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The pyrochlore structure is well studied in the field of frustrated magnetism as it

provides a platform for investigating many magnetic cations on a corner-sharing

tetrahedral network. Here the rare earth charge-disordered Ln2ScNbO7 pyrochlores

are studied as well as the last remaining member of the titanate series, Sm2Ti2O7,

for an in depth investigation of its magnetic ground state. The charge disordered

pyrochlores provide an extreme example of non-magnetic chemical disorder in a

frustrated rare earth system and can provide insight into the effects of disorder on

underlying magnetic ground states. In the Ln2ScNbO7 (Ln = La, Pr, Nd, Sm, Gd,

Tb, Dy) pyrochlores the non-magnetic B-site is occupied by a mixture of Sc+3 and

Nb+5 ions, while leaving the magnetic sublattice nominally unchanged. Structural

investigation by x-ray and neutron, diffraction and total scattering measurements

show that there are significant short-range correlations between Sc+3 and Nb+5 ions

that are not evident in the crystallographic results. These correlations approach

charge ice correlations in the large cation members of the series, Ln = La, Pr, Nd and

the correlations appear to fall off for smaller cation members of the series (with Ln =

Tb as the only viable example).

http://faculty.university.com
http://department.university.com
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Magnetic studies are presented on Ln = Nd, Gd, Dy and Sm2Ti2O7. Ising antifer-

romagnetism is observed in Nd2ScNbO7 alongside diffuse scattering indicative of

moment fragmentation. A glassy magnetic ground state is observed in Gd2ScNbO7

although emergent xy spin ordering, similar to the parent compounds, is observed

on a short length scale. Differing from the parent compounds, Dy2ScNbO7 is not

a classical spin ice, and instead freezes into a glassy ground state with on average

isotropic spins. Despite nominally having the single ion symmetry requirements

for moment fragmentation, Sm2Ti2O7 does not show signatures of the phenomenon;

instead a well ordered Ising antiferromagnetic ground state is observed. Although

discussions of non-magnetic disorder are usually limited to structural distortions

altering exchange interactions, these systems show that in rare earth pyrochlores

the distortion of the local crystal field environments is equally relevant to structural

distortions and can fundamentally change the single ion symmetry and anisotropy

of the rare earth ions. The lack of a universal single ion symmetry changes how

these rare earth systems need to be approached in comparison to how rare earth

systems are normally treated. The single ion symmetry and anisotropy typically

restricts the possible magnetic ground states. Comparisons to spin-glass systems

can be drawn in the Gd2ScNbO7 and Dy2ScNbO7 cases. However, in Dy2ScNbO7

the mechanistic differences to conventional diluted magnetic ion spin-glasses may

necessitate study into something akin to anisotropy-disordered magnetic glasses,

which to our knowledge have not been studied theoretically in rare earth pyrochlore

systems.
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Chapter 1

Introduction

1.1 Motivation

The field of quantum materials focuses on elucidating new states of matter in order

to develop a better understanding of unconventional phenomena. The work in this

field could potentially lead to the development of a new technological revolution

through so called quantum devices. It is a broad field that encompasses the study of

varied phenomena including; the Mott transition, superconductivity, topological insu-

lators, colossal magnetoresistance, multiferroics, heavy fermion metals, the fractional

quantum Hall effect and magnetic frustration [1–5]. The synthesis and structural

characterization of new and existing quantum materials is a fruitful research area for

solid state chemists [6].

Magnetic frustration, the focus of this thesis, is the study of magnetic systems

under competing interactions that inhibit long-range magnetic order, or induce mag-

netic order through unconventional interactions leading to new physical phenomena.

These competing interactions can include; lattice geometries, chemical disorder, sin-

gle ion electronic properties, and competing inter-ion magnetic interactions. Some

combinations of these interactions can allow for strong coupling between magnetic

moments over short and long-range distances, without forming periodically ordered

magnetic states. These spin liquid and spin glass states can present interesting physics

including the formation of new quasiparticles [7, 8].

Crystalline disorder or semi-crystalline materials affect a broad range of phe-

nomenon in materials science, but quantum materials tend to have particularly

dramatic responses to disorder and defects. These responses to disorder can range
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from topological insulators which are not affected by disorder due to symmetry pro-

tections, to type II superconductors which often require small amounts of chemical

doping to exhibit superconductivity [9]. While chemical disorder has been studied

extensively in these systems, its role in magnetic frustration is less robustly under-

stood, despite many interesting magnetically frustrated systems showing chemical

disorder [10–14].

The goal of this project is to investigate the magnetic ground states of several

rare earth pyrochlores to search for new phases in quantum matter. In particular, the

Ln2ScNbO7 (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy) pyrochlores are studied to determine

how their intrinsic charge disorder impacts the underlying magnetism of these mag-

netically frustrated systems. Additionally, the magnetic ground state of Sm2Ti2O7 is

investigated, which is the last member of the Ln2Ti2O7 series that until now has not

had an extensive investigation of its magnetic ground state.

1.2 Pyrochlores

TABLE 1.1: Wyckoff positions of the pyrochlore unit cell, in the Fd3m
unit cell (unit cell origin 2) [15].

Atom Site x (r.l.u.) y (r.l.u.) z (r.l.u.)

Ln(III) 16d 1
2

1
2

1
2

B(IV) 16c 0 0 0

O 8b 3
8

3
8

3
8

O 48f x 1
8

1
8

The pyrochlore structure is named after the isostructural mineral (Na,Ca)2Nb2O6(OH),

with the general formula A2B2X6X’. The pyrochlore structure is typically reported by

its cubic unit cell with space group Fd3m. The sites within the unit cell are reported

in table 1.1, where the x parameter of O48 f can range from x = 0.3125 to x = 0.375

as these positions form either an octahedron around the B-site or a cube around the

A-site respectively (the parameter typically ranges from x = 0.32 to x = 0.345 [15]).

Figure 1.1 shows the pyrochlore structure consisting of distorted cubic environments

around the A-site and distorted octahedral local environments around the B-site, each
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with D3d local symmetry. From the perspective of magnetic frustration, the fact that

each site forms a network of corner sharing tetrahedra is of interest as a frustrated

geometry. Figure 1.1 (b, c) shows the A-site network of tetrahedra, with the O8b site

sitting at the centre of each tetrahedron.

FIGURE 1.1: The cubic Fd3m pyrochlore structure shown from various
perspectives. (a) The unit cell with all of the atomic positions, Ln+3

(purple), B+4 (green), O48 f (red), and O8b (orange). (b) The connec-
tivity of the A-site, forming a network of corner sharing tetrahedra,
with O8b sites in the centre of each tetrahedron. (c) Another angle of
the A-site connectivity, with the (1,1,1) direction projected upward,
emphasizing the planes of connected hexagons and triangles fromed
by the tetrahedra. (d) The local configurations of two A-site tetrahedra,
with a surrounding hexagon of B-site ions connected through O48 f

ions.

While the pyrochlore structure encompasses a broad class of materials, this work

will focus on the rare earth pyrochlores with a lanthanide (Ln) on the A-site and non-

magnetic transition metals on the B-site, with the form Ln+3
2 B2O7. Figure 1.2 roughly

outlines the stability regime of the pyrochlore structure by the relative cation radii.

When rLn/rb is too small (/ 1.36) the cations mix sites and a defect fluorite is formed.

When rLn/rb is too large (' 1.71) a monoclinic distortion is typically introduced,

destroying the tetrahedral symmetry of the cations. It is possible to extend beyond

these conventional limits using high pressure techniques that allow for larger rLn/rb



4 Chapter 1. Introduction

FIGURE 1.2: A non-complete phase stability diagram of the rare earth
pyrochlores. Radii are reported as ionic radii [16]. Various series are
labeled by their B-cation. The radii of Nb+5 and Sc+3 are reported
on the B-site axis with the series placed on the mean radii of Sc+3

and Nb+5. Labeled structures are the common resulting structures on
either side of the phase stability region, a monoclinic distortion (top-
left) and the cation-disordered defect fluorite structure (bottom-right).
Lines represent reported limits of the phase stability, with the dashed
line being the conventionally reported upper limit and the solid upper
line representing the upper limit. Figure is modified from Gardner et

al. [15].

[17].

The work here will focus largely on the Ln2ScNbO7 pyrochlores where the B-site,

typically a +4 cation, is split with mixed occupancy between Sc+3 and Nb+5. The

Ln2Sn2O7 pyrochlores can be formed with any lanthanide, due to the middling size

of Sn+4 (0.69 Å) compared to other B-site ions that form the pyrochlore structure.

Despite (Sc/Nb) having a similar average radius to Sn+4 the Ln2ScNbO7 pyrochlores

cannot be formed with cations smaller than Dy+3, likely due to the oversized Sc+3

[18].
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1.3 Frustrated Magnetism in Rare Earth Pyrochlores

The interest of frustrated magnetism on the pyrochlore lattice began with the theory

of the Heisenberg antiferromagnet on the pyrochlore lattice. Early theories predicted

that this configuration would give rise to a spin liquid with no finite freezing tem-

perature [19]. This was later revised by Palmer and Chalker [20] to show that real

systems under these conditions would undergo magnetic long-range order. However

the discovery of spin-ice on the pyrochlore lattice spurred additional investigation

into rare earth pyrochlore magnetism. Further theoretical work would also push for

research into the smaller moment lanthanides on the pyrochlore lattice for various

quantum phenomena.

To understand magnetism in rare earth pyrochlores, three underlying factors

need to be considered; the geometry of the lattice (Fig. 1.1), the anisotropy and

symmetry of the ground state crystal field (Fig. 1.3), and the interaction of the

exchange Hamiltonian, which can also include classical dipole-dipole interactions.

Crystal fields in rare earth compounds typically need to be considered under the

weak field case, where the ground state is predominantly composed of the Hund’s

value of the total angular momentum J; J = L - S for less than half-filled shells, J = L

+ S for greater than half-filled shells, typically written as 2S+1LJ . This ground state

has a multiplicity of 2J+1 in the free ion case. Only then is the Hund’s ground state

multiplet split by the crystal electric field, typically in the range of 1-200 meV for

lanthanide oxides. Crystal electric fields are a perturbation on electronic energies

induced by the electric potential exerted by neighboring ions. The energy scale of this

perturbation is typically larger in transition metal systems, but in f-electron systems

there is significant shielding from the valence electrons lowering the energy scale of

the crystal electric field.

Normally, the symmetry of crystal fields can be described as point group symme-

tries. A point group is a closed group that categorizes the possible ways a point can

transform under rotation, mirror, inversion and unity symmetries. The possible sym-

metry representations of a point group (or the other group sets that will be discussed

here) can be described as a linear combination of irreducible representations. For



6 Chapter 1. Introduction

crystal fields, each set of energy levels can be described by these irreducible represen-

tations. Herein the irreducible representations of various systems will be described

for point groups, double groups and space groups, which fundamentally describe

how that orbital, spin-state, or vector transform under the symmetry operations of

its group. This can prove useful for simplifying underlying properties of a system,

such as which exchange interactions are symmetry-allowed, differentiating between

symmetrically distinct magnetic grounds states which may look similar visually, or

generally simplifying fitting methods by reducing the parameter space.

As some of the rare earth ions have half integer J-values conventional point group

symmetries cannot be used for describing their crystal electric field, as a C1 full

rotation is not an identity operator. This can be shown as the character (χ) for the

rotation of a spin j is χ(α) =
sin(α(j+ 1

2 ))
sin( α

2 )
for a rotation of α. If α is 2π and j is 1

2 , χ

is indeterminate instead of one as would be expected of an identity operator (as

assumed by point group symmetry)[21]. Instead, the double groups are used to

describe the crystal field ground states, which introduce the symmetry operator of

time inversion, doubling the size of each point group to account for half-integer

spin systems. An important symmetry result of this is that each half-integer spin

has a lowest allowed symmetry of a doublet in the absence of a magnetic field, and

therefore must be magnetic. The single integer spins can be magnetic or non-magnetic

dependant on the ground state crystal field. The magnetic irreducible representations

of the D3 double group are Γ3 for integer spins and Γ4 and Γ5,6 for half-integer spins.

The Landé g-factor describes the coupling between spin and orbital moments of

an electron system to a small, external magnetic field, giving the effective magnetic

moment; µJ = JgJ µB. The spin-orbit coupling that occurs due to these crystal field

splittings also introduces magnetic anisotropy, a directional preference of the magnetic

moment creating a Landé g-factor tensor, instead of the typical scalar; ~µJ = gJ~J µB.

In the D3d symmetry this simplifies to a two-component Landé g-factor such that

µ = −µB[gz ẑ Jz + gxy(x̂ Jx + ŷJy)] [22], using a common literature convention that

treats Ji as a pseudo-spin 1/2 (as these magnetic systems are typically doublets) that

places the moment magnitude on gi. These anisotropies often strongly prefer one of

the two directions gz or gxy which are depicted in figure 1.3. These two depictions

show the dominant gxy case, just called the xy case, and the dominant gz case, called
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the Ising case. These directional preferences affect not only the response to an external

magnetic field, but also dictate moment directions in a magnetically ordered system.

FIGURE 1.3: The central atom shows the prominent anisotropies in
the pyrochlore lattice, either along or normal to the primary Ising axis,

which is along the local (111) axis.

The ground state crystal field symmetry also affects the magnetic exchange Hamil-

tonian (see Rau and Gingras (2019) [22] for a more comprehensive review). Briefly,

ignoring classical dipole-dipole and higher order multipole interactions an exchange

Hamiltonian can be written as

H = ∑
ij

~Si Jij~Sj + bii (1.1)

where Jij is an order-2 tensor connecting the pseudo-spin 1/2 vectors, and the

constant bii is due to the single ion crystal field. Due to symmetry constraints Jij has

at most 4 independent terms depending on the underlying crystal field ground state

in this dipole exchange simplification.

Of interest here (chapters 4 and 7) is the Γ5,6 crystal field symmetry, also called

the dipole-octupole symmetry as Sx transforms under symmetry as an octupole

(C2 : Sx ⇒ Sx) [23]. This symmetry yields a Hamiltonian that can be simplified to

Hdi−oct = ∑
ij
[ J̃xS̃x

i S̃x
j + J̃yS̃y

i S̃y
j + J̃zS̃z

i S̃z
j ] (1.2)

[24]. Although it should be noted here that x̃ and z̃ are not Cartesian ẑ and x̂ (this

‘pseudospin rotation’ is explained in Benton (2016) [24]). This becomes important as
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in the Ising case, one would expect Jy and Jx to be zero, instead J̃x is non-zero giving

a two-component Hamiltonian.

FIGURE 1.4: The k = (000) ordered states of the pyrochlore lattice, as
well as a graphic for disordered spin ice. Γi represents the irreducible
representation of the Fd3m unit cell that each ordered state belongs to.
Although Γφ(2,3)

5 , Γφ(4,5,6)
7 , Γφ(7−12)

9 have multiple basis vectors (where
φ are the bases), only those that are visually distinct are shown.

To describe the magnetic ground state structures, irreducible representations

of the space group are commonly used. Similar to crystallographic symmetries,

irreducible representations dramatically reduced the parameterization of magnetic

structure determinations and also relates back to the underlying physics of the

system. Magnetic structures are defined by a propagation vector k, that describe

the periodicity of the magnetic structure relative to an underlying structural unit

cell. A propagation vector of k = (000) would indicate a magnetic structure that

maps directly onto the underlying unit cell. While rare earth pyrochlores can have

non-(000) propagation vectors [25], the ordered systems typically show k = (000)

propagation vectors. Within the Fd3m unit cell for the 16c rare earth ion there are 4

possible irreducible representations and the possible magnetic orderings are spanned
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by 12 sets of basis vectors. Figure 1.4 illustrates these magnetic ground states. While

this only depicts a subset of the basis vectors, taking linear combinations of these

vectors will span all symmetry allowed magnetic configurations. Typically however,

only linear combinations of basis vectors within an irreducible representation occur.

Considering the span of these vectors, these states can be loosely defined; Γ3 is an

Ising antiferromagnet, Γ5 is an xy antiferromagnet with free rotation within the xy

plane, Γ7 is an xy antiferromagnet with vectors fixed to the (110) crystallographic

direction (in a fully ordered system), and Γ9 covers ferromagnetic structures of

multiple anisotropies.

TABLE 1.2: General information for rare earth pyrochlore magnetism.
Ions with nonmagnetic, singlet ground states are excluded. CEF G.S.
I.R. refers to the ground state (G.S.) irreducible representation (I.R.) of
the crystal electric field (CEF) ground state in the D3d double group.
G.S. Anisotropy represents the anisotropy of the ground state, ‘mixed’
systems have weak anisotropies, whereas ‘none’ refers to a spin only
system. The Magnetic G.S. I.R. refers to the irreducible representations
of the typical magnetic ground state in the Fd3m space group, SI refers

to a spin ice system. [15, 22, 26–29]

Ion (+3) J CEF G.S. I.R. µtotal (µB) G.S. Anisotropy Magnetic G.S. I.R.
Ce 5/2 Γ5,6 2.5 z none
Pr 4 Γ3 3.6 z none
Nd 9/2 Γ5,6 3.6 z Γ3
Sm 5/2 Γ5,6 0.8 z Γ3
Gd 7/2 multiplet 7.9 none mixed
Tb 6 Γ3 9.7 mixed mixed
Dy 15/2 Γ5,6 10.6 z SI
Ho 8 Γ3 10.6 z SI
Er 15/2 Γ4 9.6 xy mixed Γ5,Γ7
Yb 7/2 Γ4 4.5 mixed Γ9

In addition to ordered magnetic states on the pyrochlore lattice, there are disor-

dered liquid-like phases which tend to be of greater interest [7, 30]. The best studied

of these systems is the U(1) classical spin liquid, the classical spin ice (Fig. 1.4). This

spin ice phase can be seen as a disordered version of the Γ9 structure, that is induced

due to the near-degeneracy of different tetrahedral coordinations. Each tetrahedron

in spin ice is ordered ferromagnetically to the greatest extent possible in the Ising

manifold, however for each tetrahedron there is a 6/16 degeneracy in each tetrahe-

dron. This leads to a characteristic residual entropy that characterizes the system,

R
2 ln( 3

2 ), often called the Pauling entropy. The classical spin ice phase is present in the
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large moment Ising pyrochlore systems, the ‘classical’ descriptor comes from the fact

that direct dipole-dipole interactions as opposed to exchange interactions dominate

the spin interactions [31]

Hdipolar ≈
5
3
(

µ0

4π
)

µ2

r3
nn

(1.3)

where µ0 is the magnetic constant, µ is the moment magnitude of the spin and

rnn is the nearest neighbor distance between spins. With an energy scale on the

order of 2-3 K, this ferromagnetic interaction typically outweighs nearest-neighbor

antiferromagnetic exchange interactions. Spin ices that are driven by exchange are

also sought after, Yb2Ti2O7 does satisfy this ordering into the Ising Γ9 structure. A

‘quantum’ variant is also sought after, that remains dynamic at all finite temperatures

[30]. In general there are ongoing investigations of many disordered magnetic states

in pyrochlores. Table 1.2 gives a summary of the single ion and magnetic ground

states of relevant magnetic lanthanides on the pyrochlore lattice. Some of these ions

show different ground states depending on the particular ion present, such as Tb+3

and Gd+3. J. Gardner et al. (2010) [15] provides a review of pyrochlore magnetism.

1.4 Chemical Disorder in Magnetically Frustrated Systems

To preface a discussion on chemical disorder in frustrated systems, it is useful to

consider Herbertsmithite, ZnCu3(OH)6Cl2. Herbersmithite is one of the best studied

and most exciting materials in frustrated magnetism [32]. As a spin-1/2 system on

a 2-dimensional kagome lattice, it is a model system of the 2-D Heisenberg antifer-

romagnet on the kagome lattice, and of particular interest as it is a directly solvable

theoretical model that yields a quantum spin liquid under conditions present in

Herbertsmithite. Extensive theoretical and experimental work has been performed

on Herbertsmithite, confirming that it is a quantum spin liquid (see M. Norman, 2016

[32] for a review). The key result is the observation of 2-D spinons, fractionalized

excitations that had only been previously observed in 1-D systems [33]. Although

early work considered Herbertsmithite as an idealized system in experimental inter-

pretations, there is a large amount of chemical disorder. The copper ions site mix with

the zinc ions, the real structure and composition is (Zn0.85Cu0.15)Cu3(OH)6Cl2. This

formula places a significant amount of magnetic ions into interstitial sites between
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the 2-D kagome planes in a disordered fashion [10]. This inherently leads to some

skepticism of the experimental results that may be influenced by these inconsistently

correlated interstitial copper ions. Increasingly advanced experiments have since

resolved this issue, confirming the gapped quantum spin liquid behaviour while ac-

counting for ion disorder, but the experimental contributions of this chemical disorder

are certainly non-trivial [34].

The impact of disorder and the questions it presents extends well beyond Her-

bertsmithite. Another more recent example lies in YbMgGaO4, which presents a

2-dimensional triangular lattice showing spin liquid signatures, with interstitial sites

populated randomly by non-magnetic Mg+2 and Ga+3 [35]. Initial attempts have

been made to model the effect of this disorder on the electronic and magnetic ground

states, but further work remains to be done [36].

In the case of rare earth pyrochlores, multiple debates that question the impact

of chemical disorder on magnetic ground states are still ongoing. The spin liquid

Tb2Ti2O7 has been studied under the effects of doping Tb2+xTi2−xO7−δ by T. Taniguchi

et al., 2013 [12] and E. Kermarrec et al., 2015 [13]. At very small levels of doping (x

< 0.01) there is a transition between a spin-liquid phase and a long-range ordered

magnetic phase. However there is disagreement as to whether the stoichiometric

Tb2Ti2O7 falls into the long-range ordered or spin-liquid phase, and to whether or

not the long-range phase is a true phase transition, or a spin liquid system with

particularly long correlation lengths (∼ 10 Å). Additionally pyrochlores can suffer

from anion disorder, where the 8b oxygen occupies the 8a site at the centre of the B-site

tetrahedra, altering the local A-site coordination environment. This is prominent in

the Ln2Zr2O7 pyrochlores [37, 38], and in the Ln2Hf2O7 pyrochlores [39]. Various site

mixing effects can lead to large sample dependencies in systems such as Pr2Zr2O7 [40],

Tb2Ti2O7 [12, 13] or Yb2Ti2O7 [41]. Even in relatively well behaved pyrochlore systems

like Ho2Ti2O7, a classical spin ice, doping studies that induce cation disorder can be

used to investigate the change of magnetic correlations and dynamics, including the

gradual destruction of the spin ice state under doping [42, 43].

More recently, charge disordered pyrochlores are becoming of interest. Similar to

the chemical disorder present in YbMgGaO4 (where a non-magnetic site is shared

by a +2 and +3 ion with random occupancy), in the charge disordered pyrochlores
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the nonmagnetic site is split into two ions of different valence. The best investigated

of these systems are the AA’B2F7 pyrochlores where A is an alkali metal and A’ is

an alkali earth metal, which allows for magnetic +2 transition metals to be placed

on the pyrochlore B-site. Some examples include NaSrMn2F7, NaCaFe2F7 [44], and

NaCaCo2F7 [45]. NaCaCo2F7 in particular has attracted interest as it remains disor-

dered to well below its Weiss temperature, forming xy antiferromagnetic clusters

[45].

Materials with similar chemical disorder exist for rare earth pyrochlores, with

the form A2BB’O7 where B = Sc+3, Ga+3, In+3 and B’ = Nb+5, Sb+5 [46, 47]. While

this is not necessary for the inclusion of magnetic ions, instead yielding the same

average charge (+4) of the parent compounds, it allows for a more direct comparison

of these pyrochlores to their parent compound. This configuration of the B-site opens

up multiple new series of rare earth pyrochlores to explore. Some initial reports on

the magnetic properties of Dy2ScNbO7 [48], Yb2GaSbO7 [49] and NMR studies of the

Ln2GaSbO7 pyrochlores [50] have been published. Although limited, by and large,

these reports suggest behaviour similar to the parent Ln2B2O7 pyrochlores, such as

an apparent observation of classical spin ice behaviour in Dy2ScNbO7 [48].

This thesis explores the structural and magnetic ordering of the Ln2ScNbO7 py-

rochlores, and shows that these pyrochlores deviate dramatically from their parent

Ln2B2O7 pyrochlores in both their electronic and magnetic ground states. Addition-

ally, the last magnetic member of the Ln2Ti2O7 series to see extensive research into its

magnetic ground state, Sm2Ti2O7, is also investigated.
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Chapter 2

Methods

2.1 Ceramic Synthesis and Crystal Growth

Solid state preparation of ceramics, metals and intermetallics is a unique area of

synthesis. Although perhaps simpler than many solution reactions, there are unique

considerations that have to be taken into account due to the mechanistically distinct

nature of these reactions. Reaction between primary or binary (M or MXy) reagents

is often favorable due to the increased electronic packing efficiency that can be

accomplished in more complex mixtures. However, chemical reactions between

solids typically do not occur spontaneously on any reasonable time scale, due to the

slow kinetics of the reaction [51]. As these reactions are kinetically limited, solid

state reactions are limited by temperature and surface area contact between the solid

reagents [51]. The temperatures of these reactions are often >1000 (°C), or even higher

for the reaction of the rare earth metals relevant here. The reagents are typically

ground together in a mortar and pestle in order to reduce the particle size, increasing

surface area and helping to efficiently mix the particles. Mixing is sometimes aided by

grinding the particles in a slurry of volatile solvent such as methanol. Additionally,

pressure is often applied to the mixed powder in order to cause the particles to pack

efficiently, increasing the contact between the flat faces of particles.

Solid state reactions can be done under air or in a controlled atmosphere, but

even in air the high temperatures reached can result in a spontaneous reduction

of metal species. Although high temperatures are ideal for solid state reactions,

reduction of metal species and incongruent melting or sublimation of some reagents

typically dictate an upper temperature limit to solid state reactions. An additional
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consideration for solid state reactions is the vessel the reactions are performed in, as

most species are reactive at these high temperatures. Although platinum or other

noble metals are ideal as crucibles for solid state reactions, other ceramics including

Al2O3 and SiO2 are often used for convenience. Minimal contact between the reactants

and the crucible is desirable (another benefit of pressing the powder mixture instead

of reacting a loose powder). One has to remain conscious of the possibility that

reaction with the crucible could still occur to a significant degree.

It is possible to grow single crystals of metals and ceramics in multiple ways. In

this thesis, the optical floating zone, or zone melting method is used. This is typically

employed as a ‘self-flux’ mode, which means growing a crystal from a melt of the

same composition as the final product. A Quantum Design Image Furnace is used in

this work for crystal growth. Typically, powders of the desired material are pressed

into two rods with a diameter of roughly 8 mm. The rods are suspended by wires

within a quartz tube. Lamps with concentric mirrors focus light into a small roughly

spherical region with a diameter of roughly 1 cm, heating a small region of the rods.

The rods of materials, consisting of an upper ‘feed rod’ and lower ‘seed rod’ are

melted in this focusing region and joined together by a melt. The rods are counter

rotated against each other to improve mixing of the small volume melt, and the rods

are slowly lowered at rates of 1-10 mm/h. Crystallization occurs as the ‘seed rod’ is

lowered out of the melt, with the melt being continually supplied with new material

from the ‘feed rod’. This is an ideal method of growing materials that are congruently

melting, which melt within a wide range of high temperatures (500-2500 or higher

°C). Similar to methods like Czochralski crystal growths, the floating zone method

offers two main advantages over other melt techniques; (1) they are run without a

crucible in contact with the melt preventing any contamination, and (2) they have

a controllable atmosphere as the quartz reaction tube is sealed away from the heat

source of the lamps. This method is known for producing high purity materials as

the ‘moving melt’ can remove impurities from the crystalized product [52].
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2.2 Diffraction

Scattering techniques are powerful tools for investigating structures in condensed

matter. Although these techniques can be applied to any condensed matter system,

they are conventionally used on crystalline systems. The periodicity of a crystal

vastly simplifies the scattering equation as it leads to constructive interference of the

scattered wave at discrete points and yields a relatively simple means of calculating

the scattering pattern from an assumed crystal unit cell. Optimization of an assumed

crystalline unit cell to match an experimental scattering pattern through a least-

squares refinement yields a crystalline structure. X-ray diffraction experiments on

single crystal or powder samples are the most common uses of diffraction, allowing

for the determination of molecular and extended solid structures. Additionally,

probes such as electrons and neutrons can be used in diffraction to change the

scattering interaction. Neutrons in particular allow for the determination of magnetic

structures in a similar way to atomic structures as neutrons have a magnetic moment

that can diffract off of a periodic magnetic field. Atomic structures can also be

determined by neutrons, and neutron diffraction is typically employed to change the

contrast of atoms in a structure. Neutrons scatter off of nuclei and not electric fields,

changing the scattering power of elements in the sample, and allowing for distinction

between elements that may appear similar to an X-ray probe.

In the following sections, techniques of diffraction on non-crystalline, crystalline

and magnetic samples will be discussed for both neutrons and X-rays.

2.2.1 Formalism

Generically, atomic diffraction occurs when a probe wavevector (~k) with a wavelength

similar to interatomic spacings (∼ 0.1-10 Å) scatters off a sample giving an outgoing

wavevector (~k′). If the scattering sample is comprised of a periodic scattering density

ρ(r), constructive interference is observed at particular scattering angles between ~k′

and~k. This is commonly presented in the simple expression of Bragg’s law [53]:

2dsinθ = nλ (2.1)
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Where d is the periodicity of the scattering sample, θ is half of the scattering

angle between the wavevectors~k and ~k′, λ is the wavelength of the wavevectors

and n is an integer. While Bragg’s law is useful for defining the basic scattering

condition, in reality there are many scattering conditions that a lattice can satisfy. The

relative intensities and positions of these scattering conditions allow us to calculate

the structure of a sample.

FIGURE 2.1: Visual depiction of Bragg’s law. The emphasized dis-
tances of dsinθ where d is the interplane distance (blue) are the addi-
tional distance traveled by the second wave path (waves in orange).
This additional distance gives rise to the factor of 2dsinθ in equation

2.1. The Black lines represent periodic lattice planes.

From a predefined unit cell, with lattice vectors ~a1, ~a2, ~a3 (see [54] for a review of

unit cells), a reciprocal lattice is defined:

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3
: ~b2 = 2π

~a3 × ~a1

~a1 · ~a2 × ~a3
: ~b3 = 2π

~a1 × ~a2

~a1 · ~a2 × ~a3
(2.2)

A scattering vector ∆~k is defined from the incoming and outgoing wavevectors:

∆~k = ~k′ −~k (2.3)

The fundamental scattering function, the structure factor is given by [53]:

F(∆~k, t) ∝ e−iωt
∫

V
ρ(r)ei∆~k·~rdV (2.4)

where eiωt is an undetermined phase that results from the Fourier transform of the

scattering density ρ(r), and the volume V is the volume of the scattering sample.
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Importantly, the scattering density ρ(r) is dependant on the probe used and the scat-

tering sample. The term ei∆~k·~r gives the scattering direction and associated intensity

of the outgoing waves, at a point~r in the sample, that has a scattering density ρ(r).

This term is integrated over the entire sample volume. Thankfully, this simplifies

significantly under a periodic lattice. The intensity of a scattered wave is given by

F( ~∆k, t) · F( ~∆k, t∗) yielding [53]:

I(∆~k) ∝ |
∫

V
ρ(r)ei∆~k·~rdV|2 (2.5)

To simplify to a periodic lattice we define a periodic scattering vector from ∆~k:

~Ghkl = h · ~b1 + k · ~b2 + l · ~b3 (2.6)

Where h,k,l are integers that give all of the whole number multiples of the recip-

rocal lattice vectors and ~G defines the reciprocal lattice and replaces ∆~k for crystalline

systems. In a periodic system the term ei∆~k·~r is zero when integrated over the volume

except at periodic points in the lattice when ∆~k = ~G. This allows for a simplification

of the integral form to the crystalline diffraction intensity given by:

Ihkl ∝ |
N

∑ fN( ~Ghkl)ei2π( ~Ghkl ·~rN)|2 (2.7)

Which refers to the diffraction intensity for a diffraction peak (h,k,l). The term N

refers to an atom N at position~rN within the unit cell and the function is summed

over all atoms within the unit cell. The form factor fN( ~Gkhl) is a scattering vector

dependant intensity function that gives the scattering power of each species in the

unit cell. If the scattering species does not act as a point scatterer, we define a form

factor as the Fourier transform of the spatial scattering density ρ(r):

f (∆~k) =
∫

V
ρ(r)ei∆~k·~rdV (2.8)

Practically this is typically represented by an analytical approximation, as a series

of weighted Gaussian decay functions [55]:
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f (∆~k) = T(~G)∑
i

aie−bi(|∆~k|2) + c (2.9)

Where the parameters ai, bi and c are empirical constants of the scattering species.

The term T(~G) however is a sample and temperature dependant thermal factor that

represents the broadening of the scattering distribution ρ(r) due to the random

displacement of the atoms from their idealized crystal positions (~rN) either due to

thermal vibration or quenched disorder. This thermal displacement term can be given

as an anisotropic term if the atoms displace disproportionately in some direction or

an isotropic term to simplify the expression [55].

Taniso(~G) = e−(B11h2+B22k2+B33l2+2B12hk+2B13hl+2B23kl) (2.10)

Tiso(θ) = e−
Bisosin2θ

λ2 (2.11)

The terms Bij for the anisotropic case or Biso for the isotropic case are the thermal

displacement parameters. Other notations use U, the mean-squared displacement

instead of B with the relationship U = B/8π2 [56].

There are multiple nomenclatures and units used to describe both ∆~k and |∆~k|

used here and in the literature. The relevant scattering terms used in this work are:

2θ(°)

|~s| = 1
d
(Å
−1
)

~Q = 2π~s (Å
−1
)

~G = (h, k, l) (reduced lattice units, r.l.u.)

Briefly, 2θ is twice the scattering angle in Bragg’s law, this value is typically collected

directly in monochromatic wavelength experiments. The value 2θ is not normalized

to different wavelengths so often s or 1/d are used. The variable Q, referred to as

momentum transfer, is often used in inelastic related work and is equivalent to the

magnitude of ∆~k in neutron scattering. The reduced lattice units ~G are often used in

single crystal data to reduce Bragg peaks to their integer multiples.
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2.2.2 X-ray Diffraction Experiments

X-ray diffraction experiments can be performed using powder and single crystals.

The major difference between the two is that single crystal experiments give ~Ghkl by

rotating through all of reciprocal space in φ, ω, θ (where φ and ω are the crystal’s polar

rotation coordinates), whereas powder only gives | ~Ghkl| over the diffraction angle

(θ) dimension. This integration over two dimensions tends to convolute Bragg peaks,

and often doesn’t allow for a simple extraction of their intensities. It is however much

easier to prepare a sample for powder diffraction. All x-ray data presented here will

be powder measurements, from a laboratory setup.

A laboratory diffractometer typically uses a rotating anode tube with a particular

metal anode (in this thesis a copper anode is used). Electrons accelerate from the

cathode to the anode and displace electrons leading to characteristic relaxations,

yielding sharp peaks of x-ray intensity over a roughly flat background of white x-rays.

These intense peaks of characteristic radiation are used for monochromatic x-ray

experiments. Monochromatic x-rays are achieved here through using a diffraction

monochromator of the (311) face of a Ge crystal, tuned to the Kα1 emission of the

copper anode (1.540560 Å) which for the experiments presented here also acts as a

focusing aperture.

FIGURE 2.2: Depiction of an X-ray diffraction experiment in Guinier
transmission geometry, the shaded circle represents the focusing circle
where the detector imaging plate would be placed. This figure was

reproduced from D. Siddons et al., 2007 [57] with permission.

There are multiple geometries scattering experiments can use; in this thesis

Guinier transmission geometry is used (Fig. 2.2) [57]. In this geometry, slits and

collimators focus the x-ray beam to converge at the detector length without any
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focusing slits after the sample. This geometry tends to provide very high resolution at

low angles while allowing for a large detector bank as no slits are used after the beam

interacts with the sample, improving experiment times [57]. This technique often

results in highly asymmetric peaks compared to other geometries. The sample is

mounted as thinly as possible on a flat film of amorphous mylar to reduce absorption.

The detector used in this thesis is a Huber G670, with a fixed imaging film detector.

A thermoluminescent film collects x-rays over an experimental run, and is read off by

stimulation using a red laser resulting in blue luminescence (which is read off by a

photomultiplier tube).

2.2.3 Rietveld Method

The Rietveld method of solving crystal structures is an optimization technique that

takes a proposed unit cell and compares a calculated scattering pattern to the total

experimental data pattern. The method of fitting raw experimental data will be

discussed here. There are many programs used for pattern fitting, FullProf Suite [55]

and GSASII [56] are used in this thesis. The general intensity of a powder pattern as

calculated by FullProf for a proposed unit cell is given by [55]:

ycalc,i = ∑
φ

Sφ ∑
h

Iφ,hΩ(Ti − Tφ,h) + bi (2.12)

The subscript i refers to a point in the diffraction pattern, often in 2θ, and ycalc,i

is determined for every point i in the data pattern that matches to experimental

data. The subscript φ refers to a phase, as multiple distinct unit cells (phases) can

be refined simultaneously in powder data consisting of multiple phases, and S is

the scale of that phase. The subscript h refers to a Bragg peak. Only Bragg peaks

near the point i (by some input margin) are used at any particular point. The Bragg

intensity Iφ,h is the intensity of a Bragg peak given by the structure factor squared,

and modified by several experimental factors; the Lorentz polarization factor (for

X-rays), the absorption correction, and a preferred orientation function. The peak

function Ω gives a real peak width to the point function Iφ,h. There are multiple

peak functions in use that are often specific to instrument configurations, which can

include both instrumental peak resolutions as well as sample specific peak changes
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due to factors like particle morphology or stress and strain peak broadening. For a

detailed overview of the peak modeling in FullProf and GSASII see [55, 56].

These calculated values ycalc,i are optimized against experimental points by a

goodness of fit parameter:

χ2 =
n

∑
i=1

wi(yexp,i − ycalc,i)
2 (2.13)

where χ2 is the goodness of fit parameter, and wi is a weighting parameter (that

is 1
σ2

i
for a single pattern fit, where σi is the standard deviation error at point i). A set

of variable parameters (αk) are defined in order to minimize χ2. Minimization of χ2 is

performed iteratively using the Gauss-Newton least squared refinement method in

FullProf [55].

To compare the quality of fits between different refinements there are many

different profile factors that can be used to define the fit quality, here the weighted

profile factor Rwp is most commonly used [55]:

Rwp = 100(
∑n

i=1 wi|yexp,i − ycalc,i|2

∑n
i=1 wiy2

exp,i
)

1
2 (2.14)

This weighted error function allows for comparison of the quality of different

fits between different data sets, with the weight fraction is taken from the varience

w = 1
σi

. As Rietveld refinement uses meaningful parameters related to the unit cell of

the underlying crystal phases, we can use this least-squared regression to extract our

crystal structures.

2.2.4 Neutron Diffraction Formalism

In addition to X-rays, neutrons are also used for diffraction. While X-rays are typically

preferred for their higher flux and accessibility, trouble can arise in distinguishing

between elements with similar electronic environments, or detecting small elements

in the presence of large, electron dense elements. Neutrons provide a different

contrast of atoms from X-rays based on their nuclear scattering intensity, instead

of their electron count. Neutrons are also the go-to probe for magnetic structure

determination, with well defined scattering amplitudes.
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To achieve an appropriate wavelength near interatomic spacings, neutrons require

kinetic energies on the order of meV, as opposed to photon energies in the range of

keV. Due to the convenience of defining the neutron wavelength in different ways for

different applications, multiple notations can be seen for the neutron energy [58].

E =
81.81

λ2 = 2.072|~k|2 = 5.227|~v|2 = 0.08617T (2.15)

This shows the relationship between the kinetic energy of the neutron (in meV) to

the wavelength λ (in Å), the wavevector~k (in Å−1), the neutron velocity ~v (in km/s)

and the neutron temperature scale (in Kelvin) given by kBT. Neutrons from a reactor

source are typically moderated to a specific temperature and produce a Maxwellian

distribution of energies around that temperature. Conveniently, a neutron at 300 K

will have an appropriate wavelength maximum for diffraction purposes at 1.78 Å,

meaning that neutrons with a thermal distribution of energies are perfectly good to

use for diffraction.

Whereas X-rays scatter off the electron density in solids, neutrons scatter off of

the magnetic moments and nuclei of a sample. The nuclear scattering is defined by

the scattering length b. However as b varies for different isotopes of an element and

even for different nuclear spin states within a specific isotope, there are typically

two components to the scattering, a coherent scattering cross section given by the

mean value of b squared (〈b〉2) and incoherent scattering cross section, dictated by

the variance of b. Elastic neutron nuclear scattering intensities for a point~r are given

by [58]:
dσcoh

dΩ
= N 〈b〉2 ∑

~r
ei~Q·~r (2.16)

dσinc

dΩ
= N(〈b2〉 − 〈b〉2) (2.17)

Where σ is the scattering cross section (coherent or incoherent) such that σcoh =

4π〈b〉2, and Ω is the solid angle of scattering, which will be finite in real experiments,

and N is the number of scattering species. This is generalized to include multiple

species within a periodic unit cell such that the total diffraction equation gives [58]:

Ihkl = N
(2π)3

V
T( ~Ghkl)|∑

N
bNei ~Ghkl ·~rN |2 (2.18)
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for nuclear scattering where b in this case is defined as the coherent b, V is the

volume of the unit cell. Conveniently there is no form factor in this expression, as the

nuclei are point scatterers. However, the thermal displacement term T must still be

considered. One result of this is that neutrons maintain a high peak intensity out to

large values of (hkl) where X-rays fall off in intensity as a function of |~Q|.

The benefit of neutrons for nuclear crystallography is that they present a different

contrast for each atom. Whereas an atom’s X-ray scattering power scales with fN

which roughly scales with the number of electrons, an atom’s neutron scattering

power scales with bN which does not increase monotonically with the element num-

ber, but varies wildly across the periodic table. This can in some cases allow for more

accurate refinement of particular atomic positions and displacements compared to

X-rays.

Neutrons also diffract off of the magnetic moments of unpaired electrons. The

neutron-electron coupling constant is -0.27·10−27 cm. The complicating factor here is

that unpolarized neutrons only diffract off of the component of the magnetization

perpendicular to the scattering vector ~Q⊥. The structure factor of a reflection then is

[59]:

FM(G) = ∑
N

ei~Gn·~rn ~Gn × [ ~Mn(G)× ~Gn]Tn(G) (2.19)

where ~Mn(G) is the vector form factor of the nth ion in the unit cell, that includes

both the magnetization vector and the magnetic form factor of the ion. As a magnetic

structure is a collection of vectors, instead of a collection of point scatterers, it is useful

to use symmetric representational analysis to interpret magnetic structures.

2.2.5 Magnetic Structure Refinement

First, we would like to relate the magnetic structure to its underlying crystal unit cell.

A propagation vector k is defined as the periodicity of the magnetic structure to the

unit cell. A propagation vector k = (0,0,0) maps directly on to the underlying unit cell

and a propagation vector k = ( 1
2 ,0,0) would map onto two unit cells in the a1 lattice

and directly onto the unit cell in the other two directions. Programs such as SARAH

[60] are able to generate a character representation or the permutation group of rank
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3N of the unit cell with N magnetic ions, and decompose this representation into the

irreducible representations of the space group [61].

Γmag = ∑
v

nvΓv (2.20)

nv =
1

n(Gk)
∑

g∈Gk

χΓmag(g)× χΓv(g) (2.21)

Where Γmag is the total representation, and Γv is a particular irreducible repre-

sentation that is repeated n times in the total representation. Equation 2.21 shows

the decomposition of the total representation into the irreducible representations

that are invariant under the propagation vector k, Γv(g) where Gk is the group of

operators that are invariant under the propagation vector k, and χ is the character of

the irreducible representation for that symmetry operator.

This decomposition yields a set of basis function ψ belonging to the symmetry

permissible irreducible representations Γ. Magnetization on a particular site is defined

by basis vectors, the symmetry translation, and the propagation vector translation by

[61]:

~mi = ∑
v

Cv ~ψi,ve−2π~k·~ti (2.22)

where ~mi is the moment on the ith atom in the unit cell, Cv is the fractional

contribution of the vth basis vector ψi,v which is modulated by the propagation vector

~k and the translation of the ith ion from the origin~ti. Refinement software like FullProf

Suite can use this symmetry representation to simplify the magnetic structure factor

to [55]:

Fm(Ghkl + k) = p ∑
j

f j(Ghkl + k)Sk,je2πi(Ghkl+k)rj (2.23)

This is a summary of the structure factor used in FullProf Suite [55], where p is a

normalization constant of 0.2695 µB, fi is the form factor, and Sk,j is the fourier compo-

nent of the magnetization matrix, that is dependant on the irreducible representation

components Cv and a refined phase ψk, that is only relevant for complex basis vectors.
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2.2.6 Pair Distribution Functions

Pair distribution function (pdf) analysis is a method of analyzing total scattering data

when Bragg scattering and crystal modeling is insufficient. In disordered crystalline

materials that still contain Bragg peaks but also show short-range correlations or

non-Gaussian distributions of local distortions that cannot be modeled by the thermal

displacement factor T(G), the intensity between Bragg peaks can also be considered.

To simplify this total scattering data a pair distribution function is defined by [62]:

G(r) =
2
π

∫ Qmax

Qmin

Q(S(Q)− 1)sin(Qr)dQ (2.24)

S(Q) =
Icoh(Q)−∑i ci 〈b〉2i

∑i ci 〈b〉2i
+ 1 (2.25)

where G(r) is the pair distribution function. G(r) is the Fourier transform of the

reduced scattering intensity S(Q), which is normalized to the scattering intensity of

the material. The cofactor ci is the fractional atomic concentration of each species i in

the material, and 〈b〉2 is the coherent scattering power of that material.

The pair distribution function does not include any extra information from the

total scattering I(Q), but it can allow for an easier visual interpretation of the data by

viewing it as a real-space function in r (Å), and can allow for the fitting of data to

be weighted more strongly towards short-range correlations, and the distribution of

atoms over short-ranges. The intensity of the pair distribution is given by [63]:

G(r) = ∑
m,n

cmnnbmbn(
nmn(r)

4πr2ρmdr
− 1) (2.26)

where ci are the the atomic fractions, nmn is the number of atoms of type m at a

distance [r,r+dr] from an atom n, which is normalized to the number of atoms m per

unit volume ρm.

2.2.7 Polarized Neutron Diffraction

Polarized neutron analysis takes advantage of the differing cross section of interaction

between neutrons in different polarizations and spin-states with different neutron

interactions that can occur in order to deconvolute them. While it has a number of
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applications, including the ability to distinguish between different ordered domains

or chiralities that unpolarized scattering would see as identical, this work will focus

on the isolation of magnetic scattering from nuclear scattering in order to simplify

magnetic analysis.

A neutron that is initially polarized in an applied magnetic field in the z direction,

will split into two states which will be referred to as + and -. A neutron interacting

with a sample can undergo a spin flip, (+- or -+), or no spin flip (++ or - -). A review

of the spin dependant scattering amplitudes are given in J.R. Stewart et al. [64], but

the important results are:

dσ

dΩ
= (

mn

2πh̄2 )
2 〈U|U〉

U = 〈k′S′|V(Q)|kS〉

U++ = bcoh − pM⊥z + bii +
1
3

bsi

U−− = bcoh + pM⊥z + bii +
1
3

bsi

U+− = −p(M⊥z + iM⊥y) +
2
3

bsi

U−+ = −p(M⊥z − iM⊥y) +
2
3

bsi

(2.27)

where U is the scattering amplitude, mn is the mass of the neutron, h̄ is Planck’s

constant, S is the spin state of the neutron (+ or -), k is the scattering vector, V(Q) is the

interaction potential, bcoh is the coherent nuclear scattering length, bii is the incoherent

scattering length due to the isotope distribution of the ions, bsi is the incoherent

scattering length due to the nuclear spin distribution, p is the magnetic interaction

length 0.2695 µB and M⊥i is the component of the magnetization perpendicular to

Q in the i polarization direction. Of importance here is that none of the nuclear

coherent scattering appears in the spin-flip measurements. In the single crystal

experiments performed in this work a simple z-spin flip measurement is capable of

isolating the M⊥z− iM⊥y component of the magnetization (on top of a flat incoherent

background).

One of the most powerful applications of polarized scattering is on powder sam-

ples with small, antiferromagnetic domains. The so called ‘paramagnetic’ approxima-

tion assumes no correlation between the x,y,z components of the magnetization, and
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allows for xyz polarization decomposition. We define a two-dimensional scattering

experiment with detector bank measuring Q over the range.

Q = [cosα, sinα, 0] (2.28)

Where α is the in-plane scattering angle. Neutron polarization measurements

are taken with incident polarizations along the x, y and z directions, yielding the

polarization dependant scattering of a paramagnetic-like sample [64]:

dσ

dΩ

ns f

x
=

1
2

sin2α
dσ

dΩ mag
+

1
3

dσ

dΩ si
+

dσ

dΩ nuc

dσ

dΩ

s f

x
=

1
2
(cos2α + 1)

dσ

dΩ mag
+

2
3

dσ

dΩ si

dσ

dΩ

ns f

y
=

1
2

cos2α
dσ

dΩ mag
+

1
3

dσ

dΩ si
+

dσ

dΩ nuc

dσ

dΩ

s f

y
=

1
2
(sin2α + 1)

dσ

dΩ mag
+

2
3

dσ

dΩ si

dσ

dΩ

ns f

z
=

1
2

dσ

dΩ mag
+

1
3

dσ

dΩ si
+

dσ

dΩ nuc

dσ

dΩ

s f

z
=

1
2

dσ

dΩ mag
+

2
3

dσ

dΩ si

(2.29)

where the superscript nsf refers to non-spin-flip, and sf, spin-flip. The subscripts

refer to either the polarization direction, x, y, z or the scattering component, magnetic

(mag), spin incoherent (si) or the nuclear coherent and isotope incoherent (nuc). It

is important to know that if the sample is ferromagnetic with meaningfully sized

domains, this approximation won’t work due to depolarization of the beam, and

even in long-range ordered antiferromagnets this can break down due to the isotropic

magnetization assumption breaking down. If this does hold, a linear combination of

these experimentally measured cross sections can be taken to yield [64]:



28 Chapter 2. Methods

dσ

dΩ mag
= 2

dσ

dΩ

x

s f
+ 2

dσ

dΩ

y

s f
− 4

dσ

dΩ

z

s f

dσ

dΩ mag
= 4

dσ

dΩ

z

ns f
− 2

dσ

dΩ

z

ns f

dσ

dΩ

y

ns f

dσ

dΩ nuc
=

1
6
(2

dσ

dΩ Tns f
− dσ

dΩ Ts f
)

dσ

dΩ si
=

1
2

dσ

dΩ Ts f
− dσ

dΩ mag

(2.30)

where the subscripts Tsf, and Tnsf refer to the total spin-flip and non-spin-flip

respectively. This decomposition of the experimental data to isolate the magnetic

scattering can be incredibly useful, especially when trying to fit magnetic diffuse

scattering in liquid-like magnetic systems, as diffuse scattering is difficult to fully

isolate in traditional powder measurements.

2.2.8 Neutron Diffraction Experiments

Neutron diffraction experiments utilize neutrons from one of two sources. A fission

reactor source which produces neutrons as a results of the fission of 235U and the decay

of its daughter products. Fission reactors used for neutron production in scattering are

surrounded by a room temperature moderator (typically water), producing ‘thermal’

neutrons with a Maxwellian distribution [58]:

P(λ) ∝
1

λ3 e
− h

2kBTmλ2 (2.31)

where P is the probability distribution, h is Planck’s constant and m is the neutron

mass. The thermal distribution gives a useable intensity of neutrons in a rough

wavelength range of 0.5-4 Å. For some applications, additional moderators are used

to modify this distribution with hot or cold moderators. Importantly, fission reactors

are a continuous source of neutrons. Spallation sources of neutrons use linear proton

accelerators to generate high energy protons, which are typically pulsed on a heavy

nuclei target. This releases a short burst of neutrons, over roughly 1 µs. The distri-

bution of neutrons from this source follows a near Maxwellian distribution at long

wavelengths, but there is a much greater number of neutrons at short wavelength or
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high energies. This distribution of ‘hot’ or ‘epithermal’ neutrons is often left unmoder-

ated for certain applications. In diffraction these ‘hot’ neutrons provide better access

to high Q data which are useful in total scattering experiments. The pulses of a spal-

lation source are typically in the range of 10-100 Hz, which allows for time-of-flight

measurements to be used instead of traditional diffraction measurements.

Stewart et al.

Volume 42 | Part 1 | February 2009 | Pages 69–84 | 10.11107/S0021889808039162

FIGURE 2.3: This is a figure of the D7 diffractometer at the ILL, re-
produced from J.R. Stewart et al., 2009 [64], in compliance with the
relevant publication policy. This diffractometer is a diffuse scattering
polarized diffractometer, but also acts as the rough layout for a generic
constant wavelength diffractometer, with the exception of the chopper

and polarization optics.

The typical neutron diffraction experiment looks something like Figure 2.3, a

schematic of the D7 polarized diffractometer. Ignoring the chopper and polarization

optics, the typical single wavelength diffractometer monochromates the beam with a

crystal monochromator (often graphite), and the incident wavelength can be altered

by rotating the monochromator and the sample position. An angle dependant detector

array surrounds the sample, typically constructed of 3He charge capture tubes, that

capture neutrons and create ionized products, which can be observed electronically.

The Figure 2.3 also shows the added complexity of neutron polarization analysis for
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the xyz decomposition described in equation 2.30. A supermirror is a heterostructure

of ferromagnetic and non-magnetic layers, that increases the critical scattering angle

of correctly polarized neutrons, and allows incorrectly polarized neutrons to pass

through, bending a beam of highly polarized neutrons with a polarization fraction >

99%. Mezi flippers and xyz coils are wire coils used to generate a magnetic field to

cause a neutron to precess into the desired polarization direction.

FIGURE 2.4: This is a figure of the NOMAD total scattering diffrac-
tometer at the ORNL, reproduced from J. Neuefeind et al., 2012 [65],
with relevant permissions. This instrument is a wide wavelength
time-of-flight diffractometer, used for diffraction and total scattering

measurements.

Although monochromation of the neutrons is required for continuous sources,

pulsed sources are able to take advantage of a range of neutron wavelengths simulta-

neously, often increasing the neutron flux on sample dramatically. Figure 2.4 shows

the setup of the Nanoscale Ordered MAterials Diffractometer instrument (NOMAD)

at the Oak Ridge National Laboratory, a time of flight diffractometer, commonly used

for total scattering studies.

As the wavelength of a neutron is related to its velocity (eq. 2.15) and the velocity

is reasonable to measure on a macroscopic time scale (∼ 101 km/s), the wavelength

of a neutron can be determined based on the time it takes to reach a detector as long

as the start of a pulse is well defined. Figure 2.4 shows the series of choppers leading
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up to the sample, used to define the incoming pulse (the T0 chopper) and define

an lower and upper wavelength used for the experiment, in order to prevent frame

overlap between multiple pulses. The detector bank here is in a series of roughly

constant angle ring detectors around the sample whose angles are renormalized such

that the final data can be seen as a function of each constant-angle detector ring. Due

to the instrument design, data are often shown with intensity as a function of neutron

arrival time at a fixed angle as opposed to the conventional intensity as a function of

angle.

2.2.9 Reverse Monte Carlo Analysis

Reverse Monte Carlo (RMC) analysis is a ‘big box’ method of modeling disordered

materials from total scattering data. A box of NxNxN unit cells of an idealized

structure are used to model a scattering pattern from a pair correlation calculation of

the scattering intensity. The species in this box are randomly perturbed to improve the

fit to the experimental data, using the goodness of fit χ2 as an indicator. Perturbations

that improve the fit (∆χ2 < 0) are accepted and further improved upon, whereas fits

that worsen (∆χ2 > 0) the fit are accepted with a probability, ∝ e(−∆χ2), in order to

allow the fit to escape from false minima in the fitting routine.

The intensity of nuclear neutron scattering from a ‘big box’ model for a powder

sample can be calculated by [63]:

I(Q) =
1
N ∑

i,j
bibj

sin(Q|rij|)
Q|rij|

(2.32)

Where N is the number of atoms, i, j are indices for all of the atoms in the model,

and rij is the distance between atoms i and j. This becomes more complicated in

magnetic systems where the scattering is dependant on the spin vectors, J. Paddison

et al. give a powder simplified version [66, 67]:

I(Q) ∝ f (Q)2

[
2
3
+

1
N ∑

i,j

(
Aij

sin(Q|rij|)
Q|rij|

+ Bij

(
sin(Q|rij|)
(Q|rij|)3 −

sin(Q|rij|)
(Q|rij|)2

))]
(2.33)
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Aij = Si · Sj − (Si · r̂ij)(Sj · r̂ij)

Bij = 3(Si · r̂ij)(Sj · r̂ij)− Si · Sj

While there are programs that are capable of performing RMC analysis, such as

RMCProfile and spinvert [63, 66], one of the more difficult aspects is interpreting the

results. Fundamentally the resulting fit from RMC is an overfit pattern to a model in a

false minimum, due to the large number of parameters used to develop the fit. This is

still reasonable as fitting a disordered structure inherently implies that the system is

in a false minimum as well. To further verify that the fit is representative of the under-

lying system, the RMC fit is usually repeated multiple times with varying (or entirely

random) starting configurations, to show a consistent result. To interpret the results,

the large derived structures need to be reduced to a meaningful average. However,

this is often system dependant as to what values are most important. Commonly

in magnetic systems the correlation function 〈Si · Sj〉 is given as a function of rij in

order to determine correlation lengths, although more details can often be extracted

on a system dependant basis. Additionally, RMC systematically underestimates most

correlation values, due the randomly accepted, ‘bad moves’ allowed within the fit.

Despite the somewhat limited conclusions that can be drawn from RMC analysis, it

is a powerful tool that is capable of fitting disordered systems without making initial

assumptions about the system that might give biased results.

2.3 Neutron Spectroscopy

2.3.1 Time-of-Flight Spectroscopy

There are two common ways of performing neutron spectroscopy: the triple axis

method and the time of flight method. These methods are effectively the same as the

diffraction methods for constant wavelength and time of flight, with an additional

energy selection process included. In triple axis experiments, a constant wavelength

diffraction setup has a second monochromator added after the sample to select a

final wavelength, giving E f alongside Ei for energy resolution. This is a cumbersome

method if a large range of (Q,E) space is to be investigated, making time of flight

methods better. Time-of-flight methods use a series of choppers not just to define a
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broad-band pulse like in diffraction time-of-flight, but to monochromate the beam as

well. This allows E f to be calculated based on the sample to detector travel time. This

method allows for the simultaneous collection of E f values for a single Ei.

2.3.2 Rare Earth Crystal Electric Fields

The common discussion of crystal fields is typically restricted to the strong field or

intermediate field cases common in transition metals. In the strong field case the

crystal electric field (CEF) energy is greater than the Pauli repulsion, causing spin

pairing dictated by the crystal field. The intermediate field case has a CEF energy

weaker than the Pauli repulsion, so the crystal field only changes the symmetry and

multiplicity of the spins but still causes the quenching of spin-orbit coupling. In the

weak field case, relevant here, the CEF energy is weaker than the spin-orbit coupling,

such that the crystal field is a perturbation of the Hund’s rule J: J = |L-S| for less

than half filled shells and J = |L+S| for greater than half filled shells. In the weak

field case the CEF splits the ground state J multiplet into mj states, although small

contributions from other J states can contribute, these multiplets are typically labeled

as 2S+1LJ .

In the weak field and intermediate field case the crystal electric field splitting in

rare earths can be treated by the Hamiltonian [68]:

HCEF =
2L

∑
k=0

k

∑
q=−k

Bk
qCq

k(θ, φ) (2.34)

Ck
q(θ, φ) =

√
4π

2k + 1
Yk,q(θ, φ) (2.35)

Where Bk
q are the variable crystal field parameters, called the Wybourne parame-

ters and Ck
q are the Wybourne tensor operators which are a function of the spherical

harmonics Yk,q(θ, φ). The quantization numbers k and q span from k = (0,2l) or (0,2J)

whichever is smaller, and q = (-k,k) with l = 3 for rare earth systems. One of the

reasons this method is used is due to the symmetry reduction of the crystal field

parameters Bk
q that can be performed, with as few as 2 parameters for a cubic system

[69]. Six crystal field parameters are required to describe a hexagonal symmetry
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including D3d and D3 which are relevant to this work. This Wybourne formalism is

related to the Stevens’ formalism which is often used for determining the underlying

eigenvectors, although the notation can become confusing. The Stevens’ operators

are given by [70]:

HCEF =
2L

∑
k=0

k

∑
q=−k

Bq
kOk

q(Jx, Jy, Jz) (2.36)

Note here that Bq
k and Bk

q are not equivalent but related by Bq
k = λkqθkBk

q. The

Stevens’ operators Ok
q(Jx, Jy, Jz) are a function of the orbital operators allowing the

eigenvectors 〈mJ〉 to be determined, more simply. The values for λ, θ as well as the

Stevens’ operators and the details of these calculations are found throughout several

works [58, 68–71].

Once the eigenvectors Γ = {c1m−J : cnmJ} have been determined the inelastic

neutron cross section is given by [58]:

d2σ

dΩdω
∝

k′

k
f 2(Q)| 〈Γm| Ĵ⊥|Γn〉 |2 × δ(h̄ω + ∆E) (2.37)

| 〈Γm| Ĵ⊥|Γn〉 |2 =
2
3 ∑

xyz
| 〈Γm| Ĵxyz|Γn〉 |2 (2.38)

That is, there are dispersionless (Q,E independent) excitations at the eigenvalues

given by δ(h̄ω + ∆E) that have a Q dependant intensity given by the form factor

squared, with a transition intensity given by the operator matrices of each state (these

values are tabulated in [70]). Programs like SPECTRE [68] and McPhase [71] are able

to perform rare earth crystal field calculations including least-squared regression fits

to inelastic neutron scattering energies and intensities.

2.3.3 Magnetic Excitations

A discussion of measuring magnetic excitation with neutron will be limited here, as

methods tend to be quite application dependant, and the work here largely relies

on comparison to previously published work. In general, the neutron scattering

relationship for magnetic excitations is given by the dynamic correlation function

[72] :
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S(k, ω) =
1

2πN ∑
i,j

eik(ri−rn)
∫ ∞

−∞
eiωt 〈SiST

J (τ)〉 dτ (2.39)

Where τ represents (x,y,z), and 〈SiST
j (τ)〉 is the expected product of the spin states

i,j at an excitation energy ω. Semi-classical methods like linear spin wave theory

[72] are able to model the magnetic excitations of an ordered system (magnons).

For disordered systems on the other hand the excitation can be broad in nature and

can’t be easily explained by linear spin wave theory. In these cases the dynamic

susceptibility, obtained from a model can be used with [58]:

S(Q, ω) ∝ (1− e
h̄ω

kBT )−1χ′′(Q, ω) (2.40)

In fact the dynamic susceptibility (χ′′) is a commonly reported value for neutron

intensity and is related to the cross section as d2σ
dΩdω = (1− e−E/kBT)−1 k

k′χ
′′(Q, ω).

Relevant to this work is a method of normalizing magnetic excitations to the

incoherent background, by integrating energy over a constant Q-range, away from

any Bragg scattering, that allows for a determination of the dynamic magnetization.

[73]:

M(Q, ω) =
13.77(b−1)µ2

B I(Q, E)
| f (Q)|2Nk f R0

Nk f R0 = 4π

∫
I(Q, E)dE
∑i σinc

i

(2.41)

The magnetization per site over the integrated energy range M(Q,ω) can be

normalized to the intensity of the excitation
∫

I(Q, E)dE and the incoherent scattering

of the sample ∑i σinc
i . Although this is assumed to be for a constant k f scan on a triple

axis, it can be applied to a constant Ei scan such as on a time-of-flight instrument,

correcting for k f .
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FIGURE 2.5: This figure shows a schematic for the Vibrating Sample
Magnetometer (VSM) module for a Quantum Design Physical Property
Measurement System. (left) The sample pickup coil, that detects the
magnetization from the vibrating sample within. (right) The linear
transport motor, that oscilates the sample in the pickup coil. This figure
was modified from the Quantum Design Physical Property System,

Vibrating Sample Magnetometer promotional material [74].

2.4 Magnetometry

2.4.1 VSM Experimental Setup

In this thesis a vibrating sample magnetometer (VSM) is commonly employed. The

VSM (Fig. 2.5) places a sample in a DC magnetic field H, and the sample vibrates in

the direction of the field ẑ with an amplitude A, and a frequency f, typically 3 mm and

40 Hz respectively. The vibration takes place inside of a pickup wire coil generating

an oscillating voltage given by:

Vcoil =
dΦ
dt

=
dΦ
dz

dz
dt

Vcoil(t) = 2π f CmAsin(2π f t)
(2.42)

where Φ is the magnetic flux, z is the vertical position of the sample in the pickup
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coil, C is a calibrated coupling constant, m is the sample magnetization, A is the

vertical amplitude of oscillation, f is the frequency of oscillation. The Quantum

Design VSM used here is capable of detecting magnetization of ∼10−6 (emu), with a

measurement frequency of ∼1 (s). Both the magnetization (m) and the susceptibility

χ = m
H are used in this work.

2.4.2 Direct Current Magnetometry

DC magnetometry can be used to probe for magnetic phase transitions as a function

of field and temperature. It can be used to determine the saturation moment of a

system, by normalizing the magnetization per ion. Commonly the Curie-Weiss law is

used to analyze the temperature dependant magnetization of a paramagnetic phase.

χ =
C

T − θCW
(2.43)

C =
µ0N
3kB

g2 J(J + 1)µ2
B (2.44)

µ(µB) ≈ 2.84

√
C(

emu · K
Oe ·mol

) (2.45)

Fitting the susceptibility χ yields θCW the Curie-Weiss temperature, which is

an indication of the net spin interactions in the paramagnetic phase, and in a non-

frustrated system should be roughly the ordering temperature. The Curie constant

C, is related to the paramagnetic moment µ = g
√

J(J + 1) where g is the Landé

coupling factor.

However, the Curie-Weiss law is only relevant for a paramagnet where the only

relevant energy splitting over the temperature range is the Zeeman splitting. If

excited crystal field states become populated at higher temperatures the Van Vleck

susceptibility has to be used, which can be related to the previously mentioned crystal

field scheme by [27, 68]:
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~χτ =
NAg2µ2

B
Z ∑

τ

 ∑
n,En=Em

| 〈Γn|µτ|Γm〉 |2e−
Em
kBT

kBT
+ 2 ∑

n,En 6=Em

| 〈Γn|µτ|Γm〉 |2(e−En/T − e−Em/T)

En − Em


Z = ∑

n
eEn/kBT

(2.46)

Where Z is the partition function and Γn is the nth crystal field. This can be used to

relate the susceptibility to the crystal field schemes fit by inelastic neutron scattering.

2.5 Specific Heat

The specific heat of a material is used here to identify phase transitions, and as a

direct measure of the thermodynamic properties of a material. The constant-pressure

heat capacity is given by:

Cp =

(
dq
dT

)
p

(2.47)

where q is heat. Assuming Cp = Cv gives C(T) = dU(T)
dT , which is a reasonable

assumption for solid systems with minimal thermal expansion in a vacuum. If the

measurement is of an equilibrium process the specific heat can be related to the

change in entropy by:

∆S =
∫ T2

T1

C(T)
T

dT (2.48)

If a magnetic transition can be isolated, the entropy can be used to measure the

extent of ordering. A fully ordered system with a spin state degeneracy ω will have

an entropy of kBln(ωN) where N is the number of magnetic ions.

2.5.1 Quasi-Adiabatic Method

Specific heat measurements in this work have been performed by the quasi-adiabatic

method. This method measures the specific heat by applying a small heat pulse with

a resistive heater, heating the sample in the range of 0.1-2% of the initial temperature

Ti (for low temperature measurements). The sample sits on a small platform that is
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FIGURE 2.6: This figure shows a schematic for an adiabatic heat ca-
pactiy measurement. For scale, the sample platform used in this
thesis is roughly 5 mm across. The thermal bath here is regulated by
the Quantum Design Physical Property measurement system (PPMS)
cryostat, or Helium-3 cryostat. This figure was modefied from the
Quantum Design Physical Property System heat capacity option user

manual [75].

largely thermally isolated in a vacuum, and connected to a thermal bath by thin wires

(Fig. 2.6). There is still some heat loss during this process, so the relaxation back to Ti

after the thermal excitation is measured giving [75]:

C
dT
dt

= −Kw(T − Ti) + P(t)

P(t) = 0 : T(t) = (Tmax − Ti)e
−Ct
Kw + Ti

(2.49)

where Kw is the thermal conductivity of the wire, and P(t) is the power application

which is constant during the heat pulse and zero during the relaxation period. If

Kw is accurately calibrated, the specific heat can be extracted from the relaxation.

This model assumes good thermal contact between the sample platform and the

sample, which are usually connected by thermally conductive grease. If there is

poor thermal contact, a two exponential function is used that treats the sample and

sample platform independently. This method contains a minimal setup with just a

resistive heater and thermocouple connected to a thermal bath that is convenient for

low temperature measurements. The quasi-adiabatic method can also provide good

temperature resolution if the thermal excitation is reduced.
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Chapter 3

Structure of the Ln2ScNbO7

Charge Disordered Pyrochlores

3.1 Introduction

Synthesis of the Ln2ScNbO7 pyrochlores was first reported by Zouari et al. in 2008

[46], for the lanthanides Ln = Pr, Nd, Eu, Gd, Dy. In 2010 the same group also reported

another set of charge disordered rare earth pyrochlores, the Ln2BSbO7 (B = Sc, Ga,

In) pyrochlores [47]. These pyrochlores contain a lanthanide (III) on the A-site and

a disordered mix of III, V valence ions on the B-site, averaging out to the typical

IV valence found in the conventional Ln+3
2 B+4

2 O7 pyrochlores. Similarly there are

multiple series of A-site charge disordered fluoride pyrochlores that allow for B+2

transition metals to lie on the B-site such as the NaSrB2F7 (B = Mn, Fe) pyrochlores

[44].

Here, additional members of the Ln2ScNbO7 family are presented (Ln = La,

Sm, Tb) and reported, and the growth of large single crystals is discussed. The

crystal structures are refined and the short-range correlations that form due to charge

disorder are investigated through the pair distribution function (PDF) technique.

All of the work in this chapter was performed by the author with the exception of;

data collection and reduction of NOMAD data, which was done through a mail-in

program with the aid of Jue Liu (ORNL), and some crystal growths which were per-

formed as an exercise for undergraduate students Nathan Hiebert, Megan Rutherford,

and Kelsey Duncan, supervised by the author. Some of the data in this section have

been reproduced from C. Mauws et al., 2021 [76].
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3.2 Preparation

Powder samples of the Ln2ScNbO7 pyrochlores, Ln = La, Pr, Nd, Sm, Gd, Tb, Dy were

prepared by conventional solid state synthesis. Powder reagents (Alfa Aesar Ln2O3 =

99.99%, Sc2O3 = 99.9%, and Nb2O5 = 99.999% purity, metals basis) were mixed and

ground in mortar and pestle in stoichiometric ratios following;

Ln2O3 +
1
2

Sc2O3 +
1
2

Nb2O5 → Ln2ScNbO7 (Ln = La, Nd, Sm, Gd, Dy) (3.1)

1
3

Pr6O11 +
1
2

Sc2O3 +
1
2

Nb2O5 → Pr2ScNbO7 +
1
3

O2 (3.2)

1
2

Tb4O7 +
1
2

Sc2O3 +
1
2

Nb2O5 → Tb2ScNbO7 +
1
4

O2 (3.3)

Samples were pressed into ampoules under 30 MPa of pressure and fired in alu-

mina crucibles at 1400 °C in 16 hour intervals under air with intermediate regrindings

until phase pure (except for La2ScNbO7 which was heated at 1450 °C). The smaller

lanthanide cation species were typically phase pure after one firing interval (Ln =

Gd, Tb, Dy). The larger cations required additional firings increasing with cation size

up to La2ScNbO7 for which phase purity was never achieved, and an impurity that

indexed to LaNbO4 remained at roughly 5% ( wt.
wt. ), varying by sample. As the sample

itself refined consistently to the pyrochlore structure and was consistent with the unit

cell trend for other members of the series, this impurity was likely LaNb1−xScxO4−x

where x remains undetermined.

Single crystal samples were prepared by the optical floating zone method using a

Quantum Design 2-Mirror IR Image Furnace. The samples (Ln = Nd, Sm, Gd, Dy)

were grown under flowing air, and the samples (Ln = Pr, Tb) were grown under

flowing Ar. All samples were grown at a rate of 1 cm
hour with the feed and seed rods

counter rotating at 15 rpm each. Despite being grown under Ar, the Ln = Pr, Tb

samples showed slight black discoloration from their expected green and light brown

respectively, likely due to the presence of a small amount of Ln+4 instead of the

desired Ln+3. Annealing the crystals under flowing 2% H2 in Ar at 600 °C for 6 h

was sufficient to achieve the desired colours indicating a pure Ln+3 valence. No

change in unit cell size was observed through this reduction suggesting that the

discolored crystals have a negligible concentration of Ln+4. While most crystals could



3.3. Crystallography of the Ln2ScNbO7 pyrochlores 43

be grown to an arbitrarily long length, the small cation Ln = Tb, Dy samples shattered

while the crystals were < 1 cm in length possibly due to a high temperature phase

transition. While this limited the size of available crystals (< 500 mg), they remained

phase pure. The only species that couldn’t be grown phase pure in any amount was

La2ScNbO7. As a white powder it is likely that the light absorption was very low,

evidenced by an instrumentally limited applied voltage (95 V) to the lamps during

growth. Near maximum intensity the image furnace struggled to melt La2ScNbO7

leaving an unstable melt. It is likely that a higher power floating zone furnace could

be used to grow this sample.

3.3 Crystallography of the Ln2ScNbO7 pyrochlores

FIGURE 3.1: Refined X-ray diffraction pattern for Nd2ScNbO7, shown
as a representation for the Ln2ScNbO7 systems. Red points represent
the observed data, the black line is the calculated pattern from the
refined structure, the blue line is the difference between the calculated
and observed patterns, and the green dashes represent calculated

Bragg peak positions.

X-ray powder diffraction (PXRD) was used to establish the phase purity of powder

and ground single crystal samples. A Huber laboratory powder x-ray diffractometer

was utalized in Guinier geometry with a Cu X-ray source, monochromated to Cu Kα1

using a Ge (311) monochromator. Samples were ground and mounted on Mylar film.
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The FullProf Rietveld refinement suite [55] was used to refine the PXRD structures,

with results reported in table 3.1. Figure 3.1 shows a sample PXRD refinement of

Nd2ScNbO7, which is consistent with the results of most samples. Figure 3.2 shows

the exception of La2ScNbO7 where an impurity that indexes to the I41/a LaNbO4

phase [77] which is also refined, along with another smaller impurity that could not

be indexed. This LaNbO4 like impurity is observed in the initial heating stages of

the other large cation members of the Ln2ScNbO7 series, but normally disappears

after sufficient heatings, or after crystal growth in the image furnace. This allowed

for phase pure preparation of all other phases. Refinement of this impurity yields

a mass fraction of 3.01(1) % in the given diffraction patterns. However, the size of

the impurity changed between samples. As previously stated, this impurity appears

to be La2Nb1−xScxO4−x as the unit cell volume of 353 Å3 is larger than the reported

value of 341 Å3, and refinement of x yielded a value of 0.2(1). However, both the unit

cell lengths and the value of x should be considered unreliable due to difficulty of

refining such a small component. If the x-value is taken meaningfully, the remaining

unindexed impurity likely contains some of the excess scandium, but it does not

index to Sc2O3.

TABLE 3.1: X-ray diffraction results. The high symmetry position of
O8b does not allow for off diagonal anisotropic terms. Reports of O48 f
were simplified with the largest in diagonal and off diagonal com-
ponents shown, as the lower symmetry site allows many anisotropic

terms.

Ln a (Å) Ln Biso (Å2) Sc/Nb Biso (Å2) Rwp

La 10.6486(2) 1.79(3) 1.24(4) 15.0
Pr 10.5585(2) 0.84(2) 1.25(3) 11.2

Nd 10.5298(2) 1.18(2) 1.38(4) 11.9
Sm 10.4618(3) 1.78(4) 1.20(5) 15.4
Gd 10.4270(4) 1.84(5) 0.73(6) 17.0
Tb 10.3763(4) 2.52(4) 1.14(5) 16.0
Dy 10.3439(3) 3.02(4) 1.16(4) 12.1

Neutron Powder diffraction (NPD) was also obtained in tandem with neutron

pair distribution function (NPDF) measurements from the NOMAD time of flight

(TOF) diffractometer at the Oak Ridge National Laboratory (ORNL) [65]. Powder

samples of Ln = La, Pr, Nd, Tb, Dy were mounted in amorphous quartz capillaries in

measured quantities of roughly 150 mg. Data were taken at 290 K using the typical
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FIGURE 3.2: The X-ray diffraction refinement for La2ScNbO7, with
the refined impurity of LaNb1−xScxO4−x. Red points represent the
observed data, the black line is the calculated pattern from the refined
structure, the blue line is the difference between the calculated and
observed patterns, and the green dashes represent calculated Bragg
peak positions for La2ScNbO7 (upper ticks) and LaNb1−xScxO4−x

(lower ticks).

wavelength range for NOMAD, 0.1-3 Å. Data were reduced using in-house software.

The La2ScNbO7 was the same sample presented in figure 3.2 with a small impurity

(not refined in the neutron data). Samples of Ln = Sm, Gd were excluded due to

their high neutron absorption cross sections. Additionally, the NPD data obtained

for Dy were too poor to use due to the high absorption cross section of Dy. NPD

diffractograms were analyzed using the software suite GSASII [56]. For diffraction

three of the six detector banks of NOMAD were utilized, with angles of 2Θ = 65.000,

120.400, 150.100°. The remaining detectors were not optimal for diffraction but were

utilized for NPDF. Figure 3.3 shows the calculated refinement for the 120.400 ° 2θ

detector bank, although all three were used in the refinements. Table 3.2 shows

the results of these refinements. Figure 3.4 shows the unit cells obtained from both

neutron and X-ray data. As expected, neutron and X-ray data show good agreement,

and there is a monotonic increase in unit cell size with cation radius.

The high quality neutron diffraction data obtained from NOMAD allows for more
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FIGURE 3.3: Time of flight neutron diffraction of viable Ln2ScNbO7
pyrochlores (Ln = La, Pr, Nd, Tb). Data were obtained on the NOMAD
diffractometer, displayed data are from a single detector bank of the
3 refined detector banks (bank index 3, 4, and 5, bank 4 is displayed).
Blue points are the observed data, the green line is the calculated
pattern, the red line is the calculated background, the light blue line is
the difference between the observed data and calculated pattern. The

blue dashes are calculated Bragg peak positions.

FIGURE 3.4: Unit cell trend with respect to ionic radius amalgamating
the neutron and x-ray data. Error bars are included, but are mostly

smaller than the data points.
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TABLE 3.2: Neutron diffraction results refined from banks 3, 4 and 5
from the NOMAD data. The high symmetry position of O8b has no
allows off diagonal anisotropic terms. Reports of O48 f were simplified
with the largest in diagonal and off diagonal components shown, as

the lower symmetry site allows many anisotropic terms.

Ln a (Å) O48 f x (r.l.u) Ln U11 (Å2) Ln U12 (Å2) B U11 (Å2) B U12 (Å2) O48 f U11 (Å2) O48 f U12 (Å2) O8b U11 (Å2) Rwp

La 10.65122(8) 0.3270(1) 0.0131(3) -0.0047(4) 0.035(2) 0.029(2) 0.0190(6) 0.0046(3) 0.0098(7) 0.05936
Pr 10.57265(6) 0.3290(1) 0.0119(3) -0.0067(4) 0.015(2) 0.010(2) 0.0172(4) 0.0037(2) 0.0056(4) 0.04873

Nd 10.53779(8) 0.3298(1) 0.0138(4) -0.0061(5) 0.005(4) 0.001(2) 0.0164(4) 0.0038(3) 0.0039(4) 0.05046
Tb 10.3790(1) 0.3372(2) 0.0152(6) -0.100(6) 0.031(4) 0.020(4) 0.030(1) 0.0048(6) 0.009(2) 0.08521

FIGURE 3.5: Visualization of the structure refined from neutron diffrac-
tion, portions of the unit cell are hidden for readability. Anisotropic
thermal parameters are displayed at 95% probability and roughly
model the prominent disorder. Pr2ScNbO7 is shown as a model, simi-

lar results exist for the other lanthanides.

information to be extracted from Rietveld refinement. Laboratory X-ray diffraction

data is insufficient to refine the x position of O48 f , which is the only refinable structural

parameter in the pyrochlore unit cell, due to the small relative x-ray scattering power

of oxygen compared to the lanthanide and transition metals. Additionally the neutron

data were used to analyze the anisotropic thermal parameters of all ions, which offer

a crude insight into the nature of the disorder present in these systems (Fig. 3.5). The

Ln site is heavily distorted normal to the local (111) axis, in the direction of the O48 f

oxygens which are bonded to the B-site where the disorder originates from. The O48 f

oxygens are distorted normal to the B-O-B bonds. Finally the B-site shows a very
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large anisotropic disorder due to the site mixing that occurs between Nd+5 and Sc+3.

While this is all consistent with a structure that has large amounts of local disorder

due to a disordered B-site with various ion charges, diffraction results are insufficient

to understand any local ordering that may occur as diffraction only provides an

average structure. One of the primary reasons for investigating this local disorder is

to understand the impact that the O48 f distortions have on the crystal electric field

and thereby the underlying magnetic ground states of the lanthanide ions. To obtain

a somewhat better understanding of the local order NPDF is employed.

3.4 Pair Distribution Functions

The collection of neutron diffraction data described in 3.3 was primarily obtained

for neutron pair distribution function analysis (NPDF). The Nanoscale-Ordered

MAterials Diffractometer (NOMAD) is optimized for the collection of total scattering

data out to high Q, allowing for NPDF analysis. Data from all detector banks was

combined and transformed into a PDF by ORNL in-house software (Qmax = 35 Å),

and normalized by sample mass and composition. Data were analyzed using the

PDFGui software [78].

Here Nd2ScNbO7 is used as an example for the PDF refinements performed on

Ln = La, Pr, Nd, Tb. Initial fits to the data were performed using the symmetric

Fd3̄m unit cell refined from the neutron data for initial parameterization. The scale,

O48 f x position, anisotropic thermal parameters, unit cell, and δ1 (a r-dependant peak

sharpening) were fit (Fig. 3.6) over a range of 1-40 Å. This fit yields, scale = 0.856(15),

O48 f x = 0.324(11), Nd U11 = 0.0096(7), Nd U12 = 0.00007(72), B U11 = 0.0072(5), B U12

= 0.0005(37), O48 f U11 = 0.0076(6), O48 f U12 = 0.00052606, O8b U11 = 0.0064(5) δ1 =

0.84(18), Rwp = 0.109. This fit represents the long-range data very well, however figure

3.6 demonstrates that over the first coordination shell (1-4 Å) some of the correlations

are poorly represented, namely O-O correlations.

In preparation to fit the short-range correlations, a better structural fit was desired.

This was achieved by transforming the Fd3̄m pyrochlore structure into the primitive

cell, and fitting each oxygen position independently to approximate the disorder

present in the system. A similar fit was performed from 1-40 Å yielding; scale =



3.4. Pair Distribution Functions 49

r(Å)

G
(r

)

B-O
Ln-O

Ln-O 
O-O

O-O

B-B
Ln-Ln
Ln-B

Ln-B Ln-O

Ln-O
B-O
O-O

G
(r

)

FIGURE 3.6: NPDF fit using the symmetrized Fd3̄m unit cell over
1-40Å. Blue points are reduced data, the red line is the calculated fit,
and the green line is the residual difference. The bottom figure is an
expansion of the low r data, with peaks labeled for the correlations

that contribute to their intensity.

0.956(16), Nd U11 = 0.0079(43), Nd U12 = -0.0001(0.0052), B U11 = 0.0063(29), B U12

= -0.0004(34), O48 f U11 = 0.007(4), O48 f U12 = -0.001(10), O8b U11 = 0.0057(85) δ1 =

1.34(19), Rwp = 0.114. While this fit is slightly worse over the range 1-40 Å, based

on the Rwp values, it does fit the short-range correlations slightly better (Fig. 3.7).

As the occupancies are not altered, the overall scattering intensities will remain

the same meaning this fit will not interfere with fitting the short-range correlations.

Additionally figure 3.8 compares the symmetrized cell (a) and the primitive cell

(b). Visually they look identical, demonstrating that the primitive cell accurately

replicates the symmetrized cell. The only significant difference is how the correlation

distribution changes, with the primitive cell showing a larger distribution in bond
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FIGURE 3.7: NPDF fit using the primitive unit cell over 1-40 Å. Blue
points are reduced data, the red line is the calculated fit, and the green
line is the residual difference. The bottom figure is an expansion of
the low r data, with peaks labeled (*) showing the most significant

difference from the symmetrized fit (Fig. 3.6).

lengths, suggesting that the anisotropic thermal factors alone were insufficient to

describe the distribution of atoms over small r for the symmetric cell refinement. This

is likely a result of the distribution of ions due to the chemical disorder following

a non-normal distribution, unlike actual thermal vibrations which these thermal

parameters are designed to be modelling.

To properly understand the disorder present in the Ln2ScNbO7 the local ordering

of the nominally disordered Sc and Nb must be considered. Within the crystallo-

graphic description, the 16c B-site has a mixed occupation of 0.5 Sc and 0.5 Nb with

their positions being nominally random. While there is no long-range ordering of the

Sc and Nb on this site, which would lead to a crystallographic symmetry breaking
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(a) (b)

B-O  2.046(1) Å 
Nd-O 2.584(1) Å
Nd-O’ 2.2825(1) Å

B-O     2.044(62) Å 
Nd-O  2.586(87) Å
Nd-O’ 2.283(32) Å

FIGURE 3.8: (a) Refined crystallographic Fd3̄m unit cell from neu-
tron diffraction, shown in the primitive lattice. Bond length errors
are extracted from refinement errors. (b) Refined primitive unit cell
from neutron PDF for Nd2ScNbO7. Orange polyhedra contain Nd,
green polyhedra contain Sc/Nb. Bond length errors are extracted as a

standard deviation from the distribution of oxygen bond lengths.

that is not observed, Sc and Nb ions are likely to show some short-range ordering.

As there are large differences in charge and size between Sc+3 (0.885 Å) and Nb+5

(0.78 Å) [18], any clustering of fully Sc and Nb would lead to a charge buildup and a

large deal of crystallographic strain. It is more likely that at the nearest-neighbour

level the Sc and Nb ions alternate in some fashion to prevent clustering. The fact that

the 16c B-site is comprised of a tetrahedral corner shared lattice precludes perfect

alternation of Sc and Nb ions, which likely contributes to the lack of long-range order.

One possible way for the B-site to minimize Sc-Sc and Nb-Nb correlations is to form

a charge ice state observed in other comparable systems such as the spinel CsNiCrF6

[79] where Ni and Cr form a charge ice structure or the ice structured Cd(CN)2

[80]. This ‘ice’ ordering is comprised of corner-shared tetrahedra of disordered ions

or dipoles with binary ordering options (C≡N or N≡C), which order on the local

tetrahedron levels. In Cd(CN)2 the Cd ions mimic oxygen in conventional water ice

sitting at the centre of tetrahedra of C≡N dipoles that orders with nitrogens pointing

towards the centre of the tetrahedron on two corners of the tetrahedron and two

carbons pointing into the centre on the remaining two corners (a ‘dipole-ice’ similar

to water ice). More directly comparable to Ln2ScNbO7, in CsNiCrF6, the Ni+2 and

Cr+3 ions form a disordered tetrahedral network in the spinel structure. These (II)
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FIGURE 3.9: An example of two tetrahedra satisfying the ‘charge ice’
condition in a Ln2ScNbO7 pyrochlore, with two Sc+3 and two Nb+5

per tetrahedron. Note that there are many equivalent configurations
satisfying this condition.

and (III) ions order on the single tetrahedron level such that each tetrahedron contains

two Ni+2 and two Cr+3. If nearest neighbour correlations strongly favour Sc-Nb

neighbours then this ‘charge ice’ is what might be expected to occur in Ln2ScNbO7

(Fig. 3.9).

The PDF data can be used to determine whether Sc and Nb are ordered or form

a short-range correlated structure as PDF is sensitive to the magnitude of nearest

neighbour Sc-Nb, Nb-Nb, and Sc-Sc correlations which all appear as intensity on the

peak near 3.8 Å. As Sc and Nb have good neutron contrast with scattering lengths of

12.3 fm and 7.05 fm respectively [81], the relative concentration of these correlations

can be refined with a starting parameterization of 0.5 Sc-Nb : 0.25 Nb-Nb : 0.25 Sc-Sc

as would be expected of a random distribution. A single parameter x was used, that

yields correlations of (0.5+x) Sc-Nb : (0.25- x
2 ) Nb-Nb : (0.25- x

2 ) Sc-Sc which effectively

fixes the atomic occupancies to the stoichiometric values while refining the relative

scattering from each correlation. Here a perfect charge ice ordering would yield

0.66 Sc-Nb : 0.167 Nb-Nb : 0.167 Sc-Sc. This fit was performed over a range of 1-6 Å so

as not to include long-range B-site correlations, fixing the structural values refined

from the long-range fit and only fitting the scale factor and the correlation parameter

x (Fig. 3.10). Using Nd2ScNbO7 as an example, this fit yields a relative fraction of

0.655(96) Sc-Nb : 0.172(48) Sc-Sc : 0.172(48) Nb-Nb, with an Rwp of 0.110 over the
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FIGURE 3.10: (a) NPDF fit using the two parameter correlation method
described in text, expanded beyond the fit range to show the full PDF.
(b) NPDF fitting only the scale factor, with parameterization taken
from the primitive fit. (c) NPDF fit using the two parameter correlation
method over the fitted region. Blue points are reduced data, the red
line is the calculated fit, and the green line is the residual difference.

1-6 Å fit compared to a Rwp of 0.112 without fitting the correlation parameter over the

same range.

The results of the short range fit for Ln = La, Pr, Nd, Tb can be seen in figure

3.11. The error bars are very large in this measurement, primarily due to the fact that

the B-B correlations coincide with the Ln-B and Ln-Ln correlations which reduces

the contrast. Despite this it can be seen that the large cation Ln2ScNbO7 (Ln = La,

Pr, Nd) pyrochlores do show a frequency of Sc-Nb correlation higher than what

could be expected of a random distribution. There is no notable change within these

large cation members but there appears to be a drop in the correlation frequency

by Tb2ScNbO7 suggesting that there might be a sudden drop between intermediate

members of the series. However, the limited number of neutron viable samples
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FIGURE 3.11: Relative frequency of Sc-Nb correlation out of all B-B
correlations shown for each lanthanide with NPDF data. Lines mark
the extreme expected values from no correlations, to perfect nearest-

neighbour correlations (Charge Ice).

restricts any conclusive analysis. The large cation pyrochlores seem to consistently

approach charge ice values of correlations, suggesting that these systems are charge

ices, potentially with a relatively large concentration of defects.

These fits in and of themselves are deserving of some skepticism. For example

site mixing between the A and B site might also lead to differing peak intensities.

But that should cause consistent shifts in peak intensities which should be true over

any observable range. In order to establish that the observed values are in fact due

to short-range correlations in some form, the same 2 parameter correlation fit is

performed over longer ranges. As the fitting range in r becomes large we should

expect the refined values to regress back to the ‘no correlation’ value of 0.5 (Fig. 3.12).

These fits tend towards random occupancy for each sample, confirming that these fits

are the result of short-range correlations. Most short-range correlations should lead

to peak broadening or splitting, but a change in intensity should only be achievable

by a non-random distribution of B-B correlations as this is the only mixed occupancy

site. Additionally, this correlation fit was performed on the symmetric cell in the

same manner as the primitive cell for Nd2ScNbO7, with very similar results but a

slightly larger error margin, confirming that the primitive cell is reasonable for fitting

these systems.
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FIGURE 3.12: The fraction of Sc-Nb correlations, with the rest being
Sc-Sc and Nb-Nb in equal proportion as a function of the fitting range
maximum. The line at 2/3 represents the theoretical result of charge
ice, the line at 1/2 is the expected result of a system with random
occupancy, which the fit should trend to at long upper range. The
abbreviation nn represents the fit with only nearest neighbour B-B
correlations, and nn+nnn represents the first two correlation spheres,

with later fits including longer range correlation spheres.

3.5 Conclusions

Three additional members of the Ln2ScNbO7 are presented (Ln = La, Sm, Tb) in

addition to those presented by Zouari et al. [46]. Large single crystals of Ln = Pr,

Nd, Sm, Gd, Tb, and Dy have been prepared for neutron scattering experiments.

Anisotropic thermal parameters extracted from neutron diffraction data demonstrate

that there are large anisotropic distortions present in the structure due to the disorder

induced by the B-site sharing of Sc+3 and Nb+5, with this disorder being mostly

constant throughout the various members of the series. To establish the nature of

the short range correlations between Sc+3 and Nb+5, NPDF was employed. The

large cation members of this series (Ln = La, Pr, Nd) show a preference for Sc-Nb

correlations over statistical values with frequencies ranging from 0.636(97)-0.655(96),

while the smaller Tb appears to show a significantly smaller correlation preference

at 0.564(87). While this trend appears consistent it is somewhat counterintuitive,

with the larger cation systems appearing to have less impact on the overall structure

in favour of Sc and Nb. Ideally, the sample Dy2ScNbO7 could also be analyzed to

give another small cation example. This could be done in the future when activated
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samples of isotopically enriched, less absorbing 160Dy become available. Although

it is hard to establish trends, correlations of Sc+3 and Nb+5 do exist in some of

these systems above statistical levels, and the systems appear to approach charge ice

ordering (although it is difficult to establish the level of defects given the high error

associated with these measurements).
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Chapter 4

Magnetic and Structural Symmetry

Breaking in Nd2ScNbO7

4.1 Introduction

Two of the parent compounds of Nd2ScNbO7, Nd2Zr2O7 and Nd2Hf2O7 have become

topical systems due to the experimental observation of signatures of ‘moment frag-

mentation’ [82, 83]. Generically, moment fragmentation consists of the simultaneous

observation of long-range symmetry breaking order (Bragg peaks) and liquid scat-

tering (diffuse scattering) [24, 84]. The neodymium pyrochlores exhibit a particular

case of moment fragmentation that derives from the dipole-octupole symmetry that

arises due to their crystal field ground state [24, 82]. The result is a fragmented

moment in which roughly half of the moment contributes to antiferromagnetic Bragg

peaks in the elastic scattering. This represents of a ‘divergence-full’ component that

is functionally equivalent to the ‘All-in All-out’, Γ3 Ising antiferromagnetic ground

state on the pyrochlore lattice. Associated magnons are also observed. The remainder

of the moment remains inelastic giving a ‘divergence-free’ spin ice scattering pattern

gapped away from the ground state [82, 84]. The divergence terminology is taken

from classical spin ice literature as moment fragmentation has been seen as a real-

ization of magnetic monopole crystallization, where spin ice excited quasiparticles

crystallize into an antiferromagnetic lattice [82, 85, 86]. ‘Divergence-full’ refers to

a system with a net magnetic divergence (in the spin ice interpretation, there is no

actual magnetic divergence, ie. ∇ · ~B 6= 0 does not occur). This would include ‘All-in’

and ‘All-out’ tetrahedra. On the other hand ‘two-in’, ‘two-out’ tetrahedra would
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have no net magnetic divergence and are considered ‘divergence-free’. It is worth

noting that O. Benton [24] has provided a more robust theoretical analysis of the

dipole-octupole moment fragmentation phenomenon that is not reliant on monopole

crystallization. Benton’s interpretation along with previous theoretical work [23, 82]

establish that a dipole-octupole ground state, which include mj = 3
2 , 9

2 & 15
2 single ion

states for pyrochlores with D3d double group symmetry is required for this case of

moment fragmentation.

Here the charge disordered variant of these fragmented dipole-octupole systems

is investigated, and it can be seen that the structural disorder plays a large part

in destroying the local symmetry required for the dipole-octupole case of moment

fragmentation. As a result, the signatures of moment fragmentation are largely

supressed.

All of the work in this chapter was performed by the author with the excep-

tion of the data collection for the powder crystal electric field measurements on

SEQUOIA, which were performed remotely with the help of Adam Aczel and Matt

Stone (ORNL). The majority of the data from this section is reproduced from C.

Mauws et al., 2021 [76].

4.2 Methods

Inelastic neutron scattering measurements of the crystal electric field (CEF) were taken

on the SEQUOIA spectrometer at the Oak Ridge National Laboratory (ORNL) [87].

Measurements were taken powder samples of Nd2ScNbO7 and the non-magnetic

analogue La2ScNbO7 to act as a phonon standard. Data were collected at 5, 100, and

250 K using incident energies (Ei) of 10.5, 60 and 140 meV using the low resolution

configuration with a resolution of roughly 3% Ei, at the elastic line. The phonon

subtraction allows an approximate means of removing the inelastic contribution of

the phonon scattering which was necessary due to the broad scattering observed. The

phonon standard was normalized using Bragg peak intensities calculated from the

refined crystal unit cells using FullProf Suite [55], yielding an intensity correction of

0.82 for the La2ScNbO7 standard prior to direct subtraction. The resulting spectrum

was fit using a series of Gaussians to extract excitation intensities and centre of
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mass energies. The errors reported are the associated fitting errors with data error

integrated into the fitting process.

Direct current (DC) magnetization measurements were taken on a Quantum De-

sign PPMS using a VSM magnetometer. A powder sample of 6.1(1) mg of Nd2ScNbO7

was mounted in a polypropylene sample holder. Reported susceptibilities were em-

pirically corrected for the diamagnetism of the sample holder and corrected for the

sample’s diamagnetism using values amalgamated in Bain and Berry (2008) [88].

Alternating current (AC) measurements were performed on a powder sample at the

National High Field Magnet Lab using an in-house SQUID mounted in a dilution

refrigerator cryostat. Temperature sweeps were performed at 153 and 1310 Hz. Some

errors occurred in the measurements, including an issue in the AC phase. To improve

readability the 1310 Hz data in figure 4.6 has been shifted vertically by 0.32 x 10−7

(arb.). Due to these issues only the temperatures remain accurate while the intensities

are qualitative.

Polarized neutron diffraction was performed at the Diffuse Neutron Scattering

(DNS) spectrometer at FRM II [89]. A single crystal of Nd2ScNbO7 was aligned in the

[HHL] plane. Measurements were taken from 100 mK to 1300 mK as well as 5 K and

10 K, using a wavelength of 4.1916 Å. Inelastic neutron scattering measurements of

the magnetic excitation were taken at the Disk Chopper Spectrometer (DCS) at the

NIST CHRNS [90]. The same single crystal was used with data taken in the [HHL]

plane at temperatures of 60 mK and an empty 20 K cryostat was used for background

subtraction. Wavelengths of 8 Å and 6.5 Å were used, where the 8 Å data yields

an energy resolution of roughly 30 µeV. The depicted data uses no frame overlap

chopping.

4.3 Crystal Electric Field and Magnetization

Neodymium pyrochlores typically show a ground state consisting of mj = < 3
2 >,<

9
2 >, which follows a dipole-octupole symmetry. To confirm that this holds true for

Nd2ScNbO7, CEF spectroscopy was performed. Figure 4.1 shows the results of this

spectroscopy for the 60 meV Ei scan. Based on previous work on other neodymium

pyrochlores [91] three of the four excited doublets were expected to be found in
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FIGURE 4.1: Cuts along energy from the 60 meV incident energy data
from the SEQUOIA spectrometer, showing the raw data of La2ScNbO7,
the direct subtraction and the 0.82 self-shielding factor corrected sub-

traction.

this range. Instead of a series of sharp, resolution limited peaks corresponding to

CEF and phonon excitations, a broad anomaly is observed. The broad anomaly is

overlayed by a series of sharper, but not resolution limited peaks. As this broad

feature has contributions from CEF excitations, as well as phonons the phonon

standard La2ScNbO7 is employed to approximately remove the phonon contribution

(Fig. 4.1). The resulting spectrum in figure 4.2 can be seen as a better approximation

of the total CEF scattering. The phonon at 8 meV is well removed by the standard,

and the broad feature better approaches zero intensity at either extreme in energy.

The phonon at 36 meV is not perfectly removed but is assigned as a phonon anyways

as it is clearly observable in La2ScNbO7 despite being shifted slightly both in energy

and intensity. To confirm the remaining intensity is due to crystal field excitations the

observed Q-dependence of the peaks is compared to the form factor of neodymium

(Fig. 4.3).

Fitting is performed as a series of 5 Gaussian peaks (Fig. 4.2); the peak labeled e0

is the broad background of CEF excitations, the ei peaks represent the fitted crystal

electric fields and p1 is the improperly subtracted phonon. It should be noted that

a fit using a linear background with 4 sharp Gaussians could not replicate the data

reasonably. The extracted CEF peaks along with an additional peak fit from the

140 meV Ei data, fit for energy position only are used to calculate a crystal field
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description. However this is clearly not representative of most of the Nd ions as these

sharp peaks only comprise 14(2) % of the total CEF intensities. This mixture of sharp

and broad scattering features is clearly a result of the intrinsic chemical disorder in

these systems distorting the local anion environment, but it is not immediately clear

what separates the sharp and broad excitations.

FIGURE 4.2: Electronic excitation spectrum at 5 K of Nd2ScNbO7 taken
on SEQUOIA using La2ScNbO7 at 5 K as a phonon correction, and
integrated over Q from 2.5-4 Å−1. Discrete crystal electric fields are
labeled ei with the broad anomaly labeled e0, and p1 is an imperfectly

subtracted phonon.

The extracted CEF peaks are fit to a Wybourne description of the crystal field

using the Spectre software package [68], under an assumed hexagonal local symmetry

(D3 or D3d). This is described by the six parameter crystal field Hamiltonian:

HCEF = B0
2C0

2 + B0
4C0

4 + B0
6C0

6 + B3
4C3

4 + B3
6C3

6 + B6
6C6

6 (4.1)

Initial parameterization for the refinement was taken from Nd2Zr2O7 [91]. The re-

finement yielded parameters of B0
2 = −36.36 meV, B0

4 = 442.4 meV, B0
6 = 186.2 meV, B3

4 =

173.7 meV, B3
6 = −66.75 meV, and B6

6 = 118.8 meV. The results of the crystal field

refinement are reported in table 4.1.

The refined parameterization is dramatically different from those reported for

other neodymium pyrochlores, likely due to a dramatic displacement of the local

oxygen environment. The resulting crystal field ground state, ψ1,2 = 0.85 < 9
2 >

+ 0.51 < 3
2 >,−0.85 < 9

2 > − 0.51 < 3
2 > does contain the correct < 9

2 , 3
2 >
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FIGURE 4.3: Q-dependent cuts of the various inelastic features (black
data) from SEQUOIA, with the squared magnetic form factor of Nd+3

overlayed. Unless otherwise mentioned, energy integration ranges are
±1 meV.



4.3. Crystal Electric Field and Magnetization 63

TABLE 4.1: Crystal electric field results for Nd2ScNbO7 within the
ground state J-manifold (all levels are doublets). Unlabelled intensities
are due to being unable to extract relative intensities while using
a higher Ei. Basis with contributions less than 0.01 are excluded,

including higher multiplet contributions.

Eobs(meV) Iobs E f it(meV) I f it ± 1
2 ± 3

2 ± 5
2 ± 7

2 ± 9
2

0.0 0 0 0.51 0 0 0.85
14.6(1) 1 13.52 1 0.77 0 0.63 0.01 0
19.9(1) 0.5(1) 20.92 0.46 0 0.85 0 0 0.50
27.7(1) 0.4(2) 28.23 0.5 0.55 0 0.66 0.47 0

106.5(1) - 104.86 - 0.30 0 0.38 0.86 0

Ising dipole-octupole symmetry, with a similar total moment of 2.0 µB to other

neodymium compounds. The inverse magnetic susceptibility calculated from this

crystal field scheme is compared to experimental data in figure 4.4, and clearly the

crystal field scheme is not representative of the bulk system. Comparison of the

bulk system to calculations performed on the results for Nd2Zr2O7 reported by

Zu et al. [91] are also not representative of the bulk. As this crystal field is only

representative of 14(2) % of neodymium ions in the system the refined moment

cannot be considered representative of the entire system, and clearly many of the

neodymium ions are not accurately represented by this crystal field description. To

resolve this ambiguity, magnetization measurements are performed (Fig. 4.4) to

determine a saturation magnetic moment. The saturated magnetic moment for an

Ising system is 1
2 µtotal which yields a total moment of 2.5(1) µB. This interpretation is

likely a better representation of the total moment of the system, but is also problematic

as it assumes the system is perfectly Ising, which may not be the case as CEF mixing

may alter the anisotropy in some neodymium ions.

The final issue to resolve with the CEF is the suspicious combination of both

broad and sharper but not resolution limited excitations in the 60 meV Ei data set.

While the broadened crystal fields are a consequence of the disordered B-site inducing

distortions on the A-site’s oxygen environment, the clear distinction between broad

and sharp features is not so easily explained. Instead it suggests that one particular

case of distortions has a significantly higher probability of occurring, where others

form the broad background. As each neodymium ion is surrounded by a hexagon of

B-site ions, a particular configuration of this hexagon having a higher probability of

occurring than others could give rise to the observed crystal field spectrum.
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FIGURE 4.4: (a) Inverse DC magnetic susceptibility in a 1000 Oe ap-
plied field on a powder sample of Nd2ScNbO7 (Black), with calculated
susceptibilities for the experimentally determined crystal field (Blue)
and calculated values for Nd2Zr2O7 (Red), taken from the crystal field
parameters presented in X. Zu et. al. [91]. (b) Magnetization measure-
ments on powder Nd2ScNbO7 at 1.8 K with a maximum applied field

of 90000 Oe.

As discussed in chapter 3, the probability of Sc-Nb neighbors are higher than what

would be expected of a random distribution and may approach charge ice patterns.

If a charge ice model is assumed then a local environment of Sc-Nb alternating

tetrahedra (Fig. 4.5) would have the highest probability of occurring compared to

any other local environment, even when considering equivalent multiplets. The

probability of having a hexagon of alternating Sc and Nb ions (labeled D3 in Fig 4.5)

in a charge ice case is 17.6 %, by statistical calculation and by Monte Carlo simulation.

This is higher than the observed ‘preferred’ configuration from spectroscopic data at

14(2) % but is consistent with a case where the system has a charge ice configuration

with significant, non-charge ice defect concentrations. A Monte Carlo simulation

of the local A-site environment which allows for defects was performed. Repeated

generations ( 107) of the 6 local tetrahedra about the A-site were randomly populated

with Sc or Nb ions. Under the ideal charge-ice case only cases meeting the charge ice

were accepted, and then the D3 ordering case was checked for, yielding 17.6 % under

the charge ice condition. A variable probability of allowing defect tetrahedra through

with an exponentially decreasing probability based upon the number of defects in

the local coordination sphere was introduced, and the probability was varied until

the desired 14 % was reached. The simulation yields an average defect concentration

of 0.15 defects per tetrahedron, for a D3 local configuration probability of 14 %. This
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FIGURE 4.5: Possible local environments of Sc+3 and Nb+5 that re-
tain a C3 rotation centre, of the possible 26 configurations. The D3d
configurations maintain the crystallographic site symmetry, whereas
the D3 configurations have lost inversion. The configuration in the
bottom right is enlarged to accommodate labelling that applies to all

configurations.

appears consistent with PDF results and further supports that Nd2ScNbO7 shows

charge ice behavior with a significant defect concentration.

4.4 Magnetic Neutron Diffraction and Spectroscopy

Low temperature AC magnetic susceptibility measurements show a frequency in-

dependent magnetic transition at 0.37 K, consistent with a Néel transition (Fig. 4.6).

Polarized neutron diffraction is used to investigate the magnetic structure (Fig. 4.7).

The spin flip scattering with a high temperature background subtraction shows clear

intensity on the (220), (311), and (331) peaks indicative of Γ3 ordering. The Γ3 irre-

ducible representation only contains a single basis, that is the so called ‘all-in, all-out’

(Fig. 4.6) Ising antiferromagnetic structure found in other neodymium pyrochlores.

Also visible is a spin ice like scattering pattern with scattering intensity along the

[00L] and [HHH] directions but lacking the clear pinch point signature at (111) and

(002) observed in classical spin ice, where the diffuse scattering converges to those
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FIGURE 4.6: (a) The pyrochlore lattice with antiferromagnetic all-in, all-
out (AIAO) order along a local <111> Ising axis. (b) AC susceptibility
of powder Nd2ScNbO7 noting a peak near TN = 0.37 K. No frequency

dependent shift is observed.

TABLE 4.2: Comparison of the ordered all-in, all-out (AIAO) moment
in the known Neodymium pyrochlores

Pyrochlore AIAO moment (µB) Reference
Nd2ScNbO7 2.2(4) This work
Nd2Zr2O7 1.26(2) J. Xu et al, 2015
Nd2Zr2O7 0.8(1) S. Petit et al, 2016
Nd2Sn2O7 1.708(3) A. Bertin et al, 2015
Nd2Hf2O7 0.62(1) V. K. Anand et al, 2015
CEF limit 2.0-2.5 This work

Bragg points. Figure 4.7 tracks the intensity of the diffuse scattering at ( 3
2 , 3

2 , 3
2 ) and

the Bragg scattering at (220). The Bragg scattering appears at the Néel temperature,

whereas the diffuse scattering appears at higher temperature reaching a maximum

at 0.60 K before reducing in intensity and seemingly plateauing below the Néel

temperature.

The magnetic scattering is refined to the Γ3 structure as determined by the SARAh

representational analysis software [60] and refined using the Fullprof Suite [55], to

an ordered moment of 2.2(4) µB using 5 structural peaks and 2 magnetic peaks. The

magnitude of the ordered moment is near the total moment, somewhere in the range

of 2.0-2.5 µB. While some ambiguity remains and some of the scattering moment must

remain in the diffuse scattering, this moment is much higher than what is observed in

the neodymium moment fragmentation systems Nd2Zr2O7 and Nd2Hf2O7 (Tab. 4.2).

The diffuse scattering in the moment fragmentation neodymium pyrochlores

is an inelastic feature gapped away from the elastic line, which could explain the
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FIGURE 4.7: Spin Flip difference scattering with polarization in the [H,-
H,0] plane shown on two intensity scales (left and right) obtained on
DNS at FRMII. The temperature dependence of an antiferromagnetic
Bragg peak (220) and the spin ice like diffuse scattering (3/2,3/2,3/2)
(bottom left). Spin Flip difference scattering with polarization in the

[H,-H,0] plane above the Néel order (bottom right).

lack of clear pinch points in this diffuse scattering data. Inelastic magnetic neutron

scattering is performed on the DCS in order to resolve this (Fig. 4.8). A weak

inelastic signal is observed centred at 67(1) µeV, which shows no dispersion. The

signal is too weak to observe in the full [HHL] plane so the |Q| integrated data

is shown. There is no evidence of magnons normally associated with the ‘all-in’,

‘all-out’ structure, which is possibly due to the chemical disorder preventing the

long-range propagation of magnons. While this dispersionless gapped excitation is

consistent with the excitations seen in fragmented neodymium pyrochlores, the spin

ice structure factor cannot be observed in the DCS data in either the inelastic data

or the elastic, suggesting that the diffuse scattering seen in the DNS data forms the

dispersionless gap in the DCS data.
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FIGURE 4.8: Inelastic spectroscopy using the DCS at NIST at 100
mK with an incident wavelength of 8 Å, obtained along [H,H,H]
integrating over ± 0.25 r.l.u along [-2H,H,H] (left), shown also as a cut
along energy using |Q| [0.2,1] (right). The red line is a Gaussian fit to

the peak over the region shown.

In order to solve some of the ambiguity of the total moment in the system, the

magnitude of the inelastic moment was determined by normalizing to the incoherent

scattering of Nd2ScNbO7 using the method presented by G. Xu et al. [73]. The inte-

gration was performed over |Q| 0.4-0.8 Å−1 to avoid Bragg contributions, yielding

an inelastic moment of 0.26(2) µB. A similar result could be obtained by normalizing

to a Bragg peak.

4.5 Discussion

Nd2ScNbO7 appears to show the fundamental experimental signatures of moment

fragmentation, the coexistence of long-range magnetic order and liquid-like scattering.

However it is clearly a significant perturbation on the parent compounds Nd2Zr2O7

and Nd2Hf2O7, as the magnitude of the ordered moment is significantly larger. In O.

Benton’s description [24] the ordered moment is dependant on a parameter rotation

θ such that

mi = gzµBcos(θ)m(z̃)
i + gzµBsin(θ)m(x̃)

i (4.2)

where m(z̃)
i is the ordered Bragg moment and m(x̃)

i comes from the dynamic

correlation and mi is the magnetization on a single site, gz is the z-component of the

Landau g-factor. While this value can be altered by a change in the relative energy of

the exchange constants,
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FIGURE 4.9: Phase diagram for dipole-octupole systems on the py-
rochlore lattice. Jx and Jz are the exchange constants after a pseudo-
spin rotation, and ∆ is the band gap. The line indicates the expected
gap energy predicted by O. Benton [24]. This phase diagram has been

reproduced and modified from O. Benton, 2016 [24].

TCW =
1

2kB
( J̃zcos2(θ) + J̃xsin2(θ)) (4.3)

where J̃z and J̃x are the relevant rotated exchange constants [24], the change would

be such that J̃x approaches zero. The relationship to the band gap can be described

by,

∆ f lat =
√
(3| J̃z| − J̃x)(3| J̃z|) (4.4)

where ∆ f lat is the band gap (Fig. 4.9). As a result the band gap in Nd2ScNbO7

would be roughly twice as large as in Nd2Zr2O7, when in fact it is slightly smaller

then the band gap of Nd2Zr2O7 [24]. This implies that the large static moment cannot

be described within the typical dipole-octupole simple exchange manifold.

As the conventional description fails to explain the results in Nd2ScNbO7, it may

better to consider the disorder within the crystal fields. This implies that there is
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significant overlap with the ground state allowing symmetries other than dipole-

octupole to exist on certain sights, where different neodymium ions can have different

symmetries. This would allow for a greater contribution of the magnetic moment

towards the static magnetization, although it is difficult to quantify.

If the crystal field analysis is correct and 14(2) % of neodymium ions retain D3

symmetry while most or all others break the symmetry, only those neodymium

ions would retain the dipole-octupole character. Y.P. Huang et al. [92] lay out the

requirements for dipole-octupole symmetry in the pyrochlore lattice, namely a D3d

local environment, an mj = 15
2 , 9

2 , 3
2 spin system and a crystal field B0

2 < 0. The removal

of inversion symmetry does not remove the dipole-octupole constraint where

C3 : τx,y,z ⇒ τx,y,z (4.5)

σd : τx,z ⇒ −τx,z τy ⇒ τy (4.6)

I : τx,y,z ⇒ τx,y,z (4.7)

from Chen [92], and consequently

C2 : τx,z ⇒ −τx,z τy ⇒ τy (4.8)

as

C2 = I ⊗ ⊥σd (4.9)

causing the symmetry reduction Γ+
5 ⊕ Γ+

6 ⇒ Γ5 ⊕ Γ6 under D3 symmetry. Due

to the destruction of dipole-octupole symmetry under other symmetry conditions

only the minority of ions retaining D3 symmetry would still undergo moment

fragmentation-like behaviour, while other ions would condense into a conventional

Néel state. This is roughly consistent with the magnitude of the inelastic moment

where roughly 1
2 or more of the moment should remain dynamic on the neutron time

scale. In this system 10(2) % of the moment remains dynamic, slightly higher than

expected of the theoretical result by Benton but consistent with the experimental

results of Nd2Zr2O7 where roughly 2
3 of the moment remains dynamic [24], which

would yield 2
3 · 14(2) %, or 9(1) % of the moment remaining dynamic. This symmetry
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destruction for most, but not all neodymium ions appears internally consistent with

experimental results and provides some explanation for the significantly decreased

dynamic moment magnitude in Nd2ScNbO7.

4.6 Conclusions

Nd2ScNbO7 presents an interesting opportunity to study the effects of chemical

disorder on unconventional magnetic states like the moment fragmentation case

found in Nd2Zr2O7 and Nd2Hf2O7. Nd2ScNbO7 is directly comparable to its parent

compounds, presenting the same underlying ground state, but with significant per-

turbations. The minority of Nd+3 ions (for which a crystal field scheme can be solved)

appear to show Ising anisotropy and a dipole-octupole symmetry, similar to the par-

ent compound. However a large portion of Nd+3 ions appear to show overlap of the

excited states with the ground state crystal field, possibly allowing other anisotropies

and symmetries. Despite this Nd2ScNbO7 shows the Ising antiferromagnetic Néel

state common to other neodymium pyrochlores.

The notable difference between Nd2ScNbO7 and its parent compounds is found

in the magnitude of the static moment and the absence of dispersing magnons. While

the lack of dispersing magnons has not been fully understood, it is likely either due to

a vanishingly small intensity, or a very limited lifetime due to the chemical disorder.

These magnons are a part of the ‘divergence-full’ component of fragmentation, and

as the Bragg peaks are still present, the ‘divergence-full’ component still exists within

the system. The significant reduction in the dynamic, spin ice-like ‘divergence-

free’ component can be well explained as a result of symmetry breaking evidenced

by the crystal field scheme and the charge ice partial order observed in chapter

3. Nd2ScNbO7 acts as a good test case for how disorder and symmetry breaking

can impact magnetic ground states that are highly reliant on symmetry, destroying

fragmentation where symmetry conditions are not met but maintaining fragmentation

when the symmetry conditions are retained.
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Chapter 5

Palmer Chalker Glass Correlations

in Gd2ScNbO7

5.1 Introduction

As Gd+3 has a half-filled S = 7
2 shell it has no orbital components to its single ion

magnetism, causing it to behave unlike other rare earth systems. This guaranteed

Heisenberg anisotropy has resulted in a significant amount of interest in gadolinium

pyrochlores. One of the original interests for frustrated magnetism theorists on the

pyrochlore lattice was the Heisenberg antiferromagnet on the pyrochlore lattice. The

Heisenberg antiferromagnetic pyrochlore was originally thought to have a spin liquid

ground state [19, 93]. The original studies only included nearest neighbor interactions,

and later work by Palmer and Chalker established that next-nearest neighbor interac-

tions would induce an xy ordered state [20] of the irreducible representation Γ7 (k =

(000)). Due to the difficulty of performing neutron studies on gadolinium, limited by

the high absorption cross section of natural abundance gadolinium isotopes, most of

the structural analysis of the magnetic ordering is relatively recent. Experimentally,

gadolinium pyrochlores show the formation of liquid like correlations, followed by a

Néel order at a lower temperature [94, 95]. While this Néel order sometimes manifests

as a Palmer-Chalker Γ7 ground state, such as in Gd2Sn2O7 [96], other ordered states

have also been observed. In Gd2Ti2O7 a partial order occurs within kagome planes

with a non-zero propagation vector [97, 98]. In general all investigated gadolin-

ium pyrochlores with well defined A/B site order, Gd2Ti2O7, Gd2Sn2O7, Gd2Ge2O7,

Gd2Pt2O7 exhibit some form of Néel order [96, 99, 100] (Gd2Pb2O7 is omitted here in
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the comparison due to extreme A/B chemical site disorder [101]). The ground state

of these pyrochlores is highly sensitive due to the ordering being dictated by next

nearest-neighbor interactions which are inherently weak. This sensitive phase space

along with the spin liquid behavior that exists over a finite temperature range has

driven research into gadolinium pyrochlores.

Here the charge disordered variant of the gadolinium pyrochlore Gd2ScNbO7 is

investigated. In contrast to the other charge disordered systems, it is not expected that

disorder in the crystal field will have a driving impact on the underlying magnetism

as this is a spin only system. Deviation from the parent compounds should be driven

by a change in the nearest-neighbor exchange induced by the chemical disorder, as

longer-range interactions are classical dipole-dipole interactions in large moment

systems which are not particularly sensitive to local structural distortions.

In this chapter, polarized neutron diffraction, specific heat, and magnetization

experiments and analysis were performed by the author. AC magnetic susceptibility

and muon spin relaxation measurements were performed and analyzed by Graeme

Luke and James Bear (McMaster). Most of the data presented in this chapter has been

reproduced from C. Mauws et al., 2021 [102].

5.2 Methods

DC Magnetometry was obtained on a Quantum Design PPMS VSM, with a base

temperature of 1.8 K and applied field of 1000 Oe. Data were collected on a 8.6(1)

mg sample of natural abundance Gd2ScNbO7 in a polypropylene sample holder.

Specific heat measurements were performed on a Quantum Design PPMS with an

3He cryostat, over a temperature range of 0.35 - 40 K using the quasiadiabatic method.

La2ScNbO7 was used as a phonon standard to isolate the magnetic contribution to

the specific heat at low temperatures.

Due to the high neutron absorption cross section of naturally abundant gadolin-

ium (49700 barn at 1.8 Å), neutron scattering experiments on naturally abundant

gadolinium are not very feasible. Instead a 1.4564 g sample of 160Gd2ScNbO7 was

prepared by the same method described in chapter 3, using Cambridge Isotopes

160Gd2O3 (98.7 % enrichment, 99.9 % purity). This sample can be used for neutron
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measurements as 160Gd has a neutron absorption cross section of 0.77 barn at 1.8

Å [81]. Polarized neutron scattering measurements were taken at the DNS spectrome-

ter at FRM II [89] with a wavelength of 4.74 Å over 6 polarization channels, x, y, z

with spin-flip and non-spin-flip analysis for each. This allows for full decomposition

of the coherent nuclear, incoherent nuclear and magnetic scattering. Issues with the

dilution refrigerator limited the base temperature to 300 mK. Measurements were

taken at 0.3, 0.5, 0.8, 3.5, and 50 K. Data reduction and polarization decomposition

were performed using in house software. Magnetic diffuse scattering was analyzed

by using the Reverse Monte Carlo (RMC) method in the SPINVERT software suite

[66]. A large box model of 63 crystalline Fd3̄m unit cells of 10.389 Å was used totaling

3456 spins. Fits were replicated 16 times each with random initial spin orientations.

Despite Gd+3 being a Heisenberg ion, fits were performed under Heisenberg, xy and

Ising anisotropy constraints with a local (111) easy axis to reduce parameterization in

the non-Heisenberg cases. A strong nuclear peak near 2.2 Å contaminated the data,

so data within this region was excluded from the fit.

5.3 Bulk Properties

FIGURE 5.1: (a) DC magnetometry from 1.8 to 300 K shown as the
inverse susceptibility. The linear fit (red line) is the Curie-Weiss law.
(b) Specific heat (square points) data after the phonon subtraction, and
corresponds to the entropy release (red line) with the total possible

entropy labeled as RLn8 for J = 7/2.

A Curie-Weiss fit to the inverse DC susceptibility (Fig. 5.1) shows a linear trend



76 Chapter 5. Palmer Chalker Glass Correlations in Gd2ScNbO7

over a wide temperature range as is expected of S = 7
2 Gd+3 ion. A Weiss temper-

ature of -3.93(3) K indicates net antiferromagnetic interactions and a free moment

of 7.89(1) µB is extracted from the Curie constant, similar to the expected value of

7.94 µB. Magnetic specific heat measurements (Fig. 5.1) show a broad peak near 1.2

K suggesting the build up of magnetic correlations. The entropy released from this

transition over the temperature window 0.35-14 K is 15.56 J·K−1·mol−1. The entropy

release expected of the full ordering of a S = 7
2 is R·ln(8) or 17.23 J·K−1·mol−1 meaning

roughly 90 % of the magnetic entropy is recovered through this transition down to

T = 0.35 K. Extrapolating the specific heat to zero linearly does not recover a signif-

icant proportion of the remaining entropy, and integrating to higher temperatures

becomes dominated by phonons as La2ScNbO7 is an imperfect subtraction. While

La2ScNbO7 behaves as a good phonon standard for the larger cation Ln2ScNbO7, this

approximation begins to deviate at high temperatures for the smaller cation systems

(Gd,Tb, and Dy), as the phonon energies likely change with the shortening bond

lengths and unit cell dimensions. Attempts to find a better phonon standard for the

small cation systems, such as preparing a Y2ScNbO7 pyrochlore have failed so far, so

La2ScNbO7 is still used as a rough approximation at low temperature where phonon

contributions to the heat capacity are mostly insignificant anyways.

5.4 Polarized Neutron Diffraction

FIGURE 5.2: (a) Polarized magnetic scattering data from the DNS at
multiple temperatures. (b) The RMC fits to the 0.3 K data set with fits

of varying anisotropy constraints displayed.
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Figure 5.2 shows the isolated magnetic scattering by polarization analysis. Cor-

relations in this system can be seen building up by 3.5 K and below and are not

observable at 50 K. These correlations saturate by 0.8 K and don’t change any further

upon cooling. No magnetic Bragg peaks are observed, and the scattering observed

is due to short-range correlations. The fact that the scattering is near zero at certain

points suggest that the correlations are quite strong which also agrees well with the

large entropy extracted. Additionally, the scattering appears to approach zero at |Q|

= 0, suggesting that the correlations are antiferromagnetic in nature. RMC analysis is

employed to investigate the correlations of the diffuse system. As Gd+3 is a Heisen-

berg ion the Heisenberg fit (Fig. 5.2) should be considered the most meaningful fit

to the data. However, the xy and Ising fits can still provide useful information as to

whether the more restrictive fits are capable of fitting the data at all. Clearly the Ising

data is insufficient to fit the data, showing a large peak near 2.2 Å whether or not

that spurious data near 2.2 Å were removed from the RMC fit. The xy data on the

other hand, do an excellent job of fitting the data, similar to the Heisenberg fit which

has an additional parameter dimension. This suggests that the spins either entirely

or predominately lie in the xy plane which is similar to the Palmer-Chalker ground

state.

FIGURE 5.3: (a) Histogram of the angular configuration of the spins
projected onto the xy plane with 6-fold folding from the Heisenberg
RMC fit. (b) Histogram of the spin angular deviation from the xy
plane in the Heisenberg RMC fit. Important directions are labeled for
clarity. The insert shows vectors along important directions from the
Gd+3 site, orange oxygens are O8b, red oxygens are O48 f . The relevant

quantities, s·z and θ, are labeled.
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FIGURE 5.4: Average spin-spin correlations extracted from RMC fits
as a function of spin distance, for the Heisenberg and xy planar sym-

metries. Negative values represent antiferromagnetic correlations.

The Heisenberg fit was further analyzed to extract the distribution of spin ori-

entations and the correlations between spins. Figure 5.3 shows the distribution of

spins when projected onto the xy plane (θ) and when projected onto the z axis (s·z).

The spins have no apparent orientational preference within the xy plane, they do

however have a strong preference towards aligning within the xy plane. The data

can be well described constraining the moments entirely to the xy plane (Fig. 5.2).

Spins orientating within the xy plane is consistent with other gadolinium pyrochlores.

However, under the Γ7 Palmer-Chalker state the spins should align along the (-HH0)

directions within the xy plane.

Additionally the correlation magnitudes may be extracted from the RMC results

for both the xy and Heisenberg fits (Fig. 5.4). The value < ~S · ~S > represents the

average dot product of spins i,j with distance rij between spins, where a positive value

indicates net ferromagnetic orientations and negative, antiferromagnetic. For a fully

k = (000) ordered system on the pyrochlore lattice the maximum value of < ~S · ~S >

should be 0.33, and correlations should persist out to high r. In Gd2ScNbO7 the

nearest neighbor correlations ( 3.6 Å) are strongly antiferromagnetic, with correlations

strongly falling off in magnitude. A correlation length can be fit to |< ~S · ~S >| with

an exponential decay, giving an estimated correlation length of 2.1(1) Å for the
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Heisenberg fit, less than the nearest neighbor length, suggesting that these should be

considered nearest-neighbor correlations.

A caveat is required in interpreting RMC results. In order not to settle into a false

minimum a random term is introduced allowing ‘bad’ spin movements to occur with

a variable probability. As a result, RMC results will systematically overestimate the

level of disorder [66] both in terms of the local distribution of spins in the case of

preferred order and in the correlation values. The correlation length of 2.1(1) Å and

maximal correlation value of -0.22(2) should be considered lower bound estimates.

5.5 AC Magnetic Susceptibility and Muon Spin Relaxation

While the structural data is enough to establish that the system is in a disordered state,

it does not give any information on the dynamics present. The dynamics probes of

AC magnetic susceptibility and muon spin relaxation (µSR) are presented in Mauws

et al., 2021 [102]. The data presented here were obtained by the group of Graeme

Luke (McMaster), as such only a brief description will be given.

AC magnetic susceptibility shows a frequency dependant peak near 0.8 K (Fig.

5.5, (a)). A peak in χ′′ shows spin processes with a relaxation time corresponding

to frequency−1, although it does not necessarily imply a thermodynamic transition

[103, 104]. A Mydosh parameter, φ = ∆TSG
TSG logω [105] is a parameter that describes

the magnitude of the frequency dependence and is commonly used as a qualitative

method of identifying spin glasses (Fig 5.5, (c)) [103]. The Mydosh parameter for

Gd2ScNbO7 is 0.020(1), near the upper limit but consistent with values expected for

spin glasses [106]. Additionally, this Mydosh parameter is significantly too high for

most ferromagnets and too low for superparamagnets.

Muon spin relaxation is a dynamics probe that implants polarized muons into a

sample and measures the asymmetry of the beta decay products [107]. The asymmetry

is defined as,

A(t) =
Pf − Pb

Pf + Pb
(5.1)

where Pf is the signal of the forward detector, which the muons are initially polarized

towards and Pb is the signal of the back detector, which the muons are initially polar-

ized away from. Once muons are imbedded into the sample they will precess around
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FIGURE 5.5: Dynamics measurements of Gd2ScNbO7. (a) The real
component of the magnetic susceptibility. (insert) DC magnetometry
of the freezing transition, cooled in zero field (ZFC) and cooled in
a 100 Oe field (FC) with measurements taken in a 100 Oe applied
field. (b) The asymmetry function of the muon spin relaxation data
fit to streched exponentials above the freezing temperature. (insert)
The relaxation rate extracted from the fits in the paramagnetic regime
(blue) and the frozen regime (orange). The frozen regime is split into
static and dynamic components, with the static rate out of frame. (c)
The imaginary component of the magnetic susceptibility. (insert) A
plot of the temperature-frequency shift, from which a Mydosh pa-
rameter is extracted. (d) The asymmetry function of the muon spin
relaxation data below the freezing temperature, fit to streched expo-
nentials. (insert) A plot of the stretching parameter β through the spin

freezing.

their local internal field. In a well-ordered system, this can lead to an oscillation of

the asymmetry. In a poorly ordered system, this will lead to a dephasing of the muon

precession, the rate of which can be tracked.

Here the relaxation of the muon asymmetry is fit to a stretched exponential decay

(Fig. 5.5, (b,d)),

A(t) = A0[
1
3

e−(λDt)β
+

2
3

e−(λSt)β
] + Abkge−λbkgt (5.2)

where λ is the relaxation of the dynamics component (D), static component (S) or
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FIGURE 5.6: Local spin orientations for the Γ7, Γ5 (Φ2) and Γ5 (Φ3)
magnetic structures, which represent the possible k =(000) antiferro-
magnetic states with xy ordering. For reference, the (111) axis is into
the page, the central vector of φ2 is pointing in a (-211) equivalent di-
rection and the central vector of φ3 is pointing in an (0-11) equivalent
direction. The Γ7 structure is known as the Palmer-Chalker structure.

background (bkg), β is the stretching exponent, t is time and A is the muon asymmetry.

Above the freezing temperature λD and λS are equivalent, and is just given as λ (Fig.

5.5, (b,d).

Above the transition temperature the zero-field asymmetry shows an increasing

relaxation rate. Upon cooling through the transition near 0.8 K the relaxation splits

into a fast (Dynamic, D) and slow (Static, S) component with relaxation rates λD and

λS with a ratio of 1
3 of the moment participating in λD which is typical of a frozen

state (Fig. 5.5, (b)). This fraction is due to the portion of the muon that lies parallel to

the local field. From here the dynamic rate monotonically decreases and the static

rate plateaus, which is typical of µSR experiments on rare earth systems [108]. This

decoupling of spins into a static and dynamic component suggests that the spins have

become static on the µSR time scale. Additionally, when a magnetic field is applied

up to 2 T, no phase transition is observed with the freezing temperature shifting up

to 0.9 K.

The µSR results are consistent with spin glass behaviour and importantly do not

indicate the existence of any long range order phase transition down to 20 mK or up

to 2 T. These results are consistent with results on other spin-glass pyrochlores such

as Y2Mo2O7 [109, 110].
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5.6 Discussion

In the parent gadolinium compounds Gd2B2O7 (B = Ti, Sn, Pb, Ge, Pt) there is a broad

specific heat anomaly similar to what is observed in Gd2ScNbO7 followed by a first

order phase transition at lower temperatures, which is not observed in Gd2ScNbO7.

Instead Gd2ScNbO7 shows a missing entropy of roughly 10 % of the fully ordered

entropy down to 0.35 K. Additionally dilution fridge µSR measurements show no

additional ordering transitions down to 20 mK. The long range ordering does change

between the Gd2B2O7 gadolinium systems, the k = (000) Palmer-Chalker state (Fig.

5.6) shows this ordered state for Gd2Sn2O7. However, there is also Gd2Ti2O7 which

shows a k = (1
2

1
2

1
2 ) propagation vector ordering for 3

4 of the gadolinium ions where

the remaining moment remains disordered [25]. In this case the moments do order

into an xy framework as well.

It is best to compare Gd2ScNbO7 to the intermediate liquid regime that exists

in Gd2Sn2O7 [111] which has also been analyzed by RMC and direct Monte Carlo

methods. In the disordered regime at 1.1 K the Gd2Sn2O7 moments also show a

strong preference to align within the xy plane, and the RMC gives a similar although

underestimated values compared to the Monte Carlo results. The only significant

distinction that can be seen is in the correlation function < ~S · ~S >. The nearest

neighbor correlations in Gd2ScNbO7 are -0.22(2) and -0.25 in Gd2Sn2O7, which are

reasonably similar. There are qualitative differences at further neighbor correlations,

where the second (6.6 Å) and third (7.4 Å) nearest neighbor correlations are 0.085(1)

and -0.014(1) in Gd2ScNbO7 and 0.04 and 0.0125 in Gd2Sn2O7 respectively, with

Gd2ScNbO7 showing antiferromagnetic correlations at the third nearest neighbor

instead of ferromagnetic.

The reported correlation length of Gd2ScNbO7 is 2.1(1) Å, smaller than a single

bond length. However, this fit yields an isotropic correlation length while the corre-

lations are anisotropic, effectively giving an average. In Gd2Sn2O7, the correlations

along the bonding directions are the strongest with alternating antiferromagnetic, and

ferromagnetic correlations similar to a 1-dimensional chain of antiferromagnetially

correlated spins. Here however, the correlations along the chains for the first two

neighbors are both antiferromagnetic, and so a description using antiferromagnetic
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FIGURE 5.7: Phase diagram of the bond-disordered pyrochlore Heisen-
berg antiferromagnet. This diagram only considers nearest-neighbor
coupling (J1) with J2 = 0. ∆ is the magnitude of random bond disorder.
This phase diagram has been modified from the work presented by H.

Shinaoda et al. [112].

spin chains is insufficient to describe Gd2ScNbO7, whereas the second nearest neigh-

bor correlations about the kagome hexagons formed by the A-site are much stronger.

It may be that Gd2ScNbO7 shows correlated hexagonal rings with little correlation

between them.

What Gd2ScNbO7 provides is a clear example of quenched magnetic disorder

as a result of bond disorder. Unlike the other Ln2ScNbO7 pyrochlores discussed in

this thesis, there is no crystal field disorder here to complicate the causal factors in

any observed disorder. The disorder that is frozen into Gd2ScNbO7 is likely caused

by local distortions of bond lengths that give a distribution of exchange interactions

for various Gd+3 ions. This has been explored theoretically for bond-disordered

Heisenberg antiferromagnets [112, 113]. It has also been realized in some systems

like Y2Mo2O7 and the doped spinel Zn1−xCdxCr2O4 [114–116]. Work presented

by H. Shinaoda et al. [112] discusses the pyrochlore system and provides a phase

diagram showing the onset of spin glass behaviour with an increasing disorder

parameter ∆, where delta provides a range of possible exchange values (J) such that

J ∈ [< J > −∆,< J > +∆] where < J > is the average exchange value (Fig. 5.7).

In the case with only nearest-neighbor exchange any finite value of ∆ introduces a

spin glass phase at low temperature, with a spin nematic phase existing at higher

temperatures for ∆ < 0.3. It is difficult to know where Gd2ScNbO7 resides on this
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phase diagram, but the theory is consistent with our results. Although it should be

noted that calculations were performed with antiferromagnetic next-nearest-neighbor

interactions (J2) which introduces a long-range ordered phase at finite amounts

of disorder. Based on the results here the next-nearest-neighbor correlations are

ferromagnetic, which may imply a ferromagnetic J2, which does not appear to have

been studied theoretically. It would be interesting to compare to the results of those

calculations.

5.7 Conclusions

From the magnetic structural data, Gd2ScNbO7 shows short-range structural corre-

lation, with an emergent xy spin orientation. Although this seems to approach the

predictions of a Heisenberg antiferromagnet on the pyrochlore lattice, long-range

order with the spins aligned in the xy plane is precluded by the presence of chemical

disorder. This disorder is not due to the overlap of excited crystal electric field causing

mixed anisotropies due to the half-filled shell present in Gd+3. It is likely due to a

variance in the local exchange interactions experienced by the Gd+3 ions. The dipolar

interaction is dominant at longer ranges as expected of the long-range interaction,

evidenced by the ferromagnetic longer range correlations observed in contrast to

Gd2Sn2O7. These xy antiferromagnetic nearest neighbor interactions appear to form

Palmer-Chalker like clusters (Fig. 5.6, Γ7).

The system does not achieve long-range order down to 20 mK as evidenced by µSR

measurements, which alongside AC susceptibility measurements show Gd2ScNbO7

as a glass with quenched disorder. An absence of change in correlations between 0.8

K and 0.3 K supports this. At short range, Gd2ScNbO7 shows Palmer-Chalker corre-

lations with long-range paramagnetic correlations facilitated by a glass quenching.

Gd2ScNbO7 provides an interesting case among the Ln2ScNbO7 pyrochlores, as

the crystal field disorder that is prevalent among the others is not a concern here as

Gd+3 is a spin-only system. As such the exchange disorder, J ∈ [< J > −∆,< J >

+∆] is isolated from the crystal field disorder. This exchange disorder is sufficient

to prevent the long-range order that appears in other Gd2B2O7 (B = Sn, Ti) systems,

instead freezing into a ground state similar to the liquid-like regimes present in the
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parent Gd2B2O7 compounds. This does support the idea that bond-disorder is not a

significant contribution to the deviations of Nd2ScNbO7 from its parent compounds

(Chapter 4), as the system appears well ordered, as opposed to Gd2ScNbO7 which

quenches into a glassy ground state.





87

Chapter 6

Absence of Spin Ice Behaviour in

Dy2ScNbO7

6.1 Introduction

Dysprosium pyrochlores have been extensively studied in frustrated magnetism. For

example, Dy2Ti2O7 is the prototypical classical spin ice, presenting a Kramers doublet

Ising crystal field, and an exceptionally large moment of 10 µB that causes the spin

interactions to be dominated by ferromagnetic dipole-dipole interactions [117, 118].

The consistency of this behaviour results in the dysprosium pyrochlores (Dy2Ti2O7

[119], Dy2Sn2O7 [48, 120], Dy2Ge2O7 [120], Dy2Pt2O7 [121]) all showing a similar

classical spin ice ground state, where only the freezing temperature changes slightly

due to shifts in lattice constants altering the dipole-dipole interaction and the small

antiferromagnetic exchange interaction [122].

FIGURE 6.1: This graphic shows the spin ice configuration (left), along-
side the formation of fractionalized defects (middle) and how these
defects propagate freely (right). Red spins indicate flipped spins. Red
and Blue dots indicate the fractionalized defect tetrahedra of opposite

‘magnetic charge’.
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The classical spin-ice ground state contains Ising spins on each tetrahedron with an

Ising axis that points towards the centres of the two corner-sharing tetrahedra. A net

ferromagnetic dipole-dipole interaction causes ferromagnetic coupling of the classical

spins yielding a ‘two-in’, ‘two-out’ configuration on each tetrahedron, which is the

largest ferromagnetic correlation available to the spins in the nearest-neighbor sphere

that holds to the local Ising spin anisotropies (Fig. 6.1). These ordered tetrahedra

remain frustrated and quench into a disordered state unless cooled exceptionally

slowly [123]. This classical spin ice ground state has fractional excitations that act as

magnetic monopole quasiparticles. This occurs by a single spin flip which creates two

defect tetrahedra of ‘three-out’, ‘one-in’ and ‘three-in’, ‘one-out’ monopoles and anti-

monopoles which can propagate apart and can only be destroyed by annihilating with

their respective anti-quasiparticle [124–126] (Fig. 6.1). In Dy2ScNbO7 we investigate a

surprising departure from spin ice behaviour. Previous bulk property measurements

on Dy2ScNbO7 have been reported by X. Ke et al. [48], which tentatively report spin

ice-like behaviour in Dy2ScNbO7 based on a residual entropy that is near but above

the spin ice entropy. Here we show that Dy2ScNbO7 shows no spin ice behaviour

due to a destruction of the single ion anisotropy necessary for classical spin ice.

The work in this chapter has been performed by the author with the exception

of; the synthesis of the 160Dy2ScNbO7 sample which was performed by Megan

Rutherford, the collection of the CEF data which was performed remotely with the

help of Adam Aczel, the collection of the He-3 component of the specific heat data

which was performed remotely by Quantum Design. It should be noted that some

in-field magnetic work and dynamics will be discussed that results from collaborative

work with Megan Rutherford and are reported in the thesis [127].

6.2 Methods

DC magnetic susceptibility was performed on a Quantum Design PPMS with a vibrat-

ing sample magnetometer using 6.6(1) mg of powder Dy2ScNbO7, the magnetization

curve was obtained on a 23.75(1) mg sample at 1.9 K. Specific heat measurements

were performed on a Quantum Design PPMS in a He-3 and He cryostat with data
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overlapped. Measurements were performed by the quasiadiabatic method, using

11.1(1) mg of powder sample.

Inelastic neutron scattering measurements were performed on the ARCS spec-

trometer (ORNL) [128]. All neutron measurements were performed on 1.2485 g of

powder 160Dy2ScNbO7 (the sample was prepared by conventional methods reported

in chapter 3). 160Dy (160Dy2O3, cambridge isotopes 94.40 % enrichment, 98.0 % purity,

metals basis) was used due to its absorption cross section of 56 barn compared to 994

barn at 1.8 Å for natural abundance dysprosium [81] as well as avoiding the resonant

line that becomes relevant above 25.3 meV for 162Dy. Measurements at ARCS were

performed on the sample mounted in an aluminum can at temperatures of 5 K and

200 K and incident energies of 25, 50 and 150 meV with a resolution of roughly 5 % Ei

at the elastic line.

Polarized neutron powder diffraction was performed on the DNS spectrometer

[89] at FRM II. The sample was mounted in an annular copper can with sample thick-

ness 0.7 mm (radial) and attached to a dillution refigerator with a base temperature of

120 mK. Measurements were taken at 0.12, 0.3, 0.6, 0.8, 50, 100 K with a wavelength

of 4.74 Å, using 6 polarization channels x, y, z for spin-flip and non-spin-flip allowing

full polarization decomposition by in house software. The vanadium normalization

showed unexplained inconsistencies so an internal normalization by the incoherent

scattering was performed instead, with an associated error increase of roughly
√

2.

Reverse Monte Carlo (RMC) analysis was performed on the low temperature data us-

ing the spinvert software [66], using Ising, xy, and Heisenberg anisotropy constraints.

Fits were performed on a 63 box of 10.3614 Å unit cells, with anisotropies defined by

the local (111) direction for each of the 16 spins in each unit cell, totaling 3456 spins

per refinement. Refinements took randomly generated initial spin configurations and

each refinement was repeated 8 times with different initial configurations.

6.3 Specific Heat and Magnetization

The inverse magnetic susceptibility data (Fig. 6.2) shows an uncommon feature for

rare earth ions, an almost perfect linear Curie-Weiss behaviour between 1.8 and 100

K. Although, despite the spin-orbit interactions the susceptibility is roughly linear in
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a) b)

FIGURE 6.2: (a) Inverse magnetic susceptibility in an applied field of
1000 Oe, of powder Dy2ScNbO7, including field-cooled and zero-field-
cooled data. Red line is a linear Cuire-Weiss fit. (b) Magnetization as a
function of applied field at 1.9 K. The expected total moment of Dy+3

is labeled as well as the half moment value.

other dysprosium pyrochlores as well [129, 130]. This Curie-Weiss fit yields a moment

of 9.89(1) µB compared to the 10 µB expected of Dy+3 at the high temperature limit

and a Weiss temperature of -2.16(5) K suggesting antiferromagnetic interactions. The

ferromagnetic spin ices also show net antiferromagnetic interaction in their Weiss

temperature due to the antiferromagnetic exchange [130]. There is no observable

field-cooled, zero-field cooled splitting down to 1.8 K suggesting that the spins remain

dynamic on the DC time scale. Magnetization data show magnetic field saturation

just below 1
2 of the total expected moment for Dy+3. A saturation of 1

2 µB typically

indicates a strong anisotropy of either Ising or xy, however if that was the case

we would expect the saturation to be closer to 1
2 µB than is observed, and is more

consistent with mixed anisotropy systems, and not consistent with a Heisenberg

system [131, 132].

Specific heat measurements are a tell tale sign of spin ice due to the characteristic

Pauling entropy that exists [119]. The Pauling entropy, R
2 ln 3

2 (1.69 J·K−1) is a missing

entropy from the full Rln2 (5.76 J·K−1) entropy due to the macroscopic degeneracy

of the spin ice configuration. Figure 6.3 shows the magnetic entropy release after

the phonon contributions, approximated by La2ScNbO7 are removed, along with

the associated entropy. As a lattice subtraction, La2ScNbO7 is less applicable to the

small cation Dy+3 when compared to the larger cation systems, and fails at higher

temperature. The upper integration range is limited to 10 K. The entropy released
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FIGURE 6.3: Magnetic specific heat (black points) of powder
Dy2ScNbO7 after a phonon correction using La2ScNbO7, reported
as C

T . The grey dashed line is a power-law extrapolation to zero tem-
perature. The red line is the direct integration of the experimental data,
and the red dashed line includes the integration of the grey dashed

line below the temperature limit.

by Dy2ScNbO7 is unambiguously higher than the expected spin ice entropy of 4.07

J·K−1, which was also observed in previous measurements [48] although we observe

an even greater deviation. Extrapolation of the low temperature specific heat is

performed by fitting to a scaling law C = αTγ which yields α = 3.42(5) and γ = 1.81(3),

which allow for an analysis of the scaling exponent γ as well as calculation of an

extrapolated entropy (Fig. 6.3). The extrapolated entropy does not fully saturate

to Rln2, although it comes close enough that systematic error such as the imperfect

phonon subtraction could hide saturation. This suggests that the Pauling entropy

is not present in Dy2ScNbO7. The scaling of γ = 1.81(3) seems to exclude both spin

glass (γ = 1) or a gapless three-dimensional antiferromagnet (γ = 3) [103], suggesting

more interesting physics is at play. It may also simply be that this scaling fit is

not performed over an appropriate range, or the scaling equation may not have an

exponential form.
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FIGURE 6.4: Inelastic neutron spectroscopy measurements of the crys-
tal electric field from ARCS on Dy2ScNbO7 at 5 K using incident

energies of (a) 150 meV and (b) 50 meV.

6.4 Crystal Electric Field Spectroscopy

The crystal electic fields of Dy+3 ions on the pyrochlore lattice are typically well

separated from the ground state crystal field by approximately 21 meV [133]. Figure

6.4 shows the neutron accessible crystal field distibution within Dy2ScNbO7, the

crystal field excitations are broad in energy due to the chemical disorder, and no

discrete peaks associated with high probablility configurations are observed as in

Nd2ScNbO7 (chapter 4). Of the 7 excited crystal field doublets in the probed range,

3 to 6 of which should be visible to neutrons, only 2 broad excitations are visible.

The visible crystal fields are not similar in energy to the parent Dy2Ti2O7 [133]. Of

particular note is the broad excitation centred near 6 meV, which is not well separated

from the ground state, unlike the parent compounds. This has the potential to

introduce new crystal field symmetries, although it is interesting that this does not

cause the inverse magnetic susceptibility to deviate from a linear behaviour.

To ensure that this low energy excitation is a crystal electric field and not a

magnetic excitation figure 6.5 compares the |Q|-dependence of the feature to the

magnetic form factor of Dy+3 showing it is consistent with a crystal field. Additionally

both broad excitations are visible at 200 K (not shown), but are heavily smeared due

to the population of excited crystal fields, indicating that the low energy feature is in

fact a crystal field. There is not sufficient data to approximate the crystal field scheme

here.
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FIGURE 6.5: The Q-dependence of select features in the ARCS inelastic
neutron spectroscopy data. Energy integrations are performed over
the specified ranges. Red lines are the squared magnetic form factor

of Dy+3 with an arbitrary multiplicative scaling.

6.5 Magnetic Neutron Diffraction

FIGURE 6.6: (a) Magnetic neutron scattering data obtained by polar-
ization decomposition of polarized powder diffraction data from the
DNS spectrometer at 120 mK. Lines represent RMC fits with labeled
anisotropy constraints. (b) The spin-spin correlation functions of the
various RMC fits, rij indicates the distance between the magnetic ions.

Polarized magnetic neutron powder diffraction is used to isolate the magnetic

scattering from Dy+3 (Fig. 6.6 (a)). Weak correlations develop by 800 mK and persist

down to 120 mK without apparent change. A dead window in temperature in the

cryostat set up prevents measurements between 800 mK and 4 K, and high tempera-

ture measurements were limited by time. Most of the measurement time was used to

increase the statistics of the 120 mK data for RMC refinement. One can immediately

observe that the correlations in Dy2ScNbO7 are qualitatively different from spin ice
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3.66 Å

7.33 Å

7.33 Å

6.35 Å

FIGURE 6.7: Graphical representation of the three nearest neighbor
coordination spheres of Dy+3 ions on the pyrochlore lattice.

powder patterns [134], including a decreasing intensity as |Q| approaches zero, sug-

gesting antiferromagnetic correlations. In general though, the correlation magnitudes

are very small with peaks and valleys in the scattering intensity only slighly deviating

from the mean, suggesting that most of the spins remain uncorrelated.

Reverse Monte Carlo fitting using multiple constraints shows that the Ising spin

constraint is insufficient to describe the data, which would not be the case for spin ice.

The xy constraint sufficiently describes the data, although there is no evidence that

the spins in this system should have an xy orientation. The Heisenberg case therefore

is used to generically describe the system. Figure 6.6 (b) shows the < ~Si · ~Sj >

correlation function, where the Heisenberg correlations should be taken as the most

realistic. The nearest neighbor correlations (-0.08) are weakly antiferromagnetic, and

remain well below the ordered correlation value of 0.33 for pyrochlores. Next nearest

neighbor interaction (around the kagome hexagons, Fig. 6.7) is near zero, however

the next next nearest correlations (along bonding directions, and across hexagons,

Fig. 6.7) also appear antiferromagnetic. This interaction is comprised of two distinct

correlations, and the correlation being antiferromagnetic is unlikely to be consistent

with antiferromagnetic correlations along the bonding direction. Instead this likely

indicates that there are antiferromagnetic correlations across the hexagons. Fitting

|< ~S · ~S >| to an exponential decay yields an average correlation length of 2.3(3) Å,
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although similar to the case of Gd2ScNbO7 the correlations are highly anisotropic.

FIGURE 6.8: Histograms of the single ion spin configurations from
the Heisenberg RMC fit. (a) For spins projected onto the xy plane,
red dashed lines indicate (-110) equivalent directions, and the solid
black line indicates one (11-2) equivalent direction, where 6 periodic
equivalents of each vector lie within the plane. (b) Component of the
moment along the local z, (111) equivalent axis. For a graphic of the

dimensions depicted in this histogram refer to figure 5.3.

Although the xy fit appears to fit the data well, this may be just due to a sufficiently

large parameter space. To investigate the local spin anisotropy the results of the

Heisenberg RMC fit, a histogram of the local spin configurations is shown in Figure

6.8. It is apparent that no statistically significant spin orientational preferences are

present within Dy2ScNbO7, which is unusual for an ion that typically retains a strong

Ising anisotropy on the pyrochlore lattice.

6.6 Dynamics

Dynamics measurements on Dy2ScNbO7 have primarily been performed by Megan

Rutherford [127] so this section will be limited to a discussion of the results.

AC magnetic susceptibility and muon spin relaxation have been performed to

probe the dynamics of Dy2ScNbO7. The muon spin relaxation shows very quick

relaxation of the muon polarization at all temperatures, likely due to the dynamics

induced by the low lying crystal fields in Dy2ScNbO7 such that there are no unique

local environments for the muons to experience. The AC susceptibility is more useful,

as a strong frequency dependant shift in the real component of the susceptibility

is observed. Although the frequency range currently observed is limited between

1-500 Hz, the response appears to be linear for ∆TSG
TSG

∝ log(ω), with a proportionality
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constant of roughly φ = 0.08. This linear response is typical of spin glasses, with a

typical proportionality constant, called a Mydosh parameter, in the range of 0.06-0.08

for insulating spin glasses [106]. It is worth noting that these values are also not

uncommon for spin ice systems, as they are effectively spin glasses as well (over the

appropriate temperature ranges). This Mydosh parameter does deviate from other

pyrochlore spin glasses like Mn2Sb2O7 [105] and Gd2ScNbO7, which have Mydosh

parameters closer to conducting spin glasses like Ni-doped Mn [106]. Dy2ScNbO7

actually appears to be a more canonical insulating spin glass like (FeMg)Cl2 [106].

One might speculate that this is related to the isotropic behaviour of the dysprosium

spins unlike the emergent anisotropic xy gadolinium spins.

6.7 Discussion

It is apparent that Dy2ScNbO7 is not a spin ice. This is the primary surprising result of

this work, as all Dy and Ho pyrochlores up until this work have been classical spin ices

due to the dominant interactions being classical dipole-dipole interactions, which are

not as sensitive to small perturbations in bonding lengths as exchange interactions are.

This lack of spin ice behaviour is evidenced by the lack of the characteristic Pauling

entropy [119], as well as the magnetic neutron scattering data, which is qualitatively

different from spin ice [134]. Fits to the magnetic diffuse scattering show spins with

no preferred orientation, whereas the conventional spin ice systems are purely Ising,

and attempts to fit the system to an Ising model cannot represent the data, and yield

meaningless results.

To explain these results, magnetization and crystal electric field data are needed.

Although the crystal fields are too diffuse to be easily fit, it can be seen that there

are low lying crystal fields below 10 meV that is not observed in other dysprosium

systems where the excitations are typically well separated from the ground state. In

Dy2ScNbO7 there is no apparent gap between the ground state crystal fields and the

excited states. This could introduce alternative anisotropies onto dysprosium ions

creating a heterogeneous local environment of dysprosium ions. This heterogeneous

environment of anisotropies and underlying J values for exchange, alongside local

displacements altering the exchange values can feasibly lead to the spin-glass system
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that is observed. Although the bulk indications do not suggest that the system is

particularly frustrated, a Weiss temperature of -2.16(5) K is not dramatically different

from the spin-freezing temperature of roughly 1 K. The released entropy also appears

to approach the expected ordering entropy, although this is tough to quantify as the

population of crystal fields above the ground state doublet could also be a significant

contribution. the magnetic entropy never properly reaches zero, and increases at

higher temperatures, either due to phonon standard mismatch or the population of

excited crystal fields.

It is unlikely that the Dy+3 system is truly anisotropic as the RMC analysis would

nominally suggest. Instead there is likely a distribution of anisotropies among the

Dy+3 ions, that average out to an apparently anisotropic system. A distribution of

anisotropies, and weak, short-range correlation lengths is reminiscent of an anisotropy

driven spin glass. While spin glasses are typically driven by a distribution of ex-

change interactions, they can also be driven by a distribution of anisotropies [135–137].

This has been studied for ferromagnets with random anisotropies in a crystalline

system [135, 136]. Given that Gd2ScNbO7 is also shows glass like correlation, due to

a distribution of exchange interaction, a similar distribution of exchange interactions

should exist in Dy2ScNbO7. A combination of exchange disorder and anisotropy dis-

order is likely present in Dy2ScNbO7. This additional frustrating affect, compared to

Gd2ScNbO7 may explain why the nearest-neighbor correlation value for Dy2ScNbO7

(0.08) is significantly lower than Gd2ScNO7 (0.2).

6.8 Conclusions

The charge disordered pyrochlore Dy2ScNbO7 has been investigated by magneti-

zation, and specific heat measurements, as well as polarized neutron diffraction

and neutron crystal field spectroscopy. The built in disorder discussed in chapter 3

dramatically changes the crystal field environment of the dysprosium ions compared

to the parent pyrochlores and gives rise to a heterogeneous environment of magnetic

anisotropies, moments and exchange interactions. The low lying crystal field excita-

tions appear to overlap with typically isolated ground state doublet leading to the

heterogeneous environment. This magnetic system becomes more akin to a system of
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disordered magnetic ions, that result in a glassy magnetic ground state. The liquid or

glass like structure is observed by reverse Monte Carlo analysis of the diffuse scatter-

ing data, and shows that the net exchange profile of the system is not that of simple

nearest-neighbor interactions, but likely shows strong antiferromagnetic correlations

across the hexagons of magnetic ions (Fig. 6.7). The spin-glass ordering is consistent

with dynamics work that has been performed by collaborators. Additionally the

combination of an average isotropic spin distribution and lower correlation magni-

tude suggest that both anisotropy disorder and exchange disorder are underlying

causes of the magnetic frustration. To elaborate on one of the important goals of

this works, determining the impact of disorder on magnetically frustrated ground

states, Dy2ScNbO7 provides evidence that ion disorder is very capable of altering

underyling electronic ground states, at least in the weakly coupled electronic states of

rare earths. In this case the chemical disorder directly leads to a glassy ground state.

This is especially relevant as this glassy disorder can easily be mistaken for liquid-like

scattering originating from more exotic interactions. These mistaken experimental

results is an example of so-called mimicry, a term also used to explain the behaviour

of YbMgGaO4 [11]. YbMgGaO4 is another charge disordered system, which attracted

attention as a potential spin liquid. Although in that case, orientational disorder of

the local charge environment, not overlaping crystal field ground states causes the

mimicry.
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Chapter 7

Ising Antiferromagnetism in

Sm2Ti2O7

7.1 Introduction

Among the most chemically well behaved rare earth pyrochlores are the Ln2Ti2O7

titanates. The highly ordered structure, along with relatively simple crystal growths

of these systems compared to other non-magnetic B-sites, have caused them to be the

best studied series of rare earth pyrochlores. Stable on the A-site, are the lanthanides

rare earths ranging from Sm+3 to Lu+3 [15]. They show a robust set of interesting

ground states as described in chapter 1. Sm2Ti2O2 was the last member of this series to

receive detailed experimental analysis. Some bulk property measurements had been

performed prior to the work presented here, although they did not probe beneath the

Néel temperature due to temperature limitations within the measurements [138].

Sm2Ti2O7 was a desirable system to study due to the small moment of 0.43 µB for

Sm+3. While many of the rare earths in the titanate series such as Ho+3 and Dy+3

have large semi-classical spins, the relatively small value of S ( 5
2 ), L (5), and J ( 5

2 )

opened the opportunity to study a more quantum system, specifically one expected

to have Ising anisotropy, which no other small moment titanate possessed. Sm2Ti2O7

also contains the nominal requirements for dipole-octupole moment fragmentation,

with net antiferromagnetic interactions [138] and a predicted mj = ± 3
2 ground state.

Since the original publication by Mauws et. al [139] additional neutron scattering

results on both Sm2Ti2O7 and Sm2Zr2O7 have been published by Peçanha-Antonio et

al. [140], which agree with the underlying ground state presented here with some
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differences in the reported crystal field ground state which will be discussed.

In this work the author performed: the neutron triple axis experiment and data

analysis, the polarized diffraction experiment and data analysis, and the specific

heat analysis. Samples were prepared and single crystals grown by Paul Sarte (U

of Manitoba) and Haidong Zhou (UT Knoxville). Crystal field measurements and

analysis were performed with the help of Gabriele Sala (ORNL) and Paul Sarte.

Muon spin relaxation measurements were performed and analyzed by Alannah

Hallas (UBC). Heat capacity measurements were collected by Djamel Ziat (U de

Sherbrooke). Additionally the author thanks Adam Aczel (ORNL) for help in the

moment refinement for Sm2Ti2O7. Other neutron spectroscopy measurements on the

sample (not shown) were performed by Alannah Hallas, Jonathan Gaudet (McMaster)

and Paul Sarte. The majority of the work here is reproduced from Mauws et al., 2018

[139].

7.2 Methods

Polycrystalline samples of Sm2Ti2O7 were prepared by the conventional solid state

method (Sm2O3, Alpha Aesar 99.99 % and TiO2 99.999 % metals basis), with stoichio-

metric ratios of reagents. Repeated heatings at 1450 °C with intermediate regrindings

were performed until phase pure. A single crystal of 154Sm2Ti2O7 (Cambridge iso-

topes, 99.8 % enrichment) was grown by the optical floating zone method under

flowing Ar gas and cut into segments of ∼3 g.

Polarized neutron diffraction was performed at the D7 spectrometer at the In-

stitute Laue-Langevin (ILL) [64]. The crystal was mounted in the [HHL] plane and

mounted in a dilution refrigerator using a copper mount. Polarization channel z-

spin-flip and z-non-spinflip were utilized for measurements, with the polarization

normal to the diffraction plane. Measurements were taken at 50 mK and 4 K to act as

a background. Single crystal neutron diffraction was also performed at the HB-1A

triple axis spectrometer [141] at the Oak Ridge National Laboratory to obtain an order

parameter, and refine a more accurate moment. The same sample was mounted in a

dilution refrigerator on the same copper mount. Accessible Bragg peaks (18 unique

peaks, 34 total) were scanned using φ scans (rocking curves), at base temperature
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40 mK up to 600 mK. An order parameter was obtained by scanning the (220) peak

using 10 mK steps from 40 mK to 600 mK.

Neutron CEF spectroscopy was performed on ARCS [128] at the ORNL, with the

crystal mounted on an aluminum wire to minimize background contribution, using a

CCR cryostat. Measurements were performed at 5 K and 200 K using Ei = 150 meV

and 60 meV.

Specific heat measurements were performed using the quasi-adiabatic technique,

the heater and thermometer were directly attached to a single crystal of Sm2Ti2O7

which was weakly linked to a dilution refrigerator. Muon spin relaxation measure-

ments were performed at the M15 beam line at TRIUMF. A sample of Sm2Ti2O7 was

cut into slices with faces aligned along the (001) direction, and fixed to a dilution

refrigerator. Incident muons were polarized antiparallel to their momentum, towards

the (001) face.

7.3 Crystal Electric field

As a J = 5
2 ion Sm+3 will have three CEF doublets in its ground state multiplet.

Figure 7.1 shows the inelastic spectrum of Sm2Ti2O7 with an Ei of 60 meV, with

minimized background contributions. Due to the small moment phonon interference

is significant but a CEF can be seen at 16.3 meV. This excitation was also observed

by Raman spectroscopy by Singh et al. [138]. They also claim to observe several

other excitations, more than should exist in the ground state multiplet, some of which

are too weak in intensity to properly identify and some of which are likely virtual

excitations. Additionally previous work by Malkin et al. [26] made an attempt to fit

the crystal field parameters from magnetic susceptibility, and predict crystal fields at

21.4 and 26.4 meV neither of which are observable in the neutron CEF data.

Identifying the second excited crystal field is significantly more difficult, due to a

lower intensity, and a more limited Q-range, leading to more phonon interference. We

considered excitations visible at 29, 70, and 100 meV. For this analysis the temperature

difference between 5 K and 200 K were used to fit the Q-dependence of the excitations,

as the population of the 16.3 meV mode reduces the intensity of excited crystal fields

at higher temperatures (Fig. 7.2). The mode at 70 meV was identified as the second
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FIGURE 7.1: S(Q, h̄ω) for Sm2Ti2O7 measured at ARCS with Ei = 60
meV: The data set clearly shows a crystal field transition present at
16.3 meV. The other two excitations at 10 meV and 27 meV are phonon
levels of Sm3+ that have been observed in other rare earth pyrochlores
(e. g. Ref. [133]). Moreover, due to the exotic form factor of Sm3+, the
intensity of this crystal field excitation decreases at low Q, which is

well captured by our MC simulation.

CEF of the ground state multiplet. Figure 7.3 shows the Q-dependence of the excited

states after a temperature difference, compared to the form factor of Sm+3. It is worth

noting that these crystal fields are difficult to identify both due to the small moment

of Sm+3 as well as the unusual form factor of Sm+3 (Fig. 7.3) which does not decrease

monotonically unlike most form factors.

With the intensity of these modes identified the CEF of Sm2Ti2O7 is calculated

under the weak field approximation, where only the ground state J = 5
2 multiplet is

considered. This allows for a reduction in CEF parameters, as the full crystal field

manifold of six parameters could not be fit to this limited data set. The Stevens’

parameters of B20 = 3.397 meV, B40 = 0.123 meV, and B43 = 8.28·10−8 meV provide

a solution to the crystal field that is non-unique, but are consistent with our CEF

excitations (Fig. 7.2). The results are reported in table 7.1 yielding a ground state of
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FIGURE 7.2: Comparison of χ′′(h̄ω) at 5 K and 200 K. Individual Q
cuts in the Ei = 150 meV data set (1 ≤Q≤ 5 Å−1), corrected for the Sm
absorption, are plotted as a function of temperature. The comparison
with our fit (solid lines) shows an excellent agreement between our
CEF model and the INS data at both temperatures. The green markers
and black line represent the temperature difference between the two

data sets and our fit respectively.

 !

"

#

$

%

!

&'
'()
*
+
,(
)-
./
0(
1
2
345
,

 !"#$%!

6()78 ,

(9:;<
(9:%!!<
()9:;<(8(9:%!!<,

 !"

 !#

$!"

$!#

#!"

#!#

%&
&'(
)
*
+'
(,
-.
!'
/
0
123
+

$#456 #

7'(89$+

':;"<
':; ##<
'(:;"<'9':; ##<+

FIGURE 7.3: Energy cuts for Sm2Ti2O7. (a) Data set at Ei = 60 meV
showing the Q-dependence of the first CEF transition. (b) Data set at
Ei = 150 meV showing the Q-dependence of the second CEF transition.
The Q-dependence of the crystal field transitions measured at ARCS
show a remarkable agreement with the Sm3+ magnetic form factor.
The fitting function consisted of a constant background, a small Q2

term to account for a phonon background, and a multiplicative term
times the square of the magnetic form factor. The Landé g-factor for

Sm was fixed to 2/7.



104 Chapter 7. Ising Antiferromagnetism in Sm2Ti2O7

TABLE 7.1: Crystal field analysis results for Sm2Ti2O7 calculated
within a point charge model and fitting the two experimentally-

determined energy levels.

Eobs (meV) E f it (meV) -5/2 -3/2 -1/2 1/2 3/2 5/2
0.0 0.0 0 0 0 0 -1 0
0.0 0.0 0 1 0 0 0 0
16.3 16.52 0 0 1 0 0 0
16.3 16.52 0 0 0 -1 0 0
70.0 70.28 0 0 0 0 0 1
70.0 70.28 1 0 0 0 0 0

mj = ± 3
2 . It is worth noting that this crystal field has been artificially simplified to

the simplest solution that reproduces the neutron data and may not be a complete

solution, as it is not unique. It is telling however that no temperature dependent

virtual excitation at 200 K is observed between 16.3 meV and 70.0 meV which would

appear at 53.7 meV. This is explained by this crystal field manifold as no coupling

will exist between ± 1
2 and ± 5

2 as a neutron can only induce a transition of ± 1
2 . This

crystal field configuration yields a ground state moment of 0.43 µB.

It is worth noting that the CEF parameters here were calculated in the Stevens’

formalism, these are related to the Wybourne parameters by a parameter depen-

dant scaling factor. For self-consistency in the Wybourne formalism this equates

to B2
0 = 164.6 meV, B4

0 = 393.41 meV, and B4
3 = 1.12·10−5 meV. These are related by

Bkq = λkqθkBk
q where Bkq is the in the Stevens’ formalism and Bk

q is in the Wybourne

formalism, λkq and θk are tabulated in Boothroyd (1990-2014) and Hutchings (1964)

respectively [68, 70].

7.4 Néel Ordering

To search for a magnetic transition in Sm2Ti2O7, muon spin relaxation and specific

heat measurements were employed. Figure 7.4 (a) shows the asymmetry relaxation of

the µSR data in zero field, indicating the rate of muon dephasing is increasing at lower

temperatures, suggesting that the system leaves the uniform field of a paramagnetic

state. The asymmetry was well-fit by a Gaussian relaxation function, A(t) = A0e−λt2
,

where λ is the relaxation rate. The relaxation rate increase monotonically down

to 0.1 K before plateauing, this plateau is typical of rare earth systems probed by

µSR, and can exist in systems with long-range order. More telling of a long-range
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FIGURE 7.4: (a) The asymmetry of the zero-field muon spin polar-
ization for Sm2Ti2O7 evolves significantly between 1 K and 25 mK.
The asymmetry spectra are well fit at all temperatures by a Gaussian
relaxation function. (b) The fitted µSR relaxation rate as a function
of temperature. (c) Specific heat measurements on Sm2Ti2O7 reveal
a magnetic ordering transition at TN = 0.35 K. The red curve is a T3

power law that was used to extract the magnetic entropy down to 0 K.
(d) The intensity of the (220) magnetic Bragg reflection as a function of
temperature also reveals an ordering transition around TN = 0.35 K.

FIGURE 7.5: D7 diffraction data in the (HHL) plane, shown as 50 mK
- 4 K temperature-difference plots. The left side shows the spin flip
channel, while the right side presents the total scattering. Data has
been smoothed for ease of viewing, as peak widths were less than the

instrumental Q-resolution (∼ 1° in 2θ).
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TABLE 7.2: Peak intensities of the magnetic Bragg reflections in
Sm2Ti2O7 compared against the calculated values for all of the possi-
ble k = (0,0,0) ordered structures for the 16c Wyckoff position in the
Fd3̄m pyrochlore lattice. The best agreement is obtained with the Γ3

all-in all-out structure.

(111) (002) (222) (220) (113) (004)
Observed 0 0 0 1.0±0.4 0.78±0.27 0

Γ3 φ(1) 0 0 0 1.00 0.66 0
Γ5 φ(2, 3) 0.88 0 0 1 0.35 0

Γ7 φ(4, 5, 6) 0.52 1.00 0.44 0.11 0 0
Γ9 φ(7, 9, 11) 0.69 1.00 0.44 0.43 0.51 0.67
Γ9 φ(8, 10, 12) 0.06 0.37 0.16 0.44 0.76 1.00

order transition are the specific heat measurements (Fig. 7.4 (c)). Here a lambda-like

anomaly can be seen at TN = 0.35 K, with a discontinuity associated with a first-order

phase transition. The red line in Figure 7.4 (c) is a fit to a T3 power law and can

be seen to have a reasonable agreement, which is consistent with the population of

antiferromagnetic spinwaves in a three-dimensional antiferromagnet at the small

temperature limit. Integrating the entropy from C
T up to 1 K yields an entropy of

0.84·Rln2, which is slightly short of the expected Rln2, but that may be due to the

difficulty of empirically integrating a discontinuous transition.

The polarized diffuse scattering spectrometer D7 in diffraction mode was used

to look for long-range and short-range correlations. Figure 7.5 shows the z-spin-flip

and z-non-spin-flip scattering as a difference above and below the Néel temperature.

Magnetic Bragg peaks are clearly observable in the spin-flip scattering at the (002)

and (113) positions, as no nuclear scattering is permitted in the spin flip scattering.

These peaks are indicative of the Γ3 all-in, all-out structure. While D7 is an ideal

instrument in looking for diffuse magnetic scattering, none is observed in Sm2Ti2O7.

This may be due to a lack of diffuse scattering or an extremely small signal.

In order to refine the magnetic structure the HB-1A spectrometer was used in

an elastic configuration. Figure 7.4 (d) shows the order parameter from tracking the

(220) peak, although the statistics and point spacing were not sufficient to reliably fit

a critical exponent. The integrated intensities from the HB-1A data were used to fit

the Γ3 irreducible representation in FullProf Suite, yielding a moment of 0.44(7) µB, in

agreement with the total crystal field moment of 0.43 µB. The form factor used for

this determination was input manually into FullProf Suite as it used the spin-only j0
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function. Instead the first two radial components of the analytically approximated

magnetic form factors are used such that F(Q) = <j0(Q)> + 2−g
g <j2(Q)> under the

dipole approximation [142].

7.5 Discussion

Sm2Ti2O7 appears to be a simple antiferromagnet with TN = 0.36 K by all experimental

measures, although a couple of discrepancies remain. Attempts at measuring the

magnetic inelastic response of Sm2Ti2O7 with experiment performed on the Cold

Neutron Chopper Spectrometer (ORNL) by collaborators did not observe any signal,

likely due to the vanishingly small moment of Sm+3 and the difficulty of performing

neutron experiments on these systems. As such the dipole-octupole crystal field

ground state of± 3
2 could still allow for moment fragmentation similar to what is seen

in Nd+3 pyrochlores. Although the agreement of the refined moment and the crystal

field moment would mean that the inelastic signature would likely be vanishingly

small.

An extensive work on Sm2Ti2O7 and Sm2Sn2O7 that also uses 154Sm for neutron

scattering was published by Peçanha-Antonio et al. [140] after the initial publication of

this work. The most significant conclusions of this works agree well with our results,

including the observation of the Γ3 ground state, but it is worth considering the

discrepancies. Analysis of rare eath zirconates including Sm2Zr2O7 is also presented

in the thesis of J. Xu [143] that will be considered.

Between all three works there are discrepancies in the crystal field scheme. A

limitation of this work was the limited energy range used to probe the higher energy

muliplets 6H 7
2

above 100 meV. Both of the other papers observe and fit additional

crystal field levels near 130, 155, 170, 183 meV associated with this J = 7
2 multiplet.

As such the other papers incorporate the full six parameter description of the crystal

field that includes higher multiplet terms in the ground state doublet. Normally

contributions from the higher multiplets are negligible in pyrochlores but the small

contributions presented in [140] do cause a significant reduction of the crystal field

moment to 0.16 µB for Sm2Ti2O7 and 0.27 µB for Sm2Sn2O7. The work by Xu yields

a moment for Sm2Zr2O7 yields a moment of 0.39 µB. These discrepancies between
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various samarium pyrochlores are likely too large to be described by cation size

change. The issue that remains is that these works do not observe the second excited

state in the ground state manifold that we observe at 70 meV, and report excitations

at 29.7 meV for Sm2Ti2O7 or 35.7 meV for Sm2Zr2O7 with very small but still possibly

detectable intensities. The crystal field parameters presented in these studies are

more similar to other rare earth pyrochlores than what are presented here, and do

likely provide a better description of the crystal field, but still contain significant

differences. The question of the total crystal field moment still remains somewhat

ambiguous. The work by Peçanha-Antonio et al. were not able to measure a moment

for Sm2Ti2O7 due to the small signal. As such the crystal field moment still need to

be rationalized with the diffraction moment, which should be less ambiguous than

the crystal field fits given the limited data available in those measurements.

7.6 Conclusions

The magnetic ground state of the final member of the rare earth titanate pyrochlore

series has been investigated. While the system does show dipole-octupole symmetry,

no signatures of moment fragmentation is noted within experimental error. An Ising

antiferromagnetic ground state is observed, with a Néel temperature of 0.36 K, and

an ordered moment of 0.44(7) µB. Some discrepancies remain in the crystal field, but

there is agreement that the ground state is predominantly ± 3
2 . While a measurement

and fit of the spin-wave spectrum would be ideal to derive an underlying Hamilto-

nian, this measurement may be prohibitively difficult due to the small moment of

Sm+3 on the pyrochlore lattice.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusion on the Charge Disordered Pyrochlores

The goal of working on the Ln2ScNbO7 pyrochlores was in part to investigate a new

series of magnetically frustrated materials to look for new exotic physics. Additionally,

investigating the differences between the magnetic ground states of these materials

from their parent compounds was used to determine the affects that chemical disorder

played on magnetically frustrated ground states. Chemical disorder is relevant to a

number of systems that appear to have exotic magnetic ground states. The Ln2ScNbO7

systems act as an extreme example of how disorder on non-magnetic sites can impact

the ground states of magnetic systems, at least for rare earth frustrated magnets. In

fact, the results here seem to indicate that the low energy crystal fields of rare earth

systems are the most dramatically impacted component of rare earth magnetism when

non-magnetic disorder is introduced. So, while these results likely can’t be extended

to light transition metal systems, they are relevant for systems with dominant spin-

orbit coupling. In general, the chemical disorder leads to a heterogenous environment

of electronic ground states in the rare earth ions. A ground state that relies on the

built-in anisotropy or symmetry of the electronic ground states is sensitive to non-

magnetic disorder. Gd2ScNbO7 acts as a nice control for this statement as the lack

of spin orbit coupling leaves the system qualitatively similar to the parent Gd2B2O7

systems.

The structure of the Ln2ScNbO7 pyrochlores has been investigated by diffraction

and total scattering techniques using X-rays and neutrons (Chapter 3). Powder

samples of Ln2ScNbO7 (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy) have been prepared,
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although in the large cation samples a LnNb1−xScxO4−x impurity remains, that can

be removed by floating zone crystal growth. Single crystals of Ln = Pr, Nd, Sm, Gd,

Tb, Dy have been prepared by the floating zone method, although crystal masses

for Ln = Tb, and Dy are limited in size (∼ 200 mg) due to instability in the crystal

growths. Neutron diffraction was used to provide better contrast to oxygens and

B-site cations for Rietveld refinement. Neutron measurements show significant

anisotropic displacement factors, with the (Nb,Sc) site showing the largest distortions,

extending to the 48f oxygens and the lanthanide site. To better understand the

short-range correlations of Sc and Nb ions, pair distribution analysis of neutron

data was utilized. This showed that in the large cation systems Ln = La, Pr, and Nd

there are strong nearest-neighbor correlations favouring alternating Sc-Nb pairs. The

strength of these correlations seem to approach charge-ice values where each B-site

tetrahedron has two Sc and two Nb ions. The smaller cation systems such as Ln = Tb,

the correlations appear weaker although this trend is largely inconclusive due to the

limited samples used for neutron experiments and the large associated error with the

fitting process.

The importance of the disorder towards the magnetic ground state is apparent in

all of the systems for which the magnetic ground state was studied. In Nd2ScNbO7

the moment fragmentation phenomenon observed in other neodymium pyrochlores

is significantly altered. The ratio of the static moment to the dynamic moment is

changed from the conventional ∼ 50% to ∼ 90 %. Additionally, the spin wave spec-

trum becomes undetectably broad, and the dispersionless gapped excitation becomes

nearly isotropic, although the gap energy remains nearly unchanged. These devia-

tions cannot be explained within the typically reported linear spin wave theory of

moment fragmentation. Here the deviation is tentatively explained by the breaking of

dipole-octupole symmetry normally assumed for neodymium pyrochlores. A broad

range of crystal field excitations is fit as a sum of a diffuse and discrete components,

and the discrete component is fit to a hexagonal crystal field scheme. The discrete

excitations do appear to have the dipole-octupole symmetry required for moment

fragmentation in these neodymium systems, which may explain why some signatures

are still observed. However, the diffuse excitations take up 86(2) % of the spectral

weight, and don’t appear to be gapped away from the electronic ground state. It is
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likely that symmetry breaking from these unquantified crystal fields is responsible

for the deviation from moment fragmentation behaviour. In general, the introduction

of ion disorder on the magnetic site does partially destroy the moment fragmentation

phenomenon that is reliably seen in other neodymium pyrochlores.

A stark difference can be seen in Gd2ScNbO7 which does not vary as dramatically

from the parent compounds as the other charge disordered systems. As Gd+3 is a

spin only ion, there should be no significant effect on the electronic ground state of

the system by local disorder. The system quenches into a glassy state with spins

predominantly orientating in the xy direction. As there is no spin-orbit coupling this

xy order is an emergent phenomenon from the spin interactions, that is well known

in other gadolinium pyrochlores. Although other gadolinium systems order at some

temperature below a liquid-like phase Gd2ScNbO7 does not show any long-range

ordering transition down to 20 mK. This lack of a secondary transition is likely related

to the heterogeneous exchange introduced by the disorder, although there is limited

evidence to explain these discrepancies.

Another example of how crystal field disorder affects the underlying magnetic

ground states in pyrochlores is in Dy2ScNbO7. Instead of the ferromagnetic Ising,

spin ice ground state observed in other dysprosium pyrochlores, a glassy ground

state with no observable anisotropy and weak net antiferromagnetic correlations is ob-

served. Again, this can be explained by the low-lying broad crystal fields that appear

to overlap with the ground state. It is likely that the heterogeneous crystal field envi-

ronment allows for non-Ising spin states. The distribution of local anisotropies and

exchange interactions yields a system with small net antiferromagnetic interactions

with an < S · S > of -0.08 and a short correlation length of 2.3(3) Å, lower than the

nearest neighbor distance. Although the RMC fitting method likely underestimates

these values, they still indicate a system with large amounts of quenched disorder.

An interesting comparison can be made between Dy2ScNbO7 and Gd2ScNbO7.

The lack of orbital contributions in the S = 7
2 Gd+3 implies that the frustrating affects

leading to spin quenching are due to exchange disorder. In Dy2ScNbO7 this is also

likely the case, but in addition to exchange disorder there appears to be an additional

frustrating affect of anisotropy disorder. This is evidenced by the lower average

correlation magnitude and the on-average isotropic distribution of spins, whereas
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Dy+3 pyrochlores typically show strong Ising anisotropies. This anisotropy disorder

can also cause the system to freeze into a glassy state and may be relevant to other

rare earth systems with significant non-magnetic disorder.

8.2 Relevance to Frustrated Rare Earth Magnetism

Sm2Ti2O7 was the last member of the rare earth titanate series to be investigated. The

compounds of this series have been studied extensively as they presented the first

examples of some interesting phenomenon including spin ice and order by disorder

mechanisms [144]. Sm2Ti2O7 also possessed the correct symmetry to show moment

fragmentation behaviour, and due to the small Ising moment, it was also considered

a candidate for quantum spin ice behaviour. Here we show that by all measurements

performed Sm2Ti2O7 is an Ising antiferromagnet, with no observable signatures of

moment fragmentation. Due to the exceptionally small moment (< 0.43 µB) of the

Sm+3 ion in Sm2Ti2O7 measurements beyond diffraction are difficult to consider, and

the diffraction measurements themselves are somewhat difficult to analyze which has

led to a slight controversy over the magnitude of the ordered moments. Although

in general there is good agreement on the ground state order of Sm2Ti2O7, this has

rounded out the rare earth titanate series, as all magnetically relevant members have

been studied extensively (even though questions remain about some of the more

complicated systems).

Returning to the charge disordered pyrochlores, the results presented here give

some insight into disorder in other frustrated systems. The AA’B2F7 pyrochlores,

where B is a 3d transition metal and A, A’ are an alkali and alkali earth metal, were

mentioned previously as analogous charge disordered pyrochlores, due to the (+1,+2)

charge disorder on the non-magnetic A-site. From these results it would seem that

the impact of non-magnetic disorder is less significant in transition metal systems

with minimal spin-orbit coupling. The influence of broadened crystal fields would

not have the same impact on their single ion properties. The only remaining influence

is the exchange disorder introduced by the local distortions. As seen in Gd2ScNbO7,

this can lead to quenched disorder and glass properties, but the short-range picture

of the magnetic ground state still appears similar. This matches well with what
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has been observed in the AA’B2F7 pyrochlores [44, 45]. However in systems like

YbMgGaO4, a potential spin liquid compound, the crystal field broadening observed

[145] may be more relevant to the disordered ground state than the exchange disorder

[11]. Although even here the crystal field broadening due to the Ga/Mg site mixing

doesn’t seem to be as extreme as in the Ln2ScNbO7 pyrochlores [145]. Comparing this

to Nd2ScNbO7 it would be interesting to investigate if there is significant short-range

correlations between Ga/Mg, that lead to a less disordered crystal field environment.

In fact there has been some work investigating how the structural distortions affect

the system using ab initio calculations. However, the calculations force a random

distribution of Ga and Mg ions which may be nearly periodic on a short length scale

[146].

More generally, this work has shown that in rare earth systems exchange disorder

induced by chemical disorder is not the only important impact of disorder. The disor-

der introduced into crystal fields can alter the anisotropy of spin-orbit coupling and

alter the g-tensor to a point where there is effectively a heterogeneous environment

of magnetic ions. This introduces new problems, where exchange disorder has been

modeled in some theoretical work, and the author is not aware of theoretical models

that include crystal field disorder in rare earth magnetically frustrated systems. As

the major concern of having disorder in a frustrated system is ‘mimicry’ where a

disordered glassy material mimics the experimental signatures of more interesting

theoretical models, crystal field disorder models may have to be developed to prop-

erly understand frustrated systems with non-magnetic ion disorder, or any disorder

that distorts the local ion environment.

8.3 Future Directions

The obvious continuation is the investigation of the magnetic ground states of the

other Ln2ScNbO7 systems, Ln = Pr, Sm, Tb. A significant amount of work, not

presented here, has been performed on these systems already. This work was not

reported either due to an incompleteness of the data, or the involvement of external

collaboration, such as in the terbium case. The preliminary work on Pr2ScNbO7
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seems to suggest a non-magnetic singlet ground state with low-lying magnetic excita-

tions, however necessary diffraction measurements have been delayed preventing

publication here. Nominally the trend of large ion systems showing more ordered

crystal fields than the smaller cations appears to remain true for Ln = Pr and Tb. Pub-

lication of these results may better support the conclusions presented here. Analysis

of the chemical disorder presented here may be improved as well by a more robust

RMC analysis of the total scattering data, this would be aided by single crystal total

scattering analysis, but RMC analysis of 3D total scattering data is still quite intensive

work.

As discussed, this work has been largely experimental. Collaboration with theory

in order to develop models of crystal field disorder would be beneficial. The data

could be modeled by anisotropic displacement factors and calculated with point

charge calculations. It is worth noting that point charge calculations on rare earth

systems can be of limited use and are often qualitatively wrong. More advanced the-

oretical techniques would be required that take into account local ion configurations.

The end goal of this work would be to apply these models to more ‘relevant’ systems

in the literature that are seeing interest due to their apparently exotic physics which

has to be disentangled from the disorder-induced effects.

The Ln2ScNbO7 systems do still provide interest in and of themselves. Gd2ScNbO7

appears to be a fairly unconventional spin glass, with a Mydosh parameter that varies

from that expected of an insulating system, along with an emergent spin anisotropy.

Investigating the magnetic excitations to see if dispersion relations or a gap are

present (neither of which should be by conventional wisdom) could help understand

the unorthodox behaviour. Bulk property measurements on gadolinium (and other)

systems in a field on crystals aligned to high symmetry directions would be desirable

to map out more detailed phase diagrams of these systems. This work is already

ongoing for Dy2ScNbO7.

The host of Ln2GaSbO7 and other charge disordered pyrochlore systems could be

investigated to see if they confirm the conclusions of this work, as well as provide

additional small cations systems such as holmium to study. Some X-ray total scat-

tering measurements were performed on these systems, but as with the Ln2ScNbO7

systems there was insufficient contrast between ions to refine the B-site correlations.
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Additionally, doping series could be investigated to look at the transition of

the parent compound to charge disordered phase. For example it may be worth

investigating the Nd2ScxNbxZr2−xO7 system to see if the increase in moment order is

continuous in the transition between compounds. In general, this method of doping

could allow for the transition between charge disordered and parent compounds to

be investigated.
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