An Object-Based Middleware Framework for
E-Commerce Transactions

By

Hongjun Shen

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

© June, 2005

An Object-Based Middleware Framework for
E-Commerce Transactions

By

Hongjun Shen

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

© June, 2005

Ld

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

NOTICE:

The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by

telecommunication or on the Internet,

Jloan, distribute and sell theses

woridwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'édition

0-494-08969-5

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN:
Ourfile Notre retérence
1SBN:

AVIS:
L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives

- Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronlque

" et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de

-celle-ci ne doivent étre imprimés ou autrement

reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

ook ook

COPYRIGHT PERMISSION

An Object-Based Middleware Framework for E-Commerce Transactions

by

Hongjun Shen

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

Hongjun Shen © 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of
the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner
solely for the purpose of private study and research, and may only be reproduced and copied as permitted
by copyright laws or with express written authorization from the copyright owner.

Abstract

The goal of this research is to design an object-based middleware framework, which
will facilitate the development of business-to-consumer (B2C) e-commerce
applications. With the rapid development of the Internet and the World Wide Web,
e-commerce applications have become prevalent. However, the development of
e-commerce applications today is considered expensive and risky because of the lack
of large-scale reusability and interoperability of e-commerce applications. Many
standard middleware frameworks exist, such as COM+, EJBs, and CORBA. However,
they are too generic to support services for B2C e-commerce. To address this problem,
I propose an object-based middleware framework, which will facilitate the
implementation of B2C e-commerce applications by providing some of the main
services that typically have to be implemented from scratch, such as customer
information management, payment management, and order processing. The proposed
middleware framework involves the design of the common services and the
implementation of a subset of the design to validate the design. Reuse of the proposed
middleware framework can improve programmers' productivity, as well as enhance
the quality, performance, reliability and interopérability of e-commerce applications. I
expect that the proposed object-based middleware framework will provide a

foundation for building reliable B2C e-commerce transaction systems.

Acknowledgements

First, I would like to thank my supervisor Dr. Vojislav Misic, who spent a lot of time
editing my thesis and gave me a great number of valuable suggestions. I am also
deeply grateful to my pre-supervisor, Dr. Sylvanus Ehikioya, for his guidance and
encouragement during my research. Without his help and guidance, this work would
have been impossible. I would also like to thank all the members of my thesis
committee: Dr. Bob Travica, and Dr. Ellen Liu. Finally, I would also like to thank my

family for their love, understanding, encouragement and support.

Table of Contents

Chapter 1: Introductionceeeeuiuieienininieiniiiiiieiiiiicneeiirecncaseennenens 8
1.1 E-commerce System Architecture.c.covviiiivniienieninnanan... 10
LY 0§ 5 T o DU 12
1.3 Contribution of the Thesis..........c.cocoiiiiiii 14
1.4 Organizationcouiuiiiiiiiiii e 15

Chapter 2: Literature ReVieW.....cccviveiiinieiiiiiiniiiiniiiininiererecieeeinrnenreens 16
2.1 Background.........oooiiiiiiiii 16
2.1.1 Object-based and Component-based Development.................... 16
2.1 2 MiIddIEWare.oeeeeee e 17
213 Framework.oouuinn i 18
2.2 Related WOrK....o.ovouiieiiiiiii 19
2.2.1 Standard Middleware Framework...................oooviiiiinnnn... 19
2.2.2 Reusable Domain Frameworks..........cooooviiiiiiiiiiiiiii i, 21
2.2.3 Component-based Software Development.............................. 23
2.3 Design Methods......oeooeiii i e, 26
231 UML. .. e 26
232Pseudo Code......oiviiiiiiii i, 28

Chapter 3: Desi@n.....ccueiiieieinrrreicnrniernrareserocesesasecesnsnsarecnsasasessssscnes 30
3.1 Middleware Framework Design ISsues.............ccoovviinieiiiinnnnene. 31
3.1.1 Component Granularity..........c..ccviiiiiiiiiniiiiiiii e 31
3.1.2 CommUNICAtION. ... uvneteit ettt et 30
3.1.3 CONCUITENCY ... vttt ettt et et e e e e e 32
3. 1.4 CONSISIENCY . ..ttt ettt 32
3 L5 Performance.oevuiuiiiie i 33
3.2 Issues That Will Be Examined..........c.cocviviiiiiniiiiiniinnnann., 33
3.3 Design Methodology........ovuiiiiiiiii i 35
3.3.1 The Model View Controllerc.ccoeviiiiiiiiiiiiiiiiiiiiin., 35
3.4 Component Identification Method................c.cooiiiiiinnnn. 37
3.5 Requirements of E-Commerce Middleware Framework................ 38
3.5.1 Functional Requirements............ocvieveininiiiaiiniieiiinnininene, 39
3.5.2 Nonfunctional Requirements............ccevvieiiniiiiiininniininannn.., 46
3.6 Middleware Framework Design..........c.ccooeiiiiiniiiiiiiininnn.. 47
3.6.1 Architecture Design..........oooiiiiiiiiiiiiiiiiii e, 47
3.6.2 Dynamic Behavior of Objects.......c..cooevviiiiiiiiiiiiiiiiiiiinnn, 50
3.6.3 Classes and Relationships among Classes..............ocevvvuinnnn.... 56
3.6.4 Detailed Design......cocoeuiuiiiiiiiiiii i, 62

Chapter 4: Implementation.......occveverinieieiiiiniiiiiesesisiusnnssiesnoeneceerncncncs 66
4.1 Implementation Strategies........ocvvviveiriiiiriiiiiiiieieneieeeenen, 66
4.2 Quality ASSUTANCE. ... vnenitieieeie et et e e e, 66
4.3 Implementation Environment..............oovviiiiiiiiiiiiiiii e 68
4.4 Run-Time Behavior of an Example Application......................... 69
4.5 Evaluation.....o.oouiuiiiiiiiiiii i 75
4.5.1 Qualitative Evaluation...........c.ovieiiiiiiiiiiiini e, 75
4.5.2 Quantitative Evaluationc.ovviiniiiiiiiiiiiieie e, 78

Chapter 5:
5

L811) 1 U1 £ T1) 1 U
.1 Summary of Contributions.........c.coevvveivviiiiin

5.2 FUtUre WOTK . ot

References

List of Figures

Figure 1-1 N-Tier Architecture..............coooiiiiiiiiiiiiiiiiii i, 10
Figure 3-1 MVC Design Pattern in E-Commerce...........cccvveveiiivnannn... 36
Figure 3-2 Use Case Diagrams For B2C E-Commerce.............c.ccoevuenn, 39

Figure 3-3 Collaboration Diagrams for Creating a New Customer Account..40
Figure 3-4 Collaboration Diagrams for Updating Customer Account......... 41

Figure 3-5 Collaboration Diagrams for Loginc.ccocvviiiiiiiinan... 41
Figure 3-6 Collaboration Diagrams for Checking Shopping Record........... 42
Figure 3-7 Collaboration Diagrams for Browsing Catalog....................... 43
Figure 3-8 Collaboration Diagrams for Searching Product...................... 43
Figure 3-9 Collaboration Diagrams for Adding to Cart.................ccoeeeenee. 44
Figure 3-10 Collaboration Diagrams for Removing From Cart............... 44
Figure 3-11 Collaboration Diagrams for Checking Out............c..ooeeun.... 45
Figure 3-12 Collaboration Diagrams for Canceling Order....................... 46
Figure 3-13 Component Diagram for E-Commerce Middleware................ 49
Figure 3-14 State Chart Diagram for Shopping Cart.............c.ovivvininnnn... 50
Figure 3-15 State Chart Diagram for Order..............coooiiiiiiiiiinninin.. .. 51
Figure 3-16 State Chart Diagram for Order Processing..............ccoeeuen..n. 52
Figure 3-17 State Chart Diagram for Inventory............c.ociiiiiiiiiniinnnn. 53
Figure 3-18 State Chart Diagram for Customer.............c.ccoevviiiiiinninnn.n. 54
Figure 3-19 State Chart Diagram for Catalog..............cocoiiiiiiiiininnnn, 54
Figure 3-20 State Chart Diagram for Product...............cooviviiiiiiin, 55
Figure 3-21 State Chart Diagram for Payment.................cooiiiiiiinl, 56
Figure 3-22 Class Diagram of E-Commerce System..........c.cccevieninnnn.n.. 57
Figure 3-23 Component Diagram for Supplier..........c..cooovviiiiiininnnnan. 58
Figure 3-24 Component Diagram for Customer..........c.cooeveneeiiineninnnn.n. 59
Figure 3-25 Component Diagram for Shopping Cart................cooevnnn. 59
Figure 3-26 Component Diagram for Payment..............c.cooevivineiinnnn. 60
Figure 3-27 Component Diagram for Third Party...............ccocooooiiii 60
Figure 3-28 Component Diagram for Shipment..................ooviiiinn 61
Figure 3-29 Component Diagram for Transaction...............ccoeeevieninninin. 62
Figure 4-1 Entry Page of an E-Commerce System.............c.ccoeeivvnnnn.... 70
Figure 4-2 Department Page of an E-Commerce System.............c.......... 71
Figure 4-3 Product Page of an E-Commerce System..........c..ccoocvveennnn... 73
Figure 4-4 Shopping Cart Page of an E-Commerce System..................... 73
Figure 4-5 Email Address Collection Page of an E-Commerce System........ 74
Figure 4-6 Personal Information Collection Page of an E-Commerce
13 1 1 74
Figure 4-7 Credit Card Information Collection Page of an E-Commerce
1125 o P 75
Figure 4-8 Average Response Time for the Two Tier and Three Tier
E-Commerce ApplCation........c.viuieiiriiiiiiiiriiiic e e, 80
Figure 4-9 Success Page Loading Rate..............oooiiiiiiiiiiiiinnn. 81
Figure 4-10 Average Response Time for Example Application Based on One
Component and Ten COmMPONENts...........covviiiuininiiininiiiiiiiiienn. 84

Figure 4-11 Success Page Loading Rate for Example Application Based on

One Component and Ten Components..........eouvveieiinieiereiieinaennnnn.. 84
Tables

Table 4.1 Average Response Time for the Two Tier and Three Tier
E-Commerce AppliCationcotiiiiiiiiiiiii i, 79
Table 4.2 Success Page Loading Rate for the Two Tier and Three Tier
E-commerce APPliCationccvuiiuiiiiiii i, 80

Table 4.3 Example Application Based on One Component...................... 82

Table 4.4 Example Application Based on Ten Components..................... 83

Chapter 1

Introduction

E-commerce is a new way in which people conduct business using the Internet
and the World Wide Web. Since the emergence of e-commerce in the last decade,
online business transactions have experienced a spectacular growth and this tendency
will continue for the next few years. E-commerce makes a wide range of products
accessible to customers, and can be accessed from anywhere at anytime. People can
easily surf the Internet shopping, banking, investing, and being entertained without
leaving their comfortable homes or offices. Businesses leverage e-commerce to
deliver more products and services to a global market without being restricted by
geography, time, or cultural boundaries. Therefore, e-commerce has the potential of
bringing many benefits to organizations and many comprehensive services to
customers. E-commerce also provides organizations with more accurate, extensive
information, a wider range of choices, and also enables fair competition. In this
manner, e-commerce is gradually changing the way people conduct business, the
relationship between businesses and customers, and people's life styles.

There are three common e-commerce types in practice today, namely
business-to-consumer (B2C), business-to-business (B2B), and consumer-to-consumer
(C2C). The B2C e-commerce focuses on selling products to individual consumers by
a business. The B2B e-commerce focuses on selling products to other businesses. The

C2C e-commerce provides a mechanism for individual consumers to sell to or buy

from one another directly. The different e-commerce types have different business
logics and different implementation requirements. In this research, I focused on B2C
e-commerce type.

In B2C e-commerce, customers need to be able to view a list of all available
products, including a description, image, and price for each product. Just as in the
traditional store, customers will have the ability to add items to their shopping cart,
view the contents of the shopping cart at any time, remove items from the shopping
cart and purchase the items in the shopping cart. In order to ship purchased items to
customers, customers will have an account containing their personal information such
as name, address, credit card information, and purchasing history. For companies that
provide e-commerce services to their customers, they need to kqep an order list,
which shows all the orders have been made through their e-commerce systems. They
should also be able to track on the inventory to provide sufficient supplies of
products.

The improvements in telecommunication network infrastructures have made all
these operations possible. However, companies that wants to take the advantage of
Internet to make more benefits face many challenges. These challenges include how
to build e-commerce systems rapidly, which should save both money and time for the
company, how to provide functionalities that satisfy both customers and the
company’s requirement, how to build e-commerce systems that are flexible enough to
face future challenges, how to leverage the legacy systems, and how to manage
complexity of e-commerce systems. To alleviate these problems, I proposed an

object-based middleware framework in this thesis to facilitate the development of

online store applications and to ease the burden of managing the complexity involved

from software developers.

1.1 E-Commerce System Architecture

To deliver successful e-commerce transactions, an e-commerce system must be
stable, running around the clock, year after year, and should be easily upgraded. To
meet these expectations from both customers and e-commerce service providers, we
require a reliable, scalable, and flexible e-commerce infrastructure, which includes
servers, networks, operating systems, middleware, etc. Therefore, the n-tier

client/server architecture is usually adopted as shown in Figure 1-1.

Client Tier
(Browser)

Presentation Tier
Web Server (Asp, Jsp, Serviet)

Business Tier

Business Logic Layer

Data Access Layer

Data Tier

Figure 1-1 N-Tier Architecture

The n-tier architecture is a client/server architecture that breaks up applications

10

into n logical, functional layers, where n>2. Typically, the n-tier architecture includes
the client tier, the presentation tier, the business tier, and the database tier. The client
tier is simply a web browser (e.g., Netscape or Internet Explorer). The presentation
tier implements the user interface. For an e-commerce application, the presentation
tier is not only including the web forms but also including all the classes which help
to present data from business layer. The business tier manages the business logic and
allows user to share and control the business logic. This tier could be separate into
multiple layers. Typically, one layer is concentrate on describing business logic. The
other layer is responsible for data access from the database tier. In the most complex
case, business logic layer could be multiple layers. The database tier manages the
backend database.

Presentation tier is where the web pages are implemented. Typically, JSP [26],
ASP [27], or Servlets [26] technology is used to implement this tier. Business tier is
to implement the complex business logic and to manipulate data coming from the

database tier. COM+, CORBA, or EJBs technology is usually used to implement this

tier.

An n-tier architecture has many advantages over the traditional 2-tier client/server architecture.
First, through the clear separation of presentation tier and business tier, a system can easily scale
up because the hardware and software for each tier can be increased independently. Second,
developers can modify a specific tier rather than have to rewrite the entire application. Third, it
facilitates the development of e-commerce application through reuse of pre-built business logic
components if available. In this research, I focused on the business tier and provided a

middleware framework, which facilitates the development of B2C e-commerce applications.

11

1.2 Motivation

To build an e-commerce system that can accommodate many customers
concurrently and be always available is a great challenge to the developers. Since an
e-commerce system is inherently large, complex and distributed [30], therefore, it
must be carefully designed to meet current necessities and future updates. As a
consequence, the development of e-commerce application today is considered
expensive and risky.

The fast growth of e-commerce has motivated the search for faster and easier
ways to build e-commerce applications. For example, many companies and
organizations have proposed standard middleware framework, such as the Object
Management Group's Common Object Request Broker Architecture (CORBA) [17],
Microsoft's Common Object Model (COM+) [15], and Sun Microsystem's Enterprise
JavaBeans (EJBs) [24]. These middleware frameworks provide extensive services
that are necessary for building large scale, distributed applications and hide many of
the common implementation details of these services from application developers.
However, these services are too generic to easily support the building of e-commerce
applications. Therefore, a middleware framework for the e-commerce domain, which
has the great potential to increase system quality and decrease the development effort,
1s important.

Aleksy et al. [1] have proposed a CORBA-based middleware framework for
e-auction applications providing services such as bidder, auctioneer, and auction
manager, among others. Ripper et al. [21] presented a middleware framework for

building agent-based e-commerce systems providing services like multiple

12

communication protocols and multiple negotiation strategies. Both of these systems
are specially designed for supporting the C2C business model. Bichler and Segev [3]
described an object-based framework for supporting brokerage in the B2B business
domain.

Online store application is common today such as Microsoft’s Pet Shop
application and Sun Microsystem’s Pet Store application. Both of these applications
used an n-tier architecture design and identified some of the basic functions that a pet
store should support. However, the Microsoft’s Pet Shop application is created to
illustrate how to use the .NET framework to build multi-tier distribute applications
and the Sun Microsystem’s Pet Store is created to help developers and architects
understand how to use J2EE technologies.

Therefore, a middleware framework for the B2C e-commerce domain is still
unavailable. Because all the common services provided by e-commerce applicéltion
such as catalog management, customer information manageinent, order processing
and so on have to be built from scratch. It is not only a waste of time and also error
prone.

To address this problem, I identified all the common services that are necessary
for building n-tier online store applications in this study. I encapsulated all these
services in a set of components and provided services through the components’
interface. These services works as middleware framework and can be reused to build
similar online store applications.

Software reuse is an essential goal in software engineering because of the

potential benefits it brings, such as increase in productivity, improvement of software

13

product quality, and reduction of maintenance costs. Many reuse attempts have been
made in practice with different successes, such as code reuse and design reuse. In
general, the higher the level of abstraction, the more efficient reuse can be. In B2C
e-commerce domain, an elaborately designed middleware framework, which will be
able to capture the common functions of an e-commerce system, is beneficial. First,
the framework design could be reused by multiple e-commerce applications and only
small changes might be needed to accommodate special requirements of many
diverse applications. Second, the implementation of this framework, presented by a
set of components, could be reused directly as building blocks to implement
e-commerce applications. Therefore, a component’s reusability can be easily justified.
However, designing for reuse is difficult, needs extensive analysis and careful design,
so it usually takes more time at the design stage.
1.3 Contribution of the Thesis

In this research, I will design an object-based middleware framework for the B2C
business model. In the proposed middleware framework, I will identify all the
common services necessary for e-commerce transactions, encapsulate the common
services into a set of components, and define these services using the components'
interfaces. Therefore, the foci of this thesis are:
® To provide a reliable and correct design of all common services required by

e-commerce transactions using the unified modeling language (UML) [4, 19] and
pseudo code.

® To implement a subset of the design, such as customer, order, supplier, and

payment, through which the correctness of the design can be validated.

14

The benefits of the proposed framework are twofold. First, the framework design,
which is independent of any programming language, is reusable for a family of B2C
applications. Second, the implementation code, which provides services through the
interfaces of a set of components, can also be reused. In addition, I will improve the
framework's reusability, maintainability, and performance by providing a proper size
for each components and reducing communications between components. I expect
that the proposed object-based middleware framework would greatly enhance the

process of building reliable B2C e-commerce applications.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 gives the
background of e-commerce system architecture and object-based middleware
framework, reviews some technologies used to build middlewares of e-commerce
applications and some existing middleware frameworks in e-commerce domain.
Chapter 3 presents the detailed design of my proposed object-based middleware
framework for B2C e-commerce. In Chapter 4, I describe the implementation of the
proposed middleware framework, gives an example application that derived from the
proposed middleware framework, and depicts the example application's evaluation
results. Chapter 5 makes some concluding comments and suggests directions for

future research.

15

Chapter 2

Literature Review

Before formally presenting the design of the middleware framework for B2C
e-commerce transaction, (in Chapter 3), an overview of framework, middleware, and
object-based and component-based development are provided. Some related works

and design tools that are relevant to the thesis are also described.

2.1 Background

2.1.1 Object-based and Component-based Development

The object concept was first emerged in the programming language Simula in
1960’s. An object is an instantiation unit which encapsulates its state and behavior
[13]. In object-oriented paradigm everything is treated as an object. Objects interact
with each other through messages that contain information used in invoking
operations on the appropriate objects. Systems implemented using object-oriented
techniques are usually including features like inheritance, encapsulation and
polymorphism [31].

In object-based paradigm, objects are complete packages. Everything that
describes the implementation of the object is self-contained. Therefore, system
implemented using object-based techniques should be easy to change and to extend.
However, not all development environments (and their respective programming
languages) support all of the object oriented features like inheritance, overloading,

and overriding.

16

In component-based development, components are used as building blocks to
implement a final solution. A component is an encapsulated unit of software with one
or more interfaces that provide clients with access to its services [13]. Generally, a
component is only available in binary form, (i.e., the component is precompiled).
Therefore, the implementation details are completely hidden. The functionality
provided by a component is available through its interface. In such a way,
component-based approach is more likely to achieve reusability and ease the
maintenance of a software product. Therefore, a component-based approach was used
in this work.

Internally, a component may be implemented using an object-oriented paradigm,
an object-based paradigm or even using traditional procedure paradigm. Object
oriented approach has been successfully applied in building graphic user interface
framework and distributed applications. However, object are usually not independent
entities, therefore, changes to one object may require changes to several other objects
and hamper system evolution. And since the object-based paradigm provides more
reliability and reusability than the procedure-based paradigm [18], I used the

object-based paradigm for designing and implementing each component.

2.1.2 Middleware

In the client/server architecture, the clients (which usually have graphical user
intcrface) request and obtain services from the servers. Middleware is, then, a layer of
software that enables and facilitates this client/server interaction. It consists of a set of
services that allow multiple processes running on one or more machines to interact

across a network and therefore make building distributed enterprise applications

17

possible. Middleware can ease the design, programming and managing distributed
applications by providing consistent and integrated distributed programming language
environment and shield the heterogeneity and complexity of the underlying machine
architecture, operating system and network technologies from developers.

Middleware includes but is not limited to database middleware such as ODBC,
SQL, and Oracle Glue, Internet middleware such as HTTP and Secure Socket Layer
(SSL), object middleware such as CORBA and COM+, and domain specific
middleware.

Object middleware such as CORBA and COM+ provide fundamental services for
building distributed enterprise applications but services that are required for a specific
domain are not provided. Therefore domain specific middleware can extend the
capabilities of object middleware and serve for a more specialized purpose. In this
thesis, I provided a middleware for B2C e-commerce domain, which facilitates the

building of similar e-commerce applications.

2.1.3 Framework

A framework is a reusable design, which is expressed by a set of classes and the
collaboration among instances of these classes [8]. These classes can be tailored by
developers to fit a particular application and can be reused by a series of similar
applications. Frameworks include, but are not limited to, GUI frameworks,
middleware frameworks, application frameworks, and domain frameworks. A GUI
framework can be utilized to build user interfaces. Examples of this category of
framework are JAVA AWT [28] and Swing [22]. A middleware framework provides

- services that are needed for building the middle layer of an application, such as

18

COM+, CORBA, and EJBs. An application framework is used for building a
complete application: from user interface, transaction, and concurrency control to
database connection. The JAVA API (Application Programming Interface) and
Microsoft's .NET [25], which are both class libraries with lists of classes, interfaces
used to build applications, components, or controls, belong to this category. A domain
framework is a collection of classes that can be reused in a particular domain, like
OFFER [3] for the B2B business domain.

Johnson and Foote [41] classified framework into white-box frameworks and
black-box frameworks. The classes of a white-box framework are transparent to
developers. Developers have to understand the classes before they can use them.
Therefore, white-box frameworks are normally hard to learn and hard to reuse. On the
contrary, a black-box framework is only accessible through its external interfaces, the
detailed implementation is invisible to developers; therefore, it is easy to reuse but it
has less flexibility.

The middleware framework I proposed in this research was a black box

framework for the e-commerce domain focusing on the B2C business model.

2.2 Related Work

2.2.1 Standard Middleware Frameworks

To ease the development of middleware components, many standard middleware
frameworks have been proposed. Three of the main frameworks are Microsoft's
Common Object Model (COM+), Sun Microsystem's Enterprise JavaBeans (EJBs),

and the Object Management Group's (OMG) Common Object Request Broker

Architecture (CORBA).

19

COM+ is an object model provided by Microsoft. COM+ supports many standard
services like security, transactions, and garbage collection. It can run on operating
systems other than Windows 2000 by using third party components. The main feature
distinguishing COM+ from other approaches is that COM+ has achieved binary
encapsulation and binary compatibility [6], which are lacking in both CORBA and
EJB. Binary encapsulation means that the client objects do not have to be re-compiled
if the server objects change, while binary compatibility means the client and server
objects can be developed in different environments and using different languages [6].
Microsoft achieved this feature using a mechanism that separates interfaces from
implementation. Thus, COM+ supports a broad range of implementation languages:
C++, Visual Basic, and Visual J++, etc. Furthermore, compared to other middleware
standards, COM+ is not only fast and easy to build with, but it is also more robust [6].
For all these reasons, I choose COM+ as the middleware platform for the
implementation of my proposed middleware framework for B2C e-commerce
transaction.

Enterprise JavaBeans (EJBs) is a server component architecture provided by Sun
Microsystem. EJB's standard component framework provides services for
transactions, database connections, security, and replication, which are important
features necessary to create component-based, distributed business applications. The
deployment environment could be J2EE, IBM's WebSpere, or BEA's WebLogic, etc.
However, Enterprise JavaBeans using CORBA or RMI network protocol are
sometimes slow compare to COM+ [10]. In addition, Java is the only implementation

language allowed, which also hampers the usefulness of EJB.

20

CORBA is an object-based distributed architecture defined by the Object
Management Group (OMG). CORBA specifies an Interface Definition Language
(IDL), which specifies details about the different distributed objects and gives a
common interface hiding the implementation details thereby providing support for
different programming languages. Communication between distributed and
heterogeneous objects is achieved through an Object Request Broker (ORB), which is
responsible for managing communication and data exchange between objects.
CORBA also supports standard services, such as persistence, transactions and
concurrency control, etc.

COM+, EJB, and CORBA are generic object models designed for support
services like transactions, security, and replication. However, they do not provide
services that are needed for a specific domain. Domain developers have to take care
of everything from middleware design to implementation. E-commerce domains are
not an exception. Most e-commerce systems share some common functionality, such
as customer information management, payment management, and order processing.
Usually, these functionalities have to be implemented from scratch by each of them.
Therefore, proposing such a middleware framework, composed of a set of
components that provide such functionality, will contribute both to software reuse,

ease of development and software quality.

2.2.2 Reusable Domain Frameworks

Software reuse has long been an active research area due to its potential benefits,
which include increased productivity and product quality and decreased development

cost and time. Many approaches have been proposed in the e-commerce domain

21

generally.

Aleksy et al. [1] proposed a CORBA-based architecture for e-auction applications.
By analyzing the general process of an electronic auction (or e-auction), Aleksy et al.
identified two specific kinds of communication techniques that are required by
e-auction applications and which are not available in CORBA. They defined these
two communication techniques using CORBA's Interface Definition Language (IDL)
as their core architecture. Besides this core architecture, they also described
additional components that are needed for the implementation of complete e-auction
applications. The main focus of their architecture is to provide flexibility so that it can
support various kinds of auctions and to provide interoperability, which is important
to exchange information with existing systems, such as Enterprise Resource Planning
(ERP) systems.

Anido et al. [2] proposed a component-based architecture for building
web-based learning systems. Their work focused on the identification of a common
set of services that are needed by web-based learning systems and the definition of
these common services using open software interfaces. Since their proposed
architecture is independent of any underlying infrastructure and programming
language, it can be implemented on any middleware platform. As an example, Anido
et al. described an implementation using EJB technology. Although this architecture
was developed for the e-learning domain, the development methodology (e.g.,
functional requirement captured from use cases) used in this work could be a guide
for the development of my middleware framework for the B2C e-commerce domain.

V-Market [21] is an object-oriented framework proposed by Ripper et al. for

22

building agent-based e-commerce systems. An agent is a piece of software that can
work on behalf of users to buy, sell, and find specific goods and services. Any user of
this kind of system could be a potential buyer, and a seller. Therefore, the proposed
framework was mainly designed for building agent-based e-commerce applications.
Ripper et al. used a software engineering approach to design the framework and used
extended UML diagrams to model their design.

Bichler and Segev [3] proposed an object-based framework called OFFER. The
main objective of the OFFER project was to specify and design components that
support brokerage in the business-to-business e-commerce domain. Thus the
applications derived support functions from the framework like customer registration,
supplier propagation, customer interests expression, etc.

Laudon and Taver [34] provided a systematic approach to build successful
e-commerce system. They discussed two-tier and multi-tier e-commerce architecture
and technologies that can be used to build e-commerce applications. Furthermore,
they identified the data flow in a typical online store application and discussed the
challenges in building e-commerce applications.

However, a middleware framework for building online store application is not
available according to our knowledge. To address this problem, I propose an

object-based middleware framework in this research.

2.2.3 Component-base Software Development

Providing a middleware framework for e-commerce transactions is a complex
process involving a set of core phases of component-based software development,

including requirements analysis, requirements specification, design, implementation,

23

quality evaluation, etc. Much research work has been done to improve the quality of
each of these phases.

Progovac [20] provides some guidelines for doing requirement analysis. These
guidelines include the duality principle in data collection and the lead principle in use
case design. The duality principle means that one should always analyze a system's
requirement from both the users' and designers' view points. The lead principle means
that one can identify a system's core use cases first, and then use these core use cases
to find the others. Using these guidelines, the correctness of requirement analysis and
design can be predicted. Jang et al. [9] summarize the existing component
specification methods and propose a set of formal activities, which specify the
requirements of components and verify the correctness of component specification
using the formal specification language Z. The proposed activities are able to improve
the quality of components and reduce the cost of design and implementation by
guaranteeing the correctness of component specifications.

MiSook et al. [5] introduce an efficient component identification method based
on use cases, which includes three phases. The first phase identifies one component
for each use case. The second phase separates the common classes from the
components identified from the first phase. Common classes are classes that belong to
two or more components. The last phase further separates the large components into
small size components that only contain highly related functions. By using this
method, in practice, the reusability and maintenance of components can be predicted.

Similarly, Kim et al. [11] propose an efficient framework generating method

based on UML diagrams. In their method, frameworks are identified by analyzing use

24

case diagrams’, class diagrams?, and sequence diagrams’. In addition, Yang et al. [29]
propose a practical object-oriented framework development process, which consists
of four typical software development phases: analysis, design, implementation, and
testing. The proposed process is also based on UML diagrams. Using these methods
in practice improves the productivity of the framework development.

Coupling is the degree to which components depend on one another [7].
Cohesion is the extent to which the individual components are needed to perform the
same task [7]. High cohesion and low coupling have long been design goals in
software components design because components with low coupling and high
cohesion are more likely to have high quality such as being easy to reuse, simple to
understand, and easy to maintain.

The methods used to measure cohesion are usually by measuring the
interrelationship of constituent parts of a component. Misic [16] suggests a new
method to measure cohesion, (i.e., measure the external usage pattern of a component
without considering the component's internal structure). Misic uses the term
coherence instead of cohesion to isolate his method from the traditional ones.
However, coherence and cohesion are same concept. Cohesion and coupling analysis
could help the identification of interface of components and make decision
concerning the sizes of components.

Kim et al. [12] provide a framework to improve the quality of components in

component-based software development. Their framework has four phases: quality

! Use case diagram: Use case diagrams model the functionality of a system using actors and
use cases. Use cases are services or functions provided by the system to its users.

% Class diagram: They describe the static structure of a system.

3 Sequence diagram: Sequence diagrams describe interactions among classes in terms of an

25

specification, quality planning, quality control, and quality evaluation. Developers
can apply their framework in various phases of component development to improve

the quality of components.

2.3 Design Methods
2.3.1 UML

UML (Unified Modeling Language) is an object-oriented modeling language
standardized by the Object Management Group (OMG) mainly for software systems
development. UML combines three different modeling methods (i.e., OMT, Booch,
and OOSE) to specify, visualize, construct, and document the artifacts of software
systems from the most abstract description of the system behavior, through the
system architecture, down to the level of detailed design. UML is becoming the
dominant modeling language in object-oriented analysis and design community [19].

UML provides multiple diagrams to model a system from several perspectives or
at multiple level of abstraction. These diagrams are use case diagram, class diagram,
state diagram, activity diagram, sequence diagram, collaboration diagram, package
diagram, component diagram, and deployment diagram.

Use case diagrams specify the interaction of the users and the response of the
system. By analyzing these interactions, we can capture the functionalities that a
system should provide. These analyses also could guide the design and the
implementation of the system and guide the making of testing plan. Class diagrams
show the classes of the system and the interrelationships among these classes.

However, class diagrams are static diagram, they cannot show how the classes

exchange of messages over time.

26

interact to each other. State diagrams, collaboration diagrams, sequence diagrams,
package diagram, and activity diagrams can present the dynamic aspects of a system.
Each of these diagrams has their own advantages and disadvantages and therefore can
be used in different situations. Component diagrams show grouped modules of a
system and deployment diagrams identify the system configuration at a given running
time.

UML consists of a variety of notations, which have made UML a popular
modeling language in multiple application domains for system documentation and
specification, for capturing user requirements and defining initial software
architecture. UML notation is basically consisted of four kinds of graphical constructs
(i.e., icons, 2-d symbols, paths, and strings) and some additional diagram elements,
which include mappings, names, labels, keywords, expressions and notes. Moreover,
UML has extension facilities (stereotypes, tagged values and constraints) that allow
semantically meaningful versions of UML to be built for specific application
domains.

UML modeling language is essential in software development. First, UML is an
efficient tool for communication among people. Designers need to communicate with
potential users at requirement analysis stage. Designers and developers need to
communicate at design or develop stage. The visualized, easy understand UML
diagrams can perform as a media helping them to understand each other. Second,
UML helps to manage complexity of software development. UML diagram can
separate the whole system into different parts. By understanding and managing each

part, we can solve the problems of the whole system. Third, UML provides the

27

capability of software design reuse. By identify the similarity of different applications

in the same domain, we can find that some the design parts are actually reusable.

In this thesis, I will use several different types of UML diagrams to present
different aspects of the proposed framework design.
® Use case diagrams which are used to capture the functional requirements;
® Collaboration diagrams which show how objects collaborate to perform use
cases;
® (lass diagrams and component diagrams that present the system structure;
® State diagrams that show the dynamic behavior of objects;

® Deployment diagrams that describe the deployment of distribute objects.

2.3.2 Pseudo Code

Pseudo code is a detailed description of what a computer program or an algorithm
must do using a natural language rather than a programming language. It cannot be
compiled nor executed. But it is very easy to be converted into the final code since
most of notion used in pseudo code are borrowed from programming languages such
as C, Lisp, or Fortran.

Pseudo code is a very efficient tool to describe software design because it has
many advantages. First of all, it allows designers to express the design in great detail
and focus more on the logic aspects of a computer program without being bothered by
the correctness of implementation code. Secondly, it provides programmers a detailed
template for the next step of writing code in a specific language. Pseudo code can be

easily translated into program code because the structured natural language

28

description is very similar to the real structure of program code. In addition, reading
pseudo code is much easier than reading another person’s code. Thirdly, it is easy to
inspect that whether the implementation actually match the design because it allows
the easy communication among designers and programmers. Catching errors at the
pseudo code stage is cheap than catching them later in the development process.

Therefore, 1 will use pseudo code to express the detailed design of this middleware

framework.

29

Chapter 3

Design

This chapter first discusses the design issues concerning the middleware
framework for B2C e-commerce transactions and then presents the middleware
framework design. The design includes requirements analysis, architecture design and
detailed design. UML class and component diagrams are used to describe the
architectural design, use case and collaboration diagrams are used to capture the
requirements, state diagrams are extensively used to depict the behavior of objects

and pseudo code is used for detailed design.

3.1 Middleware Framework Design Issues

Due to the lack of a middleware framework for B2C e-commerce applications,
each application has to be developed from scratch. Such e-commerce systems are not
only expensive to create but are also error prone. Therefore, a middleware framework,
which is reusable both in its design and implementation, is desirable. However, a
middleware framework has to be easy to reuse, to maintain, and to understand. It also
must provide high performance; otherwise it will not be accepted by users and will
not survive. To achieve these design goals, I will examine components' granularity,
communication, coordination, and concurrency issues during the design and

implementation stages.

30

3.1.1 Component Granularity

Component granularity determines the number of functions performed by a
component. Component granularity plays an important role in finding a correct
balance between performance and maintenance. If the functional partition (i.e., the
way the application logic is divided across components according to function) is too
coarse, generally, components' performance will be good, but they will be hard to
reuse, debug, and maintain. If the partition is too fine-grained, they will be easy to
reuse and maintain, but there will be additional network communication overhead.
Coupling, cohesion, and coherence are metrics which can be used as partitioning
criteria in making function partition decisions. Components with low coupling will
have low dependency on other components and they will have low change impact by
others. Therefore, they are more likely to be reused, simple to understand, and easy to
maintain. Components with high cohesion have relatively few methods with highly
related functionalities, which also mean they are much easier to reuse, maintain, and
understand. By performing coherence, cohesion, and coupling analysis on each
component, one can potentially predict its future performance, reusability, and

maintenance requirements.

3.1.2 Communication

Communications between distributed objects require different forms to satisfy
the needs of non-functional requirements like system reliability and high performance.
Some of the communication forms are provided by standard middleware platforms,
such as synchronized communication [6]. In synchronized communication, the client

object is blocked while the server object executes the requested operation. However,

31

some communication forms, such as asynchronous communication (i.e., server object
gives control back to the client object immediately after receiving the client object’s
request) are often not provided. Application developers could use threads or message
queues to implement these services that are not provided by standard middleware
platforms. However, achieving a high degree of reliability while using a message
queue or transactions is both time- and space-intensive, so in the design stage the
designer should evaluate the gains and trade-offs, and choose an appropriate

communication method to achieve reasonable performance and reliability.

3.1.3 Concurrency

Many customers may visit an e-commerce site concurrently. It might happen that
these customers' operations are modifying the same server objects. In this
circumstance, two problems might occur: an update may be lost or the state of the
object may become inconsistent [6]. To solve these problems, we have to control
concurrency in such a way that two transactions must be executed one after the other
(i.e., they must be serializable). To control concurrency, respective standard object
models have various implementation methods. For example, COM+ handles
concurrency by spawning concurrent threads as long as developers make a
synchronization configuration by using the component services administrative tool.
CORBA uses locking, both two-phase and hierarchical. However, a designer has to

locate the objects that need concurrency control and specify them in the design stage.

3.1.4 Consistency

When designing object-based middleware for e-commerce transactions, object

32

consistency is also a very important issue that needs to be carefully addressed. For
instance, in an order check out transaction, we must ensure that the same number of
items purchased by a customer is removed from the inventory. Another example is
that if a debit operation would leave a negative balance from a customer's credit card
account, the object should always reject this execution. To achieve object state
consistency, not only should we capture the consistency in the design stage, but also
implement the methods used to keep consistency in the implementation stage.
Replication is a mechanism often used to support availability. Replicas, which
are distributed on different computers, require state consistency. If the replicas fail to
keep a consistent state with the original object, then their function will similarly differ.
Hence, system consistency cannot be assured. To meet these consistency constrains,
the standard object models (COM+, EJIB, CORBA) provide different mechanisms,

but the implementation details of each object are still the responsibility of designers.

3.1.5 Performance

E-commerce applications make high demands on a system's performance.
Therefore, we need a deep understanding of our middleware framework, which is
intended to facilitate the development of an e-commerce application. How will the
components interact with each other? What will be the system's bottlenecks? How
will the system's workload affect its performance? All of these questions need to be
considered at the design stage.
3.2 Issues That Will Be Examined

The granularity of each component must be carefully selected to ensure the

performance, quality and reusability. I will use combined metrics, namely coupling,

33

cohesion, and coherence, to analyze each component and to confirm its expected
performance and reusability at the design stage. To achieve this design goal, I will use
both traditional and modern methods to measure the coupling and cohesion of
components. The traditional method provided by Steven et al., [23] is simply to
maximize relationships among elements in the same component and minimize the
relationships among elements in different components. Consequently, components
will be more likely to have low coupling and high cohesion. The modern method,
which is provided by Misic [16], is to measure the coherence of components. Instead
of measuring the interrelationships of a component's constituent parts, coherence
measures the external usage pattern of a component without considering the
component's internal structure. By using mixed metrics to analyze each component, I
will be able to properly select component granularity, thereby improving component
reusability and maintainability and ensuring a high performance for the proposed
middleware framework.

The concurrency issue will also be examined. At the design stage, I will identify
all of the objects that need concurrency control, such as product, customer, shopping
cart, and inventory. However, implementation methods may vary according to
different programming languages. For example, one could use threads and
synchronization primitives to implement concurrency in JAVA or use other
concurrency techniques provided by different middleware platforms. In the
implementation stage, I will use the concurrency control techniques provided by
COM+, because it takes care of concurrency issue as long as designers make a

synchronization configuration.

34

Consistency is another issue that needs to be examined both at the design and
implementation stages. For example, if a customer has paid for a number of products
in his/her basket, then the same number of products should be decreased from the
inventory table through the inventory object. Otherwise, another customer might buy
a product that does not exist in the inventory. All such situations will be identified at
the design stage and indicated in pseudo code. Additionally, I will use the transaction
mechanism provided by standard middleware frameworks to keep components
consistent.

3.3 Design Methodology
The complexity of an e-commerce system requires good design methods to face
challenges such as flexibility, scalability, and reusability. The MVC design pattern

was used throughout the design of the proposed middleware framework.

3.3.1 The Model View Controller Patterns (MVC)

Model-View-Controller is a design pattern that enforces the separation between
the input, processing, and output of an application. An application based on an MVC
design pattern is separated into model, view, and controller components. Each of
these components handle a set of tasks. The model component represents an
application’s data and business rules. The view component specifies how the data
should be presented and provides an interface to accept user input. The controller
accepts user requests and translates each request into actions to be performed by the
model. Using the MVC design pattern, the three components’ reusability, flexibility,
and maintainability can be improved since each is self-contained and the inner

implementations are hidden from one another. One can easily change any of the three

35

components without impacting the others.

E-commerce applications are typical n-tier architecture applications, which require
scalability, flexibility, and reusability. Therefore, it is very important to follow the
MVC design pattern in the development of this framework. With respect to the MVC
design pattern, an e-commerce application can be modeled as presentation component
(i.e. View), model component and controller comporient. The View component is a
logically self-contained layer, which are the web pages used to accept user input and
to display the data coming from the model component. The model component is
represented by a set of business objects, such as product, customer, and supplier.
These objects implement actual data processing and business rules. The model
component feeds data to the view component without worrying about the actual data
formatting. The controller component is represented by a set of control classes, which
is responsible for notice of action and commands model and view component to

change. Figure 3-1 shows how the MVC design pattern is applied to the e-commerce

system.

Web pages
(ASP, JSP)

Business data
objects

controller

Figure 3-1 MVC Design Pattern in E-Commerce

36

3.4 Component Identification Method

The functionality of my proposed middleware framework is provided by a set of
components, as component-based development has been the most promising way of
improving software’s reusability, maintainability, and productivity. Therefore, an
efficient component identification method is essential for the success of this thesis
work.

A systematic component identification method, which combines MiSook et al.’s
(2001) component identification method based on use case, and Misic’s (2001)
cohesion measurement method, is used in this thesis. Component reusability and
maintainability can be predicted since the components are derived conforming to the
high cohesion and low coupling principle.

This combined method includes three phases. The first phase identifies one
component for each use case. The second phase is quite an involved phase, which
depends on the sequence, class, or collaboration diagrams that are built according to
the event flow of each use case. Analyzing the sequence, class, or collaboration
diagrams, we can identify the classes that are required by each use case. Accordingly,
we can identify the common classes that belong to two or more components (i.e.,
those identified in the first phase). Determining which component the common
classes should belong to requires coupling analysis. A class’s coupling number is
calculated by the number of association relationship it has with other classes. The
association relationship includes composition, aggregation, inheritance, and
association. A common class should be firstly placed in the component in which it

has higher coupling with other classes. When it has high coupling in both of the

37

components and the coupling number reaches three or more, we should combine the
two components in phase two.

In phase three, some of the large components found in phase two are separated
into smaller components by performing cohesion analysis. Suppose component A is a
large component consisting of components Aj, Ay, ...An (i.e., Ay, As, ...A, are
components identified in phase one). Component A is so large that it should be
separated into several smaller components. First, all classes which have relations of
composition, aggregation, and inheritance in component A are grouped together. We
may get several grouped classes Cy, Ca, ... Ci. Then we put each of the grouped class
into each consistent component Ay, A, ...Ay forming m*k architectures {{A; C},
Az, ... Ambr, {A {Ag, Ci} o Ands, {Ar A, A, Cil s, {{ALCo), Ay L Anda, {A,
{Az, Co} ... An), {AL Ao {An, Co}), o {{ALCk), Az, - And, {AL {Ag Ci) .. AR,
{A1, Az, ...{An, Ci} }m=. Second, we estimate each component’s cohesion in a given
architecture. Then we calculate the average cohesion of each of the architectures and
choose the one with the highest average cohesion as our final components. Cohesion
is estimated using the metric provided by Misic. Let S stand for the component in
question, and let R(S) denote its client component. Let S,, denote the subset of the set
S used to write its clients. And let Sy (x) denote the part of that subset which is
actually used to write the client x. Then the cohesion of S is:

Y(S)= X (#S(x)-1)/ 3 (#S5-1)

where #S stands for the number of classes in component S.

3.5 Requirements of E-Commerce Middleware Framework

Requirements of an e-commerce middleware framework include functional

38

requirements and non-functional requirements. Functional requirements are specified
using UML use case diagrams and collaboration diagrams. Each use case is analyzed
in section 3.5.1. Nonfunctional requirements are expressed using metrics and each

metric is discussed in section 3.5.2.

3.5.1 Functional Requirements
The proposed middleware framework, which is reusable by a family of similar
applications, should provide functions that are common from application to
application.
Figure 3.2 presents the common use cases of such an e-commerce system. In
order to identify the functions, I will analyze each use case scenario and document the
scenarios using UML collaboration diagrams shown from Figure 3-3 to Figure 3-12.

The notation for collaboration diagrams is referenced from [35].

Online Shopping System

Create Customer
Accoun!
Updata Customer
Account

Browse Catalog
Search Produc!
Add to Shopping
Cart
Customer
Check Shopping Cart

Remove From Carl
Cancel Order

Check shopping
record

Figure 3.2 Use Case Diagrams for B2C E-Commerce

39

Case 1. Create a Customer Account

Any user who wishes to purchase products via an e-commerce system must
provide his/her personal information to the system to become a registered customer.
Figure 3.3 presents the detailed process of creating a new customer account. A user
provides his/her detailed personal information to the system, such as name, address,
password and email address. The e-commerce system will check the database to see
whether the e-mail and password exist. If so, the system will deny the customer’s
registration and request the user to input new values for these fields. Otherwise, the
system will create a unique customer ID for the user and notify him/her that the

account has been successfully created.

1: ProvideAccountinfo() 2: CreateAccount()
o —

:WebForm :Customer

2.1: Verify() i

Customer
3 CreateAccount()i

:Database

Figure 3.3 Collaboration Diagram for Creating a Customer Account

Case 2. Update a Customer Account

When customers return to an e-commerce system, they are allowed to modify
their personal information as long as the change request occurs at any time other than
check out. The user will be shown an update interface to collect new information. The

system is responsible for verifying the modified user information. If it is valid, new

40

information will be written into the database and customers will be notified that
information has been changed. Otherwise, the system will ask customers to modify

the invalid information. The detailed collaboration diagram is shown in Figure 3.4.

1: NewAccountlnfo() 2: UpdateAccount()
— —

:WebForm :Customer

2.1: Verify()l

Customer 3: UpdateAccount()l

:Database

Figure 3.4 Collaboration Diagram for Updating Customer Account
Case 3. Login
Customers can logon to an e-commerce system using their e-mail addresses and
passwords, which were specified in the Create a Customer Account use case. When
the e-commerce system recognizes returned customers, the system will allow user to
check their shopping records, update their accounts, and check out products. However,
if the e-mail addresses or the passwords are invalid, customers will be informed to try

again, up to three times. The login use case is shown in Figure 3.5.

1: Providel.ogininfo() 2: Login()
‘WebForm |——— 1 :Customer
2.1: Login()
Customer

:Database

Figure 3.5 Collaboration Diagram for Login

41

Case 4. Check Shopping Record

Figure 3.6 shows that returned customers can check their shopping records on an
e-commerce system. When a customer requests checking shopping records, the
e-commerce system will show an email and password input interface. After email and
password have passed validation, the e-commerce system will retrieve the customer’s

shopping data out of database and display them in user interface.

1: ReviewOrder () 2: GetCustomerinfo()
» OrderForm —p
WebForm :Customer
3: GetOrders ()l
Customer
4; GetltemLines()
:Order » :OrderDetail

Figure 3.6 Collaboration Diagram for Checking Shopping Record

Case 5. Browse Catalog

Any user of an e-commerce system can browse the system’s catalog. The catalog
consists of different departments, each of which includes various products. After
logon, a user can browse all departments and all of the featured products in each
department. Then they can move to any particular department by selecting the
corresponding hyper link. If a user is interested in a product, she may browse the

detailed information. The catalog browsing diagram is shown in Figure 3.7.

42

2. GetProducts
ByCtgiD()
—»

:WebForm :Catalog

Q 1: BrowsingRequest()
—>

3; GetProduct

4 N Detail()
Customer

:Product

Figure 3.7 Collaboration Diagram for Catalog Browsing

Case 6. Search Product

Figure 3.8 describes how any user of an e-commerce system can search products
by providing a product name, supplier name, or product price. If the search results are
not empty, the e-commerce system will display the result using a formatted user

interface. Otherwise, the system will display acknowledge information.

Q 1: Searchinfo() 2: SearchByKeyWord()
:WebForm :Catalog

3: SearchByKey

Word
Customer 0

:Product

Figure 3.8 Collaboration Diagram for Searching Product

Case 7. Add Product to Cart
After browsing the catalog, customers may be interested in specific products. If
the customer attempts to put a product in his/her shopping carts, the e-commerce

system must check the inventory first before add the product into the customer’s

43

shopping cart. If the product that is added already exists in the shopping cart, the
system will increase the product’s quantity instead of adding the product into the

shopping cart. Figure 3.9 describes the adding to cart use case.

1: AdditemRequest() 2: Additem()
WebForm :ShoppingCart
2.1: Check
Inventory()
Customer
:Inventory

Figure 3.9 Collaboration Diagram for Adding to Cart

Case 8. Remove Product from Cart

Figure 3.10 shows how customers can remove products from their shopping carts.
When the user interface shows the contents of a shopping cart, the customer can
request to remove products and the system responds by showing the remaining

contents of the shopping cart until the shopping cart is empty.

1: RemoveltemRequest() 2: Removeltem() 2.1: IsExist()
Q= =5 |
:WebForm :ShoppingCart ¢

:Customer

Figure 3.10 Collaboration Diagram for Removing From Cart

Case 9. Check QOut

After browsing the catalog and adding products to in their shopping carts,

customers can request to check out. At this moment, the system asks customers to
input their payment method, detailed credit card information, shipping address, and so
forth. If customers can provide all this information correctly, the system will take all
the items in the shopping carts, write them to the order detail table, and create
complete orders. Then the system will debit the order totals from customers’ credit
cards. Finally, the system will remove all the items on the orders from inventory. The

detailed description is shown in Figure 3.11.

Inventory

6: Removeltem()T

1: CheckOutRequest 4: GetCreditCard() 5: Debit()

:WebForm :Customer :Payment

Customer

2: CreateOrder() ¢
3 GetOrderTotal() vy

2.2: Createlineltems()
o

:Order :OrderDetail
—»

3.1: GetitemTotal()

2.1: GetAllitem() ¢

:ShoppingCart

Figure 3.11 Collaboration Diagram for Checking Out
Case 10. Cancel Order
Figure 3.12 shows how customers can cancel their orders at any time before
finishing the check out process. The system simply empties their shopping carts and

customers can continue shopping or logout.

45

Q 1:CancelOrderRequest 2: EmptyCart()
— :WebForm —> :ShoppingCart

3: EmptyCart() l

Customer

:Database

Figure 3.12 Collaboration Diagram for Canceling Order

3.5.2 Nonfunctional Requirements

A middleware framework is used for deriving a family of similar applications.
Reuse of a well-designed middleware framework can improve programmers’
productivity as well as enhance the quality, performance, and reliability of
applications. To meet all these promises, a framework itself has to have properties

such as high availability, integrity, security and performance.

® Availability

E-commerce is getting more and more prevalent. One of the most important
reasons is that it can be accessed seven days a week and twenty four hours a day.
E-commerce systems that derive from the proposed middleware framework should
have as little down time as possible. The maximum down time is two minutes per
day.
® Integrity

Integrity is the ability to determine the correctness and accuracy of data. An
e-commerce system requires that all the transactions should be executed 100%

accurately and all data transferred correctly over the network (e.g., customers are

46

buying the products that they intend to buy).
® Performance

A middleware that promises to deliver successful B2C e-commerce must provide
high performance because the competition is fierce in virtual markets. If one cannot
successfully access a required web page, a user may choose another e-commerce web
site, since so many of them are available. The average response time of each web
page, which includes the time spent on the server handling the request,
communicating over the network, and processing on the client machine (e.g.,
formatting the response), should be less than 5 seconds.
® Security

Security issues are key concemns for B2C e-commerce systems because of the
open nature of the Internet. Customers’ sensitive information should be protected
from malicious users by leveraging several security protocols such as the Secure
Socket Layer (SSL), encryption by secure HTTP (S-HTTP), and browser level
authentication. We must ensure that only authorized administrators can view
customer accounts and personal information, update department, and product

information. Additionally, only verified customers should be able to view their

shopping records.

3.6 Middleware Framework Design

3.6.1 Architecture Design
Based on the use case diagram captured in the requirements analysis, and using
the component identification method discussed in 3.4, I identified seven basic

components needed to deliver successful B2C e-commerce transactions, as shown in

47

figure 3.13:

Customer: the customer component is required because most e-commerce
systems need to retain their customers’ personal information, like e-mail, name
and address. When customers return to the system, the system will recognize
them and retrieve personal information. This component includes several classes
that are used to support creating a new customer, updating an existing customers’
information, and retrieving existing customers’ information, etc.

Supplier: This component contains classes that are used to provide an online
catalog, hold a specific product's detailed information, manage inventory, and to
manage supplier information. Customers can browse an e-commerce system’s
catalog, and review detailed products information. System administrators could
also add new products or update old product information using this component.
Shipment: This component maintains the classes that support different shipping
policies. By using this component, existing shipping methods can be retrieved
and new methods can be added to an e-commerce system.

Shopping cart: This component contains classes that are used for adding,
removing, increasing, and decreasing products in a customer's shopping basket.
Payment: This component maintains classes that manage customers' payment
methods. Customers can use this component to choose a payment method or to
create a new one.

Transaction: This component contains classes that are used for handling the
checkout process. When a customer sends a checkout request, this component

will write all the product information in the shopping cart into the order line table,

48

create an order record in the order table, and perform all the necessary transaction
processing.

® Third party: This component maintains classes that are responsible for
performing credit card authentication and payment processing (i.e., debit from

the customer’s account and credit on the supplier’s account).

customer supplier

g customers catalog inventory

T~

product supplier

customer

il

third party

A
paymentauth BankAccount
shoppingcart

A

A 4 A A y 4
payment transaction
EE: orders—| order

shipment

shipment

Figure 3.13 Package Diagram for E-Commerce Middleware

f N

» orderprocessing invoice

49

3.6.2 Dynamic Behavior of Objects
In this section, I use UML state chart diagrams to capture the dynamic behavior of
the main objects of an e-commerce system. Analyzing these dynamic behaviors helps

to identify the attributes and methods that a class should have.

1. Cart

Figure 3.14 shows that when a customer logs onto an e-commerce system, the system
will create a shopping cart for him/her with an initial state of “empty”. After
browsing the catalog and product information, the customer might put products in
his/her shopping cart and the shopping cart’s state will change to “not empty”. At this
time, if the customer places a check out request, the system will show the contents of
the shopping cart and allow the customer to make a decision either to check out or to
cancel the order. If the customer chooses to pay for the products, the system will
release the shopping cart after the customer paid for his/her selected products. If the
customer chooses to cancel the order, then the shopping cart’s state changes to “not
empty” again. When the customer logs off the system, the shopping cart will be

automatically released.

Additem
showing content
Remove iterr?
[cart not enpty] Peid
Logat Geesing

Figure 3.14 State Chart Diagram for Shopping Cart

50

2. Order

Figure 3.15 illustrates the order object’s state changes during the shopping process.
At first, the order is in an “incomplete” state. After browsing the catalog and adding
items to the shopping cart, the customer may request to check out. If the check out
process succeeds, an order will be created and the orders’ state will change to
“completed”. Then, the order will enter the “processing” state, which involves stock
checking, payment making, and customer notification, etc. If every step in
“processing” is processed successfully, the order will enter a “fulfilled” state. If any
step fails in “processing”, then the order will change to the “postponed” state. When

the postponement exceeds 24 hours, the order will be automatically canceled.

Add item to cart

Success

incomplete completed

Check out
-
Cancel/fail

I

Remove item Check il . Place
cart not em| eck again [accoun
[Py alance/stock/...] order
Fail [out of stock/out of
balance/...] (
postponed |] Pprocessing
—
[customer cancels/ Resume -
time>24 hours] SUCCESS

canceled | >©< [tulfilled

Figure 3.15 State Chart Diagram for Order
3. Order Processing
Once an order has been successfully created, it will move to an “order processing”
state. In this state, the e-commerce system will first check the inventory. If the

inventory has the requested products in stock, the order moves to the “payment

51

processing” state, which involves several sub steps, such as credit card verification,

customer account debiting, and supplier account crediting. If every sub step proceeds

successfully, the system will move to notify the shipper and the customer. In the

event that any of the previous steps fail, the order will be postponed. After 24 hours

of postponement, the order will be cancelled. Figure 3.16 details this state.

checking stock |/l
S

Try again

[Out of stock}
/|J‘ notify supplier ’
done

[out of stock]

payment processing

Try again [if fail]

notify shipper !
_

[Success]

Try again [if fail]

notifying customer !
—

Try again [if fail]

complete

j&\ooxs ul

[Out of stock & time>24 hours]

[Success]

[fail & time>24 hours]

[fail & time>24 hours]

[Success]

{fail & time>24 hours] K

f canceled '

Figure 3.16 State Chart Diagram for Order Processing

4. Inventory

Figure 3.17 shows that the inventory object may be used to add new products into

the database, modify existing products, and to check products stocks. When a

52

customer submits a check out request, the inventory object will be used to check
stock. If there are enough products in stock, the same number of products purchased
by the customer will be removed from inventory. Otherwise, the customer will be
notified that there are not enough products in stock. At the same time, the suppliers

will be notified to replenish product stocks.

‘ adding product ’

Add new
product [Quantity>0]
Check [in stock &
[one product] quantity>0]
.4_> waiting check in stock reduce quantity
o)
Modify s
quantity g-
or price; 8 [Quantity<=0]
& remove a product from inventory

l modifying ' Gotify supplier and customea
logout C

Figure 3.17 State Chart Diagram for Inventory

5. Customer

Figure 3.18 illustrates the state changes of the customer object. When customers
come to an e-commerce system, they may create accounts to become registered
customers, browse the catalog, and search products. If they are registered customers,
individuals can check their shopping records, modify personal information, and
purchase products. After they have paid for the products, customers will receive an

email from the system.

53

search [on certain criterion) logoul
search [or v

browse areh [or
‘—%Stomer browsing |_certain criterion])
searching
omplete viY
/I\ complete I

registering
logoui
complete

search

et

asmolq

complete

retrive \’/\ update
;‘ registered customer | -] updating]
" complete

complete

uibo|
SUCCASS

logout

check out complete
(retriving all order records) Gelecting items checking out being notifiec O

Figure 3.18 State Chart Diagram for Customer

ued woll
aAotlapPE

5. Catalog

In Figure 3.19, the catalog object starts in an “initial” state, which may then
proceed to the “retrieving” state. If the retrieval is successful, catalog object enables
the system to show the contents of the catalog. If the retrieval fails, the e-commerce
system must encounter some errors. From the “showing content” state the catalog
object can change to the “modifying” state and the “browsing” state. After the

customer logs out, the catalog object will be released.

Retrieve

success

initial retrieving ShOng content brOWSing

finish

w 1sanbai Ajipopy

complete

modifying

Figure 3.19 State Chart Diagram for Catalog

6. Product

54

Figure 3.20 shows that a product can start in the “adding to inventory” state. Once
a product exists in inventory, it can be browsed and added to a shopping cart. After
being checked out, a product may be in shipping and receiving states. When a
product’s quantity drops to zero, the product will be removed from the inventory. In

addition, a product’s property such as name, price and description, may be modified.

time>0.1 secon success

[0>A1_;uenb](]

remove request
Cancel order
done Add to cart
. . . . [in stod!
adding to inventory in inventory browsing
complete rowse
/T\ request

Remaove form cart
[cart not empty]

5
dwa jou peo] §

N0 Xo8UH

e T

Process
order

e can not fulfill [e.g. address incorrect] 4 success
(modifying ’ shipping receiving

Figure 3.20 State Chart Diagram for Product

(Amuenbajepdn‘()eondayepdn
Asanbai ajepdn
a181dwo ayepdn

7 Payment

Figure 3.21 demonstrates that a payment process may start with collecting a
customer’s credit card information. Once the collection is complete, the credit card
information will be encrypted and sent to a third party for verification. If the credit
card information is approved, the total value of the customer’s order will be debited
from the customer’s account and credited to the suéplier’s account. Otherwise, if the

credit card information is rejected, the e-commerce system will ask the customer to

55

correct his/her information until the customer cancels the order or the credit card

information is approved.

try again
[Incomplete!

()

getting credit info

submit

_: credit verificatior

rejectec

approvec

getting order info

success

N/

success
Gredit supplier s bank accounHebit customer s bank accounD

done

cancel

Figure 3.21 State Chart Diagram for Payment

3.6.3 Classes and Relationships among Classes
Based on the analysis of functional requirements of the proposed middleware
framework and dynamic behaviors of objects, I identified the major classes and the

relationships among classes shown in Figure 3.22.

56

1 —
has Visit has 1
< -
1 1
Customers
1
Catalog
has
1 1
1 Orders manages
manages .
* 1 Customer
Product 1 has
1
manages ;
* Created from 1 0.* has
] Order 1 has
. l 1 Paid by 1 Payment
contains 1 cart Y
7
checks 1 Fulfiled by 1
1
Inventory 1 checks * |OrderProcessor| . Debit/credit has
create 1 0.* uses * !
1. 1 0.* BankAccount
maintain
notify notify
1 - 1 1 1 1.7
supplier invoice Shipper PaymentAuth
1 1.
has

Figure 3.22 Class Diagram of E-Commerce System

1. Class Diagram for Supplier Component

The supplier component includes four main classes: catalog, product, supplier, and
inventory. A system administrator may use this component to accomplish tasks, such
as adding new departments to the catalog, updating product prices, and removing

products from inventory, etc. A customer uses this component to browse the catalog,

57

or retrieve a product’s detailed information. A basic class database and a public

interface are used in order to allow the four classes to share the same database

connection object.

supplier |
«interface»
utility
+DB()
+Visit()

catalog T : - "
iy Le——e o _ produc ::ven ory

-m_ -m_Pname
+adthD“<{9)partTtent()t -m_Name -m_Pquantity

:ggtDe zﬂ?ne?f(;] SOF—+ -m_Price K- m -m_Pprice
g P T | +getName() +addProduct()

' : +getPrice() +removeProduct()
: : +getDetaiI(l) +update(l) |
1
database ,_Ji- ___________ 1:\-__1\ _________________ H :
]]
-m_string P i ! |
-m_DB <—”;‘-’:'“ ----------- N {
+RunQuery() - : supplier :
+get DB() ! -m_supplierld |
: -m_supplierName {
R T +getSupplierName() K-——mmemmm oo J
+setSupplierName()

Figure 3.23 Component Diagram for Supplier

2. Class Diagram for Customer Component

The customer component includes two main classes: customers and customer. The
customer class is used for holding a single customer’s detailed information. The
customers class is used for holding all operations that related to customer
management, such as creating a new customer, updating an existing customer’s

information, etc.

58

customer

database «interface»
-m_string utility
-m_DB +DB()
+RunQuery() +Visit()
+get DB()

1 customer
customers "m_ID
-customer -m_Email
+CreateCustomer()| ™~~~ "~ A m_P. assword
+Update() +getPncg()
+getAllOrders() +getEmail()

+getPassword()

Figure 3.24 Component Diagram for Customer
3. Class Diagram for Shopping Cart Component
The shopping Cart component contains a cart class, which is responsible for
adding products to shopping carts, increasing the quantity of a product, emptying

shopping carts, etc.

shoppingcart
«interface»
utility
+DB()
+Visit()
cart
-m_ID
-m_Numltems database
-m_Total o
-m_strin
+add) Lo >1-m DB)
+remove() —
+increase(} +RunQuery()
+decrease() +get DB()
+checkQuantity()
+emptyBasket()

Figure 3.25 Component Diagram for Shopping Cart
4. Class Diagram for Payment Component

The payment component contains a payment class, which is used for managing

59

customers’ payment methods, including adding or removing a payment method, and

modifying an existing payment method, etc.

payment

«interface»
utility
+DB()
+Visit()

T

payment

-m_Id
-m_Number
-m_NameOnCard
-m_ExpireYear
+addType()
+removeType()
+modifyNumber()
+removeAll()

database

-m_string
-m_DB
+RunQuery()
+get DB()

Figure 3.26 Component Diagram for Payment
4. Class Diagram for Third Party Component
The third party component includes a payment authentication class and a bank
account class, which are responsible for authenticating customers’ credit card

information and transmitting money from customer accounts to supplier accounts.

Third Party
database «interface»
-m_string utility
-m_DB +DB() <
+RunQuery() +Visit()
+get DB()
N A
i i bankaccount
| — -m_accountName
! -m_accountNumber
paymentauth | | -m_balance
-m_boolean +addAccount()

- +removeAccount()
+cardNumValidation() +debit()
+banlanceValidation() +credit()

+checkBalance()

60

Figure 3.27 Component Diagram for Third Party

6. Class Diagram for Shipment Component

The shipment component contains a shipment class, which is used for managing
the shipment methods that are provided by an e-commerce system. The component

provides services like adding, modifying, and removing shipment methods.

shipment

«interface»
utility
+DB()

+Visit()

T

shipment

-m_ld

+addType()
+removeType()
+update()

database

-m_string
-m_DB

+RunQuery()
+get DB()

Figure 3.28 Component Diagram for Shipment

7. Class Diagram for Transaction Component

The transaction component contains classes that are related to e-commerce
transactions. These classes include order, invoice, and order processing pipeline. This
component is responsible for creating orders, creating invoices, and calculating order

totals. Additionally, the component is also used for notifying customers, and notifying

suppliers.

61

transaction
order invoice
-m_Id orders -m_CustomerFirstName
-m—CustomerId _____ -m_CustomerLaseNameg]
+getShippingAddress() +createOrder()[7 :m—%fgte-nme
+setShippingAddress() +getAllOrders() =
-+placeOrder() +getOrder() +getTotal()
! +setTotal()
I
|
)
Orderprocessing PipeLine <G
checkinventory| |notifyCustomer| |notifyShipper| |notifySupplier paymentprocessing
—> >

Figure 3.29 Component Diagram for Transaction

3.6.4 Detailed Design

The detailed design of each class is documented using pseudo code. The following
information is used to describe the detailed design for each class:
Index: a reference uniquely assigned for identifying this class.
Name: a unique name that describes the corresponding class.
Purpose: briefly describes the objective of the class.
Remarks: explains any details concerning the class which are not captured by any of
the above.
A method of a class is described in the follow style:
Index: a reference uniquely assigned for identifying this method.
Name: a unique name that describes the corresponding method.
Purpose: briefly describes the objective of the method.

Input parameters: a list of input parameters required by the method.

62

Output parameters: a list of output parameters that the method is expected to return.

Pseudo code: describes the operation of this method including how the functions

utilize the data and how the program reacts to events and state changes.

Remarks: explains details concerning the method, which are not captured by any of

the above.

Below is an example description for the customer class and its methods.

Customers Class:

Index: Class_01

Name:
Purpose:

Reference classes:
Remarks:

Customers

providing methods that are used for managing customer
information, such as creating a new customer or updating an
existing customer’s account.

customer

No

Methods of customers class:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Method_01

createCustomer

register a new customer

Public

firstName, lastName, email, password, address, phone,City,
Country, Zip

customerld

recordset = SELECT * from customer where EMAIL = email
if end of recordset then '

add new customer;

return customerld;

else
return O;
end if
Remarks: firstName, lastName, password, address, phone are optional
parameters
Index: Method_02
Name: updateCustomer

63

Purpose:
Visibility:
Input parameters:

Output parameters:
Pseudo code:

update an existing customer’s personal information

Public
Id, FirstName, LastName, EMail, Password, Address, Phone,

City, Country, Zip
Boolean (true or false)

recordset = Select * from customer where ID = Id
if not end of recordset
update record;

return true;
else
return false
end if
Remarks: No
Index: Method_03
Name: GetOneCustomer
Purpose: retrieve one customer’s record value from the customer table,
which is specified by customer ID
Visibility: Public
Input parameters: Id
Output parameters: recordset

Pseudo code:

recordset = Select * from customer where customerID = Id
if not end of table

return recordset;
else return null;

Remarks: No

Index: Method_04

Name: CheckLogon

Purpose: attempts to logon a user based on an e-mail and password
Visibility: Private

Input parameters:
Output parameters:
Pseudo code:

email, password
boolean

recordset = select * from customer where EMAIL=email and
PASSWORD = password
if not end of table
return true;
else
return false;

64

Remarks: No

Fifteen classes are identified in this research. Other classes and their methods
descriptions are provided in appendix A.

65

Chapter 4

Implementation

This chapter discusses issues related to the implementation of the middleware
framework, such as implementation strategies, implementation environment, and
quality assurance. An example application derived from the proposed middleware

framework is also provided.

4.1 Implementation Strategies

In the implementation phase, the design documents that have been created must be
translated into code. All the functionality specified in the design must be present and
fully functional. To ensure functionality, I used a combined top-down and bottom-up
approach.

In object-oriented development, a top-down implementation means that the classes
where executions start are implemented first, while supporting classes and reference
classes are implemented later. In this middleware framework project, all the proposed
components work through a fagade class, namely visit. Therefore, I started by
building this class and presented all its referenced classes as dummy classes (i.e., a
class that contains its necessary methods with incomplete method bodies). By doing
so, whenever a component had been implemented (e.g., order, customer, and
transaction), I could test it through the visit class. In order to test the correctness of a

component, I also had to build the GUI first (i.e., web pages implemented using ASP),

66

which provides a graphical user interface for collecting customer input.

The bottom-up implementation means that classes at the bottom of the class
inheritance hierarchy are built first. In other words, classes that only allocate or
reference primitive or predefined classes are coded first. For example, in this project,
an interface named wutility and a base class named database were coded and tested
first since they only reference to primitive classes. Classes like order, customer,
product, were built later because they used the utility and database class. Therefore, a
combined method was used in the implementation of this middleware framework.

4.2 Quality Assurance

To ensure the framework’s quality in term of functionality, reliability, availability,

and performance, I used extensive testing methods, including unit testing, integration

testing, and system testing, to improve the framework’s quality.

Unit testing is testing the individual components that comprise the system. After a
component had been built by following bottom-up implementation strategy, I
proceeded to test functionality by generating a set of test cases that represent all
possible situations. The purpose of functional testing is to ensure that the observed
and expected behaviors are the same in all situations. However, unit testing of a
component can only test part of the correctness of the component. It was uncertain
whether the component would function correctly when interacting to other

components. Therefore, I used integration testing to further test components’ dynamic

behaviors.

Integration testing is testing a group of components’ behavior when they are

67

working together. The goal of integration testing is to ensure that a group of
components behaviors are the same as specified in the requirements. Once I was
satisfied with each individual component of the framework, I integrated these
components into a working system to perform integration testing. During the
integration testing, I used an incremental approach. I added one component at a time
to the working system instead of adding them together. When the first component
added to the working system tested and demonstrated correct behavior, I added the
second component. If a problem arose, the most likely source for the problem was the

most recently added component. In most instances, bugs can be found relatively

easily.

Finally, I performed the system testing, which meant that the derived middleware
components and web pages that called these middleware components were deployed
on a server computer. Clients browsed the web pages via the Internet. A set of test
cases were performed to verify the functions provided by middleware components. In
some cases, the system must be fault tolerant, which means when an error occurs the
overall system must be able to recover. In system testing, middleware components’
fault tolerances were tested. In addition, the performance of the proposed middleware
was also tested, using metrics such as the response time of a web page and the
number of transactions performed per second.

4.3 Implementation Environment

The proposed middleware framework is implemented using Microsoft COM+

technology. The reasons for using COM+ are that it achieves binary encapsulation

and binary compatibility and it supports a wide range of implementation languages.

68

In addition, it is faster and more robust than either EJB or CORBA technologies [10].
The developmental environment I used is Microsoft Visual Studio and the
programming language is Visual Basic.

To verify the design and the implementation of the framework, an example
e-commerce application is created from the proposed middleware framework. ASP
technology is used for implementing the web server layer (i.e., web pages). The ASP
web pages are deployed in Microsoft IIS web server container. Microsoft’s SQL
server 2000 is used as the backend database and Microsoft Windows XP is used as
the operating system.

4.4 Run-Time Behavior of an Example Application
A customer can logon to the sample e-commerce application by typing the URL of

the system (i.e., http://142.161.74.219/shoppingcenter/asp/frame.asp). The system

then displays its entry page, as shown in Figure 4-1. The left side of the entry page
shows a search engine, the contents of the current shopping cart, and the department
list of the system. The search engine provides a quick method for searching for a
particular product. The search key words could include name, price, or supplier of a
product. The shopping cart content area shows the total number of items and the total
price of all items in the current shopping cart. The department list displays all the
department of this e-commerce system. Users can browse any of the department by
clicking the corresponding hyper link.

The main frame of the entry page shows all the featured products for each
department. A customer can click the hyperlink of the department name or click on

the image of the featured product to explore detailed information regarding a

69

particular department. A customer can also choose to immediately login the system,
instead of doing so at check out. An existing customer can also track his/her shopping

records and check his/her contact information by clicking the respective hyperlink.

= 2 Gt op & & @
Stop Refresh Home:7: ¢ Search 1 Favorites. Media History.

Adkess B8] hitp:f/192.161.74.219 shoppingcenterjasp/frame 25p

- X
Computers S

Figure 4-1 Entry page of an E-Commerce System

70

L search i Favorites

sp2d=2

HP notebook
Price: $2,000.00 Price: $1,600.00

Discription Discription: P4 2.0GHz, 40GB hard drive

Price: 51,200.00 Price: $1,300.00

Discription: P4 2 4GHz, 160GB hard " g Discription: 2.8GHz, 512M DDR
drive memory

Figure 4- 2 Department page of an E-commerce System
If a customer is interested in one department, he/she can click the name of the
department or the image of the department to browse all the corresponding products.
Figure 4-2 presents the product information of a computer department. If a customer
is interested in one particular product, he/she can click the name of that product or the
image to see the detailed information, as shown in Figure 4-3.

Figure 4-3 shows one particular product’s image, name, price, description, and
shipping methods. From this page, a customer can click the “buy it now” button to
drop this product into his/her shopping cart, or click the “continue shopping” button
to browse other products.

Figure 4-4 shows the contents of a customer’s shopping cart including all product

names, product prices, quantity, and their value. From this page, a customer can

71

increase or decrease the quantity of a product, or delete items from the shopping cart
by clicking the respective hyper links. In addition, a customer can click on the
“continue shopping” button to keep shopping or click on the “proceed to check out”
button to check out.

In the check out process, a customer first needs to login the e-commerce system.
From Figure 4-5 we can see that if a customer is new to the system, he/she is required
to input an email address and check the “I have never shopped at your store before”
radio button. If a customer is a returned customer, he/she is required to input an email
address and password. For a new customer, the e-commerce system will proceed to
ask for the user’s name, address, country, telephone, and password, as shown in
Figure 4 — 6. When all of the required information is entered correctly, the system will
ask for credit card information. As show in Figure 4-7, a customer can choose a credit
card type (e.g. Visa Card, Master Card) and input the name on the card, the card
number, and expiration data. When all the personal information is entered correctly,
the credit card information will be sent to a third party for validation. Once the credit
card has been verified, a valid order will be created. Otherwise, the customer will be

asked to input corrected credit card information.

72

Home

2 dopRid=17

Price: $1,200.00
Discription:

mtraday shippmg:$20.00
3 days shipping.$6.00

2 weeks shipping$1.00

phone cards|
@2004 3G Corporation. All rights reserved. All terms of use approved by jennyshen

version: 1.0.0

Less Delete - $38.00 $38.00
Fundamental Concepts for the Software Quality Engmeer 1 Less | Mor, ete ~$30.00 $50.00

Proceed o Checkaut Continue Shopping

cell phones leomputers |phorc cards Hovs
@2004 3G Corporation. All sights reserved. All terms of use approved by jennyshen

version: 1.0.0

Figure 4-4 Shopping Cart Page of an E-Commerce System

73

Fie . Edit - View Taols -+ Halp
Stop Refresh v Favontes Media

ngcenter;

ooks [eds icell phones [computers
@2003 JG Corporation. Al rights reserved All terms of use zpproved by jermyshen

version: 1.0.0

Favorites ;> Tools i Help

£
St

Figure 4-6 Personal Information Collection Page of an E-Commerce System

74

Fiie . Edit - View " Favortes . - Tools - Help

4 L 2 7 o 5
Back Stop Refresh Home Favorites Media Fistory i

HY hrtp1f/142.161.74.218 fshoppi fasplcheckout. a5

leds [cell phones icomputers iphotie cardsifovs |
Z2008 3G Corporation Allrights reserved. All terms of use epproved by jennyshen

version: 1.0.0

Figure 4-7 Credit Card Information Collection Page of an E-Commerce System

4.5 Evaluation

The quality of the proposed middleware framework can be evaluated from both
qualitative and quantitative aspects. In the qualitative analysis, I examined the
framework’s functionality, reusability, technology dependency, and security. In the
quantitative analysis, I measured the example application’s average response time,

transaction success rate, and the system’s capacity.

4.5.1 Qualitative Evaluation
e Functionality

The proposed middleware framework supports the common functions required by
online commerce applications. The functions include customer account creation, a

shopping cart, search engine, various payment and shipment methods, product

75

browsing, checkout, and order tracking, etc.

The framework supports a product browsing function. Any user of an e-commerce
web site is able to navigate the web site just like walking in a real shop. Whenever
users intend to purchase any products from the web site, they provide their personal
information to become registered customers (creating an account) or provide their ID

and password to be recognized by the system (login).

Furthermore, the framework supports a shopping cart function, which can be used
by end users add products in their shopping cart, and to view the contents of a cart
during the purchasing process. In addition, this framework provides a search engine
function, which reduces product search times. Since numerous methods are provided
in the product class, a search engine can be easily built to accept keywords such as
product name, price, and supplier.

Another basic function supported by the framework is credit card payment.
Customers provide their credit card information to the e-commerce system. Then, the
e-commerce system will encrypt the information and send it through the Secure
Socket Layer (SSL) to third parties, where the credit card information is verified. If
the credit card information passes verification, an order will be created. Otherwise,
the order will be rejected. After the order is created, it will go into a processing
procedure, which includes checking the stock, making a payment, and notifying
customers, suppliers, and shippers.

The framework also supports different shipment methods, which can be chosen by

customers, and helps to ensure user satisfaction. Registered customers can also track

76

their shopping records. However, some of the functions that are not common are
omitted from this framework.
° Reusability

The main benefits of the proposed framework are that both its design and
implementation are reusable. During the design stage, I used a systematic method to
identify the components. When I made the decision on each component’s granularity,
I considered the component’s cohesion and coupling so that reusability and
maintainability could be confirmed.

* Technology Dependency

This framework describes the design of middleware components that enable B2C
e-commerce transactions. The design is presented using UML diagrams and pseudo
code, which is independent from any implementation technology. Therefore, the
proposed middleware framework may be implemented using different middleware
platforms, namely CORBA, COM+, and EJB. Particularly when COM+ technology is
used, a wide range of programming languages (e.g., Visual Basic, C++, and C#) can
be used to implement the framework. The implementation results (i.e., a set of
components) could be deployed in either a Unix or Windows environment depending
on the chosen implementation middleware platform.

* Security

Security 1s a key concern in any e-commerce system. Protection includes
customers’ personal, purchasing, and credit card information. This framework
provides multiple access control mechanisms to reduce both customer and merchant

risks. For example, customers who wish to purchase products from an e-commerce

77

system need to provide unique email address and password to register. Only
registered customers can place orders and check their shopping history. Only
authorized administrators can modify catalog, product, and inventory information,
and only authorized persons can view customer information. However, information
transport security and operating system security are not main concerns of this work.
4.5.2 Quantitative Evaluation

To evaluate the proposed middleware framework’s performance and usability, I
deployed the example application on the server machine in the E-Commerce
Laboratory (i.e., Dr. Ehikioya's Advanced E-Commerce Systems Development
Laboratory), measured the example applications’ average web page response time, the
page loading success rate, and compared the results with an existing two-tier
architecture e-commerce application (i.e. a course project developed by a graduate
student) installed on the same server machine. In addition, I measured my example
application’s transaction accuracy rate, and the deployed system’s capacity.

The server machine has a Pentium III 1GHz CPU, 256M RAM, Windows 2000
Advanced Server operating system, and Microsoft SQL server 2000 database. I used
the computers in the Cargill Lab and the Heterogeneous Computing Laboratory as
client machines to logon to both of the two tier and the three tier e-commerce
applications through the local area network.

I used a Java program named JMETER [32] to simulate multiple simultaneous
users to logon to the two e-commerce systems. JMETER is open-source software

used to test the performance of server systems such as web, FTP, and databases

SCrvers.

78

e Average Response Time

A web page's response time includes the time for the server to handle request, the
time for network communication, and the time for processing on the client machine
(e.g., formatting the response). In this research, I captured sample web page response
times and calculated the average response times of both the two-tier architecture
e-commerce system and the three tier architecture e-commerce system as shown in
table 4-1. From Figure 4-9, we can see that with an increase in the number of users,
both the two-tier and the three-tier e-commerce system’s average response time
increases and the three-tier system’s average response time increases more sharply
than the two-tier system. When the number of users reaches 40 for the two-tier
system and 20 for the three-tier system, the average response time will drop. However,
at these points in time, both systems’ success page loading rate drops too, as depicted

in both Table 4-2 and Figure 4-10

Number of Users | Two Tier Three Tier
1 12 378

2 51 726

4 146 1355

6 168 1914

8 260 3091
10 363 5163
20 751 7127
40 1036 4008
80 446 2374
160 295 1130

Table 4-1 Average Response Time for the Two Tier and Three Tier E-Commerce
Application (in ms)

79

8000
7000
6000
__ 5000
2 4000
= 3000
2000
1000

Average Response Time

Average Response Time

6 8 10 20 40

Number of Users

—e—two tier

g three tier

80 160

Figure 4-8. Average Response Time for the Two Tier and Three Tier

E-Commerce Application

Number of Users Two Tier Three Tier
1 100 % 100 %

2 100 % 100 %

4 100 % 100 %

6 100 % 100 %

8 100 % 100%
10 100 % 100 %
20 100 % 100 %
40 100 % 38%
80 46.20 % 12.25%
160 43.70 % 3.10%

Table 4-2 Success Page Loading Rate for the Two Tier and Three Tier

E-Commerce Application

80

Success Rage

120%

100%

£ 80%
a5

2 60%
@
[$]

S 40%
[72]

20%

0%

1 2 4 6 8 10 20 40 80 160
Number of Users
‘ —&— Two Tier —a— Three Tier
Figure 4-9 Success Page Loading Rate
e Capacity

To determine the e-commerce system’s capacity, I measured the maximum
number of users the system supported. JIMETER was used to simulate multiple users
and each user performed a login operation. I increased the number of users until the
server machine crashed. The maximum number recorded was 200, which means one

server machine can support 200 users simultaneously.

* Integrity

To test the sample application’s integrity, I used three groups of participants’ help
to do the experiment. The participants were friends and students in Computer Science
Department at the University of Manitoba. The first group had one participant, the
second group had five participants and the third group had ten participants. People in
each group were asked to logon to the three tier e-commerce system simultaneously

and perform various purchasing transactions. The percentage of successful

81

transactions and the number of correctly accessed web pages was 100%. The system

availability was 98%.

¢ Impact of Component Size

In this study, I was also interested in the impact of component size on the example
application’s performance. Therefore, I regrouped the components into one singular
component, and rebuilt the example application based on the unified component.
Then I compared the average response time and success page loading rate with the
example application based on ten components.

Table 4-3 lists the average response time and success page loading rate of
example application using one component. And Table 4-4 lists the similar data for
example application using ten components. Both these two example applications use

three-tier architecture and deployed on the same server machine.

Number | Average Response Success | Component
of Users Time(ms) Rate Number | Architecture
1 431 100 % 1 three tier
2 892 100 % 1 three tier
4 1060 100 % 1 three tier
6 1652 100 % 1 three tier
8 3387 100 % 1 three tier
10 4033 100 % 1 three tier
20 4607 50 % 1 three tier
40 2516 25% 1 three tier
80 1458 11.25% 1 three tier
160 848 6.50 % 1 three tier

Table 4-3 Example Application Based on One Component

82

Number of | Average Response Success | Component
users Time(ms) Rate Number | Architecture
1 378 100 % 10 three tier
2 726 100% 10 three tier
4 1355 100% 10 three tier
6 1914 100% 10 three tier
8 3091 100 % 10 three tier
10 5163 100% 10 three tier
20 7127 100 % 10 three tier
40 4008 38% 10 three tier
80 2374 12.25% 10 three tier
160 1130 3.10% 10 three tier

Table 4-4 Example Application Based on Ten Components

Figure 4-11 shows that the example application that uses one component follows
almost the same diagram shape as the example application that uses ten components.
However, the single component has slightly better average response time than the
application using ten smaller components. Nevertheless, the framework with ten
components is easier to understand, to reuse, and to extend than the singular
component framework because the users can pick any of the components, digest and
use them in their applications.

Similarly, both example applications’ successful page loading rate drops when the
number of users reaches 20 for the application based on one component and 40 for

the application based on ten components, as shown in Figure 4-12.

83

Average Response Time

8000
7000
6000
5000
4000
3000
2000
1000

Average Response Time

1 2 4 6 8 10 20 40 80 160

User Number

1—0—Ten Components —&— One Component

Figure 4-10 Average Response Time for Example Application Based on One
Component and Ten Components

Success Page Loading Rate

120%
100%
80%
60%
40%
20%
0%

Success Page Loading
Rate

1 2 4 6 8 10 20 40 80 160

User Number

—e— One Component —&-— Ten Components

Figure 4-11 Success Page Loading Rate for Example Application Based on One
Component and Ten Components

84

Chapter 5

Conclusion

5.1 Summary of Contributions

In this research, I provided an object-based middleware framework, which
identified all the common services necessary for e-commerce transactions, such as
customer information, shopping cart and order management. This framework is
represented by a set of components and provides its services through these
components’ interfaces. Using the proposed middleware framework to build online
e-commerce applications can dramatically improve developer’s productivity, as well
as enhance the quality and reliability of e-commerce applications.

This research involves the design of common services that are required by similar
online store applications and the implementation of a subset of the design to validate
the design. The design of the framework is independent of any underlying platform
and programming language, therefore it is much easier to reuse. Using the common
services provided by the framework to build online e-commerce application is
cheaper and faster than building from scratch.

The UML design methodology was used widely in the requirement analysis and
design. Specifically, UML use case diagrams were used to capture the system’s
functional requirements, UML collaboration diagrams were used to describe the use
case scenario, and UML state chart diagrams were used to show the dynamic

behavior of objects. Pseudo code was used to document the detailed design (i.e.,

85

methods provided by each object).

To confirm the correctness and the performance of the proposed middleware
framework, design issues including component granularity, concurrency,
communication, and consistency were discussed in chapter 3 and were examined at
both the design and implementation stage. Therefore, the performance, reusability,
and maintainability of the framework could be predicted.

A systematic method was used to identify the components from UML use case,
collaboration and class diagrams. Component reusability, maintainability, and
performance could be predicted since the components are derived through
conforming the high cohesion and low coupling principle.

The proposed middleware framework was implemented using Microsoft COM+
technology, because it is faster and more stable than other middleware platforms and
it also supports a wide range of implementation languages.

To verify the quality of the framework, I have also developed an example
application using the proposed middleware framework. Comparisons were made with
a non-middleware based e-commerce system. The middleware based e-commerce

system was found to be more flexible, scalable, and reliable.

5.2 Future Work

Components provided in this middleware framework are mainly focused on
supporting B2C e-commerce transactions. However, this work could be further
extended to support complete system administration, like customer, order, and
inventory administration. In addition, the framework could also be extended to

support order tracking and data mining so that the derived e-commerce system could

86

help merchants to make correct decisions and receive additional benefits.

Security is a very important issue in the B2C e-commerce domain. Both
customers and merchants face many risks, like private information loss and credit
card fraud. To achieve the highest degree of security, many new technologies have
been used throughout e-commerce the applications’ multiple tier such as Client (Web
Browser), Web Server, and Application Server. To develop a security framework and
incorporate it with the proposed middleware framework presents a beneficial research
area.

Currently, I have evaluated the proposed middleware framework by testing an
example application and comparing it with a non-middleware based e-commerce
application. In the future, I hope to extend this work by comparing it with other B2C
e-commerce middleware frameworks. A comparison with other B2C commerce
middleware frameworks will identify the advantages and disadvantages of each

framework and will contribute to the standardization of a middle framework for the

B2C commerce domain.

Today’s e-commerce environment consists of many components and faces
numerous challenges. A middleware framework must be flexible to accommodate
these challenges. Some new components may need to be added to the framework.
These new components must be easy to create and must interoperate with the existing
ones. Therefore, improving the framework’s interoperability is an important research
area.

I believe that the proposed middleware framework allows for the fast

development of new robust B2C e-commerce applications in a simple way.

87

References:

[1] Markus Aleksy, Axel Korthaus, and Martin Schader. A CORBA-based
architecture for electronic auction applications. In Proceeding of the First ACIS
Annual International Conference on Computer and Information Science, pages
186194, Orlando, Florida, 2001.

[2] Luis Anido, Manuel Caeiro, Juan M. Santos, and Judith Rodriguez. Design of a
component-based software architecture for web-based learning system: EJB vs
COBRA. In Proceedings of International Conference on Computer Science,
Software Engineering, Information Technology, e-Business, and Applications,
pages 277-282, Brazil, 2002.

[3] Martin Bichler, Carrie Beam, and Arie Segev. O_er: A broker-centered object
framework for electronic requisitioning. Trends in Distributed Systems for
Electronic Commerce, pages 154-165, 1998.

[4] Grady Booch, James Rumbaugh, Ivar Jacobson, and Jim Rumbaugh. The Unified
Modeling Language: User Guide. Addison-Wesley, 1999.

[5] MiSook Choi, HyonHee Koh, Yonglk Yoon, and JaiNyun Park. Component
identification method based on use case. In Proceeding of the First ACIS Annual
International Conference on Computer and Information Science, pages 203-210,
Orlando, Florida, 2001.

[6] Wolfgang Emmerich. Engineering Distributed Objects. John Wiley and Sons, Ltd.,
2000.

[7] Richard E. Fairley. Software Engineering Concepts. McGraw-Hill, Inc., 1985.

[8] Nathalie Gaertner and Bernard Thirion. Working with business patterns
frameworks: A case study for fuzzy logic control. In Proceedings of the
ECOOP’99 Workshop for PhD Students in OO Systems (PhDOOS ’99), pages
128-135.

[9] Jong-Pyo Jang, Sang-Jun Lee, and Byung-Ki Kim. Component specification
activities using Z. In Proceeding of the First ACIS Annual International

Conference on Computer and Information Science, pages 256-262, Orlando,

88

Florida, 2001.

[10] Markku Karppinen. Enterprise Java Beans. O’Reilly Associate Inc., 2000.

[11] Dong Kwan Kim, Hyo Taeg Jung, and Chae Kyu Kim. Techniques for
systematically generating framework diagram based on UML. In Proceedings of
Asia-Pacific Software Engineering Conference, pages 203-210, Taipei, Taiwan,
December 1998.

[12] Gil-Jo Kim, In-Geol Chun, Ja-Kying Koo, Jin-Ho Jang, and Roger Y. Lee. A
framework for software component quality improvement. In Proceeding of the
First ACIS Annual International Conference on Computer and Information
Science, pages 195-202, Orlando, Florida, 2001. '

[13] Zeynep Kiziltan, Torsten Jonsson, and Brahim Hnich. On the Definition of
Concepts in Component Based Software Development. Technical Report,
Department of Information Science, Uppsala University, 2000.

[14] Chris Loosley and Frank Douglas. High-Performance Client/Server: A Guild to
Building and Managing Robust Distributed System. John Wiley and Sons, 1997.

[15] Microsoft Corporation. Microsoft CoOM Specification.

http://www.microsoft.com/ com/resources/specs.asp.

[16] Vojislav B. Misic. Cohesion is structural, coherence is functional: Different
views, different measures. In Seventh International Software Metrics
Symposium, pages 135-144, London, England, 2001.

[17] Object Management Group. Common Object Request Broker: Architecture and
Specification, Revision 2.6, OMG. 2000.
http://www.omg.org/technology/docaments/ formal/corba_iiop.htm.

[18] PageWise Inc. Object Paradigm vs. Procedural Paradigm. 2002. http://lala.

essortment.com/objectparadigm-ruqg.htm.

[19] Rob Pooley and Perdita Stevens. Using UML Software Engineering with Objects
and Components. Addison-Wesley, 1999.

[20] Dusan Progovac. Understanding core requirements: Intrusion module. In
Proceedings of the ISCA 14th International Conference, Computers and their
Applications, pages 74—77, Cancun, Mexico, 1999.

[21] Pedro S. Ripper, Marcus Felipe Fontoura, Ayrton Maia Neto, and Carlos Jose

&9

P.de Lucena. V-market: A framework for agent ecommerce systems. World
Wide Web, 3:43-52, 2000.

[22] Dave Wood Robert Eckstein, Marc Loy. Java Swing. O’REILLY, 1998.

[23] W.P. Stevens, J.Myers G, and L.L.Constantine. Structured design. IBM Systems
Journal, 13(2):115-139, 1974.

[24] Sun Microsystems. Enterprise Java Beans Technology.
http://java.sun.com/products/ ejb/.

[25] Wheelwright Wigley and Andy Wigley. Microsoft .NET Compact Framework.

Microsoft Press, 2003.

[26] Marty Hall. Core Serviets and JavaServer Pages. Prentice Hall PTR, 2000.

[27] Alex Homer. Professional Asp Techniques for Webmasters. Wrox Press Inc.

1998.

[28] John Zukowski. Java AWT Reference. O'REILLY. 1997.

[29] Young Jong Yang, Song Yong Kim, Gui Ja Choi, Eun Sook Cho, Chul Jin Kim,
and Soo Dong Kim. A UML-based object-oriented framework development
methodology. In Proceedings of Asia-Pacific Software Engineering Conference,
Pages 211-218, Taipei, Taiwan, December 1998.

[30] Alan W. Brown. Large-scale, Component-Based Development. Prentice Hall
Press. 2000.

[311 Evelyn Stiller and Cathie Leblanc. Project-based software engineering: An
Object-Oriented Approach. Addison Wesley. 2001.

[32] The Apache Jakarta Project JMeter. http://jakarta.apache.org/jmeter.

[33] Antonia Stefani and Michalis Xenos. Greek vs. International E-commerce
Systems: an Evaluation Based on User-centered Characteristics

[34] Kenneth C. Laudon and Carol Guercio Traver. E-Commerce. Addison Wesley,

2002.
[35] Perdita Stevens and Rob Pooley, Using UML Software Engineering with objects

and components, Addison-Wesley,1999.

90

Customer Component:

Index:
Class Name:
Purpose:

Appendix A

Class_01
Customers
Providing methods that are used for managing customer’s information,

such as creating a new customer and update a customer’s information.

Reference Classes:
Remarks:

IUtility
No

Methods of customers class:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:
are optional parameters

Index:

Name:

Purpose:
Visibility:

Input parameters:
zip

Output parameters:
Pseudo code:

Remarks:
are optional parameters

Method_01

createCustomer

To register a new customer.

Public

firstName, lastName, email, password, address, phone, city, country, zip
customerld

recordset = SELECT * from customer where EMAIL = email
if end of recordset then
add new customer;
return customerld;
else
return 0;
end if
firstName, lastName, password, address, phone, city, country, and zip

Method_02

updateCustomer

Update an existing customer’s personal information.

Public

id, firstName, lastName, email, password, address, phone, city, country,

Boolean (true or false)

recordset = Select * from customer where ID = id
if not end of recordset
update record;
return true;
else
return false
end if

firstName, lastName, email, password, address, phone, city, country, zip

91

Index:
Name:
Purpose:

specified by customer id.

Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Class Name:
Purpose:

Method_03
getOneCustomer
Retrieve one customer’s record value from customer table, which is

Public
id
recordset

recordset = Select * from customer where customerID = id
if not end of table
return recordset;
else return null;
No

Method_04

CheckLogon

attempts to logon a user based on an e-mail and password.
Private

email, password

Boolean

recordset = select * from customer where EMAIL=email and
PASSWORD = password
if not end of table
return true;
else
return false;

Class_02
Customer
Representing one customer record of customer table and including

accessor and mutator method of each field.

Reference Classes:
Remarks:

TUtility
No

Methods of customer class:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

Method_01

checkLoad

Check if a customer’s record has been loaded from the database.
Private

customerld

Boolean

if loaded = false
recordset = select * from customer where CUSID = customerld
if not end of recordset
firstName = recordset ("FNAME");
lastName = recordset ("LNAME");
email = recordset ("EMAIL");
password = recordset ("PASSWORD™);

92

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:

address = recordset ("TADDRESS");
phone = recordset ("PHONE");
city = recordset ("CITY");
country = recordset ("COUNTRY");
zip = recordset ("ZIP");
loaded = true;
else

loaded = false;

None

Method_02

getFirstName

Access a customer's first name.
Public

customerld

String firstName

if (checkload() == true)
return firstName;
else
return null;
None

Method_03

getLastName

Access a customer's last name.
Public

customerld

String lastName

if (checkLoad() == true)
return lastName;
else
return null;
None

Method_04

getEmail

Access a customer's email.
Public

customerld

String email

if (checkLoad() == true)
return email;
else
return null;
None

Method_05

getPassword

Access a customer's password.
Public

93

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

customerld
String password

if (checkLoad() == true)
return password;
else
return null;
None

Method_06

getAddress

Access a customer's address.
Public

customerld

String address

if (checkl.oad() == true)
return address;
else
return null;
None

Method_07

getPhone

Access a customer's phone number.
Public

customerld

String phone

if (checkLoad() == true)
return phone;
else
return null;
None

Method_08

getCity

Access a custorner's city.
Public

customerld

String city

if {(checklLoad() == true)
return city;
else
return null;
None

Method_09

getCountry

Access a customer's country.
Public

customerld

94

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

String country

if (checkload() == true)
return country;
else
return null;
None

Method_10

getZip

Access a customer's zip.
Public

customerld

String zip

if (checkLoad() == true)
return zip;
else
return null;
None

ShoppingCart Component:

Index:

Class Name:
Purpose:

on a shopping cart
Reference Classes:
Remarks:

Class_03
ShoppingCart
Hold an order instance temporally and hold methods that could operate

IUtility
No

Methods of ShoppingCart class:

Index:
Name:
Purpose:

Method_1
contains
checks to see if an item exists in the shopping cart, if it does exist, return

quantity of this product, otherwise, return zero.

Visibility:
Input parameters:

Output parameters:

Pseudo code:

Public
productld, cartld
long

recordset = SELECT * from CART WHERE CARTID = cartld and

PRODUCTID = productld

Remarks:

Index:
Name:
Purpose:
Visibility:

if not eof recordset
return recordset ("QUANTITY™");

else
return O;
None
Method_2
add
add an item to the shopping cart
Public

95

Input parameters:
Output parameters:
Pseudo code:

productld

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

productld
Remarks:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

productld, cartld
None

recordset = SELECT * FROM CART WHERE PRODUCTID =

if not eof recordset

QUANTITY++;
else
recordset.addnew
recordset ("CARTID") = cartld;
recordset ("PRODUCTID") = productld;
recordset ("QUANTITY") = 1;
None
Method_3
remove
removes an item from the shopping cart
Public
productld, cartld
None

DELETE * from CART WHERE CARTID = cartld and PRODUCTID =

None

Method_4

changeQuantity

sets the quantity of an item in the shopping cart
Public

productld, cartld, quantity

None

if contains(productld, cartld) = 0
add (productld, cartId);

else
UPDATE CART SET QUANTITY = quantity WHERE

CARTID = cartld and PRODUCTID = productld

Remarks:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

None

Method_5

increment

increase an item's quantity in the shopping cart
Public

productld, cartld

None

if contains(productld, cartld) = 0
add (productld, cartld);

else
UPDATE CART SET QUANTITY = QUANTITY+1 WHERE

CARTID = cartld and PRODUCTID = productld

96

Remarks: None

Index: Method_6

Name: decrement

Purpose: decrease an item's quantity in the shopping cart
Visibility: Public

Input parameters: productld, cartld

Output parameters: None

Pseudo code:
if contains(productld, cartld) =0

add (productld, cartld);

else
UPDATE CART SET QUANTITY = QUANTITY-1 WHERE

CARTID = cartld and PRODUCTID = productld

Remarks: None

Index: Method_7

Name: empty

Purpose: remove all the items in the shopping cart
Visibility: Public

Input parameters: cartld

Output parameters: None

Pseudo code:
DELETE FROM CART WHERE CARTID = cartld

Remarks: None

Index: Method_8

Name: getAllltems

Purpose: return all the items in the shopping cart
Visibility: Public

Input parameters: cartld

Output parameters: None

Pseudo code:
SELECT * FROM CART WHERE CARTID = cartld

Remarks: None

Index: Method_9

Name: getNumberltems

Purpose: return the total number of items in the shopping cart
Visibility: Public

Input parameters: cartld

Output parameters: long

Pseudo code:
SELECT sum(QUANTITY) FROM CART WHERE CARTID = cartld

Remarks: None

Payment Component:

97

Index: Class_04

Class Name: Payment
Purpose: Hold methods that are used for operate on payment information, such as

add a new payment type, get all the payment types of a particular customer, etc.
Reference Classes: 1Utlity
Remarks: No

Methods of Payment class:

Index: Method_1

Name: checkLoad

Purpose: checks if a particular payment type has been loaded from the database
Visibility: Private

Input parameters: customerld, paymentld

Output parameters: boolean

Pseudo code:
if (loaded == false)
recordset = SELECT * FROM PAYMENT WHERE
CUSTOMERID = customerld AND PAYMENTID = paymentId
if not eof recordset
type = recordset ("TYPE");
name = recordset ("NAME");
number = recordset ("NUMBER");
expYear = recordset ("YEAR");
expMonth = recordset ("MONTH");
loaded = true;

endif
endif
Remarks: None
Index: Method_2
Name: getCardType
Purpose: return the card type of one particular customer's one particular payment
method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:
call checkload()
return type;
Remarks: None
Index: Method_3
Name: getNameOnCard
Purpose: return the name on card of one particular customer's one particular
payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:
call checkIoad()
return name;
Remarks: None

98

Index: Method_4

Name: getNumberOnCard
Purpose: return the number on card of one particular customer's one particular
payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:
call checklLoad()
return number;
Remarks: None
Index: Method_5
Name: getExpire Year
Purpose: return the expire year of card of one particular customer's one
particular payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: long
Pseudo code:
call checkload()
return year;
Remarks: None
Index: Method_6
Name: getExpireMonth
Purpose: return the expire month of card of one particular customer's one
particular payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: long
Pseudo code:
call checkload()
return month;
Remarks: None
Index: Method_7
Name: addType
Purpose: add a new type of payment method to a customer
Visibility: Public
Input parameters: customerld, cardType, number, name, year, month
Output parameters: none

Pseudo code:
recordset = SELECT * FROM PAYMENT WHERE NUMBER =
number and CUSTOMERID = customerld
if not eof recordset
query = SELECT * FROM PAYMENT
query.add new
query("NAME") = name;
query ("NUMBER") = number;
query ("TYPE") = type;
query ("EXPIREYEAR") = year;

99

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

query ("EXPIREMONTH") = month;
query.update;

endif

none

Method_8
removeType
remove a type of payment method for a customer
Public
customerld, paymentld
none

DELETE * FORM PAYMENT WHERE PAYMENTID = paymentId
none

Method_9
removeAll
remove all type of payment method form the database

Public

" none

none

DELETE * FORM PAYMENT
none

Method_10
removeCustomer
remove all type of payment method of a customer
Public
customerld
none

DELETE * FORM PAYMENT WHERE CUSTOMERID = customerld
none

Method_11
getPayments
get all payment methods for a single customer
Public
customerld
none

SELECT * FROM PAYMENT WHERE CUSTOMERID = customerld
none

Method_12
getPayment
get a payment method for a single customer
Public
customerld, paymentld
none

SELECT * FROM PAYMENT WHERE CUSTOMERID = customerId

100

AND PAYMENTID = paymentid

Remarks: none

Index: Method_13

Name: checkCredit

Purpose: check the expire date of a credit card
Visibility: Public

Input parameters: customerld, paymentld

Output parameters: boolean

Pseudo code:
recordset = SELECT * FROM PAYMENT WHERE CUSTOMERID =
customerld AND PAYMENTID = paymentld
flag = false;
if not eof recordset
if recordset ("YEAR") > year (now)
flag = true;
else if recordset ("YEAR") == year (now) && recordset
("MONYH") >month (now)

flag = ture;
else
flag = false;
endif
Remarks: none
Shipment Component:
Index: Class_05
Class Name: Shipment
Purpose: Hold methods that are used for operate on shipment information, such as
add a new shipment type, get all the shipment types, etc.
Reference Classes: IUtility
Remarks: No
Methods of Shipment class:
Index: Method_1
Name: addType
Purpose: add a type a shipment
Visibility: Public
Input parameters: type, charge
Output parameters: None

Pseudo code:
recordset = SELECT * FROM SHIPMENT

recordset.addnew

recordset ("TYPE") = type;
recordset ("CHARGE") = charge;
recordset.update;

Remarks: none

Index: Method_2

Name: removeType

Purpose: remove a type a shipment
Visibility: Public

101

Input parameters:

Output parameters:

Pseudo code:

shipmentId;
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

shipmentId;
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

shipmentld
None

recordset = DELETE FROM SHIPMENT WHERE SHOPMENTID =
none

Method_3
getAllType
get all shipping type from table shipment
Public
None
None

recordset = SELECT * FROM SHIPMENT
none

Method_4
getOneType
get one shipping type from table shipment
Public
shipmentld
None

recordset = SELECT * FROM SHIPMENT WHERE SHIPMENTID =
none

Method_5
update
update the value of an exsiting shipping type
Public
shipmentld, type, charge
None

recordset = UPDATE SHIPMENT SET TYPE = type, CHARGE =

charge WHERE SHIPMENTID = shipmentld;

Remarks:

Supplier Component:

Index:

Class Name:
Purpose:
Reference Classes:
Remarks:

none

Class_06

Catalog

hold methods that are used for managing catalog
IUtility

No

Methods of Catalog class:

Index:
Name:
Purpose:
Visibility:

Method_1
addDepartment
creates a new department and returns the new departmentld

Public

102

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

NULL;
Remarks:

Index:

Narme:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

departmentName, parentld
departmentId

recordset = SELECT * FROM DEPARMENT
recordset.addnew

recordset ("DEPARTMENTNAME") = departmentName;
if parentld <>0 recordset ("PARENTID") = parentld;
return recordset ("DEPARTMENTID");

none

Method_2

getTopDepartment

return the top level department
Public

recordset

recordset = SELECT * FROM DEPARMENT WHERE PARENTID =
none

Method_3

getAllDepartments

return the top level department
Public

recordset

recordset = SELECT * FROM DEPARMENT;
none

Method_4
getDepartment
return a single department from the department table
Public
departmentld
recordset

recordset = SELECT * FROM DEPARMENT WHERE

DEPARTMENTID = departmentld;

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

= departmentld;
Remarks:

none

Method_5
getProductsInDepartment
get all products in one department
Public
departmentld

recordset

recordset = SELECT * FROM PRODUCT WHERE DEPARTMENTID

none

103

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

Method_6
getProduct
get one particular product in a department
Public
departmentld, productld
recordset

recordset = SELECT * FROM PRODUCT WHERE DEPARTMENTID

= departmentld AND PRODUCTID = productld;

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

supplierld, ImageURL

Output parameters:
Pseudo code:

departmentName;

Remarks:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

departmentld;
Remarks:

Index:

Class Name:
Purpose:
Reference Classes:
Remarks:

none

Method_7

addProduct

add a new product and return the new productld

Public

name, description, price, cost, departmentld, deparmentName,

productld

recordset = SELECT * FROM PRODUCT

recordset.addnew

if name <>"" recordset ("NAME") = name;

if description <>"" recordset ("DESCRIPTION") = description;

if price <>0 recordset ("PRICE") = price;

if cost <>0 recordset ("COST") = cost;

if departmentld <>0 recordset ("DEPARTMENTID") = departmentId;
if departmentName <>"" recordset ("DEPARTMENTNAME")

if supplierld <>0 recordset ("SUPPLIERID") = supplierld;
if imageURL <>"" recordset ("IMAGEURL") = imageURL;
recordset.update

none

Method_8
removeDepartment
remove a department specified by departmentId
Public
departmentld
none

DELETE * FROM DEPARTMET WHERE DEPARTMENTID =
none

Class_07

Product

entity object that holds data for a particular product
IUtility

No

Methods of Product class:

104

Index:

Name:

Purpose:
database
Visibility:

Input parameters:

Output parameters:

Pseudo code:

productld;

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Method_1
checkLoad
check if the property values of a product have been loaded from the

Private
productld
none

recordset = SELECT * FROM PRODUCT WHERE PRODUCTID =

if not eof recordset
name = recordset ("NAME");
description = recordset ("DESCRIPTION");
price = recordset ("PRICE");
cost = recordset ("COST");
departmentld = recordset ("DEPARTMENTID");
supplierld = recordset ("SUPPLIERID");
imageURL = recordset ("IMAGEURL");

end if

none

Method_2
getName
return the product name specified by productld
Public
productld
none

call checkLoad();
return name;
none

Method_3
getPrice
return the product price specified by productld
Public
productld
none

call checkLoad();
return price;
none

Method_4
getCost
return the cost of product specified by productld
Public
productld
none

call checklLoad();
return cost;

none

105

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:
Class Name:
Purpose:

Reference Classes:

Remarks:

Method_5
getDescription
return the product description specified by productld
Public
productld
none

call checkLoad();
return description;
none

Method_6
getSupplierld
return the supplierld of a product specified by productld
Public
productld
none

call checkload();
return supplierld;
none

Method_7
getlmageURL
return the image URL of a product specified by productid
Public
productld
none

call checkLoad();
return imageURL;
none

Method_8
getDepartmentld
return the departmentld of a product specified by productld
Public
productld
none

call checkLoad();
return departmentld;
none

Class_08

Inventory

hold methods that are used for operating the inventory
TUtility

No

Methods of Product class:

106

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Method_1

addProduct

add a new product to the inventory
Public

productld, amount, name, model, color, size, price, supplierld

none

if amount<>0

recordset = SELECT * FROM INVENTORY

recordset.addnew
recordset ("PROID") = productld;
recordset ("NAME") = name;
recordset ("QUANTITY") = quantity;
recordset ("MODEL") = model;
recordset ("COLOR") = color;
recordset ("SIZE") = size;
recordset ("PRICE") = price;
recordset ("SUPPLIERID") = supplierld;
recordset.update;

end if

none

Method_2
removeProduct
remove a product from the inventory
Public
productld
none

DELETE FORM INVENTORY WHERE PRODUCTID = productld;

none

Method_3

changeQuantity

change a product's quantity in the inventory
Public

productld, quantity

none
UPDATE INVENTORY SET QUANTITY

PRODUCTID = productld;

Remarks:

Index:
Name:
Purpose:

otherwise return false

Visibility:
Input parameters:

Output parameters:

Pseudo code:

none

Method_4
checkAmount

quantity WHERE

return true if a product's quantity is more than the given number,

Public
productld, number
boolean

recordset = SELECT QUANTITY FROM INVENTORY WHERE
PRODUCTID = productld;

if recordset ("QUANTITY") < number
return false;
else

107

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:
productld;

Remarks:

Index:

Class Name:
Purpose:
Reference Classes:
Remarks:

return true;
none

Method_5

update

update a product's attributes in the inventory

Public

productld, quantity, name, model, color, size, price, supplierld

none
recordset = SELECT * FROM INVENTORY WHERE PRODUCTID =

if not eof recordset
if quantity <>0 then recordset ("QUANTITY") = quantity;
if name <>"" then recordset ("NAME") = name;
if model <>"" then recordset ("MODEL") = model;
if color <>"" then recordset ("COLOR") = color;
if size <>0 then recordset ("SIZE") = size;
if price <>0 then recordset ("PRICE") = price;
if supplierld <>0 then recordset ("SUPPLIERID") = supplierld;
recordset.update;
quantity, name, model, color, size, price, supplierld are optional

Class_09

Supplier

Entity object that holds data of a supplier
IUtility

No

Methods of Supplier class:

Index:

Name:

Purpose:

database
Visibility:

Input parameters:
Output parameters:
Pseudo code:

supplierld;

Remarks:

Index:
Name:

Method_1
checkl.oad
check if the property values of a supplier have been loaded from the

Private
supplierld
none

recordset = SELECT * FROM SUPPLIER WHERE SUPPLIERID =

if not eof recordset
name = recordset ("NAME");
address = recordset ("ADDRESS");
city = recordset ("CITY");
country = recordset ("COUNTRY");
zip = recordset ("ZIP");
phone = recordset ("PHONE");
email = recordset ("EMAIL");

end if

none

Method_2
getName

108

Purpose:
Visibility:
Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

return the supplier's name specified by supplierld
Public
supplierld

none

call checkl.oad(};
return name;
none

Method_3
getAddress
return the supplier's address specified by supplierld
Public
supplierld
none

call checkl.oad();
return address;
none

Method_4
getCity
return the supplier's city specified by supplierld
Public
supplierld
none

call checkLoad();
return city;
none

Method_5
getCountry
return the supplier's country specified by supplierld
Public
supplierld
none

call checkLoad();
return country;
none

Method_6
getZip
return the supplier's zip code specified by supplierld
Public
supplierld
none

call checklLoad();
return zip;
none

109

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Method_7
getEmail
return the supplier's email specified by supplierld
Public
supplierld
none

call checkLoad();
return email;
none

Method_8
getPhone
return the supplier's phone specified by supplierld
Public
supplierld
none

call checkLoad();
return phone;
none

Transaction Component:

Index:

Class Name:
Purpose:
Reference Classes:
Remarks:

Methods of Order class:

Index:

Name:

Purpose:

database
Visibility:

Input parameters:
Output parameters:
Pseudo code:

Remarks:

Class_10

Order

Entity object that holds data of an order
I0tility

No

Method_1
checklLoad

check if the property values of an order have been loaded from the

Private
orderld
none

recordset = SELECT * FROM ORDER WHERE ORDERID = orderld;

if not eof recordset
orderld = recordset ("ORDERID");
customerld = recordset ("CUSTOMERID");
paymentld = recordset ("PAYMENTID");
shipmentId = recordset ("SHIPMENTID");
total = recordset ("TOTAL");
created = recordset ("CREATED");
completed = recordset ("COMPLETED");
status = recordset ("STATUS");

end if

none

110

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:

Output parameters:

Pseudo code:

Method_2
getCustomerld
return the customerld of an order specified by an orderId
Public
orderld
long

call checklLoad();
return customerld;
none

Method_3
getPaymentld
return the paymentld of an order specified by an orderld
Public
orderld
long

call checkl.oad();
return paymentld;
none

Method_4
getShipmentld
return the shipmentld of an order specified by an orderld
Public
orderld
long

call checkload();
return shipmentld;
none

Method_5
getTotal
return the total of an order specified by an orderId
Public
orderld
double

call checklLoad();
return total,;
none

Method_6
getCreated
return the creation time of an order specified by an orderld
Public
orderld
datetime

call checkl.oad();

111

return created;

Remarks: none
Index: Method_7
Name: getCompleted
Purpose: return the complete time of an order specified by an orderld
Visibility: Public
Input parameters: orderld
Output parameters: datetime
Pseudo code:
call checkLoad();
return completed;
Remarks: none
Index: Method_8
Name: getStatus
Purpose: return the status of an order specified by an orderld
Visibility: Public
Input parameters: orderld
Output parameters: long
Pseudo code:
call checkLoad();
return status;
Remarks: none
Index: Class_11
Class Name: Orders
Purpose: hold methods that are used for managing orders, such as creating an
order, processing an order, etc.
Reference Classes: IUtlity
Remarks: No
Methods of Order class:
Index: Method_1
Name: createOrder
Purpose: create an order record in database and return the orderld
Visibility: Public
Input parameters: cartld, customerld, paymentld
Output parameters: orderld

Pseudo code:
recordset = SELECT * FROM ORDER

recordset.addnew;

recordset ("CUSTOMERID") = customerld;
recordset ("PAYMENTID") = paymentld;
recordset ("CREATED") = currentTime;
recordset ("STATUS") = 0;
recordset.update;

return recordset("ORDERID");

query = SELECT * FROM vCartltems WHERE CARTID = cartld;

if not eof query
line = SELECT * FORM ORDERLINE

112

Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

customerld
Remarks:

Index:

Name:

Purpose:
Visibility:

Input parameters:
Output parameters:
Pseudo code:

line.addnew
line ("ORDERID") = recordset ("ORDERID");
line ("QUANTITY") = query ("QUANTITY");
line ("PRICE") = query ("PRICE");
line("TAX") = TAX-RATE;
line("STATUS") = 0;
line("LINETOTAL") = query ("LINETOTAL");
line.update

end if

1. currentTime can get using a function, like now().

2. TAX-RATE is an constant, which may vary from place to place.

Method_2
getOrders
return all the orders of a single customer.
Public
customerld
recordset

recordset = SELECT * FROM ORDER WHERE CUSTOEMRID =

none

Method_3
getOrder
return a single order specified by customerld and orderld.

Public
customerld, orderld
recordset

recordset = SELECT * FROM ORDER WHERE CUSTOEMRID =

customerld AND ORDERID = orderld;

Remarks:

Index:

Name:

Purpose:

Visibility:

Input parameters:
Output parameters:
Pseudo code:

orderld
Remarks:

none

Method_4
getOrderLines
return all the order lines of a single order.
Public
orderld
recordset

recordset = SELECT * FROM ORDERLINE WHERE ORDERID =

none

113

