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Abstract

Waterlevel data collected at the site of an emplaced source experiment at the Borden
Tracer-Test site over a period of one and a half years have been analyzed using the least squares
method. The analysis shows that the data is comprised of a trend and an uncorrelated residual
in space. From the trend, time series for the hydraulic head gradient magnitude and the flow
direction are computed. Geostatistical and Fast Fourier Transform methods are then applied to
these time series to determine the variances and the integral scales present in the data. Assuming
that the data are stationary in both space and time, the variance and integral scale data are
combined with the Stanford-Waterloo experiment data and used to evaluate the macroscopic
dispersion theories of Rehfeldt (1988) and Naff (1989). The results obtained from Rehfeldt’s
method for spread in the asymptotic transverse horizontal macrodispersivity are quite similar to
the results obtained by several researchers based on field studies [see Freyberg, 1986; and
Rajaram and Gelhar, 1991]. The results obtained from Naff’s time dependent macrodispersion
model are found to be quite poor when compared with results from field based studies.

In addition, an analysis of the plume moments for the 1978 Borden tracer experiment are
presented. From these moments the solute mass in the plume, the velocity of the centre of mass
of the plume, the dispersivity and dispersion, the skew and the kurtosis of the solute
concentration in the plume are calculated. Examination of the data shows that the plume-splits
into two halves each travelling with a different velocity. Due to the relatively poor sampling of
the plume only an analysis of the plume in the lower velocity zone is performed. The computed
results of the location of the centre of mass, the velocity and the dispersivity for the plume in

the low velocity zone are found to be in good agreement with the results of Sudicky et al.



(1983). The computed transverse macrodispersivity results are found to be in excellent
agreement with those of Freyberg (1986) and Rajaram and Gelhar (1991) for the 1986 Stanford-
Waterloo experiment. The results also show the plume to be positively skewed and platykurtic
at early time, appearing to tend towards a normal distribution at later time. This is in agreement

with the theoretical work of Gelhar et al. (1979) for perfectly stratified aquifers.
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Chapter 1
Introduction

1.1 Relevance

Groundwater contamination has become an area of concern due to public health
issues (e.g. in cases where the contaminant has been shown to be or is suspected of being
toxic or carcinogenic), environmental issues (particularly where groundwater discharges
into lakes, streams and wetlands) and economic factors. Concern is greatest in areas
where communities rely on aquifers as their source of drinking water. Contamination of
drinking water supplies in such communities may pose severe health and economic
problems, especially if water has to be imported from distant sources. The sources of
groundwater contamination have been found to vary widely. For example, Guerera
(1981) reports the contamination of groundwater by pesticides, Elder et al. (1981) report
the contamination of groundwater by leachate from a landfill, and O’Connor and
Bouchout (1983) report the contamination of groundwater by gasoline from an
underground storage tank spill. As both the development of new chemical substances and
the demand for disposal sites increases, it is probable that the number of groundwater
contaminated sites will continue to grow.

One alternative in rectifying a contamination problem involves the use of an
appropriate remediation scheme. Adequate and cost effective remediation of a
contaminated site often requires that the problem be properly modelled. This modelling

is usually performed numerically. Numerical modelling of the migration of contaminants



in the subsurface requires a good understanding of the physics governing the flow of the
various types of contaminants (e.g. miscible and immiscible liquids). Currently, there is
much debate about the fundamental processes governing the transport of these substances.
Much of the debate centres on how to pass from the macroscopic continuum level of a
Representative Elementary Volume (REV) to some appropriate field scale. The REV
gives an indication of the range in a sample volume across which the transport
parameters, such as porosity, are correlated (see Figure 1.1). For example, Gelhar et al.
(1985) point out that much further from a contamination source the spreading of a solute
plume is larger than one would expect based on laboratory measurements of
hfdrodynamic dispersion'. The hydrodynamic dispersion is controlled by local
fluctuations in the groundwater velocity which cause mechanical mixing of the
transported solute and molecular diffusion. The local fluctuations in the groundwater
velocity under natural gradient conditions (i.e. in the absence of pumping wells) are
caused, in large part, by the variability of the hydraulic conductivity of the porous
medium. However, it is common practice to quantify hyrodynamic dispersion by a
parameter termed the dispersivity?. As mentioned earlier, theory must be validated by
observations. The use of field data as opposed to laboratory data provides a better

approach to validating theory since the field data fully incorporates the effects of the

! The term "hydrodynamic dispersion" refers to the tendency of
a solute to spread out from the path that it would be expected to
follow based on the bulk average motion of the groundwater flow.

? The dispersivity is traditionally assumed to be a unique
property of the geologic medium at a particular scale of continuum
description (Bear, 1972).
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variability of the hydraulic conductivity field. However, as pointed out by Mackay et al.
(1986), the use of data from known contaminated sites is often not feasible since:
1. It is difficult to quantify the initial mass of contaminant that entered the
groundwater and to locate the contaminant source precisely in time and space;
2. Practical constraints (e.g. cost and time) usually result in relatively sparse
monitoring data for the plume which only allow approximate delineation of
contaminant distribution as a function of space and time.
As a result, carefully conducted field experiments provide the best method for validating
theory and for gaining insight into the behavior of contaminants in the subsurface. Due
to the long duration of these tests (particularly natural gradient tests) and, environmental
and financial constraints, large scale field experiments cannot be carried out routinely.
Fortunately, during the last two decades a small number of natural gradient field
experiments have been conducted by various research groups. Among the experimental
sites are the Borden aquifer (Sudicky et al., 1983; see also Mackay et al., 1986), the
Columbus Airforce Base site (Rehfeldt, 1988; see also Gelhar et al., 1992) and the Cape
Cod site (LeBlaﬁc et al., 1991). The aim of these field experiments was to provide a
detailed data base describing the transport, transformation and fate of a variety of
contaminants in the saturated zone. The results obtained from these experiments have
confirmed that:
1. Dispersivity is influenced by the distance travelled (Sauty, 1980) and increases

with time (Dieulin, 1980);



2. The dependence of the longitudinal asymptotic macrodispersivity® on aquifer
heterogeneity (Gelhar and Axness, 1983);
Results obtained from these experiments have also revealed that none of the stochastic
theories of transport based on steady state flow accurately predict solute spread in the
transverse direction. In addition, it is found that the three-dimensional time dependent
moment model of Dagan (1988) over predicts the longitudinal spread and under predicts
the transverse spread (see Woodbury and Sudicky, 1991). These issues, and in particular

the former issue, will be discussed in more detail in the following section.

1.2 The Problem

Application of the stochastic transport theory of Gelhar and Axness (1983) by
Sudicky (1986) to Stanford-Waterloo experiment data at the Borden aquifer resulted in
a transverse horizontal asymptotic macrodispersivity* value of 0.0m. Based on a spatial
moment analysis performed by Freyberg (1986) on actual chloride and bromide plume
data collected as part of the experiment, a value of 0.039m was obtained for the apparent
asymptotic transverse horizontal macrodispersivity. This estimate is supported by the
apparent transverse horizontal asymptotic macrodispersivity value of 0.05m computed as

part of an independent review of the bromide plume data by Rajaram and Gelhar (1991).

* The term "longitudinal asymptotic macrodispersivity" refers
to the asymptotic value of the field scale dispersivity along the
mean flow direction.

* The term "transverse horizontal asymptotic macrodispersivity®
refers to the asymptotic value of the field scale dispersivity in
the plane which is perpendicular to the mean flow direction.



Application of three-dimensional moment models by Naff (1990), Zhang and Neuman
(1990), and Woodbury and Sudicky (1991) all produce less than satisfactory results,
particularly in the transverse direction, when compared to the moments computed by
Freyberg (1986) from the tracer plumes. A number of researchers have suggested that
this transverse dispersion, particularly at the Borden site, may in part be due to the
presence of known flow transients (see Sykes et al., 1982; and Sudicky, 1986). The
stochastic transport theories of Gelhar and Axness (1983) and Dagan (1982, 1984, 1987
and 1988) do not take transients in the flow field into consideration. Kinzelbach and
Ackerer (1986), and Goode and Konikow (1990) have shown from a deterministic
perspective that variations in the groundwater flow direction cause an enhancement of
transverse horizontal dispersion. Sudicky (1986) suggested that the main features of the
enhanced dispersion caused by flow transients might be handled in a practical way by
incorporating the unsteady flow behavior into a coupled fluid/transport model in which
the macrodispersivities are estimated using steady state flow expressions. In this approach
the stochastic theories of Gelhar and Axness (1983) are used to account for the material
heterogeneity. Rehfeldt (1988) pointed out a number of potential problems with this
approach.

1. The transients can be represented as a stochastic process in time and are
composed of a number of components of various amplitudes and frequencies. To
model the high frequency components one would have to use a small time step
in say, a classic finite element scheme. A short time step coupled with long

simulation time would yield a computationally intensive exercise.



2. Low frequency components of the transients could be treated as deterministic
while high frequency components could be treated as random. How does one
differentiate the deterministic from the random components in the model?

3. Does unsteady behavior cause dispersion?

The work of Gelhar and Axness has been extended by Rehfeldt (1988) to account
for the presence of transients in the flow field. Rehfeldt’s work does show that unsteady
flow behavior can result in an enhanced dispersion. However, his work examines only
the asymptotic macrodispersivity, at which time the dispersion process is Fickian’,
Under the Fickian assumption the concentration distribution within the plume displays
a normal distribution. To account for spread at pre-asymptotic times, Naff et al. (1989)
proposed a deterministic time-dependent model for predicting the spreading moments
under unsteady flow conditions. Both approaches have been applied to the Stanford-
Waterloo tracer data using crude estimates of the necessary flow field parameters (see
Rehfeldt, 1988; Naff et al., 1989). The results obtained using both models are
encouraging; however, it should be noted that the model parameters relating to the flow
transients were chosen on an ad hoc basis for illustrative purposes because detailed
waterlevel data were unavailable at the time.

A further feature of standard modelling practice of contaminant plumes is thé use

of a transport model which assumes that the contaminant flux is Fickian and constant.

> The term "Fickian" refers to the case where the dispersive

mass flux is proportional to the concentration gradient (Gelhar et

al.,

1992).



Naff (1990), based on a theoretical study of the dispersive flux in saturated porous
media, suggests that this approach is reasonable provided that the prediction of the mean
concentration is at distances from the source equivalent to at least 20 length scales, A of
the hydraulic conductivity. Points separated by a distance less than A will have similar
hydraulic conductivities and those separated by a distance greater than A can be expected
to have significantly differing hydraulic conductivities. Within a distance of 20 A from
a source Naff (1990) points out that two deviations from Fickian behavior will occur.
First, the second moments® of the plume will be overestimated and second, the plume
shape will be platykurtic (flatter than a normal distribution). Also, the observed skew will
bé negative. Based on a theoretical study of macrodispersion in perfectly stratified
aquifers Gelhar et al. (1979), also found that plumes tend to be platykurtic at early times.
However, Gelhar et al. (1979) found that the skew at early times was positive and was
an important feature in the deviation of the plume from a normal distribution. This latter
result contradicts the findings of Naff (1990). From a volumetric averaging perspective
Tompson (1988) also showed small positive skews for a transport problem posed at the
local level, and fhis result supports the theoretical findings of Gelhar et al. (1979). It
should be emphasized that the approaches applied by Gelhar et al. (1979), Tompson
(1988) and Naff (1990) were different. These approaches will be described later in this
thesis. To date, little work has been done with regards to examining the skew and
kurtosis of plumes for any of the tracer experiments discussed even though adequate data

bases exist for such a study. As a result, the theoretical result of Gelhar et al. (1979) and

¢ The term "second moment" refers to second spatial moment of
a contaminant plume that had an initial condition of a pulse.



Naff (1990) have not been field validated.

1.3 Objectives and Scope

The first part of this thesis will address the former problem as outlined above.
Specifically, the influence of flow transients on the transverse spread of a plume will be
looked at. Waterlevel data for the Borden site has been collected during the period July
25, 1989 to January 15, 1991. Using least squares methods, the mean spatial hydraulic
gradient at each waterlevel sample period is computed. The hydraulic gradient time series
is ‘used as inputs to the Naff et al. (1989) model. Using geostatistical methods the
necessary statistical parameters relating to the hydraulic gradient needed for the model
of Rehfeldt (1988) are estimated. Assuming stationarity in time and space, the result
obtained from these two models is compared with the observed asymptotic
macrodispersivity estimates obtained for the Stanford-Waterloo experiment. This
comparison provides a means of determining whether the proposed models explain the
enhanced plume dispersion in the horizontal transverse direction at the Borden site.

In the second part of this thesis the latter problem as outlined in the previous
section is addressed. Specifically, to perform this analysis the concentration data collected
for the 1978 Borden tracer experiment are used. An approach similar to that employed
by Freyberg (1986), and Rajaram and Gelhar (1991) is carried out. Due to truncation of
the plume by the sampling devices and the irregular spacing of these devices, both
interpolation and extrapolation of the concentration data will be required in order to

perform the moment estimates. In this work, the fourth and lower order moments are



emphasized. From these moments the solute mass, macrodispersivity, and skew and
kurtosis of the concentration distribution in the plume as a function of time are estimated.
Particular attention will be placed on the following aspects:

1. Sensitivity of the moment estimates to the various interpolation and extrapolation
schemes used;

2. Comparison of the velocity and macrodispersivity estimates to those of Sudicky
et al. (1983) for this experiment. In addition these values are compared to those
of Freyberg (1986) and Rajaram and Gelhar (1991) for the Stanford-Waterloo
experiment;

3. Comparison of the computed skew and kurtosis with the theoretical results of

Gelhar et al. (1979) and Naff (1990).

In addition, the estimated transverse horizontal asymptotic macrodispersivity for
the 1978 Borden tracer experiment is compared to the transverse horizontal asymptotic
macrodispersivity computed for Stanford-Waterloo experiment (see Freyberg, 1986; also
Rajaram and Geiha:, 1991). Note that if the transverse dispersion at both Borden sites
is caused by transients in the flow field then the two transverse horizontal asymptotic
macrodispersivities computed at each site should agree. Therefore, this comparison
provides an estimation as to whether or not the flow field at the Borden site is stationary

in time.
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Chapter 2
A Geostatistical Analysis of Fluctuating Waterlevels at

the Borden Aquifer

2.1 Introduction

As part of the overall Stanford-Waterloo tracer experiment, Sudicky (1986)
applied the stochastic theories of Gelhar and Axness (1983) and Dagan (1986) in order
to predict the dispersion of the injected tracér which had been measured over a three year
period. Based on a geostatistical analysis of the hydraulic conductivity field and field
observed hydraulic gradients, Sudicky (1986) estimated the asymptotic horizontal
transverse macrodispersivity to be 0.0m and the asymptotic = longitudinal
macrodispersivity to be 0.61m, keeping in mind that these values must be augmented by
the corresponding components of the local scale dispersivity. HoweYer, a moment
analysis performed by Freyberg (1986) on the actual chloride and bromide plume data
collected at the site yielded an asymptotic horizontal transverse macrodispersivity equal
to 0.039m, and an asymptotic longitudinal macrodispersivity equal to 0.36m. An
independent re-analysis of the bromide plume data performed by Rajaram and Gelhar
(1991) yielded an asymptotic horizontal transverse macrodispersivity equal to 0.05m, thus
confirming Freyberg’s calculations. In addition, attempts at applying three-dimensional

moment models by Woodbury and Sudicky (1991), Naff et al. (1988, 1989), and Zhang

15



and Neuman (1990) all produced less than satisfactory results, particularly in the
transvérse direction, when compared to the moments computed by Freyberg (1986) from
the tracer plumes. Sudicky (1986) suggested that the enhancement to the observed
horizontal transverse dispersion could be due to the presence of groundwater flow
transients at the site. Sudicky’s conjecture was supported by the earlier work of Sykes
et al. (1982), who suggested that much of the observed horizontal transverse dispersion
at the Borden landfill was caused by a time-varying potentiometric surface. In addition,
Kinzelbach and Ackerer (1986) and Goode and Konikow (1990) have shown from a
deterministic perspective that variations in the groundwater flow direction cause
enhancement of horizontal transverse dispersion. The presence of such flow transients
are not accounted for in the stochéstic models of Dagan [1986 (unpublished manuscript)
and 1988] and Gelhar and Axness (1983).

Recently, Rehfeldt (1988) extended the work of Gelhar and Axness (1983) to
account for the enhanced asymptotic macrodispersivity which results from the presence
of transients in a flow field. To account for spread at pre—asymptétic timéé, Naff et al.
(1989) proposed a deterministic time-dependent model for predicting the spreading
moments at a site where flow transients are observed. Both approaches have been applied
to the Borden tracer test data to model the observed transverse spread using crude
estimates of the necessary flow field parameters (see Rehfeldt, 1988; Naff et al., 1989).
The results of both approaches compare reasonably well to Freyberg’s data for the
Borden plume; however, it should be noted that model parameters relating to the flow

transients, in particular those of Naff et al. (1989), were chosen on an ad hoc basis for
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illustrative purposes because detailed waterlevel data were unavailable at the time.
Recent work at the Borden aquifer involving an emplaced source experiment
(Figure 2.1) has resulted in the regular collection of watertable elevation data in a part
of the aquifer for the period July 25, 1989 to January 15, 1991. The aim of this thesis
is to use this waterlevel data to investigate whether the models proposed by Rehfeldt
(1988) and Naff et al. (1989) explain the enhanced plume dispersion in the horizontal
transverse direction at the Borden site. Specifically the approach proposed will be to:
1. Outline which parameters are required by the two models;
- 2. Use the waterlevel data to obtain the parameters required by the two models and
their relative uncertainties;
3. Substitute these parameters into the models;
4. Assume stationarity and compare the results of point 3 above to the published

results for the Borden plume.

2.2 Theory -

2.2.1 Asymptotic Analysis of Dispersion

Rehfeldt’s (1988) approach assumes that the macrodispersive flux is Fickian in
nature. In addition, the hydrogeologic properties along with the concentration of the
solute,the specific discharge, and the hydraulic head are treated as random variables.
These quantities are decomposed into mean components and perturbations about the

mean. The perturbed terms are assumed to have zero expectation. As a result
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Figure 2.1. Map of the Borden Tracer-Test site.
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c=c(x,,0)+c’ (x,,1) ..(2.1D)

g=q(x,0)+q’ (1) o (2.2)
l =F+f, F=E[lnK], =0

n(K)=F+f, [InK]l, EIf] 2
o, 0)=H(x,0)+H' (x,t) +h(x,1) ...(2.4)

where ¢ represents the solute concentration, q is the specific discharge and X is the
hydraulic; conductivity. In Rehfeldt’s approach, ¢ is the observed hydraulic head, H
represents the slowly varying ensemble mean hydraulic head in space and time, H' is a
tex-nporal perturbation about the mean hydraulic head, and h represents local perturbations

in space and time. Therefore,

H(x,0)=H(x,0)+H' (x,0) -(2.5)

In the above H(x,t) combines the slowly varying ensemble mean hydraulic head in time
and space as well as the temporal perturbation about the mean hydraulic head. As a
result, H(x,t) represents the ensemble mean hydraulic head in space at any time. The
analysis in this chapter principally revolves around determining H(x,t,t,,...) over a
discrete set of time samplings t,,t,,.... It will be shown in this chapter that at the Borden
site h(x,t) is uncorrelated in space and time. H(x,t) however, is correlated in time and
it is the statistical properties of this variable that will be shown to principally control the
spread of the Borden tracer mass in the horizontal transverse direction. The hydraulic

gradient is represented as
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__a_g=7. ...(2.63)

and

_3{5’ 7! ...(2.6b)

1

The perturbation J is assumed to be random in time, but on the local scale (because of
its planar like features) constant in space. Note also J=TJ+J’.

The approach used by Rehfeldt (1988) to determine an expression for the form
of the component of macrodispersivity due to the unsteady mean behaviour of the flow
field is outlined in Appendix A. The approach is similar in principle to the small
perturbation method used by Gelhar and Axness (1983). However, Rehfeldt’s method
differs from that of Gelhar and Axness (1983) in that it treats the specific discharge
spectrum as being a function of time and space. The method is able to reproduce the
result of Gelhar and Axness (see Gelhar and Axness 1983, equation 62; see also Rehfeldt
1988, equation 2-39) plus an additional term which gives the mean unsteady form of the
macrodispersivity (see Appendix A). The unsteady term is reduced to

Agu)z_'%%s%m) @.7)
where A;® represents the unsteady component of the macrodispersivity tensor, J, is the
mean gradient magnitude in the flow direction, v is the flow factor term defined by
Gelhar and Axness (1983), and S,,(0) is the gradient spectrum evaluated at zero

frequency. The unsteadiness in the flow field is contained in the gradient spectrum. By
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making use of the spectra-covariance transform and assuming that the cross- and auto-

covariance functions are exponential in form, the gradient spectrum reduces to

1
%@ﬁ?ﬁhﬁ ...(2.8)

Here g, represents the covariance and A, represents the correlation or integral scale of
the time variation of J. Finally, the unsteady component of the macrodispersivity tensor

can be expressed as

2
AP=197 (2.9)

2 2
ARLVA

Rehfeldt (1988) has shown that equation (2.9) results in an enhanced horizontal
transverse asymptotic macrodispersivity while contributing little to the longitudinal

direction.

In order to apply equation (2.9) to the Borden tracer data, additional assumptions
have been made to reduce equation (2.9) to a more manageable form. Freyberg (1986)
showed that the mean angular offset T' (see Figure 2.2), between the mean gradient
direction and the horizontal trajectory of the tracer plumes is less than 2°. For the
purpose of this analysis we shall then set I' equal to zero due to its small magnitude. The
gradient data given by Sudicky (1986) shows that the maximum angular deviation T,
between the horizontal trajectory of the plumes and the maximum gradient deflection is

approximately 9. Sudicky (1986) indicates that the vertical gradient at the tracer site is
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al(t) = component of hydraulic head parallel to the mean flow path.

a2(t) = component of hydraulic head perpendicular to the mean flow path.
J(t) = hydraulic head gradient at time t.

X, y = cartesian coordinate axes.

Q = mean flow angle.

I' = angle between mean flow direction and the hydraulic gradient.

Figure 2.2. Schematic of the flow field at the Borden site.
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approximately two orders of magnitude smaller than the horizontal gradient. Therefore,
the contribution of the vertical gradient can be considered to be negligible (i.e. J;=0).
These assumptions along with the small size of T, allow equation (2.9) (see also

Rehfeldt (1988), equations 2-53 and 2-62) to be reduced to

w.1q0 ...(2.10)
Ap =“—iz§2' 7
o 1 (211
=145 1)
0% n

where A;;® and A,® give the longitudinal and horizontal transverse asymptotic macro-
dispersivities which result from the mean flow transients and the subscripts J and T
indicate gradient magnitude and flow angle parameters respectively. For the Borden site
the variance and integral scale for both the flow angle and the gradient magnitude data

are unknown parameters which must be determined from observed watertable data.

2.2.2 Harmonic-Moment Evolution Model

As described above, Rehfeldt’s (1988) approach only addressed dispersion
behaviour at asymptotic time and, of course is only valid after a tracer plume has been
effectively averaged over a number of hydraulic conductivity and non-steady gradient
integral scales. The reader should recall that attempts to model the early time behaviour
of Freyberg’s (1986) second moment data using approaches such as Dagan’s (1988) three
dimensional model, have produced poor results (see Woodbury and Sudicky, 1991). Naff

et al. (1988) have proposed a deterministic moment model which accounts for an
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unsteady mean flow field. However, their model ignores the effects of variations in the
hydraulic conductivity field on the dispersion process. The unsteadiness in the flow field
is represented deterministically as the sum of a series of harmonic functions. The most
important harmonics are at the long wavelengths (low frequencies).

A general form of the velocity equation given by Naff et al. (1989, equation 2)

is
Ui(x,t)=§ [5,7+5.0)] ..(2.12)

where U(x,t) is the velocity field in the i* direction, J, is the mean gradient in the x,
direction (along mean flow path), K; is the hydraulic conductivity in the i* direction, n
is the porosity and gi(t) represents the unsteady mean behaviour in the i* direction of the
gradient field. The model requires that g(t) be expressed as the sum of a series of
harmonic functions. Hence a harmonic analysis on an observed time signal must be
performed to find the wavelengths and amplitudes present in g(t).

Let G(f) be the frequency spectrum of g(t). Then the following relationships,

given by Brigham (1974, chap.2), can be applied

&)= j G(He™ df ...(2.13)

G =A()e ...(2.14)

where A(f) is the amplitude at frequency f, «(f) is the phase at frequency f, and w is the

angular frequency. Combining (2.13) and (2.14) gives

24



g0= j A (e Pgr ...(2.152)

-0

or

8= [ ADicosla ) +a 1+ sinfw O+ (AT ...(2.15b)

The second integrand in equation (2.15b) is an odd function and hence its contribution

to the integral is zero. Using a discrete representation equation (2.15b) reduces to

8in(®) =f: A, cos(w, t+a, ) ...(2.16)

where m represents the m* frequency harmonic and N represents the total number of

harmonics present. The w,, term can be shown to be of the form
w, =277 L .(2.17)

where Naff et al. (1989) defined 1, to be the attendant travel length associated with the
m® harmonic and U, as the mean velocity in the x, direction. Equation (2.16) is similar
in form to the integrand in Naff et al. (1989, equation 6) with the difference being the
addition of a phase shift term.

The displacement X(t) and spatial variance o; of a tracer plume in the i* direction

due to a time-varying flow direction is given by Naff et al. (1989) as
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tN
X(2) =BiUI‘( 3 Al.mcos(27r77;7€. +a, ) dt
m=1 i

un

...(2.18)

t

o=t { X(OF dt ...(2.19)

where B,=(J,K,)/(U,n). Equation (2.19) is integrated numerically since X(t) is generally
a complicated function.

As mentioned earlier, the harmonics needed for this model are unknown and must
be determined by conducting a harmonic analysis on the watertable gradient data. For
thé purpose of this work, the interest is in assessing the horizontal transverse spread of
the tracer at the Borden site. As a result it will be necessary to compute the harmonics
present in the a, gradient component (see Figure 2.2).

In the next section a decomposition of the watertable data measured at the Borden
site will be performed in order to determine the parameters needed for the proposed
models. The proposed approach will be to:

1. Determine the spatial trend in the waterlevel data;

2. Use the trend information to compute the mean gradient magnitude and the
mean flow direction time series for the data;

3. Perform a geostatistical analysis on the time series computed in point 2 above,
to determine the variance and integral scales present;

4. Compute the harmonics present in the gradient data.
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2.3 Waterlevel Data Analysis

2.3.1 Field Data

The watertable data used for this study were collected at the site of an emplaced
source experiment conducted in the Borden aquifer from July 25, 1989 to January 15,
1991. The experiment site is located about 150m north of the 1986 tracer test site (Figure
2.1). Piezometers were installed at the site to measure the watertable elevation in the
vicinity of a migrating plume (associated with the emplaced source experiment). Initially
only two piezometers were used, but as the plume evolved, additional piezometers were
installed with the final number increasing to 34. Watertable elevations in each piezometer
were recorded on average once a week. Figures 2.3, 2.4 and 2.5 show the watertable
elevation time series recorded by three piezometers (P2, P13 énd P24) at the site.

The observed watertable elevation time series at each piezometer (Figures 2.3,
2.4 and 2.5) displays a cyclic character, with short wavelength features being
superimposed on a much longer wavelength feature. The period of this long wavelength
feature appears to be between 340 and 370 days at all the piezometers. The maximum
magnitude of the watertable fluctuations is approximately 0.8m. When an observed time
series for individual piezometers located in different parts of the site are compared, an
obvious correlation is apparent. This suggests that the watertable surface at the emplace
source site may be decomposed into simple forms in time and space.

Contour maps of the watertable elevations at each recording time for a portion of
the domain (for example, Figure 2.6 and 2.7) show that the watertable surface is

approximately planar. These maps indicate that the general flow direction is
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Figure 2.6. Watertable contour map for the emplaced source site on 02/03/1990.
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predominantly towards the north with the direction rotating eastward for short periods
in response to recharge conditions. This general flow direction is consistent with the
earlier observations of MacFarlane et al. (1983) aﬁd Sudicky (1986) who both described
predominantly north-easterly flows at the site. In addition, the gradient magnitude
fluctuates in time with the highest gradients being observed during the recharge periods.

In the development of Rehfeldt’s model, the hydraulic head was assumed to be
planar over the region of interest (Rehfeldt 1988). It is therefore necessary to first
determine whether the hydraulic head over our area of interest at the Borden aquifer
satisfies this criterion and, if so, to determine the necessary coefficients for predicting

the influence of the flow transients on the macrodispersion process.

2.3.2 Trend Surface Analysis

An examination of the watertable elevation contour maps at different times
indicates that spatial trends over the area are simple in form and can be adequately

represented by a polynomial surface in space of first or second order. For example:

1* Order Polynomial Surface
H(x,y)=m +mx+m.y ...(2.20)

2° Order Polynomial Surface
H(x,y)=m, +mx+my+mx’+mxy+my> ...(2.21)

where x and y give the spatial coordinates of piezometers, H(x,y) represents the

33



watertable trend surface and m; gives the model coefficients. Note that the coefficients,
m;, are time dependent.

In each case, the ’data’ and the model parameters are linearly related and the
model coefficients can be estimated by a standard least squares approach, by minimizing

the following functional (Lawson and Hanson, 1974)

F=(d-Gm)" V* (d°-Gm) ...(2.22)
where

E(@#)=0 ...(2.23a)
and

E(@9)=V ...(2.23b).

Here d is a (p*1) vector of observed watertable elevations at each time sampling, m is
a (n*1) vector of model coefficients, G is a (p*n) matrix of Kernals, & is a (p*1) vector
of residuals (d-Gm) and V is a (p*p) covariance matrix of the residuals. The solution
vector, m, to equation (2.22) is computed using the Singular Value Decomposition
(SVD) technique (Lawson et al., 1974; see also Woodbury, 1989).

If the covariance matrix is set equal to the identity matrix, then the model
coefficients for the Ordinary Least Squares (OLS) surface are obtained. The model
coefficients for the Generalized Least Squares (GLS) surface are obtained when
correlation among the residuals is present, and V must in principle be defined as a full
matrix.

As mentioned earlier, equations (2.20) and (2.21) are possible representations of
the spatial trend in the data at each time sampling. However, it is desirable to determine

the surface which optimally fits the data and therefore the spatial trend. To estimate the
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optimal surface representation for any trends present, model discrimination tests are used.

These discrimination tests are described in the next section.

2.3.2.1 Model Discrimination Tests

An over-parameterization test allows one to examine whether the addition of an
independent variable into a model significantly improves the prediction of a model when
the other independent variables of the model are present. In this work both the Partial
F-test (see Kleinbaum et al., chap. 2, 1987) and the Akaike Information Criterion (AIC)
(see Hipel, 1981) will be used to perform over-parameterization tests on the OLS models
prbposed to represent the trend.

The Partial F-test allows the significance of an independent variable in a model
to be statistically tested in the presence of the other model parameters. For example, the

significance of the variable x° in the following model (see equation 2.24) may be tested.
YO Xy n e X)X ) =00 +a X+ 40 "X +E ...(2.24)

The F statistic used to perform the partial F-test is given by (Kleinbaum et al., chap. 2,

1987) as

SS¢x* |x x,,....
Flx® [x),%,...,%) = .( [X1%y0:-- %) _ ...(2.25)
MS residual (xl,xz,....,xp,x )

where
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SS@e * |x,,%,,. %) =regression SS(x,x,,.,%,x *)-regression SS(x,x,,.,x,)  ---(2.26)

The F statistic has an F distribution with 1 and n-p-2 degrees of freedom under the null
hypothesis, H,; where n represents the number of observations and p represents the
number of parameters in the model. The null hypothesis for this test states: x°, does not
significantly improve the prediction of the model, y, given that x,, X,,...., X, are already
in the model. The null hypothesis H, is rejected if the computed F exceeds F, .., where
« is a critical value used to define the confidence limit of the test; for this work the 95%
confidence level will be used, hence o will be set to 0.05.

Like the Partial F-test the AIC method attempts statistically to determine the
optimal set of parameters needed to fit a model. The optimal set of parameters are the
parameters which result in the minimum computed AIC value. The AIC value is

computed using the following expression

AIC=2(L+k) ...(2.27)
where k is the number of independent variables in the model and L is the negative log-
likelihood function given by (see Hoeksema and Kitanidis, 1985)

L=%[nln(27r) +nln(ed) +X7] ..(2.29)

where n is the number of data points and X? represents the Chi squared distribution. For
the analysis to be performed the AIC value for the full model (i.e. the model with all the
independent variables being present; refer to equation 2.24) will be computed. This value

will then be compared to the AIC value computed for a reduced model (i.e. the model
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with the x* independent variable set to zero; refer to equation 2.24). If the AIC value
computed for the reduced model is less than the AIC value computed for the full model
then the variable x* is not needed in the model since it results in an over-
parameterization.

As pointed out earlier, both the first order OLS surface and the second order OLS
surface are possible candidates for the spatial trend present in the data. Therefore, as a
starting estimate for the optimal polynomial surface to represent the trend the second
order OLS surface is used. The significance of the second order terms in the model are
then comﬁuted using both the AIC and the partial F test techniques described above. The
results of some of these tests are shown in Table 2.1. The table shows that on
24/10/1990 the smallest AIC value was obtained when the m,x? term was ignored; this
is supported by the partial F test which shows that the m,x* term does not significantly
improve the prediction of the model. In general, both tests showed that the x* and the y
terms were needed to optimally model the spatial trend present in the data. However,
Rehfeldt’s model requires that the spatial trend present in the data be modelled by a
planar surface. Figure 2.8 shows the first order OLS surface super-imposed on the
observed hydraulic head map for the aquifer at the emplaced source site on 02/03/1990.
From this figure it can be seen that the first order OLS surface provides a good
representation of the trend present with the deviation between the two surfaces beihg on
average about 1.0 cm. Likewise, the deviation between the first order OLS surface and
the optimal polynomial trend surface is quite small.

Based on the above observations it appears that the use of the first order OLS
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Table 2.1

Over-Determination Test : 2* Order Coefficients

2= Order Coefficients
Date F-value T-value
My LU Mg
11/01/90 -1.788x10° 0.0 0.0 1.3297 -1.1570
0.0 5.842x10° 0.0 1.3528 0.2591
0.0 0.0 -5.519x10°¢ 1.8287 -1.6321
13/03/60 -6.180x10° 0.0 0.0 1.2715 -0.5855
0.0 -1.292x10% 0.0 1.2646 -0.9712
0.0 0.0 -2.991x10°% 1.4513 1.0385
12/05/90 -2.004x10° 0.0 0.0 1.0231 -0.9964
0.0 2.595x10°% 0.0 1.0702 0.3975
0.0 0.0 -7.832x10¢ 1.0138 -1.6463
10/07/90 3.956x10° 0.0 0.0 1.0091 0.1301
0.0 2.496x10° 0.0 1.2815 0.2427
0.0 0.0 -1.678x10° 1.9016 -2.6825"
07/09/90 -3.003x10° 0.0 0.0 1.0545 -0.2506
0.0 7.722x10°¢ 0.0 1.3487 -0.3066
0.0 0.0 -3.125x10¢ 1.3328 -1.4622
24/10/90 -4.884x10° 0.0 0.0 1.0790 -0.3132
0.0 4.083x10° 0.0 1.0687 -0.1218
0.0 0.0 -6.891x10¢ 2.61417 -2.7458*
30/11/90 -7.619x10° 0.0 0.0 1.1307 -0.4121
0.0 6.645x10¢ 0.0 1.1291 -0.1894
0.0 0.0 -8.632x10°¢ 3.8410" -3.0532"
17/12/90 -9.446x10° 0.0 0.0 1.1919 -0.6238
0.0 3.199x10°% 0.0 1.0558 -0.0923
0.0 0.0 -6.838x10° 2.9676" -2.8145

Note: * indicates coefficients which fail test at 95% confidence limit.
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Figure 2.8  First order OLS polynomial surface superimposed on the observed hydraulic
head contour map for 02/03/1990.

39



surface to model the spatial trend present in the data is justified. Therefore, for the
proceeding analysis the first order OLS surface will be used to model the spatial trend

present in the data.

2.3.2.2 Generalized Least Squares Analysis

It is well known (for example Stedinger and Tasker, 1985) that the OLS method
will not identify the optimal parameter estimates of a regression model when the residual
errors are not homoscedastic and independently distributed. In addition, Stedinger and
Tasker (1985) have pointed out that model parameters estimated using the OLS method
can be highly biased. The GLS method attempts to overcome these problems associated
with the OLS method by allowing the residual field to be cross-correlated as well as
heteroscedastic (Draper and Smith, 1981). The GLS method is applied in this part of the
analysis to determine whether the first-order model parameters can be improved.

Equation (2.22) can be used to apply the GLS method to the Borden watertable
data; however, the application of this equation requires a priori knowledge of the spatial
correlation present in the waterlevel data. For the Borden watertable data, no such
information is available a priori. As an alternative, an iterative approach, similar to the
method outlined by Neuman and Jacobson (1984) and Loaiciga et al. (1988), is applied
to determine the covariance structure. The iterative approach may be summarized as
follows:

1. A diagonal matrix of residuals generated from the OLS fit to the data is used

as a starting estimate of the covariance matrix; the diagonal matrix is then used
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to solve equation (2.22) for the model parameters, m, and the residuals
generated by the updated model parameters are computed;

2. The covariance structure of the residuals is determined by geostatistical
methods;

3. The updated covariance matrix is then used to re-solve equation (2.22).

This iterative procedure is repeated until the covariance matrix converges, so that no
further improvement in the model parameters can be obtained.

The geostatistical analysis mentioned above is performed in two steps. The first
step involves the computation of the experimental variogram for the residuals described
above. In the second step, the sill (variance), nugget and integral scales are estimated
from the computed variogram and the covariance matrix is computed.

The experimental variogram for the residuals is calculated using the following two
methods: the "classical" semi-variogram (Matheron, 1963) which provides an optimal
estimate of the variogram if the pairs Y(x) and Y(x,+h) are bivariate and normal and the
Cressie-Hawkins estimator (Cressie and Hawkins, 1980) which reduces the effects of
outliers on the variogram (see Woodbury and Sudicky ,1991, for comparison).

An exponential model for the covariance structure is initially chosen as it is the
model often assumed by researchers in stochastic hydrology (e.g. Hoeksema et al., 1985;
Sudicky, 1986; Dagan, 1989b; Woodbury and Sudicky, 1991). The terms of the

covariance matrix are computed using equation (2.29),
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h,
Cij=olexp(-.).\l) +0,0; ...(2.29)

where o is the variance, ¢’ is the nugget, h; (the lag distance) is the distance between
the points i and j, and A is the integral scale.

In practise, the above iterative method is difficult to implement. Journel and
Huijbregts (1978 p. 194) suggest that the useful part of the variogram is the portion
{h} <L/2 and n(h) >30 pairs, where L is the length of the transect sampled and n(h) is
the number of pairs at lag h. Using a lag distance of 8m and a transect length of 80m
(the longest dimension of our domain) the criteria of Journel and Huijbregts (1978)
prbduces approximately five lags per data set. It is found that varying the lag distance
does not increase the number of 30 pair lags in the data. Estimation of the variance and
integral scale based on only five lags is difficult (Figures 2.9, 2.10, 2.11 and 2.12) and
may lead to substantial bias. After the first iteration of the GLS method the model
parameters are usually found to be similar to those obtained from the OLS model.
Furthermore, it is observed that the variance of the residual field is quite small
(approximately 10* m? to 10 m?®). This indicates that further iterations may only lead to
small changes in the model parameters. These changes are not considered to be
significant and their contribution to the trend surface will probably be below
measurement error. Therefore it is concluded that the correlation in the residual field is
weak and that the residual field is homoscedastic for the purposes of this work. The first-
order OLS polynomial surface therefore provides an optimal representation of the spatial

trend present the watertable data. Having determined the optimal polynomial

42



"0661/T0/€0 “NJ 20BJINS SO JO S[RNPISAI JOJ SAIBWISS WRISOLILA-TWAS [BIISSe]) ' omSi]

(w) Be]
®®_.®m ®®_.®v LY L QB ac RS Ol %]
_._._________.___.___________________.____—_____l@*M@@-@
wWBISOLIBA-1WOG [BOISSB[) oswsee m
WBIFOLIBA SBUIYMBE[-OI883I]) o0 60 ¢ wm:mo&.w
wm-m@@.v %
E ~
- joud o
- =
r (1]
- 9-300°5 o
: B
wm-moa.m mz
= N
wv-m@@;

p-3Jeci

43



"0661/€0/€1 1 90BJINS SO JO S[ENPISAT JOJ SANRWNS WRISOLRA-TWAS [RJISSB)  (]'7 2InSL]

(w) 3er
PR "L @'Y ©VO'SC B2 V'Sl %17} PY"g %%
Lot v v beeg v oo v bep e el ea gty a byt oo b e ool it iLe 2+300°'0
WBIZOIIBA-IWBG [BIISBRB]D sssssn m
weIdoriep SUIYMBI]-9ISS3I]) ¢-0 60 0 -
- v-300°g
- <
- V]
I 1
|- g
L (@]
- aq
| x1
—£-300° 1 &
N B
X 8
B ]
N N
-£-30g°

£-3J00°2

44



"0661/L0/Y0 1 90eJIns IO JO S[ENPISAI J0J SAIBWINSD WERISORA-IUIOS [RIISSe])

(w) 8erq
0O RS Qo "oF PR "L 0o "Bc VL OI! 0o 'V
—___.._________________.___..__________.._________ ©+3J00°0
WBISOIIBA-1UWIAG [BOISSB[]) swewsea B
WBISOTIBA SUIYMBF[-IIESII 0 ¢-0 0 r
- S-300 &
» -
4 B
Wm|MQ®.m
- p-J02 1

P-302° 1

11°C 231y

() wel30IIBA

45



"0661/60/L0 “11F 20BJINS §TTO JO S[ENPISAY J0J SAIRWNS? WRISOLPA-TWAS [EOISSRL)  ¢[°7 QInSn]

(ur) Serq
8o "9 51 515 % Qo2 PRI %% ]
~___.__.___,______________.____._.____________.___|®+MQ®.®
WBIFOLIBA-TWOS [BOISSB]) s-ssweo - .
EthOme\V SUIYMBI]-OIS83I ¢-6 600 nlm..m®® F
Wm|m®®.wm
o o]
| e
- =
- ]
- ~
- 5-300 s ©
: 5
- B
Cg-300°p
- N
- 9-300°'9

§-J00°9

46



representation for the trend in the data, each time sampling is represented by a simple
set of spatial coefficients which will be analyzed to yield a mean gradient and flow

direction.

2.3.3 Gradient and Flow Direction Time Series

As mentioned earlier, the spatial coefficients calculated above are time dependent.

As a result the trend surface equation can be expressed in the following form:

H(x,y,t)=m ) +m,(O)x+m,()y ...(2.30)

Partial differentiation of the trend surface equation at each time sampling with respect

to the space coordinates, gives the following gradient time series.

...(2.31
9 3,0-m,0 @31

=) -(2.32)

Equation (2.31) gives the east-west time series and equation (2.32) gives the north-south

time series. The gradient-magnitude time series is given by:

F@l=lmyy+my@p]” ..(2.33)

and the flow direction measured clockwise from the north is given by
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Q()=tan"! [-mz(t)} .(2.34)
my(1)
Figure 2.2 displays the various geometric relationships for the flow field.

The gradient- and flow-direction time series are shown in Figures 2.13 to 2.16.
Long wavelength periodicities are present in both time series. Superimposed on these
long wavelength periodicities are short wavelength fluctuations. The maximum
amplitudes of the time series occur in the spring while the minimum amplitudes occur
in the autumn, corresponding to the well known recharge cycle at the site.

The north-south gradient component and the total gradient-magnitude time series
are similar in appearance, showing the dominance of the north-south gradient component
at the site. The amplitudes of the short wavelength fluctuations for both these data sets
are smaller than the amplitude of the long wavelength feature.

The east-west gradient component and flow direction time series are also quite
similar in appearance, with the flow direction time series simply being a reflection of the
east-west time series in the horizontal plane. For these two data sets, it is found that the

amplitudes of the short wavelength fluctuations are larger than the amplitude of the long

wavelength feature.

2.4 Geostatistical Analysis of Time Series

Rehfeldt’s (1988) unsteady analysis requires that the integral scale and the
variance of the gradient magnitude and the flow angle time series be known. To obtain

estimates of these parameters, a geostatistical analysis similar to that described earlier is
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carried out on the time series. The variogram methods previously described are enhanced
by the use of the Jackknifing technique (Shafer and Varljen, 1990). This approach allows
confidence limits to be placed around the experimental variogram.

At early times, water level measurements were obtained from only two
piezometers with the number increasing to 20 after 112 days and finally 34 after 539
days when the experiment ended. Watertable trend surfaces computed at early times
using a few piezometers provide relatively poor estimates of the waterlevel trend surface
present since the computed surface may be strongly influenced by the presence of an
anomaly or measurement error at a piezometer. When incorporated into the time series,
thése poor estimates may bias the estimates of the integral scale and the variance obtained
from the geostatistical analysis. Using the assumption that trend surface estimates based
on 20 or more piezometers are representative of the spatial trend, additional flow angle
and gradient magnitude time series are generated (Figures 2.13 to 2.16). These two time
series are used to examine the effect of the early time data on the integral and variance
estimates.

The expérimental variograms of the 4 data sets (the flow direction and the
gradient magnitude time series for the full data set and the flow direction and the gradient
magnitude time series computed described above) are computed using both variogram
estimation techniques, (see Figures 2.17 to 2.24). The variograms appear to be
exponential in form with zero nugget. The two variogram estimation techniques provide
similar results at the 95% confidence level. Hence the choice of variogram technique

does not appear to be important.
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The variograms show the presence of a sill. However the sill estimates for the full
time series and the truncated time series differ (see Figure 2.17 to 2.24). This shows that
the gradient magnitudes and flow angles computed using less than 20 piezometers
influence the variograms.

The parameter estimates for the data sets (i.e. the variances and the integral
scales), computed from the classical semi-variograms are shown in Tables 2.2, 2.3 and
2.4. In addition, the upper and lower 95% confidence limits computed for the variograms
are used to obtain estimates for these parameters (i.e. the variances and the integral
scales) at the 95% confidence limit. These will later be used to estimate the 95%

confidence limits for the asymptotic macrodispersivities.

Table 2.2

Transverse Dispersivity Results

Components Components at
of Expected 95% Confidence Limit
Estimate Upper Limit Lower Limit
o (radians?) 0.0166 0.0348 0.003
do? (radians?) 0.00076 0.00206 0.00004
A (days) 27.2 23.20 6.8
dA. (days) 11.4 14.20 30.0
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Table 2.3

Transverse Dispersivity Results

(112 —> 539 days)

Components Components at
of Expected 95% Confidence
Estimate Limit
Upper Limit
6; (radians?) 0.0146 0.0328
do. (radians?) 0.00089 0.00133
A+ (days) 18.44 18.20
dA; (days) 10.64 7.09
Table 2.4

Longitudinal Dispersivity Results

Components of
Expected Estimate
(7 -> 539 days) (112 -> 539 days)
data data
07 (radians?) 7.0x107 1.04x10°¢
do? (radians?) 4.5x10°® 2.1x107
A, (days) 65.00 90.00
d\, (days) 20.00 37.00
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2.5 Macrodispersion Analysis

The intention is to apply the watertable data to the dispersion models and then
compare the results to the plume moment data given by Freyberg (1986) for the 1983
Borden tracer plumes (chloride and bromide). This requires that the assumption be made
that the mean flow field at the Borden site is stationary in time. This allows the emplaced
source watertable data to be incorporated into the moment analysis of the 1983 tracer
. experiment. Some evidence exists to support this assumption of stationarity. Certain
similarities are evident between the waterlevel data from the emplaced source site and

the data given by MacFarlane et al. (1983) and Sudicky (1986) [see Table 2.5 and

Figures 2.25 and 2.26].

Table 2.5

Watertable Data for the Borden Aquifer

Emplaced Source MacFarlane Sudicky
Experiment et al. 1986
1989 1983
Range in
Water-table 0.8 1.0 -
Fluctuation
(m)

Range in
Flow Angle 39 13 14

(degrees)

Minimum

Gradient 3.3x10° 3.5x10° 3.6x10°
Maximum

Gradient 6.4x10° 5.4x10° 5.6x10°
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An examination of Table 2.5 and Figure 2.25 shows that the maximum waterlevel
fluctuations and the maximum and minimum hydraulic gradient magnitudes for the
waterlevel data from the emplaced source site compare well with the observations of
MacFarlane et al. (1983) and Sudicky (1986). However, the deviation in flow angle (39°)
for the waterlevel data from the emplaced source site (see Table 2.5) is approximately
three times the values reported by MacFarlane et al. (1983) and Sudicky (1986). Figure
2.26 shows the flow angle time series for the waterlevel data from the emplaced source
site with a 14° range in flow angle superimposed on it. From this figure it is seen that
the majority of the data points for the waterlevel data from the emplaced source site fall
within the range observed by MacFarlane et al. (1983) and Sudicky (1986). It is possible
that part of the observed difference between the data from the emplaced source site and
those of MacFarlane et al. (1983) and Sudicky (1986) is due to differences in sample
density. For this waterlevel data recorded at the emplaced source site the sample density
was approximate one sample period per week compared to approximately one sample per

month for the data set of MacFarlane et al. (1983).

2.5.1 Application of Geostatistical Results to the Asymptotic Model
Substitution of the computed gradient magnitude and flow angle variances and
integral scales (refer to Tables 2.2, 2.3 and 2.4) along with the mean gradient magnitude
(| T| =0.0043), the flow factor (y=1.16149) and th¢ flow velocity (U=0.091 m/day)
given by Sudicky (1986) into equations (2.10) and (2.11) yields the asymptotic

macrodispersivity results shown in Table 2.6. By replacing the expected values used for
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the variances and the integral scales in the above calculations with the 95% confidence
limit values for these parameters (see Table 2.2 and 2.3) estimates for the asymptotic

macrodispersivities at the 95% confidence limit have been obtained (see Table 2.6).

Table 2.6

Computed Macrodispersivities in the Longitudinal and Transverse Directions

Horizontal Transverse Macrodispersivity Longitudinal Macrodispersivity
(m) (m)
Lower Expected Upper Lower Expected Upper
7-539 0.002 0.031 0.054 - 0.165 -
-112 - 539 ~ 0.0 0.017 0.040 - 0.341 -

Note: Lower refers to the lower 95% confidence limit.
Upper refers to the upper 95% confidence limit.

In Table 2.6, it can be seen that the computed asymptotic horizontal transverse
macrodispersivity and its associated 95% confidence limits are statistically equivalent to
those of Freyberg (1986) [0.039m], Rehfeldt (1988) [0.013m] and Rajaram and Gelhar
(1991) [0.05m]. The horizontal transverse asymptotic macrodispersivity and its 95%
confidence levels for the truncated flow angle time series are also in good agreement with
the values of Freyberg (1986) and Rehfeldt (1988). If the transverse spread of the plume
is assumed to be Fickian (i.e. ¢*=2Dt), then Figure 2.27 shows that the expected
asymptotic horizontal transverse macrodispersivity presented in Table 2.6 provides a
good fit to Freyberg’s (1986) transverse second moment data beyond 259 days. In
addition, the upper and lower 95% confidence limits for the asymptotic horizontal

transverse macrodispersivity are found to enclose Freyberg’s (1986) transverse second
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moment data beyond 259 days quite well.

Estimates for the component due to unsteady flow of the asymptotic longitudinal
macrodispersivity are also shown in Table 2.6. Notice the large uncertainty associated
with these estimates. These results reflect the uncertainty in the variogram estimates. A
more accurate estimate of the variance and integral scale present in the gradient

magnitude time series probably requires a longer time series.

2.5.2 Harmonic Analysis of Borden Data

Before the harmonic model can be used to predict the transverse moment data at
the Borden site the gradient time series perpendicular to the mean flow direction (the a,
gradient component, see Figure 2.2) must be computed and a harmonic analysis
performed. This latter task is performed using the Fast Fourier Transform (FFT) method.

The a, gradient time series is computed using the following expression

a,()=|J(@)| * sin[T'@)] ...(2.352)
where

I'()=0()-0 ...(2.35b)

where Q is the mean flow angle, Q(t) is the flow angle at time t and ]J(t)} is the mean

gradient magnitude at time t. Figure 2.28 shows the computed a, gradient time series.
The FFT method requires that the sample interval be constant in time.

Unfortunately this not the case for the waterlevel data. The time series data must

therefore be interpolated onto a regular grid. The linear and the natural cubic spline
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interpolation methods (Smith, 1986, p.273) are used to interpolate the data onto a 128
point grid with a sample interval of approximately 4 days. A 128 point grid is chosen for
two reasons. The first reason is that the FFT method requires that the input data set
contain 2" points. Secondly, 128 points result in a sample interval which is greater than
the minimum waterlevel sample interval. Both methods produce similar results with the
major differences being at early times when the waterlevel data spacing is much greater
than the interpolation interval.

In addition to the precautions used to prevent aliasing in the frequency domain
when performing spectral analysis, care must also be taken when interpreting the
amplitudes obtained from spectral analysis. Based on the FFT algorithms which have
been tested (NLOGN, Robinson) it is found that the FFT method tends to scale the true
amplitudes of a signal by a factor of NPTS/2, where NPTS is the number of points in
the data set. The length of the data set can be increased by the addition of zeros after the
time signal when using the FFT method (Kanasewich, 1981, p.121). The addition of
zeros increases the resolution in the frequency domain without altering the observed
amplitudes. By using 2* zeros a resolution in the order of 10* cycles/day has been
achieved. Figure 2.29, shows the frequency spectrum of the a, gradient data set, while

Figure 2.30 shows the reconstructed signal compared to the original signal.

2.5.3 Application of Harmonics to the Time Dependent Model

The harmonics computed from the a, gradient time series are substituted into

equation (2.18) and the displacement time series, X(t) computed. The value of B used
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is equal to one since the hydraulic conductivity of the aquifer is constant in the horizontal
plane (see Sudicky, 1986). Note that the start time of the displacement time series
(August 1, 1989 or seven days after the start of thé emplaced source experiment) and the
start time for the Borden tracer experiment (August 23, 1982) are different. By making
the assumption of stationarity, the first 22 days of the displacement time series must be
ignored to obtain the displacement time series for the Borden experiment. If the extra 22
days of data are not removed an enhanced spreading moment will be obtained. The
displacement time series is then substituted into equation (2.19) to solve for the temporal
variance in the horizontal transverse direction. The results (Figure 2.31) show that the
harmonic method produces a poor fit to Freyberg’s horizontal transverse second moment
data.

Naff et al. (1989) obtained a fit to Freyberg’s horizontal transverse second
moment data by including a four year harmonic in their model. To test whether the fit
to Freyberg’s 2* moment data will be improved by the use of a longer a, time series the
following experiment is performed. Since the assumption has been made that the flow
field is smtion@, then it is in principle possible to repeat the time series beyond 539
days using the assumption of a one year period. The extended time series is shown in
Figure 2.32. The frequency spectrum for this time series is shown in Figure 2.33 and the
reconstructed time series based on 15 harmonics is shown in Figure 2.34 along with the
extended time series. The harmonics obtained from the frequency spectrum are inserted
into equation (2.18) and the results then substituted into equation (2.19) and the

horizontal transverse spreading moments computed (Figure 2.35). The results show that
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the increased time series slightly improves the fit to Freyberg’s data; however the fit is

still quite poor.

2.6 Discussion and Conclusions

The computation of the macrodispersivity in this paper is based on the assumption
that the flow field at the Borden site is stationary in both space and time. It is found that
if the geostatistical parameters (variances and integral scales) derived from the 1989
watertable data are used to evaluate the 1983 tracer data, then the asymptotic horizontal
transverse macrodispersivity computed using Rehfeldt’s (1988) theory is in statistical
agreement with the asymptotic horizontal transverse moment estimates of Freyberg
(1986) and Rajaram et al. (1991). This indicates that waterlével fluctuations play an
important role in the spreading of contaminants in the horizontal transverse direction at
the Borden site, and confirms the results of deterministic analyses such as that of Goode
and Konikow (1990).

In applying an altered form of the model of Naff et al. (1989), the assumption of
stationarity in the flow field at the Borden aquifer also has to be made. Again, using the
gradient time series from the 1989 watertable data and predicting plume transverse
second moments, the results obtained using this approach provided a poor fit to
Freyberg’s (1986) observed transverse moment data for the plumes at the Borden site.

It is important to compare the results of the Harmonic moment model to
Rehfeldt’s asymptotic approach. If the moment model is correct, it should produce a

function that at later times plots near the straight line produced by the dispersivity value
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computed using Rehfeldt’s model (see Figure 2.27). The dissimilarity between the two
approaches indicates that the deterministic-harmonic approach does not capture the
essence of the lateral mixing process under time-varying conditions. Therefore, a gap still
exists between early and asymptotic time behaviour. Based on the work in this paper it
does appear that a more general stochastic framework for plume evolution and dispersion
in a heterogeneous media with an unsteady mean flow field is required.

Finally this work does suggest that flow transients are important contributors to
the horizontal transverse dispersion process. Rehfeldt’s model suggests that the observed
dispersion process in an observed plume can be modelled by an enhanced horizontal
dispersivity when flow field transients are present. It is important to note that the
observed gradient variations in time are actually quite small at the Borden site and yet
they account for almost all of the horizontal spreading. It is very common in contaminant
transport modelling efforts to assume steady groundwater velocity. The implications here
are that such models may not be universally applicable and that not only must variations
in hydraulic conductivity be taken into account but also time variations of the hydraulic
heads. This has further implications in site and risk assessment if perhaps years of prior

monitoring at designated sites are required before commissioning,
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Chapter 3
The 1978 Borden Tracer Experiment;

Analysis of the Spatial Moments

3.1 Introduction

During the last two decades a few natural gradient tracer experiments have been
conducted at various field sites. The most discussed of these experiments has been the
S@ford—Waterloo tracer experiment which was conducted at the Borden aquifer (see
Mackay et al., 1986). This experiment involved detailed three-dimensional monitoring
of solutes injected into the aquifer under natural flow conditions. In addition, Sudicky
(1986), and Woodbury and Sudicky (1991) based on the analysis of core samples
provided a detailed characterization of the geostatistical properties of the hydraulic
conductivity field of the aquifer. Other similar experiments were the 1978 tracer
experiment at thé Borden aquifer (see Sudicky et al., 1978) and the Cape Cod experiment
(see LeBlanc et al., 1991). The results obtained from these experiments have confirmed
(1.) the earlier results that dispersivity is influenced by the distance travelled (see Sauty,
1980) and increases with time (see Dieulin, 1980); and (2.) the dependence of the
asymptotic longitudinal macrodispersivity on aquifer heterogeneity suggested by Gelhar
and Axness (1983) (see Sudicky, 1986). In addition, these field experiments have

indicated the presence of horizontal transverse dispersion processes within the aquifers
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which are not accounted for in the stochastic theories of Gelhar and Axness (1983) and
Dagan (1982, 1984, 1987 and 1988). A number of researchers have suggested that the
observed horizontal transverse dispersion may be due to the presence of flow transients
at the sites (see Sykes et al.; 1982 and Sudicky, 1986). Expressions for the components
of the asymptotic macrodispersivity due to unsteady flow have been developed by
Rehfeldt (1988). These expressions have been field validated by the work of Garabedian
et al. (1991) for the Cape Cod experiment and by Farrell et al. (1992) for the Stanford-
Waterloo experiment.

Spatial moment analyses have been the primary tool for analyzing the evolution
of | solute plumes being transported in the subsurface. Traditionally such analyses have
been limited to the examination of second and lower order moments, and so provide
information on the amount of mass in the plume, the velocity of the centre of mass of
the plume, and the macrodispersivity of the porous medium [see Freyberg (1986), Barry
et al. (1988), Garabedian et al. (1988) and Rajaram and Gelhar (1991)]. In addition to
these low order moments, higher order moments can also be determined to help in the
characterization of subsurface plumes. In particular, the third and the fourth moments
allow the skew and the kurtosis (respectively) of the concentration distribution in the
plume to be examined. Gelhar et al. (1979) and Naff (1990) have examined the evolution
of these higher moments for solute concentration distributions in stratified aquifers using
theoretical approaches. Some differences exist between these two works with regard to
the behavior of the skew. Naff (1990) indicates that the skew of the concentration

distribution in the plume is not pronounced; the observed deviation from a normal
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distribution is the result of the platykurtic nature of the plume at early time. However,
the work of Gelhar et al. (1979) shows that at early time the skew is significant; the
concentration distribution within the plume being positively skewed. In regards to the
higher moments very little work has been done at any of these tracer sites with respect
to examining their behavior even though large data bases exist.

In this work a reanalysis of the 1978 tracer experiment data for the Borden site
is performed using moment analysis techniques. In addition to the second and lower
order moments and associated parameters (i.e. mass in solution, velocity of centre of
mass and macrodispersivity) an analysis of the higher moments is also performed in order
to examine the evolution of the skew and the kurtosis of the concentration distribution
within the plume at early time. The results will be compared with the dispersivity and
velocity estimates of Sudicky et al. (1983) for the plume as well as with the theoretical
moments results of Gelhar et al. (1979) and Naff (1990). In addition, an examination and
partial explanation of the contradiction between the theories of Gelhar et al. (1979) and

Naff (1990) will be attempted.

3.2 Theory

3.2.1 Spatial Moments

Freyberg (1986) (see also Aris, 1956) defined the ijk® moment of a concentration

distribution in space, My, as
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nC(x,y,z,0)xyiz* dx dy dz 3.1

%——-—..8

[

where C(x,y,z,t) is the mass concentration of solute in solution (above background), x,

¢-—8

M (0)=

8

8

y and z are the spatial coordinates and n is the porosity of the porous medium. Equation
(3.1) is defined for all space; however, it is clear that the integrand will be zero at points
where the plume concentration is zero. Therefore, the spatial moment gives an integrated
measure of the concentration field over the extent of a plume. To determine the plume
properties such as the velocity, dispersivity, skew and kurtosis the zero® to the fourth
moments are required.

The zero® moment is obtained when i+j+k=0 in (3.1) [see Freyberg, 1986],
and provides a measure of the mass of solute present in solution. For a conservative
tracer the total mass of solute in solution should remain constant. Hence the zero®
moment will give an indication of how well a plume has been sampled as it moves
through the porous medium. For example, if the mass estimate obtained from the zero®
moment estimate is small when compared to the injected mass then it suggests that the
plume is poorly sampled at a particular instant.

The first moment is obtained when i+j+k=1 in (3.1) [see Freyberg, 1986].
Normalizing the first moment with respect to the zero* moment gives the location of the

centre of mass of the plume (x,y.,Zz.).

xc= MIOO yc= MOIO zcz MOOl (3'2)

Differentiation of the position of the centre of mass of the plume with respect to time
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gives the velocity, U of the centre of mass of the plume.

9

T
- ox, dy, o0z, (3.3)
9’ ot or

For the case i+j+k=2 the moments about the centre of mass may be determined

using (3.4) [see Naff', equation (5), 1990].

j @-x)(y-y,¥(z-2)* nC(x,y,z,0) dx dy dz 3.4)

“"""‘ﬁS

Mijk(l) = T

8

The higher moments computed using (3.4) are important for characterizing the solute
spfead about the centre of mass of the plume and therefore provides an easy way for
computing the dispersivity, skew and the kurtosis.

The second central plume moment is obtained when (3.4) is evaluated with
i+j+k=2 [see Freyberg,1986]. Normalizing the second moments with respect to the

plume mass produces the terms of the spatial covariance tensor.

2 2 2
O Ofy Og
2 2 2 (3.5a)
o’=|a, o, o,
2 2 2
Op Oy O
M. M M
=200 0)29, s 2 T (3.5b)
Mg M, Mg,
2 _ _Muo 2 _ 2_Mm1 _ _Mou (3.5¢)
U= O0p=—r— 0g=0u=——  0,=0,=-— .
M M M
000 000 000

The hydrodynamic dispersion tensor, D can be obtained from the spatial covariance
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tensor using the following equation developed by Einstein (1905).

1d »
D=1 250 (3.6

Here Dj represents the ij® term of the hydrodynamic dispersion tensor. This expression
applies only when the solute displacement field converges to the Gaussian distribution

(see Loaiciga, 1988). Bear (1972, p. 764) relates the hydrodynamic dispersion tensor to

the pore water velocity by
D=D I+A|V| 3.7

Here D, is the molecular diffusion coefficient of the solute in the porous medium; I is
the identity matrix; A is the macrodispersivity tensor and vl is the magnitude of the
velocity vector. The term D, is usually assumed to be small compared to the second term

at field scale. As a result the terms of the macrodispersivity tensor, A can be defined as

-1 dn 3.8
521V dzo"(t) G.8)

Loaiciga (1988) pointed out that if a plume does not approximate a Gaussian distribution
then using (3.8) will result in an inappropriate macrodispersivity estimate. In light of this
argument Freyberg’s definition will be adopted (see Freyberg, 1986 and 1988) and the
term "apparent macrodispersivity" used to define values computed by (3.5) in this work.

The third moment about the plume centre of mass is obtained when i+j+k=3 in
(3.4). Normalizing the third moment with respect to the plume mass and the cube of the
standard deviation of the plume concentration gives the skew, ¢°, in the plume

concentration distribution. Note that the skew is actually a diad of order three. In this
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chapter the principal skew components along the horizontal axes of the reference

coordinate system will be examined. These are given as [see Naff', 1990, equation (7)]:

Y
Gia=—”°;5—) (3.92)
My, 0,3
M
Uif——‘%; (3.9b)
My, ayy7

The fourth moment about the plume centre of mass is obtained when i+j+k=4
in (3.4). Normalizing the fourth moment with respect to the plume mass and the square
of the variance gives the kurtosis, ¢*, of the plume concentration distribution [see (3.10a)

and (3.10b); compare to Naff', 1990, (7)]

a;m= Mo (3.10a)
My, ori
waf MO“O (3.10b)
3
My 0y

As pointed out earlier the aim of this work is to determine the above moments and
related parameters for the 1978 tracer experiment plume. In the following section a
description of the 1978 tracer experiment will be presented as well as a discussion of the

methods used in the evaluation of the spatial integrals.
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3.3 The Field Data

The field site for the experiment is shown in Figure 3.1. Sudicky et al. (1983)
describe the aquifer as being made up of glaciofluvial sand deposits, which range in
thickness from 7.0m to 27.0m. The hydraulic conductivity of the aquifer is reported to
be between 4.8x10° ms? and 7.6x10"° ms™ and the porosity of the deposit is estimated
to be 0.38. Also shown in Figure 3.1 is the chloride component of the leachate plume
emanating from the landfill. Sudicky et al. (1983) report that this chloride plume is
approximately 2.5m below the zone of the tracer experiment. The background chloride
concentration in the area of the tracer experiment is approximately 2.0mgl"! (see Sudicky
et al., 1983) and as a result it is assumed to be negligible. Figure 3.2 shows a plan view
of the geometry of the injection wells and the multilevel samplers. The horizontal spacing
of the samplers ranged from 0.5m to 2.0m while the vertical spacing of the samplers
ranged from 0.15m to 0.18m. A more detailed description of the experiment and the
procedures used can be found in Sudicky et al. (1983). Chloride ions in solution were
inj ected into the aquifer and allowed to migrate under the natural flow conditions present
at the site. The chloride ion concentration distribution of the resulting plume was sampled
after 1, 3, 5, 8, 12, 15, 21, 29, and 121 days following the start of the experiment.
Figure 3.3 shows the vertical concentration distribution for the sampled part of the plume
after one day. It is interesting to note that the forward extent of the plume appears to be
staggered, with the plume front intersecting only some of the samplers along row A. The
plume displays significant small scale spatial variability in the vertical plane, with

concentration variations on the order of 300 mg/1 being observed between adjacent
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Figure 3.1 Map of the Borden Tracer-test site.
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sampler ports. However, the vertical distribution profile does appear quite similar in
shape along row A suggesting some possible large scale structuring in the aquifer.
Sudicky et al. (1983) attributed this to presence of high conductivity lenses in the aquifer.
In addition, it can be seen from Figure 3.3 that the multilevel samplers truncate the
plume in various places. Rajaram and Gelhar (1991) have shown that if the truncated part
of a plume is ignored the computed moment estimates will be underestimated. To account
for the truncated mass several researchers have devised various extrapolation schemes
to delimit the boundaries of the plume. These various extrapolation schemes will be
discussed in the following sections.

Samples of the time evolution of the plume along lines 3, 5 and 7 are shown in
Figures 3.4, 3.5 and 3.6. These figures show that with the péssage of time the plume
appears not to approximate a Gaussian type concentration distribution in the vertical
direction. Further, examination of the vertical concentration profile of the plume at the
sampling times presented show that the forward extent of the plume along line 7 appears
to be retarded relative to those along line 3. This feature has also been described by
Sudicky et al. (1983) who concluded that the plume evolved in a region with two
different groundwater velocities. They also conclude that the plume should actually be
considered as two separate plumes, with line 5 being the boundary between the two (see

Sudicky et al.,1983 Figure 4.c).

3.4 Methodology

As a result of the complex concentration distribution present within the plume,
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the spatial integrations are performed numerically to take advantage of the known
discrete concentration data (see Freyberg, 1986). The layout of the sampling equipment
given by Sudicky et al. (1983) for the experiment shows the spatial resolution of the data
to be much greater in the vertical direction (0.15m to 0.18m) than in the horizontal plane
(0.5m to 2.0m). Vertically, the sampler ports are evenly spaced whereas in the horizontal
plane the data possess variable spacing. The difference in the data structure in the
horizontal plane and the vertical plane requires different integration schemes to be
employed in each plane. Freyberg (1986), Barry et al. (1988) and Rajaram and Gelhar
(1991) have all used a similar approach in the analysis of the Stanford-Waterloo tracer
experiment data which possessed a similar data structure.

In the following section an indepth description of the integration procedures used

in both the vertical and the horizontal planes is presented.

3.4.1 Vertical Integration of the Plume

To perfo;m the vertical integration of the concentration plume the upper and
lower limits of the plume in the vertical plane must be determined. The determination
of these limits is an easy task when the plume lies within the limits of a multilevel
sampler bundle. However, in some instances the upper and lower limits of a plume may
extend beyond the extent of a multi-level sampler bundle (i.e. the upper or lower sample
port in the bundle records a non-zero concentration). In such cases, the vertical extent
of the plume must be estimated using an appropriate extrapolation sch‘eme. In this

analysis two linear extrapolation schemes are used to estimate the vertical extent of the
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plume. The first scheme is described by Rajaram and Gelhar (1991) (see also Garabedian
et al., 1991) and assumes that the limits of the plume extend to a distance equal to one
vertical sampler interval from the upper or lower sampler port. The second approach
(Freyberg, 1986) assumes that the limits of the plume extend to a distance equal to two
vertical sampler port spacings from the upper or lower sampler port. The vertical

integration of the plume is given by

b,

C,x.y,0)= J C(x,y,2,) dz 3.11)

I3

where C,(x,y,t) represents the vertically integrated concentration; b, and b, are the depths
to the upper and the lower limit of the plume respectively. Since the data in the vertical
plane are evenly spaced the integration defined by (3.11) is performed easily using
trapezoidal quadrature. The vertically inte_grated concentration is then substituted into

(3.1) and (3.4) to yield

My®= [ 27 nCx3 dv dy (3.12a)

-0 -0

M (0= f f (x-x )Y (y-y,Y nC(xy,5) dx dy (3.12b)

3.4.2 Horizontal Integration of the Plume

To perform the integrations described by (3.12a) and (3.12b), the limits of the

integration in the horizontal plane must be determined. In cases where the vertically
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integrated concentration has reached zero within the sampled domain the limits of
integration are easily determined. However, in some cases the sampler array may
truncate the plume (i.e. samplers on the border of the sampler array record non-zero
concentrations). In such cases the lateral extent of the plume must also be inferred by the
use of an extrapolation scheme. Again, the extrapolation schemes described by Freyberg
(1986) and Rajaram and Gelhar (1991) and outlined above are employed. However, for
this case the average sampler spacing in the horizontal plane must be determined and
used. Later, by examining the amount of mass recovered the effectiveness of the two
extrapolation schemes can be accessed.

Several approaches are available to perform the integration in the horizontal plane
[see Freyberg (1986), Barry et al. (1988) and Garabedian et al. (1991)]. Barry and
Sposito (1990) discussed the results obtained using these various approaches for the
Stanford-Waterloo tracer experiment. They conclude that the various schemes all produce
similar results. The relative equality in results is borne out by the similar apparent
asymptotic macrodispersivity computed by these groups. The asymptotic
macrodispersivities for the Stanford-Waterloo experiment obtained by the various
researchers using different numerical schemes are within a factor of two of each other.
For example, Freyberg’s estimate of the apparent asymptotic horizontal transverse
macrodispersivity was 0.039m (see Freyberg, 1986) while Rajaram and Gelhar’s was
0.050m (see Rajaram and Gelhar, 1991). Woodbury and Sudicky (1992) have suggested
that the differences between the various approaches is considered small particularly when

the uncertainty in the input parameters is considered. In addition, Farrell et al. (1992)
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(see also chapter 2) have constructed confidence limits for the apparent
macrodispersivities due to unsteady flow at the site. The reader is reminded that the
observed transverse spread is believed to be due to flow transients (see Sykes et al.,
1982; Sudicky, 1986 and Farrell et al., 1992). Farrell et al. (1992) (see also chapter 2)
have shown that both Freyberg’s estimate and Rajaram and Gelhar’s estimate lie within
the computed 95 % confidence intervals suggesting that both estimates are statistically
equivalent.

The integration in the horizontal plane is performed by first interpolating the
computed vertically integrated concentrations onto a regular grid. To accomplish this the
in?erse square distance (see Barry et al., 1988) and the kriging interpolation schemes are
used. The kriging approach used is based on a linear variogram (seé Journel and
Huijbregts, 1978) and the method can be shown to be an exact interpolator at the control
points. However, Barry et al. (1988) have pointed out the following advantages of the
inverse square distance interpolation scheme:

1. The method also performs an exact interpolation;
2. The intérpolated value is always bounded between the minimum and maximum
values of the observed data;
3. The method results in a physically plausible two dimensional plume
representation.
The spatial moments are computed by approximating the areal integrations by a nine
node, local fourth order areal quadrature on the regular grid of estimated C,(x,y,t) values

(see Abramowitz and Stegun 1970, equation 25.4.62; see also Freyberg, 1986). The use
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of two different interpolation schemes permits the sensitivity of the moment estimates to
these schemes to be later examined.

In the following the results of the analysis will be divided in two major sections.
An analysis for the entire plume will be presented in the first section while in the second
section an analysis for the part of the plume in the lower hydraulic conductivity zone will

be provided.

3.5 Results

3.5.1 The Vertically Integrated Plume

The vertical concentration profile at each multilevel sampler is extrapolated using
the previously outlined schemes and then vertically integrated [see (3.11)]. The
integration is performed numerically using trapezoidal quadrature. To facilitate
contouring and numerical integration in the horizontal plane the vertically integrated data
is then interpolated onto a regular grid. The interpolation is performed using both
methods previously discussed.

Based on the analysis performed, it is found that the kriging interpolation scheme
produces physically unrealistic (negative) concentration values in some cases. The inverse
square distance method did not generate such values. In addition, it is found that the
spatial concentration patterns produced using the kriging interpolation scheme display
considerable smoothing (see Figure 3.7). This degree of smoothing displayed seems
unrealistic in view of the complex nature of the hydraulic conductivity field present in

aquifers. In comparison, the spatial patterns generated by the inverse square distance
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Figure 3.7 Vertically integrated plume using Freyberg extrapolation scheme and kriging

interpolation scheme.
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Figure 3.8 Vertically integrated plume using Freyberg extrapolation scheme and inverse
square distance interpolation scheme.
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Figure 3.9 Vertically integrated plume using Rajaram and Gelhar extrapolation scheme
and inverse square distance interpolation scheme.
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approach produce much less smoothing, and qualitatively at least, appear much more
realistic (see Figures 3.8 and 3.9). As a result the inverse square distance approach is
the interpolation method of choice.

The contour maps of the vertically integrated concentration shown in Figures 3.7,
3.8 and 3.9 also show that the plume becomes increasingly distorted with time, with the
northern section of the plume migrating at a much faster rate than the southern section.
Sudicky et al. (1983) have attributed this behaviour to the plume migrating in two
separate zones with different average hydraulic conductivities. The change in the shape
of the plume indicates that the boundary between the two zones appears to be quite
abrupt and runs parallel to the x-axis of the field coordinate system, with the northern
zone having the higher hydraulic conductivity. Based on these figures it appears that the
line separating the two hydraulic conductivity zones is about y=6.5m in the field

coordinate system.

3.5.2 Full Plume Analysis

3.5.2.1 Recovered Mass Estimates

The recovered mass estimates obtained for the entire plume using the different
interpolation schemes [but identical extrapolation schemes Freyberg (1986) scheme used]
are shown in Tables 3.1 and 3.2. Comparison of these two tables shows that the
recovered mass estimates are quite similar, with the maximum variation between the
estimates being 7.0g on day twelve. This suggests that the recovered mass estimates are

quite insensitive to the interpolation scheme used. When the different extrapolation
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schemes are used with identical interpolation schemes (inverse square distance method
used) it is found that significantly different recovered mass estimates are obtained (see
Tables 3.2 and 3.3). The Freyberg (1986) extrapolation scheme is found to produce
recovered mass estimates which significantly exceed those obtained using the Rajaram
and Gelhar (1991) extrapolation scheme. For example, the recovered mass estimate on
day twelve using Freyberg’s extrapolation scheme is 557.0g (see Table 3.2) compared
to 451.7g (see Table 3.3) obtained using the Rajaram and Gelhar (1991) scheme for the
same time - an increase of 123.3%. Therefore it is apparent that the recovered mass
estimateé are sensitive to the extrapolation scheme used. Since the recovered mass
es‘ztimates produced by the Rajaram and Gelhar (1991) extrapolation scheme are in better
agreement with the injected mass (396.3g) it will be used as the extrapolation method of
choice in this paper.

Tables 3.1, 3.2, and 3.3 also show that the recovered mass estimates have
considerable variability, with the recovered mass estimates at early times being
considerably smaller than the estimated injected mass (396.3g). This variability in the
recovered mass estimate is directly related to the number of ports which sample the
plume. At early and late times the plume is sampled by only a few of the ports in the
array and this results in the low mass estimates. At more intermediate times (particularly
days 8, 12 and 15) the mass estimates are more consistent indicating that the plume is

being well sampled.
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3.5.2.2 Motion of the Centre of Mass and Plume Velocity Estimates

The location of the centre of mass of the plume is obtained from the zeroth and
first moment estimates using (3.2). The results of the centre of mass analysis for the
entire plume using the Rajaram and Gelhar extrapolation scheme and the inverse square
distance interpolation scheme are shown in the eighth and ninth columns of Table 3.3.
The motion of the centre of mass for the entire plume both as a function of space is
shown in Figure (3.10). The figure shows that the motion of the centre of mass for the
entire plume appears to be displaced from the origin of the local coordinate system at
early time (the local coordinate system is designed so that the origin lies at (0,7.0) of the
ﬁéld coordinate system) even though considerable care was taken to ensure that the local
coordinate system was located at the centre of the injection well array. This observed
behaviour is probably a result of the poor sampling of the plume at early times (see also
Sudicky et al. 1983, Figure 4a and 4b). The mean velocity of the centre of mass of the
plume estimated from ordinary least squares fits to the data is 8.70x107 ms™. This
velocity estimate is biased because of the poor sampling of the plume and as a result
should be considered crude. As pointed out, at early and late times mass estimates for
the entire plume are low due to incomplete sampling of the plume. If recovered mass
estimates below 70% and above 130% are ignored (see Figure 3.11), the estimate of the

mean velocity of the plume centre of mass is 9.69x10” ms™.

3.5.3.3 Second Moment, Spatial Covariance and Macrodispersivity Estimates

The second moment estimates and the terms of the spatial covariance tensor
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[computed using (3.5b) and (3.5¢)] in the field coordinate system for the entire plume
computed using the Rajaram and Gelhar extrapolation scheme and the inverse square
distance interpolation scheme are presented in Table 3.3.

The terms of the macrodispersivity tensor are usually defined with respect to the
longitudinal and transverse directions where the longitudinal direction refers to the
direction of the mean horizontal trajectory of the centre of mass of the plume (see
Freyberg, 1986). To facilitate this definition the components of the spatial covariance
tensor must be given in a coordinate system oriented in this way, where the x’ coordinate
axis parallels the linear horizontal trajectory of the plume and the y’ coordinate axis is
perpendicular to the trajectory (see Figure 3.12). Therefore, a rotation of the terms of
the spatial covariance tensor defined in the field coordinate system is required. This

rotation is given by the following matrix

cos¢p -sing (3.13)
sing cos¢

and the spatial covariance terms in the rotated coordinate system are given by

O Oyl _pr | %= % o (3.14)
J)“ &W 0)“ GW

where ¢ is the angle between the x-axis of the field coordinate system and the mean flow
direction of the plume and the primed terms represent the terms of the spatial covariance
tensor in the rotated coordinate system. Note that the angle ¢ is defined as positive when

measured in the counter-clockwise direction.
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As described earlier, the entire plume is migrating in a medium which has two
distinct average hydraulic conductivities. Since the design of the sampler array does not
take this into consideration the entire plume is poorly sampled at early and late times.
The component of the plume in the higher hydraulic conductivity zone is well sampled
at early times but poorly sampled at later times, while the component of the plume in the
lower hydraulic conductivity zone is poorly sampled at early times but well sampled at
later times. This poor sampling of the entire plume results in the computed centre of
mass of t_he plume having a complex trajectory (see Figures 3.10 and 3.11). As a result,
it is difficult to determine whether computed rotation angles based on Figures 3.10 and
3.11 are meaningful. It is also difficult to determine whether the macrodispersivity
parameter is meaningful when the concentration distribution of the plume is non-Gaussian
(recall the plume appears to split into two). As a result, analyses of the second and
higher moments for the entire plume are not performed. Instead, attention is focussed on

the component of the plume in the lower hydraulic conductivity zone.

3.5.3 Plume iﬁ Lower Hydraulic Conductivity Zone

Contour maps of the vertically integrated plume in the lower hydraulic
conductivity zone are shown in Figure 3.13. The figure shows that the plume migrates
in a direction which is almost parallel to the X-axis of the field coordinate system; This
suggests that the terms of the spatial covariance tensor will require very little, if any,
rotation to align them to the mean displacement direction of the plume. The figure also

shows that the plume in this zone attains an approximate Gaussian concentration
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distribution.
3.5.3.1 Recovered Mass Estimates

In order to determine the percentage mass recovered in the lower hydraulic
conductivity zone, the mass of the injected chloride into this zone must first be estimated.
An assumption is made here that there was negligible movement of tracer mass across
the interface separating the two hydraulic conductivity zones. Such an assumption is
justified if the plume mass moves parallel to the interface so that the transfer of mass
across the interface can occur only as a result of transverse dispersion and diffusion. The
mass of chloride injected into the lower hydraulic conductivity zone (159.0g) is taken as
thé sum of the mass injected at wells IW4 and IWS5. The zeroth moments for the plume
in the lower hydraulic conductivity zone are computed using the approach outlined
previously and are shown in the second column of Table 3.4. Using a value of 159.0g
for the injected mass in the lower hydraulic conductivity zone the highest recovered mass
estimate is 139% greater than the injected mass (see Table 3.4). This occurs on sample
day 121 when the plume was poorly sampled and as a result is questionable. Overall, the
results suggest tﬁat the assumption of negligible interaction between the two zones is

reasonable,

3.5.3.2 Motion of Centre of Mass and Plume Velocity Estimates
The centre of mass of the plume in the lower hydraulic conductivity zone is
computed. Figure 3.14 shows the motion of the centre of mass as a function of space.

Here, the origin of the local coordinate system is located at (0, 5.875) of the field
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coordinate system. The centre of mass of this plume has a linear motion. The mean
velocity of the centre of mass of this plume estimated from a first order ordinary least
squares fit to the data is 9.38x107 ms” (see Table 3.5). If recovered mass estimates below
70% and above 130% are ignored the estimate of the mean velocity of the centre of mass
of the plume is 7.31x10” ms™ (see Figure 3.15 and Table 3.5). These velocity estimates
are found to be in good agreement with the velocity estimate of 8.2x107 ms* obtained

by Sudicky et al. (1983) for this zone.

Table 3.5
Estimated plume velocity for the 1978 tracer experiment

(plume in low hydraulic conductivity zone)

Full Data Reduced Data
\'4 1 ’
- 9.49x10 7.29x10
\4 . *
A -3.47x10 -5.79x10
(’nl‘/lsl) 9.50X107 7.31X107

Note: Reduced data refers to the data set containing recovered mass estimates between
70% and 130% of the injected mass.

3.5.3.3 Second moments, Spatial Covariance and Macrodispersivity Estimates
The second order moments and the spatial covariance tensor in the field

coordinate system are computed. The rotation angle though which the terms of the spatial
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covariance must be rotated, is computed by fitting a first order ordinary least squares line
to the centre of mass data (see Figures 3.14 and 3.15). The angle of rotation for this
plume is found to be -2.078° when all the data is used and -4.574° when only the data
which represents 70% to 130% of the injected mass are used. These values are
reasonable in view of the fact that the motion of the plume in the lower hydraulic
conductivity is approximately linear and the entire plume is, in general, well sampled in
this zone. Equations (3.13) and (3.14) are used to rotate the terms of the covariance
tensor. The rotated covariance values are listed in Table 3.6. It is found that the rotation

changes the values very little and as a result it appears that in this case the rotation not

necessary.
Table 3.6a
Second Moments for Field and Rotated Coordinate Systems
(plume in low velocity medium)

Day 0 a, g, G Oy Oy
3 0.047 -0.003 0.211 0.047 -0.008 0.211
5 0.061 -0.010 0.250 0.062 -0.017 0.249
8 0.099 -0.012 0.215 0.100 -0.016 0.214
12 0.159 0.074 0.194 0.154 0.073 0.199
15 0.198 -0.026 0.220 0.200 -0.027 0.218
21 0.456 -0.024 0.255 0.457 -0.017 0.254
29 0.536 -0.063 0.269 0.540 -0.053 0.264
121 2.771 0.043 0.769 2.765 0.115 0.775

Angle of rotation=-2.078 (measures anti-clockwise from the X-axis)
Note: 0,,=0,, and 6,,=d,,.
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Table 3.6b
Second Moments for Field and Rotated Coordinate Systems

(plume in low velocity medium)

Day O O, o, O Oy Gy,
3 0.047 -0.003 0.211 0.049 -0.016 0.209
5 0.061 -0.010 0.250 0.064 -0.025 0.247
8 0.099 -0.012 0.215 0.102 -0.021 0.212
12 0.159 0.074 0.194 0.147 0.070 0.206
15 0.198 -0.026 0.220 0.202 -0.027 0.216
21 . 0.456 -0.024 0.255 0.458 -0.008 0.252
29 0.536 -0.063 0.269 0.544 -0.041 0.260
121 2.771 0.043 0.769 2.765 0.117 0.775

Angle of rotation=-4.574 (measures anti-clockwise from the X axis).
Note: o,,=0,, and G,,=d,,.

Stochastic theories of dispersion (see Dagan, 1982, 1984, 1987 and 1988) and
field studies such‘as the Stanford-Waterloo experiment have shown that macrodispersivity
initially increases with time before reaching asymptotic values (Freyberg, 1986). Table
3.7 shows the macrodispersivity computed as a function of time using a pseudo sequential

calibration approach [see (15a) and (15b); see also Freyberg, 1986].

A=t S0 (3.152)
¥ 2|U| t-3

oy 1 oy,y,(t)-oy,y,(S) (3.15b)
YT 20U t-3
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Table 3.7
Time Dependent Dispersivity Estimates for
the 1978 Tracer Experiment

(plume in low hydraulic conductivity zone)

Period Longitudinal Transverse
Dispersivity (A) Dispersivity (A;)

(Day) (m) (m)

5 0.059 0.150

8 0.084 0.005

12 0.086 -0.003

15 0.101 -0.005

21 0.180 0.019

29 0.151 : 0.016

121 0.181 0.044

Note: Values computed using data in Table 3.6b

The results show some that the macrodispersivity appears to fluctuate with time with the
macrodispersivity appearing to be negative at some times in the transverse direction. This
fluctuation indicates that the plume is being strongly influenced by the heterogeneity in
the medium. However, the general trend in the data indicates that the macrodispersivity
in both the longitudinal and transverse directions increases with time. Due to the short
length of the time series and the poor sampling of the plume particularly at later times
it is impossible to determine the asymptotic limits for the dispersivity in the longitudinal
and transverse directions using this approach. Approximate estimates for the components

of the apparent asymptotic macrodispersivity in the longitudinal and transverse directions
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are computed by performing first order ordinary least squares fits to the spatial
covariance data in the longitudinal and transverse directions (see Figures 3.16 to 3.19).
This allows the slope of the spatial covariance as a function of time to be estimated. The
longitudinal and transverse terms of the apparent asymptotic macrodispersivity are then
calculated according to (3.8). These estimates of the apparent asymptotic
macrodispersivity for the plume in the lower hydraulic conductivity zone are shown in
Table 3.8. It must be pointed out that although the terms of the covariance tensor
increase with time it is difficult to determine (due to the short length of the data) whether

asymptotic limits have been reached.

Table 3.8
Dispersion and Dispersivity Estimates for
the 1978 Tracer Experiment

(plume in lower hydraulic conductivity zone)

Longitudinal Longitudinal Transverse Transverse
Dispersivity Dispersion Dispersivity Dispersion
(m) (m/s) (m) (m’/s)
Full plume 0.143 1.36x107 0.029 2.78x10°%
Reduced 0.160 1.17x107 0.027 1.94x10%
data

The results show that the apparent asymptotic horizontal transverse

macrodispersivity is found to be between 0.027m and 0.029m. These values are almost
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identical to the value of 0.030m found by Sudicky et al. (see Table III, 1983). Sudicky
et al. (1983) determined the dispersivity parameters by comparing the concentration
profiles produced by the Carslaw and Jaeger (1959) 3D analytic model to observed
longitudinal concentration profiles. The dispersivity parameters used in the model are
continuously updated until a good fit is obtained between the observed concentration
profile and the computed profile. These values also compare well to the apparent
asymptotic horizontal transverse macrodispersivity value of 0.039m determined by
Freyberg (1986) for the Stanford-Waterloo tracer experiment at the Borden site and are
also found to agree with the value of 0.030m determined by Farrell et al. (1992) (see
chapter 2) based on the unsteady stochastic transport theory of Rehfeldt (1988). This
latter approach is based on consideration of the hydraulic gradient fluctuations at the site.

The computed value for the apparent asymptotic longitudinal macrodispersivity
for the site is found to be between 0.143m and 0.160m (see Table 3.8). These values are
higher than the possible asymptotic longitudinal macrodispersivity value of 0.08m found
by Sudicky et al. (see Table III, 1983). Gelhar et al. (1992) report that a moment
analysis perfoﬁned by them on the 1978 tracer data has produced a longitudinal
macrodispersivity which is 2-4 times that given by Sudicky et al. (1983). This value is
consistent with the estimates determined in this work. In addition, Gelhar et al. (1992)
point out that in the near source region where dispersivities are increasing with
displacement the approach used by Sudicky et al. (1983) will tend to underestimate the
magnitude of the dispersivity since such an analysis only examines localized spread (i.e.

spread along a transect of the plume) and not the spread over the entire plume. The
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apparent asymptotic longitudinal macrodispersivity values calculated in this work are also
lower than the apparent asymptotic longitudinal macrodispersivity value of 0.36m
reported by Freyberg (1986) for the Stanford-Waterloo tracer experiment. This difference
may be attributed to the difference in the scale of the two experiments. It may be argued
that since the Stanford-Waterloo experiment was conducted over a much longer time
period than the 1978 tracer experiment (3 years for the former compared to 4 months for
the latter) it was able to fully interact with the heterogeneity present in the aquifer. The
solute associated with the 1978 experiment may not have fully interacted with the
heterogeneity in the aquifer and as a result the observed longitudinal dispersivity would

be less than the asymptotic value.

3.5.3.3 Third Moment and Skew Estimates

The third moment estimates for the plume in the lower hydraulic conductivity
zone have been computed using the inverse square distance interpolation scheme and the
extrapolation scheme described by Rajaram and Gelhar (1991). The third moments and
the computed skéw in the plume concentration distribution for both the longitudinal and
the transverse direction at the various sample times are shown in Table 3.9.

A plot of the skew results (see Figure 3.20) shows that in the longitudinal
direction the skew fluctuates and is greater than zero at early times. However, at the 121
day sample time the skew is found to be negative. An examination of the longitudinal
concentration profile for the plume given by Sudicky et al. (Figure 3.10, 1983) also

shows positive skew at early time. As pointed out earlier, Gelhar et al. (1979) have

135



"3WD SA UONENUU0D swnyd OU} Ul MOYS asIoAsuel) pue JeulpmiSuo]  (z'¢ 2Ingig

(sfep) awyy,
00°0%1 00°021t 00°0071 00°08 00°09 00°0V 00°0¢ 00°0

Lo v e e b v v e v n by e s v vy bygoa v bopov v g s bovy gy adyi vty Oo.ﬁal

UOL}0011p OSI0ASUBI] Ul MOYS 06 060
uoyjoeip [Buipnjiduo] ul meys pmaen

0S°0—

lllllllllllllllllll

000 %

0G0

frrrryorrrrrrr T TrTrTd

00°1

136



derived expression for the skew of the concentration distribution of a plume in perfectly
Table 3.9
Computed Skew for the Plume in the

Low Velocity Zone

Time Skew
(days) .
Longitudinal Transverse
direction direction
3 0.101 -0.407
5 0.537 -0.385
8 0.631 -0.076
12 0.919 -0.097
15 0.722 -0.134
21 0.710 -0.158
29 0.633 -0.106
121 -0.602 -0.173

stratified aquifer in which the flow is unidirectional and parallel to the stratification.
Their approach treats the variability of hydrologic phenomena as a stochastic process and
assumes that the variations in the hydraulic conductivity and the concentration are
statistically homogeneous. In addition, the approach explicitly accounts for the local
dispersivity. Their the?retical results show that at early times the skew in the
concentration distribution is positive but quickly tends to zero at later times. This
supports the early time finding obtained in this work but contradicts the late time finding.

However, the late time results (i.e. in particular our 121 day result) obtained in this work
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may be considered questionable due to the poor sampling of the plume at this time. Naff
(1990) also examine spreading in a heterogeneous aquifer. In his analysis the variability
of hydrologic processes are considered as stochastic processes; however the variations
in the hydraulic conductivity and the concentration are not restricted to being statistically
homogeneous. From his work Naff (1990) defines a term called the skew factor, B,
which has the following properties:

1. *xB,

2. B,<0fort<oo;

3. B,=0 for t=c0 (normal distribution)
(see Figure 3.21; note that 7 in the figure represents dimensionless time).
The skew factor is supposed to reflect the behavior of the skew of a concentration
distribution at all time. However, since the theory (Naff, 1990) neglects local
dispersivity, the skew factor may not adequately represent the skew in the concentration
distribution at early time when such effects are important. Comparison of the theoretical
behavior of the skew factor to the observed skew in the concentration distribution in the
longitudinal direétion shows poor agreement at early time. Since Naff’s (see Naff, 1990)
approach ignores the effects of local dispersion at early times it can be argued that the
results show the importance of the local dispersivity in the evolution of the plume at early
time. The computed skew in the concentration distribution in the transverse direction is
negative at all time. However, the skew is quite small and may be considered negligible;

hence the concentration distribution in this direction can be considered to be normal.
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Figure 3.21 Plot of normalized variance, skewness, and kurtosis for large stratification
as functions of dimensionless time (after Naff, 1990).
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3.5.3.4 Fourth Moment and Kurtosis Estimates
The kurtosis is a property which is used to describe whether a symmetric distribution is
sharper or flatter than a normal distribution. The computed kurtosis values in the

longitudinal direction and the transverse direction at each sample time are shown in Table

3.10.

Table 3.10
Computed Kurtosis for the Plume in the

Low Velocity Zone

Time Kurtosis
(days) .
Longitudinal Transverse
direction direction
3 2.442 2.638
5 3.587 2.388
8 3.237 2.444
12 4,395 2.453
15 3.541 2.412
21 3.376 2.237
29 2.822 2.154
121 2.589 2.612

As with the skew, the kurtosis in the longitudinal direction shows considerable fluctuation
at early time (see Figure 3.22). For example after 3 days, the kurtosis value is found to
be 2.442, indicating that the plume is flatter than the normal distribution (i.e.

platykurtic). However, after 5 days the kurtosis value has changed to 3.587, indicating
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that the concentration distribution is sharper than the normal distribution. Gelhar et al.
(1979) point out that the kurtosis at later times should be <3 and that this "non-normal®
kurtosis should persist quite far down stream. This is somewhat consistent with the
findings in this work for the concentration distribution between 29 and 121 days (see
Table 3.10) and the longitudinal profile given by Sudicky et al. (Figure 3.11, 1983). Naff
(1990) describes a parameter called the kurtosis factor, D, which reflects the behavior
of the kurtosis. The kurtosis factor has the following properties:

1. ¢*xD,

2. D,<3 fort< o;

3. D,=3 for t=c0 (normal distribution)
(see also Figure 21).
At early times the kurtosis factor may not provide an accurate representation of the
kurtosis since the theory neglects local dispersivity effects. Comparison of the kurtosis
factor and the observed kurtosis in the longitudinal direction shows little agreement, with
the computed kurtosis indicating that the concentration profile is sharper than the normal
distribution. The computed kurtosis is reflected by the observed concentration profiles
given by Sudicky et al. (Figure 3.10, 1983) which indicate that the observed
concentration profiles are sharper than the normal distribution. At 121 days the
longitudinal concentration profile Sudicky et al. (1983) are quite flat indicating that the
kurtosis factor is well below 3. This is consistent with our finding and the results
reported by Gelhar et al. (1979). In the transverse direction the computed kurtosis in the

concentration distribution (see Figure 3.16) is observed to show better agreement with
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the kurtosis factor.

3.6 Discussion and Conclusions

The most significant result obtained from the analysis is the remarkable agreement
between the estimate for the asymptotic horizontal transverse macrodispersivity computed
in this work and that of Freyberg (1986) for the Stanford-Waterloo tracer experiment.
This result strongly suggests that the transverse dispersivity at both sites is due to the
same mechanism: transients in the flow field at the site. This result also suggests that the
flow field at the Borden aquifer is stationary in both space and time (see Farrell et al.,
1992). However, further waterlevel measurements need to be carried out over a long
period of time to confirm this. Since transverse spreading in the subsurface appears to
strongly influenced by the transient nature ’of the flow field then these results mean that
for an accurate prediction of the fate of subsurface solutes an accurate knowledge of the
groundwater flow field and how it changes with time. Such knowledge becomes critical
when the solutes involved are highly toxic. In such cases if the effect of the flow
transients are ignored and the transverse dispersivity is assumed to solely influenced by
the heterogeneity in the hydraulic conductivity field then the transverse dispersivity will
be underestimated. As a result the predicted spread of the solute in the transverse
direction will underestimate the actual spread. An underestimation of the transverse
spread may have a detrimental effect on any proposed remediation measures.

The findings of this work show that both the skew and the kurtosis are important

indicators of the deviation of the concentration distribution from the normal distribution.
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This result supports the earlier findings of Gelhar et al. (1979). The contradiction
between the theoretical results of Naff (1990) and the observed skew and kurtosis of the
solute plume emphasizes the importance of the local dispersivity in influencing the spread
of solutes in the groundwater system at early time. Naff’s theory (see Naff, 1990)
suggests that at early time plumes tend to be negatively skewed. As a result, steep
concentration gradients are predicted to develop at the front of plumes. However, from
our analysis we have found that this is not the case. Instead, it has been found in this
work that at early times the plume tends to be positively skewed so that shallow
concentration gradients exist at the front of the plume. This result is also supported by
the theoretical work of Gelhar et al. (1979). Naff (personal communication) points out
that the first order analysis presented in his earlier analysis (Naff, 1990) does not
produce good parameter estimates and in fact second order estimates are required. The
use of second order estimates results in poSitive skews in the concentration distribution
at very early time followed by negative skews at intermediate time. These results may
suggest that at early times the local dispersivity is an important mechanism for moving
mass ahead of the advective front of the plume. Naff (personal communication) suggests
that advective forces may be responsible for the observed positive skew at early time;
however, as pointed out by Naff (personal communication) the transport process at such
time is quite complex. In addition the work does confirm that significant departures from
Fickian transport do occur at early time.

Finally, it must be pointed out that care must be taken in accepting all of the

results of this work due to the amount of extrapolation used in determining the plume
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boundaries at each sample time and the coarse sampling used at early times. Since these
results do compare well with the results of others (e.g. Sudicky et al., 1983 and Gelhar
et al., 1985) it appears that they are quite representative of the processes at the site.
However, for the higher moment estimates the approach used here should be repeated
on a better sampled data set (e.g. the Stanford-Waterloo tracer experiment data set) in

order to validate these findings.
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Chapter 4

Discussion and Conclusions

4.1 Introduction

This chapter provides a summary of the results discussed in the previous two
chapters with the goal of putting the results into perspective. In particular, the assumption
of spatial and temporal stationarity in the flow field will be discussed as well as the
implications of non-Fickian behavior at early time. This chapter is concluded with a

discussion of future areas of research related to this work.

4.2 Discussion of Stationarity Assumption

The transverse horizontal asymptotic macrodispersivity estimates computed for
the 1978 Borden tracer experiment (this work) and the Stanford-Waterloo tracer
experiment (see Freyberg, 1986, and Rajaram and Gelhar, 1991) are shown to be quite
similar even though the experiments were conducted at different times and in different
parts of the Borden aquifer. If Sudicky’s contention is correct (that the observed
transverse horizontal dispersion at the Borden site is probably due the presence of known
flow transients at the site) then the observed similarity in the transverse horizontal
asymptotic macrodispersivity for the two experiments suggests that the flow field at the
Borden site is stationary with respect to space and time. In Chapter 3, several arguments

are put forward to justify the assumption of stationarity in the Borden flow field. It is
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shown that the range in the flow angle deviation, the range in the gradient magnitude and
the mean gradient magnitude computed from the 1989-91 watertable data are in
agreement with the values given by MacFarlané et al. (1982) and Sudicky (1986) in
different parts of the aquifer at different times. The geostatistical parameters (i.e. the
variances and the integral scales) derived from the 1989 Borden watertable data, when
used in Rehfeldt’s unsteady theory, produces transverse and longitudinal asymptotic
macrodispersivity estimates. These are shown to be in good agreement with the apparent
transverse horizontal asymptotic macrodispersivity estimates of Freyberg (1986), and
Rajaram and Gelhar (1991) for the Stanford-Waterloo tracer data. Further, the estimate
of the transverse horizontal asymptotic macrodispersivity computed using Rehfeldt’s
unsteady theory is also shown to be in good agreement with the apparent transverse
horizontal asymptotic macrodispersivity computed from the 1978 Borden tracer data (see
Chapter 2). The agreement between the results of the theoretical model and the results
computed from the field data strengthen the argument for stationarity (both temporal and
spatial) in the Borden flow field. However, it must be pointed out that additional
waterlevel data for the site is required to confirm whether the flow field at the site is

actually stationary (see Chapter 3).

4.3 Early Time Plume Behavior

This work also examines the early time behavior of an evolving solute plume at
the Borden aquifer. For this plume, it is found that the macrodispersivity increases with

time and displacement [see Sauty (1980), Dieulin (1980), Sudicky et al. (1983)]. Based
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on an examination of the second, third and fourth order moments it is found that at early
time the evolving solute plume does not conform to classical Fickian behavior as is
commonly assumed in practice. Instead, the concentration profile of the evolving solute
plume is found to be both positively skewed and platykurtic. Comparison of these
findings with the theoretical results of Gelhar et al. (1979) and Naff (1990) show that the
observed behavior of the skew and the kurtosis (obtained in this work) agree with the
former and disagree with the latter (with respect to the nature of the skew). The tendency
of the concentration distribution in solute plumes to be positively skewed at early time
is also supported by the work of Tompson (1988). Recall that the work of Gelhar et al.
(1979) was based on the assumption that an aquifer was perfectly stratified. Therefore,
it does appear that the Borden aquifer can be viewed as being a near perfectly stratified

aquifer from a hydrogeological perspective.

4.4 Practical Implications

The resulys obtained from this work have significant practical implications with
respect to modelling groundwater contamination. In particular, this work shows that
small fluctuations in the hydraulic gradient over time can account for nearly all of the
transverse dispersion observed at a site. Previously, it was pointed out that it is common
practice to model contaminant transport using a spatially varying hydraulic conductivity
and a steady groundwater velocity. It is apparent from this work that such an approach
will underestimate the transverse spread in areas where a transient flow field is present.

This suggests that in areas where toxic materials (for example, radioactive waste and
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PCB’s) will be stored, a detailed knowledge of the flow field at the site should be known
prior to commissioning. This protects the area in the event that modelling of contaminant
transport is required to facilitate remediation measures. Failure to consider the enhanced
spread due to flow transients may result in an expensive but ineffective remediation
program. Depending on the nature of the nature of the contaminant, this failure may be
catastrophic.

The non-Fickian behavior of a plume at early time strongly suggests that the
standard approach of modelling contaminant transport using a Fickian approach (i.e.
constant macrodispersivity values) may in some cases be inappropriate. Such an approach
will lead to an underestimation of the solute spread and an overestimation of the solute
concentration at the centre of the plume at early time. However, as pointed out by Naff
(1990), if the travel distance of the centre of mass of the plume is greater than twenty
integral scales of hydraulic conductivity, then the use of the Fickian approach is

reasonable.

4.5 Further. Research

The results of this work indicate that there are some areas of contaminant
transport modelling which need to be further studied. In particular, the effects of
transient flow fields on the dispersion process at early time requires further examination
in light of the failure of Naff’s (see Naff, 1989) model to adequately predict the
transverse spread at the Borden site at pre-asymptotic times. In fact, one possible

approach may be to recast Naff’s deterministic approach into a stochastic form with the
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harmonic frequencies and associated amplitudes being considered to have mean values
and variances. Such an approach will generate an ensemble behavior which may improve
the ability of the model to predict transverse spread.

As pointed in Chapter 3, the tracer plume associated with the 1978 Borden tracer
experiment was not very well sampled at very early and very late times. In particular,
it was found that in several instances the sampler array truncated the solute plume and
as a result, a considerable amount of extrapolation involving the use of various
assumptions had to be performed in order to perform the numerical integrations. The
used of extrapolation methods was shown to have an influence on the various moments
computed in this work and as a result influenced the various parameter estimates (centre
of mass location, velocity, macrodispersivity, skew and kurtosis). In addition, watertable
data collected from a different site at a different were incorporated in the analysis using
various assumptions. As a result, there will be some question as to the accuracy of the
result presented in this work.

To verify whether the results produced from this and other similar work
employing similar assumptions are valid, a tracer experiment along the lines of the
Stanford-Waterloo and the Cape Cod experiments should be carried out. In addition to
a carefully designed sampler array which captures the essential features of the early time
behavior of the solute plume and a good knowledge of the geostatistical properties of the
hydraulic conductivity, field emphasis should also be placed on monitoring the hydraulic
head at the site in three-dimensions. Such an experiment, though costly, would produce

a reliable database of information. This database, could be used to test both current and
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future transport theories with minimal assumptions with respect to aquifer properties
being required.

It should be recalled that the approaches employed by Gelhar et al. (1979) and
Tompson (1988) in the study of the early time dispersion process consider the effects of
local dispersivity whereas the Naff’s approach does not. This raises the question of the
importance of the local dispersivity in the early time evolution of solute plumes. This is
an area which should be further examined if the total phenomena of solute transport in

groundwater are to be well understood.
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Appendix 1
Derivation of the Expression for the Unsteady

b
Component of the Macrodispersivity

In this appendix a summary of the derivation given by Rehfeldt (1988) for the

component of the macrodispersivity due to unsteady flow is given.

Governing Equations
The Transport Equation

The equation describing the transport of an ideal conservative solute in saturated
porous media is given by

Lc_ 9 [E dc _cq} (A1)

where n is the pdrosity; ¢ is the dimensionless solute concentration; E; is the local bulk
dispersion coefficient tensor and g is the component of the specific discharge vector. For

the conservation of mass this formulation requires that

ag.
o4 (A2)
ox,

and that the local coefficient of bulk dispersion be constant. If the concentration and

specific discharge are assumed to be random variables composed of a mean and a small
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perturbation then we may write

4,9 (x,0)+q," (x,0) (A3)

c=c(x,f)+c (x,2) (Ad)

Here the mean quantities are indicated with an overbar and the primed quantities are zero
mean perturbation. Substitution of (A3) and (A4) into (A1) and subsequent manipulation

leads to the following mean and perturbed forms for the transport equation.

ox, ¥ox

2 Gy [ 66] (a5)

where g;°c” represents the macroscopic dispersive flux which if it is Fickian in nature,

can be represented as

7.7C= qug_C i=1,2,3 (A6)
and
ac a _ ac’ (A7)
IRy U = [ g 6xJ

Note that if the coordinate axes are aligned with the mean flow direction, such that §,=q

and q,={@;=0 then the local bulk dispersion tensor can be written as
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aaq 0 O
E=|0 ag O (AB)
0 0 og

Taking into consideration the conservation of mass (2) and substituting (A8) into (A7)

leads to the following expression for the perturbed form of the transport equation.

dc’ dc” _.dc %’ %’ 9’
n——+—+q," —= q|a +0o + (A9)
or " ox; 7 ox [ " ox? T[ ox;  ox? ] :l

One approach to solving this equation is through the use of spectral methods.

Spectral Solution

Assuming statistical homogeneity in space and time the solution of (A9) can be
developed using Fourier-Stieltjes representations for the perturbed quantities (Lumley and

Panofsky, 1964). Therefore let the perturbed quantities ¢’ and q’ be expressed as

o= J e @i g7 (k) (A10a)

q,’= j o rsian) dz, (k,w) (A10b)

Substituting (A10) into (A9) and recalling the uniqueness of the spectral representation

gives
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{nico+{ik, o b2+ (K 4k g}z, = gxﬁdz (All)

where 9¢/dx; is assumed constant at the local scale over which (A7) applies. Multiplying

(All) by the complex conjugate dZ, and taking the expected value leads to

(i +{ik, vou ke 2R} S, (K, w)—— s ) (A12)

where S (k,w) represents the specific discharge spectrum and S.4(k,w) represents the
macroscopic dispersive flux. Equations (A6) and (A12) may then be combined to give

the following form for the macrodispersivity

* 8,q0) dk des
J (A13)

o ning+ zk Lo 1+aT(k2 +k3)]

Before this equation can be used to determine the macrodispersivity an appropriate form

for the specific discharge spectrum has to be determined.

Determination of the Specific Discharge Spectrum

The transient form of the groundwater equation can be written in terms of the

natural logarithm of hydraulic conductivity, K as

&¢Ik 3¢ _S, 3¢ (Al4)
ax,.ax ox, ax, K ar

where ¢ is the hydraulic head and S, is the specific storage coefficient. Since this
expression implies a change in storage. It is therefore apparent that this expression is

inconsistent with the conservation of mass assumption made earlier [see (A2)]. It will
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later be shown that this change in storage term does not contribute to the additional
dispersive flux.
If the hydraulic conductivity is considered a random variable with zero mean

perturbation then we can write
InK=F+f, E[f1=0 (A15)

K=eTe’=K ¢/, InK =F=E[InK] (Al6)

Using the above expressions and retaining only first order terms the flow equation may

be rewritten as

¢ , oK ap _ S,
oxdx; ox; ox, K

-7 9¢
AN~ (A17)

This equation applies to unsteady flow in three-dimensions where the temporal forcing
is supplied by the boundary conditions. Using spectral methods does not allow boundary
conditions to be modelled explicitly and as a result unsteadiness must be brought into this
formulation through the mean hydraulic gradient and the mean hydraulic head. The
hydraulic head, ¢ is assumed to be composed of a slowly varying mean in space and time

and a perturbation about that mean.

é(x,0)=H(x,0)+H *(x,1) +h(x,?) (A18)

Here H(x,t) is the slowly varying ensemble mean, H"(x,t) is a temporal perturbation
about the mean hydraulic head and h(x,t) is the local perturbation in space and time.
Gelhar and Axness (1983) have shown that field scale dispersion under steady

flow conditions results from the randomness in the specific discharge vector (A19). This
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randomness is caused by the variations in the hydraulic conductivity field.

g,--k2% | (A19)
ox;

From the expression for the specific discharge it is apparent that changes in ¢ that are
random in time but uniform in space do not change g;, therefore the rising and falling of
H" does not strongly influence dispersion at the field scale. Hence for the temporal
variability of ¢ to have an effect on g; and hence dispersion the spatial gradient of ¢ must
also be variable in time.

If it is assumed that the hydraulic gradient can be decomposed into a slowly

varying mean and a perturbation hence we may write

_8H 5.  _9H'_,. (A20)

Note that J,* is assumed to be random in time, but at the local scale, constant in space.

Substitution of (A18) and (A20) into the flow equation (A17) and subsequent

manipulation leads to the following perturbed form for the flow equation

2 Ry .
Fh 5 of _ s[aH +ah] a21)

oxgdx; ‘ox, K | or ot
Using equations (A15) and (A16) the Darcy equation may be written in the form

-k (1929
g=-K (1 f)ax,. (A22)

with the perturbed form of this expression being

The perturbed quantities in (A21) and (A23) can be expressed in spectral form using
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. ., 0h (A23)
==K | -J, T,
qz g [ i * axi f]
Fourier-Stieltjes integrals as

h=| e®*0 g7 (k,w) (A24a)

g8

f= J o {x+iat) dz j(k’ (.d) (A24b)

J.'= | e®i 4z, (k,w) (A24¢)

g 8

g, '=J e gz, (k) (A24d)

H’=J e @ g7 (k,w) (A24e)

Note that f, H", and J;” have been represented as space-time random processes even
though fis time invariant and J;” and H~ are spatially uniform. This space-time
representation is necessary to produce a consistent form for the entire equation. Since one
can treat a constant as a random variable with a covariance of infinite correlation length

and a spectrum with all the power concentrated at zero frequency then there is no
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inconsistency when using the above spectral forms. Substitution of (A24) into (A21) and

(A23) and recalling the uniqueness of the spectral representation gives

S
K2, -1k] 42— (1odZ,+10dZ,) (A25)

g

for the flow equation (A21) and

dz,=K |z, -ikdz,+1 4z (A26)

for the Darcy equation (A23). Combining (A25) and (A26) and rearranging gives

[ g )
Tk dZ -k,
i K ¢ (A ) 7)
dz,=K, | iz, - LI 7
[ ] AY f
k2+iw

The specific discharge spectrum, S ,(k,w), is obtained by multiplying (A27) by its

complex conjugate dZ," and using the properties of the spectral representation theorem
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S S N
—kw —kw _"’5ktkjw2
2 Kg ! K, 8
Sq,q,‘Kg w7t S SJ,H+ 5 THT S
k-_Liw ki Liw o | S
i+l Lo
- 8 8 Kg
kk kk
+18,- Sl 6jm—'_J'S—'— J mS_ﬁ" (A28)
kr+ ZLiw kr-_iw
K
g 2

The expression for macrodispersivity can be greatly simplified by recognizing the form
of the input spectra. The hydraulic conductivity is time invariant, hence, its spectrum is
given by

S(k,) =S (k)5() (A29)

where 6(w) is the Dirac delta function. Likewise, the variables J;” and H” were assumed

to be spatially uniform. Their spectra, and presumably the cross spectra, will be of a

form
S,y (k,02) =S, ()d(k) (A302)
Sk ) =S () (k) (A30b)
8, 1k,0) =S, ()3(R) (A30c)
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Macrodispersivity

The macrodispersivities can thus be written

3 KS ((1) k)+K

kA, ] [ kk ]
(3 - 77 Sﬁ(co k) A31
k? K dk de (a3

oo niwg +[z'kl oy i+ g )]CI 2

Using (A29) and (A30) equation (A31) decomposes into two components, one
incorporating the effect of temporal variability and the other spatial variability. The term
inyolving spatial variability (see Rehfeldt, 1988, equation 2-39) is identical to that given
by Gelhar and Axness (1983, equation 62) for the steady flow case. The component of
macrodispersivity due to unsteady flow is given by

40~ J 51 (@) (A32)

nivq

-0

This expression reduces to (see Rehfeldt, 1988)

A @ _ (O) (A33)

To be consistent with the results of Gelhar and Axness (1983) (A33) is rewritten in the

following form

Aij('u)z [‘1‘] 7172 J,JJ( ) (A34)

where v is the flow factor defined by Gelhar and Axness (1983) as
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q
KJ,

v= (A35)
Assuming the cross and autocovariance functions to be exponential in form, then

1
S, &(0)=_7;03 A, (A36)

Thus the macrodispersivity due to transient flow can be written as

2
A0=1 9% (A37)
y 72 n ]? J,’j
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Correction

The following articles were referenced in Chapter 2 but were not included with
the references at the end of that chapter:
Cressie, N., and D. Hawkins, Robust estimation of the variogram, Math. Geol., 12(2),
p. 115-125, 1980.

Matheron, G., Principles of geostatistics, Econ. Geol., 58, 1246-1266, 1963.
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Copies of the data used to produce this thesis can be obtained on diskette from the
following sources:

1.  David Farrell
Department of Geological Engineering
University of Manitoba
Winnipeg, Manitoba
Canada.

E-mail: david@woodsunl.geoeng.umanitoba.ca
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2.  Dr. A. D. Woodbury
- Department of Geological Engineering
University of Manitoba
Winnipeg, Manitoba
Canada.
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