
Bio-inspired constrained clustering: A case study
on aspect-based sentiment analysis

by

Mohammed Qasem

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

February 2018

c© Copyright 2018 by Mohammed Qasem

Thesis advisor Author

Parimala Thulasiraman Mohammed Qasem

Bio-inspired constrained clustering: A case study on

aspect-based sentiment analysis

Abstract

Clustering is an important problem in the era of big data. Exact algorithmic cluster-

ing approaches are not affordable for many real-world applications (RWA), requiring

innovative, approximation algorithms. Among them are bio or nature-inspired tech-

niques such as ant brood clustering algorithm (ACA) inspired by how real ants brood

sort their nests.

ACA’s mathematical model assumes a static radius of perception which is not

adaptable to RWA. I address this issue by developing an adaptive clustering algorithm,

called ACA with Adaptive Radius (ACA-AR) using kernel density estimation, a non-

parametric statistical model, to measure average dissimilarity of data objects in ants

neighborhood. I extend this algorithm to a search-based semi-supervised constrained

clustering algorithm (CACA-AR) that incorporates supervisory information to guide

the clustering algorithm towards solutions where constraints are minimally violated.

I evaluate the accuracy of CACA-AR on benchmark datasets and provide a feasibility

study on one RWA, aspect based sentiment analysis. The F1-score results show that

CACA-AR outperforms baseline techniques, multi-class logistic regression and lexicon

based approaches by 20%.

ii

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . viii
Acknowledgments . ix

1 Introduction 1
1.1 Contribution . 8

2 Literature Review 9
2.1 Constrained Clustering . 9

2.1.1 Instance-Level Pairwise Constraints 10
2.1.2 Constraint Extraction . 12

2.2 Formal Definition of Constrained Clustering 13
2.3 Constrained Clustering Algorithms 14

2.3.1 Search-based Methods . 14
Pairwise-constrained k means 14
Probabilistic constrained clustering 15
Spectral Constrained Clustering 16

2.3.2 Similarity-Adapting Methods 20
Constrained spectral clustering 21
Semi-supervised constrained clustering 21
Learnable similarity measures 23

2.4 Constrained Clustering based on Swarm Intelligence 24
2.4.1 Ant Clustering Algorithm (LF Model) 25
2.4.2 Constrained Clustering based on ACA 27

3 Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 31
3.1 Shortcomings of LF Model . 31
3.2 Enhancements to Ant Brood Clustering 33

3.2.1 Applying Kernel Density Estimation to the Ant Neighborhood 33

iii

iv Contents

3.2.2 Adaptive Radius-based Ants 37
3.2.3 Termination condition . 39

3.3 ACA-AR with Pairwise Constraints 42
3.4 Cluster Retrieval . 43
3.5 Algorithm Validation . 46

3.5.1 Benchmark Datasets and Evaluation Metrics 46
3.5.2 Clustering Results of ACA-AR 49
3.5.3 Clustering Results of ACA-AR with pairwise Constraints . . . 51

4 Case Study: Aspect Based Sentiment Analysis 53
4.1 Introduction . 53
4.2 Sentiment Analysis . 54
4.3 Aspect-based Sentiment Analysis (ABSA) 55

4.3.1 ABSA Formal Definition . 57
4.3.2 Challenges: Why ABSA is hard? 58
4.3.3 Constrained Clustering to ABSA 60

4.4 Essential Approaches to ABSA . 63
4.5 Approaches to Aspect Identification 64

4.5.1 Frequency-based Methods . 65
4.5.2 Relation-based Methods . 66
4.5.3 Supervised Machine Learning 67
4.5.4 LDA-based Clustering . 68

4.6 Sentiment Prediction and Analysis Approaches 69
4.6.1 Supervised Machine Learning 69
4.6.2 Lexicon-based Approach . 70
4.6.3 Hybrid Approach . 71

4.7 Drawbacks of ABSA Clustering Techniques 72

5 CACA-AR to ABSA Tasks 74
5.1 Phase I: Vector Representation of Text Units 75
5.2 Phase II: Pairwise Constraint Extraction 78
5.3 Phase III: Apply ACA with Pairwise Constraints 79
5.4 Cross-Validation for Constrained Clustering 80
5.5 ACA Data Labeling Using k-Nearest Neighbor 82

6 Evaluations: Results and Discussion 84
6.1 Benchmark Datasets . 85
6.2 Accuracy Measures . 88

6.2.1 Illustrative Example: Recall, Precision and F1-score 88
6.2.2 Interpretation of Recall, Precision and F1-score 93

6.3 Feature Vectors of Sentences . 94
6.4 Baselines . 95

Contents v

6.4.1 Lexicon-based Approach . 95
6.4.2 Multi-class Logistic Regression 97

6.5 Implementation and Experiments . 99
6.5.1 ACA Simulator . 99

6.6 Parallel Implementation . 100
6.6.1 The Feasibility of Parallel Implementation 101

6.7 Results of Sentiment Prediction . 104
6.7.1 Lexicon-based Approach . 104
6.7.2 Logistic Regression Approach 106
6.7.3 CACA-AR Approach . 109

6.8 Results of Aspect Category Identification 112
6.8.1 Logistic Regression Approach 113
6.8.2 CACA-AR Approach . 114

7 Conclusion 119
7.1 Conclusion . 119
7.2 Future Work . 121

Bibliography 137

List of Figures

2.1 Graph Representation for ML Transitive Closure 11
2.2 Graph Representation for CL Entailment 11

3.1 Color-coded clustering solutions for a mixture of Gaussian. Five classes
of 1500x20 real-valued vectors, using 150 ants on a 25x25 grid. The
left figure is the solution with ant radius 1, the middle figure is the
solution obtained with ant radius 6, the right figure is a near-optimal
solution obtained by ACA-AR by varying radius from 1 to 7 33

3.2 Dissimilarity Estimation of Ant Neighborhood Using KDE with Eu-
clidean distance . 36

3.3 Pick-up and Drop-off Probabilities using Gaussian KDE for Neighbor-
hood Density . 36

3.4 Pick-up and Drop-off Probabilities for different values of c 37
3.5 Modified ACA Flowchart: Part 1 . 44
3.7 Data points that refer to one cluster form well-separated blob. The

most dense regions (green interior points within a blob). Red data
points determine blob boundaries . 44

3.6 Modified ACA Flowchart: Part 2 . 45
3.8 ARI Curves: Constraints vs. Accuracy (ARI) 52

4.1 ABSA is a prerequisite to other NLP and IR tasks 57
4.2 Subtasks of ABSA . 59
4.3 Structured Summary Output . 59
4.4 Essential Approaches to ABSA . 64

5.1 Clustering Framework for Aspect Identification and Sentiment Prediction 75
5.2 A single Step in an N-Fold Cross Validation for Constrained Clustering 82
5.3 Constrained Clustering using CACA-AR a dataset of 1500x20 real-

valued vectors. The dataset consists of 5 classes color coded with class
labels where each class is comprised of 3 clusters. The algorithm finds
data clusters within each class . 83

vi

List of Figures vii

6.1 Confusion Matrix for Particular Class, green cells: correct predictions,
red cells: incorrect predictions . 91

6.2 OpenMP-based Results . 102
6.3 GPU based Results . 103
6.4 F1-score, Precision and Recall - Lexicon-based Approach: pos: positive

class, neu: neutral class, neg: negative class. We can see that Lexicon-
based performs poorly in identifying pos and neg sentences 105

6.5 F1-score, Precision and Recall - Logistic Regression Approach: very
neg: very negative class, neg: negative class, neu: neutral class, pos:
positive, very pos: very positive . 108

6.6 F1-score, Precision and Recall - CACA-AR Approach: very neg: very
negative class, neg: negative class, neu: neutral class, pos: positive,
very pos: very positive . 111

6.7 F1-score, Precision and Recall - Logistic Regression Approach 114
6.8 F1-score, Precision and Recall - CACA-AR Approach 116

List of Tables

3.1 Cluster Validity - Iris . 49
3.2 Cluster Validity - Yeast . 50
3.3 Cluster Validity - 20 Newsgroups . 50

4.1 Approaches to Aspect Extraction: Pros & Cons 65

6.1 SemEval (Task 12) Dataset . 86
6.2 Class Distribution for Sentiment Datasets 87
6.3 Confusion Matrix . 89
6.4 Normalized Confusion Matrix . 90
6.5 TP, TN, FP and FN Computations 92
6.6 Recall, Precision and F1-score . 92
6.7 Training Data . 94
6.8 Aspect Categories for Laptop Dataset 112
6.9 Aspect Categories for Restaurant Dataset 112

viii

Acknowledgments

This dissertation could not see the light without the contributions of many peo-

ple who supported me along the way. First and foremost, I would like to express

my gratefulness to my advisor, Prof. Parimala Thulasiraman for her insights and

guidance. During the many one-to-one discussions, Dr. Thulasiraman enriched my

knowledge and opened my eyes to new approaches in the fields of Swarm Intelli-

gence and High-Performance Computing. She has always cleared several obstacles

and made this research very enjoyable. In fact, this dissertation would not have been

possible without her supervision. I owe Dr. Thulasiraman much for her insightful

remarks, understanding, encouragement, patience, friendship, and kindness. Besides,

I would like to thank my committee members, Dr. Udaya Annakkage and Dr. Yang

Wang, for their remarkable comments and valuable advice on this research. I am

also thankful to the external examiner, Prof. Laurence T. Yang, Computer Science,

St. Francis Xavier University, for dedicating considerable time and attention to my

dissertation.

Many thanks are due to many outstanding professors and graduates in the de-

partment of Computer Science at UFM for their respect, knowledge, and integrity.

Special thanks are also due Dr. Ruppa Thulasiram for supervising my first two pa-

pers. Lastly, this dissertation would not be possible without the endless support from

my wife, Mrs. Nesreen Samhan.

ix

Chapter 1

Introduction

The proliferation of ubiquitous systems over the last two decades has led to the

emergence of “Big Data” era. In 2012, Gartner Inc. defined Big Data as “high-volume,

high-velocity and/or high-variety information assets that demand cost-effective, inno-

vative forms of information processing that enable enhanced insight, decision making,

and process automation.” (De Mauro et al. [2015]). Based on this definition, Big Data

presents challenges along three dimensions: volume (rapid increase in data size),

velocity (real-time data changes) and variety (data generation from heterogeneous

sources in various data types). These inherent challenges require new innovative ap-

proaches to extract meaningful, useful, and often vital information from the massive

amounts of raw data.

There are two fundamental approaches to extract useful information from data:

supervised learning (classification) and unsupervised learning (clustering). Standard

classification algorithms (e.g., logistic regression, naive Bayes, support vector ma-

chines) rely on learning a classifier (mathematical function) from correctly identified

1

2 Chapter 1: Introduction

observations (training data), to predict a predefined class label for an unseen obser-

vation. For instance, a dataset of emails labeled as spam or non-spam can be used

for training a naive Bayes classifier to predict whether a new email is a spam or

non-spam. Although classification algorithms have been successfully implemented in

various domains, they suffer from the deficiency of training data and the high cost of

hand-labeling.

Clustering approaches, on the other hand, are entirely unsupervised (i.e., no train-

ing data required). They aim at finding intrinsic structures in unlabeled data. The

objective of the clustering methods is to partition a set of data instances into un-

known number (k) of mutually exclusive clusters according to some optimality crite-

rion. Typically, the instances (objects) within the same cluster should be as similar as

possible, and they should be as dissimilar as possible from instances in other clusters.

The similarity/dissimilarity of objects is often measured by a distance function. Gen-

erally, the goal of the clustering is to optimize intra-cluster similarity and inter-cluster

dissimilarity simultaneously. In this thesis, my focus is on clustering.

The computational complexity of finding an optimal clustering solution is proven

to be NP-hard (Welch [1982]). The number of feasible solutions grows exponentially

with respect to the number of data instances to be clustered. As a result, many clus-

tering approaches have been proposed. There are many exact algorithmic clustering

approaches. For example, connectivity-based (hierarchical), centroid-based (parti-

tioning or k-means), graph-based (Clique), distribution-based (expectation-maximization),

density-based (DBSCAN and OPTICS) and spectral-based clustering. Typically,

there is no single approach that is appropriate for all types of data, nor are all ap-

Chapter 1: Introduction 3

proaches suitable for all problems. Each clustering approach has its shortcomings

concerning object heterogeneity, efficiency, simplicity, and scalability. For instance,

k-means algorithm, the most commonly used technique due to its ease in implemen-

tation, suffers from convergence to a local optimum as the outcome is highly affected

by the selection of initial partitions (Zhao and Karypis [2004]).

Exact algorithmic clustering approaches are not affordable for many real-world ap-

plications that require innovative approximation algorithms. Among them are meta-

heuristics such as bio or nature inspired techniques (Glover and Kochenberger [2006]).

Some examples of meta-heuristics include: simulated annealing, tabu search, ge-

netic/evolutionary algorithms, variable neighborhood search, (adaptive) large neigh-

borhood search and ant-based systems. According to (Glover and Kochenberger

[2006]), meta-heuristics are “master strategy that guides and modifies other heuristics

to produce solutions beyond those that are normally generated in a quest for local

optimality”. Unlike exact and approximate algorithms, meta-heuristics are always

heuristic in nature. Consequently, they do not guarantee that an optimal solution

will be found, even though with a large amount of time. As a result, meta-heuristics

are developed specifically to find a solution that is good enough in a reasonable com-

putational time.

There are two major components of any meta-heuristic algorithm: intensification

(exploitation) and diversification (exploration). Diversification is the ability of the

algorithm to generate diverse solutions to explore the search space globally, whereas

intensification aims at focusing the algorithm to search in a local region giving that

a current good solution exists in this region. To improve the convergence rate of

4 Chapter 1: Introduction

a meta-heuristic algorithm, there should be a good balance between intensification

and diversification. Finding this balance ensures that solutions will converge to the

optimum, while diversification via randomization allows the algorithm to escape from

local-optima and, at the same time, increases the diversity of solutions. A good

combination of these two major components will usually ensure that global optimality

is achievable (Blum and Roli [2003]).

There are three benefits of meta-heuristics: (i) they are often able to offer a

better trade-off between solution quality and computational time; (ii) they can be

adapted to match the requirements of most real-life optimization problems because

meta-heuristics offer a high-level problem-independent algorithmic framework; (iii)

meta-heuristics do not need a formulation for the optimization problem (i.e., (specify

the problem in the form of constraints and objective functions).

One of the many meta-heuristic approaches used for solving the clustering prob-

lem is swarm intelligence (SI). SI is an artificial intelligence paradigm inspired by the

behavior of real swarms or insect colonies such as ant colonies, bird flocking, animal

herding, bacterial growth, or fish schooling. In SI, the organisms (agents) mod-

eled in the system, work independently providing lots of parallelism. The agents,

distributed within the environment, co-operate/co-ordinate through stigmergic or

indirect communication reducing global communication (Navlakha and Bar-Joseph

[2015]) and providing data locality. They self-organize when needed and work asyn-

chronously within their local environments. These characteristics make SI techniques

quite amenable to many real world applications such as community detection. One

of the swarm intelligence techniques that has been studied in the literature to solve

Chapter 1: Introduction 5

the clustering problem in community detection application is ant colony optimization

(ACO) algorithm (Honghao et al. [2013]). However, the algorithm does not work well

for large networks.

In this thesis, I consider another technique, ant brood clustering (ACA) (Deneubourg

et al. [1991]; Lumer and Faieta [1994]) inspired by how real ants brood sort their nest.

This technique is more suitable to the clustering problem than ACO. In (Liu and Liu

[2016]), Liu provides an in-depth study of the algorithm providing its weakness and

strength through many benchmark experimentations. However, there are some short-

comings to the original ACA mathematical model by Lumer and Faieta (LM model)

for it to be applicable to real world applications: (i) user defined parameters have to

be “experimentally” fine-tuned to reflect the application under study; (ii) the ant’s

radius of perception is assumed constant - narrowing an ant’s visibility, consequently,

converging to a local optimum; (iii) lack of communication between ants prevents

the ants from dropping the object in the best location. As a result, ants perform

redundant searches within their local neighborhood, until they find a location that

satisfies the object dropping criteria which is computationally intensive. In this the-

sis, I present an Ant brood Clustering Algorithm with Adaptive Radius of perception

(ACA-AR), a modified variant of ACA for clustering multi-dimensional data. ACA-

AR uses multivariate kernel density estimation and sigmoid function to improve the

estimation of ants’ pick-up and drop-off probabilities. As a result of these modifica-

tions, ACA-AR gains many advantages over traditional and ACA clustering existing

models. ACA-AR

• does not make any prior assumptions about the number or the shape of the

6 Chapter 1: Introduction

clusters.

• converges to the exact number of clusters in the data since it balances the trade-

off between maximizing inter-cluster dissimilarity and intra-cluster similarity.

• detects data outliers using adaptive radius strategy.

• avoids convergence to local-optima solutions.

• substantially improves the spatial separation of clusters on the grid, an essential

requirement to retrieve the clusters.

• preserves the characteristics of nature-inspired algorithms, making it suitable

for clustering data in dynamic domains (Wang et al. [2009]).

In many real-world applications, gathering unlabeled data is cheap and easy while

extensive hand-labeling of data is costly and time-consuming. However, in many

applications, it is possible to acquire small amount of prior knowledge (extra side

information, small-size labeled data) that specifies whether the particular data in-

stances are similar or dissimilar to cluster them. In such cases, neither applying

supervised nor unsupervised clustering is feasible. Therefore, many traditional clus-

tering algorithms have been extended to semi-supervised settings so they can take

advantage of the prior knowledge to supervise or “guide” the clustering process. For

example, in protein function prediction, some pairwise constraints can be identified

experimentally by finding functional links between pairs of protein genome sequence

data (Eisenberg et al. [2000]). Satisfying constraints in data clustering is significant

to reflect the object similarity within the domain. In most cases, prior knowledge can

Chapter 1: Introduction 7

be naturally expressed in the form of instance-level pairwise constraints. Clustering

in the presence of limited supervisory knowledge encoded in the form of pairwise con-

straints is known as semi-supervised or constrained clustering (Wagstaff and Cardie

[2000]; Basu et al. [2008]). Please note that I use both terms interchangeably. Con-

strained clustering has proven beneficial in many real-world applications, such as lane

finding from GPS traces, noun phrase co-reference resolution (Wagstaff et al. [2001]),

and personal identification from surveillance camera clips (Bar-Hillel et al. [2005]).

In this thesis, I extend ACA-AR to constrained (semi-supervised) clustering algo-

rithm (CACA-AR) to take advantage of pairwise constraints to further improve the

estimation of pick-up and drop-off probabilities. I experimentally validate ACA-AR

with and without constraints on three benchmark data sets that present different

clustering challenges. The results show that ACA-AR outperforms ACA (Lumer and

Faieta [1994]), mean shift and k-means algorithms in terms of clustering accuracy,

completeness, and homogeneity. Moreover, the results show that the accuracy of

ACA-AR substantially improved when pairwise constraints are incorporated, espe-

cially when clustering high-dimensional datasets.

As a case study, I evaluate the application of CACA-AR to the tasks of aspect

category identification and sentiment prediction in the domain of product reviews,

central clustering tasks in aspect-based sentiment analysis (ABSA), by formulating

both tasks as constrained clustering problems. The results illustrates CACA-AR

effectiveness to real-world applications such as ABSA.

8 Chapter 1: Introduction

1.1 Contribution

My contribution to the thesis are as follows:

1. Develop an adaptive clustering algorithm, called ACA with Adaptive Radius

(ACA-AR) using kernel density estimation, a non-parametric statistical model,

to measure average dissimilarity of data objects in ants neighborhood.

2. Parallelize ACA-AR on mutli-core machines.

3. Develop a search-based semi-supervised constrained clustering algorithm (CACA-

AR) that incorporates supervisory information to guide the clustering algorithm

towards solutions where constraints are minimally violated.

4. Evaluate the accuracy of CACA-AR on benchmark datasets.

5. Provide a feasibility study on one real world application, aspect based sentiment

analysis.

Chapter 2

Literature Review

This chapter is organized into four sections. Sections 2.1 and 2.2 introduce the

problem and definition of constrained clustering. Section 2.3 reviews the traditional

semi-supervised clustering algorithms. Section 2.4 introduces ant-based clustering

and reviews the constrained clustering studies based on ant clustering algorithm.

2.1 Constrained Clustering

The scarcity of labeled data and the high cost of obtaining such data are sig-

nificant obstacles in applying standard classification algorithms in many real world

applications. However, such applications make available large amounts of unlabeled

data as well as small quantity of supervisory information that can be naturally ex-

pressed in the form of sets of pairwise constraints. In protein function prediction, for

example, pairwise constraints can be identified experimentally by finding functional

bonds between protein genome sequence data (Eisenberg et al. [2000]). These rela-

9

10 Chapter 2: Literature Review

tionships reflect the experts’ perspective on object similarity in the domain as they

indicate whether particular protein genome sequences (data objects) are similar or

dissimilar to be grouped in the same or different clusters.

Constrained clustering, also known as semi-supervised clustering, aims at enhanc-

ing clustering outcomes by incorporating instance-level pairwise constraints in a clus-

tering algorithm. Constraints help to specify whether two data instances can be

clustered together. (Basu et al. [2004a]). Constraints can be either explicitly defined

by a domain expert or extracted from small labeled datasets. In this thesis, I inves-

tigate the use of instance-level pairwise constraints to improve clustering quality of

my proposed ant clustering algorithm with adaptive radius (ACA-AR).

2.1.1 Instance-Level Pairwise Constraints

According to (Wagstaff et al. [2001]), there are two types of instance-level pairwise

constraints: either two data instances, A and B, can be declared to be in the same

cluster, called Must-linked, ML(A,B), or can be declared to be in different clusters,

called Cannot-linked, CL(A,B). Both types of instance-level constraints exhibit dif-

ferent properties. A set of ML-constraints, for instance, is symmetric, reflexive and

transitive. The transitivity property allows expanding ML set by inferring more ML-

constraints. For example, given data instances (A,B,C,D) and two ML-constraints

ML(A,B) and ML(B,C) as shown in Figure 2.1, by the transitive closure of ML,

we can induce the constraint ML(A,C). Transitivity of ML-set can be generalized

by assuming that data instances represent nodes in an undirected graph, and each

ML(A,B) represents an edge between data instances (A,B). ML-constraints can be

Chapter 2: Literature Review 11

identified as the connected components in the graph. Moreover, if there exist an edge

(ML-constraint) between two nodes in two different connected components CCi and

CCj, then we can infer that each node in CCi is also connected by a ML-constraint

with the nodes in CCj and vice versa (Basu et al. [2008]).

Figure 2.1: Graph Representation for ML Transitive Closure

Figure 2.2: Graph Representation for CL Entailment

A set of CL-constraints, by contrast, is not transitive; the existence of CL(A,B)

and CL(B,C) does not imply CL(A,C). Nevertheless, CL set can be expanded using

CL entailment property as illustrated in Figure 2.2. Given ML(A,B), ML(C,D) and

CL(B,C), the constraints CL(A,C), CL(B,D) and CL(A,D) can be induced. Also,

this property can be generalized by combining CL and ML constraints in one graph.

Let CCi and CCj be two connected components in a ML graph. If there exist at least

12 Chapter 2: Literature Review

one CL-constraint between CCi and CCj, we can infer the existence of CL-constraints

for all nodes in CCi and CCj (Basu et al. [2008]).

Formally, given a set of n data instances {xi}ni=1, set of ML-constraints ML =

{(xi, xj)}, and set of CL-constraints CL = {(xi, xj)}, the dataset {xi}ni=1 can be repre-

sented as a graph, G(V,E), such that V = {xi}ni=1 and E = ML. As mentioned above,

applying the transitive closure on ML set results in forming connected components

in G. Moreover, if ∃ML(xi, xj) s.t. a ∈ CCi, b ∈ CCj then ∀xi ∈ CCi, xj ∈ CCj →

ML(xi, xj) where CCi, CCj are two different connected components in G. Similarly,

if ∃CL(xi, xj) s.t. xi ∈ CCi, xj ∈ CCj → CL(xi, xj) ∀xi ∈ CCi, ∀xj ∈ CCj (Basu

et al. [2008]).

2.1.2 Constraint Extraction

Constraint extraction refers to the process of getting constraints either manually

or automatically for a particular domain. In the manual methods, we ask a user,

who is usually a domain expert, to determine whether a pair of data instances can be

related by a must-link or a cannot-link constraint. However, providing the user with

many data pairs makes this process tedious and hence error-prone. Therefore, the user

is given only a small randomly selected subset of data instances, from which the must-

link and cannot-link pairs are determined. This random selection of constraints may

be ineffective because any clustering algorithm can trivially determine the relation of

some selected pairs of data. As a result, different active learning methods have been

proposed to identify the most informative pairs of data, such as (Basu et al. [2004a]).

Automatic methods, on the other hand, recognize constraints by finding which

Chapter 2: Literature Review 13

pairs of data instances are similar or dissimilar enough to be associated. Consequently,

automated methods themselves are clustering algorithms with domain-dependent

rules. These rules provide information that is not captured by data representation

or similarity measures. They can thus be obtained by analyzing properties of data

instances or by using external domain sources.

2.2 Formal Definition of Constrained Clustering

Given a set of n data instances {xi}ni=1, where xi is a real-valued vector of di-

mension d; a set of must-linked constraints ML = {(xi, xj)} such that i 6= j, and

a set of cannot-linked constraints CL = {(xi, xj)} such that i 6= j. The problem

of constrained clustering is to partition {xi}ni=1 into k disjoint clusters C1, C2, ..., Ck

according to optimality criterion, such that the following criteria are satisfied for all

1 ≤ i ≤ k

•
k⋃
i=1

Ci = {xi}ni=1.

•
k⋂
i=1

Ci = Φ

• ∀(xi, xj) ∈ML ;xi, xj are in the same cluster Ci; i = 1, 2, ..., k

• ∀(xi, xj) ∈ CL ;xi, xj are in the different clusters Ci, Cj; i, j = 1, 2, ..., k i 6= j

• intra-cluster similarity is maximized

• inter-cluster dissimilarity is maximized

14 Chapter 2: Literature Review

The problem of constrained clustering is to find an optimal or near-optimal clustering

solution C∗ with respect to a fitness function (similarity function) such that the intra-

cluster similarity is maximized, the inter-cluster dissimilarity is maximized, and the

given constraints, must-linked and cannot-linked, are satisfied. Finding C∗ is NP-

hard problem. Regardless of whether the value of k is known or not (Davidson and

Ravi [2005a]; Davidson and Ravi [2005b]), the number of feasible solutions grows

exponentially with respect to the number of data instances n to be clustered.

2.3 Constrained Clustering Algorithms

While unsupervised clustering algorithms are common and diverse, semi-supervised

clustering algorithms are limited and have a short history. According to Zhu et

al. (Zhu [2005]), existing constrained clustering algorithms fall into two major ap-

proaches: search-based and similarity-adapting. The primary distinction between the

two approaches relies on how constraints are utilized to guide the clustering algorithm.

2.3.1 Search-based Methods

In this approach, constraints are primarily used to bias an existing search-based

clustering algorithm towards more appropriate data partitioning. Different methods

have been proposed to achieve this end.

Pairwise-constrained k means

One of the earliest methods, such as the pairwise-constrained k-means (PCK-

means (Wagstaff et al. [2001])) strictly enforces constraints during the assignment

Chapter 2: Literature Review 15

of data instances to the cluster centroids in the k-means algorithm. However, strict

enforcement of both ML and CL constraints is proven to be an NP-complete problem

(Basu et al. [2008]). In another method (MPCK-Means (Bilenko et al. [2004]), for ex-

ample, constraints are employed to select the initial cluster centroids in the k-means

algorithm. MPCK-means starts with finding the k-largest connected components in

constraint graph to initialize cluster centroids. Constraint graph is constructed such

that each data instance represents a node where those nodes participating in ML

constraints are connected. Each data instance is then assigned to the cluster centroid

that minimizes both the similarity distance (e.g., Euclidean) and the constraint vio-

lation (Bilenko et al. [2004]). To achieve this goal, MPCK-means adds two penalty

weights that measure how often ML or CL constraints are violated to the k-means

fitness function.

Probabilistic constrained clustering

The probabilistic constrained clustering model proposed by(Basu et al. [2004b]).

It relies on using hidden Markov random fields (HMRF) to incorporate constraints in

the k-means algorithm. The HMRF k-means generalizes PCK-means by combining

constraints and Euclidean distance learning. It also allows the use of a broad range

of clustering distortion measures. HMRF k-means aims at minimizing an objective

function that is derived from the posterior energy of the HMRF model. The objec-

tive function involves the Euclidean distance between a data instance and a cluster

centroid, a weighted penalty factor for violating constraints, and a normalization

factor.

16 Chapter 2: Literature Review

Spectral Constrained Clustering

Constraints have been incorporated in spectral clustering algorithms such as nor-

malized cuts (NC) (Shi and Malik [2000]) giving rise to constrained normalized cuts

(CNC) clustering (Basu et al. [2004b]).

Normalized cuts (NC) is a spectral clustering algorithm based on converting the

clustering problem into a weighed graph partitioning problem. The graph is created

such that data instances represent nodes and the degree of similarity between data

instances represent edge weights. Different strategies have been proposed to connect

nodes. One strategy is to connect two nodes if the similarity degree, as given by a

similarity function, between the corresponding data instances exceeds a user-defined

threshold ε. Another strategy is to connect each node to its k-nearest neighbors.

Formally, let G = (V,E) be undirected, weighted graph with weight adjacency

matrix W . Given a set A such that A ⊂ V , and its complement A = V \A. A is

connected if for any pair of vertices (vi, vj) ∈ A, there exists a path that connects

vi and vj, and all intermediate vertices lies in the path are in A. A is a connected

component if and only if A is connected and there are no connections between A

and A. Spectral clustering techniques aim at finding graph cuts {A1, A2, ..., Ak} (i.e.,

finding cuts in the form of connected components in the graph) such that Ai∩Aj = φ,

A1∩, ...,∩Ak = V , the intra-partition similarity is maximized, and inter-partition

similarity is minimized. Several objective functions have been proposed to encode

such optimization. The most common ones are the ratio cut RatioCut(A1, A2, ..., Ak)

(Wei and Cheng [1991]) and the normalized cut Ncut(A1, A2, ..., Ak) (Shi and Malik

[2000]). In the former, the size of the cut Ai is measured by the number of vertices |Ai|,

Chapter 2: Literature Review 17

while the latter measures the size of the cut by the weights of the edges vol(Ai) =∑
j∈Ai wij. According to (Shi and Malik [2000]), the weight of a cut w(Ai, Aj) is

defined as:

w(Ai, Aj) =
∑

i∈Ai,j∈Aj

wi,j

For the cuts A1, A2, ..., Ak in G, the inter-cut similarity can be measured by:

Ncut(A1, A2, ..., Ak) =
1

2

k∑
i=1

(
w(Ai, Ai)

vol(Ai)

)
However, finding a solution {A1, A2, ..., Ak} that minimizes Ncut is NP-hard prob-

lem (Shi and Malik [2000]). Nevertheless, a solution can be found in polynomial

time using spectral graph techniques which make use of the eigenvectors of the graph

Laplacian matrix. Such eigenvectors can be perceived as a low-dimensionality repre-

sentation of the graph. Therefore, they can be used to cluster data instances in fewer

dimensions. To achieve this, minimizing Ncut is formulated as a standard matrix

trace minimization problem ([Von Luxburg, 2007]). Given a partition of V into cuts

{A1, A2, ..., Ak}, assume that H is n×k matrix that indicates the membership of data

instances n to the cuts k. Each column j of H is encoded as follows:

hij =

1√

vol(Aj)
ifvi ∈ Aj

0 otherwise

Let Dn×n be a diagonal matrix such that dii = desgree(vi) =
∑n

j=1wij, and let

L = D −W be the unnormalized Laplacian matrix of graph G. Given the fact that

HTH = I, hTi Dhi = 1, and hTi Lhi = cut(Ai, Ai)/vol(Ai), the minimization problem

18 Chapter 2: Literature Review

of Ncut can be written as:

min
(A1,A2,...,Ak)

Tr(HTLH) subject to HTDH = I

This trace minimization problem can be written in the standard form (as given be-

low) by relaxing H to take arbitrary real values in Rn and substitute Y = D
1
2H

(Von Luxburg [2007]).

min
Y ∈Rn×k

Tr(Y T
(
D

−1
2 LD

−1
2

)
Y) s.t. Y Y T = I

The standard trace minimization can be solved by choosing Y as the matrix which

contains the first k eigenvectors of D
−1
2 LD

−1
2 as columns (Von Luxburg [2007]). The

final data clustering is achieved by recovering H = D−1/2Y . It has been noticed that

the solution H, consists of the first k generalized eigenvectors of Lu = λDu. The

final clusters are achieved by clustering the rows of H using k-means. This results in

the normalized spectral clustering algorithm (Shi and Malik [2000]).

Normalized cut algorithm is extended to the constrained normalized cut (CNC)

by Wang et al. ([Wang and Davidson, 2010]; Wang et al. [2014]). CNC is based on

modifying the objective function of NC algorithm so that it optimizes graph cuts and

satisfies constraints simultaneously. In more detail, in CNC, ML and CL constraints

are encoded in the form of a symmetric matrix Qn×n as follows:

Qij = Qji

1 if ML(i, j)

-1 if CL(i, j)

0 otherwise

Let u ∈ {1,−1}n be a cluster indicator vector, such that a data instance i belongs to

the cluster if ui = +1, and does not belong to the cluster if ui = −1. Then, the value

Chapter 2: Literature Review 19

of uTQu =
∑n

i=1

∑n
j=1 uiujQij indicates how well the constraints in Q are satisfied in

the cluster indicator u. This measure increases by 1 each time a constraint is satisfied

because Qij = 1 and data instances i, j have the same sign in u. Conversely, the

measure decreases by 1 each time a constraint is violated since Qij = −1 and i, j have

different signs in u. This encoding scheme is extended by relaxing both Q and u to

take arbitrary real numbers that reflect the degree/strength of constraint relationship.

Qij is positive if (i, j) is in the same cluster, and Qij is negative if (i, j) is in different

clusters. The larger the value of uTQu, the better the cluster assignment respects the

given constraints in Q. Similar to the normalized cut, Q is normalized by replacing u

with D−1/2v so the lower bound becomes vTQv where Q is the normalized constraint

matrix Q = D−1/2QD−1/2.

Since satisfying all given constraints is intractable, the authors set a lower bound

uTQu ≥ α, where α is a constant threshold number α ∈ R. This lower bound is

augmented to the objective function of normalized cut. Given a normalized graph

Laplacian L̄, a normalized constraint matrix Q, and a threshold α, the objective

function of CNC is:

min
v∈R

vT L̄v subject to vT Q̄v ≥ α, vTv = vol, v 6= D1/21

In this optimization, vT L̄v is the cost of the cut, vT Q̄v ≥ α is a lower bound on con-

straint satisfaction, vTv = vol is a normalization of V , and v 6= D1/21 eliminates the

trivial solution D1/21. The authors follow the Karush-Kuhn-Tucker theorem (Kuhn

[1982]) to solve this optimization problem with respect to the necessary conditions.

This theorem is beyond the scope of my thesis.

20 Chapter 2: Literature Review

2.3.2 Similarity-Adapting Methods

Similarity-adapting methods rely on modifying similarity measure in a given clus-

tering algorithm so that the available constraints are easily satisfied.

In (Klein et al. [2002]), the authors modify similarity values computed by Eu-

clidean distance to incorporate pairwise constraints called complete link agglomera-

tive (CLA) clustering. CLA is an iterative algorithm that initially considers each data

instance is a cluster. If two data instances are linked by a must-link constraint, their

distance is set to zero in the similarity matrix. Similarly, if two data instances are

linked by a cannot-link constraint, their distance is set to a maximum threshold dis-

tance. This adjusting of data instance similarity associated with pairwise constraints

is called imposing constraints. Two similar clusters are merged in each iteration until

one cluster is left. The similarity between two clusters is determined by the maxi-

mum distance between their corresponding data instances.The outcome of CLA is a

hierarchy of clusters that is known as dendrogram. The dendrogram can be cut at

the appropriate level to retrieve the desired number of clusters.

Another proposed similarity adjustment (Klein et al. [2002]) is to propagate con-

straints to the neighboring data instances. If xi, xj are two data instances that are

very close to each other, then all data instances which are close to xi are also close

to xj. Likewise, if xi, xj are far apart, then data instances which are close to xi

are also far from xj. However, the direct imposing of must-link constraints in the

similarity matrix results in violating the triangle inequality and the shortest path

properties between data instances. To maintain these properties, authors apply all-

pairs-shortest-paths algorithm on the imposed matrix to create a metric matrix. As

Chapter 2: Literature Review 21

for cannot-link constraints, authors state that finding a clustering that satisfies them

is NP-hard. However, they argue that such constraints can be imposed and propa-

gated implicitly by choosing a similarity-based clustering algorithm such as the CLA

algorithm.

Constrained spectral clustering

Another significant similarity adapting work is proposed by Kamvar et al. (Kam-

var et al. [2003]). In their work, the constraints are imposed in spectral clustering by

combining data similarities with pairwise constraints to produce a Markov transition

process between data instances. This Markov transition is achieved by turning the

similarity matrix A into a normalized Markov transition process N . The eigenvec-

tors of Nn×k are then used for detecting data blocks which correspond to clusters by

projecting data instances into Rk. To construct the matrix N from A, the following

operation is applied:

N =
1

dmax

(
A+ dmaxI −D

)
where D is the diagonal matrix.

Semi-supervised constrained clustering

Cohn et al. (Cohn et al. [2003]) proposed a semi-supervised clustering based on

user feedback. The basic idea is to cluster data instances using an unsupervised

clustering algorithm. The user can criticize the clustering outcome by setting some

constraints on the contents of clusters. These constraints are used for re-clustering

data by changing the similarity distance metric of the clustering algorithm. This

22 Chapter 2: Literature Review

process continues until the user is satisfied with the results. In more detail, the authors

present a prototype-based clustering derived from naive Bayes model of document

generation. In their model, each document is represented as a “bag-of-words” that

is generated from a multinomial distribution θ. The probability of a document d is

given by:

P (d) =
∏

wi∈V ocabulary

p(wi|θ)N(wi,d)

where p(wi|θ) is the probability that term wi is generated, and N(wi, d) is the fre-

quency of term wi occurrence in d. Each document d is an estimate of a multino-

mial distribution θd, and each cluster π of documents is an estimate θπ . As for

the clustering, the authors assume that each document drawn from one distribution

θπ1 , θπ2 , ..., θπk correspond to the unknown cluster distributions π1, π2, ..., πk.

P (d) =
∑
i

P (πi)P (d|πi) =
∑
i

P (πi)
∏

wj∈V ocabulary

P (wj|θπ1)N(wj ,d)

The goal is to estimate the values of P (πi) and θπi which in turn can be used to

estimate class membership by Bayes rule:

P (πi|d) =
P (d|πi)P (πi)

P (d)

To implement pairwise document constraints, authors augment the standard KL-

divergence DKL(θd1 , θd2) with a weighting function as follows:

D′KL(θd1 , θd2) =
∑

wj∈V ocabulary

υjP (wi|θd1)log
P (wj|θd2)

P (wj|θd1)

P (wj|θd2) indicates the importance of wj for distinguishing d1 and d2. Given con-

straint that d1 and d2 must be in different clusters, the authors adjust the metric

Chapter 2: Literature Review 23

by:

∂D′KLM(d1, d2)

∂υj
= |x1|P (wj|θd1)log

(
p(wj|θd1,d2)

p(wj|θd1)

)
+ |x2|P (wj|θd2)log

(
p(wj|θd1,d2)

p(wj|θd2)

)
The distance between d1 and d2 can be increased by hill-climbing over the υ. These υ’s

are then incorporated into the E-step of the clustering algorithms as weights attached

to the term frequencies.

P (d|πi) =
∏

wj∈vocabulary

P (d|θπ)υjN(wj, d)

Learnable similarity measures

Other significant similarity-adapting works are presented in (Xing et al. [2003];

Bilenko and Mooney [2003]). Given a set of similar or dissimilar data instances,

the work in (Xing et al. [2003]) relies on learning Mahalanobis distances adjusted

by convex optimization to perform clustering that respects similarity/dissimilarity

relationships. A distance metric in the form:

d(x, y) = dA(x, y) =
∣∣|x− y∣∣ |A =

√
(x− y)TA(x− y)

To make d a metric that is non-negative and satisfies the triangle inequality, A has to

be positive semi-definite (A � 0). A parameterizes a family of Mahalanobis distances

over Rn. If A = I, we get the Euclidean distance. Learning such metric is also

equivalent to finding re-scaling that replaces x with A1/2xand applying the Euclidean

24 Chapter 2: Literature Review

distance to the re-scaled data. This can be formulated as constrained optimization:

minimize
A

∑
(xi,xj)∈S

(
∣∣|xi − xj∣∣ |2A)

subject to
∑

(xi,xj)∈D

(
∣∣|xi − xj∣∣ |2A) ≥ 1

A � 0.

The authors consider two cases for A. The first case is the diagonalA where we

want to learn A = diag(A11, A22, ..., Ann). By using Newton-Raphson method, g(A)

is defined as:

g(A) =
∑

(xi,xj)∈S

(
∣∣|xi − xj∣∣ |2A)− log

(∑
(xi,xj)∈D

(
∣∣|xi − xj∣∣ |2A)

)

Optimizing g s.t. A � 0 can be solved efficiently using Newton-Raphson method.

The second case is to learn the full A. Using Newton-Raphson is computationally

expensive (O(n6)). Therefore, authors use gradient decent and the idea of iterative

projections.

2.4 Constrained Clustering based on Swarm Intel-

ligence

Inspiration from nature has driven many creative solutions to challenging real-life

problems. Clustering, in its purest form, is an optimization problem. One of the many

approaches used for solving clustering problem is Swarm Intelligence (SI). SI is an

artificial intelligence paradigm that is mainly inspired by the behavior of real swarms

or insect colonies. SI depends on the collective action of decentralized, self-organized

Chapter 2: Literature Review 25

agents. Although these agents have no direct communication or centralized control,

the indirect local interactions between such agents result in the emergence of intelli-

gent global behavior that is unknown to the individual agents. Examples of natural

systems of SI include ant colonies, bird flocking, animal herding, bacterial growth,

and fish schooling (Kennedy [2011]). The most popular swarm intelligent algorithms

used for data clustering are ant colony optimization, particle swarm optimization and

flocks of agent based-clustering.

In this thesis, I consider another technique, ant brood clustering (ACA) (Deneubourg

et al. [1991]; Lumer and Faieta) inspired by how real ants brood sort their nest. This

technique is more suitable to the clustering problem than ant colony optimization. In

(Liu and Liu [2016]), Liu provides an in-depth study of the algorithm providing its

weakness and strength through many benchmark experimentations.

Most of the work on ant clustering is based on the LM model by Lumer and

Faieta (Lumer and Faieta [1994]) described in section (2.4.1). In section 2.4.2, I

review previous constrained clustering works that are based on ACA. In Chapter

3.1, I highlight the shortcomings of using LF model for data clustering and present

three major enhancements to alleviate its shortcomings. In section 3.3, I extend the

enhanced model to a constrained clustering model by incorporating constraints.

2.4.1 Ant Clustering Algorithm (LF Model)

Ant brood clustering was inspired from the observation that some species of ants

have the ability to sort large corpses and eggs into clusters. This behavior was modeled

by Deneubourg et al. (Deneubourg et al. [1991]) to enable real-world robots perform

26 Chapter 2: Literature Review

certain clustering tasks. In the basic model, the data objects are scattered on a two-

dimensional grid and the ants randomly move withing this grid. Each ant decides

to either pick up a free object or drop off a loaded object depending on the average

similarity of the object with its neighboring objects.

The basic model is enhanced by (Lumer and Faieta [1994]) to work with multidi-

mensional data that are comparable according to a measure of similarity (LF Model).

The average similarity is estimated using a local average function as shown in equa-

tion (2.1). In this function, d(oi, oj) is a similarity function that measures the distance

between the object oi and a neighboring object oj (e.g. Euclidean distance) scaled

by a constant α ∈ [0, 1]. r is known as the radius of perception of the ant, and (2r)2

is the area of ant’s neighborhood, which is a normalization factor that represents

the square area surrounding the object oi. As shown in the pickup equation (2.2),

the more dissimilar objects there are in the ant neighborhood, the more likely the

objects will be picked up. Conversely, the more similar objects there are in the ant

neighborhood, the more likely the objects will be dropped off, as given in equation

(2.3). kp and kd are two parameters for adjusting pickup and drop-off probabilities,

respectively. After several iterations, data clusters emerge from the collective and

collaborative activities of the ants.

The LF model is considered as a standard ant clustering algorithm in mining data.

In 2002, Handl and Meyer implemented ACA for classifying on-line documents based

on their cosine similarity (Handl and Meyer [2002]). Wu et al. (Wu and Shi [2001])

Chapter 2: Literature Review 27

combined ACA with k-means algorithm to achieve more accurate clustering results.

f(oi) = max

(
1

(2r)2

∑
oj∈N(oi)

(
1− d(oi, oj)

α

)
, 0

)
(2.1)

Ppick(oi) =

(
kp

kp + f(oi)

)2

(2.2)

Pdrop(oi) =

2f(oi) if f(oi) < kd

1 otherwise

(2.3)

2.4.2 Constrained Clustering based on ACA

While there is a wide and diverse literature on traditional constrained clustering

algorithms, there is few works on clustering based on ant brood constrained algorithm.

To the best of my knowledge, only two works have been proposed, (Yang et al. [2012])

and (Xu et al. [2011]). In this section, I explain both works in detail, and highlight

their drawbacks.

In (Yang et al. [2012]), the authors propose a novel consensus constraint-based

clustering algorithm that incorporates pairwise (CL and ML) constraints in multi-

ant colonies. Clustering ensemble has proven to improve the quality and robustness

of clustering by combining multiple clustering solutions into a single solution. The

authors propose two problems: (i) how to incorporate pairwise constraints in each ant

colony; (ii) how to compute a new similarity matrix by incorporating the provided

constraints. The proposed model is similar to the LF model. Data instances are

distributed randomly on a two-dimensional grid where each ant is initially assigned

28 Chapter 2: Literature Review

at a random data instance. While ants are moving on the grid, they are either

picking up or dropping off data based on certain probabilities. Unlike LF models,

however, the model allows ants to move with varying speed. The probability of

picking up or dropping off depends on the similarity of the current data instance with

its neighboring data instances. When an ant at position r finds an object oi at time

t, the average local density f(oi) of objects that are similar to oi is computed by

equation 2.4:

f(oi) = max

(
0,

1

s2

∑
oj∈Neigh(oi)

[
1− d(oi, oj)

α(1 + ((v − 1)/vmax))

])
(2.4)

Neigh(oi) refers to (s × s) square surrounding area around oi. d(oi, oj) is the

similarity distance between oi and oj. α is a factor that defines the scale of similarity

between objects. v is a parameter to control the speed of ants, and vmax denotes

the maximum ant speed. Three different cases are considered for the speed of ants:

ants move randomly at the same speed (i.e., v is constant for all ants), the speed

of each ant is randomly sampled from [1, vmax], and ants start from maximum speed

vmax then decreases randomly to cool down. To compute picking up and dropping off

probabilities, they use the standard Sigmoid function f(x) = 1
1+e−x

using f(oi) with

f(x) as a parameter as shown in equations (2.5;2.6):

Pdrop(oi) = sigmoid(f(oi)) (2.5)

Ppick(oi) = 1− sigmoid(f(oi)) (2.6)

As the average similarity decreases, the probability of picking up increases while

the probability of dropping off decreases.

Chapter 2: Literature Review 29

In (Yang et al. [2012]), the authors also incorporate pairwise constraints to guide

the clustering process towards an accurate partition (search-based). To make use of

ML constraints in dropping off, the authors count the number of ML constraints that

relate oi with every neighboring object oj. The ant drops off oi if Pdrop(oi) is greater

than a random number r ∈ [0, 1] or if the number of ML constraints is greater than a

given constant c1. By contrast, the ant picks up the object if Ppick(oi) is greater than a

random number r ∈ [0, 1], or the number of CL constraints that relates oi with every

neighboring object oj is less than a given constant c2.

The proposed ensemble clustering in (Yang et al. [2012]) involves three compo-

nents: constant-moving ants, random-moving ants and randomly-decreasing moving

ants. Let O be the set of objects o1, o2, ..., on. Each clustering component q produces a

vector λ(q) ∈ Nn that indicates clustering label for each object. Applying r clustering

components result in r different labeling vectors. These label vectors can be mapped

into a binary membership matrix Hn×kr ∈ {0, 1} such that columns represent cluster

membership and rows represent objects. For any column j in H, all objects that

belong to a particular cluster are assigned one in their corresponding entries. The

membership matrix is an adjacency matrix which in turn can be transformed into a

similarity matrix as follows:

S =
1

r
HHT

After computing the similarity matrix S, ML and CL constraints are incorporated

as follows: if ML(oi, oj) then Sij = 1 and if CL(oi, oj) then Sij = 0. However, the

authors do not explain how data instances are assigned with cluster labels.

There are many drawbacks in Yang et al. work. (i) varying speed of the ants does

30 Chapter 2: Literature Review

not improve the spatial separation among clusters. Thus, the algorithm probably

converges to a local optimum; (ii) there is no integration between density function

and constraints. This means that ants can drop an object within a neighborhood

that has CL constraints with object, and can pick up an object from a neighborhood

that has ML constraints with the object; (iii) no method is given to explain how to

determine the values of constants c1, c2.

In ([Xu et al., 2011]), the authors introduce the Random Walk Ant Clustering

(RWAC) algorithm. In RWAC, each ant represents a data point, and can randomly

walk on the grid until it finds a place to sleep. Each ant perceives the fitness of

the neighborhood to decide whether to sleep or continue moving. The behavior of

finding a sleep place is simple. While ant moves, it looks for a safer place. The

safety of the place is measured by the number of similar ants in the surrounding

area of the ant. The authors improve RWAC convergence using a heuristic walk

mechanism. In addition, they introduce constrained ant clustering (CAC) as a semi-

supervised clustering algorithm. CAC uses heuristics to determine the direction of ant

movement (left, right, up, down). Two heuristics are proposed: max-number direction

walking (MNDW) and adaptive direction walking (ADW). The former simply counts

k-nearest neighbors in each direction, whereas the latter involves the grid distance

and the similarity in attribute space between the current ant and its neighbors are

taken into account. RWAC also suffers from converging to local-optimum. The model

forms larger number of small dense clusters than what originally exists in data. Also,

it cannot separate the overlapped clusters.

Chapter 3

Ant Clustering Algorithm with

Adaptive Radius (ACA-AR)

In section 2.4.1, the LF model for ant-based clustering was presented. In this

chapter, I highlight its shortcomings, and present a modified version of the algorithm,

called Ant Clustering Algorithm with Adaptive Radius (ACA-AR), that alleviates

the shortcomings (sections (3.1,3.2)). I extend ACA-AR into a constrained clustering

algorithm (CACA-AR) in section 3.3. In section 3.4, I explain the cluster retrieval

process. Finally, I validate the ACA-AR with and without constraints on benchmark

datasets in section 3.5.

3.1 Shortcomings of LF Model

The LF model suffers from the following shortcomings:

(i) the three initial parameters (α, kp, kd) in equations (2.1), (2.2) and (2.3) have to

31

32 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

be “experimentally” fine-tuned. Since ant behavior is collective, a slight change

in any one of the three parameters results in significant change in the outcome.

Therefore, LF model is highly sensitive to the values of initial parameters which

makes tuning these parameters problematic.

(ii) the model assumes that the ant’s radius of perception is constant (i.e., fixed

integer value). This assumption results in narrowing an ant’s visibility; conse-

quently, the ants spend tirelessly wandering on the grid and sometimes do not

converge.That is, the ants move on the grid without picking up data objects.

For instance, using ants with small constant radius (e.g., r = 1) for few hundreds

of ant steps (iterations) results in forming a higher number of small dense clus-

ters than what originally exist in the original data. On the contrary, assigning

ant radius to higher values results in forming a lower number of small, sparse

clusters than what originally exists in the data. This behavior is illustrated in

Figure 3.1

(iii) the the model considers ants with a certain number of steps. In existing ACA

models, the algorithm terminates when the ants reach a fixed number of random

iterations (ant steps). In my modified algorithm, ACA-AR, I assume that ants

are tireless, and they continue moving on the grid, picking up and dropping-off

data items until the grid becomes stable.

As a result of aforementioned shortcomings, unloaded ants spend lots of time ran-

domly moving on the grid without being able to pick up data items. Similarly, loaded

ants spend lots of time to find a location that satisfies the object dropping criteria.

This makes ACA computationally intensive and sometime redundant.

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 33

Figure 3.1: Color-coded clustering solutions for a mixture of Gaussian. Five classes
of 1500x20 real-valued vectors, using 150 ants on a 25x25 grid. The left figure is the
solution with ant radius 1, the middle figure is the solution obtained with ant radius
6, the right figure is a near-optimal solution obtained by ACA-AR by varying radius
from 1 to 7

3.2 Enhancements to Ant Brood Clustering

This section presents three major enhancements to the LF model, constituting,

ant clustering algorithm with adaptive radius (ACA-AR). The goal of these enhance-

ments is to improve performance, stability, convergence, speed and robustness of ACA

making ACA-AR applicable to real-world applications.

3.2.1 Applying Kernel Density Estimation to the Ant Neigh-

borhood

As I previously described in section 2.4.1, equation (2.1) estimates the average sim-

ilarity of ant’s neighborhood. In ACA-AR, I use Kernel Density Estimation (KDE), a

non-parametric statistical model that estimates the probability density function of a

random variable. KDE is also known as the Parzen-Rosenblatt window method. For

the univariate KDE, given a kernel function K and bandwidth parameter h, KDE

34 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

estimates the probability density of a particular object xi with respect to each neigh-

boring object xj ∈ N(xi) as shown in equation (3.1). For an object xi at location

(x, y), N(xi) is the set of objects within the area [x ± r, y ± r]. Aggregating these

probability densities gives an overall picture of the underlying structure of the data

and its density function.

KDE(xi) =
1

nhd

∑
xj∈N(xi)

K

(∥∥xi − xj∥∥2
h

)
(3.1)

The univariate KDE can be generalized to the multivariate KDE as shown in equation

3.2. In this equation, K is a multivariate Kernel function with a bandwidth matrix

H, x ∈ {xi ∈ Rd}ni=1. The bandwidth matrix H can be selected using plug-in method

or smoothed cross validation (Duong and Hazelton [2005]).

KDEH(xi) =
1

n

∑
xj∈N(xi)

1

|H|
K(H−1(xi − xj)) (3.2)

For instance, substituting the Gaussian kernel in (3.1) gives equation (3.3) where the

standard deviation parameter σ works as the bandwidth parameter, h. Similarly,

substituting the Gaussian kernel in (3.2) gives equation (3.4) where the covariance

matrix is the bandwidth matrix, H.

KDE(xi) =
1

nhd

∑
xj∈N(xi)

e
−‖xi−xj‖2

2σ2 (3.3)

KH(x) = (2π)−d/2|H|−1/2 exp(−1

2
xTH−1x) (3.4)

Using KDE in ACA is more convenient than the average similarity function (equa-

tion (2.1)) not only because it eliminates the need for the initial parameters, but also

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 35

it enables the use of different kernel types (e.g. Gaussian, Linear, Polynomial, etc.)

for different clustering purposes.

If an ant needs to decide to pick up or drop off object xi, it first computesKDE(xi)

with respect to the set of objects in its neighborhood N(xi). KDE ∈ [0, 1], with 1

being the maximum density of similarity. As shown in Figure 3.2, the more dissimilar

objects there are in ant’s neighborhood, the lower the value of KDE and hence the

greater the probability of picking up. Conversely, the more similar objects there

are in the ant neighborhood, the higher the KDE value and thus the greater the

probability of dropping off. The picking and dropping values are bounded in [0, 1]

using the Sigmoid function as shown in equations 3.5 and 3.6 receptively:

Prpickup(xi) = 1− Prdrop(xi) (3.5)

Prdrop(xi) =
1− exp(−cKDE(xi))

1 + exp(−cKDE(xi)
(3.6)

In equations 3.5 and 3.6, c is a constant that controls the convergence speed of

the algorithm convergence when increased. As shown in the Figure, as c increases,

the drop-off curve rapidly converges to 1, while the pick-up curve converges to 0 (i.e.,

drop and pickup curves become asymptotic to 1 and 0 receptively, for lower density

values). As a result, the higher the values of c, the greater the probability of drop-off

and the lower the probability of pick-up objects.

36 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

Figure 3.2: Dissimilarity Estimation of Ant Neighborhood Using KDE with Euclidean
distance

Figure 3.3: Pick-up and Drop-off Probabilities using Gaussian KDE for Neighborhood
Density

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 37

Figure 3.4: Pick-up and Drop-off Probabilities for different values of c

3.2.2 Adaptive Radius-based Ants

The radius of perception (r) determines the area of ant neighborhood; wherein,

the ant can explore the nearby objects (i.e., ant’s visibility) to decide its appropriate

action. The ant’s action can be either picking up a free object available at its current

position on the grid, dropping off a loaded object if the ant position is empty, or

moving to another random grid position. Such area is defined by a neighborhood

function that can be as simple as a radius-based area or as complex as a copula.

Regardless of the complexity of this neighborhood function, however, the outcome and

convergence rate of ACA is highly sensitive to the value of ant radius of perception

because it significantly affects KDE. For instance, setting the radius to a low value

(e.g., r = 1 or r = 2) results in forming a greater number of dense clusters than what

originally exists in the data. In contrast, high radius values (e.g., r ≥ 1
4

√
grid area)

38 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

yield a less number of sparse clusters than what originally exists in the data.

To solve this problem, I incorporate an ant with adaptive radius. That is, each

ant can increase or decrease its radius of perception as it becomes unable to perform

pickups. In more detail, all ants start wandering on the grid with r = 1 until they

become unable to pick up objects. At this point, the outcome will be a local-minima

solution (a large number of small dense clusters). This convergence occurs because

most ants become moving without performing pickups. To stimulate ants to pick up,

each ant gradually increases its radius of perception by one so that it can recognize

more dissimilarity in its larger neighborhood. As a result, the probability of picking

up increases. The radius increases as long as the ant is unable to perform pickups,

and the radius does not hit a maximum threshold. When the radius threshold is

hit, the ant reverses the process. That is, the radius gradually decreases depending

on ant’s ability to stimulate pickups until it reaches zero, at which point the ant is

terminated.

To sum up, while ants are moving, increasing/decreasing ant radius of perception

stimulates ants to pick up/drop off objects. The gradual increase of radius maxi-

mizes inter-cluster dissimilarity because it increases spatial locality among clusters.

The gradual decrease of radius of perception, by contrast, maximizes intra-cluster

similarity because it decreases spatial locality among the objects within the same

cluster. There are many benefits for this strategy: (i) it makes much broader explo-

ration of the solution space as the probability of ant pickup/drop-off increases; (ii) it

enables ACA-AR to converge the optimal number of clusters most of the time because

the ants can balance the intra-cluster similarity and inter-cluster dissimilarity; (iii) it

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 39

makes the algorithm more capable of detecting data outliers; (iv) it substantially im-

proves the spatial separation of clusters on the grid which is an essential requirement

to retrieve the clusters.

3.2.3 Termination condition

In the existing ACA models, the algorithm terminates when the ants reach a

predefined number of maximum steps (iterations) that is determined by trial and

error. In ACA-AR, the ant is terminated after using all possible values for the radius

(i.e., termination condition of ant depends on the value of ant radius). Each ant is

initialized with r = 1. When the ant becomes unable to pick up objects, it increases

its radius by 1. The increase of radius continues as long as the radius is less than a

threshold (r ≥ 1
4

√
grid area). The radius threshold is determined ,experimentally,

to enable each ant detecting the maximum dissimilarity in a given set of objects

when there exist at a least two clusters in the data. When the ant reaches the ant’s

maximum threshold, the ant reverses the process. That is, the ant gradually decreases

the radius each time it becomes unable to pick up objects until it reaches zero, at

which point the ant is terminated (i.e., the ant is terminated after using all possible

values for the radius). When an ant is terminated, it is removed from the grid.

A high-level description of ACA-AR including the aforementioned modifications

is illustrated in Algorithm 1.

40 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

Algorithm 1 ACA with Adaptive Radius of Perception

Input: feature vectors {xi}ni=1 x
i ∈ Rm Nants grid(h×w) max radius r Msteps

Output: grid coordinates ∀xi ∈ {xi}ni=1

1: ∀xi ∈ {xi}ni=1 , assign xi to a random grid location

2: ∀ anti ∈ Nants, assign anti to a random grid location

3: for ant ∈ Nants in parallel do {main loop}

4: ant.radius← 1 {initialize ant radius of perception}

5: while ant.radius > 0 do

6: ant.pickups← 0 {this is to count the number of pickups that are performed

successfully by the ant}

7: for step ∈ {1, ...,Msteps} do

8: if ant.location 6= null then {there is object at ant’s location}

9: if ant is unladen then {ant does not carry object}

10: obj ← grid(ant.location) {get the object using ant position}

11: draw a random number R ∈ [0, 1]

12: compute Ppickup(obj), equation (3.5)

13: if Ppickup(obj) ≥ R then {perform pick up}

14: ant.obj = grid(ant.location) {ant carries object}

15: grid(ant.location) ← null {remove object from grid}

16: ant.pickups← ant.pickups+ 1

17: end if

18: else{ant is loaded with object so it continue wandering}

19: move ant to a random grid location

20: continue {go to while loop}

21: end if

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 41

22: else{there is no object at ant’s location}

23: if ant is carrying object then

24: obj← ant.carrying

25: draw a random number R ∈ [0, 1]

26: compute Pdrop(obj), equation (3.6)

27: if Pdrop(obj) ≥ R then {perform drop off}

28: grid(ant.location) ← ant.obj {store ant’s object in the grid}

29: ant.obj = null {ant becomes unladen}

30: end if

31: else{ant is unladen, and grid location is empty so ant continue wander-

ing}

32: move ant to a random grid location

33: continue {go to while loop}

34: end if

35: end if

36: end for

37: increase ant radius by 1 as long as ant radius does not reach max radius r

38: decrease ant radius by 1 if ant radius r reaches max radius r

39: end while

40: end for

41: ∀xi ∈ {xi}ni=1 retrieve grid coordinates of xi

42: identify clusters using cluster retrieval algorithm 2

42 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

3.3 ACA-AR with Pairwise Constraints

In applications where constraints exist between data, ACA-AR is not enough.

The most important operations, pick up and drop-off of objects are restricted by the

Must-Linked (ML) and Cannot-Linked (CL) constraints. In this section, I explain

how I modify ACA-AR algorithm to address this issue.

In Figure 3.4, ants tend to perform more pickups when there are more dissimilar

objects within ants’ neighborhood, and they tend to perform more drop-offs when

there are more similar objects within ants’ neighborhood. I extend this same intuition

to incorporate pairwise constraints. The higher the constraint satisfaction within

the ant’s neighborhood, the greater the drop-off probability. On the contrary, the

higher the constraint violation within the ant’s neighborhood, the greater the pick-up

probability. This intuition can be formulated in two steps. First, we make each ant

count the number of satisfied ML and CL constraints using an indicator function that

adds one for every satisfied ML or CL constraint as shown in equation 3.7). Second,

we add this total number of satisfied constraints to the initial value of c = 1, as shown

in equation 3.8. As c increases, the probability of drop-off increases and vice versa,

as described in equations (3.6 and 3.7).

f(xi) =
∑

(xi,xj)∈ML

1[li = lj] +
∑

(xi,xj)∈CL

1[li 6= lj] (3.7)

c = c+ f(xi) (3.8)

In equation (3.7), the term 1[li = lj] is an indicator function that adds one for

each satisfied ML constraint within ant neighborhood. Similarly, the term 1[li 6= lj]

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 43

is an indicator function that adds one for each satisfied CL constraint within ant

neighborhood. The flowchart shown in Figures 3.5 and 3.6 illustrates the algorithm

steps including the above modifications.

3.4 Cluster Retrieval

Cluster retrieval algorithm assigns a cluster label to each data point. As shown in

Figure 3.7, all data instances that belong to the same cluster corresponds to a blob

on the grid. In the experiments, I use edgeless grid (torus) which means that data

points at the edges are adjacent. To retrieve the clusters, I map data instances into an

undirected graph G(V,E) based on their grid coordinates such that V = {xi ∈ xni=1}.

To determine connectivity of G, each data point xi at position (x, y) is connected to

its neighbors at positions (x ± 1, y ± 1). As a result, each blob on the edgeless grid

forms a connected component in G. Finding connected components is straightforward

and can be found using either breadth or depth first search algorithms. The cluster

retrieval process is illustrated in Algorithm 2.

44 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

Figure 3.5: Modified ACA Flowchart: Part 1

Figure 3.7: Data points that refer to one cluster form well-separated blob. The most
dense regions (green interior points within a blob). Red data points determine blob
boundaries

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 45

Figure 3.6: Modified ACA Flowchart: Part 2

Algorithm 2 Cluster Retrieval

Input: grid coordinates ∀xi ∈ {xi}ni=1

Output: cluster label li ∀xi ∈ {xi}ni=1

1: initialize undirected graph G(V,E) V = {xi}ni=1

2: for xi ∈ {xi}ni=1 do

3: for xj ∈ neighbors(xi) do

4: E = E ∪ {(xi, xj)}

5: end for

6: end for

7: identify connected components in G using depth or breadth first search

8: assign a cluster label for each subset of vertices identified as connected component

46 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

3.5 Algorithm Validation

3.5.1 Benchmark Datasets and Evaluation Metrics

I evaluate the clustering quality of ACA-AR with and without constraints on three

benchmark datasets: Iris (Fisher [1936]), Yeast (Horton et al. [2007]), and a subset of

the 20 Newsgroups (Nigam et al. [2000]). Each dataset presents a different clustering

challenge that can be solved with the proposed algorithm. All datasets are available

from the University of California, Irvine machine learning repository (UCI) (Lichman

[2013]).

• Iris: consists of 150 instances and 4 features. Iris involves three non-spherical

classes: Versicolor, Virginica, and Setosa. The first two classes are overlapped

(non-linearly separable) while the third is linearly separable from them. The

default similarity measure between two instances is the Euclidean distance.

• Yeast: consists of 10 highly-unbalanced classes that represent the localization

site of protein. These classes include 1484 instances where each instance is

represented by 8 continuous features. The Euclidean distance is the default

similarity metric.

• 20 Newsgroups: This data set is comprised of 20000 documents taken from 20

Usenet newsgroups. It is commonly used for text classification and clustering

applications. To highlight the impact of constraint incorporation in ACA-AR,

I select 1500 documents from 5 classes which are graphics, misc, PC hardware,

Mac hardware, and Windowsx. The classes are highly overlapped and closely

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 47

related. I apply the vector space model in order to transform the selected

documents into feature vectors. The terms are weighed using TF−IDF scheme,

Term FrequencyInverse Document Term Frequency, weighting scheme. The

number of features is truncated to 5000, and vector distance is computed by

the Cosine similarity.

There are several metrics for external cluster evaluation. Since the ground truth is

known for each selected dataset, I adopt the following metrics to evaluate the different

clustering quality of ACA with adaptive radius:

• V-measure Hirschberg and Rosenberg [2007]: is an entropy-based measure that

measures how successfully the data points that belongs to one class are all

included in the same cluster. V-measure is computed as the harmonic mean of

different homogeneity and completeness scores. Homogeneity indicates whether

each cluster contains only data points of a single class, whereas the completeness

indicates how many data points of a given cluster are assigned to the same

cluster.

• Adjusted Random Index (ARI) Hubert and Arabie [1985]: The Random Index

measures the agreement between two clustering solutions by considering all pairs

of data points. It counts how many pairs are correctly clustered relative to the

total number of the pairs. ARI adjusts the rand index to vary between -1 and

1 according to expectation with 1 being a perfect match.

• Silhouette Coefficient (SC) Rousseeuw [1987]: is an internal evaluation metric

SC ∈ [−1, 1] with the higher score indicating better defined clusters. Good

48 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

defined clusters are those where the data points in one cluster are close to each

other compared to their next closest cluster.

I compare the clustering quality of ACA-AR with three baselines: k-means, Mean

Shift and ACA with constant radius.

• k-means: is a clustering algorithm that partitions a set of data points X into

k disjoint clusters C. k-means requires the number of clusters k to be speci-

fied. Each cluster is described by its centroid µ, which represents the mean of

data points within the cluster. k-meanslocally minimizes a sum-of-squares cri-

terion within each cluster
n∑
i=1

min
µj∈C

∥∥xj − µi∥∥2. k-means is the baseline for result

comparison.

• Mean Shift (MS) (Fukunaga and Hostetler [1975]): is a non-parametric iterative

clustering method that does not make any prior assumptions about the number

or the shape of clusters. The MS assumes that the data points are sampled from

a probability density function (pdf). Therefore, it considers the local-maxima

points in the pdf as dense regions (clusters). The intuition of MS is to associate

each data point with the nearby local maxima. For each data point, MS fixes

a window around it and computes the mean of the data points within that

window. Then, it shifts the center of the window to the mean and iterates until

it converges. The goal of each iteration is to shift the window towards a denser

region of the dataset.

Given a data point xi for iteration t, xi is shifted by the equation xt+1
i =

xti + m(xti) where m(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)
. N(xi) is the neighborhood

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 49

of data points within a given distance around xi. The size of neighborhood is

determined by the value of bandwidth h in a kernel k. m is the mean shift

vector that is computed for each data point and points towards a region of the

maximum increase in the density of points (scikit-learn developers).

3.5.2 Clustering Results of ACA-AR

Table 3.1: Cluster Validity - Iris

k-means MS ACA ACA-AR

V-measure 0.66 0.73 0.64 0.82

ARI 0.62 0.57 0.62 0.71

SC 0.46 0.58 0.43 0.54

number of clusters 3.00 2.00 3.00 3.00

Table 3.1 shows the comparative results of Iris clustering solutions obtained by

k-Means, mean shift, ACA with fixed radius, and ACA with Adaptive Radius (ACA-

AR). As the metrics indicate, ACA-AR outperforms all other clustering algorithms

in identifying the Iris clusters. Mean shift identifies only 2 out of the 3 existing

clusters because it fails to separate the overlapped Iris classes. ACA and ACA-AR,

in contrast, identify all of the three classes. In addition, ACA-AR gains 18% increase

in ARI, as indicated by its V-measure score (82%), compared to ACA. This increase

is due to the improvement of the completeness and homogeneity of clusters.

I also evaluate the clustering quality of ACA-AR on the Yeast dataset, which

contains a larger number of classes (10) with highly unbalanced class distribution

50 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

Table 3.2: Cluster Validity - Yeast

k-means MS ACA ACA-AR

V-measure 0.53 0.73 0.77 0.82

ARI 0.28 0.57 0.65 0.69

SC 0.35 0.58 0.55 0.57

number of clusters 10.00 2.00 3.00 5.00

Table 3.3: Cluster Validity - 20 Newsgroups

k-means MS ACA ACA-AR

V-measure 0.21 0.57 0.55 0.61

ARI 0.18 0.49 0.55 0.59

SC 0.04 0.51 0.55 0.57

number of clusters 5.00 3.00 3.00 5.00

(463, 429, 244, 163, 51, 44, 37, 30, 20, 5). Table 3.2 shows the experimental results

on this dataset. k-means converges to a local-minima solution with ARI of 28% due

to the poor selection of initial centroids. Although mean shift achieves higher scores

for ARI and V-measure, it fails to detect classes with small sizes. ACA and ACA-AR,

by contrast, outperform mean shift because they are more capable of detecting the

small classes.

Clustering 20 Newsgroups documents is challenging because of the “curse of di-

mensionality”, which the result of the fact documents are represented using sparse

high-dimensional feature vector (e.g 10000 features). To obtain the results using the

cosine distance, I use the spherical k-means, which is a k-means variant for text clus-

Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR) 51

tering. To handle the cosine similarity in mean shift, ACA and ACA-AR, I adapt

equation (3.1) to Nh(oi) = {oj :
∥∥cosine(~oi, ~oj)∥∥ ≥ h} as proposed by (Senoussaoui

et al. [2013]). Reviewing the results in Table 3.3, k-means obtains the worst results

because of class non-linearity and initial selection of cluster centroids. Both mean

shift and ACA identify only three out of the five existing clusters because they fail

to separate some of the overlapped classes. ACA-AR, by contrast, identify all of the

five classes.

3.5.3 Clustering Results of ACA-AR with pairwise Constraints

I evaluate ACA-AR with randomly-generated constraints using 5-fold cross vali-

dation as described in (Pourrajabi et al. [2014]). Each dataset is divided into 5 folds

where 4 of them are used to create constraints. The entire dataset is clustered, and

the left-out fold is used for evaluation. This process is repeated 5 times so that each

fold is used for constraint creation and evaluation. The ARI is calculated only on

the test set, and the results are averaged over 10 runs of 5 folds. As shown in Figure

3.8, the accuracy (measured by ARI) of the three datasets improves when more con-

straints are added. Initially (i.e., when no constraints are provided), the ARI score

is for ACA-AR (entirely unsupervised).As the number of constraints increases (e.g.,

200, ..., 1000), the ARI also increases as a result of using constraints. In this case,

the ACA-AR is a semi-supervised algorithm.

For the Iris and Yeast, the accuracy rapidly increased with larger sets of con-

strains with respect to the unconstrained accuracy. However, since the classes of 20

Newsgroups are highly overlapped, it shows a slower increase in accuracy with more

52 Chapter 3: Ant Clustering Algorithm with Adaptive Radius (ACA-AR)

constraints.

Figure 3.8: ARI Curves: Constraints vs. Accuracy (ARI)

Chapter 4

Case Study: Aspect Based

Sentiment Analysis

In this chapter I explain aspect based sentiment analysis. I will test the feasibility

of my proposed clustering algorithm on this problem.

4.1 Introduction

During 2012 USA presidential election, Topsy Labs, a Twitter partner for social

media analytics, launched a new feature Twitter Political Index, which is a daily

sentiment meter that measures the level of public sentiment expressed by Twitter

users about presidential candidates. This meter assigns each candidate with a daily

score between 0 and 100, with 100 being the most positive. These scores are calculated

by extracting sentiments from 2 million Twitter posts a week. On November 7th, the

day after the election, for example, Obama scored 85 and Romney scored 57 (Moore

53

54 Chapter 4: Case Study: Aspect Based Sentiment Analysis

[2012]). This new style of extracting public sentiments from written source materials

such as social-media postings, product reviews, blogs and news articles is the main

task of sentiment analysis (SA). During the last decade, SA has been applied not

only to politics but also to many other disciplines, including stock markets, voting-

based TV shows and movie-revenue predictions. Despite its popularity, SA still poses

intellectual and practical challenges at both the academic and industrial levels (Liu

[2015]; Liu [2010]; Pang and Lee [2008]; Vohra and Teraiya [2013]).

SA is a significant discipline of research because our decision-making is social.

Individual’s decision-making is highly influenced by the opinions of their peers. For

instance, people usually look for their peers online opinions to decide whether or not

to buy a product, visit a specialist or vote for a candidate. Similarly, companies

need to develop insights about their products or services by identifying customer

opinions. These insights are vital to improve marketing decisions, campaign success

and product messaging. Such needs, besides the massive amount of opinionated text

at our fingertips, have led to the emergence of the field of SA.

4.2 Sentiment Analysis

Sentiment Analysis, also known as Opinion Mining (OM), refers to the compu-

tational study of how subjective information are expressed in textual units. SA and

OM are synonymous and hence often used interchangeably. SA aims at identifying,

extracting and aggregating the attitudes of speakers or writers toward topics or en-

tities and their aspects or features. SA also aims at evaluating and classifying the

intensity of such attitudes. These challenging tasks incorporate the use of Natu-

Chapter 4: Case Study: Aspect Based Sentiment Analysis 55

ral Language Processing (NLP), Machine Learning (ML), Computational Linguistics

(CL) and Data Mining (DM).

There are two main levels of SA: coarse-grained and fine-grained. Coarse-grained

SA aims at determining whether the attitude is positive or negative at the document

or sentence level. It assumes that a document (e.g. product review) or a sentence

expresses a single opinion on a single entity. On the other hand, fine-grained SA

aims at pinpointing where in a sentence an opinion is expressed, what are the opinion

polarity and intensity, and what the opinion is directed towards. This fine-grained

level of SA is also known as Aspect-based SA (ABSA). In this thesis, I investigate

ABSA in the domain of product reviews.

4.3 Aspect-based Sentiment Analysis (ABSA)

Unlike coarse-grained SA, the goal of ABSA is to identify sentiments expressed

towards different features or aspects of entities. For instance, the sentence “The food

was delicious but the service was awful.” involves two contradicting sentiments (i.e.

positive and negative) on two different aspects (i.e. food and service), respectively.

Although coarse-grained SA has proven beneficial for individuals and businesses, it is

still insufficient for most applications. In the domain of product reviews, for example,

it is very common that consumer expresses different sentiments (e.g. delicious, awful)

towards different product aspects (e.g. food, service) within a single sentence. These

sentiments may vary in polarity and intensity from one product to another or from

one aspect to another. Also, a consumer may favor a product because s/he likes

some aspects of the product. Therefore, businesses need to identify from online

56 Chapter 4: Case Study: Aspect Based Sentiment Analysis

reviews what product aspects consumers like or dislike and to what extent. In short,

there is a need for ABSA to recognize, aggregate and summarize such material in an

informative way.

Furthermore, ABSA has become a prerequisite to support new applications in the

domains of Information Retrieval (IR) and Natural Language Processing (NLP) such

as opinion spam detection, opinion helpful estimation or comparative sentence opinion

mining as shown in Figure 4.1. This need has emerged as a result of the rapid increase

in online user-generated contents, particularly in product reviews. According to a

survey conducted by comScore, Inc. (NASDAQ: SCOR) Kelsey Group on more than

2000 respondents (Liu [2015]), 32% of the participants have provided online ratings

for a service, product or person. Also, 20% of the participants have searched reviews

on a daily basis. Moreover, the study reveals that consumers are willing to pay at

least 20% more for 5-star service than 4-star service. In the discipline of information

retrieval, for instance, there is a demand for opinion-oriented search engines that can

retrieve relevant documents to opinionated queries. Likewise, in natural language

processing, there is a need for question-answering systems that can provide answers

to opinion-based questions. In addition to the aforementioned applications, there are

a wide range of domains whereby ABSA can be employed and for valuable reasons.

Such domains include business intelligence, stock market prediction, recommendation

systems and text-to-speech engines (Pang and Lee [2008]).

Chapter 4: Case Study: Aspect Based Sentiment Analysis 57

Figure 4.1: ABSA is a prerequisite to other NLP and IR tasks

4.3.1 ABSA Formal Definition

Formally, given a corpus C of product reviews, suppose that:

1. Ei: an entity i

2. Aij: an aspect j of entity i

3. Hk: opinion holder

4. Tl: sentiment time

5. Sijkl: sentiment polarity/intensity Si expressed on an aspect Aj of entity Ek by

a holder Hk at time Tl

The problem of aspect-based sentiment analysis is to identify all opinion quintuples

(Ei, Aij, Sijkl, Hk, Tl) for each review in C such that the five components correspond

58 Chapter 4: Case Study: Aspect Based Sentiment Analysis

to each other; any mismatch is an error (Liu [2010]).

Based on this definition, the major task of ABSA can be divided into four sub-

tasks as illustrated in Figure 4.2 (Pontiki et al. [2014]). Given a corpus of reviews, the

first subtask aims at identifying all single or multi-word terms that refer to particular

aspects of the target entity (e.g. laptops, restaurants, etc.) within the corpus. For

example, in the sentence “The staff and the service are amazing, but not the food.”,

the aspect terms are staff, service and food. In the second subtask, predict aspect

term polarity, each identified aspect term is assigned a sentiment polarity (e.g. posi-

tive, negative and neutral) with respect to sentiment expressed in the sentence. For

instance, the aspect terms staff, service and food will be assigned positive, positive

and negative polarity, respectively. The goal of the third subtask is to group aspect

terms that refer to the same aspect or entity into aspect categories. For example, in

the sentence “The menu is great, but the restaurant is expensive.” the aspect term

menu refers to aspect category food, whereas expensive refers to aspect category price.

In the fourth subtask, each aspect category (e.g. food, price, service, etc.) is assigned

an overall sentiment score based on its content (i.e., aspect terms and their sentiment

polarity). Finally, both aspect terms and aspect categories can be used by an aspect

based sentiment analysis system to generate a structured summary as the one shown

in Figure 4.3.

4.3.2 Challenges: Why ABSA is hard?

ABSA presents many challenges. These challenges can be defined based on the

two major tasks of ABSA as follows:

Chapter 4: Case Study: Aspect Based Sentiment Analysis 59

Figure 4.2: Subtasks of ABSA

Figure 4.3: Structured Summary Output

1. How to identify sentiment target?

Sentiment can be directed toward entities or aspects of entities. Identifying

sentiment targets is challenging because the entity or any of its aspects can be

described using variable-length text units (e.g. word, phrase or sentence). This

description can be explicit (i.e., entity or aspect is literally mentioned in text)

or implicit (i.e., non-literal where entity or aspect has to be inferred from text).

2. How to predict sentiment per target?

Sentiment prediction is to determine the polarity of the sentiment source with

60 Chapter 4: Case Study: Aspect Based Sentiment Analysis

respect to predetermined categories (e.g. positive, negative and neutral), and

evaluate its intensity with respect to a predefined scale (e.g. 1 to 10). Also,

sentiment can be expressed using variable-length text units either literally or

non-literally. However, predicting sentiment is more challenging because it can

be expressed using a wide variety of linguistic constructs and expressions. In

addition, sentiment is not only domain dependent but also context dependent.

Therefore, the problem of ABSA involves two main tasks: aspect identification

and sentiment prediction. The approaches/methods involved in solving these two

tasks are explained in sections (4.5; 4.6). In this thesis, I investigate both tasks using

constrained clustering based on swarm intelligence.

4.3.3 Constrained Clustering to ABSA

There exist two main reasons that make constrained clustering a feasible approach

to ABSA. First, labeled data for ABSA is unavailable in many domains and labeling

data is costly and time-consuming. This makes applying standard classification algo-

rithms for ABSA infeasible. However, ABSA makes available large amounts of unla-

beled data as well as small amounts of supervisory information that indicate whether

particular data objects (text units) are similar or dissimilar to be grouped in the same

cluster or not. The supervisory information can be naturally encoded in the form of

instance-level pairwise constraints. Second, ABSA is highly domain-dependent and

subjective. Therefore, imposing pairwise constraints on ABSA clustering is essential

as they reflect user’s perspective and knowledge on text similarity in the domain.

Constrained clustering aims at incorporating such supervisory information to

Chapter 4: Case Study: Aspect Based Sentiment Analysis 61

guide a clustering algorithm towards solutions with minimally-violated constraints

(Wagstaff and Cardie [2000]; Basu et al. [2008]).

To formalize the problem of ABSA as a constrained clustering problem, I assume

the following pre-processing steps:

• Product reviews are given in a semi-structured format, such as Extensible

Markup Language (XML) or JavaScript Object Notation (JSON). Therefore,

some opinion components such as entity Ei, opinion holder Hk and sentiment

time Tl are explicitly identified.

• Each review is tokenized into text units which involve sentences, phrases and

words. This tokenization is essential because a product aspect Aij can be em-

bedded in a single word, a phrase or an entire sentence. Similarly, a sentiment

can be expressed in a single word, a phrase or an entire sentence.

• Each text unit is represented n-dimensional feature vector.

• The semantic similarity between two text units can be quantified by measur-

ing the distance between their corresponding feature vectors. For example, a

greater value of cosine similarity distance implies stronger semantic similarity.

Other common distance measures include Euclidean distance, Minkowski, and

Manhattan distance.

• There exists limited annotated dataset (Pontiki et al. [2015]) available for ABSA,

while large amounts of unlabeled product reviews for ABSA are also accessible

(e.g. Amazon Product Reviews, (McAuley and Leskovec [2013]).

62 Chapter 4: Case Study: Aspect Based Sentiment Analysis

Let V = {v1, v2, v3, ..., vn} be the set of feature vectors that represent text units,

ML = {(vi, vj), vi, vj ∈ V } be a must-linked set of data pairs where a pair (vi, vj)

implies that vi and vj are known to be in the same cluster, and CL = {(vi, vj), vi, vj ∈

V } be a cannot-linked set of data pairs such that vi and vj are known to be in different

clusters.

The first task in ABSA is the aspect identification, identifying aspect categories

Aij, can be accomplished by grouping all text units (aspect terms) that refer to a par-

ticular aspect category, Aij, in the same cluster. Therefore, aspect identification can

be tackled by partitioning V into a set of k-disjoint clusters C = {c1, c2, c3, ...ck} such

that the intra-cluster semantic similarity is maximized, the inter-cluster semantic sim-

ilarity is minimized, and both types of pairwise constraints are maximally satisfied.

Similarly, the second task in ABSA is to predict a sentiment class for each identified

aspect cluster. Likewise, this prediction can be achieved by grouping text units into k

disjoint clusters such that the text units in one cluster have the same sentiment class.

Formally, we need to partition V into a set of k-disjoint clusters C = {c1, c2, c3, ...ck}

such that the intra-cluster sentiment similarity is maximized, the inter-cluster senti-

ment similarity is minimized, and the given constraints are minimally violated.

Since both tasks of ABSA can be defined as a constrained clustering problem,

the problem turns out to be finding an optimal or near-optimal clustering solution

C∗ with respect to a fitness function (similarity function). However, finding such C∗

is NP-hard problem (Welch [1982]) because the number of feasible solutions grows

exponentially with respect to the number of data items (vectors) to be clustered.

Suppose we have n text units such that each text unit is mapped into a feature

Chapter 4: Case Study: Aspect Based Sentiment Analysis 63

vector of dimension d, and the number of desired clusters is k, the number of feasible

solutions is given by equation 4.1,

N(n, k) = kn (4.1)

Therefore, heuristics are needed to solve the clustering problem. In this thesis, I

consider ant based clustering technique discussed in chapters 2 and 3.

4.4 Essential Approaches to ABSA

As we mentioned earlier in the example, “The food was delicious but the service

was awful.”, the goal of ABSA is to identify (food and service) as aspect terms, and

to predict that (delicious and awful) hold (positive and negative) sentiments toward

these aspects, respectively. Hence, in ABSA, there are essentially two main sub-tasks.

The existing approaches for tackling ABSA can, therefore, be divided into two major

categories, as described in Figure 4.4. For the first category, aspect identification,

there are four main methods, described in section 4.5. For the second category,

sentiment prediction and analysis, there are mainly two methods, supervised machine

learning and lexicon-based, described in section 4.6.

64 Chapter 4: Case Study: Aspect Based Sentiment Analysis

Figure 4.4: Essential Approaches to ABSA

4.5 Approaches to Aspect Identification

There are four essential methods for aspect identification. However, there exist

other hybrid methods that are proposed by combining two or more existing methods.

The basic idea of such an approach is to combine the advantages of two essential

methods. In the following subsections, the main idea of each method is presented. In

addition, the strengths as well as the limitations of each one are provided in Table

4.1.

Chapter 4: Case Study: Aspect Based Sentiment Analysis 65

Table 4.1: Approaches to Aspect Extraction: Pros & Cons

Approach Pros Cons

Frequency-based Simplicity and efficiency

produce many non-aspects

miss low-frequency aspects

non-portable

manual tuning of various parameters

Relation-based find low frequency aspects

needs a large variety of syntactic rules

pattern matching produces too many aspects

miss low-frequency aspects

require manual tuning

Supervised Machine

Learning

overcome frequency-based limitations

by learning parameters from data

need a substantial amount of manually annotated dataset

manual inspection and domain expertise are needed

domain dependence

feature selection problem

Hybrid Methods limit the number of non-aspects
miss low-frequency aspects

require manual tuning

Topic Models

(LDA)

unsupervised,

aspect extraction and grouping at the same time

relies on bag-of-words model

produce topics that are semantically unrelated

need a large volume of data

topics are unlabeled; need mapping to aspects and entities

LDA is designed to work at the document level

(topics are broad in scope) while aspects are locally

defined in sentences

4.5.1 Frequency-based Methods

Frequency-based method (Hu and Liu [2004]) relies on the assumption that aspects

and entities are described explicitly by a limited set of the most frequently-occurring

expressions. Such expressions are usually nouns or noun phrases. This method is

simple and straightforward, hence it is quite effective and commercially implemented

(Liu [2015]). However, a direct shortcoming of this method is that not all frequent

expressions always refer to entities or aspects. More importantly, infrequent expres-

sions that describe entities or aspects are strong candidates to be missed by this

method. Also, this method is not applicable when the corpus is a mixture of small

66 Chapter 4: Case Study: Aspect Based Sentiment Analysis

groups of different product reviews. Consequently, several refinements ([Liu et al.,

2005]; Scaffidi et al. [2007]; Li et al. [2009]; [Hai et al., 2011]; [Long et al., 2010]) have

been proposed to improve the precision of frequency-based method. For instance, the

work in (Hai et al. [2011]) applies association rules to extract implicit aspects from a

co-occurrence matrix that combines explicit aspects with sentiment expressions. An-

other refinement in (Long et al. [2010]) suggests the use of grammatical dependencies

to identify infrequent aspects.

4.5.2 Relation-based Methods

Sentiments and their targets are related via many syntactic relations because they

both occur together within sentences. Syntax-based methods rely on exploiting these

syntactic relations to extract either sentiments or targets (Hu and Liu [2004]). This

means that identifying sentiment words and expressions can be used for extracting

targets and vice versa. For instance, the adjective modifier relation between the

words delicious and food in the expression delicious food can be used to identify that

food is a target if delicious is marked as a sentiment word. Syntax-based method can

detect infrequent aspects efficiently; however, to get good coverage, it needs describing

a large variety of syntactic rules. Syntax-based methods have been elaborated in

(Blair-Goldensohn et al. [2008];Ruppenhofer et al. [2008]; Kobayashi et al. [2007])

to include dependency relations. The basic idea in such elaborations is to generate

all syntactic relations from a given corpus using a dependency parser, and then to

identify all dependency patterns that relate sentiments and targets. This idea has

also been developed into double propagation method (Qiu et al. [2011]), which is

Chapter 4: Case Study: Aspect Based Sentiment Analysis 67

a bootstrapping method for simultaneous extraction of sentiments and targets. DP

starts from an initial set of sentiment words and applies certain dependency relations

to create an initial set of targets. The extracted targets are then used to expand the

sentiment set with new sentiment words which, in turn, are used to find new targets.

This process continues until both sets converge.

4.5.3 Supervised Machine Learning

Aspect extraction through supervised machine learning (ML) is considered as a

sequence-labeling problem, hence it was investigated using Chain-Conditional Ran-

dom fields (CRF) and Hidden Markov Models (HMM). However, like all supervised

ML techniques, both CRF and HMM require the availability of manually annotated

training datasets. These datasets comprises of thousands or even millions of examples

that are annotated at the word level. In addition, both CRF and HMM stumble due

to the feature selection problem. The study in (Jin et al. [2009]) proposes lexicalized

HMM’s to extract product aspects from reviews whereby linguistic features, such as

part-of-speech and surrounding contextual clues of words, are integrated into auto-

matic learning. CRF outperforms HMM for aspect extraction problem (Liu [2015])

because it can handle overlapping features. The work in (Jakob and Gurevych [2010])

investigates the performance of CRF-based approach in single and cross-domains. In

this work, different features such as the current word, part-of-speech tag, the word

distance and the dependency path are employed.

68 Chapter 4: Case Study: Aspect Based Sentiment Analysis

4.5.4 LDA-based Clustering

Most unsupervised models proposed for aspect extraction are based on topic mod-

els, in particular Latent Dirichlet Allocation (LDA) model (Blei et al. [2003]). LDA

is a generative statistical model used for topic modeling. It assumes that docu-

ments exhibit multiple topics, and each topic is a probability distribution over words.

Therefore, the output of LDA model is a set of clusters of words, whereby each cluster

represents a topic in a given corpus. LDA is similar to the probabilistic latent seman-

tic analysis ([Hofmann, 1999]), but it assumes that topic distribution is a Dirichlet

prior rather than a uniform distribution. Although LDA has been successfully im-

plemented for topic modeling, it has many limitations to be directly implemented

in the context of ABSA (Titov and McDonald [2008]). First, aspects or entities are

described by semantically-related expressions. LDA, however, produces topics that

are semantically-unrelated because it depends on bag-of-words model. Second, LDA

generates clusters of unlabeled topics, hence a method is required to map topics to en-

tities or aspects. Third, LDA is designed to work at the document level. This means

that it produces topics that are broad in scope, while aspects are locally defined

within sentences.

To elaborate LDA for ABSA, (Titov and McDonald [2008]) proposes multi-grained

LDA. The idea of multi-grained LDA is to find a global set of topics and a local

dynamic set of topics. Global topics are assumed to describe entities while local

topics are assumed to describe aspects. To find local topics, the work in (Mei et al.

[2007]) treats each document as sliding windows of overlapped sentences. Another

similar work (Lu et al. [2011]) performs LDA at the sentence level. LDA has also

Chapter 4: Case Study: Aspect Based Sentiment Analysis 69

been combined with sequence models like CRF (Li et al. [2010]) in order to distinguish

between aspect words and background words and HMMs (Lakkaraju et al. [2011]).

This distinction depends on incorporating syntactic relations between aspects and

sentiments.

4.6 Sentiment Prediction and Analysis Approaches

Approaches to sentiment prediction and analysis aim at determining sentiment

category or sentiment score for each identified aspect. For example, if an entity is a

cell phone, the identified aspects could be size, battery, price, design, etc. Supervised

machine learning and lexicon-based approaches are two basic proposed methods in

the literature. The former models the problem as a multi-class classification problem,

whereas the latter depends on retrieving sentiments from predefined lexicons. How-

ever, since each approach has its own shortcomings, a third hybrid approach has also

been proposed to alleviate the drawbacks of each one.

4.6.1 Supervised Machine Learning

Sentiment analysis using supervised machine learning has been successfully im-

plemented at the coarse-grained level, but not at the aspect level. This is because the

features used at the coarse-grained level are independent of the targets of the senti-

ments. Examples of such features include the current word, part-of-speech, negation

words and whether the word is given in a sentiment lexicon or not. ABSA, by contrast,

needs to consider sentiment targets (entities and aspects) in model learning. There-

fore, it needs to incorporate features that depend on the targets of the sentiments.

70 Chapter 4: Case Study: Aspect Based Sentiment Analysis

For instance, (Jiang et al. [2011]) generate target-dependent syntactic features using

parse tree. However, this approach assumes that aspects and entities are identified

in advance. Another approach proposed by (Boiy and Moens [2009]) is to determine

the application scope for each sentiment expression.

4.6.2 Lexicon-based Approach

Sentiment lexicons or dictionaries are essential resources for sentiment analysis re-

gardless of its granularity. Each word, phrase or idiom in a sentiment lexicon is tagged

with a sentiment class or score. For example, (Liu [2009 (accessed May 5, 2016])

maintains a sentiment lexicon consisting of 2006 positive word and 4783 negative

words. Another frequently used Lexicon is the MPQA (Multi-Perspective Question

Answering) maintained by (Wiebe et al. [2005]). The most frequently used lexicon is

the SentiWordNet (Choi and Cardie [2009]; Baccianella et al. [2010]) which attaches

positive and negative real-valued sentiment scores to WordNet synsets. Finally, The

Harvard General Inquirer (Stone et al. [1966]) is a lexicon attaching syntactic, seman-

tic, and pragmatic information to part-of-speech tagged words. Sentiment Lexicons

are constructed using WordNet propagation algorithm (Hu and Liu [2004]). The al-

gorithm begins with an initial hand-crafted seed-sets of size n, and it then propagates

the WordNet relations (synonyms and antonyms) from the hand-crafted seed-sets,

thereby expanding their size. The expanded sets at iteration i are used as seed-sets

for iteration i+ 1, generally after removing any pairwise overlap between them.

Using lexicon-based approach to ABSA involves three major steps. In the first

step, all sentiment expressions (words and phrases) in each sentence that contains

Chapter 4: Case Study: Aspect Based Sentiment Analysis 71

one aspect or more are extracted. These expressions are assigned with polarity score

based on sentiment lexicon (e.g. -1 or +1). In the second step, a set of rules for

handling language constructs are applied. These rules, for instance, specify how to

manipulate sentiment shifters (e.g. contrary constructs and negations). These rules

also help infer the polarity of the words or phrases that are not listed in sentiment

lexicon. In the last step, an aggregate function is applied to determine the final

polarity per aspect.

4.6.3 Hybrid Approach

Neither the supervised machine learning approach nor the lexicon-based approach

scores high accuracy in ABSA. The accuracy of the former stumbles as a result of the

feature selection problem (bag-of-words). The lexicon-based approach, on the other

hand, suffers from ambiguity of words, multilinguality, granularity and the differences

in sentiment expressions among textual genres. Hybridization is to combine two or

more methods of different approaches to gain the benefits of each one. For instance,

many sentiment applications rely on sentiment lexicons to supply features to a su-

pervised classifier (Blair-Goldensohn et al. [2008]). Another work (Blair-Goldensohn

et al. [2008]) finds frequent aspects using maximum-entropy classifier, and implements

rule-based method to identify infrequent aspects. Similarly, (Raju et al. [2009]) sug-

gests using the Dice similarity as measure to classify noun phrases that are about the

same aspect. Given two noun phrases pi, pj, the Dice similarity coefficient is defined

as
2|Si∩Sj |
|Si|+|Sj | where Si, Sj are the the sets of uni-grams, bi-grams refer to two noun

phrases pi, pj.

72 Chapter 4: Case Study: Aspect Based Sentiment Analysis

4.7 Drawbacks of ABSA Clustering Techniques

It has been argued that neither conventional clustering methods, such as k-means

nor LDA-based clustering methods perform well in ABSA (Zhai et al. [2011]; Vohra

and Teraiya [2013]; Liu [2015]). There are two main reasons for this.

First, in ABSA, using appropriate semantic-similarity measure is the key to achiev-

ing high-quality clusters. There are two main types of semantic-similarity measures

used in ABSA clustering approach, lexical similarity and distributional similarity.

Lexical similarity of words relies on using pre-existing knowledge resource (e.g. the-

sauri, semantic network) to measure the semantic similarity between words. Distri-

butional similarity, on the other hand, depends on learning distributional features of

words given their context (Mikolov et al. [2013b]). The technique is based on distri-

butional hypothesis which states that words with similar meanings tend to occur in

similar contexts. Although lexical and distributional similarity measures can capture

different types of semantic relationships of words (Mikolov et al. [2013b]), they still

lack the semantic features about sentiments of words. Therefore, using either distri-

butional or lexical similarity to guide clustering algorithm in ABSA is insufficient.

Second, despite the wide variety of clustering approaches, such as connectivity-

based (hierarchical), centroid-based (partitioning or k-means), graph-based (Clique),

distribution (Expectation-Maximization), and Density (DBSCAN and OPTICS) (Ag-

garwal and Reddy [2013]), previous ABSA research have focused on k-means (Zhai

et al. [2011]). The k-means algorithm is the most commonly used method because

it is easy to implement, and it is efficient in terms of computation time. However, it

suffers from convergence to a local optimum, and the results are highly affected by

Chapter 4: Case Study: Aspect Based Sentiment Analysis 73

the selection of initial partitions.

To overcome the shortcomings of previous approaches in terms of object hetero-

geneity, efficiency, simplicity, and scalability, I investigate aspect based sentiment

analysis clustering problem through my proposed semi-supervised constrained ant

brood clustering approach discussed in the previous chapters.

Chapter 5

CACA-AR to ABSA Tasks

In this chapter I describe how I apply my constrained ant brood clustering with

adaptive radius algorithm (CACA-AR) to the two tasks in ABSA: aspect identifi-

cation and sentiment prediction. Figure 5.1 shows the clustering framework of my

approach to predict aspect category and sentiment class at the sentence level. The

benefit of this approach is threefold: (i) it takes the advantages of swarm intelli-

gence features such as decentralization, inherent distribution, collaboration, and self-

organization; (ii) it enhances the quality and the convergence of clustering by making

effective use of the approach to guide the clustering algorithm; (iii) since pairwise con-

straints reflect domain knowledge, incorporating them in ABSA clustering mitigates

ABSA’s domain dependency problem.

74

Chapter 5: CACA-AR to ABSA Tasks 75

Figure 5.1: Clustering Framework for Aspect Identification and Sentiment Prediction

The clustering framework starts with a corpus of product reviews as an input and

ends with labeled sentences. In the task of aspect category identification, the goal is

to assign input sentences with aspect categories (e.g., food, price, ...,etc.), while the

goal in sentiment prediction task is to assign input sentences with sentiment classes

(e.g., positive, negative and neutral). In the next two sections, I describe the major

phases in the framework for achieve each task.

5.1 Phase I: Vector Representation of Text Units

Both tasks, sentiment prediction and aspect category identification, require rep-

resenting semantic of variable-length word sequences, such as phrases, constituents,

sentences, paragraph or even entire document to be represented as fixed-length vectors

76 Chapter 5: CACA-AR to ABSA Tasks

in a high-dimensional space. Such representation aims at finding real-valued vectors

that captures the semantic of word sequences whereby all semantically-related word

sequences get to be closer in the space. Different models have been proposed to

achieve this task. One of the earliest models, for instance, is the bag-of-words or

bag-of-n-grams model (Harris [1954]). In this model, all unique words or n-grams are

extracted from the given corpus to represent a vocabulary set or bag. Each sentence

is represented as a vector of length that is equal to the vocabulary size. Given a

sentence or a word sequence, most of the vector entries are zeros except for those

entries corresponding to sentence words that are set to the frequency of the word.

Although bag-of-words has been successfully used in many tasks of natural language

processing, due to its simplicity and efficiency, it is not appropriate for sentiment

prediction task. This is because bag-of-words loses word order in the representation

and hence cannot capture adequate information about semantics of words. Moreover,

it suffers from high data sparsity and dimensionality.

As a result of the success of word vectors (Mikolov et al. [2013a]), several at-

tempts have been proposed to produce semantic vectors of word sequences using

word vectors. The underlying intuition behind using word vectors is the formulation

of distributional hypothesis, “words that occur in similar contexts tend to have simi-

lar meaning.” A direct result of the distributional hypothesis is that the meaning of

a word is characterized by the context where it usually occurs (Turney and Pantel

[2010]). Several distributional semantic models have been proposed to obtain vector

representations for words. One of the earliest models, for instance, is the Hyperspace

Analogue to Language (HAL) (Lund and Burgess [1996]). HAL model constructs se-

Chapter 5: CACA-AR to ABSA Tasks 77

mantic space based on co-occurrence matrix of words. HAL is extended to Correlated

Occurrence Analogue to Lexical Semantics (COALS) by Rohde et al. (Rohde et al.

[2006]). COALS combines latent semantic analysis and HAL model by employing the

Pearsons correlation and singular value decomposition. In (Pennington et al. [2014]),

Global Vectors (GloVe) model is presented. GloVe encodes the meaning of words

by computing the ratios of word-word co-occurrence probabilities. In (Mikolov et al.

[2013a]) and (Mikolov et al. [2013b]), two neural network for learning word vectors

are introduced, Continuous Bag of Words (CBOW) and skip-gram. Both models

are known as “word2vec”. The former learns to predict the word given its context,

while the latter learns to predict the context given a word. According to Mikolov

et al., CBOW is several times faster to train than the skip-gram and gives slightly

better accuracy for the frequent words, whereas skip-gram works better with small

amount of the training data and represents well for even rare words or phrases. To

sum up, distributional semantics models enable clustering method for aspect-based

sentiment analysis tasks because they quantify the semantic similarity between words

using cosine measure.

One method to represent a sentence as a vector, for example, is to construct

semantic vector of a sentence is to compute a weighted average of all the vectors of

sentence words (Mikolov et al. [2013b]). However, this model suffers from losing word

order just like bag-of-word model. Another method suggests combining word vectors

with respect to their order in syntactic tree using matrix-vector operations (Socher

et al. [2010]). This second method, combining word vectors according to the sentence

parse tree, can only produce vectors for sentences since it depends on the syntactic

78 Chapter 5: CACA-AR to ABSA Tasks

tree.

Recently, Le and Mikolov proposed paragraph vector model (Le and Mikolov

[2014]), which is commonly known as “Doc2Vec”. Doc2vec is an extension of word2vec

model that learns distributed vector representations of variable-length word sequences

which can be phrases, sentence or even entire document. There are two approaches in

doc2vec model: Distributed Bag of Words (DBOW) and Distributed Memory Para-

graph Vector (DMPV). As explained by Lau and Baldwin [2016], DBOW model is like

the word2vec skip-model because it ignores context words in the input, and it forces

the model to words that are randomly sampled from the output. DMPV, by contrast,

works in a similar way to word2vec CBOW. DMPV introduces a special token for a

document in addition to multiple target words. Unlike CBOW, word vectors are not

summed but concatenated.

In this thesis, I adopt paragraph vector model to create distributed semantic

vectors of sentences for both tasks of ABSA. A major advantage of paragraph vectors

is that they can be learned from unlabeled data; hence, they can work well in domains

that do not have enough labeled data, such as ABSA. In addition, paragraph vector

model preserves semantic of words because it takes order of words into consideration.

5.2 Phase II: Pairwise Constraint Extraction

The goal of this phase is to automatically generate sets of must-linked and cannot-

linked constraints (discussed in section 2.1.2) for aspect category identification and

sentiment prediction. There are two approaches to achieve this end. The first one

is to ask domain experts (linguists) to specify whether and when two sentences have

Chapter 5: CACA-AR to ABSA Tasks 79

the same sentiment or refer to the same aspect category. Another approach is to

generate pairwise constraints from a given labeled dataset. For instance, given a

labeled datasets for ABSA (Pontiki et al. [2014, 2015]). To generate k constraints, we

select k pairs of sentences iteratively. When both sentences have the same label (i.e.,

both belong to the same aspect category), the pair is added to the set must-linked

constraints. Otherwise, the pair is added to the set of cannot-linked constraints. For

the task of aspect category identification, for instance, we use the category label to

generate constants. Similarly, we use sentiment label to generate constraints for the

task of sentiment prediction.

Both sets of constraints can be further expanded by applying the transitive closure

on must-linked constraint set and entailment property on cannot-linked constraint set

as described in section 2.1.1. A simple algorithm for this approach is described in

Algorithm 3. However, as I mentioned previously in section 2.1.2, random selection

of constraints is ineffective because the relation of some selected pairs of data can

be trivially determined by a clustering algorithm. A more informative way is to

select pairs of sentences where both sentences have the same label and the semantic

similarity between their semantic vectors is low, or pairs of sentences where both

sentences have different labels and the semantic similarity between their vectors is

high.

5.3 Phase III: Apply ACA with Pairwise Constraints

The goal of this phase is to group sentence vectors (output of phase I) given

the extracted pairwise constraints (output of Phase II) into disjoint clusters where

80 Chapter 5: CACA-AR to ABSA Tasks

Algorithm 3 Pairwise Constraint Generation

Input: labeled dataset {xi, yi}ni=1, number of constraints k

Output: Must-Linked (ML) set, Cannot-Linked (CL) set

1: ML← φ, CL← φ

2: for i = 1 to k do

3: select two instances xi, xj randomly

4: if yi = yj then

5: ML←ML ∪ (xi, xj)

6: else

7: CL← CL ∪ (xi, xj)

8: end if

9: end for

10: expand ML set using its transitive closure

11: expand CL set using CL entailment

each cluster represents a collection of sentences that hold the sentiment category.

Similarly, the outputs from phase I and phase II serve as input in phase III for aspect

category identification. The main task of phase III is to carry out the proposed ACA

with pairwise constraints to group sentence vectors into disjoint clusters where each

cluster represents aspect category in the domain.

5.4 Cross-Validation for Constrained Clustering

Constrained clustering can be evaluated using K-Fold Cross Validation technique

as described in Pourrajabi et al. (Pourrajabi et al. [2014]).

Chapter 5: CACA-AR to ABSA Tasks 81

The results of CACA-AR are calculated using 10-fold cross-validation technique

as shown in Figure 5.2. In this technique, the labeled data is partitioned into 10

folds such that 9 folds form a training data, and 1 fold is held out as a test data

for evaluation. The training data is used to derive ML and CL constraints. The

entire unlabeled data (10 folds without labels) along with the generated constraints

and initial parameters of CACA-AR are fed to the constrained clustering algorithm

(CACA-AR) to find the data clusters. The k-Nearest Neighbor (KNN labeling) as-

signs a label for each instance in test fold by applying a majority-voting technique

using nearest neighbors of the instance. Once the test fold is labeled, the accuracy

metrics (recall, precision, and F-score) for the test fold can be computed with re-

spect to the actual labels, as given by the ground truth. The entire technique is then

repeated 10 times so that each fold is used as a test fold and as a training fold.

The accuracy measure of the algorithm reported by 10-fold cross-validation is then

the average of the values computed for each fold. This technique can be computa-

tionally expensive but does not waste too much data, which is a significant advantage

when the size of labeled data is small.

82 Chapter 5: CACA-AR to ABSA Tasks

Figure 5.2: A single Step in an N-Fold Cross Validation for Constrained Clustering

5.5 ACA Data Labeling Using k-Nearest Neighbor

ACA-AR with constraints can be used as neighbors-based classification approach.

As shown in Figure 5.3, ACA-AR finds clusters within each data class by making near-

est neighbors for each data instance adjacent to that instance on a 2d-grid. Therefore,

the algorithm can be used as neighbor-based classification approach. For instance,

given a data instance d at grid location (x, y) and a fixed radius r, the neighbors of d

are the set of instances {di} such that the grid location for each di is within the area

(x ± r, y ± r). Classification is then computed from a majority vote of the nearest

neighbors for each test instance; a test instance is assigned the data class which has

the most representatives within the nearest neighbors of the instance.

Chapter 5: CACA-AR to ABSA Tasks 83

Figure 5.3: Constrained Clustering using CACA-AR a dataset of 1500x20 real-valued
vectors. The dataset consists of 5 classes color coded with class labels where each
class is comprised of 3 clusters. The algorithm finds data clusters within each class

Chapter 6

Evaluations: Results and

Discussion

This chapter is organized as follows: the details of adopted benchmark datasets

for evaluation are presented in section 6.1. In section 6.3, I explain how vector

representation of text units (sentences and words) is achieved. For result comparison,

I adopt lexicon-based approach (unsupervised) and logistic regression classification

(fully supervised) because they are the most frequently used approaches for sentiment

analysis. Both baselines are presented in section 6.4. In section 6.2, the evaluation

measures, recall, precision and F1-score are defined. I explain the implementation of

ACA-AR as well as the feasibility of its parallel counterpart in section 6.5. Finally, I

present the results of CACA-AR in sections 6.7 and 6.8.

84

Chapter 6: Evaluations: Results and Discussion 85

6.1 Benchmark Datasets

In this section, I highlight the benchmark datasets used in this thesis.

• SemEval Dataset (Pontiki et al. [2014], Pontiki et al. [2015]): SemEVal Task 12

(the International Workshop on Semantic Evaluation). This dataset was intro-

duced to standardize the evaluation process of ABSA. The dataset is comprised

of product reviews that cover three domains: restaurants, laptops and hotels.

The total number of reviews and sentences for each domain is shown in Table

6.1. The laptop and restaurant reviews are manually labeled at the sentence-

level taking into account the context of the review. Each sentence is primarily

assigned two labels: the target of sentiment and the sentiment label (polarity).

Since this dataset is dedicated to ABSA, the first label, target of sentiment, is

expressed as a pair of an entity label and an attribute label. For the laptop

domain, for example, there are 22 predefined entity labels E (e.g. laptop, dis-

play, CPU, motherboard, hard disk, memory, battery, etc.) and 9 predefined

attribute labels A (e.g. general, price, quality, performance, etc.). The second

label, sentiment label S, is the polarity of the sentiment that is expressed to-

wards the target. The polarity set includes {positive, negative, neutral}. Each

E#A pair is assigned to S. Consider, for example, the following sentences with

their corresponding labels (Pontiki et al. [2015]):

– S1: It is the worst laptop ever.→ {laptop#general, negative}

– S2: The applications are also very easy to find and maneuver. →{software#usability,

positive}

86 Chapter 6: Evaluations: Results and Discussion

– S3: Sometimes you will be moving your finger and the pointer will not even

move. → {mouse#operation performance, negative}

Similarly, each sentence in the restaurant reviews is labeled with the target and

sentiment polarity. The target label involves 6 entity labels (restaurant, food,

drinks, service, ambiance, location), and 5 attribute labels (general, price, qual-

ity, style, miscellaneous), which results in 12 possible combinations. Consider,

for example, the following sentences:

– S1: I was very disappointed with this restaurant. → {restaurant#general,

negative}

– S2: Food was okay, nothing great. → {food#quality, neutral}

– S3: The fajitas were pretty expensive. → {food#price, negative}

For this dataset, I use CACA-AR to evaluate the accuracy of sentiment pre-

diction and aspect category identification (target) for laptop and restaurant

sentences.

Table 6.1: SemEval (Task 12) Dataset

Laptops Restaurants Hotels

Training Data

Reviews 277 254

Sentences 1429 1183

Test Data

Reviews 173 96 30

Sentences 761 685 266

Chapter 6: Evaluations: Results and Discussion 87

• Stanford Sentiment Treebank (SSTB) (Socher et al. [2013]): This dataset is

comprised of 10,752 single sentences extracted from movie reviews, which was

introduced in (Pang and Lee [2008]). Each sentence is parsed into phrases us-

ing Stanford parser. The dataset provides the polarity for each sentence as

well as the polarity for each phrase within the sentence. The total number of

labeled phrases is 215,154. Unlike SemEval dataset, each sentence is assigned

a sentiment category (polarity) out of five categories: very negative, negative,

neutral, positive and very positive. The number of the sentences for each cate-

gory is shown in Table 6.2. For this dataset, I evaluate CACA-AR accuracy for

sentiment prediction at the sentence level.

The distributions of sentiment classes for all datasets are shown in Table 6.2

Table 6.2: Class Distribution for Sentiment Datasets

class SSTB Laptops Restaurants

Very Negative 1370 - -

Negative 2850 882 593

Neutral 2013 170 92

Positive 2832 1138 1156

Very Positive 1687 - -

Total 10752 2190 1841

88 Chapter 6: Evaluations: Results and Discussion

6.2 Accuracy Measures

Since the tasks of ABSA are considered multi-class classification tasks, a wide

diversity of measures can be used to evaluate the accuracy of sentiment analysis

models. The simplest measure, for example, is to evaluate performance by computing

the plain accuracy which is the percentage of correctly predicted class labels over all

predictions. However, ’high’ accuracy alone is deceptive in many cases. For example,

assume that we have a Spam detection system that predicts if an email is a Spam or

not. However, the system is always faulty, i.e., it always predict that any email is not

a Spam. Given a test data of a hundred emails where only one email is a Spam and

99 are non-Spam’s. The accuracy of the system in this case is 99% as the prediction

is correct for non-Spam emails. While, in fact, the system does nothing as it fails to

predict the class (Spam), which is actually the goal of the system. To overcome this

issue in predictive analytics, the accuracy of the classification systems is reported by

recall, precision and F1-score measures.

6.2.1 Illustrative Example: Recall, Precision and F1-score

Consider a classification system that can classify (predict) whether a sentiment

polarity expressed in a given sentence is positive, negative or neutral. Suppose that

we are given a test data that comprised of manually-labeled sentences (ground truth)

where each sentence is labeled with one sentiment polarity (positive, negative or

neutral). The test data involves 220 sentences: 100 negative sentences, 100 positive

sentences and 20 neutral sentences. The 220 sentences are fed to the classification

system to get a predicted polarity for each sentence. A clean and obvious way to

Chapter 6: Evaluations: Results and Discussion 89

present the prediction/classification results is to use a confusion matrix, also known

as contingency table, as illustrated in Table 6.3.

Table 6.3: Confusion Matrix

Predicted

negative neutral positive total

Actual

negative 40 10 50 100

neutral 7 5 8 20

positive 30 25 45 100

total 77 40 103 220

Since we have three sentiment classes (positive, negative and neutral), the con-

fusion matrix has 3 rows and 3 columns, disregarding the total column. The rows

(actual) represent how the classification system predicted each class. For instance, out

of the 100 actual negative sentences (first row), 40 sentences were correctly predicted

as negative, 10 sentences were incorrectly predicted as neutral, and 50 sentences were

incorrectly predicted as positive. Similarly, out of the 100 actual positive sentences

(third row), 45 sentences were correctly predicted as positive, 25 sentences were incor-

rectly predicted as neutral, and 30 sentences were incorrectly predicted as negative.

Therefore, we can see from the matrix that the system in question has trouble distin-

guishing between positive and negative sentences. This is because almost half of the

actual negative sentences were predicted as positive, and half of the actual negative

sentences were predicted as positive. The matrix also shows that the classifier has a

clear weakness in predicting the neutral class. This is because only 5 sentences out

90 Chapter 6: Evaluations: Results and Discussion

of 20 actual neutral sentences were correctly predicted.

All correct predictions are located in the left diagonal of the matrix, while the

errors (false predictions) are represented by values outside the diagonal. The plain

accuracy is, therefore, (40 + 5 + 45)/220 = 0.41. In case of a perfect prediction,

the diagonal entries would be 100, 20, 100, respectively, while the rest of the entries

would be zeros. The confusion matrix can be unnormalized, such as the one shown

in Table 6.3, or normalized. The normalization is achieved by dividing each entry

in the unnormalized confusion matrix by the total number of instances (sentences),

given in the last column in Table 6.3. The normalized form of Table 6.3 is shown in

Table 6.4.

Table 6.4: Normalized Confusion Matrix

Predicted

negative neutral positive support

Actual

negative 0.4 0.1 0.5 100

neutral 0.35 0.25 0.4 20

positive 0.3 0.25 0.45 100

Given a confusion matrix, a more in-depth evaluation of the classification system

is to compute the average recall, precision and F1-score for the classes. To achieve

this, however, we further summarize the results by building a 2x2 confusion matrix

for each observed class as shown in Figure 6.1. For each class, we count the following

four entries:

(i) True Positive (TP) is the value when the predicted class is “yes” and the actual

Chapter 6: Evaluations: Results and Discussion 91

class, as given by the ground truth, is “yes”.

(ii) False Positive (FP) is the value when the predicted class is “yes”, and the actual

class is “no”.

(iii) True Negative (TN) is the value when the predicted class is “no”, and the actual

class is also “no”.

(iv) False Negative (FN) is the value when the actual class is “yes”, and the predicted

class in “no”.

Figure 6.1: Confusion Matrix for Particular Class, green cells: correct predictions,
red cells: incorrect predictions

Consider, for instance, the negative class. Based on the values given in Table 6.3,

the True Positive for this class is 40, which is the value where the actual class is

“negative”, and the predicted class is also “negative”. Similarly, the True Negative

is the the value wherein the actual class is “non-negative” (i.e., either “neutral”

or “positive”), and the predicted class is also “non-negative” (i.e., either predicted

“neutral” or “positive”). Therefore, True Negative for the “negative” class is (5+8+

25 + 45 = 83). The False Negative is the value wherein the actual class is “negative”

and the predicted class is “non-negative”, which is (10 + 50). By contrast, the False

92 Chapter 6: Evaluations: Results and Discussion

Positive is the the value wherein the actual class is “non-negative” but the prediction

class is “negative”, that is (7 + 30). The computation for TP, TN, FP and FN for

the three classes are shown in Table 6.5

Table 6.5: TP, TN, FP and FN Computations

True Positive True Negative False Positive False Negative

Negative 40 (5 + 8 + 25 + 45) = 83 (7 + 30) = 37 (10 + 50) = 60

Neutral 5 (40 + 50 + 30 + 45) = 165 (10 + 25) = 35 (7 + 8) = 15

Positive 45 (40 + 10 + 7 + 5) = 62 (50 + 8) = 58 (30 + 25) = 55

Given the values listed in Table 6.5, the recall, precision and F1-score can be

computed for each class as follows:

• recall = TP
TP+FN

• precision = TP
TP+FP

• F1− score = 2×recall×precision
recall+precision

After substituting the values listed in Table 6.5 in the above equations, we get the

values for recall, precision and F1-score as shown in Table 6.6

Table 6.6: Recall, Precision and F1-score

Recall Precision F1-score

Negative 0.4 0.52 0.45

Neutral 0.25 0.13 0.17

Positive 0.45 0.44 0.44

Average 0.37 0.36 0.35

Chapter 6: Evaluations: Results and Discussion 93

6.2.2 Interpretation of Recall, Precision and F1-score

This section provides the intuition as well as the interpretation of using recall,

precision and F1-score to report the accuracy of classification systems. In addition,

it provides the interpretation of using these measures to evaluate the accuracy of

sentiment analysis systems.

• recall: given all instances that should have the same class label (e.g. positive

sentences), recall measures how many of these were correctly predicted. In

the context of sentiment analysis, recall indicates the ability of the system to

predict a certain class. For instance, recall value of neutral class determines

how accurately the system recognizes neutrality.

• precision: given all the predicted labels for a certain class, precision indicates

how many of the instances were correctly predicted. For sentiment analysis,

precision indicates how often the predicted sentiment class are correct.

• F1-score: is the harmonic mean of recall and precision. The range of F-score is

[0, 1] with 1 being the perfect score. Reporting accuracy in terms of F1-score

provides a single value that equally rates the significance of recall and precision

together. This measure is also known as F-score or F-measure.

For the results shown in Table 6.5, we can observe, for example, that the system

suffers from predicting the neutral class as only 40% of actual neutral sentences

were hit by the classifier. Besides, the precision (predictive rate) of the classifier

to determine neutral sentences is 13%. The overall performance of the classifier can

be given as the average of recall, precision and F1-score. The overall accuracy of the

94 Chapter 6: Evaluations: Results and Discussion

classification system, explained in section 6.2.1, is 34% while the plain accuracy is

41%.

6.3 Feature Vectors of Sentences

In this thesis, I adopt the paragraph vector model (Le and Mikolov [2014]) to

create distributed semantic vectors of sentences (real-valued feature vectors). A major

advantage of paragraph vectors is that they can be learned from unlabeled data;

hence, they can work well in domains that do not have enough labeled data, such

as ABSA. In addition, paragraph vector model preserves semantic of words because

it takes the order of words into consideration. To generate the vectors, I train a

paragraph vector model using “Doc2Vec”, a Python implementation of the paragraph

vector model. The training data consists of 665,276 sentences as shown in Table 6.7.

Table 6.7: Training Data

Dataset Sentences

SemEval-Laptops 2,190

SemEval-Restaurants 4,031

Tackstroom and McDonald (TM) 6,546

Stanford Sentiment Treebank (SSTB) 17,298

Amazon Reviews 635,211

Total 665,276

As recommended by (Řeh̊uřek and Sojka [2010]; Lau and Baldwin [2016]), I use

Chapter 6: Evaluations: Results and Discussion 95

the following parameters to train the model:

• training algorithm: distributed memory (Le and Mikolov [2014]) 1

• dimensionality of the feature vectors: 300

• window (maximum distance between the predicted word and context words used

for prediction within a sentence): 10

• minimum word frequency: 10

The training algorithm iterates for 20 epoch with shuffled sentences in each iteration.

After completing model training, each sentence is represented by a real-valued vector

of dimension 300.

6.4 Baselines

I compare the results of constrained clustering based on CACA-AR against two

approaches: unsupervised classification using lexicon-based and fully supervised clas-

sification using logistic regression classifier.

6.4.1 Lexicon-based Approach

As I previously explained in section 4.6.2, lexicons are common lexical resources for

sentiment analysis. As a first experiment, I use lexicon-based sentiment analyzer using

SentiWordNet (Esuli and Sebastiani [2007]) with vote-flip algorithm (Choi and Cardie

[2009]) to evaluate sentiment polarity of sentences. SentiWordNet provides positive,

1Neural-network language model to learn distributed representations (fixed-length real-valued
feature vectors) for variable-length word sequences

96 Chapter 6: Evaluations: Results and Discussion

negative and objective (neutral) sentiment scores in a continuous scale (0.0, 1.0) for

a given word based on its part-of-speech (noun, verb, adjective, adverb).

For example, querying SentiWordNet for the verb dislike gives (PosScore =

0.0, NegScore = 0.5), which indicates that dislike conveys a negative sentiment. If

word is objective (neutral), SentiWordNet returns one for objectivity score and zero

for positive and negative scores. To classify sentences, sentence is first tokenized into

words, and each word is tagged with its part-of-speech using part-of-speech tagger.

Next, the sentiment scores is retrieved for each pair (word, tag) in the sentence so

that words are classified into positive, negative and neutral. Finally, the sentiment

polarity of words are fed into the vote-flip algorithm to evaluate the sentiment polar-

ity of a sentence. vote-flip algorithm is a rule-based algorithm that uses the counts of

positive, negative and neutral words as well as the existence of negation to determine

the sentiment polarity of a sentence.

As explained previously in section 4.6.2, lexicon-based approach to sentiment anal-

ysis depends on retrieving sentimental information about words from a pre-compiled

lexicon. Sentimental information includes word polarity, sentiment intensity and ob-

jectivity. The lexicons can be automatically or manually compiled. The compilation

of lexicons is still an active line of research in the sentiment analysis community. How-

ever, a major challenge in this approach is that lexicons do not provide information

about the contextual polarity 2 of words (Wiebe et al. [2005]). Since the sentiment

is highly context-dependent (i.e., the prior polarity of a word or a phrase is different

from its contextual polarity). This problem significantly affects the accuracy lexicon-

2The contextual polarity of a given word is the polarity of the word when it is used in a particular
context

Chapter 6: Evaluations: Results and Discussion 97

based sentiment analysis. Consider, for example, the scores assigned to the adjective

long as given by Sentiwordnet lexicon: Positive: 0.25, Negative: 0.125 and Objective:

0.625. The scores indicate that long tends to be objective (i.e., neutral). However,

consider the impact of context when long is used in sentences such as: The movie

was too long, battery life typically does not last long, or battery can last a very long

time. The polarity of the three sentences will be considered neutral by lexicon-based

approach. While, in fact, the polarity of the first sentence,The movie was too long, is

negative. the sentence, battery life typically does not last long holds a negative senti-

ment. By contrast, the third sentence, battery can last a very long time, indicates a

positive sentiment.

6.4.2 Multi-class Logistic Regression

Logistic regression model is one of the most frequently used model for data classi-

fication tasks. Unlike other classification methods, such as support vector machines,

decision trees or k-nearest neighbor, logistic regression expresses the probability of

outcome as a liner predictor function f(x, θ) such that, p(y|x) = f(x, θ). θ is a vector

of parameters which are usually estimated by maximum likelihood technique for a

given dataset. In logistic regression, f(x, θ) is known as a parametric method.

Generally, logistic regression predicts the probability of occurrence of an event by

fitting data to a logistic function. For instance, if outcome variable y is binary (0, 1),

logistic function is given by: p(1|x, θ) = 1
1+exp(−z) and p(0||x, θ) = 1−p(1|x, θ) here, z

is a linear function of the predictor variables such that z = β0 +β1x1 + ...βnxn, where

β0 is constant, and β1,n are predictor variable coefficients or regression coefficients

98 Chapter 6: Evaluations: Results and Discussion

and x1,n are predictor variable values. This logistic transformation forces probability

estimates to be between 0 and 1 regardless of the value of z. The predictor variable

coefficients are computed using a maximum-likelihood technique. If the estimated

probability of the event under consideration is less than 0.5, then it is concluded that

the event will not occur. In contrast, if the estimated probability of the event is

greater than 0.5, it is inferred that the event will occur. If, however, the estimated

probability exactly equals 0.5 then no inference concerning the occurrence of the event

can be made.

Multi-class logistic regression is an extension of binary logistic regression. There

are many reasons to use multi-class logistic regression for sentiment classification.

First, it is applicable when outcome variable is to be classified to one of multiple pos-

sible classes. Second, unlike liner regression model or general linear regression model,

logistic regression can be used whether independent variables are statistically inde-

pendent or not. Third, independent variables can be discrete or continuous. Fourth,

it can handle non-linear relationships between dependent variable and independent

variables. Lastly, no assumptions regarding linearity, normality or homoscedasticity

3 are required.

To generate the results of logistic regression, I train one-versus-rest multi-class

logistic regression classifier using (scikit-learn developers) with 10-fold cross validation

with the following parameters:

• inverse of regularization strength, c,range: [1× 10−10, 1× 1010].

• penalty: L2

3The relationship between the independent variable and the dependent variables is the same
across all values of the independent variables

Chapter 6: Evaluations: Results and Discussion 99

• tolerance: 1× 10−6

6.5 Implementation and Experiments

In this section, I present the ACA implementation and its parallel counterpart.

6.5.1 ACA Simulator

In order to evaluate the results of ACA-AR, I built a simulator that visualizes

ACA throughout the clustering process using Python 3.6. The core of the simulator

includes ACA-AR and CACA-AR implementation. Both algorithms are programmed

as a multi-threaded object-oriented application. The implementation consists of three

main classes:

• Grid class: is basically a 2D array of data objects. Grid class provides two main

methods. The first method scatters data objects and ants across grid cells. The

second method computes kernel density estimation given a certain area on the

grid. The grid class also provides other utilities for transforming grid contents

into images for visualization purposes.

• Data class: this class manipulates data objects. Each datum object consists of

real-valued vector X, actual label Y and predicted label. Each datum is initial-

ized with a unique identifier (ID). Data class provides methods for computing

data similarity (Cosine measure, Euclidean distance, ...etc).

• Ant class: this class provides the specification of ants. Each ant is actually an

object that runs a thread method. Ant class specifies ant movement, pick-up

100 Chapter 6: Evaluations: Results and Discussion

and drop-off methods.

In summary, the simulator monitors clustering process for each ant step.

6.6 Parallel Implementation

The algorithm is implemented on the multi-core GPU and CPU machines using

CUDA and OpenMP, respectively.

On the GPU, the algorithm starts from the CPU. The CPU reads in the data

file and creates two arrays: ants and objects, which store their locations on the grid.

The grid is created as an array (integer) initialized to -1. Then, the ants and objects

are randomly placed on the grid. The arrays and grid are moved from the CPU

to the GPU global memory to avoid communication latency between the CPU and

GPU. The CPU also calculates the distances between each objects using the Euclidean

distance, which is also passed to the GPU. Algorithm 1 is executed on the GPU. Each

ant is a block in the GPU. We restricted each block to one thread since there was no

performance gain when more ants were added, creating unnecessary synchronization

latency and race conditions. The computations of each ant, ai, is very fine-grained.

There are three operations performed by each ant: pick-up, drop-off and move.

Each ant can be categorized as either loaded or not loaded. If the ant is not loaded,

the ant considers its current location: (i) if empty it moves randomly to the adjacent

cells; (ii) otherwise, the ant applies Equation 3.5 to determine whether to pick up

the object. The number computed by Equation 3.5 is compared to a random number

(rand) between 0 and 1 generated by the ant. If the pick-up probability determined

by the Equation is larger than rand, the ant picks up the object and continues to

Chapter 6: Evaluations: Results and Discussion 101

wander, otherwise, it moves to another grid location. On the other hand, if the ant is

loaded, the ant calculates the next drop-off probability using Equation 3.6. Again, a

random number is generated and compared to the drop-off probability. If the drop-off

probability is greater than the generated random number the ant drops the object.

This implies that the objects are all similar. Otherwise, the ant moves to another

adjacent cell. Note that, only one ant may be located in each grid location.

The termination condition is the total number of iterations.The ants radius of

perception is increased to cover up to 1/4th of the grid area. Each ant starts with

radius one. This results in forming a large number of small dense clusters because

ants become unable to perform pick-ups. To merge the small clusters into larger

dense ones, the ant gradually increases its radius of perception to recognize more

dissimilarity, which, in turn stimulates pick-ups. When the ant covers up to 1/4th of

grid area, it gradually decreases its radius to compact the large clusters. The final

result is sent back from the GPU to the CPU. The algorithm is very similar on the

CPU, with the exception of sending data between CPU and GPU.

6.6.1 The Feasibility of Parallel Implementation

Although all ants wander simultaneously on the grid, only those ants with non-

overlapped neighborhoods can compute a pick-up or drop-off probability at the same

time. This is because each ant considers its neighborhood as a critical section when

it computes a pick-up or a drop-off probability. To highlight the impact of such syn-

chronization mechanism on the performance, I (Qasem et al. [2017]), report speedups

of both parallel implementation strategies by varying the radius of perception from 1

102 Chapter 6: Evaluations: Results and Discussion

to 6. In all experiments, we take the number of ants (threads) as 1% of data size N .

Figure 6.2 shows speedup results for OpenMP implementation. Speedup increases

with respect to the data size for small values of radius of perception (r = 1, 2). This

result is due to the fact that larger number of threads can be executed simultaneously.

However, speedup decreases rapidly as the radius increases because of race condition.

In addition, the increase in radius results in collecting a larger data sample within

ant’s neighborhood. This,in turn, makes computing KDE, pick-up and drop-off more

computationally-intensive.

Figure 6.2: OpenMP-based Results

Unlike OpenMP results, The gained speedup on GPU implementation increases

up to 39x compared to the sequential implementation as shown in Figure 6.3. Since

the most expensive computation in our algorithm is due to the KDE, we consider a

parallelization strategy that offload KDE computation by each ant to block-level at

GPU. In GPU implementation, each ant is mapped to a block so that independent

ants can run at the same time. Since the major task of each ant is to compute

KDE using the objects within its neighborhood, we partition ant task into finer sub-

Chapter 6: Evaluations: Results and Discussion 103

tasks that handle KDE computation (i.e., summation of kernels of probability density

function for an object xi).

Notice that a significant speedup can be gained when KDE is implemented in

a data-level parallel manner in each GPU block. This is because sequential KDE

computation for n data objects of dimension d requires O(n2d) (Michailidis and Mar-

garitis [2013]). In addition to that, parallel implementation of multivariate KDE can

entirely get the benefit of data-level parallelism because it is embarrassingly paral-

lel (straightforward vectorization). This parallel strategy reduces the impact of ant

synchronization mechanism, especially for ants with large radius of perception.

To reduce latency of global memory access, each ant transfers the data object to

be picked-up or dropped-off to the register level, and the rest of the objects within its

neighborhood to the shared memory level. This significantly reduces global memory

accesses because such objects are the most frequently accessed data object in KDE

computation. This strategy enables a scalable GPU-based implementation with an

increase in speedup up to 39%

Figure 6.3: GPU based Results

104 Chapter 6: Evaluations: Results and Discussion

6.7 Results of Sentiment Prediction

This section presents the results of sentiment prediction task for ABSA. For the

three approaches: Lexicon-based, Logistic regression and CACA-AR. I report the

recall, precision and F1-score for each dataset as well as the confusion matrices.

6.7.1 Lexicon-based Approach

The confusion matrices and the scores of recall, precision and F1-score for Lexicon-

based are shown in Figure 6.4 for each dataset. According to the confusion matrices,

lexicon-based suffers from identifying the negative and the positive classes from the

neutral class in the three datasets. For the laptop dataset, for example, only 13

sentences out of 765 negative sentences were correctly predicted as negative while

727 sentences were incorrectly predicted as neutral. Similarly, out of the 1098 pos-

itive sentences, only 387 were correctly predicted as positive while 706 were incor-

rectly predicted as neutral. This same weakness can be seen in restaurant and SSTB

datasets. This weakness significantly lowers recall values of negative class (0.02) and

positive class (0.35). Another direct impact of this weakness is the low precision of

neutral class (0.05). Although lexicon-based correctly identified most of neutral sen-

tences (recall 0.78), its precision is very low (0.05). This is because 1433 sentences

were incorrectly predicted as neutral (i.e., false positive of neutral class is 1433). In

conclusion, the results demonstrates that lexicon-based approach does not capture

contextual polarity of words. In addition, notice that the average F1-score varies

from 0.26 for SSTB (sentences of movie reviews) to 0.39 for restaurant dataset as a

result of domain dependency of words.

Chapter 6: Evaluations: Results and Discussion 105

Figure 6.4: F1-score, Precision and Recall - Lexicon-based Approach: pos: positive
class, neu: neutral class, neg: negative class. We can see that Lexicon-based performs
poorly in identifying pos and neg sentences

106 Chapter 6: Evaluations: Results and Discussion

6.7.2 Logistic Regression Approach

The confusion matrices, recall, precision and F1-score for multi-class logic regres-

sion (LR)4 are shown in Figure 6.7 for each dataset. Unlike Lexicon-based approach,

LR suffers from identifying neutral sentences in the three datasets as the classifier

incorrectly predicts them as either positive or negative. For the laptop and restaurant

datasets, for example, the true positive value of neutral class is zero. There are reasons

for this. First, the classes are highly unbalanced and overlapped. For instance, the

number of neutral sentences (support) in laptop and restaurant datasets is (105 and

50, respectively). Second, the feature vectors do not capture sufficient information

about neutrality. Another weakness is that many negative sentences were incorrectly

predicted as positive sentences. For the restaurant dataset, for instance, only 14 sen-

tences out of 317 were correctly predicted as negatives while the rest were incorrectly

predicted as positives. This results in a low recall value for negative class (0.04).

(Pontiki et al. [2015]) report results of using different machine learning approaches

and feature representations.

For the SSTB dataset5, the sentiment classes are more fine-grained, very negative,

negative, neutral, positive and very positive. As shown in the SSTB confusion matrix,

most of the very negative sentences were incorrectly predicted as negative. Similarly,

most of very positive sentences were incorrectly predicted as positive. This results in

low recall values for very negative and very positive classes (0.00 and 0.15, respec-

tively), and in lowering the precision of negative and positive classes (0.36 and 0.37).

4The used LR classifier id built by scikit-learn developers while feature vectors are generated
using paragraph vector model as described in section 6.3

5 SSTB: Stanford Sentiment Treebank, the details of this dataset is presented in section 6.1

Chapter 6: Evaluations: Results and Discussion 107

Predicting neutral sentences is also a weakness in this dataset. Most neutral sen-

tences were incorrectly predicted as either positive or negative sentences. Therefore,

the recall neutral class is (0.04).

For more state-of-the-art sentiment models, (Barnes et al. [2017]) evaluate senti-

ment prediction of this dataset using LSTM and Bi-LSTM6 models using word embed-

ding feature vectors (Mikolov et al. [2013b]). The results of such models demonstrates

the same weakness in predicting very negative, very positive and neutral classes. The

results of LR demonstrates that feature vectors of sentences, which are generated by

paragraph vector model do not capture neutrality as well as sentiment information

about fine-tuned classes, such as, very positive and very negative.

6LSTM: Long Short Term Memory Networks, Bidirectional-LSTM: are special kinds of Recurrent
Neural Networks, capable of learning long-term dependencies

108 Chapter 6: Evaluations: Results and Discussion

Figure 6.5: F1-score, Precision and Recall - Logistic Regression Approach: very neg:
very negative class, neg: negative class, neu: neutral class, pos: positive, very pos:
very positive

Chapter 6: Evaluations: Results and Discussion 109

6.7.3 CACA-AR Approach

The results of CACA-AR are generated as described in sections (5.4;5.5). The

recall, precision, F1-score and the confusion matrices are shown in Figure 6.6. The

size of grid is determined based on the size of the dataset. For a dataset of size7 n, the

area of the grid is 2n. The number of ants is considered 10% of dataset size, and the

ant radius of perception r ranges from (1 to 1
4

√
grid area. For the restaurant dataset,

for example, the number of ants is 120 as the dataset size is 1200, grid dimension is

50× 50.

As I explained in section 5.4, the CACA-AR is evaluated using 10-fold cross-

validation technique whereas only the training folds are used to generate pairwise

constraints. To obtain the maximum accuracy, all possible CL and ML constraints are

used during the clustering. For example, when the restaurant dataset is partitioned

into 10 folds of size 120. The maximum number of constraints8 that can generated

from 9 training folds (1080 instances) is 291, 330. We can see that CACA-AR performs

much better than logistic regression and lexicon-based approaches across all datasets

as the average F1-scores indicate. For the laptop dataset, for instance, the CACA-AR

scores are 0.81 and 0.88 recall values for positive and negative classes, respectively,

with precision values of 0.82 and 0.84. This improvement is a result of increasing true

positive values (617 and 968) and decreasing false negatives and false positives for

both classes. However, this improvement, in terms of recall and precision is limited

for the neutral class as the number of neutral sentences (105) is low with respect

7size of dataset: is the number of labeled instances given in the dataset
8In general, if the number of instances in training folds is n, the maximum number of pairwise

constraints is n(n− 1)/4

110 Chapter 6: Evaluations: Results and Discussion

to the number of positive and negative sentences (765 and 1098). As a result, the

number of ML and CL pairwise constraints, which relate neutral instances is much

less than positive and negative instances. Therefore, we can see from the confusion

matrix of laptop dataset that only 34 sentences out of 105 neutral sentences were

correctly predicted. Similarly, CACA-AR outperforms baselines scores for restaurant

dataset. However, it suffers from low recall and precision scores of the neutral class.

This weakness is due to the low number of neutral sentences (50) with respect to the

positive (813) and negative (317) instances. Consequently, the number of generated

ML and CL constraints, which relate neutral instances is much less than the of number

of constraints generated for positive and negative instances. Unlike logistic regression

approach, which suffers from identifying very negative, neutral and very positive

classes (Figure 6.7), CACA-AR scores significant results across all classes as the recall

and precision values indicate. Notice that the number of instances in neutral class is

much higher than laptop and restaurant dataset. Therefore, it achieves higher scores

as more constraints can be generated for this class. This impact can also be seen in the

very negative and very positive classes. There are two reasons for this improvement.

First, constraints capture sentiment polarity, so the ants create clusters such that

the sentences within each cluster tend to have the class label. Second, CACA-AR,

as a semi-supervised approach, depends on calculating the cosine similarity between

feature vectors for the sentences if the sentences is in the test data. Otherwise, the

similarity is given by the constraints: either 1 (if both instances are linked by ML)

or 0 (both instances are linked by CL)

As a clustering technique, CACA-AR can find clusters within each class of data

Chapter 6: Evaluations: Results and Discussion 111

and determine how the sentence patterns convey sentiment information. It does not

require training such as the fully supervised classifiers.

Figure 6.6: F1-score, Precision and Recall - CACA-AR Approach: very neg: very
negative class, neg: negative class, neu: neutral class, pos: positive, very pos: very
positive

112 Chapter 6: Evaluations: Results and Discussion

6.8 Results of Aspect Category Identification

This section presents the results of aspect category identification for laptop and

restaurant datasets. For both datasets, the goal is to assign each sentence with one of

the aspect category labels. The aspect category labels for each dataset are listed in

Tables (6.8;6.9) along with the number of sentences within each category (support).

For example, for laptop dataset, there are 304 sentences labeled with the aspect

category HARDWARE. Unlike sentiment prediction task, the task of aspect category

identification does not depend on using lexicons. Therefore, the only baseline for

this task is the logistic regression approach. In section 6.8.1, I present the results of

logistic regression approach for this task while the results of CACA-AR are presented

in section 6.8.2.

Table 6.8: Aspect Categories for Laptop Dataset

LAPTOP HARDWARE SOFTWARE COMPANY GRAPHICS total

1224 304 118 199 124 1969

Table 6.9: Aspect Categories for Restaurant Dataset

RESTAURANT SERVICE FOOD DRINKS AMBIENCE LOCATION total

324 196 496 40 126 18 1200

The distribution of sentences in both datasets is highly unbalanced. In the laptop

dataset, for example, the dominant class is laptop with 1224 sentences. Generally,

the aspect category in such sentences is about entity itself, not any of its aspects or

attributes. Similarly, the dominant class in the restaurant dataset is restaurant with

Chapter 6: Evaluations: Results and Discussion 113

324 sentences, which describe a restaurant in general.

6.8.1 Logistic Regression Approach

The recall, precision and F1-score scores of logistic regression are shown in Figure

6.7. The logistic regression classifier is trained using paragraph vector model, as

described in section 6.3 . The scores for each dataset is calculated by 10-fold cross

validation technique. For the laptop dataset, the average F1-score is 0.53.

However, a major weakness in this approach is that the classifier tend to in-

correctly predict most frequent aspect category “laptop” as a label for the rest of

the classes. For example, out of the 304 sentences about “hardware”, 273 sentences

were incorrectly predicted as laptop. This same weakness can be seen in “software”,

“company” and “graphics”. This is due to the fact using paragraph vector model to

generate feature vectors results in highly overlapped classes, especially when aspect

categories are semantically-related. For example, the aspect categories laptop, “hard-

ware” and “software” are semantically-related. As a result of this, the recall score of

laptop class is high (0.87), while the precision is low.

For the restaurant dataset, as shown in Figure 6.7, the LR classifier tends to incor-

rectly predict sentences of infrequent classes by labeling them as either “restaurant”

or “food” (labels of frequent classes). Therefore the recall scores of “restaurant” and

“food” are the highest, but their precision scores are low.

114 Chapter 6: Evaluations: Results and Discussion

Figure 6.7: F1-score, Precision and Recall - Logistic Regression Approach

6.8.2 CACA-AR Approach

The results of CACA-AR are shown in Figure 6.8. The scores are 10-fold cross-

validated. All possible ML and CL constraints are generated from training folds

while the scores are calculated for the test fold. Similar to the logistic regression,

CACA-AR tends to incorrectly assign the most frequent class label “laptop” to the

rest of the classes as shown in the laptop confusion matrix. This results in increasing

recall value for the laptop class but decreasing precision at the same time. However,

we can see that the precision score of laptop outperforms logistic regression due

Chapter 6: Evaluations: Results and Discussion 115

to incorporating ML and CL constraints. This provides a better identification for

the infrequent classes such as “software”, “company” and “graphics” as the average

precision score for ACA-AR is higher than logistic regression. In addition, we can

see that CACA-AR obtains 0.35 F1-score for the “graphics” class which is entirely

undetected by logistic regression.

Similar to the results of laptop dataset, we can see that CACA-AR tends to incor-

rectly assign frequent class labels such as “restaurant” and “food” to the infrequent

classes such as “drink” and “location”. However, incorporating pairwise constraint

results in improving the precision for the restaurant dataset classes without affect-

ing recall values. CACA-AR achieves 0.63 average precision while logistic regression

achieve 0.58. This results in improving overall F1-score for this dataset.

116 Chapter 6: Evaluations: Results and Discussion

Figure 6.8: F1-score, Precision and Recall - CACA-AR Approach

In summary, although the state-of-the-art techniques for language models, such

as paragraph vector model, can capture many grammatical and semantic features of

word sequences, they are still insufficient for the tasks of ABSA. Since the learning of

such feature representations is independent from class labels, they lack the required

features to capture the sentiment or aspect category information. Therefore, using

such feature representations in machine learning classification models is not sufficient

for the tasks of ABSA. Learning feature representations for the tasks of ABSA is still

a major challenge and an active area of research to improve the accuracy of ABSA.

Chapter 6: Evaluations: Results and Discussion 117

Another challenge in sentiment analysis is the existence of neutral class (i.e., to

determine whether a piece of text is subjective or objective (neutral)). This is because

the instances of neutral class lies at the boundaries of negative and positive classes.

To remedy these challenges, I adopted CACA-AR, as semi-supervised clustering ap-

proach. For the task of sentiment prediction, incorporating pairwise constraints (ML

and CL) in ACA-AR enforced the sentences with the same class label to be in one

cluster. Note that pairwise constraints are independent of feature representation

because they are generated based on class labels.

A major advantage of CACA-AR is that, clustering is “guided” or “biased” by

pairwise constraints. This allows us to use the same feature representations for both

ABSA tasks. For example, if constraints are generated from sentiment labels, then

the goal of clustering is to group text pieces with the same polarity within the same

cluster. Similarly, when constraints are generated from aspect category labels, then

the goal of clustering is to group text pieces with the same aspect category in the same

cluster. This does not imply CACA-AR converges to a number of clusters that is equal

to the number of classes in a given dataset. However, it finds a clustering solution (i.e.,

intrinsic structure) where most instances within one cluster have the same label. This

can be achieved with CACA-AR because it does not require the number of clusters

a priori. For example, clustering the sentences of positive-sentiment class can result

in k clusters. The instances in each cluster share the same polarity as well as other

grammatical and semantic features9, which, in turn, can be analyzed to improve the

quality of feature representation.

9e.g. sentiment analysis is highly dependent on the grammatical type of the sentence, such as
conditional, imperative, declarative etc...

118 Chapter 6: Evaluations: Results and Discussion

Moreover, CACA-AR clustering is significantly affected by distribution of the

classes in a dataset. With larger class size, higher number of ML and CL constraints

can be generated, and hence, better clustering quality can be achieved. This impact

can be seen in both laptop and restaurant datasets for both ABSA tasks. CACA-AR

is highly sensitive to the values of hyper-parameters, such as the number of ants to be

used, the size of grid and the optimal value of radius of perception. Fine-tuning these

parameters is problematic as the algorithm is computationally-intensive. In addition,

although there is no guarantee that CACA-AR can find an optimal clustering solution,

it can achieve a Pareto-optimal solution 10 with the adaptive radius strategy.

10is a clustering solution where intra-cluster similarity and inter-cluster dissimilarity are simulta-
neously maximized

Chapter 7

Conclusion

7.1 Conclusion

In this thesis, I presented Ant Brood Clustering Algorithm with Adaptive Radius

(ACA-AR), a new variant of ACA that involves three major enhancements over exist-

ing ACA model. (i) ACA-AR employs Kernel density estimation and Sigmoid func-

tion to measure average dissimilarity of data objects within ants neighborhood and to

estimate ants pick-up and drop-off probabilities; (ii) it uses memoryless, tireless ants;

(iii) it allows each ant to adapt its radius of perception so that ants collectively can

avoid the convergence to a local-optimum solution. I have experimentally validated

ACA-AR on three benchmark data sets that present different clustering challenges.

The results revealed that ACA-AR outperforms most frequently used clustering al-

gorithms, such as ACA, Mean Shift and k-means in terms of clustering accuracy,

completeness, and homogeneity. The results of parallel implementation of ACA-AR

have shown that a speedup up to 39x can be obtained compared to the sequential

119

120 Chapter 7: Conclusion

counterpart using GPU.

Following the same intuition of ACA, I extended ACA-AR into CACA-AR. CACA-

AR is a modified semi-supervised variant of ACA-AR for clustering multidimensional

data in the presence of instance-level pairwise constraints (must-linked and cannot-

linked). Unlike ACA-AR model, CACA-AR takes the advantage of pairwise con-

straints to further improve the estimation of ant pickup and drop-off probabilities. I

experimentally validated CACA-AR with different sets pairwise constraints on three

benchmark data sets that present different clustering challenges. The results have also

shown that the accuracy, completeness, and homogeneity of ACA-AR substantially

improved when pairwise constraints were incorporated, especially to high-dimensional

datasets.

Finally, I evaluated the application of CACA-AR to the tasks of Aspect-based

Sentiment Analysis in the domain of product reviews, aspect identification and senti-

ment prediction. I compared CACA-AR as a semi-supervised with two common base-

line approaches on three benchmark datasets: (i) Multi-class Logistic Regression as

fully-supervised approach. (ii) Lexicon-based approach as an unsupervised approach.

The results revealed that CACA-AR outperforms both baselines by a large-margin

(20% in terms of F1-score), which demonstrates CACA-AR effectiveness to real-world

datasets for ABSA.

In conclusion, ACA-AR as unsupervised clustering algorithm has many advan-

tages over traditional clustering algorithms: (i) it allows the ants to explore (search)

a significantly larger number of candidate clustering solutions; (ii) it is more capable

of detecting outliers and finding the exact number of clusters in the data; (iii) it sub-

Chapter 7: Conclusion 121

stantially improves the spatial separation of clusters on the grid which is an essential

requirement to retrieve the clusters. Similarly, CACA-AR as a semi-supervised clus-

tering algorithm can significantly improve clustering accuracy in three circumstances:

(i) clustering high-dimensional data whereas “curse of dimensionality” is a major ob-

stacle to improve accuracy; (ii) classifying data in domains whereby labeled data is

limited and/or costly to acquire; (iii) clustering/classifying data in domains whereby

data representation (feature vectors) does not capture data similarities efficiently.

7.2 Future Work

This thesis opens an interesting research avenues to improve ACA-AR and to

apply CACA-AR to real-world applications:

• Since ant behavior is collective, a slight improvement in local density estima-

tion within ant neighborhood could results in a large improvement in the out-

come. Therefore, choosing appropriate density estimation technique is crucial

to further improve ACA performance. For instance, multivariate density can

be estimated via copulas.

• In my experiments, I fixed the ant radius of perception to a threshold where

the ant covers 1/4 of grid area. Further analysis is required to determine the

exact value of radius that guarantee achieving maximum solution quality with

minimum computational time.

• In ACA-AR, there exist two parameters to improve solution quality, ant radius

and kernel density estimate. the analysis should be extended to show the impact

122 Chapter 7: Conclusion

of each in solution quality and computational time.

• In nature, ant brood sorting behavior is triggered or “guided” by pheromones,

chemical substances that ants release for many purposes (e.g. signal danger to

the colony, give directions about food location and attract mates). According

to ecological findings in ant-brood behavior, ants mark objects (e.g. grains,

broods and larvae) with pheromones when they are picked up. Ants tend to

pick up objects that are previously marked with pheromones, probably due to

the high concentration of pheromone. Ants pick up and drop off objects at

constant rates. To my knowledge, these features are not captured in existing

ACA models.

• In the existing ACA models, ants move randomly in 2D-grid. This limits ant

movement to eight directions at maximum. Therefore, it is interesting to con-

sider grids in higher dimensional space.

In terms of real-world applications of CACA-AR:

• The algorithm is highly applicable to the community detection problem in com-

plex networks. There are two reasons for this: (i) CACA-AR does not make

any assumption about the number of communities (clusters) in the network;

(ii) CACA-AR can take advantage of prior knowledge (must-linked and cannot-

linked constraints) to guide the detection process.

• ACA-AR is applicable to multi-objective optimization problems. For example,

the portfolio optimization in Finance requires optimizing two contradicting ob-

jectives: choosing portfolio assets that maximize expected value returns, but

Chapter 7: Conclusion 123

minimize risk, often measured by the standard divination of portfolio returns

at same time.

In general, ant algorithms are suitable for many dynamic applications.

Bibliography

C. C. Aggarwal and C. K. Reddy. Data clustering: algorithms and applications.

Chapman and Hall/CRC, 2013.

S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical

resource for sentiment analysis and opinion mining. In LREC, volume 10, pages

2200–2204, 2010.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric

from equivalence constraints. Journal of Machine Learning Research, 6(Jun):937–

965, 2005.

J. Barnes, R. Klinger, and S. S. i. Walde. Assessing state-of-the-art sentiment models

on state-of-the-art sentiment datasets. arXiv preprint arXiv:1709.04219, 2017.

S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for pairwise con-

strained clustering. In SDM, volume 4, pages 333–344. SIAM, 2004a.

S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised

clustering. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 59–68. ACM, 2004b.

124

Bibliography 125

S. Basu, I. Davidson, and K. Wagstaff. Constrained clustering: Advances in algo-

rithms, theory, and applications. CRC Press, 2008.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string

similarity measures. In Proceedings of the ninth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 39–48. ACM, 2003.

M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learn-

ing in semi-supervised clustering. In Proceedings of the twenty-first international

conference on Machine learning, page 11. ACM, 2004.

S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G. A. Reis, and J. Reynar.

Building a sentiment summarizer for local service reviews. In WWW Workshop on

NLP in the Information Explosion Era, volume 14, pages 339–348, 2008.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of

machine Learning research, 3:993–1022, 2003.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308, 2003.

E. Boiy and M.-F. Moens. A machine learning approach to sentiment analysis in

multilingual web texts. Information retrieval, 12(5):526–558, 2009.

Y. Choi and C. Cardie. Adapting a polarity lexicon using integer linear programming

for domain-specific sentiment classification. In Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Processing: Volume 2-Volume 2, pages

590–598. Association for Computational Linguistics, 2009.

126 Bibliography

D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feed-

back. Constrained Clustering: Advances in Algorithms, Theory, and Applications,

4(1):17–32, 2003.

I. Davidson and S. Ravi. Agglomerative hierarchical clustering with constraints:

Theoretical and empirical results. In European Conference on Principles of Data

Mining and Knowledge Discovery, pages 59–70. Springer, 2005a.

I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the k-

means algorithm. In Proceedings of the 2005 SIAM international conference on

data mining, pages 138–149. SIAM, 2005b.

A. De Mauro, M. Greco, and M. Grimaldi. What is big data? a consensual definition

and a review of key research topics. In AIP conference proceedings, volume 1644,

pages 97–104. AIP, 2015.

J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and

L. Chrétien. The dynamics of collective sorting robot-like ants and ant-like robots.

In Proceedings of the first international conference on simulation of adaptive be-

havior on From animals to animats, pages 356–363, 1991.

T. Duong and M. L. Hazelton. Cross-validation bandwidth matrices for multivariate

kernel density estimation. Scandinavian Journal of Statistics, 32(3):485–506, 2005.

D. Eisenberg, E. M. Marcotte, I. Xenarios, and T. O. Yeates. Protein function in the

post-genomic era. Nature, 405(6788):823–826, 2000.

Bibliography 127

A. Esuli and F. Sebastiani. Sentiwordnet: a high-coverage lexical resource for opinion

mining. Evaluation, pages 1–26, 2007.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7(2):179–188, 1936.

K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function,

with applications in pattern recognition. IEEE Transactions on information theory,

21(1):32–40, 1975.

F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57.

Springer Science & Business Media, 2006.

Z. Hai, K. Chang, and J.-j. Kim. Implicit feature identification via co-occurrence asso-

ciation rule mining. In Computational Linguistics and Intelligent Text Processing,

pages 393–404. Springer, 2011.

J. Handl and B. Meyer. Improved ant-based clustering and sorting in a document

retrieval interface. In International Conference on Parallel Problem Solving from

Nature, pages 913–923. Springer, 2002.

Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

J. B. Hirschberg and A. Rosenberg. V-measure: A conditional entropy-based external

cluster evaluation. Proceedings of EMNLP, 2007.

T. Hofmann. Probabilistic latent semantic analysis. In Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence, pages 289–296. Morgan Kauf-

mann Publishers Inc., 1999.

128 Bibliography

C. Honghao, F. Zuren, and R. Zhigang. Community detection using ant colony

optimization. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages

3072–3078. IEEE, 2013.

P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C. Adams-Collier, and

K. Nakai. Wolf psort: protein localization predictor. Nucleic acids research, 35

(suppl 2):W585–W587, 2007.

M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 168–177. ACM, 2004.

L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–

218, 1985.

N. Jakob and I. Gurevych. Extracting opinion targets in a single-and cross-domain

setting with conditional random fields. In Proceedings of the 2010 conference on

empirical methods in natural language processing, pages 1035–1045. Association for

Computational Linguistics, 2010.

L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao. Target-dependent twitter sentiment

classification. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1, pages 151–

160. Association for Computational Linguistics, 2011.

W. Jin, H. H. Ho, and R. K. Srihari. A novel lexicalized hmm-based learning frame-

Bibliography 129

work for web opinion mining. In Proceedings of the 26th Annual International

Conference on Machine Learning, pages 465–472. Citeseer, 2009.

K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, and C. Christopher. Spec-

tral learning. In International Joint Conference of Artificial Intelligence. Stanford

InfoLab, 2003.

J. Kennedy. Particle swarm optimization. In Encyclopedia of machine learning, pages

760–766. Springer, 2011.

D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to

space-level constraints: Making the most of prior knowledge in data clustering.

2002.

N. Kobayashi, K. Inui, and Y. Matsumoto. Extracting aspect-evaluation and aspect-

of relations in opinion mining. In EMNLP-CoNLL, volume 7, pages 1065–1074.

Citeseer, 2007.

H. W. Kuhn. Nonlinear programming: a historical view. ACM SIGMAP Bulletin,

(31):6–18, 1982.

H. Lakkaraju, C. Bhattacharyya, I. Bhattacharya, and S. Merugu. Exploiting coher-

ence for the simultaneous discovery of latent facets and associated sentiments. In

SDM, pages 498–509. SIAM, 2011.

J. H. Lau and T. Baldwin. An empirical evaluation of doc2vec with practical insights

into document embedding generation. arXiv preprint arXiv:1607.05368, 2016.

130 Bibliography

Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.

In ICML, volume 14, pages 1188–1196, 2014.

F. Li, C. Han, M. Huang, X. Zhu, Y.-J. Xia, S. Zhang, and H. Yu. Structure-aware

review mining and summarization. In Proceedings of the 23rd international confer-

ence on computational linguistics, pages 653–661. Association for Computational

Linguistics, 2010.

Z. Li, M. Zhang, S. Ma, B. Zhou, and Y. Sun. Automatic extraction for product

feature words from comments on the web. In Information Retrieval Technology,

pages 112–123. Springer, 2009.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.

uci.edu/ml.

B. Liu. Research Projects, 2009 (accessed May 5, 2016). URL https://www.cs.uic.

edu/~liub/.

B. Liu. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge

University Press, 2015.

B. Liu, M. Hu, and J. Cheng. Opinion observer: analyzing and comparing opinions

on the web. In Proceedings of the 14th international conference on World Wide

Web, pages 342–351. ACM, 2005.

Y. Y. Liu and Y. Y. Liu. A polymorphic ant-based algorithm for graph clustering.

2016.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.cs.uic.edu/~liub/
https://www.cs.uic.edu/~liub/

Bibliography 131

C. Long, J. Zhang, and X. Zhut. A review selection approach for accurate feature

rating estimation. In Proceedings of the 23rd International Conference on Compu-

tational Linguistics: Posters, pages 766–774. Association for Computational Lin-

guistics, 2010.

B. Lu, M. Ott, C. Cardie, and B. K. Tsou. Multi-aspect sentiment analysis with

topic models. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International

Conference on, pages 81–88. IEEE, 2011.

E. D. Lumer and B. Faieta. Diversity and adaptation in populations of clustering

ants. In Proceedings of the third international conference on Simulation of adaptive

behavior: from animals to animats 3: from animals to animats 3, pages 501–508.

MIT Press, 1994.

K. Lund and C. Burgess. Hyperspace analogue to language (hal): A general model se-

mantic representation. In Brain and Cognition, volume 30, pages 5–5. ACADEMIC

PRESS INC JNL-COMP SUBSCRIPTIONS 525 B ST, STE 1900, SAN DIEGO,

CA 92101-4495, 1996.

J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rat-

ing dimensions with review text. In Proceedings of the 7th ACM conference on

Recommender systems, pages 165–172. ACM, 2013.

Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: modeling

facets and opinions in weblogs. In Proceedings of the 16th international conference

on World Wide Web, pages 171–180. ACM, 2007.

132 Bibliography

P. D. Michailidis and K. G. Margaritis. Accelerating kernel density estimation on the

gpu using the cuda framework. Applied Mathematical Sciences, 7(30):1447–1476,

2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-

sentations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013b.

M. T. Moore. Twitter index tracks sentiment on obama, romney, 2012. URL

http://usatoday30.usatoday.com/news/politics/story/2012-08-01/

twitter-political-index/56649678/1. Accessed Oct. 18, 2016.

S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and

computational systems. Communications of the ACM, 58(1):94–102, 2015.

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from

labeled and unlabeled documents using em. Machine learning, 39(2-3):103–134,

2000.

B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and trends

in information retrieval, 2(1-2):1–135, 2008.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-

sentation. In EMNLP, volume 14, pages 1532–1543, 2014.

http://usatoday30.usatoday.com/news/politics/story/2012-08-01/twitter-political-index/56649678/1
http://usatoday30.usatoday.com/news/politics/story/2012-08-01/twitter-political-index/56649678/1

Bibliography 133

M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and

S. Manandhar. Semeval-2014 task 4: Aspect based sentiment analysis. In Pro-

ceedings of the 8th international workshop on semantic evaluation (SemEval 2014),

pages 27–35, 2014.

M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, and I. Androutsopoulos.

Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th

International Workshop on Semantic Evaluation (SemEval 2015), Association for

Computational Linguistics, Denver, Colorado, pages 486–495, 2015.

M. Pourrajabi, D. Moulavi, R. J. G. B. Campello, A. Zimek, J. Sander, R. Goebel,

et al. Model selection for semi-supervised clustering. In International Conference

on Extending Database Technology, 17. Athens, 2014.

M. Qasem, Y. Y. Liu, Z. Wang, P. Thulasiraman, and R. K. Thulasiram. Enhanc-

ing ant brood clustering with adaptive radius of perception and non-parametric

estimation on multi-core architectures. In International Conference on Intelligent

Networking and Collaborative Systems, pages 301–312. Springer, 2017.

G. Qiu, B. Liu, J. Bu, and C. Chen. Opinion word expansion and target extraction

through double propagation. Computational linguistics, 37(1):9–27, 2011.

S. Raju, P. Pingali, and V. Varma. An unsupervised approach to product attribute

extraction. In Advances in Information Retrieval, pages 796–800. Springer, 2009.

R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large Cor-

pora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

134 Bibliography

Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.

cz/publication/884893/en.

D. L. Rohde, L. M. Gonnerman, and D. C. Plaut. An improved model of semantic

similarity based on lexical co-occurrence. Communications of the ACM, 8:627–633,

2006.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

J. Ruppenhofer, S. Somasundaran, and J. Wiebe. Finding the sources and targets of

subjective expressions. In LREC, 2008.

C. Scaffidi, K. Bierhoff, E. Chang, M. Felker, H. Ng, and C. Jin. Red opal: product-

feature scoring from reviews. In Proceedings of the 8th ACM conference on Elec-

tronic commerce, pages 182–191. ACM, 2007.

scikit-learn developers. Clustering. http://scikit-learn.org/stable/modules/

clustering.html#mean-shift. Accessed: 2017-02-05.

M. Senoussaoui, P. Kenny, P. Dumouchel, and T. Stafylakis. Efficient iterative mean

shift based cosine dissimilarity for multi-recording speaker clustering. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,

pages 7712–7715. IEEE, 2013.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions

on pattern analysis and machine intelligence, 22(8):888–905, 2000.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://scikit-learn.org/stable/modules/clustering.html#mean-shift
http://scikit-learn.org/stable/modules/clustering.html#mean-shift

Bibliography 135

R. Socher, C. D. Manning, and A. Y. Ng. Learning continuous phrase representations

and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-

2010 Deep Learning and Unsupervised Feature Learning Workshop, pages 1–9, 2010.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.

Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empirical methods in natural language

processing, pages 1631–1642, 2013.

P. J. Stone, D. C. Dunphy, and M. S. Smith. The general inquirer: A computer

approach to content analysis. 1966.

I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models.

In Proceedings of the 17th international conference on World Wide Web, pages

111–120. ACM, 2008.

P. D. Turney and P. Pantel. From frequency to meaning: Vector space models of

semantics. Journal of artificial intelligence research, 37:141–188, 2010.

M. S. Vohra and J. Teraiya. Applications and challenges for sentiment analysis: A

survey. In International Journal of Engineering Research and Technology, volume 2.

ESRSA Publications, 2013.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):

395–416, 2007.

B. Liu. Sentiment analysis and subjectivity. Handbook of natural language processing,

2:627–666, 2010.

136 Bibliography

K. Wagstaff and C. Cardie. Clustering with instance-level constraints. AAAI/IAAI,

1097, 2000.

K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. Constrained k-means clustering

with background knowledge. In ICML, volume 1, pages 577–584, 2001.

J. Wang, E. Osagie, P. Thulasiraman, and R. K. Thulasiram. Hopnet: A hybrid

ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc

Networks, 7(4):690–705, 2009.

X. Wang and I. Davidson. Flexible constrained spectral clustering. In Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 563–572. ACM, 2010.

X. Wang, B. Qian, and I. Davidson. On constrained spectral clustering and its

applications. Data Mining and Knowledge Discovery, pages 1–30, 2014.

Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical designs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(7):

911–921, 1991.

W. J. Welch. Algorithmic complexity: three np-hard problems in computational

statistics. Journal of Statistical Computation and Simulation, 15(1):17–25, 1982.

J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions

in language. Language resources and evaluation, 39(2-3):165–210, 2005.

B. Wu and Z.-Z. Shi. An ant colony algorithm based partition algorithm for tsp. CHI-

Bibliography 137

NESE JOURNAL OF COMPUTERS-CHINESE EDITION-, 24(12):1328–1333,

2001.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with

application to clustering with side-information. Advances in neural information

processing systems, 15:505–512, 2003.

X.-H. Xu, Z.-J. Pan, P. He, and L. Chen. Constrained ant clustering. In ICMLC,

pages 1566–1570, 2011.

Y. Yang, H. Wang, C. Lin, and J. Zhang. Semi-supervised clustering ensemble based

on multi-ant colonies algorithm. In International Conference on Rough Sets and

Knowledge Technology, pages 302–309. Springer, 2012.

Z. Zhai, B. Liu, H. Xu, and P. Jia. Clustering product features for opinion mining.

In Proceedings of the fourth ACM international conference on Web search and data

mining, pages 347–354. ACM, 2011.

Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion

functions for document clustering. Machine Learning, 55(3):311–331, 2004.

X. Zhu. Semi-supervised learning literature survey. 2005.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Contribution

	Literature Review
	Constrained Clustering
	Instance-Level Pairwise Constraints
	Constraint Extraction

	Formal Definition of Constrained Clustering
	Constrained Clustering Algorithms
	Search-based Methods
	Pairwise-constrained k means
	Probabilistic constrained clustering
	Spectral Constrained Clustering

	Similarity-Adapting Methods
	Constrained spectral clustering
	Semi-supervised constrained clustering
	Learnable similarity measures

	Constrained Clustering based on Swarm Intelligence
	Ant Clustering Algorithm (LF Model)
	Constrained Clustering based on ACA

	Ant Clustering Algorithm with Adaptive Radius (ACA-AR)
	Shortcomings of LF Model
	Enhancements to Ant Brood Clustering
	Applying Kernel Density Estimation to the Ant Neighborhood
	Adaptive Radius-based Ants
	Termination condition

	ACA-AR with Pairwise Constraints
	Cluster Retrieval
	Algorithm Validation
	Benchmark Datasets and Evaluation Metrics
	Clustering Results of ACA-AR
	Clustering Results of ACA-AR with pairwise Constraints

	Case Study: Aspect Based Sentiment Analysis
	Introduction
	Sentiment Analysis
	Aspect-based Sentiment Analysis (ABSA)
	ABSA Formal Definition
	Challenges: Why ABSA is hard?
	Constrained Clustering to ABSA

	Essential Approaches to ABSA
	Approaches to Aspect Identification
	Frequency-based Methods
	Relation-based Methods
	Supervised Machine Learning
	LDA-based Clustering

	Sentiment Prediction and Analysis Approaches
	Supervised Machine Learning
	Lexicon-based Approach
	Hybrid Approach

	Drawbacks of ABSA Clustering Techniques

	CACA-AR to ABSA Tasks
	Phase I: Vector Representation of Text Units
	Phase II: Pairwise Constraint Extraction
	Phase III: Apply ACA with Pairwise Constraints
	Cross-Validation for Constrained Clustering
	ACA Data Labeling Using k-Nearest Neighbor

	Evaluations: Results and Discussion
	Benchmark Datasets
	Accuracy Measures
	Illustrative Example: Recall, Precision and F1-score
	Interpretation of Recall, Precision and F1-score

	Feature Vectors of Sentences
	Baselines
	 Lexicon-based Approach
	 Multi-class Logistic Regression

	Implementation and Experiments
	ACA Simulator

	Parallel Implementation
	The Feasibility of Parallel Implementation

	Results of Sentiment Prediction
	Lexicon-based Approach
	Logistic Regression Approach
	CACA-AR Approach

	Results of Aspect Category Identification
	Logistic Regression Approach
	CACA-AR Approach

	Conclusion
	Conclusion
	Future Work

	Bibliography

