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Abstract

V/aterlevel dat¿ collected at the site of an emplaced source experiment at the Borden

Tracer-Test site over a period of one and a half years have been analyzú using the least squares

method. The analysis shows that the data is comprised of a trend and an uncorrelated residual

in space. From the trend, time series for the hydraulic head gradient magnitude and the flow

direction are computed. Geostatistical and Fast Fourier Transform methods are then applied to

these time series to determine the variances and the integral scales present in the data. Assuming

that the data are stationary in both space and time, the variance and integral scale data are

combined with the Sta¡ford-Waterloo experiment data and used to evaluate the macroscopic

dispersion theories of Rehfeldt (1988) and Naff (1989). The results obtained from Rehfeldt's

method for spread in the asymptotic transverse horizontal macrodispersivity are quite similar to

the results obtained by several researchers based on field studies [see Freyberg, 1986; and

Rajaram and Gelhar, 19911. The results obtained from Naff s time dependent macrodispersion

model are found to be quite poor when compared with results from field based studies.

In addition, an analysis of the plume moments for the 1978 Borden tracer experiment are

presented. From these moments the solute mass in the plume, the velocity of the centre of mass

of the plume, the dispersivity and dispersion, the skew and the kurtosis of the solute

concentration in the plume are calculated. Examination of the data shows that the plume splits

into two halves each travelling with a different velocity. Due to the relatively poor sampling of

the plume only an analysis of the plume in the lower velocity zone is performed. The computed

results of the location of the centre of mass, the velocity and the dispersivity for the plume in

the low velocity zone are found to be in good agreement with the results of Sudicky et al.

I



(1983). The computed transverse macrodispersivity results are found to be in excellent

agreement with those of Freyberg (1986) and Rajaram and Gelha¡ (1991) for the 1986 Stanford-

Waterloo experiment. The results also show the plume to be positively skewed and platykurtic

at early time, appearing to tend towards a normal distribution at later time. This is in agreement

with the theoretical work of Gelhar et aI. (L979) for perfectly stratihed aquifers.
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3..3. R.eleva¡ace

Groundwater contamination has become an area of concern due to public health

issues (e.g. in cases where the contaminant has been shown to be or is suspected of being

toxic or carcinogenic), environmental issues þarticularly where groundwater discharges

into lakes, streams and wetlands) and economic factors. Concern is greatest in areas

where communities rely on aquifers as their source of drinking water. Contamination of

drinking water supplies in such communities may pose severe health and economic

problems, especially if water has to be imported from distant sources. The sources of

groundwater contamination have been found to vary widely. For example, Guerera

(1981) reports the contamination of groundwater by pesticides, Elder et al. (1981) report

the contamination of groundwater by leachate from a landfill, and O'Connor and

Bouchout (1983) report the contamination of groundwater by gasoline from an

underground storage tank spill. As both the development of new chemical substances and

the demand for disposal sites increases, it is probable that the number of groundwater

contaminated sites will continue to grow.

One alternative in rectifying a contamination problem involves the use of an

appropriate remediation scheme. Adequate and cost effective remediation of a

contaminated site often requires that the problem be properþ modelled. This modelling

is usually performed numerically. Numerical modelling of the migration of contaminants



in the subsurface requires a good understanding of the physics governing the flow of the

various types of contaminants (e.g. miscible and immiscible liquids). Currently, there is

much debate about the fundamentalprocesses governing the transport of these substances.

Much of the debate centres on how to pass from the macroscopic continuum level of a

Representative Elementary Volume (REV) to some appropriaûe freld scale. The REV

gives an indication of the range in a sample volume across which the h'ansport

parameters, such as porosity, are correlated (see Figure 1.1). For example, Gelhar et al.

(1985) point out that much further from a contamination source the spreading of a solute

plume is larger than one would expect based on laboratory measurements of

hydrodynamic dispersionl. The hydrodynamic dispersion is controlled by local

fluctuations in the groundwater velocity which cause mechanical mixing of the

transported solute and molecular diffusion. The local fluctuations in the groundwater

velocity under natural gradient conditions (i.e. in the absence of pumping wells) are

caused, in large part, by the variability of the hydraulic conductivity of the porous

medium. However, it is common practice to quantify hyrodynamic dispersion by a

parameter termed the dispersivity2. As mentioned earlier, theory must be validated by

observations. The use of field data as opposed to laboratory data provides a better

approach to validating theory since the freld data fully incorporates the effects of the

1 The term "hydrodynamic dispersion¡¡ refers to the tendency of
a solute to spread out from the path that it would be expected to
follow based on the bulk average motion of the groundwater flow"

2 The dispersivity is traditionally assumed to be a unigue
property of the geologic medium at a particular scale of continuum
description (Bear | '1972) 
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variability of the hydraulic conductivity field. However, as pointed out by Mackay et al.

(1986), the use of data from known contaminated sites is often not feasible since:

1. It is difficult to quantify the initial mass of contaminant that entered the

groundwater and to locate the contaminant source precisely in time and space;

2. Practical constraints (e.g. cost and time) usually result in relatively sparse

monitoring data for the plume which only allow approximate delineation of

contaminant distribution as a function of space and time.

As a result, carefully conducted field experiments provide the best method for validating

theory and for gaining insight into the behavior of contaminants in the subsurface. Due

to the long duration of these tests þarticularly natural gradient tests) and, environmental

and f,rnancial constraints, large scale field experiments cannot be carried out routinely.

Fortunately, during the last two decades a small number of natural gradient field

experiments have been conducted by various research groups. Among the experimental

sites are the Borden aquifer (Sudicþ et a1., 1983; see also Mackay et al., 1986), the

Columbus Airforce Base site (Rehfeldt, 1988; see also Gelhar et al., 1992) and the Cape

Cod site (LeBlanc et a1., 1991). The aim of these freld experiments was to provide a

detailed data base describing the transport, transformation and fate of a variety of

contaminants in the saturated zone. The results obtained from these experiments have

confirmed that:

1. Dispersivity is influenced by the distance travelled (Sauty, 1980) and increases

with time @ieulin, 1980);

4



2. The dependence of the longitudinal asymptotic macrodispersivity3 on aquifer

heterogeneity (Gelhar and Axness, 1983);

Results obtained from these experiments have also revealed that none of the stochastic

theories of transport based on steady state flow accurately predict solute spread in the

transverse direction. In addition, it is found that the three-dimensional time dependent

moment model of Dagan (1988) over predicts the longitudinal spread and under predicts

the transverse spread (see V/oodbury and Sudicþ, 1991). These issues, and in particular

the former issue, will be discussed in more detail in the following section.

3..2 The Fnohlergs

Application of the stochastic transport theory of Gelhar and Axness (1983) by

Sudicþ (1986) to Stanford-V/aterloo experiment data at the Borden aquifer resulted in

a transverse horizontal asymptotic macrodispersivity4 value of 0.0m. Based on a spatial

moment analysis performed by Freyberg (1986) on actual chloride and bromide plume

data collected as part of the experiment, a value of 0.039m was obtained for the apparent

asymptotic transverse horizontal macrodispersivity. This estimate is supported by the

apparent transverse horizontal asymptotic macrodispersivity value of 0.05m computed as

part of an independent review of the bromide plume data by Rajaram and Gelhar (1991).

3 The term "longitudinal asymptotic macrodispersivitylt refers
to the asymptotic value of the field scale dispersivity along the
mean flow direction.

a The term rrtransverse horizontal asymptotic macrodispersivity!¡
refers to the asymptotic value of the field scale dispersivity Ín
the plane which is perpendicuLar to the mean flow direction"



Application of three-dimensional moment models by Naff (1990), Zhang and Neuman

(1990), and Woodbury and Sudicþ (1991) all produce less than satisfactory results,

particularly in the transverse direction, when compared to the moments computed by

Freyberg (1986) from the tracer plumes. A number of researchers have suggested that

this transverse dispersion, particularly at the Borden site, may in part be due to the

presence of known flow transients (see Sykes et al., 1982; and Sudicþ, 1986). The

stochastic transport theories of Gelhar and Axness (1983) and Dagan (1982, 1984, 1987

and 1988) do not take transients in the flow field into consideration. Kinzelbach and

Ackerer (1986), and Goode and Konikow (1990) have shown from a deterministic

perspective that variations in the groundwater flow direction cause an enhancement of

transverse horizontal dispersion. Sudicþ (1986) suggested that the main features of the

enhanced dispersion caused by flow transients might be handled in a practical way by

incorporating the unsteady flow behavior into a coupled fluid/transport model in which

the macrodispersivities are estimated using steady state flow expressions. In this approach

the stochastic theories of Gelhar and Axness (1983) are used to account for the material

heterogeneity. Rehfeldt (1988) pointed out a number of potential problems with this

approach.

1. The transients can be represented as a stochastic proc€ss in time and a¡e

composed of a number of components of various amplitudes and frequencies. To

model the high frequency components one would have to use a small time step

in say, a classic finite element scheme. A short time step coupled with long

simulation time would yield a computationally intensive exercise.

6



Low frequency components of the transients could be treated as deærministic

while high frequency components could be treated as random. How does one

differentiate the deterministic from the random components in the model?

Does unsteady behavior cause dispersion?

The work of Gelhar and Axness has been extended by Rehfeldt (1988) to account

for the presence of transients in the flow freld. Rehfeldt's work does show that unsteady

flow behavior can result in an enhanced dispersion. However, his work examines only

the asymptotic macrodispersivity, at which time the dispersion process is Fickians.

Under the Fickian assumption the concentration distribution within the plume displays

a normal distribution. To account for spread at pre-asymptotic times, Naff et al. (1989)

proposed a deterministic time-dependent model for predicting the spreading moments

under unsteady flow conditions. Both approaches have been applied to the Stanford-

Waterloo tracer data using crude estimates of the necessary flow field parameters (see

Rehfeldt, 1988;. Naff et a1., 1989). The results obtained using both models are

encouraging; however, it should be noted that the model parameters relating to the flow

transients were chosen on an ad hoc basis for illustrative purposes because detailed

waterlevel data were unavailable at the time.

A further feature of standard modelling practice of contaminant plumes is the use

of a transport model which assumes that the contaminant flux is Fickian and constant.

)

3.

5 The term ¡rFickianrr
mass flux is proportionaL
al" , l-992) "

refers to the case where the dispersive
to the concentration gradienÈ (Gelhar et



Naff (i990), based on a theoretical study of the dispersive flux in saturated porous

media, suggests that this approach is reasonable provided that the prediction of the mean

concentration is at distances from the source equivalent to at least 20 length scales, À of

the hydraulic conductivity. Points separated by a distance less than À will have simila¡

hydraulic conductivities and those separated by a distance greater than À can be expected

to have significantly differing hydraulic conductivities. S/ithin a distance of 20 À from

a source Naff (1990) points out that two deviations from Fickian behavior will occur.

First, the second moments6 of the plume will be overestimated and second, the plume

shlle will be platykurtic (flatter than a normal distribution). Also, the observed skew will

be negative. Based on a theoretical study of macrodispersion in perfectly stratif,red

aquifers Gelha¡ et al. (1979), also found that plumes tend to be platykurtic at early times.

However, Gelhar et aI. (1979) found that the skew at early times was positive and was

an important feature in the deviation of the plume from a normal distribution. This latter

result contradicts the findings of Naff (1990). From a volumetric averaging perspective

Tompson (1988) also showed small positive skews for a transport problem posed at the

local level, and this result supports the theoretical findings of Gelhar et al. (1979). It

should be emphasized that the approaches applied by Gelhar et al. (1979), Tompson

(1988) and Naff (1990) were different. These approaches will be described laær in this

thesis. To date, little work has been done with regards to examining the skew and

kurtosis of plumes for any of the tracer experiments discussed even though adequate data

bases exist for such a study. As a result, the theoretical result of Gelhar et al. (1979) and

6 The term rtsecond. momentr¡
a contaminant plume that had an

refers to second spatial moment of
initial condition of a puJ.se.



Naff (1990) have not been freld validated.

å"3 @hJecttves axad Scope

The first part of this thesis will address the former problem as outlined above.

Specif,rcally, the influence of flow transients on the transverse spread of a plume will be

looked at. W'aterlevel data for the Borden site has been collected during the period July

25,1989 to January 15, 1991. Using least squares methods, the mean spatial hydraulic

gradient at each waterlevel sample period is computed. The hydraulic gradient time series

is used as inputs to the Naff et al. (19S9) model. Using geostatistical methods the

necessary statistical parameters relating to the hydraulic gradient needed for the model

of Rehfeldt (1988) are estimated. Assuming stationarity in time and space, the result

obtained from these two models is compared with the observed asymptotic

macrodispersivity estimates obtained for the Stanford-Waterloo experiment. This

comparison provides a means of determining whether the proposed models explain the

enhanced plume dispersion in the horizontal transverse direction at the Borden site.

In the second part of this thesis the latter problem as outlined in the previous

section is addressed. Specifically, to perform this analysis the concentration data collected

for the 1978 Borden tracer experiment are used. An approach similar to that employed

by Freyberg (1986), and Rajaram and Gelhar (1991) is carried out. Due to truncation of

the plume by the sampling devices and the irregular spacing of these devices, both

interpolation and extrapolation of the concentration data will be required in order to

perform the moment estimates. In this work, the foufh and lower order moments are

9



emphasized. From these moments the solute mass, macrodispersivity, and skew and

kurtosis of the concentration distribution in the plume as a function of time are estimated.

Particular attention will be placed on the following aspects:

I. Sensitivity of the moment estimates to the various interpolation and extralnlation

schemes used;

2. Comparison of the velocity and macrodispersivity estimates to those of Sudicþ

et al. (1983) for this experiment. In addition these values are compared to those

of Freyberg (1986) and Rajaram and Gelhar (1991) for the Stanford-Waterloo

experiment;

3. Comparison of the computed skew and kurtosis with the theoretical results of

Gelha¡ et al. (1979) and Naff (1990).

In addition, the estimated transverse horizontal asymptotic macrodispersivity for

the 1978 Borden tracer experiment is compared to the transverse horizontal asymptotic

macrodispersivity computed for Stanford-Waterloo experiment (see Freþerg, 1986; also

Rajaram and Gelhar, 1991). Note that if the transverse dispersion at both Borden sites

is caused by transients in the flow field then the two transverse horizontal asymptotic

macrodispersivities computed at each site should agree. Therefore, this comparison

provides an estimation as to whether or not the flow freld at the Borden site is stationary

in time.

10
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As part of the overall Stanford-Waterloo tracer experiment, Sudicþ (1986)

applied the stochastic theories of Gelhar and Axness (1983) and Dagan (1986) in order

to predict the dispersion of the injected tracer which had been measured over a three year

period. Based on a geostatistical analysis of the hydraulic conductivity field and field

observed hydraulic gradients, Sudicþ (1986) estimated the asymptotic horizontal

transverse macrodispersivity to be 0.0m and the asymptotic longitudinal

macrodispersivity to be 0.61m, keeping in mind that these values must be augmented by

the corresponding components of the local scale dispersivity. Howeler, a moment

anaiysis performed by Freyberg (1986) on the actual chloride and bromide plume data

collected at the site yielded an asymptotic horizontal transverse macrodispersivity equal

to 0.039m, ffid an asymptotic longitudinal macrodispersivity equal to 0.36m. An

independent re-analysis of the bromide plume data performed by Rajaram and Gelhar

(199i) yieided an asymptotic horizontal transverse macrodispersivity equal to 0.05m, thus

conf,rrming Freyberg's calculaúons. In addition, attempts at applying three-dimensional

moment modeis by Woodbury and Sudicþ (1991), Naff et 41. (1988, 1989), and Zhang

15



and Neuman (1990) all produced less than satisfactory results, particularly in the

transve¡se direction, when compared to the moments computed by Freyberg (1986) from

the h'acer plumes. Sudicþ (1986) suggested that the enhancement to the observed

horizontal transverse dispersion couid be due to the presence of groundwater flow

transients at the site. Sudicþ's conjecture was supported by the earlie¡ work of Sykes

et al. (1982), who suggested that much of the observed horizontal transverse dispersion

at the Borden landfill was caused by a time-varying potentiometric surface. In addition,

Kinzelbach and Ackerer (1986) and Goode and Konikow (1990) havç shown from a

deterministic perspective that variations in the groundwater flow direction cause

enhancement of horizontal transverse dispersion. The presence of such flow transients

are not accounted for in the stochastic models of Dagan t1986 (unpublished manuscript)

and 19881 a¡d Gelhar and Axness (1983).

Recently, Rehfeldt (1988) extended the work of Gelhar and Axness (1983) to

account for the enhanced asymptotic macrodispersivity which results from the presence

of transients in a flow fietd. To account for spread at pre-asymptotic times, Naff et al.

(1989) proposed a deterministic time-dependent model for predicting the spreading

moments at a site where flow transients are observed. Both approaches have been applied

to the Borden tracer test data to model the observed transverse spread using crude

estimates of the necessary flow field parameters (see Rehfeldt, 1988; Naff et al., 1989).

The results of both approaches compare reasonably well to Freyberg's data for the

Borden plume; however, it should be noted that model parameters relating to the flow

transients, in particular those of Naff et al. (1989), were chosen on an ad hoc basis for
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illustrative purposes because detailed waterlevel data were unavailable at the time.

Recent work at the Borden aquifer involving an emplaced source experiment

(Figure 2.1) has resulted in the regular collection of watertable elevation data in a part

of the aquifer for theperiod IuIy 25,1989 to Ianuary 15, 1991. The aim of this thesis

is to use this waterlevel data to investigate whether the models proposed by Rehfeldt

(1988) and Naff et 41. (1989) explain the enhanced plume dispersion in the horizontal

transverse direction at the Borden site. Specifically the approach proposed will be to:

1. Outline which parameters are required by the two models;

2. Use the waterlevel data to obtain the parameters required by the two models and

their relative uncertainties ;

3. Substitute these parameters into the models;

4. Assume stationarity and compare the results of point 3 above to the published

results for the Borden plume.

2.2 Theory

2.2 "T .Asymptotic Á,naÏysís of Hlisgrersiom

Rehfeldt's (1988) approach assumes that the macrodispersive flux is Fickian in

nature. In addition, the hydrogeologic properties along with the concentration of the

solute,the specif,rc discharge, and the hydraulic head a¡e treated as random variables.

These quantities are decomposed into mean components and perturbations about the

mean. The perturbed terms are assumed to have zero expectation. As a result
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c=c(x,t)+ct(xi,t)

Q=Q(x,,t¡*g' @rt)

ln(I()=F+f, F=EUnI{1, ffi=g

ó (x, t) =H (x,t) * H' (x,t) *h(x,t)

"..(2.r)

...Q.2)

...Q.3)

...(2.4)

where c represents the solute concentration, e is the specific discharge and K is the

hydraulic conductivity. In Rehfeldt's approach, ô is the observed hydraulic head, H

represents the slowly varying ensemble mean hydraulic head in space and time, H'is a

temporal perturbation about the mean hydraulic head, and h represents local perturbations

in space and time. Therefore,

H(x,t) =H(x,t) * H | (x,t) ...(2.s)

In the above H(x,t) combines the slowly varying ensemble mean hydraulic head in time

and space as well as the temporal perturbation about the mean hydraulic head. As a

result, H(x,t) represents the ensemble mean hydraulic head in space at any time. The

analysis in this chapter princþally revolves around determining H(x,t,,L,...) over a

discrete set of time samplings t,,tr,.... It will be shown in this chapter that at the Borden

site h(x,t) is uncorrelated in space and time. H(x,t) however, is correlated in time and

it is the statistical properties of this variable that will be shown to princþally control the

spread of the Borden tracer mass in the ho¡izontal transverse direction. The hydraulic

gradient is represented as
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and

aH-
ôx, I

AHt -t_ -,E-"',
¡

of'=+#,s'¡,(o)

...(2.6a)

...(2.6b)

The perturbation J' is assumed to be random in time, but on the local scale (because of

its planar like features) constant in space. Note also J:J+J'.

The approach used by Rehfeldt (1988) to determine an expression for the form

of the component of mac¡odispersivity due to the unsteady mean behaviour of the flow

freld is outlined in Appendix A. The approach is similar in princþle to the small

perturbation method used by Gelhar and Axness (1983). However, Rehfeldt's method

differs from that of Gelhar and Axness (1983) in that it treats the specific discharge

spectrum as being a function of time and space. The method is able to reproduce the

result of Gelhar and Axness (see Gelhar and Axness 1983, equation 62; sæ, also Rehfeldt

1988, equation 2-39) plus an additional term which gives the mean unsteady form of ttre

macrodispersivity (see Appendix A). The unsteady term is reduced to

(2.7)

where 4,,(") represents the unsteady component of the macrodispersivity tensor, Í, is the

mean gradient magnitude in the flow direction, 7 is the flow factor term defined by

Gelhar and Axness (1983), and S,u,(O) is the gradient spectrum evaluated at z¡¿ro

frequency. The unsteadiness in the flow field is contained in the gradient spectrum. By
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making use of the spectra-covariance transform and assuming that the cross- and auto.

covariance functions are exponential in form, the gradient spectrum reduces to

sr¿,(o) =*i'r, \rr,

2

n:i=þ|fi^,,,

...(2.8)

Here o.,uf represents the covariance and \o, represents the correlation or integral scale of

the time variation of J. Finally, the unsteady component of the macrodispersivity tensor

can be expressed as

...(2.e)

Rehfeldt (1988) has shown that equation (2.9) results in an enhanced horizontal

transverse asymptotic macrodispersivity while contributing little to the longitudinal

direction.

In order to apply equation (2.9) to the Borden tracer data, additional assumptions

have been made to reduce equation (2.9) to a more manageable form. Freyberg (1986)

showed that the mean angular offset F lsee Figure 2.2), betwreen the mean gradient

direction and the horizontal trajectory of the tracer plumes is less than 2.. For the

purpose of this analysis we shall then set F equal to zero due to its small magnitude. The

gradient data given by Sudicþ (1986) shows that the maximum angular deviation I-*,

between the horizontal trajectory of the plumes and the maximum gradient deflection is

approximately 9'. Sudicþ (1986) indicates that the vertical gradient at the tracer siæ is
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al(t) = component of hydraulic head paratlel to the mean flow path.
rz(t) = component of hydraulic head perpendicular to the mean flow path.
J(t) = hydraulic head gradient at time t.
x" y = caræsian coordinate axes.
o = rrÌeân flow angle.
r = angle between mean flow direction and the hydraulic gradient.

þ

Figure 2.2. Schematic of the flow field at the Borden site.
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approximately two orders of magnitude smaller than the horizontal gradient. Therefore,

the contribution of the vertical gradient can be considered to be negligible (i.e. Jr:O).

These assumptions along with the small size of |-*, allow equation (2.9) (see also

Rehfeldt (1988), equations 2-53 and 2-62) to be reduced to

2

Ar=+s,;\,

Ag =L9;,)\,
'Y" n

...(2.10)

...(2.11)

where 4,,(u) and Arr(u) give the longitudinal and horizontal transverse asymptotic macro-

dispersivities which result from the mean flow transients and the subscripts J and I

indicate gradient magnitude and flow angle parameters respectively. For the Borden site

the variance and integral scale for both the flow angle and the gradient magnitude data

are unknown parameters which must be determined from observed watertable data.

2 "2 "2 F{armonic-l\4ornent Evolution &4odel

As described above, Rehfeldt's (1988) approach only addressed dispersion

behaviour at asymptotic time and, of course is only valid after a tracer plume has been

effectively averaged over a number of hydraulic conductivity and non-steady gradient

integral scales. The reader should recall that attempts to model the early time behaviour

of Freyberg's (1986) second moment data using approaches such as Dagan's (1988) three

dimensional model, have produced poor results (see Woodbury and Sudicþ, 1991). Naff

et al. (1988) have proposed a deterministic moment model which accounts for an
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unsteâdy mean flow field. However, their model ignores the effects of variations in the

hydraulic conductivity field on the dispersion process. The unsteadiness in the flow field

is represented deterministically as the sum of a series of ha¡monic functions. The most

important harmonics are at the long wavelengths (ow frequencies).

A general form of the velocity equation given by Naff et al. (1989, equation 2)

is

...(2.r2)

where U,(x,Ð is the velocity freld in the i direction, J, is the mean gradient in the x,

direction (along mean flow path), IÇ is the hydraulic conductivity in the i* direction, n

is the porosity and g'(t) represents the unsteady mean behaviour in the iù direction of the

gradient freld. The model requires that g,(t) be expressed as the sum of a series of

harmonic functions. Hence a harmonic analysis on an observed time signal must be

performed to find the wavelengths and amplitudes present in g,(t).

I-et Gt(Ð be the frequency spectrum of g,(t). Then the following relationships,

given by Brigham (1974, chap.2), can be applied

u,çx,t¡=5 þ,,4-r,crl]

s,Ø=i-c,ç¡e^tdf

G(fl=fi(flsi'(fr

...(2.13)

...(2.r4)

where A(f) is the amplitude at frequency f, a(f) is the phase at frequency f, and co is the

angular frequency. Combining (2.I3) and (2.14) gives
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or

g,(t) =i n,r r'r,.',øt df
J

-6

g,(t) =i e,6 1.o, ¡ a:,(t) + u,(flf+ i sin [ø¡(/) * a,(f)]] d.f
J

/v

g*(r)=Ð A^cos(a^t+a^)
m=l

...(2.15a)

...(2.lsb)

...(2.16)

The second integrand in equation (2.15b) is an odd function and hence its contribution

to the integral is zero. Using a discrete representation equation (2.15b) reduces to

where m represents the m" frequency harmonic and N represents the total number of

ha¡monics present. The c¡r- term can be shown to be of the form

...(2.r7)

where Naff et al; (1989) defined k to be the attendant travel length associated with the

mù harmonic and U, as the mean velocity in the x, direction. Equation Q.I6) is similar

in form to the integrand in Naff et al. (1989, equation 6) with the difference being the

addition of a phase shift term.

The displacement X(t) and spatial variance øu of a tracer plume in the iù direction

due to a time-varying flow direction is given by Naff et al. (r9g9) as

a^=2r\..[
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I

X,(t)=8,.q I
t\

o¡¡=t-rir*,Urr' o,
t

JV

I xr,cos(2r\l*a^¡
m=L ¿i!f,

dt
...(2.18)

...(2.re)

where B':(J,IÇ)/(U'n). Equation (2.19) is integrated numerically since X(t) is generally

a complicated function.

As mentioned earlier, the harmonics needed for this model are unknown and must

be determined by conducting a harmonic analysis on the watertable gradient data. For

the puqpose of this work, the interest is in assessing the horizontal transverse spread of

the tracer at the Borden site. As a result it will be necessary to compute the harmonics

present in the a, gradient component (see Figure 2.2).

In the next section a decomposition of the watertable data measured at the Borden

site wiil be performed in order to determine the parameters needed for the proposed

models. The proposed approach will be to:

1. Determine the spatial trend in the waterlevel data;

2. Use the trend information to compute the mean gradient magnitude and the

mean flow direction time series for the data;

3. Perform a geostatistical analysis on the time series computed in point 2 above,

to determine the variance and integral scales present;

4. Compute the harmonics present in the gradient data.
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2"3 Waten[evel Wata Axaaåysås

2"3"î Fiend Ðata

The watertable data used for this study were collected at the site of an emplaced

source experiment conducted in the Borden aquifer from July 25, 1989 to January 15,

1991. The experiment site is located about 150m north of the 1986 tracer test site (Figure

2.1). Piezometers were installed at the site to measure the watertable elevation in the

vicinity of a migrating plume (associated with the emplaced source experiment). Initially

only two piezometers were used, but as the plume evolved, additional piezometers were

installed with the final number increasin g to 34. V/atertable elevations in each piezometer

were recorded on average once a week. Figures 2.3, 2.4 and 2.5 show the watertable

elevation time series recorded by three piezometers (P2, P13 and P24) at the siûe.

The observed watertable elevation time series at each piezometer (Figures 2.3,

2.4 and 2.5) displays a cyclic character, with short wavelength features being

superimposed on a much longer wavelength feature. The period of this long wavelength

feature appears to be between 340 and 370 days at all the piezometers. The maximum

magnitude of the watertable fluctuations is approximately 0.8m. V/hen an observed time

series for individual piezometers located in different parts of the site are compared, an

obvious correlation is apparent. This suggests that the watertable surface at the emplace

source site may be decomposed into simple forms in time and space.

Contour maps of the watertable elevations at each recording time for a portion of

the domain (for example, Figure 2.6 and 2.7) show that the watertable surface is

approximately planar. These maps indicate that the general flow direction is
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predominantly towards the north with the direction rotating eastward for short periods

in response to recharge conditions. This general flow direction is consistent with the

earlier observations of MacFarlane et al. (1983) and Sudicþ (1986) who both described

predominantly north-easterly flows at the site. In addition, the gradient magnitude

fluctuates in time with the highest gradients being observed during the recharge periods.

In the development of Rehfeldt's model, the hydraulic head was assumed to be

planar over the region of interest (Rehfeldt 1988). It is therefore necessary to fust

determine whether the hydraulic head over our area of interest at the Borden aquifer

satishes this criterion and, if so, to determine the necessary coefficients for predicting

the influence of the flow transients on the macrodispersion process.

2"3"2 Trend Surface A,natysis

An examination of the watertable elevation contour maps at different times

indicates that spatial trends over the area are simple in form and can be adequately

represented by a polynomial surface in space of first or second order. For example:

1" O¡der Polynomial Surface

H(x,Y)=mr+mlc+mJ

2od Order Polynomial Surface

H (x,y) =m, + m ir + m ù) +m 
¿x2 

*m sxy * m J 
2

where x and y give the spatial coordinates of

...(2.20)

...(2.21)

piezometers, H(x,y) represents the
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watertable trend surface and nr, gives the model coefficients. Note that the coeff,rcients,

mi, are time dependent.

In each case, the 'data"' and the model parameters are linearly related and the

model coefficients can be estimated by a standard least squares approach, by minimizing

the following functional (I-awson and Hanson, 1974)

P:1d'-Gm)r V-' (d.-Gm¡ ...(2.22)

where

and
E(rl):g

E(rlü):Y

...(2.23a)

...Q.23b).

Here d" is a (p*i) vecto¡ of observed watertable elevations at each time sampling, m is

a (n*1) vector of model coefficients, G is a (p"n) matrix of Kernals, rl is a þ*1) vector

of residuals (d.-Gm) and V is a (pxp) covariance matrix of the residuals. The solution

vector, rn, to equation (2.22) is computed using the Singular Value Decomposition

(SVD) technique (I-awson et al., 1974; see also Woodbury, 1989).

If the covariance matrix is set equal to the identity matrix, then the model

coefficients for the Ordinary l-east Squares (OI-S) surface are obt;ained. The model

coefficients fo¡ the GeneraJizeÅ Least Squares (GI-S) surface are obtained when

correlation among the residuals is present, and V must in princþle be defined as a full

matrix.

As mentioned earlier, equations (2.20) and (2.2I) are possible representations of

the spatial trend in the data at each time sampling. However, it is desirable to determine

the surface which optimally fits the data and therefore the spatial trend. To estimate the
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optimal surface representation for any trends present, model discrimination tests are used.

These discrimination tests are described in the next section.

2 "3.2 "T Model Ðiscrimination T'ests

An over-parameterization test allows one to examine whether the addition of an

independent variable into a model significantly improves the prediction of a model when

the other independent variables of the model are present. In this work both the Partial

F-test (see Kleinbaum et al., chap. 2, L987) and the Akaike Information Criterion (AIC)

(see Hipel, 1981) will be used to perform over-parameterization tests on the OLS models

proposed to represent the trend.

The Partial F-test allows the signif,rcance of an independent variable in a model

to be statistically tested in the presence of the other model parameters. For example, the

signifrcance of the variable x' in the following model (see equation2.24) may be tested.

!@px7r.... rxo\ 
* 

) =z0*atxt+..... +a' x' +E ...(2.24)

The F statistic used to perform the partial F-test is given by (Kleinbaum et al., chap. 2,

1987) as

F(x " lx,xr,...,xo)=
,S^S(x ' lxrÃ2,.,.. J0) (2.2s)

MS residual (x,xr,....,xp,x " )

where
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^s,s(x 
' lx,x2, - fio)=regression ss(xr¡r,.rpï " )-regression ss(x,x.r,. Jo) . -.(2.26)

The F statistic has an F distribution with 1 and n-p-2 degrees of freedom under the null

hypothesis, I{; where n represents the number of observations and p tepresents the

number of parameters in the model. The null hypothesis for this test states: x", does not

signif,rcantly improve the prediction of the model, y, given that x,, xz, . . .. , \ âre already

in the model. The null hypothesis H" is rejected if the computed F exceeds Fr,-oz,r-where

a is a critical value used to define the conhdence limit of the test; for this work the 95%

confidence level will be used, hence o will be set to 0.05.

Like the Partial F-test the AIC method attempts statistically to determine the

optimal set of parameters needed to fit a model. The optimal set of parameters are the

parameters which result in the minimum computed AIC value. The AIC value is

computed using the following expression

AIC=2(L+k) ...(2.27)

where k is the number of independent variables in the model and L is the negative log-

likelihood function given by (see Hoeksema and Kitanidis, 1985)

...(2.28)

where n is the number of data points and X represents the Chi squared distribution. For

the analysis to be performed the AIC value for the full model (i.e. the model with all the

independent va¡iables being present; refer to equation 2.24) wi1l be computed. This value

will then be compared to the AIC value computed for a reduced model (i.e. the model

r=|Wtn{2fl+nrn(f)+vz1
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with the x" independent variable set to zeroi refer to equation 2.24).If the AIC value

computed for the reduced model is less than the AIC value computed for the full model

then the variable x" is not needed in the model since it results in an over-

parameterization.

As pointed out earlier, both the first order OI-S surface and the second order OLS

surface are possible candidates fo¡ the spatial trend present in the data. Therefore, as a

starting estimate for the optimal polynomial surface to represent the trend the second

order OLS surface is used. The signihcance of the second order terms in the model a¡e

then computed using both the AIC and the partial F test techniques described above. The

results of some of these tests are shown in Table 2.1. The table shows that on

2411011990 the smallest AIC value was obtained when the mox2 term was ignored; this

is supported by the partial F test which shows that the mox2 term does not signifrcantly

improve the prediction of the model. In general, both tests showed that the x' and the t'
terms were needed to optimally model the spatial trend present in the data. However,

Rehfeldt's model requires that the spatial trend present in the data be modelled by a

planar surface. Figure 2.8 shows the first order OLS surface super-imposed on the

observed hydraulic head map for the aquifer at the emplaced source site on 0210311990.

From this figure it can be seen that the fust order OLS surface provides a good

representation of the trend present with the deviation between the two surfaces being on

average about 1.0 cm. Likewise, the deviation between the first order OLS surface and

the optimal polynomial trend surface is quite small.

Based on the above observations it appears that the use of the first o¡der OLS

37



?'ahïe 2.3.

Note: " indicates coefficients which fail test at 9594 confidence limit.

Ðate
2d Order Coeflicienfs

F-value T-value
fn4 xn5 rn6

11t0u90 1.788x10-s
0.0
0.0

0.0
5.842xlDa

0.0

0.0
0.0

-5.519x106

1.3297
1.3528
1.8287

-1.1570
o.259t
-t.6321

t3/03t90 -6.180x10'5
0.0
0.0

0.0
1.292x104

0.0

0.0
0.0

-2.99LxLO's

1.27t5
t.2646
1.4513

-0.5855
4.9712
1.0385

r2105190 -2.004x10-5

0.0
0.0

0.0
2.595x10's

0.0

0.0
0.0

-7.832x104

l.o23t
1.0702
1.0138

4.9964
0.3975
-1.6463

t0lo7l90 3.956x10ó
0.0
0.0

0.0
2.496xl0's

0.0

0.0
0.0

-1.678x10'5

1.0091
1.2815
1.9016

0.1301
o.2427

-2.6825',

07 /09190 -3.003x10{
0.0
0.0

0.0
7.722xlÙa

0.0

0.0
0.0

-3.125x106

1.0545
t.3487
r.3328

4.25c6
-0.3066
-1.4622

24lLOl90 -4.884x106
0.0
0.0

0.0
4.083x10ó

0.0

0.0
0.0

{.891x106

1.0790
1.0687
2.6141*

4.3132
4.1218
-2.7458*

30/rU90 -7.619x10{
0.0
0.0

0.0
6.645x10{

0.0

0.0
0.0

-8.632x10{

1.1307
t.t29t
3.8410-

4.4121
-0.1894
-3.0532-

t7 tr2t90 -9.446x104
0.0
0.0

0.0
3.199x10{

0.0

0.0
0.0

{.838x10{

1.1919
1.0558

2.9676-

4.6238
4.0923
-2.8745*
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surface to model the spatial trend present in the data is justified. Therefore, for the

proceeding analysis the frrst order OLS surface will be used to model the spatial trend

present in the data.

2.3"2"2 Generalized fæast Squares Analysis

It is well known (for example Stedinger and Tasker, 1985) that the OLS method

will not identify the optimal parameter estimates of a regression model when the residual

errors are not homoscedastic and independently distributed. In addition, Stedinger and

Tasker (1985) have pointed out that model parameters estimated using the OLS method

can be highly biased. The GI-S method attempts to overcome these problems associated

with the OLS method by allowing the residual field to be cross-correlated as well as

heteroscedastic @raper and Smith, 1981). The GLS method is apptied in this part of the

analysis to determine whether the first-order model parameters can be improved.

Equation (2.22) can be used to apply the GLS method to the Borden watertable

data; however, the application of this equation requires a priori knowledge of the spatial

correlation present in the waterlevel data. For the Borden watertable data, no such

information is available a priori. As an alternative, an iterative approach, similar to the

method outlined by Neuman and facobson (1984) and Loaiciga et al. (1988), is apptied

to determine the covariance structure. The iterative approach may be summarized as

follows:

1. A diagonal matrix of residuals generated from the OLS fit to the data is used

as a starting estimate of the covariance matrix; the diagonal matrix is then used
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to solve equation (2.22) for the model parameters, m,

generated by the updated model parameters are computed;

2. The covariance structure of the residuals is determined by geostatistical

methods;

3. The updated covariance matrix is then used to re-solve equation (2.22).

This iterative procedure is repeated until the covariance matrix converges, so that no

further improvement in the model parameters can be obtained.

The geostatistical analysis mentioned above is performed in two steps. The fust

step involves the computation of the experimental variogram for the residuals described

above. In the second step, the sill (variance), nugget and integral scales are estimated

from the computed variogram and the covariance matrix is computed.

The experimental variogram for the residuals is calculated using the following two

methods: the "classical" semi-variogram (Matheron, 1963) which provides an optimal

estimate of the variogram if the pairs Y(x) and Y(a+h) are bivariate and no¡mal and the

Cressie-Hawkins estimator (Cressie and Hawkins, 1980) which reduces the effects of

outliers on the variogram (see woodbury and Sudicþ ,1991, for comparison).

An exponential model for the covariance structure is initially chosen as it is the

model often assumed by resea¡chers in stochastic hydrology (e.g. Hoeksema et al., 1985;

sudicþ, 1986; Dagan, 1989b; woodbury and Sudicþ, 1991). The terms of the

covariance matrix are computed using equation (2.29),

and the residuals
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...(2.2e)

v/here d is the variance, o"'is the nugget, hu (the lag distance) is the distance between

the points i and j, and \ is the integral scale.

In practise, the above iterative method is difhcult to implement. Journel and

Huijbregts (1978 p. ß$ suggest that the useful part of the variogram is the portion

lhl <LD and n(h) ) 30 pairs, where L is the length of the transect sampled and n(h) is

the number of pairs at lag h. Using a lag distance of 8m and a transect length of 80m

(the longest dimension of our domain) the criteria of Journel and Huijbregts (1978)

produces approximately five lags per data set. It is found that varying the lag distance

does not increase the number of 30 pair lags in the data. Estimation of the variance and

integral scale based on only frve lags is difficult (Figures 2.9,2.10,2.11 and 2.I2) and

may lead to substantial bias. After the first iteration of the GLS method the model

parameters are usually found to be simila¡ to those obtained from the OI-S model.

Furthermore, it is observed that the variance of the residual field is quite small

(approximately 10'5 m'? to 10* m'). This indicates that further iterations may only lead to

small changes in the model parameters. These changes are not considered to be

significant and their contribution to the trend surface will probably be below

measurement error. Therefore it is concluded that the correlation in the residual field is

weak and that the residual f,reld is homoscedastic for the purposes of this work. The fi¡st-

order OLS polynomial surface therefore provides an optimal representation of the spatial

trend present the watertable data. Having determined the optimal polynomial

_ h..
Ci¡=dexp(-;i) *o,ôu
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representation for the trend in the data, each time sampling is represented by a simple

set of spatial coeff,rcients which will be analyzú to yield a mean gradient and flow

direction.

2"3"3 Gnadient and Flow Ðinection Time Senies

As mentioned earlier, the spatial coeffi.cients calculated above are time dependent.

As a result the trend surface equation can be expressed in the following form:

H (x,y,t) =m r(t) +m z(t)x *m 3Q)y ...(2.30)

Partial differentiation of the trend surface equation at each time sampling with respect

to the space coordinates, gives the following gradient time series.

ff@,1,t)=mr{t)

dH.
--=-lX ,J ,t) =l|l.rlt)
ay

...(2.3r)

...(2.32)

Equation (2.3I) gives the east-west time series and equation (2.32) gives the north-south

time series. The gradient-magnitude time series is given by:

VO>l=l*rQ)'**rQ)\" ...Q.33)

47

and the flow direction meåsured clockwise from the north is given by



CI(r)=*¡1-r 

ly¿l ...(2.34)

Figure 2.2 displays the various geometric relationships for the flow field.

The gradient- and flow-direction time series are shown in Figures 2.L3 to 2.16.

Long wavelength periodicities are present in both time series. Superimposed on these

long wavelength periodicities are short wavelength fluctuations. The maximum

amplitudes of the time series occur in the spring while the minimum amplitudes occur

in the autumn, corresponding to the well known recharge cycle at the site.

The north-south gradient component and the total gradient-magnitude time series

a¡e similar in appearance, showing the dominance of the north-south gradient component

at the site. The amplitudes of the short wavelength fluctuations for both these dat¿ sets

are smaller than the amplitude of the long wavelength feature.

The east-west gradient component and flow direction time series are also quiæ

similar in appearance, with the flow direction time series simply being a reflection of the

east-west time series in the horizontal plane. For these two data sets, it is found that the

amplitudes of the short wavelength fluctuations are larger than the amplitude of the long

wavelength feature.

2.4 Geostatüstücal .&raaRysüs of Ttrme Senåes

Rehfeldt's (1988) unsteady analysis requires that the integral scale and the

variance of the gradient magnitude and the flow angle time series be known. To obtain

estimates of these parameters, a geostatistical analysis similar to that described earlier is

48
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caried out on the time series. The variogram methods previously described are enhanced

by the use of the Jackknihng technique (Shafer and Varljen, 1990). This approach allows

conf,rdence limits to be placed around the experimental variogram.

At early times, water level measurements were obtained from only two

piezometers with the numbe¡ increasing to 20 after lI2 days and finally 34 after 539

days when the experiment ended. Watertable trend surfaces computed at early times

using a few piezometers provide relatively poor estimates of the waterlevel trend surface

present since the computed surface may be strongly influenced by the presence of an

anomaly or measurement error at a piezometer. When inco¡porated into the time series,

these poor estimates may bias the estimates of the integral scale and the variance obtained

from the geostatistical analysis. Using the assumption that trend surface estimates based

on 20 or more piezometers are representative of the spatial trend, additional flow angle

and gradient magnitude time series are generated (Figures 2.13 to 2.16). These two time

series are used to examine the effect of the early time data on the integral and variance

estimates.

The experimental variograms of the 4 data sets (the flow direction and the

gradient magnitude time series for the full data set and the flow direction and the gradient

magnitude time series computed described above) are computed using both variogram

estimation techniques, (see Figures 2.Il to 2.24). The variograms appear to be

exponential in form with zero nugget. The two variogram estimation techniques provide

similar results at the 95% confidence level. Hence the choice of variogram technique

does not appear to be important.
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The variograms show the presence of a sill. However the sill estimates for the full

time series and the truncated time series differ (see Figure 2.17 to 2.24). This shows that

the gradient magnitudes and flow angles computed using less than 20 piezometers

influence the variograms.

The parameter estimates for the data sets (i.e. the variances and the inûegral

scales), computed from the classical semi-variograms are shown in Tables 2.2,2.3 and

2.4.In addition, the upper and lower 95% confidence limits computed for the variograms

a¡e used to obtain estimates for these parameters (i.e. the variances and the integral

scales) at the 95% confidence limit. These will later be used to estimate the 95Vo

confidence limits for the asymptotic macrodispersivities.

Table 2"2

Transverse Dispersivity R esults

Components
of Expected

Estimate

Components at
95Vo Conftdence Limiú

Upper Limit X,ower Limit

or' (radians) 0.0166 0.0348 0.003

dør2 (radians) 0.00076 0.00206 0.00004

À. ldays¡ 27.2 23.20 6.8

dÀ. ldays¡ 17.4 14.20 30.0

62



T'able 2.3

T'ransverse ÐispersiviW R esults

(112 --> 539 days)

Table 2.4

Longitudinal Dispersivity Results

Components
of Expected
Estimate

Components at
95Vo Confidence

Limit

{Ipper Limit

ø.t lradians) 0.0146 0.0328

dør' (radians) 0.00089 0.00133

À. ldays¡ 18.44 t8.zo

dÀ, (days) 10.64 7.09

Components of
Expected Estimate

(7 -> 539 days)
data

(112 ->539 days)
data

ør' lradians) 7.OxlA7 1.04x106

dø,' (radians) 4.5x108 2.lxl}-?

À, (days) 65.00 90.00

dtr, (days) 20.00 37.00
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2.5 MaarodËspersio¡r Araalysås

The intention is to apply the watertable data to the dispersion models and then

compare the results to the plume moment data given by Freyberg (1986) for the 1983

Borden tracer plumes (chloride and bromide). This requires that the assumption be made

that the mean flow field at the Borden site is stationary in time. This allows the emplaced

source watertable data to be incorporated into the moment analysis of the 1983 tracer

experiment. Some evidence exists to support this assumption of stationarity. Certain

similarities are evident between the waterlevel data from the emplaced source site and

the data given by MacFarlane et al. (1983) and Sudicky (1986) [see Table 2.5 and

Figures 2.25 and 2.261.

Table 2.5

Watertable Data for the Borden Aquifer

Emplaced Source
Experiment

1989

MacFarlane
et aI"
1983

Sudicky
1986

Range in
Water-table
Fluctuation

(m)

0.8 1.0

Range in
Flow Angle

(degrees)
39 13 74

Minimum
Gradient 3.3x1û' 3.5x1ût 3.6x1ûr

Maximum
Gradient 6.4x1û3 5.4x1O' 5.6x1Os

&
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An examination of Table 2.5 and Figure 2.25 shows that the maximum waterlevel

fluctuations and the maximum and minimum hydraulic gradient magnitudes for the

waterlevel data from the emplaced source site compare well with the observations of

MacFa¡iane et al. (1983) and Sudicþ (1936). However, the deviation in flow angle (39)

for the waterlevel data from the emplaced source site (see Table 2.5) is approximately

three times the values reported by MacFarlane et al. (1983) and Sudicþ (1986). Figure

2.26 shows the flow angle time series for the waterlevel data from the emplaced source

site with a l4'range in flow angle superimposed on it. From this figure it is seen that

the majority of the data points for the waterlevel data from the emplaced source site fall

within the range observed by MacFarlane et al. (1983) and Sudicþ (1986). It is possible

that part of the observed difference between the data f¡om the emplaced source site and

those of MacFarlane et al. (1983) and Sudicþ (1986) is due to differences in sample

density. For this wate¡level data recorded at the emplaced source site the sample density

was approximate one sample period per week compared to approximately one sample per

month for the data set of MacFarlane et al. (1983).

2.5,n ,A.pplication of Geostatistical Results to the .A.symptotic Model

Substitution of the computed gradient magnitude and flow angle varianceS and

integral scales (refer to Tables 2.2,2.3 and 2.4) along with the mean gradient magnitude

( I J I :0.0043), the flow factor (y:1.16149) and the flow velocity @:g.gg1 m/day)

given by Sudicþ (1986) into equations (2.10) and Q.LI) yields the asymproric

macrodispersivity results shown in Table 2.6. Bv replacine the exnected values used fo¡
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the variances and the integral scales in the above calculations with the 95 % confidenæ,

limit values for these parameters (see Table 2.2 and 2.3) estimates for the asymptotic

macrodispersivities at the 95% conftdence limit have been obtained (see Table 2.6).

Table 2.6

Horizontal Tranwerse Macrodispersivity
(m)

Longitudinal Macrodispersivity
(m)

Lower Expected Upper I-ower Expected Upper

7 -539 0.002 0.031 0.054 0.165

rrz - 539 - 0.0 0.017 0.040 0.341

Note: Lower refers to the lower 95% confidence limit.
Upper refers to the upper 95% confidence limit.

In Table 2.6, it can be seen that the computed asymptotic horizontal transverse

macrodispersivity and its associated 95% confidence limits are statistically equivalent to

those of Freyberg (1986) [0.039m], Rehfeldt (1988) [0.013m] and Rajaram and Gelhar

(199i) [0.05m]. The horizontal transverse asymptotic macrodispersivity and its 95%

conf,idence levels for the truncated flow angle time series are also in good agreement with

the values of Freyberg (1986) and Rehfeldt (1988). If the transverse spread of the plume

is assumed to be Fickian (i.e. É:ZDt), then Figure 2.27 shows that the expected

asymptotic horizontal transve¡se macrodispersivity presented in Table 2.6 provides a

good fit to Freyberg's (1986) transverse second moment data beyond 259 days. In

addition, the upper and lower 95% conftdence limits for the asymptotic ho¡izontal

transverse macrodispersivity are found to enclose Freyberg's (i986) transverse second

68
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moment data beyond 259 days quite well.

Estimates for the component due to unsteady flow of the asymptotic longitudinal

macrodispersivity are also shown in Table 2.6. Notice the large unceriainty associated

with these estimates. These results reflect the uncertainty in the variogram estimates. A

more accurate estimate of the variance and integral scale present in the gradient

magnitude time series probably requires a longer time series.

2"5"2 E{armonic AnalysÍs of Eorden l}ata

Before the harmonic model can be used to predict the transverse moment data at

the Borden site the gradient time se¡ies perpendicular to the mean fiow direction (the a,

gradient component, S@ Figure 2.2) must be computed and a harmonic analysis

performed. This latter task is performed using the Fast Fourier Transform (FFÐ method.

The a, gradient time series is computed using the following expression

ar(t)=l(r) I . sinþ1r¡] ...(2.35a)

where

l(r)=ç,(D-ft ...(2.3sb)

where O is the mean flow angle, 0(t) is the flow angle at time t and lJ(t) ! is the mean

gradient magnitude at time t. Figure 2.28 shows the computed a, gradient time series.

The FFT method requires that the sample interval be constant in time.

Unfortunately this not the case for the waterlevel data. The time series data must

therefore be interpolated onto a regular grid. The linear and the natural cubic spline
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interpolation methods (Smith, 1986, p.273) are used to interpolate the data onto a I28

point grid with a sample interval of approximately 4 days. A i28 point grid is chosen for

two reasons. The first reason is that the FFT method requires that the input data set

contain 2o points. Secondly, 128 points result in a sample interval which is greater than

the minimum waterlevel sample interval. Both methods produce similar results with the

major differences being at early times when the waterlevel data spacing is much greater

than the interpolation interval.

In addition to the precautions used to prevent aliasing in the frequency domain

when performing spectral analysis, care must also be taken when interpreting the

amplitudes obtained from spectral analysis. Based on the FFT algorithms which have

been tested (NTLOGN, Robinson) it is found that the FFT method tends to scale the true

amplitudes of a signal by a factor of NPTS/2, where NPTS is the number of points in

the data set. The length of the data set can be increased by the addition of zeros after the

time signal when using the FFT method (I{anasewich, 1981, p.L21). The addition of

zeros increases the resolution in the frequency domain without altering the observed

amplitudes. By using 2" zeros a resolution in the order of 10'cycles/day has been

achieved. Figure 2.29, shows the frequency spectrum of the 4gradient data set, while

Figure 2.30 shows the reconstructed signal compared to the original signal.

2"5"3 .&pplication of F{arrnonics to the Tixne Ðependent Model

The harmonics computed from the a, gradient time series are substituted into

equation (2.18) and the displacement time series, X(t) computed. The value of B used
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is equal to one since the hydraulic conductivity of the aquifer is constant in the horizontal

plane (see Sudicky, 1986). Note that the start time of the displacement time series

(August 1, 1989 or seven days after the start of the emplaced source experiment) and the

start time for the Borden tracer experiment (August 23,1982) are diffe¡ent. By making

the assumption of stationarity, the first 22 days of the displacement time series must be

ignored to obtain the displacement time series for the Borden experiment. If the ext¡a22

days of data are not removed an enhanced spreading moment will be obtained. The

displacement time series is then substituted into equation (2.19) to solve for the temporal

variance in the horizontal transverse direction. The results (Figure 2.31) show that the

ha¡monic method produces a poor fit to Freyberg's horizontal transverse second moment

data.

Naff et al. (1989) obtained a frt to Freyberg's horizontal transverse second

moment data by including a four year harmonic in their model. To test whether the fit

to Freyberg's 2* moment data will be improved by the use of a longer a, time series the

following experiment is performed. Since the assumption has been made that the flow

field is stationary, then it is in principte possible to repeat the time series beyond 539

days using the assumption of a one year period. The extended time series is shown in

Figure 2.32.The frequency spectrum for this time series is shown in Figure 2.33 and the

reconstructed time series based on 15 harmonics is shown in Figure 2.34 along with the

extended time series. The harmonics obtained from the frequency spectrum are inserted

into equation (2.18) and the results then substituted into equation (2.19) and the

horizontal transverse spreading moments computed @gure 2.35). The results show that
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the increased time series slightly improves the f,rt to Freyberg's data; however the fit is

still quite poor.

2.6 Ðiscr.Issiorl amd Comcå¡.rsions

The computation of the macrodispersivity in this paper is based on the assumption

that the flow freld at the Borden site is stationary in both space and time. It is found that

if the geostatistical parameters (variances and integral scales) derived from the 1989

watertable data are used to evaluate the 1983 tracer data, then the asymptotic horizontal

transverse macrodispersivity computed using Rehfeldt's (1983) theory is in statistical

agreement with the asymptotic horizontal transverse moment estimates of Freyberg

(1986) and Rajaram et al. (1991). This indicates that waterlevel fluctuations play an

important role in the spreading of contaminants in the horizontal transverse di¡ection at

the Borden site, and confirms the results of deterministic analyses such as that of Goode

and Konikow (1990).

In applying an altered form of the model of Naff et al. (1989), the assumption of

stationarity in the flow field at the Borden aquifer also has to be made. Again, using the

gradient time series from the 1989 watertable data and predicting plume transverse

second moments, the results obtained using this approach provided a poor fit to

Freyberg's (1986) observed transverse moment data for the plumes at the Borden site.

It is important to compare the results of the Harmonic moment model to

Rehfeldt's asymptotic approach. If the moment model is correct, it should produce a

function that at later times plots near the straight line produced by the dispersivity value
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computed using Rehfeldt's model (see Figure 2.27). The dissimilarity between the two

approaches indicates that the deterministic-harmonic approach does not capture the

essence of the lateral mixing process under time-varying conditions. Therefore, a gap still

exists between early and asymptotic time behaviour. Based on the work in this paper it

does appear that a more general stochastic framework for plume evolution and dispersion

in a heterogeneous media with an unsteady mean flow freld is required.

Finally this work does suggest that flow transients are important contributors to

the horizontal transverse dispersion process. Rehfeldt's model suggests that the observed

dispersion process in an observed plume can be modelled by an enhanced horizontal

dispersivity when flow field transients are present. It is important to note that the

observed gradient variations in time are actually quite small at the Borden site and yet

they account for almost all of the horizontal spreading. It is very common in contaminant

transport modelling efforts to assume steady groundwater velocity. The implications here

are that such models may not be universally applicable and that not only must variations

in hydraulic conductivity be taken into account but also time variations of the hydraulic

heads. This has further implications in site and risk assessment if perhaps years of prior

monitoring at designated sites are required before commissioning.
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Claapten 3

Tåae K97& ffiondere ?.naaer Ðxperåmaerat;

Axaaåysås of tåae Spatåaå &¡foxmeraÉs

3.tr lxrtrod¡.¡cttoxa

During the last two decades a few natural gradient tracer experiments have been

conducted at various field sites. The most discussed of these experiments has been the

Stanford-Waterloo tracer experiment which was conducted at the Borden aquifer (see

Mackay et al., 1986). This experiment involved detailed three-dimensional monitoring

of solutes injected into the aquifer under natural flow conditions. In addition, Sudicþ

(1986), and V/oodbury and Sudicþ (1991) based on the analysis of core samples

provided a detailed characterization of the geostatistical properties of the hydraulic

conductivity freld of the aquifer. Other similar experiments were the 1978 tracer

experiment at the Borden aquifer (see Sudicþ et al., 1918) and the Cape Cod experiment

(see l-eBlanc et al., 1991). The results obtained from these experiments have confirmed

(1.) the earlier results that dispersivity is influenced by the distance travelled (see Sauty,

1980) and increases with time (see Dieulin, 1980); and (2.) the dependence of the

asymptotic longitudinal macrodispersivity on aquifer heterogeneity suggested by Gelhar

and Axness (1983) (see Sudicþ, 1986). In addition, these field experiments have

indicated the presence of horizontal transverse dispersion processes within the aquifers
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which are not accounted for in the stochastic theories of Gelhar and Axness (1983) and

Dagan (1982, 7984, 1987 and 1988). A number of researchers have suggested that the

observed horizontal transverse dispersion may be due to the presence of flow transients

at the sites (see Sykes et al.; 1982 and Sudicþ, 1986). Expressions for the components

of the asymptotic macrodispersivity due to unsteady flow have been developed by

Rehfeldt (1988). These expressions have been field validated by the work of Garabedian

et al. (1991) for the Cape Cod experiment and by Farrell et al. (1992) for the Stanford-

Waterloo experiment.

Spatial moment analyses have been the primary tool for analyzing the evolution

of soiute plumes being transported in the subsurface. Traditionally such analyses have

been limited to the examination of second and lower order moments, and so provide

information on the amount of mass in the plume, the velocity of the centre of mass of

the plume, and the macrodispersivity of the porous medium [see Freyberg (1986), Barry

et al. (1988), Garabedian et al. (1988) and Rajaram and Gelhar (1991)1. In addition to

these low order moments, higher order moments can also be determined to heþ in the

characterization of subsurface plumes. In particular, the third and the fourth moments

allow the skew and the kurtosis (respectively) of the concentration distribution in the

plume to be examine.d. Gelha¡ et al. (1979) and Naff (1990) have examined the evolution

of these higher moments for solute concentration distributions in stratified aquifers using

theoretical approaches. Some differences exist between these two works with regard to

the behavior of the skew. Naff (1990) indicates that the skew of the concentration

distribution in the plume is not pronounced; the observed deviation from a normal
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distribution is the result of the platykurtic nature of the plume at early time. However,

the work of Gelhar et aI. (1979) shows that at early time the skew is significant; the

concentration distribution within the plume being positively skewed. In regards to the

higher moments very little work has been done at any of these tracer sites with respect

to examining their behavior even though large data bases exist.

In this work a reanalysis of the 1978 tracer experiment datz for the Borden site

is performed using moment analysis techniques. In addition to the second and lower

order moments and associated parameters (i.e. mass in solution, velocity of centre of

mass and macrodispersivity) an analysis of the higher moments is also performed in order

to examine the evolution of the skew and the kurtosis of the concentration distribution

within the plume at early time. The results will be compared with the dispersivity and

velocity estimates of Sudicþ et al. (1983) for the plume as well as with the theoretical

moments results of Gelhar etal. (1979) and Naff (1990). In addition, an examination and

partial explanation of the contradiction between the theories of Gelhar et al. (1979) and

Naff (1990) will be attempted.

3"2 Tftaeony

3.2.1, Spatiatr Moments

Freyberg (1986) (see also Aris, 1956) defined the ijkú moment of a concentration

distribution in space, M* as
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dx dy dz

where C(x,y,z,t) is the mass concentration of solute in solution (above background), x,

y and z are the spatial coordinates and n is the porosity of the porous medium. Equation

(3.1) is defined for all space; however, it is clea¡ that the integrand will be zero atpoints

where the plume concentration is zero. Therefore, the spatial moment gives an integrated

measure of the concentration field over the extent of a plume. To determine the plume

properties such as the velocity, dispersivity, skew and kurtosis the zeroú to the fourth

moments are required.

The zeroú moment is obtained when i*j*k:0 in (3.1) [see Freyberg, 1986],

and provides a measure of the mass of solute present in solution. For a conservative

tracer the total mass of solute in solution should remain constant. Hence the zero*

moment will give an indication of how well a plume has been sampled as it moves

through the porous medium. For example, if the mass estimate obtained from the zeroü

moment estimate is small when compared to the injected mass then it suggests that the

plume is poorly sampled at a particular instant.

The first moment is obtained when i+¡+k:l in (3.1) [see Freyberg, 1986].

Normalizing the first moment with respect to the zero* moment gives the location of the

centre of mass of the plume (\,y.,2.).

M,ioQ) = 

I _l _l _"ro,y,z,ùxj 
i zk

* =M'*"M* ^. -Mororc Mm
- -M*,'"-W

(3.X)

(3.e¡

to time

89

Differentiation of the position of the centre of mass of the plume with respect



gives the velocity, U of the centre of mass of the plume.

(3.3)

For the case i *j + k > 2 the moments about the centre of mass may be determined

using (3.a) [see Naffl, equation (5), 1990].

,=l+,+,+)'

MüoT)=lllo*r'0-y,lk-z)k nc(x,y,z,t) dx dy dz (3.4¡

(3.sb)

The higher moments computed using (3.4) are important for characterizing the solute

spread about the centre of mass of the plume and therefore provides an easy way for

computing the dispersivity, skew and the kurtosis.

The second central plume moment is obtained when (3.a) is evaluated with

i+j *k:2 [see Freyberg,1986]. Normalizing the second moments with respect to the

plume mass produces the terms of the spatial covariance tensor.

(3.5a)

f z z z1
loo oxy aol

*=l;* ;o ;-l
L,,l
Lou ory ou|

2 2 Mno 
ê-=],,=Mro, t-=¿,=Mor, (3.Sc)oo=ao=E 

* 
4 4 Mw r. Lr Mffi

The hydrodynamic dispersion tensor, Ð can be obtained f¡om the spatial covariance

-? Mr* 2 M*o
oo= M* oo= 
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tensor using the following equation developed by Einstein (1905).

D..
a

(3.6)

Here Du represents the Üth term of the hydrodynamic dispersion tensor. This expression

applies only when the solute displacement field converges to the Gaussian distribution

(see I-oaiciga, 1988). Bear (1972, p. 764) relates the hydrodynamic dispersion tensor to

the pore water velocity by

Ð=DJ+Alvl (3"7)

Here Do is the molecular diffusion coefficient of the solute in the porous medium; I is

the identity matrix; A is the macrodispersivity tensor un¿ lvl is the magnitude of the

velocity vector. The term Do is usually assumed to be small compared to the second term

at field scale. As a result the terms of the macrodispersivity tensor, A can be defined as

=i*r,u,

(3.8)

Loaiciga (i988) pointed out that if a plume does not approximate a Gaussian distribution

then using (3.8) will result in an inappropriate macrodispersivity estimate. In light of this

argument Freyberg's definition will be adopted (see Freyberg, 1986 and 1988) and the

term "apparent macrodispersivity" used to define values computed by (3.5) in this work.

The third moment about the plume centre of mass is obtained when i*j *k:3 in

(3.4). Normalizing the third moment with respect to the plume mass and the cube of the

standard deviation of the plume concentration gives the skew, ê, in the plume

concentration distribution. Note that the skew is actually a diad of order three. In this

n,=h*;,<,>
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chapter the principal

coordinate system will

skew components along the

be examined. These are given

horizontal axes of the reference

as [see Naffi, 1990, equation (7)]:

, Mt*
0i*=-

a(;)
M* 6å

(3.9a)

(3.9b)

(3"X.Oa)

(3"X0b)

J
ovvy=

Moro

The fourth moment about the plume centre of mass is obtained when i*j *k:4
in (3.a). Normalizing the fourth moment with respect to the plume mass and the square

of the variance gives the kurtosis, aa, of the plume concentration distribution [see (3.10a)

and (3.10b); compare to Naffi, 1990, (7)l

rlr
M* orí

o Mo*
O*=----------

M* ot*

M*,4
üvvyv

Mr ío

As pointed out earlier the aim of this work is to determine the above moments and

related parameters for the 1978 tracer experiment plume. In the following section a

description of the 1978 tracer experime.nt will be presented as well as a discussion of the

methods used in the evaluation of the spatial integrals.
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3.3 T'he Fåeåd ÐaÉa

The field site for the experiment is shown in Figure 3.1. Sudicþ et al. (1983)

describe the aquifer as being made up of glaciofluvial sand deposits, which range in

thickness from 7.0m to 27.0m. The hydraulic conductivity of the aquifer is reporæd to

be between 4.8x10-5 ms-l and 7.6xl0{ ms-l and the porosity of the deposit is estimated

to be 0.38. Also shown in Figure 3.1 is the chloride component of the leachate plume

emanating from the landfrll. Sudicky et al. (1983) report that this chloride plume is

approximately 2.5m below the zone of the tracer experiment. The background chloride

concentration in the area of the tracer experiment is approximately 2.0mg1-t (see Sudicþ

et al., 1983) and as a result it is assumed to be negtigible. Figure 3.2 shows a plan view

of the geometry of the injection wells and the multilevel samplers. The horizontal spacing

of the samplers ranged from 0.5m to 2.0m while the vertical spacing of the samplers

ranged from 0.15m to 0.18m. A more detailed description of the experiment and the

procedures used can be found in Sudicþ et al. (1983). Chloride ions in solution were

injected into the aquifer and allowed to migrate under the natural flow conditions present

at the site. The chloride ion concentration distribution of the resulting plume was sampled

after 1,3, 5,8, 12, L5,2L,29, and 121 days following the start of the experiment.

Figure 3.3 shows the vertical concentration distribution for the sampled part of the plume

after one day. It is interesting to note that the forwa¡d extent of the plume appears to be

staggered, with the plume front intersecting only some of the samplers along row A. The

plume displays significant small scale spatial variability in the vertical plane, with

concentration variations on the order of 300 mg/l being observed between adjacent
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sampler ports. However, the vertical distribution profile does appear quite similar in

shape along row A suggesting some possible large scale structuring in the aquifer.

Sudicþ et al. (i983) attributed this to presence of high conductivity lenses in the aquifer.

In addition, it can be seen from Figure 3.3 that the multilevel samplers truncate the

plume in various places. Rajaram and Gelhar (1991) have shown that if the truncated part

of a plume is ignored the computed moment estimates will be underestimated. To account

for the truncated mass several researchers have devised various extrapolation schemes

to delimit the boundaries of the plume. These various extrapolation schemes will be

discussed in the following sections.

Samples of the time evolution of the plume along lines 3, 5 and 7 are shown in

Figures 3.4,3.5 and 3.6. These figures show that with the passage of time the plume

appears not to approximate a Gaussian type concentration distribution in the vertical

direction. Further, examination of the vertical concentration profile of the plume at the

sampling times presented show that the forward extent of the plume along line 7 appears

to be retarded relative to those along line 3. This feature has also been described by

Sudicky et al. (1983) who concluded that the plume evolved in a region with two

different groundwater velocities. They also conclude that the plume should actually be

considered as two separate plumes, with line 5 being the boundary between the two (see

Sudicþ et al.,1983 Figure 4.c).

3.4 S,let&eodology

As a result of the complex concentration distribution present within the plume,
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the spatial integrations are performed numerically to take advantage of the known

discrete concentration data (see Freyberg, 1986). The layout of the sampling equipment

given by Sudicþ et at. (1983) for the experiment shows the spatial resolution of the data

to be much greater in the vertical direction (0.15m to 0.18m) than in the horizontal plane

(0.5m to 2.0m). Vertically, the sampler poÍs are evenly spaced whereas in the horizontal

plane the data possess variable spacing. The difference in the data structure in the

horizontal plane and the vertical plane requires different integration schemes to be

employed in each plane. Freyberg (1986), Barry et al. (1988) and Rajaram and Gelhar

(1991) have all used a simila¡ approach in the analysis of the Stanford-Waterloo tracer

experiment data which possessed a similar data structure.

In the following section an indepth description of the integration procedures used

in both the vertical and the horizontal planes is presented.

3"4"L Vertical Integration of the Flume

To perform the vertical integration of the concentration plume the upper and

lower limits of the plume in the vertical plane must be determined. The determination

of these limits is an easy task when the plume lies within the limits of a multilevel

sampler bundle. However, in some instances the upper and lower limits of a plume may

extend beyond the extent of a multi-level sampler bundle (i.e. the upper or lower sample

port in the bundle records a non-zero concentration). In such cases, the vertical extent

of the plume must be estimated using an appropriate extrapolation scheme. In this

analysis two linear extrapolation schemes are used to estimate the vertical extent of the
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plume. The flust scheme is described by Rajaram and Gelhar (1991) (see also Garabedian

et aJ., L99I) and assumes that the limits of the plume extend to a distance equal to one

vertical sampler interval from the upper or lower sampler port. The second approach

(Freyberg, 1986) assumes that the limits of the plume extend to a distance equal to two

vertical sampler port spacings from the upper or lower sampler port. The vertical

integration of the plume is given by

C,(x,!J)= C(x,y,z,t) dz (3.Xn)

where C,(x,y,t) represents the vertically integrated concentration; b, and b, are the depths

to the upper and the lower limit of the plume respectively. Since the data in the vertical

plane are evenly spaced the integration defined by (3.11) is performed easily using

trapezoidal quadrature. The vertically integrated concentration is then substituted into

(3.1) and (3.4) to yield

bz

M,juØ= I Ixii nC,(xJ,t) dx dy

MvrtO= 
[-¡-çr-x")t(]-] 

,i nc,(x,!,t) dr dy

(3.xZa)

(3"nzb)

3"4"2 Ë{orízontal lntegration of Éhe Plt¡rne

To perform the integrations described by (3.I2a) and (3.12b), the limits of the

integration in the horizontal plane must be determined. In cases where the vertically
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integrated concentration has reached zero within the sampled domain the limits of

integration are easily determined. However, in some cases the sampler array may

truncate the plume (i.e. samplers on the border of the sampler array record non-zero

concentrations). In such cases the lateral extent of the plume must also be infer¡ed by the

use of an extrapolation scheme. Again, the extrapolation schemes described by Freyberg

(1986) and Rajaram and Gelhar (1991) and outlined above are employed. However, for

this case the average sampler spacing in the ho¡izontal plane must be determined and

used. Later, by examining the amount of mass recovered the effectiveness of the two

extrapolation schemes can be accessed.

Several approaches are available to perform the integration in the horizontal plane

[see Freyberg (1986), Barry et al. (1988) and Garabedian et al. (1991)]. Barry and

Sposito (1990) discussed the results obtained using these various approaches for the

Stanford-V/aterloo tracer experiment. They conclude that the various schemes all produce

similar results. The relative equality in results is borne out by the similar apparent

asymptotic macrodispersivity computed by these groups. The asymptotic

macrodispersivities for the Stanford-V/aterloo experiment obtained by the various

researchers using different numerical schemes are within a factor of two of each other.

For example, Freyberg's estimate of the apparent asymptotic horizontal transverse

macrodispersivity was 0.039m (see Freyberg, 1986) while Rajaram and Gelhar's was

0.050m (see Rajaram and Gelhar, 1991). Woodbury and Sudicþ (1992) have suggested

that the differences between the various approaches is considered small particularly when

the uncertainty in the input parameters is considered. In addition, Farrell et al. (1992)
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(see also chapter 2) have constructed confidence limits for the apparent

macrodispersivities due to unsteady flow at the site. The reader is reminded that the

observed transve¡se spread is believed to be due to flow transients (see Sykes et al.,

1'982; Sudicþ, 1986 and Farrell et a1., 1992). Farrell et al. (1992) (see also chapter 2)

have shown that both Freyberg's estimate and Rajaram and Gelhar's estimate lie within

the computed 95 % confidence intervals suggesting that both estimates are statistically

equivalent.

The integration in the horizontal plane is performed by first interpolating the

computed vertically integrated concentrations onto a regular grid. To accomplish this the

inverse square distance (see Barry et al., 1988) and the kriging inte¡polation schemes are

used. The kriging approach used is based on a linear variogram (see Journel and

Huijbregts , 1978) and the method can be shown to be an exact interpolator at the control

points. However, Barry et al. (1988) have pointed out the following advantages of the

inverse square distance interpolation scheme:

1. The method also performs an exact interpolation;

2. The interpolated value is always bounded between the minimum and maximum

values of the observed data;

3. The method results in a physically plausible two dimensional plume

representation.

The spatial moments are computed by approximating the areal integrations by a nine

node, local fourth order areal quadrature on the regular grid of estimated C"(x,y,t) values

(see Abramowitz and Stegun 1970, equation 25.4.62; see also Freyberg, 1936). The use
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of two different inte¡polation schemes permits the sensitiviry of the moment estimates to

these schemes to be later examined.

In the following the results of the analysis will be divided in two major sections.

An analysis for the entire plume will be presented in the first section while in the second

section an analysis for the part of the plume in the lower hydraulic conductivity zone will

be provided.

3.5 Res¡¡lts

3.5.1 The Vertically Xntegrated Ftume

The vertical concentration profile at each multilevel sampler is extrapolated using

the previously outlined schemes and then vertically integrated [see (3. 1 1)]. The

integration is performed numerically using trapezoidal quadrature. To facilitate

contouring and numerical integration in the horizontal plane the vertically integrated data

is then interpolated onto a regular grid. The interpolation is performed using both

methods previously discussed.

Based on the analysis performed, it is found that the kriging interpolation scheme

produces physically unrealistic (negative) concentration values in some cases. The inverse

square distance method did not generate such values. In addition, it is found that the

spatial concentration patterns produced using the kriging inte¡polation scheme display

considerable smoothing (see Figure 3.7). This degree of smoothing displayed seems

unrealistic in view of the complex nature of the hydraulic conductivity freld present in

aquifers. In comparison, the spatial patterns generated by the inverse square distance
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approach produce much less smoothing, and qualitatively at least, appear much more

re¿listic (see Figures 3.8 and 3.9). As a result the inve¡se square distance approach is

the interpolation method of choice.

The contour maps of the vertically integrated concentration shown in Figures 3.7,

3.8 and 3.9 also show that the plume becomes increasingly distorted with time, with the

northern section of the plume migrating at a much faster rate than the southern section.

Sudicky et al. (1983) have attributed this behaviour to the plume migrating in two

separate zones with different average hydraulic conductivities. The change in the shape

of the plume indicates that the boundary between the two zones appears to be quite

abrupt and runs parallel to the x-axis of the field coordinate system, with the northern

zone having the higher hydraulic conductivity. Based on these figures it appears that the

line separating the two hydraulic conductivity zones is about y:6.5m in the field

coordinate system.

3"5.2 Full Flume A.naXysis

3.5.2.1 Recovered Mass Estimates

The recovered mass estimates obtained for the entire plume using the different

interpolation schemes þut identical extrapolation schemes Freyberg (1986) scheme usedl

are shown in Tables 3.1 and 3.2. Comparison of these two tables shows that the

recovered mass estimates are quite similar, with the maximum variation between the

estimates being 7.0g on day twelve. This suggests that the recovered mass estimates are

quite insensitive to the interpolation scheme used. When the different extrapolation
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schemes are used with identical interpolation schemes (inverse squate distance method

used) it is found that signif,rcantly different recovered mass estimates are obtained (see

Tables 3.2 and 3.3). The Freyberg (1986) extrapolation scheme is found to produce

recovered mass estimates which significantly exceed those obtained using the Rajaram

and Gelhar (1991) extrapolation scheme. For example, the recovered mass estimate on

day twelve using Freyberg's extrapolation scheme is 557.09 (see Table 3.2) compared

to 451.7g (see Table 3.3) obtained using the Rajaram and Gelhar (1991) scheme for the

same time - an increase of 123.3 %. Therefore it is apparent that the recove¡ed mass

estimates are sensitive to the extrapolation scheme used. Since the recovered mass

estimates produced by the Rajaram and Gelhar (1991) extrapolation scheme a¡e in better

agreement with the injected mass (396.39) it will be used as the extrapolation method of

choice in this paper.

Tables 3.7,3.2, and 3.3 also show that the recovered mass estimates have

considerable variability, with the recovered mass estimates at early times being

considerably smaller than the estimated injected mass (396.3g). This variability in the

recovered mass estimate is directly related to the number of ports which sample the

plume. At early and late times the plume is sampled by only a few of the ports in the

array and this results in the low mass estimates. At more intermediate times @articularly

days 8, 12 and 15) the mass estimates are more consistent indicating that the plume is

being well sampled.
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3"5"2"2 Motion of the Centre of Mass and Flume Velocity Estimates

The location of the centre of mass of the plume is obtained from the zeroth and

first moment estimates using (3.2). The results of the centre of mass analysis for the

entire plume using the Rajaram and Gelha¡ extrapolation scheme and the inverse square

distance interpolation scheme are shown in the eighth and ninth columns of Table 3.3.

The motion of the centre of mass for the entire plume both as a function of space is

shown in Figure (3.10). The figure shows that the motion of the centre of mass for the

entire plume appears to be displaced from the origin of the local coordinate sysûem at

early time (the local coordinate system is designed so that the origin lies at (0,7.0) of the

field coordinate system) even though considerable care was taken to ensure that the local

coordinate system was located at the centre of the injection well array. This observed

behaviour is probably a result of the poor sampling of the plume at early times (see also

Sudicþ et al. 1983, Figure 4a and 4b). The mean velocity of the centre of mass of the

plume estimated from ordinary least squares fits to the data is 8.70x10-'ms-'. This

velocity estimate is biased because of the poor sampling of the plume and as a result

should be considered crude. As pointed out, at early and late times mass estimates for

the entire plume are low due to incomplete sampling of the plume. If recovered mass

estimates below 70% and above 130% are ignored (see Figure 3.11), the estimate of the

mean velocity of the plume centre of mass is 9.69x10' ms''.

3.5.3.3 Second Moment, Spatial Covariance and Macrodispersivity Estimates

The second moment estimates and the terms of the spatial covariance tensor

tt4
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[computed using (3.5b) and (3.5c)] in the field coordinate system for the entire plume

computed using the Rajaram and Gelhar extrapolation scheme and the inverse square

distance interpolation scheme are presented in Table 3.3.

The terms of the macrodispersivity tensor are usually defined with respect to the

longitudinal and transverse directions whe¡e the longitudinal direction refers to the

direction of the mean horizontal trajectory of the centre of mass of the plume (see

Freyberg, 1986). To facilitate this def,rnition the components of the spatial cova¡iance

tensor must be given in a coordinate system oriented in this way, where the x' coordinate

axis parallels the linear horizontal trajectory of the plume and the y' coordinate axis is

perpendicular to the trajectory (see Figure 3.\2). Therefore, a rotation of the terms of

the spatial covariance tensor defined in the field coordinate system is required. This

rotation is given by the following matrix

and the

^= 
[ .oró -sino] (3.13)

I sinþ cosþ I

spatial covariance terms in the rotated coordinate system are given by

=RT (3.n4)

where { is the angle between the x-axis of the field coordinate system and the mean flow

direction of the plume and the primed terms represent the terms of the spatial cova¡iance

tensor in the rotated coordinate system. Note that the angle ó is defined as positive when

measured in the counter-clockwise direction.
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Ar'lrrl mean flow
dir e ct ion
,f
X

¿

longitudinal axis
of plume

plume

Figure 3.12 Scheme diagram showing the plume orientation with respect to the field
coordinate system and the rotated coordinate system.
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As described earlier, the entire plume is migrating in a medium which has two

distinct average hydraulic conductivities. Since the design of the sampler array does not

take this into consideration the entire plume is poorly sampled at early and late times.

The component of the plume in the higher hydraulic conductivify zone is well sampled

at early times but poorly sampled at later times, while the component of the plume in the

lowe¡ hydraulic conductivity zone is poorly sampled at early times but well sampled at

later times. This poor sampling of the entire plume results in the computed centre of

mass of the plume having a complex trajectory (see Figures 3.10 and 3.11). As a result,

it is difhcult to determine whether computed rotation angles based on Figures 3.10 and

3.11 are meaningful. It is also difficult to determine whether the macrodispersivity

parameter is meaningful when the concentration distribution of the plume is non-Gaussian

(recall the plume appears to split into two). As a result, analyses of the second and

higher moments for the entire plume are not performed. Instead, attention is focussed on

the component of the plume in the lower hydraulic conductivity zone.

3.5.3 Flume in Lower F{ydraulic Conductivity Øome

Contour maps of the vertically integrated plume in the lowe¡ hydraulic

conductivity zone are shown in Figure 3.13. The figure shows that theplume migrates

in a direction which is almost parallel to the X-axis of the field coordinate system. This

suggests that the terms of the spatial covariance tensor will require very little, if any,

rotation to align them to the mean displacement direction of the plume. The figure also

shows that the plume in this zone attains an approximate Gaussian concentration

119



ø
.

7.
ø

ø

é.
68

D
aY

=
5

ø
.é

z 
1.

ø
1 

r.
<

6 
r.

87
 

2-
æ

 
2.

a1
æ

É e 
8.

76
>

{

6.
3a

4.
92

{,
E

i ø
.

ø
.6

?

ø
.

7.
ø

ø

é.
E

B

æ
ø

.6
2 

1.
ø

4 
i.a

6

3.
É

¡

E
I

-7
-@

1.
87

 
2.

æ

x 
(m

)

D
ay

=
21

t,a
a 

2.
Ð

 
2.

71

6.
33

4.
92

ó.
æ

6,
Æ

6,
34

4-
n

4.
8ø

 
¿

ø
.tu

ó.
æ

É v 
5.

Æ

Þ
{

3,
12

a!
=

12

ø
.&

 
1.

ø
1 

I 
,a

Ë
 

1.
97

 
?.

4 
2.

71

ø
.&

| 
/4

€.
_-

--
'-\

 
\2

o\
/ 

^<
,-

;-
--

\ 
\\

/N
IB

ì
w

)il
t 

I
.\Ë

zz
þ

\ 
\_

--
--

l_
æ

/

f.É
a

F
ig

ur
e 

3.
13

 V
er

tic
al

ly
 i

nt
eg

ra
te

d 
pl

um
e 

in
 th

e 
lo

w
er

 h
yd

ra
ul

ic
 c

on
du

ct
iv

ity
 z

on
e.

F t\, o

3.
12

 
3.

6{

1 
-ø

4 
r.

 a
9 

i,9
7 

2-
æ

 
2.

71
 

a-
12

 
f.6

a

X
 (

m
)

J 
{.

E
r

6.
 3

3

4.
n

1.
% ø

.

3.
%

- 
7.

ø
ø

<
-)

ó.
 É

g

6,
75

8.
33

4 
.9

2

?ø
ø

.6
2

ø
.æ

7-
Ø

 
-

3,
i?

a.
æ

3.
 E

a

- 
6.

76
¡

J 
<

.6
ø

3.
%

- 
7,

ø
ø

1,
e7

 
2.

29

X
 (

m
)

D
ay

-2
9

1.
87

 
2-

29

9.
33

4.
2

ó.
58

6.
 7

6

4.
?2

4-
@

 
¿

ø
.æ

2.
71

 
3.

12
 

a.
E

4

3.
54

J 
<

,6
ø

3.
%

3.
96

-4
.ø

ø ó.
Ë

s

8.
76

8.
33

4 
.9

2

r 
1.

Ë
ø

3.
%



distribution.

3.5.3"L R.ecovered Mass Estimates

In order to determine the percentage mass recovered in the lower hydraulic

conductivity zone, the mass of the injected chloride into this zone must fust be estimated.

An assumption is made here that there was negligible movement of tracer mass across

the interface separating the two hydraulic conductivity zones. Such an assumption is

justifred if the plume mass moves parallel to the interface so that the transfer of mass

across the interface can occur only as a result of transverse dispersion and diffusion. The

mass of chloride injected into the lower hydraulic conductivity zone (159.09) is taken as

the sum of the mass injected at wells IW4 and IW5. The zeroth moments for the plume

in the lower hydraulic conductivity zone are computed using the approach outlined

previously and are shown in the second column of Table 3.4. Using a value of 159.09

for the injected mass in the lower hydraulic conductivity zone the highest recovered mass

estimate is 139% greater than the injected mass (see Table 3.4). This occurs on sample

day I2l when the plume was poorly sampled and as a result is questionable. Overall, the

results suggest that the assumption of negligible interaction between the two zones is

reasonable.

3.5.3.2 Motion of Centre of Mass and Fhrme Velocity Estimates

The centre of mass of the plume in the lower hydraulic conductivity zone is

computed. Figure 3.14 shows the motion of the centre of mass as a function of space.

Here, the origin of the local coordinate system is located at (0, 5.875) of the field
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coordinate system. The centre of mass of this plume has a linear motion. The mean

velocity of the centre of mass of this plume estimated from a flust order ordinary least

squares frt to the data is 9.38x10'' ms-' (see Table 3.5). If recovered mass estimates below

70% and above 130% are ignored the estimate of the mean velocity of the centre of mass

of the plume is 7.31x1û'ms-' (see Figure 3.15 and Table 3.5). These velocity estimates

are found to be in good agreement with the velocity estimate of 8.2x1O' ms' obtained

by Sudicþ er al. (1983) for rhis zone.

Table 3.5

Estimated plume velocity for the X.978 tracer experiment

þlume in low hydraulic conductivity zone)

Note: Reduced data refers to the data set containing recovered mass estimates between
70% and 130% of the injected mass.

3.5.3"3 Second moments, Spatial Covariance and S,Iacrodispersivity Estimates

The second order moments and the spatial covariance tensor in the field

coordinate system are computed. The rotation angle though which the terms of the spatial

Full Data
Reduced Data

v,
(û/Ð 9.49x1ù' 7.29x1ù7

v,
(m/s) -3.47x10" -5.79x10"

tvl
(m/s) 9.50xlt' 7.3lxlù7
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covariance must be rotated, is computed by frtting a first order ordinary least squares line

to the centre of mass data (see Figures 3.14 and 3.15). The angle of rotation for this

plume is found to be -2.078" when all the data is used and -4.574" when only the data

which represents 70% to 130 % of the injected mass are used. These values are

reasonable in view of the fact that the motion of the plume in the lower hydraulic

conductivity is approximately linear and the entire plume is, in general, well sampled in

this zone. Equations (3.13) and (3.14) are used to rotate the terms of the covariance

tensor. The rotated covariance values are listed in Table 3.6. It is found that the rotation

changes the values very little and as a result it appears that in this case the rotation not

necessary.

Table 3.6a

Second Moments for Field and Rotated Coordinate Systems

þlume in low velocity medium)

Angle of rotation:-2.078 (measures anticlockwise from the X-axis)
Note: 6,r:on aútd 6o:ûr*.

Ðay .a\ o4 on oß ow úw

3 o.047 -0.003 0.211 0.047 -0.008 o.ztt

5 0.061 -0.010 0.250 0.062 4.017 0.249

8 0.099 -0.012 0.2t5 0.100 4.016 0.2L4

t2 0.159 o.o74 o.194 0.154 0.073 0.199

15 0.198 4.026 0.220 0.200 -0.027 0.218

zt 0.456 4.024 0.255 0.457 -0.017 o.254

29 0.536 -0.063 0.269 0.540 -0.053 0.264

t2t 2.771 0.043 0.769 2.765 0.115 0.775
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Table 3.6b

Second Moments for Field and Rotated Coorclinate Systems

(plume in low velocity medium)

Angle of rotation:-4.574 (measures anti-clockwise from the X axis).
Note: 6*r:oy, and 6rr:6r*.

Stochastic theories of dispersion (see Dagan, 1982, 1984,1987 and 1988) and

field studies such as the Stanford-V/aterloo experiment have shown that macrodispersivity

initially increases with time before reaching asymptotic values (Freyberg, 1986). Table

3.7 shows the macrodispersivity computed as a function of time using a pseudo sequential

calibration approach [see (15a) and (15b); see also Freyberg, 1986].

A . !t\= L o'''lt)-o'rd3)
xx\' zlul t-3

A . !t\= | orr{t)-orr'{3)
YY " 2lul t-3

(3.15a)

(3.lsb)

Ðay o^ oq of, (r\ øry qw

3 0.047 -0.003 0.2L1 0.049 -0.016 o.249

5 0.061 -0.010 o.250 0.064 -0.025 o.247

8 0.099 -0.012 0.2t5 0.102 4.02I 0.2t2

12 0.159 0.074 0.r94 o.L47 0.070 0.206

15 0.198 4.026 0.220 0.202 4.027 0.21,6

2L 0.456 -0.024 0.255 0.458 -0.008 0.252

29 0.536 -0.063 0.269 o5M 4.041 0.260

t2L 2.77t 0.043 o.769 2.765 o.tL7 o.775
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T'able 3.7

T'ime ï)ependent Ïlispersivity Estimates f'or

the 1978 T'racen ENperinnent

þlume in low hydraulic conductivify zone)

Period

(Day)

Longitudinal
Ðispersivity (Á,)

(m)

Tra¡rsverse
Dispersivity (4")

(m)

5 0.059 0.150

8 0.084 0.005

t2 0.086 4.003

15 0.101 -0.005

2t 0.180 0.019

29 0.151 0.0r6

121 0.181 o.oM

Note: Values computed using data in Table 3.6b

The results show some that the macrodispersivity appears to fluctuate with time with the

macrodispersivity appearing to be negative at some times in the transverse direction. This

fluctuation indicates that the plume is being strongly influenced by the heterogeneity in

the medium. However, the general trend in the data indicates that the macrodispersivity

in both the longitudinal and transverse directions inc¡eases with time. Due to the short

length of the time series and the poor sampling of the plume particutarly at later times

it is impossible to determine the asymptotic limits for the dispersivity in the longitudinal

and transverse directions using this approach. Approximate estimates for the components

of the apparent asymptotic macrodispersivity in the longitudinal and transverse directions
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are computed by performing first order ordinary least squares fits to the spatial

cova¡iance data in the longitudinal and transverse directions (see Figures 3.16 to 3.19).

This allows the slope of the spatial covariance as a function of time to be estimated. The

longitudinal and transverse terms of the apparent asymptotic macrodispersivity are then

calculated according to (3.8). These estimates of the apparent asymptotic

macrodispersivity for the plume in the lower hydraulic conductivity zone are shown in

Table 3.8. It must be pointed out that although the terms of the covariance tensor

increase with time it is difficult to determine (due to the short length of the data) whether

asymptotic limits have been reached.

Table 3.8

Ðispersion and Ðispersivity Estimates for

the L978 Tracer Experiment

(plume in lower hydraulic conductivity zone)

The results show that the apparent asymptotic horizontal transverse

macrodispersivity is found to be between 0.027m and 0.029m. These values are almost

Longitudinal
Dispersivity

(m)

[.ongitudinal
Dispersion

(m'/s)

Transverse
Dispersivity

(m)

Transverse
Ðispersion

(m'/s)

Full plume 0.143 1.36x1û7 o.029 2.78x108

Reduced
data

0.160 1.17x10-? o.027 1.94x10{
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identical to the value of 0.030m found by Sudicþ et al. (see Table III, 1983). Sudicþ

et al. (1983) determined the dispersivity parameters by comparing the concentration

profiles produced by the Carslaw and Jaeger (1959) 3D analytic model to observed

longitudinal concentration profiles. The dispersivity parameters used in the model are

continuously updated until a good fit is obtained between the observed concentration

profile and the computed profile. These values also compare well to the apparent

asymptotic horizontal transverse macrodispersivity value of 0.039m determined by

Freyberg (1986) for the Stanford-V/aterloo tracer experiment at the Borden site and are

also found to agree with the value of 0.030m determined by Farrell et al. (1992) (see

chapter 2) based on the unsteady stochastic transpoft theory of Rehfeldt (19gg). This

latter approach is based on consideration of the hydraulic gradient fluctuations at the site.

The computed value for the apparent asymptotic longitudinal macrodispersivity

for the site is found to be between 0.143m and 0.160m (see Table 3.8). These values are

higher than the possible asymptotic longitudinal macrodispersivity value of 0.08m found

by Sudicky et al. (see Table III, 1983). Gelhar et al. (Igg2) reporr that a moment

analysis performed by them on the 1978 tracer data has produced a longitudinal

macrodispersivity which is 2-4 times that given by Sudicþ et al. (1983). This value is

consistent with the estimates determined in this wo¡k. In addition, Gelhar et al. (1992)

point out that in the near source region where dispersivities are increasing with

displacement the approach used by Sudicþ et al. (1983) will tend to underestimate the

magnitude of the dispersivity since such an analysis only examines localized spread (i.e.

spread along a transect of the plume) and not the spread over the entire plume. The
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apparent asymptotic longitudinal macrodispersivity values calculated in this work are also

lower than the apparent asymptotic longitudinal macrodispersivity value of 0.36m

reported by Freyberg (1986) for the Stanford-V/aterloo tracer experiment. This difference

may be attributed to the difference in the scale of the two experiments. It may be argued

that since the Stanford-Waterloo experiment was conducted over a much longer time

period than the 1978 tracer experiment (3 years for the former compared to 4 months for

the latter) it was able to fully interact \#ith the heterogeneity present in the aquifer. The

solute associated with the 1978 experiment may not have fully interacted with the

heterogeneity in the aquifer and as a result the observed longitudinal dispersivity would

be less than the asymptotic value.

3.5.3.3 Third Moment and Skew Estimates

The third moment estimates for the plume in the lower hydraulic conductivity

zone have been computed using the inverse square distance interpolation scheme and the

extrapolation scheme described by Rajaram and Gelhar (1991). The third moments and

the computed skew in the plume concentration distribution for both the longitudinal and

the transverse direction at the various sample times are shown in Table 3.9.

A plot of the skew results (see Figure 3.20) shows that in the longitudinal

direction the skew fluctuates and is greater than zero at early times. However, at the 121

day sample time the skew is found to be negative. An examination of the longitudinal

concentration profile for the plume given by Sudicky et al. (Figure 3.10, 1983) also

shows positive skew at early time. As pointed out earlier, Gelhar et al. (1979) have
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derived expression for the skew of the concentration distribution of a plume in perfectly

Table 3.9

Computed Skew fon the Fl¡rrne ïn the

l,ow Velocity Zone

Time
(days)

Skew

I-ongitudinal
direction

Transverse
direction

3 0.101 4.407

5 0.537 -0.385

8 0.631 4.076

T2 0.919 4.O97

15 0.722 4.t34

2t 0.710 {.158

29 0.633 -0.106

121 -o.602 4.I73

stratified aquifer in which the flow is unidirectional and parallel to the stratification.

Their approach treats the variability of hydrologic phenomena as a stochastic process and

assumes that the variations in the hydraulic conductivity and the concentration are

statistically homogeneous. In addition, the approach explicitly accounts for the.local

dispersivity. their thegretical results show that at early times the skew in the

concentration distribution is positive but quickly tends to zero at later times. This

supports the early time finding obtained in this work but contradicts the late time finding.

However, the late time results (i.e. in particular our 121 day result) obtained in this work
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may be considered questionable due to the poor sampling of the plume at this time. Naff

(1990) also examine spreading in a heterogeneous aquifer. In his analysis the variability

of hydrologic processes are considered as stochastic processes; however the variations

in the hydraulic conductivity and the concentration are not restricted to being statistically

homogeneous. From his work Naff (1990) defines a term called the skew factor, Bu

which has the following properties:

1. daB,

2. B,(0 fo¡ t( æi

3. B":0 for t: æ (normal distribution)

(see Figure 3.21; note that r in the figure represents dimensionless time).

The skew factor is supposed to reflect the behavior of the skew of a concentration

distribution at all time. However, since the theory (Naff, 1990) neglects local

dispersivity, the skew factor may not adequately represent the skew in the concentration

distribution at early time when such effects are important. Comparison of the theoretical

behavior of the skew factor to the observed skew in the concentration distribution in the

longitudinal direction shows poor agreement at early time. Since Naff s (see Naff, 1990)

approach ignores the effects of local dispersion at early times it can be argued that the

results show the importance of the local dispersivity in the evolution of the plume at early

time. The computed skew in the concentration distribution in the transverse direction is

negative at all time. However, the skew is quite small and may be considered negligible;

hence the concentration distribution in this direction can be considered to be normal.

138



A, (t)

100 00

L000

100

0.0 1

0.00 1

t0

kurtosis /*

varlance

/*

skew

Ð

D (t)
S

I

-1

ts, (r)
-2

0.1

0.0001 Ð

0.01 0.1 1 10 100 1000

Figure 3.21 Plot of normalized vanance, skewness, and kurtosis for large stratification
as functions of dimensionless time (after Naff, 1990).
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3.5.3.4 Fourth Mornent and Kurtosis Estimates

The kurtosis is a property which is used to describe whether a symmetric distribution is

sharper or flatter than a normal distribution. The computed kurtosis values in the

longitudinal direction and the transverse direction at each sample time are shown in Tabte

3.10.

Table 3.10

Computed Kurtosis for the Plume in the

Low Velocity Zone

As with the skew, the kurtosis in the longitudinal direction shows considerable fluctuation

at early time (see Figure 3.22). For example after 3 days, the kurtosis value is found to

be 2.442, indicating that the plume is flatter than the normal distribution (i.e.

platykurtic). However, after 5 days the kurtosis value has changed to 3.587, indicating

Time
(days)

Kurtosis

Longitudinal
direction

Tra¡uverse
dÍrection

3 2.M2 2.638

5 3.587 2.388

8 3.237 2.444

L2 4.395 2.453

15 3.541 2.412

2T 3.376 2.237

29 2.822 2.t54

t2L 2.589 2.612
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that the concentration distribution is sharper than the normal distribution. Gelhar et al.

(L979) point out that the kurtosis at later times should be < 3 and that this "non-normaln

kurtosis should persist quite far down stream. This is somewhat consistent with the

findings in this work for the concentration distribution between 29 and L2I days (see

Table3.10)andthelongitudinalprofilegivenbySudicþetal. (Figure3.11, 1983).Naff

(1990) describes a parameter called the kurtosis factor, D, which reflects the behavio¡

of the kurtosis. The kurtosis factor has the following properties:

1. ø4 o. D,

2. D,<3 for t( oo;

3. D,:3 for t:co (normal distribution)

(see also Figure 21).

At early times the kurtosis factor may not provide an accurate representation of the

kurtosis since the theory neglects local dispersivity effects. Comparison of the kurtosis

factor and the observed kurtosis in the longitudinal direction shows little agreement, with

the computed kurtosis indicating that the concentration profile is sha4rer than the normal

distribution. The computed kurtosis is reflected by the observed concentration profiles

given by Sudicky et al. (Figure 3.10, 1983) whichindicate that the observed

concentration profiles are sharper than the normal distribution. At 121 days the

longitudinal concentration profile Sudicþ et al. (1983) are quite flat indicating that the

kurtosis factor is well below 3. This is consistent with our finding and the results

reported by Gelhar et al. (1979). In the transverse direction the computed kurtosis in the

concentration distribution (see Figure 3.16) is observed to show better agreement with
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the kurtosis factor.

3"6 Ðisaerssüom ar¡d Coxeclusüoms

The most signif,rcant result obtained from the analysis is the rema¡kable agreement

between the estimate for the asymptotic horizontal transverse macrodispersivity computed

in this work and that of Freyberg (1986) for the Stanford-Waterloo tracer experiment.

This result strongly suggests that the transverse dispersivity at both sites is due to the

same mechanism: transients in the flow field at the site. This result also suggests that the

flow field at the Borden aquifer is stationary in both space and time (see Farrell et a1.,

1992). Howevet, further waterievel measurements need to be carried out over a long

period of time to conf,trm this. Since transverse spreading in the subsurface appears to

strongly influenced by the transient nature of the flow field then these results mean that

for an accurate prediction of the fate of subsurface solutes an accurate knowledge of the

groundwater flow field and how it changes with time. Such knowledge becomes critical

when the solutes involved are highly toxic. In such cases if the effect of the flow

transients are ignored and the transverse dispersivity is assumed to solely influenced by

the heterogeneity in the hydraulic conductivity field then the transverse dispersivity will

be underestimated. As a result the predicted spread of the solute in the transverse

direction will underestimate the actual spread. An underestimation of the transverse

spread may have a detrimental effect on any proposed remediation measures.

The findings of this work show that both the skew and the kurtosis are important

indicators of the deviation of the concentration distribution from the normal distribution.
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This result supports the earlier findings of Gelhar et al. (L979). The contradiction

between the theoretical results of Naff (1990) and the observed skew and kurtosis of the

solute plume emphasizes the importance of the local dispersivity in influencing the spread

of solutes in the groundwater system at early time. Naff's theory (see Naff, 1990)

suggests that at early time plumes tend to be negatively skewed. As a result, steep

concentration gradients are predicted to develop at the front of plumes. However, from

our analysis we have found that this is not the case. fnstead, it has been found in this

work that at early times the plume tends to be positively skewed so that shallow

concentration gradients exist at the front of the plume. This result is also supported by

the theoretical work of Gelha¡ et ú,. (1979). Naff þersonal communication) points out

that the first order analysis presented in his earlier analysis (Naff, 1990) does not

produce good parameter estimates and in fact second order estimates are required. The

use of second order estimates results in positive skews in the concentration distribution

at very early time followed by negative skews at intermediate time. These results may

suggest that at early times the local dispersivity is an important mechanism for moving

mass ahead of the advective front of the plume. Naff þersonal communication) suggests

that advective forces may be responsible for the observed positive skew at early time;

however, as pointed out by Naff (personal communication) the transport process at such

time is quite complex. In addition the work does confirm that significant departures from

Fickian transport do occur at early time.

Finally, it must be pointed out that care must be taken in accepting all of the

results of this work due to the amount of extrapolation used in determining the plume
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boundaries at each sample time and the coarse sampling used at early times. Since these

results do compare well with the results of others (e.g. Sudicþ et al., 1983 and Gelhar

et al., 1985) it appears that they are quite representative of the processes at the site.

Howevet, for the higher moment estimates the approach used here should be repeated

on a better sampled data set (e.g. the Stanford-Waterloo tracer experiment data seÐ in

order to validate these findings.
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ÐWapter- &

Ðiscrxssåoxa axad Coxaaåassåonas

4.L Xmtroducttoxa

This chapter provides a summary of the results discussed in the previous two

chapters with the goal of putting the results into perspective. In particular, the assumption

of spatial and temporal stationarity in the flow field witl be discussed as well as the

implications of non-Fickian behavior at early time. This chapter is concluded with a

discussion of future areas of research related to this work.

4.2 Ðiscussíon of StatíonanÍty .&ssumptíon

The transverse horizontal asymptotic macrodispersivity estimates computed for

the 1978 Borden tracer experiment (this work) and the Stanford-Waterloo tracer

experiment (see Freyberg, 1986, and Rajaram and Gelhar, 1991) a¡e shown to be quiæ

similar even though the experiments were conducted at different times and in different

parts of the Borden aquifer. If Sudicky's contention is correct (that the observed

transverse horizontal dispersion at the Borden site is probably due the presence of known

flow transients at the site) then the observed similarity in the transverse horizontal

asymptotic macrodispersivity for the two experiments suggests that the flow field at the

Borden site is stationary with respect to space and time. In Chapter 3, several arguments

are put forwa¡d to justify the assumption of stationarity in the Borden flow field. It is
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shown that the range in the flow angle deviation, the range in the gradient magnitude and

the mean gradient magnitude computed from the 1989-91 watertable data are in

agreement with the values given by MacFarlane et al. (1982) and Sudicky (1986) in

different parts of the aquifer at different times. The geostatistical parameters (i.e. the

variances and the integral scales) derived from the 1989 Borden watertable data, when

used in Rehfeldt's unsteady theory, produces transverse and longitudinal asymptotic

macrodispersivity estimates. These are shown to be in good agreement with the apparent

transverse horizontal asymptotic macrodispersivity estimates of Freyberg (1986), and

Rajaram and Gelhar (1991) for the Stanford-Waterloo tracer data. Further, the estimate

of the transverse horizontal asymptotic macrodispersivity computed using Rehfeldt's

unsteady theory is also shown to be in good agreement with the apparent transverse

horizontal asymptotic macrodispersivity computed from the 1978 Borden tracer data (see

Chapter 2). The agreement between the results of the theoretical model and the results

computed from the freld data strengthen the argument for stationarity (both temporal and

spatial) in the Borden flow field. However, it must be pointed out that additional

waterlevel data for the site is required to conf,rrm whether the flow field at the site is

acfually stationary (see Chapter 3).

4.3 Ðantry T'irme Fnume tsehavion

This work a-lso examines the early time behavior of an evolving solute plume at

the Bo¡den aquifer. For this plume, it is found that the macrodispersivity increases with

time and displacement [see saury (1980), Dieurin (1980), sudicþ er al. (19g3)]. Based
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on an examination of the second, third and fourth order moments it is found that at early

time the evolving solute plume does not conform to classical Fickian behavior as is

commonly assumed in practice. Instead, the concentration profile of the evolving solute

plume is found to be both positively skewed and platykurtic. Comparison of these

findings with the theoretical results of Gelhar etaJ. (1979) and Naff (1990) show that the

observed behavior of the skew and the kurtosis (obtained in this work) agree with the

former and disagree with the latter (with respect to the nature of the skew). The ûendency

of the concentration distribution in solute plumes to be positively skewed at early time

is also supported by the work of Tompson (1988). Recall that the work of Gelhar et al.

(1979) was based on the assumption that an aquifer was perfectly stratif,red. Therefore,

it does appear that the Borden aquifer can be viewed as being a near perfectty shatified

aquifer from a hydrogeological perspective.

4"4 Wractical lmplicattoms

The results obtained from this work have significant practical implications with

respect to modelling groundwater contamination. In particular, this work shows that

small fluctuations in the hydraulic gradient over time can account for nearly all of the

transverse dispersion observed at a site. Previously, it was pointed out that it is common

practice to model contaminant transport using a spatially varying hydraulic conductivity

and a steady groundwater velocity. It is apparent from this work that such an approach

will underestimate the transverse spread in a¡eas where a transient flow freld is present.

This suggests that in areas where toxic materials (for example, radioactive waste and
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PCB's) will be stored, a detailed knowledge of the flow field at the site should be known

prior to commissioning. This protects the area in the event that modelling of contaminant

transport is required to facilitate remediation measures. Failure to consider the enhanced

spread due to flow transients may result in an expensive but ineffective remediation

program. Depending on the nature of the nature of the contaminant, this failure may be

catastrophic.

The non-Fickian behavior of a plume at early time strongly suggests that the

standard approach of modelling contaminant transport using a Fickian approach (i.e.

constant macrodispersivity values) may in some cases be inappropriate. Such an approach

will lead to an underestimation of the solute spread and an overestimation of the solute

concentration at the centre of the plume at early time. However, as pointed out by Naff

(1990), if the travel distance of the centre of mass of the plume is greater than twenty

integral scales of hydraulic conductivity, then the use of the Fickian approach is

reasonable.

4.5 Further Research

The results of this work indicate that there are some areas of contaminant

transport modelling which need to be further studied. In particular, the effects of

transient flow fields on the dispersion process at early time requires further examination

in light of the failure of Naff's (see Naff, 1989) model to adequately predict the

transverse spread at the Borden site at pre-asymptotic times. fn fact, one possible

approach may be to recast Naff s deterministic approach into a stochastic form with the
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harmonic frequencies and associated amplitudes being considered to have mean values

and variances. Such an approach will generate an ensemble behavior which may improve

the ability of the model to predict transverse spread.

As pointed in Chapter 3, the tracer plume associated with the 1978 Borden tracer

experiment was not very well sampled at very early and very late times. In particular,

it was found that in seve¡al instances the sampler array truncated the solute plume and

as a result, a considerable amount of extrapolation involving the use of various

assumptions had to be performed in order to perform the numerical integrations. The

used of extrapolation methods was shown to have an influence on the va¡ious moments

computed in this work and as a result influenced the various parameter estimates (centre

of mass location, velocity, macrodispersivity, skew and kurtosis). In addition, watertable

data collected from a different site at a different were incorporated in the analysis using

various assumptions. As a result, there will be some question as to the accuracy of the

result presented in this work.

To verify whether the results produced from this and other similar work

employing similar assumptions are valid , a tÍacer experiment along the lines of the

Stanford-V/aterloo and the Cape Cod experiments should be carried out. In addition to

a carefully designed sampler array which captures the essential features of the early time

behavior of the solute plume and a good knowledge of the geostatistical properties of the

hydraulic conductivity, field emphasis should also be placed on monitoring the hydraulic

head at the site in three-dimensions. Such an experiment, though costly, would produce

a reliable database of information. This database, could be used to test both current and
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future transport theories with minimal assumptions with respect to aquifer properties

being required.

It should be recalled that the approaches employed by Gelhar et at. (L979) and

Tompson (1988) in the study of the early time dispersion process consider the effects of

local dispersivity whereas the Naff s approach does not. This raises the question of the

importance of the local dispersivity in the early time evolution of solute plumes. This is

an area which should be further examined if the total phenomena of solute transport in

groundwater are to be well understood.

155



R.efer"ereces

Dieulin, 4., Propagation de pollution dans un aquifére alluvial: I'effet de parcours. D.

Ing. Thesis, University of Sciences and Medicine of G¡enoble, Grenoble, 1980.

Freyberg, D. L., A natural gradient experiment on solute transport in a sand aquifer; 2.

Spatial moments and the advection and dispersion of nonreactive tracers, Water

Resour. Res., 22(13), p. 203I-2046, 1986.

Gelhar, L. W., A. L. Gutjahr, and R. L. Naff, Stochastic analysis of macrodispersion

in a stratified aquifer, Water Resour. Res., 15(6), p. 1387-L397, L979.

MacFarlane, D.s., J.A. cherry, R.w.Giiham, and E. A. sudicky, Migration of

contaminants at a landfill, A case study, 1, Groundwater flow and plume

delineation, J. Hydrol., 63, p. 7-29, 1983.

Naff, R. L., On the nature of the dispersive flux in saturated heterogeneous porous

media, 'Water Resour. Res., 26(5), p. 1013-L026,1990.

Naff, R. L., J. T. -c. Yeh, and M. w. Kemblowski, Reply, water Resour. Res.,

25(12), p. 2523-2525, 1989.

Rajaram, H., and L. W. Gelhar, Three-dimensional spatial moments analysis of the

Borden tracer test, Water Resour. Res., 27(6), p. L239-725I,1991.

Rehfeldt, K. R., Prediction of macrodispersivity in heterogeneous aquifers, ph. D.

dissertation, M[, 1988.

Sauty, J.P., An analysis of hydrodispersive transfer in aquifers, Water Resour. Res.,

16, p. 145-158, 1980.

156



Sudicky, E. 4., A natural gradient on solute transport in a sand aquifer, Spatial

variability of hydraulic conductivity and its role in the dispersion process, V/ater

Resour. Res., 22(13), p. 2069-2082, 1986.

sudicky, E. 4., J. A. cherry, and E. o. F¡ind, Migration of contaminants in

groundwater at a landfill: A case study; 4. A natural gradient dispersion test,

Journal of Hydrolo1y, 63, p. 81-108, 1983.

Tompson, A. F. 8., On a new functional form for the dispersive flux in porous media,

Water Resour. Res., 24(11), p. L939-1947, 1988.

157



Appexadåx å
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ü

Coxraposne¡aÉ of Éhe &¿ffacnodispersüvåty

In this appendix a summary of the de¡ivation given by Rehfeldt (1988) for the

component of the macrodispersivity due to unsteady flow is given.

Coverning Equations

T'he Transpo¡t_Equation

The equation describing the transport of an ideal conservative solute in saturated

porous media is given by

where n is the porosity; c is the dimensionless solute concentration; E,, is the local bulk

dispersion coefficient tensor and qi is the component of the specihc discharge vector. For

the conservation of mass this formulation requires that

,x=*,þ,*,'4

Ea.j=g
dx.

t

(A1)

(M)

and that the local coefficient of bulk dispersion be constant. If the concentration and

specific discharge are assumed to be random variables composed of a mean and a small
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pefurbation then we may write

Qi=8 ¡(xut)+ø{(xut'¡

c=7(x.,t)+c'(¡..,¡¡

(A3)

(A4)

Here the mean quantities are indicated with an overbar and the primed quantities are zÊÍo

mean perturbation. Substitution of (43) and (Aa) into (41) and subsequent manipulation

leads to the following mean and perturbed forms for the transport equation.

(A5)

where q'c' represents the macroscopic dispersive flux which if it is Fickian in nature,

can be represented as

-
Q¡c i="J.,2,3 (A6)

and

,#.*,øþ+q-,c =*þ,æ]

,+. {ø, c'¡ * 
*!-çq,' Ð = +þ,Ul

,ðE
=-Q¡f .._- uôx.

(AÐ

Note that if the coordinate axes are aligned with the meån flow direction, such that Q1:q

and fu:Qr:Q then the local bulk dispersion tensor can be written as
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fo,q 0 0ltt
Eu=l 0 o¿fl 0 | teAl

lo o 
"nJ

Taking into consideration the conservation of mass (2) and substituting (48) into (A7¡

leads to the following expression for the perturbed form of the transport equation.

(Ae)

One approach to solving this equation is through the use of spectral methods.

Spectral Solution

Assuming statistical homogeneity in space and time the solution of (49) can be

developed using Fourier-Stieldes representations for theperturbed quantities (Lumley and

Panofsþ, 1964). Therefore let the perturbed quantities c, and q, be expressed as

" + * ø ff * ø,. #,= rl" "#. ",fH . H)l

,'= 
I_rr*'tuÐ 

dZ,(k,a)

æ

Qr'= | s?k+iot) dZ.(k,a)
J ''

(410a)

(A10b)

Substituting (410) into (49) and recalling the uniqueness of the spectral represenüation

gives
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(A11)

\A/here ðclôxris assumed constant at the local scale over which (47) applies. Multiplying

(411) by the complex conjugate dzoi and taking the expected value leads to

{nr a, *ltt r* u zk Í * a t{k| *kïlq} ¿z 
"= 

- # ot r,

{n a oþtc, o o 
"k? 

o o .,{k1 . t ?¡lq} S 
" 
o,(k, 

u) = - 
frt o n,rn, r,

ô'ó +¡.lr;.K ôô 
= 

s" ôó
ôx,ðx, ô*, ô*, K ðt

where Sn*(k,r,r) represents the specific discharge spectrum and S,*(k,co) represents the

macroscopic dispersive flux. Equations (46) and (412) may then be combined to give

the following form for the macrodispersivity

(A13)

Before this equation can be used to determine the macrodispersivity an appropriate form

for the specific discharge spectrum has to be determined.

Ðetermination of the Specifìc Ðischarge Spectrum

The transient form of the groundwater equation can be written in terms of the

natural logarithm of hydraulic conductivity, K as

o,= 
l_ ruu(l alk|*kl¡fq,

Soo,(k'i"o)

W"rr=

(A12)

(414)

where þ is the hydraulic head and S, is the specific storage coefficient. Since this

expression implies a change in storage. It is therefore apparent that this expression is

inconsistent with the conservation of mass assumption made earlier tsee (42)1. It will
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later be shown that this change in storage term does not contribute to the additional

dispersive flux.

If the hydraulic conductivity is considered a random variable with zero mean

perturbation then we can write

lnK=F+Í,

l{=¿Fgl=7çr¿Í,

ffi=g (Als)

lnJ(r=F=E[nK] (416)

and retaining only first order terms the flow equation mayUsing the above expressions

be rewritten as

(,{1Ð

This equation applies to unsteady flow in three-dimensions where the temporal forcing

is supplied by the boundary conditions. Using specftal methods does not allow boundary

conditions to be modelled explicitly and as a ¡esult unsteadiness must be brought into this

formuiation through the mean hydraulic gradient and the mean hydraulic head. The

hydraulic head, @ is assumed to be composed of a slowly varying mean in space and time

and a perturbation about that mean.

$ (x,t) =H(x,t) + H' (x,t) +h(x,t) (A18)

Here H(x,t) is the slowly varying ensemble mean, H'(x,Ð is a temporal perturbation

about the mean hydraulic head and h(x,Ð is the local perturbation in space and time.

Gelhar and Axness (1983) have shown that field scale dispersion under steady

flow conditions results from the ¡andomness in the specifrc discharge vector (A19). This

k-gP=årt-nyôx,ðx, ôr, Axi Kr'- "E
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randomness is caused by the variations in the hydraulic conductivity freld.

o.=-xôÔ't ôx,

From the expression for the specifrc discharge it is apparent that changes in { that are

random in time but uniform in space do not change q, therefore the rising and falling of

H' does not strongly influence dispersion at the field scale. Hence for the temporal

variability of þ to have an effect on q and hence dispersion the spatial gradient of þ must

also be variable in time.

If it is assumed that the hydraulic gradient can be decomposed into a slowly

varying mean and a perturbation hence we may write

_ðH_r. aH' ,.- ar=ti -E=tt- (420)

Note that Jt' is assumed to be random in time, but at the local scale, constant in space.

Substitution of (418) and (420) into the flow equation (417) and subsequent

manipulation leads to the following perturbed form for the flow equation

(A1e)

(A22)

(A21)

Using equations (415) and (416) the Darcy equation may be written in the form

ô2h :J . ðf 
= 

s, 
f ar' *ðhf

ôx,ôx, 'ô*, 4 L ðt ô, 
J

q,=-Kr(l.f)#

with the perturbed form of this expression being

The perturbed quantities in (A2I) and (423) can be expressed in spectral form using
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e¡.=-Kslu,-#,

h= | s?t,.í,Ð dzh(k,c,))
J-æ

,4 (A23)

(A2aa)

(A24b)

(A2ac)

(A24d)

(A2ae)

Fourier-Stieltj es integrals as

f= f_rr*.^', 
dzÁk,@)

I,' =i_e @.^r) dZr,(k,a)

e,' =i-e @.í'') dz o,(k,a)

,. =i ¿(íta+íot) dZo(k,a)
J

-@

Note that f , H' , and J,' have been represented as space-time random processes even

though f is time invariant and Jt' and H' are spatially uniform. This space-time

representation is necessary to produce a consistent form for the entire equation. Since one

can treat a constant as a random va¡iable with a covariance of infinite correlation length

and a spectrum with all the power concentrated at zero frequency then there is no

T&



inconsistency when using the above spectral forms. Substitution of (424) into (421) and

(A23) and recalling the uniqueness of the spectral representation gives

-kz dz h- íkJ gzr= þ Q raz r* i ød z )
I

for the flow equation (421) and

(A2s)

(A26)

(A27)*J,dZ¡

k'*írS'
KI

The specific discharge spectrum, sn*(k,c,r), is obtained by multiplyin g (A27) by its

complex conjugate dZr" and using the properties of the spectral representation theorem

dz 
o,= 

K rþz r,- ik dz o+7 dnf,

for the Darcy equation (A23). Combining (A25) and (426) and rearranging gives

dZo,=K, oZt;
J&þdzf 

+;k,osdzu
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[^ç
I -ik.a

"l K l
sor,=Kílsrr,*--?-sro

I k'- "' i,
t- Ku

*0,, tJn,h,'
K-' R.;þ;s'¡*-ft-¡s""

' [4)

(A28)

The expression fo¡ macrodispersivity can be greatly simplified by recognizing the form

of the input spectra. The hydraulic conductivity is time invariant, hence, its spectrum is

given by

,lfk,o)=.1fft)ô(r,r) (Aze)

where ô(c,r) is the Dirac delta function. Likewise, the variables Jr' and H' were assumed

to be spatially uniform. Their spectra, and presumably the cross spectra, will be of a

form

"fu"-
k,k, l

-t

lr'* 
S' ¡rlKr)

u,^ 3Ë-lr,r*l
K, I _l

Srr(k,a)=Sr..,(o)ô(fr)

S, o(k, u) = S rr(c,:) ô (k)

Srr(k,u)=^Sro(o)ô(k)

(430a)

(A30b)

(A'30c)
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Using (A29) and (430) equation (,A.31) decomposes into two components, one

incorporating the effect of temporal variability and the other spatial variability. The term

involving spatial variability (see Rehfeldt, 1988, equation 2-39) is identical to that given

by Gelhar and Axness (1983, equation 62) for the steady flow case. The component of

macrodispersivity due to unsteady flow is given by

Macrodispersivity

The macrodispersivities can thus be written

, 4r,,1, o.oJu:,-T,)lu,^-*þ, **, 
dk danu= )-- nìrq*þkr*a$l*alkl.t î)fq,

Af'=î 
Kls'íù 

o,' J- rueq

This expression reduces to (see Rehfeldt, 1988)

-,2
AÍ"=nto sr,,,(o)"ntrJ

Af,=f:l$s,,(o)' lr') ,J1 "''-'
where 7 is the flow factor defined by Gelhar and Axness (1983) as

To be consistent with the results of Gelhar and Axness (1983) (433) is rewritten in the

following form

(431)

(A32)

(A33)

(A34)
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Assuming the cross and autocovariance functions to be exponential in form, then

¡t= Q, 
KJ,

s,¡,(o)=|ú¿,)r,¡,

Thus the macrodispersivity due to transient flow can be written as

2

n<,>_t qúu,,
^,i -V¡7^tt,

(A3s)

(A36)

(A37)
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