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CT reconstructions are usually done using the Fourier Bacþrojection algorithm, which

requhes many equally spaced projections. When the number of projections is too small or

the projections are confined to a limited angle range, the resulting image quality deteriorates

very quickly.

This thesis introduces two new reconstruction methods, Interpolative Algebraic

Reconstruction Techniques (IART) and Matching Reconstruction Technique (MRT),

suitable for reconstruction from incomplete data and for any radiation beam geometry. The

goal is to minimize the radiation dose for a given image quality. IART uses a novel

approach to relate pixels (elements of a reconstruction matix) to projections that eliminates

errors due to the discretizationcharacteristic of ART algorithms. The method complies with

real conditions where projections at every direction are taken with the same number of

equally spaced detectors, whether parallel or fan beam. IART is iterative and vulnerable to

noise. IART with filtered projections is introduced that was tested on data that included

simulated photon noise. The results obtained showed improvement in the image quatity.

To filter out photon noise different approaches have been examined:

1. Using a set of projections to form a sinogram image, real space enhancement

techniques have been applied. The result was negative.

2. Applying the windowing technique in Fourier space produced positive results.

MRT does not use the backprojection operation. The image is produced by random

changes of intensities of constituent pixels of a reconstruction matrix with selection of

changes by simulated annealing.

New ways of using a Fourier spectrum in a reconsffuction process a¡e introduced: as a

measure for distinguishing a linear from nonlinear reconstruction method , as a new

ü
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criterion in estimation of the optimal number of iterations, and as a new qualitative

similarity measure.

This thesis also includes a compilative study that consists of:

1. Comparison of images obtained using the same reconstruction method but from a

different number of projections;

2. Comparison of images from the same number of projections but resulting from

different reconstruction methods. In both cases, the IART and FBP reconstruction images

were used.

The objective was the applicability of quantitative criteria and the newly introduced

qualitative criterion of the subtraction of Fourier spectra of images (reconstruction from

reference) as the similarity measures.
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Nowadays, imaging has gtown to play an impofiant role in medicine. X-rays are used

for diagnostic as well as for screening pulposes (routine chest films, mammography,

routine dental films, etc.). High quality computed tomography images with high resolution

are in high demand. To obtain such, a number of projections is required. The more the

better. But one must remember that every projection taken means delivering a certain

radiation dose to a patient. The total dose resulting from the examination is directly

proportional to the number of projections taken. There are three potential hazards that can

result from diagnostic x-rays lHall, 1978]:

a) Genetic mutations may be greatly increased in future generations because

approximately half of the population receives x-rays annually,

b) The risk of cancer or leukemia may be increased in the patients themselves who

receive multiple x-rays,

c) Anomalies and/or malignancies may be produced in children furadiated in utero.

The risk of cancer produced by x-ray exposure is increased even further for human

organs that are most sensitive to radiation carcinogenesis, like the thyroid or the female

breast. Especially the latter is one of the body tissues known to be particularly susceptible

to radiation-induced cancer [Recommendations of ICRP, 1977], [Report of NIH, 1985].

Studies of different exposed populations have yielded consistent results. As observations at

low dose levels are difficult, the risk associated with low dose exposures is usually

estimated from higher dose data. These included Japanese survivors of atomic bombings of

CHAPTER I
TNTRODUCTION
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Hiroshima and Nagasaki lTokunaga,7979f, as well as North American sanatoria patients

from Massachusetts [Boice, 1977] and Canada [Howe, 1984], [MacKenzie, 1965] who

underwent multiple chest fluoroscopies during treatment for pulmonary tuberculosis, and

groups of patients treated with radiotherapy for postpartum mastitis in Rochester, New

York [Shore,19771and other benign breast conditions in Sweden [Baral, 1977]. The most

important resulting finding was that linearity or near-linearity, appeared to describe the

dose-response relationship for breast tissue doses over a very wide range, including the

lower end of scale [Land, 1980], [MacKenzie, 1965], [Boice, 1977], [Tokunaga,l979l,

[Shore, 1977]. The significance of linearity for radiation protection is that excess risk from

low-dose exposures can be estimated with some confidence from high-dose data. A second

important finding was that the distribution over time after exposure of radiation-induced

breast cancer risk conformed to age-specific population rates [Land, 1977f, ll-and, L978],

[McGregor, 1977), ll-and, 1980]. The time of clinical appearance of both radiation-induced

and other breast cancers seemed to be determined by factors related to age, and it may be

well that these factors influence when and whether cancer occurs. Another major finding

was that breast tissue seemed to be the most sensitive to radiation carcinogenesis during the

second decade of life [Boice, 1977], [Boice, 1978], [McGregor, 1977f, [Tokunaga,

19791. The influence of age at exposure on the risk of breast cancer may be explainable in

terrns of hormonal levels and breast development. There is some evidence of increased

sensitivity to radiation induced cancer at menarche and just before [Boice, 1977], [Boice,

19781, [McGregor,l977f, [Tokunaga,1979] and during pregnancy [Boice, 1978].

During our lifetime we accumulate all the doses that have been delivered to us, i.e. ,

every time we undergo x-ray examination we add to our cumulative dose. Therefore, for

the patient's sake, the amount delivered during a single examination should be as small as

possible. That is in contradiction to the requirements for a high resolution image.



Finding an answer to the problem of how to obtain a satisfactory high quality image

from a limited number of views would be the ideal solution to the above mentioned

dilemma.

This thesis addresses the above problem by innoducing a new reconstruction method

for limited number of views and working on improvement of reconstruction image quality

from it. A novel approach to relate pixels to projections has been used. The new algorithm

adapts equations of Algebraic Reconstruction Techniques that have already been proven to

work well on incomplete projection data [Oskoui-Fard, 1988], [Andersen, 1989], [Peng,

19891. The method that is suggested has the considerable advantage of complying with real

conditions. It has been shown that it works equally well for parallel and fan beam

geometry. Moreover, it can be easily generalized to three dimensions.

Another new reconstruction method is also suggested, that can be used with any

number of projections, including very few and from the limited sector of directions. The

method, Matching Reconstruction Technique, uses totally a new approach and looks

promising.

Chapter II covers the description of the new reconstruction algorithm, Interpolative

Algebraic Reconstruction Technique, (IART), its variation that is suggested to improve

image quality, and also an overview of the Fourier Bacþrojection algorithm, (FBP), that

was used in this study as a reference method for comparison. In this chapter, also results of

an analysis are included of how to best handle round-off errors on our computer. The

IART algorithm was used for testing.

Chapter III discusses sources of noise in computed tomography. A procedure for the

simulation of photon noise is presented along with results obtained using different method

1.2. Outline of the Thesis



of filtering out the noise from the projections. The fîltered projections subsequently were

used as input data to the IART algorithm with positive results.

New ways of using the Fourier spectrum in a reconstruction process are presented in

Chapter IV.

In Chapter V, a simulation procedure for CT data collection affected by photon noise is

presented. The procedure was used for experiments of this chapter: Noisy and filtered

projections were entered as input data to the IART method and the resulting images were

evaluated for differences. To assess the images, several similarity methods were applied,

discussion of which is included in Section 5.2.

Chapter VI contains results of the comparative study. The reconstruction images from

different number of projections were evaluated and compared with respect to the

applicability of the quantitative and qualitative criteria as evaluation measures. This is

something new, as usually, the evaluation is done on images produced from the same

number of projections [Herman, L972), [Herman, 1973a], [Heffernan, 1983], [Oskoui,

19891, [Ollinger, 1988], [Suzuki, 1988], [Cho, 1975]. The analysis includes images from

IART and Fourier bacþrojection reconstruction methods. This study also were extended to

verify the use of similarity measures to compare images from IART and FBP for the same

input set of projection data.

In Chapter VII, a description of another new reconstruction method that uses the

simulated annealing optimization technique is given. The algorithm is suitable for

reconstruction from incomplete projection data (all cases), as well as from the full set of

projections. Preliminary results are presented. The method still requires refinement and

further investigation.

Concluding remarks and discussion of future work are in Chapter VtrI.



CHAPTER II
RECONSTRUCTION METHODS

2.1. Interpolative Algebraic Reconstruction Techniques

(rART)

2.1.1. Introduction

Algebraic Reconstruction Techniques (ART) were inroduced by Gordon, Bender and

Herman for solving what is now known as the computed tomography problem [Gordon,

19701. They are based on an intuitive approach of smearing back each projection of the

estimate of the object's optical density with repeated conections until an agreement with the

correspondin g measured projections is reached.

All ART algorithms have the same basis, the partition of a reconstruction matrix into a

set of ,uy, {ôo}through which the radiation traverses the object (Fig. 2.1.1.). Every

radiation passage is represented by a projection valuep¿ :

where / represents the position vector of the centre of a pixel of the reconstruction matrix,

and f (/) is the unknown optical density function.

pk =[ Í F)dî (2.t-t)
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ôk

Fig. 2.1.1. (ô* ) - set of rays for the projection direction at the angle 0. Centroids represent the individual
optical density pixels of the reconstruction matrix { ìa ). nvery radiation ray is represented by a projection
value p2.

The reconstruction is done over a set of pixels generally chosen in a regular ¿uray, to

which we want to assign estimates T (4í)of f (Ð such that:

For every pixel, to obtain an approximation for the unknown function f (f), we estimate its

value based on the fraction w ¡¡ of. the pixel covered by the ray and the values of the

projections for that particular ray. The process is repeated many times until a convergence

Pk= I w¡¡7G¡¡)
l,¡ e ôr

(2.1-2)



criterion is met. (We are assuming uniform density of the radiation across a passage,

though this could be taken into account by modifying the values of the w,.¡ 's.)

In order to make the calculations less cumbersome, in the parallel beam case for every

projection direction the passage width can be chosen so that one pixel centroid per row is

encountered, except for the last row [Herman, 1973), [Gordon, 1974]. The assumption

that centroids can replace pixels simplifies the procedure, as for every projection direction

we only need to find which centroids belong to which ray. (That is if we disregard the edge

or "partial volume" effect [Gordon, L974].) This eases a little the pain of calculating for

every pixel and for every projection direction how much of the pixel is being covered, and

by which of the rays. However, it requires that during the reconstruction process, for every

projection direction one has to calculate the width of the ray õ¡, as well as to record or

recalculate which centroids belong to which rays.

This thesis introduces a new method to relate the pixels to their projections that is more

suitable for data from detectors of unchanging width, which is the practical case. Unlike the

centroid approach, the new method is, moreover, readily applicable to both parallel and

diverging beam geometry.

2.1.2. Relating Pixels to Projections without Beam Partitioning

In a computed tomography scanner, when the radiation beam passes through an object

or patient, it produces readings on a line of detectors behind the object. In order to find out

the relationship between the individual pixels of the reconstruction matrix and the line of

detectors we use the shadow cast by the pixel on the line of detectors (Fig.2.1.2.). By

evaluating how much of the shadow is covered by which of the detectors, we estimate the

contribution of the optical density of the element to the detectors involved. We can do the

calculations either by very accurately estimating the shape of the shadow for every

projection direction ("accurate" interpolation), or by making an assumption that the shadow



will be of the same rectangular shape regardless of projection direction. The latter is

equivalent to rotating the pixel so that it is aligned with the pdection direction, so we will

call it the "rotation" interpolation. With accurate interpolation, the shadow will change its

shape from rectangular through trapezoid to triangular depending on the angle of a

projection direction. With the rotation interpolation, the shadow of a pixel is always the

same rectangle. Since the shapes of pixels are artifacts of our digitization of images,

consideration of alternative shapes for them seems reasonable.

Below, for both parallel and diverging beam, the description of the rotation

interpolation is presented as this is the one that is expected to be more popular. Later in this

chapter, it will be shown that results obtained using it differ only slightly from those

obtained through the accurate interpolation, while the computation time is shorter.
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radiation beam direction

Iine of detectors

(b)
Fiç.2.1.2. For a parallel geometry beam, estimation of a pixel shadow on the line of detectors using:
accurate, (a), and rotation, (b), interpolation.

radiation beam direction



We start by projecting the center of the element onto the line of the detectors (Fig.

2.t.3 ).

Parallel Geometry Beam

10

+_
u

I (x,y ) r

Fig.2.1.3. Geometry of a parallel beam scanning system. The line at the angle 0 represents the line of
detectors for a projection direction 0 + 900. ax, aJ - distance between pixel centers in a row and column
of the bacþrojection matrix, respectively; d - detecor width.

LINE OF DETECTORS



Let us assume that the (i;r )'th pixel in the bacþrojection matrix is described by a pair

of coordinates (xJ ) such as

where ax anday represent the horizontal and vertical distances between pixel centers in

the matrix as in Fig. 2.1.3. Usually ax - ay - ¿. The position of the projection of the pixel

center onto the projection line at angle 0 is equal to

11

x=íax

y=jay

where d is the detector width. The pixel will contribute to all detectors that are covered by

its shadow. In practice, it is common and justified to set the reconstruction element size a

equal to the detector width d. In that case, the pixel will contribute to a maximum of two

detectors that are the closest to point P¡¡ .Theportion of the element density that adds to a

detector reading is calculated using the interpolation function

Pij = g sinO +¡ cos0)/d

su@) =

1

d -lu -P¡¡l

0

where ø represents the center of the detector, d the detector width and P¡¡ is the projection

of the centroid of the (ii )'th pixel onto the detector line.

for

for

for

(2.1-3)

lu -P¡¡ l=g
0.1, -P¡¡l3d

lu -P¡ l> d (2.1-4)



Fan-beam scanning inuoduces the dependence of the pixel contribution on its distances

from the radiation source and the detectors. Pixels that are closer to the source will

contribute to more detector readings than those that are closer to the arc of detectors.

Finding the detectors that receive radiation via the particular pixel can be achieved by

calculating the shadow cast by this pixel on the line of detectors. The length and position of

the shadow uniquely define detectors to which this particular pixel contributes.

t2

Fan Geometry Beam

Fig. 2.1.4. Geometry of a fan beam scanning system. S - an x- ray source, P - center of the (ii )'th pixel,
P¡ - center of the shadow cast by the (t.¡ )'th pixel on the arc of deæctors.



From the geometry of the system (Fig.Z.l.a.), we find the center of the shadow P¡

cast by (t,¡ )'th object pixel:
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DP ij =SD Y

T=tan_l[#]-J

yr =y cos(C[) -x sin(Cr)

(2.r-s)

Fig. 2.1.5. Fan beam scanning system. Shadow cast by the (ij )'th pixel onúo the detectors arc.

The length of the shadow (Fig.2.l5) is described by



where ¿ is the pixel side,

s1s2= SD p

t4

þ=2tan-r@ /QF-))

Based on Equations (2.1-5) and (2.1-6), detectors that are affected by the (i*¡ )'th pixel are

found.

How much of the optical density of the pixel adds to each of the detector readings

depends on the portion of the shadow that is covered by each of the detectors. V/e make an

assumption that the pixel side a is equal to the detector width d , which is common and

justified in practice, and further we express the system dimensions in units of the detector

width. This allows us to use the following interpolation function gU @) to calculate the

pixel contribution to the detector readings:

SP =¡/ /sin(T)

xt =)c cos(cr)+y sin(a)

(2.1-6)

g¡¡ (u) =

I
2h

llu-r,¡l-tt -o.siff

where å equals one half of the shadow length ;lr2- (Fig. 2.1.5.), urepresents the

position of the center of the detector, and P¡¡ is the center of the shadow.

for lu -Pi¡l< tr - O.s

for h - 0.5 <lu -P;¡l< tr + O.S

for lu -P;¡l > tr + O .S
(2.1-7)



2.1.3. Reconstruction Algorithm

Using the method in the above Section 2.I.2 to relate pixels to the projections, we can

generalize that in both cases (parallel and diverging beam) projection values are calculated

as

matrix sizePk= E si¡@r)Í€¡¡)
ij =l
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where u¡, is the position of (È )'th detector, f Fü) represents the optical density of

(t;l )'th pixel and N is the total number of detectors.

To compute the estimates of the unknown function f (Ð for an (i j )'th object pixel, we

can use basic ART equations altered to accommodate the interpolation function B¡ (a). For

example, the multiplicative ART equation:

k e 1,1,2,..,N ]

where superscripts q+I, ø representthe (q +1)' and (q )'th estimates î(), utd p ¿ and

p q¡ 
are the measured and corresponding calculated projections, respectively, becomes

îu*rïu, = oúÍ Fu)

(2.r-8)

where

¡v

îo *tGu, 
= È, si¡ @ r,)'oll' or>

N

k= |

(2.r-e)

(2.r-10)



and gü (¿ ¿ ) is the interpolation function. One increment of q means that all projections of

each pixel have been considered once. The major difference between Equations (2.1-9) and

(2.1-10) is that the former one is applied to every single ray of a projection while the latter

refers to a whole projection.

To measure the convergence of the estimate To Gt¡ ), the discrepancy between the

measured and corresponding calculated projections can be used

16

2.1.4. Results

The new reconstruction algorithm was tested on a reference image illustrated in

Fig. 2.1.6. The parameters of the constituent ellipses including grey levels are given in the

Table 2.1.1. A major advantage of using an image like Fig. 2J.6 for computer simulation

is that one can write analytical expressions for the projections [Ekstrom, 1984].

Calculations were performed using Equation (2.1-9), for thirty projection directions

equally spaced over the angle of 1800 and 3600 for parallel and diverging beam,

respectively. The starting value of the estimate of the object optical density was chosen to

be equal to 1, i.e. îo1t¡ ) = 1 . The reference image and all reconstruction images were on

128 x 128 matrices.

All reconstructions were performed using a Macintosh II computer. Programs were

written in the THINK Pascal language.

Mq=@ (2.1-rt)
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Fig.2.1.6. The reference image, a superposition of l0 ellipses. At overlaps grey levels are added.

Table2.l.l. Component ellipses of the reference image in Fig. 2.1.6.

Ellipse Coordinates of
the center

a

b

c

d

e

f
(l
Þ

h

i

0,0

0, -0.0184

0.22,0

-0.22,0

0, 0.35

0, 0.1

0, -0.1

-0.08, -0.605

0, -0.605

0.06, -0.605

Major
axls

0.92

0.874

0.31

0.41

0.25

0.046

0.046

0.046

0.023

0.046

Minor
axis

0.69

0.6624

0.11

0.16

0.21

0.046

0.046

0.023

0.023

0.023

Rotation
angle

900

900

720

1080

900

0

0

0

0

900

Gray level

300

2

98

98

r01

101

101

101

101

101



The reference image in Fig. 2.1.6 was reconstructed with at most 12 iterations, since

the best quality reconstructed image was obtained after the sixth iteration. Afterwards the

picture quality deteriorated @ig.2.1,.7 .).

Two sets of reconstructed images were obtained using the fixed and rotated pixel

interpolation functions. V/e used the correlation coefficient to assess how using the

different versions of the interpolation function influence the resulting reconstructed picture.

Visually, one can hardly see the difference (Figs. 2.1.8- 9). For eitherversion of the

interpolation function, for different numbers of iterations, the resulting reconstructed

images were evaluated against the reference image using the correlation coefficient

similarity measure (see Section 5.2):
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Parallel Beatn Geometry

¡/I (r u -ÐVî, fl
Ë v¡-r), Ë vi, T.Y

ij =1

where N x N is the size (in pixels) of either, reference and reconstruction, matrix; f i¡ and

^*f ¡ represent the pixel intensity in the reference and the reconstruction images,

respectively, and f and f - is the average density of the reconstruction and reference

images, respectively.

(2.1-12)
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0)
Fig.2.L.7. Parallel beam, 30 projection directions equally spaced over 180o. IART reconstruction of
Fig.2.l.6 after: (a), six iterations; (b), nine iterations.
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Fig.2.1.8. Parallel beam,30 projection direcl.ions equally spaced over l80o.IART reconstruction of Fig.
2.1.6 using the fixed pixel interpolation function after: (a), one iteration; (b), three iterations.



2l

(b)

Fig.2.1.9. Pa¡allel beam,30 projection directions eclually spaced over 180o. IART reconstruction of Fig.
2.1.6 using the rotated pixel interpolation function after: (a), one iteration; (b), three iterations.



Results of the comparison are presented graphically in Fig. 2.1.10, in which it can be

observed that using the fixed pixel interpolation function produces a slightly better

reconstructed picture. The disadvantage of using it is longer calculation time. (Computation

time for the fixed pixel interpolation function was approximately 1.5 times longer than

when the rotated pixel interpolation was used.)

22

0.97

0.96

0.95

Fig. 2.1.10. Conelation coefficients computed for the IART reconstruction images. (Parallel geometry
beam.)

fixed pixel interpolation
rotated pixel interpolation

0.97

The geometry system as depicted in Fig. 2.1.4 was used. The detector length was equal

to one unit of length, the distances from the origin to the source SO and the detector arc

OD were 300 and 80 units, respectively.

The best reconstruction was obtained after three iterations. Thus no more than four

iterations are shown, since, in our experience, the error function e has at most one peak.

The reconstructed pictures are presented in Fig. 2.l.ll - 12.

0.96

8 10 t2

iteration number

Fan Bea¡n



For comparison with a standard algorithm, using the same data, the reconstruction of

the reference image in Fig. 2.1.6 was computed using the fan beam Fourier Bacþrojection

(FBP) method with a Shepp & Logan kernel lRosenfeld,1982] (Fig. 2.1.13.) Correlation

coefficients for images computed using IART (3 iterations) and FBP methods were

respectively e = 0.995 and 0.975, showing that IART gave a substantial improvement as

the figures visually suggest.

The computing time for the Fourier Bacþrojection method was comparable to a single

iteration of IART.

23
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Fig.2.1Jl. Fan beam,30 projection directions equally spaced over 3600. IART reconstruction of Fig.
2.1.6 afpr: (a), one iteration; (b), two iterations.
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Fig.2.L.l2. Fan beam,30 projection directions cqually spaced over 3600. IART reconstruction of Fig.
2.1.6after: (a), three iterations; (b), lour iterations.



Fig.2.1.13. Reconsrrucrion of Fig.2.1.6 using Fourier Backprojection method.30 projection directions

equally spaced over 3600.

2.L.5. Discussion and Conclusions

A good reconstruction method should not introduce any false detail into an image and

the density values at adjacent points should vary as smoothly as possible in a manner which

is consistent with the projection data. In the ART algorithm errors are introduced due to the

way the estimares of the unknown function f (l) for an (i,j )'th object pixel are computed:

ART formulas are applied to every single ray of a given projection at angle 0 and then are

used in the same manner for the next projection, and so on. This way even for the same

projection, the esrimare T (rí) of the (i,7 )'th pixel that is included in more than one ray is

being readjusted many times depending on the ray number the pixel is covered by. In



addition, in case of the additive ART [Gordon, 1970], [Gordon, 1974], the correction

made to the single pixel estimate depends on the number of reconstruction matrix pixels

included in a given ray which varies according to the angle of the projection. Assume a

square N x N reconstruction matrix that is composed of small square pixels. Thus a ray of

the width of the size of a single pixel will contain roughly N pixels, i.e. the number equal

the size of a reconstruction matrix ât 0 = 0. But when 0 - nl4 the ray can contain as

many as,{TN pixels, or as few as one pixel, or a fraction of it depending on the position of

the ray. There is a similar effect for rays of projections at angles between these two

extremes. All these cause errors in ART algorithms when rays of the pixel width are used,

which is the practical case, [Gilbert, 1972f, [Andersen, 1974], [Andersen, 1989]. The

novel feature of IART, the approach that was used, is to relate pixels to the projections in a

way that eliminates these sources of error and ultimately leads to the production of a

smoother image. To put it in mathematical language, this approach creates a system of

equations of a smaller degree of inconsistency that results in less noisy image.

The reconstruction images obtained using the Interpolative Algebraic Reconstruction

Techniques proved to be of good quality. At least for the reference image we used, IART

gave a better reconstructed image than the standard Fourier Backprojection method, both

visually and by quantitative comparison with the phantom.

Results from the implemenøtion of Interpolative Algebraic Reconstruction Techniques

for fan beam geometry showed the suitability of the method for real data.

Results of the IART implementation for the n¡¡o variations of the method indicate that

using rotated pixel interpolation produces results similar to fixed pixel interpolation

function. In addition, it shortens the computation time.

The new Interpolative Algebraic Reconstruction Techniques have the considerable

advantage of complying with real conditions where projections at every direction are taken

with the same number of equally spaced detectors. Furthermore, compared to ART, the

calculation algorithm is simpler and faster and there is no need to rescale the input data for
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each projection, nor do any edge effects exist [Gordon, 1974f. They can be easily

implemented for a fan beam geometry with no limitations regarding the geometry of the

system. Generalization into three dimensions is also straighforward.

2.2. IART. The Discrepancy Convergence Criterion and

Round-off Computation Errors

A computer is usually equipped with two types of arithmetic operations, calculation

with fixed point and, with more accurately, floating point. "Point" means the decimal point

if the base is 10, or the binary point if the base is 2, etc. Computation with floating point

means that one works with a constant number of digits (decimal point) or bits (binary

point); computation with fixed decimal point means that one works with a constant number

of digits/bits after the decimal point. If the computer which one is using cannot handle

numbers which have more than, say, s-digits/bits then the exact product of two s-digits/bits

numbers (which contains 2s or 2s-1 digits/bits) cannot be used in subsequent calculations;

the product must be rounded-off. In practice, rounding affects all conversions and

arithmetic operations except comparison and remainder lDahlquist, 1974], [Apple, 1985],

lThink, 1986]. The effect of such roundings can be quite noticeable in an extensive

calculation, or in an algorithm which is numerically unstable (badly chosen recursion

formula).

To observe the influence of the round-off errors on the IART algorithm run on a

Macintosh II computer that was used to produce reconstruction images, three very simple

test objects (Fig.2.2.1.) were taken and reconstructed, each one of them three times; every

time handling calculations differently. The first and second time the projection data was

entered as integer values and the pseudoprojections (projections of an intermediate image)

we¡e calculated as integers and reals respectively. The third time, the projection data was

entered as reals and the pseudoprojections were calculated as reals. In all three cases, the
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a¡ithmetic operations were performed in floating point. The resulting reconstruction images

were compared against the corresponding reference objects in Fig. 2.2.1. We used the

discrepancy between the projection values of the reconstructed image and the

corresponding reference object as a simila¡ity measure. For a given projection direcúon, the

discrepancy was computed using the equation:
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where a superscript q represents the iteration number, ¡e¡ is the number of sampling points

of the projection, p ¡ and p I are the projection and pseudoprojection values at the (l )'th

sampling point, respectively.

From the above equation, it would seem that when approaching the optimal solution,

the discrepancy values should converge to and ultimately achieve zero. ln practice,

however, the discrepancy value rarely achieves zero value although it does approach it very

closely. This is due to round-off errors.

DQ = #Z(r'j=r
-p i\ (2.2-r)



Fig.2.2.1. Test objects. Vertical bars represent the grow in density (100). The base density is zero.



Also, the discrepancy D 't for a given q 'th iteration was computed as the average of all

projection direction discrepancies:

where N, the number of projections, was taken to be 30 for every test object. The

projections were equally spaced over the 1800 angle. The obtained results are shown

below.
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In all three (integer-integer, integer-real, real-real) cases the discrepancy values

converged to zero as soon as the second iteration (Figs. 2.2.2 - 2.2.3).
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Fig.2.2.2. Test object A. Iæration discrepancy: (a), inæger projection data - integer pseudoprojections; (b),
integer projection daø - real pseudoprojections. The iterations are circled for which the projection direction
discrepancy is presented in Fig. 2.2.3.
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The discrepancy values converged to zero only for the integer-integer case (for the 8-th

iteration). For the other two (integer-real and real-real) cases, the discrepancy approached

very closely to zero but did not achieve it, remaining at the same level that it reached during

the second iteration (Fig.2.2.4.).Fig.2.2.5 displays the discrepancy as a function of a

projection direction. As it can be seen, for the integer - real and real - real cases the

fluctuations although close to zero but remain.

JJ

Test object B

ño
ã
êl

H
Èth
E
É1ol'9
Ép

(a)

'1' 23'4's'6 1''8910
Iteration number

h
H
at
Fr
Êq)
Ð
¡ú
Á1
Ol,Þ
óHI

}l
9
áÀ
Ho
Ð
¡d
Å1Or'Ë
d
a

(c)

Fig.2.2.4. Test object B. Iteration discrepancy: (a), integer projection data - integer pseudoprojections; O),
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The discrepancy values did not converge to zero in any one of the cases, although they

approached it very close (Figs. 2.2.6 - 2.2.7).
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Fig. 2.2.8. Test object A. Rcconstrucl.ion matrix data: (a), integer projection data - integer
pséudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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Fig. 2.2.9. Test object B. Reconsrruction ma[rix data: (a), integer projection data - integer
pseudoprojections; (b), integer projcction data - real pseudoprojections; (c), real projection dat¿ - real
pseudoprojections.
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0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 99.9 100.1 100.1 0.0
0.0 100.0 99.9 99.6 0.0
0.0 99.9 99.5 99.8 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
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0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

0.0 0.0 0.0
0.0 0,0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
0.0 99.6 100.2 0.0 0.0
0.0 99.7 100.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 99.7 100.4 0.0 0.0
0.0 0.0 0,0 0.0 0.0 0.0 99.9 100.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 100.1 99.8 100.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 99.6 100.3 99.6 0.0 0.0 0.0 0.0 0.0 0.0
0.0 100.4 99;r 100.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 i00.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(b)
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0.0 0.0
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0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 99.9 99.6 100.6 0.0
0.0 0.0 100.2 100.4 100.4 0.0
0.0 0.0 100.7 99.9 99.9 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

(c)

Fig. 2.2.10. Test object C. Reconstruction mal.rix data: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.

0.0 0.0 0.0 0.0 0.0
0.0 99.3 100.4 0.0 0.0
0.0 99.5 99.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
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Figs. 2.2.8 - 10 display the resulting reconstruction matrices.

All three test objects in Fig. 2.2.1. were chosen to increase the complexity of

calculations. Starting from the simplest one A through B to C, the discrepancy values

converged to and achieved zero (test object A, Fig. 2.2.2.), or converged to a very close to

zero minimum (8, C test objects, Figs.2.2.4 and2.2.6).In the latter, the minimum was

approximately of one order less in value for the test object B (Fig. 2.2.5) compare to the

test object C (Fig. 2.2.7). This confrmed that with increasing complexity of calculations

the effect of round-off errors amplifies. As for the best way to handle the calculations,

judging from the above results, one may say that there is not much difference in how the

calculations are handled. The reconstruction results are very much alike. One possible

explanation to it that we can give is that in the Standard Apple Numeric Environment

(SANE) of a Macintosh computer all arithmetic is done internally using extended-precision

arithmetic, i.e. with the highest precision. The floating point storage formats, that we have

used, provide binary encodings of a sign (+ or -), an exponent, andsignificand. A

represented number has the value

where the significand has a single bit to the left of the binary point (that is ,

0 < significand < 2 ) [Think, 1986]. An extended type of a variable has a binary exponent

range (- 163838 - 16384) compared to (-726 - 127) of the real or integer type variable. The

significand of the extended is represented by 19 - 20 decimal digits compared to 7 - 8 for

the real or integer.

+significand 2exPonent



The Interpolative Algebraic Reconstruction Techniques algorithm described in Section

2.1.3 is vulnerable to noise. This feature is inherent to all iterative methods. To alleviate the

problem, we suggest using preprocessed projection data. 'We propose that the raw data

undergo the noise filtering operation prior to being used by an iterative reconstruction

algorithm, IART. From our preliminary results presented in Chapters trI and V, we have

found that using window functions helps to obtain smoother,less noisy images.

2.3. IART with Filtered Projections
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2.4. Convolution Backprojection/ Fourier Backprojection. An

Overview

Fourier Bacþrojection (FBP) is the reconstruction method most commonly used in CT

scanners. It is based on the Fourier slice theorem that relates the one-dimensional Fourier

transform of a projection of an object function g(x,y) to its two-dimensional Fourier

transform: The Fourier transform of a projection function for a projection direction at angle

0 gives the values of the Fourier üansform of the object along the straight line at angle 0

(Fig.2.4.1) [Rosenfeld, 1982], [Ekstrom, 1984], [Rowland, 19791.

The FBP algorithm consists of the following sequence of operations:

- Fourier transformation of the projection data vectot

- Multiplication of the complex values by a filter (the choice of filter is dependent on the

data collection method and the type of object which is to be reconstructed);

- Taking the inverse Fourier transformation of the modified (filtered) frequencies;

- Back projection of the modified projection data.



X-ray source
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Fig. 2.4.1. Illusration of ttre Fourier slice tïeorem. The Fourier Fansform of ,f (r ) gives the values along
the dashed line in the zv -plane.

The discrete reconstruction formula of the algorithm is:

p(x,y) =lp ø,{ 14 lM , "l¿,u xur s"]] }] (x ,y)

where p(x,y ) is the estimate of the optical density function of an object matrix, g ,, stands

for the n-th pdection function and lU ts the M -point discrete filter function. "ø [ is the

interpolation operator; Mg, M g -1, P ØN are the operators of the M -point discrete

Fourier transform, the inverse M -point discrete Fourier transform and the discrete

bacþrojection on a regularly spaced grid of P 2 ¡nints centered about the origin with a grid

spacing of s, respectively:

(2.4-1)



where d is the distance between the sampled points and/ is the interpolating function;

lsfo t] t')= "å-rtm)f (f,-ml
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and

Mst

lút-g gl @) =
n=M rc

Mst

lu r" sl@)=# I s@)ex\zniffi)
n=Mn \

where MLa=

MHI=

(2.4-2)

lr *nl tr")] (r,v ) = ¡

-(M -r)/2
-(M -2)/2

(M -1)12

M12

where N is the number of projections, A = #= *U w n (x,! ) is the weighting factor. For

parallel beam geometT/ wr(tc,! ) is constant and equals 1.

The operation of multiplying the Fourier transform of a projection function by a filter

function is equivalent to the operation of convolving the projection function with a

convolution function which is the inverse Fourier transform of the filter function. When we

replace the operation of filtering in the Fourier space by the convolution operation in the

if M is odd
if M is even

if M is odd
if M is even

(2.4-3)

N-1

n=0
wn(x,! ) s,(sxcosn A+ sy sinn Â) Q.4-5)

(2.4-4)



M

real space, the discrete reconstruction formula becomes:

p(¡,y ) =lp ß,t lørlf u s t¿,) u *s,])] tr ,, >

and we talk about the convolution back projection reconstruction method.

(2.4-6)



3.L. Sources of Noise and Their Influence on a Reconstruction Image

NOISE IN COMPUTED TOMOGRAPHY

Noise in a reconstruction process is introduced during the acquisition of data and by a

reconstruction procedure itself [Barrett, 1981], [Evans, 1981], [Herman, 1980],

[Andrews, 1977].

Limitations to the accuracy of CT measurements (projection data) are due to:

1. Statistical nature of the processes of x-ray photon production, photon

interaction with matter, and photon detection;

2. Detector efficiency including dark current and dead time;

3. Others, that include beam hardening, partial volume effect, scattered photons,

motion artifacts, etc..

As for the first mentioned factor, the properties of the introduced error are considered

as a random variable following the Poisson probability law [Barrett, 1981], [Herman,

19801. Suppose that a photon leaves the source in the direction of the detector. Then there

is a fixed probability (transmittance) that the photon will get as far as the detector

without being absorbed or scattered. This probability depends on the energy of the photon

and the material intersected between the source and the detector. A photon which reaches

the detector is not necessarily counted. For each energy, there is a fixed probability,

called the efficiency of the detector at that particular energy, that a photon which reaches

the detector is counted by the detector. Assume some average number of photons at a

given energy emitted in one unit of time by a stable x-ray source towards the detector,

then ttre number of photons at given energy that:
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- reach the detector without having been absorbed or scattered,

- are counted by the detector in one unit of time,

is a sample of a Poisson random variable with parameter equal to a product of the

transmittance, detector efficiency and the average of the photon number.

Fig. 3.1.1 delineates a typical CT detector system [GE, 1987], [GE, 1988].

46

Collimator Plates

Parameters that influence the detector system efficiency are:

Geometric fficíency, that is an indication of how well the detecting system is

designed. It refers to the percentage of x-ray energy exiting the patient that is incident on

Photodiodes

Fig. 3.1.1. CT detector system.

Scintilator



the cells (individual detectors) of the system. It is primarily determined by the amount of

post-patient collimation, particularly the plates separating the individual system cells ;

Absorption fficíency, defined as the percentage of x-ray energy absorbed in the

scintillator material relative to the total energy incident on the material. Once the x-ray

energy has been absorbed into the material within each cell, the goal is to convert as

much as possible into the emission of visible light and to minimize energy dissipation in

other forms;

Scinttllation fficíency of the detector system, that is the ratio of emitted light energy

to the absorbed x-ray energy;

To complete the task of x-ray detection, the visible light must be collected and

channeled to a photodiode for conversion to an electrical signaL Maximizing collection

is a formidable challenge because scintillations are emitted equally in all directions, and

some of the light will be absorbed by the scintillator;

Afterglow, refers to residual light emitted from the scintillator after termination of

x-rays, due to an intrinsic delayed reaction of the scintillation process. It can contribute to

image degradation. As the entire detector rotates for data acquisition during a scan,

lengthy afterglow can blur the acquired data, and consequently, the final image;

Stability of the detector. Scintillator detectors a¡e known to exhibit performance

degradation in response to external factors such as prolonged x-ray exposure, temperature

and humidity. The degradation are usually manifested as a CT number shift and/or a

visual artifact such as a ring;

Cell spacing,that is a major factor affecting spatial resolution of a CT system. In

general, spatial resolution improves as the cell spacing decreases. However, as the cell

spacing decreases so does the number of incident x-ray quanta per cell. This, in turn,

increases the image noise at a given scan. Typically, patient radiation exposure is

increased to maintain a desirable signal-to-noise ratio.
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The photodiodes of a CT detector are usually tuned for maximum signal output at the

scintillation light frequency. Fig.3.l.2 below, displays a typical plot of input and output

for a photoelectronic detector [Andrews, 1977].
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F ig. 3.1.2. Transfer characæristic of typical photoelecfronic detector.

The characteristic curve shows that there is a saturation response at high intensities

and a limit response at low intensities, usually referred to as the dark current. There also

exists a linear region in which the log of response is proportional to the log of stimulus

and it is conventional practice to refer to the slope of the portion of the curve as the

"gamma" of the detector. In this region the scanning beam current i6 is represented by

the equation

dark current

saturation

log(input

where r, is the incident illumination intensity,T is the linear slope, and C is the offset(the

linear portion does not pass through the origin). Thus, we have the relation

logi6*ylogi6+C (3.1- 1)



which governs the uansfer. Photoelectronic detector efficiency is assumed to be

independent of the number of photons the single detector has to count. This may be

difficult to achieve in practice, since detectors can be saturated by too many photons

getting to them. One way of combating this is by insertion of a compensator which

ensures that even along lines which either miss or hardly touch the object to be

reconstructed, the total attenuation is significant enough for the detector not to get

saturated. Also, the detector's threshold value plays an important role, i.e., the point when

the dark current transforms into the linear region.

"Beam hardening" is an expression to describe changes in energy distribution of an x-

ray beam as it passes through the object. (The x- ray beam used in CT is polychromatic,

i.e. consists of photons of different energies.) X- ray beams reaching a particular point

inside the body from different directions are likely to have different spectra (having

passed through different materials before reaching the point in question) and thus will be

attenuated differently at that point. This makes it difficult to assign a single value for the

attenuation coefficient at a point in the body. A possible solution to this difficulty is to

assign to the point the attenuation coefficient of photons at a particular energy. (If we

used monochromatic x- ray beams, i.e. consisting of photons only at the single energy,

beams from different directions would be attenuated in the same way at a fixed point.) In

practice, to correct for beam hardening specially shaped filters or wedges are used and

beam-ha¡dening corections are performed mathematically [Macovski, 197 6f , [Herman,

L9791, [Greening 1979]. All the methods of correction for beam hardening aim, in effect,

to produce the distribution of attenuation values which would have been obtained if a

monochromatic x-ray source had been used in the scanner.

iu=Cr(ío)T
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The panial volume effect is a consequence of the non negligible size of the focal spot

and detector, and thus the photons that are counted do not travel along the same line, but

rather they travel along one of a bundle of lines forming a rather complicated shape. For

the situation when the beam is only partially blocked by attenuating material (Fig. 3.1.3),

the estimation of the average of the line integral of the relative linear attenuation between

the source and the points on the detector introduces errors.
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Attenuating
Material

Suppose, we have a ray of a monochromatic x-ray beam B that strikes a detector D.

Let M be the attenuating material volume of interest. Suppose that a linear attenuation

coefficient ¡r is everywhere zero except in that half of the volume M which is filled with

the pattern, where its value is two. It is assumed that the length of intersection with M of

any line from the beam is unity. Suppose that during a reference measurement, we use a

reference material of a linear attenuation coefficient equal zero (vacuum) and that the

Detector

Fig. 3.1.3. Illusration of the partial volume effect.



number of photons registered N is equal to the number of photons which leave the source

in the direction of the detector Ng and is 1000. Breaking the x-ray beam into two equal

halves as shown in Fig. 3.1.3, we see that 500 photons on average will enter both halves

of M. During the actual measurement, in the left half of the volume where the

transmittance is one (e'0 = 1), all 500 photons will reach the detector. In the right half,

where the linear attenuation p is two, and hence the transmittance ise 2 =0.135 , the

number of photons that reach the detector is about 68. Hence the total number of

detected photons is about 568. Using the equation
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we calculate that the average attenuation coefficient of the volume under consideration is

about 0.566. However, it is easy to see that the true value of it is l. The reason for this

rather large error (43.47o) resulting from the calculations is due to the processes of taking

exponentials and logarithms that give unproportionately great importance to the

unblocked portion of the beam.

In practice, lead shielding with long narrow pinholes in front of the source and the

detector are being used to reduce the size of both of them.

Scattered photons produce a problem when we have an ¿uray of detectors: a photon

scattered out of its path towards one detector may very well reach another detector and be

counted by it. In CT detector systems, scatter is the major factor that influences the

geometric efficiency of the system. Since the ratio of scattered photons to unscattered

ones which reach a detecto¡ is dependent on the object to be reconstructed, the error

introduced by scatter cannot be totally removed from the measurements prior to

reconstruction. However, scattered radiation may be minimized by:

- limiting the area of the incident beam;

- using an air gap between the scattering medium (the object) and the detector;

u = -tn("Lo) (3.1-3)



- using a collimating gnd between the scattering medium and the detectoË

- optimizing the spectrum of the incident beam;

- energy discrimination in the detector.

The beam area should be large enough to encompass everything of medical interest in

the region being imaged. But making it larger than necessary increases the scatter fraction

as well as the patient's dose. Each volume element in the patient's body acts as a source of

scattered radiation. Hence, as the detected scatter intensity falls off as the inverse square

of the distance from the scatter source to the detector, using an air gap between the

patient and the detector increases the distance and helps. Collimation absorbs photons

coming towards a detector from directions other than the x-ray source. In its simplest

form, the collimating grid is a series of parallel slats made of tungsten or other high-

atomic-number material, and perhaps spaced apart with fiber-board or some other

material with low-x-ray absorption [Johns, 1983], [Hendee, 1970], [Herman 1980], [GE,

19871. For an x-ray source a long distance away from the detector, the incident beam is

essentially collimated. If the distance between x-ray absorbing slats is much larger than

the width of an individual slat, very few of the unscattered photons strike the slats and

the primary image is largely unaffected by the grid. The only degradation of the primary

image is a set of very fine lines, the shadows of the slats. This problem can be eliminated

by moving the grid uniformly parallel to the detector during exposure. Scattered

radiation, on the other hand, is no longer collimated, and most of it is blocked by the grid.

As for the optimization of the x-ray spectrum; high-energy photons interact with soft

tissue predominantly by Compton scattering in the direction of the detector [Johns,

19831, fHendee, 1979], [Hobbie, 1988]. As the result, it might be expected that scattering

problems would be particularly bad at these energies. However, higher energy photons

suffer fewer interactions in the body for a given numbe¡ of transmitted photons. This

effect reduces the scattered flux but also reduces the contrast in the primary image. Low

energy photons give a high -contrast primary image but are strongly absorbed in the
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body. The primary absorption process is photoelectric at very low energies (< 40 kev ).

Scattered radiation could therefore be greatly diminished just by keeping the photon

energy below about 40kcv , but this would not be acceptable in terms of patient dose for

imaging of thick body parts. The choice of an optimum photon energy or spectrum is thus

a complicated trade-off involving noise, dose, detector characteristic, scatter, image

contrast, and the specific diagnostic information needed.

The underlying assumption in CT is that the projection values are integrals along

different lines of the same function. For a moving organ, such as the lung or the heart,

this assumption is violated if the actual measurements are taken at different times for

different projections. One way of combating this is to use multiple arrays of detectors and

possibly even multiple sources. But this results in increase of error due to detection of

scattered photons.
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Noise that is introduced into a detector array is likely to be a contribution of two

separate processes: (1) random fluctuations in the number of photons and photoelecrons

in the photoactive surface of detectors; (2) random thermal noise sources in the circuits

that sense, acquire, and process the signal from the photoactive surface of the detectors.

The second process has a behavior that is well known; random thermal noise is usually

described by a zero-mean Gaussian process with a uniform ("white") power spectrum

[Andrews, 1977]. The first process is more complex to describe. Electromagnetic

radiation is of a discrete, quantum nature. Therefore a detector absorbs radiation energy

in increments of hv, where v is the frequency of the radiation and h is Planck's constant.

As a result, the oulput of the detector is not smooth but exhibits fluctuations known

variously as quantum noise, photon noise, or Poisson noise [Barrett, 1981]. This type of

3.2. Simulation of Photon Noise



noise plays a crucial role in radiographic imaging systems, primarily because the energy

is so large for x-rays.

The a:rival of photons at the detector can be described as a random process defined

by the Poisson distribution or Poisson probability law:

where K represents the number of photons that are detected in an observation time T and

ais a constant as described by Equation (3.2-2), below.

Equation (3.2-l) was derived for a stationary process and under the three physically

reasonable assumptions:

(a) The number of photons detected in the interval (0,T ) is statistically independent of

the number detected in any other overlapping interval.

(b) The probability of detecting one photon in a vanishingly small time interval ÂT

is directly proportional to ÂT , i.. e.
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Pr(rK inT ) = (aK T K lK !) exp(øT )

(c) The probability of more than one photon being detected in ÂT is zero.

Since the probability of more than one photon being detected vanishes as ÂT approaches

zeÍo, the quantity d 
^T 

may also be interpreted as the mean number of photons

detected in AT . Under the assumption of stationary statistics, the mean number per unit

time must be a constant and aT must be the mean number detected in T, i. e.

(3.2-t)

lim Pr(lin LT)=a¡7
ÂT-+ 0

K =aT

(3.2-2)

(3.2-3)



This important result can also be verified by directly calculating K from Pr(K in T ). As a

result , we can write ttre simplified notation for Pr(K in T )

For stationary statistics, the mean number of detected photons per unit time was

assumed to be independent of time, the probability density for the arrival times was

assumed to be constant, and the auto correlation function for a sum of Poisson impulses

was shown to depend only on the time difference and not on the actual time. In real

physical problems, stationary statistics are not exactly correct: Radioactive decay,

variations in source- detector geometry, etc. all cause deviations from strict temporal

stationarity. Nonstationarity is even more important in terns of the image, as it is the

deviations from uniformity in a radiographic image that convey useful diagnostic

information. Fortunately, it is possible to generalize Equation (3.2-3) to describe a

nonstationary version of the Poisson distribution: If we represent the mean number of

photons detected in time T as
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Pr(rK)=exp(-K )X KlXl (3.2-4)

where a (t ) is as described by Equation (3.2.6)

R-= 
[,'

Equation (3.2-l) is still valid.

a(t )d t

lim Pr(lin ÂT ) = a (T) M
ÂI-+ 0

(3.2-s)

(3.2-6)



The main distinguishing feature of Poisson random variables is that the variance o2

always equals the mean

In many physical problems, the observed random variable is really the sum of a large

number N of other independent random variables. Photon noise is not an exception. (see

Section 3.1). The central limit theorem states that the probability density of the observed

random variable approaches a normal distribution (Gaussian) [Tsokos, 1972), [Thomas,

l97ll, [Barrett, 1981]
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&=K

(where pr(r ) is a probability density function of a random variable x and o2 is the

variance) as N tends to infinity, regardless of the densities of the constituent random

variables. From the above theorem, we can anticipate that the Poisson distribution will

approach a Gaussian for large K , i. e., Eq. (3.2-4) is equivalent to

pr(r ) =#exp(- (-r -Ð2 lz&
'tzn&

(3.2-7)

Equation (3.2-9) is a Gaussian with the variance o2 equal f . proof of it can be found in

[Barrett, 1981]. This Gaussian form is an excellent approximation of the Poisson

distribution forK > 10. A graphical comparison between the exact Poisson distribution

and the Gaussian approximation is given in Figs. 3.2.1 - 3.2.2.

Pr(rK ) = çZnK )-r t2 exp[-(K - X )' l2K-]

(3.2-8)

(3.2-e)



To simulate noisy CT projections due to photon noise one can either inuoduce noise

into a reference image and then take projections from it , or introduce noise directly into

the detector readings i.e., take projections from a clean (not noisy) reference image and

make them noisy. In this thesis the second approach has been chosen as it better simulates

real situation when CT data gets affected by photon noise. The procedure used to

introduce noise to the detector readings takes the advantage of the fact that photons

arriving at every single detector are Poisson distributed.

Having assuming that the number of photons counted by a single i-th detectorf ¡

was the mean of the Poisson distribution as in (3.2-4), we computed a Poisson distributed

random numberwith the given mean and used it to replacerc ¡ . The procedure was

repeated for every single detector. Depending on the K ¡ value, we have used different

equations to render new photon counts. If K i was less than 10 we used Equation (3.2-4),

otherwise Equation (3.2-9) was used. The advantage of using the Gauss approximation of

the Poisson distribution is considerably reduced computation time.
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Poisson
Gaussian approximation
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Fig.3.2..2. A comparison between the exact Poisson distribution and the Gaussian approximation to it for
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This section is closely related to the next one. Here, photon noise will be

superimposed on projections which subsequently will be used to produce noisy images.

The results obtained will be used for the purpose of the next section that deals with the

removal of noise from projections.

A sinogram consists of a set of projections taken from a volume under investigation

and displayed as an image by organizing the projections in a matrix of the size (n x ffi ),

where n represents the number of projection taken and m is the number of detectors

used. It is important that the order of projections be preserved, i.e., all projections in the

same order in which they were taken should be placed as a consecutive rows of the matrix

starting from the flust projection placed as the first row of the matrix. Figs. 3.3.1(a) and

(b) show the reference image "dolls" and its sinogram, respectively. The sinogram

consists of 35 parallel geometry beam projections equally spaced over 1800. The length

of an individual projection is 256. We used this sinogram as a reference, and by applying

the simulation procedure described in Section 3.2 of this chapter we produced the noisy

sinogram in Fig. 3.3.2(a). The noise that was superimposed on a reference sinogram to

produce the sinogram in Fig.3.3.2(a) is shown in Fig.3.3.2(b). Fig.3.3.3 represents

Fourier spectra of both the reference, (a), and the noisy, (b), sinograms.

The reference sinogram in Fig. 3.3.1(b) had values in a range 104 - 105 photon counts

(detector readings). In order to analyze the influence of noise on reconstruction image

quality from a data taken at different ranges of photon counts registered by a detector, the

necessary sinograms were produced from the reference one @ig. 3.3.1(b)) by adjusting its

values into the required range. We have chosen to analyze three additional ranges of

photon counts: 103 - 104; t02 - t03; 10 - 102. Accordingly, noisy sinograms were

produced using the same noise simulation procedure that was used to produce the
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3.3. Noisy Sinograms



sinogram in Fig. 3.3.2(a). Figs. 3.3.4 - 3.3.6 show the resultant noisy sinograms, (a), and

theirFourier spectra, (b), for the photon count ranges of 103 - 104, 102 - 103 and 10 - 102,

respectively. To evaluate changes in the sinograms due to the superposition of photon

noise, all noisy sinograms were compared against their reference ones. A correlation

coefficient was used as a similarity measure. Table 3.3.1 summa¡izes the results. It also

includes the correlation coefficients for IART reconstruction images from noisy

sinograms of different ranges of photon counts computed against the reference image

"dolls". It is worth noting that the number of iterations to produce the best image from

IART decreases with the increasing amount of noise in a sinogram.

Table 3.3.1. Reference image "dolls". Correlation coefficients for noisy sinograms of different ranges of
photon counts and for the reconstruction images they produce.

6l

counts in reference
smogr¿rm

photon

104 - 10s

103 - 104

102 - 103

10 - 102

coefficient for noisy
srnogram

* Correlation coefficient for the 6 iteration IART reconstruction image from the reference sinogram of
Fig. 3.3.1 was 0.99311.

0.99992

0.99940

0.99409

0.94589

coefficient for IART
reconstruction
image from noisy
sinogram against
"dolls"*

Fig.3.3.7 includes the IART reconstruction images from noisy sinograms for the

photon count ranges: tO4 - t05; tO3 - 104; t02 - 103;10 - 102. For comparison, Fig. 3.3.8

shows the 6 iteration IART from the reference sinogram of Fig.3.3.1(b).

0.987845

0.944483

0.693206

0.443530

terauon
the best IART
reconstruction
image

6

6

5

1



From Table 3.3.1, the sinogram similarity to the reference worsens when the range of

photon counts goes down. To explain this fact, we go back to the noise simulation

procedure that we have used. According to the procedure a random number to replace the

original one in a reference sinogram was computed from the Poisson

distribution/Gaussian with a mean equal to the value from the reference sinogram (see

Section 3.2). When we plot the ratio of a computed random number to the distribution

mean as a function of the mean as in Fig. 3.3.9, the plot tapers towards the higher mean

values. This indicates that for distributions with larger mean values, there is a greater

probability that the computed random number is similar in value to the mean. In

consequence, sinograms of a higher range of photon counts (tO¿ - 105) will bear more

resemblance to the reference than sinograms of the lower range of photon counts

(10 - tsz¡.
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Fig. 3.3.1(a). The rel'erence image "dolls"



Fig. 3.3.1(b). The sinogram of the reference image "dolls". 35 parallel projections equally spaced over 1800.
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(b)
Fig.3.3.2. (a), Noisy sinogram that was produced from the reference sinogram in Fig. 3.3.1(b); (b), Noise that was superimposed on the reference sinogram to
produce Fig. 3.3.2(a).

(a)
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(b)
Fig. 3.3.3. The Fourier specEa of: (a), the reference sinogram in Fig. 3.3.1(b), and (b), the noisy one in Fig. 3.3.2(a).
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(b)
Fig. 3.3.4. Photon range 103 - td. 1a¡, Noisy sinogram, and (b), its Fourier specfrum,.
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(a)

o)
Fig. 3.3.5. Photon range 102 - td. (a), Noisy sinogram, and (b), its Fourier specrum.
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(a)

(b)
Fig. 3.3.6. Photon range 10 - t02. 1a¡, Noisy sinogram, and (b), its Fourier spectrum.

o\
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Fig.3.3.7.IART reconstructions from: (a), noisy sinogram in Fig. 3.3.2(a), and (b), noisy sinogram in
Fig.3.3.4(a).



(c)
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Fig. 3.3.8. The 6 iteration IART reconstruction from the reference sinogram in Fig. 3.3.1(b).

2

K/<K>

Fig. 3.3.9. The ratio of a random computed number k of a dist¡ibution with a mean < K> to the mean of the
disribution as a function of a mean. One sample at each value of the mean was taken.
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When looking for a way to remove noise from noisy projections, we considered

viewing the sinogram as an image: therefore our task became to 'clean' this noisy image.

We started with using different real space filters on the noisy sinogram in Fig. 3.3.2(a)

[Pavlidis, 1982], [Gonzalez, 1983], [Rosenfeld, 1982]. The efficacy of the noise removal

operation was evaluated by computing the correlation coefficient for a filtered sinogram

against the reference in Fig. 3.3.1(b). A smoothing low pass filter (LPF) was the first one

that we used. With this filter, the value of each pixel in the filtered sinogram was the

average of the weighted values of the pixels in the neighborhood around that pixel. The

size of neighborhood was 3 by 3 pixels and the weighting of the pixels was one. The

resultant filtered sinogram appeared to be even worse for reconstruction than the noisy

one. (The correlation coefficient was 0.9465 against 0.9999 for the noisy sinogram.)

Similarly, when we used a Sobel edge enhancement filter on the noisy sinogram, the

correlation coefficient was 0.6184. In this technique, we used a 3 x 3 window. If the

values in the window were as follows:
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3.4. Noise Removal from Noisy ProjectÍons

then the value of the pixel in the filtered sinogram corresponding to x was calculated as

the square root of (A,2 + B2), where

V1 lt2 V3

V4 X 1t6

V7 Vg Vg

A =(v 3+ 2v e+ v s)- (u r+ 2v a+ v 7)

B =(v 1* 2v 2+v 3)- (v 7+ 2v e+ v s)



The third filter that we used was a directional filter. It belongs to a group of nonlinear

filters as opposed to the above described linear, space-invariant filters. The difference

between these two groups of filters is that nonlinear ones do not smear edges, but only

remove the noise from the interior of regions. Such filters attempt to detect edges before

they apply a smoothing function. The filter procedure we used, at each pixel estimated the

direction of an edge, if any, by computing the values of

y (0) =V @,y \ -f @+c (Q),y +s (0)]' *V @,y ) -f @ -c(q),y -s (0))] 
t

for 0=0,450,990,1350.
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Then the filter function h (í j ,Q) defined as

l¿ (0,0,0) = 0.5, å (c (0),s (0),0) = h (-c (0),-s (Q),0) = 0.25,

where

and zero for all other arguments ij , was applied for that value of Q for which Y (0) was

minimum.

The output from this filter was better than from linear filters but the correlation

coefficient was still less compared to the one calculated for the noisy sinogram (0.9995

against 0.9999).

Summarized in Table 3.4.1 are the results from using real space filters, confirming

that a sinogram is a very specific image that cannot be regarded as a smooth one, and

real space processing techniques do not apply to it.

0

c (0)

60

s (0)

I

450

0

I

900

I

0

1350

1

-1

I



Table 3.4.1. Reference image "dolls". Correlation coeffîcient for a sinogram filtered with real space filters.
Phoon countrange td - td.

Filter used

LPF

Sobel

directional filter
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no filter (noi

Conelation coefficient was computed against the reference sinogram in Fig. 3.3.10).

Correlation coefficient for a filtered
sinogram*

In another approach to removing noise from noisy projections, a windowing

technique in Fourier space was used [Rowland, 1979], [Budinger, 1979], [Hamming,

19771, [Pratt, 1978], [Castleman,l979l.In this technique, a window function w (f )is

superimposed on a Fourier representation of a projection and the product is fransferred

back into the real space to produce the noise filtered projection. Symbolically we can

illustrate it as

0.946518

0.618381

0.999546

0.999920

noise filtered projection = y-l¡w ff) f (projection data)l

where f stands for a Fourier transform. The window function that we used had the effect

of attenuating the contribution of frequencies near the highest frequency component of

the Fourier Íansform of a projection while allowing the frequencies near zero to be

passed almost unmodified. When choosing this shape of the window function, we took

advantage of the property that the discrete Fourier transform of a function of compact

support will tend to have low values at the high frequencies while the most valuable

(3.4-l)



information required to reconstruct the function in real space is centered around the zero

frequency in Fourier domain. Therefore, the attenuation of high frequencies for a noisy

function (projection), while slightly affecting the resolution, has the benefit of noise

suppression. Depending on the shape of the window function, we can get different levels

of noise suppression. In the analysis, Butterworth and generalized Hamming windows

were used. The latter one is defined by the equation
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w (r)= 
{"

where/6 is the highest frequency component (cutoff frequency) and c¿ is a constant. Fig.

3.4.1 shows how the shape of a Hamming window changes for different values of the

constant d.

+ (1 - a) cos@f lf ")0

if
if

lt l<Í,
lr l>r,

(3.4-2)

Fig. 3.4.1. Hamming window with a cut off frequency fc = 0.5.

.+- o.54

- 
0.6'-"'l- o.7* 0.8

-r- 0.9



This analysis included using the Hamming window with cr = 0.4;0.54; 0.6; 0.8; 0.9.

Results on a noisy sinogram are summed up in Table 3.4.2 below.

Table 3.4.2. Reference image "dolls". Correlation coefficient for a sinogram filtered with generalized
Hamming window. Photon count range tO¿ - td.

Hamming window with cr equal
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0.4

0.54

0.6

0.8

0.9

Conelation coefficient was computed against the reference sinogram in Fig. 3.3.1(b).

Correlation coefficient for a filtered
sinogram*

no filter

As it can be seen, in every case the filtered sinogram had bener correlation coefficient

than the noisy one. The best result was obtained with the constant cr = 0.54. A similar

outcome was also obtained from using the Butterworth window:

slno

0.999938

0.999949

0.999935

0.999940

0.999928

o.999920

where n is the order of the filter.

appropriate window width between

This filter can be designed by calculating

zero and the pass-band frequency fp and

(3.4-3)

the

the



corresponding transition bands between the pass-band frequency fp and the stop-band

frequency/s, as illustrated in Fig. 3.4.2.
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Knowing the values of e,A,lp,ls,we calculate the parameters /, andfç of the

Butterworth filter using the equations

fC

'p r's

Fie.3.4.2. Method of designating a Butterworth filter.

The Butterworth window that we used was designed to approach the Hamming window

with cr = 0.5 as this was the case that produced the best results filtering the noisy

sinogram. Parameters calculated for the Butterworth window were n = 3.475 and

n,Áe l'tn)
todf p lf ')

= Ío
eun

f" (3.4-3)



fc =0.238. The correlation coeffîcient obtained for a filtered sinogram was 0.999943,

i.e. was slightly less than when the Hamming window was used (0.999949).

The above results refer to a noisy sinogram in Fig. 3.3.2(a) that consists of detector

readings of the photon range tO4 -t05. At this range the noisy sinogram does not differ

much from the original one (see Section 3.3). Therefore using a windowing technique in

Fourier space to remove noise produced only a slightly better reconstruction image

compared to the one from noisy projections. This situation improved when we used this

technique on sinogtams with photon readings of lower ranges. The effect of noise

removal was more efficient. Table 3.4.3 shows the effect of using a Hamming window

with cr = 0.54 on noisy sinograms of different photon count ranges while Table3.4.4

displays the improvement in an IART reconstruction image due to the use of a filtered

sinogram.
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Table 3.4.3. Reference image "dolls". Correlation coefficients for noisy and filæred with Hamming window
sinograms of different ranges ofphoton counts.

Range of photon counts in
reference sinogram

104 - 10s

103 - to4

102 - 103

10- 102

Correlation coefficient for a
noisy sinogram

*Filtered sinogram was obtained by using the Hamming window with s =0.54 @quation 3.4-2).

0.99992

0.99940

0.99409

0.94589

Correlation coefficient for a
filtered sinogram*

0.9999s

0.99974

0.99611

o.97802



Table 3.4.4. Reference image "dolls". Correlation coefficients for a reconstruction image from noisy
sinograms and filtered with a Hamming window for different ranges of photon counts.

Range of photon counts in
reference sinogram

104 - 10s

103 - 104

1@ - 103

10 - 102

Correlation coefficient* for
an IART image from noisy
srnogram

79

*Correlation coefficient was computed against the reference image "dolls".
**Filtered sinogram was obtained by using the Hamming window with s = 0.54 @quation 3.4-2).

Figs. 3.4.3 - 6, for different photon count ranges, present IART reconstruction images

from (a), noisy sinograms, and (b), from filtered ones using the Hamming window with

ct, = 0.54.

In summary, using window functions in the frequency domain to suppress projection

noise improves quality of a reconstruction image in comparison to the image obtained

from noisy projections. The efficacy of the procedure in terms of the correlation

coefficient value increases when the range of photon counts registered by a detector ¿uray

goes down. Visually, the most gratifying effect from using the windowing procedure

seems to be for a sinogram of 103 -104 range of photon counts.

0.987845

0.944483

0.693206

0.443s30

Correlation coefficient* for
an IART image from
filtered sinogram**

0.989396

0.9&948

0.790s50

0.531808
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Fig. 3.4.3.IART reconstruction images from (a), noisy, and (b), filtered with Hamming window with
o = 0.54 sinograms of iOa - 105 photon count range.

(b)
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(b)
Fig. 3.4.4.IART reconsrruction irnages from (a), noisy, and (b), filtered with Hamming window with

o = O.S¿ sinograrns of 103 - 104 photon count range.
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(a)

(b)
Fig. 3.4.5. IART reconstruction images lrom (a), noisy, and (b), filtered with Hamming window with
a = 0.54 sinograms of 102 - 103 photon count range.
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(a)

(b)

Fig.3.4.6.IART reconstruction images from (a), ióisy, anO (b), filtered with Hamming window with

o = O.S¿ sinograms of 10 - 102 photon count range.
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3.5. Filtering Noisy Sinograms of Different Objects

Medical images form a very specific group of images. Fig. 3.5.1 displays (a), an

example medical image, and (b), its sinogram. The sinogram consists of 45 projections

equally spaced over 1800 and was produced using a parallel geometry beam. Photon

count values are from the 10a - 105 range. We used this sinogram as a reference and by

applying the noise simulation procedure from Section3.2, we produced a noisy sinogram

in Fig. 3.5.2(a). Noise that was superimposed on a reference sinogram (Fig. 3.5.1(b)) is

shown in Fig. 3.5.2(b). Fig. 3.5.3 represents Fourier spectra of both the reference, (a), and

the noisy, (b), sinograms.

To remove noise, we began with an implementation of a real space filter on the noisy

sinogram. We did it deliberately as we wanted to confirm results from Section 3.4. The

filter of our choice was the directional one as this was the one that gave the best results on

the noisy sinogram in Fig. 3.4.2(a) of the previous section (see Table 3.4.1). (For detailed

description see Section 3.4.) The correlation coefficient calculated for a filtered sinogram

was 0.999733 against 0.999925 for the noisy one. Thus the result obtained confirmed

conclusions drawn in the previous section that real space processing techniques do not

work well on sinograms. When using the windowing technique in the Fourier space,

similarly as in the previous section, we applied the generalized Hamming window to the

noisy sinogram. We started with the Hamming window with o = 0.54. The result was a

less noisy sinogram. The correlation coefficient of the filtered sinogram was 0.999938

against 0.999925 for the noisy one. As the improvement in the correlation coefficient due

to the Hamming window use was less compared when it was used on the noisy sinogram

of the previous section (see Table 3.4.2), we extended our analysis to include using the

Hamming window with a = 0.7;0.8; 0.9. The results obtained, in form of correlation

coefficient values are summarized in Table 3.5.1 below.



Table 3.5.1. Reference image "head". Correlation coefficient for a sinogram filtered with generalized
Hamming window.

Hamming window with s equal

85

0.54

0.7

0.8

0.9

Conelation coeffïcient was computed against the reference sinogram in Fig. 3.5.10).

Correlation coefficient for a filtered
sinogram*

nolsv st

As in the previous section, for every case the correlation coefficient showed improved

similarity of the filtered sinogram to the reference one, though the best result was

achieved with the constant cr = 0.8. This is unlike the results for the sinogram in Fig.

3.3.2(a) of the previous section and is due to different contents of the reference sinogram

used. The main dissimilarity between Figs.3.3.2(a) and 3.5.2(a) is that the latter is

characterized by relatively small variations of the intensity function values throughout the

image contents in comparison to the former. This feature is characteristic for the major

portion of medical images.

Fig. 3.5.4 displays the 9 iteration IART reconstruction images computed from (a), the

reference projections, (b), noisy projections, and (c), filtered ones through the use of a

Hamming window with cr = 0.8. The correlation coefficients are 0.975543 for the

reconstruction from the reference projections, 0.962315 and 0.964103 for the

reconstructions from the noisy and filtered projections, respectively.

0.999938

0.999947

0.999942

0.999941

0.999925



Results of this and the previous sections indicate that a sinogram is a nonsmooth

image. Therefore using real space plocessing techniques for noise suppression is not

applicable. The windowing in the Fourjer space technique can be used with positive

results. Although to benefit most from this technique, the choice of an appropriate

window function is required. The selection of a window function, however, can be

predetermined as it depends on the contents of a reference image/object. Therefore

through classif,rcation of reference images, the choice of the best window function can be

made automatic.
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Fig. 3.5.1(a). The rclèrence irnage "head"



Fig. 3.5.1(b). The sinogram of the reference image "head". 45 parallel projections equally spaced over 1800.
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(b)
Fig.3.5.2. (a), Noisy sinogram that was produced from the reference sinogram in Fig. 3.5.1(b); (b), Noise that was superimposed on the reference sinogram to
produce Fig. 3.5.2(a).

(a)

oo
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(b)
Fig. 3.5.3. The Fourier spectra of (a), the reference sinogram in Fig. 3.5.1O), and (b), the noisy one in Fig. 3.5.2(a).
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Fig. 3.5.4. IART rcconsLrucl.ions f'rom (a), thc rcfbrcnce sinogram in Fig.3.5.l(b), and (b), the noisy
sinogram in Fig. 3.5.2(a).
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Fig. 3.5.a(c). IART reconstruction l'rorn the noise filtcred sinogram with Hamming window with s = 0.8.

Photon noise is the dominating one that affects data acquisition x-ray computed

tomography. Iterative methods are sensitive to any distortion of the projection data, yet

they use projections that are noisy.

In this chapter, different w¿rys to remove noise from the projection data have been

examined. The correlation similarity measure have been used to evaluate the results, i.e.

the filtered projection sinoglam was evaluated against the reference sinogram that was

not affected by any noise at all. Also, the improvement in the reconstruction image

quality was checked.

We started from using a set of projections to form a sinogram, an image, to apply

enhancement techniqLles to it to slÌppress noise. The results obtained were negative,

3.6. Concluding Remarks



indicating that as a sinogram is not a smooth image; the real space processing techniques

do not work.

In the other approach, the windowing technique in Fourier space was used. The

window functions that were used suppress high frequencies, taking advantage of the fact

that the discrete Fourier transform of a function of compact support has low values at the

high frequencies. Consequently, removing the high frequency components should not

affect significantly image fidelity, while there is a good chance for improvement due to

the fact of removing the high frequency noise components. Basically, the Hamming

general window was used as a window function, for by changing the value of its constant,

we could have controlled the threshold. The results obtained were positive for both

reference images encouraging use of this technique for the purpose of noise suppression

in the projection data.
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CHAPTER IV
FOURIER SPECTRUM. NETry WAYS OF USING IT

In image processing problems, the Fourier üansform has a wide range of applications.

The central slice theorem [Barrett, 198U, [Rosenfeld,1982f, [Ekstrom, 1984) has become

basic to the Fourier bacþrojection reconstruction method, the most widely used algorithm

in computed tomography. (The theorem relates a one dimensional Fourier transform of a

reference image function projection to its two dimensional Fourier transform.) Two

dimensional Fourier transforms are used for image enhancement, restoration, encoding,

description, etc.[Gonzalez, 1987], [Castleman , 1979].

A Fourier transform F (u,v ) of a real function/(x,y) is generally complex; that is

4.1,. Introduction

where R (u,v ) and 1 (u,v ) are, respectively, the real and imaginary components of

F (u,v). Equation (4.1-1) is often expressed in the exponential form:

F (u,v) = R (u,v ) + jl (u,v )

where

F (u,v ) =lF (u,v)lsia@'v)

(4.1-1)
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(4.1-2)



The magninrde function lF (u ,v ) | is called a Fourier spectrum of f @¡ ), and Q(u,v )

its phase angle.

For a two-dimensional function, such as an image, its Fourier spectrum can be

displayed as an intensity function. This representation is helpful for interpretation

purposes. The following sections will show new ways in which the Fourier spectrum can

be used:

1) To identify a reconstruction image computed by a linear or nonlinear reconstruction

method;

2) To estimate the optimal number of iterations for iterative reconstruction methods;

3) As a qualitative evaluation measure in reconstruction.

In the experiments, the Fourier backprojection, FBP, (linear) and Interpolative

Algebraic Reconstruction Techniques, IART, (nonlinear) reconstruction algorithms were

used. In all experiments where IART was used, to compute the estimate fli¡ of the image

density function f (r'), the following equation was applied

lF (u,v )l = tR "(u,u¡ + I 2(u,r)11t2

ô(u ,vl = run-tffi- J
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where

and superscripts q+I, q represent the (q+l )' and

are the measured and corresponding calculated

N

în *'€,¡) 
= ) s i¡ @ ù?clq eü)

N

k=1
g i¡(u *) = |

(q )'th estimates fli¡, and p¡ç and,

projections, respectively, I (ør) is

(4.1-3)

Pqk

the



interpolation function and N represents the number of detectors in a detector array. One

increment of 4 means that all projections of each pixel have been considered once. The

starting value of the estimate of the object optical density was chosen to be equal to 1, i.e.

îo(it¡) = 1. The reference image and all reconstruction images were on 128 x 128

matrices.

4.2. Fourier Spectrum as a Measure for Distinguishing Linear

from Nonlinear Reconstruction Methods
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One of the new applications of a Fourier spectrum this thesis introduces is to use it as a

determinant in the recognition of linear from nonlinear reconstruction methods. A

reconstruction method is a mappin g I which maps an input array f (n,m) into an output

array g (n,m) = 911@,m)l where n andm range over the positive and negative integers.

If 91= 9Atl a¡¡,dgz=9Azl andagl+bgz=9{afi+bfzl forarbitrary constants a and

b, and allft andf2 then the method is linear. Otherwise, the method is a nonlinear one.

The Fourier bacþrojection (FBP) is a linear reconstruction method while Interpolative

Algebraic Reconstruction Techniques (IART) belong to the group of nonlinear

reconstruction methods. In our experiments we used them as representatives of these two

different goups of reconstruction methods.

For the same set of an input data, reconstructed images were computed using FBP and

IART reconstruction methods and their Fourier spectra were compared. Fig. 4.2.1

represents the (a), reference test object "dolls" that we used, and (b), its Fourier spectrum.

We used 35 projection directions equally spaced over 180o and parallel beam geometry.

Resulting reconstructions from Fourier bacþrojection (FBP) and Interpolative Algebraic

Reconstruction Techniques (IART) for 21 iterations (the best quality reconstruction image)

are presented in Figs. 4.2.2(a) and (b), respectively. Figs. a.2.3(a) and (b) display Fourier

spectra of the reconstruction images of Figs. 4.2.2(a) and (b), respectively. One look at the



spectra and one can see how different they are. The spectrum resulting from the use of

IART bears better resemblance to the spectrum of the reference image (Fig. 4.2.1(b)). It

also looks smoother and somehow interpolated, as opposed to the spectrum from the use of

FBP. The latter looks sharper and the intensity function has its points allocated mainly

along the projection directions (streaks). This can be explained as follows: FBP, as a

representative of a linear reconstruction method, is based on the central slice theorem and

an interpolation function is used only once during the final bacþrojection. IART, being a

representative of a nonlinear reconstruction method, just by the nature of the method

performs interpolation numerous times and that shows in its Fourier spectrum. In

Figs.4.2.4(a) and (b) a Sobel edge enhancement filter was used with a 3 x 3 pixel

window, or mask, on Fourier spectra of FBP and IART reconstruction images,

respectively.The inteqpolation achieved by IART compared to FBP becomes obvious.

For comparison, in Fig. 4.2.5 are displayed, as an intensity function, Fourier phases of

(a), the test object "dolls", and its reconstructions by (b), FBP and (c), IART

reconstruction methods. Although both of them are very noisy, one can see that still the

phase image of IART bears more resemblance to the original then the one computed from

the FBP. (Correlation coefficients of Figs. 4.2.5(b) and (c) computed with regard to the

image of the Fourier phase of the reference object (Fig. 4.2.5(a)) are e = 0.20265 and

0.31763 respectively. For computation of €, Equation 4.3-l of the following section was

used.)
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(b)
Fig.4.2.1. (a) Reference image "dolls" ,128 x 128 pixels; (b) Fourier spectrum of "dolls".
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Fig.4.2.2. Parallel beam geometry, 35 projection directions equally spaced over 1800. Reconstruction of
"dolls" using: (a), Fourier Backprojection (FBP); (b), Interpolative Algebraic Reconstruction Techniques
(IART) (21 iterations).
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Fiç.4.2.3. Fourier specrum of: (a), Fig. 4.2.2(a), FBP reconstruction of "dolls"; (b), Fig. 4.2.2(b), IART
(21 iterations) reconstruction of "dolls".
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Fig. 4.2.4. Sobel edge enhancement filter with a 3 x 3 pixel window used on: (a), Fourier spectrum in
Fig.4.2.3(a); (b), Fourier spectrum in Fig. 4.2.3(b).



(b)
Fi5.4.2.5. Fourier phase of (a), reference image "dolls"; (b), FBP reconstrucúon of "dolls".
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Fig.4.2.5(c). Fourier phase of IART reconstruction of "dolls" (21 iterations).

4.3. Fourier Spectrum as a Qualitative Image Evaluation

Measure

The best way to compare reconstruction algorithms is to do an experimental

comparative study, rather than a theoretical one. The reason for this is that different

methods perform differently relative to each other in different situations. Their relative

efficiency is also affected by the input data: how many projection directions and at what

range, noise level, etc.. Every algorithm appears to have its own best set of objects and

conditions.

There are many comparison criteria which can be used. (Section 5.2 discusses this

subject in more detail.) Quantitative evaluation measures like the similarity (correlation

coefficient), overall neamess of the reference and the reconstructed images, and resolution



of fine detail are the most commonly used in practice. Visual evaluation, though subjective,

cannot be ignored. In view of the way the reconstructions are used in practice, there is

hardly a better way for judging which reconstruction is better under given circumstances.

This thesis inroduces a new evaluation measrlre of qualitative nature that is based on an

approach similar to the way a human eye makes the assessment. It relates to the Fourier

space.

When we make a visual evaluation we are looking, in fact, for the difference in

fluctuations of an intensity function of an image against the reference object. Simple

subtraction of the reconstruction image from the reference object will show exactly what we

have been looking for, i.e. if and how the relative intensity function has been changed

throughout the image as the result of the reconstruction process.

The evaluation criterion that is being introduced is a subtraction of Fourier spectra of

images (reconstruction from reference). It will be shown that by using it one can clearly

recognize the type of noise, characterized by its frequency, that has been introduced during

the reconstruction process. In other words one will be able to see how the reconstruction

method performed on different elements of the reference image. This information can be

helpful when making a choice on a reconstruction method or deciding on use of one of the

image enhancement techniques.

This measure was used to compare the FBP and IART reconstruction images of the

reference image "'dolls" in Fig. 4.2.1(a) of the previous section. Just as a reminder, both

the FBP and IART reconstruction images were computed from the same set of 35 parallel

projections equally spaced over 1800 and are displayed in Figs. a.2.2(a) and (b),

respectively. Corresponding spectra are displayed in Fig. 4.2.3. Subtraction results are

displayed in Figs. 4.3.7: Images (a) and (b) represent the subtraction of Fourier spectra of

the reconstructed images of "dolls" computed using FBP (Fig. a.2.3(a)) and IART

Fig.4.2.3(b)), respectively, from the spectrum of the reference image (Fig. a.2.1(b)). It

is clearly seen that FBP performed much worse by introducing greater amounts of both
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high and low frequency noise compared to IART. The latter performed well for low

frequencies introducing only a small amount of a high frequency noise that causes edge

unsharpness.

For comparison, Fig. 4.3.2 displays results of a similar operation of subtraction on the

images of the Fourier phase for both reconstruction methods (FBP and IART). The only

difference that one can notice is that IART produces phase values that are in agreement with

the reference object for a larger number of elements then FBp.

For verification, a popular reconstruòtion similarity measure was used, the correlation

coefficient e :

t04

where N x N is the size (in pixels) of either, reference and reconstruction, matrix;{., and

f ¡¡ reptesent the pixel intensity in the reference and the reconstruction images,

respectivelY, and f and 7 *"the average densities of the reconstruction and reference

images, respectively. Calculated values were r = 0.9854 and 0.9960 for FBP and IART

reconstruction images and e = 0.9934 and 0.9950 for Fourier spectra of FBP and IART

reconstructed images, respectively, in agreement with the results of the above qualitative

measures.

¡ü

ij =r

V,¡ -Ð' i, Vî, rï (4.3-r)



Fig.4.3.1. Fourier spectrum as a quantitative measure in reconstruction: (a), FBP, subtraction of
Fig.4.2.3(a) from Fig. a.2.1(b); (b), IART, subt¡action of Fig. 4.2.3(b) from Fig. 4.2.1þ).



Fig. 4.3.2. Subtraction of Fourier phase images: (a), FBP, Fí9.a.z.aþ) from Fig. 4.2.4(a); (b), IART,
Fig. 4.2.4(c) from Fig. 4.2.4(a).



4.4. Fourier Spectrum as a Criterion for Iterative

Reconstruction Methods

Subraction of the Fourier spectrum of a reconstructed image from that of a reference

image has also proven to be useful in evaluation of the optimal number of iterations for an

iterative reconstruction method like IART. Figs. 4.4.1 - 3 show how (a), the

reconstructed image and (b), its Fourier spectrum change with an increasing number of

iterations (starting from 3 throughout 18). Fig. 4.4.4 represents the results of subtraction

of Fourier spectra of images (reconstruction from the reference) for the sequence of IART

reconstruction images. One can observe how with increasing number of iterations (starting

from 3) fluctuations of an intensiry function decrease and disappear (for 18 iterations). The

computed correlation coefficients for the sequence of images are shown in Table 4.4.1.

One can notice that only when the values of correlation coefficients are the same up to the

fifth decimal digit (18 and 21 iterations) the images representing the subtraction of Fourier

spectra (reconstruction from the reference) show no visible difference (Figs. 4.4.4(c) and

4.3.2(b)). This suggests that the optimal number of iterations has been reached, i.e., the

best quality reconstructed image obtained, and there is no use in further continuing the

iteration process. When we compare the correlation coefficients of the reconstruction

images (Table 4.4.1) to their respective Fourier spectrum images, we notice how sensitive

an evaluation measure the Fourier spectrum is compared to the commonly used correlation

coefficient.

to7
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(b)

Fig.4.4.l.IART, 3 iterations, parallel geometry beam, 35 projection directions equally spaced over 1800:
(a), Reconstruction image, þ), comesponding Fourier spectrum.
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(b)

Fig.4.4.2.IART, 9 iterations, parallel geometry beam, 35 projection directions equally spaced over 1800:
(a), Reconstruction image, þ), conesponding Fourier spectrum.
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(b)

Fig.4.4.3.IART, i8 iterations, parallcl geometry beam, 35 projection directions equally spaced over 1800:
(a), Reconstruction image, @), coruesponding Fourier spectrum.
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Fig. 4.4.4. Fourier spectrum as a convergence criterion for IART. Subuaction images after: (a), 3
iærations; (b), 9 iterations.



Fig. a.4.4(c). Fourier spectrum as a convergence criterion for IART. Subtraction image after 18 iterations.

Table 4.4.1. Correlation coefficients for the sequence of IART reconstructions of the reference object
"dolls".

Iteration number

J

6

9

12

15

18

21

Correlation coefficient

0.912433

0.994390

0.995842

0.996019

0.996051

0.99606s

0.996066



This chapter presented new ways of using the Fourier spectnrm in the process of

testing and evaluation the performance of a reconstruction algorithm:

1) To distinguish the quality of a reconstructed image computed by linear and nonlinear

methods;

2) As a new convergency criterion for iterative reconstruction methods;

3) As a qualitative evaluation measure, by a subtraction of images in Fourier space.

We have considered images from FBP and IART, representatives of linear and

nonlinear reconstruction methods, respectively. All images were computed using the same

input data of 35 parallel projections equally spaced over 1800.

The appearance of a Fourier spectrum of a reconstructed image is characteristic for the

type of reconstruction method that was used. Applying different algorithms (linear,

nonlinear) produces reconstructed images having easily distinguishable spectra.

Reconstructions computed with nonlinear methods (like IARÐ show better interpolation in

Fourier space, their spectra bear more resemblance to the reference object spectrum, and

are more detailed.

The subtaction of Fourier spectra proved to be a very sensitive evaluation measure

compared to the widely used correlation coefficient. It shows differences in Fourier spectra

up to the fifth decimal digit of the value of a correlation coefficient of a reconstn¡cted

image. The subtraction of Fourier spectra also has the advantage of displaying the

frequency spectrum of noise that has been introduced by the reconstruction.

Also, it has been found that using subtraction of Fourier spectra of the images can yield

a ne\¡/ convergence criterion to halt the iteration process for nonlinear iterative methods.

IART was used as a representative.

t13
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CHAPTER V

IMAGE RECONSTRUCTION FROM LIMITED NUMBER OF

VIEWS USING IART AND IART WITH FILTERED

PROJECTIONS

5.1. Simulation of the CT Data Under Various Assumptions of

Photon Noise

X-rays passing through the human body produce readings on a detector array that

associate with attenuation properties of the tissue from the x-rayed cross section of the

body. In vacuum all x-ray photons which leave the source in the direction of a detector will

reach it. When a material is placed between the source and the detector some of the photons

a-re removed from the oriented beam (i.e., they are absorbed or scattered). The probability

that a photon gets removed depends on the energy of the photon and on the material

between the source and the detectors. Some of the scattered x-ray photons will reach the

detector, usually with reduced energy [Johns, 1983], [Hendee, 1970]. This "background"

is reduced by collimators and/or energy discriminators whenever possible (see

Section 3.1).

The linear attenuation coefficient ttL of a tissue / at energy e is defined as:

where p is the probability that a photon of energy e

på =-hp

which enters a uniform slab of tissue /

t14

(5.r-1)



of unit thickness, on a direction perpendicular to the face of the slab, will not be absorbed

or scattered in the slab.

A single detector reading p L for a monochromatic radiation beam can be defined as

where z is the distance of the point (x,y ) with attenuation PL@ ,y ) on the straight line

which is the path of all the x-ray photons for a particular source-detector pair. D is the

length of the path segment through the scanned body. The number of photons counted by

the detector is a sample of a Poisson random variable with parameter N
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or= 
[,

pL@ t )dz

N = NJexp (-p L)

N 9 refers to the photons emitted by the x-ray source.

A typical method by which CT data is collected consists of nvo physical measurements

[Herman, 1980]: a calíbratíon measurement and an actual one. The difference betrveen them

is that during the calibration measurement, there is no object in the path of the x-ray beam

from the source to the detector. (The calibration measurement serves the purpose of

determining how many out of the fixed number of photons that leave the x-ray source get to

the detector.) A set of CT numbers for an object under investigation is produced from the

ratio of the actual and the calibration measurements:

(s.t-2)

To simulate collection of data affected by photon noise, we have assumed a monochromatic

(s.1-3)

- / - l- actual measurement
Y ¿ - -"' caliba"da" -a"**-*t (s.1-4)



x-ray beam and no scatter. For any source-detector pair the simulated data was calculated

based on the following equation:

where No, N", N¿¡ and N"l. represent the number of photons counted by the detector under

consideration during the actual and the calibration measurement, and the number of photons

counted by a reference detector during the actual and the calibration measurement,

respectively. All are samples of the corresponding Poisson random variables. (The

reference detector serves the purpose of compensating for fluctuations in the strength of the

x-ray source.) In the experiments, we have assumed N_ = No and

N", =numberof projectionsxN-6. The assumed intensity of an x-ray source was

No = 102, 104, or 106 photons emitted. The meaning of this can be explained as follows:

If there is no object placed between the source and the detector then all the emitted photons

(102, 104, 106, respectively) reach the detector. The energy of x-ray photons was assumed

to be 60 keV. To sample the Poisson random variables, N and N¿, the simulation

procedure described in Chapter III was used.
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pL=-lnNolN*
N" lN",

(s.1-5)

A reconstruction is a digitized picture. 'When the reconstruction is based on simulated

projection data of a reference object, we can evaluate the quality of the reconstruction by

comparing it to the digitized reference object. There are several ways to do it. We can use

visual evaluation, similarity / dissimilarity measures, or receiver operating characteristic

(Roc) curves fGonzalez,l983l, [Pratt, l97g], lHall, lgTg], [Barrert, 19gl], [Herman,

19801, [Xiaobo, 1986], [Herman, 1g7z], [Gordon, r974a), [Basseville, lggg],

5.2. Methods of Evaluating Image Fidelity



[Bookstein, 1990], [Evans, 1981]. We can also select a column / row of pixels that goes

through the number of interesting features in the reference image and compare its pixel

densities in the reference and the reconstruction images [Herman, 1980], or we can

compare Fourier spectra of the reference and the reconstruction images [Mazur, 1992], (see

Chapter IV). Visual evaluation is the most straightforward way. A difficulty with it is its

subjectivity. It should be emphasized that the results of subjective testing are influenced by

the types of images presented to the viewer and the experimental conditions. If the images

are familiar to the observer, the observer is apt to be more critical of impairments because

of preconceived notions of the image stn¡cture. On the other hand, impairments may go

unnoticed in unfamiliar imagery unless actually brought to the attention of the observer.

Also, care must be taken in the application of subjective ratings from one set of viewing

conditions to another. For example, an image displayed on a computer monitor might be

judged to be of "good" quality with "just perceptible" impairment. But, if the same image

were viewed as a photograph recorded by a high-quality recorder / printer, impairments

that were masked by nonlinearities or low resolution in the computer monitor display might

suddenly become quite apparent. Clearly, it is desirable to have objective quantitative

criteria as a basis for the image fîdelity evaluation.

Much effort has been made towards the development and the assessment of quantitative

measures. However, those measures that have been developed are not perfect;

counterexample images can often be generated that have a high quality rating, but are

subjectively poor in quality and vice versa. The key to the formulation of good quality

measures is a better understanding of the human visual system which has peculiar

characteristics: An important characteristic of the human visual system is its logarithmic

sensitivity to light intensity so that errors in dark areas of an image are much more

noticeable that errors in light areas. The human visual system is also sensitive to abrupt

spatial changes in gray level so that errors on or near the edges are more bothersome than

rt7
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enors in background texture [Bosman, 1982], lGonzalez, 19831, [Pratt, l97B], lHall,

19791, [Rosenfeld, 1972), [Cornsweet, 1970].

In this study, the following quantitative similarity measures were used:

Ë Vu-Ð. .ü r\
correlation coefficient g' =

t i , u-r)'i vi,-T¡]'''
L¡¿=t ij=r _l

rootmeansquareerror(rms) Ez=[* Ë f u -ri¡yf'''
LN ij=r r

average absolute difference e3 = | T. lt ,, - f !,1 f S.Z-l)" Nt,,lruq-rijt

worstcasedifference Ê4 = **lr , -F"rl
l<k,l <N /2

enrropybaseddifference €s = Ë f, Ul+
ij =r f¡¡

where F H =þro-r,zt-t+rz*,zt-t +Ízt -t,zt *rzuzt)

F*H = tf ;r -r,zt -r + r\.*.zt -t + r\.t, -t.zt I l.ro,r,)

7.. - li¡,U- 
U

k,l =l

?:. - rij
¡,1 _ 

N

L ri,
k,l =l

and N x N is the size (in pixels) of either, reference and reconstruction, matrix; f i¡ and

ff'represent the pixel intensity in the reference and the reconstruction images,



respectively, a¡¿ f and

images, respectively.

Note that above measures report on different aspects of image quality. The correlatíon

cofficíent, €1, measures the extent to which two images a¡e similar to each other. The root

mean sqw¿re error (rms), e2,is a very reasonable measure for the overall performance of a

reconstruction method. A large difference in a few places causes the value of e2to be large.

The measure e3 yields the largest difference between the reference and the reconstruction

images. As opposed to e2, it emphasizes the importance of a many small errors rather than

of a few large errors. €4 represents the worst case dffirence measure and is the largest

absolute density difference between the IN/21 x tN/21 digitizations of the reference and the

reconstruction images. In this measure, I used a rougher digitization than what was used

for the reconstruction since the size of the smallest feature in the reference image that I have

used was several pixels, and therefore, to estimate the relative attenuation coeffîcient of this

feature, I would use the average density of all pixels involved. The measure e5 uses the

statistical concept of entropy [Frieden, 1,972], [Hershel, l97l]. Picture elements can be

considered as symbols produced by a discrete information source with the grey levels as

the states, and one can measure the entropy or average information per level of an element

by the average, or expected value of the information contained in each possible level [Hall,

19791, [Basseville, 1989], [Gordon, l9B3].

When two images match closely, the correlation coefficient approaches a value of one

while the other measures tend toward zero.

Another approach that can be used to measure the fidelity of a reconstruction image is to

use receiver operating characteristic (ROC) curves [Barrett, 1981], [Hendee, 1970],

[Evans, 1981]. In this method, a series of reconstruction images is shown to a group of

viewers. Each of the images may or may not contain an abnormality. If a viewer detects the

abnormality, the result is scored as a "true positive". If a viewer detects the abnormality

when it is not present in an image, the result is scored as a "false positive". A plot of true

f are the average densities of the reconstruction and reference
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positives versus false positives (Fig. 5.2.1) reveals the relative performance of the

reconstruction method in the clinical diagnostic situation.
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Fig. 5.2.1. ROC curves for two reconstruction methods, with Method 1 yielding superior results.

The purpose of conducting the following experiments was to compare reconstruction

results from Interpolative Algebraic Reconstruction Techniques (IART). Two cases were

considered: In one case, raw simulated noisy data was used, while in the other case, a

filtering operation was used on the projection data to suppress noise before it was

processed by the reconstruction method. The data was simulated to include photon noise.

The conditions included a monochromatic x-ray beam of energy 60 keV and a set of three

different settings of an x-ray source intensity (702,7ú,106 emitted photons per

measurement). (the simulation procedure is described in Section 5.1.) A reference image

for the first two sets of experiments consisted of two squares (Fig. 5.3.1): The large one,

5.3. Simulated Experiments. Results

false positives



of the attenuation coefficient of water at 60 keV, that formed a background and a small one

positioned off the center. The latter had the attenuation coefficient larger from that of the

background square by l07o and l57o in the first and the second sets of experiments,

respectively. The third set of experiments was performed for a more complicated reference

object (Fig. 5.3.2.). For every reference image, three sets of parallel projections were

taken: 19, 35, and 60. In every set, the projections were equally spaced over 1800. The

first two sets of experimens included the reconstruction of a reference image, from all three

sets of projections, for all three values of the assumed intensity of an x-ray source (102,

104, 106 emitted photons per measurement), while the third set of experiments was

performed for only one source intensity, lOa emitted photons.

Set of experiments No. I
Conditions:

- the "squares" reference image, Fig. 5.3.1;

- the difference in the attenuation, ðp = l\Vo (the large square attenuation coefficient is

20m-l and the small square attenuation coefficient is22m-l);

- three sets of projections: 19, 35, 60;

- three assumed x-ray source intensity values: 102,lú,106 emitted photons.
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For all three values of the assumed x-ray source intensity, the reconstruction of the

"squares" reference image of Fig. 5.3.1 was performed. The input data included simulated

photon noise and consisted of three sets of parallel projections (19,35, and 60) equally

spaced over 1800. For the case of IART with filtered projections, the projections were

filtered prior to being used by the reconstruction method. The windowing technique was

used (for the description, see Section 3.4): A generalized Hamming window with

cr = 0.8, 0.8, 0.54 was used to filter the noisy projections when the x-ray source intensity

was, respectively, 102, 104,106 emitted photons per measurement. The resulting

reconstruction images, from 60, 35, and 19 projections, for the assumed x-ray source



intensity of 106 emitted photons are presented in Figs. 5.3.3 - 5.3.5, respectively. Each of

these figures displays two reconstruction images from two cases: (a), IART, and (b), IART

with filtered projections. This way, a viewer is given an opportunity to make his / her own

visual evaluation and judge the improvement resulting from using IART with filtered

projections. Reconstruction images for the other two levels of the x-ray source intensity are

not included as the high noise level makes it difficult for details ro be seen.

All reconstruction images were evaluated using the equaúons of quantitative similarity

measures (5.2-l). Tables5.3.1 - 5.3.3. display the outcome for the x-ray source

intensity of 102, 104, 106 emitted photons, respectively. Analyzing the numbers in the

tables, we can conclude that filtering noisy projections improves the reconstruction image:

Correlation coefficients calculated for IART with f,rltered projections are greater than those

for IART and all the other measures (rms, average absolute value, worst case difference,

entropy based difference) mostly are decreased in value compared to their IART

counterparts. The above findings are also in agreement with the visual assessment of the

presented images, Figs. 5.3.3 - 5.3.5.

Figs. 5.3.7 - 5.3.9 present the results of applying, to the reference and reconstruction

images, a quantitative measure of the subtraction of their Fourier spectra (see Section 4.3).

Fourier specEa of the reconstruction images of Figs. 5.3.3 - 5.3.5 were subtracted from

the Fourier spectrum of the reference image "squares" in Fig. 5.3.6 (a). When comparing

the resulting subtraction images for IART and for IART with filtered projections, it requires

a brief moment of adjustment for the eye to spot the difference as the images are not

smooth. In addition, the change in them, although noticeable, is relatively small. The

subtraction images for IART with filtered projections are slightly better than the ones for

IART: The grey level they contain is more uniform and they have a less noisy appearance.

(The grey color represents the zero difference between the Fourier spectra of the

reconstruction and the reference images.)
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Fig. 5.3.1. The reference image "squares". Superposition ofsquares.

Fig. 5.3.2. The reference image "ellipses". Superposition of ellipses.
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o)
Fig. 5.3.3. Reconstruction of the reference image "squares" from 60 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source

intensity = 106 emitted photons per measurement, difference in attenuation coefficients = lÙVo.
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Fig.5.3.4.Reconstruction of the reference irnog. "rff).es" from 35 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source

intensity = 106 emitted photons per measurement, difference in attenuation coefficienÍs= l\Vo.



126

Fig. 5.3.5. Reconstruction of the reference image "squares" from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 106 emitted photons per measurement, difference in attenuation coefficients= ljVo.



Table 5.3.1. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" reference image from simulated noisy 

- projection data. Case: âp = l\Vo,
source intensity = 106 emitæd photons per measurement.

t27

Quantitative error measures

correlation coefficient

rms

average absolute difference

worst case difference

Number of projections

r9

based difference

IART with filtered

projections

0.984

1.137

1.005

6.792

0.01i

35

0.984 0.97s

r.749 2.194

r.076 1.374

s.355 s.97 5

0.008 0.011

Number of projections

60 t9

0.987 0.990 0.987

1.556 1.400 1.573

0.868 0.061 1.008

6.615 4.305 3.470

0.011 0.008 0.009

35 60



Table '5.3.2. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" referènce image from simulated noisy projection data. Case: ð¡t = 1070,

source intensity = 104 emitted photons per measurement.
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Quantitative error measures

correlation coefficient

IÏns

average absolute difference

worst case difference

Number of projections

19

based difference

IART with frltered

0.970 0.963

2.397 2.697

1.466 r.t12

8.858 9.127

0.023 0.022

35

Number of projections

60

0.94r

3.460

2.222

8.802

0.031

T9

0.978

2.030

7.225

8.550

0.02r

35

0.977 0.967

2.100 2.530

1.346 1.650

8.078 6.698

0.019 0.021

60



Table 5.3.3. Computed quntitative similarity measures of Eq. (5.2-l) for the reconstruction images of the
"squares" refeience image from simulated noisy projection data. Case: ðp = lÙVo,

source intensity = 102 emitted photons per measurement.

r29

Quantitative eilor measures Number of projections

correlation coefficient

rrns

average absolute difference

worst case difference

19

based difference

IART with frltered

projections

0.592

12.224

6.746

136.62

0.282

35

0.562 0.501

t3.304 16.152

7.149 9.206

r11.72 81.952

0.382 0.520

Number of projections

0.642 0.630 0.580

10.682 11.098 13.127

6.033 6.743 7.862

123.74 94.275 68.363

0.234 0.299 0.390

35
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(b)

Fig. 5.3.6. Fourier spectra of the reference object: (a), "squares" with ô¡r = IIVo, and (b), "ellipses" with
ðp's as in Table 5.3.7.
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(b)

Fig.5.3.7. The subtraction, from the Fourier spectrum of "squares" in Fig.5.3.6(a), of the Fourier
spectrum of the 60 projection image of: (a), IART of Fig. 5.3.3(a); (b), IART with filtered projections of
Fie. 5.3.3(b).
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(b)
Fig. 5.3.8. The subtraction, from the Fourier spectrum of "squares" in Fig. 5.3.6(a), of the Fourier
spectrum of the 35 projection image of: (a), IART of Fig. 5.3.4(a); (b), IART with filtered projecrions of
Fig. 5.3.aG).
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Fig. 5.3.9. The subtraction, from thc Fourier spectrum of "squares" in Fig. 5.3.6(a), of the Fourier

rpã.tro* of the 19 projection image of: (a), IARi of Fig. 5.3.5(a); (b), IART wittr filtered projections of
Fie. 5.3.5(b).



Conditions:

- the "squares" reference image, Fig. 5.3.1;

- the difference in the attenuation, âp = l57o (the large square attenuation coefficient is

20 m-l and the small square attenuation coefficient is 23 m-1);

- three sets of pdections: 19, 35, 60;

- three assumed x-ray source intensity values: I02, LÚ,106 emitted photons.

Set of experíments No.2
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For all three values of the assumed x-ray source intensity, the reconstruction of the

"squares" reference image of Fig. 5.3.1. was performed. The input data included simulated

photon noise and consisted of three sets of parallel projections (19, 35, and 60) equally

spaced over 1800. For the case of IART with filtered projections, the projections were

filtered prior to being used by the reconstruction method via the windowing technique: A

generalized Hamming window with cr = 0.8, 0.65, 0.54 was used to filter the noisy

projections when the x-ray source intensity was, respectively, 102, 104,106 emitted

photons per measurement. All reconstruction images were evaluated using the quantitative

similarity measures of Eq.(5.2-1). Tables 5.3.4 - 5.3.6 display the reconstruction

outcomes for the x-ray source intensity of 102, 104, 106 emitted photons per

measurement, respectively. As one can notice, for the assumed x-ray source intensity of

106 emitted photons per measurement, the resulting reconstruction images from IART with

filtered projections were only slightly better from those produced by IART. This degree of

improvement can hardly be noticed by a human eye when comparing two reconstruction

outputs. Therefore, there are no reconsffuction images included. For 102 emitted photons

per measurement intensity levels of the x-ray source, too high a noise level was obtained.

Figs. 5.3.10 - 5.3.12 display the reconstruction images for the x-ray source intensity of

104 emitted photons pr measurement for 60, 35, and 19 projections, respectively. As in the



previous case, for comparison, each of these figures displays two reconstruction images

from two cases: (a), IART, and (b), IART with filtered projections.

After studying the numbers presented in the tables and the reconstruction images, we

can again conclude that filtering noisy projections improves the reconstruction image:

Correlation coeffîcient values calculated for IART with filtered projections are increased

compared to those calculated for IART and all the other measures (rms, average absolute

value, worst case difference, entropy based difference) are less in value then their IART

counterparts; Although it is difficult to see the enhancement in the 60 projection IART

image with filtered projections, the improvement in the appearance of the 35 and 19

projection reconstruction images is noticeable.

Figs.5.3.13 - 5.3.15 display the subtraction images for (a), IART, and (b), for

IART with fîltered projections, outputs from the subtraction of Fourier spectra similarity

measure. Again, while it is difficult to judge on the improvement for the 60 projection

image of IART with filtered projections, for the 35 and 19 projections, the subtraction

images for IART with filtered projections clearly look better; i.e., the grey level is more

uniform, indicating better closeness to the reference image spectrum.
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Table 5.3.4. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" reference image from simulated noisy projection data. Case: ôp = 157o,
source intensity = 106 emitted photons per measurement.
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Quantitative error measures Number of projections

correlation coeffi cient

fïns

average absolute difference

IART

worst case difference

entroDv based difference

19

IART with filtered

projections

0.984

L.752

1.031

7.050

0.014

35

0.982 0.975

1.846 2.t92

1.150 r.403

6.1 18 4.515

0.0t2 0.014

Number of projections

0.985 0.983 0.977

t.736 1.810 2.142

1.004 1.112 1.344

7.000 5.933 4.425

0.011 0.009 0.010

35



Table 5.3.5. Computed quantitaúve similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" refeience image from simulated noisy projection data. Case: ðp = líVo,
source intensity = 104 emitted photons per measurement.

t3l

Quantitative error measures Number of projections

conelation coefficient

rms

average absolute difference

worst case difference

entropv based difference

19

IART with filtered

0.969 0.960

2.439 2.808

1.s03 r.784

9.1 18 9.910

0.023 0.023

35

Number of projections

0.94r

3.492

2.232

8.s30

0.031

0.974

2.242

t.4tl

9.667

0.023

0.968 0.955

2.483 2.979

r.6t7 1.958

9.t48 7.952

0.024 0.028



Table 5.3.6. Computed quantitâtive similarity measures of Eq. (5.2-1) for the reconst¡uction images of the
"squares" reference image from simulated noisy projection data. Case: âp = 157o,

source intensity = 102 emitted photons per measurement.
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Quantitative eror measures Number of projections

correlation coefficient

ÎTns

average ab solu te difference

worst case difference

19

based difference

IART with filtered

projections

0.594 0.s70 0.493

12.41,r 13.290 76.442

6.837 1.191 9.101

136.68 86.243 t47.32

0.281 0.312 0.512

35

Number of projections

0.645 0.635 0.566

10.843 rr.r76 t3.532

6. 1 18 6.182 7.805

123.16 77.387 139.52

0.234 0.290 0.383
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Fig. 5.3.10. Reconst¡uction of the reference ,rur" "rf;,ìu.es" from 60 parallel projecrions wirh simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, dilference in attenuation coefficients= 157o.
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o)
Fig. 5.3.11. Reconst¡uction of the reference image "squares" from 35 parallel projections with simulated

phãton noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source

intensity = 104 emitted photons per measurement, difference in attenuation coefficienfs= líVo.



t4t

Fig. 5.3.L2.Reconstruction of the reference ,.ur" "rf,ì-es" from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, difference in attenuation coefficients= 157o.
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(a)

(b)
Fig. 5.3.13. The subtraction, from the Fourier specl'rum of "squares" with ð¡r = 157o, of the Fourier
spectrum of the 60 projection image of: (a), IART of Fig. 5.3.10(a); (b), IART with filtered projections of
Fig. 5.3.10(b).
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o)
Fig. 5.3.14. The subtraction, from the Fourier spectrum of "squares" with ðp = l5%o, of the Fourier
spectrum of the 35 projection image of: (a), IART of Fig. 5.3.11(a); (b), IART wittr filtered projections of
Fig. 5.3.11(b).
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@)
Fig. 5.3.15. The subtraction, from the Fourier specÍum of "squares" with ðp = L5Vo, of the Fourier
spectrum of the 19 projection image of: (a), IART of Fig. 5.3.12(a); (b), IART with filtered projections of
Fig. 5.3.12(b).



Conditions:

- the "ellipses" reference image, Fig. 5.3.2;

- the difference in the attenuation, ôp, is listed in Table 5.3.7;

- three sets ofprojections: 19, 35,60;

- the assumed x-ray source intensity is 104 emitted photons per measurement.

Set of experíments No.3
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Table 5.3.7. The reference image "ellipses". Attenuation coefficients of the constituent ellipses.

Ellipses

a

b

c

d

e

f
(l
Þ

h

i

dne

dnc

fnc

Attenuation

coeff,rcient p [m-1]

20

26

26

26.4

27

26

26

27

26

33.4

32.4

32

Difference in

attenuation

coefficient

The difference in tl¡e attenuation coeffïcient was calculated with regard to the basis ellipse "a" that has
the attenuation coefficient of wafer at 60 keV.

30

30

32

35

30

30

35

30

67

62

60



For the assumed x-ray source intensity of 104 emitted photons per measurement, the

reconstruction of the "ellipses" reference image of Fig. 5.3.2. was performed. The input

data included simulated photon noise and consisted of three sets of parallel projections (19,

35, and 60) equally spaced over 1800. For the case of IART with filtered projections, the

projections were filtered prior to being used by the reconstruction method The windowing

technique with the generalized Hamming window (cr = 0.65) was used. Reconstruction

images from 60, 35, and 19 projections are displayed in Figs.5.3.16 - 5.3.18,

respectively. As before, every figure displays two reconstruction images from two cases:

(a), IART, and (b), IART with filtered projections.

All reconstruction images were evaluated using the quantitative similarity measures of

Eq.(5.2-l). Results are presented in Table 5.3.8. Analysis of the results indicates that, as

in the two previous cases, there is an improvement due to the use of the noise filtering

operation on the projection data: The correlation coefficient values calculated for IART with

filtered projections are greater than those of IART, and the other measures (rms, average

absolute value, worst case difference, entropy based difference) are less than their IART

counterparts. The reconstruction images from IART with filtered projections although still

noisy in appearance, show improvement compared to the ones using IART alone.

All the reconstruction images were also evaluated using the qualitative measure of the

subtraction of Fourier spectra: The spectra of the reconstruction images of

Figs. 5.3.16 - 5.3.18 were subtracted from the spectrum of the reference image "ellipses"

in Fig.5.3.6 (b). Results are displayed in Figs.5.3.19 - 5.3.21: All the subtraction

images for IART with filtered projections have a less noisy appearance than the ones for

IART which is suggestive of better similarity to the reference image. The most dramatic

improvement can be noticed for the 35 projection case. Here, the subtraction image for

IART with filtered projections shows even the beginning of the clearance of the center

region, which is indicative of a good fidelity reconstruction (see Chapter IV).
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(¿ù

Fig. 5.3.16. Reconst¡uction of the relerence ,*or. ".flores" from 60 parallel projections with simulated
photon noise equally spaced over lB00: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, difference in attenuation coefficients as in Table 5.3.7.
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Fig. 5.3.17. Reconstruction of the reference irnog. ""fÌpres" from 35 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, differcnce in attenuaúon coeffîcients as in Table 5.3.7.
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0)
Fig. 5.3.18. Reconstruction of the reference image "ellipses" from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, difference in af.tenuation coefficients as in Table 5.3.7.



Table 5.3.8. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"ellipses" reference image from simulated noisy projection data.

Quantitative error measures

r50

correlation coefficien t

ûns

average ab solute difference

worst case difference

Number of projections

t9

based difference

IART with filtered

projections

0.976 0.954

2.426 3.440

t.255 t.791

10.800 10.715

0.029 0.053

35

Number of projections

60

0.934

4.245

2.205

1 3.150

0.074

t9

0.982

2.083

1.136

9.000

0.026

35

0.97 s 0.959

2.476 3.175

r.387 1.776

7.695 8.167

0.027 0.036

60
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0)
Fig. 5.3.19. The subtraction, from the Fourier spectrum of "ellipses" in Fig. 5.3.6(b), of the Fourier
spectrum of the 60 projection image of: (a), IART of Fig. 5.3.16(a); (b), IART witl filtered projections of
Fig. 5.3.16(b).
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o)
Fig. 5.3.20. The subtraction, from the Fourier spectrum of "ellipses" in Fig. 5.3.6(b), of the Fourier
spectrum of the 35 projection image of: (a), IART of Fig. 5.3.17(a); (b), IART with filtered projections of
Fig. 5.3.17(b).
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Fig. 5.3.21. The subtraction, from the Fourieruo..fì* of "etlipses" in Fig. 5.3.6@), of rhe Fourier
P"tryL9f_.the 19 projection image of: (a), IART of Fig. 5.3.i8(a)i O), lenrïitr, riiæ"j¿ projecrions ofFig. 5.3.18(b).



kt this chapter, the preliminary study has been conducted on the applicability of filtering

the projection data prior to using it in an iterative reconstruction procedure. Interpolative

Algebraic Reconstruction Methods were used as a representative of an iterative method.

Two reference objects with simulated attenuation coefficient values were considered: a

simple one that consisted of two different size superpositioned squares, and a more

complicated one consisting of a number of ellipses. Projections were calculated to simulate

the collection of data affected by photon noise. The number of projections was limited to at

most 60. Projections were of parallel geometry and equally spaced over 1800.

The results obtained were consistent and confirm the advantage of using filtered

projections as the input data in an iterative method (IART). Generally, all calculated

quantitative similarity measures showed improvement in quality for the reconstruction

images from IART with filtered projections compared to from IART on raw (noisy) data

(Tables 5.3.1 - 5.3.6, 5.3.8): All, but correlation coefficients, were less in value for IART

with filtered projections, which indicated that the reconstruction images more closely

matched the reference image (see Section 5.2). The correlation coefficients were greater

than those of IART, which also was symptomatic of the better quality reconstruction

image.

As for visual evaluation, in general, all reconstruction images from IART with filtered

projections were brighter and looked smoother. Images with a small difference in the

attenuation coefficient of the constituent objects (Figs. 5.3.3 - 5.3.5) showed visible

improvement in quality for the x-ray source intensity of 106 emitted photons per

measurement. Images with a difference in the attenuation coefficient of líVo and greater

showed minimal (not noticeable by eye) improvement in quality for this level of x-ray

source intensity. For the x-ray source intensity of 104 emitted photons per measurement,

reconstruction images from both IART and IART with filtered projections were very noisy,

5.4. Discussion and Conclusions
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and for the differences in the attenuation of lÙTo,hardly recognizable. When the difference

was l57o and greater, the improvement was observable in reconstruction images from 35

and 19 projections (Figs.5.3.l1 - 5.3.12) of the reference object "squares", and in all

images of the reference "ellipses" (Figs. 5.3.16 - 5.3.18).

Results from using the qualitative measure, the subtraction of Fourier spectra, were

also in favor of the images produced by IART with filtered projections. On the whole, they

appeared less noisy, displaying a more uniform grey level indicative of a close match to the

reference image.

The Fourier subtraction images are not smooth ones and to detect small differences in

them is not always easy. In fact, the rougher they are the tougher it is to pick out small

differences when comparing them. The 60 projection case produced the least smooth

subtraction images and, indeed, the images were the most difficult to judge on

improvement. The most impressive enhancement was observed for the 35 projection case

for the reference image "ellipses". The subtraction images are quite illustrative as far as the

presence of the different level noise is concerned. When comparing the subtraction images

for the intensity of an x - ray source of 106 and 104 emitted photons per measurement, it

is evident how much more noise is present in the latter (compare Figs. 5.3.7 - 5.3.9 and

s.3.13 - s.3.1s).

Iterative methods converge to a solution through repeated bacþrojection: at first, of the

input data, next, of the projections calculated from an intermediate image. Therefore, if the

input projections are noisy, the intermediate image they produce will be affected by noise.

This in turn, gives rise to the distorted projections calculated from the intermediate image.

The following backprojection to produce an updated intermediate image will carry on and

may amplify further the distortion due to the noise. As this sequence is repeated many times

by an iterative procedure, the resulting reconstruction image may be more affected the more

iterations are required to produce it. The amount of noise present in the reconstruction

image also will magnify with the increased number of projections, since each is
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contributing more noise. (Compare images from 60 and 35 projections: Figs. 5.3.16 and

5.3.17; also Figs. 5.3.3 and 5.3.4.)

Real data contains noise. To make iterative methods successful in reconstruction of real

data, we need to suppress the noise to increase the fidelity of a reconstruction image. The

simulation study of this chapter, although limited in the number of experiments, shows that

results from an iterative reconstruction method can be improved by filtering the projection

input data before processing it by the reconstruction method.



EVALUATION OF OUTCOMES FROM IART AND FBP

RECONSTRUCTION METHODS. COMPARISON

6.L. Evaluation and Comparison of Reconstruction Images

From Different Number of Projections. IART

Let us take a closer look at Tables 5.3.1 and 5.3.8 of the previous Chapter V and

compare the numbers with the corresponding reconstruction images. We will also analyze

the results obtained from using the qualitative measure of the subtraction of Fourier spectra.

Our objective is to verify that the results of calculated similarity measures are illustrative of

visual impression. We are interested in comparing IART images from different numbers of

projections. V/e will consider images produced from three different sets of projections: 19,

35 and 60, as indicated in the tables.

From Table 5.3.1:

IART: Results of the rms and the average absolute difference suggest that the

reconstruction image from 19 projections is the best. This is not in agreement with the

'rvorst case difference and the entropy based difference measures that single out the image

from 35 projections as the one that is the best. The correlation coefficient points out at

images from 19 and 35 projections as the best ones bearing the same degree of resemblance

to the reference image.

IART withfiltered projectíons: All measures, except the worst case difference, single

out the image from 35 projections as the best one.

From visual evaluation of corresponding reconstruction images from

Figs. 5.3.3 - 5.3.5:
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IART: The inferiority of the 19 projection image is obvious; The image apart from

containing noise is bturred. The 60 projection image seems to be the best one: Although

noise in it is more apparent than in the 35 projection image, it looks sharper with more

distinct outlines.

IART withfíltered projectíons.'As in the IART case, the 19 projection image is the

worsü Although noise is visibly suppressed, compared to its IART counte{part, blur is still

present. As for the best image, the one from 60 projections seems to be the choice: It has a

sharp appearance, noise is suppressed and contrast is the best.

Results of the analysis of the Fourier subtraction images (Figs. 5.3.7 - 5.3.9) show:

IART and IART withfiltered projections.' The 60 projection reconstruction image is the

best one: The clearance a¡ound the center is of the greatest radius which is indicative of the

best match; i.e., the largest percent of the energy spectrum of the reconstruction image

agrees with the corresponding one of the reference image.

When analyzing results from Table 5.3.8:

IART: The majority of similarity measures (correlation coefficient, rrns, average

absolute difference and entropy based difference) point out at the 19 projection image as

being the best.

IART wíth filtered projectior¿s.' As in the IART case, the 19 projection image is

suggested as the best by all but the worst case difference simila¡ity measures.

From visual evaluation of corresponding images from Figs. 5.3.16 - 5.3.18:

IART: The 19 projection reconstruction image is the worst one; the 35 projection image

shows very low contrast. The 60 projection reconstruction image looks most clear and

seems to be the best, although it is very noisy.

IART with filtered projections.' Here, the 35 projection reconstruction image looks

superior to the others. The 19 projection image is again the worst one.

Examination of the subtraction images (Figs. 5.3.19 - 5.3.21) suggests:
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IART: The 60 projection reconstruction image is the best one: The corresponding

subtraction image (Fig. 5.3.19 (a)) displays the center region of the largest radius.

IART with filtered projectior¿s; The subtraction image for 35 projections shows the

beginning of the clearance a¡ound the center. It also displays a more uniform grey level in

the image as a whole. These suggest that the corresponding reconstruction image is the best

match with the reference image.

To summarize the above: In both cases, visual evaluation of the reconstruction images

was in disagteement with the results of the quantitative similarity measures.

From the above results, we can make tentative conclusions that the use of quantitative

similarity measures to images of an iterative reconstruction method from the different

number of projections fails.

In contrast, using the qualitative similarity measure of the subtraction of Fourier

spectra, produced results that were always in agreement with the visual evaluation of the

reconstruction images.
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6.2. Evaluation and Comparison of Reconstruction fmages

From Different Number of Projections. FBP

As a "standard" for the simulation experiments from the previous chapter, the Fourier

Backprojection (FBP) reconstruction method with the Shepp-Logan kernel, was used.

Tables 6.2.1 and 6.2.2 display the results of the evaluation of FBP reconstruction images

of the reference images "squares" and "ellipses", respectively. Figs. 6.2.1 - 6.2.6 show the

corresponding reconstruction images. The reconstruction images of "squares" were

produced for the difference in the attenuation coefficient of lÙVo and for the assumed x-ray

source intensity of 106 emitted photons per measurement. The reconstruction images of

"ellipses" were produced for the x-ray source intensity of 104 emitted photons per



measurement. In both cases, the images were produced for three sets of 19,35 and 60

parallel projections equally spaced over 18N.

Let us compare the numbers, representative of the quantitative similarity measures, in

the tables with visual impression from the corresponding reconstruction images to verify if

they match. We will also use the qualitative measure, the subtraction of Fourier spectra. As

in the previous section, we are interested in the comparison of images from different

number of projections.

From Table 6.2.1, all similarity measures indicate that the 60 projection image as the

best. This is in agreement with the visual evaluation of corresponding images

(Figs. 6.2.1 - 6.2.3). Figs. 6.2.4 - 6.2.6 display the subtraction images for the

reconstruction images of Figs. 6.2.1, - 6.2.3, respectively, obtained by subfacting the

Fourier spectra of the reconstruction images from the Fourier spectrum of the reference

image "squares" in Fig. 5.3.6(a). From their examination, we can conclude that the 60

projection reconstruction image is the best one: It has the largest radius of the central region

suggesting the best resemblance to the reference image.

When analyzing Table 6.2.2, the results suggest the 60 projection image as being the

best, and this is also confirmed by the results from the visual evaluation

(Figs. 6.2.7 - 6.2.9). The results of the subtraction of Fourier spectra similarity measure

are presented in Figs. 6.2.10 - 6.2.12. The images were obtained by subtracting the

Fourier spectra of the reconstruction images of Figs. 6.2.7 - 6.2.9 from the Fourier

spectn¡m of the reference image in Fig. 5.3.6(b). The subtraction image for the 60

projection case displays the largest central clearance region indicative of the best

reconstruction image. This is in agreement with the above results from the quantitative

measures and the visual evaluation.

To sum up the above results, we can conclude that using both, quantitative and

qualitative, similarity measures to compare reconstruction images from different number of

projections performs well for the Fourier Bacþrojection method. The subtraction images
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of the qualitative measure look similar for the reconstruction images from the different

number of projections. However, with the increased number of projections, the central

clearance region widens which is suggestive of the improvement in the reconstruction.
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Table 6.2.1. Computed quantiøtive similarity measures of Eq. (5.2-l) for the reconstruction images of the
"squares" reference image from simulated noisy projection data. case: âp -= l\vo,
source intensity = 106 emitæd photons per measurement.

Quantitative error measures

t62

correlation coefficient

IInS

average absolute difference

worst case difference

FBP

Number of projections

Table6.2.2. Compuæd quantitative similarity measures of Eq. (5.2-1) for the reconstruction
images of the "ellipses" reference image from simulaæd ñoisy projection data.

X-ray source intensity = 104 emined phomns per reasute*ent.

t9

0.893 0.964 0.981

5.332 3.t93 2.600

3.416 2.408 2.120

23.257 12.525 7.r70

35 60

Quantitative error measures

correlation coefficient

nns

average absolute difference

worst case difference

FBP

Number of projections

19

0.916 0.956

4.932 3.598

3.878 2.842

71.823 10.680

35 60

0.975

2.864

2.250

7.745
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Fig. 6.2.I. The FBP reconstruction of the reference image
simulated photon noise equally spaced over 1800. X-ray
meåsurement; difference in the attenuation coefficienÍ.= lj%o.

"squares" from 60 parallel projections with
source intensity = 106 emitted photons per

Fig. 6.2.2. The FBP reconstruction of the reference image "squares" from 35 parallel projections with
simulated photon noise equally spaced over 1800. X-ray source intensity = 106 emitted photons per
meåsurement; difference in the attenuation coefficienl= 1070.
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Fig.6.2.3. The FBP reconstruction of the reference image "squares" from l9 parallel projections with
simulated photon noise equally spacecl over 1800. X-ray source intensity = 106 emitted photons per
measurement; difference in the atlenuation coefficienL= l0o/o.

Fig. 6.2.4. The subtraction of the Fourier spectrum of the 60 projection FBP image from the Fourier
spectrum of "squares" in Fig. 5.3.6(a).



Fig. 6.2.5. The subtraction of the Fourier spectrum of the 35 projection FBP image from the Fourier
spectrum of "squares" in Fig. 5.3.6(a).

Fig.6.2.6. The subt¡action of the Fourier spectrum of the 19 projection FBP image from the Fourier
spectrum of "squares" in Fig. 5.3.6(a).
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Fi5.6.2.7. The FBP reconstruction of lhe reference image "ellipses" from 60 parallel projections with
simulated photon noise equally spaced over 1800. X-ray source intensity = 104 emitted photons per
measurement; difference in the attenuation coelficient as in Table 5.3.7.

Fig. 6.2.8. The FBP reconstruction of the reference image "ellipses" from 35 parallel projections with
simulated photon noise equally spaced over 1800. X-ray source intensity = 104 emitted photons per
me¿¡surement; difference in the attenuation coefficient as in Table 5.3.7.
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Fig.6.2.9. The FBP reconstruction of the reference image "ellipses" from l9 parallel projections with
simulated photon noise equally spaced over 1800. X-ray source intensity = 104 emitted photons per
measurement; difference in the altenuation coefficient as in Table 5.3.7.

Fig. 6.2.10. The subtraction of the Fourier spectrum of the 60 projection FBP image from the Fourier
spectrum of "ellipses" in Fig. 5.3.6(b).



Fig. 6.2.11. The subr¡action of rhe Fourier spectrum of the 35 projection FBP image from the Fourier
spectrum of "ellipses" in Fig. 5.3.6(b).

Fig. 6.2.12. The subtraction of thc Fourier spect-rum of the 19 projection FBP image from the Fourier
specrum of "ellipses" in Fig. 5.3.6(b).



6.3. Evaluation and Comparison of Reconstruction Images

From IART and FBP

In this section, we will examine if using the quantitative and qualitative similarity

measures is applicable when comparing outputs from different reconstruction methods. We

will compare reconstruction images from two different kinds of algorithms: IART, an

iterative and nonlinea¡ method; and Fourier Bacþrojection (FBP), a single step linear

method that utilizes the Fourier transformation. Absolute values of the reconstruction

images resulting from these methods are different in a sense that IART produces an image

of only positive values, while an FBP image contains both positive and negative values.

This property makes it impossible for the entropy based difference (see Eq.(5.2-l)) to be

used as a quantitative comparative measure as it requires for an image to be composed of

only positive values, and therefore, we cannot use it for the FBP image.

Tables 6.3.1 - 6.3.2 display the cumulative results (IART, IART with filtered

projections and FBP) from using the quantitative similarity measures on the reconstruction

images of the reference images "squares" and "ellipses", respectively.

Examination of Table 6.3.1 suggest, for all three sets of projections, the choice of the

images from IART with filtered projections as the best ones. Correlation coefficients

calculated for IART with filtered projections images have the greatest values while all the

other measures (rms, average absolute value, worst case difference) have the least values

compare to their IART and FBP counterparts. Visual evaluation of the corresponding

reconstructions (Figs. 5.3.3 - 5 and 6.2.1 - 6.2.3) confirms the results: IART with

filte¡ed projections images produced from the 19 and 35 projections

(Figs. 5.3.4(b), 5.3.5(b)) are sharper with better delineated contours and better contrast

compared to their FBP counterparts (Figs. 6.2.2 - 6.2.3). For 60 projections, the FBP

reconstruction image (Fig.6.2.1) is slightly worse than the one from IART with filtered

projections (Fig. 5.3.3(b)). But it also looks smoother and the noise is less apparent.
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Table 6.3.1. Cumulative quantitative similarity measures of Eq. (5.2.1) for reconstruction images of the "squares" reference image from simulated noisy
projection data. Case: ðp= l\Eo,source intensity = 106 emitted photons per measurement.

Quantitative error measures

correlation coefficient

rrns

average absolute difference

worst case difference

entropy based difference

number of projections

IART with filtered

projections

0.984 0.984

7.737 r.149

1.005 r.076

6.792 5.355

0.011 0.008

number of projections

0.915

2.794

7.314

5.915

0.0i 1

0.987

1.556

0.868

6.615

0.011

0.990 0.987

1.400 r.573

0.061 1.008

4.305 3.470

0.008 0.009

number of projections

0.893 0.964 0.981

s.332 3.193 2.600

3.416 2.408 2.120

23.257 12.525 7.110

\ì
O



Table 6.3.2. Cumulative quantitative similarity measures of Eq. (5.2.1) for reconstruction images of the "ellipses" reference image from simulated noisy
projection data. Source intensity = 104 emitted photons per measurement.

Quantitative error measures

correlation coefficient

rrns

average absolute difference

worst case difference

entropy based difference

number of projections

LART with ñltered

projections

0.976 0.954

2.426 3.440

r.255 r.197

10.800 10.715

0.029 0.053

number of projections

0.934

4.245

2.205

13.150

0.014

0.982 0.91s 0.959

2.083 2.47 6 3.t7 s

i.136 1.387 1.77 6

9.000 7.695 8.167

0.026 0.027 0.036

number of projections

0.916 0.9s6 0.91s

4.932 3.598 2.864

3.878 2.842 2.250

11.823 10.680 7.74s

\ì



The analysis of the corresponding subtraction images (Figs. 5.3.7 - 5.3.9 and

Figs.6.2.4 - 6.2.6) confirms the results of Table 6.3.1: The subtraction images for the

IART with filtered projections have the center region more uniform. The differences from

the reference spectrum are more in the form of salt and pepper rather than of whole regions

of different contrast. This is especially observable for the 19 and 35 projection images as

the subtraction image for the 60 projection FBP image is very close in the appearance to the

one for IART with filtered projections.

Analysis of Table 6.3.2 indicates that while for 19 and 35 projections, reconstruction

images from IART with filtered projections are the best, for 60 projections, the FBP

reconstruction image is the finest. For 60 projections, the correlation coefficient of the FBP

image is the highest, while for the other two sets of projections, 19 and 35, the correlation

coefficients of the images of IART with filtered projections have the grcatest values. Other

measures, except for the worst case difference for the 60 projections, confirm results of the

correlation coefficients. Visual impression from looking at the corresponding

r€construction images (Figs.5.3.16- 18 and 6.2.1 - 9) is in agreement with the results

of Table 6.3.2: Figs. 6.2.7, 5.3.17(b), and 5.3.18(b) are the best reconstructions of the

reference image "ellipses" from the 60, 35, and 19 projections, respectively. From the

analysis of the corresponding subtraction images (Figs.5.3.19 - 5.3.21 and

6.2.10 - 6.2.12), the subtraction image for the IART with filtered projections for the 19

projections shows the increased radius of the center region with less prominent streaks

along the projection directions compared to its counterpart for FBP. The same comment

applies to the subtraction images for the 35 projections. For 60 projections, the subtraction

images look very much different and while the one for IART with filtered projections is in

the form of a cloud, brighter in the center and darker towards the border, the corresponding

one for FBP displays the clearance around the center. To sum up, the above qualitative

results are not obvious in a choice of the better image.
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In review, quantitative similarity measures that can be used when comparing results

from linear and nonlinear reconstruction methods. The applicability of using them was

confirmed on the reconstruction images of the two reference images: "squares" and

"ellipses". The reconstruction images were produced by an iterative, nonlinear method,

IART, and by a linea¡ method, FBP.

The results from using the subtraction of Fourier spectra similarity measure were

positive for the reconstruction images of the reference image "squares", while for the

"ellipses" reference image were inconclusive.
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Evaluation of reconstruction images has always been a problem. There is no standard

way of doing it. Quantitative criteria are convenient to use as they express the closeness of

two images in the form of a number. By comparing numbers, we can determine the

superiority in quality of one reconstruction image to another. The problem with the

quantitative criteria is that the majority of them concentrate on the evaluation of one specific

feature of an image. Therefore, it is common practice to use several of them when making a

choice on a bette¡ reconstruction image.

In this chapter, we have analyzed the applicability of quantitative criteria as evaluation

measures for the comparison of reconstruction images from the different number of

projections. This is something new, as usually, the evaluation is done on images produced

from the same number of projections [Herman, 1972], [Herman, 1973a], [Heffernan,

19831, [Oskoui, 1989], [Ollinger, 1988], [Suzuki, 1988], [Cho, 1975].In our study, we

have used images from an iterative method, IART, and Fourier bacþrojection. The results

obtained suggest that it is possible to evaluate FBP reconstruction images using the

quantitative similarity measures. Unfortunately, we cannot use them to successfully

evaluate images from the IART reconstruction method. Although results from only one

6.4. Discussion and Conclusions



iterative method a¡e insufficient to reach any final conclusions, tentative conclusions can be

made based on the analysis of the results. Our finding implies that using quantitative

similarity measures for images from an iterative reconstruction method would fail when we

would compare reconstruction results from the different number of projections.

The study was complemented by verifying the use of the quantitative measures when

making a choice between two different reconstruction methods (linear and nonlinear).

IART was used as a representative of the nonlinear methods, and FBP as a representative

of the linear reconstruction methods. The analysis included the comparison of the

reconstrucúon images for the three sets of projections (19, 35, and 60). Our findings were

consistent, and confirmed the applicability of using the quantitative measures to compare

images of linear and nonlinear reconstruction methods.

In addition, throughout our study, another similarity measure of the qualitative nature

was used, the subtraction of the Fourier spectra. Results from it are displayed in the form

of subtraction images that are basically nonsmooth and represent the disagreement between

the reconstruction and the reference energy spectra. Comparison of the reconstruction

images from the different number of projections in both cases, IART and FBP, gave results

that were positive, i.e. in agreement with the visual evaluation of the corresponding

reconstruction images. Since IART and FBP were used as the representatives of different

$oups of reconstruction methods (nonlinear and linear, respectively), therefore, we can

expect that the above results possibly can be extended to all methods of these groups. But

this requires confirmation.

When the subtraction images were used to look for the best reconstruction from IART

and FBP reconstruction images from the same number of projections, the results were not

consistent: The results obtained were positive for one reference image, "squares", while in

the case of the "ellipses" reference image, the subtraction images were not conclusive.

The interpretation of subtraction images is not always straighforward. It is much easier

to compare the subüaction images for the methods that belong to the same group because
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the specra they produce have similar appearance. When we deal with images from different

reconstruction methods that have different spectra, the inte¡pretation of subtraction images

requires some experience.
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MATCHING RECONSTRUCTION TECHI\IQUE. A NEW

PROPOSAL

Recently, a new method, Image Correlation Technique (ICT), has been introduced

[Mazur, 7992b], [Mazur, 1992c]. The method, by matching two images of the same

object, taken before and after the deformation, recovers the deformation that the object has

undergone. The method treats the images as a whole and uses only the intensity pattern

distribution and the geometrical relationship between the images to find the transformation

of the body coordinates that uniquely connects different stages of the deformed object. The

ICT method is essentially an iteration method equipped with the Boltzmann decision

apparatus [Kirþatrick, 1983], [Aarts, 1989]. It starts from an undeformed configuration

of pixels (the reference image) and through a series of deformations arrives at the

deformation that is close or the same as the deformation represented by the pixels of the

second image (the deformation image). By doing this, the method emulates the real

deformation through a sequence of simulated deformations. Each intermediate deformation

is generated at random, tested how far it falls from the destination deformation, and

accepted or rejected based on the Boltzmann decision apparatus. The process terminates if

the correlation function no longer increases and fluctuates with a certain amplitude.

This thesis would like to introduce a new reconstruction algorithm, Matching

Reconstruction Technique (MRT), that is based on the similar optimization simulated

annealing technique. In the following section the formulation of the method is given.

CHAPTER VII

7.1,. Introduction
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7.2. Matching Reconstruction Technique

Symbol

t77

D

Líst of Important Symbols

F

I

Meaning

(k,l )

number of detectors of a projection

optimization constant

intensity of the (&,/ )'th element of a

reconstruction matrix

maximum intensity of a ¡econstruction

maEix

size of a square reconstruction matrix

(MxM)

number of projections

fo¡ the intermediate image, calculated

reading of the j"th detector of the i'th
projection direction

reading of thei'th detector of the i"th

projection direction

temperature-like parameter to control the

optimization process

/,n^*

M

N
*

P¡

P¡

To explain how the method works, let us place the image in three-dimensional space,

where the image pixel coordinates are stored in the xy plane, and the third dimension

represents the grey scale intensities of the image. The image itself can be viewed as a

surface in this space. læt us assume that change in the intensity of an arbitrarily chosen

pixel (let us call it a seed pixel) always induces intensity changes of all surrounding pixels.

The pattern of the changes as well as the amplitudes are weighed by the distance from the

T



seed pixel. We can make an analogy to a canopy: When one of the supporting poles is

raised (or lowered) the whole canopy is effected. However, the change is different for

different parts.

In the next step the result of the intensity modification in the reconstruction image is

checked against the set of projections taken from the ¡eference image/object. If the change

satisfies the acceptance criterion, a new image is retained. The reconstruction process is

complete when a similarity measure computed for the latest reconstruction images fluctuates

with a certain amplitude and shows no improvement of the reconstruction fidelity.

In the remaining part of this section, we will expand this general idea of MRT to

include more details.

The following three steps are repeated until a system arrives at the solution.
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Step I: At random we select:

- a pixel I(i, j),called the seed pixel;

- a direction of intensity change d¡ such that

^1(t,i)e 
{-1,1};

- two numbers, R, P , from the open interval (0,1);

- R¡ from the open interval (0, M )

Then, we change the intensity of every pixel of a reconstruction matrix from its actual value

I (m,n) to a new value I *(*, n ) from the interval (1*u*, 0):

I *(m, n) = I (m, n) + Â1 (m, n) (7.2-t)



where:

and

N (m,n) -
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I^--l (m,n) o
exp(Z) ¡\

-l (m,n) n
exp(Z) "

Step 2: Following the random change in intensity from step 1, we evaluate

the cost function C (our measure of similarity that involves temporary and original

projections) and make a decision

',tOl
¿,.01

V/e accept the change if C increases. If C decreases we may accept it only if the probability

P (C ) is greater than the random number P chosen in step 1. This conditional decision is

essential as it provides a means for escaping from local minima throughout the process of

simulated annealing optimization.

(7.2-2)

Ç-
r"[r * Ë ËÞ, -,; ll,EÉþ;,r

\ i=l ¡=1 ) | i=t ¡=1

(7.2-3)

ND
2Zpupi¡
i=l l=l

if^c >0

if^c <0

if 
^c 

<0

(7.2-4)

andP (C)>P

andP (C) sP

step is accepted

step is accepted

step is not accepted

(7.2-s)



where

Step 3: The optimization terminates if C no longer increases and fluctuates

with a certain small amplitude. This criterion helps to determine if we have obtained the

best possible frdelity of the reconstruction.

For a single value of the temperature-like parameter, T, all three steps are repeated

many times. The temperature-like parameter assures the control of the process and itself is a

subject to the change according to a cooling scheme, F;q. (7.2-7). As T decreases along

the optimization process, the decision algorithm , Eqs.(1.2-4)-(7.2-5), accept fewer

intensity changes that lead to the refinement of the solution. Traditionally the total number

of trials at each temperaturelike parameter level, È, is kept constant.

The cooling schedule can take many different forms. Below, we present the simplest

form [Aarts, 1989]:

P(c)-expl ç]
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(7.2-6)

where the value of o is from the interval (0.8 -1).

The method was implemented on a Macintosh computer. Preliminary, successful

results consist of a reconstruction of a simple reference object (Figs. 7.2.1(b) and

7.2.1(a), respectively). The object matrix was 10 x 10 pixels in size. Input data included

10 parallel beam geometry projections equally spaced over 1800.

T¡=AT¡r-1 (7.2-7)
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(b)
Fig.7.2.l (a), reference image and (b), is MRT reconstruction from 10 parallel beam projection directions
equally spaced over 1800.



Presented reconstruction method uses the simulated annealing technique that is totally

different from the commonly used approaches to reconstruct an object. The reconstruction

process is based on random changes of intensities/grey levels of the reconstruction matrix

elementsþixels. Every accepted modification of the reconstruction matrix forms an

intermediate image that is like a term in a sequence converging to the solution.

The change in the intensity at a pafricular pixel location is always accompanied by

intensity changes of all surrounding pixels that make up the reconstruction image. The

magnitude of changes is weighted by the distance, choice of the optimization constant F, as

well as by the random selection (parameterR¡). Such an approach presents the advantage

of influencing and controlling the smoothness of a reconstruction image. The lowest value

of R¡ +F corresponds to the highest contrast that can be assigned to adjacent pixels.

When R¡ is zero, the optimization constant F alone sets this value.

It is probably true that in order to get the same quality of the reconstruction image, the

proposed method requires fewer projections than other reconstruction methods. Moreover,

this method should be readily applicable to the difficult cases of reconstructing from

projections from limited angles. This is because there is no dependency of the cost function

on the projection angle nor on the number of projections.

Coordinated adjustnent of all pixels introduces smoothness into the reconstruction that

is not necessarily accompanied by loss of contast (blurring). In fact, the opposite might be

true for the smoothness of the reconstruction and a broad range of the algorithm flexibility

may result in considerable reduction of the reconstruction noise.

To its disadvantage, the proposed method requires much computer time. In addition it

still requires refinement and further investigation of its capability.
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Incomplete data is an annoying problem in computed tomography. Generally, it refers

to the loss of some detector readings (truncated pdections), a whole sector of missing

projections, or when we deal with a limited number of projections. In industry the

incomplete data problem arises mainly due to, say, an obstruction [Gordon, 1985]. In

clinical CT, Medoff has shown that the problem originates when opacities ¿ìre present in the

object being examined [Medoffl 19871. Looking for the reconstruction method that would

produce the best fidelity image has been a subject of extensive studies [Chu, 1988],

[Gore, 1980], [Grunbaum, 1980], [Hanson, 1982], [Hanson, 1983], [Inouye, 1979],

[Inouye, 1982], [Lewitt, 1979], [Medoff, 1983], [Nassi, 1982], [Ogawa, 1984],

[Ollinger, 1990], [Oppenheim, 1977], [Peng, 1989], [Peres, 1979), [Reeds, 7987],

[Sankar, 1982], lSezan, 1984], [Tam, 1981], [Tam, 1981a], [Tato, 1981], [Tuy, 1984],

[Wagner, 1979], lwood, 1979).

ART has been proven to work well with the incomplete projection data and authors use

its approach in different implementations or use the algorithm as a reference method to

evaluate the reconstruction results lOskoui-Fard, 1988], [Andersen, 1989], [Peng, 1989].

As a main disadvantage of using ART techniques, it has been pointed out the computational

effort in the calculation of the weighting coefficients required in the ray-sum calculation of

the projection process. IART, which this thesis introduced, is an answer to the solution of

this problem. It solves this problem not only for the parallel beam geometry but more

importantly, for the radiation beam of any shape including a fan and a 3-dimensional cone

beam, i.e., beams that are more likely to be used in practice. In addition, the reconstruction

CHAPTER VIII
CONCLUSIONS AND FUTURE WORK
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images obtained are less noisy. The examples of the reconstructions in Section 2.1.4

demonstrated the applicability of the method for any shape of the radiation beam.

IART, as all iterative methods, is sensitive to noise. To make the method work

successfully on real data that always contains noise, we have worked on noise removal

from projection data before using it by the method. The improvement in the image quality

was obtained when the projections were fîltered using a windowing technique. Even better

improvement is expected to be obtained when this technique is used to filter not only the

projection data prior to use it by the reconstruction method, but also during the

reconstruction process itself. Namely, we suggest that the projections calculated from an

intermediate image should be filtered as well. The intermediate image that is produced at

every iteration cycle is contaminated with noise from the noisy projections that produce it.

Consequently, the projections taken from it are going to be distorted and produce even

more noise in the following intermediate image. The situation worsens with every iteration

step. We think that additional filtering at every iteration cycle should alleviate the noise

problem and improve the quality of the reconstruction image.

The approach that has been used to relate pixels to the projections, makes the

calculations less burden for the computer memory and also, as it has been shown in Section

2.1.4, makes it realistic for the iterative methods to be used on real data that, at present, is

mostly produced by a fan beam. Furthermore, for IART, it eliminates errors due to the

discretization characteristic for ART algorithms (see Section 2.1.5), [Andersen, 7974],

[Andersen, 1989]. This novel method, that was used to relate pixels to the projections, can

be used with any iterative method. Simultaneous Iterative Reconstruction Technique

(SRÐ [Gilbert, 1972], [Oppenheim, 1977f, is an example of another algorithm, that was

formulated to overcome ARTs weakness. It makes changes to the pixel estimate by using

data from all projections simultaneously, and therefore exhibits more uniform convergence.

Its disadvantage though, is a slow rate of convergence. Gilbert [Gilbert, 1972] reported on

SIRT's better performance compared to ART in the presence of errors in the projection

184



data. Andersen [Andersen, 1989] tested the usefulness of the method in a study where a

sequence of four iterations of an ART based method (SART) was followed by several

iterations of the SIRT. He saw no further convergence being achieved this way. For the

purpose of further studies, it would be advisable to use the IART approach of relating

pixels to the projections and include the SIRT method in further studies. Similarly, all

operations of noise removal from the projection data, including the filtering operation

during the reconstruction process itself, should be applicable as well.

Two-dimensional detector Íurays call for a cone beam geometry. The novel approach

presented by this thesis to relate pixels to the projections is readily applicable to this

geometry.

Another new reconstruction method suitable for all the cases of the incomplete data

problem is presented in Chapter VII. The method uses the simulated annealing technique

and is totally different from the commonly used approaches to reconstruct an object. The

reconstruction process consists of random changes of grey levels of the reconstruction

matrix elementsþixels. Every change produces a new image that is checked against the

input set of projections for fidelity to the reference object. The reconstruction process is

complete when there is no longer any improvement in the image quality. This method has a

good chance to be successful for all the difficult cases of incomplete data including the one

of the very limited number of projections, because of the reconstruction process itself and

the similarity measure that we suggest (cost function). As it has been pointed out in Section

7.3, the cost function was formulated as to be not dependent on the projection directions

nor on the number of projections. It produces a sharp peak when a match, of the original

and computed projections occurs. The method has been verified by preliminary

experiments. Further study should concentrate on the refinement of the method based on

results from its implementation to the various cases of incomplete data. The proposed

method requires extensive computations. Therefore, it should be implemented on fast

computers.
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In Chapter VI, a comparative study on reconstruction images was performed. The

objective was the applicability of quantitative criteria and the qualitative criterion of the

subtraction of Fourier spectra of images (reconstruction from reference) as similarity

measures. In the study, a new approach was used, as compared images were obtained

using the same reconstruction method but from different number of projections. The

images used were from a nonlinear, iterative method, IART, and from a linear one, Fourier

backprojection. The results obtained suggest that it is possible to compare FBP

reconstruction images using the quantitative similarity measures. Unfortunately, we cannot

use them to successfully evaluate and compare images from the IART reconstruction

method. The outcome from using the qualitative measure of the subtraction of Fourier

spectra, though, in both was positive, i.e., in agreement with the visual evaluation of the

corresponding reconstruction images. As the study included only two reconstruction

methods, it would be desirable to repeat the analysis on images from a few more methods

to confirm the results.

The same chapter also covers the comparison of reconstruction images from the same

number of projections but resulting from different reconstruction methods. Again, IART

and FBP reconstruction methods were used. This study showed positive results from using

the quantitative similarity measures, while the results produced by the subtraction of

Fourier spectra were inconsistent, i.e. for the series of reconstruction images of the

"squares" reference object, the outcome was in agreement with the visual evaluation, while

for the series of images of the another reference image, "ellipses", the Fourier subtraction

images were inconclusive. Further study including more diverse reference objects are

recommended.

This thesis work adds to the incomplete data problem studies. Reconstructions from the

limited number of projections and improvement of their quality was the major objective of

this study. The recommendations given above to continue future work are based on the
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results obtained and the experience gained. One more

concluding would be to continue research into this subject.

suggestion to make before
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This source code contains Think Pascal code of units and procedures that were used

in a program developed for the purpose of this thesis work. The program was built in the

Think Pascal language, using the Programmer's Extender [Programmer's, 1986].

APPENDIX

SOURCE CODE
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1

{ * * * * * * * * * * * * * * * * * )k )k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{purpose: Computes a reconstruction image using IART algorithm for a

parallel geometry beam)

{}
{ author: El-zbíeta J. Mazur}

{}
{address: Department of Electrical and Compuer Engineering, The

University of Manitoba, Winnipeg, MB, R3T 2N2)

{}
{description of parameters: }

{angIe - direction of a projection under consideration}

{initial-value - value chosen to filL in the reconstructíon matrix
before starting the iteration process)

{itercount - iteration counter}

{projection - the input projection data}

{projnumber - number of projections in the input set}

{projrange - half of the length of a projection}

{pseudoprojection - computed projection of intermediat.e image}

{recrange - half of the length of a reconstruction matrix}

{startangle - direction of the first projection}

{stepangle - distance beween consequitive projection directions}
{t1, tzl - two detectors affected by a pixel}

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

unit IaRTRreconstr;

interface
procedure IART;

implementat.ion

procedure createpro jectionmatrix,'

external;
procedure createreconstrmatrix,'
external-,'

procedure controLwindow,'

external,'
function proj (í, j: integer) : projectionptr,'
external-,'



function rec (i, j: integer) : reconstrptr,'
externaJ-;

type

reconstrptr : ^real-,'

projectionrecord : record
projection: real; {longint}
pseudoprojection: real,'

end;

projectionptr = ^project,ionrecord;
var
recpointer: reconstrptr,'
pro jarrayptr : pro jectionptr;
tempptr2 : reconstrptr,'
tempptrl : pro jectionptr;
temprec, temppro j: longint,'
Edistance: real,'

procedure IART,'

const

dialogidl- : 16084;

var

!, j, k, t1, L2, x, y: integer,'

delta, bprojline, c, s, at tm1, lum2, criterion, initialvalue,
difference, controll-, t3: real;

projdiscrepancy, iterationdiscr, sum, bp, bp1, tt,
meanObject.Intensity, meanObjectlntensityl, entropy, variance : real,'

dp: dialogptr,'
textfil-e1, textfile2, textfile3, textfile4: text;
name, mystring: str255;
frefnumber, itemtype, itcount, iterationlimit, itemnum, itercount,

previteml , previtem2, stop: integer,'
handl6, handlT, handlB, hand111, handl111: handle,'

distrect : rect,'
defauLt: boolean,'

procedure savereconstruction; {saves the reconstruction ín an output
rile )

var



x, y: integer,'
v: real;

beqin

seek (textfileL , 0) ;

for x :: recrange downto -recrange + 1 do

begín

for y := -recrange + l- to recrange do

begin

tempptr2:= rec(x, y);
write (textfi1e1, round(tempptr2^), t t );

end; {y}
writeln (textfilel) ;

end; {x}
end; { savereconsLruction i

begin

showtext;

setprojparam; {reads paramet.ers of an input projection file}
createreconstrmatrix,' {al-locates memory for a reconstruction matrix}
createprojectionmatrix; {allocates memory for an input projection

set )

itercount :: 0;

controlwindow,' { reads Lhe number of iterations and the option of
fiJ-ling in t.he reconstruction matrix before starting the iteration
process )

if default : true then

for i :: recrange downto -recrange + 1 do {fil-ling up the rec. matrix
with the initial- value]

for j := -recrange + l- to recrange do

begin

tempptr2 :: rec(i, ));
tempptr2^ :: initialvalue;

end{ for i, j }

else
begin

name :: ofdfil-ename ( 'old reconstruction I ) ;

open (textf il-e1, name) ,'



for i :: recrange downto -recrang'e + 1 do {fi}Iing up the rec.

matrix with t.he val-ues of a chosen filel
for j :: -recrang:e + 1 to recrange do

begin

read(textfilel, t3);
tempptr2 :: rec(i, ));
temPPtr2^ :: t3;

end; { for i, j }

close (textf iLel- ) ;

end; {if defaul-t. }

name := oldfilename (¡projection datat ) ;

open (textf ileL, name) ,'

for i :: 1 t.o projnumber do

begin

forj ':-projrange+1to
begrin

read(textfilel, t3);
sum :: sum + t3,'

tempptrl := proj (i, j);
tempptrl^.pro jection :: t3,'

t.empptrl^.pseudoprojection :: 0;

end;{j}
readln (textf il-e1) ;

end; {i}

{ reads in the input set

prol range

close (text.f iIe1) ,'

name := newfil-ename ('backprojection mapr ) ;

open (t.extfilel, name) ;

repeat

angle :: startangle;
for k :: 1 to projnumber do

begin

c :: cos (angle) ;

s := sin (angle) ,'

for x :: recrange downto -recrang'e + 1 do

for y :: -recrange + 1 to recrange do

begin

do

of projections)



bprojline::y*c*x*s;
if (bprojline ) -projrange +

begin

t1 :: trunc (bpro jl-ine) ;

if bprojline >= 0 then

E2::t1 +1
el-se

begin

L2 :: t1,.

tl- :: L2 - !;
end;

{ pseudoproject.ion calculation}
temppt.rl :: proj (k, t1);
a :: tempptrl^.pseudoprojection,'
tempptrl^.pseudoprojection :: a + (1 - abs(bprojline - tl-)) *

rec (x, Y) ^ ;

tempptrl :: proj (k, t2);
a :: tempptrl^.pseudoprojection,'
tempptrl^.pseudoprojection :: a + (1 - abs(bprojline - t2)) *

rec (x, y) ^;
end; {if and}

end; {yrx}
for j :: -projrange + 1 to projrange do

begin

tempptrl := proj (k, j);
if t.empptrl^.pseudoprojection > 0 then

{calcul-ation the (projection/pseudoprojectionIq] ) ratio]
tempptrl-^.pseudoprojection := tempptrl^.projection,/

tempptrl-^ . pseudopro jection,'

end;{j}
{ fIq+1] : fIq]* projection/pseudoprojectionIq] ]

for x :: recrange downto -recrange + 1 do

for y :: -recrange + l- to recrange do

begin

bprojline :: y * c * x * s,' {1ine for back projection}
if (bprojline > -projrange * 1) and (bprojl"ine ( projrange) then

1) and (bprojline ( projrange) then



begin

t1 :: trunc (bpro jline) ,.

if (bprojline ): 0) then
12::t1 +1
eLse

begin

E2 :: t1,'

tl- :: t2 - t;
end,'

tm1 :: proj (k, t1) ^.pseudoprojection;
tm2 : = proj (k, L2) ^ .pseudoprojection;
tempptr2:: rec(x, y),
tempptr2^ :- ((1 - abs(t1 - bprojline)

bprojline)) * Lm2) * temppLr2^;

end,' { if }

tempptr2 :: rec(x, y);
end; {yrx}

angle :: angle * stepangle,.

for j :: -projrange + 1 to projrange d.o

pseudoprojection matrix before the next iteration]
begin

tempptrl :: proj (kr j);
tempptrl-^.pseudoprojection :: 0;

end;{j}
end,. { k}

itercount :: itercount f l-;

until- iterationlimit : itercount,.
savereconst ructi on,.

dispose (pro jarrayptr) ;

dispose ( recpointer),'
disposdial-og (dp) ;

CloseResFiÌe ( f refnumber),.

close (textfilel ) ;

end; {IART}

end. { unit }

) * tm1 + (t - abs(t2 -

{ zeroing
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{ * * * t( t( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * * * * * * * * * * * * * * * * * * t( * * * * * * * * * * * * }

{purpose: Computes a reconstruction image using fART algorithm for a fan

beamÌ

{}
{author: El-zbieta J. Mazuri

{}
{address: Department of Electrical and Compuer Engineering, The

Uníversity of Manitoba, !,linnípeg, MB, R3T 2N2)

{}

{descriptíon of parameters: }

{ang1e - dírection of a project.ion under consíderation}

{initialvalue - value chosen to fiLl- in the reconstruction matrix
before starting the iteration process)

{itercount. - j-teration counter}

{odDist - distance between a detector array and the center of an object
matrix )

{pixShadow - length of a pixel shadow}

{pointDist - pixel dist.ance from the x - ray source}

{projection - the input projection data}

{projnumber - number of projecLions in the input seti
{projrange - half of the tength of a projection}
{pseudoprojection - computed project.ion of int.ermediate imag:e}

{recrange - half of the length of a reconstruction matrix}
{sdDist - dist.ance between x - ray source and a detector array}

{ soDist - dístance bet.ween x - ray source and the center of an object
matrix)

{startangle - direction of the first projection}
{stepangle - distance beween consequitive projection directions}
{tl-' lu2I - the extreme detectors (left, right) of the set of detectors
affected by a pixel ]

{x1, y1 - pixel coordinates in a rotated system}

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ,( * * * * * * * * * * * * * * * * * * * )k * )k * * * * * * * * * * * * }

Unit IARTRreconstrDiv;

Interface
Procedure divIART,'



fmplementation

Procedure setDivprojparam (Var soDist, odDist, sdDist: real),'
external-;

Procedure createpro jectionmat rix1,'
external-,'

Procedure createreconstrmatrixl ;

external;
Function projl (i, j: integer) : projectionptr;
external;
Function recl (i, j: integer) : reconstrptr;
external-,'

Procedure control-\,¡indowl ;

external,'
Type

reconsLrptr : ^reaL,'

projectionrecord = Record

pro jection : longint,'
pseudopro jection : real,'

End,.

pro jectionptr = ^pro ject.ionrecord,'

Var

recpointer: reconsLrptr,'
pro jarrayptr : pro jectionptr,'
temppt.12 : reconstrptr,'
temppt.rl : pro jectionptr,'
temprec, tempproj: Iongint;
Edistance: real-;

Procedure divIART,'

Const

dialogidl- = 16084;

Var

i, j, kr t1, L2, x, y: integ-er,.

deJ-ta, ct s, at tm1 , Lm2, criterion, initialval-ue, difference,
control]: real;



projdiscrepancy, it.erationdiscr, sum, bp, bp1, Lt-,

meanObjectfntensity, meanObjectlntensityl, entropy, variance, x1-, y1:

rea1,'

g'alnma, pointDist, soDist, odDist, sdDist, pixShadow, pixDist, 1det,

rdet: real;
dp: dialogpt.r,'
textfilel, textfile2, textfile3, textfil-e4: text;
name, mystring: str255,'
frefnumber, itemtype, itcount, iterationLimit, itemnum, itercount,

previteml , previtem2, stop: integer,.
handI6, handlT, handlS, handll1, handI111: handle;

distrect: rect,'

default: boolean;

Procedure savereconstructionl,. {saves

output file)
Var

x, y: integer,'
v: rea1,'

Begin

seek (text.f i]e1 , 0) ;

For x := -recrange + 1 To recrange Do

Begin

For y :: -recrange + 1 To recrange Do

Begin

v :: recl- (x, y)^;
If (v > 0.00000001-) And (v < 1) Then

v :: 1;

write(textfile1, round(v), , '),-
End; {y}
writeln (textf ile1) ,'

End; {x}
End,' { savereconstructíon1 }

Begin

setDivprojparam(soDist, odDist, sdDist) ;

geometry)

createreconstrmatrixl,' {a1lcates memory

the reconstruction in an

{ reads the scanning system

for a reconstruction matríx)



createpro j ectionmat rixl-,'
projections )

ítercount :: 0;

control-windowl,' {reads the number of iterations and the option of
filling in the reconstruction matrix before starting the iteration
process )

If default : true Then

For i :: -recrange + 1 To recrange Do {filling in the
reconstruction. mat.rix with the initia]vaLue)

For j :: -recrange + 1 To recrange Do

Begin

tempptr2 :: recl(i, ));
tempptr2^ := initialvalue;

End{for í, j}
E]Se

Begin

name :: oldfilename ( 'oLd reconstruction I ) ;

open (textf iLe1, name) ,'

For i := -recrange + l- To recrange Do {filling in the
reconstruction. matrix with t.he] {values of a chosen fiLe}

For j :: -recrange + 1 1o recrange Do

Begin

read (t.extf i1e1, t3 ) ;

temppt.r2 :: recl (i, j) ;

temPPtr2^ :: t3;
nnd; { for i, j }

close (textf il-e1) ;

rnd; {íf default }

name :: of df ilename ( 'pro jection datat ) ,.

{al-l-cates memory for an ínput set of

10

open (t.extfile1, name),'

For i :: 1 To projnumber Do

projections ]

Begin

For j :: -projrange + 1- To projrange Do

Begin

read(textfile1, t3);

{ reads in the input set of



tempptrl :: projl(i, j)¡
tempptrl^.pro jection :: t3;
tempptrl^.pseudoprojection := 0;

End;{j}
readln (textf ile1) ,'

nnd; {i}
cl-ose (textf ile1) ;

name :: newf il-ename ( 'backpro jection matrix I ) ,'

open (textfile1, name) ;

Repeat

angle : = start.angle;
For k :: 1 To projnumber Do

Begin

c :: cos (ang1e) ,'

s :: sin (angle) ,'

For x := -recrange + l- To recrange Do

For y :: -recrange + 1 To recrange Do

Begin

x1 :: x * c * y * s;

Y1 :=Y*c-x*s;
gamma :: arctan(xI / (soDist - y1));
pointDist (soDist - y1) / cos (gamma)

pixShadow :: sdDist / (2 * pointDist),'
pixDist :: sdDist. * g:amma;

Ldet ¡: pixDist - pixShador^r,'

rdet ;: pixDist + pixShadow,'

t1 :: trunc(Ldet);
Ifldet<0Then
t1 := tl- - 1,'

L2 :: trunc (rdet);
Ifrdet<0Then
L2z:t2-L;

11_

if (t1 >: -projrange - 1) and (L2 < projrange) then

begin
pseudopro jection calcuLation )

tempptrl :: projl(k, t1);



a :: tempptrl^ . pseudopro jection,.

t.empptrl^.pseudoprojection :: a + ((1 - abs(ldet - t7')') / (2

* pixshadow) ) * recl (x, y) ^;

tempptrl :: projl (k, L2);
a :: tempptrl^.pseudoprojection;
tempptrl^.pseudopro jection :: a + (abs (rdet - L2') / (2

pixshadow) ) * recl- (x, y)^;
For i (t1_ + 1) To (L2 - t',) Do

Begin

tempptrl :: projl-(k, i);
a :: tempptrl^ . pseudopro jection,.

tempptrl-^.pseudoprojection :: a + (l / (2 * pixshadow)) *

recl (x, y) ^;

End;

End; { if}
End,.{y,x}

For j ;= -projrange + 1 To projrange Do

Begin

t.emppt rl : : pro j l (k, j) ;

If tempptrl^.pseudoprojection ) 0 Then

{calculation the (projection/pseudoprojectionIg] ) ratio]
tempptrl-^.pseudoprojection :: tempptrl_^.projection /

temppt.rl^ . pseudopro jection,.

und;{j}
{ fIq+f] : fIq]* projecrion/pseudoprojectionIq] i

For x :: -recrange + 1 To recrange Do

For y :: -recrange + 1 To recrange Do

Begin

x1 :: x * c * y * s,. {in rotated system}

Y1 :=Y*c-x*s,'
gamma :: arctan(xI / (soDist - y1));
pointDist (soDist - yl) / cos (gamma),.

pixShadow :: sdDist / (Z * pointDist);
pixDist :: sdDist * g:amma,.

ldet :: pixDist - pixShadow,.

rdet :: pixDist + pixShadow;

I2



t1 :: trunc (ldet) ;

Ifl-det(0Then
tl- :: t1 - 1;

L2 :: trunc (rdet) ,.

Ifrdet<0Then
L2::E2-I;

If (tL >: -projrange - 1) And (L2 < projrange) Then

Begin

tm1 :: pro j1 (k, t1) ^.pseudopro jection,'

Lm2 := projl (k, L2)^.pseudoprojection;

temppt12 :: recl (x, y);
tt ((1 - abs(ldet - ú)) / (2 * píxshadow)) * tml +

(abs(rdet - t2) / (2 * pixshadow)) * tm2;

For i :: (t1 + l") To (t2 - L) Do

Begin

tempptrl :: projl(k, í);
a :: tempptrl^.pseudoprojection,'
tt :: tt + 0 / (2 * pixshadow)) * a;

End;

tempptr2^ :: tt * tempptr2^;

tempptr2 :: recl(x, y);
variance := variance + sqr(tempptr2^ - meanObjectlntensity)

tt :: tempptr.2^ / meanObjectlntensity,
Iftt>0Then

entropy :: entropy + tt * ln(tt);
End; { if}

End,.{yrx}

angle :: angle + stepangle,'

For j :: -projrange + 1 To projrange Do {zeroing
pseudoprojection matrix before the next. iteration)

ijegr-n

temppt.rl :: projl (k. ));
tempptrl^.pseudoprojectíon :: 0;

End;{j}
End; {k}
it.ercount :: itercount + 1,'

L3



Until iterationlímit : itercount;
savereconst ruct i on1 ;

dispose (pro j arrayptr),'
dispose ( recpointer),'
disposdialog (dp) ;

CloseResFile ( f ref number) ;

close (textfilel) ;

Pnd; {IART}

End. {unit}

1-4
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * * * * * * * * * * * * * * * * * )k * * * tr * * * * * * * * * * * * * )k * * * }

{purpose: compuÈes set of projections for a parallel beam geometry}

{}
{author: Elzbieta J. Mazur}

{}

{address: Department of Electrical and Compuer Engineering, The

University of Manitoba, V{innipeg, MB, R3T 2N2}

{}

{description of parameters: }

{projlength - length of a single projections in the input. set}

{projnumber - number of projections in the input set}

{recrange - hal-f of the length of a reconstruction matrix}
{startangle - direction of the fírst projection}
{stepang}e - distance beween consequitive projection directions}
{*******)k*********)k)k)k******************************t(*****************)k*}

procedure MapPro jection,'

type

reconstrptr : ^rea1;

var
recpointer, tempptr2 : reconstrptr,'
textfilel, textfile2: text,'

), í, projectionrãng'er xt y, temp1, temp2: integer,'
tempr deltaangle, bprojline, a, s, ct density: real;
name, PROMPT: st1255,'

time1, time2 : longint,'
begín

showtext;

setprojparam; {reads the description of of a set of projections to
compute )

vectorpt.r (pr jptr, pro jnumber, pro jlength) ,'

projection set)
createreconstrmatrix,' {allocates memory for an object matrix}
name :: oldfilename(tDENSITY MATRIX FROM MAPr),'

open (textf ilel-, name) ;

for i := recrange downto -recrange + 1 do {reads in an object matrix}

{allocates memory for a



begin

for j := -recrange + 1 to recrange do

begin

read(textfile1, density) ;

tempptr2 :: rec(i, l);
temppt12^ :: density;

end,'{for i, j}
end;

close (textf il-e1) ,'

name :: newfilename( tprojection file¡ ),'

open (textf il-e2, name) ,'

for j := 1 to projnumber do {zeroing projections matríx}
for i :: -projrange + 1 to projrange do

begin

temprealpointer :: arrvect.or(j, i * projrange);
temprealpointer^ :: 0. 0;

end;{i,i}
for x :: recrange downto -recrange + 1 do {computes the projection

set ]

for y :: -recrange + 1 to recrange do

begin

angle :: startangJ-e;

for j := 1 t.o projnumber do

begin

c :: cos (ang1e),'

s : = sin (angle) ;
bprojline::y*c*x*s,'
templ :: trunc (bprojline) ;

if bprojline ): 0 then

temp2 :: templ * 1

r.6

eLse

begin

temp2 :: temp1,'

templ :: temp2 - 1

end;

tempreaJ-pointer arrvector(j, templ + projrange);



a : = temprealpointer^,'
t.emprealpointer^ :: a + (1 - abs (bpro jline - templ) ) * rec (xr

y) ^t
temprealpointer := arrvector(j, temp2 + projrange);
a :: temprealpointer^,'
tempreal-pointer^ :: a + (1- - abs (bpro jlíne - temp2) ) * rec (x,

y) ^;
angle :: angfe + stepangle,'

end;{j}
end,. {yrx}

for j := 1 to projnumber do {writes in the projection set ínto an

output f il-e )

begin

for i ': -projrange + 1 to projrange do

write (textf i1e2, ' ' , arrvector ( j, i + pro jrange) ^) ,.

end;{j}
writeln('taking projections time:'r (time2 - timel) / 60: 5 i 2,

rsecr),'

close (textf il-e2 ) ;

end,' {mappro jection }

r'7



{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * J

{purpose: computes noisy sinogram}

{}
{author: El-zbieta J. Mazur}

{}
{address: Ðepartment of Electrical and Compuer Engineering, The

University of Manitoba, Winnipeg, MB, R3T 2N2Ì

{}
{description of parameLers: }

{p - number of photons emitted by an x-ray source}

{projlength - length of a single projections in the input set}
{projnumber - number of projections in the input set}
{recrange - hal-f of the length of a reconstruction matrix}
{startangle - direction of the fírst projection}
{stepangle - distance beween consequitive project.ion directions}
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t( * * * t( * Jr * * * * * * * * * * * * * * * * * * * t( t( ,( * * * * * * }

procedure NoisyAtpro j,.

var
I2n, i, j, Ndetr 1, Ioc. mI , m: integer,.
k: longint,'
Nperc, loc1-, detr ufI, vt pt ppr at v1, v2, w: real,.
c: array l1 . .2I of real_;

name: str255,.

textfiLe: text,'
{computes a normaly distributed random numer v with a given mean am and

standard deviation s i

{procedure is based on the centraL limit theorem}
procedure gauss (var ix: longint; am: real,. procedure randu (ix:

longint,' var iy: tongint,. var yf1 : real),. var v: real,. var i: integer,-
at y: real;

begin

a :: 0;

for i :: 1 to 12 do

begin

randu (ix, iy, y) ;

L8



ix := iy;
a:=a*y;

end;

v := (a - 6) * sqrt.(am) + am;

end; { gauss}

{computes uniformly distributed random real- numbers yfl between 0 and 1

and random integers iy beween 0 and 2**31 )

{for the first entry ix must contain any odd integ:er with nine or less

digits )

tprocedure is based on the power residue method)

procedure randu (ix: longint,' var iy: longint; var yfÌ: real);
begin

iy :: ix * 65539;

ifiy(0then
begin

iy :: iy + 21,4748364'l + 1,;

Yfl :: iY;
end

else
yf I :: iy,'

yf1 ': yf1 * 0.4656613 * 0.000000001;

end; {randu}

begin

showtext,'

writeln (tnumber of photons emitted by a source = t ) ;

readln(p); {read.s number of photons emitted by an x-ray source}

Param(projnumber, projlength, l.2n); {reads the description of an

input sinogram]

vectorptr(prjptr, projnumber, projlength),' {allocates memory for a

sinogram file)
name :: oldfilename ( r PROJECTION FILET) ;

open (textfile, name) ,'

for i :: 1 to projnumber do {reads in sinogram file}
for j :: 1 to projlength do

begin

temprealpointer :: arrvector(i, )) ;

19



read(textfile, v);
temprealpoint.er^ :: exp (-v) ;

end; {for i, j}
close (textfife);
.l-- .- ç.IÃ .- Ji

pp::p*projnumber;
for i :: 1 to projnumber do

for j := 1 t.o projJ-ength do

begin

temprealpointer :: arrvector(i, jl ;

det :: temprealpointer^ * p;

repeat

repeat {computes a sample of the reference detector counts during

the actual measurement )

gauss (ix, p¡ randu, v);
until v ) 0;

q .- v j

form::l-to2do
begin

repeat { computes samples of counts of the reference det. and the

det. under ínvestigation ]

{during the cal-ibration measurement}

20

gauss (ix, pp¡ randu, v);
until v > 0,'

c [m] :: v;

end; {m}

repeat {computes a sample of the det

duríng the actual- measurement )

gauss (ix, det, randu, v);
until v ) 0;

vl- :: -l-n ( (v / a)

v2 :: -l-n ( (v / a)

if v1 ) v2 then

w :: v1

el-se
. - -,4.W .- Vat

/ (clrl /
/ (clzl /

under invest.igation counts

cl2l));
c [1] ) ) ;



until v¡ > 0;

temprealpointer^ : = w,'

end; {i, i }

name :: newf ilename ( 'noisy sinogramr ) ,'

open (textfile, name) ,'

for i :: 1 to projnumber do

begin

for j :: 1 to projJ-ength do

write (text.f i1e, arrvector (i, j) ^) ;

writel-n (textfile) ;

end; {for i, j}
cl-ose (textfile) ;

end; {NoisyAt.Pro j }end,'

end.

21-
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{ * * * ,( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * ,( )k )k )k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * }

{purpose: image enhancement through using a directional fílter}
{}
{author: El-zbieta J. Mazur}

{}
{address: Department of Electrical and Compuer Engineering, The

University of Manitoba, Winnipeg, MB, R3T 2N2)

{}
{description of paramet.ers: }

{c (phi), s (phi) - functions of an angle pJ:i that an edge forms with a

coordinate axis )

{h( ) - directional- filter function}

{n - size of an image matrix}
{v ( ) - function cal-culated for 00, 450, 900, and 13501

{ * * * t( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * * * * * * * * * * * * * * * * * * * t( * * * * * * * * * }

{Procedure uses directional filter to enhance the picture.

{At each pixel an effort is made to estimate the direcLion
if any, Ì

{ and the filter avoids averaging points across the
see Sect.ion 3. 4 . )

procedure dirFil-t.er,'
var

n, I2n, í, ), k, phi, l, m: integer,'
vi, min, sum, t : real-,'

ptr1, pEr2:, deconvptr;

realsize, time1, time2: longint,'
textfile: text,'
name: st1255,'

angle: array t1. .4J of integer;
tempprojptr : deconvptr;

function c (phi: integer) : integer,'
begin

if (phi : 0)

^ .- 1

else if phi

)

of

edge. For description

an edge,

or (phi = 45) then

= 90 then



c := 0

eLse

^ 
.: -1 .

end,' { c }

function s (phi: integer) : integer,'
begin

if (phi = 0) then

s := 0

el-se

c .: 1.

end; {s}
function h (i, j, phi: integer,' function c (phí: integer): integer,'

function s (phi: integer): integer): real,' {fitter function}
var
ccr ss: integer,'

begin

cc :: c(phi);
ss := s (phi) ;

if (i : 0) and (j : 0) then

h :: 0.5

else if (i: cc) and (j: ss) or (i: -cc) and (j: -ss) then

h :: 0.25

eLse

h := 0,'

end; {h}

function v (phi, i, ), n: integer,' realsize: longint; ptrl: deconvptr;

function c (phÍ: integer) : integer,' function s (phi: integer) : integer,'
function elm (i, ), n: integer; real-size: longint; ptrl: deconvptr):
deconvptr) : rea1,'

begin

v:= sqr(elm(i, j, n, realsize, ptrl-)^ - elm(i - s(phi), j + c(phi),
n, realsize. ptrl) ^) + sqr (elm(i, j, n, realsize, ptrl-) ^ - elm(i *
s (phi), j - c (phi), Í\t realsize, ptrl) ^),'

end; {v}
begin

showtext;
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SetParam(n, I2n); treads in t.he size of an image

MatrixMem(pt11, realsize, n) ; {all-ocates memory

MatrixMem(ptr2, realsize, n) ; {allocates memory

matrix)
name := oldfil-ename ('object matrixt) ;

open (textfile, name) ,'

for i :: 1 to n do {reads in image eile}
begin

forj::ltondo
begin

read(textfile, t);
tempprojptr :: elm(i, j, n, realsize, ptrl),'
tempprojptr^ :: t;
tempprojptr :: elm(i, j, Írt realsize, pLx2);

tempprojptr^ :: 0;

en¿; {j}
readln (textfife) ,'

end; {j}
cl-ose (textf ile),'
angle [1] :.: 45;

angle[2] :: 90;

angle[3] :: l-35,'

fori z:2Lo n-1do
forj::2Lo n-1do
begin
phi :: 0;

min:: v(0. i, ), n. realsize, pt11, ct s, elm)

matrixÌ
for an image matrix)
for an enhanced image
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for k := 1 to 3 do

begin

vi :: v (ang1e Ik] , i, ), nt realsize, ptr1, ct s, el-m) ,'

if vi ( min then

begin
phi : = angle [kJ ;

min :: vi,'
end,'

end; {k}



sum := 0,'

for l- :: -1 to 1 do {applíes filter function}
for m :: -1 to 1 do

sum:: sum * h(1, m, Phi, cr s) * elm(i - m,

ptrl ) ^,'

tempprojptr :: elm(i, j, nr reafsize, pLrz);

tempprojpt.r^ := sum,'

end; {j}
for i := 1 to n do {fill-ing in the border col-umns in the filtered

image matrix]
begin

tempprojptr :: e1m(i,

tempprojptr^ := efm(i,
tempprojptr := elm(i,
temppro jptr^ :: efm(i,

end,' { i }

for i ::1to n do {fil-l-ing in the border rovtss in the filtered image

matrix )

begin

I, flt realsize, pLr2);

2, n, realsize, pLr2)^;

nr n, realsize, ptr2') ;

n - 1, n, real-size, pLr2l

tempprojptr :: eLm(1¡

tempprojptr^ :: elm(2,

temppro jptr :: el-m (nr

tempprojptr^ := efm(n

end; {i}

j * I, n, realsize,

25

name :: newfilename(rfiltered object matrixl
open (textfile, name) ;

fori::ltondo
begin

for j :: 1 to n do

begin

t :: elm(i, ), rrr realsize, pLr?)^;

write (textfile, round(t), t t);

end; {j}
writ.eln (textf ile) ,'

end; {i}
close (textfile) ,'

í, n, realsize, pLr2);

i, n, realsize, pLr2)^;

i, n/ realsize, pLr2),

- Lt i, n, realsize, ptr2)

);



dispose (pt11) ;

dispose (ptx2) ;

end; { dirFilterJ
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * * * * * * * * * * * * * * * * * * * * * * }

{purpose: computes set of projections for a fan beam geometry}

{}
{author: Elzbieta rT. Mazur}

{}
{address: Department of Electricat and Compuer Engineering, The

University of Manitoba, Winnipeg, MB, R3T 2N2]

t)
{description of parameters: }

{angle - direction of a projection und.er consideratíon}
{ initial-vafue - value chosen to fill in the reconsLruct.ion matrix
before starting the iteration process]

{itercount - iteration counter}

{odDist - distance between a detector array and the center of an object
matrix i
{pixShadow - length of a pixel- shadow}

{pointoist - pixel distance from the

{projection - the input projection data

{projnumber - number of projections in the input set}

{projrange - half of the J-ength of a projection}
{pseudoprojection - computed projection of intermediate image}

{recrange - half of the length of a reconstruction matrix}
{sdDist - distance between x - ray source and a detector array}

{soDist - distance between x - ray source and the center of an object
matrix)

{startangle - direction of the first projection}
{stepangle - distance beween consequitive projection directions}
{t1, L2l - the extreme det.ectors (l-eft., right.) of the set of detectors
affected by a pixel ]

{x1, y1 - pixel- coordinates in a rotated system}

{ ******************)k*******************************r(******************* }

procedure MapDivPro jection,'
var

textfilel, textfiJ-e2: text;
j, i, projectionranger xr y, templ, temp2, density: integer,'

x - ray source]

)
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temp, delt.aangle, a, sr ct xL, yI , g'arnmar pointDistr soDistr odDistt

sdDist, pixShadow, pixDist, ldet, rdet: real,'
name, PRO¡4PT: st1255,'

timeL, time2: longint,'
begin

showtext,'

set.Divprojparam(soDist, odDist, sdDist) ;
a projection set to computeÌ

vectorpt.12 (prjptr, projnumber, projlength),' {allocates memory for a

projection set ]

name : = oldf ilename ( r DENSIÎY M.A,TRIX FROM MAP | ) ;

open (textf i1e1, name) ,'

name : = newf il-ename ( 'pro jection f il-e' ) ,'

open (t.extfil-e2, name) ,'

for j := 1 to projnumber do {zeroing projection matrix}
for i ': -projrange + 1 t.o projrange do

begin

temprealpointer :: arrvecLor2(), i + projrange);
temprealpointer^ :: 0.0,'

end;{i,i}
seek (textfilel , 0) ;

for x :: -recrange + 1 to recrange do {computes t.he projections}
begin

for y :: -recrange + l- to recrange do

begin

read (textfile1, density) ;

if density <) 0 then

{ reads in the description of

begin

angÌe :: start.angle;
for j :: 1 to projnumber do

begin

c :: cos (ang1e),'

s :: sin (angl-e) ;

x1 ::x*C*yx",.

Y1 ::Y*c-x*s;
gaÍuna :: arct.an (x1 / (soDist - y1) );



pointDist :: (soDist - y1) / cos (gamma)

pixshadow :: sdDist / (2 * pointDist);
pixDist :: sdDist * ganìma,'

ldet :: pixDist - pixShadow;

rdet :: pixDist + pixshadow,'

templ : = trunc (ldet) ;
ifldet<0then
templ :: templ - 1;

temp2 := trunc(rdet),'
ifrdet(0then
temp2 :: temp2 - 1;

temprealpointer :: arrvecLor2 (), templ

a : : temprealpointer^,'
temprealpointer^ :: a + ( (l- - abs (Idet

pixshadow) ) * density,'
temprealpointer := arrvecLor2 (), temp2

a : : temprealpointer^,'
temprealpointer^ :: a + (abs(rdet - temp2) / (2 * pixshadow)) *

density;
for i :: (templ + 1) to (temp2 - 1) do

begin
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a :: temprealpointer^;
temprealpointer^ :: a + (1 / (2 * pixshadow)) * density;
end,'

angle :: angle + stepangl-e,'

end;{ji
end,'

end; {y}
readln (textf j-Ie1- ) ;

end,'{x}

for j :: L to projnumber do

begin

tempreal-pointer :: arrveclor2(), i + projrange)

+ projrangie),'

- templ")) / (2 *

+ projrange);

for i ': -projrange + 1 to projrange

write (textfile2r " , arrvector2 (j,
writel-n (textfil-e2 ) ;

do

a * projrange) ^),'



end;{j}
close (textf ile1) ,'

close (textfiÌe2) ;

end;
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * tr * * * * * * * * * * * * * * * * * * * * * * }

{purpose: applies window fuction to noisy sinogram}

{}
{author: Elzbieta J. Mazur}

{}
{address: Department of Electrical and Compuer Engineering, The

University of Manitoba, Winnipeg, MB, R3T 2N2)

{}

{descriptíon of parameters: }

{f()- windowfunction}

{projlength -
{projnumber -
{*************************r(*****t(*r(****)kr(**)k***r(********tr**************}

unl_t 5J-n!'l-1ter,'

interface

length of a single project.ions in the sinogram)

number of projections in the sinog-ram)

procedure LPFsin;

implementation

procedure LPFsín,'

type

sinptr : ^reaI;
var
i, ), ûD¡ n3, I2n,
t1, L2, fil, ar b:

textf ile : text,'
name: str255,'

arrayptrl : complexpLr,'

timeL, time2 : longint,'
sptr, temrecpointer: sinptr;

funct.ion f ilter (i: integer) : real-,'

var

kr ct np1, âû¡

reaI,'

frequency, s: real;
begin

frequency

if frequency

filter :: 0

m, rt t: integ'er,'

(i - 1)

<= 0.5

I + 0.2

/ projlength,'
then
* cos(pi * frequency / 0.5)

{ definition of window function]



else
filter :: 0;

end; { filt.er}
begin

showt.ext,'

sinParam(projnumber, projlength, I2n) ;
input sinogram]

nn := projlengt.h div 2,'

n3::nn*1;
1l2n :: L2n - 1;

arrmemptrl(arrayptrl, cplxsize, n3); {allocates auxiliary memory for
temporary resul-t.s )

createresinograrray; {al-J-ocates memory for a sinogram matrix}
name := oldfilename(tnoisy sinogrt ) ;

open (textfile, name) ;

for k :: 1 to projnumber do

begin

for i ::1 to nn do {rewrites projection real sequence ínto complex

sequence )

{before taking Fourier transform}
begin

r::2*i-1;
r .- t * .l .

read(textfile, t1, L2) ;

temrecpointer :: rr (k, r) ,'

temrecpointer^ :: t1;
temrecpointer :: rr(k, t) ;

temrecpointer^ :: t2;
tempptr :: arrayyl (i, cplxsize, arrayptrl ) ,.

t.empptr^.re := t1;
tempptr^.im:: L2;

end,'

^ .- 1.u .- r,

dfftreall (nn, II2n, ct cplxsize, arrayptrl),'
npl := nn * 1,'

¡ .: -'1 .

{ reads the description of an
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for i := 1 to np1 do

begin

fil :: filter (i) ;

tempptr := arrayyl
a :: -tempptr^.im
temPptr^.im := a,'

b := tempptr^.re *

t.empptr^ . re :: b;

end; {ii
dfftreall (nn, II2n,
for i :: 1 to np1 do

begin

tempptr :: arrayyl
a := -tempptr^.im,'
tempptr^.im :: a;

end,' { i }

an :: nn,'

for i :: 1 to nn do

begin

tempptr :: arrayyl
a :: (tempptr^.im

tempptr^.im:= a;

b (tempptr^. re

tempptr^.re := b,'

end; {i}
for m :: 1 to nn do

back into real sequence]

begin

r::2*m-1,'
t :: 2 * m,'

{applies window function}

(i. cpfxsize, arrayptrl);
* f ir,.

fil;

ct cplxsize, arrayptrl) ;

(i. cp]-xsize, arrayptrl ) ;
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(i, cplxsize, arrayptrl-),'
/ an);

/ an);

temrecpointer :: rr(k, r);
if temrecpointer^ = 0 then

begin

end

el- se

{ rewrites filtered projection complex sequence

temrecpointer^ : = arrayyl (m, cpJ-xsize, arrayptrl) ^. re;



temrecpointer :: rr(k, t) ;

if temrecpointer^ : 0 Lhen

begin

end

else

temrecpointer^ :: arrayyl (m, cplxsize, arrayptrl-) ^. im;

end; {m}

end; { k}

{projection array filled up}

close (textfile) ,'

name :: newfilename ('fiLtered sinogr¡) ;

open (textf iIe, name) ,'

for i := 1 to projnumber do {writes in the

output f il-e )

begin

for k :: 1 to pro¡length do

begin

temrecpointer :: rr(i, k);
if temrecpointer^ < 0 then

temrecPointer^ :: 0,'

write (text.file, temrecpointer^)
end;

writeln (textfile) ,-

end; ti)
close (textfile),'
dispose (arrayptrl ) ,'

dispose (sptr¡ ,'

end,' { LPFsin }

end. { SinFilter}

34

filtered sinogram into the
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t( * * * * * * * * * * * * * * * * * * * * tr * * * * * * * * * * * * * * }

{purpose: evaluates the reconstruction quality using different
similarit.y measures Ì

{}
{author: Elzbieta,J. Mazur}

{}
{address: Department of El-ectrical- and Compuer Engineeríng, The

University of Manitoba, Winnipeg, MB, R3T 2N2Ì

{}

{descript.ion of parameters: }

{n - size of a square object/reconstruction matrix (n x n) }

{ep1 - correlation coefficient}
{ep2 - Euclidean distance}

{ep3 - averagie absolute difference}
{ep4 - largest difference}

{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Jc * Jr * * * * t( )k * * * * * )k * t( * * * * * * * * * * * }

unit evaluat.ion,'

interface
procedure evaluat ionMeasures ;

implement ation
procedure evaluationMeasures,.

var

nr I2n, i, j : integer,'
tt t1, L2, t3, ep1, ep2, ep3, ep4, bt ct sum, meanR, meanl: real;
textfile: text;
name: st1255,'

ObjPoint.er, tempptr: comp1expt.r,.

begin

showtext,'

SetParam(n, I2n); {reads the description of an ímage

createFourierObjectMatríx (ObjPointer, reconstroffseL,
memory for reference )

{and reconstruction matrix}
name :: oldf ilename ( ¡ ref erence matrix' ) ,'

matrixÌ
n) ; { al-locates



open (textfile, name) ,'

sum :: 0,'

for i ::1 to n do {reads in a reference object file}
for j :: 1 to n do

begin

read(textfile, t);
sum := sum * L;

tempptr :: MatrixElem(i, j, nr reconstroffset, ObjPointer);
tempptr^.re :: t;

end; {i,i}
meanR := sum / (n * n);
close (textfile),'
name :: oldfilename (timage mat.rix') ,'

open (textfile, name) ;

sum : : 0,'

for i :: l- to n do {reads in a reconstruction file}
forj::1tondo
begin

read(textfile, t);
sum :: sum f t,'
tempptr :: MatrixElem(i, j. rr, reconstroffset, ObjPointer);
tempptr^.im := t;

end,' {j,i}
meanl :: sum / (n * n) ;

cl-ose (textfile) ;

sum :: 0;

}\ .: ô.

c :: 0,'

epz :: 0,'

ep3 :: 0;

ep4 : - 0,'

for i :: 1 to n do

forj::l-tondo
begin

t1 :- (Mat.rixElem(i, ), n, reconstroffset, ObjPointer) ^.re
meanR) ;
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t2 (MatrixElem(i, j, n, reconstroffset, ObjPointer)^.im -
meanl ) ,'

sum :: sum + L! * L2;

b:=b+t1 *t1,' I

c::c*t2*L2;
ep2 := ep2 * sqr(MatrixEfem(i, i, nt reconstroffset,

ObjPointer) ^.re - Mat.rixElem(i, j, n, reconstroffset., ObjPointer)^.im)
t3 :: abs(MatrixElem(i, j, n, reconstroffset, ObjPointer)^.re -

l'latrixElem(i, ), n, reconstroffset, ObjPointer)^.im),'
ep3 :: ep3 + t3;
if t.3 ) ep4 then

ep4 : : t3,'

end; {i,i}
ep1 :: sum / (sqrt(b * c) + 0.00000001);

ep2 :: sqrt (ep2 / (n * n) ),'

ep3 :: ep3 ,/ (n * n);
time2 : : tickcount,'
name :: newf il-ename ( r evaluation' ) ,'

open (textfile, name) ;

writeln(textfil-e, 'correlation coefficient : t, ep1 : 13 : 9);
writeln(textfile, 'Euclidean distance:,, epz: 13 : 9);
writeln (textf il-e, raverag:e absof ute dif ference : t, ep3 : 9 : 3) ;

writeln(textfil-e, rlarg'est difference: ', ep4 : 9 : 3);
close (textfile) ;

dispose (objpointer) ;

end,' { evaluationMeasures }

end.
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{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t( * )k * * * * * * * * * * * * * * * * * ,( }

{purpose: computes Fourier spectrum of an object}

{}
{author: Elzbieta J. Mazur}

t)
{address: Department of El-ectrical- and Compuer Engineering, The

University of ManiLoba, Winnipeg, MB, R3T 2N2Ì

{}
{description of parameters: }

{n - size of a square object matrix (n x n) }

{spectrum - Fourier spectrum of an object}
{ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Jr * * * * * * * * * * * * * }

procedure FSpectrum;

var
n, I2n, mr k: integer,'

textf ile: text,'
name: st1255,'

spectrum: real,'
ObjPointer, arrayptrl : complexptr,'

time1, time2 : longint,'
begin

showtexL,.

SetParam(n, I2n); {reads information on object matrix}
arrmemptrl-(arrayptrl, cplxsize, n); {allocates auxiliary memory for

FFT purpose]

createFourie rOb j ectMat rix ( Ob j Pointer, reconst rof fset, n ) ; { allocates
memoryfor object array in Fourier domain)

name : = oLdf ilename ( 'ob ject matrixt ) ,'

open (textfile, name) ,'

F2D (textfile, n, 72n, cpJ-xsize,

ObjPointer) ,' {computes 2D Fourier
cl-ose (textfile) ,'

name :: newfilename ( tFourier spectrum of objectt ) ;

open (textfile, name) ;

for k ::1 to n do {computes Fourier transform of an object}

reconstroffset, arrayptrl,
transform)



begin

for m := 1 to n do

begin

spectrum :: sqrt(sqr(MatrixElem(k, mr nr reconstroffset,
ObjPointer)^.re) + sqr(MatrixEl-em(k, m, n, reconstroffset,
ObjPointer) ^. im) ) ; {Fourier spectrum of the object}

write(textfile, t ', round(spectrum) ),'

end;

writeln (textfil-e) ;

end;

close (text.file) ,'

dispose (arraypt.rl ) ,'

dispose (Ob jPointer),'
end; {FSpectrum}
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{ ****t(****)k************************************************************ }

{purpose: computes Fourier phase of an object}
{}
{ author: Elzbj-eta J. Mazur }

{}
{address: Department of Electrical and Compuer Engineering:, The

Universit.y of Manitoba, Winnipeg, MB, R3T 2N2)

{}
{description of parameters: }

{n - size of a square object matrix (n x n) }

{phase - Fourier phase of an object}
{**********************************************************r(*r(t(********}

procedure FPhase,'

var
n, J-2n, m¿ k: integer,'
textfife: text,'
name: st1255,'

phase: real-,'

ObjPointer, arrayptrl: complexptr,'

timel , Lime2: longint,'
begin

showtext,'

SetParam(n, IZn); {reads the descriptíon of an object matríx}
arrmemptrl(arrayptrl, cplxsize, n); {allocates auxil-iary memoryfor

FFT purpose]

createFourierobjectMatrix(ObjPointer. reconsLroffset, n) ; {allocates
memoryfor object array in Fourier domain)

name :: oldf ilename ( 'ob ject matrix' ) ,'

open (textfile, name) ;

F2D (textfile, n, I2n, cplxsize,
Ob jPointer) ,' { computes 2D Fourier

cl-ose (textfil-e),'
name :: newfilename('fourier phase objectt ),'

open (textfile, name) ,'

fork::ltondo

reconstroffset, arrayptrl,
transform]



begin

form::ltondo
begin

ObjPointer)^.im / (l¿atrixElem(k, m, n, reconstroffset, Objpointer)^.re +

0 . 0000001 ) ) ; i Fourier phase of the object ]

phase :: arctan(MatrixE1em(k, m, n, reconstroffset,

if (MatrixElem(k, m, nr reconstroffset, Objpoint.er)
(MatrixElem(k, mr nt reconstroffset, Objpointer)^.re < 0)

phase :: phase + pi,'

if (MatrixElem(k, m/ trt reconstroffset, Objpointer)
(MatrixElem(k/ m, n, reconstroffset, ObjPointer)^.re ( 0)

phase ¡: phase + pi;
write(textfile, , ',

end;

writel-n (textfile) ,.

end;

cl-ose (textfil-e),'
dispose (arrayptrl ) ,'

dispose (Ob jPointer) ,'

end; {FPhase}

round(phase * 1000)),'
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^.im ): 0) and

then

^.ím < 0) and

then


