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Abstract

It is believed that Lyapunov Exponents can characterize the stability of nonlinear
dynamic systems. Lyapunov Exponents can be calculated from the mathematic model or time
series data of the system, which are independent of the initial conditions within the same
stability region. Lyapunov Exponents have been mainly used for diagnosing chaotic systems,
where at least one Lyapunov Exponent is positive. Little work has been done on calculating
Lyapunov Exponents from a time series of a potentially stable system, where the largest
Lyapunov Exponent is negative or zero. Most mechanical systems are complex, of which, the
mathematical models are sketchy or even not available. For such systems, it is extremely
difficult, even impossible, to derive a Lyapunov function for stability analysis. Therefore, an
alternative method for stability analysis of nonlinear engineering systems is needed.

The objective of this thesis is to explore the possibility and limitations o‘f applying
Wolf’s methpd to calculate the largest Lyapunov exponent from a time series of potential
stable systems. Two fundamentally different robotic systems are used as examples. One isa
robotic arm with two rigid links moving in the horizontal plane. A position-controlled
pneumatic actuator system is used as the second example. In addition to the different nature
in their nonlinearity between the above two robotic systems, the pneumatic system has a set
of infinite non-isolated equilibrium points, while the two-link robotic arm has one

equilibrium point.



Lyapunov Exponents for each of the above systems are calculated using the mathematic
models and the largest exponent is calculated from the time series. The results show that for
the two-link position-controlled robotic system which has an isolated equilibrium point, the
largest negative Lyapunov exponent calculated from the time series matches the one from the
mathematic model very well. This indicates that Wolf’s method has good potential for
calculating largest negative Lyapunov exponent. However, for systems with a stable periodic‘
motion, the stability should be studied using Lyapunov exponents calculated from
mathematical model. For the pneumatic system; which has a set of infinite non-isolated
equilibrium points, zero exponents are obtained from the mathematic model, which conflict
with the conventional interpretation of the Lyapunov Exponents. However, the largest
Lyapunov exponent calculated using a time series for the pneumatic system does not match
the one from the mathematic model, and the cause is also explored. It is concluded based on
the examples for systems with a set of infinite non-isolated equilibrium points, The largest
Lyapunov Exponents can not be calculated using Wolf’s method. Systems with infinite
non-isolated equilibrium points occur naturally and frequently in mechanical engineering
systems.

This work is the first step in applying the concept of Lyapunov Exponents for stable
mechanical engineering systems. It enables us to understand the possibility and procedure for
applying Wolf’s method using time series for potentially stable robotic systems. More
importantly, this work shows the limitations of the applications of Wolf’s method to

engineering systems.
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Chapter 1

Introduction

1.1 Motivations

Control Engineering uses control theory to cause diverse, mathematically modeled
systems behave in a desired manner. In order to create the controller, the dynamic behavior

of a modeled system needs to be fully analyzed and understood.

Control Engineering has a wide range of applications, from the flight and propulsion
systems of commercial airliners to the automatic control present in many modern robot
systems. The stability of the control systems is the most important consideration when

applying the controllers.

With background technologies of behavior, navigation and path planning solved using
basic wheeled robots; Roboticists are now moving on to develop stable walking robots. Over
the past two decades, numerous bipedal walking robots have been created including Asimo

(Honda Motor CO. 2002) and QRIO (Sony Co. 2003). Initial work focused on multi-legged
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robots such as Aibo (Sony Co. 1999); which were statically stable and easier to work with.

A difficulty in the development of bipedal and naturally gaited robots is that the human
body utilizes a large number of muscles to keep balanced and stable when moving.

Replicating what is required for stabilization mechanically is very difficult and expensive.

Since an unstable robotic system is typically useless and potentially dangerous; the
stability analysis is always the important part in control engineering. The controller is applied
to ensure that the system follows the desired trajectory or moves to the desired position. In
the majority of cases, automatic control systems involve complex devices, consisting of
objects (plants or processes) to be controlled, and controllers. The task of a controller is to
continuously support either the stationary operating conditions, or those conditions of the
plant that change according to a given law. All deviations from the desired conditions that
may arise in the control system must be reduced to zero. In other words, the control system
must be asymptotically stable (David R Merkn, 1996). The stability analysis of robotic
motion can be traced back to the time when robots were first invented. In recent years, many
studies on the stability analysis relating to robotic control have been done. Several theories
and methods have been successfully developed to support the stability analysis of robotic

motion.

Lyapunov’s stability theory is widely used for stability analysis of nonlinear dynamic
systems. It includes two methods. One is the Linearization Method and the other is the Direct

Method. The Linearization Method draws conclusions about a nonlinear system’s local
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stability around an equilibrium point from the stability properties of its linear approximation.
The Direct Method is not restricted to local motion. It determines the stability properties of
nonlinear system by constructing a scalar energy-like function for the system and examining
the derivative of the function with respect to time. The key to applying the Lyapunov
stability analysis is to find a Lyapunov function. However, there are no general and
constructive methods for deriving Lyapunov functions for nonlinear systems.

As there are no constructive rules for deriving a Lyapunov function, the applications of
this otherwise powerful tool are extremely limited and the stability of many nonlinear
systems cannot be studied. Lyapunov exponents quantify the average rate of convergence or
divergence of nearby trajectories. A positive exponent implies a divergence of orbits, a
negative one shows convergence of orbits, and a zero exponent indicates the temporally

continuous nature of a flow (i.e. the trajectory show periodic motion).

There are two ways to calculate Lyapunov Exponents. One method calculates Lyapunov
Exponents from the mathematic model of the system, and the other method calculates
Lyapunov Exponents directly from one series of the simulation or experiment data. The
method which calculates Lyapunov Exponents from the time series data is very convenient
and powerful. Until now, most of the work on the method which calculates Lyapunov
Exponents from the time series data has been focused on the chaotic system, where at least
one Lyapunov Exponent is positive. Further exploration of Lyapunov Exponents using the

time series method of stability analysis, where the largest Lyapunov exponent is negative or



Introduction 4

zero, is needed.

1.2 Literature survey
1.2.1 Stability analysis of nonlinear robotic systems

“The General Problem of Motion Stability” was developed by Alexandr Mikhailovich
Lyapunov in the late 19" century. Since then, Lyapunov’s direct method has been applied to
many mathematic, electrical and mechanical systems. These studies focus on the variation of
the Lyapunov function measurements of the motion amplitude. The Lyapunov function is not
restricted to linear systems but requires the construction of a suitable measure, done on a case
by case basis. Lyapunov’s stability theory does not give the method for deriving a Lyapunov
function. Consequently, the construction of a Lyapunov function for a nonlinear system
remains a great challenge which restricts applications for this otherwise powerful theory (Wu,
1996). Non-smooth systems, defined by ordinary differential equations containing
discontinuous terms, frequently appear in mechanical engineering. For non-smooth systems,
which violate the Lipschitz-continuous requirement, the solution and stability analysis of
such systems using classical techniques is questionable. Due to the existence of the above
challenges, many studies on Lyapunov stability analysis have been carried out and are

summarized below.

The stability of multi Degrees of Freedom (DOF) robot systems have been studied under
the Lyapunov direct method. A considerable amount of work has been done on developing

methods for deriving Lyapunov functions including: the method of analogy with linear
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systems by Barbasin (1960), the method of integration by parts by Ponzo (1965) and Huaux
(1967), the method of system energy by Marimo and Nicosia (1983), the integral methods,
the scalar-Lyapunov-function method and the intrinsic method by Chin (1986, 1987, 1988
and 1989), extended integral method by Wu et. al. (1995). These methods provide a robust
basis for the stability analysis, especially the Wu et. al. (1995) extended Chin’s integral
method which constructs Lyapunov functions for the general nonlinear systems represented
by state space models. All of the above research is based on the conventional Lyapunov’s
stability theory. They can only be applied to the smooth system. Smooth systems, are
systems where every term in the ordinary differential equations is continuous. In spite of the
importance of non-smooth systems which has been mentioned by several researchers (Slotine
and Sastry 1983, Southwar et al. 1991, Utkin 1977 and 1991 and Corles 1993), there are no
effective methods developed. A solution theory, which allows for the study of differential
equations with discontinuous terms, is needed for non-smooth systems. The pioneer in the
research of the non-smooth system is Filippov (1960, 1979 and 1988). He developed a
solution theory (Filoppov’s solution theory) for non-smooth systems that is used to define
solutions for the proposed piece-wise continuous control systems and the existence and
uniqueness of such solutions. Wu et al., (1996) proved the uniqueness of Filippov’s solution
for a base-excited inverted pendulum system where the Lyapunov feedback control law is
discontinuous. Wu et al. (1998, 2001), further extended the Lyapunov’s second method to
non-smooth dynamic systems and methods for constructing smooth/non-smooth Lyapunov

functions have been developed. It has been demonstrated that with such methods, it is much
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easier to construct Lyapunov functions for some non-smooth engineering systems.

Although Lyapunov’s stability theory is a powerful tool for stability analysis, the lack of
rules for deriving Lyapunov functions has severely limited the applications of Lyapunov’s
stability theory. Therefore, a new method to analyze the stablity of nonlinear systems is

needed.

1.2.2 Chaos phenomena in mechanical engineering

There are many studies on the presence of bifurcations and chaos in mechanical and
electrical systems. Moon (1987) describes many phenomena where chaos has been detected.
In the particular case of robot manipulators however, little work exists on bifurcations and
chaos. For exmple, Nakamura et al. (1997) analyzed an underactuated, frictionless
manipulator lying on a horizontal plane. They considered chaos as a motion characterized by
sensitive dependence on initial conditions and topological transitivity, and show numerically
that the system can display these two properties. They proposed some controllers to
accomplish se\;eral control objectives, showing dynamical properties from numerical
experiments. Mahout et al. (1993) presented simulations of a 2-DOF robot manipulator
executing repetitive tasks controlled with a PD algorithm, which gave rise to complex
dynamics. Lankalapalli and Ghosal (1996, 1997) analyzed a controlled 2-DOF robot
manipulator (a PD and a model-based controller). They verified the existence of chaotic

motions using numerical simulations and by calculating the largest Lyapunov exponent.
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Several analytical results of bifurcations and chaos have also been obtained for special
configurations of the dynamic systems. Burov (1986) and Dullin (1994) have proved the
non-integrability of the double pendulum using the method of splitting, separatrices and
Melnikov’s method, respectively. Lindtner et al. (1989) gave all the generic codimension-one
cases of stability loss in a driven double pendulum where the prescribed motion of the
endpoint is a circle. Verduzco and Alvarez (1999) made a theoretical study of bifurcations in

a 2-DOF underactuated robot manipulator driven by constant torques.

Among the procedures proposed to regulate mechanical robots, the PD compensator is
widely used (Takegaki et al. 1981). Under some circumstances, a complex dynamical
behavior may arise in this system. In particular, the PD-controlled pendulum may exhibit a
chaotic behavior when the reference for the angular position is periodic and the total
dissipation and proportional gain satisfy some conditions (Alvarez et al. 1998). Lypapunov’s
direct method is not suitable to the stability analysis of chaos. For this new phenomenon, a

method to diagnosing and analyzing chaos is required.

1.2.3 Concept of Lyapunov Exponents

Chaotic behavior has been observed in the laboratory in a variety of systems including
oscillating chemical reactions and fluid dynamics. Chaotic behavior has been observed in
nature including the dynamics of satellites in the solar system, weather and climate.
Lyapunov Exponents have been considered to be the most useful dynamc diagnostic tool for

chaotic systems.
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Lyapunov Exponents quantify the rate at which orbits on an attractor converge or
diverge as the system evolves in time (Rosenstein et al., 1993, Abarbanel, 1996), and provide
a direct measure of the stability of those orbits. One exponent is defined for each dimension,
representing the average rate of growth or decay along each of the principal axes in the
d-dimensional state space (Abarbanel, 1996). The largest Lyapunov exponent specifies the
maximum average rate of divergence, or convergence of the orbits. A positive exponent
implies divergence of the orbits and indicates global instability and sensitivity to initial
conditions that define the presence of chaos. A negative one indicates convergence of the
orbits. A zero exponent indicates the temporally continuous nature of a flow (i.e. the
trajectory show periodic motion). Consequently, a system with positive exponents has
positive entropy, in that trajectories which are initially close move apart over time. The more
positive the exponent, the faster they move apart. Similarly, for negative Lyapunov
Exponents, the trajectories converge. Determining the Lyapunov Exponents analytically is
extremely difficult, especially for robot systems. Most of the work on determining Lyapunov

Exponents for robot systems is based on numeric calculations.

1.2.4 Calculation of Lyapunov Exponents
1.2.4.1 Calculation of Lyapunov Exponents from the mathematic model

For systems of which the equations of motion are explicity known, there is a well
developed and straightforward technique to compute the entire Lyapunov Exponents’

spectrum (Benettin et. al., 1980). The concept of Lyapunov Exponents was given in a form
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adapted to the needs of the theory of dyamic systems and of the ergodic system by Oseledec
(1968). Benettin et al. (1980) developed a method for determining the analytical results of all
Lyapunov Exponents. It is the basic background for the calculation of Lyapunov Exponents

numerically.

One chaotic system was introduced by Lorenz (1984) which has 3 ordinary differential
equations, where the Lyapunov Exponents of the system were calculated. The most used
method which calculates Lyapunov Exponents from the mathematic model was developed by
Wolf et al. (1985). Muller (1995) extended Wolf’s method to the non-smooth system and
pointed out that the required linearized equations have to be supplemented by certain
transition conditions at the instance of discontinuities. The accuracy of the calculated
Lyapunov Exponents is always important. However in Wolf’s method, the first order ODE
numerical method was used. Despite the success of the methods for determining Lyapunov

Exponents based on mathematical models, it has many limitations.

Better algorithms are needed. Adequate mathematical models have not yet been found
even for the simplest chaotic flows in hydrodynamic systems (Harry 1986). The above
method can not be applied directly to the experimental data, and even due to the known
system’s high order non-linear systems, heavy mathematic calculation is required and the
method for determining Lyapunov Exponents based on mathematical models is not feasible

for some systems.
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1.2.4.2 Calculation of Lyapunov Exponents from a time series

Calculating the Lyapunov Exponents from a time series is another way to analyze the
stability of a system. Usually, time series data is a set of data for a variable and consists of
discrete measurements. This method allows for the calculation of Lyapunov Exponents from
one time series data which can often be collected from experiments. These advantages of this
method attract many researchers to employ it. A considerable amount of work has been done
for chaotic systems. Applying this method to stable systems, suggests a bright future for
stability analysis.

Before calculating Lyapunov Exponents, the attractor has to be reconstructed. The
Takens theorem (1981) implies that for a wide class of deterministic systems, there exists a
diffeomorphism (one to one differential mapping) between a finite “window” of the time
series data. Several related approaches which use a state/space reconstruction method
(Packard et. al., 1980) to predict the input/output data, include local linear method (Price and
Prichard, 1993; Vassiliadis et al. 1994) AutoRegressive Moving-Average method (Detman
and Vassiliadis, 1997) and neural network models (Her et al. 1993).

Given a scalar time series produced from a measurement of an autonomous system with
many degrees of freedom, it was shown by Packard et al (1980) that if the dynamics of the
system lies on a low dimensional attractor, the attractor can be reconstructed by creating a
delayed coordinate vector. It was shown by Takens (1981) that this attractor reconstruction is
one to one. Most observed data, reflect just a few of the many physical variables of a system

and measurements of all variables are rarely possible. This difficulty is overcome if the
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variables are nonlinearly coupled, in which case the time delay embedding technique can be
used to reconstruct the phase space from the time series data. The Embedding Theorem
(Takens, 1981, Sauer et al., 1991) states that the topological stfucture of a dynamical system
can be "unfolded" from a single time series using the original data and its time-delayed
copies:

Y(n) = [X (), X(t+7),..., X (¢ +(d —1)7)] (1.1)

where Y(n) is the reconstructed d, -dimensional state vector, X(¢f) is the original
1-dimensional data, 7z isatime lag, and d, isthe embedding dimension. The time lag, <,
can be calculated from the first minimum of the Average Mutual Information (AMI) function,
which evaluates the amount of information shared between two sets of data over a range of
time lags (Fraser and Swinney, 1986, Abarbanel, 1996). An appropriate value for d, can be
computed from a Global False Nearest Neighbors (GFNN) analysis (Abarbanel, 1996) by
determining the dimension where the total percentage of false neighbors (produced by

projection of an attractor onto a state space of too small a dimension) drops close to zero.

A major breakthrough came with the discovery that a measured time series carries the
information necessary to estimate the above quantities. In particular, the method of embedding
using time delay coordinates, first introduced by Packard et al. (1980), provided a general tool
for the identification and analysis of complex systems in terms of low dimensional systems.

The Embedding Theorem guarantees that the dynamical properties of the system are the same
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in both the original and reconstructed state spaces, providing a powerful tool for extracting

multidimensional dynamic information from unidimensional time series.

In the calculation of Lyapunov Exponents from time seres data, the samples of the data are
very important for the calculation. Here, the basic signal sample concepts and theorem (Shenoi
2006, Cover and Thomas 1991) are reviewed. Time series data include two kinds of time signal,
the continuous-time signal (analog signal) and discrete-time signal (digital signal). A
continuous-time signal is a function of an independent variable that is continuous. A one
dimensional continuous-time signal f(¢) is expressed as a funtion of time that varies
continuously from —co and . A discrete-time signal is a function that is defined only at
discrete instances of time and is undefined at all other values of time. Although a discrete-time
function may be defined at arbitrary values to time in the interval —co and oo, in this work we
consider only a function defined at equal intervals of time and defined at ¢ =nr, where 7 isa
fixed interval in seconds known as the sampling period and 7 is an integer variable defined
over —oo and oo, Ifitis chosen to sample f(¢) atequal intervals of = seconds, the function
S(nt)= f(¥)|.,. asasequenceof number (samples). Since 7 is fixed, f(nr) isa function of
only the integer variable » and hence can be considered as a function of »n or expressed
by f(n). For a continuous function, f(f) is band-limited to f, , . Namely, the spectrum of the

function is 0 for all frequencies greater than £, . Then, the function is completely determined

seconds apart. The Nyquist-Shannon theorem shows

by samples of the function spaced

max

that a band-limited function has only 2f,  degrees of freedom per second. The values of the
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function at the sample points can be chosen independently, and this specifies the entire
function (Cover et. al., 1991). Graphically, if the sampling rate is sufficiently high, i.e. greater
than the Nyaquist rate, there will be no overlapped frequency components in the frequency
domain. Most mechanical signals have frequency limited to below 100Hz. Therefore, a 200Hz

sampling rate should satisfy most mechanical engineering applications.

After the attractor is reconstructed, a method for calculating Lyapunov Exponents needs
to be developed. Several methods for estimating Lyapunov Exponents from experimental data
have been developed. The most frequently used methods are due to Wolf et al. (1985), which
follow the separation between nearby points on the attractor to estimate the largest Lyapunov
exponent. Eckaman et al. (1990) follows groups of nearby points to compute a least square
estimate of the Jacobian at each point, which is then used to integrate the variational equations,
from which the Lyapunov Exponents are calculated. Although these techniques give an
estimate of the Lyapunov Exponents, large amounts of experimental data are necessary
(Mayer-Kress 1986). This is due in part, to the need to obtain an accurate reproduction of the
attractor geometry from the observed data. Stoop and Parisi (1991) advocated the use of the
singular value decompostition to restrict the dynamics to the tangent plane of the attractor,
prior to approximating the local linear dynamics. Rosenstein et al. (1993) developed an
algorithm to compute the largest Lyapunov exponent by directly estimating the separation
between pairs of neighboring points in the state space as they diverge over time. By plotting the

log of the divergence versus time, the largest Lyapunov exponent is estimated by computing a
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least squares fit to the linear region of the resulting curve (Rosenstein et al., 1993). A less data
required method was developed by Rauf and Ahmed (1992). The studies related to this
method were done to get more precise Lyapunov Exponents with short data (Zeng et al. 1991;
Brown, Henry 1991). This method was applied to the daily-averaged data of surface
temperature observed at two locations in the United States, to quantitatively evaluate
atmospheric predictability. Carretero-Gonzlez et al. (2000) described methods of estimating
the entire Lyapunov sepectrum of a spatially extended system from multivariate time series
observations. Kinsner (2003) developed the method to measure and analyze chaos using
Lyapunov metrics. Until now, most of the works on Lyapunov Exponents are about the low
dimensional chaotic systems (the Lorenz attractor is the most famous one). Although this
method suggests a bright future for stability analysis, difficulties do exist in getting accurate

Lyapunov Exponents i.e., for calculating negative Lyapunov Exponents.

Noise imported from the environment is also a problem which affects the accuracy of the
calculation of Lyapunov Exponents. Sauer and Yorke (1999) investigated the computational
artifacts due to observtional noise in the experimental time series data, and gave the formulae
for the expected values of the reconstructed Jacobian in some simple cases. More information

about measurement noise is presented in the next section.

1.2.5 The effects of noise on calculation of Lyapunov Exponents from time series
The experimental data is usually accompanied with noise. Although filters can remove

some of the noise it can not be eliminated completely. As noise will affect the accuracy of the
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Lyapunov Exponents, the effects of noise must be reduced. There are two methods to do that.
One is using filters to reduce the noise from the experimental data; the other is setting the
evolution length scales, which only work when scales larger than the noise contain accurate
information. Since larger neighborhoods yield poorer linear approximations due to the
nonlinearity, errors in the dynamics increase with the noise level. White Gaussian Noise
(WGN) is the most common noise in the mechanical systems. Removing the noise from
experimental data and studying the sensitivity of the method to noise which calculates

Lyapunov Exponents from time series are both challenging problems.

The theory of filtering of stationary time series for a variety of purposes; was developed
by Norbert Wiener in the 1940s for continuous time processes in a notable feat of
mathematics (Wiener, 1949). In an important paper, Levinson (1947) showed that in discrete
time, the entire theory could be reduced to least squares, which makes it mathematically
simple. Conventional approaches to noise reduction like the Weiner and the Kalman filters
are not suitable for signals measured from chaotic systems because the underlying dynamics
of the chaotic system is not localized in either the time or the frequency domain. Methods of
noise reduction are extensively used in communication, physical systems and experimental
measurements. There are many methods for reducing noise in a chaotic time series. Hammel
(1990) has presented a method which can reduce the noise of a chaotic orbit on an attractor
by more than ten orders of magnitude. This method is simple and fast. Its performance was

analysed for several two-dimensional systems at moderate noise levels. A simple nonlinear
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noise reduction method can be used in the Wolf’s method. This involves choosing the
replacement neighborhood points which selects trajectories that stay closed, for a few time

steps to the segment to be cleaned.

Overall, the concept of Lyapunov Exponents is a powerful tool to analyze the stability of
nonlinear systems. The method which calculates the Lyapunov Exponents from the
mathematic model has been well developed. A considerable amount of work has been
focused on developing the method which calculates the Lyapunov Exponents directly from
the time series. Until now, a large body of research has been completed on the analysis of
chaotic systems, which have at least one positive Lyapunov exponent. The concept of
Lyapunov Exponents has rarely been used to study potentially stable systems where the
largest Lyapunov exponent is negative or zero. This is true especially for the method
calculating Lyapunov Exponents directly from the time series. The pioneering explorations
for applying the concept of Lyapunov Exponents directly from the time series for stable

systems are needed.

1.3 The systems studied in this thesis

Two typical robotic systems will be used in this study to test the applicability of methods
for calculating negative Lyapunov Exponents based on a time series. Research related to the

two robotic systems studied in this work, are discussed briefly in this section.

1.3.1 Multiple pendulum systems

The inverse pendulum plays an important role in robotic research. For research on
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bipedal robots, a chain of inverted pendulums is often used as a physical model. An inverted
pendulm is an inherently unstable system and the studies of control and stability of such a
system is one of the challenging problems in the field of automatic control (Mori, 1972). For
natural human walking, more than 20-degrees of freedom may be involved (Golliday and
Hemami, 1977). It is extremely challenging to study such a complicated system and to get
some desired results. So in robotic research, the first step is to select a simpler mathematical
model to describe the motion and test the controller. Previous studies about the stability of
the bipedal robot systems still rest on the Lyapunov’s stability theory. Although the previous
works provided a solid framework in the study of posture stability and control of biped

movement, it is difficult to apply them to more complicated models.

With more than 20-degrees of freedom involved in human walking, it is complicated to
model the systems and the dynamic equations which have highly coupled nonlinearities. To
address this, several simplified models have been developed. The majority of these
approaches used the inverted pendulum to study human/biped systems (Chow and Jacobson
1971, 1972, Hemami et al. 1973, Hemami and Golliday 1977, Hemami et al. 178, Katbab
1982, Muri 1984, Kajita and Tanie 1991, Wu et al. 1998). Wu et al. (1998) studied a
base-excited (in 3D space) inverted pendulum with two degrees of rotational freedom to
predict major features of upper body dynamics and stability. However, the single pendulum
is too simple to adequately study the complete dynamic motion of humans. The model to

describe bipedal locomotion was then increased to 2-DOF and the idea of using a two-link
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inverted pendulum model was introduced (Golliday and Hemami 1976, Hemami and Camana
1976, Hmami 1978, Hurmuzlu and Moskowitz 1986, Wu and Swain 2002). The three-link
biped model which has an upright trunk and two lower limbs were developed by Hemami
(1977) and Hurmuzlu (1984). The five-link model was studied by many researchers (Hemami
et al 1977, Urmuzlu 1993, Wu and Chan 2002, Ma and Wu 2002, and Wu et al. 2002, 2004).
The five-link inverted pendulum system became a seven-link system when two links were
added as the two feet. Onyshko and Winter (1980) and Shih (1996) studied human
locomation using a seven-link bipedal model. The more complicated nine-link biped was
sudied by Tagawa and Yamashita (1981), Furusho and Sano (1990) and Zheng and Shen
(1990). Although the multi DOF inverted pendulum system can describe the human being

motion better, it is sometimes too complicated to feasibly analyze the stability.

A very strange phenomenon, chaos, appeared when changing the controller gains.
Although literature exists on chaotic motion in Dufﬁng’s oscillator, in inverted pendulum
maps and several other systems (Holmes, 1983); there are very few works on chaos in robots
reported. Striet et al (1989) have investigated the non-linear response of a flexible
manipulator performimg a repetitive task. They showed that the flexible variables can
undergo period doubling bifurcations leading to chaos. Buhler and Koditschek (1990) have
discussed robotic juggling and have shown that incrementing controller gains of a planar
Jjuggling robot can lead to period doubling and chaotic motions. Vakakis and Burdick (1990)

and M’Closkey and Burdick (1993) have looked at periodic and chaotic motions in a hopping
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robot with a non-linear spring in the leg. Mahout et al. (1992) have numerically studied the
equations of a planar 2R robot with a proportional and derivative (PD) controller. They have
shown that the 2R robot, under PD control, can exhibit harmonic, subharmonic, higher

harmonic, fractional harmonic and possible chaotic motions as the gains changed.

1.3.2 Pneumatic actuation systems

Pneumatic actuators have been widely used in manufacturing and industry because of
their low cost and neatness. Many complete mathematical models for the thermodynamics
and flow equations in the charging-discharging processes were developed (Shearer, 1956).
As a result, more complex position controllers; based on the linearization around the mid
stroke position, were developed (Burrows, 1966; Liu et. al., 1988). There are lots of control
methods, from point-to-point position control to high accuracy tracking and force control. A
comparison between linear and nonlinear controllers applied to a rotary pneumatic actuator is
presented by Richard and Scavarda (1996). It is difficult to make the actuator reach the
desired performance level using either the standard proportional-integral (PI) or
proportional-integral-derivative (PID) control. Karpenko and Sepeheri (2003) developed a
practical, yet accurate, position controller for an experimental pneumatic actuator. Based on
the quantitative feedback theory (QFT) they used a fixed-gain PI control law which
minimizes the effects of the plant parametric uncertainty on the closed-loop position
responses (Karpenko, 2003).' Due to the complexity of the peumanic system the stability

analysis has not been carried out.
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Both of the systems studied in this thesis, are very typical systems in robotic control
engineering. Due to the complexity of the systems and lack of rules for generating Lyapunov
functions, stability analysis of the above control systems has been extremely limited. In this
work, the concept of Lyapunov Exponents is applied to these two systems for stability

analysis.

1.4 Objective and scope of this Thesis

A considerable amount of work on determining Lyapunov Exponents based on a time
series has been done, for chaotic systems and for low dimensional systems. Most of the work
on the noise analysis is in physics and electrical engineering. In the mechanical engineering
area, only a limited amount of work has been done calculating the Lyapunov Exponents for a

potentially stable system or in calculating Lyapunov Exponents from time series with noise.

The objective of this thesis is to explore the possible applications of the concept of
Lyapunov Exponents for stability analysis in a potentially stable system, i.e., the possibility

of calculating negative Lyapunov Exponents from a time series using Wolf’s method (1985).

Two robotic systems are selected for stability analysis. One is a two-link pendulum
system and the other is a pneumatic actuator system. Firstly, the time series is generated from
the mathematical model of both robotic systems, i.e., the time series is noise-free. Both
methods calculating the Lyapunov Exponents from the mathematic model and a time series,
specifically Wolf’s method (Wolf, 1984) are applied to the two systems. The Lyapunov

Exponents calculated from both methods will be compared. Secondly, White Gaussian Noise
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will be imposed to the time series generated from the mathematical models. The Lyapunov
Exponents will then be calculated from the data with noise. The sensitivity of the method to

the noise is very important for its applicability.

1.5 Thesis Organization

The remainder of this thesis is organized as following. Chapter 2 introduces the
theoretical fundamentals of this research. The concept of Lyapunov Exponents will be
introduced first. Then, the methods for calculating the exponents are presented. Chapter 3
contains the application of the Lyapunov Exponents’ theory to the two-link pendulum system.
The chaotic motion, stability to a set point and trajectory tracking will be generated. The
exponents will be calculated for both the mathematical model and the time series. Such
exponents will be compared. The noise is inputted to the time series data to study the
sensitivity of the method to the noise. In Chapter 4, Wolf’s method will be applied to the
high dimensional system-a pneumatic actuator. The limitation of the method will be
identified and reasons will be given to explain it. Conclusions and recommended future work

is outlined in Chapter 5.
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Chapter 2

Theoretical Preliminaries

In this chapter, the theoretical background needed for this research is presented. The
concept of Lyapunov Exponents will be introduced first. Then, two methods for calculating
the exponents will be discussed. One method calculates Lyapunov Exponents from the
mathematical model. The other method calculates the exponents from time series data. Since
the reconstruction of the attractor is the important part for the second method, the embedding
method for reconstruction is also presented in this chapter. When the time series is collected
from experiments, it is inevitable to include noise to the original signals. The basic
knowledge of noise and its effects on the accuracy of the calculating Lyapunov Exponents

are infroduced in the last section in this chapter.

2.1 The concept of Lyapunov Exponents
The concept of Lyapunov Exponents plays an important role in the modern theory of

nonlinear dynamics. They characterize the exponential rates of changes in the response of
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dynamical systems. The concept of Lyapunov Exponents was first developed in mathematics.
The Oseledec ergodic theorem (1968) provides the theoretical background for the
computation of Lyapunov Exponents of a nonlinear dynamical system. The theorem states
conditions for the existence of the defining limits and describes the properties of the
Lyapunov Exponents. Since 1968, a considerable amount of research has been carried out in
the studies of chaotic systems using the concept of Lyapunov Exponents. However, little
work has been done on studying potentially stable systems using the concept of Lyapunov
Exponents. The only works on applying the concept of Lyapunov Exponents to stability
analysis of robotic systems are from Grune (1998), Ravishankar and Ghosal (1999), Wu et al.
(2001) and Pooya (2004), where Lyapunov Exponents were calculated using mathematical
models.
Definition of Lyapunov Exponents: Consider a dynamic system of dimension N, defined
by equations

()= f(x@®), x(0)=x,,xeR" 2.1)
where x(f) is a state vector and function f is generally a nonlinear, continuous
differentiable function. The movements of the state vector x(¢) in the state space, results in
a system’s trajectories. After the transient stage, the trajectories generated by different initial

conditions x, settle near an attractor. The time evolution of a small perturbation to a

trajectory is governed by a linearized equation in the tangent space:

Si(t) = Df (x()Sx(t) 5x(0) = 5%, 2.2)
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where &x is a small perturbation to a trajectory, Sx, denotes the initial perturbation,

Df is the Jacobi matrix of the function f. Oseledec (1968) introduced a measure of

average contraction of the perturbation to a given trajectory as:

.1 “é'x,(t)“ )
=lm-~1 e ———TY =12,.., 2.3
’1: ;-)1 w f ng(lls i(to)"] (l >4 I’Z) ( )

|6x,(0)|| and ||6x,(t,)| denote the

known as the Lyapunov Exponents. In equation (2.3),
length of the i” principal axis of the infinitesimal 7 -dimensional hyper-ellipsoid at final
and initial times, ¢ and #,. A common approach in visualizing state space motion is to
imagine how a small length, area, volume or higher-dimensional element might evolve in
time. For example, the long term evolution of an infinitesimal r— sphere of initial condition
is monitored as the Lyapunov Exponents; the sphere will become an n— ellipsoid due to the
locally deforming nature of the trajectory in a n— dimensional state space. The "

Lyapunov exponent is then defined in terms of the length of the i” principal axis. The

existence of the lim can be proved using the Oseledecs’ multiplicative ergodic theorem

1—w

(Oseledec, 1968).

The Lyapunov Exponents of a system are a set of invariant geometric measures, which
describe in an intuitive way, the dynamic content of the system. In particular, they serve as a
measure of ease in predicting the system performance. The system is referred to here, as a set
of trajectories in the state space. Lyapunov Exponents quantify the average rate of
convergence or divergence of nearby trajectories in a global sense. A positive exponent

implies divergence of orbits, a negative one shows convergence of orbits, and a zero
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exponent indicates the temporally continuous nature of a flow (i.e. the trajectory shows
periodic motion). Consequently, a system with positive exponents has positive entropy, in
that trajectories that are initially close together move apart over time. The more positive the
exponent, the faster they move apart.

For the Lyapunov Exponents, the signs of the spectrum are usually used to analyze the
stability of the system. Any continuous dynamic system without a fixed point will have at
least one zero exponent. A stable steady state associated with an attracting periodic orbit has
one zero and all other negative Lyapunov Exponents. Similarly, a stable quasiperiodic
(superposition of periodic) attractor with K frequencies has K zero Lyapunov Exponents
and the others are negative (Eckm@ and Ruelle, 1985). If all of the Lyapunov Exponents of
a system are negative, this indicates that the system has an attractive fix point. The sum of the
Lyapunov Exponents is the time-averaged divergence of the state space velocity. Hence any
dissipative dynamic system will have at least one negative exponent, the sum of all of the
Exponents is negative, and the post-transient motion of trajectories will occur on a zero
volume limit set (an attractor). From the equation (2.3) the Lyapunov exponent A, generally
indicates in the i* dimension:

A4, <0: The orbit attracts to a stable fixed point. Negative Lyapunov Exponents are
characteristic of dissipative or non-conservative systems (the damped harmonic oscillator for
instance). Such systems exhibit exponential stability. The more negative the exponent, the

faster the systems move to the steady state. Super-stable fixed points have a Lyapunov
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exponent of 4, — —co. This is akin to a critically damped oscillator in that the system heads
towards its equilibrium point as quickly as possible. Nearby points on the trajectory will
converge closer and closer as shown in Fig. 2.1.a.

A, =0: A Lyapunov exponent of zero indicates that the system is in some sort of steady state
mode. A physical system with this exponent is conservative. Such systems exhibit stability in
the Lyapunov sense. Nearby points on the trajectory will stay at the same separation all of the
time, as shown in Fig. 2.1.b.

A, >0 The orbit is unstable and chaotic. Nearby points on the trajectory no matter how

close will diverge to arbitrary separation, as shown in Fig. 2.1.c.

(a) (b) ()

%<0 A =0 4 >0
Fig. 2.1 Different orbits projected on the i* dimension with different Lyapunov Exponents
For the special one-dimensional to a three or more dimensional system, the Lyapunov

exponents can appear as follows:
For a one-dimensional state space, there are three types of equilibrium points:
a) A<0,Nodes(sinks): equilibrium points that attract nearby trajectories

b) A=0, Repellors(sources): equilibrium points that repel nearby trajectories

c¢) A>0, Saddle points: equilibrium points that attract trajectories on one side but repel
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them on the other.

For a two-dimensional state space:

a) 4 and 4, both nonvanishing (non-zero exponent): the system will have a hyperbolic
equilibrium point. Depending on the signs of 4 and A,, the equilibrium point can be
attracting or stable (4 <0 and A, <0), repelling or unstable (4>0 and 4,>0), or
saddle type (4, >0 and A4, <0).

b) 4 =0, 4, <0:the system will have an attracting periodical orbit.

¢) 4 >0, 4 =0:the system will have no equilibrium points or a repelling period orbit.

For three or higher dimensional systems, the positive Lyapunov Exponents introduce a
new concept of chaos. Chaos is an aperiodic long-time behavior arising in a deterministic
dynamic system that exhibits a sensitive dependence on initial conditions. Any systems
containing at least one positive Lyapunov exponent is defined to be chaotic, with the
magnitude of the exponent reflecting the time scale on which system dynamics become
unpredictable (Wolf et. al., 1985). Chaos is sensitive to the initial conditions and the
trajectories are not converging to any steady state. The signs of Lyapunov Exponents provide
a qualitative picture of a system’s dynamics. For a general continuous four dimensional
system, the positive Lyapunov can only show up in three possible types. The Lyapunov
spectra are (+,+,0,-), (+,0,0,-) and (+,0,—,—). For a given system a change in parameters
will generally change the Lyapunov spectrum and may also change both the type of spectrum

and type of attractor. For example for a two-link pendulum system, stable motion and chaotic
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motion can be shown just from changing the parameters of the controller.
The magnitude of the Lyapunov Exponents measures the rate of the convergence or
divergence of the attractor. The higher the magnitude, the faster the system converges or

diverges.

2.2 Calculation of Lyapunov Exponents

Since it is extremely difficult to determine Lyapunov Exponents analytically, especially
for robotic systems, most of the work on determining Lyapunov Exponents is based on
numerical calculations. Generally, there are two methods to calculate Lyapunov Exponents.
One method calculates Lyapunov Exponents from the mathematical model, the other method

calculates from the time series.

2.2.1 Calculation of Lyapunov Exponents from the mathematical model

The methods for calculating Lyapunov Exponents were originally developed for smooth
systems, where every term in the ordinary differential equations is continuous and
differentiable. Non-smooth systems, defined in this work are the differential equations
containing non-differentiable terms, which occur naturally and frequently in engineering
applications. The calculation procedure outlined in Section 2.3.1.2 is generalized for the
calculation of Lyapunov Eprnents in systems with discontinuity (Muller, 1995; Kunze,
2000). The methods for calculating Lyapunov Exponents for both smooth and non-smooth

systems are summarized here.
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2.2.1.1 Calculation of Lyapunov Exponents from the mathematical model for smooth
systems

The method for calculating Lyapunov Exponents from the mathematical model is based
on the theorem developed by Oseledec (1968), who introduced the analytical way to
calculate Lyapunov Exponents known as the multiplicative ergodic theorem. The process
could be implemented by defining the principal axes with initial conditions whose
separations are as small as computer limitations allow and evolving these with the nonlinear
equations of motion. An efficient algorithm for the cglculation of Lyapunov Exponents,
which is based on Oseledec’s theorem, was developed by Shimada et al. (1979), Bennetin et
al. (1980), and Wolf et al. (1985). Since Wolf’s method is the most widely used, in this thesis,
Wolf’s method will be used to calculate the Lyapunov Exponents.

In order to calculate Lyapunov Exponents, a fiducial trajectory (i.e., the centre of a
sphere) is defined by the action of the nonlinear equations of motion with some initial
conditions. Trajectories of points on the surface of the sphere are defined by the action of the
linearized equations of motion on points infinitesimally separated from the fiducial trajectory.
The fiducial trajectory is created by integrating the nonlinear equations of motion for some
post-transient initial condition. Simultaneously, for a N —dimensional system, the linearized
equations of motion are integrated for N different initial vectors defining an arbitrarily
oriented frame of N orthonormal vectors anchored to the fiducial trajectory (Wolf et al.,
1985). This leads to the following set of combined nonlinear system and the linearized

equations:
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2 [ 7
{w}"{m)w} @4

where y is called the state transition matrix of the linearized system &x=ydx, and the

variational equation = F(f)y is a matrix-valued time-varying linear differential equation
derived by linearization of the nonlinear vector field along the trajectory x(f). The Jacobian

F(t) is defined as

Foy=2 @.5)

And the initial conditions for numerical integrations are {;i??}:{?} where [, is the
0
identity matrix. Lyapunov Exponents are calculated by following the evolution of the area of
the hyper-ellipsoid spanned by Jx,,dx,...,6x, via separately following the evolutions of
éx,,0x,...,0x, using any integration method. The problem is that &x,,dx,...,6x, may tend
to line up as ¢ —> 0. This alignment makes the calculations unreliable (Parker and Chua,
1989). To resolve this problem, Jx,,dx,...,6x, are reorthonormalized at each integration
step. This is done by including the Gram-Schmidt reorthonormalization (GSR) scheme in the
calculation procedure. This procedure starts with an orthogonal collection of unit
vectorsvy,...,v, , where the GSR generates an orthonormal set u,...,4, as:
-
vl

V,— <V,, U > Y
o= <vpu >u (2.6)

u2=

V=<V, U _ >l —.—<V,,U >U

U =

n
V,— <V, U, SU, | —..—<V,,U >U “
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where v/ is equal to Sxf, vector uf is a normalized version of v/, and <,> signifies

the inner product. The frequency of reorthonormalization is not critical, as long as neither the

magnitude nor the orientation divergences have exceeded computer limitations.

Fig. 2.2 shows the geometrical interpretation of the reorthonormalization for two vectors,
5xlk and §x§ (k=12,.,K, K is the number of total integration steps), i.e., their
orthogonalization into v and v}, normalization into #f and #*. The vector v’ is equal
to &x/, and vector u is a normalized version of vf. The factor <d&x!,u’ >is the length
of the orthogonal projection of §x: onto u’ . Normalization of Vi yields the orthonormal

vector ué‘ and the area of the hyper-ellipsoid spanned by {5xf,5x5} is

{6xk, 655 =“v1k ” ° ||v§ H (2.7)

Fig. 2.2 Ortho-normalization of two vectors &xf and &x}

Then the Lyapunov Exponents can be calculated as:

1 K
7% 2 2o M|

where K is the number of total calculation steps, 4 is the time step.
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Example of calculating Lyapunov Exponents from a mathematical model

The Lorenz attractor is a chaotic map noted for its butterfly shape, shown in Fig. 2.3.

Fig. 2.3 Lorenz attractor (Lorenz, 1963)

The map shows how the states of a dynamical system (the three variables of a
three-dimensional system) evolves over time in a complex, non-repeating beautiful pattern.
The attractor, and the equations from which it was derived, were introduced by Edward
Lorenz in 1963 (Loreﬂz, 1963). He based his work on the simplified equations of convection

rolls arising in the equations of the atmosphere. The dynamic equations are shown below:

% =a(x +x,)
X, =X, (c—X;)—X, (2.8)

X, 7X,X, — bX,
Where a, b, ¢ are the constants. x,, x, and x;are the coordinates of vector x.
Then, from equation (2.6), the linear variation equation is

Yn VYo Vi a a 0y, V¥, Ws
W Yn Wxs|=|lc—x =1 —x |y, Vn Wiy (2.9)
W Wi W X, X, =b|lws ¥ Vi

Let Jx,, Jox, and Jx, be three linearly independent vectors anchored to the fiducial
trajectory of the above three dimensional system at x =(x,,x,,x;). The initial perturbation
vectors are 6%°,6%,5% and arbitrary states x°=(x,x),x;) belong to the basin of

attraction of the attractor under study.
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Define &u, :=%. Similarly define &u; :=I—|§—)%” and Su] :=H§—%%H. Also, define
X ) X3

5)?!‘ = }/(x,.k’l) for k=1,..,K , i=1,2,3 where y is the solution of original nonlinear
equation x= f(x) at the k-1 loop. Calculation of the Lyapunov exponent A (i=1...3)
evolves step by step integration of the variational equation from u(i=1...3) with the
time-step of h seconds.

At the first step:

0% = 0%(hu),x°) = w(x")ul
0% = 8%(hyu,x°) = w (x")u) (2.10)
3% =6%(hul,x°) = w(x")u]

To find all three Lyapunov Exponents, the set of three linearly independent perturbation

vectors Ox, 1is repeatedly integrated and orthonormalized.

Atthe k" step, the perturbation equations are
% =8%(hut ™, x* ) = (K !

% = 8%l , Xy = (x* ! 2.11)

% =8%(ult ", Xy = (X
And the orthonormalization equations are

( vf =6x
ut =vf/ “vl" “
Vi = 0%~ < 5% uf >uf
ut =vk/ "vf ”
VE = Sxk— < SFul >uf - < 5% Ut > uf

ko kgl
Uy =V, /”v3 ”

(2.12)

.

At the k" step, the orthonormalization produces three vectors v,,v,,v, and for the K

chosen large enough, the Lyapunov Exponents are:
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[, 1 &
A~ 2 2 loes |

Ui x2S g, o
~th=1 2 [IV2

1

X
= S, |

(2.13)

For example, if the parameters are a=16, b=45.92 and c¢=4.0 the Lyapunov Exponents

of the Lorenz attractor are: 4 =2.16, 4,=0.00 and A4, =-324.

2.2.1.2 Calculation of Lyapunov Exponents from the mathematical model for
non-smooth systems

For the non-smooth system, the challenge comes from the fact that the derivative of the

right-hand side of the state space model does not exist. Muller (1995) and Kunze (2000)

extended the method of calculating the Lyapunov Exponents that behave smoothly in each

interval between discontinuity instants ¢, (i is the number of discontinuity instants). The

system trajectory, starting from z=¢ is assumed to have reached to the discontinuity

initial *
surface at 7 =1,. The system equations can be expressed as:

Region 1: X = 1), Xt 00) = %, (Lt < <1;)

Region 2: %= f0x),x(t)=x) (1, <t) 2.19)
Where ¢ denotes the time immediately after the discontinuity instant and # denotes the
time immediately before the discontinuity instant. This yields the following linearized
equations:

Region 1: 0x=F()0x,0x(t,1m) = 0%, (i <T <)

Region 2: ox=F,(1),0x(t)) = 0x, (f,<t) (2.15)
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where Fi(f) and F,(¢) are Jacobians defined as:

Fy(r =25

x=x(1) 2 axT (2'1 6)

x=x(t)

Em=%§9

At each instant of discontinuity, the linearized equations are evaluated using the
indicator function, A(x), and the transition function, g(x). Both are defined based on the
physical behaviour of the system. The indicator function is at least one time continuously
differentiable and determines the instant of the discontinuity. The transition function
describes the transition conditions at each instant of discontinuity. The linearized equations
of motion at the instant of discontinuity (¢ =1,) are derived as (Muller, 1995; Kunze, 2000)

H (x")ox™

Ox" =G (x)8x™ —| G,(x") fi(x7)—- f,(x7) - - 2.17)
‘ a6 2 ]M@)ﬁu)
where x" =x(f), x" =x(f]), 6x" =6x(t"), and Sx" =6x(t]). H/(x )= ag‘x(f) o)
the Jacobian of the indicator function, #(x), and G,(x")= G‘Z;(Tx ) () is the Jacobian of

the transition function, g;(x). If the system trajectory returns to the original region at the
discontinuity instant (¢ =t,), the transition condition of the linearized equations is:

H,(x")ox™

B 2.18
H,(x7) f,(x7) @19

8x* = Gy(x)8x [ Gy(x) f,(x )= £(x) ]
where x" =x(;), x =x(t;), 6x" =6x(t;), and Sx~ =0x(t;). The Jacobian matrices
H, and G, are similarly derived using the indicator and transition functions #,(x) and
g,(x) , respectively. Equations (2.14)-(2.18) represent the generalized method for
determining the variational equation, which can be used to calculate the Lyapunov Exponents
of the system with discontinuity (Muller, 1995). The remaining procedure is the same as the

one shown in Section 2.2.1.1.
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Overall, the calculation of the Lyapunov Exponents from the system’s mathematical

model can be shown in the following Fig. 2.4:

Initial condition

|
y

Differential equation

3
y %
2 . . 2]
Variational equation g
=)
=
-
GSR g
g
vV
Intermediate

Lyapunov exponents

v
Converged
Lyapunov exponents

Fig. 2.4 Flow chart of Lyapunov Exponents’ calculation from mathematical model
2.2.2 Calculation of Lyapunov Exponents from the time series data
The limitation of using mathematical models is that such models are not always available.
Even if the models are available, due to their complexities and uncertainties, the calculations
of Lyapunov Exponents can be infeasible. The most attractive advantage of using a time
series is that the data for only one state is required, which can often be measured
experimentally. Methods for calculating Lyapunov Exponents based on a time series have

been developed. The first and one of most important step in calculating the Lyapunov
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exponent from the time series, is the reconstruction of the system’s attractor from a time
series.
2.2.2.1 Reconstruction of the attractor

The foundation of the method calculating the largest Lyapunov exponent using a time
series is the reconstruction of the attractor. The Embedding method is mapping a
one-dimensional system (a time series) to an m —dimensional space. For the reconstruction
according to the embedding theorem developed by Takens (1981), an - dimensional
dynamic system can be reconstructed in a phase space “equivalent” to the original phase
space by embedding:

m=2n+l (2.19)

Given a time series x(f), an m—dimensional phase portrait is reconstructed with delay
coordinates, i.e. a point on the attractor is given by {x(¢),x(t +7),...,x(t +(m—1)r)} where
7 is the chosen time delay. This method is termed Time Delay method for reconstruction of
the phase space. The reconstructed phase space is equivalent to the original phase space. The
equivalence means that the system’s invariants characterizing the attractor are the same.
However, it does not mean that the reconstructed phase space is exactly the same as original
phase space. Using delayed copies of the original time series as components of reconstructed
phase space to form an attractor, then:

X={(x % o F (B Kooy o g )] (2.20)

where m is the embedding dimension, and 7 is the time delay.

In the reconstruction, the dimension m and the time delay z are two important
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parameters that affect calculating the Lyapunov exponent. If m 1is too low the
characteristics of the dynamic system can not be detected. For example, Fig. 2.5 shows that
when a 3-dimensional Lorenz attractor is shown in 2-dimentional space, several points are
overlapped, suggesting the wrong information for the original 3-dimensional attractor.
However, if m is too large, among other problems, the noise in the data will tend to
decrease the density of points defining the attractor, making it harder to find replacement
points. It is advisable to check the stationarity of results with different embedding dimension
m to ensure robust exponent estimates, i.e., to calculate the largest Lyapunov exponent with

different embedding dimensional reconstructed attractors.

2-dimensional space 3-dimensional space

Fig. 2.5 The reconstructed Lorenz attractors in different dimensional space

Time delay is also governed by the need to avoid catastrophes on reconstructing the
attractor. If the time delay chosen is too small, the attractor stretches out along the
x=y=z=... The successive points in the state space may be too close together to be
sufficiently independent. Excessively low time delay, 7, leads to highly correlated vector
elements which are concentrated around the diagonal in embedding space. Structure

perpendicular to the diagonal is not captured adequately. If the time delay chosen is too large
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the mx7 will be much larger than the orbital period. The points may be so independent as
to be essentially random. Thus, evolutionary information in the system is lost. A check of the
stationarity of exponent estimates with different time delays is again recommended, i.e.,
calculate the largest Lyapunov exponent with different time delay.

In Fig. 2.6, the original and reconstructed Lorenz attractor based on the embedding
theorem is shown. The reconstructed attractor with different time delay can be significantly
different from the Lorenz attractor as an example. Therefore, careful selection of time delay

in the reconstruction of the phase space is extremely important.

a. The original Lorenz attractor from the mathematical model

40 -
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b. The reconstructed Lorenz attractor using delay embedding with =5, m=7
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c. The reconstructed Lorenz attractor using delay embedding with 7 =15, m=7

d. The reconstructed Lorenz attractor using delay embedding with 7 =25, m=7
Fig. 2.6 Lorenz attractor in the original and reconstructed phase space

The advantages of using the time delay method for reconstruction of the phase space is
the relative ease in computing and the fact that the attractor structure is left undistorted since
no extra processing is imposed on it. The time-delay method has disadvantages including a
less than obvious choice of delay parameter value; and poor reconstructed phase space (RPS)

in the presence of noise.

2.2.2.2 Calculation of the Lyapunov exponent from time series data
Fig. 2.7 shows the details of the evolution method for the calculation of Lyapunov

Exponents. In Fig. 2.7 a part of the reconstructed attractor is shown. At initial time ¢,, the
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lengths between the any points after 10" point to the initial point P, are calculated as
suggested by Wolf (Wolf et. al., 1985). The shortest length, L(¢;), locates the nearest
neighbor P,. At a later time #,, the initial point P, evolves to P,. Then the nearest
" neighbor point, P, is located again with the same method. The initial length, L(z,),
evolves to length L(t,). The same procedures are repeated until all of the points on the

reconstructed attractor are located. The length element is propagated through the attractor for

a time short enough so that only a small scale attractor structure is likely to be examined.

evolv

Fig. 2.7 Evolution and replacement procedure
Based on the reconstruction of one n dimensional trajectory, which is outlined in
section 2.3.2.1 and Fig. 2.7, the largest Lyapunov exponent 4, is defined as:

1 M
A== Zlogz
k=1

ty =1

L

(
k
G (2.21)

where M is the total number of replacement steps, f,, is the total time.

In the calculation of the largest Lyapunov exponent if the evolution time is too large, L
shrinks when the two trajectories pass through a folding region of the attractor. This would
lead to an underestimation of the Lyapunov exponent. If the evolution time is too small, there

are no changes of L that can be detected. A new data point should satisfy the two criteria
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reasonably well: L from the evolved fiducial point is small and the angular separation
between the evolved and replacement elements is small (Wolf et. al., 1985).

Based on the definition of the Lyapunov exponent, the calculation from the time series
should be carried out for ¢ — . However, it has been found that the estimation of
Lyapunov Exponents can be done in finite-time (Alligood et al., 1997). A ‘successful
calculation requires that one time series has enough data to approach the appropriate length
scales, ignores the effects of the noise on the length scale, and has an attractor with a
macroscopic stretching/folding mechanism. Overall, the procedure of the calculation of the

Lyapunov Exponents from a time series can be shown as follows:

l Time series data |

! Attractor Reconstruction ]

l<
<

l Locate the nearest point ]

‘ Calculate the first length ]

v

| Evolve a step |

I Relocate the nearest poinﬂ

| Calculate the new length ]

Intermediate Lyapunov
exponent

v

Evolve a step

v
Converged
Lyapunov exponent

Fig. 2.8 The flow chart of Lyapunov exponent calculation from the time series
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2.3 Basics of noise

As the time series is collected from experiments, noise is inevitably involved. When the
attractor is reconstructed, the noise is also transformed. They will show the misleading
characteristics of the characters for the system. With the advanced technology of filters,

much noise can be filtered but they can not be eliminated.

2.3.1 Gaussian White noise (GWN)
Gaussian White noise (GWN) is the one of most common measurement noise in
mechanical engineering. Gaussian White noise is a white noise process with a normal

distribution and its power density is constant over a finite frequency range.

Fundamentals
As noise is random, it can only be predicted by statistical means, usually by a Gaussian

probability density function with a bell-shaped curve as shown below:

o

N

&
L}

Fig. 2.9 Gaussian probability density function f(x)
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Gausmian wlute noise
1

\ !f(x) i

Fig. 2.10 A sample of Gaussian White noise
Fig. 2.10 shows an example of GWN. In Fig. 2.10.a the white noise process is shown for 200
seconds. Fig. 2.10.b f(x) shows the probability density of the sample’s value X(#). As
noise is random, its mean value is zero. Hence, we use mean square values which are

measurements of the dissipated noise power. For the Guassian White noise, the average noise

power is V, ., = ’Z e sn=12,..N , where ¥, is the average noise power and

V .., is the noise power at a time instant. The average of the system signal power is
Vignal = ’ZVﬂgna, ,sn=L12,..N, where V,_  is the system signal power at a time
instant.

Since, in this work, GWN is added to the simulation data randomly, the amplitude of the
noise is the main problem which affects the Lyapunov exponent’s calculation. The signal to

noise ratio (SNR) is defined as the ratio of a signal power to the noise power which is shown

V.
as the formula dB = lOlng[ i ] . From the definition of SNR, it is easy to find that the

noise
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noise can not be zero. In this thesis, the noise-to-signal ratio, NSR =M%, is used to

analyze how the noise affects the system in order to see the noise change from 0 to some
value.
2.3.2 Noise filters

The theory of filtering stationary time series for a variety of purposes was developed by
Norbert Wiener in the 1940°s for continuous time processes, which was a notable feat of
mathematics. In an important paper, Levinson (1947) showed that in discrete time, the entire
theory can be reduced to least squares which were mathematically very simple. Kalman
(1960) set out to extend Wiener filters to non-stationary processes. The immediate need was
of a military nature, to forecast the trajectories of ballistic missiles, which in their launch and
re-entry phases would have a very different character than a stationary process could describe.

The formalism is less complicated than the one from Wiener theory (Wunsch, 1966).

. V.
In this research, the noise will be changed from 0 to 10% of the signal value (—"*~%)
signal

to observe its effects on the calculated Lyapunov exponent. In the simulations, the C++ code
is used to generate the Gaussian White noise, which is added to the simulation data when the
program imports data from a file.
2.3.3 Noise reduction in Wolf’s method

In Wolf’s method there is an approach to reduce the effects of noise. This is done by
avoiding principal axis vectors whose magnitude is lower than the selected threshold value,

i.e., the minimum cutoff length of evolution length. If this value is chosen to be somewhat
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larger than the noise level, the fractional error in determining initial vector magnitudes may
be reduced to an acceptable level. Avoiding noise effects is not a trivial matter, as noise may
not be of constant amplitude throughout an attractor and the noise length scale may be
difficult to determine. Again, this approach can only work if scales larger than the noise

contain accurate information about orbital divergence rates in the zero length scale limit.

2.4 Summary

In this chapter, the concept of Lyapunov Exponents, the calculation of Lyapunov
Exponents based on mathematic models and a time series, and basic information about
Gaussian White noise have been reviewed. Specifically, Wolf’s method for calculating
Lyapunov Exponents using a time series has been discussed in details. Issues of selecting the
key parameters (time delay, evolve time and embedding dimensions) have also been raised.

Wolf’s method will be used in this work.
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Chapter 3

Exploration of Lyapunov Exponents on a two-link

pendulum system

Mechanical oscillators constitute a family of important systems widely used as models to
explain a diversity of phenomena, or to design engineering systems accomplishing a variety
of tasks; Among many mechanical oscillator systems, those which are built with pendulums
are of special interests since the dynamic systems have a wide variety of limit sets, from
equilibrium points to strange sets. Pendulum systems are of specific interests in robotics as

many robotic systems can be modeled as a chain of pendulums.

A two-link pendulum system is a pendulum with a second pendulum attached to its end,
exhibiting rich dynamic behaviors. For the two-link pendulum in the vertical plane, the upper
pendulum acts as a simple pendulum with a moving base and is under the effects of the
gravity, joint force and controlled join torque. The lower pendulum behaves like a pendulum

under the effects of gravity. The force and torque come from the upper pendulum and the
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force and the control torque are applied at the basic joint. Depending on the control torques
and the system parameters, such double pendulum system can exhibit either stable or chaotic

motion. The stability analysis of the system is an important and challenging problem.

The concept of Lyapunov Exponents can characterize the system stability. Since it is
extremely challenging to determine Lyapunov Exponents analytically, complex engineering
systems are often calculated numerically. There are two approaches. One, is to calculate
Lyapunov Exponents using the mathematical models of the dynamic systems and the other, is
to calculate Lyapunov Exponents using a time series. In the previous work the concept of
Lyapunov Exponents has mainly been used to diagnose a chaotic system. Wolf’s method
(1985) for calculating Lyapunov Exponents based on a time series has been considered valid
for chaotic systems, i.e. for calculating positive Lyapunov Exponents. It is has been
documented that such a method has been considered unreliable for calculating Lyapunov
Exponents for potentially stable systems, i.e., for calculating negative or zero Lyapunov

Exponents.

In this chapter, the possibility of calculating negative and zero Lyapunov Exponents for a
two-link pendulum system based on a time series using Wolf’s method is explored. The time
series is generated from the mathematical model of a two-link pendulum system. The
two-link pendulum system is used here mainly because the motion of a two-link pendulum is
governed by a set of coupled ordinary differential equations, making it relatively easy to

apply the concept of Lyapunov Exponents. On the other hand, the two-link pendulum system
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exhibits rich dynamic behaviors having a wide variety of limit sets, from equilibrium points

to strange sets.

In this work, Lyapunov Exponents are first calculated from the mathematical models.
The time series is generated from the same model and the largest Lyapunov exponent is
calculated from the time series data. The results are compared to demonstrate the
applicability of Wolf’s method, calculating the largest Lyapunov exponent from time series
to potentially stable systems. In Wolf’s method, several parameters such as time delay and
evolution time have significant effects on the numerical Lyapunov Exponents. This has not
been investigated before. The effects of such parameters on the calculated Lyapunov

Exponents will also be studied.

In this work, the two-pendulum system is simplified to move on the horizontal plane.
The proportional and derivative (PD) controller will be applied on the system to produce
various motions. Under some special control gains, the two-link pendulum system is chaotic
and positive Lyapunov Exponents are obtained. For the chaotic motion, Lyapunov Exponents
will be calculated from the mathematical model and the largest Lyapunov exponent will be
calculated from the time series. The results will be compared to confirm the validity of the
algorithms and the program will be developed during this work. The gains in the controller

will then be adjusted to keep the system stable.

Two types of stable motion will be generated. One involves the two-link pendulum

moving to the desired position and remaining there. The stability of the pendulums will be
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studied by using the concept of Lyapunov exponent as the negative Lyapunov Exponents are
expected. Usually the more negative the Lyapunov Exponents are, the faster the pendulums
reach the desired position. The second stable motion, involves the system being controlled to

follow a desired sinusoid function trajectory, with a zero Lyapunov Exponent expected.

As discussed in Chapter 2, one advantage of calculating Lyapunov Exponents using a
time series is that the time series can be collected from experiments without knowing the
mathematical model of the system. The experimentally collected data contain noise, which is
believed to have significant effects on the calculated Lyapunov Exponents (Wolf et. al., 1985,
Zeng, et al., 1992). Such effects should be studied. In this work, Gaussian White Noise will
be added to the time series generated from the simulation. The Lyapunov Exponent will then
be calculated to check the robustness of the method with respect to the noise. In the
simulations, the power of the Gaussian White noise will change from 0 to 10% of the

power of the signal.

3.1 Dynamic model of a two-link pendulum

As shown in Fig. 3.1, the pendulum system consists of two rigid links with length A
and /,. The base of the system is fixedat O. m, and m, are the masses of the two links. 7
and r, are the locations of the mass centers of the two links. 6, and 6, are the joint angles
which are positive in the clockwise direction. 7, and 7, are the control torques applied at
both joints which are positive in the counter clockwise direction. The equations of motion

can be derived from the Lagrangian formulation as follows:
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M@)6+C6,0)+ f(6)+g(@) =T 3.1
where @ is a 2%1 vector of joint angles, and M is the inertia matrix. C is a vector of the
torque related to the centrifugal and Coriolis forces. f(6) is the vector of the torque related

to the viscous friction, and g(@) is the vector of the torque related to the gravity. T is the

control torque. The detailed deviation is presented in Appendix A.

Fig. 3.1 Two-link pendulum

To apply the concept of Lyapunov Exponents to the two-link system, it is desirable to
start from a simpler model. First, it is assumed that there is no viscous friction. Second, the
system is assumed to move in the horizontal plane in order to remove the gravity effect. Then

mathematical model of the system becomes:

M@6+C(0,0)=T (3.2.2)
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Where M = d, d, _ J+J,+2pcosb, J,+ pcosb, (3.2.b)
d, d, J, + pcosé, J,
ool dn]_ ——p(@lé?: f9'22)sin92 (32.0)
a1, posiné,
Jy=L+mpl+mll, J,=1+myr, p=mlr, (3.2.d)

The proportional and derivative (PD) controller will be used to control the two-link
pendulum system having stable and chaotic motion, respectively. For the PD controller, the
torque at each joint is:

T, =k, (6, —0)+k, (6, -6) i=1,2 (3.3)
where 6, is the desired position or a periodic trajectory to be tracked at each joint, k¥, and
k, are the positive proportional and derivative gains. By changing the control gains &,
and k, ,the system can exhibit either chaotic motion or stable motion. For the stable motion,
two simulations are carried out. One is to keep the pendulum system at a set point, and the

other is to track a desired motion. For the chaotic motion, the system is intended to track the

desired trajectory. It is documented that chaotic motion happens when the control gain &, 1is

small in the simulations. Since the time series is used for calculating Lyapunov Exponents,
the simulations of the above discussed motion are first carried out. The parameters of the

two-link pendulum are as follows:

Table 3.1 Parameters of the two-link pendulum

link Length(m) Mass(kg) CG(m) Inertia (kgm®)
1 0.5 20 0.2 6
2 0.4 8 0.3 1.5
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3.2 Simulations of two-link pendulum system

Our research will start with changing the controller gains, thereby controlling the
two-link pendulum to exhibit chaotic motion. For a dynamic system classified as chaotic, one
of the important characteristics of such a system is the sensitivity to initial conditions.
Sensitivity to initial conditions means that an arbitrarily small perturbation of the current
trajectory may lead to significantly different future behavior. As a result of this sensitivity, the
behavior of systems that exhibit chaos appears to be random, exhibiting exponential error
dispersion, even though the system is deterministic in the sense that it is well defined and
contains no random parameters. Every chaotic system has a strange attractor. An attractor is a
set to which the system evolves after a long enough time. Attractors are parts of the state
space of the dynamic system and are considered geometrical subsets of the state space: points,
lines, surfaces, volumes. Chaotic motion gives rise to what are known as strange attractors,
attractors that can have great details and complexity. Because the system is deterministic,
chaotic behavior is not random even though its aperiodicity and unpredictability may make it
appear to be so. On the other hand, because of the instability, aperiodicity and sensitivity to
initial conditions; the behavior of chaotic systems is not predictable even though it is
deterministic.
3.2.1 Simulations of chaotic motion

The simulated chaotic motion for the 2-link pendulum is shown in Fig. 3.2. The desired

angular displacements of link 1 and 2 are shown in Fig. 3.2.a which are
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g, =1.57sin(2¢) and 6 =L§——7-sin(2t) The actual angular displacements of link 1 and 2 are
shown in Fig. 3.2.b. The controller gains are selected as K, =50(N/rad) and
K,=1(NeS/rad) ,  where i=1,2 and  the initial ~ condition is

{0.0(rad),0(rad / 5),0.0(rad),0(rad / s)} . 1t is easily to see that the system does not follow

the desired trajectories. Fig. 3.3 shows the strange attractor of the angular displacement of

link 2 in a phase place.
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Fig 3.3 Attractor of chaotic motion of link 2
(a) initial angular displacement is 0 (rad) (b) initial angular displacement is 0.0001(rad)
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In Fig. 3.3.b, the initial angular displacement was changed 107*(rad) from the one for
Fig. 3.3.a with the same initial angular velocity (0(rad/s)). The result of the attractor is
changed significantly, which demonstrates that the system is sensitive to the initial condition.
In the context of the concept of Lyapunov Exponents, the system which has at least one
positive Lyapunov Exponent is defined to be chaotic. The largest Lyapunov Exponent of the

double pendulum system is indeed positive, which is studied in the following sections.

3.2.2 Simulations of stable tracking motion

By changing the gains in the PD controllers, the two-link pendulum system can exhibit
the stable motion. In the case of stable tracking motion that the system follows, the desired
trajectory, 6, =1.57sin(2t) and &; =L§—7$in(2t) , the gains were set as
K, =30(N/rad), K, =50(N/rad) and K, =K, =80(NeS/rad) in the simulations.

The initial condition is{0.0(rad),0(rad / 5),0.0(rad),0(rad / s)} .

In Fig. 3.4 the angular displacements of link 1 and 2 are recorded. The vertical axis is the
angle value and the horizontal axis is the time. The dash lines are the desired trajectories and
the solid lines are the actual trajectories. Fig. 3.4 shows that the pendulum system can
successfully follow the desired trajectory by using suitable controller gains. The state space
model is the four dimensional system and its attractor can not be shown in the figure. But for

link 2, Fig. 3.5 shows the attractor.
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Fig. 3.5 Attractor of stable tracking motion

Note that the intersections are due to the reduced dimensions from four to two. By

changing the initial condition, the system was found to always approach the attractor.

3.2.3 Simulations of stable motion with a set point
The second case for the simulation of stable motions is that the pendulum system is

controlled to approach the set point. The gains in the PD controller are still set as

K,=K,=20(N/rad) and K, =K,=5(NS /rad) . The system will start from the
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initial condition {1.0(rad),0(rad/s),1.0(rad),0(rad/s)} » then controlled by the PD
controller to approach the point{0.0(rad),0.0(rad/s),0.0(rad),0.0(rad / s)} . The angular
displacements of link 1 and link 2 are simulated and are shown in Fig. 3.6. The vertical axis

is the angular displacement and the horizontal axis is the time.

1.0 5

link 1
0.8 ~=-=-link 2
0.6

0.4
024
0.0

0.2

-0.4 -]

-0.6 -]

0.8 . , . ; . .

0 25 50 75 100

Time (s)

Angular displacements (rad)

Fig. 3.6 Close-loop stable response with a set point
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Fig. 3.7 State space response for the stable motion with a set point

The equilibrium point {0,0,0,0} is shown in the phase space in Fig. 3.7. The vertical
axis is the angular velocity and the horizontal axis is the angular displacement. In Fig. 3.7 the
trajectory appears to intersect. This is because the system is 4-dimensional, shown as a

2-dimensional figure.
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The angular displacement of each link is simulated in this section. The attractors of
chaotic, stable motion are also shown. The results show that the two-link pendulum can

exhibit different motion under different control parameters.

In the next section, the Lyapunov Exponents are calculated from the mathematical model
and the largest Lyapunov Exponent is calculated from the time series based on Wolf’s
method. The object is to explore the possibility of using Wolf’s method to calculate negative

and zero Lyapunov Exponents.

3.3 Calculations of Lyapunov Exponents
3.3.1 Lyapunov Exponents from mathematical model

In this section the Lypuanov Exponents will be calculated from the mathematical model
of the two-link pendulum system. The results are generated as the reference for Lyapunov
Exponents which will be compared with those calculated from the time series. The
simulation program is developed based on Wolf’s method.

In the state space, letx, = 6,,x, =6,,x, =6, andx, =6,, equation (3.2) becomes:

X =X
%, = (7= dy )y, — (7, —diy)d),
. dudzz "dlzdzl (.4
X, =X,
% = (7, —dip)dy — (7, — dyy )dy,
4

dudzz —d12d21
where

Jo=L+mpt+mll, J,=1,+my}, p=mir,



Two-link pendulum system 59

d,=J+J,+2pcosx,, d,=d, =J,+pcosx,, dy,=J,,
d,, =-pQx,x, +x})sinx,, d,, = px; sin x,
Based on Wolf’s method and the procedure outlined in Section 2.3.1, the variation

equation is shown below
v, =F@O)y, (3.5.2)

The Jacobian matrix is shown as follows:

0 1 0O O
Gy Gy Ay Oy
Ay A Az Ay

where
4 = —knn (3.5.c)
dndzz - d12d21
o =k +2pxsinx)dy, + 2pd,,x, sinx, (3.5.d)
2 dlxdzz - d12d21
o= P(2%,%, + x2) cos x,d,, + (k , + px, cos x;)d,, + psin x, (T, — px] sinx,)
» dndzz _dl2d21 (3 5 e)
_ [(Tl - dm)dzz - (Tz - dnz)dlz ] p2 Sin(sz)
2
(dndzz - d12d21)
_2p(x, +x,)sin X,d,, +K,,d, (3.5.9)
# dndzz - d]ZdZI
L (3.5.9)
“ dndzz "dlzdzl
o = 2pd, x, sinx, + (k,, +2px, sinx,)d,, (3.5.h)

dndzz _d12d21
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_ ~k,,dy —2p(x, +x,)sinx,d,,

a (3.5.1)
“ dndzz "dlzdzl

(&, — pxlcosx)d,, — AT, - d, ,) psinx, — pd,, (2x,x, + x3)ycosx, + p(T, —d,,,)sin x,
43
dndzz _dlzdzx (35_])
psinx3 [(Tz "'dnz)dn —(]; ’"dm)dzl]
(dndzz 'dlzdm)z

All the above variables are shown in equation (3.4). Equation (3.5.2) is to be integrated
simultaneously with the original nonlinear equation shown in equation (3.4). Based on the

procedure outlined in Section 2.3.1, the Lyapunov Exponents for the two-link pendulum are

defined as:
. L& |
A zﬁglogznuf‘" where i=1,2,3,4 (3.6)
¢!
U, = ——
Il

V=<V, U > U

T v, < v > u) .

‘s = V= <V, Uy > Uy— < ViU > U G.7)
bs— <vsuy > 0= <vyu >

o VAT SValhy > U= <Vt > Uy = < Vit > 3

¢ vi— < vastty > uy— <vy,uy > 1= < vy, >

The vector v* isequalto Sx’,and vector #f isanormalized version of v

For calculating the Lyapunov Exponents an important issue has to be discussed,
specifically, the careful truncations of the adequate time period over which Lyapunov
Exponents are calculated. Theoretically, Lyapunov Exponents should be calculated on an
infinite time period. However, it has been found that the estimation of Lyapunov Exponents

can be done in finite-time (Alligood et al., 1997). Recently, Grune (2000) found the finite
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time exponential growth rates for some fixed time uniformly converge to the uniform
exponential spectrum. Convergence is declared if these variations are significantly low. In
this research, the Lyapunov Exponents are truncated when the largest variations of the
Lyapunov Exponents are lower than 0.25%. The calculation time periods for stable and

chaotic motion are 200 seconds and 500 seconds, respectively.

To improve the accuracy of the numerical integration, a higher order integration
algorithm than Wolf’s original method is employed, which calculates the Lyapunov
Exponents from the mathematical model. For Wolf’s method, a very small time step is
required to get the accurate Lyapunov exponent. This is because it uses the first order Euler’s
Method for the numerical integration, which makes the calculation time longer and less
accurate. In this research, the Runge-Kutta numerical integration is used to compare the
results using the Euler’s method in order to improve accuracy of the results and to reduce
calculation time. Since the stable motion is of interest, the Lyapunov Exponents will be
calculated for stable motion with a set point as an example to demonstrate the advantages of

the Runge-Kutta algorithm.

Figure 3.8 shows the largest Lyapunov exponent from Eulér’s integration approach and
the one from Runge-Kutta integration when integration time step is small (/2= 0.00001). The
calculation loop is 20000000 and the result A=-0.909. Fig. 3.9 shows the Lyapunov
exponent calculated with the time step h=0.01 and the calculation loop is 20000. The

result with a large integration step from the Runge-Kutta integration does not differ from the
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one with a small integration step, as shown in Fig. 3.8. The exponent from the Euler
algorithm however, changes significantly from the result with a small integration time step.
Fig. 3.8 and 3.9 show that the Runge-Kutta algorithm is much more advantageous than the
Euler algorithm for the calculation of the Lyapunov Exponents, due to the reduction of the
calculation time while maintaining accuracy. Thus, the Runge-Kutta algorithm is applied in

the numerical calculation method when calculating the Lyapunov Exponents in this thesis.

- o.oT ——Euler
= ---- RK
& -02
S 024
>
[
3 04+
c
s ]
& -06
> }
|
k]
o -08
2 -0.902
5]
— -0.909
-1.0 . T ' T : T r |
0 50 100 150 200
time (s)
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3.3.1.1 Lyapunov Exponents for chaotic motion

In this section, the Lyapunov Exponents are calculated using Wolf’s method based on
the mathematical model for the two-link pendulum exhibiting chaotic motion as shown in
section 3.2.1. The system is controlled by the PD controller shown in equation (3.3). The
controller gain is K, =K, =50(N/rad) and K, =K, =I(N-S /rad) in the simulation.
The desired trajectories are 6, =—72£sin(2t) and 6, =%sin(2t). The simulation program is
written in C++ language with the time step as 0.001(s). The calculation time will be
truncated when Lyapunov Exponents change less than 0.25%. The initial condition is

{0.0(rad),0(rad / 5),0.0(rad),0(rad / s)}

Such a chaotic control system is nonautonomous as shown in equation (3.4). Time, ¢, is

taken as a new state which makes the state space model (3.4):

X =X,
X, = & _dm)dzz - "’dnz)dxz
dndzz _d12d21
)&3 =X, (38)
. = [ _dllz)dll '"(Tl _dlll)dZI
4
dndzz _d12d21
%=1

where x, is one dimension of ¢ in the state space model. Following the same procedure is

shown in section 2.3.1. The Jacobian is:

F=l0 0 0 0 0 (3.9)
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where a, = K, wcos2x; — K, 27sin2x;, a, = K, %cos s2x, — K, wsin2x;, ay,0y, Gy,
Qy» Qs Gy, Gy, 4y are defined from equation (3.5.b) to equation (3.5.j).

In Fig. 3.10, the Lyapunov Exponents for chaotic motion from the mathematic mode are
shown with solid lines. All exponents converge to constants. The largest Lyapunov Exponent

converges to 1.108 and the motion is indeed chaotic.
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Fig. 3.10 Lyapunov Exponents for chaotic motion

3.3.1.2 Lyapunov Exponents for stable tracking motion

In this section the Lyapunov Exponents are calculated using Wolf’s method based on the
mathematical model for the two link pendulum tracking a desired trajectory as shown in
section 3.2.2. The desired trajectory is set as the same sinusoid function 0} =1.57sin(2t)
and 6; =-1—'§—7—sin(2t) and the system is controlled by the same PD controller as shown in
the previous section. The control gains are set as K, =K,, =50(N/rad) and

K, =K,,=20(N+S/rad) in the simulations. Similar to the chaotic system discussed in the

previous section, the mathematical model changes from 4-dimensional to 5-dimensional as
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shown using equation (3.8). The simulation program is written in C++ language with a time
step of 0.001(s). The calculation time will be truncated when Lyapunov Exponents change

less than 0.25%. The initial condition is {0.0(rad),O(rad/ 5),0.0(rad),0(rad / s)}

Similar to the chaotic motion, there is an extra zero exponent because of the time, ¢,
which is taken as a new state. Fig. 3.11 shows there are one zero and four negative exponents

for the stable tracking. The zero exponent is associated with the state x, (time). Four

negative exponents indicate that the trajectories converge to the desired one.
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Fig. 3.11 Lyapunov Exponents for stable tracking motion
3.3.1.3 Lyapunov Exponents for stable motion with a set point
In this section the Lyapunov Exponents are calculated using Wolf’s method based on the

mathematical model for the two-link pendulum approaching the desired set position as shown

in section 3.2.3. The control gains are set as K, =K, =20(N /rad) and
K,=K,=5N+S/rad) in the simulations. The  initial  condition  is
{I(rad),0(rad / s),|(rad),0(rad / s)} .

The Lyapunov Exponents for stable motion with a set point are shown in Fig. 3.12. The
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vertical axis is the Lyapunov exponent and the horizontal axis is time. The first two

exponents converge to -0.22 and the other two converge to -2.84.
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Fig. 3.12 Lyapunov Exponents from mathematic model for stable motion with a set point

The Lyapunov Exponents have been calculated using Wolf’s method based on the
mathematical models for the two-link pendulum with both chaotic motion and stable motion
in this section. It is demonstrated that by using the Runge-Kutta algorithm, the accuracy of
the Lyapunov exponent can be increased and the computing time significantly reduced. The
calculated Lyapunov Exponents are used as the reference to be compared with those
calculated from the time series.
3.3.2 The largest Lyapunov Exponent from time series data

Calculating the Lyapunov Exponent from a time series does not require the system’s
mathematical model. The calculation program in this research is developed based on Wolf’s
method (1985) where only the largest Lyapunov exponent can be calculated. Usually the
method for calculating the Lyapunov Exponent from a time series is used for chaotic systems

where the largest Lyapunov exponent is positive. In this research the possibility for applying
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Wolf’s method to potentially stable systems where the largest Lyapunov exponent is negative
or zero, is explored.

In the calculation of the largest Lyapunov exponent from a time series, there are several
parameters, as shown below, which need to be carefully determined. Unfortunately, there are
no systematic methods to select these parameters:

The embedding dimension #2: Following the discussion in section 2.3.2.1 and the Takens

theory (1981), the embedding dimension is chosen as 9 for the two-link pendulum system
since the original dimension is 4.

The delay time 7 : In general, it is believed the selection of 7 has a significant effect on the

calculation of the largest Lyapunov Exponents from a time series. The largest Lyapunov
exponent with a various time delay for the two-link pendulum with a stable set point case, is

shown as the example in Fig. 3.13.
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Fig. 3.13 Effect of time delay on the largest Lyapunov exponent
In Fig. 3.13 the horizontal axis is the time delay. The vertical axis is the largest

Lyapunov exponent. Fig. 3.13 shows that as the time delay is chosen too low, the calculation
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of Lyapunov Exponents shown in the solid curve is significantly different from the true
exponent shown in the dash line. However, when the time delay is above 20, the calculated
Lyapunov exponent does not change significantly. This indicates that the calculated
Lyapunov exponent is not sensitive to the time delay for the two-link pendulum system with
a set point for the special selected evolution time (30), the minimum and maximum cut-off
lengths (0.06(rad) ,0.6(rad) ).

The evolution time between replacements: the largest Lyapunov exponent is calculated with

the various evolution times for the same example in the Fig. 3.14

In Fig. 3.14 the horizontal axis is the evolution time, and the vertical axis is the largest
Lyapunov exponent. Fig. 3.14 shows that the evolution time does not significantly affect the
value of the largest Lyapunov exponent for the two-link pendulum with a stable set point for
the selected the time delay (60), the minimum and maximum cut-off lengths

(0.06(rad) ,0.6(rad)).
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Fig. 3.14 Effect of evolution time on the largest Lyapunov exponent

The minimum and maximum cut-off length: Generally the minimum and maximum cut-off

lengths are chosen arbitrarily in Wolf’s method. In this research, after the emedding
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dimension, time delay and evolution time are selected; the orientation length calculated in the
first step is chosen to be minimum cut off length. The maximum orientation length is set to
be 10 times that of the minimum orientation length. Fig. 3.15 and Fig. 3.16 show the effect of
the minimum and maximum cut-off lengths on the calculation of the largest Lyapunov

exponent when choosing the prdper time delay and evolution time.
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Fig. 3.16 Effect of minimum cut-off length on largest Lyapunov exponent

From Fig. 3.15, for the two-link pendulum system moving stably with a set point, it can
be seen that as the maximum cut-off length is above 0.15, the calculated largest Lyapunov
exponent is not sensitive to the changes in the maximum cut-off length. On the other hand,

from Fig. 3.16, as the minimum cut-off length is below 0.08 (rad), the changes in the
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minimum cut-off length have little effect on the largest Lyapunov exponent.

Normally, the embedding dimension, time delay, evolution time, maximum cut-off and
minimum cut-off length are important for the calculation of the largest Lyapunov exponent
using Wolf’s method from a time series. The largest calculated Lyapunov exponent from
time series is affected by the integrated actions of those five parameters. Since there are no
methods available for such selections, different parameters are selected based on trial and
error in this research. For the ranges of physical parameters shown in Fig. 3.13~3.16, the
proper parameters are identified as: embedding dimension m=9 . time delay=60 and
evolution time=30. The results of the largest Lyapunov Exponents are also determined with a
wide range of time delay, evolution time and embedded dimensions to ensure that the results

truly approximate the Lyapunov Exponents.

3.3.2.1 Calculation of the largest Lyapunov exponent for chaotic motion

Based on the procedure outlined in 2.3.2, the largest Lyapunov exponent for the two-link
pendulum with chaotic motion can be calculated from any state time series of the system.
The largest Lyapunov exponent is calculated using the time series of 6 and 6, and the
result obtained from the mathematical model is shown below. Both of them have an error less
than 8%, as compared with the result from the mathematical model which is shown in Table

3.2.

Table 3.2 Lyapunov exponent from the time series data and mathematical model

Angular displacement of Link 1 Angular displacement of Link2 Mathematical model

L. E. 1.0193 1.0343 1.108
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Fig. 3.17 shows the largest Lyapunov exponent calculated from both angular displacements
of the two-link pendulum. In Fig. 3.17, the horizontal axis is the time and vertical axis is the
largest Lyapunov exponent. Both Lyapunov Exponents calculated from the time series
converge. After 500 seconds, the difference of the two Lyapunov Exponents from time series

reduces and is insignificant.
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Fig. 3.17 Largest Lyapunov exponent calculated from time series data for chaotic motion

Time delay and evolution time are more important for calculating the largest Lyapunov
exponent from a time series. The effects of the time delay and evolution time on the accuracy
of the largest Lyapunov exponent are studied in Wolf’s method using time series. The largest
Lyapunov exponent was calculated with various time delays and evolution times, shown in

Fig. 3.18.

In Fig. 3.18 the time delay and evolution time are the two horizontal axes and the vertical
axis is the largest Lyapunov exponent. Fig. 3.18 shows that the largest Lyapunov exponent

converges at 1.05 when the time delay and evolution time are chosen higher than 60 and
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Jower than 100. Fig. 3.18 also shows that the largest Lyapunov exponent does not change
significantly with different evolution time at the same time delay which indicates that the
time delay has a stronger effect on the largest Lyapunov exponent than evolution time. Thus
Wolf's method for calculating the largest Lyapunov exponent offers a large range for

selecting the proper time delay and evolution time for a two-link pendulum system.

©

Largest Ly

Time delay

Fig. 3.18 Largest Lyapunov exponent with different time delay and evolution time

In this section Wolf’s method for calculating the largest Lyapunov exponent from time
series has been applied to the two-link pendulum system with chaotic motion. The effects of
the important parameters in Wolf’s method have been studied for the two-link pendulum
system. The results of the largest Lyapunov exponent demonstrate that Wolf’s method using
time series works well for the two-link pendulum system. In the next section Wolf’s method

will be applied to the potentially stable two-link pendulum system.
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3.3.2.2 Calculation of the largest Lyapunov exponent for the stable motion with a set
point

Here, the possibility of applying Wolf's method for potentially stable systems 1is
explored. Wolf’s method using time series is not proved to be reliable for calculating
negative and zero Lyapunov Exponents (Wolf e al., 1985). The objective of this section is to
explore the possibility of applying Wolf's method based on a time series for calculating
negative and zero Lyapunov Exponents. The two-link pendulum system with a stable set
point is used as an example.

Table 3.3 shows the values of the largest exponents calculated from two states
respectively, the largest one from the mathematical model. In Fig. 3.19, the largest Lyapunov
exponent is calculated from the angular displacement of link 1 and link 2. The horizontal axis

is the time and vertical axis is the largest Lyapunov exponent.

Table 3.3 The largest Lyapunov exponent calculated from the time series data and
mathematical model

Angle 1 Angle 2 Mathematical model
L.E. -0.214 -0.233 -0.221
2 7 ——LE from link 2
1 ----LE fromlink 1
------ true LE

o b

AR J"F"v\' :v
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Fig. 3.19 The largest Lyapunov exponent calculated from both angle positions
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In Fig. 3.19, both of the largest Lyapunov Exponents from time series converge to -0.22
after 200 seconds. Because the largest Lyapunov exponent is negative, all other exponents
are also negative. The comparison made between the exponents calculated from the
mathematical model the exponents calculated from the time series are very precise, about 4%
error. Based on the concept of the Lyapunov exponent theory, the system is exponentially
stable about the set point.

For studying the effects of time delay and evolution time on the Lyapunov exponent, the
largest Lyapunov exponent is calculated and shown in Fig. 3.20 with various time delays and

evolution times.
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Fig. 3.20 Largest Lyapunov exponent with different time delay and evolution time

Fig. 3.20 shows that the largest Lyapunov exponent is not sensitive to different time

delays or evolution times, except when the time delays and evolution times are selected



Two-link pendulum system 75

between 0 and 10. The time delay affects the largest Lyapunov exponent more than the
evolution time. However, there is a good reason for choosing time delay and evolution time
to calculate the largest Lyapunov exponent properly. At least for this low-link pendulum
system, Wolf’s method can calculate the largest Lyapunov exponent from time series of the
stable motion with a set point.
3.3.2.3 Calculation of the largest Lyapunov exponent for stable tracking motion

In this section, the two-link pendulum system following the desired trajectory as shown
in section 3.2.2 is used as an example for calculating the largest Lyapunov exponent using
Wolf’s method. The largest Lyapunov exponent is calculated based on the time series
recorded in the simulations. Table 3.4 shows the largest Lyapunov exponent from the

mathematical model and from the time series.

Table 3.4 The largest L.E. from the time and from the mathematical model

Time series data Mathematical model
L.E. 0.0006 0.0001

The largest Lyapunov exponent calculated from time series is shown as following:

Largest Lyapunov exponent
N
]

. T ; . . .
] 50 100 150 200
Time (s)

Fig. 3.21 Largest Lyapunov exponent calculated from time series data for stable tracking
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The Lyapunov exponent calculated from a time series for the stable tracking has
different indications as the largest exponent from the mathematical model. The zero
Lyapunov exponent from the mathematical model corresponds to time as one dimension in
the state space model. If the time series corresponds to periodic behavior, the Lyapunov
exponent should be very small or zero, since the trajectory returns to exactly the same set of
values. Hence, this trajectory method would reflect the fact that the Lyapunov exponent
neither increases, nor decreases in its value. This result tells us that trajectory points on a
periodic orbit neither converge nor diverge. However, the time series of values from the
trajectory itself cannot tell us how nearby trajectories approach the attractor (Hilborn, 2004).
Based on the above discussion, calculating zero exponents from the time series has a
different meaning from that of the zero exponent calculated from the mathematical model
and the stability of the system should be studied using the whole spectrum from the
mathematical model.

In this section the largest Lyapunov Exponents have been calculated for two-link
pendulum with chaotic motion, with a stable set-point and with stable tracking. It is
documented that Wolf’s method is valid for calculating the largest positive Lyapunov
exponent (Wolf et al, 1985). By matching the largest Lyapunov exponent from a time series
with the one from the mathematical model of the double pendulum system with a stable set
point, it is found that Wolf’s method (1985) for calculating the largest Lyapunov exponent
from a time series has a potential for calculating the largest negative Lyapunov exponent.

However, Wolf’s method cannot be used for calculating zero Lyapunov Exponents.
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3.4 Effects of noise on calculating Lyapunov Exponents

For the time series generated from experiments, the inevitable noise has its effects on the
accuracy of the Lyapunov Exponents. In signal processing, noise is considered as data
without providing meaningful information; that is, data that is not being used to transmit a
signal, but is simply produced as an unwanted by-product of other activities. Normally as
sensors transfer the signal to the receiver the noise is also transferred. After applying
High-pass or Low-pass filters to reduce the noise, the Gaussian White noise (GWN) still
remains. So GWN is selected as the noise sample to study the effects on the accuracy of the
Lyapunov Exponents. White noise power density is defined as a constant over a finite
frequency range. Gaussian White noise is a white noise with a normal distribution. In this
thesis, GWN will be generated by a C++ program and added to the time series randomly.

The noise has its effects on the reconstruction of an attractor. Based on the discussion in
sections 2.3.2 and 2.4.3, choosing the proper time delay can help reduce the noise effect on
the reconstruction (Wolf et. al, 1985). However, the effects of the noise on the accuracy of
Lyapunov Exponents have not been studied rigorously. In this section, the effects of the
average power of GWN on the accuracy of the largest Lyapunov exponent using Wolf’s
method based on a time series are investigated. The Signal-to-Noise Ratio (SNR) is often

used for studying the effects of the noise. It is defined as:

average Power of Signal

SNR = x100% (3.10)

average Power of Noise

Because many signals have a wide dynamic range, SNR is usually expressed in terms of
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the logarithmic decibel scale. In decibels, the SNR is by definition, 10 times the logarithm of

the power ratio:

average Power of Signal ) G.11)

SNR(dB)=10log,,
average Power of Noise

Based on the definition of SNR the average power of noise can not be zero. However,
the noise effects on the calculation of the largest Lyapunov exponent are studied and
compared with the results from the time series without noise. The Noise-to-Signal Ratio

(NSR) is defined as

average Power of Noise
average Power of Signal

NSR = x100% (3.12)

Under the above definition, the largest Lyapunov exponent can be calculated with NSR
changing from 0 which indicate the time series without noise.

With the filtering technology improved, the white noise can usually be reduced to
SNR =10dB, which means the NSR =10% . In this research, 10% Gaussian White noise will
be added to the original signal from the mathematical model of the 2-link pendulum system.
In studying the noise effects, the largest Lyapunov exponent will be used for calculating such
a time series. The Lyapunov exponent will then be calculated from the time series with the
noise range from NSR=0 to NSR=100% . The two-link pendulum system will be studied

with the chaotic motion and stable motion with a set point.

3.4.1 The Chaotic motion

After applying the 10% NSR to the time series generated from the mathematical
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model of the 2-link pendulum system with chaotic motion, the largest Lyapunov exponent is

calculated from the time series and is shown in Fig. 3.22.
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Fig. 3.22 Largest Lyapunov exponent from time series with noise for chaotic motion
In Fig. 3.22, the largest Lyapunov exponent calculated from the time series converges to
1.2 and has the 18% error as comparing with the largest Lyapunov exponent (1.108)

calculated from time series without the noise.

—— calculated LE
- - --LE form MM

Largest Lyapunov exponent

NSR

Fig. 3.23 Lyapunov exponent changed with the NSR
Fig. 3.23 shows the largest Lyapunov exponent for the chaotic motion calculated with

NSR changing from 0 to 100%. It can be seen that the value of the Lyapunov exponent
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does not show a trend in its accuracy with respect to the increase in noise, but oscillates about

the largest Lyapunov exponent form the time series without noise in a rather random manner.

3.4.2 The stable motion with a set point
The largest Lyapunov exponent calculated is when the NSR=10%, as shown in Fig. 3.24.

The changes in this exponent with various NSR are shown in Fig. 3.25.
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Fig. 3.24 Largest Lyapunov exponent calculated from the time series data with noise
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Fig. 3.25 Lyapunov exponents changed with the NSR

Fig. 3.24 shows that the largest Lyapunov exponent converges to the -0.24 and has the
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7% error as compared to the largest exponent calculated without the noise. Fig. 3.25 shows
that with NSR changing from 0 to 100%, the exponent oscillates about the largest Lyapunov
exponent calculated from the mathematical model. No clear trend of accuracy is shown in the

largest Lyapunov exponent with respect to the increase in NSR of Gaussian White noise.

3.5 Summary

In this chapter, the possibility of applying the Wolf’s method for calculating the largest
Lyapunov exponent based on the time series is explored for potentially stable systems. The
two-link pendulum system is selected as an example. Since Wolf’s method using the
mathematical models of the system is believed valid for any systems (stable or chaotic), and
that Wolf’s method using a time series has been developed for the chaotic system, the
two-link pendulum is controlled to show both chaotic and stable motions. First, the largest
Lyapunov exponent is calculated from a time series for chaotic motion and is compared with
the one calculated from the mathematical model to confirm validity of the program
developed in this research. Then, for the two-link pendulum with stable motion, the largest
Lyapunov exponent is studied in the same process as with chaotic motion. The effect of noise

on the accuracy of the Lyapunov exponent is studied at the end of this chapter.

The error between the largest Lyapunov Exponents from a time series and the error from
the mathematical model is below 6% for the 2-link pendulum system with a stable set-point.
Thus, the results show that Wolf’s method is adequate for calculating the largest negative

Lyapunov exponent. For the 2-link pendulum system with stable tracking motion, zero
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exponents have been calculated from both the mathematical model and the time series.
However, the zero exponent from the time series and the one from the mathematical model
have different indications. The zero Lyapunov exponent from the mathematical model
responds to the extra dimension of time in state space. The zero Lyapunov exponent from the
time series responds to the periodical orbit. The effects of GWN on the largest Lyapunov
exponent are studied on the two-link pendulum system having chaotic motion or stable
motion with a set-point. The largest Lyapunov exponent has been calculated with NSR
increasing from 0 to 100%. The results show that the noise has significant effect on the
calculation of the largest Lyapunov Exponents. This finding is consistent with previous
findings from different systems (Wolf et. al, 1985). However, no clear trend has been found

in the accuracy of the largest Lyapunov exponent with the increase in NSR.

Based on the results from this chapter, it is concluded that Wolf’s method can be used
for the system, of which the largest Lyapunov exponent is negative, i.e., the system is
exponentially stable about a set-point. However, Wolf’s method is not suitable for calculating
zero Lyapunov Exponents, i.e., the system has a stable tracking motion. Noise, which is
inevitable when the time series is collected during expérimentation, has a significant effect
on the accuracy of the largest Lyapunov exponent. With filter technology improving, the

GWN usually can be reduced less than 10% NSR.

With the research done here, Wolf’'s method can be used to calculate the largest

Lyapunov exponent from a time series when noise is reduced enough. It is imperative that
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more research be conducted on how noise affects the accuracy of the Lyapunov exponent and

on developing better methods, which are robust to the noisy time series.
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Chapter 4

Calculation of Lyapunov Exponents for a stable
pneumatic actuator system

In this chapter, a stable pneumatic servo-positioning actuator system will be used as an
example for calculating Lyapunov Exponents. The exponents will be calculated from the
dynamic model of the system and the largest Lyapunov exponent will be calculated using
Wolf's method from a time series, which is via simulation of the pneumatic actuator system
desired by the model. The objective is to understand if the Lyapunov Exponents calculated

for such a highly nonlinear system produce meaningful results using these two methods.

4.1 Pneumatic system

4.1.1 Nonlinear model

The double-acting valve controlled pneumatic actuator is shown in Fig. 4.1. The
schematic diagram of the pneumatic actuator is shown in Fig. 4.2. An electrical control signal
applied to the valve spool allows movement of the control valve. The control valve produces

a pressure differential between the sides of the piston creating an acting force, F; .
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Fig. 4.1 Experimental test equipment

actuator
i,
P.V,4 M Chamber 2 P
I | A
Chamber 1 PV, 4
7 —
. Fy .
m, m
X,

2

v
AL
2t o viv
control Form ® Fom \
exhaust P, exhaust

signal
supply

control vaive

Fig. 4.2 Schematic plot of experimental pneumatic actuator
The equation of motion for the actuator and the load, F, is:
Mi, +bi,=RA-PA-F, - F, “4.1)
where x, denotes the position of the piston. M is the combined mass of the piston-rod
assembly and the external mass. B, and P, are the absolute pressure in each of the actuator

i

chambers, 4 is the annulus area of the piston, b is the viscous friction coefficient, F;
represents dry friction force and F, signifies the externally applied load.

The ideal gas law, the conservation of mass and the energy equation must be considered
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simultaneously to model the control volumes defined by each of the actuator chambers.
Assuming the gas is perfect and that the pressure and temperature is homogeneous in each
chamber, the ideal gas law is written as
P=pRT 4.2)
where p is the mass density of the working fluid and Ris the ideal gas constant. P and
T are the pressure and the temperature in the chamber of interest, respectively.
From conservation of mass, the continuity equation is established as
. d . ;
m=:i7(pV)=pV+pV 4.3)
where # is the mass flow rate and V7 is the chamber volume.
Neglecting the kinetic and potential energy terms, the energy equation is:

:id?(cvpVT) =c, T - PV +Q (4.4)
where ¢, is the specific heat at constant volume and ¢, is the specific heat at constant
pressure; O is the rate of heat transfer across the cylinder wall. For the ideal gas, 0=~0
Substituting equation (4.2) into the left hand of equation (4.4) gives

d c, d C, [ .

— VI =--—(PV)=—x(PV+PV 4.5

e,V ===(PV) =2 ) 5
Then, the energy equation (4.4) becomes

S (PV+PV)=c,mT - PV +( 4.6

E( + ) =c,ml —PV+0Q (4.6)
Rearranging equation (4.6) and setting 0 =0, the required rate of change in pressure is

found to be

. ¢RT .
p=2e n'z——li(1+c—”)£V 4.7
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c
Noting that ¢, —¢, =R and defining y =-£, equation (4.7) may be further simplified to
c

\4

ptBL, 1Py 4.8)
14
Assuming the initial piston position to be at the mid-point of the stroke, the volumes of

the two chambers can be expressed as:
L
7i(x,)=Va +A(—2-+xp)
L
v, (xp) =V, +A(—2——xp)

Substituting equation (4.9) into (4.8), the differential equations that define the time

(4.9)

derivatives of the chamber pressures are:

Pl = },RI]: iy —~ 7P121 *p
V1+A(—+x ) V,+A(—+x )
’ 2 7 ’ 2 7
(4.10)
yRT . yP,A

B, = m, — b
L L i
Y (R L [

The air mass flow rate through the valve orifice is given by Sanville (1971), who
described that the complex internal geometries and the critical pressure ratio may be as low

as 0.2 for air valves. Sanville (1971) proposed the following empirical relation for the mass

flow rate through the valve orifice:

caP [r( 2 (D71 B, p
JT R\ 1+y P

cap |r( 2 Y| _(B/R-R) B p
| VT \RUl+y 1-P, p "

where P, is the supply pressure and P, is the return pressure. The area of valve orifice,

m=-
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4,, is a function of the displacement of the valve spool, which is defined as a linear function

of spool displacement:
A, =wx, (4.12)
where x, is the position of the control valve, controlled by the input voltage, u:
ux,+x, =K, . u (4.13)
For Chambers 1 and 2, the air mass flow rates are different; as the air flows out one side .
of the cylinder and gets in the other side. For the side where the air comes in, the supply
pressure is P, and the return pressure is the pressure within the chamber. For the side where

the air flows out, the supply pressure is the pressure within the chamber and the return

pressure is the atmospheric pressure P, .
The nonlinear equations relating the control flows r and m, to valve spool displacement
are:

1) the supply port is connected to Chamber 1 and Chamber 2 is connected to the

atmosphere:
Cﬂi’/]ﬁ F, \/ V4 (—Z)(rDIr-D Xcp
T R +1 _Ps cr
i ¥ , (419
( )(r+l)/(r—l) 1— (xz /F—F, ) %2.p
R y+1 1-P, EoT
C, vr/lfll& \/}’( Y= ﬁ;s P
T R +1 x cr
o 4 3 . (4.15)

m, =m, =
Cw|x1|x3 \/ (—Z) T 0lrD \/1 (P /%= cr)z Eop
y+1 1-P, x 7
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2) the supply port is connected to Chamber 2 and Chamber 1 is connected to the

atmosphere:
( de|x1]x2 e ( 2 Y- Zecp
T R y+1 x, 7
1y =T, =9 VT 4 2 . (4.16)
delxl|x2 Y, 2 oy |, Bl =F A
—) 1-( ) >F,
L \/_f R 7+1 1_‘Pcr x2
( Cowlx P, e ( 2 NERLE Hep
iy = iy = T VR 7+l BT am
2 =My = ? )
delxllps V2 oy ;X! B=F, X3
—) 1-( >F,
T RS -Z, D

4.1.2 Friction model applied to pneumatic system

Friction is highly nonlinear and may result in steady state errors, limit cycles, and poor
performance. It is therefore important, for control engineers to understand friction
phenomena and to reduce its adverse effect on system performance.

Friction is the tangential reaction force between two surfaces in contact. Physically, the
reaction forces are the result of many different mechanisms, which depend upon contact
geometry and topology, properties of the bulk and surface materials of the bodies,
displacement and relative velocity of the bodies and the presence of lubrication. Dynamic
friction models have more advantage than conventional friction models’ schemes based on
static friction models (Olsson et. al., 1997). The dynamic friction model, LuGre model, is
employed in this thesis. The LuGre model is continuous which makes it easy to calculate the

Lyapunov exponent from the mathematical model. In the LuGre friction model, force is
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modeled as the average deflection force of elastic springs. The tangential force applied to the
bristles deflects them like springs, shown in Fig. 4.3. If the deflection is sufficiently large, the
bristles start to slip. The average bristle deflection for a steady-state motion is determined by
the velocity. It is lower at low velocities, which implies that the steady state deflection

decreases with the increase in the velocity. The LuGre model is shown in Fig. 4.3.

AR
Fig. 4.3 LuGre friction model

The differential equations of LuGre model are shown in equation (4.14),

dt g0 | (4.18)
F, = 0'02+0'1(v)%+f(v)
where z is the bristle deflection which is considered as the extra state in the pneumatic
system’s mathematic model, o,(v)=o,e "’ W f)=bv, a,=F, and o, =F,—F,. The
parameter o, is the stiffness of the bristles, and o, is the damping. The function g(v)
models the Stribeck effect, and f(v) is the viscous friction. A reasonable choice of g(v)
which gives a good approximation of the Stribeck effect, is
g =a, +ae ™ (4.19)

The sum ¢, +a, then corresponds to stiction force and ¢; to Coulomb friction force. The
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parameter v, determines how g(v) vary within its bounds o, < g(v) <, + ;.

Although parameters o, and o, are hard to estimate, for the LuGre model the great
advantage is the continuity, which is appealing for calculating Lyapunov Exponents towards
the stability analysis of the pneumatic actuator system.

4.1.3 Control design

Sepehri et al. (1996, 1997) developed a number of nonlinear modifications to a
conventional PI control scheme that significantly enhanced the tracking performance of
industrial hydraulic manipulators. The goal was to overcome actuator stiction and flow
deadband in the hydraulic valve, through the application of nonlinear conditioning to the
integral term of the PI control. This modification can reduce the deadtime in the position
response that arises from the control valve deadband and stiction through appropriate
adjustment of the integral term of the PI controller.

For the integral part of the PI controller, the following algorithm is implemented:

( “Uiower — Kp (xdesired - xp )
K,

I

(2 = A+ (X g — %, ) A

edeadband >& & U(t) > —ulower

e <g
](t) = deadband I (420)

uupper -K r (xdesired —-X r )
Ki

0 v, () =0&[e(r)|< &

edeadband >& & U(t) < uup

It is observed that the largest error in the actuator deadband is the velocity error,
é=v,_.—Vv, while the smallest is the time integral, I(Vdemd —v)dt . This basic observation

is used to construct a nonlinear filter that estimates the velocity error caused by the actuator

deadband. The nonlinear filter is
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2
vdesired ( 4 2 1 )

€ Jeadband — (vdesired - V) 7 2
vdesired + IB v

where é,.,., is an estimate of the velocity error caused by deadband and S is an

experimental constant found though trial and error. When the ¢, , . exceeds the threshold,

¢, the controller with this modification will overcome the accumulate error of the deadband.

Thresholds u,,, and u, are selected as the levels of controller output required to

up
initiate the actuator motion. From the experimental results, the PI controller based on the
velocity error, the triggered integral enhanced the performance of the actuator despite the
effects of the control valve deadband and actuator friction. This PI controller will be used to
control tracking of the pneumatic piston.

Combining equations (4.1), (4.10), (4.13) and (4.18); the nonlinear dynamic equations
relating the position of the actuétor, x,, to the signal, u, can be written as follows:

XP=V

v, _—.—Alz(—bvp +AP,— AP, F, - F,)

B= 7’Rg i, — 7})‘; %,

V{,,+A(5+xp) V¢71+A(—2-+xp)
. (4.22)
B = yRT i, + rhA %,

VD2+A(——xp) I/;2+A(——xp)
xv z_ﬂ_l_ valve u

H H
\4
Z-:Vp_o-o ’ pl__(v/v )1
o, tae

where control signal u=K (X, —x,)+K,[ , I was given by equation (4.20),

F,=0yz+02+bv,, ay=F, and oy =F —F,. v, is the velocity of the actuator. Mass
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flows 7 and 1, are given either by equation (4.11) to (4.17). Rewriting the system’s

mathematic model in the state space based on equation (4.22):

-

x] Kvalve
— Ly vabe o,
- H H
yRT (h, —m, ) —y Ax,x,
{ 3 L
% Vo + A +5)
%, yRT (1, —m,;) + y Ax,x,
X
x=9 b= f(x) =4 V()1+A(£“x5) )
X, 2
Xs "I“'(sz = Ax; - bx, _(O-Ox6 0% ))
[ %) M
Xy
Xy~ % ]x4|x6 X132
F;l + (El —F;/)e N

where x; denotes to the control valve position, x, and x, are the pressures in the actuator,
x, is the piston’s position, x; is the velocity of the piston and x, is the average bristle
deflection in LuGre friction model, Mass flows m, , m,, m, and m, are given either
by equation (4.11) to (4.17).

U= Kp (X gesired —%s) + K1 (4.24)

( —ulawer - K P (xdesired - xS )
K.

1

I(r—At)+ (xdes,.red - X5 ) At

uupper - K P (xdesired - xS )
K

1

0 ').Ca'esired (t) =0& l(xdesired —Xs )I <g

edEadband >& & u(t) > —ulower

edeadband = 8|

1) = 4.25)

edeadband >& & U(t) < uup

2
V, .
. . _ desired
Wher c edeadband - (vde.rired x4) 2 2
vdesired + ﬂ x4

In order to find the equilibrium points of the pneumatic system, the right hand side of
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equation (4.22) is set to zero. Thus, the system has fixed values for the position (x5), velocity
(x,=0) and control valve position (x, =0) corresponding to the desired piston position in
the control design. The values of Chamber 1 pressure (x,), Chamber 2 pressure (x,), the
LuGre model variable (x,) are not unique, i.e., there exist multiple values of pressures; with
xs in the LuGre model corresponding to the controlled desired piston position. In other
words, the system has a set of infinite non-isolated equilibrium points where three of the six
variables of the system can have various values, two of which, x, and x;, can arbitrarily
change and the third one, x,, is derived from the equation Ax, — Ax, —o,x, - F, =0.

The parameters of the pneumatic actuator model studied in this work, are shown in Table

4.1, which are taken from previous work (Karpenko, 2003).

4.2 Simplified pneumatic actuator
4.2.1 Dynamic model

Due to the complication of the pneumatic system, a simplified pneumatic system will be
developed to study Wolf’s method calculating Lyapunov Exponents for a system with a set
of equilibrium points. The control valve of the pneumatic system in Fig. 4.2 was removed

and the chambers were closed. The simplified system is shown in Fig. 4.4.

actuator
oy
'P] [} I/x > A M
L ]

Fig. 4.4 Pneumatic actuator with valve closed
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Table 4.1 Parameters of the pneumatic actuator model

Parameter Symbol Nominal Value
Supply pressure P, 5(bars)
Atmospheric pressure P, 1(bar)
Total mass of piston, rods and load M 1.91(kg)
Viscous damping coefficient b 70 (N » sec/m)
Actuator stroke L 500(mm)
Piston annulus area A 10.6(cm?)
Cylinder dead volume VisVis 5(mm®)
Ideal gas constant R 287(J/kg * K)
Temperature of air source T 300(K)
Ratio of specific hearts 4 1.4
Pressure-volume work correction factor o 0.89
Valve coefficient of discharge C, 0.7
Valve orifice area gradient w 22.6(mm*/mm)
Min/Max valve spool displacement X, max | %o min +/— 1.25 (mm)
Valve deadband — 4.7<u<5.6 (V)
Valve spool position gain K, e 0.25 (mm/V)
Valve first-order time constant H 4.2 (m * sec)
Valve critical pressure ratio P, 0.2
Static friction F, 40 (N)
Coulomb friction F, 20 (N)
LuGre friction model pareameter oh 200(N/m)
LuGre friction model parameter o 2(N/m)
Viscous velocity LA 0.0033 (m/s)
The velocity threshold £ 0.005(m/s)
The position threshold £ 0.004(m)
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Because the chambers are closed, both 7z and 7, are zero. The control valve variable,

x, , and friction will be removed for simplicity. The volume of each chamber is calculated as

follows:
V=4 (—121 +X, )
I (4.26)
(5w
The dynamic model of the pneumatic system (equation (4.22)) is changed to:
J'CP =V,
. 1
v = (b, + 4R ~4P,)
; yh4 .
B=-—TT" g,
A( L iy ) (4.27)
2 P
. P4 .
})2 - };, 2 xp
A5-)
where the parameters and variables are defined in Table 4.1.
Rewriting the dynamic model (equation (4.27)) in the state-space model as:
% = wé zlxlxa
A (— +x, )
2
x - }/szx3
=3
A(‘é’"’%) (4.28)
1
X, = —]g(Ax1 — Ax, —bx;)

Xy =X

where x, and x, denote the pressures (A and P) in the actuator, x, denotes to the

velocity of the piston and x, denotes to the piston’s position.
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With reference to Fig. 4.4, when there is a pressure difference between the two chambers
(P and P), the piston will move. If there is only viscous friction, the piston will stop after
oscillating for a period of time. In the steady state, both pressures in the chambers are equal
to each other. However, the values of the pressures are not unique. Given different initial
pressures, the position of the piston will be different; but the velocity of the piston is zero.
Thus, the system has a set of infinite non-isolated equilibrium points. In order to find the
equilibrium points of the simplified pneumatic system, the equation (4.28) is set to equal zero.
Thus, the system has fixed values for the position (x,) and velocity (x, =0). However, the
values of the pressure (x,) with Chamber 1 and the pressure (x,) within Chamber 2 can be

any value as long as x, =x,. In other words, the system has a set of infinite non-isolated

equilibrium points where two of the four variables of the system can have various values.

4.3 Calculation of Lyapunov Exponents for simplified pneumatic actuator
4.3.1 Calculation of Lyapunov Exponents from the mathematic model

In the simulation, the initial condition is first set as { 2.5bar ,2.0bar ,0.0mm, 0.0mm/s },
where the piston moved to the right due to the pressure difference. The simulation results of
the piston position, velocity and chamber pressures are shown in Fig.4.5. This figure shows,
that the piston moves to the 55 mm and the velocity is zero at the steady state because of the
viscous friction. The pressure of Chamber 1 decreases and the pressure of Chamber 2
increases. The two pressures equal each other (2.25 (bar)) at the steady state since there is no

friction. Four Lyapunov Exponents calculated from the mathematic model are shown in Fig.
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4.6. As shown, all of the Lyapunov Exponents converge. There are two zero exponents and

two negative exponents. However, there is no limit cycle or torus in response.

——— position (mm)
----- velocity (mm/s)

Position / Velocity

~ e

2.5 4 —_—P
2.4 4

2.3 4

2.2+ P

2.1 4

Chamber pressures (bar)

2.0 . .

Time (s)

Fig. 4.5 Simulation results of position, velocity and pressures

Based on the procedure outlined in Section 2.3.1, the variation equation is as follows:
v, = F(y, (4.29)

The above equation should be integrated simultaneously with the original nonlinear equation

Xx(t
(4.28). The initial conditions for numerical integrations are { ((;’))} = {j"} where [ isthe
L4

identity matrix. The Lyapunov Exponents are calculated by following the evolution of the
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area of the hyperellipsoid spanned by Jx,,65x,...,6x, via separately following the evolutions

of 6x,,6x,...,80x, using any integration method. The Jacobian is:

i —y Ax, 0 —yAx, y Ax X, 1
Al £ 4l L L, Y
E"l'x“ —2—+x4 A 5-{-.)54
0 7 Ax, yAx, 7Ax,x,
F@)= L L L 2 (4.30)
I E
4 A4 b 0
M M M
i 0 0 1 0 |

Based on the procedure outlined in 2.3.1, the Lyapunov Exponents for the pneumatic

actuator are defined as:

1 & ,

,’tiz—laglogzuuf“ where i=1,2,3,4 (4.31)
¢!

u o=

bl
V=<Vl > U

u, =
V., —<V,, U >U
Vo= <voom > u (4.32)
V3= <V, U, > U, — < Vi, U > U

"= ||v3-—<v3,u2 > Uy~ <V, >“1”

V= < Vg, Uy > U= <V, Uy > Uy — <V, U > U

u, = uv4_<v4,u3 > U= <V, Uy > U, — <V, U >u1"

. . . . k
The vector v isequalto &x',and vector u' isanormalized version of v/ .
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Fig. 4.6 Lyapunov Exponents using mathematical model and the close-up
In the second test, the initial condition was changed to { 3.0bar , 2.5bar ,
0.0mm ,0.0mm/s }, and the piston moved to the right due to the different pressures. The
piston position and velocity as well as pressures are shown in Fig. 4.7. The position moves
100 mm and the velocity is zero at the steady state. The pressure of Chamber 1 decreases and
the pressure of Chamber 2 increases. Both pressures are 2.5 (bar) at the steady state. The
Lyapunov Exponents are calculated again from the mathematic model and are shown in Fig.

4.8.
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—— position (mm)
-------- velocity (mm/s)

Position / Velocity
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2.8 -]
2.7 ]
26
2.5
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Chamber pressurs (bar)

Time (s)
Fig. 4.7 Simulation results of position, velocity and pressures
Comparing the simulation results of Fig. 4.5 and Fig. 4.7, the position of the piston and
both chambers pressure have different steady state values with different initial conditions.
The results of the Lyapunov Exponents in Fig. 4.6 and Fig. 4.8 show, that there are two zero
Exponents. The values of the negative Lyapunov Exponents do not change given different
initial conditions. As in the original concept of the Lyapunov Exponents, the zero exponents
indicate that the system is in some sort of steady state mode with some variables of the

system having an attracting period orbit, i.e., the limit cycle. However, from the simulation



Pneumatic system 102

results it is observed that, in this case, there is no limit cycle or period orbit in the simplified
pneumatic system. They are obtained because the simplified pneumatic system has a set of

infinite non-isolated equilibrium points.

0 0.0008 and 0.0004

£ A -2,.03573
fou
S 20
| =g
5 ]
g 40
[}
>
Q 0
3
&
> -80-

| -99.61886

-100 T T T T T T T T v T T 1
0 50 100 150 200 250 300
Time (s)
40 -
] 20
c
2 o
= 4
g ]
3 20 7
3 404
g i
o -604
g .
1 -80
-100 i T T T T T T 1
0.0 0.5 1.0 15 2.0
Time (s)

Fig. 4.8 Lyapunov Exponents using the mathematical model and the close-up
Note that the steady-state pressures of the two chambers can be different by setting different
initial pressures, as long as the steady-state pressure differential is zero. If the initial
condition of the pressures is changed, the position of the piston at the steady state will be

different. This means that, only the velocity of the piston is fixed at the steady state. The
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position and the two pressures will change with the initial condition.

4.3.2 Calculation of the largest Lyapunov exponent from time series

Given the initial condition {2.5bar ,2.0bar ,0.0mm ,0.0mm/s }, the largest Lyapunov
exponent is calculated from the time series of the position of the piston and the pressure of

Chamber 1 is recorded from the simulation, shown in Fig. 4.9 to 4.12.
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Fig. 4.9 Largest Lyapunov exponent from time series of position and the close-up
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Fig. 4.10 Largest Lyapunov exponent from time series of Pressure 1 and the close-up

In the Fig. 4.9 and Fig. 4.10, both of the largést Lyapunov Exponents calculated from
the time series of the piston position and the pressure of Chamber 1 converge to -1.9. The
same largest Lyapunov exponent was obtained from the other variable recorded data of this

system.

When the initial condition is {3.0(bar),2.0(bar),0.0(mm),0.0(mm/s)}, the largest
Lyapunov exponent is also calculated from the time series of the position of the piston and

Pressure 1 recorded from the simulation.
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Fig. 4.11 Largest Lyapunov exponent from time series of the position and the close-up
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Fig. 4.12 Largest Lyapunov exponent from time series of Pressure 1 and the close-up
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In the Fig. 4.11 and Fig. 4.12, both of the largest Lyapunov Exponents calculated from
the time series of the piston position and the pressure of Chamber 1 converge to -2.0. The
same largest Lyapunov exponent was obtained from the other variable recorded data of this
system.

From Fig.4.9 to 4.12, it is seen that the largest Lyapunov exponent calculated from time
series of different variable recorded data converges to about -1.95, which is significantly
different from zero calculated from the mathematic model. This indicates that Wolf’s method
using time series can not be used to calculate the largest zero Lyapunov exponent for this
simplified pneumatic system.

4.4 Calculation of Lyapunov Exponents for the complete pneumatic system
4.4.1 Calculation of Lyapunov Exponents using the mathematical model

In the simulation, the pneumatic system is controlled to move to a desired position or
follow the desired trajectory tracking under a nonlinear PI controller described earlier.
Lyapunov Exponents for the pneumatic control system under study are first calculated from
the mathematic model. Based on the procedure outlined in Section 2.3.1, the variation
equation is as follows:

v, =F@y, (4.33)

The above equation should be integrated simultaneously with the original nonlinear equation

[
(4.22). The initial conditions for numerical integrations are {x((:))} = {j"} where [ isthe
LAY

identity matrix. The Lyapunov Exponents are calculated by following the evolution of the
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area of the hyperellipsoid spanned by &x,,5x,...,8x, via separately following the evolutions

of 6x,,6x,...,6x, using any integration method. The Jacobian is:

F@)= 4.34)
Ay Gy Ay Gy Qs Ay
a;; ds; ds3 Qs dss  Qse
961 G2 Gsr Geu Y5 s |
where
ay, = "'1“§ (4.35.a)
)7
Ay =a; =0, =0,=0; (4.35.b)
K, (—K » T K, %}
a, = s/, (4.35.0)
)7
},RT(a;:ﬂ _ dc’znxol j
a, = 1 12 . (4.35.d)
L
V., +A(5+x5)
RT(% dm, ]- Ax,
ay 2 ; (4.35.€)
L
V., +A(—+x5)
2
ay =y =0; (4.35.9)
—y4x, (4.35.9)

Qyy = 5
V. +A(§+x5)

Ay =y =0 (4.35.h)
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—A(yRT(m., —m_,)—yAx,x .
, = ZAGRT(my Laz) 74%) (4.35.1)
(Vol +A(~+x5))
2
, RT(% _ d;xozj
a, = ! 7 . (4.35.5)
V02 + A(E—xsj
yRT (Ciin; dc;nx"z J+ ydx,
ay = ; (4.35.k)
L
Var +A(—-—x5)
2
gy =— T 4.35.1)
L
Voa + A(E_xs)
A(yRT (m,, —m ;) + y Ax,x;)
15 = 2 L2 —3 (4.35.m)
(V;)l +A(—2——x5))
a,=a,;=0; (4.35.n)
A
a42 'M; (4350)
A
A =——1}; (4.35.p)
43 M Y
1 dr,
a, =——| f+—= (4.35.9)
(ﬂ dx, J :
A5, =05y = A5y = Asg = Usg =gy = Ay =gz = A5 =0 (4.35x)
=1; (4.35.)
—(Zy
v,
a64 — 1 _ Opodx4a[7Avx6 + 20.0 ]x4l(E\:t - Evl)e x4x6 (4351)

_Jy

+ (Fst - F.;I)e g

v, (F_d +(Fy — F5 e

—(Fay

s

2
V>J
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where
C,wP, \/ (=2 reir %cp
| 1 I)S cr
ciZ,, _ /4 (4.36.2)
1 C wP, ( )(7+1)/(7 1) (xz /P - Pcr) s P,
1-P, F,
0 Zep
Ps cr
dm, % /F
i . l I . (_2T_I_)___) (4.36.b)
dx, Gy jx|wh, ( )(7+1)/(y—1) _Ter Zsp
JT R 7+l x,/P,~P ro
PS 1- ( cr)
\ 1-F,
G FZ 7 2= )(7+1)/(r—1) £sP
+1 x cr
(anol _ Ry 2 (4.36.c)
1 _C sz ( )(r+l)/(r—1) 1— (P /% - cr) £?->P
1 P x2 cr
Covlx| v oDyt T
__i 7 m)( V- 5 (4.36.4)
d Fix-F
Cd |X;I )(m)/(r Y- (P /Xz—Pc’)l +C4lx1|x2 ( )(7 DAr-1 i a-r) £>P
R }'+l 1_1;;cr ‘/f Ry+1 - P/x2 X, or
x2 (T)
_Cwh |y . )(y+1)/(r-1) %Lep
R y+1 BT
Can - f 7 s (4.36.¢)
) C wP ( )(7+1)/(7~1) 1— (X3 /P Pcr) _xig P
y+1 1-F, s
0 Lep
RY cr
dn, | zc}_{_g—_i;r_ (4.36.1)
dx, _Cdlx,|is ¢ )(7+1)/(r—1) a-£) 3>P
TR+ wIh=B,, BT
-(B e -7 <)
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C,wx, \/ ( )(7+1)/(y 1) £e_ <p
d y+1 x,
% = ’ (4.36.g)
1 | Cawxs |y ()= F,/x,—F, IA
( ) 1-(-=2—a)? >F,
JT R y+1 1-P, X,
C. w|x,| 4 (r+Di(r-1) A
e e %~ (4.36.h)
dm,, _ Fix—-F,
dx de‘x,l Y 2 oo i BIx% B del'xllxl Y, 2 e * (1=P) £
e B R L By maCE P
-cclzxi = Gl o-l O'de4absx6 ™~ + 20-0 |x4 l (FYI - Fsl)e s x4x26 (4.36.i)
4 - _(x_4)2
+(Fy=Fpe * v:(fa,+<za,—a,>e ) }
1 x,>0 .
s = {_1 0 (436.)
4
s Kp '
_—K_i_ edeadband >& & U(t) > _ulower
—At é <é .
gx]_ =4 K deadband min ( 43 6k)
> ?" E peabana > € & u(t) <u,,
0 xdesired (t ) = O & I(xdesired - xS )l < g

In the calculation, there are non-smooth terms in the mathematic model. At the instants of
switching points due to the discontinuity, the linearized equations are evaluated using the
indicator function, A(x) and the transition function, g(x), both defined based on the

physical behavior of the system. The non-smooth parts come from lx4| and I(¢) in the

mathematical model (equation (4.22)) of the pneumatic system.

o At t=t, x,=0 and |x4| changes from —x, to x,
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The indicator function is h=-x,-x=0 (4.37)

Jacobian of the indicator function is

_| O Om Oh On O Oh|_
Hl—[axl o &J [y e By he ks R @438)

1 00000
0 1 00 00
Jacobian of the transition conditionis G, = 001000 (4.39)
0 001 00O
0 00010
00 0 0 0 1]

Following the guideline in Section 2.3.1.2 and equation (2.17), the new value of variation

equation Y _. is given below:
=

5x<r:)=a<x->5x<r;>—[a(x-m(x(r;))—ﬁ(x(r:))]Hfjﬁfijﬁjﬁ(ﬁ})) 40

where “+” and “—” denote just after and before switch instants #. Rewriting equation

(4.40),

[xron oo oo e e ) T30 0 0 0 O\ % % X Xy %]
X5 Xy i bvie x5 X 01 0 0 0 Oflx; X, X5 X6 X7 X3
Xg" Xy Xy x5 X X4 _ 0 01 00 0llxy Xy X3 Xp X3 Xp
X e gne e e me 71000 0 10 Oflxms X Xy X X o
Xy Xy Xye X' Xyg 0 0 0 0 1 O x, x5, X3 X34 X5 Xy
e e e e e e | (00000 000 1w % % e %a %

) [hll hlZ h13 hM hIS hl6]

1 0 0 00 Ou_f”T —fZJ Xos  Xog Xyy  Xpg Xpg X3
0100 0 0, S X3p Xz Xz X3y X35 Xy
_ 001 0 0 0|lf _ o L X7 X % Yo Xa Xa
000 1 0 0ffsl /S S
0000 1 0|fs| |/ fa
0 000 0 1]jfi] |fa /i
y SLed LA [hll hy, By hy hs hls] f!3 (4 41)
14 .
Ss
/6.
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where f| (x(tl‘ )) denotes the f(x) in equation (4.22) when x,<0 and f (x(tl‘“ ))
denotes the f(x) inequation (4.22) when x, >0.

e At r=t,, x,=0 and !x4| change from x, to -x,

The indicator function is h=x+x,=0 (4.42)

Jacobian of the indicator function is

_|hy O O O O DR
Hz—[axl il ax} [y P by B h]  (443)

Jacobian of the transition conditionis G, = 4.44)

o oo o -
S O = O O O
o = O O O O
— o O O O O

O O O o = O
o O O = O O

|10

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation y _, is as follows:
2

H,(x")ox(1;)

55(15) =G, (¢ )ox(5)-[ () A (x()) A (x(5)) ) )

where “+” and “—7” denote the time just after and before switch instants f,. Rewriting

equation (4.45),

AU AU A Xio© Xy X 1000 0 O] X, Xg o Xg X Xy Xy ]
Xy Xy X X" X, Xy 01 00 0 Oflx; X4 Xs X X7 g
X' Xoo Xy Xy Xy Xye |_ 0 01 0 0 0f|xy X X Xp X3 X
X e e x| 1000 0 1 0 0fixs X Xy X X
XX xhe x| 10000 0 1 0)xy X Xy Xy Fas T
_x;’;’w Xy Xig Xy Xn' o Xy 10 0 0 0 0 1jlxy; X Xy Xo X Xp
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i S L S N

1 000 0 0O/ fu Xps  Xps Xy Xz Xy X3
0100 0 0ffn] |/ Xy Xy Xyz Xy Xz Xy (4.46)
) 001 0 0 Ol fs B i X7 %w %9 Yoo Xa X ]
0001 0 0fllfi fu]
0000 1 Off| |fs Ju
10 000 0 1] f] [ficl [y by by o B ] s
1 2 3 4 5 6 f:l4
Js
[ foe ]

where f, (x(tz' )) denotes the f(x) in equation (4.22) when x,>0 and f (x(t; ))
denotes the f(x) inequation (4.22) when x, <0.

- - K e(t
ower — K 20) to I(t—Ar)+e(t)At

e At r=t,, I(t) changes from
—K e(t)
K

i

T . . —ulower
The indicator function is h, =

—(I(t—An) +e(t)At) =0 (4.47)

Jacobian of the indicator function is

oh, oh, Oh, Oh Oh O]
=\ o, ox, ox, ox, 0% | 4.48
’ liaxl ox, Ox; 0Ox, Ox; O% [P P Ps B s g (4.48)
1 0 0 0 0 O]
010000
; 0t e s 0 01 00O
Jacobian of the transition conditionis G, = (4.49)
0 001 00O
000 01O
00 00 0 1

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation , is as follows:
t=t;

()= () )64 0 5 (6 )5 ) ] o L2
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where “+” and “—” denote the time just after and before switch instants #,. Rewriting

equation (4.50),
P S S P U (1000 0 0] X; Xy Xo X Xy X |
X5 Xy Xy X X Xig 01 000 Ofjx; X4 X5 X X7 Xg
Xjg' Xy X Xy Xy Xy - 0 01 0 0 Ofxe Xy Xy Xp Xy Xy
Xye' Xpe  Xyg Xhg  Xpg Xy 1000100 Xys  Xps Xy Xz Xz Xy
Xy X Xy X Xyg Xg 0 0 0 0 1 Oflxy Xp X5 X4 X5 Xy
Xy Xy Xk Xg Xy Xy i 10 0 0 0 0 1]x; Xz X9 Xy Xy Xy

) [hBl hSZ h33 h’M h35 h]é]

1 0000 Oj—f;l_ _f:u- Xy Xas Xz Xpg  Xa9 X3
01 00 0 0| fy S X3y Xy X3 Xzp Xys K36
_ 00100 0ffs _ Jis | (X1 Xis Xap Xao Ko e
0 001 0 Offiullfu Sa
0000 1 O|lfss]| |fos S
o 000 0 1| /5] _f46_, S
[y hy by by hs By 7 @51)
fis
[ f5s ]

- . . —ulower - er(t)
where f3<x(z‘3 )) denotes the f(x) in equation (4.22) when I()= X and
ﬁ(x(t;‘ )) denotes the f(x) in equation (4.22) when I(f)=1I(t—Af)+e(t)Atr.

—ulower - er(t) 39
o At t=t,, I(t) change from I(t—Ar)+e(t)At to z
. . . . —ulower - er(t)
The indicator function is h, = (I (t—-AN+ e(t)At)— X =0 (4.52)

i

Jacobian of the indicator function is

H,=

— =|h, h, hy; h, hs h 4.53
or, ox, ox, ox, ox, ox, [41 2 3 e Ths 46] ( )

[ah4 oh, ©oh, oh, oh, a@]
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Jacobian of the transition condition is

G, =

S OO O O -
o O o O = O
O OO = O O
o O~ O O O
O = O O O O

—_o O O O O

(4.54)

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation Y _, is'as follows:
e

5x(t:) =G, (x')éx(t;)——[@ (x‘)f4 (x(t; ))—f3 (x(tz ))]

H4(x‘)5x(t;)

H, (") £,(x(%))

(4.55)

where “+” and “—” denote the time just after and before switch instants #,. Rewriting

equation (4.55),
—x;’ew x5 xg™ Xy X Xy 1710000 0][x, X x x X X i
X' Xy Xy X Xy Xg 01 00 0 O0lxy X X5 X X7 Xy
Xo© X Xy Xp Xy X | |00 10 0 Of[x9 Xy Xy Xp Xp5 Xy (4.56)
X' Xoe Xy Xog  Xpg  Xag 1000100 Xys Xag Xy Xy X9 X3
XX Xy X Xyg Xag 0 0 0 0 1 0ffx; X5 X33 Xyq Xg5 Xy
Xy Xy Xpe' Xaoo X X | L0000 0 0 1fix, Xy Xy X Xy Xy
X; X Xy X KXy Xy
X3 X4 X5 X X Xig
- L [ he b ke h h. h ] Xig  Xao Xy Xy Xp3 Xy
10000 0ffy Jar aoeo e Tm e e Xys  Xog Xy Xy X X3
0100 0 0)f S X3y X Xyy Xy X35 Xsg
) 00100 0}fs _ S \ X7 g Xio Xao Xar e ]
0001 0 Off, Sus fa
0 0 0 0 1 0} s Js S
0o 0000 | fas] | S [h n e b b h ] S
I I )
44
Jus
[ fa ]

where f,(x(t;)] denotes the f(x) in equation (4.22) when I(t)=1(t-At)+e(?)At and
4 4
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~u,,., — K et
fa(x(tI )) denotes the f(x) inequation (4.22) when I(f)= u"’w"K Fe()_
- K e(t
o At t=t,, I(t) change from I(t-Af)+e(DAr to 22 K =
~-K e(t
The indicator function is hy =(I(t - Aty + e(£)AF) — Usipper p L) ~0 “57)
Jacobian of the indicator function is
oh, oh. 0Oh, ©oh, 0h. Oh. |
Hy=| 2= —2 = 25 25 Siefpg by By hy By B 458
5 [le ox, Ox; Ox, Ox 6x6_ [ 51 Thsa Tis3 Thsg o Tiss 56] ( )
(1 0 0 0 0 0]
010000
0 01 000
Jacobian of the transition conditionis G, = (4.59)
0 00100
000010
0 0 0 0 0 1]

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation y_, is as follows:
-1

H; (x')é'x(t;)

x(5)= s () 0x(5)~[ 6, () 4 (x() - £ () | 7 SR

where “+” and “—” denote the time just after and before switch instants #,. Rewriting

equation (4.60),

[ e e x xre e l T1 00 00 0l x X X, X, X
X5 Xy X5 X Xp g 01 00 0 0)x; x, X5 X5 X, X
Xio© Xy Xy Xy Xyy  Xog _ 0 01 0 0 0flxy X0 X5 X5 Xy Xy
Xpo'  Xag  Xpg  Xag Xy Xzg 000100 Xys  Xps  Xpp Xgg Xyg Xy
X5 Xy Xy Xyy Xys o Xag 0 0 0 0 1 Ofjxy X X3 Xy X5 Xy
xp' Xgg Xse X X X | L0 0 0 0 0 1jxy; Xy Xy X Xy X,
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1 r N [hSI hSZ h53 h54 h55 h56 ]

T 00 0 0 0—-f;l Is Xys  Xag Xgy Xpg Xpg Xy
01 0 0 0 0l £, S X3y Xy Xy3 Xy Xys Xy 4.61)
oot oo ol | £ X9 Xy %o X Xy g
000 1 0 Offillf Ja
0000 1 Ollfis!| |fis Ja
\—0 00 0O lx_f.gs~ _fse_J [h5| h, hy hy, kg hss] S
Jas
Jis
| S ]

where f, (x(ts‘ )) denotes the f(x) in equation (4.22) when I(t)=1I(t—At)+e(t)At and

- K e(t
/s (x(t; )) denotes the f(x) inequation (4.22) when I(¢)= %—L()

i

u, . —K e(t
e At t=t,, I(t) change from —"—”’”T"—gl to I(t—Ar) +e(t)At

i

;{K"e(’) —(I(t - M) +e()Ar) =0 (4.62)

i

. . . . uupper
The indicator functionis 4, =

Jacobian of the indicator function is

oh, Oh, Oh, Oh, Oh, Oh
H6 = [_._é_ _6. _—6- 6 6 6 } = [h61 h62 h63 h64 h65 h66] (463)

Jacobian of the transition conditionis G = (4.64)

S - O O O O
—_ O O O O O

Following the guideline in section 2.3.1.2 and equation (2.17), the new value of variation

equation y _, is as follows:
6
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03(15) =G (37)ox(12)~{ G (") A (x()) = £ (x(x))] HH(JEx ) j)j(i((ti_))) (4.65)

where “+” and “—” denote the time just after and before switch instants z,. Rewriting

equation (4.65),

[ xre XX Xy Xy Xy 1Tt ooo0o0 0fx x Xy Xg X, X, |
X5 Xy Xs X Xy Xg 01 00 0 0flx; x4 X5 X6 X; X
Xig' Xy Xy Xy Xag e | [0 0 1 0 0 0fxg Xy Xy Xy Xy Xy
Xps' Xyg Xy Xy X Xy 000100 Xis X Xar Xy Xy Xy
X0 Xy Xy Xy X5 Xy 0000 I Offx x X3 X X5 X

X7 Xag X X Xy X | L0000 0 1fjx; Xy oxp Xp X, X

[t 0 0 0 00 _f51 Ja Xos  Xog X Xpg  Xpg Xy
01000 01|, S X3 X3 Xyz Xy Xzg o Xgg
) 001 0 0 0| fs _ Ja | | X37  Xig x3_9 )540 Xa Xa |

00 01 0 0ffisl|fs S

0000 1 0llfl |fs A e

0000 0 1]|fil |f s

ot AL/ssd L/46 ) [hﬁl h62 h63 h54 h65 heé] f53 (4 66)
54 .
fss
| fss

where f, (x(ts‘ )) denotes the f(x) in equation (4.22) when I(¢)=1(t—At)+e(t)At and

- K e(t
Js (X(t; )) denotes the f(x) inequation (4.22) when I(¢)= M_

]

4.4.1.1 Lyapunov Exponents for stable motion with a set point
Under the controller shown in equation (4.24), the piston is controlled to move to the

desired position. The desired actuator piston position is x,,_, =0.2m, the control gains are

given in Table 4.2.
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Table 4.2 Control gains of the pneumatic system

Parameters

k, (V/im)

k, Vms) | v,V | U, M)

upper

€. (W/s) & Vi3

values

10

26 0.65 0.65 0.005 0.004 50

The method introduced in Section 2.3.1 which calculates Lyapunov Exponents, is

adapted to the pneumatic system. The piston displacement is shown in Fig. 4.13. Fig. 4.14

shows the pressures of the two chambers in steady-state..

0.20 ~r -

0.15 4

0.10 4

0.05

Piston position (m)

0.00

----- desired position
— actual position

0.0

T T T d T T 1
0.5 1.0 1.5 20

Time (s)

Fig. 4.13 Close-loop position response of the piston
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Fig. 4.14 Chamber pressures

Figure 4.13 shows that the system has the steady state error because of the PI controller
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and friction. When %, ,(#)=0 and |(xdes,.,ed — X, )I <&, the integral part, I, is zero. When
the velocity error is too small, the control signal generated by the PI controller is zero and the
control valve does not move. The piston will stop there. In Fig. 4.14, the two pressures go to
different values at the steady state, due to the friction in the system. The difference in

pressures between the chambers generates a net force to balance the friction.

The time history of the Lyapunov Exponents for the pneumatic control system
understudy is calculated using the mathematical model. The spectrum is shown in Fig. 4.15.
The whole Lyapunov Exponents’ spectrum is shown in Table 4.3.

50
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Lyapunov exponents

Time(s)
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-350 : : ; 7 ; :

Lyapunov exponents

Time(s)

Fig. 4.15 Lyapunov Exponents and the close-up of the pneumatic system
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Table 4.3 Lyapunov Exponents of the pneumatic system

4 A A Z A5 s
0.0 0.0 -16.13 | 2035 | -2020 | -341.87

With reference to Fig. 4.15, there are two zero exponents and four negative exponents,
As in the original concept of Lyapunov Exponents, zero and negative exponents indicate the
system is in some sort of steady state mode with some variables of the system having an
attracting period orbit. However, the pneumatic control system does not have a limit cycle or
torus and each variable converges to a fixed point. In order to interpret the physical meaning
of the results, the system’s mathematic model i.e., equation (4.19) is restudied. The controller
was designed for the desired piston position and velocity. No requirements of other states of
the system were imposed. Different initial chamber pressures may cause the trajectories to
converge to two different equilibrium points belonging to the system’s equilibrium points.
Consequently, the steady-state lengths of Hx,. (t)" in two directions as t—oco stays at a
constant non-zero value leading to zero Lyapunov Exponents. Thus, the new interpretation of
the zero Lyapunov Exponents is that for the system with a set of non-isolated equilibrium
points, zero exponents do not imply the existence of limit cycle or torus. Rather, it indicates
that the separation of two trajectories initiated from two different initial conditions remain
constants in two directions. The largest distance is within the set of the equilibrium points.
The remaining negative Lyapunov Exponents indicate that the trajectories converge on each

other in all other directions.
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4.4.1.2 Lyapunov Exponents for stable tracking motion

In this section, the piston moves back and forth under the control signal. The desired
trajectory is a sinusoid function. Since time ¢ shows up in the controller which makes the
systems non-autonomous, another dimension has to be added to the dynamic model. The

mathematic model becomes:

i=1

xP =vP

v, =%(—bvp +AP, - AP,-F,-F,)

P= 7RZ 1, — 71)‘24 i,
V01+A(—2—+xp) V(,,+A(§+xp) (4.67)
PZ_ 7RT -2+ 7PZf xp
V;2+A(———xp) V02+A(—-—xp)
: X, valve
X, = ——+ u
H o H

In the simulations, the pneumatic system follows the desired trajectory. The desired

trajectory is described as 0.2cos(1.57¢) (m). The controller gains are the same as those in

the stable motion with a set point.

The initial condition of the system is chosen at x,=0(m) , v,=0(m/s) ,
P =P, =2.77(bar) and x, =0(m). The displacement of the piston is shown in Fig. 4.8. It
can be seen that the aétual displacement of the piston approaches the desired trajectory very

well, with slight overshoots at the point with maximum and minimum displacements.
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Fig. 4.16 Piston tracking response

The Lyapunov spectrum is shown in Fig. 4.14. All the Lyapunov Exponents converge to

the steady value rapidly. The final values of Lyapunov Exponents are shown in Table 4.5.

The zero Lyapunov exponent comes from the ¢ dimension.
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Fig 4.17 Lyapunov exponents and the close-up of the pneumatic system
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Table 4.4 Lyapunov Exponents of the pneumatic system

A A A ) A A i

0.000 | -2.361 -5.946 | -10.106 | -26.686 | -42.501 | -341.650

4.4.2 Calculation of the Largest Lyapunov exponent from a time series
4.4.2.1 Stable motion with a set point

For the same system as discussed in Section 4.1, the largest Lyapunov exponent is
calculated and presented in this section. In Fig. 4.16 the largest Lyapunov exponent is
calculated from the time series of recorded position data. The program calculates the largest
Lyapunov exponent with the time step 0.001 and 600,000 points. The values of the largest
Lyapunov Exponents from both the time series and the mathematical model, are shown in

Table 4.4.
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Fig 4.18 Largest Lyapunov exponent and the close-up from the time series
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Table 4.5 Largest Lyapunov exponent from the time series and mathematic model

Time series Mathematic model

Lyapunov exponent -25.52 0.000

The largest Lyapunov exponent calculated from the time series can not match the
exponent from the mathematic model. To ensure that the poorly calculated largest Lyapunov
exponent is not the artifact of inadequate selection of time delay and evolve time, the largest
Lyapunov exponent was also calculated with different time delays and evolution times as
shown in Fig. 4.17. To demonstrate that although the largest Lyapunov Exponents
calculated from the time series changes with the key parameters of time delay and evolve

time, all the largest Lyapunov exponent are below -20.

Largest Lyapunov exponent

Time delay

Fig. 4.19 Largest Lyapunov exponent with different time delay and evolution time

Thus, the largest Lyapunov exponent calculated using Wolf’s method for the pneumatic
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system with a stable set point cannot match the one determined using the mathematical
model. The problem comes from the reconstruction of the attractor. The reconstruction is
based on a series of data. As the system has a set of infinite non-isolated equilibrium points,
the reconstruction of the phase space cannot be carried out based on Taken’s theory.
Therefore, Wolf’s method for calculating the largest Lyapunov exponent from time series
does not work for the systems with a set of infinite non-isolated equilibrium points.

4.4.2.2 Stable tracking motion

The time series of the position of the system is recorded from the simulation result. The time
delay is 0.001 and the total data are 600,000. The largest Lyapunov exponent is calculated

from time series for tracking motion and shown in Fig. 4.20.
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Fig 4.20 Largest Lyapunov exponent and the close-up for tracking response
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Table 4.6 Lyapunov exponent calculated from the time series data compared to the result
from the mathematic model

Time series Mathematic model

L.E. 0.0003 0.000

Although the largest Lyapunov exponent calculated from time series is zero, it has
different indications from the mathematic model. The zero Lyapunov exponent from the
mathematic model is caused by treating ¢ as another dimension. The zero Lyapunov
exponent from the time series shows that the system is stable for a periodic orbit.
Furthermore, as discussed in Section 3.3.2.3, if the time series corresponds to periodic
behavior, the Lyapunov exponent should be very small or zero as the trajectory returns to
exactly the same set of values. However, it does not indicate the convergence or the
divergence of nearby trajectories. Hence, this trajectory method reflects the fact that the
Lyapunov exponent neither increases nor decreases in its value.

4.5 Summary

In this chapter, Wolf’s method was employed to calculate the Lyapunov Exponents from
both the mathematic model and a time series for the pneumatic system. F-or the stable motion
with a set of infinite non-isolated equilibrium points, as the pneumatic system studied in this
work, the new interpretation of zero exponents with other negative exponents calculated from
the mathematical model is presented. This is in line with numerical calculation of the
exponents shown in Table 4.3. It is concluded that the whole spectrum of Lyapunov
Exponents determined from the mathematical model can still be used to analyze system

stability. Some simple examples were presented and discussed in Appendix II to further
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support the above explanations.

In this research the largest Lyapunov exponent from a time series of a system with
infinite non-isolated equilibrium points was found to significantly differ using the one from
the dynamic model. The reason is believed to the set of infinite non-isolated equilibrium
points, which cause reconstruction of the phase space being invalid. Thus, the limitation of
Wolf's method calculating the largest Lyapunov exponent from time series is demonstrated.
It is concluded that Wolf’s method cannot be used for calculating the largest Lyapunov
exponent for systems with a set of infinite non-isolated equilibrium points. Further studies for
a different system with similar properties should be conducted. For the case of pneumatic
system tracking desired trajectories, the finding is similar to the one of the two-link
pendulum systems in that zero exponents have been calculated from both the mathematical
model and the time series. However, the zero exponent from the time series and the one from
the mathematical model have different indications. The zero Lyapunov exponent from the
mathematical model responds to the extra dimension of time in state space. The zero

Lyapunov exponent from the time series responds to the periodical orbit.
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Chapter 5

Conclusions

For complex nonlinear systems, it is extremely difficult to derive a Lyapunov function
for stability analysis. It is impossible to do the stability analysis in the context of Lyapunov’s
stability theory when only a set of time series recorded from the experiment is available. The
concept of Lyapunov Exponents provides a possible way to analyze the stability of a system.
The Lyapunov Exponents can be calculated from either the mathematical model of the
system or a time series, which are independent from the initial conditions and can
characterize the system’s stability provided that the numerical artifact is under control.
However, the concept of Lyapunov exponent is usually used for analyzing chaotic systems,
where at least one Lyapunov exponent is positive. The methods for calculating Lyapunov
Exponents using a time series have been considered unreliable for calculating negative and
Zero exponents.

In this thesis the possibility of using Wolf’s method (1985) to calculate the largest

Lyapunov exponent from a time series is studied and applied to the potentially stable systems



Conclusions 130

where the largest Lyapunov exponent is negative. Two robotic systems, namely a two-link
pendulum system and a pneumatic actuator, have been used as examples. The Lyapunov
exponent spectrums have been first calculated from the mathematical models, which serve as
the reference for comparisons. The time series of each system is generated from the
mathematical model and the largest Lyapunov exponent has been calculated using Wolf’s
method. Note that, in calculating Lyapunov Exponents based on a time series, three key
parameters, such as the time-lag, the evolving-time and the embedding dimension for
reconstruction of the state space have significant effects on the calculated Lyapunov
Exponents. The question of proper selections of the above parameters still remains open. In
this work, since the dimensions of the systems are known, large ranges of the parameters for
both the time-lag and evolving time are used. The following conclusions have been drawn:

1) Wolf’s method has been successfully applied to the stable two-link pendulum system
moving to a desired point, i.e., the system has a unique stable equilibrium point. This
is evidenced by the fact that the largest negative Lyapunov exponent calculated using
Wolf’s method is very close to the one calculated from the mathematical model.

2) For the two-link pendulum system under study, the calculated Lyapunov Exponents
are not sensitive to the time-lag and time-evolve provided that the time delay is not
too low.

3) For both simplified and complete stable pneumatic systems moving to the desire
position, there exists a set of infinite non-isolated equilibrium points. Two zero

exponents and three negative exponents have been determined from both
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4)

3)

6)

mathematical models, which contradicts the conventional concept of Lyapunov
Exponents. Such zero exponents indicate the existence of a set of infinite non-isolated
equilibrium points rather than a limit cycle or a torus. The causes of such a zero
exponent have been discussed. It has been further demonstrated that such phenomena
(the system with a set of inﬁnite non-isolated equilibrium points) can occur in robotic
systems frequently.

The largest Lyapunov exponent calculated using Wolf’s method for pneumatic system
does not match the one from the mathematical model when a set of infinite
non-isolated equilibrium points exists. Thus, Wolf’s method based on a time series
can not be used for such a system.

For systems track the desired trajectories. Zero exponents have been calculated from
both the mathematical model and the time series. However, the zerov exponent from
the time series and the one from the mathematical model have different indications.
The zero Lyapunov exponent from the mathematical model responds to the extra
dimension of time in state space. The zero Lyapunov exponent from the time series
responds to the periodical orbit.

The effects of GWN on the largest Lyapunov exponent are studied on the two-link
pendulum system having chaotic motion or stable motion with a set-point. The results
show that the noise has significant effect on the calculation of the largest Lyapunov
Exponents.- However; no clear trend has been found in the accuracy of the largest

Lyapunov exponent with the increase in NSR.
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Overall, based on this research, Wolf’s method which calculates the largest Lyapunov
exponent from the time series can be applied to stable mechanical systems which possess
isolated equilibrium points. The calculated Lyapunov Exponents are not sensitive to the
parameters of time-lag and evolve-time. If the systems possess infinite and non-isolated
equilibrium points, the method calculating Lyapunov Exponents from the mathematical
model is still reliable and the new indication of the zero exponents has been developed.
However, the largest Lyapunov exponent calculated from a time series is not reliable and
should not be used. More research on calculating the Lyapunov Exponents using a time
series for systems with a set of infinite non-isolated equilibrium points should be

performed.
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Appendix A

Development of the Mathematical Model of
Two-link Pendulum System

In this appendix, the dynamic model of the two-link pendulum used in this work, is
developed. The two-link pendulum model is shown in Fig. Al.1. The system consists of
two rigid links with length , and /,. The base of Link 1 is fixed at point O. mand m,
are the masses of the two links. 7, and #, are the locations of the mass centers of the
two links. 6 and 6, are the joint angles which are'positive in the clockwise direction.
7, and 7, are the control torques applied at both joints which are positive in the counter
clockwise direction.

Y

4

link1

Fig A1.1 Two-link pendulum model
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The dynamic equations can be derived from the Lagrangian formulation. In this
thesis the two-link pendulum is assumed to move in a horizontal plane.
For Link 1:

The position of the mass center of Link 1 is:

x=#sing,
(AL.1)
y=Fcosf,

The velocity of the mass center of Link 1 is:

% =6, cosé,
) (A1.2)
y=—h6,sinb,

The kinetic energy of Link 1 is as follows:

1 1 1 5 . | !
K, :Em,vl2 +5116’,2 =—i—ml(xl2 +y12)+—2—114912 (A1.3)

Substituting equation (A1.2) into equation (A1.3), we have:

K = lnzlr,ze'wf +1119',2 (Al.4)
2 2

The potential energy of Link 1 is 0 since the two-link pendulum moves in the horizontal

plane.

For Link 2:

The position of the mass center of Link 2 is:

x=1,sin6, +r,sin(f, +6,)

(AL.5)
y=1cosf, +r,cos(b, +6,)
Then the velocity of the mass center of Link 2 is:
% =16, c0s 8, +7,(0,+86,)cos(8, +6,) ALS)

y=-1,6,sin6, —r,(6, +6,)sin(8, +6,)
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The kinetic energy of Link 2 is as follows:

1 1. ., 1 2. 1, .
K, :Emzvz2 +'5]2622 =5mz(x22 +y22)+—2_‘[2g22 (ALT)

Substituting equation (A1.6) into equation (A1.7), we have:
1 L o 1, + -
K, = —2—m21l 6 +§m2r2 (6, +6,) +m,lr, (6] +6,6,)cos b, +§I2 (6,+6,) (AL.8)
The potential energy of Link 2 is 0.
The Lagrangian function of the two-link pendulum is:
L=K-P=K,+K, (AL1.9)
1

- _;_m,rféz %1,93 sl %mzr; (6,46, +mLr, (€ +6,6,)cosd, %12(9, 4,y

Based on the Lagrangian formulation:

r,:i i _oL (A1.10)
de\ 06, ) 06,

we have

T, = (mlrl2 + 1 +ml? +mp + 1, +2m211r2)f9'1 (AL1D)

+(myry +1, + mlr, cos6,) 8, —myl,r, (63 +204, )sin,
T, = (Iz +m,r] +mylr, cos 6’2)[9'1 +(m2r22 + 12)652 +myl 1,672 sin 6, (A1.12)
Let J,=L+mpr+mil’, J,=1,+my, p=m)lr,
Equations (Al.11) and (A1.12) become:
7,=(J,+J, +2pcosb,) 6, +(J, + pcosb, )b, — p(26,6, +6; )sin b, (A1.13)

7, =(J, + pcos6,)0, +J,0, + pd; sin6, (Al.14)

The dynamic equations can be written in the following matrix form:

where
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M= dy, d,| |J+J,+2pcosf, J,+pcosé,
- d, dy | J,+pcosé, J,

C d, _ _P(Hnéz + ézz)Sin 6,
d,, p6?siné,
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Appendix B

Calculation of Lyapunov Exponents
for a Stable Spring Mass System

To support the explanation of the results on Lyapunov Exponents of the pneumatic system in
Chapter 4, the spring mass system is studied as a different example. This is a simple system with a
set of infinite non-isolated equilibrium points which make the largest Lyapunov exponent zero. The

spring mass system’s model is shown in Fig. B.1.

i 1
| 1

] 1

m x | 1

1 ;

i i

i !

1 |

| |

Fig. B.1 Spring mass model
In Fig. B.1, the initial condition is x away from the static position, where the spring has no

deformation. The spring force (F = kx) is positive in the X axes direction. The friction is positive
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in opposite direction as the velocity of the mass. After releasing the mass it oscillates around the
balance position. In the research the LuGre model is used.
The dynamic model of the spring mass model is:
mi=ke— f (B2.1)

Rewriting the dynamic model in the state space model is:

X =X
.k
X, =—X L (B2.2)
m m
Oy llexs
Xy =%, — .

_(_
Fy+(F,-Fpe ©
where f=oyx,+0%, +bx,, x, is the position, x, is the velocity and x, is the variable for

LuGre friction model. The parameters of the spring mass system are shown in Table B.1.

Table B.1 The parameters in the spring-mass system

Parameter Symbol Nominal Value
The Spring Constant k(N | m) 5
Static friction F.(N) 4
Coulomb friction F.(N) 2
LuGre friction model parameter o (N /m) 0.15
LuGre friction model parameter o, (Nes/m) 0.8
Viscous velocity v.(m/s) 0.1
Damping parameter b(Nes/m) 2.0

In the simulation, the initial condition is set as {-1.0(m),0.0(m/s)}, and the mass will

oscillate and then stop because of the friction. However, the end positions change with different



App endix B 139

initial conditions. This means that, there is a set of infinite non-isolated equilibrium points for the
system. As the intial condition is set to overcome the static friction, the mass will move until the
force generated by the spring equals the frction. The simulation results of mass position and friction

are shown below:
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Fig B.2 Position of the mass and the end friction

Then the initial condition is changed as {2.0(m),0.0(m/s)}, the simulation results of position

and friction are shown in Fig. B.3.
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Fig B.3 Position of the mass and the friction
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The Lyapunov Exponents are calculated from the mathematic model and shown in Fig. B .4,
where three exponents are obtained. Based on the discussion in Chapter 4, the largest zero
exponents respond to multi-equilibrium points of the system. The Lyapunov spectrum is in Table

B.2.

Lyapunov exponents

M 1 M 1 M 1
50 100 150 200
time (s)

Fig B.4 Lyapunov Exponents from the mathematic model

Table B.2 Lyapunov spectrum
Z Z A
0.00 -0.276 -0.291

Then the largest Lyapunov exponent is calculated from the time series, which is shown in Fig.
B.5. In the calculation, the time delay is chosen as 60 and evolution time is chosen as 30. The
largest Lyapunov Exponents for the same mass—épring system calculated with a large range of key
parameters (time lag and evolve time) are shown in Fig. B.6. In Fig. B.6, the time delay and
evolution time are the two horizontal axes and the vertical axis is the largest Lyapunov exponent.
Fig. B.6, shows that the largest Lyapunov exponent converges to the -0.29 when the time delay is

chosen higher than 40 and lower than 310. With the different simulation parameters, the largest
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Lyapunov exponent from time series does not vary significantly. However, it can not match the

largest Lyapunov exponent (0.00) from mathematic model. Similar findings are shown in Chapter4.
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Fig B.5 Lyapunov Exponents from the time series
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Fig B.6 Largest Lyapunov exponent with different time delay and evolution time



References

Abarbanel, H.D.I., Brown, R., and Kennel, M,B., “Variation of Lyapunov Exponents on a
Strange Attractor”, Journal of Nonlinear Science 1, 175- 199 (1991)

Abarbanel, H.D.I., Brown, R., and Kennel, MB., “Local Lyapunov Exponents Computed
from Observed Data”, Journal of Nonlinear Science 2, 343-365 (1992)

Abarbanel, H.D.I., Analysis of Observed Chaotic Data, Springer, New York, (1996)

Abarbanel, H.D.I., Gilpin, M.E. and Rotenberg, M., “Analysis of Observed Chaotic Data”,
Springer, New York, (1997)

Alvarez, J. and Verduzco, V., “Bifurcations and chaos in a PD-controlled pendulum”,
Journal of Dynamic Systems, Measurement, and Control 120(1), 146149, (1998)

Amin, J., Friendland, Harnoy, A., “Implementation of a friction estimation and compensation
technique”, IEEE Control Systems Magazine, 17(4):71-76, (1997)

Asada H., Slotline J.J.E., “Robot Analysis and Control”, (1986)

Armstrong-Hélouvry, B., “Control of Machines with Friction”, Kluwer Academic Publishers,
Boston, Ma., (1991)

Badii, R. and Politi, A., “Dimensions and Entropies in chaotic systems”, G. Mayer-Kress, Ed.,
Berlin: Springer, p. 67 (1989)

Ballance, D.J., and Gawthrop, P.J., “Control Systems Design Via a QFT Approach,” Procs.
Control 91, pp. 476-481, (1991)

Brandstater, A., J. Swift, H.L. Swinney, A. Wolf, J.D. Farmer, E. Jen and J.P. Crutchfield,
“Low-dimensional chaos in a hydrodynamic system”, Phys. Rev. Lett. 51, (1983)

Banbrook, M., Ushaw, G., and McLaughlin, S., “Lyapunov exponents from a time series: A
noise robust extraction algorithm”, Chaos Solutions Fractals, vol. 7, pp. 973-976, (1996)

Banbrook, M., Ushaw, G. and McLaughlin, S., “How to Extract Lyapunov Exponents from
Short and Noisy Time Series”, IEEE, (1997)



Berge F., Pomeau Y., and Vidal C., “Order within chaos”, Wiley, (1984)

Benettin, G., Galgani, L., Giorgilli, A., aid Strelcyn, J. M., “Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems; A method for
computing all of them”, Theory, Meccanica, 15(1):9-20 (1980)

Berglund, C. N., “A Note on Power-Law Devices and Their Effect on Signal-to-Noise Ratio”,
IEEE Transactions on Information Theory, (1964)

Bowden, F. P. and Tabor, D., “The friction and Lubrication of Solids”, Oxford Univ. Press,
Oxford, (1950)

Bryant, P., Brown, R. and Abarbanel, H.D.I., “Lyapunov Exponents form Observed Time
Series”, Physics Review Letter 65, 1523 (1990)

Broomhead D. S. and King G. P., “On the qualitative analysis of experimental dynamical
systems in ‘Nonlinear Phenomena and Chaos (edited by S. sarkar)’”, Adam Hilger: Bristol,
113-142,(1985) ‘

Butcher, J. C., “Numerical Methods for Ordinary Differential Equations”, Wiley, New York,
2003.

Buzug, Th. M., Reimers, T. and Pfister, G., “Nonlinear Evolution of Spatio-Temporal
Structures in Dissipative Continuous Systems”, F.H. Busse and L. Kramer, Eds., New York,
Plenum Press, p. 7 (1990)

Canudas de Wit, C., Olsson, H., Astrém, K. J. and Lischinsky, P., “A new model for control
of systems with friction”, 40H3I, (1995)

Chandra Shekara Bhat, C., Kaimal, M R and Ramamohan, T R, “Application of chaotic noise
reduction techniques to chaotic data trained by ANN”, Sadhana, Vol. 26, Part 5, pp. 485494,
(2001)

Canudas de Wit, C., Olsson, H., Astrom, K. J., and Lischinsky, P., “A new model for control
of systems with friction”, IEEE Transactions on Automatic Control, 40(3):419-425(1995)

Chen, G. and Lai, D., “Making a Dynamical System Chaotic: Feedback Control of Lyapunov
Exponents for Discrete-Time Dynamical Systems,” IEEE Transactions on Circuits and
Systems, vol. 44, No. 3, (1997)

Chin, P.S.M., “A Genera Method to derive Lyapunov Function for Non-linear Systems”, In.
J. Control 44, 381-393 (1986)



Chin, P.S.M., “Stability of Non-linear systems via the Intrinsic Method”, In. J. Control 48,
1561-1567 (1988)

Chin, P.S.M., “Stability Results for the solutions of Certain Fourth-order Autonomous

Darbyshire A.G. and Broomhead D.S., “Calculation of Lyapunov exponents from
experimental data submitted for publication”, (1994)

Darbyshire, A.G., “Calculating Lyapunov Exponents from a Time Series”, IEEE, (1994)
Differential Equations™, In. J. Control 49, 1163-1173 (1989)

Eckmann J.P. and Ruelle D., “Ergodic theory of chaos and strange attractors”, Rev. Mod.
Phys., 57, 617-657, (1985)

Eckmann, J.-P., Kamphorst, S.0., Ruelle, D., and Ciliberto, S., “Lyapunov Exponents from
Time Series”, Physics Review A 34,4971 (1986)

Eker, J. and Astrom, K. J., “A nonlinear observer for the inverted pendulum”, IEEE
conference on Control Application, (1996)

Farmer, J.D., Hart, J. and Weidman, P., “A phase space analysis of a baroclinic flow”, Phys.
Lett, 91A , (1982)

Filippov, A. F., “On the approximate computation of solutions of ordinary differential
equations with discontinuous right-hand sides”, Moscow University Computational
Mathematics and Cybernetics, 2:19-21(2001)

Friedland, B. and Park, Y.-J. “On adaptive friction compensation”, In Proceedings of the
IEEE Conference on Decision and Control, pages 28992902, (1991)

Furuta, K., Kobayashi, S., and Nishimura, M., “A new inverted pendulum apparatus for
eduction”, Prepeints IFAC Conference on Advances in Control Educations, pages 191-196,
(1991)

Ganseman, C., Swevers, J. and Al-Bender, F., “An integrated friction model with improved
presliding behavior”, In 5th IFAC Symposium on Robot Control, Nantes, France, 1997.

"Green, A & Sasiadek, J. Z., “Fuzzy and Optimal Control of a Two-Link Flexible
Manipulator”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Proceedings, (2001)



Grassberger, P. and Procaccia, 1., “Characterization of strange attractors”, Physical Review
Letters, Vol. 50, No. 5, pp. 346 (1983)

Hemami, H. and Golliday, C. Jr., “The Inverted Pendulum and Biped Stability”,
Mathematical Bioscience 34, 95-110 (1997a)

Hemami, H. and Cvetkovic, V.S., “Postural Stability of Two biped Models via Lyapunov
Second Method”, IEEE Transactions on Automatic Control 22, 66-70 (1997b)

Holzfuss, J and Lauterborn, W., “Lyapunov Exponents from a Time Series of Acoustic
Chaos”, Phsical Review 1 39(4), 2146-2152(1989)

Kantz, H., and Schreiber, T., Nonlinear Time Series Analysis, Cambridge, UK: Cambridge
Univ. Press. (2004), 2nd Edition

Khosla, P. K., “Real-Time control and identification of Direct-Drive manipulators”, Ph. D.
Thesis, Dept. of Electrical and Computer Engg., Carnegie Mellon University, USA, (1986)

Kinsner, W., Fractal and Chaos Engineering, Lecture notes. Winnipeg, MB: Dept. Electrical
computer eng., Univ. Manitoba, 1996, 760pp

Kinsner, W., “Characterizing Chaos through Lyapunov Metrics”, Proceedings of the Second
IEEE International Conference on Cognitive Informatics, (2003), pp. 189-201

Kunze, M., “On Lyapunov Exponents for Non- Smooth Dynamical Systems with an
Application to a Pendulum with Dry Friction”, Journal of Dynamics and Differential
Equations 12(1), 31-116 (2000)

Kuo, A.D., “An optimal Control Model for Analyzing Human Posture Balance”, IEEE
Transactions on Biomedical Engineering 42, 87-101 (1995)

Lankalapalli, S. and Ghosal, A., “Possible chaotic motions in a feedback controlled 2R
robot”, IEEE, International Conference on Robotics and Automation (1996)

Lankalapalli, S. and Ghosal, A., “Possible chaotic motion in a feedback controlled 2R robot”,
in Proceedings of the 1996 IEEE International Conference on Robotics and Automation,
Minneapolis, MN, April, N. Caplan and T. J. Tarn (eds.), IEEE Press, New York, pp.
1241-1246, (1996)

Lankalapalli, S. and Ghosal, A., “Chaos in robot control equations”, International Journal of
Bifurcation and Chaos 7(3), 707-720, (1997)



Liu, W.D., Ren, K.F., Meunier-Guttin-Cluzel, S. and Gouesbet, G., “Global Vector-Field
Reconstruction of Nonlinear Dynamical Systems form a Time Series with SVD Method and
Validation with Lyapunov Exponents”, Chinese Physics 12(12), 1366-1373 (2003)

Lyapunov, A.M., 1892, “The General Problem of the Stability of Motion”, Translated by
Fuller, A.T. International Journal of Control 52, 531-773; also (London: Taylor & Francis,
1992)

Mahout, V., Lopez, P., Carcassés, J. P., and Mira, C., “Complex behaviors of a two-revolute
joints robot: Harmonic, subharmonic, higher harmonic, fractional harmonic, chaotic
responses”, in Proceedings of the IEEE Systems, Man & Cybernetics *93 Conference, Le
Touquet, France, pp.201-205, (1993)

Merrit, H.E., “Hydraulic control system”, New York, (1967)

Mickens, R.E. and Gumel, A.B., “Construction and Analysis of a Nonstandard Finite
Difference Scheme for the Burgers-Fisher Equation”, Journal of Sound and Vibration 257,
791-797 (2002)

Miksovsky, J. and Raidl, A., “Multivariate Phase Space Reconstruction of Meteorological
Systems”, Geophysical Research Abstracts 5, 01916 (2003)

Miksovsky, J., “On some Meteorological Applications of Nonlinear Time Series Methods”,
Extended Abstract of Doctoral Thesis, Charles University, Prague, (2004)

Most, T., Bucher, C. and Schorling, Y., “Dynamic Stability Analysis of Non-Linear
Structures with Geometrical Imperfections under Random Loading”, Journal of Sound and
Vibration 276, 381-400 (2004)

Mu, X. and Wu, Q., “Development of a complete dynamic Model of a Planar Five-Link
Biped and Sliding Mode Control of its Locomotion during the Double Support Phase”,
International Journal of Control 77, 789-799 (2004) '

Mu, X., “Dynamic Modeling and Motion Regulation of a Five-Link Biped Robot Walking in
the Sagittal Plane”, University of Manitoba Ph.D. Thesis, (2005)

Muller, P.C., “Calculation of Lyapunov Exponents for Dynamic Systems with
Discontinuities”, Chaos, Solitans and Fractals 5, 1671-1681 (1995)

Nicolis, C. and Nicolis, G., “Reconstruction of the Dynamics of the Climatic System from
Time-Series Data”, Proc. Natl. Acad. Sci. USA (83), 536-540 (1986)



Nusse, H.E. and Yorke, J.A., Dynamics: Numerical Explorations, Springger-Berlag, New
York (1998)

Oseledec, V.1, “A Multiplicative Ergodic Theorem: Lyapunov Characteristic Numbers for
Dynamical Systems”, Trans. Moscow Math. Soc. 19, 197 (1968)

Olsson, H., Astrém, K.J., Canudas de Wit, C., M. Gifvert and P. Lischinsky, “Friction
models and friction compensation”, (1997)

Packard, N., Crutchfield, J., Farmer, J. and Shaw, R., “Geometry from a time series”, Phys.
Rev. Lett., vol. 45, no. 9, pp. 712-716, (1980)

Parker, T. S. and Chua L. O., “Chaos: a tutorial for engineers”, proc. IEEE, vol. 75, no. 8, pp.
982-1008, (1987)

Parker T. S., Chua L. O., “Practical numerical algorithms for chaotic systems”, Springer
Verlag (1989)

Porter, B., and Tatnall, M.L., “Performance characteristics of an adaptive hydraulic
servo-mechanism”, Int. J. Control, (1970), 11

Paden, B.E., and Sastry, S.S., “A Calculus for Computing Filippov’s Differential Inclusion
with Application to the Variable Structure Control of Robot Manipulators”, IEEE
Transactions on Circuits and Systems 34, 73-82 (1987)

Parlitz, U., “Identification of True and Spurious Lyapunov Exponents from Time Series”,
International Journal of Bifurcation and Chaos 2,155 (1992)

Pavlov, A.V., Yansons N.B., and Anishchenko, V.S., “Application of Statistical Methods to
Solve Global Reconstruction Problems”, Technical physics Letters 23, 297 (1997)

Pavlov, A.N., Yanson, N.B., Kapitaniak, T., and Anishchenko, V.S., “Reconstruction of
Dynamic systems using Short Signals”, Technical Physics Letters 25(6), 424-426 (1999)

Pettis, K. W., Bailey, T.A., Jain, AK. and Dubes, R.C., “An intrinsic dimensionality
estimator from near-neighbor information”, IEEE Trans. Pattern Analysis and Machine
Intelligence PAMI-1, (1979)

Ponzo, P.J., “On the stability of Certain Non-linear Differential Equations”, IEEE Trans.
Automatic Control 10, 470 (1965)



Rad, F. and Ahmed, H.M., “Calculation of Lyapunov exponents though nonlinear apaptive
filters”, IEEE, (1991)

Raibert, M. H., Brown, H.B., “Experiments in Balance with a 2D One- Legged Hopping
Machine”, ASME Journal of Dynamic Systems, Measurement, and Control 106, 75-81 (1984)

Rauf, F, and Ahmed, H.M., “Calculation of Lyapunov Exponents through Nonlinear
Adaptive Filters”, Proceedings IEEE International Symposium on Circuits and Systems,
Singapore (1991)

Sakai, M., Homma, N., Yano, M. and Abe, K., “Lyapunov Spectrum Analysis of
Reconstructed Attractors from Observed Time Series”, SICE Annual Conference in Fukui,
(2003)

Sano, M. and Sawada, Y., “Measurement of the Lyapunov Spectrum From Chaotic Time
Series”, Physics Review Letter 55, 1082 (1985)

Sekhavat, P., Sepehri, N. and Wu, Q., “Contact task stability analysis via Lyapunov
exponents”, IEEE International Symposium on Intelligent Control (ISIC°02), pp.
148-152(2002)

Sekhavat, P., “Design and Stability Analysis of a Switching Contact Task Control for
Hydraulic Actuators”, University of Manitoba Ph.D. Thesis, (2004)

Sekhavat, P., Sepehri, N. and Wu, Q., “Calculation of Lyapunov Exponents Using
Nonstandard Finite Difference Discretization Scheme: A Case Study”, Journal of Difference

Equations and Applications 10 (4), 369-378 (2004)

Sekhavat, P., Wu, Q. and Sepehri, N., “Impact Control in Hydraulic Actuators”, ASME
Journal of Dynamic Systems, Measurement, and Control 127(2), 197-205 (2005)

Small, M., Applied nonlinear time series analysis: applications in physics, physiology and
finance, World Scientific, (2005)

Swinney, H. L. and Gollub, J. P., “Characterizaiton of hydrodynamic strange attractors”,
Physica 18D, 448-454, (1986)

Shimada, I. and Nagashima, T., “A numerical approach to ergodic problem of dissipative
dynamical system”, Prog. Theor. Phys., 61, pp 1605-1616(1979)

Shimada, I. and Nagashima, T., “Chaos phenomena in 2-link manipulator with dead time and



its control”, SICE, (2002)

Takens, F., “Dynamical Systems and Turbulence”, Lecture Notes ion Mathematics 898,
edited by Rand, D.A., and Young L.-S. Springer-Verlag, Berlin (1981)

Takens, F. “On the numerical determination of the dimension of an attractor”, Dynamical
Systems and Bifurcations, Springer-Verlag, Lecture Notes in Mathematics, vol. 1125, pp. 99,
(1985)

Tanaka, Y. and Horio, Y., “An Estimation Algorithm of the Lyapunov exponents From Data
With Noise AND/OR Quantization”, IEEE International Symposium on Circuits and Systems,
(1997)

Vakakis A. F., Burdick J. W., “Chaotic motions in the dynamics of a hopping Robot”,
Proceedings of IEEE international Conference on Robotics and Automation, pp. 1464-2469
(1990)

Verduzco, F. and Alvarez, J., “Bifurcation analysis of a 2-DOF robot manipulator driven by
constant torques”, International Journal of Bifurcation and Chaos 9, 617-627, (1999)

Verduzco, F. and Alvarez, J., “Homoclinic Chaos in 2-DOF Robot Manipulators Driven by
PD Controllers”, Nonlinear Dynamics 21: 157-171, (2000)

Williams, G.P., Chaos Theory Tamed, Joseph, Joseph Henry Press, Washington, D.C. (1997)

Wolf, A. and Swift, J., “Progress in computing Lyapunov exponents from experimental data,
in: Statistical Physics and Chaos in Fusion Plasmas”, W. Horton and L. Reichl, eds. (Wiley,
New York, 1984), p. 111. )

Wolf, A., Swift, J.B. Swinney, H.L. and Vastano, J.A., “Determining Lyapunov Exponents
from a Time Series”, Physics 16D, 285-317 (1985)

Wu, Q., Sepehri, N., Thornton-Trump, A.B. and Onyshko, S., “An Extended Integral Method
to Derive Lyapunov Functions for Nonlinear Systems”, International Journal of Control 62,
717-736 (1995)

Wu, Q., “Lyapunov Stability Analysis of a Class of Base-Excited Inverted Pendulums with
Application to Bipedal Locomotion Systems”, University of Manitoba Ph.D. Thesis, (1996)

Wu, Q., Thornton-Trump, A.B. and Sepehri, N., “Lyapunov Stability Control of Inverted
Pendulums with General Base Point Motion”, Int. J. Non-Linear Mechanics 33, (1998a)



Wu, Q., Onyshko, S., Sepehri, N, and Thornton-Trump, A.B., “On Construction of Smooth
Lyapunov Function for non-smooth systems”, International Journal of Control 69, 443-457
(1998b)

Wu, Q., Sepehri, N., Thornton-Trump, A.B. and Alexander, M., “Stability and Control of
Human Trunk Movement during Walking”, Computer Methods in Biomechanics and
Biomechanical Engineering 1, 247-259 (1998c)

Wu, Q. and Sepehri, N., “On Lyapunov’s Stability Analysis of Non-Smooth Systems with
Applications to Control Engineering”, International Journal of Nonlinear Mechanics 36,
1153-1161 (2001)

Wu, Q., and Sqain, R., “A Mathematical Model of Stability Control of Human Thorax and
Pelvis Movement during Walking”, Computer Methods in Biomechanics and Biomechanical
Engineering 5, 67-74 (2002)

Wu, Q., Sepehri, N., Sekhavat, P. and Peles, S., “On Design of Continuous Lyapunov’s
Feedback Control”, Journal of Franklin Institute 342 (6), 720-723 (2005)

Young, L.S., “Dimension, entropy, and Lyapunov exponents, Ergodic Theory and Dynamical
Systems 27, (1982)

Zeni, A.R., and Gallas, J.A.C., “Lyapunov Exponents for a Duffing Oscillator”, Physic D89,
71-82 (1996)

Zeng, X., Pielke, R.a., and Eykholt, R., “Extracting Lyapunov Exponents from Short Time
Series of Low Precision”, Modern Physics Letters B 6 (2), 55-75 (1992)

Zheng, Y.F., and Shen, J., “Gait Synthesis for the SD-2 Biped Robot to Climb Sloping
Surface”, IEEE Transactions on Robotics and Automation 6, 86-96 (1990)



