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Abstract

Localization and mapping are important abilities for any robot to have if it wants to

navigate intelligently in the real world. The goal of the research designed in this thesis

was to develop a practical embedded visual odometer that utilized common features

found in real world environments. The visual odometer is a system that measures the

self motion of a mobile robot using visual feeback.

The developed visual odometer was tested on a custom mobile robot in several

different tests that were derived from the robotic soccer domain. This system’s per-

formance was compared to two other systems. These systems were a KLT [1] feature

tracker based robot and a commercial shaft encoder based robot. The results of the

completed tests showed that the developed visual odometer’s performance was less

than expected. It also showed that this system has good potential. As well, the test

results showed the limitations of using a KLT [1] feature tracker based robot and that

the commercial shaft encoder based robot also had performance less than expected.
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Chapter 1

Introduction

Localization and mapping are very important skills for any mobile robot to have

when it needs to navigate intelligently in the real world. Localization can be defined

as knowing where one is at all times and mapping as taking that knowledge to develop

a map of where one has been.

In simple domains such as the one shown in Figure 1.1, a mobile robot needs only

to identify which landmark (i.e A1, B3, etc.) it is situated on to localize itself. In

this example, a mobile robot is able to sense the landmark in the cell that it currently

occupies. It is easy for the robot to navigate as it traverses the domain because

it always knows in which cell it is situated. This means that the robot is globally

localized at all times. These simple domains are rarely encountered because they

require the addition of many unique landmarks.

1
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A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

Figure 1.1: An example of a simple domain where the robot needs only to know which
landmark it is on to localize itself.

A1

D4

Figure 1.2: An example of a domain where the robot requires more information to
localize itself in all areas.

A more common example is shown in Figure 1.2. In this example there are only

two landmarks (A1 and D4) that the robot can sense. This means that a mobile

robot can be globally localized in cells A1 and D4, but not in any other cell. In

this situation as the mobile robot traverses the domain it needs to keep track of its

position.
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Figure 1.3: An example of a complex domain that contains few or no unique land-
marks, which makes it very difficult or impossible for a robot to localize itself.

In real world examples such as the Urban Search and Rescue domain shown in

Figure 1.3, a mobile robot requires additional information to localize itself in the

world. In order for a robot to localize itself in complex domains, it must be able

to measure its ego-motion. Ego-motion is the ability for a robot to determine its

self-motion via feedback from its external sensors.

Most mobile robots utilize dead reckoning to measure their ego-motion. Dead

reckoning relies on mechanical sensors (shaft encoders) to provide motion feedback

after a set of motion commands are issued. The feedback is then directly used to

update the position and orientation of the robot. This can be problematic as these

feedback sensors can introduce incremental errors due to wheel slip or the robot not

being able to move.
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In most research situations this is not that much of an issue. Today, the major-

ity of mobile robots are deployed in labs or ideal condition environments. As new

technologies are developed and the cost of computation and sensing decreases, the de-

ployment of autonomous mobile robots will increase to the point where they become

a part of everyday life. When this occurs, autonomous robots will need to interact

intelligently in dynamic situations such as autonomous driving on major thorough-

fares, yard maintenance and personal care. In these real life situations, incremental

errors due to the mechanical feedback system can lead to serious problems such as

high speed collisions, damage to property and loss of human life.

One way to overcome the problem of determining the ego-motion of a mobile robot

is to use visual feedback. Visual feedback does not suffer from the same problems as

its mechanical counter-parts. It is a passive system that does not need to actively

engage the environment or the robot to get feedback. The use of visual feedback in

ego-motion estimation is called visual odometry or “the problem of determining the

motion of a robot from a given sequence of images taken during motion” [2].

In this thesis I have developed an embedded visual odometer that utilizes common

features found in real world environments which allows mobile robots to navigate in

complex domains. The visual odometer that was developed extracts strong lines that

are found in acquired images. It then tracks the movement of these lines over a

sequence of images. This line movement information is used to calculate the change

in position and orientation of each tracked line over time. This change in line position

and orientation over time is then used to calculate the ego-motion of a mobile robot.
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This visual odometer was tested in two different test beds. The first was a linear

traversal of the Robocup E-league [3] soccer field and the second was a figure eight

traversal of the same soccer field. The results obtained from the test runs were

compared to the results from running the same tests on two separate systems. These

systems were a commercial shaft encoder based robot and a Kanade, Lucas and

Tomasi (KLT) [1] feature tracker based robot. The preliminary results obtained

found that the developed visual odometer’s performance was less than expected and

that this system has good potential but needs further development. The results also

showed the limitations of a KLT [1] feature tracker and that the commercial shaft

encoder based robot does not perform well during turning.

This thesis is broken down as follows: Chapter 1 Sections 1.1 and 1.2 describe the

problem and motivation for this research, Chapter 2 discusses the background for this

thesis and some of the current research in visual odometry, Chapter 3 describes the

visual odometry system that was designed, Chapter 4 describes the designed system’s

hardware and software, Chapter 5 outlines the methods used to evaluate this research

and discusses the results obtained from running the system on the mobile platform

described in Chapter 4 and Chapter 6 concludes this thesis.
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1.1 Problem

Navigation is a major problem for all mobile robots. Without navigation, robots

would be unable to move intelligently in the world. For example, humans use visual

information to navigate automobiles at high speeds on major freeways. This visual

information helps the driver decide how to avoid an obstacle or which way to turn the

steering wheel when the driver wants to pass a car. If the visual feedback was occluded

by blindfolding the driver, they would not be able to make intelligent decisions on

how to react in crucial situations such as collision avoidance.

Navigation for mobile robots consists of three parts: mapping, localization and

ego-motion estimation. Figure 1.4 shows the hierarchy and the importance of these

components. One can see from Figure 1.4 that ego-motion estimation is the founda-

tion of intelligent navigation. Without ego-motion estimation, a robot cannot localize

itself in complex domains.

Figure 1.4: Navigation triangle and its importance structure.
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Most systems take ego-motion estimation for granted and assume that they yield

highly accurate results. This assumption allows researchers the ability to develop

complex localization algorithms without worrying about the underlying problems

associated with ego-motion estimation. This is not a good assumption to use if one

is developing a simultaneous localization and mapping system (SLAM) to be used in

real world environments. Perfect ego-motion estimation does not exist and designers

cannot take into account all of the different terrains that a mobile robot will encounter

during its traversal of an environment. For example, if the mobile robot is operating

on a busy factory floor, designers cannot guarantee that the environment will be free

of debris and obstacles.

In summary, in order to perform intelligent navigation, ego-motion estimation

must exist. The focus of this research was to develop an accurate visual odometer

that would allow a mobile robot operating in complex environments to accurately

determine its ego-motion without other external feedback.

1.2 Motivation

The motivation for this research comes from many different areas. The first stems

from the rules of local vision RoboCup [3] soccer. If one were to review the previous

years rules for the RoboCup [3] legged and mid-size leagues, they would notice a trend

that incrementally removes artificial field markers. This means that an autonomous

robot should not depend on these landmarks as they could be eliminated in the next

year’s competition. The obvious solution for this situation would be to use features

that naturally occur in the environment, such as field lines and goal areas.
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Another area that provides motivation is the area of Urban Search and Rescue

(USAR) [4]. In this domain, robots navigate themselves in unstructured environments

where there can be few assumptions made. The goal of USAR research is to have

fully autonomous robots that can go into a disaster situation and provide a map of

the area and casualties to rescue workers. For this type of system to be successful, it

requires an accurate SLAM system that uses accurate ego-motion estimation.

Another area of inspiration is the Darpa Grand Challenge [5] where fully au-

tonomous robots navigate through an unstructured desert environment trying to

complete a trek from Barstow California to Las Vegas.



Chapter 2

Background and Related work

This chapter details the background for this thesis and summarizes some of the

work in visual odometry research.

2.1 Background

The background for this thesis comes from the research that was conducted by

myself and Dr Jacky Baltes [2] at the University of Manitoba. The main considera-

tions and assumptions used as the starting point for the research were that natural

features exist in most scenes and that these features could be exploited and used as

visual feedback in a visual feature tracking system. The features that were of most

interest to us were lines and line segments that occurred naturally in our everyday

environment. Image points also provide visual feedback but are susceptible to noise

which can lead to erroneous results and were therefore not considered.

9
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This is not the first time that lines have been used in estimating motion. In 1995

Zhang [6] described a methodology for estimating motion and structure using line

segments in an image and Taylor et al. also stated that “straight line features are

prominent in most man-made environments [and] they can be detected and tracked

relatively easily in image data” [7]. This is different from the research conducted

in this thesis. It differs in that, the real world positions of extracted image lines

are tracked over time to measure the ego-motion of a mobile robot. Zhang [6] and

Taylor [7] both try to reconstruct 3D scenes from the motion of a stereo camera

system and do not measure the ego-motion of a mobile robot.

The major source of environmental lines comes from walls, floors and the junction

between these two elements. Other sources of lines can come from patterns that exist

in a scene such as a tiled floor or a group of trees. A visual example of this can be

seen in Figures 2.1 and 2.2. Figure 2.1 shows two examples of scenes where lines

can be exploited. Figure 2.2 shows the same scenes with the lines enhanced via edge

detection.
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Figure 2.1: This is an example of two naturally occurring scenes. One can see that
there are a lot of visual features that yield lines in the image.

Figure 2.2: Here are the same scenes as seen in Figure 2.1 with the lines enhanced
via edge detection.

Ego-motion can be calculated by tracking environmental lines and measuring their

change in position and orientation over time. This translates into robot displacement

S and change in orientation ∆θ. This allows the visual odometer developed in this

thesis to measure the motion of a mobile robot using only visual feedback. Schaerer

et al. [2] calculated ego-motion differently. In their work, it was calculated in terms
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of a robot’s right and left wheel velocities.

The visual odometer can be thought of as a passive motion feedback sensor that

does not suffer from the same problems as mechanical sensors (shaft encoders). The

developed sensor provides sensor measurements that can be utilized by higher level

localization systems.

The focus of the research conducted in this thesis was to develop a visual odometer

(sensor) that could determine a mobile robot’s ego-motion. This is different from the

work of Thurn and Fox [8] and other SLAM researchers. Thurn and Fox [8] have

researched Monte Carlo based localization (MCL). MCL (also referred to as particle

filters) is a probabilistic algorithm that tries to determine a robot’s current pose

based on its sensor readings. These sensor readings can include laser range finders,

mechanical odometers and could include the visual odometer developed in this thesis.

2.2 Related work

Visual odometry (which is also referred to as visual ego-motion estimation) re-

search has been investigated by a number of different groups. This work can be

divided into two different categories; one that assumes that there is structure in the

image data and that it can be used as a means of detecting image motion and one

that does not assume that visual data contains any structure that can be used to

calculate image motion.

The following sections investigate and summarize the research that has and is

being conducted by various research groups around the world.
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2.2.1 Category 1: Assumed Structure

In this section, all research conducted by the various groups has used one major

assumption. This assumption is that in all the acquired image data, structure exists

and can be exploited to determine the ego-motion of a camera. Examples of structure

are field lines and goal areas that exist in the RoboCup [3] soccer domain or 3D

landmarks such as tables and chairs that exist in an office environment.

Amidi [9] developed the first autonomous helicopter with an on board visual

odometer. This visual odometer was responsible to estimate the helicopter’s 3D

position and velocity with a high frame rate and low latency. The visual odometer

was an on-board custom hardware solution comprised of a stereo vision rig (two high

quality NTSC cameras), two A/D converters (which provided low latency image ac-

quisition) and four separate DSP’s responsible for all of the image processing and

visual odometry calculations.

The visual odometer performed two functions in this research. The first was to

calculate the helicopter’s 3D position using the stereo pair and the second was to

estimate the velocity of the helicopter. Initially, the helicopter knew its 3D position.

In order to perform the 3D position estimate, the visual odometer detected objects

at the centre of the image via the stereo pair. It then tracked these objects as they

moved throughout the image. For each new image captured, the visual odometer

tried to locate the objects that were currently being tracked. If the tracked objects

were not found in the image then new objects were selected to be tracked. Object

tracking was accomplished by using high speed template matching of the currently

tracked objects and the new objects found in the image. If a match was found, the
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visual odometer would calculate the 3D position of the helicopter. The 3D position

was estimated by using the depth calculated by the stereo pair, the previous 3D

position, the onboard angular sensors and the estimate of the change in lateral and

longitudinal displacement calculated by the high speed template matching.

The second function of the visual odometer was to estimate helicopter velocity.

Velocity was estimated by calculating the optical flow between two successively cap-

tured images. The optical flow was calculated at the centre of the images and was

estimated by taking the derivative with respect to time of the tracked objects change

in X and Y displacement.

Amidi’s design of the visual odometer allowed the stable control and flight of

the helicopter. The performance of the visual odometer running on the on-board

custom vision hardware enabled the system to process images at 60 frames per second.

This high throughput of the visual odometer allowed the helicopter to control its 3D

position within 0.5 meters of the desired 3D position.

Sim and Dudek [10] estimate the position (ego-motion) of a robot by visually

detecting landmarks from images. In this work, they tried to eliminate the use of

artificially placed landmarks by utilizing only visually detected landmarks. The only

assumptions that they made are that the general starting position of the robot was

known and that the camera’s orientation was always the same.

This developed system consisted of two stages, an off-line stage and an online

stage. The off-line stage was used to build a database of detected landmarks which

allowed the robot to estimate its position during the online stage. During the off-line

stage, the robot manually moved throughout a test environment in a grid while it
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took images and detected visual landmarks. Landmarks were grouped into sets. Each

set contained the same landmark but at different positions and orientations in the

test environment. This grouping allowed the robot to detect the landmarks in a large

environment. After the landmarks had been detected and grouped into sets, they

were placed in a database so that they could be used during the online stage.

The online stage was used when the robot was traversing the test environment.

It allowed the robot to estimate its position after every movement. To estimate

position, the robot first acquired images as it moved throughout its environment (the

environment was partitioned in a grid, the same as in the off-line stage). Next, the

images were processed and visual landmarks were detected and extracted. After the

landmarks had been detected, the off-line database was searched and an attempt was

made to match the newly detected landmarks to the landmarks that were stored in

the database. If landmarks were found in the database, the robot’s position was

estimated by comparing the positions of the detected landmark to the positions of

the landmarks in the database. To remove outliers from the estimates, the estimates

were run through a median filter. The final position estimate was taken as the mean

position value.

This work was tested in two very small test environments. The first was a grid of

30x30 cm with 2 cm spacing and the second was a grid of 1.2x3.0 metres with a 20

cm spacing. Sim and Dudek [10] found that the robot had good position estimation

in both tests. In the first test the average position error was 3.8 mm and the second

had an average position error of 5 cm.
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Although this work produced very good results, it is unknown how it would scale

in large environments. It is also unknown what would happen if the camera had

orientation changes. Another issue with this system is the need for off-line population

of the database. This system would not work in situations where the robot had to

traverse unknown environments and it would not work if the robot was picked up and

moved to a different location. Finally, it is not mentioned which type of system is

needed to implement their design. It is assumed that this system would not be viable

in small scale embedded systems.

The problem of having the need for an off-line database population is addressed by

Se, Lowe and Little [11] [12]. They developed a stereo vision based SLAM algorithm

that detected and tracked visual scale invariant feature transform (SIFT) landmarks

in an arbitrary environment. They used these 3D SIFT features (which are scale and

orientation invariant) to estimate the ego-motion of a shaft encoder based robot. The

goal of this research was to improve the error of the shaft encoders by augmenting its

position estimate with SIFT based visual odometry.

Ego-motion was estimated by first extracting SIFT features in the images and then

by matching the SIFT features in the stereo pair. This provided the 3D positions

of each SIFT feature. After all the features were matched, they were stored in an

online feature database so that they could be tracked over time. The use of an online

database allowed the robot to explore unknown environments because it did not need

to populate the database off-line (by first traversing the environment).

The next step used the odometry data from the shaft encoders and a new image

pair to locate the SIFT landmarks. The SIFT landmarks were located (tracked) in
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the new images via a search that was concentrated in areas that the features should be

in, given the data from the odometer. After the landmarks were found and matched

between frames, a rough estimate of the ego-motion of the robot was produced. In

order to refine the ego-motion estimate, a least squares minimization algorithm was

used on the estimated ego-motion. This minimized the calculated ego-motion’s error

and produced the final ego-motion of the robot.

Overall, this method yielded good ego-motion estimation and localization results

that allowed a mobile robot to generate a 3D map and localize itself in an office (lab)

environment. This implementation would not be feasible to run on a small embedded

system given that it can only run at two updates per minute on a desktop computer.

Sim et al. [13] developed a SLAM system that utilized a visual odometeric motion

model. This system differs in that most common approaches for odometeric mea-

surements use shaft encoders or laser scanners to determine a robot’s ego-motion.

Sim’s group utilized visual information to allow the development of a visual odome-

try system to update the robot’s motion model. This visual odometry system relied

on a stereo vision system and past research in multiple view geometry to determine a

robot’s ego-motion. Determining the robot’s ego-motion was accomplished by iden-

tifying and classifying landmarks in consecutive image pairs using SIFT descriptors.

Herrero-Perez, Martinez-Barbera and Sffiotti [14] developed an embedded local-

ization system that ran on the Sony Aibo robotic dog. This localization algorithm

detected corners and goal areas to allow the Aibo to localize itself in its environment.

This implementation was successfully used in competetion at the 2004 RoboCup [3].

Although their approach does not calculate the ego-motion of the robotic dog di-
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rectly, it does utilize the natural features found in the environment (field lines, goals)

to estimate the position of the robot.

2.2.2 Category 2: No Assumed Structure

The research that was carried out in this section does not assume that the visual

data contains any structure that can be used to calculate ego-motion. This means

that there are no assumptions about the scene and what the world looks like.

Milella and Siegwart [15] developed a realtime six degree of freedom visual odome-

ter using a stereo vision based feature tracker and an iterative closest point image

registration algorithm (ICP). In their research they looked at applying stereo vision

and ICP to develop a visual odometer. In order to accomplish this they assumed

that images contain “visual distinct features [that] can be tracked [over time]” [15].

This work is similar to that of Cheng et al. [16] but it differs in the way the motion

is estimated.

Their approach to visual odometry was as follows. First, 3D features are generated

using an “SRI Stereo Engine algorithm” [15]. This produces 3D points that have good

matches between the stereo pair. Next, features are detected using a Shi-Tomasi [17]

feature detector. After the features have been detected, they are tracked over time.

Finally, ego-motion of the robot is estimated by comparing all current and previous

positions of the 3D points. This is done by finding a “3D transformation matrix T that

minimizes ” [15] the squared error between all of the 3D point’s current and previous

positions. After the motion has been estimated, ICP is applied to this estimate to

eliminate outliers in the motion calculation.
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This visual odometer was tested using two different test beds. The first was a flat

surface and the second a rocky environment. In the first test, the robot traversed a

path that was 1.78 metres by 2.2 metres. After the robot had completed its path,

its absolute position error was recorded and found to be only 1.9 millimetres in the

X direction and 2.4 millimetres in the Y direction. In the second test, the robot

traversed the environment 2.2 metres. After it had finished its traversal, it ended up

with a position error of 2.4 millimetres.

The results of this system are very impressive but it is noted that the computa-

tional system that they used in this system was a 2.4 Ghz Pentium 4 class machine.

It is not known whether their developed visual odometer would be able to run on a

small scale low power embedded system.

Campbell et al. [18] [19] [20] developed a visual odometry system that utilized

commodity hardware and software. In their research, they developed a visual ego-

motion system using openCV [21] (open computer vision library) and a web camera.

They utilized the Lucas-Kanade optical flow algorithms [1] available in openCV to

determine the optical flow of an image sequence. With this information, they were

able to accurately determine the position and orientation of the robot as it moved

throughout its environment.

This system allowed their demonstrated mobile robot to correct for any deviation

from its control path while avoiding any sudden drop offs like the edge of a table.

Although their demonstrated system performed well, the overall processing was still

being performed on a PC and not on an embedded system.

McCarthy and Barnes [22] compared the effects of temporal filtering on a gradi-
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ent based optical flow algorithm which was used in mobile robot corridor centring

and visual odometry experiments. Their work looked at the effects of applying dif-

ferent temporal filters to the incoming single camera images to discover which filter

performed best in mobile robot navigation.

The application of these filters was to remove image noise before the optical flow

step. Gradient based optical flow algorithms are highly sensitive to noise and there-

fore removing image noise would improve the accuracy of these algorithms. Three

different filters were used in this work, a Gaussian filter, a Simoncelli matched pair

filter and a recursive temporal filter. To compare performance, each filter was used

in a different visual odometry experiment and corridor centring experiment. The

visual odometry used in the experiments was based on the Lucas-Kanade [1] optical

flow algorithm. After testing each filter in mobile robot corridor centring and visual

odometry experiments, they found that the recursive filter performed the best and

improved the results.

Nister et al. [23] developed a real-time visual odometer that can obtain motion

from a mono or stereo vision system. This system made no assumptions on the type of

motion or scene data that is acquired from a sequence of images. The visual odometer

algorithm that was implemented was first applied to a mono vision system and then

to a stereo vision system. The algorithm was developed in such a way that it could

be applied to either vision system with little change.

The algorithm consisted of three parts; a feature detector, a feature tracker and

a motion estimation phase. The algorithm differs in the motion estimation phase

depending on what type of vision system is available.
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The feature detector extracts corners from each captured image. This feature

detector can detect up to a maximum of 5000 features per image. This algorithm is

very computationally expensive because the detector has to search the entire image

space for the features. In order to speed up this step, Nister et al. took advantage of

the MMX hardware acceleration available on Intel microprocessors. After all of the

features have been extracted from the image, a feature tracker tracks the extracted

features between frames. For a feature to be successfully tracked from one image to

the next, a matching criteria was introduced. This criteria states that for a feature to

be successfully matched, the disparity of the feature between successive images must

be within a predefined limit. If the features are not within that limit they are not

matched.

Once all of the features have been detected and successfully tracked, the motion

estimation phase is executed. In the case of a mono vision system, motion is estimated

by first tracking the detected features over a number of separate images. The motion

estimation phase then calculates a feature’s pose for each tracked feature using a

5-point pose algorithm that was previously developed by Nister [24]. Next, the 3D

position of each detected feature is calculated using the first and last image of the

acquired images. After the 3D position of every feature has been calculated, the 3D

pose of the camera is estimated using the 3D point information. The output of the

motion estimation phase is the relative motion of the camera (robot). In the case of

a stereo vision system, motion estimation is carried out in the same way as the mono

system except that the 3D position of each detected feature is calculated using stereo

matching of the features between the two images obtained by each of the cameras.
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This research was successfully tested on a mobile ground robot using a Pentium

III 1GHz machine and the test results compared against the results obtained using a

differential GPS system. The test performed for the comparison was for the mobile

robot to complete a 20 metre diameter circle three times and travel a total of 184

metres. After the test was complete, the mobile robot that had used the developed

visual odometer ended up 4.1 metres away from its starting point versus the DGPS

system which ended up exactly where it had started.

Although the performance of the system is very good it still requires large com-

putational power to run and like most of the research discussed in this chapter, it

would not be well suited for a small scale embedded system.

Ali et al. [25] used a visual odometry algorithm to aid position estimation during

tele-autonomous operation of the Sprit and Opportunity Mars Rovers. The current

Mars Rovers update their positions when commanded by the operators. To do this,

the Rovers use a number of different sensor combinations. The sensors that are

available for normal position estimation are gyroscopes, accelerometers and shaft

encoders. The combination that is used depends upon the movement of the Rovers.

The visual odometry system is used to refine the position estimation or replace it in

environments with high wheel slip. The Rovers require accurate position control in

order to carry out successful missions. To do this, they require “that the position

error accrued during a drive must be no greater than 10% of the traveled distance,

up to a distance of 100 meters” [25]. This means that using shaft encoders alone in

high slip environments is not an option.

To alleviate the problems of the mechanical shaft encoders and meet the require-
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ments for position control Ali et al. [25] utilized the visual odometry system developed

to Cheng et al. [16]. This visual odometer calculates the Rover’s 6-DOF pose which

is stated to be “X, Y, Z, Roll, Pitch, Yaw” [16] and does not assume any structure

in the image.

The visual odometer uses a stereo vision system to calculate the ego-motion of

the Rovers by detecting features and tracking these features over time. Ego-motion

is calculated by first detecting features in both images using a feature detector. The

features that are detected in this system are corners similar to Nister et al. [23].

The detected corners are extracted and the ones that can “easily be matched” [16]

between both cameras are kept. Next, the extracted corners are matched using stereo

matching. After all of the corners have been matched or discarded their 3D pose is

estimated using the data from the stereo matching.

Once the corners have been matched and their 3D position estimated, they are

tracked over time. After the Rover has moved, the features are tracked by looking

for these corners in a newly acquired image pair. This is done by using the estimate

of wheel movement provided by the shaft encoders and a “correlation-based search

[algorithm]” [16]. When the corners have been successfully tracked, their new 3D

position is calculated using stereo matching.

The motion of the Rover is estimated by comparing all of the tracked features

current 3D positions to their previous 3D positions. If the difference in the 3D

positions are within a tolerable range, then the motion is considered to be matched to

the motion estimated by the shaft encoders. If the difference between the positions of

all of the features are not within the error tolerance, then the motion estimation from
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the shaft encoders is considered invalid and the Rover’s new position is estimated

using a motion estimation algorithm.

The motion estimation algorithm estimates motion using the 3D position data of

the features by first performing a “least squares estimation” [16] on the data. This

produces a coarse motion estimation which is refined using a maximum likelyhood

estimation to produce the final motion estimation.

The visual odometery system developed by Cheng et al. [16] integrated into the

Mars Rovers as described by Ali et al. [25] is still in service today on both the Sprit

and Opportunity Rovers. The Rovers were able to travel an average distance of over

4.75 kilometres by “using a combination of wheel-odometry, gyro readings, and visual

odometry” [25].

Cheng et al. [16] discovered that their visual odometer performed as well as shaft

encoders in ”simple terrain” [16]. It performed much better than the shaft encoders

in high slip / slope environments. They also found that it did not perform well if

the Rover motion was too large. When the motion was too large, features were lost

and could not be tracked. The visual odometer was not used at all times because

their method was not suited to run in real-time on the the simple embedded platform

used on the Rovers. The use of visual odometry on the Mars Rovers has led to

more “scientific observations” [16] being made. It has also allowed for missions to be

stopped and re-planned if no progress to the target position has been found by the

visual odometer.

The visual odometer developed by Cheng et al. [16] was also used by Helmick et

al. [26] who developed an autonomous path follower for the Mars Rovers. This path
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follower allowed for the Mars Rovers to be fully autonomous.

This system used sensor fusion in the form of a Kalman filter to fuse the data

from the gyroscopes, accelerometers and the visual odometer in order to estimate

the Rover’s motion and position. The system was implemented on the same Rover

platform used on Mars and was tested in the Jet Propulsion Laboratory Mars yard.

Two different tests were performed. One was on normal desert terrain and the other

on “sandy slopes” [26] and each test lasted an average of 50 metres. The results

obtained from their tests showed that the visual odometer system was able to perform

position estimation with an accuracy of 2.5%. This is better than the shaft encoders

which have at “best an accuracy of 10 percent” [26] on normal terrain. The results

also showed that the visual odometer system is far superior than the shaft encoder

system in high slip environments.

Iida [27] looked at using optical flow in the form of a visual odometer for “long

distance goal-directed navigation” [27]. In this research, he was trying to understand

how bees use vision for the purpose of navigation. Iida states that “behavior studies

with honeybees have recently uncovered a mechanism behind visual mediated odom-

etry, in which the primary cue is the integral, over time, of the image motion that is

experience en route” [27]. The visual odometer tries to estimate rotational motion of

a flying blimp robot.

The visual odometer uses a single panoramic camera as input and two arrays of

the “Reichardt model of elementary motion detection” [27]. The Reichardt model

of elementary motion detection uses a combination of spatio-temporal filters on the

image data to produce a response to image motion [27]. The two arrays in the
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visual odometer are horizontal left and horizontal right motion detectors. Each array

provides an output which represents a signal that is proportional to the angular

velocity of the robot. The right array provides a response to the angular velocity in

the right direction and the left array provides a response to the angular velocity in

the left direction. To estimate the motion of the robot, the outputs of each array

are combined together. To estimate the position of the robot the motion estimate is

integrated over time.

Iida tested his visual odometer in an unstructured environment and compared the

position results obtained by the visual odometer and the position results obtained

from observing the robot using ground mounted stereo cameras. His results showed

that his visual odometer performed well in environments full of structure. The results

also revealed that the performance of this system degrades in environments with less

structure.

This approach to visual odometry is interesting in that most other systems use

some sort of featuring tracking to measure ego-motion. It would be a worth while

study to see how this system performs as compared to the more complex feature

tracking systems.

Wilson et al. [28] are working on a visual odometry based system to accurately

track how far an endoscope travels inside of a patient. This research is still in the

initial phase of design. As a starting point, they have focused their efforts on devel-

oping the system to measure the ego-motion of a bronchoscope in order to accurately

measure its position at all times. When this system is completed, it will allow doctors

to efficiently use endoscopes during diagnostic tests and provide an estimate of the
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size and structure of the tested area.

The visual odometer that they are developing in this research is similar to those

that have already been summarized. The visual odometry algorithm operates by first

capturing images. The features in the images are then detected and tracked over

time using an implementation of the Lucas-Kanade feature tracker [1]. After the

features have successfully been tracked, their 3D positions are calculated using their

2D position information and the intrinsic parameters of the camera. Once all of the

feature’s 3D positions are known, ego-motion is calculated using the feature’s current

position, previous position and a five point pose algorithm described by Nister [24].

Although this work is still in the initial phase, Wilson et al. [28] have successfully

implemented this system and have tested it off-line using images captured during live

bronchoscope procedures. No test results were provided in this research and it is not

known which type of system is required to run this algorithm in real-time while the

procedure is being performed live in an operating theatre.

This example of using a visual odometer for measuring the position of a scope

during a medical procedure solidifies the fact that visual odometry is not only limited

to just the field of robotics. It shows that visual odometery can be deployed in fields

that can aid the general public.
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2.3 Final Thoughts

This chapter has provided the background for this thesis and investigated and

summarized the current and previous research in visual odometry. From the infor-

mation gathered above, a few observations can be made.

The first observation is that most of the research cannot be implemented on a

small scale embedded system. The computational requirements are too great. At

a minimum, most of the implemented systems required at least a Pentium 3 class

system to operate.

Amedi [9] has shown that this is not always the case because his system was

implemented as an onboard solution. The downside to this kind of approach is that

it requires the use of an expensive custom hardware solution. For the majority of

research and commercial applications, this is too cost prohibitive. Cheng et al. [16]

have also proven that this observation is not correct by having their system operating

on the Mars Rovers which is implemented on a small scale embedded system. It is

noted however that this system required a minimum of two minutes to update. This

is practical on Mars where the robot does not need to move quickly and where there

is no chance of encountering moving obstacles. This would not work in environments

such as high speed driving where control feedback needs to be as quick as possible in

order to avoid collisions with other moving vehicles.

The second observation that is that most of the systems follow a similar approach

to calculate ego-motion. This approach is that image features are tracked over time

using a feature tracker such as KLT [1] and the ego-motion is calculated by measuring

the displacement of the features over time.
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Visual Odometry System

This chapter describes the complete visual odometry system that has been devel-

oped over the course of this thesis. Figure 3.1 shows a high level diagram of the

designed system.

The visual odometry system consists of a visual odometry algorithm, a motion

Task Controller

Localization

Motion Model

Visual Odometry

Sensors Actuators

Lines 
on the ground

(General)

Landmarks

Objects
(Specific)

Figure 3.1: System Design of the Visual Odometry System.
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model and a task controller. The motion model describes the movement of the robot

as it is commanded to move throughout the world. The visual odometry algorithm

is responsible for processing the visual feedback and calculation of the ego-motion

of the robot. The task controller is responsible for navigation, control and position

estimation of the robot. Each part of the visual odometry system will be explained

in more detail in the following subsections.

3.1 Motion model

The motion model is a representation of how the robot behaves when a motion

command is issued. The motion model is broken down into four separate parts:

• Move forward model. Describes the robot’s forward movement

• Move reverse model. Describes the robot’s reverse movement

• Turn left model. Describes the robot’s left turns

• Turn right model. Describes the robot’s right turns

Each model represents a different movement of the mobile robot. Each model in

turn tries to accurately describe how the mobile robot moves throughout its world

and is modeled by using an average of the last ten successfully measured movements.

These models are updated only when visual feedback is available. For example,

if the robot is commanded to move forward by 5-cm and it actually moves 7-cm

forward with a positive angle of 0.2 radians, it needs a method of keeping track of

its actual movement. If this does not occur, the incremental error would be greater
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than expected when motion feedback is unavailable. In the absence of this motion

model there would not be a good way to predict how the robot moves if no feedback

is available. One could use the statically defined motion command distances and

rotations, but this would lead to greater error as the mobile robot progressed over

time.

The motion model also allows for dynamic motion estimation when the robot

changes from one surface to another. This is accomplished by updating the models

when visual feedback is available. For example, if a mobile robot’s drive system

is tuned and modelled to run on smooth surfaces such as an office floor, its physical

motion will change if it moves from the smooth surface to a plush surface (i.e. carpet).

The motion model will change its internal belief of how the robot moves on this

new surface as new feedback information is available and therefore provide a better

estimation of the robot’s actual motion when feedback is unavailable.

In summary, the motion model allows the robot to predict the amount of motion

that was supposed to take place after every motion command has been executed and

is primarily used when motion feedback is unavailable.
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3.2 Visual odometry algorithm

The visual odometry algorithm is a complex system. It is responsible for deter-

mining the ego-motion of a mobile robot. The system receives input in the form

of a sequence of images which it uses to calculate the change in robot position and

orientation. The algorithm consists of image processing, line detection, line tracking

and distance / orientation calculation steps. Figure 3.2 shows a high level overview

of the complete algorithm. Details of each component are provided in the subsections

that follow.

Raw 
Image

Image 
Processor

(Sobel,blur)
Line Detection

(Hough Transform)
Line Tracker

Distance / 
Orientation

Distance and 
Orientation

Motion Model
Update

Figure 3.2: Graphical realization of the visual odometry algorithm.

Normal operation of the algorithm begins when the image processor receives a raw

image. The image processor performs an image blur, Sobel edge detection [29] and

a binary threshold on that image. The resulting data is then passed on to the line

detection algorithm. This algorithm attempts to find and extract all strong feature

lines that exist in a processed image. If lines have been found and extracted from the

processed image, their image position and orientation information are passed on to

the line tracking step.
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The line tracker receives the extracted line data and tries to track these extracted

lines in the sequence of images. It accomplishes this by first creating a list of the

extracted lines and then comparing this new list to a list of all previous found lines

that were being successfully tracked. The resulting data provides the distance /

orientation step with information on how each tracked line has changed between each

image in the image sequence.

Ego-motion of the mobile robot is calculated in the displacement / orientation

calculation step. This step takes the change in line position and orientation of each

tracked line and computes the real world change in robot displacement and orienta-

tion. It does this by first converting each line’s position and orientation to real world

values. It then calculates the robot’s actual change in position and orientation by

computing the difference between a tracked line’s current position and orientation and

its previous position and orientation. Once each tracked line’s displacement and delta

orientation has been calculated, the robot’s ego-motion is measured by taking the me-

dian displacement and delta orientation of all tracked lines. If the visual odometry

algorithm is not tracking lines, then the displacement / orientation calculation step

calculates the robot’s ego-motion by using the position and orientation information

from the motion model.
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A visual example of using extracted lines to calculate robot ego-motion is shown

in Figure 3.3.

Figure 3.3: This is an example of a two image input sequence that is applied to
the system. The system calculates the change in robot orientation and position by
comparing the change in line position between the two images. The output from the
system will be delta position and delta orientation.

3.2.1 Image processing

Each new image from the visual sensor must be processed in order to obtain the

strong lines that exist in the scene. The image processor is a pipeline that receives

a new image and then processes that image. Each image is converted from colour to

grey scale, blurred and finally convoluted with a Sobel convolution mask to detect

edges in both the X and Y directions. Figure 3.4 shows a graphical representation of

the complete image processing pipeline.

Grey scale conversion

To begin with, images must be converted to grey scale because the additional

information that is available from the colour information will not aid in the detection



Chapter 3: Visual Odometry System 35
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Image Blur to eliminate noise

Figure 3.4: Graphical realization of the image processing pipeline.

of strong lines. Depending on the image format, there are a number of ways to

convert from colour to grey scale. In the design for this thesis, the image format of

the camera is YUV. For YUV image formats, there is no conversion necessary as the

YUV format’s main channel Y represents the brightness of the image. This brightness

channel Y is used as the grey scale component of the image.

Image blur

In order to eliminate some of the high frequency noise that is present in the

acquired image, a low pass filter needs to be applied. For this thesis a blurring filter

is used. Blurring is also known as image smoothing since it removes some of the
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image’s high frequency components. An image’s high frequency components contain

the image’s detail and the image’s noise. The blurring filter is applied as a convolution

operation on the image. The convolution mask used in the blur filter is a three by

three neighbourhood mask that takes the average of all the pixels located in that

neighbourhood. The result of applying the blur filter to the captured images is that

the images look smoother and most of the image noise is eliminated.

Edge detection

After blurring is complete, the image is run though an edge detection phase. In

a given image, an edge represents a large spatial rate of change in a group of pixel

intensities. This large rate of change can be discovered by calculating the gradient

of an image. By calculating the gradient of the image in the X direction, all vertical

edges can be found. Calculating the gradient in the Y direction finds all horizontal

edges. Both horizontal and vertical edges can be found at once by calculating the

gradient of the image in both directions at the same time. For this thesis, a Sobel

edge detector [29] is used to find the gradient of the image in both the X and Y

directions. The Sobel edge detector [29] performs a convolution operation on the

image in both directions. The masks that are used for this convolution operation can

be seen in Figure 3.5. After the edge detection phase is complete, the resulting image

is then thresholded to create a binary image. This binary image contains all found

edges with black (zero) representing the background and white (255) representing the

edges in the image. Figure 3.6 shows a raw image and the resultant image after image

processing.
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Figure 3.5: Sobel convolution mask.

Figure 3.6: a) Raw image. b) processed image.

3.2.2 Line detection

Under normal circumstances, line information is represented with the standard

equation for a line (see Equation 3.1).

Y = mX + B (3.1)

This standard representation of a line is not a good choice for embedded implementa-

tions. Vertical lines have infinite slopes which cannot be represented in a computer.
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It is for this reason that lines need to be represented in their polar form. Polar form

lines are represented by ρ and φ, with ρ representing the distance from the origin to

the perpendicular intersection of the line and φ being the angle between the line that

ρ represents and the zero radian mark. Equations 3.2 and 3.3 show the representation

of a line in polar form and Figure 3.7 shows it graphically.

φ = arctan(X/Y ) (3.2)

ρ = cos(φ)X + sin(φ)Y (3.3)

Figure 3.7: Representation of a line in polar form.
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The line detection algorithm uses the Hough transform [30] to detect lines [31].

In the Hough transform, lines are represented and stored in Hough space [30]. Hough

space is a two dimensional matrix with X representing φ in radians and Y representing

ρ in pixels. The cells that are defined by X and Y represent a count or vote of how

many pixels are found with a specific ρ and φ.

The Hough transform traverses every pixel in an image. If a pixel is an edge pixel,

it votes in the Hough space for every line that would run through it. After the Hough

transform is complete, each cell in the Hough space will have a count of how many

pixels have voted for a line with a specific φ ( X ) and ρ ( Y ). The higher the count,

the higher the confidence that a true line exists at that distance and orientation.

To clarify how the Hough transform works Figure 3.8 shows an example of a line

detected by the Hough transform in image space and its representation in Hough

space. In this example (Figure 3.8), there are several individual edge points that

represent a line with a distance of ρ and an orientation of φ that is detected by the

Hough transform. Each edge pixel in image space represents a sinusoidal curve in

Hough space. The intersection of these curves represent a line in image space with a

distance of ρ and an orientation of φ. The more curves that intersect at ρ and φ, the

stronger the possibility that a line exists at that point.
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Figure 3.8: Example of a line detected by the Hough transform and its representation
in Hough space.

Figure 3.9: Example of extracted Hough lines. The image on the left shows the raw
image. The image on the right shows the extracted Hough lines.

Once the Hough transform is complete, all lines with votes over a certain thresh-

old will be extracted from the Hough space and stored in polar form for continued

processing. An example of the extracted Hough lines can be seen in Figure 3.9
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One problem that exists with trying to detect lines using the Hough transform is

that image noise and discretization error can lead to lines in an image that are not

detected. One way to compensate for this is to smooth the Hough space. In this

thesis, each cell in the Hough space still represents a single ρ and φ but each time

an edge pixel votes for a line in a cell, the neighbouring cells are also given a partial

vote for that line.

Another problem with the Hough transform is that it is very computationally

expensive and it is not well suited for real-time applications on an embedded platform.

To increase the execution speed of the Hough transform, the line detector is limited

to detecting lines within a specific range of orientations. The range of orientations

is determined by analysing the lines that exist in the captured images. Lines that

are close to being parallel to the view of the robot or horizontal lines have the most

information that is useful in measuring ego-motion. The information that horizontal

lines contain allow the ego-motion calculations to calculate vertical displacement as

well as orientation changes in the mobile robot. Vertical lines are not a good feature to

use in the estimation of ego-motion because they do not provide enough information

alone to measure the vertical displacement of the robot. They are only useful to

estimate rotational motion of the robot. Using this reasoning, the line detector is

limited to search for lines with orientations in the range 40◦ to 140◦ (near horizontal

to horizontal).
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3.2.3 Line tracker

The line tracker is responsible for tracking detected image lines as they move

throughout the image over time. It accomplishes this by comparing all newly ex-

tracted lines that have been found by the line detector to all lines that are currently

being tracked.

When the line tracker was designed, two cases needed to be incorporated into the

algorithm. These cases were; how the line tracker functions if the robot has moved a

large distance and how the line tracker will distinguish one line from another when

tracking multiple lines.

In the first case, when the robot is moved by an external force or has moved a

large distance, newly detected lines cannot be guaranteed to be the same lines that

the system is tracking. It is for this reason that I have conducted my research under

the assumption that the robot cannot move in large increments and will not be moved

by external forces.

In the second case, when the system is tracking several lines in one image and sev-

eral in the next, it is a problem for the system to distinguish one line from another.

In the most simple scenario, if the system is tracking one line, line tracking becomes a

trivial problem. To track the single line, the system monitors the line’s position as it

moves throughout the image. When the system is tracking several lines at once, there

needs to be a way to distinguish that an extracted line is a tracked line and not a new

line. To solve this problem, I have come up with a simple method to track multiple

image lines. This method uses a criteria of how a line should change given the motion

of the robot. The criteria states that the change in ρ and change in φ can only be
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within a certain threshold or the lines will not be considered the same. There are two

separate thresholds for ∆ρ and ∆φ. The ∆ρ threshold is defined as MaxRhoChange

and the ∆φ threshold is defined as MaxPhiChange. The MaxRhoChange and Max-

PhiChange thresholds used in this thesis were determined during testing using trial

and error. There are two trade-offs that need to be considered when selecting the

thresholds. The first is that if the thresholds are too restrictive, lines will not be

tracked and the visual odometry system will rely solely on the motion model for ego-

motion estimation. The second is that if the thresholds are non-restrictive, the line

tracker will not be able to distinguish one line from another and the visual odome-

try system could produce a very large ego-motion estimation error. Given these two

trade-offs it is better to rely solely on the motion model for ego-motion estimation

rather than relying on a line tracker that could generate large errors in ego-motion

estimation.

Line tracking begins when the line tracker receives a list of extracted lines from

the line detector. If this is the first time that the line tracker has been executed

or no lines are currently being tracked, the line tracker adds all the lines found by

the line detector to a list of currently tracked lines. If the line tracker is currently

tracking lines, the line tracker compares the list of currently tracked lines to the list

of extracted lines provided by the line detector. Each entry in the list of tracked lines

contains information about a tracked line’s current position and its previous position.

Figure 3.10 shows the information stored for each tracked line.
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TrackedLineData{

CurrentLinePosition.rho

CurrentLinePosition.phi

PreviousLinePosition.rho

PreviousLinePosition.phi

NotSeenCount

}

Figure 3.10: Information stored in each tracked line.

The line tracker tries to match each extracted line to a line in the list of tracked

lines. It does this by comparing the ρ and φ of the extracted line to all of the lines in

the list of tracked lines. If the difference between the extracted and a tracked line’s ρ

and φ are within the MaxRhoChange and the MaxPhiChange thresholds, the lines are

considered to be the same and a successful match has been achieved. At this point,

the tracked line’s previous position is set to its current position and the tracked line’s

current position is set to the position of the extracted line. If no match is found, the

extracted line is added as a new line in the list of tracked lines. If a tracked line is not

found in the list of extracted lines, a count is kept of how many times this line has

not been seen. If this count is above a set limit, then the line could not be tracked

and it is removed from the list of tracked lines. Figure 3.11 displays the pseudocode

for this algorithm.
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//Traverse list of all lines currently being tracked
for( i = 0; i < SizeOf( TrackedLines ); i++){

MATCHFOUND = FALSE
 //Traverse list of extracted lines
for( j = 0; j < SizeOf( ExtractedLines ); j++){

DeltaRho:= abs( TrackedLines[ i ]. currentPosition.rho - ExtractedLine.position.rho)
DeltaPhi:= abs( TrackedLines[ i ]. currentPosition.phi - ExtractedLine.position.phi)
//If tracked line and extracted line within threshold, a match found
if( DeltaRho < MaxRhoChange AND DeltaPhi < MaxPhiChange){
            MATCHFOUND = TRUE
            //reset line not seen count
           TrackedLines[ i ].notSeen = 0
           //update tracked lines new position
           TrackedLines[ i ].previousPosition = TrackedLines[ i ].currentPosition
           TrackedLines[ i ].currentPosition = ExtractedLines[ i ].position
           //Remove extracted line from list, so it is not checked again
             ExtractedLines.removeElementAt( i )
}

}
//If line not found in extracted line list then update not seen count
//If not seen count greater than notSeen threshold remove tracked line
if( MATCHFOUND == FALSE)

TrackedLines[ i ].notSeen++
if( TrackedLines[ i ].notSeen > NOTSEENTHRESHOLD)

TrackedLines.removeElementAt( i )

}

Figure 3.11: Pseudocode for the line tracking algorithm.

The output of the line tracking algorithm is a list of all successfully tracked lines.

This information can be utilized by the displacement / orientation calculation to

calculate the ego-motion of the robot.
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3.2.4 Displacement / Orientation Calculation

The displacement and orientation calculation is responsible for calculating the

ego-motion of the mobile robot. This step calculates the ego-motion by analysing the

list of tracked lines that is populated by the line tracker. Once the list of tracked lines

has been analysed, the ego-motion of the mobile robot is estimated. If the tracked

line list does not contain any lines, then this step uses the motion model to determine

the ego-motion of the robot.

The displacement and orientation calculation estimates robot ego-motion in terms

of the change in robot orientation ∆θ and the displacement of the robot S. The

calculation analyses all of the lines in the tracked line list and calculates every line’s

∆θ and S. After ∆θ and S have been calculated for all individually tracked lines,

the ego-motion of the robot is determined by taking the median ∆θ and the median

S. The median values of ∆θ and S are chosen to eliminate outliers in the ego-motion

estimation. To help reinforce the overall picture of the algorithm, Figure 3.12 displays

its pseudocode.
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//Traverse list of all lines currently being tracked
for( i = 0; i < SizeOf( TrackedLines ); i++){

    // Calculate change in line orientation relative to centre of robot’s view
    DeltaOrientationArray[ i ] := CalculateChangeInLineOrientation ( TrackedLine[ i ] )

  // Calculate change in robot’s distance to line relative to centre of robot’s view
    DeltaDistanceArray[ i ] := CalculateChangeInLineDistance( TrackedLine[ i ] )
}

// Change in Robot orientation relative to centre of robot’s view
changeInRobotOrientation := medianValue (  DeltaOrientationArray[ ] )

// Robot displacement relative to centre of robot’s view
robotDisplacement := medianValue ( DeltaDistanceArray[ ] )

Figure 3.12: Pseudocode of the displacement and orientation algorithm.

The change in a tracked line’s orientation ∆θ is calculated by analysing its pre-

vious and current positions. Using this position information, the line’s previous and

current orientations are calculated. The change in the line’s orientation is the differ-

ence between its previous orientation and current orientation. A positive change in

line orientation indicates that the robot has turned left. A negative change in line ori-

entation indicates that the robot has turned right. Figure 3.13 shows the pseudocode

of the orientation calculation.
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//Calculate change in line orientation relative to centre of robot’s view
calculateChangeInLineOrientation( TrackedLine ){

    //Calculate the tracked line’s previous orientation relative to centre of robot’s view
    prevOrientation :=  calculateOrientation( TrackedLine.previousPosition )

    //Calculate the tracked line’s current orientation relative to centre of robot’s view
    currentOrientation :=  calculateOrientation( TrackedLine.currentPosition )

   //Calculate change in robot orientation
  orientationChange := prevOrientation - currentOrientation

  //Return change in robot orientation
  return  orientationChange
}

Figure 3.13: Pseudocode of the change in orientation calculation.

The displacement S of a tracked line is calculated by analysing its previous and

current positions. A tracked line’s previous and current distances to the robot are

calculated using this position data. The displacement of the line is the difference

between its previous distance to the robot and its current distance to the robot. A

positive line displacement indicates that the robot has moved forward. A negative

line displacement indicates that the robot has moved backwards. Figure 3.14 shows

the pseudocode of the displacement calculation.
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//Calculate the change in the line’s distance to the robot, relative to centre of robot’s view
calculateChangeInLineDistance( TrackedLine ){

    //Calculate the tracked line’s previous distance to the robot relative to centre of robot’s
view
    prevDistance :=  calculateDistanceToLine( TrackedLine.previousPosition )

    //Calculate the tracked line’s current distance to the robot relative to centre of robot’s
view
    currentDistance := calculateDistanceToLine( TrackedLine.currentPosition )

   //Calculate robot displacement
   displacement := prevDistance - currentDistance

  //Return robot displacement
  return  displacement
}

Figure 3.14: Pseudocode of the displacement calculation.

3.3 Task Controller

A simple task controller was developed to determine the feasibility of the visual

odometer. The task controller determines the overall behaviour of the robot. It uti-

lizes the ego-motion estimated by the visual odometry algorithm to perform three

functions. These are to update the robot’s belief of where it is in the world (localiza-

tion), execute the path that the robot must follow and develop the necessary control

outputs that are sent to the drive system.
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Given the initial hardware that was supplied for this thesis (see chapter 4 for de-

scription), it was noted that the captured images could not be processed in real time.

This was due to the limitations of the embedded system and the requirements of the

image processing algorithms. A normal iteration of the image processing algorithms

(from capture to final processing) required 25 seconds to complete. Therefore, the

task controller had to be designed to allow for the slow processing time.

The task controller’s overall or high level design allows the robot to capture an

image, process the image, calculate the ego-motion, decide what action needs to

take place and finally execute that action (drive the robot). This is considered one

iteration or update of the control loop of the robot. Figure 3.15 shows a flow chart

of one iteration of the control of the robot.
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Acquire
image

Process image

Estimate ego-
motion

Decide action

Execute 
action

Figure 3.15: Flow chart of one iteration of the robot controller.

The low level design of the task controller allows the robot to update its belief

of where it is using the information from the visual odometry algorithm or motion

model. It also executes and controls a state-machine that decides which path the

robot should travel by sending commands to the drive system. This state-machine

will be referred to as the path state-machine. Figure 3.16 shows a flow chart of one

iteration of the low level control of the task controller.



Chapter 3: Visual Odometry System 52

visual ego-
motion data 

available

Update motion 
model

Use motion model 
for ego-motion

Update position 
and orientation

Yes

NO

Execute path 
state machine

Calculate control 
outputs

Send 
control 
outputs

Figure 3.16: Flow chart of the low level design of the task controller.

The low level control of the task controller begins after the robot’s ego-motion has

been calculated. If the visual odometry algorithm is able to estimate the ego-motion

of the robot, then the task controller uses the calculated ego-motion to update the

robot’s position, orientation and motion model. If the visual odometry algorithm is

unable to estimate the ego-motion of the robot, then the task controller uses dead

reckoning (by using the motion model information) to estimate the ego-motion and
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update the robot’s position and orientation. Once this is complete, the path state-

machine is executed. The path state-machine decides which action should take place

based on where the robot is positioned. After the path state-machine has decided

which action the robot should execute, the drive command is determined and sent to

the drive system.

The path state-machine controls the robot to execute different paths or patterns

that are particular to different applications. In this thesis the patterns that are

executed are specific to the evaluation that took place and are a linear traversal and

a figure eight. Each state representes a different part of the pattern that the robot

is supposed to execute. The path state-machine has two different behaviours that

can be executed in each state. These behaviours are defined as turn angle and move

distance.

The turn angle behaviour controls the robot to turn an angular amount specified

by the path state-machine. It does this by commanding the robot to leftTurn( )

increment or rightTurn( ) increment and checks how far the robot has turned at the

next pass through the path state-machine. If the robot has turned the angle that has

been specified in that state, then that state is complete and the robot executes the

next state in the path state-machine. Figure 3.17 shows the pseudocode for this state

behaviour.



Chapter 3: Visual Odometry System 54

//Example  of the turn angle behaviour in the path state-machine.
//This example is to turn the robot left by PI radians.
else if ( pathState == 1 ){ // Turn by PI

SP = 3.14; //Set point is PI radians
//deltaTheta calculated by visual ego-motion or motion model
MV+=  deltaTheta;  //Measured variable is the sum of the angle changed for this state
motionState = MOTION_STATE_LTURN;  //Commands drive system to turn left

if ( MV >= SP ) { //if reached set point, turn stop turning
motionState = MOTION_STATE_OFF;
MV = 0;
pathState++;

}
}

Figure 3.17: Pseudocode of the turn angle behaviour.

The move distance behaviour controls the robot to move a distance amount spec-

ified by the path state-machine. It does this by commanding the robot to moveFor-

ward( ) increment or moveReverse( ) increment and checks how far the robot has

moved at the next pass through the path state-machine. If the robot has moved

the amount that has been specified in that state, then that state is complete and

the robot executes the next state in the path state-machine. Figure 3.18 shows the

pseudocode for the move distance state behaviour.
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//Example of the move distance behaviour in the path state-machine.
//This example is to drive the robot straight by 200cm
else if ( pathState == 2 ){ // drive forward 200 cm

SP = 200.0; //Set point is 200cm forward
//deltaS calculated by visual ego-motion or motion model
MV+=  deltaS;  //Measured variable is the sum of the distance changed for this state
motionState = MOTION_STATE_FWD;  //Commands drive system to drive forward

if ( MV >= SP ) { //if reached set point, turn stop driving
motionState = MOTION_STATE_OFF;
MV = 0;
pathState++;

}
}

Figure 3.18: Pseudocode of the move distance behaviour.

By using a combination of both the turn angle and move distance behaviours, any

pattern can be developed and the robot can be commanded to execute the developed

pattern. For example, if the desired pattern is for the robot to drive straight for 200

cm, turn around (turn 3.14 radians) and drive back (drive 200 cm), then the path

state-machine in Figure 3.19 would be used. Figure 3.19 shows the pseudocode for

this state-machine.
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//Traverse 200 cm forward
if ( pathState == 0 ){ // drive forward 200 cm

SP = 200.0; //Set point is 200cm forward
//deltaS calculated by visual ego-motion or motion model
MV+=  deltaS;  //Measured variable is the sum of the distance changed for this state
motionState = MOTION_STATE_FWD;  //Commands drive system to drive forward

if ( MV >= SP ) { //if reached set point, turn stop driving
motionState = MOTION_STATE_OFF;
MV = 0;
pathState++;

}
}

//Turn robot around
else if ( pathState == 1 ){ // Turn by PI

SP = 3.14; //Set point is PI radians
//deltaTheta calculated by visual ego-motion or motion model
MV+=  deltaTheta;  //Measured variable is the sum of the angle changed for this state
motionState = MOTION_STATE_LTURN;  //Commands drive system to turn left

if ( MV >= SP ) { //if reached set point, turn stop turning
motionState = MOTION_STATE_OFF;
MV = 0;
pathState++;

}
}

//Come back to start
else if ( pathState == 2 ){ // drive forward 200 cm

SP = 200.0; //Set point is 200cm forward
//deltaS calculated by visual ego-motion or motion model
MV+=  deltaS;  //Measured variable is the sum of the distance changed for this state
motionState = MOTION_STATE_FWD;  //Commands drive system to drive forward

if ( MV >= SP ) { //if reached set point, turn stop driving
motionState = MOTION_STATE_OFF;
MV = 0;
pathState = 99; //pattern completed

}
}

Figure 3.19: Pseudocode of example path state-machine.
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Visual Odometry System Hardware

/ Software Implementation

The visual odometry system cannot function on its own. It requires the addition

and integration of multiple system components. This chapter describes each of the

additional system components which include both hardware and software.

4.1 Mobile Platform

The mobile platform is a custom platform that was developed over the course of

this research. It consists of two continuous rotation servos, a servo controller and

behaves as a differential drive robot.

The initial goal was for the platform to function as a disposable Urban Search

and Rescue (USAR) robot. This led to the first version of the design. The initial

design was constructed out of thick plastic sheeting. Figure 4.1 shows the first plastic

57
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prototype of the designed platform. This platform competed in the AAAI robot

competition in July 2003 Mexico. This platform did not survive the competition

because it was not sturdy enough, so a second design had to be created.

Figure 4.1: First design of the mobile platform.

The second design of the platform was the same as the first except that it was

constructed to withstand more stress and handling. This was accomplished by rein-

forcing the platform’s joints with plastic sheeting. This design of the platform was

used for six months of research until it finally self-destructed from excessive use and

testing. Figure 4.2 shows the second design of the platform. It was determined that

plastic sheeting was not strong enough to use in the USAR domain.
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Figure 4.2: Second design of the mobile platform.

The experience gained from constructing and using the first two models of the

platform led to the third design which incorporated a steel frame for the mobile

robot. This design was much more stable than the first two and it was used for

most of the conducted research. The steel platform competed successfully in the 2004

Robocup Rescue Competition in Lisbon, Portugal. Figure 4.3 shows the third design

of the mobile platform.

Figure 4.3: Third design of the mobile platform.
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The steel frame design of the platform worked best overall and is still in use today.

Because of the evolution of the embedded platform (see Section 4.2), the mobile

platform had one more design revision to incorporate the external USB camera and

accommodate for the larger PDA. Figure 4.4 shows the current version of the mobile

platform that was used for the final research that was conducted.

Figure 4.4: Current version of the mobile platform.

4.2 Embedded Platform

The initial embedded system that was used for the visual odometry system was an

Intel Stayton board. The Stayton board is a single board computer with the following

specifications:
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• 400Mhz Intel PXZ250 Xscale processor using ARM instruction set

• 32MB Ram

• ARM Linux embedded OS

• USB host port

Early on in the design phase, it was discovered that using a colour screen to

view the captured images would aid in the troubleshooting of the image processing

algorithms. The colour screen allowed the results of these algorithms to be seen in

real-time rather than waiting for them to be uploaded and viewed off-line. Given the

debugging capabilities of the colour screen and the fact that the Stayton board was

a pre-production embedded system that was not easily obtainable, it was decided to

obtain an embedded system that was readably available and had a colour screen.

The embedded system that was chosen to replace the Stayton board was a Sharp

Sl-5000D Zaurus PDA with the following specifications.

• 200Mhz Intel StrongARM processor

• 32MB Ram

• ARM Linux embedded OS

• Compact flash camera

• 3.5 Inch TFT touch screen
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After using this system, it was found that the colour screen was an invaluable

resource that reduced the amount of time needed to design and test algorithms. One

problem was found with this Zaurus. The processor and compact flash camera were

not able to capture and process images at rate which would allow the robot to move

continuously. This limitation led to the control algorithms that were developed in

Section 3.3.

In the final testing phase of the research, a new embedded system was available

and used for the evaluation of the system. This system was a Sharp SL-C1000 Zaurus

Linux handheld with the following specifications.

• 416Mhz Intel PXZ270 Xscale processor using ARM instruction set

• 64MB Ram

• ARM Linux embedded OS

• USB host port

• 3.7 Inch TFT touch screen

Additional hardware that was used by the embedded platform was a Logitech

QuickCam 4000Pro which captured the required images and a serial connection to

the drive system which allowed communications between the drive system and the

embedded system.
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4.3 Camera Calibration

To successfully calculate the ego-motion of the mobile robot, the visual odometry

system needed to be able to understand what a pixel’s real world coordinates were.

These real world coordinates provided the visual odometry system with a pixel’s real

X coordinate and Y coordinate values in millimetres. To determine a pixel’s real world

values, the visual sensor needed to be calibrated. The calibration methods used in

this research are based on Roger Tsai’s calibration model [32] and Reg Wilson’s initial

PC based implementation [33]. To calibrate the camera, test images were acquired

from a test pattern that was placed in front of the robot (see Figure 4.5). The test

images were then run through an off-line Tsai model [32] based coplanar calibration

program. Coplanar calibration is a two dimensional camera calibration that requires

the calibration points to be two dimensional. This meant that all calibration points

were situated on the ground plane with a Z axis value of zero. The output of the

calibration program yielded a two dimensional matrix that was integrated into the

robot program as a look up table. After the sensor had been calibrated, the system

was able to obtain a real world (X,Y) coordinate value from a given pixel position

using this table.
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Figure 4.5: Picture of the calibration test pattern used in the calibration of the
camera.

4.4 Application GUI

To take advantage of the embedded system’s colour screen, a custom application

GUI needed to be developed. The GUI allowed the camera’s raw image and the

processed images to be displayed to the user. The GUI also allowed for the robot’s

drive system and control parameters to be quickly modified. The GUI was constructed

using the QT toolkit from Trolltech Inc. The GUI consists of a main control pane that

controls the starting, stopping and other different functions of the robot. Figure 4.6

shows the control GUI pane.
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Figure 4.6: GUI pane for controlling the robot.

The GUI also contains three image viewers, one for viewing the raw images, one

for viewing the detected edges and one that displays all extracted lines found by the

line detection algorithm. Figure 4.7 displays the raw image viewing pane.

Figure 4.7: GUI pane that displays raw images captured by the camera.
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The GUI also has a pane that allows a user to set all of the parameters of the drive

system and tune the drive system for accurate dead reckoning. Figure 4.8 displays

the drive system control pane.

Figure 4.8: GUI pane that controls the drive system.
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4.5 Drive System

The drive system consists of a standalone servo controller and software interface.

The servo controller is a Pontech SV203 micro-controller which communicates with

the embedded platform (Zaurus) to control the mobile platform’s actuators. The

software interface consists of a separate thread to control the robot’s motion and five

motion commands to move the robot. The following lists the commands developed

for this system.

• driveForward( ); //drive robot straight

• driveReverse( ); //drive robot straight back

• stop( ); //stops robot

• turnLeft( ); //turn robot left on the spot

• turnRight( ); //turn robot left on the spot

The driving and turning commands turn and move the robot a predetermined

amount of radians and distance in millimetres. These distances and radians are set

for accurate dead reckoning performance by tuning each actuator through the drive

system GUI pane.
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System Evaluation

The following chapter describes the evaluation of the visual odometry system that

was developed. The visual odometry system was evaluated against two comparison

systems. Each of the three systems completed two different tests. The results of

each of the comparison systems were compared to the results obtained by the visual

odometry system. A final discussion will evaluate the results and performance of each

of the three systems.

5.1 System Comparisons

Two different systems were implemented and compared against the visual odom-

etry system in order to evaluate its performance.

The first comparison system used a commercial mobile robot. It was based on

an ActivMedia Pioneer. The Pioneer is a differential drive robot that uses only

shaft encoders for ego-motion estimation. All of the shaft encoder based position

68
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measurement algorithms have already been developed and are part of the Player-

Stage [34] software that currently controls the Pioneer. This robot was programmed

to run the predetermined test courses which are explained later in this section. For

the rest of this thesis, the Pioneer will be referred to as the shaft encoder system.

The second comparison system was an optical flow based odometry system. This

system utilized the mobile platform and the embedded system that was developed for

the visual odometry system. The optical flow based system is an implementation of

a KLT [1] based visual ego-motion system. The KLT algorithm has been developed

by Stan Birchfield [35]. The optical flow odometry algorithm utilizes the tracked

features returned by the KLT algorithm to determine the ego-motion of the robot.

Ego-motion is calculated by first taking each tracked feature and then measuring its

change in position between two consecutive images. The measurement provides the

change in X and Y of a feature point. This information is then converted to the

change in robot distance and angle. In this implementation, the KLT feature tracker

tracks a maximum of 100 different features in a image. When the KLT feature tracker

has completed an update, the algorithm is left with 100 data points that each provide

the change in robot position and angle. In order to try to eliminate outliers in the

data and provide a more accurate estimation of the ego-motion, the median change

in robot distance and angle is selected to be the estimated ego-motion of the mobile

robot.
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Figure 5.1: Example of Test 1.

5.2 Test 1: Linear traversal of a soccer field

In this test, each robot started at one end of a 274 cm by 152 cm soccer field,

traversed the field and stopped when it thought that it had reached the other side

(see Figure 5.1 for a diagram of the field and test). At this point, a record was

made of the robot’s position. The test continued and the robot autonomously turned

around and stopped. Once again, a record was made of the robot’s position. Next,

the robot traversed the soccer field back to its starting point. The robot’s position

and orientation were once again recorded. When the test was finally complete, the

recorded data was analysed and the position and orientation data of each robot was

compared to all other robots. Each robot was tested in two separate test runs, Run

1 and Run 2. The decision to only conduct two test runs will be explained in detail

in 5.6.2.
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Figure 5.2: Example of Test 2.

5.3 Test 2: Figure eight path traversal of a soccer

field

In this test, each robot started at one end and side of a 274 cm by 152 cm soccer

field, traversed the field autonomously in a figure eight and ended up at the goal line

near its starting position (see Figure 5.2 for a diagram of the field and test). Each

time the robot thought that it had reached a measurement point, its position and

orientation were recorded. A measurement point is where the robot stopped after

a linear traversal or a turn. When the test was finally complete, the recorded data

was analysed and the position and orientation data of each robot was compared to

all other robots. Each robot was tested in two separate test runs, Run 1 and Run 2.

The decision to only conduct two test runs will be explained in detail in 5.6.2.
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5.4 Test variation: Environmental debris

Test 1 was repeated with thin rods placed arbitrarily on the field. These rods

were used in order to cause an introduction of error in the odometeric system of each

robot. The purpose of this test was to evaluate how each system performed with this

introduced error. See Figure 5.3 for an example of the testbed with environmental

debris.

Figure 5.3: Example of testbed with environment debris.
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5.5 Experimental Results

The following section evaluates and compares the test results of the developed

system to the results obtained from each of the comparison systems. All experimental

result graphs (Figures 5.5 through 5.10) show the outcomes of running each system

through all tests and test runs. The graphs represent each system’s traversal of the

specific test pattern on the Robocup E-league [3] soccer field. The Y axis on the

graphs represent the soccer field from one goal area to the other goal area. The X

axis on the graphs represent one side of the soccer field to the other side. This is

graphically described in Figure 5.4.

When initially testing the visual odometry system, it was discovered that this

system needed to be evaluated using two different camera orientations. These were

with the camera positioned facing down and the camera looking forward. It was

determined early on in testing that having the camera pointing down resulted in the

soccer field lines only being observed for a fraction of the test time. This caused the

visual odometry system to rely heavily on dead reckoning for ego-motion estimation.

When the camera was pointed in a more forward looking position, the system was

able to observe field lines for the majority of the test time and each pixel in the upper

part of the image represented a change in distance from 1 cm to 6 cm. This meant

that if the line data had an error of one pixel, the robot could think it had moved 6

cm or rotated by 40 degrees. Each of these camera orientations caused the developed

system to behave differently. For the remainder of this thesis, the two camera orien-

tations will be considered as two separate systems and will be referred to as, visual

odometry system camera down (VOCD) and visual odometry system camera forward
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Figure 5.4: Graphical representation of the test result graphs X and Y axis.

(VOCF). The problems and shortcomings associated with each camera orientation

will be explained in more detail in Section 5.6.
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Another problem that was observed when initially testing the visual odometry

system was that the platform’s motion was unpredictable. This unpredictability

caused the robot to move a variable amount of distance forward or turn by an unknown

amount of radians after a motion command had been issued. The cause and problems

associated with this unpredictability will explained in detail in 5.6.

In the initial implementation of the KLT system, a problem was found when

the algorithm was cross compiled to run on the Zaurus embedded computer. The

problem was that each iteration of the KLT algorithm took approximately 90 seconds

to complete. This meant that a test requiring 200 iterations would last for five hours.

If there was a problem with the robot during a five hour test, it would mean that

the test would have to be rerun. This is not feasible as the battery capacity of the

Zaurus was only two hours.

To alleviate this problem, a new approach had to be developed. During the

testing of the visual odometry system, the robot collected and stored images at every

iteration. Once each test was complete, the test images were fed into an offline KLT

ego-motion system where the ego-motion of the robot was estimated. Using these

saved images, the offline KLT system was able to process each image in less than a

second resulting in an improvement of a factor of 90.

After analysing the results of running both Test 1 and Test 2 through the KLT

system (Subsections 5.5.1, 5.5.2 and 5.5.3), it was discovered that this system did

not provide good results. The motion field returned by each iteration of the KLT

algorithm provided an inaccurate representation of the robot’s motion. It was thought

that this motion field problem was due to feature aliasing caused by the robot moving
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too far between successive image captures.

At this point, an informal test was performed to discover if this was actually the

cause of the problem. In this test, the robot was moved a small distance between

successive image captures. This step was repeated until the robot had captured 100

images. These images were then processed in the offline KLT system. The motion

fields were visually analyzed and it was found that these motion fields accurately

represented the robot’s motion. Therefore, the initial assumption that feature aliasing

had caused the poor performance of the KLT system in Test 1 and Test 2 was correct.

This will be explained in detail in 5.6.
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5.5.1 Test 1 Results: Linear traversal of a soccer field

Figures 5.5 and 5.6 show the results obtained from running Test 1 on the VOCD,

the VOCF, the KLT system and the shaft encoder system. All data in the test was

determined and recorded by physically measuring the position and orientation of each

robot at every measurement point.

All of these systems could not perform the test pattern. The shaft encoder system

performed somewhat better than the VOCD and the VOCF. It was surprising to dis-

cover that the shaft encoder system did not follow the test pattern. It was assumed

that this system would have performed better than it had, given that there was no

wheel slip present. The VOCD performed better than expected given that the robot

only saw the field lines part of the time during both test runs. The difference in the

performance of the VOCD and the VOCF are due to their different camera orienta-

tions and the problems associated with these orientations (as already discussed at the

beginning of this section). These problems will be discussed in detail in Section 5.6.

The results of the KLT system did not reflect the motion of the robot and did

not produce good ego-motion estimation during both Run 1 and Run 2. This was

due to the problem of the robot moving too far between image captures (as already

discussed at the beginning of this section). This problem will be discussed in detail

in Section 5.6.
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Visual Odometry Camera Down (Test 1)
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Visual Odometry Camera Forward (Test 1)
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Figure 5.5: Test 1 visual odometry camera down and forward results.
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KLT (Test 1)
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Shaft Encoder (Test 1)
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Figure 5.6: Test 1 KLT and Pioneer results.
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5.5.2 Test 1 variation: Environmental debris

Figures 5.7 and 5.8 show the results of running all systems once through Test 1

with environmental debris placed on the course. In this test, the shaft encoder system

could not complete the test pattern and its results were similar to the results obtained

in Test 1 (no debris). The environmental debris that was placed on the field had no

large negative impact on the system. Possibly there was not enough course debris or

the robot was too heavy to be affected by it.

The assumption for the purpose of this thesis was that the introduction of envi-

ronmental debris would affect the visual odometry system during operation. It was

also assumed that the visual odometry algorithm would compensate for this and allow

the system to correct for the wheel slip introduced by the debris. From the results

obtained, this was not the case. The environmental debris introduced a situation that

had not been anticipated beforehand. The debris (thin rods) occluded the field lines

adding many more lines to the captured images. This situation caused the Hough

transform [30] to detect false lines created by the debris. With the introduction of the

debris lines and the falsely detected lines, the line tracker was unable to distinguish

one line from another and track the real field lines. The outcome of this situation was

that the visual odometry algorithm was rendered unusable for the majority of the test.

This resulted in incorrect ego-motion estimation which degraded the performance of

the VOCF and VOCD.

The results of the KLT system did not reflect the motion of the robot and did not

produce good ego-motion estimation during this test. This was due to the problem

of the robot moving too far between image captures (as already discussed at the



Chapter 5: System Evaluation 81

beginning of this section). This problem will be discussed in detail in Section 5.6.
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Visual Odometry Camera Down (Test 1 debris)
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Figure 5.7: Test variation: Environmental debris visual odometry camera down and
forward results.
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KLT (Test 1 debris)
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Figure 5.8: Test variation: Environmental debris KLT and Pioneer results.



Chapter 5: System Evaluation 84

5.5.3 Test 2 Results: Figure eight path traversal of a soccer

field

Figures 5.9 and 5.10 show the results obtained from running Test 2 on the VOCD,

the VOCF, the KLT system and the shaft encoder system. All data in the test was

determined and recorded by physically measuring the position and orientation of each

robot at every measurement point.

During the execution of the test, it was discovered that the shaft encoder system

did not perform well when turning. This poor performance is surprising, given that

this system was a commercial robot.

The VOCD in Run 1 performed well even with the problem of not observing the

field lines at all times. In Run 2, the VOCD did not perform well. The testing had to

be stopped midway because the robot had driven off of the field and could not recover

its position. This poor performance was due to limited field line observation and the

fact that the platform’s behaviour (motion) was not predictable. Overall, the VOCF

performed poorly and the robot did not even remotely follow the figure eight course.

This is due to the problems of having the camera in the forward looking position

and the behaviour (motion) of this platform. These problems will be explained in

Section 5.6.
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The results of the KLT system did not reflect the motion of the robot and did

not produce good ego-motion estimation during both Run 1 and Run 2. This was

due to the problem of the robot moving too far between image captures (as already

discussed at the beginning of this section). This problem will be discussed in detail

in Section 5.6.
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Visual Odometry Camera Down (Test 2)
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Figure 5.9: Test 2 visual odometry camera down and forward results.
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KLT  (Test 2)
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Shaft Encoder (Test 2)
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Figure 5.10: Test 2 KLT and Pioneer results.
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5.6 Final Evaluation

This section will give a final evaluation of all of the systems tested, indicate

which system performed best during the tests and give recommendations on how the

designed visual odometry system could be improved to provide better overall results.

5.6.1 Visual Odometry and KLT System Short Comings

In Subsections 5.5.1, 5.5.2 and 5.5.3 it was found that during testing, the visual

odometry system did not perform as initially thought. This was due to the problems

of the camera position and unpredictable platform motion. These shortcomings will

now be examined in more detail to try to explain the poor behaviour of the designed

system

5.6.1.1 Camera Position

Initially the position with the camera pointing down was chosen because it was

thought that allowing the robot to see the field directly in front of it would allow

it to manoeuvre around any obstacles that it would encounter. The Robocup [3]

soccer field was the domain of interest and the ability to see anything other than the

field would not help the robot to determine its ego-motion. If the position of the

camera had allowed the robot to see a far distance off of the field, the robot could

have observed three dimensional objects that were not part of the ground plane (Z

axis value not equal to zero). This would have meant that the camera calibration

was invalid because the camera was calibrated for 2D surfaces (see Section 4.3). An

invalid camera calibration would have resulted in an inaccurate conversion of the
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detected line’s image positions to their real world positions. This would have resulted

in inaccurate ego-motion estimation.

During testing, it was discovered that having the camera pointing down resulted

in the soccer field lines only being seen part of the time. The partial observation of

the field lines meant that the line feedback could not be used at all times and that

the robot could not update its motion model to more accurately represent its true

motion. This had a negative effect on the robot because the majority of the time,

it had to rely on motion model based dead reckoning. Because the platform had no

other feedback source, the robot did not have any other method of measuring how

far it had actually moved.

Two examples will now be introduced to explain the severity of this problem in

more detail. Both of the following examples happened in all tests and test runs

conducted in this thesis.

The first example occurred when the robot was moving forward as it traversed the

soccer field. Initially the robot’s motion model was set for the Move forward increment

command to represent 2.5 cm of distance travelled. This meant that if no feedback

was available after the robot was commanded to move forward, the robot would have

thought that it had moved 2.5 cm. Using this statically initialized motion model

actually increased the position error of the robot, given that this platform’s motion

is unpredictable (as explained later in Section 5.6.1.2). This was the best result that

could be achieved because there were no other sources of position feedback. As the

robot traversed the soccer field, it encountered the centre line. It could now see this

field line and use the line’s change in position over time to estimate its ego-motion and
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update its motion model. This meant that the robot had traversed roughly half of

the field before it had received any line feedback and that its position error grew each

time it had moved. It was found at this point in the robot’s traversal of the soccer

field, that its real position was different than its commanded position. The robot

could use the centre line for its line feedback for only a short time, as it continued its

traversal of the soccer field, before this line moved outside of the camera’s view. At

this point, the robot now had to rely on its updated motion model to estimate how far

it had moved after a command was issued. This also led to an incorrect ego-motion

measurement given that the platform’s motion was unpredictable (as explained later

in Section 5.6.1.2) and that the line feedback was only available for a short period of

time.

The second example occurred when the robot was turning around after it had

traversed the soccer field. In this example the robot was commanded to turn 3.14

radians. Initially the robot’s motion model was set for a Turn right increment com-

mand to represent a change in angle of -0.2 radians. As the robot turned, it only saw

field lines intermittently or saw no lines at all. This depended on where the robot had

ended up after its linear traversal of the field. Again this meant that the robot had

to rely most of the time on its motion model to update its orientation. This resulted

in a large orientation error because of the unpredictability of the platform’s motion

(as explained later in Section 5.6.1.2).

Using the information and results acquired from observing the robot’s behaviour

during the examples described above, it was realized that at least one field line must

observed most of the time to take full advantage of the visual odometry algorithm.



Chapter 5: System Evaluation 91

To solve the problems associated with the camera pointing down, it was pointed

in a more forward looking position, so that the robot could see the field lines most of

the time.

During testing, the forward looking camera position was also found to have prob-

lems. When the camera was pointed in this orientation, the robot’s field of view

allowed it to see all of the field at once. This meant that if the robot was close to the

end of the field, it would see a far distance off of the field. In this situation, the robot

had the potential to observe 3D objects (tables, chairs, etc) that were not part of the

ground plane. These 3D objects produced image lines that invalidated the calibration

of the camera. The invalid camera calibration resulted in inaccurate image to real

world coordinate conversions, which led to incorrect ego-motion measurements.

A second problem with the camera in the forward looking position occurred in

the camera calibration. After the camera was calibrated in this position, each pixel

in the upper part of the image represented a change in distance ranging from 1 cm

to 6 cm. This meant that if the image or line data (due to quantization error) had

an error of one pixel, the robot could think it had moved 6 cm or rotated by 40

degrees (measured via the ego-motion calculations) when no motion has occurred. In

the worst case scenario, this error could be compounded resulting in an error much

greater than 6 cm. In informal testing, errors of 10 cm or greater have been observed.

By performing all tests and test runs with the camera in the forward looking

orientation, it was found that the problems associated with this orientation (as de-

scribed above) led to the poor performance of the visual odometry system camera

forward (VOCF). Two different methods were attempted to remedy this problem.
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These methods were to use only the lower half of the image in calculating ego-motion

and to point the camera facing down to see closer to the robot. Both of these methods

resulted in the robot not being able to see the field at all times and yielded the same

problems and results found with the visual odometry system camera down (VOCD).

5.6.1.2 Unpredictable Platform Behaviour

The platform used in this thesis was a custom built design as already described

in Chapter 4. This platform utilized a single camera as its only sensor to measure its

ego-motion when specific visual feedback was available. This meant the robot had no

way of controlling its actual position and speed in the absence of the visual feedback.

Using these constraints, the platform’s drive system control software was designed

and implemented. The control software was an open loop design that utilized a time

based strategy to control each individual servo. This meant that a command of move

forward would instruct each of the two servos to turn on for a specified amount of

time.

The designed platform functioned adequately in informal testing and at the various

robotic competitions. The problems associated with this platform were not noticed at

this point because the robot could not be observed at all times during the competitions

and most of the informal testing took place on a smooth surface with the robot’s

traversal limited to small distances.

After the start of the formal testing, the designed platform was found not to

perform very well. While observing the motion of the robot during formal testing,

it was found that each time a command was issued, a different amount of movement
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or rotation took place. For example, some forward commands yielded motion that

was very small (0.5 cm) and other forward commands yielded distances greater than

2.5 cm. The frequency of this difference in distances could not be predicted. The

turning commands behaved the poorest on this platform and the range of motion was

anywhere from less then 0.05 radians to greater than 0.3 radians. This meant that

in the absence of feedback, the motion model was incorrect and that using it yielded

very inaccurate ego-motion estimation.

In the presence of feedback, the lack of uniform motion was not a problem in

controlling the robot because the robot would issue more motion commands to get

the platform to move to the correct position setpoint. This lack of uniformity in

the motion did negatively affect the motion model when feedback was used. For

example, during a Run of Test 2, the robot was commanded to turn right by 1.57

radians and was using visual feedback to help it to complete its turn. After each

turn increment, the robot had turned by only a very small angle (approximately 0.05

radians) resulting in the motion model being updated to more accurately reflect the

motion of the robot. This was the exact behaviour that the system was supposed to

exhibit. However, this did not work well for some of the other turns in the Test 2

Run because the motion model now modelled the robot turning a very small angle

(0.05 radians) after a turn command was issued. At the next point in the test when

the robot was commanded to turn right by 1.57 radians, the robot did not have any

feedback, so the robot had to rely strictly on the motion model based dead reckoning

to complete its turns. In this case, the robot’s turns were actually 0.3 radians greater

than the what the motion model had predicted. This meant the robot had exceeded
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its setpoint by 1.57 radians by using only dead reckoning to complete its turn.

The platform unpredictability was a major hindrance on the performance of the

visual odometry system. From observing the robot during all of its tests, the unpre-

dictability for the most part was due to the timing of the motors and the speed which

they are set. It is difficult to determine how long the motors are actually on, given

that this is not a real-time operating system and each thread is not guaranteed to be

executed every X number of milliseconds. It is also hard to determine how long it

takes for the servo control board to receive and process the motor commands.

One other cause of the unpredictability was due to the construction of the robot’s

wheels. They were constructed out of very flexible plastic. It was observed that the

entire robot was too heavy to be supported. This caused the robot’s wheels to bend

out, increasing the friction between the driving surface and the wheels. This bending

of the wheels was negligible in the forward direction and it did not decrease the robot’s

performance. However, it was observed that the wheel bending increased significantly

during turning. This caused the robot to turn less than it was commanded.

Stop, Move and Capture Effects On KLT

As explained in Chapter 4, the platform and the embedded system have evolved

over the course of this research. In the first iteration of the platform with the initial

Zaurus, the camera and the computing power limited the speed at which images could

be captured and processed. The compact flash camera could not capture images

very quickly (around one image per second) and the processing of each image took

approximately 15 seconds depending on the quantity of data. These limitations made
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it impossible to capture and process frames at a high rate. It was not possible to

allow the robot to continuously move while it processed each new image. Therefore,

it was decided that the robot would first capture an image, process it and then move

a specified distance before the process would be repeated. This new control scheme

worked well for the design of the visual odometry system. There were only a few lines

on the soccer field and the motion of the robot was fairly small so the robot was able

to track lines without many problems.

However for the KLT system, this caused a major problem (as already described

at the beginning of Section 5.5). The problem was due to the fact that the robot

moved too far between successive image captures. This caused the KLT system to

misinterpret the features that it was tracking (feature aliasing) and the system was

not able to track these features as they moved throughout the image. This resulted

in incorrect ego-motion calculations for the KLT system, thereby causing the poor

performance found in testing the KLT based ego-motion system. In order for the

KLT system to be successful, large quantities of images needed to be taken during

motion or the motion needed to be smaller between image captures.
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5.6.2 Final System Evaluation And Recommendations

This subsection provides a final evaluation on the performance of each system

and provides recommendations on what could be done to improve the performance

of ego-motion estimation.

Final System Evaluation

All tests were executed twice for all systems except for the environmental debris

test (EDT) which was executed only once in the Test 1 testbed. This was done

in order to discover if the debris would negatively affect the systems’ performance.

It was found after the EDT run that the debris severely affected and limited the

functionality of the visual odometry system and that it had no impact on the shaft

encoder system. Therefore conducting more test runs in the current testbed would

not lead to a better understanding of how the designed system would compensate for

the introduced debris.

The test frequency of both Test 1 and Test 2 was chosen to discover the feasibility

and obtain preliminary results of the designed visual odometry system. In practice,

executing more test runs on physical robots is difficult and problematic. For example,

battery life affects how long and how many tests can be performed. If the batteries

are not closely monitored, they could run out of power before a test is completed.

Another effect of the batteries is that as they are used, their power output diminishes.

This will affect how fast the servos can turn, which will change the amount of distance

travelled per system update. This introduces a situation that affects the test results

as more tests are executed. This means that a test completed with fresh batteries
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could yield different results than a test completed with depleted batteries.

The KLT system was not well suited for an embedded implementation in its

current form because of its requirements for fast image processing and capture. This

led to the conclusion that the KLT feature tracker in its current form is only good

for off-line experiments and very slow moving mobile robots.

The performance of the visual odometry system showed that it had a lot of poten-

tial. It was able to successfully measure its ego-motion and move to different position

setpoints when visual feedback was available. The problems with the position of the

camera and the unpredictability of the platform motion revealed that more work and

research needs to be conducted in order to discover the true capability of this system.

The shaft encoder system was based on a commercial robot and it was thought

that its position error would be minimal over short distances. The system performed

well in all tests but had problems estimating its position after a turn. The error in

turning was not anticipated before the tests were conducted and this caused the robot

to lose track of its actual position and orientation.

The position error of each system can be observed in Tables 5.1 and 5.2. These

tables list the distance RMS position error of all systems at every test position. It

is clear from analysing these tables that overall, the shaft encoder system had the

smallest position error and that it performed the best overall.
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Average distance RMS position error at each position in test 1

VOCD VOCF KLT Shaft Encoder
P0 0 0 0 0
P1 45.59 85.08 186.08 15.87
P2 15.63 106.23 189.8 19.93
P3 101.01 54.01 71.35 85.11
Sum of errors 162.23 245.32 447.23 120.91

Table 5.1: Distance RMS error at each position in Test 1. For all systems.

 Average distance RMS position error at each position in test 2

VOCD VOCF KLT Shaft Encoder
P0 0 0 0 0
P1 12.81 36.76 39.98 11.44
P2 64.17 49.48 108.09 65.85
P3 17.7 40.21 105.13 37.44
P4 21.98 37.32 113.49 23.57
P5 43.08 40.48 145.82 16.06
P6 151.6 45.53 217.64 20.16
P7 160.65 55.49 187.8 37.53
P8 155.06 54.21 190.8 78.79
P9 141.3 58.47 148.23 65.53
P10 132.58 54.36 146.7 64.08
P11 124.83 90.74 107.34 79.61
P12 128.62 104.43 107.49 68.23
P13 116.42 144.54 102.57 79.21
P14 109.06 128.76 100.56 66.6
P15 81.89 137.12 91.53 61.66
Sum of errors 1461.75 1077.9 1913.17 775.76

Table 5.2: Distance RMS error at each position in Test 2. For all systems.
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Recommendations

After developing the visual odometry system, performing the tests and conducting

the system evaluations there are some recommendations that can be made.

The first is to make the motion of the visual odometry platform more predictable.

This would entail the development of a repeatable motor controller and the devel-

opment of stronger wheels. The new motor controller would reduce the amount of

variability in the amount of time each motor is activated after a motion command

has been issued. The use of stronger wheels on the platform would eliminate wheel

bending and reduce friction during turning. These two changes would eliminate the

unpredictability in the physical motion of the robot and would allow for the motion

model to more accurately model and predict motion.

The second recommendation is to find an optimal camera position. This would

allow the robot to see field lines for the majority of the time while keeping the real

world distance values for each pixel in the image to be between 0.2 and 0.5 cm. If

the robot could see the field for most or all of the time, it would be able to use visual

ego-motion estimation thereby eliminating the need to use the dead reckoning based

motion model. Keeping the distance of each pixel to the smallest value possible would

reduce the position error introduced from image noise and or line data quantization

error. This optimal camera position would increase the use of visual ego-motion

estimation and reduce the error in the position estimation.

The third recommendation would be to use onboard hardware acceleration of the

embedded system or to use an external digital signal processor to speed up image

processing and mathematical calculations. The increase in speed of processing could



Chapter 5: System Evaluation 100

reduce the time needed to complete one iteration of the visual odometry and KLT

calculations. This would allow the robot to move continuously while taking and

processing images. The use of continuous movement would eliminate the problem of

unpredictable platform motion. It would also allow the KLT system to be used in

real-time, eliminating the feature aliasing problem associated with this system.

The final recommendation would be to combine all three systems tested in this

thesis and utilize sensor fusion to come up with a robust ego-motion system. If

successful, this robust ego-motion system could allow mobile robots to intelligently

navigate themselves in real-world environments such as outdoor and Urban Search

and Rescue domains.



Chapter 6

Conclusion

The purpose of this research was to develop an embedded visual odometry system

that could be used on any mobile robot. I have developed a system that extracts

common visual information found in images and allows a robot’s ego-motion to be

estimated. This system takes an image as input, extracts horizontal lines from the

image and tracks these lines over time to calculate ego-motion.

In order to carry out this research, I have also developed a mobile robot platform

that consists of the mechanical chassis, electromechanical components and embedded

system. This platform has evolved over the course of the research and every iteration

of the platform has incorporated changes that have improved the overall engineering

design of the system.

The complete visual odometry system (including visual odometer and mobile plat-

form) was tested in three different test set-ups. These tests were the autonomous

traversal of a linear path with and without environmental debris and an autonomous

traversal of a complex path (figure eight).
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The results of these tests were compared to the the results obtained from per-

forming the same tests on two separate systems that I implemented for this research.

The two comparison systems were a commercial shaft-encoder based dead reckoning

robot and the second was a KLT [1] based robot.

From the results obtained, it was found that the shaft-encoder based robot per-

formed best overall, but still had significant error in the odometry estimation when

it performed turns. The KLT [1] based robot did not perform well. It was discovered

that in order for this type of system to be successful, the motion of the robot between

successive image captures must be constrained to a small value. The visual odometry

system’s results were promising but failed to produce accurate results. This was due

to the fact that in the initial downward facing camera position, the robot could only

see the field lines a small fraction of the time and had to rely on pure non-feedback

dead reckoning. To remedy this problem, the camera was put in a forward looking

direction. This camera position allowed the robot to see the field lines at all times,

but also introduced problems that degraded the system’s performance. These prob-

lems were that 3D objects could be observed which would invalidate the camera’s

calibration and that the camera’s calibration yielded pixel distance values (from 1 cm

to 6 cm in the upper part of the image) that were susceptible to noise. The problems

associated with this camera position led to ego-motion estimation with errors greater

than 6 cm.

I am confident that using environmental lines that are found in images can aid

in the overall estimation of robot ego-motion as evidenced by the preliminary test

results from my research.
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