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ABSTRACT

In 1908, "Student" published his investigation

of a method of making exact probability statements

by which the significance of means of small samples,

drawn from normal populations, could be determined.

Since that date, a large bod.y of statistical theory,

built on this foundation, has been developed, and has

seen application in almost every area of modern

scientif ic experimentation.

The purpose of this paper is to present

an integrated view of the relationship between the

historical development of uncertain inference with

regard to small sample work, and "Studentrs" t-
d.istribution. The dístribution is derived., and its
properties described. Some apolications to tests of
significance are presented, and some of the major

areas of current research on problems related. to

this distribution are indicated.
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CHAPTER I

lHE PROBLEM OF SMALL SA¡4PLES

Throughout the history of MathemaLics, many

attempts have been made to resolve the uncertainty

associated with inductive inference. Some at,tempt,s,

such as Bayes' Theorem and developments arising from

the normal law of error, have provid.ed parLj-a1

solutions, but these solutions were of limit,ed

applicat,ion d.ue to the necessity of fulfilling

rather restrict,ive conditions.

One notable lack in this regard was in

the area of small sample work, a situtation commonly

occurring in st,atistical investigations, where

variation from sample to sample precluded reliable

estimates of the population variance. Large sample

met.hods where precise estimates of this variance

could be obtained., or situations where this variance

is known by previous experience, were available,

but these were often impractical d.ue to exces'sive

cost, complexityr or t,o the impossibility of

repeating an experiment.

In 1908, however, W. S. Gosset., writing
under the pen-name of rrStud,ent," ,. d.eveloped a test.

criterion for the mean ind.epend.ent of the population

variance, and provid,ed t.he f irst exact, test of
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significance for small samples from normal populations.

His contribution, while directly useful as a Practical

tool, was much more important in Èhat it' imparted

a spectacular impetus to the field of sÈatistics,

Iead.ing t,o a successful generalization of his work

which formed a basis for much of modern statist.ical

theory.

The purpose of this paper is. t'o present

a comprehensive examination of Student.r s t-d.istribution

from the point of view of its hist'ory, derivation,

properties, applications and. generalizations.

' Historicalllr an account of the develoP-

ments lead.ing up to the t-distribution and of sub-

sequent work, is presented in order to show the

importance of this distribution as a method of in-

ference and, a major contribution to modern statistics.

Mathematically, the probability density

function of this distribution is obt,ained. by analytical

and. geomet.rical method.s. A general form of the

function is obtained, and the applications of the

distribut,ion are considered as partj-cu1ar cases of

t,his general form

Consideration is then given to current'

research on problems arising in :lnvestigations

where certain assumptions regard.ing the d.istribution

of the parent population and the assumption of a
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common variance in tests of significance are not met.

Lastly, a presentation of more general forms

arising directly from the extension of the d,istribut,ion

is made, t,ogether wit,h their applications.
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CHAPTER IT

HTSTORICAL DEVELOPMENT OF THE I-DISTRIBUTION

Suppose there is a set of data concerning,

for example, all events which happen under a given

set of conditions. For these data to have any

practical meaning, this population necessarily

embodies a certain quantity of information. Now

consider some proper subset of this population. If

the information in thís subset, or salnple, is measured

in the same way that the information contained in

the population was measured, then it is apparent

that not all of the information in the population

is contained in the sample.

Thus, to reason deductively, that is, from

a well defined population to a sampler logical

statements may be made because all the information

needed to define the population is known and con-

sequently the component parts are known. There is,

of course, some uncertainty inherent in the situation

in that there is no way of knowing a priori which

specific sample of all those samples possible will

be obtained. This uncertainty cannot be removed, '

but the concept of probability provides a quantative

measure of the uncertainty, and it can be dealt with

rigourously. On the other handr âr absolute statement,
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where one reasons from sample to population, candot

be made, To do so wouId. imply that the amount of

information in the sample is identical to the amount

of information in the population, which contrad,icts

the premise that the sample'is a proper subset, of the

population. Such a statement would further imply

that, all the information about a population is con-

tained in' any one observation, t,hus d.enying the exist,-

ence of any inherent d.ifferences between one member

of a population and another

Since insufficient information about, the

population is available, classj-ca1 probability theory

can be of no help in resolving t,he uncert.ainty

associated with inductive inference.

However, in the early ITth century, the

t,heory of probability was in its infancy and was ex-

pect,ed to be a very powerful weapon for attacking the
problem. Fisher, outlining the history leading

to recent'developments in the logic of ind.ucÈive

reasoning noted:

"For centuries, however, it was assumed.
that if uncertain inferences urere to be
made, they must be made in terms of
mathemat,ical probabitity. It was, I
believe, this assumption, more than any
other f actor, which has led t.o ef forts

, to define probability in more general,
and^ usually i.n psychological terms, and
has introduced infinite confusion into
the use of this once well d.efined. concept.,,l

Fisher6 ¡ p, 246I



6

Bayest Theorem

Thomas Bayes, recognLzi-ng the fundament,al

importance of this problem of uncertain inference,

particularly in the era of blossoming scientific

endeavour, attempt,ed to bring inductive logic.within

the realm of deductive reasoning. He framed an axiom,

defining â.supêr-population, from which all possible

types of populat.ions Tiad been drawn as samples. The

latt,er populat,ions supplied the information needed

to apply classical probability theory in order to

determine the probability that an observed. sample

\¡ras drawn from a particular population.

Bayes did not publish his work pending

clarification of certain doubt,s regarding t.he

validity of his axiom. These d.oubts $¡ere not

c] eared. uÐ aDÐerent'l'r¡ as the f-feati Se Was cr:b] ished_5.tr.---!-**_-----_

posthumously by Price. Whatever the doubts, upon

it,s appearance, the axiom was gi.ven a prominent

place in the mathematics of the day perhaps because,

as Fisher suggests, it met a very real need, and its

unquestioned acceptance by some of the great names

of mathematics gave the axiom an aura of aut,hority.

No serious critici-sms of the axiom arose

for nearly 90 years, until the appearance of Boolers

"Laws of Thought" in 1854. Boole noted that, Bayest

axiom was a device for supplying, by means óf an
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arbitrary hypothesis, information that the data

lacked. His criticism was somewhat d.iffident, but

more decisive rejection of the theory of inverse

probability by Venn and Chrystal followed'

The following example of inference based

on Inverse Probability, due to Edgeworth] and cited

by Welchrt wiIl illustrate Boole's criticisms'

be a rand.om samPle of
n
which is N(ll.,ç2]|. If

/
probabilitY of the samPle

Let x x , ...x
I

size n from a distribution
2

the sample is S,

given¡ and dis
/

1

then the

-2a2
ô ,f)' dx

(x.
I

hr
i.r dx dxf (sly, cf )dS t' 2l n

n/ 2
(2r) 6

Now by the definition of conditional

probabilitY

f (slV,a) = h(s,.t,o)/ s(7<,a)

where the quantities on the right-hand side of this

equation must be regarded. as d.istributions of the

probability that the parameters y' and' d take on

specific values . tf f and d are merely unknown

constants, they can have no distribution other than

atrivialoneunderthefrequencydefinitionof

probabilitY.
ByBayesITheorem,theposteriordistribution

of f and õ given that S has occurred' is

n
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P (f,6.ls) d/ dd= f (Sl 6 o) dsd d6-

ff ßtf , d) s (7,o) ydo
= f (SlVt-,o) S(7,a) dS yUo.

The probability d.istribution of .,þ given S is then
¡@p(/1ls) df = Jo,ofßly,o) 9(y,o\ ds d//Ld6.

But p (Vl s) is clearly dependent on g (,þ,€ ) , the

d.istribution of the probability that 7 and, d each

take on specified. values. Choices of 9(7,a ) will

obviouqIy affect, V(7lsl .

This is the key point of the crit'icism

Ievelled. at inverse probability- The prior d'is-

tribution of /',. and o- is seldom known. If it' is r¡ot

known, then this d.istribution is completely arbitrary

as there is "insufficient reasonI for the choice

of one particular distribution over another. As

i
Boole st,ated:

"These results only illustrate the fact,
that when the defect of data is supplied
by hypothesis, the solution will, in
general, vary with the nature of the
hypothesis assumed; so that the question
remains, only more definite in form,
whether the principles of probabilit'ies
.serve to guide us in the election of such
hypotheses. "2

In spite of the criticism, however, the

axiom and the theory of statistical inference derived

2. Boole: Laws of Thought quoted by Fisher,6
p. 247
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from it, retained a tenacious grip on its place in

mathemat,ics well into the twentieth century, becoming

a point of bitter cont,ention between two major

figures in modern statistical theory. Fisher, an

opponent of j-nverse probability in this controversy,

attribuÈes the retention of the theory to the fact
that t,he mathemaÈical world had nothing bet,ter with
which to replace inverse probabilit,y (especially

when it Ied to plausible conclusions in t,he case

for which Bayes had. developed it, specifically, for
a fínite set of exhausÈive, mutually. exclusive

outcomes where the probability of any outcome

coulld. be determined. by the frequency definition of
probability) , and to the mathematician's inexperience

at conduct,ing ord.erly retreats f rom false positions.

Inadequacy of Large Sample Method

An alternative approach to the problem of
inference about tlre means of small samples from

normal populations is the use of the quantity,

X -rlL
d/ /î

as a test crit,erion.

ff ; is the observed. mean of n observations,

and ¡ the true mean of t,he populat,ion from which the

sample was d.rawn, then it has long been known that,

Í is distributed in different samples as the normal



10

center ut ,þ, and variance

populat,ion sampled. It

6/ ,lî
is normally distributed with mean zero and unit

variance, and if a2, the true population variance

is known, then exact orobability statements about

the population mean can be made. In practi.ce, however,

this variance is seldom known. It may be estimated.

byh
^2Ð I

d.istribution, with its

one nth of that of the

follows t,hat.

t
ñ;r

The next, step was

sampling dist,ribution of s,

to investigate the

the estimate of the

x -k

r
i=f

.i¡ z(x

but x'/,4
s/ ,[n

does not necessarily follow t,he standard unit normal

distribution. Lacking further knowledge of t,he

distribution of this quantit,y,. it was used as a

normally d.istributed. test criterion when n was large,

for , as n increases, t,he population variance is

more precisely estimated and consequently sz

approaches the true value of o2. It will be shown

in Chapter IV that t,he limiting form of this quantity

as n becomes large is, in fact, the normal distribution.
Distribution of s2
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popula"ion standard d'eviat'ion' This was f irst' ob-

tained by Helmert in L876 and, later reproduced by

Czuber. These sources, however, were unknown to

the Engtish speaking stat'istical world'

In19o8.'Student,'obtained'thedistribution

of sz independ.ently of Helmertrs work ' While

Helmert's result was obt'ained analyticallyr "Student"

obt.ained. his result empirically by calculating the

first four moments of the sampling d'istribution of

s2 and inferring a Pearson Type III curve. He then

verified'thisbymeansofaseriesofsampling

experiments.

Student's z

In this same paper, t'Student[ d'erived the

probabili-uy density function f (z) of the quantity

He. found. that the distribution of z was independent

of t,he population variance, and' thus, tables of this

fu;rction could be used. to make probability statements

a,:cur che d,ifference between the observed mean of

a sa;;pi-e ani the true mean of the population from

r,,:..cri tire sanple had been d'rawn, irrespective of

biirl vatiance. If an hypot,hesized value of the true

mean were ,/¿o, sa1r r and

=i.-t
s

z

î. -,þ"
Þ

zo
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then
î@

lt{z) dz
'lo

was the probability of observing a sample mean

larger than Í if f were in fact the true mean of

the population.

F isher's Extension of Student's Work

The density function was found to be

- (n)
H

,l z
Ir + x2/ {n-r)]

"Stud.ent's" empirical result was obtained

analytically by Fisher I in L923 in the slightly

modif ied form of t = -x - r/" -- L

"/lÅ G

f (r) 2

r(+)ñ (n-I)

where n-l was referred to as the degrees of freedom.

Further, he showed that this nodifiecl distribution

could be written as a statistic which is dístributed

as the ratio of a standard unit normal variate to

s/6 , that is

t = N(0'l) = N(0'l)
s/6 v 2/ (n-L)

where s
n-l

and v 2 is a chi-square with n-l degrees



13

of freedom and t has Studentrs t-distribut,ion with

n-I degrees ît freedom

With this more general expression for t,

numerous test.s of significance v/ere developed

encompassr"ng

be d.iscus ¿u,*

a wid.e variety of problems. These will

in Chapter V.

Confidence ïntervals and Fiducial Intervals
one further development shourd be mentioned.

in connection with uncertain inference to concrude

this discussion. rt is, by no means, the last word
in any discussion of the rarge .topic of stat.istical
inference, but it does represent a successful step
in the search for a vari-d i-nd.uctive inf erence. This
development is confidence intervals, put forth by

Neyman. while it is not a direct consequence of
the t,-distribution, its d.evelopment can be attributed,
to t'he generar ad,vance in statisticar theory which
followed. studentfs work. confidence intervals shalr
be considered in relation to the t-distributionr âl-
though the concept may be applied to any welr-d.efined,
sampling distribution, and, i-nd.eed, has been applied
to a wide variety of probrems. consid,er the Èest of
the hypothesis

Htf fF" ,

Ho;.þ --r4" aSainst the alt,ernative
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-tv tt ,

t,=i'!o_JT

in d,ifferent samples wiII follow "Studentrs" t'-

d.istribution with n-I degrees of freedom' The 'test

will be judged to be significant if the difference

between I anö'/toLs sufficiently large to have a small

probability of occurence' This probabitity (by

convention less than O'Ol or 0'01) is known as the

leve1 of significance of the test and' is usually

designat,ed d, , and the fixed value of L' lay t' 4 '

associated with this level of significance is

.referred to as the crit'icaI value' These conditions

may be writ'ten as

pr ( I t I > t.( ) = d

or Pr ( lti<t<) =i-c<'

Expand,ing this inequalit'y' and' substitut'ing fot E'

then
pr ( -rc( ffirt" ) = I -o(

Rearrangement Yields
o- la.-1x - tor s 1rto1 Í + g-ç:l)= I - o('

T/ t;
Thusr âr interval has been calculated which covers

the populat"ion mean , /o, with probabilit'y I - c(

A similar theory was being d'eveloped' at

approximately the same time by R' A' Fishers 
' 

whicht
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in the case of estimation of a single paramet.er, led

to the same result as Neyman's confidence lirnits.
Now, if x, , xzr...x' is a random sample

fromN(.¿.,Ç2), then
.,'

t=U-
s/F

is distributed in different samples as a distribution
dependent on the'sample size n. There exists a fixed.

value of E, say t., such that
I

Pr (t>tr) = d,

where 0 ( c{ 4 1 is any specifieã probability. Further,
from the above expression for t,, t is a continuous

function of the unknown paramet", 
4.

Upon substitution for t, t,he expression

Pr (t>t.) = o(

becomes
t-Ix -t<

- I __-_,_¿__
Prl r-1 )I s/ ,lnL'

LI
"1J = t/\

or

Pr =O(

Thus, by considering all possible values of al (and

the associated probability d ), a probability
distribution for y can be constructed.. To d.istinguish
this distribution from fnverse probability, Fisher
termed it a fiducial dist,ribution, and the limits r

of an interval which contains the parameter with a

specified, fiducial probability as fiducial limit,s.

t_t
Il< " =tr It-lL rñ.1
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Unlike Neymants confidence limits' fiducial

limits are not based on the id'ea that the assert'ion

that a parameter is contained in a given int'erval is

true in an assigned proportion' d ' of cases in t'he

long run. Instead, it is the range of conceivable

values of t'he parameter which give rise to the observed

st,atistic (s) wit'.h probability c( '

fid'uciald'ist'ributionisaprobability

d.istribution in the frequency sense of the word'' only

inthatprobabilitiesbased'onthefrequencydefinition

are attached to possible values of the parameter t'o be

estimated'.Aspointedout'inconnectionwit'hBayes'

Theorem, a probability d'istribution of a parameter

is incompatible with t'he frequency d'efinit'ion of

probability. Hence the need' for qualification'

Afurtherd'ist'inctionbetweenNelrmanIsand.

Fisher's theories is that' fiducial distributions

admit only one set of fiduciat timits' A fiducial

distribution of a parameter is the one and only

distributionofthatparameter.Adifferentd,ist.ribution

is possible using other est'imat'es' but t'he existence

of i*o d'ifferent d'istributions of a paramet'er based

on the same information is obviousry serf-cont,rad.ict'ory.

Toavoidthis,Fisherrestrictsitsuset'osufficient

estimators.
The d'ifference between these t'heories of
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inference and that of the Bayesian school of in-

ference is that Neyman and Fisher rely on sampling

distributions of observed stat'ist'ics, rather than

d.ist,ributions independent of the sample work-

Fisher and Bayes arrive at the same goal, a distribution

of a paramet;er, from which inferences can be made,

but, their respective probability distributions and

the question of valid.ity are quite distinct.

Historical Imcortance of "Studentts" Work

In a biographj-cal paper on Gosset shortly

after his death, E. S. Pearson noted:

"It is probably true to say that this
investigation published in 1908 has
d.one more than any other single paper
to bring these subjects within the
range of statistical inquiry; as it'
stands it has produced an essential
tool for the practical worker, while
on -uhe t.heoretical side it has proved
åa ^^*.¡--.i * t-L^ -^^/7 c n€ nat.r i Äa¡c r.r'Ìrì ¡hLU Vvlluqf¡l u¿¡g 9svss v! ¡¡vYr 4svue

have since gro\ún and multiPlied a
hund.red. fo1d..." 3

- Various authors have commented that

Gossetrs primary intention was practical--to develop

a t,ooI. The t-test ís certainly that, and one of

theoret,ical import as well¡ âs has just been not'ed'

In spite of t,his importance, however, it is interesting

to note t,hat this influence v/as not felt for some

time. Alt,hough the test was in use immed.iately at

Guiness Brewery in Dublin (Gosset was employed tilere

3
t'

Pearson, E. S.: P. 224
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as a brew-master from lB99 unt,il his d,eath in Lg37),

it did not come int,o common use until the early
1920's.
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CHAPTER IIT

THEORETTCAL DEVELOPMENT OF .'STUDENT'S'' I-DTSTRIBUTION

obtaj-ning

rigourous

presented.

In this chapter, "Studentrs" method of

the t-distribution will be out,lined and. two

developments of the distribution will be

14e first method, is an analytical one in

which the joint distribuÈion of t,he sample mean, i,

and. the sample variance, s2, is established. The

functional form of t is then obtained. by a trans-

formation of variable.
The second method is a parallel develop-

ment of the first in that the joint, distribution of

x and s2 is obtained., but by geometrical considerations.

This developmen'" merits consideration for two reasons

first, it is the method presented by Fisher and thus

represents the first rigourous derivation of the t-

disÈribution and second, the representation of a

sample as a poinÈ in n-d.imensional Euclid.ean hyper-

space constituted an important advance in t.he analysis

of sampling problems.

"Stud.entts" Approach

Although the t-distribution bears the name

of "Student", the d.istribut,j-on in its present form

is due to R. A. Fisher, who rigourously d.erived. and,

extended the result present,ed. by "Student" in 1908.
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Ã.c

obtained the

has alread.y been noted, "Student"

distribution of the variable

z X
s

the int,egral of which was tabulated in terms of the

sample size, n. His work was essentially empirical

as he calcula.t,ed the first four moments of the

sampling distribut.ion of z, from these quantities

inferring that the frequency curve was that of a

Pearson Type VII. Aft,er showing the correlation

between 12 and sz to be zero, he further inferred

that, I and s were independent, a conclusion which

does not necessarily follow such demonstration, His

intuition was renarkable, as both inferences were

later shown to be correct.

The transition from rrstudent'st' z Eo

'rStud.entrs" t was effecteC in collaboration with

R. A. Fisher3 in L925. Fisher's research showed,

that the d.istribution had much wid.er applicati.on

than "Student" had realized anC that the form

l-

tabulaÈed in terms of

rather than the sample

ient one.

/ñ-

the degrees of freedom, rr-Ir

síze, n, was a more conven-
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Ind eoendence of ; and s2

To show the independ'ence of these quantities

itisnecessarytoestablishthefollowingtheorems.

Theorem rrr-r

Let x be a rand.om variable which is N (¡t'az) '

Tf

then V is N(9,f ) .

Proof;

tv
J-

r (x-Å )

The moment' generating function of V is

V=x-lx
6

ô
-4$-n)2-ã-

E(e e€ I€W dx, -@1 x<æ

dx -oo<x<@

Completing the square and sett'ing

y = x-.u+ t
ç' 

^ ¡cnr-\/. * /z I *'/z .rrr = othen n(e"') = e I e* t^Y c
J-* 12î

*/2

Thus V is N (o,i) -

Theorem Í.II-Z:

Let x be a random variable which is N (V' a2) '

If V = x- þ , then V2 has a chi-square d'istribution
g

with I degree of freedom.

Proof

The moment generating function of V2 is

Lk-,^)z -\(x -/t)z
Gz 1 e g'z

,ñ

Fæ

rv2. tE(e- ) = I e
J_*
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Setting y = (x-,c.) 1-2t., then
6

E(e tv2 ^ ^v2/2
e

ñ
I

l"
-12

L-2t
dy = (1-2t,)

which is the moment generatj-ng function of a chi-
square variable with 1 degree of freedom. For

notational simplicity, the use of V2 shal1 be

restricted throughout to indicate a variable which

follows a chi-square d.istribution.
Theorem III-3 (Reproductive pr rty o f Chi-square)

If V2 and V2are ind.ependent chi-squareL2
variables with r, and t2 degrees of freedom re-
spect.ively, then the distributj-on of

y2 =V2 + y2
I2

is chi-square with r = 11 i t2 degrees of freedom.

Proof

Since V2 and. V
I

are independ.ent, the momenÈ-

generating funct,ion of V

M(V2 ) (t) = M(v2) (t) M (v2) (r)
tf J /)= (1-2r) - ''/ ¿ (1-2r) 'r z/z

= (1-2t)- (tr + r) /2

which is the moment-generating funct,ion of a chi-
square variabre with (rl + t) degrees of freecom.

As a conseguence of this theorem, it
follows immediately that, ir I xrl is a rand.om sample

of size n from a distribution which is N (¡, c-z)

2
a

2 tc



that
ht [x. -/^i2/--l L 'li.rl o 1

is distributed as V2 with n d.egrees of freed.om.
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The following theorem, known as Cochran's

Theorem, is stated without proof.

Theorem fII-4

...x be independent st,andardxz

II

n
k\-,l_ q . , v¡fiere g. r-s aj,r -a -l-

quadratric form of rank ni, then the necessary and

sufficient condition that rfl, q2.. -9O are indePenCentlY

dist,ributed as V2 variables with respective degrees

of freedom nt, t2...^k is that 
à", = n.

The inoepend.ence of I and s2 can now be

established by applying the foregoing theorems to

the expression for the sample variance
î
L (x. -x¡ z

.: 
-1 

L

Upon rearranging, thisr",expression becomes

(n-t) "t =,1 (xr-*) 2

I_I
n

=r

Let X1r

normal variates.
n\-.zaL
l.l l-

sz = I
n-

x 2 - TIX¿
l-,, i=r

r-
or /- x? = (n-l)sz - n*2

i=l r

If x' is the vector (xI, x2...*rr) ' , then this last
equat.ion may be written in terms of quad.ratic forms as

xt I(n)x = x'Ax . xrBx

=9r-9.2



t¡here

ft-

B

I-I/n

^L/n

'r/n

-L/n

L/n

L/n

L/n

-L/n
L-L/n

-L/n

-r/n
-L/n

L-L/n

24

L^L/n

ì-L/n 
I

I

-L/n :

I

-r/n

^L/n -I/n

L/n

L/n

L/n

L/n

L/n

r/n

L/n

L/n

L/n

L/n L/n L/n L/n

and I(n) is the identity matrix of rank n.

Noru, the determinant of A is

lei = L-I/n -L/n ^L/n

-L/n L-L/n -L/n

-r/n 'L/n

-r/n
-L/n

-L/n L'L/n

and by subtracting t,he lst row from all other ro\{s,

le[= L-L/n 'L/n -I/n . .. , -L/n

-1 I 0 .... 0

-1 olo

-1 0 0 I

and, by adding all columns t,o the lst column
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I ol=

lsl=

-L/n
I

0

-L/n
0

1

-L/n

0

0

r/n
.1
.1

0

0

0

0 0 0 .... I

CIearIy, the rank of A is (n-f¡, the order of the

Iargest order non-vanishing sub-determinant in A.

Hence g1 is a quad.ratic form of rank (n-f ) .

Similarly, the determinant of B is

L/n

L/n

L/n I/n L/n

L/n I/n I/n

L/n

lrrzn) n

L/n

1

I

L/n

11
11

11r I

= (1/n)n I t I

and the rank of quadratic form o¡ Q2 is l-

Now,

rank larl * rank lø,rJ= (n-1) + r

= rank [t t"t]

which, by Cochran's Theorem, is the sufficient condition

that q1 and q, be independently distributed as V2

variables with (n-1) and 1 deqrees of freedom respect-

ively. Hence I and s2 are independent.
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The (Í, s2) Freguency Surface

The joint d.ist.ribution of f , s2 is given by

f (i, s2) di d (s2) = f t (X) d.x tr(sz) a (s2)

d.ue to Èhe ind.ependence of i and s2.

It has been shown that

n(x -,<.)2 = [; -AþT l----t 6/ l'!
is V2 \^¡ith l d.egree of freedom, and. it is known that

the square root, of a V2 variable with 1 degree of

freedom is N(011). Thus, the probability densiLy

function of

x-f
Ç/ lÊ'v

l_s

-uirx -þ)1
E LEfrJ u[t;- l'i , -ø1i -,¡. çæ

lat iïl ot l:
L / V"J -/ ,ltt

-ìt-t
I x -l'I
L a/ [n)

2

1
t=
I ¿tt

Hence the d.ensity function of i is
_r4 2

f (x) d* = eI
2Tr

Similarly, it has been shown that
(n-1) sz /o2

is V2 with (n-I) d,egrees of freedom. Hence,

probabilit,y density funct,ion is given b1r

II d*., -*<* <co

its
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e

- (n-1)s2
Tú-z- n-3

- (n-I ) s2
6-z T

n-l) s , O < (n-1) s2 acc
6 61

and,

I

r(+) +)

f (s2) d(s2¡ = (
2

n-1) e

n-3T
[ (tr-rl =t lL-T )fr*, 22 6

The joint density function of x and s2, then,

is given by

¡x¡atrr(s2) d(s2) =D 
LZ+l'

- [t"-r) s2+n (x-/¡z)¡2cz
did (s2 )

d (s2 ) , o< s2<*

= "/ /-1

n-l 2

n-3
f e

n-1
/-rr -ì 2

where D =/n ln-Il
/2ri L2 I

I
d'i-t"ãr l

The t-distribution
Let the variable t be defined

t=*^t
=/F

and consider the transformation

u=i-A , s2 = s2

s/ lî
The Jacobian of this transformation is

lr-¡=lc)x/ )t òs2/òE l=l =/,F ol
ttt-t

là"/)s2 òs2/)"tl lt/zlnrr' rl
Hence f(t,s2) dt d(s2) =
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2n-I n-2

) 2 gz¡oz¡ 2 e
[r + t'/ (n-r)i dr d(s2)

- (n-1) s
-Td-z

(n-r
2

/ñ
rr ,n-l,lî)

-oct<cc

o< s2qcl,

Integration of this function with respect to s2 yields

f (r,s2 ) dt d(s2) = f (t) dt
-n

f (r)

or f (t) dt = 1+L2

dr = r(T)f r + tz¡ çn-ÐJ 2 dt -ø<l-1c"'

[t$r1( I(n )

Fn

drn-1

þ tr/2, n-
)

-æ <E <æ
(n-1)

where the funct'ion (L/2, n-I
2

) degrees of freedom, where

= l<rtz) f (*lia
t

r (+)

and lolr) =/'.-
Thefunctionf(t)dtÍstheprobabilitydensity

functíon of "student's" t-distribution with (n-1)

d.egrees of freed'om.

. The use of the term "degrees of freedom"

in this context requires some explanation' It has

been shown t'hat' 
r ["r -¡ I1L d J

is distribut.ed as V2 vrith (n

2

the degrees of freedom have been interpreted. as the
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number of independent squared stand.ard normal variat'es.

ff , then, there \^/ere k linear restrictions among n

variates, the sum of squares of these variates would.

be dist,ributed with (n-k) degrees of freedom, each

restriction reducing the "dimension" of the variation

by unity

Since the probability density function of

t is d.ependent on t.he sample size, n, some specification

of the sample size is necessary to completely determine

t. The quantity (n-1) appears in the density function

of t as a consequence of t,he degrees of freedom

associated with s2, which appears in the denominator

of t . The d.egrees of f reedom of sz are ' in turn, a

consequence of the sample size, where the "dimension"

of the variation in sz is of size n subject to one

linear restriction (that ft*.-*) = O) . Thus, bY1-r
extension, t,he term "degrees of freedom" is associated

with the t-distribution.

Geometrical Derivation of the (i,s2) Frequency Surface

alternative method of obtaining the joint
-ôof x and s¿ is the following geometrical

Fisher 3 .

An

distribution
proof due to

Let

sample from a

distribu:tion

*r' x2r " '

population

be n values of
that is N (,/(^ , €2)

a random

The joint
xn

of the sample is



n
d.xeI

I
----226

It"i -,þ),
30

dx ..dx
1 2 n-flî

- rll
-l r I

-: r I

l;¡n)
1

-*
26 [{tr-r)"' + n(i V)'Ju*

dxe

since it has been shown that

dx
1 2 n

EGr-¡)2= (n-r)s2 + n(I -f)'
Let (*1, *2...*rr) be co-ordinates of the

sample point, P, in n-dimensional Euclidean hyper-

space. In figure L, let OA be the unit vector in the

n-dimensional space with d.irection cosines pro-

portional to L, I, ...1, and. let PC be orthogonal

to OA at C. If the co-ordinates of the point C are

(a, âr...a), then the d.irection cosines of PC are

proportional to *l-., x2-âr...*rr-., and those of the

unit, vector are proportional t.o a I a, . . . a. By

consirucÈion PC is orthogonai t.o OA, hence

a(xr-a) t a(xr-a) +... a(xrr-a) -o
since a I o, then I(*. -.) = o'l-

and this gives . = Z l-
n

so that the co-ord.inates of C are (;, ;,. . ri) .

Then (OC) 2 =i2 + i2+...i2= ni2and, (eC¡ z =
{xr-i)z + .xr-î)z +....+(xrr-Í)2 = f{xr-*)z = (n-1)s2;

from which OC = uã I and. PC = '6T ". The lines OC

and PC are orthogonal,

dependent,.

thus Í and s are clearly in-



t1
JI

P(x ,X2, .. .Xn)

,,6' x

o

figure 1
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To obtain the joint density function of

i and s, it is necessary only to transform the volume

element

dv = dx, dxr...d*.,

as ühe density factor is already expressed in terms

of i and s from previous considerations.

For a given i and s, OC and PC are constant,

and the sample point P moves on the surface of an

(n-1)-dimensional hypersphere of raiius PC = irlE s',

centred at C. The element, of the "spherical" shell

in which P moves has I'dimensÍons" d.(PC) = uf;T ds and.

d(OC¡ =fi di and therefore

d.v = k, (s /n-1)n-2 ,Ã-1 as ,ø dxI

where k, is a constant.

The joint distribution of Í and. s will be of the form

n et\lt-Il-:-l
1o tz-rt' I

-1 [ tn-r)s2 + n(i- *)2i
-ñ,t/ k1 (s F)n-2 ¿G:Ì as,Ç ex

I
462 [(n-r¡sz -n(i-7^) 2]

-t) c O<s(oo

-@ <i<"o

which is expressible in the form

f t (;) dx rr (s) ds

due to the independence of I and s. Complet,ing each

factor with the necessary constants yields t,he joint



density function of i and s2, specifically,

I
and therefore D

hence f xI

2Tt

-% (n-l) s2

-à (n-1) s2

-\ lx- '1'' l,"t F)

'))JJ

I

d.fi -@<x(co

ds=1

d (s2)

-n

-T26

n-2

D

s2 62

n-1
62

2

n-3
T

x 'ts
d.iD

ron
Ile

-CO

I 6

6/ã
6

e,z

( e

and D )

or

Therefore

{
F@

/""o z

S e

n-3

2

I

n-1-T1,2 t\ n-1_T

and, henc" f2(s2)d (s2)

(n-1)
2

=/n/2T (n-1)
^aO¡J L

n-1 n-3-z-
d (s)2

o- l-tt-11t2

The joint distribution is, therefore

fr(x)dx fr(sz)¿(s)2

e

õ

0 < s2qçp

n-l n-3T ¡r'/u')-T
Fzn-l rl\z)

#r(n-l) s2+n (1-*)2
d.;d (s2)

-æ<x < oo

o( s2(æ

from which the dist,ribut,ion of t can be obtained, as

before.
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probability density function of

r âs shown in the preceding chapter is

dr.

The

"Student's" t
given by

f (t) dt -ø(t<æ
n*1Ã' po¡2, n/2) (1 + tz/n) 'î

where n is the degrees of freedom. Since the dis-
tribution is the reciprocal of an even function, it
is apparent that the distribution is symmetrical with
medi-an and mode at t = 0.

Following Craig'sl notation, the distribution
is of the form

C(U2 + V2)-m

L/ lî þttz, n/2)

t/ r;

v

where c

m = (n+L)/Z

"Student's" t can be classified as a Transitional
Type VII in the Pearson system, and is related to
the Main Type IV and Transitional Type If, in that
a Type vrr curve may be derived from either of these

distributions. The Transitional Type II can be

shown to be a special case of Main Type L, of
which class the ß- variable is a member.rI

U

v-1
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Moments of the t-distribution

the first non-central moment, the mean, is
given by

.A
I

L I rdt
/; þ (t12, n/2) (L + rz/n)

I

n*I( 1 + t2/n) -T d,r

n+1_T

=( r*
J-*

t
where K - 1

thus /;= I

Hence

ñ' p G/2,n/21

"[

¿E
dt,

- (n-r)
¿

n

which is of the form

n+I
(1 + t2/n)-2

-m*1r*-/dxlr-
-æ

-ñ -L 'l
¡tlr¿

A t-
I [r + Lr/ú

')

l*
f- oo

n K
n-1

= n K [O]= O,
n-T

which result, wourd seem obvious as it, has alread.y

been noted that f (t) is slanmetrical about t = O.

From the property of slanmetry, i.t follows
that, all odd. order moments about the mean wilr vanish.

The even order moments about the mean are
given by

s(r- f
1

2r
= E(t) 2r

=rþ

2r



t
J_*

t- -

@

(I + 12
-n+l

/n) -T-
36

dr

-n+1
Q+tz/n)-T

and / 2rt

F p e/2, n/2)

2nr

,FP (L/2, n/2)

(t2 /n) t

@ r-\
Y

n+l
(1+y) 2

(n/2 rr r + L/Z).

Ø

dr,.

Let,ting tz/n = y yield.s

T

2r b
(

(L/2, n/2)

nr

þ (I/2, n/2)

integralHowever, the

n

ß

f
converges

m=r+I/

1@

= / .r*-1
l1/ ^i+m

(!,n) dy

if and. onty if /- , m > 0. Thus, since
2 where r)0r

l=n/2-r>0 or 2r1n
and the distribut,ion of t possesses even order moments

only up to a number ress than the number of d.egrees

of freedom.

The first moments, then are

/ 0 - mean
1

/ n
ñ

= varlance
2

l=

l

l=

2

/

,þ

/

,þ

l=

3n2

0
?

4

3

4 * 6n+B



and skewness = 0
3/2

(y'2)

kurtosis = 'lt 4 3(n2 2n + 4l
r y)z rLz 6n+8

The kurtosÍs of t,he t,-d,istribution is dependent on

sample size, and since n is positive'

nz 2n+Q - 1+ 4n I >1
n2 6n+8

and the curve has kurtosis

It will be noted t.hat,

tim llr| =rim f-+l = I
n+@ n.>oo Ln-2J

and lim f¡<urtosisl = lim 3 [ nz 2n + 4 J= 3n+ærrr-,@LffiJ

In the limitr âs n increases, then, the value of these

coefficients approaches that of the standard arormal

distribution, which suggests that the standard normal

is the limiting form of the t distribution. This is,

in fact, t,he case r âs will be shown in the next

section

Limit,ing Form of the t-distribution

The limiting form of the t-distribution as

n-->æ is the standard, unit normal. To show this,

consider

f(r) = 1
n+1

þ tt¡z , n/2) (r+tz,/n ) T

37

As

n2 6n+8
> 3 and hence is leptokurtic.

F'



f'
(n+l )-T-

3B

-n*1a-rriF /;

- n*l In_T

(r + ez/n)

(L+tz /n)

l- rll
T 'n*It+ 4Ln 2 - Lln(n) + lnJ t 2 /so that ln f (t) =-lln

-ln

n'r@

where lim
n+@ Zn 6ã2

(2rT )

r (n)
z

Applying Stirling' s approximation

In l-tr*"1 = ln(xt) = \Ln(2tr ) + (x+%)ln x - x r w,.

where 0 ( wr, 1L/I2x, yields

r" l-t$l-t"[- f]l = -\In 2 + ]áln(n) -U +1 lr-1n(1-1ln)
- (n-1) In (L-2/ùl

Recalling that the Taylor expansion of ln (1+x) is

ln (1+x) =x -x2 +x3
õ¡ îrL. J.

then In l- ,ril-l,Lrr=rr -^^ I (T) lnlrnl = -\Ln 2+4In n I + t' '2' Tn -Tr¡2

where succeeding terms are of order L/na.

Not^¡ -n*1 1n (1++-2/n.\ = -\(n-L) l-n (L++-2./n\ . which. uÞon¿ \__ _ \_ _ , --¿ . *l __T

substitution of the expansion of In (I+x) , becomes

+13
TIñ

-t1 lr-t¡" - tz22
Hence rim[n f (t)] = -\Ln (2r ¡ +

) - 16(t _1 )-...
T ñ3n4

(1-1 )
ññ2

+ r4(I _1
3 ñ2ñ3

+13
7Tl3

-1+1 +13
4n 6F Tñ

-0

Ir]2-.t
2

(1-r )

ññ2

I
n

l_m
+q)

'l

J

+1
n

im Lt2 (r-ll -rz t! -Ð . . .l
*-l 7 rI 2 n n2 J

t +If
t

+

lim
n*6

-¡2
z

(L-L/n) - Lz
2

and
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Consequent'IY '
rim Irn r(t)]
n-r@

and therefore lim f (t) =
11+@

= -lln (27( )

e -E2 /2

-tz
-2

1

I z¡t

which is the probability density function of the

standard normal deviate

Special case of the d.istr ibutionforn=1
It has been noted that, the integral

y*-r 
- 

dyp t/,ml =
l+m

(1+v)

converges if and' only Lf',{-, m) 0. Thus, the ù-

distribution is defined if and only if m = n) 0 r where

n is the degrees of freedom.

Consider the case where n = I' The

probabitity d.ensit'y function of t, is given by

f (t) dt = dt,
n+

6' p otz,n/2) o+82/üT
reduces to

f (t)at = dr -ø<t,( æ

îf (t + ¡2 )

which is the probability density function of the

gauchy d,istribution. This distribution has no practical

application, but, because of its unusual properties,

was of great value hist'orically in defining the

necessary and, sufficient' conditions that a given

frequency funct,ion be a probability density function.
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The distribution is symmet,rical about t = 0

but does not possess any moments. For example,
1@ ¡@ -1mean= i t dr =r I zr(t+tz¡ dr
I 

- 
^ ñJ*J-Ø T (t+ t2 )

= $- | 'on I r+ez lJ l- does not exist

although f* r dt
/ " 

(1..t )J-q-

does exist and is equal to zero in the rimit as c[Ð6.
Regarding the higher order moments (odd and

even) the integral
I

r,11
r

2+tI
dtt r = Lt 2

does not converge for any integral value of r.
The characteristic function, however, does

exist., and is equal to

ô itw drP (w) 1
iÎ 1+t2

=e - lwl

Generalized. Definit,ion o fr
Let the variable t be re-defined to be

1a

J_-

vz /t
v2r/ny

=w
æ
I' Il t''l
v'

where v2 and vf are disÈributed as chi-square dis-
tributions wÍtii I and 11 degrees of freedom, w is
distribut,ed as a stand.ard, unit normal variabre, and

nu¡i,erat,or and denominator are independent.
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This definition, proposed by Fisher in L925,

is much more general than that, which has been considered

to this pointr and is to be preferred because of its

generality, particularly in víew of the applications

of the t-d,istribution to be discussed in the next

chapter. The definition
t=l-k

"/ ,lî
is of interest historically because it is the definition

from which the work considered so far developed. Since

the approach of this paper Ís essentially a historical

one, the historical definition has been utilized thus

far.

The historical defÍnit'ion can easily be

shown to be a special case of the general definition.

If

vzr/n

then v2/L = nv x -A)7 '/t

n- s
T / (n-1)

since the numerator and denominator of this expression

have been shown to be distributed as V2 variables with

I and (n-1) degrees of freedom respectively if x is

d.istributed normallY

tvNU

0r MA

tisnnnY
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(n-I) sz
(n-1) d2

n(f -/) = E2

2

6

s2

After taking the square root of both sides

6'tL î.-* ) x-
t;S s

where t is dist,ributed as "studentts" t !'tith (n-I)

degrees of freedom

Inter-relationshiP of !Lr V2 and F distributions

Let, v2 and vl be independent chi-square

variables with n and, n degrees of freedom resPective1Y.
T 2

The joint, distribution of vl anð' v) is

-\ (vî+v3) a-1 þ-1\ z'(vî) 2 N d (ví)d (vå)2f (vî ,v22) d (vl) d (vå)

Letx=Ví

-v;
format.ion is

=g

Ir f rþt
tr
2

2

nI+n2
T

yx

2o<v 1qI

o<

y.

u3'-

and y = u'r. The Jacobian of this trans-

Jr
ðv Ittx àvzr/àv

l/àx tvl/bv OIàv



fi

:i

:l

-v
2

(I+x ) *r-1 r'*r2 -1
--T-
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dx dy

0 < x<c"

o < Y(qr

dx dw

ocx<oo

9(xy¡dx dy - e

I r(1)

-\,V

2X
n + n

2

n
2

n

2 2
ril I 2

If w = y(I+x) then d$r = $g(f+x)
2 2

n-1
1

2
X

tl*t2 -1
-T--and g (xw) dxdw=e 1^¡

[t]r I t], (t+x)

tr*t2
-T-

Integration with respect to w yields

g(x) dx = x2 dx

tl-1

P 
ra' nz)

-2

n, +n^
e+x*;3

2

which is the probability d.ensity function of " F Z

variate. Thus the ratio of 2 independent V2

variables with n, and n, degrees of freedom, is

distributed. as a P, variable with parameters "/,
and n

2 /1 that is
n -]I

x-Z

$(n1'n2)'-z-2
n. *n.Iz

2
(t+x) 2

Now consider t v¡ith r d.egrees of freedom

dx l_s pÁ
n-rt nz\

-zl

! _L- v2 /L
vl/r
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where vl fras r degrees of freedom'

t' = Pr(L' r)
'r" r.lto" of 2 independent chi-square '¡ariables

divided by their correspond'ing degrees of freedom'

: The F distribution is defined to be

^2.E_ol

s2
2

tr-1

Thus

:
where =I = (x., . -Í1) 2

s3 = S 
,:r'-î)2

- 1- -*;{

and these statistics are calculated from 2 ind'ependent

rnd n from PoPulationsrandom samples of size tl 
2

which are normally distri buted'

Then

(n r-r)lnF)
F (nr-f ) sl

6¿

(nz-r) si
6 z

-- vi
F_

2

where Vt anð' v) have

f reedom resPectivel-Y '

(n1-f ) and (tZ-1) de

Hence n1-1 F is a

-'t"2L

grees of
.n. -l D.-It

þr\:r':r)
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variate. If (n _1) t then (rt-l ) r'
î7f-

, F
n^-T-

¿

I

^ D.-l
= 15 rtt/2 ,É-')
which is ¡2 with (rZ-I) degrees of freedom. It is
apparent, then, that t with (nr-I) degrees of freedo¡n

is a special case of the F distribution with I and

(tZ-l) degrees of freedom, specifically t2 with

n degrees of freedom = tlr,

and that values of tz for n Cegrrees of freedom at

the o( level of significance can be obtained from

the values of F with I and n degrees of freedom,

and level of significance o(.
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CHAPTER V

APPLTCATTONS OF I'STUDENT I S'I T.DISTRTBUT TON

The area of most frequent application of
"stud,entrs" t-dist,ribution is that, of test.ing statistical
hypotheses. As has been pointed out in chapter rr,
the extension of exact testing procedures to small
sample work has been of particular import,ance to the
development of statisËica1 theory, and has faciritated
the applicat,ion of st,atist,icar techniques to the
various disciplines of experimentaL science.

TESTS OF HYPOTHESES BASED ON THE t..DISTRTBUITON

1) Testing an assumed population mean

A co*mon experimentar situation ís the one

in which an experimenÈ.er wishes to test an assumed

value , /o of the mean of a normal population,

Let x1, x2r...x' be a random sample of size
n from a normar population with unknown mean ¡ anð,

variance ø2. rf
*, :4
"/ /T
Z xr/n

s2 = I >n-l À

then t is distributed as "student's" t with n-r degrees
of freedom as has been shown in chapters rrr and rv.
Substituting for * and s, and given

H"t/7" 
\

where

and

x
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then the statistic t can be evaluated and its signifi-

cance determined with respect to a chosen level of

significance.

As an example, consider the following

artif icial date--9.73, 5.42, 6.57 , 6.01 , 4.7I, 6.97

5.73, '7.96, 8.05, 4.53, for which * - 6.57 ' s = L.64

and n - 10.

To test the hypothesis

/Ho

Hlz ,4

= 6.50

/ 6. so

compute

t = 6.57 6.50 = 0.07 = 0.13
1.64/ /1; 0 .52

At the 5Z 1evel of significance, the values of t

beyond which 53 of the area under the curve lie (2.52

in each tail) are !2.26 for 9 degrees of freedom.

Since the calculated value of t does not exceed 2.26,

the test is judged non-significant , and it may be

concluded that the evidence in the sample does not

refute the null hypothesis.

2a) Testing the difference between unpaired
sample means

The t-distribution may be used to test the

hypothesis that the means of two populations Ciffer

or the hypothesis that the difference between the

population means, tt -,þ2, is a specified value. If

it can be shown that the variances of the samples
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are the same, then the hypothesis that ,þ, -.tz = 0

is equivalent to test'ing the hypothesis that the two

sampleshavebeendrawnfromacommonnormalpopulationl

*(f ,62) where / =f L =/z
L.t *Il , xLZr. . .xlrrl and' x21 ' 82Í-t " o*'n,

beind'ependentrandomsamplesdrawnfromtwopoPulations'

P, and P2 which aref respect'ively' Nly'L'61) and

N7/2,€1).
Le.t,

Ii

and n.T-I

and consider the statistic

ir-i, - (/" I -/

i-=Irñr
rL
i

xt
Z (xrr-î1) ' "I= +: @ri--xr)z
. n2-r
II

lr:rJ +

L nrJ

x^.¿L

I

ISï

)

with mean

and, variance

2

var (ir-*2) = var Ir

sl/nt + s22/n2

Since x* and x21 are normally d'istributed variates

and are independent, Í{*, is normally distributed

E [or-"r] = þt -/z
V "ril, 

-t
î2{

xri
n

= var var r
I
xzi

2n
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= rrdi +nrol 61 a1+

2
2

f f,/z'L+Hence *t-*Z is N(

n

it, follows that

q ) and from Theorem III-1

2
I n tl \2

IIr n^¿¿

+

is distributed as N(0rI).
À(ultiplying the nlxnerator and. d.enominator of

tby 6 + €?z then t is given by
nI rLz

t=* (/
2)I 2 I

af/ny + 6 n2

s l/n, sl/n,+

Ír-1r- (*, -/r)
6í
tr "3n2

ozr/n., + a)/n,

Now, the numerator of this latter expression is
N(0rI) but the denominator is not distributed as

vz/r where V2 has r degrees of freed.om.

If , however, it is assumed that Ol= ol= 6z
(i.e. that, P, and P, have a common variance) then both

sÇ and. sf, est,imate d2, and. the best, estimate of thisI¿

coÍtrnon variance will be obtained by pooling the

ind.ividual sample variances. Let, t.his estimate be



50

52= f{*rr-*r)t + I(*rr-r, ¡z

nr*t2
where s2 has nL+rLZ-z degrees of freedom because two

est,imat,es, *r. and lr, have been calculated. By

definition of sl and ,â,,

s2 = (nr-1) sf + (n2-r) sl
rl*t2 2

In the expression for E, if sf and sl are replaced by

sz then t becomes

t=fr1-i2- (.þ;pz)
o2 (L/nt+L/n2)

(L/nr+L/n,

Now s2¡ srz= (n1-1) sl +

(L/nr+L/n2

(nz-r) så

62

*2

nltn2 2

But by Cochranrs Theorem, it has been shown that
(rt-I)s2y/ az and .(nr-l)s)/ cz will each be distributed
as y2 with (nf-I) and (nZ-I) degrees of freedom

respectively. By the reproductive rule of chi-square,

the sum of these variates wílI also be distributed
as V2 with (nr-I) + (nr-l) = nrtn2-2 degrees of freedom.

Iience, the denominator of t is distributed as lø
where V2 has r = nr*nr-2 degrees of freed,om. There-

forer. t, will be d,istributed. as Stud.entrs t with

-2
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nI+n2-2 degrees of freedomr and hypotheses about

f; t', 
maY be tesÈed

As an example, consider the following

artificial data

SamPIe I Sample 2

9.73
5.42
6.57
6.01
4.7L
6 .97
5.73
7 .96
8.05
4. 53

11.r9
6.56
9. 06
8.03
7. 10
8.87
7.9L
7 .46
8.36
6.90

x = 8.I4
2where

and,

1l = 6'57

"tr = 2'6923

Now s2= f t*rr-ir) t + f txri-i2l

tl = r' 8192

2=24.23L0+16.3730
I8nI+n 22

= 2.2558

Then for Ho, ft',þz = o

Hl,,þr-fzl o

t' = 6.57 8.I4 = -L.S'l = -2-35
ñ

2.2s58 (L/Lo+L/Lo)

The critical value for t8 degrees of freedom at' the

gst confidence level ís t2.IO. Hence t'he test is

significant and it is concluded that there is evidence

to indicate that, the means of the populations are

different.
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ce between aired

Inthetestout'linedin2(a),i€wasassumed

thaü the samples l"rr] ana["rtiwere independent' rn

some types of work, the two samples to be compared

are not independent, but consist' of values deliberately

paired in order to reduce chance variation which might

arise due to extraneous sources' Such an exPeriment

rnight consist, for example, of performing a second

set of trials on the same set of experimental units'

Thiswouldensurethat.d.ifferencesbeÈweent'hetrials

were due to d,ifferences between the treatments applied

toeachsetofunits,andnotinfluencedbyvariation
causedbydifferencesamongthemembersofthesample

ifanewsetofexperimentalunitshadbeenintro-

d,uced'forthesecond'set'oftrials.Anothersituation

where this technique is useful is the one in which

sufficienthomogeneousexperimentalmat.erialcannot

be obtained., but homogeneous pairs can be formed'

Let xll, *L2,.. .*I. and xr, , x;:zr'"xzn

be two samples from two poputations which are dis'

rributed. as N (fr,l1) and N (72, c)) where the pairs

xli and. x2i have a correlat'ion f ' Define

xi = xti-x2i

Nowxlisalinearcombinationoft'wonormallydis..
tribut,ed variables, and. is itself , thereforef normally
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distributed with mean

E [ "i] = n fxrr-xri] =,y' t -/ z --rþ ('"Yl

and variance

E ["ri-"zi ]
= 62

["ri-xz)] =a!+al ,f or€z

Hence, hypotheses about 7 maV be tested by applying

the test given in I as the variable x, is N(y'r62).

This procedure enables tests and estimates

to be made which are more precise than those obtain-

able from 2 (a). For

62=61 * 61 ,fot62
and if P = 0, the samples are independent and' this

I

t.est red.uces to that of 2 (a) . Íf , however r the pairs

are positively correlat,ed, i.e. P-rO

62= c| *6',2 ,ror6z1 c-î+61
and the variance from test 2 (b) is less than that of

2(a), yielding a test which is more precise. It is

easy to see that u, f becomes closer to +1, the

precision of the test increases until the maximum is

reachedforP=*l
I

On the other hand.r if the pairs are neg-

atively correlated., then this test loses precision.

A more precise test, would be obt,ained. by taking two

ind,epend,ent random samples as in Test. 2 (a) .

The following example based on the data

given in example 2 (a) will indicate thís gain in
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precision. Considering Sample I and Sample Z as

paired variates, t,he mean of the dif ferences between

paj.rs will be found Èo be I = -L.57 as would be

expected in view of example 2(a). However, the estimated

variance of a singre difference is s = o.9go2 whereas

the variance of the difference xri-x2i in example 2(al
is est,imated to be 2.2ssg. This reduction is due to
the fact that the values in samples 1 and, 2. have a
high positive correlat,ion, having been drawn from a

correlated bivariate parent population.

For the hypothesis Ho:' f= 0

nrz 7t^ f 0

l= -1.5J =_L.57 =_4.09
0.9902-To=-

0.32

The criticar varue for 9 d.egrees of freedom at, the 5t
leve1 of significance is t2.26 | and, the test is
significant..

3a) Testi a correlation coe fficient
Let (x1ry1) , (x2ry2) . .. (xr.ryrr) be an

independent rand.om sample of size n from a correrated.

bivariate populat.íon which is N trL*,,/V, 62xr lî, f ) .

The correlation coefficientrf , is estimat,ed.

by

ft" *R) (yi-?)

I t*i-¡¡ z f (rr-Í) 2
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The general expression for the sampling dÍstribut,ion

of r can be shown to be

n-I
f (r)d,r = (t-Pl 2 1t-xz).¡T 

l.trr-z ¡

n-4
T rL-¿

û j.' , -L1rrr.
-1

cos

L- fzrz
However, for Èhe special casef= O' the above distribution

reduces to t,he simPle form
n-4 :

f (r)dr = ( -I( r-< I
B Q/2 , (n'2) /2)
¡

and a test of significance for r based on the ts

d.istribution can be obtained..

Let,
/-rt = r /n-2

'tL-rz

Solving for r gives the result

-Þ,

n-2
d (r¡)

L_rz) 2 d.r

Using this result, to change the variable in the expression

Ir+r2JI --l
L N.ZJ

distribution of r when P = 0, then

(n-2) -L/2 
| *ú¡ {n-z)J -3/2

\
r =/ L2 \l-l\ n-ul

for the sampling

dr=
æ

s (t,)dt = I

and upon substitution f (r) dr becomes

It'lI 1-n-2 I

| 11sz I
I 

-l

L n-2J tã (t+r2 )' ñ:T

n-4T
dr

n'2
(L/2,7 3/2

F

dr

F

la-¿ , .n-1
h+rz \z\æl

I
(L/2,7) l3
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which is t,he probability density function of Studentrs

t, wit,h n-2 degrees of freedom.

The hypothesis Hot f = P o cannot, in general

be tested by means of the t-distribution as the test

statistic
t=r/ãFr

follows'the t-distribut.ion only under the hypothesis

t,hat P=P^ = 0 when t,he sampling distribution of rt lo
reduces to the simple form given above.

Considering again the data of Example 2(a),

the est.imate of I is found to be

r = 15.8463 = 0.80
(24.23L0) (r6.3730)

and. the test statistic

0.80 G = 3.77
/-l

/0. 36

which exceed.s the critical value of t2.31 for I degrees

of freedom at the 95t confidence level. A significant

test here might well have been expected because of the

large red.uction in sampling variance encountered in

Example 2 (b) .

3b) Testinq a partial correlation coefficient

A similar. result can be obtained. when dealing

with multivariate populations where the t-distribution
may be used to test the significance of a partial

correlation coef ficient
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Let f (xI tx2t...*n) be a p-variate normal

population. The partiat correlation coefficient of

order m is defined to be the correlat,ion coefficient

between two specified variables after the effects of

m of the remaining variables have been eliminated.

Partial correlations of order 1 to order p-2 exist

in a p-varíate poPulation-

f the coefficients C.n are elements of the

pxp matrix

f (xrj-Ir) z f (*rj-ît) (xzj-12) .. - ftxtr-i1) (xni-in)

I t*rr-R1) (x, j^îz) I .:rr;Í2)z - . -

f t", . -it) {xnr-on) I t"ni -on, t

then the part,ial correlation coefficient of order

p-2 is

rik.l, ..,k-1'k+lr. ..i-l.i+Ir. - .P = -Cik
c c

1L kk
Partial correlation coefficients of lesser order may

be computed, by deleting one of the variables *L,*zr. ..xn.

If the variable h, saY, is d'eleted., Cochran has shown

that the coefficients of the new matrix may be obtained

from the expression

c ik cirrc:.r,

-

thh

and then the partial correlation coefficíent of order

^l
r-K

p-3 is
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rik. L,2,. . . rh-l rh+l r "'i-l'i+I " ' 'k-Itk+I¡' "p

^l
r-k

ctt kk

Fisher2 has shown Lhat the samPling dis-

tribution of the part'ial correlation coefficient

of order m, when a sample of size n is taken from an

uncorrelat'ed multivariate normal population' is

n-m-2.\
2

f¡'z)d(r2) (r2) ( t-r2) d(r2) 0 <r2<I
^ n-m-2
F rl/2, z )

n-m-2
(L/z,T ) distribution. changing thewhich is a

P,
variable to r, the sampling d.istribution of r is

ft-Ít-2
f (r) d (r) (1-r2 ) 2 dr 3l-( ¡ ( I

P
where the factor 2 introduced by lett,ing r2=r has

d.isappeared. because Èhe transformation is not I:1,

and. the range of r is -I (r (l rather than 0-(r2< 1.

This d.isÈribution has the form of that

obtained. for the correlation coefficient, in the test

given in 3 (a) , wit,h a factor n-m-2 instead of n-2.

Hence, if
L-l- II-IR-2

n-m-2
G/2,-- )

,lt'rz
then by th_e same argument, as used in 3 (a) r the sampling

distribution of t has "studentfsil t-distribution with
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n-m-2 degrees of freedom.

This t,est is carried out, in t,he same gray

as is t,he test for the correlat,ion coefficient gíven

in 3 (a) , subject to t,he same rest,riction that the only

hypothesis t,hat can be test,ed is that P = 0 and t,he

variables are uncorrelated.

4) Testing the sl-qnÍficance of a regression
coefficient

Consider t.he experiment,âl situation where

Èhe random variable y is believed to be a 1inear

fúnction of several other variables, sa]rt *Lr*zr...*þ
in such a way that the population model is

tj = Êo* Êr"ri * Fz*zr*.. .+

where €, is a random error measuring the failure of
the model to account for the variation in y, and. is
assumed t,o have a dist,ribut.ion which is N(Orcfz).

The sample model for an observed set

{ti'*ij,*2j...*pj i t"
yi = borbrxtj+,. .*bp*pj * .j

where the constants borbli...bp estimate the regression

coefficients F", PI,... Pr, 
and e. estimates aj. For a

sample of size n, t,he least squares solut,ion for the

est,imat,es ß*, i:0r1r...p, is
f¿

bi = ci¡. ?,"nr-x¡) (vr-i) i,k = 0,r,...p
J

where the variable xo is a dummy variable introduced

for notational convenienôe and has a value 1 for aII

B x +€,,ppl I
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i, and where the coefficient, Crn are elements of the

pxp s]¡mmetric positive definite matrix

-1
Fx fx, .t- ol I- rl f"P]

rs
Lx. - Lx.2- --rl - --1j f *rj *pj

I *rj f *zj*rj I "rjxpj

I
P

The variance of t,hese estimat,es is

var(br) = cii qt i = 0, 1,...P

Now Vi is a linear function of €r, which is

N(0r 62), and, of x, which are non-stochastic variates.

Hence

E [v) = po* p1*1 r þr*r*...+ Ên"n
and var tV] = 6-2

Similarly the est,imates, bi are linear functions of

yj and. non.^stochastic variables, and. Èherefore, the

distribution of b, is of t.he same form as the dis-

t,ribution of y. Hence, since y is N( po+ É¡< t*.,.
* Én*n,Ç2), the d,Ístribution of b, is also normal

with mean

E Ibi]= pi
since the least squares solut,ions provide unbiassed

estimates , and variance = Ciidz . Thus, b, ,is
*( Fi, Ciiot), and, it, follows from Theorem III-I

f *n, ?l
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that
b I l-

cii d

is distributed as N(0'I) .

Fisher, in developing the analysis of variance

procedure, showed that' the Total Sum of,Squares' a

quadratic form of rank û-1, may be part'itioned into

orthogonal quad'rat'ic components,

Tot.al Sum of Squares = Ql + QZ

which can be at,tribut'ed' t'o sources of variation present

in the experiment. The Total sum of squares is, of

course

f to..'i) 2

J

which is the basis of t,he estimate of s$, the variance

of the sample. This variance can be partitioned int'o

a component, QI, due to the regression of y on xL'*2"'xn

which is of the rank pr and a component, Q2, of rank

n-p-l, which represents variation which cannot' be

accounted, for by regression and. is att'ributed to the

residual or random error. Ql is referred to as t'he

Sum of Squares due to Regression (or SSR) and Q, is

the Sum of Squares for Error (SSE) '

Now, TSS. = Itt:-i) 2 ;

and. if y is distributed as N (t, õ.z) w:nererÅ is estimated

bv i, then

6
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Applying Cochrants Theorem to

ey/a2 + Q2/62,

It, follows that each member of this equation is dis-

tributed as a Yz variable. In particular , TSS/ 6 2 is

V2 with (n-I) d.egrees of freedom (assuming t,he pop-

ulation regression coefficient = 0), Qr/ Az = SSR/$

is v2 with p d.egrees of freed.om and' Qr/ c-2. = ssB/6 2

is V2 with n-p-I degrees of freedom. Eox SSE/62,

E lssntê I = tt-p-t

and E Issn]= (n-p-1)d2

Hence an unbiassed. estimate of øti"

,2 =SSE
n-P=I

LeÈ-'=b
l-

cii s z

I t-
cii d

s
l_

6rt-
But it has been shown that

b

Cii cr

is N(Orl) . Further, it, has been shown that

SSE
6T

is distributed as V2 with n-P-l d,egrees of freedom.

(ri-i) 2

T

-Êi

b

l-

-Þ tt-
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Therefore

SSE7 t;îl7 F'
C.,s1t

Û.P-T

is distributed as v2rl (n-p-I where V2 has n-p-l
degrees of freedom, since multiplying by the ratio
CiilCii will not affect the form of the distribution
because the coefficient,s are functions of the non-

stochastj-c variables *1r*2, . . .xp

Hence

t = bi -Êi
/æ=

is d.istributed as student t s t-distribution with rr-p-l
degrees of freedom.

As an example, consid.er again the data of
Example 2 (a) , where t,he data of sample 2 is the only

independent variable, xl j , and the dat,a of sample I,
y j, is believeei to be d.epend.ent on x.. For this case,

known as simple linear regression, the coeff,icients
of the matrix C are

Coo = l/n - Ì2/ I("r j..ir) 2

and c,, = t/ I (*tj*Í) 2.

The expressions for the est.imates of P " 
and f , in

this case are

bo = i bt*t

I t*r:-rr) (vb1 j..f )

l("rj-rr),
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It, was found that bo = -I'36 and bt

The tests of hypotheses Ho t Po = 0 and Ho t 
Ê

are given below.

HorF"=o
Ht.þ"*o

and | = -I.36 = -I.36 = -0.65
ffi

(1.0436) (4 . 14 68 )

where Coo = 4-1468

and, s2 = I.0436 and I degrees of freedom'

Thecrit'icalvalueoftwit'hSdegreesof

freedomatthe5tlevelofsignificanceis!2.306,

therefore the test is not significant'

SimiIarIY

H ,B-= 0--o f I
H1 , ß tl o

-Ll

and t, = 0.97 0 = 0.97 = 3.88
^ ^ÉUclJ

(r.0436) (0. o6ro)

= 0.0610.

= 0.97 ,

I =0

where C II
Comparing t'he calculated' value of t with the crit'ical

valueIt2.306,it'isseenthatthistestissignificant"
Thus, there is evidence to indicate that

F, f 0 and that' y and x, are related by a linear

function of the form

y = Ér"r

Tesf inqErrors in
Some care is reqtiired when interpreting
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the result of a test of an hypothesis. Although the

null hypothesis under test explicitly specifies only

a value of a parameter e, further implicit assumptions

regardingtheformofthepopulationaregenerally

involved. The effects of failures of the underlying

assumptions wiIl be examined briefly in a subsequent

section.
swellasthoseconsiderationsinvolvedin

the null hypothesis, there is the problem of the

meaning of 'rstatistical significance". A significant

test, means that the probability of observing the sampte

varue ô or the population parameter 0 when the null

hypothesis, 0=0o, is true, is less than some Pre-

assigned (generally, smal1) value, but not, that' t'he

value ô is impossible. There is evidence in the

sample to ind,icate that. the.null hypothesis is not

truerbutitcannotbeconclusiverfor,duetosome
unlikely combination of circumstance, a significant

value of ô *uy occur even if 0 = 0o' Rejecting the

null hypothesis when it is true is known as a TyPe Ï

error, and. the probability of this error is designated

as d. This error is controlled in that the experimenter

is at liberty to choose. the magnitude of the risk he

is willing to incur in a given experiment. The Type I

error is defined bY the equation

)
I -o( = I,o f (T, eo) dT
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where (A) is the interval in T in which 1 -o( of the

tot,al probability of the sampling distribution of T

is contained. The end points of this interval are the

critical values by which t,he significance of the test

is determined.

Another Èype of error in test,ing is the

one in which the nuII hypothesís is accepted when the

alternate hypothesis is true. This constitutes a Type

II error, the probability of which is usually de-

signated. asß. This probability is defined by the
I

equation

r-13= f r(r,or) dr| '(e)
where f(TreI) is the sampling distribution of T under

the alternate hypothesis Q = 01, and (A) is the same

interval as defined in connection with a Type I error.

The following diagram will illustrate these quantities

and. their physical meaning" Let the curves Ho and. H1

represent the sampling d,istribution of T for g = go

ands=0lrespectively.

H1

T

þ

f,igure 2

\o(
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It, will be noted that as *o "approachesf' Ht such

that the curves are more nearly coincident that, if o(

is held constantr f increases. Conversely, ot

increases if f is held constant. Hence the pro-

babilit,y of an incorrect decision is always present.

The experimenterIs only choice is to minimize the

risk which is most serious.

The quant,ity f-p as de.fined above is
referred to as the power of a test,. It reflects

the ability of the test to discriminate between

two hypotheses. Tdeally, a test maximizes (I-F )

and. minimizes d , or equivalenÈly, minimizes, both 
^

and ß , but in practice, desirable performance
I

of a test with respect to one or the other of Type I
or Type II errors has a corresponding und.esirable

performance with respect to the other quantity. As

Ho and H1 approach each other, (1- p ) decreases for

a constant value of d until, when Ho and H, âr€ cos

incident, C = L- P , and the t,est, is unable to

discriminate between Ho and Hr.

Power Function of the t-Test
Using a one-tailed test as an example, the

power of the test Hoi Q = 0o

H1: 0 = 01, 0l> 0o

wheret=lieow
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as

I

where f (t¡01)

Q=01.

Now

Ê = t r(t,or) dt'| '(e)
is the sampling distribution of t under

t=f 0l=n (* ef)

,/;5 €

G-T
fn'T 6

or if the alternate hypothesis is rewrit'ten as

Hlt Q = 0I = 0o (01-0e)r 01-0o)0

then t=i 0o (01-eo)

s/ 
"C'

u6 t;- eo I

C'

s

+ t; (or.o,o
6

'fu
6:Î cf

Writing
6 = ,Iil (91-oe)

--(t-
then the statistic t is of the form

t+t
'lvz /t

where w is N(0'1),
y2 has a chi-square distribution with r degrees

of freedomt

6 is a constant.

A statisLÍc of this form is defined. to have a sampling

0
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distribution of a nonrcentral t, which has probability

density function

f 2

f+l -L ( 62 )w
h (f ,s ,r) fJ (1+r2

I rrtz) fi;
| -s't G1L6 1

e Hh f
2

-L (v-Y¡ e

with un¡, (V) e dVt

known as Aireyts Function, and, f is the degrees of

freedom, and 6 tt¡e non-centratity parameter.

For (0l-go) = 0r 6 = 0 and, the non-central t

reduces to the central t, which is St,udent,rs t-

distribut,ion. Hence the power of the t.test can be

d.etermined. from the probability integral of the rorl-

central t.-distribut,ion. Tables of this integral have

been prepared by Lieberman and Resnikoff, and are of

a three-entry type - o( ,8 and degrees of freedom. Other

tables have been prepared by various authors and

references to these are contained in the bibliograPhy.

It has been shown by Dantzig that the power

function of the t-test is not ind.ependent of the

population variance. This can be seen from the

expression for 5 , the non-centrality parameter. How-

ever, St,einl, in outlining his two^stage procedure,

has shown that by using his proced.ure, power functions

independ.ent of the population variance can be con-

1@

=/vtt-I f:¿o
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struct,ed..

The foregoing considerations apply in general

to all t-t,ests where t,he test, statistic can be shown

t,o follow a t-distribution under the alternate

hypothesis. This eliminates such testsr howevert

where the test st,atistic is distributed' as "studentrs"

t only due to an assumption implicit in the nu1l

hypothesis.SuchacaseistheÈestforthecor-

relation coefficient, where

À ''lãF
has Studentrs t-distribution if and only if P = 0.

Remarks on Assumptions Underlying the t-t,est
In discussing t,he applications of "studenÈrsI

distribut,ion, it, has been noted that various assumptions,

both implicit and explicit,, have been made about the

parent. distribut,ions. Behind every test,, for example,

is the basic assumption that the parent population

follows a normal distribution. Some tests require

additional assumptions about population paramet.ers,

such as the variance or correlation coefficient.
Failure of any of these underlying assunÌptions tech-

nically invalidates the tests and. renders conclusions

meaningless. However, some rectifying measures can

be taken if the extent of the failure of the

assumptíon is knovrn.
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1. Non-Normali ty In The Parent PoPulation

One of the dangers of small sample work is

that, the assumption of normality is least likely to

be metr and is most likely to escape notice because

of the relat,ively small sample size.

If the parent dist'ribution is not normalt

the sampling d.ist,ribution of the t-statistic is

complicat,ed by the aPpearance of parameters which

express this deviation from normality. In addition,

the sampling distributions of Í and' s2, the sample

mean and variance, are no longer ind.ependent.

Various writers have investigated the effect

of non-normality on the validity of t'he t"test

from both theoretical and. empirical viewpoints. A

detailed. examination of this work will not be presented

here, and the interested reader is referred to the

-L^-^ ^^*¡-^.i*-ÞLþraograPny ur tu fley w¡rrJÞc Pd'!.,çÀ \/\/¡ru4rr^Þ 4

bibliography of 36 paPers on the subject.

In general, t'he results of these invest-

igations show that significance levels of two t,ailed

tests (Type I error) are not sensitive to skewness

or kurtosis in the parent poputation. The one-t,ailed

test, however, is affected by skewnessr .particularly
if the test, is for the differences of means where the

groups are of unequal size, and if the skewness is

different in each grouP. If the skewness is the same,
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and the groups are of the same size, the effect is

sma1l

The effect of non-normalit,y on Type II errors

and the power function is not considered to be serious.

For symmetrical populat,ions r little effect is found

on the power, while for asymmetrical populations,

the effect is somewhat greater. For the t-test

for the dif ference of means, skewness has litt'le

effect if group size is equal. The Power here turns

out to be greater or smaller than the normal-t'heory

power depend.ing on whether the sign "t ,þt -rf Z is

the same âsr or opposit,e to, the sign of the skewness.

Other rectifying measures include the use

of transformations of the raw statistical data. The

merit.s of a particular transformation will, of course'

depend on the parent population. I{any Papers dealing

with the normalizing of data are available, and some

of these have been included in the bibliography.

2. Testi the si ficance of a difference of means
when varLances are unegua I

The test presented in 2 (a) relies on the

assumption that the variances øJ and,62.,
I¿

populat,ions sampled are the same. Since

of the

serious

theseerrors tn
variances

the t-test^ are int,roduced when

are unequal, the assumption shoutd. be
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tested bY means of
p = s!/ s2,

for examPle, before applying the test'' If the

variancesarefoundtobeunequalrseveralalternat'e
tests are available.

The oldest test' is t'he Fisher-Behrens

testbasedontheconceptoffiducialprobability'
The procedure is t'o calculate

d=it-*.2

The fiduciat limits of d for various significance

Ievels have been tabulated by sukhatme' and are also

contained in the fourth and. subsequent' editions.of

Fisher and Yatest statistical Tables for Agriculturalr

gioloqical and' Medical Research. The tables are of

Èhe three-entry type, depending on n1' î2 and' the

ratio l{2r|, /îrsr. rf t'he calculated d falls within

thetabulatedlimits,t.hetestisjudgednon-

significant. consid.erable controversy exists in Lhe

Iiteratureregard,ingthevalidit'yofthistest'the

objectionbeingthattheprobabilitiesgivendonot

always reflect the correct value of Type I errors'

Welchhasshownthatt.hetest'crit'erion

szr/n, + sl/n2

l= u

{æ
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where

u=x À.I 2

[t " 1*" | )/t"r+n z-2)) Q/nr+L/n2l

g=uttr+bzr2
arl + br2

a= 6 2 L/ny+L/n,I
nr+nr-2 o!/nr+ozr/n,

L/n1+L/n2
n1*n2':'2 a ¿r/nr+ ci/n,

and. (arl

a 2r +b2rI 2

is distributed. approximately as St'ud'entrs t with r

d.egrees of freedom. Un1ike other t^tests, this test

clearly is dependent on o I and 62rr but by substitutit_tg

for a and b in the expression for r, r becomes

(rre + tZ)'
rrez+ r,

where ø =ozrtol

then by consid^ering particular values of ø | the effect

of unequal variances on Studentts t-test may be

assessed and Lhe result interpreted accordingly.

Subst,ituting for increasing values of 0 has the effect
1eof deviating further and further from the assumption

clþ=

+ br2)z;

r
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of a common variance.

Two other approximate tests are quite

commonly used. Cochran and Cox ut'ilize a weighted

mean of the tabular t values for the two samples.

First calculate

t=iL *.2

/n /n2I

and compare this value with

tr =w t, +w tt I 2 2

where t, and EZ are the usual crit'ical values for a

t-test at a given level of significance based on

ni-I degrees of fr.eedom and, w.=s'i/"i

I^ihen nl=.2, then t'r=tr=t since al and t,

are then based on the same d,egrees of freedom and'

tr = t(wt + wr) = t,

(rt + w2)

which is the usual Student t-distribution.

The other t,est is given by Smith and

Satterthwaite. The test stat'istic t is calculated

as in the Cochran and Cox approximationr but here the

critical value is the usual tabular t !,¡ith f, degrees

of freedom where

s+2
IS

2
2

*1r*2
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(s!/n, + sl/n) 2

(stln, ) 2

nr-l
+ (s1,/n ¡z

n2'

For this same Lest, Dixon and Massey give

a different value of f as

tsl/n, + =l/n¡z -.,(sl/nr) 2

+
(s)/n) 2

-

n2-rtr-r

This situation can also be attacked by

considering the samples as paired values and applying

the t.est. given in 2 (b). If sample sizes are unequal,

however, information must be discarded by deleting
n2-n' observations íf, for example, 12) rl.
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CHAPTER VI

F THE T-DTSTRÏBUTION IN MULTI-VA RIATE A}TALYSISRELATED ASPECTS O

In the univariate case, it has been shown

that the significance of a population parameter can

be tested by comparing the estimate of the parameter

with its observed standard deviation, the ratio' being

distributed as "studentrs" t,-distribution. For the

mult,ivariate case, the significance of a set of

population parameters can be determined by an analogous

test d,eveloPed bY Hotelling.

Hotelling's T

Where "Student's" t'-distribut'ion is the

stand,ard,ized measure of the d,eparture of a sample

mean from a population mean, Hotelling's generalization

is the standard.ized measure of simultaneous departure

of p sample means from their respective population

means.

Let x1 , x2r.. .xn be a p-variate normal

population with mean/i and covariance mat'rix ctij'

When 6 i) is unknown, it may be est'imated from a

sample of size n bY the matrix

irj = Ir 2...P

k = lr Z,..rt

Hotelling has shown that the st,atistic

(n-r) sii= It"ro-ii) (xi¡-xi )
LJK

f l"rr-l
T2= n (n-I) -I I t"t-h\\-h)
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may be used to test the hypothesis Ho'. y'i= /io
und,er the null hypothesis, the sampling distribution

of T2 is
ú

g(r2)d(12)

which is a þ,

ÐÉ

and. S

wherer âs usual

= r(ä) (T2) ' ,n d(T2)

f'rlll- (ry) ,,-t\P/'
n-P

(p/2, 2 ) variate.

g,n'lt".rii''

from chapter IV that the relationship between the F-

s?
L

Zt" -i. ) (x
l-

-x j )

It, will be recalled

-r / (n-l) s
T2

t/ (n-L) sT

¡z

jk

k

'\ (nt-I no-I
disrriburion and a [l. '* ,tl distribution was

shown to be

tI-I F = B, (nI'Ir n2-1)

"FtaTZ-
Hence, the.significance of the above hypothesis can

be d,etermined by means of an F test.

For the case P = 2l

it-," :*-*r) '
L In,"to-r1) (x2¡ -Rz)

f{x ,*-11) (x2¡-12)
k 

f{xr*-ir)2
k

-'l

= I r/ (n-r) sî
I

l, -t rt/ (n-I) sls2 '"']

I6rU
f=f

l-l IL ik
(x1¡-i1) t I (xi ¡-Îi )

k
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thus 12 = n(n-l) x þtI )z + (î2- /^z)L
(n-I) s2, (n-1).så

-rtLr(ir-Á | G2-¡2) \ , and is distributed
,

with 2 and (n-3) degrees of freedom.

For the case p = L, Hotellingrs T2 clearly

reduces t,o "Stud,entrs" distribut'ion where

s = Itxo-xlz

and s-r = L/ (n-t) s2

so that T2 = Iì n-1 X- 2

(n-I) s2

which is the square of St'udentr s t.

When the variarlcê^covariance matrix, fí),

is known, Hotelling has shown that' the sampling

d.istribution of the T2 statistic is that of a V2

with p degrees of freed.om. It will be noticed that

this situation exactly corresponds to the univariate

case, where, íf the population variance is known the

stat,istic
t = Î -l¿ ,

6t /î
will follow a normal distribution.

The propert,ies of this test have been examined

by various writers. Hsu and wijsman have shown that'

the power function of this test can be determined

from the d.istribution of t'he non-central F (which,

= n(i-7a)2 = ¿2æ
s2
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for the case of I degree of freedom in the numerator

is t.he square of a non-central t) . Hsu has also shown

t,hat Hot.elling's test is unbiassed' exact and most

powerful. A more recent work on the properties of

this test is that, of St,einz.

Another inter-relationship is of particular

int,erest here. In a (p + 1)-variate normal populat,ion,

Fisher3 has shown that, the sampling d.istribution of

the multiple correlation coefficient, R2, between I

variable and the p remaining variables can be trans-

formed. to the sampling distribution of T2.,by setting

l-R2 = I
r + r2l(n-1)

where 9(R2) d(R2)
n-Þ-3 P-2

(r-Rz )'# (R2)- d(R2)t
p(LËr ' \t

0<R2<1

The relevance of this t,ransformation will be seen in

connection with discriminant functions and t"lahalanobis 's
GeneraJ-ized. Distance , A2 .

Discriminant Functions

Discriminant, funct,ions are an aspect of

mult.ivariate analysis developed by British statisticianst

notably Fisher. The purpose of this type of analysis

is to find. a linear function of the sample measurernents

which wilI classify the measured object as belonging

to a part.icular parent. population. The discriminanÈ
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funct.ion is then

x = blxl + bzxz+...+bnxn

where p measurements on each object are taken' The

function is obt,ained by assuming the exist'ence of a

d,ummy variable, yt which takes on specified values

d.epending on the population with which the measured

sample object is associated. A test of significance

has been d.eveloped.r. based on the multipte correlation,

R2, between y and x, , x¡r...*p which, bY means of the

transformation g,iven in the Previous section, is

id.entical to Hotellingrs t'est.

Mahalanobis' D2 Statistic

The D2 statistic, also known as MahaLanobis

generalized d.istance / measures the |tdistancet' in

p-d.imensional space between two populations. If 6 i
is the d.ifference of population means for the ith

variat,er and. õíU is the population dispersion matrixt

assumed t,o be the sane for both populations, then the

disÈance, A2, .is
pp

I
P

where a zis consid,ered to be a population parameter.

The factor L/p is due to the anthropological origins

of this measure, being a "coefficient of, racial

likeness tt.

j.s.
1l

2A :Ii=I j=I
-1cr..r-l
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rf6
DZ=

is known, then

E t l"','l

rT

Az is estimated asjL

T
p

d d
L j

where d1 estimates 5 -.L

ff 6,- is not known, it is estimat,ed from the sampler.l
as (n-f) S where S has been defined in connection with

Hotellingts '¡2 test. The d^istance is then

d.d,Ll
ts

jL

D3=l
p

g2
s is referred to as the 'rstudentized" distance.

The sampling distribution of the D2 and D!

statj.stics have been determined by Bose and. Bose and

Roy respectively, and. have been found in the limiting
case to have the distribut,ion of the multiple correlation
coefficient, P2.

Interrelationship of t2, Discriminant Functions , and D2

these three lines of research are essentially
the sarì.e, although differing in approach. CIearIy,
all are based on the same foundation. The main

d.ifference is that Maharanobisrs D2 provides an estimate

of a population parameter, the measure of d.ivergence

between two groups. Discriminant functions and

Hotellingrs r¡z test, on t,he other hand, provide a test
of group divergence rather than a measure of group

divergence. For a more complete discussion of the

various aspects of these tests, and. for t,he proof of
the relationships stated,, the interest.ed. reader is referred,

to Fisher's Taccount of the uses of these analyses
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