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ABSTRACT

An ellipse fitting algorithm was deveroped to separate touching grain

kernels in images. The algorithm randomly tracks the edge of touching kernels

to find the sample points for fitted ellipses. The fitted ellipses were generated by

a direct least squares ellipse fitting method. Then, clustering was used to identify

the best representative ellipse for each kernel of the touching instance. with

representative ellipses, touching grain kernel images were separated by

morphology transform.

Typical touching kernel patterns of four grain types namely barley, Canada

Western Amber Durum (CWAD) wheat, Canada Western Red Spring (CWRS)

wheat and oats, obtained from composite samples from several growing

locations across the western canadian prairies, were used to test this algorithm,

The accuracies of separation were: 92.4o/o(barley), 96.1%(CWAD), 94.8%(oats),

and 97.3o/o (CWRS wheat).

The kernels used for the touching grains images were separated physically

to create non-touching insiances and another set of kernels images were

acquired. Morphological features namely area, perimeter, maximum radius,

minimum radius, mean radius, major axis, minor axis, shape moment, Fourier

transform, major length, and minor length were extracted, from images of

physically separated kernels and software separated kernels, to test the

effectiveness of the ellipse fittlng algorithm. To decide if the difference between

two kinds of features was significant, the large sample Z test of hypotheses was

employed. Except for Fourier descriptor 1 of barley and CWAD, software



separation did not change the values of morphological features within the

tolerance limits of the measurement system.

To assess the classification capability after software separation, the

morphological features extracted from physically separated kernels were used as

training and basic testing data sets, and the features from software separated

kernels were used as production testing data sets. A back-propagation neural

network was employed for grain type classification with morphological features

as inputs. compared to 97.1o/o of correcfly classifying rate about physically

separated grain kernels, the mean classification accuracy for all the software

separated grain types was 96.6%. The morphological features of software

separated kernels were not distorted during software separation and can be

successfully used in grain type classification.
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l.INTRODUGTION

The total grain and oil seeds production in canada exceeds b9 Mt (million

tonnes) per year (canada Grains council 2oo2). of this production , nearly 70o/o

is exported. Because grains must be exported according to the buyer's

specifications, the grain quality monitoring is very important. currenfly, grains are

graded manually by comparing samples with pre-defined standards. ln the

current canadian grading system, grains are graded on the five factors

established by the canadian Grain commission: test welght, varietal purity,

soundness, vitreousness, and maximum limit of foreign material. The latter four

factors are deiermined visually by trained personnel. These people can be

influenced by individual experience and human fatigue. Human visual inspection

is prone to errors in applying the numerous grading criteria consistenily (Kohler

1991, Jayas et al. 1999).

Machine vision is a technology in which a camera is used to acquire images

of given objects and a computer is used to anaryze the images with the

objectives of performing a pre-defined task. Therefore, machine vision is based

on several distinct but related techniques, such as image processing, pattern

recognition, artificial intelligence, and neural networks. Machine vision systems

(MVS) can be used to determine external features of objects such as colour,

size, and shape (Zayas et al. 19Bg; Tao et al. 199b; Shatadal et al. 1995a, b; Luo

et al, 1999a, b; Majumdar and Jayas 2000a, b). Because agricultural objects are

of variable shape, colour, and texture, it is very challenging to apply machine

vision technology to inspect agricultural products (Tillet 1990). Recenfly,



researchers in agriculture have been showing more interest in using digital image

processing and pattern recognition techniques for quality determination. Machine

vision systems offer flexibility in application and are being assessed for their

suiiability as substitutes for human visual inspection. Moreover, their potential for

speed, consistency and cost savings make such systems very attractive. There

are several areas of application of machine vision in agriculture such as guidance

of equipment, inspection of products, and grading and packaging of products.

Much research work has already been reported to help automate sorting and

grading of various agricultural products into quality classes using computer

vision. For example, machine vision can be used for: sorting tomatoes by size,

shape, colour and defects; separating apples by amount of bruising and grading

by colour, shape and defects; soñing potatoes by size and shape; separation of

peaches and prunes by surface defects (sarkar ',l986; Miller and Delwiche 19Bg;

Tang et al. 1990).

During grain-handling, information on grain type and grain quality is

required at several stages to determine the next stage of handling operations.

currently, the process of manually analyzing samples is subjective and is

influenced by human factors and working conditions. lf a machine vision system

could identify the contents of a grain sample quickly and with a high accuracy, it

should allow automated systems for grain handling and grain quality monitoring.

For example, a machine vision system could be used to collect information on

grain types and contamination to automatically decide the type of grain cleaning

device and operating parameters. This would help increased cleaning throughput

and recovery of salvageable grains, when grains are unloaded at the terminal



grain elevator, MVS could also identify the contents of rail cars to ensure grains

of the similar quality and type are binned correcfly.

To develop a MVS for a given application in the grain industry, algorithms

about image enhancement, features extraction, and classifiers should be

developed, tested, and optimized. Substantial work dealing with the use of

different features for classification of different grains has been reported in the

literature (Zayas et al. 1985, lg86; Neuman et al. 1987; Symons and Fulcher

1988 a,b; Keefe 1992; Barker et al.'lgg2a, b, c, d; Sapirstein and Kohler 199S;

Luo et al. 1999a, 1999b; Paliwal et al. 1999, Majumdar and Jayas 2000a, b, c,

d). one of the constraints of these studies was that grain feature extraction

algorithms required all kernels to be non-touching. This was necessary because

the clusters of touching kernels made the feature extraction of an individual

kernel impossible. Fo¡ most of these studies, grain kernels were manually

positioned in a non touching manner for algorithm development. ln practice, a

grain sample presentation device, such as a vibrating bed, may be used to

present the grain kernels in a single-kernel deep layer. But these devices for

presenting singular kernels still can not separate all touching kernels. crowe et

al. (1997) used a sample presentation system, a vibratory feeder and flat

conveyor, to evaluate the images of grains, With flow-rates near 60 g/min, about

90% of all kernels were presented as Individual kernels. The majority of touching

kernels appeared in groups o,Í 2, and less than 4o/o of allkernels appeared in

groups of 3 0r 4. Therefore, it is necessary to develop a software-disconnecting

algorithm to-separate touching grain kernel images to solve this problem. Also,

such an algorithm should focus on separating two or three touching kernels,



because multiple kernel touching instances can be eliminated by using

mechanical systems (Crowe et al. 1997).

Shatadal et al. ('1995a,b) developed a mathematical morphology-based

algorithm to disconnect conjoint kernel regions in an image of iouching grains.

They used up to 50 touching kernels in an image for separation; this, along with

the method used for separation, made the separation process very slow. The

algorithm was successful in disconnecting 95% wheat, g4% barley, Bg% rye, and

79% oat conjoint kernel regions. Because this algorithm is based on a

complicated mathematical morphology, it is computationally very demanding, and

is not suitable for real-time processing. This method needs to be improved for

practical application. Sharshidar et al. (1997) developed an ellipse fitting

algorithm for separating touching grain kernel images. This algorithm focused on

finding the representative ellipses for individual kernels in the group of touching

kernels. Because the fitted ellipses were smooth, ihe information of the kernel

boundary was not captured, making it impossible to extract detailed kernel

boundary morphological information. This will cause the loss of morphological

information during separation.

The main objectives of this research were to:

r develop and implement an ellipse fitting algorithm to separate the touching

grain kernel regions in images and test the effectiveness of the algorithm

on different cereal grains, e.9., Canada Western Red Spring (CWRS)

wheat, Canada Western Amber Durum (CWAD) wheat, barley, and oats

with 2 or 3 touching instances;

o test the integrity of the features after software separation of kernels;



test the discriminating ability of morphological features of software

separated kernels for the classification of different cereal grains, e.g.,

CWRS wheat, CWAD wheat, barley, and oats.



2. REVIEW OF LITERATURE

2.1 Background

Machine vision had been used in the classification of agricultural products

(e,9., Ghazanfari et al. 1998, Ng et al. 1998). The main difficulty in developing

machine vision systems for applications in the agri-food industry is the variation

in size, shape, colour, and texture of these biological entities (Tillet 1990, Sarkar

1986). Determining the potential of using morphological, colour and textural

features for classifying different species, grades, damage of agricultural products

with pattern recognition techniques has been the main focus of the reported

research. Work has also focused on sample presentation systems and related

image processing algorithms (Casady and Paulsen 1988, Jayas et al. 1999). This

chapter brieffy reviews the research in applying machine vision to the grain

industry. A brief introduction to the fundamentals of ellipse fitting is also included.

2.2 Grain Classification Features

Some quantitative information from an image is extracted by image

processing and analysis algorithms as "features". These features are used as

inputs to some classification algorithm to categorize the objects in the image,

Grain classification can be done by using the morphological, colour, textural, or a

combination of these features. A detailed review of features extraction and an

MVS system has been given by Karunakaran et al. (2001).



2.2.1 Morphological Features

Morphological features of an object are characteristics of its profile and

physical structure. These characteristics can be represented by the boundary,

region, moment, and structure representation of the object. Shape of a grain

kernel was first estimated by segerlind and weinberg (1972) using a Fourier

series expansion of the radial distance from the center of gravity to the periphery

of kernels. The grain kernel profíle was traced on a grid paper. The classifying

accuracy in separation of oats from barley, and wheat from rye based on

extracted shape features was gg%.

Zayas et al. (1986) used several morphological features to differentiate

among individual kernels of different American wheat classes and varieties. For

different wheat classes and varieties, the average percentages of correcfly

classified kernels were 77o/o and 85%, respeciively. They used mainly pair-wise

discriminations. The work was limited to a single kernel per image frame and it

was necessary to immobilize kernels in a fixed orientation prior to analysis.

Neuman et al. (1987) studied the objective classification of Canadian wheat

cultivars based on kernel morphology. They used 576 kernels of pedigree seed

of 14 wheat varieties for analysis. using transmitted light, silhouette images of

whole wheat kernels were captured to determine spatial size, shape parameters

and Fourier descriptors. Hard red spring (HRS) and cwAD wheat kernels were

the most easily differentiated groups while there was considerable overlap

between hard red winter (HRW) and soft white spring (SWS) wheat classes.

correct classifications for discriminating varieties within classes ranged from 15

to 96%.



Sapirstein et al. (1987) used the technique of Neuman et al. (1987) for

classification of HRS wheat, barley, rye, and oats. For a sample size of 580

grains, the classification error was 1%, but for a large sample with randomly

selected kernels, the discrimination of ihe cereals was not satisfactory, as the

identiflcation accuracy for rye was low (Sapirstein and Bushuk 1989). For a

sample size of 1400 kernels, the classification accuracies for HRS wheat, barley,

oats, and rye were 98.4, 93.7, 98.0, and 78.3%, respectively. A substantial

improvement in cereal grain discrimination was achieved when the morphology-

based discrimination model was supplemented with mean kernel reflectance.

The classification accuracies of HRS wheat, barley, oats, and rye using

reflectance and morphological features were 99.2, 95.7, 95.3 and 98.3%,

respectively.

Symons and Fulcher (19BBa, b) conducted studies similar to Neuman et al.

(1987) for Eastern Canadian wheat classes and varieties. For a sample size of

225 grains,94o/o of soft white winter (SWW) and 640/o of HRS wheat originating

from Europe (HRS E) were correctly classified using a 4-way classification

among SWW, HRW, HRS E, and HRS originating from Western Canada (HRS

W). Neuman et al. (1987) found no confusion between HRS wheat and HRW

wheat classes. Such diversity or range in results points to the need for a large

database to develop a robust classifier. Symons and Fulcher (19BBa) also

experienced inadequacy of morphological Latures extracted from 'plan' view for

discriminating among different varieties of a wheai class. For three varieties of

SWW, conect classification was less than 60%. ln a subsequent study, Symons

and Fulcher (1gBBb) used some additional features (i.e., bran tissue features,



and total bran thickness that were measured at five different locations in a wheat

kernel from 'cut' transverse sections) to aid in classification among different

varieties of SWW wheat. Though the classifying errors were up to 20o/c,,

considering this algorithm was to identify the grain type and not to identify the

foreign materials, the classifying result was still considered as satisfactory.

Barker et al. (1992a, b, c, d) used different sets of features for discriminating

among kernels of eight Australian wheat cultivars. The features were ray (i.e.,

radial distance from the center) parameters, slice and aspect ratio parameters,

Fourier descriptors, and Chebychev coeff¡cient. The overall classification errors

obtained were from 35 to 48%. Because of its high error rate, this method was

not practical.

Keefe (1992) constructed a semi-automatic image analyzer for

classification of wheat grains. lt takes 33 primary measurements for each grain

and an additional 36 derived parameters from primary measurements for

analysis. Twenty varieties of wheat from the United Kingdom were tested using

the instrument. To acquire an image, each grain kernel was placed manually in a

fixed orientation. For a sample size of 50 grains, the total time from receiving the

sample to having the data ready for statistical anâlysis was approximately 5 min.

The overall identification error was 32.9-65.8%.

Sapirstein and Kohler (1995) suggested a new approach to objective wheat

grading based on a new set of grading factors. These factors were based on

variability of size, shape, and reflectance features of kernels in a sample. Such a

system can be easily administered by machine vision based grading. Cargo

(grain being shipped out of terminal elevators) samples of CWRS wheat grades



1, 2 and 3 were successfully classified using the mean and variance of the

features as quantitative classification variables. For incoming grain samples,

however, only grades 1 and 3 could be successfully discriminated from each

other.

A morphological features extraction based algorithm for classifying individual

kernels of CWRS wheat, CWAD wheat, barley, oats, and rye was developed by

Majumdar and Jayas. (2000a). lt took 23 extracted morphological features for

discriminant analysis. The classification accuracies of single grain kernels using

the 10 most significant morphofogy features were g8.9, 93.7, 96.S, 99.9, and

81.6%, respectively for CWRS wheat, CWAD wheat, barley, oats, and rye.

When the training data set was tested on this morphology features model, the

classification accuracies of CWRS wheat, CWAD wheat, barley, oats, and rye

were 98.9,91.6,97.9, 100.0, and 91.6%, respectively. Because the images were

obtained in the form of rectangular pixels which were then converted to square

pixels, this may have resulted in slight distortion of the originally captured optical

information.

Paliwal et al. (2001) evaluated nine different neural network architectures for

classifying five different kinds of cereal grains namely, CWRS wheat, CWAD

wheat, barley, oats, and rye by using the frequenfly used morphological features

as inputs. lmages of 7500 kernels (1500 kernels of each grain type) were taken

for testing. Eight morphological features namely, area, perimeter, length of major

axis, length of minor axis, elongation, roundness, Feret diameter, and

compactness were extracted and used as input features, The networks were

trained using 70o/o of the kernels of each grain type and 20% of lhe kernels were



used for validation of each grain type and the remaining 10% of the kernels were

used for testing. The best results were obtained by using a  -layer

back-propagation network and the classification accuracy were in excess of g7%

for CWRS wheat, CWAD wheat, and oats. The classification accuracy for barley

and rye were about 88%.

2,2.2 Colour Features

Colour is an important visual feature for grain inspection and grading.

Different grains types can usually be classified by their colour, and certain

degrading factors like grass-green, bin-burnt, mildewed, and fungal damage are

also easily identified as discolouration. Because colour features extracted from

images are usually variable and unreliable due to the illumination variations that

exist in common light sources, not much research has been reported. Limited

work has been done on calibrating illumination systems for colour grain image

analysis.

The use of colour image analysis for identifying different wheat classes and

varieties was reported by Neuman et al. (1g8ga, b). The mean reflectance value

of red (R), green (G), and blue (B) pixels of individual wheat kernels were used

for identification of kernels as to one of six wheat classes grown in Western

Canada. ln general, the red, white, and amber coloured wheat types were well

separated, while some confusion existed between certain red kernel types. On

average, correct classification rates for individual varieties varied from 34 to g0%.

Cardarelli et al. (1998) used a machine vision system for internal inspection

and classification of rough rice. A modified dark field illumination technique was



used to direct light through the rice kernels without saturating the ccD camera.

under bright fíeld illumination, the good portions of the rough rice kernels

appeared translucent, while the damaged portions appeared opaque. Two

algorithms were used to differentiate between one of three categories:

undamaged, spot, and Damaged. one method used the RGB average intensity

for each kernel, while the other method used an approximated percent damage

algorithm to extract the damaged portions from each kernel image. The results

for the RGB average intensity .method of classifying Undamaged, Spot, and

Damaged categories were g6%, B0%, and B5%, respectively. The results for the

approximated percent damage algorithm were lOOVo, B2%o, and g1o/o,

respectively.

A set of morphologicar and corour features were used by Luo et ar. (1ggga,

b) for classiflcation of cereal grains, and the average classification accuracies

obtained were 98.2, 96.9, 99.0, 98.2, and ggo/ofor CWRS wheat, CWAD wheat,

barley, rye, and oats, respectively. The result showed that combining

morphological and colour features improves the classification accuracies over

using morphological or colour features alone.

Majumdar and Jayas (2000b) developed a colour features based algorithm

to classify individual kernels of cwRS wheat, cwAD wheat, barley, oats, and

rye, Eighteen colour features (mean, variance, and range of red, green, and blue,

and hue, saturation, and intensity) were used for the discriminate analysis.

Grains from 15 growing regions (300 kernels per growing region) were used as

the training data set and grains from another five growing regíons were used as

the test data set. when the first '10 most significant colour features were used in

L2



the colour model and tested on the independent data set (the test data set where

total number of kernels used was 10,500; for CWRS wheat, 300 kernels each

were selected for three grades), the classification accuracies of CWRS wheat,

CWAD wheat, barley, oats, and rye were 94.1, 92.3, 93.1, 95.2, and 92.5o/o,

respectively. When the model was tested on the training data set (total number of

kernels used was 31,500), the classification accuracies were g5.7, 94.4, 94.2,

97.6, and 92.5%, respectively, for CWRS wheat, CWAD wheat, barley, oats, and

rye.

2.2.3 Textural Features

Texture is observed in the structure patterns of the surface of objects such

as wood, grain, sand, grass and cloth. lt may be coarse, fine, smooth,

granulated, rippled, regular, irregular or linear. Because texture is an important

feature of agricultural products, Al-Janobi and KranzleÍ (1994) used an image

processing technique for grading date fruits into quality classes on the basis of

colour and surface texture. They used the co-occurrence matrix approach for

classification of manually separated dates according to the USDA grading

standards. They used a total of 39 features and tested eight models by applying

a nonparametric discriminate analysis procedure to each model and by

incorporating subsets of the features. The classification error for all models

ranged between 0.8 and 26.4o/o. fhe selected feature extraction and

classification techniques required extended processing time,

Han and Hayes (1990) developed an interactive image processing

technique to estimate percent soil cover using the textural difference between



soil and residue or canopy. They compared the method with the photographic

grid method and found that it can measure percent soil cover quickly, accurately,

and with less error than humans. The image classification algorithm using

textural features was able to classify residue or canopy region even when the

average gray level of residue or canopy was overlapping w¡th that of the soil

background.

Park and chen (1994) used textural features (based on co-occurrence

matrices) of multi spectral images containing visible and near-infrared

wavelengths for discriminating abnormal poultry carcasses from normal poultry

carcasses. For the statistical classifiers, the accuracy of separation of normal

carcasses was 94.4%o and that of abnormal carcasses was 100%, whereas with

neural network models the accuracy of separation was 100% for both normal and

abnormal carcasses. when neural network classifiers were employed to classify

poultry carcasses into three classes (normal, septicaemic, and cadaver), the

accuracies of separation were 88.9, 92.0, and 82.6%, respectively.

Petersen ('1992) used morphological and textural features for classification of

40 species of weed seeds, with 2s seeds per species. The classification rates

based on various shape and textural feature analyses ranged from 26.2 to 77o/o

and from 31.7 lo 61.3o/o, respectively. when a combination of features describing

size, shape, and texture was used (25 features: 1 size feature, 10 shape

features, and 14 texture features; using a stepwise selection procedure) a

maximum classification rate of 97. T%o was achieved.

shearer et al. (1994) developed a maturity classification algorithm for



analysis of line-scan images of broccoli plants using a one-dimensional co-

occurrence texture analysis approach. For 480 observations from three broccoli

cultivars, they tested classification by using gray level images of size 512 by 5,12

pixels. They achieved a maximum accuracy of 90% for individual cultivars and

83.1o/o for multiple cultivars, at a gray level resolution of 64 (gray level was

reduced from 256 to 64). To avoid the co-occurrence direction disturbance, the

matrix was calculated for all eight directions.

Huang et al. (1997) used wavelet analysis for textural features extraction

from images of beef samples. A wavelet transform of meat elastogram was used

for extraction of textural features. Then, wavelet analysis was applied on beef

samples for elastogram feature exiraction and compared with the work on

Haralick's method. For beef tenderness prediction, wavelet features produced

significantly higher R2 values (0.7-0.9) in linear statistical models than Haralick,s

features (0.1-0.8).

Majumdar and Jayas (2000c,d) used the textural features of individual

kernels of CWRS wheat, CWAD wheat, barley, oats, and rye to develop

algorithms for grain classification. For bulk samples, the textural features

extracted from the red colour band at maximum gray level value 32 gave the

highest classification accuracies of 92.0 % using non-parametric estimation. For

individual kernels, the textural features extracted from the green colour band at

maximum gray level value I gave the highest classification accuracies of g2.g%

using non-parametric estimation.

Visen (2002) extracted 51 morphological, 123 colour, and 56 textural features

from images of grain kernels. Grain identification was tried using images of

l5



individual and bulk kernels. Classification of individual kernels was done using

morphological, colour, textural, and all the features combined together, whereas,

for bulk samples, classification was tried using colour, textural, and both the

features combined together. The top 20 features from each of morphological,

colour, and textural sets were selected and classifications were carried out using

the combined 60 and the combined 30 features. Three types of classifiers,

namely back propagation neural network (BPNN), non-parametric, and specialist

probabilistic neural network (SPNN), were used for classification purposes. An

overall classification accuracy of 96.9, 94.3, 95.0, and 95.5% were obtained for

individual kernel images when the top 20 morphological, colour, and textural

features were used for grain classification using BPNN, non-parametric, SPNN,

and modified SPNN classifiers, respectively.

2.4 Grain Kernels Positioning and Separating Systems

ln general, the above studies dealing with applications of MVS for grain

identification had been limited to the closely controlled conditions of a laboratory,

Most of the experiments were performed on grain kernels that were manually

placed on some type of plate or tray and then moved into the field of view (FOV)

of the imaging equipment. When a large number of grain kernels in a bulk kernel

sample are to be analyzed, this procedure is tedious and labour intensive, For

example, a representative 1 kg wheat sample has about 30,000 kernels.

Different automated or semi-automatic grain kernel positioning systems were

developed for mechanically picking up the grain kernels and separating the grain

kernels for presentation to a camera for imaging. For semi-automated grain



kernel positioning system, a circular rotating table was designed and built to

move grain kernels into the camera's field of view. An algorithm was also

developed for controlling the rotation of the table and measuring the physical

properties of each individual . seed. This system allowed unattended

measurement of approximately 50 seeds at a time and manually placing

singulated kernel into the camera's field of view (churchill et al. 1991). A vacuum

apparatus, vibratory bowl, and variable speed conveyors were more than g0%

efficient in singulating grain kernels (Casady and paulsen 19BB).

Jayas et al. (1999) developed a kernel positioning system that can

automatically pick up and separate the kernels of various grain types. This

system consisted of a vacuum drum, a vacuum and pressure unit, a rotary air

valve, a positioning unit, a controlling unit, and a seed hopper. lt worked basically

on the principle that the kernels were attracted and held onto a surface of a

perforated plate due to a vacuum. The plate was moved and the kernels were

released when the vacuum was broken. when the kernels of wheat, barley,

canola, and lentils were tested for the system's ability to separate, the

occurrences of single kernels picked up for all tests were above g0%, the

occurrences of double kernels and three or more kernels were around 50/o and

below 3%. lt was also stated that this system's ability to pick up and separate

kernels was not influenced by moisture content. ln the mixtures of grains (e.g.,

barley in wheat at 1, 3, and b% levels by mass), there was no significant

difference in the number of imageable wheat kernels. The system, however, had

a bias to pick more kernels of the major grain component present in the mixtures

of wheat and canola.
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This grain kernel positioning system could not pick and separate kernels for

presenting to a camera without errors. Some touching kernels were still present

and it consisted of several moving parts thus making it unsuitable for industrial

applications. Another device with two moving belts was developed by Spewak

(1995) and tested by Crowe et al. (1997). This device also resulted in an

incomplete separation of touching kernels. Because physical systems can not

separate 101o/o of touching kernels and there are several applications where

identification of 100% kernels is needed, separation using software is desired.

For example, to accurately quantify foreign material in grain, all objects must be

separated and correctly classified. On the other hand, if the idea was only to

identify a sample for iis types, e.g. during railcar unloading, then, 100%

separation is not necessary. ln this case, if all separated kernels can be correcfly

identified with a reasonable accuracy and others could be placed in an unknown

class than by analyzing large number of objects, one can make a decision. For

example, if 90% kernels of a wheat sample were separated out of which B0%

were kernels positively identified as wheat and 20o/o were as other objects.

Then, there is a high probability that the sample is a wheat sample. Therefore,

this information can be used to confirm the contents of the railcar and automatic

decision can be made to unload the grain and transfer it to the right bin,

2.5 Separating of Touching Objects

When a machine vision system obtains the image of the grain flow, the grain

kernels in the image should be treated as individuals, A common difficulty occurs

when objects touch, and features of grain kernels cannot be separately



measured. This situation may arise even when examining images from grain

sample presentation systems, because grain-kernels tend to touch each other,

An efficient and accurate algorithm should be developed to solve this problem of

touching kernels.

An important area of image processing is the segmentation to distinguish

objects from background. lmage segmentation can be categorized by three

popular approaches: image threshold meihods, edge-based methods, or region_

based methods.

The threshold method is the process of separating an image into different

regions based on a predetermined gray level. Because the image histogram

defines the gray level distribution of pixels, the image histogram can be used to

locate the threshold value. However, as this method ignores image spatial

information, inappropriate touching regions still exist.

The edge-based methods use discontinuities between gray level regions to

detect edges within an image. The edge detection can recognize objects present

within an image. lis weakness is in connecting together broken contour lines

making it prone to failure in the separation of touching objects.

Region-based method partitions an image into different regions by grouping

neighboring pixels of similar gray levels. Adjacent regions can be merged based

upon some criteria involving homogeneity or sharpness of region boundaries.

Because these three methods may cause the separated objects in an image

to touch improperly during segmentation, a connectivity preserving segmentation

method was proposed. The main idea was to represent different forms of spine

curves for initial boundary shapes of image objects, then iteratively modify them



by applying various mathematical morphology methods to prevent adjacent

image regions from merging (Gonzalez and Woods1992).

After segmentation, the output image may cause disjoined regions to be

merged together, even in images where most humans can see very clear

separated regions. The reasons are noise and gray level gradual transition

between the isthmus and closing regions. These touching regions need to add

separating lines to split. Two common approaches have been used for

separating such touching regions and are known as the mathematical

morphology method and the watershed method (Beucherand Meyer 1993).

2.5.1 Mathematical Morphology

The word 'morphology' stems from the Greek words "morphe" and "logos",

meaning 'the study of forms'. The term is encountered in a number of scientific

disciplines including biology and geography, ln the context of ¡mage processing it

is the name of a specific methodology designed for the analysis of the

geometrical structure in an image. Mathematical morphology was invented in the

early 1960s by Georges Matheron and Jean Serra who worked on the automatic

analysis of images occurring in mineralogy and petrography (Serra 1982).

Mathematical morphology represents the geometrical structure of an image

based on small patterns, called "structuring elements", of varying size and shape.

Set theory is the mathematical basis for morphology. Sets in mathematical

morphology represent the shape of objects in an image. When a binary image is

considered as Euclidian space 22 (2-D integers space), sets describe object

pixels either as the black or white pixels. A gray scale image can be represented



as sets whose components are ¡n 23 (3-D integers space). Therefore, two

components of each set element correspond to the coordinates of a pixel, and

the third refers to gray level. Sets are also used for describing time series of 2-D

binary images as well as 2-D colour images.

The results processed by morphological operations and algorithms dictate

the choice of the structuring element. For example, erosion by a small disc can

clean the isolated noise points and smooth the contours while erosion by a larger

disc can remove the entire foreground.

A general discussion on the choice of the structuring element can be found

in Serra (1982). He also described a set of mixed structuring elements and

named them Golay's alphabet. These structuring elements were especially

designed to give useful results when used in hit-or-miss transform, sequential

thinning, and sequential thickening.

The usefulness of mathematical-morphology-based image transforms and

algorithms in machine vision related applications in agriculture was demonstrated

by McDonald and Chen (1990a). Corn kernel size distribution, plant leaf

identification, and texture analysis of marbling in beef longissimus dorsi muscle

using simple morphological operations and algor¡thms were shown. The authors

commented that many machine vision related applications could be addressed

using a small set of basic operators. ln another study, McDonald and Chen

(1990b) developed algorithms to separate muscle tissues connected to beef

carcasses,

A mathematical morphology-based-algorithm was developed and tested for

disconnecting the conjoint kernel regions in an image of touching grains
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(Shatadal et al. 1995 a, b). This algorithm found the markerfor each grain in the

image. lt constructed the image of disconnected kernels by growing the markers

within the boundaries of the kernels in the original image with a logic which

prevented the merging in the neighboring regions. Random touching patterns of

the kernels were used to test the algorithm. The algorithm was successful in

disconnecting 95% wheat, 95% barley, B9o/o \e, and 79o/o oats conjoint kernel

regions, but it was time-consuming and not suitable for real time operation.

Moreover, when this method was used for touching long elliptical kernels (e.9.

oats), the error rate was high.

2.5.2 Watershed

The watershed method relies on the fact that encoding the binary image will

usually cause touching features to separate before they disappear (Lantejoul

1980). Accomplishing this separation with the watershed method is an iterative

process. The image is repetitively encoded, and at each step separate features

that disappeared from the previous step are designated ultimate eroded points

(UEPs) and saved as an ¡mage, along with the iteration number. This is

necessary because the features will, in general, be of different size and would

not all disappear in the same number of iterations, until the image is erased.

Then, beginning with the final image of UEPs, the image is dilated using dilation,

but with the added logical constraint that no new pixel may be turned "ON", if it

causes a connection to form between previously separate features or it was not

"ON" in the original image. At each stage of dilation, the image of UEPs that

corresponds to the equivalent level of erosion ls added to the image uslng a



logical "OR". This process causes the features to grow back to their original

boundaries, excepi lines of separation appear between the touching features.

The watershed method just described has two practical drawbacks: the

iterative process is slow, requiring each pixel in the image to be processed many

times, and the amount of storage required for all of intermediate images is quite

large. The same result can be obtained more efficienfly using EDM (Euclidean

distance map). The brightness values of each pixel within features in an EDM

correspond to a physical elevation. The features then appear as mountain peaks.

The ultimate eroded points are the peaks of the mountains, and where features

touch the flanks of the mountains intersect. The saddles, or watersheds, of these

mountains are the lines selected as boundaries by the segmentation method.

The placement of these lines according to the relative height of the mountains

(size of the features) gives the best estimate of the separation lines between

features (sena 1982). unfortunately, the watershed transformation often leads to

over segmentation of the image.

The standard binary watershed algorithm has over segmentation problems if

the boundary is irregular or complex (Beucher and Meyer 1993). When applied to

grain kernel images, the defined "problem,' arose. Because a kernel has an

irregularly shaped boundary, the complement of its cross-sectional plot has a

minimum at the center of the kernel and a local minimum on the irregular kernel

extension. Multiple basins and boundary lines were also found when the objects

were not oval. Tian et al. (1997) developed and tested a machine vision system

to detect and locate tomato seedlings and weed plants in a commercial

agricultural environment. An environmentally adaptive watershed algorithm was



developed to improve machine recognition of plants under these conditions. The

system was able to identify the majority of non-occluded target plant cotyledons,

and to locate plant centers even when the plant was partially occluded. Of all the

individual target crop plants 65% to 78% were correctly identified and less than

5% of the weeds were incorrectly identified as crop plants.

2.5.3 Ellipse Fitting

One of the major problems of computer vision ls the localization of an object

of interest. Much of the structural information in an image is encoded within the

edges, which gives the information about the shape of an object in the form of an

image. The shapes are important information for representing the object. Ellipses

commonly occur in many images, often being formed as the projection of

approximately circular objects onto the image plane. Ellipses provide a useful

representation of parts of the image, because they are more convenient to

represent the curve, and their detection is reasonably simple and reliable. Thus,

they are often used by computer vision systems for model matching (Forsyth et

a|.1991).

Regarding the importance of ellipses, many different methods have been

proposed for ellipse detection and fitting. These approaches exploit various

methods, like: Hough transform (Yuan et al. 1989), RANSAC algorithm (Rosin

1993,), Kalman filtering (Porrill 1990, Rosin and West 1995), or least squares

method (Bookstein 1979, Sampson 1982), ln general, these approaches can be

divided into two main groups: clustering methods and optimization methods. The

approaches of the clustering methods group (Hough transform, RANSAC



algorithm) are robust against outliers and they can detect multiple primitives at

once. Unfoñunately, these methods are slow; they require extensive memory and

their accuracy is low. Moreover, for the Hough transform, there are problems with

the detection of ellipses due to blurred and spurious peaks in the accumulators

(Grimson and Huttenlocher 1990). Therefore, they are not suitable for real time

machine vision systems.

The approaches of the optimization methods group (the least squares

method and its variations) are based on optimization of an objective function that

characterizes the goodness of a particular ellipse with respect to the given set of

data points. The main advantages of optimization methods are their speed and

accuracy. On the other hand, these methods can fit only one primitive at a time.

Also, the sensitivity to outliers of the optimization methods is higher than for the

clustering methods. But the least squares method and its variations are still the

most common algorithms for ellipse fitting, as they are efficient and accurate

(Fitzgibbon et al. 1996).

The least squares method is used to find the set of parameters that minimize

the distance measure between the data points and the ellipse. Thus, the ellipse

can be represented algebraically by an equation F(x,y) = 0, where x and y are the

coordinates of the pixel.

The general second order polynomial for an ellipse is (Bookstein 1979):

F(a,x)= Cs+ CyX + CrY + CyyXY + C*¿2+ C4UV2

Where a=(Cg, Cx, Cy, Cxx, Cry, CW), x=(1, X, Y, XY, X2, Y2 )r

This equation can also be expressed as:

(2.10)



xrAx+ brx+c-o (2.11)

where A is a 2 by 2 real symmetric matrix, x is the coordinate vector and

x=(x, y)r. lf new coordinate vector x'was introduced with x' = ex+t, then rotating

and shifting the ellipse, the equation 2.11 becomes:

x'r1QrÁQ¡x' + (2lrA+br)Qx' +trÁt+ brt+ c=0 (2:12)

Let A'= QrÁQ, and similarly b'and c', this equation can be written:

X'|rA'x'+ b,rx'+c'=0 (2.13)

lf Q and t are properly chosen, such that A = diag(Lt+ 2),b, = 0; then equation

2.1 3 is transferred to:

l.rx2 +),ryz +d=O (2.14)

Thus, the center z and the axes (a and b are short and long axis) of the ellipse in

the non-transformed system are given by:

z = 1 (2.15)

a=J-t/n (2.16)

b=J-c'/1 (2.17)

Because QrQ = ,, the matrix A and A'have the same eigenvalues 2,,Â,r, and A,

and .tr zarc invariant to rotation and shifts. Also,

detA= arrarr- arrar, = Â,r2, (2.18)

traceA = dt + ar, = ,Å., + )", (2.19)

To avoid the trivial solution about A and c, and recognizing that any multiple of a

solution,4 represents the same ellipse, A should be constrained. To constrain,

Bookstein (1979) suggested an invariant constraint:



A,!, +)"rl=a?,+2a?,+a'?u=1. (2.20¡

When A is positive and c < 0, it is assured that the above equat¡on would

represent an ellipse. Expanding the above equaiion with the Bookstein

constraint yields:

arrx2 + 2arrxy+ arryz + brx+bry+ c= 0 (2.21)

Let m points in the plane, (xr, yr), (xz, yù,...,(x,, y,n) be applied to the above

equation, and let

u = (ât't,2âe, âzz, fu, bz, c)r,

(rl xrrt yi )r, h ìand "=l i i i : : :l

['; x,,y. y:, x., y., ,)

Then the linear system of m equations is expressed:

su=O (2.17)

ldeally, if all m points actually l¡e on an ellipse, then this system has a solution.

However, if all m points do not lie on an ellipse, there is no solution for this linear

system. To avoid this no solution, llsull = r should be considered to find a u

which minimizes llrll. Furthermore, we need to put constraints on u. To minimize

llsull and solve the parameter vector u, the constraint llull=1 can be used. lf we

define vectors

y= (b1, b2, c)1

w= (ârr, Ji an, azz,)I

With the Bookstein constraint llwll = 1, su=O can be rewritten to:

/wl
=|.,.J " o (2,18)



The Bookstein constraint is appropriate to ellipses, hyperbolas and parabolas.

For the specialized problem of fitting ellipses, ellipse fitting may use the

specialized constraint dn I dr, = )., + ,tr , = 1 (Rosin '1 9g3). The ellipse fitting

solution obtained by the Bookstein algorithm and the constrained least square

method are shown in Figure 2.1.

Flgure 2.1 : The ellipse fitting solution obtained by the Bookstein algorithm (left)

and the constrained least square method (right) (Fitzglbbon et al. 1996).

Ellipse fitting by least-squares methods with constraint are computat¡onally

efficient and peform well (Rosin 1993), if the data belong to a precisely elliptical

arc with little occlusion. But, it has the major disadvantages that under less ideal

conditions (not strictly elliptical data, moderate occlusion or noise), they often

yield unbounded fits to hyperbolae. when ellipses are specifically desired to fit

precisely, such fiis must be rejected as useless. porrill (1990) and Ellis et al.

(1992) initialize a Kalman filter that iteratively minimizes some error metrics in

order to find the right ellipse. This approach alleviates this problem, but they also

are computationally demanding.

Kim et al. (2000) used the ellipse-fitting method for human face detection.

After detecting the template region that includes features like eyes and mouth,



elliptical face regions were detected around template regions by a least square

ellipse fitting algorithm. The success detection rate was 77% for 10g images.

Eleftheriadis and Jacquin (1995) proposed a face model using an assisted

coding method to obtain better face quality. rhe face region was detected using

edge thresholding and least square ellipse fitting. The tracking accuracy for eyes-

nose-mouih regions was g5% on average.

When grain kernels were approximated as ellipsoid of revolution, it was

assumed that each grain kernel could be identified by the dimensions of its

approximating ellipsoid. or equivalently (in two dimensions), the identification

could be done by determining the ellipse, which "covers" the silhouefte of the

grain kernel and by comparing the dimensions of the ellipse with typical

dimensions for a variety of grain types. shashidhar et al. (1997) and Visen et al.

(2001) developed an ellipse fitting algorithm for the touching grain kernels

separation. Because this algorithm was using an Eigen-solution based method

without constraint to find the fitted ellipses, many hyperboles and non-precisely

fitted ellipses were created during ellipse fitting. Therefore, finding the

representative fitted ellipses became time consuming and was affected by the

noise.



3. MATERIALS AND METHODS

3.1 Vision Hardware

The vision hardware used in this research included the following components:

1. A colour camera (Model DXC 3004, Sony). lt was fitted with a zoom lens of

10-120 mm focal length (VCL-10128Y), and a close-up lens set (72 mm,

Tiffen, Hauppauge, NY);

2. A camera control unit (Model CCU-M3, Sony); the option of the manual iris

control was used to achieve repeatability in the experiments, and the

automatic gain control of the camera was disabled;

3. A camera support stand (m3, Bencher lnc., Chicago, lL) for vertical

movement of camera;

4. A colour frame grabbing board (Matrox Meteor-ll multi-channel, Matrox

Electronic Systems Ltd., Montreal, PQ), to digitally capture and display

images;

5. A personal computer (Plll 450 MHz) with Windows NT 4.0 workstation

operating system;

6. An image acquisition chamber.

The National Television System Committee (NTSC) colour signal from the

camera was converted by the camera control unit into red (R), green (G), and

blue (B) analog video signals, and a synchronous signal. Then, the RGB video

signals from control unit were converted lo 24 bit 640 x 480 digital images by the

frame grabber board. The program to control the frame grabber was the Matrox

imaging library (Matrox Electronic Systems Ltd., Montreal, pe). The images were



displayed on the monitor and then saved in a tagged image file format (tiff) for

further analysis. The camera mounted on the support stand and the image

acquisition chamber are shown in Figure 3.1.

Figure 3.1 Machine Vision System

3.2 Sample lllumination

lllumination is critical to machine vision systems, because it can either

accentuate or obscure object features and no amount of image processing can

ever correct for details that were never captured (Paulsen and McClure 1g86).

An ideal illumination source should provide uniform light distribution over the field

of view (FOV). Luo et al. (1997) evaluated incandescent, halogen, and

flourescent lamps for their sensitivity to lamp voltage variations, stability with



time, and uniformity over FOV. They suggested that flourescent lighting is best

suited for the system, because of:

. The availability for enhanced colour rendition and visual clarity.

o Long lamp life. Flourescent lamp life is 20,000 h, compared with only 2,000 h

for an incandescen lamp.

r Cooler operating ambient temperature.

. Less generation of infrared wavelengths that tend to bias video camera

sensors.

. lnsensitivity to lamp voltage variations.

Uniform diffuse lighting was used in all experiments. A flourescent tube with

a 305 mm diameter, 32-W circular lamp (FC12T9ICW, cE Lighting, USA) with a

rated voltage of 120Y was placed around and just below the surface level of the

sample placement platform of the light chamber. A semi spherical steel bowl of

0.39 m diameter, painted white and smoked with magnesium oxide on its inner

side, was used as a diffuser (Figure 3.1 ). A 0.125 m diameter opening was at the

top of the bowl, through which the camera could view the FOV. A voltage

regulator (CVS, Sola Canada lnc., Toronto, ON) supplied stable AC power (t0.5

V) to the light source. A variac was used to adjust the voltage (120t1v) of the

lamp. A light controller (FX064B-21120, Mercron, Richardson, TX) fitted with a

photodiode light sensor was used with the flourescent lamp. The sensor can

automatically detect the illumination level in the light chamber, thus the light

controller adjusted the AC frequency of the lamp to ma¡ntain a stable level of

illu mination.



3.3 lllumination standardization

Luo et al. (1999a) developed a method for illumination standardization. The

illumination level was standardized by using a Kodak white card with 90%

reflectance (8152-7795, Eastman Kodak Co., Rochester, NY) as a white

reference. When the lamp voltage was set to the rated 120 V, the image of the

white card was acquired over a small central area of 50 x 50 pixels, and the

mean gray level values of the R, G, and B bands were computed and used as

the illumination level indicators. The iris control of the camera control unit was

manually adjusted to perform white balance until all three values (R, G, and B)

were 250 +1.

3.4 Spatial Galibration

All the morphological features in image analysis were calculated in pixels.

To convert these pixel dimensions into real-world measurement units, the spatial

resolution of pixels was determined. The image of a Canadian 10 cent coin was

taken, and the coin's diameter was calculated. The calculated pixels were

compared to the coin's measurement diameter of '17.96 mm with a micrometer

(No.961, Moore and Wright, Sheffield, England), and the spatial calibration was

determined. When the camera setting was fixed to take the images, the

calibration was done frequently to make sure the spatial resolution was not

changed. Before starting each imaging session, spatial calibration was done by

imaging a Canadian 10 cent coin. This ensured that all the sessions had same

spatial resolution and the coin image could be later used as a reference image of



spatial calibration. Based on the fixed camera setting, ihe spatial resolution of the

images was around 6,38 x 10-2 mm/pixel.

3.5 Grain Samples

The grain samples for this study were obtained from the lndustry Services

Division of the Canadian Grain Commission (Winnipeg, MB). For the 1999

growing year, clean grain samples of CWRS wheat (Grade 1,2, and 3), CWAD

wheat (Grade 1,2, and 3), barley (Special Select Malt Barley), and oats (Grade

1) were used to test the separation algorithm and related image analysis.

Samples were collected from 30 growing regions of western Canada (Figure 3.2).

ïhese growing regions were chosen using the climatic subdivisions of the

Canadian Prairies (Putnam and Putnam 1970).

Figure 3.2 A map showing different locations from where the grain samples were

collected



3.6lmage Acquisition

For its stabilization, the image acquisition system was switched on 30 min

pr¡or to acquiring images. The gray level calibration (white balance) of the

(FOV) was done using a Kodak white card. The spatial calibration was done with

an object of known dimension (a Canadian 10 cent coin).

For ihe touching instances, one grain kernel was randomly dropped as the

center, and other kernels were manually placed to touch the center kernel to

simulate possible different touching instances. Touching instances were created

to result in a point or a line contact or in between possibilities (Figure. 3.3). Care

was taken not to let kernels overlap. After the image of the touching kernels was

acquired, the kernels were then manually separated without disturbing the

orientations of the kernels (Figure. 3.4). The reorientation of some kernels could

have occurred unintentionally. Because the morphological features extracting

algorithm used in this study are independent of kernel orientation, the relocating

kernel orientation will not affeci the extracted features values. With the

morphological feature extracted algorithm, the values of extracted morphological

features from the same grain kernel with different orientations was changed

within 0.8%. Detailed information about this algorithm is in section 3.7. Then, an

image of manually separated kernels was also acquired with the same hardware

and software settings.



Figure 3.3 Examples of an in between or short line contact (A), a point contaci

(B), and a long line contact (C).

Figure 3.4 Examples of manually separated images from Figure 3.3 (A), (B), (C).

3.7lmage Analysis

The original images of the touching grain kernels were first thresholded to

binary images. Then, these binary images with joint kernel regions were

processed by the ellipse fitting algorithm to separate the touching kernel regions,



and the disconnected kernel regions were referred to as software separated

kernels. The term "physically separated" refers to manually separated kernels.

All of the images of software separated kernels and physically separated kernels

were labeled and the morphological features of all of the kernels were extracted

using the same algorithm. The morphological features used for analysis were:

area, perimeter, maximum radius, minimum radius, mean radius, major axis,

minor axis, shape moment, Fourier transcript, major length, and minor length.

The morphological features used for assessing the effectiveness of the

separation algorithm are described below (Majumdar and Jayas 2000a):

Area: lhe pixel area of the interior of an object is defined as area. The total

number of pixels inside the gra¡n kernel were calculated, including the kernel

boundary.

Perimeter. The pixel distance around the circumference of an object is defined

as the perimeter. The Euclidean distance between all the successive pairs of

pixels around the kernel boundary was added to calculate the perimeter based

on the 8-neighbor connectivity method. The distance represented by each pixel

was 1 if all neighbors were horizontal or vertical, 1.414 tf all neighbors were

diagonal, and 1.207 if there was one diagonal and one non-diagonal pixel.

Major axis length: lt is the distance of the longest line that can be drawn

through the center of a kernel. The distance between each possible pair of

boundary pixels, which could be drawn through the center, was computed and

the maximum distance was taken as the length of the major axis.



Minor axis length: The minor axis length is the distance between the pixels of

the longest line that can be drawn perpendicular to the major axis.

Maximum rad¡us: lt is the maximum distance between a boundary pixel and the

centroid of the grain kernel.

Minimum radius: lt is the minimum distance between a boundary pixel and the

centro¡d of the grain kernel.

Mean radius: lt is the mean value of the distances between the boundary pixels

and the centroid of the grain kernel.

Major length: lt is the length of the rectangle bounding the kernel.

Minor length: lt is the width of the rectangle bounding the kernel.

Spatial moments: The spatial moments are statistical shape measures related

to an object's characterization: moments of binary objects describe their shape.

The general moments (mrn) of different orders were determined as:

**=Lli,¡nx1i,¡7
(3.1)

where p, q = 0, 1, 2, .... is the order of the moment and X(i,7) is the gray level of

the object at coordinate (i 7).

ln binary images, the gray level of the object, X(i, j) is 1 for all pixels. The

first-order spatial moments (m1¿ and ms1) of an object in a binary image were the

x and y sums of the object's pixels. The second order moments fi126 ãr.td ffts2

represent the moment of inertia. For identification of objects, the moments have

to be independent of position and orientation of the object in the image and size

of the objects. The central moments ppq that are invariant to translation (position

of the object in a given image) and normalized central momenls rToo (Gonzalez



and Woods 1992) that are invariant to translation and size of the object are given

by:

n * = LL Q - *"), (j - y.)o x(i, j)
¡j

n = 
Fo'

'tpq p{,

(3.2)

where

r =@4Ð+t
2

(3.3)

The first four moments that are invariant to translation, rotation, and

scaling of the object were as follows:

Ôt = 4zo + 4oz (3.4)

þz = Øn - no)2+ 4(ryt)2 (3.5)

ót = (q:o - 3 q¡2)2+ (¡1zt - no)2 (3.6)

ó¿: (\Ìn + qt)2 + (rt¿t +no¡)t (3.7)

Fourier Descriptors: Fourier descriptors are shape recognition features based

on the Fourier series expansion of periodic functions. They were used to

represent the boundary of an object as a periodic function with a period of 2. The

obtained periodic function was then expanded in a Fourier series and its

coefficients were calculated.

Consider an object with an N-point boundary ß0, yo), (x,, yì, $2, yz),....(xN.t, yN

r). These xy coordinates can be expressed in the torm x(k) - x¡ and y(k) = y*.

Then, the boundary can be represented as the sequence of coordinates f(k) =



tx(k), y(k)],'for k = 0,1,2...., N-1 . Each coordinate pair can be treated as a

complex number so that f(k) = x(k) + jy(k) for k = 0,1 ,2,....N-1, i.e., the discrete

Fourier transform ot f(k) is'.

I /V_t';LF@)et"'o't (g'a)f (k)= 7 r_o

tor u = 0, 1, 2,...., N-1. The complex coefflcients F(u) are called the Fourier

descriptors of the boundary.

r N-l'-l ¡1k¡"-t'^o'' (3.9)F(u)= 
N r=,

for k = 0, 1,2,...., N-1 . Because these features are extracted by taking the

Fourier transform of the coordinates along the boundary of the kernel, they were

called boundary Fourier descriptors. The magniiude of F(u) is the square root of

the sum of squares of its real and imaginary values.

3.8 Morphological lmage Operations

Morphological image operations are based on set-theoretic operations. The

two basic morphological set transformations are erosion and dilation. These

transformations involve the interaction between an image A (the object of

interest) and a structuring set B, Typically, the structuring element B is a circular

disc in the plane, but it can be any shape. ln a binary image, structuring element

sets are the sets in the 2D plane. Let A and x be subsets of 22, the translation o,f

a set A by a vector x is denoted Ar, and isdefinedas:

A,= {c:c= a+ x,a e A} (3.10)

where x is a vector from a fíxed and specified origin to a given point. The

translation of an image may cause shifting of all foreground pixels of the image



by a given length and along a specified direction. The reflection of a set A,

denoted 2, is defined as:

)= 1x:x= -a,ae Aj (3.11)

Reflection reverses all the related pixels in the image. The complement of A is

denoted A", and the difference of two sets Aand B isdenotedA-8.

Dilation and erosion are two basic morphological transforms. All other

transforms are based on them.

o Dilation

Dilation of the object A by the structuring element B is given by (Serra 1982):

¿s 3 = {x:E"a A+ 0} (3.12)

The process consists of obtaining the reflection of B about its origin and then

shifting this reflection by x. Therefore, the dilation of A by B is set of all x

displacements such that,4 and É overlap by specified elements.

. Erosion

Erosion of the object A by a structuring element B, is denoted as lO,B, and

defined as (Serra 1982):

AøB= {xl(B),ç A} (3.13)

The erosion of A by B is the set of all points x such that 8, translated by x, is

contained in A,

Dilation and erosion are duals of each other with respect to set

complementation and reflection. That is:



(AOB)"=A"@B (3.14)

Erosion and dilation can be used in a variety of ways, in parallel and series,

to give other transformations including thickening, thinning, skeletonisation and

many others.

. Opening and closing

Two very important transformations are opening and closing. Opening

generally smoothes a contour in an image, breaking narrow isthmuses and

eliminating thin protrusions. closing tends to narrow smooth sections of contours,

fusing narrow breaks and long thin gulfs, eliminating small holes, and filling gaps

in contours.

The opening of A by B, denoted by A. fi, is given by the erosion of A by B,

followed by the dilation by B, that is

A"B=(A@B)@B (3.15)

Opening is like "rounding from the inside,,. The opening of A by B is obtained

by taking the union of all translations of B that fit inside A. parts of A that are

smaller than B are removed. Thus

l".B= U{(B),I(B),c A} (3.16)

closing is the opposite operation of opening. lt is produced by the dilation of

A by B, followed by the erosion by B:

A. B= (A@ B)@B (3.17)

This is like "smoothing from the outside". Hores are filled in and narrow

valleys are "closed".



Samples of graphical illustrations of opening, closing, dilation, and erosion

are shown in Figure 3.5 (a), (b), (c), and (d). (fordetails see Haralick et al. (1987)

and Serra (1982))
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. Hit.or.miss transform

Hit or miss transform is the basic tool for shape detection. lt selects out sets

that have certain geometric properties such as corner points, isolated points or

border points, and then performs template matching, thinning, thickening and

centering. This transformation is accomplished by using intersections of erosions.

Let 81 and Bz be two structuring elements of a mixed structuring element B,

where Br is the set formed from elements of B associated with an object, and 82

is the set of elements of B associated with the corresponding background. The

making up of B also satisfies theA, n Br= Ø . Hit-or-miss transform of a set A by

B= (Bt, Bù is defined by:

¿6 3 = (Aø B,)n (A"@ Br) (3.18)

The hit-or-miss transform can be used to locate spatial patterns.

3.9 Ellipse Fitting Algorithm Development

Before the development of the ellipse fitting algorithm, the watershed and

combined mathematical morphology model were used to compare with the

ellipse fitting algorithm to test the separation result. When watershed was applied

to separate the touching grain kernels instances, it did not work for disconnecting

ceftain touching instances, such as two kernels touching side by side and

creating a long touching isthmus. ln this condition, watershed method could not

find the center of each touching object and considered as a non touching case

for separation, the separation was not done. Shataldal et al. (1995a) developed a

combined mathematical morphology model which used the logic of watershed



and added heuristics for separation. This model used eight steps to separating

the touching instances. These steps were:

1. Progressive erosion,

2. Sequentialthickening,

3. Pruning dendrites,

4. Dilation of small components,

5. Adding dendrites,

6. Finding the constrain disc,

7. Eliminating the corners, and

8. Removing the notches.

Though, in their model, heuristics (such as adding the dilated dendrite) was used

to reduce the chances of bisecting a kernel, some touching instances could not

be separated. This was mainly caused by the condition that a larger isthmus area

biased the location of the center disc towards it. Also, this algorithm was very

time consuming. Figure 3.6 shows the unsuccessful separation by the

mathematical morphology model (Shataldal et al. 1995a).



Figure 3.6 (a) Original touching kernel image

Figure 3.6 (b) Unsuccessful separation with mathematical morphology model.



The fitted ellipse algorithm used the fitted ellipses to simulate the grain kernels in

the image, if the representative ellipses were correctly selected and could

"cover" the silhouette of the grain kernel, the isthmus area of touching instances

could be identified and separated. Therefore, finding the right fitted ellipse was

the most important step for this algorithm. Fitzgibbon et al. (1996) noted,

compared to other methods, the least square method is an efficient and accurate

method for ellipse fitting. However, if the least square method is not constrained,

many hyperboles and non-precisely fifted ellipses are created during ellipse

fitting. To find the right least square method for grain kernels' ellipse fitting,

general least square method, least square method with Bookstein constraint

(Bookstein '1979), and direct least square method (Fitzgibbon et al. 1996) were

compared to develop the most su¡table fitted ellipse algorithm. For preliminary

testing,400 grain kernels (100 for each grain type) were used for testing. The

successful ellipses fitting rates with general least square method, least square

method with Bookstein constraint, and direct least square method were 74o/o,

90% and 94%, respectively. Based on above result, the direct least square

method was selected as the ellipse fitting method for separation of grain kernel

images.

When the direct least square method was applied to each touching

instance, the fitting ellipses were created in different sizes and shapes. Some

fitted ellipses were too big, or some were too small. Therefore, several filters had

to be set to pick the right fitted ellipses. Because the fitted ellipses should be

similar to the grain kernel, when a grain kernel was considered as ellipsoid, the

ratio of a/b (a is the short axis of the ellipse, b is the long axis) should be limited.



Two thousand grain kernels were taken for determining this ratio and the ratio

was found between 0.3 and 0.9. So the 0.3<a/b<0.9 was applied as the first

criteria, However, only one criterion is not enough for ellipse selection. The

second criterion was the measurement of the overlap between touching objects

and fitted ellipse. Three measurements (0.90, 0.95, and 0.99) were tested. The

measurement of 0.95 was proven to be the suitable selection, as fitted ellipses

did not require to be too precise for future grouping. After all fitted ellipses were

created, the fitted ellipses were grouped to find the representative ellipse for

each kernel of the touching instance. lf too many fitted ellipses are generated, it

is time consuming for grouping. However, if not enough fitted ellipses were

generated, the grouping could not be done. Four numbers (50, 100, 150, and

200) of generated fitted ellipses for each touching instance were tested to find

which number is the suitable one. One thousand touching instances (2S0 for

each grain type) were used for testing.

Table 3.1 Separation accuracy for different numbers of fitted ellipses

Based on the result of table 3.1, a number of 100 generated fitted ellipses for

each touching instance was selected, because additional ell¡pses did not further

improve the separation accuracy.

The number of fitted ellipses generated for

each touching instance

50 '100 150 200

Separation accuracy 79Yo 97 .2o/o 96.4Yo 98%



After the fitted ellipses were generated, grouping would be the next step to

find the representative ellipses. For each fltted ellipse, 1,, lr, a, b, and 0 are five

main parameters, where (lr, Iì = center of the ellipse, a = short axis, b = long

axls, and 0= orientation of the long axis from the x-axis. These five parameters

'were dimensions of Euclidean space to determine the difference and similarity of

fitted ellipses, to an ellipse identified as a point of this Euclidean space R5. A

distance measure based on the above features space was defined as the

Euclidean distance d. Based on threshold of Euclidean distance, all fitted ellipses

were grouped to clusters. With each cluster, a representative ellipse was created.

Eight hundred touching instance (200 each grain type) were used to find the

suitable threshold for clustering. For each touching instance, the representative

ellipses for a grain kernel were manually picked and Euclidean distance between

these representative ellipses was calculated. The value of Euclidean distance

was arranged from 0.52 to 0.87 and around 72o/o of these calculated Euclidean

distances were around 0.58 to 0.65. Therefore, the value of 0.6 was selected as

a Euclidean distance threshold for clustering. When it was tested for the

grouping, around 91% correct representative ellipses could be selected.

3.10 Neural Network Development

Paliwal et al. (2001) evaluated the most commonly used neural network

architectures for cereal grain classification using the frequently used

morphological features as inputs. An evaluation of the classification accuracy of

9 different neural network architectures was done to classify five different kinds of

cereal grains namely, CWRS wheat, CWAD wheat, barley, oats, and rye. To



evaluate the classification accuracy of the different neural network architectures,

images of 7500 kernels (1500 kernels of each grain type) were taken. For each

grain kernel, eight morphological features (area, perimeter, major axis, minor

axis, two spatial moments, two Fourier descriptors) were extracted as input

features for the neural net\ivorks. The networks were trained using 70% of the

kernels and 20% of kernels for each grain types were used for validation. The

remaining 10% kernels were used as test data set. The best results were

obtained using a 4-layer back-propagation neural network (BPNN) with each

layer connected to immediately previous layer. The classification accuracies

were in excess of 97o/o tor CWRS wheat, CWAD wheat, barley and oats. The

classification accuracy for rye was about 8B%. A general-regression neural

netlvork architecture was found to be the least suitable for grain classification.

Based on the above study, a typical four-layer BPNN was selected as the

classifier for grain types. A four-layer BPNN consisting of two hidden layers and

one output layer was developed for classification of both software separated and

physically separated kernel images. The neural network architecture was

developed using a commercial software called Neuroshell 2 Version 4 (Ward

Systems Group, Frederick, MD). Thirteen input nodes represented 13 input

morphological features. Paliwal et al. (2001) stated that one-hidden layer can

perform most of the classification tasks, however, it is better to use a two-hidden

layer network. More than two-hidden layers may also be used, but it does not

increase the efficiency. On the other hand, using more than two-hidden layers

may result in a lower accuracy because these networks are more prone to fall



into a local minimum. The number of nodes n in the hidden layer was calculated

using the formula:

¡=1¡ +O)12+f.5 (3.1e)

where: / is the number of inputs; O is the number of outputs; and y is the number

of input patterns in the training set (Ward Systems Group 1998). Because there

were two hidden layers in this neural network, the number of nodes of each

hidden layer was the half of the number calculated by the formula. The four

outputs nodes corresponded to four grain types. The success of BPNN networks

is dependent upon the smoothing factor. The calibration procedure of genetic

adaptive was used to decide which smoothing factor was best. lt used a genetic

algorithm to find appropriate individual smoothing factors for each input and an

overall smoothing factor.

Training for BPNN using the genetic adaptive option took place in two

parts. The first part trained the network with the data in the training set. The

second part used a calibration set to test a whole range of smoothing factors,

trying to optimize a combination that works best on the test set with the network

created in the first part. Training was stopped after 1500 epochs. An epoch is

defined as the time during which a network is trained by presenting each pattern

in the training set exactly once. In an earlier study, it was found that 1000

epochs were enough for the network to train as the coefficient of multiple

determination became constant around 1000 epochs (Paliwal et al.2001).



4. DEVELOPMENT OF AN ELLISPE FITTING

ALGORITHM FOR SEPARATING TOUCHING GRAIN

KERNELS

The algorithm development for this thesis research was programmed using

Microsoft visual c++ (version 6.0) programming language. This algorithm starts

by reading the original images of touching grain kernels followed by thresholding,

ellipse fitting, separating the touching regions, and outputting the processed

images. The various steps of this algorithm are described in this chapter.

4,1 Segmentation and boundary extraction

An adaptive thresholding technique based on R, G, B values of image pixels

and hue histograms was used to determine the threshold value (Luo et al.

1999a). After the threshold value was determined, the pixels with gray value

higher than threshold were given the value of 1 as objects; others had the value

of 0 as background (Fig 4.1.). Therefore, the colour image was transferred to a

binary image. lf a small dark region within an object fell below the threshold, this

region was assigned as background and represents a "hole". With ,,region

growing" to find all inter-connected background pixels, the "holes" were identified

and removed.

An object boundary is the closed edge that surrounds a region. lf a pixel's

neighbors have different values (0 or 1), it may represent an edge point. Because

the edge detection operator could find the relationship that a pixel had with its

neighbors, the boundary extraction was implemented using edge detection



operator. Compared to other edge detection operators, the Sobel edge detection

masks look for edges in both the horizontal and vertical direction with high

efficiency (Gonzalez and Woods 1992). Therefore, the object edge pixels were

tracked by Sobel edge and stored in an ordered points list. This ordered points

list could be used as sample points for ellipse fitting. The edge tracking result is

shown in Fig 4.2.

Figure 4. 1 The touching grain kernels (CWAD Wheat)



Figure 4. 2. lmage after edge tracking for grain kernels shown in Figure 4.1.

4.2 Ellipse fitting

When grain "touching instances" in the image had been thresholded, the

touching region cannot be split. The touching instance with multiple grain kernels

was then considered as one object in the binary image. Since the grain kernels in

the image are s¡milar to an ellipsoidal shape, to separate the touching kernels, an

ellipse fitting algorithm was implemented to approximate every kernel.

The direct least squares based ellipse-fitting method was used for the ellipse

fitting in this algorithm. This method centers on finding the set of parameters that

minimize some distance measure between sample data points and the ellipse.

An ellipse is a conic that can be described by an implicit second order

polynomial.

F(x, y) = af + bxy + cf + dx + ey + f =O (4.1\



With an ellipse-specific constraint.

b2 - 4ac <o (4.2)

where a, b, c, d, e, f are coefficients of the ellipse and (x, y) are coordinates of

sample points lying on it, The polynomial F(x, y) is called the algebraic distance

of a point (x, y) lo the conic F(x, y¡=g. By introducing vectors

a=fa,b,c,d,e,flr

x=lf,xy,f,x,y,11

The equation (4.1) can be rewritten to the vector as:

F"(*)= Xo ft= 0

(4.3)

(4.4)

The fitting of a general conic to a set of sample points (x¡, y¡), i= 1...N may be

approached by minimizing the sum of squared algebraic distances of the data

points to the conic which is represented by coefficients a:

(4.5)

Equation 4.5 can be solved directly by the standard least squares approach.

However, withoui constraint, the result of standard least square fitting could be

any general conic, such as hyperbolas, and parabolas.

To ensure an ellipse-specificity of the solution, the appropriate constraint of

equation 4.2 had to be considered. Under a proper scaling, the inequality

constraint of equation 4.2 could be transferred into an equality constraint

(Fitzgibbon et al. 1996¡

*i'(Ëor",,r,r') = '".(Ër* . u)')

4ac - b2 =1 (4.6)



This constraint could be expressed as arGa =1, where constraint matrix C is of

thesize6x6.

C-

0 020 00
0 -1 0 0 0 0

2 0 0000
0 00000
0 00000
0 00000

Then, the ellipse-specific fitting problem can be reformulated as

Minimizing E=llDall'z subject to arGa =1 (4,8)

Where the design matríx D of the size N x 6

(4.7)

(4.e)

(4.10)

(4.11)

D-

))xi xtlt yí xt lt 1

::i:::
)1xi x¡!¡ y: xi l¡ I

::::::
71x"r x*!N yh xN lN 1

Sa = ÀCa

arca =1

where S is the scaffer matr¡x of the size 6 x 6

represents the least squares minimization equation 4.5.

The minimization problem (equation 4.8) could be solved by a quadratic

constrained least squares minimization. By applying the Lagrange multipliers, the

following condiiions for the optimal solution a could be calculated

S=DTD



Equation 4.'10 could be solved by applying generalized eigenvectors. Six

eigenvalue-eigenvector pairs (Ài , a;) were given by the equation 4.10. Because

llDøll'1 = or Pr Pa = a'Sa = Xar Ca = L (4.'t2)

The eigenvector a¡ corêsponds to the minimal positive eigenvalue Àr. With a

proper scaling, the solution of the minimization problem (equation 4.8) represents

the best-fit ellipse for the given set of points.

Because direct ellipse fitting is robust to the noise and offered the best trade

off between speed and accuracy (Fitzgibbon et al. 1996), it was applied to

generate the fitted ellipse in this algorithm. The example of generated ellipses

are shown in Fig 4.3.

Figure 4. 3. Finding fitted ellipses for the touching instances in Figure 4.1.



4.3 Classifying all generated ellipses to determine the

representative fitted ellipse for each kernel

Every trial of the ellipse fitting procedure created an inertial ellipse for the

touching kernel groups. For a particular group of touching kernels, 100 fitted

ellipses were generated. When a set of similar representative ellipses for every

individual kernel in the touching group were generated, some extraneous ellipses

were also generated and were excluded. With all filtered generated ellipses, a

clustering method was applied to group all fitted ellipses and extract the

representative ellipse for each group. This algorithm involved three steps.

4.3.1 Excluding inappropriate fitted ellipses

When all inertial fìtted ellipses were created, two selected criteria were

applied to eliminate inappropriate fitted ellipses. These criteria were:

o All fitted ellipses must meet a1 < a/b < a2, where a is the short axis of the

ellipse, b is the long axis of the ellipse. After numerous trials to differeni

types of kernels, the threshold a1 was determined as 0.3, and the

threshold a2 was determined as 0.9.

o The measurement of overlap between the touching object and fitted

ellipse were also limited as:

¿=tnt

where ø is the set of touching object pixels, e is the set of pixels of the fitted

ellipse. lf the I >0.95, the fitted ellipse is a proper by fitted ellipse.



With these two criteria, only those fitted ellipses similar to the original grain

kernels were picked.

4,3,2 Features extraction for clustering

Clustering is the organization of a collection of patterns into groups based

on similarity (Jain and Dubes 1988). Features extraction is to obtain an

appropriate set of features for clustering. ln fitted ellipse clustering, if each cluster

only contained the ellipses similar to one individual grain kernel, the filtered

ellipses could be grouped to clusters to determine the kernel numbers in the

touching instance. For each fitted ellipse, lr, lr, a, b, and 0 are five main

parameters, where (/,, /y,) = center of the ellipse, a = the short axis of the ellipse,

b = the long axis of the ellipse, and 0= orientation of the long axis from the x-axis,

With these five parameters, the difference and similarity of fitted ellipses could be

determined. Because the similarity of ellipses is the fundamental for defining a

fitted ellipse cluster, these five parameters were used as cluster¡ng features.

When each parameter of an ellipse was considered as a dimension of

Euclidean space, that ellipse could be identified as a point of this Euclidean

space R5. To measure the similarity between two fitted ellipses, a distance

measure based on the above features space was applied and the distance

between two ellipses was defined as the Euclidean distance d.

4.3.3 Clustering

The clustering was based on ihe minimization of a peformance index, which

was defined as the sum of Euclidean distances from all patterns in a cluster



domain to the cluster center. With this performance index, the related patierns

can be grouped to one cluster. This procedure consisted of the following steps.

1. For two ellipses, x¡ and x¡ , tf d(x¡, xi.) <ô, these two ellipses were considered

one cluster, where ô is a threshold determined by many trials. When all

ellipses were classified, K initial clusters were generated. With each cluster,

the cluster center z¡(k) was obtained by: Z,(k)=lir, where n is then1

number of ellipses in each cluster. lf one cluster only had a few ellipses that

were less than five, this cluster was considered as an inappropriate ellipse

cluster and excluded.

2. fhe ellipses {x} were distributed among the K cluster domains, using the

relation,

x e,S,(fr) ir lþ-,,rrll.ll,- z(rlll (4.13)

tor all i=1,2, ... , K, i + T,where Sr(È) denotes the set of ellipses, with

cluster center as ,,(k) .

3. From the result of the above step, the new cluster center z,(k + l) (j=t,2, ...,

K ) was computed. The sum of the squared distances from all patterns in

Sr(È) to the new cluster center was minimized. Therefore, the new cluster

center is given by:

1,,(k+t)=+ I x i=1,2,...,K,, jvj,._sl*)

where the /V, is the number of patterns in Sr(É) .

(4.14)



4. lÍ 2.,(k+t)=2,(k) for i=1 ,2, ..., K, the algorithm had converged and the

procedure was terminated. Othenrvise, the algorithm went back to step 2.

ln the end, the sets of clusters were built up and the center pattern of each

cluster was the representative ellipse for that cluster. When representative ellipse

had been assigned to each cluster, every kernel of the touching grain group was

replaced by a fifted ellipse. Moreover, when these representative ellipses were

generated, these fitted ellipses were not allowed to touch each other. lf they had

joint area with other kernels, the pixels of this area would be turned "off' as the

background. An example of representative ellipses is shown in Fig 4.4.

Figure 4. 4. Finding the representative fitted ellipses for touching kernel
instances of Figure 4.1.



4.4 Using mathematical morphological method to create the

sequential thickening regions

After every representative ellipse for each kernel of a touching case was

determined, a mathematical morphological method was used to dilate the fitted

ellipses. During the dilation, these dilated ellipses were not allowed to join each

other.

This method was used to grow the ellipse and prevent the neighboring

expanding components from joining together. This operation applied a mixed

structuring element, L=(h, lz). This structuring element is (Serra 1982):

lz Iz lz

* lz'

It lt lt

That is, only those pixels are included in the hit-or-miss transform of an

image with mixed structuring element, L, where simultaneously the /7 locations hit

the foreground of the image and /2 locations miss the foreground. For a pixel, if,

with eight of its neighbors, at least three neighbors as def¡ned by /1 locations are

"on" and at least three other neighbors as defined by /2 locations are "off', this

p¡xel was turned "on". For sequential thickening, the above configuration of the

slructuring element, L, and seven other rotation of this grid were used. This logic

imposed during growing the fitted ellipses prevented their merger. Sequential

thickening was repeated one hundred times for each fitted ellipse to make sure

the dilating regions were big enough to cover the silhouette of the original

kernels. The example of dilalion is shown in Fig. 4.5,



Figure 4. 5. Fitted ellipse dilation

4.5 Using logic "AND" with the detached image and original

image to separate the touching grain kernel regions

After dilation, the dilated ellipses can cover the silhouette of the grain kernel

of the touching groups. Because all these dilated ellipses are separated, using

the logic "AND" with dilated ellipses and the original touching group, the touching

isthmus between the kernels were identified, and the clusters of touching kernel

regions in the image were separated. The separation result is shown in Figs 4.6

and 4.7.



Figure 4. 6. lmage morphological logic with grain kernels,

Figure 4.7. Software separated grain kernels shown as touching in Figure 4.1.



4.6. Assessing the capability of the separation algorithm

To assess the classification capability after software separation, a back-

propagation neural network (BPNN) was employed in grain type classification

based on morphological features. A three-layer neural network was developed

with l3 input nodes for 13 morphological features, 16 hidden layer nodes, and

one output node for each of the four grain types (CWRS wheat, CWAD wheat,

barley and oats). The network used logistic scaling and activation functions at

input and processing levels, respectively. Eight thousand physically separated

kernels (2000 kernels of each grain type) were used for training and testing the

neural network, and 8000 software-separated kernels (2000 for each grain type)

were used for assessing the effect of software separation on classification

accuracy. The experiments for the neural network training and testing were

repeated three times. Each time, the 2000 physically separated kernels of each

grain type were divided into two parts, 1000 physically separated kernels of each

grain type were randomly selected for training the neural network, another 1000

remaining physically separated kernels were used for testing. This trained neural

network was then applied to production data sets of software separated kernels.

The production data sets were 4000 software separated kernels (1000 kernels

randomly selected for each grain type).



5, RESULTS AND DISCUSSIONS

5.1 Effectiveness of the Separation Algorithm

The separation algorithm was applied to the images of touching kernels of

CWRS wheat, CWAD wheat, barley and oats. For each grain type, 1000

touching cases were tested and the effectiveness of the separation algorithm in

separating the touching kernels was determined. A representative collection of

software-separated images is given in Appendix A. ln general, the unsuccessful

separated touching grain kernels can be visually identified. However, some

small distortions of grain regions after software separation could be introduced

and may affect the value of extracted morphological features. After the grain

kernels were separated, each separated kernel was processed to extract

features for identification. lf the morphological features were distorted during

separation, the identification of the grain kernel would not be accurate.

Therefore, the difference in morphological features between software separated

and physically separated kernels were compared to test the effectiveness of the

separation algorithm.

5.2 The results of software separation

For software separation, any case of touching kernels, which were not

separated or were distorted by improper placement of the separation lines, were

considered unsuccessfully separated cases or kernels. For separation algorithm

evaluation, one separation error is considered as an unsuccessful separation for

the touching case with 2 or 3 touching kernels. The success rate in separating all



grain touching cases by visual inspection was 97.3% for CWRS wheat,92.4o/o'nor

barley, 96.1% for CWAD, and 94.8o/o for oats. Some of the separation results are

illustrated in Figs. 5.1 to 5.4.

Figure 5. 1. (a) Touching barley kernels



Figure 5.1 . (b) Fitted ellipse dilation of barley kernels



Figure 5. 1. (c). lmage mathematical logic for barley kernels

Figure 5. 1. (d) Software separated barley kernels



Figure 5.2. (a) Touching CWRS wheat kernels

Figure 5.2 (b) Fitted ellipse dilation of CWRS wheat kernels



Figure 5.2. (c) lmage mathematical logic for CWRS wheat kernels

Figure 5.2. (d) Software separated CWRS wheat kernels



Figure 5. 3. (a) Touching CWAD wheat kernels

Figure 5.3. (b) Fitted ellipse dilation of CWAD wheat kernels



Figure 5.3. (c) lmage mathematical logic for CWAD wheat kernels

Figure 5.3. (d) Software separated CWAD wheat kernels



Figure 5.4. (a) Touching oat kernels

Figure 5.4. (b) Fitted ellipse dilation of oat kernels



Figure 5.4. (c) lmage mathematical logic for oat kernels

Figure 5.4. (d) Software separated oat kernels



When the mathematical morphological separating algorithm (Shatadal et al.

1995a, b) was applied to the touching cases of long ellipsoid kernels with a

longer isthmus area, like oats, it often failed because of over erosion. With the

ellipse fitting algorithm, this problem was solved by using a fitted ellipse to isolate

the isthmus area. Therefore, the ellipse fitting algorithm performed better in

separating the touching oat kernels with 94.8% accuracy, compared to 7g%

separation accuracy with the mathematical morphological based separation

algorithm of Shataldal et al. (1995a).

The ellipse fitting algorithm also had some limitations. During the separation

process, if the representative ellipses were improperly selected by the clustering,

the separation line could not be placed correctly. Figure 5,5 shows the separation

line was placed within a kernel region rather than at the isthmus. This happened

because one represeniative ellipse was too small during dilation. The bigger

fitted ellipse dilated too much to set the separation line at the kernel region

instead of the isthmus. The separation success rate for barley kernels was lower

because some barley kernels were not approximated as ellipsoids. For those

kernels with irregular shape, some improperly fitted ellipses were filtered during

overlap measurement. However, some smaller improperly fitted ellipses may

have passed the overlap filter and clustered to the representative ellipse. This

would cause the separation line to move toward the smaller fítted ellipse during

dilation and place the separation line within the kernel region.



Another limitation for this ellipse fitting algorithm was that, sometimes the

separation line could not be placed exactly at the isthmus, and might be a litfle

out of range and distort the part of the touching boundary (Fig. 5.6). This

limitation would change the value of the Fourier transcript, because it

representes the boundary features of the kernel. This distortion of the value of

the Fourier transcript only became effective when kernels had inegular shapes.

Figure 5.5. (a) lmproper placement of the separation lines



Figure 5.5. (b). Fitted ellipses (right). lmproper representative ellipse selection

(left)

Figure 5.6. Separation line distorting the touching part of the kernel boundary



5.3 Morphological Features Selections

The physical dimensional measures that characterize the appearance of an

object are called morphological features in the image. Majumdar and Jayas

(2000a) developed an algorithm based on morphological features to classify

individual kernels of CWRS wheat, CWAD wheat, barley, oats, and rye. Forty

three morphological features were elitracted for the discriminate analysis. When

the morphology model with the 10 most significant morphological features was

tested, the classification accuracies of CWRS wheat, CWAD wheat, barley, oats,

and rye were 98.9, 93.7, 96.8, 99.9, and 81.6%, respectively. ln their

morphological features model, several of the morphological features are derived

from a select number of basic features. Assessment of changes to the basic

features can give a good idea whether software separation affects morphological

features. Therefore, 13 morphological features were picked to assess the

separation algorithm: Area, Perimeter, Maximum Radius, Minimum Radius, Mean

Radius, Major Axis, Minor Axis, Spatial Moment 1, Spatial moment 2, Fourier

Transcript 1, Fourier Transcript 2, Major Length, Minor Length.

5,4 Effectiveness of morpholog¡cal features of software

separated kernels

lf the separation algorithm worked well, after software separation, those

morphological features did not change considerably from their true values. The

true value of a morphological feature is a value extracted from the image when

the kernels were physically separated.



The difference in the features between the physically separated and software

separated kernels were used to test the effectiveness of the ellipse fitting

algorithm. To decide if the difference between two kinds of features was

significant, the large sample Z test of hypotheses was employed.

Hypothesis Z tests the difference between two population means p1 and p2

where data are available in the form of the means and standard deviations of two

samples.

ln this case (n1 > 30 ârìd nz > 30), the difference of the two population

means, tr - x2, is approximately normally distributed, with mean F1 - p2, and

standard deviation

(5.10)

Where or and o2 are the standard deviations of the two populations, and s1 and

s2 are the standard deviations from the two groups of samples, one selected from

each population. When the values of or and o-2 ârê ñot known, s1 and sz could be

used for calculation.

ïesting hypotheses involves

Hsi p1 'p2= A (5.11)

Under the above circumstances, the appropriate standardized test statistic was

r, ; r-
- loi,oã_lsi.s¡

ïnl n2 lnl n2

z_1, -ir-ít,, -vr) _ 1r -i2 -^
oi, -i, oi, -i,

(5.12)

Where Á was a specific numerical value. When Á = 0, Z testing was for a

difference of any magnitude between the two means. The rules for arriving at a

decision were summarized in Table 5.1 .

8l



Table 5.1 Z test hypotheses rules

Hypotheses: reject H¡ at a level of significance cr if:

He: ¡r1 - ¡r2 = Á

H¡: p1 - ¡r.2 > Á

Ho: pr -fLz=Â

H¡: p1 - p2<Á

Hs: p1 -p2=Â

H¡: p"1 - 1t2 + A

z> z4

(singletailed rejection region)

z< -zd

(single-tailed rejection region)

Z>Z¿2 Of Z< -Zçr¡2

(two-tailed rejection region)

To demonstrate the effectiveness of the separation algorithm, random

successfully separated samples (973 touching instances of CWRS wheat, g24

touching instances of barley, 961 touching instances of CWAD barley, 948

touching instances of oats) were tested. For each kernel, one set of

morphological features after physical separation was recorded as an initial set of

features, and another set of morphological features of the same kernel was

extracted after software separation. To confirm that the differences of

morphological features between physical separation and software separation

were not statistically significant, the hypotheses that needed to be tested are

described in the following sieps:



1. Thenull hypothesis: Hoiltt= ltz

The alternative hypothesis H o'. lr, + p2 (Ïwo tailed test)

Where p1: the mean value of morphological features of physically

separated kernels. p2: the mean value of morphological features of

software separated kernels.

Test statistic for Z value:

-x. - -r^

(Í= :Ãt-)Í) or' , oi
nt n2

(5.13)

where o.1 and o2 are the standard deviations of the two populations, n7, n2

are the size of two populations. ln the present case, the nland n2 are the

same.

3. Rejected region.

reject H o: Itl, "y'
not reject Hoi \tl=r/

lf Hs is accepted, there is no difference between morphological

features of physically separated and software separated kernels. For c¿=0.0S,

the rejection region is larger than Z¡.s25 = 1 .96 or Z-s.s25 = -1 .96.

Except for Fourier Transcript 1 of barley and CWAD, the hypothesis test showed

that there is no difference for all other morphological features for all grain types

between physical separation and software separation with g5% confidence.

2.



(Iable 5.2), Therefore, software separation did not change the values of the

morphological features of CWRS wheat, CWAD wheat, barley, and oats.



Table 5.2 Difference between morphologícal features of physically separated and softurare separated kernels
(Pixels)

Touch 4592.162 301.011
Variance '1.175Vo 3.887%
Z-test -0.858 -0.148

Oat Separate 5254.973 392.344
Touch 5150.931 379.990
Variance 0.020 0.031
Ztest 0.230 -0.493

rate 4646.758 313.184

CWAD Separate 4349.891 288.345
Touch 4316.949 287.105
Variance 0.008 0.004
Z-test 0.537 0.404

CWRS Separate 3142.656 236.027
Touch 3076.941 231.073
Variance 0.021 0.021

64.591
1.484%
-0.383

84.250
82.170
0.025
-0.302

60.016
60.015
0.000
-0-262

47.458
47.295
0.003

Radius

22.825
4.3160/0
-0.833

19.573
18.881
0.035
-1.294

21.727
21.333
0.018
-1.286

20.274
19.286
0.049

.854

1.304

40.313
2.514o/o
-0.790

48.907
47.652
0.026
-0.489

39.422
39.159
0.007
-0.662

32.610
32.073
0.016

122.
119-557
2.580%
-0.271

162.226
158.627
0.022
-0.484

'117.682
117.043
0.005
-0.466

92.142
90.773
0.015
0.973497

50.311
0.744%
-2.134

688

41 .121
40j94
0.023
-0.515

45.747
45.735
0.000
0.460

42.440
42.540
-0.002



Table 5.2 Difference between morphological features of physically separated and software
separated kernels (continued)

Separate 0.233
ïouch 0.235
Variance -0.008%
Z-test 1 .013

Oat Separate
Touch
Variance
Ztest

GWAD Separate
Touch
Variance
Ztest

CWRS Separate
Touch
Variance

0.028
0.028

-1.328Yo
1.000

0.088
0.085
0.033
0.083

0.335
0.326
0.000

-0.062

0.235
0.236
0-000
o.278

0.206
0.208
0.000

-1.410

1.806
2.128

-17.8560/0
2.061

1.301
1.446

-0.112
1.384

0.540
0.608

-0.126
-2.154

0.483
0.580

-o.201

0.030
0.030

-0.007
-0.233

0.017
0.017

-0.028

20.187
19.561

3.099%
-1.829

30.413
29.722

0.023
0.022

22.441
22.238

0.009
-0.064

18.228
17.754
0.021
0.905

120.269
117.186
2.563%

1.023

158.171
154.049

0-026
0.432

115.328
114.202

0.010
0-473

90.299
88.758

0.017
1.3

49.168
49.056

0.226%
0.782

40.093
38.082

0.050
1 -013

44.375
44.333

0.001
-0.829

41.167
41 .364
-0.005
0.535



5.5. Classification of the software separated kernels with an

artificial neural network.

The extracted morphological features data after software separation would

be ultimately used for grain type classification. Io assess the classification

capability of extracted morphological features from software separated kernels,

artificial neural networks were used for grain type classiflcation. Artificial neural

networks (ANN) have been a very active research area since the 1970s, and

were used by many researchers from a number of different disciplines (Haykin

1994). Artificial neural networks, resembling biological nervous system, have the

potential for solving problems in which some inputs and corresponding output

values are known, but the relationship between the inputs and outputs is not well

understood. These conditions are commonly found in agri-food industry

inspection and sorting problems (Elizondo et al. '1994). The essence of neural

networks lies in the connection weights between neurons (inputs and outputs).

These weights must be selected consciously before the neural networks can be

put into practical application, and this selection is referred to as learning by the

neural network. The ultimate purpose of learníng is to minimize the cost function,

that the actual response of each output neuron in the network approaches the

target (or desired) response for that neuron.

To assess the classification capability after software separation, the

morphological features extracted from physically separated kernels were used as

training and basic testing data sets; the features from software separated kernels

were the production testing data. A 4 layer back-propagation neural network



(BPNN) was developed as a grain type classifier based on morphological

features. Training and basic testing was done on g000 physically separated

kernels (i.e. 2000 kernels of each graln type), and the entire process was

repeated three times using different training and testing data sets. Each time,

50% randomly selected physically separated kernels were used as training data

sets, another 50% physically separated kernels were used as basic testing data.

The network was trained for 1500 epochs and was then applied on production

data set consisting of 8000 software separated kernels (i.e. 2000 kernels of each

grain type). The summarized results of classification analysis are shown in Table

5.3 and Table 5.4, respectively and confusion matrics are given in Appendix B.

Table 5.3. classification accuracies of physically separated grain kernels
using a neural network for three trials %

Mean

96.6 971 -------- s72Barley

CWAD

CWRS

Oats

97.8

95.9

98.1

97.4

95.2

98.3

97.7

95.4

97.B

97.1

95.5

98.1

97.4



Table 5.4, Classífication accuracies of software separated grain kernels
using a neural network for three tríals %

Barley

CWAD

CWRS

Oats

96.6

94.3

98.2

96.9

96.9

94.8

97.5

97.5

94.9

97.3

97.2

Mean

97.0

94.7

97.7

97.2

Compared to 97J% physically separated grain kernels being correcfly

classified, the mean classification accuracy for all the software separated grain

types was 96.6%. Because the shape and size of CWAD kernels varied a lot, the

classification accuracy for cwAD was the lowest among four software separated

grain types. one reason for additional misclassification caused by software

separation was the use of physically separated kernels as a training and basic

testing set and the software separated kernels as a production test set. Another

reason for this additional misclassification was cwAD misclassified as cwRS

wheat due to improper separation. Results presented in Tables S.3 and 5.4 show

that morphological features of software separated kernels were not distorted

during software separation and can be successfully used in grain type

classification.

The ellipse fitting algorithm worked well in separating touching grain kernel

regions. lmplementation of this separation algorithm in a powerful machine vision

system (such as a system with a specialized DSP processor) need to be studied



for practical use. With a personal computer (Plll 4S0 MHz), an image with three

grain touching instances could be processed within 60 s by the ellipse fifting

algorithm.



6. CONCLUS¡ONS AND RECOMMENDATIONS

ïouching grain kernels separation is essential for automated grain sample

analysis. The ellipse fitting algorithm was developed for separating the touching

grain kernels in an image. A back-propagation neural network was also

developed for grain type classification based on the morphological features

model. The study shows that software separated kernels did not distort their

morphological features and can be successfully used for grain classification. The

following conclusions can be drawn from this research:

1. The ellipse fitting algorithm successfully separated touching grain instances for

CWRS wheat, barley, CWAD wheat, oats with 97.3%, 92.4Yo, 96.10/o g4.BVo,

respectively.

2. Except for Fourier descriptor 1 of barley and CWAD wheat, software

separation with the ellipse fitting algorithm did not change the value of

morphological features of CWRS wheat, CWAD wheat, barley and oats within the

tolerance limits of the measurement system.

3. The mean classification accuracy for all the software separated grain kernels

was 96.6%.

lf a commercial processor is designed to use with this algorithm, the

processing speed can be accelerated to meet real time processing requirements.

Finding the representative fitted ellipse with clustering is essential in this

algorithm, therefore more clustering techniques need to be tested for this

algorithm,
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Appendix A
REPRESENTATIVE SOFTWARE SEPARATED GRAIN

KERNEL IMAGES



Figure A1 Example of (top) touching and (bottom) separated kernels of CWRS
wheat

103



Figure 42. Example of (top) touching and (bottom) separated kernels of CWRS
wheai



Figure A3 Example of (top) touching and (bottom) separated kernels of CWRS
wheat



Figure A4 Example of (top) touching and (bottom) separated kernels of CWAD
wheat

106



Figure A5 Example of (top) touching and (bottom) separated kernels of CWAD
wheat

t07



Figure A6 Example of (top) touching and (bottom) separated kernels of CWAD
wheat
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Figure 47. Example of (top) touching and (bottom) separated kernels of oats



Figure AB. Example of (top) touching and (bottom) separated kernels of oats

I l0



Figure 49. Example of (top) touching and (bottom) separated kernels of oats



Figure 410. Example of (top) touching and (bottom) separated kernels of barley



Figure A1 1. Example of (top) touching and (bottom) separated kernels of barley



Figure 412, Example of (top) touching and (bottom) separated kernels of barley



Appendix B
CONFUSION MATRICES FOR GRAIN TYPE

CLASSIFICATION WITH A NEURAL NETWORK



Table 81. confusion matrix for grain type classification with physically separated

kernels trial 1

CWAD (n=1000) 959 12 3 26

(e5.e%)

Barley (n=1000) I 978 6 7

(97.Byo)

Oats (n=1000) B 14 974 2

(97.4o/o)

CWRS(n=1000) I 7 3 981

(e8.1%)

Table 82, confusion matrix for grain type classification with physically separated

kernels trial 2

CWAD Barley Oats CWRS

CWAD (n=1000) 952 19 g 20

(s5.2%)

Barley (n=1000) 18 966 5 11

(e6.6%)

Oats (n=1000) B 15 977 0

(97.7yo)

CWRS(n=1000) I 7 1 983

(e8.3%)



Table 83. Confusion matrix for grain type classification with physically separated

kernels trial 3

CWAD Barley Oats CWRS

CWAD (n=1000) 954 12 3 3,1

(95.4yo)

Barley (n=1000) I 971 4 16

(97.1yo)

Oats (n=1000) 15 12 971 2

(e7.1%)

CWRS (n=1000) 6 11 5 978

(e7.8%)

Table 84. Confusion matrix for grain type classification with software separated

kernels trial 1

CWAD Barley Oats CWRS

CWAD (n=1000) 943 16 7 34

(s4.3%)

Barley (n=1000) 15 966 7 ,t2

(e6.6%)

Oats (n=1000) 18 I 969 4

(e6.e%)

CWRS(n=1000) 4 I 5 gB2

(98.2Vo)



Table 85. Confusion matrix for grain type classification with software separated

kernels trial 2

CWAD Barley Oats CWRS

CWAD (n=1000) 948 20 11 21

(94.8o/o)

Barley (n=1000) I 969 11 11

(e6.e%)

Oats (n=1000) 10 12 975 3

(97.5o/o)

CWRS (n=1000) 16 6 3 s75

(97.5Vo)

Table a6. Confusion matrix for grain type classification with software separated

kernels trial 3

CWAD Barley Oats CWRS

CWAD (n=1000) 949 15 6 30

(e4.e%)

Barley (n=1000) 16 969 12 3

(97.4o/o)

' Oats (n=1000) 14 10 975 1

(97,2o/o)

CWRS (n=1000) 15 B 2 975

(97.3o/o)


