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ABSTRACT

This thesis examines the nonstationary electromyogram(EMG)
by describing the experimentally obtained EMG variance and

autocorrelation with mathematical functions.

Based on Kreifeldt's postulation, which considers the
EMG signal to be an amplitude modulated signal where the
carrier is a random process and the number of active motor
units is the modulating signal, two mathematical functions
are used to curve-fit the EMG variance and one to curve-fit
the autocorrelation. Performance of these functions are
evaluated using the mean-square-error criterion. Results
have shown that these functions describe the EMG variance
and autocorrelation well. The two variance functions used
to curve-fit the EMG variance have errors which ranged from
0.67% to 7.87% while the function wused to curve-fit the au-
tocorrelation has errors which ranged from 4.23% to 28.41%.
Finally, the Midpoint Moving Average Estimator and the Homo-

morphic filter are developed to estimate the EMG variance.
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Chapter I
INTRODUCTION

The purpose of this thesis is to experimentally examine the
nonstationary electromyogram (EMG), in order to gain more
insight regarding its use as a control signal 1in devices

such as prosthetic arms.

Over the past two decades, design of controllers for
electrically powered prosthetic devices has treated the EMG
as a stationary signal. The most sophisticated prosthetic
device has a multi-channel or multi-state controller, and
has the capability of producing six motions[Saridis,1982].
This prosthesis is slow in responding to EMG signal since
the EMG must become stationary at a specified level before a
motion is produced. Therefore, the control of prosthetic
devices may be improved if nonstationary EMG can be utilized

as a control signal.

It has been postulated that the EMG signal e(t) can be
considered as an amplitude modulated signal[Kreifeldt,1974].
The main purpose of this thesis 1is to verify further by ex-
perimental work this amplitude modulated model of EMG signal
generation. Three mathematical models are proposed and in-
vestigated to describe the variance and autocorrelation of

EMG. Experimental data were obtained to evaluate the per-



formance of these functions using the mean-square-error cri-
terion. These functions are used to develop two variance
estimators, the Midpoint Moving Average Estima-

tor (MMAE) [Xiong,1985] and a homomorphic filter.

The thesis consists of five chapters. Chapter two re-
views the physiological structure of a muscle, and the gen-
eration and properties of the EMG. Chapter three describes
the experimental procedure for acquiring data and subsequent
data processing. Chapter four discusses results as well as
application of the functions to the MMAE and homomorphic
filters. Finally, conclusions and recommendations are given

in Chapter five.




Chapter II
BACKGROUND

This chapter briefly reviews the necessary background ma-
terial. Section 2.1 reviews the physiological structure of
muscle and how the EMG is generated. Section 2.2 describes
the relevant EMG properties and introduces a mathematical

model for the EMG.

2.1 PHYSIOLOGICAL BACKGROUND

The following discussion is based on the physiology text of
Crouch[1972]. Muscle contraction, controlled by the nervous
systém, generates human movements and also the EMG signal.
There are two types of contractions, isotonic and isometric.
Isotonic contraction produces movements and involves the
shortening and lengthening of muscle fibres. Isometric con-
traction does not produce any movement but provides fixed
gestures, i.e., the muscle length remains constant. Due to
the fact that the properties of the EMG signal partly depend
on the length, velocity and shortening of muscle, and that
the EMG is typically generated by an isometric contréction
for control pufpose, isometric contraction was chosen to

generate the EMG signals in this thesis.



All muscles are composed of elongated cells called mus-
cle fibers. These muscle fibres contain fine fibrils called
myofibrils within their cytoplasm, also called sarcoplasm.
Three types of muscle tissues are found in the human body,
smooth, cardiac and skeletal. Skeletal muscles are also
called striated muscles due to their longitudinally arranged
myofibrils. More importantly, they are the muscles that are
voluntarily controllable; therefore, typically, they are

chosen for EMG study.

Each nerve fibre 1innervates from a few to hundreds of
skeletal muscle fibres. The nerve fibres along with the in-
nervated muscle fibrés constitute a motor unit. When a mo-
tor unit is stimulated by nerve impulses, the corresponding

muscle fibres contract and generate a force.

An action potential, physiologically called a nerve im-
pulse, may be defined as a physiochemical change in nerve
fibres which once initiated, is self-propagating. It can
last for a pericd of 5 ms, and can travel along the cell
membrance at velocities of up to 120 meters per second.
Therefore, it is possible to have a seguence of action po-
tentials travelling along a nerve fibre. When this sequence
of action potentials reaches 1its corresponding muscle fi-
bres, it causes a contraction in the muscle fibres. The
transmission of these action potentials along the muscle fi-
bres produces an electrical signal commonly known-as the EMG

signal which can be detected by surface electrodes. Its



characteristics depend on the number of motor units being
stimulated in a muscle and the freguency of the action po-
tential train. Previous studies have shown that this EMG
signal is a zero-mean Gaussian signal, even when it is gen-

erated by a low level muscle contraction[Shwedyk, 1974].

2.2 THEORETICAL BACKGROUND

As has been mentioned, the EMG can be modelled as an ampli-
tude modulated signal. Thus, the EMG signal e{t) can be ex-

pressed as
e(t)=n{t)wlt). (2.1)

The modulating signal n{(t) represents the number of active

motor units. The carrier w{t) is a random process which is
assumed to be stationary. Because the EMG 1is a zero-mean
Gaussian random process, w(t) can be assumed to be zero-

mean Gaussian with unit variance. 1In the case of stationary
EMG, nf(t) 1is just a constant, while in the nonstationary

case, it varies as a deterministic function of time.

The autocorrelation function reveals the dependence of
a signal at two time instances. For the EMG e(t), it is

given by:
Reelt+7,t)=Ele(t+T)e(t}]
=E[n(t+T)In(t)] Elw(t+TIw(t)}]

=n(t+7) n{t) Rywl T). (2.2)



where E[ ] is the expectation operator. For stationary EMG,

the above expression becomes

Ree(T)=K wa(‘!"), (2-3)

where K is a constant. Parker [Parker, 1977} has found that
the autocorrelation function of w(t), Ryuw(T), can be de-

scribed by the following function:

1 T | T2
Ryw(T}=( a5+|a2— " ) expl-alTl] (2.4)

where o 1is a constant depending on the physiology of the
muscle. The curve of this function has one main-lobe and two
small-side lobes. It is worthwhile to mention that this ex-

pression was derived under the following assumptions:

1. All motor units are uncorrelated.

2. All motor unit action-potential waveforms are
identical.

3., All nmuscle-fibre propagation velocities are

identical.

In the case of nonstationary EMG, when 7 =0, function

2;2 becomes
Ree(t,t)}=n2{(t) E[w2(t)], ‘ (2.5)

Since the EMG has zerc mean and w(t) has been assumed to

have unit variance,




Ree(t,t)=n2(t).
Thus, the EMG variance is,
2
Ge(t)=n2(t) (2.6)

Two heuristic functions were used to curve-fit experi-

mentally obtained variance data. They are:

1. 6g|(t)=K[1—exp(—K1t)], (2.7)

2. b2 ,(t)=K[1-A exp(-At)-Bexp(-Bt)] (2.8)

The constant K is simply a scaling factor., Parameters K, A
and B are estimated according to certain criteria given lat-
er in this chapter. Since the first derivative of function
2.8 is constrained to zero at t=0, A; and B, are variables
depending on parameters A and B. These two functions are
chosen to reflect the fact that the EMG variance always ris-
es smoothly from one level to another, 1i.e., it would not
jump from one level to another level as a step function

would.

Equation 2.7 is a simpler expression. One disadvantage
of this function is that it tends to have more error at the
lower level of the EMG variance as shown in Figure 2.71.
However, it does perform well at the higher levels. In or-
der to minimize the lower level error while still keeping

the good performance at high level, function 2.8 was intro-
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Figure 2.1: Low Level Error of Function beq(t)

duced. The mean-square-error criterion is used here to
evaluate the performance of the variance functions in curve-

fitting the experimentally obtained results.




Chapter III

EXPERIMENTAL WORK

This chapter describes the experimental study used for data
generation and acquisition and the signal analysis per-
formed. The entire experimental set-up is first reviewed in
section 3.1. The appropriate terminology and how the data-
acquisition was performed is described next in section 3.2.
Section 3.3 explains the data-processing scheme to compute
the EMG variance and autocorrelation of the experimentally
obtéined EMG data, and also explains programs that curve-fit
the functions to the experimental EMG variance and auto-

correlation.

3.1 EXPERIMENTAL SET-UP

The entire experimental set-up for data-acquisition may be
best illustrated 1in terms of the block diagram in figure

3.1.

Two channels of data are sampled simultaneously by the
PDP-11/40 system. One channel is the EMG signal, while the
other is the strain-gauge signal which represents the force
produced by the muscle. Each channel 1is sampled at a sam-

pling frequency of 500Hz.
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This sampling frequency is determined by the EMG power den-
sity spectrum which lies between 10Hz and 200Hz. The high-

est frequency of the strain-gauge signal is less than 20Hz.

By means of an oscilloscope, a signal generator is used
to indicate to the subject when to contract and when to re-
lax. The oscilloscope displays a continuous square pulse
signal at 0.325Hz, that is 6.5 pulses per 20 seconds, with a
40% duty cycle. Other frequencies and duty cycles ranging
from 3 to 10 pulses per 20 seconds with duty of 30% to 60%
have also been tested. The consensus of the subjects was
that the chosen frequency and duty cycle was the most com-
fortable. The pulse magnitude used to specify the subject's
contraction level was set to 35% of the subject's maximum
strength. 1t was found that, for a level of 70% or more of
the subject's maximum strength, the muscle fatiqued rapidly;
and for a 50% level, the subject had difficulty maintaining
a constant contraction for the reguired time duration,
Therefore, 35% was chosen. This 1level produced a large
enough EMG for reliable data acquisition, yet did not fa-

tigue the muscle.

A strain-gauge device was designed to measure the force
produced by the muscle. This device consists of strain-
gauges arranged in a Wheatstone bridge, a low-pass filter
and a low noise amplifier. Because the shortest time needed
to contract a muscle from one force level to anotker is usu-

ally longer than 100ms, which implies a signal bandwidth of

- 11 -



less than 10Hz, the low-pass filter was chosen tc have a
cut-off frequency of ©50H=z. The amplifier output was con-
nected to the PDP-11/40 for data-sampling and to the oscil-

loscope as feed-back for the subject.

On the oscilloscope, with proper triggering, the sub-
ject saw only two lines, 1line A and line B. Assume that
line A and line B are controlled, respectively, by the sig-
nal generator and the strain-gauge amplifier. These two
lines go either high or low, since both the strain-gauge and
the square pulse signals are very low freqguency signals. To
produce a muscle contraction, when the subject saw line A go
high, he contracted his muscle to bring line B to match with
line A as quickly as possible; and when line A went low, he
relaxed and waited for the next trial. For the experiment,
the subject was instructed to control 1line B so that it
would not fluctuate about line A to any large degree. 1f
the fluctuation range was greater than 10% of the specified
contraction level, the data-file was simply discarded. The
purpose of doing these was to ensure that each trial of the

experiment was as repeatable and consistent as possible.

Surface electrodes made of silver were used to detect
the EMG. Along with a Ag-Cl base jell, the electrode system
proved reliable and capable of eliminating motion artifact.
They were placed on the subject thirty minutes before the
experiment started to allow the impedance of tﬁé interface

between the electrodes and skin to stablize. In order to



decrease the effect of 60Hz interference from the power
line, electrodes were connected to the difference amplifier
via coaxial cable. Occasionally, 1if the 60Hz interference
was too excessive, the subject was asked to hold an addi-

tional ground wire.

The instrumentation amplifier is a University of Mani-
toba design. it consists of a freguency adjustable band-
pass filter and an high gain amplifier with variable gain
control. The band-pass filter was adjusted to pass signals
in 5Hz to 500Hz range. The reason for this is again due to
the nature of the EMG power density spectrum. Further,
since the A/D convertor of the PDP-11/40 digitizes signals
within a #1V range, the amplifier gain was set to 20,000,

sometimes 50,000 for some exceptionally small EMG signals.




3.2 DATA ACQUISITION

Subjects were selected from the typical wuniversity popula-
tion with ages ranging from 20-40 years. Three different
muscles were chosen for the experiment. They were the biceps
brachii, the deltoid, and the rectus femoris. These muscles
are subcutaneous muscles whose EMG can be easily detected by
the surface electrodes. Since the biceps brachii is rela-
tively the easiest to control, it played a major role in

this thesis.

Three motions, as shown in figure 3.2, were selected to
generate the EMG data. These motions were supination for
the biceps brachii, arm-adduction for the deltoid and knee

extension for the rectus femoris, see figure 3.2.

For supination, the subject had to keep his arm verti-
cal to the ground and perpendicular to his fore-arm. When
performing the experiment, the subject rotated a metal bar
connected to the strain-gauge. For arm-adduction, again,
the subject had to keep his arm vertical to the ground and
not to rotate his arm when doing the experiment. A wire was
attached as close as possible to the subject's elbow joint
from the strain-gauge. For knee extension, the subject sat
on a chair with his foot on a cylinder. This cylinder made
the knee extension easier to control. The wire from the
strain-gauge was attached to the subject's foot, slightly

above the ankle joint.



- Supination with
biceps brachii

~ Arm adduction with
deltoid
- Knee extension with
rectus femoris

Figure 3.2: Three Motions Used in Acquiring Data
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To begin data-acquisition, the subject was given a ver-
bal start command. He then tracked the sguare-pulse signal
on the oscilloscope by contracting his muscle in order to
match the strain-gauge signal with the sguare-pulse signal.
The subject had to maintain the contraction for about one
second, each contraction being a trial. Because of hardware
limitations, the computer could only sample six consecutive
trials of data for a duration of 20 seconds each time. Af-
ter six trials which made up a data file, the subject would
stop and relax for 30 seconds after which time the whole

procedure would be repeated.

Statistically speaking, a complete set of data from one
subject is called an ensemble. There are two different en-
sembles in this thesis. One contains 120 trials called a
small-ensemble while the other one contains 600 trials
called a big-ensemble. Statistically, the 120 trial-ensem-
ble gives reliable enough information on how the EMG be-
haves; the 600 trial-ensemble is used to verify the analysis
done with the 120 trial-ensemble. As will be seen in sub-
sequent chapters, the variance and autocorrelation curves
obtained from the 120 trial-ensembles behave in the same way
as those obtained from the 600 trial-ensembles, the only
difference being that the 600 trial-ensembles give smoother
curves., Eight small-ensembles and three big-ensembles of
data were obtained from the biceps brachii, while-two small-

ensembles of data were obtained from the deltoid and two



small-ensembles from the rectus femoris for comparison pur-

poses.

During the data acquisition of the big-ensemble, if the
subject felt that his muscle was exhausted, he could relax
for two to three minutes to allow his muscle to recover.
Quite often, the subject asked for this recovery period af-

ter 150-200 contractions.

After the experiment, the data was transmitted to an-
other computer, MICRO-11/23, for processing. Here, data was
first converted to integer form ranging from 0 to 4096 in
value. After this conversion, all data was screened on a
monitor to ensure that each file contained six trials of
data and that no errors occured during data transmission.

The data was then ready for further processing.




3.3 DATA-PROCESSING

Computation related to the experimental data was divided
into two stages. The first stage, done in the MICRO-11/23
computer, calculated the variance and autocorrelation of the
experimental EMG data. The curve-fit of experimental vari-
ance and autocorrelation data by functions shown in equa-
tions 2.4, 2.7 and 2.8 was then accomplished on the Amdahl

mainframe computer.

3.3.1 Computation in MICRO-11/23

After the data was converted to integer, it was submitted to
the processing steps outlined in figure 3.3. Each box rep-
resents a program. These programs are listed in Appen-

dix B.1.

Program SORT sorts each data file into two different
data files; one containing strain-gauge data, the other EMG
data. For the strain-gauge data files, the average mid-
point of an ensemble is first calculated in program MIDPOINT
by finding the average highest and the average lowest points

of each trial using the following expression:

mid-point = (highest + lowest)/2 (3.2)

- 18 -
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The starting-point of each trial 1is located by detect-
ing the mid-point of the trial and going back d samples (see
figure 3.4). This is done in program STARTER. Obviously,
this starting-point is not the exact starting point where
the subject begins to contract the muscle; it represents a
standardized reference point for computation. The d samples
are also chosen to ensure that this starting-point is before

the exact starting point.

highest point

mid-point
lowest point

D ey T ———

i

i
starting | a
point l samples

Figure 3.4: Midpoint & Starting Point of a Strain-gauge
Signal

After the starting-point of each trial has been locat-
ed, the average strain-gauge signal of the entire ensemble
is computed by the program MINSG. This program utilizes the
following expression to calculate the ensemble mean strain-

gauge output:

Pe— 1 N v
Sg{n)= — = Sgi(n), n=0,1,2,... (3.3)
N

- 20 -



where i is the trial number, N is the total number of trials
and n is the sample number. A typical calculated ensemble
mean strain-gauge curve is shown in the figure 3.5(also see

Appendix C.1).

Subject: SM

2800 - Muscle: Bicep
]
4o
ot
e
o
~
g 2300
v
>
ot
4+
S 1800 1
& — to obtain time in mS
multiply by 2.
1300 - | : 1
0 20 40 60

Time

Fiéure 3.5: A Typical Ensemble-Mean Strain-Gauge Signal

in order to ensure that data chosen for later computa-
tion are consistent, the program VARSG computes the mean-

square-error of each trial by the following expression:

m [Sg(j)-sg(j)]?
MSE=| = — X 100% (3.4)
j=1  [8g(3)]? :

This criterion is used to determine which trial of data is
included in the computation of EMG variance and autocorrela-
tion. If any trial has an error of 3% error o} less when
compared with the ensemble mean of the strain-gauge, its
corresponding EMG data is selected.

- 21 -



The EMG data is first converted in program SCALE to a
real number within the range of %1V and 1is then subtracted

by the overall mean value in program OSEMG.

The nonstationary EMG variance is then computed in the

program MEMG by averaging across the ensemble,
_ 1 N
e?(t)= — = e2(t). (3.5)
N

This is an unbiased variance estimate, where iris the trial
number, N is the total number of trials and t 1is the time
instant at which the variance is estimated. Similarly, the
program ACEMG computes the autocorrelation of the EMG using

the following expression.

1 N
Ree(t,T)= — = e, (t} e;(t+7) (3.6)
N i=1

where t is a reference point of time, T varies from +20 to
-20 msec and N is the total number of trials. The range of
+20 msec is chosen to reveal both the main and side lobes of
the autocorrelation curve. Twenty to thirty different val-
ues of t's are.used to compute the autocorrelation curves
for each ensemble. Some of the computed ensemble mean vari-
ance and autocorrelation curves are shown in figure 3.6 and

3.7. Appendix C.2 contains the complete set of curves.
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Figure 3.6: Ensemble-Mean Variance of Experimental EMG
- to obtain time in mS multiply by 2.
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Figure 3.7: BAutocorrelation of Experimental EMG

- t is the time instant(from the defined starting-point)
at which the autocorrelation is calculated.

- to obtain T in mS multiply by 2.
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Besides the usual experimental errors the variance and
autocorrelation functions exhibit statistical error due to
the finite number of samples used to estimate them. In the
case of the variance curve the 95% confidence interval is
shown in Figure 3.8 as a function of N the sample size. The
analysis is taken from Bendat[1971] and assumes that the
data is generated by a Gaussian process which is valid in
this situation. As can be seen for N>100 the estimated var-
iance lies between 1;3 and 0.8 of the true value with a

probability of 0.85.

161

14 1

1.0

08 ///’,/,,—__7

0.6 1

Confidence Interval

Figure 3.8: Confidence Interval of the EMG Variance

N - No. of trials included in the
computation of the EMG variance



A complete analysis of the statistical error in estima-
ting the autocorrelation is very complicated. Thus, an up-
per bound on the percent-mean-square-error was comput-

ed[Cooper, 1971] by using the following expression:

Percent-Mean-square Error &

M
< k=§ Rx(kaAt) ,

~-M

z | o

where N is the total number of samples and Ry is the normal-
ized autocorrelation which was taken to be the Parker's au-
tocorrelation model combined with the corresponding variance
function. The parameters of these functions were taken from
the results described in the next chapter. The computed up-
per-bound-error for each ensemble is listed in Table 3.1.

Theoretically, this error is monotonically decreasing when N

is increasing. However, the two percent-errors at N=76 de-
stroy the monotonicaity. This may be because data of these
two ensembles were obtained from other muscles, and they

have different estimates which consequently contribute to

these deviated errors.




TABLE 3.1

Upper-Bound-Error of the Autocorrelation

n(t)=bet1(t) n{t)=0e2(t)

N Error (%) Error (%)
68 18.2 18.2
70 18.0 18.0
76 20.2 20.5
76 19.5 19,7
81 17.3 17.3
87 16.8 16.8
88 16.1 16.1
98 15.2 15.2
100 15.0 15.1
104 14.8 14.8
111 14,3 14,3
1156 14.0 14.0
383 8.6 8.7
437 7.9 8.1
494 6.8 6.9
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3.3.2 Curve-£fitting

The EMG variance and autocorrelation were curve-fitted by
the three functions mentioned in chapter 2.2, which are re-
peated below:
i. Variance functions:
2
de,(t)=K[1-exp{-K:t)], (3.7)
2
de,(t)=K[1-A exp{-At)-Biexp(-Bt)]} . (3.8)

ii. Autocorrelation function:

1 T re
RUW(T).:aa( 3+’ ZI’ )exp("alTl); (309)
o o o
where Ky, A, B and a are parameters to be estimated. All

programs that estimated these parameters were written in the
SAS language. Two procedures were used in each program,
PROC NLIN and PROC GPLOT. PROC NLIN computed the best pa-
rameter for each function, and PROC GPLOT plotted the func-

tion and the corresponding curve.

Both of the wvariance functions were used to curve-fit
the EMG variance. The scaling factor K of these two func-
tions was taken to be the amplitude of the EMG variance at
steady state. -Program CFIT is written for function 3.7 and

program DFIT for function 3.8.

One restriction when using function 3.8 is that con-

stants A; and By have to be related to parameter A and B so
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that the first derivative of function 3.8 is zero when t=0.

Thus, Ay and By can be expressed as follow:

Ay = (3.10)
and

(3.11)

By =

By combining function 3.9 with either function 3.7 or
function 3.8, the following equation {equation 3.12) is used
to curve-fit the experimentally obtained autocorrelation
curves. These curve-fitting tasks are done by programs

EDPARK and PARKZ2.
Ree(T)= be(t) Oe(T+t) Ryw(T), (3.12)
where Oe(t) is either be;(t) or be,(t). Finally, program

PFIT curve-fits function 3.9 alone to the autocorrelation

curves for comparison purpose.
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Chapter IV
DISCUSSION AND APPLICATION

4.1 EXPERIMENTAL RESULTS AND DISCUSSION

As previously mentioned, fifteen data ensembles were
obtained, eight small-ensembles from the biceps brachii, two
small-ensembles from each of the rectus femoris and the del-
toid, and three big-ensembles from the biceps brachii. In
order to ensure that the data chosen from an ensemble was as
consistent as possible, a mean-sguare-error threshold of 3%
was used. If the error of a strain-gauge signal, when com-
pared with the ensemble-average of strain-gauge signal, was
below this threshold, the corresponding EMG signal was se-
lected for the computation of variance and autocorrelation
curves. However, since it is more difficult to control the
rectus femoris and the deltoid muscles, the error threshold
for these two muscles was raised to 20% to allow the use of
more data. As a result, the variance and autocorrelation
curves for these muscles show more fluctuation which conseqg-

uently produces more error in the curve-fitted variances.

When curve-fitting the EMG variance with the variance
function (2.7 and 2.8), there are parameters to be estimated

in each function, parameter K; in éét and parameters A and B
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2
in Oe,. These parameters are listed in table 4.1, with the

corresponding errors listed in table 4.2.

Table 4.1 shows that function Ge,{(t) performs better
than function 6él(t), for it has relatively smaller error
when curve-fitting the EMG variance. Function 622 has less
than 6.5% error while function e, has less than 8% error.
One factor to account for this is that function éé, cannot
properly curve-fit the lower part of the EMG variance while
function 622 has an extra exponential term to overcome this
problem. Table 4.1 also shows that both functions give bet-
ter fits to the big-ensemble variance than they do to the
small-ensemble ones; this is obviously because the larger
ensembles produce a smoother EMG variance estimate. Results
of curve-fitted EMG variance are shown in figure 4.1 and Ap-

pendix C.3.

For a given EMG e(t}, the autocorrelation has been de-

rived in equation 2.2, which states that:
Ree(t+T)=n(t+7)n(t)wa(T) '

where n(t) is either be,(t) or be,(t). Using the previously
estimated parameters for 6é1(t) and ééz(t), the above equa-
tion is used to curve-fit the experimentally obtained auto-

correlations.



TABLE 4.1

. 2
Errors of the Best Estimates of 6é1(t) and Oe,(t)

SMALL-ENSEMBLE

2
e, (t) e, (t)

Subject N Error (%) Error(%)
SM 87 3.88 3.87
AG 115 4,80 3.90
RK 104 2.90 2.60
XG 68 5.30 4.10
WG 88 1.16 0.78
BL 111 4,90 3.40
VN 70 3,20 2,23
KN o8 3.10 2.60
D-EBL 76 5.52 4,07
D-KN 100 3.24 2.73
F-KN 81 2.86 2.60

BIG-ENSEMBLE
JJH 383 3.05 1.87
AAG 494 2.88 1.92
KKN 437 1.18 0.67
Notes:

(i). N-number of trial selected for
calculating the EMG variance.

{(ii). F-data obtained from the rectus
femoris muscle.

(iii). B-data obtained from théAdeltoid
muscle.
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TABLE 4.2

Estimated Ky, A & B, and the Calculated Starting-point

SMALL-ENSEMBLE

2
be,(t) be,(t)
Starting Starting

Subject Point K, Point A B

SM 27 0.01281 27 0.55885 0.01317
AG 61 0.08389 56 0.20175 0.20434
RK 74 0.02541 70 0.05373 0.05227
XG 49 0.0483%0 47 0.09426 0.09415
WG 60 0.06718 55 0.11230 0.11229
BL 63 0.02651 43 0.03903 0.03827
VN 65 0.10551 €5 0.21243 0.21887
KN 50 0.18014 49 0.30848 0.33314
F-BL 38 0.01972 38 ¢.03911 0.04086
D-BL 35 0.01595 25 0.03167 0.03389
D-KN 71 0.02852 49 0.03862 0.03860
F-KN 21 0.02744 10 0.06599 0,03722

BIG-ENSEMBLE
JJH 10 0.01427 10 0.0317¢9 0.03136
AAG 103 0.12341 gg 0.10875 0,10963
KKN 47 0.05083 37 0.04262 0.07524
Notes:

(i).

(ii).

The starting-point is only a relative point for
calculation and comparison convenience.

Ky, A and B are estimated parameters.
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Figure 4.1: Curve-fitted EMG variance

- to obtain time in mS
multiply by 2.
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When this autocorrelation function (4.1) is used to
curve-fit the experimental autocorrelations, only the param-
eter a of Ryw (2.4) needs to be estimated. It has been found
that this parameter does not vary greatly for the set of au-
tocorrelations of an ensemble. The set of a's was averaged.
This averaged .« for each ensemble is listed in Table 4.3
where errors of curve-fitting the autocorrelation curves
with n{t)=be,(t) and the errors with n(t)=6e2(t) are tabu-
lated. Both variance functions give essentially the same
error which ranges from 4% to 27%. Most of these errors are
due to the fluctuation that occurs before and after the
main-lobe of the experimentally obtained autocorrelations.
Curve-fitted results are shown in figure 4.2 and Appendix

C.4.

All of the curve-fitting done above is based on Krei-
feldt's postulation which says that the EMG signal e(t) can
be considered to be an amplitude modulated signal. By
curve-fitting the experimentally obtained EMG variances and
autocorrelations, it has been shown that the heuristically
chosen variance functions, 621 and 6%2, and autocorrelation
function, Rwyw, performed quite satisfactorily in describing
the EMG autocorrelation. Consequently, the experimental
data supports the postulate that the EMG signal can be mod-

elled as an amplitude modulated signal.
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TABLE 4.3

Ensemble-Average of Parameter a of Rge and Its Error

SMALL-ENSEMBLE

n(t)=be,(t) n(t)=be,(t)
a Error o Error

Subject (%) (%)
SM 0.71561 16.76 0.71007 15.71
AG 1.53717 22.07 1.53477 25.389
RK 1.36812 19.33 1.46004 19.60
XG 1.02436 21.26 1.02731 21.62
WG 1.20796 22.03 1.27619 28.41
BL 1.23108 18.68 1.27432 20.34
VN 1.20314 26.60 1.21400 26.19
KN 1.18102 21.18 1.25583 20.59

F-BL 0.50625 13.16 0.48734 11.86
D-BL 0.54508 13.88 0.53675 16.40
D-KN 0.95808 14.07 0.92723 12.38
F-KN 0.73305 17.38 0.72932 17.27

BIG-ENSEMBLE

JJH 0.55713 .97 0.54167 5.20
AAG 0.82924 4,23 0.82182 4.91
KKN 0.59915 9.01 0.57151 11.75
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——— Experimental
———— Curve-fit function
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Figure 4.2: Curve-fitted Autocorrelation

- t is the time(from the defined starting-point)
at which the autocorrelation is calculated.

- to obtain T in mS multiply by 2.
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4,2 EMG_VARIANCE ESTIMATION

Up to now the estimates have been derived from the ensemble.
Practically, the EMG variance has to be estimated from a
single trial of data; therefore, two estimation schemes are
evaluated here, they are the Midpoint Moving Average Estima-

tion and the homomorphic filter.

4,2,1 Midpoint Moving Average Estimation (MMAE)

This algorithm ultilizes a window of constant weight where
the variance is estimated at the midpoint. By moving this
window point-by-point, squaring and averaging the EMG data
within the window, an EMG variance estimate 1is obtained.
The only parameter to be chosen is the window length. It
has been found that the best estimate can be obtained by us-
ing approximately one-half of the fastest rise time of the
time varying variance as the window length[Xiong, 1985].
The program used for this processor is listed in Appendix
B.1.11. These estimated results were compared with the en-
semble-average of the EMG variance. The error ranged from
2.5% to 105%. Qut of 600 trials, 324 trials had less than
20% error, and 412 trials less than 30% error. A typical

result of the MMAE is shown in figure 4.3.
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Figure 4.3: An Estimate Variance of the MMAE

4.,2,2 Homomorphic Filter

Another possible processing algorithm used to estimate the

EMG variance is a homomorpohic filter. 1Its block diagram is

shown in figqure 4.4.

e(t) SQUARER EXPONENTIAL WIENER NATURAL n2(t)
?) 2 PROCESSOR FILTER LOG >
PROCESSOR

Figure 4.4: Block Diagram of the Homomorphic Filter
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The sguare-processor squares the values of the EMG
e(t), and the log-processor converts the multiplicative

characteristic of e?(t) to additive, i.e.
1n[e2{t)]=1In[n2{(t)w2(t)]
e'(t)=n'(t)+w' (t), (4.1)

so that a Wiener filter can be used to estimate the n'(t).
The design of this Wiener filter is illustrated in Appendix

A. Its transfer function H(s) is:

Ks
S+Ws
By taking the inverse Laplace transformation, one obtains

the impulse response of the Wiener filter, which is
h(t)=Ksb(t)+Ksexp(-Wst). (4.3)

Program WIENER, which is 1listed in Appendix B.1.12,
computed the variance n2(t) with e(t) as the input. Program
WIENEE compared the estimated variance with the ensemble-av-
erage of the EMG variance. The error of these estimated
variances ranges from 3.42% to 157.22%. Out of 600 trials,
112 trials have ‘less than 30% error and 56 trials have less

than 20% error.
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Chapter V
CONCLUSION

The primary objective of this thesis was to investigate the
dynamics of the EMG signal characteristics. This was accom-
plished by asking subjects perform a two level tracking
study with the EMG variance and autocorrelation function

computed from the resultant ensemble.

Comparison of the experimentally obtained autocorrela-
tion function with that derived from an amplitude modulated
model of EMG signal generation shows good agreement; the
mean-sguare-errors range from 4.2% to 26.6%. Thus the ex-
perimental study supports the model of signal generation.

Further the study shows that the autocorrelation function

does not change in form nor does the parameter « change to
any great extent as the EMG signal characteristics evolve
with time, 1i.e., as the subject muscle goes from a relaxed
state to a contracted state. Therefore, the signals' power
density spectrum does not change in form, only the power

level increases as shown by the increasing variance. Though

the experiment considered only a step change in target lev-
el, this could be considered to be an extreme case of muscle
contraction and therefore the general conclusions that the

signal generation is well modelled as an amplitude modulated

THE UNIVERSITY OF MANITOBA LIBRARIES
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process and that the power density spectrum does not change

in shape should apply to the more general case.

In practical application to prosthetic control the var-
iance needs to be estimated from a single member of the en-
semble. Two estimation schemes, the Midpoint Moving Average
Estimator and the homomorphic filter were evaluated. The
experimentally determined ensemble averages were taken as
the true time varying variance. Results were mixed; out of
600 trials the MMAE had 324 estimates with error of less
than 20% while the homomorphic filter had only 56 estimates.
The poorer performance of the homomorphic filter can be
partly explained 1in that a model for the signal and noise
power density spectrum at the log processor's output was not
available. These spectra, necessary for the Wiener filter
design, were chosen to be simply low pass processes. How-
ever, given the derivation of the Wiener filter it is not
felt that even with better spectra models the homomorphic

filter would improve on the variance estimate.

With regard to future research there are several av-
enues which may be explored. Different skeletal muscles may
be investigated. In general though it would be expected
that the findings of this research would hold, only the mod-
el parameters would change. The present study was confined
to isometric studies; an obvious research extension would be
to consider EMG signal generation under non-isometric con-

traction. Finally although effort was made during the ex-
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periment to ensure that each EMG ensemble member was pro-
duced under the same conditions, the results of the single
trial estimates show a wide range in error suggesting that
conditions did change. This change may be caused by the un-
expected movements of the subject during data acquisition.
Therefore, the experimentaly paradigm should be further in-

vestigated.
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Appendix A

WIENER FILTER

The derivation here is Dbased on the reference [Van Tree,

1968]. First, consider the following EMG signal e'(t).
e'{(t)=n'(t)+w'(t},

where e'(t) is the EMG signal that has been passed through a
square-processor and a log-processor, n'(t) is the signal to
be estimated and w'(t) is the noise. The following diagram
shows the block diagram of a Wiener filter which is used to

estimate the n'(t).

S —}
I A
e'(t) Hy(jw) z(t) H' (jw) n'{t)
————N hult) he(p) [ >
| |
L] h(t) |
H(jw)
where B'(t) 1is the estimate of n'{t). The transfer func-

tions, hy{t) and h'(t), depend on the spectral properties of
n'(t) and w'(t). Therefore, assume that.Spn(®@) and Syy(w)
are the power spectra of n'(t) and w'(t) respectively. Pre-
vious study has shown that the power spectrum of_y'(t) can

be expressed as follows [Scott, 1967] and'{Shwedyk, 1973]:
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K2 _
Suwlw)= ' (A.1)
(1+ wz/(dé)

where w=2T(100Hz). Also, since the n'(t) is a low freguency
signal, its power spectrum can be assumed to be the follow-

ing:

) ik (A.2)
Sppl{w)= . A.2
nn (1+ w?/ w;)

where w,=2(20Hz). Thus, the spectrum See(w) is given by
See(w)=Snn(w)+Sww(w)+snw(w)+SWn(m),

where Snw(®) and Swn(¥) are only constants. They are neg-
lected in subsequent derivation because they do not affect

the design of the system response. Therefore,
See(w)=5nn(w)+5ww(w),

K1 KZ
= +
(1+ w2/p2) (14 w?/w3)

Ky+K2+ w2 (K /wi+K2/wh)

(1+w2/wg)(1+w2/wé)

—— (A.3)

By spectral factorization, this can be rewritten as

See (w)=[6*(§u) 1 [6* (§u) 1" _ - (A.5)

where K+ jwL
[G*{jw)] = -=, (A.6)
(1+jw/wn) (1+3w/ wm
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K-J L
[G*(jw)] = ' (A.7)
(1-jw/wqp) (1+iw/wn)

1
K = (K1+K2)6;
and v
L = (Ki/whtK2/wi)?.
Since the transfer function Hy(jw) of the Wiener filter is

defined as:

1
Hy(jw)= —m——,
[6*{jw)]
Therefore,
(1+jw/wp) (1+jw/wy)
Hyljwl)= . (A.8)

(R+jwLl)
Further, for the transfer function h'{t), we have to consid-
er the cross-correlation Sen(w) which is:
Sen(w)=5nn(m)+5wn(w),

=Snn(w) ]

K
= — (A.10)
(1+ w2/w?)

The previous block diagram shows that

Snz(jfi»’):Sen(&)) H:(jﬂ))' -
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Sen(©) ( )
= e, A.11
(6* (51" |

Thus, Kq(1-jw/wn) (1-jw/wny)
Snz(jw)= '
(1+w?/w?) (K~ jwL)

K41’jw/wm)

= . (A.12)
(1+jw/wn) (K- jwl)
By partial fraction, we obtain
A B
Snz(jw)z + ' (A.13)
(1+jw/wn} (K-3wL)
where
Kq{(1-jw/wp)
A= [J
(K-jwL)
with w=jwpn, it becomes
Ki (1+Wn/wm)
A= R (a.14)

K+wnL
and similarly,
Ky (1-K/(L &) )

B= . (A.15)
(1+K/(L wn))

Because the second term of equation A.13 has a pole on the
R.H.P., it has to be discarded in order to make the filter

stable. Thus, we define
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A
[snz{jw}}.= —m,
(1+jw/wn)

and this is also the transfer function of H'(jw). Therefore,

A
H'(jw)s —— (A.16)
(1+jﬂ-’/wn)

Hence, the overall transfer function of the Wiener filter
can be defined as follow:
H{jw)= Hy(je)H' (juw). (A.17)

Substitute equations A.8 and A.16 into A.17, we obtain

A(1+jw/wm)
H(jw)= '
K+3jwlL
let s=jw,
Al{1+s/wp)
H(s)=
K+sL
A A(1-K/L @“m)
= -+ .
L L(s+K/L)
Identify
. A
Kz= —
L

A(1-K/({Lwy))
K4= . []
L
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and

K
&)5=._——,
L

therefore, the transfer function of the Wiener filter be-

comes,
Ka
H(S)-': Ka+ [
(S+ &)5)
or h(t)= K36(t)+ Ksexp(- wst) , (A.18)
which is illustrated in the following block diagram:
| I
| Vg Ul I
e(t) i Ks + 1 n(t)
+

1 Ksexp(-wst) |

Figure A.1: Wiener Filter
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Appendix B -

COMPUTER PROGRAM

PROGRAMS USED IN MICRO 11/23

Program SORT.FTN

PROGRAM SORT
CHARACTER*6 FNAME
CHARACTER*8 EMFILE,SGFILE
PARAMETER (FNAME='K2',SGFILE='KSG3',EMFILE='KEM3"',
C LAST=5000)
INTEGER*2 SG{LAST),EMG{LAST)
OPEN (UNIT=3,FILE=FNAME,READONLY,STATUS="'0OLD',BLANK="ZERO")
READ(3,10) {(sG{1),EMG{1),I=1,LAST)}
FORMAT(B(214}))
CLOSE (UNIT=3,DISPOSE='KEEP')
OPEN {UNIT=4,NAME=SGFILE,STATUS='NEW',BLANK='ZERO',
c BLOCKSIZE=42)}
WRITE{(4,20) (5G(1),I=1,LAST}
FORMAT({X,1614)
CLOSE (UNIT=4,DISPOSE='KEEP')
OPEN (UNIT=1,NAME=EMFILE,STATUS='NEW', BLANK="'2ZERO",
C BLOCKSIZE=42)
WRITE{1,30) (EMG(I},1=1,LAST)
FORMAT(X,1614)
CLOSE (UNIT=1,DISPOSE='KEEP')
STOP
END



B.1.2 Program MIDPOINT.FTN

1. CHARACTER*8 FNAME{100)}

2. INTEGER*2 COUNT1,COUNT2,COUNT3,1,X(5000),SAMPLE,MID
3. PARAMETER (NFILE=50,LAST=5000,SAMPLE=20) )
4. REAL*4 SUM,MAX(NFILE),ZERC{NFILE),MAX1,ZERO1,DUM
5. DATA MAX1/0.0/,ZER01/0.0/,MAX/NFILE*0,0/, ZERO/NFILE*5000.0/
6, *

7. FNAME{1)="KSG!"'

8. C TO

g, FNAME (50)="KSG50"'

10. =

11, DO S50 COUNT1=1,NFILE

i2. OPEN {UNIT=3,FILE=FNAME(COUNT1},STATUS="0OLD')
13. READ {3,10) (X{(1),I=1,LAST)

14. 10 FORMAT (X,1614}

15, CLOSE {(UNIT=3,DISPOSE='KEEP')

16. *

17. DO 40 COUNT2=1,200

18. SUM=0.0

19, I1={COUNT2-1) *SAMPLE
20. DO 20 COUNT3=1,SAMPLE
21. 20 SUM=SUM+X (I +COUNT3) /SAMPLE
22, IF (SUM .LT. MAX{COUNT1}} GO TO 30

23, MAX (COUNT1)=5UM

24, 30 IF (suM .GT. ZERO{COUNT1}) GO TO 40

25, ZERO(COUNT1)=SUM

26, 40 CONTINUE

27. 50 CONTINUE

28, *

29 DO 60 COUNT3=1,NFILE

30. MAX1=MAX1+MAX (COUNT3)/{(NFILE)

31. ZERO1=ZERC1+ZERO{COUNT3)/{NFILE)

32. 60 CONTINUE

33, x .

34, DUM={ {MAX1-ZERO1)*0.5)+2ZERO1

35. MID=1INT{DUM) .

36, #

37. OPEN {(UNIT=3,NAME='KMPONT',STATUS='NEW')

38. WRITE(3,70) (ZERO(I),MAX{I),I=1,NFILE)

39. 70 FORMAT (5X,F7.2,5X,F7.2)}

40. WRITE{3,80) MID

41, 80 FORMAT (X,'THE AVERAGE MIDPOINT 1S',16)

42, CLOSE (UNIT=3,DISPOSE='KEEP")}

43, STOP

44, END



B.1.3 Program STARTER.FTN

1. PARAMETER (NFILE=50,LAST=5000,MIDDLE=1547,DISTAN=1200)
2. CHARACTER*B FNAME(NFILE}

3. INTEGER*2 COUNT1,SG(LAST),I,NSAM,DUM,BACK,
4, C START(600),A

5. DATA NSAM/0/,DUM/0/,BACK/100/

6. =

7. FNAME(1}="KSG1"'

8. C TO

9. FNAME{50}="'KSGS0"

10, »

it. DO 200 COUNT1=1,NFILE

12, *

13. OPEN (UNIT=2,NAME=FNAME{COUNT1},STATUS="'0OLD")
14. READ (2,210) (sG{1),I=1,LAST)

15, 210 FORMAT (X,1614)

16. ] CLOSE (UNIT=2,DISPOSE='KEEP')

17, =

18. 1=0

19, 220 I=1+10
20. 1F ((1) .GE. LAST} GO TO 200
21. 1F (sG(I) .LT. MIDDLE} GO TO 220
22, I=1-11

23. 230 I=1+1

24. IF (sG{1} .LT. MIDDLE} GO TO 230

25. NSAM=NSAM+1

26. DURM=DUM+1

27. A=I-BACK
28. 1=1+DISTAN
29. START(DUM)=A

30, GO TO 220

31, 200 CONTINUE

32,

33. OPEN (UNIT=3,NAME='KSTARTER',STATUS='NEW')
34, WRITE(3,281} (START(I),I=1,DUM)
35. 28i FORMAT(X, 318}

36. CLOSE (UNIT=3,DISPOSE='KEEP'}

37. STOP

38. END ‘



B.1.4 Program MINSG.FTN

1. PROGRAM MINSG

2. PARAMETER (NFILE=40,LAST=5000,NUM=600,NSAM=3,JUMP=20)
3. CHARACTER*B FNAME(NFILE)

4. INTEGER*2 COUNT1,COUNT2,COUNT3,SG{LAST), I, NUMT,
5. C Z,START(600) ,AVE(NUM)},COUNT4

6. INTEGER*4 SUM(NUM)

7. REAL Y

8. DATA NUM1/0/,AVE/NUM*0/, SUM/RUM*0/

g, =%

10. FNAME{1)='KSG1"*

11. C TO

12. FNAME{40)="KSG40'

13, =%

14. OPEN {(UNIT=3,NAME='KSTARTER',STATUS="OLD')

15. READ(3,*) (START(I),I=1,NSAM*NFILE)

16. *B1 FORMAT{X, 318)

17. CLOSE {UNIT=3,DISPOSE='KEEP'}

18, =

19. DO 270 COUNT=1,NFILE
20, *
21, OPEN {(UNIT=2,Fl1LE=FNAME(COUNT),STATUS="OLD"'}
22. READ{2,280) (SG(1),I=1,LAST)
23. 280 FORMAT{X,1614)
24, CLOSE (UNIT=2,DISPOSE="KEEP')
25, *
26. DO 240 COUNT2=1,NSAM
27. I1=START({ {COUNT-1}*NSAM+COUNT2) - 1+NUM+JUMP
28. 1F (1.GT.LAST .OR. 1.LT.0) GO TO 240
29, 1=1-NUM
30. NUM1=NUM1+1
31. DO 250 COUNT3=1,NUM

32. SUM{COUNT3)=SUM{COUNT3)}+5G{I+COUNT3)}
33. 250 CONTINUE
34, 240 CONTINUE
35. 270 CONTINUE
36. DO 290 COUNT4=1,HUM

37. ¥Y=SUM{COUNT4 } /NUM1
38, Z=IINT(Y)}
39, AVE{COUNT4)=2
40. 290 CONTINUE
41, =
42, OPEN (UNIT=2,NAME='KMINSG',STATUS='NEW')
43, WRITE(2,260) (AVE(l)},I=1,NUM)

44, 260 FORMAT(X, 1614)

45, CALL PLOT{AVE,NUM, 2}
46, CLOSE {UNIT=2,DISPOSE="'KEEP'}

47, *

48. STOP

49. END
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Program VARSG.FTN

PROGRAM VARSG

PARAMETER (NFILE=40,LAST=5000,NSAM=3,JUMP=50,NUM=100)

INTEGER*2 START{600)},COUNT1,COUNT2,COUNT3,
SG(LAST) ,MEAN{NUM}

REAL*4 SUM,PRO,DELTA,DUM,DDUM,NORM

REAL*4 VAR(600)

CHARACTER*8 FNAME(200}

DATA VAR/600%-99.0/,NORM/0.0/

FNAME(1)="KSG1®
TO
FNAME(40)='KSG40'

OPEN (UNIT=2,FILE='KMINSG',STATUS='0QLD")
READ(2,901) {MEAN(I),I=1,NUM)
FORMAT{X, 1614}

CLOSE (UNIT=2,DISPOSE='KEEP')

DO 940 COUNTI=JUMP,NUM
DUM=MEAN(COUNT1)
DDUM={ DUM/ (NUM~-JUMP } ) *DUM
NORM=NORM+DDUM

CONTINUE

NORM=SQRT { NORM)

OPEN (UNIT=2,FILE="KSTARTER',STATUS='0OLD')
READ(2,*) (START(I),1=1,NFILE*NSAM)
CLOSE (UNIT=2,DISPOSE='KEEP')

DO 910 COUNT1=1,NFILE
OPEN (UNIT=2,FI1LE=FNAME({COUNT1)},STATUS="0OLD")
READ(2,911) (sSG(1},I=1,LAST)
FORMAT(X,1614)
CLOSE (UNIT=2,DISPOSE='KEEP')

DO 920 COUNT2=1,NSAM
SUM=0.0
11={COUNT1-1)*NSAM+COUNT2
I1=START(I1)-1+JUMP
1F {((I+NUM).GT.LAST .OR. I.LT.0) GO TO 920
DO 930 COUNT3=JUMP,NUM
DELTA={MEAN(COUNT3}~-SG{I+COUNT3})
PRO={DELTA/ (NUM-JUMP) } *DELTA
SUM=SUM+PRO
CONTINUE
VAR{I1}=(SQRT(SUM}/NORM)*100.0
CONTINUE
CONTINUE

OPEN (UNIT=2,NAME="KVARSG',STATUS='NER")
WRITE(2,*)} (VAR(I),I=1,NSAM*NFILE!}
WRITE(2,921)

FORMAT{X,'The above data are Root-Mean-Square-Error

*with unit of %')
CLOSE {UNIT=2,DISPOSE='KEEP'}
STOP
END

1

r



B.1.6 Program SCALE.FTN

1. PROGRAM SCALE
2. CHARACTER*9 oUT(100)

3. CHARACTER*8 EMFILE{100)}

4, PARAMETER {LAST=5000,NFILE=50}

5. INTEGER*2 COUNT1,COUNTZ2,EMG(LAST}

6. REAL*4 SEMG{LAST)

7. C

8. EMFILE{1)}="AAEM1"’

9. TO

10. EMFILE(100)="AAEM100"

11. C

12. OUT(1}="'AAS?t"'

13. TO

14. ouT(100)="AAS100"

15. C

16. DO 400 COUNT1=1,NFILE

17. OPEN (UNIT=3,FILE=EMFILE(COUNT1),STATUS="0LD"}
18. READ(3,410) {(EMG(J},J=1,LAST)

19. 410 FORMAT (X,1614}

20. CLOSE {UNIT=3,DISPOSE='delete')}

21. DO 420 COUNT2=1,LAST

22, SEMG (COUNT2 )} = (EMG (COUNT2) /4096.0)}%2,0-1.0
23. 420 CONTINUE

24. OPEN {UNIT=3,NAME=OUT(COUNT1),STATUS='NEW"')
25. WRITE(3,430) (SEMG(J),J=1,LAST, 1)

26. 430 FORMAT(5E15.7)

27. CLOSE {UNIT=3,DISPOSE='KEEP')}

28. 400 CONTINUE

29. STOP

30. END




B.1.7 Program OSEMG.FTN

1. PROGRAM OSEMG

2. PARAMETER (NFILE=50,LAST=5000}

3. INTEGER#*2 COUNT1,COUNT2

4. REAL*4 MEAN,EMG(LAST)

5. DATA MEAN/0.0/

6. CHARACTER*9 EMFILE{S50),0UT(50)

7. C

8. EMFILE{1)="'"KKSEM1'

9. TO

10. EMFILE({50)}="KKSEMS0"

11. €

12. OUT{1}="KKOEM1"

13, TO

14. ouT(50)="KKOEMSO0'

15. C

16, DO 520 COUNT1=1,NFILE

17. OPEN {UNIT=4,FILE=EMFILE(COUNT1),STATUS='0OLD"'}
18. READ(4,500) (EMG(I),I=1,LAST}
19, 500 FORMAT{5E15.7}
20. CLOSE(UNIT=4,DISPOSE="KEEP")
21, =
22. DO 510 COUNT2=1,LAST
23. 510 MEAN=MEAN+EMG (COUNT2)
24, 520 CONTINUE

25. MEAN=MEAN/{NFILE*LAST)

26. *
27, OPEN {(UNIT=4,NAME="QSEMG',STATUS="NER")
28, WRITE{4,530) MEAN

29. 530 FORMAT{X,E15.7)

30. CLOSE(UNIT=4,DISPOSE="'KEEP"')

31, =

32, DO 540 COUNT1=1,NFILE

33. OPEN (UNIT=4,FILE=EMFILE(COUNT1),STATUS="0OLD")
34. READ{4,550) (EMG(I),I=1,LAST}
35. 550 FORMAT(5E15.7)

36. CLOSE(UNIT=4,DISPOSE="DELETE"}

37, »

38, DO S60 COUNT3=1,LAST

39. 560 EMG {COUNT3)=EMG {COUNT3)-MEAN

40. »

41. OPEN {UNIT=1,NAME=QUT{COUNT1),STATUS="'NEW")
42, WRITE(1,570) (EMG{I)},I=1,LAST)
43. 570 FORMAT{5E15.7)

44, CLOSE {UNIT=1,DISPOSE='KEEP"')

45, 540 CONTINUE

46, STOP

47. END




B.1.8 Proqram MEMG.FTN

55. END

1. PARAMETER (NFILE=40,LENGTH=500,JUMP=50,RATIO=20.0,
2. C LAST=5000)
3. INTEGER*2 COUNT1,START(600), .
4. C COUNT2,COUNT4 M, 1,12
5. REAL*4 EMG{LAST),MEMG(LENGTH),%,22,VAR,VARSG{120},
6. C PMEMG (LENGTH}
7. CHARACTER*9 FNAME{(100}
8. DATA MEMG/LENGTH#0.0/,M/0/
9, *
10. OPEN (UNIT=2,FILE='KSTARTER',STATUS="'0OLD"')
11, READ{2,*) (START{I),I=1,NFILE*3}
12. CLOSE (UNIT=2,DISPOSE='KEEP')}
13. «
14. FNAME{1)="'KOEM1'
15. C TO
16. FNAME (40)="KOEM40'
17. =
18. OPEN (UNIT=3,FILE='KVARSG',STATUS='OLD")
19, READ(3,*) (VARSG(I1),I=1,NFILE=*3)
20, CLOSE {(UNIT=3,DISPOSE='KEEP')
21, *
22. DO 640 COUNT1=1,NFILE
23. OPEN (UNIT=2,FILE=FNAME{COUNT1),STATUS="'OLD")
24, READ(2,*) (EMG{I),I=1,LAST)
25. CLOSE (UNIT=2,DISPOSE='KEEP')
26. *
27. DO 650 COUNT2=1,3
28, I12=COUNT2+(COUNT1-1)*3
29, I=START(I2}-1+JUMP
30. Z=VARSG({12}
31. iF {{(z .LE. RATIC) .AND. (Z.GE.D.0)} THEN
32. M=M+1
33, - DO 670 COUNT4=1,LENGTH
34, 22=EMG{1+COUNT4}
35. 670 MEMG {COUNT4 } =MEMG(COUNT4)+22%22
36. END IF
37. 650 CONTINUE
38. 640 CONTINUE
39, =
40. DO 622 COUNT1=1,LENGTH
41, 622 MEMG (COUNT 1 } =MEMG { COUNT 1)} /M
42, =
43. OPEN (UNIT=4,NAME='KMEMG',STATUS="NEW')
44, WRITE{4,684) M
45, 684 FORMAT(' The total number of sample that satisfied the
46. C RATIO criterion is',I4,'."})
47. WRITE {(4,681) RATIO,JUMP
48. 681 FORMAT(' This is the variance of EMG with ',
59, C 'RMS-Error <',F7.3,'%', 'and JUMP=",I13,'.'}
50. WRITE(4,680) (MEMG(1},I=1,LENGTH)

: 51. 680 FORMAT (5E15.7)

; 52. CALL PLOT(MEMG,LENGTH, 1}

: 53. CLOSE (UNIT=4,DISPOSE="KEEP')}

/ 54, STOP

o



B.1.9 Program ACEMG.FTN

1. PARAMETER (IDELAY=290,NFILE=40,NSAM=3,IBEGIN=261,IANSAM=320,
2. o RATIO=3.0,LAST=5000,JUMP=50)

3. INTEGER*2 START(120},1,11,M,K{I1ANSAM),

4. c COUNT1,COUNT2,COURT3 -
5. REAL*4 VAR,VARSG1(120),2,EMG{LAST) ,X,ACEMG(IANSAM}, TAU
6. DATA ACEMG/I1ANSAM*0.0/,M/0/

7. CHARACTER*9 EMFILE(40)}

8. »

9, EMFILE(1}="'KOEM1"®

10, C TO

11. EMFILE(40}="'KOEM40"

12, *

13, OPEN (UNIT=2,FILE='KSTARTER',STATUS="0OLD'}

14, READ(2,*)} (START{I),I1=1,NFILE*3)

15, CLOSE {UNIT=2,DISPOSE='KEEP')

16, * .

i7. OPEN {(UNIT=3,FILE='KVARSG',STATUS='0OLD"}

18. READ{3,*} {(VARSG1(1},I=1,3+«NFILE)

i9. CLOSE (UNIT=3,DISPOSE='KEEP')
20, =
21. DO 700 COUNT1=1,NFILE
22. OPEN (UNIT=2,FILE=EMFILE{COUNT1)},STATUS='0OLD")
23. READ{2,*)(EMG(1),1=1,LAST}
24, CLOSE (UNIT=2,DISPOSE='KEEP'}
25,

26. DO 710 COUNT2=1,NSAM

27. 11=(COUNT1~-1)*NSAM+COUNT2

28. 1=START(I1}-1+JUMP

29, Z=VARSG1(I1)

30. 1F ({z .LE. RATIO)}.AND.{2.GE.0.0)} THEN

KA M=M+1

32. TAU=EMG(I+IDELAY}

33. DO 720 COUNT3=IBEGIN,IANSAM

34, X=EMG(I+COUNT3)*TAU

35, ACEMG (COUNT3 ) =ACEMG (COUNT3)+X

36. 720 CONTINUE

37. END IF

38. 710 CONTINUE

39, 700 CONTINUE
40, *

41, DO 730 COUNT1=I1BEGIN,TANSAM
42, 730 ACEMG (COUNT1)={ACEMG (COUNT1) } /M
43, =
44, OPEN (UNIT=3,NAME='KACEMG',STATUS="NEW')
45, WRITE{3,702) IDELAY,RATIO,JUMP
46. 702 FORMAT(X,'This is the autocorrelation of EMG
47, ¢ with DELAY= ',13,'*2mS, RATIO=',F5.2,'and JUMP=',13)
48, WRITE{3,703) IANSAM,M

49, 703 FORMAT(X,'It consists of ',I13,' samples-length and M=',I3)
50, CALL PLOT(ACEMG,IBEGIN,IANSAM,1)

51. CLOSE (UNIT=3,DISPOSE='KEEP'}

52. STOP

53, END




B.1.10 Program MMAE,FTN

1. PROGRAM MMAE

2. PARAMETER (L=12,LEN=90,NFILE=100,LAST=5000,RATIO=3.0)
3. INTEGER I,K,K2,11,K3,K4,START(600),KK NNFILE,HM,NUM
4. REAL*4 EMG(LAST},VAR{600)

5. REAL*4 AVE(LEN},DUM,DUM1,DUM2,ME{LEN)

6. CHARACTER*9 FNAME(100),0UTPUT(2)

7. DATA AVE/LEN*0.0/,NUM/0/

8. C

g FNAME(1)="'AAM1T"'

10, C TO

11, FNAME(100)="AAM100"

12. C

13, OPEN (UNIT=3,NAME='AASTARTER',STATUS='0OLD')
14, READ(3,*) (START(I},I=1,600)

15. CLOSE(UNIT=3,DISPOSE="'KEEP')

16. C

17. OPEN (UNIT=3,NAME='AAVARSG',STATUS="'OLD')
18. READ({3,*) (VAR{1),I=1,600)

19. CLOSE (UNIT=3,DISPOSE='KEEP')
20. ¢
21, OUTPUT(1)="AMMAE1"
22, OUTPUT(2)="AMMAE2'
23. ¢
24, KK=0
25. RNFILE=NFILE/2
26. M=2xL,+1
27. C
28. DO 50 COUNT=1,2
29, OPEN (UNIT=3,NAME=OUTPUT(COUNT),BLOCKSIZE=300,STATUS="NEW')
30. C
31, DO 10 K=1,NNFILE
32. KK=KK+1
33, OPEN (UNIT=4,NAME=FNAME{KK),STATUS='OLD'}
34, READ(4,») (EMG{1},I=1,LAST)
35, CLOSE(UNIT=4,DISPOSE="KEEP')

36. C

37. DO 20 K2=1,3

38. I11={KK-1)*3+K2
39, 1=START(I1}/2-L~1
40, = I=START(I1}-L-1
4i. ¢C
42, IF (var(I11) .LE. RATIO) THEN
43. NUM=NUM+1
44, DUM=0.0
45, DO 30 K3=1,M
46, DUMI=EMG{I1+K3 ) *=%2
47. DUM=DUM+DUM1 /M
48. 30 CONTINUE
49, ME({1}=DUM

50. AVE{1)=AVE(1)+DUM/600.0

51. C

52. 11=1

53, DO 40 K4=2,LEN

5¢. I=11+K4

55. DUM1I=EMG(I+M-1}*x2

56. . DUM2=EMG(I-1)*=%2

57. * DUM=DUM+(DUM1-DUM2)} /M

58. ME (K4 )=DUM

59. AVE{K4)=AVE(K4)+DUM/600.0
60. 40 CONTINUE ‘
61. CALL PLOT{ME,1,LEN,1}
62. END IF -
63. 20 CONTINUE .
64. 10 CONTINUE




CLOSE (UNIT=3,DISPOSE='KEEP')
CONTINUE

OPEN (UNIT=3,NAME='AME',6STATUS='NEW')
WRITE(3,*) (AVE(I),I=1,LEN),NUM
CALL PLOT(AVE,1,LEN,1)

CLOSE(UNIT=3,DISPOSE="KEEP')

STOP

END



B.1.11 Program EMMAE.FTN

1. PROGRAM EMMAE
2. PARAMETER (LEN=90,BEGIN=30,IEND=70)
3. INTEGER I,K,K1,COUNT1,NN )
4. REAL*4 AVE{(LEN},ME{LEN),DUM, ERR, SUM,NORM,MSE
5. CHARACTER*9 INPUT{4}
6. DATA NORM/0.0/
7. C
B. OPEN {UNIT=4,NAME='AAMEMG',STATUS="OLD')}
9. READ(4,*) (AvE(I},1=25,LEN)
10, CLOSE (UNIT=4,DISPOSE='KEEP')
11. C
i2. DO 40 K=BEGIN,IEND
13. DUM=AVE (K}
14. NORM=NORM+DUM*DUM
15. 40 CONTINUE
16. C
17. INRPUT(1}="AMMAET'
18. INPUT(2)="AMMAE2'
19, INPUT(3)='AMMAE3"
20. INPUT(4)="AMMAE4"
21. C
22. OPEN (UNIT=4,NAME='EMMAE’',STATUS="'NEW')}
23. ¢
24, DO 10 COUNT1=1,4
25, OPEN (UNIT=3,NAME=INPUT{COUNT1),STATUS="OLD")
26, READ(3,*) NN
27. ¢ NN=2
28. DO 20 K=1,NN
29, READ{3,*) (ME(1),I=1,LEN)
30. SUM=0.,0
31. DO 30 K1=BEGIN,IEND
32. ERR=AVE{K1)-ME(K1}
33. SUM=SUM+ERR*ERR
34. 30 CONTINUE :
is. MSE=SUM/NORM*100,0 :
36. WRITE{4,*) MSE :
37. 20 CONTINUE
ki: 9 CLOSE {UNIT=3,DISPOSE='KEEP') :
39. 10 CONTINUE :
40. CLOSE {(UNIT=4,DISPOSE='KEEP') :
41. STOP :
42. END :
H




B.1.12 Program WIENER.FTN

PARAMETER {NN=50,IEND=40,JUMP=90,NFILE=50)

INTEGER*2 K,1,1I1,T,TT,N,START{150},NSTART, FNUM

REAL*4 K1,K2,KK,L,A,K4,K3,w5,XN({IERD} , H(NN),X{5000}, .
C WMM, WNN, WN, WM, DUM, SUM, DUM1,DUK2

CHARACTER#*9 INPUT(50}

DATA XN/IEND*0.0/,SUM/0.0/,DUM2/0.0/

P

WN=5

WM=100
K1=1.0
K2=1.0

WA OWM=JR U N =
o]

—

WHNN=2.0%*3.1416%WN

14 WMM=2,0*3, T416%WM
15. ¢
16. KK=K1+K2
17. KK=SQRT{KK}
18. L=(K1/ (WM uMM) +K2/ (WNN*WNN) )
19, L=SQRT(L)
20. A=K1* (1, 0+WNN/WMM) /(KK+WNN*L)
21. K3=A/(Lrwrpd)
22. Ké=A/L*{1.0-KK/(L*WwMM))
23. W5=KK/(L)
24, C
25, DO 10 K=1,NN
26. DUM=EXP(~-W5%(K-1)*0,002}*K4
27. H{K}=DUM
28. SUM=SUM+DUM
29. 10 CONTINUE
30. H{1)=H{1)+K3
31. SUM=SUM+K3
32. C
33, INPUT{1)="AAS1"'
34, INPUT(50)="'AAS50"
35, *
36. OPEN {(UNIT=3,NAME='AASTARTER',STATUS='0OLD'}
37. READ(3,*) (START{(1),1=1,NFILE*3)}
38, CLOSE {UNIT=3,DISPOSE='KEEP')}
39, =*
40, OPEN (UNIT=3,NAME='AAW1',STATUS='NER")
41, *
42, DO 100 FNUM=1,NFILE
43, OPEN (UNIT=4,NAME=INPUT({FNUM),STATUS="'0OLD")
44. READ{4,+*} (X(1},I=1,5000)
45, CLOSE({UNIT=4,DISPOSE="'KEEP')
46, *
47, DO 110 COUNT=1,3
48, DUM2=0.0
49. ’ I11=START{{FNUM-1}*3+COUNT]} +JUMP
S0, =
51. C
52. DO 11 K=11-50,11-30
53. PUM2=DUM2+X(K)
54, 11 CONTINUE
55, DUM2=DUM2/21.0

. 56. C . )

- - 57. DO 40 K=I1-60,I1+IEND

- 56. = DUM1=ABS{X{K)}
59. DUM1=X{K}-DUM2
60. DUM=DUM 1 *DUM1
61. DUM=LOG { DUM}
62. X{K}=DUM -
63. 40 CONTINUE ’
64. C




65. DO 41 K=1,IEND

66, 41 XN(K)=0.0

67. C

68. DO 20 T=I1,II1+I1END-1

69. TT=T-11+1

70. DO 30 K=1,NN

71. 30 XN(TT)}=XN(TT)+H{R)*X{T-K+1}
72. 20 CONTINUE

73. ¢C

74. DO 200 K=11,II+IEND-1

75. TT=K-11+1

76. DUM=XN(TT) /SUM

77. DUM=EXP(DUM)

78. XN(TT)=DUM

75. 200 CONTINUE

80. C

B1. C WRITE(3,101) K1,K2,WN,WM
82. WRITE(3,*) (XN{1),I=1,IEND}
83. ¢ CALL PLOT(XN,1,1END,1)

g4, ¢

85, 110 CONTINUE

86. 100 CONTINUE

87. ¢

8s. CLOSE {UNIT=3,DISPOSE='KEEP')

89. C

90. STOP

51, 10t FORMAT{ 10X, 'K1=',F7.2,3X,'K2=",F7.2,3X, 'WN=",F7.2,
92, C 3X,'WM="',F7.2/)

93, END




B.1.13 Program WIENEE.FTN

1. PROGRAM W1ENEE
2. PARAMETER (LAST=40,JUMP=0,SCALE=1.0,NFILE=4,NSAM=150)
3. INTEGER I,K,K1,COUNTY,NN,N(LAST),FNUM,COUNT
4, REAL*4 AVE(LAST) ,ME(LAST),DUM,ERR,NORM, MSE,SUM
5. CHARACTER*S INPUT(4)
6. DATA NORM/0.0/,COUNT/0/
ERRPR 7. C
8. OPEN {UNIT=4,NAME=‘AAMEMG',STATUS="'0OLD")
9. READ(4,*) {N(1},AVE(I)},I=1,LAST)
10, CLOSE (UNIT=4,DISPOSE="'REEP')
it. C
i2. DO 40 K=1,LAST
i3. DUM=AVE(K)
14, NORM=NORM+DUM*DUM
15. 40 CONTINUE
16. C -
17. INPUT(1)="AAW1"
18. INPUT{2)="AAW2"
19. INPUT(3)="AAW3"
20. INPUT(4)="AAWS"'
21. ¢
22, OPEN (UNIT=4,NAME='AAWE',STATUS='NEW')
23. WRITE(4,*) SCALE
24. C
25, DO 100 FNUM=1,NFILE
26. C
27. OPEN (UNIT=3,NAME=INPUT(FNUM),STATUS="COLD")}
28. DO 20 K=1,NSAM
29. READ{3,*) (ME{(1)},I=1,LAST}
30. SUM=0.0
31, DO 30 Ki1=1,LAST
32. ERR=AVE(K1}-ME(K1}*SCALE
33. SUM=SUM+ERR*ERR
34, 30 CONTINUE
35, MSE=SUM/NORM#*100.0
36. 1F (MSE .LE. 30.00) THEN
37. COUNT=COUNT+1
38. END IF
39, WRITE{4,*)} X,MSE
40. 20 CONTINUE
41, CLOSE {UNIT=3,DISPOSE='KEEP"')
42. 100 CONTINUE
43. WRITE(4,*) COUNT
44, CLOSE (UNIT=4,DISPOSE="KEEP'}
45, STOP
46. END




B.2 CURVE-FITT PROGRAMS USED IN THE AMDAHL

B.2.1 Program CFIT

1. ;/ Jos ',,,L=5,T=20,1=8"',CLASS=1 -
2. EXEC SASPLOT,OPTIONS='S=80"
3. //SYSIN DD *
4. GOPTIONS DEVICE=XEROX HSIZE=10.75 VSI1ZE=8.25 COLORS=(RED, BLUE}
5. ROTATE;
6. DATA RMS;
7. INPUT T FITEE;
B. K=0.31488;
9. OUTPUT;
10. CARDS;
200. H
201, PROC NLIN
202. DATA=RMS
203. METHOD=DUD;
204. PARMS
205, Ki1=0,01 TO 1.0 BY 0.1;
206. DUM=EXP(-K1%T};
207. MODEL FIT=K*(1~-DUM);
208. OUTPUT OUT=B R=RMSERR P=PREDICT;
209. PROC GPLOT DATA=B;
210. PLOT PREDICT*T FIT*T/OVERLAY;
211, TITLE .C=RED .F=TRIPLEX .H=2 VEN-EMG(C) 65;
212, SYMBOL1 V=PLUS C=BLUE I=SPLINE;
213, SYMBOL2 V=+ C=RED I=SPLINE;
214. FOOTNOTE1 .C=RED .F=DUPLEX .H=0.7 PLUS SIGN = PREDICTED CURVE:
215, FOOTNOTE? .C=RED .F=DUPLEX .H=0.7 CIRCLED PLUS = ACTUAL CURVE;
216, FOOTNOTE3 .C=BLUE .F=DUPLEX .H=1 T= *2mS;
217, /t
218. //S2 EXEC XPLOT
219,




B.2.2 Proqram DFIT

1. // JOB ',,,L=5,T=4M,1=20"',CLASS=1
2. // EXEC SASPLOT,OPTIONS='S=80"
3. //SYSIN DD *
4. GOPTIONS DEVICE=XEROX HSIZE=10.75 VSIZE=8.25 COLORS=(RED,BLUE)-
5. ROTATE;
6. DATA RMS;
7. INPUT T FITGEE;
8. K=0.,10967;
9. OUTPUT;
10. CARDS;
210, - H
220. PROC NLIN
230. BEST=5
240. DATA=RMS
250. METHOD=DUD;
260. PARMS
270. A=-1 TO 1 BY 0.1
280. B=-1 TO 1 BY 0.1;
290, DUM1=EXP{-A*T)};
300. DUM2=EXP{-B*T);
310. DUM3=A~RB;
320. K1=B/DUM3;
330. K2=-A/DUM3;
340. MODEL FIT=Kx {1+K1*DUM1+K2*DUM2);
350. DER.A=-A*KT1*DUM1;
360. DER.B=-B*K2*DUM2;
370. OUTPUT OUT=B R=RMSERR P=PREDICT;
380. PROC GPLOT DATA=B;
390. PLOT PREDICT*T FIT*T/OVERLAY;
400. TITLE .C=RED .F=TRJPLEX .H=2 FKEN-EMG{(D) 11;
410. SYMBOL1 V=PLUS C=BLUE I=SPLINE;
420. SYMBOL2 V=+ C=RED I=SPLINE;
430. FOOTNOTE! .C=RED .F=DUPLEX .H=1 PLUS SIGN = PREDICTED CURVE;
440. FOOTNOTE2 .C=RED .F=DUPLEX .H=1 CIRCLED PLUS = ACTUAL CURVE;
450, FOOTNOTE3 .C=BLUE .F=TRIPLEX .H=1 T= #*2m§;
460, /x
470. //S2 EXEC XPLOT
4B0.




B.2.3 Progqram EDPARK

6. // JosB ‘',,,L=5,T=20,1=8"',CLASS=A

7. EXEC SASPLOT,OPTIONS='5=80"'

8. //SYSIN DD *

9. GOPTIONS DEVICE=XEROX HSIZE=10.75 VSIZE=8.25 COLORS=(RED,BLUE}"

: 10. ROTATE;
i 11, DATA RMS;
e 12. INPUT TAU FITEE;
13. E3=0.05083;
14, ACM=1;
15. OFFSET=0.07210;
16. K=0,43734;
17. ZERO=47;
18. T=60;
19. OUTPUT;
20. CARDS;
600. H
601. PROC NLIN
602, DATA=RMS
603, METHOD=DUD;
604. PARMS
605. A=0.1 TO 2.0 BY 0.1;
606. TAU1=TAU-2ERO;
607. TT1=T-ZERO;
608. NT={K*(1-EXP{-E3*TT1) ) +OFFSET};
609. NTAU=(K#*{1-EXP{-E3+*TAU1) ) +OFFSET);
610. T1=TAUI~TTI;
611, K1=ACM* (A*%3):
612. puMi=(1/{A**3)+ABS{T1}/(A*A)}-T1*T1/A}*EXP(-A*ABS(T1});
613. MODEL FIT=K1+*DUM1*SQRT{NT}*SQRT{NTAU);
614, OUTPUT OUT=B R=RMSERR P=PREDICT;
615. PROC GPLOT DATA=B;
616. PLOT PREDICT*TAU FIT*TAU/OVERLAY;
617. TITLE!1 .C=RED .F=TRIPLEX .H=2 KKEN(1P) ZERO=47;
618. TITLE2 .C=RED .F=DUPLEX .H=2 T=60;
619. LABEL PREDICT='ATUO-CORRELATION';
620. SYMBOL1 V=PLUS C=BLUE I=SPLINE;
621. SYMBOL2 V=+ C=RED I=SPLINE;
622, FOOTNOTE .C=BLUE .F=DUPLEX .H=1.3 T=#*2mS;
623. /+

624. ;/sz EXEC XPLOT

625.
5. JOB *,,,L=5,T=20,1=8"',CLASS=A
6. // EXEC SASPLOT,OPTIONS='S=80'




B.2.4 Program PARK2

1. // Jo0B ',,,L=5,T=20,1=8",CLASS=1
2. // EXEC SASPLOT,OPTIONS='S=80'
7. //SYSIN DD »
8. GOPTIONS DEVICE=XEROX HSIZE=10.75 VSIZE=8.25 COLORS=(RED,BLUE} _
9, ROTATE;
10. DATA RMS;
11, INPUT TAU FIT@@;
12, A1=0.20175;
13. B1=0.20434;
14. ACM=1;
15, OFFSET=0.00823;
16. K=0.11377;
17. ZERO=56;
18. T=154;
19, OUTPUT;
20. CARDS;
550. :
560. PROC NLIN
570. DATA=RMS
580. METHOD=DUD;
590. PARMS
600, A=0.1 T0 2.0 BY 0.1; R
610. TAU1=TAU-ZERO;
620. TT1=T-2ERQ;
630. DUM11=EXP{-A1*TAUT);
640. DUM12=EXP{~-B1*TAU1);
650, DUM21=EXP{-A1*TT1};
660. DUM22=EXP(-B1*TT1);
670. DUM3I=A1-B1;
680. KK1=B1/DUM3;
690. KK2=-A1/DUM3;
700. NT=(K*{1+KK1*DUM11+KK2*DUM12)} +OFFSET) ;
710, NTAU={K* { 1+KK1*DUM2 1+KK2*DUM22 ) +OFFSET};
720. T1=TAU1-TT1;
730. K1=ACM* {A%x%3);
740, MUM1={1/(A**3)+ABS(T1)/(A*A)}-T1*T1/A)*EXP(-A*ABS(T1});
750. MODEL FIT=K1*MUM1*SQRT(NT}*SQRT{(NTAU};
760. OUTPUT OUT=B R=RMSERR P=PREDICT;
770, PROC GPLOT DATA=B;
780, PLOT PREDICT*TAU FIT*TAU/OVERLAY;
790, TITLE .C=RED .F=TRIPLEX .H=2 ANG(2P) ZERO=56;
800. TITLE2 .C=RED .F=TRIPLEX .H=2 T=154;
810, SYMBOL1 V=PLUS C=BLUE I=SPLINE;
820. SYMBOL2 V=+ C=RED I=SPLINE;
B30, LABEL PREDICT='AUTO-CORRELATION';
840, FOOTNOTE .C=RED .F=DUPLEX .H=1 T=+2mS;
B850. /*
B6O, ;/52 EXEC XPLOT
870. //




B'z.s

12.

22,

26.

20

30

10

100
40

Subroutine PLOT

SUBROUTINE PLOT(F,M,N,L}
DIMENSION F(N)
REAL LINE(65)
DATA BLANK,DOT,X/1H ,1H.,1H*/
A=0,
DO 20 K=M,M
B=ABS(F(K}}
IF{B.GT.A} THEN
A=B
P1=K
END IF
CONTINUE
A=0.
DO 30 K=M,N,L
B=ABS{F(K})
IF(B .GT. A} THEN

A=B
P2=X
END IF
CONTINUE
IF {F{P1) .GT. F(P2)) THER
A=F(P1)
F{P2)=A
END IF
A=p/32

Do 10 J=1,65
LINE(J}=BLANK

LINE{33)=DOT

DO 40 J=M,N,L
K=INT(F(J)/A+33)
LINE(K)=X
WRITE(3,100)3,F(J),LINE
FORMAT{1X,I4,F9.5,1%,65A1)
LINE{K}=BLANK
LINE{33)}=DOT

RETURN

END

69




Appendix C
COMPUTATION RESULTS

C.1 ENSEMBLE MEAN OF EXPERIMENTAL STRAIN-GAUGE DATA

Relative Amplitude

Muscle: B - Biceps Brachii
D - Deltoid
F - Rectus Femoris
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(to obtain time in mS multiply by 2.)

- 70 -



3100 1

(B}

o

1800 1

(B)

2770 1

2270

(=]

3200

1700

(B}

2 4

-

(B}

BL

H

L]

1

71

(B)

o

3200

1700

B

o

3100 1

1800

(B}

-

o

2300

{B)

g_

(=]

80



2150 1
1690 1 {D} BL
(F} BL
B50 7
1380 1
1H50 §
8%‘] T H T E
) 20 80 80 850 %, . ;
0 20 80
2340
o 2‘I3O‘l
(F} KN
1840
B30
1340 1 130 1
m_ 830—1 T k)
T T Y T 0 20 80 80
0 20 80 BO
B KEN
{B} ARG 2000 4 (8}
2200 1
1500 1
1700 1
1200'| T m-l T T
1] 20 60 80 o 20 80
3050 1 (BY JJH
2550
2060 : T
0 20 80 100 120




C.2 ENSEMBLE MEAN OF EXPERIMENTAL EMG VARIANCE

Muscle: B - Biceps Brachii
D - Deltoid
F - Rectus Femoris
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C.3 CURVE-FITTED EMG VARIANCE

c.3.1 Curve-fitted Results with Function 62e‘

Experimental
Curve-fit function

Muscle: B - Biceps Brachii
D - Deltoid
F - Rectus Femoris
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o154 (B} A6
b 010
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0 10 20 30
Time

(to obtain time in mS multiply by 2.)
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. . 2
c.3.2 Curve-fitted Results with Function Oe,
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C.4 CURVE-FITTED AUTOCORRELATIONS WITH Ree

c.4.1 Combined with Oe,

~———— Experimental
———— Curve~-fit function

Muscle: B ~ Biceps Brachii
D - Deltoid
F - Rectus Femoris
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(to obtain T  in mS multiply by 2.)

- where t is the time instant(from the defined
starting-point)} at which the autocorrelation

. is calculated.
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C.4.2
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