
[
χ−2k2+2,α(∆)I

(
χ2
k2+2,α(∆) < (k2 − 2)

)]
,

where Ψν(·,∆) is the distribution function of the χ2
ν(∆) distribution. Clearly, the bias

of the estimators is a function of ∆. Therefore, for bias comparison, it suffices to compare

the scalar factor ∆ only. It is clear that the ADB of RMLE is an unbounded function of ∆.

The ADB(θ̂SE) and ADB(θ̂PSE) start from the origin, and as ∆ increases, they increase to

a maximum and then decrease to 0. Note that, E
(
χ−2k2+2(∆)

)
is a decreasing log-convex

function of ∆ and the ADB of θ̂PT is a function of ∆ and α. For a fixed α, ADB(θ̂PT )

starts at zero, increases to a point, then decreases gradually to zero. The proof of this

theorem is given below:

Proof: It is obvious that ADB(θ̂) = 0. The ADBs of the reduced, pretest, shrinkage, and
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positive shrinkage estimators are as follows:

ADB(θ̃) = E
[

lim
n→∞

√
n(θ̃ − θ)

]
= E(η3) = −G−111G12δ = ζ.

ADB(θ̂PT ) = E
[

lim
n→∞

√
n(θ̂PT − θ)

]
= E

[
lim
n→∞

√
n
(
θ̂ − θ − I

(
D̂n ≤ χ2

k2,α

)
(θ̂ − θ̃)

)]
= −E

[
lim
n→∞

√
nI
(
D̂n ≤ χ2

k2,α

)(
θ̂ − θ̃

)]
= −E

[
lim
n→∞

I
(
D̂n ≤ χ2

k2,α

)
η2

]
= −E

[
I
(
χ2
k2+2,α (∆) ≤ χ2

k2,α

)]
E (η2)

= Ψk2+2

(
χ2
k2,α

,∆
)
ζ.

ADB(θ̂SE) = E
[

lim
n→∞

√
n(θ̂SE − θ)

]
= E

[
lim
n→∞

√
n
(
θ̃ + θ̂ − θ̃ − (k2 − 2)D̂−1n (θ̂ − θ̃)− θ

)]
= −E

[
lim
n→∞

√
n((k2 − 2)D̂−1n (θ̂ − θ̃))

]
= −(k2 − 2)E

[
lim
n→∞

η2D̂
−1
n

]
= −(k2 − 2)ζE

[
χ−2k2+2,α(∆)

]
= −(k2 − 2)E

(
χ−2k2+2,α(∆)

)
ζ.
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Observe that we can rewrite θ̂PSE as

ADB(θ̂PSE) = θ̃ +
(

1− (k2 − 2)D̂−1n

)+
(θ̂ − θ̃)

= θ̃ +
(

1− (k2 − 2)D̂−1n

)
(θ̂ − θ̃)

−
(

1− (k2 − 2)D̂−1n

)
I
(
D̂n < (k2 − 2)

)
(θ̂ − θ̃)

= θ̂SE −
(

1− (k2 − 2)D̂−1n

)
I
(
D̂n < (k2 − 2)

)
(θ̂ − θ̃).

Therefore,

ADB(θ̂PSE) = E
[

lim
n→∞

√
n(θ̂PSE − θ)

]
= E

[
lim
n→∞

√
n(θ̂SE − θ)

− lim
n→∞

√
n
(

1− (k2 − 2)D̂−1n

)
I
(
D̂n < (k2 − 2)

)
(θ̂ − θ̃)

]
= ADB(θ̂SE)− E

[
lim
n→∞

η2

(
1− (k2 − 2)D̂−1n

)
I
(
D̂n < (k2 − 2)

)]
= ADB(θ̂SE)

− ζE
[(

1− (k2 − 2)χ−2k2+2,α(∆)
)
I
(
χ2
k2+2,α(∆) < (k2 − 2)

)]
= ADB

(
θ̂SE

)
− ζE

[
I
(
χ2
k2+2,α(∆) < (k2 − 2)

)]
+(k2 − 2)ζE

[
χ−2k2+2,α(∆)I

(
χ2
k2+2,α(∆) < (k2 − 2)

)]
= ADB

(
θ̂SE

)
− ζ [Ψk2+2((k2 − 2),∆)]

+ (k2 − 2)ζE
[
χ−2k2+2,α(∆)I

(
χ2
k2+2,α(∆) < (k2 − 2)

)]
.

Theorem 18. Under the local alternatives Kn in (3.7) and regularity conditions in Ap-
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pendix (see Ahmed et al., 2012), the ADRs of the estimator are

ADR(θ̂;W ) = tr(WG−111.2).

ADR(θ̃;W ) = ADR(θ̂;W )tr(WΣ∗∗) + ζ>Wζ.

ADR(θ̂PT ;W ) = ADR(θ̂;W )−Ψk2+2(χ
2
k2,α

,∆)tr(WΩ∗∗)

+
[
2Ψk2+2

(
χ2
k2,α

,∆
)
−Ψk2+4

(
χ2
k2,α

,∆
)]
ζ>Wζ.

ADR(θ̂SE;W ) = ADR(θ̂;W ) +
[
(k2 − 2)2E

(
χ−4k2+2(∆)

)
− 2(k2 − 2)E

(
χ−2k2+2(∆)

)]
tr (WΩ∗∗)

+
[
(k2 − 1)2E

(
χ−4k2+4(∆)

)
+ 2(k2 − 2)E

(
χ−2k2+2(∆)

)
− 2(k2 − 2)E

(
χ−2k2+4(∆)

)] (
ζ>Wζ

)
.

ADR(θ̂PSE;W ) = ADR(θ̂SE;W )

− E
[
(1− (k2 − 2)χ−2k2+2(∆))2I

(
χ2
k2+2(∆) < (k2 − 2)

)]
tr (WΩ∗∗)

+ [2Ψk2+2((k2 − 2),∆)

− 2(k2 − 2)E
(
χ−2k2+2(∆)I

(
χ2
k2+2(∆) < (k2 − 2)

))
− E

((
1− (k2 − 2)χ−2k2+4(∆)

)2
× I

(
χ2
k2+4(∆) < (k2 − 2)

))] (
ζ>Wζ

)
.

By comparing the risk of the estimators, we see that, as ∆ moves away from 0, the risk

of θ̃ becomes unbounded. That is, the RMLE θ̃ dominates the unrestricted estimator at and

near ∆ = 0. The risk of θ̂PSE is asymptotically superior to θ̂SE for all values of ∆, with

strict inequality holding for some ∆. Thus, not only does θ̂PSE confirm the inadmissibility
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of θ̂SE , but it also provides a simple superior estimator. Further, the largest risk improve-

ment of θ̂PSE over θ̂SE is at and near the null hypothesis. Also, by comparing the risks of

θ̂SE , θ̂PSE , and θ̂, it can be easily shown that, under certain conditions ADR(θ̂PSE,W )

≤ ADR(θ̂SE,W ) ≤ ADR(θ̂;W ) for all ∆ ≥ 0. For a given α, PT is not uniformly better

than the unrestricted estimator near the null hypothesis. One may determine an α such

that PT has a minimum guaranteed risk. If the minimum efficiency required is RE0, then

we can choose α by solving the equation min
λ
{Relative Efficiency(α,∆)} = RE0. The

exact solution may not be available, but we can use a numerical method to search for the

minimum. The proof of this theorem is given below:

Proof: To drive the ADR expressions, we first derive the asymptotic covariance matrices

for all estimators. The covariance matrix V (θ̂∗) of any estimator θ∗ is defined as:

V (θ∗) = E
[

lim
n→∞

n(θ∗ − θ)(θ∗ − θ)>
]
.

First, we derive the covariance matrices of the UMLE and RMLE:

V (θ̂) = E
[

lim
n→∞

√
n(θ̂ − θ)

√
n(θ̂ − θ)>

]
= E(η1η

>
1 ) = Var(η1) + E(η1)E(η>1 ) = Var(η1) = G−111.2.

V (θ̃) = E
[

lim
n→∞

√
n(θ̃ − θ)

√
n(θ̃ − θ)>

]
= E(η3η

>
3 ) = Var(η3) + E(η3)E(η>3 ) = Σ∗∗ + ζζ>.
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Second, we derive the covariance matrices of the pretest estimator:

V (β̂PT ) = E
[

lim
n→∞

√
n(θ̂PT − θ)

√
n(θ̂PT − θ)>

]
= E

(
η1η

>
1 + η2η

>
2 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

)
− 2η2η

>
1 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
= Var (η1) + E (η1) E

(
η>1
)

+ E
(
η2η

>
2 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
−2E

(
η2η

>
1 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
= G−111.2 + Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)

+ ζζ>Ψk2+4

(
χ2
k2,α

)
− 2E

(
η2η

>
1 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
.

Consider the fourth term:

E
(
η2η

>
1 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
= E

(
E
(
η2η

>
1 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

)
|η2
))

= E
(
η2
(
E (η1) + Cov

(
η2,η

>
1

)
Ω∗∗−1 (η2 − E(η2))

)>
lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
= E

(
η2

(
η>2 − E (η2)

>
)

Ω∗∗−1Cov (η2,η1) lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
= E

(
η2η

>
2 lim
n→∞

I
(
D̂n ≤ χ2

k2,α

))
Ω∗∗−1Ω12

−E
(
η2 lim

n→∞
I
(
D̂n ≤ χ2

k2,α

))
E (η2)

>Ω∗∗−1Ω12

= Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)
Ω∗∗−1Ω12 + ζζ>Ψk2+4

(
χ2
k2,α

,∆
)

Ω∗∗−1Ω12

−ζζ>Ψk2+2

(
χ2
k2,α

,∆
)
Ω∗∗−1Ω12

= Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)

+ ζζ>Ψk2+4

(
χ2
k2,α

,∆
)
− ζζ>Ψk2+2

(
χ2
k2,α

,∆
)
.
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Hence

V (θ̂PT ) = G−111.2 + lim
n→∞

E
(
η2η

>
2 I
(
D̂n ≤ χ2

k2,α

))
− 2 lim

n→∞
E
(
η2η

>
1 I
(
D̂n ≤ χ2

k2,α

))
= G−111.2 + Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)

+ ζζ>Ψk2+4

(
χ2
k2,α

,∆
)

−2
[
Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)

+ ζζ>Ψk2+4

(
χ2
k2,α

,∆
)

− ζζ>Ψk2+4

(
χ2
k2,α

,∆
)]

= G−111.2 −Ω∗∗Ψk2+2

(
χ2
k2,α

,∆
)
− ζζ>Ψk2+4

(
χ2
k2,α

,∆
)

+ 2ζζ>Ψk2+2

(
χ2
k2,α

,∆
)
.

Third, we derive the covariance matrices of the shrinkage estimators:

V (θ̂SE) = E
[

lim
n→∞

√
n(θ̂SE − θ)

√
n(θ̂SE − θ)>

]
= E

[
lim
n→∞

√
n
(
θ̂ − θ − (k2 − 2)D̂−1n (θ̂ − θ̃)

)
=
√
n
(
θ̂ − θ − (k2 − 2)D̂−1n (θ̂ − θ̃)

)>]

= E(η1η
>
1 ) + (k2 − 2)2E

(
η2η

>
2 lim
n→∞

D̂−2n

)
− 2(k2 − 2)E

(
η2η

>
1 lim
n→∞

D̂−1n

)
= G−111.2 + Ω∗∗E

(
χ−4k2+2(∆)

)
+ ζζ>E

(
χ−4k2+4(∆)

)
− 2(k2 − 2)E

(
η2η

>
1 lim
n→∞

D̂−1n

)
.
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Consider the last term:

E(η2η
>
1 lim
n→∞

D̂−1n ) = E
(

E(η2η
>
1 lim
n→∞

D̂−1n |η2)
)

= E
(
η2E(η>1 |η2) lim

n→∞
D̂−1n

)
+ E

(
η2
(
η>2 − E(η2

)>
)Ω∗∗−1Ω12 lim

n→∞
D̂−1n

)
= E

(
η2η

>
2 lim
n→∞

D̂−1n

)
Ω∗∗−1Ω12

−E
(
η2 lim

n→∞
D̂−1n

)
E (η2)

>Ω∗∗−1Ω12

= Ω∗∗E
(
χ−2k2+2,α(∆)

)
+ ζζ>E

(
χ−2k2+4,α(∆)

)
− ζζ>E

(
χ−2k2+2,α(∆)

)
= Ω∗∗E

(
χ−2k2+2(∆)

)
+ ζζ>E

(
χ−2k2+4(∆)

)
− ζζ>E

(
χ−2k2+2(∆)

)
.

Hence,

V (θ̂SE) = G−111.2 + (k2 − 2)2
[
Ω∗∗E(χ−4k2+2(∆)) + ζζ>E(χ−4k2+4(∆))

]
− 2(k2 − 2)

[
Ω∗∗E(χ−2k2+2(∆)) + ζζ>E(χ−2k2+4(∆))− ζζ>E(χ−2k2+2(∆))

]
= G−111.2 +

[
(k2 − 2)2E

(
χ−4k2+2(∆)

)
− 2(k2 − 2)E(χ−2k2+2(∆))

]
Ω∗∗

+
[
(k2 − 2)2E(χ−4k2+4(∆)) + 2(k2 − 2)E(χ−2k2+2(∆))

− 2(k2 − 2)E(χ−2k2+4)
]
ζζ>.

Let Rn+l(∆) =
(

1− (k2 − 2)D̂−1n

)l
I
(
D̂n < (k2 − 2)

)
, where l = 1, 2
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V (θ̂PSE) = E
(

lim
n→∞

√
n(θ̂PSE − θ)

√
n(θ̂PSE − θ)>

)
,

= E
(

lim
n→∞

√
n(θ̂SE − θ)

√
n(θ̂SE − θ)>

)
+E
(

lim
n→∞

Rn+2(∆)
√
n(θ̂ − θ̃)

√
n(θ̂ − θ̃)>

)
−2E

(
lim
n→∞

Rn+1(∆)
√
n(θ̂ − θ̃)

√
n(θ̂SE − θ)>

)
= V (θ̂SE) + E

(
lim
n→∞

Rn+2(∆)η2η
>
2

)
− 2E

(
lim
n→∞

Rn+1(∆)η2

(
η>3 +

(
1− (k2 − 2)D̂−1n

)
η>2

))
,

= V (θ̂SE)− E
(

lim
n→∞

Rn+2(∆)η2η
>
2

)
− 2E

(
lim
n→∞

Rn+1(∆)η2η
>
3

)
.

Consider the second term:

−E
(

lim
n→∞

Rn+2(∆)η2η
>
2

)
= −E

(
lim
n→∞

(
1− (k2 − 2)D̂−1n

)2
I
(
D̂n < (k2 − 2)

)
η2η

>
2

)

= −Ω∗∗E
(
I
(
χ2
k2+2(∆) < (k2 − 2)

) [
1− (k2 − 2)χ−2k2+2(∆)

]2)
− ζζ>E

(
I
(
χ2
k2+4(∆) < (k2 − 2)

) [
1− (k2 − 2)χ−2k2+4(∆)

]2)
.
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Consider the third term:

−2E
(

lim
n→∞

Rn+1(∆)η2η
>
3

)
= −2E

(
lim
n→∞

η2E
[
Rn+1(∆)η>3 |η2

])
= −2E

(
lim
n→∞

η2
[
E
(
η>3
)

+ Cov (η2,η3) Ω∗∗−1 (η2 − E (η2))
]
Rn+1(∆)

)
= −2E

(
lim
n→∞

η2E
(
η>3
)
Rn+1(∆) + 0

)
= −2E

[
lim
n→∞

η2I
(
D̂n < (k2 − 2)

)
− (k2 − 2)D̂−1n η2I

(
D̂n < (k2 − 2)

)]
E
(
η>3
)

= 2Ψ(k2−2)+4((k2 − 2),∆)ζζ>

− 2(k2 − 2)E
(
χ−2k2+2(∆)I

(
χ2
k2+2(∆) < (k2 − 2)

))
ζζ>

=
[
2Ψ(k2−2)+4((k2 − 2),∆)

− 2(k2 − 2)E
(
χ−2k2+2(∆)I

(
χ2
k2+2(∆) < (k2 − 2)

))]
ζζ>.

Finally,

V
(
θ̂PSE

)
= V

(
θ̂SE

)
− E

[(
1− (k2 − 2)χ−2k2+2(∆)

)2
I
(
χ2
k2+2(∆) < (k2 − 2)

)]
Ω∗∗

+
[
2Ψ(k2−2)+4((k2 − 2),∆)

− 2(k2 − 2)E
(
χ−2k2+2(∆)I

(
χ2
k2+2(∆) < (k2 − 2)

))
− E

[(
1− (k2 − 2)χ−2k2+4(∆)

)2
I
(
χ2
k2+4(∆) < (k2 − 2)

)]]
ζζ>.

The risk expressions in Theorem 3.3 now follow from (3.8) which completes the proof.

In order to explain and quantify the properties of the theoretical results, we conduct a

simulation study to compare the performance of the suggested estimators.
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3.2.1 Simulation Studies

In this section, we carry out a Monte Carlo simulation study to examine the risk (namely

MSE) performance of the estimators. This simulation study is based on a zero-inflated

Poisson autoregression model with different numbers of covariates. Our sampling exper-

iment consists of different combinations of the length of time series, i.e., n = 200, and

300. In this study we simulate time series data by the ZIP autoregression:

log(λt) = x>t−1β + σεt

and

log

(
ωt

1− ωt

)
= z>t−1γ,

where the covariates xt−1 and zt−1 are taken to be lagged values of the response yt hence

the ZIP autoregression. Here, εt is an unobservable realization from the standard normal

distribution, included in λt to optionally induce extra overdispersion in the data. We

generate yt using the rzip function in the ZIM package in R. In the rzip function, we

must supply λ and ω. We calculate λ and ω based on the lag responses and true values of

β and ω. We set the true values of θ = (θ>1 , θ
>
2 )> = ((1.1, 1.8, 0.68,−1.7)>, b>)> where

b is a zero vector with different lengths. We set σ = 0.10.

For simulation, we consider the particular hypothesis H0 : θ2 = 0 vs. HA : θ2 6= 0,

where θ2 is a k2×1 vector with k = k1+k2. The summary of simulation result is provided

for (k1, k2) = {(4, 5), (4, 9), (4, 14), (4, 18)}, α = 0.05 for different sample sizes. Under

H0, the number of simulations was varied initially and it was determined that 1000 of each

set of observations were adequate, since a further increase in the number of replications

did not significantly change the result. We define the parameter ∆ = ||θ − θ(0)||2, where

107



θ(0) = (θ>1 ,0
>)> and || · || is the Euclidian norm. In order to investigate the performance

of the estimators for ∆ > 0, further responses were generated under local alternative

hypotheses (i.e., for different ∆ between 0 and 2). All computations were conducted using

the R statistical system Ihaka and Gentleman (1996). We calculate the simulated mean

squared errors (SMSE) by using the empirical formula:

SMSE(θ∗) =

p+q∑
i=1

(θ∗i − θi)2.

The objective here is to investigate the behaviour of the proposed estimators for ∆ ≥ 0.

The criterion for comparing the performance of any estimator θ∗ in this study is the mean

squared error (MSE), where θ∗ is any of the estimators θ̂, θ̃, θ̂PT , θ̂SE , and θ̂PSE . The

simulated relative mean squared error (RMSE) of θ∗ to θ̂ is defined as

RMSE(θ̂ : θ∗) = MSE(θ̂)/MSE(θ∗).

Observe that an RMSE > 1 indicates the degree of superiority of θ∗ over θ̂.

Our theoretical results were applied to various simulated data sets. Tables 3.1 to 3.8

provide the estimated relative efficiency for various estimators over θ̂ for n = 200 and

300. The results can be summarized as follows:
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Table 3.1: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 200 and k2 = 5.

∆ RMLE PT SE PSE

0.0 1.507 1.483 1.289 1.292
0.1 1.497 1.467 1.268 1.270
0.3 1.333 1.238 1.174 1.174
0.7 0.997 0.977 1.039 1.039
1.0 0.840 1.000 1.014 1.014
1.2 0.752 1.000 1.005 1.005
1.6 0.679 1.000 1.002 1.002
1.8 0.652 1.000 1.001 1.001
2.0 0.630 1.000 1.001 1.001

Table 3.2: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 300 and k2 = 5.

∆ RMLE PT SE PSE

0 1.470 1.448 1.268 1.269
0.1 1.418 1.398 1.239 1.241
0.3 1.240 1.113 1.115 1.116
0.7 0.932 0.997 1.019 1.019
1.0 0.798 1.000 1.005 1.005
1.2 0.750 1.000 1.002 1.002
1.6 0.689 1.000 1.001 1.001
1.8 0.677 1.000 1.000 1.000
2.0 0.658 1.000 1.000 1.000
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Table 3.3: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 200 and k2 = 9.

∆ RMLE PT SE PSE

0.0 1.524 1.444 1.472 1.494
0.1 1.484 1.434 1.424 1.434
0.3 1.429 1.402 1.342 1.348
0.7 1.223 1.039 1.150 1.150
1.0 1.079 1.001 1.075 1.075
1.2 0.970 1.000 1.041 1.041
1.6 0.845 1.000 1.017 1.017
1.8 0.789 1.000 1.011 1.011
2.0 0.755 1.000 1.008 1.008

Table 3.4: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 300 and k2 = 9.

∆ RMLE PT SE PSE

0.0 1.268 1.267 1.237 1.246
0.1 1.270 1.269 1.238 1.244
0.3 1.251 1.232 1.193 1.195
0.7 1.137 1.000 1.078 1.078
1.0 1.016 1.000 1.034 1.034
1.2 0.939 1.000 1.019 1.019
1.6 0.838 1.000 1.007 1.007
1.8 0.792 1.000 1.005 1.005
2.0 0.760 1.000 1.003 1.003
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Table 3.5: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 200 and k2 = 14.

∆ RMLE PT SE PSE

0.0 1.964 1.957 1.861 1.909
0.1 1.941 1.941 1.844 1.876
0.3 1.848 1.815 1.740 1.758
0.7 1.500 1.144 1.356 1.356
1.0 1.239 1.004 1.176 1.176
1.2 1.116 1.001 1.106 1.106
1.6 0.903 1.000 1.041 1.041
1.8 0.848 1.000 1.028 1.028
2.0 0.795 1.000 1.018 1.018

Table 3.6: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 300 and k2 = 14.

∆ RMLE PT SE PSE

0.0 1.489 1.489 1.454 1.469
0.1 1.490 1.486 1.446 1.460
0.3 1.477 1.440 1.404 1.408
0.7 1.253 1.020 1.169 1.169
1.0 1.088 1.000 1.074 1.074
1.2 1.005 1.000 1.046 1.046
1.6 0.866 1.000 1.017 1.017
1.8 0.814 1.000 1.010 1.010
2.0 0.786 1.000 1.007 1.007
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Table 3.7: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 200 and k2 = 18.

∆ RMLE PT SE PSE

0.0 2.818 2.818 2.632 2.701
0.1 2.712 2.696 2.530 2.614
0.3 2.450 2.450 2.285 2.324
0.7 1.884 1.273 1.638 1.638
1.0 1.515 1.012 1.322 1.322
1.2 1.289 1.000 1.190 1.190
1.6 1.021 1.000 1.076 1.076
1.8 0.931 1.000 1.049 1.049
2.0 0.858 1.000 1.030 1.030

Table 3.8: Simulated relative MSEs of RMLE, PT, SE and PSE with respect to UMLE θ̂
when the hypothesis misspecifies for n = 300 and k2 = 18.

∆ RMLE PT SE PSE

0.0 1.730 1.727 1.673 1.704
0.1 1.737 1.733 1.679 1.704
0.3 1.657 1.634 1.588 1.595
0.7 1.382 1.037 1.264 1.264
1.0 1.177 1.000 1.120 1.120
1.2 1.055 1.000 1.068 1.068
1.6 0.912 1.000 1.027 1.027
1.8 0.853 1.000 1.018 1.018
2.0 0.805 1.000 1.012 1.012

We summarize our findings as follows.

(i) From Tables 3.1-3.8 and figures 3.1-3.2 , we observe that the maximum RMSE

occurred at and near ∆∗ = 0. As evident by Tables 3.1-3.8, the RMLE consistently
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outperforms the other estimators at and near ∆∗ = 0 due to its unbiasedness property,

and the RMSE of all estimators is asymptotically converging to 1. Therefore, if

the restricted maximum likelihood estimator is nearly correctly specified, then the

RMLE is the optimal estimator. On the contrary, as the hypothesis error i.e., ∆∗

deviates from zero, the risk of RMLE increases and becomes unbounded while the

risk of shrinkage and positive shrinkage estimators remain below the risk of UMLE

and merge with it as ∆∗ → ∞. It can be safely concluded that the risk of RMLE

explodes as ∆∗ increases, but it has less impact on shrinkage and positive shrinkage

estimators, which is consistent with the theory.

(ii) For small ∆∗, we find that the PSE is outperforming the SE. For large values of ∆∗,

we find that the RMSE’s are same for SE and PSE. Therefore, the PSE outperforms

the SE at and near ∆∗ = 0.

(iii) The PT estimator outperforms the PSE for all ∆∗ when the number of insignificant

covariates increases. The PT outperforms the PSE only for small ∆∗, and the roles

are reversed as ∆∗ increases.
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Figure 3.1: Simulated Relative MSE with respect to UMLE, θ̂ of the estimates for ∆ ≥ 0.
Here k1 = 4, k2 = 5; t = 200, 300 for the first column and k1 = 4, k2 = 9; n = 200, 300
for the second column.
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Figure 3.2: Simulated Relative MSE with respect to UMLE, θ̂ of the estimates for
∆ ≥ 0. Here k1 = 4, k2 = 14; t = 200, 300 for the first column and k1 = 4, k2 = 18;
n = 200, 300 for the second column.
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Chapter 4

Conclusions and Future Research

In this thesis, we considered the different estimation methods for zero inflated autore-

gressive conditional Poisson (ZIACP) models with and without covariates. Application

of these methods has been demonstrated in ZIACP models with real data examples. We

summarize the findings as follows:

Chapter one summarizes the key concepts from Harvey’s book on dynamic models

for volatility and heavy tails (Harvey, 2013) that are relevant to modeling time varying

parameters. Asymptotic distribution of the estimated parameters that govern the behaviour

of dynamic models was verified. The generalized autoregressive score (GAS) model which

is a relatively new class of models where the conditional mean or variance is modelled

as a function of past values of itself and past values of the scaled score was also briefly

discussed.

Chapter two considered the estimation of the parameters of the ZIP distribution using

the expectation maximization (EM) algorithm. We summarize the Poisson autoregression

results of Fokianos et al. (2009) and these results are extended together with the estimation

strategy for ZIP distribution to model the parameters of the ZIACP models using the
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EM algorithm approach. A simulation study was conducted to validate and verify the

estimation approaches for the ZIACP models. The normality of the estimates was also

verified in some cases. Real data examples demonstrated the superiority of the modeling

approach to other competing models in the literature.

In Chapter three, we proposed the restricted, the pretest and the shrinkage estimators in

the ZIPA model under a restriction, β = 0. The joint asymptotic distribution of the UMLE

and RMLE is provided. Consequently, we derived the asymptotic distributional risks

and biases of the proposed estimators. We examined analytically the relative dominance

picture of the proposed estimators with respect to the UMLE of β. We also carried out a

Monte Carlo simulation study to compare these estimators in terms of their relative mean

squared errors. We concluded that among the proposed estimators, the positive shrinkage

estimator performs the best in the sense of giving the smallest mean squared prediction

error.

Since forecasting is an important and key concept in time series analysis, the devel-

opment of robust forecasting techniques for the zero inflated autoregressive conditional

Poisson models will be an interesting topic for future research.

The zero inflated autoregressive conditional negative binomial models are useful for

analysis of over-dispersed count data with an excess of zeros. There has not been any study

investigating the shrinkage methods for this model. Introducing the shrinkage estimation

method for this model will be an interesting topic for my future research.
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Appendix

Regularity conditions (Kedem and Fokianos, 2005)

A1. The true parameter θ belongs to an open set B ⊆ <k.

A2. The covariate vector ςt−1 = (xt−1, zt−1) almost surely lie in a nonrandom compact

subset Γ of <p+q, such that P
(∑n

t=1 ςt−1ς
>
t−1 > 0

)
= 1. Also ς>t−1θ lies almost surely in

the domain D of the link inverse link function h = g−1 ∀ ςt−1 ∈ Γ and θ ∈ B.

A3. The inverse link function h-defined in (A2) is twice differentiable and ∂h(τ)/∂τ 6= 0.

A4. There is a probability measure ν on <k such that
∫
<k ςς

>ν(dς) is positive definite

and for Borel sets A ⊂ <k, 1/n
∑n

t=1 I[ςt−1∈A] → ν(A) in probability as n→∞, at the

true value of θ.

The assumptions A1 together with A3 guarantee that the second derivative of the log-

partial likelihood is continuous with respect to θ. In addition, the condition h(τ)/∂τ 6= 0

together with A2, assuming n is large, implies that the conditional information matrix is

positive definite with probability 1.
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Results of the Estimates of Kurtosis, Skewness and MSE of the ZIP

Distribution

Table 4.1: Estimates of the kurtosis, skewness and mean square error (MSE) of the
estimated parameters based on 1000 iterations, n = 50 and ZIP distribution λ = 2.5 and
ω = 0.3.

Measure λmme ωmme λmle ωmle

Kurtosis 2.9022 3.1227 3.0337 3.0416

Skewness 0.0092 −0.1693 −0.0057 −0.0358

MSE 0.2605 0.0172 0.1953 0.0121
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Table 4.2: Estimates of the kurtosis, skewness and mean square error (MSE) of the
estimated parameters based on 1000 iterations, n = 100 and ZIP distribution λ = 2.5 and
ω = 0.3.

Measure λmme ωmme λmle ωmle

Kurtosis 2.8855 2.9064 2.9618 2.7730

Skewness 0.2083 0.0315 0.0862 0.1049

MSE 0.1204 0.0085 0.0869 0.0060

Table 4.3: Estimates of the kurtosis, skewness and mean square error (MSE) of the
estimated parameters based on 1000 iterations, n = 250 and ZIP distribution λ = 2.5 and
ω = 0.3.

Measure λmme ωmme λmle ωmle

Kurtosis 2.901 2.8573 2.8681 2.7031

Skewness 0.0986 0.0389 0.0125 0.0816

MSE 0.0501 0.0033 0.0363 0.0022
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Results of the ZIACP Modelling Procedure

Table 4.4: Results of simulation for ZIACP (1) model for (ω,γ0,α1)=(0.5,2,0.5).

Parameters Sample size MLE MADE MSE
ω 200 0.4998 0.0331 0.0034
γ0 2.2200 0.2652 0.1625
α1 0.5186 0.1622 0.0840

ω 500 0.5002 0.0207 0.0014
γ0 2.2159 0.2296 0.0968
α1 0.5320 0.1114 0.0375

ω 1000 0.5003 0.0147 0.0007
γ0 2.2051 0.2069 0.0660
α1 0.5477 0.0850 0.0199

Table 4.5: Results of simulation for ZIACP (1) model for (ω,γ0,α1)=(0.2,1,0.4).

Parameters Sample size MLE MADE MSE
ω 200 0.2953 0.0955 0.0127
γ0 1.3670 0.3678 0.1777
α1 0.5179 0.1501 0.0555

ω 500 0.2941 0.0941 0.0105
γ0 1.3548 0.3548 0.1446
α1 0.5280 0.1347 0.0336

ω 1000 0.2946 0.0946 0.0098
γ0 1.3532 0.3532 0.1340
α1 0.5339 0.1347 0.0266
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Table 4.6: Results of simulation for ZIACP (2) model for (ω,γ0,α1,α2)=(0.4,2,0.3,0.1).

Parameters Sample size MLE MADE MSE
ω 200 0.4057 0.0309 0.0031
γ0 2.2268 0.2953 0.2267
α1 0.3073 0.1185 0.0445
α2 0.0854 0.1059 0.0831

ω 500 0.4090 0.0208 0.0013
γ0 2.2093 0.2345 0.1133
α1 0.3187 0.0771 0.0184
α2 0.0956 0.0693 0.0643
ω 1000 0.4083 0.0157 0.0007
γ0 2.1936 0.2016 0.0721
α1 0.3209 0.0560 0.0096
α2 0.1044 0.0488 0.0571

Table 4.7: Results of simulation for ZIACP (2) model for (ω,γ0,α1,α2)=(0.6,3,0.2,0.3).

Parameters Sample size MLE MADE MSE
ω 200 0.5906 0.0289 0.0024
γ0 3.1719 0.3710 0.3949
α1 0.1396 0.1712 0.0846
α2 0.2753 0.1816 0.1176

ω 500 0.5939 0.0195 0.0012
γ0 3.1133 0.2247 0.1472
α1 0.1947 0.1069 0.0333
α2 0.2833 0.1135 0.0475

ω 1000 0.5960 0.0127 0.0005
γ0 3.1112 0.1775 0.0831
α1 0.1953 0.0778 0.0184
α2 0.2992 0.0744 0.0285
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Proof of the Score and Observed Information Matrix of the ZIPA

Model

We know that,

∂ηt
∂β

= xt−1,
∂λt
∂ηt

= λt,
∂ωt
∂ξt

= ωt(1− ωt),
∂ξt
∂γ

= zt−1.

The log partial likelihood of the ZIP model is given by,

logL(θ) =
∑
yt=0

log{ωt + (1− ωt)exp(−λt)}

+
∑
yt>0

{log(1− ωt)− λt + yt log(λt)− log(yt!)}.

∂ logL(θ)

∂β
=

N∑
t=1

{
∂

∂λt

[
1{yt=0}{log(ωt + (1− ωt)exp(−λt)}

]

+
∂

∂λt
{1{yt>0}

[
log(1− ωt)− λt + yt log(λt)− log(yt!)

]
}
}
∂λt
∂ηt

∂ηt
∂β

=
N∑
t=1

{
y0,t(

−(1− ωt)exp(−λt)
ωt + (1− ωt)exp(−λt)

)λtxt−1 + 1{yt>0}(−1 +
yt
λt

)λtxt−1

}
.
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However, 1{yt>0} = 1− 1{yt=0} = 1− y0,t. =⇒ 1{yt=0} = y0,t Hence,

∂ logL(θ)

∂β
=

N∑
t=1

{
−y0,t(

ωt + (1− ωt)exp(−λt)− ωt
ωt + (1− ωt)exp(−λt)

)λtxt−1

+ (1− y0,t)(yt − λt)xt−1
}

=
N∑
t=1

{
−y0,t(1−

ωt
p0,t

)λtxt−1 + (1− y0,t)(yt − λt)xt−1
}
,

where p0,t = ωt + (1− ωt)exp(λt) is the probability mass function of Yt|Ft−1 at zero.

∂ logL(θ)

∂β
=

N∑
t=1

{
−y0,tλtxt−1 +

y0,tωtλtxt−1
p0,t

+ (yt − λt)xt−1 − y0,tyt + y0,tλtxt−1

}
.

But the product y0,tyt is always zero since, when yt = 0 then the product becomes

1× 0 = 0 . Also when yt > 0 then the product becomes 0× 1 = 0 Therefore we obtain,

∂ logL(θ)

∂β
=

N∑
t=1

{
y0,tωtλt
p0,t

+ (yt − λt)
}
xt−1.

which simplifies to ,

∂ logL(θ)

∂β
=

N∑
t=1

{
yt − λt(1−

ωty0,t
p0,t

)

}
xt−1.
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Also ,

∂ logL(θ)

∂γ
=

N∑
t=1

{
∂

∂ωt
[1{yt=0} log(ωt + (1− ωt)exp(−λt)]

+
∂

∂ωt
{1{yt>0}[log(1− ωt)− λt + yt log(λt)− log(yt!)]}

}
∂ωt
∂ηt

∂ηt
∂γ

=
N∑
t=1

{
y0,t(

(1− exp(−λt)
p0,t

) + 1{yt>0}(
−1

1− ωt
)

}
× ωt(1− ωt)× zt−1

=
N∑
t=1

{
y0,tωt(1− ωt)(

(1− exp(−λt)
p0,t

) + (1− y0,t)(−ωt)
}
× zt−1

=
N∑
t=1

{
y0,t(1− ωt)(

(1− exp(−λt)
p0,t

) + y0,t − 1

}
ωtzt−1

=
N∑
t=1

y0,t(1− ωt)(1− exp(−λt)) + y0,t(ωt + (1− ωt)exp(−λt))
p0,t

ωtzt−1

−ωtzt−1

=
N∑
t=1

{
y0,t(1− ωt) + y0,tωt

p0,t
− 1

}
ωtzt−1

=
N∑
t=1

{
y0,t
p0,t
− 1

}
ωtzt−1.

Therefore

SN(θ) =
N∑
t=1

(
∂ logL(θ)

∂β
+
∂ logL(θ)

∂γ
)

=
N∑
t=1

{
(yt − λt(1−

ωty0,t
p0,t

))xt−1 + ωt(
y0,t
p0,t
− 1)zt−1

}
. (4.1)
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d11,t(θ) =
N∑
t=1

−∂
2 logL(θ)

∂β2
=

N∑
t=1

−
∂(∂ logPL(θ)

∂β
)

∂λt

∂λt
∂ηt

∂ηt
∂β

=
N∑
t=1

−
∂([yt − λt(1− ωty0,t

p0,t
)]xt−1)

∂λt

∂λt
∂ηt

∂ηt
∂β

=
N∑
t=1

{
1− (ωt + (1− ωt)exp(−λt))ωty0,t + λtωty0,t(1− ωt)exp(−λt)

p20,t

}

× λtx>t−1xt−1

=
N∑
t=1

{
1− [ωt + (1− ωt)exp(−λt)(1 + λt)]ωty0,t

p20,t

}
λtx

>
t−1xt−1.

Also ,

d22,t(θ) =
N∑
t=1

−∂
2 logL(θ)

∂γ2
=

N∑
t=1

−
∂([ωt(

y0,t
ωt+(1−ωt)exp(−λt) − 1)]zt−1)

∂ωt

∂ωt
∂ξt

∂ξt
∂γ

=
N∑
t=1

−
{

(ωt + (1− ωt)exp(−λt))y0,t − ωty0,t(1− exp(−λt))
p20,t

− 1

}

× ωt(1− ωt)z>t−1zt−1

=
N∑
t=1

ωt(1− ωt){1−
y0,t(exp(λt))

p20,t
}z>t−1zt−1.
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d12,t(θ) =
N∑
t=1

− ∂

∂γ

{
∂ logL(θ)

∂β

}
=

N∑
t=1

−
∂([yt − λt(1− ωty0,t

p0,t
)]xt−1)

∂ωt

∂ωt
∂ξt

∂ξt
∂γ

=
N∑
t=1

−ωt(1− ωt)
{

(wt + (1− ωt)exp(−λt))λty0,t − λtωty0,t(1− exp(−λt))
p20,t

}

× x>t−1zt−1

=
N∑
t=1

−ωt(1− ωt){
(exp(−λt)λty0,t

p20,t
}x>t−zt−1.

Proof of the Conditional Information Matrix of the ZIPA model

Proof: The conditional information matrix of the ZIPA is given by,

Gn(θ) =
n∑
t=1

V ar{Ct−1vt(θ)|Ft} =
n∑
t=1

Ct−1Σt(θ)CT
t−1,

where Σt(θ) = V ar{vt(θ)|Ft−1} is a symmetric 2× 2 matrix with the elements.

Σt(θ) =

[
V ar(v1,t(θ)) Cov(v1,t(θ), v2,t(θ))

Cov(v2,t(θ), v1,t(θ)) V ar(v1,t(θ))

]
.

From the score,

SN(θ) =
N∑
t=1

(
∂ logL(θ)

∂β
+
∂ logL(θ)

∂γ
)

=
N∑
t=1

{
(yt − λt(1−

ωty0,t
p0,t

))xt−1 + ωt(
y0,t
p0,t
− 1)zt−1

}
.
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we obtain v1,t(θ) = yt − λt(1− ωty0,t
p0,t

) and v2,t(θ) = ωt(
y0,t
p0,t
− 1)

=⇒ V ar(v1,t(θ)) = V ar(yt|Ft−1) +
λ2tω

2
t

p20,t
V ar(y0,t|Ft−1) +

2λtωtcov(yt, y0,t)

p0,t

= λt(1− ωt)(1 + λtωt) +
λ2tω

2
t

p20,t
(p0,t − p20,t)− 2λ2tωt(1− ωt)

=
(1− ωt)λt{exp(−λt) + ωt(1− (1 + λt)exp(−λt))}

p0,t
.

Since

V ar(yt|Ft−1) = λt(1− ωt)(1 + λtωt)

and

V ar(y0,t|Ft−1) = V ar(1{yt=0}|Ft−1) = E(1{yt=0})
2 − E2(1{yt=0}

= p0,t − p20,t.

also

Cov(yt, y0,t) = −λt(1− ωt)p0,t.
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V ar(v2,t(θ)) = V ar(
ωty0,t
p0,t

− ωt|Ft−1)

=
ω2
t

p20,t
V ar(y0,t|Ft−1)

=
ω2
t

p20,t
(p0,t − p20,t)

=
ω2
t

p0,t
(1− p0,t)

=
ω2
t

p0,t
(1− (ωt + (1− ωt)exp(−λt)))

=
ω2
t (1− ωt)(1− exp(−λt))

p0,t
.

Using the covariance expression below,

Cov(v1,t(θ), v2,t(θ)) = E(v1,t(θ)v2,t(θ))− E(v1,t(θ))(v2,t(θ)).

But,

v1,t(θ)v2,t(θ) =
ytωty0,t
p0,t

− ytωt −
λtωty0,t
p0,t

(1− ωty0,t
p0,t

) + λtωt(1−
ωty0,t
p0,t

)

=
ytωty0,t
p0,t

− ytωt −
λtωty0,t
p0,t

+
λtω

2
t y

2
0,t

p20,t
+ λtωt −

λtω
2
t y0,t
p0,t

.
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Hence

E(v1,t(θ)v2,t(θ)) = −ωtλt(1− ωt) +
λtω

2
t

p0,t
− λtω2

t

= −ωtλt +
λtω

2
t

p0,t

=
λtω

2
t − (ωt + (1− ωt)exp(−λt))ωtλt

p0,t

=
−λtωt(1− ωt)exp(−λt)

p0,t
.

since, E(v1,t(θ)) = 0, and E(v2,t(θ)) = 0. it therefore implies that

Cov(v1,t(θ), v2,t(θ)) =
−λtωt(1− ωt)exp(−λt)

p0,t
.

130



Bibliography

Ahmed, S., A. Hussein, and P. Sen (2006). Risk comparison of some shrinkage M-

estimators in linear models. Journal of Nonparametric Statistics 18(4-6), 401–415.

(Cited on page 93.)

Ahmed, S. E., S. Hossain, and K. A. Doksum (2012). LASSO and shrinkage estimation

in Weibull censored regression models. Journal of Statistical Planning and Infer-

ence 142(6), 1273—-1284. (Cited on pages 85, 94, 97 and 100.)

Allison, P. D. (2012). Logistic regression using SAS: Theory and application. SAS

Institute. (Cited on pages 3 and 84.)

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of econometrics 31(3), 307–327. (Cited on pages 1 and 4.)

Cox, D. R., G. Gudmundsson, G. Lindgren, L. Bondesson, E. Harsaae, P. Laake,

K. Juselius, and S. L. Lauritzen (1981). Statistical analysis of time series: Some

recent developments [with discussion and reply]. Scandinavian Journal of Statistics,

93–115. (Cited on page 29.)

Creal, D., S. J. Koopman, and A. Lucas (2013). Generalized autoregressive score models

with applications. Journal of Applied Econometrics 28(5), 777–795. (Cited on page 4.)

131



Engle, R. F. and J. R. Russell (1998). Autoregressive conditional duration: a new model

for irregularly spaced transaction data. Econometrica, 1127–1162. (Cited on page 4.)

Fokianos, K., A. Rahbek, and D. Tjøstheim (2009). Poisson autoregression. Journal of

the American Statistical Association 104(488), 1430–1439. (Cited on pages i, vi, 1, 5,

28, 29, 30, 32, 35, 36, 55, 63, 76 and 116.)

Ghahramani, M. and A. Thavaneswaran (2009). On some properties of autoregressive

conditional poisson (acp) models. Economics Letters 105(3), 273–275. (Cited on

pages i and 1.)

Haggan, V. and T. Ozaki (1981). Modelling nonlinear random vibrations using an

amplitude-dependent autoregressive time series model. Biometrika 68(1), 189–196.

(Cited on page 31.)

Hall, D. B. (2000). Zero-inflated poisson and binomial regression with random effects: a

case study. Biometrics 56(4), 1030–1039. (Cited on page 87.)

Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: with applications to

financial and economic time series. Number 52. Cambridge University Press. (Cited on

pages 2, 5, 8, 9, 10, 12, 13, 14, 16, 17, 23, 25 and 116.)

Hossain, S., K. Doksum, and S. Ahmed (2009). Positive-part shrinkage and absolute

penalty estimators in partially linear models. Linear Algebra and its Applications 430,

2749–2761. (Cited on pages 85 and 93.)

Ihaka, R. and R. Gentleman (1996). R: a language for data analysis and graphics. Journal

of computational and graphical statistics 5(3), 299–314. (Cited on page 108.)

132



Judge, G. G. and M. E. Bock (1978). The statistical implicatinos of pre-test and stein-rule

estimators in econometrics. (Cited on page 93.)

Kedem, B. and K. Fokianos (2005). Regression models for time series analysis, Volume

488. John Wiley & Sons. (Cited on pages 12, 27 and 118.)

Kharrati-Kopaei, M. and H. Faghih (2011). Inferences for the inflation parameter in the

zip distributions: The method of moments. Statistical Methodology 8(4), 377–388.

(Cited on pages 37, 46, 48 and 49.)

Kitromilidou, S. and K. Fokianos (2015). Robust estimation methods for a class of

log-linear count time series models. Journal of Statistical Computation and Simula-

tion (ahead-of-print), 1–16. (Cited on pages i and 78.)

Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects in

manufacturing. Technometrics 34(1), 1–14. (Cited on pages 87, 90 and 92.)

McCullagh, P. (1984). Generalized linear models. European Journal of Operational

Research 16(3), 285–292. (Cited on page 90.)

McLeish, D. L. and C. G. Small (1988). The theory and applications of statistical inference

functions. Springer. (Cited on page 38.)

Nanjundan, G. and T. R. Naika (2013). Estimation of parameters in a zero-inflated power

series model. (Cited on page 37.)

Nkurunziza, S. and F. Chen (2013). On extension of some identities for the bias and risk

functions in elliptically contoured distributions. Journal of Multivariate Analysis 122,

190–201. (Cited on page 96.)

133



Rydberg, T. and N. Shephard (2000). Bin models for trade-by-trade data. Modelling the

number of trades in fixed interval of time. Paper 740. (Cited on page 28.)

Sprott, D. (1980). Maximum likelihood in small samples: Estimation in the presence of

nuisance parameters. Biometrika 67(3), 515–523. (Cited on page 38.)

Streett, S. (2000). Some observation driven models for time series of counts. Ph. D.

thesis, Ph. D. thesis, Colorado State University, Department of Statistics, Fort Collins,

Colorado. (Cited on page 28.)

Thomson, T., S. Hossain, and M. Ghahramani (2014). Application of shrinkage esti-

mation in linear regression models with autoregressive errors. Journal of Statistical

Computation and Simulation, 1–17. (Cited on pages 85 and 96.)

Yang, M. (2012). Statistical models for count time series with excess zeros. PhD (Doctor

of Philosophy) thesis, University of Iowa, 2012. (Cited on pages i, 55, 71 and 91.)

Zhu, F. (2012). Zero-inflated poisson and negative binomial integer-valued garch models.

Journal of Statistical Planning and Inference 142(4), 826–839. (Cited on pages i, vi,

55, 64, 65, 66, 67, 74 and 76.)

134


	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Literature Review
	Overview of the Thesis
	Generalized Autoregressive Score Models
	Gaussian GAS models
	Student's t Distribution
	Maximum Likelihood Estimates
	Maximum Likelihood Estimation of Dynamic Linear Models 
	Asymptotic Distribution
	Dynamic Student's t Location Model


	Poisson Autoregression
	Introduction
	Linear Model
	Conditional Least Squares Estimate (CLSE)  for the Linear Model
	Nonlinear Model
	Likelihood Inference
	Simulation for the linear model
	Simulation for the nonlinear model
	Zero Inflated Poisson (ZIP) distribution
	Maximum Likelihood Estimation for the ZIP Model
	The Fisher Information Matrix
	Method of Moments Estimators for the ZIP Distribution
	Confidence Interval
	The Zero Inflated Autoregressive conditional Poisson (ZIACP)(p,q) Linear Model
	The ZIACP(p,q) Model in an ARMA form
	ZIACP Parameter Estimation 
	Simulation studies
	The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
	Real Data Example - Syphilis Data Analysis
	Analyzing Arson Data
	Polio Data Analysis
	Exploring the ZIM and the pscl package in R


	The Zero Inflated Poisson Autoregression with Covariates (ZIPA) Model
	Introduction
	Models and the proposed estimators
	The Pretest and Shrinkage Estimators

	Asymptotic Results
	Simulation Studies


	 Conclusions and Future Research
	Bibliography

