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Abstract

This thesis is based on the use of mathematical theories, modelling, and simulations

to study the transmission dynamics of HIV/AIDS in the presence of PrEP (pre-

exposure prophylaxis) in the MSM (men who have sex with men) population in the

United States. A new deterministic model for HIV/AIDS that incorporates PrEP

is designed and used to assess the population-level impact of the use of PrEP on

the transmission dynamics within an MSM population. Conditions for the effective

control (or elimination) and persistence of HIV/AIDS in the MSM population are

determined by rigorously analyzing this model. Uncertainty and sensitivity analysis

is carried out, using data relevant to HIV transmission dynamics in the MSM com-

munity in the U.S. State of Minnesota, to determine the effect of the uncertainties

in the parameter values on the outcome (response) variable (the associated repro-

duction number) and to identify the top-five parameters that have the most effect

on the disease transmission dynamics. Numerical simulations show that HIV burden

decreases with increasing PrEP coverage. HIV can be effectively controlled in the

MSM population if at least [61%− 77%] of the susceptible MSM population can be

on PrEP (adjusted by PrEP efficacy).
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Chapter 1

Introduction

This chapter provides a brief overview of the HIV/AIDS epidemic in the United

States.

1.1 HIV/AIDS

Since its inception in the 1980s, the human immunodeficiency virus (HIV), the

causative agent of acquired immunodeficiency syndrome (AIDS), remains one of

the world’s most serious public health and socio-economic challenges [22, 52]. The

World Health Organization (WHO) estimates that 35.5 million people are currently

living with HIV/AIDS, and that in 2013, 1.5 million people have died of HIV-related

illnesses worldwide (Figure 1.1 depicts the global prevalence of adult HIV infection)

[52]. The Centers for Disease Control and Prevention (CDC) estimates that up to

1.1 million people in the United States are living with HIV (and that nearly one in

six of these people are unaware of their infection status) [9]. The annual number

of new infections (incidence) is estimated to be about 50,000 in the U.S., and has

remained relatively stable in recent years [9, 47].

HIV is transmitted sexually (via contact with infected bodily fluids such as blood,

semen, pre-seminal fluid, rectal fluids, and vaginal fluids), vertically (from an infected
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Figure 1.1: Worldwide Adult HIV Infection Prevalence [52].

mother to her child during pregnancy or child birth), through breastmilk, by sharing

contaminated needles (among IDUs or within healthcare settings) and through blood

transfusions [13, 47]. In order for transmission to occur, these infected bodily fluids

must come into contact with mucous membranes or damaged tissue or be directly

injected into the bloodstream [13, 47]. In the U.S., HIV is mainly spread sexually and

by sharing needles, syringes, rinse water, or other equipment used to prepare injection

drugs with someone infected with HIV [13]. It can also be spread less commonly by

vertical transmission, occupational exposure, and rarely by organ transplants or

blood transfusions [47]. The main risk groups in the U.S., by transmission category,

are men who have sex with men (MSM), intravenous drug users (IDU), heterosexual

individuals, and men who have sex with men that are also intravenous drug users

(MSM-IDU) [9]. MSM of all races and ethnicities currently have the largest number
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Figure 1.2: Estimated New HIV Infections by Route of Transmission, 2010 [9].

of new HIV infections and remain the group most severely affected by HIV in the

United States [9]. Figure 1.2 depicts the percentage of estimated new HIV infections

by route of transmission in the U.S. in 2010 [9].

1.2 Replication Cycle

The replication cycle of HIV disease (in the body of an infected host) starts when

the virus infects a target CD4+ T cell (also known as a helper T lymphocyte - a type

of immune system cell) [3, 45, 37]. The virus binds to cell-surface CD4 receptors and

co-receptors, and then fuses with the cell allowing the viral core to enter [3, 45, 37].

Once the viral core has entered the CD4+ T cell, the virus is able to use the cell

to replicate itself [3, 45, 37]. The virus also infects other CD4-bearing cells, such as

monocytes, macrophages, and dendritic cells, but replicates most efficiently in CD4+

T cells [3, 45, 33, 37]. The replication of HIV is essential for disease progression
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to AIDS [3, 45, 33, 37]. This progression is observed via the following three main

stages:

1.2.1 Acute stage

The acute stage (also known as the primary infection stage) is characterized by high

viremia (high viral load; hence high probability of HIV transmission) [12, 24, 49]. The

virus infects both quiescent and activated CD4+ T cells of the human host, although

it primarily replicates in activated CD4+ T cells [54]. Initially, this replication at

the site of infection is virtually unobstructed by the immune system [33]. The rate

of viral replication is very high during this period, and is greater than the viral

clearance rate [33].

This viral influx eventually triggers an immune system response, with the activa-

tion of B lymphocytes (antibody producing cells) and the production of virus-specific

CD8+ cytotoxic T cells [3, 27, 33]. This process of developing antibodies is known

as seroconversion, and takes place within the first 3-6 weeks of the viral replication

process [2, 33]. The immune system response causes the virus to spread through-

out the body by presenting the virus and viral infected cells to non-infected T cells

in the lymph nodes [3, 27, 33]. Peak plasma viremia usually occurs within 21-28

days of infection [33]. During this peak, the CD4+ cell count drops, and many (but

not all) infected individuals begin to feel flu-like symptoms, called “acute retroviral

syndrome” (ARS) or “primary HIV infection” [12, 33, 49].

Symptoms, during this stage of infection, can include fever, sore throat, rash,

muscle and joint pain, fatigue, and headache [33, 49]. Eventually the immune system

response will suppress the virus and bring the viral load down to a viral set point

allowing the CD4+ cell count to rebound, but typically not to pre-infection levels

[12, 33, 49]. At this point the infected individual enters the chronic stage of the

disease.
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1.2.2 Chronic (asymptomatic) stage

The chronic (asymptomatic) stage of HIV infection is characterized by a decreased

rate of viral replication (lower viral load) and a recovery of CD4+ cell counts (to near

normal levels) [12, 33, 49]. Individuals tend to experience very mild symptoms or no

symptoms [12, 33, 49]. Despite the fact that CD4+ cell counts increase during this

stage, it has been well established that massive immune activation and an accelerated

cell turnover takes place [33]. It is thought that this activation is a major driving

force for immune exhaustion in HIV infection and helps lead to the progression to

AIDS [33]. Towards the end of this stage, the viral load starts to increase, while

the CD4+ cell count starts to decline (resulting in the weakening of the immune

system) [12]. In the absence of antiretroviral therapy (ART) an infected individual

will remain in this stage for a period of up to 10 years on average, before progressing

to the AIDS stage [12, 49]. With antiretroviral treatment, individuals can remain in

this stage for several decades, and may never progress to the AIDS stage [49].

1.2.3 AIDS stage

The AIDS stage is characterized by a high viral load and low CD4+ cell count (less

than 200 cells/mm3) [12, 49]. This results in a greatly weakened immune system, and

the infected individual succumbs to opportunistic infections (such as, pneumocystis

carinii pneumonia, Tuberculosis, mycobacterium avium complex, Kaposi’s sarcoma,

etc. . . ) [12, 49]. In the absence of anti-HIV treatment the AIDS patient typically

succumbs to the disease within three years [12, 49]. A schematic description of the

typical time course of HIV/AIDS infection in an untreated individual is given in

Figure 1.3.

5



Figure 1.3: Time Course of HIV/AIDS in a Typical Infected Adult [36].

1.3 Control Strategies

Various preventive and therapeutic strategies are implemented to control the spread

of HIV/AIDS in a population. These include condom use, voluntary HIV testing,

public health education and counselling, access to sterile needles, and the use of

ART [11]. In the U.S., for instance, the following are implemented; HIV testing

and linkage to care, access to condoms and sterile syringes, prevention programs for

people living with HIV and their partners, prevention programs for people at high-

risk of HIV infection, substance abuse treatment, screening and treatment for other

sexually transmitted diseases, and ART [11].

These control strategies have proven to be effective at reducing the risk of HIV

infection in the U.S., especially when they are designed to address the social, eco-

nomic, and structural factors that place specific groups at risk (resulting in a stable

HIV incidence in recent years) [11]. However, although these strategies have slowed

the spread of the disease, HIV remains a major public health concern in the United

States (since it is yet to be eliminated). Consequently, there is an urgent need to

formulate effective strategies.
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1.3.1 Antiretroviral therapy

Antiretroviral therapy (ART) (also known as antiretrovirals (ARVs), highly-active

anitretroviral therapy (HAART), or “The Cocktail”) has been widely used to treat

and help prevent the spread of HIV since 1987, when the first drug, AZT, came

on the market for use against HIV infection [46]. Since then, more than 30 drugs

have been developed and approved to treat people living with HIV/AIDS [35, 46].

ART helps people living with HIV/AIDS live longer (delays progression to AIDS and

HIV-related mortality) and lowers their risk of developing non-HIV related illnesses

[46]. Furthermore, ART reduces transmissability of treated individuals (by reducing

their infectiousness) to susceptible individuals [10, 35, 46].

ARVs are classified into six different classes: nucleoside/nucleotide reverse tran-

scriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNR-

TIs), protease inhibitors (PIs), entry/fusion inhibitors, integrase inhibitors, and

multi-class combination products [34, 46]. These classes are stratified based on how

they inhibit HIV replication [34, 46]. For example, NRTIs act as faulty building

blocks in HIV DNA and halts HIV DNA synthesis, and PIs prevent new HIV virus

particles from assembling [34, 46]. Multi-class combination products combine two

or more drugs from different classes into one pill at fixed doses [34, 46]. In general,

a patient on ART will take three different drugs (from two different classes) [46].

ART is recommended for all HIV infected individuals to reduce the risk of disease

progression [35]. Although ART is recommended for all people regardless of CD4+

cell count, its initiation still depends on the needs of the individual patient, in the

United States, and the resources available in their local area [35].

1.3.2 Pre-exposure Prophylaxis (PrEP)

PrEP is a new anti-HIV preventive measure [14, 15, 48]. It involves administering

an antiretroviral drug (such as Truvada®, which is a combination of two NRTIs,
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tenofovir (TDF) and emtricitabine (FTC)) to HIV-negative individuals who are at

a substantial risk of contracting the virus to help prevent infection [14, 15, 48]. It

works by blocking pathways that the HIV virus uses to set up an infection in the body

[14, 15, 48]. Individuals on PrEP have to commit to taking it every day and see their

health care provider every three months, for follow-up and HIV testing [14, 15, 48].

It has been shown, in recent studies, that the effectiveness of PrEP depends upon the

compliance in its usage [4, 14, 15, 16, 19, 44]. The more compliant an individual is

to PrEP, the more effective it will be in lowering the risk of contracting HIV (studies

showed up to 92% reduction in risk of acquisition of infection for those who took

the medications consistently compared to those who did not take them consistently)

[4, 14, 15, 16, 19, 44]. PrEP is not 100% effective, and should be used in conjunction

with other preventive measures (e.g., condoms, reduction in risky sexual behaviours,

using sterile syringes, getting tested for HIV, etc. . . ) [14, 15, 48].

The medication approved by the U.S. Food and Drug Administration (FDA) is

Truvada® [14, 15, 48]. Some clinical trials used tenofovir alone but this has not

been approved by the U.S. FDA for PrEP [14, 15, 48]. For sexual transmission of

HIV, the administration of PrEP entails giving drugs to anyone who [14, 15, 48]:

i) is in an ongoing sexual relationship with an HIV-positive person;

ii) is in a non-mutually monogamous sexual relationship and is a gay or bisexual

man that has had unprotected anal sex or have been diagnosed with a sexually

transmitted disease (STD) in the last six months;

iii) is in a non-mutually monogamous sexual relationship and is a heterosexual

man or woman who does not regularly use condoms during sex with a partner

of unknown HIV status;

iv) have injected illicit drugs in the past six months using shared equipment or

who have been in a treatment program for injection drug use.
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A summary of CDC guidelines on PrEP is depicted in Figure 1.4 [15].

Figure 1.4: Summary of Guidance for PrEP Use in the United States [15].

1.4 Thesis Objectives

The main purpose of this thesis is to gain qualitative and quantitative insight into the

population-level impact of the administration of PrEP to susceptible MSM at high

risk of contracting HIV infection in the United States. This is achieved by develop-

ing, rigorously analyzing, and simulating a new deterministic model for HIV/AIDS

transmission that incorporates the effect of PrEP. Some of the main questions to be

addressed in this thesis include:

1. What are the main qualitative features of the model with PrEP? The goal

is to determine conditions for the existence and asymptotic stability of the

associated equilibria of the model.

2. What is the population-level impact of the use of PrEP within an MSM pop-

ulation? In particular, what proportion of the susceptible MSM population

need to be on PrEP to achieve significant population-level impact (measured
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in terms of the effective control or elimination of the disease within the com-

munity)?

3. What are the parameters of the model that play a dominant role in driving the

disease transmission process (or dynamics)?

1.5 Thesis Outline

The rest of the thesis is outlined as follows. The HIV/AIDS PrEP model is formu-

lated in Chapter 2. The HIV/AIDS PrEP-free model is developed and rigorously

analyzed in Chapter 3. In Chapter 4, the PrEP model is rigorously analyzed. Un-

certainty and sensitivity analysis of the PrEP model are reported in Chapter 5.

Numerical simulations of the PrEP model are also carried out.

10



Chapter 2

Formulation of PrEP Model for

HIV/AIDS

2.1 Introduction

As stated in Chapter 1, HIV/AIDS has remained one of the leading public health

burdens globally, since its inception in the early 1980s, with MSM being one of the

leading risk-groups in the United States [9, 22, 52]. The widespread use of anti-

HIV control strategies, such as access to condoms, HIV testing and counselling,

and treatment with antiretrovirals, has resulted in a dramatic reduction in HIV

incidence in the United States [11]. PrEP is a promising new control strategy and

it is imperative that its population level impact is assessed. Consequently, it is

worthwhile to study the transmission dynamics of HIV/AIDS among MSM in the

presence of PrEP.

The main purpose of this chapter is to construct a new deterministic model for

the transmission dynamics of HIV/AIDS in a community of MSM in the United

States in the presence of PrEP.
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2.2 Model Formulation

The model to be developed in this thesis is based on the transmission dynamics of

HIV/AIDS in a community of sexually-active adult MSM in the United States. One

of the key assumptions to be made in the formulation process is that all clinical

standards of medical practice in the United States are in place (as defined by the

CDC) [8]. The total population of sexually-active MSM in the United States at time

t, denoted by N(t), is divided into sub-populations of individuals who are suscep-

tible to HIV infection but not on PrEP (S(t)), susceptible and on PrEP with low

adherence (SL(t)), susceptible and on PrEP with high adherence (SH(t)), infected

and in the acute stage of HIV infection (I1(t)), infected and in the chronic stage

of HIV infection (I2(t)), infected and on antiretroviral treatment (IT (t)), infected

and failed anitretroviral treatment (F (t)), and individuals with clinical symptoms of

AIDS (A(t)), so that

N(t) = S(t) + SL(t) + SH(t) + I1(t) + I2(t) + IT (t) + F (t) + A(t).

The population of susceptible untreated individuals (that is, susceptible individuals

not on PrEP) (S) is increased by the recruitment of newly sexually-active MSM who

are HIV negative (at a rate of π). This population is also increased when individuals

on PrEP abandon their PrEP treatment (at a rate of ωL, for those with low PrEP

adherence, and ωH for those with high adherence). Members of this population

acquire HIV infection, at a rate of λ, given by,

λ =
β(I1 + θ2I2 + θT IT + θFF + θAA)

N
. (2.1)

In (2.1), β is the effective contact rate. Furthermore, 0 < θ2 < 1 is a modification

parameter accounting for the assumption that individuals in the chronic stage of
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HIV infection are less infectious than those in the acute stage [24]. The parameter

0 < θT < 1 accounts for the assumed reduction of infectiousness of treated HIV-

infected individuals in comparison to those in the acute stage [24]. Similarly, θF > 0

represents the assumed variability of the infectiousness of failed treated HIV-infected

individuals, in relation to acutely-infected individuals [24]. Finally, θA ≥ 1 accounts

for the assumption that individuals in the AIDS stage of infection are at least as

infectious as those in the acute stage [24]. This population is further decreased by

the administration of PrEP (at a rate of ψ) and natural death (at a rate of µ; this

rate is assumed to be the same for all epidemiological compartments). Thus,

dS

dt
= π + ωLSL + ωHSH − λS − ψS − µS.

The population of individuals taking PrEP with low adherence (SL) is increased by

the administration of PrEP to a fraction, 1−f (at the rate ψ; a fraction, f , of these is

assumed to adhere strictly to a PrEP regimen, and the remaining fraction, 1− f , do

not). This population is further increased when highly-adherent PrEP users revert

to low adherence status (at a rate of ξH). It is also decreased by infection (at a

reduced rate of θLλ, where the modification parameter, 0 < θL < 1, accounts for the

assumption that low-adherent PrEP users acquire HIV infection at a lower rate than

wholly-susceptible individuals, but at a higher rate than highly-adherent susceptible

PrEP users). It is further decreased by individuals who either decide to take PrEP

with high adherence (at a rate ξL) or who decide to stop taking PrEP altogether (at

the rate ωL) and natural death. Hence,

dSL
dt

= (1− f)ψS + ξHSH − θLλSL − (ξL + ωL + µ)SL.

The population of individuals taking PrEP with high adherence (SH) is generated

at the rates fψ and ξL. It is decreased by infection (at a reduced rate of θHλ,
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where the modification parameter, 0 < θH < θL < 1, accounts for the assumption

that highly-adherent PrEP users acquire HIV infection at a lower rate than both

wholly-susceptible individuals and low-adherent susceptible PrEP users). It is fur-

ther decreased by reversion to low adherence (at a rate ξH), cessation of PrEP (at

the rate ωH), and natural death. Thus,

dSH
dt

= fψS + ξLSL − θHλSH − (ξH + ωH + µ)SH .

The population of infected individuals in the acute stage of HIV infection (I1) is

generated at the rate of λ. It is decreased by progression to the chronic stage (at a

rate σ1), the administration of antiretroviral treatment (at a rate τ1) and by natural

death. Thus,

dI1
dt

= λS − (σ1 + τ1 + µ)I1.

The population of individuals in the chronic stage of HIV infection (I2) is generated

at the rate σ1. It is further increased by those who have failed treatment, and are

still classified as having chronic HIV (at a rate γr, where 0 < r ≤ 1 is the fraction

of individuals who have failed treatment and are classified as having chronic HIV).

This population is decreased by treatment (at a rate τ2), progression to AIDS (at a

rate σ2) and natural death. Thus,

dI2
dt

= σ1I1 + γrF − (σ2 + τ2 + µ)I2.

The population of treated HIV-infected individuals (IT ) is generated following the

treatment of individuals in the I1, I2 and A classes (at the rates τ1, τ2 and τA,

respectively). It is decreased by treatment failure (at a rate κ) and by natural

death. Hence,

dIT
dt

= τ1I1 + τ2I2 + τAA− (κ+ µ)IT .
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The population of individuals who have failed antiretroviral treatment (F ) is gener-

ated at the rate of κ. Transition out of this class occurs at a rate γ (a fraction, r,

of which fail antiretroviral treatment, and the remaining fraction, 1− r, progress to

AIDS). This population is also decreased by natural death. Thus,

dF

dt
= κIT − (γ + µ)F.

The population of individuals in the AIDS stage of HIV infection is generated fol-

lowing the progression of those in the chronic stage (at the rate σ2) and those who

failed antiretroviral treatment (at the rate γ(1 − r)). It is decreased by treatment

(at the rate τA), natural death, and disease-induced death (at a rate δ). Hence,

dA

dt
= σ2I2 + γ(1− r)F − (τA + µ+ δ)A.

Based on the above assumptions and formulations, the model for the transmission

of HIV/AIDS in a community of MSM is given by the following deterministic system

of non-linear differential equations:

dS

dt
= π + ωLSL + ωHSH − λS − ψS − µS,

dSL
dt

= (1− f)ψS + ξHSH − θLλSL − (ξL + ωL + µ)SL,

dSH
dt

= fψS + ξLSL − θHλSH − (ξH + ωH + µ)SH ,

dI1
dt

= λ(S + θLSL + θHSH)− (σ1 + τ1 + µ)I1,

dI2
dt

= σ1I1 + γrF − (τ2 + σ2 + µ)I2,

dIT
dt

= τ1I1 + τ2I2 + τAA− (κ+ µ)IT ,

dF

dt
= κIT − (γ + µ)F,

dA

dt
= σ2I2 + γ(1− r)F − (τA + µ+ δ)A,

(2.2)
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where,

λ =
β(I1 + θ2I2 + θT IT + θFF + θAA)

N
.

A flow diagram of the model (2.2) is depicted in Figure 2.1, and the associated state

variables and parameters are tabulated in Table 2.1.

2.2.1 Basic Properties

The basic properties of the PrEP model (2.2) will be explored. First, it is important

to establish that all state-variables of model (2.2) are non-negative for all time t > 0

(i.e., the solutions of the PrEP model (2.2) with non-negative initial data remain

non-negative for all t > 0).

Theorem 2.1. Let the initial data for the model with PrEP (2.2) be S(0) > 0,

SH(0) > 0, SL(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, IT (0) ≥ 0, F (0) ≥ 0, A(0) ≥ 0. Then

the solutions (S(t), SH(t), SL(t), I1(t), I2(t), IT (t), F (t), A(t)) of the model with

positive initial data, will remain positive for all time t > 0.

The proof of Theorem 2.1 is given in Appendix A.

Theorem 2.2. The closed set

D =

{
(S, SL, SH , I1, I2, IT , F, A) ∈ R8

+ : N ≤ π

µ

}

is positively-invariant and attracting with respect to the model (2.2).

Proof. Adding all eight equations of model (2.2) gives:

dN

dt
= π − µN − δA ≤ π − µN. (2.3)
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It follows from (2.3) that if N ≤ π
µ then dN

dt ≤ 0. Further, using a standard

Comparison Theorem (see [25]),

N(t) ≤
[
N(0)− π

µ

]
e−µt +

π

µ
.

Therefore, if N(0) ≤ π
µ , then N(t) ≤ π

µ . Thus, D is positively-invariant. Further-

more, if N(0) ≥ π
µ , then either the solution enters D in finite time or N(t) approaches

π
µ asymptotically. Therefore, D attracts all solutions in R8

+.

Thus, in the region D, the model (2.2) can be considered as epidemiologically and

mathematically well-posed [23].

Before analyzing the PrEP model (2.2), it is instructive to study the dynamics

of the model in the absence of PrEP (to determine whether or not adding PrEP to

the PrEP-free model for HIV/AIDS alters the qualitative dynamics of the PrEP-

free model, with respect to the existence and asymptotic stability of its associated

equilibria).
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Table 2.1: Description of variables and parameters of model (2.2)

Variables Description

S(t) Population of susceptible individuals not on PrEP
SL(t) Population of susceptible individuals on PrEP with low adherence
SH(t) Population of susceptible individuals on PrEP with high adherence
I1(t) Population of acutely-infected individuals
I2(t) Population of chronically-infected individuals
IT (t) Population of treated individuals
F (t) Population of individuals who failed treatment
A(t) Population of infected individuals with clinical symptoms of AIDS

Parameter Description

π Recruitment rate
β Effective contact rate
µ Natural death rate
δ Disease-induced death rate
f Fraction of individuals on PrEP with high adherence rate

1− f Fraction of individuals on PrEP with low adherence rate
θ2 Modification parameter for reduction in infectiousness of individuals in

the chronic stage of HIV infection
θF Modification parameter for reduction in infectiousness of individuals who

fail treatment
θT Modification parameter for reduction in infectiousness of treated individ-

uals
θA Modification parameter for reduction in infectiousness of individuals who

have AIDS
ψ Rate of administration of PrEP
ωL Rate of cessation of PrEP by low-adherent PrEP users
ωH Rate of cessation of PrEP by high-adherent PrEP users
ξL Transition rate from low to high PrEP adherence
ξH Transition rate from high to low PrEP adherence
θL Modification parameter for reduction of transmission rate of those in the

SL class
θH Modification parameter for reduction of transmission rate of those in the

SH class
σ1 Progression rate from acute stage to chronic stage
σ2 Progression rate from chronic stage to AIDS stage
κ Transition rate out of the treatment class
γ Transition rate out of failed treated class
r Fraction of individuals who failed treatment and moved to chronic stage

1− r Fraction of individuals who failed treatment and moved to AIDS stage
τ1, τ2, τA Treatment rate for HIV-infected individuals in I1, I2, and A classes
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Figure 2.1: Flow Diagram for the PrEP Model (2.2).
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Chapter 3

Analysis of PrEP-free HIV/AIDS

Model

In the absence of PrEP (i.e., SH = SL = ωH = ωL = ψ = ξH = ξL = 0), the

PrEP model (2.2) reduces to the following (PrEP-free) model (where, now, N(t) =

S(t) + I1(t) + I2(t) + IT (t) + F (t) + A(t)):

dS

dt
= π − λS − µS,

dI1
dt

= λS − (σ1 + τ1 + µ)I1,

dI2
dt

= σ1I1 + γrF − (τ2 + σ2 + µ)I2,

dIT
dt

= τ1I1 + τ2I2 + τAA− (κ+ µ)IT ,

dF

dt
= κIT − (γ + µ)F,

dA

dt
= σ2I2 + γ(1− r)F − (τA + µ+ δ)A.

(3.1)

As in Section 2.2.1, the following result can be established for the PrEP-free model

(3.1).
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Theorem 3.1. The closed set

D1 =

{
(S, I1, I2, IT , F, A) ∈ R6

+ : N ≤ π

µ

}

is positively-invariant and attracting with respect to the PrEP-free model (3.1).

3.1 Asymptotic Stability of the Disease Free Equi-

librium (DFE)

3.1.1 Local

The DFE of the PrEP-free model (3.1) is given by

E0 = (S∗, I∗1 , I
∗
2 , I

∗
T , F

∗, A∗) =

(
π

µ
, 0, 0, 0, 0, 0

)
. (3.2)

The local stability of the DFE, E0, will be explored using the next generation operator

method [50]. The matrices, H, of the new infection terms of the model (3.1), and V ,

of the transition terms of model (3.1), are given, respectively, by

H =



β θ2β θTβ θFβ θAβ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,
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V =



K1 0 0 0 0

−σ1 K2 0 −γr 0

−τ1 −τ2 K3 0 −τA

0 0 −κ K4 0

0 −σ2 0 −γ(1− r) K5


,

where,

K1 = σ1 + τ1 + µ, K2 = τ2 + σ2 + µ, K3 = κ+ µ, K4 = γ + µ, K5 = τA + µ+ δ.

It follows that the basic reproduction number [17, 23, 50] (denoted by R0) of the

model is given by (where ρ is the spectral radius):

R0 = ρ(HV−1) =
β
(
M1 + θ2M2 + θTK4M3 + κθFM3 + θAM4

)
M1K1

,

with,

M1 = κγK2τAr − κγK2τA − κrγK5τ2 − κrγσ2τA +K2K3K4K5,

M2 = γκσ1τAr − γκσ1τA + γrK5κτ1 +K5K4K3σ1,

M3 = K2K5τ1 +K5σ1τ2 + σ1σ2τA,

M4 = γrκσ2τ1 +K3K4σ1σ2 + κγ(1− r)(K2τ1 + σ1τ2).

It can be shown that Mi (i = 1, 2) > 0, so R0 > 0 (see Appendix B). The result

below follows from Theorem 2 of [50].

Theorem 3.2. The DFE, E0, of the PrEP-free model (3.1) is locally-asymptotically

stable if R0 < 1, and unstable if R0 > 1.

The epidemiological implication of Theorem 3.2 is that HIV/AIDS can be effectively-

controlled (or eliminated) from the community when R0 < 1 if the initial sizes of the

sub-populations of the PrEP-free model (3.1) are in the basin of attraction of the

DFE (E0). For the effective control (or elimination) of HIV/AIDS to be independent
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of the initial sizes of the sub-populations, the DFE of the PrEP-free model (3.1) will

need to be shown to be globally-asymptotically stable (GAS) if R0 < 1. The global

asymptotic stability property of the DFE of the model (3.1) is explored below.

3.1.2 Global

Theorem 3.3. The DFE, E0, of the PrEP-free model (3.1), is GAS in D1 whenever

R0 < 1.

The proof of Theorem 3.3 is based on using a Comparison Theorem [25], and is given

in Appendix C.

The epidemiological implication of Theorem 3.3 is that HIV will be eliminated

from the community whenever the threshold quantity, R0, can be brought to (and

maintained at) a value less than unity. In other words, for the PrEP-free model

(3.1), the classical epidemiological requirement of having the reproduction threshold

(R0) less than unity is necessary and sufficient for effective control (or elimination)

of the disease within the MSM population.

3.2 Existence and Asymptotic Stability of the En-

demic Equilibrium Point (EEP)

In this section, the number of positive (endemic) equilibrium points of the PrEP-free

model (3.1) will be determined for the special case where the associated disease-

induced mortality is zero (i.e., δ = 0). This assumption δ = 0, although chosen

for mathematical convenience (to make the mathematical analysis more tractable),

it can be justified considering the fact that AIDS-related mortality in the MSM

population in Minnesota is negligible [32]. Setting δ = 0 in the model (3.1), and

adding the equations of the model, gives
dN(t)
dt = π − µN(t), so that N(t) →π

µ as

t→∞.
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Let,

E1 = (S∗∗, I∗∗1 , I
∗∗
2 , I

∗∗
T , F

∗∗, A∗∗), (3.3)

represent any endemic equilibrium of the PrEP-free model (3.1) (i.e., an equilibrium

where the infected components of the PrEP-free model (3.1) are non-zero with δ = 0).

Moreover, let the force of infection at steady-state of the PrEP-free model (3.1) be

defined as (where the total population N(t) is now replaced by its limiting value

N∗ = π
µ)

λ∗∗ =
βµ(I∗∗1 + θ2I

∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)

π
. (3.4)

Solving the equations of model (3.1) at the endemic steady-state gives (it should be

recalled that 0 < r < 1, so that A∗∗ > 0)

S∗∗ =
π

λ∗∗ + µ
, I∗∗1 =

λ∗∗S∗∗

K1

,

I∗∗2 =
σ1I

∗∗
1 + γrF ∗∗

K2

, I∗∗T =
τ1I
∗∗
1 + τ2I

∗∗
2 + τAA

∗∗

K3

,

F ∗∗ =
κI∗∗T
K4

, A∗∗ =
σ2I

∗∗
2 + γ(1− r)F ∗∗

K5

.

(3.5)

Substituting the expressions from (3.5) into (3.4) shows that non-zero (endemic)

equilibria of the PrEP-free model (3.1) satisfy

λ∗∗ = µ(R1 − 1), (3.6)

where R1 = R0|δ=0. Since all parameters of the model (3.1) are positive, it follows

from (3.6) that λ∗∗ > 0 wheneverR1 > 1 (i.e., the PrEP-free model (3.1), with δ = 0,

has a unique EEP whenever R1 > 1). Furthermore, when R1 = 1, then λ∗∗ = 0.

Hence, the EEP collapses into the DFE in this case. Each component of the unique

EEP can be obtained in terms of R1 by substituting (3.6) into the expressions in

(3.5). These results are summarized below.
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Theorem 3.4. The PrEP-free model (3.1), with δ = 0, has a unique positive en-

demic equilibrium point whenever R1 > 1, and no positive endemic equilibrium point

otherwise.

3.2.1 Stability

The global asymptotic stability of the unique EEP, E1, of the model (3.1) will now

be explored for the special case with δ = 0. Further, let R1 > 1 (so that the unique

EEP, E1, exists in line with Theorem 3.4). It is convenient to define the invariant

region (the stable manifold of the DFE, E0, of the PrEP-free model (3.1))

D0 = {(S, I1, I2, IT , F, A) ∈ D1 : I1 = I2 = IT = F = A = 0}.

The following definitions and theorems will be used in proving Theorem 3.7 below.

Definition 3.1. [51]. Consider the autonomous system (where a dot represents

differentiation with respect to time)

ẋ = f(x), x ∈ Rn. (3.7)

A point x̄ ∈ Rn is called an equilibrium point of the autonomous system (3.7) if

f(x̄) = 0.

Definition 3.2. [51]. Let S ⊂ Rn be a set, then S is said to be invariant under the

flow generated by ẋ = f(x) if for any x0 ∈ S, φ(t, x0) ∈ S for all t ∈ R.

Definition 3.3. [51]. A function V : Rn → R is said to be positive definite at x̄ if

(i) V (x) > 0 for all x 6= x̄,

(ii) V (x) = 0 if and only if x = x̄.
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Theorem 3.5. [51]. Consider the system (3.7). Let x̄ be an equilibrium solution of

system (3.7) and, let V : U → R be a C1 function defined on some neighborhood U

of x̄ such that

(i) V is positive definite,

(ii) V̇ (x) ≤ 0 in U \ {x̄}.

Then any function, V , that satisfies conditions (i) and (ii) is called a Lyapunov

function.

Theorem 3.6. (LaSalle’s Invariance Principle [28]). Suppose that there exists a

positive definite C1 function V : Rn → R whose derivative along the solutions of

the system (3.7) satisfies the inequality V̇ ≤ 0. Let M be the largest invariant set

contained in the set {x : V̇ (x) = 0}. Then the system (3.7) is stable and every

solution that remains bounded for t ≥ 0 approaches M as t → ∞. Furthermore, if

all solutions remain bounded and M = {x̄} for t ≥ 0, then the solution is globally-

asymptotically stable.

Theorem 3.7. The unique EEP (E1), of the PrEP-free model (3.1) with δ = 0, is

GAS in D1\D0 whenever R1 = R0|δ=0 > 1.

The proof of Theorem 3.7, based on using Lyapunov function theory (Theorem 3.5)

and LaSalle’s Invariance Principle (Theorem 3.6), is given in Appendix D.

3.3 Chapter Summary

This chapter is based on the design and rigorous qualitative analysis of a PrEP-free

model for HIV/AIDS. The main theoretical results obtained are summarized below.

i) The disease-free equilibrium of the PrEP-free model (3.1) is locally- and globally-

asymptotically stable whenever R0 < 1.
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ii) The special case of the PrEP-free model (3.1) in the absence of disease-induced

mortality (δ = 0) has a unique and globally-asymptotically stable endemic

equilibrium point whenever the associated reproduction number (R1) exceeds

unity.
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Chapter 4

Analysis of PrEP Model

In this chapter, the PrEP model (2.2) will be rigorously analyzed (with the goal of

determining whether or not it has certain dynamical features that are not present in

the PrEP-free model (3.1)).

4.1 Asymptotic Stability Analysis

The DFE of the PrEP model (2.2) is given by

EP0 = (S∗, S∗L, S
∗
H , I

∗
1 , I

∗
2 , I

∗
T , F

∗, A∗) = (S∗, S∗L, S
∗
H , 0, 0, 0, 0, 0), (4.1)

where,

S∗ =
π[ξL(ωH + µ) + (ωL + µ)(ξH + ωH + µ)]

Q1

,

S∗L =
πψ[ξH + (1− f)(ωH + µ)]

Q1

,

S∗H =
πψ[f(ωL + µ) + ξL]

Q1

,
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and,

Q1 = µ

[
ξL(ωH + µ) + (ωL + µ)(ξH + ωH + µ) + ψ(ξH + (1− f)ωH + µ+ fωL + ξL)

]
,

(now)

N∗ = S∗ + S∗L + S∗H =
π

µ
.

As in Section 3.1.1, the local stability of the DFE will be explored using the next

generation operator method [50]. It follows that the matrices HP and VP , associated

with the model (2.2), are given, respectively, by

HP =



gβ
N∗

gθ2β
N∗

gθT β
N∗

gθF β
N∗

gθAβ
N∗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

VP =



C1 0 0 0 0

−σ1 C2 0 −γr 0

−τ1 −τ2 C3 0 −τA

0 0 −κ C4 0

0 −σ2 0 −γ(1− r) C5


,

where,

g = S∗ + θLS
∗
L + θHS

∗
H ,

and,

C1 = σ1 + τ1 + µ, C2 = τ2 + σ2 + µ, C3 = κ+ µ, C4 = γ + µ, C5 = τA + µ+ δ.
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It follows that the effective reproduction number of the PrEP model (2.2), denoted

by RP , is given by

RP = ρ(HPV−1P ) =
βg
(
Q2 + θ2Q3 + θTC4Q4 + θFκQ4 + θAQ5

)
Q2C1N∗

,

with,

Q2 = κγC2τAr − κγC2τA − κrγC5τ2 − κrγσ2τA + C2C3C4C5,

Q3 = γκσ1τAr − γκσ1τA + γrC5κτ1 + C5C4C3σ1,

Q4 = C2C5τ1 + C5σ1τ2 + σ1σ2τA,

Q5 = γrκσ2τ1 + C3C4σ1σ2 + κγ(1− r)(C2τ1 + σ1τ2).

It can be shown that RP > 0 (see Appendix B). The result below follows from

Theorem 2 of [50].

Theorem 4.1. The DFE, EP0 , of the PrEP model (2.2) is locally-asymptotically

stable if RP < 1, and unstable if RP > 1.

The threshold quantity, RP , can be epidemiologically interpreted as in Section 3.1.1.

It is convenient to define R∗P = RP |δ=′.

4.1.1 Backward Bifurcation Analysis

As in Section 3.2, the analysis in this section will be carried out for the special case

δ = 0 (for mathematical convenience). Let,

EP1 = (S∗∗, S∗∗H , S
∗∗
L , I

∗∗
1 , I

∗∗
2 , I

∗∗
T , F

∗∗, A∗∗), (4.2)

represent any endemic equilibrium of a special case of the PrEP model (2.2) with

no disease-induced mortality (i.e., δ = 0). It is convenient to define (where the total
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population at time t, N(t), is replaced by its limiting value N∗ =π
µ)

λ∗∗ =
βµ(I∗∗1 + θ2I

∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)

π
. (4.3)

Solving the equations of the PrEP model (2.2) at the endemic steady-state gives

S∗∗ =
π + ωLS

∗∗
L + ωHS

∗∗
H

λ∗∗ + ψ + µ
, S∗∗H =

ψfS∗∗ + ξLS
∗∗
L

θHλ∗∗ + ξH + ωH + µ
,

S∗∗L =
ψ(1− f)S∗∗ + ξHS

∗∗
H

θLλ∗∗ + ξL + ωL + µ
, I∗∗1 =

λ∗∗(S∗∗ + θHS
∗∗
H + θLS

∗∗
L )

C1

,

I∗∗2 =
σ1I

∗∗
1 + γrF ∗∗

C2

, I∗∗T =
τ1I
∗∗
1 + τ2I

∗∗
2 + τAA

∗∗

C3

,

F ∗∗ =
κI∗∗T
C4

, A∗∗ =
σ2I

∗∗
2 + γ(1− r)F ∗∗

C5

,

(4.4)

where, now, C5 = τA + µ. Substituting the equations in (4.4) into (4.3) gives:

λ∗∗ =
µβB5λ

∗∗[θHθL(λ∗∗)2 +B1λ
∗∗ +B2

]
C1Q2

[
θHθL(λ∗∗)3 +B3(λ∗∗)2 +B4λ∗∗ +Q1

] ,
where,

B1 =θL[ξH + ωH + µ+ ψθH(1− f)] + θH [ξL + ωL + µ+ ψfθL],

B2 =ξL(ωH + µ) + (ωL + µ)(ξHωH + µ) + θLψ[ξH + (ωH + µ)(1− f)]

+ θHψ[f(ωL + µ)ξL],

B3 =θL(ξL + ωL + µ) + θH(ξL + ωL + µ) + θHθL(ψ + µ),

B4 =ψ[ξH + ωH + µ+ ψθH(1− f) + θH(ξL + ωLf + µ)]

+ µ[θL(ξH + ωH + µ) + θH(ξL + ωL + µ)]

+ ξL(ωH + µ) + (ωL + µ)(ξH + ωH + µ),

B5 =Q2 + θ2Q3 + θTC4Q4 + θFκQ4 + θAQ5.

(4.5)
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It follows then that the non-zero (endemic) equilibria of the PrEP model (2.2), with

δ = 0, satisfy the following polynomial (in terms of λ∗∗),

a3(λ
∗∗)3 + a2(λ

∗∗)2 + a1λ
∗∗ + a0 = 0 (4.6)

where,

a3 =C1Q2θHθL,

a2 =C1Q2[θL(ξH + ωH + µ) + θH(ξL + ωL + µ) + θHθL(ψ + µ)]

− µβB5θHθL,

a1 =C1Q2

[
ψ[θL(ξH + ωH(1− f) + µ) + θH(ξL + ωLf + µ)]

+ µ[θL(ξH + ωH + µ) + θH(ξL + ωL + µ)]

+ ξL(ωH + µ) + (ωL + µ)(ξH + ωH + µ)

]
− µβB5

[
θL[ξH + ωH

+ µ+ ψθH(1− f)] + θH(ξL + ωL + µ+ ψfθL)

]
,

a0 =C1Q2Q1(1−R∗P ),

(4.7)

whereR∗P = RP |δ=0. It follows from (4.7) that the coefficient a3, of the cubic (4.6), is

always positive (it should be recalled from Appendix B thatQ2 > 0) and a0 is positive

(negative) if R∗P is less (greater) than unity. Thus, the number of possible positive

real roots the polynomial (4.6) can have depends on the signs of the coefficient a2

and a1 of the cubic (4.6). The possible number of real positive roots of the cubic

(4.6) are given in Table 4.1.

Theorem 4.2. The special case of the PrEP model (2.2) with δ = 0:

(i) has a unique endemic equilibrium if R∗P > 1 and whenever Cases 1, 2 and 3 of

Table 4.1 hold;
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(ii) could have more than one endemic equilibrium if R∗P > 1 and whenever Case

4 of Table 4.1 holds;

(iii) could have two endemic equilibria if R∗P < 1 and whenever Cases 2-4 of Table

4.1 holds.

Item (iii) of Theorem 4.2 suggests the possibility of backward bifurcation. The

phenomenon of backward bifurcation, which has been observed in numerous epidemi-

ological settings [6, 18, 20, 23, 41], is characterized by the co-existence of multiple

stable equilibria when the threshold quantity, R∗P , is less than unity. The epidemio-

logical effect of this phenomenon is that disease control (when R∗P < 1) is dependent

upon the initial sizes of the sub-populations of the model (see, for example [41]).

Accordingly, the existence of backward bifurcation in the transmission dynamics of

a disease makes it difficult to acheive effective control (or elimination) of that disease

in the community. The existence of such phenomenon in the PrEP model (2.2) is

now explored.

Theorem 4.3. The PrEP model (2.2) with δ = 0 undergoes backward bifurcation at

R∗P = 1 whenever the inequality (E.5), given in Appendix E, holds.

The proof of Theorem 4.3, based on using center manifold theory, is given in Ap-

pendix E. It should be recalled that the phenomenon of backward bifurcation does

not occur in the PrEP-free model (3.1). In other words, the PrEP model (2.2) with

δ = 0 has one dynamical feature (backward bifurcation) that is not present in the

PrEP-free model (3.1). A possible cause of this phenomoenon is sxplored below.

4.1.2 Non-existence of Backward Bifurcation

Consider the special case of the PrEP model (2.2) in the absence of disease-induced

mortality (δ = 0) and PrEP is assumed to be 100% effective in preventing HIV

infection (i.e., θL = θH = 0). In this case, it can be shown that the backward
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bifurcation coefficient, a (given by (E.2) in Appendix E), reduces to (since β∗, v4, x1

and Y4 > 0, as given in Appendix E)

a =
−2β∗v4x1µ

2Y4
C2

2C
2
4π

2
< 0.

Since a < 0, it follows from Theorem 4.1 of [7] that the special case of the PrEP model

(2.2) with θL = θH = δ = 0 does not undergo backward bifurcation. Thus, this study

shows that the imperfect nature of PrEP use in preventing HIV infection (i.e., 0 <

θL, θH < 1) can cause the phenomenon of backward bifurcation in HIV transmission

dynamics (even in the absence of disease-induced mortality). The presence of such

PrEP-induced backward bifurcation makes efforts to effectively control the spread

of HIV in the MSM community difficult (because, in such a backward bifurcation

scenario, bringing the associated reproduction threshold, R∗P , to a value less than

unity, while necessary, is no longer sufficient for effective control of the disease).

Much greater reduction in the value of R∗P < 1 is needed for such effective control

to be feasible (see, for instance, [6, 18, 20, 23]). This is, to the author’s knowledge,

the first time PrEP use is shown to cause the phenomenon of backward bifurcation

of HIV (or any other disease).

4.2 Chapter Summary

The aim of this chapter was to rigorously analyze the PrEP model (2.2) to observe if

it has certain dynamical features that are not present in the PrEP-free model (3.1).

The main results are summarized below.

i) The DFE EP0 is LAS whenever RP < 1.

ii) A special case of the PREP model (2.2) without disease-induced mortality

undergoes the phenomenon of backward bifurcation when the associated re-
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production number R∗P is less than unity. This is a dynamical feature not

present in the PrEP-free model (3.1).

iii) It is shown that backward bifurcation is caused by the imperfect nature of

PrEP in preventing new HIV infections.

The results in this chapter addressed Question 1 in Section 1.4.
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Cases a3 a2 a1 a0 R∗P
Number of Number of

Sign Changes Possible Positive Roots

1
+ + + + R∗P < 1 0 0
+ + + - R∗P > 1 1 1

2
+ - - + R∗P < 1 2 0,2
+ - - - R∗P > 1 1 1

3
+ + - + R∗P < 1 2 0,2
+ + - - R∗P > 1 1 1

4
+ - + + R∗P < 1 2 0,2
+ - + - R∗P > 1 3 1,3

Table 4.1: Number of possible real positive roots of Equation (4.6) for R∗P > 1 and
R∗P < 1.
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Chapter 5

Uncertainty and Sensitivity

Analysis

5.1 Introduction

Mathematical models of disease transmission are formulated based on epidemiolog-

ical assumptions and often include a large number of different types of input pa-

rameters (biological, demographic, etc. . . ) [5, 39]. The input parameter values are

usually assumed or estimated from empirical data, so there is uncertainty in their

precise value. Thus, the effect of these uncertainties on the outcome variable(s) (the

reproduction number in the case of disease transmission models) needs to be ex-

plored through uncertainty and sensitivity analysis. Uncertainty analysis is used to

determine the variability in the outcome variable(s) that is due to the uncertainties

of the input parameters [5, 39]. Sensitivity analysis extends uncertainty analysis by

identifying which input parameters have the biggest impact on the variability of the

value of the outcome variable(s) [5, 39].

Latin Hypercube Sampling (LHS) is a reliable method that can be used to help

analyze the uncertainties of parameter values in disease transmission models [5, 29,
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39]. LHS is a stratified sampling method and can be viewed as an extension of

Latin Square sampling [5, 29]. In LHS, each input parameter, Xi . . . Xk, is treated

as a random variable, then probability distribution functions (pdfs) are defined for

each parameter (based on the biology and/or epidemiology of the modelled disease)

[5, 29]. The range of each Xk is divided into N strata of equal marginal probability,

1
N

, and one sample is randomly chosen from each stratum [5, 29]. The advantage of

this method is that each parameter is used only once in this analysis, making this

method very efficient for sampling design [5, 29].

Partial rank correlation coefficients (PRCC) can be used for sensitivity analysis.

Calculation of PRCCs allows the statistical relationships between each input param-

eter and each outcome variable to be determined while holding all of the other input

parameters constant at their expected value [5]. The sign of the PRCC indicates the

qualitative relationship between each input parameter and each outcome variable

[5]. The magnitude of the PRCC indicates the importance of the uncertainty in

estimating the value of the specific input parameter and its contribution to predic-

tion inaccuracies of the outcome variable [5]. The relative importance of the input

parameters can be assessed by comparing the PRCC values [5, 39]. The value of

a PRCC can range from −1 to +1, where a perfect linear relationship between the

input parameter and outcome variable is indicated by a PRCC of +1 (or −1 for a

negative linear relationship) and 0 for no linear relationship [30]. LHS and PRCCs

will be used to assess the uncertainties and sensitivity of the parameter values of

both the PrEP-free and PrEP models in the following two sections.

The PrEP-free model (3.1) and the PrEP model (2.2) are simulated using the

parameter values given in Table 5.1, unless otherwise stated. Some of the parameter

values are taken from the literature (such as in [1, 21, 32, 38, 40, 43]). In particular,

the recruitment rate (π) is estimated based on the HIV transmission surveillance data

of the MSM community in Minnesota [31, 32]. The approximate size of the MSM
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community in Minnesota is 92, 800 [31]. The natural death rate (µ) is estimated to

be 1
80

per year [53]. Thus, π ≈ 1, 160 per year. It is assumed that the duration

of the acute infection stage is 6 weeks (that is, σ1 = 8.67 per year) [2, 33]. The

mean duration of the chronic (asymptomatic) stage is assumed to be 20 years (that

is, σ2 = 0.05 per year). The disease-induced death rate (δ) is estimated from the

Minnesota Department of Health HIV/AIDS mortality surveillance data to be 0.07

per year [32]. Further, data from the Minnesota Department of Health shows that

there are currently 3, 857 MSM living with HIV/AIDS in the state of Minnesota [32].

5.2 PrEP-free Model (3.1)

The PrEP-free model (3.1) contains 16 parameters. Uncertainties in the parame-

ter values are expected to occur. Uncertainty analysis is carried out by using the

method of LHS. The LHS method entails defining a baseline value and range for each

parameter of the PrEP-free model (3.1) (as in Table 5.1) and generating multiple

runs (NR = 1000) for a given outcome variable or response function (which, in this

case, is chosen to be the basic reproduction number, R0) [5, 39]. Each parameter is

assumed to abide by a uniform distribution [5, 39]. Box plots of the reproduction

number, R0, as a function of the number of LHS runs carried out, are depicted in

Figure 5.1. The lower and upper horizontal lines on each box denotes the 25th and

75th percentiles of R0, respectively [30]. The middle horizontal line within each box

denotes the 50th percentile (median value) of R0 [30]. The upper and lower whiskers

on each box represents the most extreme values of R0 and anything lying beyond the

whiskers are classified as outliers [30]. Values of R0 lie within the range [2.43, 4.13].

Moreover, PRCCs are used to determine the parameter(s) that most affect the

outcome variable R0 (hence, the parameter(s) that most affect the disease trans-

mission dynamics of the PrEP-free model (3.1)). It follows from Table 5.2 that the
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parameters that most affect the value of R0 are the effective contact rate (β), the

natural death rate (µ), the progression rate from the acute stage to the chronic

stage (σ1), the modification parameter for reduction in infectiousness of individuals

who fail treatment (θF ), and the transition rate out of the failed treatment class (γ).

Thus, this analysis identifies the primary parameters that play a dominant role in the

dynamics of HIV/AIDS within the community of MSM. The effect of these top-five

PRCC-ranked parameters on the cumulative incidence and prevalence of HIV/AIDS

is further assessed by simulating the PrEP-free model (3.1) for the following two

cases:

i) the baseline value of each top-five PRCC-ranked parameter, given in Table 5.1,

is decreased by 10% all at once;

ii) the baseline value of each top-five PRCC-ranked parameter, given in Table 5.1,

is increased by 10% all at once.

The results of these simulations, depicted in Figures 5.3 and 5.4, show that a 10%

increase (decrease) in all of the top-five PRCC-ranked baseline parameter values at

once leads to a corresponding increase (decrease) in the cumulative incidence and

prevalence of HIV/AIDS over a 3-year period, respectively. These simulations further

confirm the sensitivities of the input parameters, and their effect, on the uncertainty

of the outcome variable, R0.

5.3 PrEP Model (2.2)

Like for the PrEP-free model (3.1) discussed in Section 5.2, the impact of the uncer-

tainty in the estimates and sensitivity of the parameter values for the PrEP model

(2.2), which contains 24 parameters, needs to be assessed. The same approach in

Section 5.2 is used and the associated reproduction number (RP ) is chosen as the

40



response function. Again, each parameter is assumed to follow a uniform distribu-

tion [5, 39]. Furthermore, PRCCs are found between each parameter value and the

outcome variable, RP , in order to measure the sensitivity of the parameter values.

Box plots of the reproduction number RP , as a function of the number of LHS

runs (NR = 1000) carried out, depicted in Figure 5.5, show a range of RP from 1.80

to 2.85. It is worth noting that the range of RP is a little lower than that of R0

given in Section 5.2 (this is a measure of the utility of PrEP in reducing new cases

of HIV infection, it should be noted that, in this case, the rate of administration

of PrEP is 1% (ψ = 0.01)). When the rate of administration of PrEP is increased

to 50% (i.e., ψ = 0.5), the range of RP significantly decreases to RP ∈ [0.73, 1.25],

further underlying the effect of PrEP on HIV incidence (Figure 5.6). Further, and

perhaps more importantly, the mean value of RP is decreased to a value below unity

(mean value of RP = 0.98 < 1), which implies that community-wide effective control

(or elimination) of the disease is feasible (taking into consideration the effect of the

phenomenon of backward bifurcation in the PrEP model (2.2)).

The PRCC values for each parameter are given in Table 5.3. It follows from those

values that the most dominant parameters (that is, those parameters that drive the

dynamics of the PrEP model (2.2)) are the effective contact rate (β), the rate of

cessation of PrEP by low-adherent PrEP users (ωL), the progression rate from the

acute stage to the chronic stage of infection (σ1), the modification parameter for a

reduction in infectiousness of individuals who fail treatment (θF ), and the transition

rate out of the failed treatment class (γ).

As in Section 5.2, the effect of these top-five PRCC-ranked parameters on the

cumulative incidence and prevalence of HIV/AIDS is further assessed by simulating

the PrEP model (2.2) for the following two cases:

i) the baseline value of each top-five PRCC-ranked parameter, given in Table 5.1,

are all decreased by 10% at once;
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ii) the baseline value of each top-five PRCC-ranked parameter, given in Table 5.1,

are increased by 10% at once.

Figures 5.8 and 5.9 show that a 10% increase (decrease) in all of the top-five PRCC-

ranked baseline values at once leads to a corresponding increase (decrease) in the

cumulative incidence and prevalence of HIV/AIDS in a 3-year period, respectively.

These simulations further confirm the sensitivities of the input parameters and their

effect on the uncertainty of the outcome variable, RP . The effect of the rate of

administration of PrEP (ψ) on the incidence of HIV infection is depicted in Figure

5.10. It follows from this figure, as expected, that a higher rate of administration of

PrEP corresponds to a decrease in the incidence of HIV infection.

5.3.1 Threshold Analysis

It is instructive to determine conditions for the effective control of the disease in

terms of p. It is convenient to define the fraction of susceptible individuals on PrEP

(adjusted by PrEP efficacy) at the disease-free equilibrium, given by,

p =
(1− θL)S∗L + (1− θH)S∗H

N∗
,

where 0 < θL ≤ 1 and 0 < θH ≤ 1 are the modification parameters for reduction

of the transmission rate of those in the SL class and SH class, respectively. This

allows for the determination of the critical fraction of individuals needed to be on

PrEP in order to achieve effective control of the disease within the MSM community.

Some sort of “herd immunity” [23] in this context can occur if enough susceptible

individuals have PrEP-acquired immunity, so that the introduction of one infective

into the MSM community does not cause a major outbreak of the disease [23]. The

associated reproduction number for the PrEP model (2.2), RP , can be defined in
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terms of the fraction, p, as follows:

RP = (1− p)R0,

where, R0 is the basic reproduction number of the PrEP-free model (3.1). It follows

from the above equation that the reproduction threshold (RP ) is a decreasing func-

tion of the fraction (p) of susceptible individuals on PrEP adjusted by PrEP efficacy

(that is, as expected, PrEP use, adjusted by the efficacy (1 − θL) and (1 − θH),

induces a positive population-level impact, by minimizing HIV burden in the com-

munity (since it decreases RP )). Furthermore, setting RP = 1, and solving for the

critical fraction, p = pc, gives

pc = 1− 1

R0

. (5.1)

From (5.1), pc is positive if R0 > 1 (that is, in the case where HIV is endemic

in the community). For the PrEP model (2.2) with R0 > 1, if the fraction of

untreated susceptible individuals administered PrEP, adjusted by PrEP efficacy at

steady-state, exceeds the threshold pc (that is, p > pc), then RP < 1 and the DFE

(EP0 ) of the PrEP model (2.2) is LAS. This means that HIV/AIDS can be effectively-

controlled (or eliminated) from the community when RP < 1 if the initial sizes of

the sub-populations of the PrEP model (2.2) are in the basin of attraction of the

DFE (EP0 ).

The quantity 1 − 1
R0

in (5.1) is the minimum PrEP coverage level needed to

effectively control (or eliminate) HIV/AIDS in the MSM community [23]. Using the

data in Table 5.1, simulations of the PrEP model (2.2), depicted in Figure 5.11,

show the distribution of the threshold pc values in the range pc ∈ [0.61, 0.77] (with

a mean of pc ≈ 0.69). Thus, this study shows that HIV can be effectively controlled

in the MSM community in the State of Minnesota if 61% to 77% of the susceptible

population are on PrEP.
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The population-level effect of the efficacy-adjusted fraction of susceptible individ-

uals on PrEP (p) is assessed by simulating the PrEP model (2.2) with various values

of p. The results obtained, depicted in Figure 5.12, show that the cumulative number

of new HIV cases decreases with increasing values of p. For instance, while treating

25% of susceptible individuals with PrEP (efficacy-adjusted at steady state, so that

p = 0.25) resulted in about 392 cumulative new cases of HIV infection, increasing the

treatment coverage to 75% resulted in about 360 new infections. It follows from this

figure, as expected, that a higher efficacy-adjusted fraction of susceptible individuals

on PrEP corresponds to a decrease in the incidence of HIV infection.

5.4 Chapter Summary

This chapter focuses on uncertainty and sensitivity analysis, numerical simulations

of the PrEP-free model (3.1) and PrEP model (2.2), and determining the elimination

conditions in terms of the threshold fraction p. The main results are summarized

below.

i) The top-five parameters that most affect the disease transmission dynamics of

the PrEP-free model (3.1) (with respect to the basic reproduction number R0,

as the response variable) are:

(a) the effective contact rate (β);

(b) the natural death rate (µ);

(c) the progression rate from the acute stage to the chronic stage (σ1);

(d) the modification parameter for reduction in infectiousness of individuals

who failed antiretroviral treatment (θF );

(e) the transition rate out of the failed treatment class (γ).
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ii) The top-five parameters that most affect the disease transmission dynamics

of the PrEP model (2.2) (with respect to the associated reproduction number

RP ) are:

(a) the effective contact rate (β);

(b) the rate of cessation of PrEP by low-adherent PrEP users (ωL);

(c) the progression rate from the acute stage to the chronic stage (σ1);

(d) the modification parameter for reduction in infectiousness of individuals

who failed antiretroviral treatment (θF );

(e) the transition rate out of the failed treatment class (γ).

iii) Numerical simulations show that disease burden decreases with increasing

PrEP coverage. For instance, effective disease control can be achieved in the

MSM community of Minnesota if [61% − 77%] of susceptible members of the

community are on PrEP (adjusted by PrEP efficacy). It should be cautioned

that owing to the presence of the phenomenon of PrEP-induced backward bi-

furcation in HIV transmission dynamics (shown in this thesis), this result is

dependent on the initial number of HIV-infected people in the MSM commu-

nity.

The results in this chapter addressed Questions 2 and 3 in Section 1.4.
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Table 5.1: Baseline values and ranges of the parameters of the PrEP model (2.2).

Parameter Baseline Value Range Reference
(per year) (per year)

π 1160 [1044, 1276] [32]

β 0.25 [0.225, 0.275] [38]

µ 1/80 [0.01125, 0.01375] [21, 38]

δ 0.07 [0.063, 0.077] [32]

θ2 0.43 [0.387, 0.473] [38]

θT 0.008 [0.0072, 0.0088] [40]

θF 0.70 [0.63, 0.77] Assumed

θA 1.5 [1.35, 1.65] [40]

σ1 8.67 [7.80, 9.54] [21, 38]

σ2 0.05 [0.045, 0.055] [21, 38]

κ 0.10 [0.09, 0.11] Assumed

γ 0.5 [0.45, 0.55] Assumed

r 0.75 [0.675, 0.825] Assumed

τ1 0.7 [0.6, 0.8] [43]

τ2 0.7 [0.6, 0.8] [43]

τA 0.7 [0.6, 0.8] [43]

f 0.75 [0.675, 0.825] Assumed

ψ 0.01 [0.009, 0.011] Assumed

ωL 0.005 [0.0045,0.0055] Assumed

ωH 0.0001 [0.00009,0.00011] Assumed

ξL 0.75 [0.675, 0.825] Assumed

ξH 0.25 [0.225, 0.275] Assumed

θL 0.8 [0.72, 0.88] [1, 43]

θH 0.11 [0.099, 0.121] [1, 43]
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Figure 5.1: Box plots of the reproduction number (R0), as a function of the number
of LHS runs (NR) carried out, for the PrEP-free model (3.1).
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Table 5.2: PRCC values of the parameters of the PrEP-free model (3.1).

Parameter PRCC Value

β 0.9636

µ −0.9490

σ1 0.8982

θF 0.8777

γ −0.8107

θA 0.6460

θ2 0.5622

δ −0.4179

τ2 −0.3926

r −0.2095

τA −0.1995

θT 0.0998

π −0.0432

κ 0.0424

τ1 −0.0204

σ2 0.0128
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Figure 5.2: PRCC values of the parameters of the PrEP-free model (3.1) with R0 as
the outcome (response) variable. Parameter values and ranges used are as given in
Table 5.1.
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Figure 5.3: Simulations of the PrEP-free model (3.1), showing the cumulative inci-
dence of HIV/AIDS, as a function of time, for various values of the top-five PRCC
ranked parameters. Parameter values used are as given in Table 5.1 (unless other-
wise stated). Green curve: the top-five PRCC ranked parameters are all decreased
at once by 10%. Blue curve: baseline values given in Table 5.1 used. Red curve: the
top-five PRCC ranked parameters are all increased at once by 10%.
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Figure 5.4: Simulations of the PrEP-free model (3.1), showing the prevalence of
HIV/AIDS, as a function of time, for various values of the top-five PRCC ranked pa-
rameters. Parameter values used are as given in Table 5.1 (unless otherwise stated).
Green curve: the top-five PRCC ranked parameters are all decreased at once by
10%. Blue curve: baseline values given in Table 5.1 used. Red curve: the top-five
PRCC ranked parameters are all increased at once by 10%.
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Figure 5.5: Box plots of the reproduction number (RP ), as a function of the number
of LHS runs (NR) carried out, for the PrEP model (2.2). Parameter values and
ranges used are as given in Table 5.1.
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Figure 5.6: Box plots of the reproduction number (RP ), as a function of the number
of LHS runs (NR) carried out, for the PrEP model (2.2) with an increased proportion
of the susceptible population on PrEP (ψ = 50%). Parameter values and ranges used
are as given in Table 5.1.
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Table 5.3: PRCC values of the parameters of the PrEP model (2.2).

Parameter PRCC Value

β 0.9671

ωL −0.9160

σ1 0.9066

θF 0.8895

γ −0.8301

ψ −0.6848

θA 0.6489

θ2 0.6091

δ −0.4210

τ2 −0.4140

θL 0.3769

ωH −0.3517

ξL 0.2892

r −0.1908

τA −0.1708

θT 0.1429

θH 0.1375

ξH 0.1039

σ2 −0.0601

κ 0.0451

π 0.0228

f −0.0138

µ −0.0057

τ1 −0.0013
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Figure 5.7: PRCC values of the parameters of the PrEP model (2.2) with RP as
the outcome (response) variable. Parameter values and ranges used are as given in
Table 5.1.
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Figure 5.8: Simulations of the PrEP model (2.2), showing the cumulative incidence of
HIV/AIDS, as a function of time, for various values of the top-five PRCC ranked pa-
rameters. Parameter values used are as given in Table 5.1 (unless otherwise stated).
Green curve: the top-five PRCC ranked parameters are all decreased at once by
10%. Blue curve: baseline values given in Table 5.1 used. Red curve: the top-five
PRCC ranked parameters are all increased at once by 10%.
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Figure 5.9: Simulations of the PrEP model (2.2), showing the prevalence of
HIV/AIDS, as a function of time, for various values of the top-five PRCC ranked pa-
rameters. Parameter values used are as given in Table 5.1 (unless otherwise stated).
Green curve: the top-five PRCC ranked parameters are all decreased at once by
10%. Blue curve: baseline values given in Table 5.1 used. Red curve: the top-five
PRCC ranked parameters are all increased at once by 10%.
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Figure 5.10: Simulations of the PrEP model (2.2), showing the cumulative incidence
of HIV/AIDS, as a function of time, for various values of the rate of administration
of PrEP (ψ). Parameter values used are as given in Table 5.1 (unless otherwise
stated). Green curve: ψ = 0.25 (RP = 1.04). Blue curve: ψ = 0.5 (RP = .98). Red
curve: ψ = 0.75 (RP = .96).
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Figure 5.11: Box plots of the critical fraction of susceptible individuals on PrEP
(adjusted by PrEP efficacy), pc, as a function of the number of LHS runs (NR)
carried out, for the PrEP model (2.2). Parameter values and ranges used are as
given in Table 5.1.
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Figure 5.12: Simulations of the PrEP model (2.2), showing the cumulative incidence
of HIV/AIDS, as a function of time, for various values of the efficacy-adjusted fraction
of susceptible individuals on PrEP (p): green curve (p = 0.25), blue curve (p = 0.5),
red curve (p = 0.75).
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Appendix A

Proof of Theorem 2.1

Proof. Let t1 = sup{t > 0 : S(t) > 0, SH(t) > 0, SL(t) > 0, I1(t) > 0, I2(t) >

0, IT (t) > 0, F (t) > 0, A(t) > 0} > 0. It follows from the first of the PrEP model

(2.2) that,

dS

dt
= π + ωLSL + ωHSH − λS − ψS − µS ≥ π − λS − ψS − µS (A.1)

which can be re-written as:

d

dt

(
S(t) exp

[
(µ+ ψ)t+

∫ t

0

λ(u)du

])
≥ π exp

[
(µ+ ψ)t+

∫ t

0

λ(u)du

]
.

Hence,

S(t1) exp

[
(µ+ψ)t1+

∫ t1

0

λ(u)du

]
−S(0) ≥

∫ t1

0

π

(
exp

[
(µ+ψ)y+

∫ y

0

λ(u)du

])
dy,

so that,
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S(t1) ≥S(0) exp

[
− (µ+ ψ)t1 −

∫ t1

0

λ(u)du

]
+ exp

[
− (µ+ ψ)t1 −

∫ t1

0

λ(u)du

] ∫ t1

0

π

(
exp

[
(µ+ ψ)y +

∫ y

0

λ(u)du

])
dy > 0.

Similarly, it can be shown that SH(t) > 0, SL(t) > 0, I1(t) ≥ 0, I2(t) ≥ 0, IT (t) ≥ 0,

F (t) ≥ 0, and A(t) ≥ 0 for all time t > 0. Therefore, all solutions of the model (2.2)

remain positive for all non-negative initial conditions.
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Appendix B

Positivity of R0 and RP

B.1 Positivity of R0

Recall from Section 3.1.1 that (with all associated variables as defined in section

3.1.1)

R0 =
β
(
M1 + θ2M2 + θTK4M3 + θFκM3 + θAM5

)
M1K1

.

It follows that R0 is positive since,
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M1 = κγK2τAr − κγK2τA − κrγK5τ2 − κrγσ2τA +K2K3K4K5

= κγK2τAr + δµ3 + δµ2γ + δµ2σ2 + δµ2τ2 + δµγκ+ δµγσ2 + δµκσ2 + δµκτ2

+ δγκσ2 + δγκτ2(1− r) + µ4 + µ3γ + µκ+ µ2σ2 + µ3τA + µ2γκ+ µ2γσ2 + µ2γτ2

+ µ2γτA + µ2κσ2 + µ2κτ2 + µ2κτA + µ2σ2τA + µ2τ2τA + µγκσ2 + µγκτ2(1− r)

+ µκσ2τA + µκτ2τA + γκσ2τA(1− r) + γκτ2τA(1− r) > 0,

M2 = γκσ1τAr − γκσ1τA + γrK5κτ1 +K5K4K3σ1

= γκσ1τAr + γrK5κτ1 + δκµσ1 + δκγσ1 + δµ2σ1 + δµγσ1 + κµ2σ1 + κµγσ1

+ κµσ1τA + µ3σ1 + µ2γσ1 + µ2σ1τA + µγσ1τA > 0,

M3 = K2K5τ1 +K5σ1τ2 + σ1σ2τA > 0,

M4 = γrκσ2τ1 +K3K4σ1σ2 + κγ(1− r)(K2τ1 + σ1τ2) > 0

(since 0 < r < 1).

B.2 Positivity of RP

Recall from Section 4.1 that (with all associated variables as defined in section 4.1)

RP =
βg
(
Q2 + θ2Q3 + θTC4Q4 + θFκQ4 + θAQ5

)
Q2C1N∗

It follows that RP is positive since,
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g = S∗ + θHS
∗
H + θLS

∗
L > 0,

Q2 = κγC2τAr − κγC2τA − κrγC5τ2 − κrγσ2τA + C2C3C4C5

= κγC2τAr + δµ3 + δµ2γ + δµ2σ2 + δµ2τ2 + δµγκ+ δµγσ2 + δµκσ2 + δµκτ2

+ δγκσ2 + δγκτ2(1− r) + µ4 + µ3γ + µκ+ µ2σ2 + µ3τA + µ2γκ+ µ2γσ2 + µ2γτ2

+ µ2γτA + µ2κσ2 + µ2κτ2 + µ2κτA + µ2σ2τA + µ2τ2τA + µγκσ2 + µγκτ2(1− r)

+ µκσ2τA + µκτ2τA + γκσ2τA(1− r) + γκτ2τA(1− r) > 0,

Q3 = γκσ1τAr − γκσ1τA + γrC5κτ1 + C5C4C3σ1

= γκσ1τAr + γrC5κτ1 + δκµσ1 + δκγσ1 + δµ2σ1 + δµγσ1 + κµ2σ1 + κµγσ1

+ κµσ1τA + µ3σ1 + µ2γσ1 + µ2σ1τA + µγσ1τA > 0,

Q4 = C2C5τ1 + C5σ1τ2 + σ1σ2τA > 0,

Q5 = γrκσ2τ1 + C3C4σ1σ2 + κγ(1− r)(C2τ1 + σ1τ2) > 0,

(since 0 < r < 1 and 0 < f < 1).
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Appendix C

Proof of Theorem 3.3

Proof. The proof is based on a Comparison Theorem [25]. It should first be noted

that the model (3.1) satisfies the Type K condition [42] (so that a Comparison

Theorem [25] can be applied). The infected components of the PrEP-free model

(3.1) can be re-written as

d

dt



I1(t)

I2(t)

IT (t)

F (t)

A(t)


= (H− V)



I1(t)

I2(t)

IT (t)

F (t)

A(t)


− J



I1(t)

I2(t)

IT (t)

F (t)

A(t)


, (C.1)

where the matrices H and V are as defined in Section 3.1.1 and

J =

(
1− S

N

)
H.
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It should be noted that J is a non-negative matrix since, S(t) ≤ N(t) ≤ π
µ

in D1.

Thus,

d

dt



I1(t)

I2(t)

IT (t)

F (t)

A(t)


≤ (H− V)



I1(t)

I2(t)

IT (t)

F (t)

A(t)


(C.2)

Using the fact that the eigenvalues of the matrixH−V all have negative real parts (see

Theorem 3.2 for the LAS result if R0 < 1), it follows that the linearized differential

equation inequality system (C.2) is stable whenever R0 < 1. Hence, it follows by

Comparison Theorem [25], that

lim
t→∞

(I1(t), I2(t), IT (t), F (t), A(t))→ (0, 0, 0, 0, 0).

Substituting I1(t) = I2(t) = IT (t) = F (t) = A(t) = 0 into the first equation of the

PrEP-free model (3.1) gives S(t)→ S∗ as t→∞ for (R0 < 1). Thus,

lim
t→∞

(S(t), I1(t), I2(t), IT (t), F (t), A(t)) =

(
π

µ
, 0, 0, 0, 0, 0

)
= E0.

Therefore, the DFE (E0) of the model (3.1) is GAS in D1 whenever R0 < 1.
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Appendix D

Proof of Theorem 3.7

Proof. Consider the PrEP-free model (3.1) with δ = 0 and R1 = R0|δ=0 > 1 (so

that the unique EEP, E1, exists in line with Theorem 3.4). Consider the following

non-linear Lyapunov function:

L =

(
S − S∗∗ − S∗∗ln S

S∗∗

)
+

(
I1 − I∗∗1 − I∗∗1 ln

I1
I∗∗1

)
+ b1

(
I2 − I∗∗2 − I∗∗2 ln

I2
I∗∗2

)
+ b2

(
IT − I∗∗T − I∗∗T ln

IT
I∗∗T

)
+ b3

(
F − F ∗∗ − F ∗∗ln F

F ∗∗

)
+ b4

(
A− A∗∗ − A∗∗ln A

A∗∗

) (D.1)

where,

b1 =
βµS∗∗I∗∗2 G2

πI∗∗1 G1

, b2 =
βµS∗∗G3

πI∗∗1 G1

,

b3 =
βµS∗∗F ∗∗G4

πI∗∗1 κI
∗∗
T G1

, b4 =
βµS∗∗A∗∗G5

πI∗∗1 G1

,

and (note that 0 < r < 1, so that the coefficients of the Lyapunov function (D.1) are

all positive),
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G1 = (F ∗∗)2γ2(1− r)rτ1 + I∗∗1 F
∗∗γ(1− r)σ1τ1 + I∗∗2 F

∗∗(1− r)γσ1τ2

+ I∗∗2 F
∗∗γrσ2τ1 + I∗∗1 I

∗∗
2 σ1σ2τ1 + (I∗∗2 )2σ1σ2τ2 + I∗∗2 A

∗∗σ1σ2τA,

G2 = I∗∗1 F
∗∗(1− r)γτ1θ2 +

(
θ2I
∗∗
2 + θAA

∗∗)(I∗∗1 σ2τ1)
+
(
θ2I
∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)(F ∗∗(1− r)γτ2 + A∗∗σ2τA + I∗∗2 σ2τ2

)
,

G3 =
(
θT I

∗∗
T + θFF

∗∗)(I∗∗1 I∗∗2 σ1σ2)
+
(
θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)(I∗∗1 F ∗∗γ(1− r)σ1

)
+
(
θ2I
∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)(I∗∗2 F ∗∗rγσ2 + (F ∗∗)2(1− r)rγ2

)
,

G4 =
(
σ1I

∗∗
1 σ2I

∗∗
2 θF

)[
τ1I
∗∗
1 + τ2I

∗∗
2 + τAA

∗∗]
+
(
θFF

∗∗ + θAA
∗∗)[I∗∗1 I∗∗2 γ(1− r)σ1τ2 + (I∗∗1 )2γ(1− r)σ1τ1

]
+
(
θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)[I∗∗1 A∗∗γ(1− r)σ1τA

]
+
(
θ2I
∗∗
2 + θFF

∗∗ + θAA
∗∗)[I∗∗1 F ∗∗γ2(1− r)rτ1 + I∗∗1 I

∗∗
2 γrσ2τ1

]
+
(
θ2I
∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)[(I∗∗2 )2γrσ2τ2 + F ∗∗A∗∗γ2(1− r)rτA

+ I∗∗2 F
∗∗γ(1− r)rτ2 + I∗∗2 A

2γrσ2τA
]
,

G5 = I∗∗2 F
∗∗γrτAθ2 +

(
I∗∗T θT + F ∗∗θF + θAA

)(
I∗∗1 σ1τA + F ∗∗γrτA

)
+
[
I∗∗1 F

∗∗γrτ1 + (I∗∗1 )2σ1τ1 + I∗∗1 I
∗∗
2 σ1τ2

]
θA.

The Lyapunov derivative of (D.1) is given by
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L̇ =

(
1− S∗∗

S

)[
π + λS − µS

]
+

(
1− I∗∗1

I

)[
λS − (σ1 + τ1 + µ)I1

]
+ b1

(
1− I∗∗2

I2

)[
σ1I1 + γrF − (σ2 + τ2 + µ)I2

]
+ b2

(
1− I∗∗T

IT

)[
τ1I1 + τ2I2 + τAA− (κ+ µ)IT

]
+ b3

(
1− F ∗∗

F

)[
κIT − (γ + µ)F

]
+ b4

(
1− A∗∗

A

)[
σ2I2 + γ(1− r)F − (τA + µ)A

]
.

(D.2)

The following relations at the endemic steady-state will be used to simplify (D.2),

π = λS∗∗ + µS∗∗, (σ1 + τ1 + µ) =
λ∗∗S∗∗

I∗∗1
, (σ2 + τ2 + µ) =

σ1I
∗∗
1 + γrF ∗∗

I∗∗2
,

(κ+ µ) =
τAA

∗∗

I∗∗T
, (γ + µ) =

κI∗∗T
F ∗∗

, (τA + µ) =
σ2I

∗∗
2 + γ(1− r)F ∗∗

A∗∗
.

(D.3)

Substituting (D.3) into (D.2), and simplifying, gives:
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L̇ =

(
µS∗∗ +

βµS∗∗I∗∗1
π

)(
2− S

S∗∗
− S∗∗

S

)
+
βµS∗∗θ2I

∗∗
2 G6

πG1

(
3− S∗∗

S
− SI∗∗1 I2
S∗∗I1I∗∗2

− I1I
∗∗
2

I∗∗1 I2

)
+
βµS∗∗G7

I∗∗1 πG1

(
3− I2I

∗∗
T

I∗∗2 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

I∗∗T F

)
+
βµS∗∗G8

πG1

(
3− ITF

∗∗

I∗∗T F
− I∗∗T A

ITA∗∗
− FA∗∗

F ∗∗A

)
+
βµS∗∗θT I

∗∗
T G9

πG1

(
3− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
T

I∗∗1 IT

)
+
βµS∗∗G10

I∗∗1 πG1

(
4− I2F

∗∗

I∗∗T F
− I2A

∗∗

I∗∗2 A
− ITF

∗∗

I∗∗T F
− I∗∗T A

ITA∗∗

)
+
βµS∗∗θT I

∗∗
T G11

πG1

(
4− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
2

I∗∗1 I2
− I2I

∗∗
T

I∗∗2 IT

)
+
βµS∗∗θFF

∗∗G12

πG1

(
4− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
T

I∗∗1 IT
− ITF

∗∗

I∗∗T F

)
+
βµS∗∗θAA

∗∗G13

πG1

(
4− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A

)
+
βµS∗∗θ2I

∗∗
2 G14

πG1

(
5− S∗∗

S
− SI∗∗1 I2
S∗∗I1I∗∗2

− I1I
∗∗
T

I∗∗1 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

I∗∗T F

)
+
βµS∗∗θT I

∗∗
T I
∗∗
2 A

∗∗σ1σ2τA
πG1

(
5− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A
− I∗∗T A

ITA∗∗

)
+
βµS∗∗θFF

∗∗G15

πG1

(
5− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2I

∗∗
T

I∗∗2 IT
− ITF

∗∗

I∗∗T F

)
+
βµS∗∗θAA

∗∗G16

πG1

(
5− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
T

I∗∗1 IT
− ITF

∗∗

I∗∗T F
− FA∗∗

F ∗∗A

)
+
βµS∗∗θFF

∗∗I∗∗2 A
∗∗σ1σ2τA

πG1

×(
6− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A
− I∗∗T A

ITA∗∗
− ITF

∗∗

I∗∗T F

)
+
βµS∗∗θAA

∗∗I∗∗2 F
∗∗(1− r)γσ1τ2

πG1

×(
6− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
2

I∗∗1 I2
− I∗∗2 IT
I2I∗∗T

− ITF
∗∗

ITF
− FA∗∗

F ∗∗A

)
+
βµS∗∗θAA

∗∗I∗∗2 F
∗∗rγσ2τ1

πG1

×(
6− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
T

I∗∗1 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

ITF
− I2A

∗∗

I∗∗2 A

)
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where,

G6 = I∗∗2 A
∗∗σ1σ2τA + I∗∗1 I

∗∗
2 σ1σ2τ1 + (I∗∗2 )2σ1σ2τ2 + I∗∗2 F

∗∗(1− r)γσ1τ2

+ I∗∗1 F
∗∗(1− r)γσ1τ1,

G7 =
(
θ2I
∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)[(I∗∗2 )2F ∗∗γrσ2τ2 + (F ∗∗)2(1− r)rγ2τ2

]
,

G8 =

[
θ2I
∗∗
2 (F ∗∗)2A∗∗(1− r)rγ2τ2

I∗∗1

]
+

(
θT I

∗∗
T + θFF

∗∗ + θAA
∗∗
)
×[(

(F ∗∗)2A∗∗(1− r)rγ2τ2
I∗∗1

)
+ F ∗∗A∗∗(1− r)γσ1τA

]
,

G9 = I∗∗1 I
∗∗
2 σ1σ2τ1 + I∗∗2 F

∗∗rγσ2τ1 + (F ∗∗)2(1− r)rγ2τ1 + I∗∗1 F
∗∗(1− r)γσ1τ1,

G10 =
(
θ2I
∗∗
2 + θT I

∗∗
T + θFF

∗∗ + θAA
∗∗)(I∗∗2 F ∗∗A∗∗rγσ2τA),

G11 = (I∗∗2 )2σ1σ2τ2 + I∗∗2 F
∗∗(1− r)γσ1τ2,

G12 = (F ∗∗)2(1− r)rγ2τ1 + I∗∗1 F
∗∗(1− r)γσ1τ1 + I∗∗2 F

∗∗rγσ2τ1 + I∗∗1 I
∗∗
2 σ1σ2τ1,

G13 = I∗∗1 I
∗∗
2 σ1σ2τ1 + (I∗∗2 )2σ1σ2τ2 + I∗∗2 A

∗∗σ1σ2τA,

G14 = I∗∗2 F
∗∗rγσ2τ1 + (F ∗∗)2(1− r)rγ2τ1,

G15 = I∗∗2 F
∗∗(1− r)γσ1τ2 + (I∗∗2 )2σ1σ2τ2,

G16 = (F ∗∗)2(1− r)rγ2τ1 + I∗∗1 F
∗∗(1− r)γσ1τ1,

Since the arithmetic mean exceeds the geometric mean, it follows that
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(
2− S

S∗∗
− S∗∗

S

)
≤ 0(

3− S∗∗

S
− SI∗∗1 I2
S∗∗I1I∗∗2

− I1I
∗∗
2

I∗∗1 I2

)
≤ 0(

3− ITF
∗∗

I∗∗T F
− I∗∗T A

ITA∗∗
− FA∗∗

F ∗∗A

)
≤ 0(

3− I2I
∗∗
T

I∗∗2 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

I∗∗T F

)
≤ 0(

3− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
T

I∗∗1 IT

)
≤ 0(

4− I2F
∗∗

I∗∗T F
− I2A

∗∗

I∗∗2 A
− ITF

∗∗

I∗∗T F
− I∗∗T A

ITA∗∗

)
≤ 0(

4− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
2

I∗∗1 I2
− I2I

∗∗
T

I∗∗2 IT

)
≤ 0(

4− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
T

I∗∗1 IT
− ITF

∗∗

I∗∗T F

)
≤ 0(

4− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A

)
≤ 0(

5− S∗∗

S
− SI∗∗1 I2
S∗∗I1I∗∗2

− I1I
∗∗
T

I∗∗1 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

I∗∗T F

)
≤ 0(

5− S∗∗

S
− SI∗∗1 IT
S∗∗I1I∗∗T

− I1I
∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A
− I∗∗T A

ITA∗∗

)
≤ 0(

5− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2I

∗∗
T

I∗∗2 IT
− ITF

∗∗

I∗∗T F

)
≤ 0(

5− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
T

I∗∗1 IT
− ITF

∗∗

I∗∗T F
− FA∗∗

F ∗∗A

)
≤ 0(

6− S∗∗

S
− SI∗∗1 F

S∗∗I1F ∗∗
− I1I

∗∗
2

I∗∗1 I2
− I2A

∗∗

I∗∗2 A
− I∗∗T A

ITA∗∗
− ITF

∗∗

I∗∗T F

)
≤ 0(

6− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
2

I∗∗1 I2
− I∗∗2 IT
I2I∗∗T

− ITF
∗∗

ITF
− FA∗∗

F ∗∗A

)
≤ 0(

6− S∗∗

S
− SI∗∗1 A

S∗∗I1A∗∗
− I1I

∗∗
T

I∗∗1 IT
− I∗∗2 F

I2F ∗∗
− ITF

∗∗

ITF
− I2A

∗∗

I∗∗2 A

)
≤ 0

hence, L̇ ≤ 0. It follows that then,

lim
t→∞

(S(t), I1(t), I2(t), IT (t), F (t), A(t))→ (S∗∗, I∗∗1 , I
∗∗
2 , I

∗∗
T , F

∗∗, A∗∗).
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Furthermore, it follows from the LaSalle’s Invariance Principle [26] (Theorem 3.6 in

this thesis) that the unique endemic equilibrium, E1, of the PrEP-free model (3.1)

with δ = 0 is GAS in D1\D0 whenever R1 > 1.
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Appendix E

Proof of Theorem 4.3

Proof. Consider the special case of the PrEP model (2.2) with δ = 0. The proof is

based on using center manifold theory. It is convenient, first of all, to let

S = x1, SL = x2, SH = x3, I1 = x4, I2 = x5, IT = x6, F = x7, A = x8,

so that the special case of the PrEP model (2.2) with δ = 0 can be re-written as

dS

dt
= f1 = π + ωLx2 + ωHx3 − λx1 − ψx1 − µx1,

dSL
dt

= f2 = (1− f)ψx1 + ξHx3 − θLλx2 − (ξL + ωL + µ)x2,

dSH
dt

= f3 = fψx1 + ξLx2 − θHλx3 − (ξH + ωH + µ)x3,

dI1
dt

= f4 = λ(x1 + θLx2 + θHx3)− (σ1 + τ1 + µ)x4,

dI2
dt

= f5 = σ1x4 + γrx7 − (τ2 + σ2 + µ)x5,

dIT
dt

= f6 = τ1x4 + τ2x5 + τAx8 − (κ+ µ)x6,

dF

dt
= f7 = κx6 − (γ + µ)x7,

dA

dt
= f8 = σ2x5 + γ(1− r)x7 − (τA + µ)x8,

(E.1)
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where,

λ =
β(x4 + θ2x5 + θTx6 + θFx7 + θAx8)

8∑
i=1

xi

,

and f = [f1, . . . , f8]
T represents the vector field of the model (2.2). Evaluating the

Jacobian of the system (E.1) at the DFE (EP0 ) gives

J(EP0 ) =



−µ− ψ ωL ωH −U1 −U1θ2 −U1θT −U1θF −U1θA

(1− f)ψ −U2 ξH −U3 −U3θ2 −U3θT −U3θF −U3θA

fψ ξL −U4 −U5 −U5θ2 −U5θT −U5θF −U5θA

0 0 0 U6 − C1 U6θ2 U6θT U6θF U6θA

0 0 0 σ1 −C2 0 γr 0

0 0 0 τ1 τ2 −C3 0 τA

0 0 0 0 0 κ −C4 0

0 0 0 0 σ2 0 (1− r)γ −C5



,

where,

U1 =
βµx1
π

, U2 = (ξL + ωL + µ), U3 =
βµθLx2
π

,

U4 = (ξH + ωH + µ), U5 =
βµθHx3

π
, U6 =

βµ(x1 + θLx2 + θHx3)

π
.

Consider the case when R∗P = 1. Also, suppose that β is chosen as the bifurcation

parameter. Solving for β when R∗P = 1 gives

β = β∗ =
Q2C1N

∗

g
(
Q2 + θ2Q3 + θTC4Q4 + θFκQ4 + θAQ5

) .
The transformed system (E.1), with β = β∗, has a simple eigenvalue with zero real

part (and all other eigenvalues have negative real parts). Thus, center manifold
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theory (particularly the approach in [7]) can be applied to analyze the dynamics of

(E.1) near β∗. The application of the center manifold theory entail the following

computations.

Eigenvectors of J(EP0 )|β=β∗:

Let J(EP0 )|β=β∗ = Jβ∗ . The matrix has a left eigenvector (associated with the zero

eigenvector) given by,

v = [v1, v2, v3, v4, v5, v6, v7, v8],

where,

v1 = 0, v2 = 0, v3 = 0, v4 = v4 > 0,

v5 =
β∗µθ2v4(x1 + θLx2 + θHx3) + π(τ2v6 + σ2v8)

πC2

, v6 = v6 > 0,

v7 =
β∗µv4(γrθ2 + C2θF )(x1 + θLx2 + θHx3) + π(γrτ2v6 + [γrσ2 + (1− r)γC2]v8)

πC2C4

,

v8 = v8 > 0.

Furthermore, the matrix Jβ∗ has a right eigenvector (associated with the zero eigen-

vector) given by,

w = [w1, w2, w3, w4, w5, w6, w7, w8]
T ,

where,

w1 =
−µβ∗[(U2U4 − ξLξH)x1 + (U4ωL + ξLωH)θLx2 + (U2ωH + ξHωL)θHx3]Y1

πQ1C2C4

,

w2 =
−µβ∗Y1Y2
πQ1C2C4

, w3 =
−µβ∗Y1Y3
πQ1C2C4

, w4 = w4 > 0, w5 =
C4σ1w4 + γκrw6

C2C4

,

w6 = w6 > 0, w7 =
κw6

C4

, w8 = w8 > 0.

and,
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Y1 = C2C4(w4 + θTw6 + θAw8) + C2κθFw6 + θ2(C4σ1w4 + γκrw6),

Y2 = [fξH + (1− f)U4]ψx1 + [U4(µ+ ψ)− fψωH ]θLx2 + [(1− f)ψωH + ξH(µ+ ψ)]θHx3,

Y3 = [fU2 + (1− f)ξL]ψx1 + [fψωL + ξL(µ+ ψ)]θLx2 + [U2(µ+ ψ)− (1− f)ψωL]θHx3.

Computation of bifurcation coefficients, a and b:

It can be shown (by computing the associated non-zero partial derivatives of the sys-

tem (E.1) at the DFE (EP0 ) and simplifying) that the associated backward bifurcation

coefficients a and b are given, respectively, by (see Theorem 4.1 of [7])

a =
8∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(EP0 , β∗)

=
2v4µ

3β∗Y1
π3Q1C2

2C
2
4

[
Y5Y4 + β∗Y6Y1 − (Y7Y4 + β∗Y8Y1)

]
,

(E.2)

and

b =
8∑

k,i=1

vkwi
∂2fk
∂xi∂β

(EP0 , β∗) =
v4µY1(x1 + θLx2 + θHx3)

πC2C4

> 0, (E.3)

where,

78



Y4 = C2C4(w4 + w6 + w8) + C2κw6 + C4σ1w4 + γκrw6,

Y5 =
[
(U2ωH + ωLξH)fψ + (U4ωL + ωHξL)(1− f)ψ + ξHξL(µ+ ψ)

]
×

(x1 + x2 + x3)(x1 + θLx2 + θHx3),

Y6 = (U2U4x1 + U2ωHθHx3 + U4ωLθLx2 + ωHξLθLx2

+ ωLξHθHx3)(θLx2 + θHx3) + U2(x1 + θLx2)
[
fψx1 + (µ+ ψ)θHx3

]
+ U4(x1 + θHx3)

[
(1− f)ψx1 + (µ+ ψ)θLx2

]
+ ξHξL(x2 + x3)x1

+ fψ

(
ξH(x1 + θHx3)x1 + [ωHθL(x1 + x3) + ωL(x1 + θLx2)]θLx2

)
+ (1− f)ψ

(
ξL(x1 + θLx2)x1 +

[
ωLθH(x1 + x2) + ωH(x1 + θHx3)

]
θHx3

)
+ (µ+ ψ)

[
ξL(x1 + x2)θLx2 + ξH(x1 + x3)θHx3

]
,

Y7 = U2U4(µ+ ψ)(x1 + x2 + x3)(x1 + θLx2 + θHx3),

Y8 = (U2U4x1 + U4ωLθLx2 + U2ωHθHx3)(x2 + x3)

+ U2θH
[
fψx1 + (µ+ ψ)θHx3

]
(x1 + x2)

+ U4θL
[
(1− f)ψx1 + (µ+ ψ)θLx2

]
(x1 + x3)

+

(
ξHξL(θLx2 + θHx3) + ψ

[
fξHθL(x1 + x3) + (1− f)ξLθH(x1 + x2)

])
x1

+

(
ωHθL

[
ξL(x2 + x3) + fψx1

]
+ θHθL

([
ξL(µ+ ψ)

+ ωLfψ
]
(x1 + x2) + ωHfψx3

))
x2

+

(
ωLθH

[
ξH(x2 + x3) + (1− f)ψx1

]
+ θHθL

([
ξH(µ+ ψ) + ωH(1− f)ψ

]
(x1 + x3) + ωL(1− f)ψx2

))
x3.

(E.4)

It follows from (E.2), with (E.4), that the bifurcation coefficient, a, is positive when-

ever

J1 > J2, (E.5)
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where, J1 = Y5Y4 + β∗Y6Y1 and J2 = Y7Y4 + β∗Y8Y1. Hence, it follows from Theorem

4.1 of [7], that the PrEP model (2.2) (or, equivalently (E.1)) undergoes backward

bifurcation at R∗P = 1 whenever Inequality (E.5) holds.
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