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ABSTRACT

Recent progress in artificial neural network models has led to a need for developing
unified benchmarks and a unified methodology of benchmarking in order to facilitate better
understanding and applicability of these models for particular applications. This thesis
places emphasis on the study of the characteristic features of four selected models, namely,
the Bidirectional Associative Memory (BAM), Backpropagation (BP), Counterpropagation
(CPN), and Adaptive Resonance Theory 1 (ART-1) neural network models. The study
includes the identification and comparison of the characteristic features of the selected
models, the development of a neural network software simulator, and some experimental
study. The software is designed using the object-oriented design methodology, and is
implemented on the Macintosh computer. Since there are two distinct classes of neural
network models, the experimental study must employ two benchmark problems, namely,
the associative memory and the pattern classification problems. The experiment confirms
some of the characteristic features of the selected models and reveals other characteristic
features that have not been previously identified. For example, the results of the
associative memory experiment show that the selection of the stored patterns in the BAM
network seems inconsistent with a selection based on the closest Hamming distance.
Results confirm that the three-layer BP network produces fewer spurious patterns than
two-layer BP network, and CPN performs similarly to a look-up table whose entries are
separated by a radius of association. For the given binary classification problem, results
show that the two-layer and three-layer BP with a number of hidden neurons above 6
classify 90% of the total test samples correctly, while the CPN network shows a 95%
classification. The experimental results of ART-1 confirm that the learning of the network
is stable only at the subset pattern, and this characteristic becomes significant for higher

vigilance values. The thesis presents results from numerous experiments.
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CHAPTER 1
INTRODUCTION

1.1 Objective

The objective of this thesis is to study the characteristic features of four representative
artificial neural network models, namely, Bidirectional Associative Memory (BAM)
[Kosk88], Backpropagation (BP) [RHWi86, McRu86], Counterpropagation (CPN)
[Hech87], and Adaptive Resonance Theory 1 (ART-1) [CaGr88].

1.2 Motivation

An artificial neural network is a computational structure that is based on concepts
derived from research into the nature of the brain [DARP88, MiiRe90]. This new
computing paradigm is becoming increasingly attractive not only in the study of intelligent
machine behaviour, but also in solving a variety of practical problems [HuYK90]. Several
studies have shown some advantages of neural networks to solve some practical problems
as opposed to other approaches [DARP88, Souc89, WeKu91, and Kosk92].

The development of new theories in the past decade has led to a variety of artificial
neural network models. Today, there are at least 26 distinct models of artificial neural
networks, each of which has its own advantages as well as problems and limitations
[MaHP90]. The unique characteristics of each distinct artificial neural network model lead
to a question of how to select a proper model that matches a particular application. Sucha
selection is difficult because the models differ in their behaviour significantly. This thesis

is an attempt to develop unified benchmarks through a comparative study of several
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I. INTRODUCTION

_ representative neural network models. The study is intended to improve our understanding
of the capabilities of different neural network structures, and hence to provide a better
insight into neural network behaviour.

Ideally, a comparative study should include all the existing neural network models.
However, since the comparison is very time consuming, only a few models can be studied.
Previous works on comparative studies of certain neural network models have been done
and presented by this research group [Silv90, HuYK90, KiHu90, and KilL.90]. This
thesis is an extension of the previous work by Kinsner, Indrayanto, and Langi [KilL90],
with emphasis on the characteristic features of the BAM, BP, CPN, and ART-1 neural
network models. These models have been selected since they are representatives of distinct
behaviours.

The study is done through (i) identifying the characteristic features of selected neural
network models; (ii) comparing the characteristic features of the models; (iii) developing a
software simulator of the models; (iv) doing experimental study on the models using the
software.

A study of neural networks requires the availability of tools for simulating various

‘neural network models. Although commercial neural network simulators are available,
most of them come with only a few models and rarely allow the definition of arbitrary
neural network parameters. What is even more detrimental, the software usually comes
without a source code which could show exactly how the learning algorithms have been
implemented in the selected models.

For practical applications, there is no need to have access into the details of the source
code, as long as the software has a good user interface and some flexibility to change the
learning parameters and the network architecture. However, in a comparative study, such

an access is necessary to control all the implementation details. This is important, since to

~2_




I. INTRODUCTION

study the characteristics of the models, one must make sure that the original learning
algorithms are implemented properly (i.e., there are no modifications nor any
improvements to the original learning algorithms). A study of the details usually reveals
such alterations. Thus, it is preferable to implement each neural network model from the
ground up, with all the known modifications. Furthermore, implementations of separate
- simulators for distinct neural network models may differ so much that a comparative study
could be meaningless. Consequently, a unified framework for all the models of interest
must be developed. Since the development of such a unified framework is a very involved
process, an object-oriented approach yields good software that is expandable, maintainable
and portable. These are the major reasons to include the development of a new neural
network software simulator in the thesis. Without this new neural network simulator the
comparative study could not have been possible.

The basic differences between the selected models may be studied through the topology
and the learning algorithm of each model. However, this may not confirm or discover all
their capabilities, and particularly, their abilities to solve specific problems. Therefore, an
experimental study of the models is also included in the thesis together with some
benchmark problems.

| It is not easy to find an application that is suitable to all of the selected models, since
each of the models has its own characteristics. For instance, BAM will suit an associative
memory application but not a pattern classification. On the other hand, ART-1 will suit a
pattern classification but not an associative memory application. Due to their specifications,
separate experiments have been concluded. The first experiment, namely, the associative
memory experiment includes only BAM, BP, and CPN models, while the second
experiment, namely, the pattern classification experiment includes only BP, CPN, and

ART-1 models. Another issue is the representation of the data samples to the networks.

-3-



I. INTRODUCTION

BP and CPN can take both binary and analog data representations. However, BAM and
ART-1 can only take the binary data representation. Therefore, a binary data representation
is preferable. A set of 11 alphabetic characters represented by 7xS5 binary pixels is selected
as the main data samples in both experiments. This data set has been used in the previous

work [HuYK90, KiHu90, and KilIL90].

1.2 Organization of Thesis

This thesis consist of seven chapters. Following an introduction to this thesis
(Chapter I), Chapter II gives background information on artificial neural networks. This
includes the discussion of the theoretical basis of artificial neural networks in general and
their evolution. Chapter III discusses »the essential features of selected neural network
models. The discussion covers the network topologies, the learning procedures, and some
limitations of the models, as well as a basis for the comparative study. Chapter [V
describes the structure and the implementation details of the neural network software
simulator. This includes the discussion of the system specifications, design methodology,
the architecture of the system, and the verification technique of the system. Chapters V and
VI present experimental results. Chapter V describes the associative memory experiment,
and discusses the experimental results of BAM, BP, and CPN models. Chapter VI
describes the pattern classification experiment, and discusses the experimental results of
BP, CPN, and ART-1 models. Finally, Chapter VII gives conclusions and

recommendations.




CHAPTER II
BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a computational structure that is based on concepts
derived from research into the nature of the brain [DARP88, MiiRe90]. That research has
helped in the development of artificial neural networks. Therefore, it is natural to briefly
review the biological neuron model in this chapter. The chapter also presents an overview

of the developmental history and evolution of the artificial neural networks field in general.

2.1 The Biological Model

Neurons, or nerve cells, are the building blocks of the brain. In spite of the similarity
in their biochemical apparatus with other cells, neurons have unique features, such as
distinctive cell shapes, outer membranes capable of generating nerve impulses, and unique
structures, called synapses, for transferring signals from one neuron to the next [L1in89].
Regardless of their unique forms, most neurons share certain structural features that make it
possible to distinguish three regions of the cell, namely, the soma or the cell body, the
dendrites, and the axon (see Fig. 2.1). The dendrites and axons extend from the cell
body to other meurons via connection points, the synapses. The cell body receives
'incorning signals from other neurons through dendrites. In the state of inactivity, the
interior of the neuron is negatively charged (about -70mV) against the surrounding neural
liquid. Signals arriving from the synaptic connections result in a transient weakening, or

depolarization, of the resting potential. The cell fires when the cumulative excitation of

_5_



1. BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

these signals exceeds a threshold (i.e., when the total magnitude of the depolarization
potential in the cell body exceeds the critical threshold, about 10mV). Then, the fired cell
sends a signal (i.e., pulse trains ranging from about 1 to 100 pulses per second) down the
axon to the other neurons. This is the basic mechanisms of how neurons communicate
among themselves. Notice that the cumulative excitation of the incoming signals, to some
extent, is determined by the types and the strengths of the synapses. Some synapses are
excitatory in that they tend to promote firing, while others are inhibitory in that they are
capable of canceling signals that would otherwise excite a neuron to fire. Moreover, the
strengths of the synapses are not fixed once and for all. There is a mechanism of synaptic
plasticity in the structure of the synapses, known as Hebb’s rule [Hebb49, MiiRe90],
which is described in more detail in Section 2.3.2. A detailed description of the brain

physiology can be found in [L1in89] and [Time90].

nucleus

synapse

/’“ yer svnapse/

axon

from
another
neuron

dendrite

A

Fig. 2.1. A typical neuron in the human nervous system. After [L1in89]
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2.2 Artificial Neural Networks (ANNs)

Neurons can be viewed as processing elements capable of at least summing operations;
the axons and dendrites become the connections that establish the communication paths
among neurons, and the synapses become the connection weights, which are changeable
through some learning algorithms. Similar to the biological model, an artificial neuron can
have any number of incoming connections as well as outgoing connections. While each
incoming connection can receive any signal, the outgoing connections must transmit the
same signals. In other words, a processing element has a single output connection that can
branch or fan out into exact copies to form multiple output connections [Hech89].

In a more formal definition, a neural network model is defined as a directed graph
[MiiRe90, Hech89], a geometrical object consisting of a set of points (called nodes) along
with a set of directed line segments (called /inks) between them, with the following

properties (see Fig. 2.2) :

1. A state variable x; is associated with each node i.

2. A real-valued connection strength or weight Wi is associated with each link (i)

between two nodes i and j.
3. Areal-valued bias 6;is associated with each node i.

4. A transfer function Si[x;, wy;, 6;,(j# 1] is defined, for each node i, which
determines its state as a function of the states of the nodes connected to it, the
connection strengths or weights linking other nodes to it, and its bias. A general

form of S; usually is given as S,—(E Wij Xj— 9,-), where S(y) is a non-linear
J
squashing function (e.g., sigmoid).
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In the standard terminology, the nodes of the graph are called neurons or processing
elements, the links are called synapses or connections, the states of the nodes are called

the activations of neurons, and the biases are known as the activation thresholds.

S,'[Xj, Wii, B (j# 1)]

Fig, 2.2. A model of an artificial neuron.

The formal definition of the artificial neural networks, however, has only been
introduced recently. In spite of this, the theories of the artificial neural networks are not

new. They have been known for sometimes under different names.

2.3 The Early Foundations

The field of artificial neural networks appears to be a new discipline concerned with
data processing system. However, the foundations have been established before the
emergence of computers [MaHP90, Kurz90].

The field has interesting history since its appearance in the 1940s. The early progress,

which culminated in the development of the first successful neurocomputer, Mark I
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Perceptron, a two-layer feedforward neural network model built from the idea of Frank
Rosenblatt [Hech89], was followed by a period of disinterest. This lack of enthusiasm
was strengthened by the publication of the Perceptrons book of Marvin Minsky and
Seymour Papert in 1969 [MiPa88], which exposed what appeared to be significant
important limitations of the perceptron models of the time. During the period from 1967 to
1982, little progress in artificial neural network research was reported in the United States
[Hech89]. Nevertheless, some researchers in this period, namely Bernard Widrow, Harry
Klopf, James Anderson, Steven Grossberg, Paul Werbos, and others in Europe (Teuvo
Kohonen) and Japan (Sun-ichi Amari and Kunihiko Fukushima), helped keep the field of
artificial neural networks afloat by persuing the research. By 1986, with the publication of
the Parallel Distributed Processing (PDP) book by David Rumelhart, James McClelland
and the PDP research group, the field exploded. Since then, the field of artificial neural

networks has attracted a great deal of attention and funds for further research.

2.3.1 McCulloch-Pitts Neurons

The research in artificial neural networks had its first interesting results about forty-
eight years ago, when Warren McCulloch and Walter Pitts showed in their 1943 paper that
even simple types of neural networks could, in principle, compute any arithmetic or logical
function [Hech89]. In their paper, they assumed that the activity of the biological neuron
was an “all-or-none” process [McPi43]. Thus, their model neuron was somewhat similar
to a binary device with a fixed threshold. Also, they assumed that the model included the
effect of synaptic decay and that the inhibitory synapse absolutely prevented excitation of
the neuron. However, at that time, the authors did not mention any practical use of their
work. Nevertheless, the paper was widely read and had great influence on the

development of the network models and learning paradigms that followed.
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2.3.2 Hebb's Learning Law

In 1949, Donald Hebb, in his book entitled The Organization of Behavior, postulated
that the strength of a synaptic weight between two neurons increases whenever an axon of
neuron A is near enough to excite a neuron B and repeatedly or persistently takes part in
firing it {Hebb49]. In this way, often-used paths in the network are strengthened, and the
phenomena of habit and learning through repetition are explained. This proposal of a
specific learning law for the synapses of neurons has become the basic learning law of
current artificial neural networks.

The Hebbian learning law, also called Hebb’s law, can be expressed in mathematical

notation as

Awi=axx, a>0; x,x20 2.1)

where A wj; is the change in synaptic weight, & is the constant of proportionality
representing the learning rate, and % and x; represent the activations of neuron i and
neuron j, respectively. Originally, Hebb’s law assumed positive activation values.
Nevertheless, learning that involves neurons with negative activation values has also been

labeled as Hebbian [EbD090].

2.3.3 The Perceptron

The first successful neurocomputer, the Mark I Perceptron, was developed during 1957
and 1958 by Frank Rosenblatt, Charles Wightman, and others [Hech89]. The perceptron
includes simple neuron-like processing elements of McCulloch and Pitts’ model neuron,
which aggregates the incoming inputs and forwards the result to a simple threshold

function (see Fig. 2.2). Note that the input signals to the processing elements are the input
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signals to the network multiplied by the connection weights. A network with N inputs can

be expressed by the following equations:

N
net; = Z Xj Wi, (2.2a)
=1

1 ifnet;>6
Xj = (2.2b)

0 otherwise.

Consequently, net; represents the total sum of the incoming signals, x; is the activation of
neuron i, x; represents the input signal to the network, wj; is the connection weight value,
and B1is a constant value representing the threshold (usually, 6 = 0). Notice that (2.2b)
expresses the threshold function of McCulloch and Pitts’ model neuron.

In order to do classification, the perceptron needs to be “taught” by pairs of training
patterns. The training patterns consist of input patterns to be recognized and the desired
output patterns, namely the target patterns. During training, the perceptron modifies its

connection weights according to Rosenblatt’s learning law, given by
Awij=0(ti—x) %, a>0; x;,x20 (2.3)

where ¢; represents the target signal, and A w;j, o, X; and x; are as defined by Eq. 2.1.

| Rosenblatt has proved that, given training data with linearly separable classes, a
network of simple neuron-like processing elements, such as the perceptron, can develop
connection weight values that separate the classes [McRu88, Hech89]. However, the
incapability of the perceptron to cope with non-linearly separable tasks, such as XOR and
parity problems, had discouraged many researchers at the time. These shortcomings have

been cautiously described through a very careful mathematical analysis in Minsky and
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Papert’s book Perceptrons [MiPa88]. The book had a dramatic effect, and practically all
work on Perceptrons came to a halt. Recently, the problems of a two-layer perceptron have
been overcome through adding more layers. The revised version of the perceptron,
sometimes called a multilayer percéptron, was developed independently by several
researchers such as Werbos in 1974, Parker in 1982, and, Rumelhart, Hinton, and

Williams in 1986, under different names [Wass89, MaHP90].

2.4 New Computing Paradigm

The development of new theories in the past decade has led to a variety of artificial
neural network models. Today, there are at least 26 distinct models of artificial neural
networks [MaHP90], each of which has its own advantages as well as problems and
limitations. However, most of them share the same basic architecture, in that the networks
consist of neuron-like processing elements linked together through connection weights, and

their learning algorithms evolve from the Hebb’s law.

2.4.1 The Networks

The neurons in a neural network may be organized in a number of different ways.
Generally, several neurons are grouped together forming a layer. Neurons in a layer
usually work together to perform a specific function. For example, the neurons in an input
layer, acquire the input signals from the outside world. A network may have one or more
layers. A network with two layers is called a two-layer network, whereas a network with
more than two layers is called a multilayer network.

Every neuron is connected to other neurons. However, the patterns of connectivity
between neurons vary across neural network models. Neurons within a layer may be

laterally connected, while neurons between layers may be fully or sparsely connected.

12—




I, BACKGROUND ON ARTIFICIAL NEURAL NETWORKS

From the patterns of neuron connectivity between layers, there are two kinds of neuron
connectivity, namely, feedforward connections and feedback connections. Base on this
structure, a network can be called a feedforward network or a feedback network. The

differences between them are described in the following section.

2.4.1.1 Feedforward Network

A feedforward network has connections through weights extending from the outputs of
neurons in a layer to the inputs of neurons in the next layers; e.g., connections from the
input layer to the output layer in a two-layer network. A two-layer or multilayer
feedforward network operates by means of propagating the input signals from the first
layer in the network, usually an input layer, up to the last layer in the network, which
generally is the output layer. Some examples of neural network models in this category are
the perceptron [MiPa88, McRu88], the backpropagation (BP) [RHWi86, McRu86], and
the counterpropagation (CPN) networks [Hech87].

2.4.1.2 Feedback Neiwork

_ A feedback network, besides having forward connections (i.e., connections from the
input layer to the output layer), also includes backward connections (i.e., connections from
the output layer to the input layer). Thus, for a two-layer network, this means that the
network has two sets of connection weights, one going from the first layer to the second,
and the other connecting the second layer back to the first. Two of the most popular
models of this type are bidirectional associative memory (BAM) [Kosk87a, Kosk87b,

Kosk88], and adaptive resonance theory 1 (ART1) [CaGr88, Gros88a, Gros88b].

2.4.2 Learning Methods
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A unique feature of artificial neural networks is their abilities to learn from examples.
This capability is achieved by means of a learning algorithm. Every neural network model
has its unique learning algorithm. However, most of the learning algorithms have evolved
from Hebb's law. The learning procedures can be categorized into three distinct types,

namely, supervised learning, reinforcement learning, and unsupervised learning.

2.4.2,1 Supervised Learning

A network employing a supervised learning type algorithm requires labeled input data
and an external “teacher”. The teacher knows the desired correct response to each input
and thus provides a detailed error signal after each trial. A network with this type of
learnings usually calls for two distinct sets of patterns from the same problem domain, one
for the training set and the other for the testing set. Consequently, the learning phase, often
called training phase, is separated from the recognizing or testing phase. Some neural

network models in this category are BAM, BP, and CPN.

2.4.2.2 Reinforcement Learning

Reinforcement learning, also called graded training [Hech89], is similar to supervised
learning; that is, it requires training data and a teacher. The only difference is that the
teacher only indicates whether a respoﬁse was correct or incorrect and does not provide
detailed error information. In other words, the teacher gives a sort of “performance score”
that tells the network how well it has done overall since the last time it was graded. An
example of networks with this type of learning is the graded learning network (GLN)

[Souc89].
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2.4.2.3 Unsupervised Learning

A network with unsupervised learning uses unlabeled input data and requires no
external teacher. The network demands no separate pattern sets (i.e., no separate training or
testing sets). All data inputs are treated as testing patterns. Its weights change over time as
new patterns are presented to the network. From just the presentation of inputs, the
network is expected to organize its weights into some “useful” configuration, thus, the
learning is also known as self-organization. The ART1 neural network model is an
example of models employing the unsupervised learning algorithms. Note that, for
convenience, the term learning is used to refer to the unsupervised learning mode, whereas

training is associated with the supervised learning mode.

2.5 Summary

This chapter provides a review of artificial neural networks. The discussion begins
with a review of the biological neuron, which inspires the development of neuron-like
~ processing elements. This leads to a definition of artificial neural networks. The historical
background of research in artificial neural networks is also presented. One of the most
popular neural networks of the past, the perceptron, has been discussed along with the
original model of an artificial neuron and the original learning rule of neural networks.
Finally, a discussion of the developmental history and a description of neural network

structures as well as their various learning paradigms are presented.
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CHAPTER III
ESSENTIAL FEATURES OF SELECTED ANN MODELS

This chapter presents a comparison of the following four neural network models:
bidirectional associative memories (BAM) [Kosk88], backpropagation (BP) [RHWi86,
McRu86], counterpropagation (CPN) [Hech87], and adaptive resonance theory 1 (ART1)
[CaGr88]. These models are representatives of different classes. For instance, BAM is
considered to be a supervised feedback network, BP is supervised feedforward network,
CPN is unsupervised feedforward network and ART1 is an unsupervised feedback
network. Although BP and CPN are networks of the same class (using the classification
mentioned in Chapter II), they have very different learning principles. These learning

procedures as well as their limitations are the topics to discuss in this chapter.

3.1 Bidirectional Associative Memory (BAM)

A bidirectional associative memory (BAM) is an associative network [Kosk87a,
Kosk87b, Kosk88)]. It is used to store and to recall information by association with other
information. To be more specific, a BAM is called an auto-associative network, if the
stored pattern can be recalled from its partial pattern, whereas it is called a hetero-
associative network, if the stored pattern can be recalled through another associated
pattern.

There are numbers of variants and evolutions on BAM, including continuous and

discrete BAMs [Kosk87b, Kosk88], intraconnected BAM [Simp90], competitive adaptive
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BAM (CABAM) [Kosk87a], temporal associative memory (TAM) [Kosk88], random
ABAM (RABAM) [Kosk89], and others. However, this study focuses on the less
complex type of BAM, that is the discrete BAM. |

3.1.1 Network Topology

The discrete BAM, introduced by B. Kosko, is a bilayered non-linear feedback
network. The network has symmetric interconnections between layers; i.e. connections
from the outputs of the neurons in the first layer, F4, to the inputs of the neurons in the
second layer, Fp, denoted by connection matrix W, and connections from the outputs of
the neurons in Fp, to the inputs of the neurons in F4, denoted by connection matrix V.
In general W and V differ in structure. However, in BAM, W and V are assumed to
have the same, or approximately the same, structure [Kosk91]. One way to impose an
equivalent structure is to set W = V7 or V = W7, where W7 and VT denote the matrix
transposes of W and V respectively. In practice, it is often sufficient to use only W to
represent the connection matrix from F4 to Fp and W7 for connection matrix from Fp to
F4 (Fig. 3.1).

Information passes forward from F4 to Fp through the connection matrix W.
Similarly, informaﬁon passes backward from Fp back to F4 through the matrix transpose
WT. This process is repeated until the network arrives at a stable point; that is, when
neither information at F4 nor at Fp is changing. Since every real matrix is both a discrete
and continuous bidirectionally stable associative memory [Kosk88], it is expected that

gradual changes due to learning in W will result in stability.

~17 -



III. ESSENTIAL FEATURES OF SELECTED ANN MODELS
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Fig. 3.1. Topology of a BAM network. After [Kosk88]

The neurons in the layers are two-valued, or bivalent, neurons with hard-limit
threshold signal functions, and they process signals deterministically and synchronously.
This type of neuron is similar to the Perceptron, which stems from the classical neural
model of McCulloch and Pitts [McPi43]. If I; represents the input signal to a neuron i;
S{y;) denotes the state of the neuron j in the other layer that is connected to the neuron i
by a connection weight w;; x; denotes the sum of the input signals to a neuron i; S{x} is
the threshold function; and index k indicates the discrete time step, then the state of the

neuron i in a time step & is

N
xbHU o= Y Sy wy + 4 3.12)
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1 if x>0
S ={ S(xB  if xHt=0 (3.1b)
0 if x,-"“ <@

for a number of neurons, N, connected to neuron i and an arbitrary real-valued threshold

8. A discrete BAM of which the threshold 6 is equal to O is called a homogeneous
BAM.

3.1.2 BAM Weight Modification Procedure

Neural networks, including BAM, store the information distributively in their
connection weights through some learning algorithms. In discrete BAM, the connection
weights, denoted by connection matrix W, are developed by the outer-product learning
method [Kosk91]. This method sums weighted correlation matrices of the associations.
For instance, let us assume that we wish to store N associations of binary vectors
(A B) fori=1,2,.., N. A; denotes a binary vector of length m, and B; denotes

a binary vector of length n. Then, the sum of the N binary correlation matrices AT B;is

N
w=Y, al B (3.29)

i=1

with dual BAM memory W7 given by

N
wT=> Bl A (3.2b)

i=1
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The expression in (3.2a) and (3.2b) is called the binary outer-product law. The
associations can be encoded also through the following bipolar outer-product law. The

bipolar outer-product law for W is

N
w=Y XY, (3.3a)

=1

and for WT is

wl= f“ YF X (3.3b)
i=1

X;, a point in the bipolar m-cube {1, 1}7, is a bipolar vector transformed from binary
vector A;. Similarly, ¥;, a point in the bipolar n-cube {-1, 1}#, is a bipolar vector
transformed from binary vector B; Accordingly, (X;, Y;) is the bipolar vector
association. Using the bipolar representation, more accurate recall is possible {Kosk38].
The superiority of bipolar to binary representation, in this matter, is due to the nature of the
binary signals. Intuitively, binary signals implicitly favor 1s over Os (i.e., 1+0 = 1). In
other words, there are only excitatory connections or zero-weight connections produced
from multiplying and adding binary quantities. No inhibitory connections exist. On the
contrary, bipolar signals are not biased in favor of 1s or ~1s (i.e., -1+1 = 0). Multiplying
and adding bipolar quantities produces inhibitory connections as well as excitatory

connections. These inhibitory connections prevent excitation of the unwanted pattern.
The learning method discussed so far is merely a process to encode the association
(A;, B;) into the connection matrix W. To decode an association, in other words, to
retrieve a stored association, the network uses its resonance characteristic. For example,

suppose an association (A;, B;) has been stored in the network. Then, suppose we
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provide vector A, as an input to the neurons in one of its layer, say Fa, and vector B is
the expected output pattern from the neurons in layer Fp. Vector A; becomes the current
state vector at F4. Through the connection matrix W, the output signals from Fx are
propagated to Fp producing a state vector Bj. The output signals from Fp are then
propagated through the transpose matrix W7 to F4, producing a close replica of the
original input vector A, say A;. The vector A; becomes the new state vector of Fa. This
process is repeated until there is no more changes in F4 and Fp. In other words, the
network reaches a stable point for the association (4,, B;).

To show the stability of the network, Kosko uses Lyapunov or energy function E.

This energy function represents each state (4;, B;), and is given as

A, B)y=-AWBT (3.4a)
for the binary vectors, or

BX, V) =-XWYT (3.4b)
for the bipolar vectors. From this point of view, every association (4; B)) (i.e., each
stable point) is represented by a local energy minimum. Thus, storing an association is
similar to “sculpting” the system energy surface. However, there is a maximum number of

patterns that can be stored. This issue along with other limitations found in BAM are

discussed in the following section.
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3.1.3 Problems in BAM Model

The major drawback of the BAM model is its limited memory capacity; this is a
restriction on the maximum number of associations it can accurately recall. If this limit is
exceeded, the network may produce incorrect outputs; it “remembers” associations that it
has not known before. This phenomenon is called spurious memories or spurious
attractors. Spurious attractors tend to increase in frequency as the network dimensionality
increases [Kosk91]. Some methods, such as the unlearning process [HoFP83] and
encoding/decoding enhancement [WaCM89], are intended to reduce these spurious
attractors. Kosko states that the rough estimate of the memory capacity of a BAM is less

than the number of neurons in the smaller layer [Kosk87b], such as
N < min(m,n) 3.5

where N is the maximum number of associations, m is the number of neurons in layer
Fa, and n is the number of neurons in layer Fg. McEliece et al. [McEI87] shows a

different way to calculate the memory capacity bound, given by

- n .6
2logy m & )7

where m is the number of neurons in the smaller layer. Some researchers have proposed
‘methods to overcome the problem of memory limitation in BAM. For example, Haines and
Hecht-Nielsen introduced the non-homogeneous BAM, which uses non-zero thresholds

[HaHe88]. Every neuron in the layers may have a different non-zero threshold. Using this

technique, the new upper bound becomes min(2™,2"). Yet another method is through
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using high-order BAM [TWJo089, Simp90]. This technique can double the memory
capacity and improve the error-correcting capability at the expense of greater connectivity.
In software simulation, the high-order BAM requires more computational time.

In BAM, perfect recall of the associations requires mutually orthogonal input vectors.
To show this, let us observe one step of the signal propagation from F4 to Fp, assuming

that we use the bipolar version X; of A;. Thus,

(Mﬂhi(&ﬁ)l’f

J#i

N
m¥ + 2 (X%X)y, (3.7)

J#i

X; W

where m is the dimension of X;. The first term in (3.7) shows that the desired pattern ¥;
is given the maximum positive amplification factor m > 0. The second term shows the
crosstalk or the noise. If the input patterns X;s are orthogonal to each other, then the
second term will be zero. However, in real applications, the input patterns usually are not
orthogonal, and sometimes contain noise. This particular characteristic of BAM limits the
applicability of BAM in real applications. A method, such as employing a pre-processor
that transforms arbitrary input vectors into orthogonal vectors, has been introduced in
[LiNu90]. Using this approach, an optimal recall can be achieved.

The discrete BAM encoding procedure has a side-effect, being such that it also encodes
the complement patterns by default. For example, an association (Af, B;), where Af is
the complement of vector A;, cannot be stored in BAM if an association (A4}, Bj) exists.
Consequently, this limits the combination of vectors that can be be stored. Through adding
some intralayer connections, the intraconnected BAM (IBAM) overcomes this limitation

[Simp90].
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~ Another limitation of BAM is that the pair of vectors (4;, B;) must be taken from a
continuous function f. The function f must map small changes in inputs to small
changes in outputs. In other words, similar input vectors, or close input vectors in the
Hamming distance sense, are associated with similar output vectors or vice versa
[Kosk91]. The continuity assumption in terms of Hamming distance in binary m-cubes

and n-cubes can be expressed as
o H (A &) = - H (B, B) (3.8)

where H (A;, A7) and H (B, Bj) are the Hamming distances between vectors A; and A;,

and between vectors B; and B;, respectively. The Hamming distance is defined as

J1i]
H(A;, Aj) = 3, |aF~af| 3.9)

Fortunately, training sets derived from real-world problems tend to satisfy the continuity

assumption, since most sampled processes are continuous [Kosk91].

3.2 Backpropagation (BP)

One of the most commonly used neural network models employing training procedure
is backpropagation (BP). The BP training algorithm was formulated independently by
several researchers, such as Werbos in 1974, Parker in 1982, and Rumelhart, Hinton, and
Williams in 1986 [Wass89]. Backpropagation evolves from the two-layer perceptron
model. However, backpropagation includes some hidden layers, which are not found in

the original perceptron topology. Moreover, backpropagation employs continuous non-
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linear transfer functions (e.g., sigmoid) in its neurons. These properties and an improved
learning procedure give backpropagation more capabilities than the perceptron. For
instance, BP is capable to cope with non-linearly separable problems, such as the XOR or
the parity problem, which the perceptron fails to solve.

Most of the problems solved by the backpropagation model are mapping problems. In
this particular case, backpropagation is used as a mapping neural network; i.e., a network
in which the information processing operation is an approximation to some function or
mapping f: R* — R™” from vectors into vectors [Krei91]. It has been proven through
Kolmogorov mapping neural network existence theorem that a three-layered feedforward
neural network using any continuous and bounded neuron activation function, such as in
backpropagation, is capable of approximating an arbitrary continuous mapping [Hech89,

Funa89, HoSW90, Horn91, and Krei91].

3.2.1 Network Topology

Architecturally, BP consists of several layers of neurons: an input layer, one or more
hidden layer(s), and an output layer. Neurons in each layer are connected to the next layer
through connection weights. Since it is a feedforward network, no feedback connections
exist in its structure. For example, a network with one hidden layer has some connections
from neurons in the input layer to neurons in the hidden layer, and from neurons in the
hidden layer to neurons in the output layer. No intraconnections among neurons within a
same layer exist. Similarly, for a network with more than one hidden layer, the
connections are established between the input layer and the first hidden layer, between the
output layer and the last hidden layer, and between a hidden layer and the adjacent hidden
layer up to the last hidden layer. This fully-connected scheme between the adjacent layers

is not mandatory after all. It is possible for a BP to have sparsely connections between the
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adjacent layers or even some connections between specific layers (e.g., some connections
from the input layers to the second hidden layers). However, for simplicity, this
discussion only covers the generic BP; that is, a network with full connections between its
adjacent layers. A typical backpropagation network with one hidden layer is shown in
Fig. 3.2.

A network using linear neurons cannot solve more problems in multiple layers than it
can in a single layer [McRu88]. Therefore, to effect the advantage of having many layers,
backpropagation uses non-linear neurons. It has been shown that any arbitrary smooth and
bounded non-linear function can be used for the threshold function in the neurons of a
multi-layer network [HoSW90, Horn91, Krei91]. In practice, the often used non-linear

function is the sigmoid or semi-linear function.

Fig. 3.2. Topology of a single hidden layer BP network.
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A sigmoid function is a non-decreasing and differentiable function, which is expressed
by

1
S =17 (3.10)

The original BP uses the sigmoid function in all of its neurons in the layers, except for the
neurons in the input layer. The input layer employs only linear neurons, which accept the
component of the input vector and distribute them, without modification, to the next layer
(i.e., to the hidden layer in a three-layer network).

Neurons in the hidden and the output layers include some biases. A bias gives an
offset to the summed inputs to a neuron, thereby shifts the sigmoid function with a constant
value @ (see Fig. 3.3). Thus, it performs similar to a threshold constant in (3.1b). In
other words, a bias provides a means of scaling the average input into a useful range
[MaHP90]. These bias values, 8s, are adjusted during training, and they are kept

unchanged once the training process is done.

Fig. 3.3. Effectof a biasterm 6to
the sigmoid function.
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It has been defined (in Section 2.2) that a neuron aggregates the incoming input signals
and forwards the result to a threshold function. Similarly, every neuron in the hidden and
the output layers of a BP network has those capabilities. These neurons are identical to the
ones defined in (3.1a), except that they do not have feedback connections and they employ

a different threshold function. For convenience, it is rewritten as follow

N
xi o= Sx)wi + 6 (3.11a)
j=1
y= 1 3.11b
SO = T e (3.116)

where S(x;) represents the state of neuron i in the previous layer, which is connected to
neuron j by a connection weight wy;, X; denotes the sum of the input signals to neuron j,
6; is the bias of neuron j, S is the threshold signal function, and N is the number of
neurons in that layer. For the neuron in the hidden layer of a three-layer network, the
S(x;} is equal to /,, the input signal. The index &, which indicates the discrete time step,
in (3.1a) is omitted, since BP processes the data in one time step; that is, the states of
neurons in a layer only depend on the states of the neurons in the previous layer, within a
same time step. Data is propagated from a layer to the next layer via the connections,
starting from the input layer to the last layer, which is the output layer. Although, BP
processes the data in one time step, the training process, which is merely a searching for
appropriate weights process, requires enormous time step. This training procedure, also

called the generalized delta rule, is described in the following section.

~28 -



I1I. ESSENTIAL FEATURES OF SELECTED ANN MODELS

3.2.2 BP Weight Modification Procedure

The procedure of training a BP network requires a set of pairs of input and target
patterns, The target patterns are used as the “teacher” of the network during training. In
backpropagation, the network first uses the input pattern to produce the output pattern. The
input pattern is propagated through the layers, and an output is produced. The output
pattern is compared with the target pattern, and the difference or the error between them is
measured. There are several ways to measure the error, since each type of error has
different costs in different situations [MiPa88, Hech89]. One of them is the mean squared
error method. For a set of M pairs of input and target patterns, the error function is given

by

M M
E = Zﬁ@:»%}l

p=1 p=1j

N
=J$—S@ﬂf (3.12)
where the index p ranges over the set of input/target pattern pairs, j refers to the jth
neuron in the output layer with N neurons, t}’ is the pth target pattern for the output
neuron j, S(xjf-’ ) is the state or the actual output value of output neuron j for pattern p,x}’
denotes the sum of the input signals to the output neuron j (3.11a) for pattern p, Ep
represents the error on pattern p, and E is the total error of the entire set of patterns.

The training procedure is meant to make the error between the actual output and the
target as small as possible. Through modifying the connection weights according to the
error information, the error function is brought to its minimum, thus allowing the best
approximation of the target. In BP, this scheme is performed by the least-mean-square

(LMS) procedure of Widrow and Hoff [McRu88].
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The LMS procedure makes use of the delta rule for adjusting the connection weights. It
searches for the weight values that minimize the error function (3.12) using a method called
gradient descent. The gradient descent adjusts the weight proportional to the negative of

the derivative of the error with respect to each weight, as described by

oE,

APWJ',' = —
where A,wj; represents the amount of change in weight wy; for pattern p, and c is the

constant of proportionality. The right part of the equation (3.13) can be rewritten as

0E, _ OE, oxf

- ’
awj; axJP awj,

(3.14a)

where the first term of (3.14a) can be partitioned further into

0E, _ 9E, BS(x}? )
ox? 8S(x§’) oxf

(3.14b)

Using the error function in (3.12), the first term of (3.14b) becomes

oE,
35

and the second term of (3.14b) becomes

-~ (- 5) @140

= S'(xP). (3.14d)
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From (3.11a), the second term of (3.14a) becomes

= S(P). (3.14¢)

[

awj,-

Thus, replacing the right part of (3.14b) with (3.14c) and (3.14d), and then, substituting
(3.13) with (3.14b) and (3.14e), we get

oE
Apwji = —Cé;-;—j%

c (t}’ - S(xf;’)) S'(x;-’) S(xP). (3.15)

However, equation (3.15) is only valid for adjusting the weights of the connections
attached to the neurons in the output layer. For adjusting the other connection weights

(i.e., the connections which are not attached to the output neurons), we need to calculate

E
the error change with respect to the output of neuron j in the hidden layer, that is a—S(J—C‘;—) .
7

Since the error information is back propagated from the output neurons towards the input

neurons, then the error change with respect to the hidden neuron j is

N
-y %, (3.16)
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E
where %x—% is the error change with respect to the neuron £ in the output layer (3.14b), and
k

N is the number of output neurons. For a network with more than one hidden layer,

equation (3.16) is also valid for calculating the error changes of the neurons in the other

. oE, . . .
hidden layers, where a—g is the error change with respect to the neuron £ in the
X
k

subsequent hidden layer. So, the amount of weight change for the connection of hidden

neurons is calculated by
Apwji = ¢ {S'(xD) i %Ep S(x?) | 3.17)
P j 4 axp k] i .
i=1 I3
where j indicates the jth neuron of a hidden layer, k indicates the kth neuron of the next
adjacent layer, and { indicates the ith neuron of the previous adjacent layer. In a three-
layer network, i denotes the ith neuron of the input layer and k denotes the kth neuron

of the output layer. If we define

p_ %
8" = -2, (3.18)

then, (3.15) and (3.17) become

Aywii = € 8f SOP), (3.19a)
where ¢ = € represents the learning rate, and 8 jf’ is given by

8 = (#-SaD) Suh) (3.19b)
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if j indicates the jth neuron of the output layer, or
p - & o7
8 = S&xh) Zl 8F wij (3.19¢)
i=

if j indicates the jth neuron of the hidden layer. A momentum term is introduced into the

learning rule in (3.19a), so that (3.19a) becomes
Apwii(n+ 1) = €87 SU) + o Awji(n), (3.20)

where n is the index of the training cycle, and o is the momentum constant. The
momentum term is meant to filter out high-frequency variations of the error-surface in the
weight space. In other words, the momentum term suppresses oscillation.

The LMS training procedure requires an iterative process in order to find a solution of a
particular problem. A solution is found if the system reaches the global minimum (i.e., an
error minimum in error surface with respect to the weights that constitutes solutions to the
problems in which the system reaches an errorless state [McRu88]). However, the
gradient descent method used in the LMS learning procedure does not guarantee a solution
[McRu86], and even if the global minimum can be found, the time required to reach it
cannot be predicted. These “unique” characteristics of the BP model are elaborated further

in the next section.

3.2.3 Problems in BP Model
The LMS procedure is a procedure to minimize an error function (3.12). It searches for
the weight values where the error function takes on a minimum value. An extremum (a

minimum point in our case) can be either global (truly the lowest) or local (the lowestin a
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finite neighborhood) [PFTV88]. However, virtually nothing is known about finding
global extrema in general. So far, there are two standard heuristics which are often used:
(1) find local extrema starting from widely varying starting values of the independent
variables, and choose the most extreme of these, or (ii) perturb a local minimum by taking a
finite amplitude step away from it, and see if the routine returns to a better point, or
“always” to the same one. The LMS procedure with the gradient descent uses the latter.
However, there is no guarantee that the method will always reach a global minimum. This
leads to the local minima problem. It is suspected that the LMS procedure (i.e., the BP
algorithm) actually converges to a local minimum, if it converges at all [Kosk91]. From
this point of view, the backpropagation is considered to reach a “global” minimum (i.e., it
finds a solution of a problem), if it reaches an error minimum in error surface with respect
to the weights which is less than a tolerance value. Some techniques to anticipate the local
minima problem have been introduced in [Baba89, BuLu90, and Fere91].

It is known that the computational time taken for training the BP network (i.e., the
process to find a global minimum) to learn a problem is unpredictable. Sometimes, the
training may take a while, but often it requires an enormous computational time to
converge. This phenomenon emerges due to the nature of the gradient descent or the
steepest descent. For example, suppose the gradient descent is used to find a minimum on
the error surface with respect to two weights w; and w, (see Fig. 3.4). This method
performs many small steps in going down a long, narrow valley. A step starts off in the
local gradient direction, perpendicular to the contour lines, and traverses a straight line until
a local minimum is reached, where the traverse is parallel to the local contour lines.
Consequently, it will take many steps to reach a local minimum, and hence more steps to
reach a global minimum. The size of the step may be tailored through changing the

learning rate € in (3.20). A large value of € makes the process run faster, but this also may
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increase oscillation and the eventually of reaching a local minima. On the contrary, a small
value prevents oscillation, but this makes it run slower, thus lengthening the training time.
The choice of the learning rate € is critical for the training speed. This explains why the
backpropagation requires an excessive amount of time for its training. Moreover, it was
found that training in backpropagation is an NP-complete problem; that is, the
computational time grows exponentially with the size of the network [DARP88, Judd90].
Several methods to accelerate the convergence have been proposed in [AlKe%0, Hagi90,
Li90, WeMaO1].

Theoretically, a BP network with as few as one hidden layer and a non-constant
activation function (e.g., sigmoid function) is capable of approximating any continuous
mapping f: R”® — R™ (f belongs to L,), provided that sufficiently many hidden neurons
are available [Funa89, HoSW90, Horn91, and Krei91]. Yet, how to determine the exact
number of the hidden neurons is another issue. It has been proven in [SaAn91, HuHu®1,
MeMRO91] that a network with one hidden layer can implement exactly an arbitrary training
set with p training patterns, provided that p-1 hidden neurons are used. However, while
this shows the least upper bound of the number of hidden neurons required to solve the
training set only, not much is known about the optimum number of hidden neurons
required in order that the network performs best (smallest error) on both the training and
testing data. So far, this optimum number of neurons is determined by trial and error.
There is some evidence [KiIL90, WeKu90, SiDo91] that a network with too many hidden
neurons tends to memorize the task rather than generalize it (i.e., overfitting the data). In
solving real-world problems, the learning process often involves massive training data.
Following the least upper bound theory, it would require an impractically large number of
hidden neurons to train the network with only a single hidden layer. For this purpose, a

network with more hidden layers might be better applied. Nonetheless, multiple hidden
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layers are more complicated to analyze, since there are two variables to adjust, namely, the

number of layers and the number of neurons per layer.

initial point

w2

Fig. 3.4. Steepest descent method on the error surface with
respect to w; and w,. After [PFTV83]

3.3 Counterpropagation (CPN)

The counterpropagation network [Hech87], invented by R. Hecht-Nielsen, is a unique
neural network model. It is a combination of a portion of the self-organizing map of
Kohonen [KothO] and the outstar structure of Grossberg [Carp89]. Using this
combination, the network self-organizes a near-optimal look-up table approximation to the
mapping. In other words, it functions as a statistically optimal self-progrémming look-up

table.
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Counterpropagation can learn both binary and continuous vector mappings. To learn a
mapping f: R* — R™, the network requires pairs of input and target patterns. From this
viewpoint, the counterpropagation network is considered as a supervised learning network,
or a network with training procedure. However, from the way it encodes or learns pattern
information in its synaptic topologies, the network may have an unsupervised learning

procedure [Kosk91]. This unique learning procedure is described in the following section.

3.3.1 Network Topology

The full counterpropagation network comprises of five layers: two input layers, two
output layers, and a single hidden layer. It is designed to approximate a continuous
function f: A < R”® — B < R™, defined on a compact set A, where the inverse of the
functionf! : Bc R™ — A < R” exists and is continuous. However, for the case of a
non-invertible continuous mapping, the forward-only version of the CPN network can be
used. This network’s topology is shown in Fig. 3.5.

The forward-only CPN network consists of three layers: an input layer, a single
hidden layer, and an output layer. The input neurons serve only as fan-out points and
perform no computation. The neurons in the input layer are fully connected to the neurons
in the hidden layer (or Kohonen layer) by a weight matrix W. Similarly, all neurons in
the hidden layer are connected to all neurons in the output layer (or Grossberg layer), by a
weight matrix V. This architecture is similar to a fully connected feedforward BP
network. However, there are some differences in their neurons. Backpropagation uses the
sigmoid function for the activation of every neuron in its hidden and output layers, whereas
counterpropagation employs linear activation for its neurons in the hidden and output
layers. Furthermore, the neurons in the Kohonen layer are competitive, that is, only a

single hidden neuron (in the accretive mode) can be activated (output of ‘1°). The

~37—



IIi. ESSENTIAL FEATURES OF SELECTED ANN MODELS

remaining Kohonen neurons are deactivated (output 0). This scheme is called competitive
learning [Gros88b]. In physical implementations, the competitive learning scheme may
use the on-center off-surround networks [Gross76, Gross88b]. Through this scheme, the

non-linearity characteristic (which is essential for a neural network) is preserved.

Layer 1 Layer 2 Layer 3
input Layer Kohonen Layer Grossberg Layer

Fig. 3.5. Topology of a forward-only CPN. After [Hech89]
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3.3.2 CPN Weight Modification Procedure

Like any other training network, a pair of input and target patterns is presented one by
one to the network during the training process. The input pattern is propagated through the
weight matrix W. At the Kohonen layer, every neuron competes with one another. The
one with the biggest total sum of incoming signals is the “winner”. A winner neuron has
an activation 1 at its output, while the rest have zero activations. This scheme is also called

“winner-takes-all” [Gross88]. The propagation scheme is expressed by
n
Xj = Z Wii I,' s (3.21&)
i=1

whereas the “winner-take-all” scheme is given by

[ 1 ifj is the smallest integer for

which xj2x,,Vr, j2r

Zj = (3.21b)

\ 0 otherwise,

where /; represents the value of the ith component of the input pattern (since the input
neurons are merely fan-out points), wy is the connection weight from input neuron i to
hidden neuron j, x; is the total sum of the incoming signals to hidden neuron j, and z;
represents the activation of the hidden neuron j. Equation (3.21a) is simply a dot-product
of the input vector I =(I,/5, -+ ,1,) and the weight vector w; = (wj1, wj2,-++ ,wjn). The
hidden neuron with the largest dot-preduct is declared the winner.

The propagation scheme can also be expressed as a distance measured (in Euclidean
metric sense) of the two vectors wj and I. From this point of view, the winner will be the

neuron with the closest weight vector w; to the input vector I Such a scheme can also be
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expressed by

& 172
d{w;, I) = ||w; 1| = (E; (Wji“lri)z) , (3.22a)

1 ifj is the smallest integer for which

5 = d{wj, I) < d(w,, 1), Vr, j£r (3.22b)

0 otherwise,

where d (w;, 1) is the Euclidean distance between the weight vector wj and input vector L
The activations of the hidden neurons specify which weight vector needs to be

changed. The weight adjustment follows the Kohonen learning rule:
Awy = () (f; - Wj,‘) zj (3.23)

where Awj; represents the amount of weight change, and o(f) is the learning rate which
decreases with time to zero, 0 < o) < 1. From (3.23), it is shown that only the
connection weight that attaches to the winner neuron j is updated. All the other weights
remain unmodified. Notice that there is no target vector required to adjust the weights in
the Kohonen layer. This explains why some literature [Kosk91] classify the CPN as an
unsupervised learning network. Yet the CPN network has a second layer, namely the
Grossberg layer, that makes CPN appear as a supervised learning network. The
Grossberg layer requires a target pattern and the information from the Kohonen layer to
adjust its weights. The weights that are related to the Grossberg layer are the values of the
connections between the Kohonen layer and the Grossberg layer. The information from

the Kohonen layer is propagated through this connection matrix V to the Grossber layer.
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The propagation is simply another dot-product transformation given by

h
Ye = D, Vkj Zis (3.24)
j=1

where y, denotes the activation of neuron £ in Grossber layer, and v,; is the value of the
connection between neuron j in Kohonen layer and neuron & in Grossber layer. Since
there is only one neuron in the Kohonen layer (for the accretive mode) having an activation
value different from zero, the output vector is nothing but the weight vector

v; = (vj1,Vj2,--- , Vjm) where j is the index of the winning neuron in Kohonen layer

i
(assuming that the allowable value different than zero is 1). From this scheme, it is clear
now that in order to get a desired output vector, given a particular input vector to the
network, a target vector T = (T, T3, -+, T;) needs to be encoded into the weight vector

v;. This encoding scheme uses the Grossberg learning rule:
Avir = B (Te—vip) z (3.25)

where Avj, represents the amount of the weight change, and § is the Grossberg learning
constant (0 < B < 1). From (3.25), it is shown that the weights of the Grossberg layer will
converge to the average values of the target vectors, whereas the weights of the Kohonen
layer (through Eq. 3.23) will self organize and distribute themselves in an almost
equiprobable configuration. After training is done, all the weights are frozen and only
Eq. 3.21 (or Eq. 3.22) and Eq. 3.24 are used. In this configuration, the network is ready

to be used as a feedforward network.
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3.3.3 Problems in CPN Model

The Kohonen learning procedure as in (3.23) has a problem. It sometimes leads to
neurons which are under-utilized (i.e., neurons that never win). This problem appears
especially when there are some initial weight vectors that are closer to the input vectors than
others in the vector space. The latter weight vectors are likely to become “loosers”.
Moreover, there is some evidence that even though all the weight vectors are initialized with
the same value, the under-utilization problem still exists [AKCM90]. This problem can be
overcome through employing some ‘“conscience” parameters [Hech87, DeSi88,
AKCMO90]. The conscience parameter biases the competition process so that each neuron
in Kohonen layer can win the competition with close to the 1—%1— probability desired for an
optimal vector quantization, where N is the number of neurons in Kohonen layer.

The normalization process (assuming the Euclidean norm is used) replaces the “gain™
information of a vector to gain 1 (unit length). For instance, vector x = (0.1, 0.1) and
vector y = (0.9, 0.9) are treated as the same vector. For some problems that consider the
gain of the vector is important, the dot product operation as in (3.21a) and (3.21b) is
inappropriate. To overcome this problem, the distance measure as in (3.22a) and (3.22b)
may be used instead, since no normalization process is necessary for this procedure.
However, this distance measure procedure requires a different network topology, since it

cannot use the propagation scheme such as in (3.21a) [Koho90].

3.4 Adaptive Resonance Theory 1 (ART-1)

So far, the discussion has covered the supervised learning networks. These networks
have failed to solve the stability-plasticity dilemma (i.e., the ability of a system to remain
plastic, or adaptive, in response to unexpected changes and yet retain the stability to

preserve previously learned knowledge) [CaGr88]. For example, learning a new pattern in
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these networks erases the existing one, if the previous one is not retrained together with the
new one. A network without this stability-plasticity characteristic is incapable to adapt
itself autonomously in real time from unexpected changes in the real world.

As a solution to this problem, Grossberg and Carpenter introduced the Adaptive
Resonance Theory (ART) model. This model maintains the plasticity required to learn new
patterns, and still preserves the stability required to protect the knowledge that had been
learned previously. The ART model requires no target patterns, so it is an unsupervised
learning network, or we can say a learning network as opposed to a training network (i.e.,
a supervised learning network). The learning is achieved in real time through direct
“confrontation” with its experiences {CaGr88]. Since there is no particular pattern for the
output, the network is most useful as a pattern recognizer where only a single output
neuron can be active at a time. Currently, there are three different models of ART
networks, namely, ART-1, ART-2, and ART-3. However, only the ART-1 model, which

recognizes binary patterns, is discussed in this chapter.

3.4.1 Network Topology

The ART-1 model has a slightly different topology than the previously discussed
networks. It consists of two layers of neurons: the first layer or the comparison layer,
denoted by Fy, and the second layer or the recognition layer, denoted by F, (see Fig.
3.6). Between these two layers there are two connection weight arrays called a bottom-up
adaptive filter that connects neurons in F; to neurons in Fy, and a top-down adaptive
filter that connects neurons in F, to neurons in F;. So far, from the network’s topology,
ART-1 appears to be a similar network to a BAM network; that is, a feedback network.
However, ART-1 uses the top-down pathways differently. Using these pathways, ART-1

employs a top-down learned expectation scheme that focuses attention upon bottom-up
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information in a way that protects previously learned memories from being washed away
by new learning. In order to achieve this, three additional parts, namely, the gain control
of F, denoted by Gain-1, the gain control of F, denoted by Gain-2, and the STM (Short
Term Memory) reset wave denoted by A provide a mechanism to control the neurons in
both layers. These many different parts that works in harmony along with a unique
learning procedure make the ART-1 behaves differently from the other feedback networks.
The details on its learning procedure are discussed in the Section 3.4.2.

The neurons in F, are more complex than the ones usually encountered in the three
models previously discussed. They have to keep track of two values in the comparison
phase; the input pattern and the top-down expectation pattern. In addition, they also have
to store the input pattern for a finite time, so that the input pattern will be available for the
next matching if the first attempts at matching fail. The device that is capable of storing
knowledge for a short period is often called a short-term memory (STM), as opposed to a
long-term memory (LTM) found in the connection paths. Note that a linear activation
function is employed in F{. The other process besides the comparison process is the

normalization process of the input pattern as given by

Ii (3.26)

where x; denotes the activation (or STM trace) of neuron { in Fy, and /; denotes the input
signal to neuron i. From Fig. 3.6, we can see that there is an input coming into ¥; from
the gain control Gain-1 and there is another one coming out from F to the STM reset wave
A. The Gain-1 signal is used to enable F; to distinguish between bottom-up input

patterns and top-down priming, or expectation, patterns, and to match these bottom-up
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and top-down patterns by the 2/3 Rule (which is described in the learning section). The

result of the matching or comparison process will determine the state of the STM reset

wave A,

+
——
INPUT
PATTERN

F] + FZ
o oonN LTh
STM STM
_ +
COMPARISON p| RECOGNITION
LAYER BOTTOM-UP LTM LAYER

_ +
+
P A STM RESET WAVE .

VIGILANCE

Fig. 3.6. Topology of an ART-1 network. After [CaGr88]

The ART-1 model grew from a simpler type of adaptive pattern recognition network,

called a competitive learning model. Neurons in the recognition layer of the competitive

learning model compete with each other in response to an input pattern. The neuron with

the closest weight vector to the input vector becomes the winner. Consequently, every
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neuron in the recognition layer becomes a representation of a particular class of the input
patterns. In ART-1, the competitive learning scheme is implemented in the F, layer (the
recognition layer). The winner neuron in F, will later enable a top-down expectation
pattern that is required in the comparison process of F;. Notice that the control gain Gain-

2 enables F, to react supraliminally to signals from F; while an input pattern is on.

3.4.2 ART-1 Weight Modification Procedure

In ART-1, there are two arrays of interconnection weights that need to be adjusted
during the learning process, namely, the bottom-up connection weights and the top-down
connection weights. These weights are modified according to the competitive learning
procedure. For example, suppose that an input pattern I activates F;. The signals from
F, are then propagated through the bottom-up connections to the F, layer. Since the F,
layer employs a competitive learning scheme, a single neuron j in F,,which receives the
largest total signal, becomes the winner. This neuron j quickly reads out its learned top-
down expectation V to F; via the top-down connections. At Fy, the top-down expectation
pattern and the bottom-up input pattern are matched. If expectation V matches input I, the
bottom-up weight vector b; which corresponds to the winning neuron j is adjusted

according to a learning rule (i.e., fast learning rule) given by

bji = —K (3.27)
L-1+ 2 Xk
k=1

where j is the index of the winning neuron in F,, i is index of a neuron in Fy, b;

represents the bottom-up connection weights, and L is a constant > 1 (typically 2).

46—



HI. ESSENTIAL FEATURES OF SELECTED ANN MODELS

Similarly, the top-down weight vector t; is adjusted by
ti (n+1) = ti {n) x;i (3.28)

where ¢j; represents the top-down connection weights, and » is the index of the learning
step. On the other hand, if expectation V mismatches input I, the mismatch event
significantly inhibits STM activity across F; which then stimulates A to send a reset wave
to F,. A parameter called the vigilance parameter determines how large a mismatch will
be tolerated before A emits a reset wave. The vigilance test can be done using an

inequality expressed by

N

_2 i X
ez ' (3.29)

2 Xi
i=1

where p is the vigilance parameter, and x; and #j; are the same notation as used in (3.27)
and (3.28). If this inequality is satisfied, then A will emit a reset wave. From (3.29), itis
shown that low vigilance value tolerates large mismatches, thus preventing A from
emitting the reset wave. For now, let us assume that a large mismatch takes place at Fy;
that is, the left hand side of the inequality (3.29) is less than the vigilance parameter p, so
that the inequality (3.29) is false. Accordingly, A emits a reset wave to F,. The reset
wave selectively inhibits the active population in F,, and this inhibition is long lasting.
The inhibition of the winning neuron j in F, leads to removal of the top-down expectation
V, and thus terminates the mismatch between I and V. Input pattern I can then activate Fy

for the second time, and again, the signal from F; is propagated through the bottom-up
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connections to the F, layer. Due to the enduring inhibition of the previous winner, another
neuron j* (usually the neuron with the second largest total signal) becomes the current
winner. Similarly, another top-down expectation pattern (i.e., the weight vector in the top-
down pathway that corresponds to the neuron FRART produced at F;. And again, the
comparison process in F, is repeated. This procedure is repeated until one of three
possibilities occurs: (i) a neuron j in F, is chosen whose top-down expectation matches
with input I, (ii) a previously uncommitted neuron in F, is selected, or (iii) all the neurons
in F, are committed and no one can accommodate input I (i.e., the system has reached its
full capacity. No new category can be made).

The Gain-1 parameter controls the process in F; layer. For example, the first time an
input pattern I is given to the input of Fy, the input signal also enables the Gain-1. This
makes F,; supraliminally activated; that is, activated enough to generate output signals to
other parts of the network and thereby to initiate the hypothesis testing cycle. When the
top-down expectation is initiated, this signal disable the Gain-1 and thereafter F; becomes
subliminally activated; that is, attentionally prime F, for future input pattern that may or
may not generate an approximate match with the expectation pattern, but does not generate
output signals. In other words, during this phase, F, is in comparison mode and no
output signals are generated. This rule for matching a bottom-up input pattern with a top-
down expectation at F is called the 2/3 Rule. Likewise, the Gain-2 parameter controls the
activation in F,. However, the Gain-2 does not use the 2/3 Rule. It simply activates all
neurons in F, when an input pattern I is present. These two controls together with the
STM reset wave A regulate both the hypothesis testing cycle and the self-stabilization of

learning in an ART-1 system.
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3.4.3 Problems in ART1 Model

The vigilance parameter p tunes the categorical coarseness. Using different vigilance
values, the ART-1 network automatically rescales its sensitivity to patterns of variable
complexity. However, choosing the value of p is critical, since it has significant effects
on the number of pattern categories. For example, if p is too high, most patterns will fail
to match those in storage and the network will create a new category for each of them. In
other words, ART-1 stores all patterns it encountered into different categories. On the
other hand, if p is too low, different patterns will be grouped together, distorting the
stored patterns [Wass89, HuYK90, KilL90]. So far, there is no theory to guide the correct
setting of the vigilance parameter. Trial-and-error is still the common method used to

determine the proper vigilance parameter.

3.5 Summary

Four neural network models, namely BAM, BP, CPN, and ART-1 networks have been
discussed in this chapter. Each model is viewed either as a supervised learning
feedforward, an unsupervised learning feedforward, a supervised learning feed-back, or an
unsupervised learning feedback network. The discussion covers the basic architectures and
the weight modification procedures of the models, as well as some limitations or problems
encountered in a particular model. For instance, the BAM model, which is a less complex
model, suffers from its limited memory capacity and requires mutually orthogonal patterns
to achieve a perfect recall, whereas BP suffers from its required enormous computational
training time. Also, the CPN and the ART-1 networks have unique problems such as the
underutilization problem of the Kohonen learning of the CPN model and the problem with

selecting the proper vigilance parameter in the ART-1 model.
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This chapter provides a basis for the comparative study. The basic differences on their
characteristics may be studied through examining the topology and the weight modification
procedure of each model. However, this may not confirm or discover all their capabilities,
and particularly, their abilities to solve specific problems. This requires some experiments

to be done in the study. The experiments are discussed in Chapter V and VL
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CHAPTER IV
SOFTWARE IMPLEMENTATION

This chapter describes a software simulation of the selected neural network models.
An object-oriented design methodology has been used in the design process. The software
has been implemented using an extended C programming language (THINK C 4.02
compiler) and ResEdit 2.1 resource editor on an Apple® Macintosh Plus computer with a
minimum of 2 Mbyte memory and System 6.0.7. Note that the extended C is a standard C
language with additional capabilities for object-oriented programming. The extended Cis a
subset of C*+ programming language [Syma89].

The discussion begins with specification of the requirements followed by a
description of the architecture of the system. Verification of the system will be explained
afterward. The description of the software structure is achieved through the use of the
Uniform Object Notation (UON) [PCWe90], a structure chart-like notation specially
designs to model the structure of object-oriented software. The notation provides a
comprehensive picture of the software’s element interactions without the source code

details. A complete listing of the source code is presented in a technical report [InKi91].

4.1 Specifications
The design process starts with specifying the requirements of the software. The
first issue to address is software flexibility. The software has to be flexible enough to

implement different kinds of neural network models. This calls for reusable components in
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the software. Next, the software has to be'implemented on a desktop computer such as the
IBM PC (compatible) or Apple Macintosh. Another requirement is a good user interface
for the software. A graphical user interface (GUI) is preferable, since it facilitates the user
in examining the states of the neural network model under study. To achieve this, some
examination tools are necessary. In the design stage, it is usually difficult to list all the
tools needed for the study. Therefore, it is necessary to design a software that is
maintainable. Note that the maintainability issue is also a requisite for designing a good

program [DaMa88, Page88, Sodh90].

4.2 Design Methodology

Programming a graphical user interface (GUI) using a procedural-oriented
programming language is difficult. Object-oriented programming reduces the complexity
of a GUI by encapsulating [Krae89] standard windowing behaviour into predefined
objects [Urlo90]. Different from the procedural-oriented approach, the object-oriented
approach decomposes a system using the concept of an object [Sodh90]. Every object
belongs to a class, which defines the implementation of a particular kind of object
[Syma89]. The object contains data and procedures to manipulate that data. The data
describe the local state of an object and are only accessible to the outside world through the
object’s procedures, called method. This characteristic ensures data encapsulation. Note
that the method will be invoked by another object through the use of a message.

In the object-oriented approach, a new class may be defined through deriving an
existing class. The technical term for defining a new subclass from the existing class is
inheritance. The inheritance feature facilitates development of maintainable software
which reusable components [Holl90]. Following specification of the requirements, with

underlining the software reusability and maintainability issues, it seems that developing the
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software using the object-oriented approach will meet such requirements. Therefore, it is

preferable to choose the object-oriented approach as the design methodology.

STORAGE MEDIA

OUTPUT DEVICESI INPUT DEVICES

~N | 7

MACINTOSH TOOLBOX

USER INTERFACE

THINK Class Library

~

TOOLS

DISPLAY|
\ f\‘ NEURAL NETWORK

MODEL

LAYERS ! | connecTiONs

Fig. 4.1. Block diagrams of the main modules. The neural network module
and the tool module can be replaced by similar modules.
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4.3 Architecture

The software comprises of three main modules: the user interface module, the
neural network module and the tool module, which are illustrated in Fig. 4.1.

The user interface module is the center of the program. Any task relating to a user
command is managed by the user interface module. Through this module all other modules
are connected to the user. This module also functions as an interface between the neural
network module and other peripherals such as display windows and storage devices. This
module has been developed through extensive use of the encapsulation feature of the
object-oriented approach.

The critical part of the software is the neural network module. In this module, a
specific neural network learning algorithm is implemented. Since more than one different
models must be implemented, the inheritance feature has been intensely used to produce
reusable components. To facilitate the experimentation, the software also includes some
examination tools. These tools are implemented in the tool module. Furthermore, a text
editor has also been embedded into the software as a part of the tools. A detail description

of each module will be discussed in the next section.

4.3.1 User Interface

The user interface module consists of two parts: the Macintosh Toolbox and the
THINK Class Library (TCL). The Macintosh Toolbox is a c_ollection of functions of the
standard Macintosh GUIL. These functions operate as an interface between the application
program and the operating system of the Apple Macintosh computer. A complete reference
of the Machintosh Toolbox can be found in [Appl88]. The second part, the TCL,
comprises of several objects that implement the entire Macintosh interface. It takes care of

things like handling menu commands, updating windows, dispatching events, dealing with
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MultiFinder, maintaining the Clipboard, and so on [Syma89]. With the help of the TCL, it
is much easier to develop a standard Macintosh application, since there is no need to
implement all the details of the GUL. The TCL is provided as a part of the THINK C
development tool. It is organized into three distinct, but interacting structures: the class
hierarchy, the visual hierarchy, and the chain of command.

The class hierarchy is a collection of all classes that make up the TCL. It describes
the relationships among all the classes. All the classes are descendants of the root class
CObject, and each descendant class inherits all the characteristic of its predecessor.
Following the TCL class name notation, all c/ass names begin with the letter ‘C’ for
‘class’. Fig. 4.2 shows the class hierarchy (for convenience, the leading letter ‘C’ in each
class name is omitted).

The visual hierarchy describes the organization of all visible entities. It is built
around the idea of enclosures. At the top of the visual hierarchy resides the deskfop. The
desktop encloses all the windows in the application [Syma89].

The chain of command specifies which objects must handle commands. The chain
of command is based on the idea of supervisors. If an object cannot handle a command, it
passes the command on to its supervisor. The chain of command and the visual hierarchy
receive messages from an object named CSwitchboard, which receives events from the
Macintosh Event Manager and translates them into messages. Note also that the name of a

class is usually used to indicate an object instantiated from that class.
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The TCL environment makes the connections between the application module and
the user interface module much simpler. In the TCL, a unique object named CApplication
functions as a mediator. Through this object, some objects in the user interface module can
communicate with objects in the application module. This feature also offers an easy way
to embed the user interface module into the application module. Notice also that objects
communicate through sending messages [Syma89, Krae89, Mﬁ1189, and Mark90].

For our purpose, a new class called CNeuralNetsApp is inherited from the
CApplication class. The CNeuralNetsApp object connects the user interface module to
the neural network module as well as to the tool module. To get the picture of these
interactions, it is preferable to show them in an object-cooperation diagram, as shown in
Fig. 4.3. _Notc that the object-cooperation diagram is a notation to facilitate the object-
oriented design methodology, similar to a structure chart. The object-cooperation diagram
is a part of the Uniform Object Notation introduced by Page-Jones et al. [PCWe90].

Figure 4.3 shows a communication path between the CNeuralNetsApp object and
the CNeuralNetsModel object as well as some communication paths between
CNeuralNetsApp object and the tool module objects such as CProbe, CDisplay, and
CPatternEditor objects. It also shows interactions between tool module objects,
represented by CProbe and CDisplay objects, and neural network module objects,
represented by CMatrix and CVector objects. Figure 4.3 can be seen as another detailed
description of some interactions among the main modules, as shown in Fig. 4.1.
However, some connections with the other parts of user interface are not displayed since all
of those connections are achieved through the CNeuralNetsApp object. This kind of
interaction is well explained through using an object-communication diagram, shown in
Fig. 4.4. Notice that the object-communication diagram is also a part of the Uniform

Object Notation [PCWe90].
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Fig. 4.3. Object-cooperation diagram showing interactions among objects
in the main modules.



IV. SOFTWARE IMPLEMENTATION

Following the C language procedure to begin the program execution, the program
uses the function called main() as the first module [DaMa88]. The main() function of the
program, as shown in Fig. 4.4, creates a CNeuralNetsApp object and initializes the object.
During initialization, the object also sends some initialization messages to its superclass
object, the CApplication object, and to other relevant objects. After initialization the
main() function sends a Run message to CNeuralNetsApp object. Since this message is
implemented by its superclass’ method, a CApplication class name is used instead
[PCWe90].

The CApplication object, through the Run method, sends a ProcessEvent
message to CSwitchboard object repeatedly. This scheme performs a main event loop,
since the CSwitchboard object calls the Macintosh Event Manager to get events and then
translate them into messages. These messages are then sent to the relevant objects in the
chain of command. Note that the main event loop is the “heart” of every application
program running on the Machintosh [Appl88]. A method-structure diagram showing
detailed structure of the ProcessEvent method of the CSwitchboard class is given in Fig.
4.5. Notice that the method-structure diagram is another part of the Uniform ObjectA
Notation [PCWe90].

The program remains in the main event loop until a “Quit” command from the
menu is chosen by the user. This command causes an interruption in the loop. Then,
control is returned to the main() function. Subsequently, the main() function sends an
Exit message to CApplication object to stop the program. This Exit message is required
to do some final tasks such as stoping the neural network learning process, closing files,
and freeing some allocated memories, before terminating the program. The whole program

ends after the Exit message is executed.
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Fig. 4.4. Object-communication diagram showing the main event loop of the program.
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Fig. 4.5. Method-structure diagram showing the ProcessEvent method of
the CSwitchboard class.

4.3.2 Neural Network Model
Each neural network paradigm has a unique network topology and learning
algorithm. Nevertheless, they share some common features such as employing layers and

weights in their networks, and involving learning and testing processes. These common
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features are good candidates to obtain a general class, which is necessary to produce a
reusable component [Mull89].

In object-oriented programming, a general class may be presented as an abstract
class. Note that an abstract class is not truly complete enough to operate as an independent
entity. It only serves to group together the member functions and data elements that are
common to all of its subclasses [Mull89]. Therefore, each neural network model has to be
implemented as an object of a subclass derived from this abstract class. The abstract class
ensures a uniform interface for all the neural network model objects.

Every neural network model is an object of a unique subclass derived from an
abstract class named CNeuralNetsModel. Each subclass will only implement specific
tasks to a model. All common features such as the initialization process, learning and
testing schemes, input/output data handling, and any communication interface to the user
interface module are implemented in the CNeuralNetsModel class. However, this class is
not working alone. There are several other objects that handle specific jobs, which are
assigned by the CNeuralNetsModel class. This kind of team work has been previously
illustrated in the object-cooperation diagram of Fig. 4.3.

The figure also shows interactions between some particular objects in the neural
network module, namely CMatrix and CVector objects with objects such as CProbe and
CDisplay in the tool module. Since the CProbe and the CDisplay objects are used to
display the states of the CMatrix and the CVector objects, which always change during
the learning process, it is preferable to have their own communication path. This
establishes a direct link between them. Notice that the CMatrix and the CVector objects

are employed to implement the weights and the layers of a network, respectively.
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Fig. 4.6. Object-communication diagram showing the process of creating and

initializing a CNeuralNetsModel object.
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It is easier, perhaps, to describe the neural network module by showing how the
module works. To begin, assume that a CNeuralNetsApp object has been created by the
main{) function, and the program is now in its main event loop.

The “tale” begins when the user chooses a “New” command or an “Open”
command to create a model. The CNeuralNetsApp object receives a message relating to
that command from the CSwitchboard object. Consequently, a new CNeuraiNetsModel
object is created. The CNeuralNetsModel object is assumed to be a normal object that can
operate independently. In a real situation it will be replaced by an object of a subclass
derived from it. The process also involves some initialization. An object-communication
diagram showing this process is presented in Fig. 4.6. At this point, the user is able to
modify either the topology of the model or the parameters of network. Since every model
has its own architecture and learning algorithm, any task pertaining to a specific feature of a
model is implemented in a subclass derived from the CNeuralNetsModel class.

The next step, prior to the learning process, is the initialization of the weights. For
a certain model, all the weight values are initialized with some random values, and for
others, the weights are initialized using small fixed values. The initialization option is left
to the user. The learning process starts when the user selects a “Start Learning” command.
Similarly, a message pertaining to thé command is sent by the CSwitchboard object to the
CNeuralNetsModel object. The CNeuralNetsModel object will then do some preparation
for the learning process. A method, called StartLearning, completes the task through
sending some messages to other objects. Notice that this is not the method that implements
the learning algorithm. The learning algorithm is implemented in a method called
DoLearning, which is discussed later. The /nitConnections method, which implements

the initialization process, and the StartLearning method are illustrated in Fig. 4.7.
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Each neural network model has its own learning algorithm. This commonality
leads us to define a general message to do the learning. The technical term for this is poly-
morphism [Krae89, Syma89, Mull89]. For this purpose, a method named DoLearning
has been defined in CNeuraiNetsModel class to implement the learning algorithm.
However, since a learning algorithm is unique for a neural network model, each subclass
will override this method. Overriding a method means that the subclass responds to the
same message as its superclass, but it uses its own method to respond to the message
[Syma89]. For the CNeuralNetsModel class, since it is not implementing any specific
model, the DoLearning method in this class will do nothing.

Fig. 4.8 shows some interactions among objects during execution of learning. A
special method named Dawdle in the CNeuraiNetsModel class will send messages to
itself. The messages will be handled by related methods. The Dawdle method will be
invoked by another object, namely the CApplication object, during idle time, that is, when
there is no input/output task to handle. Using this kind of a scheme, the learning process
can be performed as a background process (i.c., the program can do multitasking). In
other words, more than one neural network model or other applications operate together
simultaneously. This behavior can be realized through some help from a special object,
CMultiTask, which is an object of subclass derived from the CChore class. Fig. 4.9 and
Fig. 4.10 show the object-communication diagrams.

To prevent unfair time sharing, the DoLearning method must process only one
pattern at a time. In other words, the corresponding learning algorithm is implemented so
as to learn one pattern only. This is the main reason to send a GetNextPatternToLearn
message prior to sending the DoLearning message. If, however, having a faster learning
process is more important than implementing a multitasking process, a DoFastLearning

method can be chosen instead. By enabling the “Fast Learning” command, the Dawdle
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method will send a DoFastLearning message, which then performs an iterative process
locally (see Fig. 4.8). The control does not return to the main event loop until either all the
patterns are trained, or a keyboard/mouse event has been detected. In the fast learning

mode, only one neural network model can operate at a time.
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Fig. 4.9. Object—coﬁnnunication diagram showing a multitask
event during an idle time.

In response to a “Start Learning” command, a StartLearning method sends an
AssignldleChore message to the CApplication object together with a pointer to a CMulti-
Task object. The CMultiTask object will be added into the CApplication’s list chore.
During idle time, the CApplication object sends a Perform message to all the CChore

objects or its inheritances in the list (see Fig. 4.9), which later initiate the learning process.
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In a similar fashion, but with an opposite goal, the FinishLearning method sends a
CancelldleChore message to the CApplication object in order to remove the CMultiTask
object from the CApplication list chore. This ends the learning session.

Other methods, which are complementary to one another, are the StopLearning and
the ResumeLearning methods. Those two are aimed to interrupt the learning process for a

specified time. Fig. 4.11 gives details of the object interactions.
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Fig. 4.10. Object-communication diagram illustrating the objects of
subclasses of the CChore class.
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learning events of the CNeuralNetsModel object.
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Finally, after a learning session has been completed, a testing session needs to be
done. A “Test Network” command yields the CNeuralNetsModel object to send a
TestNetwork message. This command will only process one pattern, which is selected
from the menu. To have all patterns in a set processed, a TestNetworkAllPatterns
message is sent instead. The testing algorithm, which is in some model represented as a
forward calculation, is implemented in the TestNetwork method. The process is depicted

in the object-communication diagram shown in Fig. 4.12.
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Fig. 4.12. Object-communication diagram showing the interaction of
many objects during the testing process.
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Fig. 4.13. Object-communication diagram showing the process of creating the
CProbe object and establishing the communication path between the CProbe

object and the CDatalnterface object.
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Fig. 4.14. Object-communication diagram showing the process of creating the
CDisplay object and establishing the communication path between the CDisplay
object and the CDatalnterface object.
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4.3.3 Tools

 Two examination tool objects, namely the probe tool object and the display tool
object, have been developed to facilitate the study of neural network models. The probe
tool is used to plot several values of a vector or a matrix element within a specified period,
for example, to plot the total sum of squared error of training patterns in the
backpropagation (BP) model during its learning process. Similarly, the display tool is used
to represent the element values of any vector or matrix in the model under study. The
interaction between vector or matrix objects and display or probe objects have been
discussed in previous section with the help from an object-cooperation diagram in Fig. 4.3.
This section describes the process to establish the communication path between vector.or
matrix objects and display or probe objects.

The probe tool is implemented as an object of a CProbe class, which is an
inheritance of an abstract class CObserver. When the user chooses “Probe” command, the
CNeuralNetsApp object will receive a command to create a new CProbe object, and to
establish a communication path between the CProbe object and a CDatalnterface object or
its inheritance. Accordingly, the CProbe will open a window, and set up a communication
path to a selected CDatalnterface object or an inheritance of it, particularly a CMatrix or a
CVector object. Since each CProbe object can only communicate with a selected
CDatalnterface object, it is possible to create more CProbe objects to probe different
vector or matrix objects. The only factor that limits the number of CProbe objects created
is the total amount of available memories. The user has privilege to select which vector or
matrix object to probe.

In a similar fashion, the display tool is implemented as an object of a CDisplay
class derived from the CObserver class (see Fig. 4.2). The CNeuralNetsApp object will

create a CDisplay object and establish a communication path between the CProbe object
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and the CDatalnterface object. Since the CDisplay class is derived from the same abstract
class of the CProbe class, that is the CObserver class, basically, it has the same behaviour

with the CProbe class. Fig. 4.13 and 4.14 show the process of creating the CProbe and

the CDisplay objects, respectively.
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Fig. 4.15. Object-communication diagram showing the process of creating and
initializing the CPatternEditor object.
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Another useful tool to help preparing the input/target pattern sets is the pattern
editor. Since the program will read the pattern data as a vector, the pattern editor tool that
implemented as a CPatternEditor object is used to transform text data into vectors. Each
input/target pattern is represented as a vector. The tool creates a list of pattern vectors and
send it to the network. The network gets a pattern vector from this list during learning or
testing process. An object-communication diagram showing the process to create a

CPatternEditor object is given in Fig. 4.15.

4.4 Verification

A product is only good as its test system [DaMa88]. Therefore, it is necessary to
test and to verify the software. Though, the process of testing and verifying software
system is a discipline in its own right.

For our purpose, there are two verification processes: the software verification and
the neural network model verification. The software verification is meant to verify the
entire program with respect to its specification, whereas the neural network model

verification is intended to verify the implementation of the model.

4.4.1 Software Verification

Software verification can be done in two ways: (i) single module verification and
(i) modular integration verification. The software component verification is done during
the development process. This verification is done in a modular level. Each module is
tested and verified during the development of the software. The process, however, only
verifies the modules independently. Itis only good for checking the syntax errors and the

logical connection within a module.
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The modular integration verification can only be done after the whole program has
been completed. This is done in the system verification. For this kind of testing, it seems
that the best way is to use the program. The verification process at this level is called
alpha test. The alpha test consists of tésting performed by the developer for the express
purpose of turning up any bugs in the final product [DaMa88]. In this stage, there is no

more new code implemented unless it is intended to fix the bugs.

4.4.2 Neural Network Model Verification

The model verification is necessary to ensure that there is no error in the
implementation of the neural network models. An error appearing at this stage is no longer
a software problem, but a problem in understanding the learning algorithm. This kind of
problem cannot be detected in the software verification process, since there is nothing
wrong with the coding. Instead, results obtained from the model simulation are not valid.

“To do this kind of verification, one can use the same test problem that has been
used by the author of the model in their original publication. Then, the verification process
is simply an inconsistency test, that is, the simulation result of the implemented model has
to show similar or nearly similar result as shown in the original papers, given a particular
problem used in that publication. If an inconsistent result occurs, then the software needs
further examination. Otherwise, the learning algorithm is assumed to be properly
implemented. Another approach is to test the systems with known patterns and assess the

quality of the results.

4.5 Summary
This chapter discusses the development process of the neural network software.

An object-oriented design methodology has been used to design the software structure.
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Throughout the discussion, a Uniform Object Notation has been utilized to model the
system. The program is a software implementation of the four neural network models
under study. The program is also equipped with a probe tool, a display tool, and a text
editor. The entire program is implemented using an extended C language, which supports
the object-oriented programming, on the Macintosh computer. An example of the neural

network simulator’s windows is shown in Appendix C.
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CHAPTER V
ASSOCIATIVE MEMORY EXPERIMENT

The pattern associator is an example application of artificial neural networks. In this
example, a network is used to store pair-data associations. In other words, the network is
trained to associate pairs of patterns. Ideally, using this scheme, a stored pattern can be
recalled completely from an incomplete pattern (aufoassociative memory) or from a
different pattern (heteroassociative memory) that is associated to it. This chapter studies
the behaviour of selected artificial neural network models implemented as pattern
associators. However, since the associative memory task requires pairs of labeled patterns
(i.e., a particular output pattern is associated to a particular input pattern), only the models
with supervised learning are involved, namely BAM, BP, and CPN models.

There are two different associative memory experimentations: the autoassociative
experimentation and the heteroassociative experimentation. The autoassociative experiment
is divided into three individual experiments. Each individual experiment stores different
number of associations (pairs of patterns), such as two associations, three associations,
and four associations. Similarly, the heteroassociative experiment is divided into two
individual experiments, namely two-association experimentation and three-association
experimentation.

In this chapter, the network configurations and the parameter settings of the models are
discussed along with the training and testing results of each individual experiment. The test

results for each individual experiment are shown as a list in a table. In this table, the test
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patterns and the output patterns of the networks are depicted in 7x5 binary pixel projection.
The results of the experiments are discussed after the experiment section, and the summary

of the chapter is presented at the end of the chapter.

5.1 Pattern Sets

The patterns used in the experiments are 7x5 arrays of binary pixels representing the
alphabet characters A through J and letter L. The first ten characters (i.e., letter A to
letter J) are the same patterns used in [HuYK90] and [KiIL90]. These characters are
grouped into several training sets consisting of two, three and four associations. Notice
that this kind of grouping is used because of the memory capacity limitation of the BAM
model. According to McEliece [McE187] (see Eq. 3.6), a network with 35 input neurons
and 35 output neurons (7x5 binary pixels) can only store up to 3 pairs of patterns to recall
all the patterns perfectly, However, not every possible combination is used. The selection
of patterns in a group is determined according to the Hamming distance between two
patterns (see Eq. 3.9), the number of ON bits (1s) in the patterns, and the number of
similar and distinct bits of the patterns. For example, letter I and letter J are grouped
together as a training set in the two-association experiment because they have the smallest
Hamming distance (i.e., 2 bits). However, letter E and letter G, which havé the same
Hamming distance with [ and J, are also used because E and G have the same number
of 1s (17 bits) whereas I and J have different number of 1s (J is a subset of /). The
projections of these four letters represented by 7xS binary pixels are shown in Fig. 5.1.
For convenience, we use Hy(I, J} to denote the Hamming distance (the total number of
distinct bits) between I and J, I to denote the total number of ON bits (1s) of a pattern
I, and I, N J|; to denote the total number of similar ON (1) bits (intersection) between /

and J. For simplification, I1; N Ji, is also written as ] N J.
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Eis N Gys =15 bits

H{E, G) =2 bits

Ejs = 17 bits Gis = 17 bits

Iis N J1s = 11 bits

H{1, J) = 2 bits
I = 13 bits Tis = 11 bits

Fig. 5.1. 7x5 binary pixel projection of E& GandI & J

The training sets consist of 7 two-association sets and 4 three-association sets used in
the autoassociative experiments, and 6 two-association sets and 2 three-association sets
used in the heteroassociative experiments. Besides these training sets, 2 four-association
sets are also used in the autoassociative experimentation. The aim is to study the
performance of BAM when it is used to store more associations beyond the suggested
limit. Notice that this memory limitation is less critical for BP and CPN since they have
larger memory capacity than BAM (i.e., the memory capacity of BP without a hidden layer
is twice the number of its weights [Nils90], while the memory capacity of CPN is equal to
the number of its hidden neurons [Hech89]). All of these pattern sets are used as the
training sets. The list of the training sets is given in Table 5.1. For convenience, we use
Sap to denote the set of two associations of characters A and B (i.e., Sa = {(A, A), (B,
B)}), and Sap.i; to denote the set of two characters A and B that are respectively

associated with characters [ and J (i.e., Sap.y = {(A, I), (B, J)}). For testing purposes,
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the incomplete or noisy versions of those patterns are used as inputs to the networks in the

recalling process. The complete training patterns can be found in Appendix A.

Table 5.1. Training sets for the associative memory experimentation.

Autoassociative Heteroassociative

2-association | 3-association | 4-association | 2-association | 3-association

Sas SABI SBCcHI SAB.IJ SBHI-ACT

SaH S AFH SBHLL S AH-EF SBHI-AIC

Sar SpuI SEG-Al

SeG SERG SEL-GI

SEr SHIEG

Sy SU-EG

S '

Su

5.2 Measurement Technique

One method to examine the behaviour of a network is through examining the outputs of
the network, given some various input patterns. The important point to be considered in
this method is how we interpret the output pattern generated by the network in response to
an arbitrary input pattern. In an associative memory, the output may be a pattern that has
been stored previously, or it may be a totally new pattern that has never been learned
before. If the output pattern is one of the stored patterns (in case of autoassociative
memory) or a pattern that is associated with the input (in case of heteroassociative
memory), then there is no problem to interpret the output pattern. In other words, the
given input pattern leads to a perfect recall of a stored pattern. However, it is not so

obvious if the output pattern is a totally different pattern than the one the network has
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learned before. In this case, the Hamming distance (see Eq. 3.9) is used for measuring the
similarity of an output pattern to a stored pattern. For instance, a new pattern is named
Anoisy (a noisy version of pattern A) if that pattern imperfectly resembles pattern A.
Notice that every noisy version that is presented more than once in the table has an index,
e.g., Anoisyl. However, there are several exceptional cases where the Hamming distance
is not used. These are the cases when the output pattern is an intersection of two or more
stored patterns, a unique feature of a stored pattern (a pattern that is part of a particular
pattern), or a complement of a stored pattern. To show this, let us consider each pattern as
a set of 35 ordered binary numbers (bits), that is, A = {a;, a;, .. ., @35}, a; € {0, 1},
The order of the bits (i.e., the position of each bit in a set) is important. A pattern A is
said to be equal to a pattern A* if every bit, a;, of A equals the corresponding bit, ;*, of
A*. In other words, A is comprised of all elements of A* and vice versa. For
convenience, we are only interested in the existence of the ON (1) bits in a set. From this
point of view, a set A N B exists (i.e., A N B # {@}) if there is at least one ON bit, @; =
1, of pattern A that equals to the corresponding bit, b;= 1, of pattern B. Using the same
notation, an output pattern is named A N B if its 1s are only the intersection bits of pattern
A and B. Similarly, a pattern is named Ay,_p if its Ls are bits that are not in the set B (the
unique bits of pattern A; i.e., A—(4 N B)), and it is named A€ if it is a set of the first
complement of pattern A. Some examples of these cases are illustrated in Fig. 5.2. There
is also a condition for which we cannot use the notation defined above to classify the
pattern, This is the case when the output pattern has the same distances toward two or
more stored patterns. In this case, a question mark “?” is used as its name.

There are some adjustments to BP’s output, since it uses real values for representing
the output values. All the outputs of BP are rounded up, that is, an output value 2 0.5

becomes 1 and O otherwise. This adjustment is not necessary for BAM and CPN models,
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since BAM uses only integer values and CPN stores only integer values at its Grossberg

layer.

3

A Anoisy Ap-B

‘I JE |
ANB

Fig. 5.2. Projections of A, B, Apoisy, A NB, Ay_p, and A

5.3 Autoassociative Experimentation

This experiment is aimed to study the behaviour of BAM, BP, and CPN models as
autoassociators. These models are used to store several associations, and then their
behaviors are examined through analyzing the output given a particular test pattern to the
input. The experiment is divided into four individual experiments. Each experiment is

distinct by the number of associations used.
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5.3.1 Two-association

In this experiment, 7 two-association sets (Sag, Sau, San Spa, SkG, Sui, and Syy) are
selected as the training sets. Each individual experiment uses each of the two-association
set. Thus, each model is trained separately using each of the training sets. The trained
networks are then tested using several incomplete versions of the training patterns. The
training sets are listed in Table 5.2. This table includes the properties of the training
patterns, such as the total number of ON bits (1s), and the number of similar bits and

distinct bits (Hamming distance).

5.3.1.1 Network Configurations

The discrete BAM network consists of 35 input and 35 output neurons. This number
of neurons is selected since the inputs and the outputs are 7x5 binary pixel patterns. The
thresholds of the heurons are equal to 0, so this is a homogeneous BAM. The CPN
network consists of 35 input neurons, 2 hidden neurons, and 35 output neurons. This
number of hidden neurons is used since the memory capacity of CPN is equal to the
number of its hidden neurons [Hech89]. The network is a forward-only CPN (refer to
Section 3.3.1 for an explanation of a forward-only network) with accretive mode, that is,
only a single hidden neuron can be activated at artime. All neurons in the adjacent layers
are fully connected. The experiment also includes a two-layer BP (BP without hidden
layer) and a three-layer BP (BP with one hidden layer) network. Both networks have 35
input and 35 output neurons. The three-layer BP uses only a single hidden neuron. This is
sufficient for learning only two training patterns since a network with one hidden layer can
exactly implement an arbitrary training set with p training patterns, provided that p-1
hidden neurons are used [SaAn91, HuHu91, MeMR91]. The neurons in the hidden and

output layers have biases, and they use the sigmoid function as the threshold function. All
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neurons in the adjacent layers are fully connected. Those network configurations are fixed

for all two-association training sets.

Table 5.2. Two-association training sets for the autoassociative experiment.

Training set 1s (bits) Hqd (bits) M (bits)

SaB = {(A, A), (B, B)} Als=16 6 13
Bls = 16

Sau = {(A, A), (H, H)} Ais=16 3 13
Hls = 13

Sai={(A, A), ({1, D} Ais=16 13 8
Ils = 13

SsG = {(B, B), (G, G)} Bis=16 5 14
Gis=17

Sec = {(E, E), (G, G)} Eis=17 2 16
Gis=17

Sur = {{(H, H), (1, I)} His=13 16 5
Ils = 13

Sp={1D,{J, D} I1s =13 2 11
Jls = 11

5.3.1.2 Storing
The training procedure in BAM is straightforward. There is no learning parameter to
adjust nor any error criterion to meet. Before training, all the weights are initialized to zero.

On the contrary, BP requires some learning parameter adjustments and some error criterion
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to meet. The total error of 0.03 is chosen as the stoping criterion. This means that the
training process will terminate if the total error of the network is less than or equal to 0.03
(in the Euclidean metric). At this point, it is assumed that the network has reached its
global minima. In this experiment, all the BP trainings are epoch trainings (batch-update
trainings), and the training patterns are presented in random order. Notice that a uniform
distribution of random values between —1.0 and +1.0 is used for the weight initialization.
Table 5.3a and 5.3b show the learning rate (g), the momentum term (o), the total error, and
the number of training cycles completed on each BP training. Fig. 5.3 depicts a typical plot
of the total error versus the number of epochs (training cycles) of a two-layer BP trained
with the Spp training set. Similar to BP, CPN requires some learning parameter
adjustments. For all CPN trainings, the Kohonen learning rate is set to 0.1 and the
Grossberg learning constant is set to 1.0. To prevent the under-utilization problem (see
Section 3.3.3), a scheme called Frequency Sensitive Competitive Learning (FSCL)
[AKCM90] is employed. Using this scheme, every hidden neuron is divided by the
winning frequency of that neuron. This prevents a hidden neuron to become a winner
more often than 1%/— of the time, where N is the number of the hidden neurons. So, every
hidden neuron can win the competition with approximately Rli_ probability. Since CPN does
not have any error criterion like BP, the number of training cycles becomes the CPN
stoping criterion. In the experiment, 40 training cycles is to be completed. Prior to each
training, all the weights are initialized to a fixed value of 0.1. During training, the training

patterns are presented one by one in random order.
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Table 5.3a. Learning rates, momentum terms, total errors and
training cycles of the two-layer BPs.

Training set € o total error epochs
SaB 0.3 0.5 0.03 175
L SaH 0.3 0.5 0.03 205
i Sal 0.3 0.5 0.03 168
SBG 0.3 0.5 0.03 178
SEG 0.3 0.5 0.03 190
SHi 0.3 0.5 0.03 170
Sy 0.3 0.5 0.03 223

Table 5.3b. Learning rates, momentum terms, total errors and
training cycles of the three-layer BPs.

Training set £ o total error epochs
SAB 0.3 0.5 0.03 2767
SaH 0.3 0.5 0.03 2878
Sal 0.3 0.5 0.03 - 2684
SBc 0.3 0.5 0.03 2892
Sge 0.3 0.5 0.03 7567
SHi 0.3 0.5 0.03 3101
Sy 0.3 0.5 0.03 9860
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7]

IE = BPr_totaltrror =SS==———s——""101]
24.0

Fig. 5.3. Total error versus number of epochs of a two-layer BP on Sp set.

5.3.1.3 Recalling

Every trained network is first tested using the training patterns as inputs to make sure
that successful training is achieved. Successful training means that the network always
outputs a copy or an approximate copy of the target pattern, given a corresponding input
pattern used in the training. This verification test seems redundant for BP, since it uses the
difference (the total error) between the actual and the desired (target) outputs as the stoping
criterion of the training. It is obvious that successful BP training is achieved if the network
can approximate the target pattern within a specified error criterion. This is not so obvious,

however, for the BAM and CPN models. On the one hand, since there is no error criterion
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nor any training cycles involved in BAM training, the test employing the training patterns is
essential. On the other hand, CPN has some training cycles to complete. However, the
number of training cycles is not an explicit indicator for successful training, unlike the error
criterion in BP. To verify whether a CPN network is successfully trained, a test employing
the training patterns is necessary. The verification test shows that all the two-association
training sets are successfully trained by BAM, BP, and CPN networks. Moreover, this
test also shows that 40 training cycles is sufficient for the CPN trainings. The detail lists of
BP trainings, including the number of epochs completed, are given in Table 5.3a and 5.3b.

The next test is aimed to study the performance of the models giving some incomplete
patterns. These incomplete patterns are not randomly generated nor selected from the noisy
versions of the stored patterns. They are merely partial versions of the stored patterns.
Notice that, we distinguish between a noisy version and a partial version of a pattern. A
noisy version of a pattern is generated through distorting the pattern with some random
noise, whereas a partial version of a pattern is generated by hand through considering that
every ON bit is a part of a pattern. Some incomplete patterns used in the experiments are
illustrated in Table 5.4a-g.

All the networks trained with two-association training sets are tested using patterns that
are partial versions of the training patterns. The test results for the Sag, San, Sa1 Spo,
SEG, Sup, and Sy training sets are shown in Table 5.4a, 5.4b, 5.4c, 5.4d, 5.4e, 5.4f, and
5.4g, respectively. Since many of the test patterns are a superset/subset of the others and
yield the same results, only representative elements are shown in the tables. Each table
shows the test pattern used as input to the networks, the Hamming distance (Hy) between
the test pattern and the stored patterns, and the output pattern of the networks. All the input
(test) patterns in the table are represented by 7xS5 binary pixel projections. Every

input/output pattern has a name that follows the namjng conventions defined in Section 5.2.
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Table 5.4a shows the results of 14 out of 24 test patterns available for Sap testing. The
BP and CPN networks associate most of the input patterns with the closest (in Hamming
distance) stored pattern. However, the BP and CPN networks respond differently if an
ambiguous input pattern is presented. This can be seen at the output patterns in response to
the input patterns p02,pll, pi4,pl5, p20,p22,p23, and p24 that have similar
Hamming distances between all the stored patterns. The BAM network responds
differently to these input patterns. Using the same definition of a pattern set as in Section
5.2, a spurious pattern that appears to be an intersection of the stored patterns becomes a
stable output if the input is comprised of only intersection bits such as p02, or some
intersection bits and some unique bits such as pI4, p/5. However, this is not so for the
input patterns containing some unique bits of only one stored pattern besides the
intersection bits. To see this, let us compare pattern p/4 and p15 with pattern p07 and
p09. Pattern pI4 and p15 have an equal number of unique bits of both stored patterns,
that is, 3 bits in p/4 and 1 bitin pI15. On the other hand, pattern p07 has 1 unique bit of
B and none of A (besides the intersection bits) while pattern p09 has 3 unique bits of A
and none of B. The network outputs a perfect pattern B and a perfect pattern A for the
input pattern p07 and p09, respectively. Other spurious outputs are shown for pattern
pli, p20, p22 and p24. The network outputs a zero vector (a vector of which all the
elements are zero) in response to pattern p/7 and p22, while it outputs a pattern that is a
union of the first complements of the stored patterns in response to pattern p20 and p24.
If the input pattern is comprised of only unique bits of a stored pattern such as p08 or

pl10, the network outputs a spurious pattern that is simply the input pattern itself.
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Table 5.4a.

Test results of training set Sag.

Input Ha (bits) BAM BP BP-1hid. CPN
p02 EEEE p02-A =11 E E A B
HH | po2-B=11
AnNB ?
p07 HH p07-A=15 B B B B
H p07-B = 13
p08 EEEi p08-4 = 13 EEEi E A A
p08-B = 19
ApB Ancisy
P09 ﬂ p09-A=9 A A A A
: p09-B = 15
pl0 p10-A =19 E B B
™ | p10-B=13 Sanit
pil ﬁ pli-A=16 % E B A
pl1-B =16
Ancisy
pl4 E pld-A=3 ANB A B B
p14-B =3
man
P15 BHH | P15-A=15 AnB A A
®H | pis-B=15
Ancisy
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Table 5.4a (continued). Test results of training set Sag.

Input Hyq (bits) BAM BP BP-1hid. CPN
pl8 ﬁ ple-A=14 Be E A A
p18-B =20
Anocisy
| _amEm
p19 plS-A =20 AC E B B
¥ | p19-B=14
Brnoisy
p20 ﬁ p20-A =17 AcyU Be E B A
p20-B = 17
Anﬂdsy
I
D22 p22-A=16 o A A
p22-B = 16
B nedsy
p23 i p23-A =15 AAB E A A
p23-B =15
Bnoisy
| iom
pzd p24-A =17 46U Be A A
P24-B = 17
Bnoisy

Table 5.4b shows the results of 9 out of 16 test patierns used for Say testing. As in the
previous Sap testing, BP and CPN associate most of the input patterns with the closest

stored pattern (in Hamming distance). Although there is no ambiguous input pattern in
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terms of a similar Hamming distance between the input and the stored patterns, a pattern
such as pI2 seems enough to make the networks disagree. This pattern is an ambiguous
pattern for the human eye. However, it is not so ambiguous in terms of Hamming
distance, considering that there is another stored pattern which is closer to the input pattern
than the one that has been trained with the input pattern. Yet, if we closely examine pattern
pI12, we see that it is comprised of a bit that does not belong to either pattern A nor pattern
H. On the other hand, pattern p09, which is also an ambiguous pattern (at least for the
human eye), is associated with pattern H by all the networks. This pattern consists of a
single bit that belongs to both pattern A and H. However, since H is a subset of A, the
intersection of both patterns is simply the pattern H itself. This is also shown by the BAM
result. There is only one spurious output, that is A,,_y. Notice that the complements of the
stored patterns are not to be considered as spurious patterns since these patterns are, by
default, encoded automatically in the BAM Storing process (see Section 3.1.3). Another
disagreement on the output patterns of the networks is shown for the input pattern p02.
All BP and CPN networks associate the pattern with pattern H. Yet, BAM associates the
pattern with pattern A, even though the pattern is closer to H than to A.

Table 5.4c shows the results of 9 out of 20 test patterns available for S testing. There
are several spurious patterns such as A " B, Ay, Iy-4, and the zero vector (#). From
the BAM test results, two input patterns (p04 and p05) can be pointed out. These
patterns contain only the unique bits of both stored patterns. The difference is that p04 has
more unique bits of A than of I, while p05 has the same amount of unique bits of both
stored patterns. This result shows that the zero vector is selected when the amount of
unique bits of the stored patterns are equal (see also p/7 in Table 5.4a, pI1 in Table 5.4d,
and p09 in Table 5.4f). This is also true if the numbers of the complement bits and the

intersection bits are equal (see p22 in Table 5.4a and p10 in Table 5.4f).
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Table 5.4b. Test results of training set Say.

Input Ha (bits) BAM BP BP-1hid, | CPN
201 Ei p01-A=6 H H H H
. p0l-H=3
p02 E p02-A =2 A H H H
p02-H = 1
pos FHH | pos-a=11 A A A A
EHR | pos-H=10
- Ao
P06 p06-A =13 A A
p06-H = 16
Ap-H Ancisy
]
108 p08-A =14 A A A A
THA | pos-H =13 |
A
p09 HE p09-A = 15 H E H H
H | pos-H=12
Hnoisy
| nmn V
p12 p12-A=17 A E H A
p12-H =14
Huoisy
"
p13 p13-A=14 He A A
P13-H=17
Ancisy
e
p14 :::i pld-A =14 H H H H
H | ptaH=11
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Table 5.4c¢c. Testresults of training set Sar.

Input Hg (bits) BAM BF BP-1hid. CPN
pO1 5#5 pO1-4 = 14 E I I
n p01-I =11
Anl Im:usy
p02 p02-A = 18 HH ﬁ I I
- p02-1 =11
197 Incisy
i] 1]
p03 MY | p03-A=14 E E A A
B P03 =15
Aol Ancisy
p04 E p04-A =13 Al E A A
p04-I =16
Ancisy
p05 E p0S-4 =16 & E i I
pOS-1 =13
Tnisy
106 it p06-A = 14 A E A A
pO6-I =13
Ancisy
p07 # p07-A = 16 I I I I
| povI =11
EREN
pi1 | pl1-A=19 AC I I I
e | pii-l =12
1314::1"izﬂ pld-A=16 1o E!E A A
" asa pld-I =15
Angisy
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Table 5.4d. Testresults of training set Sgg.

Input Ha (bits) BAM BP BP-1hid. | CPN
po7 REM | po7B=14 B E B B
H p07-G =17
Broisy
o1t FEll | pt1B=16 @ E B B
HHEH | pi1-G=17
Grnoisy
pa Bl | p14B=17 | Beuos E B B
HEH | plac=18
Grnodsy
p16 HER | pi6-B=18 Bo E G G
HHH | ple-G =17
Groisy
pl9 H pi9-B =3 e ¢ G e
pio-C =2
p20 E p20-B =2 BNG B B B
p20-G =3
p21 E p21-B =3 G G G G
p21-G =2
p22 E p22-B =2 BG B B B
p22-G =3
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Table 5.4e,

Test results of training set Sgg.

Input Ha (bits) BAM BP EP-1hid. | CPN
p04 %ﬁ p04-E = 16 E a R E
1111 pD4'G = 16
EnG
p0s BHH | pos-E=16 EnG E R o
D05-G = 16
?
D15 E pIS-E =2 EnG E E G
plS-G =2
EuG
pléﬂ p16-E=1 EnG EnG B e
P16-G = 1

Table 5.4d shows 8 out of 22 Sgg test results, and Table 5.4e shows 4 out of 16 Sgg
test results, Similarly, Table 5.4f and Table 5.4g show 8 out of 16 Syy results and 5 out 9
Sy results, respectively. The networks more or less show the same behaviour in response
to the partial versions of the stored patterns. Some results that can be pointed out are the
outputs of BAM, for the input pattern pl4 in Table 5.4d, pI3 and p/4 in Table 5.41.
The common feature these input patterns have is the complement bits. Pattern p/4 of
Table 5.4d has a single bit of the complement bit and an equal number of unique bits of the
stored patterns. -T he unique bits seem to cancel out each other, thus the complement bit
appears to be dominant. Likewise, pI3 of Table 5.4f and pi4 of Table 5.4f have more
complement bits than the intersection bits that make the BAM network outputs a spurious

pattern which is a union of the complements of the stored patterns.
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Table 5.4f. Testresults of training set Sy.
Input Hag (bits) BAM BP BP-1hid. | CPN
pot B8 | pot-H=8 E E I I
B | D011 =8
Hnl Hnoisy
p02 B | poz-H=12 Hnl E I I
3 p02-I =12
Incisy
p09 p09-H = 13 @ E H H
p09-I =13
Incisy
BEEl |
p10 pl0-H = 13 o I H
pl0-I =13
Inisy
emun |
pi3 p13-H = 14 aa% EE! I H
P13 =14
Heulc Hnoisy
pld i pl4H=14 | Heule E I H
pid-1 =14
Incisy
piSs E p15-H=8 Hnl E H I
p15-1 =8
Hnodsy
pi6 % pl6-H=8 Hnl E I I
pl6-l =8
Incisy
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Table 5.4g. Testresults of training set Syy.

Input Ha (bits) BAM BP BP-1hid. | CPN
p02 Ff p02-1 =12 £ E I I
HHH | p02-J=12 RE2..
L3 Incisy
03 :ﬂ-:‘ p03-1 =11 I H I I
i | p03-J=11
Incisy
04 B | poaI=12 I ﬂ ] I
H p04-J = 10
| Inoisy
:::ﬂ
p07 BHE | po7I=12 Je E I I
. | p07-J=14
Incdsy
maen |
p09 p09-1 = 14 Ie E ] I
p09-J = 12
?

5.3.2 Three-association

The next major experiment consists of 4 individual experiments employing different
training sets. These training sets are SapI, SArn, SpHI and Sgrg. Similar to the previous
experiment, each network is trained with each of these training sets and tested using some
incomplete versions of the training patterns. The training sets and their properties are listed

in Table 5.5. The first column of the table lists the training sets, the second column gives
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the total number of ON bits of a pattern, the third column shows the number of different

bits between patterns, and the fourth column shows the number of similar bits between

patterns in the set.

Table 5.5. Three-association training sets for the autoassociative experiment.

Training set 1s (bits) Hg (bits) M (bits)
13
Ais=16 AvB AVB
SABI = {(A’ A)s (B’ B)’ (I’ I)} Bls =16 13 11 8 g9
Ils = 13
I I
ANnBnNnI=6
3 13
Als=16 A F A F
Sar = {(A, A), (F, B), (H, H)} Fis=13 v 13 10
Hls =13
H H
ANnFNnH=9
1
Bis=16 *—H By——H
Sgu1 = {(B, B), (H, H), (1, D} His =13 1V6 v
Ils =13
| I
BNnHNI=
4 13
Eis=17 E E F
Serc = {(E, E), (K, F), (G, G)} Fis=13 v 16‘72
Gls = 17
G G
ENnFnG=12
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5.3.2.1 Network Configurations

The three-association experiment employs the same networks used in the previous
experiment, i.e., BAM, BP, and CPN networks with 35 input and 35 output neurons.
However, the three-layer BP and CPN networks have slightly different configurations.
Instead of using a single hidden neuron in the three-layer BP and two hidden neurons in the
CPN, they use 2 hidden neurons and 3 hidden neurons respectively. This is due to the
number of associations (patterns) to be stored, the same reason for choosing the number of
hidden neurons as in the previous experiment. The other configurations such as the type of

threshold function and the connectivities between layers remain the same.

5.3.2.2 Storing

The training procedure for each network is similar as in the previous experiment. BP
uses the total error 0.03 for the stoping criterion of training and uniformly distributed
random values between ~1.0 and +1.0 for the initial weights. Table 5.6a and 5.6b show
the learning rate (€), the momentum term (@), the total error, and the number of training
cycles completed for each BP training. CPN requires 40 training cycles to complete
training, with the Kohonen learning rate set to 0.1, the Grossberg learning constant set to

1.0, and the FSCL option switched on.

Table 5.6a. Learning rates, momentum terms, total errors and
training cycles of two-layer BP.

Training set € o total error epochs
S ABI 0.3 0.5 0.03 288
Sarm 0.3 0.5 0.03 301
SBHI 0.3 0.5 0.03 290
SEFG 0.3 0.5 0.03 315
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Table 5.6b. Learning rates, momentum terms, total errors and
training cycles of three-layer BP.

Training set 13 o total error epochs
Sagi 0.3 0.5 0.03 3314
SarH 0.3 0.5 0.03 1703
SBHI 0.3 0.5 0.03 3716
SEFG 0.3 0.5 0.03 1658

5.3.2.3 Recalling

Similar to the previous experiment, the trained networks are verified using the training
sets. From this training verification, it is found that two of the BAM networks trained un-
successfully. These two networks use the Sary, and Sgrg sets. They can store only one
training pattern and the complement, i.e., pattern A and A€ for the Sary set, and pattern
E and Ec for the Sgrg set, given any of the training pattern as the input. The test also
shows that ali BP and CPN networks are trained successfully. The verification results are

shown in Table 5.7.

Table 5.7. Verification results of the three-association experiment.

Training status
Training set
BAM BP BP-1hidden CPN
SABI ok ok ok ok
SAFH fail ok ok ok
SsHI ok ok ok ok
SErG fail ok ok ok
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All the networks are tested with several incomplete patterns. This test also includes the
two unsuccessfully trained BAM networks. The results are shown in Table 5.8a-d for the
S ABI SAFH. SEFG, and Sgyj training sets, respectively. Table 5.8a shows only 12 out of
34 test results of Sagy, and Table 5.8d shows only 8 out of 25 test results of Spyy. Since
BAM fails to learn the S gy and Sgpg training sets, there are only 7 and 4 test patterns used
to test the trained networks. Tables 5.8b and 5.8¢c show 4 test results of Spory and 3 test
results of Sggg, respectively.

As in the two-association test, most of the networks respond differently to some
ambiguous input patterns, such as p07, p/2, and pI7 in Table 5.8a. This can be seen
also in Table 5.8b for input pattern p03 and in Table 5.8d for input pattern p03, p04,
p05,pi5, and p19. Most of the ambiguous input patterns have the same closest
Hamming distances towards at least two of the stored patterns. However, there is an
ambiguous pattern such as p05 in Table 5.8c that makes all the networks (except BAM that
fails in the training process) to response similarly. They associate the input pattern with
pattern G. This is, perhaps, because of more ON bits in p05 that belong to pattern G.
Another example that shows the importance of some specific bits in the input patterns can
be seen also in pI7, pI8, and p19 of Table 5.8a. Pattern pl7 contains only two ON
bits; one bit that also belongs to patterns A, B, and [, and one bit that belongs to pattern
A and B. Although pattern [/ is closer to the input pattern (refer to the second column of
the table), the networks associate the input pattern with either pattern A or pattern B since
there are more ON bits in the input pattern that belong to those stored patterns. If we add
another bit that is a unique bit of a stored pattern to pattern pI7, such as in pattern p/8
and p19, then all the networks associate pattern p/8 with pattern A and pattern pI9 with
pattern B. If we examine closely pattern pI8, there are more ON bits that belong to

pattern A than to the others. Likewise, pattern p/9 contains more ON bits that are parts

- 104 -



V. ASSOCIATIVE MEMORY EXPERIMENTS

of pattern B. In other words, pl9 is a subset of pattern B. These examples show that
the networks favour a specific bit in the input pattern that reflects a feature of a stored
pattern. The results also show that BAM outputs the complement of a stored pattern if the
distance between at least two of the stored patterns and an input pattern greater than their
total ON bits (1s). This is shown by the output patterns for input pattern p22 and p23 of
Table 5.8a, and p20 of Table 5.8d.

Table 5.8a. Testresults of training set Sagj.

Input Ha (bits) BAM BP BP-2hid. CPN
p07-A= 3
p07 E p07-B= 3 E Anoisy! A B
p07-1= 14
Anoisy
pll-A= 2
pli E pll-B= 4 A A A A
pll-I=13 |
pl2-A= 7
B 8| BB |
pl2-I=6
Bnoisy! Inoisy Inoisy
pl3-A= 4
pl3 E pl3-B= 2 B B B B
pl3-1=13
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Table 5.8a (continued). Test results of training set Sap;.

Input Hg (bits) BAM BP BP-2hid. CPN
| pl7-A=14
p17 BN | p17B=14 | Ancisy? E Bncisyl B
H | pi7-1=13
Ancisy
T | ple-A=13
pl8 :E pl8-B =15 A A A A
s pI8-1=12
Ty | p19-A=15
pig :ﬁ P19-B =13 B B B B
g plo-1=12
0 | pez-a=1s
pe2 gy | p22-B=17 Ic A A A
H | pzz-1=14
- p23-A =18
p23 (EBH | p23B=16 | (Buoisy))e I I I
H p23-1=11
H p27-A=14
p2? ;;;i p27-B = 18 I E A A
p27-1=13
Ancisy
: p28-A=13
p28 gi p28-B = 17 A E E A
H p28-1=12
Ancisy Anoisy
TH | p29-A=13
p29 HH P29-B = 17 A A A A
M | p2o-1=14
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Table 5.8b. Testresults of training set SApn.

Input Hg (bits) BAM BP BP-2hid. CPN

masan p01-A =11

p01 pOl-F= 8 A F F F
pOl-H = 14

p02 FH i p02-F =14 A H H H
] p02-H= 8
p03-A= 7

p03 E p03-F = 4 A E A H
pO03-H= 4

AnFnH

p04-A =7

p04 @ p04-F = 10 A A A A
: p04-H = 10

Table 5.8¢c. Testresults of training set Sgrg.

Input Hgq (bits) BAM BP BP-2hid. CPN

p01

I
T
=]

o
o
Qmim
nin
oo
m
11
>}
oy

p03

oo ]
oo
B @
Qmm
i
'—\o:
vy]

B - |
1

o
H
"3
[
T

p05

it
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Table 5.8d. Testresults of training set Spy.

Input Hg (bits) BAM EP EP-2hid. CPN
O pl?-B =15
P03 oW pl7-H=12 B E E I
H pl?-1=12
Incisy B noisy?
w | piS-B=18
p04 Y | ple-H =11 I Broisy! I
ms plg-1=11
InoisyZ
sma p05-B =19
p0S ééés p0S-H =10 Incisy? Ingisy< H H
p05-I=12
p07-B =11
p07 I p07-H =08 E E H H
p07- 1= 14
Hnoisyl Hagisy2
pl2-B= 6
pi2 E pl2-H= 7 B E B B
pl2-1=13
Brneisy
H::i plS-B=16 :
plS BH | piS-H=9 B Tnoisy2 Brnoisyl I
KM | pisI=9
o | pl9-B=16 |
p19 ﬁ p19-H = 13 @ E B naisyl I
HH | p19-I=13
Incisy
g | p20-B=17
p20 BfH | p20-H=14 He E I I
p20-1=12
Tncisy
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5.3.3 Four-association

From the previous three-association experiments on BAM, it is found that training sets
containing patterns with a Hamming distance of 6 (or more) are successfully trained. This
evidence leads to an assumption that, perhaps, a minimal Hamming distance between every
two patterns in a set must be maintained in order to achieve perfect recall on all the stored
patterns in BAM. Thus, the selection of patterns for four-association training is based on
this assumption. The training sets are Spcyy and Sgyp. The Spcpp fraining set contains
one pattern with 6 bits of Hamming distance, whereas the Sgyy training set contains only
patterns with more than 6 bits of Hamming distance. They are listed in Table 5.9. The
first column of the table lists the training sets, the second column shows the total number of
ON bits (1s) of a pattern, the third column gives the number of different bits between
patterns (i.e., the Hamming distances between two patterns), and the fourth column shows

the number of similar bits (overlapping bits) between patterns in the set.

5.3.3.1 Network Configurations

The experiment uses the same networks from the previous experiment, except that the
CPN network now has 4 hidden neurons instead of 3. Another three-layer BP network
with 3 hidden neurons is also included in addition to the one with 2 hidden neurons. So,
there are five networks with different configurations, that is, one BAM, one two-layer BP,
two three-layer BPs with 2 and 3 hidden neurons respectively, and one CPN with 4 hidden
neurons. All the other configurations such as the type of the threshold function and the

connectivities between layers remain the same.
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Table 5.9. Four-association training sets.

Training set Is (bits) Had (bits) M (bits)
C C
Bis=16 | 6/ |7 \iz | 9/ |u\
Sgcul = { (B, B), (C, O), Cis=13 1, B g, B
(H,H), (LD} His=13 | {7 g 7~ g
I1s =13 S~ S~
16 5
BNCNnH=5
BNnCnl=8
BNnHANI =3
CnHNI =4

BNnCnHNI=2

L L
Bis=16 | 10 o \©O 6 |8 \¢
SsuiL = { (B, B), (H, H), His =13 1B B
(I, I)a (L9 L) } Iis =13 / ™ I 9/ IO\H
\./

I " H
Lls= 9 \_/
16 5
BAHANI =3
BrnHANL=5
BNnInNnL =5
HAINL =3

BnHNINL=2

5.3.3.2 Storing
As in the previous experiments, the BP networks use a total error of 0.03 for the
stoping criterion and uniformly distributed random values between —1.0 and +1.0 for the

initial weights. Tables 5.10a-c show the BP training results. In table 5.10b, it is shown
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that one of the BP networks cannot reach a total error of 0.03 or less. This three-layer BP
with 2 hidden neurons, which is trained with the Spyy set, fails to converge in training
since BP uses the total squared error as an indicator of a successful training. The CPN
network requires 40 training cycles to complete training with the Kohonen learning rate set
to 0.1, the Grossberg learning constant set to 1.0, and the FSCL option on. The BAM and

CPN training verifications are discussed in the next section.

Table 5.10a. Learning rates, momentum terms, total errors and
training cycles of two-layer BP.

Training set € o total error epochs
SBCHI 0.3 0.5 0.03 410
SBHIL 0.3 0.5 0.03 432

Table 5.10b. Learning rates, momentum terms, total errors and

training cycles of three-layer BP with two hidden neurons.

Training set € o total error epochs
SBCHI 0.1 0.5 0.0300 33185
SBHIL 0.1 0.5 0.8642 41500

Table 5.10c. Learning rates, momentum terms, total errors and

training cycles of three-layer BP with three hidden neurons.

Training set € o total error epochs
SBCHI 0.3 0.5 0.03 3530
SBHIL 0.3 0.5 0.03 4056
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5.3.3.3 Recalling

The trained networks are verified using the training sets. From the verification test, it is
found that all four-association training sets for CPN, two-layer BP, and three-layer BP
with 3 hidden neurons are successfully trained. However, the three-layer BP with 2
hidden neurons can be successfully trained only with the Spcpy set. The network fails to
learn the Sy training set, as indicated by its total error in Table 5.10b. The verification
test for BAM shows that not all of the stored patterns can be recalled perfectly. The
network produces the noisy versions of pattern C of the Spcur set and of pattern L of the
SRHIL set, given the original pattern C and L, respectively. These patterns can be seen in

Table 5.11.

Table 5.11 The verification test results of BAM.

Qutput Energy
Input
Secen SpHIL SECHI SeHIL
B E =312 -284
C =312

E ~-228 -234
ﬁ -252 -212
L rmn E -170
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Recall tests through presentation of incomplete patterns are done for all trained BAM
and for all successfully trained CPN and BP networks. Table 5.12a shows 8 out of 24 test
results for the networks trained with the Sgcyy set. The first part of this table shows the
Hamming distances between the input (test) pattern and each stored pattern, while the
second part shows the output of each network. The test pattern set comprises of several
ambiguous patterns such as pattern p08 and pattern p10, and several noisy versions of the
stored patterns such as pattern pl/3,pl4,pl5,pl6,p22, and p23. For some
ambiguous input patterns, the networks give different outputs. For instance, pattern pl0
can be associated with pattern H or /. However, most of the networks; associate this
pattern with pattern . Yet, the BAM network associates the pattern with C since p10 is
also a subset of the noisy version of C (see Table 5.11). If we examine the results of the
two-layer BP, the three-layer BP with 3 hidden neurons and the CPN network in the table,
they show almost the same responses to the input patterns. One difference is that some of
the BP outputs are the noisy versions of the stored patterns, whereas the CPN always
outputs one of the stored pattern. Unfortunately, the three-layer BP with 2 hidden neurons
responds differently. A good example of this is the network’s response to pattern p/4 and
pi5. All the networks (except BP with 2 hidden neurons) associate these input patterns
with pattern C. This is consistent with the Hamming distance concept of similarity, since
these patterns are closer to pattern C than to the others. In terms of the number of ON bits
that belong to a stored pattern, both patterns are subsets of pattern C. Still, the three-layer
BP with 2 hidden neurons cannot associate these patterns consistently. On the other hand,
it outputs a perfect C for input pattern p22, and a noisy version of C for input pattern
p23. Table 5.12b shows the test results of the networks trained with the Spyy. set. All

the networks associate the noisy versions of B and H (p06 and p07) with the stored
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pattern B and H, respectively. Similar to the results in Table 5.12a, the networks

associate the ambiguous input patterns, such as pattern p0I, p02, p03 and p035,

differently.
Table 5.12a. Test results of training set Spcyr.

Input Hy (bits)

p08 p08-B=11 p08-C= 8 p08-H= 8 p08I=14
pl0 pl0-B=15 pl0-C=10 pl0-H= 8§ plO-I= 8
pl3 pl3-B= 2 pl3-C= 8 pl3-H=12 pl3-I=12
pla pld-B= 5 pl4-C= 2 pld-H=11 pl4I= 8
pls pl5-B= 9 pl5-C= 2 pl5-C=12 pl5I= 6
plé pl6-B= 9 pl6-C=14 pl6-H= 2 pl6-I=18
p22 p22-B= 9 p22-C= 2 p22-H=14 p22-I= 8
p23 p23-B= 6 p23-C= 1 ©p23-H=13 p23-I= 7
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Table 5.12a (continued). Test results of training set SpcHi-

Input BAM BP BP-Zhid. BP-3hid. CPN
po8 I E E B E H
] B neisy? Huoisy Hnoisy
B B B~ | B
Crisy! Incisyl Incisy
pi3 E 'B B E B B
Bnoisy?
pld E Croisyl E Bnodsy? C c
Chucisy?
pls E Choisy! C E C C
Incisy?
pl6 E E H H H H
. Hnoisy!
P22 E Croisyl C c c C
pe3 E Croisy! c Croisy2 C C
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Table 5.12b. Test results of training set Sy

Input

Hg (bits}

BaAM

BP

BP-3hid.

CPN

pOl E

p02

PLUNES
LL1ITT T
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5.4 Heteroassociative Experimentation

This experiment is aimed to study the behaviour of BAM, BP, and CPN models as
heteroassociators. Similar to the autoassociation experiment, the networks are trained to
learn the associations, and then their behaviors are examined through analyzing the outputs
in response to a particular test input pattern. The experiment consists of two individual

experiments, namely the two-association and the three-association experiments.

5.4.1 Two-association

This experiment uses 6 two-association sets as the training sets. They are Sap.y,
S AH.EF> SEG-AD SEI.GJ» SHLEG, and Syj.gg. The networks are first trained using these sets
and then tested using the incomplete versions of the training sets. A list of these training
sets and their properties is given in Table 5.13. The organization of this table is similar to
Table 5.2, 5.5, and 5.9 of Section 5.3. Notice that the line with double arrows in the table
shows the Hamming distance (in the Hq column) or the intersection (in the N column)

between the associated patterns.

5.4.1.1 Network Configurations

The networks have the same configurations as the networks used in the previous two-
association experiment. They all have 35 input and 35 output neurons. Two BP networks
are involved in the experiment: a two-layer BP and a three-layer BP with a single hidden
neuron. All the neurons in the hidden and the output layers have biases and use the
sigmoid function. The CPN network uses a forward-only architecture with 2 hidden

neurons in its Kohonen layer. The neurons in all the networks are fully connected.
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Table 5.13. Two-association training sets for the heteroassociative experiment.

Training set 1s (bits) Hy (bits) M (bits)
A = 13 8
1s=16 A | Ae—]
so={AD.@N | PeIlS L] || n] o
=il | Bl Beod
5 14
Ais =16 A<—>E A<—E
Sawee = (A B, @EP) [ Hs213 0 5] e ol |
Fis = 13 He>F He >F
14
gls =17 E<> A E<«—A
=17
Sec-al = ((E, A), (G, D)} Ato= 16 | |15 | 16 E
Iis =13 G? I G<i—1> I
Eis =17 E<> G E4-1§>G
seor={EG.@N) | B2 L g o | u] s
Jis =11 I I I 11 I
8 11
His=13 H<«—>E He«—> E
Smeo < (HB,0G) | =B 6l [2 | 5] i
Gy =17 I?G I<—>11 G
Its =13 8 2
s = l«—E l«—E
Jis =11
Suec ={(LE), (, G} B o 17 2| 2 | u|l s
Gis =17 }(-ﬁ)-)G J<—9> G
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5.4.1.2 Storing

The training procedure for each network is similar to the preceding experiments. The
only difference is the type of association the network is made to learn. Instead of learning
to associate identical patterns, the networks learn the association between two different
patterns. Before training, all the weights in BAM are set to zero, while the weights in CPN
are set to 0.1. Also, the weights in all BP networks are initialized with uniformly
distributed random values between —1.0 and 1.0. The training stopping criterion remains
the same, namely, a total error of 0.03 for the BP network and 40 training cycles for the
CPN network. During training, the networks read the training pattern one by one in
random order. The parameter set-ups of the CPN network are 0.1 for the Kohonen
learning rate and 1.0 for the Grossberg learning constant, whereas the parameter set-ups of
the BP networks are shown in Table 5.14a-b. These tables also show the number of

epochs completed for each training.

Table 5.14a. Learning rates, momentum terms, total errors and
training cycles of two-layer BP.

Training set € o total error epochs
SAB-IJ 0.3 0.5 0.03 94
S AH-EF 0.3 0.5 0.03 247
SEG-AL 0.3 0.5 0.03 855
SELGJ 0.3 0.5 0.03 209
SHLEG 03 0.5 0.03 101
Su-EG 0.3 0.5 0.03 220
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Table 5.14b. Learning rates, momentum terms, total errors and
training cycles of three-layer BP.

Training set (] o total error epochs
SAB-IJ 0.3 0.5 0.03 7957
S AH-EF 0.3 0.5 0.03 3823
SEG-AI 0.3 0.5 0.03 4360
SEL-GJ 0.3 0.5 0.03 2355
SHIEG 0.3 0.5 0.03 2628
Su-Eec 0.3 0.5 0.03 5717

5.4.1.3 Recalling

The verification test results of BP and CPN show successful ttaining of the BP and
CPN networks. Each of the stored patterns can be recalled completely through presentation
of the associated pattern. However, BAM fails to learn one association, namely the
assoctation (J, G) in the Sy1.gg set. It does not give the correct output, pattern G, given
the input pattern J. Instead, a spurious pattern, which has similar distances between E
and G, replaces the stored pattern G. This pattern is shown in Table 5.15.

The next test employs some incomplete patterns as the test patterns. The test sets are
the same ones used in the autoassociative experimentation. For instance, the test set that is
used to test the network trained with the Sap set in the autoassociative experiment is used
again to test the network trained with the Sap.;y set. Some test results of the Sagp.iy, SaH.
EE, SEG-A SEI-GJs SHI_EG, and Syy.pg training sets are shown in Table 5.16a to 5.16f,
respectively.

The test results of BAM and CPN seem consistent with the previous test results from
the autoassociation experiment. Let us compare the BAM outputs in Table 5.16a with the

BAM outputs in Table 5.4a, for the input pattefn p02, p07, p08, and p09. The
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networks give similar responses, except that the one trained as a heteroassociator outputs
the associated pattern. For the input pattern p02, the heteroassociator outputs pattern J
since this pattern is also an intersection pattern of pattern / and J. This is also shown by
the results in Table 5.16b, Table 5.16¢, Table 5.16e, and Table 5.16f. However, this is
not the case for the BP networks, as shown by their outputs in response to pattern p02 of
Table 5.16a (see also Table 5.4a), pattern pI5 and pl6 of Table 5.16¢ (see also Table
5.4e), and pattern p02, p09, and p13 of Table 5.16e (see also Table 5.4f).

Table 5.15. Verification results of BAM in the two-association experiment.

Training set Input Output Energy
Sas={(A, D), (B, D} A I -298
B J -286
SaH-EF = {(A,E), (H, F)} A E -362
H F -338
Sec-al = {(E, A), (G, )} E A -272
G I -266
Sercs = {(E, G), (1, 1)} E G -294
I J -206
SHIEG = {(H9 E)’ (L G)} H -176
I -176

-356

E
G
E

] E 352

o

Suec ={({, E), d, G)}
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Table 5.16a. Testresults of training set Sap.1j.

Input Hg (bits) BAM BP BP-1hid. CPN
e | pU2-A=11
P02 B [ po2-B =11 ! I I
?
mEa “ p07-A =15
p07 i p07-B = 13 J J J
I noisy
| pos-A=13
o | DRI | B : :
T Inoisy
: p09-A =9
p09 Eﬂ p09-B = 15 I I H I
Table 5.16b. Test results of training set SaH.Er.
Input Ha (bits) BAM BP BP-1hid. CPN
p02-A =2
p02 E P H=1 E F F F
e | p06-A =13
pOs p06-H=16 | 3 B E B
EuF
[ Emas
pl2 pI2-A=17 E¢ E F E
pl2-H=14
Fnoisy
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Table 5.16c¢. Test results of training set Sgg.alL

Input Hag (bits) BAM BP BP-1hid. CPN
p04-E = 16
P04 iﬁ p04-G = 16 A A
ANnI Inoisy
pl5 E gigzgzzz ANI E I I
inoisy
pl6 E g%g:gzll ANT E I I
Anoisy
Table 5.16d. Test results of training set Sgr.gy.
Input Ha (bits) BAM BP BP-1hid. CPN
BHH | pOl-E=14
0l B | DoilTo 16 G G G
Gy
iatd pO2-E=19 T
p02 =¥= p02-1=11 =#= d d !
Jp_G
p03-E=12
p03 p03-I= 8 J J
InG J noisy
p04-E= 2
po4 E p0d-1= 6 G G G G
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Table 35.16e. Test results of training set SyL.gG.

Input Hyg (bits) BAM BP BP-1hid. CPN
B | p0l-H= 8 _
POLEEE | poi-1= 8 G G
EnG EugG
T | po2-H=12
p02 -%- p02-1=12 ENG E G G
p09-H = 13
po9 T p09-1=13 @ EnNnG G E
mana |
= pl3-H=14
pl3 pl3-1=14 E E
ECuG¢® E noisy
Table 5.16f. Test results of training set S1.gG.
Input Hgq (bits) BAM BP BP-1hid. CPN
p01-I=11 HEE
POl B | po1J=13 R E E
EunG Enoisy
HEH | p04-I=12
PO BRH | 504 =10 G G G
ENG
maze |
PO7 B | 507y = 14 G E B
Enoisy
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5.4.2 Three-association
The next experiment employs 2 three-association training sets: Sgyr.acy and Spyr.aic
sets. Both sets contain the same patterns, except that they have a different formation for

each pair. Table 5.17 shows the training sets and their properties.

Table 5.17. Three-association training sets for the heteroassociative experiment.

Training set Ls (bits) Ha (bits) A (bits)
ng | BYonH
Bis = 16 11 16 9 ; ; 5
SBHLACI = {(B, A), (H,C), (I, )}| His=13 I I
I =13 BAHANI =3
s (@A ED L) 8IS
sur-aic = {(B, A), (H, D, {, _
C;s_ 13 A 9 c A 10 o
Jls = 1].
13 B 7 8
J J
AnCn] =6

5.4.2.1 Network Configurations

The networks are the same ones used in the three-association experiment of the
autoassociation experimentation. The BAM is a homogeneous network, whereas the CPN
is a forward-only type with the accretive leaming mode. Two BPs are used: a two-layer
and a three-layer with 2 hidden neurons. All the networks have 35 input and 335 output
neurons, and their neurons are fully connected. Biases are also used in the hidden and

output neurons of the BP networks.
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5.4.2,2 Storing

The total error 0.03 is, again, used as the stoping criterion of the BP trainings, while 40
training cycles is the number of cycles to complete in the CPN trainings. Similar to the
previous experiments, the CPN network uses the FSCL to prevent the under-utilization
problem. Prior to training, the weights in BAM are set to zero, the weights in CPN are set
to 0.1, and the weights in BP are initialized with uniformly distributed random values
between —1.0 and 1.0. The learning parameters of the CPN are 0.1 for the Kohonen
learning rate and 1.0 for the Grossberg learning constant. These parameters are kept
unchanged throughout the learning process. Similarly, the learning parameters of the BP
network are 0.3 for the learning rate and 0.5 for the momentum rate, and they are kept

unchanged. Tables 5.18a-b show the number of epochs completed for each training set.

Table 5.18a. Learning rates, momentum terms, total errors and
training cycles of two-layer BP.

Training set € o total error epochs
SBHI-ACJ 03 0.5 0.03 319
SRHI-AJC 0.3 0.5 0.03 330

Table 5.18b. Learning rates, momentum terms, total errors and
training cycles of three-layer BP.

Training set € o total error epochs
SBHI-ACY 0.3 0.5 0.03 3204
SBHI-AIC 0.3 0.5 0.03 3237
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5.4.2.3 Recalling

All the networks learn the training sets well, This is shown from the verification test.
For every network, each training pattern is recalled through the associated pattern. The
following test uses some incomplete input patterns. Since the two training sets have the
same patterns, only one test pattern set is used. This test set is the one used to test the Spyr
set in the three-association experiment of the autoassociative experimentation. Some test

results are given in Table 5.19a and Table 5.19b for the Sgur.acy and Sgui.alc sets,

respectively.
Table 5.19a. Test results of training set SpH1-ACT.
Input Hg (bits) BAM BP BP-2hid. CPN
0T p05-B =19
p0s i p05-H = 10 ] E J C
=== p05-1=12
J noisy
] p07-B =11
p07 I p07-H =08 A E A C
p07-1=14
Choisy
a1am p20-B =17
p20 BEH | p20-H=14 ﬂ J J ]
=3 p20-I=12
C
(C )noisy
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The test on BAM shows some inconsistent results. Let us compare the BAM outputs in
Table 5.19a and Table 5.19b, for the input pattern p05 and p20. The result for the input
pattern p0S5 in Table 5.19a shows that this input pattern is attracted to pattern /, since J is
the associated pattern of I (see Table 5.17 for the association pairs). However, the result
in Table 5.19b, for the same input pattern, shows that this input pattern is attracted to
pattern H since J is now the associated pattern of H. This is also shown by the BP
results for that input pattern. On the other hand, the test results show that the CPN gives

consistent responses (see also Table 5.8d).

Table 5.19b. Test results of training set Spui-arc.

Input Ha (bits) BAM BP BP-2hid. | CPN
Ems p05-B =19
p05 sggi p05-H =10 J E ] J
p05-1=12
J noisy
e | po6-B=17
p06 BRH | po6-H =14 C c C C
I p06-1=10
p07-B =11
po07 I p07-H =08 A J J
p07-1=14
J noisy
mg | p20-B=17
p20 M | p20-H=14 ﬁ E ] c
HH | p20-1=12
(c* )noisy Choisy
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5.5 Discussion

The experimental results show that BAM stores some spurious patterns. If we view the
stored patterns as attractors in BAM [Kosk91], these spurious patterns are also stable
attractors. It is suspected that these spurious patterns are created when the original patterns
are learned [HoFP83]. From the autoassociation experiment employing two-association
training sets, results show that these spurious patterns have some regularities. For
instance, we can see the output of BAM for the input pattern p02 in Table 5.4a as the
intersection pattern of the stored patterns. This output pattern contains bits that belong to
both stored patterns. Similarly, the output pattern of BAM for the input pattern p08 in
Table S.4a contains all ON (1) bits that belong to only pattern A (in the experiments this
pattern is called a unique pattern of A). These cases are also true for the other two-
association training sets. This experiment shows that BAM also stores the intersection
patterns and the unique patterns of the stored patterns besides their originals and their
complements. The experiment also shows that BAM does not use the closeness in
Hamming distance to select the stored pattern. This is shown from the fact that BAM
associates pattern p02 of Table 5.4b with pattern A even though pattern H is closer to the
input pattern than pattern A (compare to the other networks that prefer pattern /). The
selection of the stored pattern in BAM depends on the number of ON bits that belong to the
stored pattern. Five conditions can be pointed out from the two-association experiment:

(i)  If the input pattern contains only the intersection bits of a stored pattern (e.g.,
p02 in Table 5.4a or p0I in Table 5.4c), the BAM network will output the
intersection pattern;

(ii) If the input pattern contains only the unique bits of a stored pattern (e.g., p08
in Table 5.4a or p06 in Table 5.4b), the BAM network will output a spurious

pattern that comprises of all the unique bits of that pattern;
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(iii) If the input pattern contains only (an) intersection bit(s) and (a) unique bit(s)
of a stored pattern (e.g., p07 in Table 5.4a or p07 in Table 5.4d), the output
will be that stored pattern;

(iv) If the input pattern contains the same numbers of unique bits of both stored
patterns (e.g., p/I in Table 5.4a or p0S in Table 5.4c), or it contains the
same numbers of intersection bits and complement bits (e.g., p22 in Table
5.4a or pI10 in Table 5.4f), the output will be the zero pattern. However, if
the number of bits is different (e.g., p/5 in Table 5.4a and p04 in Table
5.4c) the selection favours the one with more bits;

(v) If one of the stored pattern is a subset of the other (e.g., pattern H is a subset
of pattern A in Say set), and the input pattern contains only (an) intersection
bit(s) and (a) unique bit(s) of a stored pattern (e.g., p02 and p08 in Table
5.4b), the BAM network will output the superset pattern.

The three-association experiment shows different results. The spurious patterns do not
represent the intersection patterns nor the unique patterns. However, BAM still gives
similar responses for conditions (iii) and (iv) of the five conditions mentioned above, for
certain inputs such as pattern p/8 and p/9 in Table 5.8a or pI9 in Table 5.8d.

The BAM training of the Sary and Sgrg sets are unsuccessful. This may be due to the
strong correlations among the stored patterns in the set. From Table 5.5, we can see that
both sets have patterns that are separated only by 6 or less Hamming bits. In the Sapp set,
pattern A has the closest Hamming distances between the other two patterns. Similarly,
pattern E in the Sgpg set has the closest Hamming distances between the other two
patterns. If we view the problem in terms of the unique features those patterns have,
pattern A in Sapy has all unique features of pattern F and pattern H. From this point of

view, it seems that the features that make the distinction among those patterns disappear or
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at least weaken, If this conjecture is true, then through strengthening the unique features,
BAM is expected to learn the set well. To show this, an additional pattern that contains
only the unique bits are included in the set. Table 5.20 shows the enhanced Spy training
set, and Table 5.21 shows the verification test result. The S:FH denotes the enhanced Sarg
set, and pattern Af is the additional training pattern. The same technique is also employed
to the Sgpg training set. The network is retrained using the enhanced Sgrg set (SE‘FG). The
training set is given in Table 5.22, and the results are shown in Table 5.23.

The verification test results of retraining show that BAM recalls the stored patterns
perfectly. It seems that the failures of BAM to store the S sry and Sgrg sets are due to the
deterioration of the unique features. One possibility that caused this condition might be
because the patterns in the set are too close to each other. If the patterns are close to each
other (the Hamming distance is small), the more akin the patterns would be. This implies
that there is a minimal Hamming distance between the patterns that has to be maintained in
order to recall all the stored patterns perfectly. However, it seems that the minimal
Hamming distance depends on the number 6f stored patterns. As the number of stored
patterns increases, the minimal Hamming distance also increases. The verification results
for the Say set, the Sapy and Sgrg sets, and the Sgcpyr and Sy sets support this
conjecture. Hence, it seems possible to control the minimal Hamming distance through
reinforcing the unique features of the patterns. Another method for achieving perfect recall
of the stored patterns is through reinforcing the “weak” pattern using multiple training. The
training set would contain more weak patterns than stronger ones. A more detailed

discussion of this method can be found in [WaCM90] and [WaCM91].
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Table 5.20. The enhanced Sapg training set.

Training set 1s (bits) Hag (bits) M (bits)

SAm ={ (A, A), (F, F),
(H, H), (hf, hf) }

A A
Ais=16 | 3 l10 \3 13 |6 \ 13
A E F E Fis=13 13, hf 3 hf
His = 13 7o ary
hfis= 6 v v
B B

Table 5.21. Verification test results of BAM on the S sy and S:FH

training sets.
Output Ensrgy

Input - =

SAFH SAFH SarH SarH
& E E E =456 -472
F E E E -456 -436
H E E E -456 -436
B B | 8|~ -
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Table 5.22. The enhanced Sgfg training set.

Training set Is (bits) Ha (bits) M (bits)

Sere = { (E, E), (F, F),
(G, G), (gf, g }

E E
E E R E §1s=g 4(I12\2 BKINM
1s = ¢ gf 1, gf
Gis=17 SES ars

F 14 G F 4 G
o o

gfls = 5 \_/ \_/

6 12

Table 5.23. Verification test results of BAM on the Sgpg and SEFG
training sets.

Cutput Energy
Inpwt - o
SErc SEFG SEFG SEFG
B E E E 595 _g44
F E H E 505 580
G E E E -585 -644
gf ise E ﬁ =595 -68
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Table 5.24. The Sy;.gg and Syjx.gg training sets.

Training set Is (bits) Ha (bits) M (bits)
Su-ec = {{I, E), J,G)}
. E E E }ls=13 I<-§->E I<£>E
s = 11
Ep = 17 2| |2 lll !16
G =17 ]<I_O> G J<-9—> G
SuxEG = {(x, E), Ux, G)}
Ixgs = 12 9 10
- E X1s k< E k<— E
Txis = 12 2| |2 11] |16
E]s = 17
Gis= 17 Jx‘? G JX(E) G
‘B B

The heteroassociation experiment results for BAM show that the unique feature of a
pattern is also associated to the unique feature of the associated pattern. This explains the
failure of training the Syjgg set. To show this, we introduce another training set, Syx.gc,
for comparison. This Syj..gg set has almost identical properties compared to the Syy.gg set,
except for the unique features of the patterns. The Sy gg training set and the verification
results are shown in Table 5.24 and Table 5.25, respectively. The results in Table 5.25
show that BAM can recall all the patterns of the Spy.gg set. If we closely examine the

unique features of [ against J and the unique features of E against G, then there is an
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inconsistency of bit flipping of the unique bits (each shown as a grey pixel in Table 5.24).
In case of I and J, the two unique bits (represented by the grey pixels in the / projection
of Table 5.24) are flipped together in the same direction to change from / to J. In case of
E and G, the two unique bits (represented by the grey pixels in the E and G projections
of Table 5.24) are flipped in the opposite direction to change from E to G. On the
contrary, both training pairs in the Syjx.gg set have the opposite direction of bit flipping to

change from [, to J, and from E to G.

Table 5.25. Verification test result of BAM on the Si.eg and
Sux.EG training sets.

Output Energy

Input
Su.Ec SuxEC SuEc S1ix-EG

E 356

352

-354

B |B| |-

The experiments show that both the two-layer and the three-layer BP networks produce
some spurious patterns. However, the two-layer BP has more spurious output patterns
than the three-layer BP, especially for ambiguous patterns. The three-layer BP has fewer

spurious patterns since it employs some hidden neurons. These hidden neurons perform as
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feature detectors. Usually, the number of hidden neurons is less than the dimension of the
input vector. In this case, all the information of an input pattern is squeezed through a
narrow bottleneck, i.e., the hidden layer. The output layer of the three-layer BP takes the
squeezed information to build the association at the output. Compared to the two-layer BP
of which the output layer receives the information directly from the input layer, the output
layer of the three-layer BP receives less information from the hidden layer. Thus, the
output patterns of the three-layer BP differ to a lesser degree.

The three-layer BP experiment on the Spcyj training set shows different results for
different numbers of hidden neurons used. This is shown by the output patterns in
response to the input pattern p08, pI4, and pI5 in Table 5.12a. The two-layer and
three-layer BP with 3 hidden neurons as well as the CPN show similar results, while the
three-layer BP with 2 hidden neurons disagrees, especially for pattern C (see pl4, pl15,
p22, and p23 in Table 5.12a). If we examine p/4 in Table 5.12a, it is possible that this
pattern is associated with pattern B since pI4 is also a subset of pattern B. However, in
terms of the closest Hamming distance, this input pattern is closer to pattern C (see the
first table of Table 5.12a). From the result we can see that the other networks associate the
input pattern p/4 with pattern C. One possible explanation why the three-layer BP with 2
hidden neurons gives a different result is that because this network uses less hidden
neurons. If we view the hidden neurons in a three-layer BP network as feature detectors,
this means that the network has fewer feature detectors used to discriminate the training
patterns. Moreover, the highly correlated training patterns make training using less hidden
neurons more difficult. The failure of training the Spy, set supports this explanation.

From the experimental results of the CPN, it is shown that CPN performs similar to a
look-up table in which each stored pattern has a “radius of association” [SmSt90]. This

means that the network associates the input pattern based on the closest distance between
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the stored patterns. If the input pattern is within a radius of association of a stored pattern
X then that input pattern will be associated with that stored pattern X. Another significant
result of the CPN compared to the other networks is that the CPN does not produce any
spurious output pattern, with the configuration used in the experiment. Since the accretive
mode only permits one winner at a time, this limits the number of the output patterns.
Thus, the output pattern is always the pattern stored in the Grossberg layer that is
associated with the stored pattern in the Kohonen layer through the winning hidden neuron.
If during training the target patterns are perfectly stored in the Grossberg layer, then the
output patterns are always the perfect target patterns. The selection of the learning

constants at the Grossberg layer may affect the storing of the target patterns.

5.6 Summary

This chapter describes and analyzes experiments and results of three selected neural
networks, namely, BAM, BP, and CPN. The network configurations, the learning
parameters and the training procedures are discussed. In the experiments, all the networks
have been used as pattern associators of 7x5 binary pixel alphabet characters. The
experiments consist of two individual experiments, namely, the autoassociation experiment
and the heteroassociation experiment.

The first experiment uses the networks as autoassociators. Each network is trained
using 7 sets of two-association training sets, 4 sets of three-association training sets, and 2
sets of four-association training sets. The trained networks are tested with several
incomplete versions of the training patterns. The training and testing results are listed in
table form.

The second experiment uses the networks as heteroassociators. The networks are

trained using 6 sets of two-association training sets and 2 sets of three-association training
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sets. Each trained network is tested and the results are listed in tables.

Finally, the training and testing results are discussed following the experiment
description sections. Some failures in the training are addressed, and this is followed by a
discussion of some methods to overcome these problems. Results indicate that the
closeness (in Hamming distance sense) of the patterns to be stored in a BAM is important.
The pattern closeness property becomes increasingly critical for the BAM as the number of
the patterns to be stored increases. The experimental results for BP networks show that
different network configurations give different outputs in response to a new input pattern.
Results show that they produce some spurious patterns. However, three-layer BP
produces less spurious patterns than two-layer BP. This may be attributable to hidden
neurons in three-layer BP. The discussion also covers the experimental results of the CPN
network. Results show that the CPN resembles a look-up table whose entries are separated

by a radius of associations.
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CHAPTER VI
CLASSIFICATION EXPERIMENT

Pattern classification is one of the most widely used applications of artificial neural
networks. Such an application usually uses artificial neural networks for mapping patterns
represented by points in a pattern space into the category numbers, 1, . . ., R. For
instance, suppose that the pattern space is an n-dimensional Euclidean space, E7, and let
the symbol C; denote the set of points in E” that are mapped into the category number i.
Then, for each category number, there is a set of points in E» denoted by one of the
symbols C;, Cs, . . ., Cp.

In this experiment, three neural network models, namely, BP, CPN, and ART-1 have
been used as pattern classifiers. The networks are trained with 10 alphabet characters
represented by 7x5 binary pixels, and they are tested with several noisy versions of those
alphabet characters. The main objective of the experiment is to study the effects of varying
critical parameters of the selected networks. Since each network has different critical
parameters, the experiment is divided into three individual experiments, each for a specific
model. The first experiment uses a two-layer BP and several three-layer BPs with different
numbers of hidden neurons. The performance of the network with different configurations
as well as different error criteria is studied. The second experiment employs the CPN
model. The performance of the model for various numbers of training cycles is examined.
The last experiment deals with the ART-1 model. This experiment focuses on the number

of categories produced by the network for various vigilance parameters.
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6.1 Pattern Sets

The basic pattern set for input vectors includes 10 Latin letters, i.e., from letter A to
letter J in alphabetical order. These patterns, which are represented by 7x5 binary pixels
[HYKi89], are put together in a set. From this basic pattern set, 5 additional sets of noisy
patterns are produced through randomly flipping some of the pixels in each of the basic
patterns. For instance, the first noisy pattern set contains basic patterns with 1-pixel
distorted (flipped), while the last noisy pattern set contains basic patterns with 5-pixel
distorted. For convenience, we use S to denote the set of the 10 basic patterns, where S
={A,B,C D,EF,G,H,IL1IJ}, and S; to S5 to denote the five noisy pattern sets.
Notice that the subscripts indicate the number of pixels flipped. For example, the set with
two pixels flipped is denoted by S, = {A,, B,, C,, D,, E,, F;, G,, Hy, I, J,}. Each
noisy pattern set contains 50 noisy patterns, i.e., five noisy patterns of each basic pattern.
Thus, there are 250 noisy patterns obtained from the 10 basic (undistorted) patterns.

For the BP and CPN models, the basic pattern set containing the ten undistorted
patterns is used as the training set, while the five noisy pattern sets are used as the test
pattern sets. Since BP and CPN are supervised networks, they require a target pattern for
each training pattern. The target pattern has a 10-element vector format because the
networks are used as pattern classifiers of 10 distinct classes. Each of the target vectors is
defined as a vector with one element of value 1, and value O for the remaining elements.
Using this fashion, we can assume that each output neuron represents a distinct class.
Through training, the networks are forced to map an input pattern into one of the 10
categories represented by the output neurons.

The target patterns are not used in the ART-1 experiments. This model does not require

predetermined output vectors because the categories are formed during the learning phase.
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Since there is no training nor testing phases, all the pattern sets (the ten basic pattern set and

the noisy pattern sets) are included in the learning phase.

6.2 Measurement Technique

The main task of a pattern classifier is to classify correctly any input pattern into a
predetermined class. In our case, the input patterns include the 10 basic patterns and all the
noisy versions. A correctly classified input means that a basic pattern and its noisy
versions are classified into one of the 10 categories. However, misclassification can occur.
For instance, a noisy version of a specific pattern, say A, can be misclassified into a class
(category) that belongs to a different pattern, say B. The number of misclassifications a
classifier makes is used as the basis for measuring the performance of the classifier. The
empirical error rate can be defined as the ratio of the number of errors (misclassifications)

to the number of cases (patterns) examined, as expressed by

Ep = %ﬁgﬁg&ﬁ%ﬁigf | (6.1)
where Ej is the error rate. For an asymptotically large number of cases that converges in
the limit to the actual population distribution, the error rate given by (6.1) is statistically
defined as the true error of the classifier. However, since the experiment only uses 260
cases, which is relatively small, the major question is then whether the true error can be
extrapolated from the empirical error rates calculated from small sample results. This
question has been addressed and discussed comprehensively in [WeKu90].

A method that seems fit for measuring the error rate using a limited number of samples
is the frain-and-test error rate estimation. The method splits the samples into a training set

and a testing set. The training set is used to design the classifier, and the testing set is used
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for testing only. The error rate measured on the test cases is called the fest sample error
rate. This method is applicable to BP and CPN models, since they are supervised models
which require two phases; training phase and testing phase. Note that the train-and-test
error rate method will give an estimation within 5% error tolerance for 250 samples
[WeKu90].

The train-and-test error rate estimation is inappropriate for measuring the error rate of
the ART-1 model. The reason is that the ART-1 model is an unsupervised network, and
has only a learning phase. It does not know or use class-membership information
[Kosk92], hence the total number of categories produced is not known a priori. Moreover,
each of the categbries (denoted by numbers} is not explicitly associated to one of the true
classes (i.e., the classes that have been defined based on the 10 basic patterns). This gives
some difficulties to measure the error rate. One way to measure the performance of ART-1
is through examining the clusters it produces. For instance, a category created by ART-1 is
associated to a specific class, say A, if the majority of the members in that category are
also members of class A. This approach can be done through applying a confusion
matrix. The confusion matrix lists the correct classification (true classification) against
the predicted classification (i.e., the actual classes that are produced by the network) for
each class. Typically, the number of predicted classes (categories) is the same as the
number of true classes. Hence, the confusion matrix is a square matrix. The number of
correct predictions for each class falls along the diagonal of the matrix. All other numbers
are the number of errors for a particular type of misclassification error. However, since the
number of predicted categories produced by ART-1 can be either smaller or larger than the
number of the true categories, an extension of the confusion matrix is used. Instead of
having the same number of categories between the predicted class and the true class, the

confusion matrix may have a different number of predicted categories while it still has a
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fixed number of true categories (10 categories in this experiment). The measurement is

done for different vigilance parameters.

6.3 BP Experiment

The BP experiment focuses on the performances of two-layer and three-layer BPs. The
performance is measured based on the fest sample error rate. The error rate is measured
for different stoping error criteria used in the training and for different number of hidden

neurons used in the three-layer BP.

6.3.1 Network Configuration

All the BP networks used in this experiment have 35 input neurons and 10 output
neurons since the input pattern is represented by 7x5 arrays of binary pixels and there are
10 different categories (one category for each basic pattern). While there are no hidden
neurons in the two-layer BP, the three-layer BP uses different numbers of hidden neurons:
from 2 to 20 hidden neurons in increments of 2, and then 9, 24, 28, 30, 34, 35, 36, 60,
100, 102, and 104 hidden neurons. Note that a three-layer BP with 9 hidden neurons is
also included following the proof [SaAn91, HuHu91, MeMR91] that a network with one
hidden layer (three-layer BP) can exactly implement an arbitrary training set with p training
patterns, provided that p-1 hidden neurons are used. Since there are 10 patterns in the
training set (i.e., the basic pattern set), thus 9 hidden neurons is sufficient to learn the
training set. Every neuron in the hidden layer and output layer uses a sigmoid function and
a bias. Each neuron in a layer is connected to every neuron in the next layer, thus the

connections between the adjacent layers are fully connected.
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6.3.2 Training

There are two kinds of training. The first one is training using a fixed stoping criterion.
This training is applied to every network. A total error 0.03 is chosen for the fixed stoping
error criterion. The second one is training using various stoping error criteria. This kind
of training is only applied to the two-layer network and the three-layer network with 4, 9,
and 60 hidden neurons. The stoping error criterion varies from 0.9 to 0.1 in decrements of
0.2, from 0.09 to 0.01 in decrements of 0.02, and from 0.009 to 0.003 in decrements of
0.002. This training is continuous for a specific network. For instance, the network is
first trained for the largest stoping error criterion, that is 0.9. When the total error of the
network is less than or equal to this number, the training stops, and the weights of the
network are saved. The training is then continued for the next stoping error criterion, that
is 0.7. Again, the weights of the network are saved when the total error of the network
reaches this number. This is done continuously until the last stoping error criterion, that is
0.003. This continuous training forms a series of training. Using this scheme, the
initialization is done only once at the very beginning of the training series. Note that a
uniform distribution of random values between ~0.1 and +1.0 is used for the weight
initialization. This is done for all the network before each training (or each training series).

The weights are updated after all the training patterns are presented (i.e., after each
epoch). For every epoch, the patterns are presented in random order. Throughout the
training, the learning and momentum parameters are kept constant. Most of the BP
networks in the experiment use 0.3 for the learning rate and 0.5 for the momentum
parameter. However, larger networks such as the three-layer BP with 60, 100, 102, and
104 hidden neurons tend to oscillate using this learning rate. Therefore, a smaller learning

rate, 0.1, is used instead.
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Most of the training is completed in about 10,000 or less epochs, using the fix stoping
error criterion 0.03. This includes the larger networks with a learning rate 0.1. However,
the three-layer BP networks with 2 and 4 hidden neurons complete their training in about
33,000 epochs. Training using various stoping error criteria require proportional number
of epochs. For smaller stoping error criterion, more training time is required, thus a larger
number of epochs is required. Table 6.1a-c list the numbers of epochs completed by two-

layer and three-layer BP with 4, 9, and 60 hidden neurons.

Table 6.1a. Learning rate, momentum term, total errors and
training cycles of the two-layer BP.

Training set € o total error epochs
0.900 902

0.700 908

0.500 914

0.300 926

0.100 981

0.090 991

So 03 0.5 0.070 1023
0.050 1092

0.030 1305

0.010 2755

0.009 3010

0.007 3742

0.005 5064

0.003 8148
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Table 6.1b. Learning rate, momentum terrn, total errors and
training cycles of the three-layer BP with 4 hidden neurons.

Training set € o total error epochs
0.900 636
0.700 715
0.500 814
0.300 997
0.100 1722
0.090 1833
So 0.3 0.5 0.070 2145
0.050 2701
0.030 3998
0.010 10528
0.009 11616
0.007 14722
0.005 20306
0.003 33317

Table 6.1c. Learning rate, momentum term, total errors and
training cycles of the three-layer BP with 60 hidden neurons.

Training set € o total error epochs
0.900 168

0.700 189

0.500 222

0.300 288

0.100 554

0.090 594

So 0.1 0.5 0.070 705
0.050 895

0.030 1312

0.010 3187

0.009 3483

0.007 4314

0.005 5770

0.003 9041
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We can use the total error in BP to indicate convergence. If the training leads the total
error to a value equal or less than the specified stoping error criterion, it is said that the
training converges. The selection of the stoping error criterion determines the error
tolerance the network may have. Typically, for a classification problem such as mapping a
binary pattern into a category, a small stoping error criterion (less than 1.0) will lead to a
successful training. In other words, the trained network will produce no false categories
given the training set as input. This is also supported by the verification results on the
trained networks. All the BP networks (including the networks trained using the stoping

error as large as 0.9) correctly classify all the training patterns.

6.3.3 Testing

There are three tests: (i) test for measuring the error rate of different network
configurations; (ii) test for measuring the error rate of various stoping error criteria; (iii) test
for measuring the error rate of the network in response to various amounts of noise in the
input patterns (different numbers of bits flipped). The first and the third tests measure the
error rates of the networks trained using the fix stoping error criterion, 0.03. The tests use
all five test sets containing noisy versions. Thus, there are 250 samples involved in the
test. The results are given as graphs, and are shown in Fig. 6.1, Fig. 6.2, and
Figs. 6.3a-e. The vertical axis of the graph represents the error rate calculated from (6.1),
while the horizontal axes in Fig. 6.1, 6.2, and 6.3a-¢ represent the numbers of hidden
neurons of the network, the stoping error criteria, and the numbers of bits flipped (noise)
of the input patterns, respectively. In Fig. 6.1, the network with 0 (zero) hidden neurons
is actually the two-layer BP, while the remaining are three-layer BP networks. The
horizontal axis of the graph in Fig. 6.2 should actually represent the increment of the
training time or the training cycles. However, since completion of training is indicated by

the stoping error criterion, and the measurement of the error rate is done for each stoping
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error criterion, the stoping error criteria is used for marking the horizontal axis.
Accordingly, the arrangement of the stoping error criteria is (from left to right on the

horizontal axis) from the largest value to the smallest value.

0.7

0.6 -
0.5 4

04 -

0.3

Error rate

0.2 4

0 10 20 30 40 50 60 70 80 S0 160 110
Hidden neuron

Fig. 6.1. Error rate versus number of hidden neurons.
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Error rate
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Fig. 6.2. Error rate versus stoping error criterion.
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Fig. 6.3a. Error rate versus number of bits flipped (noise).
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Error rate

Error rate
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three-layer/8h
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three-layer/12h

Fig. 6.3b. Error rate versus number of bits flipped (noise).
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Fig. 6.3c. Error rate versus number of bits flipped (noise).
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Fig. 6.3d. Error rate versus number of bits flipped (noise).
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Fig. 6.3e. Error rate versus number of bits flipped (noise).
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6.4 CPN Experimentation
The experiment is designed to measure the test sample error rate of the CPN network

trained on different training cycles.

6.4.1 Network Configuration

The network is a forward-only CPN. It has 35 input neurons of which each input
neuron corresponds to each binary pixel of the 7x5 binary projection, 10 output neurons
that represent the categories, and 10 hidden neurons. There is some evident that the
number of hidden neurons of a CPN running on the accretive mode corresponds to the
memory capacity of the CPN [Hech89, KiIL90]. Since the network is trained to classify
the input patterns into 10 distinct classes, at least 10 hidden neurons are required. The
connections between adjacent layers are full connections. A typical forward-only CPN

topology is shown in Fig. 3.5 (Chapter III).

6.4.2 Training

The training uses eight different training cycles (epochs), i.e., from 10 to 80 in
increments of 10. In each training, the network employs three different Kohonen learning
rate settings, namely 0.02, 0.1, and 0.5, while the Grossberg parameters are kept fix, 1.0.
All the training uses a random order presentation of the input patterns. For the network
with the Kohonen learning rate 0.1, a sequential order presentation is also used besides the
random order presentation. Prior trainings, the weights of the network are initialized with a

constant value, 0.1.
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6.4.3 Testing

Two tests have been done on all the trained networks, namely, (i} test for measuring the
error rate of the network trained with a different number of epochs (training cycles), (ii) test
for measuring the error rate of the network in response to various amounts of noise in the
input patterns (different numbers of bits flipped). The second test is done only for the
network trained using the Kohonen learning rate of 0.1, and employs the random order
presentation. In this test, the error rate is measured for different epochs. Both tests use all
the 250 test patterns, which are the noisy versions of the training patterns. Fig 6.4 and

Fig. 6.5a-b, show the results of the first and the second test, respectively.

e ], rate 0.1 —8— |, rate 0.02

we®— Lrate0.l/seq ~~#-- 1 rate (.5

0.10

0.09 -
0.08
0.07 .
0.06 .
0.05 .

Error rate

0.04
0.03 ]
0.02 .
0.01 ]

0.00 ] , : :
0 10 20 30 40 S0 60 70 8 90

Epoch

Fig. 6.4, Error rate versus number of training cycles (epochs).
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Fig. 6.5a. Error rate versus number of bits flipped (noise), for the network
trained using learning rate 0.1 with random order presentation.
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Fig. 6.5b. Error rate versus number of bits flipped (noise), for the network
trained using learning rate 0.1 with random order presentation.
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6.5 ART-1 Experiment

The objective of the ART-1 experiment is to examine the categories produced by the
network for different vigilance values. The stability of the learning is also examined
through observing how the category number varies against the repetition steps of the basic

set applied to the network.

6.5.1 Network Configuration

A typical ART-1 network has two layers: the comparison layer and the recognition
layer (see Fig. 3.6 in Chapter III). The comparison layer is responsible for receiving data
from outside world, and hence it is meant also as the input layer. Therefore, the number of
neurons in the comparison layer must match the input vector dimension. For this
experiment, the comparison layer employs 35 neurons since the input vector is a 7x5
binary pixel. The recognition layer is meant also as the output layer. This recognition
layer is designed as a competitive layer. So, there is only one activated neuron in this layer
in response to a given input vector to the network (assuming that the maximum capacity has
not been reached). In other words, the network will categorize (cluster) the input vectors,
so that each cluster is represented by one of the neurons in the recognition layer.
However, there is no definite guide to estimate how many categories the network will make
from a certain population of input data. Ideally, the number of categories may grow
infinitely, for unrestricted input data. Practically, the number of categories grows to the
maximum capacity of the network, that is, the number of neurons in the recognition layer.
For this experiment, since there are 260 input samples, at most 260 categories may be
created by the network (assuming that all the input samples are unique, and each unique

category is assigned to a unique input sample). Hence the network has 260 neurons in the
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recognition layer. The other components of the network (except the vigilance value)

remain intact.

6.5.2 Learning

There are two main points to be examined in the experiment: the stability of the learning
and the categories produced by the network. Examination of the stability of the learning is
done through observing how the category number varies against the repetition presentations
of the basic pattern set (Sp) to the network. The basic pattern set (Sg) is applied to the
network five times in a sequential order, and the categories produced are examined for
different vigilance values (i.e., 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0). Tables 6.2a-f show the
categories produced, represented by number 0 to 9 (for 10 classes) in the second column,
and the members (the input vectors) are listed in the same row with each category. The
first column of the table contains the index of the presentation, denoted as cycle. The
number inside the parenthesis beside every name of the input vector represents the number
of times the network searches for a proper top-down expectation (refer to section 3.5.2 in
Chapter III). A zero means that no search has taken place; that is, the input pattern directly

. activates the category that best represents it.
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Table 6.2a. The categories produced for vigilance 0.5.

Cycle | Category Input Pattern

0 Ao0) Bo®) Co(0) Do) Fo(0)
1 1 Eo(1)  Go(l) Ho0)

2 Io(2)  Jo(®)

0 Bo(0) Co(0) Do(0) Fo(0)
2 1 Ag(0) Eo(0) Go(0) Ho(0)

2 Io(®)  Jo(0)

¢ Bo(0) Co0) Do(0) Fo(0)
3 1 Ao(0)  Eo(0) Go(0) Ho(0)

2 Io(0)  Jo(0)

0 Bo(0) Co(0) Do(0) Fo(0)
4 1 Ap(0)  Eo(0) Go©) Ho(0)

2 Io©©)  Jo(0)

0 Bo(0) Co(0) Do(0) Fo(0)
5 1 Ap(0) Eo(0) Go(0) Ho0)

2 In(@®  Jo(0)
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Table 6.2b. The categories produced for vigilance 0.6.

Cycle | Category Input Pattern
0 Ap(0)  Bo(0) Co0) Fo(0)
1 1 Do(1) Eo(l) Go@©) Io(0) Jo0)
2 Ho(2)
-0 Co(0)  Fo(0)
2 1 Jo(0)
2 Ag(0) Bo(2) Ho(0)
3 Do(3) Eo(2) Go) Io(1)
0 Co(0) Fo(0)
1 Jo(0)
3 2 Ag(®) Bo®) Ho0)
3 10(0)
4 Do(4) Eo(3)  Go(0)
0 Co(®  Fo(0)
1 Jo(0)
4 2 Ap(0)  Bo(0) Ho(0)
3 10(0)
4 Do) Eo0) Go(0)
0 Co(0)  Fo(0)
1 Jo(0)
5 2 Ap(0) Bo0) Ho(0)
3 Io(0)
4 Do(0) Eo(0)  Go(0)
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Table 6.2¢c. The categories produced for vigilance 0.7.

Cycle | Category Input Pattern
0 Ao  Bo(0) Fo(0)
1 1 Co(1) Do)
2 Eo(2) Go(l) Ho(l)
3 Io(3)  Jo(®)
0 Fo(0)
1 Co0) Do(0)
2 2 Ho(0)
3 Io(0)  Jo(0)
4 Ao(4)  BoQ2)
5 Eo(5) Go(2)
0 Fo(0)
1 Co(0) Do(0)
3 2 Ho(0)
3 Io0)  Jo(0)
4 Ap(0)  Bo(0)
5 Eo(0)  Go(0)
0 Fo(0)
1 Co(0) Do(0)
4 2 Ho(0)
3 Io(0)  Jo(0)
4 Ap(®)  Bo(0)
5 Eo(0)  Go(0)
0 Fo(0)
1 Co(0) Do(0)
5 2 Ho(0)
3 Io@)  Jo(0)
4 Ap(0) Bo(0)
5 Eo(0)  Go(0)
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Table 6.2d. The categories produced for vigilance 0.8.

Cycle | Category Input Pattern
0 Ao(0) Bo) Fo(0)
1 Co(1)
1 2 Do(2)
3 Eo(3) Go(1) Io(1)  Jo(0)
4 Ho(4)
0 Fo(0)
1 Co(0)
2 2 Bo(1) Do(0)
3 Jo(0)
4 Ao(0)  Ho(0)
5 Eo(5) Go(2) Io(2)
0 Fo(0)
1 Co(0)
2 Bo(0) Do(0)
3 3 Jo(0)
4 Ao(0)  Ho(0)
5 Io(0)
6 Eo(6) Go(3)
0 Fo(0)
1 Co(0)
2 Bo(0) Do(0)
4 3 Jo(0)
4 Ao(0)  Ho(0)
5 I0(0)
6 Eo(0)  Go(0)
0 Fo(0)
1 Co(0)
2 Bo(0)  Do(0)
5 3 Jo(0)
4 Ao(0)  Ho(0)
5 To(0)
6 Eo(0)  Go(0)

- 160 -



VI. CLASSIFICATION EXPERIMENT

Table 6.2e. The categories produced for vigilance 0.9.

Cycle

Category

Input Pattern

Ao(0)
Bo(1)
Co(2)
Eo(3)
Ho(4)
Ia(5)

Fo(0)
Do(1)

Go(1)
Jo(0)

Fo(0)
Do(0)
Co(0)
Eo(0)
Ho(0)
Jo(0)

Aq(6)
Bo(7)
TIo(8)

Go(0)

Fo(0)
Do(0)
Co(0)
Eo(0)
Ho(0)
Jo(0)

Ap(0)
Bo(0)
Io(0)

Go(0)

Fo(0)
Do(0)
Co(0)
Eo(0)
Ho(0)
Jo(0)

Ap(0)
Bo(0)
Io(0)

Go(0)

O NPWR—D | oNoUmbwW~=S | twoaumbw~S | owwoauvwbw—o]l ewo—o

Fo(0)
Do(0)
Co(0)
Eo(0)
Ho(0)
Jo(0)

Ag(0)
Bo(0)
In(0)

Go(0)
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Table 6.2f. The categories produced for vigilance 1.0.

Cycle

Category

Input Pattern

Ao(0)
Bo(1)
Co(2)
Do(3)
Eo(4)
Go(5)
Ho(6)
Io(7)

Fo(0)

Jo(0)

Fo(0)
Bo(0)
Co(0)
Do(0)
Eo(0)
Go(0)
Ho(0)
Jo(0)

Ao(8)
Io(9)

Nelle RN No WE BRI R NN = Woo~1Ohh bW e O SOV B W e O

Fo(0)
Bo(0)
Co(0)
Do(0)
Eo(0)
Go0)
Ho(0)
Jo(0)

Ao(0)
Io(0)
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Table 6.2f. (continued) The categories produced for vigilance 1.0.

Cycle | Category Input Pattern

Fo(0)
Bo(0)
Co(0)
Do(0)
Eo(0)
Go(0)
Ho(0)
Jo(0)

Ao(0)
To(0)

Fo(0)
Bo(0)
Co(0)
Do(0)
Eo(0)
Go(0)
Ho(0)
Jo(0)

Ao(0)
Io(0)

WO phW—=O O ~IT AN P WD

The objective of the second experiment is to examine the categories produced. The
input patterns are the 10 basic patterns (from letter A to J) and the 250 noisy versions of
them. The categories produced after learning (the predicted categories) are listed against the
true categories in the confusion matrix shown in Tables 6.3a-c. The predicted categories
are shown in the rows of the matrix, while the 10 true categories (denoted by letter A to J
in alphabetical order) are shown in the columns of the matrix. The members of a category
are sorted according to the true classes. For example, the input pattern A5 (which is a
noisy version of the basic pattern A) that belongs to a category, say category 1, is placed
under the row denoted by the predicted category 1 and the column denoted by the true class

A. However, for our convenience, the complete names of the patterns are not listed
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explicitly in the matrix. Simply, each element of the matrix represents the total number of
patterns that belong to a specific true class and a unique predicted category. The unsorted

results that contain the name of each input vector can be found in Appendix B.

Table 6.3a. The true versus predicted categories for vigilance 0.5.

Predicted True Category
Category AT B ] CIDJ] ET FJ] G H T ]
0 ]
1 1
p) )
3 3
4 2
5 3 1
6
7 3
R ) 3
9 T 1 1
0 1
1 T
) 5 1z
3 ) 1
2 1 3
5 1 )
6 3 1 ¥
i 1 Z
3 1
g 1
20 1 Z
21 a 3
) ] 1
23 7
24 1 1 7
25 16 1
26 1 4
27 1 1
23
9 1 0
30 1
3]
) 1 1
33 2
34 T
35 1 1 3 3
36
37 T
13 R 12 1 7 g )
9 7 p) 2
4 O f 4
41 3 3 y
72 13 7 3

—~164 -



VI. CLASSIFICATION EXPERIMENT

Table 6.3b. The true versus predicted categories for vigilance 0.8.

Predicted True Category

Category A T B C D E F G H T T
1

~Jonjalb foolrol— ko e e | il ol — O
L

o BoN N N B BuS B NN (%] (] BNY (S (I%] N (8%] (BS) FS] S]] (o]
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Table 6.3b. (continued) The true versus predicted categories for vigilance 0.8,

Predicted True Category

Category A B C D B F G 3 T J

Y
N
=2

1
G
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—
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Table 6.3b. (continued) The true versus predicted categories for vigilance 0.8.

Predicted True Category
Category ™A T B T ¢ ] D1 EJ] FI1 G H[ T [ J

96 1

97 1

98 i

99 7

]

01

02 8

03 2

04 1

05 1

06 T
07

038 2

=] = 2N ) N e ) N

[a]
S
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Table 6.3c. The true versus predicted categories for vigilance 1.0.

Predicted

Category = B

True Category

D E

F

G

H

1
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Table 6.3c. (continued) The true versus predicted categories for vigilance 1.0.

Predicted True Category
Category ™A T B 1 C ] D] EJ] FI1 G H] T ] 7

52 1

53 1

54
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36
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5

59 1

60

61
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Table 6.3c. (continued) The true versus predicted categories for vigilance 1.0.

Predicted True Category
Category mA T B T C T D] EJ] FJ] G HIT T 1 T

1
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Table 6.3c. (continued) The true versus predicted categories for vigilance 1.0.

Predicted True Category
Category ™R T B [ C [ D] E [ F [ G H[ T ]
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59

60

[
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Table 6.3c. (continued) The true versus predicted categories for vigilance 1.0.

Predicted
Category

True Category
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6.6 Discussion

The BP experimental results (Fig. 6.1) show that the performance of the three-layer BP
network (in terms of the error rate) is a function of the number of hidden neurons. The
smallest error rate (0.072, i.e., 7.2% of the total test samples are misclassified) is achieved
by the three-layer BP with 34 and 35 hidden neurons, while the three-layer BP with 2
hidden neurons has the largest error rate (0.584, i.e., 58.4% of the total test samples are
misclassified). The graph shows that the error rate decreases exponentially as the number
of hidden neurons increases. In other words, a three-layer BP network with many hidden
neurons tends to generalize better than networks with few hidden neurons. This result is
consistent with the results of other researchers [SiD091]. The two-layer BP network gives
an error rate of 0.104 (10.4% errors), which is similar to the error rate of three-layer BP
with 8 hidden neurons (i.e., 0.1). The average error rate of two-layer and three-layer BP
with a number of hidden neurons above 6 is 0.1. In other words, these networks correctly
classify 90% of the total test samples. From Fig.6.3a-¢, it is shown that most of the errors
are due to the test patterns with 5 bits flipped.

The results imply that the problem of overspecialization or overfitting does not occur.
The overﬁttiﬁg problem is assumed to occur when a network with many hiddt_:n neurons
tends to memorize the training data instead of generalizing [WeKu90]. The network with
an overfitting problem performs well with the training data, but it performs poorly with the
new data (testing data). However, this problem does not occur in our case. In fact, the
results show the opposite. The performance of the three-layer BP network increases
(shown by the decreasing error rate in Fig. 6.1) as the number of hidden neurons increases
from 2 to 9, and the performance is relatively constant as the number of hidden neurons
increases beyond 9. One possible explanation why the overfitting problem does not occur

in our experiment is that because the task is a classification of binary patterns.
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To show this let us view the hidden neurons as hyperplanes that partition d-
dimensional space (hyperspace) into various regions [Nils90]. It has been proved that a
network with one hidden layer can exactly implement an arbitrary training set with p
training patterns, provided that p-1 hidden neurons are used [SaAn91, HuHuOl1,
MeMR91]. Since there are only 10 training patterns used (each pattern is a representative
of a category), 9 hidden neurons and hence 9 hyperplanes are sufficient to partition the d-
dimensional space into 10 regions. Thus, there will be redundant partitions created by the
excess hyperplanes in a three-layer network with a number of hidden neurons greater than
9. In other words, there can be more than one hyperplane that separates two regions.
Since the inputs are binary patterns (i.e., the pattern points are the vertices of a hypercube),
the positions of the hyperplanes in the hyperspace are not critical. Furthermore, since the
output is also binary with each neuron representing a unique category and it follows a
“winner-takes-all” fashion (i.e., the selection of a category is based on the biggest value of
the output neuron), the exact match of the output value to the target value is unnecessary.
This is also supported by the experimental result for various stoping error criteria, as
shown in Fig. 6.2.

The results (Fig. 6.2) show that the problem of overtraining does not occur.
Overtraining problem occurs when a network is presented with the same set of training
patterns many times, and the network tends to memorize the training data [Hech89]. This
problem is similar to overfitting problem, except that the variable is now the stoping error
criteria instead of the number of hidden neurons. Fig. 6.2. shows no significant increase
in the error rate.

The results of the CPN experiments (Fig. 6.4) show a smaller error rate compare to the
error rate of BP. On average, the error rate is 0.05 (i.e., 5% errors from the total test

samples). In other words, the CPN network correctly classifies 95% of the total test
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samples. Fig. 6.4 shows that the error rates for different learning rates vary within 4% of
the average error rate, 0.05. Similarly, the error rates for different epochs also vary. This
shows that the network still makes some adjustments to its weight vectors. For the
network with learning rate of 0.1 and using random order pattern presentation, learning is
stable after 40 epochs. On the other hand, for the other CPN networks, learning is
unstable. If we view each weight vector wg‘) at the Kohonen layer (first layer) as a point in
R” approaching the centroid X; of a pattern class, this weight vector is wandering about
the centroid instead of reaching the centroid. This particular phenomenon has been
discussed thoroughly in [CIRa90]. For CPN, one possibility to prevent this problem is
through utilizing a learning rate that is gradually reduced towards zero during training
[Hech89, Wass89].

Figs. 6.5a-b show that most of the errors are due to the the test patterns with 5 bits
flipped. This result is similar to the result of the BP experiment (Figs. 6.3a-€), except that
CPN produces less errors than BP. The error rate is constant after 40 epochs. For 2, 3,
and 4 bits flipped (noise), the error rates differ by 1 test sample. This difference becomes
significant as the number of bits flipped increases to 5 bits.

In supervised learning, the performance of the model is determined by the result of the
training. For instance, if the network does not converge during training, then it is likely
that the network will perform poorly in the test case. For an unsupervised model such as
ART-1, this boundary between the training phase and the testing phase is not as clear.
ART-1 learns the pattern as the network is faced with the pattern at its input. The question
is how well the network learns the pattern.

One major point relating to this issue is the learning stability of the network. Tables
6.2a-f show the categories produced by the network with different vigilance settings.

Through examining the members of each category, we can see that the members of each
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category remain constant after the third cycle of the presentation. In other words, the
network learns the set after presented with the same set for three times.

The tables also show the amount of time the network has to search for a proper
category, as shown by the number in parenthesis beside each pattern’s name. For higher
vigilance values such as 0.9 and 1.0, the searching time for certain patterns is close to the
number of categories produced. This is expected since for a high vigilance, say 1.0 (the
extreme case), the network will search for a perfect match between the input pattern and the
top-down expectation. This forces the network to search the entire available categories,
and may lead to a creation of a new category, if the input pattern is totally a different one
from the ones that have been learned previously. Nevertheless, this condition occurs only
 for the first 3 cycles of the pattern presentations. The next time the pattern is presented, the
network will recognize the pattern directly without any searching process (denoted by the
zero in the parenthesis).

The results show that the subset pattern always replaces the superset pattern. For
example, this is shown in Table 6.2f for a vigilance of 1.0. Pattern 4, is replaced by
pattern F, and pattern [, is replaced with pattern J,. For the second presentation,
patterns F, and J,, remain stable in categories 0 and 7, respectively. On the other hand,
the network has to search new categories for patterns A, and /, that are categories 8 and
9, respectively. Similar cases can be found also for lower vigilance values. This
phenomenon is due to the way the network stores the template in the top-down LTM (refer
to Eq. 3.28 in Chapter II). Using Eq. 3.28, the network always stores the intersection of
the input pattern and the previous template as the new template in the selected top-down
LTM. If the new input pattern is a subset of the template pattern, then this new pattern
becomes the template pattern for the next trial. In other words, the learning of the network

‘is stable only at the subset pattern. This characteristic becomes significant for higher
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vigilance values (the extreme case is for Qigilance 1.0).

Tables 6.3a-c show the distribution of the input patterns among the categories created
for vigilance 0.5, 0.8, and 1.0, respectively. One significant result for different vigilances
is the number of categories created by the network. The number of categories increases to
the maximum number of input patterns as the vigilance value increases to 1.0. This is a
typical characteristic of ART-1 since the vigilance determines the tolerance of a mismatch
between the input pattern and the top-down expectation. High vigilance forces the
network to search for new categories in response to small tolerance of a mismatch. To the
extreme, the network will classify each unique input pattern into each unique category.

Ideally, the network should result in the same number of true categories, which is.10
categories. However, this requirement is never accomplished for the problem given. The
reason is that a small number of categories (obtained for a small vigilance value) directly
competes with the number of overlaps. An overlap occurs when more than one pattern of
distinct category is classified into the same category. To show this let us compare the result
for vigilance of 0.5 and 0.8 in Table 6.3a and 6.3b, respectively. Most of the predicted
categories for vigilance of 0.5 contain more patterns from different categories, while the
predicted categories for vigilance of 0.8 have less patterns from different categories.
However, each predicted category created by the network with vigilance of 0.8 contains
less patterns too, even for patterns that belong to the same true category. Hence, the
minimum number of categories with no overlaps (i.e., 10 categories) is never accomplished
by the ART-1 network without some modifications. An improved version of ART-1,

which is called ARTMAP, can be found in [CaGR91].
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6.7 Summary

This chapter describes and analyzes experiments and results of three selected neural
networks, namely, BP, CPN, and ART-1. The network configurations, the learning
parameters and the training procedures are discussed. The networks have been used as
pattern classifiers of 7x5 binary pixels of 10 alphabet characters. The performances and
the learning characteristics of the networks are studied.

The experimental results of the BP experimentation show that a three-layer BP network
with many hidden neurons tends to generalize better than networks with few hidden
neurons. For the given problem, the two-layer and three-layer BP with a number of hidden
neurons above 6 classify 90% of the total test samples correctly, while the CPN network
shows a 95% classification. Results also show that no overfitting nor overtraining
problem is detected in the BP training. The experimental results for ART-1 show that the
minimum number of categories with no overlaps (i.e., 10 categories) is never accomplished
for the given problem. The number of categories increases to the maximum number of
input patterns as the vigilance value increases to 1.0. Furthermore, results also show that
the learning of the network is stable only at the subset pattern, and this characteristic

becomes significant for higher vigilance values.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

The work described in this thesis was motivated by the need for developing unified
benchmarks and a unified methodology of benchmarking in order to facilitate better
understanding and applicability of artificial neural network models for particular
applications. The thesis places emphasis on the comparative study of the characteristic
features of the BAM, BP, CPN, and ART-1 artificial neural network models. This study
has led to the development of a neural network software simulator on a Macintosh
computer. An object-oriented design methodology has been used in the design process.
This design approach reduces the programming complexity and provides a reusable and
maintainable system for further expansion. The program has been extensively used in the
experimental study of the selected models.

The study has two parts: a literature study and an experimental study. The objective of
the literature study is to identify the characteristic features of selected neural network
models and to provide the basis for the experimental study. For completeness, the

characteristic features of the selected models are listed below.

A Bidirectional Associative Memory (BAM):
« is a two-layer nonlinear feedback network with supervised learning;
+ the layers are fully connected;

« employs neurons with a nonlinear function such as sigmoid, threshold;
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requires bipolar (no analog) data representation;

+ functions as an associative memory;

*

stores the association of the data pair at local energy minima; and
« trainings through summing the outer-product of the data pairs.
The BAM has the following advantages:
« it requires no training parameters;
* no iterative process during training; and
+ requires one training trial.
The BAM has the following disadvantages:

+ it has limited memory capacity; N = ——, where m is the number of
2logam

neurons in the smaller layer;
» requires mutually orthogonal of the data pairs for perfect recall;
 produces spurious patterns;
+ bipolar BAM encodes the complements of the patterns automatically; and

« can be confused if like inputs are associated with unlike outputs (vice versa).

A Backpropagation (BP):
« is a multilayer nonlinear feedforward network with supervised learning; o
+ the layers may be fully connected or sparsely connected;
« employs biases and a nonlinear function in the hidden and output neurons;
+ functions as a mapper; and
+ training through minimizing the error function (search for a global minimum).

The BP has the following advantages:
« it accepts analog and binary data representations; and

» is capable of approximating any continuous mapping using a network with as few
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as one hidden layer and an arbitrary bounded and non-constant activation
function.
The BP has the following disadvantages:

+ the training can be trapped in local minima;,

« it requires some adjustment of the training parameters;

» requires iterative process during training;

« the training time grows exponentially with the size of the network;

» has a tendency to forget previously learned patterns;

» may become overtrained or overfitted, and

« difficult to select the optimal configuration for a specific task.

A Counterpropagation (CPN):
« is a three-layer nonlinear feedforward network with unsupervised learning;
» the layers are fully connected;
o the architecture is a combination of Kohonen’s self-organizing feature map
(SOFM) of and the Grossberg’s oufstar structure;
» uses the competitive learning scheme at the hidden layer; and
+ employs a linear function in the hidden and output neurons.
The CPN has the following advantages:
+ it accepts analog and binary data representations;
« functions as a statistically optimal self-programming look-up table;
» training through self-organizes the weights to approximate the mapping; and
« it requires a finite number of training trials.
The CPN has the following disadvantages:

« it requires some adjustment of the training parameters;
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+ requires iterative process during training;
+ has a tendency to forget previously learned patterns; and

* has a problem of under-utilization.

An Adaptive Resonance Theory 1 (ART-1):
+ is a two-layer nonlinear feedback network with unsupervised learning;
« the layers are fully connected;
« functions as a binary classifier;
« uses the competitive learning scheme at the second layer; and
« uses top-down expectation scheme (active attentional focus).
. has a more complex architecture;
The ART-1 has the following advantages:
+ real-time (on-line) learning;
+ learning through self-organizes the weights according to the past experiences;
» it is capable to preserve previously learned patterns while continuing to learn new
patterns; and
« requires a finite number of learning trials.
The ART-1 has the following disadvantages:
+ requires binary data representation;
« requires some adjustment of the learning parameters; and

+ has some difficulty to adjust the vigilance parameter.

The objective of the experimental study is to confirm or to discover some capabilities,
and particularly, their abilities to solve specific problems. Since there are two distinct

classes of neural network models, the experimental study must employ two benchmark
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problems, namely, the associative memory and the pattern classification problems.

The first experiment, the associative memory experiment, includes the BAM, BP, and
CPN models. This experiment confirms some of the characteristics of the selected models
and reveals other characteristics that have not been identified a priori. The experimental
results of BAM indicate that the closeness (in Hamming distance sense) of the patterns to
be stored becomes increasingly critical as the number of the patterns increases. However,
the selection of the stored patterns seems inconsistent with the selection based on the
closest Hamming distance. Results show that the spurious patterns produced by two
associations have some regularities. These spurious patterns may form as either unique
patterns, the intersection patterns, zero patterns, or the union of the complements of the
stored patterns. Some of the BAM training is unsuccessful (i.e., the training results in
imperfect recall of the stored patterns). This problem is likely to occur when some of the
patterns are subsets of the others. Furthermore, the results show that the unique bits of a
pattern at the input layer are associated with the unique bits of the associated pattern at the
output layer. The experimental results of BP show that different network configurations
give different outputs in response to a new input pattern. The results also show that the
networks produce some spurious patterns. However, a three-layer BP network produces
fewer spurious patterns than a two-layer BP network. This may be attributable to hidden
neurons in the three-layer BP network. The failure of some of the BP training indicates
that the training of a three-layer network with less than N-I hidden neurons (where N is
the number of distinct patterns) is likely to fail. The experimental results of CPN show that
no spurious patterns occurs. This may be attributable to the competitive learning scheme
used in the CPN model. The CPN performs similar to a look-up table whose entries are

separated by a radius of association.
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The second experiment, the classification experiment, includes the BP, CPN, and
ART-1 models. The experimental results of BP show that a three-layer BP network with
many hidden neurons tends to generalize better than networks with few hidden neurons.
For the given binary classification problem, the two-layer BP gives 10.4% error rate, while
the three-layer BP with 2 hidden neurons gives 58.4% error rate and the one with 35
hidden neurons gives 7.2% error rate. This means that, on the average, the two-layer BP
and the three-layer BP with a number of hidden neurons above 6 classify around 90% of
the total test samples correctly. Results also show that no overfitting nor overtraining
problem is detected in the BP training. The experimental results of CPN show that the
network with 10 hidden neurons gives 5% error rate. In other words, the CPN network
shows a 95% classification. The results show that the learning can be unstable for certain
learning rate settings. This problem, however, may be overcome through utilizing a
learning rate that is gradually reduced towards zero during training. The experimental
results for ART-1 show that the minimum number of categories with no overlaps (i.e., 10
categories) is never accomplished for the given problem. The number of categories
increases to the maximum number of input patterns as the vigilance value increases to 1.0.
Furthermore, results also show that the learning of the network is stable only at the subset
pattern, and this characteristic becomes significant for higher vigilance values.

In summary, the thesis has contributed to technical knowledge by:

(a) providing a better understanding of the selected models through the development
of a unified benchmarking and an experimental study;

(b) the use of object-oriented design methodology to develop a reusable and
expansible artificial neural network software simulator;

(¢) development of an integrated software simulator of selected artificial neural
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(d)

(e)

network models, namely BAM, BP, CPN, and ART-1;

providing a basis for the comparative study of selected artificial neural networks
through experimental study; and

introducing the use of an extension of the confusion matrix to measure the

performance of the ART-1 model.

Further research is required to either improve or extend this work, including:

(a)

(b)

©

the study of other artificial neural network models with the implementation of the
models based on the existing software;

the development of some additional tools for the neural network software
simulator, such as graphic displays for input and output patterns, and Hinton

diagram to display the weight values; and

modification of the existing software to incorporate an artificial neural network

co-processor (accelerator) board.
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APPENDIX A
TRAINING PATTERNS

A.0 Introduction

This appendix lists the training patterns used in the experimental study.

A.1 Patterns Used in the Associative Memory Experiment

SAB:

O pd fd pd e p O
OCOORrRORO
COO0ORORO
OO0 OO
ORBERPRRREO

OFRFRFRRHEREOD
ORPROROrFQ
ORORFRPRORO
ORrROKROMRO
LCORROFRFOO

ORRPRRRRPRODP
OCOoOORORO
COOr OO
ODOOrRrORO
O b e b e i O

~Al -



A. TRAINING PATTERNS

O e o O
OCOOdO OO
COO-OO0O
OO AO OO

IOl o O

Qetrded e 1 O
COCAOACOO
QIO —AOOO
OO 00O

OO

QOO OO
O O0O0OC O
Sl el A et O
O OO O

HO 1 OO OO

OO A O A0OO
O OO O
OO0 OO
O OO0

MOoO—A— A dD

_A2-

Qe O ed O
OO 10O
Q- O~ OO
O OO0 A0
Do O



A. TRAINING PATTERNS

49
[24]
70

QO A0 O
OrmM Ol OO
OO0 A O~ O
OO A0 O

O e ed e o1 O

OO0 oo
OHOHOOO
oo 0OoO
oHdoOoOHOOO

oA d A S

O OO O
OO AdA O A
Or@-i O OO
O O OHO

oA dd o

Qe O el = O
O OAOCAO
OO A O AO
QHOOO O

VDO At A

Sm:

Odddd O
QOO ~AOOO
COOAOO0Q
SCOOHDODOD
DO A~ O

—A3-



A. TRAINING PATTERNS

QA OCOOHO
O OO OO
Qe O
OO OO-O

HO—O0OOoOOHO

Q= OO0 O
O o0 OoOAQ

O e - O

[t len R Ran b, [ en ]

HO@OOO~ O

OHO OO OO
QAO OO OO
OAddd A
OO OO O

hHOoO-mOOO O

Spx !

OO OO0
O OOOOO
Ol A1 O
OHOOO-O
kOlOOOlO

Q1 OO0 OOQ
O OO0 O O
Qrdcrdocd e O
O OO OO

HOHOOOAC

—Ad—



A. TRAINING PATTERNS

“oy
2
v

O = O
e R B e B B o I e Y o
QA O A0 OO
Qe O-HOOO

O A A A A O

o100 400
OO mM OO
Q@O 10O
OOl OO

MO Aot ed ed ©

CHOOOAO
OO0 OAO
Ol = O
Q1 OO O

HOA OO O

Qedeicd v O
CHOAODOOO
OH O OO0
OHOAHOOO

LOA—A—A 1O

OO OO0
O=OAOOO
OO0 1000
OO A0 OO
O A—AO

—A5—



A. TRAINING PATTERNS

O d 0O
QOO0 OO
OO OA0 OO0
OO O-HOOO

TOArddd O

Spar:

COHOA0O
OO OO
O~ O OO
O= O OO
moddd o

DA O
OCOOAOOO
[on en Ren B N en J o J oo}
OO A0O0

TOmMAdddO

O~ OO0OOHO
O OOO O
OO
O OO O A0

HMOH@HOOOAO

Sgre

OO0 A0
OriOdA OO
OO0 CAdAD
Orm O 0O
HBodd O

—A6—



A. TRAINING PATTERNS

QO - OO0
OCAO A OO0
O-O1O00OO0O
OO OO0

LOAcdmme O

OO0
Qe O~OAdO
OO 10O
Qe O OO HQ

OO Arm e O

Spear:

CO=HOHOO
CHO AOAQ
OHHOAOAHO
O O-H OO

MO A A A A AD

OO OHO
O OO Ow O
O~ OOOAAO
QeriOOO-AO

Vo dd A=l O

QA== = O
OO0 A0 O
COOAOO O
COOHOOO

TOoOrHAdAd O

~AT-



A. TRAINING PATTERNS

QA OO~ O
OHO OO O
Oddd A A0
OO OOAO

HO-1OOO-HO

SpHL !

CO=EO-EOO
OO OO
OO OO
OO A0 A
MO et A O

SOrHAAA O
coordooo
coodooo
coodooo

O A~ A

OO0 O—O
QOO0 O
Ol v A O
QOO0 OAO

HO A OO OO

COOOOAD
CODOD—Q
OCOOOOO=O
OO OQ

HOAd A4 O

—A8—



A. TRAINING PATTERNS

=

Qi OO0 1O
OA OO O AO
Qe e e O
OA O OO A0
O OO OQO O

O et v v i O
QOO 10 OO
OHAO—ACQ OO
OO A O OO

OAd OO OOOO
OO OOOO
OAddd A+ O
OriOOO~O

hosoooOod O

OO OAOO

O O OO

Qe OHOAHO
OO A0~ O

OAd OO A O
OHOAO A0
O-HO= OO
O OAO0AO

MOoOmrmdddd O

Orderled e O
OAd O AHAD OO
O Od0OO
Od O OO0

Qriod1 000
OO 0O0O0O0
OO0 QOO
O Od OO

Lo AdA-ddd O

OA -0
COOOQOOO
COCODHOOO
COOHOOO

Ormetdd O
OO OO0
OO OO0
Qe O OO0

O A A A O

O OO0
O~ OO O
O OO O
OO OO

—A9—

Lol R i e K =] MO O EOmMrdddd O DO O MOoO—A ™~

E:
3

w)

Sy
Sangr:




A, TRAINING PATTERNS

OHDODOO D
DD OO O
O\ ddadd O
Ol QOO HO

HOAOOOAHO

Qe Ord e O
OAO O~ O
O-HOAOAO
O OOOAHO

DO i e =t e O

Serar

Ot OmdA—dC
OAOA OO

GOlOlOlO

OAOOOA0O
Ordd A A dAO

O- O A0 O
O-lO—OdC
OO0 A0~ O
OHOAH OO

oA Ao O

D

Lo}

O COOO O

OA OO OO O

Odd A =-O
OO OO A0
OHOOO-O

OO OO A
OO0 OO O
O O
OmOCoCOAQ
O QOO0

Suiec:

OO O e O
OO0 A0
OO AO O
OAOO~-O A0

Modd O

O A A O
ODOOAO0OO0O
OO0
OO rmM OO0

TO e O

OO O
OO0 O
Od O OO
QrHoOOOAO

DO AdA—"ddHO

OO0~ O
O OOO~HO
O A0
[en Rt Nen Y oo Jlaio Bt el

HOAODSOD O —AO

-Al10-



A, TRAINING PATTERNS

SyEG:

QO OO
OA O A O A0
OO ACHO
QO AOHAO
Ol AA A HD

O OO0 O
OO OO ACO
(oo B B B B B W e
OO OO A0

HOAOOOAO

OAOQ e O
OO A0 HO
OO OO
OmrOOOdHO

VDo A0

O OO OO0
Qe OO OOO
O A A d O
O« OO OAD

HOTOOOmMO

OAAA—AAD
oHdOodO0O0O
cCHdoO A0 OO
oHO-HOOO
L O A A O

OO OoOA00C
OO OO
OO A O
OO O O
MoAddddd O

Spuracy:

O OOOOACO
OO0 OO O
O OO OO
O OO OO

VDVoOoddAd O

O e o =l O
OO0 0O0O
COOAOOO
OO OOO

TOd—~AmmdACQ

O-OOOOO
OrHMOOCOO0O
O] ©
OAd 0 OO A0

POADOO A

QA OO ~AO
OO OO0
Ot cd e QO
OO OO A0

HOCOOO O

~All-



A, TRAINING PATTERNS

Sgaraic:

Qe O
OO d OO C
OO A0 O0O
QOO0 0O

O A d A O

COAOCO—AOO
OO A0 HAD
OO A OO
OO A OO

MOoOA- ™m0

OO0 OO
Qi OO OO0
O el vl e e O
fen R Ren Jen Tl en Bt Ben ]

DOEOOO O

O A A O
CoOoOOAQCOO
OO0 OO0
COO—AOOO

MO A === O

OHOODOAD
Qe OO OO
O-HHOOO O
OO0 OAOD

QO ed o ed vl O

Owl OO O
CAdOOOQ 0O
O et O
[en s R en Jlen B en B Jen )

HOAOOO O

A.2 Patterns Used in the Classification Experiment

S,y

~Al2 -

OQerird O
O O=OOO
OAd OO0 OO
OO~ OO0

(]
TOoOmHAdddO



A. TRAINING PATTERNS

OO -HOO
Qe OO O
O-HOAO O
NO-A OO A

o
MO e e el = et O

OHDOOHAO
OHOOOHO
OHOoOOoCOHD

MO ASCOOHO

wnulllllnu

coddHOO
oHooo Ao
OrHO0OO O
OO HD
Bodadado

Or-@OdO A0
OCHOAOAO
O OO0
NO-E OO0
melllllo

OO 4100 O
QOQriOd O OO
OO 1000
WOEHOAOOO

o
MO O

OrA O A A0
OAOAdO O
OO OO
O O0O0OOAO
@nulllllo

—Al3 -



A. TRAINING PATTERNS

O At O
QOO HOOO
OOOan.OnU
OO AODOOOD
nUUunUllllan

OO0 COCOmO
OO OO HO
Ol A O
AO M OO0 O

(=]
HOA O OO AO

OCHOOODOO
QOO0 OO
Ol ed o e O
OO0 A0

o
HOEFOOO-~O

~Ald-



B.0 Introduction

APPENDIX B

B.1 Predicted Categories for vigilance 0.5
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F33(0)
F45(0)
H32(0)

J23(0)
c21(0)

I53(0)

D24(0)

J31(0)
H52{0)

J13(0)
I33(0)
J41(0)
C52(0)
B52(0)
C55(0)
F12(0)
F23(0)
F34(0)
A55(0)
F35(0)

J42{0)
C24(0)
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D33{(0)

F54(0)

J14(0)
J32(0)
I51(0)

D51¢(0)
F13(0)
F24(0)
E43(0)
F53(0)
H34(0)

J44(0)
C31(0)

EXPERIMENTAL RESULTS OF ART-1

This appendix lists the unsorted predicted categories of ART-1.

G54(0)

J51(0)

J15(0)
J33{0)
152(0)

F14(0)
F25(0)
F41(0)

H35(0)

J55(0)
142(0)

J54 (0)

J22(0)
I35(0)

F15(0)
A32(0)
F43(0)

I45(0)




B. EXPERIMENTAL RESULTS OF ART-1

23 B14(0) B22 () B53(0)

24 G23(0) 132 1(0) B55{(0) D52 {0) I55(0)

25 DO1{0)} D11(0) D12{(0) D14 (0) D15{0)}) D22 (0}
D23(0) D31(0) D34{0) D35(0) D42(0) D44 (0}
G43(0) D45{0) D53(0) D54 (0) D55(0) ES2 (0}

26 H12(0) H21{0) Ad4(0) H42(0) F52(0) H51 (0}

27 F42(0) E51{0) G55(0)

28

29 I01(0) I11(0) I13(0) 1140} I21(0) I24(0)
125(0}) E31(0) I31(0) 144 (0)

30 A52 (0}

31 G42(0)

32 2A42(Q) G45(0) F51(0}

33 E34(0) E55 (0}

34 H44(0)

35 I12(0) 115(0) F22(0) J35(0) I41(0} J43(0)
A45(0) J53(0)

36 E45(0)

37 E54(0)

38 BOL1(0) c01(0) GO1{0) B11(0) C11(0} G11(0}
B12(0) B13(0) B15(0) C13(0) C15(0}) E12(0)
£15{0) G12(0) G13(0) G14(0) G15(0) C22 (0}
E22{0) I22(0) B23(0} B25(0) C25(0) D25 (0}
E23(0) E25(0) B33(() C33(0) E33(0) G33(Q0)
C35(0) G341{0) I34(0) C42(0) E41(0) C51(0)
C53(0) C54(0) G53(0)

39 HOL(Q) H11{0) H13(0) H14 (0) H15(0) A21(0)
H22(0) H24(0) H25(0) B31(0) B32(0) H33(0)
A34(0) 241 (0) H41(0) H43(0) H45(0) A54{0)

40 B21(0) G31(0) G32(0) B35(0) G35(0) B41(0)
B43(0) G44{0) B51(0)

41 E1L(0) G22(0) E32(0) B44 (0) E44(0) G41(0)
B45(0) B54(0) G51(0) G52 (0)

42 AQL(O) EQ1{Q) 211(0) Al2(0) A13(0) Al5{0)
E13(0) E14(0) A22(0) E21(0) G21(27) A23(0)
A24(0) A25(0) E24(0) G24(0) G25(0) A31(0})
A33(0) A35(0} E35(0) A51(0) AS53(0) ES3 (0}
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B. EXPERIMENTAL RESULTS OF ART-1

G22(0)
H25(0})
232 (0}
B11(0)
D24 (0)
123(0)
J41(0)
D33(0)
142(0)
JL1{0)

H34(0)
H31(0)
J44(0)
B43 {0}
C43(0)
Cc42(0)
J54(0)
A44(0)
I33(0)
242(0)
B42{0)
B44(0)
D41(0)
D51(0})
E42(0)
F54(0)
F21(0)
G42(0)
C45(0)

FA5(0)

A43(0)
F25(0)

C34(0)
G23(0)

B24 (0)

E31(0)

I35(0)

F43(0)

H45(0)

J53{0)

A55(0)

E43 (0}
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B. EXPERIMENTAL RESULTS OF ART-1

55 E45(0) B55 (0}

56 145(0)

57 A52(0)

58 H23 (0}

59 B52(0)

60 D45 {0} B53 (0}

61 D52(0)

62 C14(0)

63 G45(0) C52(0)

64 C33(0) C53(0) C55(0)

65 D23 (0} D34 (0} D55(0}

66 D21(0)

67 E51(0) E55(0)

68 E54 (0}

69 F51(0}

70 F52{0)

71 F53(0)

72 F55(0)

73 G55(0)

74 G11{0) EL2(0)

75 H54{0)

76 G54(0)

77 H51(0)

78 H52{0)

79 J42 (0}

80 I52(0}

81 I14(0}) I22(0)

82 154(0)

83 J55(0)

84 J51(0)

85 B14(0) B22(0) B31(0) B32(0) B33(0)

86 c24(0) C25(0)

87 H12(0) H21(0)

88 H35(0) .

89 D01(0) D11(0) D12(0) D14 (0) D15(0) D22{0)
D25(0)

90 E0L1{D) E15(0) E22{0) E23(0) E25(0) E41 (0}

91 G33{0)

92 J33(0) J34(0)

93 D31(0)

94 c01(0) C11(0) c12(0) c13(9) C15(0) C21(0)
c22(0) C31(0)

95 A31(0) A34(0)

96 F35(0)

97 E34(0)

98 G44(0)

99 HOL(0) H11(0) H14(0) H15(0) H22(0) H24 (0}
H32(0)

100 H44(0)

101 101¢(0) I11(0) 112(0) I13(0) I15(0) 121{0)
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B. EXPERIMENTAL RESULTS OF ART-1

102

103
104
105
106
107
108
109
110
111
112
113
114

115
11s6
117
118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
1338
140
141
142
143

I41(0)
J01(0}
J24(0)
B21(0)
C41(0)
G41(0)
F4a1(0}
B51(0)
D42 (0)
F42(0)
G43(0)
T43(0)
I32(0)
J43(0)
FOL1(0)
F22(0)
J45(0)
A53(0)
H13(0)
C35(0)
D53(0)
D54(0)
E13(0)
G531(0)
G14 (0}
GO1(0)
I51(0)
I53(0}
124(0)
G24(0)
BOL(0)
B41(0)
AD1(0)
A25(0)
E32(0)
J32(0)
G35(0)
134(0)
A45(0)

C51(0)
E21(0)
E35(0)
G21(0)
A21(0)
A35(0)
A33(0)

J12{0)
J25(0)
B35(0)

D44 (1)
F44 (0}
B54 (0}

144(0)
Al5(0)
F23(0)

H33(0)
C54{0)

G31(0)

G25(0)
G12(0)

I25(0)
G34(0)
B12(0)

Al11(0)
Ad41(0)
G32(0)

H41(0)
E44(0)

E24(0)
G51(0)

A23(0)
A51(0)

J13(0)

EL14(0)
F24(0)

E52(0)

G13(0)

I31(0)
B13(0)

al2.(0)

E53(0)

A54(0)
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J14(0)

F13(0)
F31(0)

G15(0)

155(0)
B15(0)

Al3 (0}

J15(0)

F14(0)
F33(0)

E33(0)

B23(0)

A22(0)

J22(0)

F15(0)
F34(0)

G52 (0)

B25(0)

A24{0)



B.3 Predicted Categories for vigilance 1.0

WO 1O W b W O

E31(0)
G11(0)
H12(0)
J11(0)

JOL(0)
215(0)
H15(0)
B22(0)
B24(0)
B34(0)
C23 (0}
C121(0)
D12 (0}
D35(0)
D43{0)
FOL1{0)
F15(0}
Cc24(0)
F14 (0)
G14(0)
G22(0)
G23(0)
H23(0)
H14(0)
J31(0)
I23(0)
J12(0)
J13(0)
J14{0)
J15(0)
A21(0)
F23(0)
B21{()
COL1{0}
D24{0)
D22{0)}
C43(0)
E22 {0}
F25{0)
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B. EXPERIMENTAL RESULTS OF ART-1

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

F35(0)
G54 (0)
H21(0)
H42(0)
J21(0)
I14(0)
J22(0)
A23(0)
A14(0)
A32(0)
B14(0)
B01(0)
C25(0)
D23(0)
D25(0)
E15(0)

A43(0)
B31(0)
B32(0)
B33 (0)
C31(0)
C34(0)
D15(0)
D32(0)
D33{0)
E32(0}
F13(0)
F21(0)
F32(0)
F33(0)
G31(0)
C44(0)
G33(0)
H31(0)
H32(0)
H13(0)
J54(0)
I01¢(0)
J32(0)
J33(0)
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B. EXPERIMENTAL RESULTS OF ART-1

97

98

99

100
101
102
103
104
105
106
107
108
108
1190
111
112
113
114
115
116
117
118
119
120
121

122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

A34(0)
H55(0)
B35(0)
C35(0)
D34({Q)
E34(0)
C41(0)
F34(0)
G34(0)
G35(0)
H35(0)
J52(0)
I35(0)
J34(0)
J35(0)
H54(0)
Ad2(0)
A44(0)
B41(0)
B42(0)
F43(0)
B44 (0}
c42(0)
D41(0)
D42 (0}
D44 (0)
E41(0)
E42(0)
E43(0)
E44(0)
FAL1(0)
F42(0)
F44(0)
G41(0)
G42(0)
G43(0)
G44(0)
H41(0)
H43(0)
H44({0)
I41(0)
I42(0)
I43(0)
I44(0)
J41(0)
J42(0)
J43(0)
F22{0)
B45(0)
C45(0)
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B. EXPERIMENTAL RESULTS OF ART-1

147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
i84
185
186
187
188
189
180
19
192
183
194
195
196

AS2(0)
A53(0)
A54(0)
AB5(0)
B51(0)
B52 (0}
B53 {0}
B54{0)
B55(0)
C13(0)
C521(0)
C531(0)
C54(0)
C551(0)
D51(0)
D52{0)
D53{0)
D54 {0)
D55{0)
E51(0)}
E52(0)
E53{0)
E54(0)
E55(0)
F51(0)
F52(0)
F53(0)
F54(0)
F55(0)
G51(0)
G52(0)
G53(0)
G55(0)
H51{0)
H52(0)
H53(0)
I51(0)
I52(0)
I53(0)
I54(0)
I55(0)
J51(0)
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B. EXPERIMENTAL RESULTS OF ART-1

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

J53(0)
J55(0)
G01(0)
AD1(0)
Cl1{0)
D11{0}

C21(0)
D14(0)
E14(0)
G12(0)
G13(0)
G15(0)
112(0)
J25(0)
A22(0)
C22 (0}
D21(0)
G25(0)
G21(0)
H22 (0}
I13(0)
I22(0)
A24(0)
A25(0)
B23(0}
B12(0)
E23(0)
E12{0)
H24{0)
124 (0)
125(0)
J24(0)
A33(0)
C15(0)
D31(0)
E33(0)
F31(0)
G32(0)
H33(0)
I31(0)
132(0)
A35(0)
E35(0)
I34(0)

I15(0)
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B. EXPERIMENTAL RESULTS OF ART-1

247
248
249
250
251
252
253
254
255
256
257
258

A41(0)
B43(0)
a45(0)
C51(0)
ALL(O)
E0L1(O)
E21(0)
I21(0)
B25(0)
E24(0)
C33(0)
EL13(0)
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APPENDIX C
NEURAL NETWORK SIMULATOR’S WINDOWS
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