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Abstract

This thesis studies the application of a multi-objective niched Pareto genetic algorithm
on the design optimization of an electric field mill sensor. The original sensor requires
resonant operation. The objective of the algorithm presented is to optimize the ge-
ometry eliminating the need for resonant operation which can be difficult to maintain
in the presence of an unpredictable changing environment. The algorithm evaluates
each design using finite element simulations. A population of sensor designs is evolved
towards an optimal Pareto frontier of solutions. Several candidate solutions are se-
lected that offer superior displacement, frequency, and stress concentrations. These
designs were modified for fabrication using the PolyMUMPs fabrication process but
failed to operate due to the process. In order to fabricate the sensors in-house with a
silicon-on-glass process, an anodic bonding apparatus has been designed, built, and
tested.
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Chapter 1

Introduction

1.1 Electric Field Mills

It is often desirable to measure electric fields in manufacturing and research. In

manufacturing, electrostatic charging can be a serious problem that needs to be mon-

itored to prevent, for example, damage to sensitive electronic devices being manufac-

tured, the accidental ignition of flammable gasses, or to assess the risk of shock to

employees [1]. It is also useful for studying the electric fields present in the atmo-

sphere during various phenomena such as lightning [3]. There has even been some

research to suggest that measurement of electric field changes in the earth could be

used a predictor of earthquakes [8]. Another equally important research area is the

study of electric fields beneath high voltage dc (HVDC) power lines and to determine

their environmental impact at ground level [2]. These applications and others drive

the need for a cheap, effective, and sensitive electric field sensor.

Traditional field mills consist of an electric motor that drives an earthed rotor

above a fixed set of electrodes [1]. Figure 1.1 illustrates a traditional field mill based

on the field mills described in [1, 2]. The primary chopper spins at a constant angular

velocity causing the electrodes beneath to be alternately exposed or shielded from the
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Figure 1.1: A traditional field mill based on the field mills described in [1, 2]

electric field. The electric field induces a current in the sense electrode that can be

measured electrically. A secondary chopper and LED/phototransistor detector are

configured to generate a synchronous signal used to measure the phase of the sense

currents ac component. The sense current is related to the electric field E by the

following general equation [3]:

ie(t) = εoE
dAe
dt

(1.1)

where E denotes the electric field magnitude, and Ae denotes the exposed area of

the sense electrode as a function of time. The electric field magnitude E can be

recovered directly from the ac component. Using this type of apparatus, it is possible

to accurately measure values from 100 V/m to 100 kV/m [2].
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1.2 Micro Electric Field Sensors

In recent years, there has been some research into the development of micro-

electric field sensors. The small scale of a micro mill allows for a sensor with similar

sensitivity range down to 100 V/m while significantly lowering cost and power usage

[3]. In the case of atmospheric electric field study, miniaturized sensors can easily

be included on disposable weather balloons where traditional field mills may be too

expensive and heavy to outfit on a unrecoverable balloon [9]. Figure 1.2 shows an

electrostatic micro field mill that was designed by [3]. It operates on the same princi-

ples as the traditional mill of Figure 1.1 but with translational oscillations as opposed

to a continuous rotational motion. The grounded shutter is suspended above a fixed

set of sensing electrodes by folded beam springs. The shutter is then oscillated at

its resonant frequency, ∼ 4.1 kHz, by electrostatic comb actuators which allows for

sufficient motion of the shutter at very low power dissipation. This sensor has been

used to successfully measure atmospheric electrostatic field variations at altitudes as

high as 8000 m [3].

Figure 1.2: An electrostatic micro field mill design [3].
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Figure 1.3 shows another design for an electrostatic field mill [4]. This design

consists of a single 10µm by 10µm sense electrode that is periodically exposed to

the incident electric field by an aperture in a grounded shuttle mass [4]. Like the last

design, the shuttle mass is supported by folded beam springs and is also driven at its

resonant frequency, 7.6 kHz, by electrostatic comb actuators. The sensor was shown

to have a sensitivity of approximately 35µV/kVm−1 and was tested in fields as large

as 500 kV/m [4].

Figure 1.3: Another electrostatic micro field mill design [4].

One drawback with using electrostatic actuation is that the actuation voltages

range from 25 − 100 V [4, 3] which at the scale of a micro-sensor appears itself as a

very large electric field. This interference may limit the field sensitivity at the lower

end of the range. Using bent beam thermal actuators a field mill device was designed

and fabricated by [10]. Their field mill was able to measure a field down to 240.8 V/m

[10].
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1.3 Other Electric Field Sensors

The field mill type electric field sensor is by no means the only way of measuring

electric fields. There are also several sensor designs that measure electric field strength

optically. One such method is based on the deflection of an electron beam in the

presence of an electric field [9]. A very sharp emission tip made from silicon is used

to generate the field emission of electrons [9]. An anode is placed some distance above

the field emission tip and features a number of concentric rings. In the presence of

an electric field, the electrons from the field emission tip are deflected linearly and

collected by the anode rings. The principle has been tested using a glass vacuum

tube and a thermal electron source and has been shown to work for fields as high as

150 kVm [9].

Another electric field sensor that has been developed is based around electro-

optical crystals such as LiNbO3 and LiTaO3 [11].

1.4 Electrothermal Field Mill Design

The micro electric field sensor optimized in this thesis was the electrothermal

field mill developed by G. Wijeweera [5] at the University of Manitoba, pictured in

Figure 1.4. This field mill consists of a perforated shutter mass, suspended by loop

springs at its corners, and is actuated by thermal actuators. The thermal actuators

are connected to the shutter through a connecting lever that provides a mechanical

advantage converting the large force afforded by the thermal actuators to displace-

ment. The shutter, measuring 1 mm by 1 mm, is grounded through one of the four

supporting springs providing shielding from an incident electric field to the electrodes

beneath. The comb-shaped electrodes beneath the shutter are offset from one an-

other so that one set of electrodes is completely exposed when the other is shielded

5



by the shutter providing a differential signal. When operated at its natural resonant

frequency of approximately 3796 Hz, the shutter displacement is large enough to com-

pletely shield/expose the 14µm wide electrode combs beneath [5]. The 14µm size

for the electrodes was chosen as the minimum feature size in the Pyrex cavity of the

MicraGEM fabrication process [12].

Figure 1.4: Picture of an electrothermally actuated electric filed mill sensor [5].

Figure 1.5 shows the response of the sensor to electric fields from 42 V/m to

5000 V/m. This sensor has a very good response to small electric fields compared to

the electrostatic field mills discussed in section 1.2 since it is driven by low voltage

thermal actuators and makes use of offset electrodes to provide a differential signal

6



which assists with rejection of common mode interference. Also, because the springs

are responsible for the back-swing of the field mill’s shutter, the actuation frequency

is half that of the sensing frequency, separating it in the frequency domain as a source

of noise from the sensor’s response.

Figure 1.5: Sensor response of electrothermally actuated field mill design [5].

Although this sensor design was proven to work quite well, the requirement of res-

onant operation complicates packaging since the sensor must be operated in a vacuum

to maintain the high-quality resonance necessary to achieve the 14µm displacement.

It was found that the resonant frequency of the sensor is sensitive to changes in vac-

uum pressure or ambient temperature. This is supported by research that shows a

frequency shift in microbeam polysilicon resonators when temperature or pressure

are varied [13]. It was also found that a large electric field (∼ 100 kV or greater)

causes a small upward force on the shutter. The force exerted on the shutter can be

approximated by using the parallel plate electrostatic force equation [14]:

Fes =
εrε0AV

2

2x2
(1.2)

where εr and ε0 are the relative and free space permittivity constants respectively, A
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is the area of the shutter, V is the voltage potential on a plate above the shutter,

and x is the distance above the shutter that the plate is positioned. The area A is

approximately 5.25 × 10−7 m2 (1 mm by 1 mm minus the area of 50 slits measuring

475µm by 20µm). The voltage potential V is fixed at 1 V and the plate is positioned

10µm above the shutter, resulting in a field of 100 kV/m. Using these values in

the Fes equation above yields an upward force of ∼ 23 nN. As the field increases,

the magnitude of the force on the shutter increases quadratically, reaching ∼ 580 nN

at a field strength 500 kV/m. The pull is not enough to cause significant vertical

displacement of the shutter, but is enough to cause a slight shift in resonant frequency.

In order for a resonant sensor to operate in the presence of a large electric field and

to withstand environmental changes in pressure or temperature, it is necessary to

either electronically track changes the resonant frequency or to modify the design of

the sensor to allow for non-resonant operation.

1.5 Automated Design Optimization

The natural progression of computer aided design (CAD) of microelectromechan-

ical (MEM) devices and systems is for computer software to take a larger role in the

design by algorithmically determining the best size, shape, and placement of compo-

nents. A design can be loosely or tightly constrained, depending on the complexity

or requirements for the system. When loosely constrained, an algorithm may be

allowed to choose between different components, beams, springs, and actuators, for

example, that are used to synthesize the device. A tightly constrained algorithm, on

the other hand, may be restricted to a pre-determined device geometry in which the

algorithm is assigned the task of sizing and tuning mechanical components such as

beams, actuators, and springs.

Many different algorithms exist to suit this type of design, the simplest being
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an iterative search of a single design parameter. For example, when tuning the fre-

quency of a resonator, the size of a square proof-mass may be iteratively incremented

to achieve the desired resonant frequency. To evaluate a designs performance, an

algorithm may solve a simple pre-determined equation, a more complex dynamic

equation, or it could be fed to a finite element simulation, SPICE simulation, or any

number of other simulations that are available. Some such optimization algorithms

considered here for MEMS design include simulated annealing, genetic algorithms,

particle swarm optimization, seeker optimization, topology optimization, and tabu

search algorithms. The best algorithmic tool for the job depends on the problem, and

more importantly, the size and shape of the objective space. Given the multitude

of options available for evaluating a design and algorithms for guiding the search for

an optimal solution, a modular optimization framework has been proposed by [15]

allowing designers to pick and choose evaluation tools and algorithms to guide their

design. However, according to the generally accepted no free lunch theorem [16], no

black box optimization algorithm provides, on average, better performance than any

other algorithm across all types of optimization problem. It is important to note,

however, that the no free lunch theorems pertain to black-box algorithms which op-

erate abstractly from the problem and its traits. Essentially, it proves that there is

no “silver bullet” when it comes to optimization algorithms.

1.5.1 Simulated Annealing

Simulated annealing is a stochastic search algorithm that models the controlled

annealing of a metal alloy as it is cooled, achieving a minimal energy state [17]. In

the case of MEMS design, the algorithm starts with a randomly generated design.

An initial temperature and step size vector are specified before running the simulated

annealing algorithm. The design is then analyzed by simulation or dynamic equation

and the objectives are extracted and used to formulate the “energy” of the state. A
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potential new design is generated by randomly perturbing the current design param-

eters using the step size vector [17]. This new designs is again evaluated and if a it

has a lower energy than the current design, it is accepted as a more optimal design

from which to continue. If, however, the design has a higher energy, then it may still

be accepted by the Metropolis criterion [17]:

p′ < e(E
′−E)/Tk (1.3)

where p′ is a randomly generated value in the range [0, 1], E ′ and E are the energies

of the proposed and current designs respectively, and Tk is the global parameter for

the current temperature of the system as it cools. If the above Metropolis criterion

is met, then the proposed solution replaces the current solution. This probability of

accepting designs that perform worse than the current design allows the algorithm

to “hill-climb”, and escape local optimums in search of a better global optimum [17].

This process is repeated until there is little further change to the energy of the current

design state, indicating that thermal equilibrium has been reached. At this point, the

global temperature Tk, and step size vectors are reduced and the algorithm repeats.

This allows the algorithm to progressively optimize smaller details of the design. Once

the target cool temperature has been reached or the desired objectives are met, the

algorithm is terminated.

In [17], simulated annealing was successfully used to optimize the design of a

microresonator based gyroscope. Simulated annealing has also been applied to the

design of a MEMS resonator by [18]. For a detailed review of the simulated annealing

algorithm and it’s applications to various types of problems, please refer to [19].
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1.5.2 Genetic Algorithms

Genetic algorithms are a class of algorithms based on the concept of evolution.

GAs are useful for finding the global optimum of a function that is either complex

or unknown. A solution is encoded into a series of parameters that make up a sin-

gle “genome”. An initial population of genomes is generated at random and various

genetic operators are applied in order to pass desirable traits to the next genera-

tion. Some such genetic operators include selection, crossover, elitism, and mutation.

Selection is the method by which a solution is chosen to continue as the basis for

the next generation. Crossover is a method of breeding two or more solutions from

the selected set and combining them to form new solutions that inherit traits from

their parents. Elitism is a mechanism which preserves good solutions by adding them

to the next generation as-is without crossover or mutation. Finally, mutation is a

mechanism by which new genetic material is introduced by randomly perturbing the

parameters of solutions. Specific GAs may implement different genetic operators or

apply them differently in order to suit their specific needs. A good overview of genetic

algorithms and evolutionary computing can be found in [20].

Genetic algorithms have been applied to both the synthesis of MEMS [21] and

the optimization existing MEMS designs [22, 23, 24]. The design of a reconfigurable

microstrip antenna was optimized using genetic algorithms [22]. Others have applied

GAs to the optimization of miniature piezoelectric forceps [23], accelerometers [24],

resonators [7] and many other devices. A review of the current state of GAs applied

to MEMS design is in [25]. For more details on the specifics of genetic algorithms,

please refer to chapter 2.
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1.5.3 Particle Swarm Optimization

Particle swarm optimization is a class of algorithms that attempt to mimic the

behaviour of swarms in nature. For example, a flock of birds is able to fly together

in unison, avoiding predators. In this case, the social behaviour of the birds provides

an evolutionary benefit to the group as a whole [26]. A similar comparison can be

made to schools of fish. When applied to an optimization problem, a population

of candidate solutions is encoded as a set of “particles” in a swarm. Each particle

maintains a position and velocity vector within the search space that is mapped to

the design variables of the problem. Each particle in the swarm is evaluated using a

simulation, or dynamic equation. After each pseudo-time increment, every particle

in the swarm updates its position and velocity based on the fitness value of each

particle, the best fitness value of the swarm, and a randomly generated real value,

using a few simple equations. Particles are attracted towards their previous best

position as well as the best position of the population [27]. This process is then

repeated until, hopefully, the swarm is guided towards a global optimum [26]. Other

operators such as the best ever position, maximum velocity, and inertia can be added

to further tune the performance of the algorithm.

Particle swarm optimization has been shown to perform as well or better than

other algorithms, including genetic algorithms, for a few small structural design prob-

lems in [26]. These problems include optimization of the cross-sectional area of beam

elements in a truss, and optimization of stress distribution in a torque arm [26]. An

advantage of particle swarm optimization algorithms is that they can be quite sim-

ple to implement when compared to more complex algorithms such as evolutionary

algorithms or simulated annealing. Also, like genetic algorithms, particle swarm op-

timization lends itself very well to parallelization. Particle swarm optimization has

been successfully used by [27] to optimize the geometry of micro-resonator load cells
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for the force and strain measurements of materials or micro-devices. The competing

objective functions used were maximum force resolution and range.

1.5.4 Seeker Optimization

Similar to particle swarm optimization, described above, seeker optimization op-

erates on a group of “seekers” whose position is mapped to the design variables of the

problem. The behaviour of each seeker is modelled to be similar to how an intelligent

person might search for a solution to a problem [28]. A group of seekers is initialized

with uniformly random distribution throughout the parametric design space. To up-

date their positions in the next pseudo-time interval t+1, their positions are updated

according to a simple equation [28]:

~x(t+ 1) = ~c+ ~d ·~r ·
√
−log(~µ) (1.4)

where ~c is the seekers current position, ~d is the direction that the seeker should travel,

~r is the allowed search radius of the seeker, and ~µ is a trust degree parameter. The

algorithm chooses the direction of travel, ~d based on a few simple rules. It considers

the current direction of the seeker and whether or not it has improved in fitness since

the last time interval, the direction of travel towards or away from a seeker with the

highest fitness in a local neighbourhood region, and the direction of travel towards

or away from the global seeker with the highest fitness. It may also consider the

direction of travel towards or away from the seekers previously best fitness value. The

search radius is an important algorithm parameter that is chosen based on the design

variables’ range and the distribution in objective space; it can be difficult to choose,

but there are several suggested methods for choosing a search radius presented in [28].

The final parameter, ~µ, determines the level of trust in a given seeker; it is based on

the relative fitness of the seekers position with that of the rest of the group. The
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seeker with the best fitness would have the highest possible trust degree µ = 1, while

seekers with lower fitness values would be assigned a lower trust degree. A Seeker

optimization algorithm was compared to particle swarm optimization and continuous

genetic algorithm by optimizing six non-linear functions of increasing complexity

and variable count [28]. It was found that seeker optimization was able to optimize

the variables faster than both particle swarm and genetic algorithms with up to 10

variables.

Although still relatively new, a seeker optimization algorithm has been success-

fully employed to the optimization of a variable-capacitance micromotor design [29].

The objectives of the optimization algorithm were to maximize torque while mini-

mizing ripple torque by varying the geometry of the motor design. The fitness was

evaluated using finite element modelling with COMSOL multiphysics. The design

was also optimized using a genetic algorithm to compare its performance with seeker

optimization. It was found that the seeker optimization algorithm performed signifi-

cantly faster than the genetic algorithm [29].

1.5.5 Topology Optimization

Topology optimization is a method of optimal design commonly used for the de-

sign of compliant mechanisms. In an optimal compliant mechanism, stress and strain

are uniformly distributed throughout the entire structure, making it possible to be

fabricated with fewer moving pieces and lower stress concentrations that ultimately

result in a more robust and compact device. In MEMS, compliant mechanisms are

commonly used for displacement amplifiers [6, 30], grippers [31], and other mecha-

nisms. A compliant mechanism topology optimization problem starts with a bounding

box that limits the size of the device. Input and output ports are assigned, each of

which has a specific location, and prescribed force and displacement vectors. The

structure is then initialized as a complete ground truss structure consisting of nodes
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and beams uniformly distributed throughout [6]. Each beam element is assigned a

variable cross-sectional area that determines its stiffness. Nodes may optionally be

constrained in one or more axes; at least one node should be constrained for the

problem to be solvable. Once the problem has been defined, a global stiffness matrix

is generated and solved as a large linear system [6]. The solution to the matrix is the

required cross-sectional area for each beam element. Once solved, beam elements be-

low a set minimum can be removed from the truss revealing the desired topology for

the compliant mechanism. Next, the exact position of nodes is sometimes perturbed

algorithmically to try and further optimize the geometry.

(a) (b)

(c) (d)

Figure 1.6: A displacement amplifying mechanism designed for an electrothermal actuator
[6]. Figure (a) shows the initial ground truss structure with constraints. Figure (b) shows
the solved topology. Figure (c) shows the mechanism after the node locations have been
optimized. Figure (d) shows the finished mechanism connected with its thermal actuators.
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This type of topology optimization has been applied successfully to the design of

MEMS devices. In [30] displacement amplifying compliant mechanisms are designed

using topology and size optimization methods for use in sensor applications. Others

have used topology optimization to design high amplification microtransmissions for

electrothermal actuators, which typically provide large force but poor displacement

[6]. Figure 1.6 shows an example of a compliance mechanism designed by [6]. Starting

with a ground truss structure in Figure 1.6(a), the problem is defined by setting the

input and output ports, as well as adding constraints. In this example, the design is

symmetrical so the entire left side of the truss is constrained only in one axis. Figure

1.6(b) shows the topology of the mechanism found by solving the stiffness matrix

equations. Next, the node locations are shifted slightly (they are constrained within

the grey boxes seen on the truss in Figure 1.6(a)) to further optimize the mechanical

advantage. Finally, Figure 1.6(d) shows how the finished compliant mechanism is

connected to an electrothermal actuator. The final fabricated mechanisms were able

to achieve significant displacement amplification as high as 9.3 [6]. .

1.5.6 Tabu Search Optimization

Tabu (or taboo) search optimization operates by choosing a starting solution s

randomly located within the parametric design space [32]. The design space is dis-

cretized into adjacent spheres or hyper-rectangles of a predetermined size. Several

closely related neighbours are selected from the solution, a neighbour being defined

as a randomly chosen solution within an adjacent hyper-rectangle or sphere in design

space. Each of the neighbour solutions is evaluated and the centre of the neighbour-

ing hyper-rectangle with the best fitness value is chosen as the new starting solution,

regardless of whether it is better than the current solution [32]. The previous solution

is then added to a “tabu” list which keeps track of previously chosen solutions. In

order to prevent cycles from forming, a solution may not be chosen for the next iter-

16



ation if it is in the tabu list [32]. Once the tabu list is full, the first solution added to

the list is removed. This allows the algorithm to eventually go back and explore the

same area again, but attempts to limit local cycles. A second list of promising areas

is also maintained. If when traversing the search space an unacceptable deterioration

of the fitness value is encountered in all directions around an area, then the centre

of that area is added to a list of promising areas [32]. After a specified number of

iterations without the discovery of a new promising area, the algorithm then proceeds

to identify the most promising area in the list for a more intensive search. During

the intensified search, the tabu list is reset and the area is searched again using the

same tabu search method above with the starting point being the centre of the most

promising area. After a specified number of iterations with no further improvement,

the size of the discretization hyper-rectangle (or sphere) is halved, and the intensified

search repeats. After a specified number of intensification iterations, the algorithm

is complete, and the best solution found is returned. The algorithm is compared to

other algorithms, including variations of tabu search and simulated annealing, and is

found to perform equally or better for functions up to 100 variables [32].

1.6 Research Objectives

The main research objective of this thesis is to investigate the mechanics necessary

for non-resonant operation of the micromachined electric field mill designed by [5]. It

is desirable to operate below the resonant frequency to alleviate issues with tracking

resonance through changing environmental conditions such as temperature, pressure,

and electric field. In order to achieve this goal, new finite element models are created

and analyzed using transient simulations that had not previously been done. This

thesis also attempts to validate the results of these simulations by comparing them

to measurements made on fabricated sensors and electrothermal actuators.
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After reviewing several optimization algorithms, genetic algorithms are selected as

the evolutionary algorithm to be used for optimization of the electric field sensor. Ge-

netic algorithms and their application to MEMS are further investigated and applied.

Genetic algorithms were chosen because of the depth of research already available and

their application to MEMS whereas other optimization algorithms such as particle

swarm optimization, seeker optimization, and tabu search, are still relatively new con-

cepts, especially when applied to MEMS design optimization. Simulated annealing,

also a popular optimization algorithm with a vast amount of available research, is not

as well suited to MEMS design because it does not evolve a population of solutions

that explore available compromises, concentrating on only one “optimal” solution.

Simulated annealing is also very dependant on the randomly chosen starting design,

whereas GAs should perform equally well regardless of the fitness of the initial pop-

ulation. Topology optimization, while interesting, is very well suited to the design

of compliant mechanisms and has readily been applied to the design of compliant

MEMS. However, it was decided that topology optimization is not suitable for the

optimization of the electric field sensor in its entirety since all aspects of the design

can not be easily represented in a single stiffness matrix.

Finally, it is the objective of this thesis to develop an anodic bonding process, a

necessary tool in the development of an in-house MicraGEM fabrication. A function-

ing anodic bonding apparatus is designed and presented.

1.7 Document Layout

This thesis is organized into five main chapters. Chapter two provides an overview

of genetic algorithms and how they have been applied by others to design of microelec-

tromechanical systems. Chapter three goes on to discuss the specific genetic algorithm

developed for this thesis and its application to the optimization of the electrothermal
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actuated field mill design introduced in section 1.4. Chapter four provides a detailed

analysis of the finite element models used to simulate the operation of the electric

field mill designs. Chapter five outlines the PolyMUMPS and MicraGEM fabrication

process’ used to fabricate these sensors and discusses some of the problems associ-

ated with the resulting devices. Chapter six describes the design and operation of an

anodic bonding apparatus for use with an in-house fabrication process based on the

MicraGEM designs.
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Chapter 2

Genetic Algorithms and MEMS

2.1 Introduction

The design process for microelectromechanical systems (MEMS) has traditionally

been based on simplified dynamic equations that describe the operation of the device

being designed. These dynamic equations are solved and a resulting device is designed

and built. More recently, finite element modelling and simulation tools have become

available that allow the designer to simulate complex devices and analyze aspects such

as stresses, dynamic and transient response, thus allowing the designer to “virtually”

test their designs before fabrication.

This chapter demonstrates the use of genetic algorithms (GAs) to further auto-

mate the design process. Figure 2.1 shows an overview of a genetic algorithm applied

to the optimization of a MEM device. After the initial population of solutions has

been generated, each of the solutions is evaluated; in this case using FE analysis.

Once evaluated, the resulting objectives are used to select a subset of the population

to continue to the next generation. The selected solutions are then “mated” using

crossover and mutation. The procedure repeats until one or more suitable solutions

are present in the population or the maximum number of iterations has elapsed.
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Figure 2.1: Genetic Algorithm Flowchart

The simplest GAs will evaluate only one objective, and can be used to minimize or

maximize that objective by ranking the population according to the objective. Single

objective GAs have previously been applied to MEMS in the optimal design of an RF

switch [33] from known equations to maximize resonant frequency. However, often

the MEMS designer must choose between multiple conflicting objectives in order to

reach a compromise that adequately meets all objectives. This can be incorporated in

multiple ways; the simplest of which is by using a weighted sum of the objectives to

form one objective function, effectively converting the multi-objective problem into a

simpler single objective problem. A weighted sum GA was used in [34] to optimize

the design of a MEM switch with the objectives of minimizing switching time and

capacitance. The weighted sum method works well with one or two objectives, but can
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become more difficult with more objectives. Additionally, it requires more profound

knowledge of the problem and can be difficult to choose weighting coefficients when

objectives have highly differing ranges. For example, a shear stress objective could

be in the range of 106Pa to 109Pa while temperature might only be in the range

273K to 850K, requiring a large scaling factor to bring the shear stress down into

a comparable range as the temperature. This can become even more complex when

considering that maybe only a small portion of a range is desirable. For example, a

resonant frequency range might be from 1kHz to 100kHz but only the range from

1kHz to 4kHz might be desirable. As more objectives are added, it quickly becomes

apparent that a lot of consideration needs to be given to the scaling and mapping of

objectives in order to achieve optimal results.

Multi-objective GAs have previously been used to synthesize and optimize the

design of MEMS. For example in [7] and [35] multi-objective GAs were used to syn-

thesize and design a MEM resonator in which the supporting springs are comprised

of multiple beam elements of varying thickness and angle. Because of the free-form

nature of the spring design, a human expert was required to intervene and rank a

portion of each population so that the resulting devices are manufacturable, and to

avoid problems like near-misses where spring elements may collide when in operation.

Other multi-objective algorithms use the concept of Pareto dominance [36] in which

a solution is said to dominate another solution if it is superior in all objectives. This

concept allows us to compare apples to apples in the sense that the algorithm never

needs to combine or compare different objectives eliminating the need for scaling

factors.
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2.2 Selection

Selection is the main source of drive for a GA. It is the method by which solutions

are compared and culled, causing the overall population to improve. This section

will outline several basic selection methods that are commonly used. The methods

discussed here include fitness proportionate selection, truncation selection and tour-

nament selection. All of these methods require a “fitness” value f to be assigned

to each solution. This fitness value may come directly from evaluating a complex

mathematical equation, such as a dynamic equation that describes the operation of a

MEM device. Typically, this evaluation is the most computationally intensive aspect

of a GA.

The fitness function f must be a fair representation of the desirable trait(s) to

be optimized and is crucial to the success of a genetic algorithm that uses these

selection methods. Ideally, the fitness function will be smooth with few local peaks.

However, due to the nature of GAs, it is not usually possible to know the exact

form or distribution of the fitness function over the solution space before running the

algorithm.

2.2.1 Fitness Proportionate Selection

Fitness proportionate selection (aka roulette wheel selection [37]) is one of the

earlier proposed methods of selection. In this method, each genome in the population

receives a probability ps of being selected that is proportional to the fitness of the

solution relative to the sum of fitness for the entire population (see Equation 2.1).

ps(j) =
fj∑
f

(2.1)

This can be implemented by sorting the population according to fitness and then

generating a uniformly distributed random number in the range [0, 1]. The selected
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solution is then the first genome in the sorted set whose probability ps, summed with

all previous probabilities in the sorted set, is greater than the randomly generated

number. This is analogous to spinning a roulette wheel where each solution receives

a slice of the wheel proportionate to their fitness. This procedure is then repeated

until the number of desired solutions has been selected.

An advantage of this method of selection is that every genome has a finite proba-

bility of making it to the next generation. This is important since it preserves genetic

diversity. A solution that is “poor” in one generation may still have advantageous

genetic traits that are dominated by other “poor” traits, thus it has a chance to

survive to the next generation where it may pass on its advantageous traits. This

maintenance of genetic diversity comes at the cost of selection pressure; “poor” solu-

tions that are selected for their potential to improve the population later reduce the

number of “good” solutions that are selected now.

2.2.2 Truncation Selection

Truncation selection is another simple method for selecting solutions. Much like

fitness proportionate selection, the genomes are sorted according to their fitness f .

Next, the truncation method simply takes the “best” n solutions from the set. A

drawback of this type of selection is that “poor” solutions below the threshold will

never proceed to the next generation, thus reducing genetic diversity.

2.2.3 Tournament Selection

Tournament selection is a compromise between fitness proportionate and trunca-

tion selection. Instead of ranking a solution compared to the entire population, a

smaller sub-population is selected at random. The sub-population is then ranked and

either truncation or fitness proportionate selection can be used to choose the “winner”

of the tournament. This type of selection can be tuned by changing the size of the
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sub-population to strike a balance between selection pressure and genetic diversity.

A larger sub-population will increase selection pressure while decreasing the size will

increase genetic diversity.

2.2.4 Weighted Sum Multi-Objective Selection

The selection methods discussed previously operate well for problems with a single

objective, because the objective can be easily mapped to the fitness function linearly

or using a quadratic, for example. However, when multiple objectives are required,

the fitness function necessarily becomes more complex. The simplest way to accom-

modate multiple objectives using the previously discussed selection methods is to use

a weighted sum approach. Each objective is assigned a weight and then all objectives

are summed into a single fitness function. This may be simple with only a few objec-

tives but can become complicated quickly as objectives have different range and may

be prioritized differently.

For example, in the design of a thermal actuator the most important objective

might be displacement while other objectives might include low temperature, and

high mechanical resonant frequency. First, each objective must be normalized. This

can be done by estimating the maximum and minimum values of the objective. If the

range is unknown, a simple way to estimate is to evaluate the first randomly generated

population and then take a look at the distribution of each objective; it is important

to note, however, that the first random population is likely to be poor and the ranges

will not reflect the range of the final population. Next a weight is assigned to each

objective in order of priority. Finally, the fitness can be calculated as a function of

each objective. In the thermal actuator example, let’s assume the displacement falls

into a range of 0 − 3µm, the temperature may fall in the range 273 − 800 K and

the resonant frequency may be in the range 1 − 10 kHz. The weighting coefficients

will be wdisp = 0.6 for displacement, wt = 0.2 for temperature, and wf = 0.2 for
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resonant frequency. This gives highest priority to displacement and equal priority to

temperature and frequency.

f(i) = wdisp ×
(Odisp(i))

3
− wt ×

(Ot(i) − 273)

527
+ wf ×

(Of (i) − 1)

9
(2.2)

In Equation 2.2 above, Odisp(i) is the displacement objective (µm), Ot(i) is the

temperature objective ( k ), and Of (i) is the frequency objective (kHz). Note, that

the weights and resulting fitness are unitless and so the actual scale of the fitness does

not matter since it maps the objectives monotonically.

Table 2.1 shows several fictional actuator designs with objectives mapped using

the above fitness function. Note, that design three has the best displacement, and

so it has the highest fitness. Unexpectedly, design four has the lowest displacement

but has the second highest fitness due to its desirable temperature and resonant

frequency. This illustrates how crucial the weighting coefficients are; in this case,

the frequency and temperature weights should likely be reduced. It may take several

attempts at running the genetic algorithm before suitable coefficients are found and

quickly becomes difficult to manage once there are more than a few objectives in play.

Table 2.1: Fictional Actuator Design Objectives

Design # Displacement (µm) Temperature (K) Resonant Fitness

Frequency (kHz)

1 1.03 425 1.523 0.1599

2 1.45 358 3.245 0.3076

3 2.54 589 1.824 0.4064

4 0.87 298 8.235 0.3252

Another issue with the above example that may not be immediately apparent

is the fact that the resonant frequency distribution is heavily skewed to the higher

frequencies. Although high frequencies are desirable, it is usually at the expense

of displacement since a high resonant frequency means that the structure is stiffer

and more difficult to move. In practice, when a weighted sum genetic algorithm

was applied to the design of the electric field mill of this thesis, it was found that the
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resonant frequency objective would dominate the other objectives even with a very low

weight. To overcome this problem, the resonant frequency objective can be mapped

to a different function. In this case for example, an inverted parabola (Equation 2.3)

centred at 2kHz could be used. 2kHz is chosen as a reasonable compromise between

frequency and stiffness. With this mapping, the GA will optimize the design towards

one which is near 2kHz.

Omapped = −(
Ofreq
1000

− 2)2 + 100; (2.3)

The weighted sum approach was applied to the geometrical optimization of the

electric field mill designed in [5]. The algorithm was set to optimize 25 geometrical

parameters with five objectives including minimum actuator temperature, minimum

shutter temperature, maximum shutter displacement, maximum XY shear stress, and

maximum resonant frequency. Figure 2.2 shows the results of running the weighted

sum GA for 15 generations. Each of the three plots shows the normalized and weighted

objectives for each of the 100 genomes in the population sorted by their combined

fitness value. In the first generation, there is a lot of variation in each of the objec-

tives. As each generation evolves the solutions towards the “optimal” as defined by

the fitness function, it is observed that the shutter displacement objective begins to

dominate. In generation 10, the temperature and resonant frequency objectives have

very little effect on the fitness value. To try and increase the sensitivity to tempera-

ture, the weights for the temperature objectives were increased at generation 13, but

it seemed to have little effect. In generation 15, you can see that each of the objec-

tives has converged to a fairly stable value. The variance of the design parameters of

generation 15 has also been reduced significantly and the resulting sensor geometries

are all very similar.

If the designer were not happy with the proposed similar solutions of the last

generation, their only recourse with a weighted sum algorithm would be to modify
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Figure 2.2: Normalized Objectives and Combined Fitness from Generations 1, 10, and 15
of Weighted Sum GA.

the weights and run the algorithm again. This is less than ideal since it is so costly to

re-run all of the simulations. Other methods of selection can be used to alleviate the

need for choosing a fitness function that will cause convergence towards one “optimal”

solution. One such method is niched Pareto tournament selection, discussed in the

next section.

2.2.5 Niched Pareto Tournament Selection

Unlike the weighted sum selection method discussed above, the niched Pareto

tournament selection method utilizes the concept of Pareto dominance to compare

genomes [38, 36]. In the niched Pareto tournament selection method, a genome is

said to “dominate” another if it is superior in all objectives. This alleviates the

need to combine and compare different objectives and requires no scaling factors,

mapping functions, or weighting coefficients. Niching is a method used to prevent the

population from converging to one genome; this works by giving a higher probability

of selecting a genome if it has fewer “neighbours” in objective space.

This selection method operates by randomly selecting from the current population

two solutions as well as a random tournament sub-population. Each solution in the

tournament sub-population is then compared in terms of Pareto dominance to the two

selected solutions. The tournament sub-population size is chosen to be large enough to
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provide significant selection pressure to drive the solution set quickly towards a Pareto

front, but not too large or it may prevent many lesser solutions from maintaining

their genetic material in the new generation. If any solution in the tournament sub-

population dominates one of the two selected solutions but not the other, then the

non-dominated solution is selected. If both solutions are dominated or not dominated

by the tournament sub-population then they are considered to be equal and a niching

strategy is employed.

Niching is used to preserve the distribution of solutions preventing the population

from converging to one solution. This is important so that the final output from

the algorithm is a set of different non-dominated solutions that adequately represent

the available compromises between objectives allowing the designer to choose the

solution(s) that best meet the objectives. The niching strategy used in this thesis

counts the number of solutions within a specified niche radius in objective space.

This is done by counting all solutions in the current population who meet the criteria

in Equation 2.4 for both selected solutions. The solution with a lower count is then

selected as the more unique solution.

√∑
i

(Oa,i −Ob,i)2 < rniche (2.4)

In Equation 2.4, Oa,i is the normalized objective i of solution a; Ob,i is the nor-

malized objective i of an arbitrary solution b and rniche is a constant defined for the

algorithm. The objectives are normalized to a range of zero to one with higher val-

ues being superior. This normalization may be based on an expected range for the

objective or through a tailored mapping function. The value of rniche is chosen to

be just large enough so that the sorted niche counts is an increasing function with

few flat spots. If the niche radius is too small then many solutions will not have

any neighbours and they cannot be compared by niche count. Similarly, if the niche

radius is too large then there will be many solutions with very large niche counts and
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it may no longer adequately represent a solutions uniqueness in the set. The initial

niche count distribution at generation zero may not be adequate in later generations

and so the niche radius should be reconsidered throughout the genetic algorithm.
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Figure 2.3: Normalized objectives with niching circles plotted (a) and sorted niche counts
for various niche radii (b) for a population size of 500.

Figure 2.3 shows an example of niching taken from generation 20 of the niched

Pareto genetic algorithm used in Chapter 3. The left figure shows just two objec-

tives; maximum temperature and shutter displacement that have been normalized

and plotted. Each of the two ellipses plotted shows a circle of radius 0.05 around two

arbitrarily selected members of the population (note that the normalized maximum

temperature axis has been stretched to improve readability). If these two points were

tied during niched Pareto tournament selection, then the niche counts would be the

number of other solutions located within the plotted circles A and B; 16 and 6 re-

spectively. In order to preserve the uniqueness of the population, the solution with

the lower niche count of 6 would be selected. The rightmost plot of Figure 2.3 shows

the niche count distributions of the same population for several niche radii. For large

niche radii (coloured red) there are many very large counts with a very low slope;

similarly, for very small niche radii (coloured green) there are many low niche counts

also with a shallow slope. It is desirable to choose a compromise between the two
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extremes and so the niche radius 0.05 was selected because it has a steeper slope with

only a very small flat ridge. A niche radius of 0.1 may have also been suitable.

Unlike the selection methods discussed earlier, niched Pareto tournament selec-

tion causes the population to converge towards the Pareto frontier [36]. The Pareto

frontier represents the solutions in objective space that are non-dominated by any

other solution and provides a small set of solutions to consider based on the available

trade-offs between objectives. Generally, the niche radius should be re-evaluated as

the population converges towards the Pareto frontier.

Niched Pareto tournament selection is repeated until approximately half of the

next generation have been chosen from the current population. These solutions are

the basis for crossover where each solution is “bred” with another solution and two

children are created that inherit some properties of both parents.

2.3 Crossover

Once a number of solutions have been selected from the current generation,

crossover is applied to combine the selected solutions into new genomes. This serves

to propagate and combine beneficial traits from solutions. A commonly used simple

single point crossover method starts by randomly choosing two parent solutions from

the selected sub-population. From these parents, two child solutions are created. The

first child is initialized with the properties [1, n] from the first parent and (n, 25] from

the second parent, where n is a randomly generated crossover point. Similarly, the

second child is initialized with the first n properties from the second parent and the

remaining properties from the first. This is illustrated in Figure 2.4 in which two

parent solutions are combined to create two children. Single point crossover can be

extended to multi-point crossover by adding additional crossover points. Elitism can

also be applied during crossover to preserve fit solutions. This can be implemented
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by simply leaving the parents in with the children, forcing the children to compete

with their parents for survival in the next generation.
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Figure 2.4: A simplified illustration of crossover. The children are comprised of parameters
from both parents.

2.4 Mutation

The final step before evaluating the new population is to perform mutation. Mu-

tation is the main source of new genetic material. Mutation is a very simple process

when the genome is encoded as a binary string; each bit has a finite probability of

being “flipped”.

However, the process is a bit more complex when dealing with a genome whose

properties are encoded as real values. Several methods exist that can be applied to real

coded genetic algorithms; random mutation, non-uniform mutation, and Gaussian

mutation, to name a few common mutation operators. Random mutation simply

replaces the real valued gene with a new value that is within its allowable range [39].

An issue with this type of mutation is that as the algorithm progresses, the mutation

step size remains fixed, making it difficult for the algorithm to hone-in on a global

optimum. Non-uniform mutation, however, deterministically controls the step size by

considering the number of generations already computed and exponentially reducing
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the effect of mutation as the algorithm progresses [40]. For this reason, non-uniform

mutation has become one of the most widely used mutation operators for real-valued

genetic algorithms [40]. Gaussian mutation is another popular operator in which

Gaussian noise is added to the genes value with the standard deviation determined

by the range of the property and the desired step-size [41].

The mutation operator employed in this thesis is similar to the uniform and Gaus-

sian mutation operators and attempts to emulate the same process as bit-wise muta-

tion operates by assigning to each real valued property of each genome a probability

Mo of being mutated. For each property, a uniformly distributed random number

is generated; if this number is less than the probability Mo then that property is

mutated. To determine how much to mutate the property, a mutation factor Mf is

used and another uniformly distributed random number R, in the range [−0.5, 0.5] is

generated. These parameters are kept separate to simplify the coding of the mutation

operator and to isolate the random R from the tunable mutation factor Mf . Equation

2.5 is then used to update the value of the property, and it is repeatedly executed in

a loop until a value within the allowed property range is achieved. In Equation 2.5,

oa,i is the non-normalized property i of genome a and orange,i is the allowed range for

property i.

V alue = oa,i +R ∗ orange,i ∗Mf (2.5)

The values of Mo and Mf must be tuned for each application of the genetic

algorithm. If the mutation occurs too often or changes a solution dramatically, the

solutions are more likely to “jitter” around the optimal solutions. Conversely, if there

is not enough mutation, then it may take longer for the algorithm to converge and

it is more likely to become trapped in sub-optimal peaks or valleys. Non-uniform

mutation and other self-adapting mutation operators may be a good choice for future

MEMS optimization genetic algorithms since they do not require re-evaluation when
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running the algorithm.

2.5 Multi-Objective Niched Pareto Genetic Algo-

rithm Applied to a Simple Resonator

As a test, a multi-objective niched Pareto genetic algorithm was applied to the

optimization of a simple resonator design. The purpose of this test was to compare the

results of the algorithm to the multi-objective interactive evolutionary computation

(IEC) genetic algorithm developed by [7]. The optimized resonator consists of a square

shuttle mass suspended by four springs; much like the shutter of the electric field mill

design [5]. However, unlike the springs of the field mill design which are constrained

to a box geometry, the springs of the resonator design are built from several adjoining

beams. In order to simplify the design, the resonator has no actuation mechanism,

however, electrostatic combs could easily be added for actuation and frequency sensing

without significantly impacting the results of the simulation. Each beam element of

the spring is allowed to have an arbitrary width, length, and angle from the previous

element (or shuttle mass if it is the first element) within an allowable range. The

unconnected edge of the last spring beam element is constrained and considered to

be anchored to the substrate. The model used during simulation is one half of the

resonator structure, symmetric about the x axis at the centre of the shuttle mass.

Table 2.2 outlines the allowed geometrical ranges for the resonator. The allowed

geometric ranges of Table 2.2 were the same as those of [7].
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Table 2.2: Geometric Ranges for Resonator Design

Parameter Allowed Range

Shuttle Mass Width 200 − 400µm

Shuttle Mass Length 200 − 400µm

Spring Beam Width 2 − 10µm

Spring Beam Length 10 − 100µm

Spring Beam Angle −90 − 90◦

Number of Spring Beams 1-7

The algorithm evaluates the objectives of resonant frequency and geometrical area

of each design using a dynamic finite element simulation using COMSOL multiphysics.

The target resonant frequency was 100 kHz. The niched Pareto genetic algorithm is

the same as the one described in chapter 3, using niched Pareto tournament selection,

single point crossover, elitism, and real-value mutation. The specific parameters used

for this instance of the genetic algorithm are listed in Table 2.3.

Table 2.3: Initial GA Parameters for Resonator Design

Parameter Value

Population Size 500

Tournament Population Size (tdom) 100

Selection Size 100

Niche Radius (rniche) 0.05

Mutation Odds (Mo) 0.05

Mutation Factor (Mf ) 0.1

Figure 2.5 shows a sample of 10 sensor designs from the 39th generation of the

genetic algorithm whose resonant frequency is within 0.5% of the target frequency,

100 kHz. The algorithm was allowed to run for several hours, and then stopped and

the results evaluated. As such, it is likely that the algorithm could have been stopped

sooner while still meeting the design objectives. An interesting aspect to note about

the designs in Figure 2.5 is that many of them show springs that have been folded

back towards the centre of the shuttle mass. Once mirrored about the shuttle mass,

the springs would conflict with each other. In order to solve this problem, the springs

should be flipped to the opposite edge of the design. The reason that the algorithm
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chose to do this is because it is set to minimize area, and by folding the springs

back towards the mass, the area is indeed minimized. This could be solved at the

algorithm level by either modelling the complete resonator, or adding constraints to

prevent the springs from conflicting with their mirrored counterparts. The design

of Figure 2.5(d) is also quite promising, since it features springs that fold back on

themselves, resulting in the least area of the designs presented in Figure 2.5.
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(g) (h) (i)

(j)

Figure 2.5: Several resonator designs within 0.5% of the target frequency from generation
39. The resonators are not plotted to the same scale, but are presented in order to compare
their spring geometry.

37



Figure 2.6(a) shows an example of a sensor that was designed using the IEC

genetic algorithm [7]. Figure 2.6(b) shows the design of Figure 2.5(j) that has been

mirrored with flipped springs for comparison. The similarities between the two designs

generated by different algorithms is quite remarkable. Their algorithm periodically

requires the user to rank each individual of the population according to the user’s

expert opinion. For example, the sensor in Figure 2.6(a) was chosen partly because

its spring beams do not contain sharp corners that could cause premature failure due

to stress concentrations [7]. Experts are also used to judge other criteria such as

springs that are too close together and may collide during operation, and the overall

manufacturability of a design. However, the algorithm presented here is able to

autonomously generate many different solutions, as pictured in Figure 2.5 that meet

the objectives, from which a user could choose a solution that meets their desired

criteria. Specific influences such as close spring loops or high stress concentrations

could easily be added as additional objectives to the genetic algorithm allowing for a

larger set of suitable designs at the completion of the algorithm.

Another variation on the IEC presented by Kamalian et al. has been developed

to reduce human fatigue while evolving a design [42]. Instead of ranking each design

in a generation, as in [7], the user instead has a more supervisory role and is only

required to promote or demote a few of the designs in each generation [42]. Interactive

evolutionary computation could be a useful tool for MEMS design when it is difficult

to quantify the desired objectives of a design.
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(a)

(b)

Figure 2.6: Niched Pareto GA resonator design compared to IEC GA resonator design
[7]. (a) Shows a high scoring design generated with the IEC GA. (b) A comparable design
optimized automatically by the niched Pareto GA.
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Chapter 3

Genetic Algorithm Optimization of

the Electric Field Sensor

3.1 Introduction

Considering the previous background on genetic algorithms, a niched Pareto ge-

netic algorithm was designed and implemented to optimize the geometry of the electric

field mill designed in [5]. The original sensor design was insufficient to operate outside

of resonance and therefore required optimization. This chapter outlines the specific

design of the algorithm and presents the results generated by it. Niched Pareto

tournament selection was chosen as the selection method as well as the real-valued

mutation operator described in section 2.4. The flowchart in Figure 3.1 depicts the

specific algorithm used to optimize the electric field mill design.

3.2 Encoding and Geometric Parameters

The geometric parameters selected for optimization are summarized in Table 3.1.

The nominal values listed are the dimensions used in the sensor designed and fab-

ricated in [5] and was used as a guide when deciding the parameter ranges allowed
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Figure 3.1: Niched-Pareto genetic algorithm as applied to the optimization of the Electric
Field Mill design.

by the GA. The algorithm may choose any value within the range, to a tolerance

of 0.001µm for length parameters, 0.01◦ for angle parameters, and 1 for integer pa-

rameters. The maximum and minimum values of the parameters were selected to

give the genetic algorithm enough range while still ensuring that a device could be

manufactured. For example, the minimum allowable width of 3µm was chosen for all

beam elements. Likewise, the maximum values were chosen to limit the maximum

aspect ratio of beams as well as the final size of the device. The actuator beam angle

was restricted to values above 1 ◦ to ensure that the beam will expand in the desired

direction without buckling. The maximum actuator beam angle was chosen to be 10◦

because it is significantly larger than the nominal value calculated in [5]. In general,

the parameter ranges should be reconsidered if the genetic algorithm appears to be

converging towards one of the parameter limits. With all 25 parameters accounted,
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this makes for over 10106 possible sensor designs, orders of magnitude higher than

many estimates of the number of atoms in the observable universe. The parameters

in Table 3.1 were encoded as an ordered list of floating point values. This pheno-

typic [20] representation was chosen as opposed to a genotypic [20] representation to

simplify the encoding of each genome while allowing each parameter to be confined

to a specified range. The ease of encoding comes at the expense of more complex

crossover and mutation operators.
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Table 3.1: Geometric Parameters

Geometric Property Nominal Min. Max.

Actuator

No. Beams 5 1 30

Beam Spacing 12µm 5µm 20µm

Beam Length 190µm 50µm 300µm

Beam Width 6µm 3µm 6µm

Beam Angle 4.5◦ 1◦ 10◦

Shuttle Width 20µm 5µm 20µm

Lever

Connect. Beam Width 5µm 3µm 10µm

Connect. Beam Length 95µm 75µm 200µm

Short Beam Width 3µm 3µm 10µm

Short Beam Length 20µm 10µm 200µm

Long Beam Width 4µm 3µm 20µm

Long Beam Length 375µm 100µm 2000µm

Connect. Spring Width 10µm 7µm 30µm

Connect. Spring Height 60µm 15µm 200µm

Connect. Part Width 10µm 1µm 20µm

Connect. Part Height 9µm 3µm 20µm

Spring

No. Elements 2 1 3

Thickness 21µm 4µm 10µm

Total Width 560µm 200µm 1400µm

Hole Width 15µm 3µm 50µm

End Thickness 20µm 3µm 50µm

Connect. Beam Width 20µm 3µm 50µm

Shutter-Spring Beam Length 20µm 3µm 50µm

Spring-Spring Beam Length 15µm 3µm 50µm

Spring-Anchor Beam Length 25µm 3µm 50µm

3.3 Modelling and Simulation

The method for evaluating each iteration was finite element analysis using the

COMSOL Multiphysics [43] software with MATLAB [44]. The model used was a 2D

symmetric model of the shutter structure, springs, levers, and thermal actuators. The
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three physics application modes used were conductive dc media to model the electric

potential throughout the structure, joule heating to model the resistive heating of the

thermal actuators, and finally the plane strain application mode to couple thermal

expansion into the model. The material properties used for the simulations, as re-

ported for the fabrication process in [5], are summarized in Table 4.1. The MATLAB

code for the COMSOL model and simulation are provided in Appendix 7.2.

Two simulations were performed for each candidate solution; a static simulation

used to evaluate the shutter displacement, temperature and XY shear stress; and a

dynamic simulation which is used to evaluate the resonant frequency of the structure.

Since the slits in the shutter were designed to be 5µm wide, only 5µm of displacement

is required. To simplify simulation and comparison of models, the electric potential

across the actuators was fixed at 1 volt. However, a solution with more than 5µm

displacement is still preferable since it would allow the voltage to be reduced, thus

reducing the maximum temperature and power consumption of the device. In the

event that a given geometry is not possible due to overlapping structure or simply

does not converge in finite element analysis, then it is removed from the population

and either the components that cause the overlap are randomized or the entire sensor

is replaced with a new randomly generated geometry. For complete details of the

simulations performed, please refer to Chapter 4.

3.4 Genetic Algorithm Parameters

The selection method chosen for the algorithm is niched Pareto tournament selec-

tion [36, 38]. This method was chosen for its ability to evolve the population without

the need for scaling factors or objective weighting coefficients and also because it

causes convergence towards the Pareto set of solutions instead of just one “optimal”

solution. The objectives to be optimized were shutter displacement, maximum tem-
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perature, maximum shear stress, and resonant frequency.

The initial population size was chosen to be 500, large enough to maintain a fair

distribution of solutions throughout the objective space, but small enough so that

each generation can be evaluated in a reasonable amount of time. The population was

first created at random by uniformly choosing parameter values that fall within the

allowable ranges defined in Table 3.1. The tournament population size, tdom, was set

to 100 which was found to provide suitable selection pressure while still maintaining

genetic diversity.

The niche radius, rniche was chosen to be 0.05 but was re-evaluated at generation

34 and increased to 0.1 in order to maintain a diverse set of solutions along the Pareto

frontier. Figure 3.2 shows the sorted niche counts for the population at generation

34. Plotted are the niche counts for an rniche of 0.05 (blue) and 0.1 (red). The larger

niche radius exhibits a better slope with fewer flat spots as discussed in section 2.2.5.
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Figure 3.2: Niche radius evaluation at generation 34.
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The algorithm was configured to select 150 solutions using niched Pareto tourna-

ment selection which were added without crossover to the next generation (elitism).

The remaining 350 solutions are generated using random single-point crossover us-

ing the 150 solutions selected by niched Pareto tournament selection as the pool of

potential parents. The mutation odds, Mo, and mutation factor, Mf were 0.3 and

0.2 respectively for the first 20 generations and then was reduced to 0.2 and 0.1 re-

spectively in order to reduce the amount of genetic material being introduced and

fine-tune the population for the later generations. Table 3.2 summarizes the initial

parameters used in the genetic algorithm.

Table 3.2: Initial GA Parameters

Parameter Value

Population Size 500

Tournament Population Size (tdom) 100

Selection Size 150

Niche Radius (rniche) 0.05

Mutation Odds (Mo) 0.3

Mutation Factor (Mf ) 0.2

3.5 Finishing Criteria

One difficulty with genetic algorithms can be determining when to stop since it is

not possible to always know whether your population has reached a global optimum.

A number of finishing criteria can be used such as the distribution of niche counts or

the convergence of the population towards the desired objectives. Figure 3.3 shows

a plot of the maximum displacement and the number of solutions with at least 5µm

of shutter displacement.

The shutter displacement curve begins to level off with little or no improvement

past generation 40. Similarly, the number of workable solutions with displacement of

at least 5µm peaks just after generation 40. The algorithm was allowed to run for a
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Figure 3.3: Finishing Criteria

few more generations to see if it would further improve, but it reached a maximum

value of approximately 8µm shutter displacement and 80 solutions with more than

5µm shutter displacement. It is possible that the results could be improved slightly

by reducing the odds of mutation Mo and mutation factor Mf , however the results

were deemed acceptable so the algorithm was stopped. The final set of results taken

from the run of the algorithm combines the solutions from generations 40 to 50 by

selecting only the non-dominated solutions from the 10 generations. From this Pareto

set of solutions, the MEMS designer can select one or more designs.

3.6 Results

Figure 3.4 shows the progression from an initial random population in generation

1 to generation 45. The colours in Figure 3.4 represent the resonant frequency of each

solution while the three axes represent maximum temperature, shutter displacement

and maximum XY shear stress. As can be seen in the plot for generation 1, the solu-

tions are all fairly poor with high resonant frequencies and little or no displacement
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while maximum temperature and shear stress seem to be distributed over a wide

range as they depend highly on the parameters of the actuator. For larger plots of

each generations’ objectives, please refer to appendix 7.2.
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Figure 3.4: Plots of maximum XY shear stress (Pa) vs. maximum temperature (K)
vs. shutter displacement (m) for generations 1 (a), 15 (b), 30 (c) and 45 (d) showing
convergence towards a Pareto front.

By generation 15, Figure 3.4 shows that the population has begun to improve with

more shutter displacement and fewer high stress solutions. It is also interesting to note

that the solutions are more evenly distributed in the temperature range. However, the
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majority of the resonant frequencies are still too high and the shutter displacement

is still too low for a practical sensor. Generation 30 shows vast improvements since

generation 15 and the emergence of the first few suitable solutions with displacements

approaching 5µm is visible near the far left end of the displacement axis. There are

still many solutions clustered with high resonant frequencies and low displacement,

but there are fewer than in generation 15. In generation 30, the Pareto front is

starting to become visible with the relationship between maximum temperature and

shutter displacement.

−8 −7 −6 −5 −4 −3 −2 −1 0

x 10
−6

320

325

330

335

340

345

350

355

360

Shutter Displacement (m)

M
ax

im
um

 T
em

pe
ra

tu
re

 (
K

)

−8 −6 −4 −2 0

x 10
−6

0

1

2

3

4

5

6
x 10

7

Shutter Displacement (m)

M
ax

im
um

 X
Y

 S
he

ar
 S

tr
es

s 
(P

a)

 

 

1000 1500 2000 2500 3000 3500 4000+

Resonant Frequency (Hz)

Pareto Frontier − Generation 45

Figure 3.5: Pareto Front

The plot of the generation 45 shows clear convergence towards a Pareto front,

most clearly seen in the plane of shutter displacement and maximum temperature.

Also visible is a relationship between shutter displacement and shear stress. These

two relationships are more plainly seen in Figure 3.5 which shows the 2D projections

of generation 45 onto the plane of maximum temperature and shutter displacement

and the plane of XY shear stress and shutter displacement. The two curves in Figure
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3.5 are fit to the Pareto front in each plot which represents the trade-offs between

maximum temperature, shutter displacement and maximum XY shear stress. In real-

ity, the Pareto front extends into four dimensions; one for each of the four objectives,

but this is difficult to visualize and the two relationships depicted in Figure 3.5 were

the most clearly visible.

Unlike a weighted sum GA or a single objective algorithm, this method allows the

designer to see the compromises available between conflicting objectives and choose

the solution(s) that best meet the design requirements. For example, out of the

solutions found, different objectives can be prioritized; a high frequency design could

be selected from the Pareto set at the expense of displacement and shear stress, while

a design with a large displacement can be chosen to reduce power at the expense of

resonant frequency. Similarly, a design with the lowest shear stress could be selected

to maximize the operational lifetime of the sensor while requiring a higher voltage to

achieve the necessary 5µm displacement.

Several solutions have been selected and are summarized in Table 3.3, along with

designs that were optimized by hand or with a weighted sum GA. To achieve the

needed 5µm displacement the actuator voltage was incrementally increased or de-

creased for each solution in Table 3.3 and re-simulated until 5µm displacement was

achieved. The first solution was chosen because it had the largest displacement at

1 V drive voltage of the solution set. The second was chosen for its high resonant

frequency with a 1 V displacement that is still greater than 5µm. Similarly, the low

shear stress solution was selected as the lowest shear stress solution with a displace-

ment that is still close to the desired objective. Finally, the last solution was the

original design from [5]. This design required resonant frequency operation, however

here it is being compared in non-resonant operation and so needs a much higher

voltage to achieve the needed displacement.
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Table 3.3: Selected Solutions from GA (cases 1-3) that meet the 5µm displacement re-
quirement, along with the design of [5] (case 4).

Case # Voltage (V) Temp. (K) Shear Stress (MPa) Freq. (Hz)

1. High Displacement 0.80 334.93 13.91 2897.0

2. High Frequency 0.96 352.60 23.86 3511.1

3. Low Stress 1.1 357.76 5.52 2311.4

4. Design in [5] (non-resonance) 3.2 907.14 352.82 3857.9

3.7 Population Size

Population size is an important factor to consider when designing any genetic

algorithm. Choosing an adequate size will depend on the nature of the problem, the

size of the search space, and the size of objective space. Choosing a small population

will reduce the time it takes to compute a single generation but also reduces the

amount of genetic diversity that can be sustained within the population. For the

case where niched Pareto tournament selection is used, it also reduces the possible

coverage of the Pareto front. Choosing a larger population size has the consequence

of increased computational cost in evaluating each generation, however it may require

fewer generations for a larger population to reach the same level of optimization. A

smaller population size also requires less mutation; as population size decreases it

becomes increasingly detrimental to the overall population when a good solution is

lost through mutation, whereas in a larger population there would likely be several

similar solutions clustered around the same point in objective space and the loss of

one or two due to mutation would have less of an impact on the overall population.

To compare the effectiveness of different population sizes, the same genetic algo-

rithm was run again with a lower mutation factor Mf and odds Mo with population

sizes of 100, 200, and 300. Table 3.4 below summarizes the parameters used for the

various algorithm runs.

Figure 3.6 below shows the results of running the GA with the aforementioned

parameters of Table 3.4. Since many parameters must be changed dramatically to
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Table 3.4: GA parameters for various population sizes.

Population Size Generations Mf Mo tdom rniche

100 0 - 31 0.1 0.05 20 0.1

200 0 - 31 0.1 0.05 100 0.1

32 - 55 0.01 0.025 100 0.1

300 0 - 36 0.1 0.05 100 0.1

37 - 48 0.01 0.025 100 0.1

500 0 - 20 0.3 0.2 100 0.05

21 - 33 0.2 0.1 100 0.05

34 - 50 0.2 0.1 100 0.1

accommodate the change in population size, it is difficult to say for certain which pop-

ulation size is “best” for this problem, but by comparing the rate of convergence on

the most important objective, shutter displacement, it can be seen how the different

population sizes performed relatively. The figure plots the best shutter displacement

of the current generation from each run of the algorithm against the number of simu-

lations run at that point in the algorithm. It is plotted against number of simulation

runs instead of generation count since the population sizes vary and the number of

simulations is a fair indicator of the amount of computational time taken. Please see

section 3.8 for a discussion on computational time.
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Figure 3.6: Shutter displacement vs number of simulations for population sizes of n=200,
n=300 and n=500.

According to Figure 3.6, the population size of 300 yields the best rate of conver-

gence for shutter displacement of the three population sizes plotted. Although, the

smaller population size of 200 converges faster, it does not reach the same level of op-

timization as with the larger populations. The population size 100 failed to produce

any solutions that meet the minimum requirement of 5µm shutter displacement.

If the results from the smaller populations are deemed adequate, then it can return

a result the fastest. However, this is a very limited view of the problem since there

are more objectives and the entire Pareto frontier to examine, not just one objective.

Consider Figure 3.7 which shows the final generations’ objectives plotted on 3D axes.

Although the extreme point of each plot shows similar maximum displacement, the

population size of 200 exhibits clumping and it does not have very good coverage.

The population size of 300 does quite a bit better but is still nothing like the even

coverage seen with the population size of 500.
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Figure 3.7: Final generations’ objectives for population sizes of n=200, n=300 and n=500.

3.8 GA Computational Time

As discussed in the previous section on population size, a larger population nec-

essarily requires more computational time to complete. The static and dynamic sim-

ulations of a symmetric field mill model take approximately 30 seconds to complete a

single iteration. To put this in perspective, it takes approximately 4 hours to evaluate

a single generation of population size 500. Testing was carried out to see the effect

running the COMSOL simulations with different computer hardware. It was tested

on machines with two, four, and eight cores and it was found that there was little

improvement gained by allocating more than two cores to the simulations and for the

majority of time during a simulation the cores would not be fully utilized. This is

because the majority of time spent during each simulation is not spent solving, but

rather setting up the geometry and assembling the large matrices to be solved.

However, genetic algorithms lend themselves very well to be parallelized. Instead

of running only one simulation at a time, it is possible to run several at a time on the

same multi-core machine, or even across multiple machines configured to run Matlab

and COMSOL. It was found by experimentation that the computer hardware could

easily handle one concurrent simulation for every two cores in the machine. If more
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simulations are run, then they begin to take longer than 30 seconds each to complete.

Using this method of parallelization, a master node runs the genetic algorithm and

then distributes the population amongst multiple machines or cores for evaluation.

Distributing a population of 500 sensor designs to four eight-core machines, each

running four concurrent simulations, the time to compute each generation is reduced

from 4 hours to approximately 20 minutes, a speed-up factor of 12. This makes it

possible to run 50 generations in ∼ 17 hours.
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Chapter 4

Finite Element Analysis Simulation

4.1 Introduction

Finite element analysis is the basis for evaluating the field mill designs in this the-

sis. Static and dynamic simulations were performed using the COMSOL multiphysics

software during the genetic algorithm processing, as described in Chapter 2. These

simulations were simplified by using a coarse mesh and symmetry in order to reduce

the time to evaluate each design iteration. This chapter discusses the full details of

the simulations done during and after the genetic algorithm. Finally, this chapter also

discusses experiments performed to measure and validate the thermal and mechanical

properties found during simulations.

4.2 Static Simulation

The first simulations performed were 2D static simulations of the complete struc-

ture. This simulation couples together the electric currents, heat transfer, and solid

mechanics physics modules of COMSOL. In order to validate the simulation, the

structure is first modelled using the same geometric parameters as the electric field

sensor designed in [5], henceforth referred to as “the original design”. The exact
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geometric parameters used for the validation model are the nominal geometric pa-

rameters listed in Table 3.1. The material properties used for the simulation are

provided in Table 4.1. These material properties were the same as those used in the

original sensor design simulations and are found in the MicraGEM fabrication process

manual [12]. Note, the electric conductivity property is the effective conductivity of

a thin layer of gold electroplated on a seed layer of chrome on top of a 10µm doped

single crystal silicon substrate and was empirically determined by [5] shortly after

fabrication. It has been observed that the resistivity of the gold increases over time

as the chrome seed layer diffuses into the gold, however this effect could be reduced

by using a different seed layer with lower diffusivity [45].

Table 4.1: Material Properties

Electric Conductivity (Au on Si) 78431.373 S/m

Electric Conductivity (Si) 2 S/m

Thermal Conductivity (Si) 150 W m−1 K−1

Heat Capacity (Si) 385 J kg−1 K−1

Density (Si) 2330 kg/m3

Young’s Modulus (Si) 1.295 × 1011 Pa

Poisson’s Ratio (Si) 0.22

The model used for the static, dynamic, and transient simulations is the same

2D finite element model. The model assumes that the structure material is a linear

elastic material with thermal expansion. The model also assumes geometric nonlin-

earity due to the relatively large displacements involved. The material is considered

isotropic with a constant Young’s modulus, Poisson’s ratio, and density. The model

also assumes a constant isotropic thermal conductivity. There are fixed constraint

boundary conditions at all anchor points that prevents displacement at those points.

For the symmetric simulations, the boundary at the centre of the shutter is set to be

symmetric. The anchor points are also set to have a constant temperature of 293 K

and a constant voltage potential of 0 V for the spring and lever anchors, and ±0.5 V

for the actuator anchor points. The mesh used is a free triangle mesh whose size is
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made sufficiently small such that the simulation results remain constant with further

reductions in mesh size. All of the simulations are solved using the COMSOL direct

solver, MUMPS, with a relative tolerance of 0.0010.

Figure 4.1 shows the results of a static simulation for the original sensor design.

Figure 4.1(a) depicts the steady state temperature distribution of the thermal actua-

tor and lever structure with deformation. A voltage potential of ±1.5 V was applied

across the thermal actuators. Figure 4.1(b) shows the temperature profile along the

line indicated in (a). This temperature distribution is in close agreement with the

model presented in [5] with the exception of a small flat spot in the middle due to

the added thermal mass and reduced resistance of the shuttle.
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(a)

(b)

Figure 4.1: Simulated temperature distribution of the thermal actuator structure. Figure
(a) shows the temperature distribution of the actuator and connecting lever structure while
Figure (b) shows the temperature profile across the thermal actuator indicated by the black
arc plotted in (a).
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Figure 4.2 shows the voltage potential distribution of the same static simulation

again with the deformation of the structure. As shown, a differential voltage is

applied across the symmetric thermal actuators, such that the potential of the shutter

and lever mechanisms is zero. This is in agreement with previous simulations and

measurements done by [5].

Figure 4.2: Voltage Potential Distribution

Figure 4.3 shows the deformed shape of the structure magnified by a factor of 10

to make the shape more plainly visible. It is also coloured according to the y-axis

displacement. The point of maximal displacement is not in the shutter structure as

might be expected, but in the lever that connects it to the thermal actuators. This

indicates a sub-optimal design of the lever structure as it is unable to transfer the

complete force of the actuators into the shutter. In this case, the shutter displacement

is approximately 4.68µm while the displacement in the lever is 5.68µm, a full micron

larger. Figure 4.4 shows the same plot for a sensor that has been optimized by genetic

algorithm (case #1 of Table 3.3). The lever structure in this case is considerably
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thicker and stiffer which is able to more efficiently transfer the force from the thermal

actuators. The maximum displacement of this GA optimized design occurs in the

shutter at approximately 7.78µm for an applied voltage potential of 1 V.

Figure 4.3: Deformed shape of the entire original structure.

Figure 4.4: Deformed shape of a GA optimized structure.
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4.3 Dynamic Simulation

The dynamic simulations performed were used to evaluate the natural resonant

frequencies of the sensor designs. The same model used during the 2D static simula-

tions was used, but with only the solid mechanics physics module. The eigenfrequency

solver was then used to determine the resonant frequency. It was found that the sim-

ulated resonant frequency for the original design is 3857.9 Hz, which is in agreement

with the calculated and measured resonant frequency for the design in [5], therefore,

validating the model.

The eigenfrequency simulation calculates several resonant frequencies and their

corresponding modes. The primary resonant frequency of interest is the mode in

which the sensor oscillates in-plane with the wafer surface and perpendicular to the

axis between the actuators, as shown in Figure 4.5(a). Two other resonant modes

that were calculated are shown in Figures 4.5(b) and (c). They include a rotational

mode where the structure rotates about the centre of the shutter, and resonant modes

of the shutter support springs. The simulation was repeated with the same model

extruded by 10µm into the third dimenstion. In addition to the in-plane resonant

modes calculated using the 2D simulation, several out-of-plane modes were found.

Figure 4.6(a) to (c) show three modes of interest from this simulation. Figure 4.6(a)

shows a resonant mode in which the shutter displaces upward. This mode is the lowest

frequency of the undesirable modes, but is almost double the frequency of the primary

mode, well above the regular operating frequency. The modes of Figure 4.6(b) and

(c) show show rotational modes in which the shutter is rotated about the two in-

plane axis at approximately 13208 Hz and 15185 Hz respectively. In the figures, the

displacement pictured has been scaled in order to observe the shape of the resonant

modes. The modes of resonance above the resonant mode of Figure 4.5(a) at 3855

Hz are far above the expected range of operational frequency and are not expected to
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cause a problem with the normal operation of the sensor. Throughout the remainder

of this thesis, when referring to the resonant frequency of the sensor design, it simply

refers to the frequency of the first resonant mode in which the shutter is displaced

in-plane with the wafer surface and perpendicular to the axis between the actuators.

(a) Resonant mode at 3855 Hz. (b) Resonant mode at 19092 Hz.

(c) Resonant mode at 37697 Hz.

Figure 4.5: Three in-plane resonant modes of the original field mill design.
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(a) Out-of-plane resonant mode at 7338 Hz. (b) Out-of-plane resonant mode at 13208 Hz.

(c) Out-of-plane resonant mode at 15185 Hz.

Figure 4.6: Three out-of-plane resonant modes of the original field mill design.

4.4 Transient Simulation

Transient simulations were performed in order to determine sensor response to

a changing drive signal. This allows for evaluation of the thermal time constant

which cannot be evaluated using the static or dynamic simulations. The thermal

actuators are able to heat up very quickly through joule heating, but after the voltage

is removed, they must cool at a slower rate primarily by conduction through the

actuator beams. As the operating frequency of the thermal actuators is increased

beyond the thermal actuator cool down frequency supported by the thermal time

constant, the actuator displacement is reduced.
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4.4.1 Thermal Time Constant

In [5] the thermal time constant of a simple bent beam thermal actuator was

estimated using a simple model of a thermal actuator. The model consists of a single

straight beam connected at either end to the substrate which is held at a constant

temperature of 25 ◦C. This model assumes that each beam of the thermal actuator

is isolated from every other beam and that the only heat transfer occurs through the

actuator beam and into the substrate at either end. The differential equation for this

system is provided in Equation 4.1 [5],

k
d2T

dx2
+ q = ρCp

dT

dt
(4.1)

where k is the thermal conductivity of silicon, T is temperature, q is the rate of energy

generated per unit volume, and ρ and Cp are the density and specific heat of silicon

respectively. Setting the rate of energy generation, q = 0, and the initial temperature

distribution to that of the heated actuator allows the differential equation to be solved

for temperature as a function of time and position as it cools. The solution to this

system yields the cooling thermal time constant τc as a function of length,

τc =
(2l)2ρCp
kπ2

(4.2)

where l is the length of one half-beam of the thermal actuator. For the original field

mill design, the length of the thermal actuator half-beam is 190µm, which yields

an estimated time constant of approximately 87.5µs. This model provides a rough

estimate of the thermal time constant, however it is not entirely accurate since it does

not account for the added thermal mass of the actuator shuttle, nor does it account

for the heat loss through the connecting beam to the lever structure and its anchor.

To get a more accurate idea of the thermal time constant, it was modelled using

transient analysis with COMSOL. A potential of 1V is applied to the actuators from

t = 0 until t0 = 1.5 ms. After t0 the voltage potential is removed. To ensure that
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the solver is able to converge, the waveform is smoothed by a feature of COMSOL

to create a continuous first derivative for a small interval around the transition zone.

The results of this simulation are plotted in Figure 4.7. The solid line represents the

temperature at the centre of the thermal actuator as it is heated through joule heating

and is allowed to cool. The dashed line indicates the corresponding shutter displace-

ment. The cooling time constant, τc is extracted by measuring the time it takes for the

structure to cool from its peak temperature to 36.6788% (∼ 1τc) of the temperature

difference. In this case, it is measured to be approximately τc = 128.75µs. Likewise,

the heating thermal time constant, τh is measured to be approximately τh = 118.4µs.

The heating time constant is slightly faster because the heat is generated throughout

the entire actuator whereas it must be cooled by conduction through the substrate

anchors.
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Figure 4.7: Simulated Step Response of the original sensor design

Given these time constants, the step response of the thermal actuators can be
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approximated by the following equation:

T (t) = T0 +

 (T1 − T0)(1 − e
−t
τh ) : 0 < t ≤ t0

(T1 − T0)e
−(t−t0)

τc : t > t0

(4.3)

where T0 is the initial “cold” temperature, T1 is the steady state “hot” temperature,

t0 is the time that the voltage potential is removed, and finally τh and τc are the

heating and cooling time constants respectively.

When driven by a sinusoidal drive signal, the actuators heat during the first

quarter period reaching the maximum temperature at π
2

radians. The actuators are

then able to cool for the next quarter period as the drive voltage drops to zero. If the

cooling thermal time constant is less than one quarter wavelength of the drive signal,

then the temperature will closely follow the sinusoid. If, however, the cooling thermal

time constant is greater than one quarter period then the actuators will be unable to

follow the drive signal and will not reach the initial cold temperature T0. At π radians,

the cycle repeats but with the opposite polarity; heating until 3
2
π and then cooling

until 2π. This effectively doubles the operating frequency since the actuators heat

and cool twice during each period of the drive signal. Since the mechanical response

is the primary interest of the thermal actuators, from this point on when referring to

the “operating frequency”, it is considered to be double the drive frequency.

Figure 4.8 plots the cold temperature that the actuators are able to reach as a

percentage of the difference between T1 and T0 as a function of operating frequency.

For example, 100% would indicate that the actuators were able to cool completely

back to T0 at the specified operating frequency. Likewise, 10% would indicate that

the actuators were able to cool only by 10% at the specified frequency. The solid

line in Figure 4.8 shows the theoretical percentage based on Equation 4.3 versus

operating frequency. The plotted data points are gathered from a set of transient

simulations in which the applied waveform was sinusoidal with an amplitude of 1 V
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and frequency swept in 50 Hz increments from 150 Hz to 2700 Hz. The peak-to-peak

temperature value is then extracted and the percentage is calculated based on the

maximum and initial temperatures for each simulation. We can clearly see agreement

between the transient simulations and the theoretical values based upon the time

constant τc measured from simulation. In order to achieve the same displacement at

a higher operating frequency it is necessary to increase the applied voltage.
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Figure 4.8: Thermal actuator response vs operating frequency. The solid line represents
the analytical values based on the measured time constant of 128.75µs. The data points
plotted are based on measurements taken from transient simulations.

Others have studied the effects of the thermal time constant on chevron based

actuators, such as R. Hickey et al. [46]. They designed estimates for the heating and

cooling thermal time constants for both chevron and hot/cold arm thermal actuators.

Hickey et al. estimated a thermal time constant of 134µs for a chevron actuator design

and simulated a more accurate thermal time constant of 30µs [46]. Hickey et al. also

developed a process for measuring the thermal time constant using a beam splitter

and a laser probe microscope. With this apparatus they were able to accurately

measure the thermal time constant of their chevron actuator to be approximately

60 ± 10µs. Their actuator is significantly faster than the one presented here because

it is roughly half the size.

In order to further validate the simulations presented here, the geometry of the

COMSOL model was updated to match the dimensions given by Hickey et al. After

applying the same transient simulation used to generate the data in Figure 4.8, the

cooling thermal time constant tc was measured to be approximately 63µs. This

measurement is in very close agreement with the measured thermal time constant of
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[46]. Hickey et al. also present similar findings on the thermal frequency response

and the necessity to increase operating voltage to achieve the same displacement at

higher frequencies.

Several sensor designs selected from the results of the genetic algorithm are com-

pared by their thermal time constants in Table 4.2. These designs are the same as

those selected in Table 3.3 in Chapter 2. Although the designs listed have reason-

able resonant frequencies, the thermal time constants significantly limit the operating

frequency. This was not an issue when running the original sensor since a large me-

chanical amplification can be achieved when operating at resonance.

Table 4.2: Thermal Time Constants

Case # Voltage Freq. τc τh 80% Cooling

(V) (Hz) (µs) (µs) Freq. (Hz)

1. High Displacement 0.80 2897.0 250.63 246.34 789.06

2. High Frequency 0.96 3511.1 275.55 255.57 725.58

3. Low Stress 1.1 2311.4 230.89 219.18 856.5

4. Design in [5] 3.2 3857.9 128.75 118.14 1536.02

In order to combat the problem of reduced displacement due to high thermal time

constants, the thermal time constant could be added as an objective of the genetic

algorithm. However, since the transient simulations that extract the time constant

of a design are relatively computationally intensive, the objective could instead be

estimated using Equation 4.2 with very little additional computation. Going back

to the results from the genetic algorithm, new solutions can also be selected with

the time constant objective in mind. This also shows the flexibility of a Pareto set

genetic algorithm since the previously computed designs can easily be compared in

terms of new objectives without having to run the entire genetic algorithm again.

However, it is likely that better results could be found if the algorithm is re-run with

this objective added.

Table 4.3 below shows several newly selected solutions for the three previous cases

with superior thermal time constants. The newly selected solutions compromise the
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displacement of the thermal actuators for a faster thermal time constant. The result

is that they require a higher actuating voltage to achieve the 5µm displacement

requirement which also corresponds to an increase in maximum temperature and

stress.

Table 4.3: Re-selected solutions for cases 1-3 of Table 4.2 to have faster thermal time
constants at the expense of the other objectives.

Case # Voltage Freq. τc τh 80% Cooling

(V) (Hz) (µs) (µs) Freq. (Hz)

1. High Displacement 0.92 2284.5 188.77 178.57 1047.63

2. High Frequency 1.26 3325.0 137.35 123.43 1439.77

3. Low Stress 1.13 2328.7 199.80 174.52 989.78

Figure 4.9 shows the results of transient simulations with varying voltage and a

fixed operating frequency of 1.7 kHz for case #2 from Table 4.2. At this frequency, the

thermal actuators have enough time to cool to approximately 50.5 % of their steady

state temperature. Although the steady state displacement at 1V is relatively large

at ∼ 5µm, the voltage must be increased significantly beyond that in order for the

peak-peak displacement of the actuators to be sufficient (∼ 5µm). This dashed lines

in Figure 4.9 indicate that greater than 1.6 V is needed to achieve the necessary dis-

placement of 5µm. This minimum voltage will increase with frequency because of the

effect of the thermal time constant. The increase in peak-peak shutter displacement

is roughly linear with an increase in operating voltage.

71



0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
1

2

3

4

5

6

7

8
x 10

−6 Displacement vs Operating Voltage @ 1.7kHz for Case 2

Operating Voltage (V)

P
ea

k−
P

ea
k 

S
hu

tte
r 

D
is

pl
ac

em
en

t (
M

)

Figure 4.9: The points plotted correspond to the peak-peak displacement at 1.7 kHz achieved
with design case #2 from Table 4.2 as the operating voltage is increased.

4.4.2 Experimental Measurement of Thermal Time Constant

The thermal time constant can be measured directly. This is accomplished using

the experiment outlined below (see Figure 4.10). This procedure is similar to that used

by [47] to measure the thermal properties of microbolometers. A thermal actuator

device is connected as part of a Wheatstone bridge driven by a function generator.

The function generator is configured to output a 100 Hz, 1.7 Vpp square wave with

50% duty cycle and a voltage offset of 0.9 V. The offset is important so that there is

always a current flowing through the Wheatstone bridge making it possible to measure

changes in resistance at all times. As the actuator heats up, its resistance changes as a

function of temperature. This change in resistance relative to the other resistors in the

Wheatstone bridge is measured as a voltage difference across the bridge. The resistor

R is chosen to be a value close to the room temperature resistance of the thermal

actuator, which in this case was measured to be 58 Ω, and so the closest standard

value resistor, 56 Ω, was chosen. If possible, the resistors should be as precise as
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possible; any difference in resistor values will present as an offset voltage across the

Wheatstone bridge. The resistor R must also be able to dissipate higher power than

the actuator with negligible change in resistance due to Joule heating. During the

high cycle of the square wave, the actuator is heated and its resistance and voltage

drop increases. When the low cycle begins, the actuator cools and so its resistance

and voltage drop reduce. This can be seen as exponential curves during each half

of the square wave cycle. The signal from the Wheatstone bridge is then fed into a

high-impedance non-inverting amplifier which makes it possible to more accurately

record small changes in resistance.

R

Oscilloscope

Function Gen.

+
    -

560 kΩ 5.6 kΩ

+

-

Figure 4.10: Experimental Measurement of Actuator Time Constant

Figure 4.11 shows a photo of the actuator being tested. For a scale reference,

each actuator arm is approximately 190µm long. The electrical resistance of the

actuator and connecting traces (not pictured in Figure 4.11) is estimated using the

resistivity of gold, ρ = 2.44 × 10−8 Ω m, and the mechanical dimensions estimated

from Figure 4.11. This resistance estimate is approximately 8 − 12 Ω. This estimate

also includes the added resistance of the bond wires, ∼ 0.2 Ω, based on a rule-of-
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Figure 4.11: Actuator Under Test

thumb estimate of 1 Ω per inch [48]. However, actual resistance measurements of the

actuator yield a resistance of approximately 58 Ω. It is believed that the electrical

resistance is significantly higher than theoretical estimates because of chromium/gold

interdiffusion, as reported by [45]. The MicraGEM [12] process makes use of a 25 nm

adhesion layer of chromium to which a 75 nm layer of gold is deposited. After being

exposed to high temperatures, for example, during manufacturing or regular operation

of the thermal actuator, interdiffusion of the chromium and gold occurs and has a

dramatic effect on the electrical resistance of the gold. The resistance can be increased

by as much as an order of magnitude depending on the maximum temperature and

the amount of time held at that temperature [45]. The effects of interdiffusion could

be reduced by introducing a thin diffusion barrier layer between the chromium and

gold, such as nickel, which better preserves the resistance of the gold [49].

Figure 4.12 shows a screen capture from the oscilloscope used in the experiment.

The actuator being tested is one of the original designs built by [5]. The oscilloscope

is set to capture the cooling half of the cycle. The gain of the amplifier circuit is
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approximately 101. The cooling thermal time constant measured is approximately

150µs. This time constant is quite close to the theoretical value of 125µs from simu-

lation. The discrepancy in thermal time constant could be explained by a number of

factors such as reduced thermal conductivity due to interdiffusion of the gold conduc-

tor and chromium adhesion layers, reduced thermal conductivity of the underlying

silicon due to dopants, as well as a reduced thermal conductivity due to increased

temperature.

Figure 4.12: Time Constant Measurement Results

4.4.3 Mechanical Dynamic Response

In this section, the effect of resonance on the mechanical response of the sensor

is examined. Figure 4.13 shows the results of a set of transient simulations with

a constant actuation voltage of 2 V and operating frequency swept from 300 Hz to

5400 Hz. These simulations do not consider damping forces and can be considered as

the case when the sensor is operated at high vacuum. In this scenario, it is interesting
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to note from Figure 4.13 that the mechanical amplification of displacement due to

approaching resonance seems to increase at a rate slightly greater than the reduction

of peak-peak actuator displacement. After approximately 2500 Hz the mechanical

amplification begins to dominate and the peak-peak displacement rapidly increases

as it gets closer to resonance. This is why the original design is able to operate

at very low power, however, it is very sensitive to changes in resonant frequency

which can occur due to slight variations in temperature, pressure, or even variations

in rapidly changing strong electric fields. Although tempting, it is not presently

possible to measure the quality factor of the resonance peak using these data because

the transient simulation does not converge for the case when operating exactly at the

natural resonant frequency.
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Figure 4.13: Simulated Mechanical Dynamic Response. The solid line plots the mean
peak-peak shutter displacement vs operating frequency while the dashed line depicts the mean
peak-peak temperature of the actuator for the original sensor design.
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Damped Mechanical Response

Figure 4.14 plots the peak-peak amplitude of shutter displacement vs. operating

frequency for four levels of damping. The black line shows the same undamped

response of Figure 4.13 while the magenta, blue and red plots show the response with

increasing levels of damping. As expected, with increased damping the mechanical

amplification becomes lessened until it is essentially eliminated as in the red plot.

The second effect of increased damping is a reduced resonant frequency.
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Figure 4.14: Simulated Damped Mechanical Dynamic Response. The black plot shows the
same undamped mechanical response as in Figure 4.13. The magenta, blue and red plots
show frequency response for the same sensor with increased damping.

In the totally damped case (red) the response is dominated by the thermal time

constant of the actuators with no observable mechanical amplification. The totally

damped case is shown again in Figure 4.15 along with the peak-peak actuator tem-

perature. As expected, the mechanical response in the totally damped case follows

closely the thermal response of the actuators. When the sensor is exposed to air at
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atmospheric pressure, the damped response is expected to be somewhere between the

totally damped case (red) and the undamped case (black).
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Figure 4.15: Mechanical resonance is totally damped. Shutter displacement (red) closely
follows the thermal actuator temperature (black).

4.4.4 Optical Measurement of Dynamic Response

Two original designs were tested using optical measurements of shutter displace-

ment. The devices tested were manufactured using the MicraGEM [12] process which

is detailed in Chapter 5. The measurements were performed using a Fogale Photomap

3D optical profiler [50]. The two devices pictured in Figure 4.16 were dynamically

measured using the 3D optical profiler. The first device, Figure 4.16(a) is the nom-

inal design listed in Table 3.1 with two spring loops for each set of the supporting

springs. The second device, Figure 4.16(b) is the same design but with an additional

two spring loops.

The sensor is fixed beneath the 3D profiler at atmospheric pressure and actuated

using a sinusoidal waveform with an amplitude of approximately 380 mV and no dc
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(a) Photograph of two spring field mill design.

(b) Photograph of four spring field mill design.

Figure 4.16: Photographs of the two sensors whose dynamic response is measured us-
ing a 3D optical profiler. Photo (a) shows the two spring design whose geometry matches
the nominal parameters listed in Table 3.1. Photo, (b), shows the same design with two
additional spring loops.

offset. The profiler records frames synchronously using strobed LED lighting at 2◦

phase increments and records these frames to produce a slowed video of the sensor’s

operation. This corresponds to 180 samples per actuation cycle. This allows the

profiler to capture the entire motion of the structure over many complete cycles. The
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Photomap analysis software is able to then measure in-plane displacements from one

frame to the next using digital image processing and correlation techniques. Figure

4.17 shows the results of this technique for one frequency, 3490 Hz which was found to

be close to the resonant frequency as it produces the largest mechanical response. As

expected, near the resonant frequency the peak-peak shutter displacement is largest

at approximately 2.85µm displacement.
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Figure 4.17: Horizontal in-plane displacement measured near resonance. (a) shows a
single frame from the optical 3D profiler with a rectangular selection of the four-spring
sensor pictured in Figure 4.16b, which is analyzed for horizontal in-plane displacements. (b)
shows the resulting plot from the analysis when operated at 3490 Hz (close to the resonant
frequency).
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This in-plane displacement measurement is repeated at 100 Hz increments from

200 Hz to 5000 Hz with a few more closely spaced measurements added near the res-

onant frequency for both of the sensors pictured in Figure 4.16. Since the optical

profiler is capturing the response at each phase from different cycles of actuation,

there is error due to each cycle not being exactly the same as the last; for example

minute changes in temperature, air pressure, or vibration are sources of error. A

digital low-pass filter implemented in MATLAB is used to remove this noise and al-

lows more precise locating of peaks in the mechanical response. Each measurement

is passed through a 20th order low-pass finite impulse response filter with a cut-off

frequency that is set at 4 % of the sample frequency. These parameters were chosen

experimentally to provide the least amount of filtering while eliminating enough of

the measurement-to-measurement error for analysis. For the example of Figure 4.17,

the actuation frequency is 1745 Hz and it is sampled 180 times per cycle. This leads

to a sample rate of 314.1 kHz, 4% of which is the cut-off frequency, 12.564 kHz, well

above the frequency of any expected mechanical response. For the lowest actuation

frequency of 100 Hz, this cut-off frequency would be 720 Hz, still well above the re-

sponse frequency of 200 Hz. The peak-peak response is then determined from the

filtered data by subtracting the mean value of the upper peaks from the mean value

of the lower peaks.

The analyzed response for each of the two sensors is plotted in Figure 4.18. The

response of the two spring-loop design is plotted in blue while the response of the four

spring-loop design is plotted in red. As expected, the springs of the four spring-loop

design are not as stiff resulting in a larger response at a lower resonant frequency.

The response also resembles the simulated damped responses of Figure 4.14 albeit

with a much lower displacement due to the non-optimized geometry of the designs

being tested.

It is also interesting to note that the low-frequency response (below ∼ 2500 Hz)
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Figure 4.18: The measured mechanical response for sensors pictured in Figure 4.16. The
red plot is the response of the four spring-loop design while the blue plot is that of the two
spring-loop design.

roughly matches the expected thermal response of Figure 4.15. This is shown in

Figure 4.19 which plots the measured shutter displacement (normalized) for the four-

loop spring design of Figure 4.17(b). The red and green plots show the theoreti-

cal frequency response for a system with time constant of tc = 128.75µs (red) and

tc = 150µs (green). These time constants correspond to the time constants measured

from simulation (Figure 4.7) and from direct electrical measurement (section 4.4.2)

respectively. As expected, the optical measurements agree with the simulated and

measured thermal time constants. At frequencies above 2000 Hz, it is observed that

the displacement begins to deviate upwards from the expected thermal time constant

curves. This deviation is explained by the mechanical amplification that begins as

the frequency is increased towards the resonant frequency.
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Figure 4.19: The normalized low frequency mechanical response of the four spring-
loop design (dots) plotted along side the theoretical thermal response with a time constant
tc = 128.75µs (red) and tc = 150µs (green)

.
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Chapter 5

Fabrication

5.1 Introduction

The original electric field mills developed in [5] were manufactured using the Mi-

craGEM [12] process through CMC Microsystems. At the time of writing, this process

was no longer being offered through CMC Microsystems for academic research pur-

poses. Therefore, it was decided to try and adapt the designs to the PolyMUMPS

fabrication process which was currently available. This chapter presents both pro-

cesses as applied to the fabrication of the electric field mill. While the resulting

devices manufactured using the PolyMUMPS process failed to effectively operate,

they are presented and analyzed here. The MicraGEM process is also described as

well as some of the work done to recreate a similar process in-house.

5.2 PolyMUMPS

PolyMUMPS is a surface micromachining process where polycrystalline silicon and

phosphosilicate glass (PSG) are alternately added in layers. Phosphosilicate glass is a

commonly used compound that consists primarily of silicon dioxide (SiO2) and P2O5.

Each layer is subsequently patterned and etched to build-up the device. Finally, the
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supporting PSG layers are completely etched releasing the finished device structure.

Figures 5.1 - 5.7 illustrate this process by showing a simplified structure with

features similar to those used in the field mill design. The full details of the Poly-

MUMPs process and design rules can be found in the process manual [51]. Figure 5.1

shows the starting n-type silicon wafer substrate with a 600 nm thick layer of silicon

nitride deposited with low pressure chemical vapour deposition (LPCVD). The sili-

con nitride layer serves as an electrical isolation of the poly-silicon and the substrate,

and also acts as a lower friction surface for any moving structures above. On the

silicon nitride, a 500 nm layer of poly-silicon is deposited using LPCVD. This layer is

patterned and etched using lithography and reactive ion etching (RIE) to form the

bottom electrodes and traces for the field mill sensor.

Figure 5.1: Silicon nitride is deposited on an n-type wafer. A layer of poly-silicon is
deposited and patterned to form traces and bottom electrodes.

Next, a 2µm sacrificial layer of PSG is deposited by LPCVD, Figure 5.2. This

layer is first annealed at 1050 ◦C for one hour which causes the phosphorous from

the PSG to dope the polysilicon bottom electrode layer below, making it conductive.

The sacrificial PSG layer also defines the height of the shutter above the electrodes

below. Not pictured in Figure 5.2, the PSG layer is patterned and etched to create
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dimples in the centre of the shutter. These dimples are later filled by the next layer

of poly-silicon and help support the device layer above to prevent it from collapsing

and sticking to the lower poly-silicon layer. The PSG is then patterned and etched

with anchor holes, pictured in Figure 5.3. These holes anchor the upper device layers

to the substrate.

Figure 5.2: An oxide is deposited covering both the nitride and poly-silicon layers.

Figure 5.3: Anchor holes are etched in the PSG.
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A 2µm layer of poly-silicon is then deposited with LPCVD, see Figure 5.4. A

thin PSG hard mask is then deposited and annealed to dope the poly-silicon device

layer. This anneal also helps to relieve stress that may exist in the poly-silicon layer.

The PSG hard mask is used to define the device layer rather than photoresist since it

will better withstand ion bombardment during RIE. After etching, the PSG mask is

stripped, resulting in a the structure pictured in Figure 5.5. Notice that the pattern

of the lower electrode layer transfers to the upper device layers and appears as bumps

on the patterned device layer.

Figure 5.4: A layer of poly-silicon is deposited.
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Figure 5.5: The poly-silicon device layer is patterned and etched.

A second PSG oxide, 0.75µm thick, is deposited on top of the poly-silicon device

layer. This layer is patterned twice using two masks at different depths of field;

one mask is used to open the PSG to mechanically and electrically connect the next

poly-silicon layer to the previously etched poly-silicon layer, while the second mask

is used to open an anchor hole to the substrate through the top-most PSG layer and

the previously deposited PSG layer. The second poly-silicon layer is not used in the

electric field mill design since it must be at least 2µm smaller than the previous poly-

silicon layer which is not possible over thin sections such as the springs. However,

since the process is shared amongst other users, the poly-silicon and hard mask layers

are still deposited and subsequently removed.

The wafer is lithographically patterned for a 0.5µm thick layer of metal. The

metal is then deposited and patterned using lift-off, see Figure 5.6. The metal layer

is used for bonding pads, and also serves as the top-electrodes on the shutter of

the electric field mill. After the wafer has been diced into chips, the structure can be
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released by HF wet etching which removes the supporting layers of PSG. The released

structure is illustrated in Figure 5.7.

Figure 5.6: A metal layer is deposited and patterned using lift-off.

Figure 5.7: The final poly-silicon layer is deposited and patterned.
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5.2.1 Failure Analysis of PolyMUMPS Sensors

The electric field sensors fabricated were based on the designs provided by the

genetic algorithm, similar to the designs provided in Table 3.3. To meet the Poly-

MUMPs design rules, a few changes were required, such as increasing the width of

the connecting spring and shutter springs. However, the main difference between the

fabricated PolyMUMPs design and the sensor design optimized for the MicraGEM

process is the thickness of the device layer. In the MicraGEM process, the device layer

is relatively thick at 10µm whereas in the PolyMUMPs process the thickness was that

of the first device layer, only 2µm. The second device layer was not used since it

must be 2µm smaller than the device layer below to allow for slight miss-alignments

in the process.

After testing, it was found that the fabricated PolyMUMPs devices did not show

any measurable displacement of the shutter when the thermal actuators were acti-

vated. A Fogale Photomap 3D optical profiler [50] was used to analyze the structure

of the fabricated sensors. Figure 5.8 shows a cross section of the shutter of a Poly-

MUMPs electric field mill. Figure 5.8(a) shows a 3D representation of the shutter;

sagging in the centre and increasing in height as it moves outwards towards the sup-

porting springs and levers. Figure 5.8(b) shows the height along a horizontal cut-line

drawn across the top of the shutter, indicating that the centre of the shutter is sagging

as much as 5µm.
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Figure 5.8: A 3D cross section of a PolyMUMPs sensor’s shutter. Shown in (a), a 3D
optical profile of the field mill shutter fabricated using the PolyMUMPs process. The profile
of a cut-line across the top of the shutter is shown in (b).

Figure 5.9 shows the 3D scan of the PolyMUMPs actuator before (a) and after

(b) applying a 0.7 V actuation voltage. Both 3D profiles were first flattened using the

Fogale proprietary software [50] to remove slight tilt of the substrate in the package.

The darker colours in the 3D profiles indicate a larger out-of-plane displacement.

Apparent in Figure 5.9(b) is a slight vertical displacement at the centre of the thermal

actuator. The vertical displacement is slightly higher at the far end of the thermal

actuator, as would be expected, where it is not connected to the lever structure.
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This indicates that the actuator is moving vertically rather than displacing the lever

structure horizontally in-plane.

(a)

(b)

Figure 5.9: The PolyMUMPs sensor actuator before (a), and after (b) applying a 0.7 V
actuation voltage.
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Figures 5.10 - 5.12 shows the 3D profiles of the lever, shutter, and springs of the

same device before and after applying a 0.7 V actuation voltage. Apart from the

thermal actuator, there is no apparent difference in the displacement of the lever,

shutter, or springs when comparing the optical scans. The shutter is not being dis-

placed as expected because the actuators are moving out-of-plane. In the MicraGEM

process, the large 10µm thickness of the device layer, and also the fact that it is single

crystal silicon rather than polymorphous silicon gives it a large out-of-plane stiffness.

However, because the PolyMUMPs device layer is only 2µm thick and is made from

polymorphous silicon, it has a lower out-of-plane stiffness resulting in the sag of the

shutter, and the out-of-plane displacement of the thermal actuators.
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(a)

(b)

Figure 5.10: The PolyMUMPs sensor’s lever structure before (a), and after (b) applying
a 0.7 V actuation voltage.
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(a)

(b)

Figure 5.11: The PolyMUMPs sensor shutter before (a), and after (b) applying a 0.7 V
actuation voltage.
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(a)

(b)

Figure 5.12: The PolyMUMPs sensor springs before (a), and after (b) applying a 0.7 V
actuation voltage.
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5.3 MicraGEM

The MicraGEM process is a silicon-on-glass fabrication process originally offered

for academic use by the Canadian Microelectronics Corporation in collaboration with

Micralyne, Inc [12]. The process begins with a 7740 Pyrex wafer 525µm thick. The

Pyrex is etched using two masks at two depths; 2µm and 10µm, see Figure 5.13.

Next, a metal layer is patterned using a lift-off technique. The metal layer consists

of 50 nm titanium, 50 nm platinum, followed by 200 nm of gold [12]. The metal layer

may be deposited in the etched pit or on the surface of the Pyrex, as illustrated in

Figure 5.14.

Figure 5.13: An etched Pyrex wafer.

Figure 5.14: Gold metal is deposited using a lift-off technique.
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At this stage, a silicon-on-insulator (SOI) wafer is anodically bonded to the Pyrex.

Anodic bonding is discussed in greater details in Chapter 6. The SOI wafer used has

a 10µm single crystal silicon device layer, followed by a buried oxide and 525µm

silicon handle wafer, illustrated in Figure 5.15. Next, the handle wafer and buried

oxide are removed by wet etching, as in Figure 5.16. A second metal layer consisting

of approximately 10 nm chrome and 75 nm of gold is deposited and lithographically

patterned on top of the silicon device layer, see Figure 5.17. In the electric field mill

design, this metal layer is used as a conductor for the thermal actuators and as the

grounding top-electrodes on the shutter structure. Finally, the wafer is lithographi-

cally patterned and etched using a specially designed anisotropic plasma etch to form

the device and release it, Figure 5.18.

Figure 5.15: A silicon-on-insulator wafer is anodically bonded to the Pyrex.
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Figure 5.16: Silicon-on-insulator wafer is back-etched, removing the handle wafer and
buried oxide.

Figure 5.17: Metal is deposited on top of the device layer, forming the top-electrodes and
actuator traces.

Figure 5.18: The device layer is patterned and etched, releasing the completed structure.

99



The MicraGEM process has a few advantages over the PolyMUMPs process for

the electric field mill sensor design. Firstly, and most importantly, it offers a relatively

thick device layer of single crystal silicon which has a sufficient out-of-plane stiffness

for the electric field mill. This prevents the actuators from displacing vertically, as in

the sensors manufactured using the PolyMUMPs process. The process is also quite a

bit simpler than the PolyMUMPs process, making use of only 5 masks compared to

the 8 masks of PolyMUMPs. However, the MicraGEM process may be more expensive

since it requires the use of an SOI wafer.
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Chapter 6

Anodic Bonding Apparatus

6.1 Introduction

Anodic bonding is a mechanism used to permanently bond a glass to a conducting

substrate such as silicon. The process may also be known as field-assisted thermal

bonding or electrostatic bonding. The glass used in anodic bonding to silicon is

commonly Corning #7740 (Pyrex), but other sodium rich glasses such as soda lime

#0080, potash soda lead #0120, and aluminosilicate #1720 can also be used [52]. To

reduce thermal stress in the bond, glass with a thermal expansion constant similar to

the substrate wafer should be used [14]. Bonding is achieved by bringing a cleaned

Si wafer into contact with the desired glass wafer. The bonding will work if the

silicon has a thin oxide, but it has been found that a stronger bond can be achieved

if the oxide is first removed [52, 14]. First, the wafer stack is heated to typically

200 − 500 ◦C. Next, a dc voltage is applied across the wafer stack typically in the

range of 100 − 1000 V through a point electrode on the glass and a ground plate

beneath the silicon wafer. Figure 6.1 shows a photograph of the anodic bonding

apparatus developed for this thesis.
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(a)

(b)

Figure 6.1: Anodic Bonding Apparatus.
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The bonding process centres around sodium ions in the glass [52, 53, 14] . At the

elevated temperatures, the sodium ions become mobile within the glass and migrate

towards the cathode, creating a space-charge region at the interface. The voltage drop

occurs primarily across this small space-charge region causing a very large electrostatic

force that pulls the glass into intimate contact with the silicon wafer, where the

elevated temperature assists the formation of covalent bonds between the glass and

the silicon surface [52]. As sodium ions are pulled from the site of bonding it leaves

behind oxygen ions which are pulled towards the silicon surface where it forms an

oxide and becomes non-conducting causing a bonding front to expand outwards from

the point electrode [54].

The expanding bonding front slows the farther it travels from the point electrode

due to the increased area of the space charge region. Depending on bonding parame-

ters such as voltage, temperature and the exact types of materials being bonded, the

bond may take a long time to complete.

6.1.1 Spiral Electrode Array

The elevated temperature over an extended time period may cause damage to mi-

crostructures present on the wafers. In order to reduce the time required to complete

a bond and to improve bond quality, it is possible to use multiple point electrodes in

a spiral arrangement [55]. A spiral is mathematically designed so that the bonding

fronts from adjacent electrodes meet at the same time, ensuring that any gasses have

a way to escape the bonding without becoming trapped beneath the Pyrex glass.

To calculate which points along the spiral to select, a polar coordinate system is

used. The spiral follows the following equation from [55]:

r(θ) = Kr(1 +Kaθ)θ (6.1)
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where Kr and Ka are parameters that determine the shape of the spiral. The

initial parameters used were Kr = 1 and Ka = 10. The first point added is at θ = 2π.

This point is used since a traditional spiral infinitely approaches the origin but never

reaches it. The second point along the spiral was taken at θ = 3
2
π. Additional points

must be located along the spiral such that the circular bonding fronts of each of the

three points intersects so that no gas between the glass and silicon could become

trapped. Consider Figure 6.2 which shows a portion of a spiral, and the four points

A, B, C, and D. Point A is the first electrode pin, located at θ = 2π. Point B is the

second electrode pin, located at θ = 3
2
π. Points C and D are located at potential

electrode positions along the spiral. As highlighted in red in Figure 6.2(a), a small

space exists between the bonding fronts that could trap gas beneath the surface of

the glass, resulting in an unbonded region. This can be adjusted by moving electrode

D farther back along the spiral so that the bonding fronts from electrodes A, C, and

D intersect at the same point, as illustrated in Figure 6.2(b).

A

B

C

D

(a)

A

B

C

D

(b)

Figure 6.2: Spiral electrode geometry calculation. (a) shows a bad electrode geometry that
could trap gas beneath the glass during anodic bonding. (b) shows the same geometry, with
the position of electrode D adjusted to eliminate the trapped gas problem.

All electrode points along the spiral must be chosen in this manner to prevent
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trapped gasses. An electrode arrangement was designed in this manner using MAT-

LAB [44] and fabricated into an aluminum plate with holes positioned at each of the

point electrodes. A test-pin receptacle is epoxied into each hole using a high vacuum

compatible leak sealant epoxy. The pin receptacles can then be selectively loaded

with gold plated spring pins that are pressed against the surface of the Pyrex glass

to be bonded. Figure 6.3 shows the geometry of the electrode plate. The fabricated

plate is visible in the photograph of Figure 6.1(a). Areas of the electrode plate are

milled out so that the samples are visible through the top window of the vacuum

chamber during bonding.

Figure 6.3: Electrode plate fabrication drawing.

6.1.2 Heating Controller

The anodic bonding apparatus requires a controlled heater to maintain the tem-

perature under vacuum when bonding. The controller that was designed and built

is pictured in Figure 6.4. The schematic for the controller is available in Appendix

7.2. The controller has a high gain rail-to-rail op-amp for sampling the small volt-

age generated by the type-k thermocouple. The op-amp, in a non-inverting amplifier
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configuration, provides a gain of approximately 258. By design, the op-amp uses

the negative thermocouple lead as a reference instead of ground which requires that

the hot thermocouple junction be grounded. This is beneficial since it allows the

aluminum plate in the chamber to be used directly as the ground plate for anodic

bonding without the need for electrical isolation between the thermocouple and the

ground plate. The heater controller features an ambient temperature sensor used to

compensate for the thermocouples cold-junction temperature. There is a USB con-

nection used for logging temperature and control values as well as a liquid crystal

display (LCD) which displays the current temperature, set-point temperature, ambi-

ent temperature, and displays a small line graph of the temperature over the past 20

minutes of operation. For further details on the design and operation of the heater

controller, please see Appendix 7.2

Figure 6.4: Heater Controller

6.1.3 Anodic Bonding Results

With the heater controller built and functioning, the anodic bonding apparatus

was tested by doing a series of bonds using 3” p-type silicon wafers and 2” squares
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of 0.5 mm thickness Pyrex glass. The glass and wafer samples were cleaned for five

minutes using a mixture of deionized water and Sparkleen detergent [61] applied

with a sponge in swirling motions. After applying the soap mixture, the samples are

rinsed in deionized water for 3 minutes. Some of the samples were additionally rinsed

with acetone, then Isopropyl Alcohol (IPA), followed by Methanol, and again with

deionized water to remove any residues that may have been left by the soap.

Figure 6.5: Bonding apparatus setup inside of vacuum chamber with wafer/Pyrex samples
positioned.

After cleaning and drying with dry nitrogen, the Pyrex is placed on top of the

silicon wafer and slightly pressed together. Figure 6.6(a) shows a photograph of

the first samples cleaned and pressed together prior to bonding. The wafers are

then placed inside the bonding chamber as pictured in to Figure 6.5, the top plate

of the bonding apparatus is tightened by hand so that the top electrode pins are

slightly depressed against the Pyrex. A multimeter is used to test each vacuum feed

through to assure that the high-voltage connection is not shorted to ground and that

the heater power lines are not shorted to ground or each other. The chamber is
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then pumped down with a roughing pump and the heater is activated with a set-

point temperature of 250 ◦C. Note that the bonding chamber also has a turbo pump

available, however it was not used for these preliminary tests. After the temperature

has reached 250 ◦C, the high voltage power supply (Stanford Research Systems, Inc.

model PS310/1250V-25W) is activated and the applied voltage is gradually ramped

up in 100 V increments to 1000 V. The observed current at 1000V is typically between

30 − 80µA. The voltage is applied while monitoring the current which after a few

minutes drops by approximately 10 − 20µA. Once the current is stable, the 1000 V

is applied for an additional 10 minutes after which the high voltage power supply is

turned off. The chamber is then vented and allowed to cool back to room temperature

before the samples are removed. Figure 6.6(b) shows the results of the first samples

bonded using this process. This sample was not rinsed with acetone/IPA/methanol

as described above. Note the clearly visible diffraction rings present on the bonded

samples, each of which has a particle of dust at its centre. This dust is present because

the samples were not cleaned inside a particle controlled cleanroom and the wafer was

allowed to sit while the Pyrex was cleaned.

Figures 6.7(a) and 6.7(b) show two more samples that were cleaned inside the

cleanroom and rinsed with acetone/IPA/methanol which shows considerable improve-

ment in bonded area, however a few dust particles were still present. Also notice that

both bonded pairs have an unbonded region along one edge of the Pyrex wafer; this

region corresponds to the side of the wafer that was gripped with metal wafer tongs

to handle the wafers during and after cleaning. It is likely that the wafer tongs left a

residue during the cleaning process due to insufficient rinsing under and around the

tongs. It is also possible that the metal tongs leave small scratches or imperfections on

the glass which could also prevent bonding in that area. Using a piece of Pyrex glass

larger than the silicon wafer may reduce or eliminate the unbonded region caused by

the tongs. The samples of Figure 6.7(a) also has a crack along one edge of the Pyrex
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(a)

(b)

Figure 6.6: Pyrex and silicon wafer samples before (a) and after (b) anodic bonding.

caused possibly by thermal shock from being cooled too quickly as the samples were

removed before fully cooling.

Figure 6.8 shows a final pair of samples that was cleaned inside the cleanroom

with a slightly different cleaning process. After cleaning the Pyrex sample with soap

solution for five minutes, it is rinsed for three minutes with deionized water, then

quickly rinsed with acetone, IPA, and then methanol to remove any residues. The
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(a) (b)

Figure 6.7: Two more Pyrex and silicon samples after anodic bonding. Note the improved
bond area with fewer dust particles.

wafer is then lightly rinsed again and then submerged in deionized water while the

silicon wafer undergoes the same cleaning process. This prevents any dust from

settling on the Pyrex while the silicon is cleaned. Care must be taken to maintain the

orientation of the Pyrex wafer when submerged so that the cleaned side is bonded.

After the silicon wafer has been cleaned and dried with dry nitrogen the Pyrex sample

is removed from the water, lightly rinsed and dried with nitrogen before being placed

on top of the silicon wafer for bonding.

6.2 Difficulties with Anodic Bonding

During the design process of the anodic bonding apparatus, several problems

were encountered. The first major problem was with the thermocouple, it was not

sufficiently attached to the aluminum bottom plate. When the vacuum was applied

and the heater turned on, the poor connection between the thermocouple and the

plate caused a low reading on the thermocouple which caused the controller to loose

control. This out-of-control heating melted the aluminum plate and Pyrex sample.

The solution was to tightly screw the thermocouple into the aluminum plate to ensure
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(a) (b)

Figure 6.8: A final wafer/Pyrex pair before (a) and after (b) bonding. Samples were
cleaned in the cleanroom with Acetone/IPA/Methanol rinse. The Pyrex sample was kept
submerged in deionized water while the silicon wafer was cleaned.

adequate thermal connection.

The next major problem encountered was with the heating element itself. The

first revision of the design used a ceramic clad heating element, similar to the type

found in many consumer hot-plates and stoves. The element was securely bolted

to the plate using machined aluminum straps. The porous ceramic cladding of the

element is a poor thermal conductor by itself, and the primary heating mechanism is

convection of air in and around the ceramic cladding of the element to the aluminum

plate above. The effect of this is that when in vacuum, the heating element may get

very hot, but it is unable to conduct enough heat into the aluminum plate, resulting

in a temperature rise of only ∼ 20 − 30 ◦C after being heated for about a minute. If

the element is then deactivated and the chamber vented, the air allows the element

to conduct to the plate and the temperature of the plate almost immediately jumps

to over 100 ◦C. In an attempt to solve this problem, a high temperature vacuum

compatible two-part epoxy, EPO-TEK H74F [62], was used to bond the element

directly to the aluminum plate, with the hopes that the thermally conductive epoxy

would adequately transfer the heat from the element to the plate above. The epoxy
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datasheet [62] reports a high working temperature of 250 ◦C with an intermittent

temperature as high as 350 ◦C. It was hoped that if the aluminum plate temperature

was limited to 250 ◦C, the epoxy would be suitable. However, it seems that the

element would become significantly hotter than the degradation temperature of the

epoxy, 486 ◦C, resulting in the degradation of the epoxy. As the epoxy degrades in

vacuum, the thermal contact between the element and the aluminum plate is also

degraded. This degrading of the epoxy causes a positive feedback and quickly results

in the total failure of the epoxy. This problem was solved by substituting an industrial

heating element that is clad in steel instead of ceramic, and is simply bolted to the

aluminum plate. In this case, the conductivity of the steel cladding is sufficient to

heat the aluminum plate.
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Chapter 7

Conclusion

7.1 What has been accomplished?

During the research of this thesis, genetic algorithms and their application to

MEMS design has been examined and implemented. A multi-objective niched Pareto

genetic algorithm has been designed and applied to the design optimization of a com-

plex micromachined electric field mill. The primary purpose of optimization of the

electric field mill was to eliminate the requirement of resonant operation of the sen-

sor. The algorithm evaluates designs based on the results of finite element simulations

performed using the COMSOL Multiphysics software. The simulations are validated

using measurements taken from previously fabricated electric field mill sensors and

thermal actuators designed by others. The algorithm evolves a population of sensor

designs towards the Pareto frontier of optimal solutions by utilizing crossover, mu-

tation, and niched Pareto tournament selection operators. Design compromises can

then be selected from the optimized sensor population to meet multiple criteria, such

as high displacement, high frequency, or low stress.

There have been other evolutionary algorithms for design and optimization of

MEM structures, however, most of these algorithms are single objective, relatively
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simple, or not evaluated using a finite element model. Others who have designed

multi-objective optimization algorithms for complex MEMS have required human ex-

pert interaction to help guide the algorithm, which is not required by the algorithm

presented here. The niched Pareto approach also differs from other genetic algorithms

in that the solution set converges not to a single “best” solution, but rather returns a

set of non-dominated solutions that approximate the Pareto front. Applying the ge-

netic algorithm only to the optimization as opposed to design synthesis simplifies the

search space requiring little additional input. Simulations performed include static,

dynamic, and transient simulations which accurately model the desired behaviour of

the sensors. Transient simulations had not been previously studied for the electric

field mill design and have been used to examine the mechanical and thermal frequency

response of the field mill structure with and without damping. These simulations are

also compared to the frequency response obtained using an optical 3D profiler.

Several optimized designs were selected for fabrication using the PolyMUMPs

process. However, the resulting devices failed to function because of the reduced

stiffness of the thin device layer. The failure mode of the fabricated devices has

been analyzed. The original sensor was designed for the MicraGEM process, which

at the time of writing is no longer available for academic use. In order to fabricate

the sensors, work has been started towards designing an in-house fabrication process

based off the MicraGEM process. To that end, an anodic bonding apparatus has

been designed, built, and tested. The anodic bonding apparatus is intended for use

in the in-house MicraGEM process.

7.2 What else could be done?

There are many avenues available for future research on the topic of automated

MEMS design optimization. The niched Pareto genetic algorithm presented here
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could be applied to many other devices and MEM structures. Analysis could be done

to determine the optimal genetic algorithm parameters for use with various types of

MEMS optimization problems. New objectives can be added to the list of objectives

currently studied by the algorithm. A more in-depth investigation into the affects of

population size and rates of mutation on convergence as well as the use of other more

complex genetic operators such as multi-point crossover also warrants further inves-

tigation. It would be valuable to study other types of evolutionary algorithms and

their application to MEMS, such as particle swarm optimization, seeker optimization,

and tabu search optimization, to name a few.

The optimized micromachined electric field mill designed here has yet to be fab-

ricated, tested, and characterized. Once the sensor has been fabricated, future work

could focus around further optimization of the sensor design. Research could also be

done to integrate drive and sense electronics into the sensor package.
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Appendix A: Complete Results of GA
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Appendix B: MATLAB Code for GA

sensor genome.mat

1 classdef sensorGenome < hgsetget

2 properties (Constant = true, GetAccess = private)

3

4 voltage_range = 0.05:.01:3;

5

6 % actuator parameter ranges

7 thickness_range = 3:20;

8 act_bm_range=1:30;

9 act_bm_spc_range=5:20;

10 act_bm_l_range = 50:300;

11 act_bm_w_range = 3:6;

12 act_bm_ang_range = 1:0.1:10;

13 act_sh_w_range = 5:20;

14

15 % lever parameter ranges

16 lev_cbm_w_range = 3:10;

17 lev_cbm_l_range = 75:200;

18 lev_sbm_w_range = 3:10;

19 lev_sbm_l_range = 10:200;

20 lev_lbm_w_range = 3:20;

21 lev_lbm_l_range = 100:2000;

22 lev_cspr_tw_range = 7:30;

23 lev_cspr_th_range = 15:200;

24 lev_cpart_w_range = 1:20;

25 lev_cpart_h_range = 3:20;

26

27 % spring parameter ranges

28 spr_no_range = 1:3;

29 spr_th_range = 4:10;

30 spr_tl_range = 200:1400;

31 spr_h_w_range = 3:50;

32 spr_end_th_range = 3:50;

33 spr_bm_w_range = 3:50;

34 spr_shut_l_range = 5:50;

35 spr_spr_l_range = 5:50;

36 spr_anc_l_range = 5:50;

37 end

38

39 properties (GetAccess = private)

40 id;

41 fem;

42

43 shutter_displacement;

44 max_shear_stress;

45 eigenfreq;

46 max_temp;

47 max_shutter_temp;
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48

49 voltage=0.5;

50 end

51

52 properties

53 % actuator parameters

54 thickness;

55 act_bm;

56 act_bm_spc;

57 act_bm_l;

58 act_bm_w;

59 act_bm_ang;

60 act_sh_w;

61

62 % lever parameters

63 lev_cbm_w;

64 lev_cbm_l;

65 lev_sbm_w;

66 lev_sbm_l;

67 lev_lbm_w;

68 lev_lbm_l;

69 lev_cspr_tw;

70 lev_cspr_th;

71 lev_cpart_w;

72 lev_cpart_h;

73

74 % spring parameters

75 spr_no;

76 spr_th;

77 spr_tl;

78 spr_h_w;

79 spr_end_th;

80 spr_bm_w;

81 spr_shut_l;

82 spr_spr_l;

83 spr_anc_l;

84 end

85

86 methods

87 function obj = sensorGenome(i)

88 obj.id = i;

89

90 obj.thickness = sensorGenome.thickness_range(...

91 floor(rand()*length(sensorGenome.thickness_range))+1);

92 obj.act_bm = sensorGenome.act_bm_range(...

93 floor(rand()*length(sensorGenome.act_bm_range))+1);

94 obj.act_bm_spc = sensorGenome.act_bm_spc_range(...

95 floor(rand()*length(sensorGenome.act_bm_spc_range))+1);

96 obj.act_bm_l = sensorGenome.act_bm_l_range(...

97 floor(rand()*length(sensorGenome.act_bm_l_range))+1);

98 obj.act_bm_w = sensorGenome.act_bm_w_range(...

99 floor(rand()*length(sensorGenome.act_bm_w_range))+1);

100 obj.act_bm_ang = sensorGenome.act_bm_ang_range(...

101 floor(rand()*length(sensorGenome.act_bm_ang_range))+1);

150



102 obj.act_sh_w = sensorGenome.act_sh_w_range(...

103 floor(rand()*length(sensorGenome.act_sh_w_range))+1);

104

105 obj.lev_cbm_w = sensorGenome.lev_cbm_w_range(...

106 floor(rand()*length(sensorGenome.lev_cbm_w_range))+1);

107 obj.lev_cbm_l = sensorGenome.lev_cbm_l_range(...

108 floor(rand()*length(sensorGenome.lev_cbm_l_range))+1);

109 obj.lev_sbm_w = sensorGenome.lev_sbm_w_range(...

110 floor(rand()*length(sensorGenome.lev_sbm_w_range))+1);

111 obj.lev_sbm_l = sensorGenome.lev_sbm_l_range(...

112 floor(rand()*length(sensorGenome.lev_sbm_l_range))+1);

113 obj.lev_lbm_w = sensorGenome.lev_lbm_w_range(...

114 floor(rand()*length(sensorGenome.lev_lbm_w_range))+1);

115 obj.lev_lbm_l = sensorGenome.lev_lbm_l_range(...

116 floor(rand()*length(sensorGenome.lev_lbm_l_range))+1);

117 obj.lev_cspr_tw = sensorGenome.lev_cspr_tw_range(...

118 floor(rand()*length(sensorGenome.lev_cspr_tw_range))+1);

119 obj.lev_cspr_th = sensorGenome.lev_cspr_th_range(...

120 floor(rand()*length(sensorGenome.lev_cspr_th_range))+1);

121 obj.lev_cpart_w = sensorGenome.lev_cpart_w_range(...

122 floor(rand()*length(sensorGenome.lev_cpart_w_range))+1);

123 obj.lev_cpart_h = sensorGenome.lev_cpart_h_range(...

124 floor(rand()*length(sensorGenome.lev_cpart_h_range))+1);

125

126 % spring parameters

127 obj.spr_no = sensorGenome.spr_no_range(...

128 floor(rand()*length(sensorGenome.spr_no_range))+1);

129 obj.spr_th = sensorGenome.spr_th_range(...

130 floor(rand()*length(sensorGenome.spr_th_range))+1);

131 obj.spr_tl = sensorGenome.spr_tl_range(...

132 floor(rand()*length(sensorGenome.spr_tl_range))+1);

133 obj.spr_h_w = sensorGenome.spr_h_w_range(...

134 floor(rand()*length(sensorGenome.spr_h_w_range))+1);

135 obj.spr_end_th = sensorGenome.spr_end_th_range(...

136 floor(rand()*length(sensorGenome.spr_end_th_range))+1);

137 obj.spr_bm_w = sensorGenome.spr_bm_w_range(...

138 floor(rand()*length(sensorGenome.spr_bm_w_range))+1);

139 obj.spr_shut_l = sensorGenome.spr_shut_l_range(...

140 floor(rand()*length(sensorGenome.spr_shut_l_range))+1);

141 obj.spr_spr_l = sensorGenome.spr_spr_l_range(...

142 floor(rand()*length(sensorGenome.spr_spr_l_range))+1);

143 obj.spr_anc_l = sensorGenome.spr_anc_l_range(...

144 floor(rand()*length(sensorGenome.spr_anc_l_range))+1);

145

146 while (obj.act_sh_w/2 + obj.act_bm_l + 50 > obj.act_sh_w/2...

147 - obj.lev_cbm_w/2 + obj.lev_lbm_l)

148 obj.act_bm_l = sensorGenome.act_bm_l_range(...

149 floor(rand()*length(sensorGenome.act_bm_l_range))+1);

150 obj.lev_lbm_l = sensorGenome.lev_lbm_l_range(...

151 floor(rand()*length(sensorGenome.lev_lbm_l_range))+1);

152 fprintf(’Genome %d actuator overlaps shutter. Randomizing actuator beam

153 length and lever long beam lengths.\n’, obj.id);

154 end

155 end
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156

157 function shutter_displacement = getShutterDisp(obj)

158 shutter_displacement = obj.shutter_displacement;

159 end

160

161 function max_shutter_temp = getMaxShutterTemp(obj)

162 max_shutter_temp = obj.max_shutter_temp;

163 end

164

165 function max_temp = getMaxTemp(obj)

166 max_temp = obj.max_temp;

167 end

168

169 function max_stress = getMaxShearStress(obj)

170 max_stress = obj.max_shear_stress;

171 end

172

173 function eigenfreq = getEigenfreq(obj)

174 eigenfreq = obj.eigenfreq;

175 end

176

177 function fem = getFem(obj)

178 fem = obj.fem;

179 end

180

181 function obj = setFem(obj,fem)

182 obj.fem=fem;

183 end

184

185 function obj = evalFitness(obj)

186 [fem0, eigenfreq, max_temp, max_shutter_temp, shutter_displacement, ...

187 max_shear_stress] = matlab_sensor_sym(obj);

188 obj.fem = fem0;

189 obj.eigenfreq = eigenfreq;

190 obj.max_temp = max_temp;

191 obj.max_shutter_temp = max_shutter_temp;

192 obj.shutter_displacement = shutter_displacement;

193 obj.max_shear_stress = max_shear_stress;

194

195 fprintf(’Evaluating fitness of genome %d. Disp: %d Maxtemp: %d Voltage: %d\n’, ...

196 obj.id, obj.shutter_displacement, obj.max_temp, obj.voltage);

197 end

198

199 function obj = mutate(obj, prop, mutateFactor)

200 range = strcat(prop,’_range’);

201 range = obj.get(range);

202 range= range{1};

203

204 val=obj.get(prop);

205 val=val{1};

206

207 set=0; newVal= 0 ;

208 while (set == 0 || newVal < min(range) || newVal > max(range))

209 newVal = val+mutateFactor*(rand()-0.5)*(max(range) - min(range));
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210 set=1;

211 end

212 obj=obj.set(prop,{newVal});

213 end

214

215 function [childA childB] = crossover(obj, mate, cxPt)

216 childA = sensorGenome(0);

217 childB = sensorGenome(0);

218 props= properties(’sensorGenome’);

219

220 for i=1:length(props)

221 if (i < cxPt)

222 childA.set(props(i),obj.get(props(i)));

223 childB.set(props(i),mate.get(props(i)));

224 else

225 childA.set(props(i),mate.get(props(i)));

226 childB.set(props(i),obj.get(props(i)));

227 end

228 end

229 end

230

231 function obj = setId(obj, id)

232 obj.id=id;

233 end

234

235 function ret = gt(a,b)

236 ret= (a.eigenfreq > b.eigenfreq) && ...

237 (a.max_temp < b.max_temp) && ...

238 (a.max_shutter_temp < b.max_shutter_temp) && ...

239 (a.shutter_displacement > b.shutter_displacement) && ...

240 (a.max_shear_stress < b.max_shear_stress);

241 end

242

243 function ret = lt(a,b)

244 ret= (a.eigenfreq < b.eigenfreq) && ...

245 (a.max_temp > b.max_temp) && ...

246 (a.max_shutter_temp > b.max_shutter_temp) && ...

247 (a.shutter_displacement < b.shutter_displacement) && ...

248 (a.max_shear_stress > b.max_shear_stress);

249 end

250 end

251 end
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population.mat

1 classdef population

2 properties

3

4 eigenfreq_max = 5000;

5 eigenfreq_min = 500;

6

7 maxtemp_max = 1000;

8 maxtemp_min = 293;

9

10 shuttertemp_max = 800;

11 shuttertemp_min = 293;

12

13 maxstress_max = 4e9;

14 maxstress_min = 1e6;

15

16 displacement_max = 25e-6;

17 displacement_min = 0;

18

19 pop;

20 end

21

22 methods

23 function obj = population(n)

24 clear pop;;

25 for i=1:n

26 pop(i)=sensorGenome(i);

27 end

28 obj.pop=pop;

29 end

30

31 function attributes = getAttributes(obj,i)

32 attributes = [ (-obj.pop(i).getShutterDisp() - obj.displacement_min) /...

33 (obj.displacement_max - obj.displacement_min) ...

34 (obj.pop(i).getShutterTemp() - obj.shuttertemp_min) /...

35 (obj.shuttertemp_max - obj.shuttertemp_min) ...

36 (obj.pop(i).getMaxTemp() - obj.maxtemp_min) /...

37 (obj.maxtemp_max - obj.maxtemp_min) ...

38 (obj.pop(i).getEigenfreq() - obj.eigenfreq_min)/ ...

39 (obj.eigenfreq_max - obj.eigenfreq_min) ...

40 (obj.pop(i).getMaxShearStress() - obj.maxstress_min) / ...

41 (obj.maxstress_max - obj.maxstress_min) ] ;

42 end

43

44 function count = nicheCount(obj,i, shareRadius)

45 a = obj.getAttributes(i);

46 count = 0;

47 for b=1:length(obj.pop)

48 if sqrt(sum((a-obj.getAttributes(b)).^2)) < shareRadius

49 count = count + 1;

50 end

51 end

52 end
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53

54 function winner = paretoTournament(obj,tdom,shareRadius)

55 rand_index = randperm(length(obj.pop));

56 candidate_1 = obj.pop(rand_index(1));

57 candidate_2 = obj.pop(rand_index(2));

58 candidate_1_dominated = false;

59 candidate_2_dominated = false;

60

61 for i=3:3+tdom

62 if (obj.pop(i) > candidate_1)

63 candidate_1_dominated = true;

64 end

65 if (obj.pop(i) > candidate_2)

66 candidate_2_dominated = true;

67 end

68 end

69

70 if (candidate_1_dominated && ~candidate_2_dominated)

71 winner = candidate_2;

72 elseif (~candidate_1_dominated && candidate_2_dominated)

73 winner = candidate_1;

74 elseif ( obj.nicheCount(rand_index(1),shareRadius) < ...

75 obj.nicheCount(rand_index(2),shareRadius) )

76 winner = candidate_1;

77 else

78 winner = candidate_2;

79 end

80 end

81

82 function obj = crossover(obj)

83 n=length(obj.pop);

84 props = properties(’sensorGenome’);

85

86 clear selectedPop newPop

87 j=1; k=1;

88 % select from population members to crossover.

89 % Selected genomes are also cloned into the new population.

90 for i=1:n

91 if (rand() < normFitness(i) / sum(normFitness(1:i)) && ...

92 obj.pop(i).getShutterDisp() ~= 0)

93 selectedPop(j)=obj.pop(i);

94 newPop(k)=obj.pop(i);

95 k=k+1;

96 j=j+1;

97 end

98 end

99

100 j=length(selectedPop); % crossover until we have replenished the population

101 while (k <= n)

102 i=round(rand()*(j-1))+1;

103 mate = round(rand()*(j-1))+1;

104 cxPt = round(rand()*(length(props)-1))+1;

105 [childA childB] = selectedPop(i).crossover(selectedPop(mate),cxPt);

106
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107 newPop(k)=childA;

108 newPop(k+1)=childB;

109 k=k+2;

110 end

111

112 newPop=newPop(1:n);

113

114 for i=1:n

115 newPop(i).setId(i);

116 end

117 obj.pop=newPop;

118 end

119

120 function obj = mutate(obj,mutateFactor,mutateOdds)

121 n=length(obj.pop);

122 props = properties(’sensorGenome’);

123 for i=1:n

124 for j=1:length(props)

125 if (rand() < mutateOdds)

126 obj.pop(i).mutate(props(j),mutateFactor);

127 end

128 end

129 end

130 end

131

132 function obj = eval(obj)

133 obj=obj.fixGeomErrors();

134 pop_size = length(obj.pop);

135 for i=1:pop_size;

136 obj.pop(i)=obj.pop(i).evalFitness();

137 end

138 obj=obj.sort();

139 end

140

141 function obj = fixGeomErrors(obj)

142 n=length(obj.pop);

143 for i=1:n

144 while (obj.pop(i).act_sh_w/2 + obj.pop(i).act_bm_l + 50 > ...

145 obj.pop(i).act_sh_w/2 - obj.pop(i).lev_cbm_w/2 + obj.pop(i).lev_lbm_l)

146 obj.pop(i)=sensorGenome(i);

147 end

148 end

149 end

150 end

151 end
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A simple example implementing the above classes to run a genetic algorithm
optimization:

1 for i = 1:10 % Run for generations 1 - 10;

2 if i>1

3 pop(i)=pop(i-1).crossover();

4 pop(i)=pop(i).mutate(0.4,0.3);

5 else

6 pop(i)=population(100);

7 end

8 pop(i)=pop(i).eval();

9 end
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Appendix C: MATLAB/COMSOL Code for Simu-

lation of Field Mill

matlab sensor sym.mat

1 function [fem0, eigenfreq, max_temp, max_shutter_temp, shutter_displacement, max_shear_stress] =...

2 matlab_sensor_sym(obj)

3

4 %% simulation parameters

5 actuator_voltage = 0.39; % (volts)

6

7 au_si_resistivity = 1/1.275e-5; % (resistivity of gold on silicon)

8 si_resistivity = 1/5e-1; % (resistivity of silicon only)

9 si_conductivity = 150; % W/mk

10 si_density = 2330;

11

12 youngs_modulus = 1.295e11;

13 poissons_ratio = 0.22;

14 thermal_expansion_coef = 2.9e-6;

15 thickness = obj.thickness*1e-6;

16

17 temp_ref = 298;

18

19 %% Actuator Parameters

20 act_bm = round(obj.act_bm); %5 % beam count

21 act_bm_spc = obj.act_bm_spc*1e-6; %12e-6; % beam spacing

22 act_bm_l = obj.act_bm_l*1e-6; %190e-6; % beam length

23 act_bm_w = obj.act_bm_w*1e-6; %6e-6; % beam width

24 act_bm_ang = obj.act_bm_ang*pi/180; %4.5*pi/180; % beam angle (rad)

25 act_sh_w = obj.act_sh_w*1e-6; %20e-6; %shuttle width

26 act_anc_w = 50e-6;

27

28 %% Lever Parameters

29 lev_cbm_w = obj.lev_cbm_w*1e-6; %5e-6; % connecting beam width

30 lev_cbm_l = obj.lev_cbm_l*1e-6; %95e-6; % connecting beam length

31

32 lev_sbm_w = obj.lev_sbm_w*1e-6; %3e-6; % short beam width

33 lev_sbm_l = obj.lev_sbm_l*1e-6; %20e-6; % short beam length

34

35 lev_lbm_w = obj.lev_lbm_w*1e-6; %4e-6; %long beam width

36 lev_lbm_l = obj.lev_lbm_l*1e-6; %375e-6; %long beam length

37

38 lev_cspr_tw = obj.lev_cspr_tw*1e-6; %10e-6; %connecting spring total width

39 lev_cspr_th = obj.lev_cspr_th*1e-6; %60e-6;%connecting spring total height

40 lev_cspr_w = 3e-6;%connecting spring width

41

42 lev_cpart_w = obj.lev_cpart_w*1e-6;% 10e-6; %connecting part width (after spring)

43 lev_cpart_h = obj.lev_cpart_h*1e-6; %9e-6; %connecting part length (after spring)

44

45 lev_anc_size = 100e-6; % size of anchor (square)

46
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47 %% Shutter Parameters

48 shut_tw = 2000e-6; % shutter total width

49 shut_th = 1000e-6; % shutter total height

50

51 shut_h_w = 975e-6; % shutter hole width

52 shut_h_h = 14e-6; % shutter hole height

53 shut_h_spc = 14e-6; % shutter hole spacing

54

55 %% Spring Parameters

56 spr_no = round(obj.spr_no); %2; % number of springs per corner

57

58 spr_tw = (obj.spr_h_w+2*obj.spr_th)*1e-6; %21e-6; % spring total width

59 spr_tl = obj.spr_tl*1e-6; %560e-6; % spring total length

60 spr_h_w = obj.spr_h_w*1e-6; %15e-6; % spring hole width

61 spr_h_l = (obj.spr_tl - 2*obj.spr_end_th)*1e-6; %520e-6; % spring hole length

62

63 spr_bm_w = obj.spr_bm_w*1e-6; %20e-6; % spring bm connector width

64 spr_shut_l = obj.spr_shut_l*1e-6; %20e-6; % spring-shutter connector length

65 spr_spr_l = obj.spr_spr_l*1e-6; %15e-6; % spring-spring connector length

66 spr_anc_l = obj.spr_anc_l*1e-6; %25e-6;% spring-anchor connector length

67

68 %% Build Actuators

69 act_sh_anc = cos(act_bm_ang)*act_bm_l; % seperatation between shuttle and anchor

70 act_bm_hyp = act_bm_w / cos(act_bm_ang); % beam hypotenuse

71 act_sh_l = act_bm_spc+act_bm*(act_bm_spc+act_bm_hyp); % length of shuttle

72

73 actuator_anchors_l = rect2(act_anc_w, (act_bm+1)*(act_bm_spc+act_bm_w),’base’,’corner’,’pos’,...

74 [-act_sh_anc-act_anc_w, sin(act_bm_ang)*act_bm_l]);

75 actuator_anchors_r = rect2(act_anc_w, (act_bm+1)*(act_bm_spc+act_bm_w),’base’,’corner’,’pos’,...

76 [act_sh_anc+act_sh_w, sin(act_bm_ang)*act_bm_l]);

77 shuttle = rect2(act_sh_w, act_sh_l,’base’,’corner’,’pos’,[0, 0]);

78

79 act_beam = line2( [0,0,-act_sh_anc,-act_sh_anc,0], [act_bm_spc, act_bm_spc + ...

80 act_bm_hyp, act_bm_spc + act_bm_hyp...

81 +sin(act_bm_ang)*act_bm_l, act_bm_spc...

82 + sin(act_bm_ang)*act_bm_l, act_bm_spc]);

83

84 act_beams = geomcomp(geomarrayr(act_beam, 0, act_bm_spc + act_bm_hyp, 1, act_bm));

85 act_beams = act_beams + mirror(act_beams, [act_sh_w / 2, 0], [1, 0]);

86 actuator = geomdel(act_beams+shuttle);

87

88 %% Build Levers / Connecting Arms

89 lev_cbm = rect2(lev_cbm_w,lev_cbm_l,’base’,’corner’,’pos’,[act_sh_w/2 - lev_cbm_w / 2, act_sh_l]);

90 lev_sbm = rect2(lev_sbm_l,lev_sbm_w,’base’,’corner’,’pos’,[act_sh_w/2 - lev_cbm_w / 2 ...

91 - lev_sbm_l, act_sh_l + lev_cbm_l + lev_lbm_w/2 - lev_sbm_w/2]);

92

93 lev_anchor = rect2(lev_anc_size,lev_anc_size,’base’,’corner’,’pos’,[act_sh_w/2 ...

94 - lev_cbm_w /2 - lev_sbm_l - lev_anc_size, act_sh_l + lev_cbm_l ...

95 + lev_lbm_w/2 + lev_cbm_w/2 - lev_anc_size/2]);

96

97 lev_lbm = rect2(lev_lbm_l,lev_lbm_w,’base’,’corner’,’pos’,[act_sh_w/2...

98 - lev_cbm_w /2, act_sh_l + lev_cbm_l]);

99

100 lev_cspr = rect2(lev_cspr_tw, lev_cspr_th,’base’,’corner’,’pos’,[act_sh_w/2 ...
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101 - lev_cbm_w/2 + lev_lbm_l, act_sh_l + lev_cbm_l + lev_lbm_w/2 - lev_cspr_th/2 ]);

102

103 lev_cspr_hole = rect2(lev_cspr_tw-2*lev_cspr_w, lev_cspr_th-2*lev_cspr_w, ...

104 ’base’,’corner’,’pos’,[act_sh_w/2 - lev_cbm_w/2 + lev_lbm_l ...

105 + lev_cspr_w, act_sh_l + lev_cbm_l + lev_lbm_w/2 ...

106 - lev_cspr_th/2 + lev_cspr_w ]);

107

108 lev_cpart = rect2(lev_cpart_w,lev_cpart_h,’base’,’corner’,’pos’,[act_sh_w/2 ...

109 - lev_cbm_w/2 + lev_lbm_l + lev_cspr_tw, act_sh_l + lev_cbm_l ...

110 + lev_lbm_w/2 - lev_cpart_h/2]);

111

112 lever = geomdel(lev_cbm + lev_sbm + lev_lbm + lev_cspr - lev_cspr_hole + lev_cpart);

113

114 lever_x = act_sh_w/2 - lev_cbm_w/2 + lev_lbm_l + lev_cspr_tw + lev_cpart_w;

115 lever_y = act_sh_l + lev_cbm_l + lev_lbm_w/2;

116

117 %% Build Shutter

118 shut_num_hole = floor(shut_th / (shut_h_h+shut_h_spc));

119 shut_h_yoffset = (shut_th - shut_num_hole*(shut_h_h + shut_h_spc)-shut_h_spc)/2;

120

121 shutter = rect2(shut_tw/2,shut_th,’base’,’corner’,’pos’,[lever_x,lever_y-shut_th/2]);

122

123 hole = rect2(shut_h_w,shut_h_h,’base’,’corner’,’pos’,[lever_x+shut_tw/4 ...

124 - shut_h_w/2,lever_y-shut_th/2+shut_h_spc+shut_h_yoffset]);

125

126 holes = geomcomp(geomarrayr(hole, shut_tw/2, shut_h_spc + shut_h_h, 2, shut_num_hole));

127 shutter = shutter - holes;

128

129 %% Build Springs

130 spr_shut = rect2(spr_bm_w,spr_shut_l,’base’,’corner’,’pos’,[lever_x,lever_y-shut_th/2-spr_shut_l]);

131 spr = rect2(spr_tl,spr_tw,’base’,’corner’,’pos’,[lever_x+spr_bm_w/2-spr_tl/2,...

132 lever_y-shut_th/2-spr_shut_l-spr_tw]);

133

134 spr = spr - rect2(spr_h_l,spr_h_w,’base’,’corner’,’pos’,[lever_x+spr_bm_w/2...

135 -spr_tl/2+(spr_tl-spr_h_l)/2, lever_y-shut_th/2-spr_shut_l...

136 -(spr_tw-spr_h_w)/2-spr_h_w]);

137

138 spr = geomcomp(geomarrayr(spr, 0, -spr_tw-spr_spr_l, 1, spr_no));

139

140 spr_spr = rect2(spr_bm_w,spr_spr_l,’base’,’corner’,’pos’,[lever_x,lever_y-shut_th/2...

141 -spr_shut_l-spr_tw-spr_spr_l]);

142

143 spr_anc = rect2(spr_bm_w,spr_anc_l,’base’,’corner’,’pos’,[lever_x,lever_y-shut_th/2...

144 -spr_shut_l-spr_no*(spr_tw+spr_spr_l) + spr_spr_l - spr_anc_l ]);

145

146 spr_anchor = rect2(lev_anc_size,lev_anc_size,’base’,’corner’,’pos’,[lever_x...

147 + spr_bm_w/2 - lev_anc_size/2 ,lever_y-shut_th/2-spr_shut_l...

148 -spr_no*(spr_tw+spr_spr_l) + spr_spr_l - spr_anc_l - lev_anc_size]);

149

150 if (spr_no > 1)

151 spr_spr = geomcomp(geomarrayr(spr_spr,0,-spr_tw-spr_spr_l, 1, spr_no-1));

152 springs = geomdel(spr_shut+spr+spr_spr+spr_anc);

153 else

154 springs = geomdel(spr_shut+spr+spr_anc);
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155 end

156

157 springs = springs + mirror(springs, [0, lever_y], [0, 1]);

158 spring_anchors = spr_anchor + mirror(spr_anchor, [0, lever_y], [0, 1]);

159

160

161 [g,st] = geomcsg({actuator_anchors_l, actuator_anchors_r,actuator,lev_anchor,...

162 lever,shutter,springs,spring_anchors});

163

164 ctx = geomcsg({actuator_anchors_l, actuator_anchors_r,actuator,...

165 lev_anchor,lever,shutter,springs,spring_anchors},’Out’,’ctx’);

166

167 fem.geom = g;

168 fem.mesh = meshinit(fem,’methodsub’,’tri’,’Hmax’,0.4);

169

170 %% find subdomains and boundaries

171 [subdomains,objid] = find(st);

172

173 sd_obj_ind = ones(length(objid),1);

174 clear sd_obj;

175 for j=1:size(subdomains)

176 sd_obj(objid(j),sd_obj_ind(objid(j)))=subdomains(j);

177 sd_obj_ind(objid(j))=sd_obj_ind(objid(j))+1;

178 end

179

180 act_ancl_sd = sd_obj(1,1:sd_obj_ind(1)-1);

181 [act_ancl_bd,junk] = find(ctx{1});

182

183 act_ancr_sd = sd_obj(2,1:sd_obj_ind(2)-1);

184 [act_ancr_bd,junk] = find(ctx{2});

185

186 act_sd = sd_obj(3,1:sd_obj_ind(3)-1);

187 [act_bd,junk] = find(ctx{3});

188

189 lev_anc_sd = sd_obj(4,1:sd_obj_ind(4)-1);

190 [lev_anc_bd,junk] = find(ctx{4});

191

192 lev_sd = sd_obj(5,1:sd_obj_ind(5)-1);

193 [lev_bd,junk] = find(ctx{5});

194

195 shut_sd = sd_obj(6,1:sd_obj_ind(6)-1);

196 [shut_bd,junk] = find(ctx{6});

197

198 symmetry_bd = max(shut_bd);

199 shut_bd = shut_bd(1:length(shut_bd)-1);

200

201 spr_sd = sd_obj(7,1:sd_obj_ind(7)-1);

202 [spr_bd,junk] = find(ctx{7});

203

204 spr_anc_sd = sd_obj(8,1:sd_obj_ind(8)-1);

205 [spr_anc_bd,junk]=find(ctx{8});

206

207 tmp = geomcsg({fem.geom},’Out’,’ctx’);

208 [allboundaries,junk]=find(tmp{1});
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209 num_bd = max(allboundaries);

210

211 % find interior boundaries.

212 % int. boundaries are defined as boundaries belonging to one or more

213 % objects.

214 bd_freq = zeros(1,num_bd);

215 num_int =0;

216 for i=1:length(ctx)

217 [bd,junk]= find(ctx{i});

218 for j=1:length(bd)

219 if (bd_freq(bd(j)) == 1)

220 num_int = num_int+1;

221 end

222 bd_freq(bd(j))=bd_freq(bd(j))+1;

223 end

224 end

225 int_bd = zeros(1,num_int);

226 k=1;

227 for i=1:num_bd

228 if (bd_freq(i) > 1)

229 int_bd(k)=i;

230 k=k+1;

231 end

232 end

233

234 all_sd = subdomains;

235 clear allboundaries tmp ctx num_int i k junk sd_obj sd_obj_ind j subdomains objid;

236

237 %% Application Mode 1: Conductive DC Media

238 clear appl;

239 appl.mode.class = ’EmConductiveMediaDC’;

240 appl.module = ’ACDC’;

241 appl.assign_siffix = ’_emdc’;

242 clear prop;

243 clear weakconstr;

244 weakconstr.value = ’off’;

245 weakconstr.dim = {’lm4’};

246 prop.weakconstr = weakconstr;

247 appl.prop = prop;

248

249 clear bnd

250

251 % keep interior boundaries on the actuator anchors but not in int_bd

252 tmp = zeros(1,length(int_bd));

253 k=0;

254 for i=1:length(int_bd)

255 include = true;

256 for j=1:length(act_ancl_bd)

257 if (act_ancl_bd(j) == int_bd(i))

258 include = false;

259 end

260 end

261 for j=1:length(act_ancr_bd)

262 if (act_ancr_bd(j) == int_bd(i))
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263 include = false;

264 end

265 end

266 if (include)

267 k=k+1;

268 tmp(k)=int_bd(i);

269 end

270 end

271 int_keep_bd = tmp(1:k);

272

273 % find all boundaries not included in actuator boundaries or interior

274 % boundaries

275 tmp = ones(1,num_bd);

276 for i=1:length(act_ancl_bd)

277 tmp(act_ancl_bd(i)) = 0;

278 end

279 for i=1:length(act_ancr_bd)

280 tmp(act_ancr_bd(i)) = 0;

281 end

282 for i=1:length(int_keep_bd)

283 tmp(int_keep_bd(i)) = 0;

284 end

285 other_bd = zeros(1,num_bd-length(act_ancl_bd) - length(act_ancr_bd) - length(int_keep_bd));

286 k=1;

287 for i=1:num_bd

288 if (tmp(i) == 1)

289 other_bd(k) = i;

290 k=k+1;

291 end

292 end

293 clear k i tmp;

294

295 %boundary settings. boundaries grouped by actuator ancors (left and

296 %right), interior boundaries (continuous) and all other boundaries

297 %(electric insulator)

298 bnd.V = {actuator_voltage,-actuator_voltage,0,0};

299 bnd.type = {’V’,’V’,’nJ0’,’cont’};

300 bnd.ind = {act_ancl_bd,act_ancr_bd,other_bd,int_keep_bd};

301 appl.bnd = bnd;

302

303 clear equ;

304 %group subdomains by actuator left anchors (where +voltage is applied),

305 %actuator right anchors (where -voltage is applied),

306 %gold-on-silicon structure, and silicon only structure.

307 equ.ind = { act_ancl_sd, act_ancr_sd, cat(2, act_sd, shut_sd ), ...

308 cat(2, lev_anc_sd, lev_sd, spr_anc_sd, spr_sd) };

309 equ.init = {actuator_voltage,-actuator_voltage,0, 0};

310 equ.sigma = { au_si_resistivity, au_si_resistivity, au_si_resistivity, si_resistivity };

311 equ.d = thickness;

312 appl.equ = equ;

313 equ.T = ’T’;

314 fem.appl{2} = appl;

315

316 %% Application Mode 2: Joule Heating
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317 clear appl

318 appl.mode.class = ’GeneralHeat’;

319 appl.module = ’HT’;

320 appl.shape = {’shlag(1,’’J’’)’,’shlag(2,’’T’’)’};

321 appl.assignsuffix = ’_htgh’;

322 clear prop

323 prop.analysis=’static’;

324 appl.prop = prop;

325

326 %subdomain settings

327 clear equ

328 equ.k = si_conductivity;

329 equ.rho = si_density;

330 equ.Q = ’Q_emdc’;

331 equ.shape = 2;

332 equ.name = ’default’;

333 equ.ind = {all_sd};

334 appl.equ = equ;

335

336 %boundary settings

337 % keep interior boundaries on the actuator anchors but not in int_bd

338 tmp = zeros(1,length(int_bd));

339 k=0;

340 for i=1:length(int_bd)

341 include = true;

342 for j=1:length(act_ancl_bd)

343 if (act_ancl_bd(j) == int_bd(i))

344 include = false;

345 end

346 end

347 for j=1:length(act_ancr_bd)

348 if (act_ancr_bd(j) == int_bd(i))

349 include = false;

350 end

351 end

352 for j=1:length(lev_anc_bd)

353 if (lev_anc_bd(j) == int_bd(i))

354 include = false;

355 end

356 end

357 for j=1:length(spr_anc_bd)

358 if (spr_anc_bd(j) == int_bd(i))

359 include = false;

360 end

361 end

362 if (include)

363 k=k+1;

364 tmp(k)=int_bd(i);

365 end

366 end

367 int_keep_bd = tmp(1:k);

368

369 % find all boundaries not included in actuator boundaries or interior

370 % boundaries or symmetry boundary
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371 tmp = ones(1,num_bd);

372 tmp(symmetry_bd) = 0;

373 for i=1:length(act_ancl_bd)

374 tmp(act_ancl_bd(i)) = 0;

375 end

376 for i=1:length(act_ancr_bd)

377 tmp(act_ancr_bd(i)) = 0;

378 end

379 for i=1:length(lev_anc_bd)

380 tmp(lev_anc_bd(i)) = 0;

381 end

382 for i=1:length(spr_anc_bd)

383 tmp(spr_anc_bd(i)) = 0;

384 end

385 for i=1:length(int_keep_bd)

386 tmp(int_keep_bd(i)) = 0;

387 end

388 other_bd = zeros(1,num_bd-length(act_ancl_bd) - length(act_ancr_bd)...

389 - length(lev_anc_bd) - length(spr_anc_bd) - length(int_keep_bd)-1);

390 k=1;

391 for i=1:num_bd

392 if (tmp(i) == 1)

393 other_bd(k) = i;

394 k=k+1;

395 end

396 end

397

398 clear bnd

399 bnd.shape = 1;

400 bnd.T0 = { temp_ref, temp_ref, temp_ref, temp_ref, temp_ref, temp_ref, temp_ref};

401 bnd.type = {’T’,’T’,’T’,’T’,’cont’,’q0’,’q0’};

402 bnd.ind = { act_ancl_bd,act_ancr_bd, lev_anc_bd, spr_anc_bd, int_keep_bd, other_bd, symmetry_bd };

403 appl.bnd = bnd;

404 fem.appl{1} = appl;

405

406 %% Application Mode 3: Plane Strain

407 clear appl

408 appl.mode.class = ’SmePlaneStrain’;

409 appl.module = ’MEMS’;

410 appl.gporder = 4;

411 appl.cporder = 2;

412 appl.assignsuffix = ’_smpn’;

413

414 clear prop

415 prop.largedef=’on’;

416 clear weakconstr

417 weakconstr.value = ’off’;

418 weakconstr.dim = {’lm3’,’lm4’};

419 prop.weakconstr = weakconstr;

420 appl.prop = prop;

421

422 %boundary settings. actuators and ancors = fixed, everything else = free.

423 clear bnd

424
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425 % keep interior boundaries on the anchors but not in int_bd

426 tmp = zeros(1,length(int_bd));

427 k=0;

428 for i=1:length(int_bd)

429 include = true;

430 for j=1:length(act_ancl_bd)

431 if (act_ancl_bd(j) == int_bd(i))

432 include = false;

433 end

434 end

435 for j=1:length(act_ancr_bd)

436 if (act_ancr_bd(j) == int_bd(i))

437 include = false;

438 end

439 end

440 for j=1:length(lev_anc_bd)

441 if (lev_anc_bd(j) == int_bd(i))

442 include = false;

443 end

444 end

445 for j=1:length(spr_anc_bd)

446 if (spr_anc_bd(j) == int_bd(i))

447 include = false;

448 end

449 end

450 if (include)

451 k=k+1;

452 tmp(k)=int_bd(i);

453 end

454 end

455 int_keep_bd = tmp(1:k);

456

457 % find all boundaries not included in anchor boundaries or interior

458 % boundaries or symmetry boundary

459 tmp = ones(1,num_bd);

460 tmp(symmetry_bd) = 0;

461 for i=1:length(act_ancl_bd)

462 tmp(act_ancl_bd(i)) = 0;

463 end

464 for i=1:length(act_ancr_bd)

465 tmp(act_ancr_bd(i)) = 0;

466 end

467 for i=1:length(lev_anc_bd)

468 tmp(lev_anc_bd(i)) = 0;

469 end

470 for i=1:length(spr_anc_bd)

471 tmp(spr_anc_bd(i)) = 0;

472 end

473 for i=1:length(int_keep_bd)

474 tmp(int_keep_bd(i)) = 0;

475 end

476 other_bd = zeros(1,num_bd-length(act_ancl_bd) - length(act_ancr_bd)...

477 - length(lev_anc_bd) - length(spr_anc_bd) - length(int_keep_bd) -1);

478 k=1;
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479 for i=1:num_bd

480 if (tmp(i) == 1)

481 other_bd(k) = i;

482 k=k+1;

483 end

484 end

485

486 clear k i tmp;

487

488 bnd.constrcond = {’fixed’,’fixed’,’fixed’,’fixed’,’free’,’free’,’sym’};

489 bnd.ind = {act_ancl_bd, act_ancr_bd, lev_anc_bd, spr_anc_bd, other_bd, int_keep_bd, symmetry_bd} ;

490 appl.bnd = bnd;

491

492 clear equ

493 equ.Tflag = 1;

494 equ.Tempref = temp_ref;

495 equ.Temp = ’T’;

496 equ.rho = si_density;

497 equ.alpha = thermal_expansion_coef;

498 equ.constrcond = {’fixed’,’free’};

499 equ.nu = poissons_ratio;

500 equ.thickness = thickness;

501 equ.E = youngs_modulus;

502 equ.constrcond = {’fixed’,’fixed’,’fixed’,’fixed’,’free’,’free’,’free’,’free’};

503 equ.ind = {act_ancl_sd, act_ancr_sd, lev_anc_sd, spr_anc_sd, act_sd, lev_sd, shut_sd, spr_sd} ;

504 appl.equ = equ;

505 fem.appl{3} = appl;

506

507 fem = multiphysics(fem);

508 fem.xmesh=meshextend(fem);

509

510 % Solve problem

511 [fem.sol, stop] =femstatic(fem, ...

512 ’solcomp’,{’u’,’T’,’V’,’v’}, ...

513 ’outcomp’,{’u’,’T’,’V’,’v’}, ...

514 ’rowscale’,’off’,’Out’,{’sol’,’stop’});

515 if stop == 0

516

517 pd=posteval(fem,’v’,’Dl’,shut_bd(1), ’Edim’,1);

518 shutter_displacement = min(pd.d);

519 pd=posteval(fem,’T’,’Dl’,shut_bd(1), ’Edim’, 1);

520 max_shutter_temp = max(pd.d);

521 max_temp =postmax(fem,’T’);

522 max_shear_stress = max( abs(postmax(fem,’sxy_smpn’)), abs(postmin(fem,’sxy_smpn’)));

523

524 else

525 shutter_displacement = 0;

526 max_temp = 10000;

527 max_shutter_temp = 10000;

528 max_shear_stress =-10e9;

529 end

530

531 fem0 = fem;

532
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533 %% Application Mode 1: Plane Strain

534 clear appl

535 appl.mode.class = ’SmePlaneStrain’;

536 appl.module = ’MEMS’;

537 appl.gporder = 4;

538 appl.cporder = 2;

539 appl.assignsuffix = ’_smpn’;

540

541 clear prop

542 prop.analysis=’eigen’;

543 prop.largedef=’on’;

544 clear weakconstr

545 weakconstr.value = ’off’;

546 weakconstr.dim = {’lm3’,’lm4’};

547 prop.weakconstr = weakconstr;

548 appl.prop = prop;

549

550 %boundary settings. actuators and ancors = fixed, everything else = free.

551 clear bnd

552 bnd.constrcond = {’fixed’,’fixed’,’fixed’,’fixed’,’free’,’free’,’sym’};

553 bnd.ind = {act_ancl_bd, act_ancr_bd, lev_anc_bd, spr_anc_bd, other_bd, int_keep_bd, symmetry_bd } ;

554 appl.bnd = bnd;

555

556 clear equ

557 equ.Tempref = temp_ref;

558 equ.Temp = ’T’;

559 equ.rho = si_density;

560 equ.alpha = thermal_expansion_coef;

561 equ.nu = poissons_ratio;

562 equ.thickness = thickness;

563 equ.E = youngs_modulus;

564 equ.constrcond = {’fixed’,’fixed’,’fixed’,’fixed’,’free’,’free’,’free’,’free’};

565 equ.ind = {act_ancl_sd, act_ancr_sd, lev_anc_sd, spr_anc_sd, act_sd, lev_sd, shut_sd, spr_sd} ;

566 appl.equ = equ;

567 fem.appl{1} = appl;

568 fem.appl(2:end)=[];

569 fem.border = 1;

570

571 % Multiphysics

572 fem=multiphysics(fem);

573 fem.xmesh=meshextend(fem);

574

575 % Solve problem

576 fem.sol=femeig(fem, ...

577 ’solcomp’,{’v’,’u’}, ...

578 ’outcomp’,{’v’,’u’}, ...

579 ’blocksize’,’auto’);

580

581 eigenfreq = abs(fem.sol.lambda(1))/(2*pi);

582

583 end
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Appendix D: Heater Controller

As described earlier, the heater controller is used to regulate the temperature of
the bottom electrode in the anodic bonding apparatus. The micro-controller uses its
built in analog to digital converter (ADC) to read both the current bottom electrode
temperature as well as the ambient temperature. The ADC is only read when the
main TRIAC is turned off. The current draw from the zero-cross optically isolated
TRIAC and ac noise cause error on readings taken by the ADC when the TRIAC is
enabled. Since the time response is quite slow it does not seem to affect control. The
op-amp gain is calculated by the simple non-inverting gain equation:

G = 1 +R2/R1 (1)

where R1 and R2 is measured with an ohm-meter to be 220 Ω and 56.6 kΩ respectively
yielding a gain G = 258.273. When the ADC channel of the thermocouple is read, it
is converted into a voltage by multiplying it by the ADC reference voltage (measured
to be 4.98 V), divided by the maximum scale of the 10-bit ADC, 1024, and then
divided by the op-amp gain to recover the original thermocouple voltage, Vt:

Vt =
ADCread × 4.98

1024 ×G
(2)

The temperature of the thermocouple is then determined by interpolating within
a stored table of type-k thermocouple values [56]. The portion of the table used
in the controller software includes values 5 ◦C apart from 0 − 600 ◦C. Finally, the
temperature reading of the ambient temperature sensor is added to the thermocouple
reading giving the current thermocouple temperature. The ambient temperature
sensor (TC1047A) is accurate to within ±0.5oC [57] and the minimum resolution
of the ADC on the thermocouple channel is approximately ±0.5 ◦C. This gives an
estimated accuracy of approximately ±1 ◦C. The ambient temperature sensor was
calibrated using the specifications provided in the TB051 application note [58] from
Microchop Inc. and verified by comparing measured ambient temperature readings
to a calibrated Fluke 52 thermometer.

A 90mm fan is setup to blow across the ambient temperature sensor and then the
heatsink of the main TRIAC on the controller board. This helps to prevent board
heating from affecting the temperature readings as well as to dissipate any heat
generated by the TRIAC during operation. The controller board is powered from a
dc power supply from 6 − 9 V which is fed through a low dropout regulator to provide
the main 5 V supply for the controller. The heater is connected to the controller with
the ac hot line wired through a fuse to the first terminal of the main TRIAC. The
fuse used is an 8 A fast blowing fuse, sized to match the 600 W power rating of the
heating element at 120 Vac which is approximately 7 ARMS. The maximum rating of
the main TRIAC is 12 A which can not be exceeded by any heating element used.
The element itself is connected on the neutral line and through the centre terminal of
the TRIAC. It is important that the neutral be connected to the centre terminal of
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the TRIAC which is electrically connected to the heatsink so that when the heater is
not activated by the TRIAC but still plugged in to ac, it minimizes the risk of shock
or short circuit through the heatsink.

There is also a single tactile switch mounted on the controller. Momentarily
pushing the switch will toggle the controller from an idle state to a state in which the
heater is activated. When idle, all control values are set to zero. The LED indicates
the current status of the controller; when lit it indicates that the heater is active.
Pressing and holding the tactile switch will enter a configuration menu which allows
the PID gain values to be adjusted. When this menu is entered, it will first display
the current proportional gain value. Using the set-point potentiometer the value can
be adjusted; setting a value of zero will cause it to keep the current value unchanged.
When the new value has been adjusted, momentarily pressing the tactile switch allows
the integral and differential gain values to be adjusted similarly. After updating the
differential gain value, the controller will return to an idle state.

All tasks of the micro-controller are timed using a 16-bit timer that is set to
overflow and cause an interrupt every 5 ms. The C source code of the controller is
provided in Appendix 7.2. The main tasks of the micro-controller are listed here:

1. Every 5ms update the status of the TRIAC based on the control signal. The
control signal ranges from zero to 230 and represents the number of 5ms ticks
that the TRIAC will remain activated out of 256. The maximum duty cycle is
thus 230/256, or 89.84%, which has the TRIAC activated for 1.15 s and off for
130 ms.

2. Every100 ms the current temperature reading and control values are updated if
possible.

3. The LCD animation is updated every 150 ms.

4. Every two seconds the current measurements and control values are reported
to USB. The values are listed in a comma separated list where each line rep-
resents a two second interval. The values provided are current temperature,
set-point temperature, ambient temperature, proportional error, integral error,
differential error, proportional gain constant, integral gain constant, differential
gain constant, and control value respectively. When connected by USB, the
controller appears as a standard character device class (CDC) USB device with
readily available drivers through the USB framework provide by Microchip Inc.
[59]. Although possible to power the controller through USB, it is not recom-
mended since the reference voltage provided is not reliable across different USB
hosts and thus temperature readings when powered only from USB may be
inaccurate.

5. The LCD display is refreshed every 5 seconds, however, the display may be
updated sooner if the set-point is changed by more than 0.5 ◦C.

6. The LCD line-graph is updated every 30 seconds.
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7. The ambient temperature reading is updated every 30 seconds.

Proportional-integral-differential (PID) control is employed to control the heating
element. PID control derives the control signal of the heating element using three gain
constants multiplied by the proportional, integral, and differential errors respectively.
The book “Modern Control Engineering” by K. Ogata [60] provides a good overview of
PID control theory. The proportional term is calculated by multiplying the difference
between the set-point and the current temperature by the proportional gain value.
The integral component is a bit more complex and operates by maintaining a counter
that adds the proportional error multiplied by 100mS every 100mS. The counter is
then multiplied by the integral gain constant to make up the integral component of
the control signal. Finally, the differential term is calculated by taking an average
of 5 thermocouple readings, waiting 10 seconds, averaging another 5 thermocouple
readings, and then taking the difference between the two averages multiplied by the
differential gain constant. This averaged differential was used since the heater is
quite slow and taking an instantaneous difference produces little effect on control.
The proportional, integral, and differential components are then summed to make
the total control signal. The control signal is limited to a maximum of 230 and a
minimum of 0 and corresponds to the number of 5ms ticks out of 256 that the element
is activated. Non-linearities are introduced because the control signal is limited to a
specified range, however, it has been shown to remain stable in this application.

PID values were manually tuned experimentally by varying values and running
a test recording temperature and control values when set to 250 ◦C. 250 ◦C was
chosen as a typical set-point value that is in the mid-range of the heaters capabilities.
It is possible to control the temperature from approximately 50 ◦C to 400 ◦C using
the current controller and the 600 W heating element. Figure 1 shows two thermal
response curves of the heater set to 250 ◦C with two sets PID gain constants.

The red curve of Figure 1 has a higher integral gain which causes it to overshoot
and then undershoot the desired value. The blue curve, however, has less overshoot
and is more stable with no oscillations after the initial overshoot. In this system, the
integral control has the most effect on the response. The differential gain has very
little effect on the response until the temperature has reached its target temperature
where differential gain works to maintain the temperature when small variations oc-
cur. For this system, it is desirable to have as little overshoot as possible because it is
much faster to heat the ground plate than it is to cool, thus the PID gain constants
of the blue curve in Figure 1 were chosen. With further experimentation or analysis,
it is likely that better PID gain constants could be found to reduce the settling time.
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Figure 1: Heater temperature response when set to 250 ◦C in a rough vacuum. Each line
is labelled with the corresponding PID constants used in the controller.
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Appendix E: Heater Controller Schematic
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Appendix F: Heater Controller C Code

1 #include <18F4455.h>

2 #device ADC=10

3 #fuses HSPLL,NOWDT,NOPROTECT,NOLVP,NOMCLR,NODEBUG,USBDIV,PLL5,CPUDIV1,VREGEN

4 #use delay(clock=48000000)

5

6 #define __USB_PIC_PERIF__ 1

7

8 #rom int 0xf00000={0,0,0x07,0x08} // KP

9 #rom int 0xf00010={0,0,0x03,0xE8} // KD

10 #rom int 0xf00020={0,0,0x0F,0xA0} // KI

11

12 #include <usb_cdc.h>

13 #include <lcd.c>

14 #include <stdlib.h>

15

16 int16 CONST K_TABLE[125] = { 0, 198, 397, 597, 798, 1000, 1203, 1407, 1612, 1817, 2023, 2230, 2436,

17 2644, 2851, 3059, 3267, 3474, 3682, 3889, 4096, 4303, 4509, 4715,

18 4920, 5124, 5328, 5532, 5735, 5937, 6138, 6339, 6540, 6741, 6941,

19 7140, 7340, 7540, 7739, 7899, 8138, 8338, 8539, 8739, 8940, 9141,

20 9343, 9545, 9747, 9950, 10153, 10357, 10561, 10766, 10971, 11176,

21 11382, 11588, 11795, 12001, 12209, 12416, 12624, 12831, 13040,

22 13248, 13457, 13665, 13874, 14084, 14293, 14503, 14713, 14923,

23 15133, 15343, 15554, 15764, 15975, 16186, 16397, 16608, 16820,

24 17031, 17243, 17455, 17667, 17879, 18091, 18303, 18516, 18728,

25 18941, 19154, 19366, 19579, 19792, 20005, 20218, 20431, 20644,

26 20857, 22350, 22563, 22776, 22990, 23203, 23416, 23629, 23842,

27 24055, 24267, 24480, 24693, 24905 } ;

28

29

30 #define LED PIN_E0

31 #define TRIAC PIN_E1

32

33 #define SET_TEMP_ADC 0.341796875 // 400/1024

34 #define AMB_TEMP_ADC 0.486328125 // adjusted for 4.98V VREF.

35 #define AMB_TEMP_OFFSET 50

36 //THERMO_GAIN = 4.98 (measured LDO VDD) /0 x3FF / 258.2727273 * 1000000 (opamp gain)

37 // opamp gain calculated by 1 + R2/R1 where R2 = 56.6K (measured) and R1 = 220 ohm (measured)

38 #define THERMO_GAIN 18.83002243729

39

40 #define EEPROM_KC 0x00

41 #define EEPROM_KD 0x10

42 #define EEPROM_KI 0x20

43

44 long Kc = 0;

45 long Ki = 0;

46 long Kd = 0;

47

48 unsigned int graph[20] = { 0,0,0,0,0,

49 0,0,0,0,0,

50 0,0,0,0,0,
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51 0,0,0,0,0,};

52

53 float ctrl = 0, lastTemp=0, error=0, error_d=0, error_i =0, d_tmp = 0;

54 unsigned int d_count = 0, d_count2 = 0;

55 unsigned int cycle_count = 0;

56

57 boolean on = 0;

58 boolean output = 0;

59 boolean updateLCD = TRUE;

60 boolean updateUSB = FALSE;

61 int k=0;

62 float setpoint=0;

63 float curtemp=0.0;

64 float ambtemp=0;

65 BYTE i, j, address, value;

66

67 int anim_hold = 40;

68 int animation_step = 0;

69 char msg[40];

70 int msg_l;

71

72 unsigned long ticks=0;

73

74 void lcd_load_graph_chars(void)

75 {

76 int8 i,j,k,offset;

77 // Set address counter pointing to CGRAM address 0.

78 lcd_send_byte(0, 0x40);

79

80 for(i = 0; i < 8; i++) // chars

81 {

82 if (i > 3)

83 {

84 offset = (i-4)*5;

85 for (k=0; k < 8; k++) // lines

86 {

87 j=8-k;

88 lcd_send_byte(1, ((graph[offset]-8==j)<<4) + ((graph[offset+1]-8==j)<<3) +

89 ((graph[offset+2]-8==j)<<2) + ((graph[offset+3]-8==j)<<1) + (graph[offset+4]-8==j));

90 }

91 } else

92 {

93 offset = i*5;

94 for (k=0; k < 8; k++) // lines

95 {

96 j=8-k;

97 lcd_send_byte(1, ((graph[offset]==j)<<4) + ((graph[offset+1]==j)<<3) +

98 ((graph[offset+2]==j)<<2) + ((graph[offset+3]==j)<<1) + (graph[offset+4]==j));

99 }

100 }

101 }

102

103 // Set address counter pointing back to the DDRAM.

104 lcd_send_byte(0, 0x80);
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105 }

106

107 #SEPARATE

108 float getTemp(long voltage) {

109 float ret=0;

110 int i;

111

112 for (i=0; i < 120; i++) {

113 if (voltage <= K_TABLE[i])

114 break;

115 }

116

117 if (i==61) {

118 ret = 600.0;

119 } else if (i == 0) {

120 ret = 0.0;

121 } else

122 {

123 ret = 5.0*(i-1) + 5.0/(K_TABLE[i] - K_TABLE[i-1])*(voltage - K_TABLE[i-1]);

124 }

125

126 return ret + ambtemp;

127 }

128

129 #SEPARATE

130 void write_eeprom_settings(int offset, long val)

131 {

132 write_eeprom(offset+0x02, val>>8);

133 write_eeprom(offset+0x03, val);

134 }

135

136 #SEPARATE

137 long read_eeprom_settings(int offset)

138 {

139 long val = 0;

140 val += read_eeprom(offset+0x02) * 256;

141 val += read_eeprom(offset+0x03);

142 return val;

143 }

144

145 // timer overflows every 5 mS. initialize with 5536 and overflows every 5ms.

146 #INT_TIMER0

147 void tick()

148 {

149 float temp = 0;

150 float tmp,tmp2;

151 int i,j;

152 long blah;

153 disable_interrupts(INT_TIMER0);

154 ticks++;

155

156 if (usb_cdc_connected())

157 usb_task();

158
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159 cycle_count++;

160 if (cycle_count < ctrl & output == TRUE) {

161 on = true;

162 output_bit(TRIAC,1);

163 } else

164 {

165 on = false;

166 output_bit(TRIAC,0);

167 delay_ms(1);

168 }

169

170 // update ambient temp & graph every 30 seconds. only updates when TRIAC is turned off.

171 if (on == FALSE && ticks % 6000 == 0)

172 {

173 output_bit(TRIAC,0);

174 set_adc_channel(0);

175 delay_ms(1);

176 ambtemp = read_adc()*AMB_TEMP_ADC;

177 ambtemp -= AMB_TEMP_OFFSET;

178

179 graph[k++]= (int)(curtemp/25.0);

180 lcd_load_graph_chars();

181 if (k==20) k = 0;

182

183 lcd_gotoxy(1,1);

184 lcd_putc("\004\005\006\007\n\t\001\002\003");

185 }

186

187 if (ticks % 30 == 0) // update animation every 150ms

188 {

189 lcd_gotoxy(6,2);

190

191 j=0;

192 if (anim_hold == 0 || anim_hold == 40)

193 for (i=0;i<40 && j<12;i++)

194 if (animation_step <= i)

195 {

196 lcd_putc(msg[i]);

197 j++;

198 }

199

200 if (anim_hold == 0)

201 {

202 animation_step++;

203

204 if (animation_step == (23 +(setpoint>100?1:0)+(ambtemp>100?1:0)) )

205 animation_step = 0;

206

207 if (animation_step == 0 || animation_step == (11 +(setpoint>100?1:0)))

208 anim_hold = 40;

209 } else

210 anim_hold--;

211 }

212
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213 if (ticks % 400 == 0 && usb_enumerated()) // update usb every 2 second

214 {

215 updateUSB=TRUE;

216 }

217

218 if (ticks % 1000 == 0) // update display every five second (if it hasnt already)

219 {

220 updateLCD=true;

221 }

222

223 if (ticks % 20 == 0 ) // update control every 100 ms

224 {

225 if (!on) { // dont read ADC when the triac is on. Voltage dip causes bad readings.

226 set_adc_channel(2);

227 delay_ms(1);

228 blah=read_adc();

229 tmp2 = blah*THERMO_GAIN;

230 tmp2 = getTemp((long)tmp2);

231 tmp = curtemp - tmp2;

232 if (tmp < -1.0 || tmp > 1.0)

233 updateLCD = TRUE;

234 curtemp=tmp2;

235 }

236

237 if (output)

238 {

239 error = (setPoint - curtemp);

240 error_i += (error*0.1);

241 d_count++;

242 d_tmp+=curtemp;

243 if (d_count == 10)

244 {

245 d_tmp = d_tmp / d_count;

246 d_count2++;

247 if (d_count2 == 10)

248 {

249 error_d = d_tmp - lastTemp;

250 lastTemp=d_tmp;

251 d_count2=0;

252 }

253 d_count = 0;

254 }

255 ctrl = (Kc/1000.0*error + Ki/1000000.0*error_i - Kd/1000.0*error_d);

256 if (ctrl > 230.0) { ctrl = 230.0; } // maximum output =~ 90% duty

257 else if (ctrl < 0.0) { ctrl = 0.0; }

258 }

259

260 set_adc_channel(1);

261 delay_ms(1);

262 temp = read_adc()*SET_TEMP_ADC;

263 tmp = (temp-setpoint);

264

265 if (tmp < -1.5 || tmp > 1.5 )

266 {
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267 animation_step = 0;

268 anim_hold = 40;

269 }

270 if ( tmp < -.5 || tmp > .5 )

271 {

272 setpoint=temp;

273 updateLCD = TRUE;

274 }

275

276 if (updateLCD)

277 {

278 printf(lcd_putc,"\f\004\005\006\007 cur:%3.1f\337C\n\t\001\002\003 ",curtemp);

279 sprintf(msg,"set:%3.1f\337C amb:%3.1f\337C set:%3.1f\337C",setpoint,ambtemp,setpoint);

280 j=0;

281 for (i=0;i<40 && j<12;i++)

282 if (animation_step <= i)

283 {

284 lcd_putc(msg[i]);

285 j++;

286 }

287 updateLCD= FALSE;

288 }

289 }

290

291 set_timer0(5536);

292 enable_interrupts(INT_TIMER0);

293 }

294

295 #INT_EXT

296 void button()

297 {

298 unsigned long i;

299 long param_last=0, param;

300 long tmp;

301

302 disable_interrupts(INT_EXT);

303

304 for (i=0;i<1000 && (input_b()&0x01) == 0x00; i++)

305 delay_ms(1);

306

307 if (i >= 1000)

308 {

309 set_adc_channel(1);

310 param_last = -100;

311 param = (long)(read_adc()*9.765625);

312 tmp = (long)((param-param_last)*100);

313 if ( tmp < -20 | tmp > 20 )

314 {

315 printf(lcd_putc,"\fcur P=%lu\n", Kc);

316 printf(lcd_putc,"new P=%lu", param);

317 param_last=param;

318 }

319

320 while ((input_b()&0x01) == 0x00)
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321 delay_ms(1);

322 do

323 {

324 usb_task();

325 param = (long)(read_adc()*9.765625);

326 delay_ms(10);

327 tmp = (long)((param-param_last)*100);

328 if ( tmp < -20 | tmp > 20 )

329 {

330 printf(lcd_putc,"\fcur P=%lu\n", Kc);

331 printf(lcd_putc,"new P=%lu", param);

332 param_last=param;

333 }

334 } while ( (input_b()&0x01) == 0x01 );

335 if (param > 0)

336 {

337 Kc=param;

338 write_eeprom_settings(EEPROM_KC,Kc);

339 }

340

341 while ((input_b()&0x01) == 0x00)

342 delay_ms(1);

343 param_last=-100;

344 do

345 {

346 usb_task();

347 param = (long)(read_adc()*9.765625);

348 delay_ms(10);

349 tmp = (long)((param-param_last)*100);

350 if ( tmp < -15 | tmp > 15 )

351 {

352 printf(lcd_putc,"\fcur I=%lu\n", Ki);

353 printf(lcd_putc,"new I=%lu", param);

354 param_last=param;

355 }

356 } while ( (input_b()&0x01) == 0x01 ) ;

357 if (param > 0)

358 {

359 Ki=param;

360 write_eeprom_settings(EEPROM_KI,Ki);

361 }

362

363 while ((input_b()&0x01) == 0x00)

364 delay_ms(1);

365 param_last=-100;

366 do

367 {

368 param = (long)(read_adc()*9.765625);

369 delay_ms(10);

370 tmp = (long)((param-param_last)*100);

371 if ( tmp < -15 | tmp > 15 )

372 {

373 printf(lcd_putc,"\fcur D=%lu\n", Kd);

374 printf(lcd_putc,"new D=%lu", param);
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375 param_last=param;

376 }

377

378

379 } while ( (input_b()&0x01) == 0x01 ) ;

380 if (param > 0) {

381 Kd=param;

382 write_eeprom_settings(EEPROM_KD,Kd);

383 }

384

385 while ((input_b()&0x01) == 0x00)

386 delay_ms(1);

387 } else

388 {

389 output = ~output;

390 output_bit(LED,output);

391 if (!output)

392 error=0; error_d=0; error_i=0; ctrl=0.0;

393 }

394

395 updateLCD = TRUE;

396 enable_interrupts(INT_EXT);

397

398 }

399

400 void main()

401 {

402 usb_cdc_init();

403 usb_init();

404 lcd_init();

405 lcd_load_graph_chars();

406

407 set_tris_b(0b00000001);

408 setup_adc(ADC_CLOCK_INTERNAL);

409 setup_adc_ports(AN0_TO_AN2 );

410

411 set_adc_channel(0);

412 delay_ms(1);

413 ambtemp = read_adc()*AMB_TEMP_ADC;

414 ambtemp -= AMB_TEMP_OFFSET;

415

416 setup_timer_0(RTCC_INTERNAL | RTCC_DIV_1);

417 set_timer0(5563);

418

419 Kc = read_eeprom_settings(EEPROM_KC);

420 Ki = read_eeprom_settings(EEPROM_KI);

421 Kd = read_eeprom_settings(EEPROM_KD);

422

423 ext_int_edge( H_TO_L );

424 enable_interrupts(INT_TIMER0);

425 enable_interrupts(INT_EXT);

426 enable_interrupts(GLOBAL);

427

428 output_bit(TRIAC,0);
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429 output= FALSE;

430 output_bit(LED,output);

431

432 while (TRUE)

433 {

434 if (updateUSB && usb_enumerated())

435 {

436 printf(usb_cdc_putc, "%3.2f,",curtemp); usb_task();delay_ms(5);

437 printf(usb_cdc_putc, "%3.2f,",setpoint);usb_task();delay_ms(5);

438 printf(usb_cdc_putc, "%3.2f,",ambtemp);usb_task();delay_ms(5);

439 printf(usb_cdc_putc, "%3.1f,", error);usb_task();delay_ms(5);

440 printf(usb_cdc_putc, "%3.1f,", error_i);usb_task();delay_ms(5);

441 printf(usb_cdc_putc, "%3.1f,", error_d);usb_task();delay_ms(5);

442 printf(usb_cdc_putc, "%lu,", kc);usb_task();delay_ms(5);

443 printf(usb_cdc_putc, "%lu,", ki);usb_task();delay_ms(5);

444 printf(usb_cdc_putc, "%lu,", kd);usb_task();delay_ms(5);

445 printf(usb_cdc_putc, "%3.1f\r\n", ctrl);usb_task();delay_ms(5);

446 usb_task();delay_ms(5);

447 usb_task();delay_ms(5);

448 updateUSB=FALSE;

449 }

450

451 }

452 }
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