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ABSTRACT

CT reconstructions are usually done using the Fourier Backprojection algorithm, which
requires many equally spaced projections. When the number of projections is too small or
the projections are confined to a limited angle range, the resulting image quality deteriorates
very quickly.

This thesis introduces two new reconstruction methods, Interpolative Algebraic
Reconstruction Techniques (IART) and Matching Reconstruction Technique (MRT),
suitable for reconstruction from incomplete data and for any radiation beam geometry. The
goal is to minimize the radiation dose for a given image quality. IART uses a novel
approach to relate pixels (elements of a reconstruction matrix) to projections that eliminates
errors due to the discretization characteristic of ART algorithms. The method complies with
real conditions where projections at every direction are taken with the same number of
equally spaced detectors, whether parallel or fan beam. IART is iterative and vulnerable to
noise. IART with filtered projections is introduced that was tested on data that included
simulated photon noise. The results obtained showed improvement in the image quality.

To filter out photon noise different approaches have been examined:

1. Using a set of projections to form a sinogram image, real space enhancement
techniques have been applied. The result was negative.

2. Applying the windowing technique in Fourier space produced positive results.

MRT does not use the backprojection operation. The image is produced by random
changes of intensities of constituent pixels of a reconstruction matrix with selection of
changes by simulated annealing.

New ways of using a Fourier spectrum in a reconstruction process are introduced: as a

measure for distinguishing a linear from nonlinear reconstruction method , as a new




criterion in estimation of the optimal number of iterations, and as a new qualitative
similarity measure.

This thesis also includes a comparative study that consists of:

1. Comparison of images obtained using the same reconstruction method but from a
different number of projections;

2. Comparison of images from the same number of projections but resulting from
different reconstruction methods. In both cases, the IART and FBP reconstruction images
were used.

The objective was the applicability of quantitative criteria and the newly introduced
qualitative criterion of the subtraction of Fourier spectra of images (reconstruction from

reference) as the similarity measures.
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CHAPTER 1
INTRODUCTION

1.1. Thesis Objective

Nowadays, imaging has grown to play an important role in medicine. X-rays are used
for diagnostic as well as for screening purposes (routine chest films, mammography,
routine dental films, etc.). High quality computed tomography images with high resolution
are in high demand. To obtain such, a number of projections is required. The more the
better. But one must remember that every projection taken means delivering a certain
radiation dose to a patient. The total dose resulting from the examination is directly
proportional to the number of projections taken. There are three potential hazards that can
result from diagnostic x-rays [Hall, 1978]:

a) Genetic mutations may be greatly increased in future generations because
approximately half of the population receives x-rays annually,

b) The risk of cancer or leukemia may be increased in the patients themselves who
receive multiple x-rays,

¢) Anomalies and/or malignancies may be produced in children irradiated in utero.

The risk of cancer produced by x-ray exposure is increased even further for human
organs that are most sensitive to radiation carcinogenesis, like the thyroid or the female
breast. Especially the latter is one of the body tissues known to be particularly susceptible
to radiation-induced cancer [Recommendations of ICRP, 1977], [Report of NIH, 1985].
Studies of different exposed populations have yielded consistent results. As observations at
low dose levels are difficult, the risk associated with low dose exposures is usually

estimated from higher dose data. These included Japanese survivors of atomic bombings of
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Hiroshima and Nagasaki [Tokunaga, 1979], as well as North American sanatoria patients
from Massachusetts [Boice, 1977] and Canada [Howe, 1984], [MacKenzie, 1965] who
underwent multiple chest fluoroscopies during treatment for pulmonary tuberculosis, and
groups of patients treated with radiotherapy for postpartum mastitis in Rochester, New
York [Shore, 1977] and other benign breast conditions in Sweden [Baral, 1977]. The most
important resulting finding was that linearity or near-linearity, appeared to describe the
dose-response relationship for breast tissue doses over a very wide range, including the
lower end of scale [Land, 1980], [MacKenzie, 1965], [Boice, 1977], [Tokunaga, 1979],
[Shore, 1977]. The significance of linearity for radiation protection is that excess risk from
low-dose exposures can be estimated with some confidence from high-dose data. A second
important finding was that the distribution over time after exposure of radiation-induced
breast cancer risk conformed to age-specific population rates [Land, 1977], [Land, 1978],
[McGregor, 1977], [Land, 1980]. The time of clinical appearance of both radiation-induced
and other breast cancers seemed to be determined by factors related to age, and it may be
well that these factors influence when and whether cancer occurs. Another major finding
was that breast tissue seemed to be the most sensitive to radiation carcinogenesis during the
second decade of life [Boice, 1977], [Boice, 1978], [McGregor, 1977], [Tokunaga,
1979]. The influence of age at exposure on the risk of breast cancer may be explainable in
terms of hormonal levels and breast development. There is some evidence of increased
sensitivity to radiation induced cancer at menarche and just before [Boice, 1977], [Boice,
1978], [McGregor, 1977], [Tokunaga, 1979] and during pregnancy [Boice, 1978].

During our lifetime we accumulate all the doses that have been delivered to us, i.e. ,
every time we undergo x-ray examination we add to our cumulative dose. Therefore, for
the patient's sake, the amount delivered during a single examination should be as small as

possible. That is in contradiction to the requirements for a high resolution image.
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Finding an answer to the problem of how to obtain a satisfactory high quality image
from a limited number of views would be the ideal solution to the above mentioned
dilemma.

This thesis addresses the above problem by introducing a new reconstruction method
for limited number of views and working on improvement of reconstruction image quality
from it. A novel approach to relate pixels to projections has been used. The new algorithm
adapts equations of Algebraic Reconstruction Techniques that have already been proven to
work well on incomplete projection data [Oskoui-Fard, 1988], [Andersen, 1989], [Peng,
1989]. The method that is suggested has the considerable advantage of complying with real
conditions. It has been shown that it works equally well for parallel and fan beam
geometry. Moreover, it can be easily generalized to three dimensions.

Another new reconstruction method is also suggested, that can be used with any
number of projections, including very few and from the limited sector of directions. The
method, Matching Reconstruction Technique, uses totally a new approach and looks

promising.

1.2. Outline of the Thesis

Chapter II covers the description of the new reconstruction algorithm, Interpolative
Algebraic Reconstruction Technique, (IART), its variation that is suggested to improve
image quality, and also an overview of the Fourier Backprojection algorithm, (FBP), that
was used in this study as a reference method for comparison. In this chapter, also results of
an analysis are included of how to best handle round-off errors on our computer. The
TART algorithm was used for testing.

Chapter III discusses sources of noise in computed tomography. A procedure for the

simulation of photon noise is presented along with results obtained using different method




4
of filtering out the noise from the projections. The filtered projections subsequently were
used as input data to the IART algorithm with positive results.

New ways of using the Fourier spectrum in a reconstruction process are presented in
Chapter IV.

In Chapter V, a simulation procedure for CT data collection affected by photon noise is
presented. The procedure was used for experiments of this chapter: Noisy and filtered
projections were entered as input data to the IART method and the resulting images were
evaluated for differences. To assess the images, several similarity methods were applied,
discussion of which is included in Section 5.2.

Chapter VI contains results of the comparative study. The reconstruction images from
different number of projections were evaluated and compared with respect to the
applicability of the quantitative and qualitative criteria as evaluation measures. This is
something new, as usually, the evaluation is done on images produced from the same
number of projections [Herman, 1972], [Herman, 1973a], [Heffernan, 1983], [Oskoui,
1989], [Ollinger, 1988], [Suzuki, 19881, [Cho, 1975]. The analysis includes images from
IART and Fourier backprojection reconstruction methods. This study also were extended to
verify the use of similarity measures to compare images from IART and FBP for the same
input set of projection data.

In Chapter VII, a description of another new reconstruction method that uses the
simulated annealing optimization technique is given. The algorithm is suitable for
reconstruction from incomplete projection data (all cases), as well as from the full set of
projections. Preliminary results are presented. The method still requires refinement and
further investigation.

Concluding remarks and discussion of future work are in Chapter VIIL



CHAPTER II
RECONSTRUCTION METHODS

2.1. Interpolative Algebraic Reconstruction Techniques
(IART)

2.1.1. Introduction

Algebraic Reconstruction Techniques (ART) were introduced by Gordon, Bender and
Herman for solving what is now known as the computed tomography problem [Gordon,
1970]. They are based on an intuitive approach of smearing back each projection of the
estimate of the object's optical density with repeated corrections until an agreement with the
corresponding measured projections is reached.

All ART algorithms have the same basis, the partition of a reconstruction matrix into a
set of rays {8;;} through which the radiation traverses the object (Fig. 2.1.1.). Every

radiation passage is represented by a projection value pg :
Di =f f @) dr 2.1-1
Ok

where 7 represents the position vector of the centre of a pixel of the reconstruction matrix,

and f (7) is the unknown optical density function.
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Fig. 2.1.1. {8;} - set of rays for the projection direction at the angle 6. Centroids represent the individual
optical density pixels of the reconstruction matrix { T } Every radiation ray is represented by a projection
value p; .

The reconstruction is done over a set of pixels generally chosen in a regular array, to

which we want to assign estimates f (77) of f (F) such that:

ijeé‘ok

For every pixel, to obtain an approximation for the unknown function f (7), we estimate its

value based on the fraction w;; of the pixel covered by the ray and the values of the

projections for that particular ray. The process is repeated many times until a convergence
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criterion is met. (We are assuming uniform density of the radiation across a passage,
though this could be taken into account by modifying the values of the w;; 's.)

In order to make the calculations less cumbersome, in the parallel beam case for every
projection direction the passage width can be chosen so that one pixel centroid per row is
encountered, except for the last row [Herman, 1973], [Gordon, 1974]. The assumption
that centroids can replace pixels simplifies the procedure, as for every projection direction
we only need to find which centroids belong to which ray. (That is if we disregard the edge
or "partial volume" effect [Gordon, 1974].) This eases a little the pain of calculating for
every pixel and for every projection direction how much of the pixel is being covered, and
by which of the rays. However, it requires that during the reconstruction process, for every
projection direction one has to calculate the width of the ray &, as well as to record or
recalculate which centroids belong to which rays.

This thesis introduces a new method to relate the pixels to their projections that is more
suitable for data from detectors of unchanging width, which is the practical case. Unlike the
centroid approach, the new method is, moreover, readily applicable to both parallel and

diverging beam geometry.

2.1.2. Relating Pixels to Projections without Beam Partitioning

In a computed tomography scanner, when the radiation beam passes through an object
or patient, it produces readings on a line of detectors behind the object. In order to find out
the relationship between the individual pixels of the reconstruction matrix and the line of
detectors we use the shadow cast by the pixel on the line of detectors (Fig. 2.1.2.). By
evaluating how much of the shadow is covered by which of the detectors, we estimate the
contribution of the optical density of the element to the detectors involved. We can do the
calculations either by very accurately estimating the shape of the shadow for every

projection direction ("accurate" interpolation), or by making an assumption that the shadow
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will be of the same rectangular shape regardless of projection direction. The latter is
equivalent to rotating the pixel so that it is aligned with the projection direction, so we will
call it the "rotation" interpolation. With accurate interpolation, the shadow will change its
shape from rectangular through trapezoid to triangular depending on the angle of a
projection direction. With the rotation interpolation, the shadow of a pixel is always the
same rectangle. Since the shapes of pixels are artifacts of our digitization of images,
consideration of alternative shapes for them seems reasonable.

Below, for both parallel and diverging beam, the description of the rotation
interpolation is presented as this is the one that is expected to be more popular. Later in this
chapter, it will be shown that results obtained using it differ only slightly from those

obtained through the accurate interpolation, while the computation time is shorter.




radiation beam direction

line of detectors

@

radiation beam direction

line of detectors

Fig. 2.1.2. For a parallel geometry beam, estimation of a pixel shadow on the line of detectors using:
accurate, (a), and rotation, (b), interpolation.
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Parallel Geometry Beam

We start by projecting the center of the element onto the line of the detectors (Fig.

2.1.3).
S
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Fig. 2.1.3. Geometry of a parallel beam scanning system. The line at the angle 6 represents the line of
detectors for a projection direction 0 + 900, g, ay - distance between pixel centers in a row and column
of the backprojection matrix, respectively; d - detector width.
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Let us assume that the (i,j )'th pixel in the backprojection matrix is described by a pair

of coordinates (x,y ) such as

x=iax

y=jay

where ayx and @y represent the horizontal and vertical distances between pixel centers in
the matrix as in Fig. 2.1.3. Usually ay = ay = a. The position of the projection of the pixel

center onto the projection line at angle 0 is equal to

P = (y sin@ +x cos0)/d (2.1-3)

where d is the detector width. The pixel will contribute to all detectors that are covered by
its shadow. In practice, it is common and justified to set the reconstruction element size a
equal to the detector width d. In that case, the pixel will contribute to a maximum of two
detectors that are the closest to point P;j; . The portion of the element density that adds to a

detector reading is calculated using the interpolation function

1 for |u-Pij|=0
gij(u)={ d-|lu-Pj| for O<|u-Pj| <d
0 for |u-P;|>d (2.1-4)

where u represents the center of the detector, d the detector width and Pj; is the projection

of the centroid of the (i, )'th pixel onto the detector line.
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Fan Geometry Beam

Fan-beam scanning introduces the dependence of the pixel contribution on its distances
from the radiation source and the detectors. Pixels that are closer to the source will
contribute to more detector readings than those that are closer to the arc of detectors.
Finding the detectors that receive radiation via the particular pixel can be achieved by
calculating the shadow cast by this pixel on the line of detectors. The length and position of

the shadow uniquely define detectors to which this particular pixel contributes.

Fig. 2.1.4. Geometry of a fan beam scanning system. S - an x- ray source, P - center of the (i,j )'th pixel,
Pij - center of the shadow cast by the (i,j )'th pixel on the arc of detectors.
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From the geometry of the system (Fig. 2.1.4.), we find the center of the shadow P;;
cast by (i,j )'th object pixel:

DP; =SD vy (2.1-5)

= tan-1 [—% 1 )
v (SO -¥1

y1 =y cos(Q) - x sin(Ct)

@J)

S2
Pij
S1

Fig. 2.1.5. Fan beam scanning system. Shadow cast by the ({j )'th pixel onto the detectors arc.

The length of the shadow (Fig. 2.1 5) is described by
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sls2=SD B (2.1-6)

B=2tan"l(a /(25P )

where a is the pixel side,

SP =xj /sin(y)

x1 =x cos(a) +y sin(o)

Based on Equations (2.1-5) and (2.1-6), detectors that are affected by the (i,j )'th pixel are
found.

How much of the optical density of the pixel adds to each of the detector readings
depends on the portion of the shadow that is covered by each of the detectors. We make an
assumption that the pixel side a is equal to the detector width d , which is common and
justified in practice, and further we express the system dimensions in units of the detector

width. This allows us to use the following interpolation function g;; (1) to calculate the

pixel contribution to the detector readings:

L for lu -Pi|<h-05
2h
8j )= Hu-Pyl- -0.5)12lh_ for h-05<|u-Pj|<h+05
0 for |u -Pj|>h+0.5 (2.1-7)

where h equals one half of the shadow length s 1s 2 (Fig. 2.1.5.), u represents the

position of the center of the detector, and Pjj is the center of the shadow.
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2.1.3. Reconstruction Algorithm

Using the method in the above Section 2.1.2 to relate pixels to the projections, we can
generalize that in both cases (parallel and diverging beam) projection values are calculated

as

matrix size
Dk = "21 8ij(ux)f @) k €{1,2,.,N } (2.1-8)
ij =

where u  is the position of (k )'th detector, f (r';;) represents the optical density of
(ij yth pixel and N is the total number of detectors.

To compute the estimates of the unknown function f () for an (i,j )'th object pixel, we

can use basic ART equations altered to accommodate the interpolation function g;; (4). For

example, the multiplicative ART equation:
Fq“(?ij): p_gfq(?ﬁ) (2.1-9)
P i :

where superscripts g+1, g represent the (g +1)' and (g )'th estimates f ("), and p 4 and

p 9 are the measured and corresponding calculated projections, respectively, becomes

—~ N ~
Fi@) = Y gy B @) (21-10)
k=1 Pk

N
k=1
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and g;; (u ) is the interpolation function. One increment of ¢ means that all projections of
each pixel have been considered once. The major difference between Equations (2.1-9) and
(2.1-10) is that the former one is applied to every single ray of a projection while the latter
refers to a whole projection.

To measure the convergence of the estimate fe (fij ), the discrepancy between the

measured and corresponding calculated projections can be used

N 2
qu=«/N—1—i§=_;1{pk 27) (2.1-11)

2.1.4. Results

The new reconstruction algorithm was tested on a reference image illustrated in
Fig. 2.1.6. The parameters of the constituent ellipses including grey levels are given in the
Table 2.1.1. A major advantage of using an image like Fig. 2.1.6 for computer simulation
is that one can write analytical expressions for the projections [Ekstrom, 1984].

Calculations were performed using Equation (2.1-9), for thirty projection directions
equally spaced over the angle of 1800 and 3600 for parallel and diverging beam,
respectively. The starting value of the estimate of the object optical density was chosen to
be equal to 1, i.e. F 0(?;,' ) = 1. The reference image and all reconstruction images were on
128 x 128 matrices.

All reconstructions were performed using a Macintosh II computer. Programs were

written in the THINK Pascal language.
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Fig. 2.1.6. The reference image, a superposition of 10 ellipses. At overlaps grey levels are added.

Table 2.1.1. Component ellipses of the reference image in Fig. 2.1.6.

Ellipse | Coordinates of Major Minor Rotation Gray level
the center axis axis angle

a 0,0 0.92 0.69 900 300
b 0, -0.0184 0.874 0.6624 900 2

c 0.22,0 0.31 0.11 720 98
d -0.22, 0 0.41 0.16 1080 98
e 0, 0.35 0.25 0.21 900 101
f 0, 0.1 0.046 0.046 0 101
g 0, -0.1 0.046 0.046 0 101
h -0.08, -0.605 0.046 0.023 0 101
i 0, -0.605 0.023 0.023 0 101
j 0.06, -0.605 0.046 0.023 900 101
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Parallel Beam Geometry

The reference image in Fig. 2.1.6 was reconstructed with at most 12 iterations, since
the best quality reconstructed image was obtained after the sixth iteration. Afterwards the
picture quality deteriorated (Fig. 2.1.7.).

Two sets of reconstructed images were obtained using the fixed and rotated pixel
interpolation functions. We used the correlation coefficient to assess how using the
different versions of the interpolation function influence the resulting reconstructed picture.
Visually, one can hardly see the difference (Figs. 2.1.8 - 9). For either version of the
interpolation function, for different numbers of iterations, the resulting reconstructed
images were evaluated against the reference image using the correlation coefficient

similarity measure (see Section 5.2):

i (ks -5 1)

ij =1

$vo-n2 S bl

ij =1 ij =1

£
(2.1-12)

where N x N is the size (in pixels) of either, reference and reconstruction, matrix; f ;; and

* . . . . . .
f ij represent the pixel intensity in the reference and the reconstruction images,

respectively, and £ and f " is the average density of the reconstruction and reference

images, respectively.
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®)
Fig. 2.1.7. Parallel beam, 30 projection directions equally spaced over 1809. IART reconstruction of
Fig. 2.1.6 after: (a), six iterations; (b), nine iterations.
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Fig. 2.1.8. Parallel beam, 30 projection directions equally spaced over 180°. IART reconstruction of Fig.
2.1.6 using the fixed pixel interpolation function after: (a), one iteration; (b), three iterations.
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Fig. 2.1.9. Parallel beam, 30 projection directions equally spaced over 180°. IART reconstruction of Fig.
2.1.6 using the rotated pixel interpolation function after: (a), one iteration; (b), three iterations.
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Results of the comparison are presented graphically in Fig. 2.1.10, in which it can be
observed that using the fixed pixel interpolation function produces a slightly better
reconstructed picture. The disadvantage of using it is longer calculation time. (Computation
time for the fixed pixel interpolation function was approximately 1.5 times longer than

when the rotated pixel interpolation was used.)

0.97 0.97
€
0.96 - 0.96
0.95 - 0.95
0.94 - oy . - 0.94
= fixed pixel interpolation
—®— rotated pixel interpolation
0.93 - - 0.93
0.92 T T T T T T 0.92
0 2 4 6 8 10 12 14

iteration number

Fig. 2.1.10. Correlation coefficients computed for the IART reconstruction images. (Parallel geometry
beam.)

Fan Beam

The geometry system as depicted in Fig. 2.1.4 was used. The detector length was equal
to one unit of length, the distances from the origin to the source SO and the detector arc
OD were 300 and 80 units, respectively.

The best reconstruction was obtained after three iterations. Thus no more than four

iterations are shown, since, in our experience, the error function € has at most one peak.

The reconstructed pictures are presented in Fig. 2.1.11 - 12.
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For comparison with a standard algorithm, using the same data, the reconstruction of
the reference image in Fig. 2.1.6 was computed using the fan beam Fourier Backprojection
(FBP) method with a Shepp & Logan kernel [Rosenfeld, 1982] (Fig. 2.1.13.) Correlation
coefficients for images computed using IART (3 iterations) and FBP methods were
respectively € = 0.995 and 0.975, showing that IART gave a substantial improvement as
the figures visually suggest.

The computing time for the Fourier Backprojection method was comparable to a single

iteration of IART.
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Fig. 2.1.11. Fan beam, 30 projection directions equally spaced over 3600. IART reconstruction of Fig.
2.1.6 after: (a), one iteration; (b), two iterations.
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Fig. 2.1.13. Reconstruction of Fig. 2.1.6 using Fourier Backprojection method. 30 projection directions
equally spaced over 360°.

2.1.5. Discussion and Conclusions

A good reconstruction method should not introduce any false detail into an image and
the density values at adjacent points should vary as smoothly as possible in a manner which
is consistent with the projection data. In the ART algorithm errors are introduced due to the
way the estimates of the unknown function 7 (") for an (i,j )'th object pixel are computed:
ART formulas are applied to every single ray of a given projection at angle 6 and then are
used in the same manner for the next projection, and so on. This way even for the same
projection, the estimate f (F) of the (i,j )'th pixel that is included in more than one ray is

being readjusted many times depending on the ray number the pixel is covered by. In
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addition, in case of the additive ART [Gordon, 1970], [Gordon, 1974], the correction
made to the single pixel estimate depends on the number of reconstruction matrix pixels
included in a given ray which varies according to the angle of the projection. Assume a
square N x N reconstruction matrix that is composed of small square pixels. Thus a ray of
the width of the size of a single pixel will contain roughly N pixels, i.e. the number equal
the size of a reconstruction matrix at ® = 0. But when 6 = =/4 the ray can contain as
many as V2N pixels, or as few as one pixel, or a fraction of it depending on the position of
the ray. There is a similar effect for rays of projections at angles between these two
extremes. All these cause errors in ART algorithms when rays of the pixel width are used,
which is the practical case, [Gilbert, 1972], [Andersen, 1974], [Andersen, 1989]. The
novel feature of IART, the approach that was used, is to relate pixels to the projections in a
way that eliminates these sources of error and ultimately leads to the production of a
smoother image. To put it in mathematical language, this approach creates a system of
equations of a smaller degree of inconsistency that results in less noisy image.

The reconstruction images obtained using the Interpolative Algebraic Reconstruction
Techniques proved to be of good quality. At least for the reference image we used, IART
gave a better reconstructed image than the standard Fourier Backprojection method, both
visually and by quantitative comparison with the phantom.

Results from the implementation of Interpolative Algebraic Reconstruction Techniques
for fan beam geometry showed the suitability of the method for real data.

Results of the IJART implementation for the two variations of the method indicate that
using rotated pixel interpolation produces results similar to fixed pixel interpolation
function. In addition, it shortens the computation time.

The new Interpolative Algebraic Reconstruction Techniques have the considerable
advantage of complying with real conditions where projections at every direction are taken
with the same number of equally spaced detectors. Furthermore, compared to ART, the

calculation algorithm is simpler and faster and there is no need to rescale the input data for
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each projection, nor do any edge effects exist [Gordon, 1974]. They can be easily
implemented for a fan beam geometry with no limitations regarding the geometry of the

system. Generalization into three dimensions is also straightforward.

2.2. TART. The Discrepancy Convergence Criterion and

Round-off Computation Errors

A computer is usually equipped with two types of arithmetic operations, calculation
with fixed point and, with more accurately, floating point. "Point" means the decimal point
if the base is 10, or the binary point if the base is 2, etc. Computation with floating point
means that one works with a constant number of digits (decimal point) or bits (binary
point); computation with fixed decimal point means that one works with a constant number
of digits/bits after the decimal point. If the computer which one is using cannot handle
numbers which have more than, say, s-digits/bits then the exact product of two s-digits/bits
numbers (which contains 2s or 2s-1 digits/bits) cannot be used in subsequent calculations;
the product must be rounded-off. In practice, rounding affects all conversions and
arithmetic operations except comparison and remainder [Dahlquist, 1974], [Apple, 1985],
[Think, 1986]. The effect of such roundings can be quite noticeable in an extensive
calculation, or in an algorithm which is numerically unstable (badly chosen recursion
formula).

To observe the influence of the round-off errors on the IART algorithm run on a
Macintosh II computer that was used to produce reconstruction images, three very simple
test objects (Fig. 2.2.1.) were taken and reconstructed, each one of them three times; every
time handling calculations differently. The first and second time the projection data was
entered as integer values and the pseudoprojections (projections of an intermediate image)
were calculated as integers and reals respectively. The third time, the projection data was

entered as reals and the pseudoprojections were calculated as reals. In all three cases, the




29
arithmetic operations were performed in floating point. The resulting reconstruction images
were compared against the corresponding reference objects in Fig. 2.2.1. We used the
discrepancy between the projection values of the reconstructed image and the
corresponding reference object as a similarity measure. For a given projection direction, the

discrepancy was computed using the equation:

/73
D =n/ -2 (o5 7)) @2
J

-

where a superscript g represents the iteration number, m is the number of sampling points
of the projection, p ; and p;? are the projection and pseudoprojection values at the (j )'th
sampling point, respectively.

From the above equation, it would seem that when approaching the optimal solution,
the discrepancy values should converge to and ultimately achieve zero. In practice,
however, the discrepancy value rarely achieves zero value although it does approach it very

closely. This is due to round-off errors.
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Fig. 2.2.1. Test objects. Vertical bars represent the grow in density (100). The base density is zero.
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Also, the discrepancy D 9 for a given q 'th iteration was computed as the average of all

projection direction discrepancies:

q
i : (2.2-2)

)

. N
Di=),
i=1

2|

where N, the number of projections, was taken to be 30 for every test object. The
projections were equally spaced over the 1800 angle. The obtained results are shown

below.

Test object A

In all three (integer-integer, integer-real, real-real) cases the discrepancy values

converged to zero as soon as the second iteration (Figs. 2.2.2 - 2.2.3).

2 2

2 oy

g (@) 5|

& @ b)

3 3

g =]

§! g
00'5'5'5'2'.75'%'7 O 7 %5 5 & 5 %6 7

Iteration number Iteration number

Fig. 2.2.2. Test object A. Iteration discrepancy: (a), integer projection data - integer pseudoprojections; (b),
integer projection data - real pseudoprojections. The iterations are circled for which the projection direction

discrepancy is presented in Fig. 2.2.3.
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Fig. 2.2.2(c). Test object A. Iteration discrepancy: real projection data - real pseudoprojections. The
iteration is circled for which the projection direction discrepancy is presented in Fig. 2.2.3.
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Fig. 2.2.3. Test object A. Projection direction discrepancy: (a), integer projection data - integer

pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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Test object B

The discrepancy values converged to zero only for the integer-integer case (for the 8-th
iteration). For the other two (integer-real and real-real) cases, the discrepancy approached
very closely to zero but did not achieve it, remaining at the same level that it reached during
the second iteration (Fig. 2.2.4.). Fig. 2.2.5 displays the discrepancy as a function of a

projection direction. As it can be seen, for the integer - real and real - real cases the

fluctuations although close to zero but remain.

2 2
o) oy
g (a) g ()
2 2
5 3
g 14 g1
.g -%
R B
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1 234567 809 10 12345 67 89 10
Iteration number Iteration number
2
o)
g ©
8
;a
g 14
2
8

12345 16" 7 89 10
Iteration number
Fig. 2.2.4. Test object B. Iteration discrepancy: (a), integer projection data - integer pseudoprojections; (b),

integer projection data - real pseudoprojections; (c), real projection data - real pseudoprojections. The
iterations are circled for which the projection direction discrepancy is presented in Fig. 2.2.5.
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Fig. 2.2.5. Test object B. Projection direction discrepancy: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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Test object C

The discrepancy values did not converge to zero in any one of the cases, although they

approached it very close (Figs. 2.2.6 - 2.2.7).
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Fig. 2.2.6. Test object C. Iteration discrepancy: (a), integer projection data - integer pseudoprojections; (b),
integer projection data - real pseudoprojections; (c), real projection data - real pseudoprojections. The
iterations are circled for which the projection direction discrepancy is presented in Fig. 2.2.7.
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Fig. 2.2.7. Test object C. Projection direction discrepancy: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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00 00 00 00 0.0 00 00 953 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
@
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
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Fig. 2.2.8. Test object A. Reconstruction matrix data: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 0.0 1000 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
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Fig. 2.2.9. Test object B. Reconstruction matrix data: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.




00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 996 1002 00 00
00 00 00 00 00 00 00 00 00 00 00 997 1001 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 0.0 00 0.0 999 1001 1001 00 00 00 00 00 0.0
00 00 00 00 00 00 1000 999 996 00 00 00 00 00 00
00 00 00 00 00 00 999 995 998 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
0.0 0.0 0.0

00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 997 1004 00 0.0
00 00 00 00 00 00 00 00 00 00 00 999 1000 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 1001 99.8 1005 00 00 00 00 00 0.0
00 00 00 00 00 00 996 1003 996 00 00 00 00 00 0.0
00 00 00 00 00 00 1004 99.7 100.1 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 0.0 1000 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 O 00 00 0.0 0.0
0.0 0.0 0.0 0. . 0.0

(b)
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00 00 00 00 00 00 00 00 00 00 0.0 993 1004 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 995 997 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 00
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 999 996 1006 00 0.0 00 00 0.0 0.0
00 00 00 00 00 00 1002 1004 1004 00 00 00 00 00 0.0
00 00 00 00 00 00 1007 999 999 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 0.0 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 0.0

©
Fig. 2.2.10. Test object C. Reconstruction matrix data: (a), integer projection data - integer
pseudoprojections; (b), integer projection data - real pseudoprojections; (c), real projection data - real
pseudoprojections.
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Figs. 2.2.8 - 10 display the resulting reconstruction matrices.

All three test objects in Fig. 2.2.1. were chosen to increase the complexity of
calculations. Starting from the simplest one A through B to C, the discrepancy values
converged to and achieved zero (test object A, Fig. 2.2.2.), or converged to a very close to
zero minimum (B, C test objects, Figs. 2.2.4 and 2.2.6). In the latter, the minimum was
approximately of one order less in value for the test object B (Fig. 2.2.5) compare to the
test object C (Fig. 2.2.7). This confirmed that with increasing complexity of calculations
the effect of round-off errors amplifies. As for the best way to handle the calculations,
judging from the above results, one may say that there is not much difference in how the
calculations are handled. The reconstruction results are very much alike. One possible
explanation to it that we can give is that in the Standard Apple Numeric Environment
(SANE) of a Macintosh computer all arithmetic is done internally using extended-precision
arithmetic, i.e. with the highest precision. The floating point storage formats, that we have
used, provide binary encodings of a sign (+ or -), an exponent, and significand. A

represented number has the value

*significand 2¢xponent

where the significand has a single bit to the left of the binary point (that is ,
0 < significand < 2 ) [Think, 1986]. An extended type of a variable has a binary exponent
range (-163838 - 16384) compared to (-126 - 127) of the real or integer type variable. The
significand of the extended is represented by 19 - 20 decimal digits compared to 7 - 8 for

the real or integer.
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2.3. IART with Filtered Projections

The Interpolative Algebraic Reconstruction Techniques algorithm described in Section
2.1.3 is vulnerable to noise. This feature is inherent to all iterative methods. To alleviate the
problem, we suggest using preprocessed projection data. We propose that the raw data
undergo the noise filtering operation prior to being used by an iterative reconstruction
algorithm, IART. From our preliminary results presented in Chapters III and V, we have

found that using window functions helps to obtain smoother, less noisy images.

2.4. Convolution Backprojection/ Fourier Backprojection. An

Overview

Fourier Backprojection (FBP) is the reconstruction method most commonly used in CT
scanners. It is based on the Fourier slice theorem that relates the one-dimensional Fourier
transform of a projection of an object function g(x,y) to its two-dimensional Fourier
transform: The Fourier transform of a projection function for a projection direction at angle
0 gives the values of the Fourier transform of the object along the straight line at angle 0
(Fig. 2.4.1) [Rosenfeld, 1982], [Ekstrom, 1984], [Rowland, 1979].

The FBP algorithm consists of the following sequence of operations:

- Fourier transformation of the projection data vector;

- Multiplication of the complex values by a filter (the choice of filter is dependent on the
data collection method and the type of object which is to be reconstructed);

- Taking the inverse Fourier transformation of the modified (filtered) frequencies;

- Back projection of the modified projection data.
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X-ray source

Fig. 2.4.1. Nllustration of the Fourier slice theorem. The Fourier transform of f(t ) gives the values along
the dashed line in the uv -plane.

The discrete reconstruction formula of the algorithm is:

py) =P &Y (o] [Ma A0 xM7 g ,]]}] x ) 2.4-1)

where p(x,y ) is the estimate of the optical density function of an object matrix, g ,, stands

for the n-th projection function and AM is the M -point discrete filter function. # j; is the

interpolation operator; M7, M & -1, P #% are the operators of the M -point discrete
Fourier transform, the inverse M -point discrete Fourier transform and the discrete
backprojection on a regularly spaced grid of P 2 points centered about the origin with a grid

spacing of s, respectively:
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[f]; g](x)=::§”wg(m)f (“f‘i—-m) (2.4-2)

where d is the distance between the sampled points and f is the interpolating function;

My
M7 - i 2.4-3
[M7g]m) n}w g(n)exp( 27:;%42&) ( )
d ¥ 2.4-4
-1 R pnm G-
an [Mﬁ' g](m)—ang,w g(n)exp(ZmM ) ( )
Moo o] “M-D2 M isodd
where LO =\ (M-2)2 ifM iseven

Mo = M-D2 M is odd
HI = MR if M is even

. N-1
[P .%% {gn }] (xy)=A 2 Wn (x,y)g,,(sx cosnA+sysinnA) (2.4-5)
n=0

where N is the number of projections, A = j—v’t— and w, (x,y ) is the weighting factor. For

parallel beam geometry w, (x,y ) is constant and equals 1.

The operation of multiplying the Fourier transform of a projection function by a filter
function is equivalent to the operation of convolving the projection function with a
convolution function which is the inverse Fourier transform of the filter function. When we

replace the operation of filtering in the Fourier space by the convolution operation in the
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real space, the discrete reconstruction formula becomes:

pey) =[P @Y A (M7 1a) M *g )] x ) (2.4-6)

and we talk about the convolution back projection reconstruction method.




CHAPTER 1II
NOISE IN COMPUTED TOMOGRAPHY

3.1. Sources of Noise and Their Influence on a Reconstruction Image

Noise in a reconstruction process is introduced during the acquisition of data and by a
reconstruction procedure itself [Barrett, 1981], [Evans, 1981], [Herman, 1980],
[Andrews, 1977].

Limitations to the accuracy of CT measurements (projection data) are due to:

1. Statistical nature of the processes of x-ray photon production, photon
interaction with matter, and photon detection;

2. Detector efficiency including dark current and dead time;

3. Others, that include beam hardening, partial volume effect, scattered photons,
motion artifacts, etc..

As for the first mentioned factor, the properties of the introduced error are considered
as a random variable following the Poisson probability law [Barrett, 1981], [Herman,
1980]. Suppose that a photon leaves the source in the direction of the detector. Then there
is a fixed probability (transmittance) that the photon will get as far as the detector
without being absorbed or scattered. This probability depends on the energy of the photon
and the material intersected between the source and the detector. A photon which reaches
the detector is not necessarily counted. For each energy, there is a fixed probability,
called the efficiency of the detector at that particular energy, that a photon which reaches
the detector is counted by the detector. Assume some average number of photons at a
given energy emitted in one unit of time by a stable x-ray source towards the detector,

then the number of photons at given energy that:
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- reach the detector without having been absorbed or scattered,
- are counted by the detector in one unit of time,
is a sample of a Poisson random variable with parameter equal to a product of the
transmittance, detector efficiency and the average of the photon number.

Fig. 3.1.1 delineates a typical CT detector system [GE, 1987], [GE, 1988].

Collimator Plates

Photodiodes

Fig. 3.1.1. CT detector system.

Parameters that influence the detector system efficiency are:
Geometric efficiency, that is an indication of how well the detecting system is

designed. It refers to the percentage of x-ray energy exiting the patient that is incident on
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the cells (individual detectors) of the system. It is primarily determined by the amount of
post-patient collimation, particularly the plates separating the individual system cells ;

Absorption efficiency, defined as the percentage of x-ray energy absorbed in the
scintillator material relative to the total energy incident on the material. Once the x-ray
energy has been absorbed into the material within each cell, the goal is to convert as
much as possible into the emission of visible light and to minimize energy dissipation in
other forms;

Scintillation efficiency of the detector system, that is the ratio of emitted light energy
to the absorbed x-ray energy;

To complete the task of x-ray detection, the visible light must be collected and
channeled to a photodiode for conversion to an electrical signal. Maximizing collection
is a formidable challenge because scintillations are emitted equally in all directions, and
some of the light will be absorbed by the scintillator;

Afterglow, refers to residual light emitted from the scintillator after termination of
x-Tays, due to an intrinsic delayed reaction of the scintillation process. It can contribute to
image degradation. As the entire detector rotates for data acquisition during a scan,
lengthy afterglow can blur the acquired data, and consequently, the final image;

Stability of the detector. Scintillator detectors are known to exhibit performance
degradation in response to external factors such as prolonged x-ray exposure, temperature
and humidity. The degradation are usually manifested as a CT number shift and/or a
visual artifact such as a ring;

Cell spacing, that is a major factor affecting spatial resolution of a CT system. In
general, spatial resolution improves as the cell spacing decreases. However, as the cell
spacing decreases so does the number of incident x-ray quanta per cell. This, in turn,
increases the image noise at a given scan. Typically, patient radiation exposure is

increased to maintain a desirable signal-to-noise ratio.
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The photodiodes of a CT detector are usually tuned for maximum signal output at the
scintillation light frequency. Fig. 3.1.2 below, displays a typical plot of input and output

for a photoelectronic detector [Andrews, 1977].

=
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Fig. 3.1.2. Transfer characteristic of typical photoelectronic detector.

The characteristic curve shows that there is a saturation response at high intensities
and a limit response at low intensities, usually referred to as the dark current. There also
exists a linear region in which the log of response is proportional to the log of stimulus
and it is conventional practice to refer to the slope of the portion of the curve as the

"gamma" of the detector. In this region the scanning beam current ip is represented by

the equation

logi p =ylogio+C (3.1-1)

where i, is the incident illumination intensity, ¥ is the linear slope, and C is the offset(the

linear portion does not pass through the origin). Thus, we have the relation
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ip = C1(io) (3.1-2)

which governs the transfer. Photoelectronic detector efficiency is assumed to be
independent of the number of photons the single detector has to count. This may be
difficult to achieve in practice, since detectors can be saturated by too many photons
getting to them. One way of combating this is by insertion of a compensator which
ensures that even along lines which either miss or hardly touch the object to be
reconstructed, the total attenuation is significant enough for the detector not to get
saturated. Also, the detector's threshold value plays an important role, i.e., the point when
the dark current transforms into the linear region.

"Beam hardening" is an expression to describe changes in energy distribution of an x-
ray beam as it passes through the object. (The x- ray beam used in CT is polychromatic,
i.e. consists of photons of different energies.) X- ray beams reaching a particular point
inside the body from different directions are likely to have different spectra (having
passed through different materials before reaching the point in question) and thus will be
attenuated differently at that point. This makes it difficult to assign a single value for the
attenuation coefficient at a point in the body. A possible solution to this difficulty is to
assign to the point the attenuation coefficient of photons at a particular energy. (If we
used monochromatic x- ray beams, i.e. consisting of photons only at the single energy,
beams from different directions would be attenuated in the same way at a fixed point.) In
practice, to correct for beam hardening specially shaped filters or wedges are used and
beam-hardening corrections are performed mathematically [Macovski, 1976], [Herman,
1979], [Greening 1979]. All the methods of correction for beam hardening aim, in effect,
to produce the distribution of attenuation values which would have been obtained if a

monochromatic x-ray source had been used in the scanner.
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The partial volume effect is a consequence of the non negligible size of the focal spot
and detector, and thus the photons that are counted do not travel along the same line, but
rather they travel along one of a bundle of lines forming a rather complicated shape. For
the situation when the beam is only partially blocked by attenuating material (Fig. 3.1.3),
the estimation of the average of the line integral of the relative linear attenuation between

the source and the points on the detector introduces errors.

Attenuating
Material

Detector

Fig. 3.1.3. Illustration of the partial volume effect.

Suppose, we have a ray of a monochromatic x-ray beam B that strikes a detector D.
Let M be the attenuating material volume of interest. Suppose that a linear attenuation
coefficient [ is everywhere zero except in that half of the volume M which is filled with
the pattern, where its value is two. It is assumed that the length of intersection with M of
any line from the beam is unity. Suppose that during a reference measurement, we use a

reference material of a linear attenuation coefficient equal zero (vacuum) and that the
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number of photons registered N is equal to the number of photons which leave the source
in the direction of the detector Ng and is 1000. Breaking the x-ray beam into two equal
halves as shown in Fig. 3.1.3, we see that 500 photons on average will enter both halves
of M. During the actual measurement, in the left half of the volume where the
transmittance is one (e -0 = 1), all 500 photons will reach the detector. In the right half,
where the linear attenuation L is two, and hence the transmittance ise -2 =0.135 , the
number of photons that reach the detector is about 68. Hence the total number of

detected photons is about 568. Using the equation

u=-in(3) (3.1-3)

we calculate that the average attenuation coefficient of the volume under consideration is

about 0.566. However, it is easy to see that the true value of it is 1. The reason for this
rather large error (43.4%) resulting from the calculations is due to the processes of taking
exponentials and logarithms that give unproportionately great importance to the
unblocked portion of the beam.

In practice, lead shielding with long narrow pinholes in front of the source and the
detector are being used to reduce the size of both of them.

Scattered photons produce a problem when we have an array of detectors: a photon
scattered out of its path towards one detector may very well reach another detector and be
counted by it. In CT detector systems, scatter is the major factor that influences the
geometric efficiency of the system. Since the ratio of scattered photons to unscattered
ones which reach a detector is dependent on the object to be reconstructed, the error
introduced by scatter cannot be totally removed from the measurements prior to
reconstruction. However, scattered radiation may be minimized by:

- limiting the area of the incident beam;

- using an air gap between the scattering medium (the object) and the detector;
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- using a collimating grid between the scattering medium and the detector;

- optimizing the spectrum of the incident beam;

- energy discrimination in the detector.

The beam area should be large enough to encompass everything of medical interest in
the region being imaged. But making it larger than necessary increases the scatter fraction
as well as the patient's dose. Each volume element in the patient's body acts as a source of
scattered radiation. Hence, as the detected scatter intensity falls off as the inverse square
of the distance from the scatter source to the detector, using an air gap between the
patient and the detector increases the distance and helps. Collimation absorbs photons
coming towards a detector from directions other than the x-ray source. In its simplest
form, the collimating grid is a series of parallel slats made of tungsten or other high-
atomic-number material, and perhaps spaced apart with fiber-board or some other
material with low-x-ray absorption [Johns, 1983], [Hendee, 1970], [Herman 1980], [GE,
1987]. For an x-ray source a long distance away from the detector, the incident beam is
essentially collimated. If the distance between x-ray absorbing slats is much larger than
the width of an individual slat, very few of the unscattered photons strike the slats and
the primary image is largely unaffected by the grid. The only degradation of the primary
image is a set of very fine lines, the shadows of the slats. This problem can be eliminated
by moving the grid uniformly parallel to the detector during exposure. Scattered
radiation, on the other hand, is no longer collimated, and most of it is blocked by the grid.
As for the optimization of the x-ray spectrum; high-energy photons interact with soft
tissue predominantly by Compton scattering in the direction of the detector [Johns,
1983], [Hendee, 1979], [Hobbie, 1988]. As the result, it might be expected that scattering
problems would be particularly bad at these energies. However, higher energy photons
suffer fewer interactions in the body for a given number of transmitted photons. This
effect reduces the scattered flux but also reduces the contrast in the primary image. Low

energy photons give a high -contrast primary image but are strongly absorbed in the
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body. The primary absorption process is photoelectric at very low energies (€ 40 keV ).
Scattered radiation could therefore be greatly diminished just by keeping the photon
energy below about 40keV , but this would not be acceptable in terms of patient dose for
imaging of thick body parts. The choice of an optimum photon energy or spectrum is thus
a complicated trade-off involving noise, dose, detector characteristic, scatter, image
contrast, and the specific diagnostic information needed.

The underlying assumption in CT is that the projection values are integrals along
different lines of the same function. For a moving organ, such as the lung or the heart,
this assumption is violated if the actual measurements are taken at different times for
different projections. One way of combating this is to use multiple arrays of detectors and
possibly even multiple sources. But this results in increase of error due to detection of

scattered photons.

3.2. Simulation of Photon Noise

Noise that is introduced into a detector array is likely to be a contribution of two
separate processes: (1) random fluctuations in the number of photons and photoelectrons
in the photoactive surface of detectors; (2) random thermal noise sources in the circuits
that sense, acquire, and process the signal from the photoactive surface of the detectors.
The second process has a behavior that is well known; random thermal noise is usually
described by a zero-mean Gaussian process with a uniform ("white") power spectrum
[Andrews, 1977]. The first process is more complex to describe. Electromagnetic
radiation is of a discrete, quantum nature. Therefore a detector absorbs radiation energy
in increments of kv, where v is the frequency of the radiation and % is Planck’s constant.
As a result, the output of the detector is not smooth but exhibits fluctuations known

variously as quantum noise, photon noise, or Poisson noise [Barrett, 1981]. This type of
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noise plays a crucial role in radiographic imaging systems, primarily because the energy
is so large for x-rays.
The arrival of photons at the detector can be described as a random process defined

by the Poisson distribution or Poisson probability law:

Pr(K inT )= (aXT X /K !)exp(-aT ) (3.2-1)

where K represents the number of photons that are detected in an observation time T and
a is a constant as described by Equation (3.2-2), below.

Equation (3.2-1) was derived for a stationary process and under the three physically
reasonable assumptions:

(a) The number of photons detected in the interval (0,7 ) is statistically independent of
the number detected in any other overlapping interval.

(b) The probability of detecting one photon in a vanishingly small time interval AT

is directly proportional to AT , i.. e.

lim Pr(lin AT) = a AT
i PrlinAT) =a (3.2-2)

(c) The probability of more than one photon being detected in AT is zero.
Since the probability of more than one photon being detected vanishes as AT approaches
zero, the quantity a AT may also be interpreted as the mean number of photons
detected in AT . Under the assumption of stationary statistics, the mean number per unit

time must be a constant and aT must be the mean number detected in T, i. e.

aT (3.2-3)

™
1
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This important result can also be verified by directly calculating K from Pr(KinT ). As a

result , we can write the simplified notation for Pr(X inT )

Pr(K )=exp(-K )K X/K! (3.2-4)

For stationary statistics, the mean number of detected photons per unit time was
assumed to be independent of time, the probability density for the arrival times was
assumed to be constant, and the auto correlation function for a sum of Poisson impulses
was shown to depend only on the time difference and not on the actual time. In real
physical problems, stationary statistics are not exactly correct: Radioactive decay,
variations in source- detector geometry, etc. all cause deviations from strict temporal
stationarity. Nonstationarity is even more important in terms of the image, as it is the
deviations from uniformity in a radiographic image that convey useful diagnostic
information. Fortunately, it is possible to generalize Equation (3.2-3) to describe a
nonstationary version of the Poisson distribution: If we represent the mean number of

photons detected in time T as

K = f a(t )dt (3.2-5)

where a (¢ ) is as described by Equation (3.2.6)

lim Pr(lin AT) = a (T) AT
o Prdin AT) =a(T) (3.2-6)

Equation (3.2-1) is still valid.
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The main distinguishing feature of Poisson random variables is that the variance o?

always equals the mean

2T (3.2-7)

In many physical problems, the observed random variable is really the sum of a large
number N of other independent random variables. Photon noise is not an exception. (see
Section 3.1). The central limit theorem states that the probability density of the observed
random variable approaches a normal distribution (Gaussian) [Tsokos, 1972], [Thomas,

1971], [Barrett, 1981]

_ 1 ~ 72 2
prix ) = — exp(- (x -X)*/ 20 (3.2-8)

(where pr(x )is a probability density function of a random variable x and 62 is the
variance) as N tends to infinity, regardless of the densities of the constituent random
variables. From the above theorem, we can anticipate that the Poisson distribution will

approach a Gaussian for large K , i. €., Eq. (3.2-4) is equivalent to

PrK )=(@2nK ) Pexpl-K -K )*/2K | (3.2-9)

Equation (3.2-9) is a Gaussian with the variance o2 equal K . Proof of it can be found in

[Barrett, 1981]. This Gaussian form is an excellent approximation of the Poisson

distribution for K = 10. A graphical comparison between the exact Poisson distribution

and the Gaussian approximation is given in Figs. 3.2.1 - 3.2.2.
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To simulate noisy CT projections due to photon noise one can either introduce noise
into a reference image and then take projections from it , or introduce noise directly into
the detector readings i.e., take projections from a clean (not noisy) reference image and
make them noisy. In this thesis the second approach has been chosen as it better simulates
real situation when CT data gets affected by photon noise. The procedure used to
introduce noise to the detector readings takes the advantage of the fact that photons
arriving at every single detector are Poisson distributed.

Having assuming that the number of photons counted by a single i-th detectork ;
was the mean of the Poisson distribution as in (3.2-4), we computed a Poisson distributed
random number with the given mean and used it to replace K ; . The procedure was
repeated for every single detector. Depending on the K ; value, we have used different
equations to render new photon counts. IfK; was less than 10 we used Equation (3.2-4),
otherwise Equation (3.2-9) was used. The advantage of using the Gauss approximation of

the Poisson distribution is considerably reduced computation time.
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3.3. Noisy Sinograms

This section is closely related to the next one. Here, photon noise will be
superimposed on projections which subsequently will be used to produce noisy images.
The results obtained will be used for the purpose of the next section that deals with the
removal of noise from projections.

A sinogram consists of a set of projections taken from a volume under investigation
and displayed as an image by organizing the projections in a matrix of the size (n x m ),
where n represents the number of projection taken and m is the number of detectors
used. It is important that the order of projections be preserved, i.e., all projections in the
same order in which they were taken should be placed as a consecutive rows of the matrix
starting from the first projection placed as the first row of the matrix. Figs. 3.3.1(a) and
(b) show the reference image "dolls" and its sinogram, respectively. The sinogram
consists of 35 parallel geometry beam projections equally spaced over 180°. The length
of an individual projection is 256. We used this sinogram as a reference, and by applying
the simulation procedure described in Section 3.2 of this chapter we produced the noisy
sinogram in Fig. 3.3.2(a). The noise that was superimposed on a reference sinogram to
produce the sinogram in Fig. 3.3.2(a) is shown in Fig. 3.3.2(b). Fig. 3.3.3 represents
Fourier spectra of both the reference, (a), and the noisy, (b), sinograms.

The reference sinogram in Fig. 3.3.1(b) had values in a range 104 - 105 photon counts
(detector readings). In order to analyze the influence of noise on reconstruction image
quality from a data taken at different ranges of photon counts registered by a detector, the
necessary sinograms were produced from the reference one (Fig. 3.3.1(b)) by adjusting its
values into the required range. We have chosen to analyze three additional ranges of
photon counts: 103 - 104; 102 - 103; 10 - 102. Accordingly, noisy sinograms were

produced using the same noise simulation procedure that was used to produce the
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sinogram in Fig. 3.3.2(a). Figs. 3.3.4 - 3.3.6 show the resultant noisy sinograms, (a), and
their Fourier spectra, (b), for the photon count ranges of 103 - 104, 102 - 103 and 10 - 102,
respectively. To evaluate changes in the sinograms due to the superposition of photon
noise, all noisy sinograms were compared against their reference ones. A correlation
coefficient was used as a similarity measure. Table 3.3.1 summarizes the results. It also
includes the correlation coefficients for IART reconstruction images from noisy
sinograms of different ranges of photon counts computed against the reference image
"dolls". It is worth noting that the number of iterations to produce the best image from
IART decreases with the increasing amount of noise in a sinogram.

Table 3.3.1. Reference image "dolls". Correlation coefficients for noisy sinograms of different ranges of
photon counts and for the reconstruction images they produce.

=Range of photon Correlation Correlation Iteration number for
counts in reference | coefficient for noisy | coefficient for IART | the best IART
sinogram sinogram reconstruction reconstruction
image from noisy image
sinogram against
"dolls"*
104 - 105 0.99992 0.987845 6
103 - 104 0.99940 0.944483 6
102 - 103 0.99409 0.693206 5
10 - 102 0.94589 0.443530 1

* Correlation coefficient for the 6 iteration IART reconstruction image from the reference sinogram of
Fig. 3.3.1 was 0.99311.

Fig. 3.3.7 includes the IART reconstruction images from noisy sinograms for the
photon count ranges: 104 - 105; 103 - 104; 102 - 103; 10 - 102. For comparison, Fig. 3.3.8

shows the 6 iteration IART from the reference sinogram of Fig. 3.3.1(b).
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From Table 3.3.1, the sinogram similarity to the reference worsens when the range of
photon counts goes down. To explain this fact, we go back to the noise simulation
procedure that we have used. According to the procedure a random number to replace the
original one in a reference sinogram was computed from the Poisson
distribution/Gaussian with a mean equal to the value from the reference sinogram (see
Section 3.2). When we plot the ratio of a computed random number to the distribution
mean as a function of the mean as in Fig. 3.3.9, the plot tapers towards the higher mean
values. This indicates that for distributions with larger mean values, there is a greater
probability that the computed random number is similar in value to the mean. In
consequence, sinograms of a higher range of photon counts (104 - 105) will bear more
resemblance to the reference than sinograms of the lower range of photon counts

(10 - 102).

Fig. 3.3.1(a). The reference image "dolls".




Fig. 3.3.1(b). The sinogram of the reference image "dolls”. 35 parallel projections equally spaced over 1800,
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(a)

Fig. 3.3.2. (a), Noisy sinogram that was produced from the reference sinogram in Fig. 3.3.1(b); (b), Noise that was superimposed on the reference sinogram to
produce Fig. 3.3.2(a).
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(b)
Fig. 3.3.3. The Fourier spectra of: (a), the reference sinogram in Fig. 3.3.1(b), and (b), the noisy one in Fig. 3.3.2(a).
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®
Fig. 3.3.4. Photon range 103 - 104, (a), Noisy sinogram, and (b), its Fourier spectrum,.
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(®)
Fig. 3.3.5. Photon range 102 - 103. (a), Noisy sinogram, and (b), its Fourier spectrum.
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®) :
Fig. 3.3.6. Photon range 10 - 102. (a), Noisy sinogram, and (b), its Fourier spectrum.
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(d
Fig. 3.3.7 contd. IART reconstructions from: (¢), noisy sinogram in Fig. 3.3.5(a), and (d), noisy sinogram in
Fig. 3.3.6(a).
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Fig. 3.3.8. The 6 iteration IART reconstruction from the reference sinogram in Fig. 3.3.1(b).
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Fig. 3.3.9. The ratio of a random computed number £ of a distribution with a mean < K> to the mean of the
distribution as a function of a mean. One sample at each value of the mean was taken.
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3.4. Noise Removal from Noisy Projections

When looking for a way to remove noise from noisy projections, we considered
viewing the sinogram as an image: therefore our task became to 'clean’ this noisy image.
We started with using different real space filters on the noisy sinogram in Fig. 3.3.2(a)
[Pavlidis, 1982], [Gonzalez, 1983], [Rosenfeld, 1982]. The efficacy of the noise removal
operation was evaluated by computing the correlation coefficient for a filtered sinogram
against the reference in Fig. 3.3.1(b). A smoothing low pass filter (LPF) was the first one
that we used. With this filter, the value of each pixel in the filtered sinogram was the
average of the weighted values of the pixels in the neighborhood around that pixel. The
size of neighborhood was 3 by 3 pixels and the weighting of the pixels was one. The
resultant filtered sinogram appeared to be even worse for reconstruction than the noisy
one. (The correlation coefficient was 0.9465 against 0.9999 for the noisy sinogram.)
Similarly, when we used a Sobel edge enhancement filter on the noisy sinogram, the
correlation coefficient was 0.6184. In this technique, we used a 3 x 3 window. If the

values in the window were as follows:

Vi Vo W3
V4 X V6
Vi Vg Vg

then the value of the pixel in the filtered sinogram corresponding to x was calculated as

the square root of (A2 + B2), where

A=(V3+2v6+v9)-(v 1+2V4+V7)

B=(V 1+2V2+V3)-(V7+2v8+VQ)
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The third filter that we used was a directional filter. It belongs to a group of nonlinear
filters as opposed to the above described linear, space-invariant filters. The difference
between these two groups of filters is that nonlinear ones do not smear edges, but only
remove the noise from the interior of regions. Such filters attempt to detect edges before
they apply a smoothing function. The filter procedure we used, at each pixel estimated the

direction of an edge, if any, by computing the values of

VO =[f &,9)-F+c@).y +s @) +f @ y)-f@&-c@).y-s @)’
for ¢=0, 450,900, 1350,

Then the filter function 4 (i ,j ,¢) defined as

h(0,0,4)=0.5, k(c(@),s (9),0)=h(-c (§),-s (¢),9)=0.25,

where
¢ 00 450 900 1350
c (¢) 1 1 0 -1
s (9) 0 1 1 1

and zero for all other arguments i,/ , was applied for that value of ¢ for which V (¢) was
minimum.

The output from this filter was better than from linear filters but the correlation
coefficient was still less compared to the one calculated for the noisy sinogram (0.9995

against 0.9999).
Summarized in Table 3.4.1 are the results from using real space filters, confirming
that a sinogram is a very specific image that cannot be regarded as a smooth one, and

real space processing techniques do not apply to it.




74

Table 3.4.1. Reference image "dolls". Correlation coefficient for a sinogram filtered with real space filters.
Photon count range 107 - 10°.

Filter used Correlation coefficient for a filtered
sinogram*

LPF 0.946518

Sobel 0.618381

directional filter 0.999546

no filter (noisy sinogram) 0.999920

Correlation coefficient was computed against the reference sinogram in Fig. 3.3.1(b).

In another approach to removing noise from noisy projections, a windowing
technique in Fourier space was used [Rowland, 1979], [Budinger, 1979], [Hamming,
1977], [Pratt, 1978], [Castleman, 1979]. In this technique, a window function w (f) is
superimposed on a Fourier representation of a projection and the product is transferred
back into the real space to produce the noise filtered projection. Symbolically we can

illustrate it as

noise filtered projection = F 1w (f) ¥ (projection data)] (34-1)

where ¥ stands for a Fourier transform. The window function that we used had the effect
of attenuating the contribution of frequencies near the highest frequency component of
the Fourier transform of a projection while allowing the frequencies near zero to be
passed almost unmodified. When choosing this shape of the window function, we took
advantage of the property that the discrete Fourier transform of a function of compact

support will tend to have low values at the high frequencies while the most valuable
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information required to reconstruct the function in real space is centered around the zero
frequency in Fourier domain. Therefore, the attenuation of high frequencies for a noisy
function (projection), while slightly affecting the resolution, has the benefit of noise
suppression. Depending on the shape of the window function, we can get different levels
of noise suppression. In the analysis, Butterworth and generalized Hamming windows

were used. The latter one is defined by the equation

w)=|® +(1-a)cosnf /fe) if IFIsfe \ (3.4-2)
0 it If [>fc |

where f is the highest frequency component (cutoff frequency) and o is a constant. Fig.
3.4.1 shows how the shape of a Hamming window changes for different values of the

constant o.

1.2

w(f)

0.6

Fig. 3.4.1. Hamming window with a cut off frequency f, = 0.5.
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This analysis included using the Hamming window with o = 0.4; 0.54; 0.6; 0.8; 0.9.

Results on a noisy sinogram are summed up in Table 3.4.2 below.

Table 3.4.2. Reference image "dolls". Correlation coefficient for a sinogram filtered with generalized
Hamming window. Photon count range 104 - 105,

Hamming window with o equal (?orrelatic;n coefficient for a filtered
sinogram
0.4 0.999938
0.54 0.999949
0.6 0.999935
0.8 0.999940
0.9 0.999928
no filter (noisy sinogram) 0.999920

Correlation coefficient was computed against the reference sinogram in Fig. 3.3.1(b).

As it can be seen, in every case the filtered sinogram had better correlation coefficient

than the noisy one. The best result was obtained with the constant & = 0.54. A similar

outcome was also obtained from using the Butterworth window:

_ 1
- 1+(f /fc )2n (3.4-3)

w(f)

where n is the order of the filter. This filter can be designed by calculating the

appropriate window width between zero and the pass-band frequency fp and the
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corresponding transition bands between the pass-band frequency f, and the stop-band

frequency fs, as illustrated in Fig. 3.4.2.

Fig. 3.4.2. Method of designating a Butterworth filter.

Knowing the values of ¢, A, fp, fs, we calculate the parameters n and f¢ of the

Butterworth filter using the equations

" __log(e /VAZ-I)
~ loglfp /fs)

e 1/"

fe

(3.4-3)

The Butterworth window that we used was designed to approach the Hamming window

with o = 0.5 as this was the case that produced the best results filtering the noisy

sinogram. Parameters calculated for the Butterworth window were n = 3.475 and



78
fe =0.238. The correlation coefficient obtained for a filtered sinogram was 0.999943,
i.e. was slightly less than when the Hamming window was used (0.999949).

The above results refer to a noisy sinogram in Fig. 3.3.2(a) that consists of detector
readings of the photon range 104 -105. At this range the noisy sinogram does not differ
much from the original one (see Section 3.3). Therefore using a windowing technique in
Fourier space to remove noise produced only a slightly better reconstruction image
compared to the one from noisy projections. This situation improved when we used this
technique on sinograms with photon readings of lower ranges. The effect of noise
removal was more efficient. Table 3.4.3 shows the effect of using a Hamming window
with o = 0.54 on noisy sinograms of different photon count ranges while Table 3.4.4
displays the improvement in an IART reconstruction image due to the use of a filtered

sinogram.

Table 3.4.3. Reference image "dolls". Correlation coefficients for noisy and filtered with Hamming window
sinograms of different ranges of photon counts.

Range of photon counts in | Correlation coefficient for a | Correlation coefficient for a
reference sinogram noisy sinogram filtered sinogram*

104 - 105 0.99992 0.99995

103 - 104 0.99940 0.99974

102- 103 0.99409 0.99611

10 - 102 | 0.94589 0.97802

*Filtered sinogram was obtained by using the Hamming window with o = 0.54 (Equation 3.4-2).
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Table 3.4.4. Reference image "dolls". Correlation coefficients for a reconstruction image from noisy
sinograms and filtered with a Hamming window for different ranges of photon counts.

Range of photon counts in | Correlation coefficient* for | Correlation coefficient* for
reference sinogram an IART image from noisy | an IART image from
sinogram filtered sinogram**
104 - 105 0.987845 0.989396
103 - 104 0.944483 0.964948
102 - 103 0.693206 0.790550
10 - 102 0.443530 0.531808

*Correlation coefficient was computed against the reference image "dolls".
**Filtered sinogram was obtained by using the Hamming window with o. = 0.54 (Equation 3.4-2).

Figs. 3.4.3 - 6, for different photon count ranges, present IART reconstruction images
from (a), noisy sinograms, and (b), from filtered ones using the Hamming window with
o =0.54.

In summary, using window functions in the frequency domain to suppress projection
noise improves quality of a reconstruction image in comparison to the image obtained
from noisy projections. The efficacy of the procedure in terms of the correlation
coefficient value increases when the range of photon counts registered by a detector array
goes down. Visually, the most gratifying effect from using the windowing procedure

seems to be for a sinogram of 103 -104 range of photon counts.




(b)
Fig. 3.4.3. IART reconstruction images from (a), noisy, and (b), filtered with Hamming window with
o, = 0.54 sinograms of 104 - 109 photon count range.




(b)
Fig. 3.4.4. IART reconstruction images from (a), noisy, and (b), filtered with Hamming window with
o = 0.54 sinograms of 10° - 104 photon count range.
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(b)

Fig. 3.4.5. IART reconstruction images from (a), noisy, and (b), filtered with Hamming window with
o = 0.54 sinograms of 102 - 103 photon count range.
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@

(®
Fig. 3.4.6. IART reconstruction images from (a), noisy, and (b), filtered with Hamming window with
o = 0.54 sinograms of 10 - 102 photon count range.
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3.5. Filtering Noisy Sinograms of Different Objects

Medical images form a very specific group of images. Fig. 3.5.1 displays (a), an
example medical image, and (b), its sinogram. The sinogram consists of 45 projections
equally spaced over 1800 and was produced using a parallel geometry beam. Photon
count values are from the 104 - 105 range. We used this sinogram as a reference and by
applying the noise simulation procedure from Section 3.2, we produced a noisy sinogram
in Fig. 3.5.2(a). Noise that was superimposed on a reference sinogram (Fig. 3.5.1(b)) is
shown in Fig. 3.5.2(b). Fig. 3.5.3 represents Fourier spectra of both the reference, (a), and
the noisy, (b), sinograms.

To remove noise, we began with an implementation of a real space filter on the noisy
sinogram. We did it deliberately as we wanted to confirm results from Section 3.4. The
filter of our choice was the directional one as this was the one that gave the best results on
the noisy sinogram in Fig. 3.4.2(a) of the previous section (see Table 3.4.1). (For detailed
description see Section 3.4.) The correlation coefficient calculated for a filtered sinogram
was 0.999733 against 0.999925 for the noisy one. Thus the result obtained confirmed
conclusions drawn in the previous section that real space processing techniques do not
work well on sinograms. When using the windowing technique in the Fourier space,
similarly as in the previous section, we applied the generalized Hamming window to the
noisy sinogram. We started with the Hamming window with o = 0.54. The result was a
less noisy sinogram. The correlation coefficient of the filtered sinogram was 0.999938
against 0.999925 for the noisy one. As the improvement in the correlation coefficient due
to the Hamming window use was less compared when it was used on the noisy sinogram
of the previous section (see Table 3.4.2), we extended our analysis to include using the
Hamming window with o = 0.7; 0.8; 0.9. The results obtained, in form of correlation

coefficient values are summarized in Table 3.5.1 below.




Table 3.5.1. Reference image "head". Correlation coefficient for a sinogram filtered with generalized
Hamming window.

Hamming window with o equal (;orrelatic’)kn coefficient for a filtered
sinogram
0.54 0.999938
0.7 0.999941
0.8 0.999942
0.9 0.999941
noisy sinogram 0.999925

Correlation coefficient was computed against the reference sinogram in Fig. 3.5.1(b).

As in the previous section, for every case the correlation coefficient showed improved
similarity of the filtered sinogram to the reference one, though the best result was
achieved with the constant o = 0.8. This is unlike the results for the sinogram in Fig.
3.3.2(a) of the previous section and is due to different contents of the reference sinogram
used. The main dissimilarity between Figs. 3.3.2(a) and 3.5.2(a) is that the latter is
characterized by relatively small variations of the intensity function values throughout the
image contents in comparison to the former. This feature is characteristic for the major
portion of medical images.

Fig. 3.5.4 displays the 9 iteration IART reconstruction images computed from (a), the
reference projections, (b), noisy projections, and (c), filtered ones through the use of a
Hamming window with oo = 0.8. The correlation coefficients are 0.975543 for the
reconstruction from the reference projections, 0.962315 and 0.964103 for the

reconstructions from the noisy and filtered projections, respectively.
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Results of this and the previous sections indicate that a sinogram is a nonsmooth
image. Therefore using real space processing techniques for noise suppression is not
applicable. The windowing in the Fourier space technique can be used with positive
results. Although to benefit most from this technique, the choice of an appropriate
window function is required. The selection of a window function, however, can be
predetermined as it depends on the contents of a reference image/object. Therefore
through classification of reference images, the choice of the best window function can be

made automatic.

Fig. 3.5.1(a). The rcference image "head".




e
R

Fig. 3.5.1(b). The sinogram of the reference image "head"

. 45 parallel projections equally spaced over 180°.

L8



(@)

Fig. 3.5.2. (), Noisy sinogram that was produced from the reference sinogram in Fig. 3.5.1(b); (b), Noise that was superimposed on the reference sinogram to
produce Fig. 3.5.2(a).
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(®)
Fig. 3.5.3. The Fourier spectra of (a), the reference sinogram in Fig. 3.5.1(b), and (b), the noisy one in Fig. 3.5.2(a).

68



90

(b)
Fig. 3.5.4. IART reconstructions from (a), the reference sinogram in Fig. 3.5.1(b), and (b), the noisy

sinogram in Fig. 3.5.2(a).
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Fig. 3.5.4(c). IART reconstruction from the noise filtered sinogram with Hamming window with o = 0.8.

3.6. Concluding Remarks

Photon noise is the dominating one that affects data acquisition x-ray computed
tomography. Iterative methods are sensitive to any distortion of the projection data, yet
they use projections that are noisy.

In this chapter, different ways to remove noise from the projection data have been
examined. The correlation similarity measure have been used to evaluate the results, i.e.
the filtered projection sinogram was evaluated against the reference sinogram that was
not affected by any noise at all. Also, the improvement in the reconstruction image
quality was checked.

We started from using a set of projections to form a sinogram, an image, to apply

enhancement techniques to it to suppress noise. The results obtained were negative,
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indicating that as a sinogram is not a smooth image; the real space processing techniques
do not work.

In the other approach, the windowing technique in Fourier space was used. The
window functions that were used suppress high frequencies, taking advantage of the fact
that the discrete Fourier transform of a function of compact support has low values at the
high frequencies. Consequently, removing the high frequency components should not
affect significantly image fidelity, while there is a good chance for improvement due to
the fact of removing the high frequency noise components. Basically, the Hamming
general window was used as a window function, for by changing the value of its constant,
we could have controlled the threshold. The results obtained were positive for both
reference images encouraging use of this technique for the purpose of noise suppression

in the projection data.




CHAPTER 1V
FOURIER SPECTRUM. NEW WAYS OF USING IT

4.1. Introduction

In image processing problems, the Fourier transform has a wide range of applications.
The central slice theorem [Barrett, 1981], [Rosenfeld, 1982], [Ekstrom, 1984] has become
basic to the Fourier backprojection reconstruction method, the most widely used algorithm
in computed tomography. (The theorem relates a one dimensional Fourier transform of a
reference image function projection to its two dimensional Fourier transform.) Two
dimensional Fourier transforms are used for image enhancement, restoration, encoding,
description, etc.[Gonzalez, 1987], [Castleman, 1979].

A Fourier transform F (4,v ) of a real function f (x,y) is generally complex; that is

F@v)=Rwyv)+jl(uyv) 4.1-1)

where R (u,v ) and I (u,v ) are, respectively, the real and imaginary components of

F (u,v). Equation (4.1-1) is often expressed in the exponential form:

Fuy)=|Fu,y) el ®:y) (4.1-2)

where
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IFuw)| =R2uv)+T 2uv)"?

e VRN
O ,v)=tan [R_—(u )

The magnitude function |F (u ,v )| is called a Fourier spectrum of f (x,y ), and ®(u,v )
its phase angle.

For a two-dimensional function, such as an image, its Fourier spectrum can be
displayed as an intensity function. This representation is helpful for interpretation
purposes. The following sections will show new ways in which the Fourier spectrum can
be used:

1) To identify a reconstruction image computed by a linear or nonlinear reconstruction
method;

2) To estimate the optimal number of iterations for iterative reconstruction methods;

3) As a qualitative evaluation measure in reconstruction.

In the experiments, the Fourier backprojection, FBP, (linear) and Interpolative
Algebraic Reconstruction Techniques, IART, (nonlinear) reconstruction algorithms were
used. In all experiments where IART was used, to compute the estimate f' () of the image

density function f (%), the following equation was applied

N
Frien =Y es@ 2@y (*13)
k=1 P
N
where D> g =1
k=1

and superscripts g+1, g represent the (g+/ )' and (g )'th estimates f (®, and pk and p §

are the measured and corresponding calculated projections, respectively, g (ug) is the
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interpolation function and N represents the number of detectors in a detector array. One
increment of ¢ means that all projections of each pixel have been considered once. The
starting value of the estimate of the object optical density was chosen to be equal to 1, i.e.

f O(Fij) = 1. The reference image and all reconstruction images were on 128 x 128

matrices.

4.2. Fourier Spectrum as a Measure for Distinguishing Linear

from Nonlinear Reconstruction Methods

One of the new applications of a Fourier spectrum this thesis introduces is to use it as a
determinant in the recognition of linear from nonlinear reconstruction methods. A
reconstruction method is a mapping & which maps an input array f (n,m) into an output
array g (n,m) = £ {f (n,m)} where n and m range over the positive and negative integers.
If g; =%({f;} and g» = £ {f,} and ag; + bg, = £ {af; + bf>} for arbitrary constants @ and
b, and all f7 and f> then the method is linear. Otherwise, the method is a nonlinear one.

The Fourier backprojection (FBP) is a linear reconstruction method while Interpolative
Algebraic Reconstruction Techniques (IART) belong to the group of nonlinear
reconstruction methods. In our experiments we used them as representatives of these two
different groups of reconstruction methods.

For the same set of an input data, reconstructed images were computed using FBP and
IART reconstruction methods and their Fourier spectra were compared. Fig. 4.2.1
represents the (a), reference test object "dolls” that we used, and (b), its Fourier spectrum.
We used 35 projection directions equally spaced over 1800 and parallel beam geometry.
Resulting reconstructions from Fourier backprojection (FBP) and Interpolative Algebraic
Reconstruction Techniques (IART) for 21 iterations (the best quality reconstruction image)
are presented in Figs. 4.2.2(a) and (b), respectively. Figs. 4.2.3(a) and (b) display Fourier

spectra of the reconstruction images of Figs. 4.2.2(a) and (b), respectively. One look at the
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spectra and one can see how different they are. The spectrum resulting from the use of
IART bears better resemblance to the spectrum of the reference image (Fig. 4.2.1(b)). It
also looks smoother and somehow interpolated, as opposed to the spectrum from the use of
FBP. The latter looks sharper and the intensity function has its points allocated mainly
along the projection directions (streaks). This can be explained as follows: FBP, as a
representative of a linear reconstruction method, is based on the central slice theorem and
an interpolation function is used only once during the final backprojection. IART, being a
representative of a nonlinear reconstruction method, just by the nature of the method
performs interpolation numerous times and that shows in its Fourier spectrum. In
Figs. 4.2.4(a) and (b) a Sobel edge enhancement filter was used with a 3 x 3 pixel
window, or mask, on Fourier spectra of FBP and IART reconstruction images,
respectively. The interpolation achieved by IART compared to FBP becomes obvious.

For comparison, in Fig. 4.2.5 are displayed, as an intensity function, Fourier phases of
(a), the test object "dolls", and its reconstructions by (b), FBP and (c), IART
reconstruction methods. Although both of them are very noisy, one can see that still the
phase image of IART bears more resemblance to the original then the one computed from
the FBP. (Correlation coefficients of Figs. 4.2.5(b) and (c) computed with regard to the
image of the Fourier phase of the reference object (Fig. 4.2.5(a)) are € = 0.20265 and

0.31763 respectively. For computation of €, Equation 4.3-1 of the following section was

used.)




()
Fig. 4.2.1. (a) Reference image "dolls", 128 x 128 pixels; (b) Fourier spectrum of "dolls".




Fig. 4.2.2. Parallel beam geometry, 35 projection directions equally spaced over 1809, Reconstruction of

"dolls" using: (a), Fourier Backprojection (FBP); (b), Interpolative Algebraic Reconstruction Techniques
(IART) (21 iterations).




(®)
Fig. 4.2.3. Fourier spectrum of: (a), Fig. 4.2.2(a), FBP reconstruction of "dolls"; (b), Fig. 4.2.2(b), IART

(21 iterations) reconstruction of "dolls".
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Fig. 4.2.4. Sobel edge enhancement filter with a 3 x 3 pixel window used on: (a), Fourier spectrum in
Fig. 4.2.3(a); (b), Fourier spectrum in Fig. 4.2.3(b).
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(®)

Fig. 4.2.5. Fourier phase of: (a), reference image "dolls"; (b), FBP reconstruction of "dolls".
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Fig. 4.2.5(c). Fourier phase of IART reconstruction of "dolls” (21 iterations).

4.3. Fourier Spectrum as a Qualitative Image Evaluation

Measure

The best way to compare reconstruction algorithms is to do an experimental
comparative study, rather than a theoretical one. The reason for this is that different
methods perform differently relative to each other in different situations. Their relative
efficiency is also affected by the input data: how many projection directions and at what
range, noise level, etc.. Every algorithm appears to have its own best set of objects and
conditions.

There are many comparison criteria which can be used. (Section 5.2 discusses this
subject in more detail.) Quantitative evaluation measures like the similarity (correlation

coefficient), overall nearness of the reference and the reconstructed images, and resolution
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of fine detail are the most commonly used in practice. Visual evaluation, though subjective,
cannot be ignored. In view of the way the reconstructions are used in practice, there is
hardly a better way for judging which reconstruction is better under given circumstances.

This thesis introduces a new evaluation measure of qualitative nature that is based on an
approach similar to the way a human eye makes the assessment. It relates to the Fourier
space.

When we make a visual evaluation we are looking, in fact, for the difference in
fluctuations of an intensity function of an image against the reference object. Simple
subtraction of the reconstruction image from the reference object will show exactly what we
have been looking for, i.e. if and how the relative intensity function has been changed
throughout the image as the result of the reconstruction process.

The evaluation criterion that is being introduced is a subtraction of Fourier spectra of
images (reconstruction from reference). It will be shown that by using it one can clearly
recognize the type of noise, characterized by its frequency, that has been introduced during
the reconstruction process. In other words one will be able to see how the reconstruction
method performed on different elements of the reference image. This information can be
helpful when making a choice on a reconstruction method or deciding on use of one of the
image enhancement techniques.

This measure was used to compare the FBP and IART reconstruction images of the
reference image "'dolls" in Fig. 4.2.1(a) of the previous section. Just as a reminder, both
the FBP and IART reconstruction images were computed from the same set of 35 parallel
projections equally spaced over 1800 and are displayed in Figs. 4.2.2(a) and (b),
respectively. Corresponding spectra are displayed in Fig. 4.2.3. Subtraction results are
displayed in Figs. 4.3.1: Images (a) and (b) represent the subtraction of Fourier spectra of
the reconstructed images of "dolls" computed using FBP (Fig. 4.2.3(a)) and IART
(Fig. 4.2.3(b)), respectively, from the spectrum of the reference image (Fig. 4.2.1(b)). It

is clearly seen that FBP performed much worse by introducing greater amounts of both
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high and low frequency noise compared to IART. The latter performed well for low
frequencies introducing only a small amount of a high frequency noise that causes edge
unsharpness.

For comparison, Fig. 4.3.2 displays results of a similar operation of subtraction on the
images of the Fourier phase for both reconstruction methods (FBP and IART). The only
difference that one can notice is that IART produces phase values that are in agreement with
the reference object for a larger number of elements then FBP.

For verification, a popular reconstruction similarity measure was used, the correlation

coefficient € ;

-i:\'l(f” A -r7)

[ S ¢y -0 S g 7

ij =1 ij =1

2]1/2 (4.3-1)

where N x N is the size (in pixels) of either, reference and reconstruction, matrix; 1; J and
f i j represent the pixel intensity in the reference and the reconstruction images,
respectively, and £ and F* are the average densities of the reconstruction and reference
images, respectively. Calculated values were € = 0.9854 and 0.9960 for FBP and IART
reconstruction images and € = 0.9934 and 0.9950 for Fourier spectra of FBP and IART
reconstructed images, respectively, in agreement with the results of the above qualitative

measures.
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Fig. 4.3.1. Fourier spectrum as a quantitative measure in reconstruction: (a), FBP, subtraction of
Fig. 4.2.3(a) from Fig. 4.2.1(b); (b), IART, subtraction of Fig. 4.2.3(b) from Fig. 4.2.1(b).




®
Fig. 4.3.2. Subtraction of Fourier phase images: (a), FBP, Fig. 4.2.4(b) from Fig. 4.2.4(a); (b), IART,
Fig. 4.2.4(c) from Fig. 4.2.4(a).
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4.4. Fourier Spectrum as a Criterion for Iterative

Reconstruction Methods

Subtraction of the Fourier spectrum of a reconstructed image from that of a reference
image has also proven to be useful in evaluation of the optimal number of iterations for an
iterative | reconstruction method like IART. Figs. 4.4.1 -3 show how (a), the
reconstructed image and (b), its Fourier spectrum change with an increasing number of
iterations (starting from 3 throughout 18). Fig. 4.4.4 represents the results of subtraction
of Fourier spectra of images (reconstruction from the reference) for the sequence of IART
reconstruction images. One can observe how with increasing number of iterations (starting
from 3) fluctuations of an intensity function decrease and disappear (for 18 iterations). The
computed correlation coefficients for the sequence of images are shown in Table 4.4.1.
One can notice that only when the values of correlation coefficients are the same up to the
fifth decimal digit (18 and 21 iterations) the images representing the subtraction of Fourier
spectra (reconstruction from the reference) show no visible difference (Figs. 4.4.4(c) and
4.3.2(b)). This suggests that the optimal number of iterations has been reached, i.e., the
best quality reconstructed image obtained, and there is no use in further continuing the
iteration process. When we compare the correlation coefficients of the reconstruction
images (Table 4.4.1) to their respective Fourier spectrum images, we notice how sensitive
an evaluation measure the Fourier spectrum is compared to the commonly used correlation

coefficient.



(b)
Fig. 44.1. IART, 3 iterations, parallel geometry beam, 35 projection directions equally spaced over 1800:
(a), Reconstruction image, (b), corresponding Fourier spectrum.




(®)
Fig. 4.4.2. IART, 9 iterations, parallel geometry beam, 35 projection directions equally spaced over 1800:
(@), Reconstruction image, (b), corresponding Fourier spectrum.




®)
Fig. 4.4.3. IART, 18 iterations, parallel geometry beam, 35 projection directions equally spaced over 1800:
(a), Reconstruction image, (b), corresponding Fourier spectrum,




Fig. 4.4.4. Fourier spectrum as a convergence criterion for IART. Subtraction images after: (a), 3
iterations; (b), 9 iterations.
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Fig. 4.4.4(c). Fourier spectrum as a convergence criterion for IART. Subtraction image after 18 iterations.

Table 4.4.1. Correlation coefficients for the sequence of IART reconstructions of the reference object
"dolls".

Iteration number Correlation coefficient
3 0.972433
6 0.994390
9 0.995842
12 0.996019
15 0.996051
18 0.996065
21 0.996066
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4.5. Concluding Remarks

This chapter presented new ways of using the Fourier spectrum in the process of
testing and evaluation the performance of a reconstruction algorithm:

1) To distinguish the quality of a reconstructed image computed by linear and nonlinear
methods;

2) As a new convergency criterion for iterative reconstruction methods;

3) As a qualitative evaluation measure, by a subtraction of images in Fourier space.

We have considered images from FBP and IART, representatives of linear and
nonlinear reconstruction methods, respectively. All images were computed using the same
input data of 35 parallel projections equally spaced over 1800,

The appearance of a Fourier spectrum of a reconstructed image is characteristic for the
type of reconstruction method that was used. Applying different algorithms (linear,
nonlinear) produces reconstructed images having easily distinguishable spectra.
Reconstructions computed with nonlinear methods (like IART) show better interpolation in
Fourier space, their spectra bear more resemblance to the reference object spectrum, and
are more detailed.

The subtraction of Fourier spectra proved to be a very sensitive evaluation measure
compared to the widely used correlation coefficient. It shows differences in Fourier spectra
up to the fifth decimal digit of the value of a correlation coefficient of a reconstructed
image. The subtraction of Fourier spectra also has the advantage of displaying the
frequency spectrum of noise that has been introduced by the reconstruction.

Also, it has been found that using subtraction of Fourier spectra of the images can yield
a new convergence criterion to halt the iteration process for nonlinear iterative methods.

IART was used as a representative.



CHAPTER V
IMAGE RECONSTRUCTION FROM LIMITED NUMBER OF
VIEWS USING IART AND IART WITH FILTERED
PROJECTIONS

5.1. Simulation of the CT Data Under Various Assumptions of

Photon Noise

X-rays passing through the human body produce readings on a detector array that
associate with attenuation properties of the tissue from the x-rayed cross section of the
body. In vacuum all x-ray photons which leave the source in the direction of a detector will
reach it. When a material is placed between the source and the detector some of the photons
are removed from the oriented beam (i.e., they are absorbed or scattered). The probability
that a photon gets removed depends on the energy of the photon and on the material
between the source and the detectors. Some of the scattered x-ray photons will reach the
detector, usually with reduced energy [Johns, 1983], [Hendee, 1970]. This "background"
is reduced by collimators and/or energy discriminators whenever possible (see

Section 3.1).

The linear attenuation coefficient p’ of a tissue I at energy e is defined as:

pb =-Inp (5.1-1)

where p is the probability that a photon of energy e which enters a uniform slab of tissue /
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of unit thickness, on a direction perpendicular to the face of the slab, will not be absorbed
or scattered in the slab.

A single detector reading p £ for a monochromatic radiation beam can be defined as

D
pé=f;¢uyyu (5.1-2)
0

where z is the distance of the point (x,y ) with attenuation H-(X ,¥ ) on the straight line
which is the path of all the x-ray photons for a particular source-detector pair. D is the
length of the path segment through the scanned body. The number of photons counted by

the detector is a sample of a Poisson random variable with parameter N

N =Noexp (-p}) (5.1-3)

N ¢ refers to the photons emitted by the X-Tay source.

A typical method by which CT data is collected consists of two physical measurements
[Herman, 1980]: a calibration measurement and an actual one. The difference between them
is that during the calibration measurement, there is no object in the path of the x-ray beam
from the source to the detector. (The calibration measurement serves the purpose of
determining how many out of the fixed number of photons that leave the x-ray source get to
the detector.) A set of CT numbers for an object under investigation is produced from the

ratio of the actual and the calibration measurements:

actual measurement
calibration measurement

pt=-In (5.1-4)

To simulate collection of data affected by photon noise, we have assumed a monochromatic
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x-ray beam and no scatter. For any source-detector pair the simulated data was calculated

based on the following equation:

pl=-In (5.1-5)

N¢ /Ncr

where Ny, N¢, Nor and N, represent the number of photons counted by the detector under
consideration during the actual and the calibration measurement, and the number of photons
counted by a reference detector during the actual and the calibration measurement,
respectively. All are samples of the corresponding Poisson random variables. (The
reference detector serves the purpose of compensating for fluctuations in the strength of the
x-ray source.) In the experiments, we have assumed N, =Ny and
N, = number of projections x Ng . The assumed intensity of an x-ray source was
No = 102, 104, or 106 photons emitted. The meaning of this can be explained as follows:
If there is no object placed between the source and the detector then all the emitted photons
(102, 104, 106, respectively) reach the detector. The energy of x-ray photons was assumed
to be 60 keV. To sample the Poisson random variables, N and Ny, the simulation

procedure described in Chapter III was used.

5.2. Methods of Evaluating Image Fidelity

A reconstruction is a digitized picture. When the reconstruction is based on simulated
projection data of a reference object, we can evaluate the quality of the reconstruction by
comparing it to the digitized reference object. There are several ways to do it. We can use
visual evaluation, similarity / dissimilarity measures, or receiver operating characteristic
(ROC) curves [Gonzalez, 1983], [Pratt, 1978], [Hall, 1979], [Barrett, 1981], [Herman,
1980], [Xiaobo, 1986], [Herman, 1972], [Gordon, 1974a], [Basseville, 1989],
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[Bookstein, 19901, [Evans, 1981]. We can also select a column / row of pixels that goes
through the number of interesting features in the reference image and compare its pixel
densities in the reference and the reconstruction images [Herman, 1980], or we can
compare Fourier spectra of the reference and the reconstruction images [Mazur, 1992], (see
Chapter IV). Visual evaluation is the most straightforward way. A difficulty with it is its
subjectivity. It should be emphasized that the results of subjective testing are influenced by
the types of images presented to the viewer and the experimental conditions. If the images
are familiar to the observer, the observer is apt to be more critical of impairments because
of preconceived notions of the image structure. On the other hand, impairments may go
unnoticed in unfamiliar imagery unless actually brought to the attention of the observer.
Also, care must be taken in the application of subjective ratings from one set of viewing
conditions to another. For example, an image displayed on a computer monitor might be
judged to be of "good" quality with "just perceptible” impairment. But, if the same image
were viewed as a photograph recorded by a high-quality recorder / printer, impairments
that were masked by nonlinearities or low resolution in the computer monitor display might
suddenly become quite apparent. Clearly, it is desirable to have objective quantitative
criteria as a basis for the image fidelity evaluation.

Much effort has been made towards the development and the assessment of quantitative
measures. However, those measures that have been developed are not perfect;
counterexample images can often be generated that have a high quality rating, but are
subjectively poor in quality and vice versa. The key to the formulation of good quality
measures is a better understanding of the human visual system which has peculiar
characteristics: An important characteristic of the human visual system is its logarithmic
sensitivity to light intensity so that errors in dark areas of an image are much more
noticeable that errors in light areas. The human visual system is also sensitive to abrupt

spatial changes in gray level so that errors on or near the edges are more bothersome than
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errors in background texture [Bosman, 1982], [Gonzalez, 1983], [Pratt, 1978], [Hall,

1979], [Rosenfeld, 1972], [Cornsweet, 1970].

In this study, the following quantitative similarity measures were used:

correlation coefficient €1 =

ToOt mean square error (fms) g, =

average absolute difference ¢,

) £
worst case difference 4

entropy based difference €5

where

and N x N is the size (in pixels)
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of either, reference and reconstruction, matrix; f ij and

f ;j represent the pixel intensity in the reference and the reconstruction images,
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respectively, and £ and f* are the average densities of the reconstruction and reference
images, respectively.

Note that above measures report on different aspects of image quality. The correlation
coefficient, €1, measures the extent to which two images are similar to each other. The root
mean square error (rms), € is a very reasonable measure for the overall performance of a
reconstruction method. A large difference in a few places causes the value of & to be large.
The measure &3 yields the largest difference between the reference and the reconstruction
images. As opposed to &, it emphasizes the importance of a many small errors rather than
of a few large errors. & represents the worst case difference measure and is the largest
absolute density difference between the [N/2] x [N/2] digitizations of the reference and the
reconstruction images. In this measure, I used a rougher digitization than what was used
for the reconstruction since the size of the smallest feature in the reference image that I have
used was several pixels, and therefore, to estimate the relative attenuation coefficient of this
feature, I would use the average density of all pixels involved. The measure €5 uses the
statistical concept of entropy [Frieden, 1972], [Hershel, 1971]. Picture elements can be
considered as symbols produced by a discrete information source with the grey levels as
the states, and one can measure the entropy or average information per level of an element
by the average, or expected value of the information contained in each possible level [Hall,
1979], [Basseville, 19891, [Gordon, 1983].

When two images match closely, the correlation coefficient approaches a value of one
while the other measures tend toward zero.

Another approach that can be used to measure the fidelity of a reconstruction image is to
use receiver operating characteristic (ROC) curves [Barrett, 1981], [Hendee, 1970],
[Evans, 1981]. In this method, a series of reconstruction images is shown to a group of
viewers. Each of the images may or may not contain an abnormality. If a viewer detects the
abnormality, the result is scored as a "true positive". If a viewer detects the abnormality

when it is not present in an image, the result is scored as a "false positive". A plot of true
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positives versus false positives (Fig. 5.2.1) reveals the relative performance of the

reconstruction method in the clinical diagnostic situation.

Method 1
Method 2

true positives

false positives

Fig. 5.2.1. ROC curves for two reconstruction methods, with Method 1 yielding superior results.

5.3. Simulated Experiments. Results

The purpose of conducting the following experiments was to compare reconstruction
results from Interpolative Algebraic Reconstruction Techniques (IART). Two cases were
considered: In one case, raw simulated noisy data was used, while in the other case, a
filtering operation was used on the projection data to suppress noise before it was
processed by the reconstruction method. The data was simulated to include photon noise.
The conditions included a monochromatic x-ray beam of energy 60 keV and a set of three
different settings of an x-ray source intensity (102, 104, 106 emitted photons per
measurement). (The simulation procedure is described in Section 5.1.) A reference image

for the first two sets of experiments consisted of two squares (Fig. 5.3.1): The large one,
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of the attenuation coefficient of water at 60 keV, that formed a background and a small one
positioned off the center. The latter had the attenuation coefficient larger from that of the
background square by 10% and 15% in the first and the second sets of experiments,
respectively. The third set of experiments was performed for a more complicated reference
object (Fig. 5.3.2.). For every reference image, three sets of parallel projections were
taken: 19, 35, and 60. In every set, the projections were equally spaced over 1800. The
first two sets of experiments included the reconstruction of a reference image, from all three
sets of projections, for all three values of the assumed intensity of an x-ray source (102,
104, 105 emitted photons per measurement), while the third set of experiments was

performed for only one source intensity, 104 emitted photons.

Set of experiments No. 1
Conditions:
- the "squares" reference image, Fig. 5.3.1;
- the difference in the attenuation, di. = 10% (the large square attenuation coefficient is
20 m'1 and the small square attenuation coefficient is 22 m-1);
- three sets of projections: 19, 35, 60;

- three assumed x-ray source intensity values: 102, 104, 106 emitted photons.

For all three values of the assumed x-ray source intensity, the reconstruction of the
“squares" reference image of Fig. 5.3.1 was performed. The input data included simulated
photon noise and consisted of three sets of parallel projections (19, 35, and 60) equally
spaced over 1800. For the case of IART with filtered projections, the projections were
filtered prior to being used by the reconstruction method. The windowing technique was
used (for the description, see Section 3.4): A generalized Hamming window with
o = 0.8, 0.8, 0.54 was used to filter the noisy projections when the x-ray source intensity
was, respectively, 102, 104, 10 emitted photons per measurement. The resulting

reconstruction images, from 60, 35, and 19 projections, for the assumed x-ray source
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intensity of 109 emitted photons are presented in Figs. 5.3.3 - 5.3.5, respectively. Each of
these figures displays two reconstruction images from two cases: (a), IART, and (b), IART
with filtered projections. This way, a viewer is given an opportunity to make his / her own
visual evaluation and judge the improvement resulting from using IART with filtered
projections. Reconstruction images for the other two levels of the x-ray source intensity are
not included as the high noise level makes it difficult for details to be seen.

All reconstruction images were evaluated using the equations of quantitative similarity
measures (5.2-1). Tables 5.3.1 - 5.3.3. display the outcome for the x-ray source
intensity of 102, 104, 106 emitted photons, respectively. Analyzing the numbers in the
tables, we can conclude that filtering noisy projections improves the reconstruction image:
Correlation coefficients calculated for IART with filtered projections are greater than those
for IART and all the other measures (rms, average absolute value, worst case difference,
entropy based difference) mostly are decreased in value compared to their IART
counterparts. The above findings are also in agreement with the visual assessment of the
presented images, Figs. 5.3.3 - 5.3.5.

Figs. 5.3.7 - 5.3.9 present the results of applying, to the reference and reconstruction
images, a quantitative measure of the subtraction of their Fourier spectra (see Section 4.3).
Fourier spectra of the reconstruction images of Figs. 5.3.3 - 5.3.5 were subtracted from
the Fourier spectrum of the reference image "squares” in Fig. 5.3.6 (a). When comparing
the resulting subtraction images for IART and for IART with filtered projections, it requires
a brief moment of adjustment for the eye to spot the difference as the images are not
smooth. In addition, the change in them, although noticeable, is relatively small. The
subtraction images for IART with filtered projections are slightly better than the ones for
IART: The grey level they contain is more uniform and they have a less noisy appearance.
(The grey color represents the zero difference between the Fourier spectra of the

reconstruction and the reference images.)
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Fig. 5.3.1. The reference image "squares". Superposition of squares.

Fig. 5.3.2. The reference image "ellipses". Superposition of ellipses.
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Fig. 5.3.3. Reconstruction of the reference image "squares" from 60 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), JART with filtered projections. X-ray source
intensity = 106 emitted photons per measurement, difference in attenuation coefficients = 10%.
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Fig. 5.3.4. Reconstruction of the reference image "squares” from 35 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 106 emitted photons per measurement, difference in attenuation coefficients = 10%.
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Fig. 5.3.5. Reconstruction of the reference image "squares” from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 106 emitted photons per measurement, difference in attenuation coefficients = 10%.
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Table 5.3.1. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares” reference image from simulated noisy projection data. Case: op = 10%,
source intensity = 106 emitted photons per measurement,

IART TART with filtered

projections

Quantitative error measures ~ Number of projections | Number of projections

19 35 60 19 35 60

correlation coefficient 0.984 0984 0.975: 0987 0.990 0.987
ms 1.737 1749 2.194 | 1.556 1.400 1.573
average absolute difference  1.005 1.076 1.374 { 0.868 0.061 1.008
worst case difference 6.792 5355 59751} 6.615 4.305 3.470
entropy based difference 0.011 0.008 0.011 { 0.011 0.008 0.009
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Table '5.3.2. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" reference image from simulated noisy projection data. Case: du = 10%,

source intensity = 104 emitted photons per measurement.

Quantitative error measures

correlation coefficient

ms

average absolute difference
worst case difference

entropy based difference

IART IART with filtered
projections
Number of projections { Number of projections
19 35 60 19 35 60
0.970 0.963 0941 { 0978 0.977 0.967
2.397 2.697 3.460 } 2.030 2.100 2.530
1.466 1.712 2222} 1.225 1.346 1.650
8.858 9.127 8.802 ; 8.550 8.078 6.698
0.023 0.022 0.031 { 0.021 0.019 0.021
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Table 5.3.3. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" reference image from simulated noisy projection data. Case: du = 10%,
source intensity = 102 emitted photons per measurement.

JART IART with filtered

projections

Quantitative error measures ~ Number of projections { Number of projections

19 35 60 19 35 60

correlation coefficient 0.592 0.562 0.501 ; 0.642 0.630 0.580
rms 12.224 13.304 16.152}10.682 11.098 13.127
average absolute difference  6.746  7.749 9.206 { 6.033 6.743 7.862
worst case difference 136.62 117.72 81.952{123.74 94.275 68.363

=entropybased difference 0.282 0.382 0.520 { 0.234 0.299 0.390




)
Fig. 5.3.6. Fourier spectra of the reference object: (a), "squares” with dp = 10%, and (b), "ellipses” with
op's as in Table 5.3.7.
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Fig. 5.3.7. The subtraction, from the Fourier spectrum of "squares" in Fig. 5.3.6(a), of the Fourier
spectrum of the 60 projection image of: (a), IART of Fig. 5.3.3(a); (b), IART with filtered projections of
Fig. 5.3.3(b).



132

(®)
Fig. 5.3.8. The subtraction, from the Fourier spectrum of "squares” in Fig. 5.3.6(a), of the Fourier
spectrum of the 35 projection image of: (a), IART of Fig. 5.3.4(a); (b), IART with filtered projections of
Fig. 5.3.4(b).
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Fig. 5.3.9. The subtraction, from the Fourier spectrum of "squares” in Fig. 5.3.6(a), of the Fourier
spectrum of the 19 projection image of: (a), IART of Fig. 5.3.5(a); (b), IART with filtered projections of
Fig. 5.3.5(b).
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Set of experiments No. 2
Conditions:
- the "squares” reference image, Fig. 5.3.1;
- the difference in the attenuation, oL = 15% (the large square attenuation coefficient is
20 m'! and the small square attenuation coefficient is 23 m1);
- three sets of projections: 19, 35, 60;

- three assumed x-ray source intensity values: 102, 104, 106 emitted photons.

For all three values of the assumed x-ray source intensity, the reconstruction of the
"squares" reference image of Fig. 5.3.1. was performed. The input data included simulated
photon noise and consisted of three sets of parallel projections (19, 35, and 60) equally
spaced over 1800. For the case of IART with filtered projections, the projections were
filtered prior to being used by the reconstruction method via the windowing technique: A
generalized Hamming window with o = 0.8, 0.65, 0.54 was used to filter the noisy
projections when the x-ray source intensity was, respectively, 102, 104, 106 emitted
photons per measurement. All reconstruction images were evaluated using the quantitative
similarity measures of Eq.(5.2-1). Tables 5.3.4 - 5.3.6 display the reconstruction
outcomes for the x-ray source intensity of 102, 104, 106 emitted photons per
measurement, respectively. As one can notice, for the assumed x-ray source intensity of
100 emitted photons per measurement, the resulting reconstruction images from IART with
filtered projections were only slightly better from those produced by IART. This degree of
improvement can hardly be noticed by a human eye when comparing two reconstruction
outputs. Therefore, there are no reconstruction images included. For 102 emitted photons
per measurement intensity levels of the x-ray source, too high a noise level was obtained.
Figs. 5.3.10 - 5.3.12 display the reconstruction images for the x-ray source intensity of

104 emitted photons pr measurement for 60, 35, and 19 projections, respectively. As in the
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previous case, for comparison, each of these figures displays two reconstruction images
from two cases: (a), IART, and (b), IART with filtered projections.

After studying the numbers presented in the tables and the reconstruction images, we
can again conclude that filtering noisy projections improves the reconstruction image:
Correlation coefficient values calculated for IART with filtered projections are increased
compared to those calculated for IART and all the other measures (rms, average absolute
value, worst case difference, entropy based difference) are less in value then their IART
counterparts; Although it is difficult to see the enhancement in the 60 projection IART
image with filtered projections, the improvement in the appearance of the 35 and 19
projection reconstruction images is noticeable.

Figs. 5.3.13 - 5.3.15 display the subtraction images for (a), IART, and (b), for
IART with filtered projections, outputs from the subtraction of Fourier spectra similarity
measure. Again, while it is difficult to judge on the improvement for the 60 projection
image of IART with filtered projections, for the 35 and 19 projections, the subtraction
images for IART with filtered projections clearly look better; i.e., the grey level is more

uniform, indicating better closeness to the reference image spectrum.
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Table 5.3.4. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares” reference image from simulated noisy projection data. Case: Jdu = 15%,
source intensity = 106 emitted photons per measurement.

JART IART with filtered

projections

Quantitative error measures ~ Number of projections | Number of projections

19 35 60 19 35 60

correlation coefficient 0.984 0.982 097510985 0.983 0.977
ms 1.752 1.846 2.192 ; 1.736 1.810 2.142
average absolute difference  1.031 1.150 1.403 { 1.004 1.112 1.344
worst case difference 7.050 6.118 4.515 7.000 5.933 4.425

entropy based difference 0.014 0.012 0.014 ; 0.011 0.009 0.010
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Table 5.3.5. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares" reference image from simulated noisy projection data. Case: ou = 15%,
source intensity = 104 emitted photons per measurement.

JART IART with filtered

projections

Quantitative error measures ~ Number of projections | Number of projections

19 35 60 19 35 60

correlation coefficient 0.969 0.960 0.941 t 0.974 0.968 0.955
rms 2.439 2.808 3.492 }2.242 2483 2.979
average absolute difference  1.503 1.784 2.232 | 1.411 1.617 1.958
worst case difference 9.118 9.970 8.530 { 9.667 9.748 7.952

_entropy based difference 0.023 0.023 0.031 { 0.023 0.024 0.028
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Table 5.3.6. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the

"squares" reference image from simulated noisy projection data. Case: dp = 15%,
source intensity = 102 emitted photons per measurement.
IART IART with filtered
projections
Quantitative error measures.  Number of projections { Number of projections
19 35 60 19 35 60
correlation coefficient 0.594 0.570 0.493 { 0.645 0.635 0.566
rms 12.411 13.290 16.442}10.843 11.176 13.532
average absolute difference  6.837 7.797 9.107 : 6.118 6.782 7.805

worst case difference

_entropy based difference

136.68 86.243 147.32

0.281 0.372 0.512

123.76 77.387 139.52
0.234 0.290 0.383




139

®)

Fig. 5.3.10. Reconstruction of the reference image "squares” from 60 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, difference in attenuation coefficients = 15%.
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Fig. 5.3.11. Reconstruction of the reference image "squares” from 35 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source

intensity = 104 emitted photons per measurement, difference in attenuation coefficients = 15%.
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Fig. 5.3.12. Reconstruction of the reference image "squares” from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 10 emitted photons per measurement, difference in attenuation coefficients = 15%.
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(®)
Fig. 5.3.13. The subtraction, from the Fourier spectrum of "squares” with du = 15%, of the Fourier

spectrum of the 60 projection image of: (a), IART of Fig. 5.3.10(a); (b), IART with filtered projections of

Fig. 5.3.10(b).
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Fig. 5.3.14. The subtraction, from the Fourier spectrum of "squares" with o = 15%, of the Fourier
spectrum of the 35 projection image of: (a), IART of Fig. 5.3.11(a); (b), IART with filtered projections of
Fig. 5.3.11(b).
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Fig. 5.3.15. The subtraction, from the Fourier spectrum of "squares" with oL = 15%, of the Fourier
spectrum of the 19 projection image of: (a), IART of Fig. 5.3.12(a); (b), IART with filtered projections of
Fig. 5.3.12(b).
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Set of experiments No. 3
Conditions:
- the "ellipses" reference image, Fig. 5.3.2;
- the difference in the attenuation, dy, is listed in Table 5.3.7;
- three sets of projections: 19, 35, 60;

- the assumed x-ray source intensity is 104 emitted photons per measurement.

Table 5.3.7. The reference image "ellipses”. Attenuation coefficients of the constituent ellipses.

Ellipses Attenuation Difference in
coefficient i [m1] | attenuation
coefficient o [%]*

a 20 -

b 26 30

c 26 30

d 26.4 32

e 27 35

f 26 30

g 26 30

h 27 35

i 26 30

dne 334 67

dnc 324 62

fAe 32 60

The difference in the attenuation coefficient was calculated with regard to the basis ellipse "a" that has
the attenuation coefficient of water at 60 keV.
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For the assumed x-ray source intensity of 10* emitted photons per measurement, the
reconstruction of the "ellipses” reference image of Fig. 5.3.2. was performed. The input
data included simulated photon noise and consisted of three sets of parallel projections (19,
35, and 60) equally spaced over 1800. For the case of IART with filtered projections, the
projections were filtered prior to being used by the reconstruction method. The windowing
technique with the generalized Hamming window (o = 0.65) was used. Reconstruction
images from 60, 35, and 19 projections are displayed in Figs. 5.3.16 - 5.3.18,
respectively. As before, every figure displays two reconstruction images from two cases:
(a), IART, and (b), IART with filtered projections.

All reconstruction images were evaluated using the quantitative similarity measures of
Eq.(5.2-1). Results are presented in Table 5.3.8. Analysis of the results indicates that, as
in the two previous cases, there is an improvement due to the use of the noise filtering
operation on the projection data: The correlation coefficient values calculated for IART with
filtered projections are greater than those of IART, and the other measures (rms, average
absolute value, worst case difference, entropy based difference) are less than their IART
counterparts. The reconstruction images from IART with filtered projections although still
noisy in appearance, show improvement compared to the ones using IART alone.

All the reconstruction images were also evaluated using the qualitative measure of the
subtraction of Fourier spectra: The spectra of the reconstruction images of
Figs. 5.3.16 - 5.3.18 were subtracted from the spectrum of the reference image "ellipses”
in Fig. 5.3.6 (b). Results are displayed in Figs. 5.3.19 - 5.3.21: All the subtraction
images for IART with filtered projections have a less noisy appearance than the ones for
IART which is suggestive of better similarity to the reference image. The most dramatic
improvement can be noticed for the 35 projection case. Here, the subtraction image for
IART with filtered projections shows even the beginning of the clearance of the center

region, which is indicative of a good fidelity reconstruction (see Chapter IV).
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Fig. 5.3.16. Reconstruction of the reference image “ellipses” from 60 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 10# emitted photons per measurement, difference in attenuation coefficients as in Table 5.3.7.
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Fig. 5.3.17. Reconstruction of the reference image "ellipses” from 35 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emitted photons per measurement, difference in attenuation coefficients as in Table 5.3.7.
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Fig. 5.3.18. Reconstruction of the reference image "ellipses” from 19 parallel projections with simulated
photon noise equally spaced over 1800: (a), IART, and (b), IART with filtered projections. X-ray source
intensity = 104 emited photons per measurement, difference in attenuation coefficients as in Table 5.3.7.
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Table 5.3.8. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
“ellipses” reference image from simulated noisy projection data.

IART IART with filtered

projections

Quantitative error measures ~ Number of projections { Number of projections

19 35 60 19 35 60

correlation coefficient 0.976 0954 0.934 §{ 0.982 0975 0.959
ms 2426 3440 4245 2.083 2476 3.175
average absolute difference  1.255 1.797 2.205 { 1.136 1.387 1.776
worst case difference 10.800 10.715 13.150f 9.000 7.695 8.167

entropy based difference 0.029 0.053 0.074 § 0.026 0.027 0.036=




®)
Fig. 5.3.19. The subtraction, from the Fourier spectrum of "ellipses” in Fig. 5.3.6(b), of the Fourier

spectrum of the 60 projection image of: (a), IART of Fig. 5.3.16(a); (b), IART with filtered projections of
Fig. 5.3.16(b).
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(®)
Fig. 5.3.20. The subtraction, from the Fourier spectrum of "ellipses” in Fig. 5.3.6(b), of the Fourier

spectrum of the 35 projection image of: (a), IART of Fig. 5.3.17(a); (b), IART with filtered projections of
Fig. 5.3.17(b).
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®)
Fig. 5.3.21. The subtraction, from the Fourier spectrum of "ellipses" in Fig. 5.3.6(b), of the Fourier

spectrum of the 19 projection image of: (a), IART of Fig. 5.3.18(a); (b), IART with filtered projections of
Fig. 5.3.18(b).
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5.4. Discussion and Conclusions

In this chapter, the preliminary study has been conducted on the applicability of filtering
the projection data prior to using it in an iterative reconstruction procedure. Interpolative
Algebraic Reconstruction Methods were used as a representative of an iterative method.
Two reference objects with simulated attenuation coefficient values were considered: a
simple one that consisted of two different size superpositioned squares, and a more
complicated one consisting of a number of ellipses. Projections were calculated to simulate
the collection of data affected by photon noise. The number of projections was limited to at
most 60. Projections were of parallel geometry and equally spaced over 1800.

The results obtained were consistent and confirm the advantage of using filtered
projections as the input data in an iterative method (IART). Generally, all calculated
quantitative similarity measures showed improvement in quality for the reconstruction
images from IART with filtered projections compared to from IART on raw (noisy) data
(Tables 5.3.1 - 5.3.6, 5.3.8): All, but correlation coefficients, were less in value for IART
with filtered projections, which indicated that the reconstruction images more closely
matched the reference image (see Section 5.2). The correlation coefficients were greater
than those of IART, which also was symptomatic of the better quality reconstruction
image.

As for visual evaluation, in general, all reconstruction images from IART with filtered
projections were brighter and looked smoother. Images with a small difference in the
attenuation coefficient of the constituent objects (Figs. 5.3.3 - 5.3.5) showed visible
improvement in quality for the x-ray source intensity of 100 emitted photons per
measurement. Images with a difference in the attenuation coefficient of 15% and greater
showed minimal (not noticeable by eye) improvement in quality for this level of x-ray
source intensity. For the x-ray source intensity of 104 emitted photons per measurement,

reconstruction images from both IART and IART with filtered projections were very noisy,
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and for the differences in the attenuation of 10%, hardly recognizable. When the difference
was 15% and greater, the improvement was observable in reconstruction images from 35
and 19 projections (Figs. 5.3.11 - 5.3.12) of the reference object "squares”, and in all
images of the reference "ellipses” (Figs. 5.3.16 - 5.3.18).

Results from using the qualitative measure, the subtraction of Fourier spectra, were
also in favor of the images produced by IART with filtered projections. On the whole, they
appeared less noisy, displaying a more uniform grey level indicative of a close match to the
reference image.

The Fourier subtraction images are not smooth ones and to detect small differences in
them is not always easy. In fact, the rougher they are the tougher it is to pick out small
differences when comparing them. The 60 projection case produced the least smooth
subtraction images and, indeed, the images were the most difficult to judge on
improvement. The most impressive enhancement was observed for the 35 projection case
for the reference image "ellipses". The subtraction images are quite illustrative as far as the
presence of the different level noise is concerned. When comparing the subtraction images
for the intensity of an x - ray source of 106 and 104 emitted photons per measurement, it
is evident how much more noise is present in the latter (compare Figs. 5.3.7 - 5.3.9 and
5.3.13 - 5.3.15).

Iterative methods converge to a solution through repeated backprojection: at first, of the
input data, next, of the projections calculated from an intermediate image. Therefore, if the
input projections are noisy, the intermediate image they produce will be affected by noise.
This in turn, gives rise to the distorted projections calculated from the intermediate image.
The following backprojection to produce an updated intermediate image will carry on and
may amplify further the distortion due to the noise. As this sequence is repeated many times
by an iterative procedure, the resulting reconstruction image may be more affected the more
iterations are required to produce it. The amount of noise present in the reconstruction

image also will magnify with the increased number of projections, since each is
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contributing more noise. (Compare images from 60 and 35 projections: Figs. 5.3.16 and
5.3.17; also Figs. 5.3.3 and 5.3.4.)

Real data contains noise. To make iterative methods successful in reconstruction of real
data, we need to suppress the noise to increase the fidelity of a reconstruction image. The
simulation study of this chapter, although limited in the number of experiments, shows that
results from an iterative reconstruction method can be improved by filtering the projection

input data before processing it by the reconstruction method.



CHAPTER VI
EVALUATION OF OUTCOMES FROM IART AND FBP
RECONSTRUCTION METHODS. COMPARISON

6.1. Evaluation and Comparison of Reconstruction Images

From Different Number of Projections. IART

Let us take a closer look at Tables 5.3.1 and 5.3.8 of the previous Chapter V and
compare the numbers with the corresponding reconstruction images. We will also analyze
the results obtained from using the qualitative measure of the subtraction of Fourier spectra.
Our objective is to verify that the results of calculated similarity measures are illustrative of
visual impression. We are interested in comparing IART images from different numbers of
projections. We will consider images produced from three different sets of projections: 19,
35 and 60, as indicated in the tables.

From Table 5.3.1:

TART: Results of the rms and the average absolute difference suggest that the
reconstruction image from 19 projections is the best. This is not in agreement with the
worst case difference and the entropy based difference measures that single out the image
from 35 projections as the one that is the best. The correlation coefficient points out at
images from 19 and 35 projections as the best ones bearing the same degree of resemblance
to the reference image.

IART with filtered projections: All measures, except the worst case difference, single
out the image from 35 projections as the best one.

From visual evaluation of corresponding reconstruction images from

Figs. 5.3.3 - 5.3.5:
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TART: The inferiority of the 19 projection image is obvious; The image apart from
containing noise is blurred. The 60 projection image seems to be the best one: Although
noise in it is more apparent than in the 35 projection image, it looks sharper with more
distinct outlines.

IART with filtered projections: As in the IART case, the 19 projection image is the
worst: Although noise is visibly suppressed, compared to its IART counterpart, blur is still
present. As for the best image, the one from 60 projections seems to be the choice: It has a
sharp appearance, noise is suppressed and contrast is the best.

Results of the analysis of the Fourier subtraction images (Figs. 5.3.7 - 5.3.9) show:

IART and IART with filtered projections: The 60 projection reconstruction image is the
best one: The clearance around the center is of the greatest radius which is indicative of the
best match; i.e., the largest percent of the energy spectrum of the reconstruction image
agrees with the corresponding one of the reference image.

When analyzing results from Table 5.3.8:

TART: The majority of similarity measures (correlation coefficient, rms, average
absolute difference and entropy based difference) point out at the 19 projection image as
being the best.

IART with filtered projections: As in the IART case, the 19 projection image is
suggested as the best by all but the worst case difference similarity measures.

From visual evaluation of corresponding images from Figs. 5.3.16 - 5.3.18:

IART: The 19 projection reconstruction image is the worst one; the 35 projection image
shows very low contrast. The 60 projection reconstruction image looks most clear and
seems to be the best, although it is very noisy.

IART with filtered projections: Here, the 35 projection reconstruction image looks
superior to the others. The 19 projection image is again the worst one.

Examination of the subtraction images (Figs. 5.3.19 - 5.3.21) suggests:
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IART: The 60 projection reconstruction image is the best one: The corresponding
subtraction image (Fig. 5.3.19 (a)) displays the center region of the largest radius.

IART with filtered projections: The subtraction image for 35 projections shows the
beginning of the clearance around the center. It also displays a more uniform grey level in
the image as a whole. These suggest that the corresponding reconstruction image is the best
match with the reference image.

To summarize the above: In both cases, visual evaluation of the reconstruction images
was in disagreement with the results of the quantitative similarity measures.

From the above results, we can make tentative conclusions that the use of quantitative
similarity measures to images of an iterative reconstruction method from the different
number of projections fails.

In contrast, using the qualitative similarity measure of the subtraction of Fourier
spectra, produced results that were always in agreement with the visual evaluation of the

reconstruction images.

6.2. Evaluation and Comparison of Reconstruction Images

From Different Number of Projections. FBP

As a "standard" for the simulation experiments from the previous chapter, the Fourier
Backprojection (FBP) reconstruction method with the Shepp-Logan kernel, was used.
Tables 6.2.1 and 6.2.2 display the results of the evaluation of FBP reconstruction images
of the reference images "squares" and "ellipses”, respectively. Figs. 6.2.1 - 6.2.6 show the
corresponding reconstruction images. The reconstruction images of "squares" were
produced for the difference in the attenuation coefficient of 10% and for the assumed x-ray
source intensity of 106 emitted photons per measurement. The reconstruction images of

"ellipses" were produced for the x-ray source intensity of 104 emitted photons per
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measurement. In both cases, the images were produced for three sets of 19, 35 and 60
parallel projections equally spaced over 1809.

Let us compare the numbers, representative of the quantitative similarity measures, in
the tables with visual impression from the corresponding reconstruction images to verify if
they match. We will also use the qualitative measure, the subtraction of Fourier spectra. As
in the previous section, we are interested in the comparison of images from different
number of projections.

From Table 6.2.1, all similarity measures indicate that the 60 projection image as the
best. This is in agreement with the visual evaluation of corresponding images
(Figs. 6.2.1 - 6.2.3). Figs. 6.2.4 - 6.2.6 display the subtraction images for the
reconstruction images of Figs. 6.2.1 - 6.2.3, respectively, obtained by subtracting the
Fourier spectra of the reconstruction images from the Fourier spectrum of the reference
image "squares" in Fig. 5.3.6(a). From their examination, we can conclude that the 60
projection reconstruction image is the best one: It has the largest radius of the central region
suggesting the best resemblance to the reference image.

When analyzing Table 6.2.2, the results suggest the 60 projection image as being the
best, and this is also confirmed by the results from the visual evaluation
(Figs. 6.2.7 - 6.2.9). The results of the subtraction of Fourier spectra similarity measure
are presented in Figs. 6.2.10 - 6.2.12. The images were obtained by subtracting the
Fourier spectra of the reconstruction images of Figs. 6.2.7 - 6.2.9 from the Fourier
spectrum of the reference image in Fig. 5.3.6(b). The subtraction image for the 60
projection case displays the largest central clearance region indicative of the best
reconstruction image. This is in agreement with the above results from the quantitative
measures and the visual evaluation.

To sum up the above results, we can conclude that using both, quantitative and
qualitative, similarity measures to compare reconstruction images from different number of

projections performs well for the Fourier Backprojection method. The subtraction images
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of the qualitative measure look similar for the reconstruction images from the different
number of projections. However, with the increased number of projections, the central

clearance region widens which is suggestive of the improvement in the reconstruction.
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Table 6.2.1. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction images of the
"squares” reference image from simulated noisy projection data. Case: op = 10%,
source intensity = 106 emitted photons per measurement.

FBP

Quantitative error measures ~ Number of projections

19 35 60

correlation coefficient 0.893 0.964 0.981
rms 5.332  3.193 2.600
average absolute difference  3.416 2.408 2.120
worst case difference 23.257 12.525 7.170

Table 6.2.2. Computed quantitative similarity measures of Eq. (5.2-1) for the reconstruction
images of the "ellipses” reference image from simulated noisy projection data.
X-ray source intensity = 104 emitted photons per measurement.

FBP

Quantitative error measures ~ Number of projections

19 35 60

correlation coefficient 0.916 0.956 0.975
ms 4932 3.598 2.864
average absolute difference  3.878 2.842 2.250
worst case difference 11.823 10.680 7.745
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Fig. 6.2.1. The FBP reconstruction of the reference image “squares" from 60 parallel projections with
simulated photon noise equally spaced over 1809, X-ray source intensity = 105 emitted photons per
measurement; difference in the attenuation coefficient = 10%.

Fig. 6.2.2. The FBP reconstruction of the reference image “squares” from 35 parallel projections with
simulated photon noise equally spaced over 1800, X-ray source intensity = 106 emitted photons per
measurement; difference in the attenuation coefficient = 10%.
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Fig. 6.2.3. The FBP reconstruction of the reference image "squares” from 19 parallel projections with
simulated photon noise equally spaced over 1809, X-ray source intensity = 108 emitted photons per
measurement; difference in the attenuation coefficient = 10%.

Fig. 6.2.4. The subtraction of the Fourier spectrum of the 60 projection FBP image from the Fourier
spectrum of "squares” in Fig. 5.3.6(a).
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Fig. 6.2.5. The subtraction of the Fourier spectrum of the 35 projection FBP image from the Fourier
spectrum of "squares” in Fig. 5.3.6(a).

Fig. 6.2.6. The subtraction of the Fourier spectrum of the 19 projection FBP image from the Fourier
spectrum of "squares” in Fig. 5.3.6(a).
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Fig. 6.2.7. The FBP reconstruction of the reference image "ellipses” from 60 parallel projections with
simulated photon noise equally spaced over 180V. X-ray source intensity = 10% emitted photons per
measurement; difference in the attenuation coefficient as in Table 5.3.7.

Fig. 6.2.8. The FBP reconstruction of the reference image “ellipses” from 35 parallel projections with
simulated photon noise equally spaced over 1800, X-ray source intensity = 104 emitted photons per
measurement; difference in the attenuation coefficient as in Table 5.3.7.
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Fig. 6.2.9. The FBP reconstruction of the reference image "ellipses”" from 19 parallel projections with
simulated photon noise equally spaced over 180Y. X-ray source intensity = 104 emitted photons per
measurement; difference in the attenuation coefficient as in Table 5.3.7.

Fig. 6.2.10. The subtraction of the Fourier spectrum of the 60 projection FBP image from the Fourier
spectrum of “ellipses” in Fig. 5.3.6(b).
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Fig. 6.2.11. The subtraction of the Fourier spectrum of the 35 projection FBP image from the Fourier
spectrum of "ellipses” in Fig. 5.3.6(b).

Fig. 6.2.12. The subtraction of the Fourier spectrum of the 19 projection FBP image from the Fourier
spectrum of "ellipses” in Fig. 5.3.6(b).
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6.3. Evaluation and Comparison of Reconstruction Images
From IART and FBP

In this section, we will examine if using the quantitative and qualitative similarity
measures is applicable when comparing outputs from different reconstruction methods. We
will compare reconstruction images from two different kinds of algorithms: IART, an
iterative and nonlinear method; and Fourier Backprojection (FBP), a single step linear
method that utilizes the Fourier transformation. Absolute values of the reconstruction
images resulting from these methods are different in a sense that IART produces an image
of only positive values, while an FBP image contains both positive and negative values.
This property makes it impossible for the entropy based difference (see Eq.(5.2-1)) to be
used as a quantitative comparative measure as it requires for an image to be composed of
only positive values, and therefore, we cannot use it for the FBP image.

Tables 6.3.1 - 6.3.2 display the cumulative results (IART, IART with filtered
projections and FBP) from using the quantitative similarity measures on the reconstruction
images of the reference images "squares" and "ellipses", respectively.

Examination of Table 6.3.1 suggest, for all three sets of projections, the choice of the
images from IART with filtered projections as the best ones. Correlation coefficients
calculated for IART with filtered projections images have the greatest values while all the
other measures (rms, average absolute value, worst case difference) have the least values
compare to their IART and FBP counterparts. Visual evaluation of the corresponding
reconstructions (Figs. 5.3.3 -5 and 6.2.1 - 6.2.3) confirms the results: IART with
filtered projections images produced from the 19 and 35 projections
(Figs. 5.3.4(b), 5.3.5(b)) are sharper with better delineated contours and better contrast
compared to their FBP counterparts (Figs. 6.2.2 - 6.2.3). For 60 projections, the FBP
reconstruction image (Fig. 6.2.1) is slightly worse than the one from IART with filtered

projections (Fig. 5.3.3(b)). But it also looks smoother and the noise is less apparent.




Table 6.3.1. Cumulative quantitative similarity measures of Eq. (5.2.1) for reconstruction images of the "squares” reference image from simulated noisy
projection data. Case: oL = 10%, source intensity = 109 emitted photons per measurement.

IART with filtered
IART projections FBP
Quantitative error measures  number of projections number of projections number of projections

19 35 60 19 35 60 19 35 60

correlation coefficient 0.984 0984 09751} 0.987 0.990 0.987 | 0.893 0.964 0.981
rms 1737  1.749 2.194 { 1.556 1.400 1.573 i 5332 3.193 2.600
average absolute difference  1.005 1.076 1.374 { 0.868 0.061 1.008 | 3.416 2.408 2.120
worst case difference 6.792 5355 5975} 6.615 4305 3.470 123257 12.525 7.170
entropy based difference 0.011 0.008 0.011 { 0.011 0.008 0.009 - - -

0LT



Table 6.3.2. Cumulative quantitative similarity measures of Eq. (5.2.1) for reconstruction images of the "ellipses" reference image from simulated noisy
projection data. Source intensity = 104 emitted photons per measurement.

Quantitative error measures

IART with filtered
IART projections FBP
number of projections number of projections number of projections

19 35 60

19 35 60

19 35 60

correlation coefficient

rms

average absolute difference
worst case difference

entropy based difference

0.976 0.954 0.934
2.426 3.440 4.245
1.255 1.797 2.205
10.800 10.715 13.150
0.029 0.053 0.074

0.982 0.975 0.959
2.083 2476 3.175
1.136 1.387 1.776
9.000 7.695 8.167
0.026 0.027 0.036

0916 0.956 0.975
4932 3.598 2.864
3.878 2.842 2.250
11.823 10.680 7.745

IL1
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The analysis of the corresponding subtraction images (Figs.5.3.7 - 5.3.9 and
Figs. 6.2.4 - 6.2.6) confirms the results of Table 6.3.1: The subtraction images for the
IART with filtered projections have the center region more uniform. The differences from
the reference spectrum are more in the form of salt and pepper rather than of whole regions
of different contrast. This is especially observable for the 19 and 35 projection images as
the subtraction image for the 60 projection FBP image is very close in the appearance to the
one for IART with filtered projections.

Analysis of Table 6.3.2 indicates that while for 19 and 35 projections, reconstruction
images from IART with filtered projections are the best, for 60 projections, the FBP
reconstruction image is the finest. For 60 projections, the correlation coefficient of the FBP
image is the highest, while for the other two sets of projections, 19 and 35, the correlation
coefficients of the images of IART with filtered projections have the greatest values. Other
measures, except for the worst case difference for the 60 projections, confirm results of the
correlation coefficients. Visual impression from looking at the corresponding
reconstruction images (Figs. 5.3.16 - 18 and 6.2.7 - 9) is in agreement with the results
of Table 6.3.2: Figs. 6.2.7, 5.3.17(b), and 5.3.18(b) are the best reconstructions of the
reference image "ellipses” from the 60, 35, and 19 projections, respectively. From the
analysis of the corresponding subtraction images (Figs. 5.3.19-5.3.21 and
6.2.10 - 6.2.12), the subtraction image for the IART with filtered projections for the 19
projections shows the increased radius of the center region with less prominent streaks
along the projection directiops compared to its counterpart for FBP. The same comment
applies to the subtraction images for the 35 projections. For 60 projections, the subtraction
images look very much different and while the one for IART with filtered projections is in
the form of a cloud, brighter in the center and darker towards the border, the corresponding
one for FBP displays the clearance around the center. To sum up, the above qualitative

results are not obvious in a choice of the better image.
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In review, quantitative similarity measures that can be used when comparing results
from linear and nonlinear reconstruction methods. The applicability of using them was
confirmed on the reconstruction images of the two reference images: "squares" and
"ellipses". The reconstruction images were produced by an iterative, nonlinear method,
IART, and by a linear method, FBP.

The results from using the subtraction of Fourier spectra similarity measure were
positive for the reconstruction images of the reference image "squares”, while for the

"ellipses” reference image were inconclusive.

6.4. Discussion and Conclusions

Evaluation of reconstruction images has always been a problem. There is no standard
way of doing it. Quantitative criteria are convenient to use as they express the closeness of
two images in the form of a number. By comparing numbers, we can determine the
superiority in quality of one reconstruction image to another. The problem with the
quantitative criteria is that the majority of them concentrate on the evaluation of one specific
feature of an image. Therefore, it is common practice to use several of them when making a
choice on a better reconstruction image.

In this chapter, we have analyzed the applicability of quantitative criteria as evaluation
measures for the comparison of reconstruction images from the different number of
projections. This is something new, as usually, the evaluation is done on images produced
from the same number of projections [Herman, 1972], [Herman, 1973a], [Heffernan,
1983], [Oskoui, 1989], [Ollinger, 1988], [Suzuki, 1988], [Cho, 1975]. In our study, we
have used images from an iterative method, IART, and Fourier backprojection. The results
obtained suggest that it is possible to evaluate FBP reconstruction images using the
quantitative similarity measures. Unfortunately, we cannot use them to successfully

evaluate images from the IART reconstruction method. Although results from only one



174
iterative method are insufficient to reach any final conclusions, tentative conclusions can be
made based on the analysis of the results. Our finding implies that using quantitative
similarity measures for images from an iterative reconstruction method would fail when we
would compare reconstruction results from the different number of projections.

The study was complemented by verifying the use of the quantitative measures when
making a choice between two different reconstruction methods (linear and nonlinear).
IART was used as a representative of the nonlinear methods, and FBP as a representative
of the linear reconstruction methods. The analysis included the comparison of the
reconstruction images for the three sets of projections (19, 35, and 60). Our findings were
consistent, and confirmed the applicability of using the quantitative measures to compare
images of linear and nonlinear reconstruction methods.

In addition, throughout our study, another similarity measure of the qualitative nature
was used, the subtraction of the Fourier spectra. Results from it are displayed in the form
of subtraction images that are basically nonsmooth and represent the disagreement between
the reconstruction and the reference energy spectra. Comparison of the reconstruction
images from the different number of projections in both cases, IART and FBP, gave results
that were positive, i.e. in agreement with the visual evaluation of the corresponding
reconstruction images. Since IART and FBP were used as the representatives of different
groups of reconstruction methods (nonlinear and linear, respectively), therefore, we can
expect that the above results possibly can be extended to all methods of these groups. But
this requires confirmation.

When the subtraction images were used to look for the best reconstruction from IART
and FBP reconstruction images from the same number of projections, the results were not
consistent: The results obtained were positive for one reference image, "squares", while in
the case of the "ellipses” reference image, the subtraction images were not conclusive.

The interpretation of subtraction images is not always straightforward. It is much easier

to compare the subtraction images for the methods that belong to the same group because
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the spectra they produce have similar appearance. When we deal with images from different
reconstruction methods that have different spectra, the interpretation of subtraction images

requires some experience.



CHAPTER VII
MATCHING RECONSTRUCTION TECHNIQUE. A NEW
PROPOSAL

7.1. Introduction

Recently, a new method, Image Correlation Technique (ICT), has been introduced
[Mazur, 1992b], [Mazur, 1992c]. The method, by matching two images of the same
object, taken before and after the deformation, recovers the deformation that the object has
undergone. The method treats the images as a whole and uses only the intensity pattern
distribution and the geometrical relationship between the images to find the transformation
of the body coordinates that uniquely connects different stages of the deformed object. The
ICT method is essentially an iteration method equipped with the Boltzmann decision
apparatus [Kirkpatrick, 1983], [Aarts, 1989]. It starts from an undeformed configuration
of pixels (the reference image) and through a series of deformations arrives at the
deformation that is close or the same as the deformation represented by the pixels of the
second image (the deformation image). By doing this, the method emulates the real
deformation through a sequence of simulated deformations. Each intermediate deformation
is generated at random, tested how far it falls from the destination deformation, and
accepted or rejected based on the Boltzmann decision apparatus. The process terminates if
the correlation function no longer increases and fluctuates with a certain amplitude.

This thesis would like to introduce a new reconstruction algorithm, Matching
Reconstruction Technique (MRT), that is based on the similar optimization simulated

annealing technique. In the following section the formulation of the method is given.
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7.2. Matching Reconstruction Technique

List of Important Symbols

Symbol Meaning

D number of detectors of a projection
F optimization constant

I(k,]) intensity of the (k,/ )'th element of a

reconstruction matrix

Lnax maximum intensity of a reconstruction
matrix

M size of a square reconstruction matrix
M x M)

N number of projections

* . . -

Djj for the intermediate image, calculated
reading of the j"th detector of the i"th
projection direction

p; reading of the j"th detector of the i"th
projection direction

T temperature-like parameter to control the

optimization process

To explain how the method works, let us place the image in three-dimensional space,
where the image pixel coordinates are stored in the xy plane, and the third dimension
represents the grey scale intensities of the image. The image itself can be viewed as a
surface in this space. Let us assume that change in the intensity of an arbitrarily chosen
pixel (let us call it a seed pixel) always induces intensity changes of all surrounding pixels.

The pattern of the changes as well as the amplitudes are weighed by the distance from the
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seed pixel. We can make an analogy to a canopy: When one of the supporting poles is
raised (or lowered) the whole canopy is effected. However, the change is different for
different parts.

In the next step the result of the intensity modification in the reconstruction image is
checked against the set of projections taken from the reference image/object. If the change
satisfies the acceptance criterion, a new image is retained. The reconstruction process is
complete when a similarity measure computed for the latest reconstruction images fluctuates
with a certain amplitude and shows no improvement of the reconstruction fidelity.

In the remaining part of this section, we will expand this general idea of MRT to
include more details.

The following three steps are repeated until a system arrives at the solution.

Step 1: At random we select:

- a pixel I(i, ), called the seed pixel;

- a direction of intensity change d; such that
Al(i,j)e{-1,1};

- two numbers, R, P , from the open interval (0,1);

- R¢ from the open interval (0, M )

Then, we change the intensity of every pixel of a reconstruction matrix from its actual value

I (m,n) to a new value I *(m, n ) from the interval (/;ax, 0):

I*mn) =I(mn) + Al (m,n) (7.2-1)
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L.—I(mn) , -
where: opzy K if 4;>0 (7.2-2)

Al (m,n)=

~I(m,n) .
R i d;<0

and z=(m‘iy*4”;ff (7.2-3)
@+@)

Step 2: Following the random change in intensity from step 1, we evaluate
the cost function C (our measure of similarity that involves temporary and original

projections) and make a decision

N D i
2. X PiPi
C = i=1j=1
N D LN[ED 5 [ND 5
ln(1+22|1’ij ~ P INZ Z(I’ij) \/ 22(1711) (7.2-4)
i=1j=1 i=1 j=1 i=1j=1

We accept the change if C increases. If C decreases we may accept it only if the probability
P (C) is greater than the random number P chosen in step 1. This conditional decision is
essential as it provides a means for escaping from local minima throughout the process of

simulated annealing optimization.

ifAC >0 step is accepted (7.2-5)
ifAC £0 andP(C)>P step is accepted
ifAC £0 and P (C)<P stepisnot accepted
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where P(C)=exp [- ETQ——I ] (7.2-6)

Step 3: The optimization terminates if C no longer increases and fluctuates
with a certain small amplitude. This criterion helps to determine if we have obtained the
best possible fidelity of the reconstruction.

For a single value of the temperature-like parameter, T, all three steps are repeated
many times. The temperature-like parameter assures the control of the process and itself is a
subject to the change according to a cooling scheme, Eq. (7.2-7). As T decreases along
the optimization process, the decision algorithm , Eqs.(7.2-4)-(7.2-5), accept fewer
intensity changes that lead to the refinement of the solution. Traditionally the total number
of trials at each temperature-like parameter level, , is kept constant.

The cooling schedule can take many different forms. Below, we present the simplest

form [Aarts, 1989]:

Tk =0 Tk—l (7°2'7)

where the value of o is from the interval (0.8 -1).

The method was implemented on a Macintosh computer. Preliminary, successful
results consist of a reconstruction of a simple reference object (Figs. 7.2.1(b) and
7.2.1(a), respectively). The object matrix was 10 x 10 pixels in size. Input data included

10 parallel beam geometry projections equally spaced over 1800.
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Fig. 7.2.1 (a), reference image and (b), its MRT reconstruction from 10 parallel beam projection directions
equally spaced over 1800,
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7.3. Concluding Remarks

Presented reconstruction method uses the simulated annealing technique that is totally
different from the commonly used approaches to reconstruct an object. The reconstruction
process is based on random changes of intensities/grey levels of the reconstruction matrix
elements/pixels. Every accepted modification of the reconstruction matrix forms an
intermediate image that is like a term in a sequence converging to the solution.

The change in the intensity at a particular pixel location is always accompanied by
intensity changes of all surrounding pixels that make up the reconstruction image. The
magnitude of changes is weighted by the distance, choice of the optimization constant F, as
well as by the random selection (parameter Ry ). Such an approach presents the advantage

of influencing and controlling the smoothness of a reconstruction image. The lowest value

of Ry +F corresponds to the highest contrast that can be assigned to adjacent pixels.

When R f is zero, the optimization constant F alone sets this value.

It is probably true that in order to get the same quality of the reconstruction image, the
proposed method requires fewer projections than other reconstruction methods. Moreover,
this method should be readily applicable to the difficult cases of reconstructing from
projections from limited angles. This is because there is no dependency of the cost function
on the projection angle nor on the number of projections.

Coordinated adjustment of all pixels introduces smoothness into the reconstruction that
is not necessarily accompanied by loss of contrast (blurring). In fact, the opposite might be
true for the smoothness of the reconstruction and a broad range of the algorithm flexibility
may result in considerable reduction of the reconstruction noise.

To its disadvantage, the proposed method requires much computer time. In addition it

still requires refinement and further investigation of its capability.



CHAPTER VIII
CONCLUSIONS AND FUTURE WORK

Incomplete data is an annoying problem in computed tomography. Generally, it refers
to the loss of some detector readings (truncated projections), a whole sector of missing
projections, or when we deal with a limited number of projections. In industry the
incomplete data problem arises mainly due to, say, an obstruction [Gordon, 1985]. In
clinical CT, Medoff has shown that the problem originates when opacities are present in the
object being examined [Medoff, 1987]. Looking for the reconstruction method that would
produce the best fidelity image has been a subject of extensive studies [Chu, 1988],
[Gore, 1980], [Grunbaum, 1980], [Hanson, 1982}, [Hanson, 1983], [Inouye, 1979],
[Inouye, 1982], [Lewitt, 1979], [Medoff, 1983], [Nassi, 1982], [Ogawa, 1984],
[Ollinger, 1990], [Oppenheim, 1977], [Peng, 1989], [Peres, 1979], [Reeds, 1987],
[Sankar, 1982], [Sezan, 1984], [Tam, 1981], [Tam, 1981a], [Tato, 1981], [Tuy, 1984],
[Wagner, 1979], [Wood, 1979].

ART has been proven to work well with the incomplete projection data and authors use
its approach in different implementations or use the algorithm as a reference method to
evaluate the reconstruction results [Oskoui-Fard, 1988], [Andersen, 1989], [Peng, 1989].
As a main disadvantage of using ART techniques, it has been pointed out the computational
effort in the calculation of the weighting coefficients required in the ray-sum calculation of
the projection process. IART, which this thesis introduced, is an answer to the solution of
this problem. It solves this problem not only for the parallel beam geometry but more
importantly, for the radiation beam of any shape including a fan and a 3-dimensional cone

beam, i.e., beams that are more likely to be used in practice. In addition, the reconstruction
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images obtained are less noisy. The examples of the reconstructions in Section 2.1.4
demonstrated the applicability of the method for any shape of the radiation beam.

IART, as all iterative methods, is sensitive to noise. To make the method work
successfully on real data that always contains noise, we have worked on noise removal
from projection data before using it by the method. The improvement in the image quality
was obtained when the projections were filtered using a windowing technique. Even better
improvement is expected to be obtained when this technique is used to filter not only the
projection data prior to use it by the reconstruction method, but also during the
reconstruction process itself. Namely, we suggest that the projections calculated from an
intermediate image should be filtered as well. The intermediate image that is produced at
every iteration cycle is contaminated with noise from the noisy projections that produce it.
Consequently, the projections taken from it are going to be distorted and produce even
more noise in the following intermediate image. The situation worsens with every iteration
step. We think that additional filtering at every iteration cycle should alleviate the noise
problem and improve the quality of the reconstruction image.

The approach that has been used to relate pixels to the projections, makes the
calculations less burden for the computer memory and also, as it has been shown in Section
2.1.4, makes it realistic for the iterative methods to be used on real data that, at present, is
mostly produced by a fan beam. Furthermore, for IART, it eliminates errors due to the
discretization characteristic for ART algorithms (see Section 2.1.5), [Andersen, 1974],
[Andersen, 1989]. This novel method, that was used to relate pixels to the projections, can
be used with any iterative method. Simultaneous Iterative Reconstruction Technique
(SIRT) [Gilbert, 1972], [Oppenheim, 1977], is an example of another algorithm, that was
formulated to overcome ART's weakness. It makes changes to the pixel estimate by using
data from all projections simultaneously, and therefore exhibits more uniform convergence.
Its disadvantage though, is a slow rate of convergence. Gilbert [Gilbert, 1972] reported on

SIRT's better performance compared to ART in the presence of errors in the projection
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data. Andersen [Andersen, 1989] tested the usefulness of the method in a study where a
sequence of four iterations of an ART based method (SART) was followed by several
iterations of the SIRT. He saw no further convergence being achieved this way. For the
purpose of further studies, it would be advisable to use the IART approach of relating
pixels to the projections and include the SIRT method in further studies. Similarly, all
operations of noise removal from the projection data, including the filtering operation
during the reconstruction process itself, should be applicable as well.

Two-dimensional detector arrays call for a cone beam geometry. The novel approach
presented by this thesis to relate pixels to the projections is readily applicable to this
geometry.

Another new reconstruction method suitable for all the cases of the incomplete data
problem is presented in Chapter VIL. The method uses the simulated annealing technique
and is totally different from the commonly used approaches to reconstruct an object. The
reconstruction process consists of random changes of grey levels of the reconstruction
matrix elements/pixels. Every change produces a new image that is checked against the
input set of projections for fidelity to the reference object. The reconstruction process is
complete when there is no longer any improvement in the image quality. This method has a
good chance to be successful for all the difficult cases of incomplete data including the one
of the very limited number of projections, because of the reconstruction process itself and
the similarity measure that we suggest (cost function). As it has been pointed out in Section
7.3, the cost function was formulated as to be not dependent on the projection directions
nor on the number of projections. It produces a sharp peak when a match, of the original
and computed projections occurs. The method has been verified by preliminary
experiments. Further study should concentrate on the refinement of the method based on
results from its implementation to the various cases of incomplete data. The proposed
method requires extensive computations. Therefore, it should be implemented on fast

computers.
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In Chapter VI, a comparative study on reconstruction images was performed. The
objective was the applicability of quantitative criteria and the qualitative criterion of the
subtraction of Fourier spectra of images (reconstruction from reference) as similarity
measures. In the study, a new approach was used, as compared images were obtained
using the same reconstruction method but from different number of projections. The
images used were from a nonlinear, iterative method, IART, and from a linear one, Fourier
backprojection. The results obtained suggest that it is possible to compare FBP
reconstruction images using the quantitative similarity measures. Unfortunately, we cannot
use them to successfully evaluate and compare images from the IART reconstruction
method. The outcome from using the qualitative measure of the subtraction of Fourier
spectra, though, in both was positive, i.e., in agreement with the visual evaluation of the
corresponding reconstruction images. As the study included only two reconstruction
methods, it would be desirable to repeat the analysis on images from a few more methods
to confirm the results.

The same chapter also covers the comparison of reconstruction images from the same
number of projections but resulting from different reconstruction methods. Again, IART
and FBP reconstruction methods were used. This study showed positive results from using
the quantitative similarity measures, while the results produced by the subtraction of
Fourier spectra were inconsistent, i.e. for the series of reconstruction images of the
"squares" reference object, the outcome was in agreement with the visual evaluation, while
for the series of images of the another reference image, "ellipses”, the Fourier subtraction
images were inconclusive. Further study including more diverse reference objects are
recommended.

This thesis work adds to the incomplete data problem studies. Reconstructions from the
limited number of projections and improvement of their quality was the major objective of

this study. The recommendations given above to continue future work are based on the
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results obtained and the experience gained. One more suggestion to make before

concluding would be to continue research into this subject.
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