
A Study of the Application of Chaos to the 

Genetic Algorithm 

 

by 

 

Olawale David Jegede 

 

A Thesis submitted to the Faculty of Graduate Studies of 

The University of Manitoba 

in partial fulfillment of the requirements of the degree of 

 

MASTER OF SCIENCE 

 

Department of Electrical and Computer Engineering 

University of Manitoba 

Winnipeg, Manitoba 

 

Copyright  2014 by Olawale D. Jegede 



 

i 

 

Abstract 

This work focuses on the use of a genetic algorithm for optimization in a search-based problem. 

The Genetic Algorithm (GA) is a subset of evolutionary algorithms that models biological 

processes to optimize highly complex functions. A GA allows a population composed of many 

individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e. 

minimize the objective function). A major advantage of using GA over most stochastic techniques 

is its parallelism, which speeds up the simulation results leading to faster convergence. With 

mutation, the GA is also less likely to get stuck in local minima compared to other stochastic 

techniques. 

However, some notable drawbacks of the Standard GA (SGA) include slow convergence and a 

possibility of being stuck in local optimum solution. The SGA uses a random process to generate 

parameter values for the initial population generation, crossover and mutation processes. Random 

number generators are designed to result in either uniform distributions or Gaussian distributions. 

We conjecture that the evolutionary processes in genetics are driven by a random non-linear 

deterministic dynamic process rather than a random non-deterministic process. Therefore, in the 

GA evolutionary process, a chaotic map is incorporated into the initial population generation, the 

crossover and mutation processes of the SGA; this is termed the Chaotic GA (CGA). 

The properties of a chaotic system that provides additional benefits over randomly generated 

solutions are sensitivity to initial conditions, topological density and topological transitivity (robust 

diversity). These properties ensure that the CGA is able to explore the entire solution space. 

Introducing chaos into the whole process of a standard genetic algorithm may help improve 

convergence time and accuracy. Simulation was done using Matlab and Java. 



 

ii 

 

Acknowledgements 

I would like to acknowledge the support of my advisor Dr. Ken Ferens. He has been more than an 

advisor to me. His patience, leadership, understanding and constructive criticism throughout the 

course of my studies have been exceptional. I appreciate his financial support and trust; indeed I am 

honored to have worked with him. 

I would also like to thank Dr. Witold Kinsner for helping me throughout the course of my studies. 

He was there for me not only as a tutor but also as a father. He helped regain my confidence in my 

first few months in the program. Thank you for believing in me.   

I would like to thank my examination committee members Dr. Bob McLeod and Dr. Chuang Deng 

for finding time to participate in my M.Sc. qualifying exam. The advice and corrections are very 

well appreciated.  

A special thank you goes to the Department of Electrical and Computer Engineering for nominating 

me for the University of Manitoba Graduate Fund. This fund provided me with the financial 

stability I needed to complete my M.Sc. I would also like to thank the University of Manitoba for 

nominating me for the prestigious Manitoba Graduate Scholarship with which I had more financial 

stability. I am honored to have been a recipient. I am also very grateful to Dr. Douglas Buchanan 

for his role in getting an engage grant to support my studies. My M.Sc. story cannot be complete 

without recognizing the role Amy Dario played in gaining admission and then completing this work 

during the duration. Thank you for your guidance, objectiveness and effectiveness. I also want to 

say thank you to my undergraduate lecturers in Nigeria – Dr. Awodele and Dr. Omotosho for 

providing me with recommendation letters for the awards. Thank you to a colleague Ernest Onuiri 

for ensuring the recommendation letters got to me on time for the award. 



 

iii 

 

I will also like to appreciate my colleagues in the same research group. It was a pleasure working 

with you. I am grateful to Taimoor Siddique and Thomas for helping with questions regarding part 

of the thesis and for technical support. A big thank you to Hasnain Khan for the sleepless nights we 

spent on java tutorial and translating the pseudo-code into the real code. 

I am also grateful for the moral and financial support of my uncles and aunties to make this dream 

come true. The Fasesins’, the Dadas’, the Adeyemos’, the Ogunlolus’, the Shokunbis’, the 

Ogundares’, the Adedapos’, the Georges’, the Oyeyemis’, the Adegunjus’, the Babafemis’ and the 

Jegedes’. I appreciate the motivation from Chukwuma Amobi, Dasola Oluge, Muyiwa Adelakun, 

Kazeem Adeogun and Enoch A-iyeh during the course of the program. 

Last but not least, I acknowledge the love of God Almighty and my family. Thank God for a 

patient, caring, understanding and loving wife “OlutolaMi” who not only shared the vision but 

supported me through this adventure. Thank you to our prince Aseoluwa Olumoroti for sharing 

your Dad with UofM. I am grateful to my parents Arc. & Mrs. J.K. Jegede for being my pillar, my 

foundation and for supporting the dream. My sister Olaide Jegede is appreciated for the financial 

sacrifice and for sharing me with UofM. My in-laws, the Afilakas’, have been wonderful and I am 

grateful for the understanding and support. A special thank you goes to my church family – 

Lighthouse of Hope Seventh-day Adventist Church – for being there to support me emotionally and 

spiritually since I stepped into Winnipeg. 

 

 

 



 

iv 

 

Dedication 

I dedicate this work to God Almighty: the Author and Giver of all Wisdom and Understanding. 

Through Him All Things were made; 

Without Him nothing was made that has been made. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

 

Table of Contents 

Abstract ......................................................................................................................... i 

Acknowledgements...................................................................................................... ii 

Dedication ................................................................................................................... iv 

List of Tables .............................................................................................................. ix 

List of Figures ............................................................................................................. xi 

Chapter 1...................................................................................................................... 1 

Introduction ................................................................................................................. 1 

1.1 Thesis Motivation .................................................................................................................. 1 

1.2 Thesis Statement and Objectives .......................................................................................... 3 

1.3 Contribution of the Thesis ..................................................................................................... 4 

1.4 Thesis Outline ........................................................................................................................ 6 

Chapter 2...................................................................................................................... 8 

Literature Review and Related Works ..................................................................... 8 

2.1 Genetic Algorithms ................................................................................................................ 8 

2.1.1 Introduction ................................................................................................................... 8 

2.1.2 Selection ....................................................................................................................... 10 

2.1.3 Crossover ..................................................................................................................... 17 

2.1.4 Mutation ...................................................................................................................... 18 

2.2 Drawbacks of Standard GA.................................................................................................. 19 



 

vi 

 

2.3 Methods to Improve the Performance of GA ..................................................................... 19 

2.4 Intrinsic GA Defect .............................................................................................................. 30 

2.5 Chaos Theory ....................................................................................................................... 31 

2.5.1 The Logistic Map .......................................................................................................... 32 

2.5.2 Characteristics of a Chaotic System ............................................................................. 36 

2.6 Motivation for Incorporating Chaos into Genetic Algorithms ............................................ 39 

2.7 Chaotic Genetic Algorithm .................................................................................................. 40 

Chapter 3.................................................................................................................... 43 

Genetic Algorithm, Chaos and Application ........................................................... 43 

3.1 Problem Classification ......................................................................................................... 43 

3.2 Application of GA to the Multiprocessor Task Scheduling Problem ................................... 45 

3.2.1 Scheduling .................................................................................................................... 45 

3.2.2 Multiprocessor Task Scheduling .................................................................................. 46 

3.2.3 Computational Complexity .......................................................................................... 47 

3.2.4 Related Work ............................................................................................................... 48 

3.2.5 Methodology: GA Approach to Multiprocessor Task Scheduling ................................ 58 

3.3 Application of GA to the Radio Spectrum Allocation Problem ........................................... 64 

3.3.1 Fundamental Concept in Cognitive Radio ................................................................... 64 

3.3.2 Cognitive Radio Spectrum Allocation .......................................................................... 69 

3.3.3 Computational Complexity of the Radio Spectrum Allocation Problem ..................... 71 

3.3.4 Related Work ............................................................................................................... 72 

3.3.5 Methodology: GA Approach to Spectrum Allocation .................................................. 73 

3.4 Chaotic GA Optimization Approach .................................................................................... 86 



 

vii 

 

Chapter 4.................................................................................................................... 90 

Experiments and Results .......................................................................................... 90 

4.1 Introduction......................................................................................................................... 90 

4.2 Multiprocessor Task Scheduling.......................................................................................... 90 

4.2.1 GA Parameter Setup .................................................................................................... 91 

4.2.2 Results .......................................................................................................................... 91 

4.3 Spectrum Allocation ............................................................................................................ 94 

4.3.1 GA Parameter Setup .................................................................................................... 95 

4.3.2 Results .......................................................................................................................... 95 

4.4 Convergence and Variance (Diversity) .............................................................................. 103 

4.4.1 GA Parameter Setup .................................................................................................. 103 

4.4.2 Convergence: SGA vs. CGA......................................................................................... 104 

4.4.3 Variance: SGA vs. CGA................................................................................................ 106 

4.5 Effect of Population Size ................................................................................................... 109 

4.5.1 Convergence: SGA vs. CGA......................................................................................... 110 

4.5.2 Variance: SGA vs. CGA................................................................................................ 111 

Chapter 5.................................................................................................................. 115 

Conclusion and Future Work ................................................................................ 115 

5.1 Conclusion ......................................................................................................................... 115 

5.2 Contributions ..................................................................................................................... 117 

5.3 Future work ....................................................................................................................... 120 

References ................................................................................................................ 121 

Appendix A .................................................................................................................. 1 

Software ........................................................................................................................................... 1 



 

viii 

 

A.1 Running the Task Graph Generator ................................................................................... 2 

A.2 Running the Task Scheduling GA Code .............................................................................. 2 

A.3 Running the Spectrum Allocation Code ............................................................................ 3 

Appendix B .................................................................................................................. 1 

Source Code Files ............................................................................................................................. 1 

B.1 Task…. ................................................................................................................................ 1 

B.2 Task… ................................................................................................................................. 1 

B.3 Task .................................................................................................................................... 1 

B.4 Task .................................................................................................................................... 1 

B.5 Spectrum Allocation .......................................................................................................... 1 

B.6 Spectrum Allocation .......................................................................................................... 1 

Appendix C .................................................................................................................. 1 

Application of GA to Localization in Wireless Sensor Networks ..................................................... 1 

 

 

 

 

 

 

 



 

ix 

 

List of Tables 

1. Chaotic Genetic Algorithm Procedure                                                                                         42 

2. Height and Execution Time of Tasks                                                                                           52 

3. Task Order based on NTD                                                                                                    57 

4. Genetic Algorithm Procedure                                                                                                      59 

5. Spectrum Allocation GA Procedure                                                                                            74 

6. Chromosome Structure                                                                                                                75 

7. Data Rate Gene                                                                                                              76 

8. Signal Power Gene                                                                                                                       76 

9. Bit Error Rate Gene                                                                                                                     77 

10. Operating Frequency Gene                                                                                                          77 

11. Modulation Technique Gene                                                                                                    78 

12. Chromosome Configurations                                                                                                       78 

13. Signal Power to Frequency Configurations                                                                                 83 

14. GA Parameters                                                                                                               91 

15. Results                                                                                                                                         92 

16. Results                                                                                                                                          93 



 

x 

 

17. QoS requirements of an application given as input to the process                                              94 

18. GA Parameters                  95 

19. Resultant Spectrum and Corresponding Fitness Measure                                                            96 

20. Best and Worst Member of the Initial Population                                                                      101 

21. Summary of Parameters’ Performance                                                                                      102 

22. GA Parameters                                                                                                                           104 

23. GA Parameters                        109 

 

 

 



 

xi 

 

List of Figures 

1. Genetic Algorithm Flowchart                   9 

2. Plot of logistic map when r lies between 0 and 3                  33 

3. Plot of logistic map when r lies between 3 and (1+√6)                                                                33 

4. Plot of logistic map when r lies between (1+√6) and 3.54409                   34 

5. Plot of logistic map when r lies between 3.56995 and 4            34 

6. Plot of logistic map when r lies between 2.5 and 4            35 

7. A Task Graph                     51 

8. Height-based Task Schedule                53 

9. Max-EST NTD-based Task Schedule               57 

10. Min-EST NTD-based Task Schedule               58 

11. Crossover Technique on Schedules C1 and C2                 62 

12. Mutation Technique on Schedules C1 and C2             63 

13. The Cognitive Radio Cycle                67 

14. Mobile Communication System               81 

15. Two-Point Crossover                 85 

16. Probability Distribution of Logistic Map              88 



 

xii 

 

17. Probability Distribution of New Chaotic Map             88 

18. Initial Population Points with New Chaotic Map                89 

19. Initial Population Points with Random Generator             89 

20. Fitness measure of initial population in descending order           96 

21. Fitness measure of parameter 1 over ten runs               97 

22. Fitness measure of parameter 2 over ten runs             97 

23. Fitness measure of parameter 3 over ten runs             98 

24. Fitness measure of parameter 4 over ten runs             98 

25. Fitness measure of parameter 5 over ten runs             99 

26. Total fitness measure of spectrum solution over ten runs             99 

27. SGA average fitness measure over 50 runs            100 

28. CGA average fitness measure over 50 runs            100 

29. SGA and CGA average fitness measure over 50 runs          101 

30. SGA fitness per generation              104 

31. CGA fitness per generation              105 

32. SGA variance                107 

33. CGA variance                 108 



 

xiii 

 

34. SGA fitness measure of the last generation in descending order         108 

35. CGA fitness measure of the last generation in descending order        109 

36. SGA fitness per generation              110 

37. CGA fitness per generation              111 

38. SGA variance                 112 

39. CGA variance                 113 

40. SGA fitness measure of the last generation in descending order         113 

41. CGA fitness measure of the last generation in descending order        114 



 

1 

 

Chapter 1 

Introduction 

 

The first section of this chapter provides the motivation for this thesis with a focus on the use of 

genetic algorithms. The second section describes the thesis statement and objectives while the 

third section outlines the contribution of the thesis. In the fourth section, we have described the 

thesis outline. 

1.1 Thesis Motivation 

The inherent problems associated with an exhaustive search within a large solution space for 

the purpose of optimization cannot be overemphasized. A search space is a collection of all 

possible solutions for specific problems. Depending on several variables for some particular 

applications, the computational complexity of the search may belong to any of the class of 

nondeterministic polynomial time (NP), NP-hard or NP-complete. The implication is that there 

are no known algorithms that can obtain the optimum solution in polynomial time. Intuitively, 

polynomial time implies that the execution time of the computation is no more than a polynomial 

function of the problem size.  Therefore for enormously large search problems with time 

complexity regarded as NP-Hard or NP-Complete, the computation time for an exhaustive search 

is non-polynomial. It is practically impossible, application-wise, to seek for optimum solution in 

non-deterministic polynomial time.  

It is desirable to obtain the optimum solution in polynomial time. However since the 

optimum solution cannot be guaranteed in polynomial time, a near-optimal solution obtainable in 

polynomial time is acceptable. Therefore, there is a need for such mechanisms that can guarantee 



 

2 

 

near-optimum solution in polynomial time. “Many computational problems require searching 

through a large number of possibilities for the optimum solution” [1]. The quests for efficacious 

algorithms is about finding intelligent ways around the exhaustive search process, using intelligent 

dynamics within such algorithms to narrow down the search space to obtain a near-optimum 

solution. Most of such algorithms developed to bypass the exhaustive search in approaching the 

problems are categorized as heuristics. Heuristics are stochastic search method introduced to 

obtain a near optimum solution in polynomial time. Examples include the Simulated Annealing, 

Particle Swarm Optimization, Greedy Algorithm, Artificial Neural Networks, Tabu Search, Hill 

Climbing and Evolutionary Algorithms (EA). These methods are able to obtain solutions regarded 

as good enough (near-optimal). Evolutionary algorithms have the capability to obtain more than 

one solution at a time whereas others can obtain only one solution at a time.  

Evolutionary algorithms were independently developed and studied in the 1950s and 1960s 

by several computer scientists with the goal of solving optimization problem for several 

engineering problems. Darwin’s theory of evolution formed the basis upon which the idea of 

evolution is based. Evolution involves the generation of a set of population of possible solutions 

in the search space to a given problem with the aid of evolutionary operators that mimic the 

concept of reproduction in nature. The cost (fitness) function represents a heuristic estimation of 

the quality of any solution within the search space; the search process is driven by the variation 

(crossover and mutation) and the selection operators. The process of using the variation and 

selection operators is iterated until a solution with sufficient fitness (quality) is found or a set 

computational condition is met [2]. Rechenberg was first to introduce “evolutionary strategies” 

(Evolutionsstrategie in the original German), an idea that was further developed by Schwefel [1]. 



 

3 

 

The various dialects of evolutionary computing only differ in technical details in terms of problem 

representation. They are Genetic Algorithms (GAs), Genetic Programming (GP), Evolution 

Strategies (ES), Evolutionary Programming (EP). When the search space consists of solutions 

represented by strings over a finite alphabet, then the appropriate EA to use would be the Genetic 

Algorithm [2]. Compared to other heuristics, the evolutionary algorithms, the simulated 

Annealing and the particle swarm optimization algorithm have an advantage called “parallelism” 

in that there are sets of potential solutions obtained at a time. This accounts for the speed with 

which solutions are obtained compared to other heuristics. 

Genetic algorithms (GA) were developed by John Holland together with his students and 

colleagues in the 1960s. A Genetic Algorithm is an evolutionary algorithm that allows a set of 

initial population, each representing potential solution, to evolve under specified selection rules to 

a state that optimizes the cost (fitness) function. “Standard GA applies genetic operators such as 

selection, crossover and mutation on an initially generated random population within a search 

space; this is in order to compute a whole generation of new strings” [3]. This process is 

continued until the optimal solution is found or until a set stopping criteria is reached by which 

time a good solution would have been found. Genetic algorithm has been applied to solve many 

engineering optimization problems and is still widely used today. 

1.2 Thesis Statement and Objectives 

In this thesis, the focus is on reducing the computational complexity involved in obtaining 

global optimum solution within a search space for NP-hard and NP-complete problems. This 

thesis proposes genetic algorithm as an evolutionary approach to reduce the computational 

complexity of such problems within polynomial time. The genetic algorithm is able to obtain 



 

4 

 

near-optimal solutions within polynomial time. Two different optimization problems have been 

examined in this thesis from a search-based perspective; genetic algorithms have been applied to 

these problems. The two problems are: 

a. Tasks scheduling in a multiprocessor system. 

b. Spectrum allocation in a cognitive radio networks. 

We have also applied the GA to solve the localization problem in wireless sensor network 

[3]. A short description of the approach and the results obtained has been provided in Appendix C 

of this thesis. This work focuses primarily on how to improve the performance of the genetic 

algorithm using the chaos theory. Random sequences within a standard genetic algorithm were 

replaced with chaotic sequences using a logistic map. 

1.3 Contribution of the Thesis 

The main contributions of this thesis are as follows: 

a. Spectrum Allocation in a Cognitive Radio Networks: The problem of finding optimal 

spectrum allocation in a cognitive radio networks has been proven to be NP-Complete 

[4][5][6]. Genetic algorithm has been used to obtain a ‘good enough’ spectrum 

allocation in polynomial time. Unlike previous works that have applied chaos to any 

one or two of the evolutionary processes of the GA, we have replaced the random 

sequences of all the evolutionary processes of the standard genetic algorithm with 

chaos using a logistic map. It is hoped that the inherent characteristics of a chaotic 

process will improve the ability of the genetic algorithm to find a near-optimal 

solution.  

 



 

5 

 

b. Tasks Scheduling in a Multiprocessor System: The goal of task scheduling in a 

multiprocessor system is to schedule tasks on processors such that the processing time 

is minimized. This ensures optimal usage of the processing systems. The problem of 

obtaining optimal task scheduling in the multiprocessing system is reported to be NP 

hard [7] and heuristic based techniques can be used to obtain a good schedule in 

polynomial time. Several scheduling algorithms exists which can be used to make the 

initial set of schedules that is to be evolved by the genetic algorithm. Task scheduling 

based on the number of descendants of each task and their earlier start time has been 

found to be more optimal compared to task scheduling based on the height of each task 

in a task directed acyclic graph (DAG) [8]. In a task graph, some tasks can have more 

than one earliest start time as a result of multiple path of reaching such tasks in the 

graph. Our algorithm ensures the minimum of the multiple earliest start times is 

chosen, thereby increasing the ability of the genetic algorithm to obtain a near-optimal 

solution (schedule).We have assumed that the completion of the execution of one of 

the parent tasks satisfies the precedence relation in the graph. The genetic algorithm 

then uses its selection and variation operators in search of a near-optimal solution. 

 

c. We have also developed a user friendly software which can generate random task 

graphs. In generating the task graph, the user can specify the following parameters:  

 the number of tasks 

 the number of levels desired 

 the maximum number of descendants possible per task 

 the range of random execution time 



 

6 

 

d. We have also provided equations that can be used to obtain the actual time that a task 

may start execution on any of the processors and the updated available time at which 

an allocated task may start execution on any of the processor. The actual execution 

starting time was computed using the earliest start times and the updated available 

processor time. The updated available processor time was computed using the earliest 

start time and the execution time of each task. 

 

e. The thesis examines the idea of incorporating the logistic map into the evolutionary 

operations of a typical genetic algorithm with the aim of increasing the diversity within 

the solution space. Literature reveals that the more diverse a population is, the higher 

the chances of the genetic algorithm obtaining a near-optimum solution in polynomial 

time. 

 

f. This work further provides an analysis of the diversity of the solutions at every 

generation of the genetic algorithm using the ‘variance’ of the population. We have 

compared the variance of the standard genetic algorithm with the chaotic genetic 

algorithm. 

 

1.4 Thesis Outline 

This thesis is organized into five chapters. Chapter two gives a detailed description of 

genetic algorithms and its mechanism of operation. The chapter also describes possible drawbacks 

of standard genetic algorithms and various ways on how to improve the performance of the 

algorithm. The chapter ends with a description of chaos theory and how it can be incorporated into 

the genetic algorithm processes. Chapter three describes the application of the genetic algorithms 



 

7 

 

to the multiprocessor tasks scheduling problem and the radio spectrum allocation problem. It also 

describes the application of the chaotic genetic algorithm to the radio spectrum allocation 

problem. Chapter four describes the experiments used to evaluate the performance of the standard 

genetic algorithm and the chaotic genetic algorithm. Finally, Chapter Five concludes the thesis by 

stating the notable contribution of this work to the application of genetic algorithm generally and 

specifically to the two optimization application areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

Chapter 2 

Literature Review and Related Works 

 

This chapter provides a literature review of GA and some techniques that aid the operation 

of the algorithm. We have identified the drawbacks of the standard GA as well as various methods 

used to improve its performance. We have also discussed chaos theory and the motivation for 

using it to improve the performance of the GA. This we have termed Chaotic GA. 

2.1 Genetic Algorithms 

  In this section we review the genetic algorithms and the evolutionary processes it uses 

for the purpose of optimization. 

2.1.1 Introduction 

 

Genetic algorithms are stochastic search algorithms that take their concept from nature 

[9][10][11][12]. They are heuristic search algorithms based on the Darwinian’s concept of 

evolution – “survival of the fittest”. They belong to a class of evolutionary methods designed for 

the purpose of optimization for computationally cumbersome problems. They are suitable for 

search-based problems.GA maintains a population set of candidate solutions called chromosomes. 

Each chromosome is a collection of one or more components called genes. Each gene is encoded 

to form candidate solutions for a specific problem in a form that can be processed by a computing 

machine. Typically encoding of such candidate solutions can be done using binary strings. 

The objective (cost) function of any particular problem is used to determine how well a solution 

solves the problem. In GA terminology, a fitness function represents the objective function while a 



 

9 

 

solution’s fitness value represents how well the solution solves the problem. The objective is to 

find a near-optimal solution in polynomial time. The optimum solution is defined as the 

minimization/maximization of the fitness function. In this work, the near-optimal solution will be 

referred to as “good” solution. A standard genetic algorithm process/flowchart is shown in Fig.1. 

 

Fig. 1 Genetic algorithm flowchart 

At the beginning of the algorithm, an initial population of candidate solutions is randomly 

generated. The fitness value of each of the candidate solutions is then determined using the fitness 

function. In the event that none of these fitness solutions is optimum or that the predetermined 



 

10 

 

computational criterion for stopping the algorithm is not met, the genetic algorithm then proceeds 

to generate a new set of solutions with the goal of obtaining a good solution. The new set of 

solutions is generated with the aid of the selection and variation operators. The selection operator 

is used to select a small number (usually two) of solutions on which the variation operators will 

operate. The variation operators comprise of the crossover (re-combination) and mutation 

operator. The crossover operator is used to exchange genes (properties) of candidate solutions, 

thereby producing new candidate solutions with different fitness values; this is analogous to 

mating in nature. The mutation operator is used to randomly change the genetic make-up of any 

one solution. The new solutions generated by the crossover and mutation operators are put back 

into the population to form a new population. These may represent unexplored points in the search 

space and may aid optimization in search of the best (optimum) solution. 

Based on the fitness values, weaker solutions from the older population are replaced with 

stronger solutions in the new generation. The heuristic for doing this is termed the replacement 

strategy[13]. Each member of the new generation of solutions formed by the genetic operators is 

then evaluated using the fitness function. The genetic process (selection, crossover and mutation) 

of modifying the solutions in order to form a new population of solutions continues through 

generations until the stopping criterion has been reached. Examples of such stopping criteria may 

include set number of generations, set value of fitness. 

2.1.2 Selection 

 

The fitness evaluation may be the most computationally intensive aspect of the GA. This 

evaluation depends on the complexity of the fitness function as well as the chosen population size. 

The ‘selection’ is the next stage after the fitness evaluation. Selection is the mechanism that 



 

11 

 

begins the process of genetically adjusting/modifying the candidate solutions for the purpose of 

seeking the optimum solution. At this stage, the individual candidate solutions are chosen from a 

population for the purpose of recombination or crossover. Intuitively, selection starts up the ability 

of the genetic algorithm to maneuver its way through the search space. The GA aims to improve 

the average quality (fitness) of the population set by giving candidate solutions that have 

relatively high quality (fitness value) a greater chance to be copied into the next generation of 

population. Selection concentrates the genetic algorithm search on promising regions within the 

search space [14]; thus, targeting potentially useful candidate solutions. 

There are several selection methods that have been developed for efficient exploration of the 

search space. The designs of the variation operators influence the rate of convergence of the 

algorithm. The choice of selection method also influences the speed of the algorithm. Blickle and 

Thiele [14] carried out their work, compared and analyzed the various selection schemes used for 

the GA. Their work describes the influence of the various selection methods on the distribution of 

the fitness values of solutions. The various selection methods are described in this section. A 

generic selection procedure may be implemented as follows [15]: 

1. The fitness value of each candidate solution is obtained using the fitness function, and 

then normalized by dividing the fitness value of each candidate solution by the sum of 

all candidate solutions’ fitness values, so that the sum of all resulting fitness values 

equals 1. 

2. Sort the population in descending order according to fitness values. 

3. Compute the accumulated normalized fitness values of candidate solutions (the 

accumulated normalized fitness value of a candidate solution is the sum of its own 



 

12 

 

fitness value plus the fitness values of all the previous candidates). The accumulated 

normalized value of a candidate is the probability of the individual being selected. 

4. Generate a uniformly distributed random number R between 0 and 1. 

5. The selected candidate is the first candidate whose accumulated normalized value 

(probability) is greater than R. 

2.1.2.1 Roulette Wheel Selection 

The roulette wheel selection method is the original method proposed for genetic algorithms 

by Holland. The method is also called the fitness proportionate selection. It is one of the earliest 

proposed methods of selection. In this method, the probability of a candidate solution being 

selected pcs is proportional to the candidate solution’s fitness value. It is proportional to the ratio 

of the candidate solution’s fitness value to the sum of the fitness of the entire population of 

candidate solutions. It is implemented by repeating the generic selection procedure described in 

section 2.1.2until there are enough candidates selected. This probability is given by: 

   ( )  
  

∑   
   

                                                                          (   ) 

This method is popular among the users of genetic algorithm because of its notable 

advantage in that every candidate solution has a finite chance of making it to the next generation. 

A candidate solution that is poor (weak) in one generation may have some advantageous genes 

that may have been dominated by other “weak” genes. Thus, a poor candidate solution has a 

chance of making it to another generation where it is able to pass on its advantageous genes [16]. 

This results into a greater genetic diversity in the population, an obvious tradeoff with the number 

of good solutions within the population. Because this method involves sorting, the time 



 

13 

 

complexity for N population is given as O(N ln N)[14]. Razali and Geraghty [16]have shown that 

although the tournament and roulette wheel methods can be superior to the rank-based roulette 

wheel method for smaller size problems, they become susceptible to premature convergence as 

the problem size increases. This stems from the fact that candidate solutions with better fitness 

have a higher chance of being chosen for crossover, and this can lead to premature convergence as 

a result of the dominance of solutions with similar fitness values. Genetic diversity or variation is 

a necessity for an improved performance of the genetic algorithm. The rate of evolution of the GA 

depends on the variance of the population’s fitness values [1]. 

2.1.2.2 Stochastic Universal Sampling (SUS) 

The stochastic universal sampling method was developed by James Baker [17]. It was 

developed based on the roulette wheel method with the aim of giving every candidate solution 

within the population the same probability of being selected for crossover. Unlike the roulette 

wheel method where a candidate’s chance of being selected is proportional to its fitness, the SUS 

gives every candidate in the wheel equal chance of being selected. This gives “weaker” members 

of the population, based on their fitness, a chance to be selected, thus striking a balance between 

“exploitation” by highly fit candidates and “exploration” of the other regions of the search space. 

This approach reduces the bias nature of the roulette wheel method. 

2.1.2.3 Rank-based Roulette Wheel Selection 

In a rank-based selection strategy, the probability of a candidate solution being selected for 

crossover depends on its ranking (based on fitness) relative to the entire population. This method 

involves the sorting of the candidate solution according to their fitness. The selection probability 

is then computed according to the candidate’s rank. The rank-based strategy allows the genetic 



 

14 

 

algorithm to explore the solution space and prevents exploitation by candidate solutions with 

higher fitness values. The method eliminates the disadvantage of the roulette wheel selection 

method by preventing premature termination of the algorithm, but it can be computationally 

expensive because of the need to sort the population. As a result of the sorting involved, the time 

complexity for N population is given as O(N ln N)[14].Two major divisions of the rank-based 

method are the linear ranking and exponential ranking method. Whereas these two algorithms are 

similar, they differ in the calculation of the selection probabilities. 

2.1.2.4 Truncation Selection 

The truncation method of selection is as the name ‘truncation’ suggest. After sorting the 

candidate solutions with respect to their fitness, truncation method simply selects a fraction of the 

high-fitness candidate solutions. Compared to other selection methods, it is less sophisticated 

although can be computationally expensive because of the need to sort the population. As a result 

of the sorting of the population, the time complexity for N population is given as O(N ln N)[14]. 

Another disadvantage of this method is that by cutting off “weak” candidate solutions that are 

below a set threshold from proceeding to the next generation, it automatically results to the loss of 

genetic diversity. This is a major reason why it is not commonly used in practice. 

2.1.2.5 Tournament Selection 

  The tournament selection method is a method of selecting a candidate solution from a 

population of candidates within the search space. It represents a middle ground between the 

truncation and roulette-wheel selection methods. It involves randomly selecting a sub-population 

and then selecting the best fit candidate in the sub-population. This best fit candidate is the 

“winner” of the tournament. A compromise can be reached between selection intensity and 



 

15 

 

genetic diversity by changing the tournament size (i.e. sub-population size). A large sub-

population size reduces the chance of “weak” candidates from being chosen, leading to loss of 

genetic diversity; but a small sub-population size can increase the genetic diversity. There is no 

sorting involved for this method; therefore, the time complexity of an N candidate population is 

given as O(N)[14]. Some advantages of this method include: it allows selection intensity to be 

easily adjusted depending on application, and it is easy and efficient to implement. In their work 

on GA performance with different selection strategies in solving the travelling salesman problem 

(TSP), Razali and Geraghty [16]have shown that although the tournament and roulette wheel 

strategies can be superior to the rank-based roulette wheel method for smaller size problems, they 

become susceptible to premature convergence as the problem size increases. 

2.1.2.6 Elitism 

Elitism is a selection strategy in which the best candidate or a percentage of candidates with 

better fitness is carried over to the succeeding generation unaltered. This prevents losing these 

better candidates to the activity of the variation operators (crossover and mutation). Elitism has 

been reported to significantly improve the performance of the genetic algorithms [1]. 

2.1.2.7 Multi-Objective Selection 

The selection methods discussed earlier are designed for problems that have a single 

objective. For optimization problems where multiple criterion need to be simultaneously satisfied 

(multiple objectives), the fitness function becomes more complex. There exists selection strategies 

used to approach such multi-objective problems. 

The simplest way is to use the weighted sum approach where a weight is assigned to each 

objective and then summed up into a single fitness function [14]. This method may be efficient for 



 

16 

 

problems with few objectives but becomes computationally complex with more objectives. 

Usually the objectives are contradictory and cannot have optimum solutions at the same time, thus 

one objective converges to optimum solution at the expense of all others. Thus there is a need for 

other methods that solve this problem. Selection methods that solve the convergence towards one 

objective’s optimal solution belong to the group of Pareto methods. These types of methods obtain 

a set of non-dominated solutions from which any solution that best satisfies the requirements and 

needs can be chosen. Two methods exist for this group: the non-dominated sorting method and 

the Pareto-optimal sorting. For these two methods, before finding the Pareto-optimal candidates 

for a current generation, the Pareto-optimal candidates from the previous generation are added 

[18]. 

The non-dominated sorting method sorts the population and finds the Pareto-surface. All 

non-dominated candidates in the population are given the same rank (1), and are taken out of the 

population while the rest of the population is sorted again. A Pareto-surface is again found and the 

candidates forming it are given rank 2. This process continues until all the candidates get rank. 

The ranks are recalculated so that the rank of the candidates on the first Pareto-surface gets 

maximal [18]. The roulette wheel method is used. A typical advantage of this method is its fast 

selection and convergence. For the Pareto-optimal sorting, only the Pareto-optimal is/are taken 

from all candidates in a current generation. They are then recombined (crossover) with each other 

to generate the next generation. In the event there is only one candidate that dominates the whole 

generation the second Pareto-surface will be obtained and used for recombination (crossover).A 

disadvantage of this method is that several candidates “influence” the search process leaving the 

algorithm in danger of getting stuck in local minima [18]. 



 

17 

 

2.1.3 Crossover 

The crossover operation is one of the most important features of the genetic algorithm. It is 

performed immediately after the selection operation. Crossover also known as recombination is 

the mechanism by which the genetic algorithm is able to exchange the genetic properties (in 

blocks/segments) among candidate solutions in search for better solution. It is a major operator 

that propels the genetic algorithm search process. The crossover operator is engaged the most 

because it has a high rate of occurrence within the algorithm ranging from 80-95 percent 

depending on choice of the user. 

There are several crossover techniques; the simplest one is the single-point crossover. In the 

single-point crossover, a single crossover position is randomly chosen thereby dividing a solution 

into two parts say A and B. In performing crossover, part A of one solution is merged with part B 

of a second solution while part A of the second solution is merged with part B of the first solution. 

This leads to the formation of two new candidate solutions which are likely to have differing 

fitness function from one another and from the parent solutions. Eshelman et al [19] pointed out a 

drawback of the single point crossover known as “positional bias” which results from the inability 

of the single-point crossover to deal with all possible points combinations. The positional bias 

implies“the schemas (blocks) that can be created or destroyed by a crossover depend strongly on 

the location of the bits in the chromosome”[19]. Also it has been noted that the single point 

crossover treats some loci preferentially: the segments exchanged between the two parents always 

contain the endpoints of the strings. [loci: the chromosomal position(s) of a gene as determined by 

its linear order relative to the other genes on that chromosome]. The two-point crossover was 

developed in order to overcome the drawbacks of the single-point crossover. The two point 



 

18 

 

crossover involves the random selection of two positions and the exchange of the segment 

between them. It is less likely to destroy blocks having long length and can combine more points 

than the single-point counterpart. Moreover, the segments that get exchanged do not necessarily 

contain the endpoints of the strings [19]. However the more the number of possible blocks there 

are to be exchanged, the less efficient the 2-point crossover can be. 

There are several n-point crossover points that have been proposed by GA researchers; the 

choice of which is best to use will depend largely on several factors including the encoding of the 

candidates as well as the fitness function. Spears and De Jong [20] proposed a parameterized 

uniform crossover that sets up a probability of exchange happening at each bit position. This has 

no “positional bias” and can work well in situations of possible large block exchange. However 

this scheme can hinder co adapted allele (alternative form of a gene) from ever forming in the 

population. 

2.1.4 Mutation 

The mutation process is the final step of the genetic algorithm. This process occurs just 

before evaluating the new generation of population.Mutation is a genetic operator used to 

maintain genetic diversity from one generation of a population to the next. It alters one or more 

gene (characteristic) values in a candidate solution from its initial state. Mutation is applied to any 

random “gene” of the “chromosome” obtained after crossover, altering a binary bit from 0 to 1 or 

vice versa [21]. In mutation, the solution may change entirely from the previous solution; hence, 

the algorithm can come to better or worse solution by using mutation. Mutation occurs during 

evolution according to a user-definable mutation probability. This probability should be set as low 

as possible. If it is set too high, the search will turn into a primitive random search. The mutation 



 

19 

 

rate should be set as low as 1%-3%. In some cases, depending on the application, the candidate 

solution is converted to binary form for the purpose of mutation and converted back after mutation 

is done. Mutation reduces the chance of the GA getting stuck in local optima.  

2.2 Drawbacks of Standard GA 

The genetic algorithms can be used for a wide variety of optimization problems because of 

its versatility and robustness. However, there are two major weaknesses associated with the 

standard genetic algorithm. The first is that, depending on the complexity of the fitness function 

and the method of encoding of the candidate solution, genetic algorithms can converge very 

slowly in their quest to finding the global optimum; there is no guarantee of finding the best 

solution within polynomial time, thus leading to premature termination. A second weakness, 

common to all evolutionary algorithms, is that the algorithm does not know for certain when to 

stop searching except for the preset time it is allowed to explore by the user; therefore, 

determining a stopping criterion is not straight forward [22]. Several works has been done and 

research is still ongoing to address these two weaknesses. Some of the works that have been done 

are described in the next section. 

2.3 Methods to Improve the Performance of GA 

There are various techniques that have been used to improve the performance of the genetic 

algorithm. Majority of these techniques focus on diversity control; a more diverse solution may 

lead to a better solution. As the GA evolves, the diversity within the population is bound to reduce 

over the generations and this can lead to premature convergence. Premature convergence leads to 

the algorithm getting stuck in a local optima, thereby further preventing it from obtaining a better 

solution. 



 

20 

 

2.3.1 Diversity Control 

The various techniques proposed to improve the performance of the genetic algorithm with 

focus on diversity control are discussed in this section. 

2.3.1.1 Modified Restricted Mating with Multiple Subpopulations 

Jassadapakorn and Chongstitvatana [23] proposed a diversity control mechanism to solve 

the premature convergence problem. Intuitively, the more diverse the candidate solutions are, the 

more progress will be made by the evolutionary process in coming to a better solution. However, 

the formulation of the diversity control mechanism will vary depending on the complexity of the 

optimization problem. The main idea is based on a modified restricted mating concept where only 

candidate solutions with high diversity are selected for crossover, thus aiding the algorithm to 

better solutions within the search space. Jassadapakorn and Chongstitvatana have used two 

mechanisms to control diversity: a modified restricted mating and multiple subpopulations.  

In the modified restricted mating, each candidate has a preference for its partner and this 

depends on “preference type” which is a parameter for controlling the degree of the difference of 

two candidate solutions to be crossed-over. Thus by controlling the preference type, the algorithm 

is able to influence the diversity of the population. The first candidate is selected based on any of 

the selection methods discussed in section 2.1.2 (tournament selection was used by [24]), and then 

the preference type is used to calculate the chance of another candidate being selected as the first 

candidate’s partner. The criterion for selecting the second candidate depends on the difference 

function given by (2.3) and the fitness value expressed in (2.2) [23]. 

      
      

   [  (  )   (    )]                                                     (   ) 



 

21 

 

where x2 represents the second selected partner, ci is the i
th 

candidate randomly selected from the 

population, f is the fitness function, and st is tournament size (tournament selection), d is the 

difference between the first selected candidate and its partner,  isthe preference type, and D is a 

function of d and   called the “difference function”. The candidate with a higher D value has a 

higher probability of been selected as the second partner. The linear difference function used is 

given by (2.3), where     represents the maximum preference type, 0≤   ≤    ,    is the 

difference between the first selected candidate and the candidate   . 

 (    )       
 

    
(       )                                              (   ) 

The equation to calculate   is given by (2.4), where h is the Hamming distance of two individuals, 

and l is the length of chromosome. 

    
 (     )

 
                                                                (   ) 

From (2.3), it is observed that when   is 0, the probability of selection is not determined by d; 

thus, (2.2) becomes equivalent to the standard method of selection where the probability of being 

selected is determined only by the fitness value of each candidate. Also, a higher value of accords 

more weight to the difference between candidates, thus influencing the population towards more 

diversity. This method is computationally expensive. Multiple subpopulations are evolved using 

different diversity (thus preference type) in order to determine the appropriate diversity value for a 

problem [23]. In effect, the multiple subpopulations compete for computational resource. Once 

each subpopulation’s effectiveness in solving the problem is evaluated, the sub-population that 

performs well will be maintained while the remaining (inferior) ones will be eliminated; thus 

leading to the concentration of computational resource on the promising subpopulation. 



 

22 

 

Experiment performed for this proposed method shows that although the subpopulation with 

lower diversity performed better at the early generations compared to those with higher diversity, 

the subpopulations with the higher diversity eventually outperforms those with lower diversity as 

time (generation) progressed. 

2.3.1.2 Hashing of Fitness Values 

Povinelli and Feng [24] approached the convergence problem from the perspective of the 

computational problem of the standard GA. They argue that in a genetic algorithm, most of the 

computational time is spent on the evaluation of the fitness function. In a study of the convergence 

criteria and diversity characteristics of an evolving GA, it was found that the fitness evaluation of 

the same candidates was frequently recalculated. This is an opportunity for improvement of the 

algorithms performance. 

Povinelli and Feng [24] proposed a method to improve the performance of the genetic 

algorithm. This method is also based on the idea of diversity control similar to the ones proposed 

by [23]. However, unlike the method proposed by [23] where the diversity is maintained using a 

modified restricted mating and subpopulation with varied diversity, [24] proposed a diversity 

control method based on the use of a harsh table to store the most recently evaluated candidates. 

This is to ensure that the fitness values of such candidates are not reevaluated once again in the 

event that any of them makes it to subsequent generations. Experiments performed using the 

hashing method revealed that for simple search based problems (such as first-order and second-

order polynomial), where the costs of calculating the fitness is simple, hashing has no effect on 

the performance of the genetic algorithm compared to the no hashing version of the genetic 

algorithm. Therefore the introduction of hashing does not change the genetic algorithm’s 



 

23 

 

optimizing characteristics. But for complex search problem (such as data mining) where the cost 

of evaluating the fitness is overwhelming, hashing was found to reduce the computational demand 

by over 50 percent. Therefore the hashing of fitness values method is suitable for complex real-

world problems. 

2.3.1.3 Adaptive Mutation Rate Control 

Another technique developed to address the issue of loss of genetic diversity is the adaptive 

mutation rate control. Several works [25][26][27][28][29] has been done to show the benefit of 

varying the mutation probability as compared to a fixed mutation rate. An adaptive mutation rate 

allows the algorithm to do a better search because the mutation rate will be varied based on 

feedback information extracted on the performance of the algorithm as the population evolves. 

This frees the user from making pre-determined decision on the mutation rate beforehand and is 

particularly useful since the fitness characteristics of the population with evolution cannot be 

known beforehand. In his work, Thierens [30] proposed two simple adaptive mutation rate control 

schemes principally adapting the mutation rate to the fitness characteristics of the population as 

they evolve with time (generation). The two schemes are: the constant gain adaptive mutation rate 

and the declining adaptive mutation scheme. 

The constant gain adaptive mutation rate control scheme’s idea was borrowed from the 

stochastic Manhattan learning algorithm from the field of stochastic approximation. The 

“stochastic learning algorithms provide recursively refined estimates of optimal model 

parameters” [30]. It uses indices such as the learning rate and input data to estimate optimal 

model parameters at recursive time step. Thierens [30] introduced this concept into the 

evolutionary process. For a current mutation parameter value of   ( ), two new candidates are 



 

24 

 

produced by mutating the current candidate with a mutation rate   
 ( )      ( )and   

 ( )  

   ( )  ⁄ where  is a constant called the exploration factor. Evaluating the fitness value of the 

new mutated candidates indicates whether the current mutation rate should be modified 

(decreased or increased). A multiplicative constant learning factor λ, which is proportional to the 

current mutation probability, is used to make the modifications. The learning factor λ and the 

exploration factor   typically have different values (   >1); typical appropriate values are   = 

1.1 and   = 1.5. 

The declining adaptive mutation control is a variant of the constant gain method. This 

variant “aims for a more aggressive step size while retaining a smooth dynamics” [30]. Every time 

a candidate produces an offspring by mutation, the mutation rate is reduced by a small factor 

known as the declination factor γ. Also, the exploration towards lower mutation rate values is 

replaced by an exploration towards higher values. The adaptation of the step size is also made 

more aggressively than in the constant gain method. The declination factor γ has typical 

appropriate values 0.9 ≤ γ < 1. A formal definition of the algorithm is explained in [30]. 

Experiment was carried out by applying the two techniques and a fixed mutation rate method to 

the Counting Ones problem and the Zero/one multiple knapsack problem. Results obtained 

showed that these two techniques converge faster than the fixed mutation rate method. Also the 

declining adaptation method was seen to converge faster than the constant gain counterpart. 

2.3.1.4 Social Disaster Technique (SDT) 

The Social Disaster Technique (SDT) was developed by Kureichick et al [31] with the aim 

of avoiding premature convergence to local optima. The goal is to prevent loss of genetic diversity 

with evolution. The algorithm modifies the standard greedy crossover which is ‘less’ greedy.  The 

standard greedy crossover operates in such a way that it recombines ‘good’ candidate solutions 



 

25 

 

with very bad ones producing a candidate with almost exactly the same fitness as the ‘good’ one. 

This does not actualize the objective of preventing loss of genetic diversity. Therefore a 

modification was made such that when a very good candidate is selected to be crossed-over with a 

very bad candidate, the algorithm randomly generates new candidates to represent the offspring. 

The manner in which the random candidate is generated is catastrophic in nature and 

deemed similar to social disasters in the real world. Two different operators used to generate 

the random candidate are: 

a. Packing: In a population, when it is detected that a certain number of candidates have 

the same fitness value, only one of such candidates is kept unchanged while the others 

are completely randomized to produce new population.  

  

b. Judgment Day: In a population, the candidate with the best fitness is kept unchanged 

while the others are completely randomized to form new population. 

This proposed technique was applied to the Traveling Salesman Problem (TSP) and it was 

reported that results obtained showed significant improvements both for small and large 

population size compared to the standard genetic algorithms. It was conjectured that the 

catastrophic operator was useful in getting the population out of local minima.  

2.3.1.5 Random Offspring Generation (ROG) 

Rocha and Neves [32] proposed another technique to approach the premature convergence 

of solutions coding local optima of the objective function. This problem as usual occurs as a result 

of loss of genetic diversity as the genetic algorithm evolves over generations, leading to a 

decrease in the performance of the algorithm. 



 

26 

 

The proposed technique is very much similar to the modified restricted mating with multiple 

subpopulations and the hashing of fitness values described previously. The main idea of the 

Random Offspring Generation technique is to ensure that no two candidate solutions with similar 

genetic characteristics are allowed for crossover operation. In the event of similar characteristics, 

one candidate (1-RO) or two candidates (2-RO) will be randomly generated to be the new 

offspring and offspring respectively to form part of the next generation of population. The two 

different cases (1-RO) and (2-RO) differ only on the number of offspring generated. Experiment 

was carried out by applying this technique and two other well-known techniques (Adaptive 

Mutation Rate and Social Disasters Techniques) to the travelling salesman problem (TSP). The 

results obtained revealed that the ROG performed better than the other two techniques; this is 

because of the fact that the ROG ensures maintenance of the genetic diversity. 

2.3.2 Tuning of the Genetic Algorithm Parameters 

Angelova and Pencheva [33] proposed a method which involves changing the sequences of 

implementation of the three main genetic operators (selection, crossover and mutation) in the 

genetic algorithm. Their proposal also considered the impact of the important genetic algorithm 

parameters -generation gap, crossover, and mutation rates on the convergence time. 

The standard genetic algorithm (SGA) searches for a global optimum solution with the 

genetic operators in the following sequence: selection, crossover and mutation. Goldberg 

[9]introduced the basic multi-population genetic algorithm (MpGA) which has the same sequence 

of implementation of the genetic operators as the SGA. The MpGA differs from the SGA in that 

the MpGA has many populations referred to as subpopulations. The evolution of each of the 

subpopulations occur independent of each other for a specific number of generations, after which 



 

27 

 

a number of candidate solutions are distributed between the subpopulation. The SGA and MpGA 

with the standard sequence of selection, crossover and mutation are denoted as SGA-SCM and 

MpGA-SCM respectively. Each of these operators plays a crucial part in helping the algorithms to 

obtaina near-optimum solution. 

Over the years, improvements have been made to the SGA-SCM and MpGA-SCM and this 

involves modifying the sequence of the main genetic operators within the algorithm, leading to 

some variation of the SGA and MpGA. One of such variation is the modified genetic algorithm 

with a sequence crossover, mutation, and selection [34], otherwise denoted as SGA-CMS and 

MpGA-CMS. The main motivation for this sequence is to prevent current (found) good solution 

from being crossed-over or mutated, thereby preventing the loss of such good solution. However, 

the elitism technique is known to take care of the prevention of loss of good solution. Another 

variation is a modified genetic algorithm with a sequence that reverses the CMS order; that is 

selection, mutation and crossover (SMC). Thus we obtain the following modifications: SGA-SMC 

and MpGA-SMC. Another variation puts the genetic operators in this order: mutation, crossover, 

and selection thus leading to the modifications SGA-MCS and MpGA-MCS. These various 

modifications of the SGA and MpGA, with varied rate settings of the parameters: generation gap 

(GGAP), crossover (XOVR) and mutation were applied to a fermentation process in order to 

optimize parameter identification of a fed-batch cultivation of S. cerevisiae. The results were 

analyzed and it was found that up to 40 percent computation time can be saved in cases of the 

SGA-MCS and the MpGA-SCM application using GGAP = 0.5 instead of 0.9 without loss of 

model accuracy. Meaning that the sequence of genetic operators in the order of: mutation, 

crossover and selection is the most optimal in terms of convergence time; this sequence also 



 

28 

 

ensures high decision accuracy. Furthermore, it was concluded that using different values of 

mutation and crossover rates has no effect on the convergence of any of the variations of the SGA 

and MpGA, but a crossover rate of 0.85 was assumed to be more appropriate for optimal 

performance. The mutation rate typically ranges between 0.01 and 0.1. 

2.3.3 Solution Acceleration 

Wong and Li [35] developed the solution acceleration technique in order to improve the 

convergence characteristics of the genetic algorithms by improving the speed of the evolutionary 

algorithm. They have applied this technique to a constrained-genetic algorithm load flow 

(CGALF) algorithm for solving the problem of evaluating the voltage profile and power flow in 

electric power networks. 

The solution acceleration techniques have been previously used in iterative methods to 

determine solutions of unknown variables in a set of simultaneous equations. From the initial set 

of solutions at the first generation up to the last generation, accelerated solutions are produced per 

generation. The accelerated solutions are generated using Equation 2.5, and then used to generate 

the population at subsequent generations. The accelerated solution of a variable x at the i
th

 

generation (iteration) is estimated from its solutions at the i
th 

and the (i-1)
th 

generations according 

to (2.5). 

   
          (        )                                                                       

where    
  represents the accelerated solution of a variable x,   is the solution at the current 

generation,      is the solution at the previous generation,   is a constant coefficient. “The 

acceleration mechanism is started by setting the value of to a value greater than unity [35]”. 



 

29 

 

In a genetic algorithm, the candidate solutions at any generation i that make up a population 

P(i) are considered to be possible solutions for any particular optimization problem. The best fit 

candidate solution among the population can be taken as the most appropriate solution Sb in the 

current generation i. In order to accelerate the process of obtaining the optimum solution, the other 

candidate solutions in a population P(i) are moved closer to Sb as outlines in the following three 

steps: 

a. Let S represent the candidate solution in P (i) 

b. Obtain the difference between Sb and S 

c. Scale the difference and add it to Sb to obtain a new solution 

These three steps ensure that all of the candidate solutions are accelerated. The accelerated 

candidate solutions are then used to generate the candidate solutions for the next generation P 

(i+1) through the use of the genetic operators. For this method however, it is important to know 

how to appropriately set the constant coefficient  , used to scale the difference between Sb and S, 

in order to ensure optimal performance of the algorithm for any specific application. The authors 

[35] explain that this coefficient can be estimated using any of two means: 

a. By experiment 

b. By randomly setting the value within a specific range in the entire evolutionary 

solution process. 

This technique has been applied to examine the light and heavy load conditions of the load 

flow problem, specifically for solving the problem of evaluating the voltage profile and power 

flow in electric power networks. It was found that for light load, convergence occurred at the 12
th

 

iteration with the solution accelerator, whereas convergence occurred at more than 200 iterations 

without the solution accelerator. For heavy-load case, convergence occurred around the 5
th

 and 



 

30 

 

6
th

iteration using the solution accelerator, whereas convergence occurred at more than 200 

iterations without the solution accelerator. Therefore the proposed method of solution acceleration 

can greatly reduce the computing requirement of a genetic algorithm. 

2.4 Intrinsic GA Defect 

The various conventional improvement strategies explained above are not without setbacks. 

There still remains a tendency to get stuck in local optima and converge prematurely; this can be 

explained by several reasons. 

i. Random Walk in Diversity Control 

The most important factor is the ability of the algorithm to maintain a consistent diversity 

within the population as the algorithm evolves. An advantage of the diversity is that it ensures the 

GA does not get stuck in the local minima. Although most of the conventional improvements 

discussed focused on the diversity control method of generating solutions within the search space, 

the manner of generating such diverse solutions is random in nature. This random walk within the 

search space implies that obtaining the optimum solution is probabilistic in nature and as such 

there is no guarantee that this optimum solution will be found. 

ii. Genetic Operators’ Effect  

Each of the diversity/convergence improvement methods above makes use of the genetic 

operators to achieve diversity and/or speed up convergence. However, comprehensive diversity of 

the population cannot be guaranteed as a result of the probabilities associated with each of the 

genetic operators. This is also irrespective of whether an adaptive or fixed rate approach is 

employed for any of the operators. There is a need for a mechanism that aids the operators in 

overcoming this shortcoming.  



 

31 

 

iii. Effect of Evolution 

The standard GA and its improvements have a common defect – they are ignorant of the 

candidates’ experiences during evolution[36].As a result of the random-nature of the search, there 

exist no necessary connections between the current and next generations except for some 

controlling parameters such as the choice of selection strategy, as well as the crossover and 

mutation probabilities. Thus, the feedback information from former population is discarded. 

These intrinsic defects observed in a standard GA, largely attributed to the random nature of 

the search, has led to further research in finding an efficient approach to “walking” through the 

search space. The aim is for the algorithm to have the ability to walk through the search space in 

such a way as to overcome the setbacks mentioned above. This is the motivation for employing 

the concept of chaotic walk wherein the manner of searching through the search-space is chaotic 

rather than random. 

2.5 Chaos Theory 

Chaos is a phenomenon exhibited by deterministic dynamical system. Chaos is a state 

whereby a dynamical system, which can be described by a deterministic equation, behaves 

unpredictably [37]. This unpredictable behavior is also a characteristic of random influence. 

However a random influence is non-deterministic in nature. The study of chaos started in the 1800 

by Henri Poincare and was continued by other researchers such as John von Neumann, Edward 

Lorenz, and George D. Birkhoff. Others were T.Y. Li, James York and A.M. Sharkovskiy. The 

deterministic model used to study this behavior evolved from the introduction of a model of 

population growth without feedback to one with feedback. The model with feedback is what is 

popularly known today as the logistic map. 



 

32 

 

2.5.1 The Logistic Map 

The logistic map is a polynomial map of the second order. It is used to explain howa 

simple nonlinear dynamical system exhibit complex, chaotic behavior. The logistic map is given 

by: 

         (     )                                                                                (   ) 

where x is a number ranging from zero to one,    is the initial (existing) value of x at the 

iteration n,      is the new value of x at the iteration n+1, r is the net x growth rate (“net” refers to 

a combined rate between reproduction and extinction).The behaviors exhibited by the logistic map 

are a function of the value of the parameter r. Figures2-5 show these behaviors. When r lies 

between 0 and 3, the logistic map will converge to some value x. For instance, Figure2shows that 

when r is 2, the map converges to a value “0.5” of x for 4 iterations. The map exhibits periodic-

doubling, termed bifurcation, when r is greater than 3 and less than or equal to approximately 

3.56994. Bifurcation implies the permanent oscillations of the map between specific values of x. 

These bifurcation points are also periodic depending on the interval of r within the bifurcation 

band. The bifurcation process follows the order below while each of Figures 3 and 4 is an 

example of bifurcation described by items a and b respectively.  

a. For 3 <r ≤ (1+√6), x cycles between 2 values depending on r. 

b. For (1+√6) <r ≤ 3.54409, x cycles between 4 values depending on r. 

c. For 3.54409<r ≤ 3.564407, x cycles between 8 values depending on r. 

d. For 3.564407 <r ≤ 3.568759, x cycles between 16 values depending on r. 

e. The period doubling goes on until   = 3.569944… 



 

33 

 

 

Fig. 2 Plot of logistic map when r lies between 0 and 3 

 

 

Fig. 3 Plot of the logistic map when r lies between 3 and (1+√6) 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

x*

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

x*



 

34 

 

 

Fig. 4 Plot of logistic map when r lies between (1+√6) and 3.54409 

 

 

Fig. 5 Plot of logistic map when r lies between 3.56995 and 4 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

x
*

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

x
*



 

35 

 

 

Fig. 6 Plot of logistic map when r lies between 2.5 and 4 

 

It is observed that the spacing between successive bifurcation intervals becomes smaller and 

smaller till it reaches the limit value   = 3.569944. The ratio between these successive bifurcation 

intervals has been established to converge to a constant δ known as the first Feigenbaum constant. 

This constant has been estimated to be: 

δ = 4.669 201 609 102 990 671 853 203 820 466 201 617 258 185 … 

This constant has been discovered to be universal in that it does not depend on any specific type 

of map, provided the map is unimodal and of the same degree in the same number of embedding 

dimensions. A unimodal map is one that has the ability to remap itself to an initial starting point 

after going through all the possible trajectories. Examples of unimodal maps are the tent map, the 

sine map and the logistic map. As the bifurcation points get closer, the ratio/densities become 

indistinguishable. This is the route that leads to chaos. This phenomenon known as Chaos occurs 

2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

x
*



 

36 

 

when r lies between 3.56995 and 4 as shown by Fig. 5. Figure6 represents the logistic map 

behavior when r lies between 2.5 and 4. The map is convergent when r lies between 2.5 and 3, 

while it bifurcates for 3 < r ≤   = 3.569944. Beyond the point   = 3.569944, the map becomes 

chaotic. The characteristics of a chaotic system are described next. 

2.5.2 Characteristics of a Chaotic System 

According to Robert Devaney [38][39], chaos can be defined in terms of three topological 

properties. A map q: X → Y, where X is a metric space, is said to exhibit chaos if: 

1. q is transitive; 

2. the set of periodic points P is dense in X; and 

3. q has sensitive dependence on initial conditions.  

These three characteristics must all be satisfied before it can be concluded that a dynamical 

system is chaotic. Each of the characteristics is elaborated further in this section.  

2.5.2.1 Sensitivity to Initial Conditions 

In 1961, while running a climate model which consists of twelve differential equations with 

the objective of forecasting weather long-term, Edward Norton Lorenz discovered the climates 

“sensitive dependence on initial conditions”. This property implies that little differences in initial 

conditions (e.g. due to rounding errors in numerical computation) produces completely divergent 

outcome for such dynamical systems, thereby making long-term prediction of the system’s 

behavior impossible[39].It is this loss of predictability due to small errors in the initial conditions 

that is called the butterfly effect. Though a chaotic system is governed by a deterministic nonlinear 

dynamic equation, the sensitivity to initial conditions is the sole reason for this unpredictability. 

Considering the logistic map in (2.6) for instance, any slight change to the initial set value of the 



 

37 

 

parameter xn will lead to a completely different value of xn+1.Thus with the slightest difference to 

xn, the behavior of the system cannot be predicted in the distant future [37]. This is a very good 

source of ensuring diversity in the population of solutions from one generation to another in the 

genetic algorithm. While linear maps may have sensitive dependence on initial conditions, they do 

not exhibit chaos since they do not satisfy the remaining conditions of a chaotic system. However, 

quadratic and high-order maps may exhibit chaos. 

2.5.2.2 Topological Density 

Topology is the most basic form of geometry. It deals with the mathematical study of 

objects (shapes and spaces). It studies the properties of objects that remain the same irrespective 

of continuous deformation or distortion. Topology allows any continuous change to geometry that 

can be continuously undone. Topological density can be explained using the concept of a dense 

set. In the context of dynamical systems, “a set S is a collection of points σn in a phase space, R
m

. 

The set S, together with its topology defined by the subsets, {sn}, define a topological space [37]”.  

A subset sn of a topological space S is called dense (in S) if any point s in S belongs to sn or 

is a limit of sn [43]. Formally, a subset sn of a topological space S is dense in S if for any point s in 

S, any neighborhood of s contains at least one point in sn. In other words, sn is dense in S if and 

only if the only closed subset of S containing sn is S itself. Thus we can say that the closure of sn is 

S, or that the interior of the compliment of sn is empty. The definition implies that sn approximates 

S to any degree of accuracy such that every point in S not in sn has a point of sn arbitrarily close to 

it [37]. For example every real number is either a rational number or has one arbitrarily close to it. 



 

38 

 

2.5.2.3 Topological Transitivity (Ergodicity) 

This is the most essential condition of chaos and it is exclusively a property of chaos. According 

to Kinsner’s definition [37]: 

“Let g be a map on metric space X. Then g is said to be topologically transitive if for any 

pair of nonempty open sets G and H there exists a positive integer k such that g
k
(G) ∩ H ≠ Ø. 

Thus, under a transitive map, a point can wander all over the space X where its orbit gets as close 

as we wish from every point in X”.  

Transitivity of points means that any future trajectory will get into the vicinity of another 

trajectory, without ever intersecting it. This concept is popularly called mixing. Thus any single 

point is able to get to any other point on the trajectory, arbitrarily close, without ever intersecting 

it. This behavior is closely related to the concept of ergodicity. Ergodicity is a property of any 

stochastic or dynamical system. It describes a system whose probability distribution is 

independent of its initial conditions. This implies that the statistical property is invariant with 

initial starting point in the trajectory. Ergodicity describes a dynamical system that has “the same 

behavior averaged over time as averaged over the space of all the system’s states (phase space)” 

[40].Thus the concept of mixing also implies ergodic orbits. 

The unique feature of this property is that for any map that exhibits chaos, during one 

trajectory, no one point will be visited more than one. This implies that no point will be repeated 

in the order of generation per iteration (trajectory). This is a powerful tool that can be used to 

improve the performance of search-based algorithms since it can guarantee that no solution will 

be revisited in the trajectory of the search space and equally ensure a better chance of not getting 

stuck in a local optima.  



 

39 

 

2.6 Motivation for Incorporating Chaos into Genetic Algorithms 

The standard genetic algorithm uses a random process to generate parameter values for the 

initial population generation, the crossover and mutation processes. This randomization leads to 

limitations in the performance of the GA such as premature convergence, probability of getting 

stuck in local optimum and inability of the algorithm to ascertain when to stop searching for the 

global optimum solution. And despite efforts aimed at militating against these problems by 

developing various techniques to improve the performance of the GA as discussed in section 2.3, 

the drawbacks of the GA are never fully addressed. One of the reasons responsible for these 

intrinsic drawbacks is attributable to the inherent random walk, which may lead to the revisiting 

of solutions within the search space. This may reduce the probability of obtaining the global 

optimum solution. This random walk is also responsible for the below-par performance of the 

evolutionary processes of the algorithm.  

One reason for premature convergence may be the revisiting of points in the search space 

leading to frequent re-evaluation of the fitness value of the same candidate solution. The ergodic 

property of a chaotic walk is a very powerful tool that ensures that no one point is revisited for a 

complete walk through the search space. Thus, the probability of obtaining the global optimum 

solution is increased depending on the number of iterations (generations) set as the finishing 

criterion. Also the sensitivity to initial condition of a chaotic system may help the GA to avoid 

been stuck in local optimum. This property is another powerful effect that ensures that any slight 

change in the diversity of the population of any generation (and thus fitness value) leads to a 

completely different population which differs greatly in fitness values from one generation to 

another.  



 

40 

 

We conjecture that the evolutionary processes of a GA –initial population generation, 

crossover and mutation in genetics - are driven by a deterministic non-linear dynamic process 

rather than a random deterministic process. Thus, a chaotic logistic map will be incorporated into 

the initial population generation, the crossover and mutation processes of GA. Introducing chaos 

into the whole process of a standard GA (SGA) may help improve convergence time and 

accuracy. This is the motivation for introducing chaos into the GA’s evolutionary processes – 

otherwise called Chaotic GA (CGA). The coupled logistic chaotic map will be used in the process 

of the GA such as population generation, crossover and mutation.  

2.7 Chaotic Genetic Algorithm 

Yun-Xiao et al [41] introduced chaos into GA processes and applied it to the cognitive radio 

resource allocation problem. The coupled CGA succeeded in reducing the total transmission 

power, bit error rate, and convergence speed in the cognitive system compared to the simple GA 

(SGA) and dynamic allocation algorithm. Min-Yuan and Kuo-Yu [42] also proposed K-means 

clustering and Chaos Genetic (KCGA) for Non-linear optimization. The KCGA was shown to 

enhance the diversity of the GA as well as improve on the limitations of the SGA in terms of 

convergence time and local optima. The KCGA has an improved accuracy and faster convergence 

time compared to the SGA. There are several works [43][44][45][46] that have applied chaos to 

other stochastic methods for different applications. Cook et al [43] applied chaos to simulated 

annealing to optimize the multiprocessor task allocation problem. They took “chaotic walks” in 

the solution space with the goal of obtaining a “good-enough” task to processor allocation 

solutions. Their approach was to use chaotic sequences to generate the chaotic variables that were 

used to set the number of perturbations made in each iteration of a chaotic simulated annealing. 

They also adjusted the parameters of a chaotic variable generator to create different chaotic 



 

41 

 

distributions that were used to search through the solution space. Their experiments show that the 

chaotic simulated annealing converged faster than the conventional simulated annealing when the 

solutions are far apart in the solution space. Shaw and Kinsner [44] applied the chaotic simulated 

annealing to the training of multilayer feedforward neural networks with the goal of avoiding and 

escaping the local minima. Their result for the said application show that the chaotic simulated 

annealing, using the logistic equation, was 600 percent faster than conventional simulated 

annealing that uses Gaussian random numbers. Mingjun and Huanwen [45] also reported that the 

chaotic simulated annealing improved the convergence of a typical complex function optimization 

compared to the conventional (Gaussian-based) simulated annealing. The chaotic counterpart was 

also reported to be more efficient. Meng et al. [46] incorporated a chaotic search into the 

evolutionary process of the particle swarm optimization algorithm and applied it to the Schwefel’s 

function, the Rosenbrock’s function and the Schaffer’s function. When compared with other 

methods like the standard particle swarm algorithm, the standard genetic algorithm and an 

improved particle swarm algorithm, the chaotic particle swarm algorithm was reported to 

converge faster and less susceptible to get stuck in local optimum solutions. The inherent 

properties of chaos ensure that the CGA is able to explore the solution space in such a way as to 

obtain better fit solutions. The CGA process flow is described in Table1. 

 

 

 

 



 

42 

 

Table 1 Chaotic Genetic Algorithm Procedure 

Step Action 

1 
Generate a chaotic initial population of n solutions, 
where n is the population size 

2 
Evaluate the fitness of each of the solutions in the 
initial population 

3 
Generate new population of solutions using 
processes in steps 4-6 

4 
Selects two solutions among the current population 
using the roulette wheel method (based on fitness 
of each solution) 

5 

Crossover the two selected solutions using chaotic 
sequences and considering the crossover 
probability, to form the solutions for the next 
generation 

6 

Mutate one of the selected solutions at each 
defined chaotically generated mutation point, 
considering the mutation probability and place it in 
the new population 

7 
Evaluate the fitness of each of the solutions in the 
new population 

8 
Repeat steps 3-7 until the stopping criteria have 
been met 

 

 

 

 

 

 



 

43 

 

Chapter 3 

Genetic Algorithms, Chaos and Application 

This chapter focuses on the application of GA to specific problems. The first section of the 

chapter discusses problem classification based on the computational complexity of obtaining the 

optimum solution. The second and third section describes the application of GA to the 

multiprocessor task scheduling problem and spectrum allocation respectively. The Chaotic GA 

optimization approach is described in the last section. 

3.1 Problem Classification 

A problem for which a solution is sought could be a decision problem, a search problem or 

an optimization problem. This thesis focuses on seeking a solution within a search space. For 

some search problem, there are efficient algorithms that give solution within polynomial time. The 

problem size could be that we seek solution from among an exponential population of 

possibilities. An exhaustive search will guarantee the optimum solution, but for a large problem 

size the exhaustive search will not run in polynomial time. Thus, there is a need for efficient 

algorithms that can cleverly bypass this process of exhaustive search using clues from the input in 

order to drastically narrow down the search process. The problem of seeking solution can be 

classified based on the difficulty that is encountered in seeking such solution. The classes are:  

 P 

 NP 

 NP-hard 

 NP-complete. 



 

44 

 

P: The P stands for the class of all search problems that can be solved in polynomial time. In other 

words, there are known algorithm that can solve the problem in polynomial time. A polynomial 

time can be explained as the time requirement of any algorithm that grows only as a polynomial 

function (such as n, n
2
, n

3
, or n

4
) of the size of the input, where ‘n’ is the size of the input. 

Polynomial-time problems are deemed as easy problems when compared to some other very hard 

ones. Examples of P problems include the shortest path problem, Euler path, unary knapsack, and 

bipartite matching. 

NP: The NP stands for “nondeterministic polynomial time”. It denotes the class of all problems 

because not all problems can be solved in polynomial time. An NP problem solution can be found 

using a special kind of algorithm known as a non-deterministic algorithm. The solution can also 

be verified in polynomial time. We see that P⊆NP although P ≠ NP. 

NP-hard: These are a class of problems that are at least as hard as the ‘hardest’ problems in NP, 

but do not have to be in NP. A problem S is NP-hard if a polynomial-time algorithm for S would 

mean a polynomial-time algorithm for every problem in NP. Thus, we can reduce any problem in 

NP to an NP-hard problem. If any NP-hard problem can be solved in polynomial time, then P = 

NP. 

NP-complete: NP-complete problems are the ‘hardest’ NP problems. This means that if any NP-

complete problem can be solved in polynomial time, then all problems in NP can be solved in 

polynomial time i.e. P=NP. Formally, we say a problem S is NP-complete if it satisfies these two 

conditions: 

 S NP 

 NP-hard i.e. every problem in NP can be reduced to S in polynomial time. 



 

45 

 

3.2 Application of GA to the Multiprocessor Task Scheduling Problem 

In this section we discussed task scheduling based on the height of tasks within a task graph and 

pointed out the problem with this method. The scheduling method based on the number of task 

descendant was also discussed. We pointed out the advantage of this method and discussed a way 

to improve the method.  Finally we have described the application of the genetic algorithm to the 

improved scheduling method. 

3.2.1 Scheduling 

Scheduling is a process of decision-making, which is employed regularly in many 

industries. Typically, scheduling involves the decision of how to allocate resources to tasks over a 

given period of time with the goal of optimizing one or more objectives. Scheduling plays a 

significant role in many applications today such as in product manufacturing and information 

processing systems. Thus, the role of scheduling in a real world application cannot be over-

emphasized. 

The resources to be allocated depend on the environment or industry. The resources could 

be processing units in a computing environment, landings and takeoffs at an airport, gate 

assignments at an airport, teller officers’ assignment to customers within a banking hall, 

reservation of reading rooms in a University library. Each task may have more than one attributes, 

each of which can be used as a criteria for allocation. Examples of the attributes include execution 

time and cost/implication of task waiting-time. Example of an objective can be the minimization 

of the total processing time of a set of tasks arranged in a task graph. 

 



 

46 

 

3.2.2 Multiprocessor Task Scheduling 

Example of resources in a multiprocessing system will be the processors, while the task 

would be the computational work to be done. This kind of scheduling is also known as 

multiprocessor task scheduling. The goal of task scheduling in a multiprocessor system is to 

schedule tasks on available processors with the goal of minimizing the total task-processing time. 

The total task-processing time is also known as makespan. For each task, there is an execution 

(processing) time    that represents the execution of task j on processor i. The distribution of the 

execution times may or may not be known in advance, including their mean and their variance. 

Furthermore, priority (weight) levels can be assigned to each task; the weight    of a task j 

specifies the importance of the task j relative to the other tasks in the systems. Thus, the priority 

levels specify which tasks are more important in the creation of the schedule order. The goal 

remains the same: to minimize the expected makespan. 

The completion time of each processor may vary for different schedules. Thus, the objective 

to be minimized depends on the completion times of all the processor in a schedule. Within a 

schedule, if the completion time of the operation of task j on processor i is represented by    , then 

the time task j leaves the system (i.e. task j’s completion time on processor on which it is 

processed) is represented by   .Two examples of possible objectives to be minimized are: 

Makespan (    ): This is defined as    (       )and is equivalent to the maximum 

completion time of the processors in the system (schedule). A minimum makespan is an indication 

of good utilization of the processor(s). 



 

47 

 

Total weighted completion time (∑     
 
 ) [47]: This is the sum of the weighted completion 

times of k jobs, where wj represents the relative weight of Cj with respect to others. A minimum 

total weighted completion time usually signifies a good utilization of the processor(s). 

A typical attribute of a task graph is the precedence based-relation between the tasks. This 

attribute implies that some tasks have to complete execution before the execution of other tasks. 

Two approaches to task scheduling are the pre-emptive or non-pre-emptive scheduling. Pre-

emption refers to the interruption of the execution of a task. Pre-emption ensures that tasks having 

higher priority and longer execution time do not prevent tasks having lower priority and relatively 

short execution time from having a share of a processing unit. The scheduler divides the execution 

time of each task into smaller chunks and then rotates these smaller chunks on the processing unit. 

The non-pre-emptive relation implies that any task in execution cannot be interrupted until it 

completes execution. There are different special forms of precedence constraints: a chain 

constraint is when a task has at most one predecessor and at most one successor. An intree 

constraint is when a task has at most one successor while an outree constraint is when a task has at 

most one predecessor.  

3.2.3 Computational Complexity 

The impact of a formulated method of scheduling on the set objective(s) may not be clear at 

the onset. The question is how sensible it is to spend time and effort searching for a good 

schedule, within a search space rather than just choosing a schedule at random. According to 

Pinedo [47], in practice the choice of schedule does have a significant impact on the performance 

of the system; thus, in practice it is sensible to spend some time and effort to search for a suitable 



 

48 

 

schedule. Hou et al [7] reported that the problem of obtaining optimum task scheduling for any 

task graph with task dependencies is NP-hard. 

If we consider ‘n’ number of tasks and m number of processors, sorting each task (in non-

decreasing order) according to a relative deadline order will require Θ (n lg n) time. Fisher [48] 

estimated the run time of their proposed algorithm in mapping all n tasks on m processors as not 

more than that given by (3.1), where m ≤ n. 

∑  (   )
 

   
                                                                            (   ) 

3.2.4 Related Work 

There have been several approaches to the task allocation problem in a multiprocessing 

system. Jin et al [49]carried out a comprehensive survey of nine scheduling algorithms, which are 

frequently used to solve the multiprocessor task scheduling problem and they compared the 

performance of each of the algorithms. The nine algorithms considered included tabu search, 

simulated annealing, genetic algorithms, chaining, min-min, A*, Insertion Scheduling Heuristic 

(ISH), Highest Level First Known Execution Times (HLFET), and the Duplication Scheduling 

Heuristics (DSH) with task duplication. They evaluated the performance of each of the nine 

algorithms and benchmarked them against two well-known problems of linear algebra: LU 

decomposition and the Gauss-Jordan elimination. It was observed that with task duplication the 

DSH performed best while the ISH performed best in the absence of task duplication. The GA and 

tabu search were reported to have obtained the best solution out of all the iterative search 

algorithms considered. In order to avoid unnecessary computational overhead, task duplication 

was not considered in this thesis. 



 

49 

 

There are other works in the literature which reports on the performance of GA in this area. 

The GA is used to search for the best schedule out of all the possible schedules. However, the key 

to increasing the ability of any heuristic to finding the best schedule is the choice of method of 

scheduling. Majority of these works [7][50][51][52][53]have assumed a non-pre-emptive 

approach to schedule precedence constrained task graph. However, Wu et al [54] assumed task 

duplication. Until recently, the most utilized priority-based task scheduling is the height-based 

method. This method prioritizes task allocation based on the position (in height) of tasks in a task 

graph. The task graph is generated using a Directed Acyclic Graph (DAG). A DAG for tasks is the 

graph that represents the precedence constraints among the tasks along with their execution time. 

The higher the height of a task is in the graph, the higher the priority assigned to it. However as 

the size of the DAG increase, the height-based method becomes less efficient principally because 

of variation in task descendants. “Task descendants” implies the number of tasks that depends on 

the completion of any task before starting their own execution. A notable drawback of the height-

based method is that any task at a higher heightbut with no descendant will be scheduled ahead of 

tasks at a relatively lower height that have descendant(s). This may increase the makespan of the 

processing system. Abdeyazdan and Rahmani[8] proposed a new scheduling algorithm which 

prioritizes task allocation based on the number of children and the earliest start time(EST) of each 

task. We have replaced the notation ‘number of children’ with ‘number of task descendants’ 

(NTD). This new method solves the above mentioned problem encountered with the height-based 

counterpart by ensuring that tasks having a greater number of descendants are given higher 

priority regardless of their height on the graph. This can further decrease the makespan of the 

processing system. 



 

50 

 

In this thesis, we have considered the new algorithm proposed by [8]. However, we have 

also observed that within a DAG, it is possible that some tasks will have multiple earliest start 

time(s) as a result of multiple paths from which the ESTs can be calculated. Our contribution to 

this research ensures that for tasks that have multiple ESTs, the minimum EST will always be 

chosen as against the observed maximum EST used by [8]. The assumption is that the completion 

of the execution of one of the parent tasks satisfies the precedence relations in the graph; a method 

similar to an ‘OR’ relation. Our method is akin to choosing the shortest path in a routing problem, 

thus reducing the makespan of the processing system. 

3.2.4.1 Height-based Task Scheduling 

The goal of task scheduling in a multiprocessing system with m processors is to assign n 

tasks to the processors such that the precedence relations are maintained and all of the tasks are 

completed in the shortest possible time. For a schedule with m processors, the completion time of 

each processor is termed the Finishing Time (FT) of such processor. Most times the FT of each of 

the m processors varies one from another, and depends also on schedule. The maximum FT 

among the m processors of a schedule is termed the Total Finishing Time TFT of that schedule. 

This is also referred to as the schedule length. The TFT of a schedule is given by (3.2). 

         {                }                            (   ) 

Hou et al [7] developed the height-based method to convey the precedence relations between the 

tasks in a DAG. A typical DAG is represented by Fig.7. A height function was developed to 

ensure that tasks that are higher up the task graph are given more priority compared to tasks on 

lower levels. In a task graph where there is a sequence of directed edges from task, say ti to tj, then 

ti is higher up the graph while tj is lower down the graph.  



 

51 

 

 

Fig. 7 A task graph 

 

This precedence relation implies that the execution of task ti has to be completed before the 

execution of tasks tj and other tasks that have directed edges from task ti. If PRED(ti) stands for a 

set of preceded tasks of ti, then the height of any of the preceding tasks can be obtained using 

(3.3).This equation is a recursive representation of the precedence relations between the tasks in 

the task graph. 

      (  )    {

                                 (  )     

     {      (  )}           

       (  )

                                                (   ) 

The task height increases from 0 to a finite length, where the succeeding tasks to the task(s) at 

height 0 will have heights of value(s) greater than 0.  Therefore the lower the value of the height 

of any task, the higher up is the task on the DAG. In other words, if task ti precedes tasks tj in a 

task graph, then ti will be executed before tj and height (ti) <height (tj). However if there is no 

precedence relation between any two tasks, the order of execution can be random. For example, in 



 

52 

 

Figure 7, the height-based function gives a higher priority to scheduling task t0before any of task 

t1 or t2. An algorithm to produce schedules based on the height of task is shown below: 

1. Arrange the tasks in ascending order according to their height. 

2. Generate a random number r between 1 and m (where m is the number of processors). 

3. Put tasks with the same height in a single group and perform steps a and b for all the 

groups in order of height until every group is empty. 

a. Randomly select a task from the group. 

b. Allocate the selected task to the r
th

 processor and then delete it from the group. 

4. Repeat steps ‘a’ and ‘b’ until the queue is empty. 

Table 2shows the arrangement of the tasks in ascending order based on their height. The problem 

inherent with this approach is discussed in the next section. An example of a possible schedule 

that can be generated using the height-based scheduling algorithm with respect to Table 2 is 

presented in Fig. 8. 

Table 2 Height and Execution Time of Tasks  

Task Height Execution time 

 

t1 0 4 

t2 1 2 

t3 1 3 

t4 2 3 

t5 2 11 

t6 2 3 

t7 2 5 

t8 3 3 

t9 3 3 

t10 3 10 

t11 3 7 

t12 3 5 

t13 4 8 

t14 4 13 

t15 4 15 

t16 5 12 



 

53 

 

 

Fig. 8 Height-based Task Schedule 

 

3.2.4.2 Problem with Height-Based Scheduling 

A major drawback of this approach can be explained using the DAG of Fig. 7. Using the height 

function we can assign corresponding height to each of the tasks t1 to t16. For instance, if task t1 is 

set to be at height 0 (highest), then each of tasks t2 and t3 will have height 1. Also each of tasks t4, 

t5, t6, t7 will be assigned height 2. This way every task in the graph have their height assigned. For 

this example, a random execution time (ET) is assigned to each task. Table 2shows the heights and 

ET for each of the tasks in the graph. For this graph we assume that the ET values range from 0 to 

15. The height based approach schedules tasks at higher height before tasks at relatively lower 

height. For tasks with equal height values, any of such tasks will be randomly picked for 

scheduling. Based on this approach, we observe the following: 

“tasks such as t8may be scheduled before tasks such as t11” 

We note that the task t8has no descendant, which means that there is no task that needs task t8 to 

complete before it can start. The algorithm states that any of tasks t8and t11 can be randomly 

selected for scheduling since they both have the same height. However, it is observed that tasks 

t11has two descendants: tasks t13and t14, each of which cannot be scheduled unless task 



 

54 

 

t11completes execution. A better method will be to schedule task t11 that has descendants first 

before task t8that has no descendant. Therefore, scheduling based on height may increase the FT 

of a processor and consequently the TFT of a schedule. For a task graph with a high percentage of 

task descendants, the height-based scheduling will not be suitable for optimum performance of the 

multiprocessing system. This is the motivation for a new scheduling algorithm to be designed to 

achieve a better task scheduling in the system. 

3.2.4.3 Task Allocation based on Number of Task Descendants 

This new method proposed by Abdeyazdan and Rahmanim [8]was developed to further 

reduce the TFT (makespan) of the processing system. It prioritizes task scheduling based on the 

number of descendants (NTD) and the earliest start time (EST) of each task. Tasks with higher 

NTD(s) are given higher priority irrespective of their height on the task graph. Assume a task    

with a j number of outgoing edge(s), i.e. descendant(s). The descendants represent tasks whose 

execution depends directly on the completion of the task  . The Number of Task Descendants 

(NTD) for such task    is given by (3.4). 

   (  )  

{
 
 

 
 
                                 (  )     

∑{      (  )}

   

           

                         

                                                       (   )    

 

The NTD function above represents the total number of tasks that depend on a task    whether 

directly or indirectly; this was termed number of children by [8]. In this work, we have replaced 

the term ‘number of children’ with ‘number of task descendants’ (NTD). A task with more NTD 

will be scheduled earlier than any other tasks with lower NTD. The concept of Earlier Start Time 

was introduced to ensure that tasks are scheduled with respect to the earliest time at which they 



 

55 

 

are available. The EST of a task is a function of the sum of the execution times of all the tasks that 

precede that task. However there could be more than one path on the task graph along which a 

task could be executed. This implies that there will be multiple EST for such task. Our algorithm 

selects the minimum EST (min-EST) whereas [8] selects the maximum EST (max-EST). An 

algorithm to produce the schedule based on the number of task descendants and minimum EST is 

shown below: 

1. Arrange the tasks in descending order based on the number of task descendants of 

each task. 

2. Put tasks with the same NTD in a single group and perform steps a and b for all the 

groups in order of higher NPD until every group is empty. 

a. Randomly select a task from the group and then delete it from the group. 

b. Allocate the selected task to one of the processors based on the EST method 

such that the starting time of the task on that processor is less than other 

processors. 

i. For tasks with multiple EST, choose the minimum EST in 

performing b.  

3. Repeat steps ‘a’ and ‘b’ until all the tasks have been selected. 

The EST method is based on (3.5) and (3.6). Equation 3.5 shows how the algorithm obtains the 

actual EST for each task. The actual    (  ) on processor    is the time at which a task    starts 

execution on processor   . It is based on estimations made from other parameters. These other 

parameters include    (  ) and   (  ). 

          (  )    
                  

    {

                                   (  )        

   (  )                           (  )     (  )

  (  )                             (  )     (  )

                (   ) 



 

56 

 

where   (  ) represents the current available time on processor    at which an allocated task may 

start execution,    (  ) is the earliest start time of a task    based on the task graph, n is the 

number of tasks and m is the number of processors. 

The equation that can be used to compute the   (  ) is given by (3.6). 

  (  )
                  

  {

                                                  (  )     

   (  )    (  )                           (  )     (  )

  (  )    (  )                             (  )     (  )

                (   ) 

where   (  )represents the given execution time of task   . We see that   (  ) is a function of the 

EST and the execution time of each task. 

The algorithm assigns a task only once to a processor since there is no repetition of same 

task on the task graph. From the task graph in figure7, we can arrange the tasks according to the 

NTD of each task. The total execution time of all tasks that precedes a particular task along any 

path in the task graph is used to compute the EST of the task. Table 3shows the arrangement of 

the tasks according to the descending order of their NTD. It also shows the EST of each task. 

From this table, we see that each of tasks t10, t11, t13, and t14have two ESTs because there are two 

possible paths from which the EST can be obtained. For instance task t10has an EST of ‘9’ along 

the path: 

t1→ t2→ t4 

However, task t10has an EST of ‘17’ along the path: 

t1→ t2→ t5 

The min-EST algorithm always chooses the minimum EST. We have assumed an ‘OR’ 

precedence relation in the completion of any of the tasks t4or t5. Since EST 9 is smaller, the 



 

57 

 

completion of task t4 maintains the precedence relation. This further reduces the makespan of the 

schedule.Figure9 shows a schedule that can be generated using the Max-EST method with a 

makespan of 44; this is better when compared with the height-based schedule of Figure8which has 

a makespan of 52. Our method - Min-EST - can generate a schedule with a reduced makespan of 

41 as shown in Fig. 10. 

Table 3 Task Order based on NTD 

Task NTD EST 

 

t1 15 0 

t2 10 4 

t3 6 4 

t4 5 6 

t5 4 6 

t6 3 7 

t7 2 7 

t8 2 9 

t9 1 9 

t10 1 9,17 

t11 0 10, 17 

t12 0 12 

t13 0 24,17 

t14 0 24,17 

t15 0 17 

t16 0 17 
       

 

Fig. 9 Max-EST NTD-based Task Schedule 

 



 

58 

 

 

Fig. 10 Min-EST NTD-based Task Schedule 

 

3.2.5 Methodology: GA Approach to Multiprocessor Task Scheduling 

The goal of this combinatorial optimization problem is to find the optimum task schedule in 

polynomial time. The genetic algorithm has been chosen to obtain a near-optimum schedule 

within the search space of this NP-complete problem.GA is a subset of evolutionary algorithms 

that model biological processes in optimizing complex functions. In GA terms, a ‘schedule’ is a 

possible ‘candidate solution’ also known as a ‘chromosome’. Within a search space of possible 

candidate solutions, the GA aims to obtain the best ‘candidate solution’ through the use of its 

evolutionary processes. The GA procedure is shown in Table4. The GA allows a population 

comprising of many candidate solutions to evolve under specified selection rules to a state that 

maximizes the fitness (i.e., minimizes the objective function). Because time is critical in a real-

time multiprocessing system, a suitable schedule must be found in polynomial time. An important 

advantage of the GA over most stochastic techniques is the ability to generate multiple solutions 

per time (iteration) – a property called parallelism. This offers better exploration of the search 

space and makes the GA less local in nature [12]. The multiple population and variation operators 

of the GA (crossover and mutation) make the GA less likely to get stuck in local optima. All these 

attributes make the GA suitable for this search problem. 



 

59 

 

Table 4 Genetic Algorithm Procedure 

Step Action 

1 
Generate a random initial population of n 

schedules, where n is the population size. 

2 
Evaluate the fitness of each of the schedule in the 

initial population 

3 
Generate new populations using processes in steps 

4-6 

4 

Selects two schedules among the current 

population using the roulette wheel method based 

on fitness of each schedule. 

5 

Crossover the two selected schedules considering 

the crossover probability, to form the schedules for 

the next generation 

6 

Mutate the one of the selected schedules at each 

defined mutation point, considering the mutation 

probability and place it in the new population. 

7 
Evaluate the fitness of each of the schedules in the 

new population 

8 
Repeat steps 3-7 until the stopping criteria have 

been met. 

 

An initial population (i.e., set of candidate solutions) is generated after which the GA is run 

over many iterations to find a near-optimum solution in regard to the given objective function. 

This initial population consists of possible candidate solutions within the search space. The size of 

the population will be chosen depending on the size of the problem. An example of the problem 

size could be the number of tasks to be scheduled and the number of processors. Each solution in 

a population is evaluated using a fitness function, which is derived from the objective function. 

Since the objective is to find the smallest schedule length possible, the objective function for k 

generated schedules is given by (3.7): 

   {   ( ) }                                                          (   ) 

A near-optimal schedule will represent a good schedule; this good schedule would be the smallest 

TFT with a fitness value larger than the other schedules. The GA’s fitness function is similar to 



 

60 

 

the objective function except that GA seeks to maximize the fitness function. Therefore, the 

fitness function can be formulated as in (3.8). Thus the higher the fitness value of a schedule, the 

better. 

     {   ( ) }⁄                                                    (   ) 

After the fitness evaluation of each of the candidate schedules has been computed and the 

stopping criteria of the algorithm have not been met, a new solution population will be generated 

using selection, crossover and mutation techniques. These new sets of solution are generated with 

the goal of obtaining a good solution. 

3.2.5.1 Selection 

The selection process has to do with the survival of the fittest candidate within the pool. It is a 

probabilistic technique where solutions with higher fitness values have more chance of moving to 

the next generation compared to those with lower values. Candidates are selected for the next 

generation based on their fitness values while the ones that are not selected are discarded. There 

are various selection methods [14][15][16]; we have proposed the roulette-wheel selection method 

because it offers diversity – an important focus of this thesis. The method gives every schedule a 

chance to survive to the next generation, although the probability of a solution being selected is 

proportional to the solution’s fitness value. The goal is to increase the diversity of the solutions 

with the hope that the diversity increases the chances of the GA finding a near-optimum solution 

in polynomial time. For instance, in this application, the lower the TFT of a schedule, the larger 

the slot the schedule occupies in the roulette wheel; this leads to an increased chance of being 

selected at a spin of the wheel. In this thesis, the roulette wheel method is used to select one task 

and two schedules which will be used in performing the crossover and mutation operations. 



 

61 

 

3.2.5.2 Crossover 

The crossover operator, also known as recombination operator, derives its meaning from the 

exchange of genes between chromosomes in biological reproduction. It is considered to be the 

most important process of evolutionary algorithms. Crossover occurs in reproduction at a certain 

rate. In optimization, the selected crossover rate will depend on the user and/or application. 

However, in general, the rate should be high enough to allow a diverse set of solutions in the 

population. In literature this rate varies between 0.80 and 0.95. However, for some problems, this 

range can lead to space exploitation which may lead to premature convergence. Therefore some 

authors have proposed a rate of 0.6 to avoid this problem. At this rate, the GA exchanges one or 

more components of the two schedules selected every time the selection process is called. In 

determining which components are exchanged, for one of the schedules, the algorithm chooses the 

tasks that have equal or lower NTD to the selected task. For every processor in the first schedule, 

the chosen tasks are exchanged with tasks that have equal or lower NTD on the corresponding 

processor in the second schedule. By exchanging only tasks that have equal or lower NTD, the 

precedence order of tasks in the schedule is maintained. A typical example is shown in Fig. 11. 

In Figure11, we assume two schedules C1 and C2and the task t14 were selected during the 

selection phase. Since the task t14 has an NTD of 0, then the tasks selected for crossover will have 

NTD equal to that of task t14 or less. These tasks include tasks t8, t9, t10, t13, t14, t15, t16. In 

performing the crossing over operation, the tasks t9 and t14 (in this order) on processor P1of 

schedule C1are exchanged with the task t14 on corresponding processor P1of schedule C2. The 

tasks t8, t10, and t15 (in this order) on processor P2 of schedule C1are exchanged with the task t13 

andt16 on corresponding processor P2 of schedule C2. Finally, the tasks t13 and t16, (in this order) on 

processor P3 of schedule C1are exchanged with the task t9, t8, t10 andt15 on corresponding processor 



 

62 

 

P3 of schedule C2. The operation is done in the hope that a schedule with lower TFT is obtained. 

The new schedule obtained by performing crossover on schedule C1 is C1-new and it has a TFT of 

42, while the new schedule obtained by performing crossover on schedule C2 is C2-newand it has a 

TFT of 44. Thus we see that with crossover the algorithm can come to a better or worse solution 

depending on the tasks that are being exchanged between the schedules. 

 

 

Fig. 11 Crossover Technique on Schedules C1 and C2 

 

3.2.5.3 Mutation 

Mutation is a genetic variation operator which is used to force diversity within the 

population. It alters one or more gene (task) values in a schedule from its initial state. In mutation, 

the solution may change entirely from the previous solution.  Hence GA can come to a better or 

worse solution through mutation. Thus, rate of mutation should be set low, say within the range 

0.01 – 0.03. It should not be set too high otherwise the search will turn into a primitive random 



 

63 

 

search. In effect mutation ensures that the algorithm does not get stuck in local optima. For this 

application, mutation is done by using the selected task and the two schedules obtained in the 

selection process. A typical example of the mutation operation is shown by Fig. 12.  

 

Fig. 12 Mutation Technique on Schedules C1 and C2 

 

Mutation is performed on only one schedule at a time. In one of the schedule, the selected task is 

exchanged with another task with the same NTD on another processor within that same schedule. 

The same procedure is performed in the second schedule. This procedure generates two new 

schedules that will most likely have differing TFT from the initial ones. By exchanging the task t14 

on processor P1with the task t15 on processor P2 within schedule C1, a new schedule C1-newwith a 

TFT of 45 is generated. Thus, just like the crossover operation, the algorithm may come to a better 

or worse schedule in terms of TFT when compared to the TFT of the initial schedule before 

mutation depending on the tasks that are being exchanged between processors. 

After each cycle of selection, crossover and mutation, the newly generated set of candidate 

solutions (schedules) is termed a new generation. Each schedule in a generation is evaluated using 

the fitness function until the stopping criteria has been met. These stopping criteria could be the 

number of generations, evolution time, fitness threshold, fitness convergence or population 

convergence. In this thesis, the ‘number of generations’ was set as the stopping criteria. This is 



 

64 

 

because it is not clear how long the algorithm will take to obtain the best solution. However, it is 

expected that after certain iteration of the algorithm, the algorithm should have come to an 

acceptably good-enough solution. 

3.3 Application of GA to the Radio Spectrum Allocation Problem 

In this section we have discussed the fundamental concept in cognitive radio and the 

motivation for cognitive radio in spectrum allocation. We have also described the problem of 

spectrum allocation in terms of computational complexity. Finally we have described the 

application of the genetic algorithm to the process of spectrum allocation. 

3.3.1 Fundamental Concept in Cognitive Radio 

In the past two decades, the use of wireless applications has increased rapidly, eventually 

leading to an increased demand of bandwidth. This higher demand of bandwidth has resulted in 

two main problems: spectrum scarcity and underutilization. The Cognitive Radio (CR) concept 

was introduced to solve this problem. The development of the CR was a result of earlier work 

done by Joseph Mitola in the early 90s. He introduced a radio called the Software Defined Radio 

(SDR). SDR is defined as a radio terminal communication system where components that have 

been usually implemented in hardware (e.g. modulators/demodulators, amplifiers, filters, etc.) are 

rather implemented using software on embedded systems or computer, i.e. some physical layer 

functions are software implemented. This design allows the SDR to support different 

communication standards like GSM, OFDMA, and CDMA. This design also allows it to perform 

reception and transmission of different radio protocols based on the software. SDRs along with 

software defined antennas are the enabling technology of the cognitive radio. J Mitola and G. 



 

65 

 

Maguire described the CR as “a radio that understands the context in which it finds itself and as a 

result can tailor the communication process in line with that understanding”[55]. A more 

analytically-oriented definition of CR is offered by Professor Simon Haykin [56]: 

Cognitive radio is an intelligent wireless communication system that is aware of its surrounding 

environment (i.e., outside world), and uses the methodology of understanding-by-building to learn 

from the environment and adapt its internal states to statistical variations in the incoming RF 

stimuli by making corresponding changes in certain operation parameters (e.g., transmit-power, 

carrier-frequency, and modulation strategy) in real-time, with two primary objectives in mind:  

• Highly reliable communications whenever and wherever needed;  

• Efficient utilization of the radio spectrum. 

 

A CR is aware of its internal state and environment such as location and the RF frequency 

spectrum utilization at the location. By mapping information about their radio operating behavior 

against predefined objectives, an SDR is able to make decisions. The utilization of the underlying 

technologies of a CR is critical in allowing end-users to make optimal use of available spectrum. 

“The CR has two major subsystems: a cognitive unit which makes decisions based on various 

inputs and a flexible SDR unit whose operating software provides a range of possible operating 

modes” [56]. According to Fette [57], key applications required to be integrated with an SDR to 

make it a CR are: 

 Spectrum management and optimization. 

 Wireless networks interface to provide network resources management and 

optimization. 

 Human interface to provide electromagnetic resources to aid human activities. 



 

66 

 

3.3.1.1 Cognitive Capabilities and Behavior 

Cognitive radio enables secondary users to ‘borrow’ free spectrum not being used by the 

primary users without degrading the quality of service of the primary user’s communication. The 

CR therefore must be able to sense available spectrum, establish and maintain quality of service 

(QoS) requirements for user’s application, meet service level agreement (SLA) and understand its 

own operational capabilities such as radio parameters [58]. The behavior of a CR is adaptive with 

respect to the varying conditions of wireless network communications. Link adaptation is an issue 

of special interest in wireless communications. The CR can adapt effectively to numerous network 

parameters; parameters such as operating frequency, data bit rate, signal power, bit error rate, 

modulation technique, antenna beam pattern, coding technique, processor utilization. The CR has 

the ability to recognize the wireless radio environment, learn from the environment and predict 

future event occurrences [55]. The cognition capabilities are a consequence of the adaptive 

characteristics of the CR. It is this capability that allows the CR to be aware of its internal state 

and environment as well as user’s requirements and network regulatory policies. These cognition 

capabilities include learning, sensing, awareness and reasoning [57]. 

3.3.1.2 The Cognitive Cycle 

A cognitive radio refers to both an engineering model for designing wireless systems and 

the implementations of that model. The cognitive radio community has adopted various terms 

related to human psychology to explain the cognitive radio concept because the term ‘cognition’ 

is usually associated with the human thought process. Cognitive radio can be described as “an 

approach to wireless communication engineering where the radio, radio network or wireless 

system is endowed with reason, awareness, and agency to intelligently adapt operational aspects 



 

67 

 

of the radio, radio network or wireless system”[56]. As a result of these capabilities, we can say 

that the CR works in cycle i.e. observe, decide and act [55]. Observation has to do with the 

awareness (learning and sensing) of the radio environment and these observations are fed as input 

to the CR where a decision is made on the basis of a mechanism and then the CR takes 

appropriate action. The computational complexity of the cycle will depend largely upon the kind 

of observations and corresponding decisions taken. The decision making process may be simple 

or complex; complex procedure may need knowledge of the past or future analysis and 

probabilities [58]. A cognitive cycle can be described by Fig.13. 

According to Doyle[55] , while it may appear as though the cognitive cycle begins at the 

‘observation’, the cycle actually begins from the ‘act’ end. The explanation for this is that it is 

imperative to first ascertain what actions are possible and their significance; then it will be clear 

what observations need to be made and the corresponding decision to be taken. 

 

Fig. 13 The Cognition Radio Cycle [58] 



 

68 

 

Thus the three cognitive cycle is in the following order: 

 Act 

 Observe 

 Decide 

 

Action : Taking an action has to do with all the possible actions that can be taken to ensure 

optimal performance of the CR for specific application. The actions to be taken depend directly on 

the decision that has been taken by the CR; this is also indicated by Fig.13. 

 

Observation : Making an observation has to do with acquiring, classifiying and organizing 

information for the purpose of feeding the CR engine in order to make necessary decisions.This 

phase involves understanding the environment in which the CR operates, understanding the user 

requirments and regulatory policies and the awareness of its own capabilities. The CR can acquire 

information from various sources which can be classified as either internal or external.The ability 

to learn from the environment is key to optimum performance of the CR. By understanding the 

environment, the CR is aware of the availability of spectrum through a mechanism that does 

spectrum sensing. This phase is considered synonymous with spectrum sensing[62].A CR requires 

current information regarding its awareness of its environment, its internal state, node capabilities, 

and current needs of its user.Spectrum sensing refers to the action of a wireless device measuring 

characteristics of received signals such as rf energy levels as part of the process of detecting if a 

particular section of the sepctrum is free or occupied. Current research related with spectrum 

sensing include: how to accuratelyperform sensing, the range at which to perform sensing, and 

the in time sensing of primary users. 



 

69 

 

Decision : This process is regarded as the the heart of the CR. In order to take a decision, the CR 

must take inputs from the observation phase and use such inputs in taking the optimum decision 

possible. The important decision is about the optimum distribution and usage of the radio 

resources. This is where optimization comes in. 

3.3.2 Cognitive Radio Spectrum Allocation 

The primary goal of a cognitive radio is to facilitate secondary users borrowing free 

spectrum that are not being used by the primary users without degrading the quality of service of 

the primary user’s communication. Cognitive radio (CR) was developed to meet the increasing 

demands of QoS in wireless communications [59]. The QoS of a network application can be 

defined as “the set of quantitative and qualitative characteristics of the communication system 

required to achieve desired functionality of that application” [60]. By definition, a CR is a radio 

that understands the context in which it finds itself and as a result can tailor the communication 

process in line with that understanding [55]. The main objective of the CR is to address the 

underutilization of the electromagnetic (EM) spectrum to meets today’s increased needs in 

wireless communications. A CR can also recognize the radio environment, can predict the future 

events, and can learn from previous behaviors. The four main cognition capabilities of the CR 

include- learning, sensing, awareness and reasoning.  

Optimization has been defined as “the process involved in selecting the ‘best’ choice from 

the list of available choices in order to reach some kind of goal or at least get as near as possible 

to the goal[55]. The goal of optimization is to either  maximize or minimize a set objective(s) 

depending on particular application. Optimization seek to addressthe efficiency of how the 

frequency spectrum is being used. Some CR techniques include spectrum sharing and spectrum 



 

70 

 

pooling, dynamic frequency selection, adaptive bandwidth control, transmit power control, etc. 

The ‘available choices’ refer to the set of all possible solutions to satisfy certain objectives; these 

set of ‘available choices’ is what is called the search space where each choice is a potential 

solution. Cognitive radios will attempt to adapt such as to optimize their performance or to 

optimize their usefulness for users.The objective is mathematically formulated and this 

formulation will be used to test the fitness of each of the available choices so as to obtain the best 

fit solution. There is a whole bunch of possible spectrum parameters that can be allocated in a 

wireless networks depending on the activities of the primary users. Spectrums that are vacated or 

not being used by the primary users are opportunistically allocated to secondary users till they are 

needed again by the primary users. Thus this process of spectrum allocation is a combinarotial 

problem that requires optimization. A framework must be designed to implement the spectrum 

allocation process in which the decisions to assign spectrum are made according to the radio user 

defined QoS requirements. 

In literature, given the huge search space involved in spectrum allocation, it has been proven 

that the problem of finding the optimal spectrum allocation to CR users is NP-complete [4][5][6]. 

Thus any chosen framework must ensure that spectrum is allocated in polynomial time given the 

sensitivity of the application in regard to time. The nature of NP-complete or NP-hard problems 

make heuristics the only viable option for problems that need to be routinely solved in real-world 

applications. A heuristic is better defined as a method designed for solving a problem more 

quickly when classic methods are too slow or fail to find the exact solution. The objective is to 

produce quickly enough a solution that is ‘good’ enough for solving a problem at hand. The 

emphasis here is on speed at the expense of optimality, precision and completeness. Some 



 

71 

 

examples of heuristics approaches include ant colony optimization (ACO), tabu search, hill 

climbing, genetic algorithm, greedy algorithms, simulated annealing, particle swarm optimization 

(PSO) etc. Out of these only the genetic algorithm, the ant colony optimization and the particle 

swarm optimization maintain multiple solutions per iteration (generation) thus making them better 

at obtaining solutions faster. The ACO and PSO are evolutionary computing algorithms classified 

as Swarm Intelligence.  Compared to the GA, the ACO and PSO are more likely to get stuck in 

local minima as a result of the random sequencing which dominates their operation. The GA, 

although makes use of random sequencing, uses its mutation operator to reduce the chance of 

being stuck in local optima. This is the motivation for using GA to search for the best solution. 

3.3.3 Computational Complexity of the Radio Spectrum Allocation Problem 

It has been proven that the problem of finding the optimal spectrum allocation to CR users is 

NP-complete [4][5][6]. Depending on how many parameters involved in the search process, there 

will be several possible frequency combinations. The complexity of such search could be a 

permutation (where order matters, Equation 3.9) or combination (where order does not matter, 

Equation 3.10) of selecting k element(s) from a set of all possible n elements. 

 (   )       
  

(   ) 
                                                        (   )  

 (   )       
 (   )

  
  

  

  (   ) 
  (

 

 
)                                   (    )  

It can be easily seen that for a large size problem, an exhaustive search of the k element(s) will not 

run in polynomial time. Thus there is a need for efficient algorithms that can cleverly bypass this 

process of exhaustive search using clues from the input in order to drastically narrow down the 



 

72 

 

search process – a motivation for deploying heuristic in searching for a good solution that if not 

exactly the expected k element(s), will be at least very close to it. 

3.3.4 Related Work 

Genetic Algorithm has been applied to spectrum optimization in cognitive radio networks. 

Siddique and Azam [58] used GA as the mechanism to optimize spectrum allocation whereby a 

secondary user specifies the QoS and the GA is then used for the spectrum allocation. Kaur et al 

[61] also proposed an Adaptive Genetic Algorithm (AGA) to optimize QoS parameters in a 

cognitive radio. Unlike the SGA that uses a constant crossover and mutation rates throughout the 

evolution process (iterations), the AGA allows different crossover and mutation rates so that the 

algorithms can transverse different directions in the search space. This ensures improved 

performance as well as represents a response to the cognitive radio’s need to adapt to a changing 

environment. GA has also been used by Hauris [62] to implement an adaptive process for a 

cognitive radio on an autonomous vehicle. GA was specifically used to optimize radio frequency 

(RF) parameters for wireless communications.  An objective function which corresponds to the 

GA’s fitness measure was formulated as a benchmark to evaluate the performance of the GA in 

relation to the overall RF performance. The chromosome structure consisted of genes each of 

which is a binary string representation of the individual parameter of the RF environment. The 

GA was used to determine the set of RF parameters for optimal radio communications in the 

varying RF environment. In a related work, Rondeu et al [63] also used GA to find a set of RF 

parameters that optimize the CR for user’s current needs. The parameters considered were power, 

frequency, pulse shape, symbol rate, and modulation. Experimental results showed a successful 

GA performance. Withall et al [64] also used the GA to optimize the parameters for a sequence of 



 

73 

 

packets sent over the internet. The Fitness Measure was based on the delay time returned by the 

traceroute program. The GA was reported to have adapted to different conditions on the network 

as well as different fitness requirements but was inconsistent in its ability to outperform the 

control settings performance - the benchmark. Future work was suggested to improve the GA’s 

performance. Newman et al [65] introduced a population adaptation scheme for GA-based CR 

engine. The objective focused on further reducing the computational time requirement it takes for 

the GA to obtain the best solution within a large search space while optimizing RF parameters. In 

this scheme, the GA takes advantage of information from previous cognition cycles so as to 

reduce the time required to reach a near-optimal decision. They demonstrated that the amount of 

information from the previous cognition cycle can be determined from the environmental 

variation factor (EVF), which represents the amount of change in the environment parameters 

since the previous cognition cycle. These EVFs can be classified as either an internal information 

about the radio operating state or external information representing the wireless environment. The 

EVF considered were signal power, noise power, delay spread, battery life, power consumption, 

and spectrum information. These EVF and the control parameters made available by underlying 

SDR system are used as inputs into the cognitive engine. Their simulation showed that the 

proposed method can reduce the convergence time of the GA. 

3.3.5 Methodology: GA Approach to Spectrum Allocation 

In this section we describe how the standard GA (SGA) algorithms can be applied to find a 

solution to the spectrum allocation problem. It is assumed that sensing has been done and that the 

secondary users within the network are looking to opportunistically use white spaces (free 

spectrum) which are not been used by primary users in the wireless network without causing 



 

74 

 

interference to other users. We can assume that the possible number of secondary users is finite 

and the spectrum resources (QoS) will always be countable thus making the spectrum allocation 

problem that of combinatorial optimization. 

3.3.5.1 Introduction 

The problem of spectrum allocation is a combinatorial optimization problem with an 

objective function and a solution space. The solution space for our problem is a set of parameters 

of the QoS. The objective function is the difference between the available QoS parameters and 

that requested by the secondary user. The closer this difference is to zero, the closer the 

optimization process is to the optimum solution. Since sensing is assumed to have been done, the 

sensed information represents a pool of available solutions for spectrum allocation for the 

secondary user, and from this pool the initial population for the GA can be selected randomly. 

After selecting the initial population, spectrum allocation decision takes place following the 

genetic algorithm procedure in Table5. 

Table 5 Spectrum Allocation GA Procedure 

Step Action 

1 
Generate a random initial population of n spectrum, where n is 

the population size 

2 
Evaluate the fitness of each of the spectrum in the initial 

population 

3 Generate new populations using processes in steps 4-6 

4 
Selects two spectrums among the current population using the 

roulette wheel method based on fitness of each spectrum 

5 

Crossover the two selected spectrum considering the 

crossover probability, to form new spectrums for the next 

generation 

6 

Mutate the new spectrum at each defined mutation point, 

considering the mutation probability and place it in the new 

population 

7 
Evaluate the fitness of each of the new spectrums in the new 

population 

8 Repeat steps 3-7 until the stopping criteria have been met 



 

75 

 

3.3.5.2 The Chromosome Structure 

We have considered five radio frequency (RF) QoS parameters in the optimization process 

as designed by Siddique and Azam [58]. Thus a solution consists of five RF parameters arranged 

in the order shown in Table6; this is the solution structure. In GA terminology, each parameter is 

referred to as a ‘gene’, while the solution is referred to as ‘chromosome’. The QoS requirement of 

the secondary user using the application is compared with several available solutions in the pool 

and then the GA searches for the best possible solution and assigns it. The QoS parameters 

considered are: 

 Data Rate 

 Signal Power 

 Bit Error Rate 

 Operating Frequency 

 Modulation Technique 

Table 6 Chromosome Structure 

Data 

Rate 

Signal 

Power 

Bit Error 

Rate 

Operating 

Frequency 

Modulation 

Technique 

 

Data Rate 

This is the first gene of the chromosome. It is the rate at which bits are transferred per unit 

of time (seconds), i.e. bps. We have used a range of 0 – 2Mbps with a step size of 125kbps. This 

implies that we have 16 decimal values ranging from 0 – 15, where ‘0’ is assigned to the 1
st
 data 

rate band (0-125 kbps), ‘1’ to the 2
nd

 data rate band (126-250 kbps), etc. Table 7shows this 

configuration. 

 



 

76 

 

Table 7 Data Rate Gene. 

Index 0 1 2 . . . . 15 

Data Rate 

 

0-125 

kbps 

126-250 

Kbps 

251 – 275 

Kbps 
. . . . 

1.876–2.000 

Mbps 

 

Signal Power 

This is the specific power range (transmit and receive) that allows the users to communicate 

without any error; it boosts the probability of successful communication. It is the second gene of 

the chromosome. This parameter was configured to range from -31dBm to 31dBm, step size of 

1dBm, resulting into 63 decimal values of 0 – 62 required for chromosome representation. Table 

8shows this configuration. 

Table 8 Signal Power Gene. 

Index 0 1 2 . . .  62 

Signal 
Power 

-31 dBm -30 dBm -29 dBm . . .  31dBm 

  

Bit Error Rate 

This is the third gene of the chromosome. The BER quantifies the reliability of the entire 

radio system in terms of ‘bits transmitted’ to ‘bits received’. It is an end-to-end measure of the 

performance of the radio communication system. The BER can be defined as the number of bit 

errors divided by the total number of transferred bits during a time interval. This parameter was 

configured to range from 10
-1

 to 10
-7

, step size of 10
-1

 resulting into 8 decimal values required for 

chromosome representation. Table 9 shows this configuration. 

 



 

77 

 

Table 9 Bit Error Rate Gene. 

 
Index 
 

0 1 2 . . . 7 

Bit Error 
Rate 10

-1 
10

-2
 10

-3
 . . . 10-7 

 

Operating Frequency 

This is the fourth gene of the chromosome. It is the frequency at which data is transmitted 

and received. This parameter was configured to range from 0-20 MHz with a step size of 40 KHz 

producing 500 frequencies resulting in decimal values representation from 0 to 499. Table 

10shows this configuration. 

Table 10 Operating frequency gene 

 

Index 

 

0 1 2 . . . 499 

 

Operating 

Frequency 

 

0-40  

KHz
 

41-80  

KHz 

81-120  

KHz 
. . . 

19.9 – 20  

MHz 

 

Modulation Technique 

This is the fifth gene in the chromosome. It is the process of varying one or more properties 

of a high-frequency periodic waveform, called the carrier signal, with a modulating signal which 

typically contains information to be transmitted. Eight modulation techniques have been 

considered and their equivalent decimal values range from 0 to 7 in the following order in which 

they are listed in Table11. 

 



 

78 

 

Table 11 Modulation Technique Gene 

Modulation Technique Decimal Value 

 

BPSK 0 

 

QPSK 1 

 

8PSK 2 

 

16PSK 3 

 

DBPSK 4 

 

DQPSKMSK 5 

 

16QAM 6 

 

64QAM 7 

 

 

The values of the respective parameters above have been coded in decimal for the purpose of 

initial population generation, selection and crossover. However, mutation process requires the 

binary form of any value encoding adopted. Therefore each of the genes to be mutated will need 

to be represented in their binary form. Table 12shows the configuration of the chromosome in 

decimal and the number of bits used for the binary representation of each of the genes. 

Table 12 Chromosome Configurations 

Gene No. Gene Decimal  Values Number of Bits 

1 Date Rate 0 - 15 4 

 

2 Signal Power 0 – 62 6 

 

3 Error Rate 0 - 8 4 

 

4 Frequency Band 0 - 499 9 

 

5 Modulation Technique 0 - 8 3 

 



 

79 

 

3.3.5.3 Fitness Measure 

A pseudorandom initial population of 100 chromosomes was generated with a GA breeding 

rate of 50 generations. In formulating the fitness function (objective function) of the GA, Siddique 

and Azam [65] considered the magnitude of the difference between the values of each parameter 

(or gene) that is requested by the secondary user (QoS) and the corresponding values of the 

parameter available in the search space; The objective, given by (3.11), is to minimize the error. 

          |           | 
                       

                                                      (    ) 

where       is a randomly generated gene, and     is the secondary user’s requested QoS gene. Y 

is a vector of the five network parameters considered in the work. The fitness function tries to 

minimize the chances of the selection of the most terrible chromosomes for the next generation of 

population. Notably this work also considers the number of bits used to represent each gene in the 

chromosome as part of the fitness measure of each of the gene. The number of bits used to 

represent each of the genes is termed the Weight of the gene denoted by ‘GW’. The weight of each 

gene is represented by GW1, GW2, GW3, GW4 and GW5 for the date rate (3.12), the signal 

power (3.13), the error rate (3.14), the operating frequency (3.15) and the modulation technique 

(3.16), respectively. The detailed weight for each gene represents the percentage ratio of the 

number of bits used to represent each gene to the total bits (26) of the chromosomes. 

     (   ⁄ )                                                           (    ) 

     (   ⁄ )                                                           (    ) 

     (   ⁄ )                                                           (    ) 

     (   ⁄ )                                                           (    ) 

     (   ⁄ )                                                           (    ) 



 

80 

 

Another important constant used in calculating the fitness measure is a fitness point (FP). This FP 

will have an integer value within the range defined for each gene in their respective decimal 

representation part. This value is purely the developers own choice. The FP is meant to limit the 

search process of the algorithm on both sides of the required gene decimal value range. In fitness 

measure equations for each gene these fitness points are represented by FP1, FP2, FP3, FP4 and 

FP5 for the date rate, the signal power, the error rate, the operating frequency and the modulation 

technique respectively with chosen values being 6, 20, 7, 200 and 1 respectively. By denoting the 

fitness measure of a gene as   , then   is given by (3.17) and (3.18). 

     [(       )    ⁄ ]                                                    (    ) 

     [  ]                                                                     (    ) 

The total fitness of the chromosome     is then calculated by summing up all the fitness of each 

of the genes and then subtracting it from 100. The     is given by (3.19) and the aggregated 

weighted sum of each of the gene       is given by (3.20). 

                                                                                     (    ) 

                                                  (    ) 

where      is the aggregated weighted sum of each parameter’s fitness.      is the fitness 

measure of the data rate parameter.     is the fitness measure of the signal power 

parameter.      is the fitness measure of the bit error rate parameter.     is the fitness measure 

of the frequency band parameter.     is the fitness measure of the modulation scheme 

parameter. The lower the value of the      , the higher the fitness measure    of the 

chromosome.  



 

81 

 

In formulating the fitness function, it is important to consider the relationship between some 

of the specified parameters for real world applications. There are various relationships that exist 

between all of the parameters. In this thesis we have considered the relationship between the 

frequency band and the signal power simply because of the relative weights of these two with 

respect to other parameters used to formulate the fitness function. The frequency band has a 

weight of ‘9’, while the signal power has a weight of ‘6’; these sums up to 15 which is 

approximately 57 percent of the total weight sum of 26.  Figure14shows a typical real world 

application of the mobile communication system, where a mobile user wants to access the 

spectrum via a mobile base station. The relationship between the transmit power   and the 

transmit frequency  in the mobile communication system is given by (3.21). This is known as the 

Friis transmission formula; where     is the resulting received power at the other end of the 

transmission,    is the gain of the transmit antenna in the direction of the receive antenna,    is 

the gain of the receive antenna in the direction of the transmit antenna, c is the speed of light, R is 

the distance between the two antennas, f  is the transmission frequency. 

 

Fig. 14 Mobile Communication System 

 



 

82 

 

   
       

 

(    ) 
                                                                     (    ) 

Equation 3-19 shows that the transmit power is directly proportional to the transmit 

frequency. The received power is inversely proportional to the transmit frequency; this means that 

the received power decreases with an increase in frequency. This reduction in the power density 

of the transmitted electromagnetic wave as it propagates through space is known as the path loss. 

Thus, the path loss is higher at higher frequencies. The consequence of (3.21) is that the secondary 

user’s choice of signal power value determines the range of available operating frequency values. 

The transmission power ranges from 0 to 62, which means there are 63 possible choices. 

The frequency ranges from 0 to 499, which means there are 500 possibilities. The relationship 

between the two parameters is given by (3.22) and (3.23). In each of the two equations, the 

transmission power value is represented by ‘x’ while f(x) represents the corresponding frequency 

range values for ‘x’. 

 ( )   (
   

  
)    (   ) (

   

  
)                                                  (    ) 

 

 ( )   (
   

  
)      (   ) (

   

  
)                                                (    ) 

The equation (3.22) is applicable when x is ‘0’, while equation (3.23) is applicable when x 

ranges from 1 to 62. By using (3.22), i.e. when the value of x is ‘0’, the corresponding range of 

available frequency is 0 - 8. Also by using (3.23), if the value of x is ‘4’, the corresponding range 

of available frequency will be 25 – 32. It is important to note that the value of f(x) is rounded to 

the nearest decimal value. Table 13 shows the signal power parameter and the corresponding 



 

83 

 

frequency range. It is important to note that each of the values in table 13 represents the decimal 

representation of the actual value of the parameters as shown in tables 8 and 10. 

Table 13 Power to frequency configurations 

Signal Power Frequency Range 

0 0 : 8 

 

1 9 : 16 

 

2 17 : 24 

 

3 25 : 32 

 

. 

. 

 

. 

. 

 

61 

 

485 : 492 

62 493 : 500 

 

 

Although the values within the frequency range represent the ideal range for the 

corresponding signal power for transmission, the availability of the frequency range is not 

guaranteed. The availability of the spectrum depends on the behavior of the primary users within 

the network at any given time. Thus the genetic algorithm comes handy in searching for the 

closest spectrum to what is required with respect to what is available. 

3.3.5.4 Construction of New Population 

After the fitness evaluation of each of the candidate solutions in the initial population has 

been done, the algorithm ascertains if the stopping criteria has been met. If met, the solution 

(spectrum) obtained is assigned to the secondary user, otherwise the algorithm proceeds to the 

evolutionary process in order to generate new sets of solutions. This evolutionary process includes 



 

84 

 

the selection, crossover and mutation in that order. There are various ways in which each stage of 

the evolutionary process can be implemented. The choice of how to implement each stage of the 

evolutionary process depends largely on the objective of the research and the complexity of the 

problem. The method of implementation chosen for this work at each stage of the evolutionary 

process is discussed next. 

3.3.5.4.1 Selection 

The major objective of the work is to find a way to improve the fitness diversity of solutions 

which the GA can come to before the stopping criteria is met. In order to be consistent with this 

objective we have chosen the roulette wheel method of selection. This method is also called the 

fitness proportionate selection because the probability of a candidate solution being selected pcsis 

proportionate to the candidate solution’s fitness value. It is popular among the users of genetic 

algorithm because of its notable advantage in that every candidate solution has a finite chance of 

making it to the next generation. After the selection process was completed, a technique called 

elitism was used to retain the best-fit solution of all the selected solutions, making it part of the 

next generation. This ensures that best fit chromosome is not lost during crossover and mutation 

thus making sure the performance of the GA is always on the increase. 

3.3.5.4.2 Crossover  

This is the mechanism by which the genetic algorithm exchanges the genetic properties (in 

blocks/segments) among candidate solutions in search for the optimum solution. In this case the 

blocks are represented by the parameters of the solution. The crossover is done by exchanging the 

same parameter(s) of two different solutions from the selected pool of solutions. There are several 

crossover techniques like single point, 2-point, multi-point and uniform crossovers.  In this work 



 

85 

 

we have adopted the 2-point crossover. Hasancebi and Erbatur [66]argued that numerical testing 

of the aforementioned crossover techniques show that 2-point crossover technique produces better 

solutions as compared to others. For a proper crossover technique, the crossover rate is also 

important, which is usually set from 80% to 90%.However, for some problems, this range can 

lead to space exploitation which may lead to premature convergence. Therefore we have used a 

rate of 60% for this problem especially because the aim of our work is to promote diversity. Thus 

at the rate of0.6, a 2-point crossover process is performed to produce new results. These results 

are then transferred to the next generation thus increasing the diversity within the solution space. 

The two-point crossover calls for two points to be selected on the parent solution strings as shown 

in Fig. 15. Everything between the two points is swapped between the parent solutions, rendering 

two child solutions: in our case, a ‘point’ represents a ‘gene’. 

 

Fig. 15 Two-Point Crossover 

3.3.5.4.3 Mutation 

Mutation is a genetic operator used to force or maintain genetic diversity from one 

generation of a population of algorithm chromosomes to the next. It is analogous to exploration. It 

alters one or more gene values in a chromosome from its initial state. Mutation is applied on genes 

of the child-chromosome after recombination or crossover, altering a binary bit of 0 to 1 or vice 

versa [23]. Solutions selected for mutation were converted from decimal form to binary form for 

the purpose of mutation and converted back to decimal form after mutation was done. In mutation, 



 

86 

 

the solution may change entirely from the previous solution; hence GA can come to better or 

worse solution. Mutation occurs during evolution according to a user-definable mutation 

probability. This probability should be set low to prevent the search from turning into a primitive 

random search. We have used a mutation rate of 2%. 

3.4 Chaotic GA Optimization Approach 

Chaos refers to apparent randomness (but definitely not true randomness), or irregularity, or 

unpredictability that arises in deterministic dynamical systems [39]. According to Kinsner [17], 

the properties of a chaotic system that provide additional benefits over randomly generated 

solutions are sensitivity to initial conditions, topological density and topological transitivity. 

Topological transitivity implies that within a cycle of trajectory no one solution is visited more 

than once. This guarantees diversity and ensures that the CGA is able to explore the entire 

solution space. The initial population of size N was generated using the coupled logistic chaotic 

sequence. The elitism method of selection is used to ensure that best fit n solutions are copied to 

the next generation. The decisions as to which of the genes to be crossed over and/or mutated of 

the remaining N-n chromosomes are also taken using a chaotic sequence. The important steps in 

the CGA include: establishing the logistic chaotic sequences, using the sequence to generate the 

initial population, and finally using the sequence to decide which solutions are selected for 

crossover and mutation. The behavior of any chaotic system is governed by deterministic 

equations. Chaotic systems have a sense of order or pattern even though they appear to be 

disorderly. The chaotic system can be generated by the well-known one-dimensional logistic map 

which is given by (3.24): 

        (    )                                                       (    ) 



 

87 

 

where    represents the value of the variable z at the k
th

 iteration;    is in the interval [0,1]; and   

is a so-called bifurcation parameter of the system. In this work, we have employed a new chaotic 

map proposed by Mingjun and Huanwen [49] because it has a better probability distribution. This 

new chaotic map is given by (3.25) as: 

              (   ) 
    

 
                              (    ) 

If we assume a search space having a total of 100,000 solutions, the probability distribution of the 

solutions as generated by the logistic map is shown in Fig.16while that generated by the new 

chaotic map is shown in Fig.17. A GA combined with chaotic operator has several advantages 

such as large solution search space, reduced similarity among individual solution and fast 

convergence speed [45]. As explained by Mingjun and Huanwen [49], the logistic map ofFig.16 

shows a lot of the points on the distribution are near the edges, meaning that it can escape local 

minima although it is difficult to seek for the global optimum solution. Figure 17 shows that point 

distribution of the new chaotic map is similar to uniform distribution with two peaks near -0.8 and 

0.8. This means that the new chaotic map has the ability to escape local optimum as well as 

converge to the global optimum at the same time. This is the motivation for using the new chaotic 

map. We observe that for an initial population size of 5000 candidate solutions there is a 

significance difference pictorially between the ones generated by the new chaotic map (Fig.18) 

compared to that generated by a pseudo-random method (Fig.19).Thus the main difference 

between the standard GA approach and the Chaotic GA approach is that the random mechanism 

involved in the stages of initial population generation, crossover and mutation is replaced by a 

chaotic mechanism. The CGA was therefore used as the search mechanism with the goal of not 

revisiting any one solution and consequently improving the diversity of the candidates. 



 

88 

 

 

Fig. 16 Probability distribution of Logistic map 

 

 

Fig. 17 Probability distribution of new chaotic map 

-1 -0.5 0 0.5 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

-2 -1 0 1 2
0

500

1000

1500

2000

2500



 

89 

 

 

Fig. 18 Initial population with new chaotic map 

 

 

Fig. 19 Initial population with random generator 

 

0 1000 2000 3000 4000 5000
-1.5

-1

-0.5

0

0.5

1

1.5

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 

90 

 

Chapter 4 

Experiments and Results 

 

4.1 Introduction 

  This chapter describes the experimental setup and results to verify the performance of the 

standard genetic algorithm (SGA) and the chaotic genetic algorithm (CGA) in obtaining good 

solution within polynomial time. The performance of the SGA was verified on the two different 

applications discussed in the thesis: multiprocessor task scheduling and spectrum allocation. The 

CGA was then applied to one of the applications to evaluate performance in comparison to the 

SGA. Specifically, the CGA was applied to the spectrum allocation problem application because 

of the many possibilities (larger search space) and the value encoding approach to the problem. 

We have used variance of the solutions produced over several generations to show the diversity 

patterns of both the SGA and CGA. 

4.2 Multiprocessor Task Scheduling 

One of the goals of task scheduling in a multiprocessor system is to schedule tasks on the 

processors such that the processing time is reduced to the possible minimum. The algorithm to 

evaluate our method has been implemented using Java. To verify the performance of our proposed 

scheduling method (min-EST) using GA, we have compared it with the max-EST method using 

GA [8], as well as the expected optimal schedule of the system. The parameter setup of the GA is 

discussed next. The scheduling method is used to generate an initial set of schedules and the GA 

is used to search for a good schedule within the search space. The experiment was performed 

using three processors. 



 

91 

 

4.2.1 GA Parameter Setup 

The GA parameter values are is varied depending on the amount of tasks to be scheduled. 

This is so because the larger the size of the DAG, the more time it will require for GA to obtain a 

suitable schedule, assuming a fixed population size. Table 14 shows the GA parameters for task 

graphs that have the number of tasks ranging from 16 to 30. Also, the execution time for each task 

is randomly generated from 1-15. The population size is set at 20; meaning 20 schedules. The 

crossover rate and mutation rate were carefully chosen to reflect the recommended ranges in 

literature. The crossover rate was set at 0.8, while the mutation rate was set at 0.01. The stopping 

criterion was chosen to be the number of generations. There is no rule guiding the number of 

generations the GA should run; we have set the number to one considered sufficient enough for 

the GA to come to a good solution. By setting the number of generations to 10, the simulation 

runs for less than 6 seconds. 

Table 14 GA Parameters 

POPULATION SIZE 

 

20 

CROSSOVER RATE  

 

0.8 

MUTATION RATE 

 

0.01 

NUMBER OF GENERATIONS 

 

10 

 

4.2.2 Results 

Due to the random walk taken by the SGA, different results may be obtained at different 

runs of the algorithm. Therefore, in order to compare the Min-EST method with the Max-EST we 

have taken 10 results obtained at 10 different runs of the algorithm. This is to ascertain the 

average performance of both the Min-EST and the Max-EST scheduling method using the GA. 



 

92 

 

The results obtained from simulation are shown in table15. The results show the total finishing 

time (TFT) of the schedules obtained for each of the Max-EST and the Min-EST algorithm. The 

random task graphs are constructed in such a way that the optimal schedule is known. The results 

were compared with the known optimal schedule. Simulation shows that though both methods run 

in polynomial time, the Min-EST may obtain a lower TFT compared to the max-EST over the 

same number of generation. 

Table 15 Results 

 

 

 

 

Algorithms 

Total Finish Time (seconds) 

 

Number of Processors = 3 

 

Number of Tasks 

 

16 

 

21 30 

Max-EST 50 

 

52 147 

Min-EST 47 

 

50 141 

Optimal 

Schedule 

32 42 114 

 

Table 15shows that the solutions obtained for the Min-EST and Max-EST can be very close 

to each other. Result shows that the Min-EST can produce schedules that have the almost the 

same TFT or a lower TFT compared to the Max-EST. This can be attributed to the small 

percentage of tasks that have multiple EST in the task graph. The three task graphs comprise of 

16, 21 and 30 tasks respectively. For each of this graph, 20% of tasks within the graph have 

multiple EST. For tasks with multiple EST, they can be scheduled at any of the ESTs or later. The 

Min-EST will perform better than the Max-EST only when tasks are scheduled at the min-EST. 



 

93 

 

The performance of the algorithms when the ratio of tasks that have multiple EST to those with 

single EST increases is shown in Table 16. 

Table 16 Results 

 

 

 

 

 

Algorithms 

Total Finish Time (seconds) 

Number of Processors = 3 

Number of Tasks = 30 

Increasing Ratio of Tasks having 

Multiple ESTs 

20% 40% 60% 

Max-EST 133 

 

210 243 

Min-EST 131 

 

200 232 

Optimal 

Schedule 

120 

 

166 216 

 

Table 16 shows that the Min-EST can produce better schedules with a relative increase in 

the number of tasks that have multiple EST. When the ratio of tasks that have multiple EST to 

tasks that have single EST is large, there is an increased probability that tasks with multiple EST 

will be scheduled at the minimum EST or before the maximum EST. If the multiple-EST tasks 

also have a relatively high NTD, then there is an additional increase in the probability of the tasks 

to be scheduled at the minimum EST. The minimum EST becomes insignificant when the 

multiple EST tasks have a lower scheduling priority; this will lead to an equal performance of the 

Min-EST and Max-EST algorithm. Thus, our proposed scheduling algorithm (min-EST) can 

obtain a better schedule compared to the max-EST if both of the following conditions are true:  

 When the number of task with multiple EST is considerably higher than tasks with single 

EST. 

 When the NTD of the tasks with multiple EST is relatively more than the tasks having 

single EST.  



 

94 

 

The initial schedules that make up the initial generation are randomly generated. As a result, 

the fitness quality of the schedules will vary every time the algorithm is run. The fitness quality of 

the initial generation can determine the fitness quality of the solution (schedule) produced by 

either of the Min-EST or Max-EST. Thus the performance of GA using the two schedules does 

depend largely on the quality of the initial population generated. However we have shown that the 

GA can be used to obtain a good schedule in polynomial time. 

4.3 Spectrum Allocation 

The primary goal of a cognitive radio is to facilitate secondary users to opportunistically 

make use of free spectrum that are not being used by the primary users without degrading the 

quality of service of the primary user. We have used the GA engine as the mechanism to allocate 

the free spectrum to the users. In running this experiment, we have assumed a secondary user’s 

QoS requirement shown in table17. From table13, the frequency range that corresponds to the 

transmission power of ‘60’ is from 477 to 484; therefore the value 480 has been chosen. We have 

also assumed that a communication link already existed meaning sensing has been done, this work 

therefore concentrates on using the GA as the spectrum adaptation mechanism. Simulation was 

done using MATLAB to test the proposed solution.  

Table 17 QoS requirements of an application given as input to the process. 

Data Rate Power Bit Error Rate  

(BER) 

Frequency Band Modulation Scheme 

 

 

3 60 2 480 4 

 

 

 

 



 

95 

 

4.3.1 GA Parameter Setup 

 The GA parameter setup was varied to evaluate the performance of the algorithm with 

respect to the variation. Two of the GA parameters varied were the population size and number of 

generations. The crossover rate and mutation rate are constant; they were carefully chosen to 

reflect the recommended range in literature. The crossover rate was set at 0.6 while the mutation 

rate was set at 0.01. In order to mimic a random (SGA) walk in the crossover phase, a random 

number between 0 and 1 is generated and compared to ‘0.6’ to determine if the crossover process 

can be performed. The value was chosen to be greater than the average of 0 and 1, i.e. 0.5. For the 

CGA, the logistic function is used to generate the random number. The stopping criterion was 

chosen to be the number of generations. Since there is no rule guiding the number of generations 

the GA should run, the value is set to one considered sufficient enough for the GA to come to a 

good solution. The parameter setup is in table18. 

Table 18 GA Parameters 

POPULATION SIZE 

 

100 

CROSSOVER RATE  

 

0.6 

MUTATION RATE 

 

0.02 

NUMBER OF GENERATIONS 

 

100 

4.3.2 Results 

The assumed secondary user’s QoS requirement inputted into the GA framework is shown 

in table17.In order to show the performance of the SGA algorithm over some time, the algorithm 

was run 10 times and results obtained are shown in table19.The numbers succeeding the letter R 

in the result row represent the number of times the algorithm was run. These results have been 

plotted in figures 20 to 26and detailed analysis has been provided. 



 

96 

 

Table 19 Resultant Spectrum and Corresponding Fitness Measure 

Results  

 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Data  

Rate 

 

14 7 10 3 4 8 7 3 8 5 

Signal   

Power 

 

57 60 57 53 61 62 56 57 61 60 

Bit Error  

Rate (BER) 

 

4 3 1 6 7 1 2 3 6 2 

Frequency 

Band 

 

461 486 458 428 492 496 453 460 493 482 

Modulation 

 

6 3 5 1 2 4 3 1 4 2 

Fitness(%) 

 

67.32 85.28 74.96 68.16 77.76 84.48 81.56 81.20 79.64 87.76 

 

 

Fig. 20 Fitness measure of initial population in descending order 

10 20 30 40 50 60 70 80 90 100

20

25

30

35

40

45

50

55

60

F
itn

e
s
s
 (

%
)

Population members



 

97 

 

 

Fig. 21 Fitness measure of parameter 1 over ten runs 

 

Fig. 22 Fitness measure of parameter 2 over ten runs 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

F
itn

es
s 

of
 d

at
a 

ra
te

 (%
)

Run of algorithm

1 2 3 4 5 6 7 8 9 10

89

90

91

92

93

94

95

96

97

98

99

100

F
itn

e
ss

 o
f s

ig
n

a
l p

o
w

e
r 

(%
)

Run of algorithm



 

98 

 

 

Fig. 23 Fitness measure of parameter 3 over ten runs 

 

Fig. 24 Fitness measure of parameter 4 over ten runs 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

F
itn

es
s 

of
 b

it 
er

ro
r r

at
e(

%
)

Run of algorithm

1 2 3 4 5 6 7 8 9 10

90

91

92

93

94

95

96

97

98

99

F
itn

e
ss

 o
f o

p
e

ra
tin

g
 fr

e
q

u
e

n
cy

 (
%

)

Run of algorithm



 

99 

 

 

Fig. 25 Fitness measure of parameter 5 over ten runs 

 

Fig. 26 Total fitness measure of spectrum solution over ten runs 

1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

F
itn

e
ss

 o
f m

o
d

u
la

tio
n

 te
ch

n
iq

u
e

 (
%

)

Run of algorithm

2 4 6 8 10

68

70

72

74

76

78

80

82

84

86

T
o
ta

l f
itn

e
ss

 m
e
a
su

re
 o

f 
so

lu
tio

n
 (

%
)

Run of algorithms



 

100 

 

 

Fig. 27 SGA average fitness measure 

 

 

Fig. 28 CGA average fitness measure 

10 20 30 40 50

65

70

75

80

85

T
o
ta

l f
itn

e
ss

 m
e
a
su

re
 o

f 
so

lu
tio

n
 (

%
)

Run of algorithm

10 20 30 40 50

76

78

80

82

84

86

88

T
o
ta

l f
itn

e
ss

 m
e
a
su

re
 o

f s
o
lu

tio
n
 (

%
)

Run of algorithm



 

101 

 

 

Fig. 29 SGA and CGA Average fitness measure for 50 runs 

 

Figure 20 shows the fitness measure of the initial generation of the first run of the algorithm 

in descending order. The figure shows that the percentage fitness of the members of the 

population ranges from 18 to around 61.76. Table 20shows the parameter values of each of the 

most fit and least fit member of the initial population solution. The importance of this figure is 

that it gives us an idea of the fitness diversity of the solutions in the initial population. We will 

then be able to compare the fitness diversity in the final generation with this initial generation. 

Table 20 Best and worst members of the initial population 

Initial 

Population 

Data Rate Power Bit Error Rate 

(BER) 

Frequency 

Band 

Modulation 

Scheme 

Most Fit 14 60 7 482 7 

Least Fit 0 2 0 14 0 

 

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

90

100

A
v
e

ra
g

e
 t
o

ta
l f

itn
e

s
s
 (

%
)

Number of runs

 

 

CGA

SGA



 

102 

 

Figure 21 shows the range of the data rate parameter’s fitness measure over the 10 different runs 

of the algorithm. The results obtained varied between 0 and 100%. The average performance of 

the GA on this parameter calculated over 10 runs is approximately 30.2%. It is important to note 

that the data rate parameter’s contribution to the spectrum’s fitness is equal to 4/25 which is about 

16%. This is the degree at which the data rate impacts on the fitness of the solution. Figures 22 to 

25also show the results for each of the other four parameters’ fitness measure over 10 runs; these 

results have been summarized in Table 21. For each of the parameters, Table 21 shows the range 

of the fitness measure, the average fitness over the 10 runs and the degree to which the parameter 

impact on the total fitness of the solution.  

Table 21 Summary of parameters’ performance 

Parameter 

 

Range (%) Average Fitness (%) Parameter Weight (%) 

Data rate 

 

0 - 100 30.20 0.16 

Signal   

Power 

 

88.4 – 100 96.03 0.24 

Bit Error  

Rate (BER) 

 

0 - 100 40.00 0.12 

Frequency 

Band 

 

89.1 – 99.5 96.09 0.36 

Modulation 

 

25 - 100 62.50 0.12 

 

Figure 26 shows the range of the resultant solution’s fitness measure over the 10 different 

runs of the algorithms. The results obtained varied between 67.32% and 87.76%. The average 

performance of the GA calculated over the 10 runs was approximately 78.81%.For each run of the 

algorithm, the spectrum solution obtained by the GA represents the best solution that was visited 



 

103 

 

by the GA among the set of all possible solutions in the pool. The random nature of the GA 

accounts for the different results that were obtained every time the algorithm is run. The optimum 

solution has a fitness of 100 percent and represents the requested QoS by the secondary user given 

in Table 17. 

In order to verify the consistency of the two algorithms, we have taken the average fitness 

measure of the solutions obtained over 50 runs of the two algorithms. Figure 27 shows that the 

average fitness measure of the solutions obtained by the SGA over 50 runs is 77.70%; whereas 

Figure 28 shows that the average fitness measure of the solutions obtained by the CGA over 50 

runs is 82.4832%. This represents about4.78% increase in performance by the CGA compared to 

the SGA. Figure29 shows the average fitness measure of both algorithms over the 50 runs. 

4.4 Convergence and Variance (Diversity) 

Literature review in this thesis shows that incorporating chaos into some or all of the 

evolutionary processes of a GA and other heuristics can speed up the rate at which heuristics 

come to a ‘good’ solution. In this section we present the analysis obtained from our simulation.  

4.4.1 GA Parameter Setup 

In order for the algorithm to be applicable in real time, it is must process information (QoS 

input into the system) and produce a response in the form of solution (spectrum) within a 

specified deadline (time). Otherwise, the system is regarded not useful. This is a good motivation 

for using the GA because it can obtain a good solution within a specified time – in our case a set 

number of generations. Although the performance of the GA depends significantly on the quality 

of the initial solutions generated and the set population with respect to the problem size, we have 

set the number of generation to 100 in order to verify convergence and diversity. The other GA 



 

104 

 

parameters setup is as shown Table 22 below. We have assumed the same secondary user’s QoS 

requirement in Table 17. 

Table 22 GA Parameters 

POPULATION SIZE 

 

50 

CROSSOVER RATE  

 

0.6 

MUTATION RATE 

 

0.02 

NUMBER OF GENERATIONS 

 

100 

 

4.4.2 Convergence: SGA vs. CGA 

The results obtained using the SGA and CGA framework are shown here. We have also observed 

that for each of the SGA and CGA, the diversity of the initial population in terms of fitness 

measures was similar every time the algorithm was run. 

 

Fig. 30 SGA fitness per generation 

10 20 30 40 50 60 70 80 90 100

20

25

30

35

40

45

50

55

60

65

T
o
ta

l f
itn

e
ss

 (
%

)

Generations

 

 

HighestFit

LowestFit

AverageFit



 

105 

 

 

Fig. 31 CGA fitness per generation 

 

The Figures 30 and 31 show the performances of the SGA and CGA over 100 generations. 

For the purpose of analysis, we have plotted the best fit, average fit and least fit solutions at every 

generation. Figure 30 shows that the SGA obtained a solution with fitness measure of 66.04% at 

the 14
th

 iteration whereas Figure31shows that the CGA obtained a better solution with a fitness 

value of 73.08% at the 6
th

 iteration. This means that the CGA obtained a more fit solution which is 

7.04% better than that obtained by the SGA. The results also imply that the CGA converges to the 

better solution at a rate that is 133% faster than the SGA. Fig 30 shows that the SGA got stuck at 

the 53
rd

 iteration and converges to a population where all the members have the same fitness 

measure of 66.04%. However the CGA maintained a population of members having a degree of 

diversity over the 100 generations. Also, the results show that the CGA obtained better average 

and least fit solutions compared to the SGA.  

10 20 30 40 50 60 70 80 90 100

20

25

30

35

40

45

50

55

60

65

70

T
ot

al
 fi

tn
es

s 
(%

)

Generations

 

 

HighestFit

LowestFit

AverageFit



 

106 

 

4.4.3 Variance: SGA vs. CGA 

The second and major objective of this work focuses on how to maintain robust solution 

diversity that the GA visits within the search space. In order to verify the diversity pattern of the 

solutions from the first generation to the last generations, we have estimated the variance over the 

generations. Variance describes the probability distribution of an observed population of numbers. 

It measures how far a set of number is spread out. A variance of zero typically indicates that all 

the fitness values are identical. A small variance indicates that the solutions tend to be very close 

to the average fitness value and hence to each other whereas a high variance is an indication that 

the solutions are very spread out from the average and from one another. It is this variance that 

distinguishes a chaotic phenomenon from a random phenomenon. With chaos, no one solution 

will be revisited or repeatedly generated thus leading to a guaranteed diversity. However, the 

random walk does not guarantee robust diversity as solutions with same fitness values can be 

revisited or repeatedly generated. Figures 32 to 35 show the variance of the population for the 

SGA and CGA over the set generations.  

The Figures 32 and 33 show the variance pattern of the SGA and CGA respectively. From 

Figure 32 we see that the variance ranges from 147 at the initial generation to approximately 0 at 

the 53
rd 

generation. Thus the SGA loses its diversity at the 53
rd

generation at which point we can 

technically say that the algorithm is stuck. However, figure 33 shows that the variance of the CGA 

varies from 180 at the initial generation to approximately 0 at the 30
th

 generation. However the 

variance increases to around 2 at the 31
st
 generation and stays at this value up till the 40

th
 

generation where it decreases to 0 again. It increases to around 2 again at the 43
rd

 generation 

before decreasing to 0 again at the 50
th

 generation. This behaviour of increasing to 2 and 



 

107 

 

decreasing to 0 continue at different interval up till the 100
th

 generation. Though the variance 

value of 2 is considered very close to zero, at that point the diversity is not totally lost. This 

diversity gives the CGA the ability to obtain better solutions over the generations. A plot of the 

fitness values of the SGA solutions in the last generation arranged in descending order is shown in 

Fig. 34. The figure indicates that all members of the last generation have the same fitness measure 

of 66.04, thus diversity is completely lost. This is consistent with what is obtainable in Fig. 32. 

Figure 35 shows the plot of the fitness values of the CGA solutions in the last generation arranged 

in descending order. The range of the fitness values is from 73.08% to 71.08%. It is observed that 

only 4% (2 of 50) of the solutions actually have their fitness values greater than 71.08%. The 

remaining 96% of the solutions have the same fitness values of 71.08%. The 4% can allow the 

CGA to obtain better solution compared to the present solution of 73.08%. 

 

Fig. 32 SGA variance 

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

T
ot

al
 fi

tn
es

s 
(%

)

Generations



 

108 

 

 

Fig. 33 CGA variance 

 

Fig. 34 SGA fitness measure of the last generation in descending order 

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

T
ot

al
 fi

tn
es

s 
(%

)

Generations

5 10 15 20 25 30 35 40 45 50

65.2

65.4

65.6

65.8

66

66.2

66.4

66.6

66.8

67

T
ot

al
 fi

tn
es

s 
(%

)

Population members



 

109 

 

 

Fig. 35 CGA fitness measure of the last generation in descending order 

 

4.5 Effect of Population Size 

In order to ascertain the effect of population size on the performance of the GA we have 

performed experiments with population size of 500 and generation of 200. The other GA 

parameters setup is as shown in Table 23 below. We have assumed the same secondary user’s 

QoS requirement in Table 17. The results obtained are as shown in figures 36 to 41. 

Table 23 GA Parameters 

POPULATION SIZE 

 

500 

CROSSOVER RATE  

 

0.6 

MUTATION RATE 

 

0.02 

NUMBER OF GENERATIONS 

 

200 

5 10 15 20 25 30 35 40 45 50

71.2

71.4

71.6

71.8

72

72.2

72.4

72.6

72.8

73

To
ta

l f
itn

es
s 

(%
)

Population members



 

110 

 

4.5.1 Convergence: SGA vs. CGA 

Figures 36 and 37 show the best fit, average fit and least fit solutions for every generation. 

Figure36shows that the SGA obtained a solution with a fitness measure of 85.64% at the 26
th

 

generation and that the SGA gets stuck at the 195
th

 generation where the diversity of the 

population is lost. Figure37 shows that the CGA obtained a solution with a fitness measure of 

95.08% at the 11
th

 generation and maintains diversity within the population beyond the 200
th

 

generation. This means that the CGA obtained a more fit solution that is 9.44% better than that 

obtained by the SGA. Also, the results imply that the CGA converges to the better solution at a 

rate which is 136% faster than the SGA. Compared to the previous population size of 50used in 

section 4.4 and figures 30 to 35, an increase in population size improves the performance of both 

the SGA and CGA. This is expected since the algorithm has more solutions to choose from.  

 

Fig. 36 SGA fitness per generation 

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

T
ot

al
 fi

tn
es

s 
(%

)

Generations

 

 

HighestFit

LowestFit

AverageFit



 

111 

 

 

Fig. 37 CGA fitness per generation 

 

4.5.2 Variance: SGA vs. CGA 

Figures 38 to 41 show the variance pattern of the two algorithms over the generations. 

From figure 38 we see that the variance of the SGA decreases from 858.52at the initial generation 

to approximately 0 at the 195
th

generation. Thus the SGA loses its diversity at the 130
th

generation 

at which point we can technically say that the algorithm is stuck. Figure39shows that the variance 

of the CGA also decreases from a much higher value of 1092.7 at the initial generation to 

approximately 2 at the 123
rd

generation and stays at this value up until the 200
th

 generation. Thus, 

with the CGA, the diversity is not lost until a later generation when compared to the SGA. A plot 

of the fitness measures of solutions obtained by the SGA in the last generation and arranged in 

descending order is shown in Fig. 40. The figure indicates that the members of the last generation 

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

T
ot

al
 fi

tn
es

s 
(%

)

Generations

 

 

HighestFit

LowestFit

AverageFit



 

112 

 

have the same fitness measures of 85.64%. This is consistent with what was obtainable in Fig. 38. 

Figure41 shows the plot of the fitness values of the CGA solutions in the last generation arranged 

in descending order. The values decrease from 95.08% to 93.08%. It is observed that all of the 

solutions actually have their fitness values within the said range. This is consistent also with what 

was obtained in Fig. 39. With a larger population size, the SGA and CGA thus have increased 

variance at same generation with respect to smaller population size; this is also expected. The 

results also show that the CGA performs better than the SGA at the increased population size. 

This can be attributed to the fact that an increased population size will lead to a higher chance of 

solutions been repeatedly visited by the SGA thus contributing to the loss of diversity in the 

available solutions. The CGA on the other hand ensures that no two solutions in the search space 

will be revisited.  

 

Fig. 38 SGA variance 

20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

T
ot

al
 fi

tn
es

s 
(%

)

Generations



 

113 

 

 

Fig. 39 CGA variance 

 

Fig. 40 SGA fitness measure of the last generation in descending order 

20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

900

1000

To
ta

l f
itn

es
s 

(%
)

Generations

50 100 150 200 250 300 350 400 450 500

84.8

85

85.2

85.4

85.6

85.8

86

86.2

86.4

86.6

T
ot

al
 fi

tn
es

s 
(%

)

Population members



 

114 

 

 

Fig. 41 CGA fitness measure of the last generation in descending order 

50 100 150 200 250 300 350 400 450 500

93.2

93.4

93.6

93.8

94

94.2

94.4

94.6

94.8

95

T
ot

al
 fi

tn
es

s 
(%

)

Population members



 

115 

 

Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion 

  In this thesis, the motivation for using genetic algorithm for combinatorial 

optimization problems has been presented. The genetic algorithm succeeds in reducing the 

computational complexity of problems that are either NP-Hard or NP-Complete. It is difficult to 

seek the optimum solution for problems of this nature because it is only an exhaustive search 

method that can guarantee the optimum solution requirement, an algorithm which runs in non-

polynomial time. In many real world applications the optimum solution can be traded off for the 

time that a near-optimum (good) solution is obtained. The solution is termed ‘good’ in the sense 

that it is deemed acceptable enough for the application. The genetic algorithm has been used 

because it is able to maintain a population of solution at the same time while using its 

evolutionary processes to increase the diversity of solution points visited in the search space. This 

characteristic of maintaining a population of solutions aids the convergence of the GA compared 

to other non-evolutionary algorithms. The mutation property of the GA also reduces the chances 

of being stuck in the local minima compared to other evolutionary algorithms.  

Despite the characteristic properties of the GA, a general problem remains inherent: the 

quick loss of genetic diversity leading to premature convergence; this is a major drawback of the 

algorithm. Premature convergence makes it difficult for the algorithm to have a chance of seeking 

the global optimum. This work examined the various factors and techniques that can be used to 

improve the diversity of solutions visited by the GA. The selection strategy has a great influence 



 

116 

 

on the diversity of the solutions; literature reveals that of all the various selection strategies 

available, the roulette wheel method of selection guarantees diversity the most. Our model 

therefore makes use of the roulette wheel method of selection as well as the elitism method of 

selection which ensures that the best fit solution found in any generation is not lost to the 

evolutionary processes. Several methods have been proposed in literature to solve this problem 

and incremental performances have been reported. All the methods have focused on increasing the 

‘diversity’. However all of these methods have been unable to bypass the inherent problem of 

randomization in the genetic evolutionary processes. Randomization leads to the revisiting of the 

same solutions over time which can lead to the algorithms getting stuck in local optimal. This was 

the motivation for incorporating chaos into the GA evolutionary processes. Each of the random 

components of the GA is simply replaced with a chaotic component implemented using the 

logistic map. The characteristics of the logistic map which makes it suitable for this purpose are 

the sensitivity to initial condition, topological transitivity and topological density. The topological 

transitivity ensures that no one solution is revisited in the search space while both the sensitivity 

to initial condition and topological density guides against the algorithm getting stuck in a local 

optima solution. These characteristics are the reasons behind the improved diversity of the 

candidate solutions visited by the algorithm. The model has been termed the chaotic GA (CGA) in 

this work. This model has been reported in literature to improve the convergence of the GA. 

However in literature there has been no detailed analysis done to verify diversity. In this thesis we 

have provided the analysis using the variance characteristics of the system over the generations.  

 

 



 

117 

 

5.2 Contributions 

In this thesis, we have applied the genetic algorithms to two major areas of research: the 

multiprocessor task scheduling problem and the radio spectrum allocation problem. The goals 

achieved in this work and our major contributions are detailed below: 

 Task Scheduling in a Multiprocessing System: The goal of tasks scheduling 

in a multiprocessor system is to schedule tasks on processors such that the 

processing time is minimized. By finding the optimal schedule, the system 

is optimized for performance. Since this problem has been reported to be 

NP-hard, we have used the GA to search for a good solution in polynomial 

time. We have verified this through simulations using Java to develop the 

framework. 

 

 Literature survey shows that the method of scheduling based on number of 

task descendants (NTD) can schedule tasks faster than scheduling based on 

the heights of the tasks in a task graph. However in this work we found that 

some tasks can have multiple earlier start time(s) due to multiple paths for 

which the earliest start time can be obtained. We have assumed that the 

completion of the execution of one of the parent tasks satisfies the 

precedence relation in the graph. We have used the principle of ‘open 

shortest path first’ to ensure that only the minimum of the multiple earliest 

start times is chosen. This further reduced the makespan of the processing 

system and thus increased the chances of the GA in obtaining the optimum 



 

118 

 

schedule. We have verified the effectiveness of this scheduling method 

through simulations using Java to develop the framework. 

 

 We have also developed a user-friendly software which can generate 

random task graphs. The user of the software can determine certain 

parameters of the task graph to be generated. The parameters include: the 

number of tasks, the number of levels desired in the task graph, the 

maximum number of descendants possible per task and the range of the 

random execution time. This software can be used by researchers in related 

field. 

 

 In this work we have provided equations that can be used to obtain the 

actual starting time that a task may begin execution on any processor to 

which it may be allocated, and the updated available processor time at 

which an allocated task may begin execution. The actual starting time was 

calculated using the earliest start times and the updated available processor 

time. The updated available processor time was computed using the earliest 

start time and the execution time of each task. 

 

 Spectrum Allocation in Cognitive Radio Networks: Since the problem of 

finding the optimum spectrum allocation for secondary user has been 

reported to be NP-Complete, we have used the GA to search for a good 

solution within the search space of possibilities in polynomial time. The 

GA framework was developed using MATLAB. We verified that indeed 



 

119 

 

spectrum with percentage fitness of 75 and above can be obtained in 

polynomial time.  

 

 Unlike previous works done that applied chaos to some of the evolutionary 

processes of the GA, we have incorporated chaos into all the evolutionary 

processes of the GA and termed the model chaotic GA (CGA). Simulation 

results showed that the CGA has the ability to converge faster than the 

standard GA (SGA) mainly due to the ability of the chaotic process to 

maintain a better diversity with time compared to the SGA.  

 

 This thesis also provided a detailed analysis of verifying and measuring the 

diversity of solutions of both the CGA and SGA. Analysis showed that 

indeed the CGA has a better diversity compared to the SGA.  

 

 We have published three conference papers demonstrating the performance 

of GA on three different combinatorial optimization problems. The 

publications are: 

 

o O. D. Jegede, K. Ferens and W. Kinsner. “A Chaotic Genetic 

Algorithm for Radio Spectrum Allocation.” in Proc. Int. Conf. on 

Genetic and Evolutionary Methods, Las Vegas, NV USA, pp. 118-

125, 2013. 

 

o O. D. Jegede and K. Ferens. “A Genetic Algorithm for Node 

Localization in Wireless Sensor Networks.” in Proc. Int. Conf. on 

Genetic and Evolutionary Methods, Las Vegas, NV USA, pp. 126-

132, 2013. 



 

120 

 

o T Kaiser, O.D. Jegede, K. Ferens, D. Buchanan. “A Genetic 

Algorithm for Multiprocessor Task Scheduling.” in Proc. Int. Conf. 

on Genetic and Evolutionary Methods, Las Vegas, NV USA, pp. 

105-110, 2013. 

 

5.3 Future work 

This work opens up research opportunities applicable to both the CR and GA fields. Some 

suggested future work includes:  

 The primary goal of optimization is to obtain the optimum result, thus the ability of the 

GA to obtain the optimal result in polynomial time can be further enhanced by combining 

the CGA with an adaptive adjustment of the algorithm’s parameters (crossover and 

mutation rate) proposed by Yun-Xiao [46]. This adaptive adjustment has been reported to 

reduce the vector distance between individual solutions. This should further reduce the 

convergence time for our proposed CGA. 

 

 The spectrum allocation process of the GA can also be extended to multiple secondary 

users at a time. The GA can also be improved for smart re-allocation of the spectrum on 

detection of a primary user. 

 

 

 

 



 

121 

 

References 

[1]  M. Mitchell, An Introduction to Genetic Algorithms, Cambridge: Massachusetts Institute of 

Technology, 1999. 

[2]  A. E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Germany: Springer, 

2003.  

[3]  O. D. Jegede and K. Ferens, "A Genetic Algorithm for Node Localization in Wireless Sensor 

Networks," in Genetic and Evolutionary Methods, Las Vegas, 2013.  

[4]  F. Wu and N. Vaidya, "SMALL: A Strategy-Proof Mechanism for Radio Spectrum Allocation," 

in IEEE International Conference on Computer Communications, 2011.  

[5]  D. Cox and D. Reudink, "Dynamic channel assignment in high capacity mobile 

communication system," Bell System Technical Journal, vol. 50, no. 6, p. 1833–1857, 1971.  

[6]  W. Yue, "Analytical methods to calculate the performance of a cellular mobile radio 

communication system with hybrid channel assignment," IEEE transactions on vehicular 

technology, vol. 40, no. 2, p. 453–460, 1991.  

[7]  E. S. Hou, N. Ansari and H. Ren, "A genetic algorithm for multiprocessor scheduling," IEEE 

Transactions on Parallel and Distributed Systems, vol. 5, no. 2, pp. 113-120, 1994.  

[8]  M. Abdeyazdan and A. M. Rahmani, "Multiprocessor task scheduling using a new prioritizing 

genetic algorithm based on number of task children," in Distributed and Parallel Systems in 

Focus: Desktop Grid Computing, Springer Verlag, 2008, pp. 105-114. 

[9]  D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, 

Cambridge, Massachusetts: Addsion-Wesley Publishing Company, 1989.  

[10]  L. Davis, Handbook of Genetic Algorithm, New York: Van Nostrand Reinhold, 1991.  

[11]  J. Holland, "Some practical aspects of adaptive systems theory," in Electronic Information 

Handling, A. Kent and O. Taulbee, Eds., Washington, DC: Spartan Press, 1965, p. 209 – 217. 

[12]  T. Lau, "Guided Genetic Algorithm," Phd Thesis, Department of Computer Science, 

University of Essex, Essex, UK, 1997. 



 

122 

 

[13]  A. Bethke, "Genetic algorithms as function optimizers," Technical Report No. 212, Computer 

and Communication Sciences, University of Michigan, USA, 1978. 

[14]  T. Blickle and L. Thiele, "A comparison of selection schemes used in genetic algorithms," TIK 

Report, Second Edition, Computer Engineering and Communication Network Labs (TIK), 

Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1995. 

[15]  Wikipedia, "Selection," 2013. [Online]. Available: 

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm). 

[16]  N. Razali and J. Geraghty, "Genetic algorithm performance with different selection strategies 

in solving TSP," in World Conference on Engineering, 2011.  

[17]  J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," in Second 

International Conference on Genetic Algorithms and their Application, Hillsdale, New Jersey, 

1987.  

[18]  A. Popov, "Genetic algorithms for optimization," User Manual for the GAmin toolbox for 

Genetic Algorithms Optimization for MATLAB, 2005. 

[19]  L. Eshelman, R. Caruana and J. Schaffer, "Biases in the crossover landscape," in Third 

International Conference on Genetic Algorithm, 1989.  

[20]  W. Spears and K. D. Jong, "On the virtues of parameterized uniform crossover," in Fourth 

International Conference on Genetic Algorithms, 1991.  

[21]  C. R. a. J. Rowe, Genetic Algorithms: Principles and Perspectives A Guide to GA Theory, AA 

Dordrecht: Kluwer Academic Publishers, 2003.  

[22]  D. Zingg, M. Nemec and T. Pulliam, "A comparative evaluation of genetic and gradient-based 

algorithms applied to aerodynamic optimization," European Journal of Computational 

Mechanics/REMN, vol. 17, no. 1-2, pp. 103-126, 2008.  

[23]  C. Jassadapakorn and P. Chongstitvatana, "Diversity control to improve convergence rate in 

genetic algorithms," in Intelligent Data Engineering and Automated Learning, Lecture Notes 

in Computer Science, vol. 2690, 2003, pp. 421-425. 

[24]  R. Povinelli and X. Feng, "Improving genetic algorithms performance by hashing fitness 

values," in Artificial Neural Networks in Engineering, St. Louis, Missouri, 1999.  



 

123 

 

[25]  T. Fogarty, "Varying the probability of mutation in the genetic algorithm," in Third 

International Conference on Genetic Algorithms, 1989.  

[26]  J. Hesser and R. Manner, "Towards an optimal mutation probability in genetic algorithms," 

in First Parallel Problem Solving from Nature, 1991.  

[27]  T. Back and M. Schutz, "Intelligent mutation rate control in canonical genetic algorithms," in 

International Symposium on Methodologies for Intelligent Systems, 1996.  

[28]  G. Ochoa, I. Harvey and H. Buxton, "On recombination and optimal mutation rates," in 

Genetic and Evolutionary Computation Conference, 1999.  

[29]  T. Jansen and I. Wegener, "On the choice of the mutation probability for the (1+1) EA," in 

6th Parallel Problem Solving from Nature, 2000.  

[30]  D. Thierens, "Adaptive mutation rate control schemes in genetic algorithms," in Proceedings 

of IEEE International Conference Evolutionary Computation, 2002.  

[31]  V. Kureichick, A. Melikhov, V. Miaghick, O. Savelev and A. Topchy, "Some new features in 

the genetic solution of the traveling salesman problem," in ACEDC'96, 2nd International 

Conference of the Integration of Genetic Algorithms and Neural Network Computing and 

Related Adaptive Computing with Current Engineering Practice, Plymouth, UK, 1996.  

[32]  M. Rocha and J. Neves, "Preventing premature convergence to local optima in genetic 

algorithms via random offspring generation," in 12th International Conference on Industrial 

and Engineering Applications of Artificial Intelligence and Expert Systems: Multiple 

Approaches to Intelligent Systems, Cairo, Egypt, 1999.  

[33]  M. Angelova and T. Pencheva, "Tuning genetic algorithm parameters to improve 

convergence time," International Journal of Chemical Engineering, vol. 2011, no. 646917, 

pp. 1-7, 2011.  

[34]  M. Angelova, S. Tzonkov and T. Pencheva, "Genetic algorithms based parameter 

identification of yeast fed-batch cultivation," in Conference on Numerical Methods and 

Applications, vol. 6046 of Lecture Notes in Computer Science, 2011.  

[35]  K. P. Wong and A. Li, "A technique for improving the convergence characteristic of genetic 

algorithms and its application to a genetic-based load flow algorithm," in Simulated 



 

124 

 

Evolution and Learning. Lecture Notes in Artificial Intelligence, Springer, 1997, pp. 167-176. 

[36]  Y. Sun and F. Deng, "Chaotic parallel genetic algorithm with feedback mechanism & its 

application in complex constrained problem," in IEEE Conference on Cybernetics and 

Intelligent Systems, 2004.  

[37]  W. Kinsner, "Fractal and chaos engineering," Dept. Electrical and Computer Eng., Univ. of 

Manitoba., Winnipeg, 2010. 

[38]  R. Devaney, An introduction to chaotic dynamical systems, Reading, Massachusetts: 

Benjamin/Cummings, 1986, p. 320. 

[39]  R. Devaney, A first course in chaotic systems: theory and experiments, Reading, 

Massachusetts: Addison-Wesley, 1992, p. 302. 

[40]  Wikipedia, "Ergodicity," 2013. [Online]. Available: http://en.wikipedia.org/wiki/Ergodicity. 

[41]  Z. Yun-Xiao, Z. Jie and Z. Chang-Chang, "Cognitive radio resource allocation based on 

coupled chaotic genetic algorithm," IOP Science Chinese Physics B, vol. 19, no. 11, pp. 

119501-1 - 119501-8, 2010.  

[42]  C. Min-Yuan and H. Kuo-Yu, "K-means clustering and chaos genetic algorithm for nonlinear 

optimization," in The 26th International Symposium on Automation and Robotics in 

Construction (ISARC), 2009.  

[43]  D. Cook, K. Ferens and W. Kinsner, "Application of chaotic simulated annealing in the 

optimization of task allocation in a multiprocessing system," in IEEE International 

Conference on Cognitive Informatics and Cognitive Computing, 2013.  

[44]  D. Shaw and W. Kinsner, "Chaotic simulated annealing in multilayer feedforward networks," 

in Canadian Conference on Electrical and Computer Engineering, 1996.  

[45]  J. Mingjun and T. Huanwen, "Application of chaos in simulated annealing," Chaos, Solitons & 

Fractals, vol. 21, no. 4, pp. 933-941, 2004.  

[46]  H. Meng, P. Zheng, R. Wu, X. Hao and Z. Xie, "A hybrid particle swarm algorithm with 

embedded chaotic search," in IEEE Conference on Cybernetics and Intelligent Systems, 2004.  

[47]  M. Pinedo, Scheduling - Theory, Algorithms, and Systems, New York: Springer, 2008.  



 

125 

 

[48]  N. Fisher, "The multiprocessor real-time scheduling of general task systems," Phd Thesis, 

Department of Computer Science, University of North Carolina, USA, 2007. 

[49]  S. Jin, G. Schiavone and D. Turgut, "A performance study of multiprocessor task scheduling 

algorithms," Journal of Supercomputing, vol. 43, no. 1, pp. 77-97, 2008.  

[50]  M. U, C. Ho, S. Funk and K. Rasheed, "GART: A genetic algorithm based real-time system 

scheduler," in IEEE Congress on Evolutionary Computation, 2011.  

[51]  R. M. Miryani and M. Naghibzadeh, "Hard real-time multiobjective scheduling in 

heterogenous systems using genetic algorithms," in International CSI Computer Conference, 

2009.  

[52]  D. Montana, M. Brinn, G. Bidwell and S. Moore, " Genetic algorithms for complex, real-time 

scheduling," in IEEE Conference on Systems, Man, and Cybernetics, 1998.  

[53]  Y. Monnier, J. Beauvais and A. Deplanche, "A genetic algorithm for scheduling tasks in a real-

time distributed system," in Euromicro Conference, 1998.  

[54]  A. S. Wu, H. Yu, S. Jin, K.-C. Lin and G. Schiavone, "An incremental genetic algorithm 

approach to multiprocessor scheduling," IEEE Transactions on Parallel and Distributed 

Systems, vol. 15, no. 9, pp. 824 - 834, 2004.  

[55]  L. Doyle, Essentials of cognitive radio, New York: Cambridge University Press, 2009.  

[56]  The SDR Forum, "Cognitive radio definitions and nomenclature," 2008. 

[57]  B. Fette, "History and background of cognitive radio technology," in Cognitive Radio 

Technology, Burlington, Elsevier Inc, 2009, pp. 1-26. 

[58]  T. Siddique and A. Azam, "Spectrum optimization in cognitive radio networks using genetic 

algorithms," Master's Thesis, Blenkinge Institute of Technology, Sweden, 2010. 

[59]  F. Bruce, "Introducing adaptive, aware, and cognitive radios," in Cognitive Radio, Software 

Defined Radio, and Adaptive Wireless Systems, AA Dordrecht, The Netherlands, Springer, 

2007, pp. 1-16. 

[60]  A. Vogel, B. Kerherve, G. v. Bochmann and J. Gecsei, "Distributed multimedia and qos: a 

survey," IEEE Multimedia, vol. 2, 1995.  



 

126 

 

[61]  M. Kaur and M. Uddin, "Optimization of QoS parameters in cognitive radio using adaptive 

genetic algorithm," International Journal of Next-Generation Networks (IJNGN), vol. 4, no. 2, 

pp. 1-15, 2012.  

[62]  J. Hauris, "Genetic algorithm optimization in a cognitive radio for autonomous vehicle 

communications," in IEEE International Symposium on Computational Intelligence in 

Robotics and Automation, Jacksonville, FL., 2007.  

[63]  T. Rondeu, C. Rieser, B. Le and C. Bostain, "Cognitive radios with genetic algorithms: 

intelligent control of software defined radios," in SDR Forum Technical Conference, Phoneix, 

FL, 2004.  

[64]  M. Withall, C. Hinde, R. Stone and J. Cooper, "Packet transmission optimization using 

genetic algorithms," in Lecture Notes in Computer Science, Berlin/Heidelberg, Springer, 

2003, pp. 119-138. 

[65]  T. Newman, R. Rajbanshi, A. Wyglinski, J. Evans and G. Minden, "Population adaptation for 

genetic algorithm based cognitive radios," in IEEE 2nd International Conference on Cognitive 

Radio Oriented Wireless Networks and Communications, Orlando, FL., 2007.  

[66]  O. Hasancebi and F. Erbatur, "Evaluation of crossover techniques in genetic algorithm based 

optimum structural design," Computer and Structures, vol. 78, no. 1-3, p. 435 – 448, 2000.  

 



 

1 

 

Appendix A 

Software 

This chapter shows the task graph generator software graphical interface which was developed to 

generate the task graph. The details from the task graph such as task number, height, execution time 

and earliest start times are then fed into the GA for the purpose of obtaining a good schedule for the 

multi-processor system. Figure A1 shows the graphical interface of the task graph generator.  

 

Fig. 1 Task graph generator 

In this graphical interface, the users can specify the parameters of the task graph. The “Number 

of Tasks” refers to the set number of tasks in the task graph. We have limited the range of the possible 

number of tasks to 50; this is in order to ensure that the window size of the interface can accommodate 

the task graph diagram. The “Number of Levels” refers to the number of height in the task graph 

according to literature. The “Max Descendants per Tasks” refers to the highest possible number of 



 

2 

 

descendants that a task can have. The “Range of Execution time” refers to the range within which the 

execution time of each task will fall. For example, the user can fill in “0” – “15”; there is no set limit 

the values that can be chosen. After the input parameters have been filled in, the user can click on the 

“Generate” button to generate the task graph. 

A.1 Running the Task Graph Generator 

1. Open new configuration files in any java emulator environment and paste each of the codes 

B.1, B.2 and B.3 listed in Appendix B.  

2. Compile each of the file. 

3. Run each of the code with the code B.3 the last to be run; the task graphical interface pops up. 

4. Input the parameters and generate the task graph. Note that entering the same set of parameters 

every time will generate different task graphs because it is random. 

A.2 Running the Task Scheduling GA Code 

1. Open the TaskScheduling_GA.java file in any java emulator environment. 

2. Ensure that you have transferred the details of the chosen task graph into the “tasks.txt” file 

before compiling the code. 

3. Compile and Run the code. 

4. In this experiment we have 6 different .txt files with different number of tasks and tasks 

dependencies. These are listed in B.4. The ‘tasks_16.txt’ has 16 tasks and a task dependency of 

20%; the tasks_21.txt has 21 tasks and a task dependency of 20%; and the tasks_30.txt has 30 

tasks and a task dependency of 20%. The tasks_20%_30.txt has 30 tasks and a task dependency 

of 20%. The tasks_40%_30.txt has 30 tasks and a task dependency of 40%. The 

tasks_60%_30.txt has 30 tasks and a task dependency of 60%. 



 

3 

 

5. For each of these .txt files, compile and run the code. 

A.3 Running the Spectrum Allocation Code 

1. The GA-based spectrum allocation experiment was implemented using MATLAB. There are 

two versions: the SGA and the CGA. These two versions have some files (code) in common 

while some files are exclusive. 

 

2. To run the SGA version: 

a. The files in B.5 should all be placed in the same folder (location). 

b. The main file “Main_SGA.m” should be opened and run. 

c. Set the QoS input parameters as that in Table 17 of chapter 4 which was used for the 

experiment. 

d. The text version of the results will be displayed in the command window while the 

graphical results will be displayed on different plotted graphs. 

 

3. To run the CGA version: 

a. The files in B.6 should all be placed in the same folder (location). 

b. The main file “Main_CGA.m” should be opened and run. 

c. Set the QoS input parameters as that in Table 17 of chapter 4 which was used for the 

experiment. 

d. The text version of the results will be displayed in the command window while the 

graphical results will be displayed on different plotted graphs. 

 



 

1 

 

Appendix B 

 

Source Code Files 

The file name of the source codes are listed in B.1 to B.6. 

B.1 Task…. 

Display.java; 

B.2 Task… 

InputForm.java; 

B.3 Task 

 TaskGraph.java; 

B.4 Task 

TaskScheduling_GA.java; 

 tasks.txt 

tasks_16.txt 

tasks_21.txt 

tasks_30.txt 

tasks_20%_30.txt 

tasks_40%_30.txt 

tasks_60%_30.txt 

B.5 Spectrum Allocation 

Main_SGA.m; 

 initial_population.m; 

 selection_operation.m; 

 crossover_operation.m; 

 mutation_operation.m; 

 fitness_measure.m; 

 

B.6 Spectrum Allocation 

Main_CGA.m; 

 initial_population_chaotic.m; 

 selection_operation.m; 

 crossover_operation_chaotic.m; 

 mutation_operation_chaotic.m; 

 fitness_measure.m;



 

1 

 

Appendix C 

 

Application of GA to Localization in Wireless Sensor Networks 

  
We have applied the GA to node localization in wireless sensor networks (WSN). WSN can be 

implemented for the purpose of monitoring the environment for agricultural and security purposes. A wireless 

sensor network is a collection of nodes organised into a cooperative network. The ability to detect the 

locations of each wireless sensor in a WSN is central to accurate information gathering. Example of 

conventional location detection techniques include the global positioning system (GPS) and infrared; 

they are however very expensive to deploy within a very large sensors network. In general, the 

localization problem has been shown to be NP-hard [3]. For very sensitive WSN applications such as 

in military operations, it is important to detect the location of the sensor nodes in polynomial time. 

Stochastic processes have been known to reduce the computational complexity involved in the 

localization problem. Therefore, we have proposed the use of a GA to learn the environment 

impairments within a 5m by 5m grid wireless sensor networks for the purpose of localization for data 

management within the network.  

For each coordinate in the grid network area, random perturbations of received signal strength 

(RSS) from sensor nodes were obtained and supplied to the GA. The RSS obtained from a next-hop 

sensor node is used to determine the location of the sensor node. In our work [3], we have made use of 

a one-hop connection where a sensor node is directly connected to each of three anchor nodes. The 

anchor nodes are equipped with GPS capability. Since the sensor nodes are within transmission range 

of each of the anchors, the signal strength of the sensor nodes received at each of the anchor is used to 

find the coordinate of the sensor nodes in the network. The relationship between the transmit power of 



 

2 

 

a sensor node and the corresponding RSS at the anchor nodes is used to compute the possible location 

of the node within the network. The methodology and GA approach to this problem is described in 

details in our work [3]. Simulation was done in MATLAB to determine the location of the sensor 

nodes using the GA. The results obtained for five sensors (targets) showed that after 100 generations 

of the GA, the average error between the actual sensors location and the GA estimated locations was 

approximately 0.01. This is good for practical purpose in a wireless sensors network. The results are 

shown in tables I to IV and plotted in figures I to VI. 

 

Each table shows the error in the predicted location of the GA for each target positions as well as 

the relative percentage error to the grid. Table I shows the results in the GA predictions for each target 

at each of the target’s initial positions in the grid. Table II shows the results in the GA predictions for 

each target when each of the target’s initial positions is increased by 10cm. Table III shows the results 

in the GA predictions for each targets when each of the target’s initial positions is increased by 20cm. 

Table IV shows the results in the GA predictions for each targets when each of the target’s initial 

positions is increased by 30cm.  

 

Figure I shows the error in GA predictions for target 1 with increased distance. Figure II also 

shows the error in GA predictions for target 2 with increased distance. The error in GA predictions for 

target 3 with increased distance is shown by figure III. Figure IV shows the error in GA predictions for 

target 4 with an increased distance. The error in GA predictions for target 5 with increased distance is 

shown by figure V. The average error which shows the difference between the GA predicted results 

and the expected ones is shown in Fig VI. It is observed that the error decreases as the number of 

generations increases. At around the 33
rd

 generations, the GA was able to converge to a good solution 

with an error of approximately 0.01. This is a practically acceptable result. 



 

3 

 

       Table I 

GA 

PREDICTED 

 

ACTUAL Targets’ 

Initial Positions 

ERROR in 

GA Prediction 

Percentage Error (Relative to total Grid ) 

(2.47, 1.35) 

 

(2.5, 1.4) 0.05 1.25 

(1.16,2.37) 

 

(1.2, 2.4) 0.05 1.25 

(0.4,2.96) 

 

(0.4,3.0) 0.04 1 

(2.51,3.23) 

 

(2.5,3.2) 0.05 1.25 

(3.54,3.56) 

 

(3.6,3.5) 0.08 2 

 

       Table II 

ACTUAL Targets’ Initial 

Positions  + 10cm 

ERROR in GA 

Prediction 

Percentage Error (Relative to total Grid ) 

Target 1 

 

0.212 5.3 

Target 2 

 

0.191 4.78 

Target 3 

 

0.108 2.7 

Target 4 

 

0.095 2.38 

Target 5 

 

0.165 4.125 

 

Table III 

ACTUAL Targets’ Initial 

Positions  + 20cm 

ERROR in GA 

Prediction 

Percentage Error (Relative to total Grid ) 

Target 1 

 

0.340 8.5 

Target 2 

 

0.332 8.3 

Target 3 

 

0.312 7.8 

Target 4 

 

0.275 6.88 

Target 5 

 

0.295 7.38 

 



 

4 

 

 

 

 

Table IV 

ACTUAL 

Targets’ Initial Positions  + 

30cm 

ERROR in GA 

Prediction 

 

 

Percentage Error (Relative to total Grid ) 

 

Target 1 

 

0.481 12.03 

Target 2 

 

0.474 11.85 

Target 3 

 

0.453 11.33 

Target 4 

 

0.396 9.9 

Target 5 

 

0.433 10.825 

 

 

Fig. I   Target I error with distance  

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

or
 in

 G
A

 P
re

di
ct

io
n

Distance (meters)



 

5 

 

 

Fig. II   Target II error with distance 

 

 

Fig. III   Target III error with distance 

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

or
 in

 G
A

 P
re

di
ct

io
n

Distance (meters)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
rro

r i
n 

G
A

 P
re

di
ct

io
n

Distance (meters)



 

6 

 

 

Fig. IV   Target IV error with distance 

 

 

Fig. V   Target V error with distance 

 

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rro

r i
n 

G
A

 P
re

di
ct

io
n

Distance (meters)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Er
ro

r i
n 

G
A 

Pr
ed

ic
tio

n

Distance (meters)



 

7 

 

 

Fig. VI   Average error for the 5 target nodes per generation 

 

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
ve

ra
g

e
 E

rr
o

r

Generations


