MODELLING OF SOFTWARE DEVELOPMENT EFFORT FOR THE

FOURTH GENERATION ENVIRONMENT

by

VIJAY K. KANABAR

A Thesis
Presented to the University of Manitoba
in Partial Fulfilment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Interdisciplinary
Department of Actuarial and Management Sciences-
and Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

© May 1992

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ottawa (Ontario)

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-77925-X

gl

Canada

MODELLING OF SOFTWARE DEVELOPMENT EFFORT FOR THE

FOURTH GENERATION ENVIRONMENT

BY

VIJAY K. KANABAR

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in
partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

© 1992

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to
lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm
this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to
publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author’s permission.

ABSTRACT

This thesis deals with the topic of estimating software development effort when
fourth generation tools (4GTs) such as form and report generators are used.
Traditional predictors or cost models are inadequate for measuring and estimating
development effort involving 4GTs. Such traditional predictors or models are more
oriented towards measuring "manual coding" than towards "specification-oriented
coding". An innovative predictor called specification element (SE), embedded in
a 4GT Model, is introduced here to measure application development effort using
4GTs. SEs are associated with data and screen field elements for purposes of effort
estimation. Knowledge-based techniques are used to refine effort estimates provided
by the 4GT Model for the influence of project factors such as "developer

experience" and "familiarity with tools".

i

To my mother Chandrika Kanabar and

my father Kalyandas Kanabar

iii

Acknowledgements

Completing a Ph.D. degree is a lengthy and demanding process. Several
people were directly involved and all contributed a major chunk of their valuable
time. To begin with, I would like to acknowledge the contribution of Dr. Eric Seah
who functioned as my advisor. He provided the necessary intellectual freedom all
along and was readily available even on weekends for consultation and for reading
and commenting on my thesis chapters. He readily provided me financial support
(often without asking!) from his NSERC and related grants to attend conferences
and present papers. Dr David Scuse very effectively contributed throughout my
graduate programme. His insights into my research proved to be very valuable; he
provided "expert" advise with regards to thesis directions and rules & regulations
as well. Dr Edwin Cheng, a recent addition to the committee, proved to be very
helpful — he had to quickly master a lot of my research and edit the thesis.

Dr Tarek Abdel-Hamid’s involvement and thesis evaluation significantly improved
the quality of the final product. Dr Ken Hughes, Dean of Graduate Studies, did a
great job as well; he wanted me to complete a truly first-class and useful Ph.D.
programme. Rita Campbell put her heart and soul in type-setting this thesis, many
thanks for a job well done. I would also like to thank the various members at
Great-West Life, Investors Syndicate, and the U of W for providing useful

data/comments.

Finally, I would like to acknowledge the contribution of my wife Dina
Kanabar, more than me, she has earned the Ph.D.— if not the Ph.T. (Pushing
Hubby Through). Without much of a choice she spent several lonely days and

nights raising our young ones Meera and Anish.

v

Table of Contents

ABSTRACT il
Acknowledgements v
Listof Figures X
Listof Tables xi
Chapter 1 Introduction 1
1.1 Statement of the Problem 1

1.2 Issues and Objectives 3

1.3 Thesis Overview 5

1.3.1 Modelling 4GT-Based Applications 6

1.32 Conclusions 7

Chapter 2 Review 8
2.1 Introduction 8

2.2 Fourth Generation Languages, Tools, and Techniques ... 9

2.2.1 Project Management 9

2.2.2 Software Metrics 10

2.2.3 Gathering Project Metrics 12

2.2.4 Software Development Process 13

2.2.5 Fourth Generation Languages 14

23

24
2.5

Software Models for Estimation and Management
231 COCOMO i
2.3.2 Function Point Analysis
2.3.3 System Dynamics Model
4GL-based Cost Estimation Research
Knowledge-Based Systems
2.5.1 Knowledge-Based Systems Technology
2.5.2 Knowledge-Based Systems Research in Literature .
2.5.3 PAINTER: An Expert System for Cost Estimating .
254 EDP-Estimator
2.5.5 Other Knowledge-Based Estimating Strategies
2.5.6 Knowledge-based Systems for the Fourth

Generation Problem

Chapter 3 The 4GT Estimation Model

3.1

3.2
33

34

Introduction
3.1.1 Model History
3.1.2 The Initial Stage
3.1.3 Experimenting with the Model
Measuring Application Effort
Systems Development Methodology
33.1 The Traditional Approach
3.3.2 Prototyping Approach

3.3.2.1 Non-Evolutionary Prototypes

3.3.2.2 Evolutionary Prototyping
333 Conclusion
Representing System Size - Theoretical Issues
3.4.1 Input, Output, and Process Tasks

3.4.2 Form, Report, Data, and Process Functions

vi

3423 Conclusion 57

3.5 Predictors 58
3.5.1 Prevailing Predictors 58
3.5.2 Attributes of a New 4GT Predictor 61
353 Categorizing SEs 63
3531 Form SEs 64
3532 ReportForm SEs 69
3.5.3.3 Data Function Type SEs 70
3534 ProcessSEs 71
354 Conclusion 71
3.6 A Model for Effort Estimation 72
3.6.1 Overview of the Model 74
3.62 Deriving the Total Effort 78
3.7 Using the 4GT Model 83
3.8 Conclusion 85
Chapter 4 Evaluation of Project Factors 86
4.1 Introduction 86
4.2 Conventional Approach 87
4.2.1 PF Correction in COCOMO 88
422 PF Correctionin FPA &9
423 Summary 90

424 General Strengths and Weaknesses of the
Conventional Approach 91
4.3 Knowledge Based Approach 92
4.4 PFES: An Expert System for PF Correction 95
4.4.1 Development Methodology 96
442 Overview of the Prototype Development 97
4.4.3 Overview of the Development Process 100

Vil

4.5
4.6

s . e

5.4
5.5
5.6

5.7

5.8

444 Conceptual Model

4.45 Calculating the Effect of Each PF
4.4.6 Exceptions: Rating Values for End-Users
4.477 Validation of the PF Values
4.48 Design of the User Interface
449 Design of the Prototype
4.4.10 Validations, Analysis, and Test Results
Conventional PF Correction

Conclusion and Contributions

...

Implementing 4GT Model
Model Calibration
5.3.1 Host Site and Participants
532 ORACLETooOls
53.3 The LEGASY Project
5.3.4 Procedure Used to Calibrate Weights
5.3.5 Calibration Details Pertaining to LEGASY
Determining the Expansion Factor
Validation of the Effort Equation
ACaseStudy
561 MethodUsed
562 Results
Using the Model in the Early Stages of Feasibility
5.7.1 Testing the 4GT Ball-Park Estimating Equation . . .
5.7.2 Ball-Park Estimating for LEGASY
Estimating Effort Under Different 4GT Paradigms

Viil

5.9
5.10

5.8.1 Estimating Evolutionary Prototyping Projects

5.8.2 Estimating Throw-Away Prototyping Projects
5.8.3 Estimating Non Prototyping Projects
Evaluating Model Portability

Conclusions

Chapter 6 Conclusions and Future Directions .
6.1 Introduction

6.2 Summary of the Results

6.3 Future Work

6.3.1 Model Enhancement R

6.3.2 Model Integration

6.4 Conclusion
References
Bibliography

ix

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figurel 3.1:
Figure 3.2:
Figure 3.3:

Figure 3.4:
Figure 3.5:

Figure 3.6

Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:

List of Figures

Changing Nature of Software

Fourth Generation Software Components
Verner-Tate Strategy for 4GL Effort Estimation
Different Paradigms for 4GT Development
Mapping Different 4GT Paths
Research Model for Measuring Information System Size
(Wrigley & Dexter)

Specification Operation using ORACLE

............................

Screen Created using Simple Specification Operations. . .
Screen Created using Detailed Specification Operation . . .
Conceptual View of Effort Distribution by 4GT Model . .
Estimating Techniques - Putnam & Myers
PFES: End-User Flow
Conceptual Model of the PFES

...................

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 4.1:
Table 4.2:
Table 4.3:
Table 5.1:
Table 5.2:
Table 5.3:

List of Tables

Prototyping Techniques
COCOMO Development Mode

Function Point Classification

Subsystems of the Systems Dynamics Model
Resources Used to Develop the 4GT Model

Steps Involved in Traditional Life Cycle

Steps Involved in Throwaway Prototyping

Steps Involved in Evolutionary Prototyping
Concepts for Discerning Requirements

Template for Summarizing Data Related to Functions . ..
Template for Related to Effort Estimation
COCOMO Cost Driver Attributes

Factor Values of ratings influencing positively

Factor Values of Ratings Influencing Negatively
Calibrated Weights for the 4GT Model
Case Study Model Weights Before Correction
Case Study Model Weights After Correction

X1

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

List of Appendices

PFES ExpertSystemc00iteeieeenas 184
User Interface: Questions asked by PFES 225
PFES S.S. Model Versionc.0c0vuvieenns 229
4GT Model Program Code e 230
Functions Involved with Calibration 241
Identification of Form SEs 245
Identification of Report SEs 246
V.R.S. Case Study Detailed Specifications 247
4GT Model: Cell Valuescoviua... 259

X1l

Chapter 1

Introduction

1.1 Statement of the Problem

This thesis presents a model for measuring and estimating effort of
software applications developed by end-users or programmers with tools broadly

referred to as Fourth Generation Languages (4GLs).

The importance of estimating the size and time required for software
development cannot be over-emphasized. Consider the following quotation by
Barry Boehm in his foreword to Tom DeMarco’s book:'

Better cost estimation methods help us to understand the relative costs and

benefits of a proposed future system well enough to be able to reduce its

scope or to eliminate portions whose benefits do not justify their estimated
costs.

Within the realm of 4GLs, small to medium business applications
developed using tools such as query facilitators, form generators, report generators,
application generators, graphics languages, and specification oriented application

packages, are the focus of this thesis. Such software tools facilitate application

creation without conventional programming as we know it, and are referred to as
fourth generation tools (4GTs) in this thesis. According to Pressman:®
The term fourth generation techniques (4GT) encompasses a broad array
of tools that have one thing in common: each enables the software
developer to specify some characteristic of software at a high level. The
tool then automatically generates source code based on the developer’s

specification. There is little debate that the higher the level at which the
software can be specified to a machine, the faster a program can be built.

(p. 24)
In this thesis we use the term "Fourth Generation Tools" (4GTs) as opposed to the
term "Fourth Generation Languages” (4GLs) as it is the tools, rather than

languages, that our research focuses on. Other researchers also commonly use the

term "Fourth Generation Tools" for the same reasons.”

The importance of 4GTs is evident from the following summary by Roger
Pressman:®

To summarize, fourth generation techniques are likely to become an
increasingly important part of software development during the next
decade. As the figure (reproduced as Figure 1.1 below) illustrates, the
demand for the software will continue to escalate throughout the remainder
of this century, but conventional methods and paradigms are likely to
contribute less and less to all software developed (p. 25).

For simplicity, the model at present does not consider larger applications

such as those exceeding thousand person-days within its scope. Such applications

usually require extensive 3GL procedural coding, and end-users will not be

typically involved with such projects.

Demand
for
software

Appilication of
"4th generatio
techniques™

1970 1980 1990 2000

Figure 1.1: Changing Nature of Software — Pressman®

1.2 Issues and Objectives

This section describes the problems of estimating size and effort in the
fourth generation environment. The issues related to 4GTs are examined first,
followed by prototyping issues. There are several reasons for cost modelling 4GT-
based application development. To begin with, the problems in this domain are
unique:

* Due to the significant improvements that have taken place in software

and hardware technology, powerful fourth generation tools and

techniques for developing applications have emerged in the market

place. When compared with third generation languages these tools have
successfully resolved some of the problems of traditional software
development problems, such as poor quality, high cost of development
and maintenance, and very slow development rate.

Several firms have indeed become productive today due to adoption of
this new software technology. James Martin, citing several cases,
indicates that these gains represent the largest step forward in
application creation since the invention of programming.” This may be
attributed to the fact that overall development and programming effort
is significantly reduced due to simplicity in computing.

As a solution to decreasing the huge application backlog, end-user
computing using 4GLs is being advocated by managers and M.LS.
professionals. Microcomputer based database management systems have
made it feasible for end-users to create forms, reports, and even
complete applications easily.* However, there are many risks
associated with such a strategy, especially delayed schedules and
unanticipated costs.

Literature survey reveals that estimating systems development effort in
the fourth generation domain is difficult.® Moreover, the existing
predictors and models are not suitable for estimating application

development effort using 4GTs — such models are more directed

4

towards estimating code-oriented programming languages rather than

specification-oriented applications.

The above facts indicate that suitable models for estimating 4GT-based
application should be researched. Also, since 4GTs are closely associated with
different development paradigms, such as evolutionary prototyping or throw-away
prototyping, any such cost model must be flexible enough to accommodate the

impact of such techniques as well.

1.3 Thesis Overview

In Chapter 2, we review the literature and describe the major approaches
to project planning and cost estimation taken by researchers. It also introduces
topics such as application prototyping, software metrics, project management, and
knowledge-based systems. Chapter 3 introduces the 4GT Model for estimating
application development effort when 4GTs are used. Chapter 4 describes PFES, a
knowledge-based system for evaluating project factors. 4GT model experimentation,
analysis, and validation are presented in Chapter 5. Finally, Chapter 6 presents
conclusions and topics for further research. The basic 4GT Model is summarized

next.

1.3.1 Modelling 4GT-Based Applications

In the fourth generation environment, application development effort is
dependent on the total number and size of functions to be implemented. A function
can be classified into one of the following function types: form, report, process,

and data.

In order to estimate the effort involved in implementing each function we
use a new predictor called specification element (SE). This term is a hybrid of the
two terms specification, and screen-, data-element and is therefore defined as, "a
specification task associated with implementing a data or screen field element". SEs
represent information system size and are coupled with screen fields or data

elements by design.

Each SE has an effort value in person-hours associated with it. This value
represents the work effort required to implement one SE and hence one screen
field. By considering all the screen fields and data elements of an application and

their relative specification effort, we can obtain the total development effort.

Finally, as the 4GT Model only estimates average development effort,
project factors such as "familiarity with tools", and "programmer experience" are

evaluated separately, to produce a refined effort estimate.

1.3.2 Conclusions

The contributions of the thesis are in two areas:

The first and most significant contribution of this thesis is the
development of the 4GT Model for estimating application development
effort when specification-oriented tools are used. At present no such
model exists. The model is capable of estimating in two modes — ball-
park and base-line — the former provides rough estimates early on in
the development cycle, whereas the later provides more accurate
estimates but only after some design is complete. In this regard we also
classify different 4GT development paradigms and determine their
impact on the effort estimation model.

The second contribution is the knowledge-based framework for
evaluating project factors (PFs) The notable feature here is the ability
of the model to take into consideration application development by end-
users. The knowledge-based approach provides an opportunity to use
"what if" analysis to investigate the impact of various project

parameters.

Chapter 2

Review

2.1 Introduction

Software modelling for cost estimation and project management has been
a major research issue for both researchers and practitioners for many years. Cost
models have been successfully developed for the software industry, especially for
the third generation software development domain. Some of these models are able
to give a good cost estimate if calibrated properly to the users environment. As a
result project managers can use such models for planning and estimating software

development in addition to relying on their experience for making decisions.

Recently powerful fourth generation tools and techniques for developing
software have emerged in the market place. When compared with third generation
languages, they have successfully solved some of the problems of traditional
software development, such as poor quality, high cost of development and
maintenance, and very slow development rate. This chapter reviews fourth
generation tools and techniques, and traces the progress of current state of art in
cost modelling. It also describes the relationship of the proposed model to previous

research.

2.2 Fourth Generation Languages, Tools, and Techniques

Various concepts associated with modelling such as project management,
software metrics, software development process, application prototyping, fourth
generation technology, and knowledge-based approach, are introduced in this

section.

2.2.1 Project Management

Project Management in the context of software development is discussed
here. The fundamental concepts, however, are quite similar to those in other
industries such as construction or engineering. Managing a project typically
involves using a project management methodology. This generally consists of the

following phases: planning, scheduling, and controlling.

During the planning stage the project is broken down into smaller but more
manageable components called tasks or activities. Work effort is estimated for each
of these activities using past experience or historical data as a guide. A cost model,
as discussed in this thesis, can play a useful role here for providing effort estimates.
Once the work effort is estimated, a network can be created to show the sequence
of activities that make up the entire project. In the scheduling stage we map the
activities to a calendar, and determine start and finish dates for each task. Several

project management tools can be used at this stage. They range from powerful

9

mainframe based products such as IBM’s Application System, to relatively smaller
project management tools based on microcomputers such as Microsoft Project.
Such tools contribute significantly to project scheduling by providing various
graphs, including those that identify the critical path (CPM/PERT). The final stage,
control, ensures that the entire project is completed on time and within budget.
Adequate control ensures that the end products are of good quality, within budget,

and on schedule.

2.2.2 Software Metrics

Software metrics are quantitative measures of various characteristics of
projects. They measure code and documentation, development process, development
activities, the problem domain, and environment characteristics like people, tools,

or techniques used.'?

Many firms today have adopted a software metrics approach, to assist them
with various aspects of software development. Such a strategy implies that
databases containing various development related metrics such as cost-oriented data
and size-oriented data are accumulated for all software development projects. While
the project is in progress, and especially on completion, various productivity and
quality metrics are generated from such a database. This information is used to

improve the quality of future projects and to evaluate the impact of new tools and

10

techniques. Grady and Caswell have described Hewlett-Packard’s metrics program
in detail in their recent book."” They indicate that HP had two objectives in mind
when they initiated their program — first, an improvement in productivity; and
second, an ability to measure tools (developed in-house or purchased) for
effectiveness. With regards to the first point, they felt that the very act of
measuring the software development process itself would lead to short-term
improvements in productivity. They quote Peters and Waterman’s classic book In
Search of Excellence to illustrate their point:

People ... like to perform against standards — if the standard is achievable,
and especially if it is one they played a role in setting.

Several hundred people were involved in HP’s software metrics program.
And after three years of commitment they were able to achieve several advantages;
the most important of these (from the CASE" perspective and organizational
perspective as well) are:
e Ability to measure progress.
e Ability to identify practices which lead to the highest quality and
productivity.

e Ability to estimate and schedule projects better.

*

CASE stands for computer assisted software engineering — it refers to the application of
automated technologies to software engineering procedures.

11

When establishing a software metrics program, Grady and Caswell
recommend that the following key steps be performed: assign software metrics
responsibility to specific people; convince people of the importance of these metrics
and indicate that accuracy depends upon their willingness to take the time to collect
data; define metrics to be collected (such as size, defects, effort, and cost); try to

automate data collection; and, create a metrics database.

One of the most significant advantages of the software metrics approach
is its ability to assist us with project estimation. According to Pressman all
estimation techniques use software metrics (p.43):° "Software metrics (past

measurements) are used as a basis from which estimates are made".

2.2.3 Gathering Project Metrics

The project manager’s emphasis is typically on completing the project on
schedule. Yourdon' states, the typical problem with documenting software metrics
is that most managers do not get enthusiastic about investing 5% of the project
team’s resources this year, in order to provide some data that will be useful to
some other project manager next year. The end result is that project planning and
predicting effort is difficult each time around. Therefore, a certain degree of project
planning automation should benefit an organization. In order to overcome the

problems with gathering project metrics, mechanization of the metrics gathering

12

process is desirable, and Yourdon recommends the use of automated tools to assist
us with all the stages of measurement. CASE tools can play a very useful role here

as they are highly integrated and automated.

2.2.4 Software Development Process
Several life cycle models have been used by organizations to assist them
with software development. The models are phase oriented and use distinct stages:
° requirements specification
e design
e implementation
° testing

e installation

In the life cycle model above, if a rigorous approach (traditional, non-
prototyping) is used then the software product materializes only after
implementation. But if the final product does not reflect user requirements
adequately, or is imperfect in any other way, then the development can prove to
be very expensive since some of the details have to be worked over again. In order
to overcome this problem application prototyping is often used as a development
strategy. Even though there are several techniques for prototyping, they all have

one common objective — demonstration of a working system to the users, as early

13

as possible. Table 2.1 describes some of these techniques. While all of the
illustrated strategies assist us with eliciting user requirements early on in the system
development life cycle, some are more risky than the others. For instance,
screen/simple mock prototyping is considered more risky because its functionality
is not fully tested up front.

Table 2.1: Prototyping Techniques
L e B G e

Throwaway Prototype is discarded after acceptance by the
USers.

Rapid / Evolutionary Prototype is used and refined until it becomes the
final product.

Detailed / Full Throwaway prototype that mimics the functionality
of the final application completely.

Screen / Simple mock up Prototype mimics the screen layout of the
application,

2.2.5 Fourth Generation Languages

This refers to a set of tools and languages primarily associated with a
database management system. The tools today consist of the following components:
data dictionary, software generators, fourth generation languages, report writers,
screen generators, spreadsheet, presentations graphics, and query languages. Fourth
generatién languages and tools have reduced the time and effort required to

generate an application by a factor of at least 5 to 10, when compared with

14

application development using 3GL’s; this is possible largely because general
applications are built using high-level specifications.'” In conjunction with
techniques such as prototyping, fourth generation tools have succeeded in
improving the productivity of software developers, and have enhanced the quality
of software being designed. Here overall programming effort is significantly
reduced due to simplicity in computing. This can be attributed to integrated
database systems, form-, and report-generators, non-procedural 4GLs, query
languages, and controlled use of alien syntax and mnemonics — allowing the

developer to concentrate on software development.

Figure 2.1 describes the key components of the fourth generation
architecture tools and their links with the DBMS. It illustrates the central role of
the DBMS in the environment. The forms generator, the report writer, the
application generator, and the query language play an important role in developing

applications rapidly. These tools are described next.
Data Dictionary: It serves as a central reservoir of all data. It contains information

on files, usage of data, metadata. In the CASE approach the data dictionary plays

a key role in applications development.

15

Forms
Writer

Report
Writer

Graphics &
other tools

Query |
Language
& AGL

Dictionary

Application
Generator

Figure 2.1: Fourth Generation Software Components

Query Lémguage: It is a non-procedural language and is used to communicate with
the database. It consists of data definition statements that facilitate the creation and
description of a database, data manipulation statements that deal with retrieval and
update of the database, and data control statements that specify security constraints.

Structured Query Language (SQL) is the undisputed query language and industry

standard today for all relational databases.

16

Forms Generator: This is a flexible interactive facility used to create forms for
data entry, query, update, and deletion. Forms today have a rich set of features that
permit one to generate many types of complex applications. For instance, forms
permit us to perform data validation, restrict access, generate sequence numbers for
primary keys, table lookups, create triggers, and use computed values. Such

functionality until recently had to be hard coded using a programming language.

Report Generator: This is also an interactive tool for creating reports. Report
generators today are very powerful and are capable of producing virtually any type
of output format. However, it must be added here that reports can also be created

using non-procedural query language statements.

Program Generator: There are a wide variety of program generators available
today. They range from simple menu and module/procedure generators to full-
fledged application generators. The common thread here is that very little physical
coding is actually done — specifications serve to provide instructions to the
program generator. The above products are integrated today using a common query
language. For instance, ORACLE’s 4GL tools such as the SQL*FORM, and
SQL*REPORTWRITER support the creation of reports and forms using its query

language SQL.

17

2.3 Software Models for Estimation and Management

Estimating the cost of a project is probably the most tedious task for a
planner and a lot is at stake. Planners usually rely on historical data and
accumulated experience to develop estimates. But it is not uncommon to find
organizations very lax when it comes to recording project data. A novice estimator
with little experience and no access to any historical data would therefore suffer the
most under such circumstances. It is worthwhile for such estimators to have access

to a software costing model.

On reviewing the literature three types of representative software models
for cost estimation and project planning have been identified. Each differs from the
other distinctly, but they collectively serve to describe the options available to
planners when selecting tools for software cost estimation and management. The
three representative models are:

@) COCOMO

(ii)) Function Point Analysis

(iii)) System Dynamics Model

18

231 COCOMO
COnstructive COst MOdel (COCOMO) introduced by Boehm'® consists of
three increasingly complex models — basic, intermediate, and detailed. Three

modes of software development exist for the above models (see Table 2.2).

Table 2.2: COCOMO Development Mode
—

Organic A small team of experienced programmers develop software in a
familiar environment.

Semidetached ~ The composition of programmers is a mix of novice and experienced,
and the environment not totally familiar.

Embedded The project has tight constraints and the problem is unique; past
experience may not help a lot.

Lol S S

The basic model lacks accuracy since it does nof consider the variable
project parameters of the software development environment. This situation is
addressed in the intermediate model which introduces a set of 15 cost drivers, such
as product complexity, analyst capability, and programming language experience.
The detailed model provides two additional features — phase sensitive effort
multipliers for each cost driver, and a three-level product hierarchy (module,

subsystem, and system levels) for rating the cost driver.

19

Even though the COCOMO model is easy to use, commercially available,
and well documented, it has some shortcomings. To begin with, it uses lines of
code (LOC) as a predictor — this is a low level metric, and it requires us to
estimate the LOCs for the new application very early on in the system development
life cycle. Estimating the LOCs required for the new application before proper
analysis or design is done can result in a loss of accuracy. Another problem with
COCOMO is that it places the onus on the estimator to select the correct type of

model and development mode.

The COCOMO model is based on data from 3GL projects measured at
TRW; hence the nature of the projects involved in their bench mark is "manual
coding” oriented. Their model is clearly not relevant to the development of fourth
generation applications — especially to those that are developed using

"specification oriented” techniques.

2.3.2 Function Point Analysis

Albrecht’s Function Point Analysis (FPA) model"™ was introduced more
than a decade ago in the context of productivity measurement. FPA is independent
of any language and it estimates the size of an application on the basis of the
number of inputs, outputs, files, interfaces, and inquiries (see Table 2.3). Once the

requirements have been defined one can use FPA to identify function points and

20

Table 2.3: Function Point Classification

h

Outputs Application oriented information processed by the computer for the user,
This includes entire reports, and screens but excludes individual data
items within a report or a screen.

Inputs Application oriented information entered by the user for the computer to
process. Includes updates, ie, add, modify, or delete.

Inquiries These are queries to the database for information. No updates are
performed.

Files Logical files used by the application.

Interfaces Refers to external files interacting with the existing application.
—
classify them into one of five categories (see Table 2.3). At the same time the

complexity of the function must also be identified as simple, average, or complex.

Finally, fourteen overall-adjustment factors are used to make adjustments
for system characteristics to provide the total correction value. The final function
point count is obtained by using the following equation:

Final FP = Total Unadjusted Fps * [0.65 + (.01 * Total Correction Value)]
Largely due to its ability to use information available very early on in the

project, the FPA has made some in-roads into the data processing industry for cost

estimating business applications.

21

There are, however, several limitations with the Function Point Analysis
approach. To begin with even though it is more suitable than COCOMO for
estimating non-procedural language, it is incapable of cost estimating 4GTs. For
instance, the definition for input and output (see Table 2.3) states that the
individual data items within a report or a screen are to be ignored. Unfortunately,
with 4GTs the fields act as a cost centre for accumulation of work effort and

cannot be ignored. The 4GT Model deals with this issue elegantly.

A second major limitation with the Function Point Analysis method is that
it has no avenue to address 4GT based development (such as using forms
generators, report generators, or application generators). As stated by Dredger," "if
generators or report writers are used it is impossible to count function points for
all possibilities, and you must settle the issue by crediting the application with one
complex output.” This is a major stumbling block for FPA. It does not perform

well in a highly automated application development environment.

A major flaw with the FPA is that its weighting is inadequate when
specification oriented programming occurs. (Here the primary development effort
is based around screen fields. This aspect is described in detail in the next chapter.)
For example, Symons questions why "a system component containing, ksay, over

100 data elements is given at most twice the points of a component with only one

22

data element”. We therefore regard FPA’s weighting scheme as biased against 4GT

based application development.

2.3.3 System Dynamics Model

The system dynamics model introduced by Abdel-Hamid*** looks at the
software estimation and planning issues within a much broader research program.
Its objective is to comprehend, and to make predictions about the dynamics of the
entire software development process. The model consists of four major subsystems
which are described in Table 2 4.

Table 2.4: Subsystems of the Systems Dynamics Model
P S S B S S S

Human Resource Deals with hiring, training, assimilation and
Management transfer of human resources.
Software Production Models activities such as designing, coding, and

testing of software.

Controlling _ ‘ Measures progress, perceived productivity, and
determines effort still needed.

Planning Plans work force and schedule,

The system dynamics model permits inexpensive simulation and controlled

experimentation of different project management decisions, such as addressing the

23

problems related to a project running behind schedule. The model has proven to be

[

23

a useful tool for the study of software cost estimation.*>

2.4 4GL-based Cost Estimation Research

This section reviews other 4GL-based cost estimation research. Verner and

Tate have estimated size and effort for a project using a fourth generation

application development system called ALL.* The technique they used is illustrated

in Figure 2.2. As evident from the figure, they did not use any new model for 4GL

effort estimation. Instead, they derived effort estimates by combining both the

COCOMO and FPA models. Such a strategy must be applied carefully for several

reasons. The conversion ratios assumed here such as "1 FP = 17 ALL" have not

been validated using a large sample size. The strategy to use "1 FP = 110 COBOL"

is also a controversial one since there can be a large variance in this ratio. Consider

the following excerpt from Dreger describing the problems with interfacing models
such as COCOMO with FPA (pages 132-33):%

The most common way in which Function Point Analysis has been

misused is using it to try to estimate source lines of code, from which

the forecast, evaluation, or analysis is then made. This misuse of FPA

is just plain WRONG! If industry cannot even decide to measure one

line of code once it is written (one researcher found a huge 2300%

variance in productivity due only to extremely wide variations in 7

SLOC definitions!), how can FPA possibly predict it before it is

written? Moreover, this two-step process introduces two levels of error

into the solution, the more serious of which is the plus-minus 50% (on

average) distortion introduced when attempting to predict the number

of COBOL source lines.

24

Use Function Point Analysis technique
to obtain total FP count
863 FP’s
I
I
Use Language Expansion Ratio
(1 FP =110 COBOL LOC)
LOC =863 * 110 = 94930
I
I
Reduce the estimated LOC since a 4GL is being used
(Assuming 70% non-procedural content
the LOC is contracted by 16%)
new LOC = 94930 * .16 = 15188
I
I
Cross check effort with Jones Factors
(1 FP = 17 ALL code)
LOC =863 FP * 17 = 14671
|
I
Use COCOMO to obtain effort & schedule
(15,000 LOC used as input parameter)

Figure 2.2:

Integrating models such as COCOMO with FPA might therefore not be a very

suitable strategy for 4GL effort-estimation. It is preferable instead to design an

Verner-Tate Strategy for 4GL Effort Estimation

independent model for estimating 4GL projects.

In another related attempt, Wrigley and Dexter are researching the results

of several FOCUS programs to see if they can come up with a reliable predictor

25

of system size in terms of lines of code using reverse engineering techniques.?
(Their research is largely oriented towards the examination of 4GLs not 4GTs.)
They present a research model that establishes linkages among units of system

requirements specification, design, and source code.

Their pilot study is unfinished — while they establish a link between
information system size and LOCs, they do not extend their model to predict effort.
They also do not address the issue of specification .oriented programming.
Nevertheless as their research is based in the fourth generation environment, any

results obtained here are quite relevant to our thesis as well.

2.5 Knowledge-Based Systems

In this section we review the technology, as well as planning and cost
estimation literature, in knowledge-based systems. Also the relationship of the

thesis problem with other knowledge-based systems research is described here.

2.5.1 Knowledge-Based Systems Technology

Knowledge-based systems are application systems where domain
knowledge is explicit and separate from rest of the system. Domain knowledge
refers to all entities, facts and knowledge related to the application. Expert systems

are specialized computer programs that use expert knowledge to attain high levels

26

of performance in a narrow problem area. They mimic the reasoning of experts and
are useful for very specific tasks such as medical diagnosis and computer
configuration. Waterman®' classifies expert systems as a subset of knowledge-based

systems.

The domain knowledge is contained in the knowledge-base, that is, all facts
and information pertaining to the application are represented in the knowledge-base.
In contrast with conventional systems the data and knowledge are explicit and
easily accessible. The architecture of an expert system consists of a knowledge-base
and an inference engine. The knowledge base is further subdivided into two
components facts and rules. Facts are known data about the system. Examples of
facts are default values assigned to variables, eg., age of a person, or the date of

joining. Some facts change from one query session to another, while others do not.

A rule is a formal way of specifying a resolution or indicating a decision.
It is usually expressed as: "IF premise THEN conclusion", or "IF condition THEN
action”. The rule is the most common form of representation in a knowledge-based

system. However, other structured models for representation exist.

The inference engine consists of programs that provide a general purpose

problem solving mechanism for all queries. This is normally a backward chaining

27

or a forward chaining mechanism that traverses across the knowledge base,
executes rules and recommends solutions. If several rules are triggered

concurrently, they are placed in a conflict set and resolved by the inference engine.

2.5.2 Knowledge-based Systems Research in Literature

Even though little attention has been paid to applying the technology
directly in the areas of fourth generation based software cost estimation, or strategic
and tactical planning, there is a continuing interest in using the knowledge-based
approach for several aspects of project management. While it is beyond the scope
of this thesis to review all aspects of project planning and scheduling applications
using artificial intelligence (largely due to the abundance of such literature), an
overview of artificial intelligence as it pertains to planning and cost estimation is

presented below .

2.5.3 PAINTER: An Expert System for Cost Estimating

Biegel er al.*® were interested in building a very general cost estimating
shell that attempts to accommodate a wide variety of cost estimating situations with
each having a specialized knowledge-base. Accordingly, painter, a rule-based cost
estimating program for house-painting was designed using C language to run on
the IBM PC microcomputer. The input data activate the appropriate decision table

for evaluation. For instance when painter asks the user for the surface type to be

28

painted — brick, stucco, wood, etc., each individual task calls the next appropriate

task table, until eventually the cost factors are applied and final estimates obtained.

2.54 EDP-Estimator

Arrowood et al. have investigated knowledge-based EDP cost estimation
with a prime motive to "provide less experienced project leaders with a tool to
generate cost estimates and to explain reasoning processes." Their goal is to
implement a tool that is easy to use and that exploits the explanatory capabilities
of expert systems. The EDP-Estimator pertains to 3GL development. It weighs
four elements when making an estimate: labour costs, computer utilization,
networking charges, and facility upgrades. These components were considered
essential to determine the internal and external (contract) staffing needs. The EDP-
Estimator at present is being implemented using Arity/PROLOG and Arity/Expert
Development Package for use'with IBM compatible microcomputers. The drawback
with the EDP-Estimator is that it is tightly coupled with the knowledge-base,
standards and procedures of a single organization. Also it does not have a basic
model for estimation purposes and simply uses several heuristics such as:

If procurement is minicomputer, cost is less than $50,000 and procurement

exception is no, then add two worker-months of senior analyst time to

labour of computing requirement (page 204).%°

Such a strategy will probably limit its portability and use in other EDP shops.

29

2.5.5 Other Knowledge-Based Estimating Strategies

A recent exploratory study by Vicinanza, Mukhopadhyay, and Prietula'’®
examines two basic issues: Is there expertise in software effort estimation? and can
we use expertise to improve software effort? Their research strategy involved use
of five experienced software project managers who served as expert subjects. Each
manager was asked to sort a set of 37 commonly used project factors in order of
importance, and to estimate historical projects given the size of such projects (eg.,
LOCs). Their results strongly suggest the existence of expertise in software effort
estimation; with regards to techniques for improving effort estimation, they
conclude:

It has been suggested that a knowledge-based approach to the estimation

problem may help improve the accuracy of existing models (see Ramsey

and Basili)'. In support of this, our study indicates the particular form of

reasoning that might be pursued is an analogical-reasoning approach.
Other interesting conlcusions:

* In most cases the managers had estimated effort better than two well

established algorithmic models.

° Their research indicates that some cost factors do transcend

organizational boundaries.

Ntuen and Mallik® have illustrated a general framework model for

applying knowledge-based approach to cost estimating. It is however geared

30

towards estimation in the engineering domain rather than the software industry. It
provides a generic classification of the modelling tools for the cost engineer, and
tabulates task descriptions for a model-based framework in a cost estimating expert
system. Avots®' has described the use of artificial intelligence techniques in the
context of project management. The principal components of an expert system for
schedule control were presented to illustrate analysis and predictive capabilities that

could be added to existing project management tools.

2.5.6 Knowledge-based Systems for the Fourth Generation Problem

We can also use the knowledge-ﬁased systems approach to probe the
impact of various project factors on the final estimates. Such a strategy will provide
novice cost estimators and project managers with several benefits, such as an
explanation capability, and the ability to simulate the impact of various project
factors on the ultimate cost. A key objective here is to research a more open-ended
approach to error correction. As new factors come into play, they can be integrated
with the expert system to provide better estimates. This aspect of the 4GT Model
is discussed in detail in Chapter 4. Knowledge-based techniques can also play a
useful role in the initial planning process that precedes cost estimation. Some
empirical evidence™ for this was provided in the context of assisting the manager
with selecting a methodology for software development and deciding if prototyping

was an appropriate choice.

31

Chapter 3

The 4GT Estimation Model

3.1 Introduction

In this chapter we introduce the 4GT estimation model. The scope of the
model is 4GT effort estimation, that is when software applications are developed
using fourth generation tools such as report writers, form generators, and
application generators. Basically we are interested in the implementation of small
to medium business information systems by programmers or end-users. The model
at present does not consider larger applications within its scope as such applications
usually involve extensive procedural and/or non-procedural coding. The following
categories of products fall within the scope: Personal Computer Tools such as
dBASE IV, Query Languages and Report Generators eg, QBE, RPG, Graphics

Generators eg, SAS Graph, Application Generators, eg, Oracle.’

The proposed model can be used to estimate application development effort
with different 4GT paradigms. (This Chapter introduces different 4GT development
paradigms and Chapter 5 describes their effort estimation.) Only theoretical details
of the model are presented in this chapter. Model experimentation, calibration,

usage, and validation are described in Chapter 3.

32

3.1.1 Model History

The 4GT Model was designed and developed on the basis of interviews
with practitioners, literature research, product study, and project data collected
between 1988 and 1991. Personal project management experience as well as
discussions with members of the thesis committee also played a major role in the

model development.

At the very outset it was recognized that a general purpose model for cost
estimating all types of fourth-generation development was difficult to develop
(largely due to the wide diversity of fourth generation languages). It was
subsequently decided that only fourth generation tools (4GTs) should be modeled.
The objective was to create a meta-model® for estimating effort involved with 4GT
development. Using the meta-model as a basis, organizations could either adapt or
create their own cost model in accordance with their own environments. DeMarco
and Lister concur with such a strategy; they state that, "cost models do work, but
they have to be made local to the environment in order to provide useful forecasts

of development time and effort" .5

The model evolved through two major stages:
* an initial prototype stage in which the effort estimation and effort

adjustment components were designed and developed, and

33

* an installation stage in which the effort estimation component was
enhanced, re-calibrated and installed in a commercial setting for
experimentation purposes.

Details pertaining to the above stages are presented below.

3.1.2 The Initial Stage
The initial version of the model was based largely on literature review,
Fourth Generation product review, and personal experience obtained as project
manager of several projects. Experimental data gathered during the implementation
of the following projects between 1988-90 (under my supervision) proved to be
useful for gathering data and conducting research related to the initial version of
the model.
1) Spatial Accounting Database project for Physical Plant, University of
Winnipeg.® |
2) Trackers Record System project for the V.P. Admin Office, University
of Winnipeg.®
3) Client and Applicant Tracking System project for Mayday Personnel,
Inc., Winnipeg.”
4) Weights and Measures Microcomputer System project for Consumer

and Corporate Affairs (Canada), Winnipeg.”!

34

The basic design of the model was exposed to criticism at various seminars
3 32,70-78,92,93,
and revised as needed ; 1t was also demonstrated to practitioners in

Winnipeg.”* This exposure at various sites strengthened the model considerably.

3.1.3 Experimenting with the Model

With real-world experimentation of the 4GT Model in mind, Ted Janzen,
Associate Manager Computer Systems, Great-West Life, was approached in May
1991 (on recommendation from Kerry Morris, Systems Analyst, Computer Systems
Group, Great-West Life). Janzen’s Computer Systems group was actively
developing 4GT based application systems using ORACLE and they were therefore
quite interested in installing the 4GT Model for effort estimation purposes. Great-
West Life was suitable as a site for experimentation with the Model as:

* the state of art development was taking place using fourth-generation

tools, and
* relevant metrics data from on-going or past projects were readily

available.

Largely on the basis of intensive interaction with Ted Janzen, and Wendy

Smith (Senior Systems Analyst at Great-West Life), the effort estimation

component of the 4GT Model was enhanced and made easier to use.

35

A formal approach®® was used to interview and document data. Before our
very first meeting, a report describing the existing 4GT Model was given to the
interviewees at Great-West Life (see Table 3.1). The initial meetings served the
purpose of acquainting participants with the 4GT Model and also informing us
about their project management and cost estimation practices. Most of the
participants had estimated ORACLE projects before and were quite familiar with
the topic of cost estimation. Actually, their current practice involved submission of

project effort estimates by all team members (to the project manager).

More than twenty five meetings took place between May 1 and October
1991 (see references 77 through 84). Each lasted more than one hour but usually
less than three. Both group meetings and one-on-one meetings took place. A bulk
of the information, however, was gathered during one-on-one meetings. It was also
necessary to communicate and gather information using the telephone and fax

machine; many such communications took place.

The initial few meetings highlighted the difficulty of caiibrating the 4GT
Model at the Great-West Life. For instance, the practitioners indicated that it was
difficult to calibrate and document all relevant specification operations (SEs). They
also felt that estimating effort using the model could also be tedious as there were

too many SEs (one for each unique specification operation).

36

After further discussion we decided to make the following two changes to
the model:
* placing similar SEs into one category
— this revision simplified the model considerably as we now had to
calibrate weights for each SE category only (and not for each SE as
was required before).
» tying each SE to a screen field instead of a screen page
— this resolved some problems with the model. For instance, now it
did not matter if a form had more than sixteen screen fields per
screen page or less than six per page. Obviously more specification
effort is required to develop a form with twenty screen fields as
opposed to just two screen fields. (Note that a magnitude correction
table was provided with the initial version of the model but it did

not extrapolate beyond sixteen screen fields per page.)

Both the above strategies simplified the model considerably. For instance,

it was now easy to count SEs — all one had to do now was to locate screen fields!

Having made the above enhancements to the model the following key

activities took place between June 1991 and November 1991: (a) data collection

37

Table 3.1: Resources Used to Develop the 4GT Model
e s e e R e e S e e e]

Name Title Organization

Norbert Kaehler Assistant Manager Investors Group
Development Services,
Information Systems and D.P.

Annegret Layer Systems Analyst Investors Group

Irene Warkentin Sr. Computer Systems Specialist Great-West Life,
Computer Systems Group.

Calvin Trainor St. Computer Systems Analyst Great-West Life,
Computer Systems Group.

Ted Janzen Associate Manager Great-West Life,
Computer Systems Group.

Wendy Smith Senior Systems Analyst Great-West Life
Computer Systems Group.

Rob Buskens Systems Analyst Great-West Life,
Computer Systems Group.

Allison Minaker Project Manager Great-West Life,
Computer Systems Group.

Mavis Hildebrand Systems Co-ordinator Pitblados & Hoskins
(and earlier on at Great-West Life).

S A S i
to calibrate the weights for each SE category; (b) determination of the expansion
factor; (¢) validation of the entire 4GT model. All data collection and classification
into SE categories were performed independently by Smith. The results are

presented in Chapter 5 and also published elsewhere.***’

Quite independently, comparable experimentation with the 4GT Model also

took place at the University of the Winnipeg using ORACLE as well.** Results

38

obtained here provided us an opportunity to validate the Great-West Life model

weights and to investigate portability issues (see Chapter 5 for details).

3.2 Measuring Application Effort

In this section we describe the systems development life cycle and the
different development paradigms associated with it when 4GTs are used. As we are
interested in developing a model that measures application system size we address
the following issues:

(a) What is the nature of the life cycle when 4GTs are used?

(b) What functions adequately represent system size and effort when

4GT development (;ccurs?

(¢) Is there a good predictor for modelling the above functions?
Section 3.3 deals with the issue of systems development-life cycle; section 3.4
identifies functions representing 4GT development effort; section 3.5 deals with the
issue of predictors; and section 3.6 presents the 4GT model for measuring

application system effort.

3.3 Systems Development Methodology

Table 3.1 illustrates the systems development life cycle for developing 4GT

business information systems. This methodology is similar to life cycles described

39

Preliminary requirements gathering

4GT

N
/[

Testing

Maintenance

Requirments Protoyping 4GT Spiral model
analysis
Design 46T
Protoyping:
nth iteration
] Spiral modsil;
Coding nth iteration

Figure 3.1: Different Paradigms for 4GT Development

in various software engineering and systems analysis texts [6,62,63,64]. The
introduction of 4GTs, however, has made it possible for us to adapt this life cycle.
The most notable of which is a p‘rototyping-based systems development life cycle.
Figure 3.1 reproduced from Pressman’s Software Engineering text book® illustrates
different software development paradigms now possible due to the introduction of

4GTs. We will discuss these paradigms under two categories: "the traditional

approach”, and "the prototyping approach".

40

3.3.1 The Traditional Approach
This essentially is the traditional systems development life cycle. Table 3.2
illustrates the steps involved with such a life cycle. Details of what occurs at each

stage is presented briefly below:

Table 3.2: Steps Involved in Traditional Life Cycle
“

Phase I Feasibility Study and Requirements Definition
Phase 11 General Analysis, Design, and Data Modelling
Phase 11 Detailed Design

Phase 1V Coding

Phase V Testing,

L e]

Phase 1
Feasibility Study and Requirements Definition

The feasibility and scope of the software development project are
investigated. Very general information about the users needs is available at this

stage.

41

Phase I
General Analysis, Design and Data Modelling:

A general system study, analysis, and design take place at this stage. It
entails documenting the complete system — generally by creating data flow
diagrams. The analysis stage is summarized by Fertuck as follows (page 6):%

The analysis stage is actually a learning process in which the analyst tries

to gain an understanding of what the user does. The Data Flow Diagram

is an intermediate product that allows the analyst and the user to
communicate unambiguously. It summarizes the information that the
analyst needs during the design stage. It does it in a clear graphic way that
the user can understand.... the final result of this stage is an understanding
of the system documented by Data Flow Diagrams.
Data modelling also occurs at this stage. As part of the process of data modelling
we 1identify user views and reports, normalize them into tables, and create a

conceptual data model. Input/output layouts (forms and reports) of the system are

designed and all major process modules are identified at this stage.

Using CASE or equivalent tools, the following products are created at this
stage:
e Entity Relationship Model, Data Flow Diagram, and Program Structure
Charts.
o A Data Model (with tables in 3NF).

e Screen Layouts, Report Formats, and Processes.

42

Phase III
Detailed Design:

The objective of the detailed design phase is to refine the tasks of the
previous phase, and to translate requirements into a "representation of the software
that can be assessed for quality before coding begins".® Here we perform
additional data analysis, re-normalize the tables, and improve the logical and
conceptual models, if necessary. The physical aspects of the database can now be
designed — this includes designing stored record formats, selecting access method,
and determining the blocking factor. A major deliverable at this stage is

documentation of application design (coverihg all modules).

Phase IV
Coding:

At this stage we create the software system. Coding and code-generation
takes place using 4GTs (procedural and non-procedural languages are used if

necessary). A users manual and an operations manual are developed.

Phase V
Testing:
Coding and code-generation takes place one more time; module testing,

system testing, and integration testing take place and the system is demonstrated

43

«h

to the user one more time for acceptance. If everything is satisfactory,

documentation is generated, and conversion takes place.

3.3.2 Prototyping Approach

Prototyping can be defined as a process that enables the developer to create
a working model of the software that must be built® Some organizations‘
intentionally implement only a single version of the prototype and discard it
subsequently on obtaining an initial understanding of the users needs. The terms
throwaway, explorative, experimental, or non-evolutionary prototyping are all often
used to characterize this practice. In contrast, rapid prototyping or evolutionary
prototyping allows several increasingly refined versions of the prototypes to exist.
(Actually, the same prototype is revised and enhanced at the end of each phase of

the systems development life cycle.)

3.3.2.1 Non-Evolutionary Prototypes

Throw away prototyping is practised by individuals who believe that
prototypes must be discarded as they are of poor quality. They cite reasons such
as: a) prototypes are developed in a hurry; and b) prototyping short-circuits the
various checks and balances a systems development life cycle has to offer. Table
3.3 describes the various stages in the systems development life cycle when a non-

evolutionary prototyping paradigm is used.

44

Table 3.3: Steps Involved in Throwaway Prototyping

m

Phase | Feasibility Study and Requirements Definition

Phase II General Analysis, Design, and Data Modelling: Prototyping
Phase I Detailed Design

Phase IV Coding

Phase V Testing

“

Phase L, III, IV, and V are similar to the traditional life cycle. Therefore

only the extensions are described-below:

Phase I1
General Analysis, Design, and Data Modelling: Prototype Development

The information and data gathered during general analysis, design, and
data modelling are usually sufficient enough to begin prototyping. We first develop
an initial version of the prototype on the basis of available information from the
users. This version is demonstrated to all key users, and prototype enhancements
are sought. A few more iterations of the prototype occur subsequently, and we
come up with the final version of the prototype when the users are happy with

what they see. The following tools are used for prototyping: RDBMS, 4GL, screen

45

generator, form generator, report generator, menu generator, and application

generator.

3.3.2.2 Evolutionary Prototyping

The availability of 4GLs and 4GTs has made evolutionary prototyping very
appealing today as good quality code (i.e., prototype) can be generated even in a
hurry. Several practitioners therefore see no merit in discarding a prototype under
such circumstances. They claim that since the bulk of the code was automatically
generated, it is of good quality (in the sense that human introduced errors do not

exist, and not in the sense that the code is efficient — which is debatable).

The evolutionary prototyping methodology is similar to the non-
evolutionary methodology (see Table 3.3 for details). The significant difference is
that a prototype created dufing the second phase evolves even further as the
systems development life cycle progresses. At the end of each phase, newer revised
versions of the prototype are produced. The final phase produces an operational

prototype, which is delivered to the user.

The key advantage with the above methodology is that it favours user
involvement at all stages of the life cycle and not just at the start; development risk

is therefore reduced considerably. Coding effort might be reduced noticeably during

46

the implementation phase as the prototype needs only to be extended and not re-

built from scratch — as in the case of the throwaway prototyping.

Table 3.4: Steps Involved in Evolutionary Prototyping
Lo R S A R)

Phase 1

Phase 11

Phase III

Phase IV

Phase V

Feasibility Study and Requirements Definition

General Analysis, Design, and Data Modelling: Initial Prototype
Development

Detailed Design: Prototype Enhancement
Coding: Prototype Enhancement

Testing: Operational Prototype

Figure 3.1 also indicates that there is a spiral model alternative to software

development. This model focuses on risk analysis, and follows the evolutionary

prototyping methodology very closely.

3.3.3 Conclusion

The preceding discussion introduces the systems development life cycle in

the context of measuring 4GT development effort. Figure 3.1 provides us a basis

for understanding the differences between the different systems development life

cycles. In order to understand the different options illustrated in the figure it is

mapped using numbers and re-displayed in Figure 3.2.

47

Prelminary requirements gathenng

] L

2 t 38 _t 2A
Protoyping 4GT Spiral mode!

Requirments
analysis

3 /
4AGT
Design
Protoyping:
4 nth iteration

Coding

Spiral model:
nth teration

HA
4GT

N
A

Testing

Maintenance

Figure 3.2: Mapping Different 4GT Paths

We notice that it portrays the following different paths (and hence different
paradigms):
* 1,2,3,4,5 represents the traditional life cycle when no 4GTs are used.
* 1,2,3,4, 4a, 5 represents the traditional life cycle with usage of 4GTs.
e 1,2a,2b,2,3,4,4a, 5 represents the non-evolutionary (throw-away)
prototyping approach.

* 1,2b,2¢c, 5 represents the evolutionary (rapid) prototyping approach.

48

Note that we ignore the paths associated with the spiral model life cycle
as they are similar to the evolutionary prototyping approach. The path: 1, 2a, 5 is
also ignored as it is too futuristic. Commenting on this aspect, Pressman states:®

Ideally, the customer would describe requirements and these would directly

be translated into an operational prototype. But this is unworkable. The

customer may be unsure of what is required, may be ambiguous in
specifying facts that are known, and may be unwilling to specify
information in a manner that a 4GT tool can consume. In addition, current
4GT tools are not sophisticated enough truly "natural language" and won’t
be for some time.
Ignoring the path: 1, 2, 3, 4, 5 where no 4GTs are involved we now recognize the
following distinct paradigms for 4GT based development: a) traditional 4GT life

cycle without prototyping; b) evolutionary prototyping using 4GTs; and c) non-

evolutionary prototyping using 4GTs.

The 4GT Model as described in this thesis pertains primarily to the
evolutionary prototyping paradigm, i.e., most of the research and data collected
relate to this paradigm. Focusing on this paradigm is worthwhile as it is the most
dominant 4GT life cycle today. Actually "fourth generation technology" and
"prototyping” go together — Clarke includes "prototyping capability” in his list of
five "defining characteristics of the fourth generation environment" (p. 25)%. With
4GT based application development this is a very natural paradigm as prototyping
is easily facilitated. Regardless, the model introduced in this thesis is flexible and

supports various paradigms. This aspect is presented in Chapter 5.

49

MV) MV» , . MV»V .
- Analysis .-,‘ - e Des:gn f\\ - Cec oo
/" Process ! \Y . Process : fy Prccess o
i ' ‘) o
‘/ Yok S S
s System . :
Real ~ Tpeeniiaaas Requirements ;......._ e Qemgn ------ e i Sqftware
4 Sys(em ' Sizg SiZE S[Ze
W, ov, | I, DV,
Conceptual -
—— -1—~——-—-——-——-———_..._-_.4;--___
Empirical | f |
IV, | DV, V3 DV2 v
Entities | ,
:Relationships ! ’ Files '
—~~ ; Fields , - Source
7 Real ™ ‘Input ; | Projections Lines
't System ==——">Events = Joins ——. ofCoce
‘\’\/ Output | Reports :
‘ Events 1 Screens :
: i/0 Data ; .
' PIammaN
' \ \ r Werk
\ Hours | P Hours | \: Hours ____/
S —— —
e Y- MY S
i V' = independent Variatle
DV = Depencent Variable »
VIV Mederating Variables: i
I ., (Personnel sul + Merods + Toots) i
{ = Operationalized Variable i

Figure 3.3: Research Model for Measuring Information System Size

(Wrigley & Dexter)

3.4 Representing System Size - Theoretical Issues

In this section we deal with the theoretical issue of representing system size
using functions. Our modelling approach is based on software functional
decomposition techniques that occur during systems development. Functional
decomposition is a stepwise elaboration mechanism for refining the processing

tasks that are required for software to accomplish some desired function.® There are

50

different approaches to decomposition (a recent approach being object-oriented
analysis) — the overall strategy here is to define and characterize the software

design in terms of a software functional framework.

There is a relationship between such a structural framework and the
eventual cost of a system, and most effort estimation methods or models are based
on this hypothesis. Theoretical research conducted by Silver agrees with the above
fundamental strategy:'®!%

The essential conclusion reached is that software functional decompositions
(to an appropriate level of depth) may indeed serve as the basic
underpinnings for the design activity and associated cost/performance

specification even at the requirements level, and indeed throughout the
entire software development life cycle.

A formal research model illustrating the theoretical relationships among the
measures of system size available at each phase of system development — analysis,
design and coding was introduced recently by Wrigley and Dexter;* this model,
illustrated in Figure 3.3, is described by them as follows:

At the conceptual level, there exists a relationship between the size of the

requirements of the real system and the size of the eventual software

product. Each stage of development is achieved through the various
processes; analysis, design, and coding. System specifications at each stage
are transformed into the next stage through these processes...

They conclude that as "user requirements are temporally antecedent to the eventual

delivered software, one can specify that a causal relationship exists between actual

51

requirements, design and coding effort".*® We next describe our model as it

pertains to mapping of system requirements with design.

3.4.1 Input, Output, and Process Tasks

Useful information about application software functionality, and hence
required functions, is usually available from the user requirements document,
produced at the end of the requirements definition stage. This document might be
incomplete and not specific enough to identify all functions. But by the next stage,
(general analysis, design and data modelling) the proposed system’s outputs, inputs,

and processes are fully identified.

Literature survey reveals that several function-oriented cost modelling
researchers have consistently considered use of system input, output, files, and
processes for measuring and modelling a business information processing system’s
size and effort. For example, Symons MARK II model assumes that transaction-
oriented systems consist of logical input/output/process combinations.*® Albrecht’s
FPA approach, introduced in Chapter 2, uses outputs, inputs, files, inquiries, and
interfaces. (Note that interfaces can be treated as a project factor, and inquiries can

be viewed as a combination of input/output/process.)*®

52

Parkin® describes a US Army function-oriented model that estimates total
project person-months using outputs, number of record types in database (which is
comparable to using the number of tables), number of files, and number of input

transactions.

Itakura and Takayanagi’s®” model for estimating development effort of
COBOL projects includes the following functions — input/output files, reports and

processes.

3.4.2 Form, Report, Data, and Process Functions

As evident from some of the above models, inputs, outputs, and processes
can be viewed in terms of aggregates (such as form, report and process functions).
For instance, a form function type can be viewed as a combination of an input,
process, query, and output. This is especially natural for application development
in the fourth-generation environment. For 4GT applications it is probably
convenient to view the system in terms of forms, reports and process functions
rather than input, output and process tasks. Users actually are more comfortable
identifying forms and reports they want than specifying input, output and process

tasks for an application.

53

The following function types are being introduced for the purposes of effort
estimation:
Form

In order to interface with the database we design and implement forms.
Forms are also part of the delivered application system. Forms consist of screens

and are used for the following purposes:

Input — use the form to enter new data

Query — use the form to interrogate stored data
Output — uses the form to display queried data
Update — use the form to change data

Process — use the form to implement transaction logic

A forms-generator or screen-generator can be regarded as a source for the
form function. Albrecht’s original paper on FPA describes "data form" as an
example of input function, "printed report” as an example of output function, and
"disk files, tape files, and input card files" as an example of file function. (Of
course, today data forms can no longer be classified as an input function only, and
also report functions today allow substantial customization via queries before they

are printed.)

54

Report

In order to interface with the database we design and implement reports.
Forms are also part of the delivered application system. Reports are similar to
forms but their primary purpose is to display the results of a query or simply
display data stored in the application database. Subsequently they allow the
following actions:

Output —oprint data on the screen, or through a printer

Query — limited interrogation of the stored database is allowed with the

intention of creating customized output.

A report-generator can be regarded as a source for the form function.

Data

This function type refers to database tables and files of the proposed
application. Just like forms and reports it is a deliverable — part and parcel of the
software system given to the users. Most transaction processing systems today and
especially 4GT-based systems use the database approach for systems development.
Such an approach concentrates on understanding, using, and documenting data.
According to Fertuck, "by viewing the database as the central component, the
analyst concentrates on defining the data correctly. Later the analyst worries about

inputs, reports, or programs that transform the data in the database."

55

The database tables associated with the project are usually identified as
early on as the preliminary design stage via the entity relationship diagram (ERD),
and later on during the general analysis, design and data modelling stage via the
data model. Data Flow Diagrams and its data stores are also associated with the
data function. DeMarco defines data stores as follows (page 5):°!

Data stores can be thought of as manual or automated files or databases or
any other accumulation of data.

ERD’s, data models and DFD’s can therefore be regarded as sources for the data

function.

Process

Process function type represents procedures and modules that will
eventually be coded in a procedural or non-procedural language. (4GT form- or
report generators are not used.) Process functions are similar to forms and reports
and they can be associated with the following tasks:

Input — enter new data

Query — interrogate stored data

Update — change data

Process — implement programming logic
Procedures or modules performing complex calculations and algorithms are

generally classified as a process function type. Note that a form or report also

56

could be classified as a process function if a form- or report generator cannot be
used (due to lack of tool functionality). The bulk of our current modelling effort
is only on form, report, and data function types (conventional cost models do not

address them adequately).

3.43 Conclusion

In this section we described how information system can be measured in
terms of the following function types: form, report, data, and process. We also
showed that this hypothesis has been well researched. For instance, Wrigley and
Dexter researching a general strategy for measurement and evaluation of systems
development environments conclude that screens, reports, and files (derived during
the preliminary design stage) explain information system size very well. Their
research and analysis involved FOCUS projects which is a 4GL. They also
indicate that with data-strong systems (i.e., database oriented application systems)
measurement in terms of reports, screens, etc., is sufficient. (However, for scientific
applications it is likely that measurement units in addition to screens, reports, etc.,

would be needed to reflect design and requirements size satisfactorily.”)

Finally, we note that various key products of the systems development life

cycle can be identified in terms of the function types introduced in this section.

57

This is summarized below:

Product

Entity Relation Diagram
Data Model

Interfaces

Data Flow Diagrams

Prototype

3.5 Predictors

In this section we describe prevailing predictors and introduce our new

predictor for the 4GT-based software development environment. According to

DeMarco (page 54),'

Every metric falls into one of two categories: either a "result” or a
"predictor”. A result is a metric of observed cost, scope, or complexity of
a completed system. Examples include total cost, total manpower, elapsed
time, or cost or manpower.... A predictor is an early-noted metric that has

Function Types

Entities represent tables & files (data type).

Consists of tables, and files (data).

Inputs and outputs via forms, reports, and process types.

Data stores (data type), process type.

Forms, reports and process types.

a strong correlation to some later results.

Size measures such as LOC, Function Point, and code volume can be regarded as

examples of predictors.

3.5.1 Prevailing Predictors

We recount the limitations of the two prevailing predictors of the 3GL

environment — LOC, and Function Point (FP) in this section. Let us consider the

58

LOC metric first. We note the following problems when it is used as a predictor
for estimating effort in the 4GT environment:

° There is no standard definition for a line of 4GL code.* It is therefore
difficult to estimate the number of lines of 4GL code, and difficult to
convert a 4GL LOC to a 3GL LOC (or vice versa). Such conversions
are required by existing cost models.

* In the case of 4GTs, especially, it is not practical to use LOC as most
of the code is generated automatically, without any substantial
programming. Fairly complicated forms and reports are generated by
simply specifying the functions. It is therefore difficult to collect true
project statistics in terms of "effort put in" and "LOCs developed".

° While some generators display the source code generated for
documentation or editing purposes, many do not display any code at
all. For example dBASE III's report generator produces executable
code directly and we cannot see the code generated (hence we are
unable to count the LOC).

* 4GLs produce substantially smaller code sizes when compared with
3GLs.* Consider the fact that while data declarations are almost non-
existent in 4GLs they typically constitute more than half the code for
a COBOL program.® Such simplicity in computing should be reflected

in effort estimates produced by a model but cannot be done so easily.

59

In conclusion, we note that historically, cost models using LOC as a
predictor (such as COCOMO) were designed around databases consisting of 3GL
projects only. Fourth generation tools, as we know them today, did not exist then.
Obviously, such models or their predictors are not very suitable for estimating 4GT

projects.

As an alternative to using LOC, let us consider the use of predictor FP (as
defined in Albrecht’s FPA Model). FP eliminates the need to estimate in LOCs
thereby eliminating several paradoxes caused by LOC measures.*® It is therefore
more suitable than LOC for estimating fourth-generation development effort. The
FPA method, however, has limitations:

* The resolution capability of each FP is inadequate when applied to
application development using 4GTs. Consider the following comments
from Dreger with regards to counting FPs when a report or screen
generator is used:z;7

...if this tool (form or report generator) is provided it is impossible

to count Function Points for all possibilities, and you must settle the

issue by crediting the application with one complex output (FP).
Suggesting a default count of one complex FP for all forms and reports

generated is certainly inadequate as some forms are significantly more

effort-consuming than the others.

60

° The weighting associated with the FPA method is also inadequate for
4GT-based development (where a lot of specification involving data
elements occur). For example, Symons questions why "a system
component containing, say, over 100 data elements is given at most
twice the points of a component with only one data element". This can
result in a significant effort estimation error for 4GT-based

development. (The 4GT Model resolves this problem elegantly).

Several other problems specific to the FPA model are documented by Symons in
his paper conveying the impression that the model is far from perfection for either
3GL or 4GL based development (pp. 1-8).*® Especially for 4GT development we
regard the model as deficient — as with LOC-oriented models, this can be
attributed to the fact that the FPA method was designed around databases
consisting of largely 3GL préjects only — powerful fourth-generation generators

as we know them today, did not exist then.

3.5.2 Attributes of a New 4GT Predictor

| In section 3.4 we examined the nature of software development and
concluded that at a global level information system size could be represented using
form, repvort, data, and process functions. However, we need a predictor to estimate

the effort involved with developing each function, as well. As we established that

61

both LOC and FP are inadequate predictors for 4GT-based development (in the

preceding section), we now describe a suitable predictor for our purposes.

A very important characteristic of application development using form-
generators, report-generators, and application-generators is that:
a) we generally specify what is to be accomplished, and

b) most of the specification effort is focused on and around screen fields.

The term screen field refers to the data elements of form, report, data, and
process functions. The screen field plays a very important role in the specification-
oriented programming process used by 4GTs as the entire foundation of default
logic is built in and around and them. This belief is supported by ORACLE (page
1.3)" and is evident in several other 4GTs as well (such as ORACLE’s
SQL*FORM;* UNISYS’s ACCEL;'™ and Relational Technology’s Ingres'®"). All
such 4GTs, including low-level 4GTs such as dBASE IV,'* require us first to
define skeletal screen fields for each form and report, and then to implement logic

around them — usually with specifications or macros or code.

In view of the above, we can regard the following as being essential

attributes of any 4GT predictor:

62

* support of the specification oriented programming paradigm of 4GTs
(as used by form-, report-, and application generators), and

* use of the screen field as an effort parameter.
The Specification Element (SE) is being proposed as a predictor that addresses the
above issues. The term "specification element" is a hybrid of the two terms
specification, and screen- or data element. An SE can therefore be defined as "a
specification task associated with implementing a screen field or a data element".
Examples of an SE are "automatically retrieving name and address on entering ID"
and "converting any input data automatically to upper case". Figure 3.4 below
illustrates specification of this SE; note that fhe SPECIFY ATTRIBUTES window

with the uppercase option is pulled open.

Each SE has an effort value (in person-hours) that represents the effort
required to implement it. Collectively SEs represent the functionality and effort

required to develop an entire software application.

3.5.3 Categorizing SEs

To facilitate practical use of SEs as a predictor we must first classify them
unambiguously. A study of 4GTs, design and development of applications using
them, and interactions with practitioners provide us with a basis for categorizing

SEs>3333778 100101102105 ' OR ACLE s used as a case study here to illustrate the

63

| Ss=z=z===zx CUSTONER_DATA T=====z==

DEFINE FIELD Seq # 2 DATE
Name MOVIE_NAME :
Data Type:
#CHAR NUMEBER SPECIFY ATTRIEUTES
ALPHA INT Database Field ION_INFO ==ss=====
TIME MONEY Primary kKey
Actions: RATING PRICE
TRIGGER ATTR| #Displayed
COMMENT coLu Input allowed
Query allowed

Update allowed
Update if NULL
Fixed Length
Mandatory
e Uppercase
HELP : F Autoskip Y F8 EXECUTE QUERY
F Automatic help
e Nz echao

Figure 3.4: Specification Operation using Oracle

illustrate the distinct levels of form design and development that occurs with 4GTs.

3.5.3.1 Form SEs
As indicated earlier on, specification operations involving screen fields play
an important role in application development with 4GTs. Distinct development
stages and discrete specification categories are also evident (page 6-12),%° (page 8-
2).%" This fact is used to identify the following distinct categories of SEs:
o Simple SEs
They account for the nominal effort involved in implementing a

skeletal form.

64

e Basic SEs
They are associated with use of simple specification operations.
e Detailed SEs
They are associated with sophisticated specification actions — such
as those involving use of macros, or triggers.
e User exit
User exits are associated with procedures or programs written in a

conventional programming languages

Simple SEs

Screens consisting of screen fields have to be created first. We can provide
logic to a form only after the initial screen structure is implemented. This activity
is described by ORACLE as the first level of form design where one creates a
"screen consisting of fields without any special validation or enhancement" (page
1-8).>" As very elementary specification operations are involved with screen design
we classify the specification elements of this category as "Simple SEs". SEs in this
category are collectively responsible for creating (and altering) an initial form.
Typical activities involved here include: relabeling fields, modification of field

sequence numbers, cutting and pasting of fields, and visual enhancement of form.

65

All applications require a certain amount of such specification activities.
The end result is a form with skeletal screen fields such as the one illustrated in
Figure 3.5. (It must be noted here that screen prototyping — the most simple type
of prototyping — involves development of several such screens. Hicks describes
this activity as follows (p.196):''® "The system analyst and the user quickly
generate a skeleton application program which serves as a model for the
application. The end-user can interact .. and thereby refine the system’s

requirements".)

==s=s=s=z== CUSTOMER_DATA =s===z==

ID 100 DATE 2*8-0CT-31
NAME ZAPPA .
ADDRESS 101 APPLE AVE, TORONTO

Zz===zz== TRANSACTION_INFD Sz==s=zc=-==

ID VIDEQ_ID MOVIE NAME RATING PRICE

100 4000 DOCTOR COMEDY s.S

100 3333 ROEIN HOOD ADVENTURE 4.5 ¥,
HELP : F1 HELP F7 QUERY F8 EXECUTE QUERY

F10 SAVE DATA

Figure 3.5: Screen Created using Simple Specification Operations.

66

Basic SEs

Some of the above screen fields will require some basic validation and
assistance. This can be regarded as the second of the them ashree levels of forms
design. At this stage one can "specify field ranges, default values, and help
messages by making a single entry on a SQL*Forms window" (page 1-8)." Since
SEs in this category involve single action steps or specifications, they are
collectively referred to as Basic SEs. Examples of such SEs include: specifying

upper and lower field ranges, and automatically converting data to uppercase.

Detailed SEs
Some of the screen fields will require more "sophisticated validation and
assistance by writing triggers or short sequences of SQL or SQL*Forms
commands" (page 1-8).”” Triggers are macros or commands that are activated when
certain fields are used. We classify triggers and related sophisticated specification
operations as "Detailed SEs". The following are examples of Detailed SEs:
 validate an entry against a list of values in a column of a table.
e retrieve a product name and list price from a table when the
operator enters the product code number.
* calculate the total amount of an item ordered from its quantity and
price fields.

° assure that an actual price is discounted no more than 20% off list.

67

The detailed specification operation, "restrict fields to a set of data values" ig

illustrated in Figure 3.6.

DEFINE FIELD Seq # 3
Name CREDIT_RATING

CHOOSE TRIGGER
Name NAME
POST-CHANGE

Seq # 1 TRIGGER STEP Label,

SELECT *X?

FROM DUAL

WHERE :ENTER_DATA.CREDIT_RATING IN (’PDOR’,’'G0O0OD’,’EXCELLENT?)

7

Message if trigger step fails:
Please enter aonly POOR, GOOD or EXCELLENT !

Actions:
CREATE CorPY DROP ATTRIBUTES
FORWARD EACKWARD PREV STEP NEXT STEP

Form: CUSTOMER Block: ENTER_DATA Page: | SELECT: I Char I

Figure 3.6: Screen Created using a Detailed Specification Operation.

User Exits

Finally, we describe a distinct category by itself — the user exits. Some
screen field triggers can be implemented in such a way as to permit a temporary
exit to 3GL routines. Languages such as C are commonly used to implement user
exits. User exits are sometimes necessary if faster response time is required or if

the desired functionality cannot be provided by a 4GT. Hicks explains this distinct

68

feature of 4GTs as follows: "Each application is likely to have unique requirements.
Therefore most application generators contain user exits. User exits allow a user
or a programmer to insert program code that takes care of these unique
requirements of the application”. ORACLE explains it more technically as:
A trigger step can temporarily exit SQL*Forms to a program written by
you or other users. You can use such user exits to process information in
tables and form fields, display messages, and perform many kinds of
processing that are beyond the scope of SQL and SQL*Forms (page 9-
28).”7
Obviously, user exits require significantly higher effort than the other categories
described. User exits are not necessary with simple application systems. End-users

will typically not be asked to implement them as they require traditional

programming skills.

User exits to 3GL procedures from within a 4GT are not possible always.
For example, ORACLE’s SQL*Report Writer does not permit user exits. This
category then is not relevant here. Such SEs are not identified when effort

estimation occurs with such tools.

3.5.3.2 Report Form SEs
Report form screen fields are similar to form screen fields and therefore
have the same distinct categories — simple, basic, detailed, and user exit — as

described in the preceding section.

69

3.5.3.3 Data Function Type SEs

Just as with form and report function types, we need a predictor here to
estimate the magnitude of effort involved with the Data function. We use the more
common term “data element" rather than screen field in this context. The data
element can be defined as an attribute or a column belonging to a table. For

example, in the relation student (student#, name, city) we have three data elements.

The data element predictor measures effort involved with various data
centred activities of 4GT development, such as data definition, creating tables and
views, and entering sample data into such tables. Such activities consume effort and
are indeed a component of the application software delivered to the users. Results
obtained with the 4GT Model indicate that the data element integrates satisfactorily
in our model. Other researchers have also demonstrated that the data element is a
useful and essential predictér for estimating information systems. For instance,
Wrigley and Dexter’s research model indicates that fields in files correlates very
well with application size.”* Symons also proves that data elements are a good

measure of size in the components of his model.*®

3.5.3.4 Process SEs
Using SEs or screen fields to predict effort involved with process functions

is difficult due to the variations involved in coding. For example, one can write a

70

menu program (responsible for transfer of control from one module to another)
using a 3GL with several different logic, or even generate such code with menu
generators such as ORACLE’s SQL*MENU. (The latter will take significantly less
effort than coding with a procedural or even a non-procedural language.) However,
it is beyond the scope of the present 4GT modelling research effort to identify all
valid process SEs. Nevertheless, it remains an important topic and is being

researched at present.”

3.5.4 Conclusion

In conclusion, we note that the predictor SE satisfies the constraints defined
for a 4GT predictor — it supports both the specification oriented paradigm of 4GTs
and the use of a screen field as a parameter. At present nine distinct categories
have been identified — four for the form functions, four for the report functions,
and one for the data function. Classifying SEs into the above categories serves the
purpose of simplifying cost estimation using them. To illustrate with an example,
the specifications "automatically retrieving name and address when ID is entered,
and restricting data entry to one of four values are grouped in one category
(detailed SE), whereas displaying screen field in upper case is grouped in another
(Basic SE category). The former involves sophisticated specifications or use of
macros (which is more time consuming) and the later involves simple specifications

(i.e., straight forward menu selection key strokes).

71

Experimentation with the model, as described in Chapter 5, seems to
indicate that the above categories of SEs are sufficient and satisfactory for
modelling 4GT applications. Moreover, the above SE categories are substantially
distinct from each other and therefore easy to apply them during cost estimation.
This agrees with Boehm’s views that a cost model must be simple if it is to be of

any value at all.'¢

The SE as introduced here can also be viewed in terms of a software brick.
Connell and Shafer’s concept of a software brick is explained as follows:®
If a brick wall is to be built, theré are metrics available regarding the
average amount of time required to lay one brick. Estimating the time
required to build a wall then is reduced to simply calculating the number
of bricks required from the wall’s dimensions and multiplying that number
by the current metric for brick laying.
With the 4GT Model, the total number of screen fields is equivalent to the "total
number of bricks". The nine categories of SEs equate to nine different "sizes of
bricks". Knowing the total number of screen fields in each category (i.e., total
number of bricks required) and their corresponding metric values (i.e., time

required to lay each brick), one can obtain an estimate of the total development

effort!

72

3.6 A Model for Effort Estimation

The 4GT Model architecture is introduced in this section. Terminology,
equations, design, mechanism, and use of the predictor SE for effort estimation are
presented in this section. Model calibration, usage, installation and validation

details appear in Chapter 5.

Two sets of factors influence the ultimate cost of a system

e Application Size Factors, and

* Project Factors
The application size factors are related to the size of the application and the
magnitude of effort required to implement it. Overall application size is governed
by the total number and type of functions identified for an application (as
introduced in section 3.4, these are form, report, data and process functions). At
the function level SEs govern the application development size (as explained in

section 3.5.2).

The project factors are a group of project parameters that influence project
costs. Skills, experience of the participants, methods or languages used, etc, are
examples of project factors. These factors acknowledge the fact that application
development effort and duration are affected by variables such as programmer skill,

end-user skill, and familiarity with hardware. (Chapter 5 describes this aspect.)

73

3.6.1 Overview of the Model
The 4GT Model is essentially a bottom-up model as it uses specification
elements as a means to estimate function size — collectively, the functions

represent information system size.

A function can be classified into one of the following function types:
form, report, process, and data. System models produced by the analyst during the
systems analysis stage (such as data flow diagrams and data models) are a good
starting point for identifying functions. Form and report functions are implemented
using a form generator and a report generator respectively. Data functions are

implemented using a DBMS.

Total Project Effort [E] Development Effort [D]
includes includes
« all life cycle activities * data definition
* project management e coding & code generation
° team meetings - * unit testing

* documentation development
¢ prototyping overhead

Figure 3.7: Conceptual View of Effort Distribution by 4GT Model

In order to further estimate the effort involved in implementing each

function type, we use the predictor SE (introduced in section 3.5.2) for such

74

purposes. Each SE has an effort value in person-hours associated with it; this is
the work effort required to implement one SE (and hence one screen field). By
using the techniques described in the model one can directly determine this effort

value — no historical data is involved at this stage.

SEs requiring similar implementation effort are grouped together; this
serves to reduce the total number of SEs. Nine such SE categories have been
identified in the model — four each for form and report functions, and one for the

data function.

Within each function, the total number of SEs multiplied by their respective
effort values determines the development effort for that function. This mechanism
therefore sizes a function. On summing the development effort for all form, report,
and data functions (including process functions, if necessary), we have the total
development effort (D) (see Figure 3.6). As the figure indicates, D does not include
the complete life cycle effort or activities such as project management, developing
user manuals, user interviews, administration, and team meetings. In order to obtain
thé total project effort (E), we multiply the development effort with an expansion
factor. The expansion factor is derived from historical software metrics data of the

organization installing the 4GT model.

75

Finally, Project Factors (PFs), such as “developer familiarity with 4GTs",
"programmer skill", and "environmental factor" are evaluated for a proposed project
on hand. An expert system has been implemented for adjusting project factors. It

corrects the total project effort (E) to give us the final effort estimates for a project.

Concept Design - Code Units Integrate Test
Standard Standard
Fuzzy Component Component
Logic Subsystem Subsystem SLOC
Modules Modules Files
Standard Screens Screens Batch PGM
Component " Reports Reports | Online PGM | Object |
Subsystem
New & New &
Modified Modified
Function Function
Points Points
Ball Park Base Line Change Controi
Size Estimate Size Estimate Size Estimates

Figure 3.8: Estimating Techniques — Putnam & Myers

Putnam & Mpyers describe size estimation as a continuing process (see
Figure 3.7). The figure indicates that various size estimating techniques can be
viewed to be "strung out along the time line".'® Three major techniques are
idenﬁﬁed by them for estimating purposes: ball-park, base-line, and change-control.

With ball-park sizing only a rough assessment of size is possible, however, such

76

information might enable the project manager to decide whether it is acceptable to
pursue a project further or not. Base-line sizing is a suitable technique when some
software design is complete — it provides better results than ball-park sizing.
Change-control sizing refines size estimates during the coding stage. It can give
very accurate results for sizing the growth in code and for sizing the software

integration phase.

In terms of the above framework the 4GT Model supports base-line sizing
and change-control sizing fully. This is due to the ability of the model to size
reports and screen modules satisfactorily. Aftempts have also been made to use the
4GT Model for ball-park sizing (by using the average function effort as a basis —
screen fields and SEs are obviously ignored as preliminary design has not occurred

yet; see Chapter 6 for details).

Table 3.5: Concepts for Discerning Requirements

h

Abstraction Suppress the details and concentrate on the essential properties of the
system under consideration.

Partition Represent the whole system as the sum of its component parts.

Projection Represent the system using only a subset of its properties.

“

77

In conclusion we indicate that the 4GT Model architecture incorporates
fundamental concepts such as abstraction, partition, and projection (see Table
5.1).® For instance, a) the model focuses primarily on the essential characteristics
of a system being estimated - namely its functions; b) the system is partitioned into
functions; functions can be summed up to represent the whole system; and c) SEs

can be used to project effort related to development of functions

3.6.2 Deriving the Total Effort

This section derives the total effort (E) for the 4GT Model. It proceeds as
follows: first we derive the basic development effort (D) required to implement all
program functions, then we derive the total system development effort (E), and

finally we illustrate how E can be adjusted for project factors (E adj).

Determining the Basic Development Effort
So far the following aspects of the model have been characterized:
* an application can be broken down into several functions
* each function can be classified into function-types
* each function-type has several Specification Elements (SEs) each of
which can be classified into a category.
° each SE category has an associated SE Value (SEV). The SEV

indicates the amount of time (in person-hours) it would take to

78

implement an SE. This information is stored in a Specification Element
Table (SET)
Notatiop:
The set S consists of four function types
S = {form, report, data, process}
Each of the above function types has a Specification Element Table (SET),
where the effort values for each SE category are stored; these are

SET(form), SET(report), SET(data), SET(process)

In a SET(type),

* SE(type, k) is the k™ SE category and SEV(type, k) is the associated
SEV

* N(T) = number of SEs in the function type T

A project has n functions, denoted by F(i), i = 1,2.3,..,n, where

FG) €S

For the i® function F(i), let T = type of F(i). Considering SET(T)

e fork=1toNT)

set Count(i,k) to the number of SEs that falls into the category SE(T k).

79

N
TSEV(G) = Y, Count(i,k) - SEV(T, k) 3.1
Jork=1

We now have the basic effort D required to develop all program functions as,

n
D = Y TSEV() (3.2)
i=1

Determining the Total System Development Effort

The effort basic effort D derived in Equation 3.2 does not include the full
life cycle effort but only the effort involved in the development stage. Effort due
to the life cycle stages requirements definition, detailed design, etc., as well as
activities such as project management, administration, meetings, and documentation

development are not included in D.

Researchers and practitioners have successfully used expansion ratios for
determining the total effort involved with a project."'**” For instance, Grady and
Céswell, using their historic metrics database of several projects successfully
demonstrate that elapsed phase effort can be used as a basis to estimate size

(pp.140-147).1

80

Such a strategy is used by the 4GT Model; effort pertaining to a phase (i.e.,
development) is used as a basis for distributing effort across the life cycle (see
Figure 3.6). This approach is similar to the "component ratios" described by
Putnam and Myers for cost estimation purposes,'® the difference being that the
development component size is multiplied by a ratio reflecting the true overhead
due to an organization’s SDLC. We have validated this strategy of the 4GT Model

— Chapter 5 illustrates this aspect in detail.

To obtain the total system development effort E, we multiply the effort D
due to basic development with an expansion factor reflecting the size of the
remaining life cycle activities. The total system development effort is given by the

following equation:

E = D * Expansion_Factor 3.3)

Determining the Expansion Factor

The expansion factor itself is determined from historic data by dividing an
organization’s actual system development effort with the basic estimated effort D
for a project. The reason being that while the actual system development effort

includes the effort due to project management and administration, etc., the effort

81

E does not do so. Therefore, the ratio between these two variables will give us an

expansion factor that represents effort due to the entire life cycle.

Expansion Factor = Actual System Development Effort / D

As every organization uses a different methodology and also practices
project management differently the expansion factor values may differ from one

location to another.

Determining the Adjusted Total System Development ﬁffort

Finally, Project Factors (PFs), such-as "developer familiarity with 4GTs",
"programmer skill", and "environmental factor" are evaluated for a proposed project
on hand. Such factors influence the ultimate cost of a system and cannot therefore
be ignored. An expert system called PFES has been implemented for making such
corrections. It adjusts E above to give us the adjusted effort estimates for a project

(E Adj.).

E Adj. = E * Project_Factor_Correction (3.4)

Chapter 5 covers project factor evaluation and correction in detail.

82

3.7

Using the 4GT Model

To use the 4GT Model for predicting effort requires the following steps:

1. The project planner uses all available information related to the project

to decompose the software into functions — form, report, data, and

process (if relevant).

. The screen fields involved with each of the above functions are

classified into SE categories. (This information can be summarized in

the 4GT Model template illustrated in Table 3.6).

. The 4GT Model equation is invoked at this point. This determines the

development effort. (Steps 3, 4, and 5 are summarized in the template

illustrated in Figure 3.7.)

. The organizational expansion factor statistics is entered into the

template. This determines the total system development effort.

. Projects factors are evaluated at this stage, if necessary — and this

gives us the adjusted effort.

Details pertaining to calibration of the model, including the recommended

procedure for doing so, are described in Chapter 5.

83

Table 3.6: Template for Summarizing Data Related to Functions

4GT Model - Template 1:

SE Category ‘ SE Value Magnitude Total Specification Effort
(for Oracle) {No. of SEs) (SEV * Magnitude)

FORMS

Simple SE 0.13

Basic SE 0.29

Detailed SE 1.59

User Exit 22.73

Total Form Effort

REPORTS

Simple SE 0.13
Basic SE 0.84
Detailed SE _ 2.55

Total Report Effort

DATA

Data Element 0.41

Total Data Effort

Table 3.7: Template for Related to Effort Estimation

4GT MODEL - Template 2.

Form (from Template 1); —_ person-hours

Report (from Template 1): —— person-hours

Data (from Template 1): —_ person-hours

Total 4GT Development Effort: —___ person-hours

Organizational Expansion Factor: 3.10 (Great-West Life)
Project Factors Correction: -

Adjusted System Development Effort: —_ person-hours

84

3.8 Conclusion

In this chapter we introduced the life cycle associated with 4GT
development and described how we can estimate information system size using
functions such as form, report and data. Effort involved with each of these
functions can in turn be predicted using a predictor which we call "specification-
element”. Just as 3GL cost models measure the size of an application in terms of
LOCs, the 4GT Model attempts to do so in terms of the "specification elements"
Considering that specification operations substitute physical coding with 4GTs, and
that it is difficult, if not impossible, to collect project statistics in terms of LOCs
— the techniques suggested by our model are valuable for cost estimating in the

fourth generation domain.

85

Chapter 4

Evaluation of Project Factors

4.1 Introduction

In this chapter we examine various factors that affect the cost of software
p;ojects. These factors are referred to as project factors (PFs) in the context of the
4GT Model. They acknowledge the fact that the cost of developing an application
is affected by variables such as programmer skill, end-user skill, or familiarity with
hardware and software. A prototype model called PFES was implemented to model

PF correction. It is fully functional at present.

The objective of this chapter is primarily to:

e identify and document all PFs that affect effort estimation in the 4GT
environment

* to provide a mechanism for correcting the raw estimates generated by
the 4GT Model

e to demonstrate the role that knowledge-based systems can play in cost

estimation, especially when end-user computing is involved

The 4GT Model (as introduced in chapter 3) is not sufficient enough to

explain the variation of software project costs. Therefore, various PFs that influence

86

the development costs are evaluated here. It results in refining the effort estimate
(E). Such PF corrections are applied in every instance of the model usage. Two
basic schemes can be considered for applying PF corrections.

(i) Conventional Approach

(i) Knowledge-Based Approach

Models such as COCOMO and FPA use the conventional approach for
performing PF correction. We use the knowledge-based approach in this thesis as
very little research has been conducted in the domain of "knowledge-based software
cost estimation” — most of the existing cost models use the conventional approach
only. We now have an opportunity to explore some of the presumed benefits such
as — explanation capability of knowledge-based systems, ability to integrate
project management experience (on completion of a project), and ability to train
novice project managers or cost estimators. But first we review the conventional

approach.

4.2 Conventional Approach
To illustrate the conventional approach we describe how COCOMO and

FPA perform PF correction.

87

4.2.1 PF Correction in COCOMO

The various factors involved in COCOMO’s PF correction were extensively

researched and documented by Boehm.'® Based on literature research, and his

project data, fifteen factors (called cost drivers) were identified — see Table 4.1.

Table 4.1: COCOMO Cost Driver Attributes

1. Product attributes

a.
b.
c.

required software reliability
size of application data base
complexity of the product

2. Hardware attributes

a.

b.
C.
d

run-time performance constraints

memory constraints

volatility of the virtual machine environment
required turnaround time

3. Personnel attributes

o a0 o

analyst capability

applications experience
programmer capability

virtual machine experience
programming language experience

4. Project attributes

a.
b.
C.

modern programming practices
use of software tools
required development schedule

88

4.2.2 PF Correction in FPA

As indicated in Chapter 2, the FPA method*' adjusts the initial_FP count

by applying a set of project factors. The final FP count is obtained using the

equation:

FP = Initial_FP x [0.65 + 0.01 x SUM(PF,)]

Here Initial FP is the unadjusted FP count obtained by evaluating the business

functions. PF; (i = 1 to 14) are FPA’s project factors, also called complexity

adjustment values, and are based on answers to the following questions:*?

1.

2.

8.

9.

Does the system require reliable backup and recovery?

Are data communications required?

Are there distributed processing functions?

Is performance critical?

Will the system run in an existing, heavily utilized operational
environment?

Does the system require on-line data entry?

Does the on-line data entry require the input transaction to be built
over multiple screens or operations?

Are the master files updated on-line?

Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

&9

12. Are conversion and installation included in the design?
13. Is the system designed for multiple installations in different
organizations?
14. Is the application designed to facilitate change and ease of use by the
user?
A value ranging from O to 5 can be assigned to each of the above PFs. This results

in a correction range of 0.65 to 1.35 for the initial_FP count.

4.2.3 ‘Summary
Similar conventional techniques are used by other researchers in their cost

models. For example, Walston and Felix (see pages 54-73)* and Capers Jones (85-
208)** describe similar factors. While some differences exist, one can notice some
common grounds in each of the above models with rega'rds to PFs used. For
example, Siba Mohanty*’ compared fifteen conventional models used in various
estimating methods by studying 49 PFs. The overall result of his comparison
reveals that the following three project attributes are found most frequently, and
account for 75% of the total attributes found in the various models,

size 20%

complexity 19%

environment 36%

90

It can therefore be assumed that when it comes to estimating software development,

the three major concerns are size, complexity, and environment.*®

4.2.4 General Strengths and Weaknesses of the Conventional Approach

This section reviews the conventional approach for its strengths and

weaknesses. First the strengths:

1. The conventional approach is concise. It is easy to design and
implement such a scheme since basically only a few key project
factors, such as project environment and personnel ability are used.

2. It is more objective than the knowledge-based approach, and there is
less room for influencing the ultimate estimates.'®

3. Most such PFs are also objectively calibrated to previous data.

4. It is conceivable that such an approach can also outperform expert

Jjudgement due to the bootstrapping phenomenon.

The weaknesses of the conventional approach basically complement the
strengths of the knowledge-based approach. According to Boehm, with the expert
judgement approach (he was referring to human experts, not knowledge-based
systems) there is an opportunity to factor in exceptional personnel characteristics
or interactions, and other unique project considerations as well. This open-ended

scheme is desirable, as indicated by Symons, when commenting on FPA’s limited

91

number of technical complexity factors. He states, "the restriction to 14 factors
seems unlikely to be satisfactory for all time. Other factors may be suggested now,

and others will surely arise in the future."?

One way to address the above problem is to use the knowledge-based
approach. Several user friendly shells are available today and they readily assist us
with encoding project experience and knowledge. The knowledge-based approach
was a very suitable research method as it supplemented the sparse literature
information available on the topics of end-user development and 4GTs. By contrast
it was easy to find practitioners who had significant experience in this area and
could readily qualify as "experts”". Our basic purpose then became one of
documenting such unrecorded expertise. It is a sad but true reflection of the state
of software development — practitioners with knowledge do not have the time or

inclination to publish.

4.3 Knowledge Based Approach

The knowledge-based approach can be defined as providing an explicit and
visible representation of the knowledge. Even though there is an inferencing
mechanism it is hidden away from the knowledge. In comparison in a 3GL

program the same knowledge (called data) is embedded within the procedural code.

92

The knowledge-based approach provides us a more open-ended approach
for effort correction. For example, consider the PF pertaining to end-user
computing. COCOMO and FPA ignore this parameter, but with an open-ended PF
correction scheme project managers or estimators can integrate the above PF into

a knowledge-base by describing all relevant rules to the system.

Another advantage with the knowledge-based approach is that it provides
us with the opportunity to model situations or attributes for which we do not have
adequate statistical information but have heuristics or rule-of-thumb’s. To illustrate
with an example, very little information is available in the general literature today
with regards to the impact of end-user computing on cost estimates. However, it
is possible to resolve this difficulty if a project manager’s experience can be

represented in a knowledge-based system.

Other desirable side-effects of using the knowledge-based approach is that

(a) it can provide a very user friendly interface for requesting information
from the users about various aspects of their application or the project
environment (refer to Appendix A, illustrating the PFES interface),
and

(b) it can offer a "consulting opinion" via the use of "How" and "Why"

features of such a system.

93

(c) it can train novice project managers or cost estimators.

(d) it can provide a "what if analysis" capability.

Literature review reveals that at present no such specific system exists for
4GL cost estimation or end-user computing. Exploring models and estimation
techniques using knowledge-based applications is a worthwhile goal today as expert
systems technology has matured. Due to the availability of expert system shells, it
is possible to easily integrate the expertise of the estimator, project manager, or any
development team member into a knowledge-base today. (Little or no traditional
programming is involved here; and a programmer is no longer needed to maintain
or implement simple expert systems).*” The commonly acknowledged knowledge-
based benefits are also presented in Waterman®'(pp. 6-7). We can summarize the
strengths as:

* an explanation capability

e an ability to provide expert judgement

e a basis for novic¢ staff to perform project estimates

e amechanism to provide a solution even if no algorithm is known, data

are incomplete, or data do not exist (e.g., if historical metrics data is

unavailable)

94

In describing the advantages of using the expert judgement approach for
cost modelling Boehm states, "an expert’s judgement is able to factor in the
differences between past project experiences and the new techniques, architectures,
or applications involved in the future projects. The expert can also factor in
exceptional personnel characteristics and interactions, or other unique project

considerations"(p. 333).'

4.4 PFES: An Expert System for PF Correction

In this section an expert system for correcting the initial software
development effort estimates, Project Factors Expert System (PFES), is presented.
The prototype PFES is designed to provide PF correction when end-user computing
is used as well. PFES has been designed to function with the 4GT Model, but it
can readily be used with other models as it simply presents an average correction
factor. The test results from PFES execution have been found to be quite adequate
and interesting as well. Since the PF correction issue can be resolved with PFES
quite naturally by manipulating symbols and symbolic structures, it is inferred that

knowledge-based application development is feasible and possibly suitable.

95

4.4.1 Development Methodology
The life cycle methodology for developing knowledge-based systems is
different when compared with traditional systems. The following stages were used

to implement PFES.*®

(a) Identification

This is the first step in Expert System building development, and the
objective here is to: first define the problem, and then to describe the
important features of the problem such as type and scope, goals and
objectives, participants and resources. It also includes a discussion of
several topics such as current system (if any), proposed system, scope of

the system, participants, alternatives and goals.

(b) Conceptualization

During this stage the concepts, relations, and control mechanisms needed
to describe problem solving in the domain are presented. This is a critical
phase — successful extraction of major and minor concepts can alleviate
hardships at latter stages. The conceptualization task for PFES falls
somewhere in between easy and hard, and a significant proportion of time

was spent during this phase.

96

4.4.2

(c) Formalization

Waterman defines this stage as follows: "Formalization involves expressing
the key concepts and relations in some formal way usually within a
framework suggested by an expert system building language." Matching
the application characteristics with the appropriate tools is one of the key

concerns here.

(d) Implementation

During this stage we convert the formalized knowledge into a working
knowledge-based computer program. If an expert system shell is available,
and matches the application characteristics it can be used. Otherwise a new

tool has to be developed using A.L languages such as LISP or PROLOG.

(e) Testing
This is the last stage and we evaluate the performance of the prototype
here. Various test cases representing as many scenarios as possible are

analyzed by the knowledge-based system.

Overview of the Prototype Development

The scope, participants, computing tools, validation strategy, and other

aspects related to the PFES prototype development are presented here.

97

Problem Definition

A large number of factors can affect the software development estimates.
The primary objective of PFES is to recommend PF correction for small to medium
sized 4GT software development projects. Large application systems are ignored
since the 4GT Model is not concerned with larger projects. It provides estimates
when either end-user computing, or traditional DP department based development

is involved.

Scope

The scope of PFES is to a certain degree constrained by the scope of the
4GT Model — effort correction of small to medium business applications using
4GTs. The overall scope is narrow enough to make the problem manageable and
sufficiently broad at the same time to ensure that the problem has some practical

interest.

Participants

Norbert Kaehler, Assistant Manager, Development Services, Information
Systems and Data Processing, Investors Group, Winnipeg, functioned as the
expert.”” He suggested various project factors that are relevant to application
development in the fourth generation environment, but do not exist in current

literature. He also evaluated the relative importance of other PFs in light of 4GT

98

development. Other ISDP staff at Investors were also consulted as required. The
nature of consultation ranged from collecting actual historic data pertaining to
implementation of 4GL and 4GT projects, to seeking a second opinion from them
with regards to the validity of any project factor (based on their experience as
project managers). The knowledge-engineering and programming was performed
by the author of this thesis. Kaehler subsequently validated the model using several
case studies from his experience. Members of the examination committee,
especially Scuse, contributed throughout the knowledge engineering process and

eventually by testing the PFES prototype.

Knowledge Acquisition
The domain of knowledge required for PFES was obtained from the expert,
but literature search, consultation with other experienced project managers, and the

author’s personal experience with project management also played a useful role.

Computing Tools

VP-Expert, an expert system shell from Paperback Software International,
was used to implement PFES. It is a rule-based system for developing small to
medium sized expert systems and is suitable for developing initial prototypes, as .
in our case. It runs on a IBM PC nﬁcrocomputer or other PC compatibles. It is

capable of using both forward and backward search when searching for a solution.

99

It is also capable of interfacing with databases created using Ashton Tate’s dBASE

III and IV packages, and spreadsheet’s created with LOTUS 1-2-3.

Validation

Various test cases representing typical variations in developer ability,
project environment, and product complexity were generated and tested using the
prototype system. Validation process involved expert approval of both the
individual PF values embedded in the rules, such as reliability, interface

complexity, etc., and the overall PF correction value suggested by PFES.

4.4.3 Overview of the Development Process
The following steps provide an overview of the development process used
for system development:
(1) identify the knowledge acquisition method
(2) identify all project factors that can affect the cost of development in
the 4GT environment
(3) group them into categories that affect estimates, either positively or
negatively
(4) determine the range of values (effect) for each of these groups
(5) design the conceptual model, implement an initial prototype, and

execute it against test data

100

(6) validate the output and redesign the model if necessary

(7) present the recommended PF correction.

4.4.4 Conceptual Model

The various PFs that play a central role in PFES are described here.
Albrecht,"™" Watson & Felix, DeMarco,”! Boehm,'® Capers Jones,* Basili,*®
amongst other researchers have identified and used some of these PFs in their cost
models. However, our knowledge engineering process succeeded in revealing some

new PFs for our problem domain.

The different PFs that play a role in the knowledge-based system are
described here next. The first PF (mode of development) relates to end-user

computing. This is a new PF and does not exist in other models.

Mode of Development
It is possible for end-users today to tackle challenging data processing
tasks, and they indeed are doing so in several organizations. When end-user based
application development is taking place it is necessary to measure two concerns:
a) the extent of support available from various sources such as
Information Centre, or assistance with various aspects of application

development is available from the data processing shop. If such

101

support exists then it serves the purpose of facilitating application

development and eventually reducing effort and cost of software

development.

b) Six categories of end-users have been identified by Rockart and

Flannery.*

(a) Data Processing Programmers

(b) End-user Computing Support Personnel

(c¢) Functional Support Personnel (power users who work in

functional departments, outside of IS)

(d) End-user Programmers (who can write code)

(e) Command Level End-users

(f) Non-Programming End-users

Basically, we classify the above into three general categories — at the

lowest end of the spectrum we have application users who are not capable of any
end-user programming or even executing simple commands, but can operate a
menu driven application system, and at the upper end we have programmer end-
users who are basically full time system developers, highly skilled, and well
qualified. The middle category ranges from end-users capable of some command
level operations (and therefore capable of 4GT programming with adequate training
or support), to sophisticated dBASE programming types, but less sophisticated than

the professional programmers.

102

For the purposes of PF correction, end-users at the lowest end and the
highest end of the spectrum are ignored. The non-programming end-users probably
will never be requested to develop 4GT applications, and the programmer end-user
can very well be classified in the same category as the professional data processing

staff member.

Previous Familiarity
Previous familiarity with the application environment identifies attributes
such as:
— experience with similar size of applications
— experience in the application prbblem domain (e.g., accounting
applications)
— previous experience with similar hardware and operating system

— previous project team experience

Individual capabilities are considered here for project factors such as the
ones listed above and described in terms of "years of experience." If the end-users
are involved with development, only full time equivalents of "years of experience"
should be considered. If the participants are very experienced it can reduce the

development effort significantly.

103

Previous experience with 4GT tool

This project factor quantifies previous experience with 4GTs and with the
DBMS. Specifically, it is concerned with the extent of experience with the specific
4GL and DBMS to be used in application development either by the end-user or

DP staff.

Project Novelty
This attribute was identified as the single most significant factor by

Crossman'!’

in his investigation of application development productivity. His
analysis of data revealed that novel applications took up significantly more

resources {effort) than familiar ones.

Application Factors

Application factors are concerned with the details of the current application
being developed. They identify the complexity of attributes such as:

— reliability required of the new application

— data communication involved

— designing applications that facilitate change, or reuse of code

~— interface complexity (I/O complexity due to printing on laser printers,

or VGA monitor in colour)

— providing operational ease

104

Methodology Factors — Practice

Practice factors are concerned with the development rigour of the
application development environment. It is concerned with the use of techniques
such as:

— top down design

— structured systems analysis techniques

— formal walkthrough’s

— acceptance testing

— use of structured programming techniques

— use of automated tools for flowcharting, documentation, testing, etc.

Methodology Factors — Techniques
The technique factors are concerned with use of techniques such as JAD
and Prototyping in the methodology. The expert has indicated that such factors can

affect software estimates significantly.
When end-users are developing systems the option "PF not applicable” may

be selected. In those cases where the end-user itself is the user, i.e., JAD and

Prototyping is meaningless then.

105

Other Factors

This provides us the opportunity to consider other PFs that might affect the
overall PF value. They include:

— Staff morale

— Staff Compensation

— Xeroxing & Printing resources

— Individual Workstations

— Technical Education

— Availability of essential Software & Hardware

— Working on a Low Priority Project

— Staff Working on Several Projects Concurrently

Attributes such as "Travel Involved” may be incorporated here if so
desired. But care should be taken to see that this is not done indiscriminately. Note
that some of the PFs described in this section correlate positively to effort, and
some negatively, and also some PFs have a more significant impact on the effort

estimates than the other. Both these aspects are dealt with by the cost model.

106

4.4.5 Calculating the Effect of Each PF

There are several options available to determine the effect of each PF and
also to calculate the overall PF correction. Simple addition of the PFs, or
multiplication of the PFs, or even subjective techniques can be used to determine
the effect of PFs. The strategy used here is a heuristic one and is comparable to
that in COCOMO. Boehm uses a heuristic approach to determine the effect of each
PF; he first quantifies them by assigning ratings to each attribute on a five- or six
point scale (such as Very Low, Low, Extra High), and then allocates numerical

values to the ratings (such as 1.15 or 0.75).

The following heuristic is used in PFES to determine the effect of each PF:
1. Assuming that PFs are normally distributed in the population, the
normal curve can be used to approximate the PF ratings and determine
individual PF values for each rating. In order to do that we define
each project factor as having a mean of 1.0, and a range of values X,
X,, or X, referring to significant-, average-, or moderate influence on
estimates. One important characteristic of this approach is that all
curves have the mean at the point where exactly half the population
1s below it and half above it, that is, for X, X,, or X, what is true on

one side of the curve is also true on the other side. The attribute

107

ratings, very low, low, average, high, very high, then can be defined
symmetrically around the average as low/high, or very low/very high.

2. [Initial ranges for X,, X,, or X, were based on literature review —
primarily COCOMO, and were determined to be 0.14, 0.7, 0.35
respectively. In course of the knowledge engineering and validation
process some of these values for were adjusted on recommendation
from the expert. See Tables 4.2, and 4.3.

Table 4.2: Factor Values of Ratings Influencing Positively

Degree of influence V.Low Low Average High V. High

Significant (x1) 1.28 1.14 1.0 0.86 0.72
Average (x2) 1.14 1.07 1.0 0.93 0.86
Moderate (x3) 1.07 1.04 1.0 0.96 0.93

Table 4.3: Factor Values of Ratings Influencing Negatively

Degree of influence V.Low Low Average High V. High
Significant (x1) 0.72 0.86 1.0 1.14 1.28
Average (x2) 0.86 0.93 1.0 1.07 1.14
Moderate(x3) 0.93 0.96 1.0 1.04 1.07

3. During calibration some of the PFs were defined as being significant,

average or moderate. For example, PFES defines novelty, experience

108

with 4GT tool, and overall experience, amongst others, as being
significant. While these attributes are "soft coded” (see Appendix A,
lines 1, 2 and 3), others are "hard coded" in the rule-base (as is done
in the case of rules pertaining to reliability).

4. If a new factor is required to be part of the PFES this information is
appended to the expert system, but until it is validated it should be
classified as having moderate influence, therefore, assuming a range
in the PF value of plus/minus 0.07, at most. In addition, the option
"PF_not_applicable" should be provided, therefore making it possible

to exclude this PF when appropriate.

4.4.6 Exceptions: Rating Values for End-users

In PFES some exceptions were made when evaluating end-user
performance using the rating values of the above heuristic. By using expert opinion
as a validation mechanism the following unique ratings were decided upon when

end-user computing occurs:

Functional Support Personnel
V. Low Low Average High V. High

1.84 1.63 1.42 1.21 1.00

109

Type of Developer
End-UserW Data
. Processing |
St"’ﬁ | ___ Staff |
|
|
Developer
Mode
I
./"l*\
| Developer | " Maten " End User
L evsmper ' Characteristics /€ Skill
v
Developer
Profile

Figure 4.1: PFES: End User Flow

Since functional support personnel are experienced users they are

considered as having an impact ranging from 1.0, (for very High Skill) to 1.84

(very low).

Command Level
V.Low Low Average High V. High
2.47 2.26 2.05 1.84 1.63

110

The command level end-users ratings average is three magnitude lower
than those of the functional support personnel as the end-users is not skilled with
most of the aspects of application development tools. Note that the above numbers
have not been extensively validated in other environments and caution must be

taken in using them elsewhere.

4.4.7 Validation of the PF Values
Boehm has suggested the following method to determine the effect of a PF
value (p. 378)." This type of validation can be performed on completion of a
project.
| 1. Using the 4GT Model compute the estimated development effort for a
project without the influence of the effort multiplier PF being analyzed.
Let this be called Effort_PF.

2. Define the ideal éffort multiplier IEM_PF) for this project. One which
if used in the 4GT Model would make the estimated development effort
for the project equal to its actual development effort (actual_effort).
That is,

IEM_PF = Actual_Effort / Effort PF

111

As an example, if Actual_Effort is equal to 1020 person hours, and
Effort_PF (experience with 4GT tool) is equal to 1200 (using the above equation),
the IEM_PF value is:

IEM_PF

1020 /1200
= 0.85
Note: Effort_PF is obtained by ignoring the impact of the PF representing the
previous experience with 4GTs, assuming that is rated as "high," and

influence being "significant.”

Now, if this IEM value is compared with the one used in PFES, it must be
reasonably close to 0.85. Such a procedure therefore serves to validate the various

PF values.

4.4.8 Design of the User Interface

Data and information required by PFES to make a decision is obtained
through user responses to questions. Some information, however, is obtained
indirectly from the rules through inference. Actually, PFES requests data from the
user only if it cannot resolve the goal or sub-goals internally using its rules. A
listing of the questions asked by PFES is illustrated in Appendix B. The following
ratings described the range of most of the attributes defined above:

very low, low, average, high, very high, PF not applicable

112

If it was determined that the option "PF not applicable" is not applicable
for a given PF then this option is omitted. Finally we note that the questions used

in PFES could not be more descriptive due to the limitations of the expert system

shell.
Characteristics of the Application
o Data Interface Operational
Reficbility Communication | | €hanges Complexity Ease
Application PF
Techniques
Used
Developer | Methodology |
Profile PF
Project Mgnt.
Practiced
4GT Jool Personnel
experience PF
Project || Resources
Novelty Other
Factors
Environmental
Factors
PF Comectlon
Value

Figure 4.2: Conceptual Model of the PFES

113

4.4.9 Design of the Prototype

The concepts surrounding the application design are illustrated in the
Figure 4.2. The detailed flow of reasoning and assumptions are not presented as
it is too technical and prototype-specific, but generally speaking, this is what
happens — PFES obtains the values of the individual PFs from the estimator,

aggregates the values, and gives an overall PF correction factor.

4.4.10 Validations, Analysis, and Test Results

As indicated earlier, two stages of validations are attempted. First, the
individual rules and their range of ratings are approved, and also matched with
comparable PF ratings in literature (when available). Second, the PF correction

value (output) from PFES is validated against expert opinion.

Note that adjustment and tuning of the prototype rules (and values) were
necessary and were performed several times before satisfactory results were
obtained. The following procedure was used — input information for the
Personnel_PF was provided to PFES, and the results were validated for both
different types of developers, the data processing staff, and the end-user. Different
types of end-users with varying degrees of skills were verified. This was followed
by independently testing the Application_PF and the various complexity attributes

therein. Finally, the Methodology and Environment PFs were validated

114

independently and their results approved. All of the above components were tested
collectively, and for a range of input values the PF correction factor was validated

against expert opinion.

The test results of three typical test cases found in the software
development environment are presented, and three abnormal cases are presented
below. The abnormal cases reflect two extreme cases, i.e., selection of all PFs that
affect PFES negatively, and positively. The other case is where all average values
are selected. The scenario where strong experienced personnel are given the most
difficult projects and the weakest team personnel given an easy project are also

depicted.

Results: Sample simulations from the initial version of PFES resulted in the

following values. The results show some normal and extreme PF correction values.

Inexperienced Team Assigned Very Easy Project:

The 4GT tool value is 1.28

The Development teams familiarity with the application on hand is 1.28
The Personnel PF correction is 2.32

The Methodology correction factor is 1.0

The Project administration environment rating is 1.07

115

The Work and Staff environment rating is 1.07
The PF Correction is 0.51

(VP-Expert’s execution trace for this result can be found in the Appendix E.)

Moderate Project Assigned to Capable Team:

The Overall experience value is 0.58

The 4GT tool value is 0.72

The Development teams familiarity with the application on hand is 0.72
The Personnel PF correction is 0.30

The Methodology correction factor is 1.0

The Application project factor correction is 3.43

The Project administration environment rating is 1.07

The Work and Staff environment rating is 1.07

The PF Correction is 1.18

Very Easy Project Assigned to Very Capable Team (extreme case)
The Overall experience value is 0.58

The 4GT tool value is 0.72

The Development teams familiarity with the application on hand is 0.72
The Personnel PF correction is 0.30

The Methodology correction factor is 1.0

116

The Application project factor correction is 0.19
The Project administration environment rating is 1.00
The Work and Staff environment rating is 1.00

The PF Correction is 0.25 (Case corrected by PFES).

Additional PFES Execution Results

Very Difficult Project Assigned to Very poor team

The Overall experience value is 1.42

The 4GT tool value is 1.28

The Development teams familiarity with the application on hand is 1.28
The Personnel PF correction is 2.326528

The Methodology correction factor is 1.0

The Application project factor correction is 3.435974

The Project administration environment rating is 1.00

The Work and Staff environment rating is 1.00

~ The PF Correction is 7.993890 (case not recommended by PFES).

Average Project Complexity and Average Team
The Overall experience value is 1.0
The 4GT tool value is 1.00

The Development teams familiarity with the application on hand is 1.00

117

The Personnel PF correction is 1.

The Methodology correction factor is 1.0

The Application project factor correction is 1.

The Project administration environment rating is 1.00
The Work and Staff environment rating is 1.00

The PF Correction is 1

Very Capable End-user Assigned Easy Project

The End-user value is 2.05

The 4GT tool value is 1.00

The Development teams familiarity with the application on hand is 1.14
The Personnel PF correction is 2.3370000

The Methodology correction factor is 1.0

The Application project factor correction is 0.231115

The Project administration environment rating is 1.00

The Work and Staff environment rating is 1.00

The PF Correction is 0.540116

118

4.5 Conventional PF Correction

If an organization is unable to use expert system technology for effort
correction (due to lack of resources), it is still possible for them to use the 4GT
Model (introduced in Chapter 3) in conjunction with a spreadsheet version of the
PFES model illustrated in Appendix C. This version approximates the mechanics
of the knowledge-based system. Of course, in this case, the various advantages of

the knowledge-based approach, as narrated in this chapter, are not valid any more.

4.6 Conclusions and Contributions

Using the knowledge-based systems approach to estimate various project
parameters provides us several advantages. Even though the bulk of the research
related to PFES development occurred only at one site we feel that these
advantages are relevant to most organizations involved with fourth generation
development. To summarise:

* it provides an opportunity to capture the knowledge of an expert cost
estimator and document them. This is especially useful if "hard"
documented results are not available in literature yet due to the newness
of the technology (as with 4GTs). Practitioners generally have useful
experience, but either for proprietary reasons or for lack of interest do

not often publish such data promplty.

119

° novice project managers can use the user-friendly interface of PFES to
specify project parameters and study their influence on the overall effort
required for software development.

e the explanation facility provides an opportunity to study the impact of
various factors such as "programmer skills" or "prior familiarity with
hardware” on the cost of developing software. The project manager can
use this information to minimize the cost of developing software by
choosing the best approach.

 an open-ended approach is facilitated for knowledge encoding. For
example, if in the future, the technology changes, or any other criteria
affecting costs come into picture, they can be incorporated into PFES to
obtain better estimates. Due to the accrual of such relevant knowledge
into the knowledge-base it is possible for project estimation accuracy to

improve.

Incorporation of new project factors into the knowledge-base, however,
must be done carefully as it can result in an incorrect correction. In order
to resolve serious potential problems Kaehler’” has proposed that we put
caps on the range of influence of PFES corrections at 0.25 to 5.0. Such a
strategy is evident in FPA and related cost models.'®* The above factors

lead us to conclude that it is very important to validate an expert system

120

periodically after any changes are made to it. (The procedure described

earlier on in the chapter can be used for such purposes.)

* two unexpected but useful results from our experimentation with the
knowledge-based approach turned out to be:
(I) A new data group set pertaining to end-user computing
(2) Rules that recomend whether end-user development occur or not,
or that it proceed cautiously. (Such inferences could be useful

for the manager).

121

Chapter 5

Model Experimentation and Analysis

5.1 Introduction

In this chapter we provide details of 4GT Model -calibration,
experimentation, and validation. Detailed procedures for installing and using the

model are also provided here.

Participants from three different sources were involved with the process of
calibrating and validating model weights’®®"%%
e Great-West Life Corporation
e Pitblado & Hoskin

* University of Winnipeg
This diversity served the purpose of indicating if the model is portable

across organizations. (Section 3.1 provides a detailed history of the model including

participants and dates.)

122

e

5.2 Implementing 4GT Model

First we recall that our 4GT model, as described in Chapter 3, is able to

support the following objectives:

e Estimation of development effort: This refers to estimation of the
development time (D) required to implement all functions of the
delivered software (such as forms and reports).

° Estimation of total system development effort: This refers to the
estimation of the total system development effort (E). It includes effort
due to life cycle, project. management, administration, and

documentation.

This chapter examines both the above issues in depth. It is organized as
follows: First, we illustrate how the different weights associated with the model are
determinéd for a given 4GT tool. Then we describe how the expansion factor is
determined for a given organization. Finally, we describe how the model can be
validated. The above constitute the main thrust of this chapter, but other issues such

as portability and productivity measurement of tools are also discussed.

123

5.3 Model Calibration

Ted Janzen, Associate Manager Computer Systems, Great-West Life, was
approached in May 1991 for purposes of experimenting with the 4GT Model. Ted
Janzen’s Computer Systems group was actively developing 4GT based application
systems using ORACLE and they were therefore quite interested in calibration and

experimentation with the 4GT Model.

The objective of the calibration procedure is two fold:
1) To obtain the life cycle expansion factor for Great West Life.
2) Calibrate the weights associated with each of the SE categories

(Simple, Detailed, etc.).

The calibration process performed is described in detail in the next few
sections. But first we present some details of the host site and interaction with its

participants.

5.3.1 Host Site and Participants

Great-West Life is a large corporation with offices across Canada and the
United States. It is headquartered in Winnipeg, and provides a wide range of
insurance, retirement and investment products to about six million people.
Technology is at the core of their business, and more than 400 systems

124

professionals support their diverse needs in Canada. Great-West Life has very good
computing resources. The following are some of the major hardware and software
supported: Hardware — IBM 3090 and 286/386 PC’s; Software — MVS/ESA,
CICS, IMS DB/DC, DB2, TELON, PL/I, COBOL, C, ORACLE, ACCEL and

several PC-based software packages.

At our very first meeting, a report describing the 4GT Model was given to
the interviewees at Great-West Life (see Table 3.1). The initial meetings served the
purpose of acquainting the participants with the 4GT. Information about their
project management and cost estimation practices was also obtained. Subsequently
more than twenty five meetings took place between May and October 1991 [77-84]

each lasted more than one hour, but usually less than three hours.

The initial few meetings highlighted the difficulty of calibrating and using
the 4GT Model as originally presented to them. However, largely due to the efforts
of Smith and Janzen the 4GT Model was successfully adapted for experimentation.

Since ORACLE® was used to experiment with the model it is described next.

5.3.2 ORACLE Tools
ORACLE Corporation’s ORACLE is a popular relational database

management system that supports SQL. The user interface and SQL language are

125

compatible with both IBM’s DB2 and SQL/DS. ORACLE comes with a complete
set of fourth generation support tools such as a menu generator, report writer, forms
generator, and data dictionary. ORACLE is designed for a multi-user environment.
The ORACLE environment consists of the following components: a relational
database management system, an active data dictionary, SQL query language,
application generator, and report writer. A brief description of ORACLE’s family

of application development tools is presented below:

SQL*Plus Provides direct interface to the ORACLE relational database
system. Contains the full implementation of ANSI SQL. Used

to create and manage tables.

SQL*Forms It is an interactive forms generator. It provides access to SQL
for those applications that require its use. Complex
processing is facilitated via user exits to system macros and
other 3GLS (from within the form). Once an application is
designed and generated it can be used by the operator for

querying, updating and adding data.

SQL*Réport Writer Used to generate report

126

SQL*Menu Can be used to create a menu driven system by integrating

different functions.

Their CASE system environment consists of the following components:
CASE * Dictionary, CASE * Designer, CASE * Generator, and CASE * Method -
all fairly standard tools. ORACLE runs on IBM mainframes, DEC, high-end
microcomputers, and several other computing environments. It was first developed
for the MVS, VM/CMS environment but is now available under UNIX and PC-
DOS. There is considerable code portability as all versions of ORACLE are
identical and include the full implementation of SQL. In addition, ORACLE’s net-
work software allows networking of microcomputers, minicomputers and main-

frames and permits sharing of databases.

5.3.3 The LEGASY Project

The LEGASY (LEGAl SYstem) project was used to calibrate the 4GT
Model at the Great-West Life. Subsequently another project, Telephone System,
was used to validate the calibrated weights of the 4GT Model. We present project
details of the LEGASY project here. The Law Department within the company was
interested in a legal system that met the following requirements:

(1) automated litigation management: store information regarding issues

127

(2) automated calendar of events: keep track of scheduled events of
each file.

3) automated time tracking: record in-house counsel time for each file.

(4) implementing key word document search: locates document on the

system which contains a specific word or a phrase.

Corporate Systems examined the above requirements in June 1990, with
a view to implementing the system. Selected details of the proposed system are
presented in Appendix E. The system took 2340 person hours to implement. The
following staff were involved at various stages of the project: Janzen, Warkentin,
Smith, Trainor and Buskens (see Table 3.1). It started on November 20, 1990 and
took ten months to complete it fully. In May 1991, the process of calibrating the
4GT Model began. The LEGASY project was selected by Janzen (Project Manager)
for calibration purposes as he determined it to be an average project involving
average experience. The fact that current data useful for cost modelling purposes

were easily available was also a key reason.
5.3.4 Procedure Used to Calibrate Weights

The people participating in the calibration process’® met the following two

criteria:

128

1) They had one to three years of development experience using ORACLE
and its tools, and

2) They had a previous experience of one to three years with the
ORACLE environment (i.e., computer, operating system, utility tools,

and methodology).

These two criteria are crucial as the 4GT Model is designed to provide us
average effort estimates only. (Note that project factor corrections can take place

if so desired using PFES — as discussed in Chapter 4.)

The following steps were used to calibrate model weights — they can, and
must preferably be performed during the development stage of an on-going project.
In our case the calibration was done with the LEGASY project (see section 5.4 for
details):

1) Classify the functions into either form, report, or data types.

2) Identify the screen fields that constitute each function.

3) For form or report functions:

a) First, determine the effort associated with implementing a skeletal
screen. Divide this number by the total number of screen fields in

each form or each report. This gives the Simple SE value (SF).

129

b) Nekt, for applicable cases, categorize the above screen fields into
one of the SE categories — basic, detailed and user exit.

¢) Document the effort associated with implementing each SE.
Average the effort by SE category — this gives us the Basic (BSE),
Detailed (DSE), and User Exit (UE) values.

4) For data functions:

a) Determine the total number of data elements in a table.

b) Determine the total effort involved with table definition.

c¢) Divide the total effort by the total number of data elements — this

gives us the calibrated value for data-element (DE).

5.3.5 Calibration Details Pertaining to LEGASY

We basically followed the above steps in detail. First we identified
functions and classified them in one of the three function types — report, form, and
data. The functions not falling into the above three categories belonged to the
process type — these were modules coded using C programming language. The
effort associated with these were documented separately. (Only one person,
Buskens, was involved with all C coding and he gave us all effort statistics related
to C programming.) Next SEs were identified for each of the above functions and

these were classified into SE categories. (Note that the scope of the research did

130

not include the process type so we did not determine or calibrate their SEs). The
following strategy was used to locate SEs.
(a) Form type: Count total number of screen fields. Classify applicable
screen fields into either: basic, detailed, or user exit SE categories.
(b) Report type: Count the total ﬁumber of following report fields —
report screen fields, report summaries (and related objects) into SE
categories. No user exits were identified as ORACLE does not
support exits to procedural language.
(¢) Data type: Count the total number of data elements in the whole

database.

Note that the above strategy, at this stage, does not involve the use of
historic project data in the conventional sense as only actual development effort
values relating to the varidus SEs are documented here. This approach for
computing basic development effort is unique amongst related cost models. It
consequently provides us with some advantages:

e Dependency on large quantities of historic project data pertaining to the

same fourth generation tool for calibration purposes is minimized (and
so is the risk associated with using them.*>*

* Ease of re-calibrating values for newer versions of 4GTs.

e Ease of re-calibrating values for new 4GTs.

131

Results

Appendix F and G document statistics related to all the functions involved
with the calibration process at the Great-West Life. In total more than twenty eight
form functions were involved, with the process resulting in identification of 185
SF’s, 36 BSE’s, 32 DSE’s, and 11 UE’s. These SEs were calibrated using person-
hours as a measuring unit resulting in the following weights: SF = 0.13, BSE =
0.29; DSE = 1.59; and UE = 22.73. For the report type we identified 59 SF’s, 14
BSE’s, 69 DSE’s, resulting in the following weights: SF = 0.13, BSE = 0.84; and

DSE = 2.55. For the data function type we identified 238 data elements in all the

LEGASY tables.

The calibrated weights are summarized below in Table 5.1.

Table 5.1: Calibrated Weights for the 4GT Model

Project Function
Participant | Type

Simple
[SF]

Basic
[BSE]

Detailed
[DSE]

User-Exit
[UE]

Data Element
(DE]

132

With the determination of the above weights it is now possible to state the
4GT Model equation — for example, at the Great-West Life, the following 4GT

Equation is valid for predicting ORACLE project development effort:

D = [(SFy*0.13)+(BSEg,,,,*0.29)+(DSE,,, . *1.59)+(UE,,. *22.73)+

(SFyepor*0.13)+(BSE,.,,,*0.84)+(DE, ., *2.55)+(DE,,,*0.41)]

report
5.4 Determining the Expansion Factor
Note that the above 4GT Equation is unable to predict the entire life cycle
effort. Effort due to the various life cyclé stages as well as activities such as
project management, administration, meetings, documentation development are not
included in D. In order to obtain the total system development effort E, we need
to multiply the effort D by an expansion factor. (Chapter 3 explains the expansion

factor in detail.)

The expansion factor is determined by dividing the actual system
development effort with the estimated effort due to forms, reports and processes.
For the LEGASY project (see table below) this factor is equal to 2340/755.41 =

3.10.

133

4GT MODEL - Calibrated For Legasy

Forms 335.37 | person-hours
Reports 197.46 | person-hours
Data Type 97.58 | person-hours
Process Type 125.00 | person-hours
Development Effort (estimated) 75541 | person-hours
Development Effort (actual) 2340.00 | person-hours
Expansion Factor (actual/estimated) 3.10
FORMS
SE Category SE Magniwde | Total SE Value

Value
Simple SE 0.13 185 24.05
Basic SE 0.29 36 10.44
Detailed SE 1.59 32 50.88
User Exit 2273 i1 250.00
Total Effort 335.37 | person-hours
REPORTS
SE Category SE Magnitude | Total SE Value

Value
Simple SE 0.13 75 9.75
Basic SE 0.84 14 11.76
Detailed SE 2.55 69 175.95
Total Effort 167.46 | person-hours
DATA
SE Category SE Magnitude | Total SE Value

Value
Field 0.41 238 97.58
Total Effort 97.58 | person-hours

134

Formulating the 4GT Model Equation
With the calculation of the expansion factor we can now formulate the
actual equation of the 4GT Model for estimation projects at Great-West Life.

E = 3.10 * [(SF,

orm

*0.13)+(BSEq,,,,*0.29)+(DSE,, *1.59)+(UE,,,, *22.3)+

(SFrupor*0.13)+(BSE, 0 *0.84)+(DE, ;0 *2.55)+(DE,,,0.41)]

Note that the effort due to process functions is excluded in the basic
equation. If some 3GL coding is to occur, the equation is extended by adding the
process component (which is estimated directly by the project manager or the

developer. The new equation would then appear as:

E = 3.10 * [(SF,*0.13)+(BSE,,,, *0.29)+(DSE,, . *1.59)+(UE,, . *22.3)+

(SFreport*0. 13)+(BSE, 0 *0.84)+(DE s 2.55)+(DE¢,0.41)+(process)]

Note that E can be refined further using PFES if so desired. PFES

evaluates project factors such as "skill of programmer”, "environment" and

"application characteristics".

135

Conclusion: The above formula is modular and therefore can provide more
accurate estimates as a project progresses. This is a desirable quality in a cost
model as very little information is generally available at the start of a project.
Connell and Shafer describe the advantages of a modular formula:*°
We would like the formulas to be modular so actual numbers derived from
measured performance can be plugged in at the end of each project phase,

thus steadily improving the accuracy of the estimates as the project moves
toward completion.

As indicated earlier on the 4GT Model uses software metrics (past
measurements) to assist with the determination of the expansion factor. The

23

systems dynamics model researched by Abdel-Hamid*** (see Chapter 3) indicates
that one should be careful about using such historical data for calibrating new
models — he indicates that we can show that:
a software estimation tool cannot be adequately judged only on how
accurately it matches historical project results and ... a more accurate
estimate is not necessarily a "better" estimate.
He explains that "a different estimate creates a different project” and that a model

should therefore be judged not only on the basis of how accurate it is but also if

the its estimates are "not costly".

In our experimentation we took the above facts into consideration. The data

used by for experimentation was checked for normality. Also, additional steps were

136

taken to ensure that only reliable metrics are used — according to Pressman, if a
metrics baseline consisting of data collected from past software development
projects can be established, several benefits can be obtained for cost and effort
estimation modelling purposes but the data must have the following attributes: data
must be reasonably accurate; measurements must be consistent; applications must
be similar to work that is to be estimated (page 58).°° In developing the expansion

factor for Great West Life the above guidelines were complied with fully.

5.5 Validation of the Effort Equation

With the determination of the expansion factor for Great-West Life (using
LEGASY) we next proceeded with using the 4GT Model for testing other projects.
The Telephone System project developed for the Communications Dept at Great
West Life (using ORACLE) was used as a detailed test case. The project used the
same life cycle as Legasy. The participants of this project were Minaker and Davis.
Several meetings occured with Minaker who was the project manager for this
project (see Table 3.1). The Telephone Project was suitable for validation purposes
for several reasons:

e The project was small and relatively straight forward.

e The essential input data, required for estimation purposes, was readily

available.

137

It also did not have a 3GL programming component. Therefore effort

due to Process Functions did not have to be estimated.

The computations relevant to this project are presented below. It reveals
that the estimated effort was close to the actual. The effort estimated using the 4GT
Model equation turned out to be 171 person hours, and the actual implementation

effort for the system was 160 person hours.

Effort Estimation for the Telephone System using the 4GT Model

Form 27.89 | person-hours
Report ' 7.05 | person-hours
Data 20,09 person-hours
Process 0.00 | person-hours
Estimated Development Effort 55.03 | person-hours
(D]

Expansion Factor 3.1

(for GWL)

Estimated Effort [E] 171 | person-hours
Project Factors Correction [PF] 1.00

Adjusted Estimated Effort [E adj.] 171 | person-hours
Actual Effort Determined on Project 160 | person-hours
Completion

FORM

SE Category SE Value | Magnitude | Total SE Value

Simple SE 0.13 101 13.13

Basic SE 0.29 18 5.22

Detailed SE 1.59 6 9.54

User Exit 22.73 0 0.00

Total Effort 27.89 | person-hours

138

REPORT

SE Category SE Value | Magnitude | Total SE Value

Simple SE 0.13 15 1.95

Basic SE 0.84 0 0.00

Detailed SE 2.55 2 5.10

Total Hours 7.05 | person-hours
DATA

SE Category SE Value | Magnitude | Total SE Value

Data Element 041 49 20.09

Total Hours 20.09 | person-hours

5.6 A Case Study

A case study was conducted at the University of Winnipeg to study
portability issues related to the model. Hildebrand, Systems Coordinator, Pitblado
& Hoskin® provided assistance with training the subjects, etc. The following were
our objectives here:

¢ validate the model weights further.

e investigate if SEs can be unambiguously classified into the various

categories by estimators.

* investigate model flexibility in adapting to other environments.

A formal research procedure used by Teng and Jamison® to investigate

fourth generation query languages was used as a model to conduct the research.

139

5.6.1 Method Used

A video rental case study was released to twenty-six participants at the
University of Winnipeg during the Fall term of 1991. The subjects were senior
students and all had average experience with software development using 3GLs and
experience with various microcomputer based packages such as dBASE and Lotus
1-2-3. Subjects also had some knowledge of ORACLE (including SQL*PLUS and
SQL*FORMS) from a data base management course. However, to ensure that they
had full exposure to all relevant ORACLE tools (especially those pertaining to our
case study) they were given a two day hands-on session.® The objective was to
ensure that our subjects can be regarded as good samples for validation purposes.
Regardless, all our subjects still only had one to four person-months worth of 4GT
tools experience. We therefore felt compelled to rate our subjects as LOW in 4GT

tool experience.

The case study involved implementation of a Video Rental System (VRS).
Predefined entities such as customer, video, transaction and functions such as add-
new-customer, add-new-video, query-customer-form, query-video-form, and rental-
transaction were used (See Appendix H describing the various functions and SEs
involved). In other words the user requirements and systems analysis and design

associated with VRS were done by us. However, everyone was provided with an

140

adequate background of the case study with regards to purpose and scope, as well

as inputs, outputs, and processes involved with the system.

The weights described in the 4GT equation of Table 5.1 were used to
predict the effort required to implement the various functions of the above case
study. The subjects were not given any information or clue as to how much effort
it should take to develop the various functions of the systems, as this could have

23,96

distorted the results. According to research carried out,””” subjects can unwittingly

change their normal behaviour to conform with goals set by a researcher.

As it was not our intention to estimate or validate system development
effort (E) but only determine development effort (D), we targeted a few functions
of the VRS system for estimation purposes. Participants were asked to record the
actual time associated witﬁ developing data, form and report functions by
classifying screen fields into SE categories. A sample questionnaire used at the end

of the case study and completed by the subjects is illustrated in Table 5.2.
5.6.2 Results

The screen fields and their SE categories, and the format of the

questionnaire used are presented next followed by our conclusions.

141

Screen Fields and Specification Elements by Categories

Customer function n= 27
Field Name SE Category
ID Basic
Name Basic
Address Basic
Credit-Rating Detailed
Video function Simple
Vid-1d Basic
Type Detailed
Mov-name Basic
Rental Basic
Transaction Function n=27

1D Delaﬂed
Name Basic
Address Basic

Date Detailed
ID Detailed
Vid-id Basic
Mov-name Basic
Rating Basic
Price Basic
Transaction Report n=27
ID Basic
Name Detailed
Address Basic

Date Basic

ID Detailed
Vid-id Detailed
Mov-name Basic
Rating Basic

142

of the | Uowmg questlons document accurately the effort in personf'_." :@i
olved with development Do not mciude the tlme qpent wamng‘for, .
r down-time, , g

Box 5.1 Case Study Questionnaire Format

143

The average model weights determined by our subjects are illustrated in Table 5.2
below. As expected, the various weights are higher than those determined at the
Great-West Life (see Table 5.1) since our subjects were uniformly rated as LOW.
To facilitate comparison with the calibrated weights of Great-West Life (where the
calibrators had average experience) we had to adjust the model weights downwards.
A rating of 1.10 for the coding stage was used as a guide to effect this correction
(this was also consistent with Boehm (p. 442)."® Therefore a project factor
correction of 0.91 (1/1.10) was applied uniformly to the average weights described
in Table 5.2. These results are presented in Table 5.3. It reveals that the model

weights are quite close with those determined at Great-West Life.

Table 5.2: Case Study Model Weights Before Correction

Project Function | Simple | Basic | Detailed | User-Exit | Data
Participant | Type [SF] [BSE] [DSE] [UE] Element
[DE]

144

Table 5.3: Case Study Model Weights After Correction

Data
Element

[DE]

User-Exit
[UE]

Detailed
[DSE]

Basic
[BSE]

Function
Type

Project
Participant

Simple
[SF]

Estimated development effort for this case study using the 4GT Model is presented

below. It was determined to be 22.84 person hours.

Effort Estimation for the V.R.S Case Study using the 4GT Model

Form 13.77 | person-hours
Report 4.56 | person-hours
Data 4.51 | person-hours
Process 0.00 | person-hours
Estimated Development Effort (D) 22.84 | person-hours
FORM

SE Category SE Value Magnitude | Total SE Value

Simple SE 0.13 18 2.34

Basic SE 0.29 12 3.48

Detailed SE 1.59 5 7.95

User Exit 2273 0 0.00

Total Effort 13.77 | person-hours

145

REPORT

SE Category SE Value Magnitude | Total SE Value

Simple SE 0.13 9 1.17

Basic SE 0.84 1 0.84

Detailed SE 2.55 1 2.55

Total Hours 4.56 | person-hours
DATA

SE Category SE Value Magnitude | Total SE Value

Data Element 0.41 11 4.51

Total Hours 4,51 | person-hours

With regards to other results, we found that with the exception of two
subjects, all subjects classified screen fields into the SE categories correctly —
indicating that, at least for the VRS case study, SE classification was straight

forward.

5.7 Using the Model in' the Early Stages of Feasibility

As indicated in Chapter 3, the model is capable of estimating early on in
the life cycle, i.e., during the Feasibility Study & Requirements Definition Phase
(see Table 3.2). During this stage the project manager requires very general esti-
mates of the project on hand. Basically, such information will indicate whether the
upper management is interested in funding the development of a new software

system. This is also called ball-park estimating.'® The 4GT Model can be used at

146

this stage to provide a reasonable effort estimate. The strategy used for determining

such an estimate involves estimating the total number of functions of a system.

The 4GT equation for ball-park estimating is:

E = 3.1*[(10.2 * no. of forms)+(7.9 * no. of reports)+(4.9 * no. of data tables)]

The weights 10.2, 7.9 and 4.9 were determined by adding the total development

efforts (D) of the LEGASY System and Telephone System, and then dividing by

the total number of functions (in corresponding categories). This process can be

explained mathematically as follows:

5.7.1

3.1 * [(SF,,*0.13)+(BSE,,,,,*0.29)+(DSE,,. ¥ 1.59)+(UE,,,,*22.7)] / total

form form form

no. of form functions + [(SF,q o *0.134)+(BSE,per *0.80)+(DE, 10 *2.55)] /

total no. of report functions + [(DE,,,*0.41)] / total no. of data functions

Testing the 4GT Ball-Park Estimating Equation

We decided to test the above 4GT Ball-Park estimating equation using

statistics from the Telephone System.

Total Number of Form Functions = 5

Total Number of Report Functions = 2

147

Total Number of Data Tables = 3

tr
!

3.1 *[(10.2 *5) + (7.9 *2) + (4.9 * 3)]

= 252 person hours.

On analysis it reveals that this number is higher than the actual effort
consumed in the project, which is 160 person-hours. This was not unexpected as
the Telephone system does not have any user exits — the user exit SEs constitute
a substantial proportion of the effort involved in the Ball-Park equation. On

excluding the impact of the user exit SEs - we get a new 4GT ball-park equation.

E = 3.1*[(3.1 * no. of forms)+(7.9 * no. of reports)+(4.9 * no. of data tables)]

We can now use this equation to test the Telephone system project objectively.

E 3L *[B.1*5)+ (79 *2)+ (4.9 * 3)]
= 142 person-hours.

This estimate can be considered to be a satisfactory ball-park estimate.

5.7.2 Ball-Park Estimating for LEGASY
As the LEGASY system has user exit SEs and process functions we use
the following equation to obtain a ball-park estimate of the LEGASY system

project.

148

E = 3.1 *[(10.2 *5) + (7.9 * 2) + (4.9 * 3) + Process Effort]

Given the following statistics about the LEGASY project:
Total Number of Form Functions = 28
Total Number of Report Functions = 24
Total Number of Data Tables = 17

Total Process function effort = 125 person-hours

vs|
]

3.1 * [285.6 + 189.6 + 83.3 + 125]

2119 person-hours

This ball-park estimate compares reasonably well with the actual effort of 2340
person hours for LEGASY. Similarly, for the VRS project, this estimate is 18

person hours vs. the actual 22 person-hours.

5.8 Estimating Effort Under Different 4GT Paradigms

In Chapter 3 we described different 4GT paths (see section 3.3 — systems
development methodology). In this section we suggest how the 4GT Model can be

used to estimate the development effort under different 4GT paradigms.

149

5.8.1 Estimating Evolutionary Prototyping Projects

Evolutionary prototyping is popular today.®® A major reason for the
popularity is the fact that good quality code is generated during prototyping. The
logic that "a prototype must be discarded as it was developed in a hurry” is
generally not valid with 4GT based development, as a substantial amount of the
code was automatically generated, and not physically coded (where the chances of

human error are high).

As indicated earlier on a lot of experimentation described in this chapter
pertains to the "evolutionary prototyping" paradigm. With such an approach, code
generation takes place throughout the life cycle, and developed code is not
discarded. Great-West Life, for instance, follows the evolutionary prototyping
paradigm when using 4GTs. Here skeleton screens are developed early on in the
life cycle and demonstrated to users who test the human-computer interface. As the
project progresses this prototype evolves into the final product. The 4GT Model

weights calibrated in this chapter are based on this methodology.

150

5.8.2 Estimating Throw-Away Prototyping Projects

When throw-away prototyping is involved we can consider two extreme
development modes (see Table 2.1):

e ‘"screen" or "simple mock up" prototyping

o "detailed" or "full" prototyping
With screen or simple mock up prototyping only simple SEs are involved (as
alluded to in section 3.5.3.1). Since such a prototype is going to be discarded
eventually (and hence the simple SE effort, i.e., SF’s in our 4GT equation), we can
regard the effort estimation equation for such projects to be:

E.reen = E +(0.13 * SF)

With detailed or full prototyping, all the functions are fully developed
(demonstrated to the user) and then discarded. The effort equation for estimating
such projects should then be:

Eitsiea= E +D

To illustrate with the LEGASY system, if screen prototyping and detailed

prototyping were to occur, project estimates using the above equations would be:

E E + (0.15 * SF)

screen

2340 + 24.05 = 2364.82 person-hours

Ejuwiea = E+D

2340 + 755.41 = 3095.41 person-hours

151

5.8.3 Estimating Non Prototyping Projects

If we can assume that the total development effort D would be the same -
regardless of whether it was implemented in one chunk (as in a non-prototyping
paradigm) or in several chunks (as in the evolutionary prototyping paradigm), then
we can use the following equations to determine such effort:

Devotutionary-prototyping = D1 + Dy + Dy + Dy, = Dy prototyping = D
* D, and

Enon-prototyping = Expans:on faCtornon-protutyping

— - i . *
Eevolutionary-prototyping - Expansmn faCtorevo]utionary-prolotyping D.

In conclusion, we note that the 4GT model is quite versatile. For example,
it is capable of supporting the various 4GT paradigms used in the industry today.
As data pertaining to all 4GT paradigms is not available readiy, intensive validation

of the concepts presented here is left for future research.

5.9 Evaluating Model Portability

According to DeMarco' there are no transportable cost models, i.e., a
model calibrated at one site cannot be used at another site without modifications.
In the case of the 4GT Model, the function development weights (associated with
"D") are quite portable for a given 4GT, however, the expansion ratio might need
to be re-calibrated at another site as it deals with attributes such as project
management, communication, etc., which vary from one shop to another. Using a

152

"local” expansion ratio is therefore quite desirable if the 4GT Model is to be used
at another site. The procedure described in this chapter can be used to obtain a new

expansion ratio.

The various project factors associated with PFES also serve to make our
cost model portable. The list of project factors identified during our knowledge
engineering process with PFES, however, is not exhaustive. Additional factors,
especially organizational, such as "staffing and manpower-acquisition" variables®®

can be incorporated to make the model more portable.

In this context, Abdel-Hamid and Madnick indicate that "the portability of
software estimation models can be significantly improved by taking into
consideration not only technical aspects of the software development environment”,
but also, "managerial and organizational characteristics of the environment".%®
However, our research effort has not focussed on these issues yet, the above issues
are more relevant when staffing, scheduling, etc. come into picture — these we

leave for future research (in association with PFES).

153

5.10 Conclusions

In this Chapter we described the calibration and experimentation results
pertaining to the 4GT Model. The results indicate that our development weights are
quite reliable and portable. We also demonstrated how ball-park estimation and
base-line estimating are facilitated using the 4GT Model. Finally, we described

equations that are useful for cost estimating the various 4GT paradigms.

154

Chapter 6

Conclusions and Future Directions

6.1 Introduction

This chapter provides conclusions related to modelling fourth generation

effort. Future directions related to research in this area are also described.

6.2 Summary of the Results

Here we review the thesis by answering the following questions: What is
the problem? How was it tackled? What results were obtained? What is new and

better about it?

Our primary objective was to deal with the problem of estimating software
development effort when fourth generation tools are used. We indicated that
traditional predictors or cost models are inadequate for measuring development
effort involving 4GTs. Such traditional predictors or models are more oriented

towards "physical coding" rather than "specification-oriented coding".

155

To tackle this problem we introduced a new predictor called specification
element (SE). SE was defined as a specification task associated with implementing
a screen field or data element. SEs were categorized logically into a few distinct

and manageable categories based on the nature of specification effort involved.

SEs operate on functions — the following functions were identified for the
fourth generation environment: form, report, data, and process. As functions and
screen fields can be counted easily (even early on in the life cycle), SEs can be

regarded as good predictors.

Each SE has an effort value in person-hours associated with it. This
represents the work effort required to implement one SE and hence one screen
field. By using the techniques described in the model one can directly determine
the overall development effort and adjust it, if necessary, for the influence of

project factors (such as familiarity with tools, and programmer experience).

Two approaches were taken to ensure that the model was satisfactory. First,
the model was evaluated by practitioners and then installed in a large commercial
setting. It was calibrated using actual project data and tested against a new project.
The results obtained here revealed that the model resolved various effort estimation

problems satisfactorily.

156

The second approach taken was to determine if the weights obtained above
are suitable for use at another site. An experimental project (case study)
implemented by several subjects was used to test the model. Results obtained here
revealed that the model weights, especially those related to development effort (D)

were quite portable.

We have realized the following objectives with the 4GT Model:
1. The model provides us a basis to measure specification oriented
application development effort. Application generators, form generators

and report generators can all now be measured satisfactorily.

2. The model supports sizing of 4GT applications in two modes — ball-
park and base-line. While ball-park sizing provides us rough estimates
early on in the system development life cycle, base-line sizing provides
us detailed estimates on completion of some software design. Base-line

therefore provides us better estimates than ball-park sizing.

3. The model supports various 4GT development paradigms for purposes
of effort estimation. The 4GT Model itself is based on the evolutionary
paradigm, as such, its ability to measure projects based on this

paradigm has been extensively tested. The expansion factor used by the

157

model is capable of supporting the other special cases of 4GT

development.

. Finally, we experimented with the knowledge-based method for

adjusting project effort. We found some interesting advantages with

such an approach:

It was easy to perform what-if analysis — thanks to the built-in
user friendly interface of the expert system shell. Various scenarios
were experimented with for purposes of estimation - "allowing end-
users to compute vs. letting data processing staff compute”; "using
resources with average skill vs. using resources with very high
skill"; and "putting skilled people on a difficult project vs. putting
skilled people on an easy project”.

New rules and project factors governing end-user computing were

researched and introduced in the model.

158

6.3

Future Work

This topic is examined under the following two headings — model

enhancement, and model integration.

6.3.1

Model Enhancement

The following three points need to be researched in the near future:

1.

Calibration of the process function: As evident in the previous chapter,
research was not conducted to calibrate the process function of the 4GT
Model for ORACLE. (Only the form, report, and data functions were
calibrated.) Even though it is not necessary to calibrate the process
function (as one might continue to see 4GT projects such as the
Telephone System project that do not need process functions), it is still
useful to investigate this problem. Any experimentation here should
clearly focus on non-procedural process functions only as no model for
estimating such effort exists. Wrigley and Dexter appear to be working
towards implementation of one such a model but their work is yet
incomplete — they have established links between information system
size and non-procedural LOCs but they have not associated such LOCs

with effort.

159

2. Calibration of other popular fourth generation tools: Calibrating
ORACLE was worthwhile — as evidenced by the interest shown by
practitioners in using the 4GT Model and the fact that it is a very
popular relational system, listing second only to DB2, in popularity
(p.13)5 ! — nevertheless, it will be worthwhile to calibrate other 4GTs
as well. This would enable us to compare the 4GT weights calibrated

for ORACLE with those in other environments.

3. Using the model to test the different 4GT paradigms: Our research and
the various equations presented in the context of throw-away
prototyping vs. evolutionary have raised some questions. Is the
expansion factor the same for both of these paradigms? What about the
Spiral Model? Which one is a more expensive paradigm? Throw-away,
or evolutionary (iv.e., which expansion factor is more costly?). The 4GT
Model can probably be used as an experimental vehicle to answer such

questions.

The above research can be facilitated if a formal software metrics program
is established at several sites involved with fourth generation development. Very
few sites at present have a software metrics program. From our perspective,

however, it is important to gather the following data from several sites:

160

e type of 4GT paradigm used

* project start and completion dates

e manpower allocation for the project (including nature of involvement
— such as part-time or full time, etc.)

° total number of functions developed by type (i.e., form, report, etc.)

* total number of screen fields involved with each function by SE type.

e effort used to develop each function

° initial effort estimates & the actual project effort

In such a software metrics database, it is preferable to store normalized
data only — especially, data pertaining to actual project effort should be corrected
for overestimation or underestimation. Project overestimation can be costly,
according to Abdel-Hamid, "wasteful project practices such as goldplating”, and
"unproductive slack time activities" can occur with such projects —
underestimation of projects can also be costly as it results in an “initial
understaffing, followed by a costly staff buildup later in the life cycle”.*? Using
such data as a benchmark in future model calibrations (such as for determining the

expansion factor) can result in costly projects.”

In conclusion we note that good metrics data can provide us with

substantial benefits - it can assist us with: future project planning, future cost

161

modelling, and resolving model portability issues. In this sense, we agree with
Yourdon, who states that, "software metrics can be as valuable a silver bullet for
your organization as CASE technology, structured techniques, or fourth generation

languages" (p. 10)."

6.3.2 Model Integration

One of the key advantages of the 4GT Model is that it lends itself readily
to integration within the CASE architecture. CASE tools .use a central repository
for storing project data. Such a repository — commonly called CASE Database —

could be easily tapped to obtain data pertaining to the development process.

Unfortunately, by design, existing cost models are stand-alone products,
i.e., they do not integrate with CASE tools or store or tap into a CASE database
for estimation or planning purposes. If such cost models interface, or fully integrate
with a CASE database, we can realize several benefits. For instance, with the 4GT
Model, the following input sizing parameters required by the model for producing

ball-park or base-line estimates can be directly supplied from the database:

total number of tables

L]

total number of data elements

total number of reports and forms

total number of screen fields

162

* total number of process functions.

The advantages of integrating CASE tools with cost models are two fold:

1. The estimation process can now be automated to a higher degree.

2. Historic software metrics data can be retrieved easily for calibration
purposes. As CASE projects are always up-to-date any data captured
would also be very accurate.

At present we are experimenting with an integrated CASE architecture at

the Great-West Life — it involves the 4GT Model and PFES functioning as "CASE

estimating tools" and a "CASE database".

6.4 Conclusion

In the final note of his book Controlling Software Projects,' DeMarco exclaims:
"Good grief, it’s the end of the book. Have I made my point? Was the
meaning clear? ... Isn’t there much, much more to say about software
quality and function weighting and complexity measurement and
organization of the development process and ...?"

Well, T conclude with almost similar anxiety, fourth generation software

development and effort estimation are fascinating topics and indeed there is much,

much more to say here as well — scheduling, software prototyping metrics and
models, complexity measurement, risk analysis and management, neural nets for

effort correction — and much more come to mind. However, I have been advised

to leave these topics aside for a future encounter ... and wisely so.

163

References

1. DeMarco, T., Controlling Software Projects, (foreword by Boehm B.), Yourdon
Press Computing Series, Prentice-Hall, Englewood Cliffs, 1982.

2. Martin, J., Fourth-Generation Languages, Vol. I, Prentice-Hall, 1985.

3. Bate, J., Vadhia, D., Fourth Generation Languages Under DOS and UNIX, BSP
Professional Books, 1987.

4. Chorafas, D., Fourth and Fifth Generation Programming Languages, McGraw-
Hill Inc., Vol 1, 1986.

5. Pressman, R. Software Engineering A Practitioners Approach, Second Edition,
McGraw-Hill Book Company, 2nd Edition, 1987.

6. Pressman, R. Software Engineering A Practitioners Approach, Third Edition,
McGraw-Hill Book Company, 1992,

7. Martin, J., Application Development Without Programmers, Prentice-Hall,
Englewood Cliffs, NJ, 1982, p.30.

8. Lin, C.,"Systems Development with Application Generators: An End-User
Perspective," Journal of Systems Management, Vol 41, No.4, 1990, pp.32-36.

9. Martin, M.,"Instant Screen Design,” Journal of Systems Management, Vol 41,
No.4, 1990, pp.22-27.

10. Verner, J., G. Tate, "Estimating Size and Effort in Fourth-Generation
Development," I[EEE SOFTWARE, July 1988, pp 15-22.

164

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Grady, R., Work-Product Analysis: The Philosopher’s Stone of Software,
IEEE Software, March 1990, p. 26-34.

Mills, Harlan, P. Dyson, "Using Metrics to Quantify Development,” [EEE
Software, March 1990, p 15-16.

Grady, R., D. Caswell, Software Metrics: Establishing a Company-Wide
Program, Prentice-Hall, 1987.

Ed Yourdon, "Software Metrics: You Can’t Control What You Can’t
Measure," American Programmer, Vol 2, No. 2, February 1989,

Schussel, G., "Fourth Generation Productivity Tools - A Shopping Guide for
Software Consumers," Data Management, October 1984, pp. 42-46.

Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, NJ, Prentice-Hall Inc., 1981.

Matos, V.M., and Jalics, P.J, "An Experimental Analysis of the Performance
of Fourth Generation Tools on PCs," Communications, ACM 32, 11, Nov.
1989, 1340-1351.

Albrecht, A.J., "Measuring Application Development Productivity,” Proc. IBM
Application Development Symposium, Monterey, CA, Oct. 1979, pp. 83-92.

Dreger, B.J., Function Point Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1989.

Abdel-Hamid, TK., "The Dynamics of Software Development Project

Management: An Integrative System Dynamics Perspective,” Unpublished
Ph.D. dissertation, Sloan School of Management, MIT, January, 1984.

165

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Abdel-Hamid, T.K., "Investigating the Cost/Schedule Trade-Off in Software
Development," IEEE Software, pp. 97-105, January 1990.

Abdel-Hamid, T.K., "On the Utility of Historical Project Statistics for Cost
& Schedule Estimation: Results from a Simulation-Based Case Study," The
Journal of Systems and Software, 1990.

Abdel-Hamid, T.K, Madnick, S.E, Dynamics of Software Project
Management, Prentice-Hall, Englewood Cliffs, N.J, 1991.

Verner, ., Tate, G., "Estimating Size and Effort in 4GL development," IEEE
Software, July 1988, pp. 15-22.

Dreger, B.J, Function Point Analysis, Prentice-Hall, Englewood Cliffs, p 132,
1989.

Wrigley, C., Dexter. A., "A Model for Measuring Information System Size,"
MIS Quarterly, June 1991, 245-257.

Waterman, D., A Guide to Expert Systems, Addison Wesley Publishing Co,
1986.

Biegel, J., Bearden, M., Dickerson,D., O’Donnell, "Building an Expert System
for Cost Estimating," International Industrial Engineering Conference
Proceedings, 1986, pp. 504-5009.

Arrowood, L., Emrich, M., Sadlove,R., Jones, A., Watson, B., Suprapaneni,
R., "Knowledge-Based vs Traditional Cost Estimation Models," (reprint, US
Department of Energy), November 1989, Datapro Research, McGraw-Hill
Inc., AS20-050, Nov. 1989, pp.201-207.

Ntuen, C., Mallik, A., "Applying Artificial Intelligence to Project Cost
Estimating,” Cost Engineering, Vol. 29, No.5, May 1987, pp. 8-12.

166

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Avots, I, "The Coming Impact of Artificial Intelligence on Project
Management," Project Management in Progress, North-Holland, 1986, pp.
307-312.

Kanabar, V., Seah, E.Scuse, D., Knowledge-base Referencing During
Planning, Working Papers on Artificial Intelligence in Management Science,

The Institute of Management Sciences, Fall 1989, pp. 144-56.

Verner, J., Tate, G., "Estimating Size and Effort in Fourth-Generation
Development," IEEE Software, July 1988, p.15-22.

Matos, V.M, Jalics, P.J., "An Experimental Analysis of the Performance of
Fourth Generation Tools on PCs,” Communications ACM, 32, 11, Nov. 1989,
1340-1351.

Misra S., Jalics, P., "Third Generation versus Fourth-Generation Software
Development," IEEE Software, July 1988, p.8-14.

Jones C., Programming Productivity, McGraw-Hill, 1986.

Dredger B., Function Point Analysis, Prentice-Hall, 1989, p.12.

Symons, C., "Function Point Analysis, Difficulties and Improvements," IEEE
Software Transactions on Software Engineering, SE-14(1), January 1988, pp.

2-10.

Wallace R., Stockenberg J.,Charette R., A Unified Methodology for
Developing Systems, McGraw-Hill Book Company, 1987.

Grady, R., Work-Product Analysis: The Philosopher’s Stone of Software,
IEEE Software, March 1990, p. 26-34.

167

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Albrecht, A. J., and J. E. Gaffney, "Software Function, Source Lines of Code
and Development Effort Prediction: A Software Science Validation," [EEE
Trans. Software Engineering, November 1983, pp. 639-648.

Arthur, L. J., Measuring Programmer Productivity and Software Quality,
Wiley-Interscience, 1985, p.23.

Walston, C., and C. Felix, "A Method for Programming Measurement and
Estimation," IBM Systems Journal, vol. 16, no. 1, 1977.

Jones, C., Programming Productivity, McGraw-Hill Inc, 1986.

Mohanty, S., "Software Cost Estimation: Present and Future," Software
Practice and Experience, 1981, pp. 103-121.

Londeix, B., Cost Estimation for Software Development, Addison-Wesley
Publishing Co., 1987, p. 40.

Holsapple, C., Whinston, A., Business Expert Systems, Irwin Inc, 1987.

Hayes-Roth, F., Waterman, D., Lenat, D., Building Expert Systems, Addison-
Wesley Publishing Co., MA, 1983.

Rockart, J.F, Flannery, L., "The Management of End User Computing,"
Communications of the ACM, Association of Computing Machinery, October

1983, pp. 776-784.

Putnam, L.H, Fitzsimmons A., "Estimating Software Costs," Writings of the
Revolution, Yourdon Press, New York, 1982, pp. 326-344.

Mackowiak, K., "Skills Required and Jobs Available for CIS Majors",
Interface, Vol. 13, No.4, 1991, pp. 9-14.

168

52.

53.

54.

55.

56.

57.

58.

59.

- 60.

61.

62.

Henry, S., Selig, C., "Predicting Source Code Complexity at the Design
Stage," IEEE Software, March, 1990, pp.36-44.

Henry, S.M., Kafura, D., "Software Structure Metrics Based on Information
Flow," IEEE Trans. Software Engg., Sept. 1981, pp. 510-518.

McCabe, T.J, "A Complexity Measure," IEEE Trans. Softw. Engg., SE-2,4,
Dec. 1976, p. 308.

SQL*FORMS, "SQL*Forms Class Notes," ORACLE Corporation, August
1987.

Pressman, R. Software Engineering A Practitioners Approach, Second
Edition, McGraw-Hill Book Company, 3rd Edition, 1992 (to be published).

SQL*FORMS Designer’s Reference, Version 2.0, ORACLE Corporation, Part
No. 3304-V2.0. February 1988.

McFadyen, R., Kanabar, V., An Introduction to Structured Query Language,
Wm. C. Brown, Dubuque, 1A, 1991.

Wrigley, C., Dexter. A., "A Model for Measuring Information System Size,"
MIS Quarterly, June 1991, pp. 245-257.

Connell, J., Shafer, B., Structured Rapid Prototyping An Evolutionary
Approach, Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs,
NJ, 1989.

DeMarco, T., Concise Notes on Software Engineering, Yourdon Inc., New
York, NY, 1979.

Fertuck, L., Systems Analysis and Design with CASE Tools, Wm. C. Brown,
Dubuque, IA, 1992.

169

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Avison, D, Fitzgerald, G., Information Systems Development Methodologies
Techniques and Tools, Blackwell Scientific Publications, 1988.

Gore, M., Stubbe, J., Elements of Systems Analysis, Fourth Edition, Wm. C.
Brown, Dubuque, 1A, 1988.

Parkin, A., System Management, Edward Arnold Publishers Ltd., London,
1980.

Clarke, R., "A Contingency Approach to the Application Software
Generations", Data Base, Summer 1991, pp. 23-34.

Itakura, M., Takayanagi, A., "A Model for Estimating Program Size and its
Evaluation,” Proceedings of the Sixth International Conference on Software
Engineering, IEEE, 1982, pp. 104-109.

Abdel-Hamid, T.K., Madnick, S.E, Software Project Dynamics An Integrated
Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Bailey, J., Basili, V., "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the Fifth International Conference on Software
Engineering, IEEE, 1981, pp. 107-116.

Kanabar, V., "Knowledge-based Project Management", Department of
Mathematics and Statistics Seminar, January 1988.

Kanabar, V., "Knowledge-based Project Management: Work-Effort
Estimation", Twentieth Interface Symposium, Washington, D.C, April 21-23,

1988,

Kanabar', V., "An Integrated Software Metrics Model for Planning",
Department of Mathematics and Statistics Seminar, January 15, 1989.

170

73.

74.

75.

76.

77.

78.

79.

80.

81.

Kanabar, V., B. Feiring, D. Scuse, E. Seah, "Project Planning and Estimating
Using a Software Metrics Framework", International Conference on
Computing and Information, Canadian Scholars Press, Volume II, 1989, pp-
336-3309.

Kanabar, V., "An Integrated Model for Automated Planning and Estimation",
Proceedings of ACM Seventeenth Annual Computer Science Conference,
February 1989.

October 1989, Faculty Seminar Series, University of Manitoba, Faculty of
Management, Effort Estimation of Fourth Generation Languages.

Kanabar, V., Seah, E.,, "A Model for Planning and Cost Estimation",
Advances in Computing and Information, Proceedings, Niagara, Ontario,
1990, pp. 168-70.

Kaehler, N., Software Development, Information Systems and Data Processing
Department, Investors Group, interviews and testing conducted between April
1990 and July 1991.

Smith, W., Computer Systems, Great-West Life, interviewed on 6/6/91,
6/7/91, 6/12/91, 6/18/91, 6/25/91, 7/2/91, 7/9/91, 7/11/91, 7/12/91, 8/9/91,
15/9/91, 22/9. Subsequently about seven informal consultations until 12/6/91.

Garner, T., Computer Systems, Great-West Life, interviewed on 5/13/91,
5/20/91, 6/6/91, 6/7/91, 6/12/91, 7/11/91, 8/9/91, 22/9. Subsequently about
three informal consultations until 12/6/91.

Buskens, R., Computer Systems, Great-West Life, interviewed on 6/10, 6/18,
6/25.

Hildebrand, M., Pitblado & Hoskin, model calibration on 7/11/91, 7/13/91,
7/15/91. Informal consultations until 12/6/91.

171

82.

83.

84.

85.

86.

&7.

88.

&9.

90.

91.

Hildebrand, M., Pitblado & Hoskin, Winnipeg, 4GT calibration & case study
participation on 8/28/91, 8/29/91 & 9/3/91.

Allison, M., (Telephone System project manager), Computer Systems, Great-
West Life, calibration meeting on 9/9/91.

Layer., A., Quality Assurance, Information Systems and Data Processing
Department, Investors Group, data collection between April 1990 and
December 1990.

DeMarco, T., & Lister, L. (1990). Software State-of-the-Art: Selected Papers.
New York, NY: Dorset House Publishing.

Kanabar, V., Janzen, T..Seah, E., Smith, W., "Installation of a 4GT Model",
Technical Report, Faculty of Management, 1991.

Kanabar, V., "CASE: Integrating Project Estimating Tools into the
Architecture”, Chapter published in CASE Issues for the 1990’s, ed. Bergin,
T., Idea Book Publishing, 1992.

Yuen, K. (Project Leader), Chan, E., Ho, C., Ng, K.H., "Space Accounting
System"”, University of Winnipeg, Winnipeg, 1989.

Lau, K., (Project Leader), Chan, T., Lam, A., Lam, C. "Trackers", University
of Winnipeg, Winnipeg, 1989.

Fox, G. (Project Leader), Lee, P., Siu, S., Yap, G., "Mayday Project”,
University of Winnipeg, Winnipeg, 1989.

Finlay, I. (Project Leader), Brandt, G., Tang, A., Zirdum, A., "Weights and
Measures Microcomputer System", University of Winnipeg, 1988.

172

92.

93.

94.

95.

96.

97.

98.

99.

Kanabar, V., "Estimating Software Development using Fourth Generation
Tools", Naval Postgraduate School, Monterey, California, October, 1990.

Kanabar, V., "A Model for Estimating Software Development Effort using
Fourth Generation Tools", University of South Florida, Tampa, Florida,
Department of Computer Science and Engineering Seminar, April, 1991.

Pressman, R., Making Software Engineering Happen, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

Teng, J., Wesley, J., "User Evaluation of Database Query Languages: A
Comparison of SQL and DBASE III," INFOR, Vol. 28, August 1990.

Armitage, H., The Choice of Productivity Measures in an Organization, The
Society of Management Accountants of Canada, 1991.

Roetzheim, W., Structured Computer Project Management, Prentice Hall,
Englewood Cliffs, New Jersey, 1988, pp. 92-95.

Damodaran, M., "Fourth Generation Tools - Characteristics, Applications and
their Evolution", First International Workshop on Computer-Aided Software
Engineering, Volume I, pp. 157-159.

Peters, T., Waterman, R. In Search of Excellence, N.Y: Harper & Row, 1982,
p. 240.

100. Uniface, Uniface V. 5.2. Uniface Corporation. Alameda:CA, 1989.

101. Ingres, Ingres/Applications. Relational Technology Inc. Alameda: CA, 1986.

102. dBASE 1V, dBASE IV Documentation, Aston Tate Corporation, CA, 1990.

173

103.

104.

IQS.
106.
107.
108.
109.
110.
111.

112.

Silver, A., "On the Structural Decomposition and Hierarchical Recombination
of Non-Directed Linear Graphs using Multi-Attribute Agglomerative
Polythetic Clustering Metrics," Constructive Approaches to Mathematical
Models Symposium, Carnegie-Mellon University, July 10-14, 1978.

Silver, A., "Structural Decomposition using Entropy Metrics," Proceedings of
the 1978 conference on Information Sciences and Systems, John Hopkins

University, March 1978.

Corner, R., Business Systems Design and Development. Englewood-Cliffs, NJ:
Prentice-Hall, 1990.

Putnam, L., Myers, W., Measures for Excellence: Reliable Software on Time,
Within Budget, Englewoods Cliffs, New Jersey, 1992.

Case, A. Jr. (1986). Information Systems Development: Principles of
Computer-Aided Software Engineering. Englewood Cliffs, N.J: Prentice-Hall.

Kolida, G., Assistant Manager, Investors Group, interviews between May
1989- August 1990.

IBM, Managing Projects with Application System, Release 4, Product
No. 5767-001, 1986.

Kemerer, C, "Software Cost Estimation Models", Forthcoming in Software
Engineers Reference Book, Surrey, U.K: Butterworth.

McClure, C. CASE is Software Automation. Englewood-Cliffs, N.J: Prentice-
Hall, 1989.

Microsoft. Microsoft Project document: Project Scheduling and Reporting
Program, No.410720011-400-R00-0887, Part No. 00163, 1987.

174

113.

114.

115.

116.

117.

118.

119.

120.

Nastec, Nastec CASE 2000, Nastec Corporation, Southfield, Michigan, 1986.

Pfleeger, S., Software Engineering: The Production of Quality Software,
Second Edition, N.Y: Macmillan, 1991.

Symantec, Time Line: The Corporate Choice for Project Management and
Presentations, User Manual, Part # 03-30-00016, 1990.

Whitten, J., & Bentley, L., Using Excelerator for Systems Analysis and
Design, Boston, Irwin, 1987.

Crossman, T., "Taking the Measure of Programmer Productivity”,
Datamation, 1979, pp. 144-147.

Hicks, J., Information Systems in Business: An Introduction, Second Edition,
West Publishing Co., St.Paul, 1990.

Vicinanza, S., Mukhopadhyay, T., Prietula, M., "Software-Effort Estimation:
An Exploratory Study of Expert Performance," Information Systems Research,
December, 1991, pp. 243-262.

Rafnsey, C., Basili, V., "An Evaluation of Expert Systems for Software

Engineering Management," IEEE Transactions on Software Engineering, 15,
1989, pp. 747-759.

175

Bibliography

Abdel-Hamid, T.K., Madnick, S.E, Software Project Dynamics An Integrated
Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Abdel-Hamid, T.K., "On the Utility of Historical Project Statistics for Cost &
Schedule Estimation: Results from a Simulation-Based Case Study," The
Journal of Systems and Software, 1990.

Abdel-Hamid, T.K., "Investigating the Cost/Schedule Trade-Off in Software
Development," IEEE Software, pp. 97-105, January 1990.

Abdel-Hamid, T.K, Madnick, S.E, Dynamics of Software Project Management,
Prentice-Hall, Englewood Cliffs, N.J, 1991.

Abdel-Hamid, T.XK., "The Dynamics of Software Development Project
Management: An Integrative System Dynamics Perspective,” Unpublished Ph.D.
dissertation, Sloan School of Management, MIT, January, 1984.

Albrecht, A.J., "Measuring Application Development Productivity," , Proc. IBM
Application Development Symposium, Monterey, CA, October 1979, pp. 83-92.

Albrecht, A. J., and J. E. Gaffney, "Software Function, Source Lines of Code and
Development Effort Prediction: A Software Science Validation," IEEE Trans.
Software Engineering, November 1983, pp. 639-648.

Armitage, H., The Choice of Productivity Measures in an Organization, The
Society of Management Accountants of Canada, 1991.

Arthur, L. J., Measuring Programmer Productivity and Software Quality,
Wiley-Interscience, 1985, p.23.

Arrowood, L., Emrich, M., Sadlove,R., Jones, A., Watson, B., Suprapaneni, R.,
"Knowledge-Based vs Traditional Cost Estimation Models,” (reprint, US
Department of Energy), November 1989, Datapro Research, McGraw-Hill Inc.,
AS20-050, Nov. 1989, pp.201-207.

176

Avison, D., Fitzgerald, G., Information Systems Development Methodologies
Techniques and Tools, Blackwell Scientific Publications, 1988.

Avots, L., "The Coming Impact of Artificial Intelligence on Project Management,"
Project Management in Progress, North-Holland, 1986, pp. 307-312.

Bate, J., Vadhia, D., Fourth Generation Languages Under DOS and UNIX, BSP
Professional Books, 1987.

Bailey, J., Basili, V., "A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software
Engineering, IEEE, 1981, pp. 107-116.

Biegel, J., Bearden, M., Dickerson,D., O’Donnell, “Building an Expert System for
Cost Estimating," International Industrial Engineering Conference Proceedings,

1986, pp. 504-509.

Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
Prentice-Hall Inc., 1981.

Case, A. Jr. (1986). Information Systems Development: Principles of Computer-
Aided Software Engineering. Englewood Cliffs, N.J: Prentice-Hall.

Chorafas, D., Fourth and Fifth Generation Programming Languages, McGraw-Hill
Inc., Vol 1, 1986. '

Clarke, R., "A Contingency Approach to the Application Software Generations",
Data Base, Summer 1991, pp. 23-34.

Connell, J., Shafer, B., Structured Rapid Prototyping An Evolutionary Approach,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs, NJ, 1989.

Corner, R., Business Systems Design and Development. Englewood-Cliffs, NJ:
Prentice-Hall, 1990.

Crossman, T., "Taking the Measure of Programmer Productivity”, Datamation,
1979, pp. 144-147.

177

Damodaran, M., "Fourth Generation Tools - Characteristics, Applications and their
Evolution", First International Workshop on Computer-Aided Software
Engineering, Volume I, pp. 157-159.

dBASE 1V, dBASE IV Documentation, Aston Tate Corporation, CA, 1990.

DeMarco, T., Lister, L. (1990). Software State-of-the-Art: Selected Papers. New
York, NY: Dorset House Publishing.

DeMarco, T., Concise Notes on Software Engineering, Yourdon Inc., New York,
NY, 1979.

DeMarco, T., Controlling Software Projects, Yourdon Press Computing Series,
Prentice-Hall, Englewood Cliffs, 1982.

Dreger, B.J., Function Point Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Fertuck, L., Systems Analysis and Design with CASE Tools, Wm. C. Brown,
Dubuque, 1A, 1992.

Gore, M., Stubbe, J., Elements of Systems Analysis, Fourth Edition, Wm. C. Brown,
Dubuque, 1A, 1988.

Grady, R., Work-Product Analysis: The Philosopher’s Stone of Software, IEEE
Software, March 1990, p. 26-34.

Grady, R., D. Caswell, Software Metrics: Establishing a Company-Wide Program,
Prentice-Hall, 1987.

Hayes-Roth, F., Waterman, D., Lenat, D., Building Expert Systems, Addison-
Wesley Publishing Co., MA, 1983.

Henry, S.M., Kafura, D., "Software Structure Metrics Based on Information Flow,"
IEEE Trans. Software Engg., Sept. 1981, pp. 510-518.

Hicks, J., Information Systems in Business: An Introduction, Second Edition, West
Publishing Co., St.Paul, 1990.

178

Holsapple, C., Whinston, A., Business Expert Systems, Irwin Inc, 1987.

IBM, Managing Projects with Application System, Release 4, Product No. 5767-
001, 1986.

Ingres, Ingres/Applications. Relational Technology Inc. Alameda: CA, 1986.

Itakura, M., Takayanagi, A., "A Model for Estimating Program Size and its
Evaluation,” Proceedings of the Sixth International Conference on Software
Engineering, IEEE, 1982, pp. 104-109.

Jones C., Programming Productivity, McGraw-Hill, 1986.

Kanabar, V., Seah, E., "A Model for Planning and Cost Estimation”, Advances in
Computing and Information, ICCI Proceedings, Niagara, Ont, 1990, pp. 168-70.

Kanabar, V., B. Feiring, D. Scuse, E. Seah, "Project Planning and Estimating Using
a Software Metrics Framework", International Conference on Computing and
Information, Volume II, Canadian Scholars Press, 1989, pp. 336-339.

Kanabar, V., Janzen, T.,Seah, E., Smith, W., "Installation of a 4GT Model",
Technical Report, Faculty of Management, 1991.

Kanabar, V., "Knowledge-based Project Management: Work-Effort Estimation”,
Twentieth Interface Symposium, Washington, D.C, April, 1988.

Kanabar, V., "An Integrated Model for Automated Planning and Estimation”,
Proceedings of ACM Seventeenth Annual Computer Science Conference,
February 1989.

Kanabar, V., "CASE: Integrating Project Estimating Tools into the Architecture”,
Chapter published in CASE Issues for the 1990’s, ed. Bergin, T., Idea Book
Publishing, 1992.

Kanabar, V., Seah, E..Scuse, D., Knowledge-base Referencing During Planning,

Working Papers on Artificial Intelligence in Management Science, The Institute
of Management Sciences, Fall 1989, pp. 144-56.

179

Kemerer, C, "Software Cost Estimation Models", Forthcoming in Soffware
Engineers Reference Book, Surrey, U.K: Butterworth.

Lin, C.,"Systems Development with Application Generators: An End-User
Perspective,” Journal of Systems Management, Vol 41, No.4, 1990, pp.32-36.

Londeix, B., Cost Estimation for Software Development, Addison-Wesley
Publishing Co., 1987, p. 40.

Mackowiak, K., "Skills Required and Jobs Available for CIS Majors", Interface,
Vol. 13, No.4, 1991, pp. 9-14.

Matos, V.M, Jalics, P.J., "An Experimental Analysis of the Performance of Fourth
Generation Tools on PCs," Communications ACM, 32, 11, Nov. 1989, 1340-
1351.

Martin, J., Application Development Without Programmers, Prentice-Hall,
Englewood Cliffs, NJ, 1982, p.30.

Martin, M.,"Instant Screen Design," Journal of Systems Management, Vol 41, No 4,
1990, pp.22-27.

Martin, J., Fourth-Generation Languages, Vol. 1, Prentice-Hall, 1985.
Mills, Harlan, P. Dyson, "Using Metrics to Quantify Development," IEEE Software,
March 1990, p 15-16.

McCabe, T.J, "A Complexity Measure," [EEE Transactions on Software
Engineering, SE-2,4, Dec. 1976, p. 308.

McClure, C. CASE is Software Automation. Englewood-Cliffs, N.J: Prentice-Hall,
1989.

McFadyen, R., Kanabar, V., An Introduction to Structured Query Language, Wm.
C. Brown, Dubuque, IA, 1991.

180

Microsoft. Microsoft Project document: Project Scheduling and Reporting
Program, No.410720011-400-R00-0887, Part No. 00163, 1987.

Mohanty, S., "Software Cost Estimation: Present and Future,” Software Practice
and Experience, 1981, pp. 103-121.

Misra, S., Jalics, P., "Third Generation versus Fourth-Generation Software
Development," IEEE Software, July 1988, p.8-14.

Nastec, Nastec CASE 2000, Nastec Corporation, Southfield, Michigan, 1986.

Ntuen, C., Mallik, A., "Applying Artificial Intelligence to Project Cost Estimating,”
Cost Engineering, Vol. 29, No.5, May 1987, pp. 8-12.

Parkin, A., System Management, Edward Arnold Publishers Ltd., London, 1980.

Pfleeger, S., Software Engineering: The Production of Quality Software, Second
Edition, N.Y: Macmillan, 1991.

Pressman, R. Software Engineering A Practitioners Approach, Third Edition,
McGraw-Hill Book Company, 1992,

Pressman, R., Making Software Engineering Happen, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

Putnam, L.H, Fitzsimmons A., "Estimating Software Costs,” Writings of the
Revolution, Yourdon Press, New York, 1982, pp. 326-344.

Putnam, L., Myers, W., Measures for Excellence: Reliable Software on Time,
Within Budget, Englewoods Cliffs, New Jersey, 1992,

Ramsey, C., Basili, V., "An Evaluation of Expert Systems for Software Engineering

Management," IEEE Transactions on Software Engineering, 15, 1989, pp. 747-
759.

181

Rockart, J.F, Flannery, L., "The Management of End User Computing,"
Communications of the ACM, Association of Computing Machinery, October
1983, pp. 776-784.

Roetzheim, W., Structured Computer Project Management, Prentice Hall,
Englewood Cliffs, New Jersey, 1988, pp. 92-95.

Schussel, G., "Fourth Generation Productivity Tools - A Shopping Guide for
Software Consumers," Data Management, October 1984, pp. 42-46.

Silver, A., "Structural Decomposition using Entropy Metrics," Proceedings of the
1978 conference on Information Sciences and Systems, John Hopkins University,
March 1978.

Silver, A., "On the Structural Decomposition and Hierarchical Recombination of
Non-Directed Linear Graphs using Multi-Attribute Agglomerative Polythetic
Clustering Metrics," Constructive Approaches to Mathematical Models
Symposium, Carnegie-Mellon University, July 10-14, 1978.

SQL*FORMS Designer’s Reference, Version 2.0, ORACLE Corporation, Part No.
3304-V2.0. February 1988.

SQL*FORMS, SQL*Forms Class Notes, ORACLE Corporation, August 1987.
Symantec, Time Line: The Corporate Choice for Project Management and
Presentations, User Manual, Part # 03-30-00016, 1990.

Symons, C., "Function Point Analysis, Difficulties and Improvements," [EEE
Software Transactions on Software Engineering, SE-14(1), January 1988, pp.
2-10.

Teng, J., Wesley, J., "User Evaluation of Database Query Languages: A
Comparison of SQL and DBASE III," INFOR, Vol. 28, August 1990.

Uniface, Uniface V. 5.2. Uniface Corporation. Alameda:CA, 1989.

Verner, J., Tate, G., "Estimating Size and Effort in Fourth-Generation
Development," IEEE Software, July 1988, p.15-22.

182

Vicinanza, S., Mukhopadhyay, T., Prietula, M., "Software-Effort Estimation: An
Exploratory Study of Expert Performance,” Information Systems Research,
December, 1991, pp. 243-262.

Wallace R., Stockenberg J..Charette R., A Unified Methodology for Developing
Systems, McGraw-Hill Book Company, 1987.

Walston, C., and C. Felix, "A Method for Programming Measurement and Esti
mation," IBM Systems Journal, vol. 16, no. 1, 1977.

Waterman, D., A Guide to Expert Systems, Addison Wesley Publishing Co, 1986.

Whitten, J., & Bentley, L., Using Excelerator for Systems Analysis and Design,
Boston, Irwin, 1987.

Wrigley, C., Dexter. A., "A Model for Measuring Information System Size,” MIS
Quarterly, June 1991, 245-257.

Yourdon, "Software Metrics: You Can’t Control What You Can’t Measure,"
American Programmer, Vol 2, No. 2, February 1989.

183

Appendix A

RUNTIME,;

ACTIONS

NOVELTY_IMPACT=SIGNIFICANT
GT_TOOL_EXP_IMPACT=SIGNIFICANT

OV_EXP_IMPACT = SIGNIFICANT

FIND env_value

FIND env_value2

FIND RELY

FIND D_COMM

FIND CHANGE

FIND INTERFACE_COMPLX
FIND OPER_EASE

FIND METHOD_VALUE

FIND GT_TOOL_EXP_VALUE
FIND NOVELTY_VALUE

184

FIND TECHNIQUE_EFFECT
FIND PRACTICE_EFFECT
FIND IMPACT

FIND PERSONNEL_PF

DISPLAY "The 4GT tool value is {GT_TOOL_EXP_VALUE}."
DISPLAY "The development teams familiarity with the

application on hand is {NOVELTY_VALUE}."
DISPLAY "The Personnel PF Correction is {PERSONNEL_PF}."
DISPLAY "The Methodology Correction is {METHOD_VALUE}."
DISPLAY "The Application Project Factor Correction is { AF}."
DISPLAY "The projeét admin. environment rating is {ENV_value}"
DISPLAY "The work/staff environment is {Env_value2}"

DISPLAY "The Project Factor Correction is {PF}.";

RULE 1
IF DEVELOPER = END_USER

THEN

185

FIND END_USER_VALUE

PERSONNEL_PF =
(END_USER_VALUE*GT_TOOL_EXP_VALUE*NOVELTY_VALUE)

AF = (RELY*D_COMM*CHANGE*INTERFACE_COMPLX*OPER_EASE)
EV = (ENV_VALUE*EN V_VALUE2)

PF = (PERSONNEL_PF *METHOD_VALUE*AF*EV)

DISPLAY "The End-User value is {END_USER_VALUE}"

ELSE

FIND OVERALL_EXPVALUE

PERSONNEL_PF =
(OVERALL_EXPVALUE*GT_TOOL_EXP*VALUE*NOVELTY_VALUE)
AF = (RELY*D_COMM*CHANGE*INTERFACE_COMPLX*OPER_EASE)
EV = (ENV_VALUE*ENV_VALUE2)

PF = (PERSONNEL_PF *METHOD_VALUE*AF*EV)

DISPLAY "The Overall Experience value is {OVERALL_EXPVALUE}."
BECAUSE "If the software application is being developed by end

users it will generally take longer than if it is being developed

by professional DP staff";

186

RULE E_U_O

IF END_USER_TYPE=comp_support_staff

THEN END_USER_IMPACT=significant

BECAUSE 'Different types of end-users are skilled at different

levels. Some of them might be working as full-time computer

support staff’and therefore represent professional IS personnel,

others may be functional support personnel, but some are basically

power-users and quite skilled. End-user programmers are-relatively

less skilled, and the command level end-users are the least

skilled category (but still capable of develdping simple 4GL

applications with help.)";

RULE E_U_1

IF END_USER_TYPE=functional_support AND
TRAINING=available AND
INFO_CENTER_SUPPORT=available

THEN END_USER_IMPACT=v_significant

BECAUSE "End-users in this category are capable";

RULE E_U_2
IF END_USER_TYPE=end_user_programmer AND

TRAINING=available AND

187

INFO_CENTER_SUPPORT=available
THEN END_USER_IMPACT=v_v_significant
BECAUSE "End-users in this category are inexperienced and need

guidance from information center and good training";

RULE E_U_3

IF END_USER_TYPE=command_level_user AND
TRAINING=available AND
INFO_CENTER_SUPPORT=available

THEN END_USER_IMPACT=v_v_significant

BECAUSE "End-users in this category are very inexperienced and

need guidance from information center and good training";

RULE E_U_4

IF END_USER_TYPE=functional_support AND
TRAINING=not_available OR
INFO_CENTER_SUPPORT=not_available

THEN END_USER_IMPACT=v_v_significant

BECAUSE "IF the end-users don’t have the IC support and training

it will affect their productivity";

188

RULE E_U_5

IF END_USER_TYPE:end_user_programmer AND
TRAINING=not_available OR
INFO_CENTER_SUPPORT=not_available

THEN END_USER_IMPACT=terminate

BECAUSE "If this type of end-user does not have the IC support

and training it will not be possible to develop any applications";

RULE E_ U 6
IF END_USER_TYPEzcommand_level__user AND
TRAINING=not_available OR

INFO_CENTER_SUPPORT=not_available

THEN END_USER_IMPACT=terminate:
RULE E_U_7
IF END_USER_IMPACT=SIGNIFICANT AND

END_USER_SKILL=BASIC
THEN END_USER_VALUE=1 .42
BECAUSE "End-users may range in experience by a fair degree. Some

might simply have cursory experience with a 4GL product, others

189

might have more significant experience. "

RULE E_U_8

IF END_USER_IMPACT=SIGNIFICANT AND
END_USER_SKILL=COMFORTABLE_USE

THEN END_USER_VALUE=1.21

BECAUSE "Allocation of productivity rating";

RULE E_U_9

IF END_USER_IMPACT=SIGNIFICANT AND
END_USER_SKILL=AVERAGE

THEN END_USER_VALUE=1.00

BECAUSE "Allocation of productivity rating”;

RULE E_U_10

IF END_USER_IMPACT=SIGNIFICANT AND
END_USER_SKILL=GOOD_PRACTICE

THEN END_USER_VALUE=0.79

BECAUSE "Allocation of productivity rating";

190

RULE E_U_11

IF END_USER_IMPACT=SIGNIFICANT AND
END_USER_SKILL=VERY_HIGH

THEN END_USER_VALUE=0.58

BECAUSE "Allocation of productivity rating";

RULE E_U_12

IF | END_USER_IMPACT=V_SIGNIFICANT AND
END_USER_SKILL=BASIC

THEN END_USER._VALUE-—-I .84

BECAUSE "Allocation of productivity rating";

RULE E_U_13

IF END_USER_IMPACT=V_SIGNIFICANT AND
END_USER_S KILL=COMFORTABLE_USE

THEN END_USER_VALUE=1.63

BECAUSE "Allocation of productivity rating";

RULE E_U_14
IF END_USER_IMPACT=V_SIGNIFICANT AND

END_USER_SKILL=AVERAGE

191

THEN END_USER_VALUE=1.42

BECAUSE "Allocation of productivity rating";

RULE E_U_15

IF END_USER_IMPACT=V_SIGNIFICANT AND
END_USER_SKILL=GOOD_PRACTICE

THEN END_USER_VALUE=1.21

BECAUSE "Allocation of productivity rating";

RULE E_U_16

IF END_USER_IMPACT=V_SIGNIFICANT AND
END_USER_SKILL=VERY_HIGH

THEN END_USER_VALUE=1.00

BECAUSE "All :ation of productivity rating";

RULE E_U_17

IF END_USER_IMPACT=V_V_SIGNIFICANT AND
END_USER_SKILL=BASIC

THEN END_USER_VALUE=2.47

BECAUSE "Allocation of productivity rating";

192

RULE E_U_18

IF END_USER_IMPACTzV_V_SIGNIFICANT AND
END_USER_SKILL=COMFORTABLE_USE

THEN END_USER_VALUE=2.26

BECAUSE "Allocation of productivity rating";

RULE E_U_19

IF END_USER_IMPACT:V_V_S IGNIFICANT AND
END_USER_SKILL=AVERAGE

THEN END_USER_VALUE=2.05

BECAUSE "Allocation of productivity rating";

RULE E_U_20

IF EN D_USER_IMPACT=V_V_SIGNIFICANT AND
END_USER_SKILL=GOOD_PRACTICE

THEN END_USER_VALUE=1.84

BECAUSE "Allocation of productivity rating";

RULE E_U_21
IF END_USER_IMPACT=V_V_SIGNIFICANT AND

END_USER_SKILL=VERY_HIGH

193

THEN END_USER_VALUE=1.63

BECAUSE "Allocation of productivity rating";

RULE E_U_22
IF END_USER_IMPACT=TERMINATE
THEN END_USER_VALUE=0

DISPLAY "It is not possible for this program to estimate a
correction under such circumstances - program PF will be zero. "
BECAUSE "It is difficult for the end-users to do any 4GL

application development without access to some L.C. help.";

RULE 3

IF OV_EXP_IMPACT=SIGNIFICANT AND
OVERALL_EXPRATING=VERY_LOW

THEN OVERALL*EXPVALUE=1 42

BECAUSE “the overall experience of the developer can very
significantly affect the speed and cost with which applications are

developed.";

RULE 4

IF OV_EXP_IMPACT=SIGNIFICANT AND

194

THEN

BECAUSE

RULE 5

IF

THEN

BECAUSE

RULE 6

IF

THEN

BECAUSE

RULE 7

IF

THEN

BECAUSE

OVERALL_EXPRATING=LOW
OVERALL_EXPVALUE=1.21

"Allocation of productivity rating";

OV_EXP_IMPACT=SIGNIFICANT AND
OVERALL_EXPRATING=AVERAGE
OVERALL_EXPVALUE=1.0

"Allocation of productivity rating";

OV_EXP_IMPACT=SIGNIFICANT AND
OVERALL_EXPRATING=HIGH
OVERALL_EXPVALUE=079

"Allocation of productivity rating";

OV_EXP_IMPACT=SIGNIFICANT AND
OVERALL_EXPRATING=VERY_HIGH
OVERALL_EXPVALUE=0.58

"Allocation of productivity rating";

195

RULE 8

IF GT_TOOL_EXP_IMPACT=SIGNIFICANT AND
GT_TOOL_EXP_RATING=VERY_LOW

THEN GT_TOOL_EXP_VALUE=1.28

BECAUSE "previous experience with a 4GL tool will significantly

affect the efficiency and speed with which new applications can be

developed. This can vary from very low (experience less than |

month)

to very high (experience greater than 3 years). ";

RULE 9

IF GT_TOOL_EXP_IMPACT=SIGNIFICANT AND
GT_TOOL_EXP_RATING=LOW

THEN GT_TOOL_EXP_VALUE=I1.14

BECAUSE "Allocation of productivity rating";

RULE 10

IF GT_TOOL_EXP_IMPACT=SIGNIFICANT AND
GT_TOOL_:XP_RATING=AVERAGE

THEN GT_TOOL_EXP_VALUE=1.00

BECAUSE "Allocation of productivity rating";

196

RULE 11

IF GT_TOOL_EXP_IMPACT=SIGNIFICANT AND
GT_TOOL_EXP_RATING=HIGH

THEN GT_TOOL_EXP_VALUE=0.86

BECAUSE "Allocation of productivity rating";

RULE 12

IF GT_TOOL_EXP_IMPACT=SIGNIFICAN T.AND
GT_TOOL_EXP_RATING=VERY_HIGH

THEN GT_TOOL_EXP_VALUE=0.72

BECAUSE "Allocation of productivity rating";

RULE 13

IF ‘ NOVELTY_IMPACT=SIGNIFICANT AND
NOVELTY_RATING=VERY_LOW

THEN NOVELTY_VALUE=1.28

BECAUSE "previous experience with a similar project and
application can affect the cost of development. Novel applications,
which the development team has no previous familiarity with, should
require more manpower. By the same token, if a project is simple

(and not unique) and if it lends itself to automatic application

197

generation, it’s novelty is classified as very low. "

RULE 14

IF NOVELTY_IMPACT=SIGNIFICANT AND
NOVELTY_RATING=LOW

THEN NOVELTY_VALUE=1.14

BECAUSE "Allocation of productivity rating";

RULE 15

IF NOVELTY_IMPACT=SIGNIFICANT AND
NOVELTY_RATING=AVERAGE

THEN NOVELTY_VALUE=1.00

BECAUSE "Allocation of productivity rating”;

RULE 16

IF NOVELTY_IMPACT=SIGNIFICANT AND
NOVELTY_RATING=HIGH

THEN NOVELTY_VALUE=0.86

BECAUSE "Allocation of productivity rating";

RULE 17

198

IF NOVELTY_IMPACT=SIGNIFICANT AND
NOVELTY_RATING=VERY_HIGH
THEN NOVELTY_VALUE=0.72

BECAUSE "Allocation of productivity rating";

RULE MTHD_0

IF TECHNIQUE=jad

THEN TECHNIQUE_EFFECT=good;
RULE MTHD_1

IF TECHNIQUE=prototyping

THEN TECHNIQUE_EFFECT=good;
RULE MTHD_2

IF TECHNIQUE=jad_and_prototyping
THEN TECHNIQUE_EFFECT=good;

RULE MTHD_3A
IF TECHNIQUE=PF_has_no_influence
THEN METHOD_VALUE = 1.0

BECAUSE "Techniques such as JAD - joint application design and

199

development and subsequent prototyping serve to reduce to

development costs. "

RULE MTHD_3B

IF PRACTICE = PF_has_no_influence

THEN METHOD_VALUE = 1.0

BECAUSE "Techniques such as top down design, structured design and
programming, and related strategies results in an orderly
development of the software, moreover, it assures that there will

be no chaos during development.";

RULE MTHD _4

IF PRACTICE:struCt_design_&_prog
THEN PRACTICE_EFFECT=gOOd;
RULE MTHD _5

IF PRACTICE:walkthroughs

THEN PRACTICE___EFFECT=gOOd;
RULE MTHD _¢6

200

IF PRACTICE=struct_tech_& _walkth

THEN PRACTICE_EFFECT=good:;

RULE MTHD_8
IF TECHNIQUE_EFFECT=good AND

PRACTICE_EFFECT=good

THEN IMPACT=significant;
RULE MTHD_9
IF TECHNIQUE_EFFECT=PF_has_no_influence AND

PRACTICE_EFFECT=good

THEN IMPACT=average;

RULE MTHD 10
IF TECHNIQUE_EFFECT=good AND
PRACTICE_EFFECT=PF_has_no_influence

THEN IMPACT=average;

RULE MTHD_11
IF IMPACT=significant AND

METHOD_EXPERIENCE=very_low

201

THEN METHOD_VALUE=1.00
BECAUSE "while end-users or developers might be enthusiastic about

using techniques such as JAD/Prototyping or structured methods
for

software development, they may not be very experienced with such

techniques."”;

RULE MTHD_12
IF IMPACT=significant AND
METHOD_EXPERIENCE=low

THEN METHOD_VALUE=1.00;

RULE MTHD_13
IF IMPACT=significant AND
METHOD_EXPERIENCE=average

THEN METHOD_VALUE=1.00;

RULE MTHD_14
IF IMPACTs=significant AND

METHOD_EXPERIENCE=high

202

THEN METHOD_VALUE=0.86;

RULE MTHD_15
IF IMPACT=significant AND
METHOD_EXPERIENCE=very_high

THEN METHOD_VALUE=0.72;

RULE MTHD_16
IF IMPACT=average AND
METHOD_EXPERIENCE=very_low

THEN METHOD_VALUE=1.14;

RULE MTHD_17
IF IMPACT=average AND
METHOD_EXPERIENCE=low

THEN METHOD_VALUE=1.07,

RULE MTHD_18
IF IMPACT=average AND
METHOD_EXPERIENCEzaverage

THEN METHOD_VALUE=1.00;

203

RULE MTHD_19
IF IMPACT=average AND
METHOD_EXPERIENCE=high

THEN METHOD_VALUE=1.00;

RULE MTHD_20
IF IMPACT=average AND
METHOD_EXPERIENCE=very_high

THEN METHOD_VALUE=1.00;

RULE O_EASE_0

IF OPERATIONAL_EASE=very_low

THEN OPER_EASE=0.72

BECAUSE "If ease of operating the system is essential then the
application musi be automated to a great degree, for instance, this
might involve special effort to provide error recovery, automatic

backup of database files, and easy start-up, or shut-down.":

RULE O_EASE_1
IF OPERATIONAL_EASE=low

THEN OPER_EASE=0.86;

RULE O_EASE_2
IF OPERATIONAL__EASE:average

THEN OPER_EASE=1.00;

RULE O_EASE_3
IF OPERATIONAL_EASEzhigh

THEN OPER_EASE=].14;

RULE O_EASE_4
IF OPERATIONAL_EAS E=very_high

THEN OPER_EASE=1.28;

RULE O_EASE_5S
IF OPERATION AL__EASE=PF_not_applicable

THEN OPER_EASE=1.00;

RULE I_CMPLX_0

IF INTERFACE_COMPLEXITY=very_low

THEN INTERFACE_COMPLX=0.72

BECAUSE "On-line functions for data entry, update, or output

involve more effort than similar batch functions. If some special

205

interfaces are required such as output to a laser printer or

graphics terminal more effort is required. ";

RULE I_CMPLX_1
IF INTERFACE_COMPLEXITY=low

THEN INTERFACE_COMPLX=0.86:

RULE I_CMPLX 2
[F INTERFACE_CO MPLEXITY=average

THEN INTERFACE_COMPLX=1.00;

RULE [_CMPLX_3
IF IN TERFACE_COMPLEXITY:high

THEN INTERFACE_COMPLX=1.14;

RULE I_CMPLX_4
IF IN TERFACE__COMPLEXITY:very__high

THEN INTERFACE_COMPLX=1.28:

RULE I_CMPLX_5

IF INTERFACE_COMPLEXITY:PF_not_applicable

206

THEN

RULE CO
[F
THEN

BECAUSE

RULE Cl1
IF

THEN

RULE C2
IF

THEN

RULE C3
IF

THEN

INTERFACE_COMPLX=1.00;

RELIABILITY_RATING:very_low

RELY=0.72

"Reliability expected from the application being developed

can significantly affect the cost of application development. An
application must be classified as requiring high reliability if

failure can result in a large financial losses™;

RELIABILITY_RATING=low

RELY=0.86;

RELIABILITY_RATIN G=average

RELY=1.00;

RELIABILITY_RATING=high

RELY=1.14,

207

RULE C4

IF RELIABILITY_RATING:very_high

THEN RELY=1.28;

RULE C5

IF RELIABILITY_RATING:PF_not_applicable
THEN RELY=1.00;

RULE COMM_0

IF DATA_COMMUN ICATION=very_low
THEN D_COMM=0.72

BECAUSE "More effort is required to develop applications that

require data to be sent or received over multiplexers, networks, or

LANs.";
RULE COMM _1
IF DATA_COMMUNICATION=low
THEN D_COMM=0.86:
RULE COMM_2
IF DATA_COMMUNICATION =average

208

THEN D_COMM=1.00;

RULE COMM_3
IF DATA_COMMUNICATION=high
THEN D_COMMs=1.14;

RULE COMM_4

IF DATA_COMMUNICATION=very_high
THEN D_COMMs=1.28;

RULE COMM_5

IF DATA_COMMUNICATION =PF_not_applicable
THEN D_COMM=1.00;

RULE F_C_0

IF FACILITATE=very_low

THEN CHANGE=0.72

BECAUSE "if the application is designed to facilitate changes
(such as frequent updates of tax rates, or interest rates), or if
it is designed to facilitate maintenance or creation of module

libraries more effort will be required. ";

209

RULE F_C_1

IF FACILITATE=low
THEN CHANGE=0.86:

RULE F_C_2

IF FACILITATE=average
THEN CHANGE=1.00;

RULE F_C_3

IF FACILITATE=high
THEN CHANGE=1.14;

RULE F_C_4

IF FACILITATE=very_high
THEN CHANGE=1.28;

RULE F_C_5

IF FACILITATE=PF _not_applicable
THEN CHANGE=1.00;

210

RULE ENV_]

IF

THEN

ENVIRONMENT:Xeroxing_&_Printing AND
ENVIRONMENT=Workstations AND
ENVIRONMENT:TechnicaI_Education AND
ENVIRONMENT:Software_&_HardwaJ'e

ENV_RATING=average

BECAUSE "attributes such as availability of xeroxing and

duplicating resources, private work station. availability of all

required software and hardware needed for the project, and

technical training (if needed) will affect the project estimates":

RULE ENV_2

IF

ENVIRONMENT:Xeroxing_&_Printing AND
ENVIRONMENT=Workstations AND

ENVIRONMEN T=Technical Education

THEN ENV_RATING=v_low:
RULE ENV_3
IF ENVIRONMENT=Workstations AND

ENVIRONMENT=Technical_Education AND

211

ENVIRONMENT=S oftware_&_ Hardware

THEN ENV_RATING=average;

RULE ENV _4

IF ENVIRONMEN T=Xeroxing_&_Printing AND
ENVIRONMEN T=Technical_Education AND
ENVIRONMENT=S oftware_&_ Hardware

THEN EN V_RATING:average;

RULE ENV_5

IF ENVIRONMEN T=Xeroxing_&_Printing AND
ENVIRONMENT=Workstations

THEN ENV_RATING=low;

RULE ENV_6

IF ENVIRONMENT=Workstations AND
ENVIRON MENT=Technical_Education

THEN ENV_RATING=v_low:

RULE ENV_7

IF ENVIRON MENT=Technical_Education AND

212

ENVIRON MENT:Software_&_Hardware

THEN ENV_RATING=low:

RULE ENV_8§

IF EN VIRONMENT:Xeroxing_&_Printing AND
ENVIRON MENT=Technical_Education

THEN ENV_RATING=low;

RULE ENV_9

IF ENVIRON MEN T=Xeroxing_&_Printing AND
ENVIRONMENT=S oftware_&_ Hardware

THEN ENV_RATING=low:

RULE ENV_10

IF ENVIRONMENT=Workstations AN D
ENVIRON MENT=Software_& Hardware

THEN ENV_RATING=low;

RULE ENV_11

IF ENVIRONMEN T=Xeroxing_&_Printing

THEN ENV_RATING=v_low;

213

RULE ENV_12

IF ENVIRONMENT=Workstations

THEN ENV_RATING=v_low;

RULE ENV_13

IF ENVIRONMENT=Technical Education
THEN ENV_RATING=v_low;

RULE ENV_14

IF ENVIRONMENT=Software_& Hardware
THEN ENV_RATING=v_low;

RULE ENV_15

IF ' ENVIRONMENT=PF_not_applicable
THEN ENV_RATING =average;

RULE ENV_16

IF env_rating=v_low

THEN env_value=1.14;

RULE ENV_17

214

IF env_rating=low

THEN env_value=1.07:

RULE ENV_18

IF env_rating = average

THEN env_value = 1.00;

RULE ENV_19

IF Environment2=PF_not_applicable

THEN ENV_value =1.00:

RULE ENV2_1

IF Environment2=Inadequate_compensation AND

Environment2=Low_priority_projs AND
Environment2=Many_concurrent_proj AND
Environment2=Morale_not_high

THEN ENV_RATING2=poor

BECAUSE "inadequate compensation or low morale of employee could

affect the productivity. If the developers are working on a

215

project that has low visibility and priority, or if they are
working on several projects at the same time this will also affect
the cost estimates":

RULE ENV2_2

IF EnvironmentZ:Inadequate_compensation AND
Environment2=Low_priority_projs AND

Environment2=Many_concurrent_proj

THEN ENV_RATING2=v_low:
RULE ENV2_3
IF Environment2=Low_priority_projs AND

Environment2=Many_concurrent_proj AND

Environment2=Morale_not_high

THEN ENV_RATING2=average;
RULE ENV2 4
IF EnvironmentZ:Inadequate_compensation AND

Environment2=Many_concurrent_proj AND
Environment2=Morale_not_high

THEN ENV_RATIN G2=average;

216

RULE ENV2_5
IF Environmentzzlnadequate_compensation AND

Environment2=Low_priority_projs

THEN ENV_RATING2=low;
RULE ENV2_6
IF Environment2=Low_priority_projs AND

Environment?.:Many_concurrent_proj

THEN ENV_RATING2=v_low;
RULE ENV2_7
IF Environment2=Many_concurrent_proj AND

Environment2=Morale_not__high

THEN ENV_RATING2=low:;
RULE ENV2_8
IF Environment2=Inadequate_¢ ompensation AND

EnvironmentZ:Many__concurrent_proj

THEN ENV_RATING2=low;

RULE ENV2_9

217

IF Environmentzzlnadequate__compensation AND
Environment2=Morale_not_high

THEN ENV_RATING2=low:

RULE ENV2_10
IF Environment2=Low_priority_projs AND
Environment2=Morale_not_high

THEN ENV_RATING2=low;

RULE ENV2_11
IF Environment2=lnadeq uate_compensation

THEN ENV_RATING2=v_|ow;

RULE ENV2_12
IF Environment2=Low_priority_projs

THEN ENV_RATING2=v_low:;
RULE ENV2_13

IF Environment2=Many_concurren- _proj

THEN ENV_RATING2=v_low;

218

RULE ENV2_14
IF Environment2=Morale_not_hi gh

THEN ENV_RATING2=v_low;

RULE ENV2_15

IF Environment2=PF_not_applicable

THEN ENV_value2 =1.00

BECAUSE “inadequate compensation or low morale of pmployees could
affect their productivity. If the developers are working on a
project that has low visibility and priority, or if they are
working on several projects at the same time it will also affect

the cost estimates":

RULE ENV2_16
IF env_rating2=v_low

THEN env_value2=1.07;
RULE ENV2_17

IF env_rating2=low

THEN env_value2=1.14;

219

RULE ENV2_18
IF env_rating2 = poor

THEN env_value2 = 1.21:

ASK DEVELOPER: "Who is going to develop the application?";

CHOICES DEVELOPER: END_USER, DP_STAFF:

ASK OVERALL_EXPRATING: "What is the overall EXPERIENCE of the
development team?";
CHOICES OVERALL_EXPRATING-

VERY_LOW,LOW,AVERAGE,HIGH,VERY_HIGH:

ASK 4GT_TOOL: "How much familiarity do the developers have with the
DBMS and

Fourth Generation Tools to be used in implementing the

application?";

CHOICES 4GT_TOOL: VERY_LOW, LOW, AVERAGE, HIGH,

VERY_HIGH;

ASK GT_TOOL_EXP_RATING: "What is the level of expertise with the

4GT TOOL?";

220

CHOICES GT_TOOL_EXP_RATING:

VERY_LOW,LOW,AVERAGE,HIGH.VERY_HIGH;

ASK NOVELTY_RATING: "How familiar is the project team with the with
the software development project on hand?":
CHOICES NOVELTY_RATING:

VERY__LOW.LOW,AVERAGE,HIGH,VERY_HIGH;

ASK END_USER_SKILL: "What is the level of end-user computing
skills?":
CHOICES END_USER_SKILL:

BASIC,COMFORTABLE_USE, A VERAGE,GOOD_PRACTICE,VERY_HIGH:

ASK END_USER_TYPE: "What is the end-user type?";
CHOICES END_USER_TYPE:

comp_support_staff,functional_support,
end_user__programmer,command_level_user;

ASK TRAINING: "Is training available?";

CHOICES TRAINING: available,not_available:

221

ASK INFO_CENTER_SUPPORT: "Is Information Center support available
readily?";

CHOICES INFO_CENTER_SUPPORT: available,not_available;

ASK TECHNIQUE: "What software development techniques will be
used?";
CHOICES TECHNIQUE:

jad,prototyping,jad_and__prototyping,PF__has_no_inﬂuence;

ASK PRACTICE: "What software implementation techniques will be
used?";

CHOICES PRACTICE:
struct_design_&_prog,walkthroughs,struct_tech_&_walkth, ‘

PF_has_no_influence;

ASK METHOD_EXPERIENCE: "What is the level of experience with
techniques such as JAD, and structured programming?";

CHOICES METHOD_EXPERIENCE: very_low,low.average,high,very_high:;

ASK RELIABILITY_RATING: "How important is software reliability ?";

CHOICES RELIABILITY_RATING:

222

Very_low,low,average,high,very_high,PF_not_applicable;

ASK DATA_COMMUNICATION . "Is data communication crucial here?":
CHOICES DATA~COMMUNICATION:

very_low,low,average,high,very_hi gh,PF_not_applicable;

ASK FACILITATE: "Is the application designed to facilitate
chzinge?";
CHOICES FACILITATE:

very_low,low,average,high,very_high,PF_not_applicable;

ASK INTERFACE_COMPLEXITY: "How critical is the interface
complexity?";
CHOICES INTERFACE_COMPLEXITY:

very_low,low.average,high,very_high,PF_not_applicable;

ASK OPERATIONAL_EASE: "Should the software provide a degree of
operational ease?";
CHOICES OPERATIONAL_EASE:

very__low,low,average,high,very_high,PF__not__applicable;

223

ASK ENVIRONMENT: "Which of the following facilities are very
adequately available in the project environment (select all that
apply)?”;

CHOICES ENVIRONMENT:
Xeroxing_&_Printing,Workstations.Technical_Education,

Software_&_Hardware, PF_not_applicable:

ASK Environment2: "Select all factors that describe the environment
that the staff are working in?";

CHOICES Environment2:
Inadequate_Compensation,Low_Priority_Projs,Many_Concurrent_Proj,

Morale_Not_High, PF_Not_Applicable;

PLURAL: ENVIRONMENT:;

PLURAL.: Environment2;

224

Appendix B

User Interface: Questions asked by PFES

Who is going to develop the application?

end-user, dp staff

What is the overall experience of the development team?

very low, low, average, high, very high

How much familiarity do the developers have with the DBMS and Fourth
Generation Tools to be used in implementing the application?

very low, low, average, high, very high

What is the level of expertise with the 4GT TOOL?

very low, low, average, high, very high

How familiar is the project team with the with the software development
project on hand?

very low, low, average, high, very high

What is the level of end-user computing skills?

225

basic, comfortable use, average, good practice, very high

0 What is the end-user type?

comp support staff, functional support,

end-user programmer, command level user

0 [s training available?

available, not available

0 Is Information Center support available readily?

available, not available

0 What software development techniques will be used?

Jad, prototyping, jad and prototyping, PF has no influence

0 What software implementation techniques will be used?

struct design & prog, walkthroughs, struct tech & walkth,

PF has no influence

0 What is the level of experience with techniques such as JAD, and

structured programming?

226

very low, low, average, high, very high

How important is software reliability?

very low, low, average, high, very high, PF not applicable

Is data communication crucial here?

very low, low, average, high, very high, PF not applicable

Is the application designed to facilitate change?

very low, low, average, high, very high, PF not applicable

How critical is the interface complexity?

very low, low, average, high, very high, PF not applicable

Should the software provide a degree of operational ease?

very low, low, average, high, very high, PF not applicable

Which of the following facilities are very adequately available in the
project environment (select all that apply)?
Xeroxing & Printing, Workstations, Technical Education,

Software & Hardware, PF not applicable

227

0 Select all factors that describe the environment that the staff are working
in?
Inadequate Compensation, Low Priority Projs, Many Concurrent

Proj, Morale Not High, PF Not Applicable

228

Appendix C

PFES S.S. Model Version

Project Factor Enter Options (Enter 0,1,2,34, or 5)
Choice
(0-5)

Type of Developer 2 | 1. End User | 2. DP Staff

End User Type 0 11.CSS 2.FS 3. EUP 4. CL

End User Skill 0 | 1. Novice 2.Comfor | 3. Average - Good | 5.V.Good

Level -table

End User Resources 0 | L. Training 2. Training Unavailable

Available

Information Center 0 | 1. Support 2. Support Unavailable

Support Available

DP Staff Experience 3 | 1.V. Low 2. Low 3. Average - High | 5. V. High

Level '

Expertise with 4GTs 3 1 1.V. Low 2. Low 3. Average High | 5. V. High

Familiarity with 3 | 1.V. Low 2. Low 3. Average High | 5. V. High

Similar Project

Data 3 1 1.V.Low 2. Low 3. Average High | 5. V. High | 0. Not

Communication Valid

Complexity

Inteface Complexity 3 | LV Low 2. Low 3. Average High | 5.V. High | 0. Not
Valid

Software Reliability 3 | L.V Low 2. Low 3. Average High | 5. V.High | 0. Not
Valid

Operational Ease 3 | LV Low 2. Low 3. Average - High | 5. V.High | 0. Not
Valid

Environment 3 1 1.V Low 2. Low 3. Average - High | 5. V.High | 0. Not
Valid

Familiarity with 3 [1.V. Low 2. Low 3. Average High | 5. V.High | 0. Not

SDLC Valid

Recommended 1.0

PFES Correction:

Note: Select 0, if not valid or it manually coded; as with Process Functions

229

Al:

A2:

D2:

E2:

A3:

D3:

E3:

A4

D4:

E4:

AS:

D5:

ES5:

A6:

D6:

E6:

AT7:

Appendix D

4GT Model Program Code

[W19] "4GT MODEL - Calibrated For LEGASY
[(W19] "Forms

(F2) (D15)

[W12] ’person-hours

[W19] ’Reports

(F2) (D21)

[W12] ’person-hours

[W19] 'Data Type

(F2) (D25)

[W12] ’person-hours

[W19] "Process Type

(F2) 125

[W12] ’person-hours

[W19] "Development Effort (estimated)
(F2) @SUM(DS..D2)

[W12] ’person-hours

[W19] "Development Effort (actual)

230

D7: (F2) 2340

E7: [W12] ’person-hours
A8: [W19] ’Expansion Factor (actual/estimated)
D8: (F2) (D7/D6)

A9: [WI9]'FORM S
A10: [W19] 'SE Category
B10: 'SE Value

C10: [W11] "Magnitude
D10: "Total SE Value
All: [WI19] *Simple SE
BI1: (F2) 0.13

Cl1: [W11] 185

DI11: (C11*B11)

Al12: [W19] 'Basic SE
B12: (F2) 0.29

C12: [W11] 36

D12: (C12*B12)

Al13: [W19] ’Detailed SE
BI13: (F2) 1.59

CI3: [W11] 32

D13: (C13*B13)

231

Al4

B14:

Cl4:

Dli4:

AlS:

D15:

E15:

Al6:

AlT:

B17:

Cl17:

D17:

AlR:

B18:

CI8:

DI18:

Al9:

B19:

Cl19:

DI19:

A20:

[W19] "User Exit
(F2) 22.72

[W11] 11

(F2) (C14*B14)
[W19] "Total Effort
@SUM(DI14..D11)

[W12] ’person-hours

[WI9)'REPORTS

[W19] "SE Category
"SE Value

[W11] 'Magnitude
"Total SE Value
[W19] *Simple SE
(F2) 0.13

[WI11] 75

(F2) (C18*B18)
[W19] ’Basic SE
(F2) 0.84

[(W11] 14

(F2) (C19*B19)

[W19] "Detailed SE

232

B20:
C20:
D20:
A2l:
D21:
E21:

A22:
A23:
B23:
C23:
D23:
A24:
B24:
C24:
D24:
A25:
D25:

E25:

(F2) 2.55

[WI1] 69

(F2) (C20*B20)
[W19] "Total Effort
@SUM(D20..D18)
[W12] "person-hours
[WI9]'DATA
[W19] °'SE Category
'SE Value

[W11] "Magnitude
"Total SE Value
[W19] 'Data Element
(F2) 0.41

[WI11] 238

(F2) (C24*B24)
[W19] "Total Effort
+D24

[W12] ’person-hours

233

*-- Name....: model.prg
*-- Notes...: main program, provides pop-up menu for selecting

specification elements.

SET TALK OFF

set stat off

clése all

clear

*

select 1

use datal

append blank

@ 1,0 to0.12,60 double

@ 2, 18 say " FUNCTION DEFINITION"
@ 3,1t03,59

@ 5, 10 say "Function Name: " get namel
@ 7, 10 say "Function Type: " get type
@ 9, 10 say "SEV: "

@ 9, 40 say "Level :"

read

234

if len(trim(type)) = 0
sele 3
use data3
define popup rob from 12, 5 to 19, 25 prompt field vkey
on selection popup rob deactivate popup
activate popup rob
goto bar()
replace datal->type with data3->vkey
endif
@ 7, 10 say "Function Type: " get datal->type
clear gets
"
sele 1
@ 9, 10 say "SEV: " get name2
do morepop
close all
deactivate window robl
set talk on
set stat on

return

235

Procedure morepop

*

* if the field <number> has been filled, then ignore the popup window.
*
select 2
use data2
* Define the popup window for input
*
define window robl from 11, 10 to 17, 40 double
store O to vtotal
do while .t.
brows lock 0 noappend noedit nuclear nodelete nomenu window robl

read

if readkey() = 12
deactivate window robl

return

endif -
do adding
enddo

return

236

procedure adding

*

* Sum up one or more record from one database on a single field
*

sele 4

use datad

define popup rob4 from 11, 60 to 17, 70 prompt field level

on selection popup rob4 do selecting

activate popup rob4

select 2

vtotal = vtotal + number

sele 1 && selecting where to put the calculated value
replace datal->name2 with vtotal

@ 9, 10 say "SEV: " get datal->name?2

sele 2 && return to source file

return

Procedure selecting

if bar() > 0O

237

goto bar()
replace datal->vlevel with level
@ 9, 40 say "Level : " get level
deactivate popup
sele 2

- endif

return

*- Name....: FRM_TYPE FMT

*-- Version.: dBASE IV, Format 1.0

*-- Notes...: Format files use "" as delimiters!

**

*-- Format file initialization code -----=--nscommeeeoccee

IF SET("TALK")="ON"

SET TALK OFF

Ic_talk="ON"
ELSE
lc_talk="OFF"

238

ENDIF

*-- This form was created in MONO mode

SET DISPLAY TO MONO

Ic_status=SET("STATUS")
*j.- SET STATUS was ON when you went into the Forms Designer.
IF lc_status = "OFF"

SET STATUS ON

ENDIF

#-- @ SAY GETS Processing. ----------mmmmmmmmmmm oo

*-- Format Page: 1

@ 3,0 SAY " Specification Element: "

@ 3,37 GET namel PICTURE
19:9,9.9.9.9.9.9.0.9.0,0.9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.¢

@ 5,0 SAY " Total Specification Element Value: "

@ 5,49 GET name2 PICTURE "999999"

239

@ 7.0 SAY " Function Type:
@ 7,34 GET type PICTURE TXXXXXXXXXXXX"
@ 9,0 SAY " Average Magnitude:

@ 9,34 GET vlevel PICTURE "XXXXX"

*-- Format file exit code --~------ooeeeeoeee

*-- SET STATUS was ON when you went into the Forms Designer.
IF lc_status = "OFF" && Entered form with status off
SET STATUS OFF && Turn STATUS "OFF" on the way out

ENDIF

IF Ic_talk="ON"
SET TALK ON
ENDIF
RELEASE lc_talk,lc_fields,lc_status

*-- EOP: FRM_TYPE.FMT

240

Appendix E

Functions Involved With Calibration

LEGASY:

Calibration of functions is described in the next appendix. Some sample screens

associated with the process are illustrated here. Due to proprietary restrictions

only a selected few are described in detail here.

Litigation

File Name OpenDate Type Litg THC OC Dept Prov Resl
oteTetelateistoiatotatotolsietoisatoioislatsisiatoiaiotolatsiatatois et dcioWdcio Wi s oisiciofioloioio il o it ol oloto R o1oto - B ootoi B olot el

Service Date m/m/mm
Province muom SO e o Ry
City roso e
Judicial District I

Court oo e e

Amount at Issue $ oo, oom, oom,

Amount Claimed $ oo, oox, mom,
Punitive Damages $ mx, mmn, oom,
General Damages $ mm,mmm, oom,

TOTAL Claimed S$mox,nmm,mam,

joje

jofe

ag

jois!

jolel

Comment O o o o 3 o 3o e o o 1 e e e e 3 e S o o I R o I e T T O R Y e
jojeiojoteiofototniofeioieiotoloio]ototateiajoioiaotoleiaioloioioioloioioiolnisioieioisisiotoioloioiotaioiaiojatoiointelofaiolefoteiotofolefol
jejeiotefojoiotojoletotoletotaiotolefojeiotaieinioiofoisfoiofaisioiooleloisioiniolaloisisinisioleisiolaiefoiojaieinioteleioioiofotoiolofo]e]al

la. litigation.scr

- This screen is used to add/modify/query Litigation information related to a

specific case.

Possible Queries:

~ display litigation mformatlon for cases in ‘B.C.’ and

Amount at Issues > $250,000.

—scrollthruzghallcasesmerecmrtis ’‘Queens Bench’

241

File Information ID # ooppon

File Name mmmtmrimi oo o e o o O o O O T S K Opened Date no/onm/on
File Type Litigation Type Amt at Issue Status
sisisisfiielalsisiaiototoiaiaiciateloistalatoislo il sioioiofiolalotoiatolotoistalotetolsialatotoicl S HN I o o B o ot o i ol o B0 ot o1 o

Major Issues mEHEINNEONONEEOIINERORR siatalsieiaisialsisiatotaioloiatalstoisiatalalsts]

Case Status mx/oo/mi o o R e B R e S e S A R R R
Next Step mu/mom/on S oo o o e A K o ey e o N Y S T

In-house (y/n) n Province ooy rooaoronno n i mr

THC oo popnooooopooooopmommesess OC Firm oooon oouoonen s e o e e e o o o n s
oo pommmooooamranemmannmy. OC Name oomg o e e e e e e e e M e e
Time oo, oon . o Current Year m,mmn, oon, oo Case Total n, mom, monm, nm
Phone # Line Department
@eip\-Toislleisieiofilieloiotsioiototoloioiolotetolofoloteisloisiofetoisiatoioieiofiloislotoisivtoto fll olototoio M olo] o]0l ol ol ool siototolol ot ol nTalote

Case Resolution pmon moommmmmmmmomonooaan Closed Date no/wm/nn

0ld File Type nmmmx mommompmmomoonmomm Change Date mm/mo/mn NotePad? =«
1. file.scr

- this screen should be used to open a new File, display or make changes to
an exiting file
- the ID # will be assigned by the system at the time the file is opened
- = a check list may be displayed reminding the operator of other task which
~+ should be performed when a file is opened
- the following fields may be "looked up" in a list of available values:
- File Type
- Litigation Type
- Status
- Province
- IHC
- OC Fim
- OC Name
- Contact Person
- Line Department
- Case Resolution Code
- Litigation Type should only be entered when the File Type is ‘Litigation’
- the operator may query on all fields that may be entered
- the operator may "count query hits" and "scroll through" query results

242

File Name

Employer ounmmunon e e N

Facts

OpenDate Type Litg THC OC Dept Prov Resl

jatotoisioioiofofetajaiotoieiaioteiotieiofoisfoisfeieioioioietofoiatote; EE/DH/ED O ooon ooon oo oo hoon ooog oogn

Employment Cammenced om/om/om
Terminated on/mm/on
ILast Date Worked mm/om/mn

Returned to Work

(y/n) 8 on/oo/on

Job Description (y/n) o

Elimination Period from on/on/onm
to on/nn/un
(y/n) ® from on/oo/oo
to om/on/on

Benefits

Periodic AMT $nmm,nun.nn / woooooooon

Cause of Disability i isiaistoialatataiaiaioiaieloialotoioioisiofoiotoioioloteiotsiateiotstorelotote o e ool c
Disability / Diagncsis R O o K S Y T e e e R O S S T T A A Y B O

WCB (y/n) © Comment HoOmmmmommoaeo e N M N NN A Ay
SISt Istcisiotoiatatelaiateiotoioiataisiainioiolataieisieioisistototototelstelote)
Slsisisiotaialatelatntotaisisialelaioiotalsiotelolaloisioialoteietotstotsletotole

CPP (y/n) =
UIC (y/n) =

1b. facts.scr

- This screen is used to add/modify/query Facts related to a specific case.
Plaintiff and Policy Information

File Name

intotatoteiaioleisietofutoisistoioiotoiotofotoiatoisisiolotoiotootere]

Plaintiff Name mmom
Date of Birth
Education

Ocupation

Policy # nomoooooom
Policy Type mmy mommmrrowsrmomm

Policy Effective Date mm/mm/mn

OpenDate

Type Litg IHC OC Dept Prov Resl

HO/oKn/on O Aood oood ood ood OooN ooon oooo

'nnnunanunuunnnunnnnnnunnnnnnun

o/ on/on

Age o Sex n

ISteinieleteisieinaisteioiotoiolotatootolstolotoiotelototole]

sieleleloteloietoielaisioioistototsioiofoiatotofatoloteroto]

Policyholder o O e e Y Y S e S N I S S

Agent nnnnnunnnnnnnnnnunnnunnnnnunnn

lc. policy.scr

- This screen is used to add/modify/query Policy and Plaintiff information

related to a specific case.

243

Office

Code ooomm Name HIIHHHIIHHEUUHHHHHHHEHHDDDUEHHHEHHDIIHHHDUUUUHIJHHUHEH

Address B e e T S O Y S S O
e P e Y Y S R T S T

City momemmmmmnmmmng
Province nonn Postal Code mon mom

Phone # ommmmmrmnromng

Fax # oomcocmorsmnoom

13. office.lup

= The purpese of this screen is to add/modify/query on information for a
specific office, such as Outside Counsel Office.

= The information on this screen should exist prior to setting up any Parties
fraom an associated office.

Possible Queries:
= list all offices in ‘Alberta’

244

Appendix F

Identification of Form SEs

FORMS
Name CASL CITL CouL DivL FTYL ISSL uTL OFFL PARL PCYL
Simple SE 2 1 2 2 2 1 2 2 4 2
Basic SE o] 0 o] (o] 0 [) o] 0 0
Detarled SE 1 1 1 1 t 1 1 1 1 1
User Exit 0 0 o] s} 0 0 0 o] 0 0
Name PROL PYTL PYML TASL FISA 1S8Q FHD SLI;Q FEEA LFFQ
Simple SE 2 2 3 2 5 1 13 7 7 13 17
Basic SE 0 0 o] o} 0 0 4 2 9 6
Detaited SE 1 1 1 1 1 2 2 o} 3 1
User Exit . 0 0 o] o] 1 2 0 [¢] 0 2
Name) FPAA PARQ SLTA FTTQ SLTQ PARA FTYQ OCH Total Avg
SEVs
Sinple SE 5 18 9 7 13 25 8 9 185 0.13
Basic SE 0 1 5 1 2 4 0 0 36 0.29
Detailed SE [+] [2 0 1 5 0 1 32 1.59
User Exit 2 2 0 0 2 o} 0 0 11 22.73

245

Appendix G

[dentification of Report SEs

REPORTS
Name QA QLB LFR CLCL NCLD CHIH Jo PL
Screen Field SE 0 ¢} 0 0 0 0 1 8
Basic SE Y] 0 0 4 0 Y] 1 1
Detalled SE 1 1 4 0 7 7 0 0
Name NCBP NNCEM NGDCBY OCCAFS CCFY NNCQ oL LoL
Screen Field SE 0 0 0 0 [0 10 120
S
Basic SE o] 0 0 [¢] [¢] o] 1 1
Detailed SE 7 20 6 2 1 6 0 0
Name co LA1 LR2 TL RC 1S8. LT X7
Screen Field SE 0 15 12 3 2 1 2 16
Basic SE o] 1 1 1 1 1 1 [¢]
Detailed SE 6 0 0] o] Q] i
Totai SF = 75 Tolal Basic = 14 Total Detall = 69;
AVG SEV = 0.13 AVG SEV =0.84 AVG SEV =255

246

Appendix H

V.R.S. Case Study Detailed Specifications

ID 100 NAME ZAPPA

CREDIT_RATING GOOD

ADDRESS 101 APPLE AVE, TORONTO

—
h S===z=z=x= ENTER-DATA SSzz===x==
VIDEQ_ID SQ00 MOVIE_NAME INDIANA JONES
TYPE ADVENTURE ‘ RENTAL 4.00
EEZT=S=c CUSTDMER_DATA TE=zZs===x=
, - ID 100 DATE 28-0CT-31

. . NAME ZAPPA
. ADDRESS 101 APPLE AVE, TORONTO

======c== TRANSACTIDN_INFD ===z ===

iD VIDEQ_ID MOVIE NAME RATING PRICE

100 4000 DOCTOR COMEDY J.5

100 3333 ROEBIN HOOD ADVENTURE 4.5
HELP : F1 HELP F7 QUERY F8 EXECUTE QUERY

F10 SAVE DATA

247

DEFINE ELOCK Seq # 1 *
Name ENTER_DATA
Description: ! ==s======%
ENTER_DATA SPECIFY BLOCK OPTIONS
Table Name: #*Check far unique Key NAME
CUSTOMER #*Display in block menu
Actions:
TRIGGER Number of Rows displayed 1
COMMENT Number of Rows buffered
Number of Lines per row
Form: CUSTOMER Elock: ENTER_DATA Page: 1 SELECT: B Char Mode: Replace
DEFINE FIELD Seq # 3
Name CREDIT_RATING
Data Type: DATA zT==s=z====
*CHAR NUMBER SPECIFY ATTRIBUTES
ALPHA INT #*Database Field NAME
TIME MONEY Primary Key
Actions:
TRIGGER ATTR| *#Displayed
COMMENT COLU| #*Input allowed
*Query allowed
*Update allowed
Update if NULL
Fixed Length
¥Mandatory
*#Uppercase
Autoskip
Automatic help
No echo
Form: CUSTOMER Elock: ENTER_DATA Page: 1 SELECT: 1 Char Mode: Replace

248

DEFINE FIELD Seq # 1

Name ID

Help:
Enter value for : ID

Data Type: DATA ==z=z=z==z=
CHAR *NUMEBER SPECIFY ATTRIBUTES —
ALPHA INT *Database Field NAME
TIME MONEY *Primary kKey

Actions:

TRIGGER ATTR| *#Displayed
COMMENT COLU| *Input allowed
*Query allowed
*Update allaowed
Update if NULL
*Fixed Length
*Mandatory
Uppercase
*Autaskip
Automatic help
Nz echo
Form: CUSTCMER Elzck: ENTER_DATA Page: SELECT: 1 Char Mode: Replace
DEFINE FIELD Seq # 1
Name ID
SX=Zga.. -
SPECIFY VALIDATION
Field Length = Query Length 3 NAME
Copy Field Value from:
EBlock
Field
Default
| Range Low
High
List of Values:
Table
— Column

Forme: CUSTOMER Elock: ENTER_DATA

Page:

249

SELECT: 1 Char Mode: Replace

CUSTOMER_DATA

DEFINE FIELD
Name VIDEO_ID

Seq # 2

CHOOSE TRIGGER

Name TIDN_INFO Zz===zz==c
POST -CHANGE
Seq # 1 TRIGGER STEP Label _ -

SELECT MOVIE_NAME, TYPE, RENTAL

INTO :TRANSACTIDN_INFD.MOVIE_NAME;TRANSACTIDN_INFD.RATING,

TRANSACTION_INFQ. PRICE
FROM VIDEO

WHERE VIDEO.VIDEO_ID =: TRANSACTION_INFO.VIDEO_ID

Message if trigger step fails:
Video infaormation not found.
Actions:

CREATE cary DROP ATTRIBUTES COMMENT
FORWARD BACKWARD PREV STEP NEXT STEP
Fzorm: TRANSZ Block: TRANSACTIO Page: 1! SELECT: 1 Char Mode: Replace
E T==zz=== CUSTDMER_DATA ==z===z=c==c
DEFINE FIELD Seq # 2 DATE
Name VIDEO_ID
Data Type:
CHAR *NUMBER SPECIFY ATTRIBUTES |- -
ALPHA INT #Database Field YON_INFD ========
TIME MONEY Primary Key
Actions: RATING PRICE
TRIGGER ATTR| %#Displayed
COMMENT COLUY *Inmput allowed
*Query allowed
#*Update allowed
Update if NULL
Fixed Length
#Mandatory
oo —— Uppercase
HELP : F Autoskip Y F8 EXECUTE QUERY
F Automatic help
—_— Nz echo
Forms TRANS2 Elock: TRANSACTIQ Page: 1 SELECT: { Char Made: Replace

250

CUSTOMER_DATA

DEFINE FIELD Seq # 1 DATE
Name ID .
Data Type: y
CHAR #NUMEER SPECIFY ATTRIBUTES e
ALPHA INT *Database Field ION_INFQ =====z===
TIME MONEY Primary Key
Actians: RATING PRICE
TRIGGER ATTR #Displayed
COMMENT CoLu Input allowed
Query allowed
Update allowed
Update if NULL
Fixed Length
*Mandataory
Uppercase
HELP F Autaskip Y F8 EXECUTE QUERY
F Automatic help
Nz echa 4————-—-—J
Form: TRANSZ Block: TRANSACTIO Page: 1 SELECT: 1 Char Mode:
TEZ=zazz CUSTOMER_DATA T=Tz=====
DEFINE FIELD Seq # 1 DATE
Name ID
SPECIFY VALIDATION
Field Length 2 Query Length 3 FO ======z==
Copy Field Value from:
Block CUSTOMER_DATA RATING PRICE

Field 1ID
Default
Range Low
High
List of Valuyes:

Table CUSTOMER

Column ID
Help:
Enter value faor . ID F8 EXECUTE QUERY
Form: TRANSZ Blocks TRANSACTIO Page: 1 SELECT: 1t Char Maode:

251

Replace

Replace

DEFINE FIELD Seq # 3 DATE
Name NAME
Data Type:
*CHAR NUMERER SPECIFY ATTRIBUTES
ALPHA INT *Database Field ION_INFQ ===z==z===
TIME MONEY Primary Key
Acticns: RATING PRICE
TRIGGER ATTR]| #Displayed
COMMENT coLu Input allowed
Query allowed
Update allaowed
Update if NULL
Fixed Lenath
Mandatary
Uppercase .
HELP F Autoskip Y F8 EXECUTE QUERY
F Automatic help
e N2 echa
Form: TRANSZ Block: CUSTOMER_D Page: | SELECT: | Char Mzode:
—S==S====z= CUSTDMER_DATA S====z===
DEFINE FIELD Seq # 2 DATE
Name ADDRESS
Data Type: .
*CHAR NUMEER SPECIFY ATTRIBUTES }
ALPHA INT *Database Field TION_INFO ========
TIME MONEY Primary Key)
Actiong: RATING PRICE
TRIGGER ATTR| *Displayed
COMMENT Cotu Input allowed
Query allowed
Update allowed
Update if NULL
Fived Length
Mandatory
Uppercase
HELP : F Autoskip Y F8 EXECUTE QRUERY
F Automatic help
- — No echo
Form: TRANS2 Blocks CUSTOMER_D Page: 1 SELECT: 1 Char Mode:

252

Replace

Replace

zszz=z=z= ENTER_DATA ==z=z==z==x
DEFINE FIELD Seq # 2 MOVIE_NAME
Name MOVIE_NAME
Data Type: — RENTAL
*CHAR NUMERER SPECIFY ATTRIBUTES
ALPHA INT *Database Field
TIME MONEY Primary Key
Actions: SO
TRIGGER ATTR{ *Displayed
COMMENT COLU| *Input allowed
*Query allowed
*Update allnwed
Update if NULL
Fixed Length
*Mandatory
Uppercase
Autoskip
Automatic help
No echo
Farm: VIDEQ Block: ENTER_DATA Page: 1 SELECT: 1 Char Mode: Replace
R ENTER—DATA T o ma e
DEFINE FIELD Seq # 4 MOV vE_NAME
Name RENTAL
Data Type: RENTAL
CHAR *NUMEER SPECIFY ATTRIBUTES
ALPHA INT *¥Database Field
TIME MONEY Primary Key .
Actions: e
TRIGGER ATTR| *Displayed -
COMMENT COLY| #*Input allaowed
*Query allowed
*Update allowed
Update if NULL
Fixed Length
*Mandatory
Uppercase
Autoskip
Automatic help
Na echo
Forme: VIDEOD Elock: ENTER_DATA Page: 1 SELECT: | Char Mode: Replace

253

=Z===z=== ENTER~DATA =T =z====
DEFINE BLOCK Seq # 1 MOVIE NAME
Name ENTER_DATA -
Descripticn: RENTAL
ENTER_DATA SPECIFY EBLOCK OPTIONS
Table Name: #Check for unique Key
VIDEO #*Display in block menu
Actions:
TRIGGER Number of Rows displayed 1
COMMENT Number of Rows buffered
Number of Lines per row
Farm: VIDEOD Elock: ENTER_DATA Page: 1 SELECT: B Char Mode: Replace
S==-===== ENTER—DATA ERE S 5T X
DEFINE FIELD Seq # 1 MOVIE _NAME
Name VIDEQ_ID
Data Type: RENTAL
CHAR *NUMBER SPECIFY ATTRIBUTES
ALPHA INT *Database Field
TIME MONEY ¥Primary Key
Actiuns:
TRIGGER ATTR| #Displayed
COMMENT COLU| #Ipput allowed
*Query allowed
¥Update allowed
Update if NULL
*Fixed Length
*Mandataory
Uppercase
*Autoskip
Automatic help
No echo
Fzrm: VIDEO Elock: ENTER_DATA Page: 1 SELECT: { Char Mode: Replace

254

=z==s====x CUSTOMER_DATA S=zz=====
DEFINE FIELD Seq # ¢ DATE
Name DATE
Data Type:
CHAR NUMEBER SPECIFY ATTRIBUTES
ALPHA INT Database Field ION_INFQ ========z
TIME MONEY Primary Key
Actions: RATING PRICE
TRIGGER ATTR| *#Displayed
COMMENT coLu Input allowed
Query allcowed
Update allowed
Update if NULL
Fixed Length
Mandataory
Uppercase
HELP : F Autoskip Y F8 EXECUTE QUERY
F Automatic help
Nz echo
Form: TRANSZ2 Elzck: CUSTOMER_D Page: 1 SELECT: 1 Char Mcde: Replace
ll sz == CUSTDMER—DATA ST==c=z===
DEFINE FIELD Seq # 4 DATE
Name DATE
SPECIFY VALIDATION
Field Length 9 Query Length 9 FQ ========
Copy Field Value from.
Blaock RATING PRICE
Field
Default $$DATE$$
'—! Range Laow
'High
List of Values:
Table
Calumn
Help:
F8 EXECUTE QUERY
Faorm: TRANSZ Block: CUSTOMER_D Page: 1 SELECT: 1 Char Mode: Replace

255

DEFINE FIELD Seq # =
Name NAME

Data Type: _DATA ==z===z===
*CHAR NUMERER SPECIFY ATTRIBUTES ! —
ALPHA INT *Database Fi-ld NAME
TIME MONEY Primary Key
Actions:
TRIGGER ATTR| #Displayed
COMMENT COLU| #Input allowed
*Query allowed
*Update allcowed
Update if NULL
Fixed Length
*Mandataory
Uppercase
Autoskip
Automatic help
Ne echo
Form: CUSTOMER Bloek: ENTER_DATA Page: SELECT: 1 Char Mode: Replace
DEFINE FIELD Seq # 2
Name NAME
SPECIFY VALIDATION
Field Length 15 Query Length 1S NAME
Copy Field Value from:
Black
Field
Default
—| Range Low
High
List of Values:
Table
L Czxlumn
Help:
Enter value for : NAME
Fxrm: CUSTOMER Block: ENTER_DATA Page: 1 SELECT: ! Char Mode: Replace

256

DEFINE FIELD Seq # 4
Name ADDRESS
Data Type: — DATA ===z==z==
*CHAR NUMERER SPECIFY ATTRIBUTES]
ALPHA INT *Database Field NAME
TIME MONEY Primary Key
Actions:
TRIGGER ATTR| #Displayed
COMMENT coLy *Input allowed
*Query allowed
*Update allowed
Update if NULL
Fixed Length)
*Mandatory z
Uppercase
Autoskip
Automatic help
Na echo
Fiarm: CUSTOMER Black: ENTER_DATA Page: SELECT: 1 Char Mode: Replace
[1
' s======= CUSTOMER_DATA S====z===x
DEFINE BLOCEK Seqg # 2 DATE
Name TRANSACTION_INFO
SPECIFY DEFAULT ORDERING-
WHERE / ORDER BY clause for QUERY:
WHERE :CUSTOMER_DATA.ID =:TRANSACTION_INFO.ID
Actions: FORWARD BACKWARD DELETE
HELP : F1 HELP F7 QUERY F8 EXECUTE QUERY
F10 SAVE DATA
Form: TRANSZ Block: TRANSACTIO Page: 1 SELECT: B Char Mode: Replace

257

,GQL> GET CRCUSTOM

é 1D NUMBER(3)
3 NAME CHARC(15)
4 CREDIT_RATING CHARC(3)
Sx ADDRESS CHARCZO)
sSQL> RUN
©{ CREATE TAELE CUSTOMER ¢
2 ID NUMERER (3}
2 NAME CHAR(C1S)
4 CREDIT_RATING CHARC(I)
<% ADDRESS CHAR(ZO?
Table created.
sQL: GET CRVIDEO;
1 CREATE TAERLE WIDEO
z VIDEQ _1ID NUMEER ()
2 MOYIE _NAME CHARC1S)
4 TYPE CHaAR 2
S % RENTAL NUMBER (4, 2
eQL > RUN
{ CREATE TABLE VIDED
z VIDED_ID NUMBER (42
e MOVIE _MAME CHARC =3
4 TYPE CHAR 2
0¥ RENTAL NUMBER (4, 2
Tabhle created.
tQL» GET CRTRANE;
1 CREATE TABLE TRANS
2 ID NUMEER (32
2 VIDEQO_ID NUMEBER (42
4% DATE_RENTED DATE
SAL » RUN
1 CREATE TAELE TRANS
z ID NUMBER (22
2 VIDEO_ID MUMBER (4
3% ' DATE_RENTED CATE

Table created.

CREATE TABLE CUSTOMER

¢

258

NOT
NOT
NOT
NOT

NOT
NOT
NOT
NOT

NOT
NOT
MOT
NOT

NOT
NOT
NOT
NOT

NOT
MOT
NOT

NOT
NOT
NOT

NULL,
NULL,
NULL,
NULL)

NULL,
NULL,
NULL,
NULL)

NULL,
NLLL,
NLILL,
NILL)

MULL,
NULL,
NULL,
MUL LD

NULL,
NULL,
NULL 3

NULL,
NULL,
NULL

Appendix I

PFES Execution Trace
env_value
! Testing ENV_16
! ! env_rating
!t ! Testing ENV_1
! 1 1 | ENVIRONMENT
!' 1 1 1 1 (=PF_not_applicable CNF 100)
! ! ! Testing ENV_2
!ttt ENVIRONMENT
' I ! Testing ENV_3
! 1 | ENVIRONMENT
! 1 Testing ENV_4
! 1 I ENVIRONMENT
! ! Testing ENV_S
! ! | ENVIRONMENT
! ! Testing ENV_6
! 1 ! ENVIRONMENT
! 1 Testing ENV_7
! t | ENVIRONMENT
! ! Testing ENV_8
! ! ! ENVIRONMENT
! 1 Testing ENV_9
! 1 | ENVIRONMENT
! ! Testing ENV_10
! ' ! ENVIRONMENT
! 1 Testing ENV_11
! 1t ENVIRONMENT
! 1 Testing ENV_12
! 1 | ENVIRONMENT
I 1 Testing ENV_13
! I 1 ENVIRONMENT
! | Testing ENV_14
! ' ' ENVIRONMENT
! ! Testing ENV_15
! 1 | ENVIRONMENT
! ! (= average CNF 100)
Testing ENV_17
Testing ENV_18
(= 1.00 CNF 100)
nv_value2
Testing ENV2_15
! Environment2
! ! (= PF_Not_Applicable CNF 100)
(= 1.00 CNF 100)

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
e
!
!
!
!

259

RELY

! Testing CO

! ' RELIABILITY_RATING

't ! (=very_low CNF 100)

! (=072 CNF 100)

D_COMM

! Testing COMM_0

! ' DATA_COMMUNICATION

' 11 (= very_low CNF 100)

! (=0.72 CNF 100)

CHANGE

! Testing F_C_0

! | FACILITATE

' I ! (= very_low CNF 100)

! (=0.72 CNF 100)
INTERFACE_COMPLX

! Testing I_CMPLX_0

! ! INTERFACE_COMPLEXITY

! 1 ! (=very_low CNF 100)

! (=0.72CNF 100)

OPER_EASE

! Testing O_EASE_0

! ! OPERATIONAL_EASE

! ! (=very_low CNF 100)

! (=0.72 CNF 100)

METHOD_VALUE

! Testing MTHD_3A

! | TECHNIQUE

! 1 ! (= PF_has_no_influence CNF 100)
! (=1.0CNF 100)
GT_TOOL_EXP_VALUE

! Testing 8

! ! GT_TOOL EXP_IMPACT

! ! GT_TOOL_EXP_RATING

! ' ! (= VERY_HIGH CNF 100)

! Testing 9

!' ' GT_TOOL_EXP_IMPACT
! ' GT_TOOL_EXP_RATING
! Testing 10

! ' GT_TOOL_EXP_IMPACT
! 1 GT_TOOL_EXP_RATING
! Testing 11

! | GT_TOOL_EXP_IMPACT
! ' GT_TOOL_EXP_RATING
! Testing 12

! ' GT_TOOL_EXP_IMPACT

260

! GT_TOOL_EXP_RATING

(= 0.72 CNF 100)
OVELTY_VALUE
Testing 13

! NOVELTY_IMPACT
! NOVELTY_RATING
! ! (= VERY_HIGH CNF 100)

Testing 14

! NOVELTY_RATING

Testing 15

! NOVELTY_IMPACT
! NOVELTY_RATING

Testing 16

! NOVELTY_IMPACT
! NOVELTY_RATING

Testing 17

! NOVELTY_IMPACT
! NOVELTY_RATING

(= 0.72 CNF 100)
TECHNIQUE_EFFECT
Testing MTHD_0
! TECHNIQUE
Testing MTHD_1
! TECHNIQUE
Testing MTHD_2
! TECHNIQUE

Testing MTHD_4
! PRACTICE

!

!
N
!
!
!

!
!
! 1 NOVELTY_IMPACT
!

!

!

!

!

]

!

!

!

!

!

! ! (= PF_has_no_influence CNF 100)

Testing MTHD_S
! PRACTICE
Testing MTHD_6
! PRACTICE
IMPACT
! Testing MTHD_8
! Testing MTHD_9
! Testing MTHD_10
PERSONNEL_PF
! Testing 1
DEVELOPER

!
!
!
!
!
!
PRACTICE_EFFECT
!
!
!
!
!
!
!

U

! 1 ! (=DP_STAFF CNF 100)
! | OVERALL_EXPVALUE
P!
U

! Testing 3

! t OV_EXP_IMPACT

261

! ! OVERALL_EXPRATING

' 1| (= VERY_HIGH CNF 100)

!' Testing 4

! | OV_EXP_IMPACT

!' | OVERALL_EXPRATING

! Testing 5

' ' OV_EXP_IMPACT

!' ' OVERALL_EXPRATING

! Testing 6

' | OV_EXP_IMPACT

! | OVERALL_EXPRATING

! Testing 7

' | OV_EXP_IMPACT

!' ' OVERALL_EXPRATING

! (=0.58 CNF 100)

(= (OVERALL_EXPVALUE*GT_TOOL_EXP_VALUE*NOVELTY_VALUE) CNF 100)
(= (RELY*D_COMM*CHANGE*INTERFACE_COMPLX*OPER_EASE) CNF 100)
(= (ENV_VALUE*ENV_VALUE2) CNF 100)

(= (PERSONNEL_PF*ME'IHOD_VALUE*AF*EV) CNF 100)

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

262

