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ABSTRACT

In 1908, "Student" published his investigation
of a method of making exact probability statements
by which the significance of means of small samples,
drawn from normal populations, could be determined.
Since that date, a large bodyvof statistical theory,
built on this foundation, has been developed, and has
seen application in almost every area of modern
scientific experimentation.

The purpose of this paper is to present
an integrated view of the relationship between the
historical development of uncertain inference with
regard to small sample work, and "Student's" t-
distribution. The distribution is derived, and its
properties described. Some applications to tests of
significance are presented, and some of the major
areas of current research on problems related to

this distribution are indicated.
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CHAPTER I

THE PROBLEM OF SMALL SAMPLES

Throughout the history of Mathematics, many
attempts have been made to resolve the uncertainty
associated with inductive inference. Some attempts,
such as Bayes' Theorem and developméntsAarising from
the normal law of error, have provided partial
solutions, but these solutions were of limited
application due to the necessity of fulfilling
rather_restrictive conditions.

One notable lack in this regard was in

the area of small sample work, a situtation commonly
occurring in statistical investigations, where
variation from sample to sample precluded reliable

estimates of the population variance. Large sample

methods where precise estimates of this wvariance
could be obtained, or situations where this variance
is known by previous experience, were available,
but these were often imptactical due to excessive
cost, complexity, or to the impossibility of
repeating an experiment.

In 1908, however, W. S. Gosset, writing
under the pen-name of "Student",. developed a test
criterion for the mean independent of the population

variance, and provided the first exact test of
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significance for small samples from normal populations.
His contribution, while directly useful as a practical
tool, was much more important in that it imparted
a spectacular impetus to the field of statistics,
leading to a successful generalization of his work
which formed a basis for much of modern statistical
theory.
" The purpose of this paper is to present

a comprehensive examination of Student's t-distribution
from the point of view of its history, derivation,’
properties, applications and generalizations.

Historically, an account of the develop-
ments leading up té the t~distribution énd of sub-
sequent work, is presented in order to show the
importance of this distribution as a method of in-
ference and a major contribution to modern statistics.

Mathematically, the probability density
function of this distribution is obtained by analytiéal
and geometrical methods. A genéral form‘of the
function is obtained, and the applications of the
distribution are considered as particular cases of
this general form.

Consideration is then given to current
research on problems arising in‘investigationé
where certain assumptions regarding the distribution

of the parent population and the assumption of a
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common variance in tests of significance are not met.
Lastly, a presentation of more general forms
arising directly from the extension of the distribution

is made, together with their applicatidns.



CHAPTER II

HISTORICAL DEVELOPMENT OF THE t-DISTRIBUTION

Suppose there is a set of data concerning,

for example, all events which happen under a given

set of conditions. For these data to have any
practical meaning, this population necessarily
embodies a certain quantity of information. Now
consider some proper subset of this population. If
the information in this subset, or sample, is measured
in the same way that the information contained in
the population was measured, then it is apparent
that not all of the information in the population
is contained in the sample.

Thus, to reason deductively, that is, from

a well defined population to a sample, logical

statements may be made because all the information
needed to define the population is known and con-
sequently the component parts are known. There is,
of course, some uncertainty inherent in the situation
in that there is no way of knowing a priori which
specific sample of all those samples possible will

be obtained. This uncertainty cannot be removed, ~
but the concept of probability provides a quantative
measure of the uncertainty, and it can be dealt with

rigourously. On the other hand, an absolute statement,




where one reasons from sample to population, cannot

be made. To do so would imply that the amount of
information in the sample is identical to the amount
of information in the population, which contradicts
the premise that the sample is a proper subset of the
population. Such a statement would further imply

that all the information about a population is con-
tained in any one observation, thus denying the exist~
ence .0of any 1nherent dlfferences between one member
of a population and another .

Since insufficient information about the
population is available, classical probability theory
can be of no help in resolving the uncertaihty
associated with inductive inference.

However, in the early 17th century, the
theory of probability was in its infancy and was ex-
pécted to be a very powerful weapon for attacking the
- problem. Fisher, outlining the history leading
to recent developments in the logic of inductive
reasoning noted:

"For centuries, however, it was assumed

that if uncertain inferences were to be

made, they must be made in terms of

mathematical probability. It was, I

believe, this assumption, more than any

.other factor, which has led to efforts

to define probability in more general,

and usually in psychological terms, and

has introduced infinite confusion into

~ the use of this once well defined concept,"!

1. Fisher®: p. 246



Bayes' Theorem

Thomas Bayes, recognizing the fundamental
importance of this problem of uncertain inference,
particularly in the era of blossoming.scientific
endeavour, attempted to bring inductive logic within
'the realm of deductive reasoning. He framed an axiom,
defining a'super—population, from which all possible
types of'ﬁopulations had been drawn as samples. The
,lattef populations supplied the information needed
to.apply classical probakbility theory in order to
determine the probability that an observed sample
was drawn from.a‘pafticular population.

Bayes did not publish his work pending
clarification of certain doubts regarding the
validity of his axiom. These doubts were not
cleared up apparently as theAtreatise was published
posthumously by Price. Whatever the doubts, upon
its appearance, the axiom was given a prominent
place in the mathematics of the day perhaps because,
as Fisher suggests, it met a very real need, and its
unquestioned acceptance by some of the great names
of mathematics gave the axiom an aura of authority.

No serious criticisms of the axiom arose
for nearly 90 years, until the appearance of Boole's
"Laws of Thought" in 1854. Boole noted that Bayes'

axiom was a device for supplying, by means of an



arbitrary hypothesis, information that the data
lacked. His criticism was SOmewhat diffident, but
more decisive rejection of the theory of inverse
probability by Venn and Chryétal followed.

The following example of inference based
on Inverse Probability, due to Edgeworth} and cited
by Welch}! will illustrate Boole's criticisms.

Let x_, xz, ...xn be a random sample of
size n from a distribution which is NE/&,(TZ). If
the sample is S, then the probability of the sample
given/u and ¢ is

1 h

) - 2
2c Z;<Xi /k)

f(S[ﬂ,c')dS = e dx., dx .. .dx

1 2! n
n/2 n
(270) o

Now by the definition of conditional

probability

£ ( Sbu,<r) = h(s,/u,cr)/ g(/u,cr)
where the quantities on the right-hand side of this
equation must be regarded as distributions of the
probability that the parameters/u and ¢ take on
_specific values. If/a and ¢ are merely unknown
constants, they can have no distribution other than
a trivial one under the frequency definition of

probability.

By Bayes' Theorem, the posterior distribution

of/u and o given that S has occurred is
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P, 0|S) dudo= £(Slge, &) glp,o) dsd 4d o

rff (S'I/‘,O‘)t glp, o) dpas
=f6lu, o) 9l o) dS d/udO’.

The probability distribution of x« given S is then
® .

P(uls) ap= [ £(SIm @) 9l o) dS dmdo.
But p(/4IS) is clearly dependent on g(/u,c'), the
distribution of the probability that & and ¢ each
take on specified values. Choices of gg/u,cr) will
obviously affect p(/~ls).

| This is the key point of the criticism
leVeiled.at inverse probability.  The prior dis-

tributibn of/u.and o is seldom known. If it is not

known, then this distribution is completely arbitrary

"as there is "insufficient reason" for the choice

of one particular distribution over another. As

. _
Boole stated:

"These results only illustrate the fact,
that when the defect of data is supplied.
by hypothesis, the solution will, in
general, vary with the nature of the
hypothesis assumed; so that the gquestion
remains, only more definite in form,
whether the principles of probabilities
serve to guide us in the election of such
hypotheses. "2

In spite of the criticism, however, the

axiom and the'theory of statistical inference derived

2. Boole: Laws of Thought quoted by Fisher?®
' 5. 247 f o e
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from it, retained a tenacious grip on its place in
mathematics well into the twentieth century, becoming
a point of bitter contention between two méjor
figures in modern statistical theory. Fisher, an
opponent of inverse probability in this controvérsy,
attributes the retention of the theory to the fact
that the mathematical world had nothinglbetter with
which to replace inverse probability (especially
when it.led to plausible conclusions in the case

for which Bayes had developed it, specifically, for

a finite set of exhaustive, mutually exclusive
outcomes where the probability of any outcome

coudld be determined by the frequency definition of
probability), and to the mathematician's inexperience
at conducting orderly retreats from falsg positions.

Inadequacy of Large Sample Method

" An alternative approach to the problem of
inference about the means of small samples from
normal populations is the use of the quantity,

X - K
o/

as a test criterion.

If x is the observed mean of n observations,
and x the true mean of the population from which the
sample was drawn, then it has long been known that

X is distributed in different samples as the normal
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distribution, with its center at 4, and variance
one nth of that of the popuiation sampled. It

follows that

—

X~/
o/ /a
is normally distributed with mean zero and unit
variance, and if ¢2, the true population variance
is known, then exact probability statements about
the population mean can be made. In practice, however,

this variance is seldom known. It may be estimated

by n
's2 = 1 Ei (x,=X)2
n-., i=1 L
but X -

s/'/??

does not necessarily follow the standard unit normal
distribution. Lacking further knowledge of the
distribution of this quantity, it was used as a
normally distributed test criterion when n was large,
for, as n increases, the population variance is

more precisely estimated and consequently s?

approaches the true value of 2. It will be shown

in Chapter IV that the limiting form of this quantity
as.n becomes large is, in fact, the normal‘distribution.

Distribution of s2

The next step was to investigate the

sampling distribution of s, the estimate of the
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population standard deviation. This was first ob-
tained by Helmert in 1876 and later reproduced by
Czuber. These sources, however, were unknowﬁ to
the English speaking statistical world.

In 1908 "Student" obtained the distribution
of s2 independently of Helmert's work. While
Helmert's result was obtained analytically, "Student"
obtained his result empirically by calculating the
first four moments of the sampling distribution.of
s2 and inferring a Pearson Type III curve. He then
verified this by means of a series of sampling
experiments.,

Student's z

In this same paper, "Student" derived the

probability density function £(z) of the guantity

Zz = .-‘ﬁ .

S

He found that the distribution of 'z was independent
of the population variance, and thus; tables of this
function could be used to make probability statements
apout +the difference between the observed mean of

& sample and the true mean of the population from
i:ich the sample had been drawn, irrespective of

the variance. If an hypothesized value of the true

mean were Mo, say, and

Zé=§2 ﬁo

S
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then
(=]
jif(z) dz
Za
was the probability of observing a sample mean
larger than X if/% were in fact the true mean of
the population.

Fisher's Extension of Student's Work

"student's" empirical result was obtained
analytically by Fisher ! in 1923 in the slightly

modified form of t = X = A =z

s//a  [n

The density function was found to be

_(n

£(t) = /?l [1+ % -1] 2
2

/N (n-1) [_‘ (n_;—l—)

where n-1 was referred to as the degrees of freedom.

Further, he showed that this modified distribution
could be written as a statistic which is distributed
as the ratio of a standard unit normal variate to
s/o , that is

t = N(0,1) - N(0,1)

s/ / v2/(n-1)

where s = / Z(x—i)2
n-1

and v?% is a chi-square with n-1 degrees



of freedom and t has Student's t~distribution with
n-1 degrees of freedom. |

Wiéh this more general expression for t,
numerous tests of significance were developed
encompassing a wide varieﬁy of problems. These will

be discuscweu in Chapter V.

Confidence Intervals and Fiducial Intervals

One fufther_developmenﬁ should be mentioned
in cohnection~with uncertain inference to conclude
this discussion. It is, by no means, the last word
in any discussion of the large_topic»of statistical -
inference} but it does represent a successful step
in the search for a valid inductive inference. This
developﬁent is confidence intervals, put forth by
Neyman. While it is not a direct consequenée.of
the t-distribution, its development can be attributea
to the general advance in statistical theory which
followed Student's work. Confidencé intervals shall
be considered in relation to the t-distribution, al-
- though the concept may be applied to any well-defined
sampling distribution, and, indeed, has been applied
to a wide variety of problems. Consider the test of

the hypothesis Ho;/ufyuaagainst the alternative

CHp A e

13
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A" me -

PURSRL D 4

in different samples will follow "Student's" t-

- distribution with n-1 degrees of freedom. The test
will be judged to be significant if the difference
between X and/uois sufficiently large to have a small
probability‘of occurence. This probability (by
convention lesé than 0.05 or 0.01) is known as the
1evel of significance of the test and is usually
designated « , and the fixed value of t, say t«
associated with this level of significance is
referred to as the critical value. These conditions

may be written as

o

Pr ( |t]>tg)

of
W\ .

or Pr ( Jtj<tg) =1-

Expanding this inequality, and substituting for t,
thén
Pr ( —tg < & ¢t ) =1 =X
s/ [n

/n’

Rearrangement yields

Pr(X - tas <o ¢ %+ tas)= 1 - X

I />
Thus, an interval has been calculated which covers
the population mean, Ao/ with probability 1 - x .

A similar theory was being developed at

approximately the same time by R. A. Fisher?®, which,
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in the case of estimation of a single parameter, led

to the same result as Neyman's confidence limits.

Now, 1if Xl’ Xore-oX, is a random sample

from N(., c2), then

—

t = x -
s/ /n
is distributed in different samples as a distribution

dependent on the sample size n. There exists a fixed

value of t, say tl, such that .

Pr (t>t)) = <
where 0 <% < 1 is any specified probability. Further,
from the above expression for t, t is a continuous
function of the unknown parameter/u.

Upon substitution for t, the expression

Pr (t>tl) = X

-

becomes i [i — 4 .
R

or

Pr ﬂk< X - sty
_ —ﬁ?i

Thus, by considering all possible values of tl (and

the associated probability &), a probability

1
R

‘distribution for/u can be constructed. To distinguish
this distribution from Inverse Probability, Fisher
termed it a fiducial distribution, and the limits

of an interval which contains the parameter with a

specified fiducial probability as fiducial limits.
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Unlike Neyman's confidence limits, fiducial
1imits are not based on the idea 'that the assertion
that a parameter is contained in a given interval 1is
true in an assigned proportion, & , of cases in the
long run. Instead, it ié the range of conceivable
values of the parameter which give rise to the observed
statistic(s) with probability A .

A fiduciél distribution is a probability
distribution in the frequency sense of the word, only
in that probabilities based on the frequency definition
are attached to possible values of the parameter to be
estimated. As pointed out in connection with Bayes'
Theorem, a probability distribution of a parameter
is incompatible with the frequency definition of
probability. Hence the need for qualification.

A further distinction between Neyman's and
Fisher's theories is that fiducial distributions
admit only one set of fiducial limits. A fiducial
distribution of a parameter is the one and only
distribution of that parameter. A different distribution
is possible using other estimates, but the existence
of bwo differeht distributions of a parameter based
on the same information is obviously self-contradictory.

To avoid this, Fisher restricts its use to sufficient

i

estimators.

The difference between these theories of
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inference and that of the Bayesian school of in-
ference is that Neyman and Fisher rely on sampling
distributions of observed statistics, rather than
distributions independent of the sample work.
Fisher and Bayes arrive at the same goal, a distribution:
of a parameter, from Which inferencesbcan be made, |
" but their respective probability distributions and
the question of validity are quite_distinct.'

Historical Imvortance of "Student's'" Work

In a biographical paper on Gosset shortly
after his death, E. S. Pearson noted:

"It is probably true to say that this
investigation published in 1908 has
done more than any other single paper
to bring these subjects within the
range of statistical inqguiry; as it
stands it has produced an essential
tool for the practical worker, while
on the theoretical side it has proved
to contain the seeds of new ideas which
have since grown and multiplied a
hundred fold..." 3

Various authors have commented that
Gosset's primary intention was practical-—-to develop
a tool. The t-test is certainly that, and one of
theoretical import as well, as has just been noted.
In spite of this importance, however, it is interesting
to note that this influence was not felt for some
~ time. Although the test was in use immediately'at

/

Guiness Brewery in Dublin (Gosset was employed there

3. Pearson, E. S.: p. 224
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as a brew-mas®er from 1899 until his death in 1937) p
it did not come into common use until the early

1920's.
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CHAPTER IIT

THEORETICAL DEVELOPMENT OF "STUDENT'S" t;DISTRIBUTION

In this chapter, "Student's" method of
obtaining the t-distribution will be outlined and two
rigourous developments of the distribution will be
presented.

The first method is an analytical one in
which the joint distribution of the sample mean, X,
and the sample variance, s2, is established. The
functional form of t is then obtained by a frans—
formation of variable.

The second method is a parallel develop-
ment of the first in that the joint distribution of
x and s? is obtained, but by geometrical considerations.
This development merits consideration for two reasons -~
first, it is the method presented by Fisher and thus
represents the first rigourous derivation of the t-
distribution and second, the representation of a
sample as a point in n-dimensional Euclidean hyper-
space constituted an important advance in the analysis
of sampling problems.

"Student's" Approach

Although the t-distribution bears the name
of "Student", the distribution in its present form
is due to R. A. Fisher, who rigourously derived and

extended the result presented by "Student" in 1908.
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As has already been noted, "Student”

obtained the distribution of the variable

z =X -~ AL ,

the integral of which was tabulated in terms of the
sample size, n. His work was essentially empirical
as he calculated the first four moments of the
sampling distribution of z, from these quantities
inferring that the frequency curve was that of a
Pearson Type VII. After showing the correlation
between %2 and s?2 to be zero, he further inferred
that ¥ and s were independent, a conclusion which
does not necessarily follow such demonstration, His
intuition was remarkable, as both inferences were
later shown to be correct.

The transition from "Student's" z to
"Student's" t was effected in collaboration with
R. A. Fisher?® in 1925. Fisher's research showed
that the distribution had much wider application
-than "Student" had realized and that the form

t = 2

iow
tabulated in terms of the degrees of freedom, n-1,

rather than the sample size, n, was a more conven-

ient one.
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Independence of X and s?

To show the independence of these quantities
it is necessary to establish the following theorems.

Theorem III-1

Let x be a random variable which is NQ/xﬁcrz).

If V= X ~M
l«n

then V is N(0,1).

Proof:

The moment generating function of V is
"
t(x-4& ) - ~ (X-Z/_{. )2
E(etv),=f e o 1 e o dx, -®©< x<co

Completing the square and setting

y = X~u+t t

&

2 @ 2 t2/2
e © /2 &Y /2 dy =

tVv

then E(e” )

teo [270

Thus V is N(0O,1).

Theorem IIi—Z:

Let x be a random variable which is N(/u,<72).

If V = x- 4 , then V2 has a chi-square distribution
pe _
with 1 degree of freedom.

Proof
The moment generating function of V2 is
- 4
o t(x-4 )2 ~L(x ~M)?
E(e™") =j e T e 5 ax cewexco

- CO 0‘27-\-
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Ty
Setting y = (x-4&) J 1-2t, then
o _
tv2 @ __y2/2 -3
E (e ) = 1 e dy = (1-2t) , - <y <oo
Ji-2t' J_ J2 7 o £ < 1/

which is the moment generating function of a chi-
square variable with 1 degree of freedom. For
notational simplicity, the use of V2 shall be
restricted throughout to indicate a variable which
follows a chi~square distribution.

Theorem III-3 (Reproductive Property of Chi-Square)

If V? and Vzare independent chi-square
variables with r, and r, degrees of freedom re-

spectively, then the distribution of

is chi-square with r = ry + r, degrees of freedom.

Proot
Since V2 and Vi are independent, the moment-

generating functiqﬁ of V2 is

M(V2) (£)  M(V2) (t)

(1-2t) /2 (1-2¢) F2/2

_ (l—2t)-(rl + ry)/2

M(V2 ) (t)

]

which is the moment-generating function of a chi-

square variable with (rl + r2) degrees of freedom.
As a consequence of this theorem, it

follows immediately that if {xi}is a random sample

of size n from a distribution which is N(m,o2)
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that

n T
2|t
-

-

is distributed as V2 with n degrees of freedom.
The following theorem, known as Cochran's
Theorem, is stated without proof.

Theorem III-4

Let X1r XpeeoX be independent standard

) n
normal variates. If » x2 = 2 q., where qg. is a
: h{ 1 -1 "1 1

quadratric form of rank n;, then the necessary and

sufficient condition that qqr dy---q, are independently

distributed as V2 variables with respective degrees

k
of freedom Ny, Ny...ny is that ﬂini = n.

The independence of X and s2 can now be
established by applying the foregoing theorems to
the expression for the sample variance

, < o
sz = 1 2 (Xi-"X)Z
Upon rearranging, thishexpression becomes

(n-1) s2 = E: (xi-—}_ﬁ)2

i=1
Il
=2_ x? - ng?
n i=1
or 2 X% = (n-1)s? - ng2
i=1 *
If x' is the vector (xl, x2...xn)', then this last

equation may be written in terms of quadratic forms as
X' I(n)x = x'"Ax ~ x'Bx

=4d; T 9



where

A = E—l/n -1/n -1/n
~1l/n 1-1/n -1/n ...
-1/n ~1/n 1-1/n
-1l/n ~1l/n ~l/n ...

B =f.l/n 1l/n l/n ... 1l/n
1/n 1/n i/n ... 1/n
1/n 1/n 1/n ... 1/n

1/n 1/n 1/n ... 1/n |

and I(n) is the identity matrix of rank n.

and by subtracting the lst row

Now, the determinant of A is

Al = 1-1/n ~-1/n ~1/n
-1l/n 1~-1/n -~1l/n ...
-1/n ~1l/n -l/n ...

jAl= | 1-1/n -1/n -1/n .... -1/n
-1 1 0 e e
-1 0 1 .
-1 0 0

and, by.adding all columns to the lst column

24

~1/n
-1/n
-1/n

1-1/n

-1/n '
-1l/n

'1-1/n

from all other rows,
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lal= | o0 -1/n -1/n .. =1/n !
0 1 0 S ¢
0 0 1 .o 0
0 0 0 eaee 1

Clearly, the rank of A is (n-1), the order of the .

largest order non-vanishing sub-determinant in A.

Hence d; is a quadratic form of rank (n-1).
Similarly, the determinant of B is
iBl=11/n 1/n 1/n ... 1/n

1/n 1/n 1/n ... 1/n

i
=
~
o]
=3
}__l
'...l
i_.l
‘,—J

1/m® | 1|
and the rank of quadratic form of d, is 1.
Now,

rank [qﬂ + rank [q I= (n-1) + 1

2
= rank LI(n)l

which, by Cochran's Theorem, is the sufficient condition

that gy and q, be independently distributed as V2

variables with (n-l1) and 1 degrees of freedom respect-

ively. Hence x and s? are independent.
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The (¥, s2?) Frequency Surface

The joint distribution of &, s? is given by
£(X, s2) d d(s?) = £; (%) dr £5(s2) d(s?)
due to the independence of X and sZ2. |

It has been shown that

n(E -2 = |E - IS
O'z 6'/

is V2 with 1 degree of freedom, and it is known that
“the square root of a V2 variableAwith 1 degree of
fréedoﬁ is N(O,l); Thus, the probability density
function of .

| z - ﬁ
cy//??

is

-y l( __—_,@.] ((

o/ /n’ - -
1 e d x—%j,_w<x M ceo
/27 o7/ Jn s/ [
Hence the den51ty function of X is
£.(X) ag = <f/J n d§,—m<§<m

27T .
"Similarly, it has been shown that

(n-1) s2 /o ?
'is V2 with (n-1) degrees of freedom. Hence, its

probability deﬁSity function is given by
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- (n-1's?
2o n=3
e [(n—l)sz} 2 d[(n—l)s?, 0 < (n-1)s? o
n-1 - -1 o o
[T st
and :
-(nzl)  s? n-3
Tz 2 2
£ (s2) d(s?) = (n-1)e [(n—l)szJ d(s?), 0<s2<c
: Macly 2L 42 e*
=2 ¢

The joint density function of X and s?, then,

is given by

Q%Q - [(n-1) sz+n(i-/<)2]/26'2
£, (X)dRE, (s?) d(s2?) =D [s? e _
1 s dxd (s?)
n-1
where D =/n [g:l] 2 1
2} L 2 o ol
[

-3
=2
1)

> t-distribution

Let the variable t be defined

X =
s/ /n
and consider the transformation

t =X =M , s2 = s?
s/ J??
The Jacobian of this transformation is
s/ /;? 0 i=1s8//n
t/2 /ns?2 1

t =

J=|0%/ dt ds2/ 0t
dx/ 0 s2 ds2 /ds?

Hence f(t,s?) dt d(s?) =
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———— Prebudiiiiney

-y 2 ostet) 2 e 29 (21 dt d(s?)

2
Pl -1
_/211 g F_(_E_Z__)

_ _ _ _ 2
n—-1 n-2 {(n-1)s [l+t2/

<t <co
O< g?<c@

2

Integration of this function with respect to s© yields

f(t,s? ) dat d(s2)_= £(t) dt
-1

£(e) at =[G)[1 + €2/ (n-1)] 2 gt —ect<o

[ (n-1) F(f_l,:}.)
‘2

~-n
or £(t) dt = [1 + t2/(n-1)] 2 dt o<t <eo

[a-1) p(/2, 52

- -1
where the function ,? (1/2, E“iﬁ = rkl/z)[ﬁ(gf—)

2
(%)

and [ﬁ(l/2) = /1T
The function f(t) dt is the probability density
function of "Student's" t-distribution with (n-1)

degrees of freedom.

The use of the term "degrees of freedom™

in this context requires some explanation. It has

ezl

is distributed as V2 with (n) degrees.of freedom, where

been shown that

the degrees of freedom have been interpreted as the
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number of independent squared standard normal variates.
If, then, there were k linear restrictions among n
variates, the sum of squares of these variates would
be distributed with (n-k) degrees of freedom, each
restriction reducing the "dimension" of the variation
by unity.

Since the probability density function of
t is dependent on the sample size, n, some specification
of the sample size 1is necessary to completely determine
t. The gquantity (n-1) appears in the density function
of t as a consequence of the degrees of freedom
associated with s?, which appears in the denominator
of t. The degrees of freedom of s? are, in turn, a
consequence of the sample size, where the "dimension"
of the variation in s? is of size n subject to one
linear restriction (that %kxi-i) = 0). Thus, by
extension, the term "degrees of freedom”" is associated
with the t-distribution.

Geometrical Derivation of the (x,s?) Fregquency Surface

. An alternative method of obtaining the joint
distribution of X and s? is the following geometrical

proof due to Fisher?3,

Let Xys Kpree X, be n values of a random
. sample from a population that is N(/&,Crz)j. The joint

distribution of the sample is
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n - 1 Y=, Uk
e i
1 e > & dxl dx2..dxn
|
/27 |
- n gy [(n—l)s2 + n(X j/4)2]
=i 1 e 2 ‘ dxl dxz..;dx

l_c’/z'ﬂ n

since it has been shown that
- 2 - 2 4 on(x - 2
Z(xi M) e= (n-1)s n(x =)

Let (xl,x ..xn) be co-ordinates of the

9"
sample point, P, in n~dimensional Euclidean hyper-
space. In figure 1, let OA be the unit vector in the
n-dimensional space with direction cosines prb—
portional to 1, 1, ...l, and let PC be orthogonal
to OA at C. If the co-ordinates of the point C are
(a, a,...a), then the direction cosines of PC are
proportional to Xi7ay X,"a8,...X "a, and those of the
unit vector are proportional to a, é,...a. By
construction PC is orthogonal to OA, hence

a(x_-a) + a(xz—a) +... a(xn—a) =0

Since a # 0, then ?kxi—a) =0

and this gives a = 2{ X = x
=

so that the co-ordinates of C are (X, X,..-X).
Then  (0C)2? =x2 + %2+...%2= n%2and (PC)2 =
~Z) 2 _3y2 —F)2 = 22 = (n=1)e2-
(xl x)e + (x2 x) +....+(xn %) 2:kxi X) (n-=1)s<;
from which 0OC = /H‘i and PC = /n-1 s. The lines 0OC
and PC are orthogonal, thus X and s are clearly in-

dependent.
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figure 1




32

To obtain the joint density function of
% and s, it is necessary only to transform the volume
element

dv = dxl dx2...dxn

as the density factor is already expressed in terms
of X ana s from previous considerations.

For a given X and s, OC and PC are constant,
and the sample point P moves on the surface of an
(n=-1)-dimensional hypersphere of racdius PC =_/H:T S,
centred at C. The element of the "spherical" shell
in which P moves has "dimensions" d(PC) =.fE:I ds and
d(oC) =/n dXx and therefore “

av = k; (s [a-D)™7? /o-T as o' ax

where kl is a constant.

The joint distribution of X and s will be of the form
-1 [(a-1)s? + n(x- ) 2]

1 e EGh kq (s fE:T)Q-Z /n-1 das/n &x
o /2w
- 1 [-(n--l)s2 —n(i—/~)2]
=D e .?.52 sh™2 gsdx 0<s<oo

—c0 <X <co
which is expressible in the form
fl(x) dx f2(s)ds
due to the independence of X and s. Completing each

factor with the necessary constants yields the joint
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density function of X and s?, specifically,

-n i_‘. )2
- Ter 0
D ].e 2 dx = 1
1<eo
and therefore D; = in/27% ,
o
- 2
| -%.[_ﬁ_x_ ]
hence £ (%) d& = /n/20 e o/ [0 azx - 0<% < @
o
‘rco -% (n~1) s?
-2 3
and D2 f‘ sn e ds = 1
0 ‘ ‘
@ ' -% (n-1)s2
or D. j‘ g D73 e d(s?) = 1.
1 n-3
Therefore D, = [E:;]' 2
V 7
n-1
5 2 Rn—;l)
and hence‘fz(sz)d(sz)
n-l E%i ~L . (n-1)s2
= (n-1l) 2 (s?/c?) e 2 d(s)?
o ? n-—l) ‘
[

0 <s?2<ew
" The joint distribution is, therefore

£ (R)a% £5(s?)d(s)?
n-1 n-3 so2 (n=1) s?+n (X~ ) 2
=/n/2% (n=1) 2 (s%/s?) ° e axd(s?)
2

Iy

~00 X < O
o< g2< o
from which the distribution of t can be obtained as

before.
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CHAPTER IV

PROPERTIES OF STUDENT'S t-DISTRIBUTION

The probability density function of
"Student's" t, as shown in the preceding chapter is
given by
f(t)dt = dt ~ww<t <o

n+1l
/o B(1/2, n/2) (1 + t2/n) ~2

where n is the degrees of ffeedom. Since the dis-
tribution is the reciprocal of an even function, it
is apparent that the distribution is symmetrical with
median and mode at t = 0.

Following Craig‘slnotation, the distribution
is of the form

y = c(u2 + v2) ™"

where c=1//n B(1/2, n/2)
u=t/ [n
V=1
m = (ntl)/2

"Student's" t can be classified as a Transitional
Type VII in the Pearson system, and is related to
the Main Type IV and Transitional Type II, in that
a Type VII curve may be derived from either of these
distributions. The Transitional Type II can be
shown to be a special case of Main Type I, of

which class the ﬁl variable is a member.
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Moments of the t-distribution

The first non-central moment, the méan, is

given by
AT | : cde
: ) n+l
= /5113(1/2, n/2) (L + t2/n) 2
[‘“ = n+l
= K t (1 + t2/n) 2 at
' j—oo o '
where K = ‘ 1
/o B(1/2,0/2)
2t o
thus 4! = n K n. dt
/kl 2 ;f‘ n+1l

(L + t2/n) 2

~which is-of the form

m v’
dx = X mt1
Xm -m -+ l
- 00 ’ T
A " =(n-1) e
Hence - r 8 S 2
sl = n K {1+ tz/gJ |
vy | L -0
‘n-1

whiéh fesult would seem obvious as it has al:eaay
been noted that f(t) is symmétrical about t = 0.
From the property of symmetry, it follows
that all odd order moments about the mean will wvanish.
The eveﬁ order moments about the mean are
_givén by

2
E(t-/u') : = E(t) =/u'
: 1 : ©2r
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—ntl
and M 2r = /‘ £ 2 (L + t2/n) "2 dt
Lo /n @(1/2, n/2)
@ -n+l
= 2n¥t Jr (t2/n)Y  (1+t2/n) 3

/:‘& (1/2, n/2)

Letting t2/n = y yields

. . «@ yr"%
/“Zr ;>(l/2, n/2) J/‘ n+l

(I+y) 2
- nf /B (n/2 - r, r+ 1/2).
' /5(1/2, n/2) '
However, the integral
ﬁ(f,m) = [yt dy
Z+m
° (1-y)

converges if and only if ,f, m>0. Thus, since
'm =1r + 1/2 where r> 0,
,(]= n/2 - r>0 or 2r<n
and the distribution of t possesses even order moments
only up to a number less than the number of degrees
of freedom.
The first moments, then are

mean

-
it
Ra
It

(o]
il

variance

N~
It
N
Il
!
(R =
[\S)
it

(#%) -
1t
W
I
o

Y X X %
>

2 - 6n + 8

dt.
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and skewness = =
3/2
(/&2)
kurtosis = /Q4 = 3(n? - 2n + 4)
(/u,z)2 n?2 - 6n + 8

The kurtosis of the t-distribution is dependent on

sample size, and since n is positive,

n2 - 2n+4 =1+ 4n - 8 > 1

n2 - 6n + 8 nZ - 6n + 8
and the curve has kurtosis > 3 and hence is leptokurtic.

It will be noted that

1im [/& ] = lim n = 1
n=»co 2 n->® in-2
and lim [kurtosis] = lim 3 n2 - 2n+ 4 [=3
N n-—-a n? - 6n + 8

In the limit, as n increases, then, the value of these
coefficients approaches that of the standard normal
distribution, which suggests that the standard normal
is the limiﬁing form of the t distribution. This is,‘
in fact, the case, as will be shown in the next
section.

Limiting Form of the t-distribution

The limiting form of the t~distribution as
n—-+-o 1is the standard unit normal. To show this,
consider
£(t) = 1

»j'r?' R(1/2, n/2) (1+t%/n)

n+l

2
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[(nr1) -ntl
1 /z; 2 (L + t2/n) 2
]ETY n r (E_

2)
n+l
so that 1ln f(t) =-%1In (21t ) + %1In 2 - %1ln(n) + lnr(

- 1n rw(g) - n+l 1In (1+t2/n)
2 2

Applying Stirling's approximation
In ["(1+x) = In(x!) = ¥In(27W) + (x#%)ln x = X + w_
where 0 < W, <1/12x, yields
1n F(n+l ln["(%) = -%1n 2 + %¥In(n) -% +% [n 1n(1-1/n)
- (n-1) 1n(1-2/n)]
Recalling that the Taylor expansion of 1ln (1+x) is

1n (1+x) = x - x2 +x3 .....
2! 3!

then 1n[“(n+1) - In[\ny = ~%ln 2+4lnn - 1 + 1 + 13
2 in 6n2 24n3

Now -n+1 1n (1+t2/n) = -%(n-1) 1n(1+t2/n)
2 .

substitution of the expansion of 1ln(l+x), becomes

-£2 [1-1/n - £2(1-1 ) + £*(1 -1 ) - £5(1 -1 )-...]
2 2 n n? 3 n? n3 4 n3 n*

Hence limﬁn f(tﬂ = -%I1n(2m7) + llm [

Noao

+ 1 + 13 -...]
6n< 24n?

-1
in

+ lim[ £2 (1—1) ~£2 (1 1) ..1

n-e-o

2 2 n n?

0

where lim [— 1 +1 +13 + ... ]
n--co in 6n2 24n3

and lim [—32 (1-1/n)~ £2 (1-1) -...
n-~w 2 o2 n n2

—
i
3
jet
N
L
’_l
—t
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Consequently,

lim [1n £(t)] = -¥ln (270) ~£2
n->co 2

_+2
and therefore lim £(t) =1 e £%/2

n-»o / 27

which is the probability density function of the
standard normal deviate.

Special case of the distribution for n = 1

I+ has been noted that the integral

@(lrm) = ym—l dy
£ +m
(1+y)
converges if and only'if,[, m>0. Thus; the t-
distribution is defined if and only if m = n> 0, where
n is the degrees of freedom. |
Consider the case where n = 1. The

probability density function of t, is given by

£(t) dt = ' dt

n+1

A ﬁ(l/z,h/z) (1+t2/n) 2
. reduces to '

£(t)dt = dt —~w<t< o
(L + t2 )

which is the probability density function of the

cauchy distribution. This distribution has no practical
application, but} becéuse of iEs unusual properties,

was of great value historicélly in defining the
necessary and sufficient conditions that a givén

:frequency function‘be a probability density function.
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The distribution is symmetrical about t =0

but does not possess any moments. For example,

mean =‘]P t at = };_.[ 2t (1+t2) dt
27T *oo

Lo T (1+ t2)

, @
= 1 [log Il+t2q does not exist
27% -0
o
although t dt
TT(1+t2)

does exist and is equal to zero in the limit as q-»co.
Regarding the higher order moments (odd and
even) the integral

oo

My = tT at, r=1, 2,...
f oo TC(L+t2)
does not converge for any integra% value of r.
The characteristic function, however, does

exist, and is equal to

e .
P(w) =1 j -
T ~co  14t2
_ =lwl

Generalized Definition of t

Let the variable t be re-defined to be

t = /V2/1 = W
Vlz_/nl ,Vi/nl’

where V2 and Vi are distributed as chi-square dis-

tributions with»l and ny degrees of freedom, w is
distributed as a standard unit normal variable, and

numerator and denominator are independent.
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This definition, proposea by Fisher in 1925,
is much more general than that which has been considered
to this point, and is to be preferred because of its
generality, particularly in view of the applications
of the t-distribution to be discussed in the next

chapter. The definition

t=x - M
s/'/??
is of interest historically because it is the definition
from which the work considered so far developed. Since
the approach of this paper is essentially a historical
one, the historical definition has been utilized thus
far.
The historical definition can easily be

shown to be a special case of the general definition.

If
t =[v2/1
Vi/n
then v¢/1 = n(X ~A )2 /1
Ve/n o
1
(n~-1) s+4

since the numerator and denominator of this expression
have been shown to be distributed as V2 variables with
1 and (n-1) degrees of freedom respectively if x is

distributed normally.

& UNWER&Q;
LIBRARY
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n (x-4) 2
n(x-&)
d .
(n-1)s*® = n(E -4) =t°
(n-1)c? 52

After taking the square root of both sides

t= ME-4) = -
s S/—‘
n

where t is distributed as "Student's" t with (n~1)

degrees of freedom

Inter-relationship of t, V2 and F distributions

Let Vi and V% be independent chi-square

variables with n and n, degrees of freedom respectively.

The joint distribution of Vi and V; is

2 2 2 2 ~ (V12.+V-%-) 2 . ‘l' 2 2o 2
= - 2
f(vl,vz)d(vl)d(vz) e (Vl) 2 (Vz) 2 ,d(vl)d(Vz)
o o nl+n2
' 1 2y - 2
[ [ 2 ..
0<Vi<co
0<V§<m

Let x = Vi and y = V%. The Jacobian of this trans-
w2
V2 | (
formation is

.6Vi/3x Jvi/by y x
bvg/bx avg/by 0o 1
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-y(1l+x) n. -1 n_+n, -1
3 _1 __Z_E
g(xy)dx dy = e x 2 N dx dy

n n
1 2 2 1l 2
f ( 2)] (E_) 5

0 <« x<
0 vcw
If w = y(1+x) then dw = dy (1+x)
2 2
-w nl—l nl+n2 -1
and g(xw) dx dw = e x_Z W dx dw
nl+n2
e )F(~——)(1+x) 2
Integration with respect to w yields
nl—l
g(x) dx = x——7 dx O<x<oo
B 1 T2) (x5
2

which is the probability density function of a ﬁz
variate. Thus the ratio of 2 independent V2

variablés with n, and n, degrees of freedom, is

distributed as a ﬁz variable with parameters nI/Z

and n, /2 that is
o
St .
X 2 dx isﬁz(l,nz)

2 2
nl+n
2

ﬁ(g%,g%) (14x)

Now consider t with r degrees of freedom
t = |vi/1

2
Vl/r
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where Vi has r degrees of freedom. Thus
2 B
te = (l_r _1’.'_)
| B s
since t? is the ratio of 2 independent chi-square variables

divided by their corresponding degrees of freedom.

The F distribution is defined to be

- &2
Fes
52
2.
where si = (xl.l—il)2
_ nl"l
2 = Ry
2 (%p37%2)
nz"l

| and these statisticé are calculated from 2 independent
random-samples of size nl and nz‘from populations
which are normally distributed.

_‘Thenv'

i

(nl—l)_F_ (nl-l)s%
(n,=1) o o’
( Z

n2—l) s]
O—Z

|
NS

 where Vi and vZ have (ny-1) and (ny-1) degrees of
o ' ' n,-1 n,-1
: , 1 2
X t. l . - j ! )
»frgedom respec ively Hence nj 1F 1; a Ez —5 5
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variate. If (nl—l) = 1, then (nl—l) F= F
- =T n,-1
n_-1

= B2, —%—)

which is t2 with (n,-1) degrees of freedom. It is
apparent, then, that t with (nz-l) degrees of freedom
is a special case of the F distribution with 1 and
(nzfl) degrees of freedom, specifically'tb2 with

p degrees of freedom = Fl,n |
- and that values of t2 for n degrees of freedom at
ithe o levelvof significance can be obtained from
thevvaiues of F with 1 and n degrees of freedom,

" and level of significance K.



CHAPTER V

APPLICATIONS OF "STUDENT'S" t-DISTRIBUTION

The area of most freéuent application of
"Student's" t-distribution is that of testing statistical
hypotheses. As has been pointed out in Chapter 1I,
the extension of exact testing procedures to small
sample'work has been of_particulaf importance to the
development of statiétical theory, and has facilitated
the application of statistical:techniqueé to the.
various disciplines of experimental science.

TESTS OF HYPOTHESES BASED ON THE t—DISTRIBUTION

l) Testing an assumed population mean

A commoﬁ experimental situation is the 6ne
in which an experihenter wisheé to test an assumed
value,/ao of the mean of a normal pbpulation.

‘ Let Xy, X3,e..%p be a random sample of size
n ffom a ndrmal population with unknown mean 4 and

variance o2. If

t =X ok
s/ /??
where X = }Z xi/n _
. : o 2 = -7} 2
gnd | _ s 1 ZZ (xi R)
v n-1

‘then t is distributed as "Student's" t with n-1 degrees
of freedom as has been shown in Chapters III and IV.
Substituting for X and s, and given |

'Ho: /Q f/ao.. .~ - S .
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then the statistic t can be evaluated and its signifi-
cance determined with respect to a chosen level of
significance.

As an example, consider the following
artificial date--9,73, 5.42, 6.57, 6.01, 4.71, 6.97
5.73, 7.96, 8.05, 4.53, for which X = 6.57, s = 1.64
and n = 10.

To test the hypothesis
Hys 4 o= 6.50
Hy: u # 6.50
compute

t = 6.57 - 6.50 = 0.07

1.64/ /758 0.52

At the 5% level of significance, the values of t

0.13

beyond which 5% of the area under the curve lie (2.5%
in each tail) are ¥2.26 for 9 degrees of freedom.
Since the calculated value of t does not exceed 2.26,
the test is judged non-significant , and it may be
concluded that the evidence in the sample does not
refute the null hypothesis.

2a) Testing the difference between unpaired
sample means

The t-distribution may be used to test the
hypothesis that the means of two populations differ
or the hypothesis that the difference between the
population means, /Ql j/“z' is a specified value. If

it can be shown that the variances of the samples
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are the same, then the hypothesis that/a.l —/&2 =
is equivalent to testing the hypothesis that the two
samples have been drawn from a common normavl population,

N(/u o 2) where/u —/L”l —/b.z

Let Xll’ X12,o~oxlnl and le, X22'...x2n2

be lndependent random samples drawn from two populations,

and Py which are, respectlvely, N(/ql i) and

Py
N(/“z"".‘z -
Let : V ' -

*1 =1 Z xll _-x2 =1 Z X2i
n . n
1 1 : 2 1

‘and , _'si = 1 Z (%, ~Xq)? Cs3= 1 z (X9;=X,)

: nl"'l i v n2"‘l

and consider the statistic
£ = %K, = (4 T4

‘Jsi/nl + s5/ny

Since Xg; and x,; are normally distributed variates

and are :Lndependent, xl 3'{2 is normally distributed

with mean E [x —-xz) /&’l /1.2
- and variance var (X —xz)— var {lel - ZXZi]
ny nj

1

= var[z >_<_]___];] + var[z >i2_l_}
n, nv2
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Hence }—{l-}—{z is N(/.g 1M a0 0’12- + 6‘%_ ) and from Theorem III-1
nip

e

it follows that

il"iz"(/al Vark
/6% + o3

oy R

is distributed as N(0,1).

Multiplying the numerator and denominator of

t by fdjz_ + 0% , then t is given by
nl n2

=Xk = (AmA)
/O‘i/nl + O‘%/nz'

/slz‘/nl + s%_/n2

Fi/nl + o3/n,

Now, the numerator of this latter expression is

N(0,1) but the denominator is not distributed as

~ /V2/r where V2 has r degrees of freedom.

‘If, however, it is assumed that o?= 0':22= o2

(i.e. that Pl and P, have a common variance) then both
s{ and s} estimate ¢2, and the best estimate of this
common variance will be obtained by pooling the

individual sample variances. Let this estimate be
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s2 = D egyoEp? o+ Ly oR,)?

ny + n, - 2

‘where s? has nl+n2-2 degrees of freedom because two

estimates, il.and §2, have been calculated. By

definition of si and s%,

s? = (nl—l)si + (n2~1)s%

nl + n2 - 2

In the expression for t, if si and s% are replaced by

s? then t becomes

£=R8m%y = (Agmpp)
[o? (1/n +1/n,)

/32 (l/nl+l/n25

/62 (l/nl+l/n2Y

Now s2/ o 2= (nl—l)si + (nz-l)s§
pang) ;)
w J

ny + ny - 2
But by Cochran's Theorem, it has been shown that
(n;-1)si/oc? and (n,~1)s3/ o ? will each be distributed
as V2 with (n;-1) and (n,-1) degrees of freedom
respectively.' By the reproductive rule of chi-square,
the sum of these variates will also be distributed
as V2 with (nl—l) + (n2~l) ='nl+n2—2 degrees of freedom.
Hence, the denominator of t is distributed as /;;7;
where V2 has r = n_+n,-2 degrees of freedom. There-

1
fore, t will be distributed as Student's t with
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n,+n,=-2 degrees of freedom, and hypotheses about

1

/al-/az may be tested.
As an example, consider the following

artificial data

Sample 1 Sample 2
9.73 11.19
5.42 6.56
6.57 9.06
6.01 8.03
4.71 7.10
6.97 8.87
5.73 7.91
7.96 7.46
8.05 8.36
4,53 6.90
where | 'Rl = 6.57 Xy = 8.14
and si = 2.6923 si = 1.8192

Now s2= D (xy3-%3)? + D (xy;-%,)2 = 24.2310 + 16.3730

18
n, + ny - 2

= 2.2558
Then for Hy: /“1 7/12 =
Hy ¢ /al -/42 # 0

t = 6.57 - 8.14 = -1.57 = =2.35
/2.2558 (1/10+1/10)

|
o

The critical value for 18 degrees of freedom at the
95% confidence level is $2.10. Hence the test is
significant and it is concluded thét there is evidence
to indicate'that the means of the populations are

different.
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2b) Testing the difference between paired
' sample means

In the test outlined in 2(a), it was assumed
that the samples {Xlil and{XZi}were independent. In
some types of work, the two samples to be compared
are not independent, but consist of values deliberately
paired in order to reduce chance variation which might
arise due to extréneous sources. Such an experiment
night consist, for example, of performing a second
set of trials on the same set of.experimental units.
This would ensure that differences between the trials
were due to differences between the treatments applied
to each set of units, and not influenced by variation
caused by differences among the members of the sample
if a new set of experimental units had been intro-
duced for the second set of trials. Another situation
where this‘technique is useful is the one in which
sufficient homogeneous experimental material cannot
be obtained, but homogeneous pairs can be formed.

Let Xyjs xlz,}..xln and X,q xzz,...x2n
be two samples from two populations which are disc
tributed as N(/ul,cfij and N(/az,cfi) where the pairs
x1; and xpj have a correlation . Define

Xy = Xp7Xp5- |
Now xi is a linear combination of two normally dise

tributed variables, and is itself, therefore, normally
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distributed with mean
B [x]= Bxpjmxp3] =,y Ao SAlsay)
and varilance
E [x15-%2; ] [le"xzj] =ci +tod - 2po, 9,
=a 2
Hence, hypotheses about/u may be tested by applying
the test given in 1 as the variable x; is N(/a,<72).

This procedure enables tests and estimates
to be made which are more precise than those obtain~
able from 2(a). For

o'2=<5i~+ CY% - Zr)di o,

and if P== 0, the samples are independent and this
test reduces to that of 2(a). If, however, the pairs
are positively correlated, i.e. P‘>0

c?= g} +c5 - 2p0; 5,< of +o}
and the variance from test 2(b) is less than that of
2(a); yielding a test which is more precise. It is
easy to see that as F becomes closer to +1, the
precision of the test increases until the maximum is
reached for f = +1.

On the other hand, if the pairs are neg-
atively correlated, then this test loses precision.
A more precise test would be obtained by taking two
independent random samples as in Test 2(a);

| The following example based on the data

given in example 2(a) will indicate this gain in
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precision. Considering Sample 1 and Sample 2 as
paired variates, the mean of the differences between
pairs will be found to be X = ~1.57 as would be
expected in view of example 2(a). However, the estimated
variance of a single difference is s = 0.9902 whereas
the variance of the difference X11~"X21i in example 2(a)
is estimated to be 2.2558. This reduction is due to
the fact that the values in samples 1 and 2 have a
high positive correlation, having been drawn from a
correlated bivariate parent population. |

For the hypothesis Hos f+= 0

Hl:/h-#,o
t = -1.57 = =1.57 = -4.09

[0.9902 0.32
10
The critical value for 9 degrees of freedom at the 5%
level of significance is #2.26, and the test is

significant.

3a) Testing a correlation coefficient

Let (x1,¥7)¢ (X5,¥p).-. (xn,yn) be an
independent random sample of size n from a correlated
. ) . . ] . . 2 2
bivariate population which is N(/ux,/ay, o’x,a’y,/o ).
The correlation coefficient,f>, is estimated
by
r= Z(Xi"?) (y;-y)

/Xmi—ixz Y (v,-9)2
1
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The general expression for the sampling distribution

of r can be shown to be
n-l E%i n-2 -1
£(r)dr = (1-p) 2 (1-r?) ° 4 cos (-pr)|dr, -1€rsl.
T

-2
' r(n—-Z) d(r‘D)n /l_I)ZrZ

However, for the special case f= 0, the above distribution

reduces to the simple form

n—-4

f(r)dr = (1-r?) % dr , -1<rs1

ﬁ(l/2,(n~2)/2)

and a test of significance for r based on the t=«
distribution can be obtained.

Let
t=1=x Jnaz
{1-x2
Solving for r gives the result

C

r =( £2 ) [ 1 +~Eila

n—-2 n=2

4

Using this result to change the variable in the expression

for the sampling distribution of r when f)= 0, then

-1/2 -
dr = (n-2) [ 1+£2/ (n-2)] ~3/2
dt
and upon substitution f(r) dr becomes
n-4
, £2 2
g(t)dt = 1 1-n-2 ~ dt
. n-2 1+t2 . 3/2
p(l/z,‘fT n-2 n-2 (1+t% )
n-2

dt

n-2

1 |
o2 — -
/3(1/2,2) nz(Hi:)z_



56
which is the probability density function of Student's
t with n-2 degrees of freedom.

The hypothesis Hg: f =Po cannot, in general
be tested by means of the t-distribution as the test

statistic

t =1r/n=-2

l-r
follows 'the t-distribution only under the hypothesis
-that P =f30>= 0 when the sampling distribution of r
reduces to the simple form given above.
Considering again the data of Example Z(a)[
the estimate of P is found to be

r = 15.8463 = 0.80
[(24.2310) (16.3730)

and the test statistic

t = (0.80) j~§1 = 3.77

/0.36

which exceeds the critical value of +2.31 for 8 degrees

of freedom at the 95% confidence level. A significant
test here might well have been expected because of the
large reduction in sampling variance encountered in
Example 2 (b).

3b) Testing a partial correlation coefficient

A similar result can be obtained when dealing
.with multivariate populations where the t~distribution
may be used to test the significance of a partial

correlation coefficient.
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Let f(xl,xz,...xp) be a p~variate normal
population. The partial correlation coefficient of
order m is defined to be the correlation coefficient
between two specified variables after the effects of
m of the remaining variables have been eliminated.
Partial correlations of order 1 to order p-2 exist
in a p-variate population.

If the coefficients C., are eleménts of the
pxp matrix
C = -”Z(xlj-il)Z i:(xlj;il)(xzj-iz)... Z(xlj-il)(xpj—ip)1
Lixg4mRy) (xp5-%y)  L(xpyRg)2...

—_— -3 - Y2
_X(le x1) (xpj XP) i(xpj xP) ]

then the partial correlation coefficient of order

p-2 is
u;l., ) .k-l,k+l,o o-i-l-i+l’.o 0p = —Cik

[C11Cx

Partial correlation coefficients of lesser order may

Tix

be computed by deleting one of the variables xl’XZ""xp‘

If the variable h, say, is deleted, Cochran has shown
that the coefficients of the new matrix may be obtained

from the expression

1 -
Cix = Cix ~ Cinfkn
Chh
and then the partial correlation coefficient of order

p-3 is
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rik.

-c!
i

1'2’0oo'h—l,h+l’ooli_l,i+l’¢luk'l’k"'l,.cop

k

] []
Cii%xk

Fisher? has shown that the sampling dis~-

tribution of the partial correlation coefficient

of order m, when a sample of size n is taken from an

uncorrelated multivariate normal population, 1s

3 n-m-2
£(r2)d(r?2) = (r2) (1-r2) 2 d(r?)
n-m-2
Bz, 2 )
n-m-2
which is a ﬁauJa, 2

0 <r2l

) distribution. Changing the

variable to r, the sampling distribution of r is

n-m=2
£(r)d(r) = (l-r2) 2 ar ~l€r<l
. n-m-2

where the factor 2 introduced by letting r2=r has

disappeared because the transformation is not 1l:1,

and the rahge of r is =1 €r <1l rather than 0<€xr2< 1.
This distribution has the form of that

obtained for the correlation coefficient in the test

'given in 3(a), with a factor n-m~2 instead of n-2.
Hence, if

-t = r Jn-m=2
J1-r?

then by the same argument as used in 3(a), the sampling

distribution of t has "Student's" t-distribution with
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n-m-2 degrees of freedom.
This test is carried out in ﬁhe same way
as is the test for the correlation coefficient given
in 3(a), subject to the same restriction that the only
hypothesis that can be tested is that P = 0 and the

variables are uncorrelated.

4) Testing the significance of a regression
coefficient

Consider the experimental situation where
the random variable y is believed to be a linear
function of several other variables, say, Xy 1Xgree.X

p
in such a way that the population model is

Y, = /50-}- Plxlj +ﬁ2x2j+..}+ Igpxpj + €
where éj is a random error measuring the failure of
tﬁe model to account for the variation in y, and is
assumed to have a distribution which is N(0,02).

The sample model'for an observed set
{yj,xij,xzj...x j} is

Ve = b +b.xX,.+...+b_x + e

j 1715 P PJ J
where the constants bo’bl""bp estimate the regression
coefficients po,pl,.../gp, and ej estimates éj. For a
sample of size n, the least squares solution for the

estimates ﬁi' i=0,1,...p, is

i = Clk ‘2(}( Xk (y y) i’k = O,l’.'.p
where the variable xo is a dummy variable introduced

for notational convenience and has a value 1 for all
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j, and where the coefficient C,y are elements of the

pxp symmetric positive definite matrix

i
C = Zxoj lej ven prj
lej Zxﬁ e z-xljxpj

Lxpy  Lxggyy L xp5p3

L= 7p3 zxpg

The variance of these estimates is

var(bi) = Ciic'2 i=0,1,...p
Now Y is a linear function of éj, which i

N(0,02), and of Xs which are non-stochastic variates
Hence

Ely] =B+ ﬁlxl + ,52X2+"'+/3pxp
and var (y] = o2
Similarly the estimates, bi are linear functions of
yj and non-stochastic wvariables, and theréfore, the
distribution of bi is of the same form as the dis«
tribution of y. Hence, since y is N({ ﬂo+{3f{l+...
+/5pxp,0‘2), the distribution of b; is also normal
with mean

E (by]=B;

since the least squares solutions provide unbiassed
estimates , and variance = Ciidz « Thus, b. is

1
N ( ﬂ’i’ Cii o’w-"-), and it follows from Theorem III-1

S
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that

by =P

is distributed as N(0,1).

Fisher, in developing the analysis of variance
procedure, showed that the Total Sum of Squares, a
quadratic form of rank n-1, may be partitioned into
orthogonal quadratic components,

Total Sum of Squares = Ql + Q2
which can be attributed to sources of variation present
in the experiment. The Total Sum of Squares is, of
course

}j(Yj"y)z
which is the basis of the estimate of s@, the variance
of the sample. This variance can be partitioned into
a component, Ql’ due to the regression of y on xl,xz...xp
which is of the rank p, and a component, Qo, of rank
n-p-1l, which represents variation which cannot be
accounted for by regression and is attributed to the
residual or random error. Ql is referred to as the -
Sum of Squares due to Regression (or SSR) and Q, is
the Sum of Squares for Error (SSE).

Now, TSS = E(yj'-i?)2
and if y is distributed as Ngfu,dd) where//cis estiméted

by ¥, then
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is distributed as N(0,1). Applying Cochran's Theorem to
(Yj"?)z = Ql/o’2 + Qz/dzr

T

It follows that each member of this equation is dis-
tributed as a V2 variable. In particular, TSS/c ? is
V2 with (n-1l) degrees of freedom (assuming the pop-
ulation regression éoeffiqient = 0), Ql/cr2 = SSR/c®
is V2 with p degrees of freedom and Q,/ o 2 = SSE/g 2
is V2 with n-p-1 degrees of freedom. For SSE/ ¢ ?,
E [ 8sE/c* ] = n-p-1

and . . E [ SSE] = (nrp-1)o 2

Hence an unbiassed estimate of o?is

s® =SSE

fo
1

o)
*.-_l

Let £ = b, -

But it has been shown that

b; =B

ii®

Q

is N(0,1). Further, it has been shown that

SSE
o2

is distributed as V2 with n-p-l degrees of freedom.
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Therefore

n-p-1

is distributed as V V2/(n-p-1) where V2 has n-p-1
degrees of freedom, since multiplying by the ratio
cii/cii will not affect the form of the distribution
because the coefficients are functions of the non-
stochastic variables xl,xz,...x .

P
Hence

is distributed as Student's t-distribution with n-p-1

degrees of freedom.

As an example, consider again the data of
Example 2(a), where the data of sample 2 is the only
independent variable, X190 and the data of sample 1,
Yy is believed to be dependent on xj. For this case,
known as simple linear regression, the coefficients
of the matrix C are

Coo = 1/n - iz/‘i(xljvﬁl)z

and Cyp = 1/ E:(xljwi)z.

The expressions for the estimates of /30 and /$l in
this case are

b =¥ - bi®;

by = Y (xp57R)) (y59)
PR RS PA
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It was found that.bo = -1.36 and bl = 0.97.
The tests of hypotheses Ho : /Qo = 0 and Ho :131 =0
are given below.
H, ¢ ﬁo =0

po#

and t = -1.36 = -1.36 = =0.65
[(1.0436) (4.1468)

where Coo = 4.1468
and s2 = 1.0436 and 8 degrees of freedom.

The critical value of t with 8 degrees of
freedom at the 5% level of significance is %2.306,

therefore the test is not significant.

Similarly
HO:IB1=O
and t = 0.97 - 0 = 0.97 = 3.88
.25

[(1.0436) (0.0610)
where Cll = 0.0610.
Comparing the calculated value of t with the critical
value, +2.306, it is seen that this test is significant.
Thus, there is evidence to indicate that
ﬁ]_f 0 and that y and x; are related by a linear
function of the form ‘
y = #.%

Errors in Testing

Some care is required when interpreting



65
the result of a test of an hypothesis. Although the
null hypothesis under test explicitly specifies only
a value of a parameter 6, further implicit assumptions
regarding the form of the population are generally |
involved. The effects of failures of the underlying
assumptions will be examined briefly in a subsequent
section.

. As well as those considerations involved in
the null hypothesis, there is the problem of the
meaning of "statistical significance". A significant
test means that the probability of observing the sample
value 3 of the population parameter @ when the null
hypothesis, 8:60, is true, is less than some pre-
assigned (generally, small) value, but not that the
value 8 is impossible. There is evidence in the
sample to indicate that the ‘null hypothesis is not
true, but it cannot be conclusive, for, due to some
unlikely combination of circumstance, a significant
value of 8 may occur even if 6 = 8,. Rejecting the
null hypothesis when it is true is known és a Type I
error, and the probability of this error is designated
as & . This error is controlled in that the experimenter
is at liberty to choose the magnitude of the risk he
is willing to incur in a given experiment. The Type I
error is defined by the equation

1 -«= f(A) £(T,0,)dT
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where (A) is the interval in T in which 1 -« of the
total probability of the sampling distribution of T
is contained. The end points of this interval are the
critical values by which the significance of the test
is determined.

Another type of error in testing is the
one in which the null hypothesis is accepted when the
alternate hypothesis is true. This constitutes a Type
II error, the probability of which is usually de-
signated as/3. This probability is defined by the

equation
1B = f £(T,0.) 4T
§ (A) 1

where f(T,el) is the sampling distribution of T under

the alternate hypothesis 6 = @ and (A) is the same

ll
interval as defined in connection with a Type I error.
The following diagram will illustrate these quantities
and their physical meaning. Let the curves H, and Hy

represent the sampling distribution of T for 8 = 8,

and 8 = 8; respectively.

Ho

figure 2
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It will be noted that as HO "approaches" Hy such
that thé curves are more nearly coincident that, if «
is held constant, ﬁ increases. Conversely, &
increases if‘ﬁ is held constant. Hence the pro-
bability of an incorrect decision is always present.
The experimenter's only choice is to minimize the
risk which is most serious.

The quantity 1-8 as defined above is
referred to as the power of a test. It reflects
the ability of the test to discriminate between
two hypotheses. Ideally, a test maximize15(1-§ )
and minimizes &« , or equivalently, minimizes both <«
and ﬁ , but in practice, desirable performance
of a test with respect to one or the other of Type I
or Type II errors has a corresponding undesirable
performance with respect to the other quantity. As
Ho and H; approach each other, (1-pf) decreases for
a constant value of  until, when H, and Hl are cow
incident, & = l-ﬁ , and the test is uhable to
discriminate between Hy and H;.

Power Function of the t-Test

Using a one-tailed test as an example, the

%

power of the test HO: 6
Hy: 6 =031, 61> 8,

where t = X =~ 84
s

s
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is
P (a) 1
where £(t,8;) is the sampling distribution of t under
g = Gl-
Now

Vn-1 s
n~l ¢

or if the alternate hypothesis is rewritten as

Hyt © = 8) = 65 = (01-85), 81-65>0

then ~  t =X - 685 = (01-6,)
s/ /n
= [n'(X-e,) + Ja (8178,
: o o
n-1 S
n-1 c
Writing

§ = [n’ (81-64)
g
+then the statistic t is of the form
W+ 8
Jv2/x
where w is N(0,1),
V2 has a chi-square distribution with r degrees
of freedom,
) is a constant.

A statistic of this form is defined to have a sampling
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distribution of a nonrcentral t, which has probability
density function

£+l %8 2)
£ (ee2/p) 2 e ME/E Hh -8t/ (£

- (£~1)/2
2 Me/2) /e five2/2

hi(f,S,t)

| _ © . -% (v-y) 2
with th(y) = f %T e av,
[+
kﬁown as Airey's Function, and £ is the degrees of
freedom, and § the non-centrality parameter.
For (61-6,) = 0,8 = 0 and the non-central t
reduces to the central t, which is Student's t-
distribution. Hence the power of the t~test can be
determined from the probability integral of the non-~
central t-distribution. Tables of this integral have
been prepared by Lieberman and Resnikoff . and are of
a three-entry type -« ,8 and degrees of freedom. Other
tables have been prepared by various authors and
references to these are contained in the bibliography.
It has been shown by Dantzig that the power
function of the t-test is not independent of the
population variance. This can be seen from the
expression for ) ’ the non-centrality parameter. How-
ever, Steinl, in outlining his two-stage procedure,
has shown that by using his procedure, power'functions

independent of the population variance'can be con-
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structed.

The foregoing considerations apply in general
to all t-tests where the test statistic can be shown
to follow a t-distribution under the alternate
hypothesis. This eliminates such tests, however,
where the test statistic is distributed as "student's"

t only due to an assumption implicit in the null

hypothesis. Such a case is the test for the cor-

relation coefficient, where

t =1r /n-2
J1-r2
has Student's t-distribution if and only if P = 0.

Remarks on Assumptions Underlying the t-test

In discussing the applications of "Stuéent's"
distribution, it has been noted that various assumptions,
both implicit and explicit, have been made about the
parent distributions. Behind every test, for example,
is the basic assumptiop that the parent population
follows a normal distribution. Some tests require
additional assumptions about population parameters,
such as the variance or correlation coefficient.
Failure of any of these underlying assumptions teche~
nically invalidates the tests and renders conclusions
meaningless. However,“some rectifying measures can
be taken if the extent of the failure of the

assumption is known.
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1. Non-Normality In The Parent Population

One of the dangers of small sample work is
that the assumption of normality is least likely to
be met, and is most likely to escape notige»because
of the relatively small sample size.

'If the parent distribution is not normal,
the sampling distribution of the t—-statistic is
complicated by the appearance of parameters which
express this deviation from normality. In addition,
the sampling distributions of X and s?, the sample |
mean and variance, are no longer independent.

Various writers have investigated the effect
of non-normality on the validity of the t-test
from both theoretical and empirical viewpoints. A
detailed examination of this work will not be presented
here, and the interested reader is referred to the
bibliography or to Hey whose paper contains a
bibliography of 36 papers on the subject.
| In general, the results of these invest-
igations show that significance levels of two tailed
tests (Type I error) are not sensitive to skewness
or kurtosis in the parent population. The one-tailed
test, however, is affected by skewness, particularly
if the test is for the differences of means where the
~groups are of unequal size, and if the skewness is

different in each group. If the skewness is the sanme,
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and the groups are of the same size, the effect is
small.

The effect of non-normality on Type II errors
and the power function is not considered to be serious.
For symmetrical populations, little effect is found
on the power, while for asymmetrical populations,

.the effect is somewhat greater. For the t~test

for the difference of means, skewness has little
effect if group size is equal. The power here turns
out to be greater or smaller than the normal-theory
power depending on whether the sign of/ﬁ»l i/*Z is
the same as, or opposite to, the sign of the skewness.

Other rectifying measures include the use
of transformations of the raw statistical data. The
merits of a particular transformation will, of course,
depend on the parent population. Many papers dealing
with the normalizing of data are available, and some
of these have been included in the bibliography.

2. Testing the significance of a difference of means
when variances are unequal

The test presented in 2(a) relies on the
assumption that the variances U& and.d% of the
populations sampled are the same. Since serious

errors in the t-test are introduced when these

variances are unequal, the assumption should be
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tested by means of
F = si/s%
for example, before applying the test. If the
variances are found to be unequal, several alternate

tests are available.

The oldest test is the Fisher-Behrens
test based on the concept of fiducial probability.
The procedure is to calculate

d=2x =%
(o2 2 A
sl/nl + sz/n2

The fiducial limits of d for various significance

levels have been tabulated by Sukhatme and are also

contained in the fourth and subsequent editions of

~

Fisher and Yates' Statistical Tables for Agricultural,

Biological and Medical Research. The tables are of

the three-entry type, depending on nj, N, and the

. Y o .
ratio jnzsl/ /5132' Tf the calculated 4 falls within
the tabulated limits, the test is judged non-

significant. Considerable controversy exists in the

\

literature regarding the validity of this test, the

objection being that the probabilities given do not

always reflect the correct value of Type I errors.
Welch has shown that the test criterion

t = u

Jox
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where
u=x; - 22
/[(s%_+s%)/(nl+n2w2)] (1/ny+1/n3)
g = a?r; + b?r,
ary + br2
- 2
a= 0y 1/ny+1/n,
n+ny=2 Gi/nl+6%/n2
b = d% l/n1+l/n2
ny+ny=2 o‘i/nl+ cs‘g/n'2 ‘
and r = (ar; + br2)2;

2 2
a rl+b r,

is distributed approximately as Student's t with r
degrees of freedom. Unlike other t~tests, this test
clearly is dependent oncri andtjé, but by substituting
for a and b in the expression for r, r becomes

- 2
r (rle + r2)

2
rle + Xy

— 52 2
where ) —-O'l/o’2
then by considering particular values of 6, the effect
of unequal variances on Student's t-test may be
assessed and the result interpreted accordingly.
Substituting for increasing values of 6 has the effect

of deviating further and further from the assumption
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of a common variance.
Two other approximate tests are quite
commonly used. Cochran and Cox utilize a weighted
mean of the tabular t values for the two samples.

First calculate

2 2 '
[s3/ny + sb/m,

and compare this value with

' —1
t wltl + w2t2

wl+w2

where tl and t2 are the usual critical values for a
t-test at a given level of significance based on
=c?
n;._.1 degrees of f;eedom and W si/ni.
When n{=n,, then tl=t2=t since tl and t2

are then based on the same degrees of freedom and

t' = t(wl + WZ) =t

(Wi + w3)
" which is the usual Student t~distribution.
The other test is given by Smith and
Satterthwaite. The test statistic t is calculated
as in the Cochran and Cox approximation, but here the.
critical value is the usual tabular t with f degrees

of freedom where
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— 2 2 2
f = (sl/nl + sz/nz)

(sl/nl)2 + (s1/n,y)?
ni;-1l np~1
For this same test, Dixon and Massey give

a different value of f as

f = (si/nl + s%/nz)2
(si/nl)z+ (s3/n,)2

nl—l n2—l

= -2

This situation can also be attacked by
conéidering the samples as paired values and applying
the test giyen in 2(b). If sample sizes are unequal,
however, information must be discarded by deleting

n,-n; observations if, for example,'n2> nq.
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CHAPTER VI

RELATED ASPECTS OF THE t-DISTRIBUTION IN MULTI-VARIATE ANALYSIS

In the univariate case, it has been shown
that the significance of a population parameter can
be tested by comparing the estimate of the parameter
with its observed standard déviation, the ratio being
distributed as "Student's" t~distribution. For the
multivariate case, the significance of a set of
population parameters can be determined by an analogous
test developed by Hotelling. |

Hotelling's T

Where "Student's" t-distribution is the
standardized measure of the departure of a sample
mean from a population mean, Hotelling's generalization
is the standardized measure of simultaneoﬁs departure
of p sample means from their respective population
means.

Let X1, Xp/s.-+Xp be a p-variate normal
population with mean/ui and covariance matrix crijf

When O :. is unknown, it may be estimated from a

ij
sample of size n by the matrix

l, 2.'op

(n-1) -Sij= A;(Xik"xi) (xjk—xj) i,
k

1, 2...n

Hotelling has shown that the statistic

e O ay e
2= n(n-1) l}:}lslj | & ) Ry A



78

may be used to test the hypothesis Hoz,/*i=</aio

Under the null hypothesis, the sampling distribution

of T2 is
| p-2
gtyam?) =2 ) 2 . a?)
MISTNES (n_l)P/ 2 L+1¥(n-1)
which is a. @z(p/z,n; ) variate. It wili be recalled

from Chapter IV that the relationship between the F-
(17l np-1
distribution and a Pz 7 ) } distribution was

shown to be

nl—l F = PZ(nl;l' ng-l)

n2—l
Hence, the -significance of the above hypothesis can
be determined by means of an F test.

For the case p = 2,

s = | Llxy%p)* (% emRp) (xpi-R)
— k —
(i) (egxXa) L (xgpKp) 2
K
-1 .
and S = l/(n—l)si ~r12/(nnl)slsz

- - - 2
er/(n l)sls2 1/(n l)s2
where, as usual

2 = -z Y2
S5 1 2: (xik xi)

i ————

(niﬂ~l) k
=z = Z(Xik"xi) O

r,
iy | :
/Z(Xik"}?i) 2 Z (Xj k—ij) 2
k k
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thus T2 = n(n-1) | (X1~ k)% + (§2"/&2)2
(n—l)si (n—l)s%

_2r12(§l~/*1)(§2j/42) § , and is distributed
(n-1) sy s, '
with 2 and (n-3) degrees of freedom.

For the case p = 1, Hotelling's T2 clearly

reduces to "Student's" distribution where

S = i:(xk—i)2

and ™1 = 1/(n-1)s2
so that T2 = n(n-1) (F-4)? = n(Rou)? = t2
(n-1)s?2 52

which is the square of Student's t.

When the variance~covariance matrix,crij,
is known, Hotelling has shown that the sampling
distribution of the T? statistic is that of a V2
with p degrees of freedom. It will be noticed that
this situation exactly corresponds to the univariate

case, where, if the population variance is known the

statistic

t = }? —.&, /
o/ /}?

will follow a normal distribution.

The properties of this test have been examined.

by various writers. Hsu and Wijsman have shown that

the power function of this test can be determined

from the distribution of the non-central F (which,
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for the case of 1 degree of freedom in the numerator
is the square of a non-central t). Hsu has also shown
that Hotelling's test is unbiassed, exact and most
powerful. A more recent work on the properties of
this test is that of Stein?.

Another inter-relationship is of particular
interest here. In a (p + 1l)-variate normal population,
Fisher?3 has éhown that the sampling distribution of
the multiple correlation coefficient, R2, between 1
variable and the p remaining variables can be trans-
formed to the sampling distribution of T2 by setting

1-R? = _ 1
1 + T2/ (n-1)

' n—g—B p-2
where g(R?) d(R?) = 1 (L-R%) (R2)2 " d(R?)
=

0<R2<1
The relevance of this transformation will be seen in
connection with discriminant functions and Mahalanobis's
Generalized Distanée, A2,

Discriminant Functions

Discriminant functions are an aspect of
multivariate analysis developed by British statisticians,
notably Fisher. The purpose of this type of analysis
is to find a linear function of ﬁhe sample measurements
which will classify the measured object as belonging

to a particular parent population. The discriminant
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function is then

X = blxl + b2x2 +...+bpxp
where p measurements on each object are taken. The
function is obtained by assuming the existence of a
dummy variable, y, which takes on specified values
depending on the population with which the measured
sample object is associated. A test of significance
has been developed,_based on the multiple correlation,
R?, between y and Xy, Kooy which, by means of the
transformation given in the previous section, is

identical to Hotelling's test.

Mahalanobis' D2 Statistic

The D2 gtatistic, also known as Mahalanobis
generalized distance, measures the "distance" in
p-dimensional space between two populations. If Sj_
is the difference of population means for the ith
variate, and dij is the population dispersion matrix,
assumed to be the same for both populations, then the

distance, 42, is
2 P 2 -1
st =L 3 3 |l 88,
Pi=T 4=1 13 13
where & 2is considered to be a population parameter.
The factor 1/p is due to the anthropological origins

of this measure, being a "coefficient of racial

likeness".
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If CY 3 is known, then Zl is estimated as

D2 = 1 ZZ’Q—"II a4,

P

where di estimates ) i
If 0,. is not known, it is estimated from the sample
as (n-1)S where S has been defined in connection with

Hotelling's T2 test. The distance is then
2 = -1
bg = L ZZ’S
P 1T 3

Dé is referred to as the "studentized" distance.

didj .

The sampling distribution of the D2 and Dg
statistics have been determined by Bose and Bose and
Roy respectively, and have been found in the limiting
case to have the distribution of the multiple correlation
coefficient, R2.

Interrelationship of T2, Discriminant Functions, and D2

‘These three lines of research are essentially
the same, although differing in approach. Clearly,
all are based on the same foundation. The main
difference is that Mahalanobis’s D2 provides an estimate
of a population parameter, the measure of divergence
between two groups. Discriminant functions and
Hotelling's T? test on the other hand, provide a test
of group divergence rather than a measure of group
divergence. For a more complete discussion of the
various aspects of these tests, and for the proof of
the relationships stated, the interested reader is réferred

to Fisher's 7account of the uses of these analyses.
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