
Higher Order Method of Moments for Current Flow
Modelling of Sector Shaped Conductors and

Scattering by Dielectric Cylinder

by

Mohammad Shakander Hosen

A Thesis Submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

Copyright © 2018 by Mohammad Shakander Hosen



ii

Abstract

Design of complex multi conductor transmission lines (MTLs) depends on the knowl-
edge of per unit length (p.u.l.) inductance and resistance along with p.u.l. capacitance
and conductance. In order to calculate with controlled precision p.u.l. inductance
and resistance of complex MTLs of arbitrary cross-section higher order numerical
methods are required. Such method based on Higher Order (HO) Method of Moment
(MoM) solution of Surface Volume Surface Electric Field Integral Equation (SVS-
EFIE) is proposed in this thesis. The cross-section of the MTLs is discretized with
higher order quadrilateral elements to reduce the error associated with the geometry
representation. The unknown currents are approximated by high order polynomial
basis functions for accurate representation of their sophisticated behaviour according
to the skin- and proximity-effects. Memory requirement for the proposed method is
shown to be substantially smaller than that of the HO Finite Element Method (FEM)
due to discretization of only the MTLs cross-section and not the surrounding volume.
Analogous SVS-EFIE is shown in the thesis to be solved with HO-MoM to calculate
the scattered field with high accuracy inside 2-D dielectric scatterers of arbitrary
shape under TM-polarization.Various obstacles in achieving error controlled HO-MoM
solution of SVS-EFIE are overcome in this thesis. In order to get error controlled
solution of the sought fields, singularity extraction is performed on 1-D and 2-D HO
elements when calculating the integrals related to HO-MoM discretization. As the HO
FEM must truncate its mesh within a certain region around the object of interest
in order to perform one-to-one comparison of the fields computed using the HO-
MoM solution of the SVS-EFIE against HO-FEM the same region of interest must
be considered. In this work a grounded cylindrical cavity of large radius surrounding
MTLs is introduced for truncation of the FEM mesh. To enforce the same boundary
condition in the HO-MoM solution the Green’s function of the cylindrical cavity is
analytically derived and used in the SVS-EFIE formulation.
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Notation, Symbols and Acronyms

Most commonly used symbols and notations in this thesis are listed below

• Vector representation: are represented by bold letters such as electric field

is E, and magnetic field is H .

• Scalar integral operators: are denoted by upper-case calligraphic letters such

as T .

• Scalar matrices: are denoted by upper-case calligraphic letters such as Z.

• Spatial derivative operators: spatial gradient, divergence, and curl opera-

tors are given as (∇),(∇·) and (∇×).

Table 0.1: Common Symbols and Notations

Symbol Description

x̂, ŷ, ẑ Unit vectors in the x, y and z directions.

n̂ Normal unit vector outward to the boundary.

t̂ Tangential unit vector to the boundary.

r, r′ Position vectors in the 3-D Cartesian coordinate system.

ρ, ρ′ Position vectors in the 2-D Cartesian coordinate system.

ε0 Permittivity of free-space.

ε Relative complex permittivity of the scatterer.

σ Conductivity of the scatterer.

µ0 Permeability of free-space.



µr Relative permeability of the scatterer.

k0 Wavenumber of free-space.

kε Wavenumber inside the scatterer.

ω Radial frequency.

f Frequency of operation.

t Time variable.

λ Wavelength.

Γ Gram matrix.

Einc Time-harmonic incident electric-field for a transmitter.

H inc Time-harmonic incident magnetic-field for a transmitter.

Escat Time-harmonic scattered electric-field.

E Time-harmonic total electric-field.

j Polarization current density.

J Fictitious SVS surface source density.

Ψ The highest order of 2-D basis function.

Ω The highest order of 1-D basis function.

∂S Boundary of the 2-D object.

S Surface of the 2-D object.

∂V Boundary of the 3-D object.

V Volume of the 3-D object.

` Length variable.

Re Real part operator.

Im Imaginary part operator.

∇ Gradient operator.

∇· Divergence operator.

∇× Curl operator.

∇×∇× Curl curl operator.

∇2 The Laplacian.

(·)−1 Inverse operator.

〈· , ·〉 Inner product.



Acronym Description

EM Electromagnetic

BC Boundary Condition

CEM Computational Electromagnetic

CAD Computer Aid Design

IE Integral Equation

MoM Method of Moments

LO Low Order

HO Higher Order

HO-MoM Higher Order Method of Moments

FEM Finite Element Method

FDM Finite Difference Method

HO-FEM Higher Order Finite Element Method

SVS-IE Surface Volume Surface Integral Equation

SIE Surface Integral Equation

SSIE Single Source Surface Integral Equation

VIE Volume Integral Equation

V-EFIE Volume Electric Field Integral Equation

PEC Perfect Electric Conductor

EFIE Electric Field Integral Equation

SVS-EFIE Surface Volume Surface Electric Field Integral Equation

MFIE Magnetic Field Integral Equation

TM Transverse Magnetic Field Mode

TEM Transverse Electro Magnetic Mode

TE Transverse Electric Field Mode

MTLs Multi Conductor Transmission Lines

SLAEs System of Linear Algebraic Equations
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1

Introduction

Who is wise? He that learns from everyone.
Who is powerful? He that governs his passion.
Who is rich? He that is content.
Who is that? Nobody.–Benjamin Franklin(1706-1790)

1.1 Motivation and Current State of the Art

In order to build MTL model it is required to know p.u.l. inductance, resistance,

capacitance and conductance beforehand [1–3]. It is practical to create virtual model

of MTL and perform electromagnetic transient (EMT) simulation [4]. Virtual pro-

totyping can be made cost efficient and reliable. Different kinds of electromagnetic

solvers can be used to gain these parameters such as partial differential equation based

FEM [5] or Finite Difference Method (FDM) [6] solvers and integral equation [7, 8]

based MoM [9] solvers. FEM solves partial differential equation with a boundary con-

dition to find the unknown field quantity inside or outside an object of interest [6].

The drawback of FEM is that one needs to discretize the domain outside the object of

interest and impose boundary condition to truncate the mesh. The advantage of the
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FEM is that it is well suited for modelling inhomogeneous materials and geometrically

complex objects [5]. The alternative to the FEM is the method of integral equations.

Commonly used integral equations of electromagnetics are the Electric Field Inte-

gral Equation (EFIE) [7], Magnetic Field Integral Equation (MFIE) [7], Combined

Field Integral Equation (CFIE) [10], Poggio-Miller-Chang- Harrington-Wu-Tsai (PM-

CHWT) formulation [11] [12], Müller formulation [13] and Volume Integral Equation

(VIE) [14]. Surface Integral Equations (SIE) for Perfect Electric Conductors (PEC) [7]

like EFIE and MFIE represent the unknown field quantity with equivalent electric

and magnetic surface currents through surface equivalence principle [15] and enforc-

ing boundary conditions [7] on tangential electric and magnetic field. The number of

unknowns is typically much smaller for SIE compared to FEM because this kind of

formulation discretizes only the surface of the object not the whole volume [16].

The EFIE can handle both open and closed structure but has low frequency break-

down [17]. This problem can be handled by using Augmented EFIE (A-EFIE) [18]

which uses electric charge as an extra unknown. The MFIE is not applicable for

analysis of open structures [7] and also has low frequency breakdown like EFIE. Ad-

ditionally, both EFIE and MFIE exhibit interior spurious resonances when applied

on closed structures. Hence, their solutions may not be unique at certain irregular

frequencies [7]. To solve this problem EFIE and MFIE can be linearly combined to

formulate new integral equation called CFIE [19]. The CFIE provides unique solution

at every frequency but isn’t applicable to open structures and also suffers from the

low-frequency and oversampling breakdowns.

The VIE, on the other hand, is free of spurious resonances as well as the low-

frequency and overdiscretization breakdowns. Solving VIE is computationally ex-

pensive, however, because it discretizes the whole volume of the object [14]. As a

result number of unknowns is relatively high but this formulation is well suited for

inhomogeneous objects [14].

Instead of solving unknown throughout the whole volume, electric field for each

observation point inside the object can be calculated with superposition of fields

contributed by all the point sources in the boundary. This enables formulations of a

new kind of single source surface integral equation formulation termed SVS-EFIE [25].
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In this IE formulation the unknowns are on the surface of the object. Which means

it has less number of unknowns in comparison to V-EFIE. SVS-EFIE is formulated

by using only EFIE type Green’s function which makes it easily combined with the

multi layered media Green’s function for analysis of under ground MTLs [50]. The

SVS-EFIE can be accelerated by fast algorithms such as Multi Level Fast Multipole

Method (MLFMA) [65], Fast Fourier Transform (FFT) based methods [63, 64] etc.

But SVS-EFIE has some drawbacks too. It has three different operators (surface to

surface, surface to volume, and volume to surface) [25]. Hence, one must discretize

both cross-section and boundary of the object which requires additional memory and

CPU time. As a result, its numerical solution is computationally expensive when

obtained directly without aid of fast algorithms.

Previously, SVS-EFIE was solved with Lower Order (LO) MoM for p.u.l. resis-

tance and inductance extraction [25]. When doing EMT simulation on MTLs it is

well known fact that with the change of frequency, p.u.l. inductance and capacitance

doesn’t change that much but p.u.l. resistance changes quite a lot. And its observed

that at higher frequencies resistive term of impedance Z = R + iωL can be orders

magnitude lower than the inductive term [2]. So in order to capture the p.u.l. re-

sistance correctly within desired error SVS-EFIE must be solved with a method like

HO-MoM.

1.2 Thesis Research Scope

The overall goal of this thesis is to explore HO-MoM solution of recently developed

SVS-EFIE [25] for current flow model and scattering from the objects of arbitrary

shape in TM mode.

In Chapter 2 detailed derivation of SVS-EFIE from VIE is shown for a single

conductor in TM mode under magneto quasi static approximation.

HO-MoM solution of SVS-EFIE for p.u.l. inductance and resistance extraction

in TM mode under magneto quasi static approximation for sector shaped MTL is

presented in Chapter 3.

Chapter 4 discusses HO-MoM solution of SVS-EFIE for full wave scattering and
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radiation problem of 2-D non-magnetic homogeneous dielectric scatterers of arbitrary

cross-sections.

Chapter 5 analyzes various challenges which were encountered in this work towards

achievement of error controlled solution of SVS-EFIE. It emphasizes the method for

singularity extraction on 1-D HO elements, derivation of Green’s function of cylindri-

cal cavity necessary for comparing results obtained by HO-MoM solver with HO-FEM

based solver, and the study of skin effect in current flow in a circular conductor at

high frequencies.

Finally Chapter 6 summarizes the whole thesis and mentions about the future

works related to this thesis.
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2

Surface-Volume-Surface Integral

Equation (SVS-EFIE)

2.1 Maxwell’s Equations

Time domain Maxwell’s equations can be expressed as follows:

∇×E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇×H(r, t) =
∂

∂t
D(r, t) + j(r, t), (2.2)

∇ ·D(r, t) = ρ(r, t), (2.3)

∇ ·B(r, t) = 0, (2.4)

where E is the electric field, H is the magnetic field, D is the electric flux density,

B is the magnetic flux density, j is the volume electric current density and ρ is the

electric charge density. Before Maxwell Ampere’s law had this following form

∇×H(r, t) = j(r, t). (2.5)

The problem with (2.5) is that if we take divergence of this equation it becomes

∇ · j(r, t) = 0 because divergence of curl is zero. The question then is whether
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∇ · j(r, t) is always zero or not. We are going to take a look at current flowing

through a capacitor when a time varying voltage source is applied. In this case we

know that the condition ∇ · j(r, t) = 0 is not true since there is no charge between

the plates of the capacitor. Then why do we have a current flow through capaci-

tor? To answer this question we have to go to Maxwell’s explanation. Maxwell knew

from Faraday that time varying magnetic field creates electric field and from that

he came up with the idea that changed the world forever. He said that time vary-

ing electric field also creates magnetic field. Now we can explain how the current

flow is happening through capacitor. The current is related to the change of elec-

tric flux in the capacitor. So Maxwell called this current the displacement current,

jd(r, t) = ∂
∂t
D(r, t). By adding this term in Ampere’s law, Maxwell unified all four

laws of Electromagnetism. From Maxwell we knew that although there is no charge

in vacuum but time varying electric field and magnetic field creates each other. Be-

cause of this phenomena electromagnetic wave such as light can travel through perfect

vacuum [26].

2.2 Volume Integral Equation (VIE)

Since magnetic flux vector B is solenoidal, we can represent B as curl of an

auxiliary vector potential as

B = ∇×A, (2.6)

whereA is the magnetic vector potential. Another logic behind representing magnetic

flux like this is, it also satisfies Gauss law ∇ ·B = 0 cause ∇ ·∇ ×A = 0. If we

substitute B (2.6) into Faradays law in frequency domain ∇×E = −iωB, then we

have [27]

∇× (E + iωA) = 0. (2.7)

Since (E + iωA) is a conservative field so it can be represented as negative of ∇φ

where φ is the scalar potential as

∇× (E + iωA) = ∇× (−∇φ). (2.8)
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If we integrate (2.8) then electric field can be represented in terms of vector and scalar

potential as follows [27]

E = −iωA−∇φ. (2.9)

Under magneto quasi static approximation (i.e. when σ >> ωε0 where σ is the

conductivity and ε0 is the free space permittivity), inside the conductor medium we

can neglect displacement current jd = jωε0E because it is much smaller than volume

current of conductivity j = σE [20]. Under this particular condition if we substitute

B (2.6) into Ampere’s Law in frequency domain we get

∇× µ0H = ∇×∇×A = µ0j, (2.10)

where µ0 is the free space permeability. If we use vector identity ∇ × ∇ × A =

∇(∇ ·A)−∇2A and Coulomb gauge ∇ ·A = 0 in (2.10), it gives us vector form of

Poisson’s equation as

∇2A = −µ0j. (2.11)

For 2-D conducting media if we assume that volumetric current is flowing only in

z direction so j = jz · ẑ. We know that j and A are co-linear which makes A = Az · ẑ.

Now we can write scalar Poisson’s equation for Az as

∇2Az = −µ0jz. (2.12)

In free space the conductivity σ is zero , and the vector potential created by a filament

of current (i.e. point source µ0jz = µ0Iδ(ρ − ρ)) with magnitude µ0I = 1A · H/m)

satisfies following Poisson equation

∇2G0(ρ,ρ′) = −δ(ρ− ρ′), (2.13)

where

G0(ρ,ρ′) = − 1

2π
ln(|ρ− ρ′|) (2.14)

is the free space Green’s function. Now we will represent Az with convolution of
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Green’s function and volumetric current distribution as follows

Az(ρ) = µ0

ˆ
V

jz(ρ
′)G0(ρ,ρ′)dv′, (2.15)

where V is the volume of the conducting media. For a 2-D conductor if we assume

that scalar potential φ is only changing in z direction equation (2.9) becomes

Ez + iωAz = −dφ
dz
. (2.16)

According to Ohm’s law [20] volumetric current and electric field inside conductor

media follows this relationship

jz = σEz. (2.17)

For a 2-D conductor with cross sectional area S if we substitute jz from (2.17)

into (2.15) we get Az as

Az(ρ) = σµ0

ˆ
S

Ez(ρ
′)G0(ρ,ρ′)ds′; ρ ∈ S. (2.18)

At this moment we will plugin Az into equation (2.16) and it will turn into VIE for

2-D conductor for unknown Ez as follows

Ez(ρ) + iωµ0σ

ˆ
S

Ez(ρ
′)G0(ρ,ρ′)ds′ = Vp.u.l.; ρ ∈ S, (2.19)

where Vp.u.l. = −dφ(z)
dz

is the voltage drop per unit length. Same VIE can be written

by using Ohm’s law (2.17) when the unknown is volumetric current jz as

jz(ρ)

σ
+ iωµ0

ˆ
S

jz(ρ
′)G0(ρ,ρ′)ds′ = Vp.u.l.; ρ ∈ S. (2.20)
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S

ρ∂S

Figure 2.1: Single circular conductor with cross section S and boundary ∂S.

2.3 Surface-Volume-Surface Integral Equation (SVS-

EFIE) via Volume Integral Equation (VIE)

Electric field Ez for each observation point ρ inside the object can be calculated

with superposition of fields contributed by all the point sources in the boundary ∂S

demonstrated in Fig. 2.1 as [25]

Ez(ρ) = −iωµ0

ˆ
∂S

Jz(ρ
′)Gσ(ρ,ρ′)dρ′;ρ ∈ S, (2.21)

where Jz is the unknown surface weighting function, Gσ(ρ,ρ′) = 1
4i
H

(2)
0 (kσ|ρ−ρ′|) is

the Green’s function of the conductor media and, H
(2)
0 is the Hankel function of second

kind and of zeroth order. We know that for source points on the boundary ρ′ ∈ ∂S
the Green’s function Gσ satisfies the Helmholtz equation for all the observation points

inside the conductor excluding boundary as

∇2Gσ(ρ,ρ′) + k2
σGσ(ρ,ρ′) = 0, ρ ∈ S. (2.22)

Since Gσ satisfies homogenous Helmholtz equation, superposition of Gσ with some

weighting function Jz will also satisfy the same equation. That means Ez, constructed

as superposition of waves Gσ (2.21), satisfies the same homogeneous Helmholtz equa-

tion as

∇2Ez(ρ) + k2
σEz(ρ) = 0, ρ ∈ S, (2.23)
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where kσ =
√

ωµσ
2

(1−i) is the complex wave number of the conductor media. Now we

will plugin Ez from (2.21) into VIE (2.19) and constrain the latter at the boundary

∂S instead of the cross-section S. This substitution produces scalar SVS EFIE [25]

for TM case for a single conductor shown in Fig. 2.1 as following

− iωµ0

ˆ
∂S

Jz(ρ
′)Gσ(ρ,ρ′)dρ′ − σ(ωµ0)2

ˆ
∂S

[ˆ
S

G0(ρ,ρ′)Gσ(ρ,ρ′′)ds′
]
×

Jz(ρ
′′)dρ′′ = Vp.u.l. ; ρ ∈ ∂S. (2.24)

The SVS EFIE (2.24) is a single source surface integral equation for which the un-

known quantity is fictitious surface current density Jz. Once we compute the surface

current density Jz we can also construct volumetric current density jz. In this Chapter

SVS EFIE has been derived for a single conductor. In the next Chapter we will derive

and solve SVS EFIE with HO-MoM for extracting p.u.l. resistance and inductance

for a sector shaped MTLs.



12

3

Higher Order Method of Moments

for Current Flow Modelling of

Sector Shaped MTLs

3.1 Introduction

Electro Magnetic Transient (EMT) simulation of MTLs requires extraction of

p.u.l. resistance R, inductance L, capacitance C, and conductance G matrices. These

matrices are feed into Telegraphers Equations for determining transient behaviour

of currents and voltages in the MTLs. Time domain analysis of MTLs can be done

by doing inverse Fourier transform after performing the frequency domain analysis

or directly through numerical integration of the Telegraphers Equaitons [21]. The

p.u.l. conductance and capacitance matrices are calculated by solving equivalent

electrostatic problem [20]. The p.u.l. inductance and resistance matrices are calcu-

lated by solving equivalent magnetostatic problem. One way to obtain these matrices

is to solve quasi magnetostatic formulation of SVS-EFIE [25] for Quasi-Transverse-

Magnetic (TM) mode. To solve SVS-EFIE using method of moments [7, 9] first we

need to model the geometry of the object and define position vectors by using poly-

nomial interpolation based on Lagrange [60], Legendre [61], or other polynomials.

Subsequently, we have to discretize the unknown surface and volumetric current den-
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sity with appropriate basis functions and then test the SVS-EFIE with appropriate

test functions.These basis and test functions can be created using monomials, La-

grange, Legendre, or other types of polynomials [67]. This process of discretizing the

currents and testing the equation produces a System of Linear Algebraic Equations

(SLAEs) with respect to unknown coefficients of surface current density. Once we

find these unknown coefficients they can be used to calculate the unknown surface

current density as well as volume current density [25].

To solve SVS-EFIE with lower order MoM, we use first order elements such as

straight lines to represent the boundary and planar quadrilaterals to represent the

2-D cross section. The unknown surface and volume current densities are expanded

over the zero-th order pulse basis functions [25].

To solve SVS-EFIE with higher order MoM we represent the geometry of the

object of interest by discretizing it with higher order curved elements on the boundary

and curved quadrilateral in the cross section for 2-D case. The unknown surface

and volume current densities with higher order polynomials [47]. HO-MoM solution

of SVS-EFIE was formulated for any arbitrary number of conductors [59]. In this

Chapter we will formulate SVS-EFIE for extracting p.u.l. resistance and inductance

matrices in 5 conductor sectorial cable.

3.2 Derivation of SVS-EFIE for Current Flow Mod-

elling of Sector Shaped MTLs

Consider a sectorial cable which consists of 4 sector shaped core conductors and a

sheath with cross-section termed as Sγ and boundary ∂Sγ where γ = 1, 2, 3, 4, and 5 is

the identification number for each conductor as shown in Fig. 3.1. Conductivity of the

core conductors and sheath is termed as σγ which varies along x and y coordinates. We

assume that along z co-ordinate σγ is constant. Since we have 5 separate conductors

so we have to write 5 different VIEs and create SLAEs as follows
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jγ(ρ)/σγ + iωµ0

5∑
ζ=1

¨

Sζ

ds′G0(ρ,ρ′)jζ(ρ′) = V γ
p.u.l., ρ ∈ S

γ, (3.1)

where γ = 1, 2, 3, 4, and 5, G0(ρ,ρ′) = −1/(2π) ln(|ρ− ρ′|) is the free space Green’s

function, and V γ
p.u.l. is the per unit length voltage drop for the γ-th conductor along z

coordinate. The unknowns of (3.1) are the volumetric polarization current densities jγ

flowing through each γ-th conductor.

Volumetric polarization current densities for each observation point ρ′ inside the

object can be calculated with superposition of fields contributed by all the point

sources located at ρ′′ in the boundary as [25]. By using this theory polarization

current jγ can be expressed as

jγ(ρ′) = −iωµ0

˛

∂Sγ

dρ′′Gσγ (ρ
′,ρ′′)Jγ(ρ′′), ρ′ ∈ Sγ, (3.2)

where Jγ is the unknown fictitious current in the boundary ∂Sγ and Gσγ is the Green’s

function of the conducting media defined as

Gσγ (ρ
′,ρ′′) =

1

4 i
H

(2)
0 (kσγ |ρ′ − ρ′′|) (3.3)

where σγ is the conductivity and kσγ =
√
−iωµ0σγ is the wavenumber of the same

γ-th conductive media. Since Gσγ satisfies the homogenous Helmholtz equation as

∇2Gσγ (ρ
′,ρ′′) + k2

σγGσγ (ρ
′,ρ′′) = 0, ρ′ ∈ Sγ − ∂Sγ, ρ′′ ∈ ∂Sγ, (3.4)

we can also say that jγ (3.2) will also satisfy the same Helmholtz equation.

We can plug polarization current jγ from (3.2) into (3.1) and write SVS-EFIE

for 5 conductors as follows
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T ∂S

1,∂S1

σ1 ◦ J1

...

T ∂S
5,∂S5

σ5 ◦ J5

+


T ∂S

1,S1

0 · · · T ∂S
1,S5

0

...
. . .

...

T ∂S
5,S1

0 · · · T ∂S
5,S5

0

 ◦

T S

1,∂S1

σ1 ◦ J1

...

T S
5,∂S5

σ5 ◦ J5

 =


σ1V 1

p.u.l.

...

σ5V 5
p.u.l.


(3.5)

The integral operators in (3.5) are defined as

T ∂S
γ ,∂Sγ

σγ ◦ Jγ = −iωµ0

˛

∂Sγ

dρ′′Gσγ (ρ,ρ
′′)Jγ(ρ′′), (3.6)

T S
γ ,∂Sγ

σγ ◦ Jγ = −iωµ0

˛

∂Sγ

dρ′′Gσγ (ρ
′,ρ′′)Jγ(ρ′′), (3.7)

T ∂S
γ ,Sζ

0 ◦ jζ = iωµ0σ
γ

¨

Sζ

ds′G0(ρ,ρ′)jζ(ρ′), (3.8)

where γ, ζ = 1, 2, 3, 4, and 5.

3.3 HO-MoM Solution of the SVS-EFIE for a Sec-

tor Shaped MTLs

3.3.1 HO-MoM Geometrical Representation of a Sector Shaped

MTL via Lagrange Interpolation

Although unknowns of SVS-EFIE (3.5) are in the boundary of the conductors

we have to discretize both cross section and boundary of each γ-th conductor in

order to represent the electric field in the cross-sections. Each boundary ∂Sγ is

divided into Mγ HO curved line elements. Each cross section Sγ is divided into

Nγ number of HO curved quadrilateral elements. This discretization results in total

M = M1 + M2 + M3 + M4 + M5 number of HO curvilinear line elements and

N = N1 + N2 + N3 + N4 + N5 number of HO curvilinear quadrilateral patches.

Important point to notice here is sheath has two separate boundaries so M5 counts

elements on both of them.
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Figure 3.1: Mesh of a sector shaped MTLs showing third order HO line elements and
quadrilateral elements.

In order to obtain HO 1-D and 2-D position-vectors on the boundary and cross

section of the conductors we need to approximate them with HO Lagrangian type 1-D

and 2-D type shape functions subsequently. The advantage of HO Lagrangian type

interpolation is that it reduces the error in geometry very rapidly when we increase

the order of Lagrange polynomials [60]. It is simple to program as well. Small

number of Lagrangian type HO elements can be used to gain accurate geometry

representation. Other types of interpolation schemes such as Non-Uniform Rational

B-Spline (NURBS) [33] can also be used to represent object’s geometry. One key

advantage of NURBS based geometry is they can represent canonical objects like

circles or ellipse exactly [68]. NURBS can also represent sophisticated objects of

arbitrary shapes precisely by using small number of NURBS surfaces which is essential

in reducing computational resources [66].
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The 1-D shape function of geometrical order χ for representing the position vector

on boundary can be expressed as [60]

Lι(u) =

χ∏
p=0,ι 6=p

u− up
uι − up

, u ∈ [−1, 1], (3.9)

where up = 2p/χ− 1 and ι, p = 0, 1, . . . , χ.

The position vector on m th 1D higher order line element on the boundary of γ-th

conductor can be expressed with Lagrangian polynomial as [5, 59]

ργm(u) =

χ∑
ι=0

vγm,ι Lι(u), u ∈ [−1, 1], (3.10)

where m = 0, 1, . . . ,Mγ−1, vγm,ι is the ι-th vertex of m-th Higher order line element

of the boundary of γ-th conductor, and γ = 1, 2, 3, 4, and 5.

Subsequently, Jacobian of m-th 1-D higher order curved line element part of the

boundary of γ-th conductor can be defined as [5]

fγm(u) = |aγ(u)|, (3.11)

where unitary vector aγ(u) = ∂
∂u

(ργm(u)). By integrating the 1-D Jacobian (3.11) over

a m-th HO line element with respect to parametric coordinate u, we can compute the

length of that m-th HO line element.

Similarly, 2-D shape function of geometrical order χ for representing position

vector on cross-section Sγ can be expressed as [59,60]

Lικ(u, v) =

χ∏
p=0,ι6=p

u− up
uι − up

χ∏
q=0,κ6=q

v − uq
uκ − uq

, u, v ∈ [−1, 1], (3.12)

where uq = (2q/χ) − 1 and ι, κ = 0, 1, . . . , χ. The 2-D position vector on n-th HO

quadrilateral element on the volume of γ-th conductor can be expressed by using



3.3. HO-MoM Solution of the SVS-EFIE for a Sector Shaped MTLs 18

Lagrangian polynomial as [5]

ργn(u, v) =

χ∑
ι=0

χ∑
κ=0

vγn,ικLικ(u, v), u, v ∈ [−1, 1], (3.13)

where n = 0, 1, . . . , Nγ − 1, vγn,ικ is the ικ-th vertex of n-th HO quadrilateral in the

cross section of γ-th conductor, and γ = 1, 2, 3, 4, and 5.

Subsequently, Jacobian of n-th 2-D higher order element part of the volume of

γ-th conductor can be defined as [5]

fγn (u, v) =
√
|¯̄gγn(u, v)|, (3.14)

where ¯̄gγn(u, v) is a (2× 2) matrix given as [5]

¯̄gγn(u, v) =

[
(aγu · aγu) (aγu · aγv)
(aγv · aγu) (aγv · aγv)

]
,

the unitary vectors aγu and aγv are defined as [5]

aγu =
∂

∂u
(ργn(u, v)), (3.15)

aγv =
∂

∂v
(ργn(u, v)). (3.16)

By integrating the 2-D Jacobian (3.14) over a n-th HO quadrilateral element with

respect to parametric coordinate u and v, we can compute the area of that n-th

quadrilateral element.
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3.3.2 HO Approximation of Fictitious Surface Currents and

Volumetric Polarization Currents

To approximate unknown fictitious surface current Jγ on the boundary we have

to use HO monomial basis function given as [67]

Bξ(u) = uξ, u ∈ [−1, 1], (3.17)

where ξ = 0, 1, . . . ,Ω−1 and Ω is the highest order of monomial basis function. As we

increase the order of monomial it will be able to capture the Jγ with more accuracy

by introducing more unknowns.

Thus, the fictitious current Jγ on the boundary of the γ-th conductor can be

approximated by using Bξ (3.17) as [67]

Jγ(u) ∼=
Mγ−1∑
m=0

Ω−1∑
ξ=0

Iγm,ξBξ(u), u ∈ [−1, 1], (3.18)

where γ = 1, 2, 3, 4, and 5, and Iγm,ξ is the sought unknown coefficient of 1-D HO basis

function Bξ (3.17).

Similarly, to approximate unknown volumetric polarization current jγ on the

cross-section we have to use following HO basis function

bξ′ψ′(u, v) = uξ
′
vψ

′
, u, v ∈ [−1, 1], (3.19)

where ξ′, ψ′ = 0, 1, . . . ,Ψ − 1 and Ψ is the highest order of 2-D HO basis func-

tion bξ′ψ′ (3.19).

Thus, the volumetric polarization current jγ in the cross-section Sγ of γ-th con-

ductor can be approximated by using bξ′ψ′ (3.19) as [67]

jγ(u, v) ∼=
Nγ−1∑
n=0

Ψ−1∑
ξ′=0

Ψ−1∑
ψ′=0

iγn,ξ′ψ′bξ′ψ′(u, v), u, v ∈ [−1, 1], (3.20)

where γ = 1, 2, 3, 4, and 5.
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3.3.3 Integral Representation of Surface-to-Volume Opera-

tor T S,∂Sσ

Operator T S,∂Sσ (3.7) translates the field from the boundary of the γ-th conductor

to the cross section of the same conductor and contributes to the polarization current

by using Green’s function of the conductive media Gσγ (3.3). According to HO-

MoM [67], operator T S,∂Sσ can be represented in integral form by discretizing it with

1-D basis function Bξ′′ (3.17) and then testing with 2-D basis function bξ′ψ′ (3.19) as

follows

ZS
γ

n′ ,∂S
γ

m′′
ξ′ψ′,ξ′′ = 〈bξ′ψ′ , 〈Gσγ , Bξ′′〉〉

= −iωµ0

ˆ 1

−1

ˆ 1

−1

du′dv′bξ′ψ′(u′, v′)fγn′(u
′, v′)

×
ˆ 1

−1

du′′Bξ′′(u
′′)Gσγ (ρ

γ
n′(u

′, v′),ργm′′(u
′′))fγm′′(u

′′),

(3.21)

where fγn′(u′, v′) (3.14) is the Jacobian of n′-th 2-D higher order element which

belongs to the cross-section Sγ and fγm′′(u′′) (3.11) is the Jacobian of the m′′-th 1-D

higher order curved line element which belongs to the boundary ∂Sγ.

After computing each interaction ZS
γ

n′ ,∂S
γ

m′′
ξ′ψ′,ξ′′ between m′′-th contour element for

1-D basis function of order ξ′′ and n′-th cross sectional quadrilateral element for 2-D

basis function of order ξ′ψ′ we have to assemble them in a matrix ZSγ ,∂Sγ

σγ as follows

[
ZSγ ,∂Sγ

σγ

]
p′,q′′

= ZS
γ

n′ ,∂S
γ

m′′
ξ′ψ′,ξ′′ , (3.22)

where p′ = n′Ψ2 + ξ′Ψ + ψ′ and q′′ = m′′Ω + ξ′′ are the row and column index of the

matrix ZSγ ,∂Sγ

σγ , n′ = 0, 1, . . . , Nγ−1 is the id number of quadrilateral which belongs to

cross-section Sγ, ξ′, ψ′ = 0, 1, . . . ,Ψ−1 are the orders of 2-D HO basis (3.19), the index

of line element which belongs to the boundary ∂Sγ is termed as m′′ = 0, 1, . . . ,Mγ−1,

and ξ′′ = 0, 1, . . . ,Ω− 1 is the order of 1-D HO basis (3.17).
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3.3.4 Integral Representation of Volume-to-Surface Opera-

tor T ∂S,S0

Operator T ∂S,S0 (3.8) translates the polarization current jζ from the volume of

ζ-th conductor to the boundary of γ-th conductor and contributes to the tangential

component of electric field by using Green’s function of the free space G0 (2.14).

According to HO-MoM [67], operator T ∂S,S0 can be represented in integral form by

discretizing it with 2-D basis function bξ′ψ′ (3.19) and then testing with 1-D test

function Bξ (3.17) as following

Z∂S
γ
m,S

ζ

n′
ξ,ξ′ψ′ = 〈Bξ, 〈G0, bξ′ψ′〉〉

= iωµ0σ
γ

ˆ 1

−1

duBξ(u)fγm(u)

ˆ 1

−1

ˆ 1

−1

du′dv′bξ′ψ′(u′, v′)

× f ζn′(u
′, v′)G0(ργm(u),ρζn′(u

′, v′)),

(3.23)

where f ζn′(u′, v′) is same as (3.14) except the fact that we need to use ζ instead of γ,

is the Jacobian of n′-th 2-D higher order quad element which belongs to cross-section

Sζ and fγm(u) (3.11) is the Jacobian of the m-th 1-D higher order curved line element

which belongs to the boundary ∂Sγ.

After computing each interaction Z∂S
γ
m,S

ζ

n′
ξ,ξ′ψ′ between n′-th cross sectional quadri-

lateral element for 2-D basis function of order ξ′ψ′ and m-th contour element for 1-D

basis function of order ξ we have to assemble them in a matrix as

[
Z∂Sγ ,Sζ

0

]
q,p′

= Z∂S
γ
m,S

ζ

n′
ξ,ξ′ψ′ , (3.24)

where q = mΩ + ξ and p′ = n′Ψ2 + ξ′Ψ + ψ′ are the row and column index of

the matrix Z∂Sγ ,Sζ

0 , ξ′, ψ′ = 0, 1, . . . ,Ψ− 1 are the orders of 2-D basis function (3.19),

n′ = 0, 1, . . . , N ζ − 1 is theid number of the quadrilateral element which belongs

to cross-section Sζ , the ID’s of line element which belongs to the boundary ∂Sγ is

termed as m = 0, 1, . . . ,Mγ − 1, and ξ = 0, 1, . . . ,Ω− 1 is the order of 1-D HO basis

function (3.17).
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3.3.5 Integral Representation of Surface-to-Surface Opera-

tor T ∂S,∂Sσ

Operator T ∂S,∂Sσ (3.6) translates the field from the boundary of the γ-th conductor

to the boundary of the same conductor and contributes to the total electric field

by using Green’s function of the conductive media Gσγ (3.3). According to HO-

MoM [67],, operator T ∂S,∂Sσ can be represented in integral form by discretizing it with

1-D basis function Bξ′′ (3.17) and then testing with 1-D test function Bξ (3.17) as

follows

Z∂S
γ
m,∂S

γ

m′′
ξ,ξ′′ = 〈Bξ, 〈Gσγ , Bξ′′〉〉

= −iωµ0

ˆ 1

−1

duBξ(u)fγm(u)

×
ˆ 1

−1

du′′Bξ′′(u
′′)fγm′′(u

′′)Gσγ (ρ
γ
m(u),ργm′′(u

′′)),

(3.25)

where fγm(u) (3.11) is the Jacobian of the m-th 1-D higher order curved line

element and fγm′′(u′′) (3.11) is the Jacobian of the m′′-th 1-D higher order curved line

element which belongs to the boundary ∂Sγ.

After computing each interaction Z∂S
γ
m,∂S

γ

m′′
ξ,ξ′′ between m′′-th contour element for

1-D HO basis function of order ξ′′ and m-th contour element for 1-D test function of

order ξ we have to assemble them in a matrix Z∂Sγ ,∂Sγ

σγ as following

[
Z∂Sγ ,∂Sγ

σγ

]
q,q′′

= Z∂S
γ
m,∂S

γ

m′′
ξ,ξ′′ , (3.26)

where q = mΩ + ξ, q′′ = m′′Ω + ξ′′ are the row and column indexes of the matrix

Z∂Sγ ,∂Sγ

σγ , the index of line elements, which belongs to the boundary ∂Sγ is termed as

m,m′′ = 0, 1, . . . ,Mγ − 1, and ξ, ξ′′ = 0, 1, . . . ,Ω− 1 are the powers of 1-D HO basis

function (3.17).
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3.3.6 Integral Representation of Vp.u.l.

The right hand side for creating SLAE (3.29) can be computed by testing the

discretized form of per unit length voltage drop V γ
p.u.l. in the γ-th conductor with 1-D

HO test function Bξ (3.17) as follows

Vγm,ξ = 〈Bξ, V
γ

p.u.l.〉 = V γ
p.u.l.σ

γ

ˆ 1

−1

duBξ(u)fγm(u). (3.27)

Each interaction is then stored in a vector as follows

[V γ]q = Vγm,ξ, (3.28)

where q = mΩ + ξ, fγm(u) (3.11) is the Jacobian of the m-th 1-D curved HO element,

the indexes of each line element belongs to ∂Sγ is termed as m = 0, 1, . . . ,Mγ − 1,

and ξ = 0, 1, . . . ,Ω− 1 is the order of 1-DHO test function (3.17).

3.3.7 Solving SLAE Created by HO-MoM Solution of SVS-

EFIE (3.5)

For 5 conductors of a sectorial cable, how the local surface-to-volume matrix[
ZSγ ,∂Sγ

σγ

]
(3.22), volume-to-surafce matrix

[
Z∂Sγ ,Sζ

0

]
(3.24), surface-to-surface matrix[

Z∂Sγ ,∂Sγ

σγ

]
(3.26), and right hand side local vector [V γ] (3.28) for γ-th conductor are

assembled into the final global matrices
[
ZS,∂S
σ

]
,
[
Z∂S,S

0

]
,
[
Z∂S,∂S
σ

]
, and global right

hand side vector [V ] respectively is shown in (3.29).

Integral operators T S,∂Sσ , T ∂S,S0 , T ∂S,∂Sσ are discretized and tested with appropriate

basis functions and p.u.l. voltage drop Vp.u.l.is tested with appropriate basis functions

to fill all the global matrices and right side vector. Finally all these global matrices

and right side vector along with the global Gram matrix [62] form a System of Linear

Algebraic Equation (SLAE) with respect to the unknown coefficients [I] as follows( [
Z∂S,∂S
σ

]︸ ︷︷ ︸
MΩ×MΩ

+
[
Z∂S,S

0

]
︸ ︷︷ ︸
MΩ×NΨ2

· [Γ]−1︸ ︷︷ ︸
NΨ2×NΨ2

·
[
ZS,∂S
σ

]︸ ︷︷ ︸
NΨ2×MΩ

)
· [I]︸︷︷︸
MΩ×1

= [V ]︸︷︷︸
MΩ×1

,
(3.30)
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[
V 1
]︸︷︷︸

M1Ω×1
...[
V 5
]︸︷︷︸

M5Ω×1

 =





[
Z∂S1,∂S1

σ1

]
︸ ︷︷ ︸
M1Ω×M1Ω

0

. . .

0
[
Z∂S5,∂S5

σ5

]
︸ ︷︷ ︸
M5Ω×M5Ω


+



[
Z∂S1,S1

0

]
︸ ︷︷ ︸
M1Ω×N1Ψ2

· · ·
[
Z∂S1,S5

0

]
︸ ︷︷ ︸
M1Ω×N5Ψ2

...
. . .

...[
Z∂S5,S1

0

]
︸ ︷︷ ︸
M5Ω×N1Ψ2

· · ·
[
Z∂S5,S5

0

]
︸ ︷︷ ︸
M5Ω×N5Ψ2


·



[
ΓS

1,S1
]

︸ ︷︷ ︸
N1Ψ2×N1Ψ2

0

. . .

0
[
ΓS

5,S5
]

︸ ︷︷ ︸
N5Ψ2×N5Ψ2



−1

·



[
ZS1,∂S1

σ1

]
︸ ︷︷ ︸
N1Ψ2×M1Ω

0

. . .

0
[
ZS5,∂S5

σ5

]
︸ ︷︷ ︸
N5Ψ2×M5Ω







[
I1
]︸︷︷︸

M1Ω×1
...[
I5
]︸︷︷︸

M5Ω×1

 ·
(3.29)

where [Γ] is the global block-diagonal Gram matrix [62] which is inner product be-

tween 2-D HO basis functions (3.19). Only the diagonal components of Gram matrix

are non zero for our choice of basis functions. The Gram matrix represents the ba-

sis functions discretizing the domain of the volume-to-surface operator in terms of

the test functions discretizing the surface-to-volume operator (3.17). Gram matrix

elements are defined as the following inner products

ΓS
γ ,Sγ

p,p′ (ξ, ξ′, ψ, ψ′) =

ˆ 1

−1

ˆ 1

−1

dudvfγn (u, v)uξvψuξ
′
vψ

′
, (3.31)

where p = nΨ2 +ξΨ+ψ, p′ = n′Ψ2 +ξ′Ψ+ψ′ are the row and column indexes of Gram

matrix, fγn (u, v) is the 2-D Jacobian (3.14), the indexes of 2-D HO quadrilaterals which

belong to cross-section Sγ are termed as n, n′ = 0, 1, . . . , Nγ − 1, and ξ, ξ′, ψ, ψ′ =
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0, 1, . . . ,Ψ− 1 are the orders of 2-D HO test function (3.19).

If we solve SLAEs (3.29) we can calculate the unknown coefficients [Iγ] which can

be used to find the unknown coefficient [iγ] of the volumetric polarization current

densities (3.20) as

[iγ] = iωµ0

[
ΓS

γ ,Sγ
]−1 ·

[
ZSγ ,∂Sγ

σγ

]
· [Iγ] . (3.32)

Once we compute polarization current densities we can compute the admittance ma-

trix by integrating them throughout the cross-section and the invert the admittance

matrix to obtain impedance matrix. We place the sector shaped cable into the center

of a cylindrical cavity. Hence, for 6 conductors we can write (5× 5) p.u.l. impedance

matrix (cylindrical cavity is considered as reference conductor) as following

¯̄Z =



Z1 Z2 Z3 Z2 Z4

Z2 Z1 Z2 Z3 Z4

Z3 Z2 Z1 Z2 Z4

Z2 Z3 Z2 Z1 Z4

Z4 Z4 Z4 Z4 Z5


Since sectorial cable is a symmetrical MTLs so we can fill up the whole (5×5) matrix

by using only Z1, Z2, Z3, Z4, and Z5 [2].

3.4 Numerical Results

To demonstrate SVS-EFIE’s capability to extract accurate p.u.l. resistance and

inductance for sophisticated MTL, we use the example of a sector shaped cable which

consists of 4 core sector shaped conductors and one sheath around them as shown

in Fig. 3.2. First, we discretize the contour of all conductors of a sectorial cable

with second order line elements and cross-sections with second order quadrilateral

elements, which are created based on Lagrangian interpolators for the HO element

radius-vectors. After that SVS-EFIE is solved with HO-MoM to calculate the volu-

metric polarization current. HO-FEM from the commercial COMSOL [51] software

is also used to obtain the reference solution for the same volumetric polarization cur-
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Figure 3.2: Geometry of sectorial cable with 4 sectors each having radius R = 19mm−
d
2

and one sheath around them for p.u.l. resistance and inductance extraction.
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Figure 3.3: Magnitude of volumetric current densities j at 60 Hz in 4-sector cable
obtained via 3rd order HO MoM solution of SVS-EFIE for M = 360 second order
contour and N = 500 volume elements.

rents. Detailed descriptions of HO-COMSOL can be found in the appendix section

of this thesis.

To obtain volumetric current densities for sectorial cable shown in Fig. 3.2 we

solve SVS-EFIE with 3rd order solution of HO-MoM by discretizing the boundaries

with 360 second order line elements and 500 second order quadrilaterals. Volumetric

polarization current densities are obtained by using SVS-EFIE when 1st core is excited
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Figure 3.4: Relative error in amplitude of polarization current densities j for 4-sector
cable between 3rd order HO MoM solution of SVS-EFIE and 3rd order COMSOL [51]
at 60 Hz for M = 360 contour and N = 500 volume elements.

with 1 V/m and rest of the three sectors and the sheath are grounded. Fig. 3.3 shows

volumetric current distribution at 60 Hz. Proximity effect is clearly visible in Fig. 3.3.

Then we simulate the same sectorial cable by using 3rd order COMSOL where its

boundaries are discretized with 500 line elements and the whole domain contains

29, 706 triangular elements. Fig. 3.4 shows the relative error in volumetric current

distribution between HO-MoM based SVS-EFIE (3.29) and COMSOL [51]. Memory

requirement for HO-MoM based SVS-EFIE substantially smaller than HO-FEM based

COMSOL [51] because the number of unknowns for SVS-EFIE is much smaller than

FEM [59]. Since sector shaped cable is symmetrical so we fill the whole (5 × 5)

impedance matrix with only Z1, Z2, Z3, Z4, and Z5 as [2].

Table 3.1 shows all 5 impedance values needed to compute the whole impedance

matrix at frequencies 60 Hz and 1000 Hz. One can clearly see at 60 Hz impedance

values obtained by SVS-EFIE have 5 digit agreement with HO-COMSOL.

Fig. 3.5 and Fig. 3.6 show the convergence in relative error in the p.u.l. resistive

and inductive part respectively for one of the five impedance values, Zsvs
1 = R1 +jωL1

between HO-MoM solution of SVS-EFIE and HO-COMSOL at 60 Hz for a sectorial
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Table 3.1: P.u.l. impedance Z in [mΩ/m] computed using 3rd order HO-MoM solu-
tion (Ω = Φ = 3) of SVS-EFIE (3.5) with M = 360 contour and and N = 500 volume
elements for Sector shaped cable. Order 3 FEM solutions with 29, 706 elements [51]
are provided for reference.

60 Hz 1000 Hz

R jωL R jωL

ZFEM
1 0.09215553 0.3646721 ZFEM

1 0.2696 5.514

ZSVS
1 0.09215529 0.3646714 ZSVS

1 0.2699 5.517

ZFEM
2 0.00217439 0.2990032 ZFEM

2 0.0409 4.893

ZSVS
2 0.00217451 0.2990030 ZSVS

2 0.0413 4.891

ZFEM
3 -0.00722474 0.28142495 ZFEM

3 0.00769 4.771

ZSVS
3 -0.00722463 0.28142482 ZSVS

3 0.00813 4.769

ZFEM
4 2.674 · 10−5 0.27515892 ZFEM

4 0.00679 4.5869

ZSVS
4 2.669 · 10−5 0.27515889 ZSVS

4 0.00716 4.5846

ZFEM
5 0.05143318 0.27419270 ZFEM

5 0.0548 4.572

ZSVS
5 0.05143304 0.27419263 ZSVS

5 0.0551 4.569

cable by varying order of HO-MoM solution and total number of quadrilateral element.

For obtaining these two convergence curves Fig. 3.5 and Fig. 3.6, order of geometry

was kept constant at 3rd order. HO-FEM based COMSOL [51] truncates its mesh

at a certain distance away from the object and applies boundary condition. Because

of this boundary condition field becomes zero at that boundary. To match the result

obtained by HO-MoM based SVS-EFIE we need to apply same boundary condition.

We apply the boundary condition by using Green’s function of cylindrical cavity

Gcav [59] instead of free space Green’s function G0(ρ,ρ′) = −1/(2π) ln(|ρ− ρ′|).

3.5 Conclusions

This Chapter presents HO-MoM solution of SVS-EFIE to compute p.u.l. resis-

tance and inductance matrices for sector shaped MTLs. Volumetric current distribu-

tion at 60 Hz has been shown in Fig. 3.3 and proximity effect is clearly visible. The
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Figure 3.5: Relative error in the resistive part of impedance Zsvs
1 = R1 + jωL1 in

[mΩ/m] for sectorial cable depicted in Fig. 3.2 at 60 Hz between HO-MoM solution
of SVS EFIE and HO-COMSOL by varying the order of solution along with total
quadrilateral elements while the order of geometry was kept constant at order, χ = 3
and total number of boundary element, M = 4

√
N .

aggressor conductor is set to 1 V/m p.u.l. voltage and rest of the victim conductors

are set to 0V/m. The victim conductors return the same amount of current in op-

posite direction to that of the aggressor conductor. To demonstrate the accuracy in

the volumetric current distribution, HO-MoM solution of SVS-EFIE was compared

with HO-FEM of the COMSOL commercial software. The relative error is shown

in Fig. 3.4. Table 3.1 shows the the comparison of p.u.l. impedance matrix values

obtained by SVS-EFIE and HO-FEM of the COMSOL. One can see that HO-MoM

solution of the SVS-EFIE agrees with HO-FEM solution of COMSOL up to 5 digits

in p.u.l. resistance and inductance at 60 Hz but. When we increase the frequency

the agreement drops to 2-3 digits at 1KHz because of the stronger skin effect. At

this frequency current is varying more rapidly in regions near the boundary. In or-

der to make HO-MoM solution of SVS-EFIE more accurate further mesh refinement,
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Figure 3.6: Relative error in the inductive part of p.u.l. impedance Zsvs
1 = R1 +jωL1

in [µH/m] for sectorial cable depicted in Fig. 3.2 at 60 Hz between HO-MoM solution
of SVS EFIE and HO-COMSOL by varying the order of solution along with total
quadrilateral elements while the order of geometry was kept constant at order, χ = 3
and total number of boundary element, M = 4

√
N .

increase in the solution order, and increase of the adaptive integration accuracy are

required.
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4

Higher Order Method of Moments

Solution of the SVS-EFIE for

Scalar TM Scattering by

Homogeneous Non-Magnetic 2-D

Cylinder

4.1 Scalar SVS-EFIE for 2-D TM Scattering

In Chapter 3, scalar SVS-EFIE (3.5) was formulated for quasi magneto-static

analysis of current flow in MTLs under quasi-TM fields approximation. Similarly,

scalar SVS-EFIE can be derived from VIE for full wave scattering on homogeneous

dielectric objects under TM-polarization. If we consider a dielectric object with cross

sectional area S we can write VIE for TM case as [14, 53]

Ez(ρ)− k2
0(ε− 1)

¨
S

G0(ρ,ρ′)Ez(ρ
′) ds′ = Einc

z (ρ),ρ∈S, (4.1)

where Ez(ρ
′) is the unknown distribution of the electric field inside the cylinder,

G0(ρ,ρ′)=− i
4
H

(2)
0 (k0|ρ− ρ′|) is the Green’s function of free space, i is the imagi-
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nary unit, H
(2)
0 is the Hankel function of second kind and order zero, k0 = ω

√
ε0µ0

is the vacuum wavenumber, ε0 is the permittivity of free space and µ0 is the mag-

netic permeability of free space, ω is the angular frequency, the complex relative

permittivity of the dielectric object is defined as ε = ε− iσ/(ωε0), σ is the dielectric

conductivity, and Einc
z is the incident field.

Electric field Ez for each observation point ρ′ inside the object can be calculated

with superposition of fields contributed by all the point sources in the boundary ∂S

as [25]

Ez(ρ
′) = −iωµ0

ˆ

∂S

Gε(ρ
′,ρ′′)Jz(ρ

′′) dρ′′, ρ′∈S. (4.2)

In (4.2), Gε(ρ
′,ρ′′) = − i

4
H

(2)
0 (kε|ρ′ − ρ′′|) is the Green’s function of the dielectric

object having wavenumber kε = ω
√
µ0ε0ε.

We know that for source points on the boundary ρ′′ ∈ ∂S the Green’s function of

the dielectric object Gε satisfies the Helmholtz equation with right hand side zero for

all the observation points inside the object excluding boundary as

∇2Gε(ρ
′,ρ′′) + k2

εGε(ρ
′,ρ′′) = 0, ρ′ ∈ S. (4.3)

Since Gε satisfies Helmholtz equation, superposition of Gε with some weighting func-

tion Jz will also satisfy the same equation. That means Ez, constructed as superpo-

sition of waves Gε (2.21), satisfies the same homogeneous Helmholtz equation as

∇2Ez(ρ
′) + k2

εEz(ρ
′) = 0, ρ′ ∈ S. (4.4)

The substitution of (4.2) into (4.1) gives us SVS-EFIE for TM scattering problem
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as

− iωµ0

ˆ

∂S

Gε(ρ,ρ
′′)Jz(ρ

′′) dρ′′+ iωµ0k
2
0(ε− 1)

¨

S

G0(ρ,ρ′)×

ˆ

∂S

Gε(ρ
′,ρ′′)Jz (ρ′′) dρ′′ds′= Einc

z (ρ), (4.5)

where observation points are located on the boundary of the scatterer ρ ∈ ∂S.

SVS-EFIE (4.5) can also be represented by using scalar operator T as following

T∂S,∂Sε ◦ Jz + T
∂S,S
0 ◦ TS,∂Sε ◦ Jz = Einc, (4.6)

where the integral operators are defined as

T∂S,∂Sε ◦ Jz = −iωµ0

ˆ

∂S

Gε(ρ,ρ
′′)Jz(ρ

′′) dρ′′, ρ ∈ ∂S, (4.7)

TS,∂Sε ◦ Jz = iωµ0

ˆ

∂S

Gε(ρ
′,ρ′′)Jz(ρ

′′) dρ′′, ρ′ ∈ S, (4.8)

T
∂S,S
0 ◦Ez = k2

0(ε− 1)

¨

S

G0(ρ,ρ′)Ez(ρ
′) ds′, ρ∈ ∂S. (4.9)

4.2 Higher Order Representation of Arbitrary Ge-

ometry

Higher Order representation of arbitrary geometry for sectorial cable was shown

in Chapter 3. In this Chapter we will show the same formulation for a single circular

dielectric cylinder. 1-D shape functions to define 1-D position vector can be expressed

as [60]

Si(u) =

χ∏
n=0,i 6=n

u− un
ui − un

, − 1 6 u 6 1, (4.10)

where un = 2n−χ
χ

, n = 0, 1, ..., χ and χ is the order of geometry for 1-D higher

order curved line element. The position-vector on the m-th higher order curved line
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element of the boundary of any arbitrary shaped scatterer shown in Fig. 4.1 is defined

as [5]

ρm(u) =

χ∑
i=0

vm,i Si(u), − 1 6 u 6 1, (4.11)

where m = 0, 1...,M − 1 and vm,i is the i-th vertex of m-th HO line element.

Similarly, 2-D shape functions to define 2-D position vector can be expressed

as [60]

Sij(u, v) =

χ∏
n=0,i 6=n

u− un
ui − un

χ∏
m=0,j 6=m

v − vm
vj − vm

, (4.12)

where −1 6 u, v 6 1.

where vm = 2m−χ
χ

, n,m = 0, 1, ..., χ, and χ is the order of geometry for 2-D curved

quad element in the cross-section.

The 2-D position-vector on the n-th HO 2-D quad element of any arbitrary shaped

scatterer shown in Fig. 4.1 is defined as [5]

ρn(u, v) =

χ∑
i=0

χ∑
j=0

vn,ij Sij(u, v), (4.13)

where −1 6 u, v 6 1 and n = 0, 1, ..., N−1, N being the total number of quadrilateral

patches. In (4.13), vn,ij is the ij-th vertex of the n-th 2-D HO quad element in the

cross-section of the object.

4.3 Higher Order MoM Solution of Scalar SVS-

EFIE for Scattering by 2-D Dielectric Object

4.3.1 Surface and Volume Current Expansions

Unknown Surface current density Jz(ρm(u)) in (4.6) can be discretized by using

1-D basis function on each m-th curved line element expressed as ∂S [67]

Bk(u) = uk, − 1 6 u 6 1, (4.14)
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Figure 4.1: Geometrical representation of a circular dielectric cylinder of radius R
with second order HO line and quadrilateral elements.

where k = 0, 1, ...,Ω− 1 and Ω is the highest order of current expansion on the 1-D

elements. Thus fictitious surface current density Jz can be written as [67]

Jz(u) ∼=
M−1∑
m=0

Ω−1∑
k=0

ImkBk(u), − 1 6 u 6 1, (4.15)

where k is the order of (4.14), and Imk is the unknown coefficient of k-th order basis

function Bk on the m-th 1-D curved line element.

Discretization of the unknown electric field inside of the scatterer Ez(ρn(u, v)) on

each n-th quadrilateral element is performed using basis functions bj′k′ defined as [67]

bj′k′(u, v) = uj
′
vk

′
, − 1 6 u, v 6 1, (4.16)

where j′, k′ = 0, 1, ...,Ψ − 1 and Ψ is maximum order of electric field expansion on

2-D HO quadrilateral elements. Thus, the expansion of the electric field Ez inside of
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the cross-section of the scatterer over HO basis function bj′k′ is the following [67]

Ez(u, v) ∼=
N−1∑
n=0

Ψ−1∑
j′=0

Ψ−1∑
k′=0

inj′k′ bj′k′(u, v), − 1 6 u, v 6 1, (4.17)

where N is the total number of 2-D HO quadrilateral elements discretizing the scat-

terer cross-section S, and inj′k′ is the unknown coefficient of test function bj′k′ on n-th

higher order quadrilateral element.

4.3.2 Integral Representation of Surface-to-Volume Opera-

tor TS,∂Sε

We discretize the integral operator TS,∂Sε by using surface basis functions Bk′′ (4.14)

on 1-D contour elements and then test with 2-D HO functions bj′k′ (4.16) on the 2-D

elements discretizing the cross-section. Hence, the matrix elements are defined as the

following double inner products

ZSn,∂Sm′′
j′k′,k′′ = 〈bj′k′ , 〈Gε, Bk′′〉〉 = −iωµ0

ˆ 1

−1

ˆ 1

−1

du′dv′bj′k′(u
′, v′)Jn(u′, v′)

×
ˆ 1

−1

du′′Bk′′(u
′′)Jm′′(u′′)Gε(ρn(u′, v′),ρm′′(u′′)), (4.18)

where Jm′′(u′′) is the Jacobian of 1-D HO element, and Jn(u′, v′) is the Jacobian of

n-th 2-D HO quadrilateral element. With proper indexing for total NΨ2 2-D HO

test functions and total MΩ 1-D HO basis functions we define the elements of the

resultant (NΨ2 ×MΩ) matrix ¯̄ZS,∂S of the discretized operator TS,∂Sε as following

ZS,∂S
p′,q′′ = ZSn,∂Sm′′

j′k′,k′′ , (4.19)

where p′ = nΨ2 + j′Ψ + k′ and q′′ = m′′Ω + k′′, n = 0, 1, ..., N − 1, j′, k′ = 0, 1, ...,Ψ−
1, m′′ = 0, 1, ...,M − 1, and k′′ = 0, 1, ...,Ω− 1.
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4.3.3 Integral Representation of Volume-to-Surface Opera-

tor T
∂S,S
0

We discretize the integral operator T
∂S,S
0 by using 2-D HO basis functions bj′k′

(4.16) in the surface and then test with 1-D HO test functions Bk (4.14). The matrix

elements are defined as the double inner products

Z∂Sm,Snk,j′k′ = 〈Bk, 〈G0, bj′k′〉〉 = k2
0(ε− 1)

ˆ 1

−1

du Bk(u)Jm(u)

ˆ 1

−1

ˆ 1

−1

du′dv′bj′k′(u
′, v′)

× Jn(u′, v′)G0(ρm(u),ρn(u′, v′)). (4.20)

With proper indexing for total MΩ 1-D HO basis functions on the surface and all of

the NΨ2 2-D HO test functions, we define the elements of the resultant (MΩ×NΨ2)

matrix ¯̄Z∂S,S of the operator T∂S,S0 as

Z∂S,S
q,p′ = Z∂Sm,Snk,j′k′ , (4.21)

where q = mΩ+k, p′ = nΨ2 +j′Ψ+k′ and, m = 0, 1, ...,M−1, k = 0, 1, ...,Ω−1, n =

0, 1, ..., N − 1, and j′, k′ = 0, 1, ...,Ψ− 1.

4.3.4 Integral Representation of Surface-to-Surface Opera-

tor T∂S,∂Sε

The discritized form of the integral operator T∂S,∂Sε is the scattered field produced

by 1-D HO basis functions Bk′′ tested by 1-D HO test functions Bk (4.14). The matrix

elements are defined as the following double inner products

Z∂Sm,∂Sm′′
k,k′′ = 〈Bk, 〈Gε, Bk′′〉〉 = −iωµ0

ˆ 1

−1

du Bk(u)Jm(u)

×
ˆ 1

−1

du′′Bk′′(u
′′)Jm′′(u′′) Gε(ρm(u),ρm′′(u′′)). (4.22)
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With proper indexing for total MΩ 1-D HO basis functions (4.14), we define the

elements of the resultant (MΩ×MΩ) matrix ¯̄Z∂S,∂S of the operator T∂S,∂Sε as

Z∂S,∂S
q,q′′ = Z∂Sm,∂Sm′′

k,k′′ , (4.23)

where q = mΩ + k, q′′ = m′′Ω + k′′, k, k′′ = 0, 1, ...,Ω− 1, and m,m′′ = 0, 1, ...,M − 1.

4.3.5 Integral Representation of Einc
z

The discritized form of the excitation Einc
z is calculated by testing the incident

electric field with 1-D higher order test functions (4.14). Each element to fill right

hand side vector are defined as

Vm,k = 〈Bk, E
inc
z 〉 =

ˆ 1

−1

du Bk(u)Jm(u) Einc
z (ρm(u)). (4.24)

Resultant vector V̄ of the right hand side is filled by the elements

V̄q = Vm,k, (4.25)

where q = mΩ + k, m = 0, 1, ...,M − 1 and k = 0, 1, ...,Ω− 1. Once all the matrices

regarding operators TS,∂Sε , T∂S,S0 , T∂S,∂Sε , and incident field Einc
z are filled, they create

a SLAE with respect to vector of unknown coefficients Ī so that we can compute the

surface current density(4.15) as

( ¯̄Z∂S,∂S + ¯̄Z∂S,S · ¯̄Γ−1 · ¯̄ZS,∂S
)
· Ī = V̄ . (4.26)

In (4.26), the elements of Gram matrix ¯̄Γ are defined as

Γp,p′(j, k, j
′, k′) =

ˆ 1

−1

ˆ 1

−1

du dvJn(u, v)ujvkuj
′
vk

′
, (4.27)

where p = nΨ2 + jΨ + k, p′ = n′Ψ2 + j′Ψ + k′, n, n′ = 0, 1, ..., N − 1, j, j′ =

0, 1, ...,Ψ− 1 and k, k′ = 0, 1, ...,Ψ− 1.
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4.3.6 Field Inside the Scatterer

After solving the system of linear algebraic equations and finding the vector of

unknown coefficients Ī, the vector of unknown coefficients ī of (4.17) are calculated

as

ī = iωµ0
¯̄Γ−1 · ¯̄ZS,∂S · Ī , (4.28)

where ī is the (NΨ2 × 1) vector of coefficients in expansion of the volumetric polar-

ization current (4.17).

Subsequently, the total electric field inside n-th quadrilateral patch is calculated

as

Ez,n(u, v) ∼=
Ψ−1∑
j′=0

Ψ−1∑
k′=0

inΨ2+j′Ψ+k′ bj′k′(u, v). (4.29)

4.4 Numerical Studies

In order to achieve highly accurate scattered electric field by a dielectric object we

have used HO-MoM on SVS-EFIE under TM-polarization. To demonstrate robust-

ness of SVS EFIE example of circular dielectric object has been considered. Geome-

try discretization of the circular dielectric object has been done through Lagrangian

type geometry representation. For this particular example, we illuminate the circular

dielectric cylinder of radius 1m with incident electric field Einc
z (ρ) = e−ik·ρ V/m,

where k = k0x̂ and the incidence angle is 180◦. The cylinder is discretized with geo-

metrical order 2 (χ = 2) line and quadrilateral elements as shown in Fig. 4.1 and 3rd

order HO-MoM solution of SVS-EFIE is applied to get an error controlled solution

at frequency 18 MHz. Finally the result is compared with Mie series solution [47].

Fig. 4.2(a) shows the electric field inside the dielectric circular cylinder and Fig. 4.2(b)

shows the relative error between SVS-EFIE and Mie series solution [47].
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Figure 4.2: (a) Total electric field |E| inside a dielectric cylinder with radius R = 1m
and permittivity ε = 2 for scalar TM case at 18 MHz frequency obtained from the
proposed 3rd order (Ω = Ψ = 3) HO MoM solution of the SVS-EFIE (4.6) on the
second order meshes consisting of N = 24 quadrilaterals and M = 16 line elements
(χ = 2). (b) The relative error distribution between the 3rd order MoM solution in
(a) and Mie series solution [47]. The average relative error is 1.01× 10−5.
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5

Computational Techniques

Required for Achieving Desired

Accuracy and Efficiency when

Solving SVS-EFIE with HO-MOM

5.1 Green’s Function of the Cylindrical Cavity

Faraday’s and Ampere’s laws can be expressed in frequency domain as

∇×E(r) = −iωµH(r), (5.1)

∇×H(r) = iωεE(r) + j(r). (5.2)

If we substitute H(r) from (5.1) into (5.2) then we get

∇×∇×E(r) = k2E(r)− iωµj(r), (5.3)
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where k is the wave number of the object. By using vector identity ∇×∇×E(r) =

−∇2E(r) + ∇(∇ ·E(r)), equation (5.3) becomes

∇2E(r) + k2E(r) = ∇(∇ ·E(r)) + iωµj(r). (5.4)

If we assume a source free region then j(r) = 0 and for a source free region by using

Gauss law we can write ∇ · E(r) = 0. Electric field inside a source free object is

governed by the following homogeneous vector Helmholtz equation as

∇2E(r) + k2E(r) = 0, r ∈ S. (5.5)

The vector Helmholtz equation converts into scalar Helmholtz equation under condi-

tions of TM-polarization as

∇2E0
z (x, y) + k2E0

z (x, y) = 0, (x, y) ∈ S, (5.6)

since only z component of the electric field in non zero. Equation (5.6) can be

rewritten in the cylindrical coordinates as follows

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
E0
z (ρ, φ)

)
+

1

ρ2

∂2

∂φ2
(E0

z (ρ, φ)) + k2E0
z (ρ, φ) = 0; (ρ, φ) ∈ S. (5.7)

Now, E0
z (ρ, φ) can be represented with Fourier series as [56]

E0
z (ρ, φ) =

∞∑
n=−∞

E0
zn(ρ)e−inφ (5.8)

because it is a periodic function over φ coordinate. If we plugin equation (5.8) into

equation (5.7) we have

∞∑
n=−∞

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
E0
zn(ρ)

)
− n2

ρ2
E0
zn(ρ) + k2E0

zn(ρ)

]
e−inφ = 0. (5.9)
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Since the series (5.9) is equal to zero for all φ ∈ [0, 2π], according to property of

Fourier series its coefficients must be equal to zero. Hence, for each n we can write

(5.9) as
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
E0
zn(ρ)

)
+

(
k2 − n2

ρ2

)
E0
zn(ρ) = 0. (5.10)

Equation (5.10) is the Bessel equation. The only solution of equation (5.10) which is

bounded at the region containing the origin is

E0
zn(ρ) = D′nJn(kρ), (5.11)

where Jn is the Bessel function of the first kind of order n. At low frequencies kρ→ 0

and we can seek solution in the form

E0
zn(ρ) = Dn ρ

n. (5.12)

If we plugin E0
zn(ρ) into equation (5.8) then we have

E0
z (ρ, φ) =

∞∑
n=−∞

Dn ρ
ne−inφ. (5.13)

When the excitation is due to a filament of current (excitation is Dirac delta func-

tion), inhomogeneous Helmholtz equation can be written in cylindrical coordinates

as

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Eδ
z(ρ, φ, ρ

′, φ′)

)
+

1

ρ2

∂2

∂φ2
(Eδ

z(ρ, φ, ρ
′, φ′)) + k2Eδ

z(ρ, φ, ρ
′, φ′)

= −1

ρ
δ(ρ− ρ′)δ(φ− φ′), (5.14)

where (ρ, φ, ρ′, φ′) ∈ S. Since Eδ
z(ρ, φ, ρ

′, φ′) is 2π-periodic over φ it can be represented

with Fourier series as [56]

Eδ
z(ρ, φ, ρ

′, φ′) =
∞∑

n=−∞

Eδ
zn(ρ, ρ′, φ′)e−inφ. (5.15)
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The Fourier series expansion is defined for a periodic function over φ coordinate

can be written as

f(φ) =
∞∑

n=−∞

βne
−inφ, (5.16)

where

βn = 〈f(φ), einφ〉 =
1

2π

ˆ 2π

0

f(φ)einφdφ. (5.17)

If f(φ) = δ(φ− φ′) according to equation (5.16) we can write

δ(φ− φ′) =
∞∑
−∞

βδne
−inφ, (5.18)

where

βδn = 〈δ(φ− φ′), einφ〉 =
1

2π

ˆ 2π

0

δ(φ− φ′)einφdφ. (5.19)

By using shifting property of delta function we can write

βδn =
1

2π

ˆ 2π

0

δ(φ− φ′)einφdφ =
einφ

′

2π
. (5.20)

Now we will substitute βδn (5.20) into (5.18) then we get

δ(φ− φ′) =
∞∑
−∞

einφ
′

2π
e−inφ. (5.21)

If we plugin equation (5.21) and (5.15) into equation (5.14) then by using property

of Fourier series we can express the Bessel equation for scalar TM mode for Dirac

delta function excitation as follows

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Eδ
zn(ρ, ρ′, φ′)

)
+

(
k2 − n2

ρ2

)
Eδ
zn(ρ, ρ′, φ′) =

−δ(ρ− ρ′)einφ′

2πρ
. (5.22)
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Solution of equation (5.22) is

Eδ
zn(ρ, ρ′, φ′) = e−inφ

′

Jn(kρ′)H(2)
n (kρ); ρ > ρ′,

Jn(kρ)H(2)
n (kρ′); ρ < ρ′,

(5.23)

where H
(2)
n is the Hankel function of the second kind and order n and Jn is the Bessel

function of order n. Substituting (5.23) in (5.15) and using addition theorem [14] we

get

Eδ
z(ρ, φ, ρ

′, φ′) =
∞∑

n=−∞

ein(φ−φ′)

Jn(kρ′)H(1)
n (kρ); ρ > ρ′

Jn(kρ)H(1)
n (kρ′); ρ < ρ′

= − i
4
H

(2)
0 (k|ρ− ρ′|),

(5.24)

where H
(1)
n is the Hankel function of the first kind and order n and H

(2)
0 is the Hankel

function of the second kind and order zero. For small arguments when kρ → 0 and

kρ′ → 0 we can express H
(2)
0 (k|ρ− ρ′|) as [61]

H
(2)
0 (k|ρ− ρ′|) ∼=

2

πi

ln(ρ), ρ > ρ′

ln(ρ′), ρ < ρ′
+

∞∑
n=1

2Cn cos[n(φ− φ′)]

{
(ρ′)

n
/ρn, ρ > ρ′

ρn/(ρ′)n, ρ < ρ′

(5.25)

where Cn = −1/(nπi), n = 1, 2, ...∞. Since the expression in the right hand side of

(5.25) is equal to 2/(πi) ln |ρ − ρ′|, the field Eδ
z(ρ, φ, ρ

′, φ′) is nothing but the static

free space Green’s function G0(ρ,ρ′) as [61]

Eδ
z(ρ, φ, ρ

′, φ′) = G0(ρ,ρ′) = − 1

2π
ln |ρ− ρ′|. (5.26)

The z component of electric field Ez can then be represented as a superposition of

the homogenous solution and inhomogeneous solution as follows

Ezn = E0
zn + Eδ

zn. (5.27)

In order to construct the Green’s function of cylindrical cavity with radius R0 out

of the field expression (5.27), we impose boundary condition Ezn = 0 on (5.27) at
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observation point ρ = R0. This relates coefficients Dn in (5.13) to the coefficients Cn

in (5.25), as

Dn =

{(
iCn (ρ′)n

)
/
(
4(R0)2n

)
; n 6= 0,

(1/2π) ln(R0); n = 0
(5.28)

yielding sought closed form expression for the Green’s function of cylindrical cavity by

using superposition of inhomogeneous solution (5.26) and homogenous solution (5.13)

as [59]

Ez(ρ,ρ
′) = Eδ

z +E0
z = G0(ρ,ρ′)+

ln(R0)

2π
− 1

2π

∞∑
n=1

|ρ|n|ρ′|n

nR2n
0

cos (n(φ− φ′)) , (5.29)

where φ and φ′ are the polar co-ordinate angles correspond to position vector ρ and

ρ′, respectively.

5.1.1 Numerical Evaluation

We consider a cylindrical cavity with radius R0 = 1m and source point located

at ρ′ = 0.5m, φ′ = 0.25π. The magnitude of electric field or Green’s function of

cylindrical cavity Ez(ρ,ρ
′) (5.29) produced by that point source is shown in Fig. 5.1.

One can observe that electric field goes to zero at the boundary according to the

enforced boundary condition at R0 = 1m.

When we try to compare the result of SVS EFIE [36] HO-MOM with COM-

SOL [51] we have to keep the fact in mind that COMSOL is a finite element solver

which truncates its mesh at a certain distance away around the object and ap-

plies boundary condition there. We have to impose the same boundary condition

to HO-MoM through the above derivation of Green’s function of cylindrical cavity

Ez(ρ,ρ
′) (5.29) instead of free space Green’s function G0(ρ,ρ′) = − 1

2π
ln(|ρ− ρ′|) in

order to obtain the fields matching with controlled precision those of HO-FEM.
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Figure 5.1: Volumetric distribution of |E| TM polarized in circular cylinder with
radius R0 = 1m.

5.2 Study of Skin Effect on a Circular Conductor

At low frequencies the current flows throughout the entire conductor cross-section.

However, when we increase the frequency, the current accumulates near the surface

of the conductor and the current in the middle region of the conductor becomes

negligible. This phenomena is called skin effect [48]. The explanation for this effect is

the following. When time varying magnetic field is applied to a conducting object it

creates electro motive force within it, which then creates eddy currents flowing in the

object of such directions that will minimize the overall magnetic field [48]. As a result,

the intensity of the time-harmonic fields in metal conductors attenuates exponentially

away from their boundaries [2]. Because of the skin-effect, at higher frequencies we

can calculate the impedance of a conductor by meshing only a small region near its
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boundary where the most of the current is flowing [48]. To demonstrate, instead of

a circular conductor we can consider a circular shell as shown in Fig. 5.2. The outer

radius R is same as the radius of original conductor and the inner radius RL. The

RL will depend on the following expression while calculating the net current I in the

conductor according to our desired accuracy Ierr

Ierr =
|Icircle − Ishell|
|Icircle|

, (5.30)

where

Icircle =

¨
Scircle

jzds = 2π

ˆ R

0

jz(kσρ)ρdρ, (5.31)

Ishell =

¨
Sshell

jzds = 2π

ˆ R

RL

jz(kσρ)ρdρ. (5.32)

In (5.31)-(5.32), kσ is the wave number of the conductor and Ierr is the relative

error between total current Icircle flowing through the circular conductor, Ishell total

current flowing through the shell, and jz is the volumetric current distribution on the

conductor.

Another important factor to notice in the SVS-EFIE formulation is that the

Green’s function of conducting media Gσ(ρ′,ρ′′) = −iH(2)
0 (kσ|ρ′ − ρ′′|)/4 decays

very rapidly when we go to high frequencies because of the skin effect. So for gaining

computational efficiency we can make the integrals associated with HO-MOM solu-

tion of SVS EFIE (3.5) zero if the distance between the source ρ′′ and observation

point ρ′ is greater than certain distance. For example, if we want relative error in

the field or current computation to be 10−6, we make the integrals associated with

HO-MOM solution of SVS EFIE (3.5) zero, when |ρ′ − ρ′′| < [−ln(10−6)]δ [2].

To demonstrate this numerically, consider a circular aluminium shell shown in Fig.

5.2 with outer radius R = 0.025 m. Using (5.30) we can find that, if we want

Ierr = 10−6 at f = 1 MHz, then inner radius RL has to be at most 0.023 m. Table 5.1

shows the relative error in p.u.l. resistance R and inductance L between the HO-MoM

solution of SVS-EFIE and analytical solution for 1 MHz frequency.
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Table 5.1: Values of p.u.l. resistance R and inductance L computed using 2nd order
MoM solution (Ω = Ψ = 2) of SVS-EFIE (3.5) with M = 20 contour and and N = 40
volume elements for circular shell conductor with outer radius R = 0.025 m and inner
radius RL = 0.023m at frequency f = 1 MHz. Analytical solutions are provided for
reference.

R(mΩ/m) L(µH/m)

Analytical Circle 2.120595499681E-03 7.38112825016E-07

Analytical Shell 2.120595286164E-03 7.381128250226E-07

HO-MoM SVS-EFIE (Circular shell) 2.241676594124E-03 7.37836621569E-07

Relative Error in SVS-EFIE ∼ 0.01 ∼ 0.0001

RL

R

Figure 5.2: Circular shell with inner radius RL = 0.023 m and outer radius R = 0.025
m.
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5.3 Logarithmic Singularity and Near-Singularity

Extraction from 1-D Integrals Over HO Curved

Line Elements in HO-MoM Solution of SVS-

EFIE

When solving SVS-EFIE with MoM singular and near-singular integrals are en-

countered when observation point is near or overlaps with the source element. These

integrals need to be handled with care if we want an error controlled solution. In

this situation the logarithmic function varies rapidly. As a result, one needs to use

quadrature rules of high orders to ensure that the integral is computed accurately.

Common approach to circumvent this issue is to subtract analytically integrable singu-

lar portion of the integrand and then add it’s contribution in the form of a closed-form

integration result. Such analytical integral in closed form for ln function can be found

in [54]. This process is straight forward for a first order elements.

When we are dealing with HO line element it becomes more difficult. To apply

singularity extraction to HO line element we have to create a tangential line at the

observation point defined by parametric coordinate u as shown in Fig. 5.3. This

coordinate u corresponds to the closest location on the source HO element to the ob-

servation point. Subsequently, each point from the HO element is projected onto the

tangential 1st order element (straight line) and the conventional singularity procedure

is applied as

I(ρ) =

ˆ 1

−1

du′′[ ln(|ρ− ρ′′(u′′)|)f(u′′)J(u′′)− ln(|ρ− ρ′′t (u, u′′)|)f(u)J(u) ]+

f(u)J(u)/Jt(u)

ˆ 1

−1

du′′ ln(|ρ− ρ′′t (u, u′′)|)Jt(u) , (5.33)

where f is a scalar function which is monomial basis function in the case of MoM, ρ is

the position vector for the observation point, ρ′′ is the position vector for the source

point, ρ′′t (u, u
′′) =

(
[ρ′′(u′′)·t̂(u)]̂t(u)+[ρ′′(u)·n̂(u)]n̂(u)

)
is the position vector on the

tangential straight line created at the point on HO element closest to the observation
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ρ′′t (u, u′′)

ρ′′(u′′)
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n̂(u)

t̂(u)

(a) (b)

Figure 5.3: (a) Singularity and (b) near-singularity extraction on 1-D HO curved
element.

point and having parametric location u, n̂(u) is the unit normal vector at location u,

t̂(u) is unit tangent vector at location u defined as t̂(u) = a(u)/|a(u)|, a(u) = ∂
∂u

(ρ(u)),

J(u′′) is Jacobian of the curvilinear line defined as J(u′′) = |a(u′′)|, and Jt(u) =∣∣ ∂
∂u′′

(ρ′′t (u, u
′′))
∣∣ is the Jacobian of the projected straight line created at location u.

Singular part is extracted in the first integral of (5.33). The second integral (5.33)

over straight line is analytically integrable [54].
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6

Conclusions and Future Work

6.1 Conclusions

In this thesis HO-MoM solution of SVS-EFIE has been demonstrated for error-

controllable extraction of p.u.l. resistance and inductance in arbitrary shaped MTLs.

Numerical results are provided for complex sector shaped cable and compared with

HO-FEM from COMSOL [51] for frequencies 60Hz and 1KHz. In order to control the

error of the proposed HO-MoM solution of the SVS-EFIE compared to the reference

HO-FEM solution, the Green’s function of cylindrical cavity is derived and introduced

into the SVS-EFIE.

Skin effect is studied and p.u.l. resistance and inductance values are extracted for

single circular shell to demonstrate complexity reduction in the HO-MoM solution of

SVS-EFIE through elimination of the internal volume of the conductor with negligible

level of the current.

HO-MoM solution of SVS-EFIE is also demonstrated for solution of the 2-D scat-

tering problem on a circular dielectric object under TM-polarization. Error control-

lability of the numerical solution demonstrates rigorous nature of the SVS-EFIE.

Singularity extraction approach is used to control the error in HO-MoM integrals

when observation point is on the source element or projects on it.
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6.2 Future Work

• By the end of this work C++ implementation for p.u.l. inductance and resis-

tance extraction remains inefficient. Considerable speed up can be achieved if

the part of the code handling geometry related operation on HO elements is

optimized.

• RL extraction has been done when the background is free space. In the future

free space Green’s function can be replaced by multilayered Green’s function.

This will enable calculation of p.u.l. resistance and inductance for conductors

in the presence of the multilayered media [37].

• At high frequencies the skin effect phenomena can be utilized to confine the

region of the sought current to the thin layer near the conductor surface. The

rest of the conductor volume can be eliminated. This property can be applied

to arbitrary shaped cables including the sector shaped cable considered in this

work. As a result, computational cost will reduce significantly.

• The C++ implementation of the code for RL extraction is sequential at present.

It can be parallelized for shared memory [58] and/or distributed memory multi-

processor machines resulting in substantial speed up of the computations.
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A

Study of Higher Order Behaviour

of Commercial Solver COMSOL

for Current Flow Modelling

COMSOL is a multi-physics software package based on Finite Element Method

(FEM). FEM solves partial differential equation with a boundary condition. COM-

SOL can be used to compute volumetric current distribution for conductors of arbi-

trary shape which can be integrated to find admittance and impedance matrices. For

solving current flow problem in COMSOL first we need to build the geometry of the

object and select the material for each region. Finally we need to select magnetic and

electric fields (mef) interface under AC/DC branch highlighted in Fig. A.1. After

that we have to mesh the object, excite the object with external current density J e

which is in our case 1V/m and run the simulation [51]. COMSOL solves equations

shown in Fig. A.1 which are under magnetic and electric fields (mef) interface by

using FEM. COMSOL truncates the mesh after certain radius away from the object

and applies the boundary condition n̂ × A = 0 under magnetic insulation option

highlighted in Fig. A.2 [51] that means at that radius tangential component of the

vector potential A is forced to zero. We simulated coaxial cable under these set-

tings to obtain p.u.l. resistance and inductance at 60 Hz and it was compared with

analytic solution [69] and relative error between COMSOL and analytic solution is
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Figure A.1: Equations used by COMSOL under magnetic and electric fields (mef)
interface.

shown in Fig. A.4 which was obtained by varying the order of solution in COMSOL

by changing the discretization into linear (1st order), quadratic (2nd order) and cubic

(3rd order) shown in Fig. A.3 and total number of volume elements. Fig. A.4 clearly

shows O(hp) error convergence [51].
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Figure A.2: Boundary condition used by COMSOL under magnetic and electric fields
(mef) interface.

Figure A.3: Changing order of FEM solution under Discretization in COMSOL.
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Figure A.4: Relative error in p.u.l. resistance (a) and inductance (b) of a co-axial
cable compared between HO-COMSOL [51] and analytic solution [69] by changing
order of solution and total volume elements.
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