LAMINAR MIXED CONVECTION IN INCLINED SEMICIRCULAR DUCTS UNDER BUOYANCY ASSISTED AND OPPOSED CONDITIONS

by

Abdulkarim A. Busedra

A thesis
presented to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Mechanical Engincering
Department of Mechanical and Industrial Engineering
University of Manitoba
Winnipeg, Manitoba, Canada

©Abdulkarim A. Busedra 1999

Acquisitions and Bibliographic Services Ottawa ON K1A ONA Canada

Acquisitions et services bibliographiques

395, rue Wellington

 Otawa ON KIA ONA CanadaThe author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronig̣ue.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

LAMINAR MIXED CONVECTION IN INCLINED SEMICIRCULAR DUCTS UNDER BUOYANCY ASSISTED AND OPPOSED CONDITIONS

BY

ABDULKARIM A. BUSEDRA

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree
of
DOCTOR OF PHILLOSOPHY

ABDULKARIM A. BUSEDRA ©1999

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to Dissertations Abstracts International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

I hereby declare that I am the sole author of this thesis.
I authorize the University of Manitoba to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

The University of Manitoba requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and daîe.

Abstract

Laminar mixed convection in inclined semicircular ducts (with the flat surface in the vertical position) is investigated theoretically in the fully-developed region, and experimentally in the developing and fully-developed regions, under buoyancy assisted and buoyancy opposed conditions. The investigation started with the numerical analysis of laminar, fully-developed flow and heat transfer. This analysis used a control-volume-based finite-difference approach in solving the governing equations. Results were obtained for the two limiting thermal boundary conditions; uniform heat input axially with uniform peripheral wall temperature (H1) and uniform heat input axially with uniform wall heat flux circumferentially (H2). These theoretical results include the axial velocity and temperature distributions, the secondary fow pattern, a map for the onset of flow reversal and data for the friction factor and Nusselt number. Using a single value of $\operatorname{Pr}=7$ and a range of Reynolds number, the tube inclination and Grashof number were found to have a strong effect on the distortion of the axial velocity and temperature distributions for upward and downward inclinations in both thermal boundary conditions. The thermal stratification in the H 2 condition was found to reduce the enhancement in $N u$. Further, $N u_{H 1}$ was fo \because nd to be larger than $N u_{H 2}$ for upward inclination at low $G r$, while at high $G r$ both values of $N u_{H 1}$ and $N u_{H 2}$ increase with α up to a maximum and decrease with further increase in α. However, for downward inclination both $N u_{H 1}$ and $N u_{H 2}$ were always lower than that of the horizontal orientation.

Next, a series of experiments for laminar water flow in the entrance region of a semicircular duct with upward and downward inclinations within $\pm 20^{\circ}$ were performed using the thermal boundary condition of uniform heat input axially. The experiment was designed for determining the effect of inclination (particularly the downward) on the wall temperature, the local and fully-developed Nusseit numbers,

and the overall pressure drop across the test section at three Reynolds numbers (500, 1000, and 1500) and a wide range of Grashof numbers. The circumferential variation of wall temperature was found to increase with $G r$ for all angles of inclinations. However, in the upward inclinations the experimental data showed less circumferential variation in wall temperature than that for the horizontal orientation, while for downward inclinations the circumferential variation of wall temperature was much larger than that for the upward inclinations. For the upward inclinations, the experimental values of Nusselt number were found to increase with Grashof number and the inclination angle (up to 20°), while the effect of Reynolds number was found to be small. For the downward inclinations, however, Reynolds number has a strong effect on Nusselt number and the manner by which it varies with Grashof number. For low $R e_{m}\left(R e_{m}=500\right)$ and large downward inclination $\left(\alpha=-20^{\circ}\right)$, the local values of Nusselt number were found to decrease continuously with $G r_{m}$, while for higher $R e_{m}$, $N u_{Z}$ was found to increase and then decrease with $G r_{m}$. Further, at low $R e_{m}$ and high $G r_{m}$ it was not possible to achieve fully-developed temperature profile within the heated section. The fully-developed values of Nusselt number agreed in magnitude and trend with the predicted results for upward inclinations. The value of $f R e$ was found to increase as α and/or $G r$ increase in both the theory and the experiment for the upward inclinations. For the downward inclinations, the predicted $f R e$ was lower than its value at the horizontal orientation. Similar trend was observed for the measured $f R e$ up to a critical value of $G r_{m}$ which could be close to the onset of flow reversal. Beyond that a sharp increase was observed for the measured fRe.

Two recent publications summarizing the major results of this investigation have been prepared by Busedra and Soliman [1, 2]

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my advisor Dr. H. M. Soliman for giving me the opportunity to work in this challenging field of research. His valuable guidance and continuous support in completing this thesis is greatly appreciated. Indeed, I have benefited from his guidance and suggestions. It is due to his understanding in suggesting changes and improvements that I have been able to achieve some measure of clarity and completeness in this thesis.

My thanks are due to Dr. A. C. Trupp who contributed to this work through his suggestions and response. I am also grateful to Mr. J. Finken for setting up the experimental facility and to Mr. K. Majury for his assistance in operating the electronic devices.

The scholarship granted by the University of Garyounis (Libya) and the financial assistance provided by the Department of Mechanical and Industrial Engineering. University of Manitoba through Teaching and Research Assistantships are gratefully acknowledged.

Finally, I would like to thank my wife and my children for their patience and support throughout the course of this work. This thesis is dedicated to them.

TABLE OF CONTENTS

ABSTRACT iv
ACKNOWLEDGEMENTS vi
LIST OF FIGURES xii
LIST OF TABLES xvii
NOMENCLATURE xviii

1. INTRODUCTION 1
2. REVIEW OF LITERATURE 4
2.1 Horizontal Ducts 4
2.2 Vertical Ducts 6
2.2.1 Analytical Work 6
2.2.2 Experimental Work 11
2.3 Inclined Ducts 14
2.3.1 Analytical Work 14
2.3.2 Experimental Work 17
3. ANALYSIS OF THE FULLY-DEVELOPED REGION 22
3.1 Analytical Formulation of the Problem 22
3.2 Computational Procedure 30
3.3 Numerical Accuracy 32
3.4 Comparison With Previous Results 33
4. NUMERICAL RESULTS 35
4.1 Velocity and Temperature Distributions 35
4.1.1 Horizontal Orientation 36
4.1.2 Upward Inclination 36
4.1.3 Downward Inclination 50
4.1.4 Vertical Orientation 51
4.2 Secondary Flow Pattern 63
4.3 Wall Temperature 76
4.3.1 Horizontal Orientation 76
4.3.2 Upward Inclination 80
4.3.3 Downward Inclination 80
4.3.4 Vertical Orientation 85
4.4 Flow Reversal 88
4.5 Friction Factor and Nusselt Number 90
4.5.1 Friction Factor for Upward Inclination 90
4.5.2 Friction Factor for Downward Inclination 92
4.5.3 Nusselt Number for Upward Inclination 92
4.5.4 Nusselt Number for Downward Inclination 96
4.5.5 Comparison With the Geometry of Smooth Tubes 96
5. EXPERIMENTAL INVESTIGATION 101
5.1 Experimental Apparatus and Procedure 101
5.1.1 Flow Loop 101
5.1.2 Test Section 103
5.2 Procedure and Data Reduction 107
5.3 Experimental Uncertainty 109
5.4 Experimental Results 110
5.4.1 Wall Temperature 111
5.4.1.1 Horizontal Orientation 111
5.4.1.2 Upward Inclination 111
5.4.1.3 Downward Inclination 116
5.4.2 Local Nusselt Number 119
5.4.2.1 Effect of Inclination on $N u_{Z}$ 120
5.4.2.2 Effect of $R e_{m}$ on $N u_{Z}$ for Downward Inclination 124
5.4.2.3 Effect of $R e_{m}$ on $N u_{Z}$ for Horizontal and Upward In- clinations 126
5.4.3 Fully-Developed Nusselt Number 128
5.4.4 Comparison of Experimental $N u_{f d}$ With Theoretical Predictions 131135
5.4.6 Pressure Drop With Heating 138
5.4.6.1 Upward Inclination 138
5.4.6.2 Downward Inclination 141
6. CONCLUSIONS AND RECOMMENDATIONS 144
6.1 Conclusions for the Theoretical Study 144
6.2 Conclusions for the Experimental Study and Comparison With Theory 146
6.3 Recommendations for Further Studies 148
REFERENCES 149
APPENDICES 158
A. Numerical Codes 158
A. 1 Numerical Code for Hl Condition 158
A. 2 Numerical Code for H 2 Condition 177
B. Sample Calculation for the Error Analysis 196
B. 1 Uncertainty in Re 197
B. 2 Uncertainty in f 197
B. 3 Uncertainty in Q_{f} 198
B. 4 Uncertainty in Gr 199
B. 5 Uncertainty in $N u_{z}$ 200
C. Experimental Data for $\alpha=0^{0}$ 202
D. Experimental Data for $\alpha=10^{\circ}$ 211
E. Experimental Data for $\alpha=20^{\circ}$ 221
F. Experimental Data for $\alpha=-10^{\circ}$ 231
G. Experimental Data for $\alpha=-20^{\circ} 242$

LIST OF FIGURES

3.1 Geometry and coordinate system 23
4.1 Velocity and temperature contours for $\mathrm{H} 1, \alpha=0^{\circ}$ and $G r=1 \times 10^{5}$. 37
4.2 Velocity and temperature contours for $\mathrm{H} 1, \alpha=0^{\circ}$ and $G r=2 \times 10^{6}$. 38
4.3 Velocity and temperature contours for $\mathrm{H} 2, \alpha=0^{\circ}$ and $G r=1 \times 10^{5}$. 39
4.4 Velocity and temperature contours for $\mathrm{H} 2, \alpha=0^{\circ}$ and $G r=2 \times 10^{6}$. 40
4.5 Velocity and temperature contours for $\mathrm{H} 1, \alpha=30^{\circ}$ and $G r=1 \times 10^{5}$ 42
4.6 Velocity and temperature contours for $\mathrm{H} 1, \alpha=60^{\circ}$ and $G r=1 \times 10^{5}$ 43
4.7 Velocity and temperature contours for $\mathrm{H} 1, \alpha=30^{\circ}$ and $G r=2 \times 10^{6}$ 44
4.8 Velocity and temperature contours for $\mathrm{H} 1, \alpha=60^{\circ}$ and $G r=2 \times 10^{6}$ 45
4.9 Velocity and temperature contours for $\mathrm{H} 2, \alpha=30^{\circ}$ and $G r=1 \times 10^{5}$ 46
4.10 Velocity and temperature contours for $\mathrm{H} 2, \alpha=60^{\circ}$ and $G r=1 \times 10^{\text {s }}$ 47
4.11 Velocity and temperature contours for $\mathrm{H} 2, \alpha=30^{\circ}$ and $G r=2 \times 10^{6}$ 48
4.12 Velocity and temperature contours for H 2 : $\alpha=60^{\circ}$ and $G r=2 \times 10^{6}$ 49
4.13 Velocity and temperature contours for $\mathrm{H} 1, \alpha=-30^{\circ}$ and $\mathrm{Gr}=1 \times 10^{5}$ 52
4.14 Velocity and temperature contours for $\mathrm{H} 1, \alpha=-60^{\circ}$ and $G r=1 \times 10^{5}$ 53
4.15 Velocity and temperature contours for $\mathrm{H} 1, \alpha=-30^{\circ}$ and $G r=5 \times 10^{5}$ 54
4.16 Velocity and temperature contours for $\mathrm{H} 1, \alpha=-60^{\circ}$ and $G r=5 \times 10^{5}$ 55
4.17 Velocity and temperature contours for H2, $\alpha=-30^{\circ}$ and $G r=1 \times 10^{4}$ 56
4.18 Velocity and temperature contours for $\mathrm{H} 2, \alpha=-60^{\circ}$ and $G r=1 \times 10^{4}$ 57
4.19 Velocity and temperature contours for $\mathrm{H} 2, \alpha=-30^{\circ}$ and $G r=5 \times 10^{4}$ 58
4.20 Velocity and temperature contours for $\mathrm{H} 2, \alpha=-60^{\circ}$ and $G r=5 \times 10^{4}$ 59
4.21 Velocity and temperature contours for $\mathrm{H} 1, \alpha=90^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 61
4.22 Velocity and temperature contours for $\mathrm{H} 2, \alpha=90^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 62
4.23 Velocity and temperature contours for $\mathrm{H} 1, \alpha=-90^{\circ}$; (a) $G r=1 \times 10^{4}$ and (b) $G r=1 \times 10^{5}$ 64
4.24 Velocity and temperature contours for $\mathrm{H} 2, \alpha=-90^{\circ}$; (a) $\mathrm{Gr}=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$ 65
4.25 Secondary flow pattern for Hl with $\alpha=0^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 66
4.26 Secondary flow pattern for H2 with $\alpha=0^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 67
4.27 Secondary flow pattern for H 1 with $\alpha=30^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 69
4.28 Secondary flow pattern for Hl with $\alpha=60^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b)$G r=2 \times 10^{6}$70
4.29 Secondary flow pattern for H 2 with $\alpha=30^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 72
4.30 Secondary flow pattern for H 2 with $\alpha=60^{\circ}$; (a) $\mathrm{Gr}=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$ 734.31 Secondary flow pattern for H1 with $\alpha=-30^{\circ}$; (a) $G r=1 \times 10^{5}$ and(b) $G r=5 \times 10^{5}$74
4.32 Secondary flow pattern for H 1 with $\alpha=-60^{\circ}$; (a) $G r=1 \times 10^{5}$ and
(b) $G r=5 \times 10^{5}$ 75
4.33 Secondary flow pattern for H2 with $\alpha=-30^{\circ}$; (a) $G r=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$ 77
4.34 Secondary flow pattern for H2 with $\alpha=-60^{\circ}$; (a) $G r=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$ 78
4.35 Circumferential variation of wall temperature for the H 2 condition with $\alpha=0^{\circ}$ 79
4.36 Circumferential variation of wall temperature for the H 2 condition with $\alpha=30^{\circ}$ 81
4.37 Circumferential variation of wall temperature for the H 2 condition with $\alpha=60^{\circ}$ 82
4.38 Circumferential variation of wall temperature for the H 2 condition with $\alpha=-30^{\circ}$ 83
4.39 Circumferential variation of wall temperature for the H 2 condition with $\alpha=-60^{\circ}$ 84
4.40 Circumferential variation of wall temperature for the H 2 condition with $\alpha=90^{\circ}$ 86
4.41 Circumferential variation of wall temperature for the H 2 condition with $\alpha=-90^{\circ}$ 87
4.42 Flow reversal map 89
4.43 Friction factor results for upward inclinations, $\operatorname{Pr}=7$ 91
4.44 Friction factor results for downward inclinations, $\operatorname{Pr}=7$ 93
4.45 Nusselt number for upward inclinations with $R e=500$ and $\operatorname{Pr}=7$ 94
4.46 Nusselt number for upward inclinations with $R e=1500$ and $\operatorname{Pr}=7$ 95
4.47 Nusselt number for downward inclinations with $\operatorname{Pr}=7$ 97
4.48 Comparison with Orfi et al. [45] for the same Re, Pr, and $G r$ 98
4.49 Comparison with Orfi et al. [45] for the same $\dot{m} . q^{\prime}, D_{h}$, and Pr 100
5.1 Schematic diagram of the experimental apparatus 102
5.2 Supporting mechanism for the experimental rig 104
5.3 Heated test section showing the axial stations 106
5.4 Variation of wall temperature for $\alpha=0^{\circ}$ and $R e_{m}=1000$ 113
5.5 Variation of wall temperature for $\alpha=20^{\circ}$ and $R e_{m}=1000$ 114
5.6 Variation of wall temperature for $\alpha=10^{\circ}$ and $R e_{m}=1000$ 115
5.7 Variation of wall temperature for $\alpha=-20^{\circ}$ and $R e_{m}=500$ and 1500 117
5.8 Variation of wall temperature for $\alpha=-10^{\circ}$ and $R e_{m}=500$ and 1500 118
5.9 Local Nusselt number for $R e_{m}=500$ and $\alpha=0^{\circ}$ 121
5.10 Effect of inclination on local Nusselt number for $R e_{m}=500$ 122
5.11 Effect of inclination on local Nusselt number for $R e_{m}=500$ 123
5.12 Effect of Reynolds number on local Nusselt number for $\alpha=-20^{\circ}$ 125
5.13 Effect of Reynolds number on local Nusselt number for $\alpha=-10^{\circ}$ 127
5.14 Effect of Reynolds number on local Nusselt number for $\alpha=0^{\circ}$ and $\alpha=20^{\circ}$ 129
5.15 Fully-developed Nusselt number for all values of α and $R e_{m}$ 130
5.16 Comparison between data and prediction of $N u_{f d}$ for $\alpha=0^{\circ}$ 132
5.17 Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 20^{\circ}$ and$R e_{m}=500$133
5.18 Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 20^{\circ}$ and$R e_{m}=1000,1500$134
5.19 Comparison between data and prediction of $N \nu_{\iota_{d}}$ for $\alpha= \pm 10^{\circ}$ and $R e_{m}=500$ 136
5.20 Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 10^{\circ}$ and $R e_{m}=1000,1500$ 137
5.21 Comparison between data and analysis of the isothermal friction factor 139
5.22 Experimental data of $f R e$ for upward inclinations 140
5.23 Experimental data of $f R e$ for downward inclinations 142

LIST OF TABLES

3.1 Effect of grid size on $f R e$ and $N u$ for semicircular ducts $(G r=0)$ 32
3.2 Effect of grid size on $f R e$ and $N u$ for $G r=1 \times 10^{5}$ and $R e=1500$ 33
3.3 Comparison between the present results and those of Dong and Eba- dian [20] 34
5.1 Ranges of the independent parameters 112

NOMENCLATURE

$A_{f l}$	cross-sectional area defined by equation(5.1): [m^{2}]
B_{1}, B_{2}, B_{3}	dimensionless parameters defined by equation (3.16)
c_{p}	specific heat [$\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$]
D_{h}	hydraulic diameter, $D_{h}=2 \pi r_{\circ} /(2+\pi)[m]$
f	friction factor defined by equation (3.20)
g_{r}, g_{θ}, g_{z}	radial, angular and axial components of the gravitational acceleration $\left[m s^{-2}\right.$]
$G r$	Grashof number defined by equation (3.15)
h	circumferential-average heat transfer coefficient [$\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$]
k	thermal conductivity [$\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$]
L	distance between pressure taps [m]
\dot{m}	mass flow rate [$\mathrm{kg} \mathrm{s}{ }^{-1}$]
$N u$	circumferential-average Nusselt number
p	pressure [Nm^{-2}]
p_{1}	cross-sectional average pressure [Nm^{-2}]
p_{2}	cross-sectional excess pressure [Nm^{-2}]
P_{1}	dimensionless cross-sectional average pressure defined by equation (3.15)
P_{2}	dimensionless cross-sectional excess pressure defined by equation (3.15)
Pr	Prandtl number defined by equation (3.15)
q^{\prime}	rate of heat input per unit length [$W \mathrm{~m}^{-1}$]
r	radial coordinate [m]
r 。	radius of circular wall [m]
R	dimensionless radial coordinate defined by equation (3.15)

$R e$

Greek Letters

Reynolds number defined by equation (3.15) distance along the duct circumference $[m$] temperature $[K]$ dimensionless temperature defined by equation (3.15) radial velocity $\left[\mathrm{ms}^{-1}\right.$] dimensionless radial velocity defined by equation (3.15) angular velocity $\left[m s^{-1}\right]$
dimensionless angular velocity defined by equation (3.15) axial velocity [$m s^{-1}$]
dimensionless axial velocity defined by equation (3.15)
axial coordinate [m]
dimensionless axial coordinate defined by equation (3.15)
reciprocal of Graetz number $\left(=z / D_{h} R e P r\right)$
duct inclination angle
coefficient of thermal expansion $\left[K^{-1}\right.$]
Dimensionless parameter, $\gamma=B_{2} / B_{1}$
angular coordinate [radians]
dynamic viscosity [$N s \mathrm{~m}^{-2}$]
kinematic viscosity $\left[m^{2} s^{-1}\right]$
density $\left[\mathrm{kgm}^{-3}\right]$
wall shear stress $\left[\mathrm{Nm}^{-2}\right]$
dimensionless parameter , $\omega=\left(B_{1}^{2}+B_{2}^{2}\right)^{1 / 2}$

Subscripts

a, b, c
bulk
fd
H1
H2
m
。
w
Z

Superscript

thermocouple positions at an axial station bulk value
fully-developed value
corresponding to the H1 boundary condition corresponding to the H2 boundary condition mean
corresponding to $G r=0$
at the wall
axially local value
average value

CHAPTER 1

INTRODUCTION

Due to the prominent importance of heat transfer in energy technology, several practical applications involving mixed convection in ducts of various cross-sections and orientations continue to command substantial attention. These applications include solar energy, cooling of electronic components, compact heat exchangers and the cooling core of nuclear reactors. Full understanding of the prevailing velocity and temperature fields, as well as the pressure drop and heat transfer characteristics is necessary for the proper design of such systems. The demand to produce more compact surfaces for heat exchangers by augmenting heat transfer, thereby conserving energy and reducing heat exchanger costs, have led to the use of a variety of noncircular passages. The semicircular duct is an example of a flow passage used in compact heat exchangers.

Heat transfer depends on whether the flow is laminar or turbulent, upflow or downflow, and on duct geometry as well as the thermal boundary condition. For the vertical orientation, the laminar, mixed-convection heat transfer in upward (buoyancy assisted) flow can be enhanced over pure forced convection, while in downward (buoyancy opposed) flow, the laminar mixed-convection heat transfer can be lower than that for pure forced flow. For the horizontal orientation, temperature variations in the fluid lead to the possibility of counter rotating secondary flow cells that are superimposed on the streamwise flow. This circulation of the secondary flow provides a strong mechanism for heat transfer enhancement. In the inclined orientation, the buoyancy force is no longer exclusively perpendicular to the main flow (as in the hor-
izontal case), since another axial component exists in the streamwise direction. For buoyancy assisted flow, the main flow can be accelerated because of the axial component of the buoyancy force and therefore, the heat transfer can be enhanced for these situations. In buoyancy opposed flow, the axial component of the buoyancy force acts against the main flow which can have adverse effects on the heat transfer. To the author's best knowledge, no results (theoretical or experimental) currently exist for laminar mixed convection in inclined semicircular ducts, except for the limiting cases of the horizontal and vertical orientations.

The objective of the present investigation is to generate theoretical (fully-developed) and experimental (developing and fully-developed) results for laminar mixed convection in heated semicircular ducts with buoyancy assisted and buoyancy opposed flows. Two thermal boundary conditions will be used in the theoretical analysis: (a) uniform heat input axially with uniform wall temperature circumferentially (known as the Hl boundary condition [3]) and (b) uniform heat input axially with uniform wall heat flux circumferentially (the H2 condition). These boundary conditions simulate electric-resistance or nuclear heating for the limiting conditions of highly conductive wall material (H1) and very-low-conductivity wall material (H2). The emphasis in this study will be placed on the effects of duct inclination, free convection, and thermal boundary condition on the velocity and temperature profiles, as well as the friction factor and Nusselt number.

Depending on the flow parameters, flow reversal can occur in both buoyancy assisted and buoyancy opposed flows. This phenomenon can substantially influence the velocity distribution, the temperature distribution, wall friction, and heat transfer. As well, fow instability and the onset of turbulence can be promoted by flow reversal. Therefore, the conditions under which the onset of flow reversal was encountered are documented in this investigation. However, no computations were made in the region where flow reversal occurs because the solution method adopted here would not be
applicable under these conditions.
The experimental investigation was performed to investigate the effects of buoyancy (aiding and opposed) on the pressure drop and heat transfer of laminar mixed convection in the thermal entrance and fully developed regions using water as the working fluid. These effects are to be examined over a range of the independent parameters $\alpha, R e$ and $G r$. The experiments were carried out with electrical heat input applied at the outer surface of the duct. Test runs were carried out for different inclinations varying from -20° to 20° and the measured parameters include the axial and circumferential variation of wall temperature, local mean Nusselt number, fullydeveloped Nusselt number, and the overall friction factor across the heated section. Values of $N u_{f d}$ are compared with the present numerical results.

CHAPTER 2

REVIEW OF LITERATURE

The importance of this topic (mixed convection in ducts) has motivated a large amount of research activity in the literature [4]. The present investigation deals with the laminar flow and heat-transfer characteristics of fluid flowing upward (buoyancy assisted) or downward (buoyancy opposed) in inclined heated semicircular ducts. Due to the limited amount of literature related to semicircular ducts, consideration was given in this review to ducts of various cross-sections. As well, this review was extended to include horizontal and vertical ducts since the number of studies dealing with inclined ducts is limited.

The size of the literature dealing analytically and experimentally with horizontal and vertical flows is huge. Only samples of these studies are included in this review. The emphasis in this review is placed on experimental and analytical studies of laminar mixed convection in inclined ducts.

2.1 Horizontal Ducts

Several investigations have dealt experimentally and theoretically with laminar mixed convection in horizontal ducts of various cross-sections (not reviewed here). Chinporncharoenpong [5] and Lei [6] presented a comprehensive review in their theses that cover most of the experimental and theoretical studies performed on combined free and forced convection during laminar flow in horizontal ducts of various cross-
sections. Therefore, attention will be given in this section to mixed convection laminar flow in horizontal semicircular ducts only. In addition, most of the literature on mixed convection in inclined ducts of various cross-sections, presented later in this chapter, cover the horizontal orientation as well.

Laminar mixed convection in the entrance region of a horizontal semicircular duct was experimentally investigated by Lei and Trupp [7]. The experiments were conducted on a copper test section of $49.8-m m$ i.d. with the flat side on top. They obtained results for the local and fully-developed Nusselt numbers for a wide range of flow parameters, and results for the pressure drop with and without heating. They also observed that for high heating rates, the experimental data showed large circumferential variations in wall temperatures. Numerical predictions of the fully-developed laminar mixed convection with the H 1 thermal boundary condition in horizontal semicircular ducts with the flat wall on top have been reported by Lei and Trupp [8]. They noted that the dependence on Prandtl number can be removed by plotting Nusselt number versus Rayleigh number ($G r \operatorname{Pr}$) and the friction factor versus $G r / P r^{1.8}$. Their computations resulted in dual solutions for high $G r$ (e.g., $G r=2 \times 10^{8}$) with several values of $P r$.

Nandakumar et al. [9] solved the same problem considered in [8] using the H 1 boundary condition but with the flat wall at the bottom. Their numerical model produced dual solutions with two and four vortices in the secondary flow pattern not only for the semicircular duct but also for rectangular and circular cross-sections. Chinporncharoenpong et al. [10] studied the fully-developed mixed convection with the Hl thermal boundary condition in a horizontal semicircular duct. They presented results for the effects of orientation of the flat surface of the semicircular duct (from 0° to 180° with an incremental angle of 45°) on the velocity and temperature profiles as well as the friction factor and Nusselt number. Chinporncharoenpong et al. [11] extended their study to horizontal circular sector ducts. They reported that the
orientation effects are significant for the circular sector ducts only at high Grashof numbers. Further, a comparison of $N u$ for $P r=4$ among circular sector ducts having apex angles of $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$, and 180° with fixed orientation showed that Nu increased with increasing the apex angle.

2.2 Vertical Ducts

Considerable attention has been devoted to combined forced and free convection in vertical ducts. The problem of laminar mixed convection heat transfer in vertical ducts of various cross-sections has been studied analytically and experimentally.

2.2.1 Analytical Work

Hallman [12] presented an analytical prediction of the fully-developed and heattransfer characteristics of laminar fluid flowing in a uniformly heated vertical tube under the conditions of combined forced and free convection, with and without internal heat generation. He solved for the velocity and temperature profiles, Nusselt number, and the pressure drop. The highest $G r / R e$ covered in his analysis was about 3×10^{4}. For this high $\mathrm{Gr} / \mathrm{Re}$, a fairly flat temperature profile covered most of the tube cross-section except near the tube wall where flow reversal and a high temperature gradient occurred. His exact solution was established in terms of Bessel functions. Tao [13] also treated the heat transfer problem of fully-developed laminar mixed convection in vertical tubes and circular sector ducts of constant wall temperature gradient with and without a heat source. He introduced a complex function, as illustrated in his paper [14] for the cases of flows between parallel plates and in rectangular channels, which gives the solution of the velocity and temperature fields
simultaneously. The complex function had real and imaginary parts that are directly related to the velocity and temperature fields, respectively. The coupled momentum and energy equations of the problem were readily combinable into a single differential equation of second order. His analysis was limited to positive $G r / R e$ only. For the case of negative $\mathrm{Gr} / \mathrm{Re}$ the definition of the complex function was no longer meaningful.

Morton [15] solved the problem of laminar mixed convection in uniformly heated vertical pipes when the upward or downward flow was heated or cooled for various values of $G r / R e$. His analysis was basically similar to Hallman's analysis [12]. The general solutions for the velocity and temperature distributions were established in terms of Bessel functions. The exact solution showed that, when heating up-flow or cooling down-flow the velocity is increased near the pipe wall and decreased near the center. For sufficiently large $G r / R e$, reversed flow was formed near the axis. In case of cooling up-flow or heating down-flow there is an increase in the velocity at the core and a decrease near the pipe wall for smaller values of $\mathrm{Gr} / \mathrm{Re}$. Increasing $G r / R e$, the axial velocity became very large at the core and quite different from the one corresponding to pure forced flow.

Martin and Shadday [16] presented numerical solution of mixed convection through a vertical tube with high Grashof numbers and a Reynolds number of 100. The heated section of the tube had a constant wall temperature. They computed values of Nusselt number and the friction factor via a finite difference scheme for both the entrance and the fully developed regions. Their Grashof number ranged from 1×10^{5} to 1×10^{6}. The results showed a significant effect of buoyancy on the fluid flow through vertical tubes in generating large scale vortices. This influence of buoyancy was to significantly raise the friction factor since the axial velocity was large near the tube wall.

Wang et al. [17] studied numerically the laminar mixed convection flow in vertical and horizontal pipes at low Peclet numbers in the thermal entrance region with
uniform wall temperature. The Peclet number values were 71, 10 and 2.5. These low values have been analyzed in view of the simultaneous effects of free convection and axial conduction. They reported that for the vertical case, when heating in-upward flow the axial velocity profile is gradually distorted from the parabolic shape and became concave. The temperature field developed faster and heat transfer was enhanced with increasing $G r / R e$. On the other hand, when cooling in-upward flow the velocity profile was distorted with an increase at the pipe center and the thermal field developed more slowly than that of pure forced convection and thus the heat transfer deteriorated. They have also investigated the existence of flow reversal at the pipe center for the heating case and near the wall for the cooling case at relatively high $G r / R e$.

Other solutions for combined free and forced convection in vertical tubes with radial internal fins have been obtained analytically by Hu and Chang [18] and numerically by Prakash and Patankar [19] to determine the influence of the buoyancy forces. Their results are presented for a range of $\mathrm{Gr} / \mathrm{Re}$ and for various values of the relative fin height and number of fins. Further, a numerical analysis of fullydeveloped mixed convection during laminar flow in a vertical semicircular duct with radial internal longitudinal fins has been reported by Dong and Ebadian [20]. They have presented results for the finless semicircular duct and compared with those of finned semicircular ducts. They have also concluded that the heat transfer of mixed convection in the semicircular duct is dramatically enhanced by using radial internal fins, especially the short ones.

Considering a vertical rectangular duct with one wall maintained at a high temperature and the other three walls at ambient temperature, Cheng and Weng [21] reported analytical solutions of the temperature and velocity fields of fully-developed mixed convection flow. They extended their study [22] to solve numerically the case of mixed convection flow in the developing region of vertical ducts under the same
thermal conditions. Their results showed that the flow characteristics are significantly dependent on $G r / R e$, aspect ratio of the cross-section, and the Prandtl number. Iqbal and Aggarwala [23] presented an exact theoretical solution of the problem of fully developed laminar combined free and forced convection through vertical rectangular channels with the broad sides at uniform temperature, while the short sides of the duct were maintained adiabatic. Aggarwala and Iqbal [24] presented also analytical solutions of combined free and forced convection through vertical triangular ducts of different shapes with H1 thermal boundary condition. Exact expressions, in the form of infinite series, have been presented for the velocity, temperature and Nusselt numbers. The three triangular ducts were equilateral, $30^{\circ}-60^{\circ}-90^{\circ}$ triangular, and right-angled isosceles. Their results showed that the presence of free convection tended to diminish the difference in heat transfer rate between the three shapes considered.

Fully-developed laminar mixed convection heat transfer with the H1 boundary condition in vertical ducts of three shapes; right-angled triangular, isosceles triangular and rhombic ducts has been studied by Iqbal et al. [25]. Approximate solutions for the duct geometry which produced maximum value of Nusselt number, have been obtained by a finite-difference procedure. Their study also showed that for all the three ducts, a flow reversal occurs when $G r / R e$ is in the range of 3×10^{4} and the duct geometry has only a minor effect on the onset of flow reversal. Buoyant instability in downward transient flow of nitrogen in a tall, partially heated vertical channel has been investigated numerically by Evans and Greif [26]. The vertical channel had three regions, the first region was upstream isothermal, the second region was the heated region and the final region of the channel was adiabatic. They obtained results for $R e=219.7, \operatorname{Pr}=0.7$ and three values of the buoyancy term $\left(G r / R e^{2}\right) 1.83,8.0$ and 13.7. For the three values of the buoyancy term they reported that, when the upward buoyant flow near the walls reached the top of the heated region and encountered
the cooler upper region, it turned toward the centerline and it incorporated into the rapidly moving downward flow in the central core of the channel. The velocity and temperature along the centerline were nonmonotonic and oscillatory. The average Nusselt number was periodic and increased with increasing $G r / R e^{2}$. This investigation showed that, applying different thermal boundary conditions above the heated region were important since strong buoyancy caused the fluid flow to move upward along the heated surface.

Velusamy and Garg [27] studied numerically the fully-developed laminar mixed convection flow in vertical elliptic ducts with circumferentially uniform wall temperature and uniform axial heat input. They presented results for the velocity and temperature profiles, friction factor, Nusselt number and critical $G r / R e$ (at which flow reversal took place) for a wide range of duct aspect ratios and $G r / R e$. They noted that the concentration of the velocity contours near the foci of the elliptic duct lead to increased wall shear at high values of $G r / R e$. The fully-developed laminar mixed convection flow through a vertical annulus in the upward direction was investigated by Maitra and Raju [28]. Their results correspond to constant heat flux maintained at the inner wall while the outer wall was adiabatic. Their theoretical results indicated that, at high $G r / R e$, a steep increase in Nusselt number occurred for all radius ratios ($1.5,2.65,4,5$, and 10). Their experimental Nusselt-number results were found to be 45% higher than the theoretical analysis.

Theoretical investigations dealing with flow reversal in vertical parallel-plate channels were done by Aung and Worku [29] and Cheng et al. [30]. Aung and Worku [29] made their analysis for fully developed mixed convection flow. The forced flow entering between parallel-plate channels was in the vertical upward direction. The duct walls were maintained at uniform temperatures, but provision was made for asymmetric heating in that the two wall temperatures need not to be the same. They reported that for symmetric heating in which the walls were at an identical
temperature, there was no flow reversal in the fully developed region. When the wall temperatures were unequal (asymmetric heating) flow reversal occurred at high value of $G r / R e$. When $G r / R e$ was high enough, a situation arises in which the bulk temperature increased as the amount of flow reversal increased. Cheng et al. [30] solved analytically the same problem considered in [29] using different combinations of boundary conditions. Three combinations of thermal boundary conditions were considered; isofux-isoflux, isoflux-isothermal and isothermal-isothermal, which covered all the symmetric or asymmetric thermal boundary conditions. They reported that the occurrence of flow reversal was strongly dependent on the value of $R e / G r$ and the thermal boundary condition. They noted that there were two possible patterns of reversed-flow velocity profiles for the isoflux-isoflux case, whereas only the single-peak pattern with negative velocity adjacent to the colder wall could be found for the isoflux-isothermal and isothermal-isothermal conditions. Cheng and Weng [21] also investigated the occurrence of reversed flow with buoyancy assisted flow in a vertical rectangular duct with isothermal walls of different temperature. The flow reversal was found to be significantly dependent on the value of $R e / G r$ and the aspect ratio. Cebeci et al. [31] presented numerical solutions (finite-difference method) for laminar mixed convection in the developing region of vertical ducts under thermal wall-boundary conditions leading to heating or cooling in up-flow. They obtained results for three values of $G r / R e^{2}(0.001,0.1$, and 1.0$)$ and three values of Prandtl numbers ($0.1,0.72$, and 10). Their results showed the variation of the velocity, temperature, wall shear and pressure drop in the developing region. They also noted the existence of flow reversal near the wall for the cooling case at $G r / R e^{2}=0.1$ and 1 .

2.2.2 Experimental Work

An experimental investigation was conducted by Kemeny and Somers [32]. They
used water and oil flowing upward in vertical $2.4-m$ long tubes of varying inside diameters from 12.7 mm to 38 mm with avially uniform heat input. Their work extended from low flow rate (to make the buoyancy effect significant) to turbulent flow. They obtained results of combined free and forced convection in vertical heated tubes for different values of $G r / R e$ and Z^{+}. Prandtl number varied from 3 to 8 for water and from 80 to 170 for oil. They presented experimental data for the local Nusselt number and pressure drop. For large values of Z^{+}, at which the fully-developed conditions were approached, their experimental results of the friction factor fell below the prediction of Hallman [12]. They have determined the friction factor from the frictional pressure drop, using the following definitions:

$$
\begin{gather*}
\Delta P_{\text {meas }}=\Delta P_{f}+\left(\rho_{m}-\rho_{a}\right) g L \tag{2.1}\\
f=\frac{\Delta P_{f}}{\rho_{m} w_{m}^{2}} \frac{D}{2 L} \tag{2.2}
\end{gather*}
$$

where $\Delta P_{\text {meas }}$ is the pressure difference measured by a manometer, ΔP_{f} is the frictional pressure drop, ρ_{m} is the average fluid density in the tube, ρ_{a} is the average fluid density in the manometer, and w_{m} is the mean velocity in the tube. The above expressions will be used in the present study to evaluate the experimental friction factor.

Hallman [33] confirmed experimentally the fully developed heat-transfer results predicted by his previous analysis [12] over a range of $G r / R e$. The experiment was for combined forced and free convection in a vertical tube with uniform wall heat flux and no internal heat generation. The heated test section had a length to diameter ratio of 115 , while the hydrodynamic developing length had a length to diameter ratio of 13. The axial spacing of the thermocouples was made small in order to allow an accurate determination of the wall temperature in the thermal entrance region for
both up-flow and down flow. The experimental data of the local Nusselt number at very low $G r / R e$ agreed well with the pure forced-convection curve. However, the high $G r / R e$ runs agreed with the analytical curve of pure forced convection very near the entrance, but deviated later along the heated length. The fully developed Nusselt numbers in down flow were found to be lower than those for pure forced convection and most of the data fell above the analysis. Scheele and Hanratty [34] studied experimentally the effect of free convection when aiding and opposing the main flow in a vertical pipe of 762 diameters length with uniform heat input axially. One of the effects of free convection on the forced flow was the transition to turbulent flow at low Reynolds number. The transition was related to the distortion of the velocity profiles caused by the free convection. When the free convection and forced flow were in the same direction (heating up-flow) transition to turbulent occurred through a gradual growth of small disturbances. On the other hand, when the free convection was opposite to the direction of the forced flow (heating down flow), early transition to turbulence was caused by separation of the flow due to flow reversal.

Zhang and Dutta [35] presented experimental work for buoyancy assisted mixed convection in a vertical square channel with asymmetric heating conditions. The heated test section was placed between two identical unheated square channels. All three sections had the same square cross-section ($5.715 \mathrm{~cm} \times 5.715 \mathrm{~cm}$) and were 122 cm long with the same hydraulic diameter. Two opposite sides of the test section were heated in four different heating models and the other two sides of the square channel were insulated. The experiment covered the range of Reynolds number from 200 to 11200 and the buoyancy term ($\mathrm{Gr} / \mathrm{Re}^{2}$) from 0.02 to 200. The heating conditions from model 1 to model 4 under comparable heat flux input showed that the local Nusselt number decreased significantly with an increase in Re for all four models. Further, they investigated the difference in heat transfer rate between the four models.

Flow reversal has been experimentally investigated at the tube centerline for vertical heated flow by Hanratty et al. [36]. They used water flowing upward and downward in a vertical 2 m long glass tube with 2.19 cm inside diameter at low Reynolds numbers. By injecting a thin stream of dye into the flowing water, they observed that the fluid in the tube center was decelerated to such an extent that the flow was reversed and the fluid near the surface was accelerated.

2.3 Inclined Ducts

The literature on mixed convection in inclined ducts of various cross-sections is very sparse in comparison with the horizontal and vertical orientations. Only recently has much attention been focused upon inclined ducts, especially, the experimental work, under combined free and forced laminar convection.

2.3.1 Analytical Work

Iqbal and Stachiewicz [37] reported a perturbation power-series solution for buoyancyassisted, fully-developed flow in inclined circular tubes with uniform heat flux at the wall. They treated the density as being variable only in the buoyancy terms of the momentum equation, while keeping it constant in all other terms. They presented results for the velocity and temperature profiles and Nusselt number. They noted that Nusselt number reached a maximum at some inclination angle between the horizontal and vertical orientations. They also noted that the perturbation power-series is valid only for low Gr. Another approach for solving mixed convection in inclined tubes was reported by Iqbal and Stachiewicz [38]. In this case they treated the density as being variable in the radial and angular terms as well as the axial terms of the momentum
equation. They reported that the friction factor, based on the wall shear stress, at 60° tube inclination increased from 30 to 50% over the isothermal value. They also reported that the velocity field became more distorted than the one in [37], while the temperature field and Nusselt number were essentially the same.

A numerical study using a combination of boundary vorticity and line iterative relaxation was presented by Cheng and Hong [39]. The numerical results for mixed convection using water at relatively low Reynolds numbers showed that the perturbation analysis of [37] in terms of power series of Grashof number is invalid and diverges quickly with the increase of Grashof number. Cheng and Hong [40] extended their work to investigate the effects of inclination angle, $G r$ and $R e$ on the distortion of the velocity and temperature profiles. Furthermore, they reported a substantial difference between their values of Nusselt number and those in [37]. Later, Ou et al. [41] considered the geometry of rectangular ducts and solved the problem of laminar, fully-developed mixed convection for buoyancy assisted upwardly inclined flows with uniform heat input axially and uniform wall temperature circumferentially. They noted that the inclination angle greatly influenced the value of Nusselt number near the horizontal orientation.

Other results for laminar, fully-developed mixed convection were reported for inclined parallel plates under buoyancy-assisted [42] and buoyancy-opposed [43] conditions. The solutions in [42] and [43] was expressed in terms of two independent parameters (defined below) rather than the four fundamental parameters $R e, G r, P r$ and the inclination angle.

$$
P_{1}=\left(\frac{G r}{R e}\right) \sin \alpha \quad, \quad \text { and } \quad P_{2}=\left(\frac{G r}{P r R e^{2}}\right) \cos \alpha
$$

where P_{1} and P_{2} are dimensionless parameters and α is the inclination angle. The dependence of the velocity and temperature distributions, wall friction and heat transfer on the parameters P_{1} and P_{2} was determined. The occurrence of flow reversal was
also reported for both buoyancy assisted and buoyancy opposed conditions.
Orfi et al. [44] investigated numerically the effect of buoyancy on the laminar fully-developed ascending flow of air in inclined, uniformly heated, circular tubes. The problem was solved using the SIMPLER algorithm and numerical results have been reported for $\operatorname{Pr}=0.7, R e=305$, tube inclination ranging from $\alpha=0^{0}$ to 90° and three values of $\operatorname{Gr}\left(5 \times 10^{3}, 2 \times 10^{4}, 5 \times 10^{4}\right)$. Orfi et al. [45] solved the same problem considered in [44] using air ($\operatorname{Pr}=0.7$) and water ($\operatorname{Pr}=7$) and higher values of $G r$. Their results showed that the effects of the buoyancy-induced secondary flow on the hydrodynamic and thermal fields are strongly dependent on Grashof number, Prandtl number and tube inclination. For fixed values of $R e, P r$, and $G r$, there exists an optimum tube inclination whick maximizes Nusselt number and it was found that $N u$ for water is higher than the one for air. Furthermore, the average shear stress was found to be higher for air than for water and increases with tube inclination and with Grashof number. Orfi et al. [46] extended their study to show the effects of free convection in the entrance region of uniformly heated inclined circular tubes. They numerically investigated the behavior of the secondary flow and its effects on the velocity and temperature fields.

Laouadi et al. [47] solved the conjugate problem for laminar mixed convection in inclined circular tubes by applying the thermal boundary condition at the outer surface of the tube. They investigated the effect of wall conduction on mixed convection for the horizontal orientation and the inclination angle of 30° using different wall to fluid thermal conductivity ratios, different tube thicknesses and various values of Grashof number. Laouadi et al. [48] solved the same problem considered in [47] with larger inclination angles. They noted that for tubes inclined at 30°, the effect of wall conduction and thickness on $N u$ is very small, while for tubes inclined at 60° the effect is significant. For the horizontal orientation, $N u$ was found to be bounded by two curves. The upper curve corresponds to infinite wall thermal conductivity (reducing
temperature stratification), while the lower curve corresponds to zero wall thermal conductivity (increasing temperature stratification). Laouadi et al. [49] extended their work to three Prandtl numbers ($0.7,7,100$) and inclination angle from 0° to 90° to illustrate the effects of these parameters as well as the thermal conductivity ratio and the thickness on Nusselt number and wall shear stress.

2.3.2 Experimental Work

Laminar mixed convection of water through inclined circular ducts having essentially uniform wall heat flux and circumferentially uniform wall temperature have been experimentally investigated by Barozzi et al. [50]. The test section was designed to reproduce the thermal effects of uniform solar irradiation on llat-plate collectors and therefore considered five, $1.5-m$ long, parallel copper tubes of 10 mm o.d. and 6 mm i.d. connected by brazed copper fins. The experiment covered the range of Reynolds number from 200 to 2300 and Grashof number from 6×10^{3} to 7×10^{5} and inclination angles from $\alpha=0^{\circ}$ to 60°. They noted that the local Nusselt number first decreased along the heated length, reached a minimum, and then increased to the fully-developed value. The minimum value of $N u$ is due to a balance between entrance and free convection effects. Variation of Nusselt number with α from 0° to 60° was found to be very small, probably due to the small values of $G r$ used in the study.

An experimental study of laminar fully-developed mixed convection under uniform heat flux in inclined tubes was carried out by Iqbal [51]. The experimental work was done for tilt angles of 45° from the horizontal and for the vertical position ($\alpha=90^{\circ}$) in a single brass tube of a solar collector, 1.8 m long, 19 mm o.d., and 15 mm i.d.. He noted that the experimental data for the heat transfer rate showed no appreciable difference between the two tube inclinations. This was probably due to the pressure
fluctuation in the water line; the flow rate could not be held constant in the absence of a constant head tank and the heat input was varying. Sabbagh et al. [52] studied experimentally the problem of mixed convection of air in an inclined circular tube with uniform heat input axially and uniform peripheral wall temperature. The experiment was conducted in a copper tube of $3.175-\mathrm{cm}$ i.d. and tube length of 365.7 cm . Their experiments covered the range of tilt angles from 0° to 90° and three values of Reynolds number (740,975 and 1204) in order to study the effect of these parameters on the velocity and temperature profiles and Nusselt number. At a location in the test section, where the fully-developed flow was established, they measured the temperature and axial velocity profiles across the tube diameter and compared them qualitatively with the available theoretical predictions. For the temperature measurement they used a thermocouple with tip size of about 2-mm mounted on a traversing mechanism. The axial velocity was measured by a pitot-static tube ($2.5-\mathrm{mm}$ tip) with micrometer traverse control. They also noted that no optimum angle was found for maximum heat transfer rate.

Morcos et al. [53] investigated experimentally the problem of combined forced and free convection during laminar flow in the entrance region of inclined rectangular channels. The experiments were performed with water and the test section was made of aluminum having outer dimensions of $20 \times 10 \mathrm{~mm}$ with wall thickness of 2 mm and a total length of 2.25 m . Their experimental data were obtained for the inclination angles of $\alpha=0^{\circ}, 15^{\circ}, 30^{\circ}$ and 45°. Three values of Reynolds number (100, 250 and 500) and various values of Grashof number ranging from 1×10^{5} to 3×10^{6} were tested. Their investigation was mainly on the circumferential variation of wall temperature and the axial variation of Nusselt number in upward inclination. They reported that the upper wall temperatures were higher than the lower wall temperatures as a result of the secondary flow current. The axial variation of the local Nusselt number was similar to that reported in [50] and Nusselt number was found to increase with $G r$ and
with the inclination angle up to a maximum near $\alpha=30^{\circ}$. They also observed that $N u$ was independent of $R e$ for the horizontal orientation and the effect of Re became progressively more significant for higher inclination angles. A detailed experiment was reported by Maughan and Incropera [54] for laminar air flow between parallel plates ($30.5 \times 308 \mathrm{~mm}$ cross-section) heated uniformly from below. They used the horizontal and upward inclinations up to $\alpha=30^{\circ}$. Their reported variation of the local Nusselt number along the heated length was similar in trend to the ones reported in $[50,53]$. Also, the data showed that the local Nusselt number increased with both $G r$ and α.

Very little experimental work has been done on buoyancy opposed mixed convection in inclined ducts. Lavine et al.[55] conducted a visual study on buoyancy opposed mixed convection flow in an inclined pipe. The test section was made of polycarbonate with inner diameter of 38.1 mm , outer diameter of 44.5 mm and a length of 3.66 m . The working fluid was water and the independent parameters were Reynolds number between 100 and 3500 , Grashof number between 1×10^{6} and 7×10^{6} and inclination angle from 0° to -80°. They examined visually the influence of these parameters upon the temperature field, the occurrence of flow reversal, early transition to turbulence and the occurrence of periodic behavior. By injecting a thin stream of dye into the flowing water, it was observed that the flow reversal started from a region downstream of the heated section and extended to some upstream location that depended on $\alpha, R e$ and $G r$. The flow reversal length was found to be an increasing function of $G r$ and α and a decreasing function of $R e$. Temperature measurements were made across the tube diameter at a location three diameters downstream from the thermal entrance region. A thermocouple probe was traversed from the lower to the upper tube wall through the symmetry plane. Unstable aiding and opposing mixed-convection flow has been investigated by Lin and Lin [56]. The experiment was performed for mixed convection of air in a bottom-heated inclined rectangular duct
with the inclination angle ranging from -20° to 26°. The test section was constructed from $9-m m$ thick Plexiglass with a 30 mm height, 120 mm width and a total length of 800 mm . They observed that the onset of the secondary flow shifts upstream for increasing $G r$ and negative inclined angle, while increasing $R e$ with positive angle moves the onset of the secondary flow downstream. They also reported that $N u$ values (defined in terms of the inlet temperature) for inclination angles of $\alpha=-10^{\circ}$ and -20° were higher than those for the horizontal orientation.

Leong et al. [57] performed experiments for laminar mixed convection in the thermal entrance region of a uniformly heated inclined circular tube with water flowing downward. The experimental set-up consisted of $1.83-m$ long copper tube of $38.1-m m$ i.d. and $44.5-m m$ o.d. coupled to an acrylic tube of identical dimensions. They reported circumferential and axial variations of the local Nusselt number for low tilt angles $-20^{\circ} \leq \alpha \leq 0^{\circ}$, three values of Reynolds number(432, 864, and 1296), and two values of Grashof number 1.4×10^{7} and 2.8×10^{7}. They noted that, the axial variation of the local Nusselt number is largest for $\alpha=0^{\circ}$ followed by values for $\alpha=-20^{\circ}$ and -15°, while values of $N u_{Z}$ for $\alpha=-5^{\circ}$ and -10° were close to the pure forced convection. They also stated that, flow reversal starts downstream in the heated section and moves upstream along the unheated section to a point where it could not overcome the main flow.

Bohne and Obermeier [58] considered the geometry of a concentric annulus with the inner tube heated electrically. They reported data for the length-mean Nusselt number over the whole heated length in the horizontal, vertical (upward and downward flow) and inclined (upward and downward flow) orientations. Both laminar and turbulent flows were considered. Their results indicated that for upward and downward laminar flows, the average Nusselt number may increase or decrease with α depending on the values of $G r$ and $R e$. The effects of $\alpha, R e$, and $G r$ on the wall temperature and the local Nusselt number were examined.

Based on the above review of the previous experimental and theoretical investigations on laminar mixed convection in horizontal, vertical and inclined ducts of various cross-sections, the following observations can be made:

1. For semicircular ducts, numerical results for fully-developed laminar mixed convection are available only for vertical buoyancy assisted flow and horizontal flow. No analysis is available for inclined semicircular ducts or buoyancy opposed conditions.
2. For upward inclinations, most of the numerical predictions of fully-developed laminar mixed convection through ducts of various cross-sections, except semicircular ducts, were performed for computing the velocity and temperature distribution as well as Nusselt number using a single value of $R e$ and various values of $G r$ and α. No analysis is available in examining the behavior of the overall quantities of $f R e$ and $N u$ for a wide range of $R e$ for inclined (other than parallel plates by Lavine [42]) ducts.
3. No experimental results are available for the local and fully-developed Nusselt numbers and pressure drop as well as the axial and circumferential variation of wall temperature during laminar mixed convection in the thermal entrance and fully-developed regions of inclined semicircular ducts in upward or downward inclinations.

CHAPTER 3

ANALYSIS OF THE FULLY-DEVELOPED REGION

The appropriate forms of the Navier-Stokes equations and the energy equation in cylindrical coordinates involving the velocity, temperature and pressure fields are presented in this chapter. These equations are non dimensionalized and solved numerically in order to determine the effects of free convection and duct inclination, for the H 1 and H 2 thermal boundary conditions, on the axial velocity, secondary flow pattern and temperature profiles, as well as the friction factor and Nusselt number

3.1 Analytical Formulation of the Problem

The geometry under consideration, shown in figure 3.1, is that of a semicircular duct inclined at an angle α from the horizontal with the flat side always falling in a vertical plane. The fluid is incompressible and Newtonian and the flow is steady, laminar, and fully developed hydrodynamically and thermally. Viscous dissipation is assumed to be negligible. Fluid properties are assumed to be constant, except for the density in the buoyancy terms which varies with the temperature according to the Boussinesq approximation. Heat input is assumed to be uniform axially and two thermal boundary conditions, H 1 and H 2 (defined earlier), are considered in this study.

For this three-dimensional flow problem, we will follow a parabolized Navier-Stokes

Elevation
Cross - Section

Figure 3.1: Geometry and coordinate system
procedure in which the pressure approximation quite widely used is given in [59]. It is assumed that the pressure at any point in the flow consists of two components. Thus: p is expressed as:

$$
\begin{equation*}
p(r, \theta, z)=p_{1}(z)+p_{2}(r, \theta) \tag{3.1}
\end{equation*}
$$

where p_{1} is the cross-sectional average pressure, which is assumed to vary linearly in the z-directions, while p_{2} provides the driving force for the secondary flow within the cross-section.

With the above assumptions, the governing continuity, momentum, and energy equations in the cylindrical coordinate can be written as follows:

Continuity Equation

$$
\begin{equation*}
\frac{\partial(r u)}{\partial r}+\frac{\partial v}{\partial \theta}=0 \tag{3.2}
\end{equation*}
$$

Momentum Equations

r-direction:

$$
\begin{equation*}
\rho\left[u \frac{\partial u}{\partial r}+\frac{v}{r} \frac{\partial u}{\partial \theta}-\frac{v^{2}}{r}\right]=-\frac{\partial p_{2}}{\partial r}+\mu\left[\left(\nabla^{2} u\right)-\frac{2}{r^{2}} \frac{\partial v}{\partial \theta}-\frac{u}{r^{2}}\right]+\rho g_{r} \tag{3.3}
\end{equation*}
$$

θ-direction:

$$
\begin{equation*}
\rho\left[u \frac{\partial v}{\partial r}+\frac{v}{r} \frac{\partial v}{\partial \theta}+\frac{v u}{r}\right]=-\frac{1}{r} \frac{\partial p_{2}}{\partial \theta}+\mu\left[\left(\nabla^{2} v\right)+\frac{2}{r^{2}} \frac{\partial u}{\partial \theta}-\frac{v}{r^{2}}\right]+\rho g_{\theta} \tag{3.4}
\end{equation*}
$$

z-direction:

$$
\begin{equation*}
\rho\left[u \frac{\partial w}{\partial r}+\frac{v}{r} \frac{\partial w}{\partial \theta}\right]=-\frac{d p_{1}}{d z}+\mu\left(\nabla^{2} w\right)+\rho g_{z} \tag{3.5}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\rho c_{p}\left[u \frac{\partial t}{\partial r}+\frac{v}{r} \frac{\partial t}{\partial \theta}+w \frac{\partial t}{\partial z}\right]=k\left(\nabla^{2} t\right) \tag{3.6}
\end{equation*}
$$

The buoyancy terms in the momentum equations are approximated by the Boussinesq approximation in which the fluid density is expressed as

$$
\begin{equation*}
\rho=\rho_{w}\left[1-\beta\left(t-t_{r}\right)\right] \tag{3.7}
\end{equation*}
$$

where ρ_{w} is the fluid density at the wall temperature and t_{r} is defined later. Considering the fully-developed conditions, the axial temperature gradient can be obtained as

$$
\begin{equation*}
\frac{\partial t_{\text {bulk }}}{\partial z}=\frac{\partial t}{\partial z}=\frac{2 q^{\prime}}{\rho c_{p} w_{m} \pi r_{0}^{2}} \tag{3.8}
\end{equation*}
$$

and the axial pressure gradient is treated as a constant

$$
\begin{equation*}
\frac{d p_{1}}{d z}=\text { constant } \tag{3.9}
\end{equation*}
$$

The governing equations for the fully-developed laminar flow were non-dimensionalized
as follows:

Continuity Equation

$$
\begin{equation*}
\frac{\partial(R U)}{\partial R}+\frac{\partial V}{\partial \theta}=0 \tag{3.10}
\end{equation*}
$$

Momentum Equations

R-direction:

$$
\begin{equation*}
U \frac{\partial U}{\partial R}+\frac{V}{R} \frac{\partial U}{\partial \theta}=-\frac{\partial P_{2}}{\partial R}+\nabla^{2} U-\frac{2}{R^{2}} \frac{\partial V}{\partial \theta}-\frac{U}{R^{2}}+\frac{V^{2}}{R}+G r T \cos \alpha \cos \theta \tag{3.11}
\end{equation*}
$$

θ-direction:

$$
\begin{equation*}
U \frac{\partial V}{\partial R}+\frac{V}{R} \frac{\partial V}{\partial \theta}=-\frac{1}{R} \frac{\partial P_{2}}{\partial \theta}+\nabla^{2} V+\frac{2}{R^{2}} \frac{\partial U}{\partial \theta}-\frac{V}{R^{2}}-\frac{U V}{R}-G r T \cos \alpha \sin \theta \tag{3.12}
\end{equation*}
$$

Z-direction:

$$
\begin{equation*}
U \frac{\partial W}{\partial R}+\frac{V}{R} \frac{\partial W}{\partial \theta}=-\frac{d P_{1}}{d Z}+\nabla^{2} W+2\left(\frac{\pi}{\pi+2}\right) \frac{G r}{R e} T \sin \alpha \tag{3.13}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\operatorname{Pr}\left[U \frac{\partial T}{\partial R}+\frac{V}{R} \frac{\partial T}{\partial \theta}\right]=\nabla^{2} T-\left(\frac{2}{\pi}\right) W \tag{3.14}
\end{equation*}
$$

where the dimensionless parameters are defined as follows:

$$
\begin{gather*}
R=\frac{r}{r_{\circ}}, \quad Z=\frac{z}{r_{\circ}}, \quad U=\frac{u r_{\circ}}{\nu}, \quad V=\frac{v r_{\circ}}{\nu}, \quad W=\frac{w}{w_{m}}, \quad T=\frac{\left(t-t_{r}\right)}{q^{\prime} / k} \\
P_{1}=\frac{p_{1}^{*} r_{\circ}}{\rho \nu w_{m}}, \quad p_{1}^{*}=p_{1}+\rho_{w} g z \sin \alpha, \\
P_{2}=\frac{p_{2}^{*} r_{\circ}^{2}}{\rho \nu^{2}}, \quad p_{2}^{*}=p_{2}+\rho_{w} g r \cos \alpha \cos \theta \\
\operatorname{Pr}=\frac{\rho \nu c_{p}}{k}, \quad R e=\frac{w_{m} D_{h}}{\nu}, \quad \text { and } \quad G r=\frac{\beta g q^{\prime} r_{\circ}^{3}}{k \nu^{2}} \tag{3.15}
\end{gather*}
$$

The parameter t_{r} used in equation(3.7) and in the definition of the dimensionless temperature was taken as t_{w} in the H 1 condition and \bar{t}_{w} in the H 2 condition, while the term $d P_{1} / d Z$ in equation (3.13) was treated as a constant (a consequence of the fully-developed condition).

The above mathematical formulation indicates that the velocity: pressure, and temperature distributions are functions of the following three independent parameters:

$$
\begin{equation*}
B_{1}=\operatorname{Gr} \cos \alpha \quad, \quad B_{2}=\left(\frac{G r}{R e}\right) \sin \alpha \quad, \quad \text { and } \quad B_{3}=P r \tag{3.16}
\end{equation*}
$$

For the horizontal orientation $\left(\alpha=0^{\circ}\right)$, the independent parameters reduce to $G r$ and Pr, while for the vertical orientation $\left(\alpha=90^{\circ}\right)$, the only independent parameter is $G r / R e$ (dependence on Pr disappears because the secondary velocity components U and V vanish and the left-hand side of equation (3.14) goes to zero). The overall
quantities, such as the friction factor and Nusselt number, will follow the same form of dependence.

The applicable boundary conditions are:
$U=V=W=0 \quad$ on all walls
$T=0 \quad$ on all walls for the H 1 condition
$\frac{\partial T}{\partial R}=\frac{1}{\pi+2} \quad$ at $R=1$ for the H2 conditon
$\frac{\partial T}{\partial \theta}=-\frac{R}{\pi+2} \quad$ at $\theta=0$ for the H2 conditon
$\frac{\partial T}{\partial \theta}=\frac{R}{\pi+2} \quad$ at $\theta=\pi$ for the H 2 conditon

Two important parameters used in engineering design are the average Nusselt number, given by

$$
\begin{equation*}
N u=\frac{\bar{h} D_{h}}{k}=-\frac{2 \pi}{(\pi+2)^{2}} \frac{1}{T_{b u l k}} \tag{3.18}
\end{equation*}
$$

where $T_{\text {bulk }}$ is the dimensionless bulk temperature defined as

$$
\begin{equation*}
T_{b u l k}=\frac{2}{\pi} \int_{0}^{\pi} \int_{0}^{1} W T R d R d \theta \tag{3.19}
\end{equation*}
$$

and the product $f R e$, where the Fanning friction factor f is defined as the average
wall shear stress divided by the kinetic energy per unit volume

$$
\begin{equation*}
f=\frac{\bar{\tau}_{w}}{\frac{1}{2} \rho w_{m}^{2}} \tag{3.20}
\end{equation*}
$$

Wall Shear Stress

The wall shear stresses were evaluated for the geometry of the semicircular duct which has a curved wall and a flat wall. At the curved wall, $\tau_{w 1}$ was formulated as follows

$$
\tau_{w 1}=\frac{\mu w_{m}}{r_{0}}\left(-\frac{\partial W}{\partial R}\right)_{R=1}
$$

Similarly, the formulations for $\tau_{w 2}$ and $\tau_{w 3}$ at the top and bottom portions of the flat wall, respectively, are

$$
\begin{gathered}
\tau_{w 2}=\frac{\mu w_{m}}{r_{\circ}}\left(\frac{\partial W}{R \partial \theta}\right)_{\theta=0} \\
\tau_{w 3}=\frac{\mu w_{m}}{r_{\circ}}\left(-\frac{\partial W}{R \partial \theta}\right)_{\theta=\pi}
\end{gathered}
$$

The parameter $\bar{\tau}_{\boldsymbol{w}}$, was then calculated by averaging the wall shear stresses around the circumference of the duct. Thus

$$
\bar{\tau}_{w}=\frac{1}{(2+\pi)}\left[\int_{0}^{\pi} \tau_{w 1} d \theta+\int_{0}^{1} \tau_{w 2} d R+\int_{0}^{1} \tau_{w 3} d R\right]
$$

The product of the Fanning friction factor and Reynolds number, fRe, was determined from the average wall shear stress and expressed in dimensionless form as

$$
\begin{equation*}
f R e=\frac{4 \pi}{(\pi+2)^{2}}\left[\int_{0}^{1}\left(\frac{\partial W}{R \partial \theta}\right)_{\theta=0} d R-\int_{0}^{1}\left(\frac{\partial W}{R \partial \theta}\right)_{\theta=\pi} d R-\int_{0}^{\pi}\left(\frac{\partial W}{\partial R}\right)_{R=1} d \theta\right](3 \tag{3.21}
\end{equation*}
$$

3.2 Computational Procedure

Governing equations (3.10) - (3.14) were solved numerically using a control-volumebased finite difference method [60]. The differential equations were discretized and the power law scheme of Patankar [60] was used for the treatment of the convection and diffusion terms. The velocity-pressure coupling was handled using the SIMPLER algorithm. A staggered grid was used in the computations with uniform subdivisions in the R and θ directions. The control volumes adjacent to the flat and curved walls were subdivided into two control volumes in order to capture the steep gradients in the velocity and temperature.

For given values of the input parameters B_{1}, B_{2}, and B_{3}, computations started from an initial guess of the fields (U, V, W, T : and $d P_{1} / d Z$). Typically, the initial guess used was $U=V=W=T=0$ at all mesh points and $d P_{1} / d Z=20$ (which is close to the forced-convection value). The discretized equations were solved simultaneously for each radial line using TDMA (tridiagonal-matrix algorithm) and the domain was covered by sweeping line by line in the angular direction. At the end of each iteration, a correction procedure was applied to the values of W and $d P_{1} / d Z$, using the conservation of mass, equation(3.22), in order to insure that the mean value of
the dimensionless axial velocity, W_{m}, is equal to 1 . This correction procedure follows the method outlined by Patankar and Spalding [61]. Thus, the converged velocity profile must satisfy the following condition:

$$
\begin{equation*}
\int_{0}^{\pi} \int_{0}^{1} W R d R d \theta=\frac{\pi}{2} \tag{3.22}
\end{equation*}
$$

As well, for the H 2 boundary condition, the average wall temperature given by equation(3.23) was calculated and this value was subtracted from the temperature at all nodes, thus, insuring an average wall temperature of zero.

$$
\begin{equation*}
\bar{T}_{w}=\frac{1}{(2+\pi)}\left[\int_{0}^{\pi} T_{w 1} d \theta+\int_{0}^{1} T_{w 2} d R+\int_{0}^{1} T_{w 3} d R\right] \tag{3.23}
\end{equation*}
$$

where $T_{w 1}, T_{w 2}$ and $T_{w 3}$ are the wall temperatures at the curved, top and bottom flat walls, respectively.

Iteration continued until the three velocity components and the temperature at all grid points, as well as the value of $d P_{1} / d Z$ satisfied the following convergence criterion:

$$
\begin{equation*}
\left|\frac{\phi_{\text {new }}-\phi_{\text {old }}}{\phi_{\text {new }}}\right| \leq 10^{-6} \tag{3.24}
\end{equation*}
$$

where ϕ is a scalar function. The computer codes for both boundary conditions (H1 and H2) are listed in Appendix A.

Table 3.1: Effect of grid size on $f R e$ and $N u$ for semicircular ducts $(G r=0)$

Mesh size	$(f R e)_{\circ}$	$\left(N u_{H 1}\right)_{\circ}$	$\left(N u_{H 2}\right)_{\circ}$
15×24	15.69	4.073	2.949
30×48	15.75	4.086	2.926
60×96	15.76	4.090	2.922
Exact value [62]	15.77	4.089	2.923

3.3 Numerical Accuracy

Numerical experimentation was conducted in order to determine the appropriate grid size. Three different grid sizes for pure forced convection were used and the results are presented in Table 3.1 for $(f R e)_{0}\left(N u_{H 1}\right)_{o}$: and $\left(N u_{H 2}\right)_{\circ}$. Further, the numerical results of $f R e$ and $N u$ for buoyancy-assisted and buoyancy-opposed mixed convection with different grid sizes are presented in Table 3.2 for $R e=1500, G r=1 \times 10^{5}$, $\operatorname{Pr}=7$, and $\alpha= \pm 30^{\circ}$. Examining the results in Table 3.2, it can be seen that the $30 \times 48(R \times \theta)$ grid is capable of producing $N u$ and $f R e$ values that are within 1.3% and 0.12%, respectively, from the corresponding values produced by the 60×96 grid. In view of the large amount of computation required in this investigation, it was decided to use a (30×48) grid as a reasonable compromise between accuracy and computer time. Based on the results in Table 3.2 and the comparisons with

Table 3.2: Effect of grid size on $f R e$ and $N u$ for $G r=1 \times 10^{5}$ and $R e=1500$

α	Mesh size	H1		H2	
		$N u$	$f R e$	$N u$	$f R e$
30°	$\begin{aligned} & 15 \times 24 \\ & 30 \times 48 \\ & 60 \times 96 \end{aligned}$	$\begin{aligned} & 7.706 \\ & 7.390 \\ & 7.319 \end{aligned}$	$\begin{aligned} & 16.41 \\ & 16.42 \\ & 16.43 \end{aligned}$	$\begin{aligned} & 5.735 \\ & 5.485 \\ & 5.413 \end{aligned}$	$\begin{aligned} & 16.18 \\ & 16.24 \\ & 16.26 \end{aligned}$
-30°	$\begin{aligned} & 15 \times 24 \\ & 30 \times 48 \\ & 60 \times 96 \end{aligned}$	$\begin{aligned} & 7.663 \\ & 7.347 \\ & 7.275 \end{aligned}$	$\begin{gathered} 16.17 \\ 16.14 \\ 16.14 \end{gathered}$	$\begin{aligned} & 4.962 \\ & 4.771 \\ & 4.718 \end{aligned}$	$\begin{aligned} & 15.61 \\ & 15.63 \\ & 15.63 \end{aligned}$

previous results (given in the following section), it can be stated that the numerical uncertainty in the present results is within $2-3 \%$.

3.4 Comparison With Previous Results

For the forced-convection case (see Table 3.1), the present numerical grid of (30×48) produced $(f R e)_{\circ}=15.75,\left(N u_{H 1}\right)_{\circ}=4.086$, and $\left(N u_{H 2}\right)_{\circ}=2.926$. These values are within $0.13 \%, 0.073 \%$, and 0.1%, respectively from the exact solution

Table 3.3: Comparison between the present results and those of Dong and Ebadian [20]

Gr Re	$-d P_{\mathrm{I}} / d Z$		$N u_{H 1}$	
	Present	$[20]$	Present	$[20]$
128	21.09	21.11	4.086	4.088
1284	29.97	30.00	4.313	4.314
6440	95.96	96.16	5.795	5.780
	296.4	297.9	8.831	8.772

reported in [62]. For buoyancy-assisted mixed convection in the vertical orientation, a comparison with the results in [20] is shown in Table 3.3. For the whole range of $G r / R e$ covered in [20], the two sets of results in Table 3.3 agree to within 0.5% in $d P_{1} / d Z$ and to within 0.7% in $N u_{H 1}$. For the horizontal orientation, the results in $[6,9]$ correspond to the case where the flat wall of the duct is in a horizontal position and therefore, these could not be used for comparison. The results in [5] for the horizontal semicircular ducts with a vertical flat wall are practically identical to the present results for H 1 because the present code is an extension of the code used in [5].

CHAPTER 4

NUMERICAL RESULTS

Solutions were obtained for buoyancy-assisted (upward) and buoyancy-opposed (downward) flows using the H 1 and H 2 thermal boundary conditions. A single value of Prandtl number, $\operatorname{Pr}=7$ (water) was used in all computations. However, wide ranges of B_{1} and B_{2} were covered providing results for the whole range of inclinations, $-\pi / 2 \leq \alpha \leq \pi / 2$, and wide ranges of $R e$ and $G r$. For each combination of α and $R e$ (i.e., a fixed value of B_{2} / B_{1}), the solution was obtained for different values of $G r$ (by changing B_{1} or B_{2}) until flow reversal was detected. It was decided not to advance the solution into the flow-reversal region because the parabolized flow behavior assumed in this study would not be applicable in this region.

In the following sections, detailed results for a representative sample of the velocity and temperature profiles are presented first, followed by an examination of the behavior of the overall quantities $f R e$ and $N u$.

4.1 Velocity and Temperature Distributions

A sample of the velocity and temperature results is presented in this section. It was decided to use $\alpha, R e, P r$, and $G r$ as independent parameters in these figures, rather than B_{1}, B_{2}, and B_{3}, in order to illustrate explicitly the effects of free convection and duct inclination for both thermal boundary conditions. All the results
presented in this section correspond to $\operatorname{Re}=500$ and $\operatorname{Pr}=7$. The velocity and temperature contours were plotted at equal intervals between the indicated maximum and minimum values of the respective field.

4.1.1 Horizontal Orientation

For the horizontal orientation, figures 4.1 to 4.4 show that the maximum velocity and the minimum temperature shift to the lower part of the duct cross-section due to the secondary flow motion associated with free convection. It should be noted that the buoyancy force, which acts normal to the main flow, drives the secondary flow and causes this shift in the maximum velocity and the minimum temperature from the center $(\theta=\pi / 2)$.

The distortion in the velocity and temperature distributions increases with $G r$ for the H 1 condition. At $G r=2 \times 10^{6}$, the maximum velocity and minimum temperature in figure 4.2 move significantly downward towards the lower part of the duct. In the H2 boundary condition, shown in figures 4.3 and 4.4, a strong variation in the wall temperature around the circumference (high at the top and low at the bottom) causes temperature stratification with layers of hot fluid occupying the upper part of the cross-section. As a result, the strength of the secondary flow is expected to be much lower for the H2 case than for the H 1 case. Consequently, the enhancement in $f R e$ and $N u$ due to free convection is expected to be much more pronounced for the H 1 case than for the H2 case, as shown later.

4.1.2 Upward Inclination

The case of upward inclination is illustrated in this section for the H1 and H2 thermal boundary conditions with $\alpha=30^{\circ}$ and 60°. Starting with $G r=1 \times 10^{5}$ for

Isotherms	Isovels
$T_{\text {max }}=0.000$	$W \max =2.027$
$T_{\text {min }}=-0.052$	$W_{\min }=0.000$

Figure 4.1: Velocity and temperature contours for $\mathrm{H} 1, \alpha=0^{\circ}$ and $G r=1 \times 10^{5}$

Isotherms	Isovels
$T_{\max }=0.000$	$W_{\max }=2.019$
$T_{\min }=-0.027$	$W_{\min }=0.000$

Figure 4.2: Velocity and temperature contours for $\mathrm{H} 1, \alpha=0^{\circ}$ and $G r=2 \times 10^{6}$

Isotherms	Isovels
$T_{\text {max }}=0.151$	$W_{\text {max }}=1.995$
$T_{\text {min }}=-0.089$	$W_{\text {min }}=0.000$

Figure 4.3: Velocity and temperature contours for $\mathrm{H} 2, \alpha=0^{\circ}$ and $G r=1 \times 10^{5}$

Isotherms	Isovels
$T_{\text {max }}=0.144$	$W_{\text {max }}=1.901$
$T_{\text {min }}=-0.068$	$W_{\text {min }}=0.000$

Figure 4.4: Velocity and temperature contours for $\mathrm{H} 2, \alpha=0^{\circ}$ and $G r=2 \times 10^{6}$
the H1 thermal boundary condition, figure 4.5 shows the isovels and isotherms for $\alpha=30^{\circ}$. Comparing with the velocity contours for $\alpha=0^{\circ}$ in figure 4.1, the maximum velocity in figure 4.5 is slightly shifted upwards towards the center ($\theta=\pi / 2$), and the maximum velocity in figure 4.6 for $\alpha=60^{\circ}$ is moved further upwards towards $\theta=\pi / 2$. However, the isotherms in figures 4.5 and 4.6 look similar to the ones in figure 4.1 for the horizontal case where the minimum temperature is confined to the lower part of the cross-section.

In upward inclinations, the net body force is no longer perpendicular to the main flow, since a component also exists in the flow direction. Thus only a component of the buoyancy force is driving the secondary flow due to inclination. As $G r$ increases, the velocity increases in the upper part of the cross-section and decreases in the lower part, as shown in figure 4.8 for $G r=2 \times 10^{6}$ and $\alpha=60^{\circ}$. The location of $W_{\max }$ within the cross-section appears to be dependent on $G r$ and α for upward inclinations.

Considering equation (3.13), we can see that as $G r$ increases and α increases from $\alpha=0^{\circ}$ to 90°, the contribution of the terms $U \frac{\partial W}{\partial R}$ and $\frac{V}{R} \frac{\partial V}{\partial \theta}$ vary from maximum to minimum, whereas the contribution of the buoyancy term $\frac{G r}{R e} T \sin \alpha$ varies fromi zero to maximum. For the horizontal orientation ($\alpha=0^{\circ}$), the contribution of the terms $U \frac{\partial W}{\partial R}$ and $\frac{V}{R} \frac{\partial W}{\partial \theta}$ is to shift the maximum velocity towards the lower part of the cross-section since the term $\frac{G r}{R e} T \sin \alpha$ is zero. For the vertical case $\left(\alpha=90^{\circ}\right), W_{\max }$ depends only on the relative magnitude of $\frac{G r}{\operatorname{Re}} T \sin \alpha$ because the secondary velocity components U and V disappear. At $\alpha=60^{\circ}$ and $G r=2 \times 10^{6}$ (shown in figure 4.8), the maximum velocity is pushed towards the upper part of the cross-section because of the buoyancy term $\frac{G r}{R e} T \sin \alpha$ dominates over the terms $U \frac{\partial W}{\partial R}$ and $\frac{V}{R} \frac{\partial W}{\partial \theta}$. In the meantime, cooler fluid shifts to the lower part of the tube, as noted in [40, 47].

The H2 thermal boundary condition is illustrated in figures 4.9 to 4.12. At lower $G r$ (e.g., $G r=1 \times 10^{5}$), temperature stratification still occupies a major part of

Figure 4.5: Velocity and temperature contours for $\mathrm{H} 1, \alpha=30^{\circ}$ and $\mathrm{Gr}=1 \times 10^{5}$

Isotherms	Isovels
$T_{\text {max }}=0.000$	$W_{\text {max }}=1.959$
$T_{\text {min }}=-0.059$	$W_{\text {min }}=0.000$

Figure 4.6: Velocity and temperature contours for $\mathrm{H} 1, \alpha=60^{\circ}$ and $\mathrm{Gr}=1 \times 10^{5}$

Isotherms	Isovels
$T_{\text {max }}=\varnothing .0 \varnothing \varnothing$	$W_{\text {max }}=1.867$
$T_{\text {min }}=-\emptyset .026$	$W_{\text {min }}=0.000$

Figure 4.7: Velocity and temperature contours for $\mathrm{H} 1, \alpha=30^{\circ}$ and $\mathrm{Gr}=2 \times 10^{6}$

Figure 4.8: Velocity and temperature contours for $\mathrm{H} 1, \alpha=60^{\circ}$ and $G r=2 \times 10^{6}$

Isotherms

$$
\begin{aligned}
& T_{\max }=0.132 \\
& T_{\min }=-0.079
\end{aligned}
$$

Isovels

$W_{\max }=1.929$
Wmin $=0.000$

Figure 4.9: Velocity and temperature contours for $\mathrm{H} 2, \alpha=30^{\circ}$ and $\mathrm{Gr}=1 \times 10^{5}$

Isotherms
$T_{\text {max }}=0.122$
$T_{\text {min }}=-0.079$

Isovels

$W_{\text {max }}=1.947$
$W_{\text {min }}=0.000$

Figure 4.10: Velocity and temperature contours for $\mathrm{H} 2, \alpha=60^{\circ}$ and $\mathrm{Gr}=1 \times 10^{5}$

Isotherms
$T_{\text {max }}=0.069$
$T_{\text {min }}=-0.033$

Isovels

$W_{\text {max }}=2.552$
$W_{\text {min }}=0.000$

Figure 4.11: Velocity and temperature contours for $\mathrm{H} 2, \alpha=30^{\circ}$ and $\mathrm{Gr}=2 \times 10^{6}$

Isotherms	Isovels
$T_{\text {max }}=0.058$	$W_{\max }=2.989$
$T_{\text {min }}=-0.032$	$W_{\min }=0.000$

Figure 4.12: Velocity and temperature contours for $\mathrm{H} 2, \alpha=60^{\circ}$ and $G r=2 \times 10^{6}$
the cross-section as shown in figures 4.9 and 4.10 for $\alpha=30^{\circ}$ and 60°, respectively. Compared with the isovels shown in figure 4.3, the position of the maximum velocity in figure 4.9 has now moved slightly above $\theta=\pi / 2$, while, the maximum velocity in figure 4.10 is shifted still further above $\theta=\pi / 2$.

At a high enough $G r$ (e.g., $G r=2 \times 10^{6}$) the maximum velocity shifts considerably towards the upper part of the cross-section and temperature stratification largely disappears indicating much less circumferential variation in the wall temperature, as shown in figures 4.11 and 4.12 for $\alpha=30^{\circ}$ and 60°, respectively. Consequently, the corresponding secondary flow is expected to be stronger than that for the horizontal case.

Due to temperature stratification in $\mathrm{H} 2, N u$ is expected to be lower for H 2 than for Hl at low values of $G r$. However, for high values of $G r, N u_{H_{2}}$ may exceed $N u_{H 1}$ for some upward inclinations. Further, due to the axial component of the buoyancy force, the velocity in H 2 increases more in the upper part of the cross-section with hotter fluid than H 1 . Thus, $f R e$ is expected to be higher for H 2 than for H 1 at high values of $G r$, as shown later.

4.1.3 Downward Inclination

For the downward inclination, the buoyancy force has two components, one normal to the main flow direction thus driving the secondary flow within the cross-section, and the other axial component acts against the streamwise direction thus retarding the main flow near the wall. For the H1 condition, the secondary flow shifts the locations of the maximum velocity and minimum temperature towards the lower part of the cross-section. This situation appears to be opposite to the case of upward inclination, where the contribution of the buoyancy term $\frac{G r}{R e} T \sin \alpha$ in the axial momentum equation is to move the maximum velocity towards the upper part of the
crcss-section.
For the H 1 thermal boundary condition, at $G r=1 \times 10^{5}$ the isovels and isotherms in figures 4.13 and 4.14 , for $\alpha=-30^{\circ}$ and -60°, respectively, are very similar to the ones in figure 4.1 for the horizontal case. As $G r$ increases, the shift of the maximum velocity and the minimum temperature towards the lower part of the cross-section increases, as shown in figures 4.15 and 4.16 .

For the H 2 condition, at low $G r$ (e.g., $G r=1 \times 10^{4}$) temperature stratification occupies a major part of the cross-section, as shown in figures 4.17 and 4.18 for $\alpha=-30^{\circ}$ and -60°, respectively, while the axial velocity contours are nearly the same as the ones for the forced convection $(G r=0)$, with the maximum velocity very close to the center ($\theta=\pi / 2$) of the duct.

As $G r$ increases to 5×10^{4} for $\alpha=-30^{\circ}$ in figure 4.19 and for $\alpha=-60^{\circ}$ in figure 4.20, temperature stratification actually becomes more severe, which is consistent with the wall-temperature results shown later.

It can be seen that for the downward inclination, the isotherms in H2 show a drastic variation of the temperature. Stratification occupies a major part of the crosssection as compared with H1. Thus the intensity of the secondary flow is expected to be considerably less than that for Hl .

4.1.4 Vertical Orientation

The case of vertical orientations in upward ($\alpha=90^{\circ}$) and downward ($\alpha=-90^{\circ}$) flow is presented in this section. Under the effects of free convection the velocity and temperature distributions become different from the one corresponding to pure forced convection $(G r=0)$. In general, for $\alpha=90^{\circ}$ the secondary flow is in the same direction as the main flow and therefore, the fluid near the duct wall accelerates

Isotherms
$T_{\text {max }}=\varnothing . \emptyset 00$
$T_{\text {min }}=-0.054$

Isovels

$W_{\text {max }}=2.083$
$W_{\text {min }}=\varnothing .0 \varnothing \varnothing$

Figure 4.13: Velocity and temperature contours for $\mathrm{H} 1, \alpha=-30^{\circ}$ and $G r=1 \times 10^{5}$

Isotherms	Isovels
$T_{\text {max }}=0.0 \varnothing 0$	$W_{\max }=2.147$
$T_{\text {min }}=-0.062$	$W_{\text {min }}=0.000$

Figure 4.14: Velocity and temperature contours for $\mathrm{H} 1, \alpha=-60^{\circ}$ and $G r=1 \times 10^{5}$

Figure 4.15: Velocity and temperature contours for $\mathrm{H} 1, \alpha=-30^{\circ}$ and $G r=5 \times 10^{5}$

Isotherms	Isovels
$T_{\max }=0.000$	$W_{\text {max }}=2.574$
$T_{\min }=-0.047$	$W_{\text {min }}=0.000$

Figure 4.16: Velocity and temperature contours for $\mathrm{H} 1, \alpha=-60^{\circ}$ and $G r=5 \times 10^{5}$

Isotherms	Isovels
$T_{\text {max }}=0.149$	$W_{\text {max }}=2.063$
$T_{\min }=-0.115$	$W_{\text {min }}=0.000$

Figure 4.17: Velocity and temperature contours for $\mathrm{H} 2, \alpha=-30^{\circ}$ and $G r=1 \times 10^{4}$

Isotherms	Isovels
$T_{\text {max }}=0.145$	$W_{\text {max }}=2.084$
$T_{\text {min }}=-0.121$	$W_{\text {min }}=0.000$

Figure 4.18: Velocity and temperature contours for $\mathrm{H} 2, \alpha=-60^{\circ}$ and $G r=1 \times 10^{4}$

Isotherms

Isovels

$$
\begin{array}{ll}
T_{\max }=0.168 & W_{\max }=2.111 \\
T_{\min }=-0.106 & W_{\min }=0.000
\end{array}
$$

Figure 4.19: Velocity and temperature contours for $\mathrm{H} 2, \alpha=-30^{\circ}$ and $G r=5 \times 10^{4}$

Figure 4.20: Velocity and temperature contours for $\mathrm{H} 2, \alpha=-60^{\circ}$ and $G r=5 \times 10^{4}$
upwards forcing the fluid in the core to decelerate. For $\alpha=-90^{\circ}$, however, the secondary flow is opposite to the main flow direction and thus resulting in an increase in the axial velocity in the core, and deceleration near the wall.

Figure 4.21a shows the isotherms and isovels at $G r=1 \times 10^{5}$ for the H 1 case. The temperature and velocity contours are similar to the ones corresponding to pure forced flow, where the location of the maximum velocity and minimum temperature is confined to the horizontal radius $(\theta=\pi / 2)$. On the other hand, at the same $G r$ (shown in figure 4.22a), temperature stratification occupies the upper and lower parts of the cross-section in the H 2 boundary condition and the isovels indicate high velocity gradients near the duct walls. However, the position of the maximum velocity and minimum temperature is still confined to the horizontal radius.

At high $G r$ (e.g., $G r=2 \times 10^{6}$) with $\alpha=90^{\circ}$, the isovels and isotherms for Hl and H2 get considerably distorted. The concentration of the isovel curves near the duct wall, for both thermal boundary conditions, leads to increased wall shear. These isovels increase in magnitude along the radial line up to a certain r. Beyond that the isovels start decreasing to minimum indicating a minimum velocity at the core. In the mean time, the high concentration of isotherms near the wall shows high temperature gradient. The area enclosed by the velocity contour at the top corner of the duct for H 1 (figure 4.21 b) and the smaller one for H 2 (figure 4.22 b) are high velocity contours. It can be seen that, the temperature stratification in H 2 (figure 4.22b) is considerably reduced indicating much less circumferential variation in the wall temperature. The isovels for H2 are slightly more concentrated near the wall which resulted in a slight increase in the wall shear as compared with the H1. Further, the concentration of the isotherm contours near the duct v.all, for both H 1 and H 2 , leads to increased heat transfer. These concentrations of the isovels and isotherms near the duct wall are consistent with [27].

Isotherms

$$
\begin{aligned}
& T_{\max }=0.000 \\
& T_{\min }=-0.050
\end{aligned}
$$

Isovels
$W_{\max }=1.864$
$W_{\text {min }}=0.000$

(b)

Figure 4.21: Velocity and temperature contours for $\mathrm{H} 1, \alpha=90^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

Isotherms

Isovels

$T_{\text {max }}=0.090$
$T_{\text {min }}=-0.116$
$W_{\text {max }}=1.674$
$W_{\text {min }}=0.000$

(a)

Isotherms
$T_{\text {max }}=0.047$
$T_{\text {min }}=-0.054$

Isovels

$W_{\text {max }}=2.345$
$W_{\text {min }}=0.000$

(b)

Figure 4.22: Velocity and temperature contours for $\mathrm{H} 2, \alpha=90^{\circ}$; (a) $\mathrm{Gr}=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

With $\alpha=-90^{\circ}$, the maximum velocity and minimum temperature are located at the horizontal radius $(\theta=\pi / 2)$ of the cross-section, as shown in figures 4.23 and 4.24. For the H 2 thermal boundary condition, temperature stratification still occupies the upper and lower parts of the cross-section. Figures 4.23a and 4.24a for Hl and H2, respectively, show the velocity and temperature contours for $G r=1 \times 10^{4}$. The isovels and isotherms in these figures are nearly the same as the ones for the pure forced convection. With increasing $G r$, it can be seen in both thermal boundary conditions that the maximum velocity increases in magnitude but is still confined to the center. The difference in temperature (between $T_{\max }$ and $T_{\text {min }}$) is also increased, as shown in figures 4.23b and 4.24b. Consequently, $f R e$ and $N u$ for both thermal boundary conditions are expected to be lower than those for pure forced convection, as shown later.

4.2 Secondary Flow Pattern

An examination of the secondary flow pattern is presented in this section. It is important to mention that the independent parameters used in presenting these results are $\alpha, R e, P r$ and $G r$ rather than B_{1}, B_{2} and B_{3}, in order to provide a complete understanding of the flow characteristics, by observing the secondary flow pattern for buoyancy aided and opposed flow with different inclinations and different thermal boundary conditions. The cross-stream velocity vectors are the resultant of the radial and angular velocity components U and V, respectively. All the results in this section correspond to $R e=500$ and $P r=7$.

The case of horizontal orientation is illustrated in figures 4.25 and 4.26 for the H 1 and H2 thermal boundary conditions, respectively. Figure 4.25 a shows two counter rotating secondary flow cells, one large cell with upward flow along the heated flat

(a)

$$
\begin{aligned}
& \text { Isotherms } \\
& T_{\max }=0.000 \\
& T_{\min }=-0.107
\end{aligned}
$$

Isovels

(b)

Figure 4.23: Velocity and temperature contours for $\mathrm{H} 1, \alpha=-90^{\circ}$; (a) $\mathrm{Gr}=1 \times 10^{4}$ and (b) $G r=1 \times 10^{5}$

(a)

Isotherms
$T_{\text {max }}=0.112$
$T_{\text {min }}=-0.147$

(b)

Figure 4.24: Velocity and temperature contours for $\mathrm{H} 2, \alpha=-90^{\circ}$; (a) $\mathrm{Gr}=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$

Figure 4.25: Secondary flow pattern for Hl with $\alpha=0^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

Figure 4.26: Secondary flow pattern for H 2 with $\alpha=0^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$
wall and another smaller cell with upward flow along the heated curved wall. Both meet at the upper part of the semicircular duct, change their directions, and descend in the central portion as the fluid moves through the duct.

As Gr increases, the size of the large cell in H 1 is enlarged with increased intensity of the secondary flow across the entire cross-section, as shown in figure 4.25 b for $G r=2 \times 10^{6}$. The circulation in this cell indicates that the cooler fluid is being pushed upward to absorb more heat energy from the duct wall (which results in significant fluid mixing within the duct cross-section). This results in a drop of the wall-to-bulk temperature difference and thus provides a strong mechanism for heat transfer enhancement, as shown later.

For the H 2 case with $G r=1 \times 10^{5}$, shown in figure 4.26 a , the intensity of the secondary flow is low in the upper and central parts of the cross-section where the temperature gradients are quite low. However, the temperature gradient in the lower part is higher and consequently, the corresponding secondary flow is more intense. Figure 4.26 b for $G r=2 \times 10^{6}$ shows also a higher secondary flow intensity in the lower part than in the upper part. It can also be seen clearly that, the strength of the secondary flow for the H 2 boundary condition is much lower than H 1 , due to temperature stratification, as stated earlier.

The upward inclination is presented in figures 4.27 and 4.28 for the Hl case. At lower $G r$ (e.g., $G r=1 \times 10^{5}$), two counter rotating secondary flow cells exist. The secondary flow pattern for $\alpha=30^{\circ}$ and $\alpha=60^{\circ}$ in figures 4.27a and 4.28a respectively, is similar to figure 4.25a for the horizontal orientation. However, the intensity of the secondary flow is slightly stronger for $\alpha=0^{\circ}$ than for both inclinations.

At high $G r$ (e.g., $G r=2 \times 10^{6}$), figure 4.27b shows significant intensification in the secondary flow compared with figure 4.27a. Similarly, for $\alpha=60^{\circ}$ in figure 4.28 b , the secondary flow intensifies in the two counter rotating cells. At high $G r$, in the central

Figure 4.27: Secondary flow pattern for H 1 with $\alpha=30^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

Figure 4.28: Secondary flow pattern for H 1 with $\alpha=60^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$
part of the cross-section, particularly in the vicinity of the flat wall the intensity of the secondary flow for $\alpha=30^{\circ}$ is slightly higher than for $\alpha=60^{\circ}$.

The results corresponding to the upward inclinations for the H 2 thermal boundary condition are shown in figures 4.29 and 4.30. At $G r=1 \times 10^{5}$ the secondary flow pattern in figures 4.29a and 4.30a for $\alpha=30^{\circ}$ and 60°, respectively, is very similar to the one for the horizontal orientation in figure 4.26 a with two counter rotating secondary flow cells. At high enough $G r$ (e.g., $G r=2 \times 10^{6}$) shown in figure 4.29 b , the secondary flow intensifies across the entire cross-section due to the disappearance of thermal stratification, consistent with figure 4.11. The pattern of the buoyancy induced secondary flow for $\alpha=60^{\circ}$ in figure 4.30b is similar to the one for $\alpha=30^{\circ}$. It is clearly observed that, the strength of the secondary flow in both inclinations is much higher than that for $\alpha=0^{\circ}$ in figure 4.26b. Consequently, the enhancement in $f R e$ and $N u$ is expected to be higher for $\alpha=30^{\circ}$ and 60° than that of $\alpha=0^{\circ}$, as shown later.

The downward inclination is presented in figures 4.31 and 4.32 for the H 1 boundary condition. At low $G r$ (e.g., $G r=1 \times 10^{5}$) the pattern of the secondary flow for $\alpha=-30^{\circ}$ and -60° in figures 4.31a and 4.32a, respectively, is similar to the one for the horizontal orientation in figure 4.25 a with two counter rotating cells.

Figure 4.31b for $G r=5 \times 10^{5}$ with $\alpha=-30^{\circ}$ again shows two counter rotating secondary flow cells exist. It can be seen that, increasing $G r$ intensifies the secondary flow since figure 4.31 b shows higher secondary flow intensity than that in figure 4.31 a . Similarly, for $\alpha=-60^{\circ}$ in figure 4.32 b at $G r=5 \times 10^{5}$, the intensity of the secondary flow is higher than that in figure 4.32a. However, the strength of the secondary flow in figure 4.31 for $\alpha=-30^{\circ}$ is stronger than that of $\alpha=-60^{\circ}$ in figure 4.32. Consequently, the enhancement in $f R e$ and $N u$ is expected to be higher for $\alpha=-30^{\circ}$ than that for $\alpha=-60^{\circ}$, as shown later.

The case of the H2 boundary condition in downward inclinations is shown in

(a)
(b)

Figure 4.29: Secondary flow pattern for H2 with $\alpha=30^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

Figure 4.30: Secondary flow pattern for H 2 with $\alpha=60^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=2 \times 10^{6}$

Figure 4.31: Secondary flow pattern for H1 with $\alpha=-30^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=5 \times 10^{5}$

Figure 4.32: Secondary flow pattern for H1 with $\alpha=-60^{\circ}$; (a) $G r=1 \times 10^{5}$ and (b) $G r=5 \times 10^{5}$
figures 4.33 and 4.34. Figures 4.33a and 4.34a for $\alpha=-30^{\circ}$ and -60°, respectively, show that two counter rotating secondary flow cells exist. The secondary flow in both inclinations is very weak not only in the upper part of the cross-section but across the entire cross-section. At $G r=5 \times 10^{4}$ with $\alpha=-30^{\circ}$, the secondary flow in figure 4.33 b is slightly intensified compared with figure 4.33a. As the inclination angle increases to $\alpha=-60^{\circ}$ with $G r=5 \times 10^{4}$, the intensity of the secondary flow becomes lower in most of the cross-section. Figure 4.33b shows higher secondary flow intensity in the lower part of the cross-section than that for $\alpha=-60^{\circ}$ in figure 4.34b.

4.3 Wall Temperature

The circumferential variation of wall temperature for the H 2 boundary condition is presented in this section for typical cases of horizontal, upward and downward inclinations. The forced-convection case calculated at $G r=0$ is presented as a reference in all figures in order to observe the effect of free convection.

4.3.1 Horizontal Orientation

For mixed convection in the horizontal orientation, the wall temperature varies considerably around the circumference with high temperature in the upper part and low temperature in the lower part of the semicircular duct. The difference between the maximum (at the upper part) and minimum (at the lower part) wall temperatures remains nearly constant for the three values of $G r$. Figure 4.35 shows that, increasing $G r$ has no observable effect on the disappearance of the thermal stratification due to the strong variation in the wall temperature around the circumference. This is

Figure 4.33: Secondary flow pattern for H 2 with $\alpha=-30^{\circ}$; (a) $G r=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$

Figure 4.34: Secondary flow pattern for H 2 with $\alpha=-60^{\circ}$; (a) $G r=1 \times 10^{4}$ and (b) $G r=5 \times 10^{4}$

Figure 4.35: Circumferential variation of wall temperature for the H 2 condition with $\alpha=0^{\circ}$
consistent with the temperature distribution shown earlier in figure 4.4 for the H2 boundary condition, where the isotherms show temperature stratification for the high value of Grashof number used ($G r=2 \times 10^{6}$).

4.3.2 Upward Inclination

For upward inclination, the difference between high and low wall temperatures is affected by the value of $G r$. As can be seen for the upward inclinations (figures 4.36 and 4.37), the difference between these extreme wall temperatures decreases as the value of $G r$ and α increase. Therefore, the general trend is that an increase in $G r$ tends to move the results towards a uniform wall temperature for upward inclinations.

At high $G r$ (i.e., $G r=2 \times 10^{6}$) with $\alpha=30^{\circ}$ and 60° in figures 4.36 and 4.37, respectively, the uniformity appearance of T_{w} may lead to increased heat transfer which may exceed the values for the H1 condition for both upward inclinations. This trend is consistent with the gradual disappearance of thermal stratification with increasing $G r$ for upward inclinations, as noted earlier in figures 4.11 and 4.12 for the H2 thermal boundary condition. Consequently, the corresponding secondary flow is shown to intensify in the upper part of the cross-section as well as in the lower part.

4.3.3 Downward Inclination

Figures 4.38 and 4.39 show the circumferential variation of wall temperature for downward inclinations. The difference between high and low wall temperatures is also affected by the value of $G r$. However, for downward inclination (figures 4.38 and 4.39) this difference increases as $\mathbf{C r}$ and α increase.

The general trend is that an increase in $G r$ tends to increase the circumferential variation of wall temperature for downward inclinations. At low Gr (e.g., Gr $=$

Figure 4.36: Circumferential variation of wall temperature for the H 2 condition with $\alpha=30^{\circ}$

Figure 4.37: Circumferential variation of wall temperature for the H 2 condition with $\alpha=60^{\circ}$

Figure 4.38: Circumferential variation of wall temperature for the H 2 condition with $\alpha=-30^{\circ}$

Figure 4.39: Circumferential variation of wall temperature for the H 2 condition with $\alpha=-60^{\circ}$
1×10^{4}), there is a strong variation in the wall temperature around the circumference. This circumferential variation of T_{w} remains relatively unchanged for $\alpha=-30^{\circ}$ and $\alpha=-60^{\circ}$, as shown in figures 4.38 and 4.39. However, at higher $G r$, a stronger variation in the wall temperature around the circumference was noted. The difference between high and low temperatures is large and becomes slightly larger for $\alpha=-60^{\circ}$ than that for $\alpha=-30^{\circ}$. This trend is also consistent with the gradual intensification of thermal stratification with $G r$ for downward inclinations, where the secondary flow is very weak, not only in the upper part but in most of the duct cross-section. as shown earlier in figures 4.33 and 4.34 .

4.3.4 Vertical Orientation

Symmetry around $\theta=\pi / 2$ is expected in all these results. Figure 4.40 shows the circumferential variation of T_{w} for $\alpha=90^{\circ}$. At low $G r$ (e.g., $G r=1 \times 10^{5}$) due to symmetry, the circumferential variation of $T_{\boldsymbol{w}}$ is similar to the one for pure forced convection $(G r=0)$. However, increasing $G r$ tends to reduce the circumferential variation of T_{w}. For $G r=1 \times 10^{6} ; T_{w}$ becomes nearly uniform from $\theta=45^{\circ}$ to $0=130^{\circ}$ along the curved wall. Similarly for $G r=2 \times 10^{6} ; T_{w}$ becomes uniform from $\theta=35^{\circ}$ to $\theta=145^{\circ}$ along the curved wall. Due to symmetry, the maximum wall temperature appears to be the same at the top $\left(\theta=0^{\circ}\right)$ and bottom corners $(\theta=\pi)$ of the cross-section.

Figure 4.41 shows the circumferential variation of wall temperature for $\alpha=-90^{\circ}$. At low $G r$ (i.e. $G r=1 \times 10^{4}$), the circumferential variation of wall temperature is nearly the same as the one for pure forced convection, while at higher $G r$, the wall temperature becomes slightly hotter at the top and bottom corners of the crosssection and somewhat lower at $\theta=\pi / 2$ than that for the pure forced convection. The difference between high and low wall temperatures increases with $G r$, which is

Figure 4.40: Circumferential variation of wall temperature for the H 2 condition with $\alpha=90^{\circ}$

Figure 4.41: Circumferential variation of wall temperature for the H 2 condition with $\alpha=-90^{\circ}$
consistent with the increased difference between $T_{\max }$ and $T_{\text {min }}$, as shown earlier in figure 4.24 b . As a result, $N u_{\boldsymbol{H} 2}$ is expected to be lower than that for the pure forced flow, as shown later.

4.4 Flow Reversal

The phenomenon of flow reversal, which can be encountered in both upward and downward inclinations, is very important because of its effect on the velocity and temperature distributions, as well as its possible impact on the steadiness and stability of the flow. Figure 4.42 shows a map with boundaries corresponding to the conditions where the onset of flow reversal was detected in the present study. In order to make this map applicable to wide ranges of $R e$ and α, it was decided to use γ and ω as coordinates, where

$$
\begin{equation*}
\gamma=B_{2} / B_{1}=\frac{\tan \alpha}{\operatorname{Re}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=\sqrt{B_{1}^{2}+B_{2}^{2}}=G r\left[1-\sin ^{2} \alpha\left(1-\frac{1}{R e^{2}}\right)\right]^{1 / 2} \tag{4.2}
\end{equation*}
$$

For $\alpha=0^{\circ}, \gamma=0$ and $\omega=G r$, while for $\alpha= \pm 90^{\circ}, \gamma= \pm \infty$ and $\omega=G r / R e$. Any combination of α and $R e$ would give a certain value for γ and the corresponding ω from figure 4.42 would be indicative of the value of $G r$ of which flow reversal initiates. Using $\left[\tan ^{-1} \gamma\right]^{1 / 3}$ in the vertical axis of figure 4.42 made it possible to cover all inclinations from -90° to $+90^{\circ}$.

For both upward and downward inclinations, figure 4.42 shows that the critical

Figure 4.42: Flow reversal map
value of ω decreases as the absolute value of γ increases (larger inclination or lower $R e)$. For the same $|\gamma|, \omega$ at the onset of flow reversal is much higher for upward flow than for downward flow. No flow reversal is expected in ine horizontal orientation and therefore, $\omega \rightarrow \infty$ at $\gamma=0$. Flow reversal occurs at lower $G r$ for the H2 condition, particularly in the downward inclinations.

4.5 Friction Factor and Nusselt Number

Due to the free-convection effect, the friction factor and Nusselt number for buoyancy assisted mixed convection laminar flow are found to be substantially higher than those of pure forced convection ($G r=0$), while for buoyancy opposed flow, the friction factor and Nusselt number showed some interesting results, as discussed later.

4.5.1 Friction Factor for Upward Inclination

Figure 4.43 shows the friction-factor results for upward inclinations using ω and γ as independent parameters. The lines for $\gamma=0$ and $\gamma=\infty$ correspond to the horizontal and vertical orientations, respectively. The general trend in these results is that $f R e /(f R e)_{\text {。 increases with }} \omega$ for any given value of γ, i.e., $f R e /(f R e)_{\circ}$ increases with $G r$ for fixed α and Re. The magnitude of this increase becomes larger as γ increases (which may be due to an increase in α or a decrease in Re). The critical value of ω at which $f R e /(f R e)_{\circ}$ starts deviating from 1 decreases as γ increases.

The effect of the thermal boundary condition is significant at low values of γ (small inclinations). At the horizontal orientation. $(f R e)_{H 1}$ exceeds $(f R e)_{H 2}$ due to the thermal stratification in H 2 discussed earlier. As this stratification disappears with upward inclinations, particularly at high $G r$, we can see that the trend in the

Figure 4.43: Friction factor results for upward inclinations, $\operatorname{Pr}=7$
results reverses with $(f R e)_{H 2}$ exceeding $(f R e)_{H 1}$. For high inclinations corresponding to larger values of γ the effect of the thermal boundary condition appears to be fairly small.

4.5.2 Friction Factor for Downward Inclination

For downward inclinations: the friction-factor results are shown in figure 4.44 with some expected trends. The value of $(f R e)_{H 1}$ exceeds $(f R e)_{H 2}$ for all combinations of γ and ω. Also for both boundary conditions, the value of $f R e /(f R e)_{\circ}$ is highest for the horizontal orientation and it decreases as the downward inclination increases.

4.5.3 Nusselt Number for Upward Inclination

The results for Nusselt number in upward inclinations are presented in figures 4.45 and 4.46. Consideration was given to the use of γ and ω as independent parameters, however, the behavior of the results is such that this form of presentation makes it difficult to assess the individual effects of $\alpha, R e$, and $G r$. Figure 4.45 shows $N u$ versus α at various values of $G r$ for both thermal boundary conditions with $R e=500$. We can see from these results that at low $G r$ (e.g., $G r=1 \times 10^{4}$), $N u_{H 1}$ is always larger than $N u_{H 2}$ and they both decrease monotonically with increasing α. At a higher $G r$ (e.g., $G r=1 \times 10^{5}$), we note that $N u_{H 1}>N u_{H 2}$ is still valid, but whereas $N u_{H 1}$ still decreasing monotonically with $\alpha, N u_{H 2}$ experiences a gentle increase with α up to a maximum near $\alpha=45^{\circ}$ and then decreases with further increase in α. As $G r$ increases further, the increase in $N u_{H 2}$ with α becomes sharper near $\alpha=0^{\circ}$ and the location of the maximum Nusselt number shifts to lower values of α. The trend in $N u_{H_{1}}$ is similar but with much smaller gradients near $\alpha=0^{\circ}$. It is believed that the reason for the sharp gradients in $N \boldsymbol{u}_{\boldsymbol{H} 2}$ with α is that thermal stratification, which inhibits

Figure 4.44: Friction factor results for downward inclinations, $\operatorname{Pr}=\mathbf{7}$

Figure 4.45: Nusselt number for upward inclinations with $R e=500$ and $\operatorname{Pr}=7$

Figure 4.46: Nusselt number for upward inclinations with $R e=1500$ and $\operatorname{Pr}=7$
the secondary flow currents and depresses the value of $N u_{H 2}$ at $\alpha=0^{\circ}$, disappears with duct inclination at a rate that is accelerated by increasing $G r$. At $G r \geq 1 \times 10^{6}$, we can see that $N u_{H 2}$ exceeds $N u_{H 1}$ over a wide range of steep inclinations.

For higher Reynolds numbers (e.g., $R e=1500$), figure 4.46 shows that the trends in $N u$-results are similar to those in figure 4.45. At $\alpha=0^{\circ}$, both $N u_{H 1}$ and $N u_{H 2}$ are not affected by $R e$. For $\alpha>0^{\circ}$, values of $N u$ decrease with an increase in $R e$ because of the decrease in the intensity of the secondary flow at high $R e$. This $R e$ effect becomes more pronounced for both boundary conditions as $G r$ increases. In general, the Re-effect is more significant for the H2 boundary condition, probably because thermal stratification can be eliminated faster at low $R e$.

4.5.4 Nusselt Number for Downward Inclination

For downward inclinations, figure 4.47 shows the behavior of $N u$ as a function of γ and ω. The trend is similar for the H1 and H2 boundary conditions while $N u_{H 1}$ is always higher than $N u_{H 2}$ for any combination of ω and γ. For all downward inclinations, values of Nusselt number are lower than those of the horizontal orientation. The large deviation between $N u_{H 1}$ and $N u_{H 2}$ for $\gamma=0$ is evident in figure 4.47.

4.5.5 Comparison With the Geometry of Smooth Tubes

In order to assess the effect of duct geometry on the heat transfer results, two comparisons were made with Orfi et al. [45] for upwardly inclined circular tubes with H 2 boundary condition. The first comparison is based on equal values of Re, Pr, and $G r$. Therefore, this comparison applies to circular and semicircular ducts with the same q^{\prime}, r_{0}, and fluid properties. However, D_{h} and \dot{m} will not be the same for both ducts. Results of this comparison are shown in figure 4.48 and they suggest that

Figure 4.47: Nusselt number for downward inclinations with $\operatorname{Pr}=7$

Figure 4.48: Comparison with Orfi et al. [45] for the same $R e, P r$, and $G r$
the circular cross-section would experience more enhancement than the semicircular cross-section due to free convection. Figure 4.48 shows that the two sets of results are similar in trend including the sharper increase in $N u$ with α near the horizontal orientation that is associated with high $\boldsymbol{G r}$.

A second comparison was made based on equal values of $\dot{m}, q^{\prime}, D_{h}$, and fluid properties. From the condition of equal D_{h}, we get

$$
\left(r_{\circ}\right)_{\text {sermicircular }}=1.637\left(r_{\circ}\right)_{\text {circular }} .
$$

Adding the condition of equal \dot{m}, we get

$$
(R e)_{\text {semicircular }}=0.747(R e)_{\text {circular }}
$$

Applying the above conditions, together with equal q^{\prime}, we get

$$
(G r)_{\text {semicircular }}=4.38(G r)_{\text {circular }}
$$

The condition of the same fluid properties implies the same Pr.
Results based on the above conditions are shown in figure 4.49, indicating better heat transfer enahancement for the semicircular duct than the circular one, except at $\alpha=0$ where thermal stratification hinders heat transfer in the semicircular duct, but not the circular one. These results are extremely interesting in that they show a possible advantage for using the semicircular geometry in compact heat exchangers.

Figure 4.49: Comparison with Orfi et al. [45] for the same $\dot{m}, q^{\prime}, D_{h}$, and Pr

CHAPTER 5

EXPERIMENTAL INVESTIGATION

The experiment was designed for determining the effect of inclination in upward and downward flows within $\pm 20^{\circ}$ on the heat transfer and pressure drop characteristics of laminar mixed convection in a semicircular duct oriented with the flat surface on the vertical position. The range of inclination angles was limited by the space in the lab. Using water as the working fluid, the duct was subjected to the boundary condition of uniform heat input axially. The test matrix for which results were obtained included five inclinations ($\alpha=20^{\circ}, 10^{\circ}, 0^{\circ},-10^{\circ},-20^{\circ}$), three Reynolds numbers for each inclination ($R e_{m}=500,1000,1500$) and a wide range of Grashof numbers for each combination of α and $R e_{m}$. For each combination of $R e_{m}, \alpha$, and $G r_{m}$, the measured parameters include the axial and circumferential variation of wall temperature, the local Nusselt number, the fully-developed Nusselt number, and the overall pressure drop across the test section.

5.1 Experimental Apparatus and Procedure

5.1.1 Flow Loop

The test facility used in this experimental investigation is shown in figure 5.1. Distilled water (used as the working fluid) was circulated around the loop by a centrifugal pump. The flow rate through the test section was regulated by a by-pass line

Figure 5.1: Schematic diagram of the experimental apparatus
around the pump and a filter was installed upstream of the test section. The test section was mounted on a rigid beam which was pivoted at the center (shown in figure 5.2) to allow for inclination in upward and downward positions within $\pm 20^{\circ}$. Following the test section, the outlet bulk temperature was measured in a mixing chamber. The test fluid was then cooled in one or two heat exchangers and its flow rate was measured by variable-area type flowmeters before returning it to the accumulating tank.

5.1.2 Test Section

The semicircular test section was constructed using type K copper tubing (49.8 $m m$ i.d. and $54.0-m m$ o.d.) and brass plates (3.2 $-m m$ thick). The test section consisted of three parts: a hydrodynamic developing length of about 2.7 m , a heated length of about 4.7 m and an outlet length of about 0.3 m . The heat input (in the heated section) was generated by flat electric resistance wires with a total resistance of 6.85Ω. The heated section was first covered by an electrical insulating varnish coating and then wrapped by a layer of fiber glass insulating tape to protect the varnish from the heater wires. Two wires were carefully wound in parallel and with a uniform pitch. The resistance of the twin heaters was axially uniform to within 5%.The heating wires were then covered with high-temperature, high-thermal-conductivity cement to insure that the wires remained firmly in place at all operating temperatures and also to uniformly distribute the input heat. The input power was regulated by an AC power variac and measured by a digital Wattmeter. The whole test section was covered by a $5-\mathrm{cm}$ thick layer of fiber glass thermal insulation. Heat loss through the insulation was measured by a heat flux meter (HEATPROBE, model HA-100) and found to be within 3% of the total heat input for the whole experimental range.

Wall temperatures were measured at 19 axial locations within the heated section

Mechanical Support

Figure 5.2: Supporting mechanism for the experimental rig
with three thermocouples (a, b, and c) at each location, as shown in figure 5.1. The axial distance between wall thermocouples varied from 100 mm at the beginning of the heated section, to 300 mm in the middle section, down to 200 mm in the last 5 stations, as shown in figure 5.3.

Errors in wall thermocouples readings were detected by conducting 10 calibration runs at different temperatures ranged from 20 to $65^{\circ} \mathrm{C}$. These runs were carried out at maximum flow rate by closing the by-pass valve and isolating the flowmeters. The 10 readings of wall temperatures at each wall thermocouple with the corresponding bulk temperatures were used to generate a calibration formula to correct the readings of that particular thermocouple during the heat transfer tests.

The inlet bulk temperature was measured at the beginning of the hydrodynamic developing length and the measured axial gradient of wall temperature at the beginning of heating was used to correct this value. Following the procedure outlined by Rustum [63] the axial gradient of wall temperature at the beginning of heating was obtained by using the thermocouples at stations 1 and 2 located just before the beginning of heating and at the first station (station 3) in the heated section, see figure 5.3. The axial heat conduction was then evaluated at the beginning of heating to be added to the upstream bulk temperature to correct it. A similar procedure was used in correcting the outlet bulk temperature using the thermocouples at stations 22 and 23 located after the end of heating and at station 21 in the heated section. A straight line was fitted between the corrected inlet and outlet bulk temperatures. The pressure drop was measured across the entire heated section (thermally developing and fully-developed), using a pressure transducer (with a range of 0 to 38 mm of water). The pressure transducer was carefully calibrated against a micro-manometer and a dual display multi-meter (FLUKE 45) at room temperature $23^{\circ} \mathrm{C}$. The distance between the pressure taps was about 4.9 m , as displayed in figure 5.3.

Figure 5.3: Heated test section showing the axial stations

5.2 Procedure and Data Reduction

The three independent parameters in this experiment are Reynolds number (controlled by the flow rate). Grashof number (controlled by the input power) and the inclination angle. After adjusting the desired values of these parameters, the experiment was allowed to run for at least 4 hours before steady-state conditions were achieved. When steady state was established, the readings of all thermocouples, flow meters, the input power, and the pressure transducer were recorded. Further, the heat losses through the insulation were recorded by placing the thermal electric heat flux transducer on the insulation at six axial locations. The rate of heat gain by the test fluid, Q_{f}, was then calculated from the formula $Q_{f}=\dot{m} c_{p}\left(T_{b u l k, o}-T_{b u l k, i}\right)$, where $T_{\text {bulk,i }}$ and $T_{\text {bulk,o }}$ are the inlet and outlet bulk temperatures, respectively, corrected for axial wall conduction. The six readings of the heat flux meter (in $\mathrm{W} / \mathrm{m}^{2}$) were averaged and the average value was multiplied by $2.62 \mathrm{~m}^{2}$, which is the outer surface area of the insulation, in order to get an estimate of the rate of heat lost by conduction through the insulation. The corrected input power, Q_{e}, was then obtained by subtracting the rate of heat loss through the insulation from the measured electric power input. The heat balance error was calculated as $\left[\left(Q_{e}-Q_{f}\right) / Q_{e}\right] \times 100$ and was found to be within $\pm 6 \%$ for all test runs. Actually, the heat balance error was within $\pm 3 \%$ for 84% of the test runs.

The dimensionless independent parameters $R e$ and $G r$ were calculated from the measured quantities using the following definitions:

$$
\begin{equation*}
R e=\frac{\dot{m} D_{h}}{\mu A_{f l}} \quad \text { and } \quad G r=\frac{\beta g \rho^{2} q^{\prime} r_{o}^{3}}{k \mu^{2}} \tag{5.1}
\end{equation*}
$$

where q^{\prime} is the heat input per unit length calculated as $q^{\prime}=Q_{f} /$ total heated length.

The hydraulic diameter D_{h} and the cross-sectional flow area are given by

$$
\begin{equation*}
D_{h}=\frac{2 \pi r_{\circ}}{(\pi+2)} \quad \text { and } \quad A_{f l}=\frac{\pi}{2} r_{\circ}^{2} \tag{5.2}
\end{equation*}
$$

All fluid properties in equation (5.1) were calculated at the average of the inlet and outlet bulk temperatures, which is indicated by the subscript m for $R e_{m}$ and $G r_{m}$ in the following sections.

The local Nusselt number was calculated from the following definition:

$$
\begin{equation*}
N u_{Z, i}=\frac{h_{Z, i} D_{h}}{k}=\frac{q^{\prime} D_{h}}{r_{0}(\pi+2) k\left(T_{Z, i}-T_{Z, b u l k}\right)} \tag{5.3}
\end{equation*}
$$

where i refers to wall thermocouple positions a, b, and c, as displayed in figure 5.1. The local average Nusselt number at each axial station was calculated in two ways: (i) by determining the length-mean average of $N u_{Z, a}, N u_{Z, b}$, and $N u_{Z, c}$, and (ii) by determining the length-mean average ($\bar{T}_{Z, i}$) of the three wall temperatures and then using equation (5.3) for the local mean Nusselt number. The two values obtained from (i) and (ii) were very close and therefore, the local mean Nusselt number was taken as the average of these two values, i.e.,

$$
\begin{equation*}
N u_{Z}=\left[\frac{\bar{h}_{Z, i} D_{h}}{k}+\frac{q^{\prime} D_{h}}{r_{0}(\pi+2) k\left(\bar{T}_{Z, i}-T_{Z, b u l k}\right)}\right] / 2 \tag{5.4}
\end{equation*}
$$

The value from equation (5.4) will be called "the local Nusselt number" in the following sections without using the word "mean" for briefness.

Using similar expressions to the ones in [32] (equations (2.1) and (2.2)), as mentioned earlier in section 2.2.2, the friction factor was determined using the inclination
angle α as follows:

$$
\begin{gather*}
\Delta P_{d p}=\Delta P_{f}+\left(\rho_{m}-\rho_{a}\right) g L \sin \alpha \tag{5.5}\\
f=\frac{\Delta P_{f} \rho_{m} A_{f l}^{2}}{\dot{m}^{2}} \frac{D_{h}}{2 L} \tag{5.6}
\end{gather*}
$$

The term $\Delta P_{d p}$ represents the differential pressure reading, ΔP_{f} is the frictional pressure drop, L is the distance between the pressure taps, and the last term in equation (5.5) is the static pressure difference. The last term is equal to zero for the horizontal orientation ($\alpha=0^{\circ}$) and for the isothermal condition with no heating, ($\rho_{m}=\rho_{a}$). The mean density ρ_{m} was evaluated at the average of the inlet and outlet bulk temperatures, and ρ_{a} was calculated at the room temperature during the experimental run. Due to the sensitivity of the pressure transducer, the static pressure difference must be obtained accurately otherwise, error will arise in the frictional pressure drop.

5.3 Experimental Uncertainty

The uncertainty bounds were estimated for the friction factor and all the local values of $R e, G r$, and $N u$ for all 89 test runs using the method outlined by Kline and McClintock [64] and Moffat [65]. A sample calculation showing the procedure for estimating the uncertainty limits in these parameters is outlined in Appendix B. A summary of the results for all test runs is given in the following paragraph.

The uncertainty in f was found to be within $\pm 6.4 \%$ and the uncertainty in $R e$ was found to be within $\pm 3.5 \%$ for all test runs. The uncertainty in α was estimated
to be within $\pm 0.2^{\circ}$. The uncertainty in $G r$ and $N u$ was found to be dependent on the values of $R e$ and $G r$. As Re increased and/or $G r$ decreased, the uncertainty in $N u$ and $G r$ was found to increase. The reason is that high Re (i.e., high water flow rate) and low $G r$ (i.e., low heat input) would resuit in low temperature differences between the wall and the bulk, and between outlet bulk and inlet bulk. For example, at $\alpha=0^{\circ}, R e_{m}=1000$, and $G r_{m}=1.06 \times 10^{8}$, the uncertainty in $G r$ is within $\pm 8.4 \%$ and the uncertainty in $N u$ is within $\pm 5.4 \%$. These uncertainties are higher for $\alpha=0^{\circ}, R e_{m}=1500$, and $G r_{m}=4.58 \times 10^{6}$, where the uncertainty in $G r$ is within $\pm 19.1 \%$ and the uncertainty in $N u$ is within $\pm 26.5 \%$. The highest uncertainties were found at $\alpha=0^{\circ}, R e_{m}=1500$, and $G r_{m}=2.36 \times 10^{6}$, where the uncertainty in $G r$ was found to be within $\pm 33 \%$ and the uncertainty in $N u$ to be within $\pm 42 \%$.

5.4 Experimental Results

A total of 89 test runs were conducted in this investigation covering the following ranges of the independent parameters:

$$
\begin{array}{rlr}
R e_{m} & =500, \quad 1000, & \text { and } \quad 1500 \\
P r_{m} & =4.6-6.5 \quad \text { (water) } \\
G r_{m} & =1.54 \times 10^{6}-1.15 \times 10^{8} \\
\alpha & =20^{\circ}, 10^{\circ}, 0^{\circ},-10^{\circ}, \text { and }-20^{\circ}
\end{array}
$$

A different range of $G r_{m}$ was covered for each combination of α and $R e_{m}$. For example, at $\alpha=-20^{\circ}$ and $R e_{m}=500$, it was not possible to go beyond $G r_{m}=8.61 \times 10^{6}$ due to oscillations in thermocouple readings indicating flow instabilities. In general, the maximum $G r_{m}$ for which steady readings were possible increased as $R e_{m}$ increased, and was much higher for upward inclinations than for downward inclinations. Table
5.1 summarizes the ranges of the independent parameters covered in the experiment. The reduced data for all experimental runs are listed in Appendices C to G. In the remaining part of this chapter, the nominal values of $R e_{m}=500,1000$, and 1500 will be used since the actual values of $R e_{m}$ (listed in Table 5.1) do not deviate much from the nominal values.

5.4.1 Wall Temperature

5.4.1.1 Horizontal Orientation

Results of the wall-temperature measurement for $\alpha=0^{\circ}$ and $R e_{m}=1000$ are shown in figure 5.4 for four values of $G r_{m}$. The circumferential variation of wall temperature at each axial station is indicated by the readings of the three thermocouples a, b, and c (see figure 5.1 for locations), and the slope of the bulk temperature is shown for each $G r_{m}$. Figure 5.4 shows that the circumferential variation of wall temperature increases as $G r_{m}$ increases. The trend in these results is that $T_{Z, b}>T_{Z, c}>T_{Z, a}$. This trend is consistent with the physics of the problem whereby the cross-sectional secondary flow current pushes the heavier (cooler) fluid towards the bottom of the crosssection, while the lighter (warmer) fluid rises [53]. For each $G r_{m}$, a fully-developed region is reached where the wall and bulk temperatures appear to be increasing at the same linear rate with Z. Similar trends were noted for all data of the horizontal orientations ($R e_{m}=500$ and 1500).

5.4.1.2 Upward Inclination

A representative example of the results for upward inclinations is shown in figures 5.5 and 5.6 using the data for $\alpha=20^{\circ}$ and $\alpha=10^{\circ}$ with $R e_{m}=1000$. These data show

Table 5.1: Ranges of the independent parameters

α	$G r_{m}$	$R e_{m}$	$P r_{m}$	No. of runs
0°	$\begin{aligned} & 2.30 \times 10^{6}-2.54 \times 10^{7} \\ & 2.27 \times 10^{6}-1.06 \times 10^{8} \\ & 2.36 \times 10^{6}-1.13 \times 10^{8} \end{aligned}$	$\begin{gathered} 499-506 \\ 999-1006 \\ 1495-1500 \end{gathered}$	$\begin{gathered} 5.27-6.36 \\ 4.56-6.36 \\ 5.27-6.49 \end{gathered}$	$\begin{aligned} & 4 \\ & 7 \\ & 5 \end{aligned}$
10°	$\begin{aligned} & 2.17 \times 10^{6}-2.47 \times 10^{7} \\ & 2.13 \times 10^{6}-1.03 \times 10^{8} \\ & 2.28 \times 10^{6}-1.11 \times 10^{8} \end{aligned}$	$\begin{gathered} 497-502 \\ 998-1002 \\ 1492-1505 \end{gathered}$	$\begin{aligned} & 5.29-6.39 \\ & 4.59-6.39 \\ & 4.86-6.48 \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & 7 \end{aligned}$
20°	$\begin{aligned} & 2.25 \times 10^{6}-2.54 \times 10^{7} \\ & 2.14 \times 10^{6}-1.01 \times 10^{8} \\ & 2.26 \times 10^{6}-1.15 \times 10^{8} \end{aligned}$	$\begin{gathered} 499-508 \\ 1000-1006 \\ 1497-1503 \end{gathered}$	$\begin{aligned} & 5.28-6.36 \\ & 4.59-6.39 \\ & 4.82-6.52 \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & 7 \end{aligned}$
-10°	$\begin{aligned} & 2.24 \times 10^{6}-2.40 \times 10^{7} \\ & 2.15 \times 10^{6}-2.40 \times 10^{7} \\ & 2.27 \times 10^{6}-2.39 \times 10^{7} \end{aligned}$	$\begin{gathered} 497-507 \\ 997-1005 \\ 1501-1506 \end{gathered}$	$\begin{aligned} & 5.30-6.32 \\ & 5.69-6.42 \\ & 5.98-6.49 \end{aligned}$	7
-20°	$\begin{aligned} & 1.54 \times 10^{6}-8.61 \times 10^{6} \\ & 1.76 \times 10^{6}-1.10 \times 10^{7} \\ & 1.89 \times 10^{6}-1.12 \times 10^{7} \end{aligned}$	$\begin{gathered} 498-501 \\ 997-1000 \\ 1498-1505 \end{gathered}$	$\begin{aligned} & 5.93-6.32 \\ & 6.06-6.39 \\ & 6.16-6.42 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$

Figure 5.4: Variation of wall temperature for $\alpha=0^{\circ}$ and $R e_{m}=1000$

Figure 5.5: Variation of wall temperature for $\alpha=20^{\circ}$ and $R e_{m}=1000$

Figure 5.6: Variation of wall temperature for $\alpha=10^{\circ}$ and $R e_{m}=1000$
similar trend as those in figure 5.4 (i.e., $T_{Z, b}>T_{Z, c}>T_{Z, a}$), and the circumferential variation of wall temperature increasing with $G r_{m}$. However, comparing results of similar $G r_{m}$ (e.g., $G r_{m}=1.06 \times 10^{8}$ in figure 5.4, $G r_{m}=1.01 \times 10^{8}$ in figure 5.5 and $G r_{m}=1.03 \times 10^{8}$ in figure 5.6), we notice that the magnitude of circumferential variation is lower for upward inclinations than the horizontal orientation. This can be attributed to the fact that only a component of the net body force is driving the cross-sectional secondary flow due to inclination, resulting in a weaker secondary flow current and less circumferential variation of wall temperature.

It can be noted that, as the inclination angle increases from $\alpha=10^{\circ}$ to 20° with similar high $G r_{m}$ and same $R e_{m}$ the circumferential variation of wall temperature continues to decrease but at a slower rate. The reason is that, the component of the net body force, which acts normal to the heated surface, becomes less important (in driving the secondary flow) with increasing α, resulting in a weaker free convection current within the cross-section.

5.4.1.3 Downward Inclination

For the downward inclination, the net body force has two components; one normal to the main flow direction (driving the secondary flow within the cross-section), and the other component acts opposite to the main flow direction. The second component would influence the velocity and temperature profiles in the heated section and may give rise to flow reversal in the upper part of the cross-section at high $G r_{m}$ and low $R e_{m}$ [55]. The temperature development for $R e_{m}=500$ and 1500 are shown in figures 5.7 and 5.8 for $\alpha=-20^{\circ}$ and -10°, respectively. For $R e_{m}=1500$, and $G r_{m}$ up to 1.12×10^{7} in figure 5.7 and $G r_{m}$ up to 2.39×10^{7} in figure 5.8 the wall-temperature development looks similar to the horizontal and upward inclinations. It was not possible to extend $G r_{m}$ to higher values due to temperature oscillations.

Figure 5.7: Variation of wall temperature for $\alpha=-20^{\circ}$ and $R e_{m}=500$ and 1500

Figure 5.8: Variation of wall temperature for $\alpha=-10^{\circ}$ and $R e_{m}=500$ and 1500

For $R e_{m}=500$, the component of adverse net body force has a much stronger influence on the development of the hydrodynamic and thermal boundary layers as evidenced by the wall-temperature distribution. The wall-to-bulk temperature difference is large at the beginning of heating and it decreases continuously along the heated length without reaching fully developed conditions for $G r_{m}>5 \times 10^{6}$ with $\alpha=-20^{\circ}$ and for $G r_{m} \geq 1 \times 10^{7}$ with $\alpha=-10^{\circ}$. In the theoretical analysis, it was found that, when $\alpha=-20^{\circ}$, flow reversal starts at $G r_{m}=2 \times 10^{6}$ under the present conditions of Pr and $R e$, while decreasing the tilt angle to $\alpha=-10^{\circ}$ the flow reversal starts at $G r$ three times higher than that for $\alpha=-20^{\circ}$ under same conditions of Pr and Re. Therefore, it is postulated that the temperature distribution shown in figures 5.7 and 5.8 for $R e_{m}=500$ is due to the flow reversal current moving hot fluid from the end of the heated section backward towards the beginning of the heated section.

With $\alpha=-10^{\circ}$ and $R e_{m}=1500$, it can be seen that $G r_{m}$ is advanced further with steady laminar flow up to $G r_{m}=2.39 \times 10^{7}$ as compared with $\alpha=-20^{\circ}$. At this value of $G r_{m}$, fully-developed conditions are reached, as shown in figure 5.8. This is because the flow reversal develops earlier (at lower $G r_{m}$) for $\alpha=-20^{\circ}$ than that for $\alpha=-10^{\circ}$ at same $R e_{m}$.

5.4.2 Local Nusselt Number

Results of the local Nusselt number, $N u_{Z}$, are presented in this section in a manner that can illustrate the effects of the independent parameters $G r_{m}, \alpha$, and $R e_{m}$. The forced-convection results presented with the experimental data are for the H 1 condition [6].

5.4.2.1 Effect of Inclination on $N u_{Z}$

Figure 5.9 corresponds to $R e_{m}=500, \alpha=0^{\circ}$ and four different values of $G r_{m}$. For $\alpha=0^{\circ}, N u_{Z}$ is close to the forced-convection value at low Z^{+}, decreases to a minimum as Z^{+}increases, and then rises due to the effect of free convection before reaching a nearly constant (fully developed) value. This behavior is similar to the one noted by Maughan and Incropera [54] and Lei and Trupp [7]. It is also clear that $G r_{m}$ has a strong effect on $N u_{Z}$ whereby $N u_{Z}$ increases significantly with $G r_{m}$ in both the developing and the fully-developed regions.

For upward inclinations (represented by $\alpha=20^{\circ}$ in figure 5.10), the axial variation of $N u_{Z}$ is similar to the horizontal orientation. However, for approximately the same values of $G r_{m}$ in figures 5.9 and 5.10 , values of $N u_{Z}$ are slightly higher for the upward inclination in both the developing and the fully-developed regions. This is because the net body force has a component in the axial flow direction which accelerates the fluid resulting in an increase in the heat transfer coefficient. Again, this trend is consistent with the results of Maughan and Incropera [54].

For downward inclinations (represented by $\alpha=-20^{\circ}$ in figure 5.10), a component of the net body force acts opposite to the axial flow direction, thus retarding the flow and possibly causing flow reversal in the upper part of the cross-section. For large $G r_{m}$, this axial secondary flow loop may extend over most of the heated section causing significant effects on the velocity and temperature profiles. Under these conditions, figure 5.10 shows that $N u_{Z}$ decreases continuesly with $G r_{m}$ to the degree that values lower than the forced-convection value are encountered in the developing region. At high $G r_{m}$, the flow does not reach fully-developed conditions with $N u_{Z}$ increasing continuesly with Z^{+}.

Figure 5.11 corresponds to $R e_{m}=500, \alpha=10^{\circ}$ and -10°, and the widest possible

Figure 5.9: Local Nusselt number for $R e_{m}=500$ and $\alpha=0^{\circ}$

Figure 5.10: Effect of inclination on local Nusselt number for $R e_{m}=500$

Figure 5.11: Effect of inclination on local Nusselt number for $R e_{m}=500$
range of $G r_{m}$. For $\alpha=10^{\circ}$, the axial variation of $N u_{Z}$ is similar to that for $\alpha=20^{\circ}$. For four different Grashof numbers ($2.17 \times 10^{6} \leq G r_{m} \leq 2.48 \times 10^{7}$), values of $N u_{Z}$ in figure 5.11 are also slightly higher than those for the horizontal orientation ($\alpha=0^{\circ}$) in both the developing and fully-developed regions. For $\alpha=10^{\circ}$, at high $G r_{m}$ (e.g., $G r_{m}=2.48 \times 10^{7}$ in figure 5.11) $N u_{Z}$ in the fully-developed region is 15% higher than that for $\alpha=0^{\circ}$ with $G r_{m}=2.54 \times 10^{7}$, while at $\alpha=20^{\circ}$ with similar $G r_{m}$ (e.g., $G r_{m}=2.54 \times 10^{7}$ in figure 5.10), the enhancement in the fully-developed Nusselt number has increased to 17%. Therefore, for the range of $G r_{m}$ investigated with $R e_{m}=500$, it can be concluded that values of $N u_{Z}$ increase slightly when the upward inclination changes from $\alpha=10^{\circ}$ to 20°.

Figure 5.11 shows the case of downward inclination for $\alpha=-10^{\circ}, R e_{m}=500$ and four different values of $G r_{m}$. The change in heat transfer is very small along the heated section as $G r_{m}$ increases from $G r_{m}=2.24 \times 10^{6}$ to $G r_{m}=5.67 \times 10^{6}$, while a further increase in $G r_{m}$ resulted in a decrease in $N u_{Z}$. It can be seen that, at higher $G r_{m}$ the data in the developing region are lower than the pure forced-convection solution.

5.4.2.2 Effect of $R e_{m}$ on $N u_{Z}$ for Downward Inclination

The behavior of $N u_{Z}$ for downward inclinations was found to be very sensitive to the value of $R e_{m}$. This is illustrated in figure 5.12 for $\alpha=-20^{\circ}$ using $R e_{m}=1000$ and 1500 (data for $R e_{m}=500$ are in figure 5.10). In all cases, the net body force acts to retard the flow, however, the effect on heat transfer depends on the mean velocity of the flow. For $R e_{m}=1500$, there is enhancement in heat transfer as $G r_{m}$ increases from 1.89×10^{6} to 3.50×10^{6}. However, a further increase in $G r_{m}$ from 3.50×10^{6} to 1.12×10^{7} resulted in very small change in heat transfer. For $R e_{m}=1000$, values of $N u_{Z}$ start out increasing with $G r_{m}$ up to a maximum followed by a decrease in

Figure 5.12: Effect of Reynolds number on local Nusselt number for $\alpha=-20^{\circ}$
$N u_{Z}$ with further increase in $G r_{m}$. This is consistent with the reasoning that when the adverse buoyancy effect gets strong enough to cause a flow-reversal region within the cross-section, the heat-transfer performance begins declining. The reasoning is consistent with the present theoretical results for the fully-developed region. As $R e_{m}$ decreases, the value of $G r_{m}$ at which Nusselt number begins declining decreases, as evidenced by the results for $R e_{m}=500$ in figure 5.10 corresponding to $\alpha=-20^{\circ}$.

Figure 5.13 illustrates the effect of $R e_{m}$ on $N u_{Z}$ for the downward inclination $\alpha=-10^{\circ}$. For $R e_{m}=1500$, there is enhancement in heat transfer due to free convection with $N u_{Z}$ increasing with $G r_{m}$ up to 1.16×10^{7}. However, increasing $G r_{m}$ from 1.16×10^{7} to 2.39×10^{7} resulted in a small change in heat transfer up to $Z^{+} \approx 0.01$. For $Z^{+}>0.01$, values of $N u_{Z}$ at $G r_{m}=2.39 \times 10^{7}$ dropped and became lower than those for $G r_{m}=1.16 \times 10^{7}$.

Comparing results of $\alpha=-20^{\circ}$ and $\alpha=-10^{\circ}$ for $R e_{m}=1500$ with similar $G r_{m}$ (e.g., $G r_{m}=1.12 \times 10^{7}$ in figure 5.12 and $G r_{m}=1.16 \times 10^{7}$ in figure 5.13), we notice that $N u_{Z}$ in the fully-developed region for $\alpha=-10^{\circ}$ is 25% higher than that for $\alpha=-20^{\circ}$. Therefore, tilting the duct downward from horizontal has significant effect on $N u_{Z}$. particularly in the fully developed region, which is consistent with the present theoretical results. Also, comparing the experimental data of $R e_{m}=1000$ with similar $G r_{m}$ (e.g.. $G r_{m}=1.10 \times 10^{7}$ in figure 5.12 and $G r_{m}=1.13 \times 10^{7}$ in figure 5.13), we observe that values of $N u_{Z}$ are significantly higher for $\alpha=-10^{\circ}$ than those for $\alpha=-20^{\circ}$. For the same $R e_{m}$, the behavior of $N u_{Z}$ for $\alpha=-20^{\circ}$ was found to be more sensitive to the value of $G r_{m}$ than that for $\alpha=-10^{\circ}$. Therefore, the effect of $G r_{m}$ on $N u_{Z}$ for downward inclination is strongly dependent on $R e_{m}$ and α.

5.4.2.3 Effect of $R e_{m}$ on $N u_{Z}$ for Horizontal and Upward Inclinations

Typical results on the effect of $R e_{m}$ on $N u_{Z}$ for the horizontal and upward incli-

Figure 5.13: Effect of Reynolds number on local Nusselt number for $\alpha=-10^{\circ}$
nations are shown in figure 5.14 using $G r_{m}$ of about 1.2×10^{7} and the three values of $R e_{m}$. Early in the developing region $\left(Z / D_{h}<8\right)$ where forced convection is dominant, we note that $N u_{Z}$ increases slightly with $R e_{m}$. In this region, $N u_{Z}$ decreases with Z for all $R e_{m}$ due to the thickening of the boundary layer. As the wall-to bulk temperature difference increases, free convection becomes significant and $N u_{Z}$ starts increasing with Z beyond $Z / D_{h}=8$. It can be noted that the rate of increase of $N u_{Z}$ with Z increases as $R e_{m}$ decreases. This is a logical behavior since the impact of free convection is expected to be stronger for slower flows. Beyond a certain value of Z / D_{h}, the value of $N u_{Z}$ becomes nearly constant (fully developed) and the effect of $R e_{m}$ on $N u_{Z}$ is fairly small in this region. These observations are consistent with the results in [54] for horizontal and upwardly inclined parallel plate. It is also fair to state that the effect of $R e_{m}$ on $N u_{Z}$ for the horizontal and upward inclinations is certainly much less significant than that for downward inclinations.

5.4.3 Fully-Developed Nusselt Number

Fully-developed conditions were established in all test runs in the horizontal and upward inclinations, as well as most test runs in the downward inclinations (except these runs of high $G r_{m}$ and low $R e_{m}$). Figures 5.10 to 5.14 showed some fluctuations in $N u_{Z}$ in the fully-developed region which may be attributed to property variations and buoyancy-induced fluctuations. Values of $N u_{f d}$ were calculated as the lengthmean average of $N u_{Z}$ of the six axial stations precedings the last station in the heated section.

The experimental values of $N u_{f d}$ for all values of α and $R e_{m}$ are presented in figure 5.15 and lines of least-squares fit are drawn through the data. Judging by the amount of scatter in the data of $\alpha=0^{\circ}, 10^{\circ}$, and 20°, it may be concluded that $R e_{m}$ has a small effect on $N u_{f d}$ for these orientations. Also, going from $\alpha=0^{\circ}$ to $\alpha=10^{\circ}$,

Figure 5.14: Effect of Reynolds number on local Nusselt number for $\alpha=0^{\circ}$ and $\alpha=20^{\circ}$

Figure 5.15: Fully-developed Nusselt number for all values of α and $R e_{m}$
there is a noticeable increase in $N u_{f d}$ at high values of $G r_{m}$. The value of $N u_{f d}$ continues to increase, but at a slower rate, as α increases from 10° to 20°. Keeping in mind that for the forced convection case, $N u_{f d}=4.089$ [62] we can see that free convection can enhance $N u_{f d}$ by a factor of up to 8 for $0^{\circ} \leq \alpha \leq 20^{\circ}$.

For the downward inclinations of $\alpha=-10^{\circ}$ and -20°, figure 5.15 shows that $N u_{f d}$ is strongly dependent on $R e_{m}$. For any combination of α and $R e_{m}, N u_{f d}$ appears to follow the correlation curve for $\alpha=0^{\circ}$ up to a certain value of $G r_{m}$ where $N u_{f d}$ for the downward inclination starts deviating, reaches a maximum and then starts dropping with further increase in $G r_{m}$. The value of $G r_{m}$ at which this deviation occurs increases with $R e_{m}$ but it decreases with $|\alpha|$.

5.4.4 Comparison of Experimental $N u_{f d}$ With Theoretical Predictions

All the trends discussed earlier for $N u_{f d}$ in the upward and downward inclinations are consistent with the theoretical results reported in chapter 4. As a further confirmation, quantitative comparisons were made between the present experimental results and the theory for the case of the H1 thermal boundary condition. These comparisons are presented in this section.

Figure 5.16, for $\alpha=0^{\circ}$, demonstrates very good agreement between the predicted and the experimental results for the three values of $R e_{m}$. Figure 5.16 confirms the small dependence of the experimental $N u_{f d}$ on $R e_{m}$ for the horizontal orientation, which is consistent with the theoretical results.

Figures 5.17 and 5.18 present the values of $N u_{f d}$ for $\alpha= \pm 20^{\circ}$. The experimental data in upward inclination agree very well with the predicted curves for $R e_{m}=500$, 1000 and 1500 . For $\alpha=-20^{\circ}$ and $R e_{m}=500$, the data agree well with the predicted results for $\operatorname{Pr}=6.3$. It can be seen that, the experimental range of $G r_{m}$ is low

Figure 5.16: Comparison between data and prediction of $N u_{f d}$ for $\alpha=0^{\circ}$

Figure 5.17: Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 20^{\circ}$ and $R e_{m}=500$

Figure 5.18: Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 20^{\circ}$ and $R e_{m}=1000,1500$
$\left(1.54 \times 10^{6} \leq G r_{m} \leq 3.61 \times 10^{6}\right)$. The experiment was carried out further for a narrow range of $G r_{m}$ up to 8.61×10^{6} (see Appendix G) however, fully-developed conditions were not reached. Beyond $G r_{m}=8.61 \times 10^{6}$ flow instability was assumed due to oscillations in thermocouple readings.

For $R e_{m}=1000$ and 1500 , and $\alpha=-20^{\circ}$, figure 5.18 shows good agreement between the predicted and the experimental results at low $G r_{m}$ (up to $G r_{m}=5 \times 10^{6}$). However, for $G r_{m}$ higher than 5×10^{6} the experimental values of $N u_{f d}$ start deviating from the predicted curves and begin declining with further increase in $G r_{m}$. The theoretical curves extend up to the onset of flow reversal, while the experimental data may include cases of flow reversal. This may be the reason for the deviation beyond $G r_{m}=5 \times 10^{6}$.

Similar trends can be observed for $\alpha= \pm 10^{\circ}$ in figures 5.19 and 5.20 for upward and downward inclinations. Again, the deviation between experiment and theory for the downward inclination at high $G r_{m}$ is attributed to the same reason mentioned above.

5.4.5 Isothermal Pressure Drop

Measurements of the pressure drop were made at various flow rates, starting with low Reynolds number ($R e \approx 200 \mathrm{up}$ to ≈ 5000). At each flow rate, readings of mass flow rate, upstream and downstream bulk temperatures and the pressure drop were recorded when steady state conditions were established. The upstream and downstream bulk temperatures were approximately the same for each experimental run and they were nearly equal to the room temperature. Values of the friction factor f and Reynolds number Re were calculated from equations (5.6) and (5.1), respectively.

Figure 5.19: Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 10^{\circ}$ and $R e_{m}=500$

Figure 5.20: Comparison between data and prediction of $N u_{f d}$ for $\alpha= \pm 10^{\circ}$ and $R e_{m}=1000,1500$

Results of the friction factor for $\alpha=20^{\circ}, 0^{\circ}$, and -20° against Reynolds number are shown in figure 5.21 for $G r=0$ (no heating). A very good agreement was achieved by comparing the experimental data with the analytical curve of the pure forced convection $[66,67$] which is valid for laminar flow up to the critical Reynolds number, $R e \approx 2100$. The exact value of the friction factor is $15.77 / R e$. Beyond the critical value, the experimental data shift from the analytical curve indicating that the flow is no longer laminar. It can be seen that for $G r=0$, the inclination angle has no effect on the frictional losses. It should also be noted that the pressure drop was measured across the fully-developed region (following the hydrodynamic developing length), which explains the good agreement between experiment and theory.

5.4.6 Pressure Drop With Heating

Measurements of the pressure drop were obtained for the whole range of $\alpha, R e_{m}$ and $G r_{m}$ listed in Table 5.1. The pressure drop was measured across the heated length and therefore, it includes the thermally developing and fully-developed zones. The experimental results of the friction factor for all values of $G r_{m}$ and $R e_{m}$ with heating in upward and downward inclinations are presented in this section in order to illustrate the effects of all independent parameters. Lines of least-square fit are included in the figures for each combination of α and $R e_{m}$.

5.4.6.1 Upward Inclination

Figure 5.22 presents the effect of Grashof number and the inclination angle on $f R e$ for $R e_{m}=500,1000$, and 1500 . For $R e_{m}=500$, and $\alpha=0^{\circ}, 10^{\circ}$, and 20°, values of $f R e$ increase continuously with $G r_{m}$. As α increases to 20°, the increase of $f R e$ is substantial particularly at higher values of $G r_{m}$. From $\alpha=0^{\circ}$ to $\alpha=10^{\circ}$, there is a

Figure 5.21: Comparison between data and analysis of the isothermal friction factor

Figure 5.22: Experimental data of $f R e$ for upward inclinations
noticeable increase in $f R e$ with $G r_{m}$ but at a slower rate than that between $\alpha=10^{\circ}$ and $\alpha=20^{\circ}$. Similar trends can be observed for $R e_{m}=1000$ and 1500 , however the magnitude of the increase in $f R e$ is lower than that for $R e_{m}=500$ at the same $G r_{m}$. This is consistent with the reasoning that when $R e_{m}$ decreases, the effect of free convection on $f R e$ becomes stronger. We know that for the forced-convection case, the exact value of $f R e$ is 15.77 , as displayed in figure 5.21 . For $R e_{m}=500$, we can see that the free convection can increase $f R e$ (e.g., at $G r_{m}=2.5 \times 10^{7}$) by a factor of 4 for $\alpha=20^{\circ}$, while for $R e_{m}=1000$ and 1500 at same value of $G r_{m}$ the free convection can enhance $f R e$ by a factor of up to 2 for $\alpha=20^{\circ}$. At $G r_{m}=1 \times 10^{8}$ with $\alpha=20^{\circ}, f R e$ is 18% higher for $R e_{m}=1000$ than for $R e_{m}=1500$.

It can be observed that, $f R e$ in figure 5.22 is strongly dependent on $R e_{m}$ and α. The general trend in these results is that $f R e$ increases with $G r_{m}$ for any given α, and $R e_{m}$ and the magnitude of this increase become larger as α increases and/or $R e_{m}$ decreases. All these trends are consistent with the present theoretical results. However, a comparison between the predicted and experimental $f R e$ is not appropriate because of the pressure drop was measured across the entire heated section which covers both the thermally developing and the fully-developed regions, while $f R e$ was predicted for the fully-developed region. The other reason is that the independent parameters $R e_{m}, G r_{m}$, and $P r_{m}$ were calculated at the average of the inlet and outlet bulk temperatures, while the numerical ones were computed at constant fluid properties.

5.4.6.2 Downward Inclination

The experimental data of $f R e$ for all downward inclination angles $\left(\alpha=-10^{\circ}\right.$ and -20°) including $\alpha=0^{\circ}$ with the three values of $R e_{m}(500,1000$, and 1500) are shown in figure 5.23. Values of $f R e$ for $\alpha<0^{\circ}$ are lower than $f R e$ at $\alpha=0^{\circ}$ for

Figure 5.23: Experimental data of $f R e$ for downward inclinations
all values of $R e_{m}$ up to a critical value of $G r_{m}$, which could be close to the onset of flow reversal, beyond which a sharp increase occurs in $f R e$ for the three values of $R e_{m}$. This critical value of $G r_{m}$ decreases with increasing downward inclination at the same $R e_{m}$. Beyond the critical value of $G r_{m}$ the effect of free convection on $f R e$ is significant, in particular at low $R e_{m}$. For $R e_{m}=500$, $f R e$ (e.g, at $G r_{m}=1 \times 10^{7}$) is 45% higher for $\alpha=-20^{\circ}$ than that for $\alpha=0^{\circ}$. As $R e_{m}$ increases the effect of free convection on $f R e$ becomes less important. It can be seen that, at same $\alpha\left(\alpha=-20^{\circ}\right)$ $f R e$ is 24% and 14% higher for $R e_{m}=1000$ and 1500 , respectively, than that for $\alpha=0^{\circ}$. At $G r_{m}=2.5 \times 10^{7}$ with $\alpha=-10^{\circ}$, fRe exceeds by 43% the horizontal curve for $R e_{m}=500$, by 28% for $R e_{m}=1000$, and by 14% for $R e_{m}=1500$.

It is clearly observed that the enhancement in $f R e$ decreases with increasing $R e_{m}$ at higher values of $G r_{m}$. Again a quantitative comparison between the measured $f R e$ and the predicted results (shown in figure 4.44) is not appropriate because of the reasons mentioned earlier. It should be noted that, for downward inclinations the effect of α on $f R e$ appears to be significant even for lower values of $G r_{m}$, while for upward inclination this effect is significant only when $G r_{m}$ is high.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions for the Theoretical Study

A numerical, finite-control-volume approach has been utilized for solving the governing equations for laminar, fully-developed mixed convection in inclined semicircular ducts. Two thermal boundary conditions were used: uniform heat input axially with uniform wall temperature circumferentially (H1), and uniform heat input axially with uniform heat flux circumferentially (H2). Both buoyancy-assisted and buoyancyopposed conditions were considered with the full range of the tube inclinations (from vertical upward to vertical downward). Results for $W, T, f R e$, and $N u$ were obtained for $P r=7,-90^{\circ} \leq \alpha \leq 90^{\circ}$, and wide ranges of $R e$ and $G r$. From these results, the following conclusions can be drawn:

1. Tube inclination and $G r$ have a strong effect on the distributions of W and T. The location of $W_{\max }$ shifts to the upper part of the cross-section and the location of the $T_{\text {min }}$ shifts to the lower part in upward inclinations. For downward inclinations and the horizontal orientation, both $W_{\max }$ and $T_{\text {min }}$ shift to the lower part of the cross-section. Thermal stratification was observed in the H 2 boundary condition and it was found to inhibit secondary flow, thus decreasing
the magnitude of the enhancement in $f R e$ and $N u$. This stratification was found to decrease in upward inclinations by increasing Gr. On the other hand, increasing $G r$ for downward inclinations appears to intensify thermal stratification.
2. At high enough values of $G r$, the onset of flow reversal was detected in the lower part of the cross-section for upward inclinations and in the upper part of the cross-section for downward inclinations. A preliminary map was developed that defines the regions of flow reversal in terms of γ and ω. This map shows that, for the same γ, flow reversal occurs at lower ω for H2 compared with H1. Also, for the same $|\gamma|$, flow reversal starts at lower ω in downward inclinations compared with upward inclinations. All results of velocity, temperature, fRe, and $N u$ presented in this study correspond to conditions of no flow reversal.
3. The value of $f R e$ increases as γ and/or ω increase for both conditions in upward inclinations. At the horizontal orientation, $f R e_{H 1}$ exceeds $f R e_{H 2}$ due to the thermal stratification associated with H2. This trend reverses with $f R e_{H 2}>f R e_{H 1}$ for upward inclinations, especially at high Gr. For downward inclinations, $f R e_{H 2}$ is always lower than $f R e_{H 1}$ at the same conditions. For any value of γ in downward inclinations, $f R e /(f R e)_{\circ}$ is lower than its value at the horizontal orientation.
4. For upward inclinations and low $G r, N u_{H 1}$ is always larger than $N u_{H 2}$ and they both decrease monotonically with α. As $G r$ increases, both $N u_{H 1}$ and $N u_{H 2}$ develop a trend whereby their value increases with α up to a maximum and then decrease with further increase in α. The initial increase with α is much more pronounced for the H 2 boundary condition, particularly at high Gr . The reason for this behavior is that, for H2, strong thermal stratification exists in the horizontal orientation and as this condition disappears with α, a sharp
increase in $N u$ can occur.
5. For downward inclinations, both $N u_{H 1}$ and $N u_{H 2}$ start out increasing with $G r$ at a rate lower than that for the horizontal orientation. For any combination of γ and ω, the value of $N u_{H 1}$ exceeds $N u_{H 2}$.

6.2 Conclusions for the Experimental Study and Comparison With Theory

An experimental study was performed to investigate the effect of inclination (upward and downward) on the pressure drop and heat transfer characteristics of laminar mixed convection in a semicircular duct with uniform heat input axially. Water was used as the test fluid and, therefore, only a narrow range of Prandtl number was covered. However, five duct inclinations were tested within $\pm 20^{\circ}$, three Reynolds numbers for each orientation (500, 1000, 1500) , and several values of Grashof number for each combination of α and $R e_{m}$. From these results, the following conclusions can be made:

1. The circumferential variation of wall temperature increases as $\boldsymbol{G r} \boldsymbol{r}_{\boldsymbol{m}}$ increases for all angles of inclinations. This is attributed to free convective currents that push hot fluid to the upper part of the cross-section and cold fluid to the lower part. Upward inclinations experience less circumferential variation of wall temperature compared to the horizontal orientation at the same $R e_{m}$ and $G r_{m}$ due to the weaker free convection currents within the cross-section. For downward inclinations, the axial variation of wall temperature was found to be strongly dependent on $\alpha, R e_{m}$, and $G r_{m}$. At high $G r_{m}$ and low $R e_{m}$ it was not possible to achieve fully-developed temperature profiles within the heated
section, possibly due to flow reversal and the accompanying secondary flow loop in the axial flow direction.
2. The axial variation of $N u_{Z}$ followed the trend noted earlier in [50,53, 7,54] for the horizontal and upward inclinations. Values of $N u_{Z}$ increased with α and $G r_{m}$ for these orientations. However, the behavior of $N u_{Z}$ for downward inclinations was found to be strongly dependent on the combination of $R e_{m}$: $G r_{m}$: and α. For $R e_{m}=500$ and $\alpha=-20^{\circ}: N u_{Z}$ was found to decrease continuously with $G r_{m}$ while for $R e_{m}=1000$ and $1500, N u_{Z}$ may increase and then decrease with $G r_{m}$.
3. Values of $N u_{f d}$ for the horizontal and upward inclinations (up to $\alpha=20^{\circ}$) were found to increase with $G r_{m}$ and to be weakly dependent on $R e_{m}$. For the downward inclinations, $N u_{f d}$ was found to be strongly dependent on $\alpha, R e_{m}$ and $G r_{m}$. These results are consistent in magnitude and trend with the present theoretical prediction, except for high $G r_{m}$ in the downward inclination where a deviation is noted and discussed.
4. The isothermal friction factor for all inclination angles ($\alpha= \pm 20^{\circ}$) in the laminar region agreed very well with the analytical curve of the pure forced convection. The experimental data of $f R e$ are strongly dependent on $R e_{m}$ and α. For upward inclinations $f R e$ increases with $G r_{m}$ for any combination of α and $R e_{m}$ and the magnitude of this increase becomes larger as α increases and/or $R e_{m}$ decreases. For downward inclinations $f R e$ is lower than its value at the horizontal orientation for all values of $R e_{m}$ up to a critical values of $G r_{m}$, which could be close to the onset of flow reversal. Beyond that a sharp increase occurs in $f R e$ for the three values of $R e_{m}$.

6.3 Recommendations for Further Studies

Following the conclusion of the present investigation, it became apparent that several important issues require further investigation. The following points are recommended for further studies:

1. The numerical work on semicircular ducts should be extended to solve the thermally developing region as well as the adiabatic exit region so that more comparisons with the experimental data in the upward and downward inclinations can be made.
2. The present experimental work can be extended by investigating more downward inclinations, such as $\alpha=-5^{\circ}$ and -15° in order to get complete information of the effect of downward inclination on the pressure drop and heat transfer.
3. Flow visualization should be attempted in order to obtain a qualitative picture of the velocity profile and to show the existence of flow reversal. This will confirm the relationship between the flow situation and the overall quantities such as $f R e$ and $N u$.
4. For downward flow at higher values of $G r_{m}$ and lower values of $R e_{m}$. periodic conditions were found to occur in the thermocouple readings indicating flow instability. Therefore, it is suggested to use a data acquisition system to record all thermocouple readings simultaneously.

REFERENCES

[1] Busedra, A. A., and Soliman, H. M., "Analysis of Laminar Mixed Convection in Inclined Semicircular Ducts Under Buoyancy Assisted and Opposed Conditions". Accepted April 10, 1999 for publication in Numerical Heat Transfer, Part A, 1999.
[2] Busedra. A. A., and Soliman, H. M., "Experimental Investigation of Laminar Mixed Convection in Inclined Semicircular Ducts Under Buoyancy Assisted and Opposed Conditions". Accepted June 11, 1999 for publication in the International Journal of Heat and Mass Transfer, 1999.
[3] Shah, R. K., and London A. L., Laminar Flow Forced Convection in Ducts. Academic Press, New York, 1978.
[4] Kakac, S., Shah, R. K., and Aung, W., Handbook of Single-Phase Convective Heat Transfer, Chapter 15. John Wiley, New York, 1987.
[5] Chinporncharoenpong, C., Combined Convection in Horizontal Circular Sector Ducts of Various Cross-Sectional Orientations. Ph.D. thesis, University of Manitoba, Canada, 1993.
[6] Lei, Q., Numerical and Experimental Study of laminar Mixed Convection in a Horizontal Semicircular Duct. Ph.D. thesis, University of Manitoba. Canada, 1990.
[7] Lei, Q., and Trupp, A. C., "Experimental Study of Laminar Mixed Convection in the Entrance Region of a Horizontal Semicircular Duct". International Journal of Heat and Mass Transfer, Vol. 34, pp. 2361-2372, 1991.
[8] Lei, Q.: and Trupp, A. C., "Predictions of Laminar Mixed Convection in a Horizontal Semicircular Duct". $6^{\text {th }}$ Miami International Symposium on Heat and Mass Transfer, Vol. 4, pp. 10-12, December 1990.
[9] Nandakumar, K., Masliyah, J. H., and Law, H.S., "Bifurcation in Steady Laminar Mixed Convection Flow in Horizontal Ducts". Journal of Fluid Mechanics, Vol. 152, pp. 145-161, 1985.
[10] Chinporncharoenpong, C., Trupp, A. C., and Soliman, H. M., "Effect of Gravitational Force Orientation on Laminar Mixed Convection for a Horizontal Semicircular Duct". Proceedings of the $3^{\text {rd }}$ World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Vol. 1, pp. 815-822, 1993.
[11] Chinporncharoenpong, C., Trupp, A. C., and Soliman, H. M.. "Laminar Mixed Convection in Horizontal Circular Sector Ducts". Proceedings of the Tenth International Heat Transfer Conference, Vol. 5, pp. 447-452. 1994.
[12] Hallman, T. M., "Combined Forced and Free - Laminar Heat Transfer in Vertical Tubes With Uniform Internal Heat Generation". ASME Transactions, Vol. 78. pp. 1831-1841. 1956.
[13] Tao. L. N., "Heat Transfer of Combined Free and Forced Convection in Circular and Sector Tubes". Applied Scientific Research, Section A, Vol. 9, pp. 1831-1846, 1960.
[14] Tao, L. N., "On Combined Free and Forced Convection in Channels". Journal of Heat Transfer: Vol. 82, pp. 233 - 238, 1960.
[15] Morton, B. R., "Laminar Convection in Uniformly Heated Vertical Pipes". Journal of Fluid Mechanics, Vol. 8, pp. 227-240, 1960.
[16] Martin, A., and Shadday, J., "Combined Forced / Free Convection Through Vertical Tubes at High Grashof Numbers". Proceedings of the eighth International Heat Transfer Conference, Vol. 3, pp. 1433-1437, 1986.
[17] Wang, M., Tsuji, T., and Nagano, Y., "Mixed Convection With Flow Reversal in the Thermal Entrance Region of Horizontal and Vertical Pipes". International Journal of Heat and Mass Transfer, Vol. 37, pp. 2305-2319, 1994.
[18] Hu, M. H., and Chang, Y. P., "Optimization of Finned Tubes for Heat Transfer in Laminar Flow". Journal of Heat Transfer, Vol. 95, pp. 332-338, 1973.
[19] Prakash, C., and Patankar, S. V., "Combined Free and Forced Convection in Vertical Tubes With Radial Internal Fins". Journal of Heat Transfer, Vol. 103, pp. 566-572, 1981.
[20] Dong: Z. F., and Ebadian, M. A., "Analysis of Combined Natural and Forced Convection in Vertical Semicircular Ducts With Radial Internal Fins". Numerical Heat Transfer, Part A, Vol. 27, pp. 359-372, 1995.
[21] Cheng, C. H., and Weng, C. J., "Flow Reversal of Combined Convection in a Vertical Rectangular Duct With Unequally Isothermal Walls". Int. Commun. Journal of Heat and Mass Transfer, Vol. 18, pp. 127-140, 1991.
[22] Cheng, C. H., and Weng, C. J., "Developing Flow of Mixed Convection in a Vertical Rectangular Duct With One Heating Wall". Numerical Heat Transfer, Part A, Vol. 24, pp. 479-493, 1993.
[23] Iqbal, M., and Aggarwala, B. D.: "Combined Free and Forced Convection Through Vertical Rectangular Channels With Unequal Heating From Sides". Journal of Applied Mechanics, Vol. 93, pp. 829-833, 1971.
[24] Aggarwala, B. D., and Iqbal, M., "On Limiting Nusselt Numbers From Membrane Analogy for Combined Free and Forced Convection Through Vertical Ducts". International Journal of Heat and Mass Transfer, Vol. 12, pp. 737-748, 1969.
[25] Iqbal, M., Aggarwala, B. D., and Fowler, A. G., "Laminar Combined Free and Forced Convection in Vertical Non-Circular Ducts Under Uniform Heat Flux". International Journal of Heat and Mass Transfer, Vol. 12, pp. 1123-1139, 1969.
[26] Evans, G., and Greif, R., "Buoyant Instabilities in Downward Flow in a Symmetrically Heated Vertical Channel". International Journal of Heat and Mass Transfer, Vol. 40, pp. 2419-2430, 1997.
[27] Velusamy, K., and Garg, V. K., "Laminar Mixed Convection in Vertical Elliptic Ducts". International Journal of Heat and Mass Transfer, Vol. 39, pp. 745-752. 1996.
[28] Maitra, D., and Raju, K. S.. "Combined Free and Forced Convection Laminar Heat Transfer in a Vertical Annulus". Journal of Heat Transfer, Vol. 97, pp. 135-137, 1975.
[29] Aung, W., and Worku, C., "Theory of Fully Developed Combined Convection Including Flow Reversal". Journal of Heat Transfer, Vol. 108, pp. 485-488, 1986.
[30] Cheng, C. H., Kuo, H. S., and Huang, W. H., "Flow Reversal and Heat Transfer of Fully Developed Mixed Convection in Vertical Channels". Journal of Thermophysics and Heat Transfer, Vol. 4, pp. 375-383, 1990.
[31] Cebeci, T., Khattab, A. A., and LaMont, R., "Combined Natural and Forced Convection in Vertical Ducts". Proceeding of the seventh International Heat Transfer Conference, Vol. 3, pp. 419-424, 1982.
[32] Kemeny, G. A., and Somers, E. V., "Combined Free and Forced - Convection Flow in Vertical Circular Tubes - Experiments With Water and Oil". Journal of Heat Transfer, Vol. 84, pp. 339-346, 1962.
[33] Hallman, T. M., "Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube". NASA Technical Note, D:1104, 1961.
[34] Scheele, G. F., and Hanratty, T. J., "Effect of Natural Convection on Stability of Flow in a Vertical Pipe". Journal of Fluid Mechanics, Vol. 14, pp. 244-256, 1962.
[35] Zhang, X., and Dutta, S., "Heat Transfer Analysis of Buoyancy-Assisted Mixed Convection With Asymmetric Heating Conditions". International Journal of Heat and Mass Transfer, Vol. 41, pp. 3255-3264, 1997.
[36] Hanratty, T. J., Roses, E. M., and Kabel, R. L., "Effect of Heat Transfer on Flow Field at Low Reynolds Numbers in Vertical Tubes". Industrial and Engineering Chemistry, Vol. 50, pp. 815-820, 1958.
[37] Iqbal, M., and Stachiewicz, J. W., "Influence of Tube Orientation on Combined Free and Forced Laminar Convection Heat Transfer". Journal of Heat Transfer, Vol. 88, pp. 109-116, 1966.
[38] Iqbal, M., and Stachiewicz, J. W., "Variable Density Effects in Combined Free and Forced Convection in Inclined Tubes". International Journal of Heat and Mass Transfer, Vol. 10, pp. 1625-1629, 1967.
[39] Cheng, K. C., and Hong, S. W., "Effect of Tube Inclination on Laminar Convection in Uniformly Heated Tubes for Flat-Plate Solar Collectors". Solar Energy, Vol. 13, pp. 363-371, 1972.
[40] Cheng, K. C., and Hong, S. W., "Combined Free and Forced Laminar Convection in Inclined Tubes". Applied Scientific Research. Vol. 27, pp. 19-38, 1972.
[41] Ou, J. W., Cheng, K. C., and Lin, R. C., "Combined Free and Forced Laminar Convection in Inclined Rectangular Channels". International Journal of Heat and Mass Transfer, Vol. 19, pp. 277-283, 1976.
[42] Lavine. A. S., "Analysis of Fully Developed Aiding Mixed Convection Between Inclined Parallel Plates". Proceeding of the 1988 National Heat Transfer Conference, ASME HTD-96, Vol. 2, pp. 87-94, 1988.
[43] Lavine, A. S., "Analysis of Fully Developed Opposing Mixed Convection Between Inclined Parallel Plates". Mixed Heat Transfer-1987, ASME HTD-84, Vol. 2, pp. 29-35, 1987.
[44] Orfi, J., Galanis, N., and Nguyen, C. T., "Mixed Convection for Fully Developed Laminar Flow in Inclined Uniformly Heated Tubes". Numerical Methods in Thermal Problems VII, Part 1, pp. 545-555, 1991.
[45] Orfi, J., Galanis, N., and Nguyen, C. T., "Laminar Fully Developed Incompressible Flow With Mixed Convection in Inclined Tubes". International Journal of Numerical Method in Heat and Fluid Flow, Vol. 3, pp. 341-355, 1993.
[46] Orfi, J., Galanis, N., and Nguyen, C. T., "Analysis of Combined Forced and Free Laminar Convection in the Entrance Region of an Inclined Heated Circular Tube". Proceedings of the Tenth International Heat Transfer Conference, Vol. 5. pp. 537-542, 1994.
[47] Laouadi, A., Galanis, N., and Nguyen, C. T., "Laminar Fully Developed Mixed Convection in Inclined Tubes Uniformly Heated on Their Outer Surface". Numerical Heat Transfer, Part A, Vol. 26, pp. 719-738, 1994.
[48] Laouadi, A., Galanis, N., and Nguyen, C. T., "Numerical Investigation of Wall Conduction Effects on Laminar Mixed Convection in Inclined Circular Tubes". ASHRAE Trans., Vol. 100, Part 1, pp. 639-652, 1994.
[49] Laouadi, A., Galanis, N., and Nguyen, C. T., "Effects of Tube Inclination and Wall Characteristics on Fully Developed Mixed Convection in a Circular Tube". Proceedings of the Tenth International Heat Transfer Conference, Vol. 5: pp. 507-512. 1994.
[50] Barozzi, G. S., Zanchini, E., and Mariotti, M., "Experimental Investigation of Combined Forced and Free Convection in Horizontal and Inclined Tubes". Meccanica, Vol. 20, pp. 18-27, 1985.
[51] Iqbal, M., "Free-Convection Effects Inside Tubes of Flat-Plate Solar Collectors". Solar Energy, Vol. 10, Part 4, pp. 207-211, 1966.
[52] Sabbagh, J. A., Aziz, A., El-Ariny, A. S., and Hamad, G.., "Combined Free and Forced Convection in Inclined Circular Tube". Journal of Heat Transfer. Vol. 98, Part 2, pp. 322-324, 1976.
[53] Morcos, S. M., Hilal, M. M., Kamel, M. M., and Soliman, M. S., "Experimental Investigation of Mixed Laminar Convection in the Entrance Region of Inclined Rectangular Channels". Journal of Heat Transfer, Vol. 108, pp. 574-579, 1986.
[54] Maughan, J. R., and Incropera, F. P., 'Experiments on Mixed Convection Heat Transfer for Airflow in a Horizontal and Inclined Channel". International Journal of Heat and Mass Transfer, Vol. 30, pp. 1307-1318, 1987.
[55] Lavine, A. S., Kim, M .Y., and Shores, C. N., "Flow Reversal in Opposing Mixed Convection Flow in Inclined Pipes". Journal of Heat Transfer, Vol. 111, pp. 114-120, 1989.
[56] Lin, W. L., and Lin, T. F., "Unstable Aiding and Opposing Mixed Convection of Air in a Bottom-Heated Rectangular Duct Slightly Inclined from the Horizontal". Journal of Heat Transfer, Vol. 118, pp. 47-55, 1996.
[57] Leong, K. C.. Chan, S. K., and Phua, L. H., "Experimental Investigation of Buoyancy-Opposing Mixed Convection in an Inclined Tube". Proceedings of the 32nd Heat Transfer and Fluid Mechanics Institute, Sacramento, CA, pp. 141156, 1991.
[58] Bohne, D., and Obermeier, E., "Combined Free and Forced Convection in a Vertical and Inclined Cylindrical Annulus". Proceedings of the 8th International Heat Transfer Conference, pp. 1401-1406, 1986.
[59] Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer. McGraw-Hill, New York, 1984.
[60] Patankar, S. V., Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.
[61] Patankar, S. V., and Spalding, D. B., "A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows". International Journal of Heat and Mass Transfer. Vol. 15, pp. 1787-1806, 1972.
[62] Sparrow, E. M., and Haji-Sheikh. A. "Flow and Heat Transfer in Ducts of Arbitrary Shape with Arbitrary Thermal Boundary Conditions". Journal of Heat Transfer, Vol. 88, pp. 351-385, 1966.
[63] Rustum, I. M., Experimental Investigation of laminar Heat Transfer in the Thermal Entrance Region of Internally Finned Tubes. M.Sc. thesis, University of Manitoba, Canada, 1984.
[64] Kline, S. J., and McClintock, F. A., "Describing Uncertainties in Single-Sample Experiments". Mechanical Engineering, Vol. 75, pp. 3-8, January 1953.
[65] Moffat, R., "Describing the Uncertainties in Experimental Results". Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17, 1988.
[66] Lei, Q., and Trupp, A. C., "Further Analyses of Laminar Flow Heat Transfer in Circular Sector Ducts". Journal of Heat Transfer, Vol. 111, pp. 1088-1090, 1989.
[67] Lei, Q., and Trupp, A. C., "Maximum Velocity Location and Pressure Drop of Fully Developed Laminar Flow in Circular Sector Ducts". Journal of Heat Transfer, Vol. 111, pp. 1085-1087, 1989.

Appendix A

Numerical Codes

A. 1 Numerical Code for H1 Condition


```
C==================================- NEW =1 START WITHOUT OLD PROFILE
\begin{tabular}{llll} 
C & NEW \(=1\) & START WITHOUT OLD PROFILE \\
C & NEW & \(=0\) & \\
C & NEWGR & \(=1\) & START WITH OLD PROFILE \\
N NEW GR
\end{tabular}
        REAL*8 PI/3.141592654DO/,GROLD,PR/7.DO/,GR/O.DO/,THETA/90.DO/,
    & ALPHA/60.DO/, FRE,CFRE,P(30,48), APAP (30,48), BOTTOM, RE/500.DO/
        REAL*8 DUP (30,48), DVP (30,48),FALSU}(30,48),\operatorname{FALSV}(30,48),MS (30,48
        REAL*8 FCRUV/1.D-5/
    & FCRH/1.D-5/,FCRTH/1.D-5/,CRM/1.D-5/
        REAL*8 CRUV, CRH,CRTH,PHI/1.570796327DO/
        REAL*8 URFUV, URFW, URFTH,BRHO(5)/5*1.DO/,DH
        REAL*8 U,V,W,TH,R,DR,DF,RHO,CRHO,ALPA
        COMMON/PVAR/U (30,48),V (30,48),W(30,48),TH(30,48),DR, DF,R(30)
        COMMON/MESH/ITOT, JTOT,M,MM,N,NN
C==========================================================================
            OPEN(UNIT=1, FILE = 'fort.1',STATUS='OLD')
        READ (1,*) NEH, BOTTOM
        READ (1,*) NEWGR, GR
        READ (1,*) URFUV, URFW, URFTH
        READ (1;*) MIT
        READ (1;*) FCRUV , FCRW,FCRTH, CRM
        ITOT = 30
        JTOT = 48
        FRE = 15.
        THETA = THETA*PI/180.DO
        ALPHA = ALPHA*PI/180.DO
        M=ITOT-1
        N=JTOT-1
        MM=M-1
        NN=N-1
        IC = ITOT/2
        JC = JTOT/2
        WRITE (24,9) URFUV, URFW, URFTH
9 FORMAT(', URFUV = ',EIO.3,', URFu = ',
    * E10.3,' URFth = ',E10.3/)
CLOSE(UNIT=1)
    CALL GRID(THETA,PHI,GR,PR,ALPHA)
    DO 10 I=1,ITOT
    DO 10 J=1,JTOT
        U(I,J)=0.DO
        V(I,J)=0.DO
```

```
        W(I,J)=0.DO
10 TH(I,J)=0.DO
C--INPUT U, V,W, AND TH FROM DATASETS AND PRINT OUT
        CALL DATAIN(NEW, INITO, ITNITO, ITOT,JTOT,M,MM,N,NN,U,V,W,TH,
        L
        WRITE (24,999) FCRUV FCRU FCRTH CPM
9 9 9
    FORMAT(999) FCRUN, FCRW, FCRHH, CRM
    * FCRTh = ,E10.3, CRm =,'E10.3/
    IF (NEWGR .EQ. 0) GR = GROLD
    IF (NEWGR .EQ. 1) THEN
            INITO =0
            ITNITO = 0
        END IF
        DH = 2.DO*PHI/(1.DO+PHI)
        WRITE(24,*), * ***** GR
        WRITE (24,200) GR,PR
        WRITE (24,*) , ***
C
C--THIS IS THE MAIN LOOP
*******************************
    ITNIT = ITNITO + MIT
```



```
    NIT = INITO
    NNTT = 0
C
20 CRUV=FCRUV
    CRW=FCRW
    CRTH=FCRTH
        NIT=NIT+1
        NNTT = NNTT + 1
        IINIT = NNTT/20
        IINIT = MOD(IINIT,5) + 1
        RHO = BRHO(IINIT)
        CRHO = 1.DO - RHO
        CALL PSEUDO(DUP,DVP,FALSU,FALSV,GR,THETA,ALPHA)
        CALL. PRESS (P,DUP,DVP,FALSU,FALSV)
        CALL UVMTUM(DUP,DVP,APAP,MS,P,GR,THETA,IYES,CRUV,CRM,URFUV,
                        RHO,CRHO, BOTTOM, ALPHA)
            CALL WMTUM(APAP,FRE,CFRE,CRW,URFW,PHI,DH,ALPHA,GR,RE,THETA)
            CALL ENERGY (PR,CRTH,URFTH,PHI)
C IF (NIT .EQ. (NIT/100)*100 .OR. NIT .EQ. ITNIT) THEN
C C CALL OUTPUT (NIT,ITOT,JTOT,U,V,W,TH,MS,CRUV,CRW,CRTH,CFRE,
    * END IF
                WND IF (25,100) NIT,U(IC, JC),V(IC, JC),W(IC, JC),TH(IC, JC)
    IF ( (CRUUV*0.90DO .GT. FCRUV) .OR. (CRH*0.90DO .GT. FCRW)
    * .OR. (IYES .EQ. O) .OR. (CRTH*O.90DO .GT. FCRTH) .OR.
    * (DABS (CFRE) .GT. 1.D-4)) .AND. (NIT .LT. ITNIT)) GO TO 20
C
C--SAVE RESULT TO DATASETS AND CALCULATE NUSSELT NUMBER
    CALL DSAVE(NIT, ITNIT,ITOT, JTOT,M,MM,N,NN,U,V,W,TH,
    * GR,PR, FRE,ALPHA,THETA,DH,PHI,RE)
    CALL NUSSLT(ITOT,JTOT,M,N,W,TH, APAP,R,DR,DF,PHI)
    CALL LOCNUSS(NIT,ITNIT,ITOT,JTOT,M,N,W,TH,APAP,R,DR,DF,
        * ALPHA,PHI,DH,RE,FRE,PR,GR)
C
100 FORMAT (T2,I4,1X,4 (D14.7,1X))
200 FORMAT(T2,'Gr NO. = ',D8.2,2X,'Pr No. = ',F7.3)
```

STOP
END

C* "GRID" GENERATES THE UNIFORM GRID COORDINATES (HALF NEAR BOUNDARY) * C* IF "THETA" IS NOT $=0$ \& 180 DEG, SOLUTION IS FOR THE ENTIRE AREA

SUBROUTINE GRID (THETA, PHI, GR, PR, ALPHA)
REAL*8 THETA, FTOT,PI/3.1415926535898DO/,GR, PR, PHI , CPHI, ALPHA
REAL* 8 U,V, H, TH,R,DR, DF, COH,DR2, FORP, ROFP, FNSIN, FNCOS
COMMON/ENER/COH $(4,30,48)$, DR2, FORP, ROFP
COMMON/PVAR/U $(30,48), V(30,48), W(30,48), T H(30,48), D R, D F, R(30)$
COMMON/MESH/ITOT, JTOT,M, MM, N,NN
COMMON/PERI/FNSIN (50), FNCOS (50)
C
$R($ ITOT $)=1.000$
$R(1)=0$. $D 0$
FTOT $=2 . \mathrm{DO}$ *PHI
CPHI=PI/2.DO-PHI
DR=R (ITOT)/(ITOT-2.DO)
DF=FTOT/ (JTOT-2.DO)
$\mathrm{R}(2)=\mathrm{DR} * .5 \mathrm{DO}$
R(ITOT-1) $=$ R (ITOT) $-D R *$. 50
$\mathrm{J}=\mathrm{ITOT}-2$
DO $10 \mathrm{I}=3$, J
$R(I)=R(2)+D R *(I-2 . D O)$
$\stackrel{10}{C}$
$\mathrm{DR} 2=\mathrm{DR} * .5 \mathrm{DO}$
FORP $=\mathrm{DF} / \mathrm{DR} / \mathrm{PR}$
ROFP $=\mathrm{DR} / \mathrm{DF} / \mathrm{PR}$
C
DO $20 \mathrm{~J}=2$, N
FNSIN $(\mathrm{J})=\operatorname{DSIN}((J-1.5 D 0) * D F+C P H I-T H E T A) * D C O S(A L P H A)$
FNCOS $(\mathrm{J})=\operatorname{DCOS}((\mathrm{J}-1.0 \mathrm{DO}) * \mathrm{DF}+\mathrm{CPHI}-$ THETA $) * D C O S(A L P H A)$
20 CONTINUE
GGRR $=-0$.
$\mathrm{FAC}=180 . / \mathrm{PI}$
WRITE $(24,50)$ FTOT*FAC, ALPHA*FAC, PR, DR, DF
DO $40 \mathrm{I}=1$, ITOT
WRITE $(24,60)$ I,R(I)
FORMAT (//T15,'Laminar Mixed Convection Heat Transfer',// *' for a Semicircular Duct with 2*Phi =;,F7.1// *' T12, 'Pr No. $=$, $F 7.3,2 \mathrm{X}, \mathrm{JR}=$, at the angle Alpha $=$ ', F7.1//

* T12, 'Pr No. = ', F7.3, $2 \mathrm{X}, \mathrm{dR}=$ ',
*F7.5,2X,'dF = ',F7.5//T10,'===='R -- COORDINATE ===='/)
FORMAT (T10, I3, 2X, F15.12)
RETURN
END

C* "DATAIN" READS U,V,U,TH FROM DATASETS AND PRINTS THEM OUT
C* EACH DATASET CORRESPONDS TO THE FORMAT GIVEN IN SUBROUTINE "DSAVE" *
$C==$
SUBROUTINE DATAIN(NEW,NIT, ITNIT, ITOT, JTOT, M, MM,N,NN, U, V, W,TH,
\& GR, PR, FRE, THETA, PHI)
REAL*8 U(ITOT, JTOT),V(ITOT, JTOT), W(ITOT, JTOT), TH(ITOT, JTOT), * FRE, GR, PR, FAC, PHI2, DH, ALPR, THETA, PHI
c

```
    IF (NEW .EQ. 1) THEN
        NIT = 0
        ITNIT =0
        RETURN
```

```
    END IF
    FAC = 180.0/3.141592654
    READ (13,400) NIT, ITNIT,GR,PR,PHI2,ALPA
    DO 10 I=2,MM
        READ(13,100) (U(I, J), J=2, JTOT)
    READ (13,410) NIT,ITNIT,GR,PR, PHI2, ALPA
    DO 20 I=2,M
        READ (13,100) (V (I, J), J=2,NN)
    READ (13,420) NIT, ITNIT,GR,PR,PHI2,ALPA
    DO 40 I=2,M
        READ(13, 200) (W(I, J), J=2, JTOT)
    READ (13,*) FRE
    READ (13,430) NIT,ITNIT,GR,PR,PHI2,ALPA
    DO 50 I=2,M
        READ(13, 100) (TH(I, J), J=2, JTOT)
    DH = 2.DO*PHI/(1.DO+PHI)
    FRE = FRE/DH/DH
    FORMAT(T8,10D15.7)
    FORMAT (T8,10D15.7)
    * 'GR=',D9.3,' PR=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1)
    FORMAT (34X,I5,8X,I5,4X,D9.3,4X,F5.1,7X,F6.1,7X,F6.1)
    FORMAT (34X, 15,8X,15, 4X,D9.3,4X,F5.1,7X,F6.1,7X,F6.1)
    FORMAT (34X,I5,8X,15,4X,D9.3,4X,F5.1,7X,F6.1,7X,F6.1)
    FORMAT (12X,F23.15)
    FORMAT(39X,I5,8X,I5,4X,D9.3,4X,F5.1,7X,F6.1,7X,F6.1)
    RETURN
    END
```



```
C* "PSEUDO" CALCULATES FALSE VELOCITY BY SUBSTITUTING NEIGHBOR VALUES
C==========================================================================
    SUBROUTINE PSEUDO(DUP,DVP,FALSU, FALSV,GR,THETA, ALPHA)
    REAL*8 DUP (ITOT, JTOT), DVP (ITOT, JTOT), FALSU(ITOT, JTOT),
    * FALSV (ITOT, JTOT), GR, THETA, RE, ALPHA
    REAL*8 SB, AE, AW, AN, AS, XR, ASUM, Y,D1,D2
    REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COW
    COMMON/PVAR/U(30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/COEF/COU (4), COV (4),COW (4),SRC1 (30,48),SRC2 (30,48),
    * SRC3(30,48)
    COMMON/MESH/ITOT, JTOT, M, MM,N,NN
C--CALCULATE THE PSEUDOVELOCITY OF U
    CALL SRCEGN(1,GR,THETA,RE,ALPHA,DH)
    CALL SRCEGN (2,GR,THETA,RE,ALPHA,DH)
    DO 10 I=2,MM
        XR=R(I)+0.50DO*DR
        D1 = 2.DO*DR*DF/XR
        D2 = DF*XR
        DO 10 J=2,N
            CALL COGN1(I,J)
            AE=COU(1)
            AW=COU(2)
            AN=COU (3)
            AS=COU (4)
                ASUM=AE+AW+AN+AS+D1
C CALL SOURCE(1,SB,I,J,GR,THETA)
                SB = SRC1(I,J)
                Y=AE*U(I+1,J)+AW*U(I-1,J)+AN*U(I,J+1)+AS*U(I,J-1)
                FALSU(I,J)=(Y+SB)/ASUM
10 DUP(I,J)=D2/ASUM
C--CALCULATE THE PSEUDOVELOCITY OF V
```

```
DO 20 I=2,M
        D1 = DR*DF/R(I)
        DO 20 J=2,NN
        CALL COGN2(I,J)
        AE=COV (1)
        AW=COV (2)
        AN=COV (3)
        AS=COV (4)
        ASUM=AE+AW+AN+AS+D1
        SB = SRC2(I,J)
        Y=AE*V (I+1,J)+AW*V(I-1,J)+AN*V (I,J+1) +AS*V(I,J-1)
        FALSV(I,J)=(Y+SB)/ASUM
        DVP(I,J)=DR/ASUM
RETURN
END
C=======================================================-S
C* "INDEX" = 1, 2, 3, 4 FOR EAST, W, N, S RESPECTIVELY (E-RADIAL) 
C* the poher law IS USEd
```



```
    SUBROUTINE COGN1(I,J)
    REAL*8 AP, XX ,YY,FF,DD,U,V,W,TH,R,DR,DF,COU,COV,COW
    COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/COEF/COU (4), COV (4),COW (4) ,SRC1 (30,48),SRC2 (30,48),
    *
                            SRC3(30,48)
    COMMON/MESH/ITOT, JTOT,M, MM,N,NN
    AP(XX,YY)=DMAX1 (0.DO,(1.DO-0.1DO*DABS (XX/YY))**5)
    FF=DF*R(I+1)*(U(I,J)+U(I+1,J))*.5DO
            DD=2.DO*R(I+1)/DR*DF
                COU(1) = DD*AP(FF,DD)+DMAX1(0.DO,-FF)
            FF=DF*R(I)*(U(I,J)+U(I-1,J))*.5D0
            DD=2.DO*R(I)/DR*DF
                COU(2)= DD*AP(FF,DD)+DMAX1 (0.DO,FF)
                    FF=DR*(V(I+1,J)+V(I,J))*.5DO
                    DD=DR/(R(I)+0.5DO*DR)/DF
                    IF (J.EQ.JTOT-1) DD=2.DO*DD
                COU(3) = DD*AP(FF,DD)+DMAX1(0.DO,-FF)
                    FF=DR*(V (I,J-1)+V(I+1,J-1))*.5D0
                    DD=DR/(R(I)+0.5D0*DR)/DF
                    IF(J.EQ.2) DD=2.DO*DD
                    COU(4) = DD*AP(FF,DD)+DMAX1(O.DO,FF)
    RETURN
    END
```



```
    SUBROUTINE COGN2(I,J)
    REAL*8 AP, XX ,YY,FF,DD, XR,U,V,W,TH,R,DR,DF,COU,COV,COW
    COMMON/PVAR/U (30,48),V (30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/COEF/COU (4),COV (4),COW (4),SRC1 (30,48), SRC2 (30,48),
                SRC3(30,48)
    COMMON/MESH/ITOT, JTOT,M, MM, N, NN
    AP (XX,YY) =DMAX1 (O.DO,(1.DO-0.1DO*DABS (XX/YY))**5)
    XR=R(I)+0.5DO*DR
            FF=XR*DF*(U(I,J)+U(I,J+1))*.5DO
            DD=XR*DF/DR
            IF (I.EQ. ITOT-1) DD=2.DO*DD
                COV(1) = DD*AP(FF,DD)+DMAX1(0.DO,-FF)
            IF(I.GT.2) GOTO 25
                COV(2) = 0.DO
                GOTO }2
```

```
    25
        XR=R(I)-0.5DO*DR
            FF=XR*DF*(U(I-1,J)+U(I-1,J+1))*.5DO
            DD=XR*DF/DR
            COV(2) = DD*AP(FF,DD)+DMAX1 (0.DO,FF)
                            FF=DR*(V(I,J)+V(I,J+1))*.5DO
DD=2.DO*DR/R(I)/DF
    COV (3) = DD*AP(FF,DD)+DMAX1 (0.DO,-FF)
FF=DR*(V(I,J)+V(I,J-1)) #. 5DO
                                    DD=2.DO*DR/R(I)/DF
                            COV (4) = DD*AP(FF,DD) +DMAX1 (0.DO,FF)
    RETURN
    END
```



```
    SUBROUTINE COGN3(I,J,RE)
    REAL*8 AP, XX,YY,FF,DD, XR,U,V,W,TH,R,DR,DF,COU,COV,COW,RE
    COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/COEF/COU (4), COV (4), COW (4),SRC1 (30,48), SRC2(30,48),
                    SRC3(30,48)
            COMMON/MESH/ITOT, JTOT ,M,MM,N,NN
            AP (XX,YY) =DMAX1 (0.DO, (1.DO-0.1DO*DABS (XX/YY))**5)
            XR=R(I)+0.5DO*DR
                    FF=XR*DF*U(I,J)
                    DD=XR*DF/DR
                    IF (I.EQ.ITOT-1) DD=2.DO*DD
                            COW(1) = DD*AP(FF,DD) +DMAX1 (O.DO,-FF)
                    IF(I.GT.2) GOTO }3
                    COW(2) = O.DO
                    GOTO }3
                    XR=R(I)-0.5DO*DR
                        FF=XR*DF*U(I-1,J)
                    DD=\R*DF/DR
                            COW(2) = DD*AP(FF,DD)+DMAX1 (0.DO,FF)
                    FF=DR*V(I,J)
            DD=DR/R(I)/DF
            IF(J.EQ.JTOT-1) DD=2.DO*DD
                COW (3) = DD*AP (FF,DD)+DMAX1 (0.DO,-FF)
            FF=DR*V(I,J-1)
                        DD=DR/R(I)/DF
                            IF(J.EQ.2) DD=2.DO*DD
            COW(4) = DD*AP (FF,DD)+DMAX1 (0.DO,FF)
        RETURN
    END
```



```
C* "SRCEGN" COMPUTES THE SOURCE TERMS FOR U-AND-V MOMENTUM EQUATION
C=============================================================================
    SUBROUTINE SRCEGN(INDEX,GR,THETA, RE, ALPHA,DH)
    REAL*8 SB,GR,THETA,RR,S1,S2,XX,DR3,RF,DR5,FNSIN, FNCOS
    REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COW, ALPHA,RE,DH
    COMMON/PVAR/U ( 30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/COEF/COU (4),COV (4),COW(4), SRC1 (30,48),SRC2( }30,48)
    * SRC3(30,48)
    COMMON/MESH/ITOT, JTOT,M,MM,N,NN
    COMMON/PERI/FNSIN(50),FNCOS(50)
C
    DR3 = DR*3.DO
    RF=DR*DF
    DR5 = DR*.5DO
    GO TO (1000,2000,3000), INDEX
1000 DO 10 I = 2, M
            RR=R(I)+DR5
```

```
        XX=RF*RR*GR*.5DO
        DO 10 J = 2, N
C SB=-XX #DSIN((J-1.5DO) #DF-THETA)*(TH(I,J) +TH(I+1,J))
        SB=-XX*FNSIN (J)*(TH(I,J)+TH(I+1,J))
        SB=SB+V(I+1,J)-V(I,J)-V(I+1,J-1)+V(I,J-1)
        S1=(V(I+1,J)+V(I,J)-V(I+1,J-1)-V(I,J-1))*.5D0
        SB=SB-DR3/RR*S1
        S2=(V(I+1,J)+V(I,J)+V(I+1,J-1)+V(I,J-1))*.25D0
        SRC1(I,J) = SB+RF*S2*S2
    CONTINUE
    RETURN
2000 DO 20 I = 2, M
        YY=RF*R(I)*GR
        DO 20 J = 2, N
            SB=U(I,J+1)-U(I,J)-U(I-1,J+1)+U(I-1,J)
            SB=SB+DR3/R(I)*(U(I,J+1)-U(I,J)+U(I-1,J+1)-U(I-1,J))*.5DO
            S1=(U(I,J+1)+U(I-1,J+1)+U(I,J)+U(I-1,J))*.25DO
            SB=SB-RF*V(I,J)*S1
            S2=(TH(I,J)+TH(I,J+1)) =.5DO
                    SRC2(I,J) = SB-YY*S2*DCOS((J-1)*DF-THETA)
                    SRC2(I,J) = SB-YY*S2*FNCOS(J)
    CONTINUE
            RETURN
C
3000 DO 30 I = 2, M
YY=RF*R(I)*DH* (GR/RE)*DSIN (ALPHA)
                            DO 30 J = 2,N
    S2 = TH(I,J)
c S2=0.25DO*(TH(I,J)+TH(I-1,J)+(TH(I,J+1)+TH(I-1,J-1))
                            SRC3(I,J) = YY*S2
    30 CONTINUE
        RETURN
        END
```



```
C* "PRESS" SOLVES PRESSURE EQUUTION OR PRESSURE CORRECTION EQUATION
C* -----------------------------------
C===========================================================================
    SUBROUTINE PRESS(P,DUP,DVP,FALSU,FALSV)
    REAL*8 DUP (30,48),DVP (30,48), FALSU(30,48),FALSV (30,48),P(30,48)
    REAL*8 Y,XE,XH,DR5, U,V,W,TH,R,DR,DF
    COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/MESH/ITOT, JTOT,M, MM, N, NN
C REAL*8 A(784,57),X(784),XL(22736)
REAL*8 A (1288,57) ,X(1288),XL(37352)
C-- NOTE THAT A, X, XL NEED TO bE CHANGED WHEN THE MESH SIZE IS CHANGED
C-- A (MM*NN,MM*2+1),X(MMM*NN),XL(MM*NN* (MMY+1)),K=(J-2) =MM+I+1
C
    NROW=MM*NN
    NCOL=2*MM+1
    IDC = (1+NCOL)/2
    DR5 = DR*.5DO
C
C--INITIALIZATION OF A
    DO 10 I=1,NROW
    DO 10 J=1,NCOL
10 A(I,J)=0.DO
C
    I=2
```

```
    J=2
    K=1
    XE=R(I) +DR5
    A(K,IDC+1)=DF*XE*DUP (I,J)
    A(K,IDC+MM) =DR*DVP(I,J)
    A(K,IDC) =-(A(K,IDC+1)+A(K,IDC+MM ) )
    Y=-DF*XE*FALSU(I,J)-DR*FALSV(I,J)
    X(K)=-Y
    I=M
    K=MM
    XW=R(I) -DR5
    A(K,IDC-1)=DF*XW*DUP(I-1,J)
    A(K,IDC+MMM)=DR*DVP (I,J)
    A(K,IDC) =-(A(K,IDC-1)+A(K,IDC+MM))
    Y=DF*XH*FALSU(I-1,J)-DR*FALSV (I,J)
    X(K)=-Y
    DO 30 I=3,MM
    K=I-1
    XE=R(I) +DR5
    XW=R(I) -DR5
    A(K,IDC+1)=DF*XE*DUP(I,J)
    A(K,IDC-1)=DF*XW*DUP(I-1,J)
    A(K,IDC+MMM)=DR*DVP(I,J)
    A(K,IDC)=-(A(K,IDC+1)+A(K,IDC-1)+A(K,IDC+MM))
    Y=DF*(XW*FALSU(I-1,J)-XE*FALSU(I,J))-DP*FALSV (I,J)
    X(K)=-Y
C
C--CALCULATE CDEFFICIENTS ALONG J=3 AND J=JTOT-2
    DO 70 J=3,NN
    K=(J-2) *MM+1
    I=2
    XE=R(I) +DR5
    A(K,IDC+1)=DF*XE*DUP(I,J)
    A(K,IDC+MM)=DR*DVP(I,J)
    A(K,IDC-MM) =DR*DVP(I,J-1)
    A(K,IDC)=-(A(K,IDC+1)+A(K,IDC+MMM)+A(K,IDC-MM))
    Y=-DF*XE*FALSU(I,J) +DR*(FALSV (I,J-1)-FALSV (I,J))
    X(K)=-Y
    I=M
    XW=R(I) -DR5
    K=(J-1) #MM
    A (K,IDC-1)=DF*XW*DUP(I-1,J)
    A(K,IDC+MM)=DR*DVP(I,J)
    A (K,IDC-MM) =DR*DVP(I, J-1)
    A(K,IDC) =- (A (K,IDC-1)+A(K,IDC+MM) +A (K,IDC-MM ) )
    Y=DF*XW*FALSU(I-1,J)+DR*(FALSV (I,J-1)-FALSV (I,J))
    X(K)=-Y
    DO 60 I=3,MM
            K=(J-2)*MM+I-1
            XE=R(I)+DR5
            XH=R(I) -DR5
            A(K,IDC+1)=DF*XE*DUP(I,J)
            A(K,IDC-1)=DF*KW*DUP (I-1,J)
            A(K,IDC+MMM)=DR*DVP (I, J)
            A(K,IDC-MM) =DR*DVP (I,J-1)
            A(K,IDC) =- (A(K,IDC+1)+A(K,IDC-1)+A(K,IDC+MMM)+A(K,IDC-YM ))
            Y=DF*(XW*FALSUU(I-1,J)-XE*FALSU(I,J))
                    +DR*(FALSV (I, J-1)-FALSV (I,J))
            X(K)=-Y
            CONTINUE
```

```
C
```

C
C--CALCULATE COEFFICIENTS ALONG J=JTOT-1
C--CALCULATE COEFFICIENTS ALONG J=JTOT-1
I=2
I=2
J=N
J=N
XE=R(I) +DR5
XE=R(I) +DR5
K=(NN-1)*FM+1
K=(NN-1)*FM+1
A(K,IDC+1)=DF*XE*DUP(I,J)
A(K,IDC+1)=DF*XE*DUP(I,J)
A (K,IDC-MM) = DR*DVP (I,J-1)
A (K,IDC-MM) = DR*DVP (I,J-1)
A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-MM))
A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-MM))
Y=-DF*XE*FALSU(I,J)+DR*FALSV (I,J-1)
Y=-DF*XE*FALSU(I,J)+DR*FALSV (I,J-1)
X(K)=-Y
X(K)=-Y
I=M
I=M
XW=R(I)-DR5
XW=R(I)-DR5
K=MM*NN
K=MM*NN
A(K,IDC-1)=DF*XW*DUP (I-1,J)
A(K,IDC-1)=DF*XW*DUP (I-1,J)
A(K,IDC-MM) =DR*DVP(I,J-1)
A(K,IDC-MM) =DR*DVP(I,J-1)
A(K,IDC) =-(A(K,IDC-1)+A(K,IDC-KM))
A(K,IDC) =-(A(K,IDC-1)+A(K,IDC-KM))
Y=DF*XH*FALSU(I-1,J) +DR*FALSV (I,J-1)
Y=DF*XH*FALSU(I-1,J) +DR*FALSV (I,J-1)
X(K)=-Y
X(K)=-Y
DO 80 I=3,MM
DO 80 I=3,MM
K=(NN-1) \#MMM+I-1
K=(NN-1) \#MMM+I-1
XE=R(I)+DR5
XE=R(I)+DR5
XW=R(I)-DR5
XW=R(I)-DR5
A(K,IDC+1)=DF*XE*DUP(I,J)
A(K,IDC+1)=DF*XE*DUP(I,J)
A(K,IDC-1) =DF*XW*DUP (I-1,J)
A(K,IDC-1) =DF*XW*DUP (I-1,J)
A(K,IDC-MM)=DR*DVP(I,J-1)
A(K,IDC-MM)=DR*DVP(I,J-1)
A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-1)+A(K,IDC-iMM))
A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-1)+A(K,IDC-iMM))
Y=DF*(XW*FALSU(I-1,J)-XE*FALSU(I,J))+DR*FALSV(I,J-1)
Y=DF*(XW*FALSU(I-1,J)-XE*FALSU(I,J))+DR*FALSV(I,J-1)
80 X(K)=-Y
80 X(K)=-Y
C
C
C--SPECIFY A VALUE AT ONE POINT, CALL "LEQT1B" \& SUBSTITUTE BACK TO P
C--SPECIFY A VALUE AT ONE POINT, CALL "LEQT1B" \& SUBSTITUTE BACK TO P
K=MM*NN
K=MM*NN
A(K,IDC)=1.DO
A(K,IDC)=1.DO
A(K,IDC-1)=0.DO
A(K,IDC-1)=0.DO
A(K,IDC-MM)=0.DO
A(K,IDC-MM)=0.DO
X(K)=0.DO
X(K)=0.DO
CALL LEOT1B(A ,NROW,MM,MM,NROW, X, 1,NROW, O,XL, IER)
CALL LEOT1B(A ,NROW,MM,MM,NROW, X, 1,NROW, O,XL, IER)
DO }95\textrm{I}=2,\textrm{M
DO }95\textrm{I}=2,\textrm{M
DO 95 J=2,N
DO 95 J=2,N
95 P(I,J)=X((J-2)*MM+I-1)
95 P(I,J)=X((J-2)*MM+I-1)
RETURN
RETURN
END

```
        END
```



```
C* "UVMTUM" SOLVES THE MOMENTUM EQUATIONS FOR VELOCITIES OF U AND V
```

C* "UVMTUM" SOLVES THE MOMENTUM EQUATIONS FOR VELOCITIES OF U AND V
ND V *
ND V *
SUBROUTINE UVMTUM(DUP, DVP, APAP, MS,P,GR,THETA, IYES , CRUV , CRM, URFUV,
SUBROUTINE UVMTUM(DUP, DVP, APAP, MS,P,GR,THETA, IYES , CRUV , CRM, URFUV,
\& RHD, CRHO,BOTTOM, ALPHA)
\& RHD, CRHO,BOTTOM, ALPHA)
REAL %8 DUP (30,48), DVP (30,48), APAP (30,48),P(30,48),MS (30, 48)
REAL %8 DUP (30,48), DVP (30,48), APAP (30,48),P(30,48),MS (30, 48)
REAL*8 GR,THETA, CRUV,CRM,URFUV,RHO , CRHO, BOTTOM, ALPHA
REAL*8 GR,THETA, CRUV,CRM,URFUV,RHO , CRHO, BOTTOM, ALPHA
REAL*8 SB,AN,AS, XE,XW,Y
REAL*8 SB,AN,AS, XE,XW,Y
REAL*8 A(50),B(50) ,C(50),D(50),T(50),D1,DR5
REAL*8 A(50),B(50) ,C(50),D(50),T(50),D1,DR5
REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COW
REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COW
COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
COMMON/COEF/COU (4),COV (4),COW (4),SRC1 (30,48),SRC2(30,48),
COMMON/COEF/COU (4),COV (4),COW (4),SRC1 (30,48),SRC2(30,48),
SRC3 (30,48)
SRC3 (30,48)
COMMON/MESH/ITOT, JTOT , M , MM, N , NN
COMMON/MESH/ITOT, JTOT , M , MM, N , NN
C
C
C--SOLVE THE MOMENTUM EQUATIONS FOR U
C--SOLVE THE MOMENTUM EQUATIONS FOR U
IUV =20

```
    IUV =20
```

```
    IYES=1
    MORE=1
    NI=0
    DR5 = DR*.5DO
    IF (NI .LE. 5) GOTO 12
        CRUV=3.DO*CRUV
    CONTINUE
            CALL SRCEGN(1,GR,THETA,RE,ALPHA,DH)
    A(1)=1.DO
    B(1)=0.DO
    C(1)=0.DO
    D(1)=0.DO
    A(M)=1.DO
    B(M)=0.DO
    C(M)=0.DO
    D(M)=0.DO
    D1 = 2.DO*DR*DF
    DO 35 J=2,N
    DO 20 I=2,MM
        XE=R(I) +DR5
        CALL COGN1 (I,J)
        B(I)=COU (1)
        C(I)=COU (2)
        AN =COU(3)
            AS =CDU(4)
            SB = SRC1(I,J)
            A(I) =(B(I)+C(I) +AN+AS+D1/XE)/URFUV
            Y=(1.DO-URFUV)*A(I)*U(I,J)
            DUP(I,J)=DF*KE/A (I)
    D(I)=AN*U(I,J+1)+AS*U(I,J-1)+SB+DF*XE*(P(I,J)-P(I+1,J))+Y
    CALL TDMA(1,M,A,B,C,D,T)
    DO 30 I=2,MM
            IF (DABS(T(I)).LT.BOTTDM) GO TO 30
    IF (DABS((U(I,J)-T(I))/T(I)) .GT. CRUV) IYES=0
    U(I,J)= RHO*T(I) + CRHO*U(I,J)
35 CONTINUE
C--SOLVE FOR V; f-DIRECTION SWEEP ALONG THE RADIUS
            CALL SRCEGN (2,GR,THETA, RE, ALPHA,DH)
    A(1)=1.DO
    B(1)=0.DO
    C(1)=0.DO
    D(1)=0.DO
    A (ITOT)=1.DO
    B(ITOT)=0.DO
    C (ITOT)=0.DO
    D (ITOT)=0.DO
DO 90 J=2,NN
    DO 70 I=2,M
    CALL COGN2(I,J)
    B(I)=COV (1)
    C(I)=COV (2)
    AN =COV (3)
    AS =COV(4)
    SB = SRC2(I,J)
    A(I)=(B(I)+C(I)+AN+AS+DR*DF/R (I))/URFUV
    Y=(1.DO-URFUV) *A(I)*V (I,J)
    SB = SRC2(I,J)
    DVP(I,J)=DR/A (I)
```

```
APPENDIX A. NUMERICAL CODES
```

```
70 D(I)=AN*V(I,J+1)+AS*VV(I,J-1)+SB+DR*(P(I,J)-P(I,J+1))+Y
```

70 D(I)=AN*V(I,J+1)+AS*VV(I,J-1)+SB+DR*(P(I,J)-P(I,J+1))+Y
CALL TDMA(1, ITOT,A,B,C,D,T)
CALL TDMA(1, ITOT,A,B,C,D,T)
DO }80\mathrm{ I=2,M
DO }80\mathrm{ I=2,M
IF (DABS(T(I)).LT.BOTTOM) GO TO }8
IF (DABS(T(I)).LT.BOTTOM) GO TO }8
IF (DABS((V(I,J)-T(I))/T(I)) .GT. CRUV) IYES=0
IF (DABS((V(I,J)-T(I))/T(I)) .GT. CRUV) IYES=0
80 V(I,J) = RHO*T(I) + CRHO*V(I,J)
80 V(I,J) = RHO*T(I) + CRHO*V(I,J)
90 CONTINUE
90 CONTINUE
C
C
IF (IYES .EQ. O) GOTO 95
IF (IYES .EQ. O) GOTO 95
MORE=0
MORE=0
IF (MORE .EQ. 1 .AND. NI .LE. IUV) GOTO 10
IF (MORE .EQ. 1 .AND. NI .LE. IUV) GOTO 10
C
C
C--CALCULATE THE MASS SOURCE B
C--CALCULATE THE MASS SOURCE B
IYES=1
IYES=1
AS=-100000.DO
AS=-100000.DO
DO 240 I=2,M
DO 240 I=2,M
XE=R(I)+DR5
XE=R(I)+DR5
XW=R(I) -DR5
XW=R(I) -DR5
DO 230 J=2,N
DO 230 J=2,N
Y=DF* (XH*U(I-1,J)-XE*U(I,J)) + DR*(V(I,J-1)-V(I,J))
Y=DF* (XH*U(I-1,J)-XE*U(I,J)) + DR*(V(I,J-1)-V(I,J))
IF (I. EQ. M .AND. J .EQ. N) GOTO }22
IF (I. EQ. M .AND. J .EQ. N) GOTO }22
IF (DABS(Y) .GT. CRM) IYES=0
IF (DABS(Y) .GT. CRM) IYES=0
IF (DABS(Y) .LT. AS) GOTO 225
IF (DABS(Y) .LT. AS) GOTO 225
AS=DABS(Y)
AS=DABS(Y)
ISI=I
ISI=I
IS J=J
IS J=J
CONTINUE
CONTINUE
MS (I, J) =Y
MS (I, J) =Y
230 MS(I,'
230 MS(I,'
C
C
WRITE (24,300) NI, CRUV, MORE, AS, ISI, ISJ, IYES
WRITE (24,300) NI, CRUV, MORE, AS, ISI, ISJ, IYES
300 FORMAT(T2,'NI(uv)=',I3,', CRuv=',E10.3,', more=',I1,
300 FORMAT(T2,'NI(uv)=',I3,', CRuv=',E10.3,', more=',I1,
* ', Max Srce=',E10.3,' at I=',I2,' J=',I2,', IYES=',I1)
* ', Max Srce=',E10.3,' at I=',I2,' J=',I2,', IYES=',I1)
C
C
IF (IYES .NE. O) GOTO 400
IF (IYES .NE. O) GOTO 400
CALL PRESS(APAP,DUP,DVP,U,V)
CALL PRESS(APAP,DUP,DVP,U,V)
C
C
DO 320 I=2,MM
DO 320 I=2,MM
DO 320 J=2,N
DO 320 J=2,N
U(I,J)=U(I,J)+DUP(I, J)*(APAP (I,J)-APAP(I+1,J))
U(I,J)=U(I,J)+DUP(I, J)*(APAP (I,J)-APAP(I+1,J))
DO 350 I=2,M
DO 350 I=2,M
DO 350 J=2,NN
DO 350 J=2,NN
V(I,J)=V(I,J)+DVP(I,J)*(\operatorname{APAP}(I,J)-\operatorname{APAP}(I,J+1))
V(I,J)=V(I,J)+DVP(I,J)*(\operatorname{APAP}(I,J)-\operatorname{APAP}(I,J+1))
CONTINUE
CONTINUE
RETURN
RETURN
END

```
        END
```



```
C* "TDMA" SOLVES LINEAR ALGEBRA EQ'S (TRIDIAGONAL-MATRIX ALGORITHM)
```

C* "TDMA" SOLVES LINEAR ALGEBRA EQ'S (TRIDIAGONAL-MATRIX ALGORITHM)
C==
C==
SUBROUTINE TDMA(M,N,A,B,C,D,T)
SUBROUTINE TDMA(M,N,A,B,C,D,T)
REAL*8 A(50),B(50),C(50),D(50),T(50),P(50),Q(50)
REAL*8 A(50),B(50),C(50),D(50),T(50),P(50),Q(50)
C
C
P(M)=B(M)/A(M)
P(M)=B(M)/A(M)
Q(M)=D(M)/A(M)
Q(M)=D(M)/A(M)
J=M+1

```
    J=M+1
```

10
DO $10 \mathrm{I}=\mathrm{J}$, N
$P(I)=B(I) /(A(I)-C(I) * P(I-1))$
$Q(I)=(D(I)+C(I) * Q(I-1)) /(A(I)-C(I) * P(I-1))$
$T(N)=Q(N)$
$\mathrm{I}=\mathrm{N}-1$
$T(I)=P(I) * T(I+1)+Q(I)$
$\mathrm{I}=\mathrm{I}-1$
IF (I .GE. M) GOTO 20
RETURN
END

C* "WMTUM" SOLVES THE MONENTUM EQUATION FOR W (F-DIRECTION SWEEP)
SUBROUTINE WMTUM(APAP, FRE, CFRE, CRW, URFW, PHI, DH, ALPHA, GR, RE, THETA)
REAL*8 APAP $(30,48), A(50), B(50), C(50), D(50), T(50), D 1, P H I, D H$
REAL*8 FRE, CRW, URFW, CFRE, AE, AN, AS, BPW, Y, FINTEG, ALPHA, THETA
REAL $\% ~ U ~ U, V, W, T H, R, D R, D F, C O U, C O V, C O W, G R, R E$
COMMON/PVAR/U $(30,48), V(30,48), W(30,48), T H(30,48), D R, D F, R(30)$
COMMON/COEF/COU (4) , COV (4) , COW (4) , SRC1 $(30,48), \operatorname{SRC} 2(30,48)$, SRC3 $(30,48)$
COMMON/MESH/ITOT , JTOT , M, MM, N, NN
IW=20
$\mathrm{NI}=0$
IYES=1
MORE $=1$
$140 \quad \mathrm{NI}=\mathrm{NI}+1$
IF (NI .LE. 5) GOTO 145
CRW=CRW*3.0D0
CONTINUE
CALL SRCEGN (3 , GR, THETA , RE , ALPHA , DH)
$A(1)=1$. $D 0$
$B(1)=0 . D 0$
$C(1)=0 . D 0$
$D(1)=0$. $D 0$
$\mathrm{A}(\mathrm{ITOT})=1$. DO
$\mathrm{B}($ ITOT $)=0 . D 0$
$C($ ITOT $)=0 . D 0$
$D(I T O T)=0 . D O$
$D 1=2 . D 0 * D R * D F$
DO $160 \mathrm{~J}=2, \mathrm{~N}$
DO $150 \quad \mathrm{I}=2, \mathrm{M}$
CALL COGN3(I,J,RE)
$B(I)=\operatorname{COW}$ (1)
$C(I)=\operatorname{COH}(2)$
AN $=\operatorname{COH}$ (3)
AS $=\operatorname{COW}(4)$
$\mathrm{SB}=\operatorname{SRC}(\mathrm{I}, \mathrm{J})$
$A(I)=(B(I)+C(I)+A N+A S) / U R F W$
$Y=D 1 * R(I)$
$B P W=Y * F R E+(1 . O D O-U R F W) * A(I) * W(I, J)$
APAP $(I, J)=Y / A(I)$
$D(I)=A N * W(I, J+1)+A S * W(I, J-1)+B P W+S B$
CALL TDMA (1, ITOT, A, B,C,D,T)
DO $155 \mathrm{I}=2, \mathrm{M}$
IF (DABS ($(W(I, J)-T(I)) / T(I))$.GT. CRW) IYES $=0$
$W(I, J)=T(I)$
CONTINUE
IF (IYES .EQ. O) GOTO 190
MORE=0
IYES $=1$

```
C--CORRECTION OF W AND FRE BY USING MASS CONSERVATION
C
    AE=PHI-FINTEG(ITOT, JTOT,W,R,DR,DF)
    CFRE=AE/FINTEG(ITOT,JTOT,APAP,R,DR,DF)
    Y=0.5DO
    IF(DABS(CFRE/FRE) .GT . 0.1D0) Y=0.01DO
    FRE=FRE+CFRE*Y
    DO 200 I=2,M
    DO 200 J=2,N
200 W(I,J)=W(I,J) +APAP(I,J) #CFRE*Y
        IF ((MORE .EQ. 1) .AND. (NI .LT. IW)) GOTO 140
        WRITE (24,300) NI,CRW,MORE,CFRE, FRE*DH*DH
300 FORMAT(T2,'NI (r)= ',I3,', CRw =',E10.3,', more=',I1,
        *', CfRe=',E8.2,', fRe(Dh)=',F11.6)
        RETURN
        END
C=============================================================================
C* "FINTEG" PERFORMS SIMPLE AREA INTEGRATION: II=SUMMATION OF XI*AI *
C=============================================================================
        DOUBLE PRECISION FUNCTION FINTEG(ITOT,JTOT,X,R,DR,DF)
        INTEGER ITOT, JTOT, I,J,M,N
        REAL*8 X (30,48),R(30),DR,DF
C
        M=ITOT-1
        N=JTOT-1
        FINTEG=0.ODO
        DO 10 I=2,M
        DO 10 J=2,N
10 FINTEG=FINTEG+X(I,J) #R(I)
        FINTEG=DR*DF*FINTEG
        RETURN
        END
C============================================================================
C* "ENERGY" SOLVES THE ENERGY EQUATION FOR TH BY "TDMA" (F-SWEEP)
C==============================================================================
    SUBROUTINE ENERGY(PR,CRTH,URFTH,PHI)
    REAL*8 PR,CRTH,URFTH,AN,AS,BPTH,Y
    REAL*8 A(50),B(50) ,C(50),D(50),T(50),PI/3.1415926535898DO/,D1
    REAL*8 U,V,W,TH,R,DR,DF,COH
    REAL*8 DR2,FORP,ROFP,PHI
    COMMON/PVAR/U (30, 48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMON/MESH/ITOT, JTOT,M,MM,N,NN
    COMMON/ENER/COH (4, 30,48),DR2,FORP ,ROFP
C
    IYES=1
    MORE=1
    ITH=20
    NI=0
    NI=NI+1
            IF (NI .LE. 5) GOTO 16
                CRTH=CRTH*3.0DO
            CONTINUE
                A(1)=1.DO
                B(1)=0.DO
                C(1)=0.DO
                D(1)=0.DO
                A(ITOT)=1.DO
                B(ITOT)=0.DO
                C(ITOT ) =0.DO
                D (ITOT)=0.DO
```

```
    D1 = DR*DF/PR/PHI
    DO
        35 J=2,N
        CALI COTHGN(I,J,PR)
        B(I)=COH(1,I,J)
        C(I) =COH (2,I,J)
        AN =COH(3,I,J)
        AS =COH(4,I,J)
        A(I)=(B(I)+C(I)+AN+AS)/URFTH
        Y=(1.DO-URFTH) =A (I)
        BPTH=Y*TH(I,J)-D1*R(I)*W(I,J)
        D(I) =AN*TH}(I,J+1)+AS*TH(I,J-1)+BPTH
        CALL TDMA(1,ITOT,A,B,C,D,T)
        DO 30 I=2,M
        IF (DABS((TH(I,J)-T(I))/T(I)) .GT. CRTH) IYES=0
        TH (I,J)=T(I)
    CONTINUE
        IF (IYES .EQ. 0) GOTO 67
        MORE=0
        IYES=1
    IF (MORE .EQ. 1 .AND. NI .LE. ITH) GOTO 15
    WRITE (24,100) NI, CRTH,MORE
100 FORMAT(T2,'NI(th)=',I3,', CRth=',D10.3,',more=',12)
    RETURN
    END
```



```
C* FUNCTION "COTHGN" CALCULATES COEFFICIENTS OF A'S FOR TH-EQUATION
```



```
    SUBROUTINE COTHGN(I,J,PR)
    REAL*8 PR,XX,YY,FF,DD,XR,AP
    REAL*8 U,V,W,TH,R,DR,DF,COH
    REAL*8 DR2, FORP,ROFP
    COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,R(30)
    COMMDN/ENER/COH (4,30,48),DR2,FORP,ROFP
    COMMON/MESH/ITOT, JTOT , M, MA, N, NN
    AP (XX,YY) =DMAXI (0.DO,(1.DO-0.1DO*DABS (XX/YY))**5)
            XR=R(I) +DR*.5DO
                    FF=XR*DF*U(I,J)
                    DD=XR*DF/DR/PR
                            IF (I .EQ. ITOT-1) DD=2.DO*DD
                COH(1,I,J)=DD*AP(FF,DD)+DMAX1(O.DO,-Fr)
                    IF (I .GT. 2) GOTO 25
                    COH(2,I,J)=0.DO
                    GOTO 30
            XR=R(I)-DR*.5DO
                FF=XR*DF*U(I-1,J)
                    DD=XR*DF/DR/PR
                    COH(2,I,J) = DD*AP(FF,DD)+DMAX1(0.DO,FF)
            FF=DR*V(I,J)
            DD=DR/(R(I)*DF*PR)
            IF (J .EQ. JTOT-1) DD=2.DO*DD
                COH(3,I,J)=DD*AP(FF,DD)+DMAX1(0.DO,-FF)
            FF=DR*V(I,J-1)
            DD=DR/(R(I)*DF*PR)
            IF (J.EQ. 2) DD=2.DO*DD
                COH(4,I,J) = DD*AP(FF,DD)+DMAX1(0.DO,FF)
            RETURN
            END
C* "DSAVE" STORES THE RESULTS TO DATABASE
```

```
C=============================================================================
        SUBROUTINE DSAVE(NIT,ITNIT, ITOT, JTOT,M,MM,N,NN,U,V,W,TH,GR,PR,FRE,
                ALPHA, THETA,DH, PHI, RE)
        REAL*8 U(ITOT,JTOT),V (ITOT, JTOT),W(ITOT, JTOT),TH(ITOT, JTOT),
    * FRE,GR, PR, ALPHA ,THETA ,DH, PHI, ALPA, PHII, FAC, RE
C
        FAC = 3.141592654/180.0
        ALPA = ALPHA/FAC
        PHII = 2.0*PHI/FAC
        WRITE (23,101) ALPA,THETA, PHI, ITOT, JTOT,RE
        WRITE(23,400) NIT, ITNIT,GR,PR,PHII, ALPA, RE
        DO 10 I=2,MM
        WRITE (23,100) (U (I,J),J=2, JTOT)
        WRITE(23,410) NIT, ITNIT,GR,PR,PHII, ALPA,RE
        DO 20 I=2,M
            WRITE (23,100) (V (I,J),J=2,NN)
        WRITE(23,420) NIT, ITNIT,GR,PR,PHII , ALPA, RE
        DO 40 I=2,M
        WRITE (23, 200) (W(I, J),J=2, JTOT)
    WRITE (23,425) FRE*DH*DH
        WRITE (23,430) NIT,ITNIT,GR,PR,PHII, ALPA,RE
        DO 50 I=2,M
        WRITE (23, 100) (TH(I,J), J=2, JTOT)
    FORMAT (T8,10E15.7)
    FORMAT(/,8X,3F15.11,2I7,4X,F6.1/)
    FORMAT (T8,10E15.7)
    FORMAT(T12,' ---- U VELOCITY NIT=',I5,' ITNIT==',I5,
        * , Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1,
        * ' Re=',F6.1)
    FORMAT (T12,' --- V VELOCITY NIT=',I5,' ITNIT==',I5,
    * , Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1,
    * 'Re=',F6.1)
    FORMAT(T12,' ---- W VELOCITY NIT=',IS,' ITNIT==',I5,
    * , Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1,
    * 'Re=',F6.1)
        FORMAT(T12,F23.15,' <=== FRE(Dh)')
        FORMAT (T12,' -'TH=(T-TC)/(Q/K) NIT=',I5,' ITNIT==',I5,
        * , ,Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1,
        * 'Re=',F6.1)
        RETURN
        END
```



```
C* "NUSSLT" CALCULATES NUSSELT NUMBER NURO(H1) AND NU(DH,H1)
C===========================================================================
    SUBROUTINE NUSSLT (ITOT, JTOT,M,N,W,TH, APAP , R,DR, DF, PHI)
    REAL*8 W(ITOT, JTOT),TH(ITOT,JTOT),R(ITOT), APAP(ITOT, JTOT),
    * DR,DF,FINTEG,NURO,NUDH,PI/3.1415926535898DO/, PHI
        DO 500 I=2,M
        DO }500\textrm{J}=2,\textrm{N
500 APAP(I,J)=W(I,J)*TH(I,J)
        NURO=-PHI/2.DO/(1.DO+PHI)/FINTEG (ITOT , JTOT, APAP, R,DR,DF)
        NUDH=2.DO*PHI/(1.DO+PHI) *NURO
        WRITE (24,10) NURO, NUDH
        WRITE (23,10) NURO, NUDH
        FORMAT(',Nu(RO,Hi) =',F2O.15,' Nu(Dh,H1) = ',F20.15)
        WRITE (25,20) NURO, NUDH
        FORMAT(', Nu(RO,Hi) = ',F2O.15,' Nu(Dh,H1) = ',F20.15)
        RETURN
        END
```



```
C* "LOCNUSS" CALCULATES LOCAL NUSSELLT NUMBER AND SHEAR STRESS
    SUBROUTINE LOCNUSS(NIT,ITNIT,ITOT, JTOT,M,N,W,TH, APAP,R,DR,DF,
    * ALPHA, PHI,DH,RE,FRE,PR,GR)
        REAL*8 W(ITOT,JTOT),TH(ITOT, JTOT), R(ITOT), APAP(ITOT, JTOT),
    * DR,DF,FINTEG,PI/3.1415926535898DO/,PHI,DH,ALPHA,RE,
    * NU1(50),NU2(50),NU3(50),FF(50) ,FRE,PR,GR, AVNU1, AVNU2,
    * AVNU3,SHR1,SHR2,SHR3,RR1(50),RR2(50),RR3(50)
C
        SHR1=0.DO
        DO 550 J=2,N
        RR1 (J) =2.DO*DH*W(M,J)*2.DO/DR
        SHR1=SHR1+DF*RR1(J)
550 CONTINUE
        SHR2=0.DO
        DO 560 I=2,M
        RR2(I) =2.DO*DH*W(I,2)*2.D0/DF/R(I)
        SHR2=SHR2+DR*RR2(I)
560 CONTINUE
        SHR3=0.DO
        DO 600 I=2,M
        RR3(I)=2.DO*DH*W(I,N)*2.DO/DF/R(I)
        SHR3=SHR3+DR*RR3(I)
        CONTINUE
        DO 650 I=2,M
        DO 650 J=2,N
        APAP(I,J)=W(I,J)*TH(I,J)
        DO 655 J=1,JTOT
        NU1(J)=PHI*DH*TH(M,J)*2.DO/DR/
                            FINTEG(ITOT, JTOT, APAP , R , DR, DF)
        DO }656\mathrm{ I=2,ITOT
        NU2(I)=PHI*DH*TH(I, 2) *2.DO/(DF*R(I))/
                            FINTEG(ITOT, JTOT, APAP, R,DR,DF)
        DO 657 I=2,ITOT-1
657 NU3(I)=PHI*DH*TH(I,N)*2.DO/(DF*R(I))/
        * FINTEG(ITOT, JTOT, APAP,R,DR,DF)
        AVNU1=0.DC
        DO }670\textrm{J}=2,\textrm{N
670 AVNU1=AVNU1+DF*NU1 (J)
        AVNU2=0.DO
        AVNU3=0.D0
        DO 671 I=2,M
        AVNU2=AVNU2+DR*NU2(I)
        AVNU3=AVNU3+DR*NU3 (I)
671 CONTINUE
C
        WRITE (25,330) (AVNU1 +AVNU2+AVNU3)/(2.DO+2.DO*PHI)
            FORMAT(' AVERAGE NU FROM LOCAL VALUES NU(Dh,H2) = '
        * ,F20.15)
C
            FF(JTOT)=2.DO*PHI
        FF(1) = 0.DO
        DF=(2.DO*PHI)/(JTOT-2.DO)
        FF(2)=DF*.5DO
        FF(JTOT-1)=FF(JTOT)-DF*.5DO
        DO 6 J=3,JTOT-2
            FF(J)=FF(2)+DF*(J-2.DO)
        FAC = 3.141592654/180.0
        ALPA = ALPHA/FAC
```

```
    PHII = 2.0*PHI/FAC
    WRITE (25,400) NIT, ITNIT, GR, PR, PHII, ALPA, RE
        DO 10 J=1,JTOT
    WRITE (25,200) FF(J) , RR1(J) , NU1(J)
    WRITE(25,410) NIT,ITNIT,GR,PR,PHII,ALPA,RE
DO 20 I=2,ITOT-1
    WRITE(25,200) (1.DO-R(ITOT+1-I)+(2.DO#PHI)),
    * RR3(ITOT+1-I) , NU3(ITOT+1-I)
    WRITE (25,420) NIT, ITNIT,GR,PR,PHII, ALPA, RE
        DO 40 I=2, ITOT
    WRITE (25,200) (1.DO+R(I) +(2,DO*PHI)),
    - RR2(I) , NU2(I)
    WRITE (25,425) FRE*DH*DH
    WRITE(25,430) NIT,ITNIT,GR,PR,PHII,ALPA,RE
DO 50 I=1, ITOT
        WRITE(25,200) R(I),(TH(I, 24)+TH(I, 25))/2.DO
    FORMAT(T4,E15.7,4X,E15.7)
    FORMAT(T4,E15.7,4X,E15.7,4X,E15.7)
    FORMAT('LOCAL NU(CURVED WALL) NIT=',I5,' ITNIT==',I5,
    * , Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPKA=',F6.1,
    * 2X, 'Re=',F4)
    FORMAT('LOCAL NU(BOTTOM WALL) NIT=',I5,' ITNIT==',I5,
    * , Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
    * 2X, 'Re=',F4)
    FORMAT('LOCAL NU(TOP WALL) NIT=',I5,' ITNIT==',I5,
    * ',Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
    * 2X, 'Re=',F4)
    FORMAT (T12,F23.15,' <=== FRE(Dh)')
    FORMAT ('TH=(T-TC)/(Q/K) NIT=',IS,' ITNIT==',I5,
    # (ax 'Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
    * 2X, 'Re=',F4)
    WRITE (25,215) (SHR1+SHR2+SHR3)/(2.D0+2.DO*PHI)
        WRITE (25, *) FINTEG(ITOT,JTOT,APAP,R,DR,DF)/PHI
        FORMAT(' FRE (from average wall shear stress) = ,
    *,F20.15)
C
345
    WRITE (23,345) (SHR1+SHR2+SHR3)/(2.DO+2.DO*PHI)
    FORMAT(' FRE (from average wall shear stress) =,
    *,F20.15)
        RETURN
        END
```



```
C* CALL LEQT1B(A,N,NLC,NUC,IA, B,M,IB,IJOB,XL, IER)
C===========================================================================
    SUBROUTINE LEQT1B(A,N,NLC,NUC,IA,B,M,IB,IJOB, XL, IER)
    REAL*8 A (IA,1), XL (N,1), B(IB,1)
    REAL*8 ZERO/O.DO/,ONE/1.DO/,P,Q,RN
    IER = 0
    JBEG = NLC+1
    NLC1 = JBEG
    IF (IJOB .EQ. 2) GO TO 80
    RN = N
C RESTORE THE MATRIX
C FIND RECIPROCAL OF THE LARGEST ABSOLUTE VALUE IN ROW I
    I = 1
    NC = JBEG + NUC
    NN = NC
    JEND = NC
    IF(N .EQ. 1 .OR. NLC .EQ. O) GO TO 25
    5 K = 1
```

```
\(P=2 E R D\)
DO \(10 \mathrm{~J}=\mathrm{JBEG}\), JEND
    \(\mathrm{A}(\mathrm{I}, \mathrm{K})=\mathrm{A}(\mathrm{I}, \mathrm{J})\)
    \(\mathrm{a}=\mathrm{DABS}(\mathrm{A}(\mathrm{I}, \mathrm{K}))\)
    IF ( Q .GT. P) \(\mathrm{P}=\mathrm{Q}\)
    \(\mathrm{K}=\mathrm{K}+1\)
```

CONTINUE
IF (P .EQ. ZERO) GO TO 135
$\mathrm{XL}(\mathrm{I}, \mathrm{NLC} 1)=\mathrm{ONE} / \mathrm{P}$
IF (K .GT. NC) GO TO 20
DO $15 \mathrm{~J}=\mathrm{K}$, NC
A $(I, J)=$ ZERO
CONTINUE
$I=I+1$
JBEG = JBEG - 1
IF (JEND-JBEG .EQ. N) JEND = JEND - 1
IF (I .LE. NLC) GO TO 5
JBEG = I
NN = JEND
JEND = N - NUC
DO $40 \mathrm{I}=\mathrm{JBEG}, \mathrm{N}$
$\mathrm{P}=2 \mathrm{ZRO}$
DO $30 \mathrm{~J}=1$, NN
$Q=\operatorname{DABS}(A(I, J))$
IF ($\mathbf{Q} . \mathrm{GT}$. P) $\mathrm{P}=\mathbf{Q}$
CONTINUE
IF (P .EQ. ZERD) GO TO 135
XL $(I, N L C 1)=0 N E / P$
IF (I .EQ. JEND) GO TO 37
IF (I .LT. JEND) GO TO 40
$\mathrm{K}=\mathrm{NN}+1$
DO $35 \mathrm{~J}=\mathrm{K}$, NC
A(I,J) = ZERO
CONTINUE
$\mathrm{NN}=\mathrm{NN}-1$
CONTINUE
$\mathrm{L}=\mathrm{NLC}$
DO $75 \mathrm{~K}=1$, N
$P=\operatorname{DABS}(A(K, 1)) * X L(K, N L C 1)$
I $=\mathrm{K}$
IF (L .LT. N) L = L + 1
$K 1=K+1$
IF (K1 .GT. L) GO TO 50
DO $45 \mathrm{~J}=\mathrm{K} 1$, L
$Q=\operatorname{DABS}(A(J, 1)) * X L(J, \operatorname{NLC} 1)$
IF (Q.LE. P) GO TO 45
$P=0$
$I=J$
CONTINUE
XL $(\mathrm{I}, \mathrm{NLC} 1)=\mathrm{XL}(\mathrm{K}, \mathrm{NLC} 1)$
XL(K,NLC1) $=I$
DSINGULARITY FOUND
$Q=R N+P$
IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K
IF (K .EQ. I) GO TO 60
DO $55 \mathrm{~J}=1$, NC
$P=A(K, J)$
$A(K, J)=A(I, J)$
$A(I, J)=P$

```
    55 CONTINUE
    60 IF (K1 .GT. L) GO TO 75
        DO 70 I = K1,
            P = A(I, 1)/A(K,1)
            IK = I - K
            XL (K1,IK) = P
            DO 65 J = 2, NC
                A(I,J-1)=A(I,J)-P*A(K,J)
            CONTINUE
            A(I,NC) = ZERO
        CONTINUE
    CONTINUE
        IF (IJOB .EQ. 1) GO TO 9005
    C
    80 L = NLC
        DO 105 K = 1, N
            I = XL(K,NLC1)
            IF (I .EQ. K) GO TO 90
            DO 85 J = 1, M
                P= B(K,J)
                B(K,J) = B(I,J)
                B(I,J) = P
    85 CONTINUE 
        K1 = K + 1
            IF (K1 .GT. L) GO TO 105
            DO 100 I = K1, L
                    IK = I - K
                    P = XL(K1,IK)
                    DO 95 J=1,M
                        B(I,J)=B(I,J) - P*B(K,J)
                    CONTINUE
    95 CONTIN
    105 CONTINUE
C
    JBEG = NUC + NLC
    DO 125 J = 1, M
        L = 1
        K1 = N + 1
        DO 120 I = 1,N
            K=K1-I
            P = B(K,J)
            IF (L .EQ. 1) GO TO 115
            DO 110 KK = 2, L
                    IK = KK + K
                    P = P-A(K,KK)*B(IK-1,J)
            CONTINUE
            B(K,J) = P/A(K,1)
            IF (L .LE. JBEG) L = L + 1
    110
    125 CONTINUE 
    135 IER = 129
9000 CONTINUE
    WRITE (24,*) , ERROR IER = 129 ,
    STOP
9005 RETURN
    END
```


A. 2 Numerical Code for H2 Condition


```
C NEW = 1 START UITHOUT OLD PROFILE
\begin{tabular}{lll} 
NEW \(=0\) & \\
NEWGR \(=1\) & START WITH & OLD PROFILE
\end{tabular}
    NEWGR = 0 UITH OLD GR
        REAL*8 PI/3.141592654DO/,GROLD,PR/7.DO/,GR/O.DO/,THETA/90.DO/,
        & ALPHA/30.DO/, FRE,CFRE,P(30,48), APAP (30,48), RE/500.DO/
        REAL*8 DUP (30,48),DVP(30,48),FALSU(30,48),FALSV (30,48),MS (30,48)
        REAL*8 FCRUV/1.D-5/,FCRW/1.D-5/,FCRTH/1.D-5/,CRM/1.D-5/
        REAL*8 CRUN,CRH,CRTH,PHI/1.570796327DO/
        REAL*8 URFUV, URFW, URFTH,DH,U,V,W,TH,R,DR,DF,ALPA,TF
        COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,
    * R(30),TF (30,48)
        COMMON/MESH/ITOT, JTOT,M, MM,N,NN
```



```
            OPEN(UNIT=1, FILE = 'fOrt.1',STATUS='OLD')
        READ (1,*) NEW
        READ (1,*) NEWGR, GR
        READ (1,*) URFUV, URFW, URFTH
        READ (1,*) MIT
        READ (1,*) FCRUV, FCRW, FCRTH, CRM
        ITOT = 30
        JTOT = 48
        FRE = 15.
        THETA = THETA*PI/180.DO
        ALPHA = ALPHA*PI/180.DO
        M=ITOT-1
        N=JTOT-1
        MM=M-1
        NN=N-1
        IC = ITOT/2
        JC = JTOT/2
        WRITE(24,9) URFUV, URFW, URFTH
        FORMAT(', URFuv = ',E10.3,' URFG = ',
    * E10.3,' URFth = ',E10.3/)
CLOSE(UNIT=1)
    CALL GRID(THETA,PHI,GR,PR,ALPHA)
    DO 10 I=1,ITOT
    DO 10 J=1,JTOT
        U(I,J)=0.DO
        V(I,J)=0.DO
        W(I,J)=0.DO
10 TH(I,J)=0.DO
C
C
    CALL DATAIN(NEW,INITO,ITNITO,ITOT,JTOT,M,MM,N,NN,U,V,W,TH,
    &
        GROLD, PR, FRE, ALPA,THETA,DH, PHI,RE)
        FCRUV, FCRW, FCRTH, CRM
        WRITE (24,999) FCRUV, FCRW, FCRTH, CRM
        FORMAT(/', FCRuv = ',E10.3,' FCRw = ',E10.3,
        , FCRth = ',E10.3,' CRm = ',E10.3/)
    IF(NEWGR .EQ. O) GR = GROLD
    IF (NEWGR .EQ. 1) THEN
        INITO = 0
        ITNITO = 0
    END IF
```

```
    DH = 2.DO*PHI/(1.DO+PHI)
    WRITE (24,*),
    WRITE (24,200) GR,PR
    WRITE (24,*) , ***
C
C--THIS IS THE MAIN LOOP
******************************
    ITNIT = ITNITO + MIT
******************************
    NIT = INITO
C
20 CRUV=FCRUV
    CRW=FCRW
    CRTH=FCRTH
        NIT=NIT+1
C
        CALL PSEUDO(DUP,DVP, FALSU, FALSV,GR,THETA, ALPHA)
        CALL PRESS(P,DUP,DVP,FALSU,FALSV)
        CALL UVMTUM(DUP,DVP,APAP,MS,P,GR,THETA, IYES,CRUV,CRM,URFUV,
    *
                            ALPHA)
        CALL WMTUM(APAP,FRE,CFRE,CRH,URFW,PHI,DH,ALPHH,GR,RE,THETA)
        CALL ENERGY(PR,CRTH,URFTH,PHI,TWA)
C
    IF ( ((CRUV*O.90DO .GT. FCRUV) .OR. (CRW*O.90DO .GT. FCRH)
    * .OR. (IYES .EQ. 0) .OR. (CRTH*O.90DO .GT. FCRTH) .OR.
    * (DABS(CFRE) .GT. 1.D-4)) .AND. (NIT .LT. ITNIT)) GO TO 2O
C
C--SAVE RESULT TO DATASETS AND CALCULATE NUSSELT NUMBER
C
    CALL DSAVE(NIT, ITNIT,ITOT,JTOT,M,MM,N,NN,U,V,W,TH,
    * GR,PR, FRE,ALPHA,THETA,DH, PHI, RE)
    CALL NUSSLT(ITOT,JTOT,M,N,W,TH,APAP,R,DR,DF,PHI,TWA)
    CALL LOCSHR(NIT,ITNIT,ITOT,JTOT,M,N,W,TH,APAP,R,DR,DF,
        * ALPHA, PHI, DH,RE,FRE,PR,GR)
C
100 FORMAT (T2,I4,1X,4(D14.7,1X))
200 FORMAT(T2,'Gr No. = ',D8.2,2X,'Pr No. = ',F7.3)
    STOP
    END
```



```
C* "GRID" GENERATES THE UNIFORM GRID COORDINATES (HALF NEAR BOUNDARY) -
C* IF "THETA" IS NOT = O & 180 DEG, SOLUTION IS FOR THE ENTIRE AREA
C===========================================================================
    SUBROUTINE GRID (THETA, PHI,GR,PR,ALPHA)
    REAL*8 THETA,FTOT,PI/3.1415926535898DO/,GR,PR,PHI, ALPHA
    REAL*8 U,V,H,TH,R,DR,DF, COH,DR2, FORP,ROFP, FNSIN , FNCOS,TF
    COMMON/ENER/COH (4,30,48) ,DR2, FORP ,ROFP
    COMMON/PVAR/U(30,48),V(30,48),W(30,48),TH(30,48),DR,DF,
    * R(30),TF(30,48)
    COMMON/MESH/ITOT,JTOT,M,MM,N,NN
    COMMON/PERI/FNSIN (50), FNCOS (50)
C
    R(ITOT)=1.ODO
    R(1)=0.DO
        FTOT=2.DO*PHI
    DR=R(ITOT)/(ITOT-2.D0)
    DF=FTOT/(JTOT-2.DO)
    R(2)=DR*.5DO
    R(ITOT-1)=R(ITOT)-DR*.5DO
    J=ITOT-2
```

DO $10 I=3, J$ $R(I)=R(2)+D R *(I-2 . D O)$
10
$\mathrm{DR} 2=\mathrm{DR} * .5 \mathrm{DO}$
FORP $=\mathrm{DF} / \mathrm{DR} / \mathrm{PR}$
$\mathrm{RDFP}=\mathrm{DR} / \mathrm{DF} / \mathrm{PR}$
C
DO $20 \mathrm{~J}=2$, N
FNSIN $(\mathrm{J})=\operatorname{DSIN}((\mathrm{J}-1.5 D 0) * D F-$ THETA $) * \operatorname{DCOS}(A L P H A)$
FNCOS $(\mathrm{J})=\operatorname{DCOS}((\mathrm{J}-1.0 \mathrm{DO}) * \mathrm{DF}-\mathrm{THETA}) * \mathrm{DCOS}(A L P H A)$
CONTINUE
GGRR $=-0$.
FAC $=180 . / \mathrm{PI}$
WRITE $(24,50)$ FTOT*FAC, ALPHA*FAC, PR, DR, DF
DO 40 I=1, ITOT
WRITE $(24,60)$ I,R(I)
FORMAT(//T15,'Laminar Mixed Convection Heat Transfer',// *', for a Semicircular Duct with $2 * \mathrm{Phi}^{\prime}=;, \mathrm{F7} .1 / /$
inclined at the angle Alpha =',F7.1//

- T12,'Pr No. = ', F7.3, $2 \mathrm{X}, \mathrm{C}$ dR $=$ ',
* F7.5, 2X ,'dF = ',F7.S//Tio,' $====$ ' $\mathrm{R}-\mathrm{CO}$ CORDINATE $====$ '/) FORMAT (T10, 13, 2X, F15.12)
RETURN
END

C* "DATAIN" READS U,V,W,TH FROM DATASETS AND PRINTS THEM OUT
C* EACH DATASET CORRESPONDS TO THE FORMAT GIVEN IN SUBROUTINE "DSAVE" *

SUBROUTINE DATAIN (NEW,NIT, ITNIT, ITOT, JTOT, M, MM, N, NN, U, V, W, TH,
\& GR, PR, FRE, ALPA, THETA, DH, PHI, RE)
REAL* 8 U (ITOT, JTOT), V (ITOT, JTOT), W(ITOT, JTOT), TH (ITOT, JTOT),
* FRE,GR, PR, FAC, PHI2, DH, ALPA, THETA, PHI, RE

C
IF (NEW . EQ. 1) THEN
NIT $=0$
ITNIT $=0$ RETURN
END IF
$F A C=180.0 / 3.141592654$
READ $(13,101)$ ALPA, THETA, PHI, ITOT, JTOT, RE
READ (13, 400) NIT, ITNIT, GR, PR, PHI2, ALPA, RE
DO $10 \mathrm{I}=2$, MM
$\operatorname{READ}(13,100) \quad(\mathrm{U}(\mathrm{I}, \mathrm{J}), \mathrm{J}=2, \mathrm{JTOT})$
READ (13, 410) NIT, ITNIT, GR, PR, PHI2, ALPA, RE
DO $20 \mathrm{I}=2, \mathrm{M}$
$\operatorname{READ}(13,100) \quad(V(I, J), J=2, N N)$
READ (13, 420) NIT, ITNIT, GR, PR, PHI2, ALPA, RE
DO $40 \mathrm{I}=2, \mathrm{M}$
$\operatorname{READ}(13,200) \quad(W(I, J), J=2, J T O T)$
$\operatorname{READ}(13, *)$ FRE
READ (13, 430) NIT, ITNIT, GR, PR , PHI2, ALPA, RE
DO $50 \mathrm{I}=2, \mathrm{M}$
$\operatorname{READ}(13,100) \quad(T H(I, J), J=2, J T O T)$
$\mathrm{DH}=2 . \mathrm{DO} * \mathrm{PHI} /(1 . \mathrm{DO}+\mathrm{PHI})$
FRE = FRE/DH/DH
FORMAT (/,8X,3F15.11,2I7,4X,F6.1/)
FORMAT (T8, 10E15.7)
FORMAT (T8,10E15.7)
FORMAT (34X, I5 , 8X, I5 , 4X, D9.3, 4X, F5. 1, 7X , F6.1, 7X , F6. 1, 4X , F6.1)
FORMAT (34X, I5, 8X, IS , 4X, D9.3, 4X, F5.1,7X,F6.1,7X,F6.1, 4X,F6.1)
FORMAT (34X, I5, 8X, I5, 4X, D9.3,4X,F5.1,7X,F6.1,7X,F6.1,4X,F6.1)

```
425 FORMAT (12X,F23.15)
430 FORMAT (39X,I5,8X,I5, 4X,D9.3,4X,F5.1,7X,F6.1,7X,F6.1,4X,F6.1)
    RETURN
    END
```


C* "PSEUDO" CALCULATES FALSE VELOCITY BY SUBSTITUTING NEIGHBOR VALUES *

SUBROUTINE PSEUDO (DUP, DVP, FALSU, FALSV, GR, THETA, ALPHA)
REAL*8 DUP (ITOT, JTOT), DVP (ITOT, JTOT), FALSU (ITOT, JTOT),
* FALSV (ITOT, JTOT), GR, THETA, RE, ALPHA
REAL* 8 SB, AE, AN, AN , AS, XR, ASUM, Y, D1, D2
REAL* $8 \mathrm{U}, \mathrm{V}, \mathrm{H}, \mathrm{TH}, \mathrm{R}, \mathrm{DR}, \mathrm{DF}, \mathrm{COU}, \mathrm{COV}, \mathrm{COW}, \mathrm{TF}$
COMMON/PVAR/U $(30,48), V(30,48), W(30,48), T H(30,48), D R, D F$,
R(30) TF $(30,48)$
COMMON/COEF/COU (4), $\operatorname{COV}(4), \operatorname{COW}(4), \operatorname{SRC1}(30,48), \operatorname{SRC2}(30,48)$.
* $\quad \operatorname{SRC} 3(30,48)$
COMMON/MESH/ITOT , JTOT , M, MM , N , NN
C
C--CALCULATE THE PSEUDOVELOCITY OF U
CALL SRCEGN (1,GR,THETA,RE,ALPHA,DH)
CALL SRCEGN (2 ,GR, THETA, RE, ALPHA, DH)
DO $10 \mathrm{I}=2$, MM
$\mathrm{XR}=\mathrm{R}(\mathrm{I})+0.50 \mathrm{DO} \mathrm{EDR}_{\mathrm{D}}$
D1 $=2 . \mathrm{DO} * \mathrm{DR} * \mathrm{DF} / \mathrm{XR}$
$\mathrm{D} 2=\mathrm{DF} * \mathrm{XR}$
DO $10 \mathrm{~J}=2, \mathrm{~N}$
CALL COGN1 (I,J)
$A E=C O U(1)$
$A W=C O U(2)$
$A N=C O U(3)$
$\mathrm{AS}=\mathrm{COU}(4)$
ASUM $=A E+A W+A N+A S+D 1$
C CALL SOURCE ($1, S B, I, J, G R, T H E T A)$
$\mathrm{SB}=\operatorname{SRC1}(\mathrm{I}, \mathrm{J})$
$Y=A E * U(I+1, J)+A W * U(I-1, J)+A N * U(I, J+1)+A S * U(I, J-1)$
FALSU $(I, J)=(Y+S B) / A S U M$
$10 \operatorname{DUP}(I, J)=D 2 / A S U M$
C--CALCULATE THE PSEUDOVELOCITY OF V
DO $20 \mathrm{I}=2, \mathrm{M}$
$D 1=D R * D F / R(I)$
DO $20 \mathrm{~J}=2$, NN
CALL COGN2 (I, J)
$\mathrm{AE}=\operatorname{COV}$ (1)
$A W=\operatorname{COV}$ (2)
$\mathrm{AN}=\operatorname{COV}$ (3)
$\mathrm{AS}=\operatorname{COV}$ (4)
ASUM $=\mathbf{A E}+A W+A N+A S+D 1$
$\mathrm{SB}=\operatorname{SRC2}(\mathrm{I}, \mathrm{J})$
$Y=A E * V(I+1, J)+A W * V(I-1, J)+A N * V(I, J+1)+A S * V(I, J-1)$
FALSV (I, J) $=(\mathbf{Y}+\mathrm{SB}) /$ ASUM
$\operatorname{DVP}(I, J)=D R / A S U M$
RETURN
END

C* "COEFGN" GENERATES COEFFICIENTS OF a'S FOR U, V \& W MOMENTUM EQ.S
C* "INDEX" = 1, 2, 3, 4 FOR EAST, W, N, S RESPECTIVELY (E-RADIAL)
C* THE POWER LAW IS USED

SUBROUTINE COGN1 (I,J)
REAL* 8 AP, XX, YY, FF, DD , U, V, W, TH, R, DR, DF , COU , COV , COW, TF

```
    COMMON/PVAR/U}(30,48),V(30,48),W(30,48),TH(30,48),DR,DF
    * R(30),TF(30,48)
    COMMON/COEF/COU (4),COV (4),COW (4) ,SRC1 (30,48),SRC2 (30,48),
        SRC3(30.48)
    COMMON/MESH/ITOT,JTOT,M,MM,N,NN
    AP}(XX,YY)=DMAX1 (0.DO, (1.DO-0.1DO*DABS (XX/YY))**5)
    FF=DF*R(I+1)*(U(I,J)+U(I+1,J))*.5DO
    DD=2.DO*R(I+1)/DR*DF
                COU(1) = DD*AP(FF,DD)+DMAX1 (0.DO,-FF)
            FF=DF*R(I)*(U(I,J)+U(I-1,J))*.5DO
            DD=2.DO*R(I)/DR*DF
                COU(2) = DD*AP(FF,DD)+DMAXI (O.DO,FF)
            FF=DR*(V(I+1,J)+V(I,J))*.5DO
            DD=DR/(R(I)+0.5DO*DR)/DF
            IF(J.EQ.JTOT-1) DD=2.DO*DD
                COU(3) = DD*AP(FF,DD) +DMAX1 (0.DO,-FF)
                    FF=DR*(V(I,J-1)+V(I+1,J-1))*.5DO
                    DD=DR/(R(I)+0.5DO*DR)/DF
                    IF(J.EQ - 2) DD=2.DO*DD
                COU(4) = DD*AP(FF,DD)+DMAX1 (O.DO,FF)
RETURN
END
SUBROUTINE COGN2(I,J)
REAL*8 AP, XX, YY,FF,DD, XR,U,V,W,TH,R,DR,DF,COU,COV,COW,TF
COMMON/PVAR/U (30,48),V (30,48),W(30,48),TH(30,48),DR,DF,
* R(30),TF(30,48)
COMMON/COEF/COU (4),COV (4),COW (4),SRC1 (30,48),SRC2 (30,48),
                SRC3(30,48)
COMMON/MESH/ITOT, JTOT ,M,MM,N,NN
AP (XX,YY) =DMAX1 (0.DO. (1.DO-0.1D0*DABS (XX/YY))**5)
XR=R(I)+0.5DO*DR
            FF=XR=DF*(U(I,J)+U(I,J+1))@.5DO
            DD=XR*DF/DR
            IF(I.EQ.ITOT-1) DD=2.DO*DD
                COV(1) = DD*AP(FF,DD)+DMAX1(0.DO,-FF)
            IF(I.GT.2) GOTO 25
                COV(2) = 0.DO
                GOTD 26
            XR=R(I)-0.5DO*DR
                FF=XR*DF*(U(I-1,J)+U(I-1,J+1))*.5D0
                DD=XR*DF/DR
                COV(2) = DD*AP(FF,DD) +DMAX1(0.DO,FF)
            FF=DR*(V(I,J)+V(I,J+1))*.5DO
            DD=2.DO*DR/R(I)/DF
                COV (3) = DD*AP(FF,DD) +DMAX1 (0.DO,-FF)
            FF=DR*(V(I,J)+V(I,J-1))*.5DO
                                    DD=2.DO*DR/R(I)/DF
                COV(4) = DD*AP(FF,DD)+DMAX1(0.DO,FF)
            RETURN
                END
```



```
SUBROUTINE COGN3(I,J,RE)
REAL*8 AP, XX,YY,FF,DD,XR,U,V,W,TH,R,DR,DF,COU,COV,COW, RE,TF
COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,
                                    R(30),TF}(30,48
COMMON/COEF/COU (4), }\operatorname{COV}(4),\operatorname{COW}(4),\operatorname{SRC1}(30,48),\operatorname{SRC2}(30,48)
* SRC3(30,48)
COMMON/MESH/ITOT , JTOT , M , MM , N , NN
```

```
    AP(XX,YY)=DMAX1 (O.DO,(1.DO-0.1DO*DABS (XX/YY))**5)
    XR=R(I)+0.5DO*DR
    FF=XR*DF*U(I,J)
    DD=XR*DF/DR
    IF(I.EQ.ITOT-1) DD=2.DO*DD
    COW(1) = DD*AP (FF,DD) +DMAX1 (0.DO,-FF)
    IF(I.GT.2) GOTO 35
        COW(2) = 0.DO
        GOTO 36
    XR=R(I)-0.5D0#DR
        FF=XR*DF*U(I-1,J)
        DD=XR*DF/DR
        COW (2) = DD*AP (FF,DD) +DMAX1 (0.DO,FF)
    FF=DR*V(I,J)
    DD=DR/R(I)/DF
    IF(J.EQ.JTOT-1) DD=2.DO*DD
        COW(3) = DD*AP (FF,DD)+DMAX1 (O.DO,-FF)
    FF=DR*V(I,J-1)
                            DD=DR/R(I)/DF
    IF(J.EQ.2) DD=2.DO*DD
    COW(4) = DD*AP(FF,DD)+DMAX1 (0.DO,FF)
RETURN
END
```



```
C* "SRCEGN" COMPUTES THE SOURCE TERMS FOR U-AND-V MOMENTUM EQUATION
```



```
    SUBROUTINE SRCEGN (INDEX, GR,THETA, RE, ALPHA,DH)
    REAL*8 SB,GR,THETA, RR,S1,S2, XX,DR3,RF,DR5,FNSIN, FNCOS
    REAL*8 U,V,W,TH,R,DR,DF,COU,COV,CDW, ALPHA, RE,DH,TF
    COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48),DR,DF,
                            R(30),TF}(30,48
    COMMON/COEF/COU (4), COV (4),COW (4),SRC1 (30,48),SRC2 (30,48),
    SRC3(30,48)
    COMMON/MESH/ITOT, JTOT, M, MM, N ,NN
    COMMON/PERI/FNSIN(50), FNCOS(50)
C
    DR3 = DR*3.DO
    RF = DR*DF
    DR5 = DR*.5DO
    GO TO (1000, 2000,3000), INDEX
1000 DO 10 I = 2, M
            RR=R(I) +DR5
            XX=RF*RR*GR*.5DO
            DO 10 J = 2, N
                SB=-XX*FNSIN(J)*(TH (I,J)+TH(I+1,J))
                SB=SB+V(I+1,J)-V(I,J)-V(I+1,J-1)+V(I,J-1)
                S1=(V(I+1,J)+V(I,J)-V(I+1,J-1)-V (I,J-1))*.5D0
                SB=SB-DR3/RR*S1
                S2=(V(I+1,J)+V(I,J)+V(I+1,J-1)+V(I,J-1))*.25DO
                SRC1(I,J)=SB+RF*S2*S2
    CONTINUE
    RETURN
2000 DO 20 I = 2, M
    YY=RF*R(I) #GR
    DO 20 J = 2,N
        SB=U(I,J+1)-U(I,J)-U(I-1,J+1)+U(I-1,J)
        SB=SB+DR3/R(I)*(U(I,J+1)-U(I,J)+U(I-1,J+1)-U(I-1,J))*.5DO
        Si=(U(I,J+1)+U(I-1,J+1)+U(I,J)+U(I-1,J))*.25DO
        SB=SB-RF*V(I,J)*SI
```

```
            S2=(TH(I,J)+TH(I,J+1)) *.5DO
            SRC2(I,J) = SB-YY*S2*FNCOS(J)
        CONTINUE
        RETURN
C
3000 DO 30 I = 2,M
YY=RF*R(I)*DH* (GR/RE) *DSIN (ALPHA)
            DO 30 J = 2, N
    S2 = TH(I,J)
            SRC3(I,J) = YY*S2
    30 CONTINUE
        RETURN
        END
```



```
C* "PRESS" SOLVES PRESSURE EQUATION OR PRESSURE CORRECTION EQUATION
```



```
C==============================================================================
    SUBROUTINE PRESS(P,DUP,DVP,FALSU,FALSV)
    REAL*8 DUP (30,48), DVP (30,48), FALSU (30,48),FALSV (30,48),P(30,48)
    REAL*8 Y,XE,XH,DR5, U,V,H,TH,R,DR,DF,TF
    COMMON/PVAR/U (30,48),V(30,48),H(30,48),TH(30,48),DR,DF,
    * R(30),TF(30,48)
    COMMON/MESH/ITOT, JTOT,M,MM,N,NN
C REAL*8 A(784,57),X(784),XL(22736)
REAL*8 A(1288,57), X(1288), XL (37352)
C-- NOTE THAT A, X, XL NEED TO bE CHANGED WHEN THE MESH SIZE IS CHANGED
C-- A(MM*NN,MM*2+1),X(MM*NN),XL(MM*NN* (MM+1)),K=(J-2)*MM +I+1
    NROW=MM*NN
    NCOL=2*MM+1
    IDC = (1+NCOL ) /2
    DR5 = DR*.5DO
C
C--INITIALIZATION OF A
    DO 10 I=1,NROW
    DO 10 J=1,NCOL
10 A(I, J)=0.DO
C
C--CALCULATE COEFFICIENTS ALONG J=2
C
    I=2
    J=2
    K=1
    XE=R(I) +DR 5
    A(K,IDC+1)=DF*XE*DUP(I,J)
    A (K,IDC+MM)=DR*DVP (I,J)
    A(K,IDC)=-(A(K,IDC+1)+A(K,IDC+MM))
    Y=-DF*XE*FALSU(I,J)-DR*FALSV (I,J)
    X(K) =-Y
    I=M
    K=MM
    XW=R(I)-DR5
    A(K,IDC-1)=DF*XU*DUP(I-1,J)
    A(K,IDC+MMM) =DR*DVP(I,J)
    A(K,IDC) =-(A(K,IDC-1)+A(K,IDC+MM))
    Y=DF*XW*FALSU(I-1,J)-DR*FALSV (I,J)
    X(K)=-Y
    DO 30 I=3,MM
        K=1-1
        XE=R(I) +DR5
        XW=R(I) -DR5
```

```
    A (K,IDC+1)=DF*XE*DUP(I,J)
    A(K,IDC-1)=DF*IW*DUP(I-1,J)
    A (K,IDC+MM ) =DR*DVP(I,J)
    A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-1)+A (K,IDC+MMM))
    Y=DF*(XH*FALSU(I-1,J)-XE*FALSU(I,J))-DR*FALSV(I, J)
30 X(K)=-Y
C--CALCULATE COEFFICIENTS ALONG J=3 AND J=JTOT-2
    DO 70 J=3,NN
    K=(J-2)*MM+1
    I=2
    XE=R(I)+DR5
    A(K,IDC+1)=DF*NE*DUP(I,J)
    A(K,IDC+MMM)=DR*DVP(I,J)
    A(K,IDC-MM) =DR*DVP(I,J-1)
    A(K,IDC) =- (A (K,IDC+1)+A(K,IDC+MM)+A(K,IDC-MM))
    Y=-DF*XE*FALSU(I,J) +DR*(FALSV (I,J-1)-FALSV (I,J))
    X (K)=-Y
    I=M
    XW=R(I)-DR5
    K=(J-1) *MM
    A (K,IDC-1) =DF*XW*DUP(I-1,J)
    A(K,IDC+MMM)=DR*DVP(I,J)
    A (K, IDC-MMM)=DR*DVP(I,J-1)
    A(K,IDC) =- (A (K,IDC-1)+A(K,IDC+MM)+A(K,IDC-MM))
    Y=DF*XW*FALSU(I-1,J) +DR*(FALSV (I,J-1)-FALSV (I,J))
    X(K)=-Y
    DO 60 I=3,MM
                K=(J-2)*MM+I-1
                XE=R(I) +DR5
                XW=R(I)-DR5
                A(K,IDC+1)=DF*XE*DUP(I,J)
                A(K,IDC-1) =DF*XH*DUP (I-1,J)
                A(K,IDC+MM)=DR*DVP (I,J)
                A(K,IDC-MM) =DR*DVP(I,J-1)
                A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-1)+A(K,IDC+MM ) +A(K,IDC-MM))
                Y=DF*(XW*FALSU(I-1,J)-XE*FALSU(I,J))
                    +DR*(FALSV (I,J-1)-FALSV (I,J))
60 X(K)=-Y
70 CONTINUE
C--CALCULATE COEFFICIENTS ALONG J=JTOT-1
    I=2
    J=N
    XE=R (I) +DR5
    K=(NN-1)*MM+1
    A(K,IDC+1)=DF*XE*DUP(I,J)
    A (K,IDC-MM) =DR*DVP (I,J-1)
    A(K,IDC) =-(A(K,IDC+1)+A(K,IDC-MM))
    Y=-DF*XE*FALSU(I,J)+DR*FALSV(I,J-1)
    X(K)=-Y
    I=M
    XW=R(I) -DR5
    K=MM*NN
    A (K,IDC-1) =DF*XW*DUP (I-1,J)
    A (K, IDC-MM) =DR*DVP(I,J-1)
    A(K,IDC) =-(A(K,IDC-1) +A(K,IDC-MM))
    Y=DF*XW*FALSU(I-1,J)+DR*FALSV (I,J-1)
    X(K)=-Y
```

```
    DO 80 I=3,MM
    K=(NN-1)*MMM+I-1
    XE=R(I)+DR5
    XW=R(I)-DR5
    A(K,IDC+1) =DF*XE*DUP (I,J)
    A(K,IDC-1)=DF*XW*DUP(I-1,J)
    A(K,IDC-MM)=DR*DVP(I,J-1)
    A(K,IDC) =-(A(K,IDC+1) +A(K,IDC-1) +A(K,IDC-MM))
    Y=DF*(XW*FALSU(I-1,J)-XE*FALSU(I,J))+DR*FALSV(I,J-1)
80 X(K)=-Y
C
C--SPECIFY A VALUE AT ONE POINT, CALL "LEQT1B" & SUBSTITUTE BACK TO P
    K=MM*NN
    A (K,IDC)=1.DO
    A(K,IDC-1)=0.DO
    A(K,IDC-MMM)=0.DO
    X(K)=0.DO
    CALLL LEQTIB(A ,NROW,MM,MM,NROW,X,1,NROW, O, XL ,IER)
    DO 95 I=2,M
    DO 95 J=2,N
95 P(I,J)=X((J-2) *MMM+I-1)
    RETURN
    END
```



```
C* "UVMTUM" SOLVES THE MOMENTUM EQUATIONS FOR VELOCITIES OF U AND V *
C=F=#======================%================================================
    SUBROUTINE UVMTUM(DUP,DVP,APAP,MS,P,GR,THETA, IYES,CRUV ,CRM,URFUV,
    &
                    ALPHA)
            REAL*8 DUP (30,48),\operatorname{DVP}(30,48),APAP (30,48) ,P(30,48),MS (30,48)
            REAL*8 GR,THETA,CRUV,CRM,URFUV,ALPHA
            REAL*8 SB,AN,AS,XE,XW,Y
            REAL*8 A(50),B(50),C(50),D(50),T(50),D1,DR5
            REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COH,TF
            COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH(30,48) , DR,DF,
                    R(30), TF (30,48)
    COMMON/COEF/COU (4), COV (4), COW (4),SRC1 (30,48),SRC2 (30,48),
    * SRC3(30,48)
    COMMON/MESH/ITOT , JTOT ,M, MM,N,NN
C
C--SOLVE THE MOMENTUM EQUATIONS FOR U
    IUV=20
    IYES=1
    MORE=1
    NI=0
    DR5 = DR*.5DO
    NI=NI+1
    IF (NI .LE. 5) GOTO }1
            CRUV=3.DO*CRUV
1 2
    CONTINUE
            CALL SRCEGN(1,GR,THETA,RE,ALPHA,DH)
            A(1)=1.DO
            B(1)=0.DO
            C(1)=0.DO
            D(i)=0.DO
            A(M)=1.DO
            B(M)=0.DO
            C(M)=0.DO
            D(M)=0.DO
            D1 = 2.DO*DR*DF
    DO 35 J=2,N
```

```
    DO 20 I=2,MM
    XE=R(I)+DRS
    CALL COGN1(I,J)
    E(I)=COU (1)
    C(I)=COU (2)
    AN =COU(3)
    AS =COU(4)
    SB}=\textrm{SRC1}(\textrm{I},\textrm{J}
    A(I)=(B(I)+C(I)+AN+AS+D1/XE)/URFUV
    Y=(1.DO-URFUV) *A(I)*U(I,J)
    DUP(I,J)=DF*XE/A(I)
20 D(I)=AN*U(I,J+1)+AS*U(I,J-1)+SB+DF*XE*(P(I,J)-P(I+1,J))+Y
    CALL TDMA(I,M,A,B,C,D,T)
    DO 30 I=2,MM
    IF (DABS((U(I,J)-T(I))/T(I)) .GT. CRUV) IYES=0
    U(I,J)=T(I)
    CONTINUE
C--SOLVE FOR V ; F-DIRECTION SWEEP ALONG THE RADIUS
C CALL SRCEGN(2,GR,THETA, RE, ALPHA,DH)
    A(1)=1.DO
        B(1)=0.DO
        C(1)=0.DO
        D(1)=0.DO
        A(ITOT)=1.DO
        B(ITOT)=0.DO
        C(ITOT)=0.DO
        D(ITOT)=0.DO
        DO 90 J=2,NN
        DO 70 I=2,M
        CALL COGN2(I,J)
        B(I)=COV (1)
        C(I) = COV (2)
        AN =COV (3)
        AS =COV(4)
        SB = SRC2(I, J)
        A(I) =(B(I)+C(I)+AN+AS+DR*DF/R(I))/URFUV
        Y=(1.DO-URFUV)*A(I)*V (I,J)
            SB = SRC2(I,J)
            DVP(I,J)=DR/A (I)
70 D(I)=AN*V(I,J+1)+AS*V(I,J-1)+SB+DR*(P(I,J)-P(I,J+1))+Y
        CALL TDMA(1,ITOT,A,B,C,D,T)
        DO 80 I=2,M
        IF (DABS((V(I,J)-T(I))/T(I)) .GT. CRUV) IYES=0
        V(I,J) = T(I)
    80
        CONTINUE
    C
        IF (IYES .EQ. O) GOTO 95
        MORE=0
        IYES=1
        IF (MORE .EQ. 1 .AND. NI .LE. IUV) GOTO 10
C
C--CALCULATE THE MASS SOURCE B
C
IYES=1
\(\mathrm{AS}=-100000 . \mathrm{DO}\)
DO \(240 \mathrm{I}=2, \mathrm{M}\)
\(X E=R(I)+D R 5\)
\(X W=R(I)-D R 5\)
DO \(230 \mathrm{~J}=2, \mathrm{~N}\)
```

```
            Y=DF*(XN*U(I-1,J)-XE*U(I,J)) + DR*(V(I,J-1)-V(I,J))
            IF (I. EQ. M .AND. J .EQ. N) GOTO 225
            IF (DABS(Y) .GT. CRM) IYES=0
                    IF (DABS(Y) .LT. AS) GOTO 225
                    AS=DABS (Y)
                    ISI=I
                    ISJ=J
            CONTINUE
230 MS(I,J)=Y
        CONTINUE
240
C
        WRITE(24,300) NI, CRUV,MORE, AS, ISI, ISJ, IYES
300 FORMAT(T2,'NI(uv)=',I3,', CRuv=',E10.3,', more=', I1,
    * ', Max Srce=',E10.3,' at I=',I2,' J=',I2,', IYES=',I1)
C
C
    IF (IYES .NE. O) GOTO 400
    CALL PRESS (APAP,DUP,DVP,U,V)
C
C--CORRECT THE VELOCITY FIELD
\begin{tabular}{|c|c|}
\hline & DO \(320 \mathrm{I}=2\), MM \\
\hline & DO \(320 \mathrm{~J}=2, \mathrm{~N}\) \\
\hline \multirow[t]{3}{*}{320} & \(\mathrm{U}(\mathrm{I}, \mathrm{J})=\mathrm{U}(\mathrm{I}, \mathrm{J})+\mathrm{DUP}(\mathrm{I}, \mathrm{J}) *(\operatorname{APAP}(\mathrm{I}, \mathrm{J})-\operatorname{APAP}(\mathrm{I}+1, \mathrm{~J})\) ) \\
\hline & DO \(350 \mathrm{I}=2, \mathrm{M}\) \\
\hline & DO \(350 \mathrm{~J}=2, \mathrm{NN}\) \\
\hline 350 & \(V(I, J)=V(I, J)+\operatorname{DVP}(I, J) *(\operatorname{APAP}(\mathrm{I}, \mathrm{J})-\operatorname{APAP}(\mathrm{I}, \mathrm{J}+1))\) \\
\hline 400 & CONTINUE \\
\hline & REIURN \\
\hline & \\
\hline
\end{tabular}
        END
```



```
C* "TDMA" SOLVES LINEAR ALGEBRA EQ'S (TRIDIAGONAL-MATRIX ALGORITHM)
C=========================================================================
    SUBROUTINE TDMA(M,N,A,B,C,D,T)
    REAL*8 A(50),B(50),C(50),D(50),T(50),P(50),Q(50)
C
    P(M)=B(M)/A(M)
    Q(M)=D(M)/A(M)
    J=M+1
    DO 10 I=J,N
        P(I)=B(I)/(A(I)-C(I)*P(I-1))
            Q(I)=(D(I)+C(I)*Q(I-1))/(A(I)-C(I)*P(I-1))
        T(N)=Q(N)
        I=N-1
20 T(I) =P(I)*T(I+1)+Q(I)
            I=I-1
            IF (I .GE. M) GOTO 20
        RETURN
        END
C===========================================================================
C* "WMTUM" SOLVES THE MOMENTUM EQUATION FOR W (F-DIRECTION SWEEP)
C==========================================================================
        SUBROUTINE WMTUM(APAP, FRE,CFRE,CRW,URFW, PHI,DH, ALPHA,GR, RE,THETA)
        REAL*8 APAP(30,48),A(50),B(50),C(50),D(50),T(50),D1, PHI,DH
        REAL*8 FRE,CRH,URFW, CFRE,AE,AN, AS,BPW, Y, FINTEG, ALPHA, THETA
        REAL*8 U,V,W,TH,R,DR,DF,COU,COV,COW,GR,RE,TF
        COMMON/PVAR/U (30,48),V(30,48),W(30,48),TH}(30,48),DR,DF
                            R(30),TF (30,48)
        COMMON/COEF/COU (4), COV (4),COW (4) , SRC1 (30,48),SRC2(30,48) ,
            SRC3(30,48)
```

```
    COMMON/MESH/ITOT,JTOT,M,MM,N,NN
C
    IW=20
    NI=0
    IYES=1
    MORE=1
NI=NI+1
    IF (NI .LE. 5) GOTO 145
        CRW=CRW*3.0D0
    CONTINUE
    CALLL SRCEGN(3,GR,THETA,RE,ALPHA,DH)
        A(1)=1.DO
        B(1)=0.DO
        C(1)=0.DO
        D(1)=0.DO
        A(ITOT)=1.DO
        B(ITOT)=0.DO
        C(ITOT)=0.DO
        D(ITOT)=0.DO
        D1 = 2.D0*DR*DF
    DO 160 J=2,N
        DO 150 I=2,M
            CALL COGN3(I,J,RE)
            B(I)=COW(1)
            C(I) =CON(2)
            AN =COW(3)
            AS =COW(4)
            SB =SRC3(I,J)
            A(I) = (B(I)+C(I) +AN+AS)/URFW
                Y=D1*R(I)
                BPW=Y*FRE+(1.ODO-URFW) * A(I) *W(I,J)
                APAP(I,J)=Y/A(I)
        D(I) =AN*W(I,J+1)+AS*W(I,J-1)+BPW+SB
        CALL TDMA(1,ITOT,A,B,C,D,T)
                DO 155 I=2,M
    IF (DABS((W(I,J)-T(I))/T(I)) .GT. CRW) IYES=0
                W(I,J)=T(I)
1 5 5
160
    CONTINUE
    IF (IYES .EQ. O) GOTO 190
        MORE=0
    IYES=1
C--CORRECTION OF W AND FRE BY USING MASS CONSERVATION
    AE=PHI-FINTEG(ITOT, JTOT,W,R,DR,DF)
    CFRE=AE/FINTEG(ITOT, JTOT, APAP,R,DR,DF)
    Y=0. 5DO
    IF(DABS(CFRE/FRE) .GT . 0.1DO) Y=0.01D0
    FRE=FRE+CFRE*Y
    DO 200 I=2,M
    DO 200 J=2,N
200 W(I,J)=W(I,J) +APAP(I,J)*CFRE*Y
    IF ((MORE .EQ. 1) .AND. (NI .LT. IW)) GOTO 140
    WRITE (24,300) NI,CRW,MORE,CFRE, FRE*DH*DH
    FORMAT(T2,'NI(w)= ',I3,', CRu =',E10.3,', more=',I1,
    *',CfRe=',E8.2,', fRe(Dh)=',F11.6)
    RETURN
    END
```


C* "FINTEG" PERFORMS SIMPLE AREA INTEGRATION: II=SUMMATION OF XI FAI

DOUBLE PRECISION FUNCTION FINTEG(ITOT,JTOT,X,R,DR,DF)
INTEGER ITOT,JTOT, I,J,M,N
REAL*8 X (30,48),R(30),DR,DF
C
M=ITOT-1
N=JTOT-1
FINTEG=0.ODO
DO 10 I =2,M
DD 10 J=2,N
FINTEG=FINTEG+X(I,J)*R(I)
FINTEG=DR*DF*FINTEG
RETURN
END

```

```

C* "ENERGY" SOLVES THE ENERGY EQUATION FOR TH BY "TDMA" (F-SWEEP)
C============== (F)
SUBROUTINE ENERGY(PR,CRTH,UPFTH,PHI,TWA)
REAL*8 PR, CRTH,URFTH,AN,AS,BPTH,Y
REAL*8 A(50),B(50),C(50),D(50),T(50),PI/3.1415926535898DO/,D1
REAL*8 U,V,W,TH,R,DR,DF,COH,TF,TWA
REAL*8 DR2,FORP,ROFP,PHI,SUM1,SUM2, SUM3
COMMON/PVAR/U(30,48),V(30,48),W(30,48),TH(30,48),DR,DF,
* R(30),TF(30,48)
COMMON/MESH/ITOT, JTOT ,M, MM,N,NN
COMMON/ENER/COH (4,30,48) ,DR2,FORP,ROFP
C
IYES=1
MORE=1
ITH=20
NI=0
NI=NI+1
IF (NI .LE. 5) GOTO 16
CRTH=CRTH*3.0DO
CONTINUE
DO 78 I = 2,M
TF (I,1)=TH(I,2)+DF*R(I)/2.DO/(2.DO*PHI+2.DO)
D1 = DR*DF/PR/PHI
DO 35 J=2,N
A(ITOT)=1.DO
B(ITOT)=0.DO
C(ITOT)=1.DO
D(ITOT)=DR/2.DO/(2.DO*PHI+2.DO)
DO 20 I =2,M
CALL COTHGN(I,J,PR)
B(I)=COH(1,I,J)
C(I) = COH (2,I,J)
AN =COH(3,I,J)
AS =COH(4,I,J)
A(I) =(B(I)+C(I)+AN+AS)/URFTH
Y=(1.DO-URFTH)*A(I)
BPTH=Y*TH (I,J)-D1*R(I)*W(I,J)
D(I) =AN*TH (I,J+1)+AS*TH(I,J-1)+BPTH
CALL TDMA(2,ITOT,A,B,C,D,T)
DO 21 I=2,ITOT
TF}(I,J)=T(I
CONTINUE
DO 79 I=2,M
TF (I, JTOT) =TH(I, JTOT-1) +DF*R(I)/2.DO/(2.DO*PHI+2.DO)
SUM1=0.DO
DO 550 J=2,N
550 SUM1=SUM1+DF*TF(ITOT,J)

```
```

 SUM2=0.DO
 SUM3=0. DO
 DO 560 I=2,M
 SUM2=SUM2+DR*TF (I,1)
 SUM3=SUM3+DR*TF (I,JTOT)
 560
CONTINUE
TWA=(SUM1+SUM2+SUM3)/(2.DO+2.DO*PHI)
DO 61 I=2,ITOT
DO 61 J=1,JTOT
IF(I .EQ. ITOT .AND. J .EQ. 1) GOTO 61
IF(I .EQ. ITOT .AND. J .EQ. JTOT) GOTO 61
TF (I,J)=TF(I,J)-TWA
CONTINUE
DO 30 J=1,JTOT
DO 30 I=2,ITOT
IF(I .EQ. ITOT .AND. J .EQ. 1) GOTO 30
IF(I .EQ. ITOT .AND. J .EQ. JTOT) GOTO }3
IF (DABS((TH(I,J)-TF(I,J))/TF(I,J)) .GT. CRTH) IYES=0
TH(I,J)=TF(I,J)
IF (IYES .EQ. 0) GOTO 67
MORE=0
IYES=1
IF (MORE .EQ. 1 .AND. NI .LE. ITH) GOTO 15
TH(ITOT,1)=TH(M,1)+(DR/2.DO)*(TH(ITOT, 2)-TH(M,1))/
(DR/2.DO+DF/2.DO)
TH (ITOT, JTOT) =TH (M, JTOT) +(DR/2.DO) = (TH (ITOT,N)-
TH(M,JTOT))/(DR/2.DO+DF/2.DO)
WRITE (24,100) NI, CRTH,MORE
FORMAT (T2,'NI(th)=',I3,', CRth=',D10.3,',more=',I2)
RETURN
END
C===
C* FUNCTION "COTHGN" CALCULATES COEFFICIENTS OF A'S FOR TH-EQUATION *
C===
SUBROUTINE COTHGN(I,J,PR)
REAL*8 PR,XX,YY,FF,DD,XR,AP
REAL*8 U,V,W,TH,R,DR,DF,CDH,TF
REAL*8 DR2,FORP,RDFP
COMMON/PVAR/U (30, 48) ,V (30,48),W(30,48) ,TH(30,48),DR,DF,
* R(30),TF}(30,48
COMMON/ENER/COH (4,30,48),DR2 , FORP ,ROFP
COMMON/MESH/ITOT, JTOT,M,MM,N,NN
AP}(XX,YY)=DMAX1 (0.DO,(1.DO-0.1DO*DABS (XX/YY))**5
XR=R(I)+DR*.5DO
FF=XR*DF*U(I,J)
DD=XR*DF/DR/PR
IF (I .EQ. ITOT-1) DD=2.DO*DD
COH(1,I,J) = DD*AP(FF,DD)+DMAX1(0.DO,-FF)
IF (I .GT. 2) GOTO 25
COH(2,I,J) = 0.DO
GOTO 30
XR=R (I)-DR* .5DO
FF=XR*DF*U(I-1,J)
DD=XR*DF/DR/PR
COH(2,I,J) = DD*AP(FF,DD)+DMAX1 (0.DO,FF)
FF=DR*V(I,J)
DD=DR/(R(I) *DF*PR)
IF (J.EQ. JTOT-1) DD=2.DO*DD
COH(3,I,J) = DD*AP(FF,DD)+DMAX1 (O.DO,-FF)
FF=DR*V(I,J-1)

```
```

 DD=DR/(R(I) *DF*PR)
 IF (J .EQ. 2) DD=2.DO*DD
 COH(4,I,J)= DD*AP(FF,DD)+DMAX1 (O.DO,FF)
 RETURN
 END
    ```

```

C* "DSAVE" STORES THE RESULTS TO DATABASE

```

```

 SUBROUTINE DSAVE(NIT,ITNIT,ITOT,JTOT,M,MM,N,NN,U,V,W,TH,GR,PR,FRE,
 * ALPHA,THETA,DH,PHI,RE)
 REAL*8 U(ITOT,JTOT),V(ITOT,JTOT),H(ITOT,JTOT),TH(ITOT, JTOT) ,
 * FRE,GR, PR, ALPHA, THETA,DH, PHI, ALPA, PHII, FAC, RE
 C
FAC = 3.141592654/180.0
ALPA = ALPHA/FAC
PHII = 2.0*PHI/FAC
WRITE(23,101) ALPA,THETA,PHI, ITOT, JTOT, RE
WRITE(23,400) NIT,ITNIT,GR,PR,PHII,ALPA, RE
DO 10 I=2,MM
WRITE(23,100) (U(I,J),J=2,JTOT)
WRITE(23,410) NIT,ITNIT,GR,PR,PHII, ALPA, RE
DO 20 I=2,M
WRITE (23,100) (V (I,J),J=2,NN)
WRITE(23,420) NIT,ITNIT,GR,PR,PHII,ALPA,RE
DO 40 I=2,M
WRITE(23,200) (W(I,J),J=2,JTOT)
WRITE (23,425) FRE*DH*DH
WRITE(23,430) NIT,ITNIT,GR,PR,PHII,ALPA,RE
DO 50 I=2,M
WRITE(23,100) (TH(I,J),J=2, JTOT)
FORMAT (T8,10E15.7)
FORMAT (/,8X,3F15.11,2I7,4X,F6.1/)
FDRMAT (T8,10E15.7)
FORMAT(T12,' ---- U VELOCITY NIT=',I5,' ITNIT==',I5,
* ' Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPPHA=',F6.1,
* ' Re=',F6.1)
FORMAT(T12,' --- V VELOCITY NIT=',IS,' ITNIT==',I5,
* ' Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' AlPHA=',F6.1,
, 'Re=',F6.1)
FORMAT(T12,', --- W VELOCITY NIT=',I5,' ITNIT==',I5,
- ' Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPMA=',F6.1,
* ' Re=',F6.1)
FORMAT (T12,F23.15,' <=== FRE(Dh)')
FORMAT(T12,' -_-- TH=(T-TC)/(Q/K) NIT=',I5,' ITNIT==',I5,
- , Gr=',D9.3,' Pr=',F5.1,' 2*PHI=',F6.1,' ALPHA=',F6.1,
* 'Re=`,F6.1)
RETURN
END
C==m===============
C* "NUSSLT" CALCULATES NUSSELT NUMBER NURO(H1) AND NU(DH,H1)

```

```

 SUBROUTINE NUSSLT(ITOT,JTOT,M,N,W,TH, APAP,R,DR,DF,PHI,TWA)
 REAL*8 W(ITOT,JTOT),TH(ITOT,JTOT),R(ITOT),APAP(ITOT,JTOT),
 * TWA,DR,DF,FINTEG,NURO,NUDH,PI/3.1415926535898DO/,PHI
 DO 500 I=2,M
 DO 500 J=2,N
 500 APAP (I,J)=W(I,J)*TH(I,J)
NURO=1.DO/2.DO/(1.D0+PHI)/
*(TWA-(FINTEG(ITOT, JTOT , APAP, R, DR, DF)/PHI))

```
```

 NUDH=2.DO*PHI/(1.DO+PHI) *NURO
 WRITE (24,10) NURO, NUDH
 WRITE (23,10) NURO, NUDH
 FORMAT(' Nu(RO,H2́) = ',F2O.15,' Nu(Dh,H2) - ',F2O.15)
 WRITE (25,20) NURO, NUDH
 FORMAT(', Nu(RO,H2) =',F20.15,' Nu(Dh,H2) = ',F20.15)
 RETURN
 END
    ```

```

C* "LOCSHR" CALCULATES LOCAL SHEAR STRESS

```

```

 SUBROUTINE LOCSHR(NIT,ITNIT,ITOT, JTOT,M,N,W,TH,APAP,R,DR,DF,
 * ALPHA ,PHI,DH,RE,FRE,PR,GR)
 REAL*8 W(ITOT, JTOT), TH(ITOT, JTOT), R(ITOT), APAP(ITOT,JTOT),
 * DRR,DF,FINTEG,PI/3,1415926535898DO/,PHI,DH,ALPHR,RE,'
 C
SHR1=0.DO
DO 550 J=2,N
RR1(J)=2.DO*DH*W(M,J)*2.DO/DR
SHR1=SHR1+DF*RR1 (J)
550 CONTINUE
SHR2=0.DO
DO 560 I=2,M
RR2(I)=2.DO*DH*W(I,2)*2.DO/DF/R(I)
SHR2=SHR2+DR*RR2(I)
560 CONTINUE
SHR3=0. DO
DO 600 I=2,M
RR3(I)=2.DO*DH*W(I,N)*2.DO/DF/R(I)
SHR3=SHR3+DR*RR3(I)
600 CONTINUE
FF(JTOT)=2.DO*PHI
FF(1) = 0.DO
DF=(2.DO*PHI)/(JTOT-2.DO)
FF(2)=DF*.5D0
FF(JTOT-1)=FF (JTOT)-DF*.5DO
DO 6 J=3,JTOT-2
6 FF (J)=FF(2)+DF* (J-2.DO)
FAC = 3.141592654/180.0
ALPA = ALPHA/FAC
PHII = 2.0*PHI/FAC
WRITE (25,400) NIT, ITNIT , GR , PR, PHII , ALPA , RE
DO 10 J=1, JTOT
10 WRITE (25,200) FF(J) , RR1(J)
WRITE (25,410) NIT, ITNIT,GR, PR,PHII, ALPA, RE
20 I=2,ITOT-1
WRITE(25,200) (1.DO-R(ITOT+1-I)+(2.DO*PHI)),
* RR3(ITOT+1-I)
WRITE (25,420) NIT, ITNIT, GR, PR, PHII, ALPA, RE
DO 40 I=2, ITOT
WRITE (25,200) (1.DO+R(I) +(2.DO*PHI)),RR2 (I)
WRITE (25,425) FRE*DH*DH
WRITE (25,430) NIT,ITNIT,GR, PR,PHII , ALPA, RE
50 J=1, JTOT
WRITE(25, 100) FF(J),TH(ITOT, J), (TH(ITOT, J)-TH(1, 1)),
* (TH(ITOT, J)-FINTEG (ITOT, JTOT,APAP,R,DR,DF)/PHI)
WRITE (25,430) NIT,ITNIT,GR, PR, PHIT,ALPA, RE
DO 60 I=2,ITOT-1
60 WRITE (25,100) (1.DO-R(ITOT+1-I)+(2.DO*PHI)),

```
```

 *TH(ITOT+1-I, JTOT), (TH(ITOT+1-I,JTOT)-TH(1,1)),
 * (TH(ITOT+1-I, JTOT)-FINTEG(ITOT, JTOT, APAP,R,DR,DF)/PHI)
 WRITE (25,430) NIT, ITNIT,GR, PR,PHII,ALPA,RE
 DO 70 I=2,ITOT
 WRITE (25,100) (1.DO+R(I)+(2.DO*PHI)),TH(I,1), (TH(I,1)-
 * TH(1,1)), (TH(I,1)-FINTEG(ITOT, JTOT, APAP,R,DR,DF)/PHI)
 FORMAT(T4,E15.7,3X,E15.7,3X,E15.7,3X,E15.7)
 FORMAT(T4,E15.7,4X,E15.7)
 FORMAT('LOCAL SHR(CURVED WALL) NIT=',I5,' ITNIT==',I5,
 'Gr=',D9.3,' PI=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
 * 2X, 'Re=',F4)
 FORMAT('LOCAL SHR(BOTTOM WALL) NIT=',I5,' ITNIT==',I5,
 ,Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
 * * 2X,',Ge=',F4)
 FORMAT('LOCAL SHR(TOP WALL) NIT=',I5,' ITNIT==',I5,
 * , Gr=',D9.3,' Pr=',F3.1,' 2*PHI=',F5.1,' ALPHA=',F6.1,
 * 2X, 'Re=',F4)
 FORMAT(T12,F23.15,' <=== FRE(Dh)')
 FORMAT('TH=(T-TC)/(Q/K) NIT=',I5,' ITNIT==',I5,
 ,Gr=',D9.3,' Pr=',F3.1,' 2#PHI=',F5.1,' ALPHA=',F6.1,
 * 2X, 'Gr=',D9
 WRITE (25,215) (SHR1+SHR2+SHR3)/(2.D0+2.DO*PHI)
 FORMAT(' FRE (from average wall shear stress)
 *,F20.15)
 WRITE (23,345) (SHR1+SHR2+SHR3)/(2.D0+2.D0*PHI)
 WRITE(25, *) FINTEG(ITOT, JTOT, APAP,R,DR,DF)/PHI
 FORMAT(' FRE (from average vall shear stress) = ,
 *,F20.15)
 RETURN
 END
    ```

```

C* CALL LEQTIB(A,N,NLC,NUC,IA, B,M,IB,IJOB,XL,IER)

```

```

 SUBROUTINE LEQT1B (A,N,NLC, NUC, IA , B, M, IB, IJOB, XL, IER)
 REAL*8 A(IA,1), XL(N,1), B(IB,1)
 REAL*8 ZERO/O.DO/,ONE/1.DO/,P,Q,RN
 IER = 0
 JBEG = NLC+1
 NLC1 = JBEG
 IF (IJOB .EQ. 2) GO TO }8
 RN = N
 RESTORE THE MATRIX
 FIND RECIPROCAL OF THE LARGEST ABSOLUTE VALUE IN ROW I
 I = 1
 NC = JBEG + NUC
 NN = NC
 JEND = NC
 IF (N .EQ. 1 .OR. NLC .EQ. O) GO TO 25
 5 K = 1
 P = ZERO
 DO 10 J = JBEG, JEND
 A(I,K) = A(I,J)
 Q = DABS (A (I,K))
 IF (Q .GT. P) P = Q
 K=K+1
 10 CONTINUE
 IF (P .EQ. ZERO) GO TO 135
 XL(I,NLC1) = ONE/P
 IF (K .GT. NC) GO TO 20
    ```
```

DO $15 \mathrm{~J}=\mathrm{K}$, NC
$A(I, J)=$ ZERO
CONTINUE
$I=I+1$
JBEG = JBEG - 1
IF (JEND-JBEG .EQ. N) JEND = JEND -1
IF (I .LE. NLC) GO TO 5
JBEG $=I$
NN = JEND
JEND = N - NUC
DO 40 I = JBEG, N
P = ZERO
DO $30 \mathrm{~J}=1$, NN
$Q=\operatorname{DABS}(A(I, J))$
IF (Q. GT. P) $P=Q$
CONTINUE
IF (P .EQ. ZERO) GO TO 135
XL(I,NLC1) $=0 N E / P$
IF (I .EQ. JEND) GO TO 37
IF (I .LT. JEND) GO TO 40
$\mathrm{K}=\mathrm{NN}+1$
DO $35 \mathrm{~J}=\mathrm{K}$, NC
$\mathrm{A}(\mathrm{I}, \mathrm{J}) \stackrel{K}{=}$ ZERO
CONTINUE
$\mathrm{NN}=\mathrm{NN}-1$
CONTINUE
$L=$ NLC
L - U DECOMPOSITION
DO $\begin{aligned} & 75 \mathrm{~K}=1 \cdot \mathrm{~N} \\ & \mathrm{P}=\mathrm{DABS}(\mathrm{A}(\mathrm{K}, 1)) * \mathrm{XL}(\mathrm{K}, \mathrm{NLC} 1)\end{aligned}$
$\mathrm{I}=\mathrm{K}$
IF (L .LT.N) L $=\mathrm{L}+1$
$K 1=K+1$
IF (K1 .GT. L) GO TO 50
DO $45 \mathrm{~J}=\mathrm{K} 1$, L
$Q=\operatorname{DABS}(\dot{A}(J, 1)) * X L(J, N L C 1)$
IF (Q.LE. P) GO TO 45
$P=0$
$I=J$
CONTINUE
IF (K1 .GT. L) GO TO 75
DO $70 \mathrm{I}=\mathrm{K} 1$, L
$P=A(I, 1) / A(K, 1)$
$\mathrm{IK}=\mathrm{I}-\mathrm{K}$
$\mathrm{XL}(\mathrm{K} 1, \mathrm{IK})^{\mathrm{K}}=\mathrm{P}$
DO $65 \mathrm{~J}=2$, NC
$A(I, J-1)=A(I, J)-P * A(K, J)$
CONTINUE
$A(I, N C)=$ ZERO

```
    45
    50
```APPENDIX A. NUMERICAL CODES
```

```
 70
```

    70
        CONTINUE
        CONTINUE
    75 CONTINUE
    75 CONTINUE
    IF (IJOB .EQ. 1) GO TO 9005
    IF (IJOB .EQ. 1) GO TO 9005
    C
C
80 L = NLC
80 L = NLC
DO 105 K = 1,N
DO 105 K = 1,N
I = XL(K,NLC1)
I = XL(K,NLC1)
IF (I .EQ. K) GO TO 90
IF (I .EQ. K) GO TO 90
DO }85\textrm{P}=\textrm{J}=1,
DO }85\textrm{P}=\textrm{J}=1,
P}=\textrm{B}(\textrm{K},\textrm{J}
P}=\textrm{B}(\textrm{K},\textrm{J}
B(K,J) = B(I,J)
B(K,J) = B(I,J)
B(I,J) = P
B(I,J) = P
85 CONTINUE
85 CONTINUE
90 IF (L.LT.N) L = L + 1
90 IF (L.LT.N) L = L + 1
K1 = K + i
K1 = K + i
IF (K1 .GT. L) GO TO 105
IF (K1 .GT. L) GO TO 105
DO 100 I = K1, L
DO 100 I = K1, L
IK = I - K
IK = I - K
P = XL(K1,IK)
P = XL(K1,IK)
DO 95 J = 1, M
DO 95 J = 1, M
B(I,J) = B(I,J) - P*B(K,J)
B(I,J) = B(I,J) - P*B(K,J)
CONTINUE
CONTINUE
100 CONTINUE
100 CONTINUE
105 CONTINUE
105 CONTINUE
C BACK SUBSTITUTION
C BACK SUBSTITUTION
JBEG = NUC + NLC
JBEG = NUC + NLC
DO 125 J = 1, M
DO 125 J = 1, M
L}=
L}=
K1 = N + 1
K1 = N + 1
DO 120 I = 1,N
DO 120 I = 1,N
K=K1-I
K=K1-I
P = B(K,J)
P = B(K,J)
IF (L.EQ. 1) GO TO 115
IF (L.EQ. 1) GO TO 115
DO 110 KK = 2, L
DO 110 KK = 2, L
IK}=KK+
IK}=KK+
P}=P-A(K,KK)*B(IK-1,J
P}=P-A(K,KK)*B(IK-1,J
110 CONTINUE
110 CONTINUE
115 B(K,J) = P/A(K,1)
115 B(K,J) = P/A(K,1)
IF (L .LE. JBEG) L = L + 1
IF (L .LE. JBEG) L = L + 1
CONTINUE
CONTINUE
120 CONTIN
120 CONTIN
CONTINUE
CONTINUE
IER = 129
IER = 129
9000 CONTINUE
9000 CONTINUE
WRITE(24,*) ERROR IER = 129:
WRITE(24,*) ERROR IER = 129:
STOP
STOP
9005 RETURN
9005 RETURN
END

```
 END
```195

\section*{Appendix B}

\section*{Sample Calculation for the Error Analysis}

A sample calculation for the error analysis, describing the method of estimating uncertainty in the experimental data, is presented in this Appendix. The procedure outlined by [64,65] was used in estimating these uncertainty bounds.
\[
\begin{array}{ll}
\dot{m} & =0.025 \pm 0.0005 \quad\left[k g s^{-1}\right] \\
D_{h} & =0.0304 \pm 0.0006 \quad[\mathrm{~m}] \\
A_{u i} & =0.60 \pm 0.001 \quad\left[\mathrm{~m}^{2}\right] \\
A_{f l} & =9.723 \times 10^{-4} \pm 2 \times 10^{-5} \quad\left[\mathrm{~m}^{2}\right] \\
\Delta P_{f} & =5.26 \pm 0.1 \quad[\mathrm{~Pa}] \\
\bar{T}_{Z . i} & =42.50 \pm 0.2 \quad\left[{ }^{\circ} \mathrm{C}\right] \\
T_{Z . b u l k} & =37.08 \pm 0.2 \quad\left[{ }^{\circ} \mathrm{C}\right] \\
T_{b u l k . o} & =39.41 \pm 0.2 \quad\left[{ }^{\circ} \mathrm{C}\right] \\
T_{\text {bulk.i }} & =22.76 \pm 0.2 \quad\left[{ }^{\circ} \mathrm{C}\right]
\end{array}
\]

The above data (presented in Appendix C) are for the experimental run HORIZONTAL ORIENTATION 6-1000 at station 18. We wish to estimate the uncertainty in the friction factor and the local values of \(R e, G r\) and \(N u_{Z}\). All properties were calculated at the mean bulk temperature ( \(T_{b u l k . m}=31.10^{\circ} \mathrm{C}\) ) and the uncertainty in these values was ignored.
\[
\begin{array}{lll}
\mu & =7.821 \times 10^{-4}[P a . s] & k=0.619\left[W \mathrm{~m}^{-1} K^{-1}\right] \\
c_{p}=4178.15 \quad\left[J \mathrm{~kg}^{-1} K^{-1}\right] & \rho=995.33\left[\mathrm{~kg} \mathrm{~m}^{-3}\right] \\
\beta=3.138 \times 10^{-4}\left[K^{-1}\right]
\end{array}
\]

\section*{B. 1 Uncertainty in Re}

The dimensionless independent parameter \(R e\) was defined in equation(5.1) as follows:
\[
R e=\frac{\dot{m} D_{h}}{\mu A_{f l}}
\]

Following the procedure in \([64,65] R e\) is a given function of \(\dot{m}, D_{h}\), and \(A_{f l}\). Thus,
\[
\begin{equation*}
R e=R e\left(\dot{m}, D_{h}, A_{f l}\right) \tag{B.1}
\end{equation*}
\]
and the uncertainty in \(R e\) is defined as
\[
\begin{equation*}
\omega_{R e}=\left[\left(\frac{\partial R e}{\partial \dot{m}} \omega_{\dot{m}}\right)^{2}+\left(\frac{\partial R e}{\partial D_{h}} \omega_{D_{h}}\right)^{2}+\left(\frac{\partial R e}{\partial A_{f l}} \omega_{A_{f l}}\right)^{2}\right]^{1 / 2} \tag{B.2}
\end{equation*}
\]

Now evaluate the uncertainty in each term when the nominal value of \(R e\) is 1129.5
\[
\begin{gathered}
\frac{\partial R e}{\partial \dot{m}}=\frac{D_{h}}{\mu A_{f l}}=\frac{1129.5}{0.025}=45180 \quad\left[s \mathrm{~kg}^{-1}\right] \\
\frac{\partial R e}{\partial D_{h}}=\frac{\dot{m}}{\mu A_{f l}}=\frac{1129.5}{0.0304}=37154.6 \quad\left[\mathrm{~m}^{-1}\right] \\
\frac{\partial R e}{\partial A_{f l}}=-\frac{\dot{m} D_{h}}{\mu A_{f l}^{2}}=-\frac{1129.5}{9.723 \times 10^{-4}}=-1.16 \times 10^{6} \quad\left[\mathrm{~m}^{-2}\right]
\end{gathered}
\]

Using equation (B.2), thus the uncertainty interval in Re is
\[
\omega_{R e}=39.31
\]
and the fractional uncertainty interval in \(R e\) is
\[
\frac{\omega_{R c}}{R e}=\frac{39.31}{1129.5} \times 100=3.5 \%
\]

\section*{B. 2 Uncertainty in \(f\)}

The friction factor is given by equation (5.6) as follows
\[
f=\frac{\Delta P_{f} \rho A_{f l}^{2}}{\dot{m}^{2}} \frac{D_{h}}{2 L}
\]

Thus,
\[
\begin{equation*}
f=f\left(\dot{m}, D_{h}, A_{f l}, \Delta P_{f}\right) \tag{B.3}
\end{equation*}
\]
and the uncertainty in \(f\) is defined as
\[
\begin{equation*}
\omega_{f}=\left[\left(\frac{\partial f}{\partial \dot{m}} \omega_{\dot{m}}\right)^{2}+\left(\frac{\partial f}{\partial D_{h}} \omega_{D_{h}}\right)^{2}+\left(\frac{\partial f}{\partial A_{f l}} \omega_{A f l}\right)^{2}+\left(\frac{\partial f}{\partial \Delta P_{f}} \omega_{\Delta P_{f}}\right)^{2}\right]^{1 / 2} \tag{B.4}
\end{equation*}
\]

Determining the uncertainty in each term with the calculated value of \(f=0.024517\), we get
\[
\begin{gathered}
\frac{\partial f}{\partial \dot{m}}=-\frac{2}{\dot{m}} \frac{\Delta P_{f} \rho A_{f l}^{2}}{\dot{m}^{2}} \frac{D_{h}}{2 L}=-\frac{2 \times 0.024517}{0.025}=-1.96 \quad\left[s \mathrm{~kg}^{-1}\right] \\
\frac{\partial f}{\partial D_{h}}=\frac{\Delta P_{f} \rho A_{f l}^{2}}{\dot{m}^{2}} \frac{1}{2 L}=\frac{0.024517}{0.0304}=0.8065 \quad\left[\mathrm{~m}^{-1}\right] \\
\frac{\partial f}{\partial A_{f l}}=\frac{2 \Delta P_{f} \rho A_{f l}}{\dot{m}^{2}} \frac{D_{h}}{2 L}=\frac{2 \times 0.024517}{9.723 \times 10^{-4}}=50.43 \quad\left[\mathrm{~m}^{-2}\right] \\
\frac{\partial f}{\partial \Delta P_{f}}=\frac{\rho A_{f l}^{2}}{\dot{m}^{2}} \frac{D_{h}}{2 L}=\frac{0.024517}{5.26}=0.00466 \quad\left[\mathrm{~Pa}^{-1}\right]
\end{gathered}
\]

Using equation (B.4), the uncertainty interval in \(f\) is
\[
\omega_{f}=0.0015664
\]
and the fractional uncertainty interval in \(f\) is
\[
\frac{\omega_{f}}{f}=\frac{0.0015664}{0.024517} \times 100=6.39 \%
\]

\section*{B. 3 Uncertainty in \(Q_{f}\)}

The computation for \(G r\) and \(N u_{Z}\) depends on the total heat gain, \(Q_{f}\), which can be obtained using the following equation
\[
\begin{equation*}
Q_{f}=\dot{m} c_{p}\left(T_{b u l k, a}-T_{b u l k, i}\right) \tag{B.5}
\end{equation*}
\]
where, \(T_{\text {bulk,i }}\) and \(T_{\text {bulk,o }}\) are the inlet and outlet bulk temperatures, respectively. The heat rate \(Q_{f}\) is a given function of \(\dot{m}, T_{\text {bulk,o }}\), and \(T_{\text {bulk }, i}\). Thus,
\[
\begin{equation*}
Q_{f}=Q_{f}\left(\dot{m}, T_{b u l k, o:} T_{b u l k, i}\right) \tag{B.6}
\end{equation*}
\]
and the uncertainty in \(Q_{f}\) is defined as
\[
\begin{equation*}
\omega_{Q_{f}}=\left[\left(\frac{\partial Q_{f}}{\partial \dot{m}} \omega_{\dot{m}}\right)^{2}+\left(\frac{\partial Q_{f}}{\partial T_{b u l k, o}} \omega_{T_{b u l k, o}}\right)^{2}+\left(\frac{\partial Q_{f}}{\partial T_{b u l k, i}} \omega_{T_{b u l k, i}}\right)^{2}\right]^{1 / 2} \tag{B.7}
\end{equation*}
\]

Determining the uncertainty in each term when the calculated value of \(Q_{f}\) is 1738.8 W , we get
\[
\left.\begin{array}{c}
\frac{\partial Q_{f}}{\partial \dot{m}}=c_{p}\left(T_{\text {bulk,o }}-T_{\text {bulk,i}}\right)=\frac{1738.8}{0.025}=69552 \quad[\mathrm{~W} \mathrm{~s} \mathrm{~kg} \\
-1
\end{array}\right] \begin{gathered}
\frac{\partial Q_{f}}{\partial T_{\text {bulk,o }}}=\dot{m} c_{p}=\frac{1738.8}{(39.41-22.76)}=104.43 \quad\left[\mathrm{~W} \mathrm{~K} \mathrm{~K}^{-1}\right] \\
\frac{\partial Q_{f}}{\partial T_{b u l k, i}}=-\dot{m} c_{p}=-\frac{1738.8}{(39.41-22.76)}=-104.43 \quad\left[\mathrm{~W} \mathrm{~K}^{-1}\right]
\end{gathered}
\]

Using equation (B.7), the uncertainty interval in \(Q_{f}\) is
\[
\omega_{Q_{S}}=45.627 \quad[W]
\]
and the fractional uncertainty interval in \(Q_{f}\) is
\[
\frac{\omega_{Q_{f}}}{Q_{f}}=\frac{45.627}{1738.8} \times 100=2.6 \%
\]

\section*{B. 4 Uncertainty in Gr}

The dimensionless independent parameter \(G r\) was defined in equation(5.1) and it can be modified by using the following expression
\[
G r=\frac{(\pi+2)^{5}}{(2 \pi)^{4}} \frac{\beta g \rho^{2} Q_{f} D_{h}^{4}}{k \mu^{2} A_{w i}}
\]
where, \(A_{u i}\) is the surface area. Thus,
\[
\begin{equation*}
G r=G r\left(Q_{f}, D_{h}, A_{w i}\right) \tag{B.8}
\end{equation*}
\]
and the uncertainty in Gr is defined as
\[
\begin{equation*}
\omega_{G r}=\left[\left(\frac{\partial G r}{\partial Q_{f}} \omega_{Q_{f}}\right)^{2}+\left(\frac{\partial G r}{\partial D_{h}} \omega_{D_{h}}\right)^{2}+\left(\frac{\partial G r}{\partial A_{w i}} \omega_{A_{w i}}\right)^{2}\right]^{1 / 2} \tag{B.9}
\end{equation*}
\]

The uncertainty in each term for \(G r=6.68 \times 10^{7}\) can be obtained as follows:
\[
\begin{gathered}
\frac{\partial G r}{\partial Q_{f}}=\frac{(\pi+2)^{5}}{(2 \pi)^{4}} \frac{\beta g \rho^{2} D_{h}^{4}}{k \mu^{2} A_{w i}}=\frac{6.68 \times 10^{7}}{1738.8}=38417.3 \quad\left[W^{-1}\right] \\
\frac{\partial G r}{\partial D_{h}}=\frac{(\pi+2)^{5}}{(2 \pi)^{4}} \frac{4 \beta g \rho^{2} Q_{f} D_{h}^{3}}{k \mu^{2} A_{u i}}=\frac{4 \times 6.68 \times 10^{7}}{0.0304}=8.79 \times 10^{9} \quad\left[\mathrm{~m}^{-1}\right] \\
\frac{\partial G r}{\partial A_{w i}}=-\frac{(\pi+2)^{5}}{(2 \pi)^{4}} \frac{\beta g \rho^{2} Q_{f} D_{h}^{4}}{k \mu^{2} A_{w i}^{2}}=-\frac{6.68 \times 10^{7}}{0.60}=-1.113 \times 10^{8} \quad\left[\mathrm{~m}^{-2}\right]
\end{gathered}
\]

Using equation (B.9), the uncertainty interval in Gr is
\[
\omega_{G r}=5.67 \times 10^{6}
\]
and the fractional uncertainty interval in \(G r\) is
\[
\frac{\omega_{G r}}{G r}=\frac{5.67 \times 10^{6}}{6.68 \times 10^{7}} \times 100=8.5 \%
\]

\section*{B. 5 Uncertainty in \(N u_{Z}\)}

The local mean Nusselt number was defined in equation (5.4) and it can be written as
\[
N u_{Z . i}=\frac{Q_{f} D_{h}}{k\left(\bar{T}_{Z, i}-T_{Z . b u l k}\right) A_{w i}}
\]

Thus,
\[
\begin{equation*}
N u_{Z}=N u_{Z}\left(Q_{f}, D_{h}, A_{u i}, \bar{T}_{Z, i}, T_{Z, b u l k}\right) \tag{B.10}
\end{equation*}
\]
and the uncertainty in \(N u_{Z}\) is defined as
\[
\begin{align*}
\omega_{N u_{Z}}= & {\left[\left(\frac{\partial N u_{Z}}{\partial Q_{f}} \omega_{Q_{f}}\right)^{2}+\left(\frac{\partial N u_{Z}}{\partial D_{h}} \omega_{D_{h}}\right)^{2}+\left(\frac{\partial N u_{Z}}{\partial A_{w i}} \omega_{A_{w i}}\right)^{2}\right.} \\
& \left.+\left(\frac{\partial N u_{Z}}{\partial \bar{T}_{Z, i}} \omega_{\bar{T}_{z, i}}\right)^{2}+\left(\frac{\partial N u_{Z}}{\partial T_{Z, b u l k}} \omega_{T_{Z, b u l k}}\right)^{2}\right]^{1 / 2} \tag{B.11}
\end{align*}
\]

The uncertainty in each term for \(N u_{Z}=26.06\) can be obtained as follows:
\[
\begin{gathered}
\frac{\partial N u_{Z}}{\partial Q_{f}}=\frac{D_{h}}{k\left(\bar{T}_{Z, i}-T_{Z, b u l k}\right) A_{u i}}=\frac{26.06}{1738.8}=0.015 \quad\left[W^{-1}\right] \\
\frac{\partial N u_{Z}}{\partial D_{h}}=\frac{Q_{f}}{k\left(\bar{T}_{Z, i}-T_{Z, b u l k}\right) A_{u i}}=\frac{26.06}{0.0304}=857.24 \quad\left[\mathrm{~m}^{-1}\right] \\
\frac{\partial N u_{Z}}{\partial A_{w i}}=-\frac{Q_{f} D_{h}}{k\left(\bar{T}_{Z, i}-T_{Z, b u l k}\right) A_{u i}^{2}}=-\frac{26.06}{0.60}=-43.43 \quad\left[\mathrm{~m}^{-2}\right] \\
\frac{\partial N u_{Z}}{\partial \bar{T}_{Z, i}}=-\frac{Q_{f} D_{h}}{k\left(\bar{T}_{Z, i}-T_{Z . b u l k}\right)^{2} A_{w i}}=-\frac{26.06}{(42.50-37.08)}=-4.81 \quad\left[K^{-1}\right] \\
\frac{\partial N u_{Z}}{\partial T_{Z . b u l k}}=\frac{Q_{f} D_{h}}{k\left(\bar{T}_{Z . i}-T_{Z . b u l k}\right)^{2} A_{w i}}=\frac{26.06}{(42.50-37.08)}=4.81 \quad\left[K^{-1}\right]
\end{gathered}
\]

Substitute these values into equation (B.11) to obtain the uncertainty interval in \(N u_{Z}\)
\[
\omega_{N u z}=1.66
\]

Thus the fractional uncertainty interval in \(N u_{Z}\) is
\[
\frac{\omega_{N u_{Z}}}{N u_{Z}}=\frac{1.66}{26.06} \times 100=6.4 \%
\]

\section*{Appendix C}

\section*{Experimental Data for \(\alpha=0^{\circ}\)}

The following notation applies to Appendices C to G
\begin{tabular}{|c|c|}
\hline A, B, C & \(=\) thermocouples \(\mathrm{a}, \mathrm{b}\), and c in figure 5.1 \\
\hline RE, PR, GR & \(=\) local Reynolds, Prandtl, and Grashof numbers \\
\hline \multicolumn{2}{|l|}{FREM, REM, GRM, \(=f R e, R e, G r, P r\), and \(R a\) calculated at the average of} \\
\hline PRM, RAM & the inlet and outlet bulk temperatures \\
\hline T & \(=\) indicating Nusselt number calculated at the length-mean average of the three wall temperatures \\
\hline H & \(=\) indicating Nusselt number calculated as the length-mean average of the three \(N u_{Z, a}, N u_{Z, b}\), and \(N u_{Z, c}\) \\
\hline \(\mathrm{T} \div \mathrm{H}\) & \(=\) average of the T and H values \\
\hline
\end{tabular}

Codizonth oniertaitom \(\qquad\) 1-500
 IMPUT ELECTRIC POREE 151.3
MASS FLOU RATE \(14.7500 \mathrm{G} / \mathrm{S}\)

PMEAT MATE GAIMDD DY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOOK }
\end{aligned}
\] & & \[
\begin{gathered}
-W 4 \\
1
\end{gathered}
\] & \[
\pi
\] & C & \[
\begin{aligned}
& \text { AC)- } \\
& \text { AYER- } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \bar{\pi} \\
& \text { (C) }
\end{aligned}
\] & HE & PR & GR & Z & 1 & B & \[
{ }_{C}^{E T T}
\] & \[
\mathrm{I}
\] & + & It \\
\hline 3 & 5.5 & 23.12 & 23.08 & 23.10 & 23.10 & 22.31 & 485.8 & 6.55 & 0.208 E -07 & 0.00057 & 15.89 & 16.66 & 16.27 & 16.27 & 16.27 & 16.27 \\
\hline 4 & 15.5 & 23.46 & 23.47 & 23.46 & 23.46 & 22.36 & 486.3 & 6.54 & \(0.209 \mathrm{E} \cdot 07\) & 0.00160 & 11.72 & 11.57 & 11.72 & 11.68 & 11.68 & 11.68 \\
\hline 5 & 25.5 & 23.54 & 23.62 & 23.54 & 23.56 & 22.42 & 486.9 & 6.53 & 0.210E007 & 0.00264 & 11.37 & 10.60 & 11.44 & 11.20 & 11.21 & 11.21 \\
\hline 6 & 45.5 & 23.63 & 23.70 & 23.62 & 23.64 & 22.52 & 488.0 & 6.51 & \(0.212 E+07\) & 0.00471 & 11.58 & 10.87 & 11.63 & 11.42 & 11.43 & 11.43 \\
\hline 7 & 75.5 & 23.71 & 23.82 & 23.73 & 23.75 & 22.68 & 489.7 & 6.49 & \(0.215 E-07\) & 0.00782 & 12.50 & 12.23 & 12.22 & 12.02 & 12.04 & 12.03 \\
\hline 8 & 105.5 & 23.81 & 23.95 & 23.82 & 23.85 & 22.84 & 491.5 & 6.46 & \(0.218 \mathrm{E}-07\) & 0.01093 & 13.23 & 12.57 & 13.00 & 12.66 & 12.70 & 12.68 \\
\hline 9 & 135.5 & 23.98 & 24.09 & 24.03 & 24.03 & 23.00 & 493.2 & 6.44 & 0.221E-07 & 0.01404 & 13.07 & 11.72 & 12.44 & 12.40 & 12.42 & 12.41 \\
\hline 10 & 165.2 & 24.12 & 24.24 & 24.19 & 24.18 & 23.16 & 494.9 & 6.41 & \(0.224 E-67\) & 0.01712 & 13.41 & 11.77 & 12.43 & 12.48 & 12.51 & 12.49 \\
\hline :1 & 205.2 & 24.27 & 24.42 & 24.39 & 24.37 & 23.37 & 497.3 & 6.38 & \(0.228 E-07\) & 0.02120 & 14.25 & 12.18 & 12.51 & 12.82 & 12.85 & 12.84 \\
\hline 12 & 245.2 & 24.59 & 24.60 & 24.56 & 24.58 & 23.58 & 499.7 & 6.36 & \(0.232 \mathrm{E} \cdot 07\) & 0.02544 & 12.67 & 12.52 & 13. & 12.83 & 12.84 & 12.84 \\
\hline 13 & 275.2 & 24.61 & 24.77 & 24.73 & 24.71 & 23.74 & 501.5 & 6.32 & 0.235E-07 & 0.02856 & 14.71 & 12.34 & 12.94 & 23.87 & 13.23 & 13.20 \\
\hline 14 & 305.2 & 24.82 & 25.00 & 24.89 & 24.90 & 23.90 & 503.3 & 6.30 & \(0.2385 \cdot 07\) & 0.03168 & 23.83 & 11.62 & 12.86 & 12.74 & 12.79 & 12.77 \\
\hline 15 & 333.3 & 24.90 & 25.08 & 24.98 & 24.97 & 24.05 & 505.0 & 6.27 & \(0.241 E \cdot 07\) & 0.03461 & 15.03 & 13.28 & 13.68 & 13.89 & 13.92 & 13.90 \\
\hline 16 & 363.3 & 25.12 & 25.20 & 25.15 & 25.18 & 24.21 & 506.8 & 6.25 & \(0.2445^{-07}\) & 0.03774 & 14.12 & 12.87 & 13.50 & 13.49 & 13.50 & 13.49 \\
\hline 17 & 383.3 & 25.21 & 25.27 & 25.22 & 25.23 & 24.31 & 508.0 & 6.23 & \(0.246 \mathrm{E} \cdot 07\) & 0.03983 & 14.23 & 13.29 & 14.08 & 13.91 & 13.92 & 13.91 \\
\hline 18 & 403.3 & 25.33 & 25.42 & 25.32 & 25.34 & 24.42 & 509.3 & 6.21 & 0.2488 & 0.04192 & 14.06 & 12.87 & 14.10 & 13.75 & 13.78 & 13.77 \\
\hline 19 & 423.3 & 25.39 & 25.53 & 25.48 & 25.47 & 24.53 & 510.5 & 6.20 & \(0.2508 \cdot 07\) & 0.04401 & 14.72 & 12.72 & 13.33 & 13.48 & 13.52 & 13.50 \\
\hline 20 & 443.3 & 25.47 & 25.60 & 25.54 & 25.54 & 24.63 & 511.8 & 6.18 & \(0.2525 \cdot 07\) & 0.04610 & 15.16 & 13.11 & 14.05 & 14.05 & 14.09 & 14.07 \\
\hline 21 & 463.3 & 25.67 & 25.65 & 25.75 & 25.71 & 24.74 & 513.0 & 6.16 & \(0.255 E \sim 07\) & 0.04820 & 13.61 & 13.94 & 12.51 & 13.11 & 13.15 & 13.13 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THRCUEE STATIONS 15 TD 20: \\
\(391.6 \quad 25.23 \quad 25.34 \quad 25.20 \quad 25.20 \quad 24.36\)
\end{tabular}} & 508.6 & 6.22 & 0.247 E007 & 0.04070 & 14.55 & 13.02 & 13.79 & 23.76 & 13.79 & 13.78 \\
\hline
\end{tabular}

HOAIZONTAL ORIEMTATIOM \(\qquad\) 2-500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TON }
\end{aligned}
\] & \[
\overline{\mathrm{N}} \mathrm{Z}
\] & \[
-\sqrt{4 L}
\] & B & c & \[
\begin{aligned}
& \mathrm{CN} \\
& \text { AVR- } \\
& \text { AGE }
\end{aligned}
\] & \[
\mathrm{IC}_{\text {C }}
\] & NE & PR & GR & 2 & A & B & & I & \({ }^{\text {HE }}\) & T+ \\
\hline 3 & 5.5 & 24.12 & 24.22 & 24.17 & 24.17 & 22.60 & 471.9 & 6.50 & 0.428E*07 & 0.00059 & 16.86 & 15.73 & 16.28 & 16.28 & 16.29 & 16.28 \\
\hline 4 & 15.5 & 24.37 & 24.59 & 24.42 & 24.45 & 22.71 & 473.0 & 6.48 & 0.432E*07 & 0.00166 & 15.42 & 13.61 & 14.93 & 14.69 & 14.72 & 1 \\
\hline 5 & 25.5 & 24.51 & 24.75 & 24.64 & 24.64 & 22.82 & 474.2 & 6.47 & 0.436E007 & 0.00274 & 15.16 & 13.22 & 14.02 & 14.07 & 14.11 & 14.09 \\
\hline 6 & 45.5 & 24.69 & 24.93 & 24.77 & 24.79 & 23.04 & 476.5 & 6.43 & 0.444E*07 & 0.00488 & 15.45 & 13.51 & 14.76 & 14.59 & 14.62 & 14.60 \\
\hline 7 & 75.5 & 24.84 & 25.10 & 24.93 & 24.95 & 23.37 & 480.0 & 6.38 & \(0.456 E \sim 07\) & 0.00811 & 17.31 & 14.76 & 16.36 & 16.15 & 16.20 & 16.17 \\
\hline 8 & 105.5 & 25.06 & 25.37 & 25.16 & 25.19 & 23.70 & 483.6 & 6.33 & 0.468E 07 & 0.01134 & 18.69 & 15.25 & 17.40 & 17.09 & 17.19 & 17.14 \\
\hline 9 & 135.5 & 25.37 & 25.68 & 25.53 & 25.53 & 24.03 & 487.2 & 6.28 & 0.481E.07 & 0.01458 & 18.96 & 15.44 & 16.94 & 16.98 & 17.07 & 17.03 \\
\hline 10 & 165.2 & 25.67 & 26.00 & 25.84 & 25.84 & 24.35 & 490.9 & 6.22 & 0.494E*07 & 0.01778 & 19.41 & 15.50 & 27.17 & 17.20 & 17.31 & 17.26 \\
\hline 11 & 205.2 & 26.05 & 26.40 & 26.29 & 26.26 & 24.79 & 495.9 & 6.16 & 0.512E-07 & 0.02212 & 20.25 & 15.89 & 17.01 & 17.40 & 17.54 & 17.47 \\
\hline 12 & 245.2 & 26.59 & 26.83 & 26.72 & 26.71 & 25.23 & 501.0 & 6.09 & 0.538E 07 & 0.02646 & 18.77 & 15.92 & 17.23 & 17.23 & 17.28 & 17.26 \\
\hline 13 & 275.2 & 26.84 & 27.12 & 27.05 & 27.01 & 25.56 & 504.9 & 6.03 & 0.545E*07 & 0.02972 & 19.97 & 16.36 & 17.10 & 17.53 & 17.63 & . 58 \\
\hline 14 & 305.2 & 27.20 & 27.52 & 27.36 & 27.36 & 25.89 & 508.8 & 5.98 & 0.560E+07 & 0.03299 & 19.50 & 15.64 & 17.38 & 17.37 & 17.47 & 17.42 \\
\hline 15 & 333.3 & 27.43 & 27.74 & 27.65 & 27.62 & 26.20 & 512.6 & 5.93 & \(0.575 E \sim 07\) & 0.03605 & 20.69 & 16.56 & 17.51 & 17.94 & 18.07 & 18.01 \\
\hline 16 & 363.3 & 27.87 & 28.15 & 28.01 & 28.01 & 26.53 & 516.7 & 5.88 & 0.590E-07 & 0.03933 & 18.99 & 15.67 & 27.13 & 17.15 & 17.23 & 17.19 \\
\hline 17 & 383.3 & 28.09 & 28.34 & 28.18 & 28.20 & 26.75 & 519.5 & 5.85 & 0.601E07 & 0.04152 & 19.00 & 15.98 & 17.82 & 17.58 & 17.65 & 17.62 \\
\hline 18 & 403.3 & 28.30 & 28.61 & 28.43 & 28.45 & 26.97 & 522.0 & 5.81 & 0.611 EN 07 & 0.04371 & 19.04 & 15.46 & 17.37 & 17.22 & 17.31 & 17.26 \\
\hline 19 & 423.3 & 28.57 & 28.86 & 28.74 & 28.73 & 27.19 & 524.3 & 5.79 & 0.6205 F 07 & 0.04589 & 18.34 & 15.24 & 16.38 & 16.51 & 16.59 & 16.55 \\
\hline 20 & 443.3 & 28.74 & 29.01 & 28.88 & 28.88 & 27.41 & 526.7 & 5.76 & 0.630E-07 & 0.04808 & 19.15 & 15.83 & 17.23 & 17.28 & 17.36 & 17.32 \\
\hline 21 & 463.3 & 29.04 & 29.31 & 29.18 & 29.18 & 27.63 & 529.0 & 5.73 & 0.639E+07 & 0.05026 & 17.97 & 15.08 & 16.42 & 16.41 & 16.47 & 16.44 \\
\hline \multicolumn{5}{|l|}{aVERAGE VALIES THOUGE STATIOMS \(391.6 \quad 28.17 \quad 28.45 \quad 28.32\)} & \multicolumn{2}{|l|}{\[
\frac{15}{28.30} 70 \text { 20: }
\]} & 520.3 & 5.84 & 0.604E407 & 0.04243 & 19.20 & 15.79 & 17.24 & 17.28 & 17.37 & 17.33 \\
\hline
\end{tabular}
hoarzontal omibetation \(\qquad\) \(3-500\)

Input Electic power o 581.7 V
heat mate gaimid by vatzia - 595.2 y
 \({ }^{-595} 5\)


102-0.005684

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & RE & P1 & 6 & Z+ & & & & & & \\
\hline & & & & & & & & & & & & & & & & T- \\
\hline 3 & 5.5 & 25.31 & 25 & 25.44 & 25 & 22.49 & 51.0 & 6.52 & \(0.822 \mathrm{E}+07\) & 0.00062 & 17.60 & 4 & 16.84 & 16.84 & 16.8 & 16.8 \\
\hline 4 & 15.5 & 25.64 & 26.15 & 25.72 & 25.81 & 22.71 & 453.2 & 6.48 & 0.837E.07 & 0.0017 & 16.97 & 14.43 & & 16.04 & 16.10 & \\
\hline 5 & 25.5 & 25.99 & 26 & 26.28 & 2 & 22.93 & 455.5 & 6.45 & \(0.853 \mathrm{E}+07\) & 0.00286 & 16.23 & 14.19 & 14.85 & 14.99 & 15.03 & 15. \\
\hline 6 & 45.5 & 26.2 & 26.6 & 26.38 & 26.44 & 3.3 & 460.0 & 6.38 & 0.885E-07 & 0.00510 & 17.19 & 14.95 & 16.45 & 16.22 & 16.26 & 16.2 \\
\hline 7 & 75.5 & 26.59 & 27.04 & 26.74 & 26.78 & 24.04 & 467.0 & 6.27 & 0.934E* & 0.0084 & 19.44 & 16.58 & 18.35 & 18.10 & 18.16 & \\
\hline 8 & 105.5 & 27.04 & 27.69 & 27.23 & 27.30 & 24.71 & 474.2 & 6.17 & 0.987E+07 & 0.0118 & 21.21 & 16.59 & 19.64 & 19.12 & 19.27 & \\
\hline 9 & 135 & 27.7 & 28 & 28 & 28.04 & 25. & 48.7 & 5.06 & 0.104E+0 & 01 & 20.65 & 16.91 & 18.55 & 18.57 & 18.66 & \\
\hline 10 & 165.2 & 28.36 & 28.90 & 28.73 & 28.70 & 26.04 & 489.3 & 5.96 & 0.110E+00 & 0.0186 & 21.23 & 16.7 & 18.37 & 18.55 & 18.68 & \\
\hline 11 & 205.2 & 29.12 & 29.7 & 29.45 & 29.4 & 26.93 & 499. & 8.82 & 0.118540 & 0.023 & 22.48 & 17.6 & 19.5 & 19.6 & 19.81 & \\
\hline 12 & 245.2 & 30.09 & 30.63 & 30.38 & 30.37 & 27.82 & 508.9 & 5.7 & 0.126 E & 0.0 & 21.65 & 17.52 & 19.24 & 19 & 19.41 & \\
\hline 13 & 275.2 & 30.66 & 31.22 & 31.08 & 31.01 & 28.49 & 515.9 & 5.62 & 0.132E+08 & 0.03120 & 22.67 & 17.97 & 18.92 & 19.46 & 19.62 & \\
\hline 14 & 305.2 & 31.31 & 31.88 & 31.61 & 31.62 & 29.16 & 523.2 & 5.54 & 0.138E+0 & 0.0346 & 22.82 & 17.98 & 19.94 & 20.02 & 20.16 & 20. \\
\hline 15 & 333.3 & 31.9 & 32. & 2. & 32.20 & 9. & 530.2 & 5.46 & 0.144 E & 0.037 & 22.69 & 17.8 & 19. & 19.59 & 19.74 & \\
\hline 16 & 363.3 & 32.66 & 33.25 & 32.98 & 32.97 & 30.45 & 537.9 & 5.38 & \(0.1515+08\) & 0. & 22.08 & 17.43 & 19.30 & 19.39 & 19.53 & \\
\hline 17 & 383.3 & 33.12 & 33.69 & 33.40 & 33.40 & 30.90 & 543.1 & 5.32 & 0.15SE+0a & 0.0436 & 21.96 & 17.47 & 29.53 & 19.50 & 19.62 & \\
\hline 18 & 403.3 & 33 & 34.15 & 33 & 33.86 & 31 & . 5 & 5.26 & . 160 E + & 0.045 & 21.44 & 7.3 & 19.5 & 19. & 19 & \\
\hline 19 & 423 & 34.08 & 34.65 & 34.42 & 34.39 & 31.79 & 554.0 & 5.21 & .165E & 0. & 21. & 17. & 18. & 8. & 18.85 & \\
\hline 20 & 443.3 & . 39 & 34.99 & 34.70 & 34.70 & 32.24 & 558 & 5.16 & 0.170E & 0.06 & 22. & 7.6 & 19.70 & 19 & 19.90 & \\
\hline 21 & 463.3 & 34.74 & 35 & 35.09 & 35.06 & 32 & 563.7 & 5.10 & 0.175E-08 & 0.05297 & 23.57 & 18.4 & 0.14 & 20.4 & 20.5 & \\
\hline \multicolumn{17}{|l|}{} \\
\hline
\end{tabular}

CORIZOMTLL OMEETTATIOM \(\qquad\) 4-500

IMPUT ELECTRIC PONER - 931.8
EEAT MTE GAIIED EY VATER - MAS.9
MLSS FLOY RATE \(=12.4500 \mathrm{G} / \mathrm{s}\)
 FRICTIOW





\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { M0. }
\end{aligned}
\] & \[
{ }^{2}
\] & \[
-6
\] & \[
\overline{90}
\] & \[
c^{E}
\] &  & (C) & T & PR & GR & 2. & 4 & . & \[
\frac{515}{c}
\] & 7 & E. & T-1 \\
\hline 3 & 5.5 & 23.53 & 23.50 & 23.52 & 23.52 & 22.88 & 990.4 & 6.46 & \(0.216 E \cdot 07\) & 0.00028 & 19.42 & 20.51 & 19.95 & 19.96 & 19.96 & 19.95 \\
\hline 4 & 15.5 & 23.73 & 23.81 & 23.82 & 23.79 & 22.91 & 990.9 & 6.45 & 0.216E 07 & 0.00080 & 15.33 & 14.07 & 13.93 & 14.29 & 14.31 & 14.30 \\
\hline 5 & 25.5 & 23.95 & 24.04 & 24.01 & 24.00 & 22.93 & 991.5 & 6.45 & 0.217E+07 & 0.00131 & 12.37 & 11.45 & 11.78 & 11.84 & 11.85 & 12.84 \\
\hline 6 & 45.5 & 24.10 & 24.15 & 24.15 & 24.14 & 22.99 & 992.7 & 6.44 & 0.218E*07 & 0.00234 & 11.30 & 10.87 & 10.81 & 10.94 & 10.95 & 10.94 \\
\hline 7 & 75.5 & 24.12 & 24.21 & 24.12 & 26.14 & 23.06 & 994.4 & 6.43 & 0.219E-07 & 0.00389 & 11.94 & 11.02 & 11.97 & 11.71 & 11.72 & 11.72 \\
\hline 8 & 105.5 & 24.11 & 24.23 & 24.10 & 24.14 & 23.14 & 996.1 & 6.42 & 0.221E-07 & 0.00543 & 12.98 & 11.65 & 13.13 & 12.69 & 12.72 & 12.71 \\
\hline 9 & 135.5 & 24.12 & 24.23 & 24.17 & 24.17 & 23.22 & 997.9 & 6.40 & 0.222E-07 & 0.00698 & 14.07 & 12.50 & 13.34 & 13.29 & 13.31 & 13.30 \\
\hline 10 & 165.2 & 24.14 & 24.24 & 24.19 & 24.19 & 23.30 & 999.6 & 6.39 & 0.2238 .07 & 0.00851 & 15.01 & 13.35 & 14.29 & 14.17 & 24.19 & 14.12 \\
\hline 11 & 205.2 & 24.18 & 24.33 & 24.33 & 24.30 & 23.40 & 1001.9 & 6.37 & 0.225E+07 & 0.01087 & 16.17 & 13.52 & 13.53 & 14.10 & 14.19 & 14.14 \\
\hline 12 & 245.2 & 24.37 & 24.43 & 24.39 & 24.39 & 23.51 & 1004.3 & 6.36 & \(0.2272+07\) & 0.01263 & 14.65 & 13.59 & 14.27 & 14.18 & 14.19 & 14.19 \\
\hline 13 & 275.2 & 24.36 & 24.50 & 24.47 & 24.45 & 23.58 & 1006.0 & 6.35 & 0.229E-07 & 0.01418 & 16.30 & 13.83 & 14.15 & 14.55 & 14.61 & 14.58 \\
\hline 14 & 305.2 & 24.46 & 24.63 & 24.58 & 24.56 & 23.66 & 1007. 8 & 6.33 & 0.230E007 & 0.01573 & 15.82 & 12.97 & 13.68 & 13.96 & 14.04 & 14.00 \\
\hline 15 & 333.3 & 24.45 & 24.59 & 24.59 & 24.56 & 23.73 & 1009.5 & 6.32 & 0.232E-07 & 0.02718 & 17.58 & 14.72 & 14.72 & 15.35 & 15.44 & 15.39 \\
\hline 16 & 363.3 & 24.64 & 24.75 & 24.67 & 24.68 & 23.81 & 1011.2 & 6.31 & 0.233 E 407 & 0.01873 & 15.31 & 13.42 & 14.63 & 14.46 & 14.50 & 14.48 \\
\hline 17 & 383.3 & 24.68 & 24.79 & 24.77 & 24.75 & 23.86 & 1012.4 & 6.30 & \(0.2345+07\) & 0.01976 & 15.50 & 13.57 & 13.89 & 14.17 & 14.21 & 14.19 \\
\hline 18 & 403.3 & 24.71 & 24.85 & 24.79 & 24.78 & 23.92 & 1013.6 & 6.29 & \(0.235 E+07\) & 0.02080 & 15.94 & 13.54 & 14.42 & 14.53 & 14.58 & 14.55 \\
\hline 19 & 423.3 & 24.80 & 24.92 & 24.86 & 24.86 & 23.97 & 1014.8 & 6.29 & 0.236E +07 & 0.02183 & 15.00 & 13.36 & 14.09 & 14.13 & 24.15 & 14.14 \\
\hline 20 & 443.3 & 24.80 & 24.95 & 24.86 & 24.87 & 24.02 & 1016.0 & 6.28 & 0.237E407 & 0.02286 & 16.25 & 13.48 & 14.95 & 14.84 & 14.91 & 14.88 \\
\hline 21 & 463.3 & 25.06 & 25.04 & 25.14 & 25.09 & 24.07 & 1017.2 & 6.27 & \(0.238 E-07\) & 0.02390 & 12.82 & 12.96 & 11.82 & 12.33 & 12.35 & 12.34 \\
\hline & \[
\begin{array}{r}
\text { Rage Yd } \\
391.6
\end{array}
\] & \[
\operatorname{Lu}_{24.68} \pi
\] & \[
24.81
\] & \[
7 \mathrm{TIT} 145
\] & \[
\frac{25}{24.70}
\] & 20: & 1012.9 & 6.30 & \(0.234 E+07\) & 0.02019 & 15.94 & 13.68 & 14.45 & 14.58 & 14.63 & 14.61 \\
\hline
\end{tabular}

Cotrzomtal onicuration _-_ \(2-1000\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOM } \\
& \text { ND. }
\end{aligned}
\] & \[
\overline{x^{2}}
\] & \[
4
\] & B & & \[
\begin{aligned}
& \text { AVEB- } \\
& \text { AES } \\
& \hline
\end{aligned}
\] & C) & & - & & & 4 & 8 & \[
\bar{c}
\] & \[
\underline{T}
\] & \[
\operatorname{LEE}
\] & T* \({ }^{\text {H }}\) \\
\hline 3 & 5.5 & 24.34 & 24.31 & 24.32 & 24.32 & 23.20 & 975.5 & 6.41 & .430E+07 & 0.00029 & 21.46 & 22.03 & 21.74 & 21.74 & 21.74 & 21.74 \\
\hline 4 & 15.5 & 24.86 & 24.92 & 24.84 & 24.86 & 23.25 & 976.6 & 6.40 & 0.432E-07 & 0.00082 & 15.15 & 14.62 & 15.42 & 15.14 & 15.15 & 15.15 \\
\hline 5 & 25.5 & 25.06 & 25.17 & 25.06 & 25.08 & 23.30 & 977.7 & 6.39 & \(0.433 E+07\) & 0.00134 & 13.94 & 13.12 & 13.92 & 13.72 & 13.72 & 13.72 \\
\hline 6 & 45.5 & 25.11 & 25.24 & 25.13 & 25.15 & 23.40 & 980.0 & 6.37 & 0.437E+07 & 0.00240 & 14.31 & 13.33 & 14.14 & 13.97 & 13.98 & 13.97 \\
\hline 7 & 75.5 & 25.20 & 25.38 & 25.21 & 25.25 & 23.56 & 983 & 6.35 & 0.443E-07 & 0.00398 & 14.85 & 13.44 & 14.82 & 14.46 & 14.48 & 14.47 \\
\hline 8 & 105.5 & 25.29 & 25.57 & 25.33 & 25.38 & 23.71 & 986.8 & 6.33 & 0.448E-07 & 0.00556 & 15.53 & 13.18 & 15.09 & 14.66 & 14.72 & 14.69 \\
\hline 9 & 135.5 & 25.43 & 25.71 & 25.56 & 25.56 & 23.87 & 990.3 & 6.30 & 0.454E*07 & 0.00714 & 15.65 & 13.28 & 14.43 & 14.40 & 14.45 & 14.42 \\
\hline 10 & 165.2 & 25.53 & 25.80 & 25.64 & 25.65 & 24.02 & 993.8 & 6.28 & 0.460E+07 & 0.00871 & 16.20 & 13.69 & 15.05 & 14.95 & 15.00 & 14.97 \\
\hline 11 & 205.2 & 25.66 & 25.92 & 25.84 & 25.82 & 24.23 & 998.4 & 6.24 & 0.468E-07 & 0.01083 & 17.02 & 14.39 & 15.10 & 15.34 & 15.40 & 15.37 \\
\hline 12 & 245.2 & 25.95 & 26.19 & 26.04 & 26.06 & 24.43 & 1003.2 & 6.21 & 0.476E+07 & 0.01294 & 16.08 & 13.88 & 15.19 & 15.04 & 15.08 & 15.06 \\
\hline 13 & 275.2 & 26.00 & 26.25 & 26.18 & 26.16 & 24.59 & 1006.8 & 6.19 & 0.482E-07 & 0.01453 & 17.26 & 14.65 & 15.29 & 15.56 & 15.62 & 15.59 \\
\hline 14 & 305.2 & 26.13 & 26.45 & 26.29 & 26.29 & 24.74 & 1010.4 & 6.16 & 0.4EAE 07 & 0.01612 & 17.51 & 14.24 & 15.74 & 15.72 & 15.81 & 15.77 \\
\hline 15 & 333.3 & 26.26 & 26.48 & 26.40 & 26.39 & 24.89 & 1013.8 & 6.14 & 0.494E+07 & 0.01761 & 17.75 & 15.27 & 16.11 & 16.26 & 16.31 & 16.29 \\
\hline 16 & 363.3 & 26.39 & 26.65 & 26.47 & 26.50 & 25.04 & 1017.4 & 6.12 & 0.500E-07 & 0.01921 & 18.05 & 15.18 & 17.06 & 16.77 & 16.84 & 16.80 \\
\hline 17 & 383.3 & 26.47 & 26.71 & 26.59 & 26.59 & 25.15 & 1019.9 & 6.10 & 0.5045407 & 0.02027 & 18.43 & 15.59 & 16.91 & 16.90 & 16.96 & 16.93 \\
\hline 18 & 403.3 & 26.59 & 26.81 & 26.67 & 26.68 & 25.25 & 1022.3 & 6.00 & \(0.508 \mathrm{E}+07\) & 0.02133 & 18.15 & 15.55 & 17.16 & 16.95 & 17.01 & 16.98 \\
\hline 19 & 423.3 & 26.70 & 26.95 & 26.83 & 26.83 & 25.35 & 1024.8 & 6.07 & \(0.513 \mathrm{E}+07\) & 0.02240 & 18.01 & 15.20 & 16.47 & 16.48 & 16.54 & 16.51 \\
\hline 20 & 443.3 & 26.74 & 27.01 & 26.86 & 26.87 & 25.45 & 1027.3 & 6.05 & 0.517E*07 & 0.02346 & 18.97 & 15.63 & 17.33 & 17.23 & 17.32 & 17.28 \\
\hline 21 & 463.3 & 27.08 & 27.15 & 27.16 & 27.13 & 25.56 & 1029.8 & 6.03 & 0.521E*07 & 0.02453 & 16.02 & 15.29 & 15.22 & 15.43 & 15.44 & 15.44 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES TIROUCA STATIONS \(391.6 \quad 26.53 \quad 26.77 \quad 26.64\)} & \[
\begin{aligned}
& 15.70 \\
& 26.64
\end{aligned}
\] & \[
\begin{array}{r}
20 \\
25.19
\end{array}
\] & 1020.9 & 6.09 & \(0.506 \mathrm{E} \cdot 07\) & 0.02071 & 18.23 & 15.40 & 16.84 & 16.77 & 16.83 & 16.80 \\
\hline
\end{tabular}
\(\qquad\) - 1000

IHPUT ELECTIIC PONER - 662.8 U
PAScsume DiEAT RATE GATHED EY VATE - 646.7


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { MON } \\
& \text { MO. }
\end{aligned}
\] & & - 4 & B & c & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVM- } \\
& \text { ACE }
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& \text { (C) }
\end{aligned}
\] & & PR & . & & 4 & B & C & \[
I
\] & E & T+I \\
\hline 3 & 5.5 & 25.37 & 25.34 & 26.35 & 25.35 & 22.80 & 942.8 & 6.47 & 0.915E-07 & 0.00030 & 21.01 & 21.20 & 21.10 & 21.10 & 21.10 & 21.10 \\
\hline 4 & 15.5 & 25.91 & 26.21 & 25.97 & 26.01 & 22.92 & 945.2 & 6.45 & 0.924E 07 & 0.00084 & 17.98 & 16.37 & 17.66 & 17.39 & 17.42 & 17.40 \\
\hline 5 & 25.5 & 26.18 & 26.54 & 26.33 & 26.35 & 23.03 & 947.7 & 6.43 & \(0.933 E+07\) & 0.00138 & 17.09 & 15.35 & 16.33 & 16.25 & 16.27 & 16.26 \\
\hline 6 & 45.5 & 26.29 & 26.64 & 26.39 & 26.43 & 23.25 & 952.6 & 6.40 & 0.951E+07 & 0.00246 & 17.79 & 15.96 & 17.21 & 27.02 & 17.04 & 17.03 \\
\hline 7 & 75.5 & 26.48 & 26.96 & 25.63 & 26.68 & 23.61 & 960.1 & 6.34 & 0.979E+07 & 0.00408 & 18.76 & 16.07 & 17.82 & 17.56 & 17.62 & 17.59 \\
\hline 8 & 105.5 & 26.68 & 27.30 & 26.84 & 26.92 & 23.96 & 967.7 & 6.29 & 0.101E-08 & 0.00570 & 19.77 & 16.10 & 18.68 & 18.20 & 18.31 & 18.26 \\
\hline 9 & 135.5 & 27.05 & 27.60 & 27.32 & 27.32 & 24.32 & 975.5 & 6.23 & 0.104E+08 & 0.00733 & 19.64 & 16.32 & 17.87 & 17.84 & 17.92 & 17.88 \\
\hline 10 & 165.2 & 27.25 & 27.92 & 27.61 & 27.60 & 24.66 & 983.3 & 6.18 & 0. 107E+08 & 0.00895 & 20.68 & 16.43 & 18.21 & 18.26 & 18.38 & 18.32 \\
\hline 11 & 206.2 & 27.56 & 28.27 & 27.91 & 27.91 & 25.12 & 994.0 & 6.10 & 0.111E408 & 0.01113 & 22.01 & 17.06 & 19.21 & 19.22 & 19.37 & 19.29 \\
\hline 12 & 245.2 & 28. 17 & 28.73 & 28.45 & 28.45 & 25.59 & 1004.9 & 6.03 & 0.115E408 & 0.01331 & 20.71 & 17.04 & 18.74 & 18.72 & 18.81 & 18.76 \\
\hline 13 & 275.2 & 28.40 & 28.99 & 28.82 & 28.75 & 25.94 & 1013.2 & 5.97 & 0.118E+08 & 0.01496 & 21.75 & 17.54 & 18.59 & 19.00 & 19.12 & 19.06 \\
\hline 14 & 305.2 & 28.65 & 29.26 & 28.95 & 28.95 & 26.29 & 1021.7 & 5.92 & 0.122E-08 & 0.01660 & 22.62 & 18.02 & 20.05 & 20.05 & 20.18 & 20.12 \\
\hline 15 & 333.3 & 29.02 & 29.63 & 29.43 & 29.30 & 26.61 & 1029.8 & 5.87 & 0.125E+08 & 0.01815 & 22.23 & 17.71 & 18.94 & 19.32 & 19.45 & 19.39 \\
\hline 16 & 363.3 & 29.35 & 29.96 & 29.67 & 29.65 & 26.96 & 2038.1 & 5.82 & 0.128E+08 & 0.01980 & 22.39 & 17.78 & 19.71 & 19.77 & 19.90 & 19.83 \\
\hline 17 & 383.3 & 29.60 & 30.14 & 29.88 & 29.87 & 27.20 & 1043.0 & 5.79 & 0.130E+08 & 0.02089 & 22.21 & 18.10 & 19.88 & 19.91 & 20.02 & 19.97 \\
\hline 18 & 403.3 & 29.79 & 30.38 & 30.06 & 30.07 & 27.43 & 1047.9 & 5.76 & 0.133E-08 & 0.02199 & 22.54 & 18.04 & 20.28 & 20.16 & 20.29 & 20.22 \\
\hline 19 & 423.3 & 30.05 & 30.70 & 30.45 & 30.42 & 27.66 & 1052.9 & 5.73 & \(0.1358+08\) & 0.02309 & 22.26 & 17.52 & 19.08 & 19.34 & 19.49 & 19.41 \\
\hline 20 & 443.3 & 30.23 & 30.87 & 30.57 & 30.56 & 27.89 & 1057.9 & 5.70 & 0.1372408 & 0.02419 & 22.83 & 17.88 & 19.90 & 19.98 & 20.13 & 20.05 \\
\hline 21 & 463.3 & 30.56 & 31.22 & 30.91 & 30.90 & 28.13 & 1063.0 & 5.67 & 0.139E+0t & 0.02529 & 21.90 & 17.23 & 19.10 & 19.19 & 19.33 & 19.26 \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{r}
\text { AVERAGE VALUES } \\
391.6 \quad 29.6
\end{array}
\]} & \multicolumn{2}{|l|}{} & \[
\begin{aligned}
& 15.70 \\
& 29.99
\end{aligned}
\] & \[
\begin{array}{r}
20: \\
27.29
\end{array}
\] & 1044.9 & 5.78 & 0.2312+08 & 0.02135 & 22.41 & 17.84 & 19.63 & 19.75 & 19.88 & 19.81 \\
\hline
\end{tabular}
\(\qquad\) 4-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & \[
\bar{x}_{2}^{2}
\] & \[
-4 a
\] & & TE & \[
\begin{aligned}
& 6 \text { C) } \\
& A V E \\
& A C E
\end{aligned}
\] & (c) & \(\underline{1}\) & PIT & GR & 2. & 4 & 8 & & \[
I
\] & E & T-E \\
\hline 3 & 5.5 & 26.03 & 26.07 & 26.05 & 26.05 & 22.62 & 924.8 & 5.50 & 0.122E*08 & 0.00030 & 21.46 & 21.24 & 21.35 & 21.35 & 21.35 & 21.35 \\
\hline 4 & 15.5 & 26.69 & 27.13 & 26.80 & 26.85 & 22.78 & 928.0 & 6.47 & 0.124E+08 & 0.00085 & 18.74 & 16.82 & 18.22 & 17.97 & 18.00 & 17.99 \\
\hline 5 & 25.5 & 27.06 & 27.59 & 27.33 & 27.33 & 22.94 & 931.4 & 6.45 & \(0.126 E 08\) & 0.00140 & 17.74 & 15.74 & 16.67 & 16.68 & 16.71 & 16.69 \\
\hline 6 & 45.5 & 27.16 & 27.67 & 27.34 & 27.38 & 23.27 & 938.0 & 6.40 & 0.129E*08 & 0.00249 & 18.75 & 16.56 & 17.90 & 17.74 & 17.78 & 17.76 \\
\hline 7 & 75.5 & 27.48 & 28. 10 & 27.64 & 27.71 & 23.75 & 948.2 & 6.32 & 0.134E408 & 0.00414 & 19.53 & 16.75 & 18.74 & 18.38 & 18.44 & 18.41 \\
\hline 8 & 105.5 & 27.69 & 28.59 & 27.96 & 28.05 & 24.23 & 958.7 & 6.24 & 0.140E 08 & 0.00580 & 21.06 & 16.71 & 19.54 & 19.07 & 19.21 & 19.14 \\
\hline 9 & 135.5 & 28.22 & 29.00 & 28.66 & 28.63 & 24.71 & 969.3 & 6.17 & 0.145E408 & 0.00745 & 20.73 & 16.97 & 18.43 & 18.54 & 18.64 & 18.59 \\
\hline 10 & 165.2 & 28.48 & 29.37 & 29.01 & 28.97 & 25.18 & 980.1 & 6.09 & 0.151E*08 & 0.00910 & 22.08 & 17.35 & 19.02 & 19.22 & 19.37 & 19.30 \\
\hline 11 & 205.2 & 28.90 & 29.83 & 29.34 & 29.35 & 25.82 & 995.0 & 5.99 & 0.159E+08 & 0.01132 & 23.62 & 18.14 & 20.66 & 20.59 & 20.77 & 20.68 \\
\hline 12 & 245.2 & 29.54 & 30.40 & 30.01 & 29.99 & 26.47 & 1010.4 & 5.89 & 0.167E*08 & 0.61355 & 23.61 & 18.40 & 20.44 & 20.56 & 20.72 & 20.64 \\
\hline 13 & 275.2 & 29.96 & 30.77 & 30.55 & 30.46 & 26.95 & 1021.8 & 5.82 & 0.274E*08 & 0.01523 & 24.04 & 18.92 & 20.08 & 20.62 & 20.78 & 20.70 \\
\hline 14 & 305.2 & 30.33 & 31.19 & 30.75 & 30.75 & 27.43 & 1031.8 & 5.76 & 0.180E408 & 0.01690 & 24.95 & 19.23 & 21.79 & 21.76 & 21.94 & 21.85 \\
\hline 15 & 333.3 & 30.88 & 31.69 & 31.44 & 31.36 & 27.88 & 1041.4 & 5.70 & 0.186E-08 & 0.01847 & 24.05 & 18.95 & 20.29 & 20.73 & 20.89 & 20.81 \\
\hline 16 & 363.3 & 31.33 & 32.19 & 31.78 & 31.77 & 28.36 & 1051.8 & 5.64 & 0.192E-08 & 0.02015 & 24.32 & 18.82 & 21.12 & 21.17 & 21.35 & 21.26 \\
\hline 17 & 383.3 & 31.64 & 32.40 & 32.00 & 32.01 & 28.68 & 1058.8 & 5.60 & 0.196E 08 & 0.02127 & 24.38 & 19.41 & 21.72 & 21.65 & 21.80 & 21.73 \\
\hline 18 & 403.3 & 31.93 & 32.77 & 32.30 & 32.33 & 29.00 & 1068.9 & 5.56 & 0.201E+08 & 0.02239 & 24.60 & 19.10 & 21.85 & 21.67 & 21.85 & 21.76 \\
\hline 19 & 423.3 & 32.35 & 33.19 & 32.84 & 32.81 & 29.32 & 1073.2 & 5.52 & 0.205E 08 & 0.02351 & 23.81 & 18.60 & 20.45 & 20.66 & 20.83 & 20.75 \\
\hline 20 & 443.3 & 32.51 & 33.44 & 33.02 & 32.99 & 29.64 & 1080.5 & 5.48 & 0.210E*08 & 0.02463 & 25.11 & 18.95 & 21.32 & 21.46 & 21.68 & 21.57 \\
\hline 21 & 463.3 & 33.17 & 33.81 & 33.61 & 33.55 & 29.96 & 1087.9 & 5.44 & 0.214E*08 & 0.02576 & 22.42 & 18.68 & 19.74 & 20.05 & 20.14 & 20.10 \\
\hline \multicolumn{2}{|l|}{\[
A V E R A G E
\]} & \[
L_{3 N}
\] & \multicolumn{2}{|l|}{\[
{ }_{32.61}{ }_{32} \text { STATIGNS }
\]} & \[
\frac{15.70}{32.21}
\] & \[
\text { 20: } 28.81
\] & 1061.9 & 5.58 & 0.198E408 & 0.02174 & 24.38 & 18.97 & 21.12 & 21.23 & 21.40 & 21.31 \\
\hline
\end{tabular}
\(\qquad\) s-1000

IMPUT ELECBIC PONER - 1176.2 Y
MASS FLOU RATE \(=26.8034 \mathrm{G} / \mathrm{S}^{2}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TIOM }
\end{aligned}
\] & \[
=\frac{2}{2}
\] & GIL & & \[
{ }_{c}
\] & \[
\begin{aligned}
& \text { C) } \\
& \text { AVE } \\
& \text { AE }
\end{aligned}
\] & \[
\overline{(1)}
\] & \(\underline{E}\) & PI & G & 2. & 4 & B & \({ }_{c}\) & \[
I
\] & I & Tor \\
\hline 3 & 5.5 & 27.14 & 27.46 & 27.30 & 27 & 22.93 & 094. & 6.45 & 166E+08 & .00031 & 22.90 & 21.27 & 22.05 & 2.05 & 22.07 & 2.06 \\
\hline 4 & 15.5 & 28.06 & 28.75 & 28.20 & 28.31 & 23.15 & 899.2 & 6.42 & 0.169E-08 & 0.00088 & 19.62 & 17.22 & 19.05 & 18.70 & 18.75 & 18.73 \\
\hline 5 & 25.5 & 28.52 & 29.24 & 28.91 & 28.8 & 23.37 & 003.6 & 6.38 & \(0.1725+08\) & 0.0014 & . 71 & 16.43 & 17.41 & 17.45 & 17.49 & 17.47 \\
\hline 6 & 45.5 & 28.6 & 29.3 & 28 & 2 m & 23.8 & 912.6 & 6.31 & 0.178E+08 & 0.00260 & 19.79 & 17.29 & 18.8 & 18. & 18.7 & 18.69 \\
\hline 7 & 75.5 & 28.98 & 29.88 & 29.29 & 29.36 & 24.47 & 926.5 & 6.21 & 0.188E+08 & 0.0043 & 21.31 & 17.78 & 19.97 & 19. & 19.76 & 71 \\
\hline 8 & 105.5 & 29. & 30.55 & 29.63 & 29.79 & 25.13 & 940.8 & 6.10 & 0.198E+08 & 0.00808 & 22.35 & 17.73 & 21.33 & 20.63 & 20.81 & 20.72 \\
\hline 9 & 135.5 & 30.0 & 31.09 & 30.53 & 30.55 & 25.79 & 55. & 6.00 & 0.209E+0 & 0.00 & 22.46 & 18.10 & 20 & 20. & 20.26 & 20.20 \\
\hline 10 & 165.2 & 30.45 & 31.66 & 31.00 & 31.0 & 26.44 & 970.6 & 5.8 & 0.221500 & 0.00950 & 23.98 & 18.3 & 20.6 & 20 & 20.89 & 20.80 \\
\hline 11 & 05. & 31.02 & 32.23 & 31.60 & 31.61 & 27.33 & 989.6 & 5.77 & 0.236 E -88 & 0.0118 & 25.8 & 19.5 & 22.3 & 22.2 & 22.5 & 22.40 \\
\hline 12 & 245.2 & 32 & 33.06 & 32.53 & 32.5 & 28.21 & 1007.7 & 5.66 & \(0.2515+08\) & 0.01414 & 25.08 & 19.67 & 22.06 & 22.05 & 22.22 & 22.13 \\
\hline 13 & 275 & 32.4 & 33.59 & 33.30 & 33 & 28.87 & 1021.6 & 5.58 & \(0.262 \mathrm{E}-08\) & 0.0158 & 26.26 & 20.16 & 21.50 & 22.14 & 22.36 & 22.25 \\
\hline 14 & 305.2 & 33 & 34 & 33.55 & 33.56 & 29.53 & 1036.0 & 5.49 & \(0.275 E\) & 0. & 27.10 & 20.79 & 23.66 & 23.59 & 23 & 23.70 \\
\hline 15 & 333.3 & 33.81 & 34.92 & 34.56 & 34.46 & 30.15 & 1049.8 & 5.41 & 0.287E-0\% & 0.01929 & 25.96 & 19.90 & 21.53 & 22.02 & 22. & 22.12 \\
\hline 16 & 363.3 & 34.4 & 35.60 & 35.00 & 35.01 & 30.81 & 1065.0 & 5.33 & 0.300E-08 & 0.02108 & 26.25 & 19.81 & 22.60 & 22.59 & 22.81 & 22.70 \\
\hline 17 & 383.3 & 34.85 & 35.89 & 35.32 & 35.35 & 31.25 & 1075. & 5. & 0.309E+0 & 0.0222 & 26.29 & 20. & 23.2 & 23. & 23.31 & 23.21 \\
\hline 18 & 403.3 & 35.27 & 36.34 & 36.74 & 35.78 & 31.69 & 1085.9 & 5.22 & 0.319E+08 & 0.02360 & 26.40 & 20.34 & 23.34 & 23.15 & 23.35 & 23.2 \\
\hline 29 & 423.3 & 35.81 & 36.88 & 36.44 & 36.39 & 32.13 & 1095.7 & 5.87 & 0.328E-08 & 0.02459 & 25.70 & 19.88 & 21.94 & 22.18 & 22.36 & 22.27 \\
\hline 20 & 443.3 & 36.05 & 37.21 & 36.64 & 36.64 & 32.57 & 1805.1 & 5.12 & 0.337E-08 & 0.02579 & 27.12 & 20.3 & 23.19 & 23.21 & 23.46 & 23.36 \\
\hline 21 & 463.3 & 36.90 & 37.91 & 37.25 & 37.33 & 33.01 & 1184.7 & 5.07 & 0.346E+08 & 0.02699 & 24.24 & 19.27 & 22.25 & 21.85 & 22.00 & 21.9 \\
\hline \multicolumn{7}{|l|}{} & 1079.5 & 5.25 & \(0.313 \mathrm{E}+08\) & 0.02272 & 26.28 & 20.11 & 22.64 & 22.71 & 22.92 & 22.82 \\
\hline
\end{tabular}
monizortal ogientatiow \(\qquad\) 6-1000

INPUT ELECTRIC PONER - 1776.4 U
MPUT ELECTRIC PONER \(=1776\)
 EEAT MEAE GATMED E FRICTIO \({ }^{1738.8} \mathrm{y}\) FACTOR \(=0.024517\) IEAT BALAMCE ENLOR - 2.118

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & (1) & \(\underline{L}\) & PR & GR & \(2+\) & 4 & 8 & \(\stackrel{5}{5}\) & & & \\
\hline NO. & & & & & AGE & & & & & & \(\cdots\) & E & & 1 & \(\underline{1}\) & T+昷 \\
\hline 3 & 5.5 & 29.56 & 30.15 & 29.85 & 29.85 & 22.96 & 835.2 & 6.44 & 0.250E 0 O8 & 0.00034 & 21.98 & 20.18 & 21.05 & 21.05 & 21.06 & 21.06 \\
\hline 4 & 15.5 & 30.05 & 31.24 & 30.33 & 30.49 & 23.31 & 841.8 & 6.39 & 0.257E-08 & 0.00095 & 21.51 & 18.30 & 20. & 20.21 & 20.29 & 25 \\
\hline 5 & 25.5 & 30.75 & 31.93 & 31.37 & 31.36 & 23.67 & 848.5 & 6.33 & 0.285E+08 & 0.00156 & 20.45 & 17.52 & 18.81 & 18.84 & 18.90 & 18.87 \\
\hline 6 & 5.5 & 30. & 32. & 31.37 & 31.43 & 24 & 86 & 6.22 & 0.2EIE & 0.00279 & 22.21 & 18.74 & 20.68 & 20.50 & 20.58 & 20.54 \\
\hline 7 & 75. & 31.40 & 32.88 & 31.97 & 32.06 & 25.44 & 884.0 & 6.05 & 0.306E+08 & 0.00464 & 24.23 & 19.40 & 22.12 & 21.83 & 21.9 & 90 \\
\hline 8 & 105.5 & 32.0 & 33.93 & 32.54 & 32.75 & 26.51 & 906.7 & 5.88 & 0.334E+08 & 0.00651 & 26.15 & 19.39 & 23.88 & 23.05 & 23.33 & 23.19 \\
\hline 9 & 135.5 & 33.13 & 34.71 & 33.82 & 33.87 & 27. & 927.7 & 5.7 & 0.361E+08 & 0.00837 & 25.84 & 20.1 & 22.99 & 22.80 & 22.98 & 22.89 \\
\hline 10 & 165. & 33.90 & 35.76 & 34.8 & 34.8 & 28 & 948.1 & 5.61 & 0.38eE+08 & 0.01022 & 27. & 20.09 & 22 & 22.98 & 23. & 23.11 \\
\hline 11 & 205.2 & 34.8 & 36.63 & 35.74 & 35.75 & 30.06 & 977.1 & 5.43 & 0.428E-08 & 0.01273 & 29.60 & 21.6 & 25.07 & 25.05 & 25.36 & 25.21 \\
\hline 12 & 245.2 & 36 & 37. & 37. & 37.20 & 31 & 1007.9 & 5.25 & 0.472E+08 & 0.01525 & 29 & 21.81 & 24.70 & 24.83 & 25. & 4.96 \\
\hline 13 & 275.2 & 37.23 & 38.92 & 38.39 & 38.24 & 32.53 & 1030.0 & 5.12 & 0.506E+08 & 0.01716 & 30.22 & 22.22 & 24.22 & 24.90 & 25.22 & 25.06 \\
\hline 14 & 305.2 & 38. & 39.7 & 38.9 & 38.80 & 33.60 & 1051.9 & 5.00 & 0.540E+08 & 0.01910 & 31.68 & 23.07 & 26.71 & 26.71 & 27.04 & 26.87 \\
\hline 15 & 333 & 39. & 41. & +0. & 40. & 34.50 & 1073.2 & 4.88 & 0.574E-0 & 0.02093 & 29. & 21 & 23.86 & 24.58 & 24.90 & 24.74 \\
\hline 16 & 363.3 & 40.30 & 42.12 & 41.24 & 41.22 & 35.66 & 1097.0 & 4.76 & 0.612E+08 & 0.02290 & 30.34 & 21.81 & 25.26 & 25.32 & 25.67 & 25.50 \\
\hline 17 & 383.3 & 40.95 & 42.64 & 41.77 & 41.78 & 36.37 & 1113.4 & 4.68 & 0.640E+08 & 0.02422 & 30.73 & 22.41 & 26.05 & 25.98 & 26.31 & 26.14 \\
\hline 18 & 403. & 41.65 & 43.43 & 42.47 & 42.50 & 37.0 & 1129. & 4.60 & 0.66EE-08 & 0.02554 & 30.69 & 22.12 & 26.05 & 25.88 & 26.23 & 26.06 \\
\hline 19 & 423.3 & 42.51 & 44.30 & 43.58 & 43.49 & 37.75 & 1144.6 & 4.53 & 0.694E-08 & 0.02684 & 29.70 & 21.54 & 24.23 & 24.59 & 24.92 & 24.76 \\
\hline 20 & 443.3 & 42.98 & 44.82 & 43.95 & 43.93 & 38.50 & 1160.0 & 4.47 & 0.723E-08 & 0.02814 & 31.29 & 22.14 & 25.68 & 25.80 & 26.20 & 26.00 \\
\hline 21 & 463.3 & 43.81 & 45.84 & 45.05 & 44.93 & 39.21 & 1175.9 & 4.40 & 0.752E-08 & 0.02944 & 30.41 & 21.10 & 23.96 & 24.43 & 24.86 & 24.64 \\
\hline \multicolumn{2}{|l|}{AVERAGE Y} &  & \[
\begin{aligned}
& \text { Roucha } \\
& 43.05
\end{aligned}
\] & \[
\begin{gathered}
\text { TATIONS } \\
42.25
\end{gathered}
\] & 15 T0 & 20:36.67 & 1119.6 & 4.65 & \(0.652 \mathrm{E} \cdot 08\) & 0.02476 & 30.44 & 22.00 & 25.19 & 25.36 & 25.71 & 25.53 \\
\hline
\end{tabular}
\(\qquad\) T-1000

IMPUT ELECIMJC PONER 2666.6 U MASS FLOU MATE \(22.1025 \mathrm{G} / \mathrm{s}\)

HEAT RALANCE ENEOR 0-0.86\%

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOO. }
\end{aligned}
\] & & - HaLI & \[
8
\] & \[
\sqrt{15}
\] & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVER- }
\end{aligned}
\] & \[
\bar{T}
\] & 而 & PR & Ga, & Z & 4 & - & \[
c
\] & I & MeE & T* 1 \\
\hline 3 & 5.5 & 32.72 & 34.00 & 33.40 & 33.40 & 23.26 & 743.4 & 6.40 & 0.396 E 408 & 0.00038 & 23.70 & 20.72 & 22.11 & 22.11 & 22.16 & 22-84 \\
\hline 4 & 15.5 & 33.23 & 35.31 & 33.83 & 34.06 & 23.88 & 753.8 & 6.30 & 0.417E 08 & 0.00107 & 23.97 & 19.59 & 22.51 & 22.02 & 22.14 & 22.00 \\
\hline 5 & 25.5 & 34.30 & 36.25 & 35.44 & 35.36 & 24.50 & 764.6 & 6.20 & 0.438E~OE & 0.0017 & 22.83 & 19.03 & 20.45 & 20.60 & 20.69 & 20.65 \\
\hline 6 & 45.5 & 34.48 & 36.54 & 35.43 & 35.47 & 25.75 & 787.1 & 6.00 & 0.485E-08 & 0.00317 & 25.54 & 20.65 & 23.03 & 22.93 & 23.06 & 23.00 \\
\hline 7 & 75.5 & 35.40 & 37.72 & 36.29 & 36.43 & 27.61 & 820.8 & 5.73 & 0.559E-08 & 0.00528 & 28.52 & 21.97 & 25.57 & 25.19 & 25.41 & 25.30 \\
\hline 8 & 105.5 & 36.45 & 39.47 & 37.48 & 37.72 & 29.47 & 853.3 & 5.50 & \(0.636 \mathrm{E}-08\) & 0.00740 & 32.70 & 22.13 & 27.63 & 26.82 & 27.27 & 27.05 \\
\hline 9 & 135.5 & 38.35 & 40.87 & 39.54 & 39.57 & 31.34 & 888.5 & 5.26 & \(0.724 E+08\) & 0.00953 & 31.41 & 23.09 & 26.86 & 26.73 & 27.05 & 26.89 \\
\hline 10 & 165.2 & 39.38 & 42.42 & 40.86 & 40.88 & 33.18 & 922.3 & 5.05 & 0.814 E -08 & 0.01168 & 35.39 & 23.72 & 28.53 & 28.47 & 29.04 & 28.76 \\
\hline 11 & 206.2 & 41.46 & 44.30 & 42.68 & 42.78 & 38.67 & 969.9 & 4.76 & \(0.948 \mathrm{E}+08\) & 0.01483 & 37.60 & 25.23 & 32.02 & 30.63 & 31.24 & 30.93 \\
\hline 12 & 245.2 & 44.10 & 46.70 & 45.48 & 45.44 & 38.15 & 1018.8 & 4.50 & \(0.110 \mathrm{E}+09\) & 0.01759 & 36.42 & 25.34 & 29.55 & 29.71 & 30.21 & 29.9 \\
\hline 13 & 275.2 & 45.68 & 48.44 & 47.69 & 47.37 & 40.02 & 1055.9 & 4.33 & \(0.122 \mathrm{E}-09\) & 0.01981 & 38.14 & 25.62 & 28.12 & 29.33 & 30.00 & 29 \\
\hline 14 & 305.2 & 47.26 & 49.88 & 48.54 & 48.55 & 41.88 & 1095.8 & 4.16 & \(0.135 \mathrm{E}-09\) & 0.02204 & 39.96 & 26.90 & 32.31 & 32.23 & 32.87 & 32.55 \\
\hline 15 & 333.3 & 49.62 & 52.49 & 51.62 & 51.34 & 43.63 & 1129.5 & 4.02 & 0.148E-09 & 0.02414 & 35.76 & 24.19 & 25.80 & 27.79 & 28.39 & 28.09 \\
\hline 16 & 363.3 & 51.43 & 54.38 & 53.03 & 52.97 & 45.49 & 1268.0 & 3.88 & \(0.162 \mathrm{E}+09\) & 0.02640 & 35.98 & 24.01 & 28.34 & 28.57 & 29.17 & 28.87 \\
\hline 17 & 383.3 & 52.69 & 55.43 & 53.94 & 54.00 & 46.73 & 1195.1 & 3.78 & \(0.1735-09\) & 0.02792 & 35.79 & 24.51 & 29.57 & 29.33 & 29.86 & 29.60 \\
\hline 18 & 403.3 & 54.25 & 57.03 & 55.52 & 55.58 & 47.98 & 1221.0 & 3.69 & \(0.183 \mathrm{E}+09\) & 0.02983 & 33.92 & 23.49 & 28.17 & 27.96 & 28.44 & 28.20 \\
\hline 19 & 423.3 & 55.58 & 58.57 & 57.40 & 57.24 & 49.22 & 1247.9 & 3.60 & 0.195E*09 & 0.03096 & 33.34 & 22.71 & 25.94 & 26.47 & 26.98 & 26.72 \\
\hline 20 & 443.3 & 56.46 & 59.54 & 58.09 & 58.05 & 50.46 & 1275.9 & 3.52 & 0.207E-09 & 0.03249 & 35.34 & 23.34 & 27.75 & 27.93 & 28.54 & 28.24 \\
\hline 21 & 463.3 & 58.32 & 61.61 & 59.98 & 59.96 & 51.70 & 1305.3 & 3.43 & 0.220E*09 & 0.03404 & 31.94 & 21.34 & 25.60 & 25.59 & 26.12 & 25.86 \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { AVERRGE } \\
39!
\end{gathered}
\]} & \[
\operatorname{LUES}_{53.34}^{\mathrm{TH}}
\] & \[
\operatorname{mog}_{56.24} S
\] & TATIOMS & \[
\begin{aligned}
& 15 \mathrm{TM} \\
& 54.86
\end{aligned}
\] & 20: & 1206.2 & 3.75 & 0.178 E.09 & 0.02856 & 35.02 & 23.71 & 27.76 & 28.01 & 28.56 & 28.29 \\
\hline
\end{tabular}
\(\qquad\) \(1-1500\)

INPUT ELECTRIC POTER \(=165.2 \mathrm{~S}\)
PANSSURE DELOP 0.8790 GNi-20

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MO. } \\
& \text { NO. }
\end{aligned}
\] & \[
=\frac{-2}{\mathrm{CN}}
\] & - WALL & B & \[
\ln _{\mathrm{c}} \mathrm{E}
\] & \[
\begin{aligned}
& \text { G C)- } \\
& \text { AVED } \\
& \text { GEE }
\end{aligned}
\] & \[
\underset{(C)}{T B}
\] & \(\underline{\text { L }}\) & PR & 6 & 2 & 4 & B & \[
{ }_{c}^{2 L}
\] & T & \[
E
\] & T \(*\) H \\
\hline 3 & 5.5 & 22.81 & 22.80 & 22.81 & 22.81 & 22.22 & 1487.0 & 6.56 & 0.228E•07 & 0.00019 & 23.74 & 24.19 & 23.96 & 23.96 & 23.96 & 23.96 \\
\hline 4 & 15.5 & 23.15 & 23.14 & 23.15 & 23.15 & 22.24 & 1487.6 & 6.56 & 0.228E+07 & 0.00052 & 15.38 & 15.68 & 15.38 & 15.45 & 15.45 & 15.45 \\
\hline 5 & 25.5 & 23.32 & 23.35 & 23.29 & 23.31 & 22.25 & 1488.2 & 6.56 & 0.229E +07 & 0.00086 & 13.21 & 12.88 & 13.66 & 13.35 & 13.36 & 13.35 \\
\hline 6 & 45.5 & 23.52 & 23.53 & 23.51 & 23.52 & 22.29 & 1489.4 & 6.55 & 0.229E~07 & 0.00153 & 11.53 & 11.38 & 11.57 & 11.51 & 12.51 & 11.51 \\
\hline 7 & 75.5 & 23.54 & 23.60 & 23.50 & 23.54 & 22.35 & 1491.3 & 6.54 & 0.230E+07 & 0.00255 & 11.86 & 11.29 & 12.21 & 11.88 & 11.89 & 11.88 \\
\hline 8 & 105.5 & 23.56 & 23.64 & 23.52 & 23.56 & 22.41 & 1493.2 & 6.53 & 0.231E+07 & 0.00356 & 12.26 & 11.45 & 12.69 & 12.25 & 12.27 & 12.26 \\
\hline 9 & 135.5 & 23.53 & 23.64 & 23.55 & 23.57 & 22.46 & 1495.0 & 6.52 & 0.233E-07 & 0.00457 & 13.21 & 11.94 & 12.94 & 12.74 & 12.76 & 12.75 \\
\hline 10 & 165.2 & 23.44 & 23.60 & 23.54 & 23.53 & 22.52 & 1496.9 & 6.51 & \(0.234 E+07\) & 0.00557 & 15.28 & 13.04 & 13.81 & 13.94 & 13.98 & 13.96 \\
\hline 11 & 205.2 & 23.51 & 23.72 & 23.69 & 23.65 & 22.60 & 1499.4 & 6.50 & 0.235E-07 & 0.00692 & 15.39 & 12.53 & 12.88 & 13.33 & 13.42 & . 38 \\
\hline 12 & 245.2 & 23.78 & 23.82 & 23.77 & 23.79 & 22.67 & 1501.9 & 6.49 & 0.237E*07 & 0.00827 & 12.69 & 12.29 & 12.79 & 12.64 & 12.64 & 12.64 \\
\hline 13 & 275.2 & 23.74 & 23.83 & 23.77 & 23.78 & 22.73 & 1503.8 & 6.48 & 0.238E 07 & 0.00929 & 13.89 & 12.86 & 13.48 & 13.42 & 13.43 & 13.42 \\
\hline 14 & 305.2 & 23.76 & 23.88 & 23.83 & 23.82 & 22.79 & 1506.7 & 6.47 & 0.239E407 & 0.01030 & 14.48 & 12.92 & 13.55 & 13.60 & 13.62 & 13.61 \\
\hline 15 & 333.3 & 23.76 & 23.87 & 23.84 & 23.82 & 22.84 & 1507.5 & 6.46 & 0.240E+07 & 0.01125 & 15.39 & 13.72 & 14.10 & 14.30 & 14.33 & 14.32 \\
\hline 16 & 363.3 & 23.88 & 24.00 & 23.94 & 23.94 & 22.90 & 1509.4 & 6.45 & 0.241E-07 & 0.01227 & 14.29 & 12.78 & 13.45 & 13.47 & 13.49 & 13.48 \\
\hline :7 & 383.3 & 23.89 & 23.98 & 23.93 & 23.94 & 22.94 & 1510.7 & 6.45 & 0.242E+07 & 0.01294 & 14.67 & 13.52 & 14.09 & 14.08 & 14.10 & 14.09 \\
\hline 18 & 403.3 & 23.86 & 23.98 & 23.92 & 23.92 & 22.97 & 1512.0 & 6.44 & 0.243E-07 & 0.01362 & 15.82 & 14.04 & 14.84 & 14.86 & 14.89 & 14.87 \\
\hline 19 & 423.3 & 23.91 & 24.02 & 23.96 & 23.96 & 23.08 & 1513.3 & 6.44 & 0.243E-07 & 0.01430 & 15.66 & 14.01 & 14.79 & 14.79 & 14.81 & 14.80 \\
\hline 20 & 443.3 & 23.90 & 24.02 & 23.96 & 23.96 & 23.05 & 1514.5 & 6.43 & 0.244E-07 & 0.01497 & 16.65 & 14.44 & 15.40 & 15.43 & 15.47 & 15.45 \\
\hline 21 & 463.3 & 24.07 & 24.01 & 24.18 & 24.11 & 23.09 & 1515.8 & 6.42 & 0.245E-07 & 0.01565 & 14.29 & 15.32 & 12.83 & 13.74 & 13.82 & 13.78 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THROUGH STATIONS 15 TO 20: \\
\(\begin{array}{llllllll}391.6 & 23.87 & 23.98 & 23.93 & 23.92 & 22.95\end{array}\)
\end{tabular}} & 1511.2 & 6.45 & \(0.2425+07\) & 0.01322 & 15.41 & 13.75 & 14.45 & 14.49 & 14.52 & 14.50 \\
\hline
\end{tabular}

EOAIZONTAL ORIEETATIOM \(\qquad\) 2-1500

IMPUT ELECTRIC PONER 380.7 V THPUT ELECRIC PUNE



gomizomill onimitation \(\qquad\) 3-1500

INPUT ELECTRIC POUER - 695.2 H IEAT RATE GAIMPD BY HATER - 704.2 H
INPUT ELECTRIC POUER * RATE \(43.0754 \mathrm{G} / \mathrm{S}\)
PRESSURE OROPE OTE GAIMPD
FAICTiON FACTOL - 0.013725
EAT BLAMCE EROR - \(25.30 Z\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { NO: }
\end{aligned}
\] & \[
-\frac{2}{c_{M}}
\] & & & C & \[
\begin{aligned}
& 6 \text { C)- } \\
& \text { AVER- } \\
& \text { AGE }
\end{aligned}
\] & \[
\overline{\mathrm{TB}}
\] & L & & CR & & 4 & 8 & & & & T* \({ }^{\text {P }}\) \\
\hline 3 & 5.5 & 25.34 & 25.34 & 25.34 & 25.34 & 22.94 & 32 & 6.45 & 0.101E+0 & 0.00020 & 24.55 & 24.51 & 53 & 24.53 & 24.53 & 24.53 \\
\hline 4 & 15.5 & 26.35 & 26.60 & 26.35 & 26.42 & 23.03 & 1441. & 6.43 & 0.102E+08 & 0.00055 & 17.66 & 16.45 & 17.66 & 17.34 & 17.36 & 7.35 \\
\hline 5 & 25.5 & 26.71 & 27.04 & 26.89 & 26.88 & 23.11 & 1443. & 6.42 & 0.102E-08 & 0.00090 & 16.34 & 14.96 & 15.56 & 15.5 & 15.61 & . 60 \\
\hline 6 & 45.5 & 26.80 & 27.09 & 26.84 & 25.89 & 23.2 & 1449. & 6.39 & 0. 104E+08 & 0.00162 & 16.69 & 15.42 & 16.48 & 16 & 16.27 & 16.26 \\
\hline 7 & 75.5 & 26.93 & 27.32 & 26.97 & 27.05 & 23.53 & 1457. & 6.35 & 0. 106E 08 & 0.00268 & 17.27 & 15.46 & 17.06 & 16.68 & 16.71 & 70 \\
\hline 8 & 105.5 & 27.02 & 27.64 & 27.12 & 27.22 & 23.78 & 1465. & 6.32 & 0.108E 0 & 0.00375 & 18.11 & 15.20 & 17.55 & 17.02 & 17.10 & 17.06 \\
\hline 9 & 135.5 & 27.35 & 27.83 & 27.51 & 27.55 & 24.03 & 1474.0 & 6.28 & 0.110E 0 & 0.00482 & 17.62 & 15.43 & 16.82 & 16.63 & 16.67 & 16.65 \\
\hline 10 & 165.2 & 27.06 & 27.70 & 27.38 & 27.38 & 24.28 & 1482. & 6.24 & 0.113E008 & 0.00588 & 21.06 & 17.11 & 18.87 & 18.87 & 18.98 & 18.92 \\
\hline 11 & 205.2 & 27.34 & 27.99 & 27.55 & 27.61 & 24.61 & 1493. & 6.18 & 0.116E-08 & 0.00731 & 21.47 & 17.33 & 19.91 & 19.54 & 19.66 & 19.60 \\
\hline 12 & 245.2 & 27.81 & 28.40 & 29.08 & 28.09 & 24.94 & 1505. & 6.13 & 0.119E-08 & 0.00874 & 20.38 & 16.94 & 18.64 & 18.57 & 18.65 & 28.61 \\
\hline 13 & 275.2 & 27.98 & 28.57 & 28.40 & 28.34 & 25.19 & 1514.2 & 6.09 & 0.121E+08 & 0.00981 & 20.98 & 17.32 & 18.26 & 18.61 & 18.70 & 18.66 \\
\hline 14 & 305.2 & 28.12 & 28.75 & 28.37 & 28.40 & 25.44 & 1523.1 & 6.05 & 0.124E008 & 0.01089 & 21.84 & 17.66 & 20.00 & 19.76 & 19.88 & 19.82 \\
\hline 15 & 333.3 & 28.40 & 28.99 & 28.82 & 28.76 & 25.68 & 1531.6 & 6.02 & 0.126E-08 & 0.01190 & 21.42 & 17.64 & 18.57 & 28.95 & 19.05 & 19.00 \\
\hline 16 & 363.3 & 28.54 & 29.24 & 28.91 & 28.90 & 25.93 & 1540.7 & 5.98 & 0.129E-08 & 0.01298 & 22.36 & 17.63 & 19.56 & 19.64 & 19.78 & 19.71 \\
\hline 17 & 383.3 & 28.81 & 29.41 & 29.13 & 29.12 & 26.10 & 1546.8 & 5.95 & 0.131E*08 & 0.01370 & 21.46 & 17.60 & 19.25 & 19.29 & 19.39 & 19.34 \\
\hline 18 & 403.3 & 28.98 & 29.63 & 29.30 & 29.30 & 26.26 & 1553.0 & 5.92 & 0.132E-08 & 0.01442 & 21.47 & 17.34 & 19.19 & 19.19 & 19.30 & 19.24 \\
\hline 19 & 423.3 & 29.27 & 29.92 & 29.58 & 29.59 & 26.43 & 1559.3 & 5.90 & 0.134E+06 & 0.01514 & 20.50 & 16.71 & 18.48 & 18.45 & 18.54 & 18.49 \\
\hline 20 & 443.3 & 29.35 & 30.00 & 29.67 & 29.67 & 26.60 & 1565.6 & 5.87 & 0.136E 0.08 & 0.01587 & 21.12 & 17.12 & 18.95 & 18.93 & 19.04 & 18.99 \\
\hline 21 & 463.3 & 29.63 & 30.24 & 29.93 & 29.93 & 26.76 & 1571.9 & 5.84 & 0.138E+08 & 0.01659 & 20.31 & 16.78 & 18.38 & 18.38 & 18.46 & 18.42 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES TEROUGH STATIONS \(391.6 \quad 28.89 \quad 29.53 \quad 29.24\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15.7020: \\
& 29.22 \\
& 26.17
\end{aligned}
\]} & 1549.5 & 5.94 & \[
0.1315 .08
\] & \[
0.01400
\] & 21.39 & \[
17.34
\] & \[
19.00
\] & 19.08 & 19.18 & 19.13 \\
\hline
\end{tabular}
\(\qquad\) 4-1500

IMPUT ELECTRIC POLER - 1343.4 Y
HEAT HATE GALMED EX YATEM - 1362.6 U \(-1362.6 \mathrm{~V}\)

FACTUA - 0.015001 EAT BALMCE BRIOA \(0-1.437\) Pexssule Diope \(0.9611 / \mathrm{V}\) : 20



\(\qquad\) 5-1500

INPUT ELECTIIC PONER - 3356.9 H HASS FLOH RMTE \(-34.6100 \mathrm{G} / \mathrm{S}\)

MEAT RTE GAIMDD BY UATER - 3349.8 Y PAESSUEE DAOPR 0.725 SHFAK20 PRESSULE DAOP= \(0.725940420 \quad\) FRICTIOF FACTUR \(=0.017253\)
zat balance ciman \(=0.21 \%\) FRDR -25.7926

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline To & \({ }_{\text {c }}^{2}\) & & & & AGE & & & & & & 4 & & & & & \\
\hline 3 & 5.5 & 34.69 & 35.98 & 35 & 35.34 & 23.59 & 1172.6 & 6.35 & \(0.507 \mathrm{E}+08\) & . 00024 & & & & 23.75 & 23.79 & 7 \\
\hline 4 & 15.5 & 35.07 & 37 & 35 & 35 & 24 & 11 & 6.27 & 0.528E-08 & 0.00069 & & & & 23.75 & 5 & \\
\hline 5 & 25.5 & 36 & 38 & 37.29 & 37 & 2 & 119 & 6.19 & \(0.549 \mathrm{E}+08\) & 0.00113 & 24.13 & 20 & 21.5 & 22.00 & 22.08 & \\
\hline 6 & 45 & 36 & 3 & 36.91 & 37 & 25 & 1227.3 & 6.0 & 0.595 E -0 & 0.00202 & 26 & 21 & 24 & 24.14 & 24.26 & 24.20 \\
\hline 7 & 75. & 36.84 & 39.41 & 37.78 & 3 & 27.05 & 1270.7 & 5. & \(0.670 E\) & 337 & 28.28 & 22 & 25 & 25.40 & 25.58 & \\
\hline 8 & 105. & 37.65 & 40.95 & & 38 & 28.53 & 1309.9 & 5.6 & 0.742E-0 & 0.00472 & 30.26 & 22 & 27 & 26.64 & 26.99 & 26.81 \\
\hline 9 & 135 & 39.05 & 41.93 & 40 & 40 & & 1351.6 & 5. & 3 & 0.00607 & 30.45 & 23 & 27 & 26.69 & 26.95 & 26.82 \\
\hline 10 & 165 & 39.88 & 43.31 & 41.42 & 41.51 & & 1395.7 & 5.25 & E-0 & 0.00742 & 32.65 & 23 & 27 & 27.33 & 27.74 & 27.53 \\
\hline 11 & 205.2 & 41.07 & 44.44 & 42.57 & 42.66 & & 1452.1 & 5.01 & 0.103E-09 & 0 & & & 29 & 29.64 & 30.14 & 29.89 \\
\hline 12 & 245.2 & 43.21 & 46.42 & 44.90 & 44 & & 151 & 4.7 & 0.116 E -0 & 0. & & 24 & 28.68 & 28.80 & 29.24 & 29.02 \\
\hline 13 & 275.2 & 44.45 & 47.74 & 46.71 & 46.40 & 36 & 15 & 4.61 & 0. & 0.01259 & & 24.98 & 27.60 & 28.50 & 29.02 & \\
\hline 14 & 305.2 & 45.45 & 48.70 & 47.02 & 47 & 38 & 1602.7 & 4.48 & 0.138E-09 & 0 & & 26 & 31.26 & 31.27 & 31.74 & \\
\hline 15 & 333 & 47.39 & 50. & 49.68 & 49 & 39 & 1646.1 & 4.35 & \(0.150 \mathrm{E}+0\) & 0.01531 & 35.36 & 24 & 27.19 & 27.9 & 28.52 & 28.25 \\
\hline 16 & 36 & 48.58 & 52.10 & 50 & 50 & 41. & 16 & 4.21 & 63E & 0 & & 24 & 29 & 29. & 30.06 & \\
\hline 17 & 38 & 49.5 & 52.75 & 50.92 & 51.04 & 42. & 17 & 4.13 & 172E+0 & 0.0176 & & 25 & 30 & 30.48 & 30.99 & 30.73 \\
\hline 18 & 403. & 50.82 & 53. & 51.97 & 52.18 & 43.25 & 1756. & 4. & \(0.180 \pm+09\) & 0.01864 & 35 & 24.92 & 30.6 & 29.91 & 30.37 & 30.14 \\
\hline 19 & 423. & 52.12 & 55.35 & 53.86 & 53.80 & 44.23 & 1787 & 3.97 & \(0.189 \mathrm{E}+09\) & 0.01960 & 33 & 23.99 & 27.7 & 27.8 & 28.30 & 28.09 \\
\hline 20 & 443.3 & 52.66 & 56.07 & 54.35 & 54.36 & 45.22 & 1820.0 & 3.90 & \(0.199 \mathrm{E}+09\) & 0.02056 & 35.80 & 24.54 & 29.14 & 29.13 & 29.65 & 29.39 \\
\hline 21 & 463.3 & 53.72 & 57.20 & 54.80 & 55.13 & 46.21 & 1853.3 & 3.82 & 0.209E+09 & 0.02153 & 35.38 & 24.18 & 30.92 & 29.78 & 30.35 & 30.0 \\
\hline \multicolumn{17}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THROUCA STATIONS 15 TO 20: \\
\(\begin{array}{lllllllllllllllllllll}391.6 & 50.19 & 53.51 & 51.86 & 51.86 & 42.67 & 1738.8 & 4.10 & 0.175 E+09 & 0.01809 & 35.60 & 24.67 & 29.16 & 29.14 & 29.65 & 29.40\end{array}\)
\end{tabular}} \\
\hline
\end{tabular}

\section*{Appendix D}

Experimental Data for \(\alpha=10^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STA & & WILL & T8 & & EC \({ }^{\text {c) }}\) & & 而 & PRI & GR & 7 & & & LSETT & & & \\
\hline \[
\begin{aligned}
& \text { InOn } \\
& \text { mo. } \\
& \hline
\end{aligned}
\] & Cr & 1 & 8 & c & \[
\begin{aligned}
& \text { Aver } \\
& \text { ACE }
\end{aligned}
\] & (C) & & & & & 4 & 8 & C & T &  & T* \\
\hline 3 & 5.5 & 22.89 & 22.88 & 22.89 & 22.89 & 22.14 & 484.0 & 6.57 & 0.197E*07 & 0.00067 & 16.33 & 16.56 & 16.45 & 16.45 & 16.45 & 16.45 \\
\hline 4 & 15.5 & 23.10 & 23.14 & 23.10 & 23.11 & 22.19 & 484.5 & 6.57 & \(0.198 E \sim 07\) & 0.00160 & 13.57 & 13.03 & 13.57 & 13.43 & 13.44 & 13.44 \\
\hline 5 & 25.5 & 23.18 & 23.24 & 23.20 & 23.21 & 22.24 & 485.0 & 6.56 & 0.199E-07 & 0.00284 & 13.05 & 12.33 & 12.79 & 12.74 & 12.74 & 12.74 \\
\hline 6 & 45.5 & 23.26 & 23.31 & 23.26 & 23.27 & 22.36 & 486.1 & 6.54 & \(0.200 E \cdot 07\) & 0.00471 & 13.38 & 12.75 & 13.43 & 13.24 & 13.25 & 13.25 \\
\hline 7 & 75.5 & 23.37 & 23.43 & 23.37 & 23.38 & 22.50 & 487.7 & 6.52 & \(0.203 E \cdot 07\) & 0.00782 & 14.04 & 13.14 & 14.15 & 13.85 & 13.87 & 13.86 \\
\hline 8 & 105.5 & 23.44 & 23.58 & 23.46 & 23.49 & 22.65 & 489.4 & 6.49 & 0.206E-07 & 0.08092 & 15.44 & 13.16 & 15.12 & 14.65 & 14.71 & 14.68 \\
\hline 9 & 135.5 & 23.59 & 23.70 & 23.64 & 23.64 & 22.80 & 491.0 & 6.47 & 0.208E*07 & 0.01403 & 15.63 & 13.66 & 14.71 & 14.64 & 14.68 & 14.66 \\
\hline 10 & 165.2 & 23.75 & 23.85 & 23.79 & 23.80 & 22.95 & 492.7 & 6.45 & 0.211E+07 & 0.01712 & 15.42 & 13.64 & 14.60 & 14.54 & 14.56 & 14.55 \\
\hline 12 & 205.2 & 23.85 & 24.08 & 23.97 & 23.97 & 23.16 & 494.9 & 6.42 & 0.2148007 & 0.02127 & 27.76 & 13.23 & 15.06 & 15-21 & 15.28 & 15.19 \\
\hline 12 & 245.2 & 24.26 & 24.32 & 24.25 & 24.27 & 23.36 & 497.2 & 6.38 & \(0.218 \mathrm{E} \sim 07\) & 0.02542 & 13.68 & 12.74 & 13.77 & 13.48 & 13.49 & 13.48 \\
\hline 13 & 275.2 & 24.33 & 24.44 & 24.39 & 24.39 & 23.51 & 498.9 & 6.36 & 0.221 E-07 & 0.02854 & 14.99 & 13.21 & 13.94 & 13.99 & 14.02 & 14.01 \\
\hline 14 & 305.2 & 24.54 & 24.63 & 24.58 & 24.59 & 23.67 & 500.6 & 6.33 & \(0.224 E 007\) & 0.03167 & 13.96 & 12.64 & 13.33 & 13.30 & 13.31 & 23.32 \\
\hline 15 & 333.3 & 24.51 & 24.62 & 24.56 & 24.56 & 23.81 & 502.2 & 6.31 & \(0.2265 \sim 07\) & 0.03459 & 17.50 & 15.09 & 86.21 & 16.21 & 16.25 & 16.23 \\
\hline 16 & 363.3 & 24.75 & 24.78 & 24.76 & 24.76 & 23.96 & 504.0 & 6.29 & \(0.2295+07\) & 0.03772 & 15.54 & 14.93 & 15.33 & 15.28 & 15.28 & 15.28 \\
\hline 17 & 383.3 & 24.82 & 24.93 & 24.88 & 24.88 & 24.06 & 505.1 & 6.27 & 0.231E*07 & 0.03981 & 16.19 & 14.02 & 14.89 & 14.96 & 14.99 & 14.97 \\
\hline 18 & 403.3 & 24.93 & 25.02 & 24.96 & 24.97 & 24.16 & 506.3 & 6.25 & \(0.2334 \times 07\) & 0.04189 & 15.92 & 14.34 & 15.38 & 15.23 & 15.25 & 15.24 \\
\hline 19 & 423.3 & 25.08 & 25.16 & 25.14 & 25.13 & 24.27 & 507.5 & 6.24 & 0.235E*07 & 0.04398 & 14.94 & 13.61 & 13.98 & 14.08 & 14.09 & 14.08 \\
\hline 20 & 443.3 & 25.13 & 25.24 & 25.14 & 25.16 & 24.37 & 508.7 & 6.22 & \(0.237 \pm 007\) & 0.04607 & 15.94 & 14.05 & 15.72 & 15.32 & 15.36 & 15.34 \\
\hline 21 & 463.3 & 25.39 & 25.30 & 25.42 & 25.38 & 24.47 & 509.9 & 6.21 & \(0.239 E 407\) & 0.04816 & 13.23 & 14.62 & 12.87 & 13.36 & 13.39 & 13.38 \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { AVERAGE YA } \\
391.6
\end{gathered}
\]} & \[
L_{24.87}
\] & \multicolumn{2}{|l|}{\[
\operatorname{molem}_{24.96} \operatorname{staminis}_{26.91}
\]} & \[
1570
\] & \[
\stackrel{20}{24.10}
\] & 505.6 & 6.26 & 0.232E+07 & 0.04068 & 16.00 & 14.34 & 25.24 & 15.18 & 15.21 & 15.19 \\
\hline
\end{tabular}
\(\qquad\) \(2-500\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TOOM } \\
& \text { NO. }
\end{aligned}
\] & \[
\overline{x_{n}}
\] & -WALI & D & \[
\overline{U T E}
\] & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVER- } \\
& \text { CGE }
\end{aligned}
\] & \[
\overline{\mathrm{C}}
\] & HE & Pl & GR & z* & L & 8 & \[
\operatorname{mussen}_{c}
\] & \[
I
\] &  & T- \({ }^{\text {H }}\) \\
\hline 3 & 5.5 & 24.03 & 24.08 & 24.06 & 24.06 & 22.55 & 471.4 & 6.51 & 0.425E~07 & 0.00059 & 17.28 & 16.70 & 16.98 & 16.98 & 16.99 & 16.99 \\
\hline 4 & 15.5 & 24.20 & 24.39 & 24.26 & 24.28 & 22.66 & 472.6 & 6.49 & 0.429E-07 & 0.00166 & 16.61 & 14.78 & 16.04 & 15.84 & 15.87 & 15.85 \\
\hline 5 & 25.5 & 24.39 & 24.56 & 24.50 & 24.49 & 22.71 & 473.7 & 6.47 & 0.433E+07 & 0.00274 & 15.75 & 14.30 & 14.75 & 14.87 & 24.89 & 14.88 \\
\hline 6 & 45.5 & 24.55 & 24.76 & 24.60 & 24.63 & 22.99 & 476.0 & 6.44 & 0.441E*07 & 0.00488 & 16.37 & 14.42 & 15.86 & 15.59 & 15.63 & 15.61 \\
\hline 7 & 75.5 & 24.76 & 25.02 & 24.82 & 24.85 & 23.32 & 479.5 & 6.39 & 0.453E407 & 0.00812 & 17.73 & 15.06 & 17.06 & 16.66 & 16.73 & 16.69 \\
\hline 8 & 105.5 & 24.95 & 25.23 & 24.97 & 25.03 & 23.65 & 483.1 & 6.34 & 0.465E-07 & 0.01134 & 19.59 & 16.12 & 19.25 & 18.44 & 18.55 & 18.50 \\
\hline 9 & 135.5 & 25.26 & 25.54 & 25.39 & 25.40 & 23.98 & 486.7 & 6.28 & 0.478E~07 & 0.01457 & 19.88 & 16.32 & 18.02 & 27.97 & 18.06 & 18.01 \\
\hline 10 & 165.2 & 25.58 & 25.80 & 25.73 & 25.71 & 24.31 & 490.3 & 6.23 & 0.491E*07 & 0.01778 & 19.91 & 16.98 & 17.91 & 18.12 & 18.18 & 18.15 \\
\hline 14 & 205.2 & 25.94 & 26.26 & 26.12 & 26.11 & 24.74 & 495.3 & 6.16 & 0.509E+07 & 0.02211 & 21.26 & 16.80 & 18.44 & 18.60 & 18.73 & 18.67 \\
\hline 12 & 245.2 & 26.59 & 26.78 & 26.65 & 26.67 & 25.18 & 500.4 & 6.09 & 0.527E-07 & 0.02645 & 14.06 & 15.94 & 17.25 & 17.09 & 17.13 & 17.11 \\
\hline 13 & 275.2 & 26.78 & 27.06 & 26.97 & 26.94 & 25.51 & 504.3 & 6.04 & 0.542 E -07 & 0.02971 & 20.00 & 16.37 & 17.45 & 17.72 & 17.82 & 17.71 \\
\hline 14 & 305.2 & 27.14 & 27.41 & 27.27 & 27.27 & 25.84 & 508.2 & 5.99 & 0.556E*07 & 0.03298 & 19.51 & 16.20 & 17.72 & 17.71 & 17.79 & 17.75 \\
\hline 15 & 333.3 & 27.35 & 27.63 & 27.51 & 27.50 & 26.15 & 512.0 & 5.94 & 0.570E-07 & 0.03605 & 21.17 & 17.18 & 18.50 & 18.77 & 18.88 & 18.82 \\
\hline 16 & 363.3 & 27.81 & 27.93 & 27.93 & 27.90 & 26.48 & 516.0 & 5.89 & 0.586E*07 & 0.03933 & 18.97 & 17.46 & 17.45 & 17.81 & 17.83 & 17.82 \\
\hline 17 & 383.3 & 27.98 & 28.23 & 28.09 & 28.10 & 26.70 & 518.8 & 5.85 & 0.596E 07 & 0.04152 & 19.81 & 16.54 & 18.15 & 18.09 & 18.15 & 18.12 \\
\hline 18 & 403.3 & 28.25 & 28.50 & 28.35 & 28.36 & 26.92 & 521.4 & 5.82 & 0.607E+07 & 0.04371 & 19.01 & 15.98 & 17.68 & 17.52 & 17.59 & 17.55 \\
\hline 19 & 423.3 & 28.52 & 28.74 & 28.66 & 28.64 & 27.14 & 523.7 & 5.79 & 0.616E-07 & 0.04589 & 18.30 & 15.74 & 16.65 & 16.78 & 16.83 & 16.81 \\
\hline 20 & 443.3 & 28.65 & 28.87 & 28.77 & 28.77 & 27.36 & 526.1 & 5.77 & 0.625E-07 & 0.04807 & 19.52 & 16.67 & 17.87 & 17.92 & 17.98 & 17.95 \\
\hline 21 & 463.3 & 28.96 & 29.14 & 29.12 & 29.08 & 27.58 & 528.4 & 5.74 & 0.635E-07 & 0.05026 & 18.28 & 16.15 & 16.37 & 16.75 & 16.79 & 16.77 \\
\hline \multicolumn{5}{|l|}{AVERAGE VaLtIES TEROUGE STATIOMS
\(391.6 \quad 28.0928 .32\)
28.22} & \multicolumn{2}{|l|}{} & 519.7 & 5.84 & 0.600E+07 & 0.04243 & 19.46 & 16.59 & 17.73 & 17.82 & 17.88 & 17.85 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA= } \\
& \text { TIOM } \\
& \text { NO. }
\end{aligned}
\] & & and & B & C &  & (C) & E & PR & 68 & 2 & 4 & 8 & C & I & 1 & T+ \\
\hline 3 & 5.5 & 24.73 & 24.87 & 24.80 & 24.80 & 21.94 & 448.6 & 6.61 & 0.7578007 & 0.00061 & 17.24 & 16.42 & 16.82 & 16.82 & 16.83 & 16.82 \\
\hline 4 & 15.5 & 24.70 & 24.98 & 24.73 & 24.75 & 22.16 & 450.6 & 6.57 & 0.771E-07 & 0.00172 & 18.87 & 17.00 & 18.67 & 18.27 & 18.30 & 18.29 \\
\hline 5 & 25.5 & 25.03 & 25.36 & 25.17 & 25.18 & 22.37 & 452.7 & 6.54 & 0.785E+07 & 0.00283 & 18.04 & 16.05 & 17.13 & 17.06 & 17.09 & 17.07 \\
\hline 6 & 45.5 & 25.17 & 25.52 & 25.30 & 25.32 & 22.80 & 457.0 & 6.47 & 0.813E-07 & 0.00506 & 20.19 & 17.60 & 19.12 & 18.96 & 19.01 & 18.98 \\
\hline 7 & 75.5 & 25.57 & 25.99 & 25.66 & 25.72 & 23.44 & 463.6 & 6.37 & 0.857E007 & 0.00841 & 22.47 & 18.74 & 21.56 & 20.98 & 21.08 & 21.03 \\
\hline 8 & 105.5 & 25.98 & 26.52 & 26.14 & 26.20 & 24.00 & 470.4 & 6.27 & 0.903E-07 & 0.01177 & 25.03 & 19.56 & 23.12 & 22.53 & 22.71 & 22.62 \\
\hline 9 & 135.5 & 26.77 & 27.19 & 26.98 & 26.98 & 24.72 & 477.3 & 6.17 & 0.952E-07 & 0.01514 & 23.25 & 19.32 & 21.04 & 21.07 & 21.16 & 21.11 \\
\hline 10 & 165.2 & 27.42 & 27.90 & 27.61 & 27.63 & 25.35 & 484.4 & 6.07 & 0.100E+08 & 0.01849 & 23.02 & 18.71 & 21.12 & 20.87 & 20.99 & 20.93 \\
\hline 11 & 205.2 & 28.15 & 28.68 & 28.36 & 28.30 & 26.20 & 494.3 & 5.93 & 0.107E-08 & 0.02302 & 24.48 & 19.16 & 22.03 & 21.75 & 21.92 & 21.84 \\
\hline 12 & 245.2 & 29.20 & 29.57 & 29.40 & 29.39 & 27.06 & 504.2 & 5.80 & 0.115E-08 & 0.02756 & 22.10 & 18.89 & 20.27 & 20.32 & 20.38 & 20.35 \\
\hline 13 & 275.2 & 29.74 & 30.13 & 30.02 & 29.98 & 27.70 & 510.8 & 5.72 & 0.120E-08 & 0.03097 & 23.23 & 19.45 & 20.39 & 20.77 & 20.86 & 20.82 \\
\hline 14 & 305.2 & 30.33 & 30.74 & 30.47 & 30.50 & 28.34 & 517.6 & 5.64 & 0.125E-08 & 0.03438 & 23.76 & 19.67 & 22.21 & 21.85 & 21.96 & 21.91 \\
\hline 15 & 333.3 & 30.91 & 31.24 & 31.19 & 31.13 & 28.94 & 524.1 & 5.57 & 0.131E 08 & 0.03758 & 23.92 & 20.46 & 20.96 & 21.50 & 21.58 & 21.54 \\
\hline 16 & 363.3 & 31.58 & 32.00 & 31.78 & 32.78 & 29.58 & 531.2 & 5.49 & 0.137E-08 & 0.04100 & 23.57 & 19.46 & 21.44 & 21.38 & 21.48 & 21.43 \\
\hline 17 & 383.3 & 32.03 & 32.37 & 32.20 & 32.20 & 30.00 & 536.1 & 5.43 & 0.141E+08 & 0.04329 & 23.25 & 19.92 & 21.48 & 21.47 & 21.53 & 21.50 \\
\hline 18 & 403.3 & 32.46 & 32.91 & 32.66 & 32.68 & 30.43 & 541.1 & 5.38 & 0.145E-08 & 0.04558 & 23.13 & 18.95 & 21.07 & 20.95 & 21.06 & 21.00 \\
\hline 19 & 423.3 & 32.99 & 33.44 & 33.21 & 33.21 & 30.86 & 546.1 & 5.33 & 0.149E-08 & 0.04788 & 22.06 & 18.17 & 19.99 & 19.96 & 20.05 & 20.01 \\
\hline 20 & 443.3 & 33.32 & 33.75 & 33.49 & 33.51 & 31.28 & 551.2 & 5.27 & 0.154E-08 & 0.06018 & 23.03 & 19.05 & 21.24 & 21.05 & 21.14 & 21.09 \\
\hline 21 & 463.3 & 33.87 & 34.22 & 34.05 & 34.06 & 31.71 & 556.5 & 5.22 & 0.158EC08 & 0.05249 & 21.72 & 18.73 & 20.02 & 20.07 & 20.12 & 20.09 \\
\hline \multicolumn{3}{|l|}{\[
\text { AVERAGE VALUES } T
\]} & \multicolumn{2}{|l|}{\[
{ }_{32.62} \text { statians }
\]} & \[
15 \mathrm{mp}
\] & 20:
\[
30.18
\] & 538.3 & 5.41 & \(0.143 \mathrm{E}-08\) & 0.04425 & 23.16 & 19.34 & 21.03 & 21.05 & 21.14 & 21.10 \\
\hline
\end{tabular}
\(\qquad\) 4-500

INPUT EIECTRIC PONER \(=931.8 \mathrm{U}\)


 DOHETISMM BULX TEMPERT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TIO } \\
& \text { NO. }
\end{aligned}
\] & \[
\overline{\mathrm{z}}
\] & \[
\frac{-4}{4}
\] & \[
8
\] & CE & \[
\begin{aligned}
& \text { C) } \\
& \text { GVER- } \\
& \text { GEE }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{R} \\
& \text { (C) }
\end{aligned}
\] & NE & Pl & GE & 2 & 4 & 8 & & I & & T* \({ }^{\text {H }}\) \\
\hline 3 & 5.5 & 26.42 & 26.68 & 26.55 & 26.55 & 22.38 & 410.6 & 6.54 & \(0.1285 \cdot 08\) & 0.00067 & 19.28 & 18.10 & 18.67 & 18.67 & 18.68 & 18.68 \\
\hline 4 & 15.5 & 26.74 & 27.27 & 26.82 & 26.91 & 22.76 & 414.1 & 6.48 & 0.132E-08 & 0.00190 & 19.56 & 17.27 & 19.16 & 28.75 & 18.79 & 77 \\
\hline 5 & 25.5 & 27.20 & 27.75 & 27.47 & 27.47 & 23.14 & 417.6 & 6.42 & 0.136E*08 & 0.00313 & 19.17 & 16.88 & 17.99 & 17.97 & 18.01 & . 99 \\
\hline 6 & 45.5 & 27.38 & 27.93 & 27.57 & 27.61 & 23.91 & 424.9 & 6.29 & 0.145E-08 & 0.00560 & 22.34 & 19.33 & 21.22 & 20.97 & 21.03 & 21.00 \\
\hline 7 & 75.5 & 27.98 & 28.60 & 28.11 & 28.20 & 25.08 & 436.2 & 6.11 & 159E-08 & 0.00931 & 26.47 & 21.85 & 25.34 & 24.62 & 24.75 & 24.68 \\
\hline 8 & 105 & 28.97 & 29.76 & 29.13 & 29.25 & 26.20 & 448.2 & 5.93 & 08 & . 01306 & 27.92 & 21.71 & 26.40 & 25.37 & 25.61 & 25.49 \\
\hline 9 & 135.5 & 30.37 & 31.06 & 30.69 & 30.70 & 27.38 & 459.9 & 5.77 & 0.191E*08 & 0.01681 & 25.5 & 20.7 & 23.05 & 22.98 & 23.11 & 23.04 \\
\hline 10 & 165 & 31.42 & 32.19 & 31.81 & 31.81 & 28.49 & 47 & 5.62 & 206E-08 & 0.02053 & 26.18 & 20.76 & 23.13 & 23.14 & 23.30 & 23 \\
\hline 11 & 205.2 & 32.86 & 33.54 & 33.09 & 33.14 & 30.02 & 486.3 & 5.43 & 229E-08 & 0.02556 & 26.92 & 21.7 & 24.96 & 24.51 & 24.65 & 24.58 \\
\hline 12 & 245.2 & 34.62 & 35.23 & 34.91 & 34.92 & 31.56 & 50 & 5.24 & 255E00 & 0.03063 & 24.82 & 20.72 & 22.71 & 22.65 & 22.74 & 22.70 \\
\hline 13 & 275.2 & 35.64 & 36.24 & 36.07 & 36.01 & 32.70 & 51 & 5.10 & 274E-08 & 0.03448 & 25.82 & 21.45 & 22.56 & 22.99 & 23.10 & 23.04 \\
\hline 14 & 305 & 36.64 & 37.24 & 36.85 & 36 & 33.84 & 526. & 4.97 & 0.294E 08 & 0.03838 & 27.11 & 22.3 & 25.21 & 24.85 & 24.97 & 24.91 \\
\hline 15 & 333 & 37.70 & 38.26 & 38.15 & 38.07 & 34.92 & 538. & 4.84 & 0.314 E -08 & 0.04207 & 27.1 & 22.6 & 23.42 & 24.05 & 24.17 & 24.11 \\
\hline 16 & 363.3 & 38.77 & 39.41 & 39.07 & 39.08 & 36.07 & 550.9 & 4.71 & 337E 08 & 0.04605 & 27.91 & 22.53 & 25.09 & 25.01 & 25.15 & 08 \\
\hline 17 & 383.3 & 39.52 & 40.08 & 39.73 & 39.77 & 36.83 & 559.9 & 4.62 & 0.353E 0 O & 0.04872 & 28.00 & 23.17 & 25.97 & 25.66 & 25.78 & 25.72 \\
\hline 18 & 403.3 & 40.28 & 40.90 & 40.51 & 40.55 & 37.60 & 567.9 & 4.55 & 0.369E-08 & 0.05133 & 28.0 & 22.7 & 25.83 & 25.49 & 25.63 & 25 \\
\hline 19 & 423.3 & 41.14 & 41.78 & 41.47 & 41.47 & 38.36 & 576.1 & 4.48 & 0.385E+08 & 0.08394 & 27.00 & 21.97 & 24.17 & 24.19 & 24.32 & 24.26 \\
\hline 20 & 443.3 & 41.65 & 42.37 & 41.98 & 42.00 & 39.13 & 584.6 & 4.41 & 0.401E 0 O & 0.05655 & 29.69 & 23.10 & 26.24 & 26.11 & 26.32 & 26.21 \\
\hline 21 & 463.3 & 42.69 & 43.27 & 42.91 & 42.95 & 39.89 & 593.3 & 4.34 & 0.419E*08 & 0.05918 & 26.80 & 22.16 & 24.78 & 24.52 & 24.63 & 24.57 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { AVERAGE VI } \\
391.6
\end{array}
\]} & \[
39.8
\] & \[
0.47
\] & \[
4
\] & \[
\begin{aligned}
& 15.70 \\
& 40.15
\end{aligned}
\] & 37.15 & 2.9 & . 60 & . \(360 \mathrm{E}+08\) & . 0497 & 27.97 & 22.7 & 25.12 & 25.08 & 25.2 & \\
\hline
\end{tabular}


UPNARD IMCLI異ATIOM \(\qquad\) 2-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STAF } \\
& \mathrm{MON}
\end{aligned}
\]
\[
\mathrm{NO}
\] & & 4 & - & c & \[
\begin{aligned}
& \text { CNE } \\
& \text { AVE } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CB} \\
& \hline
\end{aligned}
\] & L & & & 2 & 4 & B & \[
c
\] & T & H & T* \\
\hline 3 & 5.5 & 24.34 & 24.31 & 24.32 & 24.32 & 23.09 & 975.7 & 6.42 & 0.428E-07 & 0.00029 & 19.79 & 20.27 & 20.03 & 20.03 & 20.03 & 20.03 \\
\hline 4 & 15.5 & 24.70 & 24.76 & 24.70 & 24.71 & 23.15 & 976.8 & 6.42 & 0.430E-07 & 0.00081 & 15.85 & 15.29 & 15.85 & 15.71 & 15.71 & 15.71 \\
\hline 5 & 25.5 & 24.89 & 25.06 & 24.98 & 24.97 & 23.20 & 977. & 6.41 & 0.432E-07 & 0.00134 & 14.54 & 13.24 & 13.84 & 13.85 & 13.87 & 13.86 \\
\hline 6 & 45.5 & 25.00 & 25.13 & 25.02 & 25.04 & 23.30 & 980.2 & 6.39 & 0.436E-07 & 0.00239 & 14.47 & 13.47 & 14.30 & 14.12 & 14.13 & 14.13 \\
\hline 7 & 75.5 & 25.12 & 25.27 & 25.12 & 25.16 & 23.46 & 983. & 6.37 & 0.441E+07 & 0.00397 & 14.77 & 13.59 & 14.74 & 14.44 & 14.46 & 14.45 \\
\hline 8 & 105.5 & 25.18 & 25.43 & 25.22 & 25.26 & 23.61 & 987.0 & 6.34 & 0.447E-07 & 0.00554 & 15.72 & 13.53 & 15.27 & 14.90 & 14.95 & 14.92 \\
\hline 9 & 135.5 & 25.37 & 25.60 & 25.45 & 25.47 & 23.77 & 990. & 6.32 & 0.453E-07 & 0.00712 & 5.30 & 13.43 & 14.60 & 14.45 & 14.48 & 4.46 \\
\hline 10 & 165.2 & 25.47 & 25.75 & 25.59 & 25.60 & 23.92 & 993.9 & 6.29 & 0.469E+07 & 0.00869 & 15.82 & 13.43 & 14.73 & 14.63 & 14.68 & 14.66 \\
\hline 11 & 205.2 & 25.55 & 25.87 & 25.73 & 25.72 & 24.13 & 998.6 & 6.26 & 0.466E-07 & 0.01080 & 17.26 & 14.10 & 15.29 & 15.41 & 15.49 & 15.45 \\
\hline 12 & 245.2 & 25.87 & 26.08 & 25.98 & 25.98 & 24.33 & 1003.4 & 6.23 & 0.474E-07 & 0.01291 & 16.00 & 14.06 & 14.87 & 14.92 & 14.95 & 14.93 \\
\hline 13 & 275.2 & 25.95 & 26.20 & 26.13 & 26.10 & 24.49 & 1007.0 & 6.20 & 0.480E*07 & 0.01449 & 16.84 & 14.36 & 14.98 & 15.23 & 15.29 & 15.26 \\
\hline 14 & 305.2 & 26.11 & 26.37 & 26.24 & 26.24 & 24.64 & 1010.6 & 6.18 & \(0.486 \mathrm{E}-07\) & 0.03608 & 16.76 & 14.20 & . 40 & . 39 & 15.44 & . 42 \\
\hline 15 & 333.3 & 26.15 & 26.40 & 26.34 & 26.31 & 24.79 & 1014.0 & 6.16 & 0.492E+07 & . 01757 & 18.02 & 15.22 & 15.76 & 16.12 & 16.19 & 16.16 \\
\hline 16 & 363.3 & 26.36 & 26.59 & 26.41 & 26.45 & 24.94 & 1017.6 & 6.13 & 0.499E*07 & 0.01915 & 17.26 & 14.88 & 16.67 & 16.32 & 16.37 & 16.34 \\
\hline 17 & 383.3 & 26.41 & 26.62 & 26.47 & 26.50 & 25.05 & 1020.1 & 6.11 & \(0.503 E+07\) & 0.02021 & 17.98 & 15.55 & 17.18 & 16.92 & 16.97 & 16.95 \\
\hline 18 & 403.3 & 26.48 & 26.70 & 26.58 & 26.59 & 25.15 & 1022.5 & 6.10 & 0.507E-07 & 0.02127 & 18.47 & 15.79 & 17.10 & 17.06 & 17.12 & 17.09 \\
\hline 19 & 423.3 & 26.65 & 26.87 & 26.75 & 26.75 & 25.25 & 1025.0 & 6.08 & 0.511 E 07 & 0.02234 & 17.58 & 15.16 & 16.43 & 16.36 & 16.40 & 16.38 \\
\hline 20 & 443.3 & 26.65 & 26.90 & 26.77 & 26.78 & 25.36 & 1027.5 & 6.07 & 0.516E-07 & 0.02340 & 18.90 & 15.89 & 17.28 & 17.27 & 17.34 & 17.30 \\
\hline 21 & 463.3 & 26.91 & 27.01 & 27.07 & 27.01 & 25.46 & 1030.0 & 6.05 & 0.520E*07 & 0.02446 & 16.92 & 15.85 & 15.20 & 15.76 & 15.79 & 15.78 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
AVERAGE VALUES TENOUCB STATIOMS \\
\(\begin{array}{llll}391.6 & 26.45 & 26.68 \quad 26.56\end{array}\)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15.7020= \\
& 26.56 \\
& 25.09
\end{aligned}
\]} & 1021.1 & 6.11 & 0.505E+07 & 0.02066 & 18.04 & 15.41 & 16.74 & 16.68 & 26.73 & 16.70 \\
\hline
\end{tabular}
\(\qquad\) 3-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOM } \\
& \text { NO. }
\end{aligned}
\] & & -WALL & Ex & \[
\mathrm{URE}_{\mathrm{C}}
\] & \[
\begin{aligned}
& \text { CC)- } \\
& \text { AVE }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{TB} \\
& \text { (C) }
\end{aligned}
\] & NE & Pl & G & 2 & 4 & B & : & \[
T
\] & & T- \({ }^{\text {? }}\) \\
\hline 3 & 5.5 & 25.31 & 25.37 & 25.34 & 25.34 & 22.65 & 937.3 & 6.49 & \(0.926 E \sim 07\) & 0.00030 & 20.76 & 20.30 & 20.52 & 20.52 & 20.53 & 20.53 \\
\hline 4 & 15.5 & 25.94 & 26.21 & 25.97 & 26.02 & 22.77 & 939.8 & 6.47 & \(0.935 E+07\) & 0.00084 & 17.41 & 16.05 & 17.26 & 16.97 & 16.99 & 16.98 \\
\hline 5 & 25.5 & 26.16 & 26.51 & 26.33 & 26.33 & 22.89 & 942.3 & 6.46 & 0.944E*07 & 0.00138 & 16.89 & 15.22 & 16.03 & 16.02 & 16.04 & 16.03 \\
\hline 6 & 45.5 & 26.29 & 26.58 & 26.34 & 26.39 & 23.13 & 947.3 & 6.42 & \(0.9638+07\) & 0.00246 & 17.43 & 15.90 & 17.18 & 16.92 & 16.94 & 16.93 \\
\hline 7 & 75.5 & 26.43 & 26.82 & 26.49 & 26.56 & 23.49 & 954.9 & 6.36 & \(0.992 \mathrm{E}-07\) & 0.00409 & 18.74 & 16.52 & 18.33 & 17.93 & 17.98 & 17.96 \\
\hline 8 & 105.5 & 26.57 & 27.13 & 26.73 & 26.79 & 23.84 & 962.7 & 6.30 & 0.102 E -08 & 0.00572 & 20.20 & 16.74 & 19.09 & 18.69 & 18.78 & 18.74 \\
\hline 9 & 135.5 & 26.94 & 27.44 & 27.15 & 27.17 & 24.20 & 970.6 & 6.25 & \(0.105 E \cdot 08\) & 0.00735 & 20.13 & 17.01 & 18.66 & 18.55 & 18.62 & 18.58 \\
\hline 10 & 165.2 & 27.09 & 27.70 & 27.38 & 27.39 & 24.56 & 978.5 & 6.19 & .108E+08 & 0.00897 & 21.74 & 17.49 & 19.47 & 19.43 & 19.54 & 19.49 \\
\hline 11 & 205.2 & 27.34 & 27.99 & 27.63 & 27.65 & 25.08 & 989.4 & 6.12 & . 1135008 & 0.01115 & 23.87 & 18.60 & 22.13 & 22.02 & 21.18 & 21.10 \\
\hline 12 & 245.2 & 27.95 & 28.51 & 28.25 & 28.24 & 25.51 & 000.5 & 6.04 & .1172-08 & 0.01334 & 22.49 & 18.32 & 20.04 & 20.12 & 20.22 & 20.17 \\
\hline 13 & 275.2 & 28.26 & 28.79 & 28.65 & 28.59 & 25.87 & 1009.0 & 5.98 & .120E+c8 & 0.01499 & 22.96 & 18.76 & 19.74 & 20.19 & 20.30 & 20.24 \\
\hline 14 & 305.2 & 28.59 & 29.09 & 28.81 & 28.83 & 26.23 & 1017.7 & 5.93 & . \(124 \mathrm{E}+08\) & 0.01664 & 23.16 & 19.16 & 21.20 & 21.08 & 21.18 & 21.13 \\
\hline 15 & 333.3 & 28.96 & 29.46 & 29.27 & 29.24 & 26.57 & 1026.0 & 5.87 & \(0.127 E \sim 08\) & 0.01819 & 22.84 & 18.89 & 20.25 & 20.46 & 20.56 & 20.51 \\
\hline 16 & 363.3 & 29.26 & 29.83 & 29.53 & 29.54 & 28.92 & 034.6 & 5.82 & 132E-08 & 0.01984 & 23.37 & 18.85 & 20.98 & 20.92 & 21.04 & 20.98 \\
\hline 17 & 383.3 & 29.51 & 30.00 & 29.74 & 29.75 & 27.16 & 1039.6 & 5.79 & \(0.133 \mathrm{E}-08\) & 0.02094 & 23.25 & 19.25 & 21.21 & 21.13 & 21.23 & 21.18 \\
\hline 18 & 403.3 & 29.74 & 30.24 & 29.97 & 29.98 & 27.40 & 1044.7 & 5.76 & \(0.136 \mathrm{E}-08\) & 0.02206 & 23.38 & 19.22 & 21.24 & 21.17 & 21.27 & 21.22 \\
\hline 19 & 423.3 & 30.05 & 30.56 & 30.37 & 30.34 & 27.64 & 1049.8 & 5.73 & 0.138E-08 & 0.02315 & 22.61 & 18.68 & 20.00 & 20.23 & 20.32 & 20.28 \\
\hline 20 & 443.3 & 30.20 & 30.76 & 30.49 & 30.48 & 27.88 & 1054.9 & 5.70 & \(0.1408 \sim 08\) & 0.02425 & 23.52 & 18.94 & 20.93 & 20.96 & 21.08 & 21.02 \\
\hline 21 & 463.3 & 30.78 & 31.16 & 31.03 & 31.00 & 28.12 & 1080.1 & 5.67 & 0.142 E -08 & 0.02535 & 20.47 & 17.94 & 18.76 & 18.94 & 18.98 & 18.96 \\
\hline \multicolumn{7}{|l|}{AVERAGE VALUES THROUGE STATIOAS 15 TD 20: \(\begin{array}{llllllll}391.6 & 29.62 & 30.14 & 29.89 & 29.89 & 27.26\end{array}\)} & 1041.6 & 5.78 & \(0.134 E 008\) & 0.02140 & 23.16 & 18.97 & 20.77 & 20.81 & 20.92 & 20.86 \\
\hline
\end{tabular}

UPNAND IMCLIMATIOM ___ \(4-1000\)

INPUT ELECTRIC PONER - g73.7 U
MASS FLOU RATE \(=27.8882 \mathrm{G} / \mathrm{S}\)

HEAT BALAWCE ERAOR \(0-0.137\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sal } \\
& \text { Ton } \\
& \text { NO }
\end{aligned}
\] & \[
\mathrm{z}
\] & 4 & & c & \begin{tabular}{l}
C)- \\
AVEI- \\
AGE
\end{tabular} & (C) & L & PI & 62 & 2 & 4 & B & & \[
T
\] & I & I*E \\
\hline 3 & 5.5 & 25.89 & 26.04 & 25.97 & 25.97 & 22.47 & 921.6 & 6.52 & 0.1218 .08 & 0.00030 & 21.34 & 20.46 & 20.89 & 20.89 & 20.89 & 20.89 \\
\hline 4 & 15.5 & 26.57 & 26.96 & 26.60 & 26.69 & 22.63 & 924.8 & 6.50 & 0.122E-08 & 0.00005 & 18.51 & 16.85 & 18.38 & 18.00 & 18.03 & 18.02 \\
\hline 5 & 25.5 & 26.87 & 27.34 & 27.13 & 27.12 & 22.79 & 928.1 & 6.47 & 0.124E+08 & 0.00140 & 17.88 & 16.05 & 16.80 & 16.86 & 16.88 & 16.87 \\
\hline 6 & 45.5 & 26.96 & 27.45 & 27.15 & 27.18 & 23.11 & 934.8 & 6.42 & 0.127E*08 & 0.00249 & 18.93 & 16.81 & 18.06 & 17.93 & 17.96 & 17.95 \\
\hline 7 & 75.5 & 27.15 & 27.71 & 27.30 & 27.37 & 23.59 & 944.9 & 6.35 & 0.132E-08 & 0.00414 & 20.47 & 17.68 & 19.62 & 19.29 & 19.35 & 19.32 \\
\hline 8 & 105.5 & 27.35 & 28.11 & 27.54 & 27.63 & 24.07 & 985.2 & 6.27 & 0.138E 08 & 0.00579 & 22.18 & 18.00 & 20.99 & 20.42 & 20.54 & 20.48 \\
\hline 9 & 135.5 & 27.83 & 28.50 & 28.16 & 28. 16 & 24.55 & 965.8 & 6.19 & 0.143E*08 & 0.00745 & 22.18 & 18.43 & 20.17 & 20.15 & 20.24 & 20.19 \\
\hline 10 & 165.2 & 28.06 & 28.84 & 28.46 & 28.45 & 25.02 & 976.5 & 6.12 & 0.149E-08 & 0.00910 & 23.94 & 19.02 & 21.23 & 21.22 & 21.36 & 21.29 \\
\hline 11 & 205.2 & 28.45 & 29.24 & 28.84 & 28.84 & 25.67 & 991.3 & 6.02 & 0.157E*08 & 0.01132 & 26.03 & 20.28 & 22.88 & 22.84 & 23.01 & 22.93 \\
\hline 12 & 245.2 & 29.23 & 29.82 & 29.51 & 29.52 & 26.31 & 1006.5 & 5.92 & \(0.165 E \cdot 08\) & 0.01355 & 24.76 & 20.62 & 22.61 & 22.55 & 22.65 & 22.60 \\
\hline 13 & 275.2 & 29.60 & 30.33 & 30.05 & 30.00 & 26.79 & 1018.2 & 5.84 & 0.172E+08 & 0.01522 & 25.74 & 20.43 & 22.18 & 22.48 & 22.63 & 22.55 \\
\hline 14 & 305.2 & 30.05 & 30.74 & 30.36 & 30.37 & 27.27 & 1028.4 & 5.78 & 0.178E*08 & 0.01690 & 25.98 & 20.80 & 23.40 & 23.25 & 23.40 & 23.33 \\
\hline 15 & 333.3 & 30.58 & 32.30 & 31.08 & 31.01 & 27.72 & 1037.9 & 5.72 & 0.183E+08 & 0.01846 & 25.24 & 20.14 & 21.48 & 21.93 & 22.08 & 22.01 \\
\hline 16 & 363.3 & 31.08 & 31.78 & 31.38 & 31.40 & 28.20 & 1048.2 & 5.66 & 0.189E*08 & 0.02014 & 25.05 & 20.14 & 22.63 & 22.48 & 22.61 & 22.55 \\
\hline 17 & 383.3 & 31.36 & 31.97 & 31.64 & 31.65 & 28.52 & 1055.2 & 5.62 & 0.194E*08 & 0.02126 & 25.36 & 20.85 & 23.09 & 22.98 & 23.10 & 23.04 \\
\hline 18 & 403.3 & 31.68 & 32.35 & 31.99 & 32.00 & 28.84 & 1062.3 & 5.58 & 0.198E*08 & 0.02238 & 25.35 & 20.49 & 22.83 & 22.75 & 22.88 & 22.88 \\
\hline 19 & 423.3 & 32.09 & 32.77 & 32.48 & 32.46 & 29.16 & 1069.5 & 5.54 & 0.202E-08 & 0.02350 & 24.50 & 19.90 & 21.67 & 21.82 & 21.94 & 21.88 \\
\hline 20 & 443.3 & 32.25 & 32.96 & 32.59 & 32.60 & 29.48 & 1076.7 & 5.50 & 0.207E 08 & 0.02463 & 25.90 & 20.65 & 23.07 & 23.02 & 23.17 & 23.10 \\
\hline 21 & 463.3 & 32.75 & 33.23 & 33.04 & 33.02 & 29.80 & 1084.: & 5.46 & 0.212E*08 & 0.02575 & 24.36 & 20.90 & 22.13 & 22.31 & 22.38 & 22.35 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
aVERAGE VALUES TEROUCR STATIONS 15 TO 20: \\
\(391.6 \quad 31.51 \quad 32.19 \quad 31.86 \quad 31.85 \quad 28.65\)
\end{tabular}} & 1058.3 & 5.60 & \(0.196 E+08\) & \(0.02: 73\) & 25.23 & 20.36 & 22.46 & 22.50 & 22.63 & 22.56 \\
\hline
\end{tabular}

UPVARD ImClimatiom \(\qquad\) \(5=1000\)

ISPUT ELSCTHIC POWED \(=1140.0 \mathrm{Y}\) INPUT ELICIMIC PONEA 101140.0
pexsat rate galimb iy vatia - 1125.7 y FRICIION FACTON - 0.02845


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & & 4 & & c & \[
\begin{aligned}
& \text { CG) } \\
& \text { AVER } \\
& \hline \text { CE }
\end{aligned}
\] & (C) & E & PR & Ga & 2 & 4 & - & \[
c
\] & I & - & T4 \\
\hline 3 & 5.5 & 27.34 & 27.55 & 27.44 & 27.44 & 22.72 & 895.5 & 6.48 & 0.158508 & 0.00031 & 20.35 & 19.46 & 19.90 & 19.90 & 19.90 & 19.90 \\
\hline 4 & 15.5 & 27.68 & 28.25 & 27.82 & 27.89 & 22.93 & 899.7 & 6.45 & 0.161E-08 & 0.0008 & 19.79 & 17.68 & 19.23 & 18.95 & 18.98 & 18.97 \\
\hline 5 & 25.5 & 28.14 & 28.74 & 28.44 & 28.44 & 23.15 & 904.0 & 6.42 & 0.1648-08 & 0.00146 & 28.81 & 16.78 & 17.75 & 17.74 & 27.77 & . 76 \\
\hline 6 & 45.5 & 28.20 & 28.79 & 28.38 & 28.44 & 23.57 & 912.7 & 6.35 & 0.170c-08 & 0.00258 & 20.28 & 27.97 & 19.5 & 19.28 & 19.32 & 19.30 \\
\hline 7 & 75.5 & 28.43 & 29.16 & 28.54 & 28.72 & 24.21 & 926.0 & 6.25 & 0.179E-08 & 0.00429 & 22.23 & 18.94 & 21.13 & 20.79 & 20.86 & 20.82 \\
\hline 8 & 105.5 & 28.69 & 29.71 & 28.92 & 29.05 & 24.85 & 939.8 & 6.15 & 0.1892-08 & 0.00601 & 24.36 & 19.26 & 23.07 & 22.26 & 22.44 & 22.35 \\
\hline 9 & 135.5 & 29.34 & 30.20 & 29.74 & 29.75 & 25.49 & 953.9 & 6.04 & 0.199E+08 & 0.00773 & 24.29 & 19.85 & 21.95 & 21.90 & 22.01 & 21.96 \\
\hline 10 & 165.2 & 29.73 & 30.71 & 30.21 & 30.22 & 26.12 & 968.4 & 5.94 & \(0.2095 \sim 09\) & 0.00944 & 25.89 & 20.33 & 22.81 & 22.79 & 22.96 & 22.88 \\
\hline 11 & 205.2 & 30.32 & 31.28 & 30.68 & 30.74 & 25.98 & 9t8.0 & 5.81 & \(0.224{ }^{\text {ctar }}\) & 0.01178 & 27.82 & 21.64 & 25.13 & 24.73 & 24.93 & 24.83 \\
\hline 12 & 245.2 & 31.37 & 32.22 & 31.78 & 31.78 & 27.83 & 1005.3 & 5.71 & 0.2385 & 0.01406 & 26.24 & 21.17 & 23.55 & 23.49 & 23.62 & 23.56 \\
\hline 13 & 275.2 & 31.91 & 32.81 & 32.54 & 32.45 & 28.47 & 1018.7 & 5.63 & 0.248E+08 & 0.01580 & 26.97 & 21.36 & 22.79 & 23.30 & 23.48 & 23.39 \\
\hline 14 & 305.2 & 32.48 & 33.23 & 32.85 & 32.85 & 29.12 & 1032.4 & 5.55 & 0.260E+08 & 0.01754 & 27.49 & 22.46 & 24.78 & 24.75 & 24.88 & 24.81 \\
\hline 15 & 333.3 & 33.22 & 34.03 & 33.81 & 33.72 & 29.71 & 1045.6 & 5.47 & 0.271E*08 & 0.01917 & 26.33 & 21.41 & 22.57 & 23.08 & 23.22 & 23.15 \\
\hline 16 & 36 & 33.78 & 34.65 & 34.19 & 34.20 & 30.35 & . 1 & 5.39 & 283t-08 & 0.02092 & 26.92 & 21.48 & 24.04 & 23.97 & 24.12 & 24.04 \\
\hline 17 & 383.3 & 34.18 & 34.93 & 34.48 & 34.52 & 30.78 & 1069. & 5.34 & 0.291E-08 & 0.02209 & 27.08 & 22.21 & 24.37 & 24.64 & 24.76 & 24.70 \\
\hline 18 & 403.3 & 34.57 & 35.42 & 34.90 & 34.98 & 31.20 & 1080.0 & 5.28 & \(0.3005 \cdot 08\) & 0.02326 & 27.35 & 21.88 & 24.89 & 24.60 & 24.75 & 24.68 \\
\hline 19 & 423.3 & 35.08 & 35.96 & 35.54 & 35.53 & 31.63 & 1090.3 & 5.23 & 0.309E08 & 0.02443 & 26.66 & 21.25 & 23.54 & 23.59 & 23.75 & 23.67 \\
\hline 20 & 443.3 & 35.29 & 36.20 & 35.72 & 35.73 & 32.05 & 1100.0 & 5.18 & 0.318E-08 & 0.02561 & 28.41 & 22.19 & 25.13 & 25.02 & 25.21 & 25.12 \\
\hline 21 & 463.3 & 36.06 & 36.75 & 36.24 & 36.32 & 32.48 & 1109.1 & 5.13 & 0.326E-08 & 0.02680 & 25.67 & 21.51 & 24.44 & 23.91 & 24.02 & 23.9 \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { AVERAGE VA } \\
391.6
\end{gathered}
\]} & \[
\begin{aligned}
& \text { LUES } T B \\
& 34.36
\end{aligned}
\] & \[
\begin{aligned}
& \text { 200cm } \\
& 35.20
\end{aligned}
\] & \[
1710
\] & \[
\frac{15}{34} .70
\] & \[
\begin{array}{r}
20 \\
30.95
\end{array}
\] & 1074.3 & 5.31 & 0.295E-08 & 0.02258 & 27.12 & 21.74 & 24.18 & 24.15 & 24.30 & 24.23 \\
\hline
\end{tabular}

UPVADD INCLIHATIOM \(\qquad\) 6-1000

INPUT ELECTRIG PONEA = 1765.24
HEAT HATE GAIMPD BY UATER - 1746.3 H FRICTIOX FACTO \(=0.03338\) TAT BALANCE ERNOR - 1.077 MASS FLOY RATE \(=25.0000 \mathrm{G} / \mathrm{s}^{2}\) PIESSULEE DAOPO 0.7319 NiN OOEGC C

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TION }
\end{aligned}
\] & \[
\stackrel{-}{\mathbf{N}}
\] & \[
\frac{-14}{4}
\] & \[
8
\] & C & \[
\begin{aligned}
& \text { AVER } \\
& \text { AGE } \\
& \hline
\end{aligned}
\] & (8) & IE & R & a & \(2 *\) & 4 & B & C & \[
I
\] &  & T+ \\
\hline 3 & 5.5 & 29.39 & 29.89 & 29.64 & 29.64 & 22.89 & 834.0 & 6.45 & \(0.249 E+08\) & 0.00034 & 22.43 & 20.82 & 21.60 & 21.60 & 21.61 & 21.60 \\
\hline 4 & 15.5 & 29.75 & 30.68 & 29.97 & 30.09 & 23.25 & 840.6 & 6.40 & 0.257Eャ08 & 0.00095 & 22.41 & 19.61 & 21.68 & 21.29 & 21.34 & 21.32 \\
\hline 5 & 25.5 & 30.42 & 31.38 & 30.95 & 30.93 & 23.61 & 847.4 & 6.34 & 0.265E-08 & 0.00156 & 21.36 & 18.71 & 19.81 & 19.88 & 19.92 & 19.90 \\
\hline 6 & 45.5 & 30.50 & 31.51 & 30.84 & 30.92 & 24.32 & 861.2 & 6.23 & 0.280E-08 & 0.00279 & 23.52 & 20.21 & 22.28 & 22.01 & 22.07 & 22.04 \\
\hline 7 & 75.5 & 30.92 & 32.10 & 31.30 & 31.40 & 25.39 & 882.9 & 6.06 & 0.306E+08 & 0.00464 & 26.19 & 21.59 & 24.54 & 24.10 & 24.21 & 24.15 \\
\hline 8 & 105.5 & 31.40 & 32.98 & 31.75 & 31.97 & 26.46 & 905.7 & 5.89 & 0.334 E 08 & 0.00650 & 29.26 & 22.18 & 27.31 & 26.23 & 26.52 & 26.38 \\
\hline 9 & 135.5 & 32.60 & 33.88 & 33.26 & 33.25 & 27.53 & 926.9 & 5.74 & 0.361E-08 & 0.00837 & 28.45 & 22.72 & 25.17 & 25.22 & 25.38 & 25.30 \\
\hline 10 & 165.2 & 33.45 & 34.89 & 34.16 & 34.17 & 20.59 & 947.4 & 5.61 & 0.389E+08 & 0.01022 & 29.58 & 22.82 & 25.50 & 25.78 & 26.00 & 25.89 \\
\hline 11 & 205.2 & 34.59 & 35.96 & 35.13 & 35.20 & 30.02 & 976. & 5.43 & 0.429E-08 & 0.01273 & 31.33 & 24.12 & 28.06 & 27.65 & 27.89 & 27.77 \\
\hline 12 & 245.2 & 36.32 & 37.49 & 36.87 & 36.89 & 31.44 & 1007.3 & 5.25 & 0.473E-08 & 0.01525 & 29.31 & 23.63 & 26.35 & 26.26 & 26.41 & 26.33 \\
\hline 13 & 275.2 & 37.20 & 38.48 & 38.06 & 37.95 & 32.51 & 1029.6 & 5.12 & 0.507E 0.08 & 0.01716 & 30.39 & 23.90 & 25.71 & 26.22 & 26.43 & 26.33 \\
\hline 14 & 305.2 & 38.12 & 39.29 & 38.56 & 38.63 & 33.58 & 1051.5 & 5.00 & 0.541E-08 & 0.01910 & 31.30 & 24.93 & 28.55 & 28.14 & 28.33 & 28.24 \\
\hline 15 & 333.3 & 39.29 & 40.49 & 40.13 & 40.01 & 34.59 & 1072.9 & 4.88 & 0.576E+08 & 0.02093 & 30.13 & 24.02 & 25.59 & 26.15 & 26.33 & 26.24 \\
\hline 16 & 363.3 & 40.22 & 41.56 & 40.87 & 40.88 & 35.66 & 1096.8 & 4.76 & 0.615E+08 & 0.02290 & 30.98 & 23.94 & 27.11 & 27.06 & 27.28 & 27.17 \\
\hline 17 & 383.3 & 40.89 & 42.06 & 41.35 & 41.41 & 36.37 & 1113.3 & 4.68 & 0.642E+08 & 0.02422 & 31.21 & 24.83 & 28.33 & 27.98 & 28.17 & 28.06 \\
\hline 18 & 403.3 & 41.74 & 42.92 & 42.16 & 42.24 & 37.08 & 1129.5 & 4.60 & 0.670E+08 & 0.02554 & 30.25 & 24.13 & 27.74 & 27.29 & 27.47 & 27.38 \\
\hline 19 & 423.3 & 42.57 & 43.85 & 43.30 & 43.25 & 37.79 & 1144.6 & 4.53 & 0.698E +08 & 0.02684 & 29.48 & 23.24 & 25.58 & 25.78 & 25.97 & 25.88 \\
\hline 20 & 443.3 & 43.03 & 44.04 & 43.64 & 43.59 & 38.51 & 1160.1 & 4.47 & 0.726E-08 & 0.02814 & 31.06 & 25.42 & 27.36 & 27.66 & 27.80 & 27.73 \\
\hline 21 & 463.3 & 43.81 & 44.68 & 44.48 & 44.37 & 39.22 & 1176.1 & 4.40 & 0.755E-08 & 0.02944 & 30.59 & 25.69 & 26.66 & 27.28 & 27.40 & 27.34 \\
\hline \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { AVERAGE YALUES TB } \\
391.6
\end{gathered} \frac{11.29}{}
\]} & \multicolumn{4}{|l|}{ROUCR STATIONS 15 T0 20:
\[
42.48+41.91 \quad 41.90 \quad 36.67
\]} & 1119.5 & 4.65 & 0.654E+08 & 0.02476 & 30.52 & 24.26 & 26.95 & 26.99 & 27.17 & 27.08 \\
\hline
\end{tabular}
\(\qquad\) \(7-1000\)

INPUT ELECIAIC PONEA - 2666.6 U



\(\qquad\) \(1-1500\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TO } \\
& \text { NO. }
\end{aligned}
\] & \[
-\stackrel{Z}{\mathrm{~N}}
\] & 4 & \[
\mathbf{B}
\] & C & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVE }
\end{aligned}
\] & \[
{ }_{\text {(C) }}
\] & \(\underline{L}\) & PR & GR & 2 & 4 & 8 & & T & I & T* \(\mathrm{H}^{\text {a }}\) \\
\hline 3 & 5.5 & 22.95 & 22.94 & 22.94 & 22.94 & 22.34 & 1491.1 & 6.54 & 0.220E-07 & 0.00019 & 22.28 & 22.66 & 22.47 & 22.47 & 22.47 & 22.47 \\
\hline 4 & 15.5 & 23.18 & 23.19 & 23.18 & 23.18 & 22.36 & 1491.7 & 6.54 & \(0.2215 \cdot 07\) & 0.00052 & 16.49 & 16.27 & 16.49 & 16.43 & 16. & 3 \\
\hline 5 & 25.5 & 23.29 & 23.32 & 23.29 & 23.30 & 22.38 & 1492.3 & 6.54 & 0.221E-07 & 0.00086 & 14.7 & 14.33 & 14.88 & 14.72 & 14.71 & 14. \\
\hline 6 & 45.5 & 23.43 & 23.45 & 23.43 & 23.43 & 22.42 & 2493.5 & 6.53 & \(0.222 E+07\) & 0.00153 & 13.30 & 13.08 & 23.35 & 13.27 & 13.27 & 13.27 \\
\hline 7 & 75.5 & 23.51 & 23.60 & 23.50 & 23.53 & 22.47 & 1495.3 & 6.52 & 0.223E-07 & 0.00255 & 12.97 & 11.96 & 13.05 & 12.74 & 12.76 & 12.75 \\
\hline 8 & 105.5 & 23.56 & 23.67 & 23.55 & 23.58 & 22.53 & 1497.1 & 6.51 & \(0.2245+07\) & 0.00356 & 13.08 & 11.82 & 13.22 & 12.81 & 12.84 & 12.83 \\
\hline 9 & 135.5 & 23.59 & 23.70 & 23.64 & 23.64 & 22.58 & 1498.9 & 6. 50 & \(0.225 E-07\) & 0.00457 & 13.39 & 12.04 & 12.77 & 12.72 & 12.74 & 12.7 \\
\hline 10 & 165.2 & 23.61 & 23.71 & 23.65 & 23.65 & 22.64 & 1500.7 & 6.50 & \(0.225 E-07\) & 0.00557 & 13.82 & 12.50 & 13.24 & 13.18 & 13.2 & 13 \\
\hline 11 & 205.2 & 23.65 & 23.78 & 23.75 & 23.73 & 22.71 & 1503.1 & 6.48 & 0.227E-07 & 0.00693 & 14.28 & 12.61 & 2.97 & 13.17 & 13.20 & 13.19 \\
\hline 12 & 245.2 & 23.84 & 23.80 & 23.80 & 23.83 & 22.78 & 1505.5 & 6.4 & 0.228E-07 & 0.00828 & 12.74 & 12.31 & 13.19 & 12.85 & 12.86 & 12.8 \\
\hline 13 & 27 & 23.80 & 23.94 & 23.86 & 23.86 & 22.84 & 150 & 6.46 & \(0.229 E+07\) & 0.00929 & 13.96 & 12.22 & 13.16 & 13.10 & 23.13 & 13.11 \\
\hline 14 & 30 & 23.87 & 23.99 & 23.94 & 23.93 & 22.89 & 1509.2 & 6.46 & \(0.230 E+07\) & 0.01030 & 13.72 & 12.25 & 12.84 & 12.89 & 12.91 & 12.90 \\
\hline 15 & 33 & 23.81 & 23.89 & 23.87 & 23.86 & 22.94 & 1510.9 & 6.45 & \(0.231 \mathrm{E}+07\) & 0.01125 & 48 & 14.12 & 14.55 & 14.66 & 14.67 & 14.6 \\
\hline 16 & 363.3 & 23.91 & 24.00 & 23.94 & 23.95 & 23.00 & 1512.7 & 6.44 & \(0.232 \mathrm{E}-07\) & 0.01227 & 14.71 & 13.42 & 14.19 & 14.12 & 14.13 & 14.12 \\
\hline 17 & 383.3 & 23.89 & 24.00 & 23.96 & 23.96 & 23.03 & 1513.9 & 6.43 & \(0.233 E-07\) & 0.01295 & 15.60 & 13.84 & 14.47 & 14.57 & 14.59 & 14.58 \\
\hline 18 & 403.3 & 23.89 & 24.00 & 23.98 & 23.96 & 23.07 & 2515.2 & 6.43 & \(0.234 \mathrm{E}-07\) & 0.01362 & 16.35 & 14.39 & 14.60 & 15.05 & 15.08 & 15.07 \\
\hline 19 & 423.3 & 23.97 & 24. 30 & 24.05 & 24.04 & 23.10 & 1516.4 & 6.42 & 0.235E-07 & 0.01430 & 15.63 & 13.52 & 14.27 & 14.38 & 14.42 & 14.40 \\
\hline 20 & 443.3 & 24.01 & 24.11 & 24.05 & 24.05 & 23.14 & 1517.6 & 6.42 & 0.235E-07 & 0.01498 & 15.53 & 13.90 & 14.84 & 14.76 & 14.78 & 14.77 \\
\hline 21 & 463.3 & 24.24 & 24.12 & 24.30 & 24.24 & 23.18 & 1518.9 & 6.41 & \(0.236 E-07\) & 0.01565 & 12.65 & 14.25 & 12.03 & 12.68 & 12.74 & 12.7 \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{r}
\text { AVERAGE VALMES T } \\
391.6 \quad 23.91
\end{array}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Ruc. } \text { STATIDYS } \\
& 24.023^{23.97}
\end{aligned}
\]} & \[
\begin{aligned}
& 15.70 \\
& 23.97
\end{aligned}
\] & \[
2_{23.05}^{-}
\] & 1514.5 & 6.43 & \(0.233 \mathrm{E}+07\) & 0.01323 & 15.55 & 13.87 & 14.52 & 14.59 & 14.61 & 14.60 \\
\hline
\end{tabular}
\(\qquad\) 2-1500 INPUT EIECTRIC POUER - 310.7 Y
MASS FLOY RATE \(-4.5220 \mathrm{G} / \mathrm{S}\)
 GCTOA - 0.013097 BALANCE EMAOR \(=-0.94 \%\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { ro } \\
& \text { an }
\end{aligned}
\] & C &  & & & & & \(\underline{1}\) & Pl & Ga & & 1 & - & & \[
T
\] & & 量 \\
\hline 3 & 5.5 & 23.75 & 23.72 & 23.74 & 23.74 & 22.6 & 1476.8 & 6.50 & \(0.439 E * 07\) & 0.00019 & 8 & 24.20 & 23.03 & 23.8 & 23.84 & 23.83 \\
\hline 4 & 15.5 & 24.23 & 24 & 24.23 & 24.25 & 22.6 & & 6.49 & 0.440E-07 & 0.00053 & 85 & 16.03 & 16.85 & 16.64 & 16.65 & 6.64 \\
\hline 5 & 25.5 & 24.48 & 24. & 24.59 & 24.57 & 22.71 & & 6.4 & H1E*07 & 0.00087 & 14.82 & 13.7 & 13.95 & 14.11 & 14.12 & 4.12 \\
\hline 5 & 45 & 24.61 & 24 & 24.69 & 24.69 & 22.78 & 1481.5 & 6.47 & 0.444 & 0.00156 & 14.34 & . 22 & 76 & 13.76 & 13.77 & 13 \\
\hline 7 & 75 & 24.6t & 24.85 & 24.68 & 24 & 22.89 & 1485.1 & 46 & 18 & 0.00259 & . 65 & 13.37 & . 65 & 31 & 33 & 14.32 \\
\hline 8 & 105 & 24.70 & 24 & 24.75 & 24 & 23.00 & 1488.7 & 4 & 52E*0 & 362 & . 37 & 13.39 & . 98 & 14.64 & 14.68 & 14.66 \\
\hline 9 & 135 & 24.81 & 25 & 24.86 & 24 & 23.12 & 2.2 & 6.42 & 6EE07 & 0465 & 31 & 13.74 & 14.89 & 8 & 1 & \\
\hline 10 & 165.2 & 24.78 & 25 & 24.92 & 24 & 23.21 & 1495.8 & 6.40 & 60E+0 & 0.00567 & 72 & & 15.38 & 15.44 & 8 & \\
\hline 11 & 205 & 25.38 & 25 & 25 & 25.15 & 23.36 & 1500.6 & 38 & 65E-07 & 0.00706 & 12.91 & 14.64 & 60 & 0 & 69 & 64 \\
\hline 12 & 24 & 25.06 & 25.27 & 25.14 & 25.16 & 23.50 & 1505.5 & . 36 & 71E0 & 0.00843 & 16.75 & & 15.90 & 15.80 & . 3 & 15.81 \\
\hline 13 & 275 & 25.05 & 25.33 & 25 & 25.20 & 23.61 & 1509.1 & 34 & \(0.475 E \sim\) & 0.009 & 18.08 & 6 & 16.39 & 16.44 & 16.51 & 16.47 \\
\hline 14 & 305 & 25.16 & 25.42 & 25.28 & 25.29 & 23.72 & 1512.8 & 33 & \(0.479 \mathrm{E}+07\) & 0.01049 & 18.14 & 15.35 & 16.67 & 16.65 & 16.71 & 16.6 \\
\hline 15 & 33 & 25.23 & 25.51 & 25.37 & 25.37 & 23. & 16. & 6.31 & \(0.483 E * 07\) & 0.0114 & 18.4 & 15.44 & 16.82 & 16.82 & 16.89 & 16.86 \\
\hline 16 & 363.3 & 25.33 & 25.56 & 25.49 & 25 & 23.93 & 20. & 6.29 & \(0.488 \mathrm{E} \cdot 07\) & 0.01250 & 18.55 & 15.97 & 16.71 & 16.94 & 16.99 & 16 \\
\hline 17 & 383.3 & 25.40 & 25.69 & 25.55 & 25.55 & 24.00 & 1522 & 6.28 & 0.490E+07 & . 01319 & 18.55 & 15.38 & 16.78 & 16.80 & 16.87 & 16.84 \\
\hline 18 & 403.3 & 25.47 & 25.75 & 25.60 & 25.60 & 24.07 & 2525. & 6. & \(0.493 E-07\) & 13 & 18.69 & 15.56 & 87.02 & 17.00 & 17.07 & 17.04 \\
\hline 19 & 423.3 & 25.59 & 25.82 & 25.76 & 25 & 24.14 & 1527. & 6.26 & 0.496E007 & 0.01457 & 18.0 & 15.67 & 16.10 & 16.43 & 16.48 & 16.45 \\
\hline 20 & 443.3 & 25.61 & 25.88 & 25.76 & 25.76 & 24.21 & 1530. & 6.25 & 0.499E-07 & 0.01526 & 18.65 & 15.61 & 16.84 & 16.92 & 16.98 & 16.95 \\
\hline 21 & 463.3 & 25.87 & 25.97 & 26.03 & 25.98 & 24.28 & 1532.5 & 6.24 & 0.502E-07 & 0.01595 & 16.46 & 15.50 & 14.91 & 15.42 & 15.45 & 15.43 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THROUCI STATIONS 15 TO 20: \\
\(\begin{array}{llllllll}391.6 & 25.44 & 25.70 & 25.59 & 25.58 & 24.03\end{array}\)
\end{tabular}} & 1523.5 & 6.28 & \(0.4925 * 07\) & 0.01347 & 18.50 & 15.61 & 16.71 & 16.82 & 16.88 & 16.85 \\
\hline
\end{tabular}

UPNAMD IMCLITATIOK \(\qquad\) 3-1500

INPUT ELECTRIC PONER - 695.2 W
MASS FLOW RATE \(43.0754 \mathrm{G/3}\)
meat rate caimpdey water - 696.1 u

PRESSUKE DEAT RATE GAIMED BY

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TION } \\
& \text { MO. }
\end{aligned}
\] & \[
\bar{Z}
\] & \[
-64
\] &  & Ce & \[
\begin{aligned}
& \text { c) } \\
& \text { aven } \\
& \text { CGE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { (C) }
\end{aligned}
\] & E & PR & Gn & 2 & 1 & 8 &  & \[
I
\] & I & T*E \\
\hline 3 & 5.5 & 25.39 & 25.37 & 25.38 & 25.38 & 22.97 & 1439.2 & 6.44 & 0.100E+08 & 0.00020 & 23.93 & 24.16 & 24.04 & 24.04 & 24.04 & 24.04 \\
\hline 4 & 15.5 & 26.30 & 26.54 & 26.33 & 26.37 & 23.06 & 1441.9 & 6.43 & \(0.101 E \sim 08\) & 0.00055 & 17.86 & 16.62 & 17.7: & 17.46 & 17.48 & 17.47 \\
\hline 5 & 25.5 & 26.65 & 26.95 & 26.77 & 26.79 & 23.13 & 1444.5 & 6.42 & 0.101E*O8 & 0.00090 & 16.49 & 15.19 & 25.93 & 15.87 & 15.89 & 15.88 \\
\hline 6 & 45.5 & 26.68 & 26.95 & 26.73 & 26.77 & 23.30 & 1449.8 & 6.39 & 0.103E-08 & 0.00162 & 17.13 & 15.90 & 16.91 & 16.70 & 16.71 & 16.70 \\
\hline 7 & 75.5 & 26.84 & 27.27 & 26.94 & 27.00 & 23.54 & 1457.9 & 6.35 & 0.105E-08 & 0.00268 & 17.58 & 15.58 & 17.08 & 16.79 & 16.83 & 16.81 \\
\hline 8 & 105.5 & 26.96 & 27.53 & 27.01 & 27.13 & 23.79 & 1466.1 & 6.31 & 0.107E-08 & 0.00375 & 18.28 & 15.52 & 18.02 & 17.38 & 17.46 & 17.42 \\
\hline 9 & 135.5 & 27.24 & 27.72 & 27.37 & 27.43 & 24.04 & 1474.4 & 6.27 & 0.109E+08 & 0.00482 & 18.08 & 15.76 & 17.37 & 17.10 & 17.14 & 17.12 \\
\hline 10 & 165.2 & 27.09 & 27.70 & 27.41 & 27.40 & 24.28 & 1482.6 & 6.24 & \(0.111 \mathrm{E}+08\) & 0.00588 & 20.66 & 16.94 & 18.52 & 18.57 & 18.66 & 18.62 \\
\hline 11 & 205.2 & 27.34 & 27.96 & 27.63 & 27.64 & 24.61 & 1493.9 & 6.18 & 0.114E+08 & 0.00731 & 21.25 & 17.29 & 19.15 & 19.11 & 19.21 & 19.16 \\
\hline 12 & 245.2 & 27.76 & 28.28 & 28.00 & 28.01 & 24.94 & 1505.4 & 6.13 & 0.118E+08 & 0.00874 & 20.54 & 17.30 & 18.92 & 18.85 & 18.92 & 18.85 \\
\hline 13 & 275.2 & 27.81 & 28.43 & 28.23 & 28.17 & 25.19 & 1514.1 & 6.09 & 0.120E-08 & 0.00981 & 22.03 & 17.83 & 19.02 & 19.36 & 19.48 & 19.42 \\
\hline 14 & 305.2 & 27.98 & 28.56 & 28.25 & 28.26 & 25.44 & 2522.9 & 6.05 & 0.122 E -0\% & 0.01089 & 22.72 & 18.52 & 20.51 & 20.46 & 20.56 & 20.51 \\
\hline 15 & 333.3 & 28.32 & 28.88 & 28.68 & 26.64 & 25.67 & 1531.2 & 6.02 & 0.125E-08 & 0.01190 & 21.76 & 17.99 & 19.15 & 19.42 & 19.51 & 19.46 \\
\hline 16 & 363.3 & 28.48 & 29.07 & 28.72 & 28.75 & 25.92 & 1540.2 & 5.98 & 0.127E-08 & 0.01298 & 22.48 & 18.28 & 20.60 & 20.38 & 20.49 & 20.44 \\
\hline 17 & 383.3 & 28.65 & 29.19 & 28.87 & 28.90 & 26.08 & 1546.3 & 5.95 & 0.129E+08 & 0.01370 & 22.48 & 18.58 & 20.64 & 20.49 & 20.59 & 20.54 \\
\hline 18 & 403.3 & 28.75 & 29.34 & 29.02 & 29.03 & 26.25 & 1552.4 & 5.93 & 0.131E-08 & 0.01442 & 22.99 & 18.61 & 20.78 & 20.67 & 20.79 & 20.73 \\
\hline 19 & 423.3 & 28.99 & 29.58 & 29.30 & 29.30 & 26.41 & 1558.6 & 5.90 & 0.133E-08 & 0.01514 & 22.31 & 18.17 & 19.93 & 19.98 & 20.09 & 20.03 \\
\hline 20 & 443.3 & 29.07 & 29.66 & 29.39 & 29.38 & 26.58 & 1564.8 & 5.87 & \(0.1345 \sim 08\) & 0.01587 & 23.07 & 18.67 & 20.47 & 20.55 & 20.67 & 20.61 \\
\hline 21 & 463.3 & 29.58 & 29.89 & 29.71 & 29.72 & 26.74 & 1571.1 & 5.85 & 0.136E*08 & 0.01659 & 20.32 & 18.29 & 19.41 & 19.33 & 19.36 & 19.34 \\
\hline \multicolumn{7}{|l|}{AVERACE VALUES TRROUCH STATIONS 15 TO 20: \(\begin{array}{llllllllll}391.6 & 28.71 & 29.29 & 29.00 & 29.00 & 26.15\end{array}\)} & 1548.9 & 5.94 & 0.130E+08 & 0.01400 & 22.51 & 18.38 & 20.26 & 20.25 & 20.36 & 20.30 \\
\hline
\end{tabular}

IMPUT EIECTRIC POUER 987.0 U



\(\qquad\) 5-1500

INPUT EIEGTRIC POHER - 1324.0 Y MASS FLOH RATE \(=42.7860 \mathrm{G} / \mathrm{S}\)


HEAT RATE GAIMPD GY UATER - 1344.4 H
PRICIIOW FACTOR \(=0.01650\)
IEAT BALANCE EMROR 251.547




UPJARD IWCLIMATIOM \(\qquad\) \(6-2500\)

INPOT ELECTRIC PONEA = 2234.8 4
MEAT RATE GAIMED ET YATER - 2254.9 Y - 2258.9 FACTOR -0.019313 IEAT BALANCE EMEA \(=-0.907\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOK }
\end{aligned}
\]
NO: & & -HAL & & \[
c
\] & \[
\begin{aligned}
& \text { AVER- } \\
& \text { AGE }
\end{aligned}
\] & \[
T
\]
(C) & L & PR & GI & z+ & 4 & B &  & I & MGE & + \\
\hline 3 & 5.5 & 30.14 & 30.68 & 30.41 & 30.41 & 22.44 & 1293.5 & 6.53 & 0.310 & 0.00021 & 24.45 & 22.86 & 23.63 & 23.63 & 23.64 & 23.6 \\
\hline 4 & 15.5 & 30.55 & 31.71 & 30.77 & 30.95 & 22.73 & 1301.9 & 6.48 & \(0.318 \mathrm{E}+0\) & 0.00060 & 24.00 & 20.96 & 23.42 & 22.90 & 22.97 & 22.94 \\
\hline 5 & 25.5 & 31.22 & 32.32 & 31.84 & 31.80 & 23.02 & 1310.4 & 6.43 & 0.326 E -08 & 0.00099 & 22.96 & 20.24 & 21.34 & 21.43 & 21.47 & 21.45 \\
\hline 6 & 45.5 & 31.20 & 32.35 & 31.60 & 31.68 & 23.61 & 1327.8 & 6.34 & \(0.342 \mathrm{E}+08\) & 0.00178 & 24.77 & 21.51 & 23.53 & 23.27 & 23.33 & 23 \\
\hline 7 & 75.5 & 31.62 & 32.99 & 32.05 & 32 & 24.49 & 1354.7 & 6.20 & 0.367E-08 & 0.00296 & 26.31 & 22.06 & 24.81 & 24.40 & 24.50 & 24.45 \\
\hline 8 & 105.5 & 32.01 & 33.90 & 32.37 & 32.66 & 25.38 & 1382.8 & 6.06 & 0.395E-08 & 0.00414 & 28.19 & 21.94 & 26.75 & 25.68 & 25.91 & 25.79 \\
\hline 9 & 135.5 & 32.96 & 34.41 & 33.45 & 33.57 & 26.26 & 1412.0 & 5.92 & \(0.424 E \cdot 08\) & 0.00533 & 27.85 & 22.91 & 25.94 & 25.53 & 25.66 & \\
\hline 10 & 165.2 & 33.26 & 35.09 & 34.16 & 34.17 & 27.23 & 1440.5 & 5.79 & \(0.454 E+08\) & 0.00651 & 30.41 & 23.41 & 26.49 & 26.47 & 25.70 & 26.59 \\
\hline 11 & 205.2 & 33.84 & 36.63 & 34.67 & 34.66 & 28.31 & 1475.6 & 5.65 & 0.4925-0 & 0.00810 & 33.58 & 25.38 & 29.68 & 29.29 & 29.58 & 29.43 \\
\hline 12 & 245.2 & 35.12 & 36.77 & 35.94 & 35.94 & 29.48 & 1512.4 & 5.50 & \(0.534{ }^{4} 40\) & 0.00970 & 32.85 & 25.44 & 28.68 & 28.68 & 28.91 & \\
\hline 13 & 275.2 & 35.87 & 37.53 & 36 & 36.83 & 30.36 & 1541.3 & 5.39 & 0.567E 0 08 & 0.01090 & 33.61 & 25.82 & 28.02 & 28.60 & 28.86 & \\
\hline 14 & 305.2 & 36.50 & 38.00 & 37. & 37.23 & 31.24 & 1671.3 & 5.28 & 0.603E+08 & 0.01211 & 35 & 27.00 & 31.20 & 30 & 31.12 & 30.99 \\
\hline 25 & 33 & 37.62 & 39.26 & 38.71 & 38.57 & 32 & 159 & 5.17 & \(0.637 \mathrm{E}+0\) & 0.0832 & 33.20 & 25.62 & 27.77 & 26.33 & 28.59 & 28.46 \\
\hline 16 & 363.3 & 38.41 & 40.17 & 39.27 & 39.28 & 32.95 & 1627.1 & 5.07 & 0.673E 0 & 0.0148 & 33.69 & 25.48 & 29.09 & 29.05 & 29.34 & 29.20 \\
\hline 17 & 383.3 & 39.02 & 40.53 & 39.65 & 39.71 & 33.54 & 1646.1 & 5.00 & 0.697E-08 & 0.01531 & 33.51 & 26.25 & 30.05 & 29.74 & 29.96 & 29.85 \\
\hline 18 & 403.3 & 39.77 & 41.35 & 40.40 & 40.48 & 34.13 & 1665.6 & 4.94 & 0.723E 0 & 0.01614 & 32.47 & 25.39 & 29.24 & 28.86 & 29.08 & 28.97 \\
\hline 19 & 423.3 & 40.56 & 42.17 & 41.47 & 41.42 & 34.71 & 1685.5 & 4.87 & \(0.7495+08\) & 0.01697 & 31.33 & 24.54 & 27.09 & 27.31 & 27.51 & 27.41 \\
\hline 20 & 443.3 & 40.86 & 42.57 & 41.62 & 41.67 & 35.30 & 1705.9 & 4.80 & 0.7TTE+08 & 0.01781 & 32.85 & 25.14 & 28.93 & 28.71 & 28.96 & 28.83 \\
\hline 21 & 463.3 & 41.23 & 43.15 & 41.96 & 42.08 & 35.89 & 1726.9 & 4.73 & \(0.805 E \cdot 08\) & 0.01865 & 34.20 & 25.12 & 30.06 & 29.50 & 29.86 & 29 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
aVERAGE VALIES TMOUGCH STATIOMS 15 T0 20 : \\
\(\begin{array}{lllllllllll}391.6 & 39.37 & 41.01 & 40.18 & 40.19 & 33.78\end{array}\)
\end{tabular}} & 1654.9 & 4.98 & 0.709 E 08 & 0.01566 & 32.84 & 25.40 & 28.69 & 28.67 & 28.91 & 28.79 \\
\hline
\end{tabular}
\(\qquad\) 7 - 8500

INPUT ELECTRIC PONEA - 3356.94
HEAT MATE GAINDD BY VATER - 3318.4 Y \({ }^{-3318.4}{ }^{\text {FRICTION FACTOR }}=0.024521\) TEAT BALANCE EMAOA \(=1.157\) LSS FLON MATE - \(34.6100 \mathrm{G} / \mathrm{S}\)



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { MO. }
\end{aligned}
\] & \[
\frac{-2}{2}
\] & - & \[
8
\] & UE & \[
\begin{aligned}
& \text { CTE- } \\
& \text { Aven- }
\end{aligned}
\]
\[
\operatorname{AGE}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \text { (C) }
\end{aligned}
\] & 王 & PR & G. & 2 & 4 & B & \[
\frac{S E I T}{C}
\] & I & MaE: & T+8 \\
\hline 3 & 5.5 & 34.22 & 35.20 & 34.71 & 34.71 & 23.60 & 1172.8 & 6.34 & 0.502E-08 & 0.00024 & 26.02 & 23.82 & 24.87 & 24.87 & 24.90 & 24.89 \\
\hline 4 & 15.5 & 34.52 & 36.29 & 34.91 & 35.16 & 24.09 & 1185.9 & 6.27 & 0.523E-08 & 0.00069 & 26.46 & 22.63 & 25.52 & 24.94 & 25.03 & 24.99 \\
\hline 5 & 25.5 & 35.48 & 37.11 & 36.46 & 36.38 & 24.58 & 1199.3 & 6.19 & 0.544E-08 & 0.00113 & 25.29 & 22.01 & 23.21 & 23.37 & 23.43 & 23.40 \\
\hline 6 & 45.5 & 35.37 & 37.08 & 36.02 & 36.12 & 25.55 & 1227.0 & 6.03 & 0.589E+08 & 0.00202 & 28.03 & 23.69 & 26.31 & 26.05 & 26.13 & 26.09 \\
\hline 7 & 75.5 & 35.95 & 37.94 & 36.60 & 36.77 & 27.02 & 1270.1 & 5.81 & 0.663E+08 & 0.00337 & 30.73 & 25.13 & 28.64 & 28.13 & 28.28 & 28.21 \\
\hline 8 & 105.5 & 36.56 & 39.21 & 37.06 & 37.47 & 28.49 & 1308.9 & 5.62 & \(0.734 \mathrm{E}-\mathrm{CB}\) & 0.00472 & 33.88 & 25.50 & 32.92 & 30.44 & 30.80 & 30.62 \\
\hline 9 & 135.5 & 38.07 & 40.21 & 38.87 & 39.00 & 29.96 & 1350.1 & 5.41 & 0.882E+08 & 0.00607 & 33.61 & 26.60 & 30.60 & 30.14 & 30.35 & 30.24 \\
\hline 10 & 165.2 & 38.85 & 41.39 & 40.00 & 40.06 & 31.41 & 1393.6 & 5.25 & 0.898E+08 & 0.00742 & 36.54 & 27.22 & 31.65 & 31.43 & 31.77 & 31.60 \\
\hline 11 & 205.2 & 40.37 & 62.71 & 41.14 & 41.34 & 33.37 & 1449.7 & 5.02 & 0.102E-09 & 0.00927 & 38.62 & 28.94 & 34.80 & 33.92 & 34.29 & 34.11 \\
\hline 12 & 245.2 & 42.68 & 44.89 & 43.69 & 43.74 & 35.33 & 1508.2 & 4.80 & 0.114E-09 & 0.01115 & 36.57 & 28.14 & 32.16 & 31.98 & 32.26 & 32.12 \\
\hline 13 & 275.2 & 43.86 & 46.12 & 45.40 & 45.19 & 36.80 & 1555.3 & 4.63 & \(0.125 E+09\) & 0.01258 & 37.92 & 28.73 & 31.17 & 31.91 & 32.25 & 32.08 \\
\hline 14 & 305.2 & 44.86 & 46.93 & 45.65 & 45.77 & 38.27 & 1598.8 & 4.49 & \(0.136 \mathrm{E}+09\) & 0.01399 & 40.53 & 30.83 & 36.18 & 35.59 & 35.93 & 35.76 \\
\hline 15 & 333.3 & 46.72 & 48.73 & 47.78 & 47.75 & 39.64 & 1641.5 & 4.36 & 0.147E+09 & 0.08531 & 37.63 & 29.33 & 32.74 & 32.85 & 33.11 & 32.98 \\
\hline 16 & 363.3 & 48.25 & 50.34 & 49.12 & 49.21 & 41.18 & 1689.6 & 4.23 & 0.160E+09 & 0.01673 & 37.23 & 28.78 & 33.16 & 32.81 & 33.09 & 32.95 \\
\hline 17 & 383.3 & 49.30 & 51.12 & 49.89 & 50.05 & 42.09 & 1722.0 & 4.14 & \(0.169 \mathrm{E}-09\) & 0.01768 & 36.77 & 29.37 & 34.00 & 33.31 & 33.53 & 33.42 \\
\hline 18 & 403.3 & 50.59 & 52.45 & 51.15 & 51.34 & 43.07 & 1751.5 & 4.06 & \(0.177 \mathrm{E}-09\) & 0.01863 & 35.19 & 28.23 & 32.75 & 32.02 & 32.23 & 32.12 \\
\hline 19 & 423.3 & 51.59 & 53.67 & 52.62 & 52.63 & 44.05 & 1782.0 & 3.99 & \(0.186 \mathrm{E}+09\) & 0.01959 & 35.04 & 27.46 & 30.81 & 30.80 & 31.03 & 30.92 \\
\hline 20 & 443.3 & 52.09 & 54.35 & 53.31 & 53.27 & 45.03 & 1813.6 & 3.91 & \(0.195 E+09\) & 0.02055 & 37.33 & 28.29 & 31.83 & 32.01 & 32.32 & 32.16 \\
\hline 21 & 463.3 & \$2.76 & 55.47 & 53.68 & 53.90 & 46.01 & 1846.3 & 3.84 & 0.205E*09 & 0.02152 & 38.96 & 27.82 & 34.31 & 33.36 & 33.85 & 33.60 \\
\hline \multicolumn{7}{|l|}{} & 1733.4 & 4.12 & \(0.172 \mathrm{E}+09\) & 0.01808 & 36.53 & 28.58 & 32.55 & 32.30 & 32.55 & 32.43 \\
\hline
\end{tabular}

\section*{Appendix E}

Experimental Data for \(\alpha=20^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{UPIAD IMCLIETIOM ___ 1 - 500} \\
\hline \multicolumn{6}{|l|}{INPUT ELECTRIC PONIEA - 152.4 U MISS FLOY RATE - \(14.7500 \mathrm{G} / \mathrm{S}\)} & \multicolumn{5}{|l|}{PRBSSUEEAT RATE GAIMDD ET YATER - 149.7} & \multicolumn{6}{|l|}{\[
\text { FICTOR - } 0.034408 \text { BALANCE BNOM }=1.097
\]} \\
\hline PR & & \[
\begin{aligned}
& 98.7 \\
& 360
\end{aligned}
\] & GM & \[
\begin{aligned}
& 0.2247 \\
& 0.1429
\end{aligned}
\] & eoo & upshat & - & - & 22. & \({ }_{6}^{6}\) & DONES & gay but & \(x\) THP & Tunc & \[
\frac{24}{24}
\] & \[
\begin{array}{ll}
\text { peg c } \\
D E G \\
c
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOK } \\
& \text { NO. }
\end{aligned}
\] & \[
\mathrm{N}^{2}
\] & \[
-\frac{W A L}{}
\] & \[
181
\] & \[
\begin{aligned}
& \text { UNE } \\
& c
\end{aligned}
\] & \(\square\)
\[
6 \text { C)- }
\]
AEE & \[
\begin{aligned}
& \bar{\pi} \\
& \text { (C) }
\end{aligned}
\] & 䧉 & PR & 61 & 2 & 4 & B & SEIT & \[
T
\] & E & T-I \\
\hline 3 & 5.5 & 23.03 & 23.02 & 23.03 & 23.03 & 22.31 & 485.7 & 6.55 & \(0.2045 \times 07\) & 0.00057 & 17.29 & 17.53 & 17.41 & 17.41 & 17.41 & 17.41 \\
\hline 4 & 15.5 & 23.37 & 23.39 & 23.37 & 23.38 & 22.36 & 486.3 & 6.54 & \(0.205 E \times 07\) & 0.00160 & 12.36 & 12.20 & 12.36 & 12.32 & 12.32 & 12.32 \\
\hline 5 & 25.5 & 23.46 & 23.51 & 23.48 & 23.48 & 22.41 & 486.8 & 6.53 & \(0.205 E+07\) & 0.00264 & 11.95 & 11.35 & 11.72 & 11.68 & 12.69 & 11.68 \\
\hline 6 & 45.5 & 23.54 & 23.69 & 23.54 & 23.65 & 22.52 & 487.9 & 6.51 & 0.207E+07 & 0.00471 & 12.13 & 11.67 & 12.23 & 12.07 & 12.08 & 12.08 \\
\hline 7 & 75.5 & 23.59 & 23.71 & 23.59 & 23.62 & 22.67 & 489.6 & 6.49 & \(0.2105 \cdot 07\) & 0.00782 & 13.55 & 12.05 & 13.64 & 13.18 & 13.22 & 13.20 \\
\hline 8 & 105.5 & 23.67 & 23.83 & 23.69 & 23.72 & 22.83 & 491.3 & 6.47 & 0.213E+07 & 0.01092 & 14.86 & 12.41 & 14.57 & 14.03 & 14.10 & 14.07 \\
\hline 9 & 135.5 & 23.84 & 23.95 & 23.86 & 23.88 & 22.98 & 493.0 & 6.44 & \(0.215 E \cdot 07\) & 0.01404 & 14.60 & 12.90 & 14.24 & 13.97 & 14.00 & 13.98 \\
\hline 10 & 165.2 & 23.94 & 24.05 & 23.96 & 23.98 & 23.14 & 494.7 & 6.42 & 0.218E-07 & 0.01712 & 15.48 & 13.72 & 15.14 & 14.83 & 14.87 & 14.85 \\
\hline 11 & 205.2 & 24.10 & 24.28 & 24.22 & 24.21 & 23.34 & 497.0 & 6.38 & 0.2225407 & 0.02127 & 16.55 & 13.35 & 14.21 & 14.49 & 14.58 & :4.53 \\
\hline 12 & 245.2 & 24.42 & 24.54 & 24.45 & 24.46 & 23.55 & 499.3 & 6.35 & \(0.226 \pm-07\) & 0.02543 & 14.32 & 12.55 & 13.95 & 13.66 & 13.69 & 13.68 \\
\hline 13 & 275.2 & 24.55 & 24.63 & 24.59 & 24.59 & 23.71 & 508.1 & 6.33 & \(0.229 \pm 507\) & 0.02856 & 14.75 & 13.43 & 14.17 & 14.11 & 14.13 & 14.12 \\
\hline 14 & 305.2 & 24.71 & 24.83 & 24.75 & 24.76 & 23.86 & 502.8 & 6.30 & \(0.232 \mathrm{E}+07\) & 0.03168 & 14.70 & 12.88 & 14.02 & 13.87 & 13.90 & 13.89 \\
\hline 15 & 333.3 & 24.70 & 24.81 & 24.79 & 24.77 & 24.01 & 504.5 & 6.28 & \(0.2345+07\) & 0.03461 & 17.94 & 15.46 & 16.01 & 16.31 & 16.36 & 16.33 \\
\hline 15 & 363.3 & 24.94 & 25.06 & 24.95 & 24.98 & 24.16 & 506.3 & 6.25 & \(0.2375 \cdot 07\) & 0.03774 & 15.98 & 13.91 & 15.73 & 15.29 & 15.34 & 15.32 \\
\hline 17 & 383.3 & 25.01 & 25.13 & 25.08 & 25.08 & 24.27 & 507.5 & 6.24 & 0.2395407 & 0.03983 & 16.68 & 14.40 & 15.33 & 15.39 & 15.43 & 15.42 \\
\hline 18 & 403.3 & 25.13 & 25.21 & 25.15 & 25.16 & 24.37 & 508.7 & 6.22 & 0.241E-07 & 0.04192 & 16.42 & 14.78 & 15.87 & 15.71 & 15.73 & 15.72 \\
\hline 19 & 423.3 & 25.25 & 25.39 & 25.34 & 25.33 & 24.47 & 509.9 & 6.21 & 0.243E-07 & 0.04401 & 16.01 & 13.63 & 14.36 & 14.54 & 14.59 & 14.56 \\
\hline 20 & 443.3 & 25.33 & 25.46 & 25.43 & 25.41 & 24.58 & 511.1 & 6.19 & \(0.246 \mathrm{E}+07\) & 0.04610 & 16.52 & 14.07 & 14.67 & 14.93 & 14.98 & 14.96 \\
\hline 21 & 463.3 & 25.53 & 25.56 & 25.64 & 25.60 & 24.68 & 512.4 & 6.17 & 0.248E407 & 0.04819 & 14.61 & 14.09 & 12.94 & 13.61 & 13.64 & 13.63 \\
\hline AVER & \[
\begin{aligned}
& \text { Rage YA } \\
& 391.6
\end{aligned}
\] & \[
\frac{\text { Luss }}{25.05}
\] & \[
\begin{gathered}
\text { moven } s \\
25.18
\end{gathered}
\] & \[
\frac{\text { Tartious }}{25.12}
\] & \[
\begin{aligned}
& 15.70 \\
& 25.12
\end{aligned}
\] & \[
\begin{array}{r}
20: \\
24.31
\end{array}
\] & 508.0 & 6.23 & \(0.2404+07\) & 0.04070 & 16.59 & 14.37 & 15.33 & 15.36 & 15.41 & 15.38 \\
\hline
\end{tabular}

UPYADD INCLIMATIOM _-_-_ \(2-500\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { NO } \\
& \text { NO. }
\end{aligned}
\] & \[
\mathrm{N}_{\mathrm{C}}^{2}
\] & \[
4
\] & 8 & c & \[
\begin{aligned}
& \text { C) } \\
& \text { AVER } \\
& \text { AGE }
\end{aligned}
\] & \[
\begin{aligned}
& T \mathrm{~TB} \\
& (C)
\end{aligned}
\] & 这 & PR & GI & 2 & 4 & B & C & \[
I
\] & B & T* \\
\hline 3 & 5.5 & 24.14 & 24.17 & 24.16 & 24.16 & 22.74 & 473.4 & 6.48 & \(0.436 \mathrm{E} \cdot 07\) & 0.00059 & 18.46 & 18.14 & 18.30 & 18.30 & 18.30 & 18.30 \\
\hline 4 & 15.5 & 24.48 & 24.64 & 24.53 & 24.55 & 22.86 & 474.6 & 6.46 & 0.4408407 & 0.00166 & 15.92 & 14.44 & 15.40 & 15.27 & 15.29 & . 28 \\
\hline 5 & 25.5 & 24.67 & 24.84 & 24.78 & 24.77 & 22.97 & 475.8 & 6.44 & 0.444E007 & 0.00274 & 15.15 & 13.81 & 14.22 & 14.33 & 14.35 & 14.34 \\
\hline 6 & 45.5 & 24.80 & 24.99 & 24.88 & 24.89 & 23.19 & 478.1 & 6.41 & 0.453E-07 & 0.00488 & 15.96 & 14.34 & 15.23 & 15.17 & 15.19 & 15.18 \\
\hline 7 & 75.5 & 24.93 & 25.10 & 24.96 & 24.99 & 23.52 & 481.7 & 6.36 & 0.465E+07 & 0.00812 & 18.33 & 16.33 & 17.95 & 17.61 & 17.64 & 17.62 \\
\hline 8 & 105.5 & 25.12 & 25.34 & 25.11 & 25.17 & 23.85 & 485.3 & 6.30 & 0.478E-07 & 0.01134 & 20.35 & 17.28 & 20.52 & 19.56 & 19.67 & 19.61 \\
\hline 9 & 135.5 & 25.43 & 25.68 & 25.59 & 25.57 & 24.19 & 489.0 & 6.25 & 0.491E+07 & 0.01458 & 20.71 & 17.23 & 18.35 & 18.58 & 18.66 & 18.62 \\
\hline 10 & 165.2 & 25.75 & 26.03 & 25.92 & 25.91 & 24.52 & 492.7 & 6.20 & 0.505E-07 & 0.01779 & 20.82 & 17.01 & 18.27 & 18.49 & 18.59 & 18.54 \\
\hline 11 & 205.2 & 26.19 & 26.48 & 26.35 & 26.34 & 24.96 & 497.8 & 6.13 & 0.523E-07 & 0.02212 & 20.85 & 16.88 & 18.50 & 18.58 & 18.68 & 18.63 \\
\hline 12 & 245.2 & 26.76 & 26.94 & 26.82 & 26.84 & 25.40 & 503.0 & 6.06 & 0.543E-07 & 0.02647 & 18.95 & 16.64 & 18.06 & 17.89 & 17.93 & 17.91 \\
\hline 13 & 275.2 & 26.98 & 27.20 & 27.11 & 27.10 & 25.74 & 506.9 & 6.01 & 0.557E07 & 0.02973 & 20.66 & 17.48 & 18.69 & 18.81 & 18.88 & 18.85 \\
\hline 14 & 305.2 & 27.39 & 27.58 & 27.47 & 27.48 & 26.07 & 511.0 & 5.95 & 0.573 E 007 & 0.03300 & 19.34 & 17.00 & 18.29 & 18.19 & 18.23 & 18.21 \\
\hline 15 & 333.3 & 27.54 & 27.79 & 27.71 & 27.69 & 26.38 & 514.8 & 5.90 & 0.587E-07 & 0.03607 & 22.03 & 18.12 & 19.26 & 19.57 & 19.67 & 19.62 \\
\hline 16 & 363.3 & 27.98 & 28.18 & 28.07 & 28.08 & 26.71 & 519.0 & 5.85 & \(0.603 E 407\) & 0.03935 & 20.15 & 17.42 & 18.83 & 28.76 & 18.81 & 18.79 \\
\hline 17 & 383.3 & 28.17 & 28.40 & 28.26 & 28.27 & 26.93 & 521.6 & 5.82 & \(0.614 \mathrm{Er07}\) & 0.04154 & 20.66 & 17.47 & 19.27 & 19.10 & 19.17 & 19.14 \\
\hline 18 & 403.3 & 28.42 & 28.61 & 28.52 & 28.52 & 27.16 & 523.9 & 5.79 & \(0.623 E \sim 07\) & 0.04372 & 20.27 & 17.53 & 18.78 & 18.79 & 18.84 & 18.81 \\
\hline 19 & 423.3 & 28.69 & 28.88 & 28.80 & 28.79 & 27.38 & 526.3 & 5.76 & 0.633 E 007 & 0.04591 & 19.51 & 16.96 & 18.00 & 18.07 & 18.12 & 18.10 \\
\hline 20 & 443.3 & 28.85 & 29.07 & 28.94 & 28.95 & 27.60 & 528.7 & 5.74 & \(0.643 E \sim 07\) & 0.04809 & 20.44 & 17.36 & 19.05 & 18.91 & 18.97 & 18.94 \\
\hline 21 & 453.3 & 29.15 & 29.31 & 29.26 & 29.25 & 27.82 & 531.1 & 5.71 & \(0.653 E+07\) & 0.05028 & 19.14 & 17.11 & 17.74 & 17.90 & 17.93 & 17.92 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUPS THROUGA STATIONS
\(391.6 \quad 28.27\)
28.49
28.38} & \[
\begin{aligned}
& 15.70 \\
& 28.38
\end{aligned}
\] & \[
\stackrel{20}{27} \dot{7} .03
\] & 522.4 & 5.81 & \(0.617 E+07\) & 0.04245 & 20.51 & 17.48 & 18.87 & 18.87 & 18.93 & 18.90 \\
\hline
\end{tabular}
\(\qquad\) 3-500

InPuT ELECTIXC POUEA - 581.7 \%
passunc dat Rate cajnjp


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIaN } \\
& \text { R0. }
\end{aligned}
\] & & -WALL & . & \[
\bar{C}
\] & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVE }
\end{aligned}
\] & (C) & HE & PR & G & 2 & 4 & B & \[
c
\] & I & I & T-1 \\
\hline 3 & 5.5 & 25.06 & 25.20 & 25.13 & 25.13 & 22.38 & 452.9 & 6.54 & 0.8125007 & 0.00061 & 18.50 & 17.57 & 18.02 & 18.02 & 18.03 & 18.03 \\
\hline 4 & 15.5 & 25.53 & 25.76 & 25.55 & 25.60 & 22.60 & 455.1 & 6.50 & 0.826E-07 & 0.00172 & 16.94 & 15.68 & 16.78 & 16.53 & 16.54 & 16.53 \\
\hline 5 & 25.5 & 25.77 & 26.10 & 25.94 & 25.94 & 22.82 & 457.3 & 6.47 & 0.842E*07 & 0.00284 & 16.79 & 15.10 & 15.86 & 15.88 & 15.90 & 15.89 \\
\hline 6 & 45.5 & 25.90 & 26.22 & 26.00 & 26.03 & 23.26 & 461.8 & 6.40 & 0.873E-07 & 0.00507 & 18.77 & 16.73 & 18.06 & 17.87 & 17.92 & 17.89 \\
\hline 7 & 75.5 & 26.26 & 26.63 & 26.33 & 26.38 & 23.93 & 468.7 & 6.29 & 0.922E-07 & 0.00842 & 21.14 & 18.26 & 20.56 & 20.07 & 20.13 & 20.10 \\
\hline 8 & 205.5 & 26.74 & 27.22 & 26.84 & 26.91 & 24.59 & 475.9 & 6.19 & \(0.973 \mathrm{E}+07\) & 0.01179 & 22.91 & 18.73 & 21.87 & 21.22 & 21.34 & 21.28 \\
\hline 9 & 135.5 & 27.61 & 27.94 & 27.74 & 27.75 & 25.25 & 483.3 & 6.08 & \(0.103 \mathrm{E}+08\) & 0.01516 & 20.87 & 18.29 & 19.77 & 19.63 & 19.57 & 19.65 \\
\hline 10 & 165.2 & 28.17 & 28.59 & 28.36 & 28.37 & 25.90 & 490.8 & 5.98 & 0.108E-08 & 0.01852 & 21.67 & 18.26 & 19.97 & 19.89 & 19.97 & 19.93 \\
\hline 11 & 206.2 & 28.90 & 29.35 & 29.12 & 29.12 & 26.78 & 501.3 & 5.84 & 0.116E+08 & 0.02306 & 23.18 & 19.06 & 21.03 & 20.98 & 21.08 & 21.03 \\
\hline 12 & 245.2 & 29.84 & 30.21 & 30.02 & 30.02 & 27.87 & 510.5 & 5.73 & 0.124E-08 & 0.02759 & 22.48 & 19.23 & 20.85 & 20.79 & 20.85 & 20.82 \\
\hline 13 & 275.2 & 30.40 & 30.77 & 30.66 & 30.63 & 28.33 & 517.5 & 5.54 & 0.130E 08 & 0.03100 & 23.51 & 19.96 & 20.90 & 21.24 & 21.32 & 21.28 \\
\hline 14 & 305.2 & 31.03 & 31.39 & 31.17 & 31.19 & 28.99 & 524.7 & 5.56 & 0.136E-08 & 0.03441 & 23.94 & 20.35 & 22.39 & 27.19 & 22.26 & 22.23 \\
\hline 15 & 333.3 & 31.58 & 31.91 & 31.83 & 31.79 & 29.61 & 531.6 & 5.48 & \(0.142 \mathrm{E} \cdot 08\) & 0.03762 & 24.70 & 21.12 & 21.92 & 22.34 & 22.41 & 22.38 \\
\hline 16 & 363.3 & 32.27 & 32.64 & 32.39 & 32.43 & 30.27 & 539.2 & 5.40 & 0.148E-08 & 0.04105 & 24.24 & 20.50 & 22.88 & 22.54 & 22.63 & 22.58 \\
\hline 17 & 383.3 & 32.73 & 33.07 & 32.87 & 32.88 & 30.71 & 544.3 & 5.34 & \(0.153 \mathrm{E}-08\) & 0.04335 & 24.06 & 20.57 & 22.53 & 22.35 & 22.42 & 22.38 \\
\hline 18 & 403.3 & 33.22 & 33.56 & 33.36 & 33.38 & 31.15 & 549.6 & 5.29 & 0.157E008 & 0.04564 & 23.41 & 20.13 & 21.92 & 21.79 & 22.85 & 21.82 \\
\hline 19 & 423.3 & 33.71 & 34.12 & 33.94 & 33.93 & 31.59 & 555.0 & 5.23 & 0.162 E 008 & 0.04794 & 22.83 & 19.20 & 20.65 & 20.75 & 20.83 & 20.79 \\
\hline 20 & 443.3 & 34.05 & 34.40 & 34.25 & 34.24 & 32.03 & 560.2 & 5.18 & 0.167E 08 & 0.05026 & 23.94 & 20.48 & 21.80 & 21.93 & 22.00 & 21.97 \\
\hline 21 & 463.3 & 34.68 & 34.99 & 34.81 & 34.83 & 32.47 & 565.0 & 5.13 & 0.172E+08 & 0.05260 & 21.86 & 19.18 & 20.68 & 20.56 & 20.60 & 20.58 \\
\hline \multicolumn{5}{|l|}{AVERAGE YALUFS \(\begin{array}{rl}391.6 & 32.93 \\ 33.28 & 33.21\end{array}\)} & \multicolumn{2}{|l|}{\[
\frac{15}{15.10} 20: \text {. } 30.89
\]} & 546.7 & 5.32 & 0.155E008 & 0.04431 & 23.86 & 20.33 & 21.95 & 21.95 & 22.02 & 21.99 \\
\hline
\end{tabular}

UPWAD ImCHEATION \(\qquad\) 4-500

INPUT ELECTRIC PONEA - 931.8 U
HEAT MTE GAIMED BT uATER - 947.1 L PAESSUEE DROP \(=0.7426\) Hinizo



\(\qquad\) \(1-1000\)

INPUT ELECRIC PONEE - 145.3 Y HEAT RATE CAIMTD EY VATEA - 144.6


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Wall & & I & C) - & 7 & It & PR & GR & 2 & & & & & & \\
\hline no & & 4 & B & c & \[
\begin{aligned}
& A V E R \\
& A C E
\end{aligned}
\] & (c) & & & & & 4 & B & C & \[
I
\] &  & T- \({ }^{\text {B }}\) \\
\hline 3 & 5.5 & 23.37 & 23.33 & 23.35 & 23.35 & 22.74 & 987.2 & 5.48 & 0.2045007 & 0.00028 & 19.19 & 20.34 & 19.75 & 19.75 & 19.78 & 19.75 \\
\hline 4 & 15.5 & 23.48 & 23.50 & 23.48 & 23.49 & 22.76 & 987.7 & 6.48 & 0.204E+07 & 0.00000 & 16.72 & 16.39 & 16.72 & 16.64 & 16.64 & 16.64 \\
\hline 5 & 25.5 & 23.60 & 23.65 & 23.52 & 23.62 & 22.79 & 988.3 & 6.47 & \(0.205 E+07\) & 0.00132 & 14.89 & 13.98 & 14.50 & 14.45 & 14.46 & 14.46 \\
\hline 6 & 45.5 & 23.72 & 23.76 & 23.71 & 23.72 & 22.84 & 989.4 & 6.46 & 0.206E +07 & 0.00234 & 13.79 & 13.13 & 13.86 & 13.65 & 13.66 & 13.66 \\
\hline 7 & 75.5 & 23.76 & 23.85 & 23.78 & 23.79 & 22.91 & 991.0 & 6.45 & 0.207E-07 & 0.00388 & 14.20 & 12.87 & 13.82 & 13.66 & 13.68 & 13.67 \\
\hline 8 & 105.5 & 23.78 & 23.95 & 23.82 & 23.84 & 22.99 & 992.6 & 6.44 & \(0.2085 \sim 07\) & 0.00543 & 15.19 & 12.56 & 14.38 & 14.06 & 14.13 & 14.09 \\
\hline 9 & 135.5 & 23.87 & 23.98 & 23.94 & 23.93 & 23.06 & 994.3 & 6.43 & 0.209E 07 & 0.00697 & 14.96 & 13.12 & 13.65 & 13.82 & 13.85 & 13.83 \\
\hline 10 & 165.2 & 23.92 & 24.02 & 23.99 & 23.98 & 23.13 & 995.9 & 6.42 & 0.2118.07 & 0.00850 & 15.42 & 13.68 & 14.10 & 14.28 & 14.31 & 14.29 \\
\hline 11 & 205.2 & 24.01 & 24.17 & 24.14 & 24.11 & 23.23 & 998.1 & 6.40 & \(0.212 \pm 007\) & 0.01056 & 15.44 & 12.91 & 83.32 & 13.68 & 13.75 & 13.71 \\
\hline 12 & 245.2 & 24.17 & 24.27 & 24.22 & 24.22 & 23.33 & 1000.4 & 6.39 & 0.214 E 407 & 0.01263 & 14.36 & 12.92 & 13.56 & 13.58 & 13.60 & 13.59 \\
\hline 13 & 275.2 & 24.30 & 24.38 & 24.33 & 24.34 & 23.41 & 1002.0 & 6.37 & \(0.215 E+07\) & 0.01417 & 13.48 & 12.34 & 12.99 & 22.94 & 12.95 & 12.94 \\
\hline 14 & 305.2 & 24.35 & 24.47 & 24.41 & 24.41 & 23.4 & 1003.7 & 6.36 & 0.217 \% 07 & 0.01572 & 13.93 & 12.25 & 12.91 & 12.97 & 13.00 & 12.99 \\
\hline 15 & 333.3 & 24.28 & 24.40 & 24.37 & 24.36 & 23.55 & 1005.3 & 6.35 & \(0.218{ }^{\text {c }}\)-07 & 0.01717 & 16.44 & 14.27 & 14.76 & 15.01 & 15.06 & 15.03 \\
\hline 16 & 363.3 & 24.44 & 24.53 & 24.48 & 24.48 & 23.63 & 1007.0 & 6.34 & 0.219E+07 & 0.01872 & 14.79 & 13.34 & 24.15 & 14.09 & 14.12 & 14.10 \\
\hline 17 & 383.3 & 24.43 & 24.54 & 24.52 & 24.50 & 23.68 & 1006. 1 & 6.33 & 0.220E-07 & 0.01975 & 16.05 & 13.94 & 14.25 & 14.58 & 14.62 & 14.60 \\
\hline 18 & 403.3 & 24.45 & 24.59 & 24.54 & 24.53 & 23.73 & 1009.2 & 6.32 & 0.221E407 & 0.02079 & 16.53 & 13.86 & 14.81 & 84.94 & 15.00 & 14.97 \\
\hline 19 & 423.3 & 24.50 & 24.66 & 24.61 & 24.59 & 23.78 & 1010.4 & 6.32 & 0.222E-07 & 0.02182 & 16.68 & 13.61 & 14.42 & 14.70 & 14.78 & 14.74 \\
\hline 20 & 443.3 & 24.54 & 24.70 & 24.64 & 24.63 & 23.82 & 1011.5 & 6.31 & 0.223E+07 & 0.02286 & 16.77 & 13.74 & 14.80 & 14.95 & 15.03 & 14.99 \\
\hline 21 & 463.3 & 24.77 & 24.73 & 24.89 & 24.82 & 23.87 & 1012.7 & 6.30 & 0.224E007 & 0.02389 & 13.37 & 14.11 & 11.91 & 12.76 & 12.83 & 12.79 \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { AVERAGE YA } \\
391.6
\end{gathered}
\]} & \[
L_{24.44}
\] & \[
\text { Rouc. } 24.57
\] & TATIGNS & \[
\begin{array}{r}
2570 \\
24.52
\end{array}
\] & \begin{tabular}{l}
20: \\
23.70
\end{tabular} & 1008.6 & 6.33 & 0.221E407 & 0.02018 & 16.21 & 13.79 & 14.53 & 14.71 & 14.77 & 14.74 \\
\hline
\end{tabular}

UPNATD IWCLIEATIOM _.... \(2-1000\) INPUT ELECRRIC PONER - 300.9 W
MASS FLOU RATE \(=29.1276 \mathrm{G} / \mathrm{S}\)

Facsidn \(=0.02020\)
ISAT BALAMCE EROR - 5.807


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \overline{S T A} \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & \[
{ }_{\mathrm{N}}^{\mathrm{CN}}
\] & - & \[
\overline{D E P E}
\] & \[
\bar{C}
\] & \[
\begin{aligned}
& \text { (C) } \\
& \text { AVE } \\
& \text { AGE }
\end{aligned}
\] & \[
\begin{aligned}
& \pi \\
& \\
& \hline(C)
\end{aligned}
\] & 正 & Pl & 68 & 2 & 1 & B & \[
c
\] & \[
T
\] &  & T-1 \\
\hline 3 & 5.5 & 24.23 & 24.20 & 24.21 & 24.21 & 23.09 & 975.5 & 6.42 & 0.4115007 & 0.00029 & 20.70 & 21.27 & 20.98 & 20.98 & 20.98 & 20.98 \\
\hline 4 & 15.5 & 24.64 & 24.64 & 24.62 & 24.63 & 23.14 & 976.5 & 6.42 & 0.413E-07 & 0.00081 & 15.67 & 15.66 & 15.96 & 15.81 & 25.81 & 15.81 \\
\hline 5 & 25.5 & 24.81 & 24.97 & 24.89 & 24.89 & 23.18 & 977.6 & 6.41 & 0.414E-07 & 0.00134 & 14.56 & 13.21 & 13.84 & 13.84 & 13.86 & 13.85 \\
\hline 6 & 45.5 & 24.92 & 24.99 & 24.91 & 24.93 & 23.28 & 979.8 & 6.39 & 0.418E+07 & 0.00239 & 14.46 & 13.87 & 14.53 & 14.34 & 14.36 & 14.34 \\
\hline 7 & 75.5 & 24.98 & 25.15 & 25.01 & 25.04 & 23.43 & 983.1 & 6.37 & \(0.423 E \cdot 07\) & 0.00397 & 15.24 & 13.71 & 14.94 & 14.69 & 14.71 & 14.70 \\
\hline 8 & 105.5 & 25.04 & 25.26 & 25.11 & 25.13 & 23.58 & 986.4 & 6.35 & 0.428E-07 & 0.00554 & 16.24 & 14.06 & 15.46 & 15.26 & 15.30 & 15.28 \\
\hline 9 & 135.5 & 25.21 & 25.40 & 25.25 & 25.28 & 23.73 & 989.7 & 6.32 & 0.433E+07 & 0.00712 & 16.00 & 14.13 & 15.49 & 15.24 & 15.28 & 15.26 \\
\hline 10 & 165.2 & 25.25 & 25.53 & 25.36 & 25.38 & 23.88 & 993.0 & 6.30 & 0.439E+07 & 0.00869 & 17.19 & 14.32 & 15.89 & 15.76 & 15.82 & 15.79 \\
\hline 11 & 205.2 & 25.38 & 25.64 & 25.48 & 25.50 & 24.08 & 997.5 & 6.27 & \(0.446 E+07\) & 0.01080 & 18.07 & 15.04 & 16.80 & 16.60 & 16.67 & 16.64 \\
\hline 12 & 245.2 & 25.62 & 25.80 & 25.68 & 25.69 & 24.28 & 1002.0 & 6.24 & 0.453E-07 & 0.01291 & 17.57 & 15.45 & 16.82 & 16.63 & 16.67 & 16.65 \\
\hline 13 & 275.2 & 25.67 & 25.89 & 25.82 & 25.80 & 24.42 & 1005.5 & 6.21 & \(0.459 E-07\) & 0.01449 & 18.96 & 16.07 & 16.89 & 17.14 & 17.20 & 17.17 \\
\hline 14 & 305.2 & 25.83 & 26.03 & 25.90 & 25.92 & 24.57 & 1008.9 & 6.19 & 0.464E-07 & 0.01608 & 18.78 & 16.12 & 17.76 & 17.55 & 17.60 & 17.58 \\
\hline 15 & 333.3 & 25.93 & 26.15 & 26.09 & 26.07 & 24.71 & 1012.2 & 6.17 & 0.470E+07 & 0.01756 & 19.39 & 16.39 & 17.05 & 17.40 & 17.47 & 17.43 \\
\hline 16 & 363.3 & 26.09 & 26.34 & 26. 19 & 26.20 & 24.86 & 1015.7 & 6.14 & 0.475E-07 & 0.01915 & :9,23 & 15.92 & 17.72 & 17.57 & 17.65 & 17.61 \\
\hline 17 & 383.3 & 26.19 & 26.37 & 26.25 & 26.26 & 24.96 & 1018.0 & 6.13 & 0.479 E 07 & 0.02021 & 19.19 & 16.70 & 18.24 & 18.05 & 18.09 & 18.07 \\
\hline 18 & 403.3 & 26.25 & 26.48 & 26.42 & 26.39 & 25.06 & 1020.4 & 6.11 & 0.483E 07 & 0.02127 & 19.73 & 16.60 & 17.36 & 17.69 & 17.76 & 17.73 \\
\hline 19 & 423.3 & 26.42 & 26.67 & 26.58 & 26.56 & 25.16 & 1022.7 & 5.10 & 0.487E-07 & 0.02233 & 18.60 & 15.53 & 16.60 & 16.76 & 16.83 & 16.80 \\
\hline 20 & 443.3 & 26.48 & 26.67 & 26.61 & 26.59 & 25.26 & 1025.1 & 6.08 & 0.491E-07 & 0.02339 & 19.19 & 16.62 & 17.45 & 27.63 & 17.68 & 17.66 \\
\hline 21 & 463.3 & 26.71 & 26.77 & 26.85 & 26.80 & 25.36 & 1027.5 & 6.07 & 0.495E-07 & 0.02445 & 17.37 & 16.59 & 15.78 & 16.36 & 16.38 & 16.37 \\
\hline \multicolumn{7}{|l|}{} & 1019.0 & 6.12 & 0.481E*07 & 0.02065 & 19.22 & 16.29 & 17.40 & 17.52 & 17.58 & 17,55 \\
\hline
\end{tabular}
\(\qquad\) 3-1000
路: :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STO- } \\
& \text { YO. }
\end{aligned}
\] & \[
2
\] &  & & C &  & (C) & & PR & GR & \(2 \cdot\) & 4 & B & C & I & E & T- \\
\hline 3 & 5.5 & 25.53 & 25.51 & 25.52 & 25.52 & 23.04 & 945.5 & 6.43 & 0.9335407 & 0.00030 & 21.62 & 21.82 & 21.72 & 21.72 & 21.72 & 21.72 \\
\hline 4 & 15.5 & 26.13 & 26.40 & 26.16 & 26.21 & 23.18 & 947.9 & 6.41 & \(0.942 \mathrm{E}+07\) & 0.00084 & 18.09 & 16.58 & 17.92 & 17.61 & 17.63 & 17.62 \\
\hline 5 & 25.5 & 26.38 & 26.71 & 26.55 & 26.55 & 23.28 & 950.4 & 6.39 & 0.951E+07 & 0.00138 & 17.35 & 15.68 & 16.41 & 16.44 & 16.46 & 16.45 \\
\hline 6 & 45.5 & 26.46 & 26.75 & 26.56 & 26.58 & 23.51 & 955.4 & 6.36 & 0.969E+07 & 0.00246 & 18.22 & 16.59 & 17.61 & 17.49 & 17.51 & \$7.50 \\
\hline 7 & 75.5 & 26.59 & 26.96 & 26.69 & 26.73 & 23.86 & 963.0 & 6.30 & 0.997E+07 & 0.00409 & 19.64 & 17.31 & 18.98 & 18.69 & 18.73 & 18.71 \\
\hline 8 & 105.5 & 26.74 & 27.30 & 26.84 & 26.93 & 24.21 & 970.7 & 6.25 & 0.103E+08 & 0.00572 & 21.22 & 17.35 & 20.39 & 19.72 & 19.84 & 19.78 \\
\hline 9 & 135.5 & 27.07 & 27.55 & 27.32 & 27.31 & 24.56 & 978.5 & 6.19 & \(0.106 E+08\) & 0.00736 & 21.30 & 17.94 & 19.43 & 19.45 & 19.52 & 19.49 \\
\hline 10 & 165.2 & 27.25 & 27.81 & 27.55 & 27.54 & 24.90 & 986.4 & 6.14 & 0.109E-08 & 0.00898 & 22.82 & 28.43 & 20.26 & 20.32 & 20.44 & 38 \\
\hline 11 & 205.2 & 27.58 & 28. 25 & 27.86 & 27.86 & 25.37 & 997.2 & 6.06 & 0.113E+08 & 0.01116 & 24.45 & 19.23 & 21.52 & 21.52 & 21.68 & 21.50 \\
\hline 12 & 245.2 & 28.20 & 28.67 & 28.42 & 28.43 & 25.84 & 1008.2 & 5.99 & \(0.117 \mathrm{E}-08\) & 0.01336 & 22.60 & 18.84 & 20.71 & 20.63 & 20.72 & 20.67 \\
\hline 13 & 275.2 & 28.48 & 28.96 & 28.82 & 28.77 & 26.19 & 1016.6 & 5.93 & \(0.121 E+08\) & 0.01500 & 23.28 & 19.26 & 20.32 & 20.69 & 20.79 & 20.74 \\
\hline 14 & 305.2 & 28.82 & 29.31 & 29.01 & 29.04 & 26.54 & 1025.2 & 5.88 & \(0.124 E-08\) & 0.01665 & 23.39 & 19.23 & 21.58 & 21.34 & 21.45 & 21.39 \\
\hline 15 & 333.3 & 29.16 & 29.66 & 29.46 & 29.43 & 26.86 & 1033.3 & 5.83 & 0.12TE-08 & 0.01820 & 23.25 & 19.09 & 20.52 & 20.74 & 20.85 & 20.80 \\
\hline 16 & 363.3 & 29.61 & 30.02 & 29.73 & 29.76 & 27.21 & 1040.7 & 5.78 & 0.131E+08 & 0.01985 & 23.16 & 18.99 & 21.20 & 21.03 & 21.14 & 21.09 \\
\hline 17 & 383.3 & 29.74 & 30.20 & 29.91 & 29.94 & 27.45 & 1045. & 5.75 & \(0.133 E+08\) & 0.02095 & 23.25 & 19.35 & 21.64 & 21.38 & 21.47 & 21.43 \\
\hline 18 & 403.3 & 29.99 & 30.47 & 30.14 & 30.19 & 27.68 & 1050.6 & 5.73 & 0.135E +08 & 0.02206 & 23.03 & 19.09 & 21.62 & 21.24 & 21.34 & 21.29 \\
\hline 19 & 423.3 & 30.28 & 30.73 & 30.57 & 30.54 & 27.91 & 1055.6 & 5.70 & 0.137E408 & 0.02316 & 22.49 & 18.89 & 20.05 & 20.29 & 20.37 & 20.33 \\
\hline 20 & 443.3 & 30.40 & 30.76 & 30.65 & 30.62 & 28.15 & 1060.7 & 5.67 & 0.139E+08 & 0.02426 & 23.63 & 20.34 & 21.20 & 21.52 & 21.59 & 21.56 \\
\hline 21 & 463.3 & 30.78 & 31.16 & 31.03 & 31.00 & 28.38 & 1068.8 & 5.64 & 0.141E+08 & 0.02536 & 22.21 & 19.12 & 20.08 & 20.29 & 20.35 & 20.32 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES TEAOUCN STATIONS 391.6} & \multicolumn{2}{|l|}{\[
\frac{15}{30.00} \frac{20:}{27.54}
\]} & 1047.7 & 5.74 & 0.134E*08 & 0.02141 & 23.14 & 19.29 & 21.04 & 21.03 & 21.13 & 21.08 \\
\hline
\end{tabular}
\(\qquad\) 4-1000

INPUT ELSCIRIC POWER - 873.7
MASS FLOY RATE \(=27.8882 \mathrm{G} / \mathrm{S}\)


\(\qquad\) 5－1000

IMPUT ELECTRIC POUER \(=1140.0\) y PLesure intop MISS FLOW MTE \(=26.9480 \mathrm{G} / \mathrm{s}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { sTa- } \\
& \text { Trom. }
\end{aligned}
\] & \[
-\frac{2}{2}
\] & \[
-4
\] & \[
E_{D}
\] & \[
{ }_{c}^{T}
\] & \[
\begin{aligned}
& \text { CC) } \\
& \text { AND } \\
& \hline \text { AEE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { IB } \\
& (C)
\end{aligned}
\] & E & PR & 6 & 2 & 4 & 8 &  & \[
\mathrm{I}
\] & 富 & T＊\({ }^{\text {P }}\) \\
\hline 3 & 5.5 & 27.14 & 27.46 & 27.30 & 27.30 & 23.07 & 902.5 & 6.43 & 0．16CEA08 & 0.00031 & 22.62 & 20.96 & 21.76 & 21.76 & 21.78 & 21.77 \\
\hline 4 & 15.5 & 28.06 & 20.55 & 28.08 & 28.20 & 23.28 & 906.7 & 6.39 & 0．163E－08 & 0.00088 & 19.24 & 17.46 & 19.13 & 18.71 & 18.74 & 18.72 \\
\hline 5 & 25.5 & 28.41 & 20.96 & 28.71 & 28.70 & 23.49 & 910.9 & 6.36 & 0．166E－08 & 0.00145 & 18.69 & 16.81 & 17.62 & 17.66 & 17.69 & 17.67 \\
\hline 6 & 45.5 & 28.48 & 29.02 & 28.53 & 28.69 & 23.91 & 919.6 & 6.30 & 0．171E－08 & 0.00259 & 20.11 & 17.99 & 19.46 & 19.23 & 19.26 & 19.24 \\
\hline 7 & 75.5 & 28．68 & 29.35 & 20.81 & 28.91 & 24.53 & 932.9 & 6.20 & 0．180E－08 & 0.00430 & 22.17 & 19.06 & 21.47 & 20.97 & 21.04 & 21.01 \\
\hline 8 & 105.5 & 28.89 & 29.79 & 29.02 & 29.18 & 25.16 & 946.6 & 6.10 & 0．190E－08 & 0.00601 & 24.61 & 29.81 & 23.78 & 22.83 & 22.98 & 22.91 \\
\hline 9 & 135.5 & 29.50 & 30.28 & 29.86 & 29.87 & 25.79 & 960.7 & 6.00 & \(0.200 E 08\) & 0.00774 & 24.66 & 20.39 & 22.51 & 22.41 & 22.52 & 22.46 \\
\hline 10 & 165.2 & 29.89 & 30.77 & 30.30 & 30.31 & 26.41 & 975.0 & 5.90 & 0．210E－05 & 0.00945 & 26.25 & 20.98 & 23.53 & 23.42 & 23.57 & 23.50 \\
\hline 11 & 205.2 & 30.52 & 31.33 & 30.77 & 30.85 & 27．25 & 993.4 & 5．7t & 0．224E008 & 0.01176 & 27.90 & 22.33 & 25.94 & 25.36 & 25.53 & 25.44 \\
\hline 12 & 245.2 & 32.43 & 32.36 & 31.75 & 31.77 & 28.08 & 10：0．5 & 5.67 & 0．237E－08 & 0.01407 & 27.25 & 22.33 & 24.86 & 24.70 & 24.83 & 24.77 \\
\hline 13 & 275.2 & 31.94 & 32.73 & 32.46 & 32.39 & 28.71 & 1023.8 & 5.60 & 0.24 樶－08 & 0.01500 & 28.20 & 22.65 & 24.29 & 24.70 & 24.85 & 24.78 \\
\hline 14 & 305.2 & 32.48 & 33.23 & 32.79 & 32.82 & 29.34 & 1037. & 5.52 & \(0.259 E+0{ }^{0}\) & 0.01754 & 28.93 & 23.32 & 26.31 & 26.06 & 26.21 & 26.14 \\
\hline 15 & 333.3 & 33.22 & 33.95 & 33.72 & 33.65 & 29.93 & 1050.5 & 5.44 & 0．270E－08 & 0.01918 & 27.53 & 22.57 & 23.90 & 24.34 & 24.47 & 24.41 \\
\hline 16 & 363.3 & 33.75 & 34.54 & 34.08 & 34．11 & 30.55 & 1064.8 & 5.36 & 0.2825408 & 0.02093 & 28.33 & 22.75 & 25.71 & 25.47 & 25.62 & 25.55 \\
\hline 17 & 383.3 & 34.13 & 34.82 & 34.37 & 34.42 & 30.97 & 1074.6 & 5.32 & \(0.2902-04\) & 0.02209 & 28.70 & 23.54 & 26.61 & 26.23 & 26.37 & 26.30 \\
\hline 18 & 403.3 & 34.57 & 35.33 & 34.88 & 34.91 & 31.39 & 1084.5 & 5.26 & 0．298E 0 O8 & 0.02327 & 28.42 & 22.95 & 25.94 & 25.66 & 25.81 & 25.74 \\
\hline 19 & 423.3 & 35.08 & 35.88 & 35.54 & 35.51 & 31.81 & 1094.7 & 5.21 & 0．307E008 & 0.02444 & 27.60 & 22.20 & 24．21 & 24.41 & 24.56 & 24.48 \\
\hline 20 & 443.3 & 35.32 & 36.14 & 35.77 & 36.75 & 32.23 & 1103.7 & 5.16 & 0．315E－OE & 0.02562 & 29.17 & 23.04 & 25.46 & \(2 E .60\) & 25.78 & 25.69 \\
\hline 21 & 463.3 & 36.06 & 36.75 & 36.24 & 36.32 & 32.65 & 1112.7 & 5.11 & 0．323E－08 & 0.02682 & 26.40 & 21.95 & 25.07 & 24.51 & 24.62 & 24.57 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { AVERAGE YA } \\
39 I .6
\end{array}
\]} & \[
{ }_{34.35}^{125}
\] & \multicolumn{2}{|l|}{\[
\frac{35.12}{} \text { sTatigus }
\]} & \[
\frac{15}{34.70}
\] &  & 1078.8 & 5.29 & 0．294E－08 & 0.02259 & 28．29 & 22.84 & 25.31 & 25.29 & 25.44 & 25.36 \\
\hline
\end{tabular}

UPNAND IMCLIMATIOM \(\qquad\) \(6-1000\)

INPUT ELECTRIC POIER－ 1765.2 Y


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \overline{S T A} \\
& \text { TIOM } \\
& \text { NO. }
\end{aligned}
\] & & \[
\frac{7 a i}{-7 i}
\] & & c & \[
\begin{aligned}
& \text { C) } \\
& \text { AVE } \\
& \text { AEE }
\end{aligned}
\] & \[
(\mathrm{C})
\] & 是 & PR & GR & 2. & 4 & 8 & & T & 年 & I + H \\
\hline 3 & 5.5 & 29.53 & 29.98 & 29.75 & 29.75 & 22.91 & 834.2 & 6.45 & 0．251EPO8 & 0.00034 & 22.10 & 20.70 & 21.37 & 21.37 & 21.39 & 28.38 \\
\hline 4 & 15.5 & 29.89 & 30.84 & 30.05 & 30.21 & 23.27 & 840.9 & 6.40 & 0．258E－08 & 0.00095 & 22.09 & 19.29 & 21.55 & 21.06 & 21.22 & 21.09 \\
\hline 5 & 25.5 & 30.48 & 31.33 & 30.98 & 30.94 & 23.63 & 847.7 & 6.34 & 0．265E + O8 & 0.00156 & 21.32 & 18.96 & 19.85 & 19.96 & 20.00 & 19.98 \\
\hline 6 & 45.5 & 30.50 & 31.37 & 30.81 & 30.87 & 24.34 & 861.6 & 6.23 & 0．282E＊08 & 0.00279 & 23.69 & 20.76 & 22.53 & 22.33 & 22.38 & 22.35 \\
\hline 7 & 75.5 & 30.87 & 31.88 & 31.18 & 31.28 & 25.42 & 883.4 & 6.06 & 0．30日E 0 O8 & 0.00464 & 26.67 & 22.50 & 25.22 & 24.81 & 24.90 & 24.85 \\
\hline 8 & 105.5 & 31.31 & 32.73 & 31.56 & 31.79 & 26.49 & 906.3 & 5.89 & 0．336E＋08 & 0.00650 & 30.07 & 23.26 & 28.63 & 27.38 & 27.65 & 27.52 \\
\hline 9 & 135.5 & 32.60 & 33.71 & 33.09 & 33.12 & 27.56 & 927.5 & 5.74 & 0．363E＋08 & 0.00837 & 28.74 & 23.55 & 26.18 & 26.04 & 26.17 & 26.10 \\
\hline 10 & 165.2 & 33.42 & 34.73 & 34．05 & 34.06 & 28.63 & 948.1 & 5.61 & 0．391E－08 & 0.01022 & 30.10 & 23.67 & 26.62 & 26.56 & 26.75 & 26.66 \\
\hline 11 & 205.2 & 34.68 & 35.82 & 35.07 & 35.16 & 30.06 & 977.3 & 5.43 & 0．432E＋08 & 0.01273 & 31.17 & 24.98 & 28.72 & 24.22 & 28.40 & 28.32 \\
\hline 12 & 245．2 & 36.26 & 37.30 & 36.73 & 36.75 & 31.49 & 1008.4 & 5.25 & 0．477E 08 & 0.01525 & 30.07 & 24.71 & 27.40 & 27.27 & 27.40 & 27.33 \\
\hline 13 & 275.2 & 37.06 & 38.14 & 37.83 & 37.72 & 32.57 & 1030.7 & 5.12 & 0．511E408 & 0.01717 & 31.80 & 25.66 & 27.16 & 27.77 & 27.95 & 27.86 \\
\hline 14 & 305.2 & 37.93 & 38.92 & 38.20 & 38.31 & 33.64 & 1052.7 & 4.99 & 0．545E 08 & 0.01910 & 33.27 & 27.02 & 31.30 & 30.54 & 30.72 & 30.63 \\
\hline 15 & 333.3 & 38.76 & 39.88 & 39.60 & 39.46 & 34.65 & 1074.3 & 4.88 & 0．580E＋08 & 0.02093 & 34.58 & 27.21 & 28.75 & 29.58 & 29.82 & 29.70 \\
\hline 16 & 363.3 & 39.94 & 40.92 & 40.31 & 40.37 & 35.72 & 1098.3 & 4.75 & 0．620t＋08 & 0.02290 & 33.63 & 27.29 & 30.93 & 30.52 & 30.69 & 30.61 \\
\hline 17 & 383.3 & 40.92 & 41.72 & 41.02 & 41.17 & 36.44 & 1114.9 & 4.67 & \(0.648 \mathrm{E}+08\) & 0.02423 & 31.61 & 26.84 & 30.94 & 29.95 & 30.08 & 30.01 \\
\hline 18 & 403.3 & 41.57 & 42.53 & 41.91 & 41.98 & 37.15 & 1131.0 & 4.59 & 0．676E＋08 & 0.02554 & 32.01 & 26.32 & 29.74 & 29.31 & 29.45 & 29.38 \\
\hline 19 & 423.3 & 42.43 & 43.46 & 43.10 & 43.02 & 37.87 & 1146.2 & 4.53 & 0．703E＋08 & 0.02684 & 30.98 & 25.27 & 27.00 & 27.41 & 27.56 & 27.49 \\
\hline 20 & 443.3 & 43.00 & 44.01 & 43.50 & 43.50 & 38.58 & 1161.8 & 4.46 & 0．732E＊08 & 0.02814 & 31.92 & 26.01 & 28.68 & 28.67 & 28.82 & 28.75 \\
\hline 21 & 463.3 & 43.81 & 45.23 & 44.48 & 44.50 & 39.30 & 1177.8 & 4.39 & 0．762E＊08 & 0.0294 & 32.25 & 23.75 & 27.17 & 27.08 & 27.34 & 27．21 \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { AVERLGE VALUES TI } \\
& 391.6
\end{aligned}
\]} & \multicolumn{2}{|l|}{ROUG: STATIONS} & \[
\begin{aligned}
& 15 \\
& 41.58
\end{aligned}
\] & \[
20=
\] & 1121.1 & 4.65 & 0．650E＋08 & 0.02476 & 32.45 & 26.49 & 29.34 & 29.24 & 29.40 & 29.32 \\
\hline
\end{tabular}
\(\qquad\) 7-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { MO }
\end{aligned}
\] & \[
\mathrm{M}
\] & \[
4
\] & \[
8
\] & \[
c
\] & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVER- } \\
& \text { AEE }
\end{aligned}
\] & \[
\begin{aligned}
& 78 \\
& \text { (C) }
\end{aligned}
\] & & P & \(6 \pi\) & & 4 & 8 & C & \[
I
\] & HCE & T+1 \\
\hline 3 & 5.5 & 32.28 & 33.02 & 32.65 & 32.68 & 23.20 & 42.4 & 6.41 & \(0.386 E \sim 08\) & 0.00038 & 24.20 & 22.37 & 23.25 & 23.25 & 23.26 & 23.26 \\
\hline 4 & 15.5 & 32.66 & 33.97 & 32.84 & 33.06 & 23.81 & 752.6 & 6.31 & 0.406E-08 & 0.00107 & 25.06 & 21.58 & 24.29 & 23.73 & 23.81 & 23.7 \\
\hline 5 & 25.5 & 33.36 & 34.60 & 34.14 & 34.06 & 24.42 & 763.2 & 6.21 & 0.426E 08 & 0.00177 & 24.49 & 21.51 & 22.54 & 22.72 & 22.77 & 22.74 \\
\hline 6 & 45.5 & 33.36 & 34.67 & 33.86 & 33.94 & 25.64 & 785.1 & 6.02 & 0.471E008 & 0.00317 & 24.29 & 24.18 & 26.55 & 26.31 & 26.39 & 26.36 \\
\hline 7 & 75.5 & 33.98 & 35.44 & 34.42 & 34.57 & 27.46 & 818.3 & 5.75 & 0.5425008 & 0.00528 & 33.37 & 27.27 & 31.24 & 30.61 & 30.78 & 30.70 \\
\hline 8 & 105.5 & 35.12 & 37.09 & 35.38 & 35.74 & 29.29 & 849.9 & 5.52 & 0.615E-08 & 0.00739 & 37.19 & 27.76 & 35.53 & 33.56 & 34.00 & 33.78 \\
\hline 9 & 135.5 & 37.65 & 39.03 & 38.22 & 38.28 & 31.11 & 884. & 5.29 & 0.698E-08 & 0.00953 & 32.99 & 27.22 & 30.33 & 30.08 & 30.22 & 30.15 \\
\hline 10 & 165.2 & 38.43 & 40.16 & 38.93 & 39.12 & 32.92 & 917.5 & 5.08 & 0.784E-08 & 0.01167 & 38.96 & 29.64 & 35.72 & 34.67 & 35.01 & 34.84 \\
\hline 11 & 205.2 & 41.88 & 43.18 & 42.17 & 42.36 & 35.36 & 963.6 & 4.79 & 0.9105-04 & 0.01468 & 32.70 & 27.25 & 31.28 & 30.4* & 30.63 & 30.56 \\
\hline 12 & 245.2 & 44.07 & 45.42 & 44.70 & 44.72 & 37.79 & 1011.8 & 4.53 & 0.105E-09 & 0.01758 & 33.75 & 27.80 & 30.69 & 30.59 & 30.73 & 30.68 \\
\hline 13 & 275.2 & 45.40 & 46.74 & 46.26 & 46.17 & 39.61 & 1047.6 & 4.37 & \(0.116 E+09\) & 0.01979 & 36.55 & 29.68 & 31.79 & 32.26 & 32.45 & 32.36 \\
\hline 14 & 305.2 & 46.65 & 47.83 & 47.00 & 47.12 & 41.44 & 1086.1 & 4.20 & 0.129E+09 & 0.02202 & 40.43 & 32.95 & 37.90 & 37.09 & 37.30 & 37.19 \\
\hline 15 & 333.3 & 49.31 & 50.46 & 50.08 & 49.99 & 43.14 & 1120.0 & 4.06 & 0.141E409 & 0.02412 & 34.05 & 28.73 & 30.23 & 30.69 & 30.81 & 30.75 \\
\hline 16 & 363.3 & 50.81 & 52.10 & 51.26 & 51.36 & 44.97 & 1157.0 & 3.92 & \(0.155 E+09\) & 0.02637 & 35.82 & 29.36 & 33.30 & 32.78 & 32.95 & 32.86 \\
\hline 17 & 383.3 & 82.68 & 52.84 & 51.90 & 52.08 & 46.19 & 1183.0 & 3.82 & \(0.1640^{0.09}\) & 0.02789 & 38.02 & 31.40 & 36.55 & 35.44 & 35.63 & 35.54 \\
\hline 18 & 403.3 & 52.84 & 54.08 & 53.06 & 53.26 & 47.40 & 1209.0 & 3.73 & \(0.175 E+09\) & 0.02941 & 38.33 & 31.22 & 36.85 & 36.59 & 35.81 & 35.70 \\
\hline 19 & 423.3 & 54.27 & 55.52 & 54.96 & 54.92 & 48.62 & 1234.8 & 3.65 & 0.185E+09 & 0.03093 & 36.81 & 30.16 & 32.83 & 32.99 & 33.16 & 33.08 \\
\hline 20 & 443.3 & 55.16 & 56.41 & 55.68 & 55.73 & 49.84 & 1261.7 & 3.56 & 0.196E.09 & 0.03246 & 39.00 & 31.59 & 35.55 & 36.23 & 35.43 & 35.33 \\
\hline 21 & 463.3 & 55.61 & 58.04 & 57.06 & 57.18 & 51.05 & 1289.8 & 3.48 & 0.208E-09 & 0.03400 & 37.29 & 29.68 & 34.58 & 33.80 & 34.04 & 33.92 \\
\hline \multicolumn{7}{|l|}{\[
\begin{aligned}
& \text { AVERAGE YALUES THROUC1 STATIOMS } 15 \\
& 391.6 \\
& 52.35 \\
& 53.57 \\
& 52.82 \\
& 56.69
\end{aligned}
\]} & 1194.3 & 3.79 & 0.169E+09 & 0.02853 & 37.00 & 30.41 & 34.22 & 33.79 & 33.96 & 33.88 \\
\hline
\end{tabular}

UPNAND IMCLITATION _._._: 1500




UPNARD IMCIIEATIOM \(\qquad\) 2-1500

INPUT ELECTRIC PONER - 310.7 Y HSS FLOU MATE \(=43.8000 \mathrm{G} / \mathrm{s}\)

HEAT WATE GAIMTD DT YATER - 307.TY
3594 ICE DRIN - 0.967


\(\qquad\) 3-1500

INPUT ELECTRIC PONEA - 695.2 V
MSS FLOU RATE \(43.0754 \mathrm{G/S}\)


UPNAND IMCLIMATIOT \(\qquad\) 4-1500

IMPUT ELECRIC PONE - 975.2 V


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MO. }
\end{aligned}
\] & & \[
4
\] & & \[
c
\] &  & (C) & \(\underline{2}\) & PI & GI & & 4 & & \[
\mathbf{C}
\] & \[
I
\] & He & P*- \\
\hline 3 & 5.5 & 26.03 & 26.07 & 26.05 & 26.06 & 22.44 & 1413.1 & 6. 53 & 35 & 0.00020 & 22.77 & 22.55 & 22.66 & 22.68 & 22.68 & 22.66 \\
\hline 4 & 15.5 & 26.71 & 27.13 & 26.77 & 26.84 & 22.56 & 1416.7 & 6.51 & \(0.136 \mathrm{E}+08\) & 0.00065 & 7 & 17.88 & 19.42 & 19.07 & 19.10 & . 08 \\
\hline 5 & 25.5 & 27.09 & 27.53 & 27.38 & 27.35 & 22.68 & 1420.4 & 6.49 & 0.137 E & 0.00091 & 18.50 & 16.83 & 17.35 & 17.49 & 17.51 & 17.50 \\
\hline 6 & 45.5 & 27.13 & 27.56 & 27.26 & 27.30 & 22.91 & 1427.8 & 6.46 & 0.140E-08 & 0.00162 & 19.34 & 17.55 & 18.77 & 18.58 & 18.61 & 18.59 \\
\hline 7 & 75.5 & 27.37 & 27.88 & 27.47 & 27.55 & 23.26 & . 9 & 6.40 & 0.144 E 08 & 0.00270 & 19.85 & 17.66 & 19.38 & 19.03 & 19.07 & 19.05 \\
\hline 8 & 105.5 & 27.44 & 28.20 & 27.82 & 27.72 & 23.61 & 1450.3 & 6.34 & 0.148E08 & 0.00377 & 21.31 & 17.77 & 20.32 & 19.84 & 19.93 & 19.88 \\
\hline 9 & 135.5 & 27.88 & 28.52 & 28.16 & 28.18 & 23.96 & 1461.8 & 6.29 & 0.153E-08 & 0.00485 & 20.76 & 17.85 & 19.42 & 19.30 & 19.36 & 19.33 \\
\hline 10 & 165.2 & 27.95 & 28.70 & 28.28 & 28.30 & 24.31 & 1473.5 & 6.23 & .157E08 & 0.00592 & 22.35 & 28.51 & 20.49 & 20.37 & 20.46 & 20.42 \\
\hline 11 & 205.2 & 28.09 & 28.91 & 28.42 & 23.46 & 24.77 & 1489.4 & 6.16 & 0.163E+08 & 0.00736 & 24.52 & 19.67 & 22.32 & 22.07 & 22.20 & 22.14 \\
\hline 12 & 245.2 & 28.59 & 29.26 & 28.87 & 28.90 & 25.24 & 1505. & 6.08 & 0.169E-08 & 0.00880 & 24.24 & 20.20 & 22.40 & 22.22 & 22.32 & 22.26 \\
\hline 13 & 275.2 & 28.73 & 29.43 & 29.24 & 29.16 & 25.59 & 1518.1 & 6.03 & 0.174E~08 & 0.00989 & 25.83 & 21.11 & 22.26 & 22.74 & 22.87 & 22.80 \\
\hline 14 & 305.2 & 28.93 & 29.65 & 29.26 & 29.28 & 25.94 & 1530.8 & 5.97 & 0.179E-08 & 0.01098 & 27.13 & 21.8 & 24.42 & 24.32 & 24.46 & 24.39 \\
\hline 15 & 333.3 & 29.41 & 30.16 & 29.88 & 29.83 & 26.27 & 1542 & 5.92 & 0.284E 08 & 0.01200 & 25.82 & 20.83 & 22.43 & 22.74 & 22.88 & 22.81 \\
\hline 16 & 363.3 & 29.65 & 30.41 & 30.01 & 30.02 & 26.62 & 1555.9 & 5.87 & 0.189E~08 & 0.01309 & 26.67 & 22.35 & 23.89 & 23.80 & 23.95 & 23.88 \\
\hline 17 & 383.3 & 29.90 & 30.54 & 30.16 & 30.19 & 26.85 & 1564.7 & 5.83 & 0.193E-08 & 0.01382 & 26.51 & 22.96 & 24.47 & 24.24 & 24.35 & 24.30 \\
\hline 18 & 403.3 & 30.16 & 30.86 & 30.45 & 30.48 & 27.09 & 1572.1 & 5.80 & 0.196E 0 08 & 0.01455 & 26.31 & 21.41 & 24.04 & 23.82 & 23.95 & 23.89 \\
\hline 19 & 423.3 & 30.47 & 31.21 & 30.88 & 30.86 & 27.32 & 1579.6 & 5.7 & 0.199E+08 & 0.01528 & 25.62 & 20.80 & 22.72 & 22.84 & 22.97 & 22.90 \\
\hline 20 & 443.3 & 30.59 & 31.32 & 30.99 & 30.98 & 27.55 & 2587.1 & 5.74 & 0.203E-08 & 0.01600 & 26.57 & 21.42 & 23.49 & 23.60 & 23.74 & 23.67 \\
\hline 21 & 463.3 & 30.95 & 31.62 & 31.42 & 31.35 & 27.79 & 1594.6 & 5.71 & \(0.206 E+08\) & 0.01673 & 25.52 & 21.06 & 22.23 & 22.64 & 22.76 & 22.70 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AYERAGE VALURS THOUCR STATIONS 1570 20: \\

\end{tabular}} & 1567.0 & 5.82 & 0.194E*Ot & 0.01412 & 26.25 & 21.29 & 23.51 & 23.51 & 23.64 & 23.57 \\
\hline
\end{tabular}

UPYADD IMCLIEATIOM \(\qquad\) \(5-1500\)

INPUT ELECTRIC POUEA \(=1324.0 \mathrm{U}\) MASS FLOY MATE \(=42.7860 \mathrm{G} / \mathrm{S}\)



UPNARD ImCLIEATIOM \(\qquad\) 6-1500

INPUT ELECTIIC POUER \(=2234.8 \mathrm{Y}\)

ctor - 0.028637
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOM } \\
& \hline
\end{aligned}
\] & & \[
- \text { vall }
\] & \[
\frac{1 P R}{B}
\] & \[
\ln
\] & \[
\begin{aligned}
& C \text { C)- } \\
& \text { AVE } \\
& \text { ACE }
\end{aligned}
\] & (C) & \(\underline{1}\) & PRI & 6. & 2 & 4 & - & C & \[
T
\] & LAGE & T+ \\
\hline 3 & 5.5 & 30.28 & 30.68 & 30.48 & 30.48 & 22.48 & 1294.7 & 6.52 & 0.30*E*04 & 0.00021 & 23.91 & 22.76 & 23.32 & 23.32 & 23.33 & 23.32 \\
\hline 4 & 15.5 & 30.77 & 31.88 & 30.99 & 31.16 & 22.77 & 1303.1 & 6.47 & 0.316E-08 & 0.00060 & 23.30 & 20.47 & 22.68 & 22.23 & 22.28 & 25 \\
\hline 5 & 25.5 & 31.44 & 32.46 & 32.09 & 32.02 & 23.06 & 1311.5 & 6.43 & 0.323E-08 & 0.00099 & 22.24 & 19.83 & 20.63 & 20.80 & 20.83 & 20.82 \\
\hline 6 & 45.5 & 31.37 & 32.40 & 31.71 & 31.80 & 23.64 & 1328.8 & 6.34 & \(0.339 E+08\) & 0.00178 & 24.09 & 21.24 & 23.07 & 22.82 & 22.87 & 22.84 \\
\hline 7 & 75.5 & 31.65 & 32.88 & 32.02 & 32.14 & 24.52 & 1355.5 & 6.20 & 0.364E*08 & 0.00296 & 26.04 & 22.20 & 24.74 & 24.34 & 24.43 & 24.39 \\
\hline 8 & 105.5 & 31.90 & 33.68 & 32.23 & 32.51 & 25.39 & 1383.3 & 6.06 & 0.391E-08 & 0.00414 & 28.46 & 22.36 & 27.10 & 26.03 & 26.25 & 26.14 \\
\hline 9 & 135.5 & 32.80 & 34.18 & 33.29 & 33.39 & 26.26 & 1412.2 & 5.92 & 0.420E-08 & 0.00533 & 28.31 & 23.35 & 26.33 & 25.95 & 26.08 & 26.01 \\
\hline 10 & 165.2 & 33.04 & 34.70 & 33.88 & 33.88 & 27.13 & 1440.4 & 5.80 & 0.469E+08 & 0.00651 & 31.24 & 24.38 & 27.31 & 27.35 & 27.56 & 27.45 \\
\hline 11 & 205.2 & 33.64 & 36.18 & 34.18 & 34.29 & 28.29 & 1475.2 & 5.65 & 0.487E-08 & 0.00810 & 34.39 & 26.72 & 31.28 & 30.65 & 30.98 & 30.79 \\
\hline 12 & 245.2 & 35.01 & 36.40 & 35.66 & 35.69 & 29.48 & 1513.6 & 5.50 & 0.628E408 & 0.00970 & 33.04 & 26.42 & 29.57 & 29.46 & 29.65 & 56 \\
\hline 13 & 275.2 & 35.67 & 37.14 & 36.63 & 36.52 & 30.33 & 1540.2 & 5.39 & 0.560E+08 & 0.01090 & 34.29 & 26.91 & 29.04 & 29.61 & 29.84 & \\
\hline 14 & 305.2 & 36.36 & 37.77 & 36.91 & 36.99 & 31.20 & 1569.8 & 5.28 & 0.595E+08 & 0.01211 & 35.43 & 27.83 & 32.03 & 31.60 & 31.83 & 71 \\
\hline 15 & 333.3 & 37.56 & 38.96 & 38.40 & 38.33 & 32.02 & 1597.8 & 5.18 & 0.629E+08 & 0.01325 & 32.91 & 26.31 & 28.60 & 28.92 & 29.11 & 29.01 \\
\hline 16 & 363.3 & 38.18 & 39.67 & 38.88 & 38.90 & 32.89 & 1625.2 & 5.00 & 0.654E408 & 0.01448 & 34.41 & 28.88 & 30.42 & 30.30 & 30.54 & 30.42 \\
\hline 17 & 383.3 & 38.77 & 40.08 & 39.20 & 39.31 & 33.47 & 1644.0 & 5.01 & 0.688E-08 & 0.01530 & 34.36 & 27.52 & 31.75 & 31.14 & 31.34 & 31.24 \\
\hline 18 & 403.3 & 39.43 & 40.6t & 39.86 & 39.99 & 34.06 & 1663.2 & 4.94 & \(0.713 E+08\) & 0.01613 & 33.75 & \(26.8{ }^{\text {ct }}\) & 31.27 & 30.58 & 30.79 & 59 \\
\hline 19 & 423.3 & 40.08 & 41.50 & 40.79 & 49.79 & 34.64 & 1682.9 & 4.88 & \(0.738 E+08\) & 0.01697 & 33.30 & 25.42 & 29.45 & 29.46 & 29.65 & 29 \\
\hline 20 & 443.3 & 40.36 & 41.67 & 40.83 & 40.92 & 35.22 & 1703.1 & 4.81 & 0.765E*08 & 0.01780 & 35.23 & 28.08 & 32.26 & 31.75 & 31.96 & 31.85 \\
\hline 21 & 463.3 & 41.23 & 42.41 & 41.85 & 41.83 & 35.80 & 1723.7 & 4.74 & 0.793E-08 & 0.01865 & 33.33 & 27.38 & 29.90 & 29.98 & 30.12 & 30 \\
\hline & \[
\frac{\text { RAGE VA }}{391.6}
\] & \[
\begin{aligned}
& \text { UPSS } \\
& 39.67
\end{aligned}
\] & \[
{ }_{40.45}
\] & \[
\frac{\text { TATIONs }}{39.66}
\] & 15.70 & \[
\text { 20: } 3.72
\] & 1652.7 & 4.98 & 0.699E-08 & 0.01566 & 34.00 & 27.01 & 30.63 & 30.36 & 30.57 & 30.46 \\
\hline
\end{tabular}
\(\qquad\) 7-1500

INPUT ELECTRIC PONER - 3356.9 Y
MLSS FLOU RATE \(=34.6100 \mathrm{G} / \mathrm{S}\)
PMESSURE DAT MATE GAIMDD BY UATEA - 3352.8 U \({ }^{\text {EIFAT }}\) \(A T\) balance brion \(=0.122\)路:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & \[
\overline{y_{0}}
\] & - & \[
\begin{aligned}
& 19 \mathrm{PE} \\
& \mathrm{~B}
\end{aligned}
\] & \[
{ }_{\boldsymbol{C}}
\] & \[
\begin{aligned}
& C \text { C) } \\
& A V E R \\
& A G E
\end{aligned}
\] & (C) & W & 81 & GR & 2 & a & B & C & \[
I
\] &  & I* \\
\hline 3 & 5.5 & 34.78 & 35.65 & 35.21 & 35.21 & 23.85 & 1179.5 & 6.30 & 0.51 EE+08 & 0.00024 & 25.55 & 23.66 & 24.57 & 24.57 & 24.59 & 24.58 \\
\hline 4 & 15.5 & 35.02 & 36.71 & 35.35 & 35.61 & 24.34 & 1192.9 & 6.23 & 0.539E-08 & 0.00069 & 26.12 & 22.55 & 25.34 & 24.76 & 24.84 & 24.80 \\
\hline 5 & 25.5 & 35.90 & 37.35 & 36.79 & 36.71 & 24.84 & 1206.6 & 6.15 & \(0.562 \mathrm{E}+08\) & 0.00113 & 25.19 & 22.26 & 23.30 & 23.46 & 23.51 & 23.49 \\
\hline 6 & 45.5 & 35.71 & 37.27 & 36.24 & 36.37 & 25.83 & 1234.9 & 5.99 & 0.609E+08 & 0.00202 & 28.12 & 24.29 & 26.69 & 26.37 & 26.45 & 26.41 \\
\hline 7 & 75.5 & 36.12 & 37.80 & 36.60 & 36.78 & 27.31 & 1277.5 & 5.77 & 0.683E+C8 & 0.00337 & 31.45 & 26.41 & 29.81 & 29.25 & 29.37 & 29.31 \\
\hline 8 & 105.5 & 36.53 & 38.94 & 36.95 & 37.34 & 28.80 & 1317.2 & 5.58 & 0.757E 0.08 & 0.00472 & 35.67 & 27.22 & 33.87 & 32.31 & 32.66 & 32.48 \\
\hline 9 & 135.5 & 38.18 & 40.04 & 38.98 & 39.04 & 30.28 & 1359.4 & 5.40 & 0.839E-08 & 0.00607 & 34.82 & 28.19 & 31.63 & 31.39 & 31.57 & 31.48 \\
\hline 10 & 165.2 & 39.51 & 41.25 & 40.30 & 40.34 & 31.75 & 1404.0 & 5.21 & 0.928E 0 08 & 0.00743 & 35.31 & 28.85 & 32.05 & 31.90 & 32.07 & 31.98 \\
\hline 11 & 205.2 & 40.65 & 42.74 & 41.00 & 41.39 & 33.73 & 1459.9 & 4.98 & 0.105E-09 & 0.00928 & 39.41 & 30.28 & 37.08 & 35.61 & 35.96 & 35.78 \\
\hline 12 & 245.2 & 43.55 & 44.80 & 44.08 & 44.13 & 35.70 & 1520.0 & 4.75 & 0.11达+09 & 0.01117 & 34.62 & 29.83 & 32.39 & 32.22 & 32.31 & 32.26 \\
\hline 13 & 275.2 & 45.34 & 46.88 & 46.35 & 46.23 & 37.19 & 1565.8 & 4.59 & 0.129E-09 & 0.01259 & 33.18 & 27.92 & 29.53 & 29.92 & 30.04 & 29.98 \\
\hline 14 & 305.2 & 46.09 & 47.75 & 46.63 & 46.77 & 38.67 & 1511.1 & 4.45 & 0.141E+09 & 0.01400 & 36.37 & 29.72 & 33.89 & 33.29 & 33.47 & 33.38 \\
\hline 15 & 333.3 & 47.48 & 49.17 & 48.48 & 48.40 & 40.06 & 1654.9 & 4.32 & 0.152E•09 & 0.01532 & 36.28 & 29.52 & 31.96 & 32.25 & 32.43 & 32.34 \\
\hline 16 & 363.3 & 48.33 & 50.18 & 49.07 & 49.16 & 41.55 & 1704.4 & 4.19 & 0.165E+09 & 0.01674 & 39.53 & 31.00 & 35.66 & 35.23 & 35.48 & 35.35 \\
\hline 17 & 383.3 & 49.61 & 50.92 & 49.78 & 50.02 & 42.54 & 1735.3 & 4.11 & 0.174E+09 & 0.01769 & 37.83 & 31.92 & 36.96 & 35.75 & 35.92 & 35.84 \\
\hline 18 & 403.3 & 50.93 & 52.39 & 51.18 & 51.42 & 43.52 & 1765.5 & 4.03 & 0.183E+09 & 0.01865 & 36.08 & 30.14 & 34.90 & 33.84 & 34.01 & 33.92 \\
\hline 19 & 423.3 & \$2.09 & 53.73 & 52.93 & 52.92 & 44.51 & 1796.9 & 3.95 & 0.1925+09 & 0.01961 & 35.20 & 20.95 & 31.68 & 31.73 & 31.88 & 31.80 \\
\hline 20 & 443.3 & 52.71 & 54.29 & 53.40 & 53.45 & 45.50 & 1829.3 & 3.88 & 0.202E+09 & 0.02057 & 36.93 & 30.28 & 33.72 & 33.50 & 33.66 & 33.58 \\
\hline 21 & 463.3 & 53.72 & 55.47 & 54.24 & 54.42 & 46.49 & 1863.0 & 3.80 & \(0.213 \mathrm{E}+09\) & 0.02154 & 36.77 & 29.60 & 34.29 & 33.53 & 33.74 & 33.63 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { AVERACE } \\
391 .
\end{array}
\]} & \[
\begin{aligned}
& \text { LUES } \\
& 50.19
\end{aligned}
\] & \[
\begin{aligned}
& \text { Rouch } \\
& 51.78
\end{aligned}
\] & \[
\begin{aligned}
& \text { TATIOKs } \\
& 50.81 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15.70 \\
& 50.90
\end{aligned}
\] & \[
\begin{array}{r}
20 \div 1.95 \\
\hline
\end{array}
\] & 1747.7 & 4.08 & 0.178E-09 & 0.01810 & 36.97 & 30.32 & 34.15 & 33.72 & 33.90 & 33.81 \\
\hline
\end{tabular}

\section*{Appendix \(\mathbf{F}\)}

Experimental Data for \(\alpha=-10^{\circ}\)
\(\qquad\) 1-500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STMa & z & Will & repma & come & Av8- & \({ }_{\text {( }}^{3}\) & IE & PR & 6 & 2. & & &  & mule & & \\
\hline \[
\begin{aligned}
& \text { T10, } \\
& \text { No. }
\end{aligned}
\] & & \[
A
\] & \[
8
\] & c & \[
\begin{aligned}
& \text { AVER } \\
& \hline
\end{aligned}
\] & (c) & & & & & 1 & - & & \[
T
\] &  & T + IR \\
\hline 3 & 5.5 & 23.39 & 23.36 & 23.38 & 23.38 & 22.63 & 469.1 & 6.50 & 0.204 E 007 & 0.00057 & 15.86 & 6.63 & 16.24 & 16.24 & 16.24 & . 2 \\
\hline 4 & 15.5 & 23.5 & 23.58 & 23.54 & 23. & 22.68 & 489. & 6.49 & \(0.205 \mathrm{E}+07\) & 0.00160 & 14.12 & 13.45 & 14.12 & 13.95 & 13.95 & 13. \\
\hline 5 & 25. & 23.62 & 23.7 & 23.67 & 23.67 & 22.73 & 490.2 & 6.48 & \(0.206 \mathrm{E}+07\) & 0.00264 & 13.5 & 2.43 & 2.8 & 2.91 & 12.93 & 12.92 \\
\hline 6 & 45.5 & 23.71 & 23.87 & 23.79 & 23.80 & 22.83 & 491.3 & 6.47 & 0.207 E -07 & 0.00471 & 12.96 & 11.71 & 12.65 & 12.47 & 12.49 & 12.48 \\
\hline 7 & 75.5 & 23.87 & 23.99 & 23.92 & 23.93 & 22.98 & 493.0 & 6.4 & 0.210E+07 & 0.007 & 13.64 & 12.0 & 12 & 12 & 12 & 12.86 \\
\hline 8 & 105.5 & 23 & 24. & 23 & 24 & 23 & 494.6 & 6.42 & 0.213E+07 & 0.01093 & 14. & 12. & 14 & 2 & 13.85 & 13.8 \\
\hline 91 & 135.5 & 24.06 & 24.20 & 24.17 & 24.15 & 23.28 & 496.3 & 6.39 & \(0.215 \mathrm{E}+07\) & 0.01405 & 15.61 & 13.22 & 13.76 & 14.03 & 14.09 & 14.06 \\
\hline 10 & 165.2 & 24.25 & 24.35 & 24.30 & 24.30 & 23.43 & 458.0 & 6.37 & \(0.218 \mathrm{E}+07\) & 0.01713 & 14.88 & 13.19 & 14.0 & 14.0 & 14.0 & 14.03 \\
\hline 11 & 205 & 24.3 & 24.5 & 24.5 & 24 & 23.63 & 500 & 6.34 & 0.221E+0 & 0.02129 & 16. & 12.78 & 13.16 & 13.73 & 13.85 & 13.80 \\
\hline 12 & 245.2 & 24.7 & 24.83 & 24.78 & 24 & 23.84 & 502.5 & 6.3 & 0.225E+07 & 0.02545 & 23.21 & 11 & 12.85 & 12.61 & 12.8 & 12.63 \\
\hline 3 & 275 & 24 & 24. & 24. & 24 & 23. & 504. & 6.21 & \(0.228 \mathrm{E}+0\) & 0.02 & 15 & 12 & 12 & 13.45 & 13 & 13.5 \\
\hline 14 & 305.2 & 24.99 & 25.17 & 25.12 & 25 & 24.14 & 506.0 & 6.26 & \(0.231 \mathrm{E}+07\) & 0.03870 & 14.28 & 11.82 & 12.43 & 12.68 & 12.74 & 2. \\
\hline 15 & 333.3 & 25.04 & 25.15 & 25.12 & 25.11 & 24.28 & 507.7 & 6.24 & \(0.234 \mathrm{E}+07\) & 0.03463 & 16.07 & 14.00 & 14.47 & 14.71 & 14.75 & 14.73 \\
\hline 16 & 363.3 & 25.28 & 25. & 25.35 & 25. & 24. & 509. & 6. & \(0.236 \mathrm{E}+0\) & 0.03776 & 14.3 & 12.6 & 13.2 & 13. & 13.3 & 13.36 \\
\hline 17 & 383.3 & 25.38 & 25.47 & 25.44 & 25.4 & 24.53 & 510.6 & 6.20 & \(0.238 \mathrm{E} \cdot 07\) & 0.03985 & 14.38 & 12.9 & 13.35 & 13. & 13.58 & 13.50 \\
\hline 18 & 403.3 & 25.44 & 25.50 & 25.52 & 25.51 & 24.63 & 511.8 & 6.18 & 0.240E-07 & 0.04194 & 15.09 & 12.85 & 13.71 & 13.79 & 13.84 & 13.8 \\
\hline 19 & 423.3 & 25.59 & 25.75 & 5.68 & 25.67 & 24.73 & 513.0 & 6.16 & \(0.242 \mathrm{E}+07\) & 0.04403 & 14.24 & 11.94 & 12.8 & 12.93 & 12.9 & 12.95 \\
\hline 20 & 443.3 & 25.70 & 25.83 & 25.76 & 25.78 & 24.84 & 514.2 & 6.15 & \(0.244 \mathrm{E}+07\) & 0.04613 & 14.09 & 12.21 & 13.08 & 13.08 & 13.12 & 13.10 \\
\hline 22 & 463.3 & 25.93 & 25.94 & 26.01 & 25.97 & 24.94 & 515.4 & 6.13 & 0.246E+07 & 0.04822 & 12.26 & 12.10 & 11.33 & 11. & . 7 & 11.75 \\
\hline \multicolumn{2}{|l|}{AVERAGE} & 25.40 & \[
\operatorname{mou}_{25.53} \mathrm{~s}
\] & 7rious & 15.70
25.47 & \({ }^{20} 5.58\) & 511.1 & 6.19 & 0.239E+07 & 0.04073 & 14.72 & 12.77 & 13.45 & 13.56 & 13.59 & 13.5 \\
\hline
\end{tabular}

DONTHAD IMCLIMATIOM \(\qquad\) 2-500

INPUT ELECTRIC POUER -231.6 W
PMESGUE HEAT RATE GAIMED BT HATER - 227.7 w
 MEAT BALACE ENAOR - \(1.70 \%\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOM } \\
& \text { NO: }
\end{aligned}
\] & \[
\bar{z}_{0}
\] & \[
-\frac{61}{4}
\] & & & \[
\begin{aligned}
& \text { c) } \\
& \text { aver } \\
& \text { Acz }
\end{aligned}
\] & (T) & E & PR & 98 & \(2+\) & 4 & B & c & & 臬 & T*日 \\
\hline 3 & 5.5 & 23.75 & 23.75 & 23.75 & 23.75 & 22.61 & 480.4 & 6.50 & 0.318E*0 & 0.0005 & 16.54 & 16.6 & 16.58 & 16.5 & 16.58 & 16.58 \\
\hline 4 & 15.5 & 23.93 & 24.03 & 23.95 & 23.97 & 22.69 & 481.3 & 6.49 & \(0.320 E+07\) & 0.00163 & 15.33 & 14.15 & 15.00 & 14.8 & 14.87 & 14.86 \\
\hline 5 & 25.5 & 24.09 & 24.23 & 24.1 & 24.1 & 22.7 & 482.1 & 6.4 & 0.322 E - & 0.0026 & . 3 & 12.9 & 13.78 & 13.7 & 13.7 & 13. \\
\hline 6 & 45.5 & 24.2 & 24.40 & 24.2 & 24.3 & 22.9 & 483.8 & 6.4 & \(0.326 \mathrm{E}+07\) & 0.00480 & 14.7 & 2.8 & 13.8 & 13.82 & 13.85 & 13.83 \\
\hline 7 & 75.5 & 24.43 & 24.63 & 24.68 & 24.50 & 23.1 & 86. & 6.41 & \(0.333 \mathrm{E}+\) & 0.007 & 5.0 & 13.0 & 4. & 14. & 14.23 & 14.2 \\
\hline 8 & 5.5 & 24.59 & 24.87 & 24.6 & 24.7 & 3.4 & 489.1 & . 37 & 0.339E+07 & 0. & 16.05 & 12. & 14.79 & 14.5 & 4.65 & 14.51 \\
\hline 9 & 135.5 & 24.8 & 25.0 & 24.98 & 4.96 & 23.65 & 491.7 & 6.3 & \(0.366 E+07\) & 0.0143 & 6.25 & 13.11 & 14.28 & 14.4 & 14.48 & 14.4 \\
\hline 10 & 165. & 25.08 & 25.36 & 25.1 & 25.2 & 23 & 494.4 & 6.30 & 0.353 & 0.01745 & 15.82 & 12.87 & 14. & 14 & 14. & 14.38 \\
\hline 11 & 205.2 & 25.3 & 25.57 & 25 & 25.5 & 24.2 & 498.0 & . 25 & . 362E+07 & 0.0216 & 16.50 & 12.92 & 13.95 & 14.2 & 6.33 & 14.27 \\
\hline 12 & 245. & 25.8 & 26.0 & 25 & 25 & 24 & 501.7 & 6.20 & \(0.372 \mathrm{E}+07\) & 0.025 & 14.73 & 12 & 14.07 & 13. & 13.88 & . 86 \\
\hline 13 & 275. & 25.95 & 26.23 & 26 & 26.12 & 24.7 & 504.5 & 6.16 & 0.379E-07 & 0.02914 & 16.06 & 12.97 & 13.63 & 13.9 & 14.07 & 14.03 \\
\hline 14 & 305. & 26.2 & 26. & 26.40 & 26 & 25. & 507. & 6.12 & 0.38 & 0.03 & 15.61 & 12.82 & 13.5 & 13.8 & 13.88 & 13.84 \\
\hline 15 & 333.3 & 26 & 26.6 & 26 & 28 & 25.23 & 510.0 & 6.09 & . 39 & 0.03533 & 16.59 & 23.87 & 14.47 & 14.78 & 14.85 & 14.81 \\
\hline 16 & 363. & 26.70 & 26.93 & 26.8 & 26.81 & 25.47 & 512.9 & 6.05 & \(0.402 \mathrm{E}+07\) & 0.03853 & 15.42 & 13.00 & 14.16 & 14.13 & 14.19 & 4.16 \\
\hline 17 & 383.3 & 26.86 & 27.08 & 26.95 & 26.95 & 25.63 & 514.8 & 6.02 & \(0.407 \mathrm{E}-07\) & 0.04067 & 15.42 & 13.37 & 14.36 & 14.34 & 14.38 & 24.3 \\
\hline 18 & 403. & 26.9 & 27.21 & 27.09 & 27.00 & 25. & 516.8 & 6.00 & 0.412E+07 & 0.04281 & 16.2 & 13. & 14.5 & 14.63 & 14.70 & 14. \\
\hline 19 & 423.3 & 27.15 & 27.43 & 27.34 & 27.31 & 25.95 & 518.7 & 5.97 & 0.412E-07 & 0.04495 & 15.78 & 12.80 & 13.66 & 13.89 & 13.98 & 13.93 \\
\hline 20 & 443. & 27.27 & 27.58 & 27.48 & 27.45 & 26. & 520.7 & 5.95 & \(0.423 E+07\) & 0.0471 & 16.3 & 12.9 & 13.8 & 14.12 & 14.22 & 14. \\
\hline 21 & 463.3 & 27.53 & 27.76 & 27.75 & 27.69 & 26.28 & 522.7 & 5.92 & \(0.429 E+07\) & 0.04924 & 15.08 & 12.74 & 12.83 & 13.3 & 13.37 & 13.33 \\
\hline \multicolumn{3}{|l|}{AVERAGE Y YLUES} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\[
{ }_{25}^{15} .02{ }_{20}^{20} .70
\]} & 515.6 & 6.01 & 0.409E-07 & 0.04156 & 15.96 & 13.22 & 24.18 & 14.32 & 14.3 & 14.35 \\
\hline
\end{tabular}

DOWMAED INCLIHATIOR \(\qquad\) 3-500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA: } \\
& \text { Mo. }
\end{aligned}
\] & & \[
-7
\] & E & c & \[
\begin{aligned}
& \text { C) } \\
& \text { AVP } \\
& \hline \text { CE }
\end{aligned}
\] & ( & 这 & PR & 92 & & 1 & B & \[
c
\] & 1 &  & I \\
\hline 3 & 5.5 & 24.03 & 24.00 & 24.08 & 24.06 & 22.53 & 475.2 & 6.51 & 0.382E-07 & 0.00068 & 15.36 & 14.84 & 15.09 & 15.09 & 15.10 & 15.10 \\
\hline 4 & 15.5 & 24.23 & 24.39 & 24.26 & 24.28 & 22.63 & 476.2 & 6.50 & \(0.385 \mathrm{E}+07\) & 0.00165 & 14.41 & 13.07 & 14.16 & 13.93 & 13.55 & 3 \\
\hline 5 & 25.5 & 24.39 & 24.64 & 24.50 & 24.51 & 22.73 & 477.2 & 6.48 & \(0.388 \mathrm{E}+07\) & 0.00271 & 13.82 & 12.03 & 12.96 & 12.91 & 12.94 & 12.93 \\
\hline 6 & 45.5 & 24.55 & 24.76 & 24.66 & 24.66 & 22.92 & 479.3 & 6.45 & 0.395E-07 & 0.00484 & 14.14 & 12.52 & 13.28 & 13.28 & 13.30 & 13.29 \\
\hline 7 & 75.5 & 24.70 & 25.04 & 24.85 & 24.86 & 23.22 & 482.4 & 6.40 & 0.405E+07 & 0.00804 & 15.47 & 12.60 & 14.14 & 14.01 & 14.09 & 14.06 \\
\hline 8 & 105.5 & 25.01 & 25.32 & 25.11 & 25.14 & 23.51 & 485.6 & 6.36 & 0.414E+07 & 0.01124 & 15.37 & 12.74 & 14.40 & 14.16 & 14.23 & 20 \\
\hline 9 & 135.5 & 25.26 & 25.60 & 25.48 & 25.45 & 23.81 & 488.9 & 6.31 & 0.425E-07 & 0.01445 & 15.79 & 12.83 & 13.75 & 13.95 & 14.03 & 99 \\
\hline 10 & 165.2 & 25.58 & 25.94 & 25.81 & 25.79 & 24.10 & 492.1 & 6.26 & 0.435E+07 & 0.01763 & 15.44 & 12.43 & 13.39 & 13.59 & 13.67 & 62 \\
\hline 11 & 205.2 & 25.94 & 26.31 & 26.18 & 26.25 & 24.49 & 496.6 & 6.20 & 0.4498 .07 & 0.02192 & 25.82 & 12.57 & 23.57 & 23.78 & 13.88 & 13.83 \\
\hline 12 & 245.2 & 26.42 & 26.72 & 26.57 & 26.57 & 24.88 & 501.1 & 6.14 & 0.454E+07 & 0.02621 & 14.86 & 12.45 & 13.56 & 13.56 & 13.61 & 58 \\
\hline 13 & 275.2 & 26.64 & 26.95 & 26.88 & 26.84 & 25.18 & 504.5 & 6.09 & 0.475E-07 & 0.02944 & 15.62 & 12.90 & 13.41 & 13.76 & 13.83 & 80 \\
\hline 14 & 305.2 & 26.95 & 27.29 & 27.13 & 27.13 & 25.47 & 508.0 & 6.05 & 0.486E+07 & 0.03268 & 15.51 & 12.54 & 13.76 & 13.81 & 13.89 & 3.85 \\
\hline 15 & 333.3 & 27.15 & 27.46 & 27.40 & 27.35 & 25.75 & 521.3 & 6.00 & 0.497E07 & 0.03571 & 16.26 & 13.35 & 13.80 & 14.22 & 14.30 & 14.26 \\
\hline 16 & 363.3 & 27.51 & 27.85 & 27.68 & 27.68 & 26.04 & 524.9 & 5.96 & 0.509t+07 & 0.03895 & 15.57 & 12.65 & 13.95 & 13.95 & 14.03 & 13.99 \\
\hline 17 & 383.3 & 27.72 & 28.00 & 27.87 & 27.87 & 26.24 & 587.3 & 5.93 & 0.518E-07 & 0.04112 & 25.34 & 12.92 & 13.97 & 14.00 & 14.06 & 14.03 \\
\hline 18 & 403.3 & 27.85 & 28.19 & 28.04 & 28.03 & 26.43 & 519.8 & 5.90 & 0.526E-07 & 0.04329 & 16.04 & 12.97 & 14.19 & 14.27 & 14.35 & 14.31 \\
\hline 19 & 423.3 & 28.10 & 28.44 & 28.29 & 28.20 & 26.63 & 522.2 & 5.87 & \(0.534 E-07\) & 0.04546 & 15.50 & 12.62 & 13.72 & 13.81 & 13.89 & 13.85 \\
\hline 20 & 443.3 & 28.23 & 28.62 & 28.46 & 28.44 & 26.82 & 524.7 & 5.83 & 0.543E +07 & 0.04763 & 16.23 & 12.71 & 13.92 & 14.09 & 14.19 & 14.14 \\
\hline 21 & 463.3 & 28.54 & 28.85 & 28.78 & 28.74 & 27.02 & 526.9 & 5.81 & 0.550¢-07 & 0.04980 & 15.03 & 12.45 & 12.93 & 13.26 & 13.33 & 13.30 \\
\hline \multicolumn{2}{|l|}{AVERAGE VA} & \[
{ }_{27.76}
\] & \multicolumn{2}{|l|}{\[
{ }_{28.09} \frac{27.96}{27.96}
\]} & \[
\frac{25}{27} .90
\] & \[
\begin{gathered}
20: \\
26.32
\end{gathered}
\] & 518.4 & 5.91 & \(0.521 E+07\) & 0.04203 & 15.82 & 12.87 & 13.93 & 14.06 & 14.13 & 14.10 \\
\hline
\end{tabular}

DOHNARD INCLIMATION \(\qquad\) 4-500

INPUT ELSCTRIC POWEA - 320.7 H


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOM } \\
& \text { NO. }
\end{aligned}
\] & \[
\frac{2}{9}
\] & \[
-\mathbb{U}
\] & \[
8
\] & c & \[
\begin{aligned}
& \text { CC)- } \\
& \text { AVER- } \\
& \text { AGE }
\end{aligned}
\] & \[
\overline{\mathrm{TB}}_{\mathrm{C}}
\] & RE & PR & G2 & 3 & \(\wedge\) & 8 & C & \(I\) & \({ }^{1}\) & T+18 \\
\hline 3 & 5.5 & 24.28 & 24.36 & 24.32 & 24.32 & 22.53 & 471.2 & 6.51 & \(0.4545+07\) & 0.00059 & 15.66 & 14.96 & 15.30 & 15.30 & 15.30 & 15.30 \\
\hline 4 & 15.5 & 24.53 & 24.81 & 24.62 & 24.64 & 22.65 & 472.4 & 6.49 & 0.469E-07 & 0.00166 & 14.55 & 12.67 & 13.93 & 13.74 & 13.77 & 13.75 \\
\hline 5 & 25.5 & 24.78 & 25.06 & 24.95 & 24.93 & 22.77 & 473.7 & 6.47 & 0.463E+07 & 0.00274 & 13.60 & 11.97 & 12.56 & 12.64 & 12.67 & 12.66 \\
\hline 6 & 45.5 & 24.95 & 25.21 & 25.11 & 25.09 & 23.00 & 476.1 & 6.44 & 0.472E-07 & 0.00488 & 14.09 & 12.39 & 13.01 & 13.10 & 13.12 & 11 \\
\hline 7 & 75.5 & 25.18 & 25.57 & 25.35 & 25.36 & 23.36 & 479.9 & 6.38 & 0.486E+07 & 0.00811 & 15.01 & 12.33 & 13.72 & 13.63 & 13.70 & 13.65 \\
\hline 8 & 105.5 & 25.45 & 25.88 & 25.64 & 25.65 & 23.71 & 483.7 & 6.33 & 0.501E-07 & 0.01134 & 15.64 & 12.60 & 14.14 & 14.05 & 14.13 & 14.09 \\
\hline 9 & 135.5 & 25.82 & 26.21 & 26.06 & 26.04 & 24.06 & 487.6 & 6.27 & 0.515E +07 & 0.01458 & 15.52 & 12.70 & 13.63 & 13.79 & 13.87 & 13.83 \\
\hline 10 & 165.2 & 26.17 & 26.61 & 26.40 & 26.40 & 24.41 & 491.5 & 6.22 & 0.530t+07 & 0.01779 & 15.51 & 12.37 & 13.70 & 13.73 & 13.82 & 13.78 \\
\hline 11 & 205.2 & 26.53 & 27.01 & 26.82 & 26.80 & 24.88 & 496.9 & 6.14 & 0.551E+07 & 0.02212 & 16.54 & 12.78 & 14.02 & 14.21 & 14.34 & 14.28 \\
\hline 12 & 245.2 & 27.15 & 27.50 & 27.33 & 27.33 & 25.35 & 502.4 & 6.07 & 0.572E+07 & 0.02646 & 15.15 & 12.64 & 13.76 & 13.77 & 13.82 & 13.80 \\
\hline 13 & 275.2 & 27.42 & 27.82 & 27.70 & 27.66 & 25.70 & 506.6 & 6.01 & 0.589E*07 & 0.02973 & 15.80 & 12.86 & 13.64 & 13.90 & 13.98 & 13.94 \\
\hline 14 & 305.2 & 27.81 & 28.25 & 28.08 & 28.06 & 26.05 & 510.8 & 5.96 & 0.606E-07 & 0.03300 & 15.46 & 12.39 & 13.38 & 13.56 & 13.65 & 13.61 \\
\hline 15 & 333.3 & 28.15 & 28.57 & 28.49 & 28.43 & 26.38 & 514.8 & 5.90 & 0.623E +07 & 0.03607 & 15.34 & 12.41 & 12.90 & 13.30 & 23.39 & 13.34 \\
\hline 16 & 363.3 & 28.59 & 29.04 & 28.86 & 28.84 & 26.74 & 519.3 & 5.85 & 0.641E-07 & 0.03936 & 14.60 & 11.75 & 12.80 & 12.91 & 12.99 & 12.95 \\
\hline 17 & 383.3 & 28.84 & 29.19 & 29.08 & 29.03 & 26.97 & 522.0 & 5. \({ }^{\text {c }}\) 1 & 0.652E+07 & 0.04154 & 14.49 & 12.24 & 13.09 & 13.18 & 13.23 & 13.21 \\
\hline 18 & 403.3 & 29.01 & 29.43 & 29.24 & 29.23 & 27.21 & 524.5 & 5.78 & 0.663E-07 & 0.04373 & 15.08 & 12.19 & 13.29 & 13.38 & 13.46 & 13.42 \\
\hline 19 & 423.3 & 29.27 & 29.67 & 29.53 & 29.50 & 27.44 & 527.0 & 5.76 & 0.674E+07 & 0.04591 & 14.79 & 12.17 & 12.98 & 13.17 & 13.23 & 13.20 \\
\hline 20 & 443.3 & 29.41 & 30.00 & 29.70 & 29.70 & 27.68 & 529.5 & 5.73 & 0.685E-07 & 0.04810 & 15.61 & 11.65 & 13.38 & 13.36 & 13.51 & 13.43 \\
\hline 21 & 463.3 & 29.80 & 30.24 & 30.16 & 30.09 & 27.91 & 532.1 & 5.70 & 0.696E-07 & 0.05028 & 14.33 & 11.64 & 12.05 & 12.43 & 12.52 & 12.48 \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{rl}\text { AVERAGE VALUES THROUCA STATIGMS } \\ 391.6 & 28.88 \\ 29.32 & 29.14\end{array}\)} & \multicolumn{2}{|l|}{\[
15.70{ }_{29}^{20} 27.07
\]} & 522.9 & 5.81 & 0.656 E 407 & 0.04245 & 14.98 & 12.07 & 13.08 & 13.22 & 13.30 & 13.26 \\
\hline
\end{tabular}

DONHAND DCLIMATIOM \(\qquad\) 5-500

Paseverit mit caimp by vatill o 584.5 Y Fivction Factun - 0.062893 Heat banance gitor o-0.482

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { MOOM }
\end{aligned}
\] & \[
=\frac{2}{\mathrm{CM}}
\] & - & \[
\mathbf{B}
\] & \[
\overline{\mathrm{C}}
\] & \[
\begin{aligned}
& \text { BC) } \\
& \text { AVEM- } \\
& \text { ACES }
\end{aligned}
\] & (C) & \(\underline{12}\) & PR & 62 & Z & 4 & B & ELT & T & I & T* \({ }_{\text {1 }}^{\text {I }}\) \\
\hline 3 & 5.5 & 28.11 & 29.26 & 20.70 & 28.70 & 22.48 & 452.1 & 6.52 & 0.807E-07 & 0.00061 & 8.67 & 7.18 & 7.85 & 7.85 & 7.89 & 7.87 \\
\hline 4 & 15.5 & 28.29 & 29.42 & 28.89 & 28.87 & 22.70 & 454.3 & 6.49 & 0.821E*07 & 0.00173 & 8.73 & 7.26 & 7.88 & 7.90 & 7.94 & 7.92 \\
\hline 5 & 25.5 & 28.55 & 29.73 & 29.27 & 29.20 & 22.92 & 456.5 & 6.45 & 0.836E+07 & 0.00285 & 8.66 & 7.16 & 7.68 & 7.76 & 7.79 & .78 \\
\hline 6 & 45.5 & 2t. 87 & 29.97 & 29.53 & 29.47 & 23.35 & 460.9 & 6.38 & 0.867E-07 & 0.00509 & 6. d \(^{6}\) & 7.37 & 7.89 & 7.96 & 8.00 & . 98 \\
\hline 7 & 75.5 & 29.31 & 30.49 & 29.93 & 29.92 & 24.01 & 467.8 & 6.28 & 0.915E-07 & 0.00846 & 9.17 & 7.50 & 8.22 & 8.23 & 8.28 & . 26 \\
\hline 8 & 105.5 & 29.75 & 31.05 & 30.36 & 30.38 & 24.65 & 474.9 & 6.18 & 0.965E+07 & 0.01183 & 9.54 & 7.61 & 8. 53 & 8.50 & 8.55 & . 52 \\
\hline 9 & 135.5 & 30.40 & 31.51 & 31.00 & 30.98 & 25.32 & 482.2 & 6.07 & 0.102E*08 & 0.01522 & 9.55 & 7.84 & 8.53 & 8.57 & 8. 61 & . 59 \\
\hline 10 & 165.2 & 32. 17 & 32.44 & 31.98 & 32.89 & 25.96 & 489.6 & 5.97 & 0.107E-08 & 0.08459 & 9.30 & 7.48 & 8. 06 & 8. 27 & c. 22 & . 20 \\
\hline 11 & 205.2 & 31.71 & 33.06 & 32.58 & 32.50 & 26.84 & 500.0 & 5.83 & 0.115E-08 & 0.02315 & 9.79 & 7.76 & 8.41 & 8.53 & 8.59 & . 56 \\
\hline 12 & 245.2 & 32.54 & 33.59 & 33.15 & 33.10 & 27.71 & 508.9 & 5.72 & 0.222E08 & 0.02770 & 9.99 & 8.21 & 8.87 & 8.94 & 8.99 & . 96 \\
\hline 13 & 275.2 & 32.97 & 34.04 & 33.77 & 33.64 & 28.36 & \$15.9 & 5.64 & 0.128E*08 & 0.03112 & 10.46 & 8.49 & 8.91 & 9.13 & 9.19 & . 16 \\
\hline 14 & 305.2 & 33.37 & 34.41 & 34.02 & 33.96 & 29.02 & 523.0 & 5.56 & 0.134E~08 & 0.03455 & 12.08 & 8.92 & 9.61 & 9.74 & 9.79 & . 77 \\
\hline 15 & 333.3 & 33.86 & 34.78 & 34.64 & 34.48 & 29.63 & 529.8 & 5.48 & 0.140E-08 & 0.0377 & 11.35 & 9.33 & 9.59 & 9.90 & 9.96 & 9.93 \\
\hline 16 & 363.3 & 34.34 & 35.29 & 34.95 & 34.88 & 30.29 & 537.3 & 5.40 & 0.146E*08 & 0.04121 & 11.84 & 9.58 & 10.29 & 10.44 & 10.50 & 10.47 \\
\hline 17 & 383.3 & 34.60 & 35.44 & 35.13 & 35.07 & 30.72 & 542.4 & 5.34 & 0.151E 08 & 0.04351 & 12.35 & 10.18 & 10.88 & 11.01 & 11.07 & 11.04 \\
\hline 18 & 403.3 & 34.85 & 35.70 & 35.32 & 35.30 & 31.16 & 547.6 & 5.29 & 0.155E-08 & 0.04582 & 12.96 & 10.55 & 11.49 & 11.56 & 11.62 & 11.59 \\
\hline 19 & 423.3 & 35.00 & 35.85 & 35.60 & 36.53 & 31.59 & 852.9 & 5.23 & 0.160E-08 & 0.04813 & 13.71 & 11.24 & 11.95 & 12.15 & 12.21 & 12.18 \\
\hline 20 & 443.3 & 35.15 & 35.81 & 35.60 & 35.54 & 32.03 & 558.0 & 5.18 & 0.165E +08 & 0.05046 & 15.30 & 12.65 & 13.37 & 13.61 & 13.67 & 13.64 \\
\hline 21 & 463.3 & 35.55 & 36.23 & 35.96 & 35.93 & 32.47 & 562.8 & 5.13 & 0.169E-08 & 0.06280 & 15.45 & 12.67 & 13.66 & 13.79 & 13.86 & 13.82 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THNOUEE STATIOAS 15 TO 20: \\

\end{tabular}} & 544.7 & 5.32 & 0.1535-08 & 0.04448 & 12.92 & 10.58 & 11.26 & 11.44 & 11.50 & 11.47 \\
\hline
\end{tabular}

DOARNALD IMCLIEATIOM \(\qquad\) \(6-500\)

INPUT ELECTMIC PONER 738. 1
MASS FLOURATE \(13.1321 \mathrm{G/S}\)




DONHAND IMCLIMATIOE \(\qquad\) 7-500

InPut blectric porkn e 923.6 U HSS FLOA RATE = \(12.4600 \mathrm{G} / \mathrm{s}\) PRSSUNE DMOp- 0.4986inili




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOM } \\
& \text { MO. }
\end{aligned}
\] & & \[
-\frac{-N T}{4}
\] & \[
8
\] & \[
\mathrm{c}
\] & \[
\begin{aligned}
& \text { C) } \\
& \text { AGB } \\
& \hline \text { CE }
\end{aligned}
\] & \begin{tabular}{l}
Ti \\
(C)
\end{tabular} & 这 & PR & 6 & 2. & 4 & B & \[
{ }_{c}^{\text {USERT }}
\] & T & E & 7-9 \\
\hline 3 & 5.5 & 36.33 & 38.55 & 37.44 & 37.44 & 22.49 & 411.6 & 6.52 & 0.126 E 008 & 0.00067 & 5.50 & 4.74 & 5.09 & 5.09 & 5.11 & 5.10 \\
\hline 4 & 15.5 & 36.45 & 38.53 & 37.58 & 37.52 & 22.86 & 415.0 & 6.46 & 0.130E+08 & 0.00190 & 5.60 & 4.86 & 5.18 & 5.19 & 5.20 & 5.20 \\
\hline 5 & 25.5 & 36.67 & 38.73 & 38.01 & 37.86 & 23.24 & 418.5 & 6.40 & \(0.1342 \times 08\) & 0.00313 & 5.66 & 4.91 & 5.14 & 5.20 & 5.21 & 5.21 \\
\hline 6 & 45.5 & 37.03 & 38.98 & 38.20 & 30.10 & 23.98 & 425.6 & 6.28 & 0.142E-08 & 0.00560 & 5.82 & 5.06 & 5.34 & 5.38 & 5.39 & 5.38 \\
\hline 7 & 75.5 & 37.42 & 39.47 & 30.50 & 30.47 & 25.10 & 436.7 & 6.11 & 0.156E 08 & 0.00931 & 6.15 & 5.27 & 5.65 & 5.66 & 5.68 & 5.67 \\
\hline 8 & 105.5 & 37.82 & 39.94 & 38.84 & 38.86 & 25.23 & 448.5 & 5.93 & 0.171E~08 & 0.01305 & 6.51 & 5.50 & 5.98 & 5.98 & 6.00 & 5.99 \\
\hline 9 & 135.5 & 38.32 & 40.32 & 39.42 & 39.37 & 27.35 & 459.9 & 5.71 & 0.186E+08 & 0.01681 & 6.86 & 5.81 & 6.24 & 6.26 & 6.29 & 6.27 \\
\hline 10 & 165.2 & 39.60 & 41.75 & 40.98 & 40.83 & 28.46 & 470.5 & 5.63 & 0.201E-08 & 0.02052 & 6.74 & 5.65 & 6.00 & 6.07 & 6.10 & 6.09 \\
\hline 11 & 205.2 & 40.31 & 42.26 & 41.42 & 41.35 & 29.95 & 485.6 & 5.44 & 0.223E+08 & 0.02556 & 7.23 & 6.08 & 6.53 & 6.57 & 6.59 & 6.50 \\
\hline 12 & 245.2 & 40.93 & 42.57 & 41.96 & 41.86 & 31.45 & 501.7 & 5.25 & 0.24TE 08 & 0.03062 & 7.67 & 6.71 & 7.10 & 7.17 & 7.19 & 7.18 \\
\hline 13 & 275.2 & 41.33 & 42.97 & 42.62 & 42.39 & 32.57 & 523.3 & 5.12 & 0.266E 08 & 0.03447 & 8.50 & 7.16 & 7.40 & 7.58 & 7.62 & 7.60 \\
\hline 14 & 305.2 & 41.76 & 43.26 & 42.60 & 42.55 & 33.69 & 524.8 & 4.99 & 0.284E+08 & 0.03836 & 9.20 & 7.75 & 8.33 & 8.37 & 8.40 & 8.39 \\
\hline 15 & 333.3 & 42.27 & 43.72 & 43.49 & 43.24 & 34.74 & 536.0 & 4.86 & 0.303E*08 & 0.04205 & 9.83 & 8.24 & 8.45 & 8.70 & 8.75 & 8.72 \\
\hline 16 & 363.3 & 42.81 & 44.27 & 43.79 & 43.66 & 35.86 & 548.6 & 4.73 & \(0.325 E+08\) & 0.04601 & 10.62 & 8.78 & 9.31 & 9.46 & 9.50 & 9.48 \\
\hline 17 & 383.3 & 43.15 & 44.33 & 43.81 & 43.78 & 36.61 & 557.3 & 4.65 & 0.340E*08 & 0.04868 & 11.25 & 9.54 & 10.23 & 10.28 & 10.31 & 10.30 \\
\hline 18 & 403.3 & 43.34 & 44.52 & 44.01 & 43.97 & 37.36 & 565.4 & 4.57 & 0.355E408 & 0.06131 & 12.29 & 10.26 & 12.06 & 11.12 & 11.17 & 11.14 \\
\hline 19 & 423.3 & 43.55 & 44.66 & 44.31 & 44.21 & 38.11 & 573.4 & 4.50 & 0.371E~08 & 0.05391 & 13.50 & 11.20 & 12.84 & 12.04 & 12.10 & 12.07 \\
\hline 20 & 443.3 & 43.54 & 44.49 & 44.09 & 44.05 & 38.85 & 581.6 & 4.44 & 0.386E 08 & 0.05653 & 15.65 & 13.02 & 14.00 & 14.10 & 14.17 & 14.13 \\
\hline 21 & 463.3 & 43.98 & 45.12 & 44.62 & 44.59 & 39.60 & 590.0 & 4.37 & 0.403E*08 & 0.05915 & 16.73 & 13.28 & 14.58 & 14.69 & 14.79 & 14.74 \\
\hline \multicolumn{7}{|l|}{AVERAGE VALUES THOUGE STATIOSS 15 T0 20: \(391.6 \quad 43.11 \quad 44.33 \quad 43.92 \quad 43.02 \quad 36\)} & 560.4 & 4.63 & 0.347E08 & 0.04975 & 12.19 & 10.17 & 10.81 & 10.95 & 11.00 & 10.97 \\
\hline
\end{tabular}
\(\qquad\) 1-1000

INPUT ELECIRIC PONER - 148.54
MASS FLOH RATE \(29.76856 / \$\)
 HEAT BALANCE ETAOR \(=0.20 \%\)


\(\qquad\) 2－1000



\(\qquad\) 3－1000

INPUT GLECTRIC PONER－\(\quad 468.2 \mathrm{~S}\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { ITON }
\end{aligned}
\]
\[
\mathrm{NO}
\] & & \[
4
\] & B & 6 & \[
\begin{aligned}
& \triangle \sqrt{2 R} \\
& \triangle E E
\end{aligned}
\] & （C） & L & PR & R & & \(A\) & B & & I & E & T＋日 \\
\hline 3 & 5.5 & 24.95 & 24.95 & 24.95 & 24.95 & 22.90 & 959.3 & 6.45 & \(0.657 E+07\) & 0.00029 & 18.71 & 18.70 & 18.71 & 18.71 & 18.71 & 18.71 \\
\hline 4 & 15.5 & 25.31 & 25.48 & 25.31 & 25.35 & 22.98 & 961.1 & 6.44 & 0．652Eャ07 & 0.00082 & 16.50 & 15.34 & 16.50 & 16.19 & 16.21 & 16.20 \\
\hline 5 & 25.5 & 25.52 & 25.80 & 25.67 & 25.66 & 23.06 & 962.8 & 6.43 & 0．666E－07 & 0.00136 & 15.58 & 14.02 & 14.72 & 14.74 & 14.76 & 14.75 \\
\hline 6 & 45.5 & 25.65 & 25.88 & 25.72 & 25.74 & 23.22 & 966.3 & 6.40 & 0．675Eャ07 & 0.00242 & 15.84 & 14.43 & 15.36 & 15.23 & 15.25 & 15.24 \\
\hline 7 & 75.5 & 25.82 & 26.18 & 25.91 & 25.95 & 23.47 & 971.6 & 6.36 & 0．689E＋07 & 0.00402 & 16.34 & 14.13 & 15.73 & ． 43 & 15.48 & 15.46 \\
\hline 8 & 105.5 & 25.96 & 26.46 & 26.24 & 26.18 & 23.71 & 977.0 & 6.33 & 0．703E＋07 & 0.00562 & 17.09 & 13.94 & 15.78 & 15.56 & 15.65 & 61 \\
\hline 9 & 135.5 & 26.29 & 26.71 & 26.48 & 26.49 & 23.96 & 982.5 & 6.29 & 0．717E＋07 & 0.00722 & 16.40 & 13.92 & 15.18 & 15.12 & 15.17 & 15.14 \\
\hline 10 & 165.2 & 26.42 & 26.95 & 26.71 & 26.70 & 24.20 & 987.9 & 6.25 & 0．732E＋0T & 0.00880 & 17.27 & 13.94 & 15.27 & 15.35 & 15.43 & 15.39 \\
\hline 11 & 205.2 & 26.67 & 27.18 & 26.96 & 26.94 & 24.53 & 995.3 & 6.20 & \(0.751 \mathrm{E}+07\) & 0.01094 & 87.89 & 14.43 & 15.71 & 15.84 & 15.93 & 15.89 \\
\hline 12 & 245.2 & 27.06 & 27.53 & 27.27 & 27.28 & 24.85 & 1002.9 & 6.15 & 0．772E＋07 & 0.01309 & 17.31 & 14.28 & 15.82 & 15.73 & 15.81 & 15.77 \\
\hline 13 & 275.2 & 27.17 & 27.68 & 27.50 & 27.46 & 25.10 & 1008. & 6.11 & \(0.787 \mathrm{E}+07\) & 0.01470 & 18.43 & 14.82 & 15.92 & 16.17 & 16.27 & 16.22 \\
\hline 14 & 305.2 & 27.39 & 27.86 & 27.66 & 27.64 & 25.34 & 1014.4 & 6.07 & 0．803E＋07 & 0.01631 & 18.64 & 15.20 & 16.45 & 16.60 & 16.69 & 16.64 \\
\hline 15 & 333.3 & 27.63 & 28.10 & 27.99 & 27.92 & 25.57 & 1019.9 & 6.03 & 0．818E～OT & 0.01782 & 18.60 & 15．12 & 15.81 & 16.23 & 16.33 & 16.28 \\
\hline 16 & 363.3 & 27.84 & 28.35 & 28.10 & 28.10 & 25.32 & 1025 & 5.99 & 0．835E 07 & 0.01944 & 18.85 & 25.08 & 16.73 & 16.74 & 16.85 & 16.79 \\
\hline 17 & 383.3 & 28.00 & 28.45 & 28.23 & 28.23 & 25. & 1029. & 5.97 & 0．846E＋C7 & 0.02052 & 18.85 & 25.42 & 16.94 & 16.95 & 17.04 & 7.00 \\
\hline 18 & 403.3 & 28.14 & 28.61 & 28.40 & 28.39 & 26.15 & 1033.8 & 5.94 & 0．857E＊07 & 0.02160 & 19.15 & 15.44 & 16.87 & 16.98 & 17.08 & ． 03 \\
\hline 19 & 423.3 & 28.32 & 28.83 & 28.60 & 28.59 & 26.31 & ． 9 & 6.92 & 0．869E～07 & 0.02268 & 18.91 & 15.12 & 16.63 & 16.71 & 16．82 & 16.77 \\
\hline 20 & 443.3 & 28.40 & 28.93 & 28.74 & 28.70 & 26.47 & 1042.0 & 5.89 & 0．880E＊07 & 0.02376 & 19.77 & 15.50 & 16.77 & 17.07 & 17.20 & 17.13 \\
\hline 21 & 463.3 & 28.65 & 29.17 & 29.01 & 28.96 & 26.64 & 1046.1 & 5.86 & 0．892E＊07 & 0.02484 & 18.91 & 15.03 & 16.05 & 16.39 & 26.51 & 16.45 \\
\hline \multicolumn{7}{|l|}{aVERaGE VaLUES THROUCB STATIOMS 15 IT 20： \(\begin{array}{llll} \\ 391 & 6 & 28.05 & 28.54 \\ 28.34 & 28.32 & 26.05\end{array}\)} & 1031.5 & 5.96 & 0.8518 .07 & 0.02097 & 19.02 & 15.28 & 16.62 & 16.78 & 16.89 & 16.83 \\
\hline
\end{tabular}

Downand zmctimatiom \(\qquad\) 4-1000

IMPUT ELECTRIC PONEA - 662.8 B
THAT MATE GAIMDD ET WATER \(=640.6 \mathrm{y}\) ERECTIOW FACTOR - 0.019669

Eat bainance buat * \(3.35 \%\) MHSS FLOU MTE - \(28.3221 \mathrm{G} / \mathrm{S}^{\circ}\) PABsule Denp \(0.55221+20\) FRDM - 19.6967

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { MOM } \\
& \hline
\end{aligned}
\] & & \[
-\mathrm{H}_{4}
\] & \[
5
\] & \[
c
\] &  & \[
\begin{aligned}
& 8 \\
& (\mathrm{c})
\end{aligned}
\] & E & PI & 6 & \(2 *\) & 2 & B & C & \[
\mathrm{I}
\] &  & T- 1 \\
\hline 3 & 5.5 & 25.56 & 25.70 & 25.63 & 25.63 & 22.80 & 942.8 & 6.47 & 0.908E-07 & 0.00030 & 19.37 & 18.41 & 18.88 & 18.88 & 18.88 & 18.88 \\
\hline 4 & 15.5 & 26.00 & 26.38 & 26.06 & 26.12 & 22.92 & 945.2 & 6.45 & 0.917E-07 & 0.00084 & 17.36 & 15.45 & 17.05 & 16.69 & 16.73 & 16.71 \\
\hline 5 & 25.5 & 26.32 & 26.76 & 26.55 & 26.55 & 23.03 & 947.7 & 6.43 & 0.925E-07 & 0.00138 & 16.24 & 14.33 & 15.17 & 15.20 & 15.23 & 15.21 \\
\hline 6 & 45.5 & 26.46 & 26.89 & 28.59 & 26.63 & 23.26 & 952.6 & 6.40 & 0.943 E -07 & 0.00246 & 16.70 & 14.72 & 16.06 & 15.85 & 15.88 & 15.87 \\
\hline 7 & 75.5 & 26.70 & 27.24 & 26.88 & 26.93 & 23.61 & 960.0 & 6.34 & 0.970E-07 & 0.00408 & 17.24 & 14.70 & 16.29 & 16.08 & 16.13 & 16.10 \\
\hline 8 & 105.5 & 26.96 & 27.69 & 27.20 & 27.26 & 23.95 & 967.5 & 6.29 & 0.998E-07 & 0.00570 & 17.73 & 14.26 & 16.42 & 16.11 & 16.21 & 16.16 \\
\hline 9 & 135.5 & 27.38 & 28.05 & 27.71 & 27.71 & 24.30 & 975.2 & 6.23 & 0.103E 0 - & 0.00733 & 17.29 & 14.21 & 15.63 & 15.62 & 15.69 & 15.66 \\
\hline 10 & 165.2 & 27.59 & 28.37 & 28.05 & 28.02 & 24.64 & 982.9 & 6.18 & 0.106E 08 & 0.00896 & 18.09 & 14.29 & 15.61 & 15.79 & 15.90 & 15.84 \\
\hline 11 & 205.2 & 27.89 & 28.71 & 28.36 & 28.33 & 25.11 & 993.5 & 6.11 & 0.110E +08 & 0.01113 & 29.07 & 14.75 & 16.34 & 16.48 & 16.62 & 16.55 \\
\hline 12 & 245.2 & 28.45 & 29.15 & 28.82 & 28.81 & 25.57 & 1004.4 & 6.03 & 0.114E+08 & 0.01331 & 18.41 & 14.83 & 16.38 & 16.41 & 16.50 & 16.45 \\
\hline 13 & 275.2 & 28.68 & 29.41 & 29.18 & 29.11 & 25.91 & 1022.6 & 5.98 & 0.117E-08 & 0.01495 & 19.21 & 15.20 & 16.25 & 16.60 & 16.73 & 16.67 \\
\hline 14 & 305.2 & 28.96 & 29.70 & 29.40 & 29.37 & 26.26 & 1021.0 & 5.92 & 0.120E~Ot & 0.01660 & 19.65 & 15.40 & 16.88 & 17.07 & 17.21 & 17.14 \\
\hline 15 & 333.3 & 29.38 & 30.13 & 29.94 & 29.85 & 26.58 & 1029.0 & 5.87 & 0.124E+08 & 0.01814 & 88.96 & 14.94 & 15.81 & 16.25 & 16.38 & 16.32 \\
\hline 16 & 363.3 & 29.71 & 30.52 & 30.15 & 30.13 & 26.93 & 1037.4 & 5.82 & 0.127E+08 & 0.01979 & 19.06 & 14.74 & 16.46 & 16.54 & 16.68 & 16.61 \\
\hline 17 & 383.3 & 29.96 & 30.68 & 30.33 & 30.32 & 27.16 & 1042.2 & 5.79 & 0.129E+08 & 0.02089 & 18.91 & 15.05 & 16.73 & 16.74 & 16.85 & 16.80 \\
\hline 18 & 403.3 & 30.16 & 30.92 & 30.56 & 30.55 & 27.39 & 1047.1 & 5.78 & 0.131E+08 & 0.02199 & 19.12 & 15.00 & 16.69 & 16.75 & 16.88 & 16.81 \\
\hline 19 & 423.3 & 30.45 & 31.21 & 30.90 & 30.86 & 27.62 & 1052.1 & 5.73 & 0.133E-08 & 0.02309 & 18.73 & 14.76 & 16.12 & 16.31 & 16.43 & 16.37 \\
\hline 20 & 443.3 & 30.59 & 31.41 & 31.00 & 31.04 & 27.85 & 1057.0 & 5.70 & 0.135E-08 & 0.02419 & 19.29 & 14.87 & 16.40 & 16.59 & 16.74 & 16.67 \\
\hline 21 & 463.3 & 31.23 & 32.31 & 31.53 & 31.65 & 28.08 & 1062.1 & 5.67 & 0.138E-08 & 0.02529 & 16.79 & 12.50 & 15.33 & 14.81 & 14.98 & 14.90 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES TEADUEI STATIONS 15} & \[
\frac{15}{30.46}
\] & \[
\frac{20:}{27.26}
\] & 1044.1 & 5.78 & 0.130E408 & 0.02136 & 19.01 & 14.89 & 16.37 & 16.53 & 16.66 & 16.60 \\
\hline
\end{tabular}

DOWMAID IMCLIMATIOM \(\qquad\) 5-1000 INPUT ELECTRIC PONER \(=889.5 ~ 4\)
HASS FLOV RATE \(27.7435 \mathrm{G} / \mathrm{S}\)

PAETSAT MATE GAIMED BY UATER - 876.1 U
- ERICTIOX FACTOR - 0.022679 BALANCE ERROR - 1.512

PAESSURE DAOP MTE GAIMED 0.611 H


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { NO. }
\end{aligned}
\] & \[
\overline{\mathrm{C}}
\] & \[
\text { - } 4
\] & \[
E N
\] & \[
\mathrm{Un}_{\mathrm{c}}
\] & \[
\begin{aligned}
& \text { C) } \\
& \text { AVE } \\
& \text { AGE }
\end{aligned}
\] & (C) & \(\underline{1}\) & PR & 6 & 6 & A & 8 & c & \[
\underline{I}
\] & \[
\underline{9}
\] & T* \({ }^{\text {P }}\) \\
\hline 3 & 5.5 & 26.70 & 27.10 & 26.90 & 26.90 & 22.75 & 922.5 & 6.48 & 0.124E*08 & 0.00030 & 18.52 & 16.80 & 17.62 & 17.62 & 17.64 & 17.63 \\
\hline 4 & 15.5 & 27.18 & 27.97 & 27.40 & 27.49 & 22.91 & 925.8 & 6.45 & 0.125E*08 & 0.00085 & 17.11 & 14.45 & 16.27 & 15.97 & 16.03 & 16.00 \\
\hline 5 & 25.5 & 27.64 & 28.44 & 28.02 & 28.03 & 23.07 & 929.1 & 6.43 & 0.127E+08 & 0.00140 & 15.99 & 13.61 & 14.77 & 14.74 & 14.78 & 14.76 \\
\hline 6 & 45.5 & 27.75 & 28.51 & 28.07 & 28.10 & 23.39 & 935.9 & 6.38 & 0.130E*08 & 0.00251 & 16.77 & 14.26 & 15.61 & 15.51 & 15.56 & 15.54 \\
\hline 7 & 75.5 & 28.15 & 29.05 & 28.50 & 28.55 & 23.88 & 946.1 & 6.30 & 0.136E*08 & 0.00417 & 17.08 & 14.11 & 15.77 & 15.61 & 15.68 & 15.65 \\
\hline 8 & 105.5 & 28.47 & 29.62 & 28.91 & 28.98 & 24.36 & 956.6 & 6.22 & 0.141E08 & 0.00583 & 17.74 & 13.85 & 16.03 & 15.79 & 15.91 & 15.85 \\
\hline 9 & 135.5 & 29.08 & 30.06 & 29.52 & 29.55 & 24.84 & 967.3 & 6.15 & 0.147E00 & 0.00750 & 17.27 & 13.96 & 15.56 & 15.48 & 15.56 & 25.52 \\
\hline 10 & 165.2 & 29.34 & 30.54 & 30.02 & 29.98 & 25.32 & 978.2 & 6.07 & 0.153E+08 & 0.00915 & 18.11 & 13.92 & 15.49 & 15.62 & 15.75 & 15.68 \\
\hline 11 & 205.2 & 29.74 & 30.94 & 30.43 & 30.38 & 25.97 & 993.2 & 5.97 & 161E-08 & 0.01138 & 19.26 & 14.59 & 16.27 & 16.43 & 16.60 & 16.52 \\
\hline 12 & 245.2 & 30.59 & 31.72 & 31.24 & 32.20 & 26.61 & 1008.7 & 5.87 & 0. 170E+08 & 0.01363 & 18.21 & 14.20 & 15.65 & 15.80 & 15.93 & 15.87 \\
\hline 13 & 275.2 & 31.07 & 32.25 & 31.87 & 31.77 & 27.10 & 1019.6 & 5.80 & 0.176E+08 & 0.01531 & 18.20 & 14.04 & 15.17 & 15.50 & 15.65 & 15.58 \\
\hline 14 & 305.2 & 31.47 & 32.76 & 32.18 & 32.15 & 27.58 & 1029.7 & 5.74 & 0.182E-08 & 0.01699 & 18.58 & 13.97 & 15.74 & 15.84 & 16.00 & 15.92 \\
\hline 15 & 333.3 & 32.11 & 33.44 & 33.08 & 32.93 & 28.03 & 1039.3 & 5.68 & 0.188E 08 & 0.01857 & 17.73 & 13.35 & 14.31 & 14.75 & 14.92 & 14.84 \\
\hline 16 & 363.3 & 32.55 & 33.92 & 33.38 & 33.31 & 28.52 & 1049.7 & 5.62 & 0.194E*0 & 0.02026 & 17.88 & 13.35 & 14.85 & 15.06 & 15.23 & 15.15 \\
\hline 17 & 383.3 & 32.92 & 34.08 & 33.59 & 33.55 & 28.84 & 1056.8 & 5.58 & 0.198E+08 & 0.02138 & 17.65 & 13.75 & 15.17 & 15.31 & 15.44 & 15.37 \\
\hline 18 & 403.3 & 33.22 & 34.40 & 33.87 & 33.84 & 29.16 & 1064.0 & 5.54 & \(0.203 \mathrm{E}+08\) & 0.02251 & 17.74 & 13.75 & 15.31 & 25.40 & 15.53 & 15.46 \\
\hline 19 & 423.3 & 33.49 & 34.70 & 34.28 & 34.19 & 29.48 & 1071.3 & 5.50 & 0.207E-08 & 0.02364 & 17.97 & 13.80 & 15.02 & 25.31 & 15.45 & 25.38 \\
\hline 20 & 443.3 & 33.63 & 34.82 & 34.37 & 34.30 & 29.81 & 1078. 7 & 5.46 & 0.212E-08 & 0.02477 & 18.80 & 24.35 & 15.78 & 16.02 & 16.18 & 16.10 \\
\hline 21 & 463.3 & 34.04 & 35.25 & 34.90 & 34.77 & 30.13 & 1086.2 & 5.42 & 0.217E+08 & 0.02590 & 18.38 & 14.03 & 15.08 & 15.49 & 15.64 & 15.57 \\
\hline \multicolumn{7}{|l|}{AVERAGE VALUES THROUCR STATIONS 15 TO 20: \(\begin{array}{llllllllll}391.6 & 32.99 & 34.23 & 33.76 & 33.68 & 28.97\end{array}\)} & 1060.0 & 5.56 & \(0.200 E+08\) & 0.02186 & 17.96 & 13.72 & 15.07 & 15.31 & 15.46 & 15.38 \\
\hline
\end{tabular}

DONTURD INCLTMATIOM \(\qquad\) 6-1000
input electaic ponen - 1176.2 y


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 5TA- } \\
& \text { TIOO. }
\end{aligned}
\] & & - HALL & d & \[
c
\] & \[
\begin{aligned}
& \text { C) } \\
& \text { AES }
\end{aligned}
\] & \[
\begin{aligned}
& 7 \\
& -\quad \text { (c) }
\end{aligned}
\] & IE & PR & 6. & 2. & 4 & B & \[
c
\] & \[
\mathrm{I}
\] & HGE & T+ \\
\hline 3 & 5.5 & 29.72 & 31.29 & 30.51 & 30.51 & 23.00 & 896.3 & 6.44 & 0.163E-08 & 0.00031 & 14.05 & 11.40 & 12.59 & 12.59 & 12.66 & 12.62 \\
\hline 4 & 15.5 & 30.00 & 31.63 & 30.66 & 30.74 & 23.22 & 900.6 & 6.40 & 0.166E+08 & 0.00088 & 13.93 & 11.23 & 12.68 & 12.56 & 12.53 & 12.60 \\
\hline 5 & 25.5 & 30.45 & 32.04 & 32.34 & 31.29 & 23.44 & 905.0 & 6.37 & 0.169E-08 & 0.00146 & 13.45 & 10.96 & 11.93 & 12.01 & 12.07 & 12.04 \\
\hline 6 & 45.5 & 30.52 & 32.07 & 31.32 & 31.31 & 23.87 & 913.8 & 6.30 & 0.175E-08 & 0.00260 & 14.16 & 11.49 & 12.65 & 12.67 & 12.74 & 12.70 \\
\hline 7 & 75.5 & 31.01 & 32.86 & 31.80 & 31.82 & 24.51 & 927.4 & 5.20 & 0.185E+08 & 0.00432 & 14.49 & 12.55 & 12.92 & 12.89 & 12.97 & 12.93 \\
\hline 8 & 105.5 & 31.48 & 33.40 & 32.31 & 32.38 & 25.16 & 941.5 & 6.10 & 0.195E-08 & 0.00605 & 14.36 & 11.41 & 13.14 & 13.02 & 13.14 & 13.08 \\
\hline 9 & 135.5 & 32.01 & 33.77 & 32.95 & 32.92 & 25.81 & 955.9 & 5.99 & 0.205E+08 & 0.00778 & 15.12 & 11.79 & 13.13 & 13.19 & 13.29 & 23.24 \\
\hline 10 & 165.2 & 32.87 & 34.95 & 34.11 & 34.08 & 26.45 & 970.6 & 5.89 & \(0.216 E+08\) & 0.00950 & 14.59 & 11.02 & 12.23 & 12.39 & 12.52 & 12.45 \\
\hline 11 & 205.2 & 33.42 & 35.52 & 34.51 & 34.49 & 27.31 & 989.3 & 5.77 & 0.231E008 & 0.01182 & 15.30 & 21.39 & 12.98 & 23.02 & 13.27 & 23.09 \\
\hline 12 & 245.2 & 34.43 & 36.26 & 35.47 & 35.41 & 28.17 & 1006.9 & 5.66 & 0.245E-08 & 0.01414 & 14.92 & 11.53 & 12.79 & 12.90 & 13.02 & 22.95 \\
\hline 13 & 275.2 & 34.95 & 36.83 & 36.24 & 36.06 & 28.82 & 1020.6 & 5.58 & 0.256E-08 & 0.01589 & 15.21 & 11.63 & 12.56 & 12.86 & 12.99 & 12.93 \\
\hline 14 & 305.2 & 35.27 & 37.10 & 36.3 3 & 36.28 & 29.46 & 1034.6 & 5.50 & 0.268t-08 & 0.01764 & 16.02 & 12.19 & 13.46 & 13.65 & 13.78 & 13.72 \\
\hline 15 & 333.3 & 36.03 & 37.79 & 37.34 & 37.13 & 30.07 & 1048.1 & 5.42 & 0.279E+08 & 0.01929 & 15.58 & 12.04 & 12.78 & 13.17 & 13.30 & 13.23 \\
\hline 16 & 363.3 & 36.46 & 38.27 & 37.59 & 37.48 & 30.72 & 1062.9 & 5.34 & 0.292E+08 & 0.02105 & 16.17 & 12.28 & 13.51 & 13.73 & 13.87 & 13.80 \\
\hline 17 & 383.3 & 36.75 & 38.36 & 37.75 & 37.65 & 31.15 & 1073.0 & 5.29 & 0.301E & 0.02222 & 16.54 & 12.85 & 14.04 & 14.25 & 14.37 & 14.31 \\
\hline 18 & 403.3 & 37.02 & 38.65 & 37.99 & 37.91 & 31.58 & 1083.2 & 5.23 & 0.310E+08 & 0.02340 & 17.03 & 13.10 & 14.46 & 14.63 & 14.76 & 14.70 \\
\hline 19 & 423.3 & 37.32 & 38.84 & 38.35 & 38.22 & 32.01 & 1093.2 & 5.18 & 0.319E008 & 0.02458 & 17.44 & 13.54 & 14.59 & 14.91 & 15.04 & 14.98 \\
\hline 20 & 443.3 & 37.35 & 38.82 & 38.33 & 38.21 & 32.44 & 1102.3 & 5.13 & 0.327E-08 & 0.02578 & 18.84 & 14.49 & 15.70 & 16.03 & 16.18 & 16.10 \\
\hline 21 & 463.3 & 37.91 & 39.41 & 38.76 & 38.71 & 32.87 & 1111.7 & 5.08 & \(0.336 \mathrm{E}+08\) & 0.02698 & 18.32 & 14.13 & 15.67 & 15.81 & 15.95 & \$5.88 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { AVERAGE Y/ } \\
391.6
\end{array}
\]} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { LLUES THINUC } \\
& 36.82 \\
& 38.46 \\
& 37.89
\end{aligned}
\]} & \[
\frac{15}{37} .70
\] & \[
{ }^{20} \bar{i} .33
\] & 1077.1 & 5.27 & 0.305E+08 & 0.02272 & 16.93 & 13.05 & 14.18 & 14.45 & 14.59 & 14.52 \\
\hline
\end{tabular}

DOMUHAD IMCLIMATIOE \(\qquad\) 1-1500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & C)- & TB & \(\underline{18}\) & PR & Ga & 2 & & & & & & \\
\hline TOO & & A & 8 & C & \[
\begin{aligned}
& \text { AVER- } \\
& \text { AEE } \\
& \hline
\end{aligned}
\] & (C) & & & & & 4 & 8 & C & T &  & T + E \\
\hline 3 & 5.5 & 22.84 & 22.80 & 22.82 & 22.82 & 22.23 & 1487.5 & 6.56 & \(0.220 E \cdot 07\) & 0.00019 & 22.43 & 23.97 & 23.18 & 23.18 & 23.19 & 23.18 \\
\hline 4 & 15.5 & 22.99 & 23.00 & 22.96 & 22.98 & 22.25 & 1488.1 & 6.56 & 0.220E+07 & 0.00052 & 18.46 & 18.25 & 19.18 & 18.76 & 18.77 & 18. \\
\hline 5 & 25.5 & 23.07 & 23.13 & 23.09 & 23.10 & 22.27 & 1488.7 & 6.55 & 0.220E-07 & 0.00086 & 16.88 & 15.80 & 16.50 & 16.41 & 16.42 & 16.42 \\
\hline 6 & 45.5 & 23.21 & 23.25 & 23.23 & 23.23 & 22.31 & 1489.9 & 6.55 & \(0.221 E+07\) & 0.00153 & 15.08 & 14.36 & 14.68 & 14.70 & 14.70 & 14.70 \\
\hline 7 & 75.5 & 23.26 & 23.35 & 23.25 & 23.28 & 22.36 & 1491.7 & 6.54 & \(0.222 \mathrm{E}-07\) & 0.00255 & 15.09 & 13.76 & 15.22 & 14.80 & 14.82 & 14.81 \\
\hline 8 & 105.5 & 23.28 & 23.39 & 23.32 & 23.33 & 22.42 & 1493.5 & 6.53 & \(0.223 \mathrm{E} \cdot 07\) & 0.00356 & 15.71 & 13.99 & 14.99 & 14.91 & 14.94 & 14.92 \\
\hline 9 & 135.5 & 23.36 & 23.48 & 23.41 & 23.42 & 22.47 & 1495.3 & 6.52 & 0.224 E 07 & 0.00457 & 15.21 & 13.50 & 14.41 & 24.36 & 14.38 & 14.37 \\
\hline 10 & 165.2 & 23.28 & 23.41 & 23.43 & 23.38 & 22.53 & 1497.1 & 6.51 & \(0.225 E+07\) & 0.00557 & 18.09 & 15.41 & 25.03 & 15.80 & 15.89 & 15.85 \\
\hline 11 & 205.2 & 23.43 & 23.64 & 23.61 & 23.57 & 22.60 & 1499.5 & 6.50 & 0.226E-07 & 0.00692 & 16.37 & 13.07 & 13.46 & 13.98 & 14.09 & 14.0 \\
\hline 12 & 245.2 & 23.67 & 23.74 & 23.69 & 23.70 & 22.67 & 1501.9 & 6.49 & 0.228E-07 & 0.00827 & 13.58 & 12.75 & 13.33 & 13.25 & 13.25 & 25 \\
\hline 13 & 275.2 & 23.66 & 23.77 & 23.72 & 23.72 & 22.73 & 1503.7 & 6.4t & 0.229E-07 & 0.00929 & 14.54 & 13.02 & 13.69 & 13.71 & 13.73 & 13.72 \\
\hline 14 & 305.2 & 23.70 & 23.85 & 23.80 & 23.79 & 22.78 & 1505.6 & 4.4 & 0.230E-07 & 0.01030 & 14.72 & 12.72 & 13.35 & 13.50 & 13.53 & 13.52 \\
\hline 15 & 333.3 & 23.73 & 23.84 & 23.81 & 23.80 & 22.83 & 1507.3 & 6.46 & \(0.231 \mathrm{E}-07\) & 0.01125 & 15.18 & 13.50 & 13.88 & 14.08 & 14.11 & 09 \\
\hline 16 & 363.3 & 23.83 & 23.94 & 23.89 & 23.89 & 22.89 & 1509.1 & 6.46 & 0.232E-07 & 0.01227 & 14.45 & 12.86 & 13.57 & 13.59 & 13.62 & 13.60 \\
\hline 17 & 383.3 & 23.84 & 23.95 & 23.91 & 23.90 & 22.93 & 1510.4 & 6.45 & \(0.233 E+07\) & 0.01294 & 14.84 & 13.25 & 13.82 & 13.91 & 13.94 & 13.92 \\
\hline 18 & 403.3 & 23.81 & 23.95 & 23.89 & 23.89 & 22.96 & 1511.6 & 6.44 & \(0.233 E+07\) & 0.01362 & 16.04 & 13.75 & 14.55 & 14.68 & 14.73 & 14.70 \\
\hline 19 & 423.3 & 23.85 & 23.99 & 23.94 & 23.93 & 23.00 & 1512.8 & 6.44 & \(0.234 E+07\) & 0.01430 & 15.85 & 13.71 & 14.47 & 14.58 & 14.62 & 14.60 \\
\hline 20 & 443.3 & 23.90 & 24.02 & 23.96 & 23.96 & 23.04 & 1514.1 & 6.43 & \(0.235 E-07\) & 0.01497 & 15.77 & 13.71 & 14.61 & 14.64 & 14.67 & 14.65 \\
\hline 21 & 463.3 & 24.13 & 24.06 & 24.21 & 24.15 & 23.07 & 1515.3 & 6.43 & 0.236Et07 & 0.01565 & 12.83 & 13.65 & 11.89 & 12.52 & 12.57 & 12.55 \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{r}
\text { AVERAGE Va } \\
391.6
\end{array}
\]} & \[
{ }_{23.83}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { apuch STations } \\
& 23.95 \text { 23.90 }
\end{aligned}
\]} & \[
\begin{array}{r}
1570 \\
23.89
\end{array}
\] & \[
20:
\] & 1510.9 & 6.45 & \(0.2338 \cdot 07\) & 0.01322 & 15.35 & 13.46 & 14.25 & 14.25 & 14.28 & 14.26 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STa } \\
& \text { M0 } \\
& \hline 0 .
\end{aligned}
\] & \[
\overline{\mathbf{2}}
\] & \[
I
\] & \[
8
\] & \[
c
\] & \[
\begin{aligned}
& \text { Ca) } \\
& \text { ave } \\
& \text { ave }
\end{aligned}
\] & \[
\begin{aligned}
& 78 \\
& \text { (C) }
\end{aligned}
\] & L & PT & 62 & 2 & 4 & － & \[
\bar{c}
\] & \[
I
\] & & T＋1星 \\
\hline 3 & 5.5 & 23.84 & 23.81 & 23.82 & 23.82 & 22.73 & 1479.7 & 6.48 & 0．426E＋07 & 0.00019 & 22.70 & 23.39 & 23.04 & 23.04 & 23.04 & 23.04 \\
\hline 4 & 15.5 & 24.12 & 24.14 & 24.09 & 24.11 & 22.76 & 1480.8 & 6.48 & 0．427E007 & 0.00053 & 18.59 & 18.29 & 28.97 & 18.70 & 18.71 & 18.70 \\
\hline 5 & 25.5 & 24.37 & 24.45 & 24.39 & 24.40 & 22.80 & 1482.0 & 6.47 & 0．428E－07 & 0.00087 & 16.05 & 15.25 & 15.79 & 15.72 & 15.72 & 15.72 \\
\hline 6 & 45.5 & 24.44 & 24.5 & 24.46 & 24.47 & 22.87 & 1484.2 & 6.46 & 0．431E407 & 0.00256 & 16.01 & 15.32 & 15.80 & 15.73 & 15.73 & 15.73 \\
\hline 7 & 75.5 & 24.54 & 24．7！ & 24.57 & 24.60 & 22.97 & 1487. & 6.44 & 0．434E－07 & 0.00259 & 16.07 & 14.49 & 15.79 & 15.51 & 15.54 & 15.52 \\
\hline 8 & 105.5 & 24.59 & 24.84 & 24.63 & 24.67 & 23.07 & 1491 & 6.43 & 0．438E＋07 & 0.00362 & 16.63 & 14.25 & 25.15 & 25.74 & 15.80 & 15.71 \\
\hline 9 & 135.5 & 24.76 & 24.98 & 24.86 & 24.8 & 23.18 & 1494.6 & 6.41 & \(0.442 E+07\) & 0.00465 & 15.93 & 13.96 & 14.94 & 14.91 & 14.95 & 14.93 \\
\hline 10 & 165.2 & 24.64 & 24.94 & 24.86 & 24.82 & 23.28 & 1498．0 & 6.39 & 0.446 C 407 & 0.00567 & 18.55 & 15.18 & 15.97 & 16.32 & 16.42 & 16.37 \\
\hline 11 & 205.2 & 24.91 & 25.23 & 25.09 & 25.08 & 23.42 & 1502.7 & 6.37 & 0．461E＊07 & 0.00705 & 16.92 & 13.93 & 15.08 & 15.18 & 15.25 & 15.22 \\
\hline 12 & 245.2 & 25.20 & 25.38 & 25.26 & 25.27 & 23.56 & 1507.4 & 6.35 & 0．456E－07 & 0.00843 & 15.33 & 13.80 & 14.82 & 14.67 & 14.69 & 14.68 \\
\hline 13 & 275.2 & 25.19 & 25.44 & 25.34 & 25.33 & 23.68 & 1510.9 & 6.33 & 0．460E +07 & 0.00946 & 16.44 & 14.12 & 14.97 & 15.00 & 15.13 & 15.10 \\
\hline 14 & 305 & 25.24 & 25.50 & 25.40 & 25.38 & 23.75 & 1514.5 & 6.32 & 0．464E 07 & 0.01049 & 17.06 & 14.49 & 15.44 & 15.55 & 15.61 & 15.58 \\
\hline 15 & 333.3 & 25.37 & 25.59 & 25.54 & 25.51 & 23.86 & 1517．0 & 6.30 & 0．468E～07 & 0.01146 & 16.69 & 14.54 & 15.03 & 15.28 & 15.32 & 15.30 \\
\hline 16 & 363.3 & 25.42 & 25.67 & 25.52 & 25.53 & 23.97 & 2521.4 & 6.29 & 0．472E＋07 & 0.01250 & 17.35 & 24.76 & 16.24 & 16.09 & 16.14 & 16.12 \\
\hline 17 & 383.3 & 25.46 & 25.69 & 25.58 & 25.58 & 24.04 & 1523.8 & 6.27 & 0．474E－07 & 0.01329 & 17.66 & 15.17 & 16.28 & 16.30 & 16.34 & 16.32 \\
\hline 18 & 403.3 & 25.44 & 25.72 & 25.57 & 25.58 & 24.10 & 1526.2 & 6.26 & 0．4TTE－07 & 0.01388 & 18.87 & 15.59 & 17.11 & 17.09 & 17.17 & 17.13 \\
\hline 19 & 423.3 & 25.56 & 25.83 & 25.73 & 25.72 & 24.17 & 1528.6 & 6.25 & 0．480E－07 & 0.01457 & 18.17 & 15.15 & 16.12 & 16.32 & 16.39 & 16.36 \\
\hline 20 & 443.3 & 25.56 & 25.86 & 25.73 & 25.72 & 24.24 & 1531.0 & 6.24 & \(0.402 \mathrm{E}-07\) & 0.01526 & 19.16 & 15.59 & 16.86 & 17.03 & 17.12 & 17.07 \\
\hline 21 & 463.3 & 25.81 & 25.94 & 26.02 & 25.94 & 24．31 & 1533.5 & 6.23 & 0．485E－07 & 0.01595 & 16.76 & 15.46 & 14.84 & 15.44 & 15.47 & 15.45 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE VALUES THONUE STATTOUS 15 TO 20： \\

\end{tabular}} & 1524.8 & 6.27 & \(0.475 E \cdot 07\) & 0.01348 & 17.98 & 15.13 & 16.27 & 16.35 & 16.42 & 16.38 \\
\hline
\end{tabular}

DOHUAND IMCLIMATIOM \(\qquad\) 3－1800

INPUT ELECTRIC POUER＝ 487.1 V
TEAT RATE GAIMDD BY UATER－ 492.4 TEAT RATE GAIMID FAICTIOW FACTU先－ 0.012442 ［isat balamce bilok e－1．082 INPUI EISCIRIC PONER＝ \(487 .{ }^{1}\) PRessule diape 0.8361 Nim 20
 IIDA－ 18.7126

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { Now }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& \mathrm{NO} \\
& \hline 1
\end{aligned}
\] & -WALI & \[
0
\] & \(c\) &  & (C) & L & & 6 & 2＊ & 4 & B & \[
\mathbf{c}
\] & \[
I
\] & B & T + E \\
\hline 3 & 5.5 & 24.70 & 24.67 & 24.69 & 24.69 & 22.87 & 1460.2 & 6.46 & 0．702E＊07 & 0.00019 & 22.45 & 22.79 & 22.62 & 22.62 & 22.62 & 22.62 \\
\hline 4 & 15.5 & 25.03 & 25.20 & 25.03 & 25.07 & 22.93 & 1462.1 & 6.45 & 0．705E＋07 & 0.00054 & 19.53 & 18.05 & 19.53 & 19.14 & 19.16 & 19.15 \\
\hline 5 & 25.5 & 25.33 & 25.58 & 25.45 & 25.45 & 22.98 & 1463.9 & 6.44 & 0．709E＋07 & 0.00089 & 17.50 & 15.83 & 16.68 & 16.65 & 16.67 & 16.66 \\
\hline 6 & 45.5 & 25.39 & 25.63 & 25.47 & 25.49 & 23.10 & 1467.7 & 6.42 & 0．715E＋OT & 0.00159 & 17.89 & 16.21 & 17.32 & 17.16 & 17.18 & 17.17 \\
\hline 7 & 75.5 & 25.54 & 25.85 & 25.60 & 25.65 & 23.27 & 1473.3 & 6.40 & 0．725E＋07 & 0.00264 & 18.10 & 15.92 & 17.62 & 17.27 & 17.32 & 17.30 \\
\hline 8 & 105.5 & 25.65 & 26.04 & 25.75 & 25.80 & 23.44 & 1479.0 & 6.37 & \(0.736 \mathrm{E}+07\) & 0.00368 & 18.59 & 15.78 & 17.77 & 17.41 & 17.48 & 17.45 \\
\hline 9 & 135.5 & 25.88 & 26.24 & 26.01 & 26.03 & 23.61 & 1484.8 & 6.34 & \(0.746 \mathrm{E}+07\) & 0.00473 & 18.14 & 15.64 & 17.14 & 16.97 & 17.02 & 16.99 \\
\hline 10 & 165.2 & 25.72 & 26.19 & 26.01 & 25.98 & 23.78 & 1490.5 & 6.31 & 0．757E＊07 & 0.00577 & 21.15 & 17.01 & 18.45 & 38.65 & 18．77 & 18.71 \\
\hline 11 & 205.2 & 26.00 & 26.48 & 26.29 & 26.27 & 24.01 & 1498.3 & 6.28 & 0．771E＊07 & 0.00718 & 20.68 & 16.61 & 18.00 & 18.21 & 18.32 & 18.26 \\
\hline 12 & 245.2 & 26.40 & 26.78 & 26.54 & 26.56 & 24.24 & 1506.2 & 6.24 & 0.786 E 07 & 0.00858 & 19.04 & 16.17 & 17.81 & 17.65 & 17.71 & 17.68 \\
\hline 13 & 275.2 & 26.45 & 26.90 & 26.72 & 26.69 & 24.42 & 1512.1 & 6.21 & 0．797Eャ07 & 0.00963 & 20.16 & 16.51 & 17.81 & 17.98 & 18.07 & 18.03 \\
\hline 14 & 305.2 & 26.55 & 27.04 & 26．E2 & 26.81 & 24.59 & 1518.1 & 6.19 & 0．809E 07 & 0.01069 & 20.82 & 16.67 & 18.30 & 18.41 & 18.52 & 18.47 \\
\hline 15 & 333.3 & 26.82 & 27.32 & 27.15 & 27.11 & 24.75 & 1523.8 & 6.16 & 0．819E607 & 0.01168 & 19.78 & 15.92 & 17.03 & 17.33 & 17.44 & 17．38 \\
\hline 16 & 363.3 & 26.92 & 27.40 & 27.17 & 27.17 & 24.92 & 1529.9 & 6.13 & 0．831E 0.07 & 0.01273 & 20.44 & 16.50 & 18.17 & 18.22 & 18.32 & 18.27 \\
\hline 17 & 383.3 & 27.03 & 27.50 & 27.23 & 27.24 & 25.04 & 1534.0 & 6.12 & \(0.838 \mathrm{E}+07\) & 0.01344 & 20.55 & 16.62 & 18.65 & 18.51 & 18.62 & 18.57 \\
\hline 13 & 403.3 & 27.15 & 27.60 & 27.37 & 27.37 & 25.15 & 1538.1 & 6.10 & 0．846E 07 & 0.01414 & 20.43 & 16.68 & 18.44 & 18.40 & 18.49 & 18.45 \\
\hline 19 & 423.3 & 27.26 & 27.74 & 27.56 & 27.53 & 25.27 & 1542.2 & 6.08 & 0．854E＋07 & 0.01485 & 20.47 & 16.54 & 17.81 & 28.05 & 18.16 & 28.10 \\
\hline 20 & 443.3 & 27.36 & 27.86 & 27.62 & 27.61 & 25.38 & 1546.4 & 6.06 & 0．862E－07 & 0.01556 & 20.67 & 16.49 & 18.26 & 18.30 & 18.42 & 18.36 \\
\hline 21 & 463.3 & 27.67 & 28.01 & 27.94 & 27.89 & 25.49 & 1550.5 & 6.04 & \(0.8708+07\) & 0.01626 & 18.81 & 16.21 & 16.70 & 17.05 & 17.10 & 17.08 \\
\hline \multicolumn{7}{|l|}{} & 1535.7 & 6.11 & \(0.842 \mathrm{E}+07\) & 0.01373 & 20.39 & 16.46 & 18.06 & 18.13 & 18.24 & 18.19 \\
\hline
\end{tabular}
\(\qquad\) 4-8500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOM } \\
& \hline
\end{aligned}
\] & \({ }^{2}\) & \[
-4 a
\] & & c & \[
\begin{aligned}
& \text { AVE } \\
& \text { AGE } \\
& \hline
\end{aligned}
\] &  & & PR & G & & 4 & 8 & & \[
I
\] & 冝 & T+ \\
\hline 3 & 5.5 & 25.48 & 25.45 & 25.46 & 25.46 & 22.99 & 1440.1 & 6.44 & 0.9925007 & 0.00020 & 23.15 & 23.37 & 23.25 & 23.26 & 23.28 & 23.26 \\
\hline 4 & 15.5 & 26.24 & 26.54 & 26.24 & 28.32 & 23.07 & 1442.7 & 6.43 & 0.999E-07 & 0.00055 & 18.14 & 16.57 & 18.14 & 17.72 & 27.75 & . 73 \\
\hline 5 & 25.5 & 26.54 & 26.87 & 26.72 & 28. & 23.16 & 1445.3 & 6.41 & 0.101E-08 & 0.00090 & 16.98 & 15.47 & 16.13 & 16.16 & 16.18 & 17 \\
\hline 6 & 45.5 & 26.60 & 26.96 & 26.67 & 26. & 23.32 & 1450.6 & 6.39 & 0.102E+08 & 0.00162 & 17.52 & 15.84 & 17.13 & 16.88 & 16.91 & 16.89 \\
\hline 7 & 75.5 & 26.70 & 27.18 & 26.83 & 26 & 23.56 & 14 & 6.35 & \(0.104 \mathrm{E}-08\) & 0.00268 & 18.29 & 15.85 & 17.59 & 17.29 & 17.33 & 17.31 \\
\hline 8 & 105.5 & 26.85 & 27.53 & 27.01 & 27.10 & 23 & 1466.7 & 6.32 & 0.106E*08 & 0.00375 & 18.88 & 15.44 & 17.94 & 17.46 & 17.55 & 17.50 \\
\hline 9 & 135.5 & 27.24 & 27.77 & 27 & 27.50 & 24.06 & 1474 & 6.27 & 0.200E 08 & 0.00482 & 17.99 & 15.43 & 16.71 & 16.66 & 16.71 & . 69 \\
\hline 10 & 165.2 & 26.95 & 27.70 & 27-44 & 27.38 & 24.30 & 1483 & 6.23 & \(0.110 \mathrm{E}+08\) & 0.00588 & 21.63 & 16.84 & 18.25 & 18.59 & 18.74 & 18.67 \\
\hline 11 & 205.2 & 27.45 & 28.13 & 27.7 & 27. & 24.62 & 1494.3 & 6. 18 & 0.1838008 & 0.00732 & 20.28 & 16.35 & 28.88 & 18.14 & 18.25 & 18.20 \\
\hline 12 & 245.2 & 27.81 & 28.45 & 28.11 & 28.12 & 24.95 & 1505.6 & 6.13 & 0.116E*08 & 0.00874 & 19.99 & 16.34 & 18.11 & 18.05 & 18.14 & 18.09 \\
\hline 13 & 275.2 & 27.90 & 28.57 & 28.34 & 28.29 & 25.19 & 1514.2 & 6.09 & 0.119E+08 & 0.00981 & 21.17 & 16.95 & 18.19 & 18.50 & 18.62 & :8.56 \\
\hline 14 & 305.2 & 28.06 & 28.75 & 28.42 & 28.41 & 25.44 & 1523.0 & 6.05 & 0.121E+08 & 0.01089 & 21.79 & 17.26 & 19.17 & 19.22 & 19.35 & 19.28 \\
\hline 15 & 333.3 & 28.43 & 29.13 & 28.91 & 28 & 25 & 1531.2 & 6.02 & \(0.124 E 008\) & 0.01190 & 20.67 & 16.51 & 17.65 & 18.00 & 18.12 & 18.06 \\
\hline 16 & 363.3 & 28.59 & 29.30 & 28.97 & 28. & 25.91 & 1540. & 5.9 & 0.126E 0 Ot & 0.01296 & 21.30 & 16.89 & 18.69 & 18.77 & 18.89 & 18.83 \\
\hline 17 & 383.3 & 28.76 & 29.41 & 29.04 & 29. & 26 & 1546.2 & 5.96 & \(0.128 E+08\) & 0.01370 & 21.29 & 17.12 & 19.25 & 19.12 & 19.23 & 19.17 \\
\hline 18 & 403. & 28.87 & 29.57 & 29.16 & 29.19 & 26.24 & 2552.2 & 5.93 & 0.129E*08 & 0.01442 & 21.73 & 17.14 & 19.54 & 19.35 & 19.49 & 19.42 \\
\hline 19 & 423.3 & 28.99 & 29.72 & 29.41 & 29.39 & 26.40 & 1558.3 & 5. & 0.131E408 & 0.01514 & 22.02 & 17.18 & 18.94 & 19.12 & 19.27 & 19.20 \\
\hline 20 & 443.3 & 29.07 & 29.83 & 29.47 & 29.46 & 26.57 & 1564.4 & 5.87 & \(0.133 \mathrm{E}+08\) & 0.01587 & 22.75 & 17.47 & 19.62 & 19.69 & 19.86 & 19.78 \\
\hline 21 & 463.3 & 29.49 & 30.06 & 29.76 & 29.71 & 26.73 & 1570.6 & 5.85 & \(0.135 E * 08\) & 0.01659 & 20.65 & 17.12 & 18.79 & 18.75 & 18.83 & 18.79 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
aVERAGE VALUES TEROUCH STATIOUS 25 TO 20: \\
39 . \(6 \quad 28.79 \quad 29.49 \quad 29.16 \quad 29.15 \quad 26.15\)
\end{tabular}} & 1548.7 & 5.94 & 0.128E*O8 & 0.01400 & 21.63 & 17.06 & 18.95 & 19.01 & 19.15 & 19.08 \\
\hline
\end{tabular}

DOWMMAD ImClimation \(\qquad\) \(5-1500\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { THOK } \\
& \text { MO. }
\end{aligned}
\] & \[
\underset{9}{2}
\] & \[
-4
\] & & C & \[
\begin{aligned}
& \text { C C)- } \\
& \text { AVER- } \\
& \hline
\end{aligned}
\] & (C) & L & PR & 68 & 2 & 4 & B & c & T & BEE & T- H \\
\hline 3 & 5.5 & 26.39 & 26.43 & 26.41 & 26.41 & 22.68 & 1418.1 & 6.49 & \(0.134 \mathrm{E}-08\) & 0.00020 & 21.48 & 21.26 & 21.37 & 21.37 & 21.37 & 21.37 \\
\hline 4 & 15.5 & 26.93 & 27.38 & 26.99 & 27.07 & 22.79 & 1421.7 & 6.47 & 0.135E-08 & 0.00055 & 19.26 & 17.38 & 19.01 & 18.63 & 18.66 & 8.65 \\
\hline 5 & 25.5 & 27.37 & 27.94 & 27.60 & 27.63 & 22.91 & 1425.3 & 6.45 & \(0.137 E \sim 08\) & 0.00091 & 17.88 & 15.83 & 16.97 & 16.88 & 16.91 & 16.89 \\
\hline 6 & 45.5 & 27.41 & 27.95 & 27.57 & 27.63 & 23.14 & 1432.6 & 6.42 & 0.139E*08 & 0.00163 & 18.63 & 16.54 & 17.98 & 7.75 & 17.78 & . 76 \\
\hline 7 & 75.5 & 27.73 & 28.46 & 27.92 & 28.01 & 23.48 & 1443.6 & 6.36 & 0.143 E -08 & 0.00270 & 18.72 & 15.97 & 17.93 & 58 & 17.64 & 61 \\
\hline 8 & 105.5 & 27.97 & 28.92 & 28.24 & 28.34 & 23.82 & 1454.8 & 6.31 & 0.147E08 & 0.00378 & 19.19 & 15.59 & 18.02 & 17.60 & 17.70 & 65 \\
\hline 9 & 135.5 & 28.50 & 29.28 & 28.80 & 28.84 & 24.16 & 1466.2 & 6.25 & 0.151E+08 & 0.00486 & 18.33 & 15.54 & 17.15 & 16.99 & 17.05 & 17.02 \\
\hline 10 & 165.2 & 28.06 & 29.15 & 28.73 & 28.67 & 24.50 & 1477.6 & 6.20 & 0.156E-08 & 0.00593 & 22.33 & 17.08 & 18.80 & 19.07 & 19.25 & 19.16 \\
\hline 11 & 205.2 & 28.70 & 29.72 & 29.12 & 29.16 & 24.96 & 2493.3 & 6.13 & 0.262E+08 & 0.00738 & 21.18 & 16.68 & 19.08 & 18.87 & 19.01 & 18.94 \\
\hline 12 & 245.2 & 29.26 & 30.18 & 29.68 & 29.70 & 25.42 & 1509.3 & 6.06 & 0.16EE+O8 & 0.00882 & 20.62 & 16.63 & 18.59 & 18.50 & 18.61 & 18.55 \\
\hline 13 & 275.2 & 29.46 & 30.47 & 30.13 & 30.05 & 25.76 & 1521.6 & 6.00 & 0.1728 0 O8 & 0.00991 & 21.40 & 16.81 & 18.10 & 18.46 & 18.60 & 18.53 \\
\hline 14 & 305.2 & 29.68 & 30.66 & 30.16 & 30.16 & 26.10 & 1534.0 & 5.95 & 0.17TE+08 & 0.01100 & 22.07 & 17.36 & 19.50 & 19.47 & 19.61 & 19.54 \\
\hline 15 & 333.3 & 30.27 & 31.24 & 30.97 & 30.86 & 26.42 & 2545.8 & 5.90 & 0.182E*08 & 0.01203 & 20.54 & 16.39 & 17.39 & 17.80 & 17.93 & 17.86 \\
\hline 16 & 363.3 & 30.46 & 31.55 & 3:.02 & 31.01 & 26.76 & 1558.7 & 5.84 & 0.187E+08 & 0.01312 & 21.35 & 16.49 & 18.57 & 18.59 & 18.74 & 18.67 \\
\hline 17 & 383.3 & 30.72 & 31.66 & 31.19 & 31.19 & 26.99 & 1566.4 & 5.81 & 0.190E+0 & 0.01385 & 21.20 & 16.90 & 18.80 & 18.80 & 18.92 & 18.86 \\
\hline 18 & 403.3 & 30.92 & 31.93 & 31.43 & 31.43 & 27.22 & 2573.7 & 5.78 & 0.193E +08 & 0.01458 & 21.33 & 16.75 & 18.74 & 18.75 & 18.89 & 18.82 \\
\hline 19 & 423.3 & 31.14 & 32.21 & 31.78 & 31.73 & 27.45 & 1581.0 & 5.75 & \(0.196 \mathrm{E}+08\) & 0.01530 & 21.34 & 16.55 & 18.23 & 18.43 & 18.59 & 18.51 \\
\hline 20 & 443.3 & 31.24 & 32.34 & 31.86 & 31.83 & 27.68 & 1588.4 & 5.73 & 0.200E-08 & 0.01603 & 22.12 & 16.91 & 18.82 & 18.99 & 19.17 & 19.08 \\
\hline 21 & 463.3 & 31.99 & 32.95 & 32.76 & 32.62 & 27.90 & 1595.8 & 5.70 & \(0.203 \mathrm{E} \cdot 08\) & 0.01676 & 19.29 & 15.63 & 16.21 & 16.72 & 16.83 & 16.78 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES TIRDOUCCH STATIONS} & \[
\begin{array}{r}
45.70 \\
32.34 \\
\hline
\end{array}
\] & 20: & 1569.0 & 5.80 & 0.191E+08 & 0.01415 & 21.31 & 16.66 & 18.42 & 18.56 & 18.71 & 18.63 \\
\hline
\end{tabular}
\(\qquad\) 6-1500

IMPUT ELECTMIC POWER - 1323.7 U MASS FLON RATE - \(41.8906 \mathrm{c} / \mathrm{s}\)

PRUSURE DHAT RATE GAIMED ET VATEA - 1306.5 y - 1306.5 y meat balance gation - 1.307

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\frac{10}{112}
\] & & & & & & & L & PR & G2 & 2. & \(\wedge\) & B & & & & +18 \\
\hline 3 & 5.5 & 27 & 27.49 & 27.33 & 27.33 & 22.29 & 1382.2 & 6.55 & 0.177E08s & 0.00020 & 22.37 & 20.99 & 21.66 & 21.66 & 21.67 & 21.66 \\
\hline 4 & 15.5 & 28.06 & 29.00 & 28.26 & 28.40 & 22.45 & 1387.0 & 6.53 & 0.180E* & 0.00056 & 19.43 & 16.66 & 18.79 & 18.35 & 18.42 & 18.38 \\
\hline 5 & 25.5 & 28 & 29.62 & 29.16 & 29.14 & 22.61 & & 6.50 & 0.182E & 0.00093 & \% 11 & 15.55 & 16.6 & 5.70 & 16.75 & 6.72 \\
\hline & 45.5 & 28.65 & 29.60 & 29.0 & & 22.93 & & 6.45 & 0.187E00 & 0.001 & 9.06 & 16.32 & 17.8 & 7.73 & 7.7 & .76 \\
\hline & 75.5 & 29.08 & 30.21 & 29.45 & 29.58 & 23.40 & 1416 & 6.37 & 0.195 E & 0.0027 & 19.14 & 15.99 & 18.00 & 17.70 & 17.78 & 17.7 \\
\hline 8 & 105 & 29 & 31.0 & 29.99 & 30.13 & 23.88 & 1432.0 & 6.30 & 0.202 E & 0.0038 & 19.44 & 15.11 & 17.7 & 17.39 & 17.53 & 17.4 \\
\hline 9 & 135.5 & & 31.42 & & & 24.35 & & 6.22 & 10e & . 0049 & & 15.37 & 7.14 & & 7.13 & \\
\hline 10 & 165.2 & 29.64 & 31.36 & 30.6 & 30.5 & 24.83 & & 6.15 & 0.219 E & 0.0060 & 22.53 & 16.63 & 18.6 & & 19.09 & \\
\hline 11 & 205.2 & & 31.97 & & & 25.46 & 485.4 & 6.06 & 0.230 & 0.007 & 21. & 16.5 & 19.2 & 19.02 & 19.19 & \\
\hline 12 & 245.2 & 31.25 & 32 & 31.91 & 31.95 & 26.10 & 1507. & 5.95 & 242 & 0.008 & 20. & 16.41 & 18. & 18.50 & 18.64 & \\
\hline 13 & 275.2 & 31.57 & 33.15 & 32.62 & 32.49 & 26.5 & 1525.3 & 5.8 & 0.252E* & 0.0101 & 21.61 & 16.45 & 17.8 & 18.26 & 18.45 & 18.3 \\
\hline 14 & 305.2 & 32.2 & 33.82 & 33.21 & & 27.05 & & 5.8 & . 251 L & . 0112 & & 15.9 & 17.5 & . 82 & 17.99 & 7.90 \\
\hline 15 & 333.3 & 32.8 & 34.61 & 34.06 & 33.90 & 27.50 & 1555.8 & 5.75 & 0.270E & 0.01 & & 15. & 16. & & 17.04 & \\
\hline 16 & 363.3 & 33.28 & 35.09 & 34.33 & 34.25 & 27.97 & 1571.0 & 5.69 & 0.279E 08 & 0.013 & 20.31 & 15.13 & 16.95 & 17.14 & 17.34 & 17.24 \\
\hline 17 & 383.3 & 33.68 & 35.30 & 34.51 & 34.50 & 3. & 581.3 & 5.65 & 0.285E+08 & 0.01412 & 19.98 & 15.37 & 17.31 & 17.34 & 17.49 & 17.4 \\
\hline 18 & 403 & & 35.70 & 3 & & 28.61 & & 5.6 & 91E & . 014 & 0.02 & 15.18 & 7. & 17.22 & 17.3 & 7.30 \\
\hline 19 & 423. & 34. & 35.89 & 35. & 35.2 & 3.92 & 1602.4 & 5.57 & 0.298E & 0.015 & 20.00 & 15. & 16.83 & 17.05 & 17.22 & . 1 \\
\hline 20 & 443 & 34.45 & 36. & 35.43 & 35.37 & 9. & 61 & 5.53 & 0.304 E & 0.016 & 20.64 & 15 & 17.36 & 17.55 & 17.7 & 17.6 \\
\hline 21 & 463.3 & 35.11 & 36.87 & 35.99 & 35.99 & 29.58 & 1624.1 & 5.49 & 311E。 & 0.0 & 19.36 & 14.69 & 16.70 & 16.71 & 16.87 & 16. \\
\hline \multicolumn{7}{|l|}{aVERAGE VALUES THROUCR STATIONS 15 TO 20 : \(399.6 \quad 33.76 \quad 35.47 \quad 34.75 \quad 34.68 \quad 28.42\)} & 1585.9 & 5.63 & .288E-08 & . 014 & 20.18 & 15.2 & 17.0 & 17.19 & 17.37 & 17.2 \\
\hline
\end{tabular}

\section*{Appendix G}

Experimental Data for \(\alpha=-20^{\circ}\)
\(\qquad\) \(1-500\)

IMPUT ELECTRIC PONER - 104.2 Y

100.8 y
FRICTIOE FACTH

EAT Ralance Enion \(-3.29 \%\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { Mo }
\end{aligned}
\] & \[
\overline{2}
\] & -waci & \multicolumn{3}{|l|}{Thapratuex (DEEC)-} & \[
\begin{aligned}
& \mathrm{I} \\
& \text { (C) }
\end{aligned}
\] & & PIT & G2 & Z & & & \[
\mathrm{C}_{\mathrm{C}}
\] & \multicolumn{3}{|l|}{\[
\text { I AVEGGE } T+
\]} \\
\hline 3 & 5.5 & 23.4 & 23.44 & 23.46 & 23.46 & 22.94 & 492.5 & 6.45 & 0.144E 0 & 0.00067 & 55.59 & 16.68 & 16.1 & 16.12 & 16.13 & 16.12 \\
\hline 4 & 15.5 & 23.65 & 23.69 & 23.65 & 23.86 & 22.97 & 492.9 & 5.44 & 0.148 E -07 & 0.00161 & 12.43 & 12.66 & 12.43 & 12.23 & 12.24 & 23 \\
\hline 5 & 25.5 & 23.73 & 23.82 & 23.78 & 23.78 & 23.01 & 493.3 & 6.44 & \(0.145 E 607\) & 0.00264 & & 10.39 & 10.82 & 10 & 10.90 & 0.89 \\
\hline 5 & 45.5 & 23.85 & 23.92 & 23.87 & 23.88 & 23.08 & 494.0 & 6.43 & 0.146 E -07 & 0.00471 & & 9.93 & 10.54 & 10.46 & 10.47 & 0.46 \\
\hline 7 & 75.5 & 23.90 & 23.96 & 23.90 & 23.91 & 23.18 & 495.2 & 6.41 & \(0.147 E+07\) & 0.00782 & 11.71 & 10.83 & 11 & 11.50 & 11.52 & 51 \\
\hline 8 & 105.5 & 23.92 & 24.00 & 23.94 & 23.95 & 23.29 & 496.4 & 6.39 & \(0.149 \mathrm{E}+07\) & 0.01094 & 13.28 & 11.75 & 12.93 & 12.70 & 12.72 & 71 \\
\hline 9 & 135.5 & 23.98 & 24.03 & 24.00 & 24.00 & 23.39 & 497.5 & 6.38 & \(0.150 E 07\) & 0.01405 & 14.32 & 13.05 & 13.82 & 13.74 & 13.75 & 74 \\
\hline 10 & 165.2 & 24.03 & 24.19 & 24.13 & 24. & 23.49 & 498.7 & 6.36 & 0.1515007 & 0.01713 & 15 & 12.13 & 13.2 & 13.47 & 13.59 & \\
\hline 1: & 205.2 & 24.22 & 24.36 & 24.33 & 24.31 & 23.63 & 500. & 6.34 & 0.1535007 & 0.02129 & 14.59 & 11.63 & 12.00 & 12.42 & 12.53 & \\
\hline 12 & 245.2 & 24.45 & 24.54 & 24.47 & 24 & 23.77 & 501. & 6.32 & \(0.155 E 407\) & 0.02545 & 12.42 & 10 & 12.00 & 11.79 & 18.82 & \\
\hline 13 & 275.2 & 24.52 & 24.63 & 24.56 & 24.57 & 23. & 503.0 & 6.30 & 0.156E407 & 0.02857 & 12.99 & 11.09 & 12.33 & 12.15 & 12.19 & \\
\hline 14 & 305.2 & 24.63 & 24.75 & 24.70 & 24.69 & 23.98 & 504.2 & 6.2t & 0.157E+07 & 0.03169 & 13.05 & 11.00 & 11.78 & 11.86 & 11.90 & \\
\hline 15 & 333.3 & 24.65 & 24.73 & 24.67 & 24.68 & 24.08 & 505.3 & 6.27 & \(0.1595 \cdot 07\) & 0.03462 & 14.83 & 12.92 & 14.14 & 13.97 & 14.01 & 9 \\
\hline 16 & 363.3 & 24.83 & 24.92 & 24.87 & 24.87 & 24.19 & 506.6 & 6.25 & 0.1805-07 & 0.03774 & 12.99 & 11.43 & 12.24 & 12.20 & 12.23 & 12.28 \\
\hline 17 & 383.3 & 24.93 & 24.99 & 24.94 & 24.95 & 24.26 & 507.4 & 6.24 & 0.161E+0T & 0.03983 & 12.44 & 11.40 & 12.26 & 12.07 & 12.09 & 08 \\
\hline 18 & 403.3 & 24.99 & 25.10 & 25.04 & 25.04 & 24.32 & 508.2 & 6.23 & 0.182E-07 & 0.04191 & 12.64 & 10.81 & 11.68 & 11.67 & 11.70 & 11.69 \\
\hline 19 & 423.3 & 25.06 & 25.16 & 25.17 & 25.14 & 24.39 & 509.0 & 6.22 & 0.163E+07 & 0.04400 & 12.68 & 10.91 & 10.78 & 11.24 & 11.29 & 11.26 \\
\hline 20 & 443.3 & 25.16 & 25.24 & 25.17 & 25.19 & 24.46 & 509.8 & 6.21 & \(0.1645+07\) & 0.04600 & 12.02 & 10.85 & 11.84 & 11.62 & 11.64 & 11.63 \\
\hline 21 & 463.3 & 25.36 & 25.25 & 25.42 & 25.36 & 24.53 & 510.6 & 6.20 & \(0.165 E+07\) & 0.04817 & 10.10 & 11.75 & 9.48 & 10.12 & 10.20 & 10.16 \\
\hline \multicolumn{17}{|l|}{} \\
\hline
\end{tabular}

DONTHAD INCLIEATIOM \(\qquad\) 2-500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & \[
\bar{N}_{\mathrm{z}}
\] & GaLL & \[
8
\] & \[
\overline{T E}
\] & \[
\begin{aligned}
& \text { C)- } \\
& \text { AVER- } \\
& \text { ACE }
\end{aligned}
\] & (c) & E & PR & \(6 \pi\) & \(2+\) & A & B & C & \[
I
\] & E & T+ \\
\hline 3 & 5.5 & 23.03 & 23.00 & 23.01 & 23.01 & 22.31 & 485.7 & 6.55 & 0.197E407 & 0.00057 & 16.74 & 17.66 & 17.19 & 17.19 & 17.20 & 17.19 \\
\hline 4 & 15.5 & 23.18 & 23.19 & 23.18 & 23.18 & 22.36 & 486. & 6.54 & 0.198E-07 & 0.00160 & 14.76 & 14.57 & 14.76 & 14.78 & 14.71 & 14.71 \\
\hline 5 & 25.5 & 23.27 & 23.38 & 23.29 & 23.30 & 22.41 & 486.8 & 6.53 & 0.199E-07 & 0.00264 & 14.13 & 12.52 & 13.81 & 13.54 & 13.57 & 13.56 \\
\hline 6 & 45.5 & 23.40 & 23.50 & 23.43 & 23.44 & 22.51 & 487.9 & 6.52 & \(0.201 E+07\) & 0.00471 & 13.56 & 12.18 & 13.21 & 13.02 & 13.04 & 13.03 \\
\hline 7 & 75.5 & 23.57 & 23.71 & 23.59 & 23.61 & 22.66 & 489.5 & 6.49 & 0.203E-07 & 0.00782 & 13.36 & 11.54 & 13.04 & 12.71 & 12.75 & 12.73 \\
\hline 8 & 105.5 & 23.70 & 23.89 & 23.77 & 23.78 & 22.81 & 491.1 & 6.47 & 0.206E-07 & 0.01092 & 13.68 & 12.22 & 12.64 & 12.48 & 12.54 & 12.51 \\
\hline 9 & 135.5 & 23.87 & 24.03 & 23.94 & 23.95 & 22.96 & 492.8 & 6.44 & 0.208E 07 & 0.01404 & 13.37 & 11.27 & 12.32 & 12.28 & 12.32 & 12.30 \\
\hline 10 & 165.2 & 24.03 & 24.19 & 24.07 & 24.09 & 23.11 & 494.4 & 6.42 & 0.211E-07 & 0.01712 & 13.20 & 11.23 & 12.56 & 12.35 & 12.39 & 12.37 \\
\hline 11 & 205.2 & 24.21 & 24.39 & 24.33 & 24.32 & 23.31 & 496.6 & 6.39 & \(0.214 \mathrm{C}^{0.07}\) & 0.02127 & 13.45 & 11.21 & 11.82 & 12.02 & 12.07 & 12.05 \\
\hline 12 & 245.2 & 24.53 & 24.66 & 24.56 & 24.58 & 23.51 & 498.9 & 6.36 & 0.218 E 07 & 0.02543 & 11.83 & 10.56 & 21.66 & 11.36 & 11.38 & 11.37 \\
\hline 13 & 275.2 & 24.58 & 24.72 & 24.70 & 24.67 & 23.66 & 500.6 & 6.33 & 0.221E007 & 0.02855 & 13.16 & 11.44 & 11.66 & 11.94 & 11.98 & 21.96 \\
\hline 14 & 305.2 & 24.77 & 24.94 & 24.89 & 24.87 & 23.81 & 502.3 & 6.31 & \(0.223 \mathrm{E}-07\) & 0.03168 & 12.67 & 10.70 & 11.20 & 11.40 & 11.44 & 12.42 \\
\hline 15 & 333.3 & 24.81 & 24.95 & 24.92 & 24.90 & 23.95 & 503.9 & 6.29 & \(0.226 E-07\) & 0.03461 & 14.04 & 12.09 & 12.43 & 12.71 & 12.75 & 12.73 \\
\hline 16 & 363.3 & 25.05 & 25.17 & 25.09 & 25.10 & 24.10 & 505.6 & 6.26 & \(0.229 \mathrm{E} \cdot 07\) & 0.03773 & 12.71 & 11.33 & 12. 18 & 12.08 & 12.10 & 12.09 \\
\hline 17 & 383.3 & 25.12 & 25.24 & 25.19 & 25.19 & 24.20 & 506.8 & 6.25 & \(0.231 E 407\) & 0.03982 & 13.11 & 11.61 & 12.24 & 12.28 & 12.30 & 12.29 \\
\hline 18 & 403.3 & 25.18 & 25.35 & 25.29 & 25.28 & 24.30 & 507.9 & 6.23 & 0.233E-07 & 0.04191 & 13.71 & 11.51 & 12.19 & 12.35 & 12.40 & 12.37 \\
\hline 19 & 423.3 & 25.33 & 25.53 & 25.42 & 25.43 & 24.41 & 509.1 & 6.22 & \(0.234 E * 07\) & 0.04400 & 12.97 & 10.75 & 11.83 & 11.79 & 11.85 & 11.82 \\
\hline 20 & 443.3 & 25.41 & 25.60 & 25.54 & 25.52 & 24.51 & 510.3 & 6.20 & \(0.236 E \sim 07\) & 0.04609 & 13.26 & 10.99 & 12.68 & 11.85 & 11.90 & 11.87 \\
\hline 21 & 463.3 & 25.67 & 25.68 & 25.81 & 25.74 & 24.61 & 511.5 & 6.18 & \(0.238 E+07\) & 0.04818 & 11.30 & 11.23 & 10.01 & 10.60 & 10.64 & 10.62 \\
\hline \multicolumn{5}{|l|}{} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15 \\
& 25.24 \\
& \text { T0 } \\
& 20 \\
& 24.25 \\
& \hline
\end{aligned}
\]} & 507.3 & 6.24 & \(0.231 E * 07\) & 0.04069 & 13.30 & 11.38 & 12.09 & 12.18 & 12.22 & 12.20 \\
\hline
\end{tabular}
\(\qquad\) 3-500

IXPUT ELECTAIC PGER - 187.6 y WEAT RATE GAIMDD EY HATEA - 191.7 U


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STAL } \\
& \text { MOOM }
\end{aligned}
\] & & -WALI & ev & \[
\overline{\mathrm{E}}
\] & \[
\begin{aligned}
& \text { CC)- } \\
& \text { AVE } \\
& \text { AE }
\end{aligned}
\] & (C) & W & PR & GR & 2 & 1 & B & \[
\bar{c}
\] & \[
T
\] & ELE & T-1 \\
\hline 3 & 5.5 & 23.17 & 23.22 & 23.20 & 23.20 & 22.06 & 483.0 & 6.59 & \(0.255 E+07\) & 0.00357 & 14.32 & 13.74 & 14.02 & 14.02 & 14.02 & 14.02 \\
\hline 4 & 15.5 & 23.37 & 23.53 & 23.40 & 23.43 & 22.12 & 483.7 & 6.58 & 0.257E-07 & 0.00160 & 12.77 & 11.38 & 12.49 & 12.26 & 12.29 & 12.27 \\
\hline 5 & 25.5 & 23.51 & 23.68 & 23.62 & 23.61 & 22.18 & 484.4 & 6.57 & 0.258E-07 & 0.00264 & 12.05 & 10.72 & 11.17 & 11.26 & 11.28 & 11.27 \\
\hline 6 & 45.5 & 23.66 & 23.87 & 23.73 & 23.75 & 22.32 & 485.8 & 6.55 & 0.26:E-07 & 0.00471 & 11.97 & 10.33 & 11.30 & 11.19 & 11.23 & 11.21 \\
\hline 7 & 75.5 & 23.79 & 23.99 & 23.87 & 23.88 & 22.52 & 487.9 & 6.51 & 0.265E+07 & 0.00781 & 12.58 & 10.88 & 21.85 & 11.76 & 11.79 & 11.77 \\
\hline 8 & 105.5 & 23.92 & 24.17 & 24.02 & 24.03 & 22.72 & 490.1 & 6.48 & 0.270E-07 & 0.01092 & 13.29 & 11.00 & 12.26 & 12.15 & 12.21 & 12.18 \\
\hline 9 & 135.5 & 24.09 & 24.31 & 24.25 & 24.23 & 22.91 & 492.3 & 6.45 & 0.274E-07 & 0.01403 & 13.62 & 11.43 & 11.97 & 12.19 & 12.25 & 12.22 \\
\hline 10 & 165.2 & 24.28 & 24.52 & 24.41 & 24.40 & 23.11 & 494.4 & 6.42 & 0.279E*07 & 0.01712 & 13.71 & 11.33 & 12.31 & 12.36 & 12.42 & 12.39 \\
\hline 11 & 205.2 & 24.49 & 24.78 & 24.70 & 24.67 & 23.30 & 497.4 & 6.38 & \(0.285 E+07\) & 0.02128 & 14.36 & 11.38 & 12.09 & 12.39 & 12.48 & 12.44 \\
\hline 12 & 245.2 & 24.87 & 25.06 & 24.98 & 24.97 & 23.64 & 500.3 & 6.34 & 0.291E+07 & 0.02546 & 13.04 & 11.36 & 11.96 & 12.05 & 12.08 & 12.06 \\
\hline 13 & 275.2 & 24.97 & 25.22 & 25.15 & 25.12 & 23.84 & 502.6 & 6.31 & 0.296E+07 & 0.02857 & 14.13 & 11.56 & 12.22 & 12.46 & 12.53 & 12.50 \\
\hline 14 & 305.2 & 25.24 & 25.50 & 25.40 & 25.38 & 24.04 & 504.9 & 6.27 & 0.301E-07 & 0.03169 & 13.28 & 10.91 & 11.77 & 11.87 & 11.93 & . 90 \\
\hline 15 & 333.3 & 25.34 & 25.59 & 25.54 & 25.50 & 24.23 & 507.0 & 6.24 & 0.305E-07 & 0.03463 & 14.28 & 11.66 & 12.16 & 12.49 & 12.57 & 12.53 \\
\hline 16 & 363.3 & 25.64 & 25.87 & 25.77 & 25.76 & 24.42 & 509.3 & 6.21 & \(0.3108+07\) & 0.03776 & 13.12 & 11.05 & 11.86 & 11.93 & 11.97 & 11.95 \\
\hline 17 & 383.3 & 25.74 & 25.98 & 25.86 & 25.86 & 24.56 & 510.9 & 6.19 & 0.314E-07 & 0.03986 & 13.47 & 11.23 & 12.23 & 12.24 & 12.29 & 12.27 \\
\hline 18 & 403.3 & 25.83 & 26.08 & 25.97 & 25.96 & 24.69 & 512.5 & 6.17 & 0.317E-07 & 0.04195 & 13.96 & 11.43 & 12.47 & 12.52 & 12.58 & 12.55 \\
\hline 19 & 423.3 & 25.98 & 26.20 & 26.10 & 26.09 & 24.82 & 514.0 & 6.15 & 0.321E-07 & 0.04404 & 13.79 & 11.58 & 12.47 & 12.53 & 12.58 & 12.56 \\
\hline 20 & 443.3 & 26.03 & 26.32 & 26.21 & 26.19 & 24.96 & 515.6 & 6.13 & \(0.324 E \sim 07\) & 0.04614 & 14.76 & 11.77 & 12.66 & 12.88 & 12.96 & 12.92 \\
\hline 21 & 463.3 & 26.35 & 26.49 & 26.48 & 26.45 & 25.09 & 517.2 & 6.11 & 0.328E-07 & 0.04824 & 12.64 & 11.38 & 11.40 & 11.68 & 11.71 & 11.69 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { AVERAGE Y } \\
& 391.6
\end{aligned}
\]} & \[
\frac{L 15 S}{25.76}
\] & \[
\begin{gathered}
\text { Mouce } \\
26.00
\end{gathered}
\] &  & \[
\begin{aligned}
& 15.70 \\
& 25.89
\end{aligned}
\] & \[
\begin{array}{r}
20 \text { 20. } 61
\end{array}
\] & 511.6 & 6.18 & 0.315E*07 & 0.04073 & 13.90 & 11.45 & 12.31 & 12.43 & 12.49 & 12.46 \\
\hline
\end{tabular}
\(\qquad\) 4-500

IMPUT ELECTRIC PONER 219.7 Y




DONTALD IHCLIEATIOM \(\qquad\) 5-500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { TIOM. } \\
& \text { NO. }
\end{aligned}
\] & \[
{ }_{a}^{2}
\] & \[
4
\] & IEPR & C & \[
\begin{aligned}
& \text { CC) } \\
& \text { AVE } \\
& \text { ACE }
\end{aligned}
\] & (C) & IE & P2 & Ga & 2 & 4 & B & USTIT & T &  & T+ \\
\hline 3 & 5.5 & 25.78 & 26.32 & 26.05 & 26.05 & 22.64 & 472.3 & 6.50 & \(0.444{ }^{\text {cte07 }}\) & 0.00059 & 8.44 & 7.20 & 7.77 & 7.77 & 7.80 & 7.78 \\
\hline 4 & 15.5 & 25.91 & 26.49 & 26.24 & 25.22 & 22.75 & 473.5 & 6.48 & \(0.448 \mathrm{E}-07\) & 0.00166 & 8. 39 & 7.10 & 7.59 & 7.64 & 7.67 & 7.65 \\
\hline 5 & 25.5 & 26.10 & 26.65 & 26.47 & 26.42 & 22.87 & 474.7 & 6.46 & 0.452E 0.07 & 0.00274 & 8. 19 & 7.00 & 7.35 & 7.45 & 7.47 & 7.46 \\
\hline 6 & 45.5 & 26.29 & 26.83 & 26.62 & 26.59 & 23.10 & 477.1 & 6.42 & 0.461E+07 & 0.00488 & 8.28 & 7.08 & 7.52 & 7.58 & 7.60 & 7.59 \\
\hline 7 & 75.5 & 25.51 & 27.07 & 26.80 & 26.80 & 23.44 & 480.8 & 6.37 & 0.474E-07 & 0.00811 & 8.61 & 7.28 & 7.86 & 7.87 & 7.90 & 7.89 \\
\hline 8 & 105.5 & 26.71 & 27.36 & 27.01 & 27.02 & 23.78 & 484.5 & 6.32 & 0.487E+07 & 0.01134 & 9.01 & 7.38 & 8. 18 & 8.15 & 8.19 & 8. 17 \\
\hline 9 & 135.5 & 26.96 & 27.55 & 27.29 & 27.27 & 24.12 & 488.3 & 6.26 & 0.501E+07 & 0.01458 & 9.28 & 7.70 & 8.33 & 8.37 & 8.42 & 8.39 \\
\hline 10 & 165.2 & 27.42 & 28.12 & 27.83 & 27.80 & 24.46 & 492.1 & 6.21 & 0.515E-07 & 0.01779 & 8.91 & 7.21 & 7.82 & 7.90 & 7.94 & 7.92 \\
\hline 11 & 205.2 & 27.78 & 28.46 & 28.25 & 28.19 & 24.91 & 497.3 & 6.14 & 0.535E-07 & 0.02212 & 9.18 & 7.43 & 7.90 & 8.05 & 8. 10 & 8.08 \\
\hline 12 & 245.2 & 28.23 & 24.76 & 26.53 & 28.51 & 25.37 & 502.6 & 6.06 & \(0.555 E \cdot 07\) & 0.02646 & 9.20 & 7.76 & 8.33 & 8.37 & 8.40 & 8.39 \\
\hline 13 & 275.2 & 28.40 & 28.96 & 28.84 & 28.76 & 25.71 & 506.6 & 6.01 & 0.571 E 007 & 0.02973 & 9.78 & 8.09 & 8.39 & 8.62 & 8.66 & 8.64 \\
\hline 14 & 305.2 & 28.65 & 29.20 & 29.07 & 29.00 & 26.05 & 510.8 & 5.96 & 0.587E-07 & 0.03300 & 10.11 & 8.34 & 8.72 & 8.92 & 8.97 & 8.95 \\
\hline 15 & 333.3 & 28.88 & 29.35 & 29.30 & 29.21 & 26.37 & 514.7 & 5.91 & 0.602E-07 & 0.03607 & 10.47 & 8.81 & 0.98 & 9.26 & 9.32 & 9.29 \\
\hline 16 & 363.3 & 29.21 & 29.71 & 29.53 & 29.50 & 26.71 & 518.9 & 5.85 & 0.619E-07 & 0.03936 & 10.51 & 8.74 & 9.31 & 9.42 & 9.47 & 9.45 \\
\hline 17 & 383.3 & 29.35 & 29.78 & 29.63 & 29.59 & 26.94 & 521.6 & 5.82 & 0.6308 .07 & 0.04154 & 10.50 & 9.24 & 9.75 & 9.87 & 9.91 & 9.89 \\
\hline 18 & 403.3 & 29.48 & 29.93 & 29.75 & 29.73 & 27.17 & 524.0 & 5.79 & \(0.6405 \cdot 07\) & 0.04372 & 11.30 & 9.47 & 10.15 & 10.23 & 10.27 & 10.25 \\
\hline 19 & 423.3 & 29.64 & 30.03 & 29.92 & 29.88 & 27.39 & 526.4 & 5.76 & 0.650t-07 & 0.04591 & 11.68 & 9.94 & 10.37 & 10.55 & 10.59 & 10.57 \\
\hline 20 & 443.3 & 29.66 & 30.06 & 29.92 & 29.90 & 27.62 & 528.9 & 5.73 & 0.650E 0.07 & 0.04809 & 12.81 & 10.63 & 11.37 & 11.50 & 11.55 & 11.52 \\
\hline 21 & 463.3 & 29.91 & 30.26 & 30.18 & 30.14 & 27.85 & 531.4 & 5.70 & 0.671E+07 & 0.05028 & 12.68 & 10.83 & 11.20 & 11.44 & 11.48 & 11.45 \\
\hline \multicolumn{5}{|l|}{AVERAGE VALUES THOUEX STATIONS
\[
391.6 \quad 29.37 \quad 29.82 \quad 29.67
\]} & \[
\begin{aligned}
& 25 \mathrm{TO} \\
& 29.63
\end{aligned}
\] & 20: & 522.4 & 5.81 & \(0.634 E 007\) & 0.04245 & 11.28 & 9.47 & 9.99 & 10.14 & 10.18 & 10.16 \\
\hline
\end{tabular}

DCNKMADD IMCLIMATIDM \(\qquad\) 6-500 INPUT ELECTRIC PONER - 474.8 H
MLSS FLOH RATE \(=13.8983 \mathrm{G} / \mathrm{S}\)

HEAT RATE GAIMED ET HATER - 460.3 PRESSUEE DATOPE REATE GAIMBD FRICTION FLCTOL -0.072108
bat Bulnuce zulon - 3.042 \(76 \times 120\)
 FRE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { MOON }
\end{aligned}
\] & \[
\mathrm{z}
\] & \[
\begin{gathered}
-5 \pi \\
a
\end{gathered}
\] & 8 & \[
\begin{gathered}
\text { URE }^{2} \\
c
\end{gathered}
\] & \[
\begin{aligned}
& \text { GC) } \\
& \text { AVER- } \\
& \hline G E E
\end{aligned}
\] & Ti. (C) & EE & PR & G. & 2 & 4 & B &  & & H & T- \({ }^{\text {E }}\) \\
\hline 3 & 5.5 & 28.61 & 29.62 & 29.11 & 29.11 & 22.32 & 457.8 & 6.55 & \(0.627 \pm * 07\) & 0.00060 & 6.11 & 5.27 & 5.66 & 5.66 & 5.68 & 5.67 \\
\hline 4 & 15.5 & 28.73 & 29.67 & 29.22 & 29.21 & 22.49 & 459.5 & 6.52 & \(0.636 \mathrm{E}-07\) & 0.00170 & 6.17 & 5.36 & 5.71 & 5.72 & 5.74 & 5.73 \\
\hline 5 & 25.5 & 28.85 & 29.84 & 29.49 & 29.42 & 22.66 & 461.2 & 6.49 & 0.645E-07 & 0.00280 & 6.21 & 5.36 & 5.63 & 5.69 & 5.71 & 5.70 \\
\hline 6 & 45.5 & 29.09 & 29.97 & 29.58 & 29.56 & 23.00 & 464.7 & 6.44 & \(0.663 E+07\) & 0.00500 & 6.30 & 5.51 & 5.83 & 5.86 & 5.87 & . 86 \\
\hline 7 & 75.5 & 29.31 & 30.27 & 29.79 & 29.79 & 23.51 & 470.0 & 6.36 & 0.691E-07 & 0.00831 & 6.60 & 5.67 & 6.11 & 6.10 & 6.12 & . \\
\hline 8 & 105.5 & 29.47 & 30.49 & 29.97 & 29.97 & 24.01 & 475.4 & 6.28 & 0.721E*07 & 0.01163 & 7.02 & 5.92 & 6.44 & 6.43 & 6.45 & . 44 \\
\hline 9 & 135.5 & 29.92 & 30.78 & 30.39 & 30.37 & 24.52 & 481.0 & 6.20 & \(0.751 E+07\) & 0.01495 & 7.09 & 6.11 & 6.52 & 6.54 & 6.56 & . 55 \\
\hline 10 & 165.2 & 30.53 & 31.55 & 31.17 & 31.10 & 25.02 & 486.6 & 6.12 & 0.783E+07 & 0.01825 & 6.94 & 5.86 & 6.22 & 6.29 & 6.32 & . 30 \\
\hline 11 & 205.2 & 30.96 & 31.95 & 31.60 & 31.53 & 25.70 & 494.4 & 6.01 & 0.827E-07 & 0.02271 & 7.25 & 6.11 & 6.46 & 6.55 & 6.57 & 6.56 \\
\hline 12 & 245.2 & 31.40 & 32.19 & 31.86 & 31.83 & 26.37 & 502.4 & 5.91 & 0.874E-07 & 0.02719 & 7.59 & 6.55 & 6.95 & 6.99 & 7.01 & 7.00 \\
\hline 13 & 275.2 & 31.55 & 32.36 & 32.20 & 32.08 & 26.88 & 508.6 & 5.83 & 0.910E+07 & 0.03055 & 8.16 & 6.94 & 7.15 & 7.32 & 7.35 & 7.34 \\
\hline 14 & 305.2 & 31.86 & 32.62 & 32.34 & 32.29 & 27.39 & 513.8 & 5.76 & \(0.943 E+07\) & 0.03391 & 8.50 & 7.27 & 7.67 & 7.75 & 7.78 & 7.71 \\
\hline 15 & 333.3 & 32.08 & 32.75 & 32.69 & 32.55 & 27.86 & 518.8 & 5.70 & 0.974E+07 & 0.03706 & 9.01 & 7.78 & 7.87 & 8.10 & 8.13 & . 1 \\
\hline 16 & 363.3 & 32.36 & 33.09 & 32.81 & 32.77 & 28.37 & 524.3 & 5.64 & 0.101E+08 & 0.04043 & 9.51 & 8.04 & 8.54 & 8.63 & 8. 66 & . 64 \\
\hline 27 & 383.3 & 32.50 & 33.10 & 32.87 & 32.83 & 28.71 & 528.0 & 5.60 & 0.103E+08 & 0.04268 & 9.99 & 0.63 & 9.12 & 9.19 & 9.22 & 9.20 \\
\hline 18 & 403.3 & 32.60 & 33.19 & 32.94 & 32.92 & 29.05 & 531.8 & 5.55 & 0.106E-08 & 0.04493 & 10.65 & 9.13 & 9.72 & 9.78 & 9.81 & 9.79 \\
\hline 19 & 423.3 & 32.71 & 33.28 & 33.10 & 33.04 & 29.39 & 535.6 & 5.51 & 0.108E+08 & 0.04718 & 12.39 & 9.73 & 10.20 & 10.35 & 10.38 & 10.36 \\
\hline 20 & 443.3 & 32.65 & 33.24 & 33.02 & 32.98 & 29.72 & 535.4 & 5.47 & 0.111E+08 & 0.04944 & 12.93 & 10.75 & 11.49 & 11.61 & 11.66 & 11.6 \\
\hline 21 & 463.3 & 32.89 & 33.49 & 33.30 & 33.24 & 30.06 & 543.4 & 5.43 & 0.113E*08 & 0.05170 & 13.37 & 11.04 & 11.68 & 12.87 & 11.94 & 11.90 \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{cccc}\text { AVERAGE VaLUES THROUCA STATIONS } \\ 391.6 & 32.48 & 33.11 & 32.90\end{array}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15 \text { 70 } 20 . \\
& 32.85 \\
& 28.85
\end{aligned}
\]} & 529.6 & \[
5.58
\] & \[
0.104 E+08
\] & \[
0.04362
\] & \[
10.58
\] & \[
9.01
\] & \[
9.49
\] & \[
9.61
\] & \[
9.64
\] & 9.63 \\
\hline
\end{tabular}

IMPUT ELECIMIC PONER - 114.84 MASS FLOU MATE - \(29.6962 \mathrm{G} / \mathrm{s}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TIE } \\
& \text { not }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 0
\end{aligned}
\] & a & E & \[
c
\] & \[
\begin{aligned}
& \text { AVER- } \\
& \text { ACE }
\end{aligned}
\] & (c) & & PE & & & 4 & B &  & T & E & T+ \({ }_{\text {H }}\) \\
\hline 3 & 5.5 & 23.31 & 23.33 & 23.32 & 23.32 & 22.82 & 988.9 & 6.47 & 0.169E-07 & 0.00028 & 20.17 & 19.39 & 19.77 & 19.77 & 19.75 & 19.78 \\
\hline 4 & 15.5 & 23.54 & 23.64 & 23.59 & 23.59 & 22.84 & 989.4 & 6.46 & 0.169E-07 & 0.00080 & 14.19 & 12.43 & 13.15 & 13.20 & 13.23 & . 2 \\
\hline 5 & 25.5 & 23.71 & 23.76 & 23.73 & 23.73 & 22.86 & 989.8 & 6.46 & 0.170E007 & 0.00131 & 11.72 & 21.00 & 12.41 & 11.38 & 11.39 & 11.38 \\
\hline 6 & 45.5 & 23.82 & 23.90 & 23.87 & 23.87 & 22.90 & 990.7 & 6.45 & 0.170E+07 & 0.00234 & 10.76 & 9.98 & 10.19 & 10.27 & 10.28 & 10.22 \\
\hline 7 & 75.5 & 23.82 & 23.88 & 23.78 & 23.82 & 22.96 & 992.1 & 6.44 & 0.171E-67 & 0.00388 & 21.62 & 10.86 & 12.07 & 11.63 & 11.66 & 11.6 \\
\hline 8 & 105.5 & 23.78 & 23.86 & 23.71 & 23.7T & 23.02 & 993.5 & 6.43 & 0.172E-07 & 0.00543 & 13.12 & 11.84 & 14.39 & 13.35 & 13.43 & 13.39 \\
\hline 9 & 135.5 & 23.75 & 23.81 & 23.75 & 23.77 & 23.08 & 994.8 & 6.43 & 0.173E407 & 0.00697 & 14.81 & 13.65 & 14.96 & 14.57 & 14.59 & 14.58 \\
\hline 10 & 165.2 & 23.75 & 23.85 & 23.79 & 23.80 & 23.14 & 996.2 & 6.42 & 0.174E-07 & 0.00850 & 16.44 & 14.03 & 15.32 & 15.23 & 15.28 & 15.2 \\
\hline 11 & 205.2 & 23.79 & 23.94 & 23.91 & 23.89 & 23.23 & 998.0 & 6.40 & 0.175E-07 & 0.01056 & 17.59 & 13.85 & 14.43 & 14.95 & 15.08 & 15 \\
\hline 12 & 245.2 & 24.03 & 24.10 & 24.05 & 24.06 & 23.31 & 999.8 & 6.39 & \(0.176 \mathrm{E}+07\) & 0.01263 & 13.71 & 12.57 & 13.32 & 13.22 & 13.23 & 13.2 \\
\hline 13 & 275.2 & 23.97 & 24.13 & 24.06 & 24.05 & 23.37 & 1001.2 & 6.38 & 0.177E-07 & 0.01417 & 16.63 & 13.02 & 14.50 & 14.55 & 14.66 & 14.61 \\
\hline 14 & 305.2 & 24.07 & 24.24 & 24.19 & 24.17 & 23.43 & 1002.6 & 6.37 & 0.17EE-07 & 0.01572 & 15.61 & 12.25 & 13.07 & 13.39 & 13.50 & 13.45 \\
\hline 15 & 333.3 & 24.06 & 24.23 & 24.17 & 24.16 & 23.49 & 1003.9 & 6.36 & 0.179E-07 & 0.01717 & 17.32 & 13.41 & 14.50 & 14.81 & 14.94 & 14.87 \\
\hline 16 & 363.3 & 24.27 & 24.36 & 24.57 & 24.34 & 23.55 & 1005.3 & 6.35 & 0.180E-07 & 0.01872 & 13.72 & 12.23 & 12.18 & 12.54 & 12.58 & 12.56 \\
\hline 17 & 383.3 & 24.31 & 24.48 & 24.38 & 24.39 & 23.69 & 1006.2 & 6.34 & 0.180E*07 & 0.01975 & 13.72 & 11.12 & 12.56 & 12.42 & 12.49 & 12.4 \\
\hline 28 & 403.3 & 24.37 & 24.48 & 24.43 & 24.43 & 23.63 & 1007.1 & 6.34 & 0.181E-07 & 0.02078 & 13.45 & 11.67 & 12.49 & 12.50 & 12.53 & 12.5 \\
\hline 19 & 423.3 & 24.44 & 24.55 & 24.50 & 24.50 & 23.67 & 1008.0 & 6.33 & 0.181E-07 & 0.02182 & 12.92 & 11.34 & 12.03 & 12.05 & 12.08 & 12.07 \\
\hline 20 & 443.3 & 24.49 & 24.56 & 24.50 & 24.51 & 23.71 & 1009.0 & 6.33 & 0.182E-07 & 0.02285 & 12.84 & 11.72 & 12.66 & 12.45 & 12.47 & 2.4 \\
\hline 21 & 463.3 & 24.61 & 24.58 & 24.69 & 24.64 & 23.76 & 1009.9 & 6.32 & \(0.183 \mathrm{E} \cdot 07\) & 0.02388 & 11.65 & 11.97 & 10.62 & 11.18 & 11.21 & 11.2 \\
\hline \multicolumn{7}{|l|}{AVERAGE VLUES TRROUCR STATIOUS 15 T0 20 . \(\begin{array}{llllllllllll}391.6 & 24.32 & 24.44 & 24.39 & 24.39 & 23.61\end{array}\)} & 1006.6 & 6.34 & \(0.180 ¢+07\) & 0.02018 & 14.00 & 11.92 & 12.74 & 12.80 & 12.85 & 12.82 \\
\hline
\end{tabular}
\(\qquad\) 2-1000

INPUT ELECTIIC PONEL - 148.5 Y PABSURE DMOP 0.5163 Nili20

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { NO. }
\end{aligned}
\] & \[
{ }_{N}^{2}
\] & -WaLI & \[
8
\] & c & \[
\begin{aligned}
& \text { C) } \\
& \text { CNE } \\
& \text { AGE }
\end{aligned}
\] & (C) & Q & PR & Gn & 2 & 1 & D & & \(t\) & LACE & t+ \({ }_{\text {a }}\) \\
\hline 3 & 5.5 & 23.37 & 23.33 & 23.35 & 23.35 & 22.76 & 987.8 & 6.48 & 0.204E-07 & 0.00028 & 20.06 & 21.32 & 20.67 & 20.67 & 20.68 & 20.68 \\
\hline 4 & 15.5 & 23.59 & 23.58 & 23.59 & 23.59 & 22.79 & 988.3 & 6.47 & 0.205E*07 & 0.00080 & 14.99 & 15.22 & 14.99 & 15.05 & 15.05 & 15.05 \\
\hline 5 & 25.5 & 23.68 & 23.79 & 23.73 & 23.73 & 22.81 & 989.9 & 6.47 & \(0.205 E 407\) & 0.00131 & 13.94 & 12.37 & 13.18 & 13.14 & 13.17 & 13.15 \\
\hline 6 & 45.5 & 23.82 & 23.87 & 23.82 & 23.83 & 22.86 & 990.0 & 6.46 & 0.206E*07 & 0.00234 & 12.57 & 12.01 & 12.63 & 12.45 & 12.46 & 12.46 \\
\hline 7 & 75.5 & 23.93 & 23.99 & 23.92 & 23.94 & 22.94 & 991.6 & 6.45 & 0.207E+07 & 0.00388 & 12.19 & 12.49 & 12.24 & 12.03 & 12.04 & 12.04 \\
\hline 8 & 105.5 & 23.95 & 24.06 & 23.99 & 24.00 & 23.01 & 993.2 & 6.44 & \(0.2085+07\) & 0.00543 & 12.90 & 11.54 & 12.31 & 12.25 & 12.27 & 12.26 \\
\hline 9 & 135.5 & 24.03 & 24.15 & 24.08 & 24.09 & 23.09 & 994.9 & 6.42 & 0.210E-07 & 0.00697 & 12.74 & 11.38 & 12.11 & 12.06 & 12.08 & 12.07 \\
\hline 10 & 165.2 & 24.08 & 24.24 & 24.19 & 24.17 & 23.16 & 996.5 & 6.41 & \(0.211 \mathrm{E} \cdot 07\) & 0.00850 & 13.08 & 11.14 & 11.76 & 11.90 & 11.94 & 11.92 \\
\hline 11 & 205.2 & 24.21 & 24.36 & 24.33 & 24.31 & 23.26 & 998.7 & 6.40 & \(0.213 E \cdot 07\) & 0.01056 & 12.69 & 10.94 & 11.22 & 11.48 & 11.52 & 11.50 \\
\hline 12 & 245.2 & 24.39 & 24.46 & 24.39 & 24.41 & 23.36 & 1001.0 & 6.38 & \(0.214 \mathrm{E}^{0.07}\) & 0.01263 & 11.65 & 10.94 & 11.70 & 11.48 & 11.49 & 11.49 \\
\hline 13 & 275.2 & 24.33 & 24.50 & 24.42 & 24.42 & 23.43 & 1002.6 & 6.37 & \(0.216 \mathrm{E}-07\) & 0.01417 & 13.46 & 11.35 & 12.23 & 12.27 & 12.32 & 12.30 \\
\hline 14 & 305.2 & 24.43 & 24.58 & 24.50 & 24.50 & 23.51 & 1004.3 & 6.36 & \(0.217 E \cdot 07\) & 0.01572 & 13.07 & 11.27 & 12.16 & 12.13 & 12.16 & 12.15 \\
\hline 15 & 333.3 & 24.40 & 24.51 & 24.48 & 24.47 & 23.58 & 1005.9 & 6.35 & \(0.218 \mathrm{E} \cdot 07\) & 0.01717 & 14.73 & 12.96 & 13.37 & 13.58 & 13.61 & 13.59 \\
\hline 16 & 363. 3 & 24.52 & 24.64 & 24.53 & 24.56 & 23.65 & 1007.6 & 6.34 & 0.220E-07 & 0.01872 & 13.82 & 12.19 & 13.67 & 13.30 & 13.34 & 13.32 \\
\hline 17 & 383.3 & 24.54 & 24.62 & 24.58 & 24.58 & 23.70 & 1008.7 & 6.33 & 0.221E-07 & 0.01976 & 14.41 & 13.06 & 13.77 & 13.74 & 13.75 & 13.74 \\
\hline 18 & 403.3 & 24.54 & 24.68 & 24.59 & 24.60 & 23.75 & 1009.9 & 6.32 & 0.221E-07 & 0.02079 & 15.31 & 12.99 & 14.29 & 14.17 & 14.22 & 14.20 \\
\hline 19 & 423.3 & 24.61 & 24.74 & 24.67 & 24.67 & 23.80 & 1011.0 & 6.31 & \(0.222 \mathrm{E} \sim 07\) & 0.02182 & 14.92 & 12.78 & 13.92 & 13.84 & 13.89 & 13.86 \\
\hline 20 & 443.3 & 24.60 & 24.73 & 24.67 & 24.67 & 23.85 & 1012.1 & 6.30 & 0.223E*07 & 0.02286 & 16.10 & 13.71 & 14.71 & 14.79 & 14.84 & 14.81 \\
\hline 21 & 463.3 & 24.83 & 24.79 & 24.91 & 24.86 & 23.90 & 1013.3 & 6.30 & 0.224E*07 & 0.02389 & 12.94 & 13.61 & 11.88 & 12.54 & 12.58 & 12.56 \\
\hline \multicolumn{7}{|l|}{AVERAGE VALUES TMRRUGC STATIOYS 157020 . \(\begin{array}{llllllll}391.6 & 24.53 & 24.65 & 24.59 & 24.59 & 23.72\end{array}\)} & 1009.2 & 6.32 & 0.221E+07 & 0.02019 & 14.88 & 12.95 & 13.96 & 13.90 & 13.94 & 13.92 \\
\hline
\end{tabular}
\(\qquad\) \(3-1000\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { T10M } \\
& 80
\end{aligned}
\] & & -Wal & . & C & \[
\begin{aligned}
& \text { CCJ } \\
& \text { AVE } \\
& \text { CEE }
\end{aligned}
\] & \[
\begin{aligned}
& \overline{\mathrm{B}} \\
& \text { ( })
\end{aligned}
\] & 位 & Pl & 68 & 2. & 4 & 8 & C & I & HGE & T* \({ }_{\text {a }}\) \\
\hline 3 & 6.5 & 23.67 & 23.64 & 23.65 & 23.65 & 22.80 & 978.9 & 6.47 & 0.296E407 & 0.00029 & 20.02 & 20.83 & 20.42 & 20.42 & 20.42 & 20.42 \\
\hline 4 & 15.5 & 24.04 & 24.08 & 24.01 & 24.03 & 22.84 & 979.7 & 6.46 & 0.297E-07 & 0.00081 & 14.55 & 14.30 & 14.89 & 14.65 & 14.66 & 14.65 \\
\hline 5 & 25.5 & 24.12 & 24.25 & 24.14 & 24.17 & 22.87 & 980.5 & 6.46 & 0.298E*07 & 0.00132 & 13.99 & 12.60 & 13.72 & 13.48 & 13.51 & 13.50 \\
\hline 6 & 45.5 & 24.33 & 24.40 & 24.32 & 24.34 & 22.94 & 982.1 & 6.45 & 0.300E407 & 0.00236 & 12.62 & 12.00 & 12.67 & 12.48 & 12.49 & 12.48 \\
\hline 7 & 75.5 & 24.37 & 24.82 & 24.37 & 24.41 & 23.05 & 984.5 & 6.43 & 0.303E 07 & 0.00392 & 13.24 & 11.94 & 13.25 & 12.89 & 12.92 & 12.92 \\
\hline 8 & 105.5 & 24.42 & 24.62 & 24.47 & 24.49 & 23.16 & 986.8 & 6.41 & 0.305E-07 & 0.00548 & 13.86 & 11.99 & 13.38 & 13.11 & 13.15 & 13.13 \\
\hline 9 & 135.5 & 24.54 & 24.73 & 24.61 & 24.62 & 23.27 & 989.3 & 6.40 & 0.308E~07 & 0.00705 & 13.79 & 11.94 & 13.00 & 12.90 & 12.94 & 12.92 \\
\hline 10 & 165.2 & 24.61 & 24.86 & 24.75 & 24.74 & 23.38 & 991.6 & 6.38 & 0.311E+07 & 0.00859 & 14.16 & 11.81 & 12.76 & 12.82 & 22.87 & 22.84 \\
\hline 11 & 205.2 & 24.77 & 25.03 & 24.96 & 24.92 & 23.52 & 994.9 & 6.36 & \(0.315 E 67\) & 0.01068 & 14.02 & 11.57 & 12.23 & 12.45 & 12.51 & 12.48 \\
\hline 12 & 245.2 & 24.95 & 25.13 & 25.00 & 25.02 & 23.67 & 988.1 & 6.33 & 0.3181507 & 0.01276 & 13.68 & 11.93 & 13.05 & 12.88 & 12.91 & 12.89 \\
\hline 13 & 275.2 & 24.97 & 25.16 & 25.12 & 25.09 & 23.78 & 1000.6 & 6.32 & 0.321E+07 & 0.01433 & 14.62 & 12.57 & 13.00 & 13.25 & 13.30 & 13.27 \\
\hline 14 & 305.2 & 25.05 & 25.28 & 25.17 & 25.17 & 23.89 & 1003.2 & 6.30 & \(0.324 \mathrm{E}+07\) & 0.01589 & 15.04 & 12.53 & 13.57 & 13.62 & 13.68 & 13.65 \\
\hline 15 & 333.3 & 25.09 & 25.31 & 25.20 & 25.20 & 23.99 & 1005.4 & 6.28 & 0.327E 07 & 0.01736 & 15.80 & 13.14 & 14.35 & 14.35 & 14.41 & 14.38 \\
\hline 16 & 363.3 & 25.19 & 25.42 & 25.26 & 25.29 & 24.10 & 1007.9 & 6.26 & \(0.330 E 607\) & 0.01893 & 15.90 & 13.17 & 14.94 & 14.67 & 14.74 & 14.70 \\
\hline 17 & 383.3 & 25.26 & 25.44 & 25.36 & 25.36 & 24.17 & 2009.6 & 6.25 & \(0.332 \mathrm{E}+07\) & 0.01997 & 15.91 & 13.71 & 14.66 & 14.70 & 14.74 & 14.72 \\
\hline 18 & 403.3 & 25.30 & 25.47 & 25.38 & 25.38 & 24.24 & 1011.3 & 6.24 & 0.334E07 & 0.02102 & 16.52 & 14.24 & 15.33 & 15.32 & 15.36 & 15.33 \\
\hline 19 & 423.3 & 25.36 & 25.58 & 25.48 & 25.48 & 24.32 & 1082.9 & 6.23 & \(0.336 E \sim 07\) & 0.02205 & 16.63 & 13.74 & 14.94 & 14.99 & 15.06 & 15.03 \\
\hline 20 & 443.3 & 25.41 & 25.60 & 25.48 & 25.50 & 24.39 & 1014.6 & 6.22 & \(0.3385+07\) & 0.02311 & 16.95 & 14.33 & 15.92 & 15.72 & 15.78 & 15.75 \\
\hline 21 & 463.3 & 25.64 & 25.68 & 25.75 & 25.71 & 24.46 & 1016.3 & 6.21 & 0.3408407 & 0.02416 & 14.70 & 14.28 & 13.45 & 13.95 & 13.97 & 13.96 \\
\hline \multicolumn{5}{|l|}{averace values firnuge stations \(\begin{array}{llll}391.6 & 25.27 & 25.47 & 25.36\end{array}\)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
15.70 \\
25.37 \\
20 \\
24.20
\end{gathered}
\]} & 1010.3 & 6.25 & \(0.3335+07\) & 0.02041 & 16.29 & 13.72 & 15.02 & 14.96 & 15.01 & 14.98 \\
\hline
\end{tabular}

DOHNAD IWCLIMATIOM \(\qquad\) 4-1000

INFUT ELECTRIC PONEA - 300.1 V
 Plasune DMF F FACTOR = 0.017977 FRDM \(=17.9790\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { NO. }
\end{aligned}
\] & \[
\overline{\mathrm{N}}
\] & HALI & 8 & \({ }^{\text {ce }}\) & \[
\begin{aligned}
& C C)- \\
& A V E \\
& A C E-
\end{aligned}
\] & \[
\overline{\mathrm{F}}
\] & 18 & PR & GR & Z & 4 & 8 & \(\underline{C}\) & I & 8 & T+1. \\
\hline 3 & 5.5 & 24.20 & 24.20 & 24.20 & 24.20 & 22.87 & 973.1 & 6.46 & \(0.434 E 007\) & 0.00029 & 19.05 & 19.09 & 19.07 & 19.07 & 19.07 & 19.07 \\
\hline 4 & 15.5 & 24.56 & 24.70 & 24.62 & 24.62 & 22.92 & 974.3 & 6.45 & \(0.436 E+07\) & 0.00081 & 15.48 & 14.27 & 14.97 & 14.91 & 14.92 & 14.92 \\
\hline 5 & 25.5 & 24.78 & 25.00 & 24.92 & 24.91 & 22.97 & 975.4 & 6.44 & 0.438E-07 & 0.00133 & 14.05 & 12.52 & 13.04 & 13.14 & 13.16 & 13.15 \\
\hline 6 & 45.5 & 24.92 & 25.10 & 24.99 & 25.00 & 23.08 & 977.7 & 6.43 & 0.441E+07 & 0.00238 & 13.81 & 12.57 & 13.26 & 13.21 & 13.22 & 13.22 \\
\hline 7 & 75.5 & 25.04 & 25.21 & 25.07 & 25.10 & 23.24 & 981.2 & 6.40 & 0.447E-07 & 0.00395 & 14.10 & 12.87 & 13.87 & 13.66 & 13.68 & 13.67 \\
\hline 8 & 105.5 & 25.09 & 25.37 & 25.15 & 25.20 & 23.40 & 984.7 & 6.38 & 0.453E~07 & 0.00553 & 14.98 & 12.85 & 14.36 & 14.09 & 14.14 & 14.12 \\
\hline 9 & 135.5 & 25.21 & 25.48 & 25.37 & 25.36 & 23.58 & 988.3 & 6.35 & 0.459E*07 & 0.00710 & 15.39 & 13.16 & 14.03 & 14.11 & 14.15 & 14.13 \\
\hline 10 & 165.2 & 25.36 & 25.69 & 25.50 & 25.52 & 23.72 & 991.8 & 6.33 & 0.465E-07 & 0.00866 & 15.40 & 12.82 & 14.19 & 14.09 & 14.15 & 14.12 \\
\hline 11 & 205.2 & 25.44 & 25.81 & 25.68 & 25.65 & 23.93 & 996.6 & 6.29 & 0.473E+07 & 0.01077 & 16.79 & 13.45 & 14.50 & 14.72 & 14.81 & 14.76 \\
\hline 12 & 245.2 & 25.76 & 25.97 & 25.82 & 25.84 & 24.14 & 1001.5 & 6.26 & 0.482E+07 & 0.01287 & 15.69 & 13.87 & 15.12 & 14.92 & 14.95 & 14.94 \\
\hline 13 & 275.2 & 25.69 & 26.03 & 25.96 & 25.91 & 24.30 & 1005.1 & 6.23 & 0.488E*07 & 0.01445 & 18.17 & 14.64 & 15.27 & 15.73 & 15.84 & 15.78 \\
\hline 14 & 305.2 & 25.91 & 26.26 & 26.10 & 26.09 & 24.46 & 1008.8 & 6.21 & 0.494E-07 & 0.01603 & 17.45 & 14.08 & 15.48 & 15.53 & 15.62 & 15.58 \\
\hline 15 & 333.3 & 26.07 & 26.40 & 26.29 & 26.26 & 24.6: & 1012.3 & 6.18 & 0.501E+07 & 0.01751 & 17.38 & 14.13 & 15.07 & 15.33 & 15.41 & 15.37 \\
\hline 16 & 363.3 & 26.28 & 26.59 & 26.44 & 26.44 & 24.77 & 1016.0 & 6.16 & 0.507E+07 & 0.01510 & 16.74 & 13.88 & 15.12 & 15.15 & 15.22 & 15.18 \\
\hline 17 & 383.3 & 26.38 & 26.68 & 26.56 & 26.54 & 24.88 & 1018.5 & 6.14 & 0.511E+07 & 0.02016 & 16.78 & 14.02 & 15.04 & 15.16 & 15.22 & 15.19 \\
\hline 18 & 403.3 & 26.45 & 26.73 & 26.61 & 26.60 & 24.98 & 1021.1 & 6.13 & \(0.536 E+07\) & 0.02121 & 17.24 & 14.47 & 15.52 & 15.62 & 15.69 & 15.66 \\
\hline 19 & 423.3 & 26.62 & 26.90 & 25.75 & 26.75 & 25.09 & 1023.6 & 6.11 & 0.520E+07 & 0.02227 & 16.51 & 13.98 & 15.26 & 15.20 & 15.25 & 15.23 \\
\hline 20 & 443.3 & 26.62 & 26.98 & 26.80 & 26.80 & 25.20 & 1026.1 & 6.09 & \(0.525 E \cdot 07\) & 0.02333 & 17.68 & 14.13 & 15.72 & 15.71 & 15.81 & 15.76 \\
\hline 21 & 463.3 & 26.91 & 27.09 & 27.07 & 27.04 & 25.30 & 1028.7 & 6.07 & 0.530E+07 & 0.02439 & 15.73 & 14.11 & 14.27 & 14.57 & 14.59 & 14.58 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERACE VALUES TRROUGA STATIONS 15 TO 20: \\
\(\begin{array}{lllllllll}391.6 & 26.40 & 26.71 & 26.57 & 26.57 & 24.92\end{array}\)
\end{tabular}} & 1019.6 & 6.13 & \(0.513 \mathrm{E} \cdot 07\) & 0.02060 & 17.06 & 14.10 & 15.29 & 15.36 & 15.43 & 15.40 \\
\hline
\end{tabular}
\(\qquad\) 5-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STI- } \\
& \text { TIOM } \\
& \text { RO. }
\end{aligned}
\] & & \[
-6 A L L
\] & \[
8
\] & C & \[
\begin{aligned}
& C \bar{C}- \\
& A V E- \\
& A C E
\end{aligned}
\] & (C) & IE & R & 6 & Z & 4 & 8 & C & T & W & T+I \\
\hline 3 & 5.5 & 24.84 & 24.84 & 24.84 & 24.84 & 22.76 & 956.5 & 6.48 & \(0.632 \mathrm{E}+07\) & 0.00029 & 18.00 & 17.99 & 17.99 & 17.99 & 17.99 & 17.99 \\
\hline 4 & 15.5 & 25.28 & 25.54 & 25.36 & 25.38 & 22.84 & 958.2 & 6.46 & \(0.636 \mathrm{E}+07\) & 0.00082 & 15.33 & 13.85 & 14.82 & 34.69 & 14.72 & 14.70 \\
\hline 5 & 25.5 & 25.58 & 25.96 & 25.75 & 25.76 & 22.92 & 959.9 & 6.45 & 0.640E+07 & 0.00135 & 14.05 & 12.27 & 13.19 & 13.15 & 13.18 & 13 \\
\hline 6 & 45.5 & 25.76 & 26.11 & 25.89 & 25.91 & 23.06 & 963.3 & 6.43 & 0.648E+07 & 0.00242 & 13.93 & 12.33 & 13.28 & 13.18 & 13.28 & 3.19 \\
\hline 7 & 75.5 & 26.01 & 26.46 & 26.16 & 26.20 & 23.32 & 968.4 & 6.39 & \(0.661 E+07\) & 0.00401 & 13.85 & 11.86 & 13.13 & 12.95 & 12.99 & 12 \\
\hline 8 & 105.5 & 26.18 & 26.74 & 26.37 & 26.41 & 23.56 & 973.6 & 6.35 & 0.674E*07 & 0.00561 & 14.21 & 11.70 & 13.27 & 13.04 & 13.11 & 13.08 \\
\hline 9 & 135.5 & 26.46 & 26.91 & 26.65 & 26.67 & 23.80 & 978.8 & 6.31 & 0.688E-07 & 0.00721 & 13.97 & 11.97 & 13.05 & 12.97 & 13.01 & 12.99 \\
\hline 10 & 165.2 & 26.58 & 27.14 & 26.88 & 26.87 & 24.03 & 984.1 & 5.28 & \(0.701 \mathrm{E}+07\) & 0.00880 & 14.57 & 21.96 & 13.08 & 13.11 & 13.17 & 14 \\
\hline 11 & 205.2 & 26.78 & 27.43 & 27.13 & 27.12 & 24.36 & 991.3 & 6.23 & \(0.720 \mathrm{E}+07\) & 0.08094 & 16.31 & 12.07 & 13.37 & 13.43 & 13.53 & 41 \\
\hline 12 & 245.2 & 27.15 & 27.70 & 27.47 & 27.44 & 24.67 & 998.5 & 6.18 & \(0.738 E \times 07\) & 0.02308 & 14.98 & 12.25 & 13.27 & 13.37 & 13.44 & 13.41 \\
\hline 13 & 275.2 & 27.31 & 27.93 & 27.72 & 27.67 & 24.90 & 1004.0 & 6.14 & \(0.753 \mathrm{E}+07\) & 0.01469 & 15.43 & 12.28 & 13.17 & 13.42 & 13.51 & 47 \\
\hline 24 & 305.2 & 27.56 & 28.16 & 27.92 & 27.89 & 25.14 & 1009.6 & 6.10 & \(0.768 E * 07\) & 0.08630 & 15.35 & 12.28 & 13.37 & 13.51 & 13.60 & 55 \\
\hline 15 & 333.3 & 27.85 & 28.40 & 28.27 & 28.20 & 25.36 & 1014.9 & 6.06 & 0.782E+07 & 0.02781 & 14.94 & 12.20 & 12.79 & 13.10 & 13.18 & 14 \\
\hline 16 & 363.3 & 28.04 & 28.68 & 28.44 & 28.40 & 25.60 & 1020.6 & 6.03 & 0.797E+07 & 0.01943 & 15.23 & 12.04 & 13.09 & 13.27 & 13.36 & 13.31 \\
\hline 17 & 383.3 & 28.20 & 28.76 & 28.54 & 28.51 & 25.75 & 1024.4 & 6.00 & 0.80TE +07 & 0.02051 & 15.20 & 12.35 & 13.34 & 13.48 & 13.56 & 52 \\
\hline 18 & 403.3 & 28.28 & 28.89 & 28.71 & 28.65 & 25.92 & 1028.3 & 5.98 & 0.818E+07 & 0.02159 & 15.72 & 12.46 & 13.27 & 13.58 & 13.68 & 13.63 \\
\hline 19 & 423.3 & 28.44 & 29.05 & 28.85 & 28.80 & 26.00 & 1032.2 & 5.95 & 0.828E+07 & 0.02266 & 15.72 & 12.46 & 13.35 & 13.62 & 13.72 & 13.67 \\
\hline 20 & 443.3 & 28.45 & 29.10 & 28.88 & 28.83 & 26.24 & 1036.1 & 5.93 & \(0.839 \mathrm{E}+07\) & 0.02375 & 16.70 & 12.94 & 13.99 & 14.28 & 14.41 & 14.3 \\
\hline 21 & 463.3 & 28.82 & 29.40 & 29.29 & 29.20 & 26.40 & 1040.1 & 5.90 & 0.850E*07 & 0.02483 & 15.29 & 12.32 & 12.80 & 13.21 & 13.30 & 13.26 \\
\hline \multicolumn{5}{|l|}{aVERAGE VALUES THROUCA STATICNS \(391.6 \quad 28.21 \quad 28.82 \quad 28.61\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15.70 \\
& 20.56 \\
& 25.83 \\
& 25.83
\end{aligned}
\]} & 1026.1 & 5.99 & 0.812E+07 & 0.02096 & 15.59 & 12.41 & 13.30 & 13.55 & 13.65 & 13.60 \\
\hline
\end{tabular}

DOMTHAD IWCLIMATION \(\qquad\) 6-1000


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA- } \\
& \text { NOON }
\end{aligned}
\] & & \[
-\mathrm{HAL}
\] & 8 & \({ }^{\text {c }}\) & \[
\begin{aligned}
& \text { C) } \\
& \text { AVER }
\end{aligned}
\] & (C) & \(\underline{1}\) & PL & GR & 2 & 4 & B & \[
c
\] & 5 & G & T* \(\mathrm{H}^{\text {r }}\) \\
\hline 3 & 5.5 & 27.09 & 27.97 & 27.53 & 27.53 & 22.78 & 942.3 & 6.47 & 0.890Et07 & 0.00030 & 12.19 & 10. 22 & 11.06 & 11.06 & 11.10 & 11.08 \\
\hline 4 & 15.5 & 27.35 & 28.22 & 27.71 & 27.74 & 22.89 & 944.7 & 6.46 & 0.898E+07 & 0.00084 & 11.78 & 9.85 & 10.90 & 10.82 & 10.86 & 10.84 \\
\hline 5 & 25.5 & 27.59 & 28.52 & 2t. 19 & 2t. 12 & 23.00 & 947.1 & 6.44 & 0.907E-07 & 0.00138 & 11.45 & 9.51 & 10.13 & 10.26 & 10.31 & 0.28 \\
\hline 6 & 45.5 & 27.72 & 28.57 & 28.18 & 28.16 & 23.23 & 951.9 & 6.70 & 0.924E+07 & 0.00246 & 11.68 & 9.83 & 10.59 & 10.63 & 10.67 & 10.65 \\
\hline 7 & 75.5 & 27.95 & 28.82 & 28.36 & 28.38 & 23.57 & 959.2 & 6.35 & 0.950 E.07 & 0.00408 & 12.96 & 9.98 & 10.94 & 10.91 & 10.95 & 10.93 \\
\hline 8 & 105.5 & 28.13 & 29.15 & 28.57 & 28.61 & 23.91 & 966.6 & 6.29 & 0.97TE-07 & 0.00570 & 12.42 & 10.00 & 11.24 & 11.16 & 11.22 & 11.19 \\
\hline 9 & 135.5 & 28.50 & 29.36 & 28.94 & 28.93 & 24.25 & 974.1 & 6.24 & 0.100E-08 & 0.00733 & 12.32 & 10.25 & 11.17 & 11.18 & 11.23 & 11.20 \\
\hline 10 & 165.2 & 28.64 & 29.88 & 29.40 & 29.33 & 24.59 & 981.7 & 6.19 & 0.103E+08 & 0.00895 & 12.90 & 9.89 & 10.87 & 11.03 & 11.13 & 11.08 \\
\hline 11 & 205.2 & 29.26 & 30.38 & 29.93 & 29.87 & 25.04 & 992.0 & 6.12 & 0.107E 08 & 0.01113 & 12.38 & 9.78 & 10.70 & 10.81 & 10.89 & 10.85 \\
\hline 12 & 245.2 & 29.51 & 30.57 & 30.12 & 30.08 & 25.49 & 1002.6 & 6.04 & 0.111E*0* & 0.01331 & 13.00 & 10.28 & 11.27 & 11.38 & 11.46 & 11.42 \\
\hline 13 & 275.2 & 29.79 & 30.83 & 30.52 & 30.42 & 25.83 & 1010.7 & 5.99 & 0.114E~08 & 0.01495 & 13.18 & 10.45 & 11.12 & 11.38 & 11.47 & 11.42 \\
\hline 14 & 305.2 & 30.02 & 31.05 & 30.66 & 30.60 & 26.17 & 1019.0 & 5.94 & 0.118E-08 & 0.01660 & 13.56 & 10.69 & 11.61 & 11.78 & 11.87 & 12.83 \\
\hline 15 & 333.3 & 30.44 & 31.33 & 31.16 & 31.02 & 26.49 & 1026.8 & 5.89 & 0.121E+08 & 0.01814 & 13.21 & 10.77 & 11.16 & 11.50 & 11.57 & 11.54 \\
\hline 16 & 363.3 & 30.60 & 31.61 & 31.21 & 31.16 & 26.83 & 1035.3 & 5.83 & 0.124E+08 & 0.01979 & 13.81 & 10.90 & 11.8. & 12.03 & 12.12 & 12.07 \\
\hline 17 & 383.3 & 30.77 & 31.64 & 31.27 & 31.24 & 27.06 & 1040.1 & 5.80 & 0.126E408 & 0.02089 & 14.02 & 11.37 & 12.34 & 12.45 & 12.52 & 12.48 \\
\hline 18 & 403.3 & 30.89 & 31.79 & 31.46 & 31.40 & 27.29 & 1044.9 & 5.77 & 0.128E+08 & 0.02199 & 14.43 & 11.55 & 12.46 & 12.64 & 12.73 & 12.68 \\
\hline 19 & 423.3 & 31.06 & 31.88 & 31.61 & 31.54 & 27.51 & 1049.7 & 5.75 & 0.130E•08 & 0.02308 & 14.65 & 11.91 & 12.70 & 12.91 & 12.99 & 12.95 \\
\hline 20 & 443.3 & 32.02 & 31.86 & 31.53 & 31.48 & 27.74 & 1054.6 & 5.72 & 0.132E+08 & 0.02418 & 15.86 & 12.61 & 13.72 & 13.88 & 13.98 & 13.93 \\
\hline 21 & 463.3 & 31.23 & 32.08 & 31.75 & 31.71 & 27.97 & 1059.5 & 5.69 & 0.134E+08 & 0.02528 & 15.90 & 12.62 & 13.70 & 13.89 & 13.98 & 13.93 \\
\hline \multicolumn{5}{|l|}{aVERAGE YatUES THROUGR STATIONS
\[
391.6 \quad 30.80 \quad 31.68^{-31.37}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 15 \\
& 31.31 \\
& 20 \\
& 27.15
\end{aligned}
\]} & 1041.9 & 5.79 & \[
0.127 E+08
\] & 0.02135 & 14.33 & 11.52 & \[
12.38
\] & 12.57 & 12.65 & 12.61 \\
\hline
\end{tabular}
donitiad imclimatiom \(\qquad\) 1-1500

IMPUT ELECRIC PONER - 132.7 V



CACTOR \(=0.010499\)
CEERAOM 15.8 .928

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { STA- } \\
& \text { THON } \mathrm{CH}
\end{aligned}
\]}} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\[
c
\]} & & \multirow[t]{2}{*}{\[
7
\]
(c)} & \multirow[t]{2}{*}{\(\underline{1}\)} & \multirow[t]{2}{*}{PR} & \multirow[t]{2}{*}{\(6 \pi\)} & \multirow[t]{2}{*}{2} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{\[
\min _{c}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{M-DE}} \\
\hline & & & & & \[
A V_{1}
\] & & & & & & 4 & 8 & & & & \\
\hline 3 & 5.5 & 23.26 & 23.25 & 23.25 & 23.25 & 22.79 & 1493.7 & 6.47 & 0.184E-07 & 0.00019 & 23.16 & 23.59 & 23.37 & 23.37 & 23.37 & 23.37 \\
\hline 4 & 15.5 & 23.48 & 23.53 & 23.48 & 23.49 & 22.80 & 1494.2 & 6.47 & \(0.184 E 07\) & 0.00053 & 15.90 & 14.97 & 15.90 & 15.65 & 15.67 & 15.68 \\
\hline 5 & 25.5 & 23.65 & 23.71 & 23.65 & 23.66 & 22.8 & 1494.7 & 6.47 & 0.185E-07 & 0.00087 & 12.98 & 12.18 & 13.07 & 12.82 & 12.83 & 12.82 \\
\hline 6 & 45.5 & 23.77 & 23.81 & 23.76 & 23.78 & 22.85 & 1495.6 & 6.46 & 0.185E-07 & 0.00155 & 11.77 & 11.23 & 11.83 & 11.66 & 11.67 & 11.67 \\
\hline 7 & 75.5 & 23.84 & 23.90 & 23.84 & 23.86 & 22.89 & 1497.1 & 6.46 & 0.186E+07 & 0.00257 & 11.38 & 10.70 & 11.43 & 11.22 & 11.23 & 11.23 \\
\hline 8 & 105.5 & 23.86 & 23.95 & 23.88 & 23.89 & 22.93 & 1498.6 & 6.45 & 0.186E~07 & 0.00359 & 11.68 & 10.73 & 11.47 & 11.33 & 12.34 & 11.33 \\
\hline 9 & 135.5 & 23.87 & 23.95 & 23.86 & 23.88 & 22.98 & 1500.1 & 6.44 & 0.187E 07 & 0.00461 & 12.23 & 11.15 & 12.32 & 11.98 & 12.01 & 11.99 \\
\hline 10 & 165.2 & 23.83 & 23.96 & 23.91 & 23.90 & 23.02 & 1501.5 & 6.43 & 0.188E607 & 0.00562 & 13.40 & 11.53 & 12.29 & 12.34 & 12.38 & 12.36 \\
\hline 12 & 205.2 & 23.90 & 24.00 & 24.03 & 24.01 & 23.08 & 1503.5 & 6.43 & 0.189E+07 & 0.00699 & 13.22 & 10.83 & 12.42 & 11.69 & 12.75 & 11.72 \\
\hline 12 & 245.2 & 24.03 & 24.10 & 24.03 & 24.05 & 23.14 & 1505.5 & 6.42 & 0.190E+07 & 0.00835 & 12.16 & 11.33 & 12.26 & 11.98 & 12.00 & 12.00 \\
\hline 13 & 275.2 & 23.99 & 24.10 & 24.03 & 24.04 & 23.19 & 2507.0 & 6.41 & 0.190E507 & 0.00937 & 13.40 & 11.80 & 12.89 & 12.72 & 12.75 & 12.73 \\
\hline 14 & 305.2 & 24.07 & 24.19 & 24.13 & 24.13 & 23.23 & 1508.5 & 6.40 & 0.191E407 & 0.01040 & 12.95 & 21.35 & 11.98 & 12.04 & 12.07 & 12.05 \\
\hline 15 & 333.3 & 24.01 & 24.15 & 24.09 & 24.08 & 23.27 & 1509.9 & 6.40 & 0.192E-07 & 0.01135 & 14.76 & 12.41 & 13.25 & 13.37 & 13.42 & 13.39 \\
\hline 16 & 363.3 & 24.16 & 24.25 & 24.20 & 24.20 & 23.32 & 1511.4 & 6.39 & 0.192E 07 & 0.01238 & 12.81 & 11.61 & 12.31 & 12.24 & 12.26 & 12.25 \\
\hline 17 & 383.3 & 24.17 & 24.26 & 24.19 & 24.20 & 23.35 & 1512.4 & 6.38 & 0.193E+07 & 0.01306 & 13.07 & 11.87 & 12.90 & 12.67 & 12.69 & 12.68 \\
\hline 18 & 403.3 & 24.14 & 24.23 & 24.17 & 24.18 & 23.37 & 1513.4 & 6.38 & 0.193E407 & 0.01374 & 14.08 & 12.69 & 13.56 & 13.46 & 13.48 & 13.47 \\
\hline 19 & 423.3 & 24.19 & 24.30 & 24.24 & 24.24 & 23.40 & 1514.4 & 6.37 & 0.194E 07 & 0.01442 & 13.80 & 12.16 & 12.90 & 12.92 & 12.94 & 12.93 \\
\hline 20 & 443.3 & 24.18 & 24.31 & 24.24 & 24.24 & 23.43 & 1515.4 & 6.37 & \(0.194 E+07\) & 0.01511 & 14.59 & 12.42 & 13.37 & 13.40 & 13.44 & 13.42 \\
\hline 21 & 453.3 & 24.41 & 24.32 & 24.49 & 24.43 & 23.46 & 1516.4 & 6.37 & 0.195E-07 & 0.01579 & 11.46 & 12.60 & 10.53 & 11.22 & 11.28 & 11.25 \\
\hline \multicolumn{17}{|l|}{\begin{tabular}{l}
aVERAGE VALUES THROUCR STATIONS 15 T0 20: \\

\end{tabular}} \\
\hline
\end{tabular}

DONHVAD IMCLIMATIOM \(\qquad\) 2-1500



\(\qquad\) 3－1500

IMPUT EIECHIC PONER－ 236.5 Y
 TEAT Balance bung－ 0.157


ACTOR＝ 0.011005 F13n \(=16.6800\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STI- } \\
& \text { TIOM. }
\end{aligned}
\] & \[
\bar{v}^{2}
\] & \[
4
\] & \[
8
\] & \[
c
\] & \[
\begin{aligned}
& \text { AVE } \\
& \text { AE! } \\
& \hline
\end{aligned}
\] & (C) & 1 & PR & GI & 2 & 4 & B & & T & － & T＊1星 \\
\hline 3 & 5.5 & 23.59 & 23.58 & 23.59 & 23.59 & 22.72 & 1484.3 & 6.48 & 332E－07 & 0.00019 & 22.75 & 22.92 & 22.84 & 22.84 & 22.84 & 22.84 \\
\hline 4 & 15.5 & 23.84 & 23.89 & 23 & 23 & 22.75 & 2 & 6.41 & 333t＋07 & ． 00053 & & & 02 & 3 & 17.84 & 17.83 \\
\hline 5 & 25.5 & 26.01 & 24.09 & 24.06 & 24 & 22.78 & 1486.1 & 6.47 & \(0.334 E+07\) & 0.00087 & 15.97 & 14.97 & 15.33 & 15.39 & 15.40 & 15.40 \\
\hline 6 & 45.5 & 24.16 & 24.23 & 24.15 & 24 & 22 & 1487.9 & 6.47 & \(0.335 E \sim 07\) & 0.00156 & 14.81 & 14.06 & 14.88 & 14.65 & 14.66 & 14.65 \\
\hline 7 & 75. & 24.26 & 24.38 & 24.26 & 24.29 & 22 & 1490 & 6.45 & 0．338E＊07 & 0.00258 & 14.60 & 13.44 & 14.62 & ． 30 & 14.32 & 14.31 \\
\hline 8 & 105 & 24.32 & 24.51 & 24.33 & 24 & 22 & 1493 & 6.4 & 0．340E－07 & 0.00361 & 14.94 & 13.02 & 5 & 32 & 14.36 & 14.34 \\
\hline 9 & 135 & 24.37 & 24.54 & 24.45 & 24.45 & 23.07 & 1495.9 & 6.43 & \(0.342 \mathrm{E}+07\) & 0.00464 & 15.20 & 13.45 & 14.35 & 14.31 & 14.34 & 14.32 \\
\hline 10 & 165 & 24.25 & 24.47 & 24.44 & 24.40 & 23.15 & 1498.6 & 6.41 & \(0.3458+07\) & 0.00565 & 17.96 & 15.00 & 15.32 & 15.82 & 15.90 & 15.86 \\
\hline 11 & 205 & 24.43 & 24.64 & 24.59 & 24.56 & 23.26 & 1502.2 & 6.40 & \(0.34 \mathrm{EE}+07\) & 0.00702 & 86.79 & 14.26 & 14.86 & 15.14 & 15.19 & 15． 16 \\
\hline 12 & 245 & 24.64 & 24.82 & 24.73 & 24.73 & 23.37 & 1505.9 & 6.38 & 0．351E－07 & 0.00860 & 25.43 & 13.52 & 14.51 & 46 & 14.49 & 14.48 \\
\hline 13 & 275 & 24.66 & 24.89 & 24.75 & 24.76 & 23.45 & 1508.6 & 6.37 & \(0.353 E-07\) & 0.00942 & 16.21 & 13.70 & 15.08 & 14.96 & 15.02 & 14.99 \\
\hline 14 & 305 & 24.74 & 24.97 & 24.89 & 24.87 & 23.53 & 15：1．3 & 6.35 & \(0.355 E+07\) & 0.010 & 16.30 & 13.67 & 14.46 & 14.66 & 14.72 & 14.69 \\
\hline 15 & 333 & 24.81 & 25.04 & 24.96 & 24.94 & 23.61 & \(15 \pm 3.9\) & 34 & 358E007 & 0.01142 & 16.30 & 13.76 & 14.61 & 14.76 & 14.82 & 14.79 \\
\hline 16 & 363.3 & 24.91 & 25.11 & 25.01 & 25.01 & 23.69 & 1516.7 & 6.33 & \(0.360 E \sim 07\) & 0.01245 & 16.02 & 13.78 & ． 86 & 14.84 & 14.88 & 14.86 \\
\hline 17 & 383.3 & 24.96 & 25.16 & 25.06 & 25.06 & 23.74 & 1528.5 & 6.32 & \(0.362 E \sim 07\) & 0.01314 & 16.17 & 13.87 & 15.01 & 14.97 & 15.02 & 14.99 \\
\hline 28 & 403.3 & 24.93 & 25.16 & 25.07 & 25.06 & 23.79 & 1520.4 & 6.31 & 0.36354 & 0.01382 & 17.30 & 14.44 & 15.42 & 15.58 & 15.64 & 15.61 \\
\hline \(: 9\) & 423.3 & 25.03 & 25.25 & 25.17 & 25.15 & 23.85 & 1522.3 & 6.30 & 0．365E－07 & 0.01451 & 16．6悤 & 14.06 & 14.86 & 15.06 & 15.12 & 15.09 \\
\hline 20 & 443.3 & 25.11 & 25.29 & 25.20 & 25.20 & 23.90 & 1524.1 & 6.30 & \(0.366 \mathrm{E}-07\) & 0.01520 & 16.35 & 14.14 & 15.15 & 15.16 & 15.20 & 15.18 \\
\hline 21 & 463.3 & 25.36 & 25.36 & 25.47 & 25.42 & 23.96 & 1526.0 & 6.29 & 0．368E－07 & 0.01588 & 13.97 & 13.99 & 12.96 & 13.45 & 13.47 & 13.46 \\
\hline AVER & \[
\begin{aligned}
& \text { Rage }{ }_{391.6}
\end{aligned}
\] & \[
{ }_{24.96}^{L_{24}}
\] & \[
\begin{aligned}
& \text { nuces } \\
& 25.17 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { TATIOMS } \\
25.00
\end{gathered}
\] & \[
\begin{array}{r}
15 \\
25.07 \\
\hline
\end{array}
\] & \[
\stackrel{20}{23 .} 76
\] & 1519.3 & 6.32 & 0．362E－07 & 0.01342 & 16.47 & 14.01 & 14.99 & 15.06 & 15.11 & 15.09 \\
\hline
\end{tabular}

DOMNADD TMCLIMATEM \(\qquad\) 4－1500

INPCT ELECTRIC PONER－ 310.7 U UASS FLOW RATE－ \(44.5220 \mathrm{G} / \mathrm{S}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { T10. } \\
& \text { NO. }
\end{aligned}
\] & \[
{ }_{\mathrm{O}}^{\mathrm{A}}
\] & A & \[
8
\] & \[
c
\] & \[
\begin{aligned}
& \text { EC) } \\
& \text { AVER- } \\
& \text { AGE }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{T} \\
& \text { (C) }
\end{aligned}
\] & 压 & PR & 68 & 2 & 4 & E & \[
c
\] & \[
I
\] & \(\square\) & I＊\({ }^{\text {a }}\) \\
\hline 3 & 5.5 & 23.89 & 23.81 & 23.85 & 23.85 & 22.67 & 1477.8 & 6.49 & 0．432E＊07 & 0.00019 & 20.98 & 22.61 & 21.77 & 21.77 & 21.7 \％ & 21.77 \\
\hline 4 & 15.5 & 24.15 & 24.17 & 24.12 & 24.14 & 22.70 & 1478.9 & 6.49 & 0．433E＋07 & 0.00053 & 17.82 & 17.55 & 18.17 & 17.92 & 17.93 & 17.93 \\
\hline 5 & 25.5 & 24.39 & 24.48 & 24.42 & 24.43 & 22.74 & 1480.1 & 6.48 & \(0.434 E \times 07\) & 0.00087 & 15.53 & 14.79 & 15.28 & 15.21 & 15.22 & 15.22 \\
\hline 6 & 45.5 & 24.50 & 24.54 & 24.49 & 24.50 & 22.81 & 1482.4 & 6.47 & O．437E 0.07 & 0.00156 & 15.24 & 14.86 & 15.30 & 15.17 & 15.17 & 15.17 \\
\hline 7 & 75.5 & 24.59 & 24.77 & 24.59 & 24.64 & 22.91 & 1485.9 & 6.45 & 0．441E＋07 & 0.00259 & 15.31 & 13.89 & 15.31 & 14.93 & 14.96 & 14.94 \\
\hline 8 & 105.5 & 24.6 & 24.92 & 24.72 & 24.76 & 23.02 & 1489. & 6． 6.4 & 0．445E－07 & 0.00362 & 15.56 & 13.50 & 15.14 & 14.79 & 14.84 & 14.82 \\
\hline 9 & 135.5 & 24.84 & 25.07 & 24.92 & 24.94 & 23.13 & 1492.9 & 6.42 & 0．449E＋07 & 0.00465 & 14.98 & 13.25 & 14.33 & 14.20 & 14.22 & 14.21 \\
\hline 10 & 165.2 & 24.64 & 24.97 & 24.91 & 24. & 23.23 & 1496. & 6.40 & 0．453E＋07 & 0.00567 & 18.26 & 14.80 & 15.27 & 15.79 & 15.90 & 15.84 \\
\hline 11 & 205.2 & 24.94 & 25.25 & 25.12 & 25.11 & 23.37 & 1501.1 & 6.38 & 0．458E＊OT & 0.00705 & 16.44 & 13.65 & 14.73 & 14.82 & 14.89 & 14.85 \\
\hline 12 & 245.2 & 25.23 & 25.44 & 25.31 & 25.32 & 23.51 & 1505.9 & 6.36 & 0．463E＊07 & 0.00843 & 14.98 & 13.35 & 14.28 & 14.20 & 14.22 & 14.21 \\
\hline 13 & 275.2 & 25.25 & 25.53 & 25.37 & 25.38 & 23.62 & 1509.5 & 6.34 & 0．467E407 & 0.00946 & 15.76 & 13.46 & 14.66 & 14.59 & 14.64 & 14.61 \\
\hline 14 & 305 & 25.30 & 25.59 & 25.45 & 25.45 & 23.73 & 1513.1 & 6.32 & 0．471E＋07 & 0.01049 & 16.34 & 13.80 & 14.87 & 14.92 & 14.97 & 14.94 \\
\hline 15 & 333. & 25.43 & 25.68 & 25.56 & 25.56 & 23.83 & 1516.5 & 6.31 & 0．475E＊07 & 0.01146 & 16.03 & 13.86 & 14.75 & 14.81 & 14.85 & 14.83 \\
\hline 16 & 363.3 & 25.50 & 25.78 & 25.63 & 25.63 & 23.93 & 1520.2 & 6.29 & 0．479E＋07 & 0.01250 & 16.35 & \＄3．85 & 15.12 & 15.06 & 15.12 & 15.08 \\
\hline 17 & 383.3 & 25.54 & 25.81 & 25.64 & 25.66 & 24.00 & 1522.6 & 6.28 & 0．482E＊07 & 0.01319 & 16.63 & 14.21 & 15.69 & 15.50 & 15.55 & 15.53 \\
\hline 18 & 403.3 & 25.52 & 25.80 & 25.66 & 25.66 & 24.07 & 1525.1 & 6.27 & 0．485E407 & 0.01388 & 17.69 & 14.82 & 16.16 & 16.15 & 16.21 & 16.18 \\
\hline 19 & 423.3 & 25.59 & 25.89 & 25.76 & 25.75 & 24.14 & 1527.5 & 6.26 & 0．488E＋07 & 0.01457 & 17.77 & 14.67 & 15.84 & 15.96 & 16.03 & 15.99 \\
\hline 20 & 443.3 & 25.61 & 25.94 & 25.75 & 25.77 & 24.21 & 1530.0 & 6.25 & 0．491E＋07 & 0.01526 & 18.34 & 14.84 & 16.55 & 16.48 & 16.57 & 16.52 \\
\hline 21 & 463.3 & 25.81 & 26.00 & 26.01 & 25.96 & 24.28 & 1532.5 & 6.24 & 0．493E＋07 & 0.01595 & 16.77 & 14.97 & 14.88 & 15.34 & 15.37 & 15.36 \\
\hline \multicolumn{5}{|l|}{aVERAGE VALUES TIROUCE STATIOIS \(391.6 \quad 25.53 \quad 25.82 \quad 25.67\)} & \[
\begin{aligned}
& 25.70 \\
& 25.67
\end{aligned}
\] & \[
\begin{aligned}
20 \\
24.03
\end{aligned}
\] & 1523.6 & 6.28 & \(0.483 E+07\) & 0.01347 & 17.13 & 24.38 & 15.68 & 15.66 & 15.72 & 15.69 \\
\hline
\end{tabular}
\(\qquad\) 5－1500

INPUT ELECTMIC POUEA－ 482.9 U
GEAT MTE GATMDD BY UATER－ 483.9 y FAICTIO FACTOR－ 0.012599

TEAT Batance bison \(0-0.207\) USS FLOH RMTE \(=43.7986 \mathrm{G} / \mathrm{S}\) PIBSSURE DMOP＝ 0.8457 MH 20


13－ 18.9424
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TTOM } \\
& \hline
\end{aligned}
\] & & \[
-61
\] & B & \(c\) &  & \[
\overline{(C)}
\] & L & PR & 6 & \(2+\) & 1 & 日 & \[
\bar{c}
\] & \[
T
\] & 厚 & T＋E \\
\hline 3 & 5.5 & 24.70 & 24.67 & 24.69 & 24.69 & 22.88 & 1460.5 & 6.46 & 0．690E－07 & 0.00019 & 22.16 & 22.50 & 22.33 & 22.33 & 22.33 & 22.33 \\
\hline 4 & 15.5 & 25.17 & 25.37 & 25.19 & 25.23 & 22.93 & 1462.3 & 6.45 & 0．693E＋07 & 0.00054 & 18.07 & 16.57 & 17.85 & 17.57 & 17.59 & 17.58 \\
\hline 5 & 25.5 & 25.52 & 25.77 & 25.64 & 25.64 & 22.99 & 1464.2 & 6.44 & 0．697E 0.07 & 0.00089 & 15.94 & 14.52 & 15.24 & 15.21 & 15.23 & 15.22 \\
\hline 6 & 45.5 & 25.62 & 25.85 & 25.69 & 25.71 & 23.10 & 1467.8 & 6.42 & \(0.703 \mathrm{E}-07\) & 0.00159 & 15.04 & 14.67 & 15.58 & 15.45 & 15.47 & 15.46 \\
\hline 7 & 75.5 & 25.79 & 26.10 & 25.82 & 25.88 & 23.27 & 1473.4 & 6.40 & 0．713E－07 & 0.00264 & 16.03 & 14.27 & 15.81 & 15.45 & 15.48 & 15.47 \\
\hline 8 & 105.5 & 25.87 & 26.35 & 25.95 & 26.03 & 23.44 & 1479.0 & 6.37 & \(0.723 \mathrm{E}-07\) & 0.00368 & 16.58 & 13.86 & 16.09 & 15.58 & 15.66 & 15.62 \\
\hline 9 & 135.5 & 26.10 & 26.49 & 26.20 & 26.25 & 23.61 & 1484.6 & 6.34 & 0．733E＋07 & 0.00473 & 16.20 & 14.01 & 15.55 & 15.28 & 15.33 & 15.30 \\
\hline 10 & 265.2 & 25.75 & 26.31 & 26.12 & 26.07 & 23.78 & 1490.3 & 6.32 & \(0.743 \mathrm{E}-07\) & 0.00577 & 20.42 & 15.94 & 17.20 & 17.55 & 17.69 & 17.62 \\
\hline 11 & 205.2 & 26.16 & 28.70 & 26.40 & 28.42 & 24.00 & 1497.9 & 6.28 & 0.757 C & 0.00718 & 18.64 & 14.91 & 16.78 & 16.67 & 16.78 & 16.72 \\
\hline 12 & 245.2 & 26.59 & 27.00 & 26.77 & 26.78 & 24.23 & 1505.6 & 6.24 & 0．7715－07 & 0.00858 & 17.05 & 14.52 & 25.85 & 25.77 & 15.82 & 15.79 \\
\hline 13 & 275.2 & 26.67 & 27.17 & 26.94 & 26.93 & 24.40 & 1511.5 & 6.22 & \(0.782 E 07\) & 0.00963 & 17.71 & 14.49 & 15.83 & 15.89 & 15.97 & 15.93 \\
\hline 14 & 305.2 & 26.78 & 27.29 & 27.08 & 27.06 & 24.57 & 1517.4 & 6.19 & \(0.793 \mathrm{E}-07\) & 0.01069 & 18.19 & 14.74 & 16.03 & 16.16 & 16.25 & 16.20 \\
\hline 15 & 333.3 & 27.10 & 27.63 & 27.43 & 27.40 & 24.72 & 1522.9 & 6.17 & \(0.803 E-07\) & 0.01168 & 16.96 & 13.86 & 14.85 & 15.06 & 15.14 & 15.10 \\
\hline 16 & 363.3 & 27.20 & 27.73 & 27.48 & 27.47 & 24.89 & 1528.9 & 6.14 & 0．814E＊07 & 0.01273 & 17.43 & 14． 15 & 15.54 & 15.58 & 15.66 & 15.62 \\
\hline 17 & 383.3 & 27.33 & 27.83 & 27.53 & 27.56 & 25.01 & 1532.9 & 6.12 & 0．822E－07 & 0.01344 & 17.27 & 14.21 & 15.90 & 15.74 & 15.82 & 15.78 \\
\hline 18 & 403.3 & 27.43 & 27.94 & 27.68 & 27.68 & 25.12 & 1537.0 & 6.10 & 0．829E＋07 & 0.01414 & 17.37 & 14.25 & 15.72 & 15.68 & 15.76 & 15.72 \\
\hline 19 & 423.3 & 27.54 & 28.07 & 27.87 & 27.84 & 25.23 & 1541.0 & 6.09 & 0．837E～OT & 0.01485 & 17.40 & 14.14 & 15.23 & 15.41 & 15.50 & 15.46 \\
\hline 20 & 443.3 & 27.61 & 28.17 & 27.90 & 27.89 & 25.35 & 1545.1 & 6.07 & 0．845E＋07 & 0.01555 & 17.73 & 14.23 & 15.72 & 15.75 & 15.85 & 15.80 \\
\hline 21 & 463.3 & 27.89 & 28.33 & 28.17 & 28.14 & 25.46 & 1549.2 & 6.05 & 0．853e＋07 & 0.01626 & 16.50 & 13.97 & 14.82 & 14.98 & 15.03 & 15.00 \\
\hline \multicolumn{7}{|l|}{AVERAGE YALUES THROUCH STATIONS 15 TD 20： \(\begin{array}{lllllllllll}391.6 & 27.37 & 27.90 & 27.65 & 27.64 & 25 & 05\end{array}\)} & 1534.6 & 6.11 & 0．825E＋07 & 0.01373 & 17.36 & 14．14 & 15.49 & 15.54 & 15.62 & 15.58 \\
\hline
\end{tabular}
\(\qquad\) 6－1500


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STA } \\
& \text { TION } \\
& \text { NO. }
\end{aligned}
\] & \[
x_{0}^{2}
\] & - Haly & \[
8
\] & C & \[
\begin{aligned}
& \text { GVER- } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& T 8 \\
& (\mathrm{C})
\end{aligned}
\] & E & PR & R & 2 & 4 & B & C & \[
I
\] & 厖 & T＋星 \\
\hline 3 & 5.5 & 25.48 & 25.48 & 25.48 & 25.48 & 22.91 & 1437.4 & 6.45 & 0.963 E07 & 0.00020 & 21.90 & 21.86 & 21.88 & 21.88 & 21.88 & 21.88 \\
\hline 4 & 15.5 & 26.16 & 26.49 & 26.24 & 26.28 & 22.99 & 1440.0 & 6.44 & 0．970E＊07 & 0.00055 & 17.72 & 16.07 & 27.27 & 17.06 & 17.08 & 17.07 \\
\hline 5 & 25.5 & 26.57 & 27.04 & 26.80 & 26.80 & 23.07 & 1442.5 & 6.43 & 0．976E＋07 & 0.00090 & 16.06 & 14.16 & 15.06 & 15.05 & 15.08 & 15.07 \\
\hline 6 & 45.5 & 26.68 & 27.11 & 26.84 & 26.87 & 23.23 & 1447.7 & 6.40 & 0．989E＋07 & 0.00161 & 16.26 & 14.46 & 15.55 & 15.43 & 15.46 & 15.44 \\
\hline 7 & 75.5 & 26.95 & 27.54 & 27.08 & 27.16 & 23.47 & 1455.5 & 6.36 & 0．101E－08 & 0.00268 & 16.11 & 13.77 & 15.55 & 15.19 & 15.24 & 15.22 \\
\hline 8 & 105.5 & 27.18 & 27.92 & 27.40 & 27.47 & 23.71 & 1463.3 & 6.33 & 0．1038－08 & 0.00375 & 16.14 & 13.33 & 15.20 & 14.90 & 14.97 & 14.93 \\
\hline 9 & 135.5 & 27.49 & 28.11 & 27.76 & 27.78 & 23.95 & 1471.3 & 6.29 & 0．105E 08 & 0.00482 & 15.81 & 13.49 & 14.69 & 14.62 & 14.67 & 14.65 \\
\hline 10 & 165.2 & 26.92 & 27.81 & 27.52 & 27.44 & 24.18 & 1479.3 & 6.25 & 0．107E－08 & 0.00588 & 20.50 & 15.45 & 16.80 & 17.20 & 17.38 & 17.29 \\
\hline 11 & 205.2 & 27.56 & 28.32 & 27.91 & 27.93 & 24.50 & 1490.1 & 6.20 & 0．110E＋08 & 0.00732 & 18.33 & 14.67 & 16.43 & 16.36 & 16.46 & 16.41 \\
\hline 12 & 245.2 & 28.15 & 28.81 & 28.47 & 28.48 & 24.82 & 1501.2 & 6.15 & 0．113E 08 & 0.00874 & 16.84 & 14.02 & 15.33 & 15.31 & 15.38 & 15.35 \\
\hline 13 & 275.2 & 28.29 & 29.07 & 28.79 & 28.73 & 25.05 & 2509.6 & 6.11 & 0．115E＋08 & 0.00981 & 17.35 & 23.95 & 15.01 & 15.24 & 15.33 & 15.28 \\
\hline 14 & 305.2 & 28.48 & 29.28 & 28.90 & 28.89 & 25.30 & 1518.0 & 6.07 & 0．117E－08 & 0.01089 & 17.57 & 14.04 & 15.55 & 15.58 & 15.68 & 15.63 \\
\hline 15 & 333.3 & 28.99 & 29.85 & 29.57 & 29.50 & 25.53 & 1525.0 & 6.04 & 0．119E＋08 & 0.01190 & 16.13 & 12.91 & 13.80 & 14.07 & 14.16 & 14.12 \\
\hline 16 & 363.3 & 29.21 & 30.13 & 29.73 & 29.70 & 25.77 & 1534.7 & 6.00 & 0．122E＋08 & 0.01298 & 16.22 & 12.79 & 14.10 & 14.20 & 14.30 & 14.25 \\
\hline 17 & 383.3 & 29.40 & 30.23 & 29.80 & 29.81 & 25.92 & 1540.5 & 5.98 & 0．123E－08 & 0.01370 & 16.06 & 12.97 & 14.42 & 14.39 & 14.47 & 14.43 \\
\hline 18 & 403.3 & 29.54 & 30.41 & 30.00 & 29.99 & 26.08 & 1546.4 & 5.95 & 0．125E＋08 & 0.01442 & 16.14 & 12.89 & 14.25 & 14.29 & 14.38 & 14.34 \\
\hline 19 & 423.3 & 29.66 & 30.56 & 30.23 & 30.17 & 26.24 & 1552.3 & 5.93 & 0．127E－08 & 0.01514 & 16.31 & 12.92 & 14.00 & 14.20 & 14.31 & 14.25 \\
\hline 20 & 443.3 & 29.75 & 30.68 & 30.29 & 30.25 & 26.40 & 1558.3 & 5.90 & 0．128E－08 & 0.01586 & 16.67 & 13.06 & 14.35 & 14.50 & 14.61 & 14.55 \\
\hline 21 & 463.3 & 30.31 & 31.22 & 30.77 & 30.77 & 26.56 & 1564.3 & 5.88 & 0．130E－08 & 0.01658 & 14.90 & 11.98 & 13.24 & 13.26 & 13.34 & 13.30 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
AVERAGE YALUES THROUGH STATIORS 15 TO 20 ： \\

\end{tabular}} & 1543.1 & 5.97 & \(0.124 E+08\) & 0.01400 & 16.26 & 12.92 & 14.15 & 14.27 & 14.37 & 14.32 \\
\hline
\end{tabular}```

