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Abstract

Clustering is an important problem in the era of big data. Exact algorithmic cluster-
ing approaches are not affordable for many real-world applications (RWA), requiring
innovative, approximation algorithms. Among them are bio or nature-inspired tech-
niques such as ant brood clustering algorithm (ACA) inspired by how real ants brood
sort their nests.

ACA’s mathematical model assumes a static radius of perception which is not
adaptable to RWA. T address this issue by developing an adaptive clustering algorithm,
called ACA with Adaptive Radius (ACA-AR) using kernel density estimation, a non-
parametric statistical model, to measure average dissimilarity of data objects in ants
neighborhood. I extend this algorithm to a search-based semi-supervised constrained
clustering algorithm (CACA-AR) that incorporates supervisory information to guide
the clustering algorithm towards solutions where constraints are minimally violated.
I evaluate the accuracy of CACA-AR on benchmark datasets and provide a feasibility
study on one RWA, aspect based sentiment analysis. The F1-score results show that
CACA-AR outperforms baseline techniques, multi-class logistic regression and lexicon

based approaches by 20%.
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Chapter 1

Introduction

The proliferation of ubiquitous systems over the last two decades has led to the
emergence of “Big Data” era. In 2012, Gartner Inc. defined Big Data as “high-volume,
high-velocity and/or high-variety information assets that demand cost-effective, inno-
vative forms of information processing that enable enhanced insight, decision making,
and process automation.” (De Mauro et al. [2015]). Based on this definition, Big Data
presents challenges along three dimensions: volume (rapid increase in data size),
velocity (real-time data changes) and variety (data generation from heterogeneous
sources in various data types). These inherent challenges require new innovative ap-
proaches to extract meaningful, useful, and often vital information from the massive
amounts of raw data.

There are two fundamental approaches to extract useful information from data:
supervised learning (classification) and unsupervised learning (clustering). Standard
classification algorithms (e.g., logistic regression, naive Bayes, support vector ma-

chines) rely on learning a classifier (mathematical function) from correctly identified
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observations (training data), to predict a predefined class label for an unseen obser-
vation. For instance, a dataset of emails labeled as spam or non-spam can be used
for training a naive Bayes classifier to predict whether a new email is a spam or
non-spam. Although classification algorithms have been successfully implemented in
various domains, they suffer from the deficiency of training data and the high cost of
hand-labeling.

Clustering approaches, on the other hand, are entirely unsupervised (i.e., no train-
ing data required). They aim at finding intrinsic structures in unlabeled data. The
objective of the clustering methods is to partition a set of data instances into un-
known number (k) of mutually exclusive clusters according to some optimality crite-
rion. Typically, the instances (objects) within the same cluster should be as similar as
possible, and they should be as dissimilar as possible from instances in other clusters.
The similarity /dissimilarity of objects is often measured by a distance function. Gen-
erally, the goal of the clustering is to optimize intra-cluster similarity and inter-cluster
dissimilarity simultaneously. In this thesis, my focus is on clustering.

The computational complexity of finding an optimal clustering solution is proven
to be NP-hard (Welch [1982]). The number of feasible solutions grows exponentially
with respect to the number of data instances to be clustered. As a result, many clus-
tering approaches have been proposed. There are many exact algorithmic clustering
approaches. For example, connectivity-based (hierarchical), centroid-based (parti-
tioning or k-means), graph-based (Clique), distribution-based (expectation-maximization),
density-based (DBSCAN and OPTICS) and spectral-based clustering. Typically,

there is no single approach that is appropriate for all types of data, nor are all ap-
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proaches suitable for all problems. Each clustering approach has its shortcomings
concerning object heterogeneity, efficiency, simplicity, and scalability. For instance,
k-means algorithm, the most commonly used technique due to its ease in implemen-
tation, suffers from convergence to a local optimum as the outcome is highly affected
by the selection of initial partitions (Zhao and Karypis [2004]).

Exact algorithmic clustering approaches are not affordable for many real-world ap-
plications that require innovative approximation algorithms. Among them are meta-
heuristics such as bio or nature inspired techniques (Glover and Kochenberger [2006]).
Some examples of meta-heuristics include: simulated annealing, tabu search, ge-
netic/evolutionary algorithms, variable neighborhood search, (adaptive) large neigh-
borhood search and ant-based systems. According to (Glover and Kochenberger
[2006]), meta-heuristics are “master strategy that guides and modifies other heuristics
to produce solutions beyond those that are normally generated in a quest for local
optimality”. Unlike exact and approximate algorithms, meta-heuristics are always
heuristic in nature. Consequently, they do not guarantee that an optimal solution
will be found, even though with a large amount of time. As a result, meta-heuristics
are developed specifically to find a solution that is good enough in a reasonable com-
putational time.

There are two major components of any meta-heuristic algorithm: intensification
(exploitation) and diversification (exploration). Diversification is the ability of the
algorithm to generate diverse solutions to explore the search space globally, whereas
intensification aims at focusing the algorithm to search in a local region giving that

a current good solution exists in this region. To improve the convergence rate of
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a meta-heuristic algorithm, there should be a good balance between intensification
and diversification. Finding this balance ensures that solutions will converge to the
optimum, while diversification via randomization allows the algorithm to escape from
local-optima and, at the same time, increases the diversity of solutions. A good
combination of these two major components will usually ensure that global optimality
is achievable (Blum and Roli [2003]).

There are three benefits of meta-heuristics: (i) they are often able to offer a
better trade-off between solution quality and computational time; (ii) they can be
adapted to match the requirements of most real-life optimization problems because
meta-heuristics offer a high-level problem-independent algorithmic framework; (iii)
meta-heuristics do not need a formulation for the optimization problem (i.e., (specify
the problem in the form of constraints and objective functions).

One of the many meta-heuristic approaches used for solving the clustering prob-
lem is swarm intelligence (SI). SI is an artificial intelligence paradigm inspired by the
behavior of real swarms or insect colonies such as ant colonies, bird flocking, animal
herding, bacterial growth, or fish schooling. In SI, the organisms (agents) mod-
eled in the system, work independently providing lots of parallelism. The agents,
distributed within the environment, co-operate/co-ordinate through stigmergic or
indirect communication reducing global communication (Navlakha and Bar-Joseph
[2015]) and providing data locality. They self-organize when needed and work asyn-
chronously within their local environments. These characteristics make SI techniques
quite amenable to many real world applications such as community detection. One

of the swarm intelligence techniques that has been studied in the literature to solve
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the clustering problem in community detection application is ant colony optimization
(ACO) algorithm (Honghao et al. [2013]). However, the algorithm does not work well
for large networks.

In this thesis, I consider another technique, ant brood clustering (ACA) (Deneubourg
et al. [1991]; Lumer and Faieta [1994]) inspired by how real ants brood sort their nest.
This technique is more suitable to the clustering problem than ACO. In (Liu and Liu
[2016]), Liu provides an in-depth study of the algorithm providing its weakness and
strength through many benchmark experimentations. However, there are some short-
comings to the original ACA mathematical model by Lumer and Faieta (LM model)
for it to be applicable to real world applications: (i) user defined parameters have to
be “experimentally” fine-tuned to reflect the application under study; (ii) the ant’s
radius of perception is assumed constant - narrowing an ant’s visibility, consequently,
converging to a local optimum; (iii) lack of communication between ants prevents
the ants from dropping the object in the best location. As a result, ants perform
redundant searches within their local neighborhood, until they find a location that
satisfies the object dropping criteria which is computationally intensive. In this the-
sis, I present an Ant brood Clustering Algorithm with Adaptive Radius of perception
(ACA-AR), a modified variant of ACA for clustering multi-dimensional data. ACA-
AR uses multivariate kernel density estimation and sigmoid function to improve the
estimation of ants’ pick-up and drop-off probabilities. As a result of these modifica-
tions, ACA-AR gains many advantages over traditional and ACA clustering existing

models. ACA-AR

e does not make any prior assumptions about the number or the shape of the
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clusters.

e converges to the exact number of clusters in the data since it balances the trade-

off between maximizing inter-cluster dissimilarity and intra-cluster similarity.
e detects data outliers using adaptive radius strategy.
e avoids convergence to local-optima solutions.

e substantially improves the spatial separation of clusters on the grid, an essential

requirement to retrieve the clusters.

e preserves the characteristics of nature-inspired algorithms, making it suitable

for clustering data in dynamic domains (Wang et al. [2009]).

In many real-world applications, gathering unlabeled data is cheap and easy while
extensive hand-labeling of data is costly and time-consuming. However, in many
applications, it is possible to acquire small amount of prior knowledge (extra side
information, small-size labeled data) that specifies whether the particular data in-
stances are similar or dissimilar to cluster them. In such cases, neither applying
supervised nor unsupervised clustering is feasible. Therefore, many traditional clus-
tering algorithms have been extended to semi-supervised settings so they can take
advantage of the prior knowledge to supervise or “guide” the clustering process. For
example, in protein function prediction, some pairwise constraints can be identified
experimentally by finding functional links between pairs of protein genome sequence
data (Eisenberg et al. [2000]). Satisfying constraints in data clustering is significant

to reflect the object similarity within the domain. In most cases, prior knowledge can
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be naturally expressed in the form of instance-level pairwise constraints. Clustering
in the presence of limited supervisory knowledge encoded in the form of pairwise con-
straints is known as semi-supervised or constrained clustering (Wagstaff and Cardie
[2000]; Basu et al. [2008]). Please note that I use both terms interchangeably. Con-
strained clustering has proven beneficial in many real-world applications, such as lane
finding from GPS traces, noun phrase co-reference resolution (Wagstaff et al. [2001]),
and personal identification from surveillance camera clips (Bar-Hillel et al. [2005]).

In this thesis, I extend ACA-AR to constrained (semi-supervised) clustering algo-
rithm (CACA-AR) to take advantage of pairwise constraints to further improve the
estimation of pick-up and drop-off probabilities. I experimentally validate ACA-AR
with and without constraints on three benchmark data sets that present different
clustering challenges. The results show that ACA-AR outperforms ACA (Lumer and
Faieta [1994]), mean shift and k-means algorithms in terms of clustering accuracy,
completeness, and homogeneity. Moreover, the results show that the accuracy of
ACA-AR substantially improved when pairwise constraints are incorporated, espe-
cially when clustering high-dimensional datasets.

As a case study, I evaluate the application of CACA-AR to the tasks of aspect
category identification and sentiment prediction in the domain of product reviews,
central clustering tasks in aspect-based sentiment analysis (ABSA), by formulating
both tasks as constrained clustering problems. The results illustrates CACA-AR

effectiveness to real-world applications such as ABSA.
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1.1 Contribution

My contribution to the thesis are as follows:

1. Develop an adaptive clustering algorithm, called ACA with Adaptive Radius
(ACA-AR) using kernel density estimation, a non-parametric statistical model,

to measure average dissimilarity of data objects in ants neighborhood.
2. Parallelize ACA-AR on mutli-core machines.

3. Develop a search-based semi-supervised constrained clustering algorithm (CACA-
AR) that incorporates supervisory information to guide the clustering algorithm

towards solutions where constraints are minimally violated.
4. Evaluate the accuracy of CACA-AR on benchmark datasets.

5. Provide a feasibility study on one real world application, aspect based sentiment

analysis.



Chapter 2

Literature Review

This chapter is organized into four sections. Sections 2.1 and 2.2 introduce the
problem and definition of constrained clustering. Section 2.3 reviews the traditional
semi-supervised clustering algorithms. Section 2.4 introduces ant-based clustering

and reviews the constrained clustering studies based on ant clustering algorithm.

2.1 Constrained Clustering

The scarcity of labeled data and the high cost of obtaining such data are sig-
nificant obstacles in applying standard classification algorithms in many real world
applications. However, such applications make available large amounts of unlabeled
data as well as small quantity of supervisory information that can be naturally ex-
pressed in the form of sets of pairwise constraints. In protein function prediction, for
example, pairwise constraints can be identified experimentally by finding functional

bonds between protein genome sequence data (Eisenberg et al. [2000]). These rela-
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tionships reflect the experts’ perspective on object similarity in the domain as they
indicate whether particular protein genome sequences (data objects) are similar or
dissimilar to be grouped in the same or different clusters.

Constrained clustering, also known as semi-supervised clustering, aims at enhanc-
ing clustering outcomes by incorporating instance-level pairwise constraints in a clus-
tering algorithm. Constraints help to specify whether two data instances can be
clustered together. (Basu et al. [2004a]). Constraints can be either explicitly defined
by a domain expert or extracted from small labeled datasets. In this thesis, I inves-
tigate the use of instance-level pairwise constraints to improve clustering quality of

my proposed ant clustering algorithm with adaptive radius (ACA-AR).

2.1.1 Instance-Level Pairwise Constraints

According to (Wagstaff et al. [2001]), there are two types of instance-level pairwise
constraints: either two data instances, A and B, can be declared to be in the same
cluster, called Must-linked, M L(A, B), or can be declared to be in different clusters,
called Cannot-linked, CL(A, B). Both types of instance-level constraints exhibit dif-
ferent properties. A set of ML-constraints, for instance, is symmetric, reflexive and
transitive. The transitivity property allows expanding ML set by inferring more ML-
constraints. For example, given data instances (A, B, C, D) and two ML-constraints
ML(A, B) and ML(B,C) as shown in Figure 2.1, by the transitive closure of ML,
we can induce the constraint M L(A,C'). Transitivity of ML-set can be generalized
by assuming that data instances represent nodes in an undirected graph, and each

ML(A, B) represents an edge between data instances (A, B). ML-constraints can be
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identified as the connected components in the graph. Moreover, if there exist an edge
(ML-constraint) between two nodes in two different connected components CC; and
CCj, then we can infer that each node in C'Cj; is also connected by a ML-constraint

with the nodes in C'C; and vice versa (Basu et al. [2008]).

Induce: ML(A,C)

Figure 2.2: Graph Representation for CL Entailment

A set of CL-constraints, by contrast, is not transitive; the existence of C'L(A, B)
and CL(B, C) does not imply C'L(A, C'). Nevertheless, CL set can be expanded using
CL entailment property as illustrated in Figure 2.2. Given M L(A, B), M L(C, D) and
CL(B, (), the constraints CL(A, C), CL(B, D) and CL(A, D) can be induced. Also,
this property can be generalized by combining CL and ML constraints in one graph.

Let C'C; and C'C; be two connected components in a ML graph. If there exist at least
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one CL-constraint between C'C; and C'C};, we can infer the existence of CL-constraints
for all nodes in CC; and C'C; (Basu et al. [2008]).

Formally, given a set of n data instances {x;}" ,, set of ML-constraints ML =
{(x;, z;)}, and set of CL-constraints CL = {(z;, z;)}, the dataset {z;}?_; can be repre-
sented as a graph, G(V, E), such that V = {z;}!", and E = M L. As mentioned above,
applying the transitive closure on ML set results in forming connected components
in G. Moreover, if IML(x;,x;) s.t. a € CC;,b € CC; then Vx, € CCy,z; € CC; —
M L(x;, xj) where CC;, CC; are two different connected components in G. Similarly,
if 3CL(x;, z;) s.t. x; € CCy, x; € CC; — CL(x;,x5) Vo, € CC;, Vr; € CC; (Basu

et al. [2008]).

2.1.2 Constraint Extraction

Constraint extraction refers to the process of getting constraints either manually
or automatically for a particular domain. In the manual methods, we ask a user,
who is usually a domain expert, to determine whether a pair of data instances can be
related by a must-link or a cannot-link constraint. However, providing the user with
many data pairs makes this process tedious and hence error-prone. Therefore, the user
is given only a small randomly selected subset of data instances, from which the must-
link and cannot-link pairs are determined. This random selection of constraints may
be ineffective because any clustering algorithm can trivially determine the relation of
some selected pairs of data. As a result, different active learning methods have been
proposed to identify the most informative pairs of data, such as (Basu et al. [2004a]).

Automatic methods, on the other hand, recognize constraints by finding which
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pairs of data instances are similar or dissimilar enough to be associated. Consequently,
automated methods themselves are clustering algorithms with domain-dependent
rules. These rules provide information that is not captured by data representation
or similarity measures. They can thus be obtained by analyzing properties of data

instances or by using external domain sources.

2.2 Formal Definition of Constrained Clustering

Given a set of n data instances {x;}! ,, where z; is a real-valued vector of di-
mension d; a set of must-linked constraints ML = {(z;,z;)} such that ¢ # j, and
a set of cannot-linked constraints CL = {(z;,z;)} such that ¢ # j. The problem
of constrained clustering is to partition {x;}! ; into k disjoint clusters C1, Cy, ..., Cy

according to optimality criterion, such that the following criteria are satisfied for all

1 <<k
k
hd UCZ‘:{‘T@ 1
=1
k
e (1C; =9
=1

o V(z;,z;) € ML ;x;,x; are in the same cluster C;; i =1,2, ...,k
o V(z;,z;) € CL ;x;,x; are in the different clusters C;,Cy; 4,5 =1,2,...,k i # j
e intra-cluster similarity is maximized

e inter-cluster dissimilarity is maximized
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The problem of constrained clustering is to find an optimal or near-optimal clustering
solution C* with respect to a fitness function (similarity function) such that the intra-
cluster similarity is maximized, the inter-cluster dissimilarity is maximized, and the
given constraints, must-linked and cannot-linked, are satisfied. Finding C* is NP-
hard problem. Regardless of whether the value of k is known or not (Davidson and
Ravi [2005a]; Davidson and Ravi [2005b]), the number of feasible solutions grows

exponentially with respect to the number of data instances n to be clustered.

2.3 Constrained Clustering Algorithms

While unsupervised clustering algorithms are common and diverse, semi-supervised
clustering algorithms are limited and have a short history. According to Zhu et
al. (Zhu [2005]), existing constrained clustering algorithms fall into two major ap-
proaches: search-based and similarity-adapting. The primary distinction between the

two approaches relies on how constraints are utilized to guide the clustering algorithm.

2.3.1 Search-based Methods

In this approach, constraints are primarily used to bias an existing search-based
clustering algorithm towards more appropriate data partitioning. Different methods

have been proposed to achieve this end.

Pairwise-constrained k means

One of the earliest methods, such as the pairwise-constrained k-means (PCK-

means (Wagstaff et al. [2001])) strictly enforces constraints during the assignment
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of data instances to the cluster centroids in the k-means algorithm. However, strict
enforcement of both ML, and CL constraints is proven to be an NP-complete problem
(Basu et al. [2008]). In another method (MPCK-Means (Bilenko et al. [2004]), for ex-
ample, constraints are employed to select the initial cluster centroids in the k-means
algorithm. MPCK-means starts with finding the k-largest connected components in
constraint graph to initialize cluster centroids. Constraint graph is constructed such
that each data instance represents a node where those nodes participating in ML
constraints are connected. Each data instance is then assigned to the cluster centroid
that minimizes both the similarity distance (e.g., Euclidean) and the constraint vio-
lation (Bilenko et al. [2004]). To achieve this goal, MPCK-means adds two penalty
weights that measure how often ML or CL constraints are violated to the k-means

fitness function.

Probabilistic constrained clustering

The probabilistic constrained clustering model proposed by(Basu et al. [2004b]).
It relies on using hidden Markov random fields (HMRF') to incorporate constraints in
the k-means algorithm. The HMRF k-means generalizes PCK-means by combining
constraints and Euclidean distance learning. It also allows the use of a broad range
of clustering distortion measures. HMRF k-means aims at minimizing an objective
function that is derived from the posterior energy of the HMRF model. The objec-
tive function involves the Euclidean distance between a data instance and a cluster
centroid, a weighted penalty factor for violating constraints, and a normalization

factor.
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Spectral Constrained Clustering

Constraints have been incorporated in spectral clustering algorithms such as nor-
malized cuts (NC) (Shi and Malik [2000]) giving rise to constrained normalized cuts
(CNC) clustering (Basu et al. [2004b]).

Normalized cuts (NC) is a spectral clustering algorithm based on converting the
clustering problem into a weighed graph partitioning problem. The graph is created
such that data instances represent nodes and the degree of similarity between data
instances represent edge weights. Different strategies have been proposed to connect
nodes. One strategy is to connect two nodes if the similarity degree, as given by a
similarity function, between the corresponding data instances exceeds a user-defined
threshold e. Another strategy is to connect each node to its k-nearest neighbors.

Formally, let G = (V, E) be undirected, weighted graph with weight adjacency
matrix W. Given a set A such that A C V, and its complement A = V\A. A is
connected if for any pair of vertices (v;,v;) € A, there exists a path that connects
v; and vj;, and all intermediate vertices lies in the path are in A. A is a connected
component if and only if A is connected and there are no connections between A
and A. Spectral clustering techniques aim at finding graph cuts {4, Ao, ..., Az} (i.e.,
finding cuts in the form of connected components in the graph) such that 4;NA; = ¢,
AN, ...,NA = V, the intra-partition similarity is maximized, and inter-partition
similarity is minimized. Several objective functions have been proposed to encode
such optimization. The most common ones are the ratio cut RatioCut(A;, As, ..., Ag)
(Wei and Cheng [1991]) and the normalized cut Ncut(A;, As, ..., Ax) (Shi and Malik

[2000]). In the former, the size of the cut A; is measured by the number of vertices | A;],
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while the latter measures the size of the cut by the weights of the edges vol(A;) =
> jca, Wij- According to (Shi and Malik [2000]), the weight of a cut w(A;, A;) is

defined as:

w(di, A) = Y wy

i€A;,JEA;

For the cuts Ay, As, ..., A in G, the inter-cut similarity can be measured by:

1 AZ,A
NCUt(Al,AQ,..., 52 < Uol )

However, finding a solution {A4;, As, ..., Ax} that minimizes Ncut is NP-hard prob-
lem (Shi and Malik [2000]). Nevertheless, a solution can be found in polynomial
time using spectral graph techniques which make use of the eigenvectors of the graph
Laplacian matrix. Such eigenvectors can be perceived as a low-dimensionality repre-
sentation of the graph. Therefore, they can be used to cluster data instances in fewer
dimensions. To achieve this, minimizing Ncut is formulated as a standard matrix
trace minimization problem ([Von Luxburg, 2007]). Given a partition of V' into cuts
{Aq, Ay, ..., Ay}, assume that H is n X k matrix that indicates the membership of data

instances n to the cuts k. Each column j of H is encoded as follows:

1 .
i € A,
- vol(A;) ifv J
ij

0 otherwise

Let D,x, be a diagonal matrix such that d; = desgree(v;) = Z?zl w;;, and let
L = D — W be the unnormalized Laplacian matrix of graph G. Given the fact that

HT"H = I, h'Dh; = 1, and h! Lh; = cut(A;, A;)/vol(A;), the minimization problem
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of Ncut can be written as:
min  Tr(H'LH) subject to H'DH = I

This trace minimization problem can be written in the standard form (as given be-
low) by relaxing H to take arbitrary real values in R™ and substitute ¥ = D:H

(Von Luxburg [2007]).

min Tr(Y" (D7 LD )Y) st. YYT =1
YeRnxk

The standard trace minimization can be solved by choosing Y as the matrix which
contains the first k eigenvectors of D2 LD as columns (Von Luxburg [2007]). The
final data clustering is achieved by recovering H = D~'/2Y . It has been noticed that
the solution H, consists of the first k generalized eigenvectors of Lu = ADu. The
final clusters are achieved by clustering the rows of H using k-means. This results in
the normalized spectral clustering algorithm (Shi and Malik [2000]).

Normalized cut algorithm is extended to the constrained normalized cut (CNC)
by Wang et al. ([Wang and Davidson, 2010]; Wang et al. [2014]). CNC is based on
modifying the objective function of NC algorithm so that it optimizes graph cuts and
satisfies constraints simultaneously. In more detail, in CNC, ML and CL constraints

are encoded in the form of a symmetric matrix @),,«, as follows:

(

1 if ML(i, )

Qij =Qjiq -1 if CL(i,5)

0 otherwise
\

Let u € {1, —1}" be a cluster indicator vector, such that a data instance ¢ belongs to

the cluster if u; = +1, and does not belong to the cluster if u; = —1. Then, the value
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of Ul Qu = Yoy Z?Zl u;u;(Q;; indicates how well the constraints in () are satisfied in
the cluster indicator u. This measure increases by 1 each time a constraint is satisfied
because );; = 1 and data instances ¢, j have the same sign in u. Conversely, the
measure decreases by 1 each time a constraint is violated since ();; = —1 and ¢, j have
different signs in u. This encoding scheme is extended by relaxing both ) and u to
take arbitrary real numbers that reflect the degree/strength of constraint relationship.
Qi; is positive if (4, j) is in the same cluster, and @;; is negative if (7, j) is in different
clusters. The larger the value of u” Qu, the better the cluster assignment respects the
given constraints in (). Similar to the normalized cut, () is normalized by replacing u
with D~1/?¥ so the lower bound becomes v Qu where @ is the normalized constraint
matrix Q = D~Y2QD~1/2.

Since satisfying all given constraints is intractable, the authors set a lower bound
u"Qu > «, where a is a constant threshold number o € R. This lower bound is
augmented to the objective function of normalized cut. Given a normalized graph
Laplacian L, a normalized constraint matrix @, and a threshold «, the objective

function of CNC is:

miél v! Lv subject to vI'Qu > o, vTv = vol, v # D21
veE

In this optimization, v Lv is the cost of the cut, v Qu > « is a lower bound on con-

Ty = wol is a normalization of V, and v # D'/?1 eliminates the

straint satisfaction, v
trivial solution D'/21. The authors follow the Karush-Kuhn-Tucker theorem (Kuhn

[1982]) to solve this optimization problem with respect to the necessary conditions.

This theorem is beyond the scope of my thesis.
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2.3.2 Similarity-Adapting Methods

Similarity-adapting methods rely on modifying similarity measure in a given clus-
tering algorithm so that the available constraints are easily satisfied.

In (Klein et al. [2002]), the authors modify similarity values computed by Eu-
clidean distance to incorporate pairwise constraints called complete link agglomera-
tive (CLA) clustering. CLA is an iterative algorithm that initially considers each data
instance is a cluster. If two data instances are linked by a must-link constraint, their
distance is set to zero in the similarity matrix. Similarly, if two data instances are
linked by a cannot-link constraint, their distance is set to a maximum threshold dis-
tance. This adjusting of data instance similarity associated with pairwise constraints
is called imposing constraints. T'wo similar clusters are merged in each iteration until
one cluster is left. The similarity between two clusters is determined by the maxi-
mum distance between their corresponding data instances.The outcome of CLA is a
hierarchy of clusters that is known as dendrogram. The dendrogram can be cut at
the appropriate level to retrieve the desired number of clusters.

Another proposed similarity adjustment (Klein et al. [2002]) is to propagate con-
straints to the neighboring data instances. If z;,z; are two data instances that are
very close to each other, then all data instances which are close to x; are also close
to x;. Likewise, if z;,x; are far apart, then data instances which are close to z;
are also far from z;. However, the direct imposing of must-link constraints in the
similarity matrix results in violating the triangle inequality and the shortest path
properties between data instances. To maintain these properties, authors apply all-

pairs-shortest-paths algorithm on the imposed matrix to create a metric matrix. As
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for cannot-link constraints, authors state that finding a clustering that satisfies them
is NP-hard. However, they argue that such constraints can be imposed and propa-
gated implicitly by choosing a similarity-based clustering algorithm such as the CLA

algorithm.

Constrained spectral clustering

Another significant similarity adapting work is proposed by Kamvar et al. (Kam-
var et al. [2003]). In their work, the constraints are imposed in spectral clustering by
combining data similarities with pairwise constraints to produce a Markov transition
process between data instances. This Markov transition is achieved by turning the
similarity matrix A into a normalized Markov transition process N. The eigenvec-
tors of N, are then used for detecting data blocks which correspond to clusters by
projecting data instances into R*. To construct the matrix N from A, the following

operation is applied:
1

N=——(A+dpel - D)

dmax

where D is the diagonal matrix.

Semi-supervised constrained clustering

Cohn et al. (Cohn et al. [2003]) proposed a semi-supervised clustering based on
user feedback. The basic idea is to cluster data instances using an unsupervised
clustering algorithm. The user can criticize the clustering outcome by setting some
constraints on the contents of clusters. These constraints are used for re-clustering

data by changing the similarity distance metric of the clustering algorithm. This
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process continues until the user is satisfied with the results. In more detail, the authors
present a prototype-based clustering derived from naive Bayes model of document
generation. In their model, each document is represented as a “bag-of-words” that
is generated from a multinomial distribution #. The probability of a document d is
given by:

P@= I plwfpeo

w; €Vocabulary

where p(w;|0) is the probability that term w; is generated, and N(w;,d) is the fre-
quency of term w; occurrence in d. Each document d is an estimate of a multino-
mial distribution 6,;, and each cluster m of documents is an estimate 6, . As for
the clustering, the authors assume that each document drawn from one distribution
Ory,0ry, ..., 0, correspond to the unknown cluster distributions my, ma, ..., m.

P(d) =Y P(r)P(dlm) =Y P(r)  []  Pluylor)"

w; €V ocabulary
The goal is to estimate the values of P(m;) and 6, which in turn can be used to

estimate class membership by Bayes rule:

Pljd) = )

To implement pairwise document constraints, authors augment the standard KL-

divergence Dk (04,,04,) with a weighting function as follows:

P(w;|0a,)

Drxr(04y,04,) = Z Ujp(wiwdl)lagp(ijdl)

w; €V ocabulary
P(w;|64,) indicates the importance of w; for distinguishing d; and dy. Given con-

straint that d; and do must be in different clusters, the authors adjust the metric
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by:

OD1 g (dy, dz) (P(wj|9d1 d2)> (P(wj\edl d2>)
= |z | P(w;|0a,)log| ——225 | + |22| P(w;|04,)log | ——=2%
81)]' | 1| ( J| d ) g p(w]|0d1) | 2| ( J| d ) g p(w]|0d2)

The distance between d; and dy can be increased by hill-climbing over the v. These v’s
are then incorporated into the E-step of the clustering algorithms as weights attached
to the term frequencies.

Pm) =[]  P(dl6:)""N(w,d)

w; €vocabulary

Learnable similarity measures

Other significant similarity-adapting works are presented in (Xing et al. [2003];
Bilenko and Mooney [2003]). Given a set of similar or dissimilar data instances,
the work in (Xing et al. [2003]) relies on learning Mahalanobis distances adjusted
by convex optimization to perform clustering that respects similarity/dissimilarity

relationships. A distance metric in the form:

d(z,y) = da(z,y) = ||z —y| |2 =/ (z — )T A(z — y)

To make d a metric that is non-negative and satisfies the triangle inequality, A has to
be positive semi-definite (A > 0). A parameterizes a family of Mahalanobis distances
over R". If A = I, we get the Euclidean distance. Learning such metric is also

equivalent to finding re-scaling that replaces = with AY?zand applying the Euclidean
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distance to the re-scaled data. This can be formulated as constrained optimization:

miniAmize Z (“951 - 5Uj| )
(xi,Xj)ES

subject to Z (sz - l’j‘ ) >1
(z4,25)€D
A > 0.

The authors consider two cases for A. The first case is the diagonalA where we
want to learn A = diag(Ai1, Ags, ..., Apn). By using Newton-Raphson method, g(A)
is defined as:
o) = X -l By -tog( X (-l )
(wi,x5)€S (zs,25)€D

Optimizing g s.t. A = 0 can be solved efficiently using Newton-Raphson method.
The second case is to learn the full A. Using Newton-Raphson is computationally
expensive (O(n®)). Therefore, authors use gradient decent and the idea of iterative

projections.

2.4 Constrained Clustering based on Swarm Intel-
ligence

Inspiration from nature has driven many creative solutions to challenging real-life
problems. Clustering, in its purest form, is an optimization problem. One of the many
approaches used for solving clustering problem is Swarm Intelligence (SI). SI is an
artificial intelligence paradigm that is mainly inspired by the behavior of real swarms

or insect colonies. SI depends on the collective action of decentralized, self-organized
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agents. Although these agents have no direct communication or centralized control,
the indirect local interactions between such agents result in the emergence of intelli-
gent, global behavior that is unknown to the individual agents. Examples of natural
systems of SI include ant colonies, bird flocking, animal herding, bacterial growth,
and fish schooling (Kennedy [2011]). The most popular swarm intelligent algorithms
used for data clustering are ant colony optimization, particle swarm optimization and
flocks of agent based-clustering.

In this thesis, I consider another technique, ant brood clustering (ACA) (Deneubourg
et al. [1991]; Lumer and Faieta) inspired by how real ants brood sort their nest. This
technique is more suitable to the clustering problem than ant colony optimization. In
(Liu and Liu [2016]), Liu provides an in-depth study of the algorithm providing its
weakness and strength through many benchmark experimentations.

Most of the work on ant clustering is based on the LM model by Lumer and
Faieta (Lumer and Faieta [1994]) described in section (2.4.1). In section 2.4.2, I
review previous constrained clustering works that are based on ACA. In Chapter
3.1, I highlight the shortcomings of using LF model for data clustering and present
three major enhancements to alleviate its shortcomings. In section 3.3, I extend the

enhanced model to a constrained clustering model by incorporating constraints.

2.4.1 Ant Clustering Algorithm (LF Model)

Ant brood clustering was inspired from the observation that some species of ants
have the ability to sort large corpses and eggs into clusters. This behavior was modeled

by Deneubourg et al. (Deneubourg et al. [1991]) to enable real-world robots perform
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certain clustering tasks. In the basic model, the data objects are scattered on a two-
dimensional grid and the ants randomly move withing this grid. Each ant decides
to either pick up a free object or drop off a loaded object depending on the average
similarity of the object with its neighboring objects.

The basic model is enhanced by (Lumer and Faieta [1994]) to work with multidi-
mensional data that are comparable according to a measure of similarity (LF Model).
The average similarity is estimated using a local average function as shown in equa-
tion (2.1). In this function, d(o;, 0;) is a similarity function that measures the distance
between the object o; and a neighboring object o; (e.g. Euclidean distance) scaled
by a constant a € [0,1]. r is known as the radius of perception of the ant, and (2r)?
is the area of ant’s neighborhood, which is a normalization factor that represents
the square area surrounding the object o;. As shown in the pickup equation (2.2),
the more dissimilar objects there are in the ant neighborhood, the more likely the
objects will be picked up. Conversely, the more similar objects there are in the ant
neighborhood, the more likely the objects will be dropped off, as given in equation
(2.3). k, and kq are two parameters for adjusting pickup and drop-off probabilities,
respectively. After several iterations, data clusters emerge from the collective and
collaborative activities of the ants.

The LF model is considered as a standard ant clustering algorithm in mining data.
In 2002, Handl and Meyer implemented ACA for classifying on-line documents based

on their cosine similarity (Handl and Meyer [2002]). Wu et al. (Wu and Shi [2001])
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combined ACA with k-means algorithm to achieve more accurate clustering results.

f(0:) = max (# Y - d(ozoj)) ,0) (2.1)

0;E€N (0;)

Paroy(05) = 2f(0i) if f(oi) < ka 2.3)

1 otherwise

2.4.2 Constrained Clustering based on ACA

While there is a wide and diverse literature on traditional constrained clustering
algorithms, there is few works on clustering based on ant brood constrained algorithm.
To the best of my knowledge, only two works have been proposed, (Yang et al. [2012])
and (Xu et al. [2011]). In this section, I explain both works in detail, and highlight
their drawbacks.

In (Yang et al. [2012]), the authors propose a novel consensus constraint-based
clustering algorithm that incorporates pairwise (CL and ML) constraints in multi-
ant colonies. Clustering ensemble has proven to improve the quality and robustness
of clustering by combining multiple clustering solutions into a single solution. The
authors propose two problems: (i) how to incorporate pairwise constraints in each ant
colony; (ii) how to compute a new similarity matrix by incorporating the provided
constraints. The proposed model is similar to the LF model. Data instances are

distributed randomly on a two-dimensional grid where each ant is initially assigned
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at a random data instance. While ants are moving on the grid, they are either
picking up or dropping off data based on certain probabilities. Unlike LF models,
however, the model allows ants to move with varying speed. The probability of
picking up or dropping off depends on the similarity of the current data instance with
its neighboring data instances. When an ant at position r finds an object o; at time
t, the average local density f(o;) of objects that are similar to o; is computed by

equation 2.4:

;) = max 1 — d(0:, ;)
Foi) = (0’ 52 Z [1 a(l+ ((v— 1)/Umaw))}) (24)

0;€Neigh(o;)

Neigh(o;) refers to (s x s) square surrounding area around o;. d(0;,0;) is the
similarity distance between o; and o;. « is a factor that defines the scale of similarity
between objects. v is a parameter to control the speed of ants, and v,,,, denotes
the maximum ant speed. Three different cases are considered for the speed of ants:
ants move randomly at the same speed (i.e., v is constant for all ants), the speed
of each ant is randomly sampled from [1, v,,4.], and ants start from maximum speed
Umaz then decreases randomly to cool down. To compute picking up and dropping off
probabilities, they use the standard Sigmoid function f(x) = H% using f(o;) with

f(x) as a parameter as shown in equations (2.5;2.6):

Pirop(oyy = sigmoid(f(0;)) (2.5)

Prick(oyy = 1 — sigmoid(f(0;)) (2.6)
As the average similarity decreases, the probability of picking up increases while

the probability of dropping off decreases.
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In (Yang et al. [2012]), the authors also incorporate pairwise constraints to guide
the clustering process towards an accurate partition (search-based). To make use of
ML constraints in dropping off, the authors count the number of ML constraints that
relate o; with every neighboring object 0;. The ant drops off 0; if Py.op(0,) is greater
than a random number r € [0, 1] or if the number of ML constraints is greater than a
given constant ¢;. By contrast, the ant picks up the object if Bk, is greater than a
random number 7 € [0, 1], or the number of CL constraints that relates o; with every
neighboring object o, is less than a given constant c;.

The proposed ensemble clustering in (Yang et al. [2012]) involves three compo-
nents: constant-moving ants, random-moving ants and randomly-decreasing moving
ants. Let O be the set of objects 01, 09, ..., 0,,. Each clustering component ¢ produces a
vector A@ € N, that indicates clustering label for each object. Applying r clustering
components result in r different labeling vectors. These label vectors can be mapped
into a binary membership matrix H,«x- € {0, 1} such that columns represent cluster
membership and rows represent objects. For any column j in H, all objects that
belong to a particular cluster are assigned one in their corresponding entries. The
membership matrix is an adjacency matrix which in turn can be transformed into a
similarity matrix as follows:

1

S=-HH"
r

After computing the similarity matrix S, ML and CL constraints are incorporated
as follows: if M L(o0;,0;) then S;; = 1 and if C'L(0;,0;) then S;; = 0. However, the
authors do not explain how data instances are assigned with cluster labels.

There are many drawbacks in Yang et al. work. (i) varying speed of the ants does
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not improve the spatial separation among clusters. Thus, the algorithm probably
converges to a local optimum; (ii) there is no integration between density function
and constraints. This means that ants can drop an object within a neighborhood
that has CL constraints with object, and can pick up an object from a neighborhood
that has ML constraints with the object; (iii) no method is given to explain how to
determine the values of constants ¢, co.

In ([Xu et al., 2011]), the authors introduce the Random Walk Ant Clustering
(RWAC) algorithm. In RWAC, each ant represents a data point, and can randomly
walk on the grid until it finds a place to sleep. Each ant perceives the fitness of
the neighborhood to decide whether to sleep or continue moving. The behavior of
finding a sleep place is simple. While ant moves, it looks for a safer place. The
safety of the place is measured by the number of similar ants in the surrounding
area of the ant. The authors improve RWAC conve