
A CowtpARATIvE Srunv or'
Snlpcrpn Nnun¡,1 Nnrwonr MolBl-,s

by

Adi Indrayanto

A Thesis

presented to the University of Manitoba

in partial fulfillment of the

requirements of the degree of

Master of Science

in the

Deparunent of Elecrical and Computer Engineering

Winnipeg, Manitoba

March, 1992

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

E*E National LibrarY

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

Bibliothèque nationale
du Canada

D¡rect¡on des acquisitions et
des services bibliographiques

395, rùe Wellinglon
Onawa (Ontario)
KfA ON4

ISBN Ø-315-7794s-9

Oút e Not¡eèlërcrce

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

Canadä

A COMPARATIVE STUDY OF SELECTED NEURA1 NETÍ.¡ORK MODELS

BY

ATI INDR,AYANTO

A Thesis submitted to the Faculty of Graduate Studies of th€ University of Manitoba in

partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

@ 7992

Pe¡mission has been granted to the LIBRARY OF THE UNTI¡ERSITY OF MANITOBA to

lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to micIofil.El

this thesis and to lend or sell copies of the film, and TINTVERSITY MICROFILMS to

publish an abstract of this thesis.

T'he author ¡eserves other publication righÇ and neithe¡ the thesÍs nor extensíve exkâcts

ftom it may be printed o! otherwise reproduced without the autho/s permíssion.

ABSTRACT

Recent progress in artificial neural network models has led to a need for developing

unified benchma¡ks and a unified methodology of benchmarking in order to faciliøte bettel

understanding and applicability of these models for palticul applications. This thesis

places emphasis on the study ofthe characteristic featu¡es of four selected models, namely,

the Bidirectional Associative Memory (BAM), Bacþropagation (BP), Counterpropagation

(CPN), and Adaptive Resonance Theory 1 (ART-l) neural network models. The study

includes the identification and compadson of the chalactedstic features of the selected

models, the development of a neural network software simulator, and some experimental

study. The software is designed using the object-oriented design methodology' and is

implemented on the Macintosh computer. Since there are two distinct classes of neural

network models, the experimental study must employ two benchmark problems, namely,

the associative memory and the pattern classification problems. The experiment confi¡ms

some of the characteristic features of the selected models and reveals other characteristic

featues that have not been previously identified. For example, the ¡esults of the

associative memory experiment show that the selection of the stored patte¡ns in the BAM

network seems inconsistent with a selection based on the closest Hamming distance.

Results confi¡m that the tkee-layer BP network produces fewer spurious patterns than

two-layer BP network, and CPN performs similarly to a look-up table whose entries are

separated by a radius of association. For the given binary classification problem, results

show that the two-layer and three-layer BP with a number of hidden neurons above 6

classify 907o of the total test samples conectly, while the CPN network shows a 9570

classification. The experimental ¡esults of ART- I confirm that the learning of the netwo¡k

is stable only at the subset pattern, and this chæacte¡istic becomes significant for higher

vigilance values. The thesis presents results from numerous experiments.

-11-

ACx¡{OWLEDGEMENTS

The completion of this thesis is possibly only with the support, encouagement, and

active involvement of many people. First and foremost, I would like to express my sincere

thanks to Dr. W. Kinsner for his patience and helpful support thoughout the thesis

process, and also for the thesis topic. I would also like to thanlc my fellow colleagues, Ken

Ferens, Armein Langi, Budi Rahardjo, Ch¡is Love, Larry Wall, and Warren Grieder for

their careful reading of the manuscript, discussion, support, and friendship. A special

thanks goes to the Inter University Cente (IUC) on Microelectronics, ITB, Indonesia, and

World University Service of Canada (WUSC) for thei¡ financial support of this work. Last

but not least, I would like to thank my father, Dr. M. Mardjono, my mother, S. Mardjono,

and my best friend, Eri Kama¡di for thei¡ support and encouragement through the many

hours of wo¡k on this thesis.

-ltl-

T¿,nlr On CoNrnNrs

ABSTRAgT
ACKNoWLEDGEMENTS
LIST oF FIGURES
LIST OF TABLES
LIST oF ABBREVIAToNS AND AcRoNTTS\4s

INTRODUCTION

Objective
Motivation
Organization of Thesis

II BACKGROUND ON ARTIFICIAL NEURAL NETIryORKS

The Biological Model
A¡tif¡cial Neu¡al Networks (ANNs)
The Early Foundations

McCulloch-Pitts Neu¡ons
Hebb's Learning Law
The Perceptron

New Computing Paradigm
The Netwo¡ks

Feedforwa¡d Network
Feedback Network

tæaming Methods
Supervised Learning
Reinforcement læaming
Unsupervised Leaming

Summary

III ESSENTIAL FEATURES OF SELECTED ANNMODELS .

Bidi¡ectional Associative Memory (BAM)
Network Topology
BAM Weight Modification Procedu¡e
P¡oblems in BAM Model

Bacþropagation (BP) .

Page

ü
üi

vü
ix
xi

I

I
I
4

5

5

7
8

9
10

10

12

L2
t3
13

t4
t4
t4
15

15

16

16

t7
19

22
24
25Network Topology

-lV-

BP Weight Modification Procedu¡e 29

Problems in BP Model . 33

Counterpropagation (CPN) 36

Network Topolo Cy . 37

CPN Weight Modification P¡ocedu¡e 39
Problems in CPN Model 42

Adaptive Resonance Theory I(ART-I) 42

Network Topolo gy . 43

ART- 1 Weight Modification Procedu¡e 46

Problems in ART-I Model 49

Summary 49

IV SOFTWAREIMPLEMENTATION

Specifications 51

Design Methodology 52

A¡chiæcture 54

User Interface 54

Neu¡al Netwo¡k Model 61

Tools 74

Verification 7 6

Software Verification 7 6

Neu¡al Network Model Verification 77

Summary 77

ASSOCIATIVE MEMORY EXPERIMENT 79

Patærn Sets 80

Measu¡ement Technique 82

Autoassociative Experimentation 84

Two-association 85

Network Configu¡ations 85

Storing . 86

Recalling 89

Th¡ee-association . 100

Network Configu¡ations
Storing.
Recalling

Four-association
Network Configu¡ations
Storing .

Recalling
Heteroassociative Experimentation

Two-association
NetworkConfigu¡ations,
Storing .

51

102
102
103
109
109
110

112
117

tt7
tt7
119

Recalling 120
Th¡ee-association I25

Network Configurations 125
Storing 126
Recalling 127

Discussion 129

Summary 137

VI CLASSIFICATION EXPERIMENT 139

Pattem Sets

Measurement Technique
BP Experimentation

t40
r4t
r43

Network Configurations
. Training
Testing

CPN Experimentation
Network Configurations
Training
Testing

ART-I Experimentation
Network Configurations
Leaming

Discussion
Summary

VII CONCLUSIONS AND RECOMMENDATIONS

REFERENCES

143
144
t47
t52
t52
t52
153

155
155

156
t73
178

t79

186

APPENDIX A: TRAINING PATTERNS A1

Patterns Used in Associative Memory Experiment Al
Patterns Used in the Classification Experiment Al2

APPENDIX Br EXPERIMENTAL RESULTS OF ART.I Bl
Predicted Categories for vigilance 0.5 Bl
Predicted Categories for vigilance 0.8 B2

Predicted Categories for vigilance 1.0 : B6

APPENDIX C: NEURAL NETWORK SIMULATOR'S \ryINDOWS Cl

2.1
)7

Lrsr OrFrcunns

Figure Page

A typical neuron in the human nervous system 6

A model of an artificial neuron , 8

3.1 Topology of a BAM network
3.2 Topology of a single hidden layer BP network
3.3 Effect of a bias term I to the sigmoid function .

3.4 Steepest descent method on the er¡or surface with respect to wt andw, .

3.5 Topology of a Forwa¡d-only CPN
3.6 Topology of an ART- 1 network

4.1 Block diagrams of the main modr¡les

4.2 Softwa¡e class hierarchy
4.3 lnteractions among objects in the main modules

4.4 T\e main event loop of the program

4.5 Ttrc ProcessEveø method of ¡he CSwítchhoard clæs
4.6 Process of creating and initializing a CNeuralNetsModel object
4.7 The weights initialization and the sø¡t leaming events of

rhe C N e uralN ets M o de I object
lnteraction of many objecs during a learning session '
A multiøsk event during an idle time
Objects of subclasses of the CCå¿r¿ clæs
Stop, resume, and finish learning events of the CNeuralNetsModel object
lnteraction of many objects during the testing process

Process of creati ng the CProbe object and establishing the communication
path b€tween úe CProbe obje*t and the CDatalnterlace object
Process of creati ng the CDisplay object and establishing ttre communication
path between the CDisplay obje*t wtd the CDatalnterface object

4.15 Process of creating and initializing the CPatternEditor object

5. I 7x5 binary pixel projection of E & G and I & J
5.2 Projections of A, B, Ans¡y, A n B, Ag-r, and Ac .

5.3 Total enor versus number of epochs of a twolayer BP on SAB set

6.1 Erto¡ rate versus number of hidden neuons 148

6.2 Enor rate versus stoping enor criterion 149

6,3a Enor rate versus number of bits flipped (noise) L49

6,3b Enor rate versus number ofbits flipped (noise) 150

6.3c Error rate versus number ofbits flipped (noise) 150

6.3d Enor rate versus number of bits flipped (noise) 151

6.3e Eror rate versus number of bits flipped (noise) 151

4.8
4.9
4.10
4.tL
4.t2
4.t3

4.14

18

26
27
36
38
45

53
56
58
60
61

63

65
66
68
69
70
7l

1'l

73
75

81
84
89

-vll-

6.4
6.5a

6.5b

Enor rate versus numbe¡ of naining cycles (epochs)

Enor rate versus number of bits flipped (noise), for tle network Eained using
learning rate 0. 1 with random order presentation

Error rate versus number of bíts flipped (noise), for the network trained using
leaming rate 0,1 with random order presentation

153

t54

154

- vlll -

Lrsr Or Tenlns

Table

5. I Training sets for the associative memory experimentation
5,2 Two-association raining sets for the autoassociative experiment
5.3a læaming rates, momentum terms, total enors and naining cycles of the

two-layer BPs
5.3b læaming rates, momentum terms, total er¡ors and naining cycles of the

three-layer BPs
5.4a Test results of Íaining set Ss
5.4b Test results of Eaining set Sa¡¡

5.4c Test ¡esults of naining set S¡r
5.4d Test results of raining setSs6 .

5.4e Test resr¡lts of faining set 5¡6
5.4f Test results of raining set S¡¡
5,49 Test results of naining set Sû
5.5 Three-association raining sets fot the autoassociative experiment
5.6a læaming rat€s, momentum t€rms, total errors and Eaining cycles of

twoJayer BP
5.6b læaming raæs, momentum terms, total errors and taining cycles of

threeJayer BP

88

92
95
96
97
98
99

100

101

t02

103
103

105

t07
107

108

110

111

Page

82
86

88

111

111

TT2
tt4
116
118

119

t20
t2l
122

5.7
5.8a
5.8b
5.8c
5.8d
5.9
5.10a

Verification resuls of the three-association experiment
Test results of raining set S¡¡1
Test results of Eaining set S¡¡,¡¡
Test results of Eaining set Ss¡6
Test results of raining set S¡¡¡
Fou¡-association faining sets

læarning raæs, momentum terrns, total errors and faining cycles of
two-layer BP

5.10b Læaming rates, momentum terms, total enors and Eaining cycles of
tkee-layer BP with two hidden neurons .

5.loc Læarning rat€s, momentum terms, total enors and taining cycles of
threelayer BP with three hidden neurons

5.1I The verification test ¡esults of BAM
5.12a Test results of taining set S¡q¡¡
5.12b Test results of raining set S¡nn
5. l3 Two-association taining sets for the heteroassociative experiment
5. 14a tæaming rates, momenrum ærms, total enors and naining cycles of

twoJayer BP
5.14b Leaming rat€s, momentum terms, total errors and faining cycles of

three-layer BP
5.15 Verification results of BAM in the two-association experiment
5.16a Test results of fraining set S¡3-u

-x-

5.16b Test results of raining set S¡¡¡-Bp

5.16c Test results of raining set SEc-Ar

5. 16d Test results of naining set 59¡-6¡
5.16e Test results of raining set 5¡¡-96
5.16f Test results of raining set Su-s6
5,17 Th¡ee-association Eaining sets for the heteroassociative experiment
5.18a Leaming rates, momentum terms, total enors and taining cycles of

two-layer BP
5.18b Leaming rates, momentum terms, total enors and naining cycles of

r22
123
123
t24
t24
r25

5.19a
5.19b
5.20
5.2r
5.22
5.23
5.24
5.25

threelayer BP
Test results of uaining set Ssr¡¡-4c5

Test results of naining set S¡ru-¡.lc
The enhanced S¿¡'¡¡ Eaining set

Ve¡ification test results of BAM on the S¡ru and SÏ¡s Eaining sets

The enhanced 59¡6 training set

Verification test results of BAM on the Ssp6 and 5$6 raining sets

t26

126
t27
r28
r32
132
t33
t33
134
135

The Su-B6 and 5¡¡¡-86 Íaining sets

Verification test result of BAM on the 5¡-86 and S¡"-sc Eaining sets

6,la Læaming rate, momentum term, total errors and faining cycles of the
two-layer BP

6. lb Leaming raæ, momentum term, total enors and Faining cycles of the

three-layer BP with 4 hidden neurons
6.lc læaming rate, momentum term, total er¡ors and raining cycles of the

threelayer BP with 60 hidden neu¡ons

6.2a The categories produced for vigilance 0.5
6.2b The categories produced for vigilance 0.6
6,2c The categories produced for vigilance 0.7

6.2d The categories produced for vigilance 0.8
6.2e The categories produced for vigilance 0.9
6,2f The categories produced for vigilance 1.0

6.3a The true versus predicted categories for vigilance 0.5 .

6.3b The true versus predicted categories for vigilance 0.8

6,3c The true versus predicæd categories for vigilance 1.0 .

145

t46

r46
157
158

159

160

161

t62
t64
165

168

Lrsr Op AssnnvlAtIoNs Axt Acnoxvlts

ANN A¡dficial Neural Network

ART Adaptive Resonance Theory

ARTMAP Predictive Adaptive Resonance Theory

BAM Bidi¡ectionalAssociativeMemory

BP Bacþropagation

CABAM Competitive Adaptive Bidirectional Associative Memory

CPN Counterpropagation

ER Error Rate

FSCL FrequencySensitiveCompetitiveLearning

CLN Graded Learning Network

GUI Graphical User lnterface

IBAM lnraconnectedBidi¡ectionalAssociativeMemory
LMS læast Mean Square

LTM Long Term Memory

PDP Pa¡allelDisributedProcessing

RABAM Random Adaptive Bidirectional Associative Memory

STM Short Term Memory

TAM Temporal Associative Memory

TCI- TFIINK Class Library
UON Uniform Object Noøtion
XOR Exclusive OR

CHAPTER I
INTRODUCTION

1.1 Objective

The objective of this thesis is to study the characteristic featu¡es of four representåtive

artificial neural network models, namely, Bidirectional Associative Memory (BAM)

lKosk88l, Backpropagation (BP) tRHV/i86, McRu86l, Counterpropagation (CPN)

lHech87l, and Adaptive Resonance Theory 1 (ART-1) [CaG¡88].

1.2 Motivation

An a¡tificial neural network is a computational structure that is based on concepts

derived from research into the nature of the brain [DARP88, MüRe90]. This new

computing paradigm is becoming increasingly atEactive not only in the study of intelligent

machine behaviour, but also in solving a variety of practical problems [HuYK90]. Several

studies have shown some advanøges of neural networks to solve some practical problems

as opposed to other approaches [DARP88, Souc89, rüeKu91' and Kosk92].

The development of new theories in the past decade has led to a variety of artificial

neural network models. Today, there are at least 26 distinct models of artificial neural

networks, each of which has its own advantages as well as problems and limitations

tMaHPg0l. The unique characteristics of each distinct artificial neu¡al network model lead

to a question of how to select a proper model that matches a particular application. Such a

selecrion is difficult because rhe models differ in their behaviour significantly. This thesis

is an attempt to develop unified benchmæks through a comparative study of several

-1-

I. INTRODUCTÏON

representative neual network models. The study is intended to improve our understanding

of the capabilities of diffe¡ent neural network structtrres, and hence to provide a better

insight into neu¡al network behaviou¡.

Ideally, a comparative study should include all the existing neural network models'

However, since the comparison is very time consuming, only a few models can be studied.

Previous works on comparative studies of cerøin neural network models have been done

and presented by this research group [Silv90, HuYK90, KiHu9O, and KiIL9O]. This

thesis is an extension of the previous work by Kinsner, Ind¡ayanto, and Langi [KiIL90]'

with emphasis on the characteristic features of the BAM, BP, CPN, and ART-I neural

network models. These models have been selected since they are representatives of distinct

behaviours.

The study is done through (i) identifying the characteristic features of selected neu¡al

network models; (ii) comparing the characteristic featu¡es of the models; (üi) developing a

software simulator of the models; (iv) doing experimental study on the models using the

software.

A study of neural networks requires the availability of tools for simulating various

neural network models. Although commercial neu¡al network simulators are available,

most of them come with only a few models and rarely allow the defi¡ition of arbiuary

neu¡al network parameters. What is even more deÍimental, the software usually comes

without a source code which could show exactly how the learning algorithms have been

implemented in the selecæd models.

For practical applications, there is no need to have access i¡to the details of the sou¡ce

code, as long as the software has a good user interface and some flexibility to change the

learning parameters and the network architectu¡e, However, in a comparative study, such

an access is necessary to control all the implementation details. This is important, since to

a

I. INTRODUCTION

study the characteristics of the models, one must make sure that the original learning

algorithms are implemented properly (i.e., there are no modifications nor any

improvements to the original learning algorithms). A srudy of the details usually reveals

such alterations. Thus, it is preferable to implement each neural network model from the

ground up, with all the known modifications. Fu¡thermore, implementations of separate

simulators for distinct neural network models may differ so much that a comparative study

could be meaningless. Consequently, a unified framework for all the models of interest

must be developed. Since the development of such a unified framework is a very involved

process, an object-oriented approach yields good sofnvare that is expandable, maintainable

and portable. These are the major reasons to include the development of a new neu¡al

network softwa¡e simulator in the thesis, Without this new neu¡al network simulator the

comparative study could not have been possible.

The basic differences between the selected models may be studied through the topology

and the learning algorithm of each model. However, this may not confim or discover all

their capabilities, and particularly, thei¡ abilities to solve specific problems. Therefore, an

experimental study of the models is also included in the thesis together with some

benchmark problems.

It is not easy to find an application that is suitable to all of the selected models, since

each of the models has its own cha¡acteristics. For instance, BAM will suit an associative

memory application but not a pattern classification. On the other hand, ART-I will suit a

pattem classification but not an associative memory application. Due to theh specifications,

separate experiments have been concluded. The first experiment, namely, the associative

memory experiment includes only BAM, BP, and CPN models, while the second

experiment, namely, the pattern classifîcation experiment includes only BP, CPN, and

ART-I models. Another issue is the representation of the data samples to the networks'

-3-

I. INTRODUCTION

BP and CPN can take both binary and analog data represent¿tions. However, BAM and

ART- 1 can only take the binary data representation. Therefo¡e, a binary data representåtion

is preferable. A set of I I alphabetic characters represented by 7x5 binary pixels is selected

as the main data samples in both experiments. This data set has been used in the previous

work [HuYK9O, KiHu9O, and KiIL90].

1.2 Organization of Thesis

This thesis consist of seven chapters. Following an introduction to this thesis

(Chapter I), Chapter II gives background information on artificial neu¡al networks' This

includes the discussion of the theoretical basis of artificial neural networks in general and

thek evolution. Chapter III discusses the essential featues of selected neu¡al network

models. The discussion covers the network topologies, the leaming procedures, and some

limitations of the models, as well as a basis for the comparative study. Chapter IV

describes the structure and the implementation details of the neural network software

simulator. This includes the discussion of the system specifications, design methodology'

the a¡chitecture of the sysæm, and the verification technique of the system. Chapærs V and

VI present experimental results, Chapter V describes the associative memory experiment,

and discusses the experimental results of BAM, BP, and CPN models' Chapter VI

desc¡ibes the pattern classification experiment, and discusses the experimental results of

BP, CPN, and ART- 1 models. Finally, Chapter VII gives conclusions and

recommendations,

CHAPTER II
BACKGROUND ON ARTIFTCIAL NEURAL NETWORKS

An artificial neural network is a computational structure that is based on concepts

derived from research into the natue of the brain [DARP88, MüRe90]. That resea¡ch has

helped in the development of ætificial neu¡al networks. Therefore, it is natural to briefly

review the biological neuron model in this chapter. The chapter also presents an overview

of the developmental history and evolution of the artificial neu¡al networks field in general.

2.1 The Biological Model

Neurons, or nerve cells, are the building blocks of the brain. In spite of the similarity

in thei¡ biochemical apparatus with other cells, neu¡ons have unique features' such as

distinctive cell shapes, outer membranes capable of generating nerve impulses, and unique

structures, calted synapses, for ransfening signals ftom one neuon to the next [Llin89].

Regardless of their unique fornxi, most neuons share certain structual featwes that make it

possible to distinguish three regions of the cell, namely, the soma or the cell body' the

dendrites, and rhe axon (see Fig. 2.1). The dend¡ites and axons extend from the cell

body to other neu¡ons via connection points, the synapses. The cell body receives

incoming signals from other neurons through dendrites' In the state of inactivity' the

interior of the neu¡on is negatively charged (about -70mV) against the surrounding neural

liquid. Signals arriving from the synaptic connections result in a Eansient weakening, or

depolarizatíon, of the resting potential. The cell fi¡es when the cumulative excitation of

-5-

II, BACKGROTJND ON ARTIFICIAL NEURAI NETTVORKS

these signals exceeds a th¡eshold (i.e., when the tot¿l magnitude of the depolarization

potential in the cell body exceeds the critical threshold, about l0mV). Then, the fued cell

sends a signal (i.e., pulse tains ranging from about I to 100 pulses per second) down the

axon to the other neuons. This is the basic mechanisms of how neu¡ons communicate

among themselves. Notice that the cumulative excit¿tion of the incoming signals, to some

extent, is determined by the types and the stengths of the synapses. Some synapses ale

excitatory in that they tend to promote firing, while others a¡e inhibitory in that they are

capable of canceling signals that would otherwise excite a neu¡on to flre. Moreover, the

strengths of the synapses are not fixed once and fo¡ all. There is a mechanism of synaptic

ptasticity in the stuctu¡e of the synapses, known as Hebb's rule [Hebb49' MüRe90]'

which is described in mo¡e detail in Section 2.3.2. A detåiled description of the brain

physiology can be found in [Llin89] and [Time90].

Fig. 2.1. A typical neu¡on in the human nervous system. After [Llin89]

-6-

tr. BACKGROUND ON ARTIFICIAL NEURAL NET'S/ORKS

2.2 Artificial Neural Networks (ANNs)

Neu¡ons can be viewed as procéssing elements capable of at least summing operations;

the axons and dend¡ites become the connections that establish the communication paths

among nettrons, and the synapses become the connection weights, which a¡e changeable

tlrough some learning algorithms. Similar to the biological model, an arti-ficial neuron can

have any number of incoming connections as well as outgoing connections. While each

incoming connection can receive any signal, the outgoing connections must Eansmit the

same signals. In other words, a processing element has a single ouçut connection that can

branch ot fan out into exact copies to form multiple output connections [Hech89].

In a more formal definition, a neu¡al network model is defined as a directed Sraph

[MüRe90, Hech89], a geometical object consisting of a set of points (calJed rødes) along

with a set of directed line segments (called /i¿ts) between them, with the following

properties (see Fig. 2.2) :

A staæ variable ¡¡ is associated wittr each node i.

A real-valued connection süength or weight wi is associated with each link (i)

between two nodes i and j.

A real-valued bias Q is associated with each node i.

A transfer function S¡[x¡w¡¡?i,(j+ í)] is defined, for each node i, which

determines its state as a function of the st¿tes of the nodes connected to it' the

connection ssengths or weights linking other nodes to it, and its bias. A general

form of S¡ usuall/ is given as S¡ /f w ¡¡ x¡ - 0¡\, where ,S(y) is a non-linea¡
\j t

squashing function (e.g., sigmoid).

1.

2.

J.

4.

-7-

II. BACKCROUND ON ARTtrICIAL NEURAL NET'\YORKS

In the standard terminology, the nodes of the graph are called neurons or processing

elements, the links a¡e called sytøpses or connections, the states of the nodes are called

the activations of neurons, and the biases a¡e known as the activation thresholds.

S¡lx¡, w¡i, e¡,U + ùJ

Fig,2,2, A model of an artificial neuron.

The formal definition of the a¡tificial neural networks, however, has only been

innoduced recently. In spite of this, the theories of the artificial neural networks are not

new. They have been known for sometimes under different names.

2.3 The Early Foundations

The field of artificial neural networks appears to be a new discipline concerned with

data processing system, However, the foundations have been established before the

emergence of computers [MaHP90, Kurz90].

The field has interesting history since its appearance in the 1940s. The early progress,

which culminated in the development of the first successful neurocomputer, Mark I

-8-

II, BACKGROUND ON ARTIFICIAL NEI,IRAL NETV/ORKS

PercepEon, a lwo-layer feedfoî ard newal network model buiit from the idea of Frank

Rosenblatt [Hech89], was followed by a period of disinterest. This lack of enthusiasm

was strengthened by the publication of the Perceptrons book of Mawin Minsky and

Seymour Papert in 1969 [MiPa88], which exposed what appeared to be significant

important limiøtions of the percepron models of the time. During the period from 1967 to

1982, little progress in a¡tificial neu¡al network resea¡ch was reported in the United States

[Hech89]. Nevertheless, some researchers in this period, namely Bernard Wid¡ow, Harry

Klopi James Anderson, Steven Crossberg, Paul Werbos, and others in Europe (Teuvo

Kohonen) and Japan (Sun-ichi Amari and Kunihiko Fukushima), helped keep the field of

a¡tificial neural networks afloat by persuing the research. By 1986, with the publication of

the Parallel Disffibuted Processing (PDP) book by David Rumelhart, James McClelland

and the PDP research group, the field exploded. Since then, the field of artificial neural

networks has atfacæd a great deal of anendon and funds for fu¡ther resea¡ch'

2.3.1 McCulloch-Pitts Neurons

The research in artificial neu¡al networks had its fust interesting results about forty-

eight years ago, when Warren McCulloch and Walær Pins showed in their 1943 paper that

even simple types of neu¡al networks could, in principle, compute any arithmetic or logical

function [Hech89]. ln their paper, they assumed that the activity of the biological neuron

was an "all-or-none" process IMcPi43l. Thus, thei¡ model neu¡on was somewhat similar

to a binary device with a fixed th¡eshold. Also, they assumed that the model included the

effect of synaptic decay and that the inhibitory synapse absolutely prevented excitation of

the neuron. However, at that time, the authors did not mention any practical use of thei¡

work, Nevertheless, the paper was widely read and had great influence on the

development of the network models and leaming paradigms that followed'

-9-

tr. BACKGROUND ON ARTIFICIAL NEURÄL NETWORKS

2.3.2 Hebb's Learning Law

In 1949, Donald Hebb, in his book entitl ed The Organizøtion of Behavior, postulated

that the strength of a synaptic weight between two neurons increases whenever an axon of

neu¡on A is near enough to excite a neuron B and repeatedly or persistently takes part in

firing it [Hebb49]. In this way, often-used paths in the network are stengthened, and the

phenomena of habit and learning through repetition are explained' This proposal of a

specific learning law for the synapses of neu¡ons has become the basic learning law of

current a¡tificial neural networks.

The Hebbian learning law, also called Hebb's law, can be expressed in mathematical

notation as

Aw¡¡=q4\, d>0; x¡,x¡20 (2.r)

where / w¡ is the change in synaptic weight, ø is the constant of proportionality

representing the learning rate, and 4 and x¡ represent the activations of neuron i and

neuron j, respectively. Originally, Hebb's law assumed positive activation values.

Nevertheless, learning that involves neurons with negative activation values haS also been

labcled as Hebbian [EbDo9O].

2,3,3 The Perceptron

The fi¡st successful neurocomputer, the Ma¡k I PercepEon, was developed during 1957

and 1958 by Frank Rosenblatt, Chæles Wightman, and others [Hech89]. The percepFon

includes simple neuron-like processing elements of McCulloch and Pitts' model neuron,

which aggregates the incoming inputs and forwards the result to a simple threshold

function (see Fig. 2.2). Note that the input signals to the processing elements are the input

-10-

II. BACKGROUND ON ARTIFICIAL NEURAL NET\VORKS

signals to the network multiplied by the connection weights. A netwo¡k with N inputs can

be expressed by the following equations:

net¡=l x¡w¡i,
j= |

|| finet¡>0
rj=l

[0 otherwise.

(2.2a)

(2.2b)

Consequently, n¿ti represents the total sum of the incoming signals, .r¡ is the activation of

neuron i, x; represents the input signal to the network, w;i is the connection weight value,

and Ois a constant value representing the th¡eshold (usually, I = 0). Notice thar (2.2b)

expresses the threshold function of McCulloch and Pitts' model neu¡on.

In order to do classification, the percepFon needs to be "taught" by pairs of raining

patterns. The training patterns consist of input patterns to be recognized and the desi¡ed

output patterns, namely the target patterns. During raining, the percepron modifies its

connection weights accordin g to Rosenblatt' s learning law, givenby

A w¡¡ = q (t¡- x¡) x¡ , a> 0; x¡, x¡> 0 (2.3)

where f¡ represents the target signal, and / wii a, xiandx¡ ue as defined by Eq.2.1.

Rosenblatt has proved that, given training data with linearly separable classes, a

network of simple neu¡onlike processing elements, such as the percepfron, can develop

connection weight values that separate the classes [McRu88, Hech89]' However, the

incapability of the percepnon to cope with nonlinea¡ly separable tasks, such as XOR and

parity problems, had discouraged many researchers at the time' These shortcomings have

been cautiously desc¡ibed tkough a very careful mathematical analysis in Minsky and

- 11-

tr. BACKGROUND ON ARTIFICIAL NEI.IRAL NETWORKS

Papert's book Perceptrons [MiPa88]. The book had a dramatic effect, and practically all

work on Perceptrons came to a halt. Recently, the problems of a two-layer perceptron have

been overcome through adding more layers. The revised version of the percepEon,

sometimes called a multilayer percepron, was developed independently by several

resea¡chers such as Werbos in 1974, Pa¡ker in 1982, and, Rumelha¡t, Hinton, and

Williams in 1986, under different names [Wass89, MaHP90].

2.4 New Computing Paradigm

The development of new theories in the past decade has led to a variety of a¡tificial

neu¡al network models. Today, there are alle st 26 distinct models of a¡tificial neu¡al

networks [MaHP9O], each of which has its own advantages as well as problems and

limitations. However, most of them sha¡e the same basic a¡chitecture, in that the nemorks

consist of neu¡on-like processing elements linked together through connection weights, and

their leaming algorithms evolve ftom the Hebb's iaw.

2.4.I The Networks

The neurons in a neu¡al network may be organized in a number of different ways.

Generally, several neurons are grouped together forming a layer, Neu¡ons in a layer

usually work together to perform a specific function. For example, the neu¡ons in an input

layer, acquire the input signals from the outside world. A network may have one or more

layers. A network with two layers is called a two-layer network, whereas a network with

more than tr,vo layers is called a multilayer network,

Every newon is connected to other neurons. However, the pattems of connectivity

between neurons v¿uy across neural network models, Neurons within a layer may be

laterally connected, while neurons between layers may be fully ot sparsely connected.

tr. BÄCKGROUND ON ARTIFICIAL NEURAL NET\ryORKS

From the patterns of neuron connectivity between layers, there are two kinds of neu¡on

connectivity, namely, feedforwørd connections and feedbøck connections. Base on this

sÍucture, a netwo¡k can be called a feedforuard network or afeedback network' The

differences between them are described in the following section.

2,4.1,1 Feedforward Network

A feedforward network has connections through weights extending from the ouçuts of

neu¡ons in a layer to the inputs of neu¡ons in the next layers; e.g., connections ftom the

input layer to the output layer in a two-layer network. A two-layer or multilayer

feedfo¡ward network operates by means of propagating the input signals ftom the fi¡st

layer in the network, usually an input layer, up to the last layer in the network, which

generally is the output layer. Some examples of neural network models in this category are

the percepEon [MiPa88, McRu88], the backpropagation (BP) [RHwi86, McRu86]' and

the counterpropagdttorx (CPÐ networks [Hech87].

2.4,L.2 Feedback Network

A feedback network, besides having forwa¡d connections (i'e., connections from the

input layer to the ouçut layer), also includes backwa¡d connections (i'e., connections from

the output layer to the input layer). Thus, for a twolayer network, this means that the

network has two sets of connection weights, one going from the first layer to the second'

and the other connecting the second layer back to the first. Two of the most popular

models of this type arc bidirectional associative memory (BAM) [Kosk87a' Kosk8Tb'

Kosk88l, and adaptive resonance theory I (ARTI) [CaGr88, Gros88a, GrosSSb].

2,4.2 Learning Methods

-13-

II. BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

A unique feature of artificial neu¡al networks is thei¡ abilities to leam ftom examples.

This capability is achieved by means of a learning algorithm. Every neural network model

has is unique leaming algorithm. However, most of the leaming algorithms have evolved

from Hebb's law. The learning procedures can be categorized into th¡ee distinct types,

namely, supemised leamrng, reinforcement learning, and unsupervisedlearnng'

2.4,2.1 Supervised Learning

A network employing a supervised leaming type algorithm requires labeled input daø

and an external "teacher". The teacher knows the desi¡ed conect response to each input

and thus provides a detailed error signal after each trial. A network with this type of

leamings usually calls for two distinct sets of patterns from the same problem domain, one

for the training set and the other for the testing set. Consequently, the leaming phase, often

called naining phase, is separated from the recognizing or testing phase. Some neural

network models in this category are BAM, BP, and CPN.

2.4.2.2 Reinforcement Learning

Reinforcement leaming, also called graded taining tHech89l, is simila¡ to supervised

learning; that is, it requires training data and a teacher. The only difference is that the

teacher only indicates whether a response was correct or inconect and does not provide

detailed enor information. In other wo¡ds, the teacher gives a sort of "performance score"

that tells the network how well it has done overall since the last time it was graded. An

example of networks with this type of learning is the graded leaming network (GLN)

lSouc89l.

-14-

tr. BACKGROUND ON ARTIFICIAL NEURAI NETWORKS

2,4,2,3 Unsupervised Learning

A network with unsupervised learning uses unlabeled i¡put data and requires no

external teacher. The network demands no separate pattern sets (i.e., no separate taining or

testing sets). All daø inputs a¡e treated as testing patterns. Its weights change over time as

new patterns are presented to the network, From just the presentation of inputs, the

network is expected to organize its weights into some "useful" configuration, thus, the

learning is also known as self-orgønization. The ARTI neural network model is an

example of models employing the unsupervised learning algorithms. Note that, for

convenience, the ærm leaming is used to ¡efer to the unsupervised learning mode, whereas

haining is associated with the supervised learning mode.

2.5 Summary

This chapter provides a review of artifîcial neural networks. The discussion begins

with a review of the biological neuron, which inspires the development of neuron-like

processing elements. This leads to a definition of artificial neu¡al netwo¡ks. The historical

background of resea¡ch in a¡tificial neu¡al networks is also presented. One of the most

popular neural networks of the past, the percepEon, has been discussed along with the

original model of an artificial neuron and the original learning ¡i¡le of neural networks.

Finally, a discussion of the developmental history and a description of neural network

structues as well as their various leaming paradigms are presented'

-15-

CHAPTER UI

ESSENTIAL FEATURES OF SELECTED ANN MODELS

This chapter presents a comparison of the following four neu¡al network models:

bidi¡ectional associative memo¡ies (BAM) [Kosk88], backpropagation (BP) tRÉIWi86,

McRu86l, counterpropagation (CPN) [He¡h87], and adaptive resonance tleory I (ARTI)

[CaGr88]. These models are representatives of different classes. For instance, BAM is

considered to be a supervised feedback network, BP is supervised feedforward netwo¡k,

CPN is unsupervised feedforward network and ARTI is an unsupervised feedback

network. Although BP and CPN a¡e networks of the same class (using the classification

mentioned in Chapter II), they have very different learning principles. These learning

procedures as well as their limitations are the topics to discuss in this chapter.

3.1 Bidirectional Associative Memory (BAM)

A bidirectional associative memory (BAM) is an associative network [Kosk87a'

Kosk87b, Kosk88l. It is used to store and to recall information by association with other

information. To be more specific, a BAM is called an auto'associative network, if the

stored pattern can be recalled from its partial pattern, whe¡eas it is called a hetero-

associative network, if the stored pattern can be recalled through another associated

pattem.

There a¡e numbers of va¡iants and evolutions on BAM, including continuous and

disc¡ete BAMs IKosk87b, Kosk88], inÍaconnected BAM ISimp90], competitive adaptive

-16-

M. ESSENTIAL FEATURES OF SELECTED ANN MODELS

BAM (CABAM) [Kosk87a], temporal associative memory (TAM) [Kosk88], random

ABAM (RABAM) [Kosk89], and others. However, this study focuses on the less

complex type of BAM, that is the discrete BAM.

3.1.1 Network Topology

The discrete BAM, introduced by B. Kosko, is a bilayered non-linea¡ feedback

network. The network has symmeEic interconnections between layers; i.e. connections

from the outputs of the neu¡ons in the fi¡st layer, F¿, to the inputs of the neurons in the

second layer, F¡, denoted by connection marix W, and connections from the outputs of

the neu¡ons in FB, to the inputs of the neurons in F¡, denoted by connection maEix y.

In general W and V differ in structure. However, in BAM, W and V are assumed to

have the same, or approximately the same, structure [Kosk9l]. One way to impose an

equivalent structure is to set W = VI' o¡ V =WT, where Wr and V7' denote the matrix

transposes of W and 7 respectively. ln practice, it is often sufficient to use only W to

represent the connection matrix from F¿ to Fa and I7r for connection matrix from Fs to

F¿ (Fig. 3.1).

Information passes forward from F¿ to F¡ through the connection matrix W.

Similarly, information passes backward f¡om F¡ back to F¿ through the matrix Eanspose

!yr. This process is repeated until the network a¡rives at a stable point; that is, when

neither information at Fá nor at FB is changing. Since every real matrix is both a disc¡ete

and continuous bidirectionally stable associative memory [Kosk88], it is expected that

gradual changes due to leaming in I7 wiJl result in søbility.

-17 -

Itr. ESSENTIAL FEATURES OF SELECTED ANN MODELS

Fa

+

Fig. 3.1. Topology of a BAM network. After [Kosk88i

The neurons in the layers æe two-valued, or bivalent, neurons wi¡h hard-limit

th¡eshold signal functions, and they process signals deterministically and synchonously.

This type of neuron is similar to the Percepton, which stems from the classical neu¡al

model of McCulloch and Pitts [McPi43]. If 1¡ represents the input signal to a neuron i;

,fþy' denotes the state of the neuron j in the other layer that is connected to the neu¡on i

by a connection weight w¡; .r¡ denotes the sum of the input signals to a neruon i; Sl.r) is

the theshold function; and index & indicates the discrete time step, then the state of the

neu¡on i in a time sæp ,t is

(3.1a)¡k+r =Lsþf)w¡¡ +I¡
j=r

-18-

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

,r,r.,r={<ln
if xf*t > o

rf x!'r = I
tr x{'1 < e

(3.1b)

(3.2a)

(3.2b)

for a number of neurons, N, connected to netuon i and an arbirary real-valued th¡eshold

9. A discrete BAM of which the threshold 0 is equal to 0 is called a homogeneous

BAM.

3.1.2 BAM Weight Modification Procedure

Neural networks, including BAM, store the information disEibutively in thei¡

connection weights through some leaming algorithms. ln discrete BAM, the connection

weights, denoted by connection matrix I/, are developed by the outer'product leaning

method [Kosk9U. This method sums weighted correlation matrices of the associations.

Fo¡ instance, let us assume that we wish to store N associations of binary vectors

(A¡,B) for i= l,2, ..,, N. A¡ denotes a binary vector of length m,and B¡ denotes

a binary vector of length n. Then, the sum of the N binary conelation matrices Af 8¡ is

IV

w=>AIBi
i=l

with dual BAM memory l4l7'given by

yr =\ ø[A¡.
i=l

-19-

III. ESSENTIAL TIEATURES OF SELECTED ANN MODELS

The expression in (3.2a) and (3.2b) is called the binary outer-product law.

associations can be encoded also through the following bípolar outer'product law.

bipolar outer-product law for W is

(3.3a)

and for I;f¡?' is

(3.3b)

X¡, a point in the bipolar rn-cube {-1, 1}¿, is a bipolæ vector Eansformed from binary

vector A¡. Similarly, yi, a point in the bipolar ¿-cube {-1, 1}¿, is a bipolæ vector

transformed from binary vector 8¡. Accordingly, (X¡, f) is the bipolar vector

association. Using the bipolar representation, more accurate recall is possible [Kosk88].

The superiority of bipolar to binary representation, in this matter, is due to the nature of the

binary signals. Intuitively, binary signals implicitly favor ls over 0s (i.e., 1+0 = 1)' In

other words, there are only excitatory connections or zero-weight connections produced

from multiplying and adding binary quantities. No inhibitory connections exist. On the

conrary, bipolar signals are not biased in favor of ls or -1s (i.e., -1+1 = 0). Multiplying

and adding bipolar quantities produces inhibitory connections as well as excitatory

connections. These inhibitory connertions prevent excitation of the unwanted pattem.

The learning method discussed so fa¡ is merely a process to encode the association

(A¡,.8) into the connection mahix I4l. To decode an association, in other words, to

reFieve a stored association, the netwo¡k u ses its resonanc¿ characteristic. For example,

suppose an association (A t, B ù has been stored in the network' Then' suppose we

The

The

w =2 xT v¡,
i=l

y¡r =l yl xi.
i=l

-20 -

Itr, ESSENTIAL FEATURES OF SELECTED ANN MODELS

provide vector AJ as an input to the neuons in one of its layer, say F¿, and vector B¡ is

the expected oulput pattem from the neurons in layer F9' Vector A¡ becomes the cunent

state vectoÍ at F,4. Through the connection maEix W, the output signals from Fe are

propagated to F, producing a state vector Bi. The output signals from F¡ are then

propagated through the transpose mattix WT to Fa, producing a close replica of the

original input vector A¡, sayAi. The vector Ai becomes the new state vector ofFe. This

process is repeated until there is no more changes in F¿ and F¿. In other wo¡ds, the

network reaches a stable point for the association (A p B ù.

To show the stability of the network, Kosko uses Lyapunov or energy function E.

This energy function represents each state (,4,, 8i), and is given as

\e, n¡= - Aw Br

for the binary vectors, or

(3.4a)

4x,Y)=-xwYr

for the bipolar vectors. From this point of view, every association (A¡' B) (i.e., each

st¿ble point) is represented by a local energy minimurn Thus, storing an association is

similar to "sculpting" the system enetgy surface' However, there is a maximum number of

patterns that can be stored. This issue along with other limiøtions found in BAM a¡e

discussed in the following section.

(3.4b)

-2t -

Itr, ESSENNAL FEATURES OF SELECTED ANN MODELS

3.1.3 Problems in BAM Model

The major drawback of the BAM model is its limiæd memory capacity; this is a

resFiction on the maximum number of associations it can accuately recall. If this limit is

exceeded, the network may produce incorrect oulputs; it "remembers" associations that it

has not known before. This phenomenon is called spurious memories or spurious

at¡actors, Spurious attractors tend to increase in frequency as the network dimensionality

increases [Kosk91]. Some methods, such as the unlearníng process [HoFP83] and

encoding/decoding enhancement [WaCM89], are intended to ¡educe these spurious

atsactors. Kosko states that the rough estimate of the memory capacity of a BAM is less

than the number of neurons in the smaller layer [Kosk87b], such as

N < min(m,n) (3.5)

where N is the maximum number of associations, m is the number of neurons in layer

F¡, and ¿ is the number of neurons in layer F¡. McEliece et al. ÍMcEl8'11 shows a

different way to calculate the memory capacity bound, given by

Àt- m
" - llogzm

(3.6)

where m is the numbe¡ of neurons in the smaller layer. Some resea¡chers have proposed

methods to overcome the problem of memory limitation in BAM. For example, Haines and

Hecht-Nielsen inroduced the non-homogeneous BAM, which uses non-zero th¡esholds

tHaHe88l. Every neuron in the layers may have a different non-zero th¡eshold. Using tltis

technique, the new upper bound becomes min(2m,2n)' Yet another method is through

-22-

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

\sing high-order BAM lTWJoï9, Simp90l. This technique can double the memory

capacity and improve the error-correcting capability at the expens€ of geater connectivity.

I¡ softwa¡e simulation, the high-order BAM requires more computational time.

In BAM, perfect recall of the associations requires mutually orthogonal input vectors.

To show this, let us observe one step of the signal propagation from F¿ to F¡, assuming

that we use the bipolar version X¡ of A¡. Thus,

X¡W

(3.7)

whete m is the dimension of X¡. The fust term in (3.7) shows that the desired pattem yt

is given the maximum positive amplification faclor m > 0. The second term shows the

crosstalk or the noise. If the input patterns Xrs are orthogonal to each other, then the

second term will be zero. However, in real applications, the input patæms usually are not

orthogonal, and sometimes contain noise. This particulæ cha¡acte¡istic of BAM limits the

applicability of BAM in real applications. A method, such as employing a pre-processor

that transforms arbinary input vectors into orthogonal vectors, has been i¡troduced in

[LiNu9O]. Using this approach, an optimal recall can be achieved.

The discrete BAM encoding procedure has a side-effect, being such that it also encodes

the complement patterns by default. For example, an association (AÎ, Bù, where Af is

the complement of vector á¡, cannot be stored in BAM if an association (,4¡, B¡) exists.

Consequently, this limits the combination of vectors that can be be stored' Through adding

some intalayer connections, the inEaconnected BAM (IBAM) overcomes tltis limitation

lSimp90l.

1V

=(xt)r'+>(x4\v¡j*í
^,= mY¡ +2(x4)v¡,

j+i

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

Another limitation of BAM is that the pair of vectors (A¡,,8¡) must be taken from a

contínuous function /. The function / must map small changes in inputs to small

changes in outputs. In other words, similar input vectors, or close input vectors in the

Hamming distance sense, are associated with simila¡ output vectols or vice versa

[Kosk91]. Tlte contínuity assutnptíon in terms of Hamming distance in binary m-cubes

and n-cubes can be expressed as

f n1e,t,e¡ - f,nqn¡,n¡¡
(3.8)

where tI(A¡, {) and H (B¡, B¡) are the Hamming distances between vectors A¡ and A;,

and between vectors Br and Bj, respectively. The Hamming distânce is defined as

H(Ai, Aj) = 2l.n-rfl,
k=1

(3.e)

Fortunately, training sets de¡ived from real-world problems tend to satisfy the continuity

assumption, since most sampled processes are continuous [Kosk91]'

3.2 Backpropagation (BP)

One of the most commonly used neu¡al network models employing raining procedure

is bacþropagation (BP), The BP uaining algorithm was formulated independently by

several researchers, such as We¡bos in L97 4, Parker in 1982, and Rumelhart, Hinton, and

Williams in 1986 [Wass89], Bacþropagation evolves from the two-layer percepron

model. However, bacþropagation includes some hidden layers, which are not found in

the original percepfon topology. Moreover, bacþropagation employs continuous non-

III. ESSENTIAL FEATIIRES OF SELECÏED ANN MODELS

linear hansfer functions (e.9., sigmoid) in its neu¡ons. These properties and an improved

learning procedure give backpropagation more capabilities than the perceptron. For

instance, BP is capable to cope with non-linearly sepæable problems, such as the XOR or

the parity problem, which the percepton fails to solve.

Most of the problems solved by the bacþropagation model are mapping problems. In

this particular case, backpropagation is used as a mapping neural networki i.e., a network

in which the information processing operation is an approximation to some function or

mapping/: Î'-+ S4' from vectors into vectors [K¡ei9l]. It has been proven through

Kolmogorov mapping neural network existence theorem that a theelayered feedforward

neural network using any continuous and bounded neu¡on activation function, such as in

backpropagation, is capable of approximating an arbirary continuous mapping [Hech89,

Funa89, HoSW90, Horn9l, and Krei9ll,

3.2.L Network Topology

Architecturally, BP consists of several layers of neurons: an input layer, one or more

hidden layer(s), and an ouput layer. Neurons in each layer are connected to the next layer

through connection weights. Since it is a feedforward network, no feedback connections

exist in its structue. For example, a network with one hidden layer has some connections

from neurons in the input layer to neurons in the hidden layer, and from neurons in the

hidden layer to neurons in the ouçut layer. No intraconnections among neurons within a

same layer exist. Similarly, for a network with more than one hidden layer, the

connections a¡e established between the input layer and the first hidden layer, between the

output layer and the last hidden layer, and between a hidden layer and the adjacent hidden

layer up to the last hidden layer. This fully-connected scheme between the adjacent layers

is not mandatory after all. It is possible for a BP to have sparsely connections between the

-25 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

adjacent layers or even some connections between specific layers (e.g., some connections

from the input layers to the second hidden layers). However, for simplicity, this

discussion only covers the generic BP; that is, a network with full connections between its

adjacent layers. A typical bacþropagation network with one hidden layer is shown in

Fig.3.2.

A network using linear neurons cannot solve more problems in multiple layers than it

can in a single layer [McRu88]. Therefore, to effect the advantage of having many layers,

bacþropagation uses non-linear neurons. It has been shown that any arbinary smooth and

bounded non-linear function can be used for the th¡eshold function in the neurons of a

multi-layer netwo¡k [HoSW9O, Hom91, Icei9l]. In practice, the often used non-linea¡

function is the sigmoid or sernË lincar finclon.

Fig. 3.2. Topology of a single hidden layer BP network.

-26 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

A sigmoid function is a non-decreasing and differentiable function, which is expressed

by

Sl-r) = I
l+e-x

(3.10)

The original BP uses the sigmoid function in all of its neuons in the layers, except for the

neurons in the input layer. The input layer employs only linear neu¡ons, which accept the

component of the input vector and distribute them, without modification, to the next layer

(i.e., to the hidden layer in a three-layer network).

Neurons in the hidden and the output layers include some åí¿s¿s. A bias gives an

offset to the summed inputs to a neulon, thereby shifts the sigmoid function with a constant

value I (see Fig. 3.3). Thus, it performs similar to a threshold constant in (3'1b). In

other words, a bias provides a means of scaling the average input into a useful range

tMaHP90l. These bias values, gs, are adjusted during training, and they are kept

unchanged once the Íaining process is done.

Fig. 3.3. Effect of a bias term I to
the sigmoid function,

an

III. ESSENTIAL FEATTIRES OF SELECTED ANN MODELS

It has been defined (in Section 2.2) that a neuron aggregates the incoming input signals

and forwards the result to a threshold function. Similarly, every neuon in the hidden and

the output layers of a BP network has those capabilities. These neurons a¡e identical to the

ones defined in (3.1a), except that they do not have feedback connections and they employ

a different tlueshold function. For convenience, it is rewritten as follow

xj =IS(rrw¡i+g¡

Sl¡) = 1

| + e-x¡

(3.l la)

(3.1 1b)

where S(-r¡) represents the state of neuron I in the previous layer, which is connected to

neuron i by a connection weighl w¡¡ x¡ denotes the sum of the input signals to neuron j,

9; is the bias of neuron 7, ,S is the threshold signal function, and N is the number of

neurons in that layer. For the neuron in the hidden layer of a thee-layer network, the

S(x¡) is equal to 1¡, the input signal. The index t, which indicates the discrete time step,

in (3.1a) is omitted, since BP processes the data in one time step; that is, the søtes of

neurons in a layer only depend on the states of the neurons in the previous layer, within a

same time step. Data is propagated from a layer to the next layer via the connections,

starting from the input layer to the last layer, which is the output layer. Although, BP

processes the data in one time step, the Eaining process, which is merely a searching for

appropriate weigåfs process, requires enormous time step. This raining procedure, also

caTled the generalized delta rale, is described in the following section.

-28 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

3.2.2 BP \{eight Modification Procedure

The procedure of training a BP netwo¡k requires a set of pairs of input and target

patterns. The target patterns a¡e used as the "teacher" of the network during raining' ln

backpropagation, the network f,trst uses the input pattem to produce the ouçut patæm. The

input pattern is propagated through the layers, and an ouÞut is produced. The output

pattern is compa¡ed with the target pattern, and the difference o¡ the enor between them is

measu¡ed, There a¡e several ways to measrrre the error, since each type of error has

different costs in different situations [MiPa88, Hech89]. One of them is the mean squared

error melhod. For a set ofM pairs of input and target patterns, tlle eno¡ function is given

by

(3.12)

where the index p ranges over the set of inPultarget pattem pairs, 7 refers to the Jth

neuron in the output layer with N neurons, f is the pth talget pattern for the output

neuron j, S(x/) is the state or the actual output value of output neuron j for palterî p, xl

denotes the sum of the input signals to the output neuron f (3.11a) for patten p' E,

represents the eror on pattern p, and E is the total error of the enti¡e set of patterns,

The raining procedure is meant to make the error between the actual output and the

target as small as possible. Through modifying the connection weights according to the

error information, the enor function is brought to its minimum, thus allowing the best

approximation of the target. In BP, this scheme is performed by the least-mean-sqwte

(1M,9) procedure of Widrow and Hoff [McRu88].

M MN
E= >Eo=*22(,1-tr,i>Y

p=L p=tl=L

-29 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

The LMS procedure makes use of the delø rule for adjusting the connection weights. It

sea¡ches for the weight values that minimize the error function (3.12) using a method called

gradient descenr. The gradient descent adjusts the weight proportional to the negative of

the derivative of the error with respect to each weight, as described by

wherc Ãpw¡i represents the amount of change in weight Ì?jt for pattern p, and c

constant of proportionality. The right part of the equation (3.13) can be rewitten as

ðEp

ðw¡i

where the fi¡st term of (3.14a) can be partitioned fu¡ther into

aE-
Lrw¡¡ = -c ^!crw ji

9Ez - aø, as(xl)
a,l asþf) axl '

Using the error function in (3.12), the first term of (3.14b) becomes

:þ-=-tß-s1x,t¡,as(,í) \'r

and the second term of (3.14b) becomes

- èøo àxl
- :--= Ã- !

dxï dwii

ff='ør

(3.13)

is the

(3.14a)

(3.14b)

(3.14c)

-30-

(3.14d)

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

From (3.1 1a), the second term of (3.14a) becomes

(3.14e)

Thus, replacing the right part of (3.14b) with (3.14c) and (3.14d), and then, substituting

(3.13) with (3.14b) and (3.14e), we get

v_=
ðw¡i

s(d).

Low¡¡ = -rþowji

= , (q - s(4)) s (.rf) s(.rf).

However, equation (3.15) is only valid for adjusting the weights of the connections

attached to the neurons in the output layer. For adjusting the other connection weights

(i.e., the connections which æe not attached to the output neurons), we need to calculate

the enor change with respect to the output of neuron j in the hidden raVer, that is

ffi
.

Since the enor information is back propagated from the output neurons towa¡ds the input

neurons, then the enor change with respect to the hidden neuronj is

(3. 15)

è8, _Saøo à*l
arFjl -

".,
f4 asq,\

=äw,,

=äW#iåsþ¡),*;+a)

-31-

(3. 16)

*n.r, þ i, the error change with respect to the neu¡on ,t in the output layer (3.14b), and
d4

N is the number of oulput neurons. For a network with more than one hidden layer,

equation (3.16) is also valid for calcuiating the enor changes of the neu¡ons in the other

hidden layers, *trere þ is the error change with respect to the neuron å in the
d4

subsequent hidden layer. So, the amount of weight change for the connection of hidden

neurons is calculated by

,) søn,

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

Lpw ji = (3.r7)

where j indicates thejth neu¡on of a hidden layer, * indicates the &th neu¡on of the next

adjacent layer, and i indicates the ith neu¡on of the previous adjacent layer' In a three-

layer network, i denotes the ith neu¡on of the input layer and ft denotes the ,{:th neuron

of the output layer. If we define

'(''oPiW

sP - ðE'
dxP

then, (3.15) and (3.17) become

Lpw¡i = e õ/,t(4P)'

where c = e represents the learning rate, and õ/ is given by

(3. 18)

(3.19a)

õf = þf -s(4)) s(rí) (3.19b)

III, ESSENTIAL FEATTIRES OF SELECTED ANN MODELS

ifj indicaæs the 7th neu¡on of the ouþut layer, or

À

õf = f@þÐ õl *rt (3.1ec)

. i=l

if 7 indicates the jth neuron of the hidden layer. A mamentum ter:l:. is inhoduced into the

leaming rule in (3.19a), so that (3.19a) becomes

gw¡;(n+ t) = eõ/s(.rf) + ø 4w¡i(n), (3.20)

where ¡r is the index of the training cycle, and c¡ is the momentum constant. The

momentum term is meant to filter out high-frequency variations of the enor-su¡face in the

weight space. ln othe¡ words, the momentum term suppresses oscillation.

The LMS naining procedure requires an iterative process in o¡der to find a solution of a

particular problem. A solution is found if the system reaches the global minímwn (i.e., an

error minimum in enor su¡face with respect to the weights that constitutes solutions to the

problems in which the system reaches an errorless state [McRu88]). However, the

gradient descent method used in the LMS learning procedure does not guarantee a solution

[McRu86], and even if the global minimum can be found, the time required to reach it

cannot be predicæd. These "unique" characteristics of the BP model are elaborated fu¡ther

in the next section.

3,2.3 Problems in BP Model

The LMS procedure is a procedure to minimize an enor function (3.12). It sea¡ches for

the weight values where the enor function takes on a minimum value. An exÍemum (a

minimum point in our case) can be either g/oåøl (nuly the lowesl) or local (the lowest in a

-JJ-

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

finite neighborhood) [PFTV88]. However, virtually nothing is known about finding

global exÍema in general. So far, there a¡e two standard heuristics which are often used:

(i) find local extrema starting from widely varying sta$ing values of the independent

va¡iables, and choose the most exEeme of these, or (ü) pertu¡b a local minimum by taking a

finite amplitude step away from it, and see if the routine returns to a better point, or

"always" to the same one. The LMS procedure with the gradient descent uses the latter.

However, there is no gu¿uant€e that the method will always reach a global minimum. This

leads to the local minima problem. It is suspected that the LMS procedure (i.e., the BP

algorithm) actually converges to a local minimum, if it converges at all [Kosk9l]. From

this point of view, the backpropagation is considered to reach a "global" minimum (i.e., it

finds a solution of a problem), if it reaches an e¡ror minimum in error surface with respect

to the weights which is less than a tolerance value. Some techniques to anticipate the local

minima problem have been inroduced in [Baba89, BuLu90, and Fere9l].

It is known that the computational time taken for Íaining the BP network (i.e., the

process to find a global minimum) to learn a problem is unpredictable. Sometimes, the

uaining may take a while, but often it requires an enormous computational time to

converge. This phenomenon emerges due to the nature of the gradient descent or the

steepest descent For example, suppose the gradient descent is used to find a minimum on

the error surface with respect to two weights w 1 and w2 (see Fig. 3.4). This method

performs many small steps in going down a long, narrow valley. A step starts off in the

local gradient direction, perpendicular to the contour lines, and faverses a sÍaight line until

a local minimum is reached, where the Íaverse is parallel to the local contour lines.

Consequently, it will take many steps to reach a local minimum, and hence more steps to

reach a global minimum. The size of the step may be øilored through changing the

learning rate e in (3.20). A large value of e makes the process run faster, but this also may

-34 -

III. ESSENTIAL FEATTIRES OF SELECTED ANN MODELS

increase oscillation and the eventually of reaching a local minima. On the connary, a small

value prevents oscillation, but this makes it run slower, thus lengthening the naining time.

The choice of the learning rate e is critical for the naining speed. This explains why the

backpropagation requires an excessive amount of time for its raining. Moreover, it was

found that training in backpropagation is an NP-complete problem; that is, the

comput¿tional time grows exponentially with the size of the network [DARP88, Judd90].

Several methods to accelerate the convergence have been proposed in [41Ke90, Hagi90,

Li90, WeMa9ll.

Theoretically, a BP network with as few as one hidden layer and a non-constant

activation function (e.g., sigmoid function) is capable of approximating any continuous

mapping/: S¡ -+ S'(/belongs to Z2), provided that sufficiently many hidden neurons

a¡e available [Funa89, HoSW90, Horn91, and K¡ei9l]. Yet, how to determine the exact

number ofthe hidden neu¡ons is another issue. It has been proven in [SaAn9l, HuHu9l,

MeMR9U that a network with one hidden layer can implement exactly an arbinary naining

set with p Eaining patterns, provided that p- 1 hidden neurons are used. However, while

this shows the least upper bound of the number of hidden neurons required to solve the

training set only, not much is known about the optimum number of hidden neurons

required in order that the network performs best (smallest enor) on both the raining and

testing data. So far, this optimum number of neu¡ons is determined by Eial and error.

There is some evidence [KiIL9O, WeKu90, SiDo9l] that a network with too many hidden

neurons tends to memorize the task rather ûtan generalíze it (i.e,, oveffitting the dat¿). In

solving real-world problems, the learning process often involves massive raining daø.

Following the least upper bound theory, it would require an impractically large number of

hidden neurons to train the network with only a single hidden layer. For this purpose, a

network with more hidden layers might be better applied. Nonetheless, multiple hidden

-35 -

III. ESSENTIAI FEATURES OF SELECTED ANN MODELS

layers are more complicated lo analyze, since there are two va¡iables to adjust, namely, the

number of layers and the number of neurons per layer.

Fig. 3.4. Steepest descent method on the error surface with
respect to w, and wr. After [PFTV88]

3.3 Counterpropagation (CPN)

The counterpropagation network [Hech87], invented by R. Hecht-Nielsen, is a unique

neural network model. It is a combination of a portion of the self'organizing map of

Kohonen [Koho90] and the outstar sîûctvre of Grossberg [Carp89]' Using this

combination, the network self-organizes a near-optimal look-up table approximation to the

mapping. ln other words, it functions as a statistically optimal self-programming look-up

table,

-36 -

iII. ESSENTIAL FEATURES OF SELECTED ANN MODELS

Counterpropagation can learn both binary and continuous vector mappings. To lea¡n a

mapping/: S'+ S', the network requires pairs of input and target patterns. From this

viewpoint, the counærpropagation network is considered as a supervised leaming network,

or a network with naining procedure. However, from the way it encodes or learns pattem

information in its synaptic topologies, the network may have an unsupewised learning

procedure [Kosk9l]. This unique learning procedure is described in the foilowing section.

3.3.1 Network Topology

The full counterpropagation network comprises of five layers: two input layers, two

output layers, and a single hidden layer. It is designed to approximate a continuous

function/: Á c S' -r B cß^, defined on a compact set A, where the inverse of the

function/-l : B cX^ + A c S¿ exists and is continuous. However, for the case of a

non-invertible continuous mapping, the forward-only version of the CPN network can be

used. This network's topology is shown in Fig. 3.5.

The forward-only CPN network consists of th¡ee layers: an input layer, a single

hidden layer, and an output layer. The input neurons serve only as fan-out points and

perform no computation. The neu¡ons in the input layer are fully connect€d to the neurons

in the hidden layer (or Kohonen layer) by a weight matrix W. Similarly, all neu¡ons in

the hidden layer are connected to all neuons in the output layet (ot Grossberg layer), by a

weight matrix 7. This architecture is similar to a fully connected feedforward BP

network. However, there are some differences in thei¡ neurons. Bacþropagation uses the

sigmoid function for the activation of every neuron in its hidden and output layers, whereas

counterpropagation employs linear activation for its neurons in the hidden and ouçut

layers. Furthermore, the neu¡ons in the Kohonen layer are competitive, that is, only a

single hidden neuron (in The accretive mode) can be activated (output of '1'). The

-37 -

III. ESSENTIAL FEATTIRES OF SELECTED ANN MODELS

remaining Kohonen neurons a¡e deactivated (output 0). This scheme i s called competíttve

learning [Gros88b]. In physical implementations, the competitive learning scheme may

\se the on-center off-surround networks [Gross76, Gross88b]. Through this scheme, the

nonìinearity characteristic (which is essential for a neural network) is preserved.

Layer 1

lnput Layer
layet 2

Kohonen Layer
Laver 3

Grossbi¡rg Layer

Fig. 3.5. Topology of a forward-only CPN. After [Hech89]

-38-

UI. ESSENTIAL FEATURES OF SELECTED ANN MODELS

3.3.2 CPN Weight Modification Procedure

Like any other Eaining network, a pair of input and target patterns is presented one by

one to the network during the Eaining process. The input pattem is propagated through the

weight maEix !V. At the Kohonen layer, every neuon competes with one another. The

one with the biggest total sum of incoming signals is the "winner". A winner neuron has

an activation 1 at its output, while the rest have zero activations. This scheme is also called

"winner-trkes-a11" [Gross88]. The propagation scheme is expressed by

(3.21a)

whereas the "winner-take-all" scheme is given by

x¡ =\w¡;ti
ì=l

I'zj =l

lo

if y is the smallest integer for

which .r; à .r' ,V r, j + r

otherwise,

(3.21b)

where 1¡ represents the value of the ith component of the input pattern (since the input

neurons are merely fan-out points), w¡; is the connection weight from input neuron I to

hidden neuron j,.r; is the total sum of the incoming signals to hidden neuron j, and z¡

represents the activation of the hidden neuronj, Equation (3.21a) is simply a dot-product

of the input vector I =(lt,lz¡.. ,1r) and the weight vector wj =(w¡y,w¡2,.'., w;,). The

hidden neu¡on with the largest dot-product is declared tire winner.

The propagation scheme can also be expressed as a distance measured (in Euclidean

metric sense) of the two vectors wj and I. From this point of view, the winner will be the

neuron with the closest r.veight vector rvj to the input vector I. Such a scheme can also be

-39 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

expfessed by

d(w¡,t) = ll*;-lll (3.22a)

if j is the smallest integer for which

d.(w ¡, l) 1 d(w,, l),Yr, j + r

otherwise,

(3.22b)

where d (w;,I) is the EuclÌdean distance between the weight vector w; and input vector [.

The activations of the hidden neurons specify which weight vector needs to be

changed. The weight adjusünent follows the Kohonen learning rule:

Lw¡i = a(t) (li-wji) zj (3.23)

where Âw7; represents the amount of weight change, and o(l) is the learning rate which

decreases with time to zero, 0 < ct(t) < 1. From (3.23), rT is shown that oniy the

connection weight that attaches to the winner neuron 7 is updated. All the other weights

remain unmodified. Notice that there is no target vector required to adjust the weights in

the Kohonen layer. This explains why some literature [Kosk9l] classify the CPN as an

unsupervised learning netwo¡k. Yet the CPN netwo¡k has a second layer, namely the

Grossberg layer, that makes CPN appear as a supervised learning network' The

Grossberg layer requires a target pattem and the information from the Kohonen layer to

adjust its weights. The weights that are telated to the Grossb€rg layer are the values of the

connections between the Kohonen layer and the Grossberg layer. The information ftom

the Kohonen layer is propagated ttrough this connection marix I/ to the Grossber layer'

= (å r, -',,')'' ,

. I'
" =lo

-40 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

The propagation is simply another dot-product transformation given by

h

It =\v¡¡z¡, (3.24)

where y¡ denotes the activation of neu¡on & in Grossber layer, and v¿r. is the value of the

connection between neuron 7 in Kohonen layer and neuron & in Grossber layer. Since

there is only one neuron in the Kohonen layet (for the accretive mode) having an activation

value different from zero, the output vecto¡ is nothing but the weight vector

vj = (vil,vj2,' '.,v;,,) where 7 is the index of the winning neuron in Kohonen layer

(assuming that the allowable value different than zero is 1). From this scheme, it is clear

now that in order to get a desired output vector, given a particulæ input vector to the

network, a target vector T =(TuTz; ' ' , Z,,) needs to be encoded into the weight vector

v;. This encoding scheme uses the Grossberg learning rule:

L,v¡ = F (Tk- vjk) zj (3.2s)

where
^vjr

represents the amount of the weight change, and p is the Grossberg learning

constant (0 < B < 1), From (3.25), it is shown that the weights of the Grossberg layer will

converge to the average values of the tatget vectors, whereas the weights of the Kohonen

layer (through Eq. 3,23) will self organize and distribute themselves in an almost

equiprobable configuration. After naining is done, all the weights arc frozen and only

Eq.3.2l (or Eq.3.22) andEq,3.24 are used. In this configuration, the network is ready

to be used as a feedforwa¡d network.

-4t -

III. ESSENTIAL FEATURES OF SELECTEÐ ANN MODELS

3.3.3 Problems in CPN Model

The Kohonen learning procedure as in (3.23) has a problem. It sometimes leads to

neurons which are under-utilized (i.e., neurons that never win). This problem appears

especially when there are some initial weight vectors that are closer to the input vectors than

others in the vector space. The latter weight vectors are likely to become "loosers".

Moreover, there is some evidence that even though all the weight vectors are initialized with

the same value, the under-utilization problem still exists [AKCM9O]. This problem can be

overcome through employing some "conscience" parameters [Hech87, DeSi88,

AKCM90], The conscience parameter biases the competition process so that each neu¡on

in Kohonen layer can win the competition with close to the fi probability desi¡ed fo¡ an

optimal vector quantization, where N is the number of neu¡ons in Kohonen layer.

The normalization process (assuming the Euclidean norm is used) replaces the "gain"

information of a vector to gain I (unit length). For instance, vector x = (0.1, 0.1) and

vector y = (0.9, 0.9) are treated as the same vector. For some problems that considel the

gain of the vector is important, the dot product operation as in (3.21a) and (3.21b) is

inappropriate. To overcome this problem, the distance measrue as in (3.22a) and (3.22b)

may be used instead, since no normalization process is necessary for this procedure.

However, this distance measure procedure requires a different network topology, since it

cannot use the propagation scheme such as in (3.2la) [Koho90].

3.4 Adaptive Resonance Theory 1 (ART-l)

So fa¡, the discussion has covered the supervised learning netwo¡ks. These networks

have failed to solve the stability-plasticifl diiemma (i.e., the ability of a system to remain

plastic, or adaptive, in response to unexpected changes and yet retain the stability to

preserve previously leamed knowledge) [CaGr88]. For example, learning a new pattern in

-42 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

these networks erases the existing one, ifthe previous one is not retrained together with the

new one. A network without this stability-plasticity characteristic is incapable to adapt

itself autonomously in real time from unexpected changes in the real world.

As a solution to this problem, Grossberg and Carpenter introduced the Adaptive

Resonance Theory (ARÐ model. This model maintains the plasticity required to ieam new

patterns, and still preserves the stability required to protect the knowledge that had been

learned previously. The ART model requires no target pattems, so it is an unsupervised

learning network, or we can say a learning netwo¡k as opposed to a training network (i.e.,

a supervised learning network). The learning is achieved in ¡eal time through direct

"confrontation" with its experiences [CaG¡88]. Since there is no particular pattem for the

output, the network is most useful as a pattern recognizer where only a single output

neuron can be active at a time. Cunently, there are three different models of ART

networks, namely, ART-I, ART-2, and ART-3. However, only the ART-I model, which

recognizes binary pattems, is discussed in this chapter.

3.4.1 Network Topology

The ART-1 model has a slightly different topology than the previously discussed

netwo¡ks. It consists of two layers of neurons: the first layer or lhe comparíson layet,

denoted by F1, and the second layer or lhe recognition layer, denoted by F2 (see Fig.

3.6). Between these two layers there are two connection weight anays calTed a bottom-up

ødaptive fîlter that connects neu¡ons in F1 to neuons in F2, and a top-down adaptive

tilter thar connects neurons in F2 to neuons in F1. So far, from the network's topology,

ART-I appears to be a similar network to a BAM network; that is, a feedback network.

However, ART-1 uses the top-down pathways differently. Using these pathways, ART-1

employs a top-down learned expectation scheme that focuses attention upon bottom-up

-43 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

information in a way that protects previously learned memories from being washed away

by new learning. In order to achieve this, th¡ee additionai parts, namely, the gain control

of F1 denoted by Gain-1, the gain control of F2 denoted by Gain-2, and the STM (Short

Term Memory) reset wave denoted by A provide a mechanism to control the neurons in

both layers. These many different parts that wo¡ks in harmony along with a unique

leaming procedure make the ART- 1 behaves differently from the other feedback networks.

The details on its learning procedu¡e are discussed in the Section 3.4.2.

The neurons in F1 are more complex than the ones usually encountered in the three

models previously discussed. They have to keep Eack of two values in the comparison

phase; the input pattern and the top-down expectation pattern. In addition, they also have

to store the input pattem for a finite time, so that the input pattern will be available for the

next matching if the first attempts at matching fail. The device that is capable of storing

knowledge for a short period is often called a short-term memory (STM), as opposed to a

long+erm memory (LTM) found in the connection paths. Note that a lined activation

function is employed in F1. The other process besides the comparison process is the

normalization process of the input pattern as given by

,,=#
2tr
lFl

(3.26)

where x¡ denotes the activation (or STM Eace) of neuron i in F1, and 1¡ denotes the input

signal to neuron i. From Fig. 3.6, we can see that there is an input coming into F1 from

the gain control Gain- I and there is another one coming out from F1 to the STM reset wave

A. The Gain-1 signal is used to enable F1 to distinguish between bottom-up input

patterns and top-down priming, or expectation, pattems, and to match these bottom-up

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

and top-down patterns by the 2/3 Rule (which is described in the learning section). The

result of the matching or.comparison process will determine the state of the STM reset

wave A.

The ART- 1 model grew from a simpler type of adaptive pattern recognition network,

called a competitive learning model. Neu¡ons in the recognition layer of the competitive

learning model compete with each other in response to an input pattem. The neuron with

the closest weight vector to the input vector becomes the \rinner, Consequentli, every

F2

STM

RECOGNITION
LAYER

F1

STM

COMPARISON
LAYER

Fig. 3.6. Topology of an ART- 1 network. After [CaGr88]

-45-

III. ESSENTIAL FEATURES OF SELECTED ANN MOÐELS

neuron in the recognition layer becomes a representation of a particular class of the input

patterns. In ART-1, the competitive leaming scheme is implemented in the F2 layer (the

recognition layer). The winner neu¡on in F2 will later enable a top-down expectation

pattem that is required in the comparison process of F1. Notice that the conEol gain Gain-

2 enables F2to react supraliminally to signals from F1 while an input pattern is on.

3,4,2 ART-I Weight Modification Procedure

In ART-1, there are two ¿urays of interconnection weights that need to be adjusted

during the leaming process, nameiy, the bottom-up connection weights and the top-down

connection weights. These weights are modified according to the competitive learning

procedure. For example, suppose that an input pattern I activates F1. The signals from

F1 are then propagated through the bottom-up connections to the F2 layer. Since the F2

layer employs a competitive learning scheme, a single neuron I in F2,which receives the

largest total signal, becomes the winner. This neuron I quickly reads out its learned top-

down expectation V to F1 via the top-down connections. At Fl, the top-down expectation

pattem and the bottom-up input panern are matched. If expectation V marches input I, the

bottom-up weight vector b; which conesponds to the winning neuron i is adjusted

according to a leaming rule (i.e., fast leaming rule) given by

ø¡, = --Þi-
L-t+\x¡

,(=l

(3.27)

where j is the index of the winning neu¡on in F2, i is index of a neuron in F1, å;¡

represents the bottom-up connection weights, and Z is a constant > I (typically 2).

-46 -

III. ESSENTIAI FEATURES OF SELECTED ANN MODELS

Similarly, the top-down weight vector ! is adjusted by

t¡iþ+ t) = t¡¡(n) x¡ ß.28)

where tji represents the top-down connection weights, and ¿ is the index of the learning

step. On the other hand, if expectation V mismatches input I, the mismatch event

significantly inhibits STM activity across F1 which then stimulates A to send a reset wave

to F2. A parameter called the vigilance parameter de¡nrmines how large a mismatch will

be tolerated before A emits a ¡eset wave. The vigilance test can be done using an

inequality expressed by

(3.29)

where p is the vigilance parameter, and.r¡ and f7d are the same notation as used in (3.27)

and (3.28). If this inequality is satisfied, then A will emit a reset \ ave. From (3.29), it is

shown that low vigilance value tolerates large mismatches, thus preventing A from

emining the reset wave. For now, let us assume that a large mismatch takes place at F1;

that is, the left hand side of the inequality (3.29) is less than the vigilance parameter p, so

that the inequality (3.29) is false. Accordingly, A emits a reset wave to F2. The reset

wave selectively inhibits the active population in F2, and this inhibition is long lasting'

The inhibition of the winning neuronj in F2 leads to removal of the top-down expectation

V, and thus terminates the mismatch between I and V. Input pattem I can then activate F1

for the second time, and again, the signal from F1 is propagated through the bottom-up

\ t¡i xi
l:l- > /tN -r
Itt
i=L

-47 -

III. ESSENTIAL FEATURES OF SELECTED ANN MODELS

connections to the F2 layer. Due to the enduring inhibition of the previous winner, another

neuron j* (usually the neuron with the second largest total signal) becomes the current

winner. Similarly, another top-down expectation pattern (i.e., the weight vector in the top-

down pathway that corresponds to the neuron jt) V* is produced at Ft. And again, the

comparison process in F1 is repeated. This procedure is repeated until one of th¡ee

possibilities occurs: (i) a neuron j in F2 is chosen whose top-down expectation matches

with input I, (ii) a previously uncommitted neu¡on in F2 is selected, or (iü) all the neuons

in F2 are committed and no one can accommodate input I (i.e., the system has reached its

full capacity. No new category can be made).

The Gain- I parameter controls the process in F1 layer. For example, the fi¡st time an

input pattern I is given to the input of F1, the input signal also enables the Gain-1. This

makes F1 supralimínally activated; that is, activated enough to genetate ouçut signals to

other parts of the network and thereby to initiate the hypothesis testing cycle. When the

top-down expectation is initiated, this signal disable the Gain-t and thereafter Fl becomes

subliminally activated; that is, attentionally prime F1 for future input pattern that may or

may not generate an approximate march with the expectation patt€rn, but does not generate

output signals. In other words, during this phase, F1 is in comparison mode and no

output signals are generated. This rule for matching a bottom-up input pattern with a top-

down expectation at Fl is called tire 2/3 Rule. Likewise, the Gain-2 parameter controls the

activation in F2. However, the Gain-2 does not use the 2/3 Rule. It simply activates all

net¡Ions in F2 when an input pattern I is present. These two conhols together with the

STM reset wave ,4 regulate both the hypothesis testing cycle and the self-stabilization of

learning in an ART-I system.

-48 -

III. ESSENTIAI FEATURES OF SELECTED ANN MODELS

3,4.3 Problems in ART1 Model

The vigilance parameter p tunes the categorical coarseness. Using different vigilance

values, the ART-l network automatically rescales its sensitivity to patterns of va¡iable

complexity. However, choosing the value of p is critical, since it has significant effects

on the number of pattem categories. For example, if p is too high, most patterns will fail

to match those in storage and the network will create a new category for each of them. In

other words, ART-I stores all patterns it encountered into different categories. On the

other hand, if p is too low, different patterns will be grouped together, distorting the

stored pattems [Wass89, HuYK9O, KiIL90]. So far, there is no theory to guide the correct

setting of the vigilance parameter. Trial-and-enor is still the cornmon method used to

determine the proper vigilance parameter.

3.5 Summary

Four neu¡al network models, namely BAM, BP, CPN, and ART-I networks have been

discussed in this chapter. Each model is viewed either as a supervised learning

feedforwa¡d, an unsupervised learning feedforward, a supewised learning feed-back, or an

unsupervised learning feedback network. The discussion covers the basic a¡chitectures and

the weight modification procedures of the models, as well as some limitations or problems

encountered in a particular model. For inst¿nce, the BAM model, which is a less complex

model, suffers from its limited memory capacity and requires mutually orthogonal pattems

to achieve a perfect recail, whereas BP suffers from its required enormous computational

raining time. Also, the CPN and the ART-I networks have unique problems such as the

underutilization problem of the Kohonen learning of the CPN model and the problem with

selecting the proper vigilance parameter in the ART- I model.

-49 -

ITI. ESSENTIAL FEATI.IRES OF SELECTED ANN MODELS

This chapær provides a basis for the comparative study. The basic differences on thei¡

characteristics may be studied through examining the topology and the weight modification

procedure of each model. However, this may not confi¡m or discover all their capabilities,

and particularly, their abilities to solve specific problems. This ¡equires some experiments

to be done in the study. The experiments are discussed in Chapær V and VL

-50-

CHAPTER IV

SOFTWARE IMPLEMENTATTON

This chapter describes a softwa¡e simulation of the selected neural network models.

An object-oriented design methodology has been used in the design process, The software

has been imptemented using an extended C programming language (THINK C 4'02

compiler) and ResEdit 2.1 resou¡ce editor on an Apple@ Macintosh Plus computer with a

minimum of 2 Mbyte memory and Sysæm 6.0.7. Note that the extended C is a standard C

language with additional capabilities for object-orienüed ptogramming. The exænded C is a

subset of C++ programming language [Syma89],

The discussion begins with specification of the requirements followed by a

description of the architectu¡e of the system. Verification of the system will be explained

afterwa¡d. The description of the software structure is achieved through the use of the

Uniform Object Notation (UON) [PCWe90], a structure chart-like notation specially

designs to model the structrrre of object-oriented software. The notation provides a

comprehensive picture of the softwa¡e's element interactions without the source code

details. A complete listing of the source code is presented in a technical report tlnKig U.

4,1 Specifications

The design process starts with specifying the requirements of the softwa¡e' The

first issue to address is softwa¡e flexibility. The software has to be flexible enough to

implement different kinds of neural network models, This calls fo¡ reusable components in

IV. SOFT1VARE IMPLEMENTATION

the softwæe. Next, the softwa¡e has to be implemented on a desktop computer such as the

IBM PC (compatible) or Apple Macintosh. Another requirement is a good user interface

for the software. A graphical user interface (GUI) is preferable, since it facilitates tåe user

in examining the states of the neu¡al network model under study. To achieve this, some

examination tools a¡e necessary. ln the design søge, it is usually difficult to list all the

tools needed for the study. Therefore, it is necessary to design a software that is

maintainable. Note that the maintainability issue is also a requisite for designing a good

program [DaMa88, Page88, Sodh90].

4.2 Design Methodology

Programming a graphical user interface (GUI) using a procedural-oriented

programming language is difficult. Object-oriented programmirg reduces the complexity

of a GUI by encapsulating [Krae89] standard windowing behaviour into predefined

objects lUtlo9}l. Different from the procedural-oriented approach, the object-oriented

approach decomposes a system using the concept of an object [Sodh90]. Every object

belongs to a class, which defines the implementation of a particular kind of object

[Syma89]. The object contains data and procedures to manipulate that data. The data

describe the local state of an objecl and are only accessible to the outside world through the

object's procedurcs, called method. This characteristic ensures data encapsulation. Note

that the method will be invoked by another object thtough the use of amessage.

In the object-oriented approach, a new c/øss may be defined through deriving an

existing c/¿ss. The technical term for defining a new subclass from the existing c/ass is

inheritance, The inheritønce feature facilitates development of maintai¡able software

which ¡eusable components [Holl90]. Following specification of the requirements, with

underlining the software reusability and maintainability issues, it seems that developing the

-52 -

IV. SOFTWARE IMPLEVIENTATION

software using the object-oriented approach will meet such requhements. Therefore, it is

preferable to choose the object-orienæd approach as the design methodology.

MACINTOSH TOOLBOX

USER INTERFACE

THINK Class Library

NEURAL NETWORK
MODEL

I TAYERSI I coitNEclr3¡¡s I

Fig. 4.1. Block diagrams of the main modules. The neu¡al network module
and the tool module can be replaced by similæ modules.

-53-

IV. SOFTWARE IMPLEMENTATON

4,3 Architecture

The software comprises of th¡ee main modules: the user interface module, the

neu¡al net"vo¡k module and the lool module, which a¡e illusEated in Fig.4.1.

The user interface module is the center of the program. Any task relating to a user

command is managed by the user interface module. Tkough this module all other modules

¿ue connected to the user. This module also functions as an interface between the neural

network module and other peripherals such as display windows and storage devices. This

module has been developed through extensive use of the encapsulation feature of the

obj ect- oriented approach.

The critical part of the software is the neural network module. ln this module, a

specific neural network learning algorithm is implemented. Since more than one different

models must be implemented , the inheritance featu¡e has been intensely used to produce

reusable components. To facilitaæ the experimentation, the softwa¡e also includes some

examination tools. These tools are implemented in the tool module. Futhermore, a text

edito¡ has also been embedded into the softwa¡e as a part of the tools. A detail description

of each module will be discussed in the next section.

4.3.1 User Interface

The user interface module consists of two parts: the Macintosh Toolbox and the

THINK Class Libra¡y (TCL). The Macintosh Toolbox is a collection of functions of the

standard Macintosh GUI. These functions operate as an interface betwe€n the application

program and the operating sysæm of the Apple Macintosh computer. A complete reference

of the Machintosh Toolbox can be found in [Appl88], The second part, the TCL,

comprises of several objects that implement the enti¡e Macintosh interface. It takes ca¡e of

things like handling menu commands, updating windows, dispatching events, dealing with

-54-

IV. SOFTWARE IMPLEMENTATION

MultiFinder, maintaining the Clipboard, and so on [Syma89]. With the help of the TCL, it

is much easier to develop a standa¡d Macintosh application, since there is no need to

implement all the details of the GIJI. The TCL is provided as a part of the THINK C

development tool. It is organized into th¡ee distinct, but interacting structrrres: the class

hierarchy, the visual hierarchy, and the chain of command,

The class hierarchy is a collection of all classes that make up the TCL. It describes

the relationships among all the classes. All the classes are descendants of the root c/ass

CObject, and each descendant c/¿ss inherits all the characteristic of its predecessor.

Following the TCL class name notation, all class names begin with the letter'C'fo¡

'class'. Fig. 4.2 shows the class hierarchy (for convenience, the leading letter 'C' in each

class name is omitted).

The visual hierarchy describes the organization of all visible entities. It is built

around the idea of enclosur¿s. At the top of the visual hierarchy resides the de.ç*top. The

desktop encloses all the windows in the application [Syma89].

The chain of command specifies which objects must handle commands. The chain

of command is based on the idea of supervrsors. If an object cannot handle a command, it

passes the command on to ils supemisor, The chain of command and the visual hierarchy

rcceive messøges from an object named CSwítchboard,which receives events from the

Macintosh Event Manager and translates them into messages, Noæ also that the name of a

c/ass is usually used to indicaæ an object nstannaþd ftom ttrat c/øss.

-55-

IV, SOFTWARE IMPLEMENTATION

Fig. 4.2. The software class hierarchy. The dashed block diagrams represent all
the TCL classes, whereas the solid block diagrams represent the application classes.

-56 -

IV. SOFTWARE IMPLEMENTATON

The TCL envi¡onment makes the connections between the application module and

the user interface module much simpler. In the TCL, a unique object named CApplication

functions as a mediator. Tfuough this object, some objects in the user interface module can

communicate with objects in the application module. This feature also offers an easy way

to embed the user interface module into the application module. Notice also that objects

communicate through sending messøgøs [Syma89, K¡ae89, Mull89, and Mark90].

Fo¡ our purpose, a new class called CNeuralNetsApp is inherited from the

CApplicatíon class. The CNeuralNetsApp object connects the user interface module to

the neural network module as well as to the tool module. To get the picture of these

interactions, it is preferable to show them in an object-cooperation diagram, as shown in

Fig.4.3. Note that the object-cooperation diagram is a notation to facilitate the object-

oriented design methodology, similar to a structure chart, The object-cooperation diagram

is a part of the Uniform Object Notation inroduced by Page-Jones et al. [PCWe90].

Figure 4.3 shows a communication path between the CNeuralNetsApp object and

the CN euralN etsModel object as well as some communication paths between

CNeurølNetsApp object and the tool module objects such as CProbe, CDisplay, and

CPauernEditor objects. It also shows interactions between tool module objects,

represented by CProbe and CDisplay objects, and neural network module objects,

represented by CMatrix and CVector objects. Figure 4.3 can be seen as another detailed

description of some interactions among the main modules, as shown in Fig. 4. I '

However, some connections with the other parts of user interface are not displayed since all

of those connections are achieved though the CNeuralNetsApp object. This kind of

interaction is well explained through using an object-communication diagram, shown in

Fig. 4.4. Notice that the object-communication diagram is also a part of the Uniform

Object Notation [PCWe90].

-57 -

IV. SOFTWARE IMPLEMENTATION

c
-,Ã

,--Ëî

'rl-ñ'../ Draloo \, wNDow \t-
Fig. 4.3. Object-cooperation diagram showing interactions among objects
in the main modules.

-58-

IV. SOFTWARE IMPLEMENTATION

Following the C language procedure to begin the program execution, the program

uses the function called mainO as the fkst module [DaMa88]. T\e main) function of the

program, as shown in Fig. 4.4, creates a CNeuralNetsApp object and initializes the object.

During initialization, the object also sends some initialization messages to its superclass

object, the CApplication object, and to other relevant objects. After i¡itialization the

mainO function sends a Run message to CNeuralNetsApp object. Since this message is

implemented by its superclass' method, a CApplication class name is used instead

lPCwe90l.

The CApplication object, through the R¿¿ method, sends a Process9vent

message to CSwitchboard object repeatedly. This scheme performs a main event loop,

since the CSwitchboard object calls the Macintosh Event Manager to get events and then

Íanslate them into messages. These messages are then sent to the relevant objects in the

chain of command. Note that the main event loop is the "heart" of every application

program running on the Machintosh [Appl88]. A method-structure diagram showing

detailed sfiucture of the Process0v¿nt method of the CSwitchboard class is given in Fig,

4.5. Notice that the method-structure diagram is another part of the Uniform Object

Notation [PCWe90].

The program remains in the main event loop until a "Quit" command from the

menu is chosen by the user, This command causes an interruption in the loop. Then,

contol is returned ro the main) function. Subsequently, lhe main) function sends an

Erll message to CApplícation object to stop the program. This E¡it message is required

to do some final tasks such as stoping the neural network learning process, closing files,

and freeing some allocated memories, before terminating the prog¡am. The whole program

ends after the Erlf message is executed.

-59-

IV. SOFTWARE IMPLEMENTATION

Fig. 4.4. Object-communication diagram showing the main event loop of the program.

-60-

IV. SOFTWARE IMPLEMENTATION

ñâcEv6nt

macEvent

Fig. 4.5. Method-sfuctue diagram showing the ProcessEven method of
the C Switc hb oard class.

4.3.2 Neural Network Model

Each neural network paradigm has a unique network topology and learning

algorithm. Nevertheless, they share some common featues such as employing layers and

weights in their networks, and involving learning and testing processes. These common

-61-

IV. SOFT1VARE IMPLEMENTATION

features are good candidates to obtain a generai class, which is necessary to produce a

reusable component [Mull89].

In object-oriented programming, a general class may be presented as an abstract

class. Note that an absÍact class is not nuly complete enough to operate as an independent

entity. It only serves to group together the member functions and dat¿ elements that are

comrnon to all of its subclasses [Mul189]. Therefore, each neural network model has to be

implemenæd as an object of a subclass derived from tlis abstract class. The absEact class

ensures a uniform interface for all the neural network model objects.

Every neural network model is an object of a unique subclass derived from an

abstract class named CNeuralNetsModel. Each subclass will only implement specific

tasks to a model. All common featues such as the initialization process, leaming and

testing schemes, inpuVoutput daø handling, and any communication inærface to the user

interface module are implemented in the CNeuralNetsModel class. Howeve¡, this class is

not working alone. There are several other objects that handle specific jobs, which are

assigned by the CN euralN etsModel class. This kind of team work has been previously

illusrated in the object-cooperation diagram of Fig. 4.3.

The figure also shows interactions between some particular objects in the neural

network module, namely CMatix and CVector objects with objects such as CProbe and

CDisplay in the tool module. Since the CProbe and ùe CDisplay objects are used to

display the states of the CMatrix
^îd

the Cvector objects, which always change during

the learning process, it is preferable to have their own communication path. This

establishes a direct link between them. Notice that the CMatríx and the CVector objects

are employed to implement the weights and the layers of a network, respectively.

-62-

IV. SOFT1VARE IMPLEMENTATION

måcsFR€ply
ùS

Fig. 4.6. Object-communication diagram showing the process of creating and
initializing a C N ewalN etsModel objæt

-63-

IV. SOFTWARE IMPLEMENTATION

It is easier, perhaps, to describe the neu¡al network module by showing how the

module works. To begin, assume that a CNeuralNetsApp object has been created by the

main) function, and the program is now in its rn¿¡¡r event loop.

The "øle" begins when the user chooses a "New" command or an "Open"

command to create a model. T"he CNeuralNetsApp object receives a message relating to

that command from the CSwitchboard object. Consequently, a new CNeuralNetsModel

object is created . The CNeuralNetsModel object is assumed to b€ a normal object that can

operate independently. In a real situation it will be replaced by an object of a subclass

derived from it. The process also involves some initialization. An object-communication

diagram showing this process is presented in Fig. 4.6. At this point, the user is able to

modify either the topology of the model or the parameters of network. Since every model

hæ iß own architectu¡e and learning algorithm, any task pertaining to a specific featu¡e of a

model is implemented in a subclass derived from the CNewalNetsModel class.

The next step, prior to the leaming process, is the initialization of the weights. For

a certain model, all the weight values are initialized with some random values, and for

others, the weights are initialized using small fixed values. The initialization option is left

to the user. The learning process starts when the user selects a "Surt Leaming" command.

Similarly, a message pertaining to the command is sent by the Cswitchboard object to the

CNeuralNetsModel object. The CNeuralNetsModel object will then do some preparation

for the learning process. A method, called StartLearning, completes the task through

sending some messages to other objects. Notice that this is not the method that implements

the learning algorithm. The learning algorithm is implemented in a method called

DoLearning, which is discussed later, The InitConnections method, which implements

the initialization process, and the StartLeanring method are illusratcd in Fig, 4.7.

-64-

IV. SOFT}VARE IMPLEMENTATON

Fig, 4,7 . Object-communication diagram showing the weighs i¡itialization
anil the start leaming events of the CNewalNetsModel object

-65-

IV. SOFTWARE IMPLEMENTATION

'e>
mâxSlêep

Fig. 4,E. Object-communication diagram showing the interaction of many
objects during a leæning session.

-66 -

IV. SOFTWARE IMPLEMENTATION

Each neural network model has its own leaming algorithm. This commonality

leads us to define a general message to do the learning. The technical term for this is poly-

morphism [K¡ae89, Syma89, Mull89]. For this purpose, a method named DoLearning

has been defined in CN euralNetsModel class to implement the leaming algorithm.

However, since a learning algorithm is unique for a neural nétwork model, each subclass

will override this method. Overriding a method means that the subclass responds to the

same message as its superclass, but it uses its own method to respond to the message

[Syma89]. For the CNeuralNetsModel class, since it is not implementing any specific

model, the DoLearning method in this class will do nothing.

Fig. 4.8 shows some inte¡actions among objects during execution of learning' A

special method named Dawdle in the CNeuralNetsModel class will send messages to

itself. The messages will be handled by related methods. The Dawdle method will be

invoked by another object, narnely the CApplícation object, during idle time, that is, when

there is no inpulouþut task to handle. Using this kind of a scheme, the learning process

can be performed as a background process (i.e., the program can do multitasking). In

other words, more than one neu¡al network model or other applications operate together

simultaneously. This behavior can be realized though some help from a special object,

CMultiTask, which is an object of subclass derived from the CChore class. Fig. 4.9 and

Fig. 4. 10 show the object-communication diagrams.

To prevent unfair time sharing, the DoLearning method must process only one

pattern at a time. In other words, the conesponding learning algorithm is implemented so

as to lea¡n one pattem only. This is the main reason to send a GetNextPatternToLearn

message prior to sending rhe DoLearning message. If, however, having a faster learning

process is more important than implementing a multitasking process, a DoFastLearning

method can be chosen instead. By enabling the "Fast Learning" command, the Dawdle

tV. SOFTWARE IMPLEMENTATION

method will send a DoFastLearning message, which then performs an iterative process

locally (see Fig. 4.8). The conrol does not return lo the main event loop until either all the

patterns a¡e Eained, or a keyboard/mouse event has been detected. In the fast learning

mode, only one neural network model can operate at a time.

Fig. 4.9. Object-communication diagram showing a multitask
event duing an idle time.

In response to a "Start Learning" command, a StartLearning method sends an

AssigttldleChore message to the CApplícation object together with a pointer to a CMulti

Tas,t object. The CMultiTas,t object will be added into the CApplication's list chore.

During idle time, the CApplication object sends a P erform message to all the CChore

objects or is inheritances in the list (see Fig. 4.9), which later initiate the learning process.

-68 -

IV. SOFTWARE IMPLEMENTATION

In a similar fashion, but with an opposite goal , the FinÌshLearnjzg method sends a

CancelldleChore message to the CApplication object in orde¡ to ¡emove the CMultiTask

object from the CApplicationlist chore. This ends the learning session.

Other methods, which a¡e complementary to one another, ue the StopLearning and

lhe Resu¡neLearning methods. Those two a¡e aimed to inüerrupt the leaming process for a

specified time. Fig. 4.11 gives details of tl¡e object interactions.

Fig.4.10. Object-communication diagram illustating the objects of
subclasses of ¡he CChore class.

-69 -

IV. SOFTWARE IMPLEMENTATION

Fig. 4.11. Object-còmmunication diagram showing the stop, resume and fi¡ish
learning events of the CNeuralNetsModel object

-70 -

IV. SOFTWARE IMPLEMENTATION

Finally, after a learning session has been completed, a testing session needs to be

done. A "Test Network" command yields the CNeuralNetsModel object to send a

TestNenyork message. This command will only process one pattern, which is selected

from the menu. To have all patterns in a set processed, a TestNetworkAllP atterns

message is sent instead. The testing algorithm, which is in some model represented as a

forward calculation, is implemented in the TestNetwork method. The process is depicted

in the object-communication diaglam shown inFig. 4.12.

þ->
rhôTærchôrc :

TESÌI!ETCHORE

À\-

Fig, 4.12. Object-communication diagram showing the interaction of
many objects during ttre testing process.

-71-

IV. SOFTWARE IMPLEMENTATION

V th"D"t",

V DArAr¡ÍERFAoE

Êrs"l

O title

v

Fig. 4.13. Object-communication diagram showing the process of creating the
CProbe object and establishing the communication path betwee^ the CProbe
object and the CDatalnterface objerL

na

IV. SOFTWARE IMPLEMENTATION

f ffi9ÅFi"'o.'

Fig. 4.14. Object-communication diagram showing the process of creating the
CDßplay object and esøblishing the communication path between the CDisplay
object and tlre CD atalnterface object

-73 -

IV. SOFTWARE IMPLEMENTATON

4.3.3 Tools

Two examination tool objects, namely the probe tool object and the display tool

object, have been developed to facilitate the study of neural network models. The probe

tool is used to plot several values of a vector or a matrix element within a specified period,

for example, to plot the total sum of squared er¡or of training patterns in the

bacþropagation (BP) model du¡ing its learning process. Similarly, the display tool is used

to represent the element values of any vector or matrix in the model under study. The

interaction between vector or marix objects and display or probe objects have been

discussed in previous section with the help from an object-cooperation diagram in Fig. 4.3.

This section describes the process to establish the communication path between vector.or

matrix objects and display or probe objects.

The probe tool is implemented as an object of a CProbe class, which is an

inheritance of an abstract class Cobserver. When the user chooses "Probe" command, the

CNeuralNetsApp object will receive a command to create a ¡ew CProbe object, and to

establish a communication path between the CProbe object and a CDatalnterlace object or

its inheritance. Accordingly, the CProbe wtll open a window, and set up a communication

path to a selecæd CDatalnterface object or an inheritance of it, particularly a CMatrix o¡ a

CVector object. Since each CProbe object can only communicate with a selected

CDatalnterface object, it is possible to create morc CProbe objects to probe different

vector or matrix objects. The only factor that limits the number of. CProbe objects creat€d

is the total amount of available memories. The user has privilege to select which vector or

matrix object to probe.

fn a simila¡ fashion, the display tool is implemented as an object of. a CDisplay

class derived from the CObserver class (see Fig. 4.2), The CNeuralNetsApp object will

creare a CDisplay object and establish a communication path between the CProbe object

-74 -

IV. SOFTWARE IMPLEMENTATION

and the CDaîalnteíace obiecl Since the CDisplay class is derived from the same absEact

class of the CProbe class, that is the CObserver class, basically, it has the same behaviour

with the CProbe class. Fig. 4.13 and 4.14 show the process of creating the CProbe and

the C D isp tøy objects, respectively

Fig. 4.15. Object-communication diagram showing the process of creating and
initializing the CP anernEditor object

IV. SOFTWARE IMPLEMENTATON

Another useful tool to help preparing the inpultarget pattern sets is the pattern

editor. Since the program will read the pattem data as a vector, the pattern editor tool that

implemented as a CPatternEditor object is used to Eansform text data into vectors. Each

inpultarget patæm is represented as a vector. The tool creates a list of pattern vectors and

send it to the network. The network gets a pattem vector from this list during leaming or

testing process. An object-communication diagram showing the process to create a

CPatternEditor object is given in Fig. 4.15.

4.4 Verification

A product is only good as its test system [DaMa88]. Therefore, it is necessary to

test and to verify the software. Though, the process of testing and verifying software

system is a discipline in its own right

For our purpose, there are two verification processes: the software verification and

the neural network model verification. The software verification is meant to verify the

enthe program with respect to its specification, whereas the neural network model

verification is intended to verify the implementation of the model.

4.4,I Software Verification

Softwa¡e verification can be done in two ways: (i) single module veri-fication and

(ii) modulæ integration verification. The softwæe component verification is done during

the development process. This verification is done in a modular level. Each module is

tested and verified during the development of the softwa¡e. The process, however, only

verifies the modules independently, Itis only good for checking the syntax enors and the

logical connection within a module.

IV. SOFTWARE I MPLEMENTATION

The modula¡ integration verification can only be done after the whole program has

been completed. This is done in the system verification. For this kind of testing, it seems

that the best way is to use the program. The verification process at this level is called

alpha æst. The alpha test consists of testing performed by the developer for the express

purpose of turning up any bugs in the final product [DaMa88]. In this stage, there is no

more new code implemented unless it is intended to fix the bugs.

4,4.2 Neural Network Model Verification

The model verification is necessary to ensure that there is no error in the

implementation of the neu¡al network models. An error appearing at this stage is no longer

a softwa¡e problem, but a problem in understanding the learning algorithm. This kind of

problem cannot be detected in the softwa¡e verification process, since there is nothing

wrong with the coding. lnstead, results obtained from the model simulation are not valid'

To do this kind of verification, one can use the same test problem that has been

used by the author of the model in their original publication, Then, the verification process

is simply an inconsistency test, that is, the simulation result of the implemented model has

to show similar or nearly similar result as shown in the original papers, given a particular

problem used in that publication. If an inconsistent result occu¡s, then the softwæe needs

fu¡ther examination. Otherwise, the learning algorithm is assumed to be properly

implemented. Another approach is to test the systems with known patterns and assess the

quality of the results.

4.5 Summary

This chapter discusses the development process of the neural network softwa¡e'

An object-oriented design methodology has been used to design the software shuctue.

-77 -

IV. SOFTWARE IMPLEMENTATTON

Throughout the discussion, a Uniform Object Notation has been utilized to model the

system. The program is a softwæe implementation of the four neural network models

under study. The program is also equipped with a probe tool, a display tool, and a text

editor. The enti¡e program is implemented using an extended C language, which supports

the object-oriented programming, on the Macintosh computer. An example of the neural

network simulator's windows is shown in Appendix C.

-78 -

CHAPTER V

ASSOCIATIYE MEMORY EXPERIMENT

The pattern associator is an example application of artificial neu¡al nerworks. In this

example, a network is used to store pù-data associations. ln other words, the network is

Fained to associate pairs of patterns. Ideally, using this scheme, a stored pattern can be

recalled completely from an incomplete pattem (autoassociative memory) or from a

different patten (heteroassociative memary) that is associated to it. This chapter studies

the behaviour of selected a¡tificial neu¡al network models implemented as pattern

associators. However, since the associative memory task requires pairs of labeled patæms

(i.e., a particular output patrcrn is associated to a particular input pattern), only the models

with supervised learning æe involved, namely BAM, BP, and CPN models.

There are two different associative memory experimentations: the autoassociative

experimentation and the heteroæsociative experimentation. The autoassociative experiment

is divided into three individual experiments. Each individual experiment stores different

number of associations (pairs of patterns), such as two associations, three associations,

and fou¡ associations. Similarly, the heteroassociative experiment is divided into two

individual experiments, namely two-association experimentation and three-association

experimentation.

ln this chapær, the network co¡rfiguations and the parameter settings of the models are

discussed along with the raining and testing resulß of each individual experimenL The test

results fo¡ each individual experiment are shown as a list in a table, In this table, the test

-79 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

pattems and the output panerns of the networks are depicted in 7x5 binary pixel projection'

The results of the experiments a¡e discussed after the experiment section, and the summary

of the chapter is presented at the end of the chapter.

5.1 Pattern Sets

The patterns used in the experiments are 7x5 arrays of binary pixels representing the

alphabet characters ,4 through.I and letær Z. The fi¡st ten characters (i.e., letter A to

letter "I) a¡e the same patterns used in [HuYK9O] and [KiIL9O]. These cha¡acters are

grouped into several taining sets consisting of two, three and four associations. Notice

that this kind of grouping is used because of the memory capacity limitation of the BAM

model. According to McEliece [McEl87] (see Eq. 3.6), a network with 35 input neurons

and 35 ouçut neurons (7x5 binary pixels) can only store up to 3 pairs of pattems to recall

all the patterns perfectly. However, not every possible combination is used' The selection

of pattems in a group is determined according to the Hamming distance between two

patterns (see Eq. 3.9), the number of ON bits (1s) in the patterns, and the number of

similar and distinct bits of the patterns. For example, letter / and letter,I are grouped

together as a training set in the two-association experiment because they have the smallest

Hamming distance (i.e., 2 bits). However, letær E and letter G, which have the same

Hamming distance with 1 and J, are also used because E and G have the same number

of ls (17 bits) whereas / and ./ have different number of ls (J is a subset of I). The

projections of these four letters represented by 7x5 binary pixels are shown in Fig. 5.1.

For convenience, \rye use HdU, J) to denote the Hamming dist¿nce (the total number of

distinct bits) between l and J, lls to denote the totål number of ON bits (1s) of a pattern

1, and f1, ô J15 to denote the total number of similar ON (1) bits (intersection) between I
and "/. For simplification, /¡5 n J1, is also written as / n ,L

-80-

V, ASSOCIATIVE MEMORY EXPERIMENTS

Ets ñ Gts = 15 bits

HdE,G)=2bits

Er' = 17 bits Gt' = 17 bits

I1g ô J1s = 11 bits

HdI,J)=2bits

Jr' = 11 bitsIr' = 13 bits

Fig. 5.1. 7x5 binary pixel projection ofE & G and I & J

The raining sets consist of7 two-association sets and 4 three-association sets used in

the autoassociative experiments, and 6 two-associatlon sets and 2 three-association sets

used in the heteroassociative experiments. Besides these Eaining sets,2 four-association

sets are also used in the autoassociative experimentation. The aim is to study the

performance of BAM when it is used to store more associations beyond the suggested

limit. Notice that this memory limitation is less critical for BP and CPN since they have

larger memory capacity than BAM (i.e., the memory capacity of BP rvithout a hidden layer

is twice the number of its weights [Nils90], while the memory capacity of CPN is equal to

the number of its hidden neurons [Hech89]). All of these pattern sets are used as the

Eaining sets. The list of the raining sets is given in Table 5.1. For convenience, we use

SAB to denote the set of two associations of cha¡acters A and B (i'e., SÆ = {(4, A)' (B'

B))), and S¡¡-¡¡ to denote the set of two characters A and B that are respectively

associated with characters / and J (i.e., S¡¡.u = { (4, D, (8, J) }). For testing purposes'

-81-

V, ASSOCIATIVE MEMORY EXPERIMENTS

the incomplete or noisy versions of those patterns are used as inputs to the networks in the

recalling process. The complete ffaining patterns can be found in Appendix A.

Table 5.1. Training sets fo¡ the associative memory experimentation.

Autoassociative Heteroassociative

2-association 3-association 4-association 2-association 3-association

S¿s
SÆI
SAr
SBc
Sæ
Sæ
Srtr
Su

SesI
SAFr¡

Sstu
Se¡c

Ssct¡
Ssril-

S¡¡-u
S¡s-m
Ssc-Ar
Ssr-c¡
SH-Ec
Sr¡-Bc

SsHr-¡cJ
S sIü-AJc

5.2 Measurement Technique

One method to examine the behaviou¡ of a network is tlrough examining the outputs of

the network, given some various input pattems. The important point to be considered in

this method is how we inûerpret the output pattern generated by the network in response to

an arbiræy input pattern. In an associative memory, the output may be a pattern that has

been stored previously, or it may be a totally new pattern that has never been learned

before. If the output pattern is one of the stored patterns (in case of autoassociative

memory) or a pattern that is associated with the input (in case of heteroassociative

memory), then there is no problem to interpret the output pattern. In other words' the

given input pattern leads to a perfect recall of a stored pattem. However, it is not so

obvious if the output pattern is a totally different pattern than the one the network has

-82 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

learned before. In this case, the Hamming dist¿nce (see Eq. 3.9) is used for measuring the

similarity of an output pattern to a stored pattern. For instance, a new pattem is named

Anoisy (a noisy version of pattern A) if that pattern imperfectly resembles pattern A.

Notice that every noisy version that is presented more than once in the table has an index,

e.fl., Anoisyt. However, there are several exceptional cases where the Hamming distance

is not used. These are the cases when the output Pattern is an intersection of two or more

stored patterns, a unique feature of a stored pattern (a pattern that is part of a particular

pattern), or a complement of a stored pattem. To show this, let us consider each pattem as

a set of 35 ordered binary numbers (bits), that is, A = {at, a2, . . ', aj5}, a¡e {0, l}'

The order of the bits (i.e., the position of each bit in a set) is important. A pattem A is

said to be equal to a pattern ,4* if every bit, ø¡, of A equals the corresponding bit' ø¡*, of

A*. In other words, .4 is comprised of all elements of A* and vice versa. For

convenience, we are only interested in the existence of the ON (1) bits in a set. From this

point of view, a set A ñB exists (i.e., A nB + {Ø}) if there is at least one ON bit, ø,=

1, of pattern A that equals to the corresponding bit, å¡= l, of pattem 8. Using the same

notation, an output pattern is named ,4 n I if its ls are only the intersection bits of pattern

A and B. Similarly, a pattern is named A¡r-a if its ls are bits that ¿ue not in the set B (the

unique bits of pattern A; i.e.,,4-(A n B)), and it is named Ac if it is a set of the first

complement of pattern ,{. Some examples of these cases are illusuated in Fig. 5.2. There

is also a condition for which we cannot use the notation defined above to classify the

pattern. This is the case when the oulput pattern has the same distances towa¡d two or

more stored patterns. ln this case, a question mark "?" is used as its name.

There are some adjustments to BP's output, since it uses real values for representing

the output values. All the outputs of BP are rounded up, that is, an output value à 0.5

becomes I and 0 otherwise. This adjustment is not necessary for BAM and CPN models'

-83-

V. ASSOCIATIVE MEMORY EXPERIMENTS

since BAM uses only integer values and CPN stores only integer values at its Crossberg

layer.

Fig. 5.2. Projections of A, B, A¡q¡sr, A n B, A¡¡-¡, and Ac.

5.3 Autoassociative Experimentation

This experiment is aimed to study the behaviou¡ of BAM, BP, and CPN models as

autoassociators. These models a¡e used to store several associations, and then thei¡

behaviors are examined through analyzing the output given a particular test pattem to the

input. The experiment is divided into fou¡ individual experiments. Each experiment is

distinct by the number of associations used.

H
A

H
B

H
Anoisy

H
A r'ì B

ffi
Ap-¡

I

ü
Ac

-84-

V. ASSOCIATIVE À4EMORY EXPERIMENTS

5.3.1 Two-association

In this experiment, T two-association sets (Ses, SAH, S¡¡, Ssc, SBc, Sm, and S¡) are

selected as the training sets. Each individual experiment uses each of the two-association

set. Thus, each model is frained separately using each of the taining sets. The trained

networks a¡e then tested using several incomplete ve¡sions of the raining patterns. The

haining sets a¡e listed in Table 5.2. This t¿ble includes the properties of the training

patterns, such as the total number of ON bits (1s), and the number of simila¡ bits and

distinct bits (Hamming disønce).

5.3.1.1 Network Configurations

The disc¡ete BAM network consists of 35 input and 35 output neutons. This number

of neu¡ons is selected since the inputs and the outputs æe 7x5 binary pixel pattems. The

thresholds of the neurons are equal to 0, so this is a homogeneous BAM. The CPN

network consists of 35 input neurons, 2 hidden neurons, and 35 output neurons. This

number of hidden neurons is used since the memory capacity of CPN is equal to the

number of its hidden neurons [Hech89]. The network is a forward-only CPN (refer to

Section 3.3.1 for an explanation of a forward-only network) with acc¡etive mode, that is,

only a single hidden neuron can be activated at a time. All neu¡ons in the adjacent layers

are fully connected. The experiment also includes a two-layer BP (BP without hidden

layer) and a three-layer BP (BP with one hidden layer) nenrork, Both networks have 35

input and 35 ouçut neurons. The three-layer BP uses only a single hidden neuron. This is

sufficient for learning only two faining patterns since a network with one hidden layer can

exactly implement an arbitrary naining set with p training patterns, provided that p- 1

hidden neurons are used [SaAn9l, HuHu9l, MeMR91]. The neu¡ons in the hidden and

output layers have biases, and they use the sigmoid function as the tlueshold function. All

-85-

V. ASSOCIATIVE MEMORY EXPERIMENTS

neuons in the adjacent layers are fully connected. Those network configurations a¡e fixed

for all two-association raining sets.

Table 5.2. Two-association raining sets for the autoassociative experimenl

5,3.L2 Storing

The raining procedure in BAM is suaighdorward, There is no leaming patameter to

adjust nor any enor criterion to meet Before Íaining, all the weights a¡e initialized to zero.

On the conrary, BP requires some learning parameter adjusfnents and some enor criterion

Training set ls (bits) H¿ (bits) n (bits)

s¡¡ = {(4, A), (8, B)}

s¡s = {(A, A), (H, H)}

s¡r = {(4, A), (r, D}

s¡c = {(8, B), (c, c)}

src = {(E, E), (c, c)}

sm = {(H, H), (r, Ð}

su = {0, Ð, (J, J)}

Ars = 16
Bt=16

Ars = 16
Ht' = 13

At" = 16
Its = 13

Bts = 16
Gt= 17

Et. = 17
Grs = 17

Ht' = 13
Its = 13

It' = 13
Jr" = 1l

6

J

t3

5

a

16

7

13

13

8

T4

t6

5

t1

-86-

V. ASSOCIATIVE MEMORY EXPERIMENTS

to meet. The total enor of 0.03 is chosen as the stoping criterion. This means that the

training process will terminate if the total error of the network is less than or equal to 0.03

(in the Euclidean metric). At this point, it is assumed that the netwo¡k has reached its

global minima. In this experiment, all the BP uainings are epoch tainings (batch-updaæ

trainings), and the naining pattems are presented in random order. Notice that a uniform

disribution of random values between -1.0 and +1.0 is used for the weight initialization.

Table 5.3a and 5.3b show the learning rate (e), the momentum term (o), the total error, and

the number of raining cycles completed on each BP taining. Fig. 5.3 depicts a typical plot

of the total eror versus the number of epochs (training cycles) of a two-layer BP Fained

with the S¡s training set. Similar to BP, CPN requires some learning parameter

adjustments. For atl CPN rainings, the Kohonen learning rate is set to 0.1 and the

Grossberg learning constant is set to 1.0. To prevent the under-utilization problem (see

Section 3.3.3), a scheme called Frequency Sensitive Competitive Leæning (FSCL)

lAKCMg0l is employed. Using this scheme, every hidden neuron is divided by the

winning frequency of that neu¡on. This prevents a hidden neuron to become a winner

more ofæn than $ of the time, where N is the number of the hidden neurons. So, every

hidden neu¡on can win the competition wittr approximaæly $
probability. Since CPN does

not have any enor criterion like BP, the numbe¡ of naining cycles becomes the CPN

stoping criterion. ln the experiment,40 Eaining cycles is to be completed. Prior to each

naining, all the weights a¡e initialized to a fixed value of 0.1. During Íaining, the raining

pattems are presented one by one in ¡andom order,

-87 -

V. ASSOCTATIVE MEMORY EXPERIMENTS

Table 5.3a. Learning raæs, momentum terms, total enors and
taining cycles of the two-layer BPs.

Training set e 0 total eno¡ epochs

sAB

S¿s

SAt

Sac
Sm
S¡¡
Sû

0.3

0.3

0.3
0.3
0.3
0.3
0.3

0.5
0.5

0.5
0.5
0.5
0.5
0.5

0.03
0.03
0.03
0.03
0.03
0.03
0.03

175
205
168

r78
190
t70
223

Table 5.3b, Leaming ratÊs, momentum t€rms, total eÍors and
of the tfueeJayer BPs.

Training set e g totzl enor epochs

S¡¡
SAH

SAr

S¡c
Src
Sril
Su

0.3

0,3

0.3
0.3
0.3
0.3
0.3

0.5

0.5

0.5
0.5
0.5
0,5
0.5

0.03
0.03
0.03
0.03
0.03
0.03
0.03

2767
2878
2684
2892
7567
3101
9860

-88-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Fig. 5.3. Total enor versus number of epochs of a twoJayer BP on S¿g set.

5.3.1.3 Recalling

Every Fained network is fust tested using the Eaining patterns as inputs to make sure

that successful raining is achieved. Successful taining means that the network always

outputs a copy or an approximate copy of the tffget pattem, given a conesponding input

pattern used in the raining. This verification test seems redundant for BP, since it uses the

difference (the total enor) between the actual and the desi¡ed (ta¡get) outputs as the stoping

criterion of the training. It is obvious that successful BP fiaining is achieved if the network

can approximate the targei pattern within a specified enor criterion, This is not so obvious,

however, for the BAM and CPN models. On ttre one hand, since there is no enor criterion

V. ASSOCIATIVE MEMORY EXPERIMENTS

nor any training cycles involved in BAM taining, the æst employing the raining pattems is

essential. On the other hand, CPN has some taining cycles to complete. However, the

number of raining cycles is not an explicit indicator for successful training, unlike the enor

crite¡ion in BP. To verify whether a CPN ne¡vork is successfully trained, a test employing

the raining patterns is necessary. The verification test shows that all the two-association

Eaining sets are successfully trained by BAM, BP, and CPN networks. Moreover, this

test also shows that 40 training cycles is sufficient for the CPN tainings. The detail lists of

BP rainings, including the number of epochs completed, are given in Table 5.3a and 5'3b.

The next test is aimed to study the performance of the models giving some incomplete

pattems. These incomplete pattems afe not randomly generated nor selected from the noisy

ve¡sions of the sto¡ed patterns. They æe merely partial versions of the stored patterns.

Notice that, we distinguish between a noisy version and a partial version of a pattern. A

noisy version of a pattern is generated though distolting the pattem with some random

noise, whereas a partial version of a pattern is generated by hand through considering that

every ON bit is a part of a pattem. Some incomplete patterns used in the experiments are

illustrated in Table 5.4a-g.

All the networks fained with two-association Eaining sets are tested using pattems that

are partial versions of the raining patterns. The test results for the S¡¡, S¡¡¡, S¡, Ss6,

SBc, Ssr, and S¡ training sets are shown in Table 5.4a, 5,4b, 5'4c, 5.4d,5.4e' 5.4f, and

5,4g, respectively. Since many of the test patterns are a superselsubset of the others and

yield the same results, only representative elements a¡e shown in the tables. Each table

shows the test pattern used as input to the netwo¡ks, the Hamming distance (H¿) between

the test pattem and the stored pattems, and the output pattern of tle networls' All the input

(test) patterns in the table are represented by 7x5 binary pixel projections. Every

inpuVoutput pattern has a name that follows the naming conventions defined in Section 5.2.

-90-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5,4a shows the results of 14 out of 24 æst patterns available for SAB testing. The

BP and CPN networks associate most of the input patterns with the closest (in Hamming

distance) stored pattern. However, the BP and CPN netwo¡ks respond differently if an

ambiguous input pattem is presented. This can be seen at the output patærns in response to

the input patterns p02, p I 1, p I 4, p I 5, p20, p22, p23, and p24 that have similar

Hamming distances between all the stored patterns. The BAM network responds

differently to these input pattems. Using the same definition of a pattern set as in Section

5.2, a spurious pattern that appears to be an intersection of the stored pattems becomes a

stable output if the input is comprised of only intersection bits such as p02, or some

intersection bits and some unique bits such asp14,pl5. However, this is not so for the

input patterns containing some unique bits of only one stored pattem besides the

intersection bits. To see this, let us compare pattern pl4 and p I 5 with panern p07 and

p09. Pattenpl4 andpI5 have an equal number of unique bits of both sto¡ed patterns,

that is, 3 bits in p14 and I bit in p15. On the othe¡ hand, pattern p07 has 1 unique bit of

B and none ofÁ (besides the intersection bits) while patten p09 has 3 unique bits ofÁ

and none ofB. The network outputs a perfect pattern B and a perfect pattem,4 for the

input patærn p07 and p09, respectively. Other spurious outputs are shown for pattern

p I 1 , p20, p22 and p24. The network outputs a zero vector (a vector of which all the

elements are zero) in response to pattern p1l and p22, while it outputs a pattern that is a

union of the first complements of the stored patterns in response lo pattßm p20 and p24.

If the input pattern is comprised of only unique bits of a stored pattem such as p08 or

p/0, the network outputs a spudous patærn that is simply the input pattem itself.

-91 -

V. ASSOCIAT]VE MEMORY EXPERIMENTS

Table 5.4a. Test ¡esults of raining set S¿¡.

Input H¿ (biE) BA}T BP EP-1hid. CPN

,rtffi

,ttm

,*m

,ttm

Dlom

D'1 m

er4H

Prsffi

p02-4.= 11
p02-B = 1l

pt)?-A= 15
p0?-E = 13

p08-A= 13
p08-B = 19

D09-A = 9
p09-E = 15

pt0-A= 19
p10-E = 13

pl1'A= 16
pl1-B = 16

Dl4'A = 3
Dl4'E = 3

P15-A= 15
p15-B = 15

H
AñB

B

ffi
ArB

A

ffi
BrA

ø

AnE

AnB

H
?

E

H
Ardsy

A

H
E nEdsy

H
Ards./

A

H
Arrais./

A.

E

A

A

B

B

B

A

B

B

A

A

B

A

B

A

-92 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4a (continued). Test ¡esults of training set Ss.

Input H¿ (bÍts) BAIÌT BP BP-thid. CPN

Dlsm

Þlrm

"'m

"'m
traffi

tram

p18-A= 14
p18-E = 20

p19-A= 20
p19-B = 14

p20-A= l?
p20'B = l?

9?2-Ã= L6
p22-B = 16

p23-A= 15

P23.8 = 15

P24'A= l?
P24'B = l?

Bc

Aa

Ao rJ Bc

ø

A,n E

ACU BA

H
Arrdsy

H
Erraisy

H
Arldsy

H
B rdigy

H
E Ìaisy

H
E Ìdsy

A

B

B

A

A.

A

A

B

A

A

A

A

Table 5.4b shows the results of 9 out of 16 test patterns used for SAH testing. As in the

previous SAs testing, BP and CPN associate most of the input pattems with the closest

stored pattern (in Hamming distance). Although the¡e is no ambiguous input pattern in

V. ASSOCIATIVE MEMORY EXPERIMENTS

terms of a simila¡ Hamming disønce between the input and the stored patterns, a pattem

such asp12 seems enough to make the networks disagree. This pattern is an ambiguous

phttern for the human eye. However, it is not so ambiguous in terms of Hamming

distance, considering that there is another stored pattern which is closer to the input panern

than the one that has been rained with the input pattem. Yet, if we closely examine patærn

p12,we see that it is comp¡ised of a bit that does not belong to either pattem A not pattem

H. On the other hand, pattern p09, which is also an ambiguous pattern (at least for the

human eye), is associated with pattern Hby all the networks. This pattern consists of a

single bit that belongs to both pattern A and H. However, since Il is a subset of A, the

intersection of both pattems is simply the pattem 11 itself. This is also shown by the BAM

resull The¡e is only one spurious output, that is A¡rø. Notice that the complements of the

stored patterns are not to be considered as spurious patterns since these pattems are' by

default, encoded automatically in the BAM sìoring process (see Section 3.1.3)' Another

disagreement on the output patterns of the networks is shown for the input pattetn p02.

All BP and CPN networks associate the pattern with pattern 11. Yet, BAM associates the

pattern with pattern A, even though the panern is closer to H than to A.

Table 5.¿k shows the results of 9 out of 20 test patterns available for S¡ testing. There

are several spurious patterns such asA nB,Ap.-t, Ip+, and the zero vector (Ø). From

the BAM test results, two input patterns (p04 and p05) can be pointed out. These

patterns contain only the unique bis of both stored pattems, The difference is that p04 has

more unique bits of A than of 1, while p05 has the same amount of unique bits of both

stored patterns. This result shows that the zero vector is selected when the amount of

unique bits of the sto¡ed patterns Íue equal (see also p11 in Table 5.4a, pl I in Table 5'¿ld'

and p09 in Table 5.4Ð. This is also Eue if the numbers of the complement bits and the

intersection bits are equal (see p22 in Table 5.4a and p10 in Table 5.4f).

-94 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4b. Test results of Eaining set S¿¡¡.

Input H¿ (bi8) EAIì,I BP EP-thid. CPN

polH

,trH

,*m

,rrffi

"'m
,rtffi

D''ffi

!13ffi

e14m

ptl-A = 6
P01-H = 3

qE?-L=2
p02-H = 1

p05-A= l1
p05-H = 10

p06-A= 13
p06-H = 16

p08-A= 14
p08-H = 13

p09-A= 15
p09-H = 12

PL?-A= L7
p12-H = 14

p13-A= l4
pl3'H = 1?

pl4-A= 14
pl4-H = I I

H

A

A,

ffi
Ar-H

A

H

Aa

Ho

H

H

H

A

H
Aïþdsy

A

H
HìEdsy

H
Hîdisy

H
Arlnisy

H

H

H

A

A

A

H

H

A

H

H

H

A

A

A

H

A,

A

H

-95-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4c. Test results of raining set S¡.

InDul H¿ (biE) BAIU BP BP-1hid. CPN

Dolm

,ttm

Dæm

".m
,*m

eo6m

,atffi

Dll m
!r4m

p0l-A= 14
p01-l = 11

pûZ-A= 18
p02-I = 1l

p03-A= 14

P03-I = ls

p04-A= 13
p04-I = 16

p05-A= 16
p05-l = 13

P06'A = 14
p06-I = 13

p0?-A= 16
po?-I = 11

pl1-A= 19
pll'l = l?

pt4-A= 16
p14-I = 15

ffi
A.n I

ffilrA

ffi
ArI

A¡.I

ø

A

I

Ac

Ic

ffi
Iîdisy

ffi
IÌsisy

H
&raisy

H
Aîds'/

ffi
Iîcùsy

H
AÌdsy

I

I

ffi
Andsy

I

I

A

A

I

A

I

I

A

I

I

A

A

I

A,

I

I

A

-96 -

V, ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4d. Test results of raining set Ss6.

InÞut H¿ (biË) EA¡,1 BP EP-lhid. CPN

*'ffi

erlm

e14ffi

e18m

eleH

*'H

*'H

*'H

PO?-B = 14
p0?-G = l?

pll-E = 16
pll-G = l?

pl4-B = 1?
p14-G = tB

p16-B = l8
p16-G = 1?

Pt9-B = 3
p19-G = 2

D?O-B =2
p20-G = 3

021'B = 3
DZI'G =2

922-B =2
pzZ,-G =3

B

ø

BOUGC

Ec

G

B r-\G

c

EñG

H
Eûãisy

H
Gndsy

H
G¡Osy

H
Gnoisy

\J

B

\J

B

B

B

B

G

(J

B

c

B

B

E

E

(J

B

\.'

B

-97 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4e. Test results of taining set 596.

Input H¿ (Èitr) BAM BP BP-lhül. OPN

'*m
eosm

DlsH

e16H

p04-E = 16
p04-G = 1É

p05-E = 16
p05-G = 16

pls-E = 2
pt5-G = 2

pl6-E = I
Dl6-G = 1

H
EñG

EnG

EnG

EnG

\t

E
H

?

H
EUG

EnG

E

E

E

E

E

T-'

ö

Table 5.,1d shows 8 out of 22 SBc test results, and Table 5.4e shows 4 out of 16 Ss6

test results, Similarly, Table 5.4f and Table 5.4g show I out of 16 S¡¡¡ results and 5 out 9

Sg results, respectively. The networks more or less show the same behaviour in response

to the partial versions of the stored patterns. Some results that can be pointed out are the

outputs of BAM, for the input patleln pl4 in Table 5,4d, pl3 and pI4 in Table 5.4f.

The common feature these input patterns have is the complement bits. Pattern p14 of

Table 5.4d has a single bit of the complement bit and an equal number of unique bits of the

stored patterns. The unique bits seem to cancel out each other, thus the complement bit

appears to be dominant. Likewise, p13 of Table 5.4f. and pI4 of Table 5.4f have more

complement bits than the intersection bits that make the BAM network oulputs a spurious

pattern which is a union of the complements of the stored pattems,

-98-

V, ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.4f. Test results of training set S¡¡¡.

Input H¿ (bits) B AIYI EP BP-llrid. CPN

*'m

'*ffi
*'ffi

Dlom

Pr3m

e14m

PrsH

er6ffi

p01-H = I
p01-I = I

p0Z-H = t2
p02-l = 12

p09'H = 13
p09-I = 13

pl0-H = 13
p10-I = 13

pl3-H = 14
pl3'l = t4

p14-H = 14
p14-l = 14

PiS-H = I
pl5'I = I

p16-H = I
p16-I = I

ffiH
HñI

Hnl

ø

ø

I

ffi
HCU IC

HCU IC

Hnl

HñI

H
H¡oisy

H
Irraisy

ffi
Irraisy

H
IMdsy

H
HûSsy

H
I¡Jdsj'

H
Hn¡¡sy

ffi
Irtnisy

I

I

H

I

I

I

H

I

I

I

H

H

H

H

I

I

-99 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Inpul H¿ (biË) BAM EP BP-1hül. CPN

'*m
*.ffi

*rffi

*'ffi

*'m

pÐ?-I= LZ
p02-J = 12

p03-I = ll
p03-J = I I

gÛA-l= 12
p04-J = 10

p0?-I = 12
pO?-J= l4

B09-I = 14
p09-J = 12

ffi
rrI

I

J

Jc

Ic

ffi
IÌdsy

ffi
IrÉisy

ffi
Jndsy

ffi
Indsy

ffi
?

I

I

J

I

J

I

I

J

I

I

Table 5.4g. Test results of training set S¡.

5,3.2 Three-association

The next major experiment consists of 4 individual experiments employing different

raining sets. These taining sets ¿ue SABr, S¡¡'¡¡, SsH¡, and S¡rc. Simila¡ to the previous

experiment, each network is trained with each of these faining sets and tested using some

incomplete versions of the taining patt€ms. The faining sets and theil properties ale listed

in Table 5.5, The first column of the table lists the raining sots, the second column gives

-100-

V. ASSOCIATIVE MEMORY E)GERIMENTS

the total number of ON bits of a pattern, the thi¡d column shows the number of different

bits between patterns, and the fou¡th column shows the number of simila¡ bits between

pattems in the set.

Table 5.5. Three-association training sets for the autoæsociative experimenL

Training set ls (bits) H¿ (bits) ô (bits)

S¡sr = {(A, A), (8, B), (r, D}

sen¡ = {(4, A), (F, F), (H, H)}

ssrn = {(8, B), (H, H), (r, Ð)

Se¡c = {(E, E), (F, F), (C, A)}

Ats = 16
Brs = 16

Its = 13

Ats = 16
Fts = 13

Ht. = 13

Bt" = 16
Hts = 13

L. =13

Ers = 17

Fts = 13

Gr. = 17

^v
I

^ü'

H

''V"-
I

'ü'

G

^ü"

I
AnB nI= 6

eår
',!'o

H
AnFnH= 9

sgHV
I

BnHnI= 3

sår
ro!z

G
EnFnG=12

-101 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

5,3.2.1 Network Configurations

The th¡ee-association experiment employs the same networks used in the previous

experiment, i.e., BAM, BP, and CPN networks with 35 input and 35 output neurons.

However, the three-layer BP and CPN networks have slightly different configurations.

lnstead of using a single hidden neu¡on in the threelayer BP and two hidden neurons in the

CPN, they use 2 hidden neurons and 3 hidden neurons respectively. This is due to the

number of associations (pattems) to be stored, the same reason for choosing the number of

hidden neurons as in the previous experimenl The other configu¡ations such as the type of

th¡eshold function and the connectivities between layers remain the same.

5,3.2.2 Storing

The raining procedure fo¡ each netwo¡k is similar as in the previous experiment. BP

uses the total error 0.03 fo¡ the stoping criterion of raining and uniformly disributed

random values between -1.0 and +1.0 for the initial weights. Table 5.6a and 5.6b show

the learning rate (e), the momentum term (c), the total enor, and the number of raining

cycles completed for each BP uaining. CPN requires 40 raining cycles to complete

naining, with the Kohonen learning rate set to 0.1, the Grossberg learning constant set to

1.0, and the FSCL option switched on.

'l'able
raining

5.6a. Learning rat€s, momentum terms, total errors and
of two-laver BP.

Training set e g total enor epochs

S ¡¡¡
SAFH

Ss¡tr

Sæa

0.3

0.3

0.3
0.3

0.5
0.5
0.5
0.5

0.03
0.03
0.03
0.03

288
301

290
315

-r02-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.6b. rat€s, momenom t€rms, total enors ancl
lyer BP.of

Training set e d total enor epochs

Sa¡r
S¡rn
SsH
Ssc

0.3

0.3

0.3
0.3

0.5
0.5

0.5
0.5

0.03
0.03
0.03
0.03

3314
1703
37t6
1658

5,3.2,3 Recalling

Similar to the previous experiment, the tained networks are verified using the raining

sets. From this taining verification, it is found that two of the BAM networks rained un-

successfully. These two networks use the Snpg, and Spp6 sets. They can store only one

training pattern and the complement, i.e., pattem A and Ac for the S¿p¡¡ set, and pattern

E and Ec for the SBp6 set, given any of the training pattem as the input. The test also

shows that all BP and CPN networks are Íained successfully. The verification results are

shown in Table 5.7.

Table 5.7. Verification results of the tkee-association experiment.

Training set
Training slatus

BAM BP BP-lhidden CPN

S e¡r
SAFH

SsH
S prc

ok
fail
ok
fail

ok
ok
ok
ok

ok
ok
ok
ok

ok
ok
ok
ok

- 103-

V. ASSOCIATIVE IVIEMORY EXPERIMENTS

All the networks ¿ue tested with several incomplete patterns. This test also includes the

two unsuccessfully Eained BAM nenporks. The results are shown in Table 5.8a-d for the

S¡¡¡ S¡rs, Ssp6, and S¡¡¡¡ taining sets, respectively. Table 5.8a shows only 12 out of

34 test results of S¡s¡, and Table 5.8d shows only 8 out of 25 test results of S¡¡¡¡. Since

BAM fails to leam the S¡:¡1 and SBp6 Eaining sets, there are onìy 7 and 4 test pattems used

to test the Eained networks. Tables 5.8b and 5.8c show 4 test results of S¡¡s and 3 test

results of Ss¡6, respectively.

As in the two-association test, most of the networks respond differently to some

ambiguous input patterns, swh as p07, pl2, and pl7 in Table 5.8a. This can be seen

also in Table 5.8b for input pattern p03 and in Table 5.8d for input panern p03, p04,

p05,p15, and pl9. Most of the ambiguous input patterns have the same closest

Hamming distances towards at least two of the stored patterns. However, there is an

ambiguous pattem such asp05 in Table 5.8c that makes all the networks (except BAM that

fails in the Eaining process) to response similarly. They associate the input pattern with

pattern C. This is, perhaps, because of more ON bits in p05 that belong to pattern G.

Another example that shows the importance of some specific bits in the input patterns can

be seen also in p17, pl8, and pI9 of Table 5.8a. Pattern p17 contains only two ON

bits; one bit that also belongs to patterns,4, B, and 1, and one bit that belongs to pattern

A andB. Although pattern 1is closer to the input pattern (refer to the second column of

the table), the networks associate the input pattern with either pattem A or pattern I since

there are more ON bits in the input pattern that belong to those stored pattems. If we add

another bit that is a unique bit of a stored pattern to patten pI7, such as in pattern p18

and pl9, then all the networks associate pattem p18 with pattern A and pattern p.l9 with

pattern B. If we examine closely pattern p18, there are more ON bits that belong to

pattern A than to the others. Like\,vis e, patlen pl9 contains more ON bits that are parts

-104-

V. ASSOCIATIVE MEMORY EXPERIMENTS

of pattern B. In other words, p19 is a subset of pattern B. These examples show that

the networks favour a specific bit in the input pattern that reflects a feature of a stored

pattem. The results also show that BAM outputs the complement of a stored pattern if the

distance between at least two of the stored patterns and an input pattem greater than their

total ON bits (1s). This is shown by the output patterns for input pattem p2 2 nd p23 of

Table 5.8a, and p20 of Table 5.8d.

Table S.Ea. Test results of raining set S¿¡¡.

Input H¿ (bits) BAM BP BP-2hid. CPN

p07 H

Hpll

p12 ffi

pl3 H

p07-A =
p07-B =
p07- I =

pl l-A =
p11-B =pll-I=

p12-A =
plz-B =
p12- I =

p13-A =
p13-B =
p13- I =

3
J

L4

)
4

13

7
11

6

4
)

l3

H
Anoisy I

A

H
Bnoisy 1

B

Anoisy 1

A

ffi
lnoisy

B

A

A

ffi
Inoisy

B

B

A

A

B

-105-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.8a (continued). Test results of naining set 5¿3¡.

Input H¿ (biÈ) B AI,'l EP BP-zhid. CPN

Dl?ffi

elsffi

Dleffi

errffi

"=ffi

*'ffi

*'ffi

*'ffi

pl?-A= 14

Pl?-E = 14

P1?'I = t3

pl8-A= 13
p18-B = 15
pl8'I = 12

pl9-A= 15
p19-B = t3
p19- I = 12

p22-A= tS
922-B = 17
pZZ- I = 14

p23-A= tB
p23-E = 18
p23- I = 11

P??-A= 14
pZ?-E = l8
p2?- I = 13

p28-A= 13
p?8-B = l?
p28-I= LZ

p29-A= 13
p29-B = 1?
p29- I = L4

Aìdsy1

A

E

Jc

(B ¡siçyt)c

I

A

A

H
AîEùsy

A

B

A

I

ffi
Aîdsy

ffi
A.ndsy

A

EÌdsyl

A

E

A

I

A

ffi
Aîdsy

A

E

A

E

A

I

A

A

A

- 106-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.8b. Test results of Eaining set S¡¡a¡.

lnput H¿ (bits) BAM BP BP-2hid. CPN

r'ffi

ttrffi

*rH

'*m

p01-A = l1
p01-F = 8
p01-H = 14

p02-A= 11
p02-F = 14
p02-H = 8

fl3-A = 7
p03-F = 4
p03-H = 4

p04-A = 7
p04-F = 10
p04-H = l0

A

A

A

A

F

H

m
ËË
EllË

AñF
^H

A

F

H

A

A

F

H

H

A

Table 5,8c. Test results of Eaining set Se¡c.

Input H¿ (bits) BAM BP BP-2hid. CPN

,"H

trm

*'ffi

p0l-E = 12
p0l-F = 8
p0l-G = l2

p03-E = 11
p03-F = 9
p03-G = 11

p05-E = 12
p05-F = 10
p05-G = l0

E

E

E

F

EH
?

G

F

E

G

F

E

G

-t07 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.8d. Test results of raining set SsH¡.

Input H¿ (bitr) E AIÌT BP BP-2Ìrü1. CPN

*rffi

*'ffi

'*m
po?m

Plrffi

elsm

erem

*'ffi

Pl?'B = 15
pl?-H = 12
pL?- I = tZ

p18-B = 18
p18-H = 11
p18- I = l1

p05-B = t9
p05-H = 10
p05- I = 12

P0?-B = l1
P0?-H = 08
p0?- I = 14

p12-E = 6
p12-H = ?
p12- I = 13

p15-E = 16

P15'H = 9
plS-I= 9

p19-B = t6
p19-H = 13
p19- I = 13

P20-E = l?
p20-H = 14

92O-l= LZ

B

I

IuicF

H
Hlrdisyl

B

E

ø

Hc

ffi
IùdEy

ffi
IìdSF

IndqF

H
HìdflÉ

H
BlrËisy

IrìdqF

H
IDdsy

ffi
IìÉÉsy

H
B noisj't

Emisyt

H

H

B

Bnatyt

Enniryt

I

I

I

H

H

E

I

I

-108-

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.3,3 Fo u r- association

From the previous th¡ee-association experiments on BAM, it is found that raining sets

containing patterns with a Hamming distance of 6 (or more) are successfully rained. This

evidence leads to an assumption that, perhaps, a minimal Hamming distance between every

two patterns in a set must be maintained in order to achieve perfect recall on all the stored

pattems in BAM. Thus, the selection of patterns fo¡ four-association taining is based on

this assumption. The training sets are S¡ç¡¡¡ and SSHI¡. The S¡cuI uaining set contains

one pattern with 6 bits of Hamming distance, whereas the S¡¡1¡¡ training set contains only

patterns with more than 6 bits of Hamming distance. They are listed in Table 5.9. The

flust column of the table lists the naining sets, the second column shows the total number of

ON bits (ls) of a pattern, the third column gives the number of different bits between

patterns (i.e., the Hamming distances between two patterns), and the fourth column shows

the number of similar bits (overlapping bits) between pattems in the sel

5.3.3.1 Network Configurations

The experiment uses the same networks from the previous experiment, except that the

CPN network now has 4 hidden neurons instead of 3. Another three-layer BP network

with 3 hidden neurons is also included in addition to the one with 2 hidden neu¡ons. So,

there are five networks with different configurations, that is, one BAM, one two-layer BP,

two thee-layer BPs with 2 and 3 hidden neurons respectively, and one CPN witlt 4 hidden

nerrrons. All the other configurations such as the type of the theshold function and the

connectivities between layers remain the same.

- 109-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.9. Fou¡-association fraining sets,

Training set I s (bits) H¿ (bits) n (bits)

sscu = { (8, B), (C, C),
(H, H), (I,I))

ssrilL = { (B, B), (H, H),
(r, r), (L, L))

Bt' = 16
Cts = 13
Ht. = 13

Ls=13

Bt, = 16

Ht' = 13
Its = 13
Lt"= 9

,611,

ló

"6*'"ì
16

,./î,\

ç2 ''Þ¿
\.-/

5

BnCnH=5
BnCnI =8
BnHnI =3
CnHnI =4

BnCnHnI=2

6q):
5

BnHnI =3
BnHnL=5
BnInL =5
HnInL =3

BnHnInL=2

5,3.3,2 Storing

As in the previous experiments, the BP networks use a total error of 0.03 for the

stoping criterion and uniformly disributed random values between -1.0 and +1.0 for the

initial weights. Tables 5.10a-c show the BP uaining results. In table 5.10b, it is shown

- 110-

V. ASSOCIATIVE MEMORY EXPERIMENTS

that one of the BP networks cannot reach a total enor of 0.03 or less. This threelayer BP

with 2 hidden neurons, which is trained with the SsH¡¡ set, fails to converge in training

since BP uses the total squared error as an indicator of a successful training. The CPN

network requires 40 training cycles !o complete training with the Kohonen leaming raæ set

to 0.1, the Grossberg learning constant set to 1.0, and the FSCL option on. The BAM and

CPN naining verifications are discussed in the next section.

Table 5.10a. Learning rates, momentum terms, lotal errors and
raining cycles of two-layer BP.

Table 5.10c. Learning rates, momentum teÍns, total errors and
raining cycles of threelayer BP with three hidden neurons.

Training set € (l total eror epochs

Ssc¡[
Seril-

0,3

0.3
0.5
0.5

0.03
0.03

410
432

Table 5.10b. læaming rates, momentum terms, total enors and
c of three-layer BP with two hidden neu¡ons.

Training set e ct totrl error epochs

Sscrü
Ssril-

0.1

0.1

0.5
0.5

0.0300
0,8642

33185
41500

Training set e c¿ total error epochs

S ¡cru
SsHL

0.3

0.3

0.5
0.5

0.03
0.03

3530
4056

- lll -

V, ASSOCIATIVE T,IEMORY EXPERIMENTS

5.3.3.3 Recalling

The gained networks are verified using the uaining sets. From the verification test, it is

found that all four-association training sets for CPN, two-layer BP, and three-layer BP

with 3 hidden neurons are successfully Íained. However, the three-layer BP with 2

hidden neurons can be successfully fained only with the SssH¡ set. The network fails to

lea¡n the SsHp training set, as indicated by its total enor in Table 5. 10b. The verificatjon

test for BAM shows that not all of the stored patterns can be recalled perfectly. The

network produces the noisy versions of pattern C of the SsçH¡ set and of pattern L of the

S¡¡¡¡¡ set, given the original pattern C and L, respectively. These patterns can be seen in

Table 5.1 1.

Table 5.11 The verification test results of BAM.

Input
Output En¡rgy

S¡crl S¡¡s S¡c¡¡ S¡¡u.

'H
"H
"H
'ffi
'H

H
H

H

ffi

H

H

ffi

H

-3tz

-312

-22ã

-252

-284

-234

-ztz

-1?0

-tlz-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Recall tests through presentation of incomplete patterns are done for all rained BAM

and for all successfully trained CPN and BP networks. Table 5.12a shows 8 out of 24 test

results for the networks rained with the 5¡6¡¡¡ set. The fust part of this t¿ble shows the

Hamming distances between the input (test) pattern and each stored pattem, while the

second part shows the output of each network. The test pattern set comprises of several

ambiguous patterns such as pattem p08 and pattem pl0, and several noisy versions of the

stored patterns such as pattern p I 3 , p 14, p I 5 , p 16, p22, and p23. For some

ambiguous input patterns, the networks give different outputs. For instance, patlem pl0

can be associated with pattern É1 or1. However, most of the networks associate this

pattern with pattern 1. Yet, the BAM network associates the pattern with C since p,l0 is

also a subset ofthe noisy version ofC (see Table 5.11). If we examine the results of the

two-layer BP, the ttreeJayer BP with 3 hidden neu¡ons and the CPN ne¡vork in the øble,

they show almost the same responses to the input patterns, One difference is that some of

the BP outputs are the noisy versions of the stored patterns, whereas the CPN always

outputs one of the stored pattern. Unfortunately, the three-layer BP with 2 hidden neurons

responds differently. A good example of this is the network's response to pattem pl4 and

pIS, All the networks (except BP with 2 hidden neurons) associate these input patterns

with pattem C. This is consistent with the Hamming distance concept of similæity, since

these pattems are closer to pattern C than to the others. In te¡ms of the number of ON bits

that belong to a stored pattem, both patterns are subsets of pattern C. Still, the three-layer

BP with 2 hidden neurons cannot associate these pattems consistently. On the other hand,

it outputs a perfect C for input paftern p22, and a noisy version of C for input pattern

p23. Table 5.12b shows the test results of the networks trained with the S¡¡¡¡¡ set. All

the networks associate the noisy versions of B and H (p06 nd p07) with the stored

- 113 -

V. ASSOCIATTVE MEMORY EXPERIMENTS

pattern B and F/, respectively. Similar to the results in Table 5.12a, the networks

associate the ambiguous input patterns, such as païern p01,p02,p03 andp05,

differently.

Table 5.12a. Test results of raining set Ss6¡¡¡.

Input H¿ (bits)

p08

p10

p13

p14

p15

p16

p22

p23

p08-B = I I

p10-B = 15

pt3-B = 2

p14-B = 5

p15-B = 9

p16-B = 9

p22-B= 9

p23-B = 6

p08-C = 8

p10-C = 10

pl3-C= 8

pl4-C= 2

p15-C = 2

p16-C = 14

p22-C= 2

p23-C= I

p08-H= 8 p08-I=14

p10-H= 8 p10-I= 8

pl3-H= 12 pl3-I= 12

p14-H= 11 p14-I= 8

pl5-C = 12 pl5-I = 6

p16-H= 2 p16-I=18

p22-H= 14 p22-r= 8

p23-H=13 p23-l= 7

-114-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.12a (continued). Test results of naining set Ssçrü.

Input B AIYI BP BP-2hid. BP-3Ì¡id. CPN

n*ffi

erom

e13m

D14H

plsffi

e16H

*'m

*rffi

H
E nnisTt

H
Cìdsy¡

E

Cnaisyt

Cnaisyt

H
Hrteis¡¡

Cm¡sy1

0naisr¡

H
Hngisy

ffi
Inc¡syl

E

H
c*isF

Õ

H

c

c

E

I¡sisyl

H
BÌdeF

BÌÊisÉ

ffi
IrraisF

H

c

CndqÉ

H
HÌÉdsy

E
ffi
I¡cisy

E

c

g,

H

c

c

H

I

E

c

c

H

c

c

-115-

V, ASSOCIATVE MEMORY EXPERIMENTS

Table 5.12b. Test results of Eaining set Ss¡¡¡,.

Input H¿ (bits) EA¡I EP BP-3Ïid. ÕPN

*'m

'*m

*rffi

*'m

*'H

*'H

p01-Ë = l1
p01-H = I
p01- I = 14
p01-L = 4

pt2-B = 13
p02-H = 14
P02-I = I
pOZ-L = 12

p03-E = 13
p03-H = 14
p03-I = I
p03-L = 4

p05-B = 15
P05-H = I
P05-I = I
005-L = I

!06-8 = 2
pt6-H = 6
p06-I = 13
p06-L = ?

pO?'B = ll
p0?-H = 2
pO?'I = 16

PO?-L = l0

H
Erlajsyt

I

ffi
Ltlfdsy

H
Lîdsyl

E

H

ffi
Lrøsy

ffi
Irraisy

ffi
Lltdisy

ffi
Indsy

B

H

H
?

ffi
Indsyt

L

H
Lndsy

B

H

L

I

L

I

B

H

- 116-

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.4 Heteroassociative Experimentation

This experiment is aimed to study the behaviour of BAM, BP, and CPN models as

heteroassociators. Simila¡ to the autoassociadon experiment, the networks are Íained to

leam the associations, and then their behaviors are examined through analyzing the outputs

in response to a particular test input pattern. The experiment consists of two individual

experiments, namely the two-association and the th¡ee-association experiments.

5.4.1 Two-association

This experiment uses 6 two-association sets as the Eaining sets. They are S¡9-¡¡,

Sls-Bp, SBc-el, Ser-c¡, SHr-sc, and 5¡¡-86' The networks a¡e first Eained using these sets

and then tested using the incomplete versions of the taining sets. A list of these training

sets and thei¡ properties is given in Table 5.13. The organization of this table is simila¡ to

Table 5.2, 5.5, and 5.9 of Section 5.3. Notice that the line with double a¡¡ows in the tåble

shows the Hamming distance (in the H¿ column) o¡ the intersection (in the n column)

between the associaæd pattems.

5.4.1.1 Network Configurations

The networks have the same configurations as the networks used in the previous two-

association experiment. They all have 35 input and 35 output neuons. Two BP networks

are involved in the experiment: a two-layer BP and a three-layer BP with a single hidden

neuron. All the neurons in the hidden and the output layers have biases and use the

sigmoid function. The CPN network uses a forward-only architecture with 2 hidden

neu¡ons in its Kohonen layer. The neurons in all the networks a¡e fully connected.

-Lt7 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.13. Two-association Eaining sets for the heteroassociative expedment.

Training set ls (bits) H¿ (bits) n (bits)

se¡_u = {(A, r), (8,I)}

Se¡r_pr = {(A, E), (H, Ð}

ssc-Ar = {G, A), (C, D}

Ser-c¡ = {(E, C),0, J)}

srn-sc = {(H, E), (I, c)}

su-eo = {(I, E), (J, C)}

Ats = 16
Br' = 16
Irs = 13

Jrs = 1l

Ats = 16
Ht' = 13
Ets = 17
Frs = l3

Ets = 17

Gts = 17

Ats = 16
Its = 13

Ets = 17
Its = 13

Gt" = 17

Jts = 11

Hts = 13
Its = 13
Et' = 17
Gts = 17

Its = 13

Jts = 11

Ets = 17

Grs = 17

¡.-Ls3l l+
H<+ F

6

E<5e,l l"
GEII

¡.5r,l lz
J<+G

l0

A l3t I6l l'
B<+J

1l

E<1, c8l I'o
IêJ

a

n.5 B

'ul lz
f <+G

8

l<51
'31 I t'
B<+J

8

t4A<+E

'31 I ',¡¡<+F
l0

t4ga->tr

'61 ls
G<-> I

11

s.-gc
"l lr

IêJll

H<].l> Esl I'u
IêG

11

1..l.l> r
"l I'u
J<+G

9

-118-

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.4.1.2 Storing

The training procedure for each network is similar to the preceding experiments. The

only difference is the type of association the network is made to leam, Instead of learning

to associate identical patterns, the networks learn the association between two different

pattems. Before raining, all the weights in BAM are set to zero, while the weights in CPN

are set to 0. 1. Also, the weights in all BP networks are initialized with uniformly

distributed random values between -1.0 and 1.0. The raining stopping criterion remains

the same, namely, a total error of 0.03 for the BP network and 40 raining cycles for the

CPN network. During raining, the networks read the training pattern one by one in

random order. The parameter set-ups of the CPN network are 0.1 for the Kohonen

leaming rate and 1.0 for the Grossberg leaming constant, whereas the parameter set-ups of

the BP networks a¡e shown in Table 5.14a-b. These tables also show the number of

epochs completed for each Eaining.

Table 5.14a. Leaming rates, momentum terms, total enors and
raining cycles of two-layer BP.

Training set e 0 total enor epochs

S¡¡-rr
S¡¡¡-eF

SBo-¡
SBr-c¡
Sr¡.po
S u-ec

0.3

0.3

0.3
0.3
0.3
0.3

0.5
0.5
0.5
0.5
0.5
0.5

0.03
0.03
0.03
0.03
0.03
0.03

94
247
855
209
101
220

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.14b. læaming rates, momentum teÍns, tot¿l enors and

5.4.1.3 Recalling

The verification test results of BP and CPN show successful taining of the BP and

CPN neworks. Each of the stored patt€rns can be recalled compleæly through presenøtion

of the associated pattern. However, BAM fails to leam one association, namely the

association (J, C) in the S¡¡-s6 set. It does not give the correct oulput, pattern G, given

the input pattern "/. Instead, a spurious pattem, which has similar distânces between E

and G, replaces the stored patærn G. This pattern is shown in Table 5.15.

The next test employs some incomplete pattems as the test patterns. The test sets are

the same ones used in the autoassociative experimentation. For instance, the test set that is

used to test the network trained with the S¿g set in the autoassociative experiment is used

again to tost the network trained with the S¡¡.û set. Some test results of the S¡¡-u, S¡¡¡-

EF, SEc-Ar, Ser-o¡, Srrr-sc, and S¡¡-s6 raining sets are shown in Table 5.16a to 5.16f,

respectively.

The test results of BAM and CPN seem consistent with the previous test results from

the autoassociation experimenL Let us compare the BAM ouþuts in Table 5' 16a with the

BAM outputs in Table 5.4a, for the input pattern p02,p07,p08, and p09. The

Fai le of ttue€-layer tsP.

Training æt e o total error epochs

Sa¡-¡¡
S ¡s.Br
S ec-¡¡
Ssl-c¡
Sn.ea
S u-ec

0.3

0.3

0.3
0.3
0.3
0.3

0.5

0.5

0.5
0.5
0.5
0.5

0.03
0.03
0.03
0.03
0.03
0.03

7957
3823
4360
2355
2628
5717

-120-

V. ASSOCIATIVE MEMORY EXPERIMENTS

networks give similar responses, except that the one Eained as a heteroassociator outputs

the associated pattern. For the input pattelr. p02, the heteroassociator outputs pattem "I

since this pattern is also an intersection pattern of pattern / and.I. This is also shown by

the results in Table 5.16b, Table 5.16c, Table 5.16e, and Table 5.16f. However, this is

not the case for the BP networks, as shown by their ouþuts in response to patter¡ p02 of.

Table 5.16a (see also Table 5.4a), panen pI5 nd pl6 of Table 5.16c (see also Table

5.4e), and pattern p02, p09, and pI3 of Table 5.16e (see also Table 5.4Ð.

Table 5.15. Verification results of BAM in the two-association experiment.

Training set Input OuÞut Energy

s¡¡_n = {(4, Ð, (8, Ð}

s¿¡¡.8¡ = {(4, E), (H, F)}

sEc_¡r = {(8, A), (4, r)}

sBr_cr = {(E, c), (r, J)}

su-ec = {(H, E), (r, c))

su-eo = {G, E), (J, C)}

A
B

A
H

E
c
E
I

H
I

I

J

I
J

E
F

A
I

G
J

E
G

E

H

-298
-286

-362
-338

-272
-266

-294
-206

-t76
-t'76

-356

-352

-t2t-

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.16a. Test results of raining set S¡s-¡¡.

Input H¿ ôits) BAM BP BP-1hid. CPN

*rH

o'm

,rffi

*nffi

p02-A= 11
p02-B = 11

p07-A = 15
p07-B = 13

p08-A = 13
p08-B = 19

p09-A = 9
p09-B = 15

J

J

ffi
Ip-J

I

ffi
?

ffi
Jnoisy

ffi
Inoisy

J

J

I

J

I

I

I

Table 5.16b. Test results of Eaining set S¿¡r-ep.

Input H¿ (bits) BAM BP BP-1hid. CPN

trtH

rtrffi

ptrffi

p02-A=2
p02-H = I

p06-A = 13
p06-H = 16

pl?-A = l7
p12-H = 14

E

m
Hllü
Htt
E¡¡F

Ec

F

E

ffi
Fnoisy

F

E

F

F

E

E

- r22-

V, ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.16c. Test results of naining set Ss6-¡.

Input H¿ (bits) BAM BP BP-1hid. CPN

e0-ffi

plsH

p16H

p04-E = 16
p04-G = 16

pt5-E = 2
p15-G = 2

p16-E = I
pl6-G = I

E
ffi
AôI

A.ì I

A.ì I

ffi
Inoisy

ffi
Inoisy

H
Anoisy

A

I

I

A

I

I

Table 5.16d. Test ¡esulß of taining set Spr-cr.

Input H¿ 6its) BAM BP BP-1hid. CPN

oo'm

trm

n*ffi

*rH

p0l-E = 14
p01- I = t6

p02-E = 19
p02- I = 1l

p03-E = 12
p03-I= I

p04-E = 2
p04-I= 6

H
9e¡

ffi
Ips

ffi
JnG

c

G

J

ffi
J noisy

G

G

T

J

G

G

T

J

G

-t23-

V, ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.16e. Test results of Eaining set S¡¡¡-p6.

Input H¿ (bits) BAM BP BP-1hid. CPN

,o'm

n'm

*'ffi

otrffi

p01-H = 8
p01-I= 8

p02-H = t2
p02- I = 12

p09-H = 13
p09- I = 13

p13-H = 14
pl3- I = 14

H
E rìG

E.ìG

ø

ffi
E c \JG c

H
EUG

E

E.ìG

ffi
E noisy

c

G

G

E

G

G

E

E

Table 5.16f. Test resulß of Eaining set SrJ-Ec.

Input H¿ (bits) BAM BP BP-1hid. CPN

*m

n*m

*m

p0l-I = l1
p0l-J = 13

p04-I = 12
p04-J = l0

p07-I= 12
p07-J = 14

ffi
Ef¡-C

H
Er'ì G

Gc

H
Enoisy

G

H
Enoisy

E

G

E

E

G

E

-t24-

V, ÀSSOCIATIVE MEMORY EXPERIMENTS

5,4.2 Three-association

The next experiment employs 2 three-association Eaining sets: S¡¡¡¡-¡ç¡ and Sg¡¡¡-¡6

sets. Both sets contain the same pattems, except that they have a different formation for

each pair. Table 5.17 shows the Eaining sets and their properties.

5.4.2.I Network Configurations

The networks are the same ones used in the three-association experiment of the

autoassociation experimentation, The BAM is a homogeneous nefi,vork, whereas the CPN

is a forward-only type with the accrelive learning mode. Two BPs are used: a two-layer

and a three-layer with 2 hidden neurons, All the networks have 35 input and 35 output

neruons, and their neurons are fully connected. Biases are also used in the hidden and

oulput neuons of the BP networks.

Table 5.17. Th¡ee-association training sets for ttre hete¡oassociative experiment,

Training set ls (bits) H¿ (bits)
^

(bits)

Ssn¡-ecr = {(B, A), (H, C), (I, J)}

SsÉrr-Arc = t(B, A), (H, Ð, (I, C))

Brs = 16
Hrs = 13

Its = 13

Ars = 16
Cr' = 13

Jr' = 11

''VJ
I

1ü"
T

sgHV
I

BnHnI = 3

l0A_CV
I

AnCnJ = 6

-125 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.4.2.2 Storing

The total enor 0.03 is, again, used as the stoping criterion of the BP tainings, while 40

raining cycles is the number of cycles to complete in the CPN rainings. Similar to the

previous experiments, the CPN network uses the FSCL to prevent the under-utilization

problem. Prior to naining, the weights in BAM are set to zero, the weights in CPN a¡e set

to 0.1, and the weights in BP are initialized with uniformly distributed random values

between -1.0 and 1.0. The learning parameters of the CPN are 0.1 for the Kohonen

learning rate and 1.0 for the Grossberg learning constant, These parameters are kept

unchanged throughout the leaming process. Similarly, the learning par¿rmeters of the BP

network are 0.3 for the learning rate and 0.5 for the momentum rate, and they are kept

unchanged. Tables 5.18a-b show the number of epochs completed for each haining sel

Table 5.18a. læarning rates, momentum tenns, total eno¡s and
raining cycles of twoJayer BP.

Table 5.18b. Leaming rates, momentum terms, total errors and
uaining cycles of threeJayer BP.

Training set E g, total ellor epochs

SsHr.ecJ

SsHr-AJc

0.3
0.3

0.5
0.5

0.03
0.03

3t9
330

Training set e CI total eûor epochs

SsHr-¿cJ

SsHr-AJc

0.3
0.3

0.5

0.5

0.03
0.03

3204
3237

-t26-

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.4,2.3 Recalling

All the networks lea¡n the raining sets well. This is shown from the verification test.

For every network, each Faining pattem is recalled through the associated pattern. The

following test uses some incomplete input patterns. Since the two Eaining sets have the

same patterns, only one test pattern set is used. This test set is the one used to test the Ss¡¡¡

set in the three-association experiment of the autoassociative experimentation. Some test

results are given in Table 5.19a and Table 5.19b for the Ss¡¡¡-4s¡ and S¡¡rI-e¡c sets,

respectively.

Table 5.19a. Test results of training set Ss¡¡¡-4g¡.

Input Ha 0its) BAM BP BP-2hid. CPN

*'m

trtffi

*'ffi

p05-B = 19

p05-H = 10
p05- I = 12

p07-B = 11
p07-H = 08
p07- I = 14

p20-B = 17

p20-H = 14
p20- I = 12

J

A

f,
(Cc)noisy

ffi
Jnoisy

H
Cnoisy

J

J

A

J

c

c

J

-r27 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

The test on BAM shows some inconsistent results. Let us compare the BAM ouçuts in

Table 5.19a and Table 5.19b, fo¡ the input pattern p05 and p20. The result for the input

pattern p05 in Table 5.19a shows that this input pattern is atFacted to pattem ¿ since,I is

the associated pattern of/ (see Table 5.17 for the association pairs), However, the result

in Table 5.19b, for the same input pattern, shows that this input pattern is atEacted to

patterrr H since "I is now the associated pattern of H, This is also shown by the BP

results for that input pattem. On the other hand, the test results show that the CPN gives

consistent responses (see also Table 5,8d).

Table 5.19b. Test results of training set S¡sr-¡.¡rc.

Input Ho 0its) BAM BP BP-2hid. CPN

oo'm

trffi

trtH

*'ffi

p05-B = 19

p05-H = l0
p05- I = 12

p06-B = 17

p06-H = 14
p06- I = l0

p07-B = 11
p07-H = 08
p07- I = 14

p20-B = 17

p20-H = 14
p20- I = 12

J

c

A

il
(Cc)noisy

ffi
Jnoisy

c

ffi
Jnoisy

H
Cnoisy

J

c

J

J

J

C

J

c

-128-

V. ASSOCIATIVE MEMORY EXPERIMENTS

5.5 Discussion

The experimenøl results show that BAM stores some spurious patt€rns. If we view the

stored patterns as attractors in BAM [Kosk9l], these spurious pattems are also stable

attractors. It is suspected that these spurious patterns are cteated when the original pattems

are lea¡ned [HoFP83]. From the autoassociation experiment employing two-association

training sets, results show that these spurious patterns have some regularities. For

instance, we can see the output of BAM for the input palterî p02 in Table 5.4a as the

intersection pattern of the stored patterns. This ouçut pattern contains bits that belong to

both stored patterns. Similarly, the output pattern of BAM for the input pattern p08 in

Table 5.4a contains all ON (1) bits that belong to only pattern,4 (in the experiments this

pattern is called a unique pattern of A), These cases ate also true for the other two-

association training sets. This experiment shows that BAM also stores the intersection

patterns and the unique patterns of the stored patterns besides their originals and their

complements. The experiment also shows that BAM does not use the closeness in

Hamming distance to select the stored pattern. This is shown from the fact that BAM

associates patærn p02 of Table 5.4b with pattern A even though pattem I/ is closer to the

input pattem than pattern A (compare to the other networks that prefer pattern i/). The

selection of the stored pattern in BAM depends on the number of ON bits that belong to the

stored patt€m. Five conditions can be pointed out ftom the two-association experiment:

(Ð If the input pattetn contains only the intersection bits of a sto¡ed pattern (e.g.'

p02 inTable 5.4a or p}l in Table 5.4c), the BAM network will output the

inærsection patærn;

(ü) If the input pattern contains only the unique bits ofa stored pattern (e.g.,p08

in Table 5.4a or p06 in Table 5.4b), ttre BAM network will ouçut a spurious

pattern that comprises of all the unique bits of that patærn;

-r29-

V. ASSOCIATIVE MEMORY EXPERIMENTS

(iü) If the input pattern contains only (an) intersection bit(s) and (a) unique bit(s)

of a stored pattern (e.g., p07 in Table 5.4a or p07 in Table 5.4d), the output

will be that stored patæm;

(iv) If the input pattern contains the same numbers of unique bits of both stored

patterns (e.g., pI I in Table 5.4a or p05 in Table 5.¿1c), or it contains the

same numbers of intersection bits and complement bits (e.g., p22 in Table

5.4a or pl| in Table 5.4Ð, the output will be the zero pattern. However, if

the number of bits is different (e.9., p15 in Table 5.4a and p04 inTable

5.4c) the selection favours the one with more bits;

(v) If one of the slored pattem is a subset of the other (e.g., pattern ¡f is a subset

of pattern A in S¡¡.¡ set), and the input pattem contåins only (an) intersection

bit(s) and (a) unique bit(s) of a stored pattern (e.g', p02 and p08 in Table

5.4b), the BAM network will output the superset pattern.

The th¡ee-association experiment shows different results' The spurious pattems do not

represent the intersection patterns nor the unique patterns. Howeve¡, BAM still gives

similar responses for conditions (iii) and (iv) of the five conditions mentioned above, for

certain inputs such as pattern p,l8 andp19 in Table 5.8a orpl9 in Table 5.8d.

The BAM training of the S¡¡r¡1 and SBp6 sets a¡e unsuccessful. This may be due to the

sEong correlations among the stored patterns in the set' From Table 5.5' we can see that

both sets have patterns that a¡e separated only by 6 or less Hamming bits. In the S¡¡q set,

pattern A has the closest Hamming distances between the other two patterns. Similarly'

pattern E in the Sgpç set has the closest Hamming distances between the other two

patterns. If we view the problem in terms of the unique features those patterns have,

pattern A in S4¡¡1 has all unique features of pattem F and pattern If. From this point of

view, it seems that the features that make the distinction among those patterns disappear or

- 130-

V. ASSOCIATIVE MEMORY EXPERIMENTS

at least weaken. If this conjecture is Eue, then tfuough stengthening the unique features,

BAM is expected to lea¡n the set well, To show this, an additional pattern that contåins

only the unique bits are included in the set. Table 5.20 shows the enhanced S¡¡¡1 training

set, and Table 5.21 shows the verification test result. The Sl¡s denotes the enhanced S¿¡a¡

set, and pattern å/is the additional naining pattern. The same technique is also employed

to the Spp6 naining set. The netwo¡k is rerained using the enhanced S6p6 set 1Sfip6 ¡. fne

training set is given in Table 5.22, and the results a¡e shown in Table 5.23.

The verification test results of renaining show that BAM recalls the stored patterns

perfectly. It seems that the failu¡es of BAM to store the S¡¡,¡¡ and S6p6 sets are due to the

deterioration of the unique featu¡es. One possibility that caused this condition might be

because the pattems in the set are too close to each other. If the patterns a¡e close to each

other (the Hamming distance is small), the more akin the Pattems would be. This imptes

that there is a minimal Hamming distance between the patterns that has to be maintained in

order to recall all the stored pattetns perfectly. However, it seems that the minimal

Hamming distance depends on the number of stored patterns. As the number of stored

patterns increases, the minimal Hamming distance also increases. The verification results

for the S¡¡1 set, the S4p¡¡ and Ssp6 sets, and the SsçH¡ and S¡¡1¡¡ sets support this

conjecture. Hence, it seems possible to conEol the minimal Hamming disønce through

reinforcing the unique features of the patterns. Another method for achieving perfect recall

of the stored pattems is through reinforcing the "weak" pattem using multiple naining. The

training set would contrin more weak patterns than stronger ones. A more detailed

discussion of this method can be found in [WaCM90] and [WaCM91].

-131 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

Table 5.20. The enhanced S¡¡,¡¡ raining set.

Training set 1s (bits) H¿ (bits) n (bits)

siFg = { (A, A), (F, F),
(H, H), (hf, hÐ)

^H'H
"H -m

Ars = 16

Fts = 13
Ht. = 13

hfts = 6

,/1;\,
1,, Ër ItFz t>*

6

tr/ lu\r,
(,- hf --)F. 3 -H

10

Input
Output En¡rgy

s¡¡r¡ s&H S.qr¡¡ ÈA.EII

-H

'H
"H
"m

H
H
H
H

H
H
H
ffi

-456

-45É

-456

-456

-4??

-436

-436

-72

Table 5.21. Verification test results of BAM on the S¡¡u and SI¡u
training sets.

-132-

V, ASSOCIATIVE MEMORY EXPERIMENTS

T able 5.22, The enhanced SBp6 training set.

Training set ls (bits) H¿ (bits) n (bits)

sËFc = { (8, E), (F, F),
(G, G), (ef, eÐ)

H

H

'H
cfm

Ets = 17
Fts = 13

Gts = 17
gfts = 5 @

6

Input
Out!ut EnÊrgy

srrc ÈEFCå srrs ÈEFCí

'H
'H
-H
-'ffi

H
H
H
H

H
H
H
ffi

-s95

-595

-s95

-59s

-644

-580

-644

-6Ê

Table 5.23. Verification test results of BAM on the Sero and Såc
training sets.

-t33-

V, ASSOCIATIVE MEMORY EXPERIMENTS

Training set ls (bits) H¿ (bits)
^

(bits)

su-sc = {(I, E), (J, c)}

ffi

ffi
Sr¡"-Bc = {(Ix, E), (J x, C) }

ffi

ffi

H

H

H

H

It' = 13

Jts = 1l
Et. = 17
Grs = 17

Ixls = 12

Jxt' = 12
Ers = 17

Gr. = 17

r<5E,l l,
J<+G

l0

k<5 E,l lz
Jx<+G

9

I<.LE

"| I'u
la+G

9

_ 10_I(<+ E,r'l I'u
Jx<+ G

l0

Table 5.24. The S¡¡-p6 and S1¡^-s6 raining sets.

The heteroassociation experiment results for BAM show that the unique feature of a

pattern is also associated to the unique featu¡e of the associated pattem. This explains the

failure of training the S¡-s6 set. To show this, we introduce another raining set, 5¡¡*-96,

for comparison. This S¡r-p6 set has almost identicai properties compared lo the Sû-Ec set,

except for the unique features of the patterns. The S¡¡*-s6 training set and the verification

results a¡e shown in Table 5.24 and Table 5.25, respectively. The results in Table 5.25

show that BAM can recall all the patterns of the S¡¡"-s6 set. If we closely examine the

unique features of / against "/ and the unique features of E against G, then there is an

- t34-

V. ASSOCIATIVE MEMORY E)GERIMENTS

inconsistency of bit flipping of the unique bits (each shown as a grey pixei in TabIe 5.24).

In case of 1 and -f, the two unique bits (represented by the grey pixels in the / projection

of Table 5.24) ue flipped together in the same di¡ection to change f¡om l to J. ln case of

E and G, the two unique bits (represented by the grey pixels in the E and G projections

of Table 5,24) are flipped in the opposite direction to change from E to G. On the

contrary, both uaining pairs in the S¡¡¡-s6 set have the opposite di¡ection of bit flipping to

change from 1¡ to .I, and from E to G.

Table 5.25. Verification test result of BAM on the Su-Ec and

S¡"-96 Eaining sets.

Input
Output Energy

S u-Bo Su"-Bc Su-sc S I¡t-gc

'ffi
'ffi
"m
"ffi

H
H

H
H

-356

-352

-354

-354

The experiments show that both the twolayer and the three-layer BP netrvorks produce

some spurious patterns. However, the two-layer BP has more spurious output pattems

than the three-layer BP, especially for ambiguous patterns. The threelayer BP has fewer

spurious patterns since it employs some hidden neurons. These hidden neurons perform as

-r35-

V. ASSOCIATIVE MEMORY EXPERIMENTS

feature detectors. Usually, the number of hidden neu¡ons is less than the dimension of the

input vector. In this case, all the information of an input pattern is squeezed through a

narrow bottleneck, i.e., the hidden layer. The output layer of the three-layer BP takes the

squeezed information to build the association at the output. Compared to the twoJayer BP

of which the output layer receives the information dkectly from the input layer, the output

layer of the three-layer BP receives less information from the hidden layer. Thus, the

output patterns of the threeJayer BP differ to a lesser degree.

The three-layer BP experiment on the S¡sH¡ raining set shows different results for

different numbers of hidden neurons used. This is shown by the output patterns in

response to the input pattern p08,p14, and pl5 in Table 5.12a. The two-layer and

three-layer BP with 3 hidden neuons as well as the CPN show similar results, while the

three-layer BP with 2 hidden neurons disagrees, especially for pattern C (see pl4,pI5,

p22,andp23 in Table 5.12a). If we examine p14 in Table 5.12a, it is possible that this

pattern is associated with pattern B since p14 is also a subset of pattem B. However, in

terms of the closest Hamming disønce, this input pattern is closer to pattern C (see the

fust t¿ble of Table 5.12a). From the resultwecan see that the other networks associate the

input pattern p,l4 with panern C. One possible explanation why the tkee-layer BP witl 2

hidden neurons gives a different result is that because this network uses less hidden

neruons. If we view the hidden neurons in a three-layer BP network as feature detectors,

this means that the network has fewer feature detectors used to discriminate the uaining

patterns. Moreover, the highly conelated Íaining patterns make Eaining using less hidden

neurons more difficult. The failure of uaining the SsHp set supports this explanation.

From the experimental results of the CPN, it is shown that CPN performs similar to a

look-up table in which each stored pattern has a "radius of association" [SmSt9O]. This

means that the network associates the input pattern based on the closest distance between

-136-

V. ASSOCIATIVE MEMORY EXPERIMENTS

the stored patterns. If the input pattern is within a radius of association of a stored pattern

X then that input pattern will be associated with that stored pattern X. Another significant

result of the CPN compared to the other networks is that the CPN does not produce any

spurious output pattem, with the configuration used in the experiment. Since the accretive

mode only permits one winner at a time, this limits the number of the output patterns.

Thus, the output pattern is always the pattern sto¡ed in the Grossberg layer that is

associated with the stored pattem in the Kohonen layer through the winning hidden neu¡on.

If during naining the target patterns are perfectly stored in the Grossberg layer, then the

output patterns are always the perfect target patterns. The selection of the leaming

constants at the Crossberg layer may affect the storing of the target pattems.

5,6 Summary

This chapter describes and analyzes experiments and results of th¡ee selected neural

networks, namely, BAM, BP, and CPN. The network configurations, the learning

parameters and the training procedu¡es are discussed. In the experiments, all the networks

have been used as pattern associators of 7x5 binary pixel alphabet characters. The

experiments consist of two individual experiments, namely, the autoassociation experiment

and the heteroassociation experimenL

The first experiment uses the networks as autoassociators. Each network is rained

using 7 sets of two-association Faining sets, 4 sets of three-association Íaining sets' and 2

sets of four-association naining sets. The rained networks ale tested with several

incomplete versions of the naining pattems. The training and testing results a¡e listed in

table form,

The second experiment uses the networks as heteroassociators. The networks a¡e

trained using 6 sets of two-association taining sets and 2 sets of three-association uaining

-137 -

V. ASSOCIATIVE MEMORY EXPERIMENTS

sets. Each trained network is tesæd and the results are listed in øbles.

Finally, the training and testing results are discussed following the experiment

description sections. Some failu¡es in the naining a¡e add¡essed, and this is followed by a

discussion of some methods to overcome these problems. Results indicate that the

closeness (in Hamming distance sense) of the pattems to be sto¡ed in a BAM is important.

The pattem closeness property becomes increasingly critical for the BAM as the number of

the patterns to be stored increases. The experimental results fo¡ BP networks show that

different network configurations give different ouçuts in response to a new input pattern.

Results show that they produce some spurious patterns. However, threelayer BP

produces less spurious patterns than twoJayer BP. This may be atÍibutable to hidden

neu¡ons in tkee-layer BP. The discussion also covers the experimental results of the CPN

network. Results show that the CPN ¡esembles a look-up table whose entries are sepa¡ated

by a radius of associations.

- 138-

CHAPTER VI

CLASSTFICATION EXPERIMENT

Pattern classification is one of the most widely used applications of artificial neu¡al

networks. Such an application usually uses artificial neural networks for mapping pattems

represented by points in a pattern space into the category numbers, 1, . . ., R. For

inst¿nce, suppose that the pattern space is an n-dimensional Euclidean space, En, and let

the symbol C; denote the set of points in ¿¡' that are mapped into the category numbei i.

Then, for each category number, there is a set of points in E¡ denoted by one of the

symbols Cr,C2,...,CR.

In this experiment, three neu¡al network models, namely, BP, CPN, and ART-I have

been used as pattern classifiers. The networks are trained with 10 alphabet characters

represented by 7x5 binary pixels, and they are tested with several noisy versions of those

alphabet characærs. The main objective of the experiment is to study the effects of varying

critical parameters of the selected networks. Since each network has diffe¡ent critical

parameters, the experiment is divided into tluee individual experiments, each for a specific

model. The fust experiment uses a two-layer BP and several threeJayer BPs with different

numbers of hidden neurons. The performance of the network with different configurations

as well as different error criteria is studied. The second experiment employs the CPN

model. The performance of the model for various numbers of training cycles is examined.

The last experiment deals with the ART-I model. This experiment focuses on the number

of categories produced by the network for various vigilance parameters,

-r39-

VI. CLASStrICATION EXPERIN4ENT

6.1 Pattern Sets

The basic pattern set for input vectors includes 10 Latin letters, i.e., from letter.4 to

letter J in alphabetical order. These patterns, which are represented by 7x5 binary pixels

[HYKi89], are put together in a set. From this basic pattem set, 5 additional sets of noisy

patterns are produced through randomly flipping some of the pixels in each of the basic

patterns. For instance, the first noisy pattern set contains basic patterns with 1-pixel

distorted (flipped), while the last noisy pattern set contains basic patterns with 5-pixel

distorted. For convenience, we use 56 to denote the set of the 10 basic patterns, where 56

= {4, B, C, D, E, F, G, H, I, J}, and 51 to 55 to denote the five noisy pattern sets.

Notice that the subscripts indicate the number of pixels flipped. For example, the set with

two pixels flipped is denored by S, = l[z,Bz, C2,D2,E2,F2, Gz,Hz,12, J2l. Each

noisy pattern set contains 50 noisy patterns, i.e,, five noisy patterns of each basic pattern.

Thus, there are 250 noisy patæms obtained from the 10 basic (undistorted) pattems.

Fo¡ the BP and CPN models, the basic pattern set containing the ten undistorted

patterns is used as the Íaining set, while the five noisy pattern sets are used as the test

pattern sets. Since BP and CPN are supervised networks, they require a target pattern for

each training pattern, The target pattern has a l0-element vector format because the

networks are used as pattem classifiers of 10 distinct classes. Each of the target vectors is

defined as a vector with one element of value 1, and value 0 for the remaining elements.

Using this fashion, we can assume that each output netrron represents a distinct class.

Through training, the networks are forced to map an input pattern into one of the 10

categories represented by the output neurons.

The target pattems are not used in the ART- l experiments. This model does not require

predeærmined ouÞut vectors because the categories are formed during the leaming phase.

-140-

VI. CLASSIFICATON EXPERIMENT

Since there is no raining nor testing phases, all the panem sets (the ten bæic patærn set and

the noisy panem sets) are included in the leaming phase.

6.2 Measurement Technique

The main usk of a pattern classifier is to classify corectly any input pattern into a

predetermined class. In our case, the input patterns include the 10 basic pattems and all the

noisy versions. A conectly classified input means that a basic pattern and its noisy

versions a¡e classified into one of the 10 categories. However, misclassification can occur'

For instance, a noisy version of a specific pattern, say A, can be misclassified into a class

(category) that belongs to a different pattem, say B. The number of misciassifications a

classifier makes is used as the basis for measuring the performance of the classifier' The

empirical error røte can be defined as the ratio of the number of enors (misclassifications)

to the number of cases (patterns) examined, as expressed by

go = nuntb.er of {rors" number oj cases
(6.1)

where E¡ is the error rate. For an asymptotically large number of cases that converges in

the limit to the actual population distribution, the enor rate given by (6.1) is statistically

defined as the true error of the classifier. However, since the experiment only uses 260

cases, which is relatively small, the major question is then whether the true error can be

exÍapolated from the empirical enor tates calculated from small sample results. This

question has been addressed and discussed comprehensively in [WeKu90].

A method that seems fit for measuring the error rat€ using a limited number of samples

is the train-and-test error rate estimation, The method splits the samples into a Íaining set

and a testing set. The training set is used to design the classifier, and the testing set is used

-t4t-

VI. CLASSIFICATON EXPERIMENT

for testing only. The error rate measu¡ed on the test cases is called the test sample enor

rate. This method is applicable to BP and CPN modeis, since they are supervised models

which require two phases; training phase and testing phase. Note that the train-and-test

error rate method will give an estimation within 57a enor tolerance for 250 samples

lWeKu90l.

The train-and+est error rate estimation is inappropriate for measuring the erro¡ rate of

the ART-1 model. The reason is that the ART-I model is an unsupervised network, and

has only a learning phase. It does not know or use class-membership information

[Kosk92], hence the total number of categories produced is not known a priori. Moreover,

each of the categories (denoted by numbers) is not explicitly associated to one of the Eue

classes (i.e., the classes that have been defined based on the 10 basic pattems). This gives

some difficulties to measure the eÍor rate. One way to measure the performance of ART- 1

is tkough examining the clusters it produces. For inst¿nce, a category creatr.d by ART-1 is

associated to a specific class, say.4, if the majority of the members in that category are

also members of class A. This approach can be done through applying a confusíon

mau'ix. T\e confusion matix lisls the conect classification (true classification) against

the predicted classification (i.e., the actual classes that are produced by the network) for

each class. Typically, the number of predicted classes (categories) is the same as the

number of true classes. Hence, the confusion matrix is a square maEix. The number of

conect predictions for each class falls along the diagonal of the maEix. All other numbers

are the number of errors for a particular type of misclassification enor. However, since the

number of predicted caægories produced by ART-I can be either smaller or larger than the

number of the true categories, an extension of the confusion matrix is used. Instead of

having the same number of categories between the predicted class and the true class, the

confusion matix may have a different number of predicted categories while it stiil has a

-t42-

VI. CLASSIFICATION EXPERIMENT

fixed number of true categories (i0 categories in this experiment). The measruement is

done for different vigilance parameters.

6.3 BP Experiment

The BP experiment focuses on the performances of two-layer and threelayer BPs, The

performance is measu¡ed based on the lest sample enor rate. The enor rate is measu¡ed

for different stoping enor criteria used in the naining and for different number of hidden

neu¡ons used in the three-layer BP.

ó.3.1 Network Configuration

All the BP networks used in this experiment have 35 input neurons and 10 ouþut

neurons since the input pattern is represented by 7x5 arrays of binary pixels and there are

10 different categories (one category for each basic pattern). While there are no hidden

neu¡ons in the two-layer BP, the theelayer BP uses different numbers of hidden nel¡rons:

from 2 to 20 hidden neurons in increments of 2, and then 9, 24, 28, 30, 34,35, 36, 60,

100, 102, and 104 hidden neurons. Note that a tfuee-layer BP with t hidden neurons is

also included following the proof [SaAn9l, HuHu91, MeMR9l] that a network with one

hidden layer (tluee-layer BP) can exactly implement an arbirary naining set with p taining

patterns, provided thatp-l hidden neruons are used. Since thete are 10 patterns in the

Eaining set (i.e., the basic pattern seÐ, thus t hidden neurons is sufficient to learn the

naining set Every neuron in the hidden layer and output layer uses a sigmoid function and

a bias. Each neu¡on in a layer is connected to every neuron in the next layer, thus the

connections between the adjacent layers are fully connected.

-143-

VI. CLASSIFICATION EXPERIMENT

6.3.2 Training

There a¡e mo kinds of training. The fust one is raining using a fixed stoping criterion.

This raining is applied to every network. A toøl enor 0.03 is chosen for the fixed stoping

error criterion. The second one is Eaining using various stoping enor criteria. This kind

of raining is only applied to the two-layer network and the theelayer network with 4, 9,

and 60 hidden neurons. The stoping enor criterion varies from 0.9 to 0.1 in decrements of

0.2, from 0.09 to 0.01 in decrements of 0.02, and from 0.009 to 0.003 in decrements of

0.002. This training is continuous for a specific network. For instance, the network is

first trained for the largest stoping error crite¡ion, that is 0.9. When the total error of the

network is less than or equal to this number, the raining stops, and the weights of the

network a¡e saved. The naining is then continued for the next stoping enor criterion, that

is 0.7. Again, the weights of the network are saved when the total eno¡ of the network

reaches this number. This is done continuously until the last stoping enor criterion, that is

0.003. This continuous training forms a series of training. Using this scheme, the

initialization is done only once at the very beginning of the taining series. Note that a

uniform distibution of ¡andom values between -{.1 and +1.0 is used for the weight

initialization. This is done for all the ne¡rork before each Íaining (or each uaining series).

The weights are updated after all the raining patterns are presented (i.e., after each

epoch). For every epoch, the patterns are presented in random order. Throughout the

training, the learning and momentum parameters are kept constant. Most of the BP

networks in the experiment use 0,3 for the learning rate and 0.5 for the momentum

parameter. However, larger networks such as the three-layer BP with 60, 100, 102, and

104 hidden neurons tend to oscillate using this learning rate. Therefore, a smaller leaming

rate, 0.1, is used instead.

-tM-

VI. CLASSIFICATION EXPERIMENT

Most of the training is completed in about 10,000 or less epochs, using the fix stoping

erro¡ criterion 0.03. This includes the larger netwo¡ks with a leaming rate 0.1. However,

the tfuee-layer BP networks with 2 and 4 hidden neurons complete their raining in about

33,000 epochs. Training using various stoping error criteria require proportional number

of epochs. For smaller stoping enor criterion, more baining time is required, thus a larger

number of epochs is required. Table 6.la-c list the numbers of epochs completed by two-

layer and three-layer BP with 4, 9, and 60 hidden neurons.

Table 6.1a. læaming rate, momentum term, total erors and
cycles of the two-layer BP.

Training set I g total error epochs

So 0.3 0.5

0.900
0.700
0.500
0.300
0.r00
0.090
0.070
0.050
0.030
0.010
0.009
0.007
0.005
0.003

902
908
9t4
926
981
99r

1023
t092
1305
2755
3010
3742
5064
8148

-145-

VI. CLASSIFICATON EXPERIMENT

Table 6.1b. læaming rate, momentum term, total eno¡s and
naining cycles of the three.layer BP with 4 hidden neruons.

Table 6.1c. Learning rate, momentum term, total enors and
training cycles of the three-layer BP with 60 hidden neurons.

Training set e CT total eÍor epochs

So 0.3 0.5

0.900
0.700
0.500
0.300
0.100
0.090
0.070
0.050
0.030
0.010
0.009
0.007
0.005
0.003

636

715
814
997

t722
1833
2145
2701
3998

10528
11616
t4722
20306
33317

Training set e d total enor epochs

SO 0.1 0.5

0.900
0.700

0.500
0.300
0.100
0.090
0.070
0.050
0.030
0.010
0.009
0.007
0.005
0.003

168

189

222
288
554
594
705
895

t3t2
3187
3483
43r4
5770
9041

-146-

VI. CLASSIFICATION EXPEzuMENT

We can use the total enor in BP to indicate convergence. If the raining leads the total

enor to a value equal or less than the specified stoping error criterion, it is said that the

training converges. The selection of the stoping enor criterion determines the error

tolerance the network may have. Typically, for a classification problem such as mapping a

binary pattem into a category, a small stoping er¡or criterion (less than 1.0) will lead to a

successful raining. In other words, the Eained network wiil produce no false categories

given the training set as input. This is also supported by the verification results on the

trained networks. All the BP netwo¡ks (including the networks rained using the stoping

enor as large as 0.9) correctly classify all the taining pattems.

6.3.3 Testing

There are three tests: (i) test for measuring the enor rate of different network

configurations; (ü) test for meæuring the error rate ofvarious stoping enor criæria; (üi) test

for measuring the error rate of the network in response to various amounts of noise in the

input patterns (different numbers of bits flipped). The fi¡st and the thitd tests measure the

enor rates of the networks trained using the fix stoping enor criterion, 0.03. The tests use

all five test sets cont¿ining noisy versions. Thus, there are 250 samples involved in the

test, The results are given as graphs, and are shown in Fig. 6.1, Fig' 6.2, and

Figs. 6.3a-e. The venical axis of the graph represents the error rate calculaæd from (6.1),

while the horizontal axes in Fig. 6,1,6.2, and 6.3a-e represent the numbers of hidden

neurons of the network, the stoping enor c¡iteria, and the numbers of bits flipped (noise)

of the input patterns, respectively. In Fig. 6.1, the network with 0 (zero) hidden neurons

is actually the two-layer BP, while the remaining are threelayer BP networks. The

horizontal axis of the graph in Fig. 6.2 should actually represent the increment of the

raining time or the Eaining cycles. However, since completion of naining is indicated by

the stoping enor c¡iterion, and the measurement of the enor rate is done for each stoping

-r47 -

VI. CLASSIFICATION EXPERIMENT

error criterion, the stoping erro¡ criteria is used for marking the ho¡izontal axis.

Accordingly, the arangement of the stoping er¡or criteria is (from left to right on the

horizontal axis) from the largest value to the smallest value.

0.7

0.6

0.5

Ê 0.4

E 0.,
r¡

0.2

0.1

0.0

.,.... '.. ' 'Þ " ' " " "'.,'.," "...898

0 10 20 30 40 50 60 70 80 90 100 110

Hidden neuron

Fig. 6.1. Erro¡ rate versus number of hidden neurons,

-148-

VI. CLASSIFICATON EXPERIMENÏ

(l¡

ê

r¿

o.4

0.3

(\)

0.1

0.0

9g_O+OOOOgoC

-ts
twolayer

+ ¡hree-Iaye 4h

+ tfueeJayerBh

+ three-layer/60h

9 .7 .5 .3 .1 .09 .07 .05 .03 .01 .009 .007 .005 .003

Error Criterion

Fig. 6,2. Eno¡ rate versus stoping error criterion.

012345
Noise

Fig. 6.3a. Enor rate versus number of bits flipped (noise).

-t49-

VI. CLASSIFICATION EXPERIMENT

012345
Noise

Fig. 6.3b. Enor rate versus number of bits flipped (noise).

012345
Noise

Fig. 6.3c, Enor ¡ate versus number of bits flipped (noise).

- 150-

VI, CLASSIFICATION EXPERIMENT

012345
Noise

Fig. 6.3d. Effor rate versus number of bits flipped (noise).

I three-layer/36h

E tlueelayer/6Oh

E th¡eelayer/l0Oh

Ø tfuee-layerllO2h

E three-layer/lO4h

012345
Noise

Fig. 6.3e, Enor rate versus number of bits flipped (noise).

- 151-

VI. CLASStrICATION EXPERIMENT

6.4 CPN Experimentation

The experiment is designed to measure the test sample error rate of the CPN netwo¡k

t¡ained on different raining cycles.

6.4.1 Network Configuration

The network is a forwa¡d-only CPN. It has 35 input neurons of which each input

neuon corresponds to each binary pixel of the 7x5 binary projection, 10 ouçut neurons

that represent the categories, and 10 hidden neurons. There is some evident that the

number of hidden neurons of a CPN running on lhe accretive mode conesponds to the

memory capacity of the CPN [Hech89, KiIL9O]. Since the network is rained to classify

the input patterns into l0 distinct classes, at least 10 hidden neurons are required. The

connections between adjacent layers are full connections. A typical forward-only CPN

topology is shown in Fig. 3.5 (Chapter IU).

6.4.2 Training

The naining uses eight different raining cycles (epochs), i.e., from 10 to 80 in

inçrements of 10. In each Eaining, the network employs th¡ee different Kohonen learning

rate settings, namely 0.02, 0.1, and 0.5, while the Grossberg patameters are kept fix, 1.0.

All the training uses a ¡andom order presentation of the input patterns. For the network

with the Kohonen learning rate 0.1, a sequential order presentation is also used besides the

random order presentation. Prior tainings, the weighs of the network a¡e initialized with a

constant value, 0.1.

-t52-

VI. CLASStrICÁ.TION EXPERIMENT

6.4.3 Testing

Two tests have been done on all the rained netwo¡ks, namely, (i) t€st for measudng the

enor rate of the network Eained with a different number of epochs (raining cycles), (ü) test

for measuring the error rate of the network in response to vÍrdous amounts of noise in the

input patterns (different numbers of bits flipped). The second test is done only for the

network nained using the Kohonen learning rate of 0.1, and employs the random order

presentation. ln this test, the error rate is measu¡ed for different epochs. Both tests use all

the 250 test pattems, which are the noisy versions of the raining patterns. Fig 6.4 and

Fig. 6.5a-b, show the results of the fi¡st and the second test, respectively.

,,'*'Þ l. rate 0.1 + l. rate 0.02
----+- l. rate 0.1/seq -*-is*' l. rate 0.5

0.10

0.09

0.08

0.07

€¿ 0.06
F
; 0.05
o

åo*
0.03

0.02

0.01

0.00

0102030405060708090
Epoch

Fig. 6.4. Enor rate versus number of gaining cycles (epochs).

-153-

VI, CLASSIFICATION EXPERIMENT

012345
Noise

Fig. 6.5a. Error rate versus number of bits flipped (noise), for the network
fained using learning raæ 0,1 with random order presentation,

012345
Noise

Fig. 6.5b. Enor rate versus number of bits flipped (noise), for the network
rained using learning raæ 0.1 with ¡andom order presentation.

-r54-

VI. CLASStrICATION EXPERIMENT

6.5 ART.I Experiment

The objective of the ART-l experiment is to examine the categories produced by the

network for different vigilance values. The stability of the learning is also examined

tkough observing how the category number varies against the repetition steps of the basic

set applied to the network.

6.5.1 Network Configuration

A typical ART-1 network has two layers: the comparison layer and the recognitíon

layer (see Fig. 3.6 in Chapter ltr). The comparison layer is responsible for receiving data

from outside wo¡ld, and hence it is meant also as the input layer. Therefore, the number of

neurons in the comparison layer must match the input vector dimension. For this

experiment, the comparison layer employs 35 neurons since the input vector is a 7x5

binary pixel. The recognition layer is meant also as the output layer. This recognition

layer is designed as a competitive layer. So, there is only one activated neu¡on in this layer

in response to a given input vector to the network (assuming that the maximum capacity has

not been reached). In other words, the network will caÍegorize (cluster) the input vectors,

so that each cluster is represented by one of the neurons in the recognition layet.

However, there is no definite guide to estimate how many categories the network will make

from a certain population of input data. Ideally, the number of categories may grow

infinitely, for uffesuicted input data, Practically, the number of categories grows to the

maximum capacity of the network, that is, the number of neu¡ons in the recognition layer.

For this experiment, since there are 260 input samples, at most 260 categories may be

created by the network (assuming that all the input samples are unique, and each unique

category is assigned to a unique input sample). Hence the network has 260 neuons in the

-155-

VI. CLASSIFICATION EXPERIMENT

recognition layer. The other components of the netwo¡k (except the vigilance value)

remain intacl

6,5.2 Learning

There a¡e two main points to be examined in the experiment: the stability of the learning

and the categories produced by the network. Examination of the stability of the learning is

done through observing how the category number varies against the repetition presentâtions

of the basic pattern set (So) to the network, The basic pattern set (Ss) is applied to the

network five times in a sequential order, and the categories produced are examined for

different vigilance values (i.e., 0.5, 0.6, 0,7, 0.8, 0.9, and 1.0). Tables 6.2a-f show the

categories produced, represented by number 0 to 9 (for 10 classes) in the second column,

and the members (the input vectors) are Listed in the same row with each category. The

first column of the table contains the index of the presentation, denoæd as cycle. The

number inside the parenthesis beside every name of the input vector represents the number

of times the network searches for a proper top-down expectation (refer to section 3.5.2 in

Chapær III). A zero means that no sea¡ch has taken place; that is, the input panern directly

activates the category that best represents il

-156-

VI. CLASSIFICATION EXPERIMENT

Table 6.2a. The categories produced for vigilance 0.5.

CYcle Caægory lnput Patærn

I
0
1

2

Ao(0) Bo(0) co(0) Do(0) Fo(O)
Eo(l) Go(l) Ho(O)
ro?) Jo(O)

)
0
I
2

Bo(0) co(0) Do(O) Fo(0)
Ao(0) F¿(0) Go(O) Ho(O)
ro(0) Jo(O)

J
0
1

)

Bo(0) Co(O) Do(0) Fo(0)
Ao(0) Eo(0) Go(O) Ho(0)
Io(0) Jo(o)

4
0
1

J

Bo(0) co(O) Do(O) Fo(O)
Ao(0) Eo(0) Go(0) Ho(0)
Io(0) Jo(0)

5
0
1

)

Bo(o) co(O) Do(O) Fo(o)
Ao(0) Eo(0) Go(0) Ho(o)
Io(0) jo(O)

-t57 -

VI. CLASStrICATON EXPERIMENT

Table 6.2b. The categories produced for vigilance 0.6.

Cycle Caægory Input Patæm

0
I
,)

Ao(0) Bo(0) Co(O) Fo(O)
Do(l) Eo(l) Go(o) ro(0) Jo(0)
H0(2)

2
0
I
2
J

Co(O) Fo(O)
J0(0)
Ao(0) Bo(2) Ho(0)
Do(3) EoQ) Go(O) ro(1)

J

0
I
t
3
4

co(O) F0(0)
I0(0)
Ao(0) Bo(0) Ho(O)
Io(0)
h(4) F4(3) Go(0)

4

0
I
1

3
4

co(0) Fo(O)
Jo(0)
Ao(0) Bo(0) Ho(o)
r0(0)
Do(0) Fo(0) Go(O)

5

0
I
2
J
4

Co(0) Fo(O)
Jo(0)
Ao(0) Bo(0) Ho(0)
r0(0)
Do(O) Fo(0) Go(0)

VI. CLASSIFICATION EXPERIMENT

Table 6.2c. The categories produced for vigilance 0.7,

Cycle Caægory Input Patærn

0
I
1

3

F0(0)

H0(1)

Ao(0) Bo(0)
co(l) h(o)
FÃ(2) Go(l)
Io(3) J0(0)

2

0
I
,
J
4
5

F0(0)
co(0) Do(0)
Ho(0)
Io(0) Jo(0)
Ao(4) Bo(2)
Eo(s) Go(2)

J

0
I
a

J
4
5

F0(0)
Co(o) h(o)
Ho(0)
Io(0) Jo(0)
Ao(0) Bo(0)
F4(0) Go(0)

4

0
I
a

J
4
5

F0(0)
Co(O) Do(O)
Ho(o)
Io(0) Jo(0)
Ao(0) Bo(0)
Eo(o) Go(O)

5

0
I
2
3
4
5

F0(0)
Co(o) h(o)
Ho(0)
Io(0) Jo(0)
A0(0) Bo(0)
F¿(0) Go(O)

- 159-

VI. CLASSIFICATÏON EXPERIMENT

Table 6.2d. The categories produced for vigilance 0.8.

Clcle Caægory Input Patærn

0
1

2
3
4

Jo(o)

F0(0)

r0(1)

Bo(0)

Go(1)

Ao(o)
c0(1)
h(2)
E0(3)
Ho(4)

2

0
1
.t

3
4
5

F0(0)
Co(0)
Bo(1) D0(0)
jo(0)
A0(0) Ho(O)
F{(5) Go(2) Io(2)

J

0
I
)
J
4
5
6

Fo(o)
Co(0)
Bo(0) Do(O)
Jo(o)
Ao(0) Ho(O)
r0(0)
F¡(6) Go(3)

4

0
I
2
5
4
5
6

F0(0)
co(0)
Bo(0) h(0)
J0(0)
A0(0) Ho(0)
Io(0)
F{(0) Go(O)

5

0
I
2
3
4
5
6

Fo(0)
co(o)
Bo(0) h(o)
Jo(0)
A0(0) H0(0)
r0(0)
Eo(o) Go(O)

- 160-

VI. CLÀSSIFICATON EXPERIMENT

Table 6,2e, The categories produced for vigilance 0.9.

Cycle Caægory Input Pattem

I

0
1

2
3
4
J

F0(0)
Þ(1)

co(1)

Jo(0)

A0(0)
B0(1)
c0(2)
E0(3)
H0(4)
Io(5)

2

0
1

J
3
4
5
6
7
8

Fo(o)
Do(0)
co(o)
Eo(0) co(O)
Ho(o)
J0(0)
tu(6)
Bo(7)
Io(8)

J

0
1

2
J
4

6
7
8

Fo(o)
h(o)
co(0)
E0(0) C'0(0)
Ho(o)
Jo(0)
Ao(o)
B0(0)
Io(0)

4

0
1

2
3
4
5
6
7
I

Fo(o)
D0(0)
c0(0)
Eo(o) Go(O)
Ho(0)
J0(0)
Ao(o)
Bo(o)
Io(o)

5

0
1

2
J
4
5

6
7
8

F0(0)
D0(0)
co(o)
Eo(O) Go(0)
Ho(o)
Io(0)
Ao(0)
Bo(o)
Io(0)

-161 -

VI, CLASSIFICATION EXPERIMENT

Table 6.2f. The categories produced for vigilance l0.

Cycle Category lnput Patæm

I

0
I
2
J
4
5
6
7

Ao(0)
B0(1)
c0(2)
D0(3)
E0(4)
co(5)
H0(6)
Io(7)

2

0
I
)
J
4
5
6
7
8
I

Fo(0)
B0(0)
Co(0)
h(0)
Eo(0)
co(0)
H0(0)
J0(0)
Ao(8)
Io(9)

J

0
I
1

3
4
5

6
7
8
9

Fo(o)
Bo(o)
c0(0)
D0(0)
Eo(0)
co(o)
Ho(0)
Jo(0)
A0(0)
Io(0)

-t62-

VI. CLASStrICATION EXPERIMENT

Table 6.2f, (continued) The categories produced for vigilance 1.0.

Cycle Caægory lnput Pattem

4

0
I
)
3
4
5
6
7
8
9

Fo(o)
Bo(0)
co(o)
D0(0)
Eo(o)
co(o)
Ho(o)
Jo(0)
Ao(o)
Io(0)

5

0
1

)
J
4
5
6
7
8

9

Fo(0)
B0(0)
co(0)
D0(0)
Eo(o)
c0(0)
Ho(0)
J0(0)
Ao(o)
Io(0)

The objective of the second experiment is to examine the categories produced. The

input patterns are the 10 basic patterns (from letter.4 to 4 and the 250 noisy versions of

them. The caægories produced after learning (the predicæd categories) are listed against the

Fue categories in lhe confusíon maftíx shown in Tables 6.3a-c. The predicted categories

are shown in the rows of the maeix, while the 10 true categories (denoted by letter A to "/

in alphabetical order) are shown in the columns of the matrix. The members of a category

are sorted according to the Eue classes, For example, the input pattem Aj (which is a

noisy version of the basic pattern A) that belongs to a category, say category 1, is placed

under the row denoted by the predicted category I and the column denoæd by the true class

,4. However, for our convenience, the complete names of the patterns are not listed

-163 -

VI. CLASSIFICATION EXPERIMENT

explicitly in the maeix. Simply, each element of the matrix represents the total number of

patterns that belong to a specific Eue class and a unique predicted caægory. The unsorted

results that conøin the name of each input vector can be found in Appendix B.

Table 6.3a. The Eue versus predict€d categories for vigilance 0.5.

Predicted
Caægory

True Caægory

A ts l-) f. (i

+. R

-164-

VI. CLASSIFICATION EXPERIMENT

Table 6.3b. The true versus predicted categories for vigilance 0.8.

Predicted
Caægory

True Category

- 165-

VI. CLASSIFICAÏON EXPERIMENT

Table 6.3b. (continued) The Íue versus predicæd caægories for vigilance 0.8.

hedicæd
Caægory

True Caægory

- 166-

VI. CLASStrICATION EXPERIMENT

Table 6.3b. (continued) The true versus predicæd categories for vigilance 0.8.

hedicæd
Caægory

True Caægory

-t67 -

VI. CLASSIFICATION EXPERIMENT

Table 6.3c. The true versus predicted categories for vigilance 1.0.

Predicæd
Caægory

True Caüegory

ts l)

-168-

VI. CLASSIFICATION EXPERIMENT

Table 6.3c. (continued) The Eue versus predicted categories for vigilance 1.0.

Predicted
Caægory

True Caægory

- 169-

VI. CLASStrICATION EXPERIMENT

Table 6.3c. (continued) The true versus predicted categories for vigilance 1.0.

kedicæd
Category

True Caægory

L4

-170-

VI. CLASSIFICATION EXPERIMENT

Table 6.3c, (continued) The true versus predicted categories for vigilance 1.0.

Predicæd
Caægory

True Category

L) L) E t, U H

-t7t-

VI. CLASSIFICATION EXPERIMENT

Table 6.3c. (continued) The frue versus predicted categories for vigilance 1.0.

Predicæd
Category

True Caægory

H

-t72-

VI, CLASStrICATON EXPERIMENT

6.6 Discussion

The BP experimental results (Fig. 6.1) show that the performance of the threeJayer BP

network (in terms of the enor rate) is a function of the number of hidden neu¡ons. The

smallest error ratE (0.072, i.e.,7.27o of the total test samples a¡e misclassified) is achieved

by the three-layer BP with 34 and 35 hidden neurons, while the threelayer BP with 2

hidden neurons has the largest enor rate (0.584, i.e., 58.4Vo of the total test samples are

misclassified). The graph shows that the eÍor rate dec¡eases exponentially as the number

of hidden neurons increases. In other words, a three-layer BP network with many hidden

neurons tends to generalize better than networks with few hidden neurons. This ¡esult is

consistent with the results of other resea¡chers [SiDo91]. The two-layer BP network gives

an error rate of 0.104 (10.47o errors), which is similar to the er¡or rate of three-layer BP

with 8 hidden neurons (i.e., 0.l). The average error rate of two-layer and three-layer BP

with a number of hidden neu¡ons above 6 is 0.1. In other words, these networks conectly

classify 907o ofthe total test samples. From Fig.6.3a-e, it is shown that most of the errors

are due to the test patterns with 5 bits flipped.

The results imply that the problem of overspecialization ot overfitting does not occu¡.

The overfitting problem is assumed to occur when a network with many hidden neurons

tends to memorize the Íaining data instead of generalizing [WeKu9O]. The network with

an overfîning problem performs well with the raining data, but it performs poorly with the

new data (testing data). However, this problem does not occur in our case, In fact, the

results show the opposite. The performance of the three-layer BP network increases

(shown by the decreasing error rate in Fig. 6.1) as the numbe¡ of hidden nerrrons increases

from 2 to 9, and the performance is relatively constant as the number of hidden neurons

increases beyond 9. One possible explanation why the overfitting problem does not occt¡r

in our experiment is that because the task is a clæsification of binary pattems.

-r73-

VI. CLASSIFICATION EXPERIMENT

To show this let us view the hidden neurons as hyperplanes that partition d-

dimensional space (hyperspace) into va¡ious regions [Nils90]. It has been proved that a

network with one hidden layer can exactly implement an arbitrary training set with p

training patterns, provided that p-1 hidden neurons are used [SaAn91, HuHu91,

MeMR9ll. Since there are only 10 naining pattems used (each pattern is a representative

of a category), t hidden neurons and hence t hyperplanes are sufficient to partirion the d-

dimensional space into 10 regions. Thus, there will be redundant partitions created by the

excess hyperplanes in a three-layer network with a number of hidden neurons greater than

9. In other words, there can be mo¡e than one hyperplane that separates two regions.

Since the inputs are binary pattems (i.e., the pattem points a¡e the vertices of a hypercube),

the positions of the hyperplanes in the hyperspace are not critical. Fu¡thermore, since the

output is also binary with each neuron representing a unique category and it follows a

"winner-takes-all" fashion (i.e., the selection of a category is based on the biggest value of

the output neuron), the exact match of the ouçut value to the ta¡get value is unnecessary.

This is also supported by the experimental result for various stoping error criteria, as

shown in Fig. 6.2.

The results (Fig. 6.2) show that the problem of overtraining does not occur.

Overffaining problem occurs when a network is presented with the same set of training

patterns many times, and the network tends to memorize the Eaining data [Hech89]. This

problem is simila¡ to overfîtting problem, except that the variable is now the stoping enor

criteria instead of the number of hidden neurons. Fig, 6.2. shows no significant increase

in the enor rate.

The resuits of the CPN experiments (Fig. 6.4) show a smaller error rate compare to the

error rate of BP. On average, the enor rate is 0.05 (i.e.,SVo errors from the total test

samples). In other words, the CPN network conectly classifies 957o of the total test

VI. CLASSIFICATION EXPEzuMENT

samples. Fig. 6.4 shows that the enor rates for different learning rates vary wirhin 47o of

the average enor rate,0.05. Similarly, the enor rates for different epochs also vary. This

shows that the network still makes some adjusüîents to its weight vectors. For the

network with leaming raæ of 0.1 and using random order pattern presentation, learning is

stable after 40 epochs. On the other hand, for the other CPN networks, learning is

unstable. If we view each weight vector wf') at the Kohonen layer (fust layer) as a point in

Rt' approaching the centroid xr- of a pattern class, this weight vector is wandering about

the centroid instead of reaching the cenfoid. This particular phenomenon has been

discussed thoroughly in [ClRa9O]. Fo¡ CPN, one possibility to prevent this problem is

through utilizing a learning rate that is gradually reduced towa¡ds zero during raining

lHech89, Wass89l.

Figs. 6.5a-b show that most of the enors are due to the the test pattetns with 5 bits

flipped. This result is simila¡ to the result of the BP experiment (Figs. 6.3a-e), except that

CPN produces less errors than BP. The error rate is constant after 40 epochs. Fot 2,3,

and 4 bits flipped (noise), the enor rates differ by I test sample. This difference becomes

significant as the number of bits flipped increases to 5 bits.

In supervised learning, the performance of the model is determined by the result of the

training. For instance, if the network does not converge during raining, then it is likely

that the network will perform poorly in the test case. For an unsupervised model such as

ART-I, this boundary between the training phase and the testing phase is not as clear.

ART-I leams the pattern as the network is faced with the pattern at its input. The question

is how well the network learns the pattem.

One major point relating to this issue is the learning stability of the network. Tables

6.2a-f show the categories produced by the network with different vigilance settings.

Through examining the members of each category, 'rve can see that the members of each

-r75-

VI, CLASSTFICATION EXPERIMENT

category remain constant after the third cycle of the presentation. In other words, the

network lea¡ns the set after presented with the same set for tkee times.

The tables also show the amount of time the network has to search for a proper

category, as shown by the number in parenthesis beside each pattern's name. For higher

vigilance values such as 0.9 and 1.0, the sea¡ching time for cerøin pattems is close to the

number of categories produced. This is expected since for a high vigilance, say 1.0 (the

exEeme case), the network will search for a perfect match benveen the input pattem and the

top-down expectation. This forces the network to search the enti¡e available categories,

and may lead to a creation of a new category, if the input pattern is totally a different one

from the ones that have been learned previously. Nevertheless, this condition occurs only

for the frst 3 cycles of the pattem presentations. The next time the pattem is presented, the

network will recognize the pattern directly without any searching process (denoted by the

zero in the parenthesis).

The results show that the subset pattern always replaces the supetset pattern. For

example, this is shown in Table 6.2f for a vigilance of 1.0. Pattern .4¿ is replaced by

pattern F¿, and pattern /¿ is replaced with pattern ,/¿. For the second presentation,

patterns Fg and J6 remain stable in categories 0 and 7, respectively. On the other hand,

the network has to search new categories for pattems A¿ and /¿ that are categories 8 and

9, respectively. Similar cases can be found also for lower vigilance values' This

phenomenon is due to the way the network stores the template in the top-down LTM $efer

to Eq, 3.28 in Chapter ltr). Using Eq. 3.28, the netwo¡k always stores the intersection of

the input pattern and the previous template as the new template in the selected top-down

LTM. lf the new input pattem is a subset of the template pattern, then this new pattern

becomes the tempiate pattern for the next trial. ln other words, the learning of the network

is stable only at the subset pattern. This cha¡acteristic becomes significant for higher

-176-

VI. CLASSIF'ICATION EXPERIMENT

vigilance values (the extreme case is for vigilance 1.0).

Tables 6.3a-c show the disribution of the input patterns among the categories created

for vigilance 0.5, 0.8, and 1.0, respectively. One significant result fo¡ different vigilances

is the number of categories created by the network. The number of categories inc¡eases to

the maximum number of input patterns as the vigiiance value increases to 1.0. This is a

typical characteristic of ART- 1 since the vigilance determines the tolerance of a mismarch

between the input pattern and the top-down expectation. High vigilance forces the

netwo¡k to search for new categories in response to small tole¡ance of a mismatch. To the

exEeme, the network will classify each unique input pattem into each unique category.

Ideally, the network should result in the same number of Eue categories, which is l0

categories. However, this requirement is never accomplished for the problem given' The

reason is that a small number of categories (obøined fo¡ a small vigilance value) directly

competes with the number of overlaps. An overlap occurs when more than one pâttern of

distinct caægory is classified into the same category. To show this let us compare the result

for vigilance of 0.5 and 0.8 in Table 6.3a and 6.3b, respectively. Most of the predicted

categories for vigilance of 0.5 contain more patterns from different categories, while the

predicted categories for vigilance of 0.8 have less patterns from different categories.

However, each predicted category created by the network with vigilance of 0.8 contains

less patterns too, even for patterns that belong to the same Íue category. Hence, the

minimum number of categories with no overlaps (i.e., 10 categories) is never accomplished

by the ART-I network without some modifications. An improved version of ART-I,

which is called ARTMAP, can be found in [CaGR91].

-r77 -

VI. CLASSIFICATION EXPERIMENT

6,7 Summary

This chapter describes and analyzes experiments and ¡esults of th¡ee selected neu¡al

networks, namely, BP, CPN, and ART- 1. The network configurations, the learning

parameters and the training procedures are discussed. The networks have been used as

pattern classifiers of 7x5 binary pixels of 10 alphabet cha¡acters. The performances and

the leaming characteristics of the networks are studied.

The experimental results of the BP experimenøtion show that a three-layer BP network

with many hidden neurons tends to generalize better than networks with few hidden

neurons. For the given problem, the twoJayer and threeJayer BP with a number of hidden

neurons above 6 classify 90Vo of the total test samples conectly, while the CPN network

shows a 95Vo classification. Results also show lhat no overfitting not overtraining

problem is detected in the BP raining. The experimental results for ART-I show that the

minimum number of categories with no overlaps (i.e., 10 categories) is never accomplished

for the given problem. The number of categories increases to the maximum number of

input patterns as the vigilance value increases to 1.0. Furthermore, results also show that

the learning of the network is stable only at the subset pattern, and this characteristic

becomes significant for higher vigilance values.

CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The work described in this thesis was motivated by the need for developing unified

benchmarks and a unified methodology of benchma¡king in order to facilitate better

understanding and applicability of artificial neural network models for particular

applications. The thesis places emphasis on the comparative study of the cha¡acteristic

features of the BAM, BP, CPN, and ART-I a¡tificial neural netwo¡k models. This study

has led to the development of a neural network software simulator on a Macintosh

computer. An object-oriented design methodology has been used in the design process.

This design approach reduces the programming complexity and provides a reusable and

maintainable system for further expansion. The program has been extensively used in the

experimental study of the selecæd models.

The study has nvo pars: a liûerature study and an experimental study. The objective of

the literature study is to identify the cha¡acteristic features of selected neural network

models and to provide the basis for the experimental study. For completeness, the

characteristic features of the selected models a¡e lisæd below.

A Bidi¡ectional Associative Memory @AM):

. is a two-layer nonlinear feedback ne¡po¡k with supervised leaming;

. the layers a¡e fully connected;

. employs neurons with a nonlinear function such as sigmoid, tlueshold;

-179-

VII. CONCLUSIONS AND RECOMMENDATIONS

. requires bipolil (no analog) data representation;

. functions as an associative memory;

. stores the association of the data pair at local energy minima; and

. trainings tfuough summing the outer-product of the dau pairs.

The BAM has the following advantages:

. it requi¡es no Eaining parameters;

. no iterative process during training; and

. requhes one raining rial.

The BAM has the following disadvantages:

. it has limited memory capacity; f = T#*, where rz is the number of

neu¡ons in the smaller layer;

. requtes mutually onhogonal of the data pairs for perfect recall;

. produces spørio J patterns;

. bipolar BAM encodes the complements of the patterns automatically; and

. can be confused if like inputs are associated with unlike ouButs (vice versa)'

A Bacþropagation (BP):

. is a multilayer nonlinea¡ feedforward network with supewised leaming;

. the layers may be fully connected or sparsely connected;

. employs biases and a nonlinear function in the hidden and output neurons;

. functions as a mapper; and

. naining through minimizing the enor function (search for a Slobal mínimum).

The BP has the following advantages:

. it accepts analog and binary daø representations; and

. is capable of approximating any continuous mapping using a network with as few

VII. CONCLUSIONS AND RECOMMENDATIONS

as one hidden layer and an arbitrary bounded and non-constant activation

function.

The BP has the following disadvantages:

. the training can be rapped in /ac al minimai

. it requi¡es some adjusfnent of the taining parameters;

. requires iærative process during training;

. the training time grows exponentially with the size of ttre network;

. has a tendency to forget previously learned patærns;

. may become overtrained or overÍÌtted; and

. difficult to select the optimal configuration for a specific task.

A Counærpropagation (CPN):

. is a th¡ee-layer nonlinea¡ feedforwa¡d network with unsupervised leaming;

. the layers are fully connecæd;

. the architectu¡e is a combination of Kohonen's self-organizing feature map

(SOFM) of and the Grossberg's outJtar structttre;

. uses lhe competitive learning scheme at the hidden layer; and

. employs a linear function in the hidden and output neurons.

The CPN has the following advantages:

. it accepß analog and binary data representations;

. functions as a statistically optimal self-programming look-up table;

. tâining through self-organizes the weights to approximate the mapping; and

. it requi¡es a finite number of Eaining rials.

The CPN has the following disadvantages:

. it requires some adjusþnent of the naining palameters;

-181-

VII. CONCLUSIONS AND RECOMMENDATIONS

. requires iterative process during raining;

. has a tendency to forget previously learned patterns; and

. has a problem of under-utilization.

An Adaptive Resonance Theory I (ART-l):

. is a twolayer nonlinea¡ feedback network with unsupervised leaming;

. the layers are fully connected;

. functions as a binary classifier;

. uses the competitive learning scheme at the second layer; and

. uses top-down expectation scheme (active attentional focus).

. has a more complex architectu¡e;

The ART-I has the following advantages:

. real+ime (on-line) leaming;

. lea¡ning through self-organizes the weights according to the past experiences;

. it is capable to preserve previously leamed patterns while continuing to leæn new

pattems; and

. requires a finite number of learning trials.

The ART- I has the following disadvantages:

. requbes binary data representation;

. requi¡es some adjusÍnent of the leaming parameters; and

. has some difficulty to adjust the vigilance paftmetgr.

The objeciive of the experimental study is to confum or to discover some capabilities,

and particularly, their abilities to soive specific problems. Since there are two distinct

classes of neural network models, the experimental study must employ two benchma¡k

- 182-

VII, CONCLUSIONS AND RECOMMENDATIONS

problems, namely, the associative memory and the patt€rn classification problems.

The fust experiment, the associative memory experiment, includes the BAM, BP, and

CPN models. This experiment confums some of the cha¡acteristics of the selected models

and reveals other characteristics that have not been identified a priori. The experimental

results of BAM indicate that the closeness (in Hamming distance sense) of the patterns to

be stored becomes increasingly critical as the number of the pattems incleases. However,

the selection of the stored patterns seems inconsistent with the selection based on the

closest Hamming distance. Results show that the spurious patterns produced by two

associations have some regularities. These spurious patterns may form as either unique

patterns, the intersection patterns, zero patterns, or the union of the complements of the

stored patterns. Some of the BAM naining is unsuccessful (i.e., the Faining results in

imperfect recall of the stored patterns). This problem is likely to occu¡ when some of the

patterns are subsets of the others. Fu¡thermore, the results show that the unique bits of a

pattem at the input layer are associated with the unique bits of the associated pattern at the

output layer, The experimental results of BP show that diffe¡ent network configurations

give different outputs in response to a new input pattem. The results also show that the

networks produce some spurious patterns. However, a three-layer BP network produces

fewer spurious patterns than a two-layer BP network, This may be attributable to hidden

neuons in the three-layer BP netwo¡k. The failure of some of the BP raining indicates

that the naining of a threeJayer network with less than N-1 hidden neurons (where N is

the number of distinct pattems) is likety to fail. The experimental results of CPN show that

no spurious pattems occl¡rs. This may be anributable lo the competitive learning scheme

used in the CPN model. The CPN performs similar to a look-up table whose entries a¡e

separated by a radius of association.

-183-

VII. CONCLUSIONS ANDRECOMMENDATIONS

The second experiment, the classification experiment, includes the BP, CPN, and

ART-l models. The experimental results of BP show that a three-layer BP network with

many hidden neurons tends to generalize better than networks with few hidden neurons.

For the given binary classihcation probien¡ the nro-layer BP gives l0.4%o enor rate, while

the three-layer BP with 2 hidden neurons gives 58.47o error rate and the one with 35

hidden neu¡ons gives7.27o error rate. This means that, on the average, the two-layer BP

and the three-layer BP with a number of hidden neu¡ons above 6 classify a¡ound 907¿ of

the total test samples correctly. Results also show that no overJitting nor overtrainíng

probiem is detected in the BP training. The experimental results of CPN show that the

network with 10 hidden neurons gives 570 enot rate. In other words, the CPN network

shows a 957o classification. The results show that the leaming can be unstable for certain

learning rate settings. This problem, however, may be overcome through utilizing a

learning rate that is gradually reduced towards zero during Íaining. The experimental

results for ART-l show that the minimum number of categories with no overlaps (i.e., 10

categories) is never accomplished for the given problem, The numbe¡ of categories

increases to the maximum number of input patterns as the vigilance value increases to 1.0.

Fu¡tlermore, results also show that the leæning of the network is stable only at the subset

patærn, and this cha¡acæristic becomes significant for higher vigilance values.

In summary, the thesis has contribut€d to æchnical knowledge by:

providing a better understanding of the selected models tluough the development

of a unified benchmarking and an experimental study;

the use of object-oriented design methodology to develop a reusable and

expansible a¡tificial neu¡al network softwa¡e simulator;

development of an integrated software simulator of selected a¡tificial neural

(a)

(b)

(c)

- 184-

VN. CONCLUSIONS ANDRECOMMENDATIONS

network models, namely BAM, BP, CPN, and ART-I;

(d) providing a basis for the comparative study of selected artificial neu¡al networks

through experimental study; and

(e) introducing the use of an extension of the confusion matrix to measure the

performance of the ART- 1 model.

Fu¡ther research is required to either improve o¡ extend this work, including:

(a) the study of other a¡tificial neu¡al network models with the implementation of the

models based on the existing software;

(b) the development of some additional tools for the neural network softwa¡e

simulator, such as graphic displays for input and output pattems, and Hinton

diagram to display the weight values; and

(c) modification of the existing software to incorporate an a¡tificial neural netwo¡k

co-processor (accelerator) board,

-185-

REFERENCES

tAKCM90l S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton,

"Competitive leaming algorithms for vector quantization," Newal Networks,

vol. 3, pp. 277-290, 1990.

lAlKe90l L. G. All¡ed and G. E. Kelly, "Supervised learning techniques for

backpropagation networks," Proc . Second Int. loínt Conf. on Neural

Nework, vol. I, pp. 721-728, 1990.

tApplSS] Apple Computer,lnc,,lnside Macintosh, Cuperttno, CA: Addison-Wesley,

vol. 1-5, 1988.

[Baba89j N. Baba, "A new approach for finding t]re global minimum of enor function

of neural networks," N eural Networks, vol. 2, pp. 367-373, L989.

[Bulrn9l] D. Bulman, "Refining candidate objects." Compwer Language, vol. 8, No.

1, pp. 30-39, January, 1991.

[BuLu9Oì P. Burrascano and P, Lucci, "A leaming rule eliminating local minima in

multilayer perceptrons," Pro c. Second Int. Joint Conf. on Neural Networks,

vol. I, pp. 865-868, 1990.

[CaGr88] G. A. Carpenær and S. Grossberg, "The ART of adaptive pattem recognition

by a self-organizing newal netrxork," IEEE Computer, vol. 21, No. 3, pp.

77-88, Ma¡ch, 1988.

lCaGRgll G. A, Carpenter, S. Grossberg, and J. H. Reynolds, "ARTMAP: Supervised

real-time leaming and classification of nonstationary data by a self-organizing

neural network," Neural Networks, vol. 4, pp. 565-588, 1991.

-186-

REFERENCES

tCa¡p891 G. A. Carpenter, "Neural network models for pattern recognition and

associative memory," Neural Nerworks, vol' 2, pp. 243-257,1989.

tCa¡d901 H. Ca¡d, A¡tificial Neu¡al Networks' Lecture Notes, University of

Manitoba, Canada, 1989.

tClRag0l D, M. Cla¡k and K. Ravishanka¡, "Acquisition and decay rates in synaptically

coded memory," Neural Networks, vol. 3, pp' 525-533,1990.

lColog0l E. Colombini, "C Workshop: Designing an object with THINK C"'

MacTutor:The Macíntosh Progranming Journal,vol' 6, No. 8, August'

1990.

[CrHJ91] Y. Crama, P. Hansen, and B. Jaumard, "Detection of spurious stat€s of

neural networks ," IEEE Trans. on Neural Networ,ts, vol. 2' No' I' pp.

165-168, Jan., 1991.

tDaMaS8l P. A. Darnell and P. E. Margolis , Sofrware Engineering in C. New York:

Springer-Verlag, 1988, PP. 612.

IDARPSSI DARPA, DARPA N eural N etwork Sudy. Y :ugnia: AFCEA Intemational

Press, 1988, 629 pp.

[DeSi88] D. DeSieno, "Adding a conscience to competitive l easnng," Proc. of IEEE

Int. Conf. on Neural Networ&s, vol. I, pp. 117-124, 1988.

[EbDo9O] R. C. Eberha¡t and R. W. Dobbins, Ne¡øøl Nerwork PC Tools: A Practical

Guide. San Diego, CA: Academic Press, 1990' 414 pp.

[Fe¡e91] K. Ferens, et. al., "A neu¡al network Hamming encoder and decoder,"

IASTED Int. Conf. Computers, Electronics, Communication & Control,

Calgary, AB; Apr. 8-10, 1991'

[Funa89] K. Funahashi, "On the approximate tealization ofcontinuous mappings by

neu¡al networks," Neural NetworÉs, vol. 2, pp. 183-192' 1989.

-187-

REFERENCES

[GaJo79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco: Freeman, 1979,340 pp.

[Gross76] S. Grossberg, "Adaptive pattem classification and universal recoding: I.

Parallel development and coding of neural featu¡e detectors," Biol.

Cybernetics, vol. 23, pp. l2l-134, 1976.

lGrosS8al S. Grossberg, Ne ural Networks and Natwal Intelligence, Cunbndge (MA):

MIT Press, 1988.

[Gros88b] S. Grossberg, "Nonlinear neural networks: hinciples, mechanisms, and

a¡chitectures," N¿ural Networla, vol.l, pp. 17-61, 1988,

[Hagi90] M. Hagiwara, "Novel back propagation algorit]rm for reduction of hidden

units and acceleration of convergence using artificial selection," Proc.

Second. Int. Joint Conf. on Neural Networks, vol.I, pp. 625-630, 1990.

[HaHe88] K. Haines, and R. Hecht-Nielsen, "A BAM with increased information

storage capacity," Proc. Second I EEE Int. Conf. on Neural Networ&s, vol.

I, pp. 181-190, 1988.

[Hebb49] D.O. Hebb, The Organization of Behavior: A Neurophysiological Theory.

New York: Wiley, 1949.

[Hech87] R. Hecht-Nielsen, "Counterpropagation network s," Apptied Optics, vol,

26, pp. 4979-4984, Dec. l, 1987.

[Hech88] R. Hecht-Nielsen, "Neurocomputing : picking the human brun," IEEE

Spectrum, pp. 36-41, March 1988.

[Hech89] R. Hecht-Nielsen, Neurocomputing. Menlo Park, CA; Addison-Wesley,

1989, 433 pp.

-188-

REFERENCES

tHoFPS3l J. J. Hopfield, D. I. Feinstein, and R. G. Palmer, "'Unlearning' has a

stabilizing effect in collective memones," Nature, vol. 304, pp. 158- 159'

1983.

[Holl90] L M. Holland, "Cutting though the buzz words," The C++ Insíder'vol. l,

No. 1, October, 1990.

[Horn91] K, Hornik, "App¡oximation capabilities of multilayer feedforwa¡d networks,"

Neural Networks, vol. 4, pp.25l-257,1991.

[HoSw9O] K. Homik, M. Stinchcombe, and H. White, "Universal approximation of an

unÏnown mapping and its derivatives using multilayer feedforwa¡d

networks," Neural Networks, vol. 3, pp. 551-560' 1991.

[HuHu91] S. Huang and Y. Huang, "Bounds on the number of hidden neurons in

multilayer perceptons," IEEE Trans. on Neural Networks, vol.2' No' I'

pp.47-55, Jan.' 1991.

[Hump90] B. Humpert, "Bidirectional associative memory with sevelal pattÊrns," Prac'

Second Int. Joint Conf. on N eural N etworks, vol.I' pp. 741-750' 1990'

tHuYKgOl S. Hudon, Y. Yan and W. Kinsner, "A comparative study of neu¡al network

models," Proc.7th Intern. Conf' Math'and Computer Modelh ng (Chicago'

Aug. 2-5, 1989), vol. 14, pp. 300-304' 1990.

tIXiSgl W. T. Illingworth, "Beginners guide to neural networks," IEEE AES

Magazine, pp. 44-49, September ' 1989.

tlnKigll A, Indrayanto and W. Kinsner, "Object orienæd C implemenøtion of BAM,

BP, CPN and ART-1 neural network models," Technical Report'DELgl-7i

University of Manitoba, Aug. 29, 1991.

UoHoSTl W. P. Jones and J. Hoskins, "Back-Propagation : A generalized delta

learning ruhe," Byte,pp. 155-162, October' 1987.

-189-

REFERENCES

Uudd90l J. S. Judd, N¿urø I Nework Design and the Complexity of Learning.

Cambridge, MA: The MIT Press, 1990, 149 pp.

[KiHu9O] W. Kinsner and S. Hudon, "Benchmark patterns and a projection program

for neu¡al networks," Technical Report,DEL90-2i University of Manitoba,

Mar., 1990.

tKiIL90l W. Kinsner, A. Indrayanto, & A. Langi, "A study of Bacþropagation,

Counterpropagation, and Adaptive Resonance Theory neural network

models," Proc. l21h Int. Conf. IEEE Engineering in Medicíne & Bíology

,9oc.,IEEE CH2936-3190, vol. 3, pp. 1471-1473, 1990.

[KiYa89] W. Kinsner and Y. Yan, "A model of the carotid vascular system with

stenosis at t¡e carotid bifurcation ," Proc. 7th Intern. Cotf. Mathl. Comput.

Modelling, Chicago, MI, Aug. 2-5, 1989,

[Koho88] T. Kohonen, "An inroduction to neural computtng," Neural N etworks, vol.

I, pp. 3-16, 1988.

[Koho90] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol.78,

no.9,pp. 1464-1480, Sept. 1990.

[Kosk87a] B. Kosko, "Competitive adaptive Bidi¡ectional Associative Memories,"

Proc.of IEEE Int. Conference on Neural Networks, vol. tr, pp. 759-766,

1987.

[Kosk87b] B. Kosko, "Consrucdng an associative memory," Byte, pp. 137 -144,

September, 1987.

[Kosk88] B. Kosko, "Bidi¡ectional associative memones," IEEETransactions on

Sytems, Man, and Cybernetics, vol. 18, No. 1, pp. 49-60, Jan/Feb., 1988'

[Kosk89] B. Kosko, "Unsupervised leæning in noise," Proc. Int, Joint Conf. on

Neural Networks, vol. I, pp. 7-l'7,1989.

-190-

REFERENCES

[Kosk91] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence, Englewood Cliffs, NJ: P¡entice Hall,

1991,480 pp.

[Kosk92] B. Kosko, Neural Networlcs for Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 1992,415 PP.

[IGae89] T. F. K¡aemer, "Product development using object-oriented software

technology," l/e wlett-P ackard Jounal,vol.40, No. 4' pp. 87-100, August'

1989.

lKreigU V. Y. K¡einovich, "Arbirary nonlinearity is sufñcient to represent all function

by neural networks: A theorem," Neural Networks, vol. 4, pp. 381-383'

1991.

lKurzg0l R. Kurzweil, The Age of Intelligent Machines' Cambridge' MA: The MIT

Press, 1990, 565 pp.

[LaIK9 U A. Langi, A. Indrayanto, and W. Kinsner, "Stochastic codebook parameter

searching using neural network for CELP speech coding," 1A STED Int.

Conf. Computers, Electronics, Communication & Control, Calgary, AB;

April 8-10, 1991.

tl-ig0l S. Li, "An optimized bacþropagation wittr minimum norm weights," Prac.

Second Int. Joint Conf. on Neural Nenvor*s, vol' I' pp. 697 -702, 1990.

tliNug0l P. Li, and R. S. Nutter, "A bidirectional associative memory used in a pattern

recognition system," Proc. Second Int. Joint Conf. on Neural Networks,

vol. I, pp. 815-820, 1990.

[Llin89] R. R. Llinas (ed.), The Biology of the Brain: From Neurons to Networks.

New York: Freeman, 1989, 170 pp.

-191 -

REFERENCES

tl-ipp8Tl

lMaHP90l

[Ma¡k90]

lMaUp90l

[MeMR91]

lMcElSTl

[McPi43]

lMcRu36l

lMcRuSSl

R. P. Lippmann, "An innoduction to computing with neu¡al neTs," IEEE

ASSP Magazine, pp. 4-22, April, 1987.

A. J. Maren, C, T, Ha¡ston, and R. M. Pap, Handbook of Neural

Computing Applications, San Diego, CA: Academic Press, 1990' 470 pp.

D. Marlk, Macintosh C Progrønming Primer, Volu¡ne II : Mastering thz

Toolbox Using THINK C. Reading, MA: Addison-Wesley, 1990, 507 pp.

G. Mathai, and B. R. Upadhyaya, "Performance analysis and application of

tlre bidirectional æsociative memory to industrial specEal signatues," Proc.

Second Int. Joint Conf. on Neural Networ,ts, vol' I, pp. 33-37, 1990.

K. G. Meh¡ora, C. K. Mohan, and S. Ranka, "Bounds on the number of

samples needed for neural learning ," IEEE Trans. on Neural Networks, vol'

2, No. 6, pp. 548-558, Nov., 1991.

R. J. McEliece et al., "The capacity of the Hopfield associative memory,"

IEEETrans. on InformationTheory,vol,IT-33, pp. 461-482' July' 1987.

W, S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in

nervous activity," Bulletin of Mathematical Biophysjcs, No' 5, pp. I 15-133'

t943.

J. McClelland and D. Rumelhart" Parallel Distributed Processing.

Exploratíons in the Microstructure of Cognition, Volwnel : Foundations.

Cambridge, MA: The MIT Press, 1986, 568 pp.

J. L. McClelland and D. E. Rumelha¡t, E:pio rations in Pørallel Disnibuted

Processing : a Handbook of Models, Prograrns, and Exercises, Cambridge'

MA: The MIT Press, 1988, 344 PP.

M. L. Minsky and S. A. Papert Perceptors. (expanded edition)'

Cambridge, MA: The MIT Press, 1988, 307 pp.

lMiPaSSl

-192-

REFERENCES

tMultSgl M. Mullin, Object Oriented Progratn Design with Exatnples in C++ .

Reading, MA: Addison-Wesley, 1989,303 pp.

lMäRe90l B. Müller and J. Reinhardt, Påysícs of Neural Networks. Neural Network:

An Introduction Berlin, GE: Springer-Verlag, L990,266 pp.

lNils90l N. J. Nilsson, The Mathemøtical Foundations of Learning Møchines. San

'
Mateo, CA: Morgan Kaufmann, 1990, 138 pp.

[Page88] M. Page-Jones, The Practicøl GuideTo Structured Systems Desíqn, second

edition. New Jersey: Yourdon, 1988.

[Pao89] Y, Pao, Adaptíve Pattern Recognition and Neural Nefworks. Reading, MA:

Addison-Wesley, 1989, 312 pp.

lPCWe9Ol M. Page-Jones, L. L. Constantine and S. Weiss, "Modeling object-oriented

systems: The uniform object notation," Computer Languag¿, vol.7, No. 10,

pp. 69-87, October, 1990.

IPFTVSSI W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes ín C: The Art of Scientifrc Compøing. Cambridge:

Cambridge University Press, 1988, 735 pp.

tRHV/i861 D. E. Rumelha¡t, G. E. Hinton, & R. J. Williams, "Learning representations

by back-propagating enors," Nøt¿re, vol. 323,pp. 533-536, October, 1986.

[RyWi87] T. W. Ryan and C. L. Winter, "Variations on adaptive resonance," Proc. of

IEEE International Conference on Neural Networts, vol. II, pp'767-775,

t987.

[SaAn91] M. A. Sartori and P. J. Antsaklis, "A simple method to derive bounds on the

size and to Íain multilayer neural ne¡rorks," /EEE Trans. on Newal

Networks, vol. 2, No. 4, pp. 467-471, Jul., 1991.

-193-

REFERENCES

[SiDo9l] J. Sietsma and R. J. F. Dow, "Creating artificial neural netwo¡ks that

gener alize," N eura! Networks, vol. 4, pp. 67 -79, 1991.

[Silv90] J. N, Silva, "A study of learning in bacþropa garíon," Thesis. University of

Manitoba; Canada, Mar., 1990, 190 PP.

[Simp90] P. K. Simpson, "Higher-ordered and inraconnected bidi¡ectional associative

memories," /EEE Transactions on Systems, Man, Cybernetics, vol. 20, No.

3, pp. 637 -653, May/June, 1990.

tSmStg0l D. Smith and P. Sunford, "A random walk in Hamming space," Proc. of

Int. Joint Conf. on Neural N etworl<s, vol. [I, pp. 465-470, 1990.

[Sodh90] J. Sodhi, Computer System Techniques: Development, Implementation &

Software Maíntenance. Blrue Ridge Summit, PA: TAB BOOKS Inc., 1990,

pp. 164.

[Souc89] B. Soucek, Nøør¿ I and Concurrent Real'Time Systems:The Sixth

Generation. New York: John Wiley & Sons, 1989, 405 pp.

[Syma89] Symantec Corp.,Think C, Cupertino, CA: Symantec Corp', 1989,511 pp.

[Time90] Time-Life Books. How Things Work: The Brain Virginia: Time-Life

Books Inc., 1990, 144 pp.

tTWJoSgl H. M. Tai, C. H. Wu, & T. L. Jong, "High-order Bidi¡ectional Associative

Memory," Electronics Letters, vol. 25, No. 2l,pp. 1424-1425,lZth

October, 1989.

[WaCM89] Y. F. Wang, J. B. Cruz, and J. H. Mulligan, "An enhanced bidi¡ectional

associative memory," Proc.Int. Joint Conf. on Neural Networfrs' vol. I' pp.

105-110, 1989,

-t94-

REFERENCES

[WaCM9O] Y. F. Wang, J. B. Cruz, and J. H. Mulligan, "On multiple raining for

bidi¡ectional associative memory," IEEETrans. on Neural Neworks,vol. I,

No. 3, pp. 275-276, 1990.

[WaCM91] Y. F. Wang, J. B. Cruz, and J. H. Mulligan, "Guæanteed recall of all

raining pairs for bidi¡ectional associative memory," IEEETrans. on Neural

Networks, vol. 2, No. 6, pp. 559-567, 1991.

twaPigl l A, L Wasserman and P. A. Pircher, "Object-oriented sructured design and

C++," Computer Language, vol. 8, No. I,pp.4l-52, January, 1991.

[Wass89] P. D. Wasserman, Neural Computing:Theory and Prøct¡c¿. New York: Van

Nosuand Reinhold, 1989, 230 pp.

fWeKu90l S. M. Weiss and C. A. Kulikowski, Computer Systems thøt I'earn:

Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learníng, and Expert Systems. San Mateo, CA: Morgan Kaufmann, 1990,

223 pp.

[WeMa9l] N. Weymaere and J. Ma¡tens, "A fast and robust leaming algorithm for

feedforward neu¡al networks," Neural Networls, vol, 4, pp. 36I-369,

1991.

lwhitgo] H.White,"Connectionistnonparametricregression: Multilayerfeedforward

networks can leam arbitary mappings," Neural Netvvorks, vol. 3, pp. 535-

549, 1990.

[Wood88] D. Woods, "Back and Counær Propagation abberations," Proc. of IEEE Int.

Conf. on Neural Network, vol, 1, pp. 473-479, July 1988.

-195-

APPENDXA

TRAINING PATTERNS

4.0 Introduction

This appendix lists the raining pattems used in the experimenøl study.

4.1 Patterns Used in the Associative Memory Experiment

S¡¡ :

A
00000

s¡s:

0

B
0

111
000
1Ll
000
000
000

000
11L
000
l-11
000
r. 11
000

0
0
l-
0
L
0
0

A
00000
11-1-11
10001
11111
10001
10001
00000

A. TRAINING PATTERNS

H
00000
1000
r.000
1111
t-000
1000
0000

11
00
00
00
11
00

Sru:

s¡c :

00
11
00
00
00
11

00
1L
01
11-
0L
01
00

A
000
i. 11
l-00
L11
1-00
100
000
T

000

B
00000
t-1110
10001
11110
10001
11110
00000

00000
11111
l-0000
l-0111-
10001
11111
00000

00

- A2-

A. TRAINING PATTERNS

SB¡ :

E
00000
11111
10000
11111
10000
1i-111
00000
F
00000
1r-111
r-0000
11111
10000
10000
00000

E
00000
l-1111
10000
11111
10000
11111-
00000

G
00000
L1-111-
r.0000
10111
10001
1111L
00000

ssÆ:

sHr:

H

00000
1-0001
1000r-
l-1111
r.000r-
1-0001
00000

-43-

A. TRAINING PATTERNS

I
00000
11111
00100
00100
00100
11111
00000

I
00000
11111-
00100
00L00
00100
11111
00000
J
00000
1111-1
00100
00100
00100
11100
00000

sri

s¡¡"'
Ix
00000
11111
00100
00100
00100
1-1-101
00000

00000
11r. 11
00100
00100
00100
11110
000 00

- A4-

A. TRAININC PATTERNS

0000
l-l-11
0001
1111
0001
0001
0000

0000
1110
0001
L110
0001
111-0
0000

se¡l :

s¡¡r¡ :

A
00000

B
0

I
00000
1l-l-11
00100
001-00
00100
11111
00000

L1-1
000
111
000
000
000

0000
11Lt
0000
1ll-1
0000
0000
0000

1
L
1
1
I
0

F
0

-A5-

A, TRAININC PATTERNS

B
00000
111L0
10001
1t L10
10001
1-1110
00000
H
00000
10001
10001
11111
10001
1000r.
00000

H
00000
10001
10001
11111
1000r.
10001
00000

I
00000
11111
00100
00100
00100
L1l-11
00000

L1
10
11
L0
11
00

s¡r¡r :

s¡pc :

E
000 00

11
00
11
00
11
00

-46-

A. TRAINING PATTERNS

0000
t 1-11
0000
1-11-1
0000
0000
0000

0000
t-11-1
0000
0111
0001
1111
00 00

0000
Lr-r.0
0001
1110
0001-
11r.0
0000

0000
1L11
0000
0000
0000
1111
0000

0000
0001
0001
t11L
0001
0001
0000

G

0

sscHI :

B
0
1_

L
1
1
l-
0

c
0
l-
l-
l-
1
1-

0

H
0

-¡J-

A. TRAINING PATTERNS

I
00000
11111
00100
00100
00100
1111r.
00000

00
10
0t-
l-0
01
10
00

00
0L
0l-
11
01
01
00

L
00000
10000
10000
10000
10000
t Ll,Lr
00000

ssH[- :

00

B
000
l-11
L00
1-11-
100
111
000
H
000
100
100
l-11
100
100
000
I
000

1-1
00
00
00
11

1L
00
00
00
11
00 000

-48-

A. TRAINING PATTERNS

T
00000
1r. 111
00100
00L00
00100
11111
00000

1111
r.000
1111
1000
r.000
0000

J
00000
11111
00100
00r.00
00100
1L100
00000

B
00000
11110
10001
11110
l-0001
111L0
00000

0000
1L11
0000
11-11
0000
1L1l
00 00

l-11
00 0
1r. 1
000
000
000

F
00000
11111
i-0000
11L11
10000
10000
00000

1000
100 0
1111
1000
1000
0000

A
00000
1111-1
10001
lL1r1
10001
10001
00000

E
00000
1i. 11-1
r.0000
11111
10000
11111
00000

s¡n-l¡ :

À
00000

s¡s-pp :

A
00000

H
00000

spc-¡r :

-/i9-

A. TRAINING PATTERNS

00000
11111-
10000
10111
10001
11111
00000

J
00000
111_11
00100
00100
00100
11100
00000

T
00000
i-1111
00100
00100
00100
LLIII
00000

00000
11111
10000
10111
l-0001
111l-1
00000

0000
L11l-
0000
1-111
0000
1111
0000

0000
1111
0000
0111-
0001
1111
0000

0000
1111
0000
l-111-
0000
l-111
0000

I
00000
11111
00100
00100
00100
11111
00000

se¡-c¡ :

sm-Bc :

H
00000
10001
10001
11111
r0001
10001
00000
I
00000
t-1111
00100
00100
00100
1-1111
00000

-A10-

A. TRAINING PATTERNS

E
00000
11111
l_0000
LTTTL
10000
11111-
00000

0000
1111
0000
0111
0001
t-111
0000

J
00000
11111
00100
00100
00100
11100
00000

I
000

st¡-sc :

s¡r.rr-¡c¡ :

00
11
00
00
00
tI
00

00
1-1
00
00
00
00
00

L1
00
00
00
L1
00

L1
00
00
00
11
00

J
000

0000
1111
0001-
1-111
0001
0001
0000

0000
l_111
0000
0000
0000
1111
0000

B
00000
11110
10001
11-11-0
10001
1r. l1-0
00000
H
00000
r-0001
r.000r-
11111
10001
10001
00000
I
00000
1-1111
00100
00100
00100
11111
00000

-411-

A. TR-AINING PATTERNS

Snsr-¡-¡c:

0000

0000

A..2 Patterns Used in the Classification Experiment

se-¡:
A01
00000
11111
10001
11-111
10001
10001
00000

B
0

H

0
1
1-

L
L
l-
0

I
0
l-
0
0
0
l-
0

0000
1110
0001
1110
0001
1110
00 00

000
000
111
000
000
000

0000
1111
0100
0100
0t-00
1111
0000

111
000
l-11
000
000
000

0000
1111
01-00
0100
01-00
1100
0000

0000
1111
0000
0000
0000
11l-1
0000

- At2-

00000
TTTTT
TOOOT
TTTOT
00007
ITIÏI
00000

L0Ð

00
OT
OT
TT
0ï
TI
00
9 0,{

00
TT
OT
TÏ
OT
TT
00
90s

00
TT
OT
OT
OT
TT
00
t0q

000
000
000
TTT
000
TTT
000

- €IV-

000
TTT
000
TTI
00 0
TTT
000

00 0
OTI
r00
T00
T00
OTÏ
000

00000
TTITT
00007
00007
00007
TTTTT
00000

€0J

00000
OTTTT
TOOOT
OTTTT
TOOOT
OTTTÏ
00000

zjs

SNèl .l rY¿ gl\üqYãI 't

A. TRAINING PATTERNS

H08
00000
10001
10001
11111
10001
10001
00000

r09
00000
111-L1
00100
00100
00100
11111
00000
J00
000 00

11-
00
00
00
00
00

11
00
00
00
1-1
00

APPENDIX B

EXPERIMENTAL RESULTS OF ART.I

8.0 Introduction

This appendix lists the unsorted predicted categories of ART-I.

8.1 Predicted Categories for vigilance 0.5

0 c14(0)
1- H53 (0)

2 J11(0) ,rs2(0)
3 c23 (0) C34 (0)
4 H3L (0) H54(0)
s Fr-1-(0) D2t (0) D24(0) D33(0) Gs4(0)
6 F5s (0)
7 c32(0t c44 (0)
8 ,J21(0) F32(0) J31(0) Fs4(0) Jsi-(0) J54(0)
9 834 (0) D4i- (0) H52 (0)
l-0 c43 (0)

1-1 D43 (0)

72 ,J01(0) JL2(0) J13(0) .r14(0) J1s(0) J22(0)
J24(0) J25 (0) r33 (0) J32 (0) J33 (0) r3s (0)
J34(0) r43 (0) J41-(0) r51(0) rs2(0)

13 D13 (0) c41 (0) c52 (0)
L4 A43 (0) 842 (0) Bs2 (0)
Ls D32(0) 842(0) C5s(0) D51(0)
!6 F01(0) À14 (0) F12 (0) F13 (0) F14 (0) F15 (0)

F21{0) 824(0) F23(0) F24(0) F25(0) À32(0)
F31(0) F33(0) F34(0) 843(0) F41(0) F43(0)
F44(0) F4s(0) As5(0) F53(0)

17 H23 (0) H32 (0) F35 (0) H34 (0) H35 (0)
18 C4s (0)
!9 H55 (0)
20 r23(0) ,r23(0) J42(0',) J44(0) ,Js5(0)
2L c12(0) c21(0) C24(0) C31(0) 142(0) r45(0)

r54 (0)

22 J45 (0) r53 (0)

-81-

B. EXPERIMENTAL RESULTS OF ART.I

26

28
29

30
31

33
34
35

36
37
38

23
24
,6

40

4I

42

Br-4(0)
c23 (0)

D01(0)
D23 (0)
c43 (0)

H12(0)
F42 (0)

r0r. (0)

12s (0)

A52(0)
c42 (0)

A42(0)
E34(0)
H44 (0)

tL2 (0)

A4s(0)
845 (0)

E54 (0)

801 (0)

Bt-2 (0)
Et-s (0)

F22 (0\
E23 (0)
c3s (0)
cs3 (0)

H01(0)
H22 (0)
A34(0)
821(0)
843 (0)
E1r(0)
B4s (0)

A0r-(0)
813 (0)

A24(0)
A33(0)

P22 (0)
r32 (0)

D11 (0)

D3r. (0)

D4s(0)
H2l (0)

E51 (0)

r11 (0)

E31 (0)

c45 (0)

E55 (0)

r1s (0)

Js3 (0)

c01 (0)

813(0)
cr-2(0)
r22 (0',)

E25(0)
G34 (0)
c54(0)
Hr,l(0)
H24(0)
A4l- (0)

c3r.(0)
c44(0)
c22 (0)
854(0)
E0r. (0)

E14 (0)

A2s(0)
A3s (0)

Bs3(0)
Bss (0)

Dl-2(0)
D34(0)
D53(0)
A44(0)
c55(0)

r13(0)
131(0)

F51(0)

F22 (0)

c01(0)
B1s(0)
c13(0)
B23(0)
B33 (0)

134 (0)

cs3(0)
H13(0)
H25(0)
H41(0)
c32 (0)

851 (0)

E32(0)
Gs1 (0)
All (0)

ú2lo\
824(0)
E35(0)

Ds2 (0)

D14 (0)

D3s(0)
Ds4 (0)

H42 (0)

r14 (0)
r44 (0)

J3s (0)

811 (0)

c13 (0)

c14 (0)

825 (0)

c33(0)
c42 (0)

H14 (0)
831 (0)

H43 (0)

835 (0)

844 (0)
cs2 (0)

A12 (0)

E21 (0)

G24 (0)

À51(0)

15s (0)
Ð15(0) D22 (}',)
D4210) D44 (0)
Ds5 (0) Es2 (0)
F52 (0) H51- (0)

f2t(0\ r24 (0)

r4r_ (0) J43 (0)

cl1(0) c11 (0)
c15 (o) E12 (0)
G1s (0) c22 (0\
c25 (0) D25 (0)
E33 (0) c33 (0)
E4i. (0) c51 (0)

H15 (0) A2r.(0)
832 (0) H33 (0)
H4s (0) As4 (0)
G35 (0) 841(0)

E44 (0) G41 (0)

À13 (0) A15 (0)
G2!(27\ A23 (0)
c25(0) A31 (0)
A53 (0) E53 (0)

8,2 Predicted Categories for vigilance 0.8

0
1

3

4

F1L (0)

c32 (0)

D13(0)
J31 (0)

H53 (0)

-B.2-

B. EXPERIMENTAL RESULTS OF ART- I

5

6

7
I
9
10
11
t2
L3
L4
L5
t6
L7
18
19
¿U

2L

23
24

¿o
27
28
29
30
31
32
33
34
35
36

38
39
40
4t

43
44
45
46
47
48
49

51

53
54

F32 (0)

Al-4{0)
Js2 {0)

Fr.2 (0)

834 (0)

c23 (0)

c22 (01
H25(0)
A32(0)
811 (0)

D24 (0)
123(0)
,r41(0)
D33 (0)

f4210)
Jl1 (0)

H4210)
D3s(0)
c44 (0)

D32 (0)

811 (0)

B4s(0)
D43 (0)
H34 (0)

H31(0)
,t44 (0)

843 (0)

c43 (0)
c42 (0\
Js4 (0)

A44 (0)

133 (0)

A4210)
842 t0)
B44(0)
D41(0)
D51-(0)
E42(0)
Fs4 (0)

F21(0)
c42(0)
c4s (0)

H43 (0)

H5s (0)

J21(0)
,J23 (0)

J35 (0)

F45(0)

A43 (0)

F25 (0)

c34 (0)

G23 (0)

P24t0\ A55 (0)

E31 (0) 843(0)

r3s (0)

F43 (0)

H45 (0)

J53 (0)

-83 -

B. EXPERIMENTAL RESULTS OF ART- I

55
56
57
58
59
60
6r
62
63
64
65
66
67
68
69
70

72
73
74
IJ
/o
77
78
79
80
81
82
83
84
8s
Ub

87
88
89

E45 (0)

145 (0)

A52 (0)

H23 (0)
Bs2 (0)
D4s(0)
D52 (0)
c14 (0)

c4s (0)

c33 (0)

D23 (0)
D21(0)
Esl (0)

E54 (0)

F51(0)
F52 (0)
F53(0)
F5s (0)
c55(0)
c11 (0)
H54(0)
c54(0)
Hs1(0)
Hs2 (0)
J42 (0\
fs2 (0)
r14(0)
r54(0)
J55 (0)

Jsr (0)

814 (0)

c24 (0)

H12(0)
H3s (0)
D01 (0)
D2s(0)
E01 (0)

c33 (0)
J33 (0)

D31-(0)
c01 (0)

c2210)
À3r-(0)
F35(0)
E34(0)
c44(0)
H0r-(0)
H32(0)
H44 (0)

f01 (0)

855 (0)

853 (0)

cs2 (0)

c53 (0)
D34 (0)

855 (0)

cs5 (0)
D55 (0)

EL2 (0)

90
9L
92
93
94

95
96
97
98
99

100
101

r22 (0)

822 (0)

c25 (0)
H21 (0)

Dl1 (0)

E15(0)

,r34 (0)

c11 (0)

c31(0)
A34 (0)

Hr-1 (0)

r11 (0)

83r.(0)

D12 (0)

822 (0)

c12(0)

H14 (0)

r12 (0)

-B4-

832 (0)

D14 (0)

E23 (0)

c13 (0)

H1s (0)

rr.3 (0)

833 (0)

D15 (0) D22(O)

E25(0) E41(o)

c1s (o) c21(o)

H22(0) H24 (0)

r15(0) r2L(0)

B. EXPERIMENTAL RESULTS OF ART-I

141(0)
L02 J01(0) ,J12(0) Jr.3(0) J14(0) ,115(0) J22(0)

r2410) J25 (0)
r-03 821(0) 835 (0)

1-04 c4l- (0)

10s c41 (0)

106 F41(0)
107 851(0)
i_08 D42 (0) D44 (0)
r.09 F42 (0) F44 (0)
r.10 c43 (0) 854 (0)
111 r43 (0)
LL2 r32 (0) r44 (0)
1l-3 J43 (0)

rL4 F01(0) A1s(0) E14(0) F13(0) F14(0) FL5(0)
F22(0t F23(0) F24(0) F3L(0) F33(0) F34(0)

11-5 ,r4 5 (0)
116 A53 (0)
Lt7 HL3 (0) H33 (0)
118 c3s(0) c54(0)
Ltg Ðs3 (0)
L20 D54 (0)
!2r E13 (0) c31(0) E52 (0)
122 cs3 (0)
L23 c14 (0) c2s (0)
124 c0l-(0) c12(0) G13(0) Gls(0) 833(0) Gs2 (0)
L25 r51 (0)

126 r53 (0)
t27 124(0) 125(0) 131(0) 155(0)
128 c24 (0) c34 (0)
L29 B01-(0) 812(0) 813(0) Bls(0) 823(0) 825(0)

841 (0)

l-30 A01-(0) À11 (0) A12(0) A13 (0) A22 (0) Þ2,4 (0)
A25 (0) A41 (0)

131 832 (0) c32 (0)
L32 J32 (0)
133 G35(0) H41 (0)
r.34 r34 (0) E44 (0)

135 A45 (0)
136
L37 C51(0)
138 821(o) E24 (0) Es3(0)
L39 E35 (0) c51(0)
L40 c21-(0)
LAL A2r(0) A23 (0) A54(0)
\42 A3s (0) Às1(0)
L43 À33 (0)

-85-

B. EXPERIMENTAL RESULTS OF ART- I

8.3 Predicted Categories for vigilance 1.0

0
L
2
3
4
5

6

7
I
9
10
1l
t2
13
T4
15
t6
L7
18
19
20
2L
22
23
24

26
)'7

28
)o
JU
31
32
33
34
35
36

38
39
40
4L
42
43
44
45
46

F1r- (0)

B1L (0)

c32 (0)

D13 (0)
E31 (0)

cr-1 (0)

H12 (0)
J]-1 (0)

F12(0)
c14(0)
D01{0)
H01 (0)

,r01 (0)

A15 (0)

H15 (0)

822 (01
E'24 (0\
B34(0)
c23(0)
cr2 (01
D12 (0)
D35 (0)
D43 (0)
F0r-(0)
Fr.s(0)
c24 (0\
F14 (0)

G14 (0)

c22l0't
G23(0)
H23(0)
H14(0)
J3r (0)
123(0)
,J12 (0)

J13 (0)

J14(0)
J15(0)
À21(0)
F23 (0)
82r.(0)
c0r (0)
D24(0)
D22 (0\
c43 (0)
F22 (0\
F25(0)

-86-

B. EXPERIMENTAL RESULTS OF ART.I

47
48
49
50
51
52
53
54
55
56
JI
58
59
60
6l-
6¿
63
64
65
66
67
oõ
69
70
7L

73

75
/o
77
78
79
80
81
82
o?

84
85
ðb
87
88
89
90
9L
92
93
94
95
vb

F35(0)
cs4(0)
H21(0)
H42 (0)
J21(0)
r14(0)
J2210)
A23(0)
A14 (0)

À32 (0)

814 (0)

801 (0)

c25 (0)

D23(0)
D25(0)
E15 (0)

E]-1, (0)

E2s(0)
F24(0)
c24(0)
H34 (0)

H25(0)
J23(0)
133 (0)

J44 (0)

A31(0)
À43 (0)

831(0)
832 (0)
833 (0)
c31(0)
c34 (0)

D]-s (0)

D32(0)
D33 (0)
E32 (0)

F13 (0)

F21(0)
F32 (0)
F33 (0)
G31(0)
c44(0)
G33 (0)

H31-(0)
H32 (0)

H13 (0)

,r54 (0)

r01(0)
,132 (0)
J33 (0)

-87 -

B. EXPERIMENTAL RESULTS OF ART-¡

97 A34 (0)
98 H55 (0)
99 B3s (0)
L00 c35 (0)
101 D34 (0)

L02 E34 (0)
103 c4r. (0)

104 F34 (0)

105 c34 (0)

106 G3s (0)

!07 H35 (0)
r.08 J52 (0)
1-09 13s (0)
1-10 J34 (0)
L11 ,r3s(0)
Lt2 H54 (0)
113 A42 (0)
LLA À44 (0)
r1-5 841 (0)

116 8.4210)
LL7 F43 (0)
118 844 (0)

119 c42(0'
t20 D1t1 (0)

t2t D42 (0)
L22 D44 (0)
L23 E4l- (0)

r24 E42 (0)
L25 843 (0)
126 E44 (0)
t27 F4t (0)
!28 F42 (0)
r29 F44 (0)
1_30 c41 (0)

131 c42 (0)
L32 c43 (0)
133 G44 (0)
t34 H41(0)

13s H43 (0)

136 H44 (0)
I37 141(0)

138 142(0)
139 r43 (0)
140 r44 (0)

L4L J41(0)

L42 J42 (0)
143 ,J43(0)
I44 F22 (0)
L45 845(0)
L46 C45 (0)

-88-

B. EXPERIMENTAL RESULTS OF ART- I

L47 D45 (0)

I48 E4s (0)

t49 F45 (0)

r"50 c45 (0)

151 H45 (0)

r52 r45 (0)

153 J45 (0)

154 A51(0)

155 Às2 (0)

156 A53 (0)
t5'1 À54(0)
158 Ass (0)
159 Bsr-(0)
1-60 Bs2 (0)
L6L Bs3 (0)
L62 854(0)
163 Bss (0)
L64 c13 (0)
165 cs2(0)
L66 Cs3 (0)
L6't C54(0)
168 c55(0)
L69 D51(0)

L70 D52 (0)
L1L D53 (0)
L72 D54(0)
L73 Dss (0)
L74 E5r.(0)
L75 E52 (0)
rt6 E53 (0)
L77 854 (0)
r78 E55 (0)
t79 Fs1(0)

180 Fs2 (0)

181 F53 (0)
L82 F54(0)
183 Fss(0)
184 G51(0)

185 c52 (0)
186 c53 (0)
L87 c55(0)
188 H51 (0)

189 H52 (0)

r.90 H53 (0)

Lgt rs1(0)

t92 r52 (0)
193 r53 (0)

L94 r54 (0)
r.95 rs5 (0)

196 J51(0)

-89-

B, EXPERIMENTAL RESULTS OF ART-I

L97 J53 (0)
198 J5s (0)

799 G01(0)

200 A01(0)

20t c11 (0)
202 D11(0)
203 H1r. (0)

204 r11(0)

205 A12 (0)
206 A13 (0)
207 Bt 3 (0)
208 B1-5(0)
209 c21(0)

2L0 D14 (0)
zLt E14(0)
2L2 G12 (0)
2r3 c13 (0)
2t4 c1s (0)
2L5 rl-2 (0)

2L6 J25 (0)
2L7 P22(01
2t8 C22 (0J
2t9 D21(0)
220 G25 (0)
22t G21(0)
222 H22 (0\
223 fl.3 (0)
224 f22(01
225 A24(0)
226 À25 (0)
227 823 (0)
228 812 (0)
229 E23 (0)
230 E12 (0)
23L H24 (0)
232 124(0)
233 r25 (0)
234 J24(0)
235 À33 (0)
236 c15 (0)
237 D31(0)
238 833 (0)
239 F3r(0)
240 c32 (0)
241 H33 (0)
242 131(0)
243 r32 (0)
244 À35(0)
245 E3s(0)
246 r34 (0)

rr-5 (0)

-810 -

B. EXPERIMENTAL RESULTS OF ART-I

247 A41(0)
248 843 (0)
249 A45 (0)
250 cs1(0)
25t All (0)

252 E01(0)

253 E21(0)

254 121 (0)

255 825 (0)
256 E24 (0)
257 c33 (0)
258 813 (0)

F
ile

 fl
pt

io
n

to
nf

T
ot

al
 T

ra
i

ni
 n

g
F

as
se

s:

E
rr

or
 C

rit
er

ir
i

T
ot

rl
ln

pu
t

P
at

te
rn

s
:

W
ei

gh
t

U
pd

rt
e

l'1
od

e
:

P
re

se
nt

st
io

n
l4

od
e

:

I r) I

S
-f

un
ct

¡o
n.

B
P

3?
û

C
ur

re
nt

 P
æ

s
:

56
4

0.
01

00
00

 T
ot

s¡
 E

rr
or

:

0.
01

00
01

tl
C

ur
re

nt
 P

at
te

rn
:
ll

B
at

ch

N
am

e
:

x-
l 0

O
pe

ra
t¡

on
 T

oo
ls

 P
at

te
rn

 E
di

t

T
he

 P
ro

be
 fo

r
to

ta
lE

rr
or

S
eq

ua
nt

ia
l

E
 rr

o
T

he
 P

ro
be

 fo
r

0

z tr
l c F l. z F
I l.l { F X
E

v)
 ;

;
F

Z
tx lc

ì
1 U

) z çn

o-
96

58
3

t

