
MODELLING OF SOFTWARE DEVELOPMENT EFFORT FOR THE

FOURTH GENERATION ENVIRONMENT

by

VIJAY K. KANABAR

A Thesis
Presented to the University of Manitoba
in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

lnterdisciplinary
Deparnnent of Actuarial and Management Sciences

and Department of Computer Science

IJniversity of Manitoba
Winnipeg, Manitoba

@ Mav 1992

H úr EË Natronal LrDraryE -r Efl of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontarìo
K1A ON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliograPhiques

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Your lile Volrc Élércnce

Qv l¡le Note èlërcoce

The author has granted an
i rrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclus¡ve
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
person nes i ntéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBbt Ø-3L5-7792J-Y.

CanaCä

MODELLTNG Oi' SOFTI^IARE DEVELOPMENT EFFORT FOR THE

FOURTH GENERATION ENVIRONMENT

BY

' VIJAY K. KANABAR

A Thesis submitted to the Faculty of G¡aduate Studies of the Universify of Manitoba in
partiai fulfiilment of the requírements for the degree of

DOCTOR OF PHILOSOPHY

@ 1992

Ps:rrission has been granted to the LTBRARY OF THE IJNnTERSITY OF IvÍA¡\TTOBA io
lend or sell copies of this thesis, to the NATIONAL LIBR.ARY OF C.ANADA to mic¡ofilm
this thesis and to lend or sell copies of the film, and IINTIB.SITY MICROFITMS to

publish an abstact of this thesis.

T1te author leserves other pubtication rights, and neithe¡ the thesis no¡ extensive extacts
Êom it may be printed or otherwise reproduced withoui the authoy's perzrission

ABSTR.ACT

This thesis deals with the topic of estimating software development effort when

fourth generation tool.s (GTs) such as form and report generators are used.

Traditional predictors or cost models are inadequate for measuring and estimating

development effort involving 4GTs. Such traditional predictors or models are more

oriented towards measuring "manual coding" than towards "specification-oriented

coding". An innovative predictor called speciftccttion element (SE), embedded in

a 4GT Model, is introduced here to measure application development effort using

4GTs. SEs are associated with data and screen field elements for purposes of effort

estimation. Knowledge-based techniques are used to refine effortestimates provided

by the 4GT Model for the influence of project fctctors such as "developer

experience" and "familiarity with tools".

ii

To my mother Chandrika Kanabar and

my føther Kalyandas Kanabar

111

.dcknowledgements

Completing a Ph.D. degree is a lengthy and demanding plocess. Several

people were directly involved and all contributed a major chunk of their valuable

time. To begin with, I would like to acknowledge the contribution of Dr. Eric Seah

who functioned as my advisor. He provided the necessary intellectual freedom all

along and was readily available even on weekends for consultation and for reading

and commenting on my thesis chapters. He readily provided me financial support

(often without asking!) from his NSERC and related grants to attend conferences

and present papers. Dr David Scuse very effectively contributed throughout my

graduate programme. His insights into my research proved to be very valuable; he

provided "expert" advise with regards to thesis directions and rules & regulations

as well. Dr Edwin Cheng, a recent addition to the committee, proved to be very

helpful - he had to quickly master a lot of my resealch and edit the thesis.

Dr Tarek Abdel-Hamid's involvement and thesis evaluation significantly improved

the quality of the final product. Dr Ken Hughes, Dean of Graduate Studies, did a

greatjob as well; he wanted me to complete a truly first-class and useful Ph.D.

programme. Rita Campbell put her heart and soul in type-setting this thesis, many

thanks for a job well done. I would also like to thank the various members at

Great-West Life, Investors Syndicate, and the U of W for providing useful

data./comments.

Finally, I would like to acknowledge the contribution of my wife Dina

Kanabar, more than me, she has earned the Ph.D.- if not the Ph.T. (Pushing

Hubby Through). Without much of a choice she spent several lonely days and

nights raising our young ones Meera and Anish.

1V

Table of Contents

ABSTRACT

Acknowledgements tv

List of Figures x

List of Tables xr

Chapter L Introduction
L.L Statement of the Problem

1.2 Issues and Objectives

1.3 Thesis Overview

1.3.1 Modelling 4GT-Based Applications

1.3.2 Conclusions .

2 R.eview

Introduction

Fourth Generation Languages, Tools, and Techniques

2.2.1 Project Management . .

2.2.2 Software Metrics

2.2.3 Gathering Project Metrics

2.2.4 SoftwareDevelopmentProcess

2.2.5 Fourth Generation Languages .

Chapter
2.1

,,,2.-

8

8

9

9

10

t2

13

t4

2.3 Software Models for Estimation and Management

2.3.r COCOMO

2.3.2 Function Point Analysis

2.3.3 System Dynamics Model

4Gl--based Cost Estimation Research

18

I9

20

¿J

24

26

26

2.4

2.5 Knowledge-Based Systems

2.5.I Knowledge-BasedSystemsTechnology

2.5.2 Knowledge-Based Systems Resealch in Literature 28

2.5.3 PAINTER: An Experr System for Cosr Estimating 28

2.5.4 EDP-Estimator . 29

2.5.5 Other Knowledge-Based Esrimaring Straregies 30

2.5.6 Knowledge-based Systems for the Fourth

Generation Problem 31

Chapter 3 The 4GT Estimation Modetr

3.2

3.3

32

3.1 Introduction 32

3.1.1 Model Historv

3.1".2 The Initiaf Stage 34

3.1.3 Experimenting with the Model 35

MeasuringApplicationEffort... 39

Systems Development Methodology 39

3.3.I The Traditional Approach 40

3.3.2 Prototyping Approach 44

3.3.2.1 Non-Evolutionary Prototypes 44

3.3.2.2 Evolutionary Prototyping 46

3.3.3 Conclusion 41

Representing System Size - Theoretical Issues . . 50

3.4.1 Input, Output, and Process Tasks 52

3.4.2 Form, Report, Data, and Process Functions 53

3.4

VI

3.5

3.4.3 Conclusion

Predictors

3.5.1 Prevailins Predictors

3.5.2 Attributes of a New 4GT Predictor

3.5.3 Categorizing SEs

3.5.3.1 Form SEs

3.5.3.2 Report Form SEs

3.5.3.3 Data Function Type SEs

3.5.3.4 Process SEs

3.5.4 Conclusion

A Model for Bffort Estimation

3.6.1 Overview of the Model

3.6.2 Deriving the Total Effort

Using the 4GT Model

Conclusion

51

58

58

61

63

64

69

70

1I

7l

72

14

78

83

85

3.7

3.8

Chapter 4 Evaluation of Project Factors

4.3

4.4

4.1

4.2

Introduction 86

Conventional Approach 87

4.2.I PF Correction in COCOMO 88

4.2.2 PF Conection in FPA . 89

4.2.3 Summary 90

4.2.4 General Strengths and Weaknesses of the

ConventionalApproach.. 91

Knowledge Based Approach 92

PFES: An Expert System for PF Correction 95

4.4.1 Development Methodology 96

4.4.2 Overview of the Prototype Development . . 97

4.4.3 Overview of the Development Process . . . 100

vii

4.4.4 Conceptual Model

4.4.5 Calculating the Effect of Each

4.4.6 Exceptions: Rating Values for

4.4.1 Validation of the PF Values

4.4.8 Design of the User Inrerface

4.4.9 Design of the Protorype

4.4.10 Validations, Analysis, and Test Results . .

Conventional PF Correction

Conclusion and Contributions

PF

101

r0l
109

ln
t12

tt4
tt4
119

r19

4.5

4.6

End-Users

Chapter 5 Model Experirnentation & Analysis

5.1 Introduction

5.2 Implementing 4GT Model

5.3 ModelCalibration .. .lZ4
5.3.1 Host Site and Participants IZ4

5.3.2 ORACLE Tools t25

5.3.3 The LEGASY Projecr . . . Izj
5.3.4 Procedure Used to Calibrate Weiehts . . . IZB

5.3.5 Calibration Details Pertaining to LEGASY 130

Determining the Expansion Factor 133

Validation of the Effort Equation l3l
A Case Study I3g

5.6.1 Method Used t40
5.6.2 Results . l4I
Using the Model in the Early Stages of Feasibility 146

5.7.I Testing the 4GT Ball-Park Estimating Equarion . . . 147

5.7.2 Ball-Park Estimating for LEGASY . . 148

Estimating Effort Under Different 4GT Paradigms I4g

r22

r22

123

5.4

5.6

5.7

5.8

vlll

5.9

5.10

Chapter
6.1

6.2

6.3

6.4

5.8.1 Estimating Evolutionary Prototyping Projects 150

5.8.2 Estimating Throw-Away Prototyping Projects 151

5.8.3 Estimating Non Prototyping Projects 152

EvaluatingModelPortability... 152

Conclusions . . 153

6 Conclusions and Future Directions rss

Introduction 155

Summary of the Results 155

Future Work 159

6.3.I Model Enhancement . . l5g

6.3.2 Model Intesration 162

Conclusion 163

References... L64

Bibliography 176

IX

F'igure L.L:

Figure 2.L:

Figure 2.2:

Figure 3.L:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6

Figure 3.7:

Figure 3.8:

Figure 4.1:

Figure 4.2:

LÍst of Figures

Changing Nature of Software

Fourth Generation Software Components

Verner-Tate Strategy for 4GL Effort Estimation 26

Different Paradigms for 4GT Development 40

Mapping Different 4GT Paths . . 48

Research Model for Measuring Information System Size

(Wrigley&Dexter).. 50

Specification Operation using ORACLE 64

Screen Created using Simple Specification Operations. . . 66

Screen Created using Detailed Specification Operation . . . 68

Conceptual View of Effort Distribution by 4GT Model . . 68

EstimatingTechniques-Putnam&Myers ..76
PFES: End-User Flow 110

Conceptual Model of the PFES 113

aJ

t6

Table 2.L:

Table 2.2:

Table 2.3:

Table 2.4:

Table 3.1:

Table 3.2:

Table 3.3:

Table 3.4:

Table 3.5:

Table 3.6:

Table 3.7:

Table 4.1:

Table 4.22

Table 4.3:

Table 5.1:

Table 5.2:

Table 5.3:

List of Tables

Prototyping Techniques 14

COCOMO Development Mode 19

Function Point Classification 2l

Subsystems of the Systerns Dynarnics Model 23

Resources Used to Develop the 4GT Model 38

Steps Involved in Traditional Life Cycle 4I

Steps Involved in Throwaway Prototyping . . 45

Steps Involved in Bvolutionary Prototyping 47

Concepts for Discerning Requirements 17

Template for Summarizing Data Related to Functions 84

Template for Related to Effort Estimation . . 84

COCOMO Cost Driver Attributes . . . 88

Factor Values of ratings influencing positively 108

Factor Values of Ratings Influencing Negatively 108

Calibrated Weights for the 4GT Model 132

Case Study Model Weights Before Correction L44

Case Study Model Weights After Correction I45

XI

List of .A,ppendices

Appendix A PFES Expert System

Appendix B User Interface: Questions asked by PFES

Appendix C PFES S.S. Model Version

Appendix D 4GT Model Program Code

Appendix E Functions Involved with Calibration

Appendix F ldentification of Form SEs

Appendix G Identification of Report SEs

Appendix H V.R.S. Case Study Detailed Specifrcations

Appendix I 4GT Model: Cell Values . .

184

225

229

230

241

245

246

247

259

x11

1-.L

Chapter tr

trntroduction

Statement of the Problem

This thesis presents a model for measuring and estimating effort of

software applications developed by end-users or programmers with tools broadly

referred to as Fourth Generation Languages (GLs).

The importance of estimating the size and time required for software

development cannot be over-emphasized. Consider the following quotation by

Bany Boehm in his foreword to Tom DeMarco's book:r

Better cost estimation methods help us to understand the relative costs and

benefits of a proposed future system well enough to be able to reduce its

scope or to eliminate portions whose benefits do not justify their estimated
costs.

Within the realm of 4GLs, small to medium business applications

developed using tools such as query facilitators, form generators, report generators,

application generators, graphics languages, and specification oriented application

packages, are the focus of this thesis. Such software tools facilitate application

creation without conventional programming as we know it, and are referred to as

fourth generation toots (4GTs) in this thesis. According to Pressman:6

The term fourth generation techniques (4GT) encompasses a broad array

of tools that have one thing in common: each enables the software

developer to specify some characteristic of software at a high level. The

tool then automatically generates source code based on the developer's

specification. There is little debate that the higher the level at which the

software can be specified to a machine, the faster a program can be built.
(p.24)

In this thesis we use the term "Fourth Generation Tools" (4GTs) as opposed to the

term "Fourth Generation Languages" (4GLs) as it is the tools, rather than

languages, that our resealch focuses on. Other researchers also commonly use the

term "Fourth Generation Tools" for the same reasons.nt

The importance of 4GTs is evident from the following surnmary by Roger

Pressman:6

To summarize, fourth generation techniques are likely to become an

increasingly important part of software development during the next

decade. As the figure (reproduced as Figure 1.I below) illustrates, the

demand for the software will continue to escalate throughout the remainder

of this century, but conventional methods and paradigms are likely to

contribute less and less to all software developed (p. 25).

For simplicity, the model at present does not consider larger applications

such as those exceeding thousand person-days within its scope. Such applications

usually require extensive 3GL procedural coding, and end-users will not be

typically involved with such projects.

Demand
lor

softwaro

1970

Figure 1.1: Changing Nature of Software - Pressman6

1.2 fssues and Objectives

This section describes the problems of estimating size and effort in the

fourth generation environment. The issues related to 4GTs are examined first,

followed by prototyping issues. There are several reasons for cost modelling 4GT-

based application development. To begin with, the problems in this domain are

unique:

" Due to the significant improvements that have taken place in software

and hardware technology, powerful fourth generation tools and

techniques for developing applications have emerged in the market

place. when cornpared with third generation languages these tools have

successfully resolved some of the problems of traditional software

developrnent problems, such as poor quality, high cost of development

and maintenance, and very slow development rate.

Several firms have indeed become productive today due to adoption of

this new software technology. James Mzu'tin, citing several cases,

indicates that these gains represent the largest step forward in

application creation since the invention of programming.t This may be

attributed to the fact that overall development and programming effort

is significantly reduced due to simplicity in computing.

As a solution to decreasing the huge application backlog, end-user

computing using 4GLs is being advocated by managers and M.I.S.

professionals. Microcomputer based dat¿base management systems have

made it feasible for end-users to create forms, reports, and even

complete applications easily.s'n However, there are many risks

associated with such a strategy, especially delayed schedules and

unanticipated costs.

Literature survey reveals that estimating systems development effort in

the fourth generation domain is difficult.tO Moreover, the existing

predictors and models are not suitable for estimating application

development effort using 4GTs - such models are more directed

towards estimating code-oriented programming languages rather than

specification-oriented applications.

The above facts indicate that suitable models for estimating 4GT-based

application should be researched. AIso, since 4GTs are closely associated with

different development paradigms, such as evolutionary protoryping or throw-away

prototyping, any such cost model must be flexible enough to accommodate the

impact of such techniques as well.

1.3 Thesis Overview

In Chapter 2, we review the literature and describe the major approaches

to project planning and cost estimation taken by researchers. It also introduces

topics such as application prototyping, software metrics, project management, and

knowledge-based systems. Chapter 3 introduces the 4GT Model for estimating

application development effort when 4GTs are used. Chapter 4 describes PFES, a

knowledge-based system for evaluating project factors. 4GT model experimentation,

analysis, and validation are presented in Chapter 5. Finally, Chapter 6 presents

conclusions and topics for further research. The basic 4GT Model is summaized

next.

1..3.1 Modelling 4GT-Based Applications

In the fourth generation environment, application development effort is

dependent on the total number and size of functions to be implemented. A function

can be classified into one of the following function types: form, report, process,

and data.

In order to estimate the effort involved in implementing each function we

use a new predictor called speciJtcation elemenr (SE). This term is a hybrid of the

two terms snecifrcation, and screen-, data-element and is therefore defined as, "a

specification task associated with implementing a data or screen field element". SEs

represent information system size and are coupled with screen fields or data

elements by design.

Each SE has an effort value in person-hours associated with it. This value

represents the work effort required to implement one SE and hence one screen

field. By considering all the screen fields and data elements of an application and

their relative specification etTort, we can obtain the total development effort.

Finally, as the 4GT Model only estimates average development effort,

project factors such as "familiarity with tools", and "programmer experience" are

evaluated separately, to produce a refined effort estimate.

L.3.2 Conclusions

The contributions of the thesis are in two areas:

n The first and most significant contribution of this thesis is the

development of the 4GT Model for estimating application development

effort when specification-oriented tools are used. At present no such

model exists. The model is capable of estimating in two modes - balt-

¡tark and bctse-line - the former provides rough estimates early on in

the development cycle, whereas the later provides more accurate

estimates but only after some design is complete. In this regard we also

classify different 4GT development paradigms and determine their

impact on the effort estimation model.

" The second contribution is the knowledge-based framework for

evaluating project faclors (PFs) The notable feature here is the ability

of the model to take into consideration application development by end-

users. The knowledge-based approach provides an opportunity to use

"what if" analysis to investigate the impact of various project

parameters.

Chapten'2

Review

2"1, Introduction

Software modelling for cost estimation and project management has been

a major research issue for both researchers and practitioners for many years. Cost

models have been successfully developed for the software industry, especially for

the third generation software development domain. Some of these models are able

to give a good cost estimate if calibrated properly to the users environment. As a

result project managers can use such models for planning and estimating software

development in addition to relying on their experience for making decisions.

Recently powerful fourth generation tools and techniques for developing

software have emerged in the market place. When compared with third generation

languages, they have successfully solved some of the problems of traditional

softwa¡e development, such as poor quality, high cost of development and

maintenance, and very slow development rate. This chapter reviews fourth

generation tools and techniques, and traces the progress of cunent state of a¡t in

cost modetling. It also describes the relationship of the proposed model to previous

research.

2"2 Fourth Generation Languages, Tools, and Techniques

Various concepts associated with modelling such as project management,

software metrics, software development process, application prototyping, fourth

generation technology, and knowledge-based approach, are introduced in this

section.

2.2.1 Project Management

Project Management in the context of software development is discussed

here. The fundamental concepts, however, are quite similar to those in other

industries such as construction or engineering. Managing a project typically

involves using a project management methodotogy. This generally consists of the

following phases: planning, scheduling, and controlling.

During the planning stage the project is broken down into smaller but more

manageable components called tasks or activities. Work effort is estimated for each

of these activities using past experience or historical data as a guide. A cost model,

as discussed in this thesis, can play a useful role here for providing effort estimates.

Once the work effort is estimated, a network can be created to show the sequence

of activities that make up the entire project. In the scheduling stage we map the

activities to a calendar, and determine start and finish dates for each task. Several

project management tools can be used at this stage. They range from powerful

mainframe based products such as IBM's Application System, to relatively smaller

project management tools based on microcomputers such as Microsoft Project.

Such tools contribute significantly to project scheduling by providing various

graphs, including those that identify the critical path (CPM/PERT). The final stage,

control, ensures that the entire project is completed on time and within budget.

Adequate control ensures that the end products are of good quality, within budget,

and on schedule.

2.2.2 Software Metrics

Software metrics are quantitative measures of various characteristics of

projects. They measure code and documentation, development process, development

activities, the problem domain, and environment characteristics like people, tools,

or techniques used.r2

Many firms today have adopted a software metrics approach, to assist them

with various aspects of software development. Such a strategy implies that

databases containing various development related metrics such as cost-oriented data

and size-oriented data are accumulated for all software development projects. While

the project is in progress, and especially on completion, various productivity and

quality metrics are generated from such a database. This information is used to

improve the quality of future projects and to evaluate the impact of new tools and

10

techniques. Grady and Caswell have described Hewlett-Packa¡d's metrics program

in detail in their recent book.r-'They indicate that HP had two objectives in mind

when they initiated their program - first, an improvement in productivity; and

second, an ability to measure tools (developed in-house or purchased) for

effectiveness. With regards to the first point, they felt that the very act of

measuring the software development process itself would lead to short-term

improvements in productivity. They quote Peters and Waterman's classic book /rt

Search of Excellence to illustrate their point'.

People ... like to perform against standards - if the standard is achievable,
and especially if it is one they played a role in setting.

Several hundred people were involved in HP's softwa¡e metrics progr¿ìm.

And after three years of commitment they were able to achieve several advantages;

the most important of these (from the CASE. perspective and organizational

perspective as well) are:

. Ability to measure progress.

. Ability to identify practices which lead to the highest quality and

productivity.

. Ability to estimate and schedule projects better.

CASE stands for computer assisted slftuare engineering - it refers to the application of
automated technologies to software engineering procedures.

1l

When establishing a software metrics program, Grady and Caswell

recoÍlmend that the following key steps be performed: assign software metrics

responsibility to specific people; convince people of the importance of these metrics

and indicate that accuracy depends upon their willingness to take the time to collect

data; define metrics to be collected (such as size, defects, effort, and cost); try to

automate data collection; and, create a metrics database.

One of the most significant advantages of the software metrics approach

is its ability to assist us with project estimation. According to Pressman all

estimation techniques use software metrics (p.43):6 "Software metrics (past

measurements) are used as a basis from which estimates are made".

2.2.3 Gathering Project Metrics

The project manager's emphasis is typically on completing the project on

schedule. Yourdonla states, the typical problem with documenting software metrics

is that most managers do not get enthusiastic about investing 5Vo of the project

team's resources this year, in order to provide some data that wilt be useful to

some other project manager next year. The end result is that project planning and

predicting effort is difficult each time around. Therefore, a certain degree of project

planning automation should benefit an organization. In order to overcome the

problems with gathering project metrics, mechanization of the metrics gathering

T2

process is desirable, and Yourdon recoÍìmends the use of automated tools to assist

us with all the stages of measurement. CASE tools can play a very useful role here

as they are highly integrated and automated.

2.2.4 SoftwareDevelopmentProcess

Several life cycle models have been used by organizations to assist them

with software development. The models are phase oriented and use distinct stages:

" requirementsspecification

. design

implementation

testing

installation

In the life cycle model above, if a rigorous approach (traditional, non-

prototyping) is used then the software product materializes only after

implementation. But if the final product does not reflect user requirements

adequately, or is imperfect in any other way, then the development can prove to

be very expensive since some of the details have to be worked over again. In order

to overcome this problem application prototyping is often used as a development

strategy. Even though there are several techniques for prototyping, they all have

one cofilmon objecti demonstration of a working system to the users, as early

I3

as possible. Table 2.1 describes some of these techniques. While all of the

illustrated strategies assist us with eliciting user requirements early on in the system

development life cycle, some are more risky than the others. For instance,

screen/simple mock prototyping is considered more risky because its functionality

is not fully tested up front.

Table 2.1: Prototyping Techniques

Tfuowaway

Rapid / Evolutionary

Detailed / Fu]l

Screen / Simple mock up

Prototype is discarded after acceptance by the
users.

Prototype is used and refined until it becomes the
final product.

Throwaway prototype that mimics the functionality
of the final applicatron completely.

Prototype mimics the screen layout of the
applicatìon.

2.2.5 Fourth Generation Languages

This refers to a set of tools and languages primarily associated with a

database management system. The tools today consist of the following components:

data dictionary, software generators, fourth generation languages, report writers,

screen generators, spreadsheet, presentations graphics, and query languages. Fourth

generation languages and tools have reduced the time and effort required to

generate an application by a factor of at least 5 to 10, when compared with

t4

application development using 3GL's; this is possible largely because general

applications a-re built using high-level specifications.'5 In conjunction with

techniques such as prototyping, fourth generation tools have succeeded in

improving the productivity of software developers, and have enhanced the quality

of software being designed. Here overall programming effort is significantly

reduced due to simplicity in computing. This can be attributed to integrated

d4tabase systems, form-, and report-generators, non-procedural 4GLs, query

languages, and controlled use of alien syntax and mnemonics - allowing the

developer to concentrate on software development.

Figure 2.1 describes the key components of the fourth generation

architecture tools and their links with the DBMS. It illustrates the central role of

the DBMS in the environment. The forms generator, the report writer, the

application generator, and the query language play an important role in developing

applications rapidly. These tools are described next.

Data Dictionary: It serves as a central reservoir of all data. It contains information

on files, usage of data, metadata. In the CASE approach the data dictionary plays

a key role in applications development.

15

traphlca &
other toolc

Foms
tlft{t€r Dlcüonary

Report
[¡rtt€r

Äppllcaüon
Generator

Figure 2.1: Fourth Generation Software Components

Query Language: It is a non-procedural language and is used to communicate with

the database. It consists of data definition statements that facilitate the creation and

description of a database, data manipulation statements that deal with retrieval and

update of the database, and data control statements that specify security constraints.

Structured Query Language (SQL) is the undisputed query language and industry

standard today for all relational databases.

16

Forms Generator: This is a flexible interactive facility used to create forms for

data entry, query, update, and deletion. Forms today have a rich set of features that

permit one to generate many types of complex applications. For instance, forms

permit us to perform data validation, restrict access, generate sequence numbers for

primary keys, table lookups, create triggers, and use computed values. Such

functionality until recently had to be hard coded using a programming language.

Report Generator: This is also an interactive tool for creating reports. Report

generators today are very powerful and are capable of producing virtually any type

of output format. However, it must be added here that reports can also be created

using non-procedural query language statements.

Program Generator: There are a wide variety of program generators available

today. They range from simple menu and module/procedure generators to full-

fledged application generators. The common thread here is that very little physical

coding is actually done - specifications serve to provide instructions to the

program generator. The above products are integrated today using a common query

language. For instance, ORACLE's 4GL tools such as the SQL*FORM, and

SQL*REPORTV/RITER support the creation of reports and forms using its query

language SQL.

T7

2.3 Software Models for Estimation and Managernent

Estimating the cost of a project is probably the most tedious task for a

planner and a lot is at stake. Planners usually rely on historical data and

accumulated experience to develop estimates. But it is not unconunon to find

organizations very lax when it comes to recording project data. A novice estimator

with little experience and no access to any historical data would therefore suffer the

most under such circumstances. It is worthwhile for such estimators to have access

to a software costing model.

On reviewing the literature three types of representative software models

for cost estimation and project planning have been identified. Each differs from the

other distinctly, but they collectively serve to describe the options available to

planners when selecting tools for software cost estimation and management. The

three representative models are:

(i) cocoMo

(ii) Function Point Analysis

(iii) System Dynamics Model

18

2.3.1 COCOMO

COnstructive COst MOdel (COCOMO) introduced by Boehmr6 consists of

three increasingly complex models - basic, intertnediate, and cJetailecJ. Three

modes of software development exist for the above models (see Table 2.2).

Table 2.2: COCOMO Development Mode

Organic

Semidetached

Embedded

A small team of experienced programmers develop softwa¡e in a
familiar environment.

The composition of programmers is a mix of novice and experienced,
and the environment not totally familiar.

The project has tight constraints and the problem is unique; past
experience may not help a lot.

The basic model lacks accuracy since it does not consider the variable

project parameters of the software development environment. This situation is

addressed in the intermediar¿ model which introduces a set of 15 cost drivers, such

as product complexity, analyst capability, and programming language experience.

The detailed model provides two additional feat phase sensitive effort

multipliers for each cost driver, and a three-level product hierarchy (module,

subsystem, and system levels) for rating the cost driver.

t9

Even though the COCOMO model is easy [o use, commercially available,

and well documented, it has some shortcomings. To begin with, it uses l.ines of

code (LOC) as a predictor - this is a low level metric, and it requires us to

estimate the LOCs for the new application very early on in the system development

life cycle. Estimating the LOCs required for the new application before proper

analysis or design is done can result in a loss of accuracy. Another problem with

COCOMO is that it places the onus on the estimator to select the correct type of

model and development mode.

The COCOMO rnodel is based on data from 3GL projects measured at

TRW; hence the nature of the projects involved in their bench mark is "manual

coding" oriented. Their model is clearly not relevant to the development of fourth

generation applications - especially to those that are developed using

"specification oriented" techniques.

2.3.2 Function Point Analvsis

Albrecht's Function Point Analysis (FPA) modelrs was introduced more

than a decade ago in the context of productivity measurement. FPA is independent

of any language and it estimates the size of an application on the basis of the

number of inputs, outputs, files, interfaces, and inquiries (see Table 2.3). Once the

requirements have been defined one can use FPA to identify function points and

20

Table 2.3: Function Point Classification

Outputs Application oriented information processed by the computer for the user.
This includes entire reports, and screens but excludes individual data
items within a report or a screen.

Inputs Application orienterl information entered by the user firr the computer to
process. Inclurles updates, ie, arJrl, modify, or delete.

Inquiries These are queries to the database for information. No updates are
performed.

Files Logical files used by the application.

Interfaces Refers to external files interacting with the existing application.

classify them into one of five categories (see Table 2.3). At the same time the

complexity of the function must also be identified as simple, average, or complex.

Finally, fourteen overall-adjustment factors are used to make adjustments

for system characteristics to provide the totcil correction vctlue. The final function

point count is obtained by using the following equation:

Final FP - Total Unadjusted Fps * [0.65 + (.01 * Total Conecrion Value)]

Largely due to its ability to use information available very early on in the

project, the FPA has made some in-roads into the data processing industry for cost

estimating business applications.

21

There ate, however, several limitations with the Function Point Analysis

approach. To begin with even though it is more suitable than COCOMO for

estimating non-procedural language, it is incapable of cost estimating 4GTs. For

instance, the definition for input and output (see Table 2.3) states that the

individual data items within a report or a screen are to be ignored. Unfortunately,

with 4GTs the fields act as a cost centre for accumulation of work effort and

cannot be ignored. The 4GT Model deals wirh this issue elegantly.

A second major limitation with the Function Point Analysis method is that

it has no avenue to address 4GT based development (such as using forms

generators, report generators, or application generators). As stated by Dredger,te "if

generators or report writers are used it is impossible to count function points for

all possibilities, and you must settle the issue by crediting the application with one

complex output." This is a major stumbling block for FPA. It does not pedorm

well in a highly automated application development environment.

A major flaw with the FPA is that its weighting is inadequate when

specification oriented proglamming occurs. (Here the primary development effort

is based around screen fields. This aspect is described in detail in the next chapter.)

For example, Symons questions why "a system component containing, say, over

100 data elements is given at most twice the points of a component with only one

22

data element". We therefore regard FPA's weighting scheme as biased against 4GT

based application development.

2.3.3 System Dynamics Model

The system dynamics model introduced by Abdel-grtti¿zo'zt looks at the

softwa¡e estimation and planning issues within a much broader research program.

Its objective is to comprehend, and to make predictions about fhe dynamics of the

entire software development process. The model consists of four major subsystems

which a¡e described in Table 2.4.

Table 2.4: Subsystems of the Systems Dynamics Model

Human Resource
Management

Deals with hiring, trairúng, assimilation and
transfèr of human resources.

software Produclion Models activities such as designing, coding, and
testins of softwa¡e.

Controlling Measures progress, perceived productivity, and
determines effort still needed.

Planrúng Plans work force and scheclule.

The system dynamics model permits inexpensive simulation and controlled

experimentation of different project management decisions, such as addressing the

23

problems related to a project running behind schedule. The model has proven to be

a useful tool for the study of software cost estimation.22.23

2"4 4Gl,-based Cost Estimation Research

This section reviews other 4Gl-based cost estimation research. Verner and

Tate have estimated size and effort for a project using a fourth generation

application development system called ALL.24 The technique they used is illustrated

in Figure 2.2. As evident from the figure, they did not use any new model for 4GL

effort estimation. Instead, they derived effort estimates by combining both the

COCOMO and FPA models. Such a strategy must be applied calefully for several

reasons. The conversion ratios assumed here such as " 1 FP - ll ALL" have not

been validated using a large sample size. The strategy to use "1 FP = 110 COBOL"

is also a controversial one since there can be a large variance in this ratio. Consider

the following excerpt from Dreger describing the problems with interfacing models

such as COCOMO with FPA (pages 132-33):2s

The most cornmon way in which Function Point Analysis has been
misused is using it to try to estimate source lines of code, from which
the forecast, evaluation, or analysis is then made. This misuse of FpA
is just plain wRoNG! If industry cannot even decide to measure one
line of code once it is written (one researcher found a huge 2300va
variance in productivity due only to extremely wide var-iations in 7
sl-oc definitions!), how can FPA possibly predicr it before it is
written? Moreover, this two-step process introduces two levels of enor
into the solution, the more serious of which is the plus-minus 50zo (on
average) distortion introduced when attempting to predict the number
of COBOL source lines.

Use Function Point Analysis technique
to obtain total FP count

863 FP's
I

I

Use Language Expansion Ratio
(1 FP = 110 COBOL LOC)
LOC = 863 * ll0 = 94930

I

I

Reduce the estimated LOC since a 4GL is being used
(Assuming 7 jVo non-procedural content

the LOC is conüacted by l6Vo)
new LOC = 94930 * .16 = 15188

I

Cross check effort with Jones Factors
(1 FP = 17 ALL code)

LOC = 863 FP * 17 = 14671
I

I

Use COCOMO to obtain effort & schedule
(15,000 LOC used as input parameter)

Figure 2.2: verner-Tate strategy for 4GL Bffort Estimation

Integrating models such as COCOMO with FPA might therefore not be a very

suitable strategy for 4GL effort-estimation. It is preferable instead to design an

independent model for estimating 4GL projects.

In another related attempt, Wrigley and Dexter are researching the results

of several FOCUS programs to see if they can come up with a reliable predictor

25

of system size in terms of lines of code using reverse engineering techniques.26

(Their research is largely oriented towards the examination of 4GLs not 4GTs.)

They present a research model that establishes linkages among units of system

requirements specification, design, and source code.

Their pilot study is unfinished - while they establish a link between

information system size and LOCs, they do not extend their model to predict effort.

They also do not address the issue of specification .oriented programming.

Nevertheless as their research is based in the fourth generation environment, any

results obtained here are quite relevant to our thesis as well.

2.5 Knowledge-Based Systems

In this section we review the technology, as well as planning and cost

relationship of theestimation literature, in knowledge-based systems. Also the

thesis problem with other knowledge-based systems research is described here.

2.5.1. Knowledge-Based Systems Technology

Knowledge-based systems are application systems where domain

knowledge is explicit and separate from rest of the system. Domain knowledge

refers to all entities, facts and knowledge related to the application. Expert sysrems

are specialized computer programs that use expert knowledge to attain high levels

of performance in a n¿urow problem area. They mimic the reasoning of experts and

are useful for very specific tasks such as medical diagnosis and computer

configuration. Waterman2T classifies expert systems as a subset of knowledge-based

systems.

The domain knowledge is contained in the knowledge-base, that is, all facts

and information pertaining to the application are represented in the knowledge-base.

In contrast with conventional systems the data and knowledge are explicit and

easily accessible. The architecture of an expert system consists of a knowlerl1e-base

and an inference engine. The knowledge base is further subdivided into two

componentsfacts and rules. Facts a¡e known data about the system. Examples of

facts are default values assigned to variables, eg., age of a person, or the date of

joining. Some facts change from one query session to another, while others do not.

A rule is a formal way of specifying a resolution or indicating a decision.

It is usually expressed as: "IF premise THEN conclusion", or "IF condition THEN

action". The rule is the most cornmon form of representation in a knowledge-based

system. However, other structured models for representation exist.

The inference engine consists of programs that provide a general purpose

problem solving mechanism for all queries. This is normally a backward chaining

or a forward chaining mechanism that traverses across the knowledge base,

executes rules and recommends solutions. If several rules are triggered

concuûently, they are placed in a conflict set and resolved by the inference engine.

2.5.2 Knowledge-based Systems Research in Literature

Even though little attention has been paid to applying the technology

directly in the areas of fourth generation based software cost estimation, or strategic

and tactical planning, there is a continuing interest in using the knowledge-based

approach for several aspects of project management. White it is beyond the scope

of this thesis to review all aspects of project planning and scheduling applications

using artificial intelligence (largely due to the abundance of such literature), an

overview of artificial intelligence as it pertains to planning and cost estimation is

presented below .

2.5.3 PAINTER: An Bxpert System for Cost Bstimating

Biegel et a1.28 were interested in building a very general cost estimating

shell that attempts to accornmodate a wide variety of cost estimating situations with

each having a specialized knowledge-base. Accordin gly, pctinter, a rule-based cost

estimating program for house-painting was designed using C language to run on

the IBM PC microcomputer. The input data activate the appropriate decision table

for evaluation. For instance when painter asks the user for the surface type to be

28

painted - brick, stucco, wood, etc., each individual task calls the next appropriate

task table, until eventually the cost factors are applied and final estimates obtained.

2.5.4 EDP-Estimator

Arrowood et al. have investigated knowledge-based EDP cost estimation

with a prime motive [o "provide less experienced project leaders with a tool to

generate cost estimates and to explain reasoning processes."2e Their goal is to

implement a tool that is easy to use and that exploits the explanatory capabilities

of expert systems. The EDP-Estimator pertains to 3GL development. It weighs

four elements when making an estimate: labour costs, computer utilization,

networking charges, and facility upgrades. These components were considered

essential to determine the internal and external (contract) staffing needs. The EDP-

Estimator at present is being implemented using ArityÆROLOG and ArityÆxpert

Development Package for use with IBM compatible microcomputers. The drawback

with the EDP-Estimator is that it is tightly coupled with the knowledge-base,

standards and procedures of a single organization. Also it does not have a basic

model for estimation purposes and simply uses several heuristics such as:

If procurement is minicomputer, cost is less than $50,000 and procurement
exception is no, then add two worker-months of senior analyst time to
labour of computing requilement (page 204).2e

Such a strategy will probably limit its portability and use in other EDP shops.

29

2.5.5 Other Knowledge-Based Estimating Strategies

A recent exploratory study by Vicinanza, Mukhopadhyay, and Prietularre

examines two basic issues: Is there expertise in software effort estimation? and can

we use expertise to improve software effort? Their research strategy involved use

of five experienced software project managers who served as expert subjects. Each

manager was asked to sort a set of 37 commonly used project factors in order of

importance, and to estimate historical projects given the size of such projects (eg.,

LOCs). Their results strongly suggest the existence of expertise in software effort

estimation; with regards to techniques for improving effort estimation, they

conclude:

It has been suggested that a knowledge-based approach to the estimation
problem may help improve the accuracy of existing models (see Ramsey
and Basili)tto. In support of this, our study indicates the particular form of
reasoning that might be pursued is an analogical-reasoning approach.

Other interesting conlcusions :

In most cases the managers had

established algorithmic models.

Their research indicates that

or ganízational boundaries.

estimated effort better than two well

some cost factors do transcend

Ntuen and Mallik30 have illustrated

applying knowledge-based approach to cost

a general framework model for

estimating. It is however geared

30

towards estimation in the engineering domain rather than the software industry. It

provides a generic classification of the modelling tools for the cost engineer, and

tabulates task descriptions for a model-based framework in a cost estimating expert

system. Avots3r has described the use of artificial intelligence techniques in the

context of project management. The principal components of an expert system for

schedule control were presented to illustrate analysis and predictive capabitities that

could be added to existing project management tools.

2.5.6 Knowledge-based Systems for the Fourth Generation problem

We can also use the knowledge-based systems approach to probe the

impact of various project factors on the final estimates. Such a strategy will provide

novice cost estimators and project managers with several benefits, such as an

explanation capability, and the ability to simulate the impact of various project

factors on the ultimate cost. A key objective here is to research a more open-ended

approach to error correction. As new factors come into play, they can be integrated

with the expert system to provide better estimates. This aspect of the 4GT Model

is discussed in detail in Chapter 4. Knowledge-based techniques can also play a

useful role in the initiat planning process that precedes cost estimation. Some

empirical evidence32 for this was provided in the context of assisting the manager

with selecting a methodology for software development and deciding if prototyping

31

was an appropriate choice.

Chapten 3

The 4GT Estirnation Modet

3.tr Introduction

In this chapter we introduce the 4GT estimation model. The scope of the

model is 4GT effort estimation, that is when software applications are developed

using fourth generation tools such as report writers, form generators, and

application generators. Basically we are interested in the implementation of small

to medium business information systems by programmers or end-users. The model

at present does not consider larger applications within its scope as such applications

usually involve extensive procedural and/or non-procedural coding. The following

categories of products fall within the scope: Personal Computer Tools such as

dBASE IV, Query Languages and Report Generators eg, eBE, RpG, Graphics

Generators eg, SAS Graph, Application Generators, eg, Oracle.2

The proposed model can be used to estimate application development effort

with different 4GT paradigms. (This Chapter introduces different 4GT development

paradigms and Chapter 5 describes their effort estimation.) Only theoretical details

of the model are presented in this chapter. Model experimentation, calibration,

usage, and validation are described in Chapter 5.

32

3.1.1 Model Historv

The 4GT Model was designed and developed on the basis of interviews

with practitioners, literature research, product study, and project data collected

between 1988 and 1991. Personal project management experience as well as

discussions with members of the thesis committee also played a major role in the

model development.

At the very outset it was recognized that a general purpose model for cost

estimating all types of fourth-generation development was difficult to develop

(largely due to the wide diversity of fourth generation languages). It was

subsequently decided that only fourth generation rools (4GTs) should be modeled.

The objective was to create a meta-modelóe for estimating effort involved with 4GT

development. Using the meta-model as a basis, organizations could either adapt or

create their own cost model in accordance with their own environments. DeMarco

and Lister concur with such a strategy; they state that, "cost models do work, but

they have to be made local to the environment in order to provide useful forecasts

of development time and effort".ss

The model evolved through two major stages:

c an initial prototype stage in which the effort estimation and effort

adjustmenl components were designed and developed, and

33

e an installatioro stage in which the effort estimation component was

enhanced, re-calibrated and installed in a commercial settine for

experimentation purposes.

Details pertaining to the above stages are presented below.

3.1.2 The Initiat Stage

The initial version of the model was based largely on literature review,

Fourth Generation product teview, and personal experience obtained as project

manager of several projects. Experimental data gathered during the implementation

of the following projects between 1988-90 (under my supervision) proved to be

useful for gathering data and conducting research related to the initial version of

the model.

l) Spatial Accounting Database project for Physical Plant, University of

Winnipeg.88

2) Trackers Record System project for the V.P. Admin Office, University

of Winnipeg.8e

3) Client and Applicant Tracking System project for Mayday Personnel,

Inc., Winnip.g.no

4) Weights and Measures Microcomputer System project for Consumer

and Corporate Affairs (Canada), Winnipeg.et

34

The basic design of the model was exposed to criticism at various seminars

and revised as needed32'70-78'e2'e3' it was also demonstrated to practitioners in

Winnipeg.Tt'84 This exposure at various sites strengthened the model considerably.

3.1.3 Experimenting with the Model

With real-world experimentation of the 4GT Model in mind, Ted Janzen,

Associate Manager Computer Systems, Great-West Life, was approached in May

1991 (on recommendation from Kerry Morris, Systems Analyst, Computer Systems

Group, Great-West Life). Janzen's Computer Systems group was actively

developing 4GT based application systems using ORACLE and they were therefore

quite interested in installing the 4GT Model for effort estimation purposes. Great-

west Life was suitable as a site for experimentation with the Model as:

o the state of art development was taking place using fourth-generation

tools, and

' relevant metrics data from on-going or past projects were readily

available.

Largely on the basis of intensive interaction with Ted Janzen, and Wendy

Smith (Senior Systems Analyst at Great-West Life), the effort estimation

component of the 4GT Model was enhanced and made easier to use.

35

A formal approach6s was used to interview and document data. Before our

very first meeting, a report describing the existing 4GT Model was given to the

interviewees at Great-West Life (see Table 3.1). The initial meetings served rhe

purpose of acquainting participants with the 4GT Model and also informing us

about their project management and cost estimation practices. Most of the

participants had estimated ORACLE projects before and were quite familiar with

the topic of cost estimation. Actually, their current practice involved submission of

project effort estimates by all team members (to the projebt manager).

More than twenty five meetings took place between May 1 and October

1991 (see references 77 through 84). Each lasted more than one hour but usually

less than three. Both group meetings and one-on-one meetings took place. A bulk

of the information, however, was gathered during one-on-one meetings. It was also

necessary to communicate and gather information using the telephone and fax

machine; many such communications took place.

The initial few meetings highlighted the difficulty of calibrating the 4GT

Model at the Great-West Life. For instance, the practitioners indicated that it was

difficult to calibrate and document all relevant specification operations (SEs). They

also felt that estimating effort using the model could also be tedious as there were

too many SEs (one for each unique specification operation).

36

After further discussion we decided to make the following two changes to

the model:

placing similar SEs into one category

- this revision simplified the model considerably as we now had to

calibrate weights for each SE category only (and not for each SE as

was required before).

tying each SE to a screen field instead of a screen page

- this resolved some problems with the model. For instance, now it

did not matter if a form had more than sixteen screen fields per

screen page or less than six per page. Obviously more specification

effo¡t is required to develop a form with twenty screen fields as

opposed to just two screen fields. (Note that a magnitude correction

table was provided with the initial version of the model but it did

not exÍapolate beyond sixteen screen fields per page.)

Both the above strategies simplified the model considerably. For instance,

it was now easy to count SEs - all one had to do now was to locate screen fields!

Having made the above enhancements to the model the following key

activities took place between June 1991 and November 1991: (a) data collection

37

Table 3.1: Resources Used to Develop the 4GT Model

Name Title Organization

Norbert Kaehler Assistant Manager Investors Group
Development Services,
Information Svstems and D.P.

Annegret Layer Systems Analyst Investors Group

Irene Wa¡kentin Sr. Computer Systems Specialist Great-West Life,
Computer Systems Group.

Calvin Trainor Sr. Computer Systems Analyst Great-West Life,
Computer Systems Group.

Ted Janzen Associate Manager Great-West Life,
Computer Systems Group.

Wendy Smith Senior Systems Analyst GrearWest Life
Computer Systems Group.

Rob Buskens Systenìs Analyst Great-West Life,
Computer Systems Group.

Allison Minaker Project Manager Great-West Life,
Computer Systems Group.

Mavis Hildebrand Systems Co-ordinator Pitblados & Hoskins
(and earlier on at Great-West Life).

to calibrate the weights for each SE category; (b) determination of the expansion

factor; (c) validation of the entire 4GT modet. All data collection and classification

into SE categories were performed independently by Smith. The results are

presented in Chapter 5 and also published elsewhere.tu'tt

Quite independently, comparable experimentation with the 4GT Model also

took place at the University of the Winnipeg using ORACLE as well.82 Results

38

obtained here provided us an opportunity to validate the Great-West Life model

weights and to investigate portability issues (see Chapter 5 for details).

3.2 Measuring Application Effort

In this section we describe the systems development life cycle and the

different development paradigms associated with it when 4GTs are used. As we are

interested in developing a model that measures application system size we address

the following issues:

(a) What is the nature of the life cycle when 4GTs are used?

(b) What functions adequately represent system size and effort when

4GT development occurs?

(c) Is there a good predictor for modelling the above functions?

Section 3.3 deals with the issue of systems development life cycle; section 3.4

identifies functions representing 4GT development effort; section 3.5 deals with the

issue of predictors; and section 3.6 presents the 4GT model for measuring

application system effort.

3.3 Systems Ðevelopment Methodology

Table 3.1 illustrates the systems development life cycle for developing 4GT

business information systems. This methodology is similar to life cycles described

39

Figure 3.1: Different Paradigms for 4GT Development

in various software engineering and systems analysis texts [6,62,63,64]. The

introduction of 4GTs, however, has made it possible for us to adapt this life cycle.

The most not¿ble of which is a prototyping-based systems development life cycle.

Figure 3.1 reproduced from Pressman's Software Engineering text book6 illustrates

different software development paradigms now possible due to the introduction of

4GTs. We will discuss these paradigms under two categories: "the traditional

approach", and "the prototyping approach".

40

3.3.1 The Traditional Approach

This essentially is the traditional systems development life cycle. Tabie 3.2

illustrates the steps involved with such a life cycle. Details of what occurs at each

stage is presented briefly below:

Table 3.2: Steps Involved in Traditional Life Cycle

Phase I Feasibility Snrdy and Requirements Definitton

Phase II General Analysis, Design, and Data Modelling

Phase III Detailed Design

Phase IV Codinp

Phase V Testlns.

Phase I

Feasibility Study and Requirements Definition

The feasibility and scope of the software development project are

investigated. Very general information about the users needs is available at this

stage.

4l

Phase II

General Analysis, Design and Data Modelling:

A general system study, analysis, and design take place at this stage. It

entails documenting the complete system - generally by creating data flow

diagrams. The analysis stage is summarized by Fertuck as follows (page 6):62

The analysis stage is actually a learning process in which the analyst tries
to gain an understanding of what the user does. The Data Flow Diagram
is an intermediate product that allows the analyst and the user to
communicate unambiguously. It summarizes the information that the
analyst needs during the design stage. It does it in a clear graphic way that
the user can understand.... the final result of this stage is an understanding
of the system documented by Data Flow Diagrams.

Data modelling also occurs at this stage. As part of the process of data modelling

we identify user views and reports, normalize them into tables, and create a

conceptual data model. Input/output layouts (forms and reports) of the system are

designed and all major process modules are identified at this stage.

Using CASE or equivalent tools, the following products a-re created at this

stage:

" Entity Relationship Model, Data Flow Diagram, and Program Structure

Charts.

o I Data Model (with tables in 3NF).

o Screen Layouts, Report Formats, and Processes.

42

Fhase III

Det¿iled Design:

The objective of the detailed design phase is to refine the tasks of the

previous phase, and to translate requirements into a "representation of the software

that can be assessed for quality before coding begins".6 Here we perform

additional data analysis, re-normalize the tables, and improve the logical and

conceptual models, if necessary. The physicat aspects of the database can now be

designed - this includes designing stored record formats, s.electing access method,

and determining the blocking factor. A major deliverable at this stage is

documentation of application design (covering all modules).

Phase IV

Coding:

At this stage we create the software system. Coding and code-generation

takes place using 4GTs (procedural and non-procedural languages are used if

necessary). A users manual and an operations manual are developed.

Phase V

Testing:

Coding and code-generation takes place one more time; module testing,

system testing, and integration testing take place and the system is demonstrated

43

to the user one more time for acceptance. If everything is satisfactory,

documentation is generated, and conversion takes place.

3.3.2 PrototypingApproach

Prototyping can be defined as a process that enables the developer to create

a working model of the software that must be built.6 Some organizations

intentionally implement only a single version of the prototype and discard it

subsequently on obtaining an initial understanding of the users needs. The terms

throwaway, explorative, experimental, or norx-evolutionary protot,.vping are all often

used to characterize this practice. In contrast, rapid proturyping or evolutionary

protoryping allows several increasingly refined versions of the prototypes to exist.

(Actually, the same prototype is revised and enhanced at the end of each phase of

the systems development life cycle.)

3.3.2.1 Non-Evolutionary Prototypes

Throw away prototyping is practised by individuals who believe that

prototypes must be discarded as they are of poor quality. They cite reasons such

as: a) prototypes are developed in a hurry; and b) prototyping short-circuits the

various checks and balances a systems development life cycle has to offer. Table

3.3 describes the various stages in the systems development life cycle when a non-

evolutionary prototyping paradigm is used.

Table 3.3: Steps Involved in Throwaway Frototyping

Phase I Feasibility Srudy and Requirenenrs Defirution

Phase II General Analysis, Design, and Data Modelting: prototyping

Phase III Detailed Desisn

Phase IV Coding

Phase V Testing

Phase I, III, IV, and V are similar to the traditional life cycle. Therefore

only the extensions are described below:

Phase II

General Analysis, Design, and Data Modelling: prototype Development

The information and data gathered during general analysis, design, and

data modelling are usually sufficient enough to begin prototyping. We first develop

an initial version of the prototype on the basis of available information from the

users. This version is demonstrated to all key users, and prototype enhancements

are sought. A few more iterations of the prototype occur subsequently, and we

come up with the final version of the prototype when the users are happy with

what they see. The,following tools are used for prototyping: RDBMS, 4GL, screen

45

generator, form generator, report generator, menu generator, and application

generator.

3.3.2.2 Evolutionary Prototyping

The availability of 4GLs and 4GTs has made evolutionary prototyping very

appealing today as good quality code (i.e., prototype) can be generated even in a

hurt):. Several practitioners therefore see no merit in discarding a prototype under

such circumstances. They claim that since the bulk of the code was automatically

generated, it is of good quality (in the sense that human introduced errors do not

exist, and not in the sense that the code is efficient - which is debatable).

The evolutionary prototyping methodology is similar to the non-

evolutionary methodology (see Table 3.3 for details). The significant difference is

that a prototype created during the second phase evolves even further as the

systems development life cycle progresses. At the end of each phase, newer revised

versions of the prototype are produced. The final phase produces an operational

prototype, which is delivered to the user.

The key advantage with the above methodology is that it favours user

involvement at all stages of the life cycle and not just at the start; development risk

is therefore reduced considerably. Coding effort might be reduced noticeably during

46

the implementation phase as the prototype needs only to be extended and not re-

built from scratch - as in the case of the throwaway prototyping.

Table 3.4: Steps Involved in Evolutionary Prototyping

Phase I Feasibility Study and Requirements Definition

Phase II General Analysis, Design, and Data Modelling: Initial Prototype
Development

' Phase III Detailed Design: Prototype Enhancement

Phase IV Coding: Prototype Enhancement

Phase V Testing: Operational Prototype

Figure 3.I also indicates that there is a spiral model alternative to software

development. This model focuses on risk analysis, and follows the evolutionary

prototyping methodology very closely.

3.3.3 Conclusion

The preceding discussion introduces the systems development life cycle in

the context of measuring 4GT developmenteffort. Figure 3.1 provides us a basis

for understanding the differences between the different systems development life

cycles. In order to understand the different options illustrated in the figure it is

mapped using numbers and re-displayed in Figure 3.2.

47

Preltmtnary requrrements gatñenrE

Figure 3.2: Mapping Different 4GT paths

We notice that it portrays the following different paths (and hence different

paradigms):

' 1,2,3,4,5 represents the traditional Iife cycle when no 4GTs a¡e used.

o l, 2,3,4,4a, 5 represents the traditional life cycle with usage of 4GTs.

' l, 2a,2b,2, 3, 4, 4a, 5 represents the non-evolutionary (throw-away)

prototyping approach.

o l, 2b,2c, 5 represents the evolutionary (rapid) prototyping approach.

48

Note that we ignore the paths associated with the spiral model life cycle

as they are similar to the evolutionary prototyping approach. The path: I ,2a, 5 ís

also ignored as it is too futuristic. Commenting on this aspect, Pressman states:6

Ideally, the customer would describe requirements and these would directly
be translated into an operational prototype. But this is unworkable. The
customer may be unsure of what is required, may be ambiguous in
specifying facts that are known, and may be unwilling to specify
information in a manner that a 4GT tool can consume. In addition, current
4GT tools are not sophisticated enough truly "natural language" and won't
be for some time.

Ignoring the path: 1,2,3,4, 5 where no 4GTs are involved we now recognize the

following distinct paradigms for 4GT based development: a) traditional 4GT life

cycle without prototyping; b) evolutionary prorotyping using 4GTs; and c) non-

evolutionary prototyping using 4GTs.

The 4GT Model as described in this thesis pertains primarily to the

evolutionary prototyping paradigm, i.e., most of the research and data collected

relate to this paradigm. Focusing on this paradigm is worthwhile as it is the most

dominant 4GT life cycle today. Actually "fourth generation technology" and

"prototyping" go together - Clarke includes "prototyping capability" in his list of

five "defining characteristics of the fourth generation environment" (p. 25)uu.With

4GT based application development this is a very natural paradigm as prototyping

is easily facilitated. Regardless, the model introduced in this thesis is flexible and

supports various paradigms. This aspect is presented in Chapter 5.

49

ñ1V.....L
^

,zÞ> voc 1-:

,' ¿'ccess

Y

: Design

:

:- -,
f't\/ | '-", I lV,

I

:

Qa{¡^,-.^
. uv rLYYo¡ g

.-......-'-.-.-...
n\/ I

I'l
I

Empirical

i-

.l iv = i:ldegeldent \/ariable
li DV = Depenoenr Variable

¡i MV= Moderaiing Varìables: .,

ii Pêæ'(ú . wEr . r@r) ;i

li = OPerationali:ed Variable il

Figure 3.3: Research Model for Measuring Information System
(lVrigley & Dexter)

3.4 Representing system size - Theoretical rssues

In this section we deal with the theoretical issue of represenúng system size

using functions. Our modelling approach is based on software functional.

decomposition techniques that occur during systems development. Functional

decomposition is a stepwise elaboration mechanism for refining the processing

tasks that are required for software to accomplish some desired function.o There are

different approaches to decomposition (a recent approach being object-oriented

analysis) - the overall strategy here is to define and characterize the software

design in terms of a software functional framework.

There is a relationship between such a structural framework and the

eventual cost of a system, and most effort estimation methods or models are based

on this hypothesis. Theoretical research conducted by Sitver agrees with the above

fundamental strategy' r03' r04

The essential conclusion reached is that software functional decompositions
(to an appropriate level of depth) may indeed serve as the basic
underpinnings for the design activity and associated coslperformance
specification even at the requirements level, and indeed throughout the
entire software development life cycle.

A formal research model illustrating the theoretical relationships among the

measures of system size available at each phase of system development - analysis,

design and coding was introduced recently by Wrigley and Dexter;26 this model,

illustrated in Figure 3.3, is described by them as follows:

At the conceptual level, there exists a relationship between the size of the
requirements of the real system and the size of the eventual software
product. Each stage of development is achieved through the various
processes; analysis, design, and coding. System specifications at each stage
are transformed into the next stage through these processes...

They conclude that as "user requirements a¡e temporally antecedent to the eventual

delivered software, one can specify that a causal relationship exists between actual

51

requirements, design and coding effort".26 We next describe our model as it

pertains to mapping of system requirements with design.

3.4.1 Input, Output, and Process Tasks

Useful information about application software functionality, and hence

required functions, is usually available from the user requirements document,

produced at the end of the requirements definition stage. This document might be

incomplete and not specific enough to identify all functions. But by the nexr srage,

(general analysis, design and data modelling) the proposed system's outputs, inputs,

and processes are fully identified.

Literature survey reveals that several function-oriented cost modelling

researchers have consistently considered use of system input, output, files, and

processes for measuring and modelling a business information processing system's

size and effort. For example, Symons MARK II modet assumes that transaction-

oriented systems consist of logical input/outpulprocess combinations.38 Albrecht's

FPA approach, introduced in Chapter 2, uses outputs, inputs, files, inquiries, and

interfaces. (Note that interfaces can be treated as a project factor, and inquiries can

be viewed as a combination of input/output/process.)38

52

Parkinós describes a US Army function-oriented model that estimates total

project person-months using outputs, number of record types in database (which is

comparable to using the number of tables), number of files, and number of input

transactions.

Itakura and Takayanagi's67 model for estimating development effort of

COBOL projects includes the following functio inpuloutput files, reports and

processes.

3.4.2 Form, Report, Data, and Process Functions

As evident from some of the above models, inputs, outputs, and processes

can be viewed in terms of aggregates (such as form, report and process functions).

For instance, a form function type can be viewed as a combination of an input,

process, query, and output. This is especially natural for application development

in the fourth-generation environment. For 4GT applications it is probably

convenient to view the system in terms of forms, reports and process functions

rather than input, output and process tasks. Users actually are more comfortable

identifying forms and reports they want than specifying input, output and process

tasks for an application.

53

The following function types are being introduced for the purposes of effort

estimation:

Form

In order to interface with the database we design and implement forms.

Forms are also part of the delivered application system. Forms consist of screens

and are used for the following purposes:

Input use the form to enter new data

Query use the form to interrogate stored data

Output uses the form to display queried data

Update - use the form to change data

Process - use the form to implement transaction logic

A forms-generator or screen-generator can be regarded as a source for the

form function. Albrecht's original paper on FPA describes "data form" as an

example of input function, "printed report" as an example of output function, and

"disk files, tape files, and input card files" as an example of file function. (Of

course, today data forms can no longer be classified as an input function only, and

also report functions today allow substantial customization via queries before they

are printed.)

54

Report

In order to interface with the database we design and implemenr reports.

Forms are also part of the delivered application system. Reports are similar to

forms but their primary purpose is to display the results of a query or simply

display data stored in the application database. Subsequently they allow the

following actions:

Output
-print data on the screen, or through a printer

Query - limited interrogation of the stored database is allowed with the

intention of creating customized output.

A report-generator can be regarded as a source for the form function.

Døta

This function type refers to database tables and files of the proposed

application. Just like forms and reports it is a deliverable - part and parcel of the

software system given to the users. Most transaction processing systems today and

especially 4GT-based systems use the database approach for systems development.

Such an approach concentrates on understanding, using, and documenting data.

According to Fertuck, "by viewing the database as the central component, the

analyst concentrates on defining the data correctly. Later the analyst wonies about

inputs, reports, or programs that transform the data in the database."62

55

The database tables associated with the project ale usually identified as

early on as the prelim.inary design stage via the entity relcttionsltip clictgrctnt (ERD),

and later on during the general analysis, design and data moclelling stage via the

data m.odel. Data Flow Diagrams and its r)ata stores are also associated with the

data function. DeMarco defines data stores as follows (page 5):61

Data stores can be thought of as manual or automated files or databases or
any other accumulation of data.

ERD's, data models and DFD's can therefore be regarded as sources for the data

function.

Process

Process function type represents procedures and modules that will

eventually be coded in a procedural or non-procedural language. (4GT form- or

report generators are not used.) Process functions are similar to forms and reports

and they can be associated with the following tasks:

Input - enter new data

Query - interrogate stored data

Update - change data

Process - implement programming logic

Procedures or modules performing complex calculations and algorithms aÍe

generally classified as a process function type. Note that a form or report also

56

could be classified as a process function if a form- or report generator cannot be

used (due to lack of tool functionality). The bulk of our curïent modelling effort

is only on form, report, and data function types (conventional cost models do not

address them adequately).

3.4.3 Conclusion

. In this section we described how information system can be measured in

terms of the following function types: form, report, data, and process. we also

showed that this hypothesis has been well researched. For instance, Wrigley and

Dexter resea¡ching a general strategy for measurement and evaluation of systems

development environments conclude that screens, reports, and files (derived during

the preliminary design stage) explain information system size very well. Their

research and analysis involved Focus projects which is a 4GL. They also

indicate that with data-strong systems (i.e., database oriented application systems,)

measurement in terms of reports, screens, etc., is sufficient. (However, for scientific

applications it is likely that measurement units in addition to screens, reports, etc.,

would be needed to reflect design and requirements size satisfactorily.5e¡

Finally, we note that various key products of the systems development life

cycle can be identified in terms of the function types introduced in this section.

57

This is summa¡ized below:

Product Function'fypes

Entity Relation Diagram Entities represent tables & files (dara type).

Data ModeÌ Consists of tables, and files (dÍrta).

Interfaces Inputs and outputs via forms, reports, and process types.

Data Flow Diagrams Dara stores (data type), process type.

Prototype Forms, reports and process types.

3.5 Fredictors

In this section we describe prevailing predictors and introduce our new

predictor for the 4GT-based software development environment. According to

DeMarco (page 54),'

Every metric falls into one of two categories: either a "result" or a
"predictor". A, result is a metric of observed cost, scope, or complexity of
a completed system. Examples include total cost, total manpower, elapsed
time, or cost or manpower.... A predictor is an early-noted metric that has
a strong correlation to some later results.

Size measures such as LOC, Function Point, and code volume can be resarded as

examples of predictors.

3.5.L PrevailingPredictors

We recount the limitations of the two prevailing predictors of the 3GL

environment - LOC, and Function Point (FP) in this section. Let us consider the

58

LOC metric first. We note the following problems when it is used as a predictor

for estimating effort in the 4GT environment:

' There is no standard definition for a line of 4GL code.3-' It is therefore

difficult to estimate the number of lines of 4GL code, and difficult to

convert a 4GL LOC to a 3GL LOC (or vice versa). Such conversions

are required by existing cost models.

u In the case of 4GTs, especially, it is not practical to use LOC as most

of the code is generated automatically, without any substantial

programming. Fairly complicated forms and reports are generated by

simply specifying the functions. It is therefore difficult to collect true

project statistics in terms of "effort put in" and "Locs developed".

' While some generators display the source code generated for

documentation or editing purposes, many do not display any code a[

all. For example dBASE III's report generator produces executable

code directly and we cannot see the code generated (hence we are

unable to count the LOC).

' 4GLs produce substantially smaller code sizes when compared with

3GLs.3a Consider the fact that while data declarations are almosr non-

existent in 4GLs they typically constitute more than half the code for

a COBOL program." such simplicity in computing should be reflected

in effort estimates produced by a model but cannot be done so easilv.

59

In conclusion, we note that historically, cost models using LOC as a

predictor (such as COCOMO) were designed around databases consisting of 3GL

projects only. Fourth generation tools, as we know them today, did not exist then.

Obviously, such models or their predictors are not very suitable for estimating 4GT

projects.

As an alternative to using LOC, let us consider the use of predictor FP (as

defined in Albrecht's FPA Model). FP eliminares rhe need ro estimare in LOCs

thereby eliminating several paradoxes caused by LOC measures.36 It is therefore

more suitable than LOC for estimating fourth-generation development effort. The

FPA method, however, has limitations:

" The resolution capability of each FP is inadequate when applied to

application development using 4GTs. Consider the following comments

from Dreger with regards to counting FPs when a report or screen

generator is used:37

...if this tool (form or report generator) is provided it is impossible
to count Function Points for all possibilities, and you must settle the
issue by crediting the application with one complex output (FP).

Suggesting a default count of one complex FP for all forms and reports

generated is certainly inadequate as some forms are significantly more

effort-consumine than the others.

60

" The weighting associated with the FPA method is also inadequate for

4GT-based development (where a lot of specification involving data

elements occur). For example, Symons questions why "a system

component containing, say, over 100 data elements is given at most

twice the points of a component with only one data element". This can

result in a significant effort estimation error for 4GT-based

development. (The 4GT Model resolves this problem elegantly).

Several other problems specific to the FPA model are documented by Symons in

his paper conveying the impression that the model is fal from perfection for either

3GL or 4GL based development (pp. 1-8).'8 Especially for 4GT development we

regard the model as deficient - as with LOC-oriented models, this can be

attributed to the fact that the FPA method was designed around databases

consisting of largely 3GL projects only - powerful fourth-generation generators

as we know them todav. did not exist then.

3.5.2 Attributes of a New 4GT Predictor

In section 3.4 we examined the nature of software development and

concluded that at a global level information system size could be represented using

form, report, data, and process functions. However, we need a predictor to estimate

the effort involved with developing each function, as well. As we established that

6l

both LOC and FP are inadequate predictors for 4GT-based development (in the

preceding section), we now describe a suitable predictor for our purposes.

A very important characteristic of application development using form-

generators, report-generators, and application-generators is that:

a) we generally specify what is to be accomplished, and

b) most of the specification effort is focused on and around screenfíelds.

The term screen field refers to the data elements of form, report, data, and

process functions. The screen field plays a very important role in the specification-

oriented programming process used by 4GTs as the entire foundation of default

logic is built in and around and them. This belief is supported by ORACLE (page

1.3)t'and is evident in several other 4GTs as well (such as ORACLE's

sQL*FoRM;s7 UNISYS's ACCEL;r00 and Relarional rechnology's Ingrest0t). All

such 4GTs, including low-level 4GTs such as dBASE IV,r02 require us first to

define skeletal screen fields for each form and report, and then to implement logic

around them - usually with specifications or macros or code.

In view of the above, we can regard the following as being essential

attributes of any 4GT predictor:

62

o support of the specification oriented programming paradigm of 4GTs

(as used by form-, report-, and application generators), and

o use of the screen field as an effort parameter.

The Specification Element (SE) is being proposed as a predictor that addresses the

above issues. The term "specification element" is a hybrid of the two terms

speci.frcation, and screen- or data elem.ent. An SE can therefore be defined as "a

specification task associated with implementing a screen field or a data element".

Examples of an SE are "automatically retrieving name and address on entering ID"

and "converting any input data automaticatly to upper case". Figure 3.4 below

illustrates specification of this SE; nore rhar rhe SPECIFY ATTRIBUTES window

with the uppercase option is pulled open.

Each SE has an effort value (in person-hours) that represents the effort

required to implement it. Collectively SEs represent the functionality and effort

required to develop an entfue software application.

3.5.3 Categorizing SEs

To facilit¿te practical use of SEs as a predictor we mus[first classify them

unambiguously. A study of 4GTs, design and development of applications using

them, and interactions with practitioners provide us with a basis for categorizing

5Bt2'3'ss'sz'78'7e'100'r0l'r02'10s. ORACLE is used as a case study here to illustrate the

63

======== cusToMER DATA

DA TE

SPEC I FY ATTRIRUTES
Database Fie ld
PrÍmary f:.ey

+Displ ayed
InPr.1¡ al l,:,wed
Qr.rery al l'¡wed
Update aI I,:,wed
lla¡-¡^ i J Àllll IUPUd U€ ¡ I ¡IULL
Fìvod lonnll.,

Ma nd a t,:,r y
llnner ¡¡<o
A'-rt,:'sl rp
Ar.rt':,matic frelp
[]';' g s f¡'¡r

ION_INFO ========

RATING PRICE

I

t-
t:,

riF
F

F8 EXECUTE QUERY

DEFINE FIELD Sei¡ s 3
Name MOVIE_NAME
Dataïype!

-

*CHAR NUMBER I SPECIFY ATTRIRU
ALPHA INT I Database Fietd
TIt'1E MONEY I PrÍ,nary f: ey

Acti,:,ns: I

TRIGGER ATTR | +Drspl ayed
COHMENÏ COLUI Inpr.1¡ all,:,wed

Figure 3.4: Specification Operation using Oracle

illustrate the distinct levels of form design and development that occurs with 4GTs.

3.5.3.1 Form SEs

As indicated ea¡lier on, specification operations involving screen fields ptay

an important role in application development with 4GTs. Distinct development

stages and discrete specification categories are also evident (page 6-12),s5 (page g-

2).57 This fact is used to identify the following distincr caregories of SEs:

. Simple SEs

They account for the nominal effort involved in implementing a

skeletal form.

" Basic SEs

They are associated with use of simple specification operations.

. Detailed SEs

They are associated with sophisticated specification actions - such

as those involving use of macros, or triggers.

User exit

IJser exits a¡e associated with procedures or programs written in a

conventional programming languages

Simple SEs

Screens consisting of screen fields have to be created first. We can provide

logic to a form only after the initial screen structure is implemented. This activity

is described by ORACLE as the first level of form design where one creates a

"screen consisting of fields without any special validation or enhancement" (page

1-8).tt As very elementary specification operations are involved with screen design

we classify the specification elements of this category as "Simple SEs". SEs in this

category are collectively responsible for creating (and altering) an initial form.

Typical activities involved here include: relabeling fietds, modification of field

sequence numbers, cutting and pasting of fields, and visual enhancement of form.

65

All applications require a certain amount of such specification activities.

The end result is a form with skeletal screen fields such as the one illustrated in

Figure 3.5. (It must be noted here that screen prototyping
- the most simpte type

of prototyping - involves development of several such screens. Hicks describes

this activity as follows (p.196):r18 rr1¡. system analyst and the user quickly

generate a skeleton application program which serves as a model for the

application. The end-user can interact .. and thereby refine the system's

requirements".)

CUSTOIIER DATA ========

DAIE iS-OCT-'31I D 1(l(l
NAME ZAPPA

ADDRESS 1(11 APPLE AVE, TORONTO

ID

t (:)(l

I (:)(l

======== TRANSACTION INFO ========

VIDEO-ID NOVIE NAME RATING PRICE

4(l(l(l DocToR COHEDY 5.53333 ROBIN HOOD ADVENTURE -+.5

HELP : FI HELP F7 GìUERY F8 EXECUTE OUERY
F1(] SAVE DATA

Figure 3.5: Screen Created using Simple Specification Operations.

66

Bøsic SEs

Some of the above screen fields will require some basic validation and

assistance. This can be regarded as the second of the them ashree levels of forms

design. At this stage one can "specify field ranges, default values, and help

messages by making a single entry on a SQLxForms window" (page l-B).tt Since

SEs in this category involve single action steps or specifications, they are

collectively referred to as Basic SEs. Examples of such SEs include: specifying

upper and lower field ranges, and automatically converting data to uppercase.

Detailed SEs

Some of the screen fietds will require more "sophisticated validation and

assistance by writing triggers or short sequences of SeL or Sel*Forms

commands" (page 1-8).tt Triggers are macros or cornmands that are activated when

certain fields are used. We classify triggers and related sophisticated specification

operations as "Detailed SEs". The following are examples of Detailed SEs:

' validate an entry against a list of values in a column of a table.

' retrieve a product name and list price from a table when the

operator enters the product code number.

n calculate the total amount of an item ordered from its quantity and

price fields.

o assure that an actual price is discounted no more than 20vo off list.

67

The detailed specification operation, "resü'ict fields to a set of data values" is

illustrated in Figure 3.6.

ÞEF]NE FiELD
Name CREDIT RATING

Seqf3

CHOOSE TRIGGER
Name
POST -CHAN6E

NAME

Seq*1
SELECT ' X '
FROT,I DUAL

TRIGGER STEP

[^JHERE : ENTER_DATA. CREDI T_RATI NE

MesEaee if trigger step fai ls:
Pleage enter ':'nly POORr GOOD,:,r
A c t i,:,ns:

CREATE
FORt^JARD

Label.

IN (: 'POOR','GOOD','EXCELLENT' j

COPY
E(ACIItJARD

EXCELLENT

DROP
PREV STEP

ATTR I EUTES
NEXT SIEP

F':'rm: CUSTOMER Bl,:,ch: ENTER_DATA Page: I SELECT: 1 Char t,

Figure 3.6: Screen Created using a Detailed Specification Operation.

User Exits

Finally, we describe a distinct category by itself - the user exits. Some

screen field triggers can be implemented in such a way as to permit a temporary

exit to 3GL routines. Languages such as C are commonly used to implement user

exits. User exits ¿ue sometimes necessary if faster response time is required or if

the desired functionality cannot be provided by a 4GT. Hicks explains this disrinct

68

feature of 4GTs as follows: "Each application is likely to have unique requirements.

Therefore most application generators contain ttser exits. User exits allow a user

or a prograûìmer to insert program code that takes care of these unique

requirements of the application". ORACLE explains it more technically as:

A trigger step can temporarily exit SQLxForms to a program written by
you or other users. You can use such user exits to process information in
tables and form fields, display messages, and perfonn many kinds of
processing that are beyond the scope of sel- and Sel*Forms (page 9-
2g).t'

Obviously, user exits require significantly higher effort than the other categories

described. User exits are not necessary with simple application systems. End-users

will typically not be asked to implement them as they require traditional

programming skills.

User exits to 3GL procedures from within a 4GT are not possible always.

For example, ORACLE's SQL*Report Writer does not permit user exits. This

category then is not relevant here. Such SEs are not identified when effort

estimation occurs with such tools.

3.5.3.2 Report Form SEs

Report form screen fields are similar to form screen fields and therefore

have the same distinct categories - simple, basic, detailed, and user exit - as

described in the preceding section.

3.5.3.3 Data Function Type SEs

Just as with form and report function types, we need a predictor here to

estimate the magnitude of effort involved with the Data function. We use the more

colnmon term "data element" rather than screen field in this context. The data

element can be defined as an attribute or a column belonging to a table. For

example, in the relation student (student#, name, city) we have three data elements.

The data element predictor measures effort involved with va¡ious data

centred activities of 4GT development, such as data definition, creating tables and

views, and entering sample data into such tables. Such activities consume effort and

are indeed a component of the application software delivered to the users. Results

obtained with the 4GT Model indicate that the data element integrates satisfactorily

in our model. Other researchers have also demonstrated that the data element is a

useful and essential predictor for estimating information systems. For instance,

V/rigley and Dexter's research model indicates that Jïetds in Jiles conelates very

well with application size.se Symons also proves that data elements a-re a good

measure of size in the components of his model.38

3.5.3.4 Process SEs

Using SEs or screen fields to predict effort involved with process functions

is difficult due to the variations involved in coding. For example, one can write a

menu program (responsible for transfer of control from one module to another)

using a 3GL with several different logic, or even generate such code with menu

generators such as ORACLE's SQL*MENU. (The latter witl take significantly less

effort than coding with a procedural or even a non-procedural language.) However,

it is beyond the scope of the present 4GT modelling research effort to identify all

valid process SEs. Nevertheless, it remains an important topic and is being

researched at present.se

3.5.4 Conclusion

In conclusion, we note that the predictor SE satisfies the constraints defined

for a 4GT predictor - it supports both the specificarion oriented paradigm of 4GTs

and the use of a screen field as a parameter. At present nine distinct categories

have been identified - four for the form functions, four for the report functions,

and one for the data function. Classifying SEs into the above categories serves the

purpose of simplifying cost estimation using them. To illustrate with an example,

the specifications "automatically retrieving name and address when ID is entered,

and restricting data entry to one of four values are grouped in one category

(detailed SE), whereas displaying screen field in upper case is grouped in another

(Basic SE category). The former involves sophisticated specifications or use of

macros (which is more time consudng) and the later involves simple specifications

(i.e., straight forward menu selection key strokes).

71

Experimentation with the model, as described in Chapter 5, seems to

indicate that the above categories of SEs a¡e sufficient and satisfactory for

modelling 4GT applications. Moreover, the above SE categories are substantially

distinct from each other and therefore easy to apply them during cost estimation.

This agrees with Boehm's views that a cost model must be simple if it is to be of

anv value at all.r6

The SE as introduced here can also be viewed in terms of a software brick.

Connell and Shafer's concept of a software brick is explained as follows:60

If a brick wall is to be built, there are metrics available regarding the
average amount of time required to lay one brick. Estimating the time
required to build a wall then is reduced to simpty calculating the number
of bricks required from the wall's dimensions and multiplying that number
by the cunent metric for brick laying.

With the 4GT Model, the total number of screen fields is equivalent to the "total

number bf bricks". The nine categories of SEs equate to nine different "sizes of

bricks". Knowing the tot¿l number of screen fields in each category (i.e., total

number of bricks required) and their corresponding metric values (i.e., time

required to lay each brick), one can obtain an estimate of the total development

effort!

72

3.6 A Model for Effort Estimation

The 4GT Model architecture is introduced in this section. Terminology,

equations, design, mechanism, and use of the predictor SE for effort estimation are

presented in this section. Model calibration, usage, installation and validation

details appear in Chapter 5.

Two sets of factors influence the ultimate cost of a system

" Application Size Factors, and

. Project Factors

The application size factors are related to the size of the application and the

magnitude of effort required to implement it. Overall application size is governed

by the total number and type of functions identified for an application (as

introduced in section 3.4, these are form, report, data and process functions). At

the function level SEs govern the application development size (as explained in

section 3.5.D.

The proieü facturs are a group of project parameters that influence project

costs. Skills, experience of the participants, methods or languages used, etc, are

examples of project factors. These factors acknowledge the fact that application

development effort and duration are affected by variables such as prografitmer skill,

end-user skill, and familiarity with hardware. (Chapter 5 describes this aspect.)

73

3.6.1 Overview of the Model

The 4GT Model is essentially a bottotrl-Ltp model as it uses specification

elements as a means to estimate function size - collectively, the functions

represent information system size.

A function can be classified into one of the following function types:

form, report, process, and data. System models produced by the analyst during the

systems analysis stage (such as data flow diagrams and data models) are a good

starting point for identifying functions. Form and report functions are implemented

using a form generator and a report generator respectively. Data functions are

implemented using a DBMS.

Total Project Effort [B]
includes
. all life cycle activities
. project management
. team meetings
u documentation development
. prototyping overhead

Development Effort [D]
includes
. data definition
. coding & code generation
o unit testing

Figure 3.7: Conceptual View of Effort Distribution by 4GT Model

In order to further estimate

function type, we use the predictor

effort involved in implementing

(introduced in section 3.5.2) for

each

such

the

SE

14

purposes. Each SE has an effort value in person-hours associated with it; this is

the work effort required to implement one SE (and hence one screen field). By

using the techniques described in the model one can directly determine this effort

value - no historical data is involved at this stase.

SEs requiring similar implementation effort are grouped together; this

serves to reduce the total number of SEs. Nine such SE categories have been

identified in the model - four each for form and report functions, and one for the

data function.

Within each function, the total number of SEs multiplied by their respective

effort values determines the development effort for that function. This mechanism

therefore sizes a function. On summing the development effort for all form, repon,

and data functions (including process functions, if necessary), we have the total

development effort (D) (see Figure 3.6). As the figure indicates, D does not include

the complete life cycle effort or activities such as project management, developing

user manuals, user interviews, administration, and team meetings. In order to obtain

the total project effort (E), we multiply the development effort with an expansion

factor. The expansion factor is derived from historical software metrics data of the

organization installing the 4GT model.

75

Finally, Project Factors (PFs). such as "developer familiarity with 4CTs",

"programmer skill", and "environmental factor" are evaluated for a proposed project

on hand. An expert system has been implemented for adjusting project factors. It

corrects the total project effort (E) to give us the final effort estimates for a project.

Figure 3.8: Estimating Techniques - Putnam & Myers

Putnam & Myers describe size estimation as a continuing process (see

Figure 3.7). The figure indicates that various size estimating techniques can be

viewed to be "strung out along the time line".rffi Three major techniques are

identified by them for estimating purposes: ball-park, base-line, and change-control.

With ball-park sizing only a rough assessment of size is possible, however, such

Code Units

Standard
Component

Subsystem sLoc
Modules Filæ
Screens Batch PGM

Repons Onlinø PGM Object

t-s*d..'d I
I Component

I

l-Trbsystem I
I--M"drrrt-l
T s",*r* --l

fi'p"'t I
f- N"" a_l
I Modif¡€d

I

tF,*.i-l
I Points

I

Base Line
Size Estimate

l--Fr-y I
I Los¡c

I

l- s,*d.,dl
I Component

I

f s'rbsysrem I

Eall Park
Size Estimare

f-- N* &-l
I r,ro¿¡riø

|

l- Fr**;l
I Points

I

Change Control
Size Estimates

76

information might enable the project manager to decide whether it is acceptable to

pursue a project further or not. Base-line sizing is a suitable technique when some

software design is complete - it provides better results than ball-park sizing.

Change-control sizíns refines size estimates during the coding stage. It can give

very accurate results for sizing the growth in code and for sizine the software

integration phase.

In terms of the above framework the 4GT Model supports base-l.ine sizing

and change-control. sizing fully. This is due to the ability of the model to size

reports and screen modules satisfactorily. Attempts have also been made to use the

4GT Model for ball-park sizing (by using the average function effort as a basis -
screen fields and SEs are obviously ignored as preliminary design has not occurred

yet; see Chapter 6 for details).

Table 3.5: Concepts for Discerning Requirements

Abstraction

Partition

Projection

suppress the detaits and concentrate on the essential properties of the
system under consideration.

Represent the whole system as the sum of its component parts.

Represent the system using only a subset of its properties.

-71

In conclusion we indicate that the 4GT Model architecture incorporates

fundamental concepts such as abstraction, partition, and, projection (see Table

5.1)." For instance, a) the model focuses primarily on the essential characteristics

of a system being estimated - namely its functions; b) the system is partitioned into

functions; functions can be summed up to represent the whole system; and c) sEs

can be used to project effort related to development of functions

3.6.2 Deriving the Total Effort

This section derives the total effort (E) for the 4GT Model. It proceeds as

follows: first we derive the basic development effort (D) required to implement all

program functions, then we derive the total system development effort (E), and

finally we illustrate how E can be adjusted for projecr facrors (E adj).

Determining the Basic Development Effort

So far the following aspects of the model have been characterized:

' an application can be broken down into several functions

. each function can be classified into function-types

' each function-type has several Specification Elements (SEs) each of

which can be classified into a category.

' each sE category has an associated SE value (sEV). The sEV

indicates the amount of time (in person-hours) it would take to

implernent an sE. This inforrnation is stored in a specification Element

Table (SET)

Notation:

The set S consists of four function types

S = {form, report, data, process)

Each of the above funcrion rypes has a specification Element Table (sET),

where the effort values for each SE category are stored; these are

SET(form), SET(reporr), SET(data), SET(process)

In a SET(type),

' sE(type, k) is the k'h sE category and sEV(type, k) is the associared

SEV

" N(T) = number of SEs in the function type T

A project has n functions, denoted by F(i), i= 1,2,3,..,n, where

F(Ð eS

For the iü function F(i), ler T = type of F(i). Considering SET(T)

" fork=ltoN(T)

set Count(i,k) to the number of SEs that falls inro the category SE(T,k).

79

N(Ð
rSEV(i) = Ð Count(i,k)

for k=l

We now have the basic effort D required to develop all program functions as,

.]EV(T, k) (3.1)

n
D = Ð rsEv(i)

j=1
(3 2)

Determining the Total System Development Effort

The effort basic effort D derived in Equation3.2 does not include the full

life cycle effort but only the effort involved in the development stage. Effort due

to the life cycle stages requirements definition, detailed design, etc., as well as

activities such as project management, administration, meeting s, and documentation

development a-re not included in D.

Researchers and practitioners have successfully used expansion ratios for

determining the total effort involved with a project.13't6'e7 For instance, Grady and

Caswell, using their historic metrics database of several projects successfully

demonstrate that elapsed phase effort can be used as a basis to estimate size

(pp.140-147).'3

80

Such a strategy is used by the 4GT Model; effort pertaining to a phase (i.e.,

development) is used as a basis for distributing effort across the life cycle (see

Figure 3.6). This approach is similar to the "component ratios" described by

Putnam and Myers for cost estimation purposes,'06 the difference being that the

development component size is multiplied by a ratio reflecting the true overhead

due to an organization's SDLC. We have validated this strategy of the 4GT Model

- Chapter 5 illustrates this aspect in detail.

To obtain the total system development effort E, we multiply the effort D

due to basic development with an expcuxsion factor reflecting the size of the

remaining life cycle activities. The total system development effort is given by the

following equation:

E=D*Expansion_Factor (3.3)

Determining the Expansion Factor

The expansion factor itself is determined from historic data by dividing an

organization's actual. system development effort with the basic estim.atecl effort D

for a project. The reason being that while the actual system development effort

includes the effort due to project management and administration, etc., the effort

8l

E does not do so. Therefore, the ratio between these two variables will give us an

expansion factorrn factor that represents effort due to the entire life cycle.

Expønsion Føctor = Actual system Development Effort / D

As every organization uses a different methodology and also practices

project management differently the expansion factor values may differ from one

location to another.

Determining the Adjusted rotal system Deveropment Effort

Finally, Project Factors (PFs), such as "developer familiarity with 4GTs",

"programmer skill", and "environmental factor" a¡e evaluated for a proposed project

on hand. Such factors influence the ultimate cost of a system and cannot therefore

be ignored. An expert system called PFES has been implemented for making such

corrections. It adjusts E above to give us the adjusted effort estimates for a project

(E Adj).

E Adj. = E * Project-Factor_Correction (3.4)

Chapter 5 covers project factor evaluation and correction in detail.

82

3.7 {Jsing the 4GT Model

To use the 4GT Model for predicting effort requires the following steps:

L The project planner uses all available information related to the project

to decompose the software into functions - form, report, data, and

process (if relevant).

2. The screen fietds involved with each of the above functions are

classified into SE categories. (This information can be summarized in

the 4GT Model remplare illusrrared in Table 3.6).

3. The 4GT Model equation is invoked at this point. This determines rhe

development effort. (Steps 3,4, and 5 are summarized, in the template

illustrated in Figure 3.7.)

4. The organizational expansion factor statistics is entered into the

template. This determines the total system development effort.

5. Projects factors are evaluated at this stage, if necessary - and this

gives us the adjusted effort.

Details pertaining to calibration of the model, including the recommended

procedure for doing so, are described in Chapter 5.

83

Table 3.6: Template for summarizing Data Rerated to Functions

4GT Model - Template l:
SE Category SE Value

(for Oracle)
Magnitude
(No. of SEs)

Total Specification Efforr
(SEV * Magnirude)

FORMS

Detailed SE

REPORTS

Total Data Effort

Table 3.7: Template for Related to Effort Estimation

4GT MODEL - Templare 2.

Form (from Template l): person-hours

person-hours

person-hours

person-hours

3.10 (Great-Wesr Life)

person-hours

Report (from Template l):

Data (from Template l):

Total 4GT Development Effort:

Organizational Expansion Factor:

Project Factors Correction:

Adjusted System Development Effort:

84

3.8 Conclusion

In this chapter \rye introduced the life cycle associated with 4GT

development and described how we can estimate information system size using

functions such as form, report and dat¿. Effort involved with each of these

functions can in turn be predicted using a predictor which we call "specification-

element". Just as 3GL cost models measure the size of an application in terms of

LOCs, the 4GT Model attempts to do so in terms of the "specification elements"

Considering that specification operations substitute physical coding with 4GTs, and

that it is difficult, if not impossible, to collect project statistics in rerms of LOCs

the techniques suggested by our model are valuable for cost estimating in the

fourth generation domain.

85

Chapter 4

Evaluation of Froject F acfors

4"1. nr¡troductíon

In this chapter we examine various factors that affect the cost of software

projects. These factors are referred to as project fauors (PFs) in the context of the

4GT Model. They acknowledge the fact that the cost of developing an application

is affected by variables such as programmer skill, end-user skill, or familiarity with

hardware and software. A prototype model called PFES was implemented to model

PF correction. It is fully functional at present.

The objective of this chapter is primarily to:

. identify and document all PFs that affect effort estimation in the 4GT

environment

. to provide a mechanism for correcting the raw estimates generated by

the 4GT Model

o to demonstrate the role that knowledge-based systems can play in cost

estimation, especially when end-user computing is involved

The 4GT Model (as introduced in chapter 3) is not sufficient enough to

explain the variation of software project costs. Therefore, various PFs that influence

the development costs are evaluated here. It results in refining the effort estimate

(E). Such PF corrections ale applied in every instance of the model usage. Two

basic schemes can be considered for applying pF conections.

(i) ConventionalApproach

(ii) Knowledge-Based Approach

Models such as COCOMO and FPA use the conventional approach for

performing PF correction. We use the knowledge-based approach in this thesis as

very little research has been conducted in the domain of "knowledge-based software

cost estimation" - most of the existing cost models use the conventional approach

only. We now have an opportunity to explore some of the presumed benefits such

as - explanation capability of knowledge-based systems, ability to integrate

project management experience (on completion of a project), and ability to train

novice project managers or cost estimators. But first we review the conventional

approach.

4.2 Conventional Approach

To illustrate the conventional approach we describe how COCOMO and

FPA perform PF correction.

87

4.2.'1, PF Correction in COCOMO

The various factors involved in COCOMO's PF correction were extensively

researched and documented by Boehm.ró Based on literature research, and his

project data, fifteenfactors (called cost drivers) were identified - see Table 4.1.

Table 4.tr: COCOMO Cost Driver Attributes

1 . Product attributes
a. required software reliability
b. size of application data base
c. complexity of the product

2. Hardware attributes
a. run-time performance constraints
b. memory constraints
c. volatility of the virtual machine envi¡onment
d. required turna¡ound time

3. Personnel attributes
a. analyst capability
b. applications experience
c. programmer capability
d. virtual machine experience
e. programming lan_euage experience

4. Project attributes
a. modern programniing practices
b. use of sotiware tools
c. required development schedule

88

4.2.2 PF Correction in FPA

As indicated in Chapter 2, the FPA methodal adjusts the initicLt_FP count

by applying a set of project factors. The final FP count is obtained using the

equation:

FP = Initial_FP x [0.65 + 0.01 x SUM(pF,)]

Here Initial-FP is the unadjusted FP count obtained by evaluating the business

functions. PFi (i = I to 14) are FPA's project factors, also called complexiry

adjustment values, and are based on answers to the following questions:a2

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized operational

environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction to be built

over multiple screens or operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

89

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in different

organizations?

14. Is the application designed to facilitate change and ease of use by the

user?

A value ranging from 0 to 5 can be assigned to each of the above PFs. This results

in a correction range of 0.65 to 1.35 for the initial Fp count.

4.2.3 Summary

Similal conventional techniques are used by other researchers in their cost

models. For example, Walston and Felix (see pages 54-73)43 and Capers Jones (85-

208)44 describe similal factors. While some differences exist, one can notice some

common grounds in each of the above models with regards to PFs used. For

example, Siba Mohantyas compared fifteen conventional models used in various

estimating methods by studying 49 PFs. The overall result of his comparison

reveals that the following three project attributes are found most frequently, and

account for 75Vo of the total atflibutes found in the various models,

size 20Vo

complexity l9Vo

environment 36Vo

90

It can therefore be assumed that when it comes to estimating softwale development,

the three major concerns are size, complexity, and environment.a6

4.2.4 General Strengths and Weaknesses of the Conventional Approach

This section reviews the conventional approach for its strengths and

weaknesses. First the strengths:

l. The conventional approach is concise. It is easy to design and

implement such a scheme since basically only a few key project

factors, such as project environment and personnel ability are used.

It is more objective than the knowledge-based approach, and there is

less room for influencing the ultimate estimates.16

Most such PFs are also objectively calibrated to previous data.

It is conceivable that such an approach can also outperform expert

judgement due to the bootstra¡t¡ting phenontenon.

The weaknesses of the conventional approach basically complement the

strengths of the knowledge-based approach. According to Boehm, with the expert

judgement approach (he was referring to human experts, not knowledge-based

systems) there is an opportunity to factor in exceptional personnel characteristics

or interactions, and other unique project considerations as well. This open-ended

scheme is desfu'able, as indicated by Symons, when commenting on FPA's limited

2.

aJ.

4.

9I

number of technical complexity factors. He states, "the restriction to 14 factors

seems unlikely to be satisfactory for all time. Other factors may be suggested now,

and others will surely arise in the future."38

One way to address the above problem is to use the knowledge-based

approach. Several user friendly shells are available today and they readily assist us

with encoding project experience and knowledge. The knowledge-based approach

was a very suitable research method as it supplemented the sparse literature

information available on the topics of end-user development and 4GTs. By contrast

it was easy to find practitioners who had significant experience in this area and

could readily qualify as "experts". Our basic purpose then became one of

documenting such unrecorded expertise. It is a sad but tlue reflection of the state

of software development - practitioners with knowledge do not have the time or

inclination to publish.

4.3 Knowledge Based Approach

The knowledge-based approach can be defined as providing an explicit and

visible representation of the knowledge. Even though there is an inferencing

mechanism it is hidden away from the knowledge. In compalison in a 3GL

program the same knowledge (called data) is embedded within the procedural code.

92

The knowledge-based approach provides us a more open-ended approach

for effort correction. For example, consider the PF pertaining to end-user

computing. COCOMO and FPA ignore this parameter, but with an open-ended PF

conection scheme project managers or estimators can integrate the above PF into

a knowledge-base by describing all relevant rules to the system.

Another advantage with the knowledge-based approach is that it provides

us with the opportunity to model situations or attributes for which we do not have

adequate statistical information but have heuristics or rule-of-thumb's. To illustrate

with an example, very little information is available in the general literature today

with regards to the impact of end-user computing on cost estimates. However, it

is possible to resolve this difficulty if a project manager's experience can be

represented in a knowledge-based system.

Other desirable side-effects of using the knowledge-based approach is that

(a) it can provide a very user friendly interface for requesting information

from the users about valious aspects of their application or the project

environment (refer to Appendix A, illustrating the PFES interface),

and

(b) it can offer a "consulting opinion" via the use of "How" and "Why"

features of such a svstem.

93

it can train novice project managers or cost estimators.

it can provide a "what if analysis" capability.

Literature review reveals that at present no such specific system exists for

4GL cost estimation or end-user computing. Exploring models and estimation

techniques using knowledge-based applications is a worthwhile goal today as expert

systems technology has matured. Due to the availability of expert system shells, it

is possible to easily integrate the expertise of the estimator, project manager, or any

development team member into a knowledge-base today. (Little or no traditional

programming is involved here; and a prograÍìmer is no longer needed to maintain

or implement simple expert systems).at The commonly acknowledged knowledge-

based benefits are also presented in Waterman2T(pp. 6-7). We can surrunarize the

strengths as:

. an explanation capability

. an ability to provide expert judgement

o a basis for novice staff to perform project estimates

ø a mechanism to provide a solution even if no algorithm is known, data

are incomplete, or data do not exist (e.9., if historical metrics data is

unavailable)

(c)

(d)

94

In describing the advantages of using the expert judgement approach for

cost modelling Boehm states, "an expert's judgement is able to factor in the

differences between past project experiences and the new techniques, architectures,

or applications involved in the future projects. The expert can also factor in

exceptional personnel characteristics and interactions, or other unique project

considerations"(p. 333).
16

4.4 PFES: An Expert Systern for FF Correction

In this section an expert system for conecting the initial software

development effort estimates, Project Føctors Expert System (PFES), is presented.

The prototype PFES is designed to provide PF correction when end-user computing

is used as well. PFES has been designed to function with the 4GT Model, but it

can readily be used with other models as it simply presents an average correction

factor. The test results from PFES execution have been found to be quite adequate

and interesting as well. Since the PF correction issue can be resolved with PFES

quite naturally by manipulating symbols and symbolic structures, it is inferued that

knowledge-based application development is feasible and possibly suitable.

95

4.4.1 DevelopmentMethodology

The life cycle methodology for developing knowledge-based systems is

different when compared with traditional systems. The following stages were used

to implement PFES.a8

(a) Identification

This is the first step in Expert System building development, and the

objective here is to: first define the problem, and then to describe the

important features of the problem such as type and scope, goals and

objectives, participants and resources. It also includes a discussion of

several topics such as current system (if any), proposed system, scope of

the system, participants, alternatives and goals.

(b) Conceptualization

During this stage the concepts, relations, and control mechanisms needed

to describe problem solving in the domain are presented. This is a critical

phase - successful extraction of major and minor concepts can alleviate

hardships at latter stages. The conceptualization task for PFES falls

somewhere in between easy and hard, and a significant proportion of time

was spent during this phase.

96

(c) Formalization

'Waterman
defines this stage as follows: "Formalizationinvolves expressing

the key concepts and relations in some formal way usuatly within a

framework suggested by an expert system building language." Matching

the application characteristics with the appropriate tools is one of the key

concerns here.

(d) Implementation

During this stage we convert the formalized knowledge into a working

knowledge-based computer program. If an ex¡tert systenx sltell is available,

and matches the application characteristics it can be used. Otherwise a new

tool has to be developed using A.I. languages such as LISP or PRoLoG.

(e) Testing

This is the last stage and we evaluate the performance of the prototype

here. Valious test cases representing as many scenarios as possible are

analyzed by the knowledge-based system.

4.4.2 Overview of the Prototype Development

The scope, participants, computing tools, validation strategy, and other

aspects related to the PFES prototype development ale presented here.

Froblem Definition

A large number of factors can affect the softwar-e development estimates.

The primary objective of PFES is to recommend PF correction for small to medium

sized 4GT software development projects. Large application systems are ignored

since the 4GT Model is not concerned with larger projects. It provides estimates

when either end-user computing, or traditional DP depar-tment based development

is involved.

Scope

The scope of PFES is to a certain degree consüained by the scope of the

4GT Model - effort conection of small to medium business applications using

4GTs. The overall scope is narrow enough to make the problem manageable and

sufficiently broad at the same time to ensure that the problem has some practical

interest.

Participants

Norbert Kaehler, Assistant Manager, Development Services, Information

Systems and Data Processing, Investors Group, Winnipeg, functioned as the

expeft.]] He suggested various project factors that are relevant to application

development in the fourth generation environment, but do not exist in current

literature. He also evaluated the relative importance of other PFs in light of 4GT

98

development. Other ISDP staff at Investors were also consulted as required. The

nature of consultation ranged from collecting actual historic data pertaining to

implementation of 4GL and 4GT projects, to seeking a second opinion from them

with regards to the validity of any project factor (based on their experience as

project managers). The knowledge-engineering and programming was performed

by the author of this thesis. Kaehler subsequently validated the model using several

case studies from his experience. Members of the examination committee,

especially Scuse, contributed throughout the knowledge engineering process and

eventually by testing the PFES prororype.

Knowledge Acquisition

The domain of knowledge required for PFES was obtained from the expel,

but literature search, consultation with other experienced project managers, and the

author's personal experience with project management also played a useful role.

Computing Tools

VP-Expert, an expert system shell from Paperback Software International,

was used to implement PFES. It is a rule-based system for developing small to

medium sized expert systems and is suitable for developing initial prototypes, as

in our case. It runs on a IBM PC microcomputer or other PC compatibles. It is

capable of using both forward and backward search when searching for a solution.

99

It is also capable of interfacing with databases created using Ashton Tate's dBASE

III and IV packages, and spreadsheet's created with LOTUS l-2-3.

Validation

Various test cases representing typical variations in developer ability,

project environment, and product complexity were generated and tested using the

prototype system. Validation process involved expert approval of both the

individual PF values embedded in the rules, such as reliability, interface

complexity, etc., and the overall PF conection value suggested by pFES.

4.4.3 Overview of the Development Process

The following steps provide an overview of the development process used

for system development:

(1) identify the knowledge acquisirion method

(2) identify all project factors that can affect the cost of development in

the 4GT environment

(3) group them into categories that affect estimates, either positively or

negatively

(4) determine the range of values (effect) for each of these groups

(5) design the conceptual model, implement an initial prototype, and

execute it against test data

100

validate the output and redesign the model if necessary

present the recommended PF correction.

4.4.4 Conceptual Model

The various PFs that play a cenhal role in PFES are described here.

Albrecht,l8'al watson & Felix, DeMarco,.r Boehm,t6 capers Jones,aa Basili,a3

amongst other researchers have identified and used some of these PFs in their cost

models. However, our knowledge engineering process succeeded in revealing some

new PFs for our problem domain.

The different PFs that play a role in the knowledge-based system are

described here next. The first PF (mode of development) relates to end-user

computing. This is a new PF and does not exist in other models.

Mode of Development

It is possible for end-users today to tackle challenging data processing

tasks, and they indeed are doing so in several organizations. When end-user based

application development is taking place it is necessary to measure two concerns:

a) the extent of support available from various sources such as

Information Centre, or assistance with valious aspects of application

development is available from the data processing shop. If such

(6)

(7)

101

support exists then it serves the purpose of facilitating application

development and eventually reducing effort and cost of software

development.

b) Six categories of end-users have been identified by Rockart and

Flannery.ae

(a) Data Processing Programmers

(b) End-user Computing Support Personnel

(c) Functional Support Personnel (power useÍs who work in

functional departments, outside of IS)

(d) End-user Programmers (who can write code)

(e) Command Level End-users

(f) Non-Programming End-users

Basically, we classify the above into three general categories - at the

lowest end of the spectrum we have application users who are not capable of any

end-user programming or even executing simple commands, but can operate a

menu driven application system, and at the upper end we have prograntmer encÌ-

users who ale basically full time system developers, highly skilled, and well

qualified. The middle category ranges from end-useÍs capable of some command

level operations (and therefore capable of 4GT programming with adequate training

or support), to sophisticated dBASE programming types, but less sophisticated than

the professional progr¿tmmers.

102

For the purposes of PF correction, end-users at the lowest end and the

highest end of the spectrum are ignored. The non-progrcun.m.ing end-users probably

will never be requested to develop 4GT applications, and the progranüner end-user

can very well be classified in the same category as the profession aI data processing

staff member.

Previous Familiaritv

Previous familiarity with the application environment identifies attributes

such as:

experience with similar size of applications

experience in the application problem domain (e.g., accounting

applications)

previous experience with similal hardwale and operating system

previous project team experience

Individual capabilities ale considered here for project factors such as the

ones listed above and described in terms of "years of experience." If the end-users

are involved with development, only full. time equivalents of "years of experience"

should be considered. If the palticipants ale very experienced it can reduce the

development effort significantly.

103

Previous experience with 4GT tool

This project factor quantifies previous experience with 4GTs and with the

DBMS. Specifically, it is concerned with the extent of experience with the specific

4GL and DBMS to be used in application development either by the end-user or

DP staff.

Project Novelty

This attribute was identified as the single most significant factor by

CrossmanrrT in his investigation of application development productivity. His

analysis of data revealed that novel applications took up significantly more

resources (effort) than familiar ones.

Application Factors

Application factors are concerned with the details of the cun'ent application

being developed. They identify the complexity of attributes such as:

reliability required of the new application

data communication involved

designing applications that facilitate change, or reuse of code

interface complexity (VO complexity due to printing on laser printers,

or VGA monitor in colour)

providing operational ease

104

Methodology Factors - Practice

Practice factors are concerned with the development rigour of the

application development environment. It is concerned with the use of techniques

such as:

top down design

structured systems analysis techniques

formal walkthrough's

acceptance testing

use of structured programming techniques

use of automated tools for flowcharting, documentation, testing, etc.

Methodology Factors - Techniques

The technique factors are concerned with use of techniques such as JAD

and Prototyping in the methodology. The expert has indicated that such factors can

affect software estimates sienificantlv.

When end-users are developing systems the option "PF not applicable" may

be selected. In those cases where the end-user itself is the user. i.e.. JAD and

Prototyping is meaningless then.

105

Other Factors

This provides us the opportunity to consider other PFs that might affect the

overall PF value. Thev include:

St¿ff morale

Staff Compensation

Xeroxing & Printing resources

Individual Workstations

Technical Education

Availability of essential Software & Hardware

Working on a Low Priority Project

Staff V/orking on Several Projects Concurrently

Attributes such as "Travel Involved" may be incorporated here if so

desired. But care should be taken to see that this is not done indiscriminately. Note

that some of the PFs described in this section correlate positively to effort, and

some negatively, and also some PFs have a more significant impact on the effort

estimates than the other. Both these aspects are dealt with by the cost model.

106

4,4.5 Calculating the Effect of Each PF

There are several options available to determine the effect of each PF and

also to calculate the overall PF correction. Simple addition of the PFs, or

multiplication of the PFs, or even subjective techniques can be used to determine

the effect of PFs. The strategy used here is a heuristic one and is comparable to

that in COCOMO. Boehm uses a heuristic approach to determine the effect of each

PF; he first quantifies them by assigning ratings to each attribute on a five- or six

point scale (such as Very Low, Low, Extra High), and then allocates numerical

values to the ratings (such as 1.15 or 0.75).

The following heuristic is used in PFES to determine the effect of each PF:

L Assuming that PFs are nornally distributed in the population, the

normaL curve can be used to approximate the PF ratings and determine

individual PF values for each rating. In order to do that we define

each project factor as having a mean of 1.0, and a range of values X,,

Xr, or X, referring to significant-, average-, or moderate influence on

estimates. One important characteristic of this approach is that all

curves have the nxean at the point where exactly half the population

is below it and half above it, that is, for Xr, X2, or X, what is true on

one side of the curve is also true on the other side. The attribute

t01

ratings, very low, low, average, high, very high, then can be defined

symmetrically around the average as low/high, or very low/very high.

2. Initial ranges for X,, X,, or X, were based on literature review -
primarily COCOMO, and were determined to be 0.14, 0.7, 0.35

respectively. In course of the knowledge engineering and validation

process some of these values for were adjusted on recornmendation

from the expert. See Tables 4.2, and 4.3.

Table 4.2: Factor Values of Ratings trnfluencing Positivety

Degree of influence

Significant (xl)
Average (x2)
Moderate (x3)

Low Average

t.I4 1.0
r.07 1.0

1.04 1.0

V. Low

1.28

I,I4
r.07

High

0.86
0.93
0.96

V. High

0.12
0.86
0.93

Table 4.3: Factor Values of Ratings Influencing Negatively

Degree of influence

SignifÏcant (xl)
Average (x2)
Moderate(x3)

Low Average

0.86 1.0

0.93 1.0

0.96 1.0

V. Low

0.72
0.86
0.93

High

t.r4
1..07

r.04

V. High

r.28
t.L4
t.07

3. During calibration some of the PFs

average or moderate. For example,

were defined as being significant,

PFES defines novelty, experience

108

with 4GT tool, and overall experience, amongst others, as being

significant. While these attribiltes are "soft coded" (see Appendix A,

lines I ,2 and 3), others are "hard coded" in the rule-base (as is done

in the case of rules pertaining to reliability).

4. If a new factor is required to be part of the PFES this informarion is

appended to the expert system, but until it is validated it should be

classified as having moderate influence, therefbre, assuming a range

in the PF value of plus/minus 0.07, at most. In addition, the option

"PF_not_applicable" should be provided, therefore making it possible

to exclude this PF when appropriate.

4.4.6 Exceptions: Rating Values for End-users

In PFES some exceptions were made when evaluating end-user

performance using the rating values of the above heuristic. By using expert opinion

as a validation mechanism the following unique ratings were decided upon when

end-user computing occurs:

Functional Support P ersonnel

V. Low Low Average

1.84 |.63 r.42

High V. High

t.2I 1.00

109

Tlr¡le of, Devetroper
r---Dot€--_l

Figure 4.1: PFES: End User Flow

Since functional support personnel are experienced users they are

considered as having an irnpact ranging from 1.0, (for very High skill) to l.g4

(very low).

Command Level

V. Low Low Average High V. High

2.47 2.26 2.05 1.84 r.63

110

The command level end-users ratings average is three magnitude lower

than those of the functional support personnel as the end-users is not skilled with

most of the aspects of application development tools. Note that the above numbers

have not been extensively validated in other environments and caution must be

taken in using them elsewhere.

4.4.7 Validation of the PF Values

Boehm has suggested the following method to deternine the effect of a PF

value (p. 378).1ó This type of validation can be performed on completion of a

project.

1. Using the 4GT Model compute the estimated development effort for a

project without the influence of the effort multiplier PF being analyzed.

Let this be called Effort_PF

2. Define the ideal effort multiplier (IEM_PF) for this projecr. One which

if used in the 4GT Model would make the estimated development effort

for the project equal to its actual development effort (actual_effort).

That is,

IBM_PF = Actual_Effort / Effort_FF

111

As an example, if Actual_Effort is equal to 1020 person hours, and

Effort-PF (experience with 4GT tool) is equal to 1200 (using the above equarion),

the IEM_PF value is:

IEM_PF = 1020 11200

= 0.85

Note: Effort-PF is obt¿ined by ignoring the impact of the PF representing the

. previous experience with 4GTs, assuming that is rated as "high," and

influence being "significant."

Now, if this IEM value is compared with the one used in PFES, it must be

reasonably close to 0.85. Such a procedure therefore serves to validate the various

PF values.

4.4.8 Design of the User Interface

Data and information required by PFES to make a decision is obtained

through user responses to questions. Some information, however, is obtained

indirectly from the rules through inference. Actually, PFES reqllests data from the

user only if it cannot resolve the goal or sub-goals internally using its rules. A

listing of the questions asked by PFES is illustrated in Appendix B. The following

ratings described the range of most of the attributes defined above:

very low, low, average, high, very high, PF not cLppl.icable

rt2

If it was determined that the option "PF not applicable" is not applicable

for a given PF then this option is omitted. Finalty we note that the questions used

in PFES could not be more descriptive due to the limitations of the expert system

shell.

Characteristics of the Application

Figure 4.2: Conceptual Model of the PFES

113

4.4,9 Design of the Frototype

The concepts surrounding the application design are illustrared in the

Ftgure 4.2. The detailed flow of reasoning and assumptions are not presented as

it is too technical and prototype-specific, but generally speaking, this is what

happens - PFES obtains the values of the individual PFs from the estimator,

aggregates the values, and gives an overall PF correction factor.

4.4.10 Validations, Analysis, and Test Results

As indicated earlier, two stages of validations are attempted. First, the

individual rules and their range of ratings are approved, and also matched with

comparable PF ratings in literature (when available). Second, the PF correction

value (output) from PFES is validated against expert opinion.

Note that adjustment and tuning of the prototype rules (and values) were

necessary and were performed several times before satisfactory results were

obtained. The following procedure was used input information for the

Personnel-PF was provided to PFES, and the results were validated for both

different types of developers, the data processing staff, and the end-user. Different

types of end-users with varying degrees of skills were verified. This was followed

by independently testing the Application_PF and the various complexi¡y attributes

therein. Finally, the Methodology and Environment PFs were validated

tt4

independently and their results approved. All of the above components were tested

collectively, and for a range of input values the PF colrection factor was validated

against expert opinion.

The test results of three typical test cases found in the software

development environment are presented, and three abnormal cases are presented

below. The abnormal cases reflect two extreme cases, i.e., selection of all PFs that

affect PFES negatively, and positively. The other case is where all average values

are selected. The scenario where strong experienced personnel are given the most

difficult projects and the weakest team personnel given an easy project are also

depicted.

Results: Sample simulations from the initial version of PFES resulted in the

following values. The results show some normal and extreme PF correction values.

Inexperienced Team Assigned Very Easy Project:

The 4GT tool value is 1.28

The Development teams familiarity with the application on hand is 1.28

The Personnel PF correction is 2.32

The Methodology correction factor is 1.0

The Project administration environment rating is 1.07

115

The Work and Staff environment ratins is 1.07

The PF Correction is 0.51

(VP-Expert's execution trace for this result can be found in the Appendix E.)

Moderate Project Assigned to Capabte Team:

The Overall experience value is 0.58

The 4GT tool value is 0.72

The Development teams familiarity with the application on hand is 0.72

The Personnel PF correction is 0.30

The Methodology correction factor is 1.0

The Application project factor correction is 3.43

The Project administration environment rating is 1.07

The Work and Staff environment ratins is 1.07

The PF Correction is 1.18

Very Easy Project Assigned to Very Capable Team (extreme case)

The Overall experience value is 0.58

The 4GT tool value is 0.72

The Development teams familiarity with the application on hand is 0.72

The Personnel PF correction is 0.30

The Methodology correction factor is 1.0

116

The Application project factor correction is 0.19

The Project administration environment rating is 1.00

The Work and Staff environment rating is 1.00

The PF Correction is 0.25 (Case correcred bv PFES).

Additional PFES Execution Results

Very Difficult Project Assigned to Very poor team

The Overall experience value is 1.42

The 4GT tool value is 1.28

The Development teams familiarity with the application on hand is 1.28

The Personnel PF correction is 2.326528

The Methodology correction factor is 1.0

The Application project factor correcrion is 3.435974

The Project administration environment rating is 1.00

The Work and Staff environment rating is 1.00

The PF Correction is 7.993890 (case nor recommended by PFES).

Average Project Complexity and Average Team

The Overall experience value is 1.0

The 4GT tool value is 1.00

The Development teams familiarity with the application on hand is 1.00

117

The Personnel PF correction is 1.

The Methodology correction factor is 1.0

The Application project factor correction is 1.

The Project administration environment rating is J.00

The Work and Søff environment ratins is 1.00

The PF Correction is 1

Very Capable End-user Assigned Easy Froject

The End-user value is 2.05

The 4GT tool value is 1.00

The Development teams familiarity with the application on hand is 1.14

The Personnel PF correction is 2.3370000

The Methodology correction factor is 1.0

The Application project factor correction is 0.231115

The Project administration environment rating is 1.00

The Work and Staff environment ratins is 1.00

The PF Correction is 0.540116

118

4.5 Conventional FF Correction

If an organization is unable to use expert system technology for effort

correction (due to lack of resources), it is still possible for them to use the 4GT

Model (introduced in Chapter 3) in conjunction with a spreadsheet version of the

PFES model illustrated in Appendix C. This version approximates the mechanics

of the knowledge-based system. Of course, in this case, the various advantages of

the knowledge-based approach, as narrated in this chapter, are not valid any more.

4.6 Conclusions and Contributions

Using the knowledge-based systems approach to estimate various project

parameters provides us several advantages. Even though the bulk of the resea¡ch

related to PFES development occurred only at one site we feel that these

advantages are relevant to most organizations involved with fourth generation

development. To summarise:

' it provides an opportunity to capture the knowledge of an expert cost

estimator and document them. This is especially useful if "hard"

documented results are not available in literature yet due to the newness

of the technology (as with 4GTs). Practitioners generally have useful

experience, but either for proprietary reasons or for lack of interest do

not often publish such data promplty.

119

novice project managers can use the user-friendly interface of pFES to

specify project parameters and study their influence on the overall effort

required for software development.

the explanation facility provides an opportunity to study the impact of

various factors such as "programmer skills" or "prior familiarity with

hardware" on the cost of developing software. The project manager can

use this information to minimize the cost of developing software by

choosing the best approach.

e an open-ended approach is facilitated for knowledge encoding. For

example, if in the future, the technology changes, or any other criteria

affecting costs come into picture, they can be incorporated into pFES to

obtain better estimates. Due to the accrual of such relevant knowledee

into the knowledge-base it is possible for project estimation accuracy to

improve.

Incorporation of new project factors into the knowledge-base, however,

must be done carefully as it can result in an inconect conection. In order

to resolve serious potential problems KaehlerTT has proposed that we put

caps on the range of influence of PFES corrections at 0.25 to 5.0. Such a

strategy is evident in FPA and related cost models.18 The above factors

lead us to conclude that it is very important to validate an expert system

r20

periodically after any changes are made to it. (The procedure described

earlier on in the chapter can be used for such purposes.)

' two unexpected but useful results from our experimentation with the

knowledge-based approach turned out to be:

(1) A new data group set pertaining to end-user computing

(2) Rules that recomend whether end-user development occur or not,

or that it proceed cautiously. (Such inferences could be useful

for the manager).

I2l

Chapten 5

Model F xperímentatÍon and Analysís

5.1 IntroductÍon

In this chapter we provide details of 4GT Model calibration,

experimentation, and validation. Detailed procedures for installing and using the

model are also provided here.

Participants from three different sources were involved with the process of

calibrating and validating model weighß78'8r'82:

" Great-West Life Corporation

. Pitblado & Hoskin

o University of Winnipeg

This diversity served the purpose of indicating if the model is portable

across organizations. (Section 3.1 provides a detailed history of the model including

participants and dates.)

r22

5"2 Implementing 4GT Model

First we recall that our 4GT model, as described in Chapter 3, is able to

support the following objectives:

" Estimation of development efforr: This refers to estimation

development time (D) required to implement all functions

delivered software (such as forms and reports).

" Estim.atiott oJ total system developmerú efforti This refers to the

estimation of the total system development effbrt (E). It includes effort

due to life cycle, project management, administration, and

documentation.

This chapter examines both the above issues in depth. It is organized as

follows: First, we illustrate how the different weights associated with the model are

determined for a given 4GT tool. Then we describe how the expansion factor is

determined for a given organization. Finally, we describe how the model can be

validated. The above constitute the main thrust of this chapter, but other issues such

as portability and productivity measurement of tools are also discussed.

of the

of the

r23

5.3 Model Calibration

Ted Janzen, Associate Manager Computer Systems, Great-West Life, was

approached in May 1991 for purposes of experimenting with the 4GT Model. Ted

Janzen's Computer Systems group was actively developing 4GT based application

systems using ORACLE and they were therefore quite interested in calibration and

experimentation with the 4GT Model.

The objective of the calibration procedure is two fold:

1) To obtain the life cycle expansion Jactor for Great West Life.

2) Calibrate the weights associated with each of the sE categories

(Simple, Detailed, etc.).

The calibration process performed is described in detail in the next few

sections. But first we present some details of the host site and interaction with its

participants.

5.3.1 Host Site and Participants

Great-West Life is a large corporation with offices across Canada and the

IJnited St¿tes. It is headquartered in Winnipeg, and provides a wide range of

insurance, retirement and investment products to about six million people.

Technology is at the core of their business, and more than 400 systems

124

professionals support their diverse needs in Canada. GrearWest Life has very good

computing resources. The following are some of the major hardware and software

supported: Hardware - IBM 3090 and 286/386 PC's; Software - MVSÆSA,

CICS, IMS DB/DC, DB2, TELON, PL/I, COBOL, C, ORACLE, ACCEL ANd

several PC-based software packages.

At our very first meeting, a report describing the 4GT Model was given to

the interviewees at Great-West Life (see Table 3.1). The initial meetings served the

purpose of acquainting the participants with the 4GT. Information about their

project management and cost estimation practices was also obtained. Subsequently

more than twenty five meetings took place between May and October I99l l7l-841

each lasted more than one hour, but usually less than three hours.

The initial few meetings highlighted the difficulty of calibrating and using

the 4GT Model as originally presented to them. However, largely due to the efforts

of Smith and Janzen the 4GT Model was successfully adapted for experimentation.

Since ORACLES8 was used to experiment with the model it is described next.

5.3.2 ORACLE Tools

ORACLE Corporation's ORACLE is a populal relational database

management system that supports SQL. The user interface and SQL language are

125

compatible with both IBM's DB2 and SQL/DS. ORACLE comes with a complete

set of fourth generation support tools such as a menu generator, report writer, forms

generator, and data dictionary. ORACLE is designed for a multi-user environment.

The ORACLE environment consists of the following components: a relational

database management system, an active data dictionary, SQL query language,

application generator, and report writer. A brief description of ORACLE's family

of application development tools is presented below:

SQL+Plus Provides direct interface to the ORACLE relational database

system. Contains the full implementation of ANSI SQL. Used

to create and manage tables.

SQL*Forms It is an interactive forms generator. It provídes access to SQL

for those applications that require its use. Complex

processing is facilitated via user exits to system macros and

other 3GLS (from within the form). Once an application is

designed and generated it can be used by the operator for

querying, updating and adding data.

SQL*Report V/riter Used to generate report

t26

SQL*Menu Can be used to create a menu driven system by integrating

different functions.

Their CASE system environment consists of the following components:

CASE * Dictionary, CASE * Designer, CASE * Generator, and CASE * Method -

all fairly standard tools. ORACLE runs on IBM mainframes, DEC, high-end

microcomputers, and several other computing environments. It was first developed

for the MVS, VM/CMS environment but is now available under UNIX and PC-

DOS. There is considerable code portability as all versions of ORACLE are

identical and include the full implementation of SQL. In addition, ORACLE's net-

work software allows networking of microcomputers, minicomputers and main-

frames and permits sharing of databases.

5.3.3 The LEGASY Project

The LEGASY (¿EGAI ,9Ystem) project was used to calibrate the 4GT

Model at the Great-West Life. Subsequently another project, Telephone System,

was used to validate the calibrated weights of the 4GT Model. We present project

details of the LEGASY project here. The Law Department within the company was

interested in a legal system that met the following requirements:

(1) automated litigation management: store information regarding issues

r27

automated calendar of events: keep track of scheduled events of

each file.

automated time tracking: record in-house counsel time for each file.

implementing key word document search: locates document on the

system which contains a specific word or a phrase.

Corporate Systems examined the above requirements in June 1990, with

a view to implementing the system. Selected details of tþe proposed sysrem are

presented in Appendix E. The system took 2340 person hours to implement. The

following staff were involved at various stages of the project: Janzen, Warkentin,

Smith, Trainor and Buskens (see Table 3.1). It started on November 20,1990 and

took ten months to complete it fully. In May 1991, the process of calibrating the

4GT Model began. The LEGASY project was selected by Janzen (Project Manager)

for calibration purposes as he determined it to be an average project involving

average experience. The fact that current data useful for cost modelling purposes

were easily available was also a key reason.

5.3.4 Procedure Used to Calibrate Weights

The people participating in the calibration processT8 met the following two

criteria:

(2)

(3)

(4)

r28

1) They had one to three years of development experience using ORACLE

and its tools, and

2) They had a previous experience of one to three years with the

ORACLE environment (i.e., computer, operating system, utility tools,

and methodology).

These two criteria are crucial as the 4GT Model is designed to provide us

average effort estimates only. (Note that project factor corrections can take place

if so desired using PFES - as discussed in Chapter 4.)

The following steps were used to calibrate model weights - they can, and

must preferably be performed during the development stage of an on-going project.

In our case the calibration was done with the LEGASY project (see section 5.4 for

details):

Classify the functions into either form, report, or data types.

Identify the screen fields that constitute each function.

For form or report functions:

a) First, determine the effort associated with implementing a skeletal

screen. Divide this number by the total number of screen fields in

each form or each report. This gives the Simple SE value (SF).

1)

2)

3)

129

b) Next, for applicable cases, categorize the above screen fields into

one of the SE categories - basic, detailed and user exit.

c) Document the effort associated with implementing each SE.

Average the effort by SE category - this gives us the Basic (BSE),

Detailed (DSE), and User Exit (UE) values.

4) For data functions:

a) Determine the total number of data elements in a table.

b) Determine the total effort involved with table definition.

c) Divide the total effort by the total number of data elements - this

gives us the calibrated value for data-element (DE).

5.3.5 Calibration Details Pertaining to LBGASY

We basically followed the above steps in detail. First we identified

functions and classified them in one of the three function types - report, form, and

data. The functions not falling into the above three categories belonged to the

process type - these were modules coded using C programming language. The

effort associated with these were documented separately. (Only one person,

Buskens, was involved with all C coding and he gave us all effort statistics related

to C programming.) Next SEs were identified for each of the above functions and

these were classified into SE categories. (Note that the scope of the research did

130

not include the process type so we did not determine or calibrate their SEs). The

following strategy was used to locate SEs.

(a) Form type: Count total number of screen fields. Classify applicable

(b)

screen fields into either: basic, detailed, or user exit SE categories.

Report type: Count the total number of following report fields -
report screen fields, report summaries (and related objects) into SE

categories. No user exits were identified as ORACLE does not

support exits to procedural language.

Data type: Count the total number of data elements in the whole

database.

(c)

Note that the above strategy, at this stage, does not involve the use of

historic project data in the conventional sense as only actual development effort

values relating to the various SEs are documented here. This approach for

computing basic development effort is unique amongst related cost models. It

consequently provides us with some advantages:

" Dependency on large quantities of historic project data pertaining to the

same fourth generation tool for calibration purposes is minimized (and

so is the risk associated with usins them.22'23

o Ease of re-calibrating values for newer versions of 4GTs.

" Ease of re-calibratins values for new 4GTs.

131

Results

Appendix F and G document statistics related to all the functions involved

with the calibration process at the Great-West Life. In total more than twenty eight

form functions were involved, with the process resulting in identification of 185

SF's, 36 BSE's, 32 DSE's, and 1l UE's. These SEs were calibrated using person-

hours as a measuring unit resulting in the following weights: SF = 0.13, BSE =

0.29; DSE = 1.59; and UE = 22.73. For the report type we identified 59 SF's, 14

BSE's, 69 DSE's, resulting in the following weights: SF = 0.13, BSE = 0.84; and

DSE = 2.55. For the data function type we identified 238 data elements in all the

LEGASY tables.

The calibrated weiehts are summarized below in Table 5.1.

Table 5.L: Calibrated Weights for the 4GT Model

Project
Participant

Function
Type

Simple

tSF]

Basic

tBSEI

Detailed

tDSEI
User-Exit

tUE]

Data Element

tDE]

GWL Form 0.13 0.29 r.59 22.13

GWL Report 0. r3 0.84 2.55 N{äii

GWL Data NlA...i ::.i.i,iiiiii::iiiiiirl}llAl 0.41

r32

With the determination of the above weights it is now possible to state the

4GT Model equation - for example, at the Great-West Life, the following 4GT

Equation is valid for predicting ORACLE project developmenr effort:

þ = [(SF¡"..*O. I 3)+(B SEro.".,*O. 29)+(DSEtu,n,* 1 . 59)+(UEr",^.,* 22.7 3)+

(SF,"pon*0. I 3)+(B SE,"oo,.*0. 84)+(DE,"oon x2.
5 5)+(DEo","*0. 4 1)]

5.4 Determining the Expansion Factor

Note that the above 4GT Equation is unable to predict the entire life cycle

effort. Effort due to the various life cycle stages as well as activities such as

project management, administration, meetings, documentation development are not

included in D. In order to obtain the total system development effort E, we need

to multiply the effort D by an ex¡tansionJactor. (Chapter 3 explains the expansion

factor in detail.)

The expansion factor is determined by dividing the ctctual system

development effort with the estimated effort due to J'orms, reports and processes.

For the LEGASY project (see table below) this factor is equal to 2340/755.4I =

3.r0.

t33

4GT MODEL - Calibrated For Lesasy

Forms 335.37 person-hours

Reports t97.46 person-hours

Data Type 9't.58 person-hours

Process Type 125.00 person-hours

Development Effort (estimated) 755.4r person-hours

Development Effort (actual) 2340.00 person-hours

Expansion Factor (actual/estimated) 3.10

FORMS

SE Category SE
Value

Magnitude Total SE Value

Simple SE 0.13 185 24.05

Basic SE 0.29 36 r0.44

Derailed SE 1.59)L 50.88

User Exit 22.73 l1 250.00

Total Eftbrt 33s.37 person-hours

REPORTS

SE Category SE
Value

Magnitude Total SE Value

Simple SE 0. l3 75 9.15

Basic SE 0.84 l4 11.76

Detailed SE 2.55 69 t75.95

Total Effort t97.46 person-hours

DATA
SE Category SE

Value
Magnitude Total SE Value

Field 0.41 238 97.58

Total Effort 97.58 person-hours

t34

Formulating the 4GT Model Equation

With the calculation of the expansion factor we can now formulate the

actual equation of the 4GT Model for estimation projects at Great-West Life.

E=3.10*[(SFr",**O.13)+(BSEro.n,x0.29)+(DSEro.n'*1.59)+(UEr",n*22.3)+

(SF,"po.,*0. 1 3)+(B SE,"pon*0. 84)+(DE,"po,,* 2. 55)+(DE,r","*0. 4 I)]

Note that the effort due to process functions is excluded in the basic

equation. If some 3GL coding is to occur, the equation is extended by adding the

process component (which is estimated dilectly by the project manager or the

developer. The new equation would then appear as:

E = 3. 10 * [(SFr",.xO. l 3)+(BSEro,*x0.29)+(DSEro,n,* 1 .59)+(UE,",^*22.3)+

(SF,"pod*0.13)+(BSE."pon*0.84)+(DE,"pon*2.55)+(DEdu,o*0.41)+(process)]

Note that E can be refined further using PFES if so desi¡ed. PFES

evaluates project factors such as "skill of programmer", "envi-ronment" and

" application characteristics ".

135

Conclusion: The above formula is modular and therefore can provide more

accurate estimates as a project progresses. This is a desirable quality in a cost

model as very little information is generally available at the start of a project.

Connell and Shafer describe the advantases of a modular formula:60

We would like the formulas to be modular so actual numbers derived from
measured performance can be plugged in at the end of each project phase,
thus steadily improving the accuracy of the estimates as the project moves
toward completion.

As indicated earlier on the 4GT Model uses software metrics (past

measurements) to assist with the determination of the expansion factor. The

systems dynamics model researched by Abdel-Hamid22'23 (see Chapter 3) indicates

that one should be careful about usins such historical data for calibratins new

models - he indicates that we can show that:

a software estimation tool cannot be adequately judged only on how
accurately it matches historical project results and ... a more accurate
estimate is not necessarily a "better" estimate.

He explains that "a different estimate creates a different project" and that a model

should therefore be judged not only on the basis of how accurate it is but also if

the its estimates are "not costlv".

In our experimentation we took the above facts into consideration. The data

used by for experimentation was checked for normality. Also, additional steps were

136

taken to ensure that only reliable metrics are used - according to Pressman, if a

metrics baseline consisting of data collected from past software development

projects can be established, several benefits can be obtained for cost and effort

estimation modelling purposes but the data must have the following attributes: data

must be reasonably accurate; measurements must be consistent; applications must

be similar to work that is to be estimated (page 58).tu In developing the expansion

factor for Great West Life the above guidelines were complied with fully.

5.5 Validation of the Effort Equation

With the determination of the expansion factor for Great-West Life (using

LEGASY) we next proceeded with using the 4GT Model for testing other projects.

The Telephone System project developed for the Communications Dept at Great

West Life (using ORACLE) was used as a detailed test case. The project used the

same life cycle as Legasy. The participants of this project were Minaker and Davis.

Several meetings occured with Minaker who was the project manager for this

project (see Table 3.1). The Telephone Project was suitable for validation purposes

for several reasons:

' The project was small and relatively straight forward.

. The essential input data, required for estimation purposes, was readily

available.

r37

o It also did not have a 3GL progranìming component. Therefore effort

due to Process Functions did not have to be estimated.

The computations relevant to this project are presented below. It reveals

that the estimated effort was close to the actual. The effort estimated using the 4GT

Model equation turned out to be 171 person hours, and the actual implementation

effort for the system was 160 person hours.

Effort Estimation for the Telephone System using the 4GT Model

Form 21.89 person-hours

Report 1.05 person-hours

Data 20.09 personìours

Process 0.00 person-hours

Estimated Development Effort
tDl

s5.03 person-hours

Expansion Factor
(for GWL)

3.1

Estimated Effort [E] t7l person-|ours

Project Factors Correction [Pfl r.00

Adjusted Esrinxared Effort [E adj.] t71 person-hours

Actual Effort Determined on Proiect
Completion

1ó0 person-hours

FORM

SE Category SE Value Magnitude Total SE Value

Siniple SE 0.13 101 13.13

Basic SE 0.29 r8 5.22

Detailed SE 1.59 ó 9.54

User Exit 22.73 0 0.00

Total Effort 27.89 personìours

138

REPORT

SE Category SE Value Magnitude Total SE Value

Simple SE 0.13 l5 r.95

Basic SE 0.84 0 0.00

Detailed SE 2.55 ¿ 5.10

Total Hours 7.05 person-hours

DATA

SE Category SE Value Magnitude Total SE Value

Data Element 0.41 49 20.09

Total Hours 20.09 person-hours

5.6 A Case Studv

A case study was conducted at the University of Winnipeg to study

portability issues related to the model. Hildebrand, Systems Coordinator, Pitblado

& Hoskin82 provided assistance with training the subjects, etc. The following were

our objectives here:

, validate the model weights further.

' investigate if SEs can be unambiguously classified into the various

categories by estimators.

o investigate model flexibility in adapting to other environments.

A formal research procedure used by Teng and Jamisones to investigate

fourth generation query languages was used as a model to conduct the research.

r39

5.6.1 Method Used

A video rental case study was released to twenty-six participants at the

University of Winnipeg during the Fall term of 1991. The subjects were senior

students and all had average experience with software development using 3GLs and

experience with various microcomputer based packages such as dBASE and Lotus

l-2-3. Subjects also had some knowledge of ORACLE (including SQL*PLUS and

SQLTFORMS) from a data base management course. However, to ensure that they

had full exposure to all relevant ORACLE tools (especially those pertaining to our

case study) they were given a two day hands-on session.s2 The objective was to

ensure that our subjects can be regarded as good samples for validation purposes.

Regardless, all our subjects still only had one to four person-months worth of 4GT

tools experience. We therefore felt compelled to rate our subjects as LOW in 4GT

tool experience.

The case study involved implementation of a Video Rental System (VRS).

Predefined entities such as customer, video, transaction and functions such as add-

new-customer, add-new-video, query-customer-form, query-video-form, and rental-

transaction were used (See Appendix H describing the various functions and SEs

involved). In other words the user requirements and systems analysis and design

associated with VRS were done by us. However, everyone was provided with an

140

adequate background of the case study with regards to purpose and scope, as well

as inputs, outputs, and processes involved with the system.

The weights described in the 4GT equation of Table 5.1 were used to

predict the effort required to implement the various functions of the above case

study. The subjects were not given any information or clue as to how much effort

it should take to develop the various functions of the systems, as this could have

distorted the results. According to research carried out,23'e6 subjects can unwittingty

change their normal behaviour to conform with goals set by a researcher.

As it was not our intention to estimate or validate system development

effort (E) but only determine development effort (D), we talgeted a few functions

of the VRS system for estimation purposes. Participants were asked to record the

actual time associated with developing data, form and report functions by

classifying screen fields into SE categories. A sample questionnaire used at the end

of the case study and completed by the subjects is illustrated in Tab\e 5.2.

5.6.2 Results

The screen fietds and their SE categories, and the format of the

questionnaire used are presented next followed by our conclusions.

t4l

Screen Fields and Specification Elements by Categories

Customer funcLion n= 27

Field Name SE Category

ID Basic

Nanp Basic

Address Basic

Credit-Rating Detailed

Video funcúon Simple

vid-td Basic

Type Detailed

Mov-name Basic

Renta-l Basic

Transacdon Function n=27

ID Detailed

Nane Basic

Address Basic

Date Detailed

ID Detailed

vid-id Basic

Mov-name Basic

Rating Basic

Price Bæic

Transaction Report Íl= ¿l

ID Basic

Nanp Detailed

Address Bæic

Date Basic

ID Detailed

vid-id Detailed

Mov-name Basic

Rating Bæic

142

råiËäort,óirtre'fouowing questions document. accuraæiy the effort in person
hours involved with development. Do not include the time spent wairing for

'Hd=*...-ñuch.timeintotaldidittaketocreatethethreetables?''''
B::'.''.l'.::'':'::.Fortn.&

' circle,thc bategory each screen field fatts into (s = simple, B = Basic, D,

: : Deaile.d) and indicaæ the time taken to implemènt the Screet,fietO :,,

'i.., À+¿ros. s,'rrpl¿' ¡¿ron': ri.i¿
::

'.1::. ìì.: ìt:.J.:
:r::-!::: t t:t.tl

,.......,.'. .,1,,:,
::::t .i:.:....i. :.:t :

S B D''i,
¡.¡ . : . ..,.:.': . 11.:::ii:.:r: .:.:l::ì:::::::::::::::::.::lt:::lii::

Case Study Questionnaire Format

.:,¡,¡''13'i,''¡,¡'¡;.¡¡.;.'¡lli,.,," ",.'

.:i 4i::.l:,,'.::: . :'::

drrri:r: .: r 'r

),1..,,, :',,,, .

.,.., 61.,,.:.:...,1:,.,'.,,':':. .;

.'.:,.,,..,;.,,.,..,:,., .,',, ..,,

sl

S

Si

B,',D
B,:D
f|.'',"'D

Box 5.1

t43

The average model weights determined by our subjects are illustrated in TabIe 5.2

below. As expected, the various weights are higher than those determined at the

Great-West Life (see Table 5.1) since our subjects were uniformly rated as LOW.

To facilit¿te comparison with the calibrated weights of Great-West Life (where the

calibrators had average experience) we had to adjust the model weights downwards.

A rating of l.l0 for the coding stage was used as a guide to effect this correction

(this was also consistent with Boehm (p. 442).t6 Therefore a project factor

correction of 0.91 (1/1.10) was applied uniformly to the average weights described

in Table 5.2. These results are presented in Table 5.3. It reveals that the model

weights are quite close with those determined at Great-West Life.

Table 5.2: Case Study Model Weights Before Correction

Project
Participant

Function
Type

Simple

tsFl
Basic

[BSE]

Detailed
tDSEI

User-Exit
tUE]

Data
Element

tDE]

UW Form 0.15 0.31 1.70

UW Report 0.15 0.90 2.75

UW Data 0.50

144

Table 5.3: Case Study Model Weights After Correction

Project
Participant

Function
Type

Simple

ISF]

Basic

[BSE]

Detailed

[DSE]

User-Exit
IUE]

Data
Element

IDE]

UW Form 0.14 0.28 1.55
::.: : i :

:
: :

i
i

:
l

t
:

t
: ::::::: : :::-: : :::

i
: : : ::::::

...'':.iiii...i'''.'.:.ii..':':.''ll{f

UW Report 0.14 0.82 2.50
:::]:

,],i,i,l,i,i,i,i,:,i :,:ii.i'iii.jilì{l:A

UW Data ::i ìiìi:ii:iii:i:i:i:l:i:i.i::ljiiÑl# 0.46

Estimated development effort for this case study using the 4GT Model is presented

below. It was determined to be 22.84 person hours.

Effort Estimation for the V.R.S Case Study usins the 4GT Model

Form 13.77 person-hours

Report 4.56 personhours

Data 4.51 personltours

Process 0.00 person-hours

Estimated Development Effort (D) 22.84 person-hours

FORM

SE Category SE Value Magnitude Total SE Value

Simple SE 0.l3 t8 2.34

Basic SE 0.29 t2 3,48

Derailed sE 1.59 5 1.95

User Exit ¿L.t) 0 0.u)

Total Effort 13.17 person-hours

145

REPORT

SE Category SE Value Magnitude Total SE Value

Simple SE 0. r3 9 r.t]

Basic SE 0.84 I 0.84

Detailed sE 2.55 I 2.55

Total Hours 4.56 person-hours

DATA

SE Category SE Value Magnitude Total SE Value

Data Element 0.4r lt 4.51

Total Hours 4.51 person-hours

With regards to other results, we found that with the exception of two

subjects, all subjects classified screen fields into the SE categories correctly -
indicating that, at least for the VRS case study, SE classification was straight

forward.

5.7 Using the Model in the Early Stages of Feasibility

As indicated in Chapter 3, the model is capable of estimating early on in

the life cycle, i.e., during the Feasibility Study & Requirements Definition Phase

(see Table 3.2). During this süage the project manager requires very general esti-

mates of the project on hand. Basically, such information will indicate whether the

upper management is interested in funding the development of a new software

system. This is also called balt-park estimating.tOu The 4GT Model can be used at

t46

this stage to provide a reasonable effort estimate. The strategy used for determining

such an estimate involves estimatin.q the total number of functions of a system.

The 4GT equation for ball-park estimating is:

E = 3.1*[(10.2 * no. of forms)+(7.9 * no. of reports)+(a.9 * no. of data tables)]

The weights 10.2, 1.9 and 4.9 were determined by adding the tolal development

efforts (D) of the LEGASY System and Telephone System, and then dividing by

the total number of functions (in corresponding categories). This process can be

explained mathematically as follows:

E= 3. 1 * [(SF'".,"*O. 1 3)+(B SE'",",*O. 29)+(DSEro,n.,x l . 5 9)+(UE ro,n,*22.7)l / total

no. of form functions + [(SF,"pon*0.134)+(BSE,"pon*O.84)+(DE."oon*2.55)] |

total no. of report functions + [(DEd"rutO.41)] / total no. of data functions

5.7.1 Testing the 4GT Ball-Park Estimating Equation

We decided to test the above 4GT Ball-Park estimating equation using

statistics from the Telephone System.

Total Number of Form Functions = 5

Total Number of Report Functions = 2

t41

Total Number of Data Tables = 3

E = 3.1 * i(10.2 * 5) + (7.9 * 2) + (4.9 * 3)l

= 252 person hours.

On analysis it reveals that this number is higher than the actual effort

consumed in the project, which is 160 person-hours. This was not unexpected as

the Telephone system does not have any user exits - the user exit SEs constitute

a substantial proportion of the effort involved in the Ball-Pa¡k equation. On

excluding the impact of the user exit SEs - we get a new 4GT ball-park equation.

B = 3.1*[(3.t x no. of forms)+(7.9 * no. of reports)+(a.9 * no. of data tables)]

We can now use this equation to test the Telephone system project objectively.

E = 3.1 *[(3.1 *5)+(].9*2)+(4.9x3)l

= 142 person-hours.

This estimate can be considered to be a satisfactory ball-park estimate.

5.7.2 Ball-Park Estimating for LEGASY

As the LEGASY system has user exit SEs and process functions we use

the following equation to obtain a ball-park estimate of the LEGASY system

project.

148

E = 3.1 x l(10.2 * 5)+ (7.9*2)+(4.9 *3)+ProcessEfforrl

Given the following statisrics about the LEGASy project:

Total Number of Form Functions = 28

Total Number of Report Functions = 24

Total Number of Data Tables = 17

Total Process function effort = I25 person-hours

E = 3.1 x1285.6+189.6+83.3+t25l

= 2ll9 person-hours

This ball-park estimate compares reasonably well with the actual effort of 2340

person hours for LEGASY. Similarly, for the VRS project, this estimate is 18

person hours vs. the actual 22 person-hours.

5.8 Bstimating Effort Under Different 4GT Paradigms

In Chapter 3 we described different 4GT paths (see section 3.3 - systems

development methodology). In this section we suggest how the 4GT Model can be

used to estimate the development effort under different 4GT paradigms.

149

5.8.1 Estimating Evolutionary Prototyping Frojects

Evolutionary prototyping is popular today.60 A major reason for the

popularity is the fact that good quality code is generated during prototyping. The

logic that "a prototype must be discarded as it was developed in a hurry" is

generally not valid with 4GT based development, as a substantial amount of the

code was automatically generated, and not physically coded (where the chances of

human effor are high).

As indicated earlier on a lot of experimentation described in this chapter

pertains to the "evolutionary prototyping" paradigm. With such an approach, code

generation takes place throughout the life cycle, and developed code is not

discarded. Great-West Life, for instance, follows the evolutionary prototyping

paradigm when using 4GTs. Here skeleton screens are developed early on in the

life cycle and demonstrated to users who test the human-computer interface. As the

project progresses this prototype evolves into the final product. The 4GT Model

weights calibrated in this chapter are based on this methodology.

r50

5.8.2 Estimating Throw-Away Prototyping Projects

When throw-away prototyping is involved we can consider two extreme

development modes (see Table 2.1):

" "screen" or "simple mock up" prototyping

n "detailed" or "full" prototyping

With screen or simpl.e mock Ltp prototyping only simple SEs are involved (as

alluded to in section 3.5.3.1). Since such a prototype is going to be discarded

eventually (and hence the simple SE effort, i.e., SF's in our 4GT equation), we can

regard the effort estimation equation for such projects to be:

8.""*., = E+(0'13*'SF)

With detc:üled or .fu\|. prototyping, all the functions ale fully developed

(demonstrated to the user) and then discarded. The effort equation for estimating

such projects should then be:

E¿"rril"¿= E + D

To illustrate with the LEGASY system, if screen prototyping and detailed

prototyping were [o occur, project estimates using the above equations would be:

Er"r".n = E+(0'15tSF)

= 2340 + 24.05 = 2364.82 person-hours

Eo.,u,,"o = E+D

= 2340 + 755.4L = 3095.41 person-hours

151

5.8.3 Estimating Non Prototyping Projects

If we can assume that the total development effort D would be the same -

regardless of whether it was implemented in one chunk (as in a non-prototyping

paradigm) or in several chunks (as in the evolutionary prototyping paradigm), then

we can use the following equations to determine such effort:

Devolutionary-prototyping = Dt * D, + D, * Dn = Dnon-prot.t¡pi.g = D

Enon-prototyping = Expansion factor,,on-orot.r)?ing * D, and

Eevolutionary-prototyp¡ng = ExpAnsion factorevotutionary-pro,å,yping * D'

In conclusion, we note that the 4GT model is quite versatile. For example,

it is capable of supporting the various 4GT paradigms used in the industry today.

As data pertaining to all4GT paradigms is not available teadiy, intensive validation

of the concepts presented here is left for future research.

5.9 Evaluating Model Portability

According to DeMarcor there are no transportable cost models, i.e., a

model calibrated at one site cannot be used at another site without modifications.

In the case of the 4GT Model, the function development weights (associated with

"D") are quite portable for a given 4GT, however, the expcutsion ratio might need

to be re-calibrated at another site as it deals with attributes such as project

management, cornmunication, etc., which vary from one shop to another. Using a

r52

"local" expansion ratio is therefore quite desirable if the 4GT Model is to be used

at another site. The procedure described in this chapter can be used to obtain a new

expansion ratio.

The various project factors associated with PFES also serve to make our

cost model portable. The list of project factors identified during our knowledge

engineering process with PFES, however, is not exhaustive. Additional factors,

especially organizational, such as "staffing and manpower-acquisition" va¡iables68

can be incorporated to make the model more portable.

In this context, Abdel-Hamid and Madnick indicate that "the portability of

software estimation models can be significantly improved by taking into

consideration not only technical aspects of the software development environment",

but also, "managerial and organizational characteristics of the environment".68

However, our research effort has not focussed on these issues yet, the above issues

are more relevant when staffing, scheduling, etc. come into picture - these we

leave for future research (in association with PFES).

153

5.10 Conclusions

In this Chapter we described the calibration and experimentation results

pertaining to the 4GT Model. The results indicate that our development weights are

quite reliable and portable. We also demonstrated how ball-park estimation and

base-line estimating are facilitated using the 4GT Model. Finally, we described

equations that are useful for cost estimating the various 4GT paradigms.

r54

Chapten 6

Conclusions and F uture Directions

6.1 Introduction

This chapter provides conclusions related to modelling fourth generation

effort. Future directions related to research in this area are also described.

6"2 Summarv of the Results

Here we review the thesis by answering the following questions: What is

the problem? How was it tackled? What results were obtained? What is new and

better about it?

Our primary objective was to deal with the problem of estimating software

development effort when fourth generatiorx tool.s are used. We indicated that

traditional predictors or cost models are inadequate for measuring development

effort involving 4GTs. Such traditional predictors or models are more oriented

towards "physical coding" rather than "specification-oriented coding".

155

To tackle this problem we introduced a new predictor called specification

element (SE). SE was defined as a specification task associated with implementing

a screen field or data element. SEs were categorized logically into a few distinct

and manageable categories based on the nature of specification effort involved.

SEs operate on functions - the following functions were identified for the

fourth generation environment: form, report, data, and process. As functions and

screen fields can be counted easily (even early on in the life cycle), SEs can be

regalded as good predictors.

Each SE has an effort value in person-hours associated with it. This

represents the work effort required to implement one SE and hence one screen

field. By using the techniques described in the model one can directly determine

the overall development effort and adjust it, if necessary, for the influence of

project factors (such as familiarity with tools, and prograrruner experience).

Two approaches were taken [o ensure that the model was satisfactory. First,

the model was evaluated by practitioners and then installed in a large commercial

setting. It was calibrated using actual project data and tested against a new project.

The results obtained here revealed that the model resolved various effort estimation

problems satisfactorily.

r56

The second approach taken was to determine if the weights obtained above

are suitable for use at another site. An experimental project (case study)

implemented by several subjects was used to test the model. Results obtained here

revealed that the model weights, especially those related to development effort (D)

were quite portable.

We have realized the following objectives with the 4GT Model:

1. The model provides us a basis to measure. specification oriented

application development effort. Application generators, form generators

and report generators can all now be measured satisfactorily.

2. The model supports sizing of 4GT applications in rwo modes - ball-

park and base-l.ine. While ball-palk sizing provides us rough estimates

early on in the system development life cycle, base-line sizing provides

us detailed estimates on completion of some softwale design. Base-line

therefore provides us better estimates than ball-park sizing.

3. The model supports various 4GT development paradigms for purposes

of effort estimation. The 4GT Model itself is based on the evolutionary

paradigm, as such, its ability to measure projects based on this

paradigm has been extensively tested. The expcutsionfactor used by the

t5l

model is caPable of suPPorting

development.

the other sPecial cases of 4GT

4.Finally,weexperimentedwiththeknowledge-basedmethodfor

adjustingprojecteffort.WefoundSomeinterestingadvantageswith

such an aPProach:

"Itwaseasytoperformwhat-ifanalysis-thankstothebuilt-in

userfriendlyinterfaceoftheexpertsystemshell.Variousscenarios

were experimented with for purposes of estimation - "allowing end-

users to compute vs. letting data processing staff compute"; "using

resources with average skill vs. using resources with very high

skill,,;and,'puttingskilledpeopleonadifficultprojectvs.putting

skilled people on an easy project"'

, New rules and project factors governing end-user computing were

researched and introduced in the model'

158

6,3 Futune Work

This topic is examined under the followin.q two headings - model

enhancement, and model inteeration.

6.3.L Model Enhancement

The following three points need to be researched in the near future:

1. Calibration of the process .ftutction: As evident in the previous chapter,

research was not conducted to calibrate the process function of the 4GT

Model for ORACLE. (Only the form, report, and data functions were

calibrated.) Even though it is not necessary to calibrate the process

function (as one might continue to see 4GT projects such as the

Telephone System project that do not need process functions), it is still

useful to investigate this problem. Any experimentation here should

clearly focus on non-procedural process functions only as no model for

estimating such effort exists. Wrigley and Dexter appear to be working

towards implementation of one such a model but their work is yet

incomplete - they have established links between information system

size and non-procedural LOCs but they have not associated such LOCs

with effort.

159

2. Calibr(ttiott of other populcLr Jourth genercrtiotL tools; Calibrating

oRAcLE was worthwhile - as evidenced by the interesr shown by

practitioners in using the 4GT Model and the fact that it is a very

popular relational system, listing second only to DBz, in popularity

(p.13)t'- nevertheless, it will be worthwhile to calibrate other 4GTs

as well. This would enable us to compare the 4GT weights calibrated

for ORACLE with those in other environments.

3. using the m.odel to test the dffirent 4GT para.digms: our research and

the various equations presented in the context of throw-away

prototyping vs. evolutionary have raised some questions. Is the

expansion factor the same for both of these paladigms? what about the

Spiral Model? Which one is a more expensive paradigm? Throw-away,

or evolutionary (i.e., which expansion factor is more costty?). The 4GT

Model can probably be used as an experimental vehicle to answer such

questions.

The above research can be facilitated if a formal software metrics progrÍlm

is established at several sites involved with fourth generation development. Very

few sites at present have a software metrics program. From our perspective,

however, it is important to gather the following data from several sites:

160

' type of 4GT paradigm used

project start and completion dates

manpower allocation for the project (including nature of involvement

- such as part-time or full time, etc.)

total number of functions developed by type (i.e., form, report, etc.)

total number of screen fields involved with each function by sE type.

effort used to develop each function

initial effort estimates & the actual project effort

In such a software metrics database, it is preferable to store normalized

data only - especially, data pertaining to ctctttctl. project eJJ-ort should be corrected

for overestimation or underestimation. Project overestimation can be costly,

according to Abdel-Hamid, "wasteful project practices such as goldplating", and

"unproductive slack time activities" can occur with such projects

underestimation of projects can also be costly as it results in an "initial

understaffing, followed by a costly staff buildup later in the life cycle".22 Using

such data as a benchmark in future model calibrations (such as for determinine the

expansion factor) can result in costly projects.22

In conclusion we note that good metrics data can provide us with

substantial benefits - it can assist us with: future project planning, future cost

161

modelling, and resolving model portability issues. In this sense, we agree with

Yourdon, who states that, "software metrics can be as valuable a silver btil.let for

your organization as CASE technology, structured techniques, or fourth generation

languages" (p. l0).to

6.3.2 Model Integration

One of the key advantages of the 4GT Model is that it lends itself readily

to integration within the CASE architecture. CASE tools.use a central repository

for storing project data. Such a repository - commonly called CASE Database -
could be easily tapped to obtain data pertaining to the development process.

Unfortunately, by design, existing cost models are stand-alone products,

i.e., they do not integrate with CASE tools or store or tap into a CASE database

for estimation or planning purposes. If such cost models interface, or fully integrate

with a CASE database, we can realize several benefits. For instance, with the 4GT

Model, the following input sizing parameters required by the model for producing

ball-park or base-line estimates can be directly supplied from the database:

. total number of tables

" total number of data elements

n total number of reports and forms

. total number of screen fields

r62

. total number of process functions.

The advantages of integrating CASE tools with cost models are two fold:

l. The estimation process can now be automated to a higher degree.

2. Historic software metrics data can be retrieved easily for calibration

purposes' As CASE projects are always up-to-date any data captured

would also be very accurate.

At present we are experimenting with an integrated GASE architecture at

the Great-West Life - it involves the 4GT Motlel and, PFES functionins as "CASE

estimating tools" and a "CASE database".

6.4 Conclusion

In the final note of his book Controlling Sofr,vare Projects,r DeMa¡co exclaims:

"Good grief, it's the end of the book. Have I made my point? was the
meaning clear? ... Isn't there much, much more to say about software
quality and function weighting and complexity measurement and
organization of the development process and ...?"

Well, I conclude with almost similar anxiety, fourth generation software

development and effort estimation are fascinating topics and indeed there is much,

muclt more to say here as well - scheduling, software prototyping metrics and

models, complexity measurement, risk analysis and management, neural nets for

effort correction - and much more come to mind. However, I have been advised

to leave these topics aside for a future encounter ... and wisely so.

r63

References

l. DeMarco, T., controll,ing software Projects, (foreword by Boehm B.), yourdon

Press Computing Series, Prentice-Hall, Englewood Cliffs, 1982.

2. Martin,I., Fourtlt-Generation Languages, vol. I, prentice-Harl, r985.

3. Bate, J., Vadhia,D., Fourth Generation Lcrnguages (Jnder DOS anr) UN1X, BSP
Professional Books. 1987.

4. Chorafas, D., Fourth and FiJih Genercttion Progrctm.m.ing Languages, McGraw-
Hill Inc., Vol I, 1986.

5. Pressman, R. Software Engineering A Practitioners Approaclt, Second Edition,
McGraw-Hill Book Company, 2nd Edition, 1987.

6. Pressman, R. Sofiuare Engineering A Practitioners Approaclt Third Edition,
McGraw-Hill Book Company, 1992.

7. Martin, J., Application Development Witltout ProgrcLrnmers, Prentice-Hall,

Englewood Cliffs, NJ, 1982, p.30.

8. Lin, C.,"Systems Development with Application Generators: An End-User
Perspective," JoLtrnal of Systems Management, Vol 41, No.4, 1990, pp.32-36.

9. Martin, M.,"Instant Screen Design," Journal. of Svstems Managernent,yol 41,
No.4, 1990, pp.22-27.

10. Verner, J., G. Tate, "Estimating Size and Effort in Fourth-Generation

Development," IEEE SOFTWARE, July 1988, pp 15-22.

r64

11. Grady, R., Work-Product Analysis: The Philosopher's Stone of Sofrware,
IEEE Software, March 1990, p. 26-34.

12. Mills, Harlan, P. Dyson, "using Metrics to euantify Development," IEEE
Software, March 1990, p 15-16.

13. Grady, R., D. Caswell, Soþuare Metrics: Establistting (t Compctny-WirÌe

Program, Prentice-Hall, 1987.

14. Ed Yourdon, "Software Metrics: You Can'[Control What You Can't
Measure," American Programmer,yol2, No. 2, February 1989.

15. Schussel, G., "Fourth Generation productivity Tools - A Shopping Guide for
Software Consumers," Data Management, October 1984, pp. 42-46.

16. Boehm, 8., software Engineering Economics, prentice-Hall, Englewood
Cliffs, NJ, Prentice-Hall Inc., 1981.

17. Matos, V.M., and Jalics, P.J, "An Experimental Analysis of the Performance
of Fourth Generation Tools on PCs," cotwnunico.tions, ACM 32, 11. Nov.
lggg, t340-1351.

18. Albrecht, 4.J., "Measuring Application Development Productivity," Proc. IBM
Application Development sym.posiutn, Monterey, cA, oct. rgj9, pp. 83-92.

19. Dreger, 8.J., Function Point Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1989.

20. Abdel-Hamid, T.K., "The Dynamics of Software Development project

Management: An Integrative System Dynamics Perspective," IJnpublished
Ph.D. dissertation, sloan school of Management, MIT, January, 1984.

165

21. Abdel-Hamid, T.K., "lnvestigating the Cost/Schedule Trade-Off in Software
Development," IEEE SctJtware, pp. 97-105, January 1990.

22. Abdel-Hamid, T.K., "On fhe Utility of Historical Project Statistics for Cost
& Schedule Estimation: Results from a Simulation-Based Case Studv." The
Journal of Systems and Sofnuare, 1990.

23. Abdel-Hamid, T.K, Madnick, s.E, Dynarnics oJ soJtware project

Management, Prentice-Hall, Englewood Cliffs, N.J, l99l.

24. verner, J., Tate, G., "Estimating size and Effort in 4GL development," IEEE
Soft-,uare, July 1988, pp. 15-22.

25. Dreger, B.J, Function Point Analvsis, Prentice-Hall, Englewood Cliffs,p I32,
1989.

26. Wrigley, C., Dexter. A., "A Model for Measuring Information System Size,"
MIS Quarterly, June 1991 , 245-257.

27. 'Waterman, D., A Guide to Expert Systents, Addison Wesley Publishing Co,

1986.

28. Biegel, J., Bearden, M., Dickerson,D., o'Donnell, "Building an Expert system
for Cost Estimating," Interncttiona.l. Indttstrictl. Engineering Conference
Proceetlings, 1986, pp. 504-509.

29. Arrowood, L., Emrich, M., Sadlove,R., Jones, 4., Watsofl, 8., Suprapaneni,

R., "Knowledge-Based vs Traditional Cost Estimation Models," (reprint, US

Department of Energy), November 1989, Datapro Resea.rch, McGraw-Hill
Inc., AS20-050, Nov. 1989, pp.20l-207.

30. Ntuen, C., Mallik, 4., "Applying Artificial Intelligence to Project cost
Estimating," Cost Engineering,Yol.29, No.5, May 1987, pp. 8-12.

r66

31. Avots, I., "The Coming lmpact of Artificial Intelligence on Project
Management," Project Mcmagement in Progress, North-Holland, 1986, pp.

307 -3r2.

32. Kanabar, v., seah, E.,Scuse, D., Knowledge-bctse Referencing During
Planning, Working Papers on Artificial Intelligence in Management Science,

The Institute of Management Sciences, Fall 1989, pp. 144-56.

33. Verner, J., Tate, G., "Estimating Size and Effort in Fourth-Generation

Development," IEEE Software, July 1988, p.15-22.

34. Matos, v.M, Jalics, P.J., "An Experimental Analysis of the performance of
Fourth Generation Tools on PCs," com.munications ACM,32, rl, Nov. 1989,

1340-1351.

35. Misra S., Jalics, P., "Third Generation versus Fourth-Generation Software
Development," IEEE Software, July 1988, p.8-14.

36. Jones C., Programming Productiviry, McGraw-Hill, 1986.

37. Dredger 8., Function Point Anal.vsis, Prentice-Hall, 1989, p.12.

38. Symons, C., "Function Point Analysis, Difficulties and Improvements," IEEE
Software Transactions on Sofware Engineering, SE-14(1), January 1988, pp.

2-10.

39. wallace R., stockenberg J.,charette R., A unified Methodology for
Developing Systems, McGraw-Hill Book Company, 1987.

40. Grady, R., Work-Product Analysis: The Philosopher's Stone of Software,

IEEE Software, March 1990, p. 26-34.

t67

41. Albrecht, A. J., and J. E. Gaffney, "Software Function, Source Lines of Code

and Development Effort Prediction: A Software Science Validati on," IEEE
Trans. Software Engineering, November 1983, pp. 639-648.

42. Arthur, L. J., Measuring Programnter ProductivitYt ctnd SoJtwctre Quali4t,
Wiley-Interscience, 1985, p.23.

43. walston, C., and C. Felix, "A Method for Programming Measurement and

Estimation," IBM Systems Journal, vol. 16, no. 1, 1977.

44. Jones, C., Programming Productiviry, McGraw-Hilt Inc, 1986.

45. Mohanty, s., "software cost Estimation: Present and Future," sol-twctre

Practice and Experience, l981, pp. 103-121.

46. Londeix, 8., Cost Estimation for Software Developrnent, Addison-wesley
Publishing Co., 1987,p. 40.

47. Holsapple, C., Whinston, 4., Business Expert Svstems,Irwin Inc, 1987.

48. Hayes-Roth, F., waterman, D., Lenat,D., Building Expert systems, Addison-
Wesley Publishing Co., MA, 1983.

49. Rockart, J.F, Flannery, L., "The Management of End user computing,"
Com.munications of the ACM, Association of Computing Machinery, October

1983, pp.776-784.

50. Putnam, L.H, Fitzsimmons 4., "Estimating Software Costs," Writings of the

Revolution, Yourdon Press, New York, 1982, pp. 326-344.

51. Mackowiak, K., "Skills Required and Jobs Available for CIS Majors",
Interface, Vol. 13, No.4, 1991, pp. 9-14.

168

52. Henry, S., Selig, C., "Predicting Source Code Complexity at the Design

Stage," IEEE Software, March, 1990, pp.36-44.

53. Henry, S.M., Kafura, D., "Software Structure Metrics Based on Information

Flow," IEEE Trans. SoJware Engg., Sept. 1981, pp. 510-518.

54. McCabe, T.J, "A Complexity Measure," IEEE Trans. SoJtw Engg., SE-2,4,

Dec. 1976, p. 308.

55. SQL*FORMS, "SQLxForms Class Notes," ORACLE Corporation, August
. 1987.

56. Pressman, R. SoJtware Engineering A Practitioners Approach, Second

Edition, McGraw-Hill Book Company, 3rd Edition, 1992 (to be published).

57 . SQL*FORMS Designer's Reference, Version 2.0, ORACLE Corporation,Paft
No. 3304-V2.0. Februarv 1988.

58. McFadyen, R., Kanabar, V., An Introdttction to Structured Query Language,

Wm. C. Brown, Dubuque, IA, 1991.

59. Wrigley, C., Dexter. A., "A Model for Measuring Information System Size,"

MIS Quarterly, June 1991 , pp. 245-257 .

60. Connell, J., Shafer, 8., StructurecJ Rapict Protoryping An Evolutionary
Approaclt, Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs,
NJ, 1989.

61. DeMarco, T., Concise Notes on So.ftwctre Engineering, Yourdon Inc., New

York, NY, 1979.

62. Fertuck, L., Systems Analysis and Design witlt CASE Tools, Wm. C. Brown,

Dubuque, IA, 1992.

169

63. Avison, D., Fitzgerald, G., Infornttttion Sv-,ttetr'ts Det,elopntent Metllodologies
Techrùques and Tools, Blackwell Scientific Publications, 1988.

64. Gore, M., stubbe, J., Elentents of slstents Ancrlysis, Fourth Edition, wm. c.
Brown, Dubuque, IA, 1988.

65. Parkin, A., System Management, Edward Arnold Publishers Ltd., London,
1980.

66. Clarke, R., contingency Approach to the Application Software
Generations", Data Base, Summer 1991, pp.23-34.

67. Itakura, M., Takayanagi, 4., "A Model for Estimating Program Size and its
Evaluation," Proceedings of tlrc Sixtlt International Conference on Software

Engineering, IEEE, 1982, pp. 104-109.

68. Abdel-Hamid, T.K., Madnick, S.E, Sofauctre Pro.ject Dynamics An Integrated
Approaclt, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

69. Bailey, J., Basili, v., "A Meta-Model for software Development Resource

Expenditutes," Proceedings of the Fif-th International. Conference on Software

Engineering, IEEE, 1981, pp. 107-1 16.

70. Kanabar, V., "Knowledge-based Project Management", Department of
Mathematics and Statistics Seminar. Januarv 1988.

71. Kanabar, v., "Knowledge-based Project Management: work-Effort
Estimation" , Twentieth Interface Svm¡;osium, W ashington, D.C, April 2l-23,
1988,

72. Kanabar, V., "An Integrated Software Metrics Model for Planning",

Department of Mathematics and Statistics Seminar, Janualy 15, 1989.

r70

73. Kanabar, v., B. Feiring, D. Scuse, E. Seah, "project planning and Estimating
Using a Software Metrics Framework", Interncúionctl ConJerence oyt

Computing and Inforntcttion, Canadian Scholars press, volume II, 19g9, pp.
336-339.

Kanabar, V., "An Integrated Model for Automated Planning and Estimation",
Proceedings of ACM Seventeenth Annuctl Corllputer Science Conference,
Februarv 1989.

75. October 1989, Faculty Semina¡ Series, University of Manitoba, Faculty of
Management, Effort Estimation of Fourth Generation Languages.

76. Kanabar, v., Seah, E., "A Model for planning and Cost Estimation",
Advances in Computing and Inþrmcttiorz, Proceedings, Niagara, Ontario,
1990, pp. 168-70.

77 . Kaehler, N., Software Development, Information Systems and Data Processing
Department, Investors Group, interviews and testing conducted between April
1990 and Julv 1991.

78. Smith, w., Computer Systems, Great-west Life, interviewed on 6/6/9r,
6/7/91,6/l2lgl,6llglgl,6/25lgr,l/2lgl,7lg/gt,7lrt/9r,7/r2/gr, glglgr,
l519/91,22/9. Subsequently about seven informal consultations until 12/6191.

79. Garner, T., Computer Systems, Great-west Life, interviewed on 5/r3/9r,
5/20/9r, 61619l,6/7l9r, 6112/9r, iI||l9l, Bl9l9r, zzl9. subsequenrly abour

three informal consultations until 12/619l.

80. Buskens, R., Computer Systems, Great-West Life, interviewed on 6/10. 6/18.
6/25.

81. Hildebrand, M., Pitblado & Hoskin, model calibration on 7/ll/91.7/13/gl.
7 /15/91. Informal consultarions until L2l6l9I.

74.

nI

82. Hildebrand, M., Pitblado & Hoskin, Winnipeg,4GT calibration & case study
participation on 8128191,8129/91 &. gl3lgl.

83. Allison, M., (Telephone System project manager), Computer Systems, Great-
West Life, calibration meeting on 919/91.

84. Layer., 4., Quality Assurance, Information Systems and Data Processing

Departrnent, Investors Group, data collection between April 1990 and

December 1990.

85. DeMarco, T., & Lister, L. (1990). Software State-of-tlte-Art: Selectecl Papers.

New York, NY: Dorset House Publishine

86. Kanabar, v., Janzen, T.,seah, E., smith, w., "Installation of a 4GT Model",
Technical Repctrt, Faculty of Management, 1991.

87. Kanabar, v., "CASE: Integrating Project Estimating Tools into the

Architecture", Chapter published in CASE Issues for the 1990's, ed. Bergin,
T., Idea Book Publishing, 1992.

88. Yuen, K. (Project Leader), Chan, E., Ho, C., Ng, K.H., "Space Accounting
System", University of Winnipeg, Winnipeg, 1989.

89. Lau, K., (Project Leader), chan, T., Lam, 4., Lam, c. "Trackers", IJniversity
of Winnipeg, Winnipeg, 1989.

90. Fox, G. (Project Leader), Lee, P., Siu, S., Yap, G., "Mayday project",

University of Winnipeg, Winnipeg, 1989.

91. Finlay, I. (Project Leader), Brandt, G., Tang, 4., Zirdum, 4., "'W'eights and

Measures Microcomputer System", IJniversity of Winnipeg, 1988.

r72

92.

93.

94.

95.

Kanabar, v., "Estimating Software Development using Fourth Generation
Tools", Naval Postgraduate school, Monterey, california, october, 1990.

Kanabar, V., "A Model for Estimating Software Development Effort using
Fourth Generation Tools", University of South Florida, Tampa, Florida,
Department of computer Science and Engineering Seminar, April, 1991.

Pressman, R., Making software Engineering Happen, prentice Hall,
Englewood Cliffs, New Jersey, 1988.

Teng, J., Wesley, J., "Ijser Evaluation of Database Query Languages: A
Comparison of SQL and DBASE III," INFOR, Vol. 28, Augusr 1990.

Armitage, H., The Chc¡ice of Productit,ity Measures in an Orgctnization,The
Society of Management Accountants of Canada, 1991.

Roetzheim, w., Structured Com.puter Project Management, prentice Hall,
Englewood Cliffs, New Jersey, 1988, pp.92-95.

Damodaran, M., "Fourth Generation Tools - Characteristics, Applications and

their Evolution", First InternationcLl Workshop on Com.puter-Aided Software
Engineering, Volume I, pp. 157-159.

96.

97.

98.

99. Peters, T., waterman, R. In search of Excettenc¿, N.Y: Harper & Row, rgï2,
p.240.

100. uniface, uniface v. 5.2. uniface corporation. Alameda:cA, 1989.

l0l. Ingres, Ingres/Applicatiorts. Relational Technology Inc. Alameda: CA, 1986.

102. dBASE IV, ùBASE IV Docutn.entation, Aston Tate Corporation, CA, 1990.

r73

103. Silver,4., "On the Structural Decomposition and Hierarchical Recombination

of Non-Directed Linear Graphs using Multi-Attribute Agglomerative
Polythetic Clustering Meffics," Constrttctive Approcrche¡^ tr¡ Mctthentctticctl

Models Sym¡tositm., Carnegie-Mellon University, July l0-i4, I9l.B.

104. Silver,4., "Structural Decomposition using Entropy Metrics," Prc¡ceerlings of
the 1978 conference on Information Sciences and Systerzs, John Hopkins
University, March 1978.

105. Corner, R., Business Systems Desigtt and Developrnent. Englewood-Cliffs, NJ:

Prentice-Hall. 1990.

106. Putnam, L., Myers, W., Measures for Excellence: Reliable Software on Time,
Within Budget, Englewoods Cliffs, New Jersey, 1992.

107. Case, A. Jr. (1936) Inþrmation System.s Development: Principles of
Com.puter-Aided Software Engineeritzg. Englewood Cliffs, N.J: Prentice-Hall.

108. Kolidâ, G., Assistant Manager, Investors Group, interviews between May
1989- August 1990.

109. IBM, Managing Projects with Application System., Release 4, product

No. 5767-001. 1986.

110. Kemerer, C, "Software Cost Estimation Models", Forthcoming in Software
Engineers Reference Book, Surrey, U.K: Butterworth.

1 11. McClure, C. CASE is Software Autontation. Englewood-Cliffs, N.J: Prentice-

Hall. 1989.

112. Microsoft. Microsoft Project docurnent: Project Scheduling and Reporting
Program, No.410720011-400-R00-0887, Part No. 00163 , 1987 .

t74

113. Nastec, Nastec CASE 2000, Nastec Corporation, Southfield, Michigan, 1986.

114' Pfleeger, S., Software Engineering: The Procluctir,¡rt oJ Qttctt.it¡, Sofnuare,
Second Edition, N.Y: Macmillan. 1991.

115. Symantec, Time Line: The Corporate Choice for Project Mctnagement and
Presentation.ç, ljser Manual, Part # 03-30-000I6, 1990.

116. Whitten, J., & Bentley , L., (Jsing Excelerator for Systerns Analysis and
Design, Boston, Irwin, 1987 .

I17. Crossman, T., "Taking the Measure of Programmer Productivity",
Datamation, I979, pp. 144-147.

1 18. Hicks, J., Inþrmation Systems in Business: An IntrorJuction, Second Edition.
West Publishing Co., St.Paul, 1990.

119. Vicinanza, S., Mukhopadhyay, T., Prietula, M., "Softwale-Effort Estimation:

An Exploratory Study of Expert Performan ce," InforrncttiotL Systents Research,

December, 1991 , pp.243-262.

120. Ramsey, c., Basili, v., "An Evaluation of Expert Systems for Software
Engineering Management," IEEE Trcmsactions on SoJtwcrre Engineering, 15,
1989, pp.747-759.

r75

Bibliography

Abdel-Hamid, T.K., Madnick, S.E, Soli'ware Project Dynctntics An Integrated
Approach, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Abdel-Hamid, T.K., "On the Utility of Historical Project Statistics for Cost &
Schedule Estimation: Results from a Simulation-Based Case Studv." TIte
Journal of Systems and Software, 1990.

Abdel-Hamid, T.K., "Investigating the Cost/Schedule Trade-Off in Software
Development," IEEE Sofiware, pp. 97-105, January 1990.

Abdel-Hamid, T.K, Madnick, S.E, Dynantics of Software Project Management,
Prentice-Hall, Englewood Cliffs, N.J, 1991.

Abdel-Hamid, T.K., "The Dynamics of Software Development project

Management: An Integrative System Dynamics Perspective," IJnpublished Ph.D.
dissertation, Sloan School of Management, MIT, January, 1984.

Albrecht, 4.J., "Measuring Application Development Productivity," , proc. IBM
Application Development symposium, Monterey, cA, october 1979, pp. 83-92.

Albrecht, A. J., and J. E. Gaffney, "Software Function, Source Lines of Code and
Development Effort Prediction: A Software Science Validation," IEEE Trans.
Software Engineering, November 1983, pp. 639-648.

Armitage, H., The Choice of Productiviry Mectsures in ctn Organization, The
Society of Management Accountants of Canada, 1991.

Arthur, L. J., Measuring Programmer Productivity and Software Qualiry,
Wiley-Interscience, 1985, p.23.

Arrowood, L., Emrich, M., Sadlove,R., Jones, 4., Watson, 8., Suprapaneni, R.,
"Knowledge-Based vs Traditional Cost Estimation Models," (reprint, uS
Department of Energy), November 1989, Dcttapro Resectrch, McGraw-Hill Inc.,
AS20-050, Nov. 1989, pp.20l-207.

176

Avison, D., Fitzgerald, G., [nformation S¡,s¡¿¡n,ç Development Methodologies
Techniques and Tools. Blackwell Scientific Publications, 1988.

Avots, I., "The Coming Impact of Artificial Intelligence on Project Management,"
Project Management in Progress, North-Holland, 1986 , pp. 307 -312.

Bate, J., Vadhia,D., Fonrth Genercttion Lctnguages (Jnder DOS and UNIX, BSP
Professional Books, 1987.

Bailey, J., Basili, v., "A Meta-Model for Software Development Resource
ExpendituÍes," Proceedings of the Ftfih International Conference on Software
Engineering, IEEE, 1981, pp. 107-1 16.

Biegel, J., Bearden, M., Dickerson,D., o'Donnell, "Building an Expert System for
Cos t Estimating, " I nt e rnct t io na l I ndu s t ria l. En g ine e r in g C o nfe r e nc e P r o c e e d i n g s,

1986, pp. 504-509.

Boehm, 8., Software Engineering Economics,Prentice-Hall, Englewood Cliffs, NJ,
Prentice-Hall Inc., 1981.

Case, A. Jr. (1986). Information Systems Development: Principtes of Computer-
Aided Software Engineering. Englewood Cliffs, N.J: Prentice-Hall.

Chorafas, D., Fortrth and Ftfilt Genercttion Programming Lcutgnages, McGraw-Hill
Inc.. Vol I. 1986.

Clarke, R., "A Contingency Approach to the Application Software Generations",
Data Base, Summer 1991, pp. 23-34.

Connell, J., Shafer, 8., Structured Rapid Prototvping An Evolutionarl- Approach,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs, NJ, 1989.

Corner, R., Business Systents Design and Devel.o¡tnt.ent. Englewood-Cliffs, NJ:
Prentice-Hall, 1990.

Crossman, T., "Taking the Measure of Programmer Productivity", Datamcttion,
1919, pp. 144-147.

177

Damodaran, M., "Fourth Generation Tools - Characteristics, Apptications and their
Evolution", First Internotional. Workshop on Cont.puter-Aided Software
Engineering, Volume I, pp. I57-I59.

dBASE lV, ÌBASE IV Documentation, Aston Tate Corporation, CA, 1990.

DeMarco, T., Lister, L. (1990). Software State-of-tlte-Art: Selected Pcrpers. New
York, NY: Dorset House Publishine.

DeMarco, T., concise Notes on sofware Engineering, Yourdon Inc., New york,
NY, 1979.

DeMarco, T., Controlling Soþ,vare Projects, Yourdon Press Computing Series,
Prentice-Hall, Englewood Cliffs, 1982.

Dreger, 8.J., Function Point Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Fertuck, L., Systems Analysis and Design with CASE Tools, Wm. C. Brown,
Dubuque, IA, 1992.

Gore, M., Stubbe, J., Elements of Systents Analysis, Fourth Edition, Wm. C. Brown,
Dubuque, IA, 1988.

Grady, R., Work-Product Analysis: The Philosopher's Stone of Software, IEEE
Software, Malch 1990, p. 26-34.

Grady, R., D. Caswell, Software Metrics: Establislting ct Com.¡tcuty-Wide Program,
Prentice-Hall, 1987.

Hayes-Roth, F., Waterman, D., Lenat, D., Building Expert Systems, Addison-
Wesley Publishing Co., MA, 1983.

Henry, S.M., Kafura, D., "Software Structure Metrics Based on Information Flow,"
IEEE Trans. Sofnuare Engg., Sept. 1981, pp. 510-518.

Hicks, L, Inþrmcttion Systerns in Business: Att Introduction, Second Edition, West
Publishins Co.. St.Paul. 1990.

118

Holsapple, C., Whinston, 4., Bttsiness Expert System,s,Irwin Inc, 1987.

IBM, Managing Pro.iects with Ap¡;l.iccttir-¡n Svstent, Release 4, Product No. 5167-
001, 1986.

Ingres, Ingres/Applications. Relational rechnology Inc. Alameda: CA, 1986.

Itakura, M., Takayanagi, 4., "A Model for Estimating Program Size and its
Evaluation," Proceedings of the Sixtlt International. Conference on Software
Engineering, IEEE, 1982, pp. 104-109.

Jones C., Programming Prutductiviry, McGraw-Hill, 1986.

Kanabar, v., Seah, E., "A Model for Planning and Cost Estimation", Advances in
Computing and Informatioru, ICCI Proceedings, Niagara, Ont, 1990, pp. 168-70.

Kanabar, V., B. Feiring, D. Scuse, E. Seah, "Project Planning and Estimating Using
a Software Metrics Framework", Irltenlcrtional. Conference on Com¡tuting ancl
Ir{brmatiorz, Volume II, Canadian Scholars Press, 1989, pp.336-339.

Kanabar, V., Janzen, T.,Seah, E., Smith, W., "Installation of a 4GT Model",
Technical Report, Faculty of Management, 1991.

Kanabar, V., "Knowledge-based Project Management: Work-Effort Estimation",
Twentieth Interface Symposium, Washington, D.C, April, 1988.

Kanabar, V., "An Integrated Model for Automated Planning and Estimation",
Proceedings oJ ACM Seventeenth Annual Contputer Science Conference,
February 1989.

Kanabar, V., "CASE: Integrating Project Estimating Tools into the Architecture",
Chapter published in CASE Issues Jbr the 1990's, ed. Bergin, T., Idea Book
Publishing, 1992.

Kanabar, V., Seah, E.,Scuse, D., Knowledge-base Referencing During Planning,
Working Papers on Artificial Intelligence in Managernent Science, The Institute
of Management Sciences, Fall 1989, pp. 144-56.

r79

Kemerer, C, "Softwa¡e Cost Estimation Models", Forthcoming in Software
Engineers Reference Book, Surrey, U.K: Butterworth.

Lin, C.,"Systems Development with Application Generators: An End-User
Perspective," JoLtrnal of Systems Management, Vol 41, No.4, 1990, pp.32-36.

Londeix, 8., Cost Estimation for Software Devel.oprnent, Addison-Wesley
Publishing Co., 1987,p. 40.

Mackowiak, K., "Skills Required and Jobs Available for CIS Majors", Interface,
Vol. 13, No.4, 1991, pp. 9-14.

Matos, V.M, Jalics, P.J., "An Experimental Analysis of the Performance of Fourth
Generation Tools on PCs," Comtnunications ACM,32, rl, Nov. 1989, l34o-
135 1.

Martin, J., Appl.ication Development Without Progratnrners, Prentice-Hall,
Englewood Cliffs, NJ, 1982, p.30.

Martin,M.,"InstantScreenDesign," Journalof Sl,stems Manctgentent,Vol4l, No.4,
1990, pp.22-27.

Martin, J., Fourth-Genercttion Languages, Vol. I, Prentice-Hall, 1985.

Mills, Harlan, P. Dyson, "Using Metrics to Quantify Development," IEEE Software,
March 1990, p 15-16.

Mccabe, T.J, "A Complexity Measure," IEEE Transctctions on Software
Engineering, SE-2,4, Dec. 1976, p. 308.

McClure, C. CASE is Sofnuare Automation. Englewood-Cliffs, N.J: Prentice-Hall,
1989.

McFadyen, R., Kanabar, V., An Intrt¡ductiot't to Structnred Query Lctngua.ge, Wm.
C. Brown, Dubuque, IA, 1991.

r80

Microsoft. Microsoft Project document: Project Schet)ul.ing ctncl Re¡torting
Program, No.410720011-400-R00-0887, Part No. 00163, IgBl .

Mohanty, S., "Software Cost Estimation: Present and Future," Softwctre Practice
and Experience,198l, pp. 103-121.

Misra, S., Jalics, P., "Third Generation versus Fourth-Generation Software
Development," IEEE Software, July 1988, p.8-14.

Nastec, Nastec CASE 2000, Nastec Corporation, Southfield, Michigan, 1986.

Ntuen, C., Mallik, 4., "Applying Artificial Intelligence to Project Cost Estimating,"
Cost Engineering, Vol. 29, No.5, May 1987, pp. 8-12.

Parkin, A., System Managentent,Edward Arnold Publishers Ltd., London, 1980.

Pfleeger, 5., Software Engineering: The Production of QuaLit¡, Sortwctre, Second
Edition, N.Y: Macmillan. 1991.

Pressman, R. Software Engineering A Practitioners Approctch. Third Edition,
McGraw-Hill Book Company, 1992.

Pressman, R., Making Sofauare Engineering Happen, Prentice Hall, Englewood
Cliffs, New Jersev, 1988.

Putnam, L.H, Fitzsimmons 4., "Estimating software costs," writings of the
Revol.ution, Yourdon Press, New York, 1982, pp. 3263a4.

Putnam, L., Myers, w., Measures for Excell.ence: Reliable Software on Tirne,
Within Budget, Englewoods Cliffs, New Jersey,1992.

Ramsey, C., Basili, V., "An Evaluation of Expert Systems for Software Engineering
Management," IEEE Transactiorts on Software Engineering, 15,1989, pp.747-
759.

181

Rockart, J.F, Flannery, L., "The Management of End user computing,"
Communications of the ACM, Association of Computing Machinery, October
1983, pp.776-784.

Roetzheim, W., Structured Computer Project Mctnctgernent, Prentice Hall,
Englewood Cliffs, New Jersey, 1988, pp.92-95.

Schussel, G., "Fourth Generation Productivity Tools - A Shopping Guide for
Software Consumers," Date Managenrent, October 1984, pp. 42-46.

Silver, 4., "Structural Decomposition using Entropy Metrics," Proceetlings of ttrc
1978 conference on Infonnation Sciences and Systenrs, John Hopkins University,
March 1978.

Silver, 4., "On the Structural Decomposition and Hierarchical Recombination of
Non-Directed Linear Graphs using Multi-Attribute Agglomerative Polythetic
Clustering Metrics," Constructive Approacltes to Mathent.atical Mot)els
Syn'tposiunz, Carnegie-Mellon University, July l0-14, Ig7B.

SQL*FORMS Designer's Reference, Version 2.0, ORACLE CorporcLtioru, Part No.
3304-V2.0. February I 988.

SQL*FORMS, s0¿*Fornts clctss Notes, ORACLE corporation, August LgB/.
Symantec, Time Line: The Corporate Choice for Project Múnagønent cmcl

Presentatiorzs, User Manual, Part # 03-30-00016, 1990.

Symons, C., "Function Point Analysis, Difficulties and Improvements," IEEE
Software Transactions on Software Engineering, SE-14(l), January 1988, pp.
2-r0.

Teng, J., Wesley, J., "f]ser Evaluation of Database Query Languages: A
Comparison of SQL and DBASE III," INFOR, Vol. 28, Augusr 1990.

Uniface, Uniface V. 5.2. Uniface Corporation. Alameda:CA, 1989.

Verner, J., Tate, G., "Estimating Size and Effort in Fourth-Generation
Development," IEEE Software, July 1988, p.15-22.

r82

vicinanza, S., Mukhopadhyay, T., Prietula, M., "Software-Effort Estimation: An
Exploratory Study of Expert Performance," Informcttion S,-stems Research,
December, 1991, pp. 243-262.

Wallace R., Stockenberg J.,Charette R., .4 UniJied Methotlolog), .for Devel.oping
Systems, McGraw-Hill Book Company, 1987.

'Walston, C., and C. Felix, "A Method for Programming Measurement and Esti
mation," IBM Systems Journal, vol. 16, no. l, lgj7.

Waterman,D., A Guide to Expert Systerns, Addison Wesley Publishing Co, 1986.

Whitten, J., & Bentley, L., Using Exceler¿ttor J'or System,s Anctlysis ctnd Design,
Boston, Irwin, 1987.

wrigley, C., Dexter. 4., "A Model for Measuring Information System size," MIS
Quarterly, June 1991, 245-257 .

Yourdon, "Software Metrics: You Can't Control What You Can'[Measure,"
American Programnter,Yol2, No. 2, February 1989.

183

Appendix A

RUNTIME;

ACTIONS

NOVELTY-IMPACT=SIGNIFICANT

GT_TOOL_EXP_IM PACT=S IGNIFICANT

OV_EXP-IMPACT = SIGNIFICANT

FIND env_value

FIND env_value2

FIND RELY

FIND D_COMM

FIND CHANGE

FIND INTERFACE COMPLX

FIND OPER_EASE

FIND METHOD VALUE

FIND GT_TOOL-EXP_VALUE

FIND NOVELTY VALUE

184

FIND TECHNIQUE_EFFECT

FIND PRACTICE EFFECT

FIND IMPACT

FIND PERSONNEL PF

DISPLAY "The 4GT tool value is {GT_TOOL_EXP_VALUE}."

DISPLAY "The developmenr reams familiarity with the

application on hand is {NOVELTY_VALUE}."

DISPLAY "The Personnel PF Correcrion is {PERSONNEL_PF}."

DISPLAY "The Methodology Correcrion is {METHOD_VALUE}."

DISPLAY "The Application Project Factor Correction is {AF}."

DISPLAY "The project admin. environment rating is {ENV_value}"

DISPLAY "The work/staff environment is {Env_value2}"

DISPLAY "The Project Factor Correction is {PF}.";

RULE I

IF DEVELOPER = END USER

THEN

r85

FIND END_USER_VALUE

PERSONNEL-PF =

(END_USER_VALUE * GT_TOOL_EXP-VALUE *NOVELTY_VALUE)

AF _ (RELY*D_COMM*CHANGEXINTERFACE_COMPLX*OPER_EASE)

EV - (ENV_VALUE*ENV_VALUE2)

PF = (PERSONNEL_PF*METHOD_VALUE*AF*EV)

DISPLAY "The End-User value is {END_USER_VALUE},,

ELSE

FIND OVERALL-EXPVALUE

PERSONNEL_PF =

(OVERALL_EXPVALUE * GT_TO OL-EXP*VALUE X NO VELTY_VALUE)

AF = (RELY*D-COMM*CHANGE*INTERFACE_COMPLX*OPER_EASE)

EV - (ENV_VALUE*ENV_VALUE2)

PF - (PERSONNEL_PF*METHOD_VALUE*AF*EV)

DISPLAY "The overalr Experience value is {OvERALL_EXPVALUE}.,,

BECAUSE "If rhe software apprication is being deveroped by end

use.s it will generalry take longer than if it is being developed

by professional Dp staff":

186

RULE E_U_O

IF END_USER_TYPE=comp_supporr_sraff

THEN END_USER_IMPACT=significant

BECAUSE "Different types of end-users ale skilled at different

levels. some of them might be working as full-time computer

support staffjand therefore represent professional IS personnel,

others may be functional support personnel, but some are basically

power-users and quite skilled. End-user programmers are.relatively

less skilled, and the command level end-users are the least

skilled category (but still capable of developing simple 4GL

applications with help.)";

RULE E-U-l

IF END_UsER_TYPE=funcrional_supporr AND

TRAlNlNG=available AND

INFO_CENTER_S UPPO RT=avai lable

THEN END_USER_IMPACT=v_significanr

BECAUSE "End-users in this category are capable";

RULE E_U_z

IF END_UsER_TYPE=end_user_programmer AND

TRAINING=available AND

r87

INFO_CENTER_S UPPORT=availab le

THEN END_USER_lMpACT=v_v_significanr

BECAUSE "End-users in this category are inexperienced and need

guidance from information center and good training";

RULE E_U-3

IF END_USER_TYPE=command_level_user AND

TRAINING=available AND

INFO_CENTER_S UppORT=availab le

THEN END_USER_IMPACT=v_v_significanr

BECAUSE "End-users in this category are very inexperienced and

need guidance from information center and good training";

RULE E_U_4

IF END_UsER_TYPE=funcrional_supporr AND

TRAINING=nor available OR

INFO_CENTER_S UPPO RT=not_availab le

THEN END_USER_IMPACT=v_v_siBnificant

BECAUSE "IF the end-users don't have the IC support and training

it will affect their productivity";

188

RULE E-U_5

IF END_UsER_TypE=end_user_programmer AND

TRAINING=not_available OR

INFO_CENTER_S UppORT=nor_available

THEN END_USER_lMpACT=rerminare

BECAUSE "If rhis type of end-user does not have the IC support

nd training it will not be possible to develop any applications":

RULE E_U_6

IF END_UsER_TypE=command_level_user AND

TRAINING=nor_available OR

INFO_CENTER_S UppORT=nor_avai lab le

THEN END_USER_IMpACT=terminare:

RULE E-U_7

IF END-USER_IMPACT=SIGNIFICANT AND

END_USER-SKILL=BAS TC

THEN END_USER_VALUE =t .42

BECAUSE "End-users may range in experience by a fair degree. some

might simply have cursory experience with a 4GL product, others

189

might have more significant experience. ",

RULE E_U_8

IF END_USER_IMPACT=SIGNIFICANT AND

END_USER-S KILL=COMFORTABLE USE

THEN END-USER-VALUE =1,21

BECAUSE "Allocation of productivity rating";

RULE E_U_9

IF END-USER-IMPACT=SIGNIFICANT AND

END-USER_S KILL=AVERAGE

THEN END_USER_VALUE=1.00

BECAUSE "Allocation of productivity rating";

RULE E_U_10

IF END-USER_IMPACT=STGNIFICANT AND

END_USER-S KILL=GOOD PRACTICE

THEN END USER VALUE=0.79

BECAUSE "Allocation of productivity rating";

190

RULE E_U-I I

IF END_USER_IMPACT=STGNTFTCANT AND

END-USER_S KILL=VER Y_HIGH

THEN END_USER_VALUE=O.58

BECAUSE "Allocation of productivity rating,,;

RULE E-U-12

IF END_USER_IMPACT=V-SIGNIFICANT AND

END_USER_S KILL=BAS IC

THEN END_USER_VALUE=1.g4

BECAUSE "Allocation of productivity rating,,;

RULE E_U_13

IF END-USER_IMPACT=V_SIGNIFICANT AND

END_USER_S KILL=COMFORTABLE USE

THEN END_USER_VALUE=1.63

BECAUSE "Allocation of productivity rating",

RULE E_U_14

IF END-USER-IMPACT=V-SIGNIFICANT AND

END-US ER_S KILL=A VE RAGE

l9l

THEN END_USER_VALLIE =t.42

BECAUSE "Allocation of producriviry rating";

RULE E_U_15

IF END_USER_IMPACT=V_SIGNIFICANT AND

END_USER_S KILL=GOOD_pRACTICE

THEN END_USER_VALUE=LZl

BECAUSE "Allocation of productivity rating";

RULE E_U_16

IF END_USER-IMPACT=V_STGNTFICANT AND

END_US ER_S KILL=VE R Y-HIGH

THEN END_USER_VALUE=1.00

BECAUSE "All, :ation of productivity rating";

RULE E_U-I7

IF END_USER-IMPACT=V-V_STGNIFICANT AND

END_USER_SKILL=BASIC

THEN END_USER_VALUE =2.47

BECAUSE "Allocation of productivity rating";

r92

RULE E_U_I8

IF END-USER_IMPACT=V_V_SIGNTFICANT AÌvD

END_USER_S KILL=COMFORTAB LE- US E

THEN END_USER_VALUE
=2.26

BECAUSE "Allocation of productivity rating,,;

RULE E-U_Ig

IF END_USER_IMPACT=V_V_SIGNIFICANT AND

END-US ER_S KILL=A VE RAGE

THEN END_USER_VALUE =2.05

BECAUSE "AIlocarion of productivity rating,,;

RULE E_U_20

IF END_USER-TMPACT=V-V_SIGNIFICANT AND

END_USER_S KILL=GOOD_pRACTICE

THEN END_USER_VALUE=1.84

BECAUSE "Allocation of productivity rating,,;

RULE E_TJ_27

IF END-USER-IMPACT=V_V-SIGNTFICANT AND

END_USER_S KILL=VERY-HIGH

r93

THEN END_USER_VALUE= I .63

BECAUSE "Allocation of producrivity rating";

RULE E_U_22

IF END-USER_IMPACT=TERMJNATE

THEN END-USER_VALUE=O

DISPLAY "[t is not possible for this program to estimate a

correction under such circumstances - program pF will be zero. ,,

BECAUSE "It is difficult for the end-users ro do any 4GL

application development without access to some I.c. help.";

RULE 3

IF OV_EXP-IMPACT=SIGNIFTCANT AND

O VE RALL_EXPRATING= VERY_LOW

THEN OVERALL-EXPVA LIJE=L42

BECAUSE "the overall experience of ihe developer can very

significantly affect the speed and cost with which applications are

developed.";

RULE 4

IF OV_EXP_IMPACT=SIGNIFICANT AND

r94

O VERALL_EX PRATING=LOW

THEN OVERALL_EXPVALUE=I 2l

BECAUSE "Allocation of producriviry raring";

RULE 5

IF OV_EXP_IMPACT=STGNIFICANT AND

OVERALL_EXPRATING=AVERAGE

THEN OVERALL_EXPVALUE= I .0

BECAUSE "Allocation of productivity rating";

RULE 6

IF OV_EXP_IMPACT=SIGNIFICANT AND

OVE RALL_EXPRATING=HIGH

THEN OVERALL-EXPVALUE=O.79

BECAUSE "Allocation of productivity rating";

RULE 7

IF OV_EXP_IMPACT=SIGNIFICANT AND

O VE RALL_EXPRATING=VERY-HIGH

THEN OVERALL_EXPVALUE=0.58

BECAUSE "Allocation of productivity rating";

r95

RULE 8

IF GT_TOOL-EXP-IMPACT=SIGNIFICANT ANID

GT_TOOL_EXP_RA11¡ Ç = VE Ry_LOw

THEN GT_TOOL_EXP_VALUE= 1.28

BECAUSE "previous experience with a 4GL toor will significantly

affect the efficiency and speed with which new applications can be

developed. This can vary from very low (experience ress than r

month)

to very high (experience greater than 3 years). ";

RULE 9

IF GT_TOOL_EXP-IMPACT=SIGNIFICANT AND

GT_TOOL_EX P_RATING=LOW

THEN GT_TOOL_EXP_VALUE= l.14

BECAUSE "Allocation of productivity rating";

RULE 10

IF GT-TOOL-EXP-IMPACT=SIGNIFICANT AND

GT_TOOL_ :XP_RATING=AVERAGE

THEN GT TOOL EXP VALUE=1.00

BECAUSE "Allocation of productivity rating";

t96

RULE I 1

IF GT-TOOL_EXP_IMPACT=SIGNIFICANT AND

GT_TOOL_EXP_RATING=HIG H

THEN GT_TOOL_EXP_VALUE=0.86

BECAUSE "Allocation of producrivity r.aring":

RULE 12

IF GT_TOOL-EXP_IMPACT=S IGNIFICANT
,
AND

GT_TOOL_EX p_RAT JNG=VER y_HIcH

THEN GT_TOOL_EXP_VALIJE=0]2

BECAUSE "Allocation of productivity rating";

RULE 13

IF NOVELTY_IMPACT=SIGNIFICANT AND

NO VELTY_RATING=VER y_LOW

THEN NOVELTY_VALUE=L2B

BECAUSE "previous experience with a simila¡ project and

application can affect the cost of development. Novel applications,

which the development team has no previous familia¡ity with, should

require more manpower. By the sarne token, if a project is simple

(and not unique) and if it lends itself to automatic application

191

generation, it's novelty is classified as very low. ,,;

RULE 14

IF NOVELTY-IMPACT=SIGNIFICANT AND

NOVELTY_RATING=LOW

THEN NOVELTY_VALUE=1.14

BECAUSE "Allocation of producrivity rating";

RULE 15

IF NOVELTY_IMPACT=SIGNIFICANT AND

NOVELTY_RATING=AVE RAGE

THEN NOVELTY_VALUE=I.00

BECAUSE "Allocation of productivity rating";

RULE 16

IF NOVELTY-IMPACT=SIGNIFICANT AND

NOVELTY_RATING=HIGH

THEN NOVELTY_VALUE=0.86

BECAUSE "Allocation of productivity rating";

198

RULE 17

IF NOVELTY_IMPACT=SIGNIFICANT AI\.ID

NOVELTY-RATING=VERY_HIGH

THEN NOVELTY_VALUE =0.12

BECAUSE "AIlocation of productivity rating',;

RULE MTHD_O

IF TECHNIQUE=jad

THEN TECHNIQUE_EFFECT-good;

RULE MTHD-I

IF TECHNIQUE-prototyping

THEN TECHNIQUE_EFFECT-good;

RULE MTHD_2

IF TEcHNlQ{J[=jad_and_prorotyping

THEN TECHNIQUE_EFFE6J=good;

RULE MTHD-3A

IF TEcHNlQUE=pp_¡as_no_influence

THEN METHOD_VALUE = 1.0

BECAUSE "Techniques such as JAD - joinr application design and

r99

development and subsequent prototyping serve to reduce to

development costs.":

RULE MTHD-3B

IF PRACTICE = pF_has_no_influence

THEN METHOD_VALUE = 1.0

BECAUSE "Techniques such as top down design, structured design and

programming, and rerated str.ategies resurts in an orderly

development of the software, moreover, it assures that there wiil

be no chaos during development.,,;

RULE MTHD_4

IF pRAcTlcE=srrucr_design_&_prog

THEN pRACTICE_EFFECT_good;

RULE MTHD-s

IF pRAcTlcE=walkthroughs

THEN pRACTICE_EFFECJ=goodl

RULE MTHD_6

200

IF PRAcTlcE=struct_tech_&_rvalkth

THEN PRACTICE_EFFECT-good:

RULE MTHD_8

IF TECHNIQUE_EFFECT-good AND

PRACTICE_EFFECT=qood

THEN lMPACT=sienificant;

RULE MTHD_g

IF TECHNIQUE_EFFECT=PF_has_no_influence AND

PRACTICE_EFFECT=sood

THEN IMPACT=averase;

RULE MTHD_IO

IF TECHNIQUE_EFFECT-good AND

PRACTICE_EFFECT=PF has no influence

THEN IMPACT=average;

RULE MTHD_I1

IF lMPACT=sisnificant AND

METHOD_EX PERIENCE= very_low

20r

THEN METHOD_VALUE=I.00

BECAUSE "while end-users or developers might be enthLrsiastic about

using techniques such as JADÆrototyping or structured methods

for

software development, they may not be very experienced with such

techniques.";

RULE MTHD_I2

IF lMPACT=significant AND

METHOD_EX PERIENCE=iow

THEN METHOD-VALUE=1.00;

RULE MTHD_l3

IF lMPACT=significant AND

METHOD_EXpER IENCE=average

THEN METHOD_VALUE=I.00:

RULE MTHD_l4

IF IMPACT=significant AND

METHOD_EXPERIENCE=hi eh

202

THEN METHOD_VALTJE=0.86;

RULE MTHD_Is

IF lMPACT=significanr AND

METHOD_EX pER IENCE=very_h igh

THEN METHOD_VALUE=0.72:

RULE MTHD_I6

IF IMPACT=averase AND

METHOD_EXPERIENCE=verv low

THEN METHOD_VALUE=1.14;

RULE MTHD-I7

IF IMPACT=average AND

METHOD_EX PERIENCE=Iow

THEN METHOD_VALUE=t.07;

RULE MTHD_l8

IF IMPACT=averase AND

METHOD_EX pE RIENCE=averase

THEN METHOD_VALUE=I.00;

203

RULE MTHD_l9

IF IMPACT=averase AND

METHOD_EXpERIENCE=hish

THEN METHOD_VALUE=I.00;

RULE MTHD-20

IF IMPACT=average AND

METHOD_EX pER IENCE=very_h igh

THEN METHOD_VALUE=I.00:

RULE O_EASE_O

IF OPERATIONAL_EASE=very low

THEN OPER_EASE=0.72

BECAUSE "If ease of operating the system is essential then the

application must be automated to a great degree, for instance, this

might involve special effort to provide error recovery, automatic

backup of database files, and easy st¿u't-up, or shut-down.";

RULE O_EASE_I

IF OPERATIONAL EASE=low

THEN OPER_EASE=O.36.

204

RULE O-EASE_2

IF OPERATIONAL_EASE=averaqe

THEN OPER_EASE=I.OO:

RULE O-EASE_3

IF OPERATIONAL_EASE=high

THEN OPER_EASE=¡.14.

RULE O_EASE_4

IF OPERATIONAL_EASE=very_high

THEN OPER_EAS E= 1 .29.

RULE O-EASE-s

IF OPERATIONAL_EASE=pF_nor_appticable

THEN OPER_EASE= l.gg.

RULE I_CMPLX-O

IF INTERFACE_COMpLEXITy=very_tow

THEN INTERFACE_COM?LX=O.72

BECAUSE "on-line functions for data entry, update, or output

involve more effort than simllar batch functions. [f some special

205

lntertaces are required such as output to a laser printer or

graphics terminal more effort is required. ";

RULE I_CMPLX-I

IF INTERFACE_COMPLEXITY=Iow

THEN INTERFACE_COMpLX=Q.gS1

RULE I_CMPLX 2

IF INTERFACE_COMpLEXITy=averâgê

THEN INTERFACE_COMPLX= 1.00.

RULE I-CMPLX 3

IF INTERFACE_COMPLEXITY=high

THEN INTERFACE_COMpLX=1,14:

RULE I_CMPLX_4

IF INTERFACE_COMpLEXITy=very_high

THEN INTERFACE_COMpLX= 1.28:

RULE I_CMPLX_s

IF INTERFACE_COMplExlTy=pF_nor_applicabte

206

THEN INTERFACE_COMpLX= I .00.

RULE CO

IF RELIABILITY_RATING=verv low

THEN RELY=0.72

BECAUSE "Reliabirity expecred from the apprication being developed

can significantry affect the cost of apprication deveropment. An

application musr be crassified as requiring high reriabiliry if

failure can result in a large financial losses,,;

RULE Cl

IF RELIABILITY_RATING=Iow

THEN RELY=Q.SS;

RULE C2

IF RELIABILITy_RATING=averase

THEN RELY=I.00:

RULE C3

IF RELIABILITY_RATING=high

THEN RELY=I.14;

207

RULE C4

IF RELIABILITy_RATING=very_high

THEN RELY=I.28;

RULE C5

IF RELIABILITy_RATING=pF_nor_applicabte

THEN RELY= 1.00,

RULE COMM-O

IF DATA_COMMUNICATION=very_IoW

THEN D_COMM=0.12

BECAUSE "More effort is required ro develop applications thar

require data to be sent or received over multiplexers, networks, or

LANs.",

RULE COMM-I

IF DATA_COMMUNICATION=Iow

THEN D_COMM=0.86:

RULE COMM_2

IF DATA_COMMUNICATION=averase

208

THEN D_COMM= I .00:

RULE COMM-3

IF DATA_COMMUNICATION=hiqh

THEN D_COMM= t. t4;

RULE COMM-4

IF DATA_COMMUNICATION=very_high

THEN D_COMM=\.28:

RULE COMM_s

IF DATA_COMMUNICATION=pF_nor_applicable

THEN D_COMM= 1.00;

RULE F_C_O

IF FACILITATE=very_low

THEN CHANGE =0.12

BECAUSE "if the application is designed to facilitare changes

(such as frequent updates of tax rates, or interest rates). or if

it is designed to facilitate maintenance or creation of module

libraries more effort will be required. ";

209

RULE F-C_I

IF FACILITATE=Iow

THEN CHANGE=0.86;

RULE F-C_2

IF FACILITATE=average

THEN CHANGE=I.00:

RULE F-C-3

IF FACILITATE=¡¡g¡

THEN CHANGE= t .14;

RULE F_C_4

IF FACILITATE=very_high

THEN CHANGE=L2B:

RULE F-C_5

IF FACILITATE=PF_nor_applicable

THEN CHANGE=I.00;

210

RULE ENV_I

IF ENVIRONMENT=Xeroxing_&_printing AND

ENVIRONMENT=Worksrarions AND

ENVIRONMENT=Technical_EdLrcarion AND

EN V I RO N M E NT= S oftw are_&_Hardw are

THEN ENV_RATING=average

BECAUSE "attributes such as avairabirity of xeroxing and

duplicating resources, private work station, availability of all

required softrvare and hardwar-e needed for the project, ano

technical training (if needed) wiil affect the project estimates,,;

RULE ENV_2

IF ENVIRONMENT=Xeroxing_&_prinring AND

ENVIRONMENT=Worksrarions AND

ENV IRONMENT=Technical_Educarion

THEN ENV_RATING=v low:

RULE ENV_3

IF ENVIRONMENT=Worksrarions AND

ENVIRONMENT=Technical_Educarion AND

2tl

ENV IRO NMENT=S oftware_&_Hard ware

THEN ENV_RATING=average;

RULE ENV_4

IF ENVIRONMENT=Xeroxing_&_printing AND

ENVIRONMENT=Technical_Education AND

E N V IRON ME NT=S oftw are_&_ Hardw are

THEN ENV_RATING=average,

RULE ENV_s

IF ENVIRONMENT=Xeroxing_&_printing AND

ENVIRONMENT=Worksrations

THEN ENV_RATING=Iow;

RULE ENV_6

IF ENVIRONMENT=Worksrations AND

ENVIRONMENT=Techn ical_Education

THEN ENV_RATING=v_Iow;

RULE ENV_7

IF ENVIRONMENT=Technical_Educarion AND

2ti

EN V I RO N ME NT= S oftw are_&_ Hard wa¡e

THEN ENV_RATING=Iow:

RULE ENV_8

IF ENVIRONMENT=Xeroxing_&_printing AND

ENVIRONMENT=Technical_Education

THEN ENV_RATING=Iow:

RULE ENV-9

IF ENVIRONMENT=Xeroxing_&_prinring AND

EN V IRON ME NT=S oftw are_&_ Hard w are

THEN ENV_RATING=Iow:

RULE ENV-10

IF ENVIRONMENT=Worksrarions AND

EN VIRONM E NT=S oftware_&_Hardw are

THEN ENV_RATING=Iow:

RULE ENV-I I

IF ENVIRONMENT=Xeroxing_&_prinring

THEN ENV_RATING=v_Iow;

213

RULE ENV_12

IF ENVIRONMENT=Worksrarions

THEN ENV_RATING=v low;

RULE ENV_I3

IF ENVIRONMENT=Technical Education

THEN ENV_RATING=v_Iow;

RULE ENV-14

IF ENVIRONMENT=Sofrware & Hardware

THEN ENV_RATING=v_Iow;

RULE ENV_15

IF ENVIRONMENT=pF_not_applicable

THEN ENV_RATING =averâsel

RULE ENV_I6

IF env_rating=v_low

THEN env_value=1.14;

2t4

RULE ENV_17

IF env_rating=low

THEN env_value=I.07;

RULE ENV_I8

IF env_rating = av€râg€

THEN env_value = 1.00:

RULE ENV_Ig

IF Environment2=pF_not_applicable

THEN ENV_value =1.00:

RULE ENV2_1

IF Environment2=lnadequate_compensation AND

Env ironment2=Low_priority_proj s AND

En v ironment2=Many_concu nent_proj AND

Environmen t2=Morale_not_h igh

THEN ENV_RATING2=poor

BECAUSE "inadequate compensation or low morale of employee could

affect the productivity. If the developers are working on a

2r5

projecr rhar has row visibility and priority, or if they are

working on several projects at the same time this will also affect

the cost estimates,,:

RULE ENV2_2

IF Environment2=lnadequate_compensation AND

Environmen t2=Low_priori ty_proj s AND

Env ironme n t2=Many_c onc u rren t_proj

THEN ENV_RATING2=v_Iow,

RULE ENV2_3

IF Environmenr2=f6p_priority_projs AND

Env ironmen t2=Many_c onc urren t_proj AND

Env ironmen t2=Morale_not_high

THEN ENV_RATING2=average;

RULE ENV2-4

IF Environment2=lnadequate_compensation AND

Environmen t2= Many_conc un e nt_proj AND

Environmen t2=Morale_not_high

THENI ENV_RATING2=average;

2t6

RULE ENV2_5

IF Environment2=Inadequate_compensation AND

Env ironment2=Low_priority_proj s

THEN ENV_RATING2=Iow:

RULE ENV2_6

IF Environment2=Low_priority_projs AND

En v ironme n t2= Many_c onc u ff en t_proj

THEN ENV_RATING2=v_Iow;

RULE ENV2_7

IF Environment2=Many_concunent_proj AND

En v ironmen t2= Morale_not_high

THEN ENV_RATING2=Iow:

RULE ENV2-8

IF Environmenú=lnadequare-compensation AND

Environmen t2=Many_conc urïen t_proj

THEN ENV_RATING2=Iow;

RULE ENV2 9

2rl

IF Environment2=lnadequate-compensation AND

Env ironme nt2=Morale_not_hieh

THEN ENV_RATING2=Iow:

RULE ENV2-IO

IF Environment2=Low_priority_projs AND

Environmen t2=Morale_not_high

THEN ENV_RATING2=Iow:

RULE ENV2-1 1

IF Environment2=lnadequate_compensation

THEN ENV_RATING2=v_Iow;

RULE ENV2_12

IF Environment2=Low_priority_projs

THEN ENV_RATING2=v low:

RULE ENV2_I3

IF Environment2=Many_concurren. _proj

THEN ENV_RATING2=v low:

2r8

RULE ENV2_I4

IF Environment2=Morale_not_high

THEN ENV_RATING2=v_Iow;

RULE ENV2-I5

IF Environment2=pF_not_applicable

THEN ENV_value2 =1.00

BECAUSE "inadequate compensation or low morale of employees could

affect their productivity. If the developers a¡e working on a

project that has row visib'ity and priority, or if they are

working on several projects at the sarne time it will also affect

the cost estimates":

RULE ENV2_I6

IF env_rating2=v_low

THEN env_value2=|.07,

RULE ENV2_I7

IF env_rating2=low

THEN env_valueZ=1.14,

2r9

RULE ENV2_I8

IF env_rating2 = poor

THEN env_value2 = l.2l:

ASK DEVELOpER: "who is going ro develop rhe appricarion?,';

CHOICES DEVELOPER: END_USER, DP_STAFF:

ASK OVERALL-EXPRATING: "whar is rhe overail EXPERIENCE of the

development þam?";

CHOICES OVERALL_EXPRATING:

VERY_LOW,LOW,AVERAGE,HIGH,
VE RY_HIGH:

ASK 4GT-TooL: "How much famiriarity do the deveropers have with the

DBMS and

Fourth Generation Toors to be used in imprementing the

application?";

CHOICES 4GT_TOOL: VERy_LOW, LOW, AVERAGE, HI.H.
VERY_HIGH:

ASK GT-TOOL-EXP-RATING: "whar is the lever of experrise wirh the

4GT TOOL?'';

220

CHOICES GT_TOOL_EXP-RATING:

VERY-LOW,LOW,A VERAGE, HIGH, VERY-HIGH;

AsK NOVELTY-RATING: "How familiar is the projecr team with the with

the software development project on hand?";

CHOICES NOVELTY_RATING:

VERY_LOW,LOW,AVERAGE,HIGH, VERY_HIGH;

ASK END-USER-SKILL: "what is the level of end-user computing

skills?";

CHOICES END_USER-SKILL:

B AS IC,COMFORTABLE-US E,A VERAGE,GOOD-PRACTICE, VERY_HIGH:

ASK END_USER_TypE: "What is rhe end_user rype?,,;

CHOICES END-USER-TYPE:

c omp_s upport_staff ,func tion al_s u pport,

end_u ser_programmer,corrunand_le vel_u se r;

ASK TRAINING: "Is training available?',;

CHOICES TRAINING: available.nor_available;

221

ASK INFO-CENTER-SUPPORT: "[s lnformation Center supporr available

readily?";

cHoICES INFO-CENTER_SuppoRT: available,not_available;

ASK TECHNIQUE: "what sofrwa¡e development techniques will be

used?";

CHOTCES TECHNIQUE:

j ad,prototyping j ad_and_prorotypi ng,pF_has_no_infl ue ncç ;

ASK PRACTICE: "what softwale implementation techniques will be

used?";

CHOICES PRACTICE:

stl'uc t_design_&_prog, walkthroughs,struc t_tec h_&_walkth,

PF_has_no_influence;

ASK METHOD_EXPERIENCE: "what is the level of experience wirh

techniques such as JAD, and structured programming?";

cHOICES METHOD-EXPERIENCE: very_low.low,average,high,very_high;

ASK RELIABILITY-RATING: "How important is software reliabiliry?":

CHOICES RELIAB ILITY-RATING :

222

very_low,low,average,h igh, very_high, pF_not_applicab
le ;

ASK DATA-COMMUNICATIoN: "Is dara communicarion cruciar here?,,:

CHOICES DATA_COMMUNICATION:

very_l ow,low,average,high, very_hi g h, pF_not_applicable
;

ASK FACILITATE: "rs the appricarion designed to facilitate

change?";

CHOICES FACILITATE:

very_low,low,average,h igh, very_high,pF_not_applicable
;

ASK INTERFACE-.'M'LEXIT': "How criticar is rhe interface

complexity?";

CHOICES INTERFACE_COMPLEXITY:

very_low,lo w,average,high, very_high,pF_not_applicable
;

ASK OPERATIONAL-EASE: "should the sofrware provide a degree of
operational ease?',;

CHOICES OPERATIONAL-EASE:

very_low,low,average,high, very_high,pF_not_appticable
;

223

ASK ENVIRONMENT: "which of the following facilities are very

adequately available in the project environment (select alr that

apply)?";

CHOICES ENVIRONMENT:

Xeroxing_&_Printing,Workstations,Technical_Education,

S oftware_&_Hardw are, pF_not_applicab
le ;

ASK Environment2: "select all factors that describe the environment

that the staff are working in?";

CHOICES Environmenr2:

Inadequate-compen sation,Low_priority_projs,Many_conc urrent_proi,

Morale_Nor_High, pF_Nor_Applicable
;

PLURAL: ENVIRONMENT:

PLURAL: Environment2:

224

Appendix B

User Interface: Questions asked bv PFES

o Who is going to develop the application?

end-user, d¡t .;taff

" what is the overall experience of the development team?

ver¡- Iow, Iow, averctge, high, ver¡- higlt

o How much familiarity do the developers have with the DBMS and Fourth

Generation Tools to be used in imprementing the application?

vert- low, low, uveruge, higlt, r,ery higlt

o What is the level of expertise with the 4GT TOOL?

very low, low, average, high, t,ery higlt

o How familiar is the project team with the with the software development

project on hand?

v€rv- low, low, averctge, high, very higlt

" What is the level of end-user computing skills?

225

basic, contþrtctble use, ür)erctge, good practice, ven, lti.qh

" What is the end-user tvoe?

comp sLtpport stctJJ, Jùnctionctl support,

end-user progrutjlr7.rer, con7nrctntl IeveI user

o Is training available?

availabl e, not ctvct ilable

o Is Information Center support available readily?

¿tva i la b I e, nr¡t ctvct iI t:th I e

" what software deveropment techniques wilr be used?

jad, proto,ping, jad and protonpirg, pF has nr¡ infruence

" what software imprementation techniques wilr be used?

struct design & prog, warkthroughs, st,tct tech & wctrktrt.

PF has no inflLtence

" what is the level of experience with techniques such as JAD, and

structured programming ?

226

very low, low, ctverage, high, ven higlt

o How important is software reliability?

vert, low, low, ctverage, high, t¡er:- high, pF nr¡t ctpplicctble

,, Is data communication crucial here?

very low, lr¡w, ctvercrge, high, very high, pF n,t ap¡slicctbl.e

o Is the application designed to facilitate chanse?

very low, low, averctge, high, verv high, pF not ctpp[.icctbl.e

o How critical is the interface complexity?

ver\' l.(¡w, low, crver¿:tge, high, ven high, pF not ct¡t¡tlicctble

. Should the software provide a degree of operational ease?

very low, low, average, higlt, ven, high, pF ,ot ctpplicable

o Which of the following facilities are very adequately available in rhe

project environment (select all that apply)?

xeroxing & Printing, wc¡rkstations, Tecrmic¿tl Eclttccttir¡n.

Software & Hartlware, PF not ctpplicabLe

227

" Select all factors that describe the environment that the stafï a¡e workins

in?

Inadequate Cont¡tenscttion, Low Prit¡rin, Prr¿js, M¿tnt, Ct¡ncurrent

Proj, Morale Nor High, PF Not Applicahle

228

Appendix C

PFES S.S. Nlodel Version

Project F¿rctr>r Enter
Choice
(0-,s)

Options (Entcr 0,1,2,3,4, or -j)

Type of Developer

End User Type

2 t. End User 2. DP Staff

0 I. CSS 2. FS 3. EUP 4. CL
End User Skitl
Level

0 l. Novice 2.Comfbr
-rable

3. Avera_ge 4. (iood 5.V.(lood

End User Resrturces 0 l. Training
Available

2. Truininc Unavailablc

Infbrmation Center
Support

0 L Sup¡rort
Available

2. Sup¡xrrt Untvailatrle

DP ,StafÏ Experience
Level

3 l. V. Low 2. Low 3. Average 4. Higlr 5. V. High

Expertise with 4GTs J L V. Low 2. Low 3. Averace 4. High 5. V. High
Faniliariry with
Simila¡ Project

J l. V, Low 2. Low 3. Average 4. High 5. V Hiolr' __'5"

Data
Communicirtion
Cornplexiry

a
-) L V. Low 2. Low 3. Avera-ee 4. High 5. V.High 0. Not

Valid

Inteface Complexity _1 l. V. Low 2. Low 3, Average a. High 5.V. High 0. Not
Valid

Software Reliability
-1 l. V. Low 2. Low

a. Low

3. Average 4. Higlr 5. V.High 0. Not
Valid

O¡lenrtional Ease J l. V. Low 3. Average 4. Higlr 5. V.High 0. Not
Valid

Environment a
-) I. v Low 2. Low 3. Average 4. High .5. V.High 0. Not

Valid
Famrliarity wirh
SDLC

-l l. V. Low 2. Low 3. Average 4. Higlr 5. V.High 0. Not
Valid

ReconmrendetJ

PFES Correction:
t.0

Note: select 0, if not varid ur i|'rirnuafly codecr: as with process Functions

229

Appendix D

4GT Nlodel Program Code

A1: [W19] '4GT MODEL - Calibrared For LEGASY

A2: [W19] 'Forms

D2: (F2) (D15)

E2: [W12]'person-hours

A3: [Wl9] 'Reporrs

D3: (F2) (D2t)

E3: [Wl2]'person-hours

A4: [W19] 'Dara Type

D4: (F2) (D25)

E4: [W12]'person-hours

A5: [Wl9] 'Process Type

D5: (F2) 125

E5: [Wl2]'person-hours

A6: [W19] 'Developmenr Effort (estimared)

D6: (F2) @SUM(D1..D2)

E6: [W12]'person-hours

A7: [Wl9] 'Development Efforr (actual)

230

D7: (FZ) 2340

E7: [W12]'person-hours

A8: [Wt9]'Expansion Facror (actual/estimared)

D8: (F2) (D7lD6)

A9: [W19] 'FORMS

410: [Wl9] 'SE Category

Bl0: 'SE Value

C10: [Wl l] 'Magnitude

D10: 'Total SE Value

A I I : [W l9] 'Simple SE

Bll:(F2) 0.13

Cll: [Wl1] 185

Dl 1: (C1 1*Bl 1)

412: [W19] 'Basic SE

Bl2 (F2) 0.29

Cl2: [W11] 36

D12: (Cl2*Bl2\

Al3: [Wl9] 'Detailed SE

813: (F2) 1.59

Cl3: [WIr) 32

D13: (Cl3*B13)

231

414: [W19] 'User Exit

814: (F2) 22.72

Cl4: [Wll] l1

D14: (F2) (C14*Bl4)

415: [Wl9] 'Total Effort

Dl5: @SUM(Dl4..Dl l)

E15: [Wl2]'person-hours

A1ó: [Wl9] 'REPORT

417: [Wl9] 'SE Category

B17: 'SE Value

Cl7: [W11] 'Magnitude

Dl7: 'Total SE Value

418: [Wl9] 'Simple SE

Bl8: (F2) 0.13

C18: [WII) 75

Dl8: (F2) (Cl8*Bl8)

419: [Wl9] 'Basic SE

819: (F2) 0.84

C19: [Wl l] 14

Dl9: (F2) (C19x819)

420: [Wl9] 'Detailed SE

F20 (F2) 2.55

C20: [Wl I] 69

D20: (F2) (C20*820)

421: [W19] 'Total Effort

D21: @SUM(D2O..D18)

E2l: [W12]'person-hours

422: lW l9l 'D A T A

423: [Wl9] 'SE Category

823: 'SE Value

C23: [W11] 'Magnitude

D23: 'Total SE Value

424: [W19] 'Data Element

824: (F2) 0.41

C24: lW l ll 238

D24: (F2) (CZ4*824)

A25: [W19] 'Total Effort

D25: +D24

E25: [Wl2]'person-hours

233

t***********t*********************************{<**x**********x

*-- Name....: model.prg

*-- Notes...: main program, provides pop-rìp menu for selecting

specification elements.

x*x****x*************************************ì<x*****++x**tr

SET TALK OFF

set stat off

close all

clear

*

select I

use datal

append blank

@ 1,0 to 12,60 double

@ 2, 18 say " FUNCTION DEFINITION,'

@3, lto3,59

@ 5, 10 say "Function Name: " get namel

@ 7, l0 say "Function Type: " get type

@ 9, l0 say "SEV: "

@ 9, 40 say "Level :"

read

234

if len(trim(type)) = 0

sele 3

use data3

define popup rob from 12,5 to 19,25 prompr fierd vkey

on selection popup rob deactivate popup

activate popup rob

goto barQ

replace datal->type with data3->vkey

endif

@ 7, l0 say "Function Type: " get datal->type

clear gets

*

sele I

@ 9, 10 say "SEV: " get name2

do morepop

close all

deactivate window robl

set talk on

set stat on

return

235

Procedure morepop

*

* if the field <numbe> has been filled, then ignore rhe popup window.

*

select 2

use data2

* Define the popup window for input

*

define window robl from ll, 10 to 17,40 double

store 0 to vtotal

do while .r.

brows lock 0 noappend noedit nuclear nodelete nomenu window robl

read

if readkeyO = 12

deactivate window robl

return

endif

do adding

enddo

return

236

procedure adding

* sum up one or more record from one database on a single field

*

sele 4

use data4

define popup rob4 from I r, 60 to 17 ,70 prompt field level

on selection popup rob4 do selecting

activate popup rob4

select 2

vtotal=vtotal+number

sele 1 && selecting where to put the calculated value

replace datal->name2 with vtotal

@ 9, l0 say "SEV: " get datal->name2

sele 2 && return to source file

return

Procedure selecting

if barO > 0

23'1

goto bar0

replace datal->vlevel with level

@ 9, 40 say "Level : " get level

deactivate popup

sele 2

endif

return

* ** * * *'t * t x * x * * * * * x * * * * * t * * * * * * * * * * * * ** * * * * * * x *

*-- Name....: FRM_TYPE.FMT

*-- Version.: dBASE IV, Format 1.0

8-- Notes...: Format files use "" as delimiters!

* * * * * ** * * * * * * * x * ** * * * * * {< * * * * * * * * * * ** * * x * x * x ** * * * * * * :t * * ** * * t* * * * *

*-- Format file initialization code

IF SET("TALK")="Qf{"

SET TALK OFF

lc_talk="ON"

ELSE

lc_talk="OFF"

238

ENDIF

*-- This form was created in MONO mode

SET DISPLAY TO MONO

lc_status=S ET(" STATUS ")

*-- SET STATUS was ON when you went into the Forms Designer.

IF lc_status = "OFF"

SET STATUS ON

ENDIF

*-- @ SAY GETS Processins. --------

*-- Format Page: I

@ 3,0 SAY pecification Elemenr: "

@ 3,37 GET namel PICTURE

''XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX''

@ 5,0 SAY " Total Specification Element Value: "

@ 5,49 GET name2 PICTURE "999999"

239

@ 7,0 SAY " Function Type:

@ 7,34 GET type PICTURE "XXXXXXXXXXXX,,

@ 9,0 SAY " Average Magnitude: ,,

@ 9,34 GET vlevel pICTURE ,'XXXXX,,

*-- Format file exit code

*-- sET STATUS was oN when you went into the Forms Designer.

IF lc-status = "oFF" && Entered fbrm with status off

sET STATUS oFF && Turn STATUS "oFF" on rhe wav our

ENDIF

IF lc_talk="ON"

SET TALK ON

ENDIF

RELEASE lc_talk,lc_fields,lc_status

x-- EOP: FRM_TYPE.FMT

240

Appendix E

Functions Xnvolved With Calibration

LEGASY:

Calibration of functions is described in the next appendix. Some sample screens

associated with the process are illustrated here. Due to proprietary restrictions

only a selected few are described in detail here.

Litigation

FiIe Nane @nÞte
ÞÞÞtrtrnÞÞÞÞÞtrÞÞÞÞÞÞãtrÞÞÞÞÞÞEtIrnÞÞÞÞÞtr nÁ/øÁ/ øÁ

Serr¡ice Étc ø/ø/na

Prc¡/iJEe Ergrn EtÌ&rÞÞÞtrÞErr¡Þ¡rÞÞtrÞÞrun

City nrnooorruuuÈrÞÞtrÞEÞÞÞtr

Jtdicial Dist¡ict, ÞururÞÞr&¡EuÞEulrrtrÞrÞ

@rrt. EfÞÞ ÞuÞÞÞãÞÞrtÞtrÞÞEtÞÞÞÞÞÞ

Litg EIC OC Dept Prc / Resl
ÞÞÞÞ ÞrlÞ ÞÞtr nÞÞÞ ErtrrrÞ EfÞÞtr

T)¡pe
Ef ÞÞÞn

Àne-nt at fssue

Àn¡e.rrt Clai¡red

R¡rritive Þnages

Gene¡:al Þnages

TCffiL Claimed

$ uurÞlftrrÞÞÞ.Þtr

$ uurtrrtÞrErÞEr.Þu

$ nÞrÞÞtrrÞÞÞ.ÞÞ

$ ErrÞÞÞrÞErÞ.ÞÞ

$uun, ÞÞÞ, ErErÞ . Þq

ccrrurgnt. nullulfr{nrfrrr&&fnÞtrÞÞI&fÞEÞr¡ÞÞtrIlfÞÞltÞÞrrt1Þql{Þ'rt B.0rr81ú1Þl1ÞFrrÞuIJÞÞÞÞHÞÞE¡ÞÞÞEIÞEf ÞEr

TIIIÞEf ÞJI¡JTTTTT'ÛIuUÞE¡ÞEÞÞÞÞÞÞÞÞITTIEItrtrItrõãl TTõEfi:'Cqþ¡¡¡¡¡tr¡¡tr¡lJlJtrtrÞÞÞÞÞÞÞÞÞÞÞtrÞtrÞqÞEIE

r¡ÞÞI¡EfEÞÞÞÞÞÞÞÞÞIfÞtrtrÞÞÞÞÞÞÞÞÞÞI¡EtrÍÞtrÞÞÞÞÞEfõõqEfqÞqlrfl1ÞÞÞÞÞÞÞÃÞÞÞÞÞ.uÞÞÞÞÞÞÞÞ

Ia. Iitigation.scr

- Itris screen is us€d to addrzrndi?y/qoerl
specific case.

Fossil¡Ie Q:eries:
- display litigation i¡formation for cases

A¡rcunt at Issr¡es > $250,000.
- scr.oll tlìrcr¡glt al.I cases wtro:e ccn¡rt is

Litigation i¡rfonnation related to a

i¡ '8.C. ' arll

'Qleens Berc.h'

241

File Information

FiIe Nane r¡trÞÞÞãÞÞÞqÞÞÞilrÞÞÞÞtrtrÞE¡ÞÞÞÞÞÞÞÞÞÞErÞÞrrnqÞ

File T)pe
ÞÞÞÈf ÞãÞÞÞÞãlrÞr81ÞEtÞÞÞÞuÞÞ

ID # uunonq

Aened Ètæ øø/øø/øø

Litigation T\pe Ànrt at fssue Status
ñÞÞÈf Ef ÞrrtrrrÞÞÞÞÞÞÞtrtrnÞÞÞÞÞ $nn, nun, ÞÞÞ. ÞÞ q

Major fssrres ÞnurtÞtrÞÞEÞÞÞÞÞÞÞÞEfÞErÞÞÞrttr ÞÞÞÞÞqÞEf Þtt ÞtrEf Þ q ÞÞ ã ÞÞ Þ tr Þ ÞÞ
Cas€ Status øÁ/Áø/áÁ ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÈ¡ÞÞÞÞtrÞÞuÞÞÞnrtÞÞÞÞÞÞÞÞÞÞÞÞÞÞtrÞÞÞÞquÞuÞÞ

Ne)ô, Step aø/øø/øn ÞtrÞÞÞnÞErÞÞÞÞÞrtnÞÞÞÌtrrsrÞÞtrÞÞÞrrÞÞtrÞÞrtnÞÞÞÞÞÞÞÞr&rÞÞÞÞÞErtrErÞn

In-horse (y/n) Þ Prcwince ÞtrqÞ rsúlIrqrrñÞÞÞÞEÞnÞElÞÞÞr¡

IHC nnu ÞÞÞtrÞÞlrEtEfÞÞÞÞÞÞÞÞÞÞÞÞrrÞÞÞ OC Fi-I.In ÞÞÞÞÞ ÞrfrrrrÌrÞÞÞqÞÞÞÞÞÞÞÞÞtrÞtrÞÞÞÞqÞErÞÞ
xxx xtsHxxxxtsr¿us !¿!¡r.¡eusqúÞtrtrÞÞÞuÞÞÞqÞÞÞEtÞÞ OC Nang unnu ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞnEtr

TiJrE ÞÞrÞÞÞ.Þ Cr¡:rent Year u,ÞÞÞrÞErÞ.ÞÞ Case TotaL ÞrÞÞEr,ÞÞtr.ÞÞ
Phone # Li¡e Departrent

Contact rÍÞÞÞ ÞÞErEtÞÞÞÞÞÞÞuÞÞÞEtErÞÞÞÞÞÞÞÞtrÞÞÞEr ÞErÞÞnÞÞEr ÞÞÞÞÞ ÞÞÞÞÞÞErrÍñÞtrÞÞÞÞÞÞÞoÞ

Case Resolution ÞÞÞÞ ÞÞÞÞÞÞÞÞÞÞÞÞÞtrÞÞÞÞÞtrr Closed lxitæ nø/aø/øa

Otd File Tlpe nuuu ÞÞtrÞÞÞqÞÞÞÞÞÞÞÞÞÞÞnn Charge hte nø/øn/nn Notepad? n

- this screen shcuLd be us€d to operr a neeJ FiIe, display or rna]<e clrarges to
an exitirg file

- tJle ID # will be assign€d by the q¿stsn at the ti¡re the file is cpened
- a dleck list ray be di-splayed rernirdirg the oper:ator of otlpr task h¡hich

shcr¡ld be perfonred uù¡e¡l a file is oeened
- the follcrlirg fields may þ t'læked uptt in a list of avail-able val-ues:

- File Tlpe
- Litigation tlpe
- Status
- ÞrcviJpe
-ûrc
- OC Fi-rrtr
- € Nare
- Contad, Fer:son
- Lilre DepaftTent
- Case Resoh¡tion @de

- Litigation Tlrpe shcrrld orùy be entered rvtren the File flpe is 'Litigation,
- tìe cperator nay ç¡lery on all fields tlat may be entered
- tìe cperator rmy rrccunt que¡y hitstr ard rrssroll thr.ar$rrr querY results

242

Eçlq¡trelt Ccnunenced áá/ád/úd
Terrdnated aø/øø/nn

Iå.sE Þte l{or}ced nn/nn/na
Retr¡rr¡ed to t{ork (y/n) Þ øn/nø/øa

File Na¡re
qÞÞ ÞÞÞÞÞ¡ItrÞÞÞÞtrÞEf ÞÞÞEÞÞÞrrÞÞÞUÞÞÞE¡ÞÞ

Plai¡Èiff Nanre unuu

Date of Bi¡th

Edrcation

Oopation

Poliq¡ fi ununuuunuu

Foliqf Tþe uun E&rnõqr¡nÞÞEÞÞuuEr

Foliq¿ Effective Þite na/nø/nn

@nDate T!¡pe Litg IHC OC Dept prcrv Reslna/nn/nn Þ ÞÞEr¡ ÞÞÞÞ ÞÞÞ ÞÞEr ÞÞÞr¡ ÞÞÞÞ ÞÞÞE

Fäcts

File Na¡r¡e @rrÞte T\¡pe Litg rFIc oc Dept pr:or Resì.trÞnÞErÞÞÞErÞEfÞÞÞÞÞÞÞnÞuÞÞÞtrÞErÞtrÞÞtrÞÞÞ nø/øø/nn Þ ÞÞÞÞ nrtÞÞ trÞÞ ÞÞEf ÞÞÞÞ ÞÞÞÞ ÞÞeÞ

Dçlq¿er EfÞÞtrÞÞÞÞÞnErÞÞÞÞÞqÞErÞÞÞÞÞEfÞÞÞÞÞ Job Dessript.ion (y/n) tr

EUrnination Fericd frrr;n øø/nø/øø
6 øø/øø/øø

Ber€fits (y/n) Þ frcn øn/øø/øø
tn øø/øø/øa

Feriodic ÀÈfI $nnn,Þr¡Þ.Þtr / unnnnnunnn

cause of Disability uunnãErrrÞÞÞÞtrÞÞÞÞErÞÞtrÞÞÞÞÞÞÞtrÞÞÞErÞrrErãÞrrÞÞÞÞtrÞÞÞÞrrÞEãr'
Disability / Diagrrosiè uunuuqÞÞÞtrÞuÞÞÞuÞÞÞÞÞÞÞÞÞEÞÞÞÞÞÞÞtrÞqÞÞÞÞÞãErÞÞrrÞÞEÞÞe

I'¡cB (y/n) Þ ccrrurer¡t ÞErtrÞÞÞÞÞEfrJErÈrtrrÞtrrÞHÞÞãÞErÞtrErÞÞÞEuãÞÞÞÞÞÞÞtrÞÞ
CFP (y/n) Þ ÞÞÞÞÞÞÞÞÞÞÞõrrr¡rîrrglÞtrÞqÞÞEfÞÞÞErÞÞÞÞÞÞÞÞnÞãÞ
IrIc (y/n) Þ ÞErÞÞÞEfEurÞÞÞÞÞrnr'ÞÞtrErÞtrErÞÞÞE¡ÞÞÞr¡ÞÞÞÞÞEÞÞÞtr

1b. facts. scr

- Ihis scrîeen is us€d to add¿znpdify/query Facts related to a specific case.
Ptai¡tiff ard Foliq¡ Inforrnation

ÞÞlf ÞÞÞÞÞr¡ÞrfÞEf Þrûtrqtctlrrfl'rftrqFrf ÞrlEtÈf

dÞ/øE/dd Àge n¡ Sex u

rftrÞIf rfÞrtrÞuãÞÞú¡fr¡qmlrfrrÍn].rrrqñrsãÞ

ÞÞÞÞÞEfuÞuÞÞÞÞÞÞÞI¡ÞltrEß&fÞÈÛ1Ef ÞÞÞ

Policryholder

Àger¡t

ÞÞÞÞtrÞÞÞÞEÞÞuÞÞÞEf ÞÞÞÞÞÞÞÞÞÞÞÞÞ

ÞÞÞrBãÞEtÞtf rrrfñtrEÞÞÞÞÞÞEf ÞtrÞÞÞÞÞ Þ Þ

lc. po1iry.scr

- rhis s(¡reen is us€d to ad4/ncd.ifyl$ery Fo).iq¿ ard plai¡tiff j¡formation
relat€d to a specific case.

243

Code nn¡uu

Office

Nane uuuuÞÞÞÞÞÞEf ÞÞÞÞÞÞÞÞtrÞÞÞÞÞrraÞÞÞÞÞÞÞErÈtÞÈrÞÞÞÞÞÞtrÞÞÞErÞ

¡d::ess ÞÞÞEfÌrÞEfÞtrÞÞtrÞtrÞÞÞÞÞÞÞÞÞÞÞÞÞr¡ÞEr
ÞÞÞÞr¡Þ¡tÌftrÞÞÞtrÞÞÞt¡ÞIIÞÞÞÞEf Þr¡rrqrrrlCity uunuÞÞÞÞÞlürtrÞÞÞtr

kc¡¡i¡rce ¡¡quu hstal Oods Þ'Þ. ÞÞ¡l

Phorre f uuunuuuuÞutrÞlrÞ

Fax # nlruÞÞÞnrfÞr¡ÞÞEfÞ

13. office.lup

-
't¡e

rpose of this scr€en i" ,F ?w{ity1,¡ue¡v on inforrnation for aqpecific office, suctr as o:Gioe oounser. office.
îL,ä "iäå**.'

shourtÐd;-;;i;. .o sertirs w any pa¡ties

FossibLe Sleries:
- lisÈ aLl offices in ,Àlbe¡ta,

244

Appendix F'

ldentifTcation of Form SEs

FORMS

Nam CASL CITL COUL DIVL Fryt ISSL L¡TL OFFL PAFL PCYL

Simple SE 2 2

öasrc sÞ 0 0 0 0 0 0 0 0 0 0

Detarl}d SE I

User E¡rt 0 0 0 o 0 o 0 0 0 0

Nam PFOL PYII PYML TASL FISA rsso FHO sLoo FEEA LFFO

Srmple SE 2 3 5 r3 7 7 r3 7

öasrc 5t 0 0 0 0 0 0 2 I 6

Oelailed SE I I 1 2 2 0

User Exit 0 0 0 0 1 0 0 0)

Namo FPA,A PAFIO SLTA FTTO SLTO PAFÄ FTYO ocH Tctal Av9

ùÈv3

Srmple SE 5 IA I 7 r3 25 8 9 185 0.13

Þas¡c 5Þ 0 t 1 0.29

Oelâilcd SE 0 0 0 5 0 1 f ,59

User Exil ¿ 0 0 u 0 1l

245

Appendix G

Identification of Report SEs

REPORTS

Nam OLA OLB LFR NCLO CHIH JO PL

Þcreen tsrqo 5E 0 0 o 0 0 0

öas¡c 5Þ 0 0 0 ¿ 0 0 I

æIatH sts 1 0 7 7 0 0

Naru NCBP NNCEM NGOCgY OCCAFS CCFY NNCO OL LDL

Screen Freid SE 0 0 0 0 0 0 r0 t20

5

uasrc 5ts 0 0 0 0 0 0

Detarþd SÊ 7 20 6 6 0 0

Nãmô CD LRI TL RC jSS L1 Xf

Sdeen Field SE r5 t2 16

'|
1 I 0

Dela¡lcd SE Þ 0 0 0 0 I

lcral SF . 75

AVG SEV . 0.1 3

Tdal Basrc ' l¡t

AVG SEv - 0.8/t

fctal Dotarl = 69;

AvG SÊV = 2,55

246

Appendix H

V.R.S. Case Study Detailed Specifications

======== ENTER_DATA ========

TYPE ADVENTURE RENTAL 4. ()(:,

G-s-==== CUSTOI,IER DATA

DATE ¿-B -OCT-91ID IOO
NAHE ZAPPA

ADDRESS tOt APPLE AVE, TORONTO

======== ENTER DATA ========

I D I r:rrl

CREDIT-RATING GOOD

ADDRESS IC)1 APPLE AVE, TORONTO

NAME ZAPPA

TRANSACT I ON

HOVIE NAME

INFO ========

RAT I NG

COMEDY
ADVENTURE

DOCTOR
ROBIN HOOD

F1 HELP
FlI) SAVE DATA

F7 CIUERY F8 EXECUTE TIUERY

247

Descripti,:n:
ENTER-DATA
Table Name:
CUSTOHER
Acti,:'ns:

IKILrþEl{
COMMENT

DEF I NE ÉLOCI.:
Name ENTER DATA

Seq *

SPECIFY BLOCI.:: OPTIONS
*Cf¡eCl.: f,:,r ¡.lniq¡.re k.ey
*Display in blurcl:: menLr

Nr-rmber ':,f R,:,wE displayed 1

Nr.rmber'tf RrlwE br.rffered

F,:rrrn: CUSTOMER B I ':, c l: : ENTE R_DATA Page: I SELECT¡ B Char ll':'de: Replace

SPECIFY ATTRIBUTES
*Datåbase Field

Pr imary liey

*Displayed
*Inpr-rt al l,:'wed
*Qr-rery al l':'wed
*Update ål I'rwed
Update 1f NULL
Fi:,:ed Lengtfr

*l'låndat.:'ry
*UPPer case
A'-ttDsl:1p
Ar.tt'¡matic heIP
Ntr e c hr:¡

Bl,:,ch: ENTER-DATA Paçre: I

Nr_rmber,:'f Lrne5 Oer r'lw

DEFINE FIELD Seq # 3
Narne CRED I T_RAT I NG
Dataïype:

-

XCHAR NUNEER f SPECIFY ATTRIBU
ALPHA INT I *Database Field
T I PrE MONEY I Pr imary ldey

Acti,:ns:
ITRIGGER ATTR I *Displayed

COMNENT COLUI *Inpr-rt all,:'wed

F,:,rm: CUST0f¡EF

248

SELECT: 1 Cfrar fl':,de: Replace

DEFINE FIELD
Name ID
Data Type:
CHAR *NUMBER
ALPHA INT
T I I'1E HDNEY

Acti':,ns:
ÏRI6GER ATTR
COHT4ENT COLU

SPECiFY ATTRIBUTES
*Database Fietd
*Primåry F,ey

I_l
I

I

NAME

*Displayed
*Inpr.r t al l,:,çed
*Or.rery ål l,:,wed
xUpdate al I':,çed
Update rf NULL

*Fi:,red Length
*Nåndà t,:,r y

Upper case
*[r.¡f,r¡,5[: jp
Ar-rt':,matic frelp
N,:, e c fr,:,

F':,rrn: CUgTCNER F 1 ':' c [,: : ENTER_DATA page:
1 SELECT: I Char M,:de: ReÞ I a ce

B l,:'c l: : ENTER_DATA Page: I

DEFINE FTELD Seq * 1 |
Narne I D I

I spEcIFy vALIDATIoN
lFreld Length 3 Ar-rery Lenqt
I C,:,py Frel.d VaI¡-re fr,:,rn:
I Elc,c!':
I Field
I Def ar-r I t

Range L':,w
Hi gir

Lrst sf Values:
Table

C,:' I umn
Help:
Enter valr.te f,:,r: ID

F';'¡¡' CUgTOMER

249

SELECT: I Char M,:,de: Replace

CUSTOI.lER

DEFINE FIELD
Name VIDEO_ID

Seq*i

LnUUÐr. tXItlt-JÈ.X
Name
POST -CHANGE

Seq*1 TRI66ER STEP Label
SELECT MOVIE-NAME, TYPE, RENTAL
INTO : TRANSACTION_INFO. MOVIE_NA|4E, TRANSACTION

TRANSACT I ON- INFO. PR I CE
FROM VIDEO
NHERE VIDEO. VIDEO-ID =: TRANSACTIoN
MessaQe:.f trigger step fails:
Vide,r j.nf,:,rrnåti,:,n n,:,t f¡:¡r.rnd.
Acti,:,ns:

CREATE
FORWARD

F':¡rm: TRANS:

DEF I NE
IDEO-ID
ype:

FIELD

COPY
EACI.::I^,ARD

DROP
PREV STEP

INFO. VIDEO ID

INFO. RA'r-tNG,

fìtrñl,ErutÈ5
NEXT STEP

COHMENT

El':,cf,: : TRANSACTIO paoe: l SELECT:1 Char 1,1':rde: Reolace

CUSTOMER DATA

Seq*? DATE

*NUHBER
INT
HONEY

s:
ER ATTR
NT COLU

SPECIFY ATTRIBUTES
*Database Fietd

Pr j.mary l.:.sy

*Displayed
*I npr-rt ål l':rued
*Q'-rery å11':,wed
*Update å I 1¡_rwed
Update if NULL
Fixed Length

xl*t¿¡çl¡ f,r¡'¡y
Upper case
f, 11f,,1s f'; j p
Ar-rtr'rnatic help
N¡], e C h¡f

I ÀtEn

RAT I NG PRICE

F':,rm: TRANS:

rõ EXECUTE CIUERY

Etl¡:rcl:: : TRANSACTIO Paee:1 qEt trr T. r Cf¡ar H'-'de: ReoIa¡e

Name VI
Data Ty

CHAR
AL PHA
TIME

A c t ic,ns
I X I IJIJÈ,

COMIIEN

250

CUSTOMER

DEF I NE
Narne I D
Data Type:
CHAR *NUMFER
ALPHA INT
T I ÞIE MONEY

Acti.r,ns:
TR I 6GER
COÌfI-,1ENT

FIELD Seq*1

ioN-INFo ========

RAT I NG PRiCEATTR
COLU

F8 EXECUTE OUERY

SPECIFY ATTRIBUTES*Database Field
Pr irnary líey

*Drsp I ayed
InPr-¡1 al l,:,wed
Or_lery al l,¡wed
Update al l,:,wed
Update if Nlil |

Fivred Lenctfl-*
*MÀndàt,:,¡y-
Upper cåse
flr.¡f,,;,sf:;ip
Ar_¡ f,,;r¡¡¿f,rc helo
N':, e c h,:,

F¡:' rfrì: TRANS:. E 1,:, c t,: : TRANSACT I O Page: I T Cf¡ar M,:,de: Repì.ace

CUSTOMER-DATA

DEFINE FiELD
Name ID Seq#1

:=======

uñtE

F':rrmi TRANS¿-

FO =====

RAT ING PRICE

FB EXECUTE CIUERY

El l,:' c l,: : TRANSACT I O P¡no. I Strt trrr. {
I Char M,rde: Replsce

bf,IUIFY VAL IDATiONField Length O D,,-.,,EL,,eL,r o . Or-ttsry Length 3C':'py Field Valr_re 1r,¡m:
Bl,¡ctr CUSTOHER_DATA i

Freld ID
Default

Range Lc,w
Hi qh

List,¡f Values:
Tabte CUSTOHER

C,¡1r-rrnn ID
F{o I n.

Enter vÀl r_re f ,:,r : ID

251

Narne NAF1E
Data Type
*CHAR

AL PHA
TIME

Actic'ns:
TRIGGER
COMMENT

======== CUSTQ|,IER DATA

Seq#3DEF I NE
AFlE
ype:

F¡:¡rrn! TRANSI

SPECIFY ATTRIFUTES
*Database Fieid
Primary Key

*Displayed
Input ållrrwed
Clrlery àl l,:'wed
Update åi l':'wed
Update if NULL
Fi:<ed LÉnqth
lla nd a t,:, r y
I r^^-- - ---UPPCr Ld>r
Ar_rt,:'s!,:ip
Ar-r t,:'matic frelp
N':' e c l-r':¡

SPEC I FY ATTR i ETUTES
*Database Freld
Prirnary lley

*Displayed
Input àl I'rwed
Query al lr'wed
Update al l':,wed
Update if NULL
FÍ:,red Length
Mandat*ry
Upper case
A¡-t t':'sk i p
At.tt':'matic help
Nr, echo

RATING PRICE

RAT I NG PRICE

s:
ER
NT

NUMBER
INT
MONEY

ATÏR
COLU

ION INFO

ION INFO

F8 EXECUTE QUERY

E I ':, c l,: : CUSTOMER_D paqe: I qtrr trnT. I Char M,:,de: Replace

======== CUSTOHER DATA

Çcn 1l lDEF I NE
nnE Ecc
ype:

NUMBER
INT
HONEY

5:
ER ATTR
NT COLU

Fr:,rrn! TRANS'I

FB EXECUTE AUERY

Bl':'ch¡ EUSTOI'IER_D Page: I qFt Et-Î. I Char l't:,de: Replace

Name ADD
Data Typ
*CHAR

AL PHA
TIHE

Actir:¡ñE:
I n¡,ELfE¡(
CONNENT

252

ENTER

MOV I E-NAHE
DEFINE FIELD

Name llOV I E_NAf'lE
Data Type:

'ÉCHAR NUMBER
ALPHA INT
TIME MONEY

Actir¡ns:
TRIGCER ATTR
COI'1NENT COLU

I-,:¡rm: VIDEO

Seq*2

SPECIFY ATTRIFUTES
*Database Field
Primary Key

*Displayed
*Inpr-rt al l'¡wed
*Ouery ål lowed
*Update aI lowed
Update if NULL
Fixed Length

*måndå tc, ry
I lnner r¡eo

A'-tt,rEltip
At.t t'rmåtic help
N¡l P C hrr

El':,cl:: : ENTER_DATA Paee: 1 qtrt trr.T. I Cfrar M,:'de: ReDlace

ENTER DATA ========

Seq * .{ HOV lE_NAME

RENTAL
SPECIFY ATTRIBUTES
*Database Field

Pr imary k.ey

*Displayed
xlnpr_rt al lc,wed
*Query ål I¡twed
*Update al l,lwed
Update if NULL
Fi:¡ed Length

xHar¡da tory
Upper case
A r_r t,¡S l:i p
Ar.ttomatic frelp
N,l echur

Bl¡ck¡ ENTER_DATA Pager I SELECT: 1 Char H,¡de¡ ReOlace

DEF I NE
Name RENTAL
Data Type:
CHAR *NUMBER
ALPHA INT
T I ME i'lONEY

Acti,:,ns¡

F,lrrtrì! VIDE0

ÏRIGCER ATTR
COI'IMENT COLU

253

DEFINE BLOCK
Nåme ENTER_DATA

Seq S

SPECIFY BLOCK OPTIONS
*CheCl:: f,:¡r r-rniq'te k:ey
*Drsplay rn bl,tcli menu

Nr.rmber Ê¡f R,lws displayed 1

Nltmber ¡:,f R,:,ws br.rffered
N'rmber c,f Lines Þer rÈ,w

DEFINE FIELD

Í)o<rrin{-i.-,^.+Hv¿,_¡rr.

ENTER-DATA
Table Name:
VIDEO
Acti':rns:

I K I lJtlÈ.1(
COMMENT

F¡:¡rm: VIDEO Bl':'cl':: ENTER_DATA paç¡e: 1 SELECT: B Char tf,:,de: Replace

Nsrne VIDEO_ID
Data Type:
CHAR *NUMBER
ALPHA INT
TIME MONEY

A c t r,:ns:
TRI6GER ATTR
COMÌIENT COLU

F,:,rfn¡ VIDEO

SPECIFY ATTRIEIUTES
+Ðatabase Field
*Pr imåry l::ey

*Disp I ayed
*Inpr-rt al l':'wed
*Guery å l l,:,wed
*Update a1l,:'wed
Update if NULL

*Fixed Length
*f'J¡¡61¡ f,,¡r¡y
Upper case

*A u t,f,s l-: i p
Ar-rtr,matic frelp
Nr;r g g f¡rlr

B l,¡ c l: : ENTER_DATA Paqe: I qtrl traT. t Cfràr M,-'de: ReDlace

MOV I E_NANE

RENTAL

MOVIE NAME

254

:======= cusToMER DATA

bEp r r'¡E p

Name DATE
Data Type:
CHAR NUMEER
ALPHA INT

SPECIFY ATTRiBUTES
Database Field
Primary l.ley

*Di Ep I ayed
Inprl¡ al l,:,wed

DATE

ION_INFO ========

RATING PRICE

qtrl trf'T. l

TINE
Acti,:'ns:

fñYñ^FñI NIÞÞEK
COMHENT

NONEY

ät tn
COLU

F,:,rmi TRANS: B I,:' c [,: : CUSTOMER_D Paee: 1

CUSTOMER DATA

SPECIFY VAL iDATION
Freld Length'l Ar_rery Length.J
C':,py Freld Val¡-te fr,:,rn.'

B l,:, c l:
Field

Def ar.rl t S$DATE$$
Rànge L':'w

Hr gfr
List 'rf V-rlr-res:

Table
C¡:r I urnn

Help:

F¡:¡rrn: TRANS!

Char M,-,de: ReÞlace

DATE

EN

RATING PRICE

FÊ EXECUTE CìUERY

Et I ':' c |,: : EUST0|IE R D Pa oe: 1 qtr | trt'T. r Char M,:'de: Reptåce

Or-rery aI1,:,wed
Update al I':,r¡ed
Update rf NULL
Fi:,led Lenqth
lfandat,:,ry
Upper case
flt_1!r;'glr'1p
Ar-rt,:,matic frelp
frl,¡, p ç f¡'¡,

EXECUTE

Narne DA

2s5

DEFINE FIELD
Name NAHE

-È!
¡i

-

n-!-

ICHAR
Ty pe:

NUNEER
t____I SPEC I FY ATTR I BUTES

I
_

ALPHA
rIME

A c t ic,ns:
TR I GGER
cot'lf'lENT

INT
HONEY

ATTR
COLU

*Database Fr- ld
PrÍmary i:.ey

*Displayed
*Inpr-tt Ê\Il':,wed
*Query al Ir:,wed
xUpdate al l,:,wed

Llpda te i f NUL L
Fiv:ed Length

xHandat,:,ry
Upper cåse
Ar.rt,:,sl ip
A¡-tt,:,matj.c frelp
N,:' e c h,:,

F'rrFrIì! CUSTONER ftl'¡s[,: : ENTER_DATA page:
1 SELECT: 1 Cfrar M,rde: Replace

F':'rm: CUSTOI"IER EI':,clr¡ ENTER_DATA Page: 1 SELECT: 1 Chår M,:,de: Rep I a ce

DEFINE FIELD Seq * i
Name NAME

I SPECIFY VALIDATION
lField Length 15 Or_rery lençl
I Copy Field Valr-re fr,¡m:
I Fl,:,ct,:
I tri el ¡lt-*'-
I Def a¡.il t

Range L':,w
Hrgh

List r,f VaI ues:
ïable

C':' I ¡-rmn

Help:
Enter val r-re f ':rr : NAME

256

DEFINE FIELD
Àl --^ A nÃñF^^r\dilrE ñuutfÈ55
Data Type:
*CHAR NUMBER
ALPHA INT
T I ME F1ONEY

Actir¡ns:
ÏRIGGER ATTR
COIIMENT COLU

SPECIFY ATTRIBUTES
*Database Field
Primary Key

*Disp I ayed
*Inpr_tt al lurwed
*Query al lr:,wed
xUpdate al lowed
Update if NULL
Fiy;ed Length

*Måndåt,:,ry
upper cåse
A r.l t r:'S l': i p
Ar-rt,:,matic frelp
N,:, e c h,:r

F':,rm: CUSTOMER Fl,:,ck: ENTER_DAIA Paqe: I qtrl trnT. t¡ Char M':'de: ReplåcÈ

======== CUSTOI'1ER DAïA

DATE

Bl¡¡cþ:: TRANSACTIO Page: t

DEFINE BLOCII
TRANSACT I ON

WHERE / ORDER BY clar.rse
t,lHERE : CUSIOMER_DATA. ID

SPECIFY DEFAULT ORDERIN6
for QUERY!
=! TRANSACTION-INFO. ID

A c t iuns: FORWARD BACKT^IARD DELETE

HELP : Fl HELP F7 QUERY F8 EXECUTE AUERY
FlO SAVE DATA

F':¡rm! TRANS3

257

SELECT: B Char M':,de: Replace

,OL > GET CRCUSTOI'4

I CREATE TAELE CUSTOHER (:

Z ID NUMEER(:3)

S NAME CHAR (:15)

4 CRED I T_RAT I NG CHAR (:'3)

S.r ADDRESS CHAR(:3(i)
SGL> RUN

1 CREATE TAELË CUSTOI'4ER (:

2 I D NUHBER (:3)

3 NAME CHAR (: 1 5)

4 cREDI T_RATItJG CHAR (.'l)
S* ADDRESS CHAR (3(:)

'

Table created '

EOL .:. 6ET CRV I DEO;

I CREATE TAFI- E i'/ I DEO (:

? VIDEO_ID NUt"iÉEF¿(+l
3 |'ICV I E_NA['1E CHAR (: 15 ì

.1 TYPE CHÂR (:'j ì

5* REFITAL NUHEER (4. i)
5QL: RUN

1 CREATE -TABLE VIDEO (.

.t (,/ I DFr_l_ I D
:: lf O(,' I E_l'f AME
+ ïr/PE
:]# REI.JTAL

t-Ll
-

.-.---!-JISlJLt= ¡.-rEq:lUEIJ.

9;[ìL:. ETT CRTRAI.J$;
1 I]REATE TAELE TRAI.JS
i ID
3 VIDECI_ID
4* DATE RENIËD

SCìL::' IìU¡J
1 CREATE TAELE TNA¡IS..-.' rD
3 VII.)EO-ID
'+* DATE REI.JTED

TabIe created.

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL)

NOT NULL,
NCIT NULL,
NOT NULL,
NOT NULL)

idCIT t'JULL,
NOT Nl_lL L ,
f'lüT I'Jl lL L ,
NOÏ NUL L .I

I']UITEER (:+.J I'IOT ¡JI.JL L ,
CHAR (. :-

=
i Nül- fJl JL L .

CHAR (:']) NJÜT NUL L ,
NUMEEFì (:+, :) NOT ÞtuL L l

NUHE.ER (. 3:)
I.IUMFER (:4)
UH Itr.

NUMEER (:3:ì

IIUMBER (.4]
[ìATE

Ftü-r IJUL L ,
¡,1{:rt- tJULL,
¡]OT NUL L J

NDT NULL,
NDT I'iUL L ,
l.lf;T f'lUL L .r

258

Appendix n

PFES Execution Trace
env_valuc
! Tcsting ENV_16
! ! env_raring
! ! ! TestingENV_I
!!!!EIWIRONMENT
! ! ! ! ! (= PF-not-applicable CNF 100)
! ! ! TestingElW_2
!!!!EI.IVIRONMENT
! ! ! TestingENV_3
!!!!EIWIRONMENT
! ! ! TestingEÌ.IV-4
!!!!EIWIRONMENT
! ! ! TestingElW-5
!!!!ENVIRONMENT
! ! ! TestingEl.iV-6
!!!!EIWIRONMENT
! ! ! TestingElW_7
!!!!E}I-VIRONMENT
! ! ! TesringENV_8
!!!!ENVIRONMENT
! ! ! TesringElW_9
!!!!ENVIRONMEI-TT
! ! ! TestingElW_10
!!!!EIWIRONMENT
! ! ! Tesring EI{\/_I I
!!!!EIWIRONMENT
M Testing EÌ.IV-I2
!!!!E}WIRONMENT
! ! ! TestingElW-13
!!!!EI{VIRONMENT
! ! ! TestingEl{V-14
!I!!EIWIRONMENT
! ! ! TestingEl{l/-15
I!IIENVIRONMENT
! ! ! (= avefage (}'IF 100)
! Testing ENV-17
! Testing ENV-18
! (= 1.00 CNF 100)
env-value2
! Testing ENV2-15
! ! Environment2
! ! ! (= PF-Not-Applicable CNF 100)
! (= 1.00 CNF 100)

259

RELY
! Testing CO

! ! RELI.ABTLITY-RATING
! ! ! (= verY-low CNF l0O)
! (= 0.72 CNF 100)
D-COMM
! Testing COMM_0
! ! DATA-COMMUMCATION
! ! ! (= verY-low CNF 100)
! (= 0.72 CNF 100)
CI{ANGE
! Testing F_C-O
! ! FACILTTATE
! ! ! (= very-low CNF 100)
! (= 0.72 CNF 100)
INTERFACE.COMPIJ(
! Testing I_CMPLX_O
! ! INTERFACE-COMPLE)STY
! ! ! (= very-low CNF 100)
! (= 0.72 CNF 100)
OPER-EASE
! Testing O_EASE_O
! ! OPERATIONAL-EASE
! ! ! (= very-low CNF 100)
! (= 0.72 CNF i00)
METHOD-VALUE
! Testing MTHD_3A
! ! TECHMQT,JE
! ! ! (= PF-has_no_influence CNF 100)
! (= 1.0 CNF 100)
GT.TOOL-Ð(P-VALUE
! Testing 8

! ! GT-TOOT -ÐG-IMPACT! ! GT.TOOL.ÐG-RATING
! ! ! (= VERY_HIGH CNF 100)
! Testing 9
! ! GT.TOOL-ÐP-IMPACT
! ! GT-TOOL-ÐG-RATING
! Tcsting l0
! ! GT-TOOL-ÐG.IMPACT
! I GT-TOOL.ÐO-RATING
I Testing l l
! ! GT-TOOL-E}P-IMPACT
! ! GT.TOOL-ÐG-RATINC
! Testing 12

! ! GT.TOOL-ÐG-IMPACT

260

! ! GT-TOOL-E)G-RATING
! (= 0.72 CNF 100)
NOVELTY-VALUE
! Testing 13

! ! NOVELTY-IMPACT
! ! NOVELTY-RATING
! ! ! (= VERY-HICH CNF 100)
! Testing 14

! ! NOVELTY-IMPAM
! ! NOVELTY.RATING
! Tcsting 15

! ! NOVELTY-IMPACT
! ! NOVELTY-RATING
! Testing 16

! ! NOVELTY_IMPACT
! ! NOVELTY-RATING
! Testing 17

! ! NOVELTY-IMPACT
! ! NOVELTY-RATING
! (= 0.72 CNF 100)
TECHMQUE-EFFECT
! Testing MTHD-O
! ! TECHNIQIJE
! Testing MTHD-I
! ! TECHMQUE
! Testing MTHD-2
! ! TECHMQUE
PRACTICE-EFFECT
! Testing MTTIDJ
! ! PRACTICE
! ! ! (= PF-has-no-influence CNF 100)
! Testing MTHD-5
! ! PRACTICE
! Testing MTHD-6
! ! PRACTICE
IMPACT
! Testing MTHD-8
! Testing MTHD-9
! Testing MTHD-I0
PERSONNEL-PF
! Testing I
! ! DEYELOPER
! ! ! (= DP-STAFF CNF 100)
! ! OVERAI L-EXPVALUE
! ! ! Testing3
!!!!OV-EXP-TMPACT

26r

!!!!OVERALL-EXPRATING
! ! ! ! | (= vERY-HrcH cNF 100)! ! ! Testing4
!!!IOV-Ð(P-IMPACT
!!!!OVERALL-E)GRATING
! ! ! Testing5
!!!!OV-EXP-IMPACT
!!!!OVERALL-EXPRATING
t ! ! Tesring6
!!!!OV-E)G.IMPACT
!!!!OVERALL-ÐGRATING
! ! ! TesdngT
!!!!OV-EXP-IMPACT
!!!!OVERALL-ÐGRATING
! ! ! (= 0.58 CNF 100)! (= (OVERALL-EXPVALIJE *GT_TOOL_ÐG-VALUE*NO

VELTY-VALIJE) CNF i OO)! (= (RELY*D-COMM*cI{ANGE*INTEnrecE-cotvtpl-x nopER-EAsE) cNF I 00)! (= (EÌW_VALIjE*EÌW_VALIIE2) CNF 100)! (= (PERSONNEL-PF*METHOD-VALUE*6¡íO¡Y¡ CNF IOO)

262

