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RESPIRATORY AIRFLOW ESTIMATTON FROM TRACHEAL SOLIND

Acoustical analysis of the respiratory sounds (Tracheal and Lung sounds) has been used to

detect respfuatory phases (Inspiration/Expiration) without ai¡flow measurement [Moussavi

et al., 20001. This technique facilitates the estimation of airflow by locating the zero

crossing of phase transitions from respiratory sounds. Using statistical analysis, previous

studies have shown that there is a relationship between respiratory sounds and ai¡flow.

However, no attempt was made to estimate ai¡flow and evaluate the enor. Therefore, the

purpose of this study was to determine the best model for ai¡flow estimation by acoustical

means. Based on some preliminary studies, an exponential model was used to estimate

respiratory ai¡flow from average power of tracheal sounds. The model needs only a few

breath sounds recorded together with airflow measurements for calibration for each subject.

The model parameters were derived from the breaths with known airflow and then applied

to the rest of the breath sounds to estimate airflow. The model was tested by estimating

airflow at various rates from tracheal sounds of ten healthy subjects. Because relationship

between airflow and average power of tracheal sound was found to be different for

inspiration and expiration [Mussell and Miyamoto, 1992, Mahagnah and Gavriely, 1994],

the model parameters were derived for each phase separately. Estimated ai¡flow was
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compâred to actual recorded airflow to determine the effor. The results showed that the

estiaated ai¡flow followed actual airflow well with an error of 4.84+2.39Vo of the target

airflow. Apart from that, a new method to detect breath onsets from tracheal sound using

va¡iance fractal dimension was also investigated. Some results showed a delay of 40Ð ms

between actual and detected breâth onsets.

Abstr"ocl
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Motivation

One of the important investigation areas of tracheal respiratory sounds concerns thei¡

relation with airflow. Variation in ai¡flow rate is usually reflected by intensity change ín

tracheal and lung sounds [Charbonneau et al., 1987]. To date in clinical respiratory and/or

swallowing assessments, airflow is usually measured by spirometry devices such as

pneumotachograph, nasal cannulae connected to a pressure transducer (Figure 1.1) and/or

heated thermistor anemometry. Airflow can also be measured by indirect means such as

detection of chest and/or abdominal movements using respiratory inductance

plethysmography (RIP), strain gauges, or magnetometers [Tarrant, et al., 19971. The most

reliable measurement of airfiow is achieved by a mouth piece (Figure 1.1) or facemask

connected to a pneumotachograph. However, they have the disadvantage of altering the

breathing pattern of subjects or patients [Moussavi, et. al., 2000]. Furthermore, they are

not applicable during swallowing and feeding assessments. The solution to circumvent

this drawback is to use a nasal cannulae connected to a pressure transducer during fhe

swallowing and feeding assessments. However, the use of a nasal cannulae is an

inaccurate way of measuring flow signals because the ai¡ leaks around the nasal cannulae

and in addition if the subject breathes through the mouth, the cannulae does not register

flow. For these reasons, a combined use of a nasal cannulae connected to a pressure

Chopier I





Y.L.Yop / MSc. ïhesis

Background

Respiration is a process by which an organism exchanges gases with its envi¡onment.

During the course of airlfow exchange, respiratory sounds a¡e generated. The generation

of tracheal sounds is primarily related to turbulence of air in the upper airways, including

pharynx, glottis and subglottis region (The lower part of the larynx; the area from just

below the vocal cords down to the top of the trachea.) (Figure 1.2). Flow turbulence and

jet formation at the glottis cause pressure fluctuations within the airway lumen. Sound

pressure waves within the airway gas and airway wall motion are likely contributing to

the vibrations that reach the neck surface and are recorded as tracheal sounds. Because of

the proximity of the sound source and the pickup area at the neck and the lack of

interposition of lung tissue, tracheal sounds are universally regarded as wide bandwidth

respiratory sounds lPasterkamp et al., 1997].

The interest of studyirg respkatory sounds commenced since Laennec's paper

[Leännec, 1819] on relationship between human pulmonary diseases and respiratory

auscultation was published in 1935. The diagnosis of these diseases is facilitated by

pulmonary auscultation using a stethoscope, which was invented in 1821 by the French

Phycisian, Laennec. Until a few decades ago, physicians were relying on their hearing of

the patients' respiratory sounds to detect any pathological symptoms. However, it is a

subjective perception by individual physician. Moreover, the stethoscope has a frequency

response thât attenuates frequency components above 120 Hz, and the human ear is not

very sensitive to frequencies lower than 120 Hz [Abella et aL, 1992 ]. Over the recent

Chapler 1
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years, computer technology has been increased markedly in the field of respiratory

acoustics and breath sound analysis. This technology has drawn much attention because

of its diagnostic features. For example measurement of sound intensity and its spectral

shape have already been used to provide a noninvasive indication of ai¡flow in sleep

studies [Cummiskey et. al., 1982] and as a basis of apnea monitoring [Backerman et al.,

19851. There is also evidence that such meâsurements may be of value in diagnosing and

monitoring tracheal obstruction, ând it should be possible to use tracheal sound analysis

as a mean of indicating the occurrence of structural and dynamic changes in the upper

airway [Plante et al., 1998]. With the availability of high-tech acousrical devices such as

air coupled microphones and contact accelerometers that are more sensitive and specific

for respiratory assessment, and novel signal processing methods [Priestley, 1981;

Gasquet et al., 1990; Ea¡is et al., 2000; Charbonneau et al., 2000, Vannuccini et al,,

20001, we are now embarking on the next. generation of pulmonary assessment

techniques based on acoustical means.

In any pulmonary assessment, respiratory airflows are usually measured

simultaneously with breath sounds for analysis as the two signals contain different but

complimentary information that is helpful for understanding the underlying

pathophysiology in the pulmonary system. Apart from that, knowledge of respiratory

sounds along with airflow posts the advantage of understanding the mechanisms involved

during the generation (origin) of respiratory sounds [Bullar, 1884], which up to presenr

has remained a challenge despite the multitude of investigations [Forgacs et al., 1969;

Fah¡ et al., 1927; Olson et al., 1985; Gavriely et aI.,19811.

Chapter 1
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Figure 1.2. Anatomy ofthe respi ratory tract.

Therefore, in clinical respiratory assessments, it is necessary to have airflow information

along with respiratory breath sounds. Conventionally, spirometry devíces such as

pneumotachograph, nasal cannulae with pressure transducer, heated thermistor

anemometry, etc., are used for assessing flow rate. However, these methods have the

disadvantage of altering the breathing pattern of the subject. In addition, although the

application of a nasal cannulae seems like a minor intrusion, it can cause significant

agitation when conducting respiratory and swallowing assessment in children with

neurological impairment fMoussavi et al., 2000]. Furthermore, applying these devices to

young patients, which require full patients' co-operation is a challenging task for

physicians and researchers. The situation is worsen for patients with physical deformities

and poor postue control [Moussavi et a1.,2000]. Hence we sought to develop an

altemative, non-invasive method to estimate airflow by acoustical means.

Esophagus

Choptør I
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Using both tracheal and lung sounds, a recent study has detected the onsets of

breath acoustically [Moussavi at el., 2000]. In this study, however, a new method to

detect breath onsets from tracheal sound using variance fractal dimension Do was also

investigated.

t.

In summary, the objectives of this study were to:

investigate the best model that can represent the relationship between tracheal

sound's average power and airflow,

use this best model to estimate ahflow,

investigate a new method for detection of breath onsets.

Chopler 1
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m. Thesis Outlines

Chapter 1 - The objective of this chapter is to present the motivations and background

information for this thesis. It overviews the resphatory system and sounds mechanism

briefly and defines the research goal.

Chapter 2 - This chapter gíves an overlook of past research done on tracheal signals,

which encompasses the studies of tracheal signal characteristics as well as its relationship

with airflow. Each proposed model has a coarse expository of its methodology along with

enor analysis if one was available.

Chapter 3 - This chapter presents the signal processing techniques and mathematical

models used in this study. Topics include the derivation of average power (Pou,) from raw

data of tracheal sounds, investigation of different frequency bands from which P-, can be

computed, error definition for target airflow estimation, different model equations,

scaling factor for adjusting the model, the effect of different lower limit of fitting region

of the breath sound and flow on estimation accuracy, the effect of deriving model

coefficients from different base regions and a new method for breath onsets detection

using a variance fractal dimension algorithm.

Chapter 4 - This chapter presents the results of determining the optimum parameters for

airflow estimation, i.e., optimum lower limit for fitting region of airflow and P*,,

optimum frequency band from which Pou, was computed and base region to derive model

Chopter I
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coefficients. Later, using the optimum parameters, results of ai¡flow estimation are

presented together with the error analysis across i0 subjects. The result of breath onset

detection and the method's accuracy is also presented.

Chapter 5 -- This chapter gives a discussion on the results of the current study and

recommendation for fu ture research.

Chopter 1
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L Review of Relevant Research Papers

The study of respiratory sounds using a computer has a considerable history, which

spans a time of rapidly evolving technology and changing perception of analogue and

digital signal processing. Much of the knowledge gained in the recenr years has resulted

from the use of a wide variety of data acquisition and signai processing techniques in

various areas of respiratory research [Priestley, 1981; Gasquet et al., 1990; Earis et a1.,

2000; Charbonneau et al., 2000; Vannuccini et al., 20001. Based on research publications,

studies concerning upper airway sounds (tracheal sounds, cough and stridor) were found

to make up 63Vo of the total world publications referring to upper and lower respiratory

sounds over ten years from January 1986 to lanuary 1996. The study of wheeze produced

26Vo of the total, and the study of a variety of other respiratory sounds (i.e., hoarseness of

voice) made up the remaining percentage [Earis et al., 2000]. This shows the increasing

interest in the study of upper airway sounds, especially for its clinical implications.

Below are relevant papers discussing tracheal sound characteristics and their relationship

with respiratory airflow.

Chapler 2
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Early research on the relationship between tracheal sound and airflow commenced

when experiments showed that increasing the ai¡flow caused parâllel upwârd shifts of the

spectral curve with no changes in the general pattern of the tracheal sound spectrum

[Iæblanc et. al., 1970, Charbonneau et. al., 1987] or in the frequencies of resonances

[Pasterkamp et. aL, 1997]. Other recent studies revealed that increasing airflow modified

both intensity and the frequency distribution of the tracheal sound spectrum

[Ploysongsang et al., 1982; Lessard et al., 1986; Kraman et al., 1998]. The relationship

between flow and breath sound depends on many factors including upper airways

configuration and, especially the chest volume of the subject. However, for every subject

the mean amplitude and the mean power frequency are increasing as a function of flow

[Charbonneau et aL, 1987; Soufflet et al., 1990]. For this reason, researchers investigated

various methods to relate these two signals [Forgacs et al., 1978; Mussell et al., 1990;

Mussell et al., L992; Soufflet et al., 1990; Gavriely et al., 19961 and some researchers

used the relationship to estimate flow from breath sounds.

Tracheal sound has been characterized as a broad spectrum signal, covering a wide

frequency range from less than 100 I1z to more than 1500 Hz with a sharp drop in power

above a cutoff frequency of approximately 800 Hz [Gavriely et al., 1981]. It has also been

shown that the spectrum of the tracheal sound exhibits peaks and troughs that a¡e related

to airways dimensions and are dependent on gas density [Pasterkamp et al., 1997].

Sanchez and Pasterkamp [Sanchez et a1., 1993], who investigated the relationship

between the cutoff frequency of the tracheal sound power and body height, found that

children with shorter tracheal lengths have a higher cutoff frequency than adults. In spite

12

Chapter 2
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of the complex dependency of tracheal sound signals on various parameters (height,

airways dimension, gas density, etc), researchers were able to investigate the relationship

between the ai¡flow and tracheal sounds by considering subjects in the same category,

having similar height and morphological structures.

The relationship between tracheal sound's amplitude and/or power with airflow has

been studied by several researchers. Olson [Olson et al., 1984, Olson et al., 1985]

discussed the relationship between tracheal sounds and airflow by measuring flow-

induced noise (et noise) in a model of the trachea with an artificial glottis and concluded

a third order relationship between the two variables. Using statistical analysis, Shykhoff

and her co-workers [Shykoff et al., 1988j demonstrated a quadratic relationship between

the breath sound and airflow. However, in thei¡ study it was found that the envelopes of

the recorded tracheal sounds had consistent fluctuations that limited their accuracy for

airflow estimation. For that reason, they did not estimate afuflow.

læssard [Lessard et a.1., 1986] studied the relationship between a constant flow rate

and the frequency spectrum of respiratory sounds when measured at the trachea.

Respiratory sounds at six flow rates were measured with an electronic stethoscope placed

at the i¡ferior position of the circoid cartilage. Thei¡ results showed that the mean

frequency of the power spectrum increased linearly with an increase in ai¡flow but

remained about the same when the flow rate was above 0.75 L/s. In addition, the

expiratory spectra had higher mean frequency than inspiratory spectra.

Chapter 2
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Charbonneau [Charbonneau et al., 1987] used a another equation to relate airflow (Ð

with breath sound amplitude (BSA) in Watts and mean power frequency (7). However,

by breath sound amplitude they meant the area under the spectral curve of tracheal sound

minus background noise. The model was summarized as

nst= ¡P UtV - Pl,

where F is flow in Us, BSA is mean of BSA from the breath sounds recorded at four

different locations, ] ir rnrun power frequency n Hz, A and È are constants. Further

inspectíon of this model reveals a nonlinear relationship. According to theh model, if

kj >>F, the tracheal sound spectral amplitude becomes linearly dependent on airflow.

But âs flow increases relative to *j , tne relationship becomes nonlinea¡ with higher

dependency on BSA. They demonstrated that when increasing flow from 0.25 L/s to 0.5

Us, nsl and flow had a power relationship (BSA = kF " ¡ *ith ø to be approximately

1.6, whereas increasing flow from 0.4 Us to 0.8 l/s, c¿ was abosI2.6.

On the other hand, Soufflet and his co-workers [Soufflet et al., 1990] used eight

different methods to estimate flow acoustically, using spectral parameters. A common

way to characterize a frequency spectrum is to divide it into parts, such that each part

represents the same amount of energy. The fractions can be halves (median), quarters

(quartiles) or any percentage (percentiles) of the total spectrum energy. For instance the

median frequency (f5¡) is the frequency dividing the power spectrum into two parts of

equal energy. Mean amplitude of spectrum can also be used as a signature for each

Chapter ?
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spectrum. Making use of these signal characteristics, Soufflet [Soufflet et al., 1990]

estimated airflow from tracheal sounds with eight methods divided into two groups of

four. For the first group of experiments, they assumed that a relationship existed between

the flow and various tracheal signal parameters (mean amplitude of sound (in time-

domain), mean amplitude of spectrum, mean frequency of spectrum and the product of

mean amplitude and mean frequency). For each parameter, a specific reference curve wâs

derived for each subject, representing the variation of the parameter versus flow. For the

second group of experiments, each subject performed three recordings at low, tidal and

high flow rate. A clustering algorithm was performed to build a set of cluster with the

spectra as homogeneous as possible. The top of the cluster tree covered the entire spectra

set of the data. Clusters with more than 20 spectra were divided into two clusters

according to the homogeneity of spectra. This process was stopped when 40 clusters were

obtained at the bottom of the tree. Each cluster was treated as a class associated to a

corresponding ai¡flow level. This relationship between spectra classes and airflow was

used to evaluate airflow. Eight methods gave an error of about l4%o except one method

that resulted n 3l%o error,

In contrast to all researches who assumed that a relationship exists between tracheal

sound and ai¡flow, Mussel and his co-workers [Mussell et al., 1990, Mussell et al.,1992)

claimed that tracheal and lung respiratory sounds are independent of flow over the range

of 1.6-2.6 I"/s. This result may look to stand in contrast to all other observations that

respiratory sounds and airflow varies in certain pattern. However, the majority of other

researchers investigated flow rates ranges which were below 1.6 L/s. Furthermore, it is in

Chapler 2
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agreement with l,essard and Wong [Lessard er al,, 1986] who claimed that the mean

power frequency remains the same for flow rates above 0.75 l"/s.

More recently, Gavriely and his co-workers [Gavriely et aI., 1996] investigated a

power relationship between tracheal sound amplitude (BSA) and flow, as described by

the following equation,

BSA=kF " , (2.1)

where F is ai¡flow n Us, a and k are constants. By amplitude, they actually meant the

sound average power, which was calculated over the frequency band of 100-1000 Hz for

the lung sounds and 100-2400 Hz lor trachea.l sound. The model was tested on the data

recorded from six normal men. In thei¡ studies, lung and tracheal sounds were proven to

exhibit the power relationship as stated above. However, they reported neither the mean

square error of such a linear relationship between Log(,BSA) and Log(F), nor the

correlation coefficient between the two variables. Furthermore, they did not attempt to

implement their model to estimate ai¡flow. The overall mean*SD (standard deviation)

value of the power coefficient (a) was determined to be 1.6610.35. They also observed

that lung sound power during inspiration was comparatively larger than that during

expiration, whereas tracheal sound power was independent of respiratory phases, which

was a common observation found in many studies.

Recently, effort has been concerted on several possible relationships between airflow

and tracheal average power over different frequency bands. The outcomes consistently

showed that the relationship between airflow and tracheal sounds can be best represented

by an exponential model for tracheal sounds [Yap and Moussavi, 2002]. Therefore in this

Chopler 2
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study, ttlree models (li¡ear (P*"=kfl, power (P""e=kF) and exponential (P.,"=keF\

relationship model) were investigated in more depth and the best model was used to

estimate ai¡flow. The error analysis was later computed by comparing the estimated and

actual recorded ai¡flow.

As it was mentioned in the previous chapter, a recent study has used tracheal and

chest sounds to detect respiratory phases as well as breath onsets independent of airflow

[Moussavi et al., 2000]. In current study however, variance fractal dimension algorithm

of the tracheal sound signal was implemented as another approach to detect the breath

onsets.

Fractal dimension is a measure of complexity in a data set, either two or three

dimensional images or one-dimensional signals. It is used to analyze chaotic and non-

chaotic signal in a wide range of scientific research, particularly in image compression,

segmentation and in genetic maps [Faloutsos and Kamel, 1994; Faloutsos and Gaede,

1996; Traina at al., 20001. Fractal dimension quantifies the complexity of an object which

is obscure to human eyes. Variance fi'actal dimension Do (Equation 2.2) is one of the

ways to calculate fractal dimension [Kinsner, 1995; Kinsner and Grieder, 1995].

Do = Ds -l +H, (2.2)

where Ds is the embedding dimension, which is the dimension of the embedding space

(i.e., for a curve D6 = 1, a plane De =2, and for space De =3) and ,

Chapler ?
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', 
_ lim logvar(ÂS)^t e3)" - Àt -+ 0 21or1¡¡

where S is the sound data samples and therefore 
^S 

is the variation of tracheal sound

signal between two poi¡ts as defi¡ed below:

Ât=ltz-trl,

(^S) Á, = S(tz) - S(tr),

Generally, fractal dimension can be obtai¡ed by taking the [mit ofthe quotient ofthe

log change of the object size and the log change of the measurement scale, as the

measurement scale approaches zero (Equation 2.3). In deriving variance fractal

dimension for one-dimensional data, the sampled signal is the "object", variance (o) of

the sampled signal is the "object size", while the time interval between the samples used

to calculate the variance, is the "measurement scale" (^tk). One property of fractal

dimensions is that they are independent of power content in the signal. This indicates that

all signals, both with high or low amplitude, would produce the same magnitude of

fractal dimension as long as they are composed of the same frequency components. In

other words, fractal dimension calculates the complexity of a signal and is immune to

signal amplitude.

In this study, a chaotic feature during the short period of time between the phases

(inspiration)expiration or expiration)inspiration) was postulated. Therefore, we

hypothesized that variance fractal dimension of respiratory sound peaks at the breath

Chap'ter 2



Y.L.Yop / MSc. Th¿s¡s t9

onsets and this might lead to a better approach in the automated detection of the breath

onsets by acoustical means.
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AII data used i¡ this research, were collected at the Respiratory Acoustics Laboratory,

Children Hospital Winnipeg [Moussavi et al., 2000]. Data from ten subjects who had

breathed at different flow rates were chosen in this study. Tracheal and lung respiratory

sounds were recorded simultaneously with ai¡flow. In this research, however, only the

tracheal sounds were used. The sound signals were amplified, band-pass filtered (50-

2500 Hz) and digitized at a 10240 I1z sampling rate. With a nose clip in place, airflow

was measured with a mouthpiece attached to a calibrated pneumotachograph (Fteisch no.

3) and was digitized simultaneously with breath sounds at the same sampling rate.

However, it was later decimated to 320 Hz. In all subjects, breath sounds were recorded

at "low (0-0.4 Z./s)", "medium (0.4-0.8 Lzs)" and "high (0.8-1.4 I/s)" flow rates. Subjects

watched their ai¡flow signal on the computer screen and r.vere encouraged to breathe at

the târget flow rate consistently for a minimum of five complete breaths at each level

followed by a five-second breath-hold as the reference for background noise. The details

of the experiments can be found in [Moussavi et al., 2000].
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Inspiratory and expiratory sounds were extracted from the tracheal sound using the

corresponded airflow signal. The goal was to investigate the relationship of the tracheal

sound in each phase with airflow separately, since it is commonly known that inspiratory

and expi¡atory phases exhibit distinct spectral characteristics [Mussell et a1.,7992].

Figure 3.1. Recording system apparatus.

tr. Sisnal Processine

i. Comoutins Averase Po\ er of Tracheal Sound

The tracheal sound signals were divided into 1024-sample sogments (100 ns), with

50To overlap between successive segments. The power spectrum of each segment was

calculated using FFT and applying a Hanning window to each segment. Initially, the

average spectral power was calculated from the frequency band 100-800 112 because

spectral characteristics of tracheal sound are known to experience sharp attenuation

above cutoff frequency of approximately 800 F1z [Gavriely et al., 1981]. However, a test
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was run to find the best frequency band for calculating P*,, which resulted in the best

ai¡flow estimation with the ieast error.

ii. Choosins an Äppropriate Model

The first and foremost issue was to study the relationship between Pnu" and ai¡flow

such that an appropriate model (linear, power or exponential model) could be selected to

estimate resphatory airflow. The following three models were studied for a linear

relationship.

1) P,*e * F ) Linear relationship model,

2) Logrc(P^")." Logro(Ð ) Power relationship model,

3) Logro(P*") * F ) Exponential relationship model,

where F is the calibrated amplitude of the ai¡flow signal. The model, which achieved the

least mean square error in regression line was chosen as the best model to estimate

ai¡flow from tracheal sound. In this part, P"", was calculated over the frequency band

100 - 800 Hz and it was averaged between the subjects for each flow rate, from 0 to 1.4

Us with a step size of 0.05 Lzs.

Chopter 3







Y.L.Yop / MSc. Thesis

m, Error Definition

The estimation error was defined a-s

(3.2)

where the mean( ) was calculated

signal.

from the average of the upper 157o of the ai¡flow

w. Derivine the Model Coefficients

Five breaths of inspiration (expiration) at each of low, medium and high flow-rare

were selected with thei¡ corresponding tracheal signals. As a reference to choosing only

single flow rate region, a mixed base region (consisting two breaths f¡om each level of

flow rates) was also selected. The model coefficients were derived by fitting a line to the

log1o(Pn ) and ai¡flow that minimized the least mean square error. The region (chosen

either from low, medium or high flow rate), where these coefficients were derived from,

was defined as the base region and then the model equation was used to estimate the

remaining airflow signal samples from the tracheal average power measurements.

V. Modifvine the Model Equation with a Scaline Factor

A pilot study of this research showed that when the coefficients of the model in

Equation 3.1 were derived from a certain flow rate and then used to estimate other flow

rates, the estimated flow was consistently underestimated or overestimated. This is shown

in Figure 3.3. In order to remedy this problem, Equation 3.1 was modified by

",.,o,. 
_lnwan(F ., ) - nean(F .,,-, )l
I mean(F .,,*¡ ) I
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vr. Selecting the Base Resion

Bacause the subjects may breathe at different flow rates, the model should be robust

enough to estimâte ai¡flow at any rates. Therefore, it is important what flow rate is

chosen as the base to derive the model coefficients. In order to find which base region

results in the least error, three different bases (low, medium and high) for deriving the

model coefficients were investigated.

VII. Optimizine Tareet Airflow Estimation

As it was mentioned earlier, when deriving the model coefficients, the enti¡e airflow

from base segments was fitted to their corresponding P-,. However, since the main

interest was to estimate the target flow rate region accurâtely, Poue can be fitted to the

airflow only when it exceeded the lower ümit of target flow rate region. Doing this

proved to achieve better ai¡flow estimation result. By changing the lower limit of airflow

from 10Vo to 90Vo (equivalently upper 90Vo to 107o), the effect of fitting P*, to airflow

was investigated (Figure 3.4).
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Summarv of Airflow Estimation

Figure 3,5 shows the summary for airflow estimation in the form of a flow chart. The

same process was applìed to each subject so that each subject's signal had its own model

coefficients, and scal.ing factors, which were used to estimate the remaining ai¡flow from

P",..

Model coefñcie¡rts dete¡mination ÍÌom five base breatb segments

Tuning tle model fo¡ flow rates outside the base region

Figure 3.5, Summary for ai¡flow estimation using tracheal sound average po\¡/er.
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analyzed directly by examining the spread of the i¡crements in the signal amplitude, i.e.,

vâriance, d. Variance fractal dimension is defined as lKinsner, 1995]:

Do = De -1 +H , (3.4)

where Dn is the embedding dimension, which is the dimension of the embedding space

(i.e., for a curve Ds = 1, a plane D¡ =2, and for space DE =3) and ,

,., _ lim . logvar(ÂS)^t (3.5)"-Ât -+0 21or1¿g

where S is the sound data samples and therefore ÀS is the variation of tracheal sound

signal between two points as defined below:

^t=ltz-hl,
(^S) Àt = S(tz) - S(tr).

Figure 3.7 and 3.8 show (ÁS) ¡, and 
^t 

graphically.
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Figure 3.7, Illustrating (ÂS) ¡1

figure 3.8. Illustrating the measurement scale Átr for Do calculation. For dyadic
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To detect breath onsets, Do was calculated using Nr=128 points (12.5rns) with

507o overlap between the adjacent segments. Then, a running window with

approximately half breath size (0.7 s) was used to detect all the peaks in Do.
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[. Selectins the Base Region

Using Equation 3.3 with coefficients derived from different bases, the error of

airflow estimation was calculated (Equation 3.2) and averaged between subjects. As can

be seen in Figure 4.1, medium flow rate resulted in the lowest error. Therefore, medium

flow rate was selected as the base region for deriving the model coefficients.

12

11

10

I

I

7

6

5

4

3

2

I

medium ss base high as base m¡xed base

Figure 4,1. Comparison of airflow estimation error (¡t + SE) using different bases,

considering only inspiration phases for each subject. Mixed base was investigated as a

reference.
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tr, Optimizine Tareet Airflow Estimation

Using Equation 3.3 together with coefficients derived from medium flow rate, and by

changing the lower limit of the fitting region, the error of airflow estimation was

calculated (using Equation 3,2) and averaged between the subjects. The result showed

slight differences in flow estimation error. However its mean and also standard deviation

was minimum when the lower limit of 607o of flow was used (Figure 4.2). Therefore, P-,

and airflow from the upper 40Vo of the signal was used to derive model coefficients.

Y,L,Y

ll

t0

8

7

5

4

100/" 150/. 200/. 25% 30y" 350/" 40% 45% 50% 55ø/. 60y" 65y" 70% 75% 80y. 85./. 90y.

Lower Lim¡t for Fitt¡ng Region

Figure 4.2. The averaged air'flow estimation error (¡r t SE) using different lower Limit of

airflow when fittng P,*, to airflow for base segments.
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Itr. f,'requencv Band to Calculate Average Power of Tracheal Sound

We also investigated the effect of using different frequency bands for Pou, calculation

on ai¡flow estimation. The results showed that the least error in ai¡flow estimation from

Po," was calculated over the f50 - 450 Hz (Figure 4.3) band.

ô
l¡J

14

12

11

10

I

I

7

6

100-300 300-600 600-1200 100-600 100-1200 300-1200 100-800

Frequency Band (Hz)

Figure 4.3, Averaged ai¡flow estimation error (tr t SE) for different frequency bands,

considering only the inspiration phase.
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rv. Result of Airflow Estimation

Choosing medium flow as a base region and calculating P*"ftom 150 - 450 Hz, the

entire airflow was estimâted using Equation 3.3. Figure 4.4, 4.5 and 4.6 show a typical

example of airflow estimation for both phases. The average error across ten subjects, was

found to be 6.70 t 1.79 Vo and 298 x0.78 7o for inspiration and expfuation respectively.

Overall the error was found to be 4.84 ¡2.39 Vo across the ten subjects for both phases.

2.5 3.0 3.7 4-5 5.3 6.0

Time (s)

Figure 4.4. Actual flow (thin line) and estimated flow (thick line) for inspirations of a
typical subject.
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Figure 4.5. Actual recorded flow (thin
expirations of a typical subiect.

Time (s)

line) and estimated flow (thick line) for

Chofier 4



Y.L.Yâp/MSc. Thesis
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Figure 4.6. Actual flow (thin ü¡e) and estimated flow (rhick line) for a typical subject
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V. Result for Breath Onsets Detection

2

\
F.l

;0It-1
{

-2

c

Þ ¡.s

time (s)
10

Figure 4.7. An actual airflow signal and the calculated variance fractal dimension. The

circles are the detected locations of breath onsets in both plots.

Figure 4.7 shows the breath onsets detected from variance fractal dimension Do

with the actual corresponded air'flow. Comparing with the actual airflow, the result shows

an average delay of 40Ð tns across nine subjects, which is slightly less than the delay

presented in the previous study [Moussavi et al., 2000]. However, the standard deviation

of the error in this method is much smaller than the precious one.
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I.I)iscussion

Spectrogram is a 2D representation of a time-dependent signal spectrum. Darkness of

the pattern is proportional to signal energy. As can be seen from Figure 5.1, the

spectrogram intensity of tracheal respiratory sounds is directly related to the airflow rate,

with its major components being concentrated below 2000 Hz.

The tracheal sounds and air'flow signals in Figure 5.2 and 5.3 illustrate that P*" ß

synchronized with the airflow cycles. As inspiration proceeds to peak intensity, &u"

follows the airflow accordingly with coinciding peaks. A similar time course is seen

during expiration. Due to the synchronicity and close relation between the two variables

(Figure 3.4), estimation of air'flow using Pn," deems possible.
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Therefore, in this study each subject had his/her own unique and special parameters for

estimating ai¡flow from Po,", and model parameters were derived separately for each

subject's tracheal sound.

Given that the respiratory phases (inspiration/expiration) and thei¡ onsets can be

determined acoustically [Moussavi et al., 2000], if the peak rarget flow region can be

estimated accurately, this would ensure reconstruction of the entire airflow since the

ai¡flow between the phase transition (onsets) and peak target region is quite deterministic.

To achieve this purpose, two strategies were employed. Firstly, we chose an optimum

value of lower limit for fitting region to emphasize the peak target flow. This means that

the modelexpressed in Equation (3.3) would follow the peak target flow region accurately,

but looses its accuracy in the lower flow region, which is less important for the reason

given above. Figure 4.2 summarized this trade-off and concluded that fitting the upper

forty percent of ai¡flow (lower limit equivalent to 607o of F,u^) to Pav¿ was the optimum

parameter. Secondly, the error Equation (3.2) was defined in such a way that emphasizes

on the upper 157o of ai¡flow such that the selection of the base region and frequency band

for &u, would optimize the peak target flow estimation. In a real scenario, physicians and

researchers are mostly concerned of the peak target flow and its relationship with the

amplitude and frequency spectrum of the resphatory sounds [Nishimaki et al., 1987;

Shykoff et aI.,19881.

The scaling factor in Equation (3.3) was added to the original Equation (3.1) to justify

the estimated ai¡flow for different target flows outside of the base segment. It was
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with our findings as it is shown in Figures 5.6 and 5.7. For the implementation of the

reference curve method, they used four dífferent parameters to derive the reference curve:

1) mean amplitude of tracheal sounds, 2) mean aplitude of tracheal sound spectrum, 3)

mean frequency of tracheal spectrum and 4) product of mean amplitude and mean

frequency. These methods gave a mean uncertainty of l47o when used to estimate

unknown ai¡flow. The high enor could possibly be caused by the use of a flow

transducer during signal acquisition. As noted earlier [Mussell et al., 1990], flow

transducers significantly alter the spectral parameters of tracheal sounds, specificaliy

frequency of maximum amplitude (FMA), mean frequency of the spectra (MFA) and

maximum frequency (MF). In Mussell's paper, tracheal sounds measured together with a

flow transducer showed additional extra spectra peaks and harmonics, which were not

seen when the flow transducer was not used. This is not the case in this study because

these spectral peaks and harmonics (if any) were cancelled off during the subtraction of

background noise. Apart from that, another difficulty faced by the reference curve

method cencerns the evaluation of very small flows since the reference curves are almost

parailel to the flow axis and are highy sensitive to noise. Therefore, using a mathematical

model equation to estimate ai¡flow is by far a better methodology.

Gavriely and co-workers [Gavriely et al., 1996] suggested the power relationship

model but did not use the model to estimate unk¡own ai¡flow. In this study, our decision

to choose an exponential model instead of the power model was supported by the

evaluation of the correlation coefficients of the best fit linear regression lines of the two

types of relationship.
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Several points arose from this study on the relationship between tracheal sounds

and airflow and using these sounds to estimate airflow. We were able to investigate: 1)

the best quatitative relationship equation between P*" and airflow, 2) the best base region

for deriving model coefficients, 3) the best frequency band to compute Pn,,, 4) the best

lower limit for fitting legion. The mail achievement in this study was that using the

exponential model suggested, \rye were able to derive model coefficients and use them to

estimate unknown ai¡flow in an automated fashion. However, there are a few drawbacks.

The program is very sensitive toward the tracheal and airflow signals at the base region

since the model coefficients are derived from them. If the two variables (Pou, and airflow)

are not consistent in theh lelationship, inccurate model coefficients would be computed.

Hence, it leads to high error during airflow estimation. In our data, preprocessing was

needed to yield consistent signals.

The breath onsets were also detected acoustically in this study. The only base for

comparison is the recent research, in which the tracheal averàge Po,"was used to detect

breath onsets and thei¡ results showed an average delay of 42+35 ms [Moussavi et al.,

20001. In this study, we postulated that during the transition of breath phases, the sound

signal has a temporal chaotic feature due to the momentum of airflow as it changes its

di¡ection. Hence, this leads to a chaotic process, which can be detected by its signal

complexity using variance fractal dimension Do. As can be seen in 4.7, variance fractal

dimension approaches a value of two, indicating the signal during transition of phases has

a complexity between a li¡e and a plane. It can not be a pure lire because all data points

do not lie in a straight lile; it can not be a plane as well since the area for one-
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dimensional signal is zero. This important characteristic of non-integer fractal dimension

has been used extensively in describing and classifying speech phonemes [Fekkai et al.,

20001.

The advantage of variance fractal dimension Do is that it does not compromise

between frequency and time resolution, while the accuracy of breath onsets detection by

the average power method depends on the windows size to segment data and the window

size option is limited by the trade-off between the time and frequency resolution. Do,

however, concerns solely with time resolution N1. By changing the size of Nr, the

magnitude of Do also changes. An Optimum N1 interval is obtained when Do shows

prominent peaks.

Another important aspect of variance fractal dimension Do is that it cân be

calculated directly in the time domain. It can be programmed to have a real-time

procedure to calculate Do while tracheal sound signals are being received. Overall, the

result of breath onsets detection using variance fractal dimension is encouraging. Further

experiments have to be carried out to examine whether variance fractal dimension is also

useful in determination of respiratory phases from the chest sound signals.
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II. Future Research Recommendation

In spite of different models investigated (linear, power and exponential relationship

models), the exponential model gave the best result with an appropriate scaling factor.

This result confirmed that tracheal sounds allowed airflow estimation with an error of

less than 5Va. If the error deemed to be within an acceptable range (<l0Vo for target

airflow estimation) across iarger amount of subjects and patients, then the proposed

method will have the potential of replacing the conventional methods of measuring

ai¡flow which encounter difficulty during feeding assessment. Furthermore, since

subjects may also swallow durilg respilatory-related assessment, the current technique of

airflow estimation must be used with a swallowing detection algorithm, which requires

additional signal processing to have a reliable and accurate detection routine, so that it

would not lead to enoneous air'flow estimation.

Apart from the above recommendations, there is room for improvement in the signal

acquisition of tracheal sounds and airflow signals. Future work should assure a higher

quality tracheal sound and ai¡flow signals with low noise and artifacts. Any

inconsistencies due to hardware or software problems should be mi¡imized.

Alternatively, the program could be improved by incorporating the detection of artifact

and inconsitencies automatically.

In addition to current rcsearch on tracheal sound, continuation of this study to the

relationship of lung sounds and ai¡flow may also contribute to a broader understanding of
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