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Abstract 

Pneumatic actuators are popular due to their extensive use in production lines of 

automobile industry in 1950s. Advantages of pneumatic actuators over other power 

systems include high power to weight ratio, cleanness, low costs, and low maintenance. 

The challenges in pneumatic actuators are the high compressibility of fluid medium, the 

nonlinearities in the system dynamics (i.e., pressure dynamics and valve flow dynamics), 

and the modeling of those characteristics. Another great challenge in the pneumatic 

actuators is the stick-slip friction caused by pneumatic cylinder seals, which keep 

pressurized air inside the pneumatic cylinder chambers. As the motion of actuator 

commences and stops, a jerky motion caused by the stick-slip friction can create adverse 

effects to the performance of pneumatic actuators, e.g., instability, slow response, large 

tracking errors, and limit cycle. Conventionally, the friction caused adverse effects in 

mechanical systems are reduced by increasing the stiffness of the control mechanisms. 

However, due to the compliance nature of pneumatically operated system, an alternative 

approach via adaptive friction compensation is considered herein.  

This thesis documents the development of a novel nonlinear controller for servo 

pneumatic actuators that give good reference tracking at low speed motion, where friction 

has strong effect to the system behaviors. The design of the nonlinear controller presented 

in this thesis is based on the formalism of Lyapunov stability theory. The controller is 

constructed through a dynamical adaptive backstepping-sliding mode control algorithm. 

The conventional Lyapunov-based control algorithm is often limited by the order of the 

dynamical system; however, the backstepping design concept allows the control 

algorithm to be extended to higher order dynamical systems. In addition, the friction is 

estimated on-line via the Lyapunov-based adaptive laws embedded in the controller; 

meanwhile, the sliding mode control provides high robustness to the system parameter 

uncertainties. The simulation results clearly demonstrating the improved system 

performance (i.e., fast response and the reduced tracking error) are presented. Finally, the 

integration of the controller with a Lyapunov-based pressure observer reduces the state 

feedback of the servo pneumatic actuator model to only the piston displacement. 
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Chapter 1. Introduction 

 

1.1    Preliminary Remark 

Pneumatic systems use pressurized gases to control and transmit power. As their name 

implies, pneumatic systems typically use air as the fluid medium because air is safe, no 

cost, readily available fluid, and easy to dispose. Due to its high force-output to weight 

ratios, servo pneumatic actuators are well suited for modern manufacturing and 

production plants, e.g., pneumatic lifting devices, pneumatic hammers, and pneumatic 

adjusting devices for car seats. However, due to its complex nonlinear dynamics, the 

control of servo pneumatic actuators remains a difficult task and an active area of fluid 

power research. A recurring issue with the servo pneumatic actuator is the level of 

friction in the system, which affects the stability, accuracy, and repeatability. 

In a typical servo pneumatic actuator, as shown in Figure 1.1, the movement of the rod 

and the piston are subject to friction. The surface contact between the rod and the lip seal 

and the contact between the piston O-ring and seal and the cylinder wall as well as the 

viscous effects of the lubricant all generate friction. 

 

Figure 1.1 Cutoff view of pneumatic actuator. 



2 

Besides friction, some other non-idealities associated with pneumatic actuators include 

nonlinear valve flow dynamics, and nonlinear pressure dynamics. All of these problems 

impair the performance of the system. Recently, there is an increasing interest in the 

design and implementation of nonlinear control strategies that attempt to maintain the 

performance despite the influence of friction and the nonlinearities associated with the 

servo pneumatic actuator. 

1.2    Friction in Mechanical Systems 

Friction is present in all machines incorporating parts with relative motion. Although 

friction may be a desirable property, as it is for brakes, it is generally an impediment for 

servo control. 

In a mechanical system under the influence of friction, the contacting surface is in the 

static friction regime before the motion commences, and an actuation force greater than 

the static friction is required to start the relative motion. The friction at static regime is 

determined by the very small displacement between contacting bodies, but the relative 

velocity or motion at this regime is considered to be zero. Therefore, friction in this 

regime is considered as a static force. As the motion commences, the friction suddenly 

decreases as it switches to the dynamic friction regime. In this regime, the friction is a 

function of relative velocity; in other words, the motion or the dynamics in the contacting 

bodies determines the dynamic evolution of friction, hence the name dynamic friction. 

The sudden change in friction results in a jerky actuator motion, which makes positional 

control and repeatability difficult. 

The effect described above, is commonly referred to as stick-slip friction. The stick-slip 

friction is a nonlinear friction phenomenon and can be found in the servo pneumatic 

actuator moving at low speed. Modeling the sudden switching is difficult and precise 

control of the system usually involves complex system identifications and predictions [1]. 

It is therefore important for control engineers to understand friction phenomena and 

obtain the knowledge on how to deal with them effectively. The knowledge comes from 

stability theory, nonlinear control, nonlinear system identification, adaptive control, etc 

[2].  
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Model-oriented friction compensation techniques are based on the knowledge of suitable 

friction models that predict the real friction. Friction is quite often modeled as a static 

mapping of relative velocity. The static mapping of friction provides good representations 

for static friction, Coulomb friction, and viscous friction. In the last decade, the interests 

in dynamic friction model have increased. Some experimental observations of dynamic 

behaviors are Stribeck effect, static friction variation, and friction lag and memory [2]. 

These properties of friction are by no means complete but serve to illustrate many facets 

of friction behavior; however, these properties of friction cannot be described by the 

static mappings of friction. This is basically due to the fact that friction does not have an 

instantaneous response on a change of relative velocity, i.e., friction has internal 

dynamics [3]. Therefore, dynamic friction model is necessary to investigate the control 

associated with friction, and it has the potential to improve the quality of a control system 

[2]. Dahl [4] presented a solid friction model based on the stress and strain curve on ball 

bearings, and the dynamic behavior of static friction is considered in the model. The 

LuGre friction model is another dynamic friction model presented in [5], and the 

extensive analysis of the model and the applications to control systems with friction are 

discussed in [6].  

From the mathematical perspective, a system with friction is often modeled as a non-

smooth system, and the analysis of this type of system is taken into a different domain, 

the Filippov’s system [7]. Consequently, the formalism of Lyapunov stability theory has 

to be extended to non-smooth dynamical systems via the construction of non-smooth 

Lyapunov functions [8]. The mathematical attempts to resolve the friction induced 

instability in control system are provided in [9]. With the knowledge obtained from 

aforementioned system analyses, it is possible to deal with friction effectively [2]. 

Conventionally, the friction induced adverse effects are reduced by increasing the 

stiffness of the control mechanism [2]; however, it becomes a difficult task for a servo 

pneumatic actuator to increase its stiffness in the face of high compressibility of air. 

Therefore, instead of bluntly increasing the stiffness of the control mechanism, nonlinear 

control techniques have been proposed for the servo pneumatic actuators to achieve 

tracking control and adaptive compensation of friction [10-12]. 
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1.3    Control Strategies for Nonlinear Systems 

The pneumatic system is highly nonlinear. A linear control approach can be applied to a 

nonlinear system through linearization; however, the approach will not cover higher order 

terms that may have great effects on the system’s behavior. Therefore, it is quite 

advantageous to treat nonlinear problems directly with nonlinear controls. Some of the 

advantages of nonlinear control approaches over linear control approaches are listed as 

follows: (1) the validity of nonlinear model in large operation range, (2) the applications 

to nonlinearizable systems with discontinuous behavior, and (3) high tolerance to 

parameter uncertainties (e.g., a linear controller based on inaccurate model may show 

significant degradation or instability while a nonlinear robust controller can tolerate the 

model uncertainties by intentionally introducing nonlinearities to the controller) [13]. 

A simple and popular robust approach to the deterministic control of nonlinear system 

with uncertainties is the sliding mode control. This approach is based upon the special 

behavior of variable structure systems in the so-called sliding regime. The sliding mode 

control is synthesized by means of high-frequency discontinuous regulation signals, and a 

sliding layer can be created to make the control signal smooth. The sliding mode 

controller was implemented on a servo pneumatic actuator by Gulati et al.[12]. 

The general approach of a traditional Lyapunov-based nonlinear controller design is to 

construct a control Lyapunov function (CLF) according to the Lyapunov stability theory. 

The idea is to formulate a scalar positive energy-like function of the system states, and 

then choose a control law that makes the CLF decrease along the system trajectories. A 

nonlinear control system thus designed is stable in the sense of Lyapunov. However, this 

approach was only valid to systems with relative degree one or two (i.e., the control input 

can only be separated from the output of interest by one or two integrations). The design 

obstacle can be avoided via an order reduction [14]. Thereafter, a traditional Lyapunov-

based controller can be designed through cascading the lower-order subsystems. Such a 

control approach is called cascade control. A cascade controller for a servo pneumatic 

actuator was introduced by Guenther et al. [11]. 

Krstic et al [15] introduced the concept of backstepping design that enabled the CLF 

design to be applied to higher-order systems. As its name suggests, the backstepping 
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design approach “steps back” toward the control input starting with the scalar equation of 

the output of interest, which is separated from the control input by the largest number of 

integrations. This design approach was used to construct a nonlinear controller for a servo 

pneumatic actuator by Rao et al. [10].  

Lyapunov-based adaptive controls are often used to control nonlinear systems with 

parameter uncertainties including unknown bounds [13]. An algorithm for the synthesis 

of dynamical adaptive backstepping (DAB) controller was proposed by Rios-Bolivar et 

al. [16]. In order to provide robustness in the presence of undesirable disturbances, Rios-

Bolivar [17] further proposed a combined dynamical adaptive backstepping-sliding mode 

control (DAB-SMC) algorithm. The application of this approach in adaptive-robust 

regulation of two nonlinear continuous chemical processes with uncertainties, and its 

validity was demonstrated via computer simulations [18]. The servo pneumatic actuator 

system is highly nonlinear and consists of parameter uncertainties. This suggests that the 

novel DAB-SMC algorithm may provide controllers that can improve the performance of 

the servo pneumatic actuator system. 

1.4    Motivations and Objectives 

Friction induced instability and low performance in servo pneumatic actuator suggest that 

a suitable compensation technique is necessary to achieve better trajectory tracking task. 

Although the use of nonmodel-based controllers, such as a PD controller [19] for the 

pneumatic system has met with a certain amount of success, nonmodel-based controllers 

cannot address the often significant nonlinearities associated with the servo pneumatic 

actuator system. Servo pneumatic actuators are governed by the nonlinear dynamics. The 

nonlinear model-based control techniques such as robust and/or adaptive control provide 

appealing features that can maintain the system performance in the face of modeling 

uncertainties [12]. In other words, it is highly desired to adapt nonlinear control 

techniques to solve nonlinear problems. 

There are two objectives in this thesis. The first objective is to understand and analyze the 

mechanical system with friction. The second objective is to develop a novel nonlinear 

adaptive-robust control law to control the server pneumatic actuator with nonlinearities, 

uncertainties, and friction. 
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1.5    Thesis Layout 

The remainder of this thesis is organized as follows. The operation of a typical servo 

pneumatic actuator is described in Chapter 2, and properties associated with this type of 

servo pneumatic actuator are characterized. Chapter 2 also develops a general 

mathematical model of the servo pneumatic actuator. Chapter 3 reviews the historical 

works exploring frictions and development of friction models that incorporate behavioral 

characteristics of friction. Chapter 4 considers friction in mathematical perspectives. By 

treating systems with friction as non-smooth dynamical systems, non-smooth analyses 

can be carried out. Chapter 4 also reviews the Lyapunov stability theory that provides the 

formalism for analyzing the stability and convergence properties of mechanical systems. 

Chapter 5 details the nonlinear controller design process, including previous works and 

the adapted dynamical adaptive backstepping-sliding mode controller synthesis. 

Subsequently, the controllers are implemented towards the control of the simulated 

mathematical model of the nonlinear servo pneumatic actuator in Chapter 6. The ability 

of the adapted controller to perform trajectory tracking and friction compensation as well 

as the performance of the servo pneumatic actuator is evaluated via computer 

simulations. The thesis is brought to an end by summarizing the study in Chapter 7. 
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Chapter 2. Servo Pneumatic Actuator 

 

This chapter serves to familiarize the readers with servo pneumatic actuator. In Section 

2.1, the components making up a typical servo pneumatic actuator are introduced and the 

operation of the circuit is described. The characteristics of the mass flow associated with 

the control valve in servo pneumatic actuator are given in Section 2.2. Section 2.3 

develops a mathematical model for the servo pneumatic actuator. 

2.1    Operation  

The servomechanism considered in this study is a solenoid-driven proportional 

directional valve (i.e., servo valve) controlled pneumatic actuator (i.e., FESTO MPYE-5 

valve and DNC actuator). An electrical signal ݑ௩ applied to the servo valve allows the 

positioning of the valve spool ݔ௩ . This modulates the flow of air into and out of the 

actuator chambers and creates a pressure differential across the piston. The force applied 

on the piston due to the pressure differential allows the piston position ݔ௣ to change.  

The schematic of a typical servo pneumatic actuator is given in Figure 2.1. The servo 

 

Figure 2.1 The schematics of pneumatic actuator controlled by a 5-port 
three-position servo valve. 
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pneumatic actuator consists of three main components, namely, the pneumatic power 

supply, the actuator, and the servo valve. The pneumatic power supply delivers 

compressed air to the high pressure supply port of the servo valve at a constant pressure, 

typically 500 to 700 ݇ܲܽ. The actuator cylinder consists of two chambers separated by a 

piston. A rod is attached to the piston to serve as the link between the actuator and the 

load. The servo valve is modeled as a 5-port three-position control valve, i.e., the valve 

has 5 openings and three operating positions, which regulate the motion of the actuator 

by controlling the air flow to and from the actuator chambers (see Figure 2.2). 

 

Figure 2.2 Operation of a typical pneumatic actuator system: (a) direction of 
air flows and actuator motion for positive valve spool displacement; (b) 

direction of air flows and actuator motion for negative valve spool 
displacement. 
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With reference to Figure 2.2 (a), when the valve spool is displaced to the positive 

position, the high pressure supply is connected to the left actuator chamber (chamber 1); 

meanwhile, the right actuator chamber (chamber 2) is connected to the exhaust port, 

which is directly open to the atmosphere. When the valve spool is displaced to the 

negative position, as shown in Figure 2.2 (b), the connections are reversed. When the 

valve spool is displaced, the net flow of fluid causes a pressure differential across the 

piston that causes the piston and rod to move. In contrary, the motion of the actuator 

stops when the valve spool is in the neutral position (see Figure 2.1), where there is no air 

flow into and out of the actuator chambers. 

Position control of the servo pneumatic actuator is achieved by monitoring it through 

sensors and closing the loop through feedback control. To realize the closed-loop control, 

some means of positioning the valve spool is required. There are two types of electro-

pneumatic valves that are commonly used to control the air flow in a pneumatic actuator. 

These are the on-off switching valves and the continuously acting servo/proportional 

valves.  

The pulse width modulation (PWM) control approach is commonly used in on-off 

switching valves. The valves receive PWM signal as the control input to make the valve 

on and off successively. As a result, air mass is passed through the switching valve that is 

completely open or completely closed and is delivered to the actuator as discrete packets 

of air mass. The bigger pulse widths result in bigger packets of air mass. If the time rate 

of delivery of these packets is considerably faster than the dynamics of the actuator, then 

the system filters the discreteness of the packets and responds to the average of the input 

signal, similar to the continuously acting valve.  

In this study, PWM is not pursued since the mathematical model is built upon the 

previous work [22], which uses a continuous acting valve. This task of continuous acting 

servo valve is accomplished by the solenoid-driven unit in a servo valve, shown 

schematically in Figure 2.3. The solenoid-driven valve converts an electrical command 

signal ݑ௩ into a proportional displacement of the valve spool ݔ௩. With reference to Figure 

2.3, the solenoid driven valve utilizes a linear motor arrangement to create the force 

imbalance required to position the valve spool and control air flow. The linear motor 
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consists of a spring, an armature, and a DC current coil. The spring holds the armature in 

a neutral position originally. When a current is applied to the coil, a magnetic flux is 

generated which gives rise to a linear movement of the armature. Since the armature is 

coupled to the valve spool, the movement of the armature causes the displacement of 

valve spool from its neutral position. This displacement of valve spool connects the high 

pressure air to one control port and the exhaust port to the other control port. Finally, as 

the valve spool moves, the spring acts as a feedback and exerts a restoring force upon the 

armature. When the restoring force caused by the feedback spring is equal to the force 

exerted by the armature, the spool valve comes to a rest in the position proportional to the 

magnitude and corresponding polarity of current applied to the coil. 

The relationship between the control input  ݑ௩ and the valve spool position ݔ௩, is often 

modeled as a simple gain ݇௩  [20, 21]. However, the relevant manufacture’s literature 

suggests that the dynamics of the valve spool are more adequately described by a 1st-

order lag or 2nd-order lag [22]. In this study, the servo valve is modeled as a 1st-order lag: 

ሶ௩ݔ ൌ െ
௫ೡ

ఛ
൅

௞ೡݒݑ

ఛ
, (2.1)

where ߬ represents the valve spool 1st-order time constant. 

Depending on the design of servo valve, an asymmetric flow deadband may exist [22]. 

Despite the existence of nonzero control signal in the deadband range, the flow through 

the orifice is zero. This suggests that the valve spool can be considered as always in the 

neutral position while control signal is in the deadband range. The modeling of flow 

deadband is accomplished by considering a null control signal inside the deadband. 

 

Figure 2.3 Schematic of the solenoid-driven proportional directional flow 
valve.
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Conventionally, the relationship between variable orifice area ܣ௩ of valve orifice and the 

valve spool displacement ݔ௩ in a servo valve is modeled according to the type of orifice 

used in the servo valve. Hence, an identification of the relationship is required prior to the 

modeling. In [22], visual inspection of the control valve reveals that the orifice area 

varies approximately linearly with the valve spool displacement ݔ௩ . Thus, the linear 

relationship between variable orifice area ܣ௩  and the valve spool displacement ݔ௩  is 

adapted in this study:  

௩ܣ ൌ ௩, (2.2)ݔݓ

where ݓ is the orifice area gradient of the corresponding control port.  

2.2    Valve Flow Dynamics  

To effect the motion of the actuator against the applied load, the chamber pressures ௜ܲ 

(where the subscript ݅ ൌ 1, 2 indicates chamber 1 and chamber 2, respectively) varies by 

charging and discharging the appropriate amount of control volume of air. The control 

volume of air is determined by the mass flow rate ሶ݉ ௜ of air passing through the variable 

area of valve orifice ܣ௩ . The mass flow rate ሶ݉ ௜  is a complex function of multiple 

variables, i.e., upstream pressure ௗܲ , downstream pressure ௗܲ , variable area of valve 

orifice ܣ௩, etc. 

The mathematical model for the mass flow rate ሶ݉ ௜ of air through the variable area of 

valve orifice is derived from normalized mass flow rate ߰௜ሺ ௨ܲ,   ௗܲሻ of the fixed area of 

valve orifice. The downstream pressure ௗܲ  is equal to the chamber pressure ௜ܲ  when 

charging and atmosphere pressure ௔ܲ௧௠  when discharging. Similarly, the upstream 

pressure ௨ܲ is equal to supply pressure ௦ܲ when charging and chamber pressure ௜ܲ when 

discharging. The behavior of the normalized mass flow rate ߰௜ሺ ௨ܲ,   ௗܲሻ can be captured 

by the following switching rule: 

߰௜ሺ ௨ܲ,   ௗܲሻ ൌ   ൜
߰ሺ ௦ܲ,   ௜ܲሻ       ௩ܣ ൒ 0

߰ሺ ௜ܲ,   ௔ܲ௧௠ሻ ௩ܣ ൏ 0
, (2.3)

where the signed variable area of valve orifice ܣ௩  serves to switch between charging 

ሺ ܣ௩  ൒ 0 ሻ  and discharging  ሺܣ௩ ൏ 0ሻ, respectively. According to the sign convention 
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defined in Figure 2.1, the switching rule (2.3) can be applied directly to chamber 1 while 

െܣ௩  is used for the flow switching rule applied to chamber 2. 

The normalized mass flow rate ߰௜ሺ ௨ܲ,   ௗܲሻ presents a hard nonlinearity due to a saturation 

of the mass flow through the fixed area of valve orifice. A critical pressure ௖ܲ௥  is 

compared with the ratio of the downstream pressure ௗܲ  to the upstream pressure ௨ܲ , 

ௗܲ/ ௨ܲ to determine the onset of the flow saturation. The critical pressure ௖ܲ௥ is calculated 

using the thermal expansion coefficient ߙ  of air. For adiabatic process (i.e., no heat 

exchange) of air, the thermal expansion coefficient ߙ is given by the relation ݎ: 

௔ௗ௜௕௔௧௜௖ߙ ൌ ݎ ൌ  
݌ܿ

ݒܿ
. (2.4)

where ܿ௩ is the specific heat of air at constant volume and ܿ௣ is the specific heat of air at 

constant pressure. Both specific heat values account for the heat to temperature 

differential per unit mass of air. 

Given the relation (2.4), the critical pressure of air flow for an adiabatic process is 

defined as 

௖ܲ௥ ൌ ቀ
ଶ

௥ାଵ
ቁ
௥ ௥ିଵ⁄

. (2.5)

When the pressure ratio ௗܲ/ ௨ܲ is lower than the critical pressure ௖ܲ௥, flow through the 

orifice is subsonic (unsaturated flow), and the flow depends only on upstream pressure. 

When the pressure ratio ௗܲ/ ௨ܲ  is at the critical pressure, flow through the orifice become 

sonic (saturated flow). Beyond critical pressure the valve orifice is said to be saturated, 

mass flow rate is a function of both upstream pressure and downstream pressure. The 

commonly accepted normalized mass flow rate ߰௜ሺ ௨ܲ,   ௗܲሻ is given as [12] 

߰௜ሺ ௨ܲ, ௗܲሻ ൌ

ە
ۖ
۔

ۖ
஼೏௉ೠۓ

√்
ට௥

ோ
ቀ

ଶ

ሺఊାଵሻ
ቁ
ሺ௥ାଵሻ ሺ௥ିଵሻ⁄ ௉೏

௉ೠ
൑ ௖ܲ௥

஼೏௉ೠ

√்
ඨቀ

ଶ௥

ோሺ௥ାଵሻ
ቁ ൬ቀ

௉ೠ

௉೏
ቁ
ଶ/௥

െ ቀ
௉ೠ

௉೏
ቁ
ሺ௥ାଵሻ/௥

൰
௉೏

௉ೠ
൐ ௖ܲ௥

  (2.6)

where ܶ is the absolute temperature of the air and ܥௗ is the discharge coefficient of the 

valve orifice, typically well characterized by the valve manufacturer. The parameter ܥௗ 
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reflects a contraction of the flow path downstream of the orifice that reduces the effective 

flow area. The relationship between the orifice area and the mass flow rate of air is 

derived by assuming that the flow through the valve is an ideal gas undergoing an 

isentropic process (reversible adiabatic process), which leads to the variable area mass 

flow rate expression: 

ሶ݉ ଵ ൌ ௩߰ଵሺܣ ௨ܲ, ௗܲሻ    

ሶ݉ ଶ ൌ െܣ௩߰ଶሺ ௨ܲ, ௗܲሻ.
 (2.7)

2.3    Pneumatic Cylinder Dynamics 

Thermodynamics provides the principle of converting thermal energy to other forms of 

energy (e.g., mechanical energy). In this study thermodynamic laws in adiabatic process 

is used to describe the compression and expansion of air in pneumatic cylinder, the 

changes of pressure value, and the required mechanical work. The ideal gas law, the 

conservation of mass and energy equations must be considered simultaneously to model 

the control volumes defined by the servo pneumatic actuator chambers. In the following 

the pressure dynamics of one pneumatic cylinder chamber is derived, and the resulting 

pressure differential equation can be applied equally to the other chamber. Assuming that 

the gas is ideal and the pressure and temperature are homogeneous (i.e., no variations in 

distributions of pressure and temperature) in the chamber, the ideal gas law is written as 

ܸܲ ൌ ܴ݉ܶ,  (2.8)

where ܲ is the chamber pressure, ܸ is the volume of the chamber, ݉ is the mass of the 

fluid in the chamber, and ܴ  is the ideal gas constant. For ideal gas, the following 

relationship holds for the gas constant ܴ: 

ܴ ൌ ܿ௣ െ ܿ௩.  (2.9)

Alternatively, the ideal gas law (2.8) may be expressed in terms of the air density ߩ: 

௉

ோ
ൌ

௠

௏
ܶ ൌ (2.10) .ܶߩ

Neglecting the potential energy and kinetic energy terms, the conservation of mass and 

energy equation is  
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ௗ

ௗ௧
ሺܿ௩ܸܶߩሻ ൌ   ܿ௣ ሶ݉ ܶ െ ܲ ሶܸ ൅ ሶܳ , (2.11)

where 
ௗ

ௗ௧
ሺܿ௩ܸܶߩሻ represents the rate of change of internal energy of air in the chamber, 

ܿ௣ ሶ݉ ܶ is the internal energy of the air flows into or out of the chamber, ܲ ሶܸ  is the rate at 

which work is done on the moving piston, and ሶܳ  is the rate of heat transfer across the 

cylinder wall. With reference to the previous work in this area [23], the charging and 

discharging process are assumed to be adiabatic; therefore, ሶܳ  can be ignored thereafter. 

Equation (2.11) becomes 

ௗ

ௗ௧
ሺܿ௩ܸܶߩሻ ൌ   ܿ௣ ሶ݉ ܶ െ ܲ ሶܸ . (2.12)

Substituting equation (2.10) into equation (2.12),  

ௗ

ௗ௧
ቀ
௖ೡ

ோ
ܸܲቁ ൌ   ܿ௣ ሶ݉ ܶ െ ܲ ሶܸ . (2.13)

The term on left hand of equation (2.13) can be rearranged into 

ௗ

ௗ௧
ቀ
௖ೡ

ோ
ܸܲቁ ൌ   

௖ೡ

ோ

ௗ

ௗ௧
ሺܸܲሻ ൌ

௖ೡ

ோ
൫ ሶܸܲ ൅ ܲ ሶܸ ൯.  (2.14)

Substituting equation (2.14) into equation (2.12),  

௖ೡ

ோ
൫ ሶܸܲ ൅ ܲ ሶܸ ൯ ൌ ܿ௣ ሶ݉ ܶ െ ܲ ሶܸ   (2.15)

Rearranging equation (2.15), the air pressure dynamics in the chamber is found to be 

ሶܲ ൌ
௖೛ோ்

௖ೡ௏
ሶ݉ െ

ோ

௖ೡ
ቀ1 ൅

௖ೡ

ோ
ቁ
௉

௏
  ሶܸ . (2.16)

Given the relations in equations (2.4) and (2.9), equation (2.16) in an adiabatic process 

can be simplified as 

ሶܲ ൌ
௥ோ்

௏
ሶ݉ െ

௥௉

௏
  ሶܸ . (2.17)

Choosing the middle of the stroke of the actuator as the datum of piston displacement ݔ௣, 

the volumes of the actuator chambers can be expressed as 



15 

ଵܸ ൌ ௢ܸଵ ൅ ܣ ቀ
௅

ଶ
൅ ௣ቁݔ

ଶܸ ൌ ௢ܸଶ ൅ ܣ ቀ
௅

ଶ
െ ௣ቁݔ

, (2.18)

where ܮ is the full stroke length, ܣ is the piston annulus area, and terms ௢ܸଵ  and ௢ܸଶ 

denote a fixed volume at the end of chamber 1 and chamber 2, respectively.  

Substituting equation (2.18) into equation (2.17), the differential equations that define the 

pressure dynamics of chamber 1 and chamber 2 are given respectively as 

ሶܲ
ଵ ൌ

௥ோ்

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶ݉ ଵ െ
௥௉భ

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶܸ
ଵ

ሶܲ
ଶ ൌ

௥ோ்

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶ݉ ଶ െ
௥௉మ

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶܸ
ଶ.

, (2.19)

With reference to equation (2.18), the volumetric change rate ሶܸଵ and ሶܸଶ can be obtained 

from the time derivative of equation (2.18): 

ሶܸ
ଵ ൌ    ݌ݒܣ

ଶܸ ൌ െ݌ݒܣ
 (2.20)

where ݒ௣ ൌ  ሶ௣ is the velocity of the piston. Substituting equation (2.20) into equationݔ

(2.19),  

ሶܲ
ଵ ൌ

௥ோ்

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶ݉ ଵ െ
௥௉భ஺

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

݌ݒ

ሶܲ
ଶ ൌ

௥ோ்

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶ݉ ଶ ൅
௥௉మ஺

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

.݌ݒ
  (2.21)

According to equation (2.21), the control valve regulates the mass flow rate ሶ݉ ௜ (݅ = 1, 2) 

of air to the corresponding actuator chambers, and hence controls the time evolution of 

the pressure differential dynamics, ሶܲଵ and ሶܲଶ. However, ሶܲଵ and ሶܲଶ cannot be controlled 

independently due the specific configuration of the servo valve under study [22]. 

The dynamics of the piston and piston rod may be modeled as a 2nd-order differential 

equation: 

ሶ௣ݒ ൌ
ଵ

ெ
൫ ܣܲ∆ െ ௙൯ܨ

ሶݔ ݌ ൌ                       ݌ݒ
  (2.22)
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where ݒሶ௣ is the acceleration of the piston, ܯ is the combined mass of the piston and rod 

assembly, ∆ܲ ൌ ଵܲ െ ଶܲ  is the absolute pressure differential across the piston, and ܨ௙ 

represents the friction associated with servo pneumatic actuator. Given equations (2.1)-

(2.22), the nonlinear equations representing the servo pneumatic actuator are given as 

follows:  

ሶ௩ݔ ൌ െ
௫ೡ

ఛ
൅

௞ೡݒݑ

ఛ
                              

௩ܣ ൌ                                   ௩ݔݓ        

߰௜ሺ ௨ܲ,   ௗܲሻ ൌ   ൜
߰ሺ ௦ܲ,   ௜ܲሻ             ܣ௩ ൒ 0 

߰ሺ ௜ܲ,   ௔ܲ௧௠ሻ        ܣ௩ ൏ 0  
                                                      

߰௜ሺ ௨ܲ, ௗܲሻ ൌ

ە
ۖ
۔

ۖ
஼೏௉ೠۓ

√்
ට௥

ோ
ቀ

ଶ

ሺ௥ାଵሻ
ቁ
ሺ௥ାଵሻ ሺ௥ିଵሻ⁄

                                   
௉೏

௉ೠ
൑ ௖ܲ௥

஼೏௉ೠ

√்
ඨቀ

ଶ௥

ோሺ௥ାଵሻ
ቁ ൬ቀ

௉ೠ

௉೏
ቁ
ଶ/௥

െ ቀ
௉ೠ

௉೏
ቁ
ሺ௥ାଵሻ/௥

൰          
௉೏

௉ೠ
൐ ௖ܲ௥

ሶ݉ ଵ ൌ ௩߰ଵሺܣ ௨ܲ, ௗܲሻ    

ሶ݉ ଶ ൌ െܣ௩߰ଶሺ ௨ܲ, ௗܲሻ 
                                                                                        

ሶܲ
ଵ ൌ

௥ோ்

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶ݉ ଵ െ
௥௉భ஺

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

                                                            ݌ݒ 

ሶܲ
ଶ ൌ

௥ோ்

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶ݉ ଶ ൅
௥௉మ஺

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

                                                               ௣ݒ 

ሶ௣ݒ ൌ
ଵ

ெ
൫ ܣܲ∆ െ                                                                                             ௙൯ܨ

ሶ௣ݔ ൌ                                     ௣ݒ       

   (2.23)

2.4    Summary  

In this chapter, the mathematical model of the servo pneumatic actuator system is 

developed according to the physical laws. The mathematical model of the servo 

pneumatic actuator system shows high nonlinearities, which suggests that advanced 

nonlinear control techniques should be considered to control the actuator system. Besides 

the nonlinearities due to pressure dynamics and flow dynamics discussed in this chapter, 

friction associated with mechanical part of the pneumatic actuator system still remains as 

an untouched component in the system model. Friction can give adverse effect to the 

performance of the mechanical systems if it is not understood or modeled realistically. In 

the following chapter, friction associated with mechanical systems is explored. 
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Chapter 3. Friction in Mechanical Systems 

 

Friction presents in the motion of all mechanical systems in contact, e.g., bearings, 

transmissions, hydraulic and pneumatic cylinders, valves, brakes, and wheels. Friction is 

a natural phenomenon with a long history, and the investigation on friction phenomena 

can be traced back to Da Vinci’s time. Section 3.1 gives a brief historical review of 

friction. The physical phenomena of stick-slip motion are explained through tribology in 

Section 3.2. Section 3.3 provides representative friction models, which mathematicians 

use for system analysis and control engineers use for design of friction compensations in 

tracking control. 

3.1    Investigation of Friction 

Da Vinci (1452-1519) was one of the first scholars to study friction systematically. He 

realized how important friction was for the working machines. He made the observation 

that different materials moved with different ease. He summarized that this was a result 

of roughness of the material in question; thus, smoother material would have lower 

friction. Da Vinci stated the two basic laws of friction 200 years before Newton even 

defined what force was. He stated that: (1) the area in contact has no effect on friction, 

and (2) if the load of an object is doubled, its friction will also be doubled. However, Da 

Vinci did not publish his theories on friction.  

Amontons (1663-1705) rediscovered the two basic laws of friction that first put forward 

by Da Vinci. Coulomb (1736-1806) verified the law rediscovered by Amonstons and 

introduced the concept of Coulomb friction (see Figure 3.1 (a)), where ߤ஼ is the so-called 

kinetic friction coefficient, ܨே  is the normal force, and ݒ௥  is the relative velocity of 

motion). He suggested that the friction opposing the motion was constant and 

independent of the magnitude of the velocity. Coulomb friction is often called the dry 

friction because this friction is caused by pure contact. 

Morin (1833) stated that there is a threshold friction that the applied force has to 

overcome before movement can occur. The friction opposing the motion before relative 
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Figure 3.1 (a) Coulomb friction model, (b) static friction model, and (c) 
stick-slip (or basic) friction model.  

motion starts, is called the static friction (see Figure 3.1 (b), where ߤ௦ is the so-called 

static friction coefficient). The applied force required to overcome the static friction and 

start the relative motion is called the breakaway force. The combination of static friction 

model and Coulomb friction model is commonly referred to as the stick-slip friction 

model (or basic model of friction). It is shown in Figure 3.1 (c). 

One example is used to demonstrate the effect of stick-slip motion on linear spring 

actuated system. Assume the block ݉ is at rest originally, a driving spring (with spring 

constant  ݇ ) is uncompressed initially and the driving end commences to move with 

constant velocity ݒௗ (see Figure 3.2 (a)). The spring is compressed until its compressive 

force reaches a value equal to the static friction ܨ௦ (see Figure 3.2 (b)). Then, the block 

starts to slip, and it is assumed that instantaneously the friction drops to the Coulomb 

friction  ܨ௖. The unbalanced force ሺܨ௦ െ ሶ௠ݒ ௖ሻ acts on the mass as accelerationܨ ൌ
ிೞିி೎

௠
 , 
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so the slip velocity of the block increases until eventually the spring force drops 

sufficiently for deceleration to commence (see Figure 3.2 (c)). If the deceleration phase 

ends without the velocity falling to zero as for the case when the driving velocity is fast, 

then sticking does not reoccur, and the velocity of the block tends to the driving 

velocity ݒௗ. If the velocity falls to zero during the deceleration phase then there are two 

possibilities for the next phase, either velocity reversal or sticking. The former should be 

excluded since it only occurs when ܨ௦ ൐ ௖ܨ3  [24]. If sticking occurs then again the 

driving spring is compressed until the block slips with the consequent drop in friction, 

and the system is then in the same state as at the beginning of the first slip phase. Thus 

the cycle is repeated. 

 

Figure 3.2 Stick-slip motion with constant driving velocity. 
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Lubricants such as grease and oils are often used in contacting surface to reduce wearing. 

These lubricants provide a fluid barrier between contacting surfaces and changes dry 

friction into a different type, the viscous friction. Reynolds (1842-1912) made a 

significant contribution to understanding viscosity in fluid, and he developed expressions 

for the friction caused by the viscosity of lubricants. Viscous friction is shown in Figure 

3.3 (a). It has a linear relation with the relative velocity ݒ௥ (parameter ܾ in Figure 3.3 is 

the viscous friction coefficient). Adding the viscous friction to the basic friction model, 

the so-called classical friction model is obtained (see Figure 3.3 (b)). 

Stribeck (1861-1950) made observations on friction when the contacting surface was 

moving at low velocity. He found that the friction was decreasing continuously with 

increasing velocity and claimed that the transition between stick and slip in friction was a 

continuous process. He named this phenomenon the Stribeck effect and the continuous 

transition, the Stribeck curve (see Figure 3.4 (a)). The Stribeck effect applies to lubricated 

surfaces. If the surface is dry and unlubricated, the transition from stick to slip can be 

considered essentially as discontinuous [1].  

The classical friction model with Stribeck effect describes stick-slip motion under 

lubricated conditions, and the details of the stick-slip friction phenomena are captured by 

the experimental works from Tribology. The stick-slip motion can be categorized into 

four dynamic regimes (see Figure 3.4 (b)), each displaying the different characteristics of 

friction. These regimes are given as follows: 

 

Figure 3.3 (a) Viscous friction model and (b) classical friction model. 
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 Regime I :        static friction  

 Regime II:        boundary layer lubrication  

 Regime III:       partial fluid lubrication  

 Regime IV:       full fluid lubrication 

The four regimes each contribute to the dynamics that a driving force confronts as the 

driven object accelerates away from zero velocity. 

3.2    Stick-slip Motion in Tribology 

The word “tribology” is derived from the Greek word ܴܱܶܵܤܫ meaning rubbing, so that 

a literal translation would be “the science of rubbing”. Tribology was born in England in 

the 1930s. It is defined as the science and technology of interacting surfaces in relative 

motion and of related subjects and practices. It answers questions of wear mechanisms, 

true contact area, and relationships among friction, material properties and lubricating 

processes. Through tribology, physical understanding of friction can be obtained. 

To understand the tribology of engineering surfaces, it is necessary to consider the 

surface topography. Early models of friction failed because the surface topography was 

misunderstood [25]. The true contact between engineering surfaces consists of conformal 

contact and nonconformal contact (see Figure 3.5). Conformal contacts are kinematically 

identified as area contacts, and nonconformal contacts are called point or line contact 

 

Figure 3.4  (a) Stribeck curve and (b) friction regimes of stick-slip motion. 
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when the radii of curvature of the surface do not match kinematically. The idealization of 

point or line contacts in nonconformal contacts is far from reality because the point or 

line contacts deform to create apparent areas of contacts, which increase with increasing 

load. The point or line contacts in noncoformal contacts are called asperities, and the true 

contact sites of asperities form the so-called contact junctions. The deformation of 

asperities at contact junctions is determined by the strength of the materials in study [2]. 

With the above interpretations of the true contact surface, friction behavior can be 

explained for each friction regimes in the stick-slip motion. 

Regime I: static friction 

The first regime is the static friction or the presliding displacement. From the standpoint 

of control, asperities at contact junctions deform elastically, giving rise to presliding 

displacement; they also deform plastically, giving rise to the growing static friction. Dahl 

[4] studied experimental observations of presliding motion of friction and concluded that 

for small motions, a contact junction in static friction behaves like a spring (see Figure 

3.6). This phenomenon is termed Dahl effect. 

 

Figure 3.5 Surface topography.

 

Figure 3.6 Dahl’s spring model. 
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Regime II: boundary layer lubrication 

This regime is called boundary lubrication regime, and it represents very low velocity 

sliding. The name comes from the fact that lubricants leave a deposit on the surface of the 

materials; nevertheless, they are unable to build a fluid film between the surfaces. This 

regime in the stick-slip motion is dominated by the solid to solid contact. Movement 

occurs when the applied force is greater than the static friction and the spring-like 

behavior of the asperities are sheared to rupture (see Figure 3.7). Because boundary 

lubrication is a process of shear in a solid, it is often assumed that friction in boundary 

lubrication is higher than fluid lubrication. This, however, is not always the case; it is not 

necessary for the shear strength of a solid to be greater than the viscous forces of a fluid 

[25]. 

Regime III: partial fluid lubrication 

In this regime, lubricant is brought into the nonconfromal contact region through motion. 

The greater viscosity or motion velocity, the thicker the fluid film will be. When the film 

is not thicker than the height of the asperities, some solid to solid contacts still occur. 

This is the reason why it is called the partial fluid lubrication. An analogy to the partial 

fluid lubrication is the water ski [2]. As the skier is elevated hydrodynamically by his 

increased velocity, his drag is reduced, allowing him or her to go even faster. With the 

increasing acceleration, the velocity increases and skier is elevated even higher. This is a 

positive feedback cycle. Hence, the dynamics of this regime is manifestly unstable. 

Partial fluid lubrication is the most difficult portions of modeling. It appears that the 

details of surface roughness, asperity size, and orientation, have significant effect on the 

behavior of friction in this regime. Of principal interest to the controls engineer is the 

 

Figure 3.7 Rapture of spring-like behavior of asperities. 
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dynamics of partial fluid lubrication with changing velocity. Numerical investigations 

reveal a time lag between a change in velocity and a change in friction. Although the time 

lag may be small, its impact to stick-slip motion is substantial [25]. 

Regime IV: full fluid lubrication 

In this regime, contacting surface is in full fluid lubrication. When full fluid lubrication 

occurs, all solid to solid contact has been eliminated and the surfaces are supported 

entirely by the lubricant. The relation between friction and velocity is near linear [1]. 

3.3    Modeling Friction 

Engineers build model-based controllers and employ experimental data to adjust model 

parameters. To accurately design friction compensation in control system, a friction 

model must have a good representation of the real friction. The greatest challenge comes 

from the modeling of complex behaviors in friction for tiny motions and corresponding 

low velocities [25]. 

Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the 

vicinity of zero velocity. Karnopp [26] developed a friction model to overcome the 

problem with zero velocity detection and to avoid switching between different state 

equations for stick and slip. The model defines a zero velocity interval, |ݒ| ൏ ∗ݒ . 

Parameter ݒ∗ is used to delineate the region centered at zero velocity, inside which the 

velocity of the system is considered to be zero until the breakaway force applied to object 

is large enough to overcome the static friction. For velocities within this interval, the 

internal state of the system may change and be non-zero, but the output of the block is 

maintained at zero. The zero velocity interval however does not agree with real friction 

[6]. 

In Karnopp’s model, the stick-slip friction is modeled as follows:  

௙ܨ ൌ ቐ

| ௔ܨ|  ௔                    ifܨ  ൑ ௦ܨ and |௥ݒ| ൑ ∗ݒ

| ௔ܨ|  ௔ ሻ    ifܨሺ݊݃݅ݏ௦ܨ ൐ ௦ܨ and |௥ݒ| ൑ ∗ݒ

|௥ݒ|  if            ݊݃݅ݏ஼ܨ  ൐ ∗ݒ
  (3.1)

where ܨ௔  is the applied force (in servo pneumatic actuator, this force is the result of 

pressure differential ∆ܲ  across the piston), ܨ௦  is the static friction, ܨ஼  is the Coulomb 
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friction. The particular value of ݒ∗ should be small enough to be considered negligible 

but large enough to avoid excessive stiffness in the numerical integration process [27]. 

One of the main problems with the simple classical stick-slip friction model is the 

discontinuity between static friction and Coulomb friction. The model does not provide a 

sufficient representation of friction, especially for a lubricated application because under 

lubrication the discontinuity is softened. In such conditions, behavior of friction depends 

on the changes of relative velocity [1]. 

Armstrong [25] presented theoretical treatment that predicted the critical velocity for 

termination of stick-slip friction as a function of system parameters. For control engineers 

these analyses provide an approach to the question of how slow a machine may be driven 

before the onset of stick-slip, and on what parameters this limit depends. 

The friction model given in [9] consideres the behavior of friction as velocity varies. The 

model includes a combination of static friction, Coulomb friction, viscous friction, and 

the Stribeck effect. The friction is described as 

௙ܨ ൌ ௥ሻݒሺ݊݃݅ݏ஼ߤேሺܨ  ൅ ௥ሻݒܾ െ ௦௧௥௜௕௘௖௞, (3.2)ܨ

where 

௦௧௥௜௕௘௖௞ܨ ൌ ேܨ
ఓೞ೟ೝ೔್೐೎ೖ௩ೝ

ଵାఓೞ೟ೝ೔್೐೎ೖ|௩ೝ|
  (3.3)

describes the Stribeck effect, ߤ஼ ൐ 0 is the Coulomb friction coefficient, ܾ ൐ 0 is the 

viscous friction coefficient, ߤ௦௧௥௜௕௘௖௞ is a coefficient characterizing the modeling of the 

Stribeck effect, and ܨே is the normal force. However, this model does not handle pre-

sliding displacement. According to Amstrong [2], this can be done by describing the 

static behavior through a separate equation. Some mechanism must then give the 

switching between the modeling for sticking and the modeling for sliding. 

The aforementioned friction model is a static mapping between the friction and the 

relative velocity, and it only describes a steady-state relationship. However, some friction 

phenomena cannot be captured by the static mappings, e.g., breakaway force variations 

and hysteretic behavior with varying velocity. Johannes et al. [28] experimentally found 

that the breakaway force depends on the increasing rate of the applied force. Hess et al. 
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[29] performed experiments with a periodic time varying velocity superimposed on a bias 

velocity, and the result of friction-velocity relation reveals hysteresis. The hysteresis is 

due to a time lag in the change of the friction following a change in the velocity. The time 

lag in the friction is called the frictional memory, and the time lag has been observed 

experimentally in a wide range of circumstances [2]. 

It has been argued that control strategies that attempt to compensate for the effect of 

friction without resorting to high gain control loops, inherently require a good friction 

model to predict and compensate for the friction [5]. Since control engineers are 

concerned with the dynamics of the friction, simple static mappings are not sufficient to 

address applications with high precision positioning requirement and low velocity 

tracking. There has been a significant interest in dynamic friction models. This has been 

driven by intellectual curiosity, demands for precision and advances in hardware that 

make it possible to implement friction compensators [6]. Thus, to obtain accurate friction 

compensation and best performance, friction model with dynamics behavior is necessary 

[2].  

A dynamic model describing the spring-like behavior during sticking was introduced by 

Dahl [4]. The Dahl model is essentially Coulomb friction with a time lag in the change of 

friction when the direction of motions changes. Dahl’s model accounts for the static 

friction and the Coulomb friction but does not describe the Stribeck effect [3]. 

The starting point for Dahl’s model is the stress-strain curve in classical solid mechanics. 

When subject to stress the friction increases gradually until rupture occurs (refer back to 

Figure 3.7). Dahl modeled the stress-strain curve by a differential equation. Let ݔ be the 

displacement, Dahl’s model has the following form: 

ௗி೑

ௗ௫
ൌ ߪ ቆ1 െ

ி೑

ி೎
௥ሻቇݒሺ݊݃݅ݏ

௔

  (3.4)

where ߪ is the equivalent spring constant and ܽ is a parameter that determines the shape 

of the stress-strain curve. The friction ܨ௙ will never be larger than the Coulomb friction ܨ௖ 

if its initial value is such that ܨ௙ሺ0ሻ ൌ  ௖ [3]. Notice that in this model the friction is onlyܨ

a function of the displacement and the sign of the relative velocity ݒ௥. This implies that 
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the friction is only position dependent. A time domain Dahl friction model can be 

obtained by incorporating relative velocity term into equation (3.4): 

ௗி೑

ௗ௧
ൌ

ௗி೑

ௗ௫
௥ݒ ൌ

ௗி೑

ௗ௫

ௗ௫

ௗ௧
 ൌ ߪ ቆ1 െ

ி೑

ி೎
௥ሻቇݒሺ݊݃݅ݏ ௥.  (3.5)ݒ

where ܽ ൌ 1 is used and higher value will give a stress-strain curve with a sharper bend. 

The LuGre model is another dynamic friction model presented in [5]. The model captures 

most of the friction characteristics, i.e., the Stribeck effect, hysteresis, spring-like 

characteristics for stiction, and varying breakaway force. 

The modeling of presliding in LuGre friction model was inspired from Dahl’s friction 

model. It visualizes the irregular asperities on contacting surfaces as elastic bristles (see 

Figure 3.8) and considers the average deflection of the bristles as a internal state ݖ.  

With reference to Dahl’s spring model with equivalent spring constant ߪ, friction due to 

the average deflection of bristles is given as 

௙ܨ ൌ (3.6) .ݖߪ

Substituting equation (3.6) into equation (3.5), the dynamics of internal state ݖ is 

ሶݖ ൌ ௥ݒ െ ߪ ቀ
|௩ೝ|

௚
ቁ (3.7)  ,ݖ

where the Coulomb friction ܨ஼  is replaced with a function ݃ that models the Stribeck 

effect. A reasonable choice of ݃ giving a good approximation of Stribeck effect is 

݃ ൌ ௖ܨ ൅ ሺܨ௦ െ ௖ሻ݁ܨ
൬ିቀ

ೡೝ
ೡೞ
ቁ
మ
൰
, (3.8)

where ݒ௦ is the Stribeck velocity, or the threshold velocity, beyond which the average 

 

Figure 3.8 Bristles on contacting surface. 
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bristle deflection becomes sufficiently large and rupture occurs. This corresponds to the 

sudden drop of friction in stick-slip motion.  

Considering a combination of bending and damping of the bristle as well as viscous 

friction, the LuGre friction model has the final form given as 

௙ܨ ൌ ݖ଴ߪ  ൅ ሶݖଵߪ ൅ ௥,  (3.9)ݒଶߪ

where ߪ଴ ≡ ߪ  is equivalent spring constant of the bristles, ߪଵ  the equivalent damping 

coefficient for the rate of average bristle deflections, ߪଶ ≡ ܾ is the viscous coefficient. 

Given equations (3.7)-(3.9), the LuGre friction model is given as 

݂ܨ ൌ ݖ0ߪ ൅ ሶݖ1ߪ ൅        ݎݒ2ߪ

 
ሶݖ   ൌ ݎݒ െ ቀ

|ݎݒ|

݃
ቁ                     ݖ

0݃ߪ ൌ ܿܨ ൅ ሺݏܨ െ ሻ݁ܿܨ
൬െቀ

ݎݒ
ݏݒ
ቁ
2
൰ 
 
  (3.10)

where ߪ଴ for the internal state dynamics ݖሶ is rearranged into the Stribeck term ݃. 

From the control perspective, parameter ଴ߪ ଵߪ , , and ߪଶ  can be calibrated through 

systematic experimental identifications, which may involve considerable work [5]. These 

parameters may vary slowly but significantly in real applications due to temperature 

changes, material wear, lubrication conditions, and the normal acting forces between 

contact surfaces. The remaining parameters ܨ௦, ܨ௖ , and ݒ௦ are normally estimated by the 

construction of the friction-velocity mapping measured during the steady state motions 

[30]. 

The LuGre friction model is used in the simulations of this study for two reasons: (i) the 

transition from static friction to kinetic friction needs to be modeled as a continuous 

process because lubricant is assumed to be present in the pneumatic cylinder, and (ii) the 

LuGre model provides a dynamic behavior of the friction internal state at low speed 

motion, which is desired for construction of the adaptive law incorporating the dynamic 

behaviors of friction. 

3.4    Summary 

In this chapter, a historical development of friction is reviewed, and the causes of friction 
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phenomena are explored through tribology. From control perspective, a good friction 

model can improve the performance of a control system. However, Friction is difficult to 

model. If the model does not reveal the true friction, then the control system can be 

unstable and reach a limit cycle. In the following chapter, stability analysis of system 

with friction is given to show the adverse effect of friction.  
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Chapter 4. Mathematical Preliminary for 

Stability Theory in Systems with Friction  

 

This chapter is intended to investigate methods suitable in the analysis and control of 

systems with friction. In system analysis, it is quite often that the preliminary results of 

complex physical systems can be obtained from simplified models, e.g., a nonlinear 

system is locally unstable if its linear approximation is unstable. In the study of system 

with friction, the system is simplified into a non-smooth system model. Thereafter, an 

appropriate analysis can be carried out for the simplified system. In Section 4.1, the 

differences between a smooth system model and a non-smooth system model are 

clarified. A necessary condition to implement non-smooth system is the existence of 

solutions. Section 4.2 reviews Filippov’s solution theory defined for the non-smooth 

system [7]. In advanced system analysis, one of the formalism for stability analysis is the 

Lyapunov stability theory. In Section 4.3 the theory is applied to non-smooth systems for 

stability analysis. Finally, the phase portrait of a system with persistent friction 

disturbance is used to verify the solution theory and the stability analysis. 

4.1    Dynamical System Modeling 

A dynamical system is a system whose states evolve with time. The adjective 

“dynamical” cannot be replaced by “dynamic” because the dynamic systems utilizing 

Newton’s law of motion to describe the relationship between force and motion is a subset 

of dynamical systems, i.e., 2nd-order dynamical systems. The evolution of a dynamical 

system is governed by a set of rules and is usually put in the form of equations. Consider 

a dynamical system described by a set of ordinary differential equations: 

ሶ࢞ ሺݐሻ ൌ ,ݐ൫ࢌ ሻ൯  (4.1)ݐሺ࢞

where ࢀ࢞ ൌ ሾݔଵ, ,ଶݔ … ሿ is the state vector, ࢌ ∈ ࡾ ൈ  is the differential equations whose ࢔ࡾ

variables are the states of the dynamical system, ݐ is the time variable, and ࢞ሶ ൌ   ࢞݀ ⁄ݐ݀  is 

the time derivative of the state vector. Suppose that ࢌ൫ݐ,  ሻ൯ is continuous, and letݐሺ࢞
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ሺݐ଴, ଴ሻ࢞ ∈ ࡾ ൈ ࢔ࡾ  be given. Then, if ࢌ൫ݐ, ሻ൯ݐሺ࢞  is linearly bounded, there exists one 

solution of system on ሺെ∞,∞ሻ  such that ࢞ሺݐ଴ሻ ൌ .଴࢞  Now add the hypothesis that 

,ݐ൫ࢌ ሻ࢞ሺܮ i.e., there exists constant ,࢞ ሻ൯ is locally Lipschitz atݐሺ࢞ ൐ 0  and ݎ ൐ 0 such 

that  

,ݐሺࢌ‖ ૚ሻ࢞ െ ,ݐሺࢌ ‖૛ሻ࢞ ൑ ૚࢞‖ሻݔሺܮ െ ,‖૛࢞ ,ଵݔ∀ ଶݔ ∈ ௥ܤ ൅ (4.2)  ,࢞

where ܤ is a ball with radius ݎ in state space ࢔ࡾ. Then there exists only one solution of 

the system on ሺെ∞,∞ሻ such that ࢞ሺݐ଴ሻ ൌ  .଴ [9]࢞

The difference between a smooth dynamical system and a non-smooth dynamical system 

is distinguished through an illustrating example. Consider a spring-mass assembly with 

one end of the spring attached to a stationary wall and the other end attached to a block 

(see Figure 4.1). Assuming that the block is subject to spring force and Coulomb friction, 

the system can be represented by the following differential equation: 

ሶݒ݉ ൌ ௦௣௥௜௡௚ܨ ൅ ஼, (4.3)ܨ

where ܨ௦௣௥௜௡௚ is the force exerted on block by a linear spring, ܨ஼ is the Coulomb friction 

between block and the ground, ݉ is the mass of the block, and ݒ௥ is the relative velocity 

of the block. Force laws are considered according to their energy potentials in the system. 

The energy potential of a linear spring is given as 

ܷ ൌ
ଵ

ଶ
ଶ, (4.4)ݔ݇

 

Figure 4.1 Mass-spring system with Coulomb friction. 
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where ݔ is the elongation of the spring and ݇ is the spring constant. The force law of the 

spring can be expressed as 

௦௣௥௜௡௚ܨ ൌ ݂ሺݔሻ ൌ  
డ௎

డ௫
ൌ (4.5) .ݔ݇

In contrast to the spring energy potential, the Coulomb friction has only energy pseudo-

potential and it is given as 

߶ ൌ ௥|. (4.6)ݒ|஼ߤேܨ

where ܨே is the normal force and ߤ஼ is the Coulomb friction coefficient. The force law of 

Coulomb friction can be expressed as 

஼ܨ ൌ ݂ሺݒ௥ሻ ൌ
డథ

డ௩ೝ
ൌ ௥ሻ, (4.7)ݒሺ݊݃݅ݏ஼ߤேܨ

where the ݊݃݅ݏሺ∙ሻ function is defined as 

௥ሻݒሺ݊݃݅ݏ ൌ   ൝
െ1                   ݒ௥ ൏ 0
௥ݒ                      0 ൌ 0
௥ݒ                      1 ൐ 0

. (4.8)

Both energy potential functions are absolute continuous (see Figure 4.2), but the energy 

potential for the spring force law is a smooth quadratic function (Figure 4.2 (a)) while the 

 

Figure 4.2 (a) Energy potential for spring force law and (b) Energy pseudo-
potential for force law of Coulomb friction. 
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energy pseudo-potential for the force law of Coulomb friction is a non-smooth function 

(Figure 4.2 (b)). By non-smooth, it means there is a kink (non-smoothness) when the 

velocity passes the zero value. The definition of the existence and uniqueness of solution 

can be applied to the smooth potential function ܷ. However, the non-smooth potential 

function ߶ does not satisfy the Lipschitz condition with a constant ܮ everywhere, i.e., 

ܮ ൌ ∞ when relative velocity ݒ௥ ൌ 0. Therefore, the definition of solution of non-smooth 

system is taken into consideration in a different domain, the Filippov’s system.  

4.2    Non-smooth Systems 

In this section, the analysis of non-smooth systems is considered through an example of 

Coulomb friction in mechanical system. The classical derivative of a smooth continuous 

function is extended to the generalized derivative of Clarke for non-smooth continuous 

functions [9]. Considering the force law of Coulomb friction, where friction coefficient 

߶߲ ஼ is assumed to be positive, the pseudo-potential ߶ and its partial derivativeߤ ⁄௥ݒ߲  are 

shown in Figure 4.3 (a) and (b), respectively. 

The partial derivative ߲߶ ⁄௥ݒ߲  is defined by the tangent line to the graph of ߶ when the 

graph is smooth at ݒ௥. Although the function is not differentiable at everywhere in ݒ௥, it 

possesses at each ݒ௥
∗a left and right derivatives defined as 

 

Figure 4.3 Potential, classical derivative, and generalized derivative. 
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డథ

డ௩ೝ

ି
ൌ lim௩ೝ↑௩ೝ

∗
థሺ௩ೝሻିథሺ௩ೝ

∗ሻ

௩ೝି௩ೝ
∗

డథ

డ௩ೝ

ା
ൌ lim௩ೝ↓௩ೝ

∗
థሺ௩ೝሻିథሺ௩ೝ

∗ሻ

௩ೝି௩ೝ
∗

, (4.9)

respectively. The generalized derivative of ߶ at ݒ௥ ൌ 0  is declared as any value included 

between its left and right derivatives. Such an intermediate value can be expressed as a 

convex combination of the left and right derivatives: 

డథ

డ௩ೝ
ൌ ሺ1 െ ሻݍ

డథ

డ௩ೝ

ି
൅ ݍ 

డథ

డ௩ೝ

ା
, 0 ൑ ݍ ൑ 1.  (4.10)

With reference to Figure 4.3 (c), the Coulomb friction has a map that associates with any 

஼ܨ ௥ a setݒ ൌ ௥ሻݒሺܨ ൌ ߲߶ ⁄௥ݒ߲ , and the Coulomb friction considered in such a fashion is 

a set-valued function of  ݒ௥. A set-valued function can therefore contain vertical segments 

on its graph. Coulomb friction ܨ஼ is a monotone set-valued function because its graph 

satisfies the following relation: 

ሺܨ஼ െ ஼ܨ
∗ሻ்ሺݒ௥ െ ௥ݒ

∗ሻ ൒ 0, ∀ሺݒ௥
∗, ஼ܨ

∗ሻ ∈ ,஼ሻܨሺ݄݌ܽݎ݃ ∀ሺݒ௥, ஼ሻܨ ∈ ஼ሻ, (4.11)ܨሺ݄݌ܽݎ݃

where ݄݃݌ܽݎሺܨ஼ሻ ൌ ሼሺݒ௥, ௥ݒ |஼ሻܨ ∈ ܴሽ.  

The Coulomb friction ܨ஼ is called the maximal monotone function as well because there 

is no other monotone set-valued function whose graph strictly contains the graph of ܨ஼ 

(see Figure 4.3 (c)), and Coulomb friction can be described by set-valued ܵ݅݃݊ሺ∙ሻ 

function: 

௥ሻݒሺܨ ൌ ܵ݅݃݊ሺݒ௥ሻ ൌ  
డథ

డ௩ೝ
ൌ  ቐ

െ|ܨ௖| ௥ݒ ൏ 0
ሾെܨ௖, ൅ܨ௖ሿ ௥ݒ ൌ 0
௖ܨ| | ௥ݒ ൐ 0

. (4.12)

Consider a 1-D example, in which an under compensated block runs on a rough surface. 

As shown in Figure 4.4, assume that the block (݉ ൌ 1 ݇݃ሻ has an initial velocity ݒ଴ and 

actuated by a constant force ܨ௔ ൌ 0.07 ܰ. The Coulomb friction ܨ஼ always opposed the 

motion of the block and is modeled by the set-valued ܵ݅݃݊ሺ∙ሻ function. 

The differential equation of the system given by Newton’s 2nd law is  
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ሶ௥ݒ݉ ൌ ௔ܨ െ ௖ (4.13)ܨ

Combining equation (4.13) with the set-valued function (4.12) representing the Coulomb 

friction,  

௔ܨሶ௥െݒ݉ ∈ െܨ஼ ൌ െܨሺݒ௥ሻ (4.14)

Rearranging (4.14),  

ሶ௥ݒ ∈
ଵ

௠
൫ܨ௔ െ ௥ሻ൯ݒሺܨ ൌ  0.07 െ ܵ݅݃݊ሺݒ௥ሻ ൌ ൝

1.07 ௥ݒ ൏ 0
ሾെ0.93, 1.07ሿ ௥ݒ ൌ 0
െ0.93 ௥ݒ ൐ 0

, (4.15)

For a given initial condition, ݒ଴ ് 0, a solution of the initial value problem can be 

obtained as 

ሻݐ௥ሺݒ ൌ   ൜
ݐ1.07 ൅              ଵܥ ݒ ൏ 0
െ0.93ݐ ൅           ଶܥ ݒ ൐ 0

  (4.16)

with the constant ܥଵ  and ܥଶ  being determined by the initial conditions. Each solution 

reaches ݒ௥ ൌ 0  in finite time. Once a solution arrives at ݒ௥ ൌ 0, it cannot leave ݒ௥ ൌ 0, 

because ݒሶ௥ ൐ 0 for ݒ௥ ൏ 0  and ݒሶ௥ ൏ 0 for ௥ݒ  ൐ 0  [9]. The solution will therefore stay 

at ݒ௥ ൌ 0, which implies that ݒሶ௥ belongs to the interval ሾെ0.93, 1.07ሿ as defined in the 

generalized derivative. Hence, the existence of solution for the set-valued function is 

guaranteed by the linearly bounded derivative set ݒሶ௥ . The system (4.15) having its 

solution defined in such a fashion is termed differential inclusion. 

With reference to the general differential equation (4.1), it is natural for differential 

equations with discontinuous right-hand side to extend the notion of solution by replacing 

 

Figure 4.4 Mass move on rough surface. 
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the right-hand side ࢌሺ࢞ሻ with a set valued funciton ࡲሺ࢞ሻ such that ࡲሺ࢞ሻ ൌ  ࢞ ሻ for all࢞ሺࢌ

for which ࢌሺ࢞ሻ is continuous in ࢞. At the point for which ࢌሺ࢞ሻ is discontinuous in ࢞ a 

suitable set for ࡲሺ࢞ሻ is required. Then an absolutely continuous function ࢞ሺݐሻ is said to 

be a solution of the differential inclusion if it fulfills 

ሶ࢞ ሺݐሻ ∈ ,ݐ൫ࡲ ሻ൯  (4.17)ݐሺ࢞

for almost everywhere except a set of Lebesgue measure zeros [9], where the Lebesgue 

measure on ܴ assigns the value ݀ െ ܿ to the set ሼሺܿ, ݀ሿ| ܿ ∈ ܴ, ݀ ∈ ܴሽ, i.e. ߤ൫ሺܿ, ݀ሿ൯ ൌ

݀ െ ܿ  for ݀ ൒ ܿ , and Lebesgue measure of a single element is zero, i.e., Lebesgue 

measure zero. 

The solution of differential equations with a discontinuous right-hand side obtained in 

such a fashion is based on Filippov’s solution theory [7]. The solution ࢞ሺݐሻ in the sense 

of Filippov for a differential equation with a discontinuous right-hand side (also called 

Filippov’s system) is absolutely continuous in time, i.e., there are no discontinuities in the 

solution.  

4.3    Lyapunov Stability Theory  

Given a control system, the first and most important question about its various properties 

is whether it is stable because an unstable control system is typically useless and 

potentially dangerous [13]. 

The English adjective “stable” originates from the Latin “stabilis”, 

deriving itself from “stare”, to stand. Its first acceptation is “standing 

firmly”, “firmly established”. A natural extension is “durable”, not to 

mention the moral meaning “steady in purpose, constant” [31].  

Considering the differential equation (4.1), let ࢞ሺݐሻ be the unique solution for ݐ ൐ ଴ݐ , 

which depends continuously upon (࢞଴, ଴ሻݐ  and equals ࢞଴  at ݐ଴ . In addition, ࢞ ൌ 0  is 

assumed to be the equilibrium of (4.1). Graphically shown in Figure 4.5, for a 2nd-order 

system to be stable, the trajectory will initiate or terminate on the equilibrium point, 

where the distance from the equilibrium to any point on the trajectory is the magnitude of 

the state vector, |࢞|.  
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As far as control system engineers are concerned, stability means for a bounded input if 

the output is bounded, the system is stable [32]. Although many kinds of stability have 

been defined [33] only two are important to the control engineers. They are [32]: (1) the 

solution ࢞ ൌ 0  is said to be stable if for any ߝ ൐ 0 and any ݐ଴, there exists a ߪሺߝ,  ଴ሻ suchݐ

that |࢞଴| ൏ ߪ  implies |࢞ሺݐሻ| ൏ ߝ  for ݐ  ൐ ଴ݐ ; (2) the solution ࢞ ൌ 0   is said to be 

asymptotically stable if it is stable and in addition as  ݐ → |ሻݐሺ࢞| ,∞ → 0. 

The most useful and general approach for studying the stability of nonlinear system is the 

“General Problem of the Stability of Motion” developed by Russian mathematician 

Lyapunov in late 19th century. Lyapunov stability theory includes two methods for the 

stability analysis. One is the so-called linearization method and the other is the direct 

method. The linearization method draws conclusions about a nonlinear system’s local 

stability around an equilibrium point from the stability properties of its linear 

approximation. The direct method is not restricted to local motion and determines the 

stability properties of a nonlinear system by constructing a scalar “energy-like” function 

ܸሺ࢞ሻ and analyzing the time derivative ሶܸ ሺ࢞ሻ ൌ ሶ்ܸ࢞∆ ሺݐሻ along solution curves of the 

differential equation (4.1). Formally, such an “energy-like” function is called candidate 

Laypunov function. A real scalar function ܸሺ࢞ሻ is said to be a Lyapunov function for 

 

Figure 4.5 Phase plot of a stable 2nd-order system with equilibrium at the 
origin.
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equation (4.1) if it is positive definite and satisfies the Lipschitze condition (4.2) and 

ܸሺ0ሻ ൌ 0, such that ∆்ܸ࢞ሶ ሺݐሻ ൑ 0 [32].  

In 1892, Lyapunov proved the following theorems. 

Theorem 4.1: If there exists a Lyapunov function ܸሺݐ, ࢞ ሻ for the system (4.1), then࢞ ൌ

0 is stable. 

Theorem 4.2: If there exists a Lyapunov function ܸሺݐ, ሻ such that ሶܸ࢞ ሺݐ,  ሻ is negative࢞

definite, then ࢞ ൌ 0 is asymptotically stable. 

The basic philosophy of Lyapunov’s direct method is the mathematical extension of a 

fundamental physical observation: if the total energy of a mechanical or electrical system 

is continuously dissipated, the system must eventually settle down to an equilibrium point 

[32].  

A solution ࢞∗ሺݐሻ of (4.1) is called stable at ݐ଴, or more precisely, stable at ݐ ൌ  ଴ in theݐ

sense of Lyapunov if for every ߝ ൐ 0 there exists a ߜሺߝሻ ൐ 0 such that ࢞ሺݐሻ is any other 

solution with ‖࢞ሺݐ଴ሻ െ ࢞
∗ሺݐ଴ሻ‖ ൏ ሻݐሺ࢞‖ then ,ߜ െ ࢞∗ሺݐሻ‖ ൏ ݐ for all ߝ ൒  ଴. Thus, theݐ

concept of stability in the sense of Lyapunov, as shown in Figure 4.6, is nothing but 

continuous dependence of the solutions on ଴࢞  ൌ ଴ ሻݐሺ࢞ , uniformly with respect to 

ݐ ∈ ሾݐ଴,∞ሻ [9]. 

In general Lyapunov’s theory is applied to systems with continuous right-hand side. In 

the following, the theory is extended to the system with discontinuous right-hand side. 

 

Figure 4.6 The concept of Lyapunov stability of an equilibrium point [28]. 
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Denoting a solution of differential inclusion ࢞ሶ ∈ ,ݐ൫ࡲ ሻ൯ݐሺ࢞  starting from the initial 

condition ࢞ሺݐ଴ሻ ൌ  ሻ is in general non-unique [9]. A sufficientݐሺ࢞ ሻ, the solutionݐሺ࢞ ଴  by࢞

condition for uniqueness of solutions can be gained if ࡲ൫ݐ,  ሻ൯ possess the maximalݐሺ࢞

monotone property. 

The proof of the uniqueness is given by [9]. With reference to the differential inclusion 

ሶ࢞ ∈ െ࡭൫ ࢞ሺݐሻ൯, define ܵሺെ࡭, ,଴ݐ  ݐ ሻ, withݐሺ࢞  ଴ሻ as the set of solution curves࢞ ൒   ଴ݐ , 

starting from the initial condition  ࢞ሺݐ଴ሻ ൌ  ,.଴, i.e࢞

ሻݐሺ࢞  ∈  ܵሺെ࡭, ,଴ݐ ଴ሻ.  (4.18)࢞

Let ࢞ሺݐሻ ∈ ܵሺെ࡭, ,଴ݐ ଴ሻ࢞  and ࢞∗ሺݐሻ ∈ ܵሺെ࡭, ,଴ݐ ଴ሻ࢞  be solutions of the differential 

inclusion. Assume that the system does not have a unique solution. Then there exist 

଴ሻݐ ሺ࢞ ൌ ሻݐሺ࢞ ଴ሻ such thatݐ ሺ∗࢞ ്  ሻ. Considering the Lyapunov functionݐሺ∗࢞

ܸሺݐሻ ൌ
ଵ

ଶ
ሻݐሺ࢞‖ െ ሻ‖ଶ, (4.19)ݐሺ∗࢞

the time derivative of ܸሺݐሻ yields 

ሶܸ ሺݐሻ  ൌ ሻݐሺ࢞‖ െ ‖ሻݐሺ∗࢞
ௗ

ௗ௧
ሻݐሺ࢞‖ െ   ‖ሻݐሺ∗࢞

          ൌ ൫࢞ሺݐሻ െ ሻ൯ݐሺ∗࢞
்
൫࢞ሶ ሺݐሻ െ ሶ࢞ ∗ሺݐሻ൯  

 ∈ െ൫࢞ሺݐሻ െ ሻ൯ݐሺ࢞൫࡭ሻ൯൫ݐሺ∗࢞ െ ሻሻ൯ݐሺ∗࢞ሺ࡭ ൑ 0  (4.20)

Hence, the function ܸሺݐሻ cannot increase meaning that the distance between ࢞ሺݐሻ and 

 ,.ሻ cannot increase with time, i.eݐሺ∗࢞

ሻݐሺ࢞‖ െ ‖ሻݐሺ∗࢞ ൑ ଴࢞‖ െ ଴‖. (4.21)∗࢞

Taking ࢞଴ ൌ ଴∗࢞ , it follows that ࢞ሺݐሻ ൌ ሻݐሺ࢞ ሻ, which is in contradiction withݐሺ∗࢞ ്

 .ሻ. Consequently, the system has a unique solutionݐሺ∗࢞

Now consider a mass-spring system with persistent friction input (see Figure 4.7). The 

mass block is riding on a conveyer belt that is moving at a constant velocity ݒௗ. Denote 

the horizontal position of the mass by ݔ and its velocity by ݒ. The relative velocity of the 

mass with respect to the belt is denoted by ݒ௥ ൌ ݒ െ  ௗ. The static friction mapping (3.2)ݒ
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is used in this example, and its plot is shown in Figure 3.4(a). The friction defined in the 

sense of differential inclusion is 

௙ܨ ∈ ௥ሻݒ஼ܵ݅݃݊ሺߤேሺܨ ൅ ௥ሻݒܾ െ ௦௧௥௜௕௘௖௞ܨ

௦௧௥௜௕௘௖௞ܨ ൌ ேܨ
ఓೄ೟ೝ೔್೐೎ೖ௩ೝ

ଵାఓೄ೟ೝ೔್೐೎ೖ|௩ೝ|
 .

  (4.22)

From Newton’s 2nd law, the equation of motion is  

ሶݒ݉ ൅ ݔ݇ ൌ ௙. (4.23)ܨ 

The equation of motion together with the set-valued friction law gives a 2nd-order 

differential inclusion, 

ሶݒ ∈ െ
௞

௠
ݔ ൅

ிಿ

௠
ሺߤ஼ܵ݅݃݊ሺݒ௥ሻ ൅ ௥ሻݒܾ െ

ிಿ

௠

ఓೄ೟ೝ೔್೐೎ೖ௩ೝ

ଵାఓೄ೟ೝ೔್೐೎ೖ|௩ೝ|

ሶݔ ൌ                                           ݒ
. (4.24)

The phase portrait of the system, which creates the stick-slip motion is given in Figure 

4.8 for the parameter values ൌ ேܨ  ݃݇ 1 ൌ 10 ܰ, ݇ ൌ ௗݒ ,݉/ܰ 1 ൌ ஼ߤ ,ݏ/݉ 0.3 ൌ 0.2, 

ܾ ൌ 0.1, and ߤௌ௧௥௜௕௘௖௞ ൌ 0.2. The equilibrium is an unstable focus surrounded by a stable 

limit cycle, which alternates between the stick phase (ݒ ൌ  and the backward (ݏ/݉ 0.3

slip phase (i.e., below the stick phase, ݒ ൏  It can be observed that the solution .(ݏ/݉ 0.3

shows a kink in the phase portrait when the solution curves go from forward slip phase 

(i.e., above the stick phase, ݒ ൐  to the backward slip (or vice versa). At those (ݏ/݉ 0.3

time instance, the friction ܨ௙ jumps to another value. The acceleration ݒሶ  is not defined at 

those time instances for which such a change occurs. The resulting limit cycle is due to 

 

Figure 4.7 Mass-spring system with persistent friction disturbance. 
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the fact that the stick-slip friction (refer to Figure 3.4 (a)) is not a maximal monotone 

function; hence, there is the unstable equilibrium circled by the stable limit cycle. This 

example verifies the Filippov’s solution theory for the existence of solution of non-

smooth system and the Lyapunov stability theory for the uniqueness of solution to 

guarantee system stability.  

4.4    Summary  

In this chapter, systems with friction is simplified to non-smooth systems and analyzed 

through Lyapunov stability theory. The analysis result reveals that Stribect effect in the 

friction is the cause of the system instability and the limit cycle. The friction induced 

adverse effects can jeopardize the performance of control systems if friction 

compensation strategies are not considered properly. In the following chapter, Lyapunov-

based control theory is used to develop nonlinear controllers, which give advanced 

control to pneumatic actuator system and adaptive friction compensation. 

 

Figure 4.8 Phase portrait of mass-spring system with persistent friction 
disturbance.
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Chapter 5. Nonlinear Controller Design  

 

In this Chapter, the Lyapunov-based control theory combined with adaptive-robust 

control is used to design a complete nonlinear controller for slow motion tracking control 

of a servo pneumatic actuator. The resulting nonlinear controller shows mathematical 

attempts to improve the performance of the system, including robust reference tracking, 

robust closed-loop stability, and on-line estimate of unknown parameters.  

In nonlinear systems, the system responses cannot be determined systematically as linear 

systems do in either time domain or frequency domain. The behaviors of nonlinear 

system vary with different reference signals in time domain, and it is not possible to 

specify the system behavior in frequency domain [13]. In order to obtain qualitative 

specifications of the system behavior in the operating region of interest, computer 

simulation is an important analytical tool in determining whether design specifications 

are met, i.e., stability, accuracy and speed of response, and robustness.  

In nonlinear controller design, model-based approach is an essential component. Once a 

mathematical model is constructed, the system parameters can be determined through 

experimental identifications. In the modeling of a system, the accuracy of the 

mathematical model is referred to as the degree of closeness to the actual system. From a 

control point of view, modeling inaccuracies can be classified into two major kinds: 

structured uncertainties and unstructured uncertainties. The first kind corresponds to 

inaccuracies on the terms actually included in the mathematical model, while the second 

kind corresponds to inaccuracies on the system order [13]. Modeling inaccuracies can 

have strong adverse effects on nonlinear control systems. Therefore, any practical design 

must address them explicitly. In pure model-based nonlinear control, the control law is 

designed from a nominal model of the physical system. How the control system will 

behave in the presence of model uncertainties is not clear at the design stage. The 

uncertainties depend on the precision of measurement systems, and the precision is the 

degree to which repeated measurements under unchanged conditions show the same 

results. Robust control is a nonlinear controller design approach based on the 
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consideration of both the nominal model and some characterization of the bounded model 

uncertainties. Robust control explicitly deals with uncertainties in its approach to 

controller design. Robust controls are designed to function properly so long as uncertain 

parameters or disturbances are within some known bounded modeling errors. Adaptive 

control is another nonlinear controller design approach that deals with uncertain systems 

or time-varying systems. Adaptive approach is in general more advanced than robust 

approach because the algorithm of adaptive control does not require the known bounded 

modeling errors as a priori.  

In this chapter, a straightforward approach to provide robustness of nonlinear system 

through sliding mode control is given in Section 5.1. Section 5.2 introduces the 

traditional Lyapunov-based design via a technique called cascade control. The 

application of traditional Lyapunov-based controller design is limited to lower-order 

dynamical systems. In Section 5.3, backstepping design technique is applied 

systematically to higher-order dynamical systems so as to break through the barrier that 

limits the applications of the traditional Lyapunov-based control algorithm. Section 5.4 

adapts a dynamical adaptive backstepping-sliding mode control algorithm to develop a 

nonlinear controller for servo pneumatic actuator. The novel controller is able to 

accomplish tracking control of nonlinear servo pneumatic actuator with robustness to 

parameter uncertainties as well as estimating the unknown parameters in the friction. 

The control system for servo pneumatic actuator is shown in Figure 5.1. A feedback 

scheme of typical servo pneumatic actuator is given as follows: (i) the servo control valve 

receives the control input from the controller and determines the amount of air flows into 

and out of the corresponding cylinder chambers; (ii) a force is created by the pressure 

 

Figure 5.1 Servo pneumatic actuator closed-loop control. 
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differential across the piston, and this force acting as the actuating force moves the piston 

and piston rod; (iii) electronic sensors sense the actuator state values, including position, 

velocity, acceleration, and chamber pressures of the actuator; (iv) the state values are fed 

back to the controller, where the control algorithm use the feedback values to calculate 

the future control inputs. 

The mathematical model of the pneumatic system is derived in Chapter 2 and is rewritten 

as follows: 

ሶ௩ݔ ൌ െ
௫ೡ

ఛ
൅

௞ೡ௨ೡ

ఛ
    (5.1)

௩ܣ ൌ ௩   (5.2)ݔݓ

߰௜ሺ ௨ܲ,   ௗܲሻ ൌ   ൜
߰ሺ ௦ܲ,   ௜ܲሻ       for ௩ܣ ൒ 0

߰ሺ ௜ܲ,   ௔ܲ௧௠ሻ  for ௩ܣ ൏ 0
݅ ൌ 1, 2   (5.3)
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ሺ௥ାଵሻ/௥

൰
௉೏

௉ೠ
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  (5.4)

ሶ݉ ଵ ൌ ௩߰௜ሺܣ ௨ܲ, ௗܲሻ   

ሶ݉ ଶ ൌ െܣ௩߰௜ሺ ௨ܲ, ௗܲሻ
            (5.5)

ሶܲ
ଵ ൌ

௥ோ்

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶ݉ ଵ െ
௥௉భ஺

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

݌ݒ

ሶܲ
ଶ ൌ

௥ோ்

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶ݉ ଶ ൅
௥௉మ஺

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

.݌ݒ
  (5.6)

ሶ௣ݒ ൌ
ଵ

ெ
൫ ܣܲ∆ െ ௙൯  (5.7)ܨ

ሶ௣ݔ ൌ ௣  (5.8)ݒ

For the controller design, simplifications are made to the mathematical model of servo 

pneumatic actuator. According to [22], the relationship between the control input ݑ௩ and 

the valve spool position ݔ௩ can be treated as a simple proportional gain, i.e., 
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௩ݔ ൌ ݇௩ݑ௩. (5.9)

In other words, the controller derived from the above simplification does not consider the 

time lag. This suggests that the physical servo valve should have considerably small time 

lag (or the response of the servo valve should be very fast with respect to the actuator 

dynamics) in order to implement the developed controller. Otherwise, the developed 

controller from the assumption of simple control gain should not be implemented. 

Substituting equation (5.9) into equation (5.2), the relationship between orifice area ܣ௩ 

and control input ݑ௩ is 

௩ܣ ൌ ௩. (5.10)ݑ௩݇ݓ

Given equation (5.10), the control input can be obtained from the following equation:  

ݒݑ ൌ ௩. (5.11)݇ݓ/௩ܣ

According to [11], the pressure differential dynamics ሶܲ∆ ൌ ሶܲ
ଵ െ ሶܲ

ଶ can be obtained from 

equation (5.6):  
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ሶ݉ ଵ െ
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ା௫೛ቁ

݌ݒ െ
௥ோ்
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ሶ݉ ଶ െ
௥௉మ஺

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

(5.12) . ݌ݒ 

Equation (5.12) can be separated into terms affected by the flow dynamics  ሶ݉ ௜ and terms 

which are functions of piston position and velocity, i.e., 

ܿ ൌ ܴܶߛ ቆ
௠ሶ భ

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

െ
௠ሶ మ

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ቇ  (5.13)
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ቇ. (5.14)

Substituting equation (5.5) into equation (5.13), 

ܿ ൌ ܴܶݎ ቆ
టభሺ௉ೠ,௉೏ሻ

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

൅
టమሺ௉ೠ,௉೏ሻ

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ቇܣ௩. (5.15)

where ௨ܲ and ௗܲ are assigned according to the pressure switching rule (5.3).  

Given equation (5.15), ܿ can be simplified as 
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ܿ ൌ ௩,  (5.16)ܣܾ

where 

ܾ ൌ ܴܶݎ  ቆ
టభሺ௉ೠ,௉೏ሻ

௏೚భା஺ቀ
ಽ
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ା௫೛ቁ

൅
టమሺ௉ೠ,௉೏ሻ

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ቇ.  (5.17)

According to equations (5.12) and (5.14)-(5.16), the pressure differential dynamics ሶܲ∆ 

can be simplified into 

ሶܲ
∆ ൌ ݌ ൅ ௩. (5.18)ܣܾ

Combining equations (5.1), (5.2), (5.6)-(5.8), and (5.18), the nonlinear system equations 

of servo pneumatic actuator can be written as follows: 
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  (5.19)

The complete system dynamics of the servo pneumatic actuator are therefore 

characterized by the state vector ࢀ࢞ ൌ ሾ  ∆ܲ  ଵܲ  ଶܲ ݒ௣ ݔ௣] and the single control input ݑ௩. 

According to equation (5.19), the servo pneumatic actuator can be analyzed under the 

general differential equation form: 

ሶ࢞ ൌ ሻ࢞ሺࢌ ൅ ܾሺ࢞ሻ(5.20) .ݑ

where ࢀ࢞ ൌ ሾݔ ݔሶ  ሻ࢞ሻ and ܾሺ࢞ሺࢌ ,is the output of interest ݔ ,ሺ௡ିଵሻሿ is the state vectorݔ …

are functions whose parameters are not known exactly and time varying, and ݑ is the 

general control input. In the following, the general differential equation form is used to 

demonstrate the development of various control laws for nonlinear system, and then the 

control algorithms are implemented on the servo pneumatic actuator to obtain the control 

law.  
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5.1    Sliding Mode Control 

Robustness is the sensitivity to parameter changes which are not considered in the design, 

such as disturbances, measurement noise, unmodeled dynamics, etc. A system should be 

able to withstand these effects when performing the tasks of interest. In nonlinear system, 

however, stability does not imply the ability to withstand persistent disturbances of even 

small magnitudes [13]. 

A standard robust design approach to tackle the parametric and modeling uncertainties of 

nonlinear systems is the sliding mode control methodology. The sliding mode control 

actually is the Lyapunov stability theory applied to a 1st-order system. It employs the 

intuitive feedback control strategy for 1st-order systems- “if the error is negative, push 

hard enough in the positive direction (and conversely)”. A notational simplification is 

required to convert the ݊th-order system into a 1st-order system, and the control input is 

obtained from the time derivative of the resulting 1st-order system. For the transformed 

problems, the “perfect” performance can be achieved in the presence of arbitrary 

parameter uncertainties. Such performance, however, is obtained at the price of extremely 

high control activities. For the class of systems to which it applies, sliding mode control 

approach provides a systematic way to solve the problem of maintaining the stability and 

the consistent performance in the face of modeling inaccuracies. 

With reference to the differential equation (5.20), an ݊th-order system is converted to a 

1st-order system by a notational simplification: 

,࢞ሺݏ ሻݐ ൌ ቀ
ௗ

ௗ௧
൅ ቁߣ

௡ିଵ
݁, (5.21)

where ݁ ൌ ݔ െ  ,ௗ is the desired output of interestݔ ,ௗ is the tracking error of interestݔ
ௗ

ௗ௧
 

is the differential operator, ߣ  is a term that relates to the convergence rate (or 

eigenevalue) of the output of interest, and ݏ is the sliding surface defined in the state 

space ࡾ௡ and represents a true measure of tracking performance. 

Furthermore, the bound ߮ on ݏ can be directly translated into bound ߝ on the tracking 

error vector, 
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ࢋ ൌ ࢞ െ ௗ, (5.22)࢞

where ࢀࢋ ൌ ሾ݁  ሶ݁   ሷ݁ … ሿ and ࢞ௗ
் ൌ ሾݔௗ ݔሶௗ ݔሷௗ … ሿ is the desired state vector. 

The corresponding transformation of performance measures assuming ݁ሺ0ሻ ൌ 0 is 

ݐ ∀ ൒ 0, |ݏ| ൑ ߮ ൌ൐ ݐ∀  ൒ 0, หݔ௜ห ൑ ሺ2ߣሻ௜ߝ, ݅ ൌ 0,… , ݊ െ 1, (5.23)

where ߝ ൌ  ௡ିଵ [13]. In this way, an ݊th-order tracking problem can be replaced by aߣ/߮  

1st-order stabilization problem. The simplified 1st-order tracking problem of keeping the 

scalar ݏ at zero can be achieved by choosing the control law ݑ  such that outside the 

sliding surface, 

ଵ

ଶ

ௗ

ௗ௧
ଶݏ ൑ െ(5.24) ,|ݏ|ߟ

where ߟ is a strickly positive constant. Condition (5.24) states that the squared “distance” 

to the surface, as measured by ݏଶ , decreases along all system trajectories. Thus, it 

constrains trajectories to point towards the surface ݏ. In particular, once on the surface, 

the system trajectories remain on the surface [13]. 

The sliding mode controller design consists of two steps. First, a feedback control law ݑ 

is selected to verify sliding condition (5.24). However, in order to account for the 

presence of modeling imprecision and of disturbance, the control law has to be 

discontinuous across the sliding surface ݏ. Since the implementation of the associated 

control switching is imperfect, this leads to chattering. Chattering is undesirable in 

practice since it involves high control activity and may excite high frequency dynamics 

neglected in the course of modeling. Thus, in a second step, the discontinuous control 

input ݑ is suitably smoothed by a sliding layer to achieve an optimal trade-off between 

control bandwidth and tracking precision. 

Considering the servo pneumatic actuator model given in equation (5.19), ܨ௙ and ݌ are 

nonlinear and time varying; They can be estimated by ܨ෠௙  and ̂݌ , respectively. The 

estimated errors on ܨ௙ and ݌ are assumed to be bounded by some known function ܨ and 

ܲ, respectively, i.e., 
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หܨ෠௙ െ ௙หܨ ൑ (5.25) ܨ

̂݌| െ |݌ ൑ ܲ (5.26)

Define a sliding surface according to equation (5.21), 

ݏ ൌ ቀ
ௗ

ௗ௧
൅ ቁߣ

௡ିଵ
݁.  (5.27)

Given ݊ ൌ 3 and ݁ ൌ ௣ݔ െ  ௗ, equationn (5.27) becomesݔ

ݏ ൌ   ቀ
ௗ

ௗ௧
൅ ቁߣ

ଶ
ሺݔ௣ െ ௗሻݔ ൌ   ൫ݒሶ௣ െ ሷௗ൯ݔ ൅ ௣ݒ൫ߣ2 െ ሶௗ൯ݔ ൅ ௣ݔଶ൫ߣ െ ௗ൯.  (5.28)ݔ

Substituting equation ሺ5.7ሻ into equation (5.28), 

ݏ ൌ
ଵ

ெ
൫ ܣܲ∆ െ ௙൯ܨ െ ሷௗݔ ൅ ௣ݒ൫ߣ2 െ ሶௗ൯ݔ ൅ ௣ݔଶ൫ߣ െ ௗ൯. (5.29)ݔ

Differentiate equation (5.29) with respect to time, the time derivative of the sliding 

surface incorporating equation (5.7) and (5.8) is 

ሶݏ ൌ
ଵ

ெ
൫ ሶܲ

ܣ∆ െ ሶ௙൯ܨ െ ഺௗݔ ൅ ߣ2 ቀ
ଵ

ெ
൫ ܣܲ∆ െ ௙൯ܨ െ ሷௗቁݔ ൅ ௣ݒଶ൫ߣ െ ሶௗ൯.  (5.30)ݔ

Substituting equation (5.18) into equation (5.30),  

ሶݏ ൌ
ଵ

ெ
ቀሺ݌ ൅ ܣ௩ሻܣܾ െ ሶܨ ݂ቁ െ ഺௗݔ ൅ ߣ2 ቀ

ଵ

ெ
൫ ܣܲ∆ െ ௙൯ܨ െ ሷௗቁݔ ൅ ௣ݒଶ൫ߣ െ ሶௗ൯. (5.31)ݔ

Then, the control law ܾܣ௩ to achieve ݏሶ ൌ 0 is 

௩ܣܾ ൌ ቀ
ெ

஺
൬ݔഺௗ െ ߣ2 ቀ

ଵ

ெ
൫ ܣܲ∆ െ ෠௙൯ܨ െ ሷௗቁݔ െ ௣ݒଶ൫ߣ െ ሶௗ൯൰ݔ െ ̂݌ ൅

ଵ

஺
෠ሶܨ ݂ቁ. (5.32)

Given that the nonlinear control gain ܾ is bounded as  

0 ൑ ܾ௠௜௡ ൑ |ܾ| ൑ ܾ௠௔௫, (5.33)

the geometric mean of the lower and upper bound of the gain is a reasonable estimate 

[13]:  

෠ܾ ൌ ௩ሻඥܾ௠௜௡ܾ௠௔௫ (5.34)ܣሺ݊݃݅ݏ
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Bound can then be written in the form of 

ଵିߚ ൑ ෠ܾ/ܾ ൑ (5.35)  ,ߚ

where ߚ ൌ ሺ
ܾ௠௔௫

ܾ௠௜௡
ሻଵ/ଶ (5.36)

is the gain margin of the control design. 

To account for the uncertainty in ܨ௙  and ݌ሺ࢞ሻ  while satisfying the sliding condition 

(5.24), control law is given as 

መ௩ܣ ൌ ቀ෠ܾିଵ൫ܾܣ௩ െ ሻ൯ቁ, (5.37)ݏሺ݊݃݅ݏߟ

where ߟ is a positive constant. By choosing ߟ large enough, such that 

ߟ ൒ ܨሺߚ ൅ ܲሻ ൅ ሺߚ െ 1ሻ|ܾܣ௩|, (5.38)

ensures the satisfaction of condition (5.24). 

In the second step, a boundary layer is created to reduce the chattering due to the 

discontinuity in the variable structure control, i.e., 

መ௩ܣ ൌ   ൝
෠ܾିଵ ቀܾܣ௩ െ ሺߟ

௦

ఝ
ሻቁ      |ݏ| ൑ ߮

෠ܾିଵሺܾܣ௩ െ ሻሻݏሺ݊݃݅ݏߟ |ݏ| ൐ ߮
, (5.39)

where ߮ is the bound of the sliding layer. 

Consequently, the approximate control input ݑො௩  is obtained from equation (5.11). The 

same approach was used by Gulati et al. [12] to construct a sliding mode controller for 

the tracking control of servo pneumatic actuator. 

5.2    Cascade Control  

In this section, an extension of the Lyapunov function concept, called the control 

Lyapunov function (CLF) [15] is considered to develop a closed-loop system with the 

desirable stability and performance. The controller design in this section is different from 

the controller described earlier because it is the starting point of a systematic approach to 

construct nonlinear controllers based on the Lyapunov stability theory. 
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Suppose that the problem for the system (5.20) is to design a feedback control law such 

that the equilibrium ࢀ࢞ ൌ 0 of the closed-loop system is globally asymptotically stable. A 

function ܸሺ࢞ሻ is chosen as a candidate Lyapunov function, whose derivative along the 

solutions of system (5.20) need to satisfy  ሶܸ ሺ࢞ሻ ൑ െܹሺ࢞ሻ, i.e., 

డ௏

డ࢞
ሺ࢞ሻሺ݂ሺ࢞ሻ ൅ ܾሺ࢞ሻݑሻ ൑ െܹሺ࢞ሻ, (5.40)

where ܹሺ࢞ሻ is a positive definite function. A stabilizing control law for system (5.20) 

may exist but may fail to satisfy condition (5.40) because of a poor choice of ܸሺ࢞ሻ 

and ܹሺ࢞ሻ. A system for which a good choice of ܸሺ࢞ሻ and ܹሺ࢞ሻ exists is said to possess 

a CLF. 

For a 1st-order scalar nonlinear system 

ሶݔ ൌ െݔଷ ൅ (5.41) ,ݑ

the control input ݑ is derived base on the CLF concept in the following. Taking  

ܸሺݔሻ ൌ
1

2
ଶ (5.42)ݔ

as a CLF for system (5.41), the control input ݑ that satisfies (5.40) with ܹሺݔሻ ൌ   ଶ isݔ

ݑ ൌ ଷݔ െ (5.43) ,ݔ

such that 

డ௏

డ௫
ሺݔሻሺ݂ሺݔሻ ൅ ሻݑ ൑ െݔଶ. (5.44)

Depending on the experience of the designers, the control input ݑ  can take different 

forms to satisfy condition (5.40), but a suitable control law requires less control efforts 

than others.  

The applications of traditional CLF are limited to systems with relative degree one or 

two. The cascade control strategy is based on the methodology of order reduction 

described by Utkin [14]. Similar to the notational simplification used in sliding mode 

control, cascade control converts the higher-order system into lower-order cascaded 

subsystems; then implements CLF concept to guarantee that the cascaded subsystems 
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achieve the desired system behavior [11]. 

The cascade control strategy views the servo pneumatic system as cascaded subsystems: 

a mechanical subsystem driven by the force generated by a pneumatic subsystem (see 

Figure 5.2) [11]. 

To rewrite the pneumatic model in a cascaded form appropriate for the cascade controller 

design, define the following relation: 

ሶ௣ݒܯ ൅ ௙ܨ ൌ ௔, (5.45)ܨ

where ܯ is the mass of piston and piston rod assembly, ݒሶ௣ is the piston acceleration, ܨ௙ is 

the friction, and ܨ௔  is the actuating force. Equation (5.45) represents the mechanical 

subsystem driven by a pneumatic force, i.e., 

௔ܨ ൌ ܣ ∆ܲ,  (5.46)

where ∆ܲ is the pressure differential across the piston and ܣ is the piston annulus area. 

The cascade control design for the servo pneumatic actuator is described as follows: (i) 

compute a control law ܨௗ  for the mechanical subsystem, such that the tracking is 

achievable; (ii) compute a control input ݑ௩, such that the pneumatic subsystem applies 

the desired pneumatic pressure differential ∆ܲௗ. 

To perform this task, the pressure differential tracking error ෨ܲ∆ is defined as 

෨ܲ
∆ ൌ ∆ܲ െ ∆ܲௗ. (5.47)

The control law ܨௗ  for the mechanical subsystem is developed from sliding mode 

algorithm discussed in the previous section. The following control law to obtain 

trajectory tracking in the mechanical subsystem is obtained from [11]: 

 

Figure 5.2 Cascade control for servo pneumatic actuator. 
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ௗܨ ൌ ൫ݔܯሷ௥ െ ݏ஽ܭ ൅ ௙൯ (5.48)ܨ

where ܭ஽ is a positive constant, ݔ௥ is a reference displacement, ݏ is the sliding surface, 

and ܨ௙ is the friction. According to the notational simplification in sliding mode control 

algorithm, the reference velocity ݔሶ௥ can be obtained by modifying the desired velocity ݔሶௗ 

as follows: 

ሶ௥ݔ ൌ ሶௗݔ െ                   ݁ߣ
݁ ൌ ௣ݔ െ ݔௗ                   

ݏ ൌ ௣ݒ െ ݔሶ௥ ൌ ሶ݁ ൅ . ݁ߣ
 (5.49)

where ߣ is positive convergent rate factor and ݁ ൌ ௣ݔ െ  ௗ is the position tracking errorݔ

between actual piston displacement ݔ௣ and desired piston displacement ݔௗ. Substituting 

the control law (5.48) into the differential equation of the mechanical subsystem (5.45), 

the time derivative of sliding surface is given as 

ሶݏܯ ൅ ݏ஽ܭ െ ܨ ൌ ܣ ෨ܲ∆,  (5.50)

where ܨ is the bound of friction estimate defined according to equation (5.25). 

At this point, the differential equations for both error variables, namely ݏ and ෨ܲ∆, can be 

used to consider the CLF,  

ܸ ൌ
ଵ

ଶ
ଶݏܯ ൅

ଵ

ଶ
෨ܲ
∆
ଶ
. (5.51)

Given equations (5.47) and (5.50), the time derivative of equation (5.51) is 

ሶܸ ൌ ܣ൫ݏ ෨ܲ∆ െ ݏ஽ܭ െ ൯ܨ ൅ ෨ܲ
∆൫ ሶܲ

∆ െ ሶܲ
∆ௗ൯. (5.52)

Substituting ሶܲ∆ of equation (5.18) into equation (5.52),  

ሶܸ ൌ ܣ൫ݏ ෨ܲ∆ െ ݏ஽ܭ െ ൯ܨ ൅ ෨ܲ
∆൫݌ ൅ ௩ܣܾ െ ሶܲ

∆ௗ൯. (5.53)

Assume error due to estimate ܨ෠௙ is very small; then, to guarantee ሶܸ ൑ 0, the control law 

is  

መ௩ܣ ൌ
ଵ

௕෠
൫  ሶܲ∆ௗ െ ݏܣ െ ݌ െ ݇௣ ෨ܲ∆൯, (5.54)
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such that 

ሶܸ ൌ  െܭ஽ݏ
ଶ െ ݇௣ ෨ܲ∆

ଶ
 (5.55)

Consequently, the approximate control input ݑො௩ is obtained from the relation (5.11). This 

method was applied to the servo pneumatic actuator by Guenther et al. [11] to design the 

cascade controller for stabilization and tracking control. 

5.3    Backstepping Control  

The limitation associated with the aforementioned CLF approach to control system is that 

the applications are only available to systems with relative degree one or two. The 

backstepping controller design approach breaks through the barrier that limits the 

traditional CLF design and provides a systematic way to construct the nonlinear 

controllers. The backstepping design methodology was first popularized by Krstic et al. 

[15] and has been successfully applied to problems including servo hydraulic control 

system [30]. The control input produced by this methodology depends on the system 

model and the equations chosen for the virtual control laws. 

The backstepping design concept is illustrated with a simple 2nd-order dynamical system: 

ሶݔ ൌ ݂ሺݔሻ ൅  ݃ሺݔሻߝ
ሶߝ ൌ                        ݑ 

 (5.56)

where ݔ  and ߝ  are the system states, ݑ  is the control input. Assume that there is a 

continuously differentiable feedback control law ߝ ൌ   ሻ, such thatݔሺߙ

ܸ ൌ
ଵ

ଶ
ଶ  (5.57)ݔ

is positive definite and radially unbounded function, and its time derivative satisfies 

ௗ௏

ௗ௫
൫݂ ൅ ሻ൯ݔሺߙ݃ ൑ െܹሺݔሻ,  (5.58)

where ߙሺݔሻ is a virtual control law and ܹሺݔሻ is a positive definite function. 

Then, the control error variable is introduced as 

݁ ൌ ߝ െ ሻ.  (5.59)ݔሺߙ



55 

Equation (5.57) can be transformed by the control error variable (5.59) into the following 

system equations: 

ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻሺߙሺݔሻ ൅ ݁ሻ

ሶ݁ ൌ ݑ െ
ߙ݀

ݔ݀
൫݂ሺݔሻ ൅ ݃ሺݔሻሺߙሺݔሻ ൅ ݁ሻ൯

 (5.60)

Defining the CLF as 

ଵܸ ൌ ܸ ൅
ଵ

ଶ
൫ߝ െ ሻ൯ݔሺߙ

ଶ
, (5.61)

the resulting time derivative of ଵܸ is 

ሶܸ
ଵ ൌ െܹሺݔሻ ൅ ݁ ൬ݑ െ

ௗఈ

ௗ௫
൫݂ሺݔሻ ൅ ݃ሺݔሻሺߙሺݔሻ ൅ ݁ሻ൯൰. (5.62)

The simplest way to make ሶܸଵ negative definite is to set 

ݑ െ
ௗఈ

ௗ௫
൫݂ሺݔሻ ൅ ݃ሺݔሻሺߙሺݔሻ ൅ ݁ሻ൯ ൌ െ݇݁, (5.63)

where ݇ is a positive constant. Hence, the resulting control input from equation (5.63) is 

ݑ ൌ
ௗఈ

ௗ௫
൫݂ሺݔሻ ൅ ݃ሺݔሻሺߙሺݔሻ ൅ ݁ሻ൯ െ ݇݁. (5.64)

The backstepping concept can be applied to higher-order dynamical systems. For the 

servo pneumatic actuator in specific, the state variables are defined according the system 

equation (5.19), and the backstepping design begins by defining the position tracking 

error: 

݁ଵ ൌ ௣ݔ  െ ௗ. (5.65)ݔ

where ݔ௣ is the actual piston displacement and  ݔௗ is the desired displacement. The time 

derivative of equation (5.65) taking into account of equation (5.8) is 

ሶ݁ଵ ൌ ௣ݒ െ ሶௗ. (5.66)ݔ

The first CLF is constructed with the error variable ݁ଵ: 

ଵܸ ൌ
ଵ

ଶ
݁ଵ

ଶ.  (5.67)
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According to the aforementioned 2nd-order dynamical system example (5.56), equation 

(5.67) inspires a suitable virtual control law: 

ଵߙ ൌ ሶௗݔ െ ݇ଵ݁ଵ,  (5.68)

where ݇ଵ is a positive constant.  

Then, the second error variable can be defined as 

݁ଶ ൌ ௣ݒ െ ଵ. (5.69)ߙ

Given equations (5.66), (5.68), and (5.69), the time derivative of ଵܸ is 

ሶܸ
ଵ ൌ െ݇݁ଵ

ଶ ൅ ݁ଶ݁ଵ. (5.70)

Given equations (5.7) and (5.68), the time derivative of ݁ଶ is  

ሶ݁ଶ ൌ
1

ܯ
൫ ܣܲ∆ െ ௙൯ܨ െ ሷௗݔ ൅ ݇ଵ ሶ݁ଵ (5.71)

Now the second CLF can be constructed with the error variables ݁ଵand ݁ଶ as 

ଶܸ ൌ ଵܸ ൅
ଵ

ଶ
݁ଶ

ଶ. (5.72)

Given equations (5.70) and (5.71), the time derivative of ଶܸ is 

ሶܸ
ଶ ൌ െ݇ଵ݁ଵ

ଶ ൅ ݁ଶ݁ଵ ൅ ݁ଶ ቀ
ଵ

ெ
൫ ܣܲ∆ െ ௙൯ܨ െ ሷௗݔ െ ݇ ሶ݁ଵቁ. (5.73)

In order to have ሶܸଶ ൑ 0, the second virtual control law is chosen as 

ଶߙ ൌ
ଵ

஺
ቀܨ௙ ൅ ሷௗݔሺܯ െ ݇ଶ݁ଶ െ ݇ ሶ݁ଵ െ ݁ଵሻቁ. (5.74)

Then, the third error variable can be defined as 

݁ଷ ൌ ∆ܲ െ ଶ. (5.75)ߙ

Given equations (5.74) and (5.75), equation (5.73) becomes 

ሶܸ
ଶ ൌ െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଷ݁ଶ. (5.76)

With reference to ሶܲ∆ of equation (5.18) and equation (5.74), the time derivative of ݁ଷ is 
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ሶ݁ଷ ൌ ݌ ൅ ௩ܣܾ െ
ଵ

஺
ቀܨሶ௙ ൅ ൫െ݇ଶܯ ሶ݁ଶ ൅ ഺ௣ௗݔ െ ݇ ሷ݁ଵ െ ሶ݁ଵ൯ቁ. (5.77)

The third CLF can be constructed with the error variables ݁ଵ, ݁ଶ, and ݁ଷas 

ଷܸ ൌ ଶܸ ൅
ଵ

ଶ
݁ଷ

ଶ. (5.78)

Given equations (5.76) and (5.77), the time derivative of ଷܸ is 

ሶܸ
ଷ ൌ െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଷ݁ଶ ൅ ݁ଷ ൬݌ ൅ ௩ܣܾ െ

ଵ

஺
ቀܨሶ௙ ൅ ൫െ݇ଶܯ ሶ݁ଶ ൅ ഺ௣ௗݔ െ

݇ ሷ݁ଵ െ ሶ݁ଵሻቁ൰. 
(5.79)

To have ሶܸଷ ൑ 0, the approximation of control law is 

መ௩ܣ ൌ
ଵ

௕෠
ቀെ݇ଷ݁ଷ െ ̂݌ െ

஺

ெ
݁ଶ ൅

ெ

஺
ሺെ݇ଶ ሶ݁ଶ ൅ ഺௗݔ െ ݇ଵ ሷ݁ଵ െ ሶ݁ଵሻ ൅

ிሶ೑

୅
ቁ, (5.80)

where errors due to friction estimated ܨ෠௙ and its time derivative ܨሶ෠௙ are assumed to be very 

small. Thereafter, the approximate control input ݑො௩ is obtained from the relation (5.11). 

A similar approach to design backstepping controller for servo pneumatic actuator was 

introduced by Rao et al.[10]. 

5.4    Dynamical Adaptive Backstepping-Sliding Mode Control 

Adaptive controllers that are capable of controlling unknown plants and adapting to 

unpredictable changes in the environment have a long and rich history [15]. Lyapunov-

based adaptive control is classified as one of the traditional adaptive schemes. It involves 

parameter identification with “parameter estimators.” The vital part of the estimators is 

the parameter adaptation algorithm, commonly referred to as the “parameter update law”. 

The Lyapunov-based adaptive control is used in this study for two reasons: (i) all 

controllers in this chapter are designed according to Lyapunov-based approach, so 

incorporating a Lyapunov-based adaptive law provides a uniform approach to tackle 

nonlinear system with parameter uncertainties; (ii) the controller and adaptive law 

derived from Lyapunov-based design has the desired properties for control system, i.e., 

stability and convergence [15]. 
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In order to understand some issues related to the adaptive control in general and the 

Lyapunov-based adaptive control in particular, consider a simple 1st-order system with 

unknown parameter ߠ: 

ሶݔ ൌ ݑ ൅ (5.81)  ݔߠ

where ݑ is the control input, ݔ is the output of interest. Given ߠ෠ as the estimate of ߠ along 

with a control law ݑ, the goal is to make the time derivative of CLF, 

ܸ൫ݔ, ෠൯ߠ ൌ
ଵ

ଶ
ଶݔ ൅

ଵ

ଶ
൫ߠ െ ෠ ൯ߠ

ଶ
, (5.82)

a decreading function of time.  

Given the time derivative of equation (5.82),  

ሶܸ ൌ
ௗ௏

ௗ௫
ሶݔ ൅

ௗ௏

ௗఏ෡
෠ሶߠ ,  (5.83)

the control input ݑ and parameter update law ߠ෠ሶ  are to be determined to guarantee that 

ሶܸ ൑ െ݇ݔଶ with ݇ being a positive constant, namely 

ሶܸ ൌ ݑሺݔ ൅ ሻݔߠ ൅ ൫ߠ െ ෠ሶߠ෠൯ߠ ൑ െ݇ݔଶ. (5.84)

Rearranging terms of equation (5.84),  

ݑݔ ൅ ෠ሶߠ෠ߠ ൅ ߠ ቀݔଶ െ ෠ሶቁߠ ൑ െ݇ݔଶ. (5.85)

Since neither ݑ nor ߠ෠ሶ  is allowed to depend on the unknown [15] ߠ, the only choice for the 

update law ߠ෠ሶ  is 

෠ሶߠ ൌ ଶ. (5.86)ݔ

The remaining condition  

ݑݔ ൅ ෠ሶߠ෠ߠ ൑ െ݇ݔଶ (5.87)

allows the selection of control input to be 
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ݑ ൌ  െ ቀ൫݇ ൅ ቁ.  (5.88)ݔ෠൯ߠ

As expected, this example shows that the Lyapunov-based adaptive control uses control 

law and parameter update law to guarantee the output and the parameter convergence 

simultaneously, i.e., ݔ → 0   and ൫ߠ െ ෠൯ߠ → 0 [15]. The estimate in the control law is 

static while update law itself is dynamical. In other words, the dynamic part of the 

controller is designed as a parameter update law with which the static part is continuously 

adapted to the new parameter estimate. This is why this type of control law is called 

dynamical adaptive control law. In the presence of unknown constant parameters 

dynamical adaptive control is able to achieve both convergence of the closed-loop state 

and convergence of the tracking error to zero. 

The dynamical adaptive backstepping (DAB) control algorithm, which combines the 

dynamical adaptive law and backstepping control, was proposed by Rios-Bolivar et al. 

[16], and the control algorithm has been implemented in the dynamical adaptive 

regulation of uncertain nonlinear chemical processes. In order to provide robustness in 

the presence of undesirable disturbances, a combined dynamical adaptive backstepping-

sliding mode control (DAB-SMC) design algorithm was proposed by Rios-Bolivar [17]. 

The application of this approach in adaptive-robust regulation of two nonlinear 

continuous chemical processes with uncertainty and its validity was demonstrated via 

computer simulations [18]. In the following of this section the DAB-SMC control 

algorithm is adapted to develop an adaptive-robust controller to track the desired 

trajectory in the servo pneumatic actuator moving at low speed. 

As mentioned before, the control input produced from the backstepping concept depends 

on the system model and the equations chosen for the virtual control laws. The difference 

between the controller developed in this section and controllers from previous sections is 

that the parameters in the friction is assumed to be unknown to the controller; therefore, 

the adaptive law is used to estimate the friction parameters. Given friction differential 

equations (3.10) and servo pneumatic actuator differential equations (5.19), the complete 

system equations can be written as  
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ሶܲ
∆ ൌ ݌ ൅                         ௩ܣܾ

ሶܲ
ଵ ൌ

௥ோ்

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

ሶ݉ ଵ െ
௥௉భ஺

௏೚భା஺ቀ
ಽ

మ
ା௫೛ቁ

݌ݒ

ሶܲ
ଶ ൌ

௥ோ்

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

ሶ݉ ଶ ൅
௥௉మ஺

௏೚మା஺ቀ
ಽ

మ
ି௫೛ቁ

݌ݒ 

                                               

ሶ௣ݒ ൌ
ଵ

ெ
൫ ܣܲ∆ െ ݖ଴ߪ െ ሶݖଵߪ െ ௣൯ݒଶߪ

ሶݖ   ൌ ௣ݒ െ
ห௩೛ห

௚
                                    ݖ

                                                     

ሶ௣ݔ ൌ                                     , ௣ݒ

  (5.89)

where the new state vector for the dynamical system is ࢀ࢞ ൌ ሾ  ∆ܲ  ଵܲ  ଶܲ ݒ௣ ݔ ݖ௣ሿ.  

The DAB-SMC derivation begins with second error variable ݁ଶ  of the backstepping 

design described in the previous section. In equation (5.89), the dynamics of acceleration 

 hence, the adaptive law and the ;(ݖ) and state (ଶߪ ଴, andߪ ,଴ߪ) ሶ௣ has unknown parametersݒ

state observer need to be constructed according to the Lyapunov-based adaptive law. 

Substituting ݒሶ௣ and ݖሶ of equation (5.89) into the time derivative of equation (5.69),  

ሶ݁ଶ ൌ
ଵ

ெ
ቆ ܣܲ∆ െ ቀߪ଴ݖ െ ଵߪ

ห௩೛ห

௚
ݖ ൅ ሺߪଵ ൅ ௣ቁቇݒଶሻߪ െ ሷ௣ௗݔ ൅ ݇ଵ ሶ݁ଵ. (5.90)

Using ߪଵଶ to represent ሺߪଵ ൅  associated ݖ ଵ to represent the internal stateݖ ଴ andݖ ଶሻ andߪ

with ߪ଴ and ߪଵ, respectively, equation (5.90) becomes 

ሶ݁ଶ ൌ
ଵ

ெ
ቆ ܣܲ∆ െ ቀߪ଴ݖ଴ െ ଵߪ

ห௩೛ห

௚
ଵݖ ൅ ௣ቁቇݒଵଶߪ െ ሷ௣ௗݔ ൅ ݇ଵ ሶ݁ଵ. (5.91)

Given the parameter estimates ߪො଴, ߪොଵ, and ߪොଵଶ for ߪ଴, ߪଵ, and  ߪଵଶ, respectively and state 

observer ̂ݖ଴ and ̂ݖଵ for ݖ଴ and ݖଵ, respectively, equation (5.91) becomes 

ሶ݁ଶ ൌ
ଵ

ெ
ቆ ܣܲ∆ െ ቀߪො଴̂ݖ଴ െ ොଵߪ

ห௩೛ห

௚
ଵݖ̂ ൅ ௣ቁቇݒොଵଶߪ െ ሷ௣ௗݔ ൅ ݇ଵ ሶ݁ଵ െ

ଵ

ெ
ቀߪ଴ሺݖ଴ െ ଴ሻݖ̂ െ

ଵߪ
ห௩೛ห

௚
ሺݖଵ െ ଵሻݖ̂ ቁ െ

ଵ

ெ
ቀ̂ݖ଴ሺߪ଴ െ ො଴ሻߪ െ ଵݖ̂

ห௩೛ห

௚
ሺߪଵ െ ොଵሻߪ ൅ ଵଶߪ௣ሺݒ െ   .ොଵଶሻ ቁߪ

(5.92)

By utilizing this estimation arrangement, two unknown parameters associated with the 

internal state ݖ , namely, ߪ଴  and ߪଵ , can be estimated individually. This arrangement 

allows a good estimation of the friction instead of combining the two unknown 
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parameters and estimating them as one linearized parameter. 

Then, define the estimation error variables as 

଴ݖ̃ ൌ ଴ݖ െ     ଴ݖ̂    
ଵݖ̃  ൌ ଵݖ െ          ଵݖ̂
෤଴ߪ ൌ ଴ߪ െ        ො଴ߪ
෤ଵߪ ൌ ଵߪ െ        ොଵߪ
෤ଵଶߪ ൌ ଵଶߪ െ .ොଵଶߪ

 (5.93)

Substituting equation (5.93) into equation (5.92), 

ሶ݁ଶ ൌ
ଵ

ெ
ቆ ܣܲ∆ െ ቀߪො଴̂ݖ଴ െ ොଵߪ

ห௩೛ห

௚
ଵݖ̂ ൅ ௣ቁቇݒොଵଶߪ െ ሷ௣ௗݔ ൅ ݇ଵ ሶ݁ଵ െ

ଵ

ெ
ቀߪ଴̃ݖ଴ െ

ଵߪ
ห௩೛ห

௚
ଵ ቁݖ̃ െ

ଵ

ெ
ቀ̂ݖ଴ߪ෤଴ െ ଵݖ̂

ห௩೛ห

௚
෤ଵߪ ൅ ෤ଵଶߪ௣ݒ ቁ. 

(5.94)

Constructing the CLF with respect to error variable ݁ଶ, the estimation error variables of 

unknown states (ݖ଴ and ݖଵ), and parameters estimation error variables (ߪ଴, ߪଵ, and ߪଵଶሻ, 

ଶܸ ൌ   ଵܸ ൅
ଵ

ଶ
݁ଶ

ଶ ൅
ଵ

ଶ
଴ݖ଴̃ߪ

ଶ ൅
ଵ

ଶ
ଵݖଵ̃ߪ

ଶ ൅
ଵ

ଶ
෤଴ߪ଴ߛ

ଶ ൅
ଵ

ଶ
෤ଵߪଵߛ

ଶ ൅
ଵ

ଶ
෤ଵଶߪଵଶߛ

ଶ. (5.95)

The time derivative of equation (5.95) is 

ሶܸ
ଶ ൌ ሶܸ

ଵ ൅ ݁ଶ ሶ݁ଶ ൅ ߪ଴̃ݖ଴൫ݖሶ଴ െ ሶ଴൯ݖ̂ ൅ ሶଵݖଵ൫ݖଵ̃ߪ െ ሶଵ൯ݖ̂ ൅ ොሶ଴ߪ෤଴ߪ଴ߛ ൅ ොሶଵߪ෤ଵߪଵߛ ൅

 .ොሶଵଶߪ෤ଵଶߪଵଶߛ
(5.96)

Substituting equations (5.70) and (5.94) into equation (5.96), ሶܸଶ becomes, 

ሶܸ
ଶ ൌ െ݇ଵ݁ଵ

ଶ ൅ ݁ଵ݁ଶ ൅ ݁ଶ ൭
ଵ

ெ
ቆ ܣܲ∆ െ ቀߪො଴̂ݖ଴ െ ොଵߪ

ห௩೛ห

௚
ଵݖ̂ ൅ ௣ቁቇݒොଵଶߪ െ ሷ௣ௗݔ ൅

݇ଵ൫ݒ௣െݔሶௗ൯൱ ൅ ݁ଶ ቆ െ
ଵ

ெ
ቀߪ଴̃ݖ଴ െ ଵߪ

ห௩೛ห

௚
ଵ ቁݖ̃ െ

ଵ

ெ
ቀ̂ݖ଴ߪ෤଴ െ ଵݖ̂

ห௩೛ห

௚
෤ଵߪ ൅ ෤ଵଶ ቁቇߪ௣ݒ ൅

ሶ଴ݖ଴൫ݖ଴̃ߪ  െ ሶ଴൯ݖ̂ ൅ ߪଵ̃ݖଵ൫ݖሶଵ െ ሶଵ൯ݖ̂ ൅ ොሶ଴ߪ෤଴ߪ଴ߛ ൅ ොሶଵߪ෤ଵߪଵߛ ൅  .ොሶଵଶߪ෤ଵଶߪଵଶߛ

(5.97)

Replacing ߪො଴̂ݖ଴ െ ොଵߪ
ห௩೛ห

௚൫௩೛൯
ଵݖ̂ ൅  ,෠௙, and rearrangingܨ ௣ of equation (5.97) withݒොଵଶߪ
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ሶܸ
ଶ ൌ െ݇ଵ݁ଵ

ଶ ൅ ݁ଶ ൬
ଵ

ெ
൫ ܣܲ∆ െ ෠௙൯ܨ ൅ ݁ଵ െ ሷௗݔ ൅ ݇ଵ൫ݒ௣െݔሶௗ൯൰ ൅ ଴ݖ̃ ൬െ

ଵ

ெ
଴ߪߪ ൅

ሶ଴ݖ଴൫ߪ െ ሶ଴൯൰ݖ̂ ൅ ଵݖ̃ ቆ
ଵ

ெ

ห௩೛ห

௚
ଵߪߪ ൅ ሶଵݖଵ൫ߪ െ ሶଵ൯ቇݖ̂ ൅ ߪ෤଴ ቀെ

ଵ

ெ
଴ݖ̂ߪ ൅ ොሶ଴ ቁߪ଴ߛ ൅

෤ଵߪ ቀ
ଵ

ெ

ห௩೛ห

௚
ଵݖ̂ߪ ൅ ොሶଵ ቁߪଵߛ ൅ ෤ଵଶߪ ቀെ

ଵ

ெ
௣ݒߪ ൅ ොሶଵଶߪଵଶߛ ቁ.  

(5.98)

To achieve 

ሶܸ
ଶ ൌ  െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ െ ଴ߪ

ห௩೛ห

௚
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚
ଵݖ̃

ଶ, (5.99)

it is desired to have 

ଵ

ெ
൫ ܣܲ∆ െ ෠௙൯ܨ ൅ ݁ଵ െ ሷௗݔ ൅ ݇ଵ൫ݒ௣െݔሶௗ൯ ൌ െ݇ଶ݁ଶ  (5.100)

െ
ଵ

ெ
݁ଶߪ଴ ൅ ሶ଴ݖ଴൫ߪ െ ሶ଴൯ݖ̂ ൌ െߪ଴

ห௩೛ห

௚
଴  (5.101)ݖ̃

ଵ

ெ

ห௩೛ห

௚
݁ଶߪଵ ൅ ሶଵݖଵ൫ߪ െ ሶଵ൯ݖ̂ ൌ െߪଵ

ห௩೛ห

௚
ଵ  (5.102)ݖ̃

െ
ଵ

ெ
݁ଶ̂ݖ଴ ൅ ොሶ଴ߪ଴ߛ ൌ 0  (5.103)

ଵ

ெ

ห௩೛ห

௚
݁ଶ̂ݖଵ ൅ ොሶଵߪଵߛ ൌ 0  (5.104)

െ
ଵ

ெ
݁ଶݒ௣ ൅ ොሶଵଶߪଵଶߛ ൌ 0  (5.105)

Inspired from equation (5.100), the virtual control law is given as 

ଶߙ ൌ
1

ܣ
൫ܯ൫ݔሷௗ െ ݁ଵ െ ݇ଵ൫ݒ௣െݔሶௗ൯ െ ݇ଶ݁ଶ൯ ൅ ෠௙൯ (5.106)ܨ

Substituting ̃ݖ଴ ൌ ଴ݖ െ ሶ଴ݖ ଴ andݖ̂ ൌ ௣ݒ െ
ห௩೛ห

௚
 ,଴ into equation (5.101)ݖ

ሶ଴ݖ̂ ൌ ௣ݒ െ
௘మ

ெ
െ

ห௩೛ห

௚
଴. (5.107)ݖ̂

Substituting ̃ݖଵ ൌ ଵݖ െ ሶଵݖ ଵ andݖ̂ ൌ ௣ݒ െ
ห௩೛ห

௚
 ,ଵ in equation (5.102)ݖ
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ሶଵݖ̂ ൌ ௣ݒ ൅
௘మ

ெ

ห௩೛ห

௚
െ

ห௩೛ห

௚
ଵ.  (5.108)ݖ̂

Rearranging terms in equations (5.103)-(5.105), 

ොሶ଴ߪ ൌ
ଵ

ఊబ

௘మ

ெ
଴  (5.109)ݖ̂

ොሶଵߪ ൌ െ
ଵ

ఊభ

௘మ

ெ
 
ห௩೛ห

௚
ଵ  (5.110)ݖ̂

ොሶଵଶߪ ൌ
ଵ

ఊభమ

௘మ

ெ
௣. (5.111)ݒ

Now, the third error variable is defined as 

݁ଷ ൌ ∆ܲ െ ଶ. (5.112)ߙ

Substituting equation (5.106) into equation (5.112),  

݁ଷ ൌ ∆ܲ െ
ଵ

஺
൫ܯ൫ݔሷௗ െ ݁ଵ െ ݇ଵ൫ݒ௣െݔሶௗ൯ െ ݇ଶ݁ଶ൯ ൅ ෠௙൯. (5.113)ܨ

Given equations (5.106)-(5.113), equation (5.98) becomes 

ሶܸ
ଶ ൌ  െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଶ݁ଷ െ ଴ߪ

ห௩೛ห

௚
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚
ଵݖ̃

ଶ. (5.114)

The time derivative of equation (5.113) is 

ሶ݁ଷ ൌ ሶܲ
∆ െ

ଵ

஺
ቀܯ൫ݔഺௗ െ ݇ଵ൫ݒሶ௣െݔሷௗ൯ െ ݇ଶ ሶ݁ଶ െ ሶ݁ଵ൯ ൅ ෠ሶ௙ቁ.  (5.115)ܨ

Assume that the time derivative of the estimation ܨ෠ሶ௙ in (5.115) can be ignored, 

ሶ݁ଷ ൌ ሶܲ
∆ െ

ଵ

஺
ቀܯ൫ݔഺௗ െ ݇ଵ൫ݒሶ௣െݔሷௗ൯ െ ݇ଶ ሶ݁ଶ െ ሶ݁ଵ൯ቁ. (5.116)

Constructing the third CLF, 

ଷܸ ൌ   ଶܸ ൅
1

2
ଶ (5.117)ݏ

with the sliding surface given as 
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ݏ ൌ ଵ݁ଵ߁ ൅ ଶ݁ଶ߁ ൅ ݁ଷ, (5.118)

where ߁ଵ and ߁ଶ are positive constant.  

Given equation (5.114) and time derivative of equation (5.118), the time derivative of ଷܸ 

is 

ሶܸ
ଷ ൌ  െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଶ݁ଷ െ ଴ߪ

ห௩೛ห

௚
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚
ଵݖ̃

ଶ ൅ ଵ߁ሺݏ ሶ݁ଵ ൅ ଶ߁ ሶ݁ଶ ൅ ሶ݁ଷሻ. (5.119)

Substituting equations (5.66), time derivative of (5.69), and (5.117) into equation (5.119),  

ሶܸ
ଷ ൌ  െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଶ݁ଷ െ ଴ߪ

ห௩೛ห

௚
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚
ଵݖ̃

ଶ ൅ ݏ ൬߁ଵ ሶ݁ଵ ൅

ሷௗݔሶ௣െݒଶ൫߁ ൅ ݇ଵ ሶ݁ଵ൯ ൅ ሶܲ
∆ െ

ଵ

஺
ቀܯ൫ݔഺௗ െ ݇ଵ൫ݒሶ௣െݔሷௗ൯ െ ݇ଶ൫ݒሶ௣െݔሷௗ ൅ ݇ଵ ሶ݁ଵ൯ െ ሶ݁ଵ൯ቁ൰.

(5.120)

Separate term associate with ݒሶ௣ in equation (5.120),  

ሶܸ
ଷ ൌ െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଶ݁ଷ െ ଴ߪ

ห௩೛ห

௚൫௩೛൯
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚
ଵݖ̃

ଶ ൅ ݏ ቀ߁ଵ ሶ݁ଵ ൅

ቀ߁ଶ ൅
ெ

஺
݇ଶቁ ሺ݇ଵ ሶ݁ଵെݔሷௗሻ ൅ ሶܲ

∆ െ
ெ

஺
ሺݔഺௗ ൅ ݇ଵݔሷௗ െ ሶ݁ଵሻ ൅ ቀ߁ଶ ൅

ெ

஺
݇ଵ ൅

ெ

஺
݇ଶቁ  .ሶ௣ቁݒ

(5.121)

Given the parameter convergence of friction estimate ܨ෠௙ , the estimation error ݒ෤ሶ௣ ൌ

൫ݒሶ௣ െ  ,.i.e ,ݏ ොሶ௣൯ will converge on the sliding surfaceݒ

െ߁ଷݏ ൌ ൬߁ଶ ൅
ܯ

ܣ
݇ଵ ൅

ܯ

ܣ
݇ଶ൰ ൫ݒሶ௣ െ ොሶݒ ൯ (5.122)݌

Substitute ݒሶ௣ ൌ ܣܲ∆ െ   ,෠௙ into equation (5.122), and rearrangingܨ

ොሶ௣ݒ ൌ
1

ܯ
൫ܲ∆ܣെ ෡݂൯ܨ ൅

3߁

2߁ ൅
ܯ
ܣ ݇1 ൅

ܯ
ܣ ݇2

(5.123) ݏ

With reference to [18], to obtain 

ሶܸ
ଷ ൌ  െ݇ଵ݁ଵ

ଶ െ ݇ଶ݁ଶ
ଶ ൅

஺

ெ
݁ଶ݁ଷ െ ݇ଷݏ

ଶ െ |ݏ|ߟ െ ଴ߪ
ห௩೛ห

௚൫௩೛൯
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚൫௩೛൯
ଵݖ̃

ଶ, (5.124)

it is necessary to have 
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ଵ߁ ሶ݁ଵ ൅ ሺ߁ଶ െ ݇ଶሻ൫݇ଵ ሶ݁ଵെݔሷ௣ௗ൯ ൅ ሶܲ
∆ െ

ெ

஺
ሺݔഺௗ ൅ ݇ଵݔሷௗ െ ሶ݁ଵሻ ൅ ቀ߁ଶ ൅

ெ

஺
݇ଵ ൅

ெ

஺
݇ଶቁ ሶ෠௣ݒ ൌ െ݇ଷݏ െ  .ሻݏሺ݊݃݅ݏߟ

(5.125)

Rearranging equation (5.125), 

ሶܲ
∆ ൌ

ெ

஺
ሺݔഺௗ ൅ ݇ଵݔሷௗ െ ሶ݁ଵሻ െ ቀ߁ଶ ൅

ெ

஺
݇ଵ ൅

ெ

஺
݇ଶቁ ሶ෠௣ݒ െ ଵ߁ ሶ݁ଵ െ ሺ߁ଶ െ ݇ଶሻ൫݇ଵ ሶ݁ଵെݔሷ௣ௗ൯ െ

݇ଷݏ െ  .ሻݏሺ݊݃݅ݏߟ

(5.126)

Substituting ሶܲ∆ of equation (5.18) into equation (5.126), the control law is 

መ௩ܣ ൌ
ଵ

௕෠
ቀ
ெ

஺
ሺݔഺௗ ൅ ݇ଵݔሷௗ െ ሶ݁ଵሻ െ ቀ߁ଶ ൅

ெ

஺
݇ଵ ൅

ெ

஺
݇ଶቁ ሶ෠௣ݒ െ ଵ߁ ሶ݁ଵ െ ሺ߁ଶ െ

݇ଶሻሺ݇ଵ ሶ݁ଵെݔሷௗሻ െ ݇ଷݏ െ ሻݏሺ݊݃݅ݏߟ െ  .ቁ̂݌
(5.127)

Consequently, the approximate control input ݑො௩ is obtained from the relation (5.11). 

According to [18], equation (5.124) can be rewritten as 

ሶܸ
ଷ ൌ െࢋ்ܳࢋ െ |ݏ|ߟ െ ଴ߪ

ห௩೛ห

௚൫௩೛൯
଴ݖ̃

ଶ െ ଵߪ
ห௩೛ห

௚൫௩೛൯
ଵݖ̃

ଶ, (5.128)

where ܳ is a symmetric matrix with the following form  

ܳ ൌ 

ۏ
ێ
ێ
ۍ
݇ଵ ൅ ݇ଷ߁ଵ

ଶ 2݇ଷ߁ଵ߁ଶ  2݇ଷ߁ଵ

2݇ଷ߁ଵ߁ଶ      ݇ଶ ൅ ݇ଷ߁ଶ
ଶ െ

஺

ெ
൅ 2݇ଷ߁ଶ

2݇ଷ߁ଵ         െ
஺

ெ
൅ 2݇ଷ߁ଶ ݇ଷ ے

ۑ
ۑ
ې

, (5.129)

and ࢀࢋ ൌ ሾ݁ଵ ݁ଶ ݁ଷሿ is the error vector. 

Given Sylvester’s theorem, a necessary and sufficient condition for ܳ to be a positive 

definite matrix is that all the principal minors should be strictly positive, i.e., 
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݇ଵ ൅ ݇ଷ߁ଵ
ଶ ൐ 0                        

ቤ
݇ଵ ൅ ݇ଷ߁ଵ

ଶ 2݇ଷ߁ଵ߁ଶ      

2݇ଷ߁ଵ߁ଶ      ݇ଶ ൅ ݇ଷ߁ଶ
ଶቤ ൐ 0

ተተ

݇ଵ ൅ ݇ଷ߁ଵ
ଶ 2݇ଷ߁ଵ߁ଶ        2݇ଷ߁ଵ            

2݇ଷ߁ଵ߁ଶ      ݇ଶ ൅ ݇ଷ߁ଶ
ଶ  െ

஺

ெ
൅ 2݇ଷ߁ଶ

2݇ଷ߁ଵ         െ
஺

ெ
൅ 2݇ଷ߁ଶ ݇ଷ

ተተ ൐ 0.

  (5.130)

Such a ܳ satisfies the condition ሶܸଷ ൑ 0. 

5.5    Summary 

In this chapter, the dynamical adaptive backsteping-sliding mode control developed for 

the servo pneumatic actuator is adapted from the theoretical work proposed by Rios-

Bilivar[17]. The synthesis of the controller is a process of manufacturing the three 

nonlinear controllers in previous works, i.e., the sliding mode controller, the cascade 

controller, and the backstepping controller. The control law and adaptive laws of the 

controller are summarized in the following. 

Control law: 

ො௩ݑ ൌ
ଵ

௪௞ೡ௕෠
ቀ
ெ

஺
ሺݔഺௗ ൅ ݇ଵݔሷௗ െ ሶ݁ଵሻ െ ቀ߁ଶ ൅

ெ

஺
݇ଵ ൅

ெ

஺
݇ଶቁ ሶ෠௣ݒ െ ଵ߁ ሶ݁ଵ െ ሺ߁ଶ െ

݇ଶሻሺ݇ଵ ሶ݁ଵെݔሷௗሻ െ ݇ଷݏ െ ሻݏሺ݊݃݅ݏߟ െ   ቁ̂݌

(5.131)

݁ଵ ൌ ௣ݔ  െ                                                                           ௗݔ

݁ଶ ൌ ௣ݒ െ ሶௗݔ ൅ ݇ଵ݁ଵ                                                             

݁ଷ ൌ ∆ܲ െ
ଵ

஺
൫ܯ൫ݔሷௗ െ ݁ଵ െ ݇ଵ൫ݒ௣െݔሶௗ൯ െ ݇ଶ݁ଶ൯ ൅ ෠௙൯ܨ

ݏ ൌ ଵ݁ଵ߁ ൅ ଶ݁ଶ߁ ൅ ݁ଷ                                                            

  

Adaptive laws: 

ොሶ଴ߪ ൌ
ଵ

ఊబ

௘మ

ெ
             ଴ݖ̂

ොሶଵߪ ൌ െ
ଵ

ఊభ

௘మ

ெ
 
ห௩೛ห

௚
ଵݖ̂

ොሶଵଶߪ ൌ
ଵ

ఊభమ

௘మ

ெ
         ௣ݒ

  (5.132)

Friction internal state observers: 
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݁2
ܯ
െ
ห݌ݒห

݃
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െ
ห݌ݒห
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 (5.133)

Acceleration observer: 

ොሶ௣ݒ ൌ
ଵ

ெ
൫ ܣܲ∆ െ ෠௙൯ܨ ൅

௰య

௰మା
ಾ

ಲ
௞భା

ಾ

ಲ
௞మ
(5.134)  ݏ

The controller requires the following states feedback, i.e., the piston displacement ݔ௣, the 

piston velocity ݒ௣, and the pressures ଵܲ and ଶܲ. The control gains ݇ଵ, ݇ଶ, ݇ଷ, ߁ଵ, ߁ଶ, and 

 ଷ has to be tuned so as to provide satisfactory performance along with its stability and߁

convergence characteristics inherited from the Lyapunov-based design approach. 
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Chapter 6. Simulation Results 

 

In this chapter, computer simulations are implemented to analyze the novel nonlinear 

controller developed for the servo pneumatic actuator. The simulation code is 

programmed with Matlab 7.4.0 (R2007a) programming language. An IBM PC operating 

at 1.8 GHz of CPU clock rate (Intel Core2 Duo) with 2GB of RAM was used for running 

the simulation program. Section 6.1 carries out a set of open-loop simulations to verify 

the validity of the mathematical model for servo pneumatic actuator, which is assembled 

from the actuator differential equations (2.23) and the LuGre friction differential 

equations (3.10). For comparison purposes, three nonlinear controllers from previous 

work, i.e., the sliding mode controller, the cascade controller, and the backstepping 

controller, are simulated with respect to reference trajectories in Section 6.2. Section 6.3 

presents the simulations of the dynamical adaptive backstepping-sliding mode controller 

(DAB-SMC). The chapter closes with an integration of the tuned DAB-SMC controller 

and a Lyapunov-based pressure observer that has the potential to reduce the number of 

feedbacks.  

To implement a numerical simulation of the servo pneumatic actuator, knowledge of the 

appropriate system parameters is required. The reference servo pneumatic actuator 

consists of a FESTO MPYE-5 series 5-port three-position solenoid driven proportional 

directional flow control valve and a FESTO DNC series double-rod type pneumatic 

actuator. Where possible, the system parameters were either obtained directly from 

previous works [22, 34], or estimated from available manufacturer (FESTO Canada)’s 

catalogs. Table 6.1 lists the system parameters for the servo pneumatic actuator 

simulator. The friction model nominal parameters are obtained from relevant literatures 

[11, 22]. The exact value of friction parameters (ߪ଴, ߪଵ, and ߪଶ) are not needed because 

the DAB-SMC controller estimates those parameters on-line through the dynamical 

adaptive laws. The nominal parameters of LuGre friction model are listed in Table 6.2. 
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Table 6.1 Servo pneumatic actuator nominal parameters. 

Parameter Symbol Nominal Value 
supply pressure 

atmospheric pressure 
total mass of piston, rods 

actuator stroke 
piston annulus area 

cylinder fixed volume 
ideal gas constant  

temperature of air source 
ratio of specific heats 

thermal expansion coefficient  
valve coefficient of discharge 

valve orifice area gradient 
max / min valve spool displacement  

valve idle zone 
valve spool position gain  

valve critical pressure ratio 

௦ܲ 
௔ܲ௧௠ 
 ܯ
  ܮ
 ܣ

௢ܸଵ, ௢ܸଶ 
ܴ 
ܶ 
 ݎ
 ߙ
 ௗܥ
 ݓ

 ௩,௠௜௡ݔ / ௩,௠௔௫ݔ
െ 
݇௩ 
௖ܲ௥ 

50985.81 Pa 
10197.16 Pa 

1.91kg 
500 mm 
10.6 cmଶ  
5 mmଷ 

287 J/kg ∙ K 
300K 
1.4 

1-1.4 
0.7 

22.6 mmଶ/mm 
൅/െ 1.25 mm 

െ0.05 ൏ ݒݑ ൏ 0.05 V 
0.25 mm/V 

0.2 
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Table 6.2 LuGre friction model nominal parameters. 

Parameter Symbols Nominal Value 

spring constant 
damping coefficient 
viscous coefficient 
Stribeck velocity 

static friction 
Coulomb friction 

 ଴ߪ
 ଵߪ
 ଶߪ
 ௦ݒ
 ௦ܨ
 ஼ܨ

4500 N/m 
93.13 N/m/s 
89.86 N/m/s 

0.02 m/s 
38.5 N 
32.9 N 
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6.1    Model Verification  

In this section, the mathematical model of servo pneumatic actuator is verified. A 

systematic way to verify a mathematical model can be accomplished through the 

observation of the computer simulation results and the experimental results of the system 

under study. Thereafter, the parameters of the mathematical model can be adjusted 

according to the discrepancies in the comparison between simulation and experiment. In 

[22], the system parameter identifications and validation works of the mathematical 

model of the servo pneumatic actuator are documented comprehensively. A good 

agreement has been observed between the experimental and simulation results. However, 

unlubricated condition for the pneumatic cylinder is assumed in [22]; hence, the 

Karnopp’s friction model is implemented in the simulation program. Relevant literatures 

[3, 11] has suggested that it is valid to use LuGre friction model in servo pneumatic 

actuators if the lubricants are assumed to present in the actuator to reduce wear. 

The integration of simulation program was accomplished through the fourth-order 

Runge-Kutta scheme with a fixed integration time step of 1 msec. The initial conditions 

were set such that the system started from rest with the actuator located at the middle of 

the full stroke. The supply and atmosphere pressures for the simulation are set to 

509851.1 Pa and 101971.6 Pa respectively. The initial pressure in each of the actuator 

chambers were set to the middle of the full pressure range (305914.8 Pa) during the 

simulation. 

Open loop control input signals are created to carry out the servo pneumatic actuator 

response test for the mathematical model validation, and they consists of a sinusoidal 

function with 1.2 ܸ amplitude and a frequency of 2ߨ rad/s,  

ݑ ൌ 1.2 sinሺ2ݐߨሻ, (6.1)

and a decreasing sinusoidal function with a decay rate of 0.16,  

ݑ ൌ 1.2 sinሺ2ݐߨሻ݁ି଴.ଵ଺௧.  (6.2)

Both testing control signals begin from 0 V, and they are shown in Figure 6.1 and Figure 

6.3, respectively. In Figure 6.1, a sinusoidal testing signal is used in the validation 
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because the system response can be observed and compared between fast motion and 

slow motion of the simulated model of pneumatic actuator. The position and velocity plot 

in Figure 6.1 shows that the actuator has zero velocity after each plateau value of the 

control signal. This is due to the fact that the actuator force created from the control 

signal is smaller than the friction force, and the actuator comes to a rest. In Figure 6.2, the 

pressures in both chambers fluctuate between 200 ݇ܲܽ  and 400 ݇ܲܽ  to generate the 

actuation force during the simulation. The friction plot in Figure 6.2 shows that as the 

velocity of the actuator increases, the friction also increases. This relationship between 

friction and relative velocity is corresponding to the changes in viscous friction. During 

the rest, the friction is nonzero and is in the static friction range. As the actuator force 

reaches the breakaway force, the friction changes from static friction to dynamic friction. 

In Figure 6.3, the decreasing sinusoidal signal is used to demonstrate the effect of 

deadband in servo valve to the actuator motion. As the control input signal ݑ௩ is reduced 

to the deadband range (i.e., െ0.55 ܸ to 0.55 ܸ), the motion of the actuator stops. During 

these instances, the valve spool does not move; hence, the pressures in actuator chambers, 

as shown in Figure 6.4, do not change, and the friction force reduces to zero due to the 

fact that the actuation force, which induces the static friction, is reduced to zero. Outside 

the deadband the control input signal ݑ௩ is recalculated in the servo valve model through 

a shift function ݑ௩ ൌ |௩ݑ|௩ሻሺݑሺ݊݃݅ݏ െ 0.55ሻ. Despite discrepancies due to the friction 

modeling, results of the open-loop simulation in this study have a good agreement with 

the simulation results from previous works [22]. 
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Figure 6.1 Simulated open-loop responses for a sinusoidal control signal. 
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Figure 6.2 Simulated open-loop responses for a sinusoidal control signal 
(continued). 
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Figure 6.3 Simulated open-loop responses for a decreasing sinusoidal control 
signal. 
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Figure 6.4 Simulated open-loop responses for a decreasing sinusoidal control 
signal (continued). 
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6.2    Nonlinear Controller Simulations from Previous Works 

With the mathematical model of the servo pneumatic actuator verified in the previous 

section, the simulation of nonlinear control system are performed using a decreasing 

sinusoidal desired trajectory 

ௗݔ ൌ 0.2 sinሺ0.5ݐሻ ݁ି଴.ଵ଺௧,  (6.3)

and a ramp desired trajectory. The smooth transition in the ramp desired trajectory is 

created from a 7th-order polynomial function [11], 

௣ݔ ൌ െ2ሺ
ݐ

2
ሻ
଻
൅ 7ሺ

ݐ

2
ሻ
଺
െ 8.4ሺ

ݐ

2
ሻ
ହ
൅ 3.5ሺ

ݐ

2
ሻ
ଷ
. (6.4)

In previous work [11], this polynomial function was suggested to test the pneumatic 

actuator model. There are significant variations in velocity and acceleration during the 

smooth transition of the ramp reference trajectory. These variations in higher order states 

of the system allows to test the performance of the controller.  

The transition starts with the position at 0 ݉ measured from the middle of the full stroke 

of the actuator cylinder, and reaches a steady-state at ݔௗ ൌ 0.1 ݉. 

The magnitude of the ramp transition function can be altered through a scale factor ܮ, and 

the time of the transition can be changed with a shift factor ߬  which represents the 

starting time of each transition. Incorporating both factors, the resulting transition 

function is  

௣௢௟௬ݔ ൌ ܮ ൬െ2 ቀ
െ߬ݐ

2
ቁ
଻
൅ 7 ቀ

െ߬ݐ

2
ቁ
଺
െ 8.4 ቀ

െ߬ݐ

2
ቁ
ହ
൅ 3.5 ቀ

െ߬ݐ

2
ቁ
ଷ

൰  (6.5)

The time function of ramp trajectory is constructed as follows: 
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଻
൅ 7 ቀ

௧ିଵ଺
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଺
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ቁ
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 (6.6)

The ramp trajectory and decreasing sine trajectory are plotted in Figure 6.5 and Figure 

6.6, respectively, along with the corresponding velocity and acceleration obtained from 

the 1st and 2nd time derivative of the position trajectory function, respectively. 

The decreasing sinusoidal trajectory is selected as the reference trajectory because 

comparisons of system responses can be established between fast relative motion 

(approximately 0.1 ݉/ݏ) and slow relative motion. As the reference velocity reduces, the 

simulation results can be used to reveal the effect of friction to the actuator system on site 

of the Stribeck velocity (0.02 ݉/ݏ). The ramp reference signal is selected for testing the 

actuator system response because it establishes comparisons between tracking 

performance and regulation performance of the actuator. Meanwhile, the transition of the 

two tasks can be evaluated during the simulation as well. 
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Figure 6.5 Ramp test signal and associated velocity and acceleration profile 
for the evaluation of the controller’s performance. 
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Figure 6.6 Decreasing sinusoidal test signal and associated velocity and 
acceleration profile for the evaluation of the controller’s performance. 
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For each nonlinear controller, three sets of simulation scenarios are carried out, i.e., no 

friction in the servo pneumatic actuator, no friction compensation for the servo pneumatic 

actuator with friction, and friction compensation for the servo pneumatic actuator with 

friction.  

The friction in this section is compensated through the feedforward model-based friction 

compensation. For these controllers, the control input to the actuator requires the time 

derivative of friction. Therefore, the friction model requires a slight modification to be 

used in the simulations. The modification is required because theoretically 
ௗ

ௗ௧
หݒ௣ห in the 

time derivative of friction is not defined. During the implementation, a smooth function 

 ௥ change the sign. According to [11], the smooth function is givenݒ ௥ሻ is used whenݒሺ݉ݏ

as  

௣൯ݒ൫݉ݏ ൌ
ଶ

గ
௣ݒ arctan൫݇௦௠ݒ௣൯,  (6.7)

where ݇௦௠ is a positive constant and a large value of ݇௦௠ gives good approximation of 

the original function หݒ௣ห. Hence, the time derivative of friction ܨሶ௙ exist everywhere. The 

derivative of the smooth function is given as 

݀

ݐ݀
௣൯ݒ൫݉ݏ ൌ ൭

2

ߨ
arctan൫݇௦௠ݒ௣൯ ൅

2

ߨ

݇௦௠ݒ௣

1 ൅ ൫݇௦௠ݒ௣൯
2൱ ሶ௣ (6.8)ݒ

With this modification, the derivative of the model-based friction compensation is able to 

contribute its control effort to the controllers, and ݇௦௠ ൌ 10000  is used for the 

simulation. 

The sliding mode controller is simulated with the given sets of simulation criteria. In 

Figure 6.7, the position error plot for sliding mode control shows oscillation at the 

beginning of the ramp reference tracking motion, and the result of oscillation has 

contributions from controller hasting the actuator to track the reference signal. 

Eventually, the controller is able to establish a stable tracking error with respect to the 

reference trajectory. In the position error plot of Figure 6.7, the tracking error switches 

sign, and this switch represents that the actuator always follows the reference trajectory 

during the tracking task. The pressure plot in Figure 6.8 shows that the pressures in the 
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two actuator chambers have very small pressure differential, and this is due to the fact 

that the actuation force is the only force acting on the piston and the friction is set to zero 

(see friction plot in Figure 6.8). The velocity plot in Figure 6.8 also shows initial 

oscillation, and this confirms that controller tries to establish a steady state tracking with 

the reference velocity. Figure 6.9 shows the system response to the decreasing sinusoidal 

reference trajectory. In comparison with the ramp tracking response, the same sliding 

mode controller takes fewer efforts to establish a steady state tracking with the sinusoidal 

reference trajectory. With reference to Figure 6.9, the position error does not decrease as 

the amplitude of reference trajectory decreases, and this suggests that the velocity and 

acceleration of the reference trajectory have no significant influence on the tracking 

errors. 

With reference to Figure 6.10, the tracking error increases due to the addition of friction 

to the system model. The initial oscillation is reduced on the same sliding mode 

controller, and this is due to the damping effect added to the system by viscous friction. 

Despite the relative large tracking errors, the controller is able to manage the tracking 

task in a stable manner, which is demonstrated by the control signal in Figure 6.10. In 

Figure 6.11, system response for sinusoidal reference tracking with friction also shows 

large tracking errors, and the controller take reasonable effort to keep tracking the 

reference trajectory.  

With respect to Figure 6.12, the sliding mode controller with the friction compensation 

almost halves the tracking error for ramp reference trajectory in comparison to tracking 

without friction compensation, and the controller takes few efforts to establish a steady 

state tracking. The pressures plot in Figure 6.13 shows a pressure differential during 

tracking and regulation, and this is due to the fact that the additional actuation force is 

required to counteract the opposing friction. The friction plot in Figure 6.13 shows that 

friction exists all the time during the tracking and regulation. With reference to Figure 

6.14, the tracking errors for sinusoidal reference is also reduced to half of those in the 

reference tracking without friction compensation, and control signal plot shows that 

control signal is very smooth for sinusoidal reference tracking. 
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Figure 6.7 Simulated ramp trajectory for sliding mode control responses with 
the assumption of no friction in the servo pneumatic actuator. 
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Figure 6.8 Simulated ramp trajectory for the sliding mode control responses 
with the assumption of no friction in the servo pneumatic actuator (continued). 
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Figure 6.9 Simulated decreasing sine trajectory for the sliding mode control 
responses with the assumption of no friction in the servo pneumatic actuator. 
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Figure 6.10 Simulated ramp trajectory for the sliding mode control responses 
without friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.11 Simulated decreasing sine trajectory for the sliding mode control 
responses without friction compensation in the servo pneumatic actuator with 

friction. 
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Figure 6.12 Simulated ramp trajectory for the sliding mode control responses 
with friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.13 Simulated ramp trajectory for the sliding mode control responses 
with friction compensation in the servo pneumatic actuator with friction 

(continued). 
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Figure 6.14 Simulated decreasing sine trajectory for the sliding mode control 
responses with friction compensation in the servo pneumatic actuator with 

friction. 
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The same reference trajectories are used to exam the performance of cascade controller. 

In the first set of simulation, the friction is not considered in the model. In Figure 6.15, 

the ramp reference tracking for the system model without friction shows the same 

tracking pattern as that of sliding mode control: initial oscillation and stable tracking 

afterwards. The values of the tracking error are close to those of previous controller. With 

reference to Figure 6.16, similar behaviours of pressure and velocity to those of sliding 

mode control are observed. With respect to Figure 6.17, the tracking behaviour for 

sinusoidal reference trajectory shows the same pattern as that in the sliding mode control, 

and the values of tracking error for both controllers are close to each other. 

In the second set of simulation test, friction is introduced to the model. With reference to 

the simulation results of ramp reference tracking in Figure 6.18, large tracking errors are 

observed from position error plot in comparison with those of sliding mode control 

without friction compensation. With respect to the simulation results of sinusoidal 

reference tracking in Figure 6.19, tracking pattern is the same as that shown in Figure 

6.11 of sliding mode control except larger tracking errors given by the cascade control. 

Both reference tracking results suggests that sliding mode control performs better than 

cascade control in the case of tracking without friction compensation.  

In the third set of simulation test, friction compensation is introduced to the cascade 

control. In Figure 6.20, significant reduction of tracking errors in the position plot is 

observed. Due to the friction, the pressure differential appears in the pressure plot of 

Figure 6.21. The additional actuation force created by the pressure differential is used to 

counteract the friction force (see friction plot in Figure 6.21). With reference to Figure 

6.22, the tracking error for sinusoidal reference tracking also has significant reduction 

due to the addition of friction compensation, and control signal plot shows that control 

signal is very smooth for sinusoidal reference tracking.  
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Figure 6.15 Simulated ramp trajectory for cascade control responses with the 
assumption of no friction in the servo pneumatic actuator. 



93 

 

Figure 6.16 Simulated ramp trajectory for cascade control responses with the 
assumption of no friction in the servo pneumatic actuator (continued). 
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Figure 6.17 Simulated decreasing sine trajectory for cascade control responses 
with the assumption of no friction in the servo pneumatic actuator. 
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Figure 6.18 Simulated ramp trajectory for cascade control responses without 
friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.19 Simulated decreasing sine trajectory for cascade control responses 
without friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.20 Simulated ramp trajectory for cascade control responses with 
friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.21 Simulated ramp trajectory for cascade control responses with 
friction compensation in the servo pneumatic actuator with friction (continued). 
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Figure 6.22 Simulated decreasing sine trajectory for cascade control responses 
with friction compensation in the servo pneumatic actuator with friction. 
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The same sets of reference tracking test are performed on the backstepping control. The 

first set of test considers no friction in the pneumatic actuator model. In Figure 6.23 and 

Figure 6.24, the tracking pattern under backstepping control looks more similar to that of 

cascade control. This is due to the fact that both control algorithms use pressure 

differential error to construct the Lyapunov function. The similar tracking pattern also 

appears in the sinusoidal reference tracking for backstepping control and cascade control 

in Figure 6.25 and Figure 6.17, respectively.  

In the second set of test, friction is introduced to the model. In Figure 6.26, the ramp 

reference tracking pattern of backstepping control appears more similar to that of cascade 

control; however, the backstepping controller produces larger tracking errors than those 

of cascade controller. This suggests that the partial sliding mode control algorithm in the 

cascade controller helps the controller to perform better than the pure Lyapunov-based 

backstepping controller when the friction compensation is not considered. This assertion 

is confirmed from the position error plot of sinusoidal reference tracking in Figure 6.27.  

The third set of test examines the performance of backstepping controller that includes 

the friction compensation. In Figure 6.28, the ramp reference tracking errors are restored 

almost back to those when the model does not include friction (see Figure 6.23). 

Meanwhile, the initial oscillation is removed completely due the damping effect created 

by the viscous friction. With respect to Figure 6.29, the pressure differential in the 

pressure plot suggests that the additional actuation force is created to counteract the 

friction, which exists throughout the ramp reference tracking. With reference to Figure 

6.30, the sinusoidal reference tracking shows satisfactory performance through a smooth 

control signal.  
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Figure 6.23 Simulated ramp trajectory for backstepping control responses with 
the assumption of no friction in the servo pneumatic actuator. 
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Figure 6.24 Simulated ramp trajectory for backstepping control responses with 
the assumption of no friction in the servo pneumatic actuator (continued). 
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Figure 6.25 Simulated decreasing sine trajectory for backstepping control 
responses with the assumption of no friction in the servo pneumatic actuator. 
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Figure 6.26 Simulated ramp trajectory for backstepping control responses 
without friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.27 Simulated decreasing sine trajectory for backstepping control 
responses without friction compensation in the servo pneumatic actuator with 

friction. 
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Figure 6.28 Simulated ramp trajectory for backstepping control responses with 
friction compensation in the servo pneumatic actuator with friction. 
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Figure 6.29 Simulated ramp trajectory for backstepping control responses with 
friction compensation in the servo pneumatic actuator with friction (continued). 
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Figure 6.30 Simulated decreasing sine trajectory for backstepping control 
responses with friction compensation in the servo pneumatic actuator with 

friction. 
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6.3    Dynamical Adaptive Backstepping-Sliding Mode Controller Simulation 

The newly developed DAB-SMC is tested in simulation in this section to give 

satisfactory tracking for the given reference trajectories. With reference to the control law 

and adaptive law given in equation (5.131) through (5.134), control gains associated with 

sliding mode, adaptive law, and acceleration observer are set to zero. The only control 

gains that are turned on and tuned at this stage are ݇ଵ, ݇ଶ, and ݇ଷ.In Figure 6.31, the 

tracking errors have some initial oscillations as those shown in the backstepping 

controller; afterward, the actuator system is able to track the reference in a stable manner. 

The control signal in Figure 6.31 also shows reduced control efforts after the initial 

oscillation. With respect to Figure 6.32, the pressures in the two actuator chambers 

become close to each other due to the fact that friction is not included in the system 

model. This pressure differential creates the only force acting on the piston to influence 

the motion of the actuator. The velocity plot in Figure 6.32 confirms that controller 

initially takes more efforts to force the system velocity to track the reference velocity. 

With respect to Figure 6.33, the controller takes fewer efforts to track the sinusoidal 

reference trajectory than ramp reference trajectory, and the tracking error has the 

tendency to reduce as the amplitude of the sinusoidal reference signal reduces. 

As friction is added to the simulation, the system responses for DAB-SMC controller 

without the activation of friction adaptive law show significant large steady state tracking 

errors similar to those of the backstepping controller without friction compensation. With 

reference to Figure 6.34, despite the large steady state tracking error, the initial oscillation 

in the system response is reduced significantly due to the damping effect created by the 

viscous friction, and the controller takes fewer efforts to reach the steady state tracking. 

With respect to Figure 6.35, pressure differential of the two chambers is shown in the 

pressure plots, and the actuator force created from the pressure differential is used to 

counteract the friction created during the tracking. The friction plot in Figure 6.35 

confirms that the friction exists all the time during the reference tracking. With reference 

to Figure 6.36, large tracking error has also shown in the position error plot for the 

sinusoidal reference tracking, and the position error has the tendency to become smaller 

as the amplitude of the sinusoidal reference trajectory reduces. 
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Figure 6.31 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses with the assumption of no friction in the servo 

pneumatic actuator. 
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Figure 6.32 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses with the assumption of no friction in the servo 

pneumatic actuator (continued). 
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Figure 6.33 Simulated decreasing sine trajectory for dynamical adaptive 
backstepping-sliding mode control responses with the assumption of no friction 

in the servo pneumatic actuator. 
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Figure 6.34 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses without friction compensation in the servo 

pneumatic actuator with friction. 
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Figure 6.35 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses without friction compensation in the servo 

pneumatic actuator with friction (continued). 
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Figure 6.36 Simulated decreasing sine trajectory for dynamical adaptive 
backstepping-sliding mode control responses without friction compensation in 

the servo pneumatic actuator with friction. 
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At this stage, the backstepping control gains in DAB-SMC controller are kept the same as 

the previous test, and the gains ߛଵ , ߛଶ, and ߛଷ  in friction adaptive law is activated to 

compensate for the friction. With reference to Figure 6.37, there is significant reduction 

in the system tracking error as shown in the position error plot; this is due to the fact that 

friction is estimated on-line through the dynamical adaptive laws, and these laws are 

constructed in such a way that they further reduces the tracking errors. In Figure 6.38, the 

simulated friction and estimated friction are compared, and the friction estimation plot 

shows that the estimate error of friction is in the range of -15 ܰ to +15 ܰ. With respect to 

Figure 6.39, the performance of sinusoidal reference tracking in the position plot is 

satisfactory; however, position error plot shows significant oscillation during the initial 

tracking, and this is due to the fact that the adaptive laws take efforts to adapt the friction 

initially. The position error plot frequently shows peaks, which occur when the actuator 

changes direction of motion, and this is due to the fact that the adaptive law re-adapts to 

the friction when the friction changes its direction. In Figure 6.40, the comparison of 

simulated and estimated friction confirms that the oscillations in the tracking errors are 

due to initial friction adaptation. 

Finally, gains ߁ଵ  and ߁ଶ associated with the sliding surface and the control gain ߁ଷ for the 

acceleration observer are turned on and tuned to replace the acceleration feedback. With 

reference to the simulation results of ramp reference tracking in Figure 6.41, one of the 

significant contributions of the acceleration observer to the DAB-SMC controller is the 

reduction the maximum position error. The acceleration observer is a by-product of the 

sliding mode control algorithm in the DAB-SMC controller, and the acceleration estimate 

is constructed such that it is forced onto the sliding surface. The acceleration estimate 

utilizes the friction estimation given by the friction adaptive law and assumes that the 

friction estimate converges to the simulated friction. In Figure 6.42, the acceleration 

estimate shows large estimation errors; this is due to the fact that the friction estimate, 

which is used to produce the acceleration estimate, does not estimate the simulated 

friction perfectly (see Figure 6.38). With respect to simulation results of sinusoidal 

reference tracking in Figure 6.43, significant reduction in the maximum tracking error is 

observed in the position error plot after the introduction of the acceleration observer to 

the controller. With reference to Figure 6.44, the explanation used to explain the large 
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acceleration estimate errors in ramp reference tracking can be reused to explain the large 

acceleration estimate errors in the sinusoidal reference tracking. 
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Figure 6.37 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses with adaptive friction compensation in the servo 

pneumatic actuator with friction. 
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Figure 6.38 Friction estimation to ramp trajectory of dynamical adaptive 
backstepping-sliding mode control responses with adaptive friction compensation 

in the servo pneumatic actuator with friction. 
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Figure 6.39 Simulated decreasing sine trajectory for dynamical adaptive 
backstepping-sliding mode control responses with adaptive friction compensation 

in the servo pneumatic actuator with friction. 
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Figure 6.40 Friction estimation to decreasing sine trajectory of dynamical 
adaptive backstepping-sliding mode control responses with adaptive friction 

compensation in the servo pneumatic actuator with friction. 
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Figure 6.41 Simulated ramp trajectory for dynamical adaptive backstepping-
sliding mode control responses with adaptive friction compensation, acceleration 
observer, and sliding mode control in the servo pneumatic actuator with friction. 
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Figure 6.42 Acceleration estimation to ramp trajectory of dynamical adaptive 
backstepping-sliding mode control responses with adaptive friction 

compensation, acceleration observer, and sliding mode control in the servo 
pneumatic actuator with friction. 
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Figure 6.43 Simulated decreasing sine trajectory for dynamical adaptive 
backstepping-sliding mode control responses with adaptive friction 

compensation, acceleration observer, and sliding mode control in the servo 
pneumatic actuator with friction. 
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Figure 6.44 Acceleration estimation to decreasing sine trajectory of dynamical 
adaptive backstepping-sliding mode control responses with adaptive friction 
compensation, acceleration observer, and sliding mode control in the servo 

pneumatic actuator with friction. 
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6.4    Integration of Dynamical Adaptive Backstepping-Sliding Mode Control with 

Lyapunov-based Pressure Observer 

A typical servo pneumatic actuator system employs two pressure sensors for pressure 

states feedback. The requirement for pressure sensing in the servo pneumatic actuator is 

burdensome. A globally stable Lyapunov-based pressure observer design is proposed by 

Gulati et al. [12]. The pressure observer utilizes displacement and velocity states and the 

control signal to estimate the pressures in the pneumatic cylinder chambers. A brief 

convergence proof of the pressure observer is provided for the reader’s convenience.  

The pressure observer is given in the form of  

෠ܲሶ ൌ ߙ
ோ்

௏
ෝ݉ሶ െ ߙ

௏ሶ

௏
  ෠ܲ, (6.9)

where ෠ܲሶ  is the estimated pressure dynamics, ෝ݉ሶ  is the estimated mass flow rate, ܸ is the 

chamber volume , and ሶܸ  is volumetric change rate of the chamber. 

In order to show the convergence between the simulated and estimated pressure, the 

positive definite Lyapunov function ܸ݈ for the pressure observer is given as 

௟ܸ ൌ
ଵ

ଶ
൫ܸܲ െ ෠ܸܲ൯

ଶ
. (6.10)

In the derivation of the pressure dynamics of the actuator model, the pressure dynamics is 

derived with the assumption of air in adiabatic process; hence, the thermal expansion 

coefficient ߙ ൌ ݎ ൌ 1.4 is used. With reference to [12], the thermodynamics process in 

the actuator can vary from isothermal (ߙ ൌ 1ሻ process to adiabatic process (ߙ ൌ 1.4). 

Hence, the actual pressure dynamics can be written as 

ሶܲ ൌ ߙ
ோ்

௏
ሶ݉ െ ߙ

௏ሶ

௏
 ܲ.  (6.11)

The time derivative of equation (6.10) gives 

ሶܸ
௟ ൌ

1

2
൫ܸܲ െ ෠ܸܲ൯ ቀ ሶܸܲ ൅ ܲߙ ሶܸ െ ෠ܲሶܸ െ ߙ ෠ܲ ሶܸ ቁ (6.12)

Substituting equations (6.9) and (6.11) into equation (6.12),  
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ሶܸ
௟ ൌ ൫ܸܴܲܶߙ െ ෠ܲ൯൫ ሶ݉ െ ෝ݉ሶ ൯ (6.13)

The proof of ሶܸ௟ ൑ 0  is shown graphically by the valve flow dynamics (see Figure 6.45). 

Both charging and discharging process shows that the relation between chamber pressure 

and mass flow rate possess the monotone property, i.e., ൫ܲ െ ෠ܲ൯൫ ሶ݉ െ ሶ݉෡൯ ൑ 0 holds all 

the time. In addition, the thermal expansion coefficient ߙ varies from isothermal process 

to adiabatic process but is always greater than zero; therefore, ሶܸ௟ ൑ 0 . This ends the 

proof of the convergence of the pressure observer. 

With reference to the simulation results of ramp reference tracking in Figure 6.46, the 

system performance after the integration of DAB-SMC controller with the  pressure 

observer does not show significant variations from that of the system prior to integration. 

This suggests that the system after integration can provide equivalent performance for 

ramp reference tracking. With respect to Figure 6.47, the pressure estimation error plot 

shows the convergence property of pressure estimate for one of the actuator chambers. 

The simulation results shown in Figure 6.48 confirm that satisfactory performance also 

can be obtained for sinusoidal reference tracking. With respect to Figure 6.49, the 

pressure observer shows the convergence property for sinusoidal reference tracking as 

well. 
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Figure 6.45 (a) mass flow for charging process, (b) mass flow for discharging 
process. 
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Figure 6.46 Simulated ramp reference tracking for dynamical adaptive 
backstepping-sliding mode control responses with pressure observer in the servo 

pneumatic actuator with friction. 
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Figure 6.47 Pressure estimation to ramp reference tracking of dynamical 
adaptive backstepping-sliding mode control of the servo pneumatic actuator with 

friction. 
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Figure 6.48 Simulated decreasing sine reference tracking for dynamical 
adaptive backstepping-sliding mode control responses with pressure observer in 

the servo pneumatic actuator with friction. 
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Figure 6.49 Pressure estimation to decreasing sine reference tracking of 
dynamical adaptive backstepping-sliding mode control responses with pressure 

observer in the servo pneumatic actuator with friction. 
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6.5    Summary  

In this chapter, the validity of the mathematical model developed for servo pneumatic 

actuator is verified, and reference test trajectories are constructed to evaluate the 

performance of the controllers developed in Chapter 5. The nonlinear controllers from 

previous works are simulated and the results are compared. The results suggest that 

sliding mode controller performs better than cascade controller, and cascade controller 

performs better than backstepping controller. Then, the newly developed dynamical 

adaptive backsteping-sliding mode controller (DAB-SMC) is evaluated using the same 

testing trajectories, and the results shows that the new controller performs better than all 

previous controllers in terms reference tracking. Finally, the integration of a Lyapunov-

based pressure observer and the DAB-SMC is considered for the control system and the 

simulation results show no significant changes in comparison with the control system 

before the integration. The controller gains used in the simulations are summarized in 

Table 6.3.  

With the integration of the pressure observer, the prerequisites for the implementation of 

DAB-SMC controller are as follows: (1) the identification of the static friction, Coulomb 

friction, and Stribeck velocity is required for the type of pneumatic actuator used in the 

implementation; (2) an optical sensor is required for the measurement of the actuator 

displacement; (3) the velocity of the actuator is required and can be estimated 

numerically from a regression function on the displacement feedback data. 
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Table 6.3 Controller parameters.  

Controller parameters in sliding mode control Value 
 ߣ
 ߟ
߮ 

150 
5݁ିହ 

20 
Controller parameters in cascade control  Value 

݇௣ 
݇௩ 
 ߣ

150 
40 
50 

Controller parameters in Backsteping control Value 
݇ଵ 
݇ଶ 
݇ଷ 

80 
20 
200 

Controller parameters in DAB-SMC Value 
݇ଵ 
݇ଶ 
݇ଷ 
 ଵ߁
 ଶ߁
 ଷ߁
 ߟ
 ଴ߛ
 ଵߛ
 ଵଶߛ

80 
20 
200 

0.001 
0.02 
0.001 
0.001 
0.08 
0.08 
0.08 
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Chapter 7. Conclusions 

In order to provide good reference tracking, control engineers designing tracking control 

systems need to be aware of the friction induced adverse effects; hence, a comprehensive 

review of the friction associated with mechanical system is provided in this study. To 

analyze systems with friction, the approach taken in this study is through a simplified 

non-smooth system model of friction. This approach allows the analysis of complex 

system to be completed in a simplified fashion. The results of the analysis suggest that it 

is absolutely necessary to provide friction compensation to the systems with friction so as 

to avoid friction induced instability and low performance. 

In spite of existence of many references regarding pneumatic tracking systems, the 

literature in the area of incorporating the friction effect in pneumatic tracking system is 

still sparse. Particularly, prior to this study there is no publication on the survey of using 

Lyapunov-based nonlinear control techniques in servo pneumatic actuators. This thesis 

has made a number of contributions to the development, implementation, and simulation 

evaluation of nonlinear adaptive and robust control laws for pneumatic actuator moving 

at low speed. A dynamical adaptive backstepping-sliding mode controller (DAB-SMC) is 

developed and verified for servo pneumatic actuator through the simulation of its 

mathematical model. The simulation is accomplished by introducing the friction to the 

actuator simulator through the LuGre friction model. The simulation program can 

simulate the following scenarios: (1) tracking control without the consideration of friction 

in the system model, (2) tracking control with feedforward model-based friction 

compensation, (3) tracking control with adaptive compensation of friction, and (4) 

tracking control with the integration of the developed controller and a Lyapunov-based 

pressure observer. 

The DAB-SMC controller in this study is able to provide good performance for reference 

tracking despite the friction disturbance to the pneumatic actuator model. The controller 

also inherits robustness due to the incorporation of sliding mode control law. The 

integration of the controller with the Lyapunov-based pressure observer is able to reduce 

the state feedback of servo pneumatic system to only piston displacement. 
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