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Abstract

Energy harvesting in cellular networks is an emerging technique to enhance the sus-

tainability of power-constrained wireless devices. In this thesis, I consider the co-

channel deployment of a macrocell overlaid with several small cells. In our model,

the small cell base stations (SBSs) harvest their energy from environment sources

(e.g., solar, wind, thermal) whereas the macrocell base station (MBS) uses conven-

tional power supply. Given a stochastic energy arrival process, a power control policy

for the downlink transmission of both MBS and SBSs is derived such that they can

obtain their own objectives on a long-term basis (e.g., maintain the target signal-to-

interference-plus-noise ratio [SINR] on a given transmission channel). To this end, I

propose to use two different forms of stochastic game for the cases when the number

of SBSs is small and when it becomes very large i.e. a very dense network. Numerical

results demonstrate the significance of the developed optimal power control policy in

both cases over the conventional methods.

i



Acknowledgements

There are a number of people I wish to thank for making my experience as a master

student an interesting and rewarding one. First of all, I would like to thank my

advisor Prof. Ekram Hossain for his extraordinary support and guidance. His energy,

patience, and encouragement have been truly priceless. Without him, this thesis may

not be completed. I also wish to acknowledge the financial support from University

of Manitoba and the Natural Sciences and Engineering Research Council of Canada

(NSERC) during my graduate work here.

Secondly, I would like to thank all the professors in our departments. Their courses

were interesting and helpful, which contributed a lot to this thesis work. I would

like to thank the staffs at the Department of Electrical and Computer Engineering,

especially Amy Dario for her kind help. My sincere gratitude goes to all my colleagues

in the lab whose support and friendship was invaluable.

Finally, I would like to thank my parents for their unbounded care, love, and

support. You are always the persons I love the most.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1
1.1 What is Small Cells and Why Energy Harvesting ? . . . . . . . . . . 1
1.2 Overview of Energy Harvesting Technologies for Wireless Communica-

tion Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Sources of Energy Harvesting . . . . . . . . . . . . . . . . . . 4
1.2.2 Energy Harvesting Architecture . . . . . . . . . . . . . . . . . 6
1.2.3 Feasibility of Energy Harvesting for SBSs . . . . . . . . . . . . 7

1.3 Challenges and Current Trends of Research . . . . . . . . . . . . . . . 8
1.3.1 Offline Optimization . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Online Optimization . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contribution and Outline of the Thesis . . . . . . . . . . . . . . . . . 12

2 Fundamentals of Stochastic Game 16
2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Two Player Single-Controller Stochastic Game . . . . . . . . . . . . . 23

2.2.1 Game Theory Overview . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Single-Controller Stochastic Game . . . . . . . . . . . . . . . . 25

2.3 Stochastic Mean Field Game . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Formulation of the MFG . . . . . . . . . . . . . . . . . . . . . 31

3 Power Control in Small Cell Network With Centralized Energy Har-
vesting Queue 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 System Model and Assumptions . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Energy Harvesting Model . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Formulation and Analysis of the Single-Controller Stochastic Game . 38

iii



3.3.1 Formulation of the Game Model . . . . . . . . . . . . . . . . . 39
3.3.2 Calculation of the Payoff Matrices . . . . . . . . . . . . . . . . 42
3.3.3 Derivation of the Nash Equilibrium . . . . . . . . . . . . . . . 45
3.3.4 Implementation of the Discrete Stochastic Game . . . . . . . . 51

3.4 Simulation Results and Discussions . . . . . . . . . . . . . . . . . . . 52
3.4.1 Single-Controller Stochastic Game . . . . . . . . . . . . . . . . 52

4 Power Control in Energy-Harvesting Small Cells Using Mean Field
Game 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Formulation of the MFG . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Forward-Backward Equations of MFG . . . . . . . . . . . . . 61
4.3 Solving MFG Using Finite Difference Method (FDM) . . . . . . . . . 65
4.4 Implementation of MFG . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Summary and Future Work 74
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Publications 83

iv



List of Tables

1.1 Characterizations of energy sources [3] . . . . . . . . . . . . . . . . . 4

2.1 Applications of game theory in networking [35] . . . . . . . . . . . . . 23

3.1 List of symbols used for the single-controller stochastic game model . 37

4.1 List of symbols used for the MFG model . . . . . . . . . . . . . . . . 58

v



List of Figures

1.1 Architecture of a small cell network [2]. . . . . . . . . . . . . . . . . . 2
1.2 Optimal transmit power for offline model [10]. . . . . . . . . . . . . . 10

3.1 Network model with one macrocell overlaid with multiple small cells
and a central energy queue (CEQ). . . . . . . . . . . . . . . . . . . . 34

3.2 Graphical illustration of the two BSs A and B and the user D located
within the disk centred at B. . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Outage probability of a small cell user with different number of SBSs
when S = 21 states, C = 40, λ1 = 0.002, λ0 = 10. . . . . . . . . . . . 53

3.4 Outage probability of a small cell user with different target SINR when
S = 21 states, C = 40, M = 30 SBSs, λ0 = 10. . . . . . . . . . . . . . 54

3.5 Outage probability of a small cell user with different quanta volume
when S = 21 states, M = 30 SBSs, λ1 = 0.002, λ0 = 10. . . . . . . . . 55

3.6 Outage probability of a macrocell user when S = 21 states, M = 80
SBSs, C = 50, λ0 = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Energy distribution over time when M = 400 SBSs/cell. . . . . . . . 69
4.2 Energy distribution over time when M = 400 SBSs/cell. . . . . . . . 69
4.3 Transmit power to serve a generic user using MFG when M = 400

SBSs/cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Transmit power for different energy levels when M = 400 SBSs/cell. . 70
4.5 Energy distribution over time when M = 500 SBSs/cell. . . . . . . . 71
4.6 Transmit power for different energy levels when M = 500 SBSs/cell. . 71
4.7 Transmission power over time when M = 600 SBSs/cell. . . . . . . . 72
4.8 Average SINR at a generic SBS. . . . . . . . . . . . . . . . . . . . . . 72

vi



Chapter 1

Introduction

1.1 What is Small Cells and Why Energy Harvesting ?

A report made by Cisco has shown that the number of devices connected to Internet

will reach 25 billions in 2015 [1], nearly four times the number of people on Earth.

Also, the evolving fifth-generation (5G) cellular wireless networks are expected to

support a super fast and stable download rate of 1Gb/s. That means a tremendous

amount of data rate that the network must provide during peak time. The most

viable way to alleviate this challenge is to make the cells smaller, smarter and denser.

Small cells including micro, pico, and femto cells, can greatly increase the spatial

reuse of radio resources and therefore improve the spectral efficiency (and hence the

date rate). Moreover, small cell base stations (SBSs) can be easily deployed, avoiding

the expensive cell site acquisition and operating cost. A typical small cell network

will include:

• Macrocells: In a macrocell, the base station (BS) covers a large area (radius

≥ 1 km) and support many users. Total power consumption of a macrocell BS

(MBS) is on the order of few hundred of Watts. Its installation requires careful
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planning and high set-up cost. The operating cost is high due to high power

transmission.

• Small cells (e.g., microcells, picocells, femtocells): “Small cell” is an umbrella

term for low-power radio access nodes that operate in both licensed and unli-

censed spectrum and have a range of 10 meter to several hundred meters. They

consume much less power compared to macro cell BS. SBSs can be installed

without much planning.

Figure 1.1: Architecture of a small cell network [2].

Obviously, increasing the number of small cells will increase coverage and spectral

reuse. However, more and more small cells added into the network means higher

power consumption. Also, SBSs cannot operate in some areas where accessibility to

the power grid is not available. Therefore, using energy harvesting technologies to

collect ambient renewable energy and power up the SBSs is a promising solution to

reduce both power bill and the pollution while increasing the network coverage in

difficult terrains.
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1.2 Overview of Energy Harvesting Technologies for Wire-

less Communication Networks

With the popularity of IP-connected devices and the concerns about CO2 pollution,

energy harvesting techniques in wireless communication networks have recently gained

a considerable attention. Energy-limited systems e.g., wireless sensor networks, are

equipped with fixed energy supply devices such as batteries which possess limited op-

eration time and energy. For applications where replacing the energy source is costly

and unreliable e.g., in toxic environments or unreachable terrains, energy harvesting

(EH) appears as a reasonable solution for safe and unlimited energy supply to com-

munication networks. Moreover, Internet technology is growing so fast and soon it

will be literally embedded into every aspects of our daily existence. From big things

like fridge, car, laptop to small items like shoes and shirt, all of them will become

smarter and interconnected. This densely interconnected system is referred to as the

“Internet of Things” (IoT). However, to create such system, we must figure out how

to design methods such that these IoT nodes can power itself and operate without

the need of human intervention.

A traditional model requires an AC power line or a conventional battery. But such

installment is costly and infeasible in many cases, also the maintenance cost will easily

exceed the benefits. Using large battery to power them is also not sustainable since

it can create dangerous source of both heat and chemicals when exposed. Therefore,

small batteries with built-in energy harvesting device is the most promising method.

ZigBee, which only requires a power of 1mW to transmit at rate 250kb/s, is a candi-

date that can be used along with energy harvesting to power a system of IoT nodes.

The benefits of energy harvesting is obvious: self-sustainability, easiness for opera-

tion, less maintenance and set-up cost, and virtually no power bill. These features
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make energy harvesting wireless technology the ideal method for IoT to easily and

reliably interconnect thousands of individual devices in a dense system.

1.2.1 Sources of Energy Harvesting

There are many harvesting approaches that have been successfully demonstrated in-

cluding wind, solar, vibrational, biochemical, and motion based etc. The amount

of energy captured from the environment is highly dependent on the source. Power

densities of different harvesting technologies are shown in Table 1.1.

Table 1.1: Characterizations of energy sources [3]

Energy sources Characteristics
Amount of

available energy
Conversion
efficiency

Amount of
harvested energy

Solar
Ambient,uncontrollable,

predictable
100mW/cm2 15% 15mW/cm2

Wind
Ambient,uncontrollable,

predictable
- - 1200mWh/day

Finger motion
Piezoelectric,

Fully controllable
19mW 11% 2.1mW

Exhalation
Passive human power,

uncontrollable,
unpredictable

1W 40% 0.4W

Breathing
Passive human power,

uncontrollable,
unpredictable

0.83W 50% 0.42W

Blood pressure
Passive human power,

uncontrollable,
unpredictable

0.93W 40% 0.37W

Certainly, solar power has the highest harvesting rate and reliability compared to

other methods. A solar panel converting light photon to electricity and the amount

of energy harvested directly proportional to the size of the panel and the intensity

of the light. Recently, researchers in Fraunhofer Institute for Solar Energy Systems
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have developed new technologies that can convert 46% of solar light into energy. That

means by deploying 1 cm2 solar panel during a normal sunny day we can obtain an

average energy rate at 40 mW/cm2 or 4 W/100cm2. Solar power is uncontrollable

but its pattern can be correctly estimated. The fairly cheap installation makes solar

energy the best candidate to power SBSs, especially for developing countries in Asia

and Africa where it is sunny most of the daytime.

Another source of energy is from wind turbine. The wind simply rotates the rotors

and generate power. Fortunately, wind and solar power are good complement to each

other. During daytime, solar panel is clearly favorable while at night wind turbine is

used. Ambient radio frequency (RF) is also a promising technique to power energy

harvesting devices. An AC voltage is generated when a time-varying electromagnetic

RF field passes through an antenna coil. Experiments have shown that an RF device

can harvest up to 189µW from a 3W source power at 5 meters away. This is quite

small but if the number of sources increases then the harvested energy is also higher.

It may not be possible for a device to run continuously with RF energy, however we

can recharge the battery and use them to transmit data later. Clearly the design of

an RF device is less bulky than wind/solar harvester. Therefore, RF-harvesting is

suitable for in-door applications.

Piezoelectric technology can be also used for RF-harvesting. When a mechanical

force deforms a piezoelectric material, a current will be produced. This kind of

technology is applied for medical devices where blood pressure or body movement

can power up their operations.
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1.2.2 Energy Harvesting Architecture

The architectures of energy harvesting devices can be divided into two categories:

Harvest-Use and Harvest-Storage-Use architectures.

• Harvest-Use: In this architecture, energy is harvested just in-time for use. There

is no storage capacity for the device, so the device will only have two states “On”

and “Off”. If the energy harvested is enough the device is on, otherwise this

amount will be wasted. This is usually the case with devices harvesting from

piezoelectric sources. For example, a key/button when pushed will produce a

small amount of energy to trigger the system. The mathematical model for this

architecture is as follow: Let Ph(t) is the power output from an energy source

and Pc(t) is the consumed power of the device. Then, at any time t we must

have Ph(t) ≥ Pc(t).

• Harvest-Storage-Use: Devices have built-in rechargeable battery. For this case,

energy can be stored for future usage and thus increase the operation time of the

devices. This is usually deployed with wind/solar device where the harvested

energy is large. Also, there are several ways to model the battery energy storage:

i) An ideal case where it has infinite capacity, thus no harvested energy is

wasted. ii) A practical model where battery has finite battery and also suffers

from leakage.

Again, if we use Ph(t) and Pc(t) as defined in previous case and denote E0 as

the initial battery, one must have:

B0 +
T∑
t=0

[Ph(t)− Pc(t)] ≥ 0
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or in continuous form as:

B0 +

T∫
t=0

[Ph(t)− Pc(t)]dt ≥ 0

Notice that in this case Ph(t) can be smaller than Pc(t). This means the device

can adapt its strategy, transmit more or less depending on the conditions.

1.2.3 Feasibility of Energy Harvesting for SBSs

From [4], a traditional MBS requires large stable power supply thus energy harvesting

is not a practical solution for macrocell base stations (MBSs) due to their high power

consumption and stochastic nature of energy harvesting sources. On the other hand,

it is appealing for small cell BSs (SBSs) (such as picocells or femtocells) that typically

consume less power [5]. Following [4], a pico and femto MS only requires 7.3W and

5.2 W, respectively, in total. This amount can be easily provided with a 20× 20 cm2

solar panel which is cheap and available in the market. Other benefits are:

• The communication distance between SBSs and users is much smaller than

that between an MBS and users when the density is increased. And since the

transmit power increases with the distance, the SBSs require far less power to

operate than an MBS.

• The baseband processing in an SBS is much simpler. Also, it serves less users

and thus consumes less power than an MBS.

• Since an MBS transmits with a large power, it requires special cooling system.

The SBSs on the other hand can use natural air circulation, which can save up

to 10% of total power [6].
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• Since no fixed power cables are required, it provides increased portability and

thus makes the planning easier and more flexible.

• Lastly, it can reduce carbon emission thanks to renewable technologies.

1.3 Challenges and Current Trends of Research

The main reason that make energy management policy using harvesting technologies

different and more difficult than other power control problem is its stochastic na-

ture of energy arrival. For a system where power supply is fixed and unlimited, an

operator only need to solve an optimization problem to obtain the optimal power.

An action in time t will not depend on actions that happen before t and after t.

It is not true with energy harvesting. We must optimize the transmit power in the

long run while satisfying the causality constraint at any time instant. Here we need

to find a power policy that specifies how the devices should transmit and with how

much power constrained by a given available energy. Therefore, designing efficient

power control policies with different objectives (e.g., maximizing system throughput)

is a very challenging problem in energy-harvesting networks. Usually, we follow two

directions as discussed below.

1.3.1 Offline Optimization

In offline method, we assume exact knowledge about the harvested energy ϕ(t) at

any time slot t. This method is usually applicable for solar source where the amount

of energy ϕ(t) is usually large and predictable at a specific time of the year. Offline

throughput maximization for energy harvesting systems has recently received con-

siderable interest. In the simplest case, given a duration T during which no energy
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is harvested, by using Jensen’s inequality, it can be proven that transmitting using

constant power during this period is the best solution to maximize the throughput.

That means transmit power should be changed only when there is energy to arrive. In

[7], with a harvest-store-transmit energy harvesting point-to-point systems using an

unlimited capacity battery that operates over a static channel, the authors show that

to achieve the minimum transmission completion time of a given amount of data, the

transmit power should be an increasing function and also it is unchanged during the

arrivals of two energy packets. In [8] and [9], the authors extend the work with finite

capacity battery and fading channel. The power control policy is obtained using a

directional waterfilling algorithm. The result is intuitive: when the channel gain is

bad, the device transmits less and save this energy for future use. In [10], the authors

show that: if we draw a graph of the cumulated energy harvested and the minimum

amount energy that must be consumed over time t as M(t), the optimal energy con-

sumed over time will be the shortest path between the two end point of H(t). Fig. 1.2

shows an example of the optimal energy consumption strategy. The dashed lines are

the total harvested energy and minimum energy consumed, respectively. The pink

line is the optimal energy consumption policy.

Maintaining the quality-of-services by minimizing the outage probability con-

straints in energy harvesting has also received much attention. In [11], the authors

study a point-to-point energy harvesting system using Weibull fading model. The

outage probability is shown to have concave-convex characteristics. From that, an

algorithm based on one-dimensional search is proposed to find the optimal power

policy such that the outage probability is minimized. In [12], the authors generalized

the point-to-point model to the case where many sources supply energy to the desti-

nations using a single relay. A water filling algorithm was proposed to minimize the

9



Figure 1.2: Optimal transmit power for offline model [10].

probability of outage.

1.3.2 Online Optimization

Although the offline power control policies provide an upper bound for online algo-

rithms, centralized knowledge of energy/data arrivals is required which may not be

feasible in practice. Therefore, recently a lot of works have focused on system mod-

els where the energy arrivals are stochastic. Markov Decision Process (MDP) and

stochastic dynamic programming are very useful tools since they specialize in dealing

with uncertainty in the future energy/data arrivals. Examples can be found in [11]

and [13]. In [14], the authors proposed a two-state Markov Decision Process (MDP)

model for a single energy-harvesting device considering random rate of energy arrival

and different priority levels for the data packets. The authors proposed a low-cost

balance policy to maximize the system throughput by adapting the energy harvesting

state, such that, on average, the harvested and consumed energy remain balanced.

In [15], the outage performance analysis was conducted for a multi-tier cellular

network in which all BSs are powered by the harvested energy and each BS has only
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two states: “On” when the battery is above threshold and “Off” otherwise. To reduce

the effect of stochastic energy arrival, a hybrid system can be designed. In such a

system, beside the energy harvesting functionality, the transmitter can receive energy

from a conventional power source. Online resource optimization with hybrid power

supply is studied in [16] and [17]. The objective here is to minimize the total power

drawn from the conventional source while maintaining the QoS.

1.3.3 Research Challenges

• Randomness in energy harvesting: This is the main challenging aspect that

makes energy harvesting difficult to apply into practice. Any change in the

environment can affect the energy harvesting rate which in turn can degrade

performance of the base station. Usually, a hybrid model where the base sta-

tion can have both renewable and conventional power source should be used

to maintain stable performance. Moreover, the transmit power of the base sta-

tion will be constrained by its available energy which, in turn, depends on the

transmit power and the harvested energy in previous time slot. That means

the proposed mathematical model should optimize the long term average payoff

rather than a one-shot game/optimization problem as usual.

• Imperfect information: Normally, to derive the the optimal power control policy,

we need to assume that certain amount of information is available. For offline

case, both energy and data arrivals for the whole duration are assumed to be

known. This case is too extreme and almost impossible. This assumption is

relaxed for online optimization where only the statistical information of the

arrivals is available. However, in practice, these information also vary over

time or in some cases cannot be predicted beforehand. Thus a learning-based

11



algorithm such as Q-learning should be developed.

• Interference in an energy harvesting (EH) system: The randomness of energy

arrival make it difficult to study a system with many energy harvesting devices.

In this case, the battery of each device is a random variable and dependent on

others. Therefore, most of the research focus on point-to-point communication

which simply ignores the effect of interference. Because the transmit power of

each device will directly affect the performance of others, the complexity will

increase with the number of devices in the network. Also, since each device

is not able to obtain the channel gain and battery levels of all devices in the

network, solutions based on local information should be sought instead.

• Accurate modeling of energy harvesting process and storage imperfection: Many

research assume Poisson distribution to model the arrivals of energy and data.

In many cases these information is not accurate, energy arrivals are different at

different time and places. Moreover, leaks and inefficiency of power usage may

occur. This may not be a significant issue with MBSs, but for transmitters with

small battery such as SBSs, this effect is not negligible.

1.4 Contribution and Outline of the Thesis

Different from the existing literature on energy-harvesting systems, this thesis consid-

ers the power control problem for downlink transmission in two-tier macrocell-small

cell networks under co-channel deployment. Note that the power-control policies and

their resulting interference levels directly affect the overall system performance. Thus,

the impact of interference, which was ignored in most of the previous studies, is also

considered along with the Gaussian noise. The problem is similar to that addressed
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in [18, 19], where the authors studied the power control problem for two-tier cellu-

lar networks using game models. However, in [18, 19], the stochastic nature of the

energy arrival process, which dynamically constrains the transmission power of the

SBSs, was not taken into account. Therefore, the problem addressed in this work is

substantially more difficult since it optimizes the long-term payoff of both SBSs and

macro base station under uncertainty.

For energy harvesting systems, MDP is a natural method to deal with random-

ness of the energy/data arrivals. When no information is available, a learning based

method such as Q-learning can be applied so that the transmitter can adapt its trans-

mission power based on the previous experiment [20]. However, most of the exisiting

work in this context consider only point-to-point systems where there are only one

transmitter and one receiver. To the best of my knowledge, there is no comprehensive

work which studies the control policy for a large system where the transmitters in an

energy harvesting system can interfere with each other. In this context, in Chapter

3 of this thesis, I propose the application of single-controller stochastic game into

system of energy harvesting transmitters. The power control policy of the macrocell

base station, which is often ignored in literature, is also taken into consideration.

Moreover, using a centralized policy, the discounted payoff at each transmitter is

optimized. Instead of each SBS harvesting its own energy, a central system is intro-

duced that can harvest energy and then redistribute them to each SBSs. With this

design, the problem can be modeled as a single-controller stochastic game and is able

to capture the randomness of energy arrival. The Nash equilibrium power control

policy is then obtained as the solution of a quadratic programming problem. Numer-

ical results demonstrate that the proposed single-controller discrete stochastic power

control policy offers reduced outage probability for the users served by the SBSs when
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compared to the greedy power control policies wherein each SBS tries to obtain the

target SINR for the users without considering the strategies of other SBSs.

In Chapter 4, the work is extended to the case when the number the SBSs is very

large such that using a central system to redistribute the harvested energy is no longer

feasible. Instead, the system is remodeled where each SBS now is an autonomous

harvest-store-transmit device. The stochastic game is then approximated by a mean

field game (MFG). In the MFG model, the transmit power of each SBS is decided by

its current battery level and the distribution of energy in the area. By solving a set

of forward and backward partial differential equations, a distributed power control

policy is derived for each SBS. Moreover, this model can also deal with energy leaks

which is rarely mentioned in literature. Numerical results show that the proposed

power control policy provides a better SINR compared to the MDP method where

each SBS maximizes its own objective without consisdering the actions of other SBSs.

In summary, the contributions of the work can be summarized as follows.

1. For a two-tier macrocell-small cell network, a new centralized model, where en-

ergy is harvested and then distributed to the SBSs, is proposed. The power con-

trol problem for the MBS and SBSs is formulated as a discrete single-controller

stochastic game with two players.

2. The existence of the Nash equilibrium and pure stationary strategies for this

single-controller stochastic game is proven. The power control policy is derived

as the solution of a quadratic-constrained quadratic programming problem.

3. When the network becomes very dense, a stochastic MFG model is used to

obtain the power control policy as a solution of the forward and backward

differential equations.
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4. An algorithm using finite difference method is proposed to solve these forward-

backward differential equations for the MFG model.

The rest of this thesis is organized as follows. Chapter 2 introduces some funda-

mentals of single-controller stochastic game and mean field game which will be used

in following chapters. A centralized system model is introduced in Chapter 3 and

an algorithm for downlink power control at the SBSs based on stochastic game is

proposed. In Chapter 4, a very dense network using energy harvesting is studied us-

ing mean field game technique. Finally, Chapter 5 concludes the thesis and presents

several potential extensions of the work presented in this thesis.
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Chapter 2

Fundamentals of Stochastic Game

Stochastic game, introduced by Shapley in 1950, is a dynamic multiple stage game.

The game changes its form at each stage with some probability. The total payoff

to a player is often the discounted sum of the stage payoffs or the limit inferior of

the averages of the stage payoffs. The transition of the game at each time instant

follows Markovian property, i.e., the current stage only depends on the previous one.

Therefore, a stochastic game can be viewed as a generalization of both matrix game

and MDP. The single-controller game is a special form of stochastic game where

the state of the game is directly decided by one player, namely, the controller. To

understand stochastic game, we first start with MDP and some fundamentals of game

theory.

2.1 Markov Decision Process

A stochastic process is simply a collection of random variables {Xt : t ∈ T} where

T is an index set that we usually think of as representing time. In this thesis, I only

work with the discrete cases where index set T is a countable set usually denoted as
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the integer set Z.

Definition 2.1.1. A discrete Markov Chain {Xn;n ≥ 0} with values belonging to

set Ω is a stochastic process if for every n ≥ 0 and every set of x0, ..., xn ∈ Ω we have

P(Xn+1 = x|X0 = x0, X1 = x1, ..., Xn = xn) = P(Xn+1 = x|Xn = xn).

The chain X is called homogeneous if

P(Xn+1 = i|Xn = j) = P(X1 = i|X0 = j), ∀n ∈ Z i, j ∈ Ω.

Clearly in a homogeneous Markov Chain the transition probability that the system

moves from one state to another state only does not depend on time.

Definition 2.1.2. A (one-step) transition matrix P of a homogeneous Markov chain

X is a |Ω| × |Ω| stochastic matrix where

P(i, j) = P(X1 = i|X0 = j) and
∑
j

P(i, j) = 1.

By extending this definition, we can have an n-step transition matrix of the ho-

mogeneous Markov chain X as a stochastic matrix P(n), where

P(n)(i, j) = P(Xn = i|X0 = j).

Theorem 2.1.1. (Chapman-Kolmogorov Equations) Assume that X is a time-

homogeneous Markov Chain with n-step transition probabilities matrix P(n). Then,
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for any non-negative integer r < n, we have:

P(n)(i, j) =
∑
k∈Ω

P(r)(i, k)P(n−r)(k, j), ∀i, j ∈ Ω.

One of the most important features of the Chapman-Kolmogorov equations is that

they can be succinctly expressed in terms of matrix multiplication. It is easy to see

that the n-step transition probability matrix can be calculated as a power of n of the

one-step matrix, i.e., P(n) = Pn.

The Markov Decision Process (MDP) is a discrete time stochastic control

process where the only player decides which action should he choose at a specific

state. I only consider a Stationary Discounted MDP Γ in this thesis. This type of

MDP consists of:

• A decision maker or controller.

• The state s of Γ is a random variable which belongs to a finite set of state S.

• At each state s, denote by A(s) the set of actions available to the controller.

• A probability distribution p(s′|s, a) that shows the probability from state s to

state s′ following action a ∈ A(s).

• A payoff function u(s, a) which shows the profit the controller receive at state

s if he chooses action a.

• A discount factor β that reduces the value of the payoff over time.

Without loss of generality, we assume the set of state as S = {1, 2, .., S} and the

number of available actions for controller at state s is m(s). Then a strategy is a

concatenated row vector f = {f(1), ..., f(s), ..., f(S)} where each s-th block is a non-

negative row vector f(s) = (f(s, 1), f(s, 2), ..., f(s,m(s))). Each entry f(s, a) is the
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probability that the controller chooses action a ∈ A(s) in state s ∈ S whenever s is

visited. Obviously, one must have
∑m(s)

a=1 f(s, a) = 1

A strategy is called pure if f(s, a) ∈ {0, 1} for all a ∈ A(s). This means every

time the state s is visited, the controller should always choose action as to execute.

This greatly simplifies the implementation and is preferred over randomly choosing an

action. From f , we can define an S×S transition matrix which shows the probability

for the process to change from state s to s′ as:

P(f) = (p(s′|s, f))S×Ss,s′=1,

where the entries given by p(s′|s, f) =
m(s)∑
a=1

p(s′|s, a)f(s, a)

Let {Ut}∞t=0 denote the sequence of payoff for the controller. The payoff at time t,

Ut is a random variable whose distribution decided by the strategy f and the starting

state s. We can denote the expected value of Ut as:

Esf [Ut] = Ef (Ut|S0 = s).

Denote by u(s, f) the immediate expected payoff at state s if the controller uses

strategy f at this stage. Different from Ut, this expected payoff is calculated regardless

of the previous states and actions. That means u(s, f) =
∑

a∈A(s)

u(s, a)f(s, a). The

vector u of immediate expected payoff will be the concatenation of u over state s:

u(f) = (u(1, f), u(2, f), .., u(S, f))T.

Denote by [u]s the s-th element of the vectir u. From Chapman-Kolmogorov Equa-
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tions, we have

Esf [U0] = [u(f)]s,

Esf [U1] = [P(f)u(f)]s,

...

Esf [Un] = [Pn(f)u(f)]s.

The discounted value of strategy f from initial state s will be defined as:

φ(s, f) =
∞∑
t=0

βtEsf [Ut] =
∞∑
t=0

βt[Pt(f)u(f)]s.

Lemma 2.1.1. Denote φ(f) as the vector that contains φ(s, f), then we have the

vector form of the above equation as:

φ(f) =
∞∑
t=0

βtPt(f)u(f) = [I− βP(f)]−1u(f),

or equivalently, φ(f) = u(f) + βP(f)φ(f)

Proof. It can easily be seen that:

[I− βP][I + βP + ...+ βnPn] = I− βn+1Pn+1.

Since 1 > β > 0, letting n→∞, [I− βP][I + βP + ...] = I

This means the determinant of matrix [I−βP] is non-zero. Therefore, I +βP + ... =

[I− βP]−1. This completes the proof.

Definition 2.1.3. Principle of Optimality: An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision.
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We want to find the strategy f such that it maximizes the discount value φ(s, f)

where the starting state is s. We can apply this principle to derive the linear pro-

gramming for finding optimal policy f as follows. Suppose at state s the controller

knows how to optimally control the process from the next time period onward, then

given that strategy, at this current time period he must choose the action such that

it maximizes the payoff including that period, i.e.,

φ(s) = max
a∈A(s)

{
u(s, a) + β

S∑
s′=1

p(s′|s, a)φ(s′)

}
,

or equivalently,

φ(s) ≥ u(s, a) + β
S∑

s′=1

p(s′|s, a)φ(s′) ∀a ∈ A(s),

For an arbitrary strategy f , we multiply each of the above inequalities by the corre-

sponding f(s, a) and sum over all a ∈ A(s), we obtain:

φ(s) ≥ u(s, f) + β
S∑

s′=1

p(s′|s, f)φ(s′) ∀s ∈ S,

or in matrix form

φ ≥ u(f) + βP(f)φ. (2.1)

Substitute this inequality infinitely to itself we have φ ≥ [I − βP(f)]−1u(f) = φ(f).

This suggests that an arbitrary vector φ satisfies the inequality above is an upper

bound on the discounted value vector due to any stationary strategy f . Denote by

π = (π(1), ..., π(S)) as the vector of probabilities that system starts from a specific

state, based on the previous remark, the optimal φ will be the solution of this following
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optimization problem:

min
φ

S∑
s=1

π(s)φ(s)

s.t. φ(s) ≥ u(s, a)+β
S∑

s′=1

p(s′|s, a)φ(s′), a ∈ A(s), s ∈ S

(2.2)

and its dual problem

max
xs,a

S∑
s=1

|A(s)|∑
a=1

u(s, a)xs,a

s.t.
S∑
s=1

|A(s)|∑
a=1

[δ(s, s′)−βp(s′|s, a)]xs,a = π(s′) s′ ∈ S

xs,a ≥ 0; a ∈ A(s), s ∈ S.

(2.3)

Theorem 2.1.2. [27](Validity of the Optimality Equation)

• There exists a unique solution u for the linear programming (2.2) and (2.3).

• For each s ∈ S, select action as ∈ A(s) such that

as = arg max
a∈A(s)

{
u(s, a) + β

S∑
s′=1

p(s′|s, a)φ(s′, f)

}
,

where φ is the solution of (2.2). Define f∗ as

f∗(s, a) =


1, if a = as,

0, otherwise,

for each s ∈ S. Then f∗ is the optimal deterministic strategy of the MDP.

This theorem shows that an MDP always has a deterministic strategy which tells
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the controller exactly which action it should follow at a specific state. Also it provides

us the method to find such strategy using linear programming.

2.2 Two Player Single-Controller Stochastic Game

2.2.1 Game Theory Overview

Game theory is a branch of mathematics that deals with decision making. It studies

mathematical models where there are conflicts of interest or mutual benefits between

“rational” decision-makers. It was first developed to explain economic behaviors

but later its applications have been seen in many other areas especially in wireless

communications. Some examples are listed in Table 2.1.

Table 2.1: Applications of game theory in networking [35]

OSI layer Applications Specific application

Physical layer

Power control,
Spectrum allocation,

MIMO systems,
Cooperative communications

Power control in CDMA, OFDMA networks,
Spectrum sharing, spectrum bidding,

Power managment in MIMO,
Decode-and-forward cooperation

Data link Medium access control
Slotted Aloha,

Random access to the interference channel
Network Routing Routing and forwarding
Transport Call admission control Request distribution among providers

In this part, we only mention about non-cooperative game and some of its basic

definitions.

Definition 2.2.1. A strategic game is a tuple 〈I, (Ai)i∈I , (ui)i∈I〉, where

• There is a set of players I = {1, ..., I}.
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• For each player i ∈ I, a set of available actions (actions profile) Ai; ai ∈ Ai is

denoted as the action of player i.

• For each player i, a payoff function ui : A→ R, where A =
∏

iAi is the set of

all action profiles.

Also, we denote by a−i = {aj}j 6=i the set of actions for all players except i and by

A−i =
∏

j 6=iAj the set of all actions profiles of all players except player i. Then the

pair (ai, a−i) ∈ A defines a strategy profile of the game. The strategy is a complete

description of how to play the game. In particular, a pure strategy determines the

specific move a player will make for any situation it could face.

One of the basic assumptions of game theory is the rationality of players. That

means a player always chooses the strategies that maximizes its payoff. This common

knowledge is very important because it helps each player to predict what others will

do given a situation. In other words, given the actions set of other player as a−i,

player i will choose a best response action a∗i ∈ Ai such that his payoff is optimal,

i.e.,

ui(ai, a−i) ≤ u(a∗i , a−i), ∀ai ∈ Ai.

Since each player selfishly and rationally maximizes its own payoff, it is desirable

to find a set of actions for every player such that an equilibrium is achieved, i.e., no

player has any incentive to move away. This leads to the concept of Nash equilibrium

as defined below.

Definition 2.2.2. (pure strategy Nash equilibrium) A (pure strategy) Nash Equilib-

rium of a strategic game 〈I, (Ai)i∈I , (ui)i∈I〉 is a strategy profile a∗ = (a∗i , a
∗
−i) ∈ A

such that for all i ∈ I

ui(a
∗
i , a
∗
−i) ≥ ui(ai, a

∗
−i), ∀ai ∈ Ai.
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However, in many cases, the pure strategy Nash equilibrium does not exist. To deal

with this problem, we can assign a probability to each pure strategy of a player. That

means a player will randomly choose its action based on some probability distribution.

Definition 2.2.3. (Mixed strategy of a game) Given the strategic game G defined as

above, for each player i, we denote the set of probability distribution over its set of

strategies Ai as Σi. Then a mixed strategy σi : Σi → R is a function of Ai such that

σi(ai) ≥ 0 ∀ai ∈ Ai and
∑

ai∈Ai
σi(ai) = 1. Denote by σ ∈ Σ =

∏
i∈I Σi the mixed

strategy profile for all players, then the payoff for mixed strategy of player i is the

expected value of utility function over the set Ai of available actions as

ui(σ) =
∑
a∈A

(
I∏
j=1

σj(aj)

)
ui(ai, a−i).

The Nash equilibrium can be extended to include the mixed-strategy case.

Definition 2.2.4. (Mixed strategy Nash equilibrium) A (mixed strategy) σ∗ of a

strategic game 〈I, (Ai)i∈I , (ui)i∈I〉 is a mixed Nash Equilibrium if for each player

i

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) ∀σi ∈ Σi.

In this case, it is guaranteed that a mixed strategy Nash equilibrium always exists.

In fact, if the action set and state space are finite and discrete, the mixed strategy of

each player is similar to the vector of probabilities f as in the MDP process.

2.2.2 Single-Controller Stochastic Game

Stochastic game can be considered as a combination of Markov Decision Process and

game theory. In this thesis, I only consider stochastic games with only two players.

Each player has different states and action spaces. The state of the game is then the
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combination of the states of two players and the transition and reward matrices will

depend on actions of both players.

Assume that S is the set of states for the game. If the game is in state s at

time t, player 1 chooses action a1 ∈ A1(s) and player 2 chooses action a2 ∈ A2(s),

then the rewards will be r1(s, a1, a2) and r2(s, a1, a2), respectively. Furthermore the

transition probability will be p(s′|s, a1, a2) = p(St+1 = s′|St = s, a1, a2). Denote by f

and g the strategies of player 1 and player 2, then the discounted reward for player

i ∈ 1, 2 will become φi(f ,g) =
∞∑
t=0

βtEsfg(Ri
t), where Esfg(Ri

t) is the expected value of

the reward of player k at state s at time t if player 1 and player 2 follow strategy f

and g, respectively.

Denote by FS and GS the sets of strategies for player 1 and player 2, respectively.

Here each player will try to maximize its own payoff, i.e., given strategy g of player

2. The best response strategy f of player 1 is the solution of the following MDP:

max
f

φ1(f ,g)

s.t. f ∈ FS,

and similarly given f , the best response of player 2 is:

max
g

φ1(f ,g)

s.t. g ∈ GS.

Definition 2.2.5. (Nash equilibrium for discounted stochastic game) A Nash equilib-

rium point in a stochastic game is a pair of strategies (f ,g) for player 1 and player
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2, respectively, such that the following conditions are satisfied:

φ2(f ,g0) ≤ φ2(f ,g), ∀ g0 ∈ GS

φ1(f0,g) ≤ φ1(f ,g), ∀ f0 ∈ FS.

That means, with Nash equilibrium, no player has incentive to change its strategy

because its payoff will become less.

Theorem 2.2.1. (Existence of Nash Equilibrium) For every general sum, discounted

stochastic game, there exists a Nash equilibrium in stationary strategies.

The Nash equilibriums of a stochastic game are the solutions of a quadratic

constraint quadratic (QCQP) problem and is usually very difficult to solve [27,

Chapter 3, Theorem 3.8.2]. However, in some special cases where the transition

probabilities only depend on actions of one player, usually chosen as player 2 i.e

p(s′|s, a1, a2) = p(s′|s, a2), the QCQP can be reduced to a quadratic programming

and can be solved more effectively. The structure of a single controller game can be

detailed as follows:

A two-player single-controller stochastic game is a tuple (S,N , As, P, Rs), where

• S is a finite set of states

• N is the set of players , N = {1, 2} in this case.

• As = {As1, As2} where Asi is the set of actions available at state s to player i.

• P = S×A×S 7−→ [0, 1] is the transition probability function; p(s′|s, a2) is the

probability that system transits to state s′ from state s after action a2 of player

2.
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• Rs = {Rs
1, R

s
2}, where Rs

i : S×As 7−→ R is the ms×ns real-valued payoff matrix

for player i at state s (with ms and ns denoting, respectively, the number of

available actions for the first and second player):

Rs
1 = (u1(s, i, j))ms,ns

i,j=1 , Rs
2 = (u2(s, i, j))ms,ns

i,j=1 ,

where uk(s, i, j) is the expected payoff for player k if he plays action i while the

other plays action j.

First, notice that if we somehow know the optimal strategy f of the first player,

the problem of finding the best response strategy g of the second player is exactly a

discounted MDP problem introduced previously:

min
φ2

S∑
s=0

πsφ2(s, f ,g),

s.t. φ2(s, f ,g) ≥ u2(s, f , j) + β
S∑

s′=0

p(s′|s, j)φ2(s′, f ,g),

∀s, j, 0 ≤ j ≤ s and 0 ≤ s ≤ S.

(2.4)

The expected payoff u2 can be calculated as u2(s, f , j) =
∑

i∈A1(s)

u2(s, i, j)f(s, i). This

linear programming has the dual problem as:

max
x

S∑
s=0

s∑
j=0

u2(s,m0, j)xs,j,

s.t.
S∑
s=0

s∑
j=0

[δ(s− s′)− βp(s′|s, j)]xs,j = πs′ , 0 ≤ s′ ≤ S,

xs,j ≥ 0 ∀s, j, 0 ≤ j ≤ s and 0 ≤ s ≤ S,

(2.5)

where δ(s) = 1 if s = 0 and δ(s) = 0 otherwise.
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Using some algebraic formulation [28], these two primal and dual problems above

can be expressed in matrix form as:

min
φ2

πTφ2

s.t. Hφ2 ≥ RT
2 f

and the dual

max
x

fTR2x,

s.t. xTH = πT,

x ≥ 0. (D)

The matrix R2 can be constructed by placing the sequence of matrices

R1
2, R

2
2, ..., R

S
2 along the diagonal and set all other cells to zero. We can use a similar

method to build reward matrix R2.

Theorem 2.2.2. (Nash equilibrium of single-controller stochastic game) If the state

space and the action space are finite and discrete, and the transition probabilities are

controlled only by player 2, then a pair (f ,g) is a Nash equilibrium point of a general-

sum single-controller discounted stochastic game if and only if it is an optimal solution
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of a (bilinear) quadratic program given by

max
f ,x,φ,ξ

[f(R1 +R2)x− πTφ2 − 1Tξ],

s. t. Hφ2 ≥ RT
2 f ,

xTH = πT,

Rs
1x(s) ≤ ξs1, ∀s = 0, ..., S,

f(s)T111 = 1, ∀s = 0, ..., S,

f ,x ≥ 0,

(2.6)

where ξs is the maximum average payoff of the MBS at state s. The sub-vector strategy

g(s) of the second player at state s is calculated from x as:

g(s) =
x(s)

x(s)T1
. (2.7)

This theorem is very useful since it provides us the necessary and sufficient con-

dition to find the Nash equilibrium strategies for both players.

2.3 Stochastic Mean Field Game

When there are many players, it is very difficult to find a Nash equilibrium. Because

everyone can change the state of the system so the complexity of is proportional to

the number of players. Moreover the discrete set of actions and states spaces of each

player make it nearly impossible to derive a closed form for the equilibrium strategies.

To deal with these problems, mean field game (MFG) considers a very large game

where the number of players is approximately infinite and the influence from one

player to another is negligible. This is called indistinguishability property. All
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players are similar except their “state” which is assumed to be a vector of continuous

values. The player is assumed to respond only to the distribution of the states in

the system which is also called the mean field [31]. Since the number of players is

infinite we assume that this distribution is smooth (so that it can be differented

and integrated). Every player now has the same objective function which greatly

simplifies the mathematical model and in many cases can give us the optimal strategies

in closed-forms.

2.3.1 Formulation of the MFG

Denote by X(t) the state of one player at time t and by m(t,X) the probability

distribution of the state X of an agent at time t. Thanks to the “indistinguishability”

property, this distribution is also the density of the states of all players in the game,

i.e., the “mean field”m. Assuming thatm is known, the best response strategy p(t,X)

for each player is given by the solution of the following optimal control problem:

min
p
U = E

u(T, x(T )) +

T∫
0

C(p(t,X), X(t),m(t,X))dt

 , (2.8)

where C(p,X,m) is the cost of a player at time instant t. The cost only depends on

the current state/action of the players and the mean field m. The state of the player

is modeled by using the following differential equation:

dX = p(t,X)dt+ σ(t,X)dWt,

X(0) = x0,

(2.9)

where Wt is a Wiener process. Wt has independent increments: Wt −Ws ≈ N(0, t−

s) ∀0 ≤ s ≤ t, where N denotes the normal distribution and T is the stopping time
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of the process.

With MFG, everyone will need to solve the same optimal control problem. The

only difference is the starting state x0. Thus, the problem is much simpler since we

only need to solve one optimal control problem for everyone.

The Hamilton-Jacobi-Bellman (HJB) equation for the optimal control problem

above can be derived as:

∂tU(t,X) + min
p

{
C(p,X,m) + p(t,X)∂XU(t,X) +

σ2(t,X)

2
∂2
XXU(t,X)

}
= 0.

(2.10)

Notice that, the function p(t,X) obtained from solving the sub-optimal problem

defined in the HJB gives us the optimal control policy for each player.

By applying Fokker-Planck theorem for differential equation (2.9), we have the

backward equation:

∂tm(t,X) = −∂X(p(t,X)m) +
σ2(t,X)

2
∂2
XX(m). (2.11)

Together, we have the system of Forward-Backward equations that can give us the

solutions of MFG:
∂tU(t,X) + min

p

{
C(p,X,m) + p∂XU(x, t) + σ2(t,X)

2
∂2
XXU(t,X)

}
= 0,

∂tm(t,X) = −∂X(p(t,X)m) + σ2(t,X)
2

∂2
XXm,∫

X∈Ω
m(t,X) = 1 and m(t,X) ≥ 0.

The existence and uniqueness of the solutions of these equations are proven, and

some special cases [31] and the numerical solutions can be obtained using Finite

Difference method [34]. The details of the steps depend on the applications and will

be explained in Chapter 4.
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Chapter 3

Power Control in Small Cell

Network With Centralized Energy

Harvesting Queue

3.1 Introduction

In this chapter, I consider a centralized network where one macro cell is laid out with

M small-cells. Each small cell is equipped with a harvest-transmit energy harvesting

device. The small-cells will receive power from a central energy queue (CEQ) which

can harvest energy from environment. The CEQ and the Macro Base Station (MBS)

will try adapt their power respectively such that their long term equilibrium can

be achieved. A stochastic game model between two players CEQ and MBS will be

derived and the equilibrium policies are obtained by solving a Quadratic Constraint

Quadratic Programming problem. This concept of CEQ is somewhat similar to the

concept of dedicated power beacons that are responsible for wireless energy transfer

to users in cellular networks [21, 22]. Moreover, in the cloud-RAN architecture [23],
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where along with data processing resources, a centralized cloud can also act as an

energy farm that distributes energy to the remote radio heads each of which acts as

an SBS. The experimental result also shows that if the battery size of CEQ is large

enough, the usage of central energy queue outperforms greedy method where each

base stations selfishly try to achieve it SINR regardless of others activities.

3.2 System Model and Assumptions

Figure 3.1: Network model with one macrocell overlaid with multiple small cells and
a central energy queue (CEQ).

3.2.1 Energy Harvesting Model

I consider a single macrocell overlaid with M small cells. The downlink co-channel

transmission of the MBS and SBSs is considered and it is assumed that each BS
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can serve only a single user on a given transmission channel during a transmission

interval (e.g., time slot). The MBS uses a conventional power source and its transmit

power level is quantized into a discrete set of power levels P = {pmin0 , ..., pmax0 }, where

the subscript 0 denotes the MBS. This discrete model of transmit power can also be

found in [24]. On the other hand, the SBSs receive energy from a centralized energy

queue (CEQ) which harvests renewable energies from the environment. I assume that

only the CEQ can store energy for future use and each SBS must consume all the

energy they receive from the CEQ at every time slot. The energy arrives at the CEQ

in the form of packets (one energy packet corresponds to one energy level in CEQ).

The number of energy packet arrivals ϕ(t) during any time interval t is discrete and

follows an arbitrary distribution, i.e., Pr(ϕ(t) = X). I assume that the battery at

the CEQ has a finite storage S. Therefore, the number of energy packet arrivals

is constrained by this limit and all the exceeding energy packets will be lost, i.e.,

Pr(ϕ(t) = S) = Pr(ϕ(t) ≥ S). Moreover, the statistics of energy arrival is known a

priori at both the MBS and the CEQ. At time t, given the battery level E(t), the

number of energy packet arrivals ϕ(t), and the energy packets Q(t) that the CEQ

distributes to the M SBSs, the battery level E(t + 1) at the next time slot can be

calculated as follows:

E(t+ 1) = E(t)−Q(t) + ϕ(t). (3.1)

Given Q(t) energy packets to distribute, the CEQ will choose the best allocation

method for the M SBSs according to their desired objectives. Denote slot duration as

∆T and the volume of one energy packet as K, I have the energies distributed to the

M SBSs at time t as (p1(t)∆T, p2(t)∆T, · · · , pM(t)∆T ) where pi(t) is the transmit

power of SBS i at time t. Clearly I must have:
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M∑
i=1

pi(t) =
K

∆T
Q(t). (3.2)

From the causality constraint, E(t) ≥ Q(t) ≥ 0, i.e., the CEQ cannot send more

energy than that it currently possesses. Note that E(t) is the current battery level

which is an integer and has its maximum size limited by S. Since the battery level of

CEQ and the number of packet arrivals are integer values, it follows from (3.1) that

Q(t) is also an integer.

Without a centralized CEQ-based architecture, each SBS can have different har-

vested energy and in turn battery levels at each time slot, which will make this

problem a multi-agent stochastic game [25]. Although this kind of game can be

heuristically solved by using Q-learning [26], the conditions for convergence to a

Nash equilibrium are often very strict and in many cases impractical. By introducing

CEQ, the state of the game is simplified into the battery size of CEQ, and the multi-

player game is converted into a two-player game. Another benefit of the centralized

CEQ-based architecture is that the energy can be distributed based on the channel

conditions of the users in SBSs so that the total payoff will be higher than the case

where each SBS individually stores and consumes the energy.

All the symbols that are used in the system model and section III are listed in

Table I.

3.2.2 Channel Model

The received SINR at the user served by SBS i at time slot t is defined as follows:

γi(t) =
pi(t)gi,i
Ii(t)

, (3.3)
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Table 3.1: List of symbols used for the single-controller stochastic game model

M Number of SBSs
ḡi Average channel gain between BS i and its associated user
ḡi,j Average channel gain between BS j and user of BS i

λ0 (λ1) Target SINR for MBS (SBS)
E(t) (Discrete) Battery level of CEQ at time t
∆T Duration of one time slot in seconds
Q(t) Number of quanta distributed by the CEQ at time t
Ī0(t) Average interference at the user served by the MBS at time t
Īi(t) Average interference at the user served by SBS i at time t
S Maximum battery level of the CEQ
P Finite set of transmit power of the MBS

m, n Concatenated mixed-strategy vector for the MBS and the CEQ, respectively
m(s), n(s) Probability mass function for actions of the MBS and the CEQ, respectively, when E(t) = s
m(s, p) Probability that the MBS chooses power level p ∈ P when E(t) = s
n(s, i) Probability that the CEQ sends i quanta when E(t) = s
ϕ(t) Energy harvested at time t
β Discount factor of the stochastic game

U0, U1 Utility function of the MBS and the CEQ, respectively
R0, R1 Payoff matrix for the MBS and the CEQ, respectively
φ0, φ1 Discounted sum of the value function of the MBS and the CEQ, respectively
πs Probability that the CEQ starts with battery level s

where Ii(t) =
M∑
j 6=i

pjgi,j + p0gi,0 is the interference caused by other BSs. gi,0 is the

channel gain between MBS and the user served by SBS i, gi,i represents the channel

gain between SBS i and the user it serves, and gi,j is the channel gain between SBS

j and the user served by SBS i. Finally, pi(t) represents the transmit power of SBS i

at time t. The transmit power of MBS p0(t) belongs to the set {pmin0 , ..., pmax0 }. The

thermal noise is ignored assuming that it is very small compared to the cross-tier

interference. Later, in Remark 2, I will show that the interference and transmit

power of each SBS can be derived from Q and p0.

Similarly, the SINR at a macrocell user can be calculated as follows:

γ0(t) =
p0(t)g0,0

I0(t) +N0

, (3.4)

where I0(t) =
M∑
i=1

pig0,i is the interference from other SBSs to the macrocell user, g0,0

denotes the channel gain between the MBS and its user it serves, g0,i represents the

channel gain between SBS i and macrocell user, and N0 is the constant thermal noise.
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The channel gain gi,j is calculated based on path-loss and fading gain as follows:

gi,j = |h|2r−αi,j , (3.5)

where ri,j is the distance from BS j to user served by BS i, h follows a Rayleigh

distribution, and α is the path-loss exponent. It is assumed that the M SBSs are

randomly located around the MBS and the users are uniformly distributed within

their coverage areas.

3.3 Formulation and Analysis of the Single-Controller

Stochastic Game

For the system with one MBS and one CEQ, the source of randomness is the arrivals

of energy at CEQ. This means the battery size of CEQ is a random process which

implies that I can formulate a two-player non-cooperative stochastic power control

game for MBS and CEQ where the state is the battery level at CEQ. The MBS and

the SBSs try to maintain the average SINR at their users. Following [18], I define the

utility function of the MBS at time t as:

U0(p0(t), Q(t), t) = −(p0(t)ḡ0 − λ0(Ī0(t) +N0))2, (3.6)

where Ī0(t) =
M∑
i=1

pi(t)ḡ0,i is the average interference at the macrocell user at time t,

and λ0 is the target SINR. The MBS wants to achieve the target SINR for its user

and thus reduce its outage probability . Note that, the target SINR λ0 should be

chosen such that it is higher than the MBS’ SINR outage threshold λoutage,0. ḡi,j is

the average channel gain for the link from BS j to the user served by BS i and Q(t) is
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the number of energy packets distributed by the CEQ. Similarly, the utility function

of the CEQ is defined as follows:

U1(p0, Q, t) = − 1

M

M∑
i=1

(pi(t)ḡi − λ1Īi(t))
2, (3.7)

where Īi(t) =
M∑
j 6=i

pj(t)ḡi,j + p0(t)ḡi,0 is the average interference at the user served by

SBS i at time t and (p1, p2, .., pM) satisfy (3.2). By maximizing U1, each SBS tries to

obtain an average SINR at its user close to the target SINR λ1.

The arguments of both the utility functions demonstrate that the action at time

t for the MBS is its transmit power p0(t) while the action of the CEQ is the number

of energy packets Q(t) that is used to transmit data from the SBSs. The conflict in

the payoffs of both the players arises from their transmit powers that directly impact

the cross-tier interference among transmissions from the BSs.

3.3.1 Formulation of the Game Model

Unlike a traditional power control problem the action space of the CEQ changes at

each time and is limited by its battery size. Given the distribution of energy arrival

and the discount factor β, the power control problem can be modeled by using a

single-controller discounted stochastic game as follows:

• There are two players: one MBS and one CEQ.

• The state of the game is the battery level of the CEQ, which is {0, ..., S}.

• At time t and state s, the action p0(t) of the MBS is its transmission power and

belongs to the finite set P = {pmin0 , ..., pmax0 }. On the other hand, the action of

the CEQ is Q(t), which is the number of energy packets distributed to M SBSs.
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Q(t) belongs to the set {0, ..., s}.

• Let m and n denote the concatenated mixed-stationary-strategy vectors of the

MBS and the CEQ, respectively. The vector m is constructed by concatenating

S + 1 sub-vectors into one big vector as m = [m(0),m(1), ...,m(S)] , in which

each m(s) is a vector of probability mass function for the actions of the MBS at

state s. For example, if the game is in state s, m(s, p) gives the probability that

the MBS transmits with power p. Therefore, the full form of m will include the

state s and power p. However, to make the formulas simple, in the later parts

of the paper, I will use m or m(s) to denote, respectively, the whole vector or

a sub-vector at state s, respectively.

• Similarly, for the CEQ, n(s, i) gives the probability that the CEQ distributes i

energy packets. Note that the available actions of the CEQ dynamically vary

at each state whereas the available actions for the MBS remain unchanged at

every state.

• Pay-offs: At state s, if the MBS transmits with power p0 and the CEQ dis-

tributes Q energy packets, the payoff function for the MBS is U0(p0, Q) while

the payoff function for the CEQ is U1(p0, Q). I omit t since t does not directly

appear in U1 and U0.

• Discounted Pay-offs: Denote by β the discount factor (β < 1), then the

discounted sum of payoffs of the MBS is given as:

φ0(s,m,n) = lim
T→∞

T∑
t=1

βtE[U0(m,n, t)], (3.8)

where E[U0(m,n, t)] is the average utility of macrouser at time t if the MBS
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and the CEQ are using strategy m and n, respectively. Similarly, I define the

discounted sum of payoffs φ1 at the CEQ. In Chapter 2, it was proven that the

limit of φ0 and φ1 always exist when T →∞.

• Objective: To find a pair of strategies (m∗,n∗) such that φ0 and φ1

become a Nash equilibrium, i.e., φ0(s,m∗,n∗) ≥ φ0(s,m∗,n) ∀n ∈

N and φ1(s,m∗,n∗) ≥ φ1(s,m,n∗) ∀m ∈M whereM and N are the sets

of strategies of MBS and CEQ respectively.

Given the distribution of energy arrival at the CEQ, the transition probability of the

system from state s to state s′ under action Q (0 ≤ Q ≤ s) of the CEQ is given as

follows:

q(s′|s,Q) =


Pr(ϕ = s′ − (s−Q)), if s′ < S

1−
S−s∑
X=0

Pr(ϕ = X), otherwise.

(3.9)

The states of the game can be described by a Markov chain for which the transition

probabilities are defined by (3.9). Clearly, the CEQ controls the state of the game

while MBS has no direct influence. Therefore the single-controller stochastic game

can be applied to derive the Nash equilibrium strategies for both the MBS and the

CEQ. The two main steps to find the Nash equilibrium strategies are:

• First, the payoff matrices for the MBS are built and the CEQ for every state s,

where S ≥ s ≥ 0. Denote them by R0 and R1, respectively.

• Second, using these matrices, a quadratic programming problem is solved to

obtain the Nash equilibrium strategies for both the MBS and the CEQ.
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3.3.2 Calculation of the Payoff Matrices

To build R0 and R1, U0 and U1 are calculated for every possible pair (p0, Q), where

p0 ∈ P and 0 ≤ s ≤ S. In this regard, the average channel gain ḡi,j is derived first.

Second, given the energy packets Q and transmission power p0 of the CEQ and the

MBS, respectively, the CEQ decides how to distribute this amount of energy Q among

the SBSs. Then, I calculate the transmit power at each SBS and obtain U1 and U2.

The next two remarks provide me with the methods to calculate U1 and U2.

Remark 1. Given two BSs A and B, assume that a user D, who is associated with

B, is uniformly located within the circle centred at B with radius r (Fig. 3.2). Assume

that A does not lie on the circumference of the circle centred at B and α = 4. Denote

AB = R and AD = d, then the expected value of d−4, i.e., E[d−4] is 1
(R2−r2)2 . If

A ≡ B, then E[d−4] = 1−r−2

r2 given that r ≥ BD ≥ 1.

Figure 3.2: Graphical illustration of the two BSs A and B and the user D located
within the disk centred at B.

Proof. Denote the distance between the BS B to its user D as BD = a. If D is

uniformly located inside the disk centred at B, the probability density function of
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BD is fD(BD = a) = 2a
r2 . Moreover, denote by θ the value of the angle ∠ABD.

Clearly, θ is uniformly distributed between (0, 2π). Now, using the cosine formula,

d2 = R2 + a2 − 2aR cos(θ),

E[d−4] =

∫ 2π

0

∫ r

0

(R2 + a2 − 2aR cos θ)−2 1

2π

2a

r2
da dθ. (3.10)

First, the indefinite integral over θ is solved as
∫

(R2 +a2−2aR cos θ)−2dθ = f1(a, θ)+

f2(a, θ) + L, where L is a constant and

f1(a, θ) =
2(R2 + a2)

(R2 − a2)3
arctan

(R + a) tan θ
2

R− a
, and

f2(a, θ) =
2aR sin θ(R2 + a2 − 2aR cos θ)

(R2 − a2)2
.

These closed-form equations can be verified by manually taking the derivative of the

left hand side. Since sin 0 = sin 2π = 0, after integrating f2 over [0, 2π], I can ignore

it. Also, notice that arctan is a multi-valued function so I have to keep track of which

branch I am on. The result is

∫ 2π

0

(R2 + a2 − 2aR cos θ)−2dθ = π
2(R2 + a2)

(R2 − a2)3
.

The indefinite integral of the above result is:

1

r2

∫
a

2(R2 + a2)

(R2 − a2)3
da =

1

r2

a2

(R2 − a2)2
+ L. (3.11)

Applying the upper and lower limits of a, I complete the proof.

Recalling that gi,j = |h|2r−4
ij and that the fading and path-loss are independent, I
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have ḡi,j = E[h2]E[r−4
ij ]. Assuming that the fading gain follows Rayleigh distribution

with scale parameter λ, then h2 is an exponential random variable with mean λ. The

expected value E[r−4
ij ] can then be calculated using remark above. For other values

of α, E[r−αij ] can be computed numerically using tools such as MATHEMATICA.

Next I need to find how the CEQ distribute its energy to each SBS such that U1

is maximized.

Remark 2. (Optimality in energy distribution at the CEQ) If at time t, the CEQ

distributes Q energy packets to M SBSs and the MBS transmits with power p0, then

the transmit powers (p1, p2, ..., pM) at the M SBSs are the solutions of the following

optimization problem (t is omitted for brevity):

max
p1,p2,...,pM

− 1

M

M∑
i=1

(
piḡi − λ1(

M∑
j 6=i

pj ḡij + p0ḡi,0)

)2

,

s.t.
M∑
i=1

pi =
K

∆T
Q,

Pmax ≥ pi ≥ 0, ∀i = 1, 2, ...,M,

(3.12)

where Pmax is the maximum transmit power of each SBS. Since this problem is strictly

concave, the solution (p1, ..., pM) always exists and is unique for each pair (Q, p0).

Thus, for each pair (Q, p0), where Q ∈ {0, ..., S} and p0 ∈ {pmin0 , ..., pmax0 }, I have

unique values for U0(p0, Q) and U1(p0, Q).

Based on the remarks above, for each combination of Q and p0, I can find the

unique payoff U0 and U1 of MBS and CEQ. Since Q and p0 belongs to discrete

sets I can find the payoff for all of the possible combinations between them. Thus,

I can build the payoff matrix R0 for the MBS and R1 for the CEQ. The matrix

R0 has the form of a block-diagonal matrix diag(R0
0, ..., R

S
0 ), where each sub-matrix
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Rs
0 = (U0(p0, j))

P×{0,...,s}, with p0 ∈ P and j ∈ {0, ..., s} is the matrix of all possible

payoffs for the MBS at state s. Similarly, I can build R1, which is the payoff matrix

for the CEQ. A detailed explanation on how I use them will be given in the next

subsection.

3.3.3 Derivation of the Nash Equilibrium

If the strategy m0 of the MBS is known, the discount factor β, and the probability πs

that the CEQ starts with s energy packets in the battery, then the stochastic game

is reduced to a simple MDP problem with only one player, the CEQ. For this case,

denote the CEQ’s best response strategy to m0 by n. From Chapter 2, the CEQ’s

value function φ1(s,m0,n), where s = 0, ..., S, is the solution of the following MDP

problem:

min
φ1

S∑
s=0

πsφ1(s,m0,n),

s.t. φ1(s,m0,n) ≥ r1(s,m0, j) + β
S∑

s′=0

q(s′|s, j)φ1(s′,m0,n),

∀s, j, 0 ≤ j ≤ s and 0 ≤ s ≤ S

(3.13)

with r1(s,m0, j) =
∑

p0∈P U1(p0, j)m0(s, p0), where P is the set of transmit power

levels of the MBS. This r1(s,m0, j) is the average payoff for the CEQ at state s when

it consumes j quanta of energy. Using the Dirac function δ, the dual problem can be
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expressed as

max
x

S∑
s=0

s∑
j=0

r1(s,m0, j)xs,j,

s.t.
S∑
s=0

s∑
j=0

[δ(s− s′)− βq(s′|s, j)]xs,j = πs′ , ∀0 ≤ s′ ≤ S,

xs,j ≥ 0 ∀s, j, 0 ≤ j ≤ s and 0 ≤ s ≤ S

(3.14)

where δ(s) = 1 if s = 0 and δ(s) = 0 otherwise.

By solving the pair of linear programs above, the probability that the SBS chooses

action j at state s can be found as n(s, j) =
xs,j∑s
j=0 xs,j

. Using some algebraic manip-

ulations, the optimization problem in (3.13) can be converted into a matrix form

as:

min
φ1

πTφ1,

s.t. Hφ1 ≥ RT
1 m0, (P)

and its dual as

max
x

mT
0R1x,

s.t. xTH = πT,

x ≥ 0, (D)

where R1 is the payoff matrices of the CEQ. Combining the primal and dual linear

programs (i.e., (P) and (D) above) and using the same notations, I have the following

theorems.

Theorem 3.3.1 (Nash equilibrium strategies [28]). If the state space and the action
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space are finite and discrete, and the transition probabilities are controlled only by

player 2 (i.e., the CEQ), then there always exists a Nash equilibrium point (m,n)

for this stochastic game. Moreover, a pair (m,n) is a Nash equilibrium point of a

general-sum single-controller discounted stochastic game if and only if it is an optimal

solution of a (bilinear) quadratic program given by

max
m,x,φ,ξ

[m(R0 +R1)x− πTφ1 − 1Tξ],

s. t. Hφ1 ≥ RT
1 m,

xTH = πT,

Rs
0x(s) ≤ ξs1, ∀s = 0, ..., S,

m(s)T111 = 1, ∀s = 0, ..., S,

m,x ≥ 0,

(3.15)

where ξs is the maximum average payoff of the MBS at state s. The sub-vector strategy

n(s) of the CEQ at state s is calculated from x as:

n(s) =
x(s)

x(s)T1
. (3.16)

I can define different utility functions for the MBS and the SBS and apply the

same method to achieve the Nash equilibrium. As long as the number of states is

finite and the transition and the payoff matrices remain unchanged over time, a Nash

equilibrium point always exists.

Theorem 3.3.2 (Best response strategy for the MBS). For any given stationary

strategy n of the CEQ, there exists a pure stationary strategy m as the best response

for the MBS. Similarly, for any stationary strategy m of the MBS, there exists a pure

stationary best response n of the CEQ.
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Proof. First it is proved that given n, there exists a pure stationary strategy m which

is the best response of the MBS against n. Since the action set of the MBS is fixed, at

each state s, given strategy n(s) of the CEQ, the MBS just needs to choose a mixed

stationary strategy m(s) such that its average payoff is maximized.

Denote by P the set of power levels available at the MBS. At state s, the expected

value of the utility function for the MBS is

E[U1] =
∑
ps0∈P

s∑
j=0

−(ps0ḡ0 − λ0Ī(ps0, j))
2m(s, ps0)n(s, j), (3.17)

where ps0 and j ∈ {0, ..., s} are the transmit power of the MBS and the number of

energy packets distributed at the CEQ at state s, respectively. Ī(ps0, j) is the average

interference from other SBSs to the MBS if the CEQ distributes j energy packets and

the MBS transmits with power ps0. I have

Ī(ps0, j) =
M∑
i=1

piḡ0,i +N,

where (p1, p2, ..., pM) is the solution of Remark 2, with Q and p0 replaced by j and

ps0, respectively. Since
∑

ps0∈P
m(s, ps0) = 1 and ms is a non-negative vector,

E[U1] ≤ max
ps0∈P

{
−

s∑
j=0

(ps0ḡ0 − λ0Ī(ps0, j))
2n(s, j)

}
. (3.18)

Since the set P is fixed and finite, there always exists at least one value of ps0 that

achieves the maximum for the right hand side. That means when the game in state

s, the MBS can choose this power level with probability of 1.

It is difficult to obtain ps0 in closed-form, because first I need to find (p1, ..., pM)

in closed-form by solving (3.12). However, if the average channel gains from each
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SBS to the macrocell user are the same, I can obtain ps0 in closed form. In this case,

denote by ḡ0,SBS the channel gain from an SBS to the macrocell user, then

Ī(ps0, j) =
M∑
i=1

piḡ0,SBS +N0 = ḡ0,SBS

M∑
i=1

pi +N0

=
K

∆T
jḡ0,SBS +N0.

The final equality is from (3.2). Replacing this result back into (3.18),

E[U1] ≤ max
ps0∈P
−

s∑
j=0

(ps0ḡ0 − λ0(
K

∆T
jḡ0,SBS +N0))2n(s, j). (3.19)

The right hand side of this inequality is a strictly concave function (specifically

it is a downward parabola) with respect to (w.r.t.) ps0. Note that
∑s

j=0 n(s, j) = 1.

The parabola will achieve the maximum value at its vertex given by

ps∗0 =
λ0

∑s
j=0

(
K

∆T
ḡ0,SBSj +N0

)
n(s, j)

ḡ0

. (3.20)

If ps∗0 is not available in P , since the right hand side of the inequality above is a

parabola w.r.t. ps0, the best response ps0 to n(s) is the one nearest to the vertex ps∗0 .

On the other hand, given strategy m of the MBS, the problem of finding the best

response strategy n for the CEQ is simplified into a simple MDP in (3.13). Then,

there always exists a pure stationary strategy n [27, Chapter 2]. This completes the

proof.

Because for any mixed strategy of CEQ, MBS can find a pure stationary strategy

as a best response, I only need to find Nash equilibrium where the strategy of MBS

is deterministic. This problem can be converted to a mixed-integer program with

m as a vector of 0 and 1. I can use a brute-force search to obtain an equilibrium
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point. For each feasible integer value of m I insert it into (3.15) to obtain n. If the

objective is zero, then (m,n) is the equilibrium point. This theorem implies that the

optimization problem in (3.15) can be solved in a finite amount of time. .

Although there exists a Nash equilibrium point, the uniqueness is not guaranteed.

To make the Nash equilibrium point more meaningful, the following lemma from [28]

is used.

Lemma 3.3.1. (Necessary and sufficient conditions for the Nash equilibrium) m and

n constitute a pair of Nash equilibrium policies for the MBS and the CEQ if and only

if

m(R0 +R1)x− πTφ1 − 1Tξ = 0. (3.21)

Since πs is the probability that the CEQ starts with s energy level in the battery

at starting time, from (3.13), πTφ1 is the average value function of the CEQ with

respect to the energy arrival rate and the strategies m,n. Using the lemma above,

the problem in (3.15) is changed to a quadratic-constrained quadratic programming

(QCQP) as stated below.

Proposition 1. (Nash equilibriums that favor the SBSs) The Nash equilibrium (m,n)

that has the best payoff for the CEQ is a solution of the following QCQP problem:

max
m,x,φ,ξ

πTφ1,

s.t. m(R0 +R1)x− πTφ1 − 1Tξ = 0,

all constraints from (3.15).

(3.22)

By solving this QCQP, I obtain a Nash equilibrium that returns the best average

payoff for the CEQ. This bias toward the SBSs is crucial as the available energy

of the CEQ is limited by the randomness of the environment and thus the SBSs are
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more likely to suffer when compared to the MBS. Again, I can still have multiple Nash

equilibrium in this case, but all of them must return the same payoff for CEQ. Because

there may be multiple solutions, CEQ and MBS need to exchange information so that

they agree on the same Nash equilibrium.

Algorithm 1 Nash equilibrium for the stochastic game

1: The MBS and the CEQ build their reward matrices R0 and R1. For each possible
pair of energy level and transmit power (Q, p0), the CEQ solves (3.2) to obtain a
unique tuple (p1, p2, ..., pM) and record these results.

2: The MBS and the CEQ calculate their strategy m and n, respectively, by solving
(3.22).

3: At time t, the CEQ sends its current battery level s to the MBS. It also randomly
chooses an action Q using the probability vector n(s).

4: The MBS then randomly picks power p0 using distribution m(s) and sends it
back to the CEQ. Based on p0 and Q, the CEQ searches its records and retrieves
the corresponding tuple (p1, ..., pM).

5: The CEQ distributes energy (p1∆T, p2∆T, ..., pM∆T ), respectively, to the M
SBSs.

From Theorem 2, I know that there exist an equilibrium with pure stationary

strategies for both MBS and CEQ. Recall that with pure strategy, the action of

each player is a function of the state. Thus, if I can obtain this equilibrium, CEQ

can predict which transmit power p0, the MBS will use based on the current state

without exchanging information with MBS and vice versa.

3.3.4 Implementation of the Discrete Stochastic Game

For discrete stochastic control game with CEQ, each SBS first needs to send its

location and average fading channel information E[h2] of its user to the CEQ and

the MBS so that complete channele state information is known at both the MBS

and CEQ. Since I only use average channel gain, the CEQ and the MBS only need to

re-calculate the Nash equilibrium strategies when either the locations of SBSs change,

51



e.g., some SBSs go off and some are turned on, or when the average of channel fading

gain h changes, or when distribution of energy arrival ϕ(t) at the CEQ is changes.

Thanks to the central design, SBSs and MBS only need to send information about

their channel gains to the CEQ thus create less communication overhead compared

to a fully distributed system.

3.4 Simulation Results and Discussions

3.4.1 Single-Controller Stochastic Game

In this section, the efficacy of the developed stochastic policy is quantified in com-

parison to the greedy power control policy. The stochastic policy is obtained from

the QCQP problem. On the other hand, in the greedy policy, I follow a hierarchical

method. First, the MBS chooses its transmit power, then each SBS tries to transmit

with the power such that the SINR at its user is nearest to its target value, ignoring

the co-interference from other SBSs. Next, the MBS records its current interference

and then chooses a new transmit power to achieve the target SINR at its user and so

on.

To solve the QCQP in (3.22), the fmincon function from Matlab is used. In the

simulations, it is assumed that the CEQ has a maximum battery size of S = 21 and

the volume of one energy packet is K = 25µJ. The duration of one time interval

is ∆T = 5 ms and the thermal noise is N0 = 10−8 W. The MBS has two levels

of transmission power [10; 20] W and the SINR outage threshold is set to 5. It is

assumed that the energy arrival at each SBS follows a Poisson distribution with unit

rate. Also, the volume of each energy packet arriving at the CEQ is assumed to

be C times larger than that for one energy packet collected by each SBS. Thus, the

52



amount of energy in each packet at the CEQ will be CK µJ. This shows that the

CEQ should have a more efficient method to harvest energy than each SBS (in the

case of greedy method). However, as the maximum battery size of the CEQ is S,

its total available energy is always limited by the product SCK µJ regardless of M .

For both the cases, each SBS can receive up to 150 µJ of energy from either the

CEQ or the environment. In the simulations, I investigate the impact of choosing

different target SINRs, number of SBSs in the macrocell, and the parameter C of the

CEQ against the outage probability of small cell and macrocell users. Also, I set the

minimum threshold for outage for small cell and macrocell users to λoutage,1 = 0.001

and λoutage,0 = 5, respectively. It is assumed that at the beginning, the CEQ has full

battery.
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Figure 3.3: Outage probability of a small cell user with different number of SBSs
when S = 21 states, C = 40, λ1 = 0.002, λ0 = 10.

From Fig. 3.3, it can be seen that when the number of SBSs is smaller than some

value, the stochastic method achieves better results. That is because, the CEQ can

share energy among the SBSs, and also the QCQP in (3.22) gives a Nash equilibrium

that favors the CEQ. However, at some point, the greedy method will provide better
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Figure 3.4: Outage probability of a small cell user with different target SINR when
S = 21 states, C = 40, M = 30 SBSs, λ0 = 10.

results. This is not surprising since the CEQ can only store at most S×K ×C µJ of

energy. Therefore, when the number of SBSs increases, the allocated power per SBS

by the CEQ reduces to zero while the greedy method allows each SBS to harvest up

to 150 µJ no matter how large M is. This means the greedy method will provide a

better performance compared to using the CEQ when M is large.

Following Fig. 3.4, by increasing the threshold SINR target λ1, the outage prob-

ability of a user served by an SBS can be reduced. This is understandable since the

average SINR will increase to approach the higher target and thus reduce the outage

probability. However, for both the greedy and stochastic methods, the slope is nearly

flat when the target SINR is larger than some value. This is because, to increase the

average SINR, the SBSs need to transmit with higher power to mitigate cross-tier

interference. However, since the battery capacity is limited for the CEQ and each of

the SBSs, a higher transmit power means a higher consumption of harvested energy,
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which can cause a shortage of energy later. Thus at some point increasing the target

SINR does not bring any benefits.

Fig. 3.5 shows the outage probability when increasing the quanta volume by

choosing a higher multiplier C for the CEQ. It is easy to see that, with a higher C,

i.e., choosing a more effective method to harvest energy at the CEQ, I can achieve

a better performance. The greedy method does not use the CEQ, so the outage

probability remains unchanged. Note that, since the battery size of each SBS is

limited to 150 µJ , at some point, a higher C does not improve the outage probability.
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Figure 3.5: Outage probability of a small cell user with different quanta volume when
S = 21 states, M = 30 SBSs, λ1 = 0.002, λ0 = 10.

Fig. 3.6 shows the outage probability of the macrocell user when M = 80 and

C = 50. The stochastic method gives better results in this case since the SBSs are

more “rational” in choosing their transmit powers. Also, unlike the greedy method,

the CEQ has a fixed-energy battery, so when M is large, the average amount of

energy distributed to an SBS will be small, which in turn limits the cross-interference

to the MBS. With the greedy method, the SBSs use higher transmit power to compete

against the MBS; therefore, it creates a larger cross-interference and in turn increases
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Figure 3.6: Outage probability of a macrocell user when S = 21 states, M = 80 SBSs,
C = 50, λ0 = 10.

the outage probability of MBS.

In summary, the centralized method using a CEQ can provide a better perfor-

mance in terms of outage probability for both the MBS and the SBSs. However,

since the CEQ has a fixed battery size, the centralized method performs poorer when

it needs to support a large number of SBSs. To improve this inflexibility, other pa-

rameters can be adjusted as follows: change target SINR, increase the multiplier C,

or increase the battery size of each SBS.
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Chapter 4

Power Control in

Energy-Harvesting Small Cells

Using Mean Field Game

4.1 Introduction

The main problem of the two-player single-controller stochastic game is the “curse

of dimensions”. The time complexity of Algorithm 1 increases exponentially with

the number of states S or the maximum battery size. Note that R0 and R1 have

dimensions of |P| × S(S + 1)/2, so the complexity increases proportionally to S.

Moreover, unlike other optimization problems, I am unable to relax the QCQP in

(3.22), because the Nash equilibrium can only be obtained at the global optimal.

Last but not the least, the centralized method requires information and coordination

from all the SBSs within the macrocell area, which can be challenging when M is

large. To tackle these problems, the stochastic game model is extended to an MFG

model for very large number of players.
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As discussed in Chapter 2, the main idea of an MFG is the assumption of simi-

larity, i.e., all players are identical and follow the same strategy. They can only be

differentiated by their “state” vectors. If the number of players is very large, I can

assume that the effect of a specific player to other players is nearly negligible. In my

energy harvesting game, the state is the battery E and the mean field m(t, E) is the

probability distribution of energy in the area I am considering. When the number of

players M is very large, I can assume that m(t, E) is a smooth continuous distribution

function. As usually assumed in a MFG, the SBS does not care about others’ states

but only act according to a “mean field” m(t, s). Since SBSs affect each other directly

through its transmit power, I will show that the average interference received at a

SBS as a function of the mean field m.

All the symbols that are used in this section are listed in Table II.

Table 4.1: List of symbols used for the MFG model

ḡ Average channel gain from a generic SBS to another user
E (Continuous) Battery level of an SBS
R Energy coefficient eR = E
Wt Wiener process at time t

p(t, E) Transmit power at a generic SBS as a function of E
p(t, R) Transmit power at a generic SBS as a function of R
m(t, E) Probability distribution of energy E at time t
m(t, R) Probability distribution of energy coefficient R at time t
p̄(t) Average transmit power of a SBS at time t
σ Intensity of energy arrival or loss.

4.2 Formulation of the MFG

Denote by E(v) the available energy in the battery of an SBS at time v. Given the

transmission strategies of other SBSs, each SBS will try to maximize its long run
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generic utility value function by solving the following optimal control problem:

min
p

U(0, E(0)) = E
[∫ T

0

(p(v, E(v))g − λ(I(v) +N0))2dv

]
, (4.1)

s.t. dE(v) = −p(v, E(v))dv + σdWv, (4.2)

E(v) ≥ 0, p(v) ≥ 0, (4.3)

where I(v) is the generic interference at a user served by an SBS at time v and g is

the channel gain between a generic SBS and its user. The mean field m(v, E) is the

probability distribution of energy E in the area at time v. Using M as the number

of SBSs in a macrocell and assuming that the other SBSs have the same average

channel gain ḡ to the user of the current generic SBS, then, the average interference

I(v) at the user served by a generic SBS can be expressed as I(v) = Mḡp̄(v), where

p̄(v) =
∫∞

0
p(v, E)m(v, E)dE can be understood as the average transmit power of

“another” generic SBS. Since the MFG assumes similarity, p̄(v) can be considered as

the average transmit power of a generic SBS at time v. To make the notation simpler,

I denote λ̄ = λḡM .

Thanks to similarity, all the SBSs have the same set of equations and constraints,

so the optimal control problem for the M SBSs reduces to finding the optimal policy

for only one generic SBS. Mathematically, if an SBS has infinite available energy, i.e.,

E(0) = ∞, it will act as an MBS. However, for simplicity, I will assume that only

the SBSs are involved in the game and the interference from the MBS is constant,

which is included in the noise N0 as in [32]. Except that, the system model and the

optimization problem here are similar to the case with the discrete stochastic game

model.

Assuming that the SBSs are uniformly distributed within the macrocell with radius
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r centered at the MBS, the average interference from the MBS to a generic user

served by an SBS can be easily derived by using a method similar to that described

in Remark 1. For the MFG model, the energy level E is a continuous non-negative

variable. The equality in (4.2) shows the evolution of the battery, where σ is a constant

which is proportional to the maximum energy arrival during a time interval. Wv is

a Wiener process, thus dWv = εvdv, where εv is a Gaussian random variable with

mean zero and variance 1. This model of evolution for battery energy was mentioned

in [29]. The inflexibility of the energy arrival is the main disadvantage of using the

MFG model compared to the discrete stochastic game model. The random arrival of

energy is configured as “noise”, so this can be either positive or negative. I consider

the negative part as the battery leakage and internal energy consumption. The final

inequalities are the causality constraints: The battery state E(v) and transmit power

must always be non-negative. To guarantee this positivity I follow [30] and change

the energy variable E(v) to E(v) = eR(v). This conversion is a bijection map from

E(v) to R(v), thus I can write m(v, E) = m(v,R) and p(v, E) = p(v,R), where

∞ > R > −∞. The new optimal control problem can be rewritten as

min
p(.)

U(0, R(0)) = E
[∫ T

0

(p(v,R(v))g − λ̄p̄(v)− λN0)2dv

]
, (4.4)

s.t. dR(v) = −p(v,R(v))e−R(v)dv + σe−R(v)dWv, (4.5)

p(v) ≥ 0. (4.6)

To obtain the power policy p, the following steps are followed:

• First, the Forward-Backward differential equations are derived from the above

optimal control problem.

• Second, Finite Difference method is applied to numerically solve these equations.
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4.2.1 Forward-Backward Equations of MFG

Assuming that the optimal control above starts at time t with T ≥ t ≥ 0, the Bellman

function U(t, R) is obtained as

U(t, R(t)) = E
[∫ T

t

(p(v,R(v))g − λ̄p̄(v)− λN0)2dv

]
. (4.7)

From this function, at time t, I obtain the following Hamilton-Jacobi-Bellman (HJB)

[30] equation as:

∂tU + min
p≥0

{(
p(t, R)g − λ̄p̄(t)− λN0

)2 − p(t, R)e−R∂RU(t, R)
}

+
σ2

2
e−2R∂2

RRU = 0

(4.8)

The Hamiltonian min
p≥0

{(
p(t, R)g − λ̄p̄(t)− λN0

)2 − p(t, R)e−R∂RU(t, R)
}

is given by

the Bellman’s principle of optimality. By applying the first order necessary condition,

I obtain the optimal power control as follows:

p∗(t, R) =

[
λ̄p̄(t) + λN0

g
+
e−R∂RU

2g2

]+

. (4.9)

Remark 3. The Bellman U , if exists, is a non-increasing function of time and energy.

Therefore, I have ∂RU ≤ 0 and ∂tU ≤ 0.

From equation (4.9), given the current interference λ̄p̄(t) + λN0 at a user, the

corresponding SBS will transmit less power based on the future prospect e−R∂RU
2g2 . If

the future prospect is too small, i.e., e−R∂RU
2g2 < −λp̄(t)+λN0

g
, it stops transmission to

save energy.

Replacing p∗ back to the HJB equation,

∂tU +
σ2

2
e−2R∂2

RRU + (λ̄p̄(t) + λN)2 −

([
λ̄p̄(t) + λN +

e−R∂RU

2g

]+
)2

= 0, (4.10)
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which has a simpler form as follows:

∂tU +
σ2

2
e−2R∂2

RRU = (pg)2 − (λ̄p̄(t) + λN)2. (4.11)

Also, from (4.5), at time t, I have the Fokker-Planck equation [31] as:

∂tm(t, R) = ∂R(pe−Rm) +
σ2

2
∂RR(me−2R), (4.12)

where m(t, R) is the probability density function of R at time t.

Combining all these information, I have the following proposition.

Proposition 2. The value function and the mean field (U,m) of the MFG defined in

(4.4) is the solution of the following partial differential equations:

∂tU +
σ2

2
e−2R∂2

RRU = (pg)2 − (λ̄p̄(t) + λN0)2, (4.13)

p(t, R) =

[
λ̄p̄(t) + λN0

g
+
e−R∂RU

2g2

]+

, (4.14)

∂tm(t, R) =∂R(pe−Rm) +
σ2

2
∂2
RR(e−2Rm), (4.15)

p̄(t) =

∞∫
−∞

eRp(t, R)m(t, R)dR, (4.16)

∫ ∞
−∞

m(t, R)dR =1, where m(t, R) ≥ 0. (4.17)

Lemma 4.2.1. The average transmit power p̄(t) of a generic SBS is a derivative with

respect to time of the average energy available and can be calculated as

p̄(t) = − d

dt

∫ ∞
−∞

e2Rm(t, R)dR. (4.18)

Proof. Using from the stochastic differential equation in (4.2) at time t, dE(t) =
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−p(t, E(t))dt+ σdWt, I get the integral form as follows:

E(t+ t′)− E(t) = −
∫ t+t′

t

p(v, E(v))dv +

∫ t+t′

t

σdWv

= −p(t̄, E(t̄))t′ + σ(Wt+t′ −Wt),

(4.19)

where t̄ ∈ (t, t + t′). I obtain the second equality using the mean value theorem

for integrals: If G(x) is a continuous function and f(x) is integrable function that

does not change sign on the interval [a, b], then there exists x ∈ [a, b] such that∫ b
a
G(t)f(t)dt = G(x)

∫ b
a
f(t)dt. Since equation (4.19) is true for all SBSs, taking

expectation of this equality above for all SBSs (or all possible values of E), I have

E[E(t+ t′)]− E[E(t)] = −E[p(t̄, E(t̄))]t′ + σE[Wt+t′ −Wt] (4.20)

∞∫
0

Em(t+ t′, E)dE −
∞∫

0

Em(t, E)dE = −t′E[p(t̄, E(t̄))], (4.21)

where m(t, E) is the distribution of E in the system at time instant t. Using the fact

that W is a Wiener process, Wt+t′−Wt follows a normal distribution with mean zero,

I have E[Wt+t′ −Wt] = 0.

By dividing both sides by t′ and letting t′ to be very small (or t′ → dt), I have

t̄→ t and

d
∞∫
0

Em(t, E)dE

dt
= −

 ∞∫
0

p(t, E)m(t, E)dE

 = −p̄(t). (4.22)

Using m(t, R) = m(t, E), dE = eRdR, and changing the variable E to R I complete

the proof.

Since p̄ is always non-negative, the average energy in an SBS’s battery is a de-

creasing function of time. That is the distribution m should shift toward left when t
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increases. This is because I use the Wiener process in (4.2). Since dWt has a normal

distribution with mean zero, the energy harvested will be equal to the energy leakage.

So for the entire system, the total energy reduces when time increases.

Lemma 4.2.2. If (U1,m1) and (U2,m2) are two solutions of Proposition 2 and

m1 = m2, then I have U1 = U2.

Proof. First, from (4.5), the Fokker-Planck equation is derived as follows:

∂tm1(t, R) = ∂R(p1e
−Rm1) +

σ2

2
∂2
RR(e−2Rm1),

∂tm2(t, R) = ∂R(p2e
−Rm2) +

σ2

2
∂2
RR(e−2Rm2).

Since m1 = m2 = m, I subtract the first equation from the second one to obtain

∂R((p1 − p2)e−Rm) = 0. This means (p1 − p2)e−Rm is a function of t. Let’s denote

f(t) = (p1 − p2)e−Rm, I have (p1 − p2)m = f(t)eR. From Lemma 4.2.1, p̄ is a

function of m, thus p̄1(t) = p̄2(t). Since p̄(t) =
∫
eRpmdR, I have

∫ ∞
−∞

eRp1mdR =

∫ ∞
−∞

eRp2mdR ⇒
∫ ∞
−∞

eR(p1 − p2)mdR = 0, ∀t.

Now, substituting (p1 − p2)m = f(t)eR results in
∫∞
−∞ f(t)dR = 0 ∀t. This means

f(t) = 0 or p1 = p2. From the definition, U is a function of p̄ and p. Since p̄1 = p̄2

and p1 = p2, it follows that U1 = U2. This lemma confirms that an SBS will act only

against the mean field m. Thus m is the one that determines the evolution of the

system. Two systems with the same mean field will behave similarly.
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4.3 Solving MFG Using Finite Difference Method (FDM)

To obtain U and m, the finite difference method (FDM) [30, 33] is used. The

time and energy coefficient R is discretized into large intervals as [0, ..., Tmax∆t] and

[−Rmax∆R, ..., Rmax∆R] with ∆t and ∆R as the step sizes, respectively. Then U,m, p

become matrices with size Tmax × (2Rmax + 1). To keep the notations simple, t

and R are used as the index for time and energy coefficient in these matrices with

t ∈ {0, ..., Tmax} and R ∈ {−Rmax, ..., Rmax}. For example, m(t, R) is the probability

distribution of energy eR∆R at time t∆t. Using the FDM, ∂RU , ∂tU , and ∂2
RRU are

replaced with the discrete formula as follows [34]:

∂tU(t, R) =
U(t+ 1, R)− U(t, R)

∆t
, (4.23)

∂RU(t, R) =
U(t, R + 1)− U(t, R− 1)

2∆R
, (4.24)

∂2
RRU(t, R) =

U(t, R + 1)− 2U(t, R) + U(t, R− 1)

(∆R)2
. (4.25)

By using them in (4.13) and after some simple algebraic steps,

U(t− 1, R) = U(t, R) + e−2R σ2∆t

2(∆R)2
A1 −∆tB1, (4.26)

where

A1 = U(t, R + 1)− 2U(t, R) + U(t, R− 1),

B1 = (p(t, R)g)2 −
(
λ̄p̄(t) + λN

)2
.

Similarly, discretizing (4.15),

m(t, R) =
∆t

2∆R
A2 +

σ2∆t

2(∆R)2
B2 +m(t− 1, R), (4.27)
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where

A2 =e−(R+1)∆Rp(t− 1, R + 1)m(t− 1, R + 1)− e−(R−1)∆Rp(t− 1, R− 1)m(t− 1, R− 1),

B2 =e−2(R+1)∆Rm(t− 1, R + 1)− 2e−2R∆Rm(t− 1, R) + e−2(R−1)∆Rm(t− 1, R− 1).

To obtain U,m, p, and p̄ using Proposition 2, I need to have some boundary

conditions. First, to find m, it is assumed that there is no SBS that has the battery

level equal to or larger than eRmax∆R so that m(t, Rmax) = 0, ∀t. This is true

if it is assumed that e(Rmax−1)∆R is the largest battery size of an SBS. Also, when

R = −Rmax, from the basic property of probability distribution

Rmax∑
R=−Rmax

m(t, R)∆R = 1

⇒ m(t,−Rmax) =
1

∆R
−

Rmax∑
R=−Rmax+1

m(t, R).

(4.28)

Next, to find U , again some boundary conditions need to be set. Notice that

U(Tmax, R) = 0 for all R. I further assume the following:

• Intutitively, if the battery level of a SBS is full, i.e., when R = Rmax, this SBS

should transmit something (because the thermal noise N > 0), or equivalently,

p(t, Rmax) > 0. That means

p(t, Rmax) =
λ̄p̄(t) + λN

g
+
e−Rmax∆R∂RU(t, Rmax)

2g2
. (4.29)

Therefore, if U(t, Rmax − 1) and p are known, U(t, Rmax) can be calculated.

• Similarly, it must be true that when available energy is 0, i.e., R = −Rmax, a
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SBS will stop transmission. Therefore, it can be assumed that

λ̄p̄(t) + λN

g
+
e−Rmax∆R∂RU(t,−Rmax)

2g2
= 0. (4.30)

Again, if U(t,−Rmax + 1) is known, U(t,−Rmax) can be calculated.

• During simulations, in some cases when the density is very high, very large

(unrealistic) values of transmit power are obtained. Therefore, an extra con-

straint must be put for the upper limit. I use E(t) > p(t, E(t))∆T , or

eR(t)∆R ≥ p(t, R(t))∆T , where ∆T is the duration of one time slot. This means,

the transmit power has to be limited during one time step ∆t to be smaller than

the maximum power that can be transmitted during one time interval ∆T .

Based on the above assumptions, an iterative algorithm (Algorithm 2) is devel-

oped, similar to the one in [30]. First, a transmit power p is assumed. Next, p and

m(0, R) are used to calculate m by using the Fokker-Planck equation. Then, from

m and p, U is calculated by using the HJB equation. Finally, p is updated by using

equation (4.14). The process is iterated until the algorithm converges.

4.4 Implementation of MFG

For the MFG, the location information for each SBS is not required. However, the

following information are required: the average channel gain g, ḡ, the number of

SBSs M in one macrocell, and the initial distribution m0 of the energy of SBSs in the

macrocell. Therefore, some central system should measure these information, solve

the differential equations, and then broadcast the power policy p to all the SBSs.

It is more efficient than broadcasting all the information to all SBSs and let them

solve the differential equations by themselves. Again, the central system only needs
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Algorithm 2 Iterative algorithm for FDM

Initialize input
Set up Tmax × (2Rmax + 1) matrices U , m, p, and T × 1 vector p̄.
Guess arbitrarily initial values for power p, i.e., p(t, R) = eR∆R.
Initialize i = 1, U(Tmax, .) = 0, m(0, .) = m0(.), m(t, Rmax) = 0, and p(t, 0) = 0.
Initialize ∆R and ∆t as the step size of energy and time with (∆R)2 > ∆t.
Set MAX as the number of iteration

Solve PDEs with FDM
while i < MAX do:

Solve the Fokker-Planck equation to get m using (4.27) and (4.28) with
given p, m0.

Update p̄(t) for Tmax ≥ t ≥ 0 using discrete form of equation (4.15).
Calculate U for all t < Tmax by using (4.26), (4.29) and (4.30) with p, p̄.
Calculate new transmission power pnew using (4.14)
Regressively update p = ap+ bpnew with a+ b = 1.
for R ∈ {−Rmax, ..., Rmax}

if p(t, R) > eR∆R

∆T
then p(t, R) = eR∆R

∆T
.

end
i← i+ 1.

end
Loop in Tmax time slots

At time slot t, SBS with energy battery eR∆R transmits with power p(t, R).
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to re-calculate and broadcast to all SBSs a new power policy if there are changes in

g, ḡ, or M .

4.5 Simulation Results

In this section, the efficacy of the developed mean field game policy is quantified in

comparison to the power control policy using Markov Decision Process. The transmit

power at the MBS is fixed at 10W and it results in a constant noise at the user served

by a generic SBS. The radius of the macrocell is r = 1000 meter, so the constant

cross-interference is N0 = 10−5 W. The target SINR is λ = 0.002 and assume that

g = ḡ = 0.001. I discretize the energy coefficient R into 80 intervals, i.e., Rmax = 40

and Tmax = 1000 intervals. Similar to the discrete stochastic case, each SBS can hold

up to 150 µJ in the battery, so the maximum transmit power is 30 mW. The threshold

is chosen such that an SBS will not transmit at R = −Rmax = −40 or E = 0.6 µJ.

The intensity of energy loss/energy harvesting, σ is 1.

Figure 4.1: Energy distribution over
time when M = 400 SBSs/cell.
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Figure 4.2: Energy distribution over time
when M = 400 SBSs/cell.

For M = 400 SBSs/cell, I have g = 0.001 > λ̄ = λḡM = 0.0008, so a generic SBS

does not need to use a large amount of power in order to obtain the target SINR.
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Figure 4.3: Transmit power to serve a
generic user using MFG when M = 400
SBSs/cell.
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Figure 4.4: Transmit power for dif-
ferent energy levels when M = 400
SBSs/cell.

Notice that p̄ is the average transmit power of a generic SBS. Therefore, if a generic

SBS reduces its transmit power, the cost term λ̄p̄ also reduces. Thus the difference

between the cost and the received power pg will be smaller, which is desirable. It

makes sense that a generic SBS will try to reduce its power as much as possible in

this case. The power cannot be zero though, because N0 > 0. Moreover, from Fig.

4.3 and Fig. 4.4, it can be seen that, at the beginning, the SBS with higher energy

(i.e., 100 µJ) will transmit with a high power and will gradually reduce to some value.

The SBSs with smaller battery will increase their power gradually. Since the transmit

power is small,as shown in Fig. 4.1 and Fig. 4.2, the energy distribution shifts to the

left slowly.

On the other hand, when M = 500 SBSs/cell, I have g = λ̄ = 0.001. In this case,

the effect is more complicated because reducing the transmit power may not reduce

the gap between the received power pg and the cost term λ̄p̄ + λN . Again, as can
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Figure 4.5: Energy distribution over time
when M = 500 SBSs/cell.
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Figure 4.6: Transmit power for different
energy levels when M = 500 SBSs/cell.

be seen from Fig. 4.6, the SBSs with larger available energy will transmit with large

power first and after sometime when there is less energy available in the system, all

of them start to use less power. Therefore, as can be seen in Fig. 4.5, the energy

distribution shifts toward the left with a faster speed than the previous case.

For M = 600 SBSs/cell, I have g < λ̄. This means each SBS needs to transmit

with a power larger than the average p̄ to achieve the target SINR. In Fig. 4.7,the

behavior of each SBS is the same as in the previous case. That is, the SBSs with

higher energy transmit with larger power first and then reduce it, while the poorer

SBSs increase their transmit power over time.

The MFG model is compared against the stochastic discrete model for different

values of M . For simplicity, I assume that each SBS has the same link gain to its

user as g = 0.001. Also, I assume that the channel gain from each SBS to the user

of another SBS is ḡ = 0.001. Using Remark 2, it can easily be proven that in this

case, each SBS will transmit with the same power, i.e., if the CEQ sends QCK µJ

of energy to M SBSs, then each SBS receives QCK/M µJ. Then, the interference at

each SBS will be calculated as g
(M−1)ḡ+N0M∆T/(QCK)

with multiplier C = 20 and the
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Figure 4.7: Transmission power over time
when M = 600 SBSs/cell.
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Figure 4.8: Average SINR at a generic
SBS.

maximum battery size of the CEQ as S = 101. Because the MBS is not a player

of the game, the simulation step becomes simpler, and only a linear program for the

MDP needs to be solved instead of a QCQP. Therefore, it is referred to as the MDP

method to accurately reflect the difference.

For the discrete stochastic case, the Gaussian distribution is discretized to model

the energy arrivals at the CEQ. The battery size of each SBS is still 150 µJ . The

average SINR of a generic small cell user using both MFG and MDP models with

different density is plotted in Fig. 4.8. It can be seen that using the MFG model, the

average SINR increases at the beginning and then it starts falling at some point. This

is because, when the density is low, the interference from the MBS is noticeable (i.e.,

10−5 W in my simulation). From the previous figures, it can be seen that an SBS will

increase its power when the density is higher. Therefore, after some point the co-tier

interference becomes dominant and the average SINR will begin to drop. It means at

some value of the density, e.g., M = 400 SBSs/cell in Fig. 4.8, the optimal average

SINR is obtained. It can be noticed that the MFG model performs better than the
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MDP model with the CEQ. One of the reasons is that the CEQ must consume an

integer number of quanta, which limits its flexibility compared to the MFG model.

Also, the size of the battery at the CEQ is a limitation. Lastly, one of the reasons

I use the CEQ is to redistribute the energy based on channel gains. However, in a

dense network scenario, these gains are the same for every SBS and the CEQ loses

this advantage.

In summary, two important remarks can be made for the MFG model. First, if

the density of small cells is high, the SBSs will transmit with higher power. Second,

from Fig. 4.8, it can be seen that by choosing a suitable density of SBSs I can obtain

the highest average SINR. Notice that from (4.14), it can be easily proven that the

average SINR at a user served by an SBS will always be smaller than the target SINR

(because ∂RU < 0). Therefore, the highest average SINR is also the closest to the

target SINR, which is my objective in the first place.
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Chapter 5

Summary and Future Work

5.1 Summary

In this thesis, I have proposed a two-tier system model with many SBSs and one MBS

share the same communication channel. The SBSs harvest energy from environment

for transmission.

In Chapter 3, a discrete single-controller discounted two-player stochastic game

has been applied to address the power control problem for energy harvesting small cell

networks. A Central Energy Queue (CEQ), which can harvest and distribute energy

to each SBS, is deployed to simplify the game model and optimize the average payoff

for all SBSs. For this discrete case, the strategies for both the macrocell BS and the

small cell BSs have been derived by solving a quadratic optimization problem. The

numerical results have shown that using CEQ can provide a better performance in

terms of outage probability for both the MBS and the SBSs. It also shows that when

the number of SBSs increases, I can improve the outage probability by adjusting other

parameters such as: changing the target SINR, increasing the multiplier C, or the

battery size of each SBS.

74



In Chapter 4, the system model has been extended to the extreme case where

there are a large number of SBSs in the system. Since CEQ and discrete stochastic

game are inapplicable with large number of SBSs, I have applied a mean field game

model to obtain the optimal power for this case. Subsequently, the forward-backward

equations are derived from this model. I have applied the finite difference method to

numerically solve this problem. At the end, I have also discussed the implementation

aspects of these models in a practical network. The numerical results show that if the

density of SBSs is high, the average transmit power also increases. Moreover, over

time, the total energy will be reduced and the distribution of energy will shift to the

left. Finally, experimental results also show that MFG method performs better in

term of average SINR compared to policies using Markov Decision Process when the

density is high.

5.2 Future Work

In this thesis, I have assumed that CEQ distributes energy to each SBS over a perfect

medium, i.e., no energy loss. It can be considered that the CEQ wirelessly trans-

fers energy to each SBS instead, to increase the portability of the system. In this

case, there will be some uncertainty over the channel where the energy is wirelessly

transfered. Obviously I do not want to spend the harvested energy carelessly over

high-uncertainty channel so a robust solution should be found. To make the problem

more practical, conventional energy source can be added to the CEQ, i.e., the CEQ

can consume more than it harvests. The objective of the sub-problem in Remark

2 can then be modified to minimize the power consumed from conventional source

such that all SBSs obtain their target SINRs. The new sub-problem will be a linear

optimization problem. If the uncertainty of the channel is mdeled using ellipsoidal
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model, then a robust counterpart can be derived.

Lastly, the central method with CEQ is infeasible if the number of SBSs increases.

In the system model considered here, the CEQ does everything from finding the Nash

equilibrium between MBS and itself to distributing energy. One possible way to

remove this bottleneck is to make the SBSs smarter. In this approach CEQ will only

need to harvest energy and distribute it. SBSs now will need to bid for the energy

it requires to transmit. To make problem simpler, it can be assumed that the MBS

maintains a constant throughput. Using the SINR formula, the transmit power at the

MBS can be easily derived as a function of its interference. The CEQ will distribute

energy based on the offers it receives from the SBSs. To help the SBSs with poor

channel conditions, a conventional energy source can be added. Obviously, the price

per energy unit in conventional source must be fixed and more expensive than the

bidding price from the CEQ. This model is somewhat similar to a dynamic auction

game model proposed in [41].
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