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Abstract

It is believed that Lyapunov Exponents can characterize the stability of nonlinear

dynamic systems. Lyapunov Exponents can be calculated from the mathematic model or time

series data of the system, which are independent of the initial conditions within the same

stability region. Lyapunov Exponents have been mainly used for diagnosing chaotic systems'

where at least one Lyapunov Exponent is positive. Little work has been done on calculating

Lyapunov Exponents from a time series of a potentially stable system, where the largest

Lyapunov Exponent is negative or zero' Most mechanical systems are complex' of which' the

mathematical models are sketchy or even not available' For such systems, it is extremely

diffrcult, even impossible, to derive a Lyapunov function for stability analysis' Therefore' an

alternative method for stability analysis of nonlinear engineering systems is needed'

The objective of this thesis is to explore the possibility and limitations of applying

wolf s method to calculate the largest Lyapunov exponent from a time series of potential

stable systems. Two fundamentally different robotic systems are used as examples' one is a

robotic arm with two rigid links moving in the horizontal plane' A position-controlled

pneumatic actuator system is used as the second example. In addition to the different nature

in their nonlinearity between the above two robotic systems, the pneumatic system has a set

of infinite non-isolated equilibrium points, while the twoJink robotic arm has one

equilibrium Point'



Lyapunov Exponents for each of the above systems are calculated using the mathematic

models and the largest exponent is calculated from the time series. The results show that for

the two-link position-controlled robotic system which has an isolated equilibrium point' the

largest negative Lyapunov exponent calculated from the time series matches the one from the

mathematic model very well. This indicates that wolf's method has good potential for

calculating largest negative Lyapunov exponent. However, for systems with a stable periodic

motion, the stability should be studied using Lyapunov exponents calculated from

mathematical model. For the pneumatic system, which has a set of infinite non-isolated

equilibrium points, zero exponents are obtained from the mathematic model, which conflict

with the conventional interpretation of the Lyapunov Exponents' However' the largest

Lyapunov exponent calculated using a time series for the pneumatic system does not match

the one from the mathematic model, and the cause is also explored' It is concluded based on

the examples for systems with a set of infinite non-isolated equilibrium points, The largest

Lyapunov Exponents can not be calculated using Wolf's method' Systems with infinite

non-isolated equilibrium points occur naturally and frequently in mechanical engineering

systems.

This work is the first step in applying the concept of Lyapunov Exponents for stable

mechanical engineering systems. It enables us to understand the possibility and procedure for

applying wolfs method using time series for potentially stable robotic systems' More

importantly, this work shows the limitations of the applications of wolfs method to

engineering sYstems.
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Chapter L

Introduction

1.1 Motivations

Control Engineering uses control theory to cause diverse, mathematically modeled

systems behave in a desired manner. In order to create the controller, the dynamic behavior

of a modeled system needs to be fully analyzed and understood.

Control Engineering has a wide range of applications, from the flight and propulsion

systems of commercial airliners to the automatic control present in many modern robot

systems. The stability of the control systems is the most important consideration when

applying the controllers.

With background technologies of behavior, navigation and path planning solved using

basic wheeled robots; Roboticists are now moving on to develop stable walking robots. Over

the past two decades, numerous bipedal walking robots have been created including Asimo

(Honda Motor CO. 2002) and QRIO (Sony Co. 2003). Initial work focused on multiJegged
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robots such as Aibo (Sony Co. 1999); which were statically stable and easier to work with.

A diffrculty in the development of bipedal and naturally gaited robots is that the human

body utilizes a large number of muscles to keep balanced and stable when moving.

Replicating what is required for stabilization mechanically is very difficult and expensive.

Since an unstable robotic system is typically useless and potentially dangerous; the

stabitity analysis is always the important part in control engineering. The controller is applied

to ensure that the system follows the desired trajectory or moves to the desired position. In

the majority of cases, automatic control systems involve complex devices, consisting of

objects (plants or processes) to be controlled, and controllers. The task of a controller is to

continuously support either the stationary operating conditions, or those conditions of the

plant that change according to a given law. All deviations from the desired conditions that

may arise in the control system must be reduced to zero.In other words, the control system

must be asymptotically stable (David R Merkn, 1996). The stability analysis of robotic

motion can be traced back to the time when robots were first invented. In recent years, many

studies on the stability analysis relating to robotic control have been done. Several theories

and methods have been successfully developed to support the stability analysis of robotic

motion.

Lyapunov's stability theory is widely used for stability analysis of nonlinear dynamic

systems. It includes two methods. One is the Linearization Method and the other is the Direct

Method. The Linearization Method draws conclusions about a nonlinear system's local
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stability around an equilibrium point from the stability properties of its linear approximation.

The Direct Method is not restricted to local motion. It determines the stability properties of

nonlinear system by constructing a scalar energy-like function for the system and examining

the derivative of the function with respect to time. The key to applying the Lyapunov

stability analysis is to find a Lyapunov function. However, there are no general and

constructive methods for deriving Lyapunov functions for nonlinear systems.

As there are no constructive rules for deriving a Lyapunov function, the applications of

this otherwise powerful tool are extremely limited and the stability of many nonlinear

systems cannot be studied. Lyapunov exponents quantiff the average rate of convergence or

divergence of nearby trajectories. A positive exponent implies a divergence of orbits, a

negative one shows convergence of orbits, and a zero exponent indicates the temporally

continuous nature of a flow (i.e. the trajectory show periodic motion).

There are two ways to calculate Lyapunov Exponents. One method calculates Lyapunov

Exponents from the mathematic model of the system, and the other method calculates

Lyapunov Exponents directly from one series of the simulation or experiment data. The

method which calculates Lyapunov Exponents from the time series data is very convenient

and powerful. Until now, most of the work on the method which calculates Lyapunov

Exponents from the time series data has been focused on the chaotic system, where at least

one Lyapunov Exponent is positive. Further exploration of Lyapunov Exponents using the

time series method of stability analysis, where the largest Lyapunov exponent is negative or
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zero, is needed.

1.2 Literature survey

1.2.1 Stabitity analysis of nonlinear robotic systems

"The General Problem of Motion Stability" was developed by Alexandr Mikhailovich

Lyapunov in the late 19ú century. Since then, Lyapunov's direct method has been applied to

many mathematic, electrical and mechanical systems. These studies focus on the variation of

the Lyapunov function measurements of the motion amplitude. The Lyapunov function is not

restricted to linear systems but requires the construction of a suitable measure, done on a case

by case basis. Lyapunov's stability theory does not give the method for deriving a Lyapunov

function. Consequently, the construction of a Lyapunov function for a nonlinear system

remains a great challenge which restricts applications for this otherwise powerful theory (Wu,

1996). Non-smooth systems, defined by ordinary differential equations containing

discontinuous terms, frequently appea.r in mechanical engineering. For non-smooth systems,

which violate the Lipschitz-continuous requirement, the solution and stability analysis of

such systems using classical techniques is questionable. Due to the existence of the above

challenges, many studies on Lyapunov stability analysis have been carried out and are

summarized below.

The stability of multi Degrees of Freedom (DOF) robot systems have been studied under

the Lyapunov direct method. A considerable amount of work has been done on developing

methods for deriving Lyapunov functions including: the method of analogy with linear
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systems by Barbasin (1960), the method of integration by parts by Ponzo (1965) and Huaux

(1967), the rnethod of system energy by Marimo and Nicosia (1983), the integral methods,

the scalar-Lyapunov-function method and the intrinsic method by Chin (1986, 1987, 1988

and 1989), extended integral method by Wu et. al. (1995). These methods provide a robust

basis for the stability analysis, especially the V/u et. al. (1995) extended Chin's integral

method which constructs Lyapunov functions for the general nonlinear systems represented

by state space models. All of the above research is based on the conventional Lyapunov's

søbility theory. They can only be applied to the smooth system. Smooth systems, are

systems where every term in the ordinary differential equations is continuous. In spite of the

importance of non-smooth systems wlich has been mentioned by several researchers (Slotine

and Sastry 1983, Southwar et al. 1991, Utkin 1977 and 1991 and Corles 1993), there are no

effective methods developed. A solution theory, which allows for the study of differential

equations with discontinuous terms, is needed for non-smooth systems. The pioneer in the

research of the non-smooth system is Filippov (1960, 1979 and 1988). He developed a

solution theory (Filoppov's solution theory) for non-smooth systems that is used to define

solutions for the proposed piece-wise continuous control systems and the existence and

uniqueness of such solutions. Wu et al., (1996) proved the uniqueness of Filippov's solution

for a base-excited inverted pendulum system where the Lyapunov feedback control law is

discontinuous. Wu et al. (1998, 2001), further extended the Lyapunov's second method to

non-smooth dynamic systems and methods for constructing smooth./non-smooth Lyapunov

functions have been developed. It has been demonstrated that with such methods, it is much
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easier to construct Lyapunov functions for some non-smooth engineering systems.

Although Lyapunov's stability theory is a powerful tool for stability analysis, the lack of

rules for deriving Lyapunov functions has severely limited the applications of Lyapunov's

stability theory. Therefore, a new method to analyze the stablity of nonlinear systems is

needed.

1.2.2 Chaos phenomena in mechanical engineering

There are many studies on the presence of bifurcations and chaos in mechanical and

electrical systems. Moon (19S7) describes many phenomena where chaos has been detected.

In the particular case of robot manipulators however, little work exists on bifi.ucations and

chaos. For example, Nakamura et al. (1997) analyzed an underactuated, frictionless

manipulator lying on a horizontal plane. They considered chaos as a motion characterized by

sensitive dependence on initial conditions and topological transitivity, and show numerically

that the system can display these two properties. They proposed some controllers to

accomplish several control objectives, showing dynamical properties from numerical

experiments. Mahout et al. (1993) presented simulations of a 2-DOF robot manipulator

executing repetitive tasks controlled with a PD algorithm, which gave rise to complex

dynamics. Lankalapalli and Ghosal (1996, 1997) analyzed a controlled 2-DOF robot

manipulator (a PD and a model-based controller). They verified the existence of chaotic

motions using numerical simulations and by calculating the largest Lyapunov exponent.
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Several analytical results of bifurcations and chaos have also been obtained for special

configurations of the dynamic systems. Burov (1986) and Dullin (1994) have proved the

non-integrability of the double pendulum using the method of splitting, separatrices and

Melnikov's method, respectively. Lindtner et al. (1989) gave all the generic codimension-one

cases of stability loss in a driven double pendulum where the prescribed motion of the

endpoint is a circle. Verduzco and Alvarez (1999) made a theoretical study of bifurcations in

a 2-DOF underactuated robot manipulator driven by constant torques.

Among the procedures proposed to regulate mechanical robots, the PD compensator is

widely used (Takegaki et al. 1981). Under some circumstances, a complex dynamical

behavior may arise in this system. In particular, the PD-controlled pendulum may exhibit a

chaotic behavior when the reference for the angular position is periodic and the total

dissipation and proportional gain satisff some conditions (Alvarez et al. 1998). Lypapunov's

direct method is not suitable to the stability analysis of chaos. For this new phenomenon, a

method to diagnosing and analyzing chaos is required.

1.2.3 Concept of Lyapunov Exponents

Chaotic behavior has been observed in the laboratory in a variety of systems including

oscillating chemical reactions and fluid dynamics. Chaotic behavior has been observed in

nature including the dynamics of satellites in the solar system, weather and climate.

Lyapunov Exponents have been considered to be the most useful dynamc diagnostic tool for

chaotic systems.
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Lyapunov Exponents quantifr the rate at which orbits on an attractor converge or

diverge as the system evolves in time (Rosenstein et a1.,1993, Abarbanel, 1996), and provide

a direct measure of the stability of those orbits. One exponent is defined for each dimension,

representing the average rate of growth or decay along each of the principal axes in the

dr -dimensional state space (Abarbanel , t996). The largest Lyapunov exponent specifies the

maximum average rate of divergence, or convergence of the orbits. A positive exponent

implies divergence of the orbits and indicates global instability and sensitivity to initial

conditions that define the presence of chaos. A negative one indicates convergence of the

orbits. A zero exponent indicates the temporally continuous nature of a flow (i.e. the

trajectory show periodic motion). Consequently, a system with positive exponents has

positive entropy, in that trajectories which are initially close move apart over time. The more

positive the exponent, the faster they move apart. Similarly, for negative Lyapunov

Exponents, the trajectories converge. Determining the Lyapunov Exponents anal¡ically is

extremely difficult, especially for robot systems. Most of the work on determining Lyapunov

Exponents for robot systems is based on numeric calculations.

1.2.4 Calculation of Lyapunov Exponents

1.2.4.1Calculation of l-yapunov Exponents from the mathematic model

For systems of which the equations of motion are explicity known, there is a well

developed and straightforward technique to compute the entire Lyapunov Exponents'

spectrum (Benettin et. al., 1980). The concept of Lyapunov Exponents was given in a form
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adapted to the needs of the theory of dyamic systems and of the ergodic system by Oseledec

(1968). Benettin et al. (1980) developed a method for determining the anal¡ical results of all

Lyapunov Exponents. It is the basic background for the calculation of Lyapunov Exponents

numerically.

One chaotic system was introduced by Loretu (1984) which has 3 ordinary differential

equations, where the Lyapunov Exponents of the system were calculated. The most used

method which calculates Lyapunov Exponents from the mathematic model was developed by

Wolf et al. (1985). Muller (1995) extended V/olfs method to the non-smooth system and

pointed out that the required linearized equations have to be supplemented by certain

transition conditions at the instance of discontinuities. The accuracy of the calculated

Lyapunov Exponents is always important. However in Wolfs method, the first order ODE

numerical method was used. Despite the success of the methods for determining Lyapunov

Exponents based on mathematical models, it has many limitations.

Better algorithms are needed. Adequate mathematical models have not yet been found

even for the simplest chaotic flows in hydrodynamic systems (Harry 19S6). The above

method can not be applied directly to the experimental data, and even due to the known

system's high order non-linear systems, heavy mathematic calculation is required and the

method for determining Lyapunov Exponents based on mathematical models is not feasible

for some systems.

9
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1.2.4.2 Calculation of Lyapunov Exponents from a time series

Calculating the Lyapunov Exponents from a time series is another way to analyze the

stability of a system. Usually, time series data is a set of data for a variable and consists of

discrete measurements. This method allows for the calculation of Lyapunov Exponents from

one time series data which can often be collected from experiments. These advantages of this

method attract many researchers to employ it. A considerable amount of work has been done

for chaotic systems. Applying this method to stable systems, suggests a bright future for

stability analysis.

Before calculating Lyapunov Exponents, the attractor has to be reconstructed. The

Takens theorem (1981) implies that for a wide class of deterministic systems, there exists a

diffeomorphism (one to one differential mapping) between a finite "window" of the time

series data. Several related approaches which use a state/space reconstruction method

(Packard et. al., 1980) to predict the inpuloutput data, include local linear method (Price and

Prichard, 1993; Vassiliadis et aI. 1994) AutoRegressive Moving-Average method (Detman

and Vassiliadis, 1997) and neural network models (Her et al. 1993).

Given a scalar time series produced from a measurement of an autonomous system with

many degrees of freedom, it was shown by Packard et al (1980) that if the dynamics of the

system lies on a low dimensional attractor, the attractor can be reconstructed by creating a

delayed coordinate vector. It was shown by Takens (1981) that this attractor reconstruction is

one to one. Most observed data, reflect just a few of the many physical variables of a system

and measurements of all variables are rarely possible. This difhculty is overcome if the

10
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variables are nonlinearly coupled, in which case the time delay embedding technique can be

used to reconstruct the phase space from the time series data. The Embedding Theorem

(Takens, 1981, Sauer et al., 1991) states that the topological structure of a dynamical system

can be "unfolded" from a single time series using the original data and its time-delayed

copies:

Y(n) =[X(t),X(t +r),...,X(t +(d, -l)r)] (1.1)

where Y(n) is the reconstructed d, -dimensional state vector, X(t) is the original

l-dimensional data, r is a time lag, and d, is the embedding dimension. The time lag, r ,

can be calculated from the first minimum of the Average Mutual Information (AMI) function,

which evaluates the amount of information shared between two sets of data over a range of

time lags (Fraser and Swinney,1986, Abarbanel, 1996). An appropriate value for d, can be

computed from a Global False Nearest Neighbors (GFNN) analysis (Abarbanel, 1996) by

determining the dimension where the total percentage of false neighbors þroduced by

projection of an attractor onto a state space of too small a dimension) drops close to zero.

A major breakthrough came with the discovery that a measured time series carries the

information necessary to estimate the above quantities. In particular, the method of embedding

using time delay coordinates, first introduced by Packard et al. (1980), provided a general tool

for the identification and analysis of complex systems in terms of low dimensional systems.

The Embedding Theorem guarantees that the dynamical properties of the system are the same

11
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in both the original and reconstructed state spaces, providing a poweful tool for extracting

multidimensional dynamic information from unidimensional time series.

In the calculation of Lyapunov Exponents from time seres data, the samples of the data are

very important for the calculation. Here, the basic signal sample concepts and theorem (Shenoi

2006, Cover and Thomas 1991) are reviewed. Time series data include two kinds of time signal,

the continuous-time signal (analog signal) and discrete-time signal (digital signal). A

continuous-time signal is a function of an independent variable that is continuous. A one

dimensional continuous-time signal f(t) is expressed as a funtion of time that varies

continuously from -oo and oo. A discrete-time signal is a function that is defined only at

discrete instances of time and is undefrned at all other values of time. Although a discrete-time

function may be defined at arbitrary values to time in the interval -.o and co, in this work we

consider only a function defined at equal intervals of time and defined at t: nr ,where r is a

fixed interval in seconds known as the sampling period and n is an integer variable defined

over -æ and oo. If it is chosen to sample f (t) atequal intervals of z seconds, the function

f (nr) = f (t) l,=,, âs a sequence of number (samples). Since ø is fixed, f (nr) is a function of

only the integer variable n and hence can be considered as a function of n or expressed

by f ("). For a continuous ñmction, /(r) is band-limited to f* . Namely, the spectrum of the

function is 0 for all frequencies greater than /]* . Then, the fi.rnction is completely determined

by samples of the function spaced :- seconds apart. The Nyquist-Shannon theorem shows
LJ^

that a band-limited function has only 2f^* degrees of freedom per second. The values of the

12
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function at the sample points can be chosen independently, and this specifies the entire

function (Cover et. a1., 1991). Graphically, if the sampling rate is sufficiently high, i.e. greater

than the Nyaquist rate, there will be no overlapped frequency components in the frequency

domain. Most mechanical signals have frequency limited to below 100H2. Therefore, a2}O}Jz

sampling rate should satisfu most mechanical engineering applications.

After the attractor is reconstructed, a method for calculating Lyapunov Exponents needs

to be developed. Several methods for estimating Lyapunov Exponents from experimental data

have been developed. The most frequently used methods are due to Wolf et al. (1985), which

follow the separation between nearby points on the attractor to estimate the largest Lyapunov

exponent. Eckaman et al. (1990) follows groups of nearby points to compute a least square

estimate of the Jacobian at each point, which is then used to integrate the variational equations,

from which the Lyapunov Exponents are calculated. Although these techniques give an

estimate of the Lyapunov Exponents, large amounts of experimental data are necessa.ry

(Mayer-Kress 1986). This is due in part, to the need to obtain an accurate reproduction of the

attractor geometry from the observed data. Stoop and Parisi (1991) advocated the use of the

singular value decompostition to restrict the dynamics to the tangent plane of the attractor,

prior to approximating the local linear dynamics. Rosenstein et al. (1993) developed an

algorithm to compute the largest Lyapunov exponent by directly estimating the separation

between pairs of neighboring points in the state space as they diverge over time. By plotting the

log of the divergence versus time, the largest Lyapunov exponent is estimated by computing a

13
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least squares fit to the linear region of the resulting curve (Rosenstein et al., 1993). A less data

required method was developed by Rauf and Ahmed (1992). The studies related to this

method were done to get more precise Lyapunov Exponents with short data (Zenget al. 1991;

Brown, Henry 1991). This method was applied to the daily-averaged data of surface

temperature observed at two locations in the United States, to quantitatively evaluate

atmospheric predictability. Carretero-Gonzlez et al. (2000) described methods of estimating

the entire Lyapunov sepectrum of a spatially extended system from multivariate time series

observations. Kinsner (2003) developed the method to measure and analyze chaos using

Lyapunov metrics. Until now, most of the works on Lyapunov Exponents are about the low

dimensional chaotic systems (the Lorenz attractor is the most famous one). Although this

method suggests a bright future for stability analysis, diffrculties do exist in getting accurate

Lyapunov Exponents i.e., for calculating negative Lyapunov Exponents.

Noise imported from the environment is also a problem which affects the accuracy of the

calculation of Lyapunov Exponents. Sauer and Yorke (1999) investigated the computational

artifacts due to observtional noise in the experimental time series data, and gave the formulae

for the expected values of the reconstructed Jacobian in some simple cases. More information

about measurement noise is presented in the next section.

1.2.5 The effects of noise on calculation of Lyapunov Exponents from time series

The experimental data is usually accompanied with noise. Although filters can remove

some of the noise it can not be eliminated completely. As noise will affect the accuracy of the

14
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Lyapunov Exponents, the effects of noise must be reduced. There are two methods to do that.

One is using filters to reduce the noise from the experimental data; the other is setting the

evolution length scales, which only work when scales larger than the noise contain accurate

information. Since larger neighborhoods yield poorer linear approximations due to the

nonlinearity, elrors in the dynamics increase with the noise level. White Gaussian Noise

(WGN) is the most common noise in the mechanical systems. Removing the noise from

experimental data and studying the sensitivity of the method to noise which calculates

Lyapunov Exponents from time series are both challenging problems.

The theory of filtering of stationary time series for a variety of purposes; was developed

by Norbert Wiener in the 1940s for continuous time processes in a notable feat of

mathematics (Wiener, 1949).In an important paper, Levinson (1947) showed that in discrete

time, the entire theory could be reduced to least squares, which makes it mathematically

simple. Conventional approaches to noise reduction like the Weiner and the Kalman filters

are not suitable for signals measured from chaotic systems because the underlying dynamics

of the chaotic system is not localized in either the time or the frequency domain. Methods of

noise reduction are extensively used in communication, physical systems and experimental

measurements. There are many methods for reducing noise in a chaotic time series. Hammel

(1990) has presented a method which can reduce the noise of a chaotic orbit on an attractor

by more than ten orders of magnitude. This method is simple and fast. Its performance was

analysed for several two-dimensional systems at moderate noise levels. A simple nonlinear

15
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noise reduction method can be used in the Wolfs method. This involves choosing the

replacement neighborhood points which selects trajectories that stay closed, for a few time

steps to the segment to be cleaned.

Overall, the concept of Lyapunov Exponents is a powerfi.rl tool to analyze the stability of

nonlinear systems. The method which calculates the Lyapunov Exponents from the

mathematic model has been well developed. A considerable amount of work has been

focused on developing the method which calculates the Lyapunov Exponents directly from

the time series. Until now, a large body of research has been completed on the analysis of

chaotic systems, which have at least one positive Lyapunov exponent. The concept of

Lyapunov Exponents has rarely been used to study potentially stable systems where the

largest Lyapunov exponent is negative or zero. This is true especially for the method

calculating Lyapunov Exponents directly from the time series. The pioneering explorations

for applying the concept of Lyapunov Exponents directly from the time series for stable

systems are needed.

1.3 The systems studied in this thesis

Two typical robotic systems will be used in this study to test the applicability of methods

for calculating negative Lyapunov Exponents based on a time series. Research related to the

two robotic systems studied in this work, are discussed briefly in this section.

1.3.1 Multiple pendulum systems

The inverse pendulum plays an important role in robotic research. For research on

16
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bipedal robots, a chain of inverted pendulums is often used as a physical model. An inverted

pendulm is an inherently unstable system and the studies of control and stability of such a

system is one of the challenging problems in the fìeld of automatic control (Mori, 1972).For

natural human walking, more than 2O-degrees of freedom may be involved (Golliday and

Hemami, 1977).It is extremely challenging to study such a complicated system and to get

some desired results. So in robotic research, the first step is to select a simpler mathematical

model to describe the motion and test the controller. Previous studies about the stability of

the bipedal robot systems still rest on the Lyapunov's stability theory. Although the previous

works provided a solid framework in the study of posture stability and control of biped

movement, it is difficult to apply them to more complicated models.

With more than 2O-degrees of freedom involved in human walking, it is complicated to

model the systems and the dynamic equations which have highly coupled nonlinearities. To

address this, several simplified models have been developed. The majority of these

approaches used the inverted pendulum to study human/biped systems (Chow and Jacobson

1971, 1972,Hemami et al. 1973, Hemami and Golliday 1977, Hemami et al. 178, Katbab

1982, Muri 1984, Kajita and Tanie 1991, Wu et al. 1998). Wu et al. (1998) studied a

base-excited (in 3D space) inverted pendulum with two degrees of rotational freedom to

predict major features of upper body dynamics and stability. However, the single pendulum

is too simple to adequately study the complete dynamic motion of humans. The model to

describe bipedal locomotion was then increased to 2-DOF and the idea of using a two-link
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inverted pendulum model was introduced (Golliday and Hemami l976,Hemami and Camana

1976, Hmanti 1978, Hurmuzlu and Moskowitz 1986, Wu and Swain 2002). The three-link

biped model which has an upright trunk and two lower limbs were developed by Hemami

(1977) and Hurmuzlu (1984). The five-link model was studied by many researchers (Hemami

et al 1977, Urmuzlu 1993, Wu and Chan2002, Ma and Wu 2002, and Wu et aL.2002,2004).

The five-link inverted pendulum system became a seven-link system when two links were

added as the two feet. Onyshko and Winter (1980) and Shih (1996) studied human

locomation using a seven-link bipedal model. The more complicated nine-link biped was

sudied by Tagawa and Yamashita (1981), Furusho and Sano (1990) and Zheng and Shen

(1990). Although the multi DOF inverted pendulum system can describe the human being

motion better, it is sometimes too complicated to feasibly analyze the stability.

A very strange phenomenon, chaos, appeared. when changing the controller gains.

Although literature exists on chaotic motion in Duffing's oscillator, in inverted pendulum

maps and several other systems (Holmes, 1983); there are very few works on chaos in robots

reported. Striet et al (1989) have investigated the non-linear response of a flexible

manipulator performimg a repetitive task. They showed that the flexible variables can

undergo period doubling bifurcations leading to chaos. Buhler and Koditschek (1990) have

discussed robotic juggling and have shown that incrementing controller gains of a planar

juggling robot can lead to period doubling and chaotic motions. Vakakis and Burdick (1990)

and M'Closkey and Burdick (1993) have looked at periodic and chaotic motions in a hopping
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robot with a non-linear spring in the leg. Mahout et al. (1992) have numerically studied the

equations of a planar 2R robot with a proportional and derivative (PD) controller. They have

shown that the 2R robot, under PD control, can exhibit harmonic, subharmonic, higher

harmonic, fractional harmonic and possible chaotic motions as the gains changed.

1.3.2 Pneumatic actuation systems

Pneumatic actuators have been widely used in manufacturing and industry because of

their low cost and neatness. Many complete mathematical models for the thermodynamics

and flow equations in the charging-discharging processes were developed (Shearer, 1956).

As a result, more complex position controllers; based on the linearization around the mid

stroke position, were developed (Burrows, 1966; Liu et. al., 1988). There are lots of control

methods, from point-to-point position control to high accuracy tracking and force control. A

comparison between linear and nonlinear controllers applied to a rotary pneumatic actuator is

presented by Richard and Scavarda (1996). It is difficult to make the actuator reach the

desired performance level using either the standard proportional-integral (PÐ or

proportional-integral-derivative (PID) control. Karpenko and Sepeheri (2003) developed a

practical, yet accurate, position controller for an experimental pneumatic actuator. Based on

the quantitative feedback theory (QFT) they used a fixed-gain PI control law which

minimizes the effects of the plant paramehic uncertainty on the closed-loop position

responses (Karpenko, 2003). Due to the complexity of the peumanic system the stability

analysis has not been carried out.
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Both of the systems studied in this thesis, are very typical systems in robotic control

engineering. Due to the complexity of the systems and lack of rules for generating Lyapunov

functions, stability analysis of the above control systems has been extremely limited. In this

work, the concept of Lyapunov Exponents is applied to these two systems for stability

analysis.

1.4 Objective and scope of this Thesis

A considerable amount of work on determining Lyapunov Exponents based on a time

series has been done, for chaotic systems and for low dimensional systems. Most of the work

on the noise analysis is in physics and electrical engineering. In the mechanical engineering

area, only a limited amount of work has been done calculating the Lyapunov Exponents for a

potentially stable system or in calculating Lyapunov Exponents from time series with noise.

The objective of this thesis is to explore the possible applications of the concept of

Lyapunov Exponents for stability analysis in a potentially stable system, i.e., the possibility

of calculating negative Lyapunov Exponents from a time series using Wolf s method (1985).

Two robotic systems are selected for stability analysis. One is a two-link pendulum

system and the other is a pneumatic actuator system. Firstly, the time series is generated from

the mathematical model of both robotic systems, i.e., the time series is noise-free. Both

methods calculating the Lyapunov Exponents from the mathematic model and a time series,

specifically Wolfs method (V/olf, 1984) are applied to the two systems. The Lyapunov

Exponents calculated from both methods will be compared. Secondly, White Gaussian Noise
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will be imposed to the time series generated from the mathematical models. The Lyapunov

Exponents will then be calculated from the data with noise. The sensitivity of the method to

the noise is very important for its applicability.

1.5 Thesis Organization

The remainder of this thesis is organized as following. Chapter 2 introduces the

theoretical fundamentals of this research. The concept of Lyapunov Exponents will be

introduced first. Then, the methods for calculating the exponents are presented. Chapter 3

contains the application of the Lyapunov Exponents' theory to the two-link pendulum system.

The chaotic motion, stability to a set point and trajectory tracking will be generated. The

exponents will be calculated for both the mathematical model and the time series. Such

exponents will be compared. The noise is inputted to the time series data to study the

sensitiviry of the method to the noise. In Chapter 4, Wolf s method will be applied to the

high dimensional system-a pneumatic actuator. The limitation of the method will be

identified and reasons will be given to explain it. Conclusions and recolnmended future work

is outlined in Chapter 5.
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Chapter 2

Theoretical Prelimin aries

In this chapter, the theoretical background needed for this research is presented. The

concept of Lyapunov Exponents will be introduced first. Then, two methods for calculating

the exponents will be discussed. One method calculates Lyapunov Exponents from the

mathematical model. The other method calculates the exponents from time series data. Since

the reconstruction of the attractor is the important part for the second method, the embedding

method for reconstruction is also presented in this chapter. When the time series is collected

from experiments, it is inevitable to include noise to the original signals. The basic

knowledge of noise and its effects on the accuracy of the calculating Lyapunov Exponents

are introduced in the last section in this chapter.

2.1 The concept of Lyapunov Exponents

The concept of Lyapunov Exponents plays an important role in the modern theory of

nonlinear dynamics. They characteize the exponential rates of changes in the response of
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dynamical systems. The concept of Lyapunov Exponents was first developed in mathematics.

The Oseledec ergodic theorem (1968) provides the theoretical background for the

computation of Lyapunov Exponents of a nonlinea¡ dynamical system. The theorem states

conditions for the existence of the defining limits and describes the properties of the

Lyapunov Exponents. Since 1968, a considerable amount of research has been carried out in

the studies of chaotic systems using the concept of Lyapunov Exponents. However, little

work has been done on studying potentially stable systems using the concept of Lyapunov

Exponents. The only works on applying the concept of Lyapunov Exponents to stability

analysis of robotic systems are from Grune (1998), Ravishankar and Ghosal (1999), Wu et al.

(2001) and Pooya (2004), where Lyapunov Exponents were calculated using mathematical

models.

Definition of Lyapunov Exponents: Consider a dynamic system of dimensionN, defined

by equations

i(t¡ = f(x(t)), x(0) : xo,x € R' (2.r)

where x(t) is a state vector and function f is generally a nonlinear, continuous

differentiable function. The movements of the state vector x(/) in the state space, results in

a system's trajectories. After the transient stage, the trajectories generated by different initial

conditions xo settle near an attractor. The time evolution of a small perturbation to a

trajectory is govemed by a linearized equation in the tangent space:

23
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where õx is a small perturbation to a trajectory, 6*o denotes the initial perturbation,

Df is the Jacobi matrix of the function /. Oseledec (1968) introduced a measure of

avercge contraction of the perlurbation to a given trajectory as:

4=l*1,"',[m) (i =1,2,...,n) (2.3)

known as the Lyapunov Exponents. In equation (2.3), lla¿Aill ana llaa¡ro)ll denote the

length of the i'å principal axis of the infinitesimal n -dimensional hyper-ellipsoid at final

and initial times, t and to. A cornmon approach in visualizing state space motion is to

imagine how a small length, area, volume or higher-dimensional element might evolve in

time. For example, the long term evolution of an infinitesimal n- sphere of initial condition

is monitored as the Lyapunov Exponents; the sphere will becom e aî n- ellipsoid due to the

locally deforming nature of the trajectory in a r¡- dimensional state space. The i'h

Lyapunov exponent is then defined in terms of the length of the i'' principal axis. The

existence of the lg3 "* be proved using the Oseledecs' multiplicative ergodic theorem

(Oseledec, 1968).

The Lyapunov Exponents of a system are a set of invariant geometric measures, which

describe in an intuitive way, the dynamic content of the system. In particular, they serve as a

measure of ease in predicting the system performance. The system is referred to here, as a set

of trajectories in the state space. Lyapunov Exponents quantifr the average rate of

convergence or divergence of nearby trajectories in a global sense. A positive exponent

implies divergence of orbits, a negative one shows convergence of orbits, and a zero
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exponent indicates the temporally continuous nature of a flow (i.e. the trajectory shows

periodic motion). Consequently, a system with positive exponents has positive entropy, in

that hajectories that are initially close together move apart over time. The more positive the

exponent, the faster they move apart.

For the Lyapunov Exponents, the signs of the spectrum are usually used to analyze the

stability of the system. Any continuous dynamic system without a fixed point will have at

least one zero exponent. A stable steady state associated with an attracting periodic orbit has

one zero and all other negative Lyapunov Exponents. Similarly, a stable quasiperiodic

(superposition of periodic) attractor with K frequencies has K zero Lyapunov Exponents

and the others are negative (Eckmann and Ruelle, 1985). If all of the Lyapunov Exponents of

a system are negative, this indicates that the system has an attractive fix point. The sum of the

Lyapunov Exponents is the time-averaged divergence of the state space velocity. Hence any

dissipative dynamic system will have at least one negative exponent, the sum of all of the

Exponents is negative, and the post-transient motion of trajectories will occur on a zero

volume limit set (an attractor). From the equation (2.3) the Lyapunov exponent 2, generally

indicates in the i'å dimension:

1, <0: The orbit attracts to a stable fixed point. Negative Lyapunov Exponents are

characteristic of dissipative or non-conservative systems (the damped harmonic oscillator for

instance). Such systems exhibit exponential stability. The more negative the exponent, the

faster the systems move to the steady state. Super-stable fixed points have a Lyapunov
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exponent of )", -+ -"o. This is akin to a critically damped oscillator in that the system heads

towards its equilibrium point as quickly as possible. Nearby points on the trajectory will

converge closer and closer as shown in Fig. 2.I.a.

1¡ =0: A Lyapunov exponent of zero indicates that the system is in some sort of steady state

mode. A physical system with this exponent is conservative. Such systems exhibit stability in

the Lyapunov sense. Nearby points on the trajectory will stay at the same separation all of the

time, as shown in Fig. 2.1.b.

Ã, > 0 The orbit is unstable and chaotic. Nearby points on the trajectory no matter how

close will diverge to arbitrary separation, as shown in Fig. 2.1.c.

(b) (c)

4<0 4=0
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(a)

Fig.2.l Different orbits projected on the i'å dimension

For the special one-dimensional to a three or more

exponents can appear as follows:

l,>0

with different Lyapunov Exponents

dimensional system, the Lyapunov

For a one-dimensional state space, there a¡e three types of equilibrium points:

a) A <0 ,Nodes(sinks): equilibrium points that attract nearby trajectories

b) A = 0 , Repellors(sources): equilibrium points that repel nearby trajectories

c) ),>0, Saddle points: equilibrium points that attract trajectories on one side but repel
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them on the other.

For a two-dimensional state space:

a) 4 and 1, both nonvanishing (non-zero exponent): the system will have a hyperbolic

equilibrium point. Depending on the signs of l', arrd L, the equilibrium point can be

attracting or stable (4.0 and 4.0), repelling or unstable (4>0 and 4>0), or

saddle type (4 > 0 and f, <0).

b) 4 =0, 4 <0: the system will have an attracting periodical orbit.

c) 4 > 0 , 4:0 : the system will have no equilibrium points or a repelling period orbit.

For three or higher dimensional systems, the positive Lyapunov Exponents introduce a

new concept of chaos. Chaos is an aperiodic long-time behavior arising in a deterministic

dynamic system that exhibits a sensitive dependence on initial conditions. Any systems

containing at least one positive Lyapunov exponent is defined to be chaotic, with the

magnitude of the exponent reflecting the time scale on which system dynamics become

unpredictable (Wolf et. al., 1935). Chaos is sensitive to the initial conditions and the

trajectories are not converging to any steady state. The signs of Lyapunov Exponents provide

a qualitative picture of a system's dynamics. For a general continuous four dimensional

system, the positive Lyapunov can only show up in three possible types. The Lyapunov

spectra are (+,+,0,-), (+,0,0,-) and (+,0,-,-). For a given system a change in parameters

will generally change the Lyapunov spectrum and may also change both the type of spectrum

and type of attractor. For example for a two-link pendulum system, stable motion and chaotic
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motion can be shown just from changing the parameters of the controller.

The magnitude of the Lyapunov Exponents measures the rate of the convergence

divergence of the attractor. The higher the magnitude, the faster the system converges

diverges.

2.2 Calculation of Lyapunov Exponents

Since it is extremely difficult to determine Lyapunov Exponents analytically, especially

for robotic systems, most of the work on determining Lyapunov Exponents is based on

numerical calculations. Generally, there are two methods to calculate Lyapunov Exponents.

One method calculates Lyapunov Exponents from the mathematical model, the other method

calculates from the time series.

2.2.1 Calculation of Lyapunov Exponents from the mathematical model

The methods for calculating Lyapunov Exponents were originally developed for smooth

systems, where every term in the ordinary differential equations is continuous and

differentiable. Non-smooth systems, defined in this work are the differential equations

containing non-differentiable terms, which occur naturally and frequently in engineering

applications. The calculation procedure outlined in Section 2.3.1.2 is generalized for the

calculation of Lyapunov Exponents in systems with discontinuity (Muller, 1995; Kunze,

2000). The methods for calculating Lyapunov Exponents for both smooth and non-smooth

systems are summarized here.
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2.2.1.1, Calculation of Lyapunov Exponents from the mathematical model for smooth

systems

The method for calculating Lyapunov Exponents from the mathematical model is based

on the theorem developed by Oseledec (1968), who introduced the analytical way to

calculate Lyapunov Exponents known as the multiplicative ergodic theorem. The process

could be implemented by defining the principal axes with initial conditions whose

separations are as small as computer limitations allow and evolving these with the nonlinear

equations of motion. An effrcient algorithm for the calculation of Lyapunov Exponents,

which is based on Oseledec's theorem, was developed by Shimada et al. (1979), Bennetin et

al. (1980), and Wolf et al. (1985). Since Wolfls method is the most widely used, in this thesis,

Wolfls method will be used to calculate the Lyapunov Exponents.

In order to calculate Lyapunov Exponents, a f,rducial trajectory (i.e., the centre of a

sphere) is defined by the action of the nonlinear equations of motion with some initial

conditions. Trajectories of points on the surface of the sphere are defined by the action of the

linearized equations of motion on points infinitesimally separated from the fiducial trajectory.

The fiducial trajectory is created by integrating the nonlinear equations of motion for some

post-transient initial condition. Simultaneously, for a N -dimensional system, the linearized

equations of motion are integrated for .À/ different initial vectors defining an arbitrarily

oriented frame of N orthonormal vectors anchored to the fiducial trajectory (Wolf et al.,

1985). This leads to the following set of combined nonlinear system and the linearized

equations:
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{;}=u[î,] (2.4)

where ry is called the state transition matrix of the linearized system g¡=Võxs and the

variational equation W = F(t)tf is a matrix-valued time-varying linear differential equation

derived by linearization of the nonlinear vector field along the trajectory x(t). The Jacobian

F (f) is defined as

F(t¡=#1.=^, (2.s)

And the initial conditions for numerical integrations are 
üll]Ì:{l} 

where /, is the

identity matrix. Lyapunov Exponents are calculated by following the evolution of the area of

the hyper-ellipsoid spanned by 6xr,6xz...,6xnvia separately following the evolutions of

6xr,õxr...,õxn using any integration method. The problem is that õx,,,õxr...,öx, may tend

to line up as f -) oo. This alignment makes the calculations unreliable (Parker and Chua,

1989). To resolve this problem, 6xr,6xr,.,6)cn ate reorthonormalized at each integration

step. This is done by including the Gram-Schmidt reorthonormalization (GSR) scheme in the

calculation procedure. This procedure starts with an orthogonal collection of unit

vectorsvl,...,v,, where the GSR generates an orthonormal set e;,,...,?¿nasl.

,, =ffi

_ v 2- <v2)ur > ul

llur-.vr,ur>urll

vr- llnrun_t ) ur_t - ...- <vn)14 > ttl

u2

un

llu,- . r,,un-t ) u,-t -...- <v,,u, > urll

(2.6)
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where vf is equal to 6x! , vector u! is a normalized version of v!, and <,> signifies

the inner product. The frequency of reorthonorm al'ization is not critical, as long as neither the

magnitude nor the orientation divergences have exceeded computer limitations.

Fig.2.2 shows the geometrical interpretation of the reorthonormalization for two vectors,

õ*f and 6*! (k=I,z,...,K, K is the number of total integration steps), i.e., their

orthogonalization into vf and v!, normalization into zf and u!. The vector vf is equal

to õx{, and vector zf is a normalized version of vf . The factor <õx!,ul >is the length

oftheorthogonalprojection of 6x! onto r.rf .Normalizationof uj yieldstheorthonormal

vector u! and the area of the hyper-ellipsoid spanne dby {õxf ,õx!} is

s xf , a x!¡: ll"f ll. ll"t ll
(2.7)

õxf =vf

Fig.2.2 Ortho-normalization of two vectors 6*f and 6x!

Then the Lyapunov Exponents can be calculated as:
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I

f

\

^=*tL"e,ll"lll
where K is the number of total calculation steps, å is the time step.

<õx!,uf >
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Example of calculating Lyapunov Exponents from a mathematical model

The Lorenz attractor is a chaotic map noted for its butterfly shape, shown in Fig. 2.3.

Fig. 2.3 Lorenzathactor (Lorenz, 1963)

The map shows how the states of a dynamical system (the three variables of a

three-dimensional system) evolves over time in a complex, non-repeating beautiful pattern.

The attractor, and the equations from which it was derived, were introduced by Edward

Lorenzin 1963 (Lorenz,1963). He based his work on the simplified equations of convection

rolls arising in the equations of the atmosphere. The dynamic equations are shown below:

I *, = a(xr+xt)

] ,rr:*,1"-xr)-x,
I rr:*,*, -b*,

Where a,b, c are the constants. x, xz and x, are the coordinates of vector x.

(2.8)

Then, from equation (2.6), the linear variation equation is

lv,, V,, ,/"f I a a 0 l[ø,, Vn V,r1

l r^ v, vrrl:l , - *, -1 -r,ll v^ vzz vrrl Qs)

lr' Vr, ,/irr) I *, xt -u )lr, vzz vrr)

Let õxr, 6*, and ãr, be three linearly independent vectors anchored to the fiducial

hajectory of the above three dimensional system at x=(x,x2,xr). The initial perturbation

vectors are õf1,6Í1,õf: and arbitrary states x0 =(xl,xl,x:) belong to the basin of

attraction of the attractor under study.
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Defrne 6ul :=J+ . Similarly define 6ul := # and 6ul :: &,. Also, define' lláiill r ¿ llá4ll llái;ll

6i! :=y(*!^) for k=I,...,K , i=I,2,3 where y is the solution of original nonlinear

equation *= f (x) at the Æ-l loop. Calculation of the Lyapunov exponent 1"¡(i=1...3)

evolves step by step integration of the variational equation from u!1t=1...3) with the

time-step of h seconds.
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To find all three Lyapunov Exponents, the set of three linearly independent perfurbation

vectors á4 is repeatedly integrated and orthonormalized.

At the first step:

ld 
fi := õi(h;ul,xo) := V/ (xo)ul

1 
U r', = 6 i(h;ul, xo ¡ := y (xo )ul

LA;l = õ i(h;ul, xo ¡ := ry (xo)u!

Atthe k'h step, the perturbation equations are

laif := 6i(h;uf-t ,xo-') ,: V(xo')uf'

I U r: = 6 i(h;u!-t, xo-' )'= V (xot )u:'
ldt: = 6i(h;u!-t ,xo-')'= w7ot)ut-'

And the orthonorm alizationequations are

(2.10)

(2.tt)

v{:6xf

"f 
,=,! rll'fll

v!=õi!-<õi!,uf >u{

"!,=,i rll,ill
v! =6x!-<õi!,uf >uf -<õi!,u!>u!

"! :=r! rllrlll

(2.12)

At the k'h step, the orthonormalization produces three vectors !¡1v2tr3 and for the K

chosen large enough, the Lyapunov Exponents are:
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o=*ZL"g'll"ill

L=*àLoe,lpf ll Q'13)

L"*rÐ,"*'ll'Íll

For example, if the parameters are a =16 , b = 45.92 and c: 4.0 the Lyapunov Exponents

of the Lorenz attractor are: 4 =2.16, 4 = 0.00 and 4 = -32.4 .

2.2.1.2 Calculation of Lyapunov Exponents from the mathematical model for

non-smooth systems

For the non-smooth system, the challenge comes from the fact that the derivative of the

right-hand side of the state space model does not exist. Muller (1995) and Kunze (2000)

extended the method of calculating the Lyapunov Exponents that behave smoothly in each

interval between discontinuity instants /, (l is the number of discontinuity instants). The

system trajectory, starting from /=ti,i,,o!, is assumed to have reached to the discontinuity

surface at t = f,. The system equations can be expressed as:

Region 1: *= l@),x(t,nu,o,)=xo (t,n*ot 1t.tr)

Region 2: *: fr(x),x(1,): r(ri) U, <t) (2.14)

Where /i denotes the time immediately after the discontinuity instant and t; denotes the

time immediately before the discontinuity instant. This yields the following linearized

34

equations:

Region 1:

Region 2:

6 i = f,(t)õ x, 6 x(t,,,,,o,) = 6 xo

6*: Fz(t),õx(tr¡ = 5¡,

(tnrøt 1r .tr)

(t, <t ) (2.15)
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where 4(r) and Fr(t) are Jacobians defined as:

4Q) = ffi|=o* F,(r) = Wl,=,u,
(2.16)

At each instant of discontinuity, the linearized equations are evaluated using the

indicator function, h(x) , and the transition function, S@) .Both are defined based on the

physical behaviour of the system. The indicator function is at least one time continuously

differentiable and determines the instant of the discontinuity. The transition function

describes the transition conditions at each instant of discontinuity. The linearized equations

of motion at the instant of discontinuity (/ = 4 ) are derived as (Muller, 1995; Kunze, 2000)

6 x* = Gr(x- )6 x- -lcrfr> fr(x-) - fr(.\l## (2.r7)

where x"=x(ti), x =x(tt), õx*=õx(t), md 6x-=6x(t;). Hr(x-)=W---,,-, is
õXt lr=r(4 )

the Jacobian of the indicator function, 4@) , and G, (x-) = 
ag' 

9) I is the Jacobian of
Axr lr=¡(,i)

the transition function, g,(x). If the system trajectory returns to the original region at the

discontinuity instant (t = tr), the transition condition of the linearized equations is:

6 )c* = Gr(x- )6 x- -lcr6) fr(x- ) - f,(x. lm (2.18)

where x*:x(ti), x :x(t;), 6x*:õx(t|), ffid õx- =6x(t;). The Jacobian matrices

H, and G, are similarly derived using the indicator and transition functions ftr(x) and

Er@) , respectively. Equations (2.14)-(2.18) represent the generalized method for

determining the variational equation, which can be used to calculate the Lyapunov Exponents

of the system with discontinuity (Muller, 1995). The remaining procedure is the same as the

one shown in Section 2.2.I.1.
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Overall, the calculation of the Lyapunov Exponents from the system's mathematical

model can be shown in the following Fig.2.4:

Fig.2.4 Flow chart of Lyapunov Exponents' calculation from mathematical model

2.2.2 Calcalation of Lyapunov Exponents from the time series data

The limitation of using mathematical models is that such models are not always available.

Even if the models a¡e available, due to their complexities and uncertainties, the calculations

of Lyapunov Exponents can be infeasible. The most attractive advantage of using a time

series is that the data for only one state is required, which can often be measured

experimentally. Methods for calculating Lyapunov Exponents based on a time series have

been developed. The first and one of most important step in calculating the Lyapunov
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exponent from the time series, is the reconstruction of the system's attractor from a time

series.

2.2.2.1 Reconstruction of the attractor

The foundation of the method calculating the largest Lyapunov exponent using a time

series is the reconstruction of the attractor. The Embedding method is mapping a

one-dimensional system (a time series) to an m- dimensional space. For the reconstruction

according to the embedding theorem developed by Takens (1981), an n-dimensional

dynamic system can be reconstructed in a phase space "equivalent" to the original phase

space by embedding:

m> 2n+I (2.1e)
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Given a time series x(t), an m -dimensional phase portrait is reconstructed with delay

coordinates, i.e. a point on the attractor is given by {x(t),x(t + r),...,x(t + (m - 1)r)} where

r is the chosen time delay. This method is termed Time Delay method for reconstruction of

the phase space. The reconstructed phase space is equivalent to the original phase space. The

equivalence means that the system's invariants characterizing the attractor are the same.

However, it does not mean that the reconstructed phase space is exactly the same as original

phase space. Using delayed copies of the original time series as components of reconstructed

phase space to form an attractor, then:

t = {(t, xr t,-,,,),(t, {r+r; t,*r,-,1,),...} Q.20)

where m is the embedding dimension, and r is the time delay.

In the reconstruction, the dimension m and the time delay r are two important
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parameters that affect calculating the Lyapunov exponent. If m is too low the

characteristics of the dynamic system can not be detected. For example, Fig. 2.5 shows that

when a 3-dimensional Lorenz attractor is shown in 2-dimentional space, several points are

overlapped, suggesting the wrong information for the original 3-dimensional attractor.

However, if rn is too large, among other problems, the noise in the data will tend to

decrease the density of points defining the attractor, making it harder to find replacement

points. It is advisable to check the stationarity of results with different embedding dimension

m to ensure robust exponent estimates, i.e., to calculate the largest Lyapunov exponent with

diflerent embedding dimensional reconstructed attractors.

2-dimensional space 3-dimensional space

Fig.2.5 The reconstructed Lorenz attractors in different dimensional space

Time delay is also govemed by the need to avoid catastrophes on reconstructing the

attractor. If the time delay chosen is too small, the attractor stretches out along the

x=y=z:.... The successive points in the state space may be too close together to be

sufficiently independent. Excessively low time delay, e, leads to highly correlated vector

elements which are concentrated around the diagonal in embedding space. Structwe

perpendicular to the diagonal is not captured adequately. If the time delay chosen is too large
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the mxr will be much larger than the orbital period. The points may be so independent as

to be essentially random. Thus, evolutionary information in the system is lost. A check of the

stationarity of exponent estimates with different time delays is again recommended, i.e.,

calculate the largest Lyapunov exponent with different time delay.

In Fig. 2.6, the original and reconstructed Lorenz attractor based on the embedding

theorem is shown. The reconstructed attractor with different time delay can be significantly

different from the Lorenz attractor as an example. Therefore, careful selection of time delay

in the reconstruction of the phase space is extremely important.
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a. The originalLoretu attractor from the mathematical model
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b. The reconstructed Lorenz attractor using delay embedding with r :5, m:'1
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c. The reconstructed Lorenz attractor using delay embedding with r :15, m:7

X

d. The reconstructed Lorenz attractor using delay embedding with r:25, m:7

Fig.2.6 Lorenz attractor in the original and reconstructed phase space

The advantages of using the time delay method for reconstruction of the phase space is

the relative ease in computing and the fact that the attractor structure is left undistorted since

no extra processing is imposed on it. The time-delay method has disadvantages including a

less than obvious choice of delay parameter value; and poor reconstructed phase space (RPS)

in the presence of noise.

2.2.2.2 Calculation of the Lyapunov exponent from time series data

Fig. 2.7 shows the details of the evolution method for the calculation of Lyapunov

Exponents. In Fig. 2.7 a part of the reconstructed attractor is shown. At initial time fo , the
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lengths between the any points after l0ú point to the initial point .fo are calculated as

suggested by Wolf (Wolf et. al., 1985). The shortest length, L(t), locates the nearest

neighbor.{,. At a later time /,, the initial point ,Ço evolves to 40. fhen the nearest

neighbor point, 4, , i. located again with the same method. The initial length, L(t),

evolves to length L(Ð .The same procedures are repeated until all of the points on the

reconstructed attractor are located. The length element is propagated through the attractor for

a time short enough so that only a small scale attractor structure is likely to be examined.

Fig.2.7 Evolution and replacement procedure

Based on the reconstruction of oÍre n dimensional trajectory, which is outlined in

section 2.3.2.1and Fig. 2.7,the largest Lyapunov exponent zt is defined as:

41

' 1-T 
ron^to?)'\= t, -hk'ut, i.lr)

where M is the total number of replacement steps, /, is the total time.

(2.21)

In the calculation of the largest Lyapunov exponent if the evolution time is too large, I

shrinks when the two trajectories pass through a folding region of the attractor. This would

lead to an underestimation of the Lyapunov exponent. If the evolution time is too small, there

are no changes of I that can be detected. A new data point should satisff the two criteria
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reasonably well: L from the evolved fiducial point is small and the angular separation

between the evolved and replacement elements is small (Wolf et. al., 1985).

Based on the definition of the Lyapunov exponent, the calculation from the time series

should be carried out for t -+ æ. However, it has been found that the estimation of

Lyapunov Exponents can be done in finite-time (Alligood et al., 1997). A successful

calculation requires that one time series has enough data to approach the appropriate length

scales, ignores the effects of the noise on the length scale, and has an attractor with a

macroscopic stretching/folding mechanism. Overall, the procedwe of the calculation of the

Lyapunov Exponents from a time series can be shown as follows:

42

Time series data

Locate the nearest point

Calculate the first length

Calculate the new length

nov exponent

Fig. 2.8 The flow chart of Lyapunov exponent calculation from the time series
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2.3 Basics of noise

As the time series is collected from experiments, noise

attractor is reconstructed, the noise is also transformed.

characteristics of the characters for the system. With the

much noise can be f,rltered but they can not be eliminated.

is inevitably involved. When the

They will show the misleading

advanced technology of filters,

2.3.1 Gaussian \ilhite noise (G\ilN)

Gaussian White noise (GWN) is the one of most common measurement noise in

mechanical engineering. Gaussian White noise is a white noise process with a normal

distribution and its po\rrer density is constant over a finite frequency range.

Fundamentals

As noise is random, it can only be predicted by statistical means, usually by a Gaussian

probability density function with a bell-shaped curve as shown below:

Fig. 2.9 Gaussian probability density f,rnction /(x)
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(a)

x

(b)

Fig.2.10 A sample of Gaussian White noise

Fig.2.l0 shows an example of GWN. In Fig. Z.l}.athe white noise process is shown for 200

seconds. Fig.2.l0.b /(x) shows the probability density of the sample's value X(r). As

noise is random, its mean value is zero. Hence, we use mean square values which are

measurements of the dissipated noise power. For the Guassian White noise, the average noise

power

Vroir" n

time

Vroir"

the

IS

is

1
n

V .:' stgnal

:!^F.r^:,n=1,2,...N , where v,o*, isthe average noise power andn\?'*u" n"'

noise power at a time instant. The average of the system signal power is

ln

11r,,*^ 1,n=7,2,...N, where V,ignot is the system signal power at a

instant.

Since, in this work, GWN is added to the simulation data randomly, the amplitude of the

noise is the main problem which affects the Lyapunov exponent's calculation. The signal to

noise ratio (SNR) is defined as the ratio of a signal power to the noise power which is shown

as the formula dB =l0logrr(*). From the definition of SNR, it is easy to find that the
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noise can not be zero. In this thesis, the noise-to-signal NSR = 
æ^, 

is used toratio,

analyze how the

value.

affects the system in order to see the noise change from 0 to some

2.3.2 Noise filters

The theory of fïltering stationary time series for a variety of purposes was developed by

Norbert Wiener in the 1940's for continuous time processes, which was a notable feat of

mathematics. In an important paper, Levinson (1947) showed that in discrete time, the entire

theory can be reduced to least squares which were mathematically very simple. Kalman

(1960) set out to extend Wiener filters to non-stationary processes. The immediate need was

of a military nature, to forecast the trajectories of ballistic missiles, which in their launch and

re-entry phases would have a very different character than a stationary process could describe.

The formalism is less complicated than the one from V/iener theory (Wunsch, 1966).

In this research, the noise will be changed fïom 0 to lIo/oof the signal value (3*y")
Y rigna!

to observe its effects on the calculated Lyapunov exponent. In the simulations, the Ct-l code

is used to generate the Gaussian White noise, which is added to the simulation data when the

program imports data from a file.

2.3.3 Noise reduction in Wolfs method

In Wolf s method there is an approach to reduce the effects of noise. This is done by

avoiding principal axis vectors whose magnitude is lower than the selected threshold value,

i.e., the minimum cutoff length of evolution length. If this value is chosen to be somewhat

nolse
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larger than the noise level, the fractional error in determining initial vector magnitudes may

be reduced to an acceptable level. Avoiding noise effects is not a trivial matter, as noise may

not be of constant amplitude throughout an attractor and the noise length scale may be

difficult to determine. Again, this approach can only work if scales larger than the noise

contain accurate information about orbital divergence rates in the zero length scale limit.

2.4 Summary

In this chapter, the concept of Lyapunov Exponents, the calculation of Lyapunov

Exponents based on mathematic models and a time series, and basic information about

Gaussian White noise have been reviewed. Specifically, Wolfs method for calculating

Lyapunov Exponents using a time series has been discussed in details. Issues of selecting the

key parameters (time delay, evolve time and embedding dimensions) have also been raised.

Wolfls method will be used in this work.

46
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Chapter 3

Exploration of Lyapunov Exponents on a two-link

pendulum system

Mechanical oscillators constitute a family of important systems widely used as models to

explain a diversity of phenomena, or to design engineering systems accomplishing a variety

of tasks. Among many mechanical oscillator systems, those which are built with pendulums

are of special interests since the dynamic systems have a wide variety of limit sets, from

equilibrium points to strange sets. Pendulum systems are of specific interests in robotics as

many robotic systems can be modeled as a chain of pendulums.

A two-link pendulum system is a pendulum with a second pendulum attached to its end,

exhibiting rich dynamic behaviors. For the two-link pendulum in the vertical plane, the upper

pendulum acts as a simple pendulum with a moving base and is under the effects of the

gravity, joint force and controlled join torque. The lower pendulum behaves like a pendulum

under the effects of gravity. The force and torque come from the upper pendulum and the
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force and the control torque are applied at the basic joint. Depending on the control torques

and the system parameters, such double pendulum system can exhibit either stable or chaotic

motion. The stability analysis of the system is an important and challenging problem.

The concept of Lyapunov Exponents can characterize the system stability. Since it is

extremely challenging to determine Lyapunov Exponents anal¡ically, complex engineering

systems are often calculated numerically. There are fwo approaches. One, is to calculate

Lyapunov Exponents using the mathematical models of the dynamic systems and the other, is

to calculate Lyapunov Exponents using a time series. In the previous work the concept of

Lyapunov Exponents has mainly been used to diagnose a chaotic system. Wolfs method

(1985) for calculating Lyapunov Exponents based on a time series has been considered valid

for chaotic systems, i.e. for calculating positive Lyapunov Exponents. It is has been

documented that such a method has been considered unreliable for calculating Lyapunov

Exponents for potentially stable systems, i.e., for calculating negative or zero Lyapunov

Exponents.

In this chapter, the possibility of calculating negative and zero Lyapunov Exponents for a

two-link pendulum system based on a time series using Wolf s method is explored. The time

series is generated from the mathematical model of a two-link pendulum system. The

two-link pendulum system is used here mainly because the motion of a two-link pendulum is

govemed by a set of coupled ordinary differential equations, making it relatively easy to

apply the concept of Lyapunov Exponents. On the other hand, the twolink pendulum system
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exhibits rich dynamic behaviors having a wide variety of limit sets, from equilibrium points

to strange sets.

In this work, Lyapunov Exponents are first calculated from the mathematical models.

The time series is generated from the same model and the largest Lyapunov exponent is

calculated from the time series data. The results are compared to demonstrate the

applicability of Wolf s method, calculating the largest Lyapunov exponent from time series

to potentially stable systems. In Wolfs method, several parameters such as time delay and

evolution time have signif,rcant effects on the numerical Lyapunov Exponents. This has not

been investigated before. The effects of such parameters on the calculated Lyapunov

Exponents will also be studied.

In this work, the two-pendulum system is simplified to move on the horizontal plane.

The proportional and derivative (PD) controller will be applied on the system to produce

various motions. Under some special control gains, the two-link pendulum system is chaotic

and positive Lyapunov Exponents are obtained. For the chaotic motion, Lyapunov Exponents

will be calculated from the mathematical model and the largest Lyapunov exponent will be

calculated from the time series. The results will be compared to confirm the validity of the

algorithms and the program will be developed during this work. The gains in the controller

will then be adjusted to keep the system stable.

Two types of stable motion will be generated. One involves the two-link pendulum

moving to the desired position and remaining there. The stability of the pendulums will be
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studied by using the concept ofLyapunov exponent as the negative Lyapunov Exponents are

expected. Usually the more negative the Lyapunov Exponents are, the faster the pendulums

reach the desired position. The second stable motion, involves the system being controlled to

follow a desired sinusoid function trajectory, with a zero Lyapunov Exponent expected.

As discussed in Chapter 2, one advantage of calculating Lyapunov Exponents using a

time series is that the time series can be collected from experiments without knowing the

mathematical model of the system. The experimentally collected data contain noise, which is

believed to have significant effects on the calculated Lyapunov Exponents (Wolf et. al., 1985,

Zeng, et al., 1992). Such effects should be studied. In this work, Gaussian White Noise will

be added to the time series generated from the simulation. The Lyapunov Exponent will then

be calculated to check the robustness of the method with respect to the noise. In the

simulations, the power of the Gaussian White noise will change from 0 to l0%o of the

power of the signal.

3.1 Dynamic model of a two-link pendulum

As shown in Fig. 3.1, the pendulum system consists of two rigid links with length /,

and lr. The base of the system is fixed at O. mr and m, are the masses of the two links. ii

and r, are the locations of the mass centers of the two links. et and 0, are the joint angles

which are positive in the clockwise direction. 4 *d T, are the control torques applied at

both joints which are positive in the counter clockwise direction. The equations of motion

can be derived from the Lagrangian formulation as follows:
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M@)¿) +C@,q+ f@)+ s(e)=T (3. 1)

where 0 is a 2x I vector of joint angles, and M is the inertia matrix. C is a vector of the

torque related to the centrifugal and Coriolis forces. f (0) is the vector of the torque related

to the viscous friction, arrd g(0) is the vector of the torque related to the gravity. Z is the

control torque. The detailed deviation is presented in Appendix A.

Fig. 3.1 Two-link pendulum

To apply the concept of Lyapunov Exponents to the two-link system, it is desirable to

start from a simpler model. First, it is assumed that there is no viscous friction. Second, the

system is assumed to move in the horizontal plane in order to remove the gravity effect. Then

mathematical model of the system becomes:

M@)ë +C(0,e¡ =7 (3.2.a)
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where u =1d,, 
no1:ll,+lr+2pcos7, Jr+ pcosgrl

ld^ du) L Jr+ pcos2, Jz -l

n _l d,,,f _l - p@,0, + el¡ sin erf
- - 

L¿,,,.1- L pol sino, l
Jr= Ir+mrrrz +mr( , Jr= Ir+mrr|, p=mrlrr,

(3.2.b)

(3.2.c)

(3.2.d)

The proportional and derivative (PD) controller will be used to control the two-link

pendulum system having stable and chaotic motion, respectively. For the PD controller, the

torque at each joint is:

T, = k r,(00, - 0,) + kr(è,, - è,) i =1,2 (3.3)

where 9o,is the desired position or a periodic trajectory to be tracked at each ioint, kr, and

ku, are the positive proportional and derivative gains. By changing the control gains kp

and ku,, the system can exhibit either chaotic motion or stable motion. For the stable motion,

two simulations are carried out. One is to keep the pendulum system at a set point, and the

other is to track a desired motion. For the chaotic motion, the system is intended to track the

desired trajectory. It is documented that chaotic motion happens when the control gain k,, is

small in the simulations. Since the time series is used for calculating Lyapunov Exponents,

the simulations of the above discussed motion are first carried out. The parameters of the

twolink pendulum are as follows:

Table 3.1 Parameters of the two-link pendulum

link Lenglh(m) Mass(kg) CG(m) Inertia (kgm2)

1 0.5 20 0.2 6

2 0.4 8 0.3 1.5
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3.2 Simulations of two-link pendulum system

Our research will start with changing the controller gains, thereby controlling the

two-link pendulum to exhibit chaotic motion. For a dynamic system classified as chaotic, one

of the important characteristics of such a system is the sensitivity to initial conditions.

Sensitivity to initial conditions means that an arbitrarily small perturbation of the current

trajectory may lead to significantly different future behavior. As a result of this sensitivity, the

behavior of systems that exhibit chaos appears to be random, exhibiting exponential error

dispersion, even though the system is deterministic in the sense that it is well defined and

contains no random parameters. Every chaotic system has a strange attractor. An attractor is a

set to which the system evolves after a long enough time. Attractors are parts of the state

space of the dynamic system and are considered geometrical subsets of the state space: points,

lines, surfaces, volumes. Chaotic motion gives rise to what are known as strange attractors,

attractors that can have great details and complexity. Because the system is deterministic,

chaotic behavior is not random even though its aperiodicity and unpredictability may make it

appear to be so. On the other hand, because of the instability, aperiodicity and sensitivity to

initial conditions; the behavior of chaotic systems is not predictable even though it is

deterministic.

3.2.1 Simulations of chaotic motion

The simulated chaotic motion for the 2-tink pendulum is shown in Fig. 3.2. The desired

angular displacements of link I and 2 are shown in Fig. 3.2.a which are
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0)=t.57sin(Zt)andlj ={sin(2t) The actual angular displacements of link 1 and 2 are"2
shown in Fig. 3.2.b. The controller gains are selected as Kr, =50(N lrad) and

K", = 1(l/..S I rad) , where i =1,2 and the initial condition is

{0.0(rad),0(rad I s),0.0(rad),0(rad I s)} . It is easily to see that the system does not follow

the desired trajectories. Fig. 3.3 shows the strange attractor of the angular displacement of

link 2 in a phase place.
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In Fig. 3.3.b, the initial angular displacement was changed l0-4(rad) from the one for

Fig. 3.3.a with the same initial angular velocity (O(radi s)). The result of the attractor is

changed significantly, which demonstrates that the system is sensitive to the initial condition.

In the context of the concept of Lyapunov Exponents, the system which has at least one

positive Lyapunov Exponent is defined to be chaotic. The largest Lyapunov Exponent of the

double pendulum system is indeed positive, which is studied in the following sections.

3.2.2 Simulations of stable tracking motion

By changing the gains in the PD controllers, the two-link pendulum system can exhibit

the stable motion. In the case of stable tracking motion that the system follows, the desired

trajectory, 0) =I.Slsin(2r) and ej =!sin(2t) , the gains were set as
2

Kot =30(N I rad), Kpz = 50(N I rad) and K¡ = Kuz =80(N.S I rad) in the simulations.

The initial condition is{0.0(rad),0(rad / s),0.0(rad),0(rad / s)} .

In Fig. 3.4 the angular displacements of link I and 2 are recorded. The vertical axis is the

angle value and the horizontal axis is the time. The dash lines are the desired trajectories and

the solid lines are the actual trajectories. Fig. 3.4 shows that the pendulum system can

successfully follow the desired trajectory by using suitable controller gains. The state space

model is the four dimensional system and its attractor can not be shown in the figure. But for

link 2, Fig. 3.5 shows the attractor.

55



Two-link pendulum system 56
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Note that the intersections are due to the reduced dimensions from four to two. By

changing the initial condition, the system was found to always approach the attractor.

3.2.3 Simulations of stable motion with a set point

The second case for the simulation of stable motions is that the pendulum system is

controlled to approach the set point. The gains in the PD controller are still set as

Kpt=Kpz:2}(Nlrad) and K"r = K,z=5(N.Slrad). The system will start from the
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initial condition {1.0(rad),0(radls),1.0(rad),0(rad/s)} , then controlled by the PD

controller to approach the point{0.0(rad),0.0(rad / s),0.0(rad),0.O(rad I s)}. The angular

displacements of link I and link 2 are simulated and are shown in Fig. 3.6. The vertical axis

is the angular displacement and the horizontal axis is the time.
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Fig.3.7 State space response for the stable motion with a set point

The equilibrium point {0,0,0,0} is shown in the phase space in Fig.3.7. The vertical

axis is the angular velocity and the horizontal axis is the angular displacement. In Fig. 3.7 the

trajectory appears to intersect. This is because the system is 4-dimensional, shown as a

2-dimensional figure.
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The angular displacement of each link is simulated in this section. The attractors of

chaotic, stable motion are also shown. The results show that the two-link pendulum can

exhibit different motion under different control parameters.

In the next section, the Lyapunov Exponents are calculated from the mathematical model

and the largest Lyapunov Exponent is calculated from the time series based on Wolf's

method. The object is to explore the possibility of using Wolf's method to calculate negative

and zero Lyapunov Exponents.

3.3 Calculations of Lyapunov Exponents

3.3.1 Lyapunov Exponents from mathematical model

In this section the Lypuanov Exponents will be calculated from the mathematical model

of the two-tink pendulum system. The results are generated as the reference for Lyapunov

Exponents which will be compared with those calculated from the time series. The

simulation program is developed based on Wolf s method.

In the state space, letx, : 4, xz = 0r, x, = 0, andxo : 0r, equation (3.2) becomes:

58

xt=xz

, _ (r, - drrr)dr, - (c, - drrr)d,tt:@

is=xq

" _ (r, - drrr)dr, - (r, - drrr)d^

" - ¿rr4r4rr4

where

J, = Ir+mrrrz + mrtl, Jz : Ir+mrr|, P = mrlrr,

(3.4)
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dr, = Jr+ Jz+2pcosx, dr, = dr, = Jz*pcos.r3, dr2= J2,

drr, = -p(Zxrxo+xo'¡sin x' drrz = px| sinx,

Based on Wolfs method and the procedure outlined

equation is shown below

v, = F(t)v,

The Jacobian matrix is shown as follows:

in Section 2.3.1, the variation

(3.s.a)

(3.s.b)

(3.s.c)

(3.s.d)

(3.s.e)

(3.s.Ð

(3.s.e)

F(t¡ =

010
Qzt ozz azz

000
Qq oqz Q+z

0

Qz+

1

Qq¿

where

-k^d,
A^,=L¿t drrdr, - drrdr]

_ (-k"r+2pxosinxr)drr+2pdrrxrsinx,
u=r:

p(2xrx o+ xo' ) cos x, d r, * (k 
oz + pxz cos h) d r, +p sin x, ({ - pxl sin xr)

orr:

_l(Tt - d,) d 22 - (Tz - dt ò d n] p2 sin(z\)

(d,dr, - drrdrr)'

_ 2p(xr+ xo)sin xrdrr+ k,rd,
z+ drtdr,- drrd\

kotdzt
Cl,,=+{r drrdr, - drrd\

- 2pd,xr sin \+(k,^+2pxosinxr)d,utz = (3.s.h)
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o^^=W (3.5.i)1+ drrdr,- drrd^

(-k,r- ptcosxr)d,, -2(Tz-4n)psin.r, - pdr,(2xrxo+xf )cosx, + pQ,-d,,,)sin4
a"d"-a"% (3.si)

psin xrf(Tr- d,,r)d,, -(T, - dr,,)dol
(d|dr, - drrdrr)'

All the above variables are shown in equation (3.4). Equation (3.5.a) is to be integrated

simultaneously with the original nonlinear equation shown in equation (3.4). Based on the

procedure outlined in Section 2.3.I, the Lyapunov Exponents for the two-link pendulum are

defined as:

^, 
" *à1"s, ll,lll where i =1,2,3,4

.,_|t"'- 
þ,ll

.. v 2- <vz,ur > ur
-z-i--¿ 

llur-. v,u,>urll

(3.6)

(3.7)

u3=
v^- 11d37u2 ) uz- 1v3rut > ul

ll",- . r3,Lt2 ) uz- Iv,u, > urll

tq- 1l,411\ ) ut- 1v4)112 > uz- 1v4,u1 > ul

ll", - . v4,th > ut- 1 r4,tt2 ) uz- 1 vo,u, > urll

The vector
b

vi' is equal to 6x!, and vector zlf is a normalized version of vf .

For calculating the Lyapunov Exponents an important issue has to be discussed,

specifically, the careful truncations of the adequate time period over which Lyapunov

Exponents are calculated. Theoretically, Lyapunov Exponents should be calculated on an

infinite time period. However, it has been found that the estimation of Lyapunov Exponents

can be done in finite+ime (Alligood et al., 1997). Recently, Grune (2000) found the finite

u4=
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time exponential growth rates for some fixed time uniformly converge to the uniform

exponential spectrum. convergence is declared if these variations are significantly low. In

this research, the Lyapunov Exponents are truncated when the largest variations of the

Lyapunov Exponents are lower thart 0.25Vo. The calculation time periods for stable and

chaotic motion are 200 seconds and 500 seconds, respectively'

To improve the accuracy of the numerical integration, a higher order integration

algorithm than wolfs original method is employed, which calculates the Lyapunov

Exponents from the mathematical model. For Wolfs method, a very small time step is

required to get the accurate Lyapunov exponent. This is because it uses the first order Euler's

Method for the numerical integration, which makes the calculation time longer and less

accurate. In this research, the Runge-Kutta numerical integration is used to compare the

results using the Euler's method in order to improve accuracy of the results and to reduce

calculation time. Since the stable motion is of interest, the Lyapunov Exponents will be

calculated for stable motion with a set point as an example to demonstrate the advantages of

the Runge-Kutta algorithm.

Figure 3.8 shows the largest Lyapunov exponent from Euler's integration approach and

the one from Runge-Kutta integration when integration time step is small ( å = 0'00001)' The

calculation loop is 20000000 and the result )"=-0.909.Fig.3.9 shows the Lyapunov

exponent calculated with the time step h--\.u and the calcuration loop is 20000. The

result with a large integration step from the Runge-Kutta integration does not differ from the
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one with a small integration step, as shown in Fig. 3.8' The exponent from the Euler

algorithm however, changes significantly from the result with a small integration time step.

Fig. 3.g and 3.9 show that the Runge-Kutta algorithm is much more advantageous than the

Euler algorithm for the calculation of the Lyapunov Exponents, due to the reduction of the

calculation time while maintaining accuracy. Thus, the Runge-Kutta algorithm is applied in

the numerical calculation method when calculating the Lyapunov Exponents in this thesis.
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3.3.1.1 Lyapunov Exponents for chaotic motion

In this section, the Lyapunov Exponents are calculated using Wolls method based on

the mathematical model for the two-link pendulum exhibiting chaotic motion as shown in

section 3.2.1. The system is controlled by the PD controller shown in equation (3.3). The

controller gain is Kot=Krz=S}(NIrad) and K,, :Kuz:l(N.S Irad) in the simulation.

The desired trajectories are 00. =Lsin(zt) rnd 00. =Lsin(2t).The simulation program is-d1 
2 

, ' u2 
4

written in Cr-r language with the time step as 0.001(s). The calculation time will be

truncated when Lyapunov Exponents change less than 025%. The initial condition is

{0.0(rad),0(rad / s),0.0(rad),0(rad / s)\

Such a chaotic control system is nonautonomous as shown in equation (3.4). Time, /, is

taken as a new state which makes the state space model (3'4):

*t=xz
.. Qr-dru)drr-(T2-dm)42.rr=@
it = xq (3.8)

-.. (7, - d,,rr)dr, - (T, - drrr)d^
'o=@
rs =l

where x, is one dimension of r in the state space model. Following the same procedure is

shown in section 2.3.1. The Jacobian is:

00000
ozt dzz ozs az+ Qzs

00000
ou Q¿z dæ Q+t oqs

00000
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F(t¡ = (3.e)
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where o,r=Ko17Taos2x5-K,r2nsin2x' atz=Kor|"ots2xr-Kurnsin2xy o2t,o2z, ã23,

ozt, dtt, a42, Qqt, d44 are defined from equation (3'5'b) to equation (3'5i)'

In Fig. 3.10, the Lyapunov Exponents for chaotic motion from the mathematic mode are

shown with solid lines. All exponents converge to constants. The largest Lyapunov Exponent

converges to 1.108 and the motion is indeed chaotic'
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Fig. 3.10 Lyapunov Exponents for chaotic motion

3"3.l.2lyapunov Exponents for stable tracking motion

In this section the Lyapunov Exponents are calculated using Wolfls method based on the

mathematical model for the two link pendulum tracking a desired trajectory as shown in

section 3.2.2. The desired trajectory is set as the same sinusoid function 0)=1.57sin(2/)

and 02, =1'?7 sin(2t) and the system is controlled by the same PD controller as shown in
"2

the previous section. The control gains are set as Kpt=Kpz=50(Nlrad) and

Kø = Kuz= 20(N.^S lrad) in the simulations. Similar to the chaotic system discussed in the

previous section, the mathematical model changes from 4-dimensional to 5-dimensional as
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shown using equation (3.8). The simulation program is written in C# language with a time

step of 0.001(s). The calculation time will be truncated when Lyapunov Exponents change

less than 0.25%. The initial condition is {0.0(rad),O(ratd / s),0.0(rad),0(rad I s)}

Similar to the chaotic motion, there is an extra zero exponent because of the time, t,

which is taken as a new state. Fig. 3.11 shows there are one zero and four negative exponents

for the stable tracking. The zero exponent is associated with the state x, (time)' Four

negative exponents indicate that the trajectories converge to the desired one.

100

Time (s)

Fig. 3.11 Lyapunov Exponents for stable tracking motion

3.3.1.3 Lyapunov Exponents for stable motion with a set point

In this section the Lyapunov Exponents are calculated using Wolf s method based on the

mathematical model for the two-link pendulum approaching the desired set position as shown

in section 3.2.3. The control gains are set as K pt = K oz = 20(N I rad) and

Kut = Kuz:5(N.S lrad) in the simulations. The initial condition is

{l(rad),0(rad I s),I(rad),0(rad I s)} .

The Lyapunov Exponents for stable motion with a set point are shown in Fig. 3.12. The
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vertical axis is the Lyapunov exponent and the horizontal axis is time' The first two

exponentsconvergeto-0'22andtheothertwoconvergeto-2.84'

Fig.3.l2lyapunov Exponents from mathematic model for stable motion with a set point

The Lyapunov Exponents have been calculated using wolfs method based on the

mathematicar models for the two-link pendurum with both chaotic motion and stable motion

in this section. It is demonstrated that by using the Runge-Kutta algorithm' the accuracy of

the Lyapunov exponent can be increased and the computing time significantly reduced' The

calculated Lyapunov Exponents are used as the reference to be compared with those

calculated from the time series'

3.3.2 The largest Lyapunov Exponent from time series data

Calculating the Lyapunov Exponent from a time series does not require the system,s

mathematical model. The calculation program in this research is developed based on Wolf s

method (1935) where only the largest Lyapunov exponent can be calculated' usually the

method for calculating the Lyapunov Exponent from a time series is used for chaotic systems

where the largest Lyapunov exponent is positive. In this research the possibility for applying
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Wolf s method to potentially stable systems where the largest Lyapunov exponent is negative

oÍ zero, is explored.

In the calculation of the largest Lyapunov exponent from a time series, there are several

parameters, as shown below, which need to be carefully determined. Unfortunately, there are

no systematic methods to select these parameters:

The embeddine dimension rn: Following the discussion in section 2.3.2.I and the Takens

theory (1981), the embedding dimension is chosen as 9 for the two-link pendulum system

since the original dimension is 4.

The delav time r : In general, it is believed the selection of r has a significant effect on the

calculation of the largest Lyapunov Exponents from a time series. The largest Lyapunov

exponent with a various time delay for the two-link pendulum with a stable set point case, is

shown as the example in Fig. 3.13.

67

c
c,coo.x
c)

o
E
=o.
(ú

J
Ø
(¡)
õ,
(It
J

-0.16

-0.18

-0.20

-o.22

-o.24

-0.26

Time delay

Fig. 3.13 Effect of time delay on the largest Lyapunov exponent

In Fig. 3.13 the horizontal axis is the time delay. The vertical axis is the largest

Lyapunov exponent. Fig. 3.13 shows that as the time delay is chosen too low, the calculation



Two-link pendu lum system

of Lyapunov Exponents shown in the solid curve is significantly different from the true

exponent shown in the dash line. However, when the time delay is above 20, the calculated

Lyapunov exponent does not change significantly. This indicates that the calculated

Lyapunov exponent is not sensitive to the time delay for the two-link pendulum system with

a set point for the special selected evolution time (30), the minimum and maximum cut-off

lengths (0.06(r ad), 0.6(r ad) ).

The evolution time between replacements: the largest Lyapunov exponent is calculated with

the va¡ious evolution times for the same example in the Fig' 3.14

In Fig. 3.14 the horizontal axis is the evolution time, and the vertical axis is the largest

Lyapunov exponent. Fig. 3.14 shows that the evolution time does not significantly affect the

value of the largest Lyapunov exponent for the two-link pendulum with a stable set point for

the selected the time delay (60), the minimum and maximum cut-off lengths

(0.0 6(r ad), 0.6(r ad) ).
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Fig. 3.14 Effect of evolution time on the largest Lyapunov exponent

The minimum and maximum cut-off lensth: Generally the minimum and maximum cut-off

lengths are chosen arbitrarily in Wolfs method. In this research, after the emedding
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dimension, time delay and evolution time are selected; the orientation length calculated in the

first step is chosen to be minimum cut off length. The maximum orientation length is set to

be l0 times that of the minimum orientation length. Fig. 3.15 and Fig. 3.16 show the effect of

the minimum and maximum cut-off lengths on the calculation of the largest Lyapunov

exponent when choosing the proper time delay and evolution time.
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Fig. 3.16 Effect of minimum cut-off length on largest Lyapunov exponent

From Fig. 3.15, for the two-link pendulum system moving stably with a set point, it can

be seen that as the maximum cut-off length is above 0.15, the calculated largest Lyapunov

exponent is not sensitive to the changes in the maximum cut-off length. On the other hand,

from Fig. 3.16, as the minimum cut-off length is below 0.08 (rad), the changes in the
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minimum cut-off length have little effect on the largest Lyapunov exponent'

Normally, the embedding dimension, time delay, evolution time, maximum cut-off and

minimum cut-off length are important for the calculation of the largest Lyapunov exponent

using Wolfs method from a time series. The largest calculated Lyapunov exponent from

time series is affected by the integrated actions of those five parameters. Since there are no

methods available for such selections, different parameters are selected based on trial and

error in this research. For the ranges of physical parameters shown in Fig.3.13-3.16, the

proper parameters are identified as: embedding dimension m=9. time dela560 and

evolution time:3O. The results of the largest Lyapunov Exponents a¡e also determined with a

wide range of time delay, evolution time and embedded dimensions to ensure that the results

truly approximate the Lyapunov Exponents.

3.3.2.1Calculation of the largest Lyapunov exponent for chaotic motion

Based on the procedure outlined in2.3.2,the largest Lyapunov exponent for the two-link

pendulum with chaotic motion can be calculated from any state time series of the system.

The largest Lyapunov exponent is calculated using the time series of á, and 0, and the

result obtained from the mathematical model is shown below. Both of them have an error less

than go/o, as compared with the result from the mathematical model which is shown in Table

3.2.

Table 3.2 Lyapunov exponent from the time series data and mathematical model

Angular displacement of Link I Angular displacement of Link 2 Mathematical model

L. E. 1.0193 1.0343 1.108
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Fig. 3.17 shows the largest Lyapunov exponent calculated from both angular displacements

of the two-link pendulum. In Fig. 3.17 , the horizontal axis is the time and vertical axis is the

largest Lyapunov exponent. Both Lyapunov Exponents calculated from the time series

converge. After 500 seconds, the difference of the two Lyapunov Exponents from time series

reduces and is insignificant.
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Fig.3.17 Largest Lyapunov exponent calculated from time series data for chaotic motion

Time delay and evolution time are more important for calculating the largest Lyapunov

exponent from a time series. The effects of the time delay and evolution time on the accuracy

of the largest Lyapunov exponent are studied in Wolf s method using time series. The largest

Lyapunov exponent was calculated with various time delays and evolution times, shown in

Fig.3.18.

In Fig. 3.18 the time delay and evolution time are the two horizontal axes and the vertical

axis is the largest Lyapunov exponent. Fig. 3.18 shows that the largest Lyapunov exponent

converges at 1.05 when the time delay and evolution time are chosen higher than 60 and
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lower than 100. Fig. 3.18 also shows that the largest Lyapunov exponent does not change

signifrcantly with different evolution time at the same time delay which indicates that the

time delay has a stronger effect on the largest Lyapunov exponent than evolution time' Thus

Wolfs method for calculating the largest Lyapunov exponent offers a large range for

selecting the proper time delay and evolution time for a two-link pendulum system'
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Fig. 3.18 Largest Lyapunov exponent with different time delay and evolution time

In this section wolf s method for calculating the largest Lyapunov exponent from time

series has been applied to the two-link pendulum system with chaotic motion. The effects of

the important parameters in Wolfs method have been studied for the two-link pendulum

system. The results of the largest Lyapunov exponent demonstrate that Wolls method using

time series works well for the two-link pendulum system. In the next section Wolf s method

will be applied to the potentially stable two-link pendulum system.
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3.3.2.2 Calculation of the largest Lyapunov exponent for the stable motion with a set

Point

Here, the possibility of applying wolfs method for potentially stable systems is

explored. wolfs method using time series is not proved to be reliable for calculating

negative and zero Lyapunov Exponents (Wolf e al., 1985)' The objective of this section is to

explore the possibility of applying wolfls method based on a time series for calculating

negative and zero Lyapunov Exponents. The two-link pendulum system with a stable set

point is used as an examPle.

Table 3.3 shows the values of the largest exponents calculated from two states

respectively, the largest one from the mathematical model. In Fig' 3'19, the largest Lyapunov

exponent is calculated from the angular displacement of link 1 and link 2'The horizontal axis

is the time and vertical axis is the largest Lyapunov exponent.

Table 3.3 The largest Lyapunov exponent calculated from the time series data and

mathematical model
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In Fig. 3.19, both of the largest Lyapunov Exponents from time series converge to -0-22

after 200 seconds. Because the largest Lyapunov exponent is negative, all other exponents

are also negative. The comparison made between the exponents calculated from the

mathematical model the exponents calculated from the time series are very precise, abott 4Vo

error. Based on the concept of the Lyapunov exponent theory, the system is exponentially

stable about the set Point.

For studying the effects of time delay and evolution time on the Lyapunov exponent, the

largest Lyapunov exponent is calculated and shown in Fig. 3.20 with various time delays and

evolution times.
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Fig. 3.20 Largest Lyapunov exponent with different time delay and evolution time

Fig. 3.20 shows that the largest Lyapunov exponent is not sensitive to different time

delays or evolution times, except when the time delays and evolution times are selected
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between 0 and 10. The time delay affects the largest Lyapunov exponent more than the

evolution time. However, there is a good reason for choosing time delay and evolution time

to calculate the largest Lyapunov exponent properly. At least for this low-link pendulum

system, Wolf s method can calculate the largest Lyapunov exponent from time series of the

stable motion with a set point.

3.3.2.3 Calculation of the largest Lyapunov exponent for stable tracking motion

In this section, the two-link pendulum system following the desired trajectory as shown

in section 3.2.2is used as an example for calculating the largest Lyapunov exponent using

V/olfs method. The largest Lyapunov exponent is calculated based on the time series

recorded in the simulations. Table 3.4 shows the largest Lyapunov exponent from the

mathematical model and from the time series.

Table 3.4 The largest L.E. from the time and from the mathematical model

Time series data Mathematical model

L. E. 0.0006 0.0001

The largest Lyapunov exponent calculated from time series is shown as following:
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Fig.3.2I Largest Lyapunov exponent calculated from time series data for stable tracking
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The Lyapunov exponent calculated from a time series for the stable tracking has

different indications as the largest exponent from the mathematical model. The zero

Lyapunov exponent from the mathematical model corresponds to time as one dimension in

the state space model. If the time series corresponds to periodic behavior, the Lyapunov

exponent should be very small or zero, since the trajectory returns to exactly the same set of

values. Hence, this trajectory method would reflect the fact that the Lyapunov exponent

neither increases, nor decreases in its value. This result tells us that trajectory points on a

periodic orbit neither converge nor diverge. However, the time series of values from the

trajectory itself cannot tell us how nearby trajectories approach the attractor (Hilborn,2004).

Based on the above discussion, calculating zero exponents from the time series has a

different meaning from that of the zero exponent calculated from the mathematical model

and the stability of the system should be studied using the whole spectrum from the

mathematical model.

In this section the largest Lyapunov Exponents have been calculated for twolink

pendulum with chaotic motion, with a stable set-point and with stable tracking. It is

documented that V/olfs method is valid for calculating the largest positive Lyapunov

exponent (Wolf et al, 1985). By matching the largest Lyapunov exponent from a time series

with the one from the mathematical model of the double pendulum system with a stable set

point, it is found that Wolfls method (1985) for calculating the largest Lyapunov exponent

from a time series has a potential for calculating the largest negative Lyapunov exponent.

However, Wolf s method cannot be used for calculating zero Lyapunov Exponents.
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3.4 Effects of noise on calculating Lyapunov Exponents

For the time series generated from experiments, the inevitable noise has its effects on the

accuracy of the Lyapunov Exponents. In signal processing, noise is considered as data

without providing meaningful information; that is, data that is not being used to transmit a

signal, but is simply produced as an unwanted by-product of other activities. Normally as

sensors transfer the signal to the receiver the noise is also transferred. After applying

High-pass or Low-pass filters to reduce the noise, the Gaussian White noise (GWN) still

remains. So GWN is selected as the noise sample to study the effects on the accuracy of the

Lyapunov Exponents. White noise power density is defined as a constant over a finite

frequency range. Gaussian White noise is a white noise with a normal distribution. In this

thesis, GWN will be generated by a Cl-f program and added to the time series randomly.

The noise has its effects on the reconstruction of an attractor. Based on the discussion in

sections 2.3.2 and2.4.3, choosing the proper time delay can help reduce the noise effect on

the reconstruction (Wolf et. al, l9S5). However, the effects of the noise on the accuracy of

Lyapunov Exponents have not been studied rigorously. In this section, the effects of the

average power of GWN on the accuracy of the largest Lyapunov exponent using Wolf s

method based on a time series are investigated. The Signal-to-Noise Ratio (SNR) is often

used for studying the effects of the noise. It is defined as:
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sNR : average power of . signal 
xr00%o

average Power of Noise
(3.10)

Because many signals have a wide dynamic range, SNR is usually expressed in terms of
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the logarithmic decibel scale. In decibels, the SNR is by definition, 10 times the logarithm of

the power ratio:

78

(3. 1 1)

Based on the definition of SNR the average power of noise can not be zero. However,

the noise effects on the calculation of the largest Lyapunov exponent are studied and

compared with the results from the time series without noise. The Noise-to-Signal Ratio

(l.lSR) is defined as

( *lrost Porq o.f Si?"d\
sNR(dB):101og,0 | 

-

'-1*r*g, Pir", of Noíse )

N,SR = 
average Power of Noise_ xß}vo
average Power of Signal

Under the above definition, the largest Lyapunov exponent can be

changing from 0 which indicate the time series without noise'

(3.r2)

calculated with NSR

With the filtering technology improved, the white noise can usually be reduced to

Si/R = 10dB , which means the i/SR =l0o/o. In this research, 10olo Gaussian White noise will

be added to the original signal from the mathematical model of the 2-link pendulum system.

In studying the noise effects, the largest Lyapunov exponent will be used for calculating such

a time series. The Lyapunov exponent will then be calculated from the time series with the

noise range from NSR:0 to l/SR = I00%. The two-link pendulum system will be studied

with the chaotic motion and stable motion with a set point.

3.4.1 The Chaotic motion

After applying the l0% NSR to the time series generated from the mathematical
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model of the 2-link pendulum system with chaotic motion, the largest Lyapunov exponent is

calculated from the time series and is shown inFig.3'22.

300

Time (s)

Fig.3.22 Largest Lyapunov exponent from time series with noise for chaotic motion

In Fig. 3.22, the largest Lyapunov exponent calculated from the time series converges to

1.2 and has the lSYo enor as comparing with the largest Lyapunov exponent (1.108)

calculated from time series without the noise.
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Fig.3.23 Lyapunov exponent changed with the NSR

Fig. 3.23 shows the largest Lyapunov exponent for the chaotic motion calculated with

NSR changing from 0 to 100%. It can be seen that the value of the Lyapunov exponent
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does not show a trend in its accuracy with respect to the increase in noise, but oscillates about

the largest Lyapunov exponent form the time series without noise in a rather random manner.

3.4.2The stable motion with a set point

The largest Lyapunov exponent calculated is when the NSR:I}Yo, as shown in Fig. 3.24.

The changes in this exponent with various NSR are shown in Fig. 3.25.
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Fig.3.24 Largest Lyapunov exponent calculated from the time series data with notse
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7o/o enor as compared to the largest exponent calculated without the noise. Fig' 3.25 shows

that with NSR changing from 0 to 100%, the exponent oscillates about the largest Lyapunov

exponent calculated from the mathematical model. No clear trend of accuracy is shown in the

largest Lyapunov exponent with respect to the increase in NSR of Gaussian White noise'

3.5 Summary

In this chapter, the possibility of applying the Wolf s method for calculating the largest

Lyapunov exponent based on the time series is explored for potentially stable systems' The

two-tink pendulum system is selected as an example. Since Wolfs method using the

mathematical models of the system is believed valid for any systems (stable or chaotic), and

that Wolfls method using a time series has been developed for the chaotic system, the

two-link pendulum is controlled to show both chaotic and stable motions. First, the largest

Lyapunov exponent is calculated from a time series for chaotic motion and is compared with

the one calculated from the mathematical model to confirm validity of the program

developed in this research. Then, for the twolink pendulum with stable motion, the largest

Lyapunov exponent is studied in the same process as with chaotic motion. The effect of noise

on the accuracy ofthe Lyapunov exponent is studied at the end ofthis chapter'

The error between the largest Lyapunov Exponents from a time series and the error from

the mathematical model is below 60/o for the 2-link pendulum system with a stable set-point'

Thus, the results show that Wolf s method is adequate for calculating the largest negative

Lyapunov exponent. For the 2-link pendulum system with stable tracking motion, zero



Two-link pendulum system

exponents have been calculated from both the mathematical model and the time series.

However, the zero exponent from the time series and the one from the mathematical model

have different indications. The zero Lyapunov exponent from the mathematical model

responds to the extra dimension of time in state space. The zero Lyapunov exponent from the

time series responds to the periodical orbit. The effects of GWN on the largest Lyapunov

exponent are studied on the two-link pendulum system having chaotic motion or stable

motion with a set-point. The largest Lyapunov exponent has been calculated with NSR

increasing from 0 to 100o/o. The results show that the noise has significant effect on the

calculation of the largest Lyapunov Exponents. This finding is consistent with previous

findings from different systems (Wolf et. al, 1935). However, no clear trend has been found

in the accuracy of the largest Lyapunov exponent with the increase in NSR.

Based on the results from this chapter, it is concluded that V/olf s method can be used

for the system, of which the largest Lyapunov exponent is negative, i.e., the system is

exponentially stable about a set-point. However, Wolf s method is not suitable for calculating

zero Lyapunov Exponents, i.e., the system has a stable tracking motion. Noise, which is

inevitable when the time series is collected during experimentation, has a significant effect

on the accuracy of the largest Lyapunov exponent. With filter technology improving, the

GWN usually can be reduced less than 10% NSR.

With the research done here, V/olfs method can be used to calculate the largest

Lyapunov exponent from a time series when noise is reduced enough. It is imperative that

82
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more research be conducted on how noise affects the accuracy of the Lyapunov exponent arìd

on developing better methods, which are robust to the noisy time series'
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Chapter 4

Calculation of Lyapunov Exponents for a stable

pneumatic actuator system

In this chapter, a stable pneumatic servo-positioning actuator system will be used as an

example for calculating Lyapunov Exponents. The exponents witl be calculated from the

dynamic model of the system and the largest Lyapunov exponent will be calculated using

Wolfls method from a time series, which is via simulation of the pneumatic actuator system

desired by the model. The objective is to understand if the Lyapunov Exponents calculated

for such a highly nonlinear system produce meaningful results using these two methods.

4.1 Fneumatic system

4.l.L Nonlinear model

The double-acting valve controlled pneumatic actuator is shown in Fig. 4.1. The

schematic diagram of the pneumatic actuator is shown in Fig. 4.2. Anelectrical control signal

applied to the valve spool allows movement of the control valve. The control valve produces

a pressure differential between the sides of the piston creating an acting force, FL.
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Fig. 4.1 Experimental test equipment

actuator
\x\ t-¿-

control valve

Fig.4.2 Schematic plot of experimental pneumatic actuator

The equation of motion for the actuator and the load, { is:

Mio+b*, = PrA- PrA- Ft - Ft

where xo denotes the position of the piston. M is the combined mass of the piston-rod

assembly and the extemal mass. P, and P, are the absolute pressure in each of the actuator

chambers, A is the annulus area of the piston, å is the viscous friction coefficient, F,

represents dry friction force and .Ç signifies the extemally applied load.

The ideal gas law, the conservation of mass and the energy equation must be considered

(4.1)

1-v6u \^
supply
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simultaneously to model the control volumes defined by each of the actuator chambers.

Assuming the gas is perfect and that the pressure and temperature is homogeneous in each

chamber, the ideal gas law is written as

P = pRT (4.2)

where p is the mass density of the working fluid and R is the ideal gas constant. P and

T arethe pressure and the temperature in the chamber of interest, respectively.

From conservation of mass, the continuity equation is established as

8ó

.dù=fr@V)= þV + pV

where m is the mass flow rate and V is the chamber volume.

Neglecting the kinetic and potential energy terms, the energy equation is:

4@,pr"D=cpixT-PV+Qdt

where c" is the specific heat at constant volume and c, is the specific heat

pressure; p is the rate of heat transfer across the cylinder wall. For the ideal gas,

Substituting equation (4.2) into the left hand of equation (4.4) gives

(4.4)

at constant

Q*o

(4.3)

(4.s)ft r,. or"r> = ?ftfrr) = |(tr + r v)

Then, the energy equation (4.4) becomes

?(Pn 
+ rtt) = c oritT - PV + Q

Rearranging equation (a.6) and setting Q:0, the required rate of change in pressure is

found to be

(4.6)

Þ =toRT ,ir-L(t*g\!v
cuV c"\ R)V

(4.7)
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Noting that c, -c, = R and definin g y =4, equatio n @'l)may be further simplified to
cv

Þ:TRT ,ir-TP v-VV

Assuming the initial piston position to be at the mid-point of the stroke, the volumes of

the two chambers can be expressed as:

v,('o)=v^. o(t..,)

v,(*,)=vozr ^(i-.,)
Substituting equation (4.9) into (4.8), the differential equations that define the time

derivatives of the chamber pressures are:

(4.8)

(4.e)

(4.10)

The air mass flow rate through the valve orifice is given by Sanville (1971), who

described that the complex internal geometries and the critical pressure ratio may be as low

as 0.2for air valves. Sanville (lg7l) proposed the following empirical relation for the mass

flow rate through the valve orifice:

Pu .,
P" -'"

(4.11)

cuL,P" ly( z ì(z+t)(z-t)

P, is the supPlY Pressure and Pu is the return pressure. The area of valve orifice,



Pneumatic system

4,, it a function of the displacement of the valve spool, which is defined as a linear function

of spool displacement:

4, = r*u Ø.12)

where xu is the position of the control valve, controlled by the input voltage, u:

px"+xr= Kro,u"u
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(4.13)

For Chambers 1 and 2, the air mass flow rates are different; as the air flows out one side

of the cylinder and gets in the other side. For the side where the air comes in, the supply

pressure is { and the return pressure is the pressure within the chamber. For the side where

the air flows out, the supply pressure is the pressure within the chamber and the return

presswe is the atmospheric pressure {,,.

The nonlinear equations relating the control flows rhrand ùt, to valve spool displacement

a.re:

l) the supply port is connected to Chamber 1 and Chamber 2 is connected to the

atmosphere:

ffir=ffi¡l=

*r=**:l

Cowlx,lP,--T-

Cowlx,lx,--T-

Cowlx,lx,

Jr

frt2-¡uu'u'-'

fr{}-y,",n,-',

#rhr".rxl-r) Jr 
- (I!::Lr

!23p-
DIt

tr""

Dto < p
x3

D)lr 1,
x3

(4.14)

CowlxrlP, F, 2 .,o+t)/(y-t)
- 

-l
Jr ! R'7+1

y_¡xrl 1- P* 
¡,' 1-pI rcr

(4.1s)
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2) the supply port is connected to Chamber 2 and Chamber 1 is connected to the

atmosphere:

89

CowlxJx,

Jr
T r 2 {r+Dt(y-t)
R'y *l'

Dt, <p
x2

D)9r 1,
x2

4.l.2Friction model applied to pneumatic system

Friction is highly nonlinear and may result in steady state errors, limit cycles, and poor

performance. It is therefore important, for control engineers to understand friction

phenomena and to reduce its adverse effect on system performance.

Friction is the tangential reaction force between two surfaces in contact. Physically, the

reaction forces are the result of many different mechanisms, which depend upon contact

geometry and topology, properties of the bulk and surface materials of the bodies,

displacement and relative velocity of the bodies and the presence of lubrication. Dynamic

friction models have more advantage than conventional friction models' schemes based on

static friction models (Olsson et. al., 1997). The dynamic friction model, LuGre model, is

employed in this thesis. The LuGre model is continuous which makes it easy to calculate the

Lyapunov exponent from the mathematical model. In the LuGre friction model, force is

Cowlx,lP, F , **rr9.

ffil: ffiol =

ùz=ù,2=

Cowlx,lx,--T-

Cr*Vrll
JT

rtaP
1-'"'

?,,,,,

(4.16)

(4.r7)

T ¡ 2 
¡(r+t)t(r-t)

R'y +l'
1-¡11*r-P,,ç, T_P", /

fr{} ¡o"'u'''
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modeled as the average deflection force of elastic springs. The tangential force applied to the

bristles deflects them like springs, shown in Fig.4.3. If the deflection is sufficiently large, the

bristles start to slip. The average bristle deflection for a steady-state motion is determined by

the velocity. It is lower at low velocities, which implies that the steady state deflection

decreases with the increase in the velocity. The LuGre model is shown in Fig. 4.3.

Fig. 4.3 LuGre friction model

The differential equations of LuGre model are shown in equation (4.14),
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dz lul

-=v-õ^ 
' t z

dt " g(v)

Fr=ooz+orj)ff+fQ)
(4.18)

where z is the bristle deflection which is considered as the extra state in the pneumatic

system's mathematic model, q(v)= 6re-Q/'")2 , f(v):bv, do=F" and ar-F -{. The

parameter øo is the stiffness of the bristles, and o, is the damping. The function g(v)

models the Stribeck effect, and f (v) is the viscous friction. A reasonable choice of g(v)

which gives a good approximation of the Stribeck effect, is

g(v) = do+cr,f-('/'")2 (4.19)

The sum do + at then corresponds to stiction force and ø, to Coulomb friction force. The
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parameter v, determines how g(v) vary within its bounds do < gQ) < d0 + dt.

Although parameters oo and q are hard to estimate, for the LuGre model the great

advantage is the continuity, which is appealing for calculating Lyapunov Exponents towards

the stability analysis of the pneumatic actuator system.

4.1.3 Control design

Sepehri et al. (1996, 1997) developed a number of nonlinear modifications to a

conventional PI control scheme that significantly enhanced the tracking performance of

industrial hydraulic manipulators. The goal was to overcome actuator stiction and flow

deadband in the hydraulic valve, through the application of nonlinear conditioning to the

integral term of the PI control. This modification can reduce the deadtime in the position

response that arises from the control valve deadband and stiction through appropriate

adjustment of the integral term of the PI controller.

For the integral part of the PI controller, the following algorithm is implemented:
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-u'**- Ko!xo^'". -xo) 
èdeadband > e &u(t)>-uton",

Ki

I(t): (4.20)

It is observed that the largest error in the actuator deadband is the velocity error,

è =v,t",¡,"d-v, while the smallest is the time integral, l(ru,,,*o -vþ. This basic observation

is used to construct a nonlinea¡ filter that estimates the velocity error caused by the actuator

deadband. The nonlinear filter is

I(t-Lt)+(xanna-*o)nt

uror", - K o (xo"r,r"o - x o)
Ki

0

lèo*oo*o'"l

è,tea,jhand > c & u(t) < u*

vu?)=oe,le(t)l<ã
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è,tro,tbon,t = (v¿*¡na -v) 
vin''¡'"¿

' 
'sr^.* 

* B¡
(4.2r)

where è*"^r*u is an estimate of the velocity error caused by deadband and P is an

experimental constant found though trial and error. Whenthe èu,^uo,o exceeds the threshold,

a, the controller with this modification will overcome the accumulate error of the deadband.

Thresholds 2,o,", and uuo are selected as the levels of controller output required to

initiate the actuator motion. From the experimental results, the PI controller based on the

velocity error, the triggered integral enhanced the performance of the actuator despite the

effects of the control valve deadband and actuator friction. This PI controller will be used to

control tracking of the pneumatic piston.

Combining equations (4.1), (4.10), (4.13) and (4.18); the nonlinear dynamic equations

relating the position of the actuator, xp,tothe signal, ?t, canbe written as follows:

*o =lo

ir=#çbvo+AP,-APz-Fr

; TRT
r- | = -----------7=-----Í r t\ -

v",+,ell+ *,) V^* n(r..,)
TP,A

- Fr)

YPrA

1 was given

is the velocity

by equation (4.20),

of the actuator. Mass

p

irRT (4.22)
Pr= ffizI

n.,* n(+-.,) ,.,* n(+_.,)

iu = -xu a 
K'ot'" 

upp

i=uo r,=Sr*,
do+aP ''

where control signal u=Ko(xa",o"¿-xp)+KiI ,

Fr:ooz+orà+bvo, do=4 *d dt=Fr-F". eo
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flows rn, and itz are given either by equation (4.11) to (4.17). Rewriting the system's

mathematic model in the state space based on equation (4.22):

93

-u !on", - K, (x*r,*o - xr)
Ki

I (t - Lt) * (rou,uu - xr) nt

uuppu-Kr(xau¡na-xr)

Ki

0

-Xt * 
Krotr" 

upp
f RT(tìt,,- th"r)- yAxox,

T.
V"r+ A(=+xr)

y RT (th,, - rh,r) + y Axox,
T

V",+ A(|- xr)

#@, - Ax, - bxo - (oo*r+ ø,iu ))

è,teodband > e &,u(t)> -ub*",

lè0,'oo",o 3 
"l

è,trortbord > e &, u(t) < uro

*u^,*o(t):0 &,1(xu",,,,0 - r, )l < ã

(4.23)

x,

oolxolx,
x4-

-(rt-)':
F,, + (F,, - Fr)" Yr

where x, denotes to the control valve position, x, and \ are the pressures in the actuator,

xo is the piston's position, x, is the velocity of the piston and xu is the average bristle

deflection in LuGre friction model, Mass flows rz,, , ùo1, ti'1,2 and ùoz are given either

by equation (4.1 1) to (4.17).

It : K o(xar,¡u¿ - xs) + KiI

I(t¡ =

(4.24)

(4.2s)

,12

where èu*u*,u = (r¿,,¡o¿ - x) J:!ë!!ï;7vles¡rcd * þr¿

In order to find the equilibrium points of the pneumatic system, the right hand side of
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equation (4.22) is set to zero. Thus, the system has fixed values for the position ( x, ), velocity

(xo=0) and control valve position (x, =0) corresponding to the desired piston position in

the control design. The values of Chamber I pressure (xz), Chamber 2 pressure (xr), the

LuGre model variable (xu) are not unique, i.e., there exist multiple values of pressures; with

x6 in the LuGre model corresponding to the controlled desired piston position. In other

words, the system has a set of infinite non-isolated equilibrium points where three of the six

variables of the system can have various values, two of which, xz and x' can arbitrarily

change and the third one, xu , is derived from the equation Ax, - A*, - aoxø - Ft = 0 .

The parameters of the pneumatic actuator model studied in this work, are shown in Table

4.1, which are taken from previous work (Karpenko, 2003).

4.2 Simplified pneumatic actuator

4.2.lDynamic model

Due to the complication of the pneumatic system, a simplified pneumatic system will be

developed to study Wolfls method calculating Lyapunov Exponents for a system with a set

of equilibrium points. The control valve of the pneumatic system in Fig. 4.2was removed

and the chambers were closed. The simplified system is shown in Fig. 4.4.

actuator

4,V,,A M

P2,V2,,4
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x
l-¿-

Fig.4.4 Pneumatic actuator with valve closed
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Table 4.1 Parameters of the pneumatic actuator model

Parameter Symbol Nominal Value

Supply pressrue P, 5(bars)

Atmospheric pressure DI atm 1(bar)

Total mass of piston, rods and load M 1.e1(ke)

Viscous dampine coefficient b 70 (N . sec/m)

Actuator stroke L 500(mm)

Piston annulus area A 10.6(cm'

Cylinder dead volume votrvo2 5(mm3)

Ideal gas constant A 287(Jlkg . K)
Temperature of air source T 300(K)

Ratio of specif,rc hearts r t.4
Pressure-volume work correction factor d, 0.89

Valve coefficient of discharge cd 0.7

Valve orifice area gradient w 22.6(mm'lmm)

Min/Ivlax valve spool displacement xu,^* / xr,^in +/- 1.25 (mm)

Valve deadband 4.7<u<5.6 (V)

Valve spool position gain K"olr" 0.25 (mm/V)

Valve first-order time constant p 4.2 (m. sec)

Valve critical pressure ratio 1, 0.2

Static füction F, 40 (N)

Coulomb friction F, 20 (N)

LuGre friction model pareameter ao 200(N/m)

LuGre friction model parameter ol 2(l{/m)

Viscous velocity ys 0.0033 (m/s)

The velocity threshold € 0.005(m/s)

The position threshold a 0.004(m)
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Because the chambers are closed, both ritrand tixz are zero. The control valve variable,

xu, and friction will be removed for simplicity. The volume of each chamber is calculated as

follows:

(4.26)

The dynamic model of the pneumatic system (equation (4'22)) is changed to:

q= u(+..,)

,,= u(t_,,)

(4.27)

. _ -rAxrx,*'- 
o( L*r,\
[2 " )

fr=ffi
[2 " )

1

*r=-l-(Ax,-Axr-b*r)
M' 

I L

*+: xz

where xt and x, denote the pressures ( 4 and 4 ) in the

velocity of the piston and xo denotes to the piston's position.

xo =9p

úr=#?bvo+APr-*r)

4=-ffi.,

'r=ffi.,
where the parameters and variables are defined in Table 4'1'

Rewriting the dynamic model (equation (4'27)) in the state-space model as:

(4.28)

acfuator, x, denotes to the
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With reference to Fig.4.4, when there is a pressure difference between the two chambers

( 4 *d Pr), the piston will move. If there is only viscous friction, the piston will stop after

oscillating for a period of time. In the steady state, both pressures in the chambers are equal

to each other. However, the values of the pressures are not unique. Given different initial

pressures, the position of the piston will be different; but the velocity of the piston is zero.

Thus, the system has a set of infinite non-isolated equitibrium points. In order to find the

equilibrium points of the simplified pneumatic system, the equation (a.28) is set to equal zero.

Thus, the system has fixed values forthe position (xo) and velocity (t, =0). However, the

values of the pressure ( x, ) with Chamber 1 and the pressure (xr) within Chamber 2 can be

any value as long as rr :xr.In other words, the system has a set of infinite non-isolated

equilibrium points where two of the four variables of the system can have various values'

4.3 Calculation of Lyapunov Exponents for simplified pneumatic actuator

4.3.1 Catculation of Lyapunov Exponents from the mathematic model

In the simulation, the initial condition is first set as {2.5bar ,2.0bar ,0.0mm '0.jmm 
I s },

where the piston moved to the right due to the pressuïe difference. The simulation results of

the piston position, velocity and chamber pressures are shown in Fig.4.5. This figure shows,

that the piston moves to the 55 mm and the velocity is zero at the steady state because of the

viscous friction. The pressure of Chamber 1 decreases and the pressure of Chamber 2

increases. The two pressures equal each other (2.25 (bar)) at the steady state since there is no

friction. Four Lyapunov Exponents calculated from the mathematic model are shown in Fig'
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4.6. As shown, all of the Lyapunov Exponents converge. There are two zero exponents and

two negative exponents. However, there is no limit cycle or torus in response.

Time (s)

2.5

2.4

2.3

2.2

2.1

2.O

Time (s)

Fig. 4.5 Simulation results of position, velocity zurd pressures

Based on the procedure outlined in Section 2.3.1, the variation equation is as follows:

Vt, = F(t)V, (4.2e)
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The above equation should be integrated simultaneously with the original nonlinear equation

(4.28).rhe initial conditions for numerical integrations are 
ülilÌ= {l} 

where 1 is the

identify matrix. The Lyapunov Exponents are calculated by following the evolution of the

- 
position (mm)

----- velocity (mm/s)
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area of the hyperellipsoid spanned by 6xr,6x2...,6xnvia separately following the evolutions

of 6xr,6xr...,õxn using any integration method. The Jacobian is:

YAxrx,

99

o(+..^)'

-YAxrx,

A( L_
\2

A

M
0

M
0

",) ^(i-,,)

^, 
= *rÐ.r, llrlll where i =r,2,3,4

I z- 1v2rur > ur
u^ - 1i-*' - 

ll' ,- <v,u, > urll

o(t-.^)'

0

0

M
I

(4.31)

't =ffi

(4.32)
tr- 113,1t2 ) ilZ- <V3'Ut > Ul

u3=
ll"r- . v3,tt2 ) uz- 1v,u, > urll

9a- 1!42t13 ) Us- 1l4lll2 > uZ- 1V4)Ur > Ul
uo=

The vector v,Í is equalto 6x! , atdvector u! is a normalized version of kvi.

TAxz TAxz
F(t¡ = (4.30)

Based on the procedure outlined in2.3.1, the Lyapunov Exponents for the pneumatic

actuator are defined as:
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Fig.4.6 Lyapunov Exponents using mathematical model and the close-up

In the second test, the initial condition was changed to { 3.0bar ,2-5bar ,

0.0mm,0.0mmls), and the piston moved to the right due to the different pressures. The

pistonposition andvelocity as well as pressures are shown in Fig. 4.7.The position moves

100 mm and the velocity is zero at the steady state. The pressure of Chamber I decreases and

the pressure of Chamber 2 increases. Both pressures are 2.5 (bat) at the steady state. The

Lyapunov Exponents are calculated again from the mathematic model and are shown in Fig.

4.8.
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Fig.4.7 Simulation results of position, velocity and pressures

Comparing the simulation results of Fig. 4.5 and Fig. 4.7, the position of the piston and

both chambers pressure have different steady state values with different initial conditions.

The results of the Lyapunov Exponents in Fig. 4.6 and Fig. 4.8 show, that there are two zero

Exponents. The values of the negative Lyapunov Exponents do not change given different

initial conditions. As in the original concept of the Lyapunov Exponents, the zero exponents

indicate that the system is in some sort of steady state mode with some variables of the

system having an attracting period orbit, i.e., the limit cycle. However, from the simulation
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ïesults it is observed that, in this case, there is no limit cycle or period orbit in the simplif,red

pneumatic system. They are obtained because the simplified pneumatic system has a set of

infinite non-isolated equilibrium points.
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Fig.4.8 Lyapunov Exponents using the mathematical model and the close-up

Note that the steady-state pressures of the two chambers can be different by setting different

initial pressures, as long as the steady-state pressure differential is zero. If the initial

condition of the pressures is changed, the position of the piston at the steady state will be

different. This means that, only the velocity of the piston is fixed at the steady state. The
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position and the two pressures will change with the initial condition.

4.3.2 Calculation of the largest Lyapunov exponent from time series

Given the initial condition {2.5bar ,2.0bar ,0.0mm,0.\mmls }, the largest Lyapunov

exponent is calculated from the time series of the position of the piston and the pressure of

Chamber I is recorded from the simulation, shown in Fig. 4.9 to 4'12.
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Fig. 4.9 Largest Lyapunov exponent from time series of position and the close-up
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Fig. 4.10 Largest Lyapunov exponent from time series of Pressure 1 and the close-up

In the Fig.4.9 and Fig.4.10, both of the largest Lyapunov Exponents calculated from

the time series of the piston position and the pressure of Chamber 1 converge to -1.9. The

same largest Lyapunov exponent was obtained from the other variable recorded data of this

system.

When the initial condition is { 3.0(åar) ,2.0(bar),0'0(mm),)'\(mmls) }, the largest

Lyapunov exponent is also calculated from the time series of the position of the piston and

Pressure I recorded from the simulation.
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In the Fig.4.11 and Fig.4.I2, both of the largest Lyapunov Exponents calculated from

the time series of the piston position and the pressure of Chamber I converge to -2.0. The

same largest Lyapunov exponent was obtained from the other variable recorded data of this

system.

From Fig.4.9 to 4.12, it is seen that the largest Lyapunov exponent calculated from time

series of different variable recorded data converges to about -I.95, which is significantly

different from zero calculated from the mathematic model. This indicates that Wolfls method

using time series can not be used to calculate the largest zero Lyapunov exponent for this

simplified pneumatic system.

4.4 Calculation of Lyapunov Exponents for the complete pneumatic system

4.4.L Calculation of Lyapunov Exponents using the mathematical model

In the simulation, the pneumatic system is controlled to move to a desired position or

follow the desired trajectory tracking under a nonlinear PI controller described earlier.

Lyapunov Exponents for the pneumatic control system under study are f,trst calculated from

the mathematic model. Based on the procedure outlined in Section 2.3.I, the variation

equation is as follows:

tlt,: F(t)V, (4.33)

10ó

The above equation should be integrated simultaneously with the original nonlinear equation

(4.22).rhe initial conditions ror numerical integrations are 
üi|lÌ= {l} 

where 1 is the

identity matrix. The Lyapunov Exponents are calculated by following the evolution of the
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area of the hyperellipsoid spanned by õxr,6x2...,6xnvia separately following the evolutions

of 6xr,6xr...,6x, using any integration method. The Jacobian is:

F(t¡=

Qtt Otz Otz dt+ Qts dtø

ozt azz azs Qz+ ozs dze

att dtz ott ott dss Qze

a+t d+z ãts at+ ãqs d¿e

ost ãsz ãss dst ãss dss

ost dcz aøz aø+ aas døa

(4.34)

where

Qn=

drz =

0r5 =

ozz =

or4'

-Kp

t
_1

p

Qt3'

K,l

ats = 0;

.#)+

(4.3s.a)

(4.3s.b)

(4.35.c)

(4.3s.d)

(a.3s.e)

(4.35.Ð

(4.35.e)

'^'(k +)
""= ,u$*[ '

,*r(4+-4%\-rAx+' l&, er)

arr=aru=0;

n _ -TAxzq24- / ¡ \,

v", * ,eli* *, 
)

arr=aru=0',

v",* e(l*.,)

(4.35.h)
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In the calculation, there are non-smooth terms in the mathematic model. At the instants of

switching points due to the discontinuity, the linearized equations are evaluated using the

indicator function, h(x) and the transition function, g(x), both defined based on the

physical behavior of the system. The non-smooth parts come from lxol and /(r) in the

mathematical model (equation (4.22)) of the pneumatic system.

c At t=tt, x+=0 and lxol changesfrom -x, to xo

t-(" lxt - 
r" 

rz

c,*lr,lp,z *,-,r,,-
Jr 1j R'z+l'

F1ïl-" - P-,'



Pneumatic system 111

The indicator function is 4: -*o - x+ = 0

Jacobian of the indicator function is

ô4

ax4

(4.37)

4, t\, 4o 4, l\'l (4.38)

Jacobian of the transition condition is Gt=

+ ll=tu,oxs oxe l
* _l a4 ôt4 ah

lü, oxz ox3

6x(ti ) = G, ('- )a' (r; l- [", (t) ¡,('('; )) - ¿ (, (ç ))]
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f:s xtg xao xtt xqz

(4.3e)

Following the guideline in Section 2.3.1.2 and equation (2.17), the new value of variation

equation V,riis given below:

(4.40)

where',+" and "-" denote just after and before switch instants f,. Rewriting equation

(4.40),
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where ¡(r(t)) denotes the f(x) in equation (4.22) when ro (0 and

denotes the /(x) in equation (4'22) when xo)0.

e At t=tz, xt=O and lxol changefrom xo to -xo

The indicator function is 4=to*xo:0

Jacobian of the indicator function is

¿ ("('¡ ))

],
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0

0

0

0

0

00000
10000
01000
00100
00010
00001

(4.42)

4o 4, 4'l $43)

(4.44)

(4.4s)

Rewriting

Jacobian of the transition condition is Gz =

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation V,=,îis as follows:

d x(ti) = G, (r ) 
a. (t;) - [o' ("

- 
) f,(- (t;)) - r 1"t'; l)1 ftffi

where ,,+', alrd "-" denote the time just after and before switch instants /r.

equation (4.45),
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xä .ü xii
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x7 xS xs rro Il I

rl¡ xt+ rrs xtt xn
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f¡r xzz xtt xtq xts

xzt xts xss xqo xil
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lh' l\, k' 4o 4' 4u

x7

xtt

\g

xzs

xtt

xtt

14, 4, 4, 4o 4' 4u

where tr(-(r;)) denotes the f(x) in equation (4.22) when

denotes the f (x) in equation (4.22) when ro ( 0.

o At t = ts, 1(f ) changes from -u'onu' - K oe(t) to I(t- Ar) + e(t)Lt
r\¡

xtz
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xz¿
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Itå i3:3:lff;l
llo o I o o oll¿, 

1

ll: ::å?:llrl
lloooootil¿.1

The indicator function is

Jacobian of the indicator function is

Jacobian of the transition condition is Gt =

(4.46)

4' 4'l (4'48)

,¡. (4.49)

new value of variatton

H,(t )a'(r; )

xo)o and ¡('(tt))

u _l atu ôh ôt\ ô4 ôth ô41
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(2.t7),
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:l
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theFollowing the guideline in section 2.3'1.2 and equation

equation V,=,;is as follows:

f,,
f,,
f,
fro

f,,

6x(t!)= c, (" n,(t )¿ ('(';))
(4.s0)
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where "+" and "-" denote the time just after and before switch instants fr. Rewriting

equatlon

o o'lIx,
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The indicator function ts ho:(tçt-Al)+ e(r)Lt)-

Jacobian of the indicator function is

(4.s 1)

where ¿(r(r;)) denotes the /(x) in equation (4.22) when l(t¡=:ut'*"'-Kpe(t) *,o
Ki

¿ (r(r;)) denotes the f(x) inequation (4.22)when I(t¡ = I(t - Lt)+ e(t)At .

o At t=t+,1(r) changefrom I(t-At)+e(t)Lt ,o -u'o"'-Ko€(t) 
'n

Ki

- 0 (4.s2)
Ki

,^=l%
Lùt * *f=r"

ôho

ax2

ôho ôho

A\ Ax4
ho, ho, hoo h4s houT (4.53)
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Jacobian of the transition condition is Go = (4.s4)

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation ø - is as follows:L t t=tl

(4.ss)

where "+" and 'o-" denote the time just after and before switch instants fo. Rewriting

equation (4.55),
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where fr(r(t;)) denotes the /(x) in equation (4.22) when I(t)=I(t-Lt)+e(r)Ar and
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f'(r(,;)) denotes the

o Ãt t=ts, I(t) changefrom l(t-Lt)+e(t)Lt to

f(x) inequation (4.22)when I(t)=-u^** -K'e(t) .

Ki

uror", - K re(t)
Ki

The indicator function is

Jacobian of the indicator function is

Jacobian of the transition condition is Gs =

hs =(I(t-^/)+ e(t)Lt)-u'o*' -Í oe(t) - o,K,

- _l an, ôh, ôh, ôh, ôh,

' lôr, Ax2 ô\ ô*o ôxs kf=r,, h,, h,, h,o
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hss h"l (4.s8)

Following the guideline in section 2.3.I.2 and equation

equation V,=,;is as follows:
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(2.r7), new value of variatron

6x(t!)=c,('-)a'(r;)_[o,(")r^('(,;))_f,(*(t;))]#ffi(4.60)

where "+" and "-" denote the time just after and before switch instants /r. Rewriting

equation (4.60),
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where f^(*(t;)) denotes the f(x) in equation (4.22) when I(t¡=I(t-Lt)+e(t)Lt and

fr(x(t;)) denotesthe f(x) inequation (4.22)when I(t¡=u*0"-Íoe(t) .

Ki

¡ At t:te, /(r) changefrom 
u**' 

-Íoe(t) to I(t-Al)+ e(t)Lt
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(4.62)

(4.64)

Following the guideline in section 2.3.1.2 and equation (2.17),

eovation tu - is as follows:. , t=tà

the new value of variatron
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ax(t[):Gu(*

where tt+" and tt-" denote the time just after and before switch instants /u.
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Rewriting
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where fr(*(t;)) denotes the f(x) in equation (4.22) when I(t)=I(t- At)+e(r)Âr and

fr(*(t;)) denotes the /(x) in equation (4.22)when I(t¡ =u'o'"' 
--Í oe(t) 

.

Ki

4.4.1,.1Lyapunov Exponents for stable motion with a set point

Under the controller shown in equation (4.24), the piston is controlled to move to the

desired position. The desired actuator piston position is x,t",¡,",t =0.2m, the control gains are

given inTable 4.2.
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Parameters xo (Ylm) r, (V/ms) U,"-.,(v) urr*r(v) ri*,n {m/s) t p

values l0 26 0.65 0.65 0.005 0.004 50

Table 4.2 Control gains of the pneumatic system

The method introduced in Section 2.3.1 which calculates Lyapunov Exponents, is

adapted to the pneumatic system. The piston displacement is shown in Fig. 4.13. Fig. 4.14

shows the pressures of the two chambers in steady-state.
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Fig. 4.13 Close-loop position response of the piston
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Fig. 4.14 Chamber pressures

Figure 4.13 shows that the system has the steady state error because of the PI controller
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and friction. When x0",,,"0(t)=0 *d l(*r",,,"r-rr)l< ã,the integral part, I, is zero. When

the velocity error is too small, the control signal generated by the PI controller is zero and the

control valve does not move. The piston will stop there. In Fig. 4.l4,the two pressures go to

different values at the steady state, due to the friction in the system. The difference in

pressures between the chambers generates a net force to balance the friction.

The time history of the Lyapunov Exponents for the pneumatic control system

understudy is calculated using the mathematical model. The spectrum is shown in Fig. 4.15.

The whole Lyapunov Exponents'spectrum is shown in Table 4.3.
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Fig. 4.1 5 Lyapunov Exponents and the close-up of the pneumatic system
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Table 4.3 Lyapunov Exponents of the pneumatic system

4 4 )" 1"4 4 ),6

0.0 0.0 -1 6.1 3 -20.35 -20.20 -34t.87

With reference to Fig. 4.15, there are two zero exponents and four negative exponents.

As in the original concept of Lyapunov Exponents, zero and negative exponents indicate the

system is in some sort of steady state mode with some variables of the system having an

attracting period orbit. However, the pneumatic control system does not have a limit cycle or

torus and each variable converges to a fixed point. In order to interpret the physical meaning

of the results, the system's mathematic model i.e., equation (a.19) is restudied. The controller

was designed for the desired piston position and velocity. No requirements of other states of

the system were imposed. Different initial chamber pressures may cause the trajectories to

converge to two different equilibrium points belonging to the system's equilibrium points.

Consequently, the steady-state lengths "f ll¿(r)ll in two directions as t -) co stays at a

constant non-zero value leading to zero Lyapunov Exponents. Thus, the new interpretation of

the zero Lyapunov Exponents is that for the system with a set of non-isolated equilibrium

points, zero exponents do not imply the existence of limit cycle or torus. Rather, it indicates

that the separation of two trajectories initiated from two different initial conditions remain

constants in two directions. The largest distance is within the set of the equilibrium points.

The remaining negative Lyapunov Exponents indicate that the trajectories converge on each

other in all other directions.
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4.4.1.2 Lyapunov Exponents for stable tracking motion

In this section, the piston moves back and forth under the control signal. The desired

trajectory is a sinusoid function. Since time f shows up in the controller which makes the

systems non-autonomous, another dimension has to be added to the dynamic model. The

mathematic model becomes :

(4.67)

vo
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Lt

FL

P,
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.; - 
xu , Krolr" -,ru = ---pp

In the simulations, the pneumatic system follows the desired trajectory. The desired

trajectory is described as 0.2cos(1.57r) (m). The controller gains are the same as those in

the stable motion with a set point.

The initial condition of the system is chosen at xo=0(m) , vo=O(mls) ,

Pr=Pr=2.77(bar) attd x,=0(m). The displacement of the piston is shown in Fig.4.8. It

can be seen that the actual displacement of the piston approaches the desired trajectory very

well, with slight overshoots at the point with maximum and minimum displacements.
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Fig. 4.16 Piston tracking response

The Lyapunov spectnrm is shown in Fig. 4.14. All the Lyapunov Exponents converge to

the steady value rapidly. The final values of Lyapunov Exponents are shown in Table 4.5.

The zero Lyapunov exponent comes from the / dimension.
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Table 4.4Lyapunov Exponents of the pneumatic system

4 1, 4 4 4 Å.6 4

0.000 -2.361 -5.946 -10.106 -26.686 -42.s0r -34t.650

4.4.2 Calculation of the Largest Lyapunov exponent from a time series

4.4.2.1Stable motion with a set point

For the same system as discussed in Section 4.1, the largest Lyapunov exponent is

calculated and presented in this section. In Fig. 4.16 the largest Lyapunov exponent is

calculated from the time series of recorded position data. The program calculates the largest

Lyapunov exponent with the time step 0.001 and 600,000 points. The values of the largest

Lyapunov Exponents from both the time series and the mathematical model, are shown in

Table 4.4.
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Table 4.5 Largest Lyapunov exponent from the time series and mathematic model

Time series Mathematic model

Lyapunov exponent -25.52 0.000

The largest Lyapunov exponent calculated from the time series can not match the

exponent from the mathematic model. To ensure that the poorly calculated largest Lyapunov

exponent is not the artifact of inadequate selection of time delay and evolve time, the largest

Lyapunov exponent was also calculated with different time delays and evolution times as

shown in Fig. 4.17. To demonstrate that although the largest Lyapunov Exponents

calculated from the time series changes with the key parameters of time delay and evolve

time, all the largest Lyapunov exponent are below -20.
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Fig. 4.19 Largest Lyapunov exponent with different time delay and evolution ttme

Thus, the largest Lyapunov exponent calculated using Wolf s method for the pneumatic
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system with a stable set point cannot match the one determined using the mathematical

model. The problem comes from the reconstruction of the attractor. The reconstruction is

based on a series of data. As the system has a set of infinite non-isolated equilibrium points,

the reconstruction of the phase space cannot be carried out based on Taken's theory.

Therefore, Wolfs method for calculating the largest Lyapunov exponent from time series

does not work for the systems with a set of infinite non-isolated equilibrium points.

4.4.2.2 Stable tracking motion

The time series of the position of the system is recorded from the simulation result. The time

delay is 0.001 and the total data are 600,000. The largest Lyapunov exponent is calculated

from time series for tracking motion and shown in Fig. 4.20.
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Table 4.6 Lyapunov exponent calculated from the time series data compared to the result

from the mathematic model

Time series Mathematic model

L. E. 0.0003 0.000

Although the largest Lyapunov exponent calculated from time series is zero, it has

different indications from the mathematic model. The zero Lyapunov exponent from the

mathematic model is caused by treating f as another dimension. The zero Lyapunov

exponent from the time series shows that the system is stable for a periodic orbit.

Furthermore, as discussed in Section 3.3.2.3, if the time series corresponds to periodic

behavior, the Lyapunov exponent should be very small or zero as the trajectory returns to

exactly the same set of values. However, it does not indicate the convergence or the

divergence of nearby trajectories. Hence, this trajectory method reflects the fact that the

Lyapunov exponent neither increases nor decreases in its value.

4.5 Summary

In this chapter, Wolf s method was employed to calculate the Lyapunov Exponents from

both the mathematic model and a time series for the pneumatic system. For the stable motion

with a set of infinite non-isolated equilibrium points, as the pneumatic system studied in this

work, the new interpretation of zero exponents with other negative exponents calculated from

the mathematical model is presented. This is in line with numerical calculation of the

exponents shown in Table 4.3. lt is concluded that the whole spectrum of Lyapunov

Exponents determined from the mathematical model can still be used to analyze system

stability. Some simple examples wele presented and discussed in Appendix II to further



Pneumatic system 128

support the above explanations.

In this research the largest Lyapunov exponent from a time series of a system with

infinite non-isolated equilibrium points was found to significantly differ using the one from

the dynamic model. The reason is believed to the set of infinite non-isolated equilibrium

points, which cause reconstruction of the phase space being invalid. Thus, the limitation of

Wolfs method calculating the largest Lyapunov exponent from time series is demonstrated.

It is concluded that Wolfs method cannot be used for calculating the largest Lyapunov

exponent for systems with a set of infinite non-isolated equilibrium points. Further studies for

a different system with similar properties should be conducted. For the case of pneumatic

system tracking desired trajectories, the finding is similar to the one of the two-link

pendulum systems in that zero exponents have been calculated from both the mathematical

model and the time series. However, the zero exponent from the time series and the one from

the mathematical model have different indications. The zerc Lyapunov exponent from the

mathematical model responds to the extra dimension of time in state space. The zero

Lyapunov exponent from the time series responds to the periodical orbit'
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Chapter 5

Conclusions

For complex nonlinear systems, it is extremely difficult to derive a Lyapunov function

for stability analysis. It is impossible to do the stability analysis in the context of Lyapunov's

stability theory when only a set of time series recorded from the experiment is available. The

concept of Lyapunov Exponents provides a possible way to analyze the stability of a system.

The Lyapunov Exponents can be calculated from either the mathematical model of the

system or a time series, which are independent from the initial conditions and can

charactenze the system's stability provided that the numerical artifact is under control.

However, the concept of Lyapunov exponent is usually used for analyzing chaotic systems,

where at least one Lyapunov exponent is positive. The methods for calculating Lyapunov

Exponents using a time series have been considered unreliable for calculating negative and

zero exponents.

In this thesis the possibility of using Wolfs method (1985) to calculate the largest

Lyapunov exponent from a time series is studied and applied to the potentially stable systems
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where the largest Lyapunov exponent is negative. Two robotic systems, namely a two-link

pendulum system and a pneumatic actuator, have been used as examples. The Lyapunov

exponent spectrums have been first calculated from the mathematical models, which serve as

the reference for comparisons. The time series of each system is generated from the

mathematical model and the largest Lyapunov exponent has been calculated using Wolfs

method. Note that, in calculating Lyapunov Exponents based on a time series, three key

parameters, such as the time-lag, the evolving-time and the embedding dimension for

reconstruction of the state space have significant effects on the calculated Lyapunov

Exponents. The question of proper selections of the above parameters still remains open. In

this work, since the dimensions of the systems are known, large ranges of the parameters for

both the time-lag and evolving time are used. The following conclusions have been drawn:

1) Wolf s method has been successfully applied to the stable two-link pendulum system

moving to a desired point, i.e., the system has a unique stable equilibrium point. This

is evidenced by the fact that the largest negative Lyapunov exponent calculated using

Wolf s method is very close to the one calculated from the mathematical model.

2) For the two-link pendulum system under study, the calculated Lyapunov Exponents

are not sensitive to the time-lag and time-evolve provided that the time delay is not

too low.

3) For both simplified and complete stable pneumatic systems moving to the desire

position, there exists a set of infinite non-isolated equilibrium points. Two zero

exponents and three negative exponents have been determined from both

130
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4)

s)

mathematical models, which contradicts the conventional concept of Lyapunov

Exponents. Such zero exponents indicate the existence of a set of infinite non-isolated

equilibrium points rather than a limit cycle or a torus. The causes of such a zeÍo

exponent have been discussed. It has been further demonstrated that such phenomena

(the system with a set of infinite non-isolated equilibrium points) can occur in robotic

systems frequently.

The largest Lyapunov exponent calculated using Wolf s method for pneumatic system

does not match the one from the mathematical model when a set of infinite

non-isolated equilibrium points exists. Thus, V/olfls method based on a time series

can not be used for such a system.

For systems track the desired trajectories. Zerc exponents have been calculated from

both the mathematical model and the time series. However, the zero exponent from

the time series and the one from the mathematical model have different indications.

The zero Lyapunov exponent from the mathematical model responds to the extra

dimension of time in state space. The zero Lyapunov exponent from the time series

responds to the periodical orbit.

The effects of GWN on the largest Lyapunov exponent are studied on the two-link

pendulum system having chaotic motion or stable motion with a set-point. The results

show that the noise has significant effect on the calculation of the largest Lyapunov

Exponents.'However; no clear trend has been found in the accuracy of the largest

Lyapunov exponent with the increase in NSR.

6)
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Overall, based on this research, Wolfs method which calculates the largest Lyapunov

exponent from the time series can be applied to stable mechanical systems which possess

isolated equilibrium points. The calculated Lyapunov Exponents are not sensitive to the

parameters of time-lag and evolve-time. If the systems possess inf,rnite and non-isolated

equilibrium points, the method calculating Lyapunov Exponents from the mathematical

model is still reliable and the new indication of the zero exponents has been developed.

However, the largest Lyapunov exponent calculated from a time series is not reliable and

should not be used. More research on calculating the Lyapunov Exponents using a time

series for systems with a set of infinite non-isolated equilibrium points should be

performed.
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Appendix A

Development of the Mathematical Model of

Two-link Pendulum System

In this appendix, the dynamic model of the two-link pendulum used in this work, is

developed. The two-link pendulum model is shown in Fig. Al.l. The system consists of

two rigid links with length l, and lr.The base of Link I is fìxed at point O. *rand m,

are the masses of the two links. r, and rz are the locations of the mass centers of the

two links. 0, and 0, are the joint angles which are positive in the clockwise direction.

t, and q are the control torques applied at both joints which are positive in the counter

clockwise direction.

FigAl.l Two-link pendulum model
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The dynamic equations can be derived from the Lagrangian formulation. In this

thesis the two-link pendulum is assumed to move in a horizontal plane.

For Link 1:

The position of the mass center of Link I is:

x = rtsin4t

y =4coso, 
(41'l)

The velocity of the mass center of Link 1 is:

* = rr0rcos1,

j, =-rrorsino, 
(Al'2)

The kinetic energy of Link I is as follows:

x,=j*,ul *|rcî =**,rr? + rî+:IP: (41.3)

Substituting equation (^I.2) into equation (41.3), we have:

K,=!m,r,'ei +!4ei (,{1.4)t 2 rr , Z,

The potential energy of Link I is 0 since the two-link pendulum moves in the horizontal

plane.

For Link 2:

The position of the mass center of Link 2 is:

¡ = /, sin 0, + rrsin(O, + 0r)

y = lrcoso, + rrcos(0, + or) 
(41'5)

Then the velocity of the mass center of Link 2 is:

i = lr2rcos d, + rr(0, + 0r) cos(0, + 0r)

y = -ltetsin d, - rr(g, + Lr)sin(o, + 0r) 
(41'6)
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The kinetic energy of Link 2 is as follows:

*,=l*,ú*)r,e; =l*,rü+ fi¡+f,r,ei (A1.2)

Substituting equation (41.6) into equation (41.7), we have:

K, =)mliq +|*¡; 10, + 0,)z + m,l,r,(01 + 0,0r)cos0, *)t,p, + 0,)' (41.8)

The potential energy of Link 2 is 0.

The Lagrangian ñrnction of the two-link pendulum is:

L=K-P=Kr+K, (41.9)

= |*,r,' 
el + | r,ei * |*¡i ei + )*¡i p, + 0,)z + m,t,r,(01 + 0,0,) cos 0, * | r,p, + 0,)'

Based on the Lagrangian formulation:

¿(æl a¿n -" | "- t_-- (A1.10)''- dt\ae,) ô0,

we have

rr=(mrrr'+Ir+mrll +mrr] +Ir+2mrlrrr)ë, (41.11)

+ (m rr| + I, + m rl rr, cos 0 r) ë, - m rl rr, (ej + ze,e r) sin e,

rr=(Ir+mrr] +mrlrrrcos2r)ër+(mrrl + tr)ë^+ mrlrrr7l sin0, (41.12)

Let Jr=Ir+mr\'+mrll , Jz=Ir+mrr], p=mrlrr,

Equations (41.1l) and (41.12) become:

r,=(J,+ Jr+2pcos2r)ë,+(Jr+ pcos2r)ër- p(20,0r+e]¡sine, (,A'1.13)

rr=(Jr+pcos0r)ër+Jrër+p0r'sin0, (41.14)

The dynamic equations can be written in the following matrix fórm:

M@)ê + C(0,e'¡=7 (At.ls)

where
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,, _l d,, d,rf _l Jr+ Jr+2pcos?, Jr+ pcosor]
"'-10,, drr)-l 4+ pcoso, Jz l
ã I d,,,1 I -p@,0,+e|¡sine,]
"=14',-j=L po,'zsino, l

- -1r,1' -L"rJ
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Appendix B

Calculation of Lyapunov Exponents

for a Stable Spning Mass System

To support the explanation of the results on Lyapunov Exponents of the pneumatic system in

Chapter 4, the spring mass system is studied as a different example. This is a simple system with a

set of infinite non-isolated equilibrium points which make the largest Lyapunov exponent zero' The

spring mass system's model is shown in Fig. 8.1.

Fig. 8.1 Spring mass model

In Fig. B.1, the initial condition is x away from the static position, where the spring has no

deformation. The spring force ( F = lpc ) is positive in the X axes direction. The friction is positive
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in opposite direction as the velocity of the mass. After releasing the mass it oscillates around the

balance position. In the research the LuGre model is used.

The dynamic model of the spring mass model is:

mi=lø-f

Rewriting the dynamic model in the state space model is:

(82.1)

*t: xz

.kf
x2 = -xl--mm

xz=xz-
oolxrlx,

_:"..
-(:+)'

4,+(4, -F,t)e 
t/'

where .f =ooxr+orir+bx.r, xt is the position, x2 is the velocity and x, is the variable for

LuGre friction model. The parameters of the spring mass system are shown in Table B.l .

Table 8.1 The parameters in the spring-mass system

Parameter Symbol Nominal Value

The Spring Constant k(N lm) 5

Static friction 4(¡/)
4

Coulomb friction 4(N)
2

LuGre friction model parameter
oo(N lm) 0.15

LuGre friction model parameter or(N.s I m)
0.8

Viscous velocity v,(m/s) 0.1

Damping parameter b(N.s lm) 2.0

In the simulation, the initial condition is set as {-1 .0(m),0.0(m/s)}, and the mass will

oscillate and then stop because of the friction. However, the end positions change with different

(F.2.2)
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initial conditions. This means that, there is a set of infinite non-isolated equilibrium points for the

sysÉem. As the intial condition is set to overcome the static friction, the mass will move until the

force generated by the spring equals the frction. The simulation results of mass position and friction

are shown below:

1.2,

1.0

0.8

0.6

0.4

o.2

0.0

-o.2

-0.4

-0.6

-o.8

Fig 8.2 Position of the mass and the end friction

Then the initial condition is changed as {2.0(m),0.0(m/s) }, the simulation results of position

and friction are shown in Fig. B.3.
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The Lyapunov Exponents are calculated from the mathematic model and shown in Fig. 8.4,

where three exponents are obtained. Based on the discussion in Chapter 4, the largest zero

exponents respond to multi-equilibrium points of the system. The Lyapunov spectrum is in Table

8.2-

0.4

0.2

0.0

4.2

4.4

-0.6

-0.8

Fig B.4 Lyapunov Exponents from the mathematic model

Table 8.2 Lyapunov spectrum

4 4 Å.

0.00 -0.276 -0.291

Then the largest Lyapunov exponent is calculated from the time series, which is shown in Fig.

8.5- In the calculation, the time delay is chosen as 60 and evolution time is chosen as 30' The

largest Lyapunov Exponents for the s¿une mass-spring system calculated with a large range of key

parameters (time lag and evolve time) are shown in Fig. 8.6. In Fig. 8.6, the time delay and

evolution time are the two horizontal axes and the vertical axis is the largest Lyapunov exponent.

Fig. 8.6, shows that the largest Lyapunov exponent converges to the -0.29 when the time delay is

chosen higher than 40 and lower than 310. With the different simulation parameters, the largest

.1,

c
0)coo-
Xo
oc
f
o-
o
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Lyapunov exponent from time series does not vary significantly. However, it can not match the

largest Lyapunov exponent (0.00) from mathematic model. Similar findings are shown in Chapter4.

-0.05

-0.10

-0.15

4.20

-0.25

-0.30

Fig B.5 Lyapunov Exponents from the time series

Evolution time

Fig 8.6 Largest Lyapunov exponent with different time delay and evolution time
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