
 - 1 - 

Deep learning models for predicting phenotypic 

traits from omics data 
 

by 

 

Md. Mohaiminul Islam       

A Thesis submitted to the Faculty of Graduate Studies of 

The University of Manitoba 

in partial fulfillment of the requirements of the degree of 

 

MASTER OF SCIENCE 

 

 

 

 

 

 

Department of Computer Science 

University of Manitoba 

Winnipeg, Manitoba, Canada 

 

 

 

 

 

 

Copyright © 2017 by Md. Mohaiminul Islam 

 

 

 
 

 

 



 - 2 - 

Abstract 
Computational and statistical analysis of high throughput omics data, such as gene 

expressions, copy number alterations (CNAs), single nucleotide polymorphisms (SNPs) and 

DNA methylation (DNAm) has become very popular in cancer studies in recent decades because 

such analysis can be very helpful to predict whether a patient has certain disease or its subtypes. 

However, due to the high-dimensional nature of the data sets with hundreds of thousands of 

variables and very small numbers of samples, traditional machine learning approaches, such as 

Support Vector Machines (SVMs) and Random Forests (RFs), have limitations to analyze these 

data efficiently. In this thesis, we propose deep neural network (DNN) based models for 

classifying molecular subtypes of breast cancer and DNN-based regression models to account for 

interindividual variation in triglyceride concentrations measured at different visits of peripheral 

blood samples using epigenome-wide DNAm profiles.  

We collect copy number alteration and gene expression data measured on the same breast 

cancer patients from the METABRIC (Molecular Taxonomy of Breast Cancer International 

Consortium). We propose multiple DNN models for predicting their molecular subtypes, which 

include the status of estrogen-receptor (ER): ER+ and ER-, and the status of PAM50 subtypes: 

luminal A, luminal B, HER-2 enriched and basal-like. In addition, we use epigenome-wide 

DNAm profiles of before and after medication interventions (called pretreatment and 

posttreatment, respectively) to predict triglyceride concentrations for peripheral blood draws at 

visit 2 (using pretreatment data) and at visit 4 (using both pretreatment and posttreatment data). 

Our experimental results show that DNN models can predict triglyceride concentrations for 

blood draws at visit 4 using pretreatment and posttreatment DNAm data more accurately than for 

blood draws at visit 2 using pretreatment DNAm data. Furthermore, we get the best prediction 
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results when we use pretreatment DNAm data to predict triglyceride concentrations for blood 

draws at visit 4, which suggests a long-term epigenetic effect on phenotypic traits. The 

performance of our proposed DNN models is compared with baseline models: SVM, RF, and the 

DNN model fine-tuned from deep belief network (DNN_DBN). We demonstrate that our 

proposed DNN models are superior to SVM, RF, and DNN_DBN in terms of prediction 

performance.  

Our experimental results show that integration of multi-omics profiles into DNN-based 

learning methods can improve the prediction of the molecular subtypes of breast cancer. The 

proposed integrative DNN-based learning frameworks are not limited to integrate only copy 

number alteration and gene expression data and can be extended to include many more data 

sources, such as methylation data and clinical data. We also demonstrate the superiority of our 

proposed DNN models over the SVM model for predicting triglyceride concentrations. This 

study also suggests that the DNN approach has advantages over other traditional machine-

learning methods to model high-dimensional epigenome-wide DNAm data and other genomic 

data. 
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Chapter 1 

Background and Introduction 
 

1.1. Omics data 
 

Omics refers to use high-throughput experimental technologies to examine genomics, 

transcriptomics, metabolomics and proteomics for understanding biological and disease 

mechanisms.  The omics data generated from these technologies are high-dimensional and 

correlated. Different computational and statistical analyses of these data can be used to identify 

risk factors for different diseases or to build autonomous diseases prediction models. The 

technological development allows researchers to have a huge amount of high-dimensional 

biological data. The omics technologies generate such high-throughput data by detecting 

numerous alterations in molecular components [1]. These technologies also generate additional 

biological data to comprehend different types of correlations and dependencies among the 

molecular components. Bioinformatics is a discipline which emerges to perform computational 

analysis with the high-throughput biological data. Bioinformatics offers tools and methodologies 

for analyzing different omics data to understand the underlying information about different 

diseases. Such analyses will help physicians to provide early and patient-specific treatment. 

Schneider and Orchard [2] list the state-of-the-art available technologies to generate omics data. 

They also provide the list of different available bioinformatics resources to analyze omics data 

and discuss the bioinformatics challenges to handle the high-throughput data.  
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1.2. Phenotypic traits prediction 
 

A living biological organism can show a number of observable characteristics, such as 

the morphology, growth and the behavior of the organism. Phenotypes are the product of 

different genetical expressions of an organism. These expressions are known as the genotype of 

that organism. However, phenotypic traits are the alternatives of a phenotype of a particular 

organism. For example, hair is a phenotype but different hair colors are the phenotypic traits. 

Study of phenotypic traits prediction is very important as it gives us the knowledge about how 

genotype impacts upon an individual’s diseases or traits. Lippert et al. [3] use the whole-genome 

sequencing data to identify individuals by predicting their biometric traits. Genome sequencing 

data were also used by Chen et al. [4] to build a probabilistic Bayesian model to predict 

dichotomous traits (e.g. Glaucoma, Corn’s disease, Prostate cancer). This model incorporates 

annotated information about different variant genotypes and genes, which are associated with 

diseases.  There are other phenotypic trait prediction models such as eye color [5,6], skin color 

[6] or facial structures [7].  

 

1.2.1 Breast cancer and its molecular subtypes 
 

Cancer is a disease that is characterized by uncontrolled cell growth in an organ, i.e. the 

site the cells originate from.  Breast cancer begins in the breast tissue and may start in the duct or 

lobe of the breast. When the “controls” in breast cells are not working correctly, they divide 

continually and a lump or tumor is formed. It is a complex, heterogeneous disease at both the 

cellular level and molecular level, with differing prognostic and clinical outcomes. In clinical 

practice, breast cancer is classified based upon receptor expression. It is called estrogen-receptor-
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positive (ER+) if the cancer cells, like normal breast cells, have receptors for the hormone 

estrogen, in which they rely on in order to promote their growth. Statistics show that 

approximately 67% of breast cancers test positive for hormone receptors [8]. Testing whether a 

patient is hormone receptor positive or negative is important in clinical diagnosis as the results 

help physicians to determine whether the cancer is more likely to respond to hormonal treatments 

or chemotherapy. 

A study done in 2000 has emerged a new genomic paradigm [9] in discovering the 

intrinsic subtypes of breast cancer. When they looked at the gene expression profiles of breast 

cancers, they found that the cancers segregated into 5 clusters: luminal A and B, Normal, Basal 

like group and the HER-2 enriched. It started with genome-wide gene expression profiling using 

microarray data, and developed into a PCR (polymerase chain reaction)-based test with a curated 

list of 50 genes known as the PAM50 signature. The PAM50 signature measures the expression 

levels of these 50 genes in tumor samples, which can classify breast cancers into one of the four 

intrinsic subtypes (Luminal A, Luminal B, HER-2 enriched and Basal-like). This classification 

has been shown to be prognostically independent of clinicopathologic factors and can determine 

the sub-group of patients who are more likely to benefit from adjuvant chemotherapy [10]. 

 

1.2.2 Prediction of triglyceride concentration in blood 
  

Triglyceride is a type of fat in the human blood. Having a high concentration of 

triglycerides in human blood can increase our risk of heart diseases, stroke, and other disorders. 

Many genetic loci have been identified by genome-wide association studies, but only a small 

proportion of interindividual variability of triglycerides has been explained by the genetic 

determinants. It is known that the level of triglycerides is heritable. Consequently, the 
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development of new high-throughput genomic technologies makes it natural to extend these 

phenotypic prediction models to complex traits, such as triglyceride. Using DNAm profiles to 

predict disease phenotypic courses has not yet been explored in detail. 

 

 

1.3. Machine learning in bioinformatics 
 

Artificial intelligence (AI) is an area of computer science which demonstrates its 

necessity in our everyday life by machine learning (ML) methods. ML methods can automate the 

data analysis and can find the hidden intrinsic patterns from big data which is impossible for a 

human being. ML methods use these patterns to build predictive models without any explicit 

programming. These predictive ML models are improving our daily life in various ways such as 

recommendations of different products during online shopping based on our searches of 

products, stock price prediction, classification of different objects from images, real-time 

language translation etc.  

Traditional machine learning methods, such as Support Vector Machine (SVM), Random 

Forest (RF), Bayesian Network (BN) etc., are dependent on the well-defined, engineered and 

robust hand tuned features (or feature vectors) as inputs from the raw input data to make 

reasonable predictions. A domain human expertise is required to develop these engineered 

features. However, real-time biomedical data are often high-dimensional and noisy. These 

conventional ML methods are not capable enough to provide suitable techniques to handle such 

natural raw data (i.e. normalized gene expression data).  

Machine learning approaches have previously been applied to identify these molecular 

subtypes (such as PAM50 subtypes) of breast cancer using microarray-based gene expression 
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profiles [11]. But, a new class of ML methods called deep learning (DL) can handle such high-

dimensional, noisy and natural raw data by following representation learning or hierarchical 

data-driven approaches. 

 

1.4. What is Deep learning ? 
 

DL is a family of artificial neural network (ANN) based ML methods which have been 

inspired by the working principles of a human brain. In a DL network architecture, a series of 

hidden layers are connected in a cascade fashion between input and output of the network. Each 

of these layers takes input from its previous layer and transforms the data into a more abstract 

form. Non-linear layers allow DL methods to model complex relations between input and output 

of the network like shallow ANNs. DL is a representation learning method which means it can 

be fed with raw data and then it will automatically extract necessary representation for 

predictions. A DL network provides representations at different levels. The output of each of 

hidden layers is considered as the representation at that level. The higher layers the data belong, 

the higher-level abstraction we get these representations of the data. In different studies, these 

higher-level representations of raw data prove to be very effective for classification or detection 

problems. The most important thing here is that these representations, alternatively called feature 

vectors, are learned not by human engineering rather from the raw input data directly.  

Unlike other ML methods, DL methods have been shown to efficiently handle high-

dimensional and noise data in many domains, such as computer vision, language processing. 

These qualities of DL attract biomedical researchers to use DL instead of conventional ML 

methods because biomedical data (e.g. omics data) often suffer from high-dimensionality and 

noisiness.  
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1.5. How Deep learning evolved ? 
 

With the improvement of GPU hardware and availability of massive training datasets, 

Krizhevsky et al. [12] have rekindled interest in deep learning models such as Convolutional 

Neural Networks (CNNs) by achieving a significant gain using CNN over existing methods in 

image classification on the ImageNet challenge. In computer vision, there has always been a 

growing need to train visual recognition systems more generically so that a system trained on 

one visual recognition task (e.g. classification) could be easily adapted to another task (e.g. 

detection). To handle such a challenge of adapting the source domain to different target domains, 

many domain adaptation methods have been proposed [13,14,15]. For example, Donahue et al. 

[16] extracted “deep features” from a deep neural network trained on one computer vision task 

and shown the state-of-the-art performance on a variety of other tasks. Razavian et al. [17] also 

adapted deep CNN (DCNN) features to build a pre-trained CNN called OverFeat and achieved 

remarkable performance gain simply by applying the model to a variety of visual recognition 

tasks that OverFeat was not trained for [18]. After having feature descriptors extracted from the 

first fully connected layer of OverFeat, they applied a linear SVM classifier to these features for 

image classification, scene recognition, fine-grained recognition and attribute detection on 

different datasets. A pre-trained CNN is usually followed by domain-specific fine-tuning on data 

from the target domains, especially when training data is scarce. Following this approach, 

Girshick et al. [19] fine-tuned a CNN pre-trained on ILSVRC2012 classification dataset and 

achieved substantially better object detection performance on PASCAL VOC as compared to the 

standard models based on simple hand-engineered features. 
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Hinton et al. [20] introduced a technique called Dropout as a form of regularization by 

selecting a random set of activations during training in order to set their weights as zero within 

each layer. The output is an averaged result of predictions of several other grouped models. Wan 

et al. [21] proposed DropConnect to generalize the Dropout model and it achieved state-of-the-

art performance on some benchmark datasets comparing to Dropout by training a large model 

without any overfitting problem. 

Another DL architecture is deep belief network (DBN). This is a probabilistic model and 

generates random observed data values with hidden parameters. DBNs can be trained in a layer-

by-layer approach in which these layers are made of restricted Boltzmann machines (RBMs). 

Hinton [22] proposed an approach called contrastive divergence to learn the weights of RBM 

using maximum likelihood method. 

A DNN can be pre-trained using a DBN. A DBN network is first trained and the learned 

weights from this pre-trained DBN are then used to initialize the weights of the DNN. This is 

useful when the training data is small because the random initialization of weights can 

significantly hamper the performance of the learned model. Since the learned DBN weights are 

already close to the optimal value of the best performing model. This approach can not only 

improve the performance of the model but also minimize the duration of fine-tuning [23]. 

Stacked autoencoder is another variant of DL-based approach to produce a good representation 

of input data. This network can capture the ordered grouping of the input in an unsupervised 

fashion. Vincent et al. [24] proposed this idea to produce a robust representation of the corrupted 

input data to recover the corresponding input data. This also refers to feature extraction for the 

representation of the input data. A DNN can be built to stack an autoencoder on the top of 
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another. They demonstrated that this approach can improve classification performance in many 

applications. 

DL based methods have already achieved state-of-the-art prediction performances in 

diverse fields such as image classification [25], object detection [12], speech recognition [27] 

etc. However, DL methods also allow us to build state-of-the-art prediction models for sequential 

data [26, 28]. 

 

1.6. Application of deep learning to solving different bioinformatics 

applications 
 

Analyzing gene expression data is very important in discovering tumor-specific 

biomarkers and clinical diagnosis [29], but high-dimensionality and the noisiness in the gene 

expression data pose a great challenge to biologists for cancer detection using traditional 

machine learning methods.  Dananee et al. [30] proposed a deep learning based approach which 

implements a Stacked Denoising Autoencoder (SADE) [31] to analyze high dimensional gene 

expression data. This SADE network condenses the high-dimensional gene expression data into 

a lower dimension and produces a new eloquent illustration of its input. Connectivity matrices of 

this SADE allow them to identify a set of gene regulatory targets. These targets should be 

studied further as they have the potential to be very useful in cancer diagnosis. Somatic point 

mutation based cancer classification (SMCC) is very important to know the patient-specific 

cancer conditions so that specified personal therapy can be provided.  SMCC becomes attractive 

research problem as DNA sequencing technology allows to have a huge volume of sequencing 

data. However, existing SMCC methods do not generate satisfactory cancer type or subtype 

classification result because of high data sparsity and small sample size. Yuan et al. [32] 
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proposed a new DNN-based  model called DeepGene to eliminate these issues in SMCC. This 

model first filters the gene data by mutation rate to remove irrelevant genes from them. Then it 

indexes the gene data by their non-zero elements which let DeepGene overcome the data sparsity 

problem. Finally, the outputs of these two steps are fed into a DNN which performs automatic 

extraction of features for SMCC. DeepGene achieves ~67% prediction accuracy which is much 

better than the prediction performances of most baseline classifiers (i.e. SVM ~67% , k-Nearest 

Neighbors (KNN) ~42% and Naïve Bayes (NB) ~9% )  . Liang et al. [33] also proposed a model 

which uses DBN for the purpose of clustering cancer patients by integrating multimodal data. 

They integrate gene expression data and clinical data (e.g. survival time) and feed the output into 

the DBN model. This model can capture intra- and cross-modality correlations (i.e. correlation 

among genomic data from different platforms) and learn a unified representation of the input. As 

a result, this model outperforms existing methods in clustering cancer patients. In addition, this 

model can predict missing values in the data and identify key target genes of miRNAs 

responsible for different cancer subtypes. Furthermore, preliminary clinical screening of a patient 

with skin disease usually begins with a visual diagnosis by a dermatologist. Since this is a very 

common malignancy in a human being [34, 35], an automatic system to classify skin diseases 

will be very helpful for the clinical purpose. Esteva [36] collected 129,450 clinical images of 

skin diseases and built a DCNN model to classify them. This model achieves better prediction 

performance than the real-life dermatologists. Furthermore, it can be deployed on a mobile 

device because of its scalability and fast performance speed. Nonetheless, a large number of 

nuclei and the variability in their sizes in histopathological images of breast cancer pose a great 

difficulty to build an automated system for nucleus detection. Xu et al. [37] overcame this 
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challenge by using a deep learning approach called Stacked Sparse Autoencoder (SSAE). This 

model outperforms nine previous state-of-the-art nuclear detection methods.  

Conventional machine learning approaches have been applied to analyze high-content 

microscopy data to protein subcellular localization from yeast cell images [38]. However, these 

approaches were not able to perform such analysis without human expert’s intervention and yet 

did not provide accurate classification. Kraus et al. [39] came up with a model called DeepLoc 

which is a DCNN based approach to overcome these limitations. DeepLoc outperforms the 

model ensLOC [38] by 71.4% according to mean average precision using fewer number of 

images.  However, ensLOC uses binary SVM ensemble approach to assign single cells to 

subcellular compartment classes. Kraus et al. [39] also investigated the reason behind their 

success over ensLOC by performing 2D visualization of their network’s components. They 

found out that DeepLoc generates a unique signal for different inputs. The structure of a protein 

and its functions can be studied further by protein contact map prediction from sequences. Wang 

et al. [40] treated this problem as a pixel-level labeling by considering a protein contact as an 

image. They proposed a novel deep learning based protein contact map prediction model with 

extremely unbalanced positive and negative labels. Their model integrates two evolutionary 

couplings (EC) and sequence conservation information into their network. Their model gives the 

state-of-the-art performance result in protein contact map prediction. Furthermore, the predicted 

proteins contacts by this model can generate an improved 3D structure model than previous best 

models: CCMpred [41] and MetaPSICOV [42]. Besides, many biological processes such as 

signal transduction and cellular organization can be affected by different protein-protein 

interactions (PPI). Hence, it is very important to build a PPI prediction model in order to provide 

a better design for the therapy of a disease. Sun et al. [43] are the first one to build a deep 
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learning based model that is a stacked autoencoder for the sequence-based PPI prediction. They 

achieved an accuracy of 97.19% with 10-fold cross-validation which is better than any existing 

PPI predictors. 

Genomics becomes rich with many different types of functional genomic data because of 

latest sequencing technology. Eser et al. [44] proposed a new integrative framework called 

FIDDLE which integrates multiple types of genomic data to predict yeast Transcription Start Site 

sequencing (TSS-seq) [45].  FIDDLE confirms that TSS-seq data can be predicted using only 

one dataset as well as by integrating multiple datasets (e.g. RNA-seq, DNA sequence) as input. 

However, FIDDLE gives improved prediction performances when its input is the integration of 

multiple datasets (i.e. RNA-seq and DNA sequence) instead of only one dataset (i.e. RNA-seq or 

DNA sequence).  

Chen et al. [46] proposed a deep learning system (D-GEX) which takes a gene’s 

expression profile as input and infers the expression profile of a target gene. D-GEX has the 

ability to show cross-platform generalization. This model archives 15.33% improvement in gene 

expression prediction than a linear regression approach. D-GEX proves its cross-platform 

generalization when the learned D-GEX is used in RNA-Seq-based database for gene expression 

prediction for each target gene and still outperforms LR by 6.57%. 

Existing methods for classification of cellular phenotypes from cellular images consist of 

multiple steps. Each of these steps is required with manual modifications and the tuning of 

different parameter settings. Godinez et al. [47] introduced a new multi-scale CNN (M-CNN) 

network which uses microscopic images to classify them into phenotypes. The prediction 

performances of the M-CNN in terms of accuracy over eight benchmark datasets are 

significantly higher than the previous state-of-the-art methods including CNN based approaches.  
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 Gene expression can be regulated using transcription factors (TFs). So, the cell-specific 

TF binding predictions using gold standard Chip-seq data is very important. Qin and Feng [48] 

introduced a DNN model termed TFImpute to achieve the above goal. TFImpute can determine 

whether a specific TF would bind to a given DNA sequence in a specific cell line. The prediction 

performance of TFImpute proves its superiority from the comparison with another latest DNN-

based approach called DeepBind [49]. Therefore, biologists can use TFImpute to understand how 

TF binding can be included by a specific cell line.  

 Zhou et al. [50] are the first to propose a DCNN based approach to predict the effects of 

noncoding-variants from large-scale chromatin-profiling data and achieved state-of-the-art 

predictive performance. They call their method as deep learning–based sequence analyzer 

(DeepSea). Experimental results show that DeepSea can also precisely predict the consequence 

of specific SNPs on TF binding. 

 Obtaining precise knowledge about a patient’s health condition is crucial to provide early 

and better treatment. Discovery of good imaging biomarkers can lead clinical research into 

achieving this goal. Oakden-Rayner et al. [51] provided proof-of-concept research which proves 

that computer-based cross-sectional chest CT image analysis is able to predict 5-year mortality in 

adult (age >60 years) person. Their framework includes deep learning model and the predictive 

performances of this model are better than those who use human-generated features. Besides, 

visualization of different components of this deep learning based model can provide an 

explanation about the better prediction performances [52].  

 Gene expression can be controlled by enhancer elements and cis-acting DNA regulatory 

elements [53]. However, existing enhancer predictors face a challenge, that is, the lack of 

availability of huge and experimentally confirmed enhancers for humans or other species. Yang 
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et al. [54] developed a DNN-based hybrid architecture termed as BiRen which takes only DNA 

sequence as input to predict enhancers. Experimental results proved that BiRen can predict 

common enhances more accurately than previous state-of-the-art methods, which are based on 

DNA sequence only.  

 Analysis of high-dimensional single-cell RNA-seq data is very important to answer 

several biological questions such as the amount of heterogeneity of cells in a population, the 

discovery of a biomarker for explicit cells and retrieving analogous cell types. Lin et al. [55] 

introduced an NN based model to address all these queries without integrating any prior 

knowledge into the model. This method can deduce cell type more properly using a database of 

tens of thousands of single cell profiles than any existing methods.  

Although the significant advancements have been made in applying DNN models to 

different bioinformatics applications as described above, no studies have been performed to use 

DNN models built for molecular subtypes of breast cancer classification either by CNA profiles 

or gene expression profiles or by integrating both. Furthermore, there is no DNN-based 

regression model to predict the triglyceride concentrations in the human blood using epigenome-

wide DNAm data.  In this thesis, we have proposed several DNN-based classification 

frameworks which take either CNA profiles or gene expression profiles or both of them as input 

for the prediction of molecular subtypes of breast cancer. In addition, we also proposed a DNN-

based regression model which takes high-dimensional DNAm data as input to predict 

triglyceride concentrations (before and after treatment) in the human blood. 
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Chapter 2 
 

Motivation and Research Objectives 
 

 

 

2.1. Motivation  
 

Omics datasets need to be efficiently analyzed for providing useful insight about 

phenotypic traits. Such kind of insights can be further used for patient stratification. This may 

lead to identify right therapies to provide patient-specific treatment. However, as we know that 

omics data are quite high-dimensional and there exists a high correlation among the different 

elements in a data set e.g. genes in CNA or gene expression profiles. These characteristics make 

us difficult in building models to handle the data using conventional machine learning methods,  

since these methods often suffer from overfitting problem when such high-dimensional and 

correlated data goes as an input to the models directly. To overcome these limitations, this 

proposed thesis aims to develop DNN-based predictive models to handle high-dimensional and 

correlated omics data to predict complex phenotypic traits.  

 

2.2. Hypothesis 
 

 We hypothesize that high-dimensional and highly correlated omics data can be efficiently 

modeled through multi-layer deep neural network. The phenotypic traits can be more accurately 

predicted using the proposed models than traditional machine learning models. Furthermore, the 

proposed DNN-based frameworks can be efficiently used to integrate multiple omics data 

sources to predict phenotypic traits. 
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2.3. Research Objectives 

 
 The research objectives of this thesis are to use genomic data to predict molecular 

subtypes of breast cancer and to predict triglyceride concentrations measured at different visits of 

peripheral blood samples. The molecular subtypes of breast cancer we aim to predict include the 

status of estrogen-receptor (ER positive and ER negative) and the PAM50 subtypes (Luminal A, 

Luminal B, HER-2 enriched and Basal-like). We have three specific aims: 

A: Develop DCNN models to predict the molecular subtypes of breast cancer using gene 

expression and CNA data, respectively; 

B: Develop novel DCNN models to integrate multiple genomic data to predict the 

molecular subtypes of breast cancer; 

C: Develop DNN regression models for the prediction of triglyceride concentrations from 

multiple peripheral bloods draws using epigenome-wide DNAm profiles. 
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Chapter 3 
 

Classifying molecular subtypes of breast cancer using single 

data source 

 
 

3.1. Introduction 
 

Rather than being a single disease, breast cancer is a collection of diseases with multiple 

subtypes. Breast cancer can be classified into estrogen-receptor-positive (ER+) and estrogen-

receptor-negative (ER-). A patient has ER+ breast cancer if her cancer cells have receptors for 

the hormone estrogen. Classifying patients into hormone receptor positive or negative is 

important for physicians because they need to determine whether the patients need hormonal 

treatments or chemotherapy. With the advent of technologies researchers were able to use gene 

expression profiles to identify four intrinsic molecular subtypes of breast cancer (i.e., PAM50 

subtypes): Luminal A, Luminal B, HER-2 enriched and Basal-like [9].  

CNAs represent the somatic changes of copy numbers in a DNA sequence. According to 

Beroukhim et al. [56], CNAs are predominant in a different type of cancers. It is expected that 

this data type can also be used to predict different molecular subtypes (such as ER status and 

PAM50 subtypes) of breast cancer using patient-specific CNA profiles. Previously, machine 

learning models were built to predict these subtypes [57]. CNA profile data is a high-throughput 

data and traditional machine learning methods, such as SVMs and RFs, can be easily overfitted if 

such high-throughput data is used directly as an input into these learners. 

Deep convolutional neural network (DCNN) based models do not use any hand-crafted 

features, rather they use the raw information about training samples and produce a complex form 
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of generic features to represent the input data. Unlike SVMs and RFs, these deep models are able 

to take an input vector of any length. To avoid the overfitting problem, deep learning provides a 

useful technique known as dropout [58]. Deep learning has achieved many state-of-the-art results 

in different computer vision fields such image classification [25]. Currently, deep learning 

methods are used to solve different problems in bioinformatics. For example, Denas et al. 

proposed a DCNN model for binding site prediction [59].  

In this experiment, we propose to build a DCNN based model using CNA profile-based 

data to predict molecular subtypes of breast cancer: the status of estrogen-receptor (ER+ and ER-

) and the PAM50 subtypes (Luminal A, Luminal B, HER-2 enriched and Basal-like). The former 

is a standard supervised binary classification problem while the latter is a supervised multi-class 

classification problem.  

 

3.2 Deep learning model for the prediction of molecular subtypes of 

breast cancer 

 

Specifically, we propose to use a deep convolutional neural network (DCNN) for the 

prediction of molecular subtypes of breast cancer (Figure 1). Our network receives a single 

vector (𝑋) as an input to the input layer of the DCNN, which is followed by convolutional layers. 

Each neuron of a convolutional layer receives some input and performs a dot product operation. 

These convolutional layers are considered a strong pattern detector of local features. 

The two convolutional layers (Figure 1) are followed by a one-dimensional pooling 

layer. The outputs of the convolution layers are considered low-level features. Pooling over these 

features creates higher-level features that can help smooth the noisiness in training data. This 

pooling layer partitions the outputs from the convolutional layers into a set of sub-regions and 
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for each of those regions the maximum value is taken as an output. The pooling layer reduces the 

size of its input vector to decrease the large number of parameters to be estimated, which is also 

useful to avoid potential overfit-ting and to make model invariant to input features.  

In our experiment, there is a complex non-linear relationship between the response 

variable (such as the prediction score assigned to a patient for a specific molecular subtype of 

breast cancer) and the predictors (such as the gene-specific CNA profiles). Therefore, we use the 

Relu (Rectified Linear Units) layer after the pooling layer to model this non-linear relationship.  

Relu performs a threshold operation as: 

𝑓(𝑡) = {
𝑡, 𝑡 ≥ 0
0, 𝑡 < 0

 (1) 

             Here, 𝑡 represents the input to a neuron. 

 

Figure 1 - Proposed architecture of DCNN. The number and size of different filters that must 

be learned is shown in the figure. Here, 1×10×1 → 20 means the kernel size is 1×10 and this is 

a one-dimensional feature while the total number of convolutional feature maps is 20. The stride 



 - 30 - 

size for the convolutional layer is 1×1 and for the pooling layer is 1×2. The number of outputs 

of the first fully connected layer is 250. The size of the output of the last fully connected layer 

will be two for binary classification (ER status prediction) and four for multiclass classification 

(PAM50 subtype prediction). 

To complete the higher-level reasoning of our network we use the fully connected layer 

(𝐹1), as used in a traditional neural network, and the output of this layer can be calculated as a 

matrix multiplication tailed via a bias offset. So, we pass the output of 𝐹1 to another fully 

connected layer (𝐹2) using a Relu layer and a dropout layer as medium. This helps our model 

overcome the potential overfitting problem and provides generalizability. 

The output of 𝐹2 is a 𝐾-dimensional vector (𝑎) that provides the prediction scores of test 

samples assigned to each of the classes. We use a softmax classification layer to transform the 

prediction scores into probability scores. This layer implements the softmax function using the 

prediction scores (𝑎) and estimated parameters (e.g., 𝑤) from 𝐹2 to produce 𝑘-th probability 

scores for test samples assigned to each of the classes. Therefore, the probabilities that the test 

samples are assigned to the 𝑖-th class can be calculated as follows: 

𝑃(𝑏 = 𝑖|𝑎) =
𝑒𝑎𝑇𝑤𝑖

∑ 𝑒𝑎𝑇𝑤𝑘𝐾
𝑘=1

 
(2) 

Here, 𝑎𝑇𝑤 represents the inner product of 𝑎 and 𝑤 and 𝐾 represents the number of 

classes. We train our network using the backpropagation approach and we use softmax loss to 

allow us to explain the prediction results as probabilities. 
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3.3 Experiments 
 

3.3.1 Dataset 
 

Our copy number alteration data is from the METABRIC (Molecular Taxonomy of 

Breast Cancer International Consortium) project [60]. For binary classification, we have 991 

samples in the training set (794 samples and 197 samples for ER positive and ER negative 

classes respectively) and 984 samples in the test set. For the multiclass classification we have 

935 samples for the training set (for Luminal A, Luminal B, HER-2 enriched and Basal-like 

classes we have 464, 268, 87 and 116 samples, respectively) and 842 samples for the test set. We 

have three discrete copy number calls: −1= copy number loss, 0= diploid, 1= copy number gain 

in our CNA mutation matrix (patients-by-genes). 

 

3.3.2. Informative feature selection for DCNN 
 

 In total, we retrieved 18,305 genes. Since different genes have different numbers of 

CNAs across all patients, the genes are more informative if they have more somatic CNAs. We 

calculated the CNA frequency for each of the 18,305 genes as follows: 

𝑓𝐶𝑁𝐴 =  
𝑁𝐶𝑁𝐴

𝑀
 (3) 

Here, 𝑓𝐶𝑁𝐴 means CNA frequency of a gene, 𝑁𝐶𝑁𝐴 means the number of copy number 

gains and losses of a gene and 𝑀 represents the total number of samples (i.e., patients). We 

selected few cutoffs (0.0101, 0.0492, 0.0685, 0.1102 and 0.1283) based on the five-number 

summary statistics (minimum, first quartile, median, third quartile and maximum) and mean of 

the CNA frequency. 
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3.3.3. Construction of DCNN model 
 

 To implement the DCNN model (Fig. 1) for both the binary and multiclass classification 

tasks, we used publicly available C++ based deep learning library called CAFFE [61]. For each 

of the tasks, we trained several DCNN models using different CNA frequency cutoffs based on 

Equation 3: 0.0101, 0.0492, 0.0685, 0.1102 and 0.1283. The number of genes or features 

selected by the unsupervised approach at these cutoffs is 18305, 13476, 8857, 5192 and 4377, 

respectively. We used learning rate 0.001, batch size 64 and dropout ratio 0.5 to train our 

network. 

 

3.3.4. Performance evaluation metrics and baseline models 
 

 We use overall accuracy and Receiver Operating Characteristics (ROC) curves to 

evaluate the performance of our DCNN classifiers. We use the area under the ROC curve (AUC) 

as the quantitative measure of the ROC curve. To compare the performance of our DCNN 

models, we use two state-of-the-art supervised classification models: SVM and RF, as our 

baseline models. We use two R packages known as e1071[62] and randomForest[63] to build 

SVM and RF models, respectively. For each sample, we have more than 18,000 genes while we 

have only ~1000 samples. SVM and RF are not able to use such high-throughput data as input 

vectors. Using such input will result in these models being overfitted. So, we performed 

nonparametric supervised Chi-square (χ2) test based on the number of samples in each CNV 

category: copy number loss, diploid and copy number gain and in each of the 4 breast cancer 

subtypes to calculate the significance of each of the genes. Then we selected the top (most 

significant) hundreds of genes to build our baseline models. 
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3.4 Results 
 

Prediction accuracies and AUCs based on our DCNN models using different numbers of 

features selected at different CNA frequencies are shown in Figure 2 and Figure 3.  

 

Figure 2 - Overall accuracy (%) of the proposed DCNN model at different CNA frequencies 

 

Figure 3 - AUC of the proposed DCNN model at different CNA frequencies 

 



 - 34 - 

In general, the somatic CNA-based profiles have much larger power to predict ER status 

(binary classification) than PAM50 subtypes (multiclass classification). The models have highest 

prediction performance when all the features are used. Their performance decreases when the 

number of features used in the model's decreases. 

The prediction results of our baseline models are shown in Table 1 (accuracies) and 

Table 2 (AUCs) for binary classification (B_SVM, B_RF) and multiclass classification 

(M_SVM, M_RF). The numbers in bold color mean that it is the best result among different 

numbers of the selected top genes. We use an R function called multiclass.roc [64] to generate 

multiple ROC curves to compute the multiclass AUC. 

Table 1 - Overall accuracy (%) 

Classifiers Top selected genes 

100 250 350 400 500 

B_SVM 76.5 76.4 76.5 75.8 76.0 

B_RF 81.5 82.7 82.7 82.3 81.7 

M_SVM 42.7 43.7 43.8 45.0 43.7 

M_RF 44.8 47.0 48.6 49.5 48.6 

 

Table 2 - Area Under the Curve (AUC) 

Classifiers Top selected genes 

100 250 350 400 500 

B_SVM 0.693 0.686 0.702 0.702 0.693 

B_RF 0.764 0.798 0.804 0.815 0.817 

M_SVM 0.780 0.703 0.702 0.708 0.707 

M_RF 0.729 0.725 0.723 0.715 0.725 
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Comparisons of the results (Table 3 and Table 4) of our proposed DCNN models with 

our baseline models clearly confirms that our DCNN models outperform the results of SVM and 

RF. Table 3 and Table 4 show the best result among the binary and multiclass classifiers from 

Figure 2, Figure 3, Table 1 and Table 2. 

Table 3 - Comparison of the results for binary classification. 

Classifier Accuracy AUC 

DCNN 84.1 0.904 

SVM 76.5 0.702 

RF 82.7 0.817 

 

Table 4 - Comparison of the results for multiclass classification. 

Classifier Accuracy AUC 

DCNN 58.19 0.790 

SVM 45.0 0.780 

RF 49.5 0.729 

 

 

3.5 Conclusion and discussion 
 

 

 In this experiment, we showed that the proposed DCNN models achieve much better 

results than SVMs and RFs for both binary and multiclass classification tasks. We also 

demonstrated that the DCNN models can work well for data sets with larger numbers of features 

than samples, which often results in overfitting in SVM- or RF-based models. Although there are 

great advances using traditional machine learning models in different bioinformatics 
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applications, recent research including this paper shows that deep convolutional neural networks 

have significant advantages over them.  

We use DCNN model rather than deep belief network (DBN) because DCNN models are 

more invariant to the translation of the data. DCNN can also provide a model which is more 

robust to the unwanted noisiness in the data than DBN. In our future work, we will incorporate 

DBN network into our experiments for both binary and multiclass classification. 
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Chapter 4 

 

Classifying molecular subtypes of breast cancer by 

integration of multiple heterogeneous data sources  
 

4.1. Background 

Cancer progression is impelled by the accumulation of somatic genetic mutations, which 

consist of single nucleotide substitutions, translocations and copy number alterations (CNA) 

[65]. CNAs are somatic changes in the copy numbers of a DNA sequence that arise during the 

process of cancer development. This results in changes to the chromosome structure in the form 

of gain or loss in copies of DNA segments. This has been found to be prevalent in many types of 

cancer [56]. Genes in the CNA regions, if mutated, can create abnormal proteins with different 

functions than a normal protein, which can lead to the uncontrollable growth of cancer cells. 

Therefore, it will be useful to explore the possibility to predict the molecular subtypes of breast 

cancer by integrating both patient-specific CNA profiles and gene expression profiles. 

Generally speaking, both of the CNA profile- and the gene expression profile-based 

feature vector for supervised machine learning algorithms includes the majority of the genes in 

the human genome; that is, each sample is represented by almost twenty thousand of genes. 

Supervised machine learning methods, such as support vector machine (SVM) and random forest 

(RF), work well to draw a decision boundary between two classes or the decision boundaries 

among multiple classes, but this becomes hard when the size of the feature vector is much larger 

than the number of training samples in many bioinformatics applications. Yeung and Ruzzo [66] 

used a classical technique known as Principle Component Analysis (PCA) for dimension 
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reduction. However, PCA linearly reduces the dimension of the data and fails to capture the non-

linear relationship of the data. Recently, deep learning (DL) based models demonstrate 

advantages to handle high-dimensional data and extract linear and non-linear relationships of the 

data.  

 DNN models have also been applied for different bioinformatics domains. Denas and 

Taylor [59] preprocessed their genomic data as a two-dimensional matrix, where rows are the 

transcription factor activity profiles of genes and columns are positions of different genome 

elements. They applied a DCNN model to predict DNA-binding site. Kelley et al. [67] 

introduced a DCNN model to learn the functional activity of DNA sequences for 164 cell-

specific DNA accessibility multitask prediction and this model achieved the best result than 

earlier methods. Zeng and Gifford [68] introduced a DNN to predict the DNA methylation level 

of a single CpG from the corresponding sequence, which showed improved performance than all 

previous models. Leung et al. [69] used mouse RNA-Seq data to build a DNN-based model to 

predict splicing patterns in individual tissues and achieved the best result among the other 

available methods such as Bayesian methods. However, there are no DNN models built for 

classifying molecular subtypes of breast cancer by integrating both CNA profiles and gene 

expression profiles.  

 In this experiment, we propose to build our CNA profile- and gene expression profile-

based classification models of molecular subtypes of breast cancer using an integrative deep 

neural network learning approach. The molecular subtypes of breast cancer we aim to predict 

include the status of estrogen-receptor (ER+ and ER-), which is a binary classification problem, 

and the status of PAM50 subtypes (luminal A, luminal B, HER-2 enriched and basal-like), which 

is a multiclass classification problem. 



 - 39 - 

 

4.2. Materials and methods 
 

4.2.1. Datasets 
 

 

 We use copy number alteration data and gene expression data from METABRIC 

(Molecular Taxonomy of Breast Cancer International Consortium) project [60]. The group 

collected around 2,000 clinically annotated primary fresh frozen breast cancer specimens along 

with a portion of normal specimens from different North American and European tumor banks. 

The primary tumors could be categorically linked to DNA and RNA specimens. The authors 

performed quality control assessment and excluded the mismatches between DNA and RNA. 

After that, paired DNA and RNA profiles were available from tumors that were taken from 991 

female patients. They also collected DNA from adjacent normal breast tissue from 485 samples 

in the discovery set. The second group of 984 cases was collected later which included low 

cellularity tumors, DCIS (Ductal carcinoma in situ), and three benign cases. This group 

represents the validation set and was used to test the reproducibility of the integrative cluster and 

clinical outcome associations.  

To determine copy number alteration events in each breast cancer patient, we focus on 

gene-specific CNA events as shown in Figure 4. We use the set of discrete copy number calls 

−1= copy number loss, 0= diploid, 1= copy number gain. For each CNA region in each patient, 

we retrieve its gene information based on its chromosome positions using the biomaRt R 

package [70]. 
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Figure 4 – Representation of copy number alteration events. Patient-level individual copy number 

alterations are matched to gene regions in the human genome (hg19). (a) Recurrent copy number 

alteration events. The blue segments are copy number loss, the black segments are copy number diploid 

and the orange segments are copy number gain. (b) Representation of copy number alteration events with 

numeric values. “-1” represents copy number loss, “0” represents copy number diploid and “1” represents 

copy number gain. 

 Gene expression data were generated from Illumina BeadArrays (i.e. Illumina HT-12 v3 

platform). The data were preprocessed (including quantile normalization) using the beadarray R 

package by Curtis et al. [26]. For our experiment, we focus on the gene expression profiles of the 

16,289 genes common in both CNA and gene expression data sets. 

For the binary class classification, we take 991 patient samples from the discovery set as 

our training set and 984 patient samples from the validation set as our test set. In this training set, 

we have 794 samples for the ER+ class and 197 sample for the ER- class. However, for the 

multiclass classification, we take 935 patient samples from the discovery set as our training set 

and 842 patient samples from the validation set as our test set since some of the patients in the 

whole discovery and validation sets are in the normal group. In this training set, we have 464, 

268, 87 and 116 samples for Luminal A, Luminal B, HER-2 enriched and Basal-like classes 
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respectively. The labels of the molecular subtypes of these patients are extracted from the 

Supplementary Tables 2 and 3 of [60]. 

 

4.2.2. Deep Neural Network Architectures  
 

4.2.2.1.  Base network architecture 

 

The network architecture of our base DCNN model to predict the molecular subtypes of 

breast cancer using individual datasets is shown in Figure 5. 
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Figure 5 – Individual data source-based DCNN architecture. A backpropagation approach is 

used to train the multi-layer network. The size of input feature vector, the size of the resulted 

vectors from fully connected layers and the size of different kernels at different layers are listed. 

Here, 1×20×1 → 10 represents a kernel of size 1×20 and the height of all 10 feature maps is 1. 

We use a stride of size 1×5 for convolutional layers and 1×10  for the max pooling layer. 

This network takes the single data source (such as CNA or gene expression) of a sample 

as an input feature vector (𝑋) which goes directly to a convolutional layer. A filter 𝐹 (also known 

as kernel), which is an array of numbers (also known as weights), slides over all the positions of 

𝑋. The height of 𝐹 and 𝑋 must be the same and here it is 1 as we are dealing with one-

dimensional input vector. The region 𝑅 over which the 𝐹 is currently moving is known as 

receptive field. An elementwise multiplication is performed between 𝐹 and 𝑅, which produces a 

single number to represent 𝑅. This process continues until it covers every position of 𝑋 and the 

resulted vector is termed as activation or feature map. So, if 𝑋 is a 𝑄-dimenstional vector, then 

the size of the activation map would be 1×(𝑄 − 𝐹). One can have any number of feature maps 

by using different 𝐹s. For our base DCNN model we take 10 convolutional feature (𝐶𝐹) maps 

and the size of our input feature vector is 1×16289 and the size of the convolutional kernel is 

1×20. These 𝐶𝐹s represent the local patterns of our input feature vector 𝑋.  

The output of our convolutional layer (𝐶𝐹s) goes to the ReLU (Rectified Linear Units) 

layer. ReLU is an activation function, which is useful to model the complex non-linear 

relationship between the input and output of the model. For our experiment, the input can be 

either gene-specific CNA profiles or gene expression profiles and the output is the prediction 

score for a patient assigned to one of the molecular subtypes. Unlike other activation functions 
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(e.g. tanh or sigmoid), ReLU implements a simple thresholding function rather than an expensive 

exponential function. ReLU function follows the Equation 1. 

We know that a DCNN model with a large number of neurons can model any complex 

relationship between its input and output. However, here we have a small number of training 

samples for our DCNN model, which can be easily overfitted over the training data. Hence, the 

Relu layer is followed by a max pooling layer to reduce the size of the input feature vector, 

which is also known as down sampling. A filter goes over its input and takes the maximum value 

of the receptive field. Although pooling may cause loss of information, such kind of loss is 

useful because we will have fewer numbers of parameters to be learned which helps the model 

overcome the curse of overfitting problem. This layer also helps the model become invariant in 

terms of translation, rotation, and scaling of the input data. Therefore, the pooling layer leads the 

DCNN model to have better generalization over the test data. 

The output of our pooling layers is then inputted to a fully connected (FC1) layer. This 

layer has a connection to its previous layer for each of the neurons and the output of this layer is 

a simple matrix multiplication which is a one-dimensional vector. For our experiment, the size of 

this vector is 1×250. This FC1 layer is then followed by another fully connected (FC2) layer to 

get higher level features of our input feature vector 𝑋. However, our network is training huge 

number of parameters using only a few hundreds of training samples. So, we pass this output to 

another fully connected layer (FC3) via a Relu layer and a Dropout layer. Dropout layer 

implements a regularization technique to prevent the DCNN model from overfitting. This layer 

randomly drops different units with its associated connections.  

The output of FC3 is a vector of size 1×2 or 1×4,  where 2 and 4 represent the number 

of classes of estrogen-receptor and PAM50 subtypes, respectively. FC3 takes the high-level 
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features of 𝑋 from the output of FC2 and regulates each of the features mostly correlates with a 

specific class. Each of the values of FC3 represents a prediction score for a particular class, 

which is then converted into a probability score using a softmax classification layer. This layer 

implements the softmax function using two parameters from the output of FC3 : prediction 

scores (𝑥) and weights (𝑦), which are used to calculate the probability of the 𝑝-th class using the 

following formula: 

𝑃(𝑧 = 𝑝|𝑥) =
𝑒𝑥𝑇𝑦𝑝

∑ 𝑒𝑥𝑇𝑦𝑘4
𝑘=1

 
(4) 

Here, 𝑥𝑇𝑦  represents an inner product between 𝑥 and 𝑦.   

Finally, we use network backpropagation to train our DCNN models. 

 

4.2.2.2.  DNN models for data integration 

 

We propose three DNN-based data integration models. The first two models are based on 

deep convolutional neural networks as shown in Figure 6 (DCNN_Concat) and Figure 7 

(DCNN_Siamese) and the third one does not involve any convolutional operation rather it is a 

fully-connected DNN as shown in Figure 8 (DNN_SE). Below we briefly describe the 

integration techniques. 

4.2.2.2.1.  Concatenation 

 

This is an intermediate integration technique. This method takes two feature vectors as 

input: one from the CNA data and another from the gene expression data. Both of these vectors 

represent information from the same patient and have the same label.  
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     The outputs of fully connected layers from the left branch (FC_L) and right branch (FC_R) 

represent the DCNN feature vector of the inputs. To integrate the knowledge of the same patient 

from these two different sources we use concatenation layer. This takes the outputs of these two 

fully connected layers and performs a concatenation operation between them. We call this 

architecture as DCNN_Concat (Figure 6).  

 

Figure 6 – Concatenation-based data integration for DCNN architecture.  The DCNN model 

is first learned for CNA data (left branch) and gene expression data (right branch), respectively. 

The high-level features from the two data sources are then concatenated. The DCNN model is 

further learned based on the concatenated results to make a final prediction of PAM50 subtypes.   
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Suppose, 𝐶 represents the CNA data of patient 𝑋 and 𝐺 represents the gene expression 

data of 𝑋 and the label (tumor subtype) is the same for both 𝐶 and 𝐺. Now, 𝐶 goes as an input to 

the left branch and 𝐺 to the right branch. Then both 𝐶 and 𝐺 go through different layers of left 

and right branches. So, the outputs of FC_L  and FC_R layers, which are named as 𝑘_𝐿 and 𝑘_𝑅, 

respectively, are considered as the higher-level representation of 𝐶 and 𝐺. Both 𝐶 and 𝐺 are 250-

dimensional vectors so the concatenation layer takes 𝑘_𝐿 and 𝑘_𝐿 as inputs and produces a 500-

dimensional vector (𝑉):  

𝑉 =  𝑘_𝐿  ‖ 𝑘_𝑅 (5) 

              Here, ‖ represents the concatenation operation. Then 𝑉 goes through other different 

layers of the DCNN to provide the final higher-level reasoning from the integrated data. The 

final output is the predicted probability for a particular class of molecular subtypes of breast 

cancer. 

4.2.2.2.2.  Weight sharing network 

 

Similar to DCNN_Concat (Figure 6), the weight-sharing network also contains two 

different branches to take a patient’s raw information in terms of CNA data and gene expression 

data respectively. However, the architecture of this approach involves sharing information (i.e. 

weight) between layers of the two branches for the two data sources (Figure 7).  
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Figure 7 - Weight sharing-based data integration for DCNN architecture. Weight sharing 

network is similar to concatenation network except that the two branches for learning models 

from CNA and gene expression data will share the same weights or kernels. To integrate the 

high-level features from the two data sources, concatenation operation is used in this study, but 

other operations can be performed.  

This type of network is termed as Siamese network. So, we call this architecture as 

DCNN_Siamese. This network takes two feature vectors for the two data sources as input: CNA 

data (left branch) and gene expression data (right branch) of the same patient with the same class 

label. Both convolutional layers of the two branches use the same sized kernel with the exact 

same weights. Fully connected layers of both branches also do the same. However, the Relu and 

max-pooling layers do not have any weight parameters to learn and they perform only 

mathematical operations so they are not involved in weight sharing. This means the model needs 

to learn fewer parameters which help the model not to be overfitted over training data. Like the 

architecture of DCNN_Concat (Figure 6) we merge the outputs from 𝑘_𝐿 and 𝑘_𝑅 by a 
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concatenation layer and then we pass the resultant vector to other different layers of the DCNN 

to provide the final higher-level reasoning from the integrated data to get the final prediction of a 

particular class label of molecular subtypes of breast cancer. 

4.2.2.2.3.  DNN integration model with weights initialized by stacked autoencoder 

 

We first train a deep network in an unsupervised fashion and this creates a set of feature 

detector layers without using the labels of the samples. To do this we use a stacked autoencoder 

(SE) approach.  

We concatenate CNA data and gene expression data for each of the samples, which 

results in a 32578-dimensional vector as an input to the SE network (Figure 8(a)). 
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Figure 8 - Stacked autoencoder-based data integration for DCNN architecture. (a)  Build stacked 

autoencoder from integrated data; (b) Build classification model fine-tuned from the pre-trained stacked 

autoencoder in (a). 

In this architecture, we have two parts: encoders and decoders. Each of the encoder layers 

has a corresponding decoder layer. The purpose of learning this network is to reconstruct the raw 

inputs in the corresponding decoder layers. Each of the encoder and decoder layers is followed 

by a sigmoid neuron except the last decoder layer. We use sigmoid neuron layer so that small 

changes in one of the encoder or decoder layers do not make large changes to their outputs since 

such small changes can sometimes flip the output such as 0 to 1. The output of sigmoid function 

can be defined as: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (6) 

Here, 𝑥 represents an input to a neuron. Sigmoid function squashes the real numbers to 

range between 0 and 1. Therefore, the network becomes non-linear.  

We use sigmoid cross entropy loss function (Equation 7) to train our SE network in a 

backpropagation style. This loss function takes the output of a fully connected layer as its input 

and it uses a sigmoid function to provide a gradient estimation.  

𝐿𝑜𝑠𝑠(𝑌, 𝑋) =  − ∑ 𝑋𝑖log (𝑌𝑖)

𝑛

𝑖=1

 
(7) 

Here, 𝑛 is the total number of training inputs, 𝑋 is the label, which is the input itself and  

𝑌 is the prediction of the network. 

After training the SE, we train another deep network (Figure 8(b)) which contains the 

same layers as the encoder layers of this SE and in addition we put another layer on the top to get 
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the final prediction of a particular class label of molecular subtypes of breast cancer. Here, the 

weights of all layers except the lastly added layer are fine-tuned from the encoder layers of the 

SE. In this way, the weights of the network are initialized with much more practical values which 

may lead to better training and classification results. We call this DNN network architecture as 

DNN_SE. 

4.3. Data integration for SVM and RF classifications 
 

 For each specified number of top genes, we first select the genes based on a χ2 

test for CNA data and ANOVA test for gene expression data, then we concatenate the selected 

CNA data and gene expression data, finally, we perform the classification analysis using SVM 

and RF for the selected gene sets. 

 

4.4. Software and parameters 
 

 We build our DNN models using CAFFE [27], which is a C++ based deep 

learning library. We use all the 16,289 genes common to both data sources as input vectors to 

each of our DNN models (Figures 5-8). We train all our DNN models using learning rate 0.001. 

We run the models with several different sets of parameters and report the best results in this 

paper.  

 

4.5. Model performance evaluation and baseline models 
 

We use two methods to measure the performance of our DNN classifiers. The first one is 

overall accuracy, which is the proportion of patients with correctly predicted molecular subtypes. 
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The second one is Receiver Operating Characteristics (ROC) curve, which depicts the pattern of 

sensitivity (1-FNR) and specificity (1-FPR) of a classifier at several different discrimination 

thresholds, such as the probability assigning a given sample to a given molecular subtype of 

breast cancer. Here, FNR means false negative rate and FPR means false positive rate. The 

quantitative index used to evaluate a classifier based on ROC is the area under the ROC curve 

(AUC). We use an R function called multiclass.roc [64] to generate multiple ROC curves for 

computing the multiclass AUC.  

The performance of our DNN models is compared to that of other two state-of-the-art 

supervised classification models: SVM and RF. We build these models using R packages e1071 

[62] for SVM and randomForest [63] for RF. Since we have more than 16,000 genes or features 

and only around 1,000 samples, and it is well-known that SVM and RF will suffer from 

overfitting problem if such high-dimensional data is applied, we select top significant genes to 

build the baseline models. We calculate the significance of each of the genes using different 

supervised approaches. For CNA data, we use χ2 test since it is category data while for gene 

expression data, we perform parametric ANOVA test. The selected top significant genes are used 

to build the baseline models.  

We also compare our results with another DNN model whose weights are initialized by a 

pre-trained DBN (DNN_DBN). We use an R package called deepnet [71] to build the 

DNN_DBN model. At first, we take the input vectors from CNA data and gene expression data 

respectively for each of the samples. Then we perform a concatenation operation between them 

which produces a 32578-dimensional vector. We give this vector as an input to both DNN_DBN 

and DBN. Finally, we use the learned weights of DBN to initialize the DNN_DBN.  
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4.6. Results and discussion 
 

 Table 5 presents the accuracies and AUCs of our DCNN models for multiclass 

(PAM50 subtypes) classification. It can be seen that the models can predict different classes of 

PAM50 subtypes more accurately using gene expression data (classifier: Gene_DCNN) than 

CNA data (classifier: CNA_DCNN). The prediction performance of the model “Gene_DCNN” 

in terms of accuracy is 77.3% and AUC is 0.832, which is significantly better than the model 

“CNA_DCNN” of accuracy 50.5% and AUC 0.677. Among the DNN-based integration models, 

we get the best result when we integrate the two data sources using concatenation layers without 

sharing the weights (classifier: DCNN_Concat). Overall, the integrated DNN models 

(DCNN_Concat, DCNN_Siamese, and DNN_SE) show better performance than the DCNN 

models (CNA_DCNN and Gene_DCNN) trained on individual data sources.  

Table 5 - The overall accuracies (%) and AUCs of our DNN models for multiclass classification. 

CNA_DCNN and Gene_DCNN are based on the architecture of Figure 5 for CNA data and gene 

expression data, respectively. DCNN_Concat, DCNN_Siamese, and DNN_SE are DNN models based on 

the network architectures described in Figure 6, 7 and 8, respectively.  

Classifier (all genes) Datasets Performance Measurement 

Accuracy (%) AUC 

CNA_DCNN CNA 50.5 0.677 

Gene_DCNN Gene expression 77.3 0.832 

DCNN_Concat CNA and gene expression 79.2 0.850 

DCNN_Siamese CNA and gene expression 76.7 0.838 

DNN_SE CNA and gene expression 77.3 0.838 
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DCNN_Concat shows better performance over DCNN_Siamese because the layers in the 

two branches for the two data sources in DCNN_Concat model (Figure 6) learn different 

weights but those in DCNN_Siamese model (Figure 7) learn the same weights. This gives us the 

insight that CNA data and gene expression data need to be treated differently. Besides, 

DCNN_Concat captures the correlation among the genes using convolutional layers but 

DNN_SE model (Figure 8) does not consider this correlation. This may cause the lower 

performance using DNN_SE over DCNN_Concat.  

Performance of our baseline models (SVM and RF only) are shown in Table 6 

(accuracies) and Table 7 (AUCs). There are no significant changes in the results of using a 

different number of top selected genes for both SVM and RF models. Similar to our proposed 

DNN models, SVM and RF also provide better prediction results using gene expression data than 

CNA data. This may be due to the fact that CNA is very sparse. Generally speaking, in terms of 

both accuracy and AUC RF model gives better results than SVM for CNA data while SVM 

provides better results than RF for gene expression data. The integration of the gene expression 

data and CNA data using SVM and RF has not improved the prediction performance (Tables 6 

and 7). 

Table 6 – Accuracy (%) of the baseline models (SVM, RF) and our best performing deep learning 

model (DCNN_Concat as shown in Table 5) for multiclass classification. The results are shown for 

SVM and RF models using individual CNA data (CNA_SVM, CNA_RF) and gene expression data 

(Gene_SVM, Gene_RF) as well as the concatenation of both data sources (SVM_Concat and 

RF_Concat).  The results for DCNN_Concat using the selected top genes are also shown. The best results 

for classifiers with a different number of top genes selected by χ2 for CNA data and ANOVA for gene 

expression data are shown in bold color.  



 - 54 - 

Classifier 

(top genes) 

Test Top selected genes 

100 150 200 250 300 350 400 450 500 

CNA_SVM χ2 41.7 43.2 41.9 42.6 42.6 43.2 43.3 42.8 43.2 

CNA_RF χ2 46.4 48.7 47.9 48.5 49.8 49.0 49.9 48.2 49.2 

Gene _SVM ANOVA 72.4 75.8 75.6 75.6 76.0 75.4 75.9 75.5 75.9 

Gene _RF ANOVA 70.4 71.4 71.5 71.5 70.7 71.0 71.5 71.0 71.3 

SVM_Concat 72.0 72.7 72.4 72.3 73.4 72.8 73.1 72.9 73.1 

RF_Concat 70.1 71.7 70.4 71.1 71.1 69.6 71.7 70.8 72.1 

DCNN_Concat 72.9 72.9 71.6 72.6 71.5 72.7 74.4 74.8 76.6 

Table 7 - AUC of the baseline models (SVM, RF) and our best performing deep learning model 

(DCNN_Concat as shown in Table 5) for multiclass classification. The results are shown for SVM and 

RF models using individual CNA data (CNA_SVM, CNA_RF) and gene expression data (Gene_SVM, 

Gene_RF) as well as the concatenation of both data sources (SVM_Concat and RF_Concat).  The results 

for DCNN_Concat using the selected top genes are also shown. The best results for classifiers with a 

different number of top genes selected by χ2 for CNA data and ANOVA for gene expression data are 

shown in bold color.  

Classifier 

(top genes) 

Test Top selected genes 

100 150 200 250 300 350 400 450 500 

CNA_SVM χ2 0.589 0.590 0.632 0.630 0.629 0.636 0.629 0.630 0.633 

CNA_RF χ2 0.643 0.651 0.642 0.641 0.650 0.649 0.655 0.658 0.662 

Gene _SVM ANOVA 0.804 0.818 0.812 0.799 0.808 0.807 0.814 0.814 0.819 

Gene _RF ANOVA 0.808 0.812 0.806 0.804 0.810 0.806 0.802 0.798 0.804 
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SVM_Concat 0.810 0.815 0.810 0.818 0.810 0.810 0.815 0.814 0.814 

RF_Concat 0.802 0.810 0.808 0.803 0.801 0.806 0.803 0.808 0.807 

DCNN_Concat 0.810 0.817 0.815 0.817 0.821 0.811 0.829 0.834 0.852 

 

Comparison of Table 5 with Tables 6 and 7 shows that when we use only individual data 

sources to build their DCNN models (CNA_DCNN for CNA data and Gene_DCNN for gene 

expression data), we get higher accuracy and AUC results than corresponding SVM and RF 

models (i.e. CNA_SVM and CNA_RF for CNA data and Gene_SVM and Gene_RF for gene 

expression data). It is also seen that our integrated models (DCNN_Concat, DCNN_Siamese, 

and DNN_SE) outperform the models (CNA_DCNN, Gene_DCNN, SVM and RF) built on 

individual datasets in terms of both accuracy and AUC.  

Table 8 shows the best results from Tables 5, 6 and 7 and the results of our baseline 

DNN model (DNN_DBN). It can be easily seen that the integration model DCNN_Concat 

outperforms overall baseline models. All our proposed DCNN models CNA_DCNN, 

Gene_DCNN, DCNN_Concat, DCNN_Siamese and DNN_SE (Table 5) also provide better 

prediction result than the baseline model DNN_DBN, which has accuracy 49.89% and AUC 

0.625 (Table 8). This may be due to the fact that the proposed DCNN models consider the 

correlation among the genes and the proposed DNN_SE model is less susceptible to the 

undesirable noisiness in the data. 

Table 8 –Performance comparison of multiclass classification between baseline models and 

our proposed model. DCNN_Concat is the classifier with the best performance in our proposed 
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DCNN models (Tables 5, 6 and 7) using combined data sets. Gene_SVM, Gene_RF, 

RF_Concat are our baseline models with best performance shown in Tables 6 and 7. DNN_DBN 

is our baseline deep neural network model. The model with best results is bolded. 

Classifier Accuracy (%) Classifier AUC 

DCNN_Concat (all genes) 79.2 DCNN_Concat (all genes) 0.850 

DCNN_Concat (top 500 genes) 76.6 DCNN_Concat (top 500 genes) 0.852 

Gene_SVM (top 300 genes) 76.0 Gene_SVM (top 500 genes) 0.819 

RF_Concat (top 500 genes) 71.5 Gene_RF (top 150 genes) 0.812 

DNN_DBN (all genes) 49.89 DNN_DBN (all genes) 0.625 

The similar procedure for multiclass classification was applied to binary class 

classification (the classes of estrogen-receptor) and the results of the accuracies and AUCs of our 

DCNN, SVM and RF models are shown in Tables 9, 10 and 11. Generally speaking, the 

integration of the CNA data and gene expression data using the DCNN and SVM models have 

greatly improved the prediction performance, but this has not been observed for the RF models 

(Table 12). The proposed DCNN models have better performance than the SVM models and our 

baseline DNN model (B_DNN_DBN), but slightly worse performance than the RF models. 

Table 9 - The overall accuracies (%) and AUCs of our DNN models for binary classification. 

B_CNA_DCNN and B_Gene_DCNN are based on the architecture of Figure 5 for CNA data and gene 

expression data, respectively. B_DCNN_Concat is the DNN model based on the network architecture 

described in Figure 6.  

Classifier 

(all genes) 

Datasets Performance Measurement 

Accuracy (%) AUC 

B_CNA_DCNN CNA 62.8 0.504 



 - 57 - 

B_Gene_DCNN Gene expression 62.9 0.502 

B_DCNN_Concat CNA and gene expression 96.3 0.993 

 

Table 10 – Accuracy (%) of the baseline models (SVM, RF) and our deep learning model 

(B_DCNN_Concat as shown in Table 9) for binary classification. The results are shown for SVM and 

RF models using individual CNA data (B_SVM_CNA, B_RF_CNA) and gene expression data 

(B_SVM_GENE, B_RF_GENE) as well as the concatenation of both data sources (B_SVM_Concat and 

B_RF_Concat).  The results for B_DCNN_Concat using the selected top genes are also shown.  The best 

results for classifiers with a different number of top genes selected by χ2 for CNA data and ANOVA for 

gene expression data are shown in bold color.  

 

Classifier 

(top genes) 

Concatenation of top selected genes from CNA and gene expression data 

100 150 200 250 300 350 400 450 500 

B_SVM_CNA 76.8 76.7 76.4 76.3 76.0 75.9 75.4 75.7 75.7 

B_RF_CNA 82.4 82.3 82.7 82.5 82.8 81.7 81.5 81.8 82.7 

B_SVM_GENE 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 

B_RF_GENE 96.9 96.9 97.2 97.0 96.9 97.0 96.8 97.1 97.1 

B_SVM_Concat 95.7 95.5 95.2 95.2 95.3 95.2 95.1 95.4 95.4 

B_RF_Concat 97.5 97.2 97.0 97.1 97.5 96.4 96.8 96.5 97.1 

B_DCNN_Concat 95.9 96.3 95.5 95.6 95.4 95.6 96.0 95.5 96.1 
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Table 11 - AUC of the baseline models (SVM, RF) and our deep learning model (B_DCNN_Concat 

as shown in Table 9) for binary classification. The results are shown for SVM and RF models using 

individual CNA data (B_SVM_CNA, B_RF_CNA) and gene expression data (B_SVM_GENE, 

B_RF_GENE) as well as the concatenation of both data sources (B_SVM_Concat and B_RF_Concat).  

The results for B_DCNN_Concat using the selected top genes are also shown.  The best results for 

classifiers with a different number of top genes selected by χ2 for CNA data and ANOVA for gene 

expression data are shown in bold color. 

Classifier 

(top genes) 

Concatenation of top selected genes from CNA and gene expression data 

100 150 200 250 300 350 400 450 500 

B_SVM_CNA 0.601 0.589 0.591 0.585 0.576 0.572 0.563 0.568 0.568 

B_RF_CNA 0.758 0.774 0.802 0.801 0.807 0.811 0.811 0.817 0.835 

B_SVM_GENE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

B_RF_GENE 0.993 0.994 0.995 0.993 0.994 0.993 0.994 0.994 0.994 

B_SVM_Concat 0.940 0.936 0.931 0.930 0.932 0.929 0.927 0.932 0.932 

B_RF_Concat 0.994 0.995 0.994 0.995 0.995 0.994 0.995 0.993 0.992 

B_DCNN_Conc

at 

0.991 0.992 0.991 0.991 0.990 0.991 0.991 0.990 0.991 

 

Table 12 – Performance comparison of binary classification between baseline models and our 

proposed model. B_DCNN_Concat, B_SVM_Concat, and B_RF_Concat are the classifiers with the best 

performance in our proposed DCNN models, SVM and RF models (Tables 9, 10 and 11) using combined 

data sets. B_RF_GENE is the RF model with the best performance shown in Table 11 using individual 

gene expression data. B_DNN_DBN is our baseline deep neural network model. The model with best 

results is bolded. 
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Classifier Accuracy 

(%) 

Classifier AUC 

B_DCNN_Concat (all genes) 96.3 B_DCNN_Concat (all genes) 0.993 

B_DCNN_Concat (top 150 genes) 96.3 B_DCNN_Concat (top 150 genes) 0.992 

B_SVM_Concat (top 100 genes) 95.7 B_ SVM_Concat (top 100 genes) 0.940 

B_RF_Concat (top 100 genes) 97.5 B_ RF_Concat (top 150 genes) 

and  

B_RF_GENE (top 200 genes) 

0.995 

B_DNN_DBN (all genes) 86.4 B_DNN_DBN (all genes) 0.522 

 

To investigate the effects of the selection of different hyper parameter values on the 

prediction performance of our best DCNN model (DCNN_Concat), we consider different values 

for two hyperparameters: learning rate and dropout ratio. We report the parameter values with 

the best prediction performance. It must also be pointed out that the deep learning based models 

are much more expensive in terms of both computational speed and memory than SVM and RF-

based models. The gene expression data and copy number variation data used for the analysis 

can be accessed from European Genome-phenome Archive [29].  

 

4.7. Conclusion 
 

 Developing efficient methods to stratify cancer subtypes is necessary to provide 

best-personalized therapies for patients. It is expected that integration of knowledge from 

multiple data sources measured on the same individuals should improve the prediction 

performance of PAM50 intrinsic subtypes of breast cancer. In this experiment, we propose 

multiple deep learning-based models (DCNN_Concat, DCNN_Siamese, and DNN_SE) for 
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multiclass classification and B_DCNN_Concat for binary classification to integrate copy number 

alteration and gene expression level data measured in the same breast cancer patients to achieve 

this goal. Our experimental results show that integration of knowledge from these datasets into a 

learning method can improve the prediction of the molecular subtypes of breast cancer. The 

model DCNN_Concat achieves the best prediction performance among the three integration 

models (DCNN_Concat, DCNN_Siamese, DNN_SE) and the models (CNA_DCNN and 

Gene_DCNN) built using individual data sources for multiclass classification.  

We also compared the prediction results of our proposed models with one integrative 

DNN-based  model (DNN_DBN) and two other traditional machine learning models: SVM and 

RF. All our proposed knowledge integration models and the models built on individual datasets 

achieve improved prediction performance than the baseline models except the RF models show 

higher predictive performance for binary classification.  

The proposed integrative DNN-based  learning frameworks are not restricted to integrate 

only copy number alteration and gene expression data. They can be extended to incorporate 

many more data sources, such as methylation data, clinical data, etc. We will investigate this 

issue in more detail in the future.  
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Chapter 5 

 

Triglyceride concentrations prediction using epigenome-

wide DNA methylation profiles  
 

5.1. Background 

 

DNA methylation (DNAm) is a major epigenetic modification involving the addition of a 

methyl (CH3) group to the 5 position of cytosine residues in CpG (5'-cytosine-phosphate-

guanine-3') dinucleotide sequences by DNA methyltransferases to form 5-methylcytosine (5-

mC). In humans, DNAm is very common and 5-mC is found in approximately 1.5% of genomic 

DNA. The mutation of specific CpG sites is always associated with tissue-specific genes 

transcriptional repression, phenotype transmission and contributes to the development of 

different diseases by altering DNA accessibility and chromatin structure. The quantification of 5-

mC content or global methylation in diseased or environmentally impacted cells could provide 

useful information for the understanding of disease progression and mechanisms.  DNAm 

variation has been proposed as an epigenetic biomarker for predicting the stage of disease, to 

determine a patient’s response to therapy, and to evaluate the prognosis [72]. 

Experimental and epidemiological evidence have reported that associate DNAm 

variations with blood lipid levels, such as high-density lipoprotein cholesterol, low-density 

lipoprotein cholesterol, triglycerides, and total cholesterol, by regulating the related gene of 

interindividual lipid levels. DNAm variations of CpG sites within CPT1A and SREBF1[2] gene 

promoters were linked with high triglycerides [73].  

CpG sites with the high interindividual variability of DNAm can indicate the possibility 

of different diseases, which means these CpG sites hold the patterns that are capable of 
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discriminating between different phenotypes. As a heritable epigenetic mark, DNAm can explain 

the progress of many disease courses. Epigenome-wide DNAm has been used to predict different 

phenotypic traits. For example, Xu et al [74] developed a novel support vector regression model 

for forensic age prediction by DNAm. Wilhelm [75] proposed a machine-learning model named 

Model-Selection–Supervised Principle Component Analysis (MS-SPCA) to predict different 

stages of cervical cancer using DNAm data. To avoid a potential overfitting problem in building 

these models, only a small handful of CpG sites are used in the models. 

Newer machine-learning methods, such as a deep neural network (DNN), can build a 

model using a large number of input features. These models show very promising results for 

several classification problems [25] in the field of computer vision. Unlike support vector 

machine (SVM), DNN does not require any handcrafted features and can automatically extract 

features from the raw input data. However, an SVM model will be likely overfitted when it is 

applied to methylation data with 450,000 CpG sites and only hundreds of samples because the 

underlying distribution is under-sampled. In this experiment, we propose DNN regression 

models for the prediction of triglyceride concentrations from multiple peripheral blood draws 

that are measured at different visits based on the individual’s epigenome-wide methylation 

profiles that are generated before and after medication interventions. 

 

5.2. Methods and Materials 

5.2.1. Datasets 

The data sets provided by Genetic Analysis Workshop 20 (GAW20) include epigenome-

wide DNAm profiles and triglyceride concentrations (mg/dL) measured at the baseline level 

(pretreatment) of visit 2 and changes in response to treatment with fenofibrate (posttreatment) at 
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visit 4. The differential DNAm profiles were generated using the Illumina Infinium 

HumanMethylation450 BeadChip array. The beta value measuring the methylation level is 

expressed as a value between 0 and 1 in 993 participants of the Genetics of Lipid Lowering 

Drugs and Diet Network (GOLDN) study. It should be noted that there are only 499 participants 

with the posttreatment DNAm data. The GOLDN study recruited families with at least 2 siblings. 

For pretreatment data, we randomly selected 900 samples as the training set and another 93 

samples as the test set; for posttreatment data, we randomly selected 400 samples as the training 

set and another 99 samples as the test set. We built the deep-learning models to predict 

triglyceride concentrations at visits 2 (pretreatment) and 4 (posttreatment) using the pretreatment 

DNAm data and at visit 4 using the posttreatment DNAm data. When we developed the model to 

predict posttreatment of triglyceride concentrations at visit 4 using pretreatment of DNAm data 

measured at visit 2, we only had 714 participants, from which 620 samples were randomly 

selected as the training set and the other 94 samples as the test set. The procedure to split the 

training and test sets was repeated three times to get more robust results. It should be noted that 

we did not use the “Answers” provided by GAW20 organizers during the analysis. 

 

5.2.2. Regression-based prediction models 

5.2.2.1 Deep-learning regression model 

 

We proposed a DNN model (Figure 9) to predict individuals’ triglyceride concentrations 

based on their epigenome-wide DNAm profiles provided by GAW20. DNN is an artificial neural 

network–based method, which is made up of a series of hidden layers between the input and 

output layers. DNN builds a hierarchy of features by producing high-level features from the low-
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level features. The bottommost layer (i.e., input layer) of a DNN takes the raw input data and 

each next hidden layer learns an abstract form of the data from the previous layer. 

 

Figure 9 - Proposed architecture of DNN. The numbers shown in the figure represent the size 

of the output of each layer. 

 

The input of our proposed DNN network is a vector of the epigenome-wide DNAm 

profile of a given sample. Because the feature vector is quite high dimensional (>450,000), we 

passed this input vector to two fully connected layers with different output sizes to reduce its 

dimension. These outputs can be thought as a matrix multiplication for getting a high-level 

abstraction of the information in the input vector. 

Because of the complex nonlinear relationship between triglyceride concentrations and 

genome-wide DNAm, we used a ReLU (rectified linear unit) layer followed by the second fully 

connected layer. The ReLU layer performs a ReLU thresholding function over the output of the 

second fully connected layer. The output of the ReLU layer is the nonlinear representation of the 

input to the network (see Figure 9). ReLU function follows the Equation 1. 

To provide generalization ability over the test data to the network we used a 

regularization technique called Dropout [76]. Dropout layers randomly drop out hidden neurons 
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from the network. This technique allows the network to overcome the curse of overfitting 

because the network has to learn fewer parameters. Consequently, the output from the ReLU 

layer in our network was subjected to the dropout regularization technique by applying a dropout 

layer. 

To get the final predictions of triglyceride concentrations we passed the output of the 

dropout layer to the last layer of the network, which is also a fully connected layer. We 

considered the score of this layer as the prediction of the network. Instead of using a greedy 

layer-wise (layer-by-layer) approach to training our network, we used a Euclidean loss layer to 

train our network in a backpropagation style. In this case, each layer of our DNN took an input 

and performed a transformation of the input to produce an output. This output was then used as 

an input to the next layer and so on until the loss layer was reached. This loss layer computed an 

error over its input data with respect to the ground truth value. Finally, a remedial gradient with 

respect to the error value was passed down to the DNN network to update its parameter values. 

 

5.2.2.1 SVM model 

SVM is a supervised learning algorithm that was initially developed to solve 

classification problems but later was extended to solve regression problems [77]. SVM 

regression maintains all the key features that characterize the maximal margin theory and avoids 

difficulties of using linear functions in the high-dimensional feature space by transforming the 

optimization problem into dual convex quadratic programs. The loss function in SVM 

regression, which is used to penalize errors, usually leads to the sparse representation of the 

decision rule. This gives significant algorithmic and representational advantages over other 

regression methods. 
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5.2.3. Feature selection for DNN and SVM 

For each sample, we have 463,995 CpG sites. As we know that CpG sites with high 

interindividual variability hold the most discriminative information [78], we defined the 

interindividual variability (𝐼𝑣) as the difference between 90th percentile and 10th percentile of 

the DNAm of a given CpG. 

We built DNN models based on the selected CpG sites with 𝐼𝑣 greater than or equal to 

different cutoffs of DNAm values (minimum [no filtering], first quartile, second quartile, mean, 

and third quartile). For each of these cutoff points we had 463,995, 348,223, 232,131, 165,817 

and 116,057 CpG sites in the pretreatment data set and 463,995, 348,252, 231,901, 157,073 and 

116,054 CpG sites in the posttreatment data set. The distributions of the interindividual 

variability 𝐼𝑣 of DNAm in all CpG sites are shown in Figure 10. Figure 10 clearly shows that 

the DNAm of a majority of the CpG sites has very small variation across samples. SVM will 

likely overfit the regression models if we use all 463,995 CpG sites to train the models. 

Consequently, we selected hundreds of the top CpG sites with larger interindividual variability of 

DNAm to build the SVM regression models. 

 

Figure 10 - Distribution of interindividual variability of DNAm for pretreatment and 

posttreatment. 
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5.3. Building the DNN 

We used CAFFE, which is a C++-based deep-learning library, to implement the DNN 

models (see Figure 9) for different cutoffs of interindividual variability of DNAm (see Figure 

10). We trained all our DNN models using a learning rate (defined in the context of optimization, 

and minimizing the loss function of a neural network) of 0.000001, batch size (the number of 

training samples used in a single iteration/forward pass) of 10 and dropout ratio of 0.5. 

 

5.4. Performance evaluation 

We used root mean square error (RMSE) and Pearson correlation (Cor) methods to 

compare the performance of our DNN and standard SVM regression models. Gal and 

Ghahramani [76] also used RMSE to measure the performance of their deep-learning-based 

regression models. RMSE can be calculated as follows: 

RMSE=√𝑚𝑒𝑎𝑛((𝑦 − 𝑦̂)2) (8) 

Here, 𝑦 represents the observed triglyceride concentrations at different blood draws and 𝑦̂ 

represents the predicted triglyceride concentrations at different blood draws. 

Cor was calculated between 𝑦 and 𝑦̂. We performed three random splits between training 

and test data. The results of RMSE and Cor were averaged and their SDs were estimated. We 

used R package e1071 [62] to build the SVM regression models (default parameters were used). 

Models with smaller RMSE or higher Cor are preferable and have better prediction performance. 
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5.5. Results and discussion 

The p values of the Shapiro test of the log (base 2) of observed triglyceride 

concentrations in test sets from Case A(pretreatment DNAm data to predict the triglyceride 

levels measured at visit 2),Case B(pretreatment DNAm data to predict the triglyceride levels 

measured at visit 4), and Case C(posttreatment DNAm data to predict the triglyceride levels 

measured at visit 4), were 0.17, 0.25, and 0.25, respectively, suggesting that the observed 

triglyceride levels followed log-normal distribution. We performed the same procedure on their 

averaged predicted values from the three splits of training and test sets using the SVM models 

with largest Cor values (bold in Table 13) and the DNN model with largest Cor values (bold in 

Table 14) and the p values for Case A, Case B, and Case C were 0.09, 0.05, and 0.78, 

respectively, for SVM models, and 0.08, 0.14, and 0.59, respectively, for DNN models, which 

suggest that the predicted triglyceride levels using either DNN models or SVM models also 

follow log-normal distribution. The scatter plots of the observed and predicted triglyceride levels 

for Case A, Case B, and Case C are shown in Figure 11. 

 

Table 13: Performance of SVM models 

Data1 Evaluation  

Metric2 

Cutoffs3 

100 200 300 400 500 

1 RMSE  90.3(27.5)4 90.9(28.8) 90.9(29.2) 90.8(28.8) 95.8(23.8) 

Cor 0.13(0.06) 0.11(0.12) 0.11(0.14) 0.11(0.14) 0.10(0.13) 

2 RMSE  48.7(13.7) 49.4(12.9) 49.0(12.9) 48.7(12.8) 50.1(14.3) 

Cor 0.19(0.08) 0.12(0.10) 0.15(0.06) 0.17(0.05) 0.04(0.20) 

3 RMSE  48.0(7.2) 47.6(7.0) 47.5(6.9) 46.9(7.0) 47.0(6.9) 

Cor 0.04(0.08) 0.07(0.09) 0.07(0.10) 0.13(0.10) 0.12(0.12) 
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1Data 1. Pretreatment DNAm data to predict the triglyceride levels measured at visit 2;  

Data 2. Pretreatment DNAm data to predict the triglyceride levels measured at visit 4; 

Data 3. Posttreatment DNAm data to predict the triglyceride levels measured at visit 4. 

2RMSE: root-mean-squared-error; Cor: Pearson correlation between observed and predicted 

values.  

3The top number of CpGs selected based on inter-individual variability. 

4The averaged RMSE or Cor value and their standard deviation (SD) from the three splits of 

training and test sets. The bold value indicates the model has the best performance across a 

different number of selected CpGs at the given DNAm data set and performance metric. 

 

Table 14: Performance of DNN models 

Data Evaluati

on 

Metric 

Cutoffs1 

Min 1st 

quartile 

Mean Median 3rd 

quartile 

10kCpGs 1kCpGs 

1 RMSE  88.5(26.3) 88.8(25.6) 89.3(25.7) 89.0(27.3) 88.8(26.1) 89.2(25.9) 89.8(26.4) 

Cor 0.19(0.05) 0.27(0.08) 0.19(0.09) 0.14(0.11) 0.11(0.10) 0.24(0.02) 0.14(0.11) 

2 RMSE  48.5(14.4) 48.4(14.7) 47.4(13.7) 48.5(14.3) 47.5(13.8) 48.6(12.9) 48.8(13.0) 

Cor 0.23(0.13) 0.10(0.29) 0.29(0.07) 0.14(0.19) 0.29(0.07) 0.20(0.11) 0.10(0.14) 

3 RMSE  48.5(4.7) 48.7(4.8) 48.5(4.5) 48.1(3.5) 48.6(4.6) 48.2(5.0) 48.5(5.3) 

Cor 0.17(0.07) 0.18(0.08) 0.22(0.13) 0.20(0.12) 0.19(0.08) 0.17(0.06) 0.16(0.04) 

 

1The selected CpGs with inter-individual variability greater than or equal to different cutoffs of DNAm 

values (minimum (no filtering), 1st quartile, 2nd quartile, mean and 3rd quartile) as well as the top 10,000 

CpGs (10kCpGs) and top 1,000 CpGs (1kCpGs). 
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Figure 11 - Scatter plots of the observed triglyceride levels (mg/dl) and their predicted 

triglyceride levels (mg/dl). 

 

The prediction results (RMSE and Cor) of the SVM and our DNN models using a 

different number of CpG sites with the larger interindividual variability of DNAm are shown in 

Tables 13 and 14, respectively. In general, the number of CpG sites used in each model (DNN or 

SVM) has little effect on the prediction performance as measured by RMSE of the triglyceride 

concentrations measured at a specific visit. However, the number of CpG sites used in each 

model (DNN or SVM) does impact the prediction performance measured by Cor. For example, 

the SVM models with a larger number of CpG sites (eg,500) have poorer performance than those 

with a smaller number of CpG sites (eg, 100; see Table 13), but the DNN models with a larger 

number of CpG sites (eg, 165,817) have much better performance than those with a smaller 

number of CpG sites (eg,1000; see Table 14).  Comparison of the performances of our DNN 

models (see Table 14) with those of SVM models (see Table 13) shows that our proposed 

models have a lower RMSE and a higher correlation between predicted and observed triglyceride 

concentrations, which suggests that our DNN models have better prediction performance than do 

the SVM models. 
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Overall, using DNN and SVM models to predict triglyceride concentrations with DNAm 

profiles has worse performance at visit 2 than at visit 4. Remarkably, our DNN results (the 

averaged RMSE and Cor) show that the performances of using pre- and posttreatment DNAm to 

predict triglyceride levels at visit 4 are similar. For example, the best performance of using 

pretreatment DNAm to predict triglyceride levels at visit 4 is 47.4 for RMSE and 0.29 for Cor 

while the best performance of using posttreatment DNAm to predict triglyceride levels at visit 4 

is 48.1 for RMSE and 0.22 for Cor. Furthermore, this finding also shows that pretreatment 

DNAm has the slightly better capability to predict triglyceride levels than posttreatment DNAm 

at visit 4. These results have two potential implications: (a) the variation of DNAm may not be 

altered greatly as a result of treatment, and (b) early DNAm variation could predict the internal 

response of the individuals to lipid-lowering drugs. Consequently, DNAm may have a long-term 

effect on genome sequence under exposure to early environmental experiences that were 

associated with stable changes in the gene expression that emerged in the initial stage of disease 

and were sustained into later stages. Much research [79] supports the long-term epigenetic effect 

on genomes, making the DNAm profile usable as the epigenetic marker to predict development 

and prognoses of diseases. 

 

5.6. Conclusions 

This study proposed a DNN architecture for predicting triglyceride concentrations, a 

complex phenotypic trait, using epigenome-wide DNAm profiles measured at different patient 

visits for a blood draw. The new model framework has advantages over some traditional learning 

algorithms (such as SVM), which are prone to overfitting when the input data are quite high 

dimensional. We showed that DNAm profiles measured at pretreatment and posttreatment have a 
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better capability to predict triglyceride concentrations measured from blood drawn at visit 4 than 

do DNAm profiles measured at pretreatment to predict triglyceride concentrations measured 

from blood drawn at visit 2. We also found that DNAm profiles measured at pretreatment can 

predict triglyceride concentrations measured from blood drawn at visit 4 more accurately than 

DNAm profiles measured at posttreatment, which suggests a long-term epigenetic effect on 

phenotypic traits. The limitations of the study are that the proposed model neither considered the 

familial relationships of the participants in the study nor explored the usefulness of the available 

genetic data to predict the triglyceride levels. We will investigate whether the DNN model is 

sensitive to the familial structure and integrate both genetic and methylation data to predict 

triglyceride levels in the future. 
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Chapter 6 

 

Conclusion and future work 
 

 

Classification of molecular subtypes of breast cancer using omics profiles is a 

challenging problem since the data sets are quite high-dimensional and highly correlated. The 

curse of high-dimensionality also affects the performances of predicting a phenotype using 

DNAm data. Traditional machine learning methods, such as SVM and RF, have limitations in 

handling high-dimensional and highly correlated data sets. Recently, DNN learning has been 

demonstrated advantages over these methods as it does not require any hand-crafted features, but 

rather automatically extracts features from the raw data and efficiently analyzes high-

dimensional and correlated data. In this thesis, we have developed several DNN frameworks for 

classifying molecular subtypes of breast cancer using only one data source or two heterogeneous 

data sources as input to the frameworks. In addition, we also developed a DNN-based  regression 

framework which takes epigenome-wide DNAm data as input to predict triglyceride 

concentrations in our blood.  

From the project called METABRIC [60] we collected two omics profiles: CNA and 

gene expression profiles measured on the same set of breast cancer patients. We have used only 

CNA profiles to build a DNN model to predict a patient’s ER status as well as the status of 

PAM50 subtypes. In both cases, our proposed models provide improved prediction performance 

than the baseline models: SVM and RF. We also introduced multiple integrative DNN 

frameworks which take both CNA and gene expression profiles of a patient as input to predict 
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the patient’s ER status and PAM50 subtypes. Our proposed integrative frameworks outperform 

three baseline models (i.e. SVM, RF, and DNN_DBN) when predicting the PAM50 subtypes. 

Experimental results show that integrative frameworks are superior to those that use only one 

data source in predicting breast cancer subtypes. Our proposed integrative frameworks are not 

limited to CNA and gene expression profiles. In future, we will use other omics data (e.g. 

DNAm) in our integrative DNN frameworks. 

The epigenetic modification has an effect on gene expression under the environmental 

alteration, but it does not change corresponding genome sequence. DNAm is one of the 

important epigenetic mechanisms. Predictions of phenotypic traits, e.g. blood pressure and 

triglyceride concentrations in human blood, can be done using the variations in DNAm data. In 

the thesis, we proposed DNN-based  regression frameworks which take epigenome-wide DNAm 

data of a patient as input to predict triglyceride concentration (before and after medication). We 

used pretreatment (i.e. before medication) and posttreatment (i.e. after medication) DNAm data 

to predict pretreatment and posttreatment triglyceride concentrations in a patient’s blood. In both 

cases, our proposed DNN-based  regression model provides improved prediction performance 

than the baseline SVM models. Our framework also uses pretreatment DNAm data to predict 

posttreatment triglyceride concentrations. In this case, our framework gives the best prediction 

performances than the above two cases. Therefore, pretreatment DNAm data is more capable to 

predict posttreatment triglyceride concentrations than posttreatment DNAm data. This outcome 

implies that the treatment did not properly altered DNAm variations as well as advises long-term 

epigenetic consequence on phenotypic traits. We did not consider the familial relationships of the 

participants during the model building. In future, we will incorporate this information and other 

genetic available data with DNAm data into our framework.  
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