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Abstract

Classical multiconductor transmission line (MTL) theory is valid for infinitely-long, uniform

transmission lines whose cross sectional dimensions are very small compared to the minimum

wavelength. Therefore, non-uniformities such as bends, crossings, conductors of different

lengths, or electrically distant conductors are not represented in classical MTL models.

The proposed scattering based coupling (SBC) method, which uses electromagnetic

scattering theory to model mutual coupling between conductors, has been used to model

differently-lengthed and electrically distant parallel conductors. Scattered field transmission

line (SFTL) model which regards both self and mutual fields to be scattered fields, has

been used to model lossless, frequency-independent conductors, that crosses each other at

variable crossing angles and for bent conductors at variable bending angles. The SBC and

SFTL models have been compared with full-wave thin wire and full-wave, 3D-FEM solvers,

respectively.
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Chapter 1

Introduction

1.1 Motivation

Transmission lines play a vital role in a power system by transmitting electrical energy over

large distances. In addition to the power frequency voltage, transient over-voltages produced

by various causes including switching operations, lightning strikes, and short circuit faults,

also get transmitted through transmission lines [1]. These transients can cause damage to

power system components which are connected via transmission lines and result in massive

repair and/or replacement costs. Transients travelling in power lines can also induce electro-

magnetic interference on other power lines and communication lines in close proximity [2,3].

Therefore, it is essential to accurately model a transmission network in order to understand

the transient behaviour of a power system at the design stage as well as, during operation

and fault identification.

The widely used method to include transmission lines in power system, electromagnetic

transient (EMT) type simulation models is to use multi-conductor transmission line (MTL)
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Scattering Based T-Line Model 1.2 Problem Definition and Conventional Solutions

theory based on the Telegrapher’s equations and transverse electromagnetic (TEM) mode

of propagation [4]. Apart from power transmission lines, MTL models are also used to

analyse a wide variety of structures ranging from transformer windings to interconnects of

an electronics chip [5–7]. However, since the TEM mode is only valid for a system of infinitely

long, uniform conductors [4], classical MTL theory cannot be used to model non-uniformities

in wire structures [8].

As transmission networks keep expanding, lines in them tend to interact more with

other power lines and communication networks in close proximity, influencing the transient

behaviour of each other. Therefore, more detailed modelling has become a necessity in order

to understand the transient behaviour of a transmission line network.

1.2 Problem Definition and Conventional Solutions

Non-uniformities that can cause interference on the transmission network such as bends in

transmission lines or crossings between two power lines or a power line and a communication

line, as shown in Fig. 1.1, appear frequently in power systems. Full-wave electromagnetic

analysis done on bus-bars in gas insulated switchgear (GIS) in [9] shows a reflected current of

approximately 0.1 times of the original excitation occurring at a 90◦ bend. As transmission

networks keep expanding, more such non-uniformities get added to the network. However,

current EMT simulation models for transmission lines are unable to represent these situ-

ations. Apart from such situations pertinent to power transmission lines, cases where the

coupled wires are not of equal length, and/or where they are placed electrically distant from

each other (but close to ground) frequently happen in transformer windings and microstrip

circuits which again cannot be represented using classical MTL models. Therefore, to an-

- 2 -
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(a) (b)

Fig. 1.1: A schematic of a (a) power line bend and (b) crossing.

alyze the crosstalk between wires of such cases an enhancement to the classical model is

required.

Although, the most accurate method to model these situations is to use full-wave tech-

niques [10–12], they are computationally cumbersome, which makes them hardly compatible

with power system simulation tools. Most of these techniques are in frequency-domain and

time-domain implementation is usually performed using numerical techniques such as three

dimensional finite element method (FEM) and finite-difference time-domain (FDTD). Most

of the research done in the field of electro-magnetics in this regard, have been on high

frequency applications and therefore do not possess closed form equations to represent non-

uniform structures [13,14]. Here, high frequencies are where the transverse dimensions of the

line are comparable with the minimum significant wavelength of the exciting electromagnetic

field [15]. Not having closed form solutions, introduces the requirement of iterative methods

to arrive at a solution which is undesirable for power system transient simulators.

- 3 -
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1.3 Objective of the Thesis

The objective of this thesis is to develop methods to include these non-uniformities into

transmission line models while preserving their computational simplicity. As mentioned

in the previous section, since the Telegrapher’s equations are unable to incorporate any

non-uniform cross-section, electromagnetic scattering theory has to be used to determine

the governing equations of the exciting electromagnetic field. Scattering theory allows to

incorporate the change in electromagnetic fields close to a non-uniformity.

Electromagnetic scattering equations, in their raw form, have integral terms which do

not have an analytical solution and therefore are computationally complex. This research fo-

cusses on simplifying the initial formulae developed using scattering theory into closed-forms,

by taking into account the typical geometrical and frequency characteristics of transmission

lines. The developed models are to be implemented into a finite-difference-time-domain

(FDTD) [4, 8] algorithm, so that they can be integrated in EMT simulators.

1.4 Research Contributions

The contributions of this thesis are as follows:

• Development of a scattering based coupling (SBC) model which is a closed-form frequency-

domain model to solve parallel conductors of different lengths and electrically distant

conductors. Time-domain results have been obtained using the inverse Fourier Trans-

form.

• Comparison of SBC model with a commercial thin-wire, full-wave solver (Numerical

Electromagnetic Code - NEC) [16].

- 4 -
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• Development of a scattered field transmission line (SFTL) model which is a closed-form

time-domain model for transmission line crossings and bends for lossless, frequency

independent conductors.

• Implementation of the developed model using a 1D-FDTD algorithm, which is suitable

to be integrated into EMT simulators.

• Comparison of SFTL model with a 3D, full-wave, finite-element (FEM) solver

1.4.1 Publications

Work conducted on the SBC model was submitted to and presented as a conference paper

at Progress In Electromagnetic Research Symposium (PIERS) - 2018. The main focus of

the paper was on the development of a closed-form model for parallel conductors of dif-

ferent lengths, placed electrically close or far from each other, and comparison of results

with full-wave theory. This paper received the Best Student Paper Award in the subcat-

egory for Computational Electromagnetics, Electromagnetic Compatibility, Scattering and

Electromagnetic Theory and the Young Scientist Award at the conference.

A journal paper based on the SFTL model has been prepared to be submitted to IEEE

transactions on power delivery. This paper includes the development of the SFTL model for

transmission line crossings, implementation of the developed model using a FDTD algorithm

and comparison of the obtained results with those obtained using full-wave theory.

1.5 Thesis Outline

This thesis is divided in to 4 chapters as defined below:

- 5 -
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Chapter 1: Introduction, background information, problem definition and existing so-

lutions, objectives, and contributions.

Chapter 2: Literature review of this study completed on classical MTL models, their

limitations, non-uniform line models based on MTL theory and scattering theory.

Chapter 3: Development of the scattering based coupling MTL model for electrically

distant conductors with different lengths, and comparison of it’s results with full-wave theory.

Chapter 4: Development of the scattered field transmission line model for finite-length,

transmission line crossings and bends. Discussion on the FDTD algorithm for solving the

developed equations is presented and the results obtained from the developed model are

compared with full-wave theory.

Chapter 5: Conclusion of this thesis project, with a discussion on future work.

- 6 -
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Chapter 2

Literature Review

2.1 Classical MTL Models

For a wire structure as shown in Fig. 2.1, classical multi-conductor transmission line (MTL)

equations are obtained assuming a transverse electro-magnetic (TEM) field structure. In

the TEM mode, the electric and magnetic fields are assumed to exist only on the transverse

plane which is perpendicular to the axis of the wire and wave propagation is assumed to

occur only along the wire axis. The MTL equations in the frequency-domain are given by [4]

d

dz

⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ = −

⎡
⎢⎣Z 0

0 Y

⎤
⎥⎦
⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ (2.1)

where

Z = R+ jωL

Y = G+ jωC.

V (z, jω) and I(z, jω) are the voltage and current vectors at any location z. The matrices

R,L,G and C are the per unit length (PUL) resistance, inductance, conductance and

- 7 -



Scattering Based T-Line Model 2.1 Classical MTL Models
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Fig. 2.1: TEM mode in a multi-conductor system.

capacitance matrices, respectively. The PUL impedance (Z), and admittance (Y ) matrices

in these equations are assumed to be fixed along the length of the line and are calculated for

the cross-section of a uniform, infinitely-long transmission line.

The simplicity of MTL models, compared to full-wave analysis, where waves propagate in

a three dimensional space, and the availability of an analytical solution allowed these models

to be used for frequency-domain analysis of transmission lines, as early as, in 1950’s [17].

The solution for (2.1) can be obtained using its analogy to state-variable formulation and

are given by [4]

⎡
⎢⎣V (z)

I(z)

⎤
⎥⎦

2n×1

=

[
Φ(z − z0)

]
2n×2n

⎡
⎢⎣V (z0)

I(z0)

⎤
⎥⎦
2n×1

(2.2)

- 8 -
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where,

[Φ(z)]2n×2n = eAz

and

A =

⎡
⎢⎣ 0 −Z
−Y 0

⎤
⎥⎦ .

In (2.2), z and z0 are the two ends of the length of a segment of the line. Φ is commonly

known as the chain-parameter matrix in transmission line theory [4].

In the 1970’s, considerations of the electromagnetic compatibility (EMC) community, of

how the communication networks would react to an external electromagnetic pulse [17], lead

to an important development in the MTL theory. Incident field excitations were added to

the classical MTL equations in (2.1) as [18–20],

d

dz

⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ = −

⎡
⎢⎣Z 0

0 Y

⎤
⎥⎦
⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦+

⎡
⎢⎣VF (z, jω)

IF (z, jω)

⎤
⎥⎦ (2.3)

where VF (z, jω) and IF (z, jω) are the distributed incident voltage and current. Solution for

these equations are given by.

⎡
⎢⎣V (z)

I(z)

⎤
⎥⎦ =

[
Φ(z − z0)

]⎡⎢⎣V (z0)

I(z0)

⎤
⎥⎦+

∫ z

z0

[
Φ(z − z ′)

]⎡⎢⎣VF (z
′)

IF (z
′)

⎤
⎥⎦ dz ′. (2.4)

In the late 1970’s, with the development of digital electronics, an interest for time-domain

analysis aroused [17], which involved the solution of,

d

dz

⎡
⎢⎣V (z, t)

I(z, t)

⎤
⎥⎦ = − d

dt

⎡
⎢⎣L 0

0 C

⎤
⎥⎦
⎡
⎢⎣V (z, t)

I(z, t)

⎤
⎥⎦ (2.5)
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ik,m(t)

ik(t− τ)

Z0vk(t)

im,k(t)

im(t− τ)

Z0 vm(t)

Fig. 2.2: SPICE equivalent circuit for a single-conductor, loss-less transmission line.

For loss-less lines as described in (2.5), an analytical solution is achievable, while in

the case of lossy transmission lines there is no such solution [4]. With the development of

SPICE software, an equivalent circuit model with distributed L and C, has been developed

and implemented for lossless lines as explained in [4]. Fig. 2.2 depicts the SPICE circuit

model for a single conductor loss-less line. m and k refer to the two ends, and Z0 to the

characteristic impedance of the line. Here, single conductor refers to one conductor with

ground as the return path. In this circuit model the terminal voltage and current at one end

of the line at a particular time (t) can be computed using the terminal voltage and current

of the other end of the line.

This mechanism paved the way for circuit simulators to analyse transients in transmis-

sion lines in the time-domain. Incorporation of losses is approximated by adding lumped

resistances at the two ends as well as the middle of a lossless transmission line as shown in

Fig. 2.3 which can be reduced to the original form as Fig. 2.4. This model is well known as

Bergeron’s model [21] and is commonly used in EMT type simulators [22, 23].

Classical MTL theory has its own limitations owing to the assumptions on which it is

based on. The assumption that every cross-section, including the terminals, have the same

Z and Y characteristics, limits the application of classical MTL theory only to parallel
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ik,m(t)

1
4
R

i′k,m(t)

i′k(t− τ)

Z0vk(t) Z0

1
2
R

im(t− τ)

ik(t− τ)

Z0

im,k(t)

1
4
R

i′m,k(t)

i′m(t− τ)

Z0 vm(t)

Fig. 2.3: Inclusion of losses to the SPICE equivalent circuit.

ik,m(t)

ik(t− τ)

Z0 +
1
4
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im,k(t)

im(t− τ)

Z0 +
1
4
R vm(t)

Fig. 2.4: Bergeron’s model for a lossy single-conductor transmission line.
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conductors spanning the same length. The TEM mode of propagation, assumes the coupling

between conductors is instantaneous and therefore, all conductors should be electrically

close (maximum cross-sectional dimension should not exceed 0.1 of the highest frequency

wavelength) in order for the MTL theory to be valid. Therefore, classical MTL models are

unable to simulate a non-uniformity occurring at a particular location on a transmission

line. In other words, current power system EMT models assume the transmission lines to

be straight conductors with no excitation from external sources.

2.2 Non-uniform line models based on transmission

line theory

As mentioned in the previous section, the MTL equations assume a uniform structure and

non-varying PUL parameters with space. However, in a case where the cross sectional

format changes along the line, such as in bends, crossings and other non-uniformities, the

PUL parameters become functions of the position variable and cause the MTL equations to

take the format of [4]

d

dz

⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ = −

⎡
⎢⎣Z(z) 0

0 Y (z)

⎤
⎥⎦
⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ . (2.6)

These resulting non-uniform transmission line (NTL) equations are very difficult to solve due

to the non-constant coefficients. The common way to handle such a situation is to divide the

non-uniform line into a cascade of uniform sections [4]. However, this approach is applicable

only for some geometries and in some cases it can cause unwanted reflections if the transition

between sections is not smooth enough.
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Ametani et al. have used the approach above to model non-parallel transmission lines

above ground [24]. In this work, two non-parallel conductors have been modelled as a

cascade of multiple parallel sections as shown in Fig. 2.5. The impedance and admittance of

each section have been calculated using Carson-Pollaczek’s impedance and space admittance

[25, 26] formulae which assume the conductors are infinitely long. Cases where the inter-

connections between sections are represented as short circuits, (Fig. 2.5a), and as vertical

transmission line segments (Fig. 2.5b) have been analyzed. The interconnections have been

assumed to have zero coupling with the other conductor (conductor a in Fig. 2.5b). As

discussed in the paper, segmenting the inclined wire changes its length and affects its travel

time if not addressed properly. The perpendicular connections between sections have also

found to be adding unwanted oscillations due to reflections, since they appear as distinct

discontinuities along the line. Cascaded uniform-lines have been successfully used in [27] for

modelling exponentially and linearly tapered lossy transmission lines.

In [28,29] Ametani et al. have developed a closed-form, space dependent PUL impedance

for a finite-length inclined line above ground, based on the method of images [30]. The study

shows that the PUL impedance gradually drops as we get closer to end of the transmission

line due to the lowering of conductors to connect to the substation bus. In [31], the closed-

form formula developed in [28] has been used to model two non-parallel conductors in free

space, and a single inclined conductor above ground using a 3D-FDTD solver.

A non-uniform, lossless, exponential transmission line has been modelled in the time-

domain in [32]. An equivalent circuit has been developed with the intention of including the

developed model in an EMT-type simulator. An exponential transmission line is explained

as a transmission line having governing equations in the frequency-domain as,
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conductor a

conductor b

section 1

section n

(a)

conductor a

conductor b

section 1

section n

vertical segments

(b)

Fig. 2.5: Ametani’s representation of non-parallel transmission lines (a) with and (b)
without vertical segments [24].
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dV (z)

dz
= −jωL0e

qzI(z) (2.7a)

and

dI(z)

dz
= −jωC0e

−qzV (z) (2.7b)

where L0 and C0 are PUL inductance and capacitance at z = 0 and q is the decaying factor.

However, an exponential line is a special case of non-uniform transmission lines which not

only has analytical PUL parameters but also has an analytical solution in the frequency-

domain. Other such cases where an analytical solution is attainable are binomial, power

law and Hermite transmission lines [33–35]. However, there are numerous other cases where

closed-form PUL parameters and/or analytical solutions might not be available due to the

complexity of the electromagnetic fields generated and the geometry of the transmission line.

A frequency-domain model for non-uniform transmission lines with known PUL param-

eters which can be represented by converging Taylor series has been developed in [36]. An

analytic solution in frequency-domain for tapered transmission lines with triangular and

exponential characteristic impedances has been obtained in [37]. In [38], an iterative and

adaptive perturbation technique for the analysis of non-uniform transmission lines has been

presented where the space dependent variations of the p.u.l parameters have been interpreted

as perturbations with respect to their average values. In all of the above researches, the ex-

istence of a closed-form function to represent PUL parameters has been critical for arriving

at a solution analytically or numerically.

Finite-Difference Time-Domain (FDTD) methods [39] have been widely used to solve

many electromagnetic problems including full-wave models [29,40]. Single-dimensional FDTD

as explained in [4], where the MTL equations are discretized in both time and space, is a
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common way of handling lossy and non-uniform transmission lines. Lossy lines have been

modelled using FDTD in [41–43]. Watanabe et al. has developed an FDTD model for

a single conductor transmission line with known space-varying cross-sectional dimensions

in [44]. An efficient FDTD algorithm which does not require the Courant-Friedrich-Levy

(CFL) stability condition [4] has been presented for lossy, non-uniform lines in [45].

Unlike Bergeron’s method, the FDTD method doesn’t need to decouple MTLs before

solving, which makes the formulation simple and easier to implement. Inclusion of non-

uniformities as space varying PUL parameters is straight-forward since the total length is

descretized into small segments. Differential terms in the MTL equations are handles using

finite difference methods. Frequency dependent cases can also be analysed by recursive con-

volutions as explained in [46]. In [46], Kordi et al. has also integrated the developed FDTD

model for a frequency dependent transmission line into a power system EMT-simulator.

This suggests that FDTD is a viable candidate for implementing non-uniform transmission

lines in EMT-type simulators, provided that the non-uniformities could be represented in

closed-forms, or at least as recursive convolutions.

2.3 Non-uniform Line Models Using Scattering Theory

As explained in the previous section, not much effort has been made on including non-uniform

transmission lines into power system EMT-type simulators. However, non-uniformities on

transmission lines, such as bends, junctions, or crossing have continuously been a subject of

interest in the electromagnetic compatibility (EMC) community since they occur frequently

in electromagnetic devices. Most models found in the literature in this regard are built on

electromagnetic scattering equations in the frequency-domain.
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A source connected directly or an incident field can cause currents and charges to flow

in a conductor. These currents and charges can in turn create another electric and magnetic

field which are referred to as scattered fields. The scattered electric field produced by a

thin-wire of length � can be expressed in terms of vector and scalar potentials as [15],

Es = −jωA−∇Φ (2.8)

with

A(r) =
μ

4π

∫ �

0

I(z ′)âzg (r, r ′) dz ′

and,

Φ(r) =
1

4πε

∫ �

0

ρ(z ′)g (r, r ′) dz ′

where z ′ is the length variable along the axis of wire, r = xâx + yây + zâz is the position

vector of the observation point and r ′ is the position vector of the source. I(z ′) and ρ(z ′)

are the current and charge density along the wire. g (r, r ′) is the scalar Green’s function

which will be explained in the next sections. It is a common practice in scattering problems

to select r ′ to be on the wire axis and r to be on the wire surface or further as shown in Fig.

2.6 to avoid singularity in the Green’s function [47]. Scattering equations are not uniform in

space as Telegrapher’s equations, which makes them applicable for more general cases. How-

ever, they generally do not possess an analytical solution and therefore are computationally

cumbersome.

Kami et al. has proposed a frequency-domain coupling model for crossing, thin-wire,

two-conductor transmission lines over perfect electrical conducting (PEC) ground in [48].

Each conductor has been modelled using the Taylor’s coupling model [18]. The mutual
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r ′
r

I(z ′)

origin

Fig. 2.6: Placement of source point and observation point in a scattering problem.

coupling between conductors has been included using the incident fields as,

− d

dzi

⎡
⎢⎣V (zi, jω)

I(zi, jω)

⎤
⎥⎦ =

⎡
⎢⎣jωLi 0

0 jωCi

⎤
⎥⎦
⎡
⎢⎣V (zi, jω)

I(zi, jω)

⎤
⎥⎦+

⎡
⎢⎣ jωAe

zi
(zi, x = hj)

−jωCiΦ
e(zi, x = hj)

⎤
⎥⎦ (2.9)

where i and j refer to the two conductors, and Ae and Φe to the external scalar and vector

potential created by the nearby conductor in the absence of the considered conductor. Elec-

tromagnetic scattering theory under thin-wire approximation and low frequency has been

used to derive the incident electric and magnetic fields. Equations have been solved based

on the assumption that the re-coupling from the line under induction (acceptor line) is negli-

gible compared to the self excitation on the exciter line. This would consider any reflections

occurring on the exciter line at the point of crossing to be zero. However, according to the

study done in this thesis project using full-wave solvers, it is evident that the exciter line

can contain reflections of considerable amplitude depending on the distance of gab between

conductors crossing each other.

Using the same approach as above, a frequency-domain model for an arbitrarily directed

- 18 -



Scattering Based T-Line Model 2.3 Non-uniform Line Models Using Scattering Theory

system of thin-wires has been developed in [49] as

⎡
⎢⎢⎢⎢⎣
Vi(0)

Ii(0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cos β�i jZ0 sin β�i

j
1

Z0

sin β�i cos β�i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Vi(�i)

Ii(�i)

⎤
⎥⎥⎥⎥⎦

+

n∑
j=1,j �=i

∫ �j

0

⎡
⎢⎢⎢⎢⎣

cos βz ′ jZ0 sin βz
′

j
1

Z0

sin βz′ cos βz ′

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
VFj

(z ′)

IFj
(z ′)

⎤
⎥⎥⎥⎥⎦ dz ′

(2.10)

where, ⎡
⎢⎢⎢⎢⎣
VFj

(z ′)

IFj
(z ′)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−jω
∫ h

0

(
∂Axj

∂z
+

∂Azj

∂x

)
dx ′

Ci

(
ω2

∫ h

0

Axj
dx ′ +

Δ ·Aj

με

∣∣∣x ′=h

x ′=0
.

)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which has been used in [50] to model bent multi-conductor thin-wire systems. This formula-

tion also includes the coupling from the risers that are connected to the terminals. Coupling

terms of these models, which have been obtained using scattered fields are in the integral

form that do not have a closed-form and therefore are not compatible with circuit simulators.

Both these models consider the self excited propagation in each line to be of TEM mode, and

only the coupling is modelled using scattering theory. For better accuracy, other researchers

have developed full-scattering models to handle these non-uniformities.

Tkatchenko et al. have developed transmission-line-like equations for a finite-length line

above PEC ground in [13] using the scattering theory. Under the assumption that the electric
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and magnetic fields only lie on the transverse plane we can write,

âz ·Es = 0 (2.11)

where âz the unit vector in z direction, and Es is the scattered electric field. Using the

equations given in (2.8) and (2.11) the field-to-transmission-line equations for a finite length

wire of length � has been obtained as [13]

dV (z)

dz
+ jω

μ

4π

∫ �

0

g (z, z ′) I(z ′)dz ′ = Es
z(h, z) (2.12a)

d

dz

∫ �

0

g (z, z ′) I(z ′)dz ′ + jω4πεV (z) = 0. (2.12b)

In (2.12), Es
z(h, z) is the incident electric field at the height of the wire h. It is explained

that at low frequencies equations (2.12a) and (2.12b) can be simplified into well-known

Telegrapher’s equations for regions which are not close to the terminals. Here, low frequencies

are where k · h � 1. h is the height of the conductor from the ground and k is the wave

number related that is to the angular frequency ω by k = ω/c. However, the regions within

2h distance from the ends, deviate from the TEM mode. Since the purpose of the research

in [13] has been on analyzing field coupling at high frequencies, the scattering equations have

not been simplified from their original form. The integral terms in (2.12) that includes the

scalar Green’s functions does give a more accurate representation compared to the constant

PUL parameters in Telegrapher’s equations. However, they do not have a closed-form and

therefore, an iterative method based on the perturbation theory has been used to arrive at

solutions in the frequency-domain.

In [14], a similar model for a single-conductor line with a bend (of variable angle) has been
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developed by the same researchers, that also uses an iterative method to arrive at a solution

in the frequency-domain. Chunfei et al., in [51], have developed a non-uniform transmission

line approach for modelling bends starting from the scattering equations in the frequency-

domain. The scattering equations are simplified to space-varying PUL parameters. However,

as discussed in [51], the PUL parameters need to be calculated using numerical integration or

exponential integration, which are both computationally inefficient than having an analytical

solution.

2.4 Summary

Classical MTL models are being widely used for the transient analysis of transmission lines in

EMT-type simulators owing to their simplicity and availability of analytic solutions. Classical

models assume transmission lines to have a uniform cross-section along their entire span. On

the other hand real transmission lines contain non-uniformities such as bends and crossings.

Modelling of non-uniform transmission lines is a challenging task since their governing

equations do not have analytical solutions except for a few special cases. However, if the

non-uniformities can be expressed in terms of closed-form functions, numerical techniques

such as FDTD can be used to solve them in time-domain.

Non-uniform wire structures can be accurately formulated using scattering theory, but

they contain integral terms that do not possess analytical solutions in their raw form. Most

scattering models are aimed for high-frequency applications and therefore do not simplify

their integrals, and instead use iterative methods to arrive at the solution in the frequency-

domain.
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Chapter 3

Scattering Based Coupling (SBC)
Model

In this chapter the development of a frequency-domain model for parallel conductors of

different lengths and electrically distant conductors is presented. The frequency-domain

solution of the developed model is obtained analytically, while the time-domain solution is

obtained using the inverse Fourier transform. In the proposed model, each conductor of

an MTL is modelled as a single-conductor transmission line (STL) and the coupling from

the other conductors is included into the STL equations as external electric and magnetic

fields. The solution of all STL equations are combined into a system of matrix equations

whose structure is similar to that of an MTL model with a chain parameter matrix as

explained in [50]. Closed-form formulae for parallel conductors are obtained which has

the same computational complexity of a classical MTL model. Incorporation of terminal

constraints is done similar to MTL models. Scattering theory is employed to model the

coupling from external fields. The proposed model is used to model three cases of two

parallel, lossless conductors above PEC ground. Results obtained using the proposed model

are presented along with those obtained using numerical electromagnetic code (NEC).
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3.1 Representation of the Mutual Coupling as Incident

Fields

Using Taylor coupling model, the transmission line equations for a conductor with incident

field excitation are given by [18]

dVi(z)

dz
+ jωLiIi(z) = −jω

∫ h

0

Binc
y dx ′ (3.1a)

and

dIi(z)

dz
+ jωCiVi(z) = −jωCi

∫ h

0

E inc
x dx ′ (3.1b)

where Vi(z) and Ii(z) are voltage and current at any position z, and Li and Ci are per unit

length inductance and capacitance of the ith line. Binc
y and E inc

x are the incident magnetic

and electric fields due to other conductors of the MTL. The magnetic and electric fields can

be represented using magnetic vector potential using Lorentz gauge [30] using [8]

B = ∇×A (3.2)

E =
1

jωμε
∇2A− jωA. (3.3)

Using (3.2) and (3.3), (3.1) can be re-written and simplified as

dVi(z)

dz
+ jωLiIi(z) = jωAinc

z,z

∣∣∣x ′=hi

x ′=0
(3.4a)

and

dIi(z)

dz
+ jωCiVi(z) =

Ci

με

(
∂Ainc

z,z

∂z
+

∂Ainc
y,z

∂y

)∣∣∣x ′=hi

x ′=0
. (3.4b)
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Here, Ainc
m,n is the incident magnetic vector potential on the ith wire, m direction, at z = n.

Incident magnetic field in this case is the magnetic field generated by the other wires in the

structure. The frequency-domain solution to 3.4 is explained in the next section.

3.2 Frequency Domain Solution

The frequency domain solution of (3.4) for the ith conductor of length �i can be expressed

in matrix form as [50]

⎡
⎢⎢⎢⎢⎣
Vi(0)

Ii(0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cos β�i jZ0 sin β�i

j
1

Z0

sin β�i cos β�i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Vi(�i)

Ii(�i)

⎤
⎥⎥⎥⎥⎦+
∫ �i

0

⎡
⎢⎢⎢⎢⎣

cos βz ′ jZ0 sin βz
′

j
1

Z0

sin βz′ cos βz ′

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
VF (z

′)

IF (z
′)

⎤
⎥⎥⎥⎥⎦ dz ′

(3.5)

where, ⎡
⎢⎢⎢⎢⎣
VF (z

′)

IF (z
′)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

jωAinc
z,z

∣∣∣x ′=hi

x ′=0

(
∂Ainc

z,z

∂z
+

∂Ainc
y,z

∂y

)∣∣∣∣∣
x ′=hi

x ′=0

.

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Equation (3.5), theoretically, can be implemented on a set of wires directed arbitrarily at

any direction, but is not likely to have a closed-form integral. However, for parallel wires of

different lengths, (3.5) can be simplified further to have a closed-form given by
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⎡
⎢⎢⎢⎢⎣
Vi(0)

Ii(0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cos β�i jZ0 sin β�i

j
1

Z0

sin β�i cos β�i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Vi(�i)

Ii(�i)

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

j√
LiCi

Ainc
z,�i

sin(β�i)

1

Li

(Ainc
z,�i

cos(β�i)− Ainc
z,0)

⎤
⎥⎥⎥⎥⎥⎦

x ′=hi

x ′=0

. (3.6)

Assuming a case of two parallel conductors (i and j) over a perfectly conducting ground,

the incident magnetic vector potential on wire i at a lengthm, can be obtained using scattered

field equation (2.8) and method of images as

Ainc
z ′,m =

μ

4π

∫ m+2hj

m−2hj

{(
e−jβRza

Rza

− e−jβRzb

Rzb

)
Ij(z

′)
}
dz′ (3.7a)

where,

Rza =

√
(z − z ′)2 + (x− hj)

2 + d2 (3.7b)

Rzb =

√
(z − z ′)2 + (x+ hj)

2 + d2. (3.7c)

In (3.7a), d is the distance between the two parallel conductors and Ii(z
′) is the current on

wire j at a length of z ′. The exponential terms refer to the scalar Green’s function related

to the scattered field generated by Ii. As evident form (3.7), at x ′ = 0 (i.e. the ground

level), the incident vector magnetic potential is zero. Graphical representation of (3.7b) and

(3.7c) is given in Fig. 3.1.

The integral limits in (3.7a) are chosen such that the couplings are consistent with those

of an infinitely long transmission line. Based on the decay of the scalar Green’s function,

it has been found that a current element can create a considerable coupling approximately

up to a distance of 2h from it [15]. Using (3.6), Ij(z
′) can be represented using terminal
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Fig. 3.1: Illustration of the method of images.

voltages and currents of wire 2 as

(3.8)

Ij(z
′) = j

Vj(�j)

Zj,0

sin(β (�j − z ′)) + Ij(�j) cos(β (�j − z ′))

+
1

Lj

(Ainc
z,�j

cos(β�j)− Ainc
z,z ′ cos(βz ′).

In (3.8), instead of incorporating a weak coupling between conductors [50] i.e. considering

only the first two terms on R.H.S of (3.8) we only neglect the last term. Therefore, we have

included a stronger coupling between the conductors that results in more accurate results.

Using (3.6), (3.7), and (3.8) a final expression for wire i is in the following format given

by

⎡
⎢⎣Vi(0)

Ii(0)

⎤
⎥⎦ =

[
Sii

]⎡⎢⎣Vi(�i)

Ii(�i)

⎤
⎥⎦+

[
Mij

]⎡⎢⎣Vj(�j)

Ij(�j)

⎤
⎥⎦ . (3.9)
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A similar expression can be obtained for wire j which can be combined with (3.9) to obtain

a matrix equation in the format of

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Vi(0)

Vj(0)

Ii(0)

Ij(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Φ

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Vi(�i)

Vj(�j)

Ii(�i)

Ij(�j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

which has the same structure of an MTL solution. Terminal constraints can be included

using the same procedure as explained in [4] for classical MTL models. Once the frequency-

domain solution is obtained, the time-domain solutions for various excitation waveforms can

be obtained using the Inverse Fourier Transform (IFT).

3.3 Results and Discussion

The proposed method is used to model parallel conductors having different lengths and

conductors placed electrically distant from each other above a PEC ground. Classical MTL

method do not have the capability to model both these cases. Obtained results are compared

with those from Numerical Electromagnetic Code (NEC). NEC is a thin-wire full-wave solver

that numerically solves an electric field integral equation [16]. Since NEC solves for the

frequency-domain current of each wire segment, time-domain terminal currents are obtained

using the inverse Fourier transform method. It should also be noted that NEC doesn’t

produce the DC response and therefore for comparison, excitation waveforms without a DC

component have to be used. However, NEC is widely used in the field of electromagnetics

due to its accuracy and availability. The results obtained using the proposed model for three
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cases of two lossless wires above PEC ground are presented in the following sections.

3.3.1 Parallel Conductors of Unequal Lengths

The purpose of this study was to understand whether the developed model can correctly

represent the different travel times in wires due to variation of length in wire. Cases where the

longer and shorter conductors are excited were implemented using the proposed method and

results have been compared with those obtained from NEC. Figure 3.2 shows the modelled

system of conductors where the longer wire is excited. The frequency responses of all terminal

currents of this case are given in Figs. 3.3 - 3.6 along with those obtained from NEC.

As explained earlier since NEC does not produce the DC response, an excitation with a

DC component could not be used for the comparison with time-domain results. Therefore,

the derivative of a Gaussian waveform whose full width at half maximum (FWHM) is 250

MHz was used as Vs so that the wires are electrically close to each other at all frequencies.

Figure 3.7 shows the frequency-domain and time-domain representations of the excitation

waveform and it seen from fig.3.7a that for all dominant frequencies of the selected waveform

the conductors are electrically close, which is 1.5 GHz. Figures 3.8 and 3.9 show the time-

domain results of sending and receiving end currents respectively, compared with results

obtained using NEC.

The same structure with the shorter wire excited, as shown in Fig. 3.10, is also analyzed.

Figure 3.11 and 3.12 show the time-domain results for sending and receiving end currents

of wire 1 and wire 2 compared with results obtained using NEC. As evident from the above

two cases, the proposed SBC model has been able to correctly simulate the different travel

times in conductors having different lengths.
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Fig. 3.2: System of conductors with the longer wire excited.
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Fig. 3.3: (a) Magnitude and (b) phase of the frequency-domain response of the sending
end current of the excited wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.4: (a) Magnitude and (b) phase of the frequency-domain response of the sending
end current of the victim wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.5: (a) Magnitude and (b) phase of the frequency-domain response of the receiving
end current of the excited wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.6: (a) Magnitude and (b) phase of the frequency-domain response of the receiving
end current of the victim wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.7: (a) Frequency-domain and (b) time-domain representations of the excitation
voltage (Vs) for time-domain analysis.
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Fig. 3.8: Sending end currents of the (a) excited conductor and (b) victim conductor vs
Time when the longer wire is excited obtained using the proposed model (SBC) and NEC.
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Fig. 3.9: Receiving end currents of the (a) excited conductor and (b) victim conductor vs
Time when the longer wire is excited obtained using the proposed model (SBC) and NEC.
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Fig. 3.10: System of conductors with shorter the wire excited.
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Fig. 3.11: Sending end currents of the (a) excited conductor and (b) victim conductor vs
Time when the shorter wire is excited obtained using the proposed model (SBC) and NEC.
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Fig. 3.12: Receiving end currents of the (a) excited conductor and (b) victim conductor vs
Time when the shorter wire is excited obtained using the proposed model (SBC) and NEC.
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3.3.2 Electrically Distant Parallel Conductors

Coupling between conductors in classical MTL models is assumed to be instantaneous and

therefore these models are unable to show the time delay occurring when a wave travels

through the medium from one conductor to the other one on the same cross-section. There-

fore, classical MTL models are only valid when all cross sectional dimensions are small

compared to the wavelengths of all frequencies of interest (hmax < 0.1λmin). However, as

(3.7a) depicts, the Green’s function in the coupling terms of the proposed SBC model con-

tains the delay occurring between conductors. Therefore the proposed model is capable of

modelling conductors which are placed electrically far away from each other (but close to

ground). It should also be noted that since the SBC model doesn’t take radiation into ac-

count, it would not be valid for gap distances between wires above which higher order nodes

start to propagate. However, there is no clear-cut gap distance for this to occur in open

systems like two-wire lines, while for most of the closed systems such as coaxial cables it

is usually around 0.5λmin [4]. Incorporation of radiation in the formulae, as in the electric

field integral equation used in NEC, requires the use of full-wave techniques to arrive at a

solution, which is computationally cumbersome.

Figure 3.13 shows the system of conductors placed 50 cm apart from each other. A

conventional MTL model will only be valid up to f0 = 60 MHz for such a system (also

MTL cannot model wires of different lengths). The frequency responses of the sending end

currents obtained using the proposed model are shown in Figs. 3.14 and 3.15 along with

those obtained using NEC. It can be seen that the proposed model is valid for frequencies

well above the upper limit of classical MTL model.

The derivative of a Gaussian waveform with a FWHM of 100 MHz was used as the

excitation waveform for the time-domain analysis which is shown in Fig. 3.16 in both the
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Fig. 3.13: System of conductors electrically distant for frequencies above 60 MHz.

frequency and time domains. As fig. 3.16a suggests, the excitation waveform has dominant

frequencies (dominant frequencies were taken as frequencies with more than 50% of the

highest magnitude) up to approximately 150 MHz.

Figures 3.17 and 3.18 show the sending end currents of the system respectively in the

time-domain. The proposed approach has been able to model the time-delay that occurs

during the coupling between wires placed electrically far away from each conductor.
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Fig. 3.14: (a) Magnitude and (b) phase of the sending end frequency-response of the
excited wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.15: (a) Magnitude and (b) phase of the sending end frequency-response of the
victim wire obtained using the proposed model (SBC) and NEC.
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Fig. 3.16: (a) Frequency-domain and (b) time-domain representations of the excitation
voltage (Vs) for time-domain analysis.
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Fig. 3.17: Sending end currents of the (a) excited conductor and (b) victim conductor vs
Time, obtained using the proposed model (SBC) and NEC.
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Fig. 3.18: Receiving end currents of the (a) excited conductor and (b) victim conductor
vs Time, obtained using the proposed model (SBC) and NEC.
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3.4 Summary

In this chapter an enhancement to the classical MTL model based on scattering theory

has been developed. In the developed scattering based coupling (SBC) model, the self

coupling of each conductor is modelled using classical MTL parameters, while the mutual

coupling between conductors is modelled using electromagnetic scattering theory. Compared

to classical MTL models the developed closed-form model has the ability to model parallel

conductors of different lengths, and conductors placed electrically distant from each other,

but close to ground, in both frequency and time domains. Applicability of the SBC model is

currently limited to lossless, thin-wire structures. The developed model has been compared

with a full-wave, thin-wire solver.
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Chapter 4

Scattered Field Transmission Line
Model

In this chapter the development of a time-domain model for transmission line crossings and

bends in finite-length conductors is presented. The exciting electromagnetic field is first

formulated using the scattering equations and then simplified into closed-forms based on the

geometrical and frequency characteristics of transmission lines. The simplified equations are

solved using a FDTD algorithm. Results obtained using the proposed model are presented

along with those obtained using a full-wave finite-element solver.

A scattered electric field produced by vector and scalar potentials can be represented

as [15]

Es = −jωA−∇Φ (4.1)

with

A(r) =
μ

4π

∫ �

0

I(z ′)âzg (r, r ′) dz ′

and,

Φ(r) =
1

4πε

∫ �

0

ρ(z ′)g (r, r ′) dz ′
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Fig. 4.1: Cylindrical conductors crossing each other and their local coordinate systems.

where z ′ is the length variable along the axis of wire, r = xâx + yây + zâz is the position

vector of the observation point and r ′ is the position vector of the source. I(z ′) and ρ(z ′) are

the current and charge density along the wire. It was explained in chapter 3 that the Green’s

functions, g (r, r ′) of the thin-wire problem has a value of zero at the ground level since the

distances from the source and image currents are equal at the ground level. Therefore A

and Φ at h = 0 will be omitted in the formulation here onwards.

4.1 Scattering Model for a Transmission Line Crossing

Since classical MTL models are unable to simulate a crossing of conductors as shown in

Fig. 4.1, the proposed approach is to model it using scattered fields and simply into a

transmission line like form. Since the objective of this on-going work is to include SFTL

model in EMT-type simulators, it has been implemented using an FDTD algorithm.

- 49 -



Scattering Based T-Line Model 4.1 Scattering Model for a Transmission Line Crossing

4.1.1 Derivation of Scattering Equations for Crossed Wires

For the structure shown in Fig. 4.1, under thin-wire approximation, the scattered magnetic

vector potential along z direction and scalar potential, on conductor i can be expressed

respectively as [15]

Azi(zi) =
μ

4π

∫ �i

0

g (zi, zi
′) Ii(zi ′)dzi ′

+ cosα
μ

4π

∫ �j

0

g (zi, zj, α) Ij(zj)dzj

(4.2a)

and,

Φ(zi) =
1

4πε

∫ �i

0

g (zi, zi
′) ρi(zi ′)dzi ′

+
1

4πε

∫ �j

0

g (zi, zj, α) ρj(zj)dzj.

(4.2b)

In (4.2), �i and �j are the lengths of conductors i and j. Ii and Ij are the currents and ρi

and ρj are the electric charge densities at a field point on the surface of the wires i and j

respectively. α is the crossing angle and g is the Green’s function related to a scattered field

generated by a straight, cylindrical, current carrying conductor, which can be obtained using

the method of images as given by [30]

(4.3a)g(zi, zi
′) =

e−jβ
√

(zi ′−zi)2+a2i√
(zi ′ − zi)2 + a2i

− e−jβ
√

(zi ′−zi)2+(2hi)2√
(zi ′ − zi)2 + (2hi)2
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and,

(4.3b)

g(zi, zj, α) =
e−jβ

√
((ci−zi) sinα)2+((cj−zj)+(ci−zi) cosα)2+(hi−hj)2√

((ci − zi) sinα)2 + ((cj − zj) + (ci − zi) cosα)2 + (hi − hj)2

− e−jβ
√

((ci−zi) sinα)2+((cj−zj)+(ci−zi) cosα)2+(hi+hj)2√
((ci − zi) sinα)2 + ((cj − zj) + (ci − zi) cosα)2 + (hi + hj)2

.

As mentioned in the previous sections, the field point (point of observation) is assumed to

be on the wire surface while the source point is assumed to be on the axis, in order to avoid

the singularity that can occur in the Green’s functions at zi
′ = zi. The boundary condition

on the surface of the wire would be that, the scattered electric field is tangential to the z

direction. Assuming that there are no incident fields, this gives [15]

âz ·Es = 0 (4.4)

where Es is the scattered electric field Using this (4.1) can be rewritten as

dΦ

dzi
= −jωAzi . (4.5)

Under the thin-wire approximation it can be assumed that the direction of the current is

only along the z axis which gives

Ax = Ay = 0. (4.6)

Since the scattered voltage is defined as [15],

V (zi) = −
∫ hi

0

Es
xdx (4.7)
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(4.6) and (4.1) can be used to rewrite (4.7) as,

V (zi) = Φ(zi). (4.8)

Substituting (4.8) into (4.5) gives,

dV (zi)

dzi
= −jωAzi . (4.9)

Using (4.2a) and (4.9) a transmission line like expression can be obtained as

(4.10)

dV (zi)

dzi
= −jω μ

4π

∫ �i

0

g (zi, zi
′) Ii(zi ′)dzi ′

∣∣∣
yi=hi

− jω
μ

4π
cosα

∫ �j

0

g (zi, zj, α) Ij(zj)dzj

∣∣∣
yi=hi

.

Also, the electric charge density ρ can be expressed using the conductor current as given in

the continuity equation as [15]

ρi(zi) = − 1

jω

dI(zi)

dzi
. (4.11)

Equation (4.11) can be substituted into (4.2b) and re-arranged to obtain a second transmis-

sion line like expression as,

(4.12)

V (zi) = − 1

4πε

∫ �i

0

g (zi, zi
′)

1

jω

dI(zi
′)

dzi
dzi

′
∣∣∣
yi=hi

− 1

4πε

∫ �j

0

g (zi, zj, α)
1

jω

dI(zj)

dzj
dzj

∣∣∣
yi=hi

.

The integral terms in (4.10) and (4.12) do not have analytical solutions in their raw form

and therefore need to be simplified further before implementing on a FDTD algorithm.
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4.1.2 Closed-form Equations Based on Structural Dimensions and

Frequency

For the case of power transmission lines, as well as other situations where the classical MTL

theory can be applied, the maximum cross-sectional dimension of the structure is very small

compared to the minimum wavelength considered in the analysis. Therefore, based on the

assumption that hmax << λ, the integral terms in (4.10) and (4.12) can be simplified that

yields [15]

(4.13)

∫
g(z, z ′)I(z ′)dz ′ =

∫ (
e−jβRs

Rs

− e−jβRi

Ri

)
I(z ′)dz ′

=

∫ (
1

Rs

− 1

Ri

)
dz ′I(z).

In this equation, Rs and Ri are respectively, the distances to point z from the current

element and image current element at z ′, which are also the square root terms in (4.3). The

simplified integral in (4.13) has an analytical solution. Assuming the analytical solutions for

the integrals are represented as ξ(z), (4.10) and (4.12) can be rewritten as,

dV (zi)

dzi
= −jω μ

4π
ξii(zi)Ii(zi)− jω

μ

4π
cosαξij(zi)Ij(zj) (4.14a)

and,

V (zi) = − 1

jω4πε
ξii(zi)

dIi(zi)

dzi
− 1

jω4πε
ξij(zi)

dIj(zj)

dzj
. (4.14b)

Similarly for conductor j electromagnetic field equations can be derived as,

dV (zj)

dzj
= −jω μ

4π
cosαξji(zj)Ii(zi)− jω

μ

4π
ξjj(zj)Ij(zj) (4.15a)
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and,

V (zj) = − 1

jω4πε
ξji(zj)

dIi(zi)

dzi
− 1

jω4πε
ξjj(zj)

dIj(zj)

dzj
. (4.15b)

The analytical solutions of each integral of (4.14) and (4.15) are given by [52]

(4.16a)

ξii(zi) =

[
sinh−1

(
�i − zi
ai

)
− sinh−1

(−zi
ai

)]

−
[
sinh−1

(
�i − zi
2hi

)
− sinh−1

(−zi
2hi

)]

(4.16b)

ξij(zi) =

⎡
⎣sinh−1

⎛
⎝ �j − cj + (ci − zi)√

((ci − zi) sin(α))
2 + (hi − hj)

2

⎞
⎠

− sinh−1

⎛
⎝ −cj + (ci − zi)√

((ci − zi) sin(α))
2 + (hi − hj)

2

⎞
⎠
⎤
⎦

−
⎡
⎣sinh−1

⎛
⎝ �j − cj + (ci − zi)√

((ci − zi) sin(α))
2 + (hi + hj)

2

⎞
⎠

− sinh−1

⎛
⎝ −cj + (ci − zi)√

((ci − zi) sin(α))
2 + (hi + hj)

2

⎞
⎠
⎤
⎦
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(4.16c)

ξji(zj) =

⎡
⎣sinh−1

⎛
⎝ �i − ci + (cj − zj)√

((cj − zj) sin(α))
2 + (hi − hj)

2

⎞
⎠

− sinh−1

⎛
⎝ −cj + (cj − zj)√

((cj − zj) sin(α))
2 + (hi − hj)

2

⎞
⎠
⎤
⎦

−
⎡
⎣sinh−1

⎛
⎝ �i − ci + (cj − zj)√

((cj − zj) sin(α))
2 + (hi + hj)

2

⎞
⎠

− sinh−1

⎛
⎝ −ci + (cj − zj)√

((cj − zj) sin(α))
2 + (hi + hj)

2

⎞
⎠
⎤
⎦

and

(4.16d)

ξjj(zj) =

[
sinh−1

(
�j − zj
aj

)
− sinh−1

(−zj
aj

)]

−
[
sinh−1

(
�j − zj
2hj

)
− sinh−1

(−zj
2hj

)]
.

After rearranging, (4.14) and (4.15) can be expressed in a matrix form as,

d

dz

⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ = −jω

⎡
⎢⎣L(z) 0

0 C(z)

⎤
⎥⎦
⎡
⎢⎣V (z, jω)

I(z, jω)

⎤
⎥⎦ (4.17a)

where,

L(z) =
μ

4π

⎡
⎢⎣ ξii(z) cosαξij(z)

cosαξji(z) ξjj(z)

⎤
⎥⎦
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C(z) = 4πε

⎡
⎢⎢⎢⎢⎢⎣

ξjj(z)

ξii(z)ξjj(z)− ξij(z)ξji(z)

−ξij(z)
ξii(z)ξjj(z)− ξij(z)ξji(z)

−ξji(z)
ξii(z)ξjj(z)− ξij(z)ξji(z)

ξii(z)

ξii(z)ξjj(z)− ξij(z)ξji(z)

⎤
⎥⎥⎥⎥⎥⎦ .

The reason for using a common z instead of zi and zj will be explained in the next sec-

tion. Since L and C are frequency independent, (4.17a) can be converted into time-domain

conveniently as,

d

dz

⎡
⎢⎣V (z, t)

I(z, t)

⎤
⎥⎦ = − d

dt

⎡
⎢⎣L(z) 0

0 C(z)

⎤
⎥⎦
⎡
⎢⎣V (z, t)

I(z, t)

⎤
⎥⎦ . (4.18)

Equation (4.18) along with terminal constraints can be solved using a single dimensional

FDTD algorithm [4] for each time step. The terminal constraints could be the circuitry

attached to the end of the wires or terminal voltage and current at each time-step of another

transmission line connected to the particular end.

4.1.3 FDTD algorithm for solving the proposed model

Finite-difference time-domain technique explained in [4] is used to solve the developed SFTL

model. For lossless lines descretized into NDZ segments as shown in Fig. 4.2, the voltage

vectors of the NDZ+ 1 nodes and the current vectors of the NDZ segments can be obtained

using [4]

V n+1
1 =

[
Δz

Δt
RSC + 1n

]−1{[
Δz

Δt
RSC − 1n

]
V n

1 − 2RSI
n+1/2
1 +

(
V n+1

S + V n
S

)}
(4.19a)
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Fig. 4.2: Space desretization of a typical FDTD algorithm for an MTL system.

V n+1
NDZ+1 =

[
Δz

Δt
RLC + 1n

]−1{[
Δz

Δt
RLC − 1n

]
V n

NDZ+1 + 2RLI
n+1/2
NDZ +

(
V n+1

L + V n
L

)}
(4.19b)

V n+1
k = V n

k −
Δt

Δz
C−1

(
I
n+1/2
k − I

n+1/2
k−1

)
(4.19c)

I
n+3/2
k = I

n+1/2
k − Δt

Δz
L−1

(
V n+1

k+1 − V n+1
k

)
. (4.19d)

V and I are the voltage and current vectors at each space (k) and time (n) descretization. L

and C are the PUL inductance and capacitance matrices. Rs and RL are lumped resistance

matrices at the terminals. Vs and VL are the excitation vectors at each terminal, at each

time-step which can be the voltage of series voltage sources or the terminal voltage of a

connecting transmission line obtained from a circuit simulator as explained in [46].

Since this technique has originally been developed for parallel multi-conductor transmis-

sion lines, it descretizes all conductors in space using a single variable z. However, as (4.19)

suggests, for the classical MTL models, the mutual coupling on a segment k is assumed to be

caused by the voltages and currents of the responsible conductors, in the same and nearby
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Fig. 4.3: Proposed space desretization of SFTL model for FDTD implementation.

space segments k − 1, k, and k + 1. As such, a common variable z is still applicable to the

developed SFTL model provided that the modelled structure is symmetrical on the either

sides of the crossing, i.e. in Fig. 4.1 ci = cj and li = lj, and the structure is descretized in the

format given in Fig. 4.3 in space. This does not affect the end goal of this ongoing research

project which is to include SFTL as a circuit component for transmission lines crossings in

EMT-type simulators. The region affected by the crossing non-uniformity, which is explained

in the next paragraph, would anyway be symmetrical and, the EMT simulators already have

the ability to solve non-coupled transmission lines of different lengths (corresponding to T-

lines i, i ′, j, and j ′ of Fig. 4.3) simultaneously. Equation (4.19) can be used after replacing

constant L and C matrices with space-varying Lk and Ck.

The effective distance of a current variation on its electromagnetic field is equal to its
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wavelength λ [15]. On the other hand, transmission line models are applied for cases where

the maximum cross sectional dimension is less than 0.1λ. Therefore, when modelling a long

transmission lines with a crossing, the SFTL model should be applied at least for the points

that are within a distance of 10h/sinα from the crossing so that all points which are within

a distance of 10h to each other is modelled using SFTL. This region will be referred to as

the critical length herein. The points outside this area can be modelled using classical MTL

theory.

4.1.4 Comparison of the Developed Model with a Full-wave Solver

The structure used for the comparison is shown in Fig. 4.4. Conductors were assumed to

be cylindrical with a radius of 1 mm. The wire structure was excited with a trapezoidal

voltage source (Vs), with a rise and fall time of 0.5 ns as shown in Fig. 4.5. As explained in

(4.18), the developed model has space varying PUL parameters due to the non-uniformities

along the lines. The whole structure from end to end was modelled using the SFTL (not

only the critical region) to include the end effects at the terminals. L11(z) and C11(z) which

are analogous to the PUL self inductance and self capacitance of wire 1, and L12(z) and

C12(z) which are analogous to PUL mutual inductance and mutual capacitance between

two conductors, are shown in Figs. 4.6 and 4.7, respectively. The variation in L11(z) and

C11(z) closer to the terminals is due to the change of electric and magnetic fields close to

an end of a cylindrical conductor, which is explained in [15]. It is visible how the mutual

parameters have an increasing value in areas closer to the crossing. The critical region and

magnitude of PUL parameters increases when the crossing angle is decreased, implying a

stronger coupling. Figure 4.7 also justifies the choice of 10h/(sinα) as the critical length,

which is 0.5 m, 0.29 m and 0.25 m for crossing angles of 30◦, 60◦ and 90◦ respectively.
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Fig. 4.4: The structure used for the comparison with full-wave theory.

Time-domain results were obtained for crossing angles (α) of 30◦, 60◦ and 90◦ and com-

pared with those obtained by a full-wave, finite-element (FEM) solver which solves the

Maxwell’s equations in three-dimensional space. Figures 4.8 to 4.10 show the sending end

currents of the excited and victim wires, respectively for different crossing angles.

Both the FEM and SFTL results imply that the crossing causes induced currents on the

victim wire as well as reflections on the excited wire. The developed model (SFTL) has been

able to capture these interferences occurring on both excited and victim wires, which are

not being represented in prevailing power system simulator components. Full-wave results

appear to be decaying despite the conductors being lossless and the terminals are short

circuited to ground. This is expected to be the radiation loss occurring at the terminals

which is not considered in transmission line theory.
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Fig. 4.5: The trapezoidal excitation waveform (Vs) applied on conductor 1.

- 61 -



Scattering Based T-Line Model 4.1 Scattering Model for a Transmission Line Crossing

0 0.2 0.4 0.6 0.8 1 1.2

Length [m]

3

4

5

6

7

8

L 11
 [H

]

10-7

=30°

=60°

=90°

(a)

0 0.2 0.4 0.6 0.8 1 1.2

Length [m]

1.5

2

2.5

3

C
11

 [F
]

10-11

=30°

=60°

=90°

(b)

Fig. 4.6: Self (a) inductance and (b) capacitance of conductor 1 vs z for different crossing
angles.
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Fig. 4.7: Mutual (a) inductance and (b) capacitance between conductors vs z for different
crossing angles.
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Fig. 4.8: Sending end currents of (a) excited line and (b) victim line at a crossing angle
of α = 30◦ obtained using the proposed model (SFTL) and full-wave FEM.
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Fig. 4.9: Sending end currents of (a) excited line and (b) victim line at a crossing angle
of α = 60◦ obtained using the proposed model (SFTL) and full-wave FEM.
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Fig. 4.10: Sending end currents of (a) excited line and (b) victim line at a crossing angle
of α = 90◦ obtained using the proposed model (SFTL) and full-wave FEM.
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4.1.5 Modelling a power line crossing using SFTL

This section demonstrates the changes that should be made to SFTL model if being inte-

grated into an EMT simulator. Dimensions of a typical 500 kV - 230 kV line crossing [53] are

used for the structure which was modelled using the SFTL, given in Fig. 4.11. Conductor

radii are assumed to be 20 mm. The crossing angle is assumed to be 30◦. A trapezoidal

pulse with a rise-time of 50 ns [54] and a unit magnitude is set to travel along conductor 1

from A to A ′.

Since the SFTL is to be used as a circuit component between crossing transmission lines

the end points of the SFTL should not contain the end effect due to a physical transmission

line end as in the previous section. Therefore, when calculating L(z) and C(z) in (4.16),

instead of integrating from z = 0 to z = �, integral limits were set as, z = −10� to 10�.

Figures 4.12 and 4.13 show the resulting PUL parameters. It is seen that the effect due to

the ends is no longer apparent.

Figure 4.14a shows the trapezoidal pulse travelling along conductor 1, while Fig. 4.14b

shows the voltage at point B which occurs due to the induced interference at the crossing.

As Fig, 4.14 suggests, a transient of 50 ns rise-time on the 500 kV line can induce an impulse

of approximately 8% of the original transient on the victim line at the crossing.
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Fig. 4.11: Power line crossing with a crossing angle of 30◦.
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Fig. 4.12: Self (a) inductance and (b) capacitance of conductor 1 vs z for different crossing
angles.

- 69 -



Scattering Based T-Line Model 4.1 Scattering Model for a Transmission Line Crossing

0 100 200 300 400 500

Length [m]

0.5

1

1.5

2
L 12

 [H
]

10-7

=30°

=60°

=90°

(a)

0 100 200 300 400 500

Length [m]

-16

-14

-12

-10

-8

-6

-4

-2

C
12

 [F
]

10-13

=30°

=60°

=90°

(b)

Fig. 4.13: Mutual (a) inductance and (b) capacitance between conductors vs z for different
crossing angles.
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Fig. 4.14: (a) VA(z) on the exciter line and (b) VB(z) on the victim line vs time.
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4.2 Scattering Model for a Transmission Line Bend

A model for a single-conductor, lossless, bent transmission line can be formulated using the

same approach used for crossings. However in contrast to the crossing, here we assume the

coordinate system rotates by an angle equal to the bending angle of the conductor at the

location of the bend. Therefore PUL L and C are simplified into different space-dependent

functions on the either sides of the bend unlike in the crossing which had a single closed-form

function for the entire span of the wire.

4.2.1 Derivation of Scattering Equations for a Bent Wire

For a system as shown in Fig. 4.15, the scattered magnetic vector potential along the axis

of the wire and the scalar potential can be expressed as [15]

Az(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ

4π

∫ b

0

g (z, z ′) I(z ′)dz ′ + cosα
μ

4π

∫ �

b

g (z, z ′, α) I(z ′)dz ′ z ≤ b

μ

4π
cosα

∫ b

0

g (z, z ′, α) I(z ′)dz ′ +
μ

4π

∫ �

b

g (z, z ′) I(z ′)dz ′ z > b

(4.20a)

and,

V (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

4πε

∫ b

0

g (z, z ′) ρ(z ′)dz ′ +
1

4πε

∫ �

b

g (z, z ′, α) ρ(z ′)dz ′ z ≤ b

1

4πε

∫ b

0

g (z, z ′, α) ρ(z ′)dz ′ +
1

4πε

∫ �

b

g (z, z ′) ρ(z ′)dz ′ z > b

(4.20b)
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Fig. 4.15: A cylindrical conductor with a bend at z = b.

with the variable as defined in Section 4.1.1. Following the same procedure as in Section 4.1,

the closed form transmission line like equations can be obtained for a line bend as,

dV (z)

dz
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−jω μ

4π
[ξs,bb(z) + cosαξm,ab(z)] I(z) z ≤ b

−jω μ

4π
[cosαξm,bb(z) + ξs,ab(z)] I(z) z > b

(4.21a)

and,

dI(z)

dz
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−jω 4πε

[ξs,bb(z) + ξm,ab(z)]
V (z) z ≤ b

−jω 4πε

[ξm,bb(z) + ξs,ab(z)]
V (z) z > b

(4.21b)

In the ξ terms of (4.21), s or m represents whether coupling is self or mutual, respectively,

while bb or ab represents whether the coupling is from the section before or after the bend.

The ξ terms, as before, which are the closed-form integrals of the simplified Green’s functions,
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are given by [52]

(4.22a)

ξs,bb(z) =

[
sinh−1

(
b− z

a

)
− sinh−1

(−z
a

)]

−
[
sinh−1

(
b− z

2h

)
− sinh−1

(−z
2h

)]

(4.22b)

ξm,ab(z) =

⎡
⎣sinh−1

⎛
⎝ �− b+ (b− z) cos(α)√

((b− z) sin(α))2 + a2

⎞
⎠

− sinh−1

⎛
⎝ (b− z) cos(α)√

((b− z) sin(α))2 + a2

⎞
⎠
⎤
⎦

−
⎡
⎣sinh−1

⎛
⎝ �− b+ (b− z) cos(α)√

((b− z) sin(α))2 + 4h2

⎞
⎠

− sinh−1

⎛
⎝ (b− z) cos(α)√

((b− z) sin(α))2 + 4h2

⎞
⎠
⎤
⎦

(4.22c)

ξm,bb(z) =

⎡
⎣sinh−1

⎛
⎝ �− b+ (z − b) cos(α)√

((z − b) sin(α))2 + a2

⎞
⎠

− sinh−1

⎛
⎝ (z − b) cos(α)√

((z − b) sin(α))2 + a2

⎞
⎠
⎤
⎦

−
⎡
⎣sinh−1

⎛
⎝ �− b+ (z − b) cos(α)√

((z − b) sin(α))2 + 4h2

⎞
⎠

− sinh−1

⎛
⎝ (z − b) cos(α)√

((z − b) sin(α))2 + 4h2

⎞
⎠
⎤
⎦
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(4.22d)

ξs,bb(z) =

[
sinh−1

(
�− z

a

)
− sinh−1

(
b− z

a

)]

−
[
sinh−1

(
�− z

2h

)
− sinh−1

(
b− z

2h

)]
.

Similar to Section 4.2, the equations for a transmission line bend can be written as

dV (z, jω)

dz
= −jωL(z)I(z, jω) (4.23a)

and,

dI(z, jω)

dz
= −jωC(z)V (z, jω) (4.23b)

which can be converted into time-domain as,

dV (z, t)

dz
= −L(z)dI(z, t)

dt
(4.24a)

and,

dI(z, t)

dz
= −C(z)

dV (z, t)

dt
. (4.24b)

Once L(z) and C(z) are calulated, (4.24) can be easily implemented using a single

dimensional FDTD algorithm explained in [4].

4.2.2 Comparison of the developed model with a full-wave solver

The wire structure used for the comparison of results is given in fig. 4.16. The modelled wire

is parallel to ground and bent at variable bending angle at a length of 0.3 from the sending

end. L(z) and C(z) for different bend angles are given in Fig 4.17. The distortion occurring

to the PUL L and C is greater as the bend gets sharper. A Gaussian waveform as shown
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Fig. 4.16: Single-conductor bent transmission line used for the comparison of the SFTL
model with a full-wave solver.

in Fig. 4.18 is used as the excitation (Vs). Comparison of the SFTL model for a bend with

full-wave results is given in Figs. 4.19 to 4.21. Currents for bend angles of 30◦, 60◦, and 90◦

have been presented along with their enlarged first reflection travelling backwards from the

bend. As the figures show the SFTL model is well able to produce the reflections occurring

due to a transmission line bend which the classical MTL models are incapable of. Similar to

the crossing, in the FEM simulation the magnitude of the travelling Gaussian pulse appears

to be decaying despite the conductor being lossless and terminated by short-circuiting to

ground. This is expected to be due to the radiation occurring at the terminals.
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Fig. 4.17: (a) L(z) and (b) C(z) vs z for different bend angles.
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Fig. 4.18: Excitation waveform (Vs).
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Fig. 4.19: (a) Sending end current and (b) the enlarged first reflection from the bend for
a bending angle of 30◦ obtained using the proposed model (SFTL) and full-wave FEM.
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Fig. 4.20: (a) Sending end current and (b) the enlarged first reflection from the bend for
a bending angle of 60◦ obtained using the proposed model (SFTL) and full-wave FEM.
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Fig. 4.21: (a) Sending end current and (b) the enlarged first reflection from the bend for
a bending angle of 90◦ obtained using the proposed model (SFTL) and full-wave FEM.
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4.3 Summary

In this chapter a closed-form, non-uniform transmission line model was developed which is

applicable for the simulation of finite-length lines, transmission line crossings and bends in

frequency-independent single-conductor structures. The exciting electric field of non-uniform

structures was first formulated using electromagnetic scattering theory and simplified into

closed-form equations based on their geometrical and frequency characteristics. The devel-

oped model was implemented using a 1D-FDTD algorithm which can be easily integrated

into EMT type simulators. Comparison of results obtained from the developed model and a

3D full-wave, finite-element solver, implies that the developed model can simulate the wave

distortions occurring due to such non-uniformities. Applicability of the proposed model is

currently limited to lossless, thin-wire structures.
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Chapter 5

Conclusions

Classical multiconductor transmission line (MTL) theory based on TEM mode of propaga-

tion is valid for infinitely-long transmission lines whose cross sectional dimensions are small

compared to the minimum wavelength and are uniform along their entire span. Therefore,

non-uniformities such as bends, crossings, conductors of different lengths, or electrically

distant conductors cannot be represented in classical MTL models. In this research, two en-

hanced non-uniform transmission line models were developed to model such non-uniformities

using the scattering theory.

The proposed scattering-based coupling (SBC) method uses electromagnetic scattering

theory to model the mutual coupling between conductors. The SBC model has the ability to

model differently-lengthed, electrically-distant, parallel conductors using closed-form equa-

tions. The results obtained using the proposed approach for thin-wire, lossless structures

have been compared with the Numerical Electromagnetic Code (NEC) which is a full-wave,

thin-wire electromagnetic solver. Results have been compared both in the frequency-domain

and in the time-domain.

The proposed scattered field transmission line (SFTL) model regards both self and mu-
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tual fields as scattered fields and therefore has the ability to represent non-uniformities in

single line cases as well. Scattering equations have been simplified into closed-form equa-

tions based on geometrical and frequency characteristics used in transmission line theory.

The proposed method has been used to model lossless, frequency-independent conductors,

that crosses each other at variable crossing angles and for bent conductors at variable bend-

ing angles. The SFTL model has been implemented using a finite difference time domain

(FDTD) algorithm which is suitable for the integration of the model into EMT simulators

as a circuit component. Obtained results have been compared with a 3D-full-wave, finite

element solver in time-domain. The proposed model has been able to simulate the reflec-

tions and induced currents occurring due to crossings and bends which are not represented

in transmission line models currently available in EMT-type simulators.

5.1 Future Work

In this thesis non-uniform transmission line models have been developed and verified for

lossless, frequency-independent thin-wire transmission lines. The end goal of this ongoing

research project is to develop a circuit component using the SFTL model for EMT type

simulators, as the major non-uniformities found in power transmission lines are crossings

and bends. In order to be improve the performance of the proposed models the following is

suggested.

• Inclusion of losses into SBC and SFTL models as distributed parameters.

• Extension of SBC and SFTL models for frequency-dependent transmission lines. De-

riving closed-form formulae for such lines is expected to be a challenging task. Also,
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the frequency-domain to time-domain conversion would result in convolution terms

which would make the implementation of the model using FDTD much more complex.

• For further verification of the proposed models using experimental results time-domain

reflectometry (TDR) tests are suggested.

• As real power lines contain multiple parallel conductors, the current SFTL model needs

to be extended for multi-conductor cases before being implemented in an EMT type

simulator. Even though, the SFTL model for crossing wires is already for two wires, the

p.u.l. parameter calculation will have to be automated for a higher number of wires.

In transmission line bends with multiple parallel conductors, the outer conductors

being longer than the inner ones is another issue which would have to considered when

implementing as a FDTD model.

• Development of a circuit component using the enhanced SFTL model and integration

of the circuit model into an EMT-type simulator. Since the SFTL model is currently

run on MATLAB, it has to be implemented using a programming language compatible

with EMT compilers before being used in an EMT-type simulator.
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