Operator Controlled Obstacle Avoiding Telecontrolled Robotic Platform

By

VENKATESWARA REDDY

A Thesis submitted to
the Faculty of Graduate Studies in partial fulfilment of

the requirements for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winpipeg, Manitoba

Copyright © 2007 by Venkateswara Reddy

THE UNIVERSITY OF MANITOBA
FACULTY OF G'B;&DUATE STUDIES
COPYRIGHT PERMISSION
Operator Controlled Obstacle Avoiding Telecontrolled Robotic Platform
BY
VENKATESWARA REDDY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Venkateswara Reddy © 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC’s agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

The work addressed here presents a number of challenges to Internet based telerobotics.
One of the main challenges associated with operator assisted telerobotics is that of
network delay. Non-deterministic delay can cause a number of problems, not the least
being difficulty in remotely controlling the robot in a safe manner in near real time. As
such, one of the goals of this project was the design of an obstacle avoidance subsystem
within a telerobotic platform. Tertiary goals where to design the platform in manners that
are cost effective, reliable, extendable using modern design methodologies and that
would result in a platform that is close to an industrial realization. In this thesis, to solve
the problems due to network delay a complete platform was developed that is ideally
suited for implementing algorithms of local intelligence or reasoning. Specifically, the
platform was designed to have some degree of local intelligence (heuristics) to mitigate
problems associated with delay by avoiding obstacles in its path of motion using a
number of sonar sensors and a rule based inference system. In addition, real time video
feedback was provisioned for the platform along with a subsystem for GPS data
col]ecytion for robot mapping in the future. The p]alformt has minimal hardware and
software overhead and combines hardware and software modules in an effective manner
as possible which to some extent reduces the amount of time required for processing
requests. Several tests were conducted 1o test the platform which worked as expected in a

controlled environment.

Acknowledgements

1 would like to thank Dr Robert McLeod who inspired me to take up this research topic
and provided me all the technical help required throughout my masters program. 1
would like to thank him for offering me a few thesis related special courses. 1 would like
to thank CMC and Internet Innovation Center for providing all the research equipment. I
would also like to thank Mr. Dennis Stanley who has provided a number of the base

mechanical components for this project as well as for others in our lab.

1 would like to thank the people in the ECE Tech shop Gordon Tool, Ken Biegun, Mount-
First Ng, Guy Jonatschick and Allan McKay for providing us with all the required

apparatus and software.

1 would like to thank Monir Islam Khan and David Sanders for helping me out in

resolving issues in the process of development

I am very thankful to my parents Ravindranadha Reddy and Krishna Kumari, my sisters
Anitha Reddy and Swathy Reddy , my brother in laws Chandrashekar Reddy and
Harshavardhan Reddy and my friend Ranjana Hegde for their moral support and for

encouraging me in pursuing my dreams

ii

Table Of Content

Abstract., 1
Acknowledgements ... i
Tableof Content............... 11
Listof Tables................ . vi
Listof Figures................... vii
ACTONYINSo e, Viil
CHAPTER 1: INTRODUCTION
: FoT MOUIVATION ettt 2
1.2 OBJECUVE .ottt et 3
1.3 Problem Statement ...ooooo oo 6
1.4 Organization of ThesSIS ..coociiiiiiiieciee ettt 6
CHAPTER 2: BACKGROUND
2.1 Internet Based Robotic Operation.........ceccevveeeeveeieeeeeeeeieeeccveeeee e 8
2.2 History of TelerobotiCsccoreireeeiteereeieeieeee e 9
2.2.1. On the Network Side......ccccooviiiiiiiiiineeeee e 11
2.2.2. Atthe Robot Side.....ccoiiiiiiiiieeceeeeeeeee e 11
2.2.3. Atthe Operator Side ... 12
2.3 PaCK@U LOSS oo 12
2.8 LALEINICY ottt ettt et ebe s et e ee e 13
2.5 Degree of AUtONOMY ..cuoiiiniiiiiieeiiieeeetee e 14
2.6 Local Intelligence at RObot Side.....cccueeeeeeiieeeiieeeeieceeeee e 15
~ 2.6.1. Event Based Teleroboticsoouovimemoooeeeeeeeeeeeeeeeeeeeeeee e, 15
" 2.6.2. Fuzzy Controlled RODOLSccerivvrieeeeieieeeececee e 16
2.6.3. Behavior Based Teleroboticscoovveeuierieeeiniiiiiccicceeee 18
2.6.4. Behavior Based Fuzzy Control Telerobotics...........ccooovvveveeeeneenn... 19
2.7 Suitable HardWare..........ccooeiiimireeeeeeee e 20
2.7.1. Single Board Computer (SBC) ..eeovieoieeiiiiiceeeeeee 2]
2.7.2. Field Programming Gate Array (FPGA) boards..............ccocooovenn.... 2]
2.8 Embedded Systems and Real Time Operating Systemccoocoeveeeeeneenn. 22
2.9. Embedded ProcCessorsccooiiieioieeiieeetee e 24
2.9.1 Ni0S I ProCessor.......coiiiiuiieeeieeeeetereeee et 25
2.10 Micro C/OS 11 (C/OS-II) RTOS ..o 26
2.11 Appropriate Programming language for developing Graphical
User INterface. ..ol 28
2.12 Summary of Chapter 2: ..o e 28

CHAPTER 3: HARDWARE IMPLEMENTATION
3.1 Pulse Width Modulationc.co....... et ettt e e eaen 30

3.2 Generation of PWM Using Altera DE2 Boardcoooooeeiececeeeeen . 32

3.3 MOtOr Controler ..ot 34
3.4 Robot Direction COntrol «.....coooieoiieiiiiieieceeeeeeee e 36
3.5 Configuring Ethermnet on DE2 Boardccoovevieiiiiciiicceeeeeeeeeeeeeeen 39
3.6 Ethernet to Wireless Using Soekris Board......................cocooiii ... 40
3.7 CMOS Camera. ..o, 42
3.8 Summary of Chapter 3. ..., 43
CHAPTER 5: SOFTWARE IMPLEMENTATION
4.1 Graphical User Interface.............ooooooii i, 42
4.2 Joystick INerfacecoooviiiimiiieeee e 46
4.3 CHENE SOCKETS ..o 48
4.4 SEIVET SOCKELS .ooeoeoeee oot 50
4.5 Command GENETALIONoocoiiiuiiiiiiieeeeeeeeee et 51
4.5.1 CASE1: To Generate command for Left and Right Turn................. 51
4.5.2 CASE2: NEULa) ..coeiiiiiiiie e 53
4.5.3 CASE3: To Generate Commands for Forward and Reverse Motion 54
4.5.4 CASE N e e n 54
4.5.4.1: 360 Degrees Rotation..........ceceeeveeveeieecccnnnnen. [T 54
4.5.4.2: Stop Command ...ccoeeeieiiiiiieee e 55
4.6 Command Processing at Server SIA€cooovoiiiiiiioe e, 55
4.6.1 CaSE T ..o 58
4.7 Summary of Chapter 4...... ..o, 58
CHAPTER 5: ADVANCE IMPLEMENTATION
5.1 VIEO. .o 59
S.1.0.Frame Grabber. ... 61
5.1.2. Video Streaming Server.............coooiuiiiiiiiiii el 61
5.1.3. Video Capture and Display at the Controller End..............c........ 62
5.2, 80Rar SENSOT. ...t 64
5.2.1 Distance from Obstacle................ooooiii i 65
5.3. Global Positioning System (GPS)..........o.ooi 66
5.4 Implementation of Obstacle Avoidance... 67
5.4.]1. Case D1: Obstacle Detected by Right Sensor on the Front of the
RObBOL. ..o 69
5.4.2. Case D2: Obstacle Detected by Left Sensor on the Front of the
RODOL. .., 70
5.4.3. Case D3: Obstacle Detected by the rear Sonar Sensor.. Y
5.4.4 Case D1 and D2: Obstacle Detected by Both the Front Sensors e 12
5.5 Summer of Chapter 5., 73
CHAPTER 6: RESULTS AND DISCUSSIONS
6.1 GUIL ..o 74

iv

6.2 Basic Functionalities of Telerobotics Platform........ooooeooeoeo 75

6.3 Video Feedback..........ooooiii i 75
6.3.1 Video Feedback Using CMOS Camera..........cc.cooeeeeeeeeiiii. ... 76
6.4 S0oNar SeNSOT.........cooeiuiiiii e e, 76
6.5 Obstacle Avoidance Algorithm.....................oooi 77
6.6 Cost Efficient Design..........oooooiiiiiiiiii e 77
6.7 Summary of Chapter 6...........ooiii e, 77
CHAPTER 7: CONCLUSIONS and FUTURE WORK
T CONCIUSIONS . . ceee e 79
7.2 Recommended Future Work.............oooiii 80
Appendix A Task LOgiCe.........oouiu i 82
Appendix B Screenshots and Pictures............................coeeeii .83
References........ ... 85

List of Tables

Table 1: Basic Functionality results for Telerobotics Platform

vi

List of Figures

Figure 1: Telerobotics Platform Architectureooovooovooeoo 5
Figure 2: Basic Internet Based Telerobotics...........owooeooomoooooo 8
Figure 3: The Event Based Control through Internet...........o.ooooooooovoooo 15
Figure 4: Simple Fuzzy Logic Control SyStem.......ooveveovemoeoooooo 17
Figure 5: Finite state ACCeptor (FSAY.........omoeeeeoeoeeeeeeeeeeooeeoeoeooooooooo 18
Figure 6: Behavior Based Fuzz Control RObOt.........oooooovooooooo 20
Figure 7: RTOS Abstraction Layer between Application Software and Embedded

Hardware [WWW3Y. e 22
Figure 8: Task STAtes........c.vuieieuoiuieiooeoeeeeoeeeeeeeoeo 23
Figure 9: Nios 11 Soft Core Processor............oowoeoeooeooooeooooo 25
Figure 10: Micro C/OS 11 Programming Architecture.......o.oovooooooo 27
Figure 11: Pulse Train......coooeuiumoieeiecoooeeeeeeeeeeeeeoooo 3]
Figure 12: PWM Signals of Varying Duty Cycle ..o 31
Figure 13: System Configuration of the DE2 board to Produce PWM Signals........... 33
Figure 14: Two Basic States of H-Bridge............oocoovoovooooooooo 34
Figure 15: MOtOr DIIVET.....ccuvueeeeeieeceeeeeeeeeeeeeeeeeeeeeeeoeeeeooooeooo 35
Figure 16: Differential Steering Systemocooooooooooo 37
Figure 17: Wheels at Different VelOCItiesooooovooooooooooo 37
Figure 18: Communication Interfaceoo..oouovuoeoooomoeooooo 40
Figure 19: Ethernet to Wirelesso.oouoweeemeoeoeoooeoooooo 42
Figure 20: Graphical User INterfacecoooovoooeooooooo 45
Figure 21: Joystick Interface Flow Chart...........oooooooovoooooooo 47
Figure 22: Joystick Mapping «........c.cuocmomoueeeeeeeoeeeeeeeeeoeeoeooeoeoooo 48
Figure 23: Command Generation Flow Chartocooooooooooo 52
Figure 24: Neutral Region for Joystick Mappingoveovooooooooooooo 53
Figure 25: Command Stream in a Buffer.........cooooooooeeoo 56
Figure 26: Command Regeneration at Server Side.........ooooooooooooo 57
Figure 27: Live Video StUreamingo.oooooovoooooooooooo 60
Figure 28: RTP/UDP Headerovooooooeooeeeoeeeeoeooooooo 62
Figure 29: Sonar Sensor Timing Diagramcooooooooooooooo 64
Figure 30: Implementation of GPS Receiver........ooooooooooo 67
Figure 31: Implementation of Obstacle Avoidance Control Logic in the Nios 11 68
Figure 32: Obstacle Avoidance Algorithmcooooooeeooeooo 71

vii

Acronyms

ADC
API]
Cal
CMOS
COG
CPU
CURV
DHCP
FPGA
FSA
FTP
GPIO
GPS
GUI
HAL
HDL
HTML
e

1D
IDE

IP

ISA
LAN
LCD
LWIP
MAC
MIJPEG
MOSFET
NASA
(ON)

Analog to Digital Converter

Application Programming Interface
Common Gateway Interface
Complementary Metal Oxide Semiconductor
Center of Gravity

Central Processing Unit

Cable Controlled Underwater Research Vehicle
Dynamic Host Configuration Protocol

Field Programmable Gate Array

Finite State Acceptor

File Transfer Protocol

General Purpose Input/Output

Global Positioning System

Graphical User Interface

Hardware Abstraction Layer

Hardware Description Language

Hypertext Markup Language

Input/Output

Identification

Integrated Development Environment
Internet Protocol

Instruction Set Architecture

Local Area Network

Liquid Crystal Display

Light Weight Internet Protocol

Media Access Control

Motion Joint Photographic Expert Group
Metal-Oxide-Semiconductor Field-Effect Transistor
National Aeronautics and Space Administration
Operating System

Personal Computer

Peripheral Component Interconnect
Physical Layer

Pulse Width Modulation

Random Access Memory

Request for Comments

Read Only Memory

Real-Time Transmission Control Protocol

viii

RTOS
RTP
SBC
SDRAM
SOPC
SRAM
TCP
TELNET
‘UDP
USB
VGA
VLC
Wi-Fi
WAYAY

Real Time Operating System
Real -Time Transport Protocol
Single Board Computer
Synchronous Dynamic Random Access Memory
System on Programmable Chip
Static Random Access Memory
Transmission Control Protocol
Telecommunication Network
User Datagram Protocol
Universal Serial Bus

Video Graphic Array

Video LAN Client

Wireless Fidelity

World Wide Web

ix

Chapterl: Introduction

CHAPTER 1

INTRODUCTION

The Internet has revolutionized the way in which we receive information and interact
with the world. Intemnet tools such as WWW, FTP, TELNET, email, etc. have provided
the most convenient manner to transfer information to and from remote places. The bi-
directional structure of Internet also provides a means to perform remote action and
control bases research. One such action oriented field is called Internet based telerobotics.

Telerobotics is an emerging field and one of the most actively researched.

Internet based telerobotics can be defined as a field of robotics where robots are
controlled from a distance using the Internet as the medium of communication. The
Internet is well poised to be the major medium of communication for teleoperation.
However, Internet specific problems such as latency, uncertain data loss, and security of

data transmission over a given network may lead to unpredictable operation and control.

For telecontrolled robotics, local intelligence at the robot side and optimal use of
hardware and software components in the overall system can be used in mitigating
uncertainty to achieve stability in the system. The proper use of hardware and software
components can also reduce the overall cost of the system and concurrently reduce
processing time. Using hardware which can be reconfigured or reprogrammed such as

FPGAs and reusable software has an added advantage for future expansion. The addition

Chapter1: Introduction

of few sensors to the telerobot that can sense the environment will be an added benefit for
stable and safe operation. Real time video can also provide the operator with feedback to

perform a remote task with precision.

1.1 Motivation

In this study, a telerobotics platform appropriate for a real world application is developed.
One intent 1s to reduce the problems due to latency and investigate design trade-offs to
reduce the cost and improve the performance of a telerobotics platform. In general, the
following factors are often taken into consideration for the development of any
telerobotics platform,

e Uncertainty in the network such as latency and packet loss.

¢ Cost of the overall system.

Hence, in order to address the above mentioned issues, a semi-autonomous robotic
platform was developed. This platform not only addresses the problem of latency and

design trade-offs but was also developed and implemented within the budget provided.

The semi-autonomous robotic platform has its own intelligence (albeit limited) and can
perform a given task even in the case of network uncertainty. Using a limited amountvof
hardware and processor po§ver a telerobotics platfofm has been developed which can be
extended to many applications and is also a cost efficient platform (wi‘thjn the provided

budget). Alternative platforms could be developed with a considerably larger budget but

Chapterl: introduction

at some point even these platforms will have to deal with some form of constraints.

Meeting design specifications is always a challenging task.

1.2 Objective

The objective of this research was to develop a semi-autonomous robotic platform
tolerant of the delay in the network, packet losses and within budget. In order to achieve
this, a good understanding on how to use FPGAs, optimize hardware design for its very
best performance, understanding of motor controllers and algorithms for automation was
necessary. An overview of some existing Internet based telerobotics platforms was
undertaken to better understand issues of implementation and optimization ideas for
hardware and software co-design. As a consequence the approach used in this thesis was:
1. Selection of an appropriate embedded processor along with a Field Programming
Gate Array (FPGA) board which can handle the required processes in real time.

2. Selection of an appropriate Real Time Operating System (RTOS).

3. Custom build the required processor and components for the FPGA board.

4. Acquire data from the sensors in order to make decisions locally to avoid
obstacles in the robot path. This idea is to implement local intelligence in case of network
failure or when the robot is used by a less experienced operator to keep the robot in a safe

operating mode.

5. Design a motor controller circuit using pulse width modulation (PWM) for speed
control.
6. Design a TCP/IP wireless communication link that can receive commands and

send feedback to the operator.

Chapterl: Introduction

7. Customize a Linux Kernel for Video Streaming and acquiring GPS data.

8. Develop graphical user interface for the operator to know the status of the robot
and control the motion of the robot.

9. Develop an interface for a joystick that acts as a control device for the operator
and a command generator for the robot.

10. Develop a video capture interface to display the video feedback provided by the

robot.

Several researchers have placed a laptop on the robot, while other researchers have used a
desktop computer allowing for rapidly developing their robotic platform. The ‘approach
in this research is to develop the entire control system incorporating local intelligence and
wireless video feedback on an embedded platform. This approach consumes negligible
power helping to limit battery power consumption and is closer to an industrial
- realization. As the communication protocols are IP based, the approach also provides the

feasibility to operate anywhere provided there is some form of Internet connectivity.

Much of the research to date have used browser based interfaces for the control interface
and video feedback, but in this thesis a Graphical User Interface was developed which is
more flexible and can provided added security features. The downside however is the
amount of time required in developing the user interface. The overall architecture of
Internet based telerobotics platform architecture is shown in Figure 1. At the top level the
whole system can be divided into a client and server architecture. The robot acts as a

server and the controller act as client. In this thesis robot motors are controlled hsing the

Chapter1: Introduction

PWM technique. The movement of the joystick generates commands to the robot, which

might be to move forward, reverse, or in left or right direction.

CLIENT/ L.
CONTROLLER 3
USB Joystick
T VW-F1 Network.
SERVER/ :
ROBOT

SINCPAR, "

PHYSICAL
DEVICES

Figure 1: Telerobotics Platform Architecture |

In addition to the basic features, some additional features such as rotate on the spot, turn
abrupt left and turn abrupt right commands are also added. All these commands are
generated by the joystick, converted in terms of duty cycles and streamed over the
wireless network using TCP/IP socket streams. At the robot side a TCP/IP socket listen
to the stream of commands sent by the controller. Every command is given a unique 1D
by the command generator on the controller side so that the robot server can recognize
the commands and process the commands to perform the required action accordingly. At
the same time a video capture device captures video and streams it over RTP/UDP, and at

the controller end, the video is displayed.

Chapterl: Introduction

Obstacle avoidance is implemented using sonar sensors. The robot is equipped with
some degree of intelligence to avoid obstacles in its path of motion and decide which way
to move on its own when an obstacle is detected and not attended to by the remote

operator.

1.3 Problem Statement

One of the problems for Internet based telerobotics is the latency in the network and cost
to build the overall system. In order to make Internet based telerobotics more practical,
we should have a reliable and affordable Internet based telerobotics platform which can

be extended to any application.

Hence, from an Internet based telerobotics perspective, we can state our problem as
“How can one overcome the problem of latency and yet develop a reliable and affordable

telerobotics platform”

1.4 Organization of Thesis

The remainder of the thesis is organized as follows:

Chapter 2 discusses the background study/ the literature, erlution and various methods
in developing Internet based telerobotics.

Chapter 3 provides a detailed architecture on how the entire hardware for the telerobotics

platform is developed.

Chapterl: Introduction

Chapter 4 provides a detailed architecture on how the software for the user interface is
developed, communication is established, coordination between the hardware-software
and the user controls such as joystick are devéloped.

Chapter 5 provides the details in developing video streaming server, video capture and
display, use of sonar sensors, GPS and implementation of obstacle avoidance control
logic.

Chapter 6 provides the results on how practical and cost efficient the system is.

Chapter 7 gives a summary of my thesis and possible future work.

Chapter2: Background

CHAPTER 2

BACKGROUND

Chapter Overview

This Chapter outlines a brief history of Internet based telerobotics, problems in
telerobotics, existing models and methods used to overcome those problems and finally

introduces some of the hardware concepts used in the work.

2.1 Internet Based Robotic Operation

Ever since the invention of telephone in 1870’s there have been significant developments
in the field of communication. The Internet — a very complex and revolutionary
invention of 1965 has changed our world [WWIE]. The Internet can be defined as a

global communication network consisting of millions of inter-connected networks.

Robot Server

A 4

F

Controller - Controller interface <

A
JELRE 1]

Figure 2: Basic Internet Based Telerobotics
This widely available means of communication is no longer just for data transmission, it

can also be used to control robots at remote locations. The control of robots over Internet

8

Chapter2: Background

1s termed Internet based Telerobotics.

2.2 History of Telerobotics

Telerobotics is an area of robotics where the robot is controlled from a distance by the
controller using a means of communication channel. The means of communication may
be wired or wireless. Prior to 1945 there were crude teleoperators for earth moving,
construction and related tasks. The first Master-S]ave Manipulator, was publicly
demonstrated by its inventor, Ray Goertz [TBS92], at the Argonne National Laboratory
of the U.S. Atomic Energy Commission in 1951 [WWRG]. The master slave manipulator
was basically an electrical and hydraulic servomechanism. In 1954 a closed circuit
television was introduced so that operation could be from an arbitrary distance away

[TUNO].

In 1961, an experimental manned submarine intended for deep submergence, the
Bathyscaphe Trieste, was equipped with a telemanipulator based on and controlled
unilaterally by a keyboard [TUNOJ. The mechanisms were immersed in an oil bath,
including the electric motors, with the oil staying at the same pressure as the water,
independent of the depth reached, in a water-proof casing. In 1966 a Cable Controlled
Underwater Research Vehicle (CURV), retrieved a nuclear weapon that had fallen into
the sea off the Spanish coast at Palomares, this project directed the attention of the whole
world to the existence and usefulness of such devices [TUNO]. By 1965 experiments in
academic research laboratories had already revealed the problems of telemanipulation

and vehicle control as a consequence of time delay, and the early lunar teleoperated

Chapter2: Background

Surveyor demonstrated the problems vividly in an actual space mission [TUNO].

In 1967, Surveyor 111 landed on the surface of the Moon. It was equipped with
manipulator arms, which took samples of lunar soil and measured the force required to
carry out this operation [TUNO]. This was the first example of teleoperation in outer
space. The exploratory mission of the Soviet Lunakod followed. This vehicle was
teleconirolled directly from earth with only seconds of delay in the transfer of
information. The main disadvantage of teleoperation in outer space is the delay in the
two-way transmission (which depends on how far the telerobot is from the controller) of
commands and information, which the operator could not overcome. The Draper
Laboratory at MIT took up this work, and developed the idea of computer-aided
teleoperation. At the same time, teams from the Marshall Space Flight Center at
Huntsville, the Johnson Space Flight Center at Houston and from Stanford concentrated
on the transmission delay effect and computer control. The Viking spacecraft, which
landed on Mars in 1976, was programmed to carry out strictly automated operations. This
manipulator arm which was more efficient than the Surveyor in taking samples, placing
them in an analysis chamber and moving objects to detect changes of color of the soil

under rocks [TUNO].

The first successful implementation of Teleoperation via the Internet was developed by
Goldberg in 1994 at the University of South California. This Mercury Project, as it was
called included the operation of a simple robotic manipulator with CGl (common
gateway interface) program interface and video feedback. It was'the_ﬁrst laboratory

where users using the World Wide Web could order the robot to perform tasks in order to

10

Chapter2: Background

uncover buried artifacts in a sand filled terrarium. The Mercury Project was online for 7
months from September 1994 to March 1995 and received over 2.5 million hits [TUNO).
This breakthrough helped turned Internet based Teleoperation into the huge and ever

growing field of research it is now.

An ltalian group led by Pfofessor Rovetta has reported several experiments investigating
the possible applications of telerobotics, and claims to have carried out the first
telerobotic surgery in 1995 [BLPO03], a prostate biopsy. Another of the telesurgery
projects completed involved the team at the Brady Urological Institute, who designed and
developed a robot capable of performing a remote percutaneous renal needle puncture

[BLP03].

The Basic issues that are important when dealing with Internet based robotics are listed

below

2.2.1. On the Network Side
e Packet Loss

» Latency

2.2.2. At the Robot Side
e Degree of Autonomy
e Suitable Hardware

e Suitable RTOS

11

Chapter2: Background

2.2.3. At the Operator Side
* Appropriate Programming language for developing the Graphical User Interface

* Appropriate Hardware for controlling the robot

2.3 Packet Loss

One or more packets of data failing to reach their destination due to oversaturated
network links, faulty network hardware design, signal degradation over the network
medium, rejection due to a corrupted packet, routing routines and maligned system driver
devices across a computer network can be termed packet Joss.

There are a few network transport protocols such as Transmission Control Protocol
(TCP) (RFC 761) which provide reliability in delivering packets. In the case of TCP,
whenever a receiver detects a packet loss, the receiver effectively request the transmitter
to retransmit the lost packets or the sender automatically sends the packets which have
not been acknowledged after a celf[ain period of time lapses. TCP uses a sliding window
protocol [RFC1323] for acknowledgements of received packets, this causes a drop in
throughput of the connection while improving reliability. In real time control there is
every need that packets are delivered on time so that tasks are executed with
synchronization. Knowing the End to End delays and loss behavior in a network are very
important factors [VER99] in developing real time applications. In general a few packets
lost can be neglected for real time applications. If we can trade-off the reliability of
packet delivery and include some kind of local intelligence at the robot side then we can
either use the User Datagram Protocol (UDP) (RFC 768), Real Time Transport Protocol

(RTP) (RFC 1889) or light weight User Datagram Protocol (UDP Lite) (RFC 3832). UDP

12

Chapter2: Background

Lite is the newest standardized IP transport protocol for error-prone network
environments. UDP, RTP and UDP Lite do nét guarantee packet deliver like their
counterpart TCP. UDP avoids overhead checking to see whether every packet actually
arrived or not, which makes UDP faster and more efficient. RTP can be used for video
transport, RTP can be used either with TCP or UDP as the transport layer. RTP when
used along with Real Time Transport Control Protocol (RTCP) (RFC 3550) can also

provide some degree of guarantee of packet delivery.

2.4 Latency

Latency can be defined as the amount of time taken by the data packet to travel from the
source to destination in a computer network, or it can also be called the delay in the data
packet delivery. End To End delay is the accumulation of transmission, processing and
queuing delays in routers, propagation delays in the link and end to end processing
delays. lIrregular time delay is inevitable and an unpredictable phenomena which is
caused by network congestion that needs to be taken into consideration.

In the case of real time operation, robot control over the Internet with uncertain time
delay can result in instability and asynchronous operation which will affect the dynamic
performance of the system. There is a real need that we either reduce the amount of time
delay [MSO05] [RGG97] or provide a local intelligence for stable operation. There is
very little scope in reducing the time delay in a given network unless dedicated lines are
used. Applying local intelligence at the robot side is the most effective way to overcome

the problem of asynchronous action and instability caused by time delay [MSO05].

13

Chapter2: Background

2.5 Degree of Autonomy

Robots can be classified in accordance to their degree of autonomy as follows
[JJGO3]

* Non Autonomous Robots : Robots which have to be controlled by the operator
and do not process any kind of intelligence locally to perform a task without the
supervision of the controller are classified as Non Autonomous Robots

* Semi Autonomous Robots: These robots have some degree of artificial
intelligence and can perform some task or portion of a task even without the direct
supervision of the controller.

* Autonomous Robots: These robots have incorporate artificial intelligence
algorithms for tasks such as path planning, collision avoidance etc. and require

little or no operator control during operation.

To some extent we can overcome the problem faced in the real time control of robots
over the Internet by deploying either Autonomous Robots or Semi Autonomous Robots.
This can be achieved by introducing artificial intelligence methods such as Fuzzy Logic,
Genetic Algorithms or Neural Networks for some of the decision making. Semi
Autonomous or Autonomous robotics that are developed using real time operating
systems (RTOS) such as Micro C/OS 11, uClinux, etc., also contributes to improved

performance.

14

Chapter2: Background

2.6 Local Intelligence at Robot Side

2.6.1. Event Based Telerobotics

To overcome the problems cause by time delay, an event based control can be used which
is a non time action reference [JJ03]. This can be achieved by implementing some local
intelligence like a fuzzy controller at the robot side. Figure 3 [JJ03] shows the event

based control of a robot or a manipulator over the Internet.

MASTER T R(S)_—_.— SeavE
L Y(s+1 AcTION REFERENCE

Figure: a

P R<s+1 —_———— suave L
Y(s+1]I MANUPULATOR |—.— —— { ACTION REFERENCE _}— J

Figure: b

Figure 3: The Event Based Control through Internet (derived from [JJ03))

The basic idea of event based planning and control theory is to introduce a new motion
reference variable different from time, but directly relate the sensory measurement of the
system. Instead of time, the planned/desired system output is parameterized by the new
motion reference variable called an Event [NTA96] [NT99]. From Figure 3 we can see
that the new commands R(s+1) are not transmitted until the feedback from the previous
command Y(s+1) is received from the previous event of the slave. On the other hand the
slave holds the robot by either giving a command for zero velocity or the previous
position data into the local controller and no feedback is provided to the master until the

next command has arrived. In this system every single action is considered as an event

15

Chapter2: Background

independent of time. Using this feedback syslenﬁ, even though there is a delay in the data
packets that carry the commands to the robot, due to the local intelligence and event
based approach action synchronization and stability can be achieved. Even though
stability and action synchronization can be achieved using the event based approach,
there is always a disadvantage that a continuous stream of commands cannot be executed.
The controller has to wait until he/she receives a feedback from the robot to send their

next command.

2.6.2. Fuzzy Controlled Robots

Mobile robots have to react to what they sense in the environment. Using sensor and
video feedback along with some artificial intelligence such as fuzzy logic an autonomous
robot can be developed. Fuzzy logic is a method of solving control problems that
'provides a solution for implementation in systems ranging from simple, small, embedded
micro-controllers, to large, networked, multi-channel PC or workstation based data
acquisition and control systems. Fuzzy controllers are flexible and easy to implement in
hardware, software or a combination of both. Microcontrollers such as MC68HC12MCU
come with some fuzzy logic instructions [EM94]. Fuzzy logic prbvides a simple way to
arrive at a definite conclusion based upon vague, ambiguous, Imprecise, noisy or missing
input information. The fuzzy logic approach to a control problem mimics how a person
would make a decision, although typically much faster [SHMO03][JN91]. Figure 4 shows
a simple fuzzy logic control system. The most import task in fuzzy logic control is to
determine what should be controlled and how it should be controlled. For simplicity

consider an example to control a robot in an unknown environment which has a simple

16

Chapter2: Background

collision detection sensor. The data collected by the collision detection sensors are given
as input to the fuzzy logic controller and the commands sent by the controller to the
remote robot act as other input signals to the fuzzy logic controller. When a collision
detection sensor detects an obstacle in its path of motion, it sends that signals to the fuzzy
logic controller and the fuzzy logic controller outputs a stop signal tolthe robot even
though the input command from the main controller is to move forward. 1f no feedback is
given by the collision detection sensor then the fuzzy logic control outputs the commands

sent by the controller.

Command

Sensor Feeback

Figure 4: Simple Fuzzy Logic Control System

Applying such intelligence provides safe and reliable operation of the telecontrolled
robot. The problems such as packet loss and latency can become obsolete or at least are

mitigated if we can implement an appropriate fuzzy logic controller.

17

Chapter2: Background

2.6.3. Behavior Based Telerobotics

Behavior based robotics is a methodology of developing Artificial Intelligence based on
modular intelligence. In behavior based system the intelligence is controlled by a set of
independent semi-autonomous modules. Figure 5 shows an implementation of behavior
control system (Finite State Acceptor (FSA)) [RCA98]

FSA provides a ready mechanism to express relationships between various behavioral
sets and are widely used within robotics to express control systems. FSA provide us with
a higher level of abstraction by which we can express the relationship between sets of
behaviors. In Figure 5 each behavior is represented as a state, which encodes the robot’s
goal of moving around an open terrain to locate its target Jocations. The targets can be
anything such as locating a classroom in a hallway. Consider Figure 5, the robot has three

major behavioral states, wander, move to target, and return o start.

Other Not at start

. All Targets
START Start Locating - Find Next Found Return To
Target VQr!
S

= “ =
I S &2 &
<2* ‘ge'\ QE) = 3 =
< = =
o= > = Y
N\
Move To Wander Halt
Target
Not At Target Time Still there Al

for Search

Figure 5: Finite state Acceptor (FSA) (derived from [RCA98])

Move to target consist of a subset action for selecting a target, orienting the robot so it

points towards the target, moving to the target, and tracking the target visually during

18

Chapter2: Background

motion until it is reached. Any number of subsets can be created for each set or behavior.

FSA shows the sequencing between behaviors as the robot carries out its mission.

2.6.4. Behavior Based Fuzzy Control Telerobotics

Higher level behavior based robots require some intelligent control techniques such as
model based fuzzy control [RDH97] or genetic algorithms. Fuzzy control can be applied
to mobile robots which have complex control architectures [AS97]. Behavior based
telerobotics can be modeled as shown in Figure 6 [SSDNO00] used for helpmate robot
[WWVU] which has sonar sensors. In Figure 6, the robot has three behaviors; 1. Task
Oriented Behavior; 2 Obstacle Avoidance Behavior; and 3 Emergency Behavior. Each
behavior represents a concern in the mobile robot control and relates it to sonar sensor
data, robot status data, and goal information to control the robot. A task oriented behavior
typically has more subsets, such as follow goal and follow wall.

To implement fuzzy control for any task or behavior, there are three basic steps

1. Fuzzification

2. Develop an Inference Engine and

3. Defuzzification.

In Fuzzification the real valued points are often mapped to fuzzy sets by treating them as
Gaussian membership function, triangular membership function etc. The Gaussian

membership function is given by [SK00]

pa(x)=exp[(x—x1)2/ o))]*.... [1]
e XP[—((3n — x*)? / 542))]

19

Chapter2: Background

From these membership functions we arrive at a logical decision in an Inference Engine
using If-Then rules. The fuzzy rule base converts input information into output
membership functions. Finally Defuzzification is applied to these inferences and the
output of the Defuzzification is given as an input to the robot for processing. There are
many methods that can be used to convert the inference engine output such as the Center

of Gravity method as given in equation [2] [SK00].

L

: “Follow Goal Inference .
= {Fuzzyfication): Engine Task Oriented

Behaviors

Inference

Obstacle Avoidance
Behavior

Interence

Engine

o Avoid/Escape fom - -
ot Danger

Environment
— = R

Figure 6: Behavior Based Fuzz Control Robot [SK00]

> pa(y)ys
COG,y="1 2]

D paly)

2.7 Suitable Hardware

To develop a real time control for robotics, choosing proper hardware or choosing an
appropriate board which has minimal processing latency is required. Depending on the

requirements we can opt for a Single Board Computer (SBC), Field Programming Gate

20

Chapter2: Background

Array Board (FPGA) or a combination of both. Choosing an appropriate processor and
required peripherals such as USB ports, Ethernet ports, PCI slots etc. is also very
important. Communicating and sensing of the robot environment using devices such as

video, sonar sensors, GPS, Infra Red, etc. are also important design considerations.

2.7.1. Single Board Computers (SBC)

SBCs are complete computers built on a single circuit board. The design is centered on a
single or dual microprocessor with RAM, 1/O and all other features needed to be a
functional computer on the one board. Single computers boards are basically Hard Core

Processors, once designed they cannot be changed.

2.7.2. Field Programming Gate Array (FPGA) boards:

FPGAs are semiconductor devices containing programmable logic devices called “Logic
Blocks™ and programmable interconnects. Logic blocks can be programmed to perform
the function of basic gates or more complex combinational functions. Most logic blocks
also include memory elements which are either Fﬁp-F]ops or complete blocks of
memories. The major advantage of FPGAs is, they can be re-programmed any number of

times. All modern FPGAs also support a sofi core processor architecture.

The logical blocks and interconnection of traditional FPGAs combined with an embedded
soft core multiprocessor and related peripherals form a complete “System on
Programmable Chip “(SOPC). Boards such as Altera DE2, Xilinx Vertex-11 PRO etc. are

all SOPC’s. Numerous Intellectual Properties (IP) cores are now available which can be

21

Chapter2: Background

added on to the system using software such as SOPC builder for Altera boards. This helps
the developer to choose the required hardware for a specific application and greatly

reduces the design time.

2.8 Embedded Systems and Real Time Operating System

An Embedded System is described as a special purpose computer which performs one or
many dedicated functions [WWW1]. A Real time Operating System (RTOS) is a multi
tasking operating system best suited for real time application such as real time robot
control. Embedded systems and a RTOS work hand in hand as shown in Figure 7.

Choosing a proper RTOS and an appropriate embedded board is an important

consideration when it comes to real time applications.

Application Software

Figure 7: RTOS Abstraction Layer between Application Software and Embedded
Hardware [WWW1]
In a RTOS multiple tasks are run by switching tasks or threads [WWW1]. A task is
nothing but a simple program. An RTOS can be designed either as event driven design,

time sharing design or a combination of both.

22

Chapter2: Background

o Event Driven Design: Switching between tasks is done only when a higher
priority task needs to be served, (denoted a preemptive priority).
» Time Sharing Design: Switching between tasks takes place on a clock interrupt or
on an event, task swiiching can also follow a round robin schedule [WWW2].
In a typical design, at any point in time a task can be in any one of the following three
states [ROJ04] Running state, Ready state or Waiting state.
e Running State: In this state, the given task is beiﬁg executed by the
microprocessor. Only the task that is in the running state is processed unless the

processer is a multiprocessor.

Task That has 1o
Happen Next

WAITING

>

g £
2 3
£ . g
o2 Eal
= o B8
o 35
% o
b

£

5 5
xT =z

RUNNING

Figure 8: Task States (from [ROJ04))

* Ready State: When some other task is in the running state or is being processed
by the microprocessor the task that is ready to execute is in a ready state, and will
execute when the microprocessor becomes available. There could be any number

of tasks in this state.

23

Chapter2: Background

* Waiting State: In this state the task has nothing to do even when the
microprocessor is ready to process this task. A task enters this state because it is

waiting for some external event to be synchronized with this task.

Part of an RTOS is a scheduler [DAES] which keeps track of the state of each task and
decides which task should go into the running state. There are a wide variety of RTOSs

available to choose from in the present day market.

2.9. Embedded Processors

Embedded processors can be divided into two distinct categories
1. Microprocessors: Integration of numerous useful functions into a single 1C
package, with the ability to execute a stored set of instructions to carry out user
defined tasks are called microprocessors. Microprocessors also have the ability to

access external memory chips to both read and write data.

2. Microcontrollers: A microcontroller is a device which integrates a number of
components of microprocessor systems onto a single microchip. A typical
microcontroller has a Central Processing Unit (CPU), memory (both RAM and
ROM), parallel digital 1/O, a trimmer module, an analog to digital converter

(ADC) and a serial 1/0 port.

There are many different CPU architectures used in embedded system such as x86,

PIC, ARM, Power PC etc. Embedded systems communicate with the outside world

24

Chapter2: Background

via peripherals such as RS-232, USB, and Ethemnet.
2.9.1 Nios II Processor

A Nios 1l processor system is equivalent to a microcontroller or a “Computer on chip”

that includes a processor and a combination of peripherals and memory on a single chip.

Nios Il Processor Core
1566t P Tightly Coupled
chock l Progr. am T | Instruction Memory
(pu reselrequest CC’”;:"’”&[General -
cpu_resettaken Purpose .
o DLISENIEN | Address L)
TG I
Jisla i of ! R
heracs TG O | ke | Tt Coued
to software Debug Module Instruction Memory
Jebugaer Bxception
Controler .
Control
irgf31..0} Interupt Registers L risirction Bus
Controller cti0toctis
A= Data Bus
Custem Custom Arithmetic Data Tightly Coupled
qlfO]] | Instruction Logic Unit Cache = Data Memony
Signals .
Loge -
L]
1]
Tightly Coupled
Data Memory

Figure 9: Nios II Soft Core Processor (from [ALTEOQ])

25

Chapter2: Background

Like any other microcontroller, all Nios 11 processor systems use a consistent instruction
set and programming model. The environment on which application software can be
developed for Nios 11 processor is called as a Nios 1I integrated development
environment (Nios 11 IDE) which is based on GNU C/C++ compiler and eclipse IDE. A
Nios Il processor is a soft core processor which can be configured for a particular
application for its best performance. Peripherals can be developed and added to the Nios
1} processor which cannot be done easily with microcontrollers. Because of this flexible
and soft-core processor we can easily use the Nios 11 processor system with the exact

peripheral set required for the target application.

The Nios 1I architecture describes an instruction set architecture (ISA). The ISA in tumn
necessitates a set of functional units that implement the instructions. The processor core
does not include peripherals or the connection logic to the outside world. It includes only
the circuits required to implement the Nios I architecture. The Nios 1] processor cores
with all the functional units are shown in Figure 9 [ALTEO]. The functional units of the
Nios 11 architecture form the foundation for the Nios 11 instruction set. Functional units of
the Nios II processor can be implemented in hardware emulated in software or omitted

entirely.

2.10 Micro C/0OS II (nC/OS-II) RTOS

pC/OS-11 is a highly portable, ROMable, scalable, preemptive real time, multitasking
kernel for microprocessors and microcontrollers [ALTE1]. pC/OS-1I runs on a large

number of processors architectures and can be ported to a wide range of processors. One

26

Chapter2: Background

of the key advantages of uC/OS-11 is that execution time does not depend on the number
of tasks running in an application which results in providing a consistent and
determiniistic performance.

Altera implementation for uC/OS-1I [ALTE1] is shown in Figure 10. The Hardware
Abstraction Layer (HAL) is a lightweight runtime environment that provides a simple
device driver interface for programs to communicate with the underlying hardware. The
HAL [ALTEZ2] application program interface (AP1) is integrated into an ANSI C standard

library which allows users to access devices and files using standard C library functions.

USER PROGRAM in C/C++
(Developed in Nios il IDE Environment)

NIOS Il PROCESSOR SYSTEM HARDWARE
(Generated Using SOPC)

Figure 10: Micro C/OS I Programming Architecture [ALTE2]

HAL serves as a device driver package for Nios 11 processor systems, providing a

consistent interface to the peripherals in the system. pC/OS-11 for Nios 11 processor is

27

Chapter2: Background

essentially a superset of the HAL. The HAL environment is extended by the inclusion of
the pC/OS-11 scheduler and the associated pC/OS-11 APl. The complete HAL API is

available from within the pC/OS-11.

2.11 Appropriate Programming Language for Developing a

Graphical User Interface

Web browsers which are traditionally used for controlling robots over Internet are very
vulnerable to hackers. Alternatively programming languages such as Visual Basic, C or
C++ [MSDN] can be used for developing a custom GUI. However these programming
languages are tedious and have very limited user classes needed to develop a high level
GUI. C# from Microsoft provides a wide range of built in classes and provides rich
options of looks for developing the front end application of the GUI. Visual C++ which is
fast and reliable can be used to develop the applications within the GUI for

communication and encryption purposes.

2.12 Summary of Chapter 2

Chapter 2 described a brief history and evolution of telerobotics. An overview of the .
problems associated with latency and methods that can be used to overcome Jlatency were
discussed. Different approaches to achieve autonomous and semi autonomous modes of
operation were briefly described. This chapter also explained the importance of choosing
appropriate hardware. Basic working principles of a RTOS and the architecture of the

Nios II processor and Micro C/OSII RTOS programming architecture were also

28

Chapter2: Background

described. Finally a discussion of why C# was chosen as the programming language for

GUI development was presented.

29

Chapter 4: Hardware Implementation

CHAPTER3

HARDWARE IMPLEMENTATION.

Overview

This Chapter explains in detail the working principle of PWM, generation of PWM
signals using the DE2 board, working principles of motor controllers, differential steering
and our wireless configuration.

Parts of this chapter were done in collaboration with Monir Khan. Specifically we both
developed our own versions of the module required. The final version that was used was
the one that had greater functionality. Some aspects were designed in collaboration while
others were solely the work of the author. Detailed contributions are footnoted in each

section.

3.1 Pulse Width Modulation

Pulse width modulation is basically the digital encoding of an analog signal level. The
voltage or current source is supplied to the load by means of a repeated switching
between on and off of the supply. The on time is when a supply voltage is applied to the
Joad and the off time is when the supply voltage is cut off from the load. The proportion
of time during which a component or a device is operated or is in the on state is defined
as a duty cyele. Considering the pulse train in Figure 11 [WWDC] with T as the period

and 1 as the duration of the pulse which is non zero we can mathematically represent the

30

Chapter 4: Hardware Implementation

duty cycle D as in equation [3]

D = [3]

T
T
Figure 12 [WWVDC] shows three different PWM signals with 10%, 50% and 90% duty

cycle. PWM output at 10% duty cycle means that the signal is on for 10% of the period

and off for 90% of the period

Amplitude

0 T T T+t 2T 2T+t 3T 3T+t

Time

Figure 11: Pulse Train

This implies that the PWM output encodes the analog signal at 10% of full strength. For
example, if the supply voltage is 9 and the duty cycle is 50%, on average a 4.5 analog

signal results. Various duty cycles PWM signals are illustrated in Figure 12.

Gz High Leund Ot = Law Ll
: 0
Il i M
[I :

i i

| | |

- i L
5%

{ i H 1 i
iy H :
I t i | i

: i i
i ! ’ L ‘ | l i
i i
s s T S Sy

0% i

N .) . . H

} 1 i
I i i
T Z!
H
| £ | !
: j

Figure 12: PWM Signals of Varying Duty Cyecle (from [WWDC))

31

Chapter 4: Hardware Implementation

The average value of the pulse train in Figure 11 is given by:

7= [rur

] 7 T
:F(Jymdwrrjymdt

Ty max+ T(] - T)y min
T

We know that 7 = DT, so we have
Y =D.ymat(1=D)ymn
At Yrn=10 Vy=D.ynu [4]
From equation 4 it is evident that the average value (7) is directly dependent on the duty

cycle D.

3.2 Generation of PWM Using Altera DE2 Boardl

A DE2 board with Nios 1I processor running on Micro/OS1 was used to generate PWM
signal for controlling the motion and direction of the robot’s electric motors. The HDL
logic used to produce PWM is given in Appendix A. The system configuration of the

DE?2 board is shown in Figure 13.

Using the task logic (Appendix A) code and register mapping a custom PWM Z

component is created. The component serves the following purpose.

" 1 With the specific task of the PWM motor controller | was responsible for developing motor controller
and direction control using PWM and M. Khan was responsible for developing PWM using the DE2

32

Chapter 4: Hardware Implementation

o It defines the interface to the component hardware, such as the names and the
type of 1/O signals.

* PWM_Z declares the PWM_Z component and specifies the logic that has to be
used to produce the require PWM signal.

o It describes a graphical user interface for configuring an instance of the
component in SOPC builder.

* It provides script and other information that the SOPC builder needs to generate
the hardware description language (HDL) files for PWM_Z and integrate the

PWM 7 into the system module.

e It contains PWM_Z related information, such as register memory map and

Avalon memory mapped interface.

JTAG Connection To
Software Debugger

1

JTAG Debug Module

DATA
Nios Il Processor N

Inst
®
4
5
'y
H

40 PIN GPIO
SDRAM SORAM Controlier Avalon Genetat Purpose VO £ xpansion
Memory Switch Fabric Header(JP1)
On-Chip ROM

PWM_Z :
{(COMPONENT
TriState Bidge 10 e N LOGIC) To Motor Contratier
off-chip memory N

N
N

CLOCK

4
RESET

v

To Motor Controller

4

>
>

o

Motar_Enable
Forward Enb

|

PWM_Revers
4 e
Mator_Disab!
]
Reverse
«...Enb

“

N Avalon Interface
SAutomatically connected
by SOPC Builder

Figure 13: System Configuration of the DE2 board to Produce PWM Signals

33

Chapter 4: Hardware Implemehtation

PWM_Z connects to the system interconnect fabric using the Avalon memory mapped
interface. A single PWM_Z component can provide more than one Avalon port, in other
words a single PWM_Z component can provide ports for PWM_Forward to control the

forward motion, PWM_Reverse to control the reverse motion of the robot and so on.

3.3 Motor Controller

PWM Signals generated by the DE2 are then given to the motor controller. An Open
Source Motor controller (OSMC) [WWRP] from Robot Power [WWRP2] was used. The

motor controller is based on the H-Bridge principle. For the robot to move forward

s\ 52 St s2\
=) ~+(m)z Y-) «(m)e-
s3 sX 33\' sS4
Figure 14a: Forward Direction Figure: Reverse Direction

Figure 14: Two Basic States of H-Bridge

Switches S1 and S4 are closed as shown in Figure 14a, then there is a positive voltage
across the motor terminal which rotates the shaft in forward direction. Conversely when
switches S2 and S3 are closed as shown in Figure 14b, the voltage across the motor is
reversed and results in the reverse motion of the shaft. In reality the switches are replaced.

with the solid state switches such as MOSFETs.

34

Chapter 4: Hardware Implementation

The ON states and OFF states of the MOSFET are triggered by giving a PWM pulse at

the gate terminal. The detailed schematic of the motor controller along with the

protection circuits for shoot through is shown in Figure 15.

When voltage is applied between the gate and source terminal an “inversion channel “is
created which creates a conduit through which current can pass. By varying the voltage
between the gate and the source, the current flow between the drain and the source can be
controlled. The average voltage across the motor is controlled by rapid switching action
of the MOSFET. This switching action is controlled by the PWM pulse, depending upon
the required speed; the average voltage across the motor is varied. Say for example a
motor runs at full speed in forward direction at a rated voltage of 24V, then we should
apply a PWM with a duty cycle of 100 % at Q1 and Q4 MOSFET’’s. Similar if we want

the motor to run at half the rate speed we apply a PWM with a duty cycle of 50%.

L w0r4eT
'S LLEDIOIACT
Q2

of-

oF
o
oF

il
haliall

I
4
-

Q1jre— >t
y—L ——’—4 150 onm
aHO yeieel I s 0z
-1 B
" o 7
- BL) BLO:!
—Au ';():’—“‘—. T
— =11
ALO o _“"?i I 33 ohm
-t 015
- 1 LYSDI0I4CT
AMS LLEDIGIACT
Q3 1.5KE33CA — Q4
HIP 4081 A [—* 15G com.
v

of-
of
&
b
i
v
o

YPYIYSNI

L

K
“
£

Figure 15: Motor Driver

35

Chapter 4: Hardware Implementation

In practice for a motor to run forward the signals Motor Enable [Figure 13] and Forward
Enb [Figure 13] or Q4 [Figure 15] are kept at high and a PWM signal is given at
PWM_ Forword [Figure 13} or Q1 [Figure 15], while the rest of the signals are kept low .
Depending on how much speed is required the duty cycle is varied. For the robot here,
there are 2 independent motors for the left and the right wheel, each motor is controlled
independently. For moving forward or reverse the PWM duty cycle remains the same for
both motors whereas the PWM duty cycle is different for both the motors if the robot has

to move either to the right or to the left.

3.4 Robot Direction Control

Instead of having a separate motor just for steering the robot a principle called a
differential steering system is applied to the robot to achieve the required direction of
motion. Two wheels mounted on individual axis are independently powered and

controlled thus providing both drive and steering capability.

Steering control of the robot was purely based on differential velocities, even though
complex algorithms can be implemented to achieve differential steering such as in
[WWDS]. When we want the robqt to turn left as shown in Figure 16A, the speed of the
outer wheel (right wheel) should have higher speed compared to inner wheel (left wheel)
Due to the difference in the speeds of each wheel the robot tends to move towards the
lower wheel speed, i.e. the wheel on the right covers more distance compared to the
wheel at the left in a given time, which results in a turning of the robot to the left. From

Figure 17 the x and y co-ordinates of the robot center will change depending on the speed

36

Chapter 4: Hardware Implementation

of the motion along the direction vector.

})
Y
woels “--;N

Low Wheel Higher Higher
Speed | W{»ee% S%eed erfelfp ed

Low Wheel
Speed

t1

’
L4 s
s [] e s] s d
‘----d-----d----- ‘----‘-----‘-----
Figure A Figure B

Figure 16: Differential Steering System

The direction giving the forward motion of the robot will simply be in terms of sin§ and

cos@. Where 6 is the angle of turn in radians.

v

Figure 17: Wheels at Different Velocities

37

LR

Chapter 4: Hardware Implementation

Taking m(t) and &(t) as the time dependent function for our robot speed and direction

, we have

dx / di = m(1)cos(8(1))
dy ! di = m(1)sin(6(1))

(5]

We can define angle as the length of the arch divided by the radius of a circular arch.
The léngth of the arc from Figure 17 is the relative velocity of the right wheel which
gives the length of the arc per unit time and the length from the wheel to the center point
gives us the radius, combining the above two facts we have

dé/di=(VR-VL)/b [6]
Note: This approximation equation uses the center point of the left wheel as a reference
point. All motion in this frame of reference is treated relative to the left-wheel point.
Because the right wheel is mounted perpendicular to the axle, its motion within the frame
of reference follows a circular arc with a radius corresponding to the length of the axle
(from hub center to hub center).
Integrating the above equations and taking the initial orientation of the robot as
#(0) = fo we find a function for calculating the robot's orientation as a function of wheel
velocity and time:

0(t)=(VR-VL)/1+ 6o (7]

Velocity is simply the average of that for the two wheels, or (VR + ¥1)/2 we combine

this fact with what we know (Equation 5) about orientation as a function of time, and get

the following differential equations:

dx/dt =[(VR +VL)/2]cos(6(1))

dy!di =[(VR+VL)/2]sin(6(1)) 18]

Integrating and applying the initial position of the robot, x(0) = xoand y(0) = yo, We

38

Chapter 4: Hardware Implementation

have
b(VR+VL) _ . .
= - 7 — — 2] -
x(1)=xo0+ 2RV [sin{((VR -VL)t/ b+ Bo)—sin(Ho)]
[9]
y(1)=xo0+ —-——b(VR D) [cos((VR—-VL)t/ b+ 80) - cos(Ho)

2(VR-VL)
With different VL, VR and 6 the values for y(1) and x(t) were calculated. These
calculated values were used as reference values to calculate the velocities VR and VL for
a given turning angle. However considerable error is introduced by the caster wheel
hitting bumps and deflecting the robot. Wheel slippage also contributes to the uncertainty

in controlling the robot with differential steering.

3.5 Configuring Ethernet on DE2 Board2

To control the robot, that is, to send commands to the robot and receive feedback from
the robot environment we need a means of communication. The most widely available
communication technology is associated with the Internet. As such, the DE2 board
which acts as a main control unit has to be connected to the external world through
Ethemnet and eventually to a wireless access point. To configure Ethernet on the DE2 we
configured the Devicom DM9000A fast Ethernet controller chip The DM9000A
includes a general processor interface, 16Kbytes SRAM, a media access control(MAC)

unit and a 10/100 PHY transceiver.

2 1 was responsible for configuring Ethernet on DE2 board while M.Khan was responsible for building
custom Linux kernel and wireless configuration.

39

Chapter 4: Hardware Implementation

The DE2 architecture uses DMA technology to increase CPU usage and time it is
connected via the Avalon Bus allowing improved data channel and SDRAM efficiency.
The communication interface is shown in Figure 18. An Ethemnet component developed
by Terasic [WWTS] was used which provided the required driver for DM9000A. This
driver was also used to develop the required user application such as creating a TCP/IP
stack, web server, etc., for the Niosll processor using C/C++ language in the Niosll

Integrated Development Environment.

Nios Il CPU DMA Controiler
Instruction Data Write Read
Master Master “Master; Master
k& Data Avalon Bus Module
Avalon Bus Module Ariow ST e

Arbitrator

Cn ’-Igmémgmm;;

Figure 18: Communication Interface

3.6 Ethernet to Wireless Using Soekris Board

To make the robot more mobile and practical, it is necessary that we make the robot a
wireless mobile robot. During development we could communicate to the robot by means

of Internet Protocols a wired LAN. Subsequently it became necessary to broadcast these

40

Chapter 4: Hardware Implementation

signals to a base station through a wireless medium, such as a wireless local area network
(Wi-Fi) [WWWF]. The task of creating a wireless network look pretty simple, but they
are not as simple as they appear. We had to interface the robot to 802.11b, which
provided the Wi-Fi network to the DE2 board or the robot server which has Ethernet
configured in it. Due to the limitation of SDRAM, flash memory on the DE2 board and
limited support for USB we could not use wireless adapters or a wireless bridge. As an
alternative we used a Soekris net550]1 embedded processor which provided the solution
for making the robot wireless.

The Net5501 comes with 1 PCIl slot which is used for the wireless PCl card. To
- configure the wireless PCI slot for 802.11b, a custom Linux kernel had to compiled and a
proper driver had to be installed. The Ethernet cable from the DE2 board was connected
to the Ethernet hub (one port of the net5501). A bridge was created between the Ethernet
hub and the 802.11 b PCI card, so that the packets from the DE2 pass through the bridge
and then to the 802.11 b PCI card and are then broadcast. The base station receives these
signals and passes them on to the client (or controller) which is connected through a
LAN. When a client wants to send a command signal to the robot, the signals (packets)
are first transmitted to the base station which is connected via the wired LAN and the
“base station broadcasts the signals which are in turn received by the 802.11b PCI wireless
card and passed on to the Nios 1l processor for processing the commands and performing

the required task.

41

Chapter 4: Hardware Implementation

PCI

Soekris Board
Running on Linux OS

Ethernet

1 ETHERNET HUB l

Ethernet

ALTERA DE2 BOARD WITH NIOS 1l
PROCESSOR RUNNING ON
MicroC/0S 1t

Figure 19: Ethernet to Wireless

3.7 CMOS Camera

A TRDB_DC2 1.3Mega pixel digital camera module was used for capturing high
resolution video. This module can use two CMOS image sensor (MT9MO11) which are
capable of 1280x1024 resolution. This camera module outputs a raw RGB which can be
processed and displayed either on a VGAA monitor or can be transmitted over Wi-Fi
network with image compression. The module is connected to the 40 pin GP1O header
of the DE2 board. The images are captured using a HDL code written in Verilog. The
code captures the images from the CMOS sensors through the first 20 GPIO pins and 7
stores them in the SDRAM of the DE2 board for further processing. The images are

stored in raw RGB format, which are further processed and displayed on the VGA

42

Chapter 4: Hardware Implementation

monitor. Difficulties were encountered when trying to stream the video from the CMOS

camera over the Wi-F1 network.

3.8 Summary of Chapter 3

In this chapter the design concepts for PWM generation using the DE2 board and
direction control which together form the core of any robot at the hardware level has been
presented. This chapter also explains the process and steps necessary to éonﬁgure a Wi-
Fi, so that the robot can communicate with the external world remotely. Finally the

configuration and implementation of a CMOS camera using a DE2 board is described.

43

Chapter 4: Software Implementation

CHAPTER 4

SOFTWARE IMPLEMENTATION

Chapter Overview

This Chapter explains the functionalities of the GUI developed and techniques used in
transformation of joystick stick movement by the controller into robot commands
Parts of this chapter were done in collaboration with Monir Khan. Specific

responsibilities are footnoted in the appropriate sections.

4.1 Graphical User Interface3

For any type of operator assisted robot, the operator environment is very important. To
make things simple and user friendly, a Graphical User Interface (GUI) was developed in
the .Net environment. The Janguages used for the development are C# and VC++. The
GUI developed shown in Figure 20 can communicate with the DE2 board on the robot to
send commands or receive the feedback from the robot/server (recall that DE2 board acts
as a server).
The GUI provides the following functionalities:
» Connects the client/controller to the server/robot using socket connections.
* Provides near real time visual data feedback in MJPEG format to the

controller for reliable control operation.

3 With the specific task of the GUI development, | was responsible for the video interface, M. Khan was
responsible for joystick interface, and we both collaborated on layout of GU! and socket programming.

44

Chapter 4: Software Implementation

¢ Provides GPS data that helps the operator know the exact location of the

robot.

Figure 20: Graphical User Interface

* Provides feedback such as speed and the distance from the obstacle if any
are in its path of motion.

* Provides an interface to a joystick and converts the joystick commands
which are in terms of the x and y axis into motor duty cycles and forwards
these command packets to a socket which forwards them to a socket at the

server side to perform the required action.

45

Chapter 4: Software Implementation

4.2 Joystick Interface

Extreme 3 joysticks from Logistic was used in the development of the robot controller.
To make the code more robust and reusable a joystick interface was developed. Figure 21
shows the flow chart for joystick interface. The joystick interface basically is a class, the
main purpose of joystick interface is to poll the external USB devices connected to the
computer and set the device to active if it finds a suitable joystick that can be used to
control the robot. The following function polls for a joystick and throws an error if it
doesn’t find a joystick.

private void Poll()

{
try
{
joystickDevice Poll();

state = joystickDevice.CurrentJoystickState;

}

catch (Exception err)

{
Debug.WriteLine("Poll(}");
Debug.WriteLine(err.Message);
Debug. WriteLine(err.Stack Trace);

1}
Once the joystick is detected, the joystick interface looks for the joystick properties such
as the number of axis it can operate and the number of buttons attached to it. For the
robot control, we required a minimum of 4 axes and 5 buttons if not, it throws an error.
Most joysticks basically have 2 or 3 axes i.e. with X and Y as its co-ordinates and Z in
some cases. The Z axis is not taken into account here. To make things simple and easier
for development, the joystick interface developed uses axes A, B, C and D. Axis A
represents +Y and Axis B represents —Y, similarly Axis C represents +X and Axis D

represents —X. If a joystick is moved forward that is in +X direction, the interface will

46

Chapter 4: Software Implementation

.= No Joystick Device

e Found
/
/
NO - -
. . . rror
If (JoystickDevice) is TRUE ™ Message STOP
YES
y
Create a Device for this Joystick and
detect the number of Buttons and Axis
y
NO -
. rror
If (Buttons> 5 && Axis >4) ™| Message STOP
.\‘

YES

y
Store Values of Button in a Array
Assign Axis X= Axis C
Axis -X= Axis D
Axis Y= Axis A
Axis-Y = Axis B

T~ Insufficient
button/axis’s

4
END

Figure 21: Joystick Interface Flow Chart

send a command to the DE2 or Nios 11 processor to produce a PWM with exactly the
same duty cycle to both left and right motors so that the motors will have the same speed
and direction, in this case the robot moves forward. In the process a need arose to
convert the value read from joystick into an integer value between 0-100 which

represents the duty cycle.

47

Chapter 4: Software Implementation

Axis C 4
—6000 This position of joystick

— represent 50% duty
/g/cle for forword motion

522_ Null Point or 0% duty
L Cycle
Axis B — .
L L1 | AsaA
2000 | I tasod T T eboo

3750 }—

This position of joystick)//f
represent 50% duty —
cycle for reverse motion]
Axis Dy

3000

Figure 22: Joystick Mapping

As an example, if the maximum and minimum values between Axes C and D are 6000
and 3000 respectively as shown in Figure 22, where the null position or 0% duty cycle is
4500, then every 15 divisions read from joystick represent 1% duty cycle. To be more
precise for the motor to move at half the rated speed in forward direction a duty cycle of
50% 1is required , for which the joystick has to move 50*15 divisions i.e. is 750
divisions from the null position (4500) which is at 5250 divisions.

Note: The Values and Axes used in Figure 22 are used for explanation
4.3 Client Sockets

A socket is basically an end of a bi-directional communication link in an IP networking
protocol. Using sockets at both Client (Controller) and Server (Robot) a communication
channel is established for data flow across the network. The DE2 board (Robot
Controller) is configured to obtain its IP address (every computer on the Internet has a 32
bit address, often referred to as its IP address) dynamically when it is connected to a

48

Chapter 4: Software Implementation

network which has a DHCP server. In the case where we do not have a DHCP server we
can configure the DE2 board to have a static IP address. In our case the IP address for the
DE?2 board is dynamical configured and displayed on the LCD panel of the DE2 board.
Knowing the 1P address of the DE2 board a socket connection between the client and the
server is established using the IP address of the host machine, (in addition a port is
required (a port is a 16 bit unsigned integer)). Lower port numbers are reserved for
standard services; hence ény port above 2000 can be used. Two fields in Figure 20, host
IP address and port number should be typed into the GUI. Clicking on the button
Connect the following function is executed

private void cmdConnect_Click(object sender, System.EventArgs e)

{

try

{
/fcreate a new client socket ...
m_socWorker = new Socket(AddressFamily.Intermetwork, Socket]ype.Stream,

ProtocolType.1P);

String szIPSelected = txtIPAddress.Text;
String szPort = txtPort. Text;
int alPort = System.Convert. Tolntl6(szPort, 10);

System.Net.JPAddress remotelPAddress =
System.Net.IPAddress.Parse(szlPSelected);
System.Net.JPEndPoint remoteEndPoint = new
System.Net.IPEndPoint(remotelPAddress, alPort);
m_socWorker.Connect(remoteEndPoint);
cmdConnect.Enabled = false;
cmdClose.Enabled = true;

}

catch (System.Net.Sockets.SocketkException se)

{

MessageBox.Show(se.Message);
cmdConnect.Enabled = true;
cmdClose.Enabled = false;

}
}

A new socket connection is created with the IP address provided in the txtIPAddress and

49

Chapter 4: Software Implementation

the port number specified in txtPort. When the host (robot) accepts the connection, the
client can keep sending commands using a socket stream function. At the host side

(robot), a server socket is created.

4.4 Server Sockets

The host runs a pC/OS 11 as its RTOS(Real Time Operating System) that uses the LWIP
(Light Weight Internet Protocol) and NicheStack TCP/IP.

The following lines of code illustrate how a socket connection is created on port 4000

sockfd = socket(AF_INET, SOCK_STREAM, 0);
memset (&serv_addr,0,sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = INADDR_ANY;

serv_addr.sin_port = htons(4000);

if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

{
printf(" [send task JERROR on binding");

}

listen(sockfd,5);

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd,
(struct sockaddr *)&cli_addr,
(socklen_t*)&clilen);

if (newsockfd < 0)

{

printf (" [send task] ERROR on accept");

}

The server socket is now ready to accept the incoming message from the client. It is
necessary that the commands generated by the client are streamed in a proper format such

that each command can be recognized and processed accordingly by the server.

50

Chapter 4: Software Implementation

4.5 Command Generation

Commands generated are streamed through the communication link established between
the client and server using sockets. The whole system is divided into two parts; one is the
controller/client and the other server/robot. When a command is given by the controller
using a joystick, the interface code check for several conditions and interprets what
commands should be sent. A flow chart in Figure 23 represents on how every command

is interpreted

4.5.1 CASE1: To Generate Commands for Left and Right Turn

When the controller enters CASEI, the axis is checked. If the axis is A and button0 is
pressed, it moves on to check the value of the A(xis. If the value resulted in the motion of
the joystick which is less than 32111(Figure 24), then the duty cycle for lefi motor
(DutytCyclel) and right motor (DutyCycle2) are calculated as shown in Figure 23. The
calculated duty cycle value is between 0 and 1, if the resultant value is 0.25 that implies a
25% duty cycle. The calculated duty cycles along with a letter “L” to indicate that the
user wants the robot to move left is packed into a single text value and sent as a
command. The commands produced in this manner are streamed continuously over the
Wi-Fi using sockets. If the value resulted in moving the joystick is greater than 32911
(Figure 24) the controller moves to an “else” loop and the duty cycles for right motor and
left motor are calculated. The calculated duty cycles along with the letter “R”, 10 indicate
that the controller wants the robot to move right is packed into a single text value and

sent as a command.

51

Chapter 4:

Software Implementation

START

CASE2:
Jst.axis Nuit

CASE1:
Jst.axis A

if Jst.axisA &8 Jst.axisb=NULL
DutyCycle1=0
DutyCycie2=0
Set direction ="N"
Command=direction+DutyCycle1+DutyCycle2

8

If Jst axis A &&
Button0==true

Else if(
st.axisB<32111

CASE3:
Jst.axis B

—CaseN

it Jst.axis B 88
Button1==true

1
st.axisB>32911

DutyCycle1=(32111-jst. AxisA)/322

DutyCycle2=(32111-jst AxisA)}/322

Temp=DutyCycle1/
Math.Log10({DutyCycle1)

DutyCycle1=(32911-jst. AxisA)/329

DutyCycle2=(32911-jst. AxisA)/32¢

Temp=DutyCycle2/
Math.Log10(DutyCycle2)

DutyCycle1=(32111-jst. AxisB)/322
DutyCycle2={32111-jst. AxisB)/322
Set directiom ="F~

DutyCycle1=Temp

Set directiom ="R"

Command=direction+DutyCyclet+
DutyCycle2

DulyCycle1=Temp

Set directiom ="L"

Command=direction+DutyCycle1+
DutyCycle2

Command=direction+DutyCycle1+
DutyCycle2

DutyCycle1=-(jst.AxisB)/329-100
DutyCycle2=-(jst. AxisB)/329 -100
Set directiom ="D"
Command=direction+DutyCycle 1+
DutyCycie2

Figure 23: Command Generation Flow Chart

The command structure to turn right is as follows:

cl=1l,cr=0.2; WConstant

sl = (int)(cl * dutycyclel); \Casting
sr = (int)(cr * dutycycle2);

direction = “R” \\Casting

command = "+";
command += direction + "+" + s] + "+" + sr + "+";

Similarly to turn Left:

W\Constant
WCasting

cl=1,cr=0.2;
sl = (int)(cl * dutycyclel);

52

Chapter 4: Software Implementation

sr = (int)(cr * dutycycle2); WCasting
direction = “L”

command = "+";

command += direction + "+" + sl + "+" + sy + "+";

Note: The Symbol “+° at the begning indicates the start of a command

4.5.2 CASE2: Neutral

When the joystick is in the null position, that is values between 32111 and 32911 on both

Axis B

. Neutral
— region

Axis A 32?2’— Axis A
e !,1lizj>
32433

31789 _—/132911

— 32433

Axis B Y

Figure 24: Neutral Region for Joystick Mapping

axis’s (axis A and axis B region marked with a circle in Figure 24), no task is performed.

In other words the robot is in the standstill position.

Command for Neutral:
sl =0;
sr=40;

direction = 'N';
command = "+";
command += direction + "+" + s] + "+" + sr + "+";

53

Chapter 4: Software Implementation

4.5.3 CASE3: To Generate Commands for Forward and Reverse Motion

When thé controller enters CASE3, the axis is checked, if the axis is B and button] is
pressed, it moves on to check the value of the axis. If the value resulting from the motion
of the joystick is less than 32111 (Figure 24), then the duty cycle for left motor
(DutytCyclel) and right motor (Duty Cycle2) are calculated as shown in Figure 23. Here
the duty cycles for both the motors are the same. The calculated duty cycies along with a
letter “F” to indicate that the user wants the robot to move forward is packed into a single
text value and sent as a command, the commands produced here are streamed
continuously over the Wi-Fi using the sockets.

If the value resulting in moving the joystick is greater than 32911 (Figure24) the
controller moves to an “else” loop and the duty cycles for right motor and left motor are
calculated. Again the duty cycles for both the motors are equal. The calculated values are
assigned a “-” sign to indicate that the controller requires the robot to move in reverse
direction. The calculated duty cycles along with the letter “D” to indicate that the
controller wants the robot‘to move in reverse, is packed into a single text value and sent

as a command.

45.4 CASEN
A few more cases are implemented which are not shown in the Figure 23, these cases are

labeled as CASE N

4.5.4.1: Rotation

To generate a command for the robot to rotate by itself we need to have two equal duty

54

Chapter 4: Software Implementation

cycles but opposite in sign. A fixed duty cycle of 25% is assigned to both the motors and
this task is achieved when button 2 of the joystick is pressed. This command is

represented by the letter “O” followed with dutyclylel and dutycycle2.

4.5.4.2: Stop Command
A stop command has a duty cycle] =duty cycle2=0. This command is associated with a

letter “S”. This command is generated when button 3 of the joystick is pressed.

Similarly the code developed is very flexible for any further modification and can be
expanded to have any number of cases such as U-turn from the right, U-turn from the left
etc. All commands generated are transmitted to the server via the sockets, the server

interprets these commands and processes the commands to perform the required task.

4.6 Command Processing at Server Side

The request/commands sent by the controller consist of three fields, one indicating the
direction of motion, the second the duty cycle of the left motor and finally the duty cycle
of the right motor. A buffer is created to read the raw data in the string format.
Commands in the buffer are differentiated by using the symbol “+7 at the start of the
command. A stream of commands in a buffer is shown in Figure 25. The stream of
commands are then read from the buffer and the values are processed accordingly as
shown in Figure 26. First the code checks to find the starting point of the command
which is identified by the symbol “+7, if it finds the starting of the command, it moves to

the next stage and looks for the direction and stores the value of the

55

Chapter 4: Software Implementation

Command 2
Command 3_'\

» Command 1

Figure 25: Command Stream in a Buffer

direction in a variable called “dir”, next it checks if there is a start of new command, if
not then the value of dutycyclel] is read and stored as ditl. The obtained value is then
converted from string to an integer value and stored in a variable “dtl”, similarly the
next value read is duty cycle2 , the value read is then stored into variable “dt2”. dtland
dt2 are converted with respect to the clock divide value (Appendix A). These values are

further processed according to “dir” value read using the switch and case statements.

As an ¢xample consider case “F” (Figure 26) (section 4.6.1) (to move forward). We have
two registers/cémponents Z_PWM_0 for left motor and Z PWM 1 for right motor. The
register that controls the direction of motion, forward (FORWARD BASE) is set to 1
and reverse (REVERSE_BASE) to 0, then a check is made if the requested dutycyclel
and dutycycle? are greater than 0, if the condition is satisfied it further checks if the
dutycyclel requested by the user is less than the clock divide value or the counter value.
If the duty cycle value is greater than the clock_divide value an error shows up. The new
duty cycle is returned to the task logic (Appendix), this value is compared with the
counter value and a new Z-PWM_0 is produced. Similarly Z PWM 1 is also produced

for right motor. In this case the robot is to move forward so the Z PWM_ 0 and

56

Chapter 4: Software Implementation

Z_PWM_1 are equal. Similar cases have been implemented [Appendix] for left turn,

right turn, reverse, U-Turn from the right, U-Turn from the left and for arbitrary degree

rotation.

Create o cufter
Initiglization © Int i=3;
rtj=0
int h=C
Irti=0
Reac the valuss ints Buffer

I ibuer fi-+] == +1 »

— e P —

for (i=;; buffenil | ="« 1 j+=3
7 girectonfki=buFerfi]:
K 7
dir = cirection[0]:

I+ -

)

forvi=:; bufferti} | ="+" | i+-]
{ cutvewclet]j] = vuffer(i]
=)
int di1 = atiocidutyeyec e
final_dutycycie t=dt1
i+=:
I
v
for 1i= huFernii 1= "~
{ cutveycleZ[i] = bufferfi}
I+ }
it di2 = aticidutyeyc ey
finai_dutycyceZ=di2

f+-

i
di1=500000-ifina _dutycycle 1S 000102
d2=S00000-fina _cutyeycle 185000138

R

Sewiteky gir 1

OO0

e

Figure 26: Command Regeneration at Server Side

57

Chapter 4: Software Implementation

4.6.1 Case 'F'

IOWR (FORWARD BASE,0, 0x01);
IOWR (REVERSE_BASE,0, 0x00);
if (dt1>0 && di2>0)
{
duty cyclel =dti;
duty cycle2 = di2;
if (duty cyclel <
IORD_ALTERA_AVALON_PWM CLOCK_DIVIDER(Z PWM 0 BASE))

{ .
return_code = altera_avalon_pwm_change duty cycle(Z PWM_0 BASE,

duty_cyclel);
check_return_code(Z PWM 0 BASE, return_code);
IORD_ALTERA_AVALON_PWM_CLOCK_DIVIDER(Z_PWM_0_BASE));

}
if (duty_cycle2<
IORD_ALTERA_AVALON _PWM_ CLOCK_DIVIDER(Z PWM 1 BASE))

{
return_code = altera_avalon_pwm_change_duty cycle(Z PWM 1 BASE,

duty cyclel);
check_return_code(Z PWM 1 BASE, return_code);

IORD ALTERA AVALON_PWM_CLOCK_DIVIDER(Z PWM_1 BASE));

1y

Chapter 4 Summary

In this chapter the major functionalities of the GUI were outlined. This chapter described
how the joystick interface was developed to map the movement of joystick into
commands. A explanation of client-server programming, command generation, encoding

and decoding of commands was also presented.

58

Chapter 5: Advance Implementation

CHAPTER 5

ADVANCED IMPLEMENTATION

Chapter Overview

This Chapter outlines the development of video feedback, GPS implementation and an
obstacle avoidance algorithm using sonar sensors. Parts of this chapter were done in

collaboration with Monir Khan. Specific task responsibilities are noted in the footnotes.

5.1 Video

Video for robotics is an essential component to achieve a reliable telecontrolled robot.
For this project the video is captured using a Logitech quickcam (ID: 046d: 092c)
webcam located at the robot side. Only the front looking view of the robot is captured.
Even though using a USB web camera might not be fast enough for critical real time
applications, it is sufficient for the near real time application being used here. The
webcam is connected to Soekris Net5501 a single computer board running a Linux
Operating System which has a USB port. The kernel is custom configured for minimum
memory usage and maximum processor throughput. [WWKC] briefly explains how a
custom Linux kernel is built complied and installed. Net5501 can communicate with the

external world using a Wi-Fi network

59

Chapter 5: Advance Implementation

Router

Router

LAN

LAN

A

(22

Access Point/
Base Station

USB Camera

Desktop/ Laptop

—

Wi-Fi link

User Interface
With Video Feedback

Mser Interface and Video Capture
Software Developedin C# and
VC++

Web Cam
Streaming
Server

t

Frame
Grabber

Debian Linux

Soekris Net 5501

Figure 27: Live Video Streaming

The main components in deploying a video feedback with some image processing are as

follows:

Webcam Frame Grabber

Video Processing and Video Streaming Server

Video Capture and Display at the Controller End.

60

Chapter 5: Advance Implementation

5.1.1. Frame Grabber

A device that captures and stores a complete video frame is defined as a frame grabber. If
the input from the video device is analog then a frame grabber converts the analog video
signal into a digital video signal. The Logitech webcam used is capable of capturing
images up to 640 x 480 pixels. A GSPCA [GSPC] driver is used to capture images from
the webcam. The driver has been compiled and added to the kernel. [WWVC] explains
how to compile the driver code and load the module into the Linux Kernel. This driver
works as a frame grabber capable of capturing 17frame/sec. Due to the limitation in the
USB webcam used, the frame rate is kept between 15- 17 frames/sec. Higher frame rates
can be archived using the CMOS or high speed IP cameras. When the driver has been
installed, a video device videoO is created (in /dev/video0). VideoO acts as a buffer

which sends out the frames that are captured.

5.1.2. Video Streaming Server

Soekris Net 5501 is a video server which serves as a bridge between the webcam and the
Internet. The frame grabber provides a continuous stream of images which have to be
processed and converted into a video stream. The frames captured by the frame grabber
are played at a certain speed (minimum 11frames/sec) in order to view these pictures as
video. This video stream is processed and broadcast over the network in real-time. VLS
(Video LAN Stream) is used to process the frames captured by video0 device and convert
it to a moving picture format i.e. MJPEG format. MJPEG streams can be broadcast over
Internet either in uni-cast or multicast mode. MPEG stream is set to unicast mode when

the intent is to send the video feedback to only one end user (controller). If there are N

61

Chapter 5: Advance Implementation

end users then the video stream is set to a multicast stream. Unicast streams provide some
degree of security features because only one end user can have video feedback (without
some degree of effort). In the case of a video stream, a loss of few packets does not
hinder the overall performance. What is needed is for the packets to be delivered on time
hence RTP (Real Time Transport Protocol) protocol is used for communication. RTP
provides end-to-end delivery service for real-time applications. RTP packet structure is

shown in Figure 28.

UDP
Header

RTP Payload

IP Header (Video packets)

Figure 28: RTP/UDP Header

In this case RTP uses UDP as a transport protocol and UDP packets are encapsulated
within the IP packets for transfer over an 1P network. RTP headers contain the
information related to the payload such as the source size, encoding type etc. The

captured MJPEG is streamed over the networking using UDP sockets.

5.1.3. Video Capture and Display at the Controller End

A UDP socket at the controller end is listening to the video server and waiting to receive
video streams. Even though the captured video stream can be displayed in a web browser
[MJO1] which can be achieved by writing a simple HTML code, a Graphical User
Interface (GUI) provides more flexibility and reliability if modified for future

developments. VLC player’s dlls (Dynamic Link libraries) are used to access all the

62

Chapter 5: Advance Implementation

required functions of VLC media player and develop a video capture interface. The
interface developed here uses UDP sockets through which the RTP packets are received
with time stamps. The packets are reframed by the video capture interface and displayed
as MJPEG streams. At this time the video display within the GUI is not operational and
we have had to resort to a web browser for the display. The following is the glimpse of

how a C# code should be written to output video on the controller screen.

public Control VideoOutput
{
get { return m_wndOutput; }
set
{
// clear old window
if (m_wndOutput = null)
{
m_wndOutput.Resize -= new EventHandler(wndOutput_Resize);
m_wndOutput = nuli;
if (m_iVicHandle '= -1)
SetVariable("drawable”, 0);
}

i set new
m_wndOutput = value;
if (m_wndOutput != null)
{
if (m_iVIicHandle !'= -1)

SetVariable("drawable”, m_wndOutput.Handle.Tolnt32());
m_wndOutput.Resize += new LventHandler(wndOutput_Resize);
wndOutput_Resize(null, null);

| .
)
)

63

Chapter 5: Advance Implementation

5.2. Sonar Sensor4
SRF04 sonar sensors from Devantech are used to implement obstacle avoidance and
intelligent navigation using obstacle avoidance control logic. A SRF04 emits a short burst

of sounds and listens for the echo to detect if any objects are present.

Trigger Pulse
10uS Min

Hardware
Generated trigger
from DE2 Board
to SRF 04 module

8 cycle Soric Burst
Saenic Burst output
trom SRF04

Echo Pulse Output from
SRF04 and input to DE2's Echo Pulse

GPIO pin 100uS to 18mS

If no object is detected
echo pulse is approx
36mS

)

1

l
-

Adlow 16mS from End ¢t
Echa tc the Next Trigger
Pulse

Figure 29: Sonar Sensor Timing Diagram

A trigger input to the sonar is generated using HDL implemented on DE2 Development
board. One of the 40 GPIO pins from the Altera DE2 board is used to output the
generated pulse. The trigger pulse generated is required to be at least be 10 microseconds
in duration. At every trigger pulse the sonar sensor emits the sonic burst which consists of
8 cycle sonic burst shown in Figure 29 [WWSNR]. This pulse travels at a speed of sound
1.125feet per millisecond, hits a object and bounces back if it is reflected by an obstacle

in its path or otherwise just diminishes. The distance to the object is measured using the

4 With the specific task of the Sonar, M. Khan and | worked in developing the required hardware and
software components collaboratively.

64

Chapter 5: Advance Implementation

time between the transmission of the sonic burst and the echo pulse. The echo pulse
outputs a high going pulse that corresponds to the time required for the echo to return.
The echo pulse is given as input to the DE2 through the GP1O pin. Using the time of echo
pulse, the distance to the obstacle is calculated. Also the trigger pulse must wait at least
10 milliseconds from the time the echo pulse is returned or at least 36 millisecond if no

echo is returned before being re-triggered.

5.2.1 Distance from the Obstacle

The echo pulse is read and stored into one of the DE2 board registers, the register acts as
a buffer; there is a continuous inflow of data whenever it approaches obstacles. The value
is read in units of time (in microseconds), this value is converted into distance of the
obslaéle from the present position of the robot either in inches as follows:

X- Output of the sonar sensor in microseconds.

D — Distance of the robot from Obstacle.

Also, a pulse width of 74 microseconds = linch from the obstacle.

Therefore we have

X .
D=Z"inches ---Equation 10
74 9

In real time, not every individual value read is passed on for further processing, instead a
average of 5 values is passed on to the obstacle avoidance controller for a smooth and
stable operation.

Note: There is a possibility of +/- 5% error from the calculated value (74) in Equation 10.

65

Chapter 5: Advance Implementation

In the implementation here, 2 SRF04 sonar sensors were used at the front of the robot and

1 in at the rear of the robot.

5.3. Global Positioning System (GPS)5

GPS is a Global navigation satellite system. The GPS receiver uses at least 3 satellites of
the 24 medium earth orbit satellites that transmit precise microwave signals to determine
location, direction, speed and time of where the GPS receiver is placed. A mini-PCl GPS
card MP-954GPD is used here. This PCI card is plugged into the Soekris board which
runs Linux. When customizing the kerel for the GPS application, a driver shipped along
with the card is configured into the kernel. Figure 30 shows detailed schematic on how
the PC] GPS receiver is used. The Soekris board which connects the remote robot to the
Internet is connected to the GPS receiver. The GPS receiver calculates all the required
data using the information provided by 3 or more satellites. The GPS receiver is attached
to an antenna which is tuned to the frequency transmitted by the satellite, the receiver
processes the signal using a highly stable clock produced by a crystal oscillator. The
processed signals are sent to the driver installed for MP954 PCI GPS, which provide all
the informa{tion to the user. MP954GPS is capable of using up to 12 satellites. This

information is streamed over the wireless network using sockets

5 With the specific task of the GPS, M. Khan and | collaborated on the implementation.

66

Chapter 5: Advance Implementation

7 Date:

Time:
Direction:
Gl ‘ Speed:
--Z¥ Desktop/ : Status:
N Laptop HDOP:
W PDOP

LAT N xx%xx’ LON :E xx°.xx"

Router

LAN

((2))

=z
&S Wi-Fiink

Router LAN Debian Linux

OCKe!

) MP954 Driver
Streaming for

Access Point/
Base Station Soekris Net 4826

Figure 30: Implementation of GPS Receiver

At the controller side, a TCP/IP socket receive_s the data and differentiates between all the
different forms of data (such as date, time etc) and displays it on the screen. The GPS
receiver MP954GPS provides the data, time, direction, speed, and horizontal dilution of
precision (HDOP), positional dilution of precision (PDOP), latitude, longitude and also
satellite status. The HDOP and GDOP describe the geometric strength of satellite
configuration on GPS accuracy. Using this data we can locate the position of the remote

robot to within +/- 3 feet.

5.4 Implementation of Obstacle Avoidance

Navigation using sonar sensors is achieved by implementing obstacle avoidance control

67

Chapter 5: Advance Implementation

logic locally on the remote robot. Three SRF04 sonar sensors are used in the
implementation of semi autonomous robot navigation. Figure 31 shows the

implementation of obstacle avoidance control logic in Niosll processor.

When an obstacle is detected in the path of the robot, an echo pulse is generated and the
distance is calculated as shown in equation 10. The value of distance calculated, which is
in inches, is sent to the obstacle avoidance controller for any further action on how it
should generate a PWM pulse for the motion of the robot. If no obstacle is detected the
robot controller listens to commands sent by the remote operator or controller. In case an

obstacle is detected the algorithm shown in the flow chart (Figure 32) is implemented.

pC/OS-II for Nios H processor

nC/OS-II for Nios Il Application

Contro! Output

\ 4 A

Sonar 1 Control Sonar 2 Control Sonar 3 Contiol
OC Motor Control Task Task Task Task
}) [A [& |)
e i g
Y Y z \ : \ g Nios Il
Trigges Trigger & Trigger [Processor
PwM Pulse 1 Pulse 2 Pulse 3
Generation
ext
Y | i i
GPIO GPIO GPIO
I][l I ! GPIO GPIO GPIO GPIO GP1O GPIO

] it | it } i —
N FE l) l l 3
< 13 < < = m = m = i
3 p: m m a =) o] G & o
2 7 R g] 2 < :

i l c =2 1 T i €

P Y v ¥

‘ SRF04 SONAR SRF04 SONAR SRF04 SONAR

DC MOTOR SENSOR 1 SENSOR 2 SENSOR 2

Figure 31: Implementation of Obstacle Avoidance Control Logic in the Nios II

68

Chapter 5: Advance Implementation

Implementation of the obstacle avoidance algorithm is written in C programming using
the Nios 11 IDE programming environment. The code uses case statements as shown in
the flow chart. Different modules or cases are used for different sensors. Every sensor
data is labeled so as to identify which senor has detected an object in its path of motion.
The control logic enters case D1 whenever a sensor D1 located on the front towards the
right side of the robot detected an object in its path of motion. The control logic enters
case D2 whenever a sensor D2 located on the front towards the left side of the robot
detected object in its path of motion. The control logic enters Case D3 whenever a sensor
D3 located in the center of robot rear side detected object in its path ofmotioh.

When sensors D1 and sensor D2 detect an object in their path of motion then case DI

“& & D2 send the control signal to the robot.

5.4.1. Case D1: Obstacle Detected by Right Sensor on the Front of the Robot

When an obstacle is detected in the front on the right side of the robot, the robot should
react in such a way that it would avoid the obstacle and move toward the left. Before
processing the data from the sonar sensors to send out a command to the motor controller,
it first checks if the motion is forward, if false it moves on to the next case statement. To
make the robot move towards the lefi, it is necessary that the duty cycle (directly
proportional 10 speed) of the left wheel should be less than the duty cycle of the right
wheel. If the distance of the obstacle from the robot is less than or equal to 10 inches
(Critical Distance) then the robot halts irrespective of the values given by the other
sensors. If the distance to the obstacle for sensor D1 from the robot is less than or equal

to 40 inches then the duty cycle set by the obstacle avoidance algorithm for the left motor

69

Chapter 5: Advance Implementation

1s 25% of the actually duty cycle given by the controller and consequently the duty cycle
of the right motor is 50% of the actually duty cycle given by the controller. A check is
made to determine if the distance to the obstacle is still less than the critical distance, if it
approaches the critical distance then the robot halts and overrides the user commands
completely. Similar actions are performed in the case of obstacles detected at distances
less than or equal to 80 inches by the robot’s local imel]vigence. When an obstacle is
detected between 40 and 80 inches away from the robot, the modification to the speeds of
right and left wheel of the motors are higher. When the distance of the obstacle is greater

than 100 inches then, the robot just obeys the commands sent by the controller.

5.4.2. Case D2: Obstacle Detected by Left Sensor on the Front of the Robot
When obstacle is detected in the front on the left side of the robot, the robot should react
in such a way that it would avoid the obstacle and move towards the right. Before
processing the data from the sonar sensors to send out commands to the motors, it first
checks if the motion is forward, if false it moves on to the next case statement. To make
the robot move towards the right, it is necessary that the duty cycle of the right wheel
should be less than the duty cycle of the left wheel. If the distance of the obstacle from
the robot is less than or equal to 10 inche.s (Critical Distance) then the robot halts
irrespective of the values given by the other sensors If the distance of the obstacle for
sensor D2 from the robot is less than or equal to 40 inches then the duty cycle set by the
obstacle avoidance algorithm for the right motor is 25% of the actually duty cycle given
by the controller and consequently the duty cycle of the left motor is 50% of actually duty

cycle given by the controller.

70

Chapter 5: Advance Implementation

=D

CASE D1

Y

CASE D2

Y

Case (D1 88
D2)

\d

CASE D3

Y

1f { motion=—{forward) {
Case (D1 < 10)
Set Duty Cycle of Left
Motor=0% &
Set Duty Cycte of Right
Motor=0%
while(D1510) ¢
Case (D1<40)

Set Duty Cycle of Left
Motor=25% &

Set Duty Cycle of Right
Motor=50%

Case (D1 < 80)

Set Duty Cycle of Left
Motor=50%

Set Duty Cycle of Right
Motor=75%

Case (D1<100)

Set Duty Cycle of Left
& Right Motor =
Duty Cycle Set by
Controlier }}

If (motion==forward) {
Case (D2 < 10)
Set Duty Cycle of Left
Motor=0% &
Set Duty Cycle of Right
Motor=0%
While (D2 <10) {
Case (D2=40)

Set Duty Cycle of Right
Motor=25% &

Set Duty Cycle of Left
Motor=50%

Case (D1 < 80)

Set Duty Cycle of Right
Motor=50%

Set Duty Cycle of Left
Motor=75%

Case (D1<100)
Set Duty Cycle of Left

& Right Motor =
Duty Cycle Set by

Controller }}

If (motion==forward) {
Case (D1]] D2=< 10)

Set Duty Cycle of Left
Motor=0% &
Set Duty Cycle of Right
Motor=0%
While (D1< 10) {
Case (D1 88 D2 < 30)

Set Duty Cycie of Left
Motor=20%

Set Duty Cycle of Right
Motor=10%

Case (D1 88 D2 <40)

Set Duty Cycle of Left
Motor=20%

Set Duty Cycle of Right
Motor=30%

Case (D1 &8 D2 <100)
Set Duty Cycle of Left

& Right Motor =
Duty Cycle Set by

Controller }}

Hf{motion==reverse) {
Case (D3510)

Set Duty Cycle of Left
Motor=0% &
Set Duty Cycle of Right
Motor=0%
While (D1<10) ¢
Case (D3 < 40)

Set Duty Cycle of Left

Motor = 50% (Reverse)
Set Duty Cycle of Right
Motor=50% (Reverse)

Case (D3 < 80)

Set Duty Cycle of Left

Motor = 75% (Reverse)
Set Duty Cycle of Right
Motor=75% (Reverse)

Case (D3 £100)

Set Duty Cycle of Left
& Right Motor =
Duty Cycle Set by
Controller }}

&

5

"1 D1- Right Sonar Sensor
D2-Left Sonar Sensor
D3- Rear Sensor ‘
- Set Duty Cycle is the percentage
of actual Duty Cycle Set by The
Controller
Note3: Number 40,80,100 represent the
the distance from the obstacle in
inches

Figure 32: Obstacle Avoidance Algorithm

The algorithm checks again if the distance to the obstacle is still less than the critical
distance, if it approaches critical distance then the robot halts and overrides the user
commands. Similar actions are performed such as in the case of obstacles less than or
equal to 80 inches from the robot except that the modification to the speeds of right and

left wheel of the motor are higher. When the distance of the obstacle is greater than 100

71

Chapter 5: Advance Implementation

inches then, the robot just obeys the commands sent by the operator or controller.

5.4.3. Case D3: Obstacle Detected by the Rear Sonar Sensor

When an obstacle is detected by SRF04 sensor on the rear end of the robot, the distance
from the obstacle along with a tag D3 is sent to the obstacle avoidance algorithm. First it
checks if the direction of motion is reverse and only then starts the processing on how to
generate the commands for the motor controller. When the distance between the robot
and obstacle is less than 10 inches, the controller overrides the user commands and sends
a control signal to gf:nerale 0% duty cycle on both the wheels. When the distance
between the robot and the obstacle is less than 40 inches then, a control signal to produce
a duty cycle which is 50% of the actually duty cycle requested by the controller. The
algorithm also checks if the distance of the robot to the obstacle is in critical distance. If it
approaches the critical distance then the robot halts. Similarly when the distance of the
robot from the obstacle is less than 80 inches then the duty cycle is set to 75% of the
actually duty cycle requested by the user. Finally when there is no obstacle found in its

path of motion the robot just follows the control sent by the user.

5.4.4 Case D1 and D2: Obstacle Detected by Both the Front Sensors

When an obstacle is detected by both the sensors in the front, the obstacle control logic
has to decide which way it has to move either 1o its right, left or stop. By default if the
obstacle is detected by both the sensors the robot moves towards its right. When both the
sensors locate an obstacle within its critical distance then the robot stops and overwrites

all the commands of the operator or controller. When the obstacle detected is in the

72

Chapter 5: Advance Implementation

range of 10 inches to 40 inches, a signal is sent to the motor controller to move towards
its right. Duty cycles of 10% and 20% are set for right and left wheels respectively. The
command to move towards right is executed 5 times. If both the 'sensors stili finds an
obstacle, a command to move left with a duty cycle of 20% on the right and 10% on the
left is executed 10 times. If there still exists an object detected by both the sensors then a
stop command is given to the robot (not shown in Figure5). Similar actions are performed
when an obstacle 1s detected in a range of 40-80 inches by both the sensors, except that
they have a dutycycle of 20% for the right wheel and 30% for the left wheel. When
moving towards right they have a dutycycle of 20% for the right wheel and 30% for the

feft wheel.

Summary of Chapter 5

Chapter 5 described the overall development of video feedback, and outlined the working
principles of GPS and sonar. Also explained is a detailed obstacle avoidance algorithm
for the mobile robotic platform developed by the author. The obstacle avoidance control
subsystem was motivated by related research in fuzzy control. The algorithm developed

here is considerably more heuristic driven but operates along similar lines of reasoning.

73

Chapter 6: Results and Discussions

CHAPTER 6

RESULTS AND DISCUSSIONS

Chapter Overview

This Chapter discusses results in controlling the telerobotics platform over a Wi-Fi
network. -

Parts of this chapter were done in collaboration with Monir Khan. Specifically we
collaborated on the basic test that were performed and the protocol for their evaluation.
Although there are a number of more formal methods of evaluation we were more

interested in basic function and ease of operation.

6.1 GUI:

The interface developed is shown in Figure 20. This interface runs without any major
issues and it appears to be reliable as far as we were able to validate from the experiments
performed. Moving the joystick caused the sliders Axis 1, Axis2 and Axis3 to represent
the joystick motion. Using thev host 1P address and port number, this interface was able to
communicate with the remote telerobotic platform (or server) and sends commands
through a designated socket. The interface was able to display the sonar sensors data
provided by the telerobotics platform. Initially platform independent GUI was developed
using WxWidgets, but due to the many limitations and bugs in WxWidgets the final

version had to be developed in the .Net environment. The GUI can be easily extended to

74

Chapter 6: Results and Discussions

incorporate additional sensors.

6.2 Basic Functionalities of Telerobotic Platform:

The basic functionalities of telerobotics platform include the ability to move the robot
forward, reverse, stop, turn left, turn right, rotate, turn right by 90 degrees and turn left by
90 degrees. All these functionalities were tested in the lab and the entire prototype
platform was functional within a local wireless network. The operator used a joystick to

guide the robot. The following table provides the detailed list of operations performed:

Direction Of Motion Result Notes
Forward Successful -
Reverse Successtul
Turn Left Successtul Turning angle not precise
Turn Left Successiul Turming angle not precise
360° rotation Successful -
90° Left Turn Successiul -
90° Right Turn Successful -
Stop Successful -

Table 1: Basic Functionality results for Telerobotics Platform
6.3 Video Feedback

The video feedback from the robot is displayed in a web browser. The final frame rate
was approximately 7-9 frames/sec. The web browser can be either Mozilla or Internet
Explorer, both in theory refresh with a 0 second delay between the frames. The delay was

75

Chapter 6: Results and Discussions

well below 1 second under test conditions (No simulator or tools were used to perform
delay analysis, it was by observation only). Robot control using the joystick was possible
using video feedback. Under test condition the command delay was negligible. Every
frame was associated with a time stamp on it which helped us to roughly determine the
delay in the network, the time a frame is captured using the USB camera and the time the

frame is displayed at the controller end is almost identical (less than 1 second).

6.3.1 Video Feedback Using CMOS Camera

The initial idea for video feedback was to use a CMOS camera along with the DE2 board
which would have enabled us to obtain a high resolution picture. The images could be
captured and processed using the FPGA, but could not be streamed over network due to
memory limitations. The high resolution video could be displayed on a VGA monitor,
‘successfully demonstrating the capture and image processing on the robot. The difficulty
in video streaming was due to the limitations of the Micro C/ OSII and the frame buffer
of the CMOS camera which used the same memory component i.e. SDRAM of DE2

board.

6.4 Sonar Sensor

Sonar sensors successfully detect objects and sent out echo pulses to the DE2 board. The
time period of the echo pulse represents the distances of the robot from obstacle. Even
though the distance to an obstacle obtained by sonar is not as accurate as the laser sensor

detectors, the sonar sensors are sufficient for the application here.

76

Chapter 6: Results and Discussions

6.5 Obstacle Avoidance Algorithm

The obstacle avoidance algorithm was designed successfully. The algorithm could read
the distance values and enter into the appropriate case statements. When the sensor
detected an obstacle in the front or in the rear the algorithm worked partially with some
degree of accuracy. An obvious modification at this point would have been to attempt to
introduce a learning algorithm to tune the heuristic based control of the initial

implementation.

6.6 Cost Efficient Design

The robot platform in this thesis is designed with the minimum number of available
resources. The components, boards, sensors, motor controllers etc. inclusive of the robot
body cost less than $§ 1300 CAN. A completely functiona] system can be expanded to
cover a wider range of more critical life saving applications. These could include
extending the platform for land mine detection, search and rescue, etc. without
substantively larger costs. The main point here is that with much of the technology that

was recently cost prohibitive telecontrol of robots is now within feasible limits.

6.7 Summary of Chapter 6

In this chapter the test results while operating telerobotic platform where outlined. The
tests conducted were undertaken over a local wireless network. Factors associated with
delay were considered negligible although further tests are required to more completely

exercise the prototype. The wireless LAN was a private network albeit co-located with a

77

Chapter 6: Results and Discussions

number of other 8§02.11 networks. In a more typical deployment one would like to use the
existing 802.11 infrastructure and services in which case a greater degree of
unpredictable behavior can be expected. Some test results for obstacle avoidance were
also outlined and finally we concluded that robot development of this type is cost

effective.

78

Chapter7: Conclusions and Future Work

CHAPTER 7

CONCLUSIONS and FUTURE

WORK

7.1 Conclusions

For this thesis, an operated assisted telerobotic platform was developed. This platform
used Wi-Fi as the medium of communication. The platform can perform all the basic
operations of motion that were designed for and we successfully demonstrated that the
methodology lends itself to the inclusion of additional hardware devices and sensors. The
controller uses a joystick as control device to remotely maneuver the robot. Video
feedback was provided to the operator to help him/her perform a given task with some
degree of precision. An obstacle avoidance algorithm is one illustrative example of how

feasible this design is for any future extensions.

The platform design is flexible for future modification as the platform was developed
~using pC/ OSH as its RTOS and uses an FPGA for the hardware components. The ‘soft-
core nature of FPGAs can be used to reconfigure or redesigned the hardware according to
user requirements. These features make the robotic platform ideally suited for
prototyping and closer to their industrial realizations. Even though the basic design and
algorithms are complete, some parts of the design could not be realized. Results however

illustrated that the design of telerobotic platform is a success with some minor

79

Chapter7: Conclusions and Future Work

exceptions. The development of the motor controllers and remote control of robot using a
joystick are considered the more major contributions in this thesis albng with the
implementation of the video feedback. Mitigating the problems associated with delay will
remain active research areas. The two most effective means, namely improved video
communication and provisioning the robot with a degree of local control were addressed

in this work.

7.2 Recommended Future Work

The primary objectives in this line of study will be to develop a more versatile
telerobotic platform that should be reliable and as universal as possible. To achieve these
objectives the following issues should be taken into consideration:
1. This thesis focuses only on a Windows OS GUI; in the future we would like
to expand it to be a platform independent GUI
2. This thesis currently has a limitation of using web browser for video feedback;
in the future we would like to combine the video feedback and the control
system into one GUI
3. We did not consider the factors such as wheel slip, terrain uncertainty, etc. In
the future we would like to consider some of these uncertainties to develop a
more complete telerobotic platform.
4. 1In the future use we would like to use the GPS data and incorporate the data
into either Google maps or Yahoo maps to exactly locate the robot location
when left all by itself and have the ability to query its position from any

browser.

80

Chapter7: Conclusions and Future Work

5. Personally, I would like to co-ordinate with the people working on land mine

detection and design a cost efficient wireless controlled land mine detector.

81

Appendix A: Task Logic

This appendix includes samples of the task logic for the PWM component.

Task Logic Code
always @(posedge clk or negedge resetn) //PWM Counter Process
begin
if (~resetn)begin
counter <= (;
end
else if(pwm_enable)begin
if (counter >= clock _divide)begin
counter <= (;

end
else begin
counter <= counter + I;
end
end
else begin
counter <= counter;
end

end
always @(posedge clk or negedge resetn) //PWM Comparitor
begin
if (~resetn)begin
pwm_out <= (;
end
else if(pwm_enable)begin
if (counter >= duty cycle)begin
pwm_out <= 1'bl;

end
else begin
if (counter == 0)
pwm_out <= 0;
else
pwm_out <= pwm_out;
end
end
else begin

pwm_out <= 1'b0;
end

82

Appendix

Appendix

Appendix B: Screenshots & Pictures

This appendix includes a screen shot of the SOPC builder and a picture of the platform

itself.

He Modde System Ve Yool Hel

- BystenCorcends ios ! More ‘T Settrvas Sysem Geosran

> thee DON Bokie

b, Crete Mes- Conguaent Lioch Sorze Frekne
- Avalon Components vooa Exteerst r
§ s tpeescer - BY a5 Eterrsl L_
- Bridges [‘
@ raston Istde £
- Cemmunication .
; & Jian UsFT Jse Madde Kz Cesoriphan ot (i Base £nd f\;
i @ i3V Sens i [pwm_itgelf 1 f Porszzt [0} dr 1x00681150 OxDCEN1SF
0 W8T RS o @ pwm_itself 11 3 (Pt 10} B 8400681180 OxOOEE1IEF
(O [MELEH LA vt B torward_1 o paas i) Tk FxD0631188 OA(WEIIIF
O WVHI Puc bt reverse 1 P (Paraid 10) b Ox086841A8 Ox006211AF
¢ o B0 Bus Asent P (Parstal 1)) < 00684920 {v(MRAIF
o Seny Ferige Maht :W:; IP?aifJ 0) <k 8x00689130 Ox00%S113F
- b_h_? B 1L RPID using 3 ExB061ID0 (L GIELTIIF
Hah2 ’ alg tee whh edg vtk NIOE andripnet sovce NOE) 0068110
O WPt ds. 9 . & BTGB
: O 0 Bus ¢ ontrohe dis1 PY Pargi 1) L] 1300681268
: D b Qrpred ML M forward 2 PG (Faait 10) fed 00681210 000651217
i O T4 fremer - Ada Mreverse 2 PEx (Parakt) b 00681220 Ox0MESI20F
’ . ISP ®aogp 1 P Panesd W) g &006810C0 T50UEAINCF
; - Display Bap2 P P el 1) o £x006890D0 [ONES1(OF
@ Chader LD (step_pwm_1 fremn_ovsion_iRerisce ! 1x006810E8 (o OES OEF
+ [P4C20 Hios Developn R ena 1 P Pasid K b €xB0B814BD UaDOES1IEF
+ EPS10 Hios Developn Z [Fde P (Parsid DY 7% Ox00B811CB (DOESHCE
« EP1S40 Wios Developn - :} [step_pwm_jtazl 1 P Parsid UO) ok Ex00684230 (x0065125F
g R R £ ukrasonic_tange_findes 0 it sone _ange_trde: ot
-~ 5t AERYH 200681290 G:00LN12EF
H Ll Busitar o farmnananty = Mzten por
e ® & O etho_0 £ (Paratdl WO) o $xDU6B1268 CoDOESI 26F
o @irg d B iPesd i) < 00681270
A Heslp v Mg lovn
cpu_0 v gor ed veh R copabdineg and must be congaed in Quantus T with the cxme kenge,
<+ [xre decsng hoe upotes,
i
¢ L_Ef__j et || emee |

Picture 1: Screenshot of Custom Components for Nios 11
processer

83

Appendix

Scekris Net 5501

A
5 Bz GSMC Mater Fower]
DE2 Board Controlier Regzlamr Buffer
A ~

yweheam

—
=

Connecons Mini 2T Sonar IDE
Wireless card Qensor ikard Drved

Picture2: Prototype of “Operator Controlled Telecontrolled Platform
with Obstacle avoidance”

84

References

References:

[ALTEO]

[ALTEI]

[ALTE2]

[AS97]

[BLPO3]

[EM94]

[GSPC]

[1J03]

Nios 11 processor handbook can be found in the following website

http://www.altera.com/literature/hb/nios2/n2¢pu niiSvi.pdf

Micro C/ OS-II real time operating system for Altera can be found in the
following website:

http://www.altera.com/literature/hb/nios2/n2sw nii52008.pdf

Hardware abstraction layers reference can be found in the following
website:

www.altera.com/literature/hb/nios2/n2sw nii52003.pdf

A. Saffotti, *“ The Uses of Fuzzy Logic for Autonomous Robot
Navigation” Soft Computing Vol. 1, no. 4 pp. 180-197, 1997, Available

on-line at http://aass.oru.se/Agora/FLAR/

B.J. Challacombe, L.R. Kavoussi, P. Dasgupta -“Trans-oceanic
Telerobotic Surgery “BJU International Volume 92 Issue 7 Page 678- 680,
November 2003

Eddie Tunste] and Mo Jamshidi —“Embedded Fuzzy Logic Based Wall
Following Behavior for Mobile Robot Navigation™
NAFIPS/IFIS/NASA’94. Proceedings of the First International Joint
Conference of the North American Fuzzy Information Processing Society
Biannual Conference, San Antonio, TX USA December 1994

http://mxhaard.free.fr/download.html

Jahng-Hyon Park and Joonyoung Park — Real Time Bilateral Control

85

[1G03]

[IN91]

[MS05]

[MSDN]

[NT99]

[NTA96)

[RCA98]

[RDH97]

References

for Internet based Telerobotic System * Proceeding og the 2003
IEEE/RSJ , Intl Conference on Intelligent Robots and Systems, Las
Vegas, Nevada-October 2003

A thesis by Jitendra Jaising Gaikwad ” at The university of Alabama at

Birimingham [Online] Available:

http://www.ece.eng.uab.edu/DCallaha/research/RoboticProtocol Thesis 1 .pdf

John Yen and Nathan Pfluge — Path planning and execution using fussy
logic” in Proceedings of the AJAA Conference on Guidance, Navigation,
and control, Volume 3, pages 1691-1698, New Orlands, LA, August 1991
K.Murugan and S. Shanmugavel “ Traffic Dependent and Energy-Based
Time Delay Routing Algorithms for Improving Energy Efficiency in
Mobile Ad Hoc Networks * EURASIP Joumals on Wireless
Communications and Networking 2005:5, 625-634

htip://msdn2.microsoft.com/en-us/default.aspx

Ning Xi and T.J Tarn —* Action Synchronization and Control of Internet
Based Telerobotic Systems™ Proceeding of the 1999 1EEE International
Conference on Robotics and Automation, Detroit, Michigan May 1999
Ning Xim Tzyh-Jong Tarn and Antal K.Bejczy —“Intelligent Planning and
Control for Multirobot Coordination: An Event-Based Approach” IEEE
Transaction on Robotics and Automation Vol12, No3, June 1996

Ronald C. Arkin and Michael Arbib (contributor) —“Behavior-Based
Robotics” MIT press, ISB 0262011654 , 1998

Rainer Palm, Dimiter Driankov and Hans Hellendoorn “Model Based

86

[RGG97]

[ROJO04]

[SHMO03]

[SK00]

[SSDN00]

[TBS92]

[TUNO]

References

Fuzzy Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy
Springer publication, 1SB 3540614710

Robert G. Gallager “A Minimum Delay Routing Algorithm Using
Distributed Computation “IEEE Transactions and Communications,
January]997

R. Le Moigne, O. Pasquier, J-P. Calvez “ A Generic RTOS Model for
Real-Time System Simulation with SystemC

Simon X. Yang, Hao Li and Max Meng —“Fuzzy Control of a Behavior-
Based Mobile Robot” The IEEE International Conference on Fuzzy
Systems -2003.

Siripun Thongchai and Kazuhiko Kawamura —“Application of Fuzzy
Control to a Sonar-Based Obstacle Avoidance Mobile Robot “Proceeding
of the 2000 IEEE International Conference on Control Applications
Anchorage, Alaska, USA, September 25-27, 2000.

S. Thongchai, S. Suksakulchai, D. M. Wilkes, and N. Sarkar —** Sonar
Behaviour —Based Fuzzy Control for a Mobile Robot” in Proceeding of
the IEEE International Conference on Systems, Man and Cybernetics,
Nashville, Tennessee, October 8-11, 2000.

Thomas B. Sheridan —“Telerobotics, Automation, and Human Supervisory
control” MA, MIT press, Published year 1992

2601050 Robotics and Teloperation Lecture Notes, Tamper University of

Technology [Online], Available:

87

References

http://www.iha.tut.fi/education/IHA-

3506/book/Teleoperation Notes 2004.pdf

[VER99] Vern Paxson “ End to End Internet Packet Dynamics” IEEE/ACM
Transaction on Networking Volume 7 Issue 3 June 1999, pages 277-292
(WWDC] Wikipedia Pulse Width Modulation, Duty cycle [online] Available:

http://en.wikipedia.org/wiki/Duty cycle

[WWDS] Principle of Differential steering [Online] Available:

http://rossum.sourceforge.net/papers/DifiSteer/DiffSteer.htm]

[WWIE] Hobbes Time Line [Online] Available:

http://www.zakon.org/robert/Internet/timeline/

[WWKC] Kernel configuration [Online] Available:

http://www ultradesic.com/index.php?section=21

[WWRG] Wikipedia Raymond Goertz [Online] Available:

http://en.wikipedia.org/wiki/Raymond Goertz

[WWRP] OSMC Motor controller project [Online] available:

http://www .robotpower.com/downloads/

OSMC project documentation V4 21.pdf

[WWRP2] OSMC Motor controller project [Online] available:

http://www.robotpower.com

[WWSNR] The SRF 04 Sonar Sensor [online] Available:

http://www.acroname.com/robotics/parts/R93-SRF04.htm]

[WWTS] DE?2 board samples and manuals [Online] Available:

88

[WWVC]

[WWVDC]

[WWVU]

[WWWF]

[WWW1)

[WWW2]

References

http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Languace=English& CategoryNo=39&No=30

Webcam kemel compilation instructions [Online] Available: http:/gentoo-

wiki.com/HOWTO logitech quickcam on 2.6.% kernel

Introduction to Pulse Width Modulation [Online] Available:

http://www.netrino.com/Publications/Glossary/PWM .php

Helpmate telecontrolled robot [Online] Available:

http://eecs.vanderbilt.edu/CIS/IRL/helpmate.shimli

Wikipedia Introduction to Wi-Fi [Online] Available:

htip://en.wikipedia.org/wiki/WiFi

Basics concepts of RTOS [Online] Available:

http://linuxdevices.com/articles/AT4627965573.htm]

Real time Operating Systems Wikipedia [Online] Available:

bttp://en.wikipedia.org/wiki/Real-time operating system

89

