
An Object-Based Middleware Framework for
E- Commerce Transactions

By

Hongjun Shen

A Thesis
Submitted to the Faculty of Graduate Studies

in Patial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba

@ June,2005

An Object-Based Middleware Framework for
E-Commerce Transactions

By

Hongiun Shen

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba

@ June,2005

t*I Library and
Archives Canada

Published Heritage
Branch

395 Wellinoton Street
Ottawa Ot'l-K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellinoton
Ottawa ON K1A-0N4
Canada

0-494-08969-5

Your file Votre référence
/SA¡úi
Ourfile Notre reférence
/sa/v

NOTICE:
The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publísh, archive, preserve, conserve,
commun¡cate to the public by
telecommunication or on the lnternet,
loan, distribute and sell theses
worldwide, for commerc¡al or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retaÍns copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
perm¡ssion.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, pubtier, archiver,
sauvegarderì conserver, transmettre au public
par télécommunication ou par l,lnternet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciafes ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ní des extraits substantiels de
celle-cí ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be íncluded
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

THE LINTVERSITY OF MANITOBA

FACI-ILTY OF GRADUATE STIIDIES

*t<***

COPYRIGHT PERMISSION

An Object-Based Middleware Framework for E-Commerce Transactions

by

Hongiun Shen

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

Hongjun Shen @ 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of

the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner
solely for the purpose of private study and research, and may only be reproduced and copied as permitted

by copyright laws or with express written authorization from the copyright owner.

Abstract

The goal of this research is to design an object-based middleware framework, which

will facilitate the development of business-to-consumer (B2C) e-commerce

applications. With the rapid development of the Internet and the World Wide Web,

e-commerce applications have become prevalent. However, the development of

e-commerce applications today is considered expensive and risky because of the lack

of large-scale reusability and interoperability of e-commerce applications. Many

standard middleware frameworks exist, such as CoM+, EJBs, and CORBA. However,

they are too generic to support services for B2C e-commerce. To address this problem,

I propose an object-based middleware framework, which will facilitate the

implementation of B2C e-commerce applications by providing some of the main

services that typically have to be implemented from scratch, such as customer

information management, payment management, and order processing. The proposed

middleware framework involves the design of the common services and the

implementation of a subset of the design to validate the design. Reuse of the proposed

middleware framework can improve programmers'productivity, as well as enhance

the quality, performance, reliability and interoperability of e-commerce applications. I

expect that the proposed object-based middleware framework will provide a

foundation for building reliable B2C e-commerce transaction systems.

Acknowledgements

First, I would like to thank my supervisor Dr. Vojislav Misic, who spent a lot of time

editing my thesis and gave me a great number of valuable suggestions. I am also

deeply grateful to my pre-supervisor, Dr. Sylvanus Ehikioya, for his guidance and

encouragement during my research. Without his help and guidance, this work would

have been impossible. I would also like to thank all the members of my thesis

committee: Dr. Bob Travica, and Dr. Ellen Liu. Finally, I would also like to thank my

family for their love, understanding, encouragement and support.

Table of Contents

Chapter L: Introduction 8
l.1E-commerce SystemArchitecture......10
1.2 Motivation...12
1.3 Contribution of the Thesis.14
L.4Organization.15

Chapter ZzLiterature Review.16
2.I Background.16
2.1.1 Object-based and Component-basedDevelopment.....16
2.I.2Middleware.17
2.L.3 Framework.18
2.2 RelatedWork.19
2.2.I Standard Middleware Framework.19
2.Z.ZFreusable Domain Frameworks...2I
2.2.3 Component-based Software Development...23
2.3 Design Methods.26
z.3.r rJr\ln26
2.3.2Pseudo Code.28

Chapter 3: Design.30
3.1 Middleware Framework Design Issues.31
3.1.1 Component Granularity31
3.1.2 Communication.30
3.1.3 Concunency.32
3.1.4 Consistency.32
3.1.5 PerfoÍnance.rr
3.2 Issues That Will Be Examined....JJ
3.3 Design Methodology....35
3.3.1 The Model View Controller35
3.4 Component Identification Method.37
3.5 Requirements of E-Commerce Middleware Framework38
3.5.1 Functional Requirements.39
3.5.2 Nonfunctional Requirements....46
3.6 Middleware Framework Design.47
3.6.1 Architecture Design.47
3.6.2Dynamic Behavior of Objects.50
3.6.3 Classes and Relationships among Classes.56
3.6.4DetailedDesign62

Chapter 4: Implementation...66
4.1 Implementation Strategies.66
4.2 Quality Assurance.66
4.3 Implementation Environment.....68
4.4 Run-Time Behavior of an Example Application69
4.5 Evaluation...75
4.5.1 Qualitative Evaluation75
4.5.2 Quantitative Evaluation78

Chapter 5: Conclusions85
5.1 Summary of Contributions.85
5.2 Future Work.S6

References88
AppendixA.....91

List of Figures
Figure 1-1 N-TierArchitecture10
Figure 3-1 MVC Design Pattern in E-Commerce..36
Figure 3-2 Use Case Diagrams For B2C E-Commerce.39
Figure 3-3 Collaboration Diagrams for Creating a New CustomerAccount..40
Figure 3-4 Collaboration Diagrams for Updating Customer Account.4I
Figure 3-5 Collaboration Diagrams for Login41
Figure 3-6 Collaboration Diagrams for Checking Shopping Record.42
Figure 3-7 Collaboration Diagrams forBrowsing Catalog43
Figure 3-8 Collaboration Diagrams for Searching Product43
Figure 3-9 Collaboration Diagrams for Adding to Cart.44
Figure 3-10 Collaboration Diagrams for Removing From Cart.44
Figure 3-11 Collaboration Diagrams for Checking Out.45
Figure 3-12 Collaboration Diagrams for Canceling Order.46
Figure 3-13 Component Diagram for E-Commerce Middleware......49
Figure 3-14 State ChartDiagram for ShoppingCart.50
Figure 3-15 State Chart Diagram for Order.51
Figure 3-16 State Chart Diagram for Order Processing52
Figure 3-17 State Chart Diagram for Inventory.53
Figure 3-18 State Chart Diagram for Customer.....54
Figure 3-19 State Chart Diagram for Catalog54
Figure 3-20 State Chart Diagram for Product55
Figure 3-21 State Chart Diagram for Payment.....56
Figure 3-22 Class Diagram of E-Commerce System57
Figure 3-23 Component Diagram for Supplier...58
Figure 3-24 Component Diagram for Customer.....59
Figure 3-25 Component Diagram for Shopping Cart.59
Figure 3-26 Component Diagram for Payment.60
Figure 3-27 Component Diagram for Third Party.60
Figure 3-28 Component Diagram for Shipment.....61
Figure 3-29 Component Diagram for Transaction...62
Figure 4-I Entry Page of an E-Commerce System10
Figure 4-2 Department Page of an E-CoÍìmerce System.7 L

Figure 4-3 Product Page of an E-Commerce System.73
Figure 4-4 Shopping Cart Page of an E-Commerce System73
Figure 4-5 Email Address Collection Page of an E-Commerce System7 4
Figure 4-6 Personal Information Collection Page of an E-Commerce
System.74
Figure 4-l Credit Card Information Collection Page of an E-Commerce
System.75
Figure 4-8 Average Response Time for the Two Tier and Three Tier
E-CommerceApplication....80
Figure 4-9 Success Page Loading Rate..81
Figure 4-10 Average Response Time for Example Application Based on One
Component and Ten Components.84

Figure 4-11 Success Page Loading Rate for Example Application Based on
One Component and Ten Components.....84

Tables
Table 4.1 Average Response Time for the Two Tier and Three Tier
E-Commerce Application79
Table 4.2 Success Page Loading Rate for the Two Tier and Three Tier
E-commerce Application80
Table 4.3 Example Application Based on One Component......82
Table 4.4Example Application Based on Ten Components.....83

Chapten tr

Introduction

E-commerce is a new way in which people conduct business using the Internet

and the World Wide Web. Since the emergence of e-commerce in the last decade,

online business transactions have experienced a spectacular growth and this tendency

will continue for the next few years. E-commerce makes a wide range of products

accessible to customers, and can be accessed from anywhere at anytime. People can

easily surf the Internet shopping, banking, investing, and being entertained without

leaving their comfortable homes or offices. Businesses leverage e-commerce to

deliver more products and services to a global market without being restricted by

geography, time, or cultural boundaries. Therefore, e-commerce has the potential of

bringing many benefits to organizations and many comprehensive services to

customers. E-commerce also provides organizations with more accurate, extensive

information, a wider range of choices, and also enables fair competition. In this

manner, e-commerce is gradually changing the way people conduct business, the

relationship between businesses and customers, and people's life styles.

There are three common e-commerce types in practice today, namely

business-to-consumer (B2C), business-to-business (B2B), and consumer-to-consumer

(CZC). The B2C e-commerce focuses on selling products to individual consumers by

a business. The B2B e-coÍr.merce focuses on selling products to other businesses. The

C2C e-commerce provides a mechanism for individual consumers to sell to or buy

from one another directly. The different e-commerce types have different business

logics and different implementation requirements. In this research, I focused onB2C

e-commerce type.

In BZC e-commerce, customers need to be able to view a list of all available

products, including a description, image, and price for each product. Just as in the

traditional store, customers will have the ability to add items to their shopping cart,

view the contents of the shopping cart at any time, remove items from the shopping

cart and purchase the items in the shopping cart. In order to ship purchased items to

customers, customers will have an account containing their personal information such

as name, address, credit card information, and purchasing history. For companies that

provide e-commerce services to their customers, they need to keep an order list,

which shows all the orders have been made through their e-commerce systems. They

should also be able to track on the inventory to provide sufficient supplies of

products.

The improvements in telecommunication network infrastructures have made all

these operations possible. However, companies that wants to take the advantage of

Internet to make more benefits face many challenges. These challenges include how

to build e-coÍìmerce systems rapidly, which should save both money and time for the

company, how to provide functionalities that satisfy both customers and the

company's requirement, how to build e-commerce systems that are flexible enough to

face future challenges, how to leverage the legacy systems, and how to manage

complexity of e-commerce systems. To alleviate these problems, I proposed an

object-based middleware framework in this thesis to facilitate the development of

online store applications and to ease the burden of managing the complexity involved

from software developers.

1.L E-Commerce System Architecture

To deliver successful e-commerce transactions, an e-commerce system must be

stable, running around the clock, year after year, and should be easily upgraded. To

meet these expectations from both customers and e-commerce service providers, we

require a reliable, scalable, and flexible e-commerce infrastructure, which includes

servers, networks, operating systems, middleware, etc. Therefore, the n-tier

client/server architecture is usually adopted as shown in Figure 1-1.

Figure 1,-1 N-Tier Architecture

The n-tier architecture is a clienlserver architecture that breaks up applications

t0

into n logical, functional layers, where n>2.Typically, the n-tier architecture includes

the client tier, the presentation tier, the business tier, and the database tier. The client

tier is simply a web browser (e.g., Netscape or Internet Explorer). The presentation

tier implements the user interface. For an e-commerce application, the presentation

tier is not only including the web forms but also including all the classes which help

to present data from business layer. The business tier manages the business logic and

allows user to share and control the business logic. This tier could be separate into

multiple layers. Typically, one layer is concentrate on describing business logic. The

other layer is responsible for data access from the database tier. In the most complex

case, business logic layer could be multiple layers. The database tier manages the

backend database.

Presentation tier is where the web pages are implemented. Typically, JSP [26],

ASP [27], or Servlets [26] technology is used to implement this tier. Business tier is

to implement the complex business logic and to manipulate data coming from the

database tier. COM+, CORBA, or EJBs technology is usually used to implement this

tier.

An n-tier architecture has many advantages over the traditional Z-tier client/server architecture.

First, through the clear separation of presentation tier and business tier, a system can easily scale

up because the hardware and software for each tier can be increased independently. Second,

developers can modify a specific tier rather than have to rewrite the entire application. Third, it

facilitates the development of e-commerce application through reuse of pre-built business logic

components if available. In this research, I focused on the business tier and provided a

middleware framework, which facilitates the development of B2C e-commerce applications.

1l

L.2 Motivation

To build an e-coÍìmerce system that cân accommodate many customers

concurrently and be always available is a great challenge to the developers. Since an

e-commerce system is inherently large, complex and distributed [30], therefore, it

must be carefully designed to meet current necessities and future updates. As a

consequence, the development of e-commerce application today is considered

expensive and risky.

The fast growth of e-commerce has motivated the search for faster and easier

ways to build e-commerce applications. For example, many companies and

organizations have proposed standard middleware framework, such as the Object

Management Group's Common Object Request Broker Architecture (CORBA) [17],

Microsoft's Common Object Model (COM+) [15], and Sun Microsystem's Enterprise

JavaBeans (EJBs) [24]. These middleware frameworks provide extensive services

that are necessary for building large scale, distributed applications and hide many of

the common implementation details of these services from application developers.

However, these services are too generic to easily support the building of e-commerce

applications. Therefore, a middleware framework for the e-commerce domain, which

has the great potential to increase system quality and decrease the development effort,

is important.

Aleksy et al. [1] have proposed a CORBA-based middleware framework for

e-auction applications providing services such as bidder, auctioneer, and auction

manager, among others. Ripper et al. [21] presented a middleware framework for

building agent-based e-coflrmerce systems providing services like multiple

t2

communication protocols and multiple negotiation strategies. Both of these systems

are specially designed for supporting the C2C business model. Bichler and Segev [3]

described an object-based framework for supporting brokerage in the B2B business

domain.

Online store application is common today such as Microsoft's Pet Shop

application and Sun Microsystem's Pet Store application. Both of these applications

used an n-tier architecture design and identified some of the basic functions that a pet

store should support. However, the Microsoft's Pet Shop application is created to

illustrate how to use the .NET framework to build multi-tier distribute applications

and the Sun Microsystem's Pet Store is created to help developers and architects

understand how to use J2EE technologies.

Therefore, a middleware framework for the BZC e-commerce domain is still

unavailable. Because all the cofiìmon services provided by e-commerce application

such as catalog management, customer information management, order processing

and so on have to be built from scratch. It is not only a waste of time and also error

prone.

To address this problem, I identified all the common services that are necessary

for building n-tier online store applications in this study. I encapsulated all these

services in a set of components and provided services through the components'

interface. These services works as middleware framework and can be reused to build

similar online store applications.

Software reuse is an essential goal in software engineering because of the

potential benefits it brings, such as increase in productivity, improvement of software

13

product quality, and reduction of maintenance costs. Many reuse attempts have been

made in practice with different successes, such as code reuse and design reuse. In

general, the higher the level of abstraction, the more efficient reuse can be. In B2C

e-commerce domain, an elaborately designed middleware framework, which will be

able to capture the common functions of an e-commerce system, is beneficial. First,

the framework design could be reused by multiple e-commerce applications and only

small changes might be needed to accommodate special requirements of many

diverse applications. Second, the implementation of this framework, presented by a

set of components, could be reused directly as building blocks to implement

e-commerce applications. Therefore, a component's reusability can be easily justified.

However, designing for reuse is difficult, needs extensive analysis and careful design,

so it usually takes more time at the design stage.

1..3 Contribution of the Thesis

In this research, I will design an object-based middleware framework for the B2C

business model. In the proposed middleware framework, I will identify all the

coÍtmon services necessary for e-commerce transactions, encapsulate the common

services into a set of components, and define these services using the components'

interfaces. Therefore, the foci ofthis thesis are:

o To provide a reliable and correct design of all common services required by

e-commerce transactions using the unified modeling language (UML) 14,791and

pseudo code.

o To implement a subset of the design, such as customer, order, supplier, and

payment, through which the correctness of the design can be validated.

l4

The benefits of the proposed framework are twofold. First, the framework design,

which is independent of any programming language, is reusable for a family of BZC

applications. Second, the implementation code, which provides services through the

interfaces of a set of components, can also be reused. In addition, I will improve the

framework's reusability, maintainability, and performance by providing a proper size

for each components and reducing communications between components. I expect

that the proposed object-based middleware framework would greatly enhance the

process of building reliable B2C e-commerce applications.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 gives the

background of e-commerce system architecture and object-based middleware

framework, reviews some technologies used to build middlewares of e-commerce

applications and some existing middleware frameworks in e-commerce domain.

Chapter 3 presents the detailed design of my proposed object-based middleware

framework for BZC e-commerce. In Chapter 4,I describe the implementation of the

proposed middleware framework, gives an example application that derived from the

proposed middleware framework, and depicts the example application's evaluation

results. Chapter 5 makes some concluding comments and suggests directions for

future research.

15

Chapter 2

Literature Review

Before formally presenting the design of the middleware framework for B2C

e-corrunerce transaction, (in Chapter 3), an overview of framework, middleware, and

object-based and component-based development are provided. Some related works

and design tools that are relevant to the thesis are also described.

2.1Background

z.L.L Object-based and Component-based Development

The object concept was first emerged in the programming language Simula in

1960's. An object is an instantiation unit which encapsulates its state and behavior

[13]. In object-oriented paradigm everything is treated as an object. Objects interact

with each other through messages that contain information used in invoking

operations on the appropriate objects. Systems implemented using object-oriented

techniques are usually including features like inheritance, encapsulation and

polymorphism [31].

In object-based paradigm, objects are complete packages. Everything that

describes the implementation of the object is self-contained. Therefore, system

implemented using object-based techniques should be easy to change and to extend.

However, not all development environments (and their respective programming

languages) support all of the object oriented features like inheritance, overloading,

and overriding.

16

In component-based development, components are used as building blocks to

implement a final solution. A component is an encapsulated unit of software with one

or more interfaces that provide clients with access to its services [13]. Generally, a

component is only available in binary form, (i.e., the component is precompiled).

Therefore, the implementation details are completely hidden. The functionality

provided by a component is available through its interface. In such a way,

component-based approach is more likely to achieve reusability and ease the

maintenance of a software product. Therefore, a component-based approach was used

in this work.

Internally, a component may be implemented using an object-oriented paradigm,

an object-based paradigm or even using traditional procedure paradigm. Object

oriented approach has been successfully applied in building graphic user interface

framework and distributed applications. However, object are usually not independent

entities, therefore, changes to one object may require changes to several other objects

and hamper system evolution. And since the object-based paradigm provides more

reliability and reusability than the procedure-based paradigm [18], I used the

object-based paradigm for designing and implementing each component.

2.1.2 Middleware

In the clienlserver architecture, the clients (which usually have graphical user

interface) request and obtain services from the servers. Middleware is, then, a layer of

software that enables and facilitates this clienlserver interaction. It consists of a set of

services that allow multiple processes running on one or more machines to interact

across a network and therefore make building distributed enterprise applications

t7

possible. Middleware can ease the design, programming and managing distributed

applications by providing consistent and integrated distributed programming language

environment and shield the heterogeneity and complexity of the underlying machine

architecture, operating system and network technologies from developers.

Middleware includes but is not limited to database middleware such as ODBC,

SQL, and Oracle Glue, Internet middleware such as HTTP and Secure Socket Layer

(SSL), object middleware such as CORBA and COM+, and domain specific

middleware.

Object middleware such as CORBA and COM+ provide fundamental services for

building distributed enterprise applications but services that are required for a specific

domain are not provided. Therefore domain specific middleware can extend the

capabilities of object middleware and serve for a more specialized purpose. In this

thesis, I provided a middleware for B2C e-commerce domain, which facilitates the

building of similar e-commerce applications.

2.1.3 Framework

A framework is a reusable design, which is expressed by a set of classes and the

collaboration among instances of these classes [8]. These classes can be tailored by

developers to fit a particular application and can be reused by a series of similar

applications. Frameworks include, but are not limited to, GLII frameworks,

middleware frameworks, application frameworks, and domain frameworks. A GUI

framework can be utilized to build user interfaces. Examples of this category of

framework are JAVA AWT [28] and Swing 1221. A middleware framework provides

services that are needed for building the middle layer of an application, such as

18

COM+, CORBA, and EJBs. An application framework is used for building a

complete application: from user interface, transaction, and concunency control to

database connection. The JAVA API (Application Programming Interface) and

Microsoft's .NET [25], which are both class libraries with lists of classes, interfaces

used to build applications, components, or controls, belong to this category. A domain

framework is a collection of classes that can be reused in a particular domain, like

OFFER [3] for the B2B business domain.

Johnson and Foote [41] classified framework into white-box frameworks and

black-box frameworks. The classes of a white-box framework are transparent to

developers. Developers have to understand the classes before they can use them.

Therefore, white-box frameworks are norrnally hard to learn and hard to reuse. On the

contrary, a black-box framework is only accessible through its external interfaces, the

detailed implementation is invisible to developers; therefore, it is easy to reuse but it

has less flexibility.

The middleware framework I proposed in this research was a black box

framework for the e-commerce domain focusing on the B2C business model.

2.2 Related Work

2.2.1 Standard Middleware Frameworks

To ease the development of middleware components, many standard middleware

frameworks have been proposed. Three of the main frameworks are Microsoft's

Common Object Model (COM+), Sun Microsystem's Enterprise JavaBeans (EJBs),

and the Object Management Group's (OMG) Common Object Request Broker

Architecture (CORBA).

t9

COM+ is an object model provided by Microsoft. COM+ supports many standard

services like security, transactions, and garbage collection. It can run on operating

systems other than Windows 2000 by using third party components. The main feature

distinguishing COM+ from other approaches is that COM+ has achieved binary

encapsulation and binary compatibility [6], which are lacking in both CORBA and

EJB. Binary encapsulation means that the client objects do not have to be re-compiled

if the server objects change, while binary compatibility means the client and server

objects can be developed in different environments and using different languages [6].

Microsoft achieved this feature using a mechanism that separates interfaces from

implementation. Thus, COM+ supports a broad range of implementation languages:

C++, Visual Basic, and Visual J++, etc. Furthermore, compared to other middleware

standards, COM+ is not only fast and easy to build with, but it is also more robust [6].

For all these reasons, I choose COM+ as the middleware platform for the

implementation of my proposed middleware framework for B2C e-commerce

transaction.

Enterprise JavaBeans (EJBs) is a server component architecture provided by Sun

Microsystem. EJB's standard component framework provides services for

transactions, database connections, security, and replication, which are important

features necessary to create component-based, distributed business applications. The

deployment environment could be J2EE,IBM's WebSpere, or BEA's Weblogic, etc.

However, Enterprise JavaBeans using CORBA or RMI network protocol are

sometimes slow compare to COM+ [10]. In addition, Java is the only implementation

language allowed, which also hampers the usefulness of EJB.

20

CORBA is an object-based distributed architecture defined by the Object

Management Group (OMG). CORBA specifies an Interface Definition Language

(DL), which specifies details about the different distributed objects and gives a

common interface hiding the implementation details thereby providing support for

different programming languages. Communication between distributed and

heterogeneous objects is achieved through an Object Request Broker (ORB), which is

responsible for managing communication and data exchange between objects.

CORBA also supports standard services, such as persistence, transactions and

concurrency control, etc.

COM+, EJB, and CORBA are generic object models designed for support

services like transactions, security, and replication. However, they do not provide

services that are needed for a specific domain. Domain developers have to take care

of everything from middleware design to implementation. E-commerce domains are

not an exception. Most e-commerce systems share some common functionality, such

as customer information management, payment management, and order processing.

Usually, these functionalities have to be implemented from scratch by each of them.

Therefore, proposing such a middleware framework, composed of a set of

components that provide such functionality, will contribute both to software reuse,

ease of development and software quality.

2.2.2 Reusable Domain Frameworks

Software reuse has long been an active research area due to its potential benefits,

which include increased productivity and product quality and decreased development

cost and time. Many approaches have been proposed in the e-commerce domain

21

generally.

Aleksy et al. [1] proposed a CORBA-based architecture for e-auction applications.

By analyzing the general process of an electronic auction (or e-auction), Aleksy et al.

identified two specific kinds of communication techniques that are required by

e-auction applications and which are not available in CORBA. They defined these

two communication techniques using CORBA's Interface Definition Language (DL)

as their core architecture. Besides this core architecture, they also described

additional components that are needed for the implementation of complete e-auction

applications. The main focus of their architecture is to provide flexibility so that it can

support various kinds of auctions and to provide interoperability, which is important

to exchange information with existing systems, such as Enterprise Resource Planning

(ERP) systems.

Anido et al. tzl proposed a component-based architecture for building

web-based learning systems. Their work focused on the identification of a common

set of services that are needed by web-based learning systems and the definition of

these common services using open software interfaces. Since their proposed

architecture is independent of any underlying infrastructure and programming

language, it can be implemented on any middleware platform. As an example, Anido

et al. described an implementation using EJB technology. Although this architecture

was developed for the e-learning domain, the development methodology (e.g.,

functional requirement captured from use cases) used in this work could be a guide

for the development of my middleware framework for the B2C e-commerce domain.

V-Market [2Il is an object-oriented framework proposed by Ripper et al. for

22

building agent-based e-commerce systems. An agent is a piece of software that can

work on behalf of users to buy, sell, and find specific goods and services. Any user of

this kind of system could be a potential buyer, and a seller. Therefore, the proposed

framework was mainly designed for building agent-based e-commerce applications.

Ripper et al. used a software engineering approach to design the framework and used

extended UML diagrams to model their design.

Bichler and Segev [3] proposed an object-based framework called OFFER. The

main objective of the OFFER project was to specify and design components that

support brokerage in the business-to-business e-commerce domain. Thus the

applications derived support functions from the framework like customer registration,

supplier propagation, customer interests expression, etc.

Laudon and Taver [34] provided a systematic approach to build successful

e-commerce system. They discussed two-tier and multi-tier e-commerce architecture

and technologies that can be used to build e-commerce applications. Furtherrnore,

they identified the data flow in a typical online store application and discussed the

challenges in building e-commerce applications.

However, a middleware framework for building online store application is

available according to our knowledge. To address this problem, I propose

object-based middleware framework in this research.

2.2.3 Component-base Software Development

Providing a middleware framework for e-commerce transactions is a complex

process involving a set of core phases of component-based software development,

including requirements analysis, requirements specification, design, implementation,

not

an

23

quality evaluation, etc. Much research work has been done to improve the quality of

each of these phases.

Progovac [20] provides some guidelines for doing requirement analysis. These

guidelines include the duality principle in data collection and the lead principle in use

case design. The duality principle means that one should always analyze a system's

requirement from both the users' and designers' view points. The lead principle means

that one can identify a system's core use cases first, and then use these core use cases

to find the others. Using these guidelines, the correctness of requirement analysis and

design can be predicted. Jang et al. I9l summarize the existing component

specification methods and propose a set of formal activities, which specify the

requirements of components and verify the correctness of component specification

using the formal specification language Z.The proposed activities are able to improve

the quality of components and reduce the cost of design and implementation by

guaranteeing the correctness of component specifications.

MiSook et al. [5] introduce an efficient component identification method based

on use cases, which includes three phases. The first phase identifies one component

for each use case. The second phase separates the common classes from the

components identified from the first phase. Common classes are classes that belong to

two or more components. The last phase further separates the large components into

small size components that only contain highly related functions. By using this

method, in practice, the reusability and maintenance of components can be predicted.

Similarly, Kim et al. [11] propose an efficient framework generating method

based on IIML diagrams. In their method, frameworks are identified by analyzing use

24

câse diagramsl, class diagrams2, and sequence diagrams3. In addition, Yang et al. [291

propose a practical object-oriented framework development process, which consists

of four typical software development phases: analysis, design, implementation, and

testing. The proposed process is also based on UML diagrams. Using these methods

in practice improves the productivity of the framework development.

Coupling is the degree to which components depend on one another [7].

Cohesion is the extent to which the individual components are needed to perform the

same task [7]. High cohesion and low coupling have long been design goals in

software components design because components with low coupling and high

cohesion are more likely to have high quality such as being easy to reuse, simple to

understand, and easy to maintain.

The methods used to measure cohesion are usually by measuring the

interrelationship of constituent parts of a component. Misic [16] suggests a new

method to measure cohesion, (i.e., measure the external usage pattern of a component

without considering the component's internal structure). Misic uses the term

coherence instead of cohesion to isolate his method from the traditional ones.

However, coherence and cohesion are same concept. Cohesion and coupling analysis

could help the identification of interface of components and make decision

concerning the sizes of components.

Kim et al. 11,21provide a framework to improve the quality of components in

component-based software development. Their framework has four phases: quality

I Use case diagram: Use case diagrams model the functionality of a system using actors and
use cases. Use cases are services or functions provided by the system to its users.
2 Class diagram: They describe the static structure of a system.
3 Sequence diagram: Sequence diagrams describe interactions among classes in terms of an

25

specification, quality planning, quality control, and quality evaluation. Developers

can apply their framework in various phases of component development to improve

the quality of components.

2.3 Design Methods

2.3.t UML

UML (Unified Modeling Language) is an object-oriented modeling language

standardized by the Object Management Group (OMG) mainly for software systems

development. UML combines three different modeling methods (i.e., OMT, Booch,

and OOSE) to specify, visualize, construct, and document the artifacts of software

systems from the most abstract description of the system behavior, through the

system architecture, down to the level of detailed design. UML is becoming the

dominant modeling language in object-oriented analysis and design community [19].

IIML provides multiple diagrams to model a system from several perspectives or

at multiple level of abstraction. These diagrams are use case diagram, class diagram,

state diagram, activity diagram, sequence diagram, collaboration diagram, package

diagram, component diagram, and deployment diagram.

Use case diagrams specify the interaction of the users and the response of the

system. By analyzing these interactions, we can capture the functionalities that a

system should provide. These analyses also could guide the design and the

implementation of the system and guide the making of testing plan. Class diagrams

show the classes of the system and the interrelationships among these classes.

However, class diagrams are static diagram, they cannot show how the classes

exchange of messages over time.

26

interact to each other. State diagrams, collaboration diagrams, sequence diagrams,

package diagram, and activity diagrams can present the dynamic aspects of a system.

Each of these diagrams has their own advantages and disadvantages and therefore can

be used in different situations. Component diagrams show grouped modules of a

system and deployment diagrams identify the system configuration at a given running

time.

UML consists of a variety of notations, which have made IIML a popular

modeling language in multiple application domains for system documentation and

specification, for capturing user requirements and defining initial software

architecture. UML notation is basically consisted of four kinds of graphical constructs

(i.e., icons, 2-d symbols, paths, and strings) and some additional diagram elements,

which include mappings, names, labels, keywords, expressions and notes. Moreover,

tlML has extension facilities (stereotypes, tagged values and constraints) that allow

semantically meaningful versions of LIML to be built for specific application

domains.

UML modeling language is essential in software development. First, UML is an

efficient tool for communication among people. Designers need to communicate with

potential users at requirement analysis stage. Designers and developers need to

communicate at design or develop stage. The visualized, easy understand I-IML

diagrams can perform as a media helping them to understand each other. Second,

llML helps to manage complexity of software development. UML diagram can

separate the whole system into different parts. By understanding and managing each

part, we can solve the problems of the whole system. Third, IIML provides the

27

capability of software design reuse. By identify the similarity of different applications

in the same domain, we can find that some the design parts are actually reusable.

In this thesis, I will use several different types of IIML diagrams to present

different aspects of the proposed framework design.

o Use case diagrams which are used to capture the functional requirements;

o Collaboration diagrams which show how objects collaborate to perform use

CASES;

O Class diagrams and component diagrams that present the system structure;

o State diagrams that show the dynamic behavior of objects;

o Deployment diagrams that describe the deployment of distribute objects.

2.3.2 Pseudo Code

Pseudo code is a detailed description of what a computer program or an algorithm

must do using a natural language rather than a programming language. It cannot be

compiled nor executed. But it is very easy to be converted into the final code since

most of notion used in pseudo code are borrowed from programming languages such

as C, Lisp, or Fortran.

Pseudo code is a very efficient tool to describe software design because it has

many advantages. First of all, it allows designers to express the design in great detail

and focus more on the logic aspects of a computer program without being bothered by

the correctness of implementation code. Secondly, it provides programmers a detailed

template for the next step of writing code in a specific language. Pseudo code can be

easily translated into program code because the structured natural language

28

description is very similar to the real structure of program code. In addition, reading

pseudo code is much easier than reading another person's code. Thirdly, it is easy to

inspect that whether the implementation actually match the design because it allows

the easy communication among designers and programmers. Catching errors at the

pseudo code stage is cheap than catching them later in the development process.

Therefore, I will use pseudo code to express the detailed design of this middleware

framework.

29

Chapter 3

Design

This chapter first discusses the design issues concerning the middleware

framework for B2C e-commerce transactions and then presents the middleware

framework design. The design includes requirements analysis, architecture design and

detailed design. LIML class and component diagrams are used to describe the

architectural design, use case and collaboration diagrams are used to capture the

requirements, state diagrams are extensively used to depict the behavior of objects

and pseudo code is used for detailed design.

3.1 Middleware Framework Design fssues

Due to the lack of a middleware framework for B2C e-commerce applications,

each application has to be developed from scratch. Such e-commerce systems are not

only expensive to create but are also error prone. Therefore, a middleware framework,

which is reusable both in its design and implementation, is desirable. However, a

middleware framework has to be easy to reuse, to maintain, and to understand. It also

must provide high performance; otherwise it will not be accepted by users and will

not survive. To achieve these design goals, I will examine components' granularity,

communication, coordination, and concurrency issues during the design and

implementation stages.

30

3.1.1 Component Granularity

Component granularity determines the number of functions performed by a

component. Component granularity plays an important role in finding a correct

balance between performance and maintenance. If the functional partition (i.e., the

way the application logic is divided across components according to function) is too

coarse, generally, components' performance will be good, but they will be hard to

reuse, debug, and maintain. If the partition is too fine-grained, they will be easy to

reuse and maintain, but there will be additional network communication overhead.

Coupling, cohesion, and coherence are metrics which can be used as partitioning

criteria in making function partition decisions. Components with low coupling will

have low dependency on other components and they will have low change impact by

others. Therefore, they are more likely to be reused, simple to understand, and easy to

maintain. Components with high cohesion have relatively few methods with highly

related functionalities, which also mean they are much easier to reuse, maintain, and

understand. By performing coherence, cohesion, and coupling analysis on each

component, one can potentially predict its future performance, reusability, and

maintenance requirements.

3.1.2 Communication

Communications between distributed objects require different forms to satisfy

the needs of non-functional requirements like system reliability and high performance.

Some of the communication forms are provided by standard middleware platforms,

such as synchronized communication [6]. In synchronized communication, the client

object is blocked while the server object executes the requested operation. However,

31

some communication forms, such as asynchronous communication (i.e., server object

gives control back to the client object immediately after receiving the client object's

request) are often not provided. Application developers could use threads or message

queues to implement these services that are not provided by standard middleware

platforms. However, achieving a high degree of reliability while using a message

queue or transactions is both time- and space-intensive, so in the design stage the

designer should evaluate the gains and trade-offs, and choose an appropriate

communication method to achieve reasonable performance and reliability.

3.1.3 Concurrency

Many customers may visit an e-commerce site concurrently. It might happen that

these customers' operations aÍe modifying the same server objects. In this

circumstance, two problems might occur: an update may be lost or the state of the

object may become inconsistent [6]. To solve these problems, we have to control

concuffency in such a wày that two transactions must be executed one after the other

(i.e., they must be serializable). To control concurrency, respective standard object

models have various implementation methods. For example, COM+ handles

concuffency by spawning concurrent threads as long as developers make a

synchronization configuration by using the component services administrative tool.

CORBA uses locking, both two-phase and hierarchical. However, a designer has to

locate the objects that need concurrency control and specify them in the design stage.

3.1.4 Consistency

'When designing object-based middleware for e-conìmerce transactions, object

32

consistency is also a very important issue that needs to be carefully addressed. For

instance, in an order check out transaction, we must ensure that the same number of

items purchased by a customer is removed from the inventory. Another example is

that if a debit operation would leave a negative balance from a customer's credit card

account, the object should always reject this execution. To achieve object state

consistency, not only should we capture the consistency in the design stage, but also

implement the methods used to keep consistency in the implementation stage.

Replication is a mechanism often used to support availability. Replicas, which

are distributed on different computers, require state consistency. If the replicas fail to

keep a consistent state with the original object, then their function will similarly differ.

Hence, system consistency cannot be assured. To meet these consistency constrains,

the standard object models (COM+, EJB, CORBA) provide different mechanisms,

but the implementation details of each object are still the responsibility of designers.

3.1.5 Performance

E-commerce applications make high demands on a system's performance.

Therefore, we need a deep understanding of our middleware framework, which is

intended to facilitate the development of an e-commerce application. How will the

components interact with each other? What will be the system's bottlenecks? How

will the system's workload affect its performance? All of these questions need to be

considered at the design stage.

3.2Issues That Will Be Examined

The granularity of each component must be carefully selected to ensure the

performance, quality and reusability. I will use combined metrics, namely coupling,

33

cohesion, and coherence, to analyze each component and to confirm its expected

performance and reusability at the design stage. To achieve this design goal, I will use

both traditional and modern methods to measure the coupling and cohesion of

components. The traditional method provided by Steven et al., [23] is simply to

maximize relationships among elements in the same component and minimize the

relationships among elements in different components. Consequently, components

will be more likely to have low coupling and high cohesion. The modern method,

which is provided by Misic [16], is to measure the coherence of components. Instead

of measuring the interrelationships of a component's constituent parts, coherence

measures the external usage pattern of a component without considering the

component's internal structure. By using mixed metrics to analyze each component, I

will be able to properly select component granularity, thereby improving component

reusability and maintainability and ensuring a high performance for the proposed

middleware framework.

The concurrency issue will also be examined. At the design stage, I will identify

all of the objects that need concurrency control, such as product, customer, shopping

cart, and inventory. Holever, implementation methods may vary according to

different programming languages. For example, one could use threads and

synchronization primitives to implement concurrency in JAVA or use other

concurrency techniques provided by different middleware platforms. In the

implementation stage, I will use the concuffency control techniques provided by

COM+, because it takes care of concurrency issue as long as designers make a

synchronization configuration.

34

Consistency is another issue that needs to be examined both at the design and

implementation stages. For example, if a customer has paid for a number of products

in his/her basket, then the same number of products should be decreased from the

inventory table through the inventory object. Otherwise, another customer might buy

a product that does not exist in the inventory. AII such situations will be identified at

the design stage and indicated in pseudo code. Additionally, I will use the transaction

mechanism provided by standard middleware frameworks to keep components

consistent.

3.3 Design Methodology

The complexity of an e-coÍrmerce system requires good design methods to face

challenges such as flexibility, scalability, and reusability. The MVC design pattern

was used throughout the design of the proposed middleware framework.

3.3.1 The Model View Controller Patterns (MVC)

Model-View-Controller is a design pattern that enforces the separation between

the input, processing, and output of an application. An application based on an MVC

design pattern is separated into model, view, and controller components. Each of

these components handle a set of tasks. The model component represents an

application's data and business rules. The view component specifies how the data

should be presented and provides an interface to accept user input. The controller

accepts user requests and translates each request into actions to be performed by the

model. Using the MVC design pattern, the three components' reusability, flexibility,

and maintainability can be improved since each is self-contained and the inner

implementations are hidden from one another. One can easily change any of the three

35

components without impacting the others.

E-commerce applications are typical n-tier architecture applications, which require

scalability, flexibility, and reusability. Therefore, it is very important to follow the

MVC design pattern in the development of this framework. With respect to the MVC

design pattern, an e-commerce application can be modeled as presentation component

(i.e. View), model component and controller component. The View component is a

logically self-contained layer, which are the web pages used to accept user input and

to display the data coming from the model component. The model component is

represented by a set of business objects, such as product, customer, and supplier.

These objects implement actual data processing and business rules. The model

component feeds data to the view component without worrying about the actual data

formatting. The controller component is represented by a set of control classes, which

is responsible for notice of action and commands model and view component to

change. Figure 3-1 shows how the MVC design pattern is applied to the e-cornmerce

system.

Web pages
(ASP, JSP)

Business data
objects

Figure 3-1 MVC Design Pattern in E-Commerce

36

Control dasses

3.4 Component ldentifTcation Method

The functionality of my proposed middleware framework is provided by a set of

components, as component-based development has been the most promising way of

improving software's reusability, maintainability, and productivity. Therefore, an

efficient component identification method is essential for the success of this thesis

work.

A systematic component identification method, which combines MiSook et al.'s

(2001) component identification method based on use case, and Misic's (2001)

cohesion measurement method, is used in this thesis. Component reusability and

maintainability can be predicted since the components are derived conforming to the

high cohesion and low coupling principle.

This combined method includes three phases. The first phase identifies one

component for each use case. The second phase is quite an involved phase, which

depends on the sequence, class, or collaboration diagrams that are built according to

the event flow of each use case. Analyzing the sequence, class, or collaboration

diagrams, we can identify the classes that are required by each use case. Accordingly,

we can identify the common classes that belong to two or more components (i.e.,

those identified in the first phase). Determining which component the common

classes should belong to requires coupling analysis. A class's coupling number is

calculated by the number of association relationship it has with other classes. The

association relationship includes composition, aggregation, inheritance, and

association. A common class should be firstly placed in the component in which it

has higher coupling with other classes. When it has high coupling in both of the

JI

components and the coupling number reaches three or more, we should combine the

two components in phase two.

In phase three, some of the large components found in phase two are separated

into smaller components by performing cohesion analysis. Suppose component A is a

large component consisting of components 41, Az, ...4. (i.e., At, A2,...4. are

components identified in phase one). Component A is so large that it should be

separated into several smaller components. First, all classes which have relations of

composition, aggregation, and inheritance in component A are grouped together. 'We

may get several grouped classes Ct, C2,... Cr. Then we put each of the grouped class

into each consistent component At, Az, ...4- forming mxk architectures {{Al, Cl},

Az, ...4-)r, {Ar, {Az, Cr}...4*}2, {At, A2,...{4., Cr}}¡, {{Ar,Cz}, Az, ...A,ni¿, {Ar,

{Az,CzI...A*}, {At A2....{A-, CzlÌ},...{{Ar,Cr}, Az, ...A_}, {Ar, {Az, Cr}...A".,},

{Al, Az, ...{4,n, Cr} }*.r.. Second, we estimate each component's cohesion in a given

architecture. Then we calculate the average cohesion of each of the architectures and

choose the one with the highest average cohesion as our final components. Cohesion

is estimated using the metric provided by Misic. Let S stand for the component in

question, and let R(S) denote its client component. Let S* denote the subset of the set

S used to write its clients. And let S*(x) denote the part of that subset which is

actually used to write the client x. Then the cohesion of S is:

Y(s)= l(#s(x)- I)/ I(#s- 1)

where #S stands for the number of classes in component S.

3.5 Requirements of E-Commerce Middleware Framework

Requirements of an e-commerce middleware framework include functional

38

requirements and non-functional requirements. Functional requirements âre specified

using UML use case diagrams and collaboration diagrams. Each use case is analyzed

in section 3.5.1. Nonfunctional requirements are expressed using metrics and each

metric is discussed in section 3.5.2.

3.5.L Functional Requirements

The proposed middleware framework, which is reusable by a family of similar

applications, should provide functions that are common from application to

application.

Figure 3.2 presents the common use cases of such an e-commerce system. In

order to identify the functions, I will analyze each use case scenario and document the

scenarios using {IML collaboration diagrams shown from Figure 3-3 to Figure 3-12.

The notation for collaboration diagrams is referenced from [35].

Figure 3.2 Use Case Diagrams for B2C E-Commerce

Online Shopping System

39

Case 1,. Create a Customer Account

Any user who wishes to purchase products via an e-commerce system must

provide his/her personal information to the system to become a registered customer.

Figure 3.3 presents the detailed process of creating a new customer account. A user

provides hislher detailed personal information to the system, such as name, address,

password and email address. The e-commerce system will check the database to see

whether the e-mail and password exist. If so, the system will deny the customer's

registration and request the user to input new values for these fields. Otherwise, the

system will create a unique customer ID for the user and notify him/her that the

account has been successfully created.

Ç1

T
óu.toru,

Figure 3.3 Collaboration Diagram for Creating a Customer Account

Case 2. Update a Customer Account

When customers return to an e-cornmerce system, they are allowed to modify

their personal information as long as the change request occurs at any time other than

check out. The user will be shown an update interface to collect new information. The

system is responsible for verifying the modified user information. If it is valid, new

2.1:VerifyQ J
3: CreateAccount0

40

information will be written into the database and customers will be notified that

information has been changed. Otherwise, the system will ask customers to modify

the invalid information. The detailed collaboration diagram is shown in Figure 3.4.

fì 1: NewAccountlnfoQY ----'
I

I

:Customer

2.1: Verify(

Customer

Figure 3.4 Collaboration Diagram for Updating Customer Account

Case 3. Login

Customers can logon to an e-commerce system using their e-mail addresses and

passwords, which were specified in the Create a Customer Account use case. When

the e-commerce system recognizes returned customers, the system will allow user to

check their shopping records, update their accounts, and check out products. However,

if the e-mail addresses or the passwords are invalid, customers will be informed to try

again, up to three times. The login use case is shown in Figure 3.5.

V
I

I

1: ProvideLoginlnfo$
----->

Customer

Figure 3.5 Collaboration Diagram for Login

41

Case 4. Check Shopping Record

Figure 3.6 shows that returned customers can check their shopping records on an

e-commerce system. When a customer requests checking shopping records, the

e-commerce system will show an email and password input interface. After email and

password have passed validation, the e-commerce system will retrieve the customer's

shopping data out of database and display them in user interface.

1: ReviewOrder 0_>

Customer

Figure 3.6 Collaboration Diagram for Checking Shopping Record

Case 5. Browse Catalog

Any user of an e-commerce system can browse the system's catalog. The catalog

consists of different departments, each of which includes various products. After

logon, a user can browse all departments and all of the featured products in each

department. Then they can move to any particular department by selecting the

corresponding hyper link. If a user is interested in a product, she may browse the

detailed information. The catalog browsing diagram is shown in Figure 3.7.

A'

r
1: BrowsingRequestQ

---.>

Customer

Figure 3.7 Collaboration Diagram for Catalog Browsing

Case 6. Search Product

Figure 3.8 describes how any user of an e-commerce system can search products

by providing a product name, supplier name, or product price. If the search results are

not empty, the e-commerce system will display the result using a formatted user

interface. Otherwise, the system will display acknowledge information.

Customer

Figure 3.8 Collaboration Diagram for Searching Product

Case 7. Add Product to Cart

After browsing the catalog, customers may be interested in specific products. If

the customer attempts to put a product in his/her shopping carts, the e-commerce

system must check the inventory first before add the product into the customer's

43

shopping cart. If the product that is added already exists in the shopping cart,

system will increase the product's quantity instead of adding the product into

shopping cart. Figure 3.9 describes the adding to cart use case.

1: AddltemReouestl)

Customer

Figure 3.9 Collaboration Diagram forAdding to Cart

Case 8. Remove Product from Cart

Figure 3.10 shows how customers can remove products from their shopping carts.

When the user interface shows the contents of a shopping cart, the customer can

request to remove products and the system responds by showing the remaining

contents of the shopping cart until the shoppin9cau.t is empty.

/^\ 1:RemoveltemRequest$ 2: RemoveltemQ f--------------- 2.1:_,/---tll->l I

---f- I :WebForm :ShoooinoCart l-__l
lllll-
I

:Customer

Figure 3.10 Collaboration Diagram for Removing From Cart

Case 9. Check Out

After browsing the catalog and adding products to in their shopping carts,

the

the

44

customers can request to check out. At this moment, the system asks customers to

input their payment method, detailed credit card information, shipping address, and so

forth. If customers can provide all this information correctly, the system will take all

the items in the shopping carts, write them to the order detail table, and create

complete orders. Then the system will debit the order totals from customers' credit

cards. Finally, the system will remove all the items on the orders from inventory. The

detailed description is shown in Figure 3.11.

Figure 3.11 Collaboration Diagram for Checking Out

Case 10. Cancel Order

Figure 3.12 shows how customers can cancel their orders at any time before

finishing the check out process. The system simply empties their shopping carts and

customers can continue shopping or logout.

45

Customer

Figure 3.12 Collaboration Diagram for Canceling Order

3.5.2 Nonfunctional Requirements

A middleware framework is used for deriving a family of similar applications.

Reuse of a well-designed middleware framework can improve programmers'

productivity as well as enhance the quality, performance, and reliability of

applications. To meet all these promises, a framework itself has to have properties

such as high availability, integrity, security and performance.

o Availability

E-commerce is getting more and more prevalent. One of the most important

reasons is that it can be accessed seven days a week and twenty four hours a day.

E-commerce systems that derive from the proposed middleware framework should

have as little down time as possible. The maximum down time is two minutes per

day.

o Integrity

Integrity is the ability to determine the correctness and accuracy of data. An

e-commerce system requires that all the transactions should be executed l00%o

accurately and all data transferred correctly over the network (e.g., customers are

46

buying the products that they intend to buy).

e Performance

A middleware that promises to deliver successful B2C e-commerce must provide

high performance because the competition is fierce in virtual markets. If one cannot

successfully access a required web page, a user may choose another e-commerce web

site, since so many of them are available. The average response time of each web

page, which includes the time spent on the server handling the request,

communicating over the network, and processing on the client machine (e.g.,

formatting the response), should be less than 5 seconds.

o Security

Security issues are key concerns for B2C e-commerce systems because of the

open nature of the Internet. Customers' sensitive information should be protected

from malicious users by leveraging several security protocols such as the Secure

Socket Layer (SSL), encryption by secure HTTP (S-HTTP), and browser level

authentication. We must ensure that only authorized administrators can view

customer accounts and personal information, update department, and product

information. Additionally, only verified customers should be able to view their

shopping records.

3.6 Middleware Framework Design

3.6.L Architecture Design

Based on the use case diagram captured in the requirements analysis, and using

the component identification method discussed in 3.4, I identified seven basic

components needed to deliver successful B2C e-commerce transactions, as shown in

47

o

figure 3.13:

3 Customer: the customer component is required because most e-commerce

systems need to retain their customers' personal information, like e-mail, name

and address. When customers return to the system, the system will recognize

them and retrieve personal information. This component includes several classes

that are used to support creating a new customer, updating an existing customers'

information, and retrieving existing customers' information, etc.

Supplier: This component contains classes that are used to provide an online

catalog, hold a specific product's detailed information, manage inventory, and to

manage supplier information. Customers can browse an e-cortmerce system's

catalog, and review detailed products information. System administrators could

also add new products or update old product information using this component.

Shipment: This component maintains the classes that support different shipping

policies. By using this component, existing shipping methods can be retrieved

and new methods can be added to an e-commerce system.

Shopping cart: This component contains classes that are used for adding,

removing, increasing, and decreasing products in a customer's shopping basket.

Payment: This component maintains classes that manage customers' payment

methods. Customers can use this component to choose a payment method or to

cÍeate a new one.

Transaction: This component contains classes that are used for handling the

checkout process. When a customer sends a checkout request, this component

will write all the product information in the shopping cart into the order line table,

o

o

o

a

48

create an order record in the order table, and perform all the necessary transaction

pfocesslng.

o Third party: This component maintains classes that are responsible for

performing credit card authentication and payment processing (i.e., debit from

the customer's account and credit on the supplier's account).

Figure 3.13 Package Diagram for E-Commerce Middleware

third party

paymentauth Ban kAccount

transaction

49

3.6.2 Dynamic Behavior of Objects

In this section, I use IIML state chart diagrams to capture the dynamic behavior of

the main objects of an e-commerce system. Analyzing these dynamic behaviors helps

to identify the attributes and methods that a class should have.

1. Cart

Figure 3.14 shows that when a customer logs onto an e-commerce system, the system

will create a shopping caft for him/her with an initial state of "empty". After

browsing the catalog and product information, the customer might put products in

his/her shopping cart and the shopping cart's state will change to "not empty". At this

time, if the customer places a check out request, the system will show the contents of

the shopping cart and allow the customer to make a decision either to check out or to

cancel the order. If the customer chooses to pay for the products, the system will

release the shoppingcart after the customer paid for his/her selected products. If the

customer chooses to cancel the order, then the shopping cart's state changes to 'onot

empty" again. When the customer logs off the system, the shopping cart will be

automatically released.

AcUiten

Figure 3.14 State Chart Diagram for Shopping Cart

Ad¡tsr t\--J æ

50

2. Order

Figure 3.15 illustrates the order object's state changes during the shopping process.

At first, the order is in an "incomplete" state. After browsing the catalog and adding

items to the shopping cart, the customer may request to check out. If the check out

process succeeds, an order will be created and the orders' state will change to

"completed". Then, the order will enter the "processing" state, which involves stock

checking, payment making, and customer notification, etc. If every step in

"processing" is processed successfully, the order will enter a "fulfilled" state. If any

step fails in "processing", then the order will change to the "postponed" state. 'When

the postponement exceeds 24 hours, the order will be automatically canceled.

Add ¡tem to carl

incomplete creating order ¡ SUCCêSS --
a--------------- completed

Rer

[cart
rove itemV
not emptyl Check again

z--Qalance/sl
Iaccount
rck/...1

Fail [out ol stock/out of

Place
order

postponed
balance/...1

proc€ rsstno

[customer cancels/
time>24 hoursl

Figure 3.15 State Chart Diagram for Order

3. Order Processing

Once an order has been successfully created, it will move to an "order processing"

state. In this state, the e-commerce system will first check the inventory. If the

inventory has the requested products in stock, the order moves to the "payment

5t

processing" state, which involves several sub steps, such as credit card verification,

customer account debiting, and supplier account crediting. If every sub step proceeds

successfully, the system will move to notify the shipper and the customer. In the

event that any of the previous steps fail, the order will be postponed. After 24 hours

of postponement, the order will be cancelled. Figure 3.16 details this state.

lOut of stockl

done

Try again
[out of stock]

[Out of stock & time>24 hours]

Try again lif fa¡ll

Try again [if fail]

Try again [if fail]

Figure 3.16 State Chart Diagram for Order Processing

4. Inventory

Figure 3.17 shows that the inventory object may be used to add new products into

the database, modify existing products, and to check products stocks. When a

payment processing
[fail & time>24 hours]

[fail & time>24 hours]

notifying customer
[fail & time>24 hours]

[S uccess]

52

customer submits a check out request, the inventory object will be used to check

stock. If there are enough products in stock, the same number of products purchased

by the customer will be removed from inventory. Otherwise, the customer will be

notified that there are not enough products in stock. At the same time, the suppliers

will be notified to replenish product stocks.

Figure 3.L7 State Chart Diagram for Inventory

5. Customer

Figure 3.18 illustrates the state changes of the customer object. When customers

come to an e-commerce system, they may create accounts to become registered

customers, browse the catalog, and search products. If they are registered customers,

individuals can check their shopping records, modify personal information, and

purchase products. After they have paid for the products, customers will receive an

email from the system.

Check

lone prod
lin stock &
quantiÞOl

rernove a product from inventory

53

search Ion certain criterion]

complet€

logoul

5. Catalog

In Figure 3.79, the catalog object starts in an "initial" state, which may then

proceed to the "retrieving" state. If the retrieval is successful, catalog object enables

the system to show the contents of the catalog. If the retrieval fails, the e-conunerce

system must encounter some errors. From the "showing content" state the catalog

object can change to the "modifying" state and the "browsing" state. After the

customer logs out, the catalog object will be released.

f
t-

o
=Ode
JC
o:o;

c

Figure 3.18 State Chart Diagram for Customer

Retrieve

Figure 3.L9 State Chart Diagram for Catalog

ooq

õ!coø

6. Product

54

Figure 3.20 shows that a product can start in the "adding to inventory" state. Once

a product exists in inventory, it can be browsed and added to a shopping cart. After

being checked out, a product may be in shipping and receiving states. When a

product's quantity drops to zero, the product will be removed from the inventory. In

addition, a product's property such as name, price and description, may be modified.

Figure 3.20 State Chart Diagram for Product

7 Payment

Figure 3.2I demonstrates that a payment process may start with collecting a

customer's credit card information. Once the collection is complete, the credit card

information will be encrypted and sent to a third party for verification. If the credit

card information is approved, the total value of the customer's order will be debited

from the customer's account and credited to the supplier's account. Otherwise, if the

credit card information is rejected, the e-commerce system will ask the customer to

can not fulfill [e.9. address inconect]

55

coffect his/her information until the customer cancels the order or the credit card

information is approved.

Figure 3.21 State Chart Diagram for Payment

3.6.3 Classes and Relationships among Classes

Based on the analysis of functional requirements of the proposed middleware

framework and dynamic behaviors of objects, I identified the major classes and the

relationships among classes shown in Figure 3.22.

credit suppliers bank account debit customers bank account

56

- Created from 1

Figure 3,22 Class Diagram of E-Commerce System

l. Class Diagram for Supplier Component

The supplier component includes four main classes: catalog, product, supplier, and

inventory. A system administrator may use this component to accomplish tasks, such

as adding new departments to the catalog, updating product prices, and removing

products from inventory, etc. A customer uses this component to browse the catalog,

57

or retrieve a product'

interface are used in

connection object.

s detailed information. A basic

order to allow the four classes

class database and a public

to share the same database

SU lier

supplier

Id

+getSupplierName0
+setSupplierName0

t-
I
I

-at
I

Figure 3.23 Component Diagram for Supplier

2. Class Diagram for Customer Component

The customer component includes two main classes: customers and customer. The

customer class is used for holding a single customer's detailed information. The

customers class is used for holding all operations that related to customer

management, such as creating a new customer, updating an existing customer's

information, etc.

58

customer

Figure 3.24 Component Diagram for Customer

3. Class Diagram for Shopping Cart Component

The shopping Cart component contains a cart class, which is responsible for

adding products to shopping carts, increasing the quantity of a product, emptying

shopping carts, etc.

shoppingcart

{decrease0
+checkQuantity0
+emptyBasket0

Figure 3.25 Component Diagram for Shopping Cart

4. Class Diagram for Payment Component

The payment component contains a payment class, which is used for managing

59

customers' payment methods, including adding or removing a payment method, and

modifying an existing payment method, etc.

payment

Figure 3.26 Component Diagram for Payment

4. Class Diagram for Third Party Component

The third party component includes a payment authentication class and a bank

account class, which are responsible for authenticating customers' credit card

information and transmitting money from customer accounts to supplier accounts.

Third Party
:
I oatauase

I

l-m-string Il-m-Da I

l+RunQueryO I

l+set DBO I

-ty7ñ-

" interf ace "
utility

+DB0
+Visit0

tt
ll
ll
| '1-

ban kaccou nt
-m_accountName
-m_accountNum ber
.m_balancepaymentauth

'm_boolean +addAccount0
+removeAccount0
+debit0
+credit0
+checkBalance0

rcardN umValidation0
rban lanceValidation 0

Figure 3.27 Component Diagram for Third Party

60

6. Class Diagram for Shipment Component

The shipment component contains a shipment class, which is used for managing

the shipment methods that are provided by an e-commerce system. The component

provides services like adding, modifying, and removing shipment methods.

Figure 3.28 Component Diagram for Shipment

7. Class Diagram for Transaction Component

The transaction component contains classes that are related to e-commerce

transactions. These classes include order, invoice, and order processing pipeline. This

component is responsible for creating orders, creating invoices, and calculating order

totals. Additionally, the component is also used for notifying customers, and notifying

suppliers.

shipment

61

transaction

order

Customerld

+setShippingAddress(
)

invoice

C u sto m e r F i,',r' ttrl
"
r e

c
-m_CreateTime
-m_Total

otal0
otal0

Figure 3.29 Component Diagram for Tlansaction

3.6.4 Detailed Design

The detailed design of each class is documented using pseudo code. The following

information is used to describe the detailed design for each class:

Index: a reference uniquely assigned for identifying this class.

Name: a unique name that describes the corresponding class.

Purpose: briefly describes the objective of the class.

Remarks: explains any details concerning the class which are not captured by any of

the above.

A method of a class is described in the follow style:

Index: a reference uniquely assigned for identifying this method.

Name: a unique name that describes the corresponding method.

Purpose: briefly describes the objective of the method.

Input parameters: a list of input parameters required by the method.

62

Output parameters: a list of output parameters that the method is expected to retum.

Pseudo code: describes the operation of this method including how the functions

utilize the data and how the program reacts to events and state changes.

Remarks: explains details concerning the method, which are not captured by any of

the above.

Below is an example description for the customer class and its methods.

Customers Class:

Index: Class_Ol
Name: Customers
Purpose: providing methods that are used for managing customer

information, such as creating a new customer or updating an

existing customer' s account.
Reference classes: customer
Remarks: No

Methods of customers class:

Index: Method_Ol
Name: createCustomer
Purpose: register a new customer
Visibility: Public
Input parameters: firstName, lastName, email, password, address, phone,City,

Country,Zip
Outputparameters: customerld
Pseudo code:

recordset = SELECT x from customer where EMAIL = email
if end ofrecordset then

add new customer;
return customerld;

else
retum 0;

end if
Remarks: firstName, lastName, password, address, phone are optional

parameters

Index: Method_O2
Name: updateCustomer

63

Purpose: update an existing customer's personal information
Visibility: Public
Input parameters: Id, FirstName, LastName, EMail, Password, Address, Phone,

City, Counfty,Zip
Output parameters: Boolean (true or false)
Pseudo code:

recordset = Select * from customer where ID = Id
if not end of recordset

update record;
return true;

else
return false

end if

Remarks: No

Index: Method_O3
Name: GetOneCustomer
Purpose: retrieve one customer's record value from the customer table,

which is specified by customer ID
Visibility: Public
Input parameters: Id
Outputparameters: recordset
Pseudo code:

recordset = Select * from customer where customerlD = Id
if not end of table

return recordset;
else return null;

Remarks: No

Index: Method_O4
Name: Checklogon
Purpose: attempts to logon a user based on an e-mail and password
Visibility: Private
Input parameters: email, password
Outputparameters: boolean
Pseudo code:

recordset = select * from customer where EMAIL=email and
pASSWORD = password
if not end of table

return true;
else

return false;

64

Remarks: No

Fifteen classes are identified in this research. Other classes and their methods
descriptions are provided in appendix A.

65

Chapter 4

Implementation

This chapter discusses issues related to the implementation of the middleware

framework, such as implementation strategies, implementation environment, and

quality assurance. An example application derived from the proposed middleware

framework is also provided.

4.1 Implementation Strategies

In the implementation phase, the design documents that have been created must be

translated into code. All the functionality specified in the design must be present and

fully functional. To ensure functionality, I used a combined top-down and bottom-up

approach.

In object-oriented development, a top-down implementation means that the classes

where executions staft are implemented first, while supporting classes and reference

classes are implemented later. In this middleware framework project, all the proposed

components work through a façade class, namely visit. Therefore, I started by

building this class and presented all its referenced classes as dummy classes (i.e., a

class that contains its necessary methods with incomplete method bodies). By doing

so, whenever a component had been implemented (e.g., order, customer, and

transaction), I could test it through the visit class. In order to test the correctness of a

component, I also had to build the GUI first (i.e., web pages implemented using ASP),

66

which provides a graphical user interface for collecting customer input.

The bottom-up implementation means that classes at the bottom of the class

inheritance hierarchy are built first. In other words, classes that only allocate or

reference primitive or predefined classes are coded first. For example, in this project,

an interface named utility and a base class named database were coded and tested

first since they only reference to primitive classes. Classes like order, customer,

product, were built later because they used the utility and database class. Therefore, a

combined method was used in the implementation of this middleware framework.

4.2 Quality Assurance

To ensure the framework's quality in term of functionality, reliability, availability,

and performance, I used extensive testing methods, including unit testing, integration

testing, and system testing, to improve the framework's quality.

Unit testing is testing the individual components that comprise the system. After a

component had been built by following bottom-up implementation strategy, I

proceeded to test functionality by generating a set of test cases that represent all

possible situations. The purpose of functional testing is to ensure that the observed

and expected behaviors are the same in all situations. However, unit testing of a

component can only test part of the correctness of the component. It was uncertain

whether the component would function correctly when interacting to other

components. Therefore, I used integration testing to further test components' dynamic

behaviors.

Integration testing is testing a group of components' behavior when they are

67

working together. The goal of integration testing is to ensure that a group of

components behaviors are the same as specified in the requirements. Once I was

satisfied with each individual component of the framework, I integrated these

components into a working system to perform integration testing. During the

integration testing, I used an incremental approach. I added one component at a time

to the working system instead of adding them together. 'When the first component

added to the working system tested and demonstrated correct behavior, I added the

second component. If a problem arose, the most likely source for the problem was the

most recently added component. In most instances, bugs can be found relatively

easily.

Finally, I performed the system testing, which meant that the derived middleware

components and web pages that called these middleware components were deployed

on a server computer. Clients browsed the web pages via the Intemet. A set of test

cases were performed to verify the functions provided by middleware components. In

some cases, the system must be fault tolerant, which means when an error occurs the

overall system must be able to recover. In system testing, middleware components'

fault tolerances were tested. In addition, the performance of the proposed middleware

was also tested, using metrics such as the response time of a web page and the

number of transactions performed per second.

4.3 Implementation Environment

The proposed middleware framework is implemented using Microsoft COM+

technology. The reasons for using COM+ are that it achieves binary encapsulation

and binary compatibility and it supports a wide range of implementation languages.

68

In addition, it is faster and more robust than either EJB or CORBA technologies [10].

The developmental environment I used is Microsoft Visual Studio and the

programming language is Visual Basic.

To verify the design and the implementation of the framework, an example

e-commerce application is created from the proposed middleware framework. ASP

technology is used for implementing the web server layer (i.e., web pages). The ASP

web pages are deployed in Microsoft IIS web server container. Microsoft's SQL

server 2000 is used as the backend database and Microsoft Windows XP is used as

the operating system.

4.4 Run-Time Behavior of an Example Application

A customer can logon to the sample e-commerce application by typing the IIRL of

the system (i.e., http:l/142.161.74.219/shoppingcenter/asp/frame.asp). The system

then displays its entry page, as shown in Figure 4-1. The left side of the entry page

shows a search engine, the contents of the current shopping cart, and the department

list of the system. The search engine provides a quick method for searching for a

particular product. The search key words could include name, price, or supplier of a

product. The shopping cart content area shows the total number of items and the total

price of all items in the cuffent shopping cart. The department list displays all the

department of this e-commerce system. Users can browse any of the department by

clicking the corresponding hyper link.

The main frame of the entry page shows all the featured products for each

department. A customer can click the hyperlink of the department name or click on

the image of the featured product to explore detailed information regarding a

69

particular department. A customer can also choose to immediately login the system,

instead of doing so at check out. An existing customer can also track his/her shopping

records and check his/her contact information by clicking the respective hyperlink.

Figure 4-L Entry page of an E-Commerce System

70

Figure 4- 2Department page of an E-commerce System

If a customer is interested in one department, he/she can click the name of the

department or the image of the department to browse all the corresponding products.

Figure 4-2 presents the product information of a computer department. If a customer

is interested in one particular product, he/she can click the name of that product or the

image to see the detailed information, as shown in Figure 4-3.

Figure 4-3 shows one particular product's image, name, price, description, and

shipping methods. From this page, a customer can click the "buy it now" button to

drop this product into his/her shopping cart, or click the "continue shopping" button

to browse other products.

Figure 4-4 shows the contents of a customer's shopping cart including all product

names, product prices, quantity, and their value. From this page, a customer can

71

increase or decrease the quantity of a product, or delete items from the shopping cart

by clicking the respective hyper links. In addition, a customer can click on the

"continue shopping" button to keep shopping or click on the "proceed to check out"

button to check out.

In the check out process, a customer first needs to login the e-commerce system.

From Figure 4-5 we can see that if a customer is new to the system, he/she is required

to input an email address and check the "I have never shopped at your store before"

radio button. If a customer is a returned customer, he/she is required to input an email

address and password. For a new customer, the e-commerce system will proceed to

ask for the user's name, address, country, telephone, and password, as shown in

Figure 4 - 6. When all of the required information is entered correctly, the system will

ask for credit card information. As show in Figure 4-7, a customer can choose a credit

card type (e.g. Visa Card, Master Card) and input the name on the card, the card

number, and expiration data. When all the personal information is entered correctly,

the credit card information will be sent to a third party for validation. Once the credit

card has been verified, a valid order will be created. Otherwise, the customer will be

asked to input corrected credit card information.

72

f{} . ,¿: ., -l t¿ .,1t , :r :t rÌ .4j , a,i- i;,. n . J
8À4 .ìr;.ji sbp tulel tue : sceò F¡rodÈt trêdÈ frjEy : ÈH ftnt Edl gs35

Ài;:¡:5 :ä hf þ/!i2.16 r.74,2rgletoxhFurÉ ¡¿q l¡du.ràqt¿- r? vi fil Go rj J

Price: S1,200.00

Disoþtioa

ineâdÂy shÞpin$S:0.00

3 da,ys såþpiog:S6.00

2 veeks shippingSl.00

ffiffi

f@,

?itii:irt:äíl;l:l::|#1
t:i::1:;tli1i!l::,1:,i.i

..'..'.:
t:: :. ll a:;, :r! :,. : : ! | : ::t)r:a :ltn at a: :a tt

'i,t:l¡;i::tt:ll.l;:i: ls -.-..- - :

-...........'..1
tl i

:

@lM JG ColpondôÊ -{ de¡ls ft 5æ.d. -{ tcms of È. ¡pprc!€d by j@trhçn iì

t'::

..:
iu

r'.rrion:1.0.0

,& btmct

Figure 4-3 Product Page of an E-Commerce System

Figure 4-4 Shopping Cart Page of an E-Commerce System

ru Edt vÉw FåvdÉ T65 Hdp

ô-:,¡4.i,
k i::iîi:Ì: sbp Refrd ts¡me

P':!tt.d:tj'
sedó FèffiE P& Brtry : tsr¿J

,¿ffi,ii
ht Edt t)fus

: .t,

¡:l
;:'l:
,1.ì

W*'",*u#ti{.W,rtifä.FF.fël.f!, ':::l::ara:::-

Yoú Bækd

I Less I lfo¡e i Del¿te 538.00 538.00

. a :t:/t:: a, ia.:, a,,f: aN !:: ::iii:i:i: j::Êae: ññ

t Pr*"d ¡" Ct*"kd -_-] T C."tl"""Sh.ppir__l

@lK JG CorporatioÊ ilrighls rês6'êd. il tms of uê lpprovcd byjcmlsha :ì.
'1

,l
b'*--^---lë_J

Figure 4-5 Email Address Collection Page of an E-Commerce System

Figure 4-6 Personal Information Collection Page of an E-Commerce System

74

Figure 4-7 Credit Card Information Collection Page of an E-Commerce System

4.5 Evaluation

The quality of the proposed middleware framework can be evaluated from both

qualitative and quantitative aspects. In the qualitative analysis, I examined the

framework's functionality, reusability, technology dependency, and security. In the

quantitative analysis, I measured the example application's average response time,

transaction success rate, and the system's capacity.

4.5.1, Qualitative Evaluation

. Functionality

The proposed middleware framework supports the common functions required by

online commerce applications. The functions include customer account creation, a

shopping cart, search engine, various payment and shipment methods, product

75

browsing, checkout, and order tracking, etc.

The framework supports a product browsing function. Any user of an e-commerce

web site is able to navigate the web site just like walkingin a real shop. Whenever

users intend to purchase any products from the web site, they provide their personal

information to become registered customers (creating an account) or provide their ID

and password to be recognrzed by the system (login).

Fufihermore, the framework supports a shopping cart function, which can be used

by end users add products in their shopping cart, and to view the contents of a cart

during the purchasing process. In addition, this framework provides a search engine

function, which reduces product search times. Since numerous methods are provided

in the product class, a search engine can be easily built to accept keywords such as

product name, price, and supplier.

Another basic function supported by the framework is credit card payment.

Customers provide their credit card information to the e-commerce system. Then, the

e-commerce system will encrypt the information and send it through the Secure

Socket Layer (SSL) to third parties, where the credit card information is verified. If

the credit card information passes verification, an order will be created. Otherwise,

the order will be rejected. After the order is created, it will go into a processing

procedure, which includes checking the stock, making a payment, and notifying

customers, suppliers, and shippers.

The framework also supports different shipment methods, which can be chosen by

customers, and helps to ensure user satisfaction. Registered customers can also track

76

their shopping records. However, some of the functions that are not common are

omitted from this framework.

. Reusability

The main benefits of the proposed framework are that both its design and

implementation are reusable. During the design stage, I used a systematic method to

identify the components. 'When I made the decision on each component's granularity,

I considered the component's cohesion and coupling so that reusability and

maintainability could be confirmed.

. TechnologyDependency

This framework describes the design of middleware components that enable B2C

e-commerce transactions. The design is presented using UML diagrams and pseudo

code, which is independent from any implementation technology. Therefore, the

proposed middleware framework may be implemented using different middleware

platforms, namely CORBA, COM+, and EJB. Particularly when COM+ technology is

used, a wide range of programming languages (e.g., Visual Basic, C++, and C#) can

be used to implement the framework. The implementation results (i.e., a set of

components) could be deployed in either a Unix or Windows environment depending

on the chosen implementation middleware platform.

. Security

Security is a key concern in any e-commerce system. Protection includes

customers' personal, purchasing, and credit card information. This framework

provides multiple access control mechanisms to reduce both customer and merchant

risks. For example, customers who wish to purchase products from an e-commerce

77

system need to provide unique email address and password to register. Only

registered customers can place orders and check their shopping history. Only

authorized administrators can modify catalog, product, and inventory information,

and only authorized persons can view customer information. However, information

transport security and operating system security are not main concems of this work.

4.5.2 Quantitative Evaluation

To evaluate the proposed middleware framework's performance and usability, I

deployed the example application on the server machine in the E-Commerce

Laboratory (i.e., Dr. Ehikioya's Advanced E-Commerce Systems Development

Laboratory), measured the example applications' average web page response time, the

page loading success rate, and compared the results with an existing two-tier

architecture e-commerce application (i.e. a course project developed by a graduate

student) installed on the same server machine. In addition, I measured my example

application's transaction accuracy rate, and the deployed system's capacity.

The server machine has a Pentium trI IGFIz CPU, 256M RAM, Windows 2000

Advanced Server operating system, and Microsoft SQL server 2000 database. I used

the computers in the Cargill Lab and the Heterogeneous Computing Laboratory as

client machines to logon to both of the two tier and the three tier e-commerce

applications through the local area network.

I used a Java program named JMETER [32]

users to logon to the two e-commerce systems.

used to test the performance of server systems

servers.

to simulate multiple simultaneous

JMETER is open-source software

such as web, FTP, and databases

78

Average Response Time

A web page's response time includes the time for the server to handle request, the

time for network communication, and the time for processing on the client machine

(e.g., formatting the response). In this research, I captured sample web page response

times and calculated the average response times of both the two-tier architecture

e-conìmerce system and the three tier architecture e-commerce system as shown in

table 4-1. From Figure 4-9, we can see that with an increase in the number of users,

both the two-tier and the three-tier e-commerce system's average response time

increases and the three-tier system's aveîage response time increases more sharply

than the two-tier system. 'When the number of users reaches 40 for the two-tier

system and20 for the three-tier system, the average response time will drop. However,

atthese points in time, both systems' success page loadingrate drops too, as depicted

in both Table 4-2 and Figure 4-10

Number of Users Two Tier Three Tier
1, t2 378
2 51 726
4 t46 1355
6 168 Í9t4
I 260 3091

10 363 5163
20 751 7127
40 1036 4008
80 446 2374

160 295 1L30

Table 4-l Average Response Time for the TTvo Tier and Three Tier E-Commerce
Application (in ms)

79

Average Response Time

I 10

Number of Users

o 8000

r! 7000

3 6000

ã sooo

fip +ooo
E - 3ooo
ú,

P 2000

õ looo

Figure 4-8. Average Response Time for the Ttvo Tier and Three Tier
E-Commerce Application

Number of Users Two Tier Three Tier
I 1007o 1007o
J 1007o l00Vo

4 1007o 1007o

6 1007o 1007o

I Í007o 1007o

L0 l00Vo 1007o

20 I007o l00Vo

40 1007o 38Vo

80 46.2070 12.25Vo

160 43.707o 3.107o

Table 4-2 Success Page Loading Rate for the Ttvo Tier and Three Tier
E- Commerce Application

80

Success Rage

120%

100%

fr Bo%
fr
8 aoy.o
C)

3 qo¡
Ø

20%

o%

--{- Tw o ller -ø- Three ïer

Figure 4-9 Success Page Loading Rate

Capacity

To determine the e-commerce system's capacity, I measured the maximum

number of users the system supported. JMETER was used to simulate multiple users

and each user performed a login operation. I increased the number of users until the

server machine crashed. The maximum number recorded was 200, which means one

server machine can support 200 users simultaneously.

Integrity

To test the sample application's integrity, I used three groups of participants' help

to do the experiment. The participants were friends and students in Computer Science

Department at the University of Manitoba. The first group had one participant, the

second group had five participants and the third group had ten participants. People in

each group were asked to logon to the three tier e-commerce system simultaneously

and perform various purchasing transactions. The percentage of successful

81

transactions and the number of correctly accessed web pages was 100Vo. The system

availability was 987o.

Impact of Component Size

In this study, I was also interested in the impact of component size on the example

application's performance. Therefore, I regrouped the components into one singular

component, and rebuilt the example application based on the unified component.

Then I compared the average response time and success page loading rate with the

example application based on ten components.

Table 4-3 lists the average response time and success page loading rate of

example application using one component. And Table 4-4 lists the similar data for

example application using ten components. Both these two example applications use

three-tier architecture and deployed on the same server machine.

Number
of Users

Average Response
Time(ms)

Success
Rate

Component
Number Architecture

I 431 1007o I three tier
) 892 L007o L three tier
4 1060 1007o 1 three tier
6 1652 l00Vo I three tier
I 3387 L00Vo I three tier

10 4033 1007o I three tier
20 4607 50Vo I three tier
40 2st6 257o 1 three tier
80 1458 ll.257o 1 three tier

160 848 6.507o I three tier

Thble 4-3 ExampleApplication Based on One Component

82

Number of
USCTS

Average Response
Timelms)

Success
Rate

Component
Number Architecture

I 378 1007o 10 three tier
2 726 L007o 10 three tier
4 1355 l00Vo 10 three tier
6 191.4 l00Vo 10 three tier
I 3091 L007o 10 three tier

10 5163 I00Vo 10 three tier
20 7t27 l00Vo 10 three tier
40 4008 38Vo 10 three tier
80 2374 12.25Vo 10 three tier

160 1130 3.107o 10 three tier

Table 4-4 ExampleApplication Based on Ten Components

Figure 4-11 shows that the example application that uses one component follows

almost the same diagram shape as the example application that uses ten components.

However, the single component has slightly better avetage response time than the

application using ten smaller components. Nevertheless, the framework with ten

components is easier to understand, to reuse, and to extend than the singular

component framework because the users can pick any of the components, digest and

use them in their applications.

Similarly, both example applications' successful page loading rate drops when

number of users reaches 20 for the application based on one component and 40

the application based on ten components, as shown in Figure 4-12.

the

for

83

Average Flesponse Time

8000

o 700O
E
F 6000

$ sooo
o
F 4ooo
otr 3000
q)

f zooo
0,

å 1000

o

---c-Ten Conponents ---s- One Conponent

Figure 4-L0 Average Response Time for Example Application Based on One
Component and Ten Components

Success Page Loading Rate

ct)q
õ
G'
o
J
g'g
ÆôÈ
v,
3Ðooo
J
Ø

120%

100%

80%

60%

40%

20%

o%

+One Component -ø-Ten Components

Figure 4-LL Success Page Loading Rate for Example Application Based on One
Component and Ten Components

84

Chapten 5

Conclusion

5.L Summary of Contributions

In this research, I provided an object-based middleware framework, which

identified all the common services necessary for e-commerce transactions, such as

customer information, shopping cart and order management. This framework is

represented by a set of components and provides its services through these

components' interfaces. Using the proposed middleware framework to build online

e-commerce applications can dramatically improve developer's productivity, as well

as enhance the quality and reliability of e-commerce applications.

This research involves the design of common services that are required by similar

online store applications and the implementation of a subset of the design to validate

the design. The design of the framework is independent of any underlying platform

and programming language, therefore it is much easier to reuse. Using the common

services provided by the framework to build online e-commerce application is

cheaper and faster than building from scratch.

The UML design methodology was used widely in the requirement analysis and

design. Specifically, UML use case diagrams were used to capture the system's

functional requirements, UML collaboration diagrams were used to describe the use

case scenario, and IIML state chart diagrams were used to show the dynamic

behavior of objects. Pseudo code was used to document the detailed design (i.e.,

85

methods provided by each object).

To confirm the correctness and the performance of the proposed middleware

framework, design issues including component granularity, concurrency,

communication, and consistency were discussed in chapter 3 and were examined at

both the design and implementation stage. Therefore, the performance, reusability,

and maintainability of the framework could be predicted.

A systematic method was used to identify the components from LIÀ4L use case,

collaboration and class diagrams. Component reusability, maintainability, and

performance could be predicted since the components are derived through

conforming the high cohesion and low coupling principle.

The proposed middleware framework was implemented using Microsoft COM+

technology, because it is faster and more stable than other middleware platforms and

it also supports a wide range of implementation languages.

To verify the quality of the framework, I have also developed an example

application using the proposed middleware framework. Comparisons were made with

a non-middleware based e-commerce system. The middleware based e-commerce

system was found to be more flexible, scalable, and reliable.

5.2 Future Work

Components provided in this middleware framework are mainly focused on

supporting B2C e-commerce transactions. However, this work could be further

extended to support complete system administration, like customer, order, and

inventory administration. In addition, the framework could also be extended to

support order tracking and data mining so that the derived e-commerce system could

86

help merchants to make correct decisions and receive additional benefits.

Security is a very important issue in the BZC e-commerce domain. Both

customers and merchants face many risks, like private information loss and credit

card fraud. To achieve the highest degree of security, many new technologies have

been used throughout e-commerce the applications' multiple tier such as Client (Web

Browser), Web Server, and Application Server. To develop a security framework and

incorporate it with the proposed middleware framework presents a beneficial research

àÍea.

Currently, I have evaluated the proposed middleware framework by testing an

example application and comparing it with a non-middleware based e-commerce

application. In the future, I hope to extend this work by comparing it with other B2C

e-commerce middleware frameworks. A comparison with other B2C commerce

middleware frameworks will identify the advantages and disadvantages of each

framework and will contribute to the standardization of a middle framework for the

B2C commerce domain.

Today's e-commerce environment consists of many components and faces

numerous challenges. A middleware framework must be flexible to accommodate

these challenges. Some new components may need to be added to the framework.

These new components must be easy to create and must interoperate with the existing

ones. Therefore, improving the framework's interoperability is an important research

area.

I believe that the proposed middleware framework allows for the fast

development of new robust B2C e-commerce applications in a simple way.

8'1

References:

tll Markus Aleksy, Axel Korthaus, and Martin Schader. A CORBA-based

architecture for electronic auction applications. In Proceeding of the First ACIS

Annual International Conference on Computer and Information Science, pages

186-194, Orlando, Florida, 200I.

[2] Luis Anido, Manuel Caeiro, Juan M. Santos, and Judith Rodriguez. Design of a

component-based software architecture for web-based learning system: EJB vs

COBRA. In Proceedings of Internatiotzal Conference on Computer Science,

Sofi-ware Engineering, Information Technology, e-Business, and Applications,

pages 27 7 -282, Brazll, 2002.

[3] Martin Bichler, Carrie Beam, and Arie Segev. O_er: A broker-centered object

framework for electronic requisitioning. Trends in Distributed Systems for
Electronic Commerce, pages 154-165, 1998.

[4] Grady Booch, James Rumbaugh, Ivar Jacobson, and Jim Rumbaugh. The Unified

Modeling Language: User Guide. Addison-Wesley, 1999.

[5] MiSook Choi, HyonHee Koh, Yonglk Yoon, and JaiNyun Park. Component

identification method based on use case. In Proceeding of the First ACIS Annual

International Conference on Computer and Information Scíence, pages 203-210,

Orlando, Florida, 200I.

[6] Wolfgang Emmerich. Engineering Distributed Objecls. John Wiley and Sons, Ltd.,

2000.

Richard E. Fairley. Software Engineering Concepts. McGraw-Hill, Inc., 1985.

Nathalie Gaertner and Bernard Thirion. Working with business patterns

frameworks: A case study for fuzzy logic control. In Proceedings of the

ECOOP'?? Workshop for PhD Students in OO Systems (PUDOOS '99), pages

128-135.

[9] Jong-Pyo Jang, Sang-Jun Lee, and Byung-Ki Kim. Component specification

activities using Z. In Proceeding of the First ACIS Atznual International

Conferertce on Computer and Infonnation Science, pages 256-262, Orlando,

t7)

l8l

88

Florida,2007.

[10] Markku Karppinen. Enterprise Java Beans. O'Reilly Associate Inc., 2000.

[11] Dong Kwan Kim, Hyo Taeg Jung, and Chae Kyu Kim. Techniques for

systematically generating framework diagram based on LIML. In Proceedings of

Asia-Pacific Software Engineering Conference, pages 203-210, Taipei, Taiwan,

December 1998.

[12] Gil-Jo Kim, In-Geol Chun, Ja-Kying Koo, Jin-Ho Jang, and Roger Y. Lee. A

framework for software component quality improvement. In Proceeding of the

First ACIS Annual Intentational Conference on Computer and Information

Science, pages 195-202, Orlando, Florida, 2001.

ll3l Zeynep IGzlltan, Torsten Jonsson, and Brahim Hnich. On the Definition of

Concepts in Component Based Software Development. Technical Report,

Department of Information Science, Uppsala University, 2000.

[14] Chris Loosley and Frank Douglas. High-Perforrnance Client/Server: A Guild to

Building and Managing Robust Distributed System. John Wiley and Sons, 1997.

t15l Microsoft Corporation. Microsoft COM Specffication.

http ://www.microsoft. com/ com/resources/specs. asp.

[16] Vojislav B. Misic. Cohesion is structural, coherence is functional: Different

views, different measures. In Seventh International Softuare Metrics

Symposium, pages 135-144, London, England, 200I.

[17] Object Management Group. Common Object Request Broker: Architecture and

Specification, Revision 2.6, OMG. 2000.

http://www.omg.org/technology/docaments/ formal/corba iiop.htm.

[18] PageWise Inc. Object Paradigm vs. Procedural Paradigm. 2002. http:lllala.

essortment.com/obj ectparadi gm-ruqg. htm.

[19] Rob Pooley and Perdita Stevens. Using UML Software Engineering with Objects

and Compotxents. Addison-Wesley, I 999.

t20l Dusan Progovac. Understanding core requirements: Intrusion module. In

Proceedings of the ISCA 14th Intentational Conference, Computers and theír

Applications, pages 74-77, Cancun, Mexico, 1999.

[21] Pedro S. Ripper, Marcus Felipe Fontoura, Ayrton Maia Neto, and Carlos Jose

89

P.de Lucena. V-market: A framework for agent ecommerce systems. World

Wide'Web, 3 :43-52, 2000.

[22]Dave
'Wood Robert Eckstein, Marc Loy. Java Swing. O'REILLY, 1998.

[23] W.P. Stevens, J.Myers G, and L.L.Constantine. Structured design. IBM Systems

J ournal, 13 (2):l l5-I39, I91 4.

l24l Sun Microsystems. Enterprise Java Beans Technology.

http://j ava.sun.com/products/ ejb/.

[25] Wheelwright Wigley and Andy Wigley. Microsoft .NET Compact Framework.

Microsoft Press, 2003.

l26lMarty H.all. Core Servlets and JavaServer Pages. Prentice Hall PTR, 2000.

[27] Alex Homer. Professiorzal Asp Techniques for Webmasters. Wrox Press Inc.

1998.

[28] John Zukowski. Java AWT Reference. O'REILLY. 1997 .

[29] Young Jong Yang, Song Yong Kim, Gui Ja Choi, Eun Sook Cho, Chul Jin Kim,

and Soo Dong Kim. A UMl-based object-oriented framework development

methodology. In Proceedings of Asia-Pacific Software Engineering Conference,

Pages 2TI-2I8, Taipei, Taiwan, December 1998.

[30] Alan W. Brown. Large-scale, Component-Based Development. Prentice Hall

Press. 2000.

[31] Evelyn Stiller and Cathie Leblanc. Project-based soþuare engineering: An

O bj e ct - O riente d App ro ach. Addison'Wesley . 200I.

[3 2] The Ap ac h e J akarta Proj ec t JMeter. http : I I j akarta. ap ac h e. or gl jmeter .

[33] Antonia Stefani and Michalis Xenos. Greek vs. Intentational E-commerce
Systems: an Evaluation Based on User-centered Characteristics

[34] Kenneth C. Laudon and Carol Guercio Traver. E-Commerce. Addison Wesley,
2002.
[35] Perdita Stevens and Rob Pooley, Using UML Sofiware Engineering with objects

and comp onents, Addison-Wesley, I 999.

90

Appendix A

Customer Component:

Index: Class_Ol
Class Name: Customers
Purpose: Providing methods that are used for managing customer's information,
such as creating a new customer and update a customer's information.
Reference Classes: IUtility
Remarks: No

Methods of customers class:

Index: Method_Ol
Name: createCustomer
Purpose: To register a new customer.
Visibility: Public
Input parameters: firstName, lastName, email, password, address, phone, city, country, zip
Output parameters: customerld
Pseudo code:

recordset = SELECT * from customer where EMAIL = email
if end ofrecordset then

add new customer;
return customerld;

else
return 0;

end if
Remarks: firstName, lastName, password, address, phone, city, country, and zip
are optional parameters

Index: Method_O2
Name: updateCustomer
Purpose: Update an existing customer's personal information.
Visibility: Public
Input parameters: id, firstName, lastName, email, password, address, phone, city, country,
zip
Output parameters: Boolean (true or false)
Pseudo code:

recordset = Select * from customer where ID = id
if not end of recordset

update record;
retum true;

else
return false

end if

Remarks: firstName, lastName, email, password, address, phone, city, country zip
are optional parameteÍs

9l

Index: Method_O3
Name: getOneCustomer
Purpose: Retrieve one customer's record value from customer table, which is
specified by customer id.
Visibility: Public
Input parameters: id
Output parameters: recordset
Pseudo code:

recordset = Select * from customer where customerlD = id
if not end of table

return recordset;
else return null;

Remarks: No

Index: Method_O4
Name: Checklogon
Purpose: attempts to logon a user based on an e-mail and password.
Visibility: Private
Input parameters: email, password
Output parameters: Boolean
Pseudo code:

recordset = select * from customer where EMAII=email and
PASSWORD = password
if not end of table

return true;
else

return false;
Remarks:

Index: Class_O2
Class Name: Customer
Purpose: Representing one customer record of customer table and including
accessor and mutator method of each field.
Reference Classes: IUtility
Remarks: No

Methods of customer class:

Index: Method_Ol
Name: checkload
Purpose: Check if a customer's record has been loaded from the database.
Visibility: Private
Input parameters: customerld
Output parameters: Boolean
Pseudo code:

if loaded = false
recordset = select * from customer where CUSID = customerld
if not end of recordset

firstName = recordset ("FNAME");
lastName = recordset ("LNAME");
email = recordset ("EMAIL");
password = recordset ("PASSWORD");

92

address = recordset ("ADDRESS");
phone = recordset ("PHONE");
citY = ¡sç6¡¿set ("CITY");
country = recordset ("COIINTRY");
zip - recordset ("ZIP")i
loaded = true;

loaded = false;
else

Remarks: None

Index: Method-02
Name: getFirstName
Purpose: Access a customer's first name.

Msibility: Public
Input parameters: customerld
Output parameters: String firstName
Pseudo code:

if (checkload0 =- true)
return firstName;

else
return null;

Remarks: None

Index: Method_O3
Name: getlastName
Purpose: Access a customer's last name.
Visibility: Public
Input parameters: customerld
Output parameters: String lastName
Pseudo code:

if (checkloadO == 1¡us¡
return lastName;

else
return null;

Remarks: None

Index: Method-O4
Name: getEmail
Purpose: Access a customer's email.
Visibility: Public
Input parameters: customerld
Output parameters: String email
Pseudo code:

if (checkload0 -- true)
return email;

else
return null;

Remarks: None

Index:
Name:
Purpose:
Visibility:

Method_05
getPassword
Access a customer's password.
Public

93

Input parameters: customerld
Output parameters: String password
Pseudo code:

if (checkloadO == ¡¡ue¡
retum password;

else
return null;

Remarks: None

Index: Method-06
Name: getAddress
Pu¡pose: Access a customer's address.
Visibility: Public
Input parameters: customerld
Output parameters: String address
Pseudo code:

if (checkload0 == 1¡ue¡

retum address;
else

return null;
Remarks: None

Index: Method_O7
Name: getPhone
Purpose: Access a customer's phone number.
Visibility: Public
Input parameters: customerld
Output parameters: String phone
Pseudo code:

if (checkload0 == 1¡u.¡
return phone;

else
retum null;

Remarks: None

Index: Method-08
Name: getcity
Purpose: Access a customer's city.
Visibility: Public
Input parameters: customerld
output parameters: string city
Pseudo code:

if (checkload0 -- true)
return city;

else
return null;

Remarks: None

Index:
Name:
Purpose:
Visibility:

Method_09
getCountry
Access a customer's counffy.
Public

Input parameters: customerld

94

Output parameters: String country
Pseudo code:

if (checkload0 =- true)
return country;

else
return null'

Remarks: None

Index: Method-l0
Name: getzip
Purpose: Access a customer's zip.
Visibility: Public
Input parameters: customerld
Output parameters: String zip
Pseudo code:

if (checkloadQ == 1¡ue¡

return zip;
else

return nulll
Remarks: None

ShoppingCart Component:

Index: Class-O3
Class Name: ShoppingCart
Purpose: Hold an order instance temporally and hold methods that could operate

on a shopping cart
Reference Classes: IUtility
Remarks: No

Methods of ShoppingCart class:

Index: Method-l
Name: contains
Purpose: checks to see if an item exists in the shopping cart, if it does exist, return
quantity of this product, otherwise, retum zero.
Visibility: Public
Input parameters: productld, cartld
Output parameters: long
Pseudo code:

recordset = SEIÆCT x from CART WHERE CARTID = cartld and

PRODUCTID = producrld
if not eof recordset

return recordset (" QUANTITY") ;

else
return 0;

Remarks: None

Index: Method-2
Name: add
Purpose: add an itemto the shopping cart
Visibility: Public

95

Input parameters: productld, cartld
Output parameters: None
Pseudo code:

recordset = SELECT * FROM CART WHERE PRODUCTID =
productld

if not eof recordset

QUANTITY++;
else

recordset.addnew
recordset ("CARTID") - cartld;
recordset ("PRODUCTID") = productld;
recordset ("QUANTITY") = 1;

Remarks: None

Index: Method_3
Name: remove
Purpose: removes an item from the shopping cart
Visibility: Public
Input parameters: productld, cartld
Output parameters: None
Pseudo code:

DELETE x from CART WHERE CARTID = cartld and PRODUCTID =
productld

Remarks: None

Index: Method_4
Name: changeQuantity
Purpose: sets the quantity ofan itemin the shopping cart
Visibility: Public
Input parameters: productld, cartld, quantity
Output parameters: None
Pseudo code:

if contains(productld, cartld) = Q

add (productld, cartld);
else

UPDAIE CART SET QUANTITY = quantity WHERE
CARTID = carrld and PRODUCTID = productld

Remarks: None

Index: Method_S
Name: increment
Purpose: increase an item's quantity in the shopping cart
Visibility: Public
Input parameters: productld, cartld
Output parameters: None
Pseudo code:

if contains(productld, cartld) = 0
add (productld, catld);

else
UPDATE CART SET QUANTITY = QUANTITY+I WIIERE

CARTID = cartld and PRODUCTID = productld

96

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

CARTID = cartld and PRODUCTID = productld

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Payment Component:

None

Method_6
decrement
decrease an item's quantity in the shopping cart
Public
productld, cartld
None

if contains(productld, cartld) = Q

add (productld, cartld);
else

UPDATE CART SET QUANTITY = QUANTITY-I WHERE

None

Method_7
empty
remove all the items in the shopping cart
Public
cartld
None

DETETE FROM CART WHERE CARTID = cartld

None

Method_8
getAlllterrìs
return all the items in the shopping cart
Public
cartld
None

SELECT x FROM CARTWHERE CARTID = cartld

None

Method_9
getNumberltems
return the total number of items in the shopping cart
Public
cartld
long

SELECT sum(QUANTITY) FROM CART WHERE CARTID = cartld

None

97

Index: Class_04
Class Name: Payment
Purpose: Hold methods that are used for operate on payment information, such as

add a new payment type, get all the payment types of a particular customer, etc.
Reference Classes: IUtility
Remarks: No

Methods of Payment class:

Index: Method-l
Name: checkload
Purpose: checks if a particular payment type has been loaded from the database
Visibility: Private
Input parameters: customerld, paymentld
Output parameters: boolean
Pseudo code:

if (loaded -- false)
recordset = SELECT x FROM PAYMENT WHERE

CUSTOMERID = customerldAND PAYMENTID = paymentld
if not eof recordset

type = recordset ("TYPE");
name = recordset ("NAME");
number = recordset ("NIIMBER");
expYear = recordset ("YEAR");
expMonth = recordset ("MONTH");
loaded = true;

endif
endif

Remarks: None

Index: Method_2
Name: getCardType
Purpose: return the card type of one particular customer's one particular payment
method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:

call checkload0
return type;

Remarks: None

Index: Method_3
Name: getNameOnCard
Purpose: return the name on card of one particular customer's one particular
payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:

call checkload0
return name;

Remarks: None

98

Index: Method-4
Name: getNumberOnCard
Purpose: return the number on card of one particular customer's one particular
payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: String
Pseudo code:

call checkload0
retum number;

Remarks: None

Index: Method-5
Name: getExpireYear
Purpose: return the expire year of card of one particular customer's one
particular payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: long
Pseudo code:

call checkloadQ
return year;

Remarks: None

Index: Method-6
Name: getExpireMonth
Purpose: return the expire month of card of one particular customer's one
particular payment method
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: long
Pseudo code:

call checkload0
return month;

Remarks: None

Index: Method_7
Name: addType
Purpose: add a new type of payment method to a customer
Visibility: Public
Input parameters: customerld, cardType, number, name, year, month
Output parameters: none
Pseudo code:

recordset = SELECT x FROM PAYMENT WHERE NUMBER =
number and CUSTOMERID = customerld

if not eof recordset
query = SELECT * FROM PAYMENT
query.add new
query("NAME") = name;
query ("NUMBER") = number;
query ("TYPE") = tYPe;

query ("EXPIREYEAR") = leari

99

query ("EXPIREMONTH") = month;
query.update;

endif
Remarks: none

Index: Method_8
Name: removeType
Purpose: remove a type of payment method for a customer
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: none
Pseudo code:

DELETE * FORM PAYMENT WFßRE PAYMENTID - paymentld
Remarks: none

Index: Method-9
Name: removeAll
Purpose: remove all type of payment method form the database
Visibility: Public
Input parameters: none
Output parameters: none
Pseudo code:

DELETE ,¡.FORM PAYMENT
Remarks: none

Index: Method_l0
Name: removeCustomer
Purpose: remove all type of payment method of a customer
Visibility: Public
Input parameters: customerld
Output parameters: none
Pseudo code:

DELETE x FORMPAYMENTWHERE CUSTOMERID = customerld
Remarks: none

Index: Method_ll
Name: getPayments
Purpose: get all payment methods for a single customer
Visibility: Public
Input parameters: customerld
Output parameters: none
Pseudo code:

SELECT o'FROM PAYMENTWHERE CUSTOMERID = customerld
Remarks: none

Index:
Name:
Purpose:
Visibility:

Method_12
getPayment
get a payment method for a single customer
Public

Input parameters: customerld, paymentld
Output parameters: none
Pseudo code:

SELECT + FROM PAYMENT WHERE CUSTOMERID = customerld

100

AND PAYMENTID = paymenrld
Remarks: none

Index: Method_l3
Name: checkCredit
Purpose: check the expire date of a credit card
Visibility: Public
Input parameters: customerld, paymentld
Output parameters: boolean
Pseudo code:

recordset = SELECT * FROM PAYMENT WHERE CUSTOMERID =
customerld AND PAYMENTID = paymentld

flag - false;
if not eof recordset

if recordset ("YEAR") > year (now)
flag - true;

else if recordset ("YEAR") -- year (now) && recordset
("MONYH") >month (now)

flag = ¡u¡s'
else

flag - false;
endif

Remarks: none

Shipment Component:

Index: Class_O5
Class Name: Shipment
Purpose: Hold methods that are used for operate on shipment information, such as

add a new shipment type, get all the shipment types, etc.
Reference Classes: IUtility
Remarks: No

Methods of Shipment class:

Index: Method_l
Name: addType
Purpose: add a type a shipment
Visibility: Public
Input parameters: type, charge
Output parameters: None
Pseudo code:

recordset = SELECT x FROM SHIPMENT
recordset.addnew
recordset ("TYPE") = type;
recordset ("CIIARGE") = charge;

recordset.update;
Remarks: none

Index:
Name:
Purpose:
Visibility:

Method_2
removeType
remove a type a. shipment
Public

101

Input parameters: shipmentld
Output parameters: None
Pseudo code:

recordset = DELETE FROM SHIPMENT WHERE SHOPMENTID =
shipmentld;
Remarks: none

Index: Method_3
Name: getAllType
Purpose: get all shipping type from table shipment
Visibility: Public
Input parameters: None
Output parameters: None
Pseudo code:

recordset = SELECT * FROM SHIPMENT
Remarks: none

Index: Method_4
Name: getoneType
Purpose: get one shipping type from table shipment
Visibility: Public
Input parameters: shipmentld
Output parameters: None
Pseudo code:

recordset = SELECT * FROM SHIPMENT WHERE SHIPMENTID =
shipmentld;
Remarks: none

Index: Method_5
Name: update
Purpose: update the value of an exsiting shipping type
Visibility: Public
Input parameters: shipmentld, type, charge
Output parameters: None
Pseudo code:

recordset = UPDATE SHIPMENT SET TYPE = type, CHARGE =
charge WIIERE SHIPMENTID = shipmentld;
Remarks: none

Supplier Component:

Index: Class-06
Class Name: Catalog
Purpose: hold methods that are used for managing catalog
Reference Classes: IUtility
Remarks: No

Methods of Catalog class:

Index:
Name:
Purpose:
Visibility:

Method_1
addDepafment
creates a new department and returns the new departmentld
Public

102

Input parameters: departmentName, parentld
Output parameters: departmentld
Pseudo code:

recordset = SELECT * FROM DEPARMENT
recordset.addnew
records et ("DEPARTMENTNAME ") = departmentName ;

if parentld <>0 recordset ("PARENTID") = parentld;
return recordset ("DEPARTMENTID") ;

Remarks: none

Index:
Name:
Purpose:
Visibility:
Input parameters:

Output parameters: recordset
Pseudo code:

recordset = SELECT x FROM DEPARMENT WffiRE PARENTID =
NULL;
Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:

Output parameters: recordset
Pseudo code:

Remarks:
recordset = SELECT * FROM DEPARMENT;
none

Index: Method_4
Name: getDepartment
Purpose: return a single department from the department table
Visibility: Public
Input parameters: departmentld
Output parameters: recordset
Pseudo code:

recordset = SELECT * FROM DEPARMENT WHERE
DEPARTMENTID = departmentld ;

Remarks: none

Index: Method-S
Name: getProductslnDepartment
Purpose: get all products in one department
Visibility: Public
Input parameters: departmentld
Output parameters: recordset
Pseudo code:

recordset = SELECT x FROM PRODUCT WHERE DEPARTMENTID

= departmentld;
Remarks: none

Method_2
getTopDepartment
retum the top level department
Public

none

Method 3

getAllDepartments
return the top level department
Public

103

Index: Method-6
Name: getProduct
Purpose: get one particular product in a department
Visibility: Public
Input parameters: departmentld, productld
Output parameters: recordset
Pseudo code:

recordset = SELECT t'FROM PRODUCT WHERE DEPARTMENTID

= departmentldAND PRODUCTID = productld;
Remarks: none

Index: Method-7
Name: addProduct
Purpose: add a new product and return the new productld
Visibility: Public
Input parameters: name, description, price, cost, departmentld, deparmentName,
supplierld, ImageURL
Output parameters: productld
Pseudo code:

recordset = SELECT * FROM PRODUCT
recordset.addnew
if name <>"" recordset ("NAME") = name;
if description <>"" recordset ("DESCRIPTION") = description;
if price <>0 recordset ("PRICE") = price;
if cost <>0 recordset ("COST") = costl
if departmentld <>0 recordset ("DEPARTMENTD") - departmentld;
if departmentName

departmentName;
if supplierld <>0 recordset ("SUPPLIERID") = supplierld;
if imageURl<>"" recordset ("IMAGEURL") = imageURl;
recordset.update

Remarks: none

Index: Method-8
Name: removeDepartment
Purpose: remove a department specified by departmentld
Visibility: Public
Input parameters: departmentld
Output parameters: none
Pseudo code:

DELETE * FROM DEPARTMET WHERE DEPARTMENTID =
departmentld;
Remarks: none

Index: Class_O7

Class Name: Product
Purpose: entity object that holds data for a particular product
Reference Classes: IUtility
Remarks: No

Methods of Product class:

104

Index:
Name:
Purpose:
database
Visibility:
Input parameters:
Output parameters:

Pseudo code:

productld;

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Method_1
checkload
check if the property values of a product have been loaded from the

Private
productld

none

recordset = SELECT * FROM PRODUCT WIIERE PRODUCTID =

if not eof recordset
name = recordset ("NAME");
description = recordset ("DESCRIPTION");
price = recordset ("PRICE");
cost = recordset ("COST");
departmentld = recordset ("DEPARTMENTID") ;

supplierld = recordset ("SUPPLIERID ") ;

imageURl = recordset ("IMAGEURL") ;

end if
none

Method_2
getName
return the product name specified by productld
Public
productld

none

call checkload0;
return name;
none

Method_3
getPrice
return the product price specified by productld
Public
productld

none

call checkload0;
return price;
none

Method_4
getcost
return the cost of product specified by productld
Public
productld

none

call checkload0;
return cost;
none

105

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Class Name:
Purpose:
Reference Classes:
Remarks:

Method_5
getDescription
return the product description specified by productld
Public
productld

none

call checkload0;
return description;
none

Method_6
getSupplierld
return the supplierld of a product specified by productld
Public
productld

none

call checkload0;
return supplierld;
none

Method_7
getlmageURL
retum the image URL of a product specified by productld
Public
productld

none

call checkloadO;
retum imageURl;
none

Method_8
getDepartmentld
return the departmentld of a product specified by productld
Public
productld

none

call checkload0;
retum departmentld;
none

Class_08
Inventory
hold methods that are used for operating the inventory
IUtility
No

Methods of Product class:

106

Index: Method-l
Name: addProduct
Purpose: add a new product to the inventory
Visibility: Public
Input parameters: productld, amount, name, model, color, size, price, supplierld
Output parameters: none
Pseudo code:

if amount<>O
recordset = SELECT x FROM INVENTORY
recordset.addnew
recordset ("PROID") - productld;
recordset ("NAME") = flâIrlel
recordset ("QUANTITY") = quantity;
recordset ("MODEL") = model;
recordset ("COLOR") = color;
recordset ("SIZE") = size;
recordset ("PRICE") - price;
recordset ("SUPPLIERID") = supplierld;
recordset.update;

end if
Remarks: none

Index: Method-2
Name: removeProduct
Purpose: remove a product from the inventory
Visibility: Public
Input parameters: productld
Output parameters: none
Pseudo code: DELETE FORM INVENTORYWHERE PRODUCTID = productld;
Remarks: none

Index: Method_3
Name: changeQuantity
Purpose: change a product's quantity in the inventory
Visibility: Public
Input parameters: productld, quantity
Output parameters: none
Pseudo code: UPDATE INVENTORY SET QUANTITY = quantity WHERE
PRODUCTID - productld;
Remarks: none

Index: Method_4
Name: checkAmount
Purpose: return true if a product's quantity is more than the given number,
otherwise return false
Visibility: Public
Input parameters: productld, number
Output parameters: boolean
Pseudo code: recordset = SELECT QUANTITY FROM I¡IVENTORY WHERE
PRODUCTID = productld;

if recordset ("QUANTITY") < number
return false;

else

107

retum true'
Remarks: none

Index: Method-5
Name: update
Purpose: update a product's attributes in the inventory
Visibility: Public
Input parameters: productld, quantity, name, model, color, size, price, supplierld
Output parameters: none
Pseudo code: recordset = SELECT * FROM INVENTORY WHERE PRODUCTID =
productld;

if not eof recordset
if quantity <>0 then recordset ("QUANTITY") = quantity;
if name <>"" then recordset ("NAME") = flâffIei
if model <>"" then recordset ("MODEL") = model;
if color <>"" then recordset ("COLOR") = color;
if size <>0 then recordset ("SIZE") = size;
if price <>0 then recordset ("PRICE") = price;
if supplierld <>0 then recordset ("SUPPLIERID") = supplierld;
recordset.update;

Remarks: quantity, name, model, color, size, price, supplierld are optional

Index: Class_09
Class Name: Supplier
Purpose: Entity object that holds data of a supplier
Reference Classes: IUtility
Remarks: No

Methods of Supplier class:

Index: Method_l
Name: checkload
Purpose: check if the property values of a supplier have been loaded from the

database
Visibility: Private
Input parameters: supplierld
Output parameters: none
Pseudo code:

recordset = SELECT * FROM SUPPLIER WIIERE SLIPPLIERID =
supplierld;

if not eof recordset
name = recordset ("NAME");
address = recordset ("ADDRESS");
citY = ¡ss6¡¿set ("CITY");
country = recordset ("COUNTRY");
zip = ¡ssst¿set ("ZIP");
phone = recordset ("PHONE");
email = recordset ("EMAIL");

end if
Remarks: none

Index: Method_2
Name: getName

108

Purpose:
Visibility:
Input parameters:

Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:

Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:

Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:

Output parameters:

Pseudo code:

Remarks:

return the supplier's name specified by supplierld
Public
supplierld

none

call checkload0;
return name;
none

Method_3
getAddress
retum the supplier's address specified by supplierld
Public
supplierld
none

call checkload0;
return address;
none

Method_4
getcity
return the supplier's city specified by supplierld
Public
supplierld

none

call checkload0;
return city;
none

Method_5
getcountry
return the supplier's country specified by supplierld
Public
supplierld

none

call checkload0;
return country;
none

Method_6
getzip
return the supplier's zip code specified by supplierld
Public
supplierld
none

call checkload0;
return zip;
none

109

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Ttansaction Component:

Index:
Class Name:
Purpose:
Reference Classes:
Remarks:

Methods of Order class:

Index:
Name:
Purpose:
database
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Method_7
getEmail
return the supplier's email specified by supplierld
Public
supplierld
none

call checkload0;
retum email;
none

Method_8
getPhone
return the supplier's phone specified by supplierld
Public
supplierld
none

call checkload0;
retum phone;
none

Class_10
Order
Entity object that holds data of an order
IUtility
No

Method_1
checkload
check if the property values of an order have been loaded from the

Private
orderld

none

recordset = SELECT * FROM ORDER WHERE ORDERID = orderld;

if not eof recordset
orderld = recordset ("ORDERID");
customerld = recordset ("CUSTOMERID ") ;
paymentld = recordset ("PAYMENTID ") ;
shipmentld = recordset ("SHIPMENTID ") ;

total = recordset ("TOTAL");
created = recordset ("CREATED");
completed = recordset ("COMPLETED");
status = recordset ("STAIUS");

end if
noneRemarks:

110

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Method_2
getCustomerld
return the customerld of an order specified by an orderld
Public
orderld
long

call checkload0;
return customerld;
none

Method_3
getPaymentld
retum the paymentld of an order specified by an orderld
Public
orderld
long

call checkload0;
return paymentld;
none

Method_4
getShipmentld
retum the shipmentld of an order specified by an orderld
Public
orderld
long

call checkload0;
return shipmentld;
none

Method_5
getTotal
return the total of an order specified by an orderld
Public
orderld

double

call checkload0;
return total;
none

Method_6
getcreated
return the creation time of an order specified by an orderld
Public
orderld
datetime

call checkloadQ;

111

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudo code:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

Remarks:

Index:
Class Name:
Purpose:
order, processing an order, etc.

retum created;
none

Method_7
getCompleted
return the complete time of an order specified by an orderld
Public
orderld

datetime

call checkload0;
return completed;
none

Method_8
getStatus

return the status of an order specified by an orderld
Public
orderld
long

call checkload0;
retum status;
none

Class_11
Orders
hold methods that are used for managing orders, such as creating an

IUtility
No

Method_1
createOrder
create an order record in database and return the orderld
Public
cartld, customerld, paymentld
orderld

recordset = SELECT * FROM ORDER
recordset.addnew;
recordset ("CUSTOMERID ") = customerld;
recordset ("PAYMENTID") = paymentld;
recordset ("CREAIED ") = currentTime;
recordset ("STATUS") = Q;

recordset.update;
retum recordset("ORDERID") ;

query - SELECT * FROM vCartltems WffiRE CARTID = cartld;
if not eof query

line = SELECT * FORM ORDERLINE

Reference Classes:
Remarks:

Methods of Order class:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudo code:

112

line.addnew
line ("ORDERD") - recordset ("ORDERID");
line ("QUANTITY") - query ("QUANTITY");
line ("PRICE") - query ("PRICE");
line("TAX") - TAX-RATE;
line("STATUS") = 0;
Iine("LINETOTAL") = Quer] ("LINETOTAL") ;

line.update
end if

Remarks: 1. currentTime can get using a function, like now0'
2. TAX-RATE is an constant, which may vary from place to place.

Index: Method-2
Name: getOrders
Purpose: retum all the orders of a single customer.
Visibility: Public
Input parameters: customerld
Output parameters: recordset
Pseudo code:

recordset = SELECT * FROM ORDER WIIERE CUSTOEMRID =
customerld
Remarks: none

Index: Method-3
Name: getorder
Purpose: return a single order specified by customerld and orderld'
Visibility: Public
Input parameters: customerfd, orderld
Output parameters: recordset
Pseudo code:

recordset = SELECT * FROM ORDER WIIERE CUSTOEMRID =
customerld AND ORDERID = orderld;
Remarks: none

Index: Method-4
Name: getOrderlines
Purpose: return all the order lines of a single order.

Visibility: Public
Input parameters: orderld
Output parameters: recordset
Pseudo code:

recordset = SELECT x FROM ORDERLINE WHERE ORDERID =
orderld
Remarks: none

113

