
Operator Controlled Obstacle Avoiding Telecontrolled Robotic Platform

By

\rEhTK,ÀTESWARA REDDY

A Thesis submitted to

the Faculty of Graduate Studies in partial fulfilment of

the requirements for the degree of

MÂSTER OF SCIENCE

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba

Copyright @ 2007 by Venkateswara Reddy

THE I]NTVERSITY OF' MANITOBA

FACULTY OF GRADUATE STUDIES
tr¡ttr

COPYRIGHT PERMISSION

Operator Controlled Obstacle Avoiding Telecontrolled Robotic Platform

BY

VENKATESWARA REDDY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCMNCE

Venkateswara Reddy @ 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (tAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Äbstract

The work addressed here presents a number of challenges to ìnternet based lelerobotics.

One of the main challenges associated with operator assisted telerobotics is that of

network delay. Non-delerministic delay can cause a number of problems, not the least

being difficulty in remotely controlling the robot in a safe manner in near real time. As

such, one of the goals of this project was the design of an obstacle avoidance subsyslem

within a telerobolic platform. Tertiary goals where to design the platform in manners thal

are cost effective, reliable, extendable using modern design methodologies and that

would result in a platform that is close to an industrial realization. In this thesis, to solve

the problems due lo network delay a complete platform was developed that is ideally

suited for implementing algorithms of local intelligence or reasoning. Specifìcally, the

platform was designed to have some degree of local intelligence (heuristics) to mitigate

problems associated with delay by avoiding obslacles in its path of motion using a

number of sonar sensors and a rule based inference system. ln addition, real time video

feedback was provisioned for the platform along with a subsystem for GPS data

collection for robot mapping in the future. The plarform has minimal hardware and

software overhead and combines hardware and software modules in an effective manner

as possible which to some exlent reduces lhe amount of time required for processing

reguesls. Several tests were conducted to lesl the platform which worked as expected in a

controlled environment.

Acknowledgements

ì would like to thank Dr Robert Mcleod who inspired me to take up this research topic

and provided me all the technical help required throughout my masters program. I

would like to thank him for offering me a few thesis related special courses. I would Iike

to thank CMC and lnternet ìnnovation Center for providing all the research equipmenr. I

would also like to thank Mr. Dennis Stanley who has provided a number of the base

mechanical components for this project as well as for others in our lab.

I wouìd like to thank the peopJe in the ECE Tech shop Gordon Tool, Ken Biegun, Mount-

First Ng, Guy Jonatschick and Allan McKay for providing us with all the required

apparatus and software.

I would like to thank Monir lslam Khan and David Sanders for helping me out in

resoÌving issues in the process of development

I am very thankful to my parents Ravindranadha Reddy and Krishna Kumari, my sisters

Anitha Reddy and Swathy Reddy , my brother in laws Chandrashekar Reddy and

Harshavardhan Reddy and my friend Ranjana Hegde for their moral supporl and for

encouraging me in pursuing my dreams

Table Of Content

Abstract.i
Acknowledgements ii
TableofContent......iii
List of Tables.vi
List of Figures.vii
Acronyms.....viii
CHAPTER I : INTRODUCTION

l.l Motivation............-2

I .2 Objective................ .-..........3

1.3 Problem Stalement,..6
1.4 Organizalion of Thesis..............6

CIIAPTER 2: BACKGROLIND
2.1 Internet Based Robotic Operation..8
2.2History of Telerobotics9

2.2.1. On the Network Side........ _.......... I I

2.2.2. At the Robot Side...........1 I

2.2.3. At the Operator Side12
2.3 Packet Loss12
2.4 Latency 13

2.5 Degree of 4utonomy................14
2.6 Local Intelligence at Robot Side........... I 5

2.6.1. Event Based Telerobotics 15
' 2.6.2. Fuzzy Controlled Robots I 6

2.6.3. Behavior Based Telerobotics.-........-..... l8
2.6.4. Behavior Based Fuzzy Control Telerobotics,............. I 9

2.7 Suitable Hardware.-20
2.7.1. Single Board Computer (SBC)21

2.7 -2.Field Programming Gate Anay (FPGA) boards21
2.8 Embedded Systems and Real Time Operating System22
2.9. Embedded Processors--...24

2.9.1 Nios II Processor.................25
2.10 Micro C/OS II (pC/OS-ll) RTOS26
2.1 I Appropriate Programming language for developing Graphical

User ìnterface.....28
2.12 Summary of Chapter2:..........-.......28

CIIAPTER 3: IIARDWARE IMPLEMENTATION
3.1 Pulse Width Modulation30

llt

3.2 Generation of PWM Using Altera DE2 Board32
3.3 Motor Controller34
3.4 Robot Direction Control36
3.5 Configuring Ethernet on DE2 Board39
3.6 Ethernet to Wireless Using Soekris Board.40
3.7 CMOS Camera.42
3.8 Summary of Chapter 3...-......43

CIIAPTER 5: SOFT\ryARE IMPLEMENTATION
4-l Graphical User Interface.-..42
4.2 Joystick Interface46
4.3 Client Sockets48
4.4 Server Sockets......50
4.5 Command Generation-......... 5l

4.5.1 CASEI : To Generare command for Lefr and Righr Turn.................51
4.5.2 CASE2: Neutral53
4.5.3 CASE3: To Generate Commands for Forward and Reverse Motion 54

4.5.4 CASE N_....54
4.5.4.1: 360 Degrees Rotation54
4.5.4.2: Stop Command55

4.6 Command Processing at Server Side55
4.6.1 Case'F'..............58

4.7 Summary of Chapter 4...58
CHAPTER 5: ADVA]TICE IMPLEMENTATION

5.1 Video.59
5.1.1. Frame Grabber.61
5.1.2. Video Streaming Server.61
5.1.3. Video Capture and Display ar rhe Conrroller End.-.62

5.2. Sonar Sensor. .-.....64
5.2.1 Distance from Obstacle.65

5.3. GlobalPositioning System (GPS).66
5.4 lmplementation of Obstacle Avoidance.67

5.4.1. Case Dl: Obstacle Detected by Right Sensor on the Front of the

Robot.69
5.4.2. Case D2: Obstacle Detected by Lef, Sensor on rhe Front of rhe

Robot..70
5.4-3. Case D3: Obstacle Delected by the rear Sonar Sensor.72
5.4.4 Case Dl and D2: Obstacle Detected by Both the Front Sensors. ...-..72

5.5 Summer of Chapter 5.... ..--.....73

CHAPTER 6: RESULTS AI\TD DISCUSSIONS

lv

74

6.2 Basic Functionalities of Telerobotics platform75
ó.3 Video Feedback.-......75

6.3.1 Video Feedback Using CMOS Camera.76
6.4 Sonar sensor.76
6.5 Obstacle Avoidance Algorithm77
6.6 Cost Efficienr Design.71
6.7 Summary of Chapter 6...77

CHAPTER 7: CONCLUSIONS and FUTURE WORK
7.1 Conclusions...79
7.2 Recommended Future Work.g0

Appendix A Task Logic..g2
Appendix B Screenshols and picrures.g3
References. -..g5

List of Tables

Table I : Basic Functionalify results for Telerobotics platforïn...7 5

vl

List of Figures

Figure l: Telerobotics Platform Architecture................5
Figure 2: Basic Internet Based Telerobotics................_.. g

Figure 3: The Event Based Controì through Inrerner......15
Figure 4: Simple Fuzzy Logic Control System....... j7
Figure 5: Finite state Accepror (FSA)...1g
Figure 6: Behavior Based FuzzConrrol Robot....20
Figure 7: RTOS Abstraction Layer between Application Software and Embedded
Hardware [WWW3]22
Figure 8: Task Srates.........23
Figure 9: Nios tl Sofi Core Processor...._.......25
Figure l0: Micro C/OS ll Programming Architecture............2j
Figure I l: PulseTrain..........31
Figure 12: PWM Signals of Varying Dury Cycle31
Figure l3: system configuration of the DE2 board lo produce pv/M Signa]s...........33
Figure 14: Two Basic States of H-8ridge..............34
Figure 15: Motor Driver........35
Figure 16: Differential Steering Sysrem31
Figure 17: V/heels ar Different Velociries31
Figure l8: Communication ìnterface40
Figure 19: Ethernet to Wire|ess................42
Figure 20: Graphical User lnrerface__.....45
Figure 2l: Joystick Interface Flow Chart47
Figure 22: Joystick Mapping4g
Figure 23: Command Generation Flow Chart52
Figure 24: Neutral Region for Joysrick Mapping53
Figure 25: Command Stream in a Buffer._......56
Figure 26: Command Regeneration at Server Side...........57
Figure 2l: Live Video Streaming60
Figure 28: RTP/UDP Header...62
Figure 29: Sonar Sensor Timing Diagram64
Figure 30: lmplementation of GPS Receiver....67
Figure 3l: lmplementation of Obstacle Avoidance Control Logic in rhe Nios ll6g
Figure 32: Obstacle Avoidance Algorithm---.71

vlt

Acronyms

ADC Analog to Digital Conveñer
APì Application Programming Interface

CGI Common Gateway lnterface

CMOS Complementary Metal 0xide Semiconductor

COG Center of Gravity
CPU Central Processing Unit
CURV Cable Controlled Underwater Research Vehicle

DHCP Dynamic Host Configuration Protocol

FPGA Field Programmable Gate Array
FSA Finite State Acceptor
FTP File Transfer Protocol

GPIO GeneralPurpose InpuVOutpul
GPS Global Positioning System

GUI Graphical User Interface

HAL Hardware Abstraction Layer
HDL Hardware Description Language

HTML Hyperrext Markup Language

ilO lnpuVOutput
lD ldentification
IDE lntegraled Development Environment
IP lnternet Protocol

ISA lnstruction Set Architecture
LAN Local Area Network

LCD Liquid Crystal Display
LWIP Light Weight lnternet Protocol
M,AC Media Access Control
MJPEG Motion Joint Photographic Expert Group
MOSFET Metal-Oxide-SemiconductorField-EffectTransistor
NASA National Aeronaulics and Space Administration
OS Operating System

PC Personal Computer

PCI Peripheral Component Inlerconnect
PHY PhysicalLayer
PV/M Pulse'Width Modulation
RAM Random Access Memory
RFC Request for Comments

ROM Read Only Memory
RTCP Real-Time Transmission Control Protocol

vlll

RTOS Real Time Operating System

RTP Real -Time Transport Protocol

SBC Single Board Computer

SDRAM Synchronous Dynamic Random Access Memory
SOPC System on Programmable Chip
SRAM Static Random Access Memory
TCP Transmission Control Protocol

TELNET Telecommunication Nework
UDP User Datagram Protocol

USB Universal Serial Bus

VGA Video Graphic Array
VLC Video LAN Client
Wi-Fi Wireless Fidelity
WWV/ World Wide Web

lx

Chapterl: lntroduction

CHAPTT,R 1

I}ITRODTJCTION

The lnternet has revolutionized the way in which we receive information and interact

with the world. Internel tools such as WWW, FTP. TELNET. email, etc. have provided

the most convenient manner to transfer information to and from remote places. The bi-

directional structure of lntemet also provides a means to perform remote action and

control bases research. One such action oriented field is called Internet based telerobotics.

Telerobotics is an emerging field and one of the most actively researched.

Internel based telerobotics can be defined as a field of robotics where robots are

controlled from a distance using the Internel as the medium of communication. The

lnternet is well poised to be the major medium of communication for teleoperation.

However, Internel specific problems such as latency, uncertain data loss, and security of

data lransmission over a given network may lead to unpredictable operalion and control.

For telecontrolled robolics, local intelligence at the robot side and optimal use of

hardware and soÍìware components in the overall system can be used in mitigating

uncenainty to achieve stability in the system. The proper use of hardware and software

components can also reduce the overall cost of the system and concurrently reduce

processing time. Using hardware which can be reconfigured or reprogrammed such as

FPGAs and reusable software has an added advantage for future expansion. The addition

Chapterl : lntroduction

of few sensors to the lelerobot that can sense the environment will be an added benefit for

stable and safe operalion. Real time video can also provide the operator with feedback to

perform a remote task with precision.

l.l Motivation

In this study. a telerobotics platform appropriate for a real world application is developed.

One intent is to reduce the problems due to latency and investigate design trade-offs to

reduce the cosl and improve the performance of a telerobotics platform. ln general, the

following factors are often taken into consideration for the development of any

telerobotics platform-

o Uncertainty in the network such as latency and packet loss.

. Cosl of the overall system.

Hence, in order to address the above menrioned issues, a semi-autonomous robotic

plalform was developed. This platform not only addresses the problem of latency and

design trade-offs but was also developed and implemenled within the budget provided.

The semi-autonomous robotic platform has its own intelligence (albeit limited) and can

perform a given task even in the case of network uncerlainty. Using a ìimited amount of

hardware and processor power a teleroborics platform has been developed which can be

exlended lo many applications and is also a cost efficient platform (within the provided

budget). Alternative platforms could be developed with a considerably larger budget but

ChapterL : lntroduction

at some point even these pìatforms will have to deal with some form of constraints.

Meeting design specifications is always a challenging task.

1.2 Objective

The objective of this research was to develop a semi-autonomous robotic platform

toleranl of the delay in the network, packet losses and within budget. ln order lo achieve

this. a good understanding on how to use FPGAs, optimize hardware design for irs very

best performance, understanding of motor controllers and algorithms for automation was

necessary. An overview of some existing lnternet based telerobotics platforms was

undertaken to better understand issues of implementation and optimizalion ideas for

hardware and software co-design. As a consequence the approach used in this thesis was:

L Selection of an appropriate embedded processor along with a Field Programming

Gate Array (FPGA) board which can handle the required processes in real time.

2. Selection of an appropriate Real Time Operating Sysrem (RTOS).

3. Cuslom build the required processor and components for the FPGA board.

4. Acquire data from the sensors in order to make decisions locally to avoid

obstacles in the robot palh. This idea is to implement local intelligence in case of network

failure or when the robot is used by a less experienced operalor to keep the robot in a safe

operating mode.

5. Design a molor controller circuit using pulse width modulation (PIVM) for speed

control.

6. Design a TCP/IP wireless communication link that can receive commands and

send feedback to the operator.

Chapterl. : lntroduction

7. Customize a Linux Kernel for Video Streaming and acquiring GPS data.

8. Deveìop graphical user interface for the operator to k¡ow the status of the robot

and control the motion of the robot.

9. Develop an interface for a joystick that acts as a control device for the operator

and a command generator for the robot.

10. Develop a video capture inlerface to display the video feedback provided by the

robot-

Several researchers have placed a Iaptop on the robot, while other researchers have used a

desktop computer allowing for rapidly developíng their robotic platform. The approach

in this research is to develop the entire control system incorporating local inteìligence and

wireless video feedback on an embedded platform. This approach consumes negligible

power helping to limit battery power consumption and is closer to an industrial

realizalion. As the communication protocols are IP based, the approach also provides the

feasibility to operate anywhere provided there is some form of Internet connectivity.

Much of the research to date have used browser based interfaces for the control interface

and video feedback. but in this thesis a Graphical User lnterface v/as developed which is

more flexible and can provided added security features. The downside however is the

amount of time required in developing the user interface. The overall architecture of

Inlemet based telerobotics plalform architecture is shown in Figure l. At the top level the

whole system can be divided into a client and server architecture. The robot acts as a

server and the controller act as client. In this thesis robot motors are controlled using the

Chapterl : I ntroduction

PV[/M technique. The movement of the joystick generates commands to the robot, which

might be to move forward, reverse, or in left or right direction.

Figure l: Telerobotics Platform Architecture

In addition to the basic features: some additional features such as rotale on the spol, turn

abrupt left and tum abrupt right commands are also added. All these commands are

generaled by the joystick. converled in terms of duty cycles and slreamed over the

wireless network using TCP/ìP socket streams. At the robot side a TCP/IP sockel listen

to the stream of commands sent by the controller. Every command is given a unique ID

by the command generator on the controller side so that the robot server can recognize

the commands and process the commands 1o perform the required acrion accordingly. At

the same time a video capture device captures video and streams it over RTPruDP, and at

the controller end, the video is displayed.

Chapterl : lntroduction

Obstacle avoidance is implemented using sonar sensors. The robot is equipped wirh

some degree of intelligence to avoid obstacles in its path of motion and decide which way

to move on its own when an obstacle is detected and not attended to by the remote

operator.

1.3 Problem Statement

One of the probìems for lnternet based relerobotics is the latency in the network and cosl

to build the overall system. In order to make Inlernel based telerobotics more practical,

we should have a reliable and affordable Internet based telerobotics platform which can

be extended to any application-

Hence- from an Inlernet based telerobotics perspective, we can state our probìem as

"How can one overcome the problem of latency and yet develop a reliable and affordable

telerobotics platform"

1.4 Organization of Thesis

The remainder of the thesis is organized as follows:

Chapter 2 discusses the background study/ the literature, evolulion and various melhods

in developing ìnternet based telerobotics.

Chapter 3 provides a ¿etaile¿ architecture on how the enrire hardware for the telerobotics

platform is developed.

ChapterL : lntroduction

Chapter 4 provides a detailed architeclure on how the software for the user interface is

developed, communication is established, coordination between the hardware-software

and the user controls such asjoystick are devêloped.

Chapter 5 provides the details in developing video streaming server, video capture and

display, use of sonar sensors, GPS and implementation of obstacle avoidance control

Iogic.

Chapter 6 provides the results on how practical and cost efficient the sysrem is.

Chapter 7 gives a summary of my thesis and possible future work.

Chapter2: Background

CHAPTER2

BACKGROT]NI)

Chapter Overview

This Chapter outlines a brief history of lnternet based telerobotics, problems in

telerobotics, existing models and methods used to overcome those problems and finally

introduces some of the hardware concepls used in the work.

2.1 Internet Based Robotic Operation

Ever since the invention of telephone in 1870's there have been significant developmenrs

in the fìeld of communication. The Intemel - a very complex and revolutionary

invention of 1965 has changed our world IViVt/lE]. The Interner can be defined as a

globaì communication net\¡/ork consisting of millions of inter-connected networks-

Figure 2: Basic Internet Based

This widely available means of communication is no

can also be used 1o control robots at remote locations.

Telerobotics

longer just for data transmission, il

The control ofrobots over Internel

Chapter2: Background

is termed Internet based Telerobotics.

2.2 IJßtorT of Telerobotics

Telerobotics is an area of robotics where the robot is controlled from a distance by the

controller using a means of communication channel. The means of communication may

be wired or wireless- Prior lo 1945 there were crude teleoperators for earth moving,

conslruction and related tasks. The first Master-Slave Manipulator, \¡/as publicly

demonstrated by its inventor, Ray Goertz [TBS92] , at the Argonne National Laboratory

of the U.S. Atomic Energy Commission in l95l [V/V/RG]. The masrer slave manipularor

was basically an electrical and hydraulic servomechanism. ln 1954 a closed circuit

television was inlroduced so that operation could be from an arbitrary distance away

lrrINol.

In 1961, an experimentaì manned submarine inrended for deep submergence, the

Bathyscaphe Trieste, was equipped with a telemanipulator based on and controlled

unilaterally by a keyboard [TUNO]. The mechanisms were immersed in an oil bath,

including the electric molors, with the oil staying al the same pressure as the \¡/ater,

independent of the depth reached, in a water-proof casing. In 1966 a Cable Controlled

Underwaler Research Vehicle (CURV), retrieved a nuclear weapon that had fallen into

the sea off the Spanish coast al Palomares, this project directed the attention of the whole

world to the existence and usefulness of such devices [TIINO]. By 1965 experiments in

academic research laboratories had already revealed rhe problems of telemanipulation

and vehicle control as a consequence of time delay, and the early lunar teleoperated

Chapter2: Background

Surveyor demonstrated the problems vividly in an actual space mission [TIINO].

In 1967, Surveyor lll landed on the surface of the Moon. lt was equipped with

manipulator anns, which took samples of lunar soil and measured the force required to

carry out this operation [TUNO]. This was the first example of teleoperation in ourer

space. The exploratory mission of the Soviet Lunakod followed. This vehicle was

telecontrolled directly from eanh with only seconds of delay in the rransfer of

informalion. The main disadvantage of teleoperalion in outer space is the delay in the

two-way transmission (which depends on how far the telerobot is from the conrroller) of

commands and informalion, which the operator could not overcome. The Draper

Laboratory at MIT took up this work, and developed the idea of computer-aided

teleoperation. At the same time, teams from the Marshall Space Flight Center at

Huntsville, the Johnson Space Flight Center at Houston and from Stanford concentrated

on the transmission delay effect and computer control. The Viking spacecrafi, which

landed on Mars in 1976, was programmed to carry out strictìy automated operations. This

manipulator arm which was more efficient than the Surveyor in taking samples, placing

them in an analysis chamber and moving objects to detect changes of color of the soil

under rocks [TUNO].

The first successful implementation of Teleoperation via the lnterner was developed by

Goldberg in 1994 al the University of South Califomia. This Mercury Projecr, as il was

called included the operation of a simple robotic manipulator with CGI (common

gateway interface) program interface and video feedback. It was the first laboratory

where users using the World Wide Web could order the robot to perform tasks in order to

l0

Chapter2: Background

uncover buried artifacts in a sand filled terrarium. The Mercury Project was online for 7

months from September 1994 to March 1995 and received over 2.5 million hits [TUNO].

This breakthrough helped turned lnternet based Teleoperation into the huge and ever

growing field of research it is now.

An ltalian group led by Professor Rovetta has reported several experiments investigating

the possible applications of lelerobotics. and claims lo have carried out the first

telerobotic surgery in 1995 [BLP03]. a prostate biopsy. Another of the telesurgery

projects completed involved lhe team at the Brady Urological ìnstitute, who designed and

deveìoped a robot capable of performing a remote percutaneous renal needle puncture

lBLP03l.

The Basic issues tbat are importanl when dealing with Internet based robotics are listed

beìow

2.2.1. On the Network Side

Packet Loss

Latency

2.2.2. At the Robot Side

Degree of Autonomy

Suitable Hardware

Suitable RTOS

il

Chapter2: Background

2.2.3. At the Operator Side

' Appropriate Programming language for developing the Graphical User Interface

. Appropriate Hardware for controlling the robot

2.3 Packet Loss

One or more packets of dala failing to reach their deslination due to oversaturated

network links, fauìty network hardware design, signal degradation over the network

medium, rejeclion due to a corrupted packet, routing routines and maligned system driver

devices across a computer network can be termed packet loss.

There are a few nefwork transport protocols such as Transmission Control protocol

(TCP) (RFC 761) which provide reliability in delivering packets. In rhe case of TCp,

whenever a receiver detects a packet loss, the receiver effectively request the rransmitter

to retransmit the lost packets or the sender automatically sends the packets which have

not been acknowledged after a cefiain period of time lapses. TCP uses a sliding window

protocoì IRFC1323] for acknowledgements of received packets, this causes a drop in

throughpul of the connection while improving reliability. In real rime conrrol rhere is

every need that packets are delivered on time so that tasks are executed with

synchronization. Knowing the End to End delays and loss behavior in a network are very

important factors [VER99] in developing real time applications. ìn general a few packets

losl can be neglected for real time applications. If we can trade-off the reliability of

packet delivery and include some kind of local intelligence at the robor side then we can

either use the User Datagram Protocol (UDP) (RFC 768), Real Time Transport protocol

(RTP) (RFC 1889) or light weight User Datagram Prorocol (UDP Lire) (RFC 3832). UDp

12

Chapter2: Background

Lite is lhe newest standardized IP transporl protocol for error-prone network

environments. UDP, RTP and UDP Lite do not guarantee packet deliver ìike their

counterpart TCP. UDP avoids overhead checking to see whether every packel actually

arrived or not, which makes UDP faster and more effìcient. RTP can be used for video

transport, RTP can be used either with TCP or UDP as the transpoñ layer. RTp when

used along with Real Time Transport Control Protocol (RTCP) (RFC 3550) can also

provide some degree of guaranlee of packet delivery.

2.4 Latency

Latency can be defined as the amount of time taken by the data packer to travel from the

source to destination in a computer network, or it can also be called the delay in rhe data

packet delivery. End To End delay is the accumulation of transmission, processing and

queuing delays in routers, propagation delays in the link and end to end processing

delays. ìrreguìar time delay is inevitable and an unpredictable phenomena which is

caused by network congestion that needs to be taken into consideration.

ln the case of real time operation, robol control over the lnternet with uncenain time

delay can resuh in instability and asynchronous operation which will affect the dynamic

performance of the syslem. There is a real need thal we either reduce the amounl of time

delay [MS05] [RCG97] or provide a local intelligence for stable operalion. There is

very linle scope in reducing the time delay in a given network unless dedicated lines are

used. Applying local intelligence at the robol side is the most effective way to overcome

the problem of asynchronous acrion and instability caused by time delay [MS05].

t3

Chapter2: Background

2.5 Degree of Autonomy

Robots can be classified in accordance to rheir degree of autonomy as follows

IJJG03]

. Non Autonomous Robots : Robots which have to be controlled by the operator

and do not process any kind of intelligence locaìly to perform a task without the

supervision of the controller are classified as Non Autonomous Robots

. Semi Autonomous Robots: These robots have some degree of artificial

intelligence and can perform some task or poñion of a task even withoul the direct

supervision of the controller.

¡ Autonomous Robots: These robots have incorporate anificial intelligence

algorithms for tasks such as palh planning, collision avoidance elc. and require

little or no operator control during operation.

To some extent we can overcome the problem faced in the real time control of robots

over the lnternet by deploying either Autonomous Robots or Semi Autonomous Robots.

This can be achieved by introducing anificial intelligence methods such as Fuzzy Logic,

Genelic Algorithms or Neural Networks for some of the decision making. Semi

Aulonomous or Autonomous robotics that are developed using real time operaling

systems (RTOS) such as Micro C/OS ll, ¡rClinux, etc., aìso conlribules to improved

performance.

t4

Chapter2: Background

2.6 Local Intelligence at Robot Side

2.6.1. Event Based Telerobotics

To overcome the problems cause by time deìay, an event based control can be used whjch

is a non lime aclion reference [JJ03]. This can be achieved by implementing some local

intelligence like a fuzzy controller at the robot side. Figure 3 [JJ03] shows the evenr

based conlrol of a robol or a manipulator over the Internel.

| -^=..^ L--æ*.=I I -l ---'r
tl

-_-_r- T

Flgure: a

SláVE

ACÍ¡ON REFEÊENCË

F igure: b

Figure 3: Tbe Event Based Control tbrough Internet (derived from ¡rror¡¡

The basic idea of event based planning and control theory is to introduce a new motion

reference variable different from time, but directly relate the sensory measurement of rhe

system. lnstead of time. the planned/desired system output is parameterized by the new

molion reference variable called an Event INTA9ó] t-NT99]. From Figure 3 we can see

that the new commands R(s+l) are not transmitted until the feedback from rhe previous

command Y(s+l) is received from the previous event of the slave. On the other hand the

slave holds the robot by either giving a command for zero velocity or the previous

position data into the local controller and no feedback is provided to the master until rhe

next command has arrived. In this system every single action is considered as an evenl

l5

Chapter2: Background

independent of time. Using this feedback system, even though there is a delay in the data

packets that carry the commands to the robot, due to the local intelligence and event

based approach action synchronization and srability can be achieved. Even though

stability and action synchronization can be achieved using the event based approach,

there is always a disadvantage that a continuous stream of commands cannot be executed.

The controller has to wait until he/she receives a feedback from the robot to send rheir

next command.

2.6.2. Ftzzy Controlled Robots

Mobile robots have to react to what they sense in the environment. Using sensor and

video feedback along with some aíificial intelligence such as fuzzy logic an autonomous

robot can be developed. Fuzzy logic is a melhod of solving control problems that

provides a solution for implementation in syslems ranging from simple, small, embedded

micro-controllers, to large, networked, multi-channel PC or workstation based data

acquisition and control systems. Fuzzy controllers are flexible and easy to implemenr in

hardware, software or a combination of both. Microcontrollers such as MC6BHCI2MCU

come with some fuzzy logic instructions tEM94]. Fuzzy logic provides a simple way ro

arrive at a definite conclusion based upon vague- ambiguous, imprecise. noisy or missing

input information. The fuzzy logic approach to a control problem mimics how a person

would make a decision, although typically much fasrer [SHM03]tJN91]. Figure 4 shows

a simple fuzzy logic control system. The most import task in fuzzy logic control is to

determine what should be controlled and how it should be controlled. For simplicity

consider an example to control a robot in an unknown environment which has a simple

t6

Chapter2: Background

collision detection sensor. The data collected by the collision detection sensors are given

as input to the fuzzy logic controller and the commands sent by lhe controller to the

remote robot act as other input signals to the fuzzy logic controller. V/hen a collision

deiection sensor detecis an obstacle in its path of moiion, ii sends that signals to the fuzzy

logic controller and the fuzzy logic conrroller oulpuls a stop signal to the robot even

though the input command from the main controller is to move forward. ìf no feedback is

given by the collision detection sensor then the fuzzy logic control outputs the commands

senl by the controller-

Figure 4: Simple Ftzzy Logic Control System

Applying such intelligence provides safe and reliable operation of the telecontrolled

robot. The problems such as packet loss and latency can become obsolete or at leasl are

mitigated if we can implement an appropriate fuzza logic controller.

l7

Chapter2: Background

2.6.3. Behavior Based Telerobotics

Behavior based robotics is a methodology of developing Anificial Inrelligence based on

moduìar intelligence. ìn behavior based syslem the intelligence is controlìed by a set of

independent semi-autonomous modules. Figure 5 shows an implementation of behavior

conrrol sysrem (Finite State Accepror (FSA)) IRCA9g]

FSA provides a ready mechanism to express relationships between various behavioral

sets and are widely used within robotics to express control systems. FSA provide us with

a higher level of abstraction by which we can express the relationship between sets of

behaviors. In Figure 5 each behavior is represented as a state, which encodes the robol's

goal of moving around an open terrain to locate its targel locations. The targets can be

anything such as locating a classroom in a hallway. Consider Figure 5, the robot has three

major behavioral slales, wander, move to targel, and return to start.

Not ât starl

Start Locat¡ng All -fargers
Found

@o
o

Þc
=o

L

Nol Al Target Time St¡ll there
for Searclì

F¡nd Nexl
Targel

Mowe To
T a rgel

Figure 5: Finite state Acceptor (FSA) (derived from [RCA9B])

Move to larget consist of a subset action for selecting a target, orienling the robot so it

points towards the target, moving to the farget, and tracking the target visualìy during

t8

Chapter2: Background

molion until it is reached. Any number of subsets can be created for each set or behavior.

FSA shows the sequencing between behaviors as the robot carries oul its mission.

2.6.4. Behavior Based Fuzzy Control Telerobotics

Higher level behavior based robots require some intelligent control techniques such as

model based fuzzy control IRDH97] or genetic algorithms. Fuzzy conrrol can be applied

to mobile robots which have complex controì architectures [4597]. Behavior based

telerobolics can be modeled as shown in Figure 6 [SSDN0O] used for helpmare robot

IVi V/VU] which has sonar sensors. ln Figure 6, the robot has three behaviors; L Task

Oriented Behavior; 2 Obstacle Avoidance Behavior; and 3 Emergency Behavior. Each

behavior represents a concern in the mobile robot control and relates it to sonar sensor

data, robot status data, and goal information to control the robot. A task orienled behavior

typically has more subsets, such as follow goal and follow wall.

To implemenl fuzzy control for any task or behavior, there are three basic steps

l. Fuzzification

2. Develop an lnference Engine and

3. Defuzzifìcation.

ln Fuzzification the real valued points are oñen mapped to fuzzy sets by trearing them as

Gaussian membership lunclion, triangular membership function etc. The Gaussian

membership function is given by ISK00]

pn'(x): exp[{(xr -x,')2 / ot2¡¡1*

....exp[-((x, - x,*)2 / o"'))]
Ì

,l

l9

Chapler2: Background

From these membership functions we arrive at a logical decision in an Inference Engine

using lf-Then rules. The fuzzy rule base convens input information into output

membership functions. Finally Defuzzification is applied 1o these inferences and the

output of the Defuzzification is given as an input to the robol for processing. There are

many methods that can be used to convert the inference engine output such as the Center

of Gravity method as given in equation [2] [SK00].

Figure 6: Behavior Based Fuzz Ç6¡1rol Robot lsKool

f ln(Ðt,
COG,Y = +-

lr^0,)

2.7 Suitable Hardware

To develop a real time control for robotics, choosing proper hardware or choosing an

appropriate board which has minimal processing latency is required. Depending on the

requirements we can opt for a Single Board Computer (SBC), Field Programming Gate

l2l

Chapter2: Background

Array Board (FPGA) or a combination of both. Choosing an appropriare processor and

required peripherals such as USB ports, Ethernet ports, PCI slots erc. is also very

important. Communicating and sensing of the robot environment using devices such as

video, sonar sensors, GPS, lnfra Red, elc. are also important design consideratjons.

2.7.1. Single Board Computers (SBC)

SBCs are complete compulers built on a single circuit board. The design is centered on a

single or dual microprocessor with RAM. l/O and all other features needed ro be a

functional compuler on the one board. Single computers boards are basically Hard Core

Processors. once designed they cannot be changed.

2.7.2. Field Programming Gate Array (FPGA) boards:

FPGAs are semiconduclor devices containing programmable logic devices called "Logic

Blocks" and programmable interconnects. Logic blocks can be programmed to perform

lhe function of basic gales or more complex combinational functions. Most logic blocks

also include memory elements which are either Flip-Flops or complete blocks of

memories. The major advantage of FPGAs is. they can be re-programmed any number of

limes. All modern FPGAs also support a sofi core processor architecture.

The logical blocks and interconnection of traditional FPGAs combined with an embedded

soft core multiprocessor and related peripherals form a complete "system on

Programmable Chip "(SOPC). Boards such as Aìtera DE2, Xilinx Vertex-ll PRO etc. are

all SOPC's. Numerous Intellectual Properties (IP) cores are now available which can be

2t

Chapter2: Background

added on to the system using software such as SOPC builder for Altera boards. This helps

the developer to choose the required hardware for a specific application and greatly

reduces the design time.

2.8 Enobedded Systems and Real Time Operating System

An Embedded System is described as a speciaì purpose computer which performs one or

many dedicated functions IWWWI]. A Real time Operating Sysrem (RTOS) is a multi

tasking operating syslem best suited for real time application such as real time robol

control. Embedded systems and a RTOS work hand in hand as shown in Figure 7.

Choosing a proper RTOS and an appropriate embe<jded board is an impoñant

consideration when it comes to real time applications.

Figure 7: RTOS Abstraction Layer between Application Software and Embedded

Hardware [W]YlVll

In a RTOS multiple tasks are run by switching tasks or threads [ÌyWV/l]. A task is

nothing but a simple program. An RTOS can be designed either as event driven design,

time sharing design or a combination of both.

Chapter2: Background

c Event Driven Design: Switching between tasks is done only when a higher

priority task needs to be served, (denoted a preemptive priority).

o Time Sharing Design: Switching befween tasks takes place on a clock interrupl or

on an event, task swiiching can also follow a round robin schedule [WWtil2].

ln a typical design, at any point in time a task can be in any one of the following three

states IROJ04] Running state. Ready slate or V/aiting state.

. Running State: ìn this state, the given task is being executed by rhe

microprocessor. Only the task that is in the running state is processed unless the

processer is a multiprocessor.

ïask Thât hâs lo
Happen Next

Figure 8: Task States (from lROJO4l)

Ready State: When some other task is in the running state or is being processed

by the microprocessor the task that is ready to execule is in a ready state, and will

execute when the microprocessor becomes available. There could be any number

of tasks in this state.

23

Chapter2: Background

e waiting State: ln this state rhe rask has nothing to do even when the

microprocessor is ready to process this task. A task enters this state because it is

waiting for some external event to be synchronized with this task.

Part of an RTOS is a scheduìer [DAES] which keeps track of the state of each task and

decides which task should go into the running state. There are a wide variety of RTOSs

available to choose from in the present day markel.

2.9. Embedded Processors

Embedded processors can be ciivided into two distinct categories

l. Microprocessors: Integration of numerous useful functions into a single lC

package, with the ability to execule a stored set of instructions to carry oul user

defined tasks are called microprocessors. Microprocessors also have the ability to

access extemal memory chips to both read and write data.

2. Microcontrollers: A microcontroller is a device which integrales a number of

componenls of microprocessor syslems onlo a single microchip. A typical

microcontroller has a central Processing Unir (CPU). memory (borh RAM and

ROM), parallel digital llÖ, a trimmer module. an analog to digital convener

(ADC) and a serial I/O port.

There are many different CPU architectures used in embedded system such as x86,

PIC, ARM, Power PC etc. Embedded systems communicate with the outside world

24

Chapter2: Background

via peripherals such as RS-232, USB, and Ethernet.

2.9.1Nios trI Processor

A Nios II processor system is equivalent to a microcontroller or a "Computer on chip"

that includes a processor and a combination of peripherals and memory on a single chip.

JÏ¡1ß

iltarlae

to s,:ft l'lre

debu¡¡_:er

Nios ll Processol Core

Progranr

Controll¿r

L\

Address

Generalion

rrq[31 C'l lmtru:ti,rn Bus.

Figure 9: Nios II Soft Core Processor (from [ALTE0])

25

Chaprer2: Background

Like any other microcontroller, all Nios ll processor systems use a consistent inslruction

set and programming model. The environment on which application software can be

developed for Nios lì processor is called as a Nios II inregrared development

en.¡ironment [Nlios ì] IDE) which is based on GNU C/C++ compiler and eclipse IDE. A

Nios ll processor is a soft core processor which can be configured for a particular

application for its besl performance. Peripherals can be developed and added to rhe Nios

lì processor which cannol be done easily with microcontrollers. Because of rhis flexible

and sof,-core processor we can easily use lhe Nios ll processor system with the exact

peripheral set requìred for the target applicarion.

The Nios Il architecture describes an instruction set architecture (lSA). The ISA in turn

necessitales a set of functional units thal implement the instructions. The processor core

does not include peripherals or the connection logic to the outside world. ìr includes only

the circuits required to implement the Nios Il architecture. The Nios II processor cores

with all the functional units are shown in Figure 9 [ALTEO]. The funcrional units of the

Nios ll architeclure form the foundation for the Nios II instruction set. Functional units of

the Nios Il processor can be implemented in hardware emulated in software or omined

enlirely.

2.10 Micro C/OS II (pClOS-Ð RTOS

¡tClOS-ll is a highly ponable, ROMable, scalable, preemptive real time, multitasking

kernel for microprocessors and microcontrollers IALTEI]. pC/OS-ll runs on a large

number of processors architectures and can be ported to a wide range of processors. One

26

Chapter2: Background

of the key advantages of ¡rC/OS-ll is that execution time does not depend on the number

of tasks running in an application which results in providing a consistent and

determ in istic performance.

Altera implententation for pC/OS-ll IALTEi] is shown in Figure 10. The Hardware

Abstraction Layer (HAL) is a lightweight runtime environment that provides a simple

device driver inlerface for programs to communicate with the underlying hardware. The

HAL [ALTE2] application program inlerface (APl) is inlegrared inro an ANSI C standard

library which allows users to access devices and files using standard C library funclions.

Figure 10: Micro C/OS II Programming Architecture lALTE2l

llAL serves as a device driver package for Nios Il processor systems, providing a

consistent interface to the peripherals in the system. ¡rC/OSJI for Nios II processor is

27

Chapter2: Background

essentìally a superset of the HAL. The HAL environment is extended by the inclusion of

the pClOS-ll scheduìer and the associated pC/OS-ll APl. The complere HAL Apl is

available from within the ¡rC/OS-ll.

2.ll Appropriate Programming Language for Developing a

Graphical User Interface

Web browsers which are tradilionally used for controlling robots over Ìntemet are very

vulnerable to hackers. Alternatively programming languages such as Visual Basic, C or

ç++ [MSDN] can be used for developing a custom GUI. However these programming

languages are tedious and have very limited user classes needed to develop a high level

GUl. C# from Microsofl provides a wide range of built in classes and provides rich

options of looks for developing the front end application of the GUl. Visual C++ which is

fast and reliable can be used to develop the applications within the GUì for

communication and encryption purposes.

2.12 Summaly of Chapter 2

Chapler 2 described a brief history and evolurion of leleroborics. An overview of rhe

problems associaled with latency and methods lhat can be used to overcome latency were

discussed- Different approaches to achieve autonomous and semi autonomous modes of

operation were briefly described. This chapter also explained the importance of choosing

appropriate hardware. Basic working principles of a RTOS and the architecture of rhe

Nios II processor and Micro C/OSII RTOS programming architecture were also

28

Chapter2: Background

described. Finally a discussion of why C# was chosen as the programming language for

GUI developmenl was presented.

29

Chapter 4 : Hardware I mplementation

CFIAPTER3

HARDWARE IMPLtrMENTTATION.

Overview

This Chaprer explains in detail the working principle of PWM, generalion of PV/M

signals using the DE2 board- working principles of motor controllers, differential steering

and our wireless confìguration.

Pafls of this chapter were done in colìaboration with Monir Khan. Specifically we both

developed our own versions of the module required. The final version thal was used was

the one that had grealer functionality. Some aspects were designed in collaboralion while

others were soleìy the work of the author. Detailed contributions are footnoted in each

section.

3.1 Pulse Width Modulation

Pulse width modulation is basically the digital encoding of an analog signal level. The

voltage or curreRt source is supplied to the load by means of a repeated switching

between on and offof the supply. The on time is when a supply voltage is applied to the

load and the off time is when the supply voltage is cut off from the load. The proportion

of time during which a component or a device is operaled or is in the on state is defined

as a duty cycle. Considering the pulse train in Figure I I IWVYDC] with T as the period

and t as the duration of the pulse which is non zero \rye can mathematically represent the

30

Chapter 4 : Hardware ì mplementation

duty cycle D as in equation [3]

Figure 12 [WWVDC] shows three different P\À/M signals with I\yo,50yo and 90% duty

cycle. PWM outpul al 107o duty cycle means that the signal is on for l\Yo of rhe period

and off for 90%o of the period

l---liii!

t3lD _T
T

.J

:
7

'I l-+r ll'
'l'i lll,.-

Figure l1: Pulse Train

il' .ì'l-+ t

strenglh. For

a 4.5 analog

l'l'+ t

This implies that the PV/M outpur encodes the analog signal ar

example. if the supply voltage is 9 and rhe duty cycle is 50olo,

signal results. Various duty cycles PWM signals are illustrated in

OF: Hlih tPvrl Olt = tor t^.¡t

l0% of full

on average

Figure 12.

Signals of Varying Duty Cycle (from

3l

¡wwncl)

Chapter 4 : Hardware lmplementation

The average value of the pulse train in Figure I I is given by:

1 T-

, =: lf tù¿,t3

1 t-

)(ly *,* + ly ^,^dtl!J U¡

_ry^ +T(7-r)y^;"
T

We know lhat r = DT - so we have

y = D.y -*+ (l - D)y ^-

Aty.,,:O y=D.y^,, t4)

From equation 4 it is evident that the average value (y) is directly dependent on the duty

cycle D.

3.2 Generation of PWM Using Altera DF,z Boardl

ADE2 board with Nios ìl processorrunning on Micro/OSII was used to generatePV/M

signal for controlling the motion and direction of the robot's electric motors. The HDL

logic used to produce PVVM is given in Appendix A. The system configuration of the

DE2 board is shown in Figure 13.

Using the task logic (Appendix A) code and register mapping a custom PWM_Z

component is created. The component serves the following purpose.

1 With the specific task of the PWM motor controller I was responsíble for developing motor controller
and direction control using PWM and M. Khan was responsible for developing PWM using the DE2

32

Chapter 4 : Hardware ìmplemenration

' lt defines the interface to the component hardware, such as the names and the

type of I/O signaìs.

' PWM_Z declares the PWM_Z componenl and specifies the logic thar has to be

used to produce the require PV/M signal.

. It describes a graphical user interface for confìguring an instance of the

component in SOPC builder.

. ìt provides script and olher information that the SOPC buiìder needs to generale

the hardware description language (HDL) files for PWM_Z and inregrate rhe

PWM_Z into the system module.

¡ It contains PV/M Z related information, such as register memory map and

Avalon memory mapped interface.

Figure 13: system conñguration of the DE2 board to Produce PwM signals

JTAG Coñnætion lo
Sotua¡e Debugget

{O PIN GPIO

\\ Avâlo lntdsæ
\Aúomâù€l¡y trôdd

by SOPC Builds

33

Chapter 4 : Hardware Implementation

PWM-Z connects to the system interconnect fabric using the Avalon memory mapped

interface. A single PWM_Z componenl can provide more than one Avalon port, in other

words a single PWM-Z component can provide ports for PWM_Forward to control lhe

forward motion, PWM Reverse to control the reverse motion of the robot and so on.

3.3 Motor Controller

PV/M Signals generated by the DE2 are then given to the motor controller. An Open

Source Molor conlroller (OSMC) [V/WRP] from Robot Power [V/WRP2] was used. The

motor conlroller is based on the H-Bridge principle. For the robot to move forward

Figure 14a: Fon¡¡ard Direction Figure: Reverse Direction

Figure 14: Two Basic States of H-Bridge

Switches Sì and 54 are closed as shown in Figure l4a, then there is a posirive volrage

across the molor terminal which rotates the shafi in forward direction- Conversely when

switches 52 and 53 are closed as shown in Figure I4b, the voltage across the motor is

reversed and results in the reverse motion of the shaft.ln reality the switches are replaced

with the solid state switches such as MOSFETs.

34

Chapter 4: Hardware ìmplementalion

The ON states and OFF states of the MOSFET are triggered by giving a PWM pulse ar

the gate terminal. The detailed schematic of the motor controller along with the

proteclion circuits for shoot through is shown in Figure 15.

When voltage is applied between the gate and source terminal an "inversion channel "is

created which creales a conduit through which current can pass. By varying the voltage

between the gate and the source, the current flow between the drain and the source can be

controlled. The average voltage across the molor is controlled by rapid switching action

of the MOSFET. This switching action is controlled by the PWM pulse, depending upon

the required speed; the average voltage across the motor is varied. Say for example a

motor runs at full speed in forward direction at a raled voltage of 24Y - then we should

apply a PV/M with a duty cycle of I 00 % at Ql and Q4 MOSFET"s. Similar if we wanr

the motor to run at half the rate speed we apply a P'wM with a dury cycle of 50o/o.

Figure 15: Motor I)river

35

Chapter 4 : Hardware lmplementation

In practice for a motor to run forward the signals Motor Enable [Figure l3] and Forward

Enb [Figure 13] or Q4 [Figure 15] are kept at high and a PV/M signal is given at

PWM_Forword [Figure l3] orQl [Figure l5], whilethe rest of the signals are kept low.

Depending on how much speed is required the duty cycle is varied. For the robot here,

there are 2 independent molors for the left and the right wheel, each motor is controlled

independently. For moving forward or reverse the PWM duty cycle remains the same for

both motors whereas the PWM duty cycle is different forboth the motors if the robot has

to move either to lhe right or to the lefr.

3.4 Robot Direefion Control

lnslead of having a separate motor just for steering the robot a principle called a

differential steering system is applied to the robot to achieve the required direction of

motion. Two wheels mounted on individual axis are independently powered and

conlrolled thus providing both drive and steering capabiliry.

Steering control of the robot was purely based on differential velocilies, even though

complex algorithms can be implemented to achieve differential steering such as in

IWV/DS]. When we want lhe robot to turn lefi as shown in Figure l6A. the speed of the

outer wheel (right wheel) should have higher speed compared 1o inner wheel (lefi wheel)

Due to the difference in the speeds of each wheel the robot tends to move towards the

lower wheel speed, i.e. the wheel on the right covers more distance compared to the

wheel at the left in a given time, which resuìts in a tuming of the robot to the left. From

Figure 17 Íhe x and y co-ordinates of the robot center will change depending on the speed

36

Chapter 4 : Hardware Implemenlation

of the motion along the direction vector.

Figure l6: Differential Steering System

The direction giving the forward motion of the robot will simply be in terms of sing

cos9. Where d is the angle of turn in radians.

tt
A----d----------- l----i-----i- ----e

Figure A Figure B

Figure 17: Wheels at Different Velocitiqs

Chaprer 4: Hardware Impìementation

Taking m(1) and d(t) as the time dependent function for our robol speed and direction

, we have

dxldt=nt(t)cos(O(t))
dyldr=,7?(¡)sin(d(r))

We can define angle as the length of the arch divided by the radius of a circular arch.

The length of the arc from Figure 17 is the relative velocity of the righr wheel which

gives the length of the arc per unit time and the length from the wheel to the cenler point

gives us the radius, combining lhe above two lacts we have

d0tdt=(VR-VL)/b l6l

Note: This approximation equation uses the center point of the lefi wheel as a reference

point. All motion in this frame of reference is treated relative ro the left-wheel point.

Because the right wheel is mounted perpendicular to the axle, ils motion within the frame

of reference follows a circular arc with a radius corresponding to lhe length of the axle

(from hub center to hub cenrer).

Integrating lhe above equat¡ons and taking the initial orientation of the robot as

e(q: 9o we find a function for calculating the robot's orientation as a function of wheel

velocity and time:

0(t)=(VR-VL)tt+0o t7l

Velocity is simply the average of that for the two wheels, or(VR+VL)t2 we combine

this fact with what we know (Equation 5) about orientation as a function of time, and get

the following differential equations:

dx/dt:I(VR+VL)/2lcos(p(r)) I ro
dy / dt =I(vR +vL) /zlsin(o1t)) J I8l

Integrating and applying the initial position of the robot, x(0) = xo and/(O) = yo, we

t5l

38

Chapter 4 : Hardware lmplementation

have

x(r) = yo - YP9[sin((zR - vl)r t b + 0o)- sin(do)]
2(vR -VL)'

y(t) = *o * U!J!Ð[cos((IzA - VL)r I b + 0o)- cos(Éo)
2(VR -vL)'

Ìel

With different VL. VR and 0 the values for y(t) and x(t) were calculared. These

calculated values were used as reference values to calculate the velocities VR and VL for

a given lurning angle. However considerable error is introduced by rhe caster wheel

hitting bumps and deflecting the robot. Wheel slippage also contribules to the uncertainty

in controlling lhe robot with differential sreering.

3.5 Configuring Ethernet on DE2 Board2

To control the robot, that is, to send commands to the robot and receive feedback from

the robot environment we need a means of communication. The most widely available

communication technology is associated with the ìnterner. As such, the DE2 board

which acts as a main control unit has to be connecled lo the exlernaì worìd through

Elhernet and eventually to a wireless access point. To configure Ethernet on lhe DE2 we

configured the Devicom DM9000A fast Ethernet controller chip The DM9000A

includes a general processor interface, l6Kbytes SRAM- a media access control(MAC)

unit and a 10/100 PHY transceiver.

2 I was responsible for configuring Ethernet on DE2 board while M.Khan was responsible for building
custom Linux kernel and wireless configuration

39

Chapter 4: Hardware lmplemenlation

The DE2 architecture uses DMA technology to increase CPU usage and time it is

connected via the Avalon Bus allowing improved data channeì and SDRAM effìciency.

The communication interface is shown in Figure 18. An Ethernet component developed

by Terasic IWWTS] was used which provided the required driver for DM9000A. This

driver was also used 1o develop the required user application such as creating a TCp/lp

slack- web server, elc.. for the Niosll processor using C/C++ language in the Nioslì

lntegrated Development Environment.

Figure I 8: Communication Interface

3.6 Ethernet to Wireless Using Soekris Board

To make the robot more mobile and practical, it is necessary that we make the robot a

wireless mobile robot. During development we could communicate to the robol by means

of lnternet Protocols a wired LAN. Subsequently it became necessary to broadcast these

40

Chapter 4 : Hardware lmplementation

sìgnals to a base station through a wireless medium, such as a wireless local area network

(V/i-Fi) [WWWF]. The task of creating a wireless network look pretty simple, but they

are not as simple as they appear. V/e had to interface the robot to 802.1lb. which

provided the Wi-Fi network to the DE2 board or the robot server which has Ethernel

configured in it. Due to the limitation of SDRAM, flash memory on the DE2 board and

limited suppon for USB we couìd nol use wireless adapters or a u,ireless bridge. As an

alternalive we used a Soekris nel550l embedded processor which provided the solution

for making the robot wireless.

The Net5501 comes with I PCI slot which is used for the wireless PCI card. To

configure the wireless PCI slot for 802.1lb, a custom Linux kernel had to compiled and a

proper driver had to be installed. The Ethernet cable from the DE2 board was connected

to the Ethernet hub (one porl of the net550l). A bridge was created between the Ethernet

hub and the 802.1I b PCI card, so thal the packets from the DE2 pass through the bridge

and then to the 802.1I b PCI card and are then broadcast. The base station receives these

signals and passes them on to the client (or controller) which is connecled through a

LAN. ìWhen a client wants to send a command signal to the robot, the signals (packets)

are fìrsl transmitted to the base station which is connected via the wired LAN and the

base slation broadcasts the signals which are in turn received by the 802.1lb PCI wireless

card and passed on to the Nios ll processor for processing lhe commands and performing

the required task.

4t

ffit
ñ ()

À

Soekris Board
Runn¡ng on Línux OS

lE ttbt
l¡ I

lu I

ETHERNET HUB

Controller

ALIERA DE2 BOARD WITH NIOS II
PROCESSOR RUNN¡NG ON

MicroC/OS ll

Chapter 4 : Hardware Implementation

Figure l9: Bthernet to Wireless

3.7 CMOS Camera

A TRDB_DC2 l.3Mega pixel digital camera module was used for capturing high

resolution video. This module can use two CMOS image sensor (MT9M01l) which are

capable of 1280x1024 resolution. This camera module outputs a raw RGB which can be

processed and displayed either on a VGA monitor or can be transmitted over Wi-Fi

network with image compression. The module is connected to the 40 pin GPIO header

of the DE2 board. The images are captured using a HDL code written in Verilog. The

code captures the images from the CMOS sensors through the fìrst 20 GPIO pins and

stores them in the SDRAM of the DE2 board for funher processing. The images are

stored in raw RGB format, which are further processed and displayed on the VGA

42

Chapter 4 : Hardware ìmplementalion

monilor- Difficulties \À/ere encountered when trying to stream the video from the CMOS

camera over the V/i-Fi network.

3.8 Summary of Chapter 3

ln this chapter the design concepts for PWM generation using the DE2 board and

direction control which togelher form the core of any robot at the hardware level has been

presented. This chapter also explains the process and steps necessary to configure a Wi-

Fi, so that the robot can colnmunicate with the exlernal world remotely. Finally the

confìguration and implementation of a CMOS camera using a DE2 board is described.

43

Chapter 4: Software lmplementation

CHAPTER 4

S OF'TV/ARE IMPLtrMENTA TI ONI

Chapter Overview

This Chapter explains the functionalities of the GUI developed and rechniques used in

transformation ofjoystick stick movemenl by the controller into robot commands

Parts of this chapler were done in collaboration with Monir Khan. Specific

responsibilities are footnored in the appropriate sections.

4.1 Graphical User Interface3

For any type of operator assisted robol, the operator environment is very important. To

make things simple and user friendly, a Graphical User lnterface (GUI) was developed in

the .Net environment. The languages used for the development are C# and VC++. The

GUI developed shown in Figure 20 can communicate with the DE2 board on the robot to

send commands or receive the feedback from the robot/server (recall that DE2 board acts

as a server).

The GUI provides the following funcrionaliries:

. Connects the client/controller to the server/robol using socket connections.

. Provides near real time visual data feedback in MJPEG format to the

controller for reliable control operation.

3 With the specific task of the GUI development, I was responsible for the video interface, M. Khan was
responsible for joystick interface, and we both collaborated on layout of GUI and socket programming.

44

Chapter 4: Sof,ware lmplementation

e Provides GPS data that helps the operator know the exact location of the

robot.

Provides feedback such as speed and the distance from the obstacle if any

are in its path of motion.

Provides an interface 1o a joystick and converts rhe joystick commands

which are in terms of the x and y axis into motor duty cycles and forwards

these command packets to a socket which forwards them lo a socket at the

server side to perform the required action.

, -t"
þiÉ-q

45

Chapter 4: Software ìmplementation

4.2 Joystick Interface

Extreme 3 joysticks from Logistic was used in the development of the robot controller.

To make the code more robust and reusable a joystick inlerface was developed. Figure 2l

shows the flow chart forjoystick interface. The joystick interface basically is a class. the

main purpose ofjoystick inlerface is to poll the exlernal USB devices connected to the

compuler and sel the device to aclive if it finds a suitable joystick that can be used to

control the robot. The following function polls for a joystick and throws an error if it

doesn't find a joystick.

private void Poll0
{

try
I
I

joystickDev ice.Pol ì 0;
slate = joystickDevice.CurrentJoyst ickState;

)
catch ([:xception err)

{

Dc' b u g. WriteLine("Pol I 0 ") ;
De bu g.WriteLine(err.M essage);
l)cb r¡u.'WriteLine(err.StackTrace);

ìì
JJ

Once the joystick is detecled, the joystick interface looks for the joystick propeñies such

as the number of axis it can operate and the number of buttons attached to it. For the

robol control, we required a minimum ol 4 axes and 5 buttons if not, it throws an error.

Most joyslicks basically have 2 or 3 axes i.e. with X and Y as its co-ordinates and Z in

some cases.TheZ axis is not taken into account here- To make things simple and easier

for development, lhe joystick inlerface developed uses axes A, B, C and D. Axis A

represents +Y and Axis B represents -Y, similarly Axis C represents +X and Axis D

represents -X. If a joystick is moved forward that is in +X direction, the interface will

46

Chapter 4: Software lmplementation

No Joystick Device

lf (JoystickDevice) is TRUE

Create a Device for this Joystick and
detect the number of Buttons and Axis

lf (Buttons> 5 && Axis >4)

Store Values of Button ín a Array
Assign Axis X: Axis C

Axis -X= Axis D
Axis Y= Axis A
Axis-Y = Axis B

Figure 2l: Joystick Interface Flow Chart

send a command to the DEZ or Nios Il processor to produce a PWM with exactly the

same duty cycle lo both lef, and right molors so that the motors will have the same speed

and direclion, in this case the robol moves forward. ln the process a need arose to

convert the value read from joystick into an integer value befween 0-100 which

represents the duty cycle.

47

Axis C

This position of joystick
represent 5O%o duty

cycle for forword motion

Null Point or O7o duty
Cycle

This position of joystick
represent 5O7o duty

cycle for reverse motion

Chapter 4: Software Implementation

Figure 22: Joystick Mapping

As an example. if the maximum and minimum values between Axes C and D are 6000

and 3000 respectively as shown in Figure 22,where the null position or0%o duty cycle is

4500, then every l5 divisions read from joystick represent l% duty cycle. To be more

precise forthe motorto move at half the rated speed in forward direction a dury cycle of

50% is required , for which the joystick has to move 50*15 divisions i.e. is 750

divisions from the null position (a500) which is at 5250 divisions.

Note: The Values and Axes used in Figure 22 are used for explanation

4.3 Client Sockets

A socket is basically an end of a bi-directional communication link in an IP networking

protocol. Using sockets at bolh Client (Controlìer) and Server (Robot) a communication

channel is established for data flow across the network. The DE2 board (Robot

Controller) is configured to obtain its IP address (every computer on the Internet has a32

bit address, often referred to as its IP address) dynamically when it is connected to a

Chapter 4: Sofiware lmplementation

network which has a DHCP server. In the case where we do not have a DHCP server we

can configure the DE2 board to have a static IP address. ìn our case the IP address for the

DE2 board is dynamical configured and displayed on the LCD panel of the DE2 board.

Knowing the IP address of the DE2 board a socket connection between the client and the

server is established using the lP address of the host machine, (in addition a porl is

required (a port is a l6 bit unsigned inleger)). Lower pon numbers are reserved for

standard services: hence any port above 2000 can be used. Two fields in Figure 20, host

lP address and port number should be typed into the GUl. Clicking on the button

Connect the following function is execuled

private void cmdConnect_CIick(object sender, Syslem.EveniArgs e)

{
try
{

i/create a nev\/ cliellt socket ...

m_socWorker = new Socket(Addl'essl--anlil_i.lnternetwork, Socket l-r,¡le.Stream,
Protocol'f)'pe.lP);

String szlPSelected : txtlPAddress.Text;
String szPort = txtPoñ.Text;
int alPort = System.Convert.Tolnt I 6(szPort. I 0);

System.Net.l PA cld ress remotelPAddress =
System.Net. I PA dclress.Parse(szlPSelected);

System.Net.l PEnclPoinl remoleEndPoint = new
System.N et. I P En cl Po i n t (rem otel PA ddress, alPort) ;

m_soc Worker.Connect(remoteEndPoint);
cmdConnect.Enabled = false:
cmdClose.Enabled = true:

)
catch (System.Net.Sockets.Stlc k ct I: r cc¡rr iou se)

{
M essaseBox.Show(se.Message);
cmdConnect.Enabled : true;
cmdClose.Enabled : false;

)

)

A new socket connection is created with the IP address provided in the fxtlPAddress and

49

Chapter 4: Software lmplementation

the poñ number specified in txtPort. When the hosl (robot) accepts the connection, the

client can keep sending commands using a socket stream function. At the host side

(robot). a server socket is created.

4"4 Server Sockets

The host runs a ¡rC/OS ll as its RTOS(Real Time Operating System) that uses rhe LWIP

(Light Weight ìnternet Protocol) and NicheStack TCP/IP.

The following lines of code illustrate how a sockel connection is created on porr 4000

sockfd : socket(AF_INET, SOCK_STREAM, 0);

m em set (&serv_addr,0,sizeof(serv_addr)) ;

serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY ;

serv_addr.sinjort = htons(4000);
if (bind(sockfd. (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
printf(" Isend task]ERROR on binding");

ì
J

listen(sockfd,5);
cl i len = sizeof(cli_addr);
newsockfd = accept(sockfd,

(struct sockaddr *)&cli_addr,

(socklen_t *)&cl i len):
if (newsockfd < 0)

{

prinlf (" Isend task] ERROR on acce¡rl");

)

The server socket is now ready 1o accept the incoming message from the client. lt is

necessary that the commands generated by the client are streamed in a proper format such

that each command can be recognized and processed accordingly by the server.

50

Chapter 4: Software Impìementation

4.5 Command Generation

Commands generated are streamed through the communication link established between

the client and server using sockets. The whole system is divided into two pañs: one is the

controller/client and the other server/robot. When a command is given by the controller

using a joystick, the interface code check for several conditions and interprets what

commands should be sent. A flow chart in Figure 23 represents on how every command

is interpreted

4.5.1 CASE1: To Generate Commands for Left and Right Turn

When the controller enters CASEI, the axis is checked. if the axis is A and buftonO is

pressed, it moves on to check the value of the Axis. lf the value resulted in the motion of

the joystick which is less rhan 321 I l(Figure 24), rhen the dury cycle for lefl motor

(DurytCyclel) and right motor (DuryCycleZ) are calculated as shown in Figure 23.The

calculated duty cycle value is between 0 and l, if the resultant value is 0.25 that implies a

25o/o duty cycle. The calculaled duty cycles along with a lefler "L" to indicate that the

user wanls the robot to move lefi is packed inlo a single text value and sent as a

command. The commands produced in this manner are streamed continuously over the

Wi-Fi using sockets. lf the value resulled in moving the joysrick is greater than 3291I

(Figure 24)the controller moves lo an "else" loop and the duty cycles for right motor and

left motor are calculated. The calculated dury cycles along with the letter "R", to indicate

that the controller wants the robot to move right is packed into a single text value and

senl as a command.

5l

Chapter 4: Sofiware ìmplementation

Figure 23: Command Generation Flow Chart

The command strucTure to lurn righl is as follows:

cl =1. cr -- 0.2; \\Conslanl
sl = (int)(cl * durycyclel); \\Casting
sr : (int)(cr * dutycycle2);
direction - "R" \\Casting
command - "+";
command *: direction * "*" + sl * "+" + sr + "+";

Similarþ to turn Lefi:

cl : l, cr : 0.2; \\Constant
sl : (int)(cl * dutycyclel); \\Casting

CASE2:
Jst.axis Null

lf Jst.ax¡sA &8 Jst.axisb=NULL
DulYCYcle'l =0
DutYCyc¡e2=0

Sel dirèclion ='N'

lf Jst.a:is B 88
Bunoñ 1 ==lrue

Else if(
axisA>3291 1

1=(32I 1 1-ist-Aris.q)/322
321 I l-jsLAx¡sA)/322

emP=DutYCYcle'l/
Mâth.Log1 0(DutyCyclel

Outycycle 1 = (329 1 1 -jsl.AxisA)/3z9
DutyCycle2=(3291 1-jsl.AxisAy3?9
Temp=Ogtyçr.¡.,

Mãlh. Logl 0(ÞutyCycle2)
DulyCyclel ='f eñp
Sel dirætiom ='R'

Dutycycþ1 =(321 1 ljst.Axis8)/322
321 11-jsl.ArisA)ß22

'| =-(ist.Ar¡sB)/329-1 0O

tion+ OutyCycle 1+
DulyCycle2

52

Chapter 4: Sofiware Implementalion

sr = (int)(cr * dutycycle2); \\Castine
direction - ((L"

command - ¡'+rr'

command +: direction + "+" + sl + "+" * 5¡ * "+";

l{ote: The Symbol "+" at the begning indicates the start of a command

4.5.2 CASE2: Neutral

When the joystick is in the null position, that is values between 32111 and329l I on both

Figure 24: Neutral Region for Joystick Mapping

axis's (axis A and axis B region marked with a circle in Figure 24),no task is performed.

ln other words the robot is in the standslill position.

Commondfor Neutrol:
sl :0;
Sr:0;
direction ='N';
command - "+";
command +: direction + "+" * sl * "+" + Sr * "*";

53

Chapter 4: Sofiware lmplementation

4.5.3 CASE3: To Generate Commands for Forward and Reverse Motion

When the controller enters CASE3, the axis is checked, if the axis is B and button I is

pressed. it moves on to check the value of the axis. lf the value resulting from the motion

of the joystick is less than 321ll (Figure 24), then the duty cycle for left motor

(DutytCyclel) and right motor (Duty Cycìe2) are calculated as shown in Figure 23.Here

the duty cycles for both the motors are the same. The calcuìated duty cycles along with a

lener "F" to indicate that the user \Nants the robot to move forward is packed into a single

text vaìue and sent as a command, the commands produced here are streamed

continuously over the Wi-Fi using the sockels.

lf the value resulting in moving the joystick is greater lhan 32911 (Figure24) the

controller moves lo an "else" loop and the duty cycles for right motor and leff motor are

calculated. Again the duty cycles for both the molors are equal. The calculated values are

assigned a "-" sign to indicate that the controller requires the robot to move in reverse

direction. The calculated dury cycles along with the lener "D" to indicate that the

controller wants the robot to move in reverse. is packed into a single texl value and sent

as a command.

4.5.4 CASE N

A few more cases are implemented which are not shown in the Figure 23, these cases are

labeled as CASE N

4.5.4.1: Rotation

To generate a command for the robot to rotate by itself we need to have fwo equal duty

54

Chapter 4: Sofrware ìmplementation

cycles but opposite in sign. A fixed duty cycle of 25o/o is assigned to both the motors and

this task is achieved when button 2 of the joystick is pressed. This command is

represented by the letter "O" followed with dutyclylel and dutycycle2.

4.5.4.2: Stop Command

A stop command has a duty cyclel =duly cycle2=0. This command is associated with a

lener "S". This command is generated when button 3 of the joystick is pressed.

Simiìarly the code developed is very flexible for any further modification and can be

expanded to have any number of cases such as U-turn from the right, U-turn from the lefi

etc. All commands generated are transmitted to the server via the sockets, the server

interprels these commands and processes the commands to perform the required task.

4.6 Command Processing at Serrer Side

The request/commands sent by the controller consisl of three fields, one indicating the

direction of motion, the second the duty cycle of the left motor and finally the dury cycle

of the right motor. A buffer is crealed to read the raw data in the string format.

Commands in the buffer are differentiated by using the symbol "+" at the start of the

command- A stream of commands in a buffer is shown in Figure 25. The stream of

commands are then read from the buffer and the values are processed accordingly as

shown in Figure 26. First the code checks to fìnd the starting point of the command

which is identified by the symbol "+", if it finds the starting of the command, it moves to

the next stage and looks for the direction and stores the value of the

55

Chapter 4: Sofiware lmplementation

Command 3 Command I

''\
"rn",

Figure 25: Command Stream in a Buffer

direction in a variable called "dir", next it checks if there is a starl of new command, if

not lhen lhe value of dutycyclel is read and stored as dtl. The obtained value is then

conveñed from string to an integer value and stored in a variable "dtl", similarly the

next value read is duty cycle2 , the value read is then stored into variable "dl2". dtland

dt2 are conve¡1ed with respecl to the clock_divide value (Appendix A). These values are

funher processed according to "dir" value read using the switch and case statements.

As an example consider case "F" (Figure 26) (section 4.6.1) (to move forward). \ile have

lwo registers/components Z_PV/M_0 for lefi molor and Z_P'WM_l for right motor. The

register that controls the direction of motion, forward (FORV/ARD_BASE) is ser to l

and reverse (REVERSE_BASE) to 0. then a check is made if the requested dutycyclel

and dutycycle2 are grealer than 0. if the condition is satisfied it further checks if the

dutycyclel requested by the user is less than the clock_divide value or the counler value.

If the duty cycle value is greater than the clock_divide value an error shows up. The new

duty cycle is returned to the task logic (Appendix), this value is compared with the

counter value and a ne\À/ Z-PV/M_O is produced. Similarly Z_PWM_I is also produced

for right motor. ln this case the robot is to move forward so the Z PWM 0 and

56

Chapter 4: Software Implementation

Z-PWM-I are equal. Similar cases have been implemented [Appendix] for left turn,

right turn, reverse, U-Turn from the right. U-Turn from the lefi and for arbitrary degree

rotation.

In¡liallrz.al¡orr : lnl i=,1:
l::.i=rl
inl h=î
tr.tt=0

Rsac lf e !3llr¿s inÌ.: Euff er

f'O. I i= : ljLti,-e', ir l= .- : i+ -:
{ cui!,cycl€:01 = i:ufferl¡]

l*_:)
inr di? = adciduîtcyc É2 j;

finai_duVc'tc:f :=di2
f+-

S.xi:cli a¡r : í
::as€ F'
ias¿ C'
ilas¿ L
t,íst n
(las€ O
Case S'

Figure 26: Command Regeneratio¡t at Server Side

57

Chapter 4: Software lmplementation

4.6.1 Case'F'

IOV/R (FORWARD_BASE,0, 0x0l);
lOWR (REVERSE_BASE,0, 0x00);
if (drl>0 &.&. dr2>0)

{
dury_cyclel : dtl;
dury_cycle2 = dt2;

if (duty_cyclel <

r ORD_A LTERA_A VALON_PÌV M_CLOCK_DI VìDER (Z_pV/M_0_BA SE))

{

return_code = allera_avalonjwm_chan ge_duty _cy cle(Z _PV/M_0_BA SE.
duty_cycle I);

check_relurn_code(Z_PWM_0_BA SE, return_code) ;

I ORD_A LTERA_A VA LON_PWM_CL OCK_DI Vì DER (Z_pV/M _0_BA S E)) ;
ì
J

if (duty_cycle2<
r ORD_ALTERA_A VALON_PWM_CLOCK_DìVI DER(Z_PWM_ I _BA SE))

{
retum_code : altera_avalonjwm_change_duty _cycle(Z_PV/M_ I _BA SE,

duty_cyclel);
ch eck_return_cod e(Z_P'WM _ I _BA SE, relurn_code) ;

ì ORD_ALTERA_A VALON_PÌVM_CLOCK_Dì VI DER (Z_PWM_ I _BA SE)) ;

ììJ'

Chapter 4 Summary

ln this chapter the major functionalities of the GUI were outlined. This chapter described

how the joystick interface was developed to map the movement of joystick into

commands. A explanation of client-server programming, command generation. encoding

and decoding of commands was also presented.

58

Chapter 5: Advance Implementation

CITAPTER 5

ADVANCE I} IMPLruMENTATION

Chapter Overview

This Chapter outlines the deveìopment of video feedback. GPS implementation and an

obstacle avoidance algorithm using sonar sensors. Parts of this chapter were done in

collaboration with Monir Khan. Specific lask responsibilities are noted in the footnotes.

5.1 Video

Video for robotics is an essenlial componenl to achieve a reliable telecontrolled robol.

For this project the video is captured using a Logitech quickcam (lD: 046d: 092c)

webcam located at the robot side. Only the front looking view of the robot is captured.

Even though using a USB web camera might not be fast enough for critical reaì time

applications, it is sufficienr for the near real time application being used here. The

webcam is connecled to Soekris Net550l a single computer board running a Linux

Operaling Syslem which has a USB port. The kernel is custom configured for minimum

memory usage and maximum processor throughput. IWWKC] briefly explains how a

custom Linux kemel is built complied and installed. Nel5501 can communicate with the

external world using a Wi-Fi network

59

Chapter 5: Advance Implemenlarion

,User lnterface and Video Capture
Software Developedin C# and

VC++

-->?
Wi-Fi link

Soekr¡s Ner 5501

Figure 272 Live Video Streaming

The main componenls in deploying a video feedback with some image processing are as

follows:

. Webcam Frame Grabber

. Video Processing and Video Streaming Server

. Video Capture and Display at the Controller End.

60

Chapter 5: Advance Implementation

5.1.1. Frame Grabber

A device that caplures and stores a complete video frame is defined as a frame grabber. If

the input from lhe video device is analog lhen a frame grabber convens the analog video

signal into a digital video signal. The Logitech webcam used is capable of capturing

images up lo 640 x 480 pixels. A GSPCA [GSPC] driver is used to capture images from

the webcam. The driver has been compiled and added lo the kernel. [WWVC] explains

how lo compile the driver code and load the module into the Linux Kerneì. This driver

works as a frame grabber capable of capturing llframe/sec. Due to the limitation in rhe

USB webcam used, the frame rate is kept between l5- l7 frames/sec. Higher frame rates

can be archived using the CMOS or high speed lP cameras. When the driver has been

installed, a video device videoO is created (in /dev/video0). Video0 acts as a buffer

which sends out the frames that are captured.

5.1.2. Video Streaming Server

Soekris Net 5501 is a video server which serves as a bridge between the webcam and the

lnternet. The frame grabber provides a continuous stream of images which have to be

processed and converled into a video stream, The frames captured by the frame grabber

are played at a cerlain speed (minimum I lframes/sec) in order to view these pictures as

video. This video stream is processed and broadcast over lhe network in real-time. VLS

(Video LAN Stream) is used to process the f¡ames captured by video0 device and convert

it to a moving picture format i.e. MJPEG format. MJPEG streams can be broadcast over

Intemet either in uni-cast or multicast mode. MPEG stream is set to unicast mode when

the intent is to send the video feedback to only one end user (controller). Ifthere are N

61

Chapter 5: Advance Implementation

end users then the video stream is set to a multicasl stream. Unicast streâms provide some

degree of security features because only one end user can have video feedback (without

some degree of effort). ln the case of a video stream. a loss of few packets does not

hinder the overall performance. V/hat is needed is for the packets Io be delivered on time

hence RTP (Real Time Transpofl Protocol) protocol is used for communication. RTP

provides end-lo-end delivery service for real-time applications. RTP packet slructure is

shown in Figure 28.

lP Header
UDP

Header
RTP Payload

(Video packets)

Figure 28: RTP/UDP Eeader

In this case RTP uses UDP as a transport protocol and UDP packets are encapsulated

within the lP packets for transfer over an IP network. RTP headers contain the

information related to the payload such as the source size. encoding type etc. The

captured MJPEG is streamed over the networking using UDP sockets.

5.1.3. Video Capture and Display at the Controller End

A UDP sockel at the controller end is listening to the video server and waiting to receive

video streams. Even though the captured video stream can be displayed in a web browser

IMJOI] which can be achieved by writing a simple HTML code, a Graphical User

Interface (GUI) provides more flexibility and reliability if modified for future

developments. VLC player's dlls (Dynamic Link libraries) are used to access all the

62

Chapter 5; Advance lmplementation

required functions of VLC media player and deveìop a video capture interface. The

inlerface developed here uses UDP sockets through which the RTP packets are received

with time stamps. The packets are reframed by the video capture interface and displayed

as MJPEG streams. At this time the video display within the GUI is nol operational and

we have had to reson to a web browser for the display. The following is the glimpse of

how a C# code should be written to output video on the controller screen.

public (-'()r'r I r'()l VideoOutput
Ii

gel { return m_wndOutput;)
sel

{

ll clear oìd r.r,inclou,

if (m_wndOutput != null)
I
ì

m_wndOulput.Resize -= new Even I l- I an d I c'r'(wndOutput_Resize);
m_wndOutput: null;
if (m_iVlcHandle l: -1)

SetVariable("drawable ", 0);

)

ii sct neu
m_wndOutput = value;
if (m_wndOutput !: null)
{

if (m_iVlcHandle != -l)
SetVariable("drawable ", m_wndOulput.Hand le.Tolnt320);

m_wndOutput.Resize +: ne\¡/ [:r,entI Iandler(wndOutput_Resize);
wndOutpul_Resize(null. null);

)

63

Chapter 5: Advance Implementation

5.2. Sonar Sensor4

SRF04 sonar sensors from Devanlech are used to implement obstacle avoidance and

intelligent navigation using obstacle avoidance control logic. A SRF04 emits a short burst

ofsounds and listens for the echo to detect ifany objects are present.

Figure 29: Sonar Sensor Timing Diagram

A trigger input to the sonar is generated using HDL implemented on DE2 Development

board. One of the 40 GPIO pins from the Altera DE2 board is used lo output the

generated pulse. The trigger pulse generated is required 1o be at least be l0 microseconds

in duralion. At every trigger pulse the sonar sensor emits the sonic burst which consists of

8 cycle sonic burst shown in Figure 29 [WV/SNR]. This pulse travels al a speed of sound

l.125feet permillisecond, hits a object and bounces back if it is reflected by an obstacle

in its path or otherwise just diminishes. The distance to the object is measured using the

4 With the specífic task of the Sonar, M. Khan and I worked in developing the required hardware and
software components collaboratively.

Trigger Pulse
'1OuS Min

Hardware
Generaled ùiggel
from DEz Board

to SRF0¿ module

I cycle Sonrc Eurs!

Son¡c Burst outpul
from SRF04

lf no objecl ¡s detected
æho pulse ¡s appro¡

36mS
Ec¡o Pulse Oulpul from

SRF04 and ìnput to DE2 s
GPIO p¡ô Echo Pulse

100uS to'l&nS

i__-____________ l

A¡lc'w 1onìS lrorn EÌd cl
Echo rc the Next llgqer

Pulse

Chapter 5: Advance ìmplementation

time between the transmission of the sonic burst and the echo pulse. The echo pulse

outputs a high going pulse that corresponds to the time required for the echo to return.

The echo pulse is given as input 1o the DE2 through the GPIO pin. Using the time of echo

pulse, the distance to the obstacle is calculated. Also the trigger pulse musi wait ai Ieast

l0 milliseconds from the time the echo pulse is returned or al leasl 36 millisecond if no

echo is relurned before being re-triggered.

5.2.1 Distance from the Obstacle

The echo pulse is read and stored ;nto one of the DE2 board regislers, the register acts as

a buffer;there is a continuous inflow of data whenever it approaches obstacles. The value

is read in units of time (in microseconds), this value is convened into distance of the

obstacle from the present position of the robot either in inches as follows:

X- Output of the sonar sensor in microseconds.

D - Distance of the robot from Obstacle.

AIso, a pulse width of 74 microseconds = I inch from the obstacle.

Therefore we have

o: fi;nches ---Equation l0

ln real time, nol every individual value read is passed on for further processing, inslead a

average of 5 values is passed on to the obstacle avoidance controller for a smooth and

stable operation.

Note: There is a possibility. of +l- 5%o enor from the calculated value (74) in Equation 10.

65

Chapter 5: Advance lmplementation

In the implementalion here,2 SRF04 sonar sensors were used at the front of the robot and

I in at the rear of the robot.

5.3. Global Positioning System (GPS)S

GPS is a Global navigation satellite system. The GPS receiver uses at least 3 sateÌlites of

the 24 medium earth orbit satellites that transmit precise microwave signals to determine

location. direction. speed and time of where the GPS receiver is placed. A mini-PCl GPS

card MP-954GPD is used here. This PCI card is plugged into the Soek¡is board which

runs Linux. When customizing the kernel for the GPS application, a driver shipped along

with the carcì is confìgured into the kernel. Figure 30 sbows detailed schematic on how

the PCI GPS receiver is used- The Soekris board which connecls the remote robot to the

lnternel is connecled to the GPS receiver. The GPS receiver calculates all the required

data using the information provided by 3 or more satellites. The GPS receiver is attached

to an antenna which is tuned to the frequency transmitted by the satellite- the receiver

processes the signal using a highly stable clock produced by a crystal oscillator. The

processed signals are senl to the driver installed for MP954 PCI GPS. which provide all

the information to the user. MP954CPS is capable of using up to l2 satellites. This

information is streamed over the wireless network using sockets

5 With the specific task of the GPS, M. Khan and I collaborated on the implementation.

66

Chapter 5: Advance lmplementation

Figure 30: Implementation of GPS Receiver

At the controller side, a TCP/IP socket receives the data and differentiates between all the

different forms of data (such as date. time etc) and displays it on the screen. The GPS

receiver MP954GPS provides the data, time, direction, speed, and horizontal dilution of

precision (HDOP), positional dilution of precision (PDOP), latitude, longitude and also

satellite status. The HDOP and GDOP describe the geometric strength of satellite

configuration on GPS accuracy. Using this data we can locate the position of the remote

robol to within +/- 3 feet.

5.4 Imptementation of Obstacle Avoidance

Navigalion using sonar sensors is achieved by implementing obstacle avoidance control

. Dale:
r I tme:t\

I \ Direction:
:i+ I / ^, .,rt,'j ------1 Speed:

- ?Desktop/ Status:
Laprop HDOp:

PDOP
LAT N xxo.xx'LON:E xxo-xx'

Access Po¡nt /
Base Station Soekris Net 4826

67

logic locally on the remote robot. Three SRF04 sonar sensors

impìementation of semi autonomous robot navigation. Figure

implementation of obstacle avoidance control logic in Niosll processor.

Chapter 5: Advance Implementation

used in the

shows the

are

3l

When an obslacle is detected in the path of the robot, an echo pulse is generated and the

dislance is calculated as shown in equalion 10. The value of distance calculared. which is

in inches, is sent to lhe obstacle avoidance controller for any funher action on how it

should generate a P'WM pulse for the motion of the robot. lf no obsracle is detecred rhe

robot controller listens to commands sent by the remole operator or controller. ìn case an

obstacle is detected the algorithm shown in the flow chart (Figure 32) is implemenred.

pCiOS-ll for Nios ll processor

¡LC/OS-Il for Nios ll Application

OC Molor Conùol'task

2

Figure 3l: Implementation of Obstacle Avoidance Control Logic in the Nios II

Chapter 5: Advance lmplementarion

Implementation of the obstacle avoidance algorithm is written in C programming using

the Nios Il IDE programming environmenl. The code uses case statements as shown in

the flow chart. Different modules or cases are used for different sensors. Every sensor

data is labeled so as to identify which senor has detected an object in its path of motion.

The control logic enters case Dl whenever a sensor Dl Iocated on the front towards the

right side of the robot delected an object in its path of motion. The control Iogic enTers

case D2 whenever a sensor D2 located on the front lowards the lefl side of the robot

detected object in its path of molion. The control logic enters Case D3 whenever a sensor

D3 located in lhe center of robot rear side detected objecl in its path of morion.

When sensors Dl and sensor D2 detect an object in their path of molion then case Dl

"8¿&" D2 send the control signal to the robot.

5.4.1. Case Dl: Obstacle Detected by Right Sensor on tbe Front of the Robot

'When an obstacle is detected in the front on the right side of the robol, the robot should

react in such a way thal it would avoid the obstacle and move toward the left. Before

processing the data from the sonar sensors to send out a command to the motor controller,

it first checks if the motion is forward, if false it moves on to the next case stalement. To

make the robot move towards the lefi, it is necessary that the duty cycle (directly

proponional to speed) of the lefi wheel should be less than the dury cycle of rhe right

wheel. lf the distance of the obstacle from the robot is less than or equal to l0 inches

(Critical Distance) then the robot halts irrespective of the values given by the other

sensors. If the distance to the obstacle for sensor Dl from the robot is less than or equaì

to 40 inches then the duty cycle sel by the obstacle avoidance algorithm for the Ieft motor

69

Chapter 5: Advance lmplemenrarion

is25o/o of the actually duty cycle given by the controller and consequentÌy the duty cycle

of the right motor is 50% of the actually duty cycle given by the controller. A check is

made to delermine if the distance to the obstacle is still less than the critical distance. if it

approaches the critical distance then the robot halts and oven-ides the user commands

compìetely. Similar actions are performed in the case of obstacles detected at distances

less than or equal to 80 inches by rhe robot's local inrelligence. When an obstacle is

detected between 40 and 80 inches away from the robot, the modification to the speeds of

right and lefl wheel of the motors are higher.'When the distance of the obsracle is grearer

than I 00 inches lhen. the robot just obeys Ìhe commands sent by the controller.

5.4.2. Case D2: Obstacle Detected by Left Sensor on the Front of the Robot

When obstacle is detected in the front on the lef, side of the robol. the robot should react

in such a way that it would avoid the obstacle and move towards the right. Before

processing the data from the sonar sensors to send out commands to the motors, it first

checks if the motion is forward, if false it moves on to the next case slatement. To make

the robot move to\¡/ards the right, it is necessary that the duty cycle of the right wheel

should be less than the duty cycle of the lefl wheel. lf the distance of the obstacle from

the robot is less than or equal to l0 inches (Critical Disrance) then the robot halrs

irrespective of the values given by the other sensors lf the distance of the obstacle for

sensor D2 from the robol is less than or equal to 40 inches then the duty cycle sel by the

obstacle avoidance algorithm for the right motor is25Yo of the actually duty cycle given

by the controller and consequently the duty cycle of the left motor is 50% of actually duty

cycle given by the controller.

70

Chapter 5: Advance lmplementation

Figure 32: Obstacle Avoidance Algoritbm

The algorithm checks again if the distance to the obstacle is srill less rhan the critical

distance, if it approaches critical distance then the robot halts and overrides the user

commands. Similar actions are performed such as in lhe case of obstacles less than or

equal to 80 inches from the robot except that the modification to the speeds of right and

left wheel of the motor are higher. When the distance of the obstacle is greaterthan 100

CASE D2

(morion:toNard) |
ase (D1 S l0)

Set Duty Cycle of Left
MotoFoo/o I

Sel Duty Cycle ol Right
MoloFOo¿

whilc(Dl5l0) (

Sel Duty Cycle ol Left
MoloÊzso/o &

Set Duty Cycle of Right
MotoF5O9o

(D1 S 80)

Sel Duty Cycle of Left
MotoÊ509/o

Sel Duty Cycle of Right
MotoÊ7570

(D1s r 0o)

Sel Duty Cycle ol Left
& Right Molor =

Ouly Cycle Set by

(morron:foru¿rd) I
lD2 < ro)
Set Duty Cycle of Lefi

MotoFOo/o I
Set Duty Cycle ot Right

MoloÈO9/"

Set Duly Cycle of Right
MoloF2Sô/o &

Sel Duty Cycle of Lefi
MotoÊ5O9/o

se (Di j 80)

Set Duty Cycle ol R¡ghl
MotoF507"

Set Duty Cycle of Lefi
MôtoF7 5o/"

Set Outy Cycle of Lefi
& Right Motor =

Duty Cycle Set by

f (mor¡on__-foruard) I
(D1 ll D2s t0)

Set Duly Cycle ol Lefi
MotoEOo/o I

Set Duty Cycle of Right

âse (D1 &E D2 _< 40)

Sel Outy Cycle of Lefl
MoloF2o"/"

Set Duty Cycle of R¡ght
MotoÊ 1O9o

(D1 &A D2 s 40)

Sel Duty Cycle of Left
MoloF20o/o

Sel Duty Cycle of R¡ght
MotoÊ3O9/"

ase (D.l &8 D2 Sr00)

Set Duty Cycle of Left
E Righl Molor =

Ðuty Cycle Sel by

f(mot;on==reverse) I

SeÌ Duty Cycle ol Lefi
MoloFO9/ô E

Set OuÌy Cycle of Right

ase (O3 s 40)

Sel Duty Cycle of Left
Motor = 5O9/o (Reverse)
Sel Duly Cycle ol Right
MotoÊsOYo (ReveEe)

ase (D3 I 80)

Set Duty Cycle of Lefl
Motot = 75o/o (ReveEe)
Sel Duty Cycle of R¡Oht
MoloFTSo/o (ReveEe)

Sel Duty Cycle ot Left
I Righl Molo' =

Outy Cycle Set by
Controller))

' . : D-l- Right Sonar Sensor
D2-Left Sonar Sensor
D3- Rear Sensor
Set Duty Cycle is the percentage

of actual Duty Cycte Set by The
Controller

Note3; Number 4O,80.1OO represenl the
lhe distance from the obstacle in
inch es

7t

Chapter 5: Advance Implementation

inches then, the robot just obeys the commands sent by the operator or controller.

5.4.3. Case D3: Obstacle Detected by the Rear Sonar Sensor

When an obstacle is detected by SRF04 sensor on the rear end of the robot, the distance

from the obstacle along with a tag D3 is sent to the obstacle avoidance algorithm. First it

checks if the direction of motion is reverse and only then starts the processing on how to

generate the commands lor the motor controller. When the distance between the robot

and obstacle is less than l0 inches- the controller overrides the user commands and sends

a control signal lo generate 0% dury cycle on both the wheels. When the disrance

between the robot and the obstacle is less than 40 inches then, a conlrol signal to produce

a duty cycle which is 50% of the actually duty cycle requesled by the controller. The

algorithm also checks if the distance of the robol to the obstacle is in critical distance. lf it

approaches the critical distance then the robot halts. Similarly when the distance of the

robot from the obstacle is less than 80 inches then the duty cycle is set to 15%o of the

actually duty cycle requested by the user. Finally when there is no obstacle found in its

path of motion the robot just follows the control sent by the user.

5.4.4 Case Dl and D2: Obstacle Detected by Both tbe Front Sensors

When an obstacle is detected by both lhe sensors in the front, the obslacle control logic

has to decide which way it has to move either to its right, Iefl or slop. By default if the

obstacle is detected by both the sensors the robot moves towards its right. ìWhen both the

sensors locate an obstacle within its critical distance then the robot stops and overwrites

all the commands of the operator or controller. When the obstacle detected is in the

72

Chapter 5: Advance lmplementation

range of l0 inches to 40 inches, a signal is senl to the motor controller to move towards

its right. Duty cycles of l0o/o and20%o are set for right and left wheels respectively. The

command to move towards right is executed 5 times. If both the 'sensors still finds an

obstacle, a command to move left with a duty cycle of 20Vo on the right and 1A%o on the

lefi is execuled l0 times. lf there still exists an object detected by both the sensors then a

stop command is given to the robot (not shown in Figure5). Similar actions are performed

when an obstacle is detected in a range of 40-80 inches by both the sensors, except that

they have a dutycycle of 20o/o for the right wheel and 30%o for the left wheel. 'When

moving lowards right they have a durycycle of 20%o for the right wheel and 30Vo for the

lef, wheel.

Summary of Chapter 5

Chapter 5 described the overall development of video feedback, and outlined the working

principles of GPS and sonar, Also explained is a delailed obstacle avoidance algorithm

for the mobile robotic platform developed by the author. The obstacle avoidance control

subsystem was motivated by reiated research in fuzzy control. The algorithm developed

here is considerably more heuristic driven bul operates along similar Iines of reasoning.

73

Chapter 6: Results and Discussions

CHÁ,'PTER.6

RESIILTS AND DISCUSSIOI{S

Chapter Overview

This Chapter discusses results in controlling the telerobotics platform over â Wi-Fi

nefwork.

Pans of this chapter were done in collaboration with Monir Khan. Specifically we

collaborated on the basic tesl that were performed and the protocol for their evaluation.

Although there are a number of more formal methods of evaluation we were more

interested in basic function and ease of operation.

6.1 GIII:

The inlerface developed is shown in Figure 20. This interface runs wilhout any major

issues and it appears to be reliable as far as we were able to validale from the experiments

performed. Moving the joystick caused the sliders Axis l, Axis2 and Axis3 to represenl

the joystick molion. Using rhe hosl IP address and porl number. this interface was able to

communicate with the remote telerobotic platform (or server) and sends commands

through a designated socket. The interface was able to display the sonar sensors data

provided by the telerobotics platform. Initially platform independent GUI was developed

using \ilxWidgets, but due to the many limitations and bugs in WxWidgets the final

version had to be developed in the .Net environment. The GUI can be easily extended to

74

Chapter 6: Results and Discussions

incorporate add itional sensors.

6.2 Basic Functionalities of Telerobotic Platform:

The basic functionalities of teìerobotics platform include the abiliry to move the robot

forward. reverse. stop, turn lefl, turn right, rotate, turn right by 90 degrees and turn left by

90 degrees. All these functionalities were tested in the lab and the entire prototype

platform was functional within a local wireless network. The operator used a joystick to

guide the robol. The following table provides the detailed list of operations performed:

Direction Of Motion Result Notes

Forward

Reverse

'Iurn Left

Turn Left

3600 lotatitrn

900 Lefi Turn

g0oRight Turn

Stop

Suc,cessli¡l

SLrccesslìr I

SL¡ccesslul

Succcss lìrl

Successfu I

\trccessi u I

Successfìrl

ÇL¡cccssli¡l

1-urning arrgle nol ¡rrecise

'l-unli¡lr¿
anqlc rlot prccisc

Table l: Basic Functionality results for Telerobotics Platform

6.3 Video Feedback

The video feedback from the robot is displayed in a web browser. The final frame rate

was approximately 7-9 frames/sec. The web browser can be either Mozilla or Inrernet

Explorer, both in theory refresh with a 0 second delay between the frames. The delay was

75

Chapter 6: Results and Discussions

well below I second under test conditions (No simulator or tools were used to perform

delay analysis, it was by observalion only). Robot control using the joystick was possible

using video feedback. Under test condition the command delay was negligible. Every

frame was associated with a iime stamp on it which helped us to roughly determine the

delay in the network, the time a frame is captured using the USB camera and the time the

frame is displayed at the controller end is almost identical (less than I second).

6.3.1 Video Feedback Using CMOS Camera

The initial idea for video feedback was to use a CMOS camera along with the DE2 board

-which would have enabled us to obtai¡i a high resolution picture. The images could be

captured and processed using the FPGA, but could not be streamed over network due to

memory limitations. The high resolulion video could be displayed on a VGA monitor,

successfully demonstrating the capture and image processing on lhe robot. The difficulty

in video streaming was due to the limitations of the Micro C/ OSII and the frame buffer

of the CMOS camera which used the same memory component i.e. SDRAM of DE2

board-

6.4 Sonar Sensor

Sonar sensors successfully detect objects and sent out echo pulses to the DE2 board. The

time period of the echo pulse represents the distances of the robot from obstacle. Even

though the distance to an obstacle obtained by sonar is nol as accurate as the laser sensor

detectors, the sonar sensors are sufficient for the application here.

76

Chapter 6: Results and Discussions

6.5 Obstacle Avoidance Algorithm

The obstacle avoidance algorithm was designed successfully. The algorithm could read

the distance values and enter into the appropriate case statements- When the sensor

detected an obstacìe in the fronl or in the rear the algorithm worked partially wilh some

degree of accuracy. An obvious modification at this point would have been lo attempt to

introduce a learning algorithm to tune the heuristic based control of the inirial

implementation.

6.6 Cost Efficient Design

The robot platform in this thesis is designed with the minimum number of available

resources. The components, boards, sensors, motor controllers etc. inclusive of the robot

body cosl less than $ 1300 CAN. A completely functional system can be expanded to

cover a wider range of more crilical life saving applications. These could include

extending the platform for land mine detection, search and rescue, etc. without

substantively larger cosrs. The main point here is that with much of the technology thal

was recently cost prohibitive telecontrol of robots is now within feasible limits.

6.7 Summary of Chapter 6

ln this chapter the test results while operating telerobotic platform where oullined. The

tests conducted were undertaken over a local wireless network. Factors associated with

delay were considered negli.gible although further tests are required to more completely

exercise the prototype. The wireless LAN was a private nefwork albeit co-located with a

77

Chapter 6: Results and Discusslons

number of other 802.1I networks. In a more typical deployment one would like to use the

existing 802.1 I infrastructure and services in which case a greater degree of

unpredictable behavior can be expected. Some test results for obstacle avoidance were

aÌso outlined and fìnally we concluded that robot development of this type is cost

effective.

78

ChapterT: Conclusions and Future Work

CEIAPTER. T

CONCLUSIONS and FUTURE

\ryORK

7.1 Conclusions

For this thesis, an operated assisted telerobolic platform was developed. This platform

used Wi-Fi as the medium of communication. The platform can perform all the basic

operations of motion that were designed for and we successfulìy demonstrated that the

methodology lends itself to the inclusion of additional hardware devices and sensors. The

controller uses a joystick as control device to remotely maneuver the robot. Video

feedback was provided to the operator to help himlher perform a given task with some

degree of precision. An obstacle avoidance algorithm is one illustrative example of how

feasible this design is for any future extensions.

The platform design is flexible for future modification as the platform was developed

using ¡iC/ OSll as its RTOS and uses an FPGA for rhe hardware components. The sofi-

core nature of FPGAs can be used to reconfìgure or redesigned the hardware according lo

user requirements. These features make the robotic platform ideally suited for

prototyping and closer to their industrial realizations. Even though the basic design and

algorithms are complete, some parts of the design could not be realized. Results however

illustrated that the design of telerobotic platform is a success with some minor

79

ChapterT: Conclusions and Future Work

exceptions. The development of the motorcontrollers and remote control of robot using a

joystick are considered the more major contributions in this thesis along with the

implementation of the video feedback. Mitigating the problems associated with delay will

remain active research areas. The two most effective means, namely improved video

communication and provisioning the robot with a degree of local control were addressed

in this work.

7.2 Recommended Future Work

The primary objectives in this line of study will be to develop a more versatile

telerobotic platform that should be reliable and as universal as possible. To achieve these

objectives the following issues should be taken into consideration:

l. This thesis focuses only on a V/indows OS GUI; in the future we would like

to expand it to be a platform independent GUI

2. This thesis currenlly has a limitation of using web browser for video feedback:

in the future we would like to combine the video feedback and the conlrol

system into one GUI

3. 'We did not consider the factors such as wheel slip. terrain uncertainry. etc. ln

the fulure we would like to consider some of these uncertainties to develop a

more complete telerobotic platform.

4. In the future use we would like to use the GPS data and incorporate the data

into either Google maps or Yahoo maps to exactly locate the robot location

when left all by itself and have the ability to query its position from any

browser.

80

ChapterT: Conclusions and Future Work

5. Personally, I would like to co-ordinate with the people working on land mine

detection and design a cost efficient wireless controlled land mine delector.

8r

Appendix

Appendix A: Task Logic

This appendix includes samples of the task logic for the PWM component.

Task Logic Code
always @(posedge clk or negedge resetn) //PV/M Counter Process
begin

if (-resetn)begin
counter <= 0;

end

else if(pwm_enable)begin
if (counter >: clock divide)begin

counler .= 0;
end

else begin
counter <= counter * l;

end

end

else begin
counter <: counler:

end

end
always @(posedge clk or negedge resetn) /iPV/M Comparitor
begin

if (-resetn)begin
pwm_out <= 0;

end

else i f(pwm_enable)begin
if (counter >: duty_cycle)begin

pwm_out <: I'bl;
end

else begin
if (counter :: 0)

pwm_out <= 0:

else

pwm_out <: pwm_oul;
end

end

else begin
pwm_out <: I'b0;

end

82

Appendix

Appendix B: Screenshots & Fictures

This appendix includes a screen shol of the SOPC builder and a picture of the pìatform

itself-

lí? t'.rrk
'\,l?t

Vr¡ lc's lrd;

jy!Ér. !rti?r.s. ¡¡O5 . l*.'6'qpl_î ltllrË 5vSHn r:.:ltf öùn

.! :lúÉ :Ji{ !,,,+Jl

L C,f :. ¡J.È i@(aår*
- A!ðlon aonrDônonlr

e 'hrs I l:roe::¡¡ ¿-¡Ì

. 0ridge6

ô ¡.i t:rr Jr':idr E

- Cmúi(¡lion
Ô J:Àúua'l
O Y t.'iv.+a -a?nJ

e u:.cI ñs,:3?:a
i) [i€a90taqÌ $r

O trl:H nt e.r !?

Ô tt:ì. -iú li: tur È

':l Cltl Sû¡i ¡eriÉ

J B!alfr:.ÀFl -

':'Hji:4. ,tS,1,r

O lt.-, Fa ri.'ø¡t,
I,j l¡. :!_f '_a,lrclr

J r:rÊ¡ OLYrd lÍt,
,:) ti iÌæ - Àd¿

, DSP

- 0ispluy

0 crrrrFi.,¡(:

' tPll.20 llios IÞvelopn

' fPtSl0ltæ otrloDn
. tPlS{¡lllio6 0evelopo -()

th!'l: tä &.r'3

{i!cl Sora H'i:

tl frlrr¿r lù: r:'

ò 'li Ldar,:l li t:

t¡tkÉ
-
!

f

Ì+tjl¿ l¿ãr

0 pm_itBeü_l_'

EI pHnì_¡ts€ü_t_r

Efrwd-1
trrgsæ_t
E b-h_l

El .-h-l

6 b_h_2

liìð h 2

0 d¡-0

ts db_r

fil lcrwe¡d_2

El rfrerg€-¿

o s!_t
gs_?

O slcDlnm_t
O ø¿-l
Eì di _l

E sleDJmr_itsst_l

I u¡r ¡sonir_r uJt_frìdõ _0

4:0

-dI\f.ì trho 0

El r,g-0

C*5oipiø

fll íPrs# lQ)

tti fIEå:g tÐi

f,l:: (fþEH I.J)

Ê1 ltrdÉl4lO)
Êt:,¡Pu6+ t{lrr

h l: i l{ FI,i, ur,¡
àl¿ t."é w}-1. lt} i-r¿ ll:íE drr'lsrtrt .1¿

Ëås trd
k00681150 r..!rüf;:li5r

ty00tEll80 úÀt[F.iï lff
m06û1,l90 i)rf¡Èfls
l!00681140 O¡(ÐfiilAI
!rt06trt20 ld{r-!l1:f

'¡006E1130
t(ffi..:11S

tx006Ell00 ú,[¡],.: ì lt{
!r0068llf0 ¡ÍI4,i1ltF
h0068llf û oiiu:.::i tft
¡r006tt200 ir:(¡Ì.'¡liff
rl¡068t?10 u.üt:¡;rr
Wl6ill21. û\Vfíiï?t
(hû06Et0c0 ù0r:É.:!|ìaf

Cx00t81000 û/tr-É¿rt(,f

lxû06t10t0 lr'¡f È...ìr tf F

fxll06trt80 ú¡tü.-{ I l6f

ù006åltC0 fy¡!r-::t1tF

h00611230 ûiO&€l?T

¡¿00611210 rJ¡ofr¡il irt

1x006t1260 ß:!0€'lr?€r

tr005El2I0 r¡¡(¡}'i¡?;f

rTlt ù¡

.¡

tb

ib

i¡
r_i

¡,

i:ó

.'

rl.

ib

{[

ÁU

q o., q, i,

È:, lPrslã I.r,')

n:, (T3óTl toj
If,: tÞâ|o:* lt'l
ttl rPd89Jl,C)

ç1j (Þðå# r,{'ì

fril,_tf8:4_Ftl I åce

.It: r Pd d¡ td,i

.t11 f ¡sr*l lÐì

fl] ilasi4 ttrj

rÂ,:tû(_ trìß_rrfk
.SLr,.É ptr:

*-¿,t l'7
ff-, (Pûô!C tO)

f1--rtaû!:{ túj

¿ ifu.:tþ v iJ:,r[!:ìllr

rFr_0 p¡r gsÈdÊdHÌh hI cÐ*È.rer ¿rxi nrg te (cnp¡¿d h i\lrtus ll Hù'tÊ r:íe lÉrú,e

tr.r dÉj'f! tc qtdñ.

þ-r-- I r*'r, | | ;øa. j

Picture l: Screenshot of Custom Components for Nios II
processer

83

Append ix

Picture2: Prototype of .óOperator Controlled Telecontrolled Platform
with Obstacle avoidance"

DE2 Board

I

C'S h'lc. ¡.lolor
ConÍcl¡er

Fewer
Ree¡lator

I

I

Eattery
Ccrriec:o:s

I

I
II

Si)nAt
Sgrsor

84

References

References:

IALTEO] Nios ll processor handbook can be found in the following website

http ://www-altera.com/l iterature/hb/n i os2ln2 cpu n i i 5 v I . pd f

IALTEI] Micro C/ OS-ll real time operating syslem for Altera can be found in the

following website:

h tt p ://www. a I tera. c om/l i terat ure/h b/n i os2ln 2 sw_n i i 5 2 00 8. pd f

[ALTE2] Hardware abstraction layers reference can be found in the following

website:

wwr.r,.altera.com/l iterature/hb/n ios2/n2sw n i i 5 2 003. pd f

[4597] A. Saffoni, " The Uses of Fuzzy Logic for Autonomous Robol

Navigation" Sofl Computing Vol. 1, no.4 pp. 180-191. 1997- Available

on-l ine at http ://aass.oru.se/A gora/FLAR/

[BLP03] B.J. Challacombe, L.R. Kavoussi, P. Dasgupta -"Trans-oceanic

Telerobotic Surgery "BJU lnternational Volume 92 ìssue 7 Page 678- 680,

November 2003

[EM94] Eddie Tunstel and Mo Jamshidi -"Embedded Fuzzy Logic Based 'Wall

Following Behavior for Mobile Robor Navigarion"

NAFIPS/lFlS/NASA'94. Proceedings of the First ìnternational Joint

Conference of the North American Fuzzy Information Processing Society

Biannual Conference, San Antonio, TX USA December 1994

[GSPC] http://rnxhaard.free.frldownload.html

[JJ03] Jahng-Hyon Park and Joonyoung Park -" Real Time Bilateral Control

85

lJJG03l

uNell

[MS05]

IMSDNI

lNreel

lNrAeól

IRCAesl

References

for lnternet based Telerobotic System " Proceeding og the 2003

IEEE/RSJ , ìntl Conference on lntelligent Robots and Systems, Las

Vegas. Nevada-October 2003

A thesis by Jitendra Jaising Gaikwad " ai The university of Alabama at

Birimingham [Online] Available:

http://$.ww.ece.enq.uab.edu/DCallaha/research/RoboticProtocolThesisl.pdf

John Yen and Nathan Pfluge -" Path planning and execution using fussy

logic" in Proceedings of the AIAA Conference on Guidance, Navigation,

and control, Volume 3, pages 1691-1698, New Orlands, LA, August l99l

K.Murugan and S. Shanmugavel " Traffic Dependent and Energy-Based

Time Delay Routing Algorithms for lmproving Energy Efficiency in

Mobile Ad Hoc Networks " EURASIP Journals on V/ireless

Communications and Networking 2005:5, 625-634

htt p ://m sdn 2.m i crosoiì.com/en -u s/defau lt.a spx

Ning Xi and T.J Tam -" Action Synchronization and Control of Intemer

Based Telerobotic Syslems" Proceeding of the 1999 IEEE Intemational

Conference on Robotics and Aulomation. Detroit, Michigan May 1999

Ning Xim Tzyh-Jong Tarn and Antal K.Bejczy -"lnrelligenr Planning and

Control for Multirobot Coordination: An Event-Based Approach" IEEE

Transaclion on Robotics and Automation Voll2, No3, June I 996

Ronald C. Arkin and Michael Arbib (contributor) -"Behavior-Based

Robotics" MIT press, ISB 026201 1654 , 1998

Rainer Palm, Dimiter Driankov and Hans Hellendoorn "Model BasedIRDHeTl

IRGGe7]

lRoJ04l

IsHM03]

lsK00l

lssDN00l

ITBSe2]

lTLrNOl

References

Fuzzy Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy "

Springer publication, ISB 35406 I 47 I 0

Robeñ G. Gallager "A Minimum Delay Routing Algorithm Using

Distributed Computation "IEEE Transactions and Communications,

January 1997

R. Le Moigne, O. Pasquier. J-P. Calvez " A Generic RTOS Model for

Real-Time System Simulation with SystemC

Simon X. Yang, Hao Li and Max Meng -"Fuzzy Controì of a Behavior-

Based Mobile Robot" The IEEE lnternalional Conference on Fuzzy

Systems -2003.

Siripun Thongchai and Kazuhiko Kawamura -"Applicarion of Fuzzy

Control to a Sonar-Based Obstacle Avoidance Mobile Robot "Proceeding

of the 2000 IEEE lnternational Conference on Control Applications

Anchorage, Alaska, USA, September 25-27. 2000.

S. Thongchai. S. Suksakulchai. D. M. Wilkes, and N. Sarkar -" Sonar

Behaviour -Based Fuzzy Control for a Mobile Robot" in Proceeding of

the IEEE lnternalional Conference on Systems, Man and Cybernetics,

Nashville, Tennessee. October 8-l 1, 2000.

Thomas B. Sheridan -"Telerobolics, Aulomation. and lluman Supervisory

control" MA, MIT press, Published year 1992

2601050 Robotics and Teloperation Lecture Notes, Tamper University of

Technology [Online], Available :

87

References

http ://www. i h a.tut. fìleducar ion/lHA -

3 5 06/book/Te I eoperation_Notes_2004.pd f

[VER99] Vern Paxson " End to End Internet Packet Dynamics" IEEE/ACM

Transaction on Networking Volume T lssue 3 June 1999, pages 277-292

tWViDCl Wikipedia Pulse Width Modulation, Duty cycle [online] Available:

http://en.wi k ipedia.org/wiki/Dut), cvcle

IWIVDSI Principle of Differential steering [Online] Available:

h tt p :// ro s s u m . s ou rc e f-o r g e. n et/ p a p e rs/D i ff St ee r/D i ffS t e e r. h r m I

IV/V/lE] Hobbes Time Line [Online] Available:

lrttp://rvww.zakon.org/robert/l ntemet/tim eline/

IV/V/KC] Kernelconfiguration[Online]Available:

http :l/rvu'rv.uìrrades jc.com/index.php?section= 2 l

IVi WRG] Wikipedia Raymond Goeflz [OnlineJ Avaiìable:

http ://en.wik iped ia.ore/wik i/Raymond_Coertz

IWViRP] OSMC Motor controller project [Online] available:

h ttp ://ur¡.w.robotpou,er.com/d ow'n I oads/

OSM Cjroiect_documen tat ion_V4_2 I .pd f

IWVi RP2] OSMC Motor controller project IOnline] available:

h ttp ://rvww. robot power.com

[WV/SNR] The SRF 04 Sonar Sensor [online] Available:

http ://rvwrv.acronam e. com/roboti cs/parts/R 93 -SRF04.htm I

[V/WTS] DE2 board samples and manuals [Online] Available:

88

References

http ://www.terasi c.com.tWc gi-

bin/pa qe/archive.p I ?Lan guage=Enql ish&CatesoryNo:39&No=30

[WV/VC] Webcam kernel compilation instructions IOnline]Available: http://eenroo-

rviki.com/HOV/TO loeirech_quickcam_on_2.6.x kernel

[WWVDC] lntroduction to Pulse'Width Modularion IOnline] Availabìe:

h tt p ://u,rvu,. n etri n o. c om/Pu b I i cat i o¡r s/G I os s arylP W M . ph p

IWWVU] Helpmatetelecontrolledrobot IOnline] Available:

http ://eecs.va n d erb i I r.ed u/Cl S/l R L/h e lprn ar e. sh r m I

[V/WWF] Wikipedialntroducrionto'Wi-Fi [Online]Available:

http ://en.wikiped i a.ore/wiki/V1 iF i

[V/V/Vi 1] Basics concepts of RTOS [Online] Available:

http ://l inuxdevices.corn/arr ic les/4T4627965 5 73.hrm I

IVi Vi V/2] Real time Operating Systems Wikipedia [Online] Available:

http ://en.wikì pedia.org/wiki/Real-rime operarin e svsrem

89

