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Abstract

This thesis describes a system for analyzing the verbal behaviour of speak-
ers with neurological disease. The system was developed on an IBM PC. A
two-channel Analog to Digital Converter board and two low-pass filters were
developed in order to sample voices from the speakers.

Several parameters may be extracted from the sample signal, with the
most important parameter being the pitch period of the signal. A pitch
period detection by means of modified autocorrelation function and simple
time domain peak detector is described. This method uses center and infinite
clipper in order to reduce the volume of computations and to avoid incorrect
pitch period classifications.

Some elementary statistical analysis was done on the samples to ana-
lyze which parameters are relevant for classifying normal and pathological
speakers. The parameters used in the analysis are the deviation of funda-
mental frequency (df0), degree of hoarseness (dh), frequency perturbation
quotient (fpq), minima perturbation quotient (a2pq), jitter in fundamental
frequency (fdlt), shimmer in minima (mindlt), directional perturbation fac-
tor of fundamental frequency (fdpf) and directional perturbation factor of
minima (mindpf). The analysis was done with SAS.

A VLSI implementation of autocorrelation function is described. It could
be used to improve the speed performance of the calculation. The implemen-

tation was done with Cadence Design Systems, which allowed for the design



in schematic level. Circuit simulation was done with SILOS.
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Chapter 1

Introduction

Speech-related parameters such as average pitch period, degree of hoarseness,
deviation in pitch period, frequency perturbation factor, and amplitude per-
turbation factor, have been used in various areas of study. For example,
studies have been done in speech communication to analyze and recognize
speech [13]. In other fields such as phonetics and linguistics studies have
been done to analyze phonetic features [15]. In education, speech-related pa-
rameters are used to help the deaf in learning how to speak correctly, analyze
speech disorders in children, and to assist in learning a foreign language [15].
Speech-related parameters are also used in medicine, pathology, and psychol-
ogy to diagnose the condition of a patient, which is the main interest of this
thesis.

It is known that some diseases change the speech quality of a patient.
The results of several studies have shown that most laryngeal [1] [14] [19]

[24] [36], neurological [6] [7] [11] [26] diseases, and changes in emotional state




[1] [8] cause significant changes in speech signal. If these changes can be
formulated and measured, it may be useful in diagnosing the condition of a
patient. The main interest of this thesis is the development of a computer-
based system for speech signal analysis, which will be used in analyzing the
presence of laryngeal and neurological diseases.

The correlation between laryngeal and neurological disease with voice
parameters, such as pitch period perturbation was studied in [19] [24] [25],
amplitude perturbation in [19] [21], rate of unvoice in [19], the functional
status of larynx sources with a fuzzy approach was studied in [12], and degree
of hoarseness in [19].

The availability of analog to digital converters open the possibility of
performing the analysis of speech signal in the digital domain. The advan-
tages of performing the analysis in the digital domain compared to analog

domain are :

1. It opens the possibility of using digital devices, such as digital comput-

ers and digital signal processing chips.

2. It is more flexible in operation. Different methods can be implemented
on the same system using different programs. Changing one method to
another is a matter of running the proper program, whereas in analog
the methods are hardwired for the implementation. Any alterations

might require significant hardware changes.



. The data is more insensitive to noise, since it is stored in digital format.
The quality of the data does not change with time and the number of
playbacks, whereas the quality of a recorded analog signal will reduce

after a number of playbacks.

. Digital circuits are more insensitive to noise, whereas analog circuits

suffer from drift caused by temperature, humidity and time.

. The data can be stored into disk for future analysis without reducing
quality. Duplicating, copying, and transferring the data can be done

easily.

. On a networked system, where the data is stored in a shared disk, a
number of computers or processing devices can share the same data

with the same quality.

. Digital components are relatively inexpensive compared to high-quality

analog components.
The disadvantages of using digital domain are :

1. The quality of the data depends on the quality of the devices used to
sample the analog data. For example, the number of bits or sampling
rate of the Analog to Digital Converter (ADC) effects the accuracy of

the digital representation.

2. High quality and fast ADC is relatively expensive.



3. Large memory or storage is needed to store the data. A system with
16 bits resolution and 20 kHz sampling rate would require 40,000 bytes

of storage for every second of speech signal.

From the brief description above, analysis on digital domain has more ad-
vantages over analog.

Most of the work that has been done required special devices, such as
a special microphone [19] [21], Digital Signal Processing (DSP) chips, or
mini or mainframe computers [5] [14] [16] [24] [25]. The advantages of this
method is fast and accurate. This method is however expensive and inflexible.
Modification or fine tuning is also difficult and the users must have the same
devices.

The availability of inexpensive and powerful personal computers or work-
stations, which sometimes are equipped with ADC, yields to an alterna-
tive method for analysis. This idea would allow physicians, clinicians or
researchers to do analysis on their own computers in their own offices. A
computer-based system for analyzing speech signal is proposed in this thesis.

This implemented system has the following characteristics :

1. It requires a minimum additional hardware, namely a microphone and
an Analog to Digital Converter. If the computer is equipped with an
ADC board, no additional hardware is required. In the event that an

ADC board is required, the additional ADC is relatively low priced.

2. It is compact, since only the computer and the microphone are used.

4



3. It uses two-channel ADC thereby avoiding special DSP chips.

4. It uses methods and procedures with reduced volume of computation.

For example the FFT computation is done only on stable zones.

5. The influence of amplitude distortion is reduced since the pitch period
is evaluated on band-limited signals using an autocorrelation function,

which is relatively insensitive to external noise and phase distortion.
6. The results and data could be stored on floppy disk for future analysis.

7. The speech signal can be digitized directly into the computer’s memory.
This means the system does not require an expensive high-quality tape

recorder.
8. It is safe to be used by untrained person.

In this thesis a computer-based system for analyzing verbal behavior
of patients with neurological disease is proposed. The system only requires
minimal additional hardware, namely ADC. The analysis is done in software
with methods and procedures which reduce the volume of computation, thus

the analysis can be done faster.

This thesis is organized as follows :

Chapter 2 discusses methods of digital signal processing of speech. Some theory
and methods in estimating pitch period, pitch period perturbation,

amplitude perturbation, and degree of hoarseness will be presented.

)



Chapter 3

Chapter 4

Chapter 5

Chapter 6

discusses method, software, and hardware in the implemented system.

discusses the application and preliminary result of the system in ana-
lyzing voices of normal speakers, speakers with laryngeal diseases, and

speakers with neurological diseases.

will discuss VLSI implementation of autocorrelation function, which is

used to estimate the pitch period of a signal.

contains the conclusions and suggestions for future work.



Chapter 2

Methods for Digital Signal
Processing of Speech

There are several speech related parameters that can be extracted from
speech signals, namely average pitch period, degree of hoarseness, deviation
in pitch period, and pitch period perturbation. Some of these parameters
depend on the pitch period of the signal. For example, degree of hoarseness,
which can be viewed as a Noise to Signal ratio, is calculated based on the
power of the harmonic components (fundamental frequency, sub harmonic,
and harmonic components), and the inharmonic components. Therefore care
must be taken in designing and implementing a method for pitch detection.

After a brief survey of methods for detection, two pitch detection meth-
ods, namely simple time-domain pitch detection and pitch detection with

improved accuracy using an autocorrelation function, will be presented.



2.1 Survey of Methods for Pitch Detection

Pitch detection, which has been an interest for more than half century, seems
to be an easy task, but in practice it is among the most difficult problems in
speech analysis. Many methods have been proposed and implemented, each
with its own strengths and limitations.

Pitch period detection / estimation can be divided into three categories,
namely t¢me-domain analysis, short-time domain analysis, and hybrid anal-
ysts which is the combination of the two methods.

The oldest and the simplest method in pitch detection, is manual pitch
detection. In this method the signal is displayed visually and measurement is
done by an operator. This approach is good only for a small amount of data.
With large amount of data, such as a sample from a one-minute speech, this

tedious task is not reasonable.

2.1.1 Time-domain Pitch Detection

As the name implies, in time-domain pitch detection, the analysis is done on
the waveform itself by inspecting the waveform features in the time domain.
The features can be peaks or valleys [9] [17], energy of the peaks [33], peak
width [18], or a combination of them.

A typical block diagram of time-domain pitch detection is shown in
figure 2.1. The preprocessor is used to preprocess incoming data, such as

performing data reduction, in order to make pitch extraction easier. Low-



l input (speech) signal

preprocessor

basic extractor

pitch markers

postprocessor

pitch contour or marker string

Figure 2.1: Block diagram of a typical time-domain pitch detection

pass filtering is an example of a preprocessor. Basic ertractor, the main
block, converts incoming signal into several pitch estimates. It is also able to
process every pitch period (75) individually. By doing this, it is able to track
rapid changes in To. However, if the signal is disturbed by noise or spurious
signals, then this method may not be able to track the correct pitch period.

The output of basic extractors is usually a sequence of pulses or markers
which indicate the appearance of a certain features of the signal. For exam-
ple the output might be a sequence of pulses where the signal reaches the
maximum values, or the signal crosses the zero value.

The postprocessor usually depends on the applications. This can be a



calculation of the distance between consecutive markers generated by basic
extractor.

Time domain pitch extractors are based on the fact that for any periodic
signal, a structured pattern appears exactly or at least approximately from
period to period. This feature can be extracted in the time domain, along
with the fundamental harmonic.

The advantages of time-domain pitch detection are simple to implement,
able to perform real-time analysis, and able to locate any pitch period indi-
vidually.

The disadvantages of time-domain pitch period extractors are :

1. The fundamental frequency must be present in the waveform. There-

fore it restricts to the cases where the signal is band limited.

2. It is sensitive to low-frequency signal distortions. Therefore in an un-
predictable environment, this system usually is replaced by more robust

devices.

An example of time-domain pitch period detection is the parallel process-
ing by Gold and Rabiner [9]. It uses six simple peak detectors, and processes
different features of the signal, namely peak-to-peak value, peak-to-valley,
and combination of peak and valleys.

Peak picker [17] is another example of time-domain pitch detection. Am-
plitude; energy of the peaks, sign of amplitude, and ratio of amplitude to

energy are used as features of the pitch detector in [33].
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2.1.2 Short-time Pitch Detection

In short-time pitch detection, the data is transformed into another domain.
The transformation can be done with autocorrelation, Fourier transform, or
inverse filtering [27]. This method is also known as spectral-domain pitch
period detection.

The transformation is done in a short time interval or frame, which is
then processed separately. The length of the frame depends on the applica-
tion, however there is a constraint that the range is chosen so that at least
two periods are on the frame. If this constraint is not met, the periodicity
information is lost. If the frame length is too large, natural changes in the
pitch may not be detected. For speech signals, typical frame length is 20 to
50 ms [15].

The operation is done in the following manner. After the signal is op-
tionally preprocessed with a low-pass filter, or an adaptive center clipper, the
signal is grouped into several frames or short segments. A transformation
is done on this frame, for example by using autocorrelation function. The
estimation is done by analyzing the peaks of the spectrum in the new do-
main. The output of this method is a sequence of average estimates of the
fundamental frequency of the signal within the frame.

The disadvantages of this method are :

1. That it can not perform real-time calculation, since the transformation

requires a large computing effort. Several methods have been proposed

11



to solve this problem. For example a non-linear processing such as

center and infinite clipper [32] might be used.

2. It requires at least two periods of the signal inside the frame. Therefore
it is unable to track the individual pitch period. As a result, rapid

changes might not be detected.
The advantages of this method are :
1. Not sensitive to phase distortions

2. Ifthe signal is periodic and regular, the indication of the pitch is strong.

This makes it reliable under noisy environment.

From the overview above, it can be concluded that short-time analysis
is not sensitive to phase distortion and less sensitive to noise and spurious
signal. However, short-time analysis requires longer time to compute, unless
it is implemented with a special trick or using a non-linear preprocessing.

Examples of short-time pitch detection are autocorrelation function with
center clipper [32] and the Simplified Inverse Filter Tracking (SIFT) algo-
rithm [27]

Hybrid analysis is developed to combine the advantages of both time-
domain and short-time analysis. For example the short-time analysis is done

first to get an accurate fundamental frequency, then time-domain analysis is

12



carried out, using the results from the short-term analysis. If the difference
in the two successive fundamental frequency is too large then the short-time

analysis is performed again.

2.2 Simple time-domain pitch detection

This simple time-domain pitch detection bases the detection only on one
feature of the signal; namely the location of the highest peak. The algorithm
starts from a peak and searches the next peak based on a prior value of the

previous pitch period 7(z) and some tolerance value of k.

Naz(1 +1) = max{(Nme(t) + 7 — k- 75),
(Nma.r(z) + 7 — k- T + 1)a
(Nma:):(i) + T; + k * T + 1)a

(Nmax(i)+Ti+k'Ti)} (21)

where N, is the location of the peak.

7(i+1) = Npaoli + 1) = Nymaa(d) (2.2)

From the experiment, it is found that the value of k = 0.125 or 12.5 %

gives a good result for sustained vowel of normal speakers.

13




f(t)

Nmax (1) ' Nmax (Y+1)

t {time units)

Figure 2.2: Simple Peak Detection

The advantage of this method is that it is fast and simple. However this
method needs a prior knowledge of 7, which makes it unsuitable to be used
by itself. Also if there is a rapid change, interruption, or discontinuity, the
method might fail to detect the correct pitch period. If this occurs, a new

value of 7 must be given otherwise it will give incorrect results.

2.3 Pitch detection with improved accuracy
using the autocorrelation function

The method presented here is based on autocorrelation function, which is a
special case of correlation function. The correlation of two discrete signals

z(n) and y(n), is defined as :

14



1 +N

SNET S () (23

corr(r) = lim
N—oo
For autocorrelation, the two input signals are identical. Therefore the

autocorrelation is defined as :

+N

> z(n)z(n+ 1) (2.4)

=-—N

R(T):NII—I»IQOQNHn

provided that z(n) are defined for all n. The parameter 7 is the delay
between the immediate and the delayed signal.

If the signal z(n) is finite, i.e. samples of z(n) are zero outside the
interval n € [0, N — 1], then

1 N—T—l

R(r) = ¥ > z(n)z(n+7) (2.5)

n=0

Notice that the upper summation index becomes (N — 7 — 1), since for
n = N — 7 the second term is defined as zero.

The autocorrelation function, R(7), is the inverse Fourier transform of
the power spectrum of the signal [15]. As a result, phase distortions are
eliminated.

According to definition (2.4), R(r) has its highest peak at 7 = 0 which
equals the average power of the signal z(n). For a finite signal, accord-
ing to (2.5), this peak indicates the average power P4y during the interval

ne [0,N—1].

15



Psy = R(0), wheren € [0,N —1] (2.6)

For a periodic signal z(n) with period Ty, z(n + k7o) = z(n), the auto-

correlation function, R(7), is also periodic.

R(t + kT,) = R(7), k integer (2.7)

The equation above shows that for a periodic signal, the autocorrelation
function has significant peaks at 7 = kTy.

The difficulties of Ty detection using the autocorrelation function are :

1. When a strong second or third harmonic is present in the speech signal,

then it may be classified as T [2].

2. When a strong subharmonic is present (especially in most pathological
voices [36], frequently it is classified as T} leading to a drastic error in

Ty detection [2].
3. Large volume of computation.

Many solutions have been proposed to solve the problems mentioned
above. One of the solutions is to use Spectral flattening. This technique
equalizes the speech spectrum in such a way that the spectral peaks which
represent the‘ formants are removed. This can be done by using center-
clipping- and signal encoding [2] [32].

The method used here involves several steps :

16



e preprocessing with analog filters

e signal segmentation

e voice/unvoice detection using amplitude as the feature

o threshold calculation

e signal encoding to 1, 0, and -1, by using center and infinite clipper
e R(7) evaluation

e voice/unvoice detection

e finding all peaks in R(r)

e approach T detection by using amplitude selection and logical analysis
in order to find the true Ty and to reject subharmonic and harmonic
components

Preprocessing

A low-pass filter with a cutoff frequency of 700 Hz is used as a preprocessing.
This filter removes all high frequency components, including the formants for

the vowel 7a”

, from the speech signal. This will increase the precision of T,
calculation using autocorrelation [2]. Results from several researchers [2] [5]
[15] show that a cutoff frequency of 700-800 Hz is optimal for Ty detection

using autocorrelation.

Segmentation

The digital signal is divided into 30 ms segments. Autocorrelation requires
that at least two periods of the signal be used in the calculation, with the

largest pitch period in human voice being around 15 ms [15].

17



Segmentation is carried out with a rectangular time window, since rect-
angular window preserves the signal’s shape. A smoothing window must not

be used since smoothing has been done by the analog filter.

Voice unvoice detection with amplitude

A screening is done on the signal in the frame to check whether the signal
is too low for calculation. If the signal is lower than some threshold value,
then it is more likely that there is no fundamental frequency present in this
particular frame. If this is the case then the segment is marked as unvoiced.
It is suggested [2] that the value of 12.5 % of possible maximum value of the
ADC is taken as a threshold.

Threshold calculation

Threshold calculation is done by finding the segment’s global minimum and
maximum. The global minimum and maximum of the 7** segment are found

by using :

AMAX(i) = max{A! _()},t=1,...,P (2.8)

AMIN(i) = min{A® , ()}, t=1,...,C (2.9)
where :

Af ,-(2) is the local maxima amplitude in the i segment

A} in(t) is the local minima amplitude in the i** segment



P is the number of local maximas

C 1s the number of local minimas

Two thresholds are calculated on the basis of AMAX(i) and AMIN(J) :
Pt(3) = ke - AMAX(3) (2.10)
P7(2) = kpin - AMIN(7) (2.11)

Several experiments with pathologic and normal voice [2] [16] have shown
that kpmee = kmin = 0.75 is the optimal value for suppression of noise com-

ponents, harmonics, and subharmonics.

Signal encoding

The signal is encoded into -1, 0, and +1 by using a combination of center
clipper and infinite clipper.
1 ifaz(n) > PH(7)

'(n)=4¢ —1 ifz(n) < P=(2) (2.12)
0 otherwise

The procedure is carried out in order to [2] :

1. minimize the errors caused by formants in Ty detection, because the

encoding destroys the formant structure.
2. eliminate significant noise components.
3. perform significance compression before calculating R(7).

4. significant volume computation reduction since R(7) is evaluated with-

out multiplication.

19



z’ Output

1 +CL Input

Figure 2.3: Input-output characteristic of the combination of center clipper
and infinite clipper

Consider the following example. The autocorrelation function of a pure
sine wave and a signal with a dominant third harmonic are shown in figure 2.4
and figure 2.5 respectively. As shown in figure 2.5, it is difficult to determine
the actual fundamental frequency. If the detection is based on the highest
peak, after some lag to ignore the peak at origin, then the third harmonic
will be picked as the fundamental frequency.

Analysis using signal encoding (center and infinite clipper) on the signal
with a dominant third harmonic produced result shown in figure 2.6. It is
shown that the highest peak after the peak at origin is the correct funda-

mental frequency.

20
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Figure 2.6: Autocorrelation of the encoded signal

Autocorrelation calculation

For every i" segment, R(7) is calculated with a modified form of equation 2.5.
The equation must be modified since the signal encoding reduces the value
of B(7). In order to solve this problem the value of R(7) is not divided by
N (normalized). As a result equation 2.5 becomes :
Ne7-1
R(r)y= Y z(n)z(n+7), 7€ [T1—T2 (2.13)
n=1

where :
T1 = the lowest possible value of Ty
T2 = the highest possible value of Ty

Equation 2.13 leads to subharmonic suppression but has an undesirable

effect on T determination when strong secondary peaks, which is due to the
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formant structure, are present [2]. However the preprocessing stage with the
analog filter, signal encoding, and R(7) evaluation for values of 7 in the range

of Ty will destroy the formant structure.

Voice / unvoice detection

Voice segments are separated from unvoice segments by comparing the value

of global maximum of R(r), which is RMAX (7o), and Pay (7).

RMAX'(ry) = mTa),X{Ri(T)}, 7€ ([T1-1T2] (2.14)
T R(%), the threshold value of P4y (2) is evaluated with :
TR(z) = kyy - Pav(7) (2.15)

Experiments [2] have shown that the value of k,, = 0.3 is the optimal value.
Based on the value of TR(7) and RMAX'(7,), segment :** is classified as
voiced if TR(1) < RMAX' (), otherwise as unvoiced.

Finding peaks in the autocorrelation function

The evaluation of R(7) was done in the range of Ty, therefore the fourth and
higher harmonics are eliminated. However 2™ (and sometimes 37¢) harmonics
are not completely suppressed. This can cause errors in T, detection. In order
to solve this problem, the following approach and algorithm are proposed.
In [2] [15] it is shown that the peak corresponding to Tp in autocorrela-

tion function is larger than the subharmonics and harmonic peaks, typically
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on the order of four. Based on this, an attempt of Ty detection is done by
dividing the spectral frame into three regions. The division is done with two
threshold values, namely 71 and T, as shown in figure 2.7. Ty, and Ty are

chosen to give

Ty=2-Ty (2.16)

e If 7, correspond to the highest R,, falls below 77, then there is a
possibility that the correct r is 27 or 37. Thus three temporary s

(rritau) are prepared for further analysis.
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mitau(l)
mtau(2)

mtau(3)

e If 7 falls between T}, and T then

mtau(1)
miau(2)

mtau(3)

e If 7 falls above Ty then

mtau(l)
mtau(2)

mtau(3)

T/2

-
/2

/3

(2.18)

(2.19)

Toidentify the correct 7, 15 fast autocorrelation functions are calculated,

each calculation is done by moving the rectangular window in time-domain

by one period. The fast autocorrelation function is basically the standard

autocorrelation function, except it is calculated only on mtau(1), mtau(2),

and mtau(3) with some tolerance value. From these 15 fast autocorrelation

functions, a voting is done to find the most probable value for 7.

25



2.4 Voice Unvoice Detection

As in pitch detection, voice and unvoice detection is not an easy task. Voice
unvoice detection is important in speech analysis. In pitch period detection,
voice unvoice detection is useful to reduce the volume of computation since
in unvoiced segment there is no pitch period information.

The main task here is to decide as to whether a segment is voiced or
unvoiced. To do so, a degree of voicing must be defined. There are several

parameters proposed for voicing determination, such as :

e Energy of the signal [15]. It is defined as the short-term root mean

square (rms) value of the signal.

Es = /zn: z%(n) (2.20)

Frequently log F, is used rather than E,.

e Average Magnitude [15]
X = 2 1x ()] (2.21)

e Peak-to-peak amplitude [15] [2]

A

X = max[X(n)] — min[X(n)] (2.22)

e Normalized short-term autocorrelation coefficient at unit sample delay
[15]

r(©) = 20 Sy X+ 1)) /3 X () (2.23)

R(0) ~ 4
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where R(d) are the short-term autocorrelation coefficients.

Ratio between the autocorrelation coefficient at 0, R(0), and at 7 [2]
C = R(r)/R(0) (2.24)

where R(d) are the short-term autocorrelation coefficients.

Typically for voiced segment, C' is greater than 0.125.

The ratio of the energy of the differenced signal and the energy of the

ordinary signal [15]

Qs = P[X(n+1) - X(n)]/2P[X(n)] (2.25)

The number of zero-crossing [15] [Reddy, 1966]. This is a simple pa-
rameter that provides a good measure of voicing. However if used by

itself it is not reliable [38].

Ratio of energy in high-frequency subband and low- frequency subband.
This parameter is based on assumption that for voiced signals the en-
ergy is concentrated in the low-frequency subband and for voiceless
signals the energy is concentrated in the high-frequency. Typically the
low-frequency subband is the frequencies below 1 kHz [15] or 2 kHz
[20]. The high-frequency subband is the frequencies above 2 kHz [15]
or 4 kHz [20].

Most of the methods proposed use a combination of the above param-

eters.
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2.5 Short survey of methods for degree of
hoarseness evaluation

Degree of hoarseness (DH) is an index indicating how hoarse the speech of
a patient is. Typically it is a measure of the power of the fundamental fre-
quency with its harmonics and the other components, i.e. noise components.
One way to calculate DH is to take the Fourier transform of the signal, cal-
culate the power of the fundamental frequency and the harmonics, calculate
the power of noise components, and calculate the ratio between those two.
Study [36] has shown that most laryngeal diseases cause an increase
in the degree of hoarseness. Several methods for DH evaluation have been

proposed, however they can be classified into two groups :

1. DH evaluation by analyzing temporal structure of the signal. The ad-
vantage of this method would be a reduction in the volume of com-
putation and lack of errors caused by insufficient spectral resolution.

However they have the following disadvantages :
e small changes in pitch period, which are normally present in voiced
speech, can cause a false increase of DH.

e all changes in the amplitude of pitch period peaks, which are not

caused by noisy components, can cause significant increase in DH.

e It is sensitive to errors in Ty detection. Such errors can lead to

incorrect DH evaluation.

28



o distortion caused by external noise affects the accuracy of DH

evaluation.

2. DH evaluation by analyzing the signal spectrum. The advantages of
this method are :
e distortions caused by amplitude changes of T, peaks are minimized
e the influence of small changes in Ty is minimized
e the harmonic structure of the voiced signal could be displayed and
visually analyzed.

The disadvantages of this method are :

e a large volume of computation for the Fast Fourier Transform

(FFT)
e errors in DH caused by insufficient spectral resolution

e errors by spectral distortion, caused by pitch- synchronous spec-

tral analysis. This could lead to false DH increase.

From the comparison above, DH analysis using spectral analysis is more

accurate. As a result this method is chosen in this thesis.
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Chapter 3

Implementation

The implementation of the system was done in two stages. The first stage
was done to test the method. This was done on an IBM PC by developing
an analog to digital board and several programs specifically written for the
IBM PC.

The second stage was done to refine the method and programs used in
the system. This was done by rewriting the program in C language, which
will allow for the operation of the program on other computers. This was
done on a Sun workstation.

One problem encountered with the last step is that the ADC board was
designed specifically for an IBM computer. This board will not work on
computers other than IBM. Therefore the IBM PC is still needed to digitize
the data, which may be transferred to the Sun workstation using file transfer
program if the IBM is connected to a network. The other solution is to

make an independent ADC device or to use the ADC that comes with the
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computers as in Sun SPARCstations or NeXT computers.

The description of the implementation can be divided into three sections.
The first section will discuss the methods chosen for the analysis. The next
section will give description of the hardware. The last section will give a brief

description of the software.

3.1 Methods

The method of analysis can be divided into two stages, namely pitch period
detection stage and parameter calculation stage. The result of pitch period
detection is a sequence of pitch periods, location of minimas and maximas,
the value of minimas and maximas, and the location of stable zones. The
stable zone is defined as a region where at least five consecutive pitch periods
were found without interruption. These results are then fed to a program

which calculates the parameters of the speech.

3.1.1 Pitch Period Detection

The method used for pitch period detection is based on the improved ac-
curacy of the autocorrelation function, described in section 2.3, and simple
peak detection algorithm.

The autocorrelation function is used at the beginning of the pitch period
detection to get an accurate pitch period. After the pitch period is found,

simple peak detection, described in the previous section , is used to get the
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pitch period individually. If the simple peak detection fails, the autocorrela-
tion function is called again. This procedure is repeated until the end of the
data is reached.

From the sequence of pitch period, a stable zone is defined. The stable
zone is defined as a region which contains at least five consecutive fundamen-
tal frequencies with the difference between two consecutive periods being less

than 12 %.

3.1.2 Calculation of Speech Parameters

There are several parameters used in the implemented system, namely :

e average fundamental frequency (f0sr),

o deviation of fundamental frequency (df0),

o degree of hoarseness (dh),

e frequency perturbation quotient (fpq),

e jitter in fundamental frequency (fdlt),

o directional perturbation factor of fundamental frequency (fdpf),
e munima perturbation quotient (a2pq),

o shimmer in minima (mindlt),

e directional perturbation factor of minima (mindpf),

e percentage of sign changes of frequency and minima.



Average Fundamental Frequency (fOsr)

Average fundamental frequency is calculated by averaging the corresponding
frequency of each pitch period on the stable zone. The reason for performing
analysis only on the stable zone is that the pitch period of normal subject is

relatively constant, or has little variation.

N
fOsr = — ! Z——l—

) € stable zone 3.1)
z=1 T( (

Deviation of Fundamental Frequency (df0)

The deviation of fundamental frequency factor is the average of the absolute
value of the difference between each fundamental frequency and the average

fundamental frequency.

This parameter shows the ability of the speaker to produce a stable funda-

mental frequency.

Degree of hoarseness (dh)

The degree of hoarseness is calculated based on the frequency spectrums of

the signal on stable zones.
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Zk =1 ZnNzl ]Xm(n)]2
h = .
; 1 5:1 IWm(n)|2 (33)

meo=

where :
k = the number of stable zones
Wn(n) = n™ harmonic components on the m stable zone

Xm(n) = n' non-harmonic components on the m® stable zone

The spectrums are obtained by performing 2048-point Fast Fourier Trans-
form (FFT). Zero padding is applied when it is necessary. This parameter
can be thought as a noise to signal ratio. The assumption used here is that
pathological speakers generate more "noise” in the speech signal. The "noise”

may resulted from the presence of an unstable fundamental frequency.

Frequency perturbation quotient (fpq)

There are several definition of frequency perturbation quotient. Davis (1976)
in [16] defines it as standard deviation of fy in Hz divided by mean fo. In
this implementation, frequency perturbation quotient is calculated based on
the perturbation quotient (PQ) [19]. This equation is a modified version of

Koike’s perturbation quotient [22].

PQ:m :L::l l—m(n—}-m)/zr;x(n—i—r—l) % (3.4)
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where m = (k — 1)/2 and % is odd number.

In the implemented system & = 3 and m = 1 are chosen as suggested
by [19]. For frequency perturbation quotient (fpq), fundamental frequency
sequence is used in the above equation.

This parameter can be used to measures rapid variations in pitch period
and amplitude. It is shown in [19] that fpq and apq are often useful in

detecting laryngeal diseases even in their early stage.

Amplitude perturbation quotient

As in the previous section, amplitude perturbation quotient (apq) is also
calculated using Koike’s equation. Two apgs, namely alpq and a2pq, can be
calculated using the sequence of maximas and minimas respectively. However
inn the implementation, pitch detection is calculated based on the location
of minima, therefore only a2pq (apq for minima) is used in the analysis.
The hypothesis used here is that normal speakers are more capable of

producing stable amplitude.

Jitter in fundamental frequency

Jitter in fundamental frequency (fdlt) is defined as the sum of the absolute
differences in consecutive data divided by the number of differences [16]. In
this particular case the sequence of fundamental frequency is used as the

data.
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_ ZE e+ 1) = fod)]
fdit = i

(3.5)

where fo(¢) is the it fundamental frequency.

This method is similar to the magnitude of the difference in duration
between adjacent periods described in [14] [25] [31], except they visually
analyze the frequency distribution of fundamental frequency.

It is proven [14] [25] that this parameter differs for laryngeal and normal
speakers. In this thesis analysis is done to compare neurological and normal

speakers.
Shimmer in minima (mindlt)
Shimmer is defined similar to jitter. In this particular case the sequence of

minima is used as the data.

SN |Amin(i + 1) — Amin(3)|

ndlt =
min N1

(3.6)

where Amin(z) is the % value of minima.

Directional perturbation factor (dpf)

Directional perturbation factor (dpf) is based on the method described in [14],
which is based on Lieberman’s method [25]. It is defined as the percentage of

cha,nges.in algebraic sign (nsgn) between adjacent pitch or amplitude which
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the magnitude of the difference is equal or greater than 0.5 msec. In this par-
ticular implementation it is defined as the percentage of changes in algebraic

sign between adjacent pitches or amplitudes.

_ Jomsgn+1 if |[X(e41)> X(4)] and [ X(2) < X(5 —1)] 3.7
PSEY =\ nsgn + 1 if | X(i +1) < X(&)] and [X(5) > X(i—1)] 7
dpf = nj\%nmo% (3.8)

3.2 Hardware

The hardware of the implemented system consists of a two-channel Analog
to Digital Converter (ADC) board, two low-pass filters, and a microphone.
The design was done so that the software does not depend too much on the
hardware.

The ADC board was designed for the IBM PC in a form of a plug-in
board. Beside the ADC board, other parts are designed for general system.
Thus implementation in other types of computer is possible as long as there

is a similar ADC board available for the computer.

3.2.1 Analog to Digital Converter

As the name implies, the Analog to Digital Converter (ADC) is used to
convert analog signal into digital signal. In this particular case the ADC is

used to convert analog speech signal into digital speech signal. The quality
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Figure 3.1: Block Diagram of the Implemented System

of the the digital representation depends on the quality, word length, and
sampling rate of the ADC.

The sampling rate determines the discretization of the independent vari-
able, i.e. time. According to Nyquist theorem or Shannon theorem, the
sampling rate must be greater than twice of the maximum frequency in the

signal.

fS >2- fmaz (39)

In the implementation, the signal is band-limited to 700 Hz for the first
ADC and 8 kHz for the second ADC. Thus minimal sampling rates are 1400
Hz and 16 kHz for ADC1 and ADC2 respectively. The actual implementation
uses 8 kHz sampling rate for ADC1 and 16 kHz for ADC2.

Two ADCs are used in the implementation. ADC1 is connected to low-
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Table 3.1: Typical implemented ADC

number of bits | sampling rate
Gold and Rabiner (1969) 10 kHz
Tucker (1978) 14 bits 10 kHz (speech)
14 bits 20 kHz (music)
Horii (1979) 16 bits 20 kHz
Hess (1983) 12 bits
Boyanov (1984) 12 bits 8kHz and 16 kHz

pass filterl which has the lower band-width (700 Hz). The sampled data is
used in pitch period detection to get faster and more accurate results.

ADC2 is connected to the filter with higher bandwidth. The resulting
data is used to calculate the degree of hoarseness with Fast Fourier Transform
(FFT).

The accuracy of the sampled data depends on the word-length of the
ADC. If the ADC has k bits word-length, then the number of possible discrete
steps is

K =2F (3.10)

A large number of k£ will create higher resolution of the sampled data thus
generating better representation of the signal. However high resolution ADC
is expensive. For speech signal typically a 12-bit ADC is used.

AD 574 A, an ADC chip manufactured by Analog Devices, is used in
the implementation. It is low-cost and is a 12-bit successive-approximation
ADC with a typical 35 us conversion time. It is also equipped with 3-state

output buffer for direct interface to an 8 or 16-bit microprocessor bus.
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3.2.2 Filter

As shown in figure 2.1, filters can be used to preprocess incoming signals in
order to make pitch detection easier and faster. Two low-pass filters with
different cut-off frequencies are used.

The first low-pass filter has a 700 Hz cut-off frequency, while the second
low-pass filter has 8 kHz cut-off frequency. The output of the first filter is
fed into ADC1, which will be used in calculating pitch period. The output of
the second filter is fed into ADC2 which will be used in calculating dh using
FFT.

The pitch detection scheme produces stable zone marks of the signal
sampled with ADC1 (channel 1). These marks are used to indicate the
starting and ending region of stable zone in time domain. The same region
is also used to calculate dh. However dh is calculated using data sampled
with ADC2 (channel 2). Therefore the marks on channel 1 must be mapped
to the same location on channel 2. To get the correct location, the delay and
phase difference between the two low-pass filters must be minimized.

The filters are implemented as second-order Butterworth low-pass filters.
A frequency response analysis of the implemented circuit was simulated with
HSPICE, a circuit simulator. The components, such as op-amps, resistors,
and capacitors, were entered into a spice data deck. Figure 3.3 and 3.4 show
the results of .the simulations. Similar response was observed on the actual

harware using a spectrum analyzer.
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Table 3.2: Suggested cut-off frequency of low-pass filter for pitch detection

Gold and Rabiner (1969) | 70-600 Hz
Markel (1972) 800 Hz
Boyanov (1984) 700 Hz
Jovanovic (1986) 700 Hz
Laver (1986), for male 660 Hz
Laver (1986), for female 800 Hz

Suggested cut-off frequencies of the low-pass filter is shown in table 3.2.2.

3.3 Microphone

The quality of the recorded or digitized signal depends on the choice of mi-
crophone. In music, most recorded vocals are recorded with a Condenser

-microphone, which can get expensive, in the order of $ 800.00. The usage
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of electret microphone was suggested by [17] since it preserves low-frequency
phase information. Another suggestion was using Briiel and Kjaer 4134 mi-
crophone which has 20 kHz bandwidth [33].

In the implementation, Syncron S-10 solid state/condenser microphone

was used. This microphone has the following characteristic.

®

Type: Pressure gradient, condenser

Frequency Response: 40 - 20,000 Hz + 3db

Directional Characteristic: Cardioid at all frequencies, 20 db front-to-

back ratio

Price: $§ 240.00

As mentioned in the Syncron manual, a condenser microphone does not
have to move a voice coil as in dynamic microphone, also it is not surrounded
by a large magnetic structure as in the ribbon. Therefore it is free to follow

the sharpest audio transient.

3.4 Software

As mentioned earlier, the software was done in two stages. The result of
the first stage, testing stage, is a collection of programs written in different
languages for the IBM PC.

The program that controls the ADC board, digitizes the data and stores

it in memory is done in 8088 assembly language. Assembly language is chosen
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to achieve a fast and optimized program. The program that displays the
signal and saves it in a file on a disk was done in Pascal using Turbo Pascal.
The program that calculates speech parameters was done in C language using
Microsoft C compiler.

The following problems arised due to the usage of mix languages :

e The resulting program is not portable. For example the program writ-

ten in 8088 assembly can not be ported to other machines.

e It is difficult for an operator to operate a non-integrated and non-user
friendly system. For example, the operator has to run the program to

digitized the data and run another program to display or save the data.

As a result, most of the program has been rewritten in C language
except the digitizing program which is still in 8088 assembly language. The

advantages of C language compared to other high level languages are :
e more portable program

e C compiler is available on most computers. This was done on a Sun

workstation.

The final program will let you select a data file and perform analysis on
it. The output will be displayed on the screen and saved in files. The users
can also graphically view :

e waveform of signal digitized by each ADC
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e sequence of pitch period
e sequence of minima an maxima
e spectrum of signal in stable zones

The graphical display depends on the user’s environment. Under Sun-
view (Sun’s windowing) the graphic outputs can be viewed with Sunplot, a
public domain plotting program. Xgraph will be used to view graphic outputs
under Xwindow. Standard unix plot will be used in other environments.

The Sun workstation used to develop the program is accessible through
a telephone line. Thus one can use a terminal or personal computer equipped
with a modem to run the program from a remote place. This would allow

several users sharing the same program and data.
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Chapter 4

Application in analyzing
pathological voices

Analysis of neurological diseases using voice parameters is becoming an at-
tractive method [6] [7] [11]. However it is still not as popular as in analysis
of laryngeal diseases.

This chapter will discuss the application and results of our system in
analyzing normal, laryngeal, and neurological voices. In particular the dif-
ferences between normal speakers and speakers with neurological diseases

will be analyzed.

Sustained vowel is used in this analysis because it has the following

characteristics :
e a stationary period of the speech is achieved by using a vowel [6].
e During sustained vowel phonation, pitch period T, is stable.
o Most laryngeal diseases generate additive and multiplicative noisy com-
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ponents, which appear most clearly during vowel phonation.

e Sustained vowel phonation is relatively independent from accent, speak-

ing habits, and native language.

o The formant’s value are constant, allowing preliminary formant removal

by means of analog filtering.

e Sustained phonation is easy and speakers do not have to be trained

before testing.

e appropriate when more or less random perturbations caused by mechano-

physiologic conditions of the vocal folds are in question [16].

The selection of the vowel determines the method used in pitch detec-
tion. Vowel /i/ is used in [16], because the performance of their program
was excellent for this vowel. In our application, vowel /a/ is chosen because

it has a higher first format.

4.1 Subject and data collection

The samples were obtained in three different ways. The first method is by
digitizing the data directly into the computer. Each speaker was told to utter
vowel /a/ for six seconds. The sample is then saved directly into a file on
a hard-disk. This method is done for normal speakers, who are Electrical

Engineering graduates students at University of Manitoba.
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The second way of obtaining the data was by recording the voice of the
speakers on a tape. The recording was done at the N eurological Lab, Health
Sciences Center. The recorded voice was then played back with the output
connected to the input of the filters. Adjustment was made to get optimal
amplitude. This was done for speakers with neurological diseases.

The third method was done by sampling the data directly into a com-
puter with a different system. This was done for speakers with laryngeal
diseases. The data was sampled with the same format and specification in

Bulgaria and sent as a file on a disk.

4.2 Results

Analysis was done on each sample by running the program with the corre-
spondence data file for each sample. The program will generate arrays of
pitch periods, values of maxima, value of minima, location of maxima, loca-
tion of minima, and spectrum of the signal on stable zones. These arrays are
stored in files for further analysis. Based on the sequence of pitch periods and
minima, other parameters such as df0, dh, fpq, fdlt, fdpf, a2pq, mindlt, and
mindpf are also calculated and displayed on the screen. These parameters
are saved for statistical analysis.

Users are also allowed to view graphical results, such as viewing pitch
period sequence (figure 4.1), sequence of maxima and minima (figure 4.2),

and spectrum of the signal (figure 4.3).
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Figure 4.3: Spectrum signal
4.3 Analysis

Some elementary statistical analysis was performed based on the results of the
program. The statistical analysis was done by grouping the results into four
groups, namely normal speakers (group 0), neurological speakers (group 2),
laryngeal speakers (group 3), and pathological speakers (group 1), which is
a combination of neurological and laryngeal speakers.

The analysis was done with SAS, a statistical package. To begin with,
averages of all parameters were calculated using a suggested procedure [29].
The result is shown in appendix B.

Bes'ide fundamental frequency, maxima, and minima, other parameters

are calculated from these three parameters. Thus it is reasonable to inves-
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tigate the correlation between averages of fundamental frequency, maxima,

and minima with other parameters.

4.3.1 Average fundamental frequency and other pa-
rameters

Sustained vowel phonation ideally generates one stable value of fo. However
in practice this is not the case. Even in normal speakers, there is always
variations in fo as shown in figure 4.1. Average f, is then calculated and
used as a representation of f; of the particular speaker.

Several parameters such as df0, fpq, dh, fdpf, and fdit are also cal-
culated from the sequence of f;. Thus it is reasonable to investigate the

correlation of these parameters with average of fo (f0sr).

Deviation in fundamental frequency, df0

A visual correlation between f0sr and df0 is shown in figure 4.4. A corre-
lation factor 7 can be used to measure the strength of a relation between
two variables. This correlation factor, which is the Pearson product moment

correlation coefficient, is defined as :

pe_ 2E-2)(y—7)
V(2 - 22y - §)?

The value of r ranges from -1 to +1. A value of '0’ corresponds to a

(4.1)

scattered points, 41’ corresponds to a plot of points that fall exactly on an
‘ P P P
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Figure 4.4: Deviation in 0 df0 vs average 0

upward straight line, and ’-1’ corresponds to a plot of points that fall exactly
on a downward straight line.

For normal speakers, it is found that r is 0.09591. Since this value is
small, the correlation between df0 and fOsr is negligible. This result agrees
with figure 4.4 which shows data from normal speakers is neither going up
nor going down as the average fy increases.

A linear regression analysis was done and produced the following results :

PARAMETER STANDARD T FOR HO:

VARIABLE ESTIMATE ERROR PARAMETER=0 PROB > |T|
INTERCEP 0.90467510 0.69041905 1.310 0.2380
FOSR 0.000891223 0.003776150 0.236 0.8213

FOSR = average fO

This result shows that the gradient of the line is close to zero (0.000891223)

Thus the regression is a straight line almost parallel to x-axis (fo). The p-
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value, 0.8213 gives evidence that the probability of the parameter having a
value of zero is high. This supports the fact that df0 does not depend on
average fO.

The same analysis was also done using data from neurological and patho-
logical speakers. The correlation factors r are found to be 0.41708 and
0.35805 for neurological and pathological speakers respectively. This result
shows that there is only a small correlation between df0 and average fO.

Linear regression analysis using data from neurological and pathological

speakers produced the following results :

GROUP 2 (NEUROLOGICAL)

PARAMETER  STANDARD T FOR HO:
VARIABLE ESTIMATE ERROR PARAMETER=0 PROB > |T|
INTERCEP  0.33847450 1.09715874 0.309 0.7647
FOSR 0.008246787 0.005990225  1.377 0.2019

GROUP 1 (PATHOLOGICAL)
PARAMETER  STANDARD T FOR HO:

VARIABLE ESTIMATE ERROR PARAMETER=0 PROB > |T|
INTERCEP 0.77098128 0.85805491 0.899 0.3882
FOSR 0.005665374 0.004454413 1.272 0.2297

Although the gradients of the resulting regressions are small, 0.008 and
0.006, the probability that the gradients are zero are small, 0.2019 and 0.2297.
This suggests that higher fo tends to result in higher dfo.

Other parameters such as frequency perturbation quotient (fpq), degree
of hoarséness‘ (dh), jitter in fundamental frequency (fdlt), and directional

perturbation factor (fdpf) were also analyzed the same way. Correlation

53



Table 4.1: Correlation between f0 and other parameters

parameter normal neurological laryngeal

dfo 0.09591  0.41708 0.35805
fpq 0.14468  0.77359 0.46652
dh -0.61752  0.32332 0.53261
fdlt -0.19186  0.38278 0.50748
fdpf 0.02455  0.52404 0.55265

factors of these parameters and fy are shown in table 4.1.

Frequency Perturbation Quotient, fpq

As shown in table 4.1, the correlation between fpg and f, for pathological
speakers, especially in neurological case, is stronger than for normal speakers.
A quadratic regression was also done using data from neurological speak-

ers and gave the following result :

PARAMETER
VARIABLE ESTIMATE PROB > |T|
INTERCEP 6.83279687 0.5036
FOSR -0.08968551 0.4610
FOsSQ 0.000324166 0.3647

FOSQ = FOSR * FOSR

Quadratic regression was chosen since it gives better representation of
the data, numerically or visually as shown in figure 4.5. This result suggests

that higher f; will result in higher fpq.
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Figure 4.5: Frequency perturbation quotient fpg vs f,
Degree of hoarseness, dh

Analysis of correlation between dh and f, is reasonable since the calcula-
tion of dh is based on fy. The correlation factors in table 4.1 shows high
correlation values, especially for normal speakers. Linear regression analysis
produced the following results :

VARIABLE PARAMETER
ESTIMATE PROB > |T|

Normal speakers:

INTERCEPT 1.08944210 0.0249
FOSR -0.003854534 0.1028
Neurological speakers:
INTERCEPT 0.18488496 0.8383
FOSR 0.004924348 0.3321
Pathological speakers:
INTERCEPT -2.76213462 0.1964
FOSR 0.02176246 0.0609

55



average fO vs dh

66—
2]
& Group 0
5 *p
" 4l Group 2
2 -
3 3k Group 3
g .
= oL LR gr.0
(=] D e — S —
3 1+ LR gr.2
— e
o LR 2+3

-?OO 120 140 160 180 200 220 240 260

average {0 (Hz)

Figure 4.6: Degree of hoarseness dh vs f;

For normal speakers the resulting regression is a straight line almost
parallel to x-axis (fo). Hence it proves that dh does not depend on fo. This
agrees with visual inspection on figure 4.6. For pathological speakers, the
data are distributed above normal data. Linear regression of neurological

samples shows a gradient close to zero. Therefore dh does not depend on f,.

Jitter in fundamental frequency, fdit¢

Correlation factors between fdlt and fo, shown in table 4.1, suggest a weak
relation between the two parameters. This is reasonable since fdlt is calcu-
lated from the differences between consecutive fos, not from the value of fo
itself.

Linear regression analysis was calculated using normal samples only.
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average f0 vs fdlt
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Figure 4.7: Jitter in fundamental frequency fdit vs f,

The following result suggests that fdlt does not depend on fg. Linear regres-
sion was not done for neurological and pathological speakers since they are

scattered as shown in figure 4.7.

VARIABLE PARAMETER
ESTIMATE PROB > |T|

NORMAL
INTERCEP  1.580292 0.0180
FOSR ~0.001283 0.6490

Directional Perturbation Factor of fundamental frequency, fdpf

Table 4.1 shows that the correlation factor of fdpf and f, for normal speakers
is small. This suggests that fdpf does not depend on f,. Although the
correlation factors for pathological speakers are higher, they also show little

correlation between the two variables. This result agrees with figure 4.8.
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Figure 4.8: Directional Perturbation Factor fdpf vs f,
4.3.2 Average minima and other parameters

Minima perturbation factor (a2pq), shimmer in minima (mindit), and di-
rectional perturbation factor of minima (mindpf) are calculated from the
sequence of minima. Average minima (minavg) is also calculated from the
same sequence. Therefore it is reasonable to investigate the relation between
manavg and the other parameters.

Correlation factors between minavg and other parameters are shown in
table 4.2.

The amplitude level depends on several factors, such as the distance
between the microphone and the speakers, loudness of the speech, gain of
the ampliﬁer.or pre-amplifier, quality of the tape if the sample is recorded

on a tape before it is digitized by the ADC, and the record level of the tape
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Table 4.2: Correlation between minavg and other parameters

parameter normal neurological laryngeal

a2pq 20.23712  0.86429 0.73082
mind]t 077192 -0.57534 -0.49097
mindpf  -0.03760 -0.24603 -0.12973

recorder. These factors can be divided into two categories; namely speaker-
dependent factor and non speaker-dependent factor.

The gain of the amplifier or pre-amplifier, quality of the tape, record level
of recording, and the distance between the microphone and the speakers are
non speaker-dependent factors. The effect of these factors must be minimized
since our main interest is only the speaker-dependent factor. Reducing the
effects of non speaker-dependent factors can be done by making a fix amplifier
gain and record level, using the same type of tapes, and sampling the data in
the same environment. Thus noise and other non speaker-dependent factors
are integrated in the same way in all data.

In practice, it might be difficult to reduce the effect of non speaker-
dependent factors. For example it is difficult to get the same amplitude level
for all speakers. One speaker might speak softly, another might scream, while
a third might start softly and scream afterward. In this case an operator is
needed to set the gain of the amplifier in order to get an optimum amplitude
level, which is defined as the level that the peak of the signal is between 80 %
and 100 % of the maximum allowable input voltage of the ADC.

There were some cases where in one frame the voice signal has an opti-

59



minavg vs a2pq

4.5

*

3.5~ .

2.5

valmin.pert.

0.5+

966 400 600 800 TE<03  1.2E+03

average minima

Figure 4.9: Minima perturbation factor a2pq vs minavg

mum level and in another frame the signal is too low or too high (clipped).
This situation, which occurs often in the neurological cases, might be due to

the inability of the speaker to hold a sustained vowel.

Minima perturbation factor, a2pq

A visual inspection of figure 4.9 shows that normal data is distributed on
the lower-right corner. This suggest that normal speakers generate higher
minima and lower a2pq compared to nuerological speakers.

Regression was done on all samples. For normal speakers quadratic
regression was found to give better representation while linear regression was
done for neurological data. The regression shows that higher minavg tends

to produce higher a2pq.
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VARIABLE PAR ESTIMATE PROB > |T|
Normal (Quadratic Regression)
INTERCEPT  7.248175 0.0731
MINSQUARE 0.000008506 0.1526
MINAVG -0.014270 0.1398
R-square = 0.3983 or r = 0.63111
GROUP 2 (Linear)

INTERCEPT 0.501943 0.26386
MINAVG 0.003060 0.0006
GROUP 1 (Linear)

INTERCEPT 0.856192 0.1138
FOSR 0.002660 0.0045

Shimmer of minima, mindlt

As in previous section, figure 4.10 shows that the data from normal speakers
are distributed at the lower-right corner while data from neurological speakers
are scattered. The figure also shows higher mindlt value for lower minavg.

Directional perturbation factor of minima, mindpf

As shown in table 4.2, the correlation between mindpf and minavg are small,
which suggests weak relations between the two parameters. This result agrees

with figure 4.11 which shows scattered data.

4.3.3 Effect of diseases on each parameters

This section will discuss the effect of diseases on each parameter. The analysis

is done by investigating the differences between each parameter for normal,
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neurological, and pathological speakers. If a parameter is significantly dif-
ferent for normal and pathological speakers, then it can be used in further
applications such as in pattern recognition.

The effect of a disease on each parameter could be determined by in-
vestigating the mean of each parameter for each group. The mean gives a
descriptive statistic for each group. A hypothesis-test can be used to examine
the significance of the difference between the means of the two groups.

To perform a test of hypothesis, two hypotheses are defined. The first
hypothesis is the null hypothesis, meaning that the two means are the same.
The other hypothesis is the alternative hypothesis, which is that the two

means are different.

H,:ps=pup (4.2)

and

Ho:pa# pp (4.3)

The samples from one group are independent from the other groups,
therefore a two-sample t-test is a reasonable choice. There are two possible
results of ¢-tests, namely that the p-value is lower than the predetermined
reference probability, or it is not. If the p-value is less than the reference
probability, then the result is statistically significant, hence the null hypoth-
esis is rejected. In this particular case where the two groups are independent

it can be concluded that the averages are significantly different. If the p-value
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Table 4.3: T-test results

parameter Unequal Equal Probability —Significance

var. var.  var. equal less than 5 %
dfo 0.0002 0.0007 0.1761 yes
fpq 0.1377 0.1342 1.0000 no
dh 0.0166 0.0436 0.0000 yes
fdlt 0.0063 0.019 0.0000 yes
fdpf 0.0285 0.0152 0.3767 yes
a2pq 0.0088 0.0231 0.0245 yes
mindlt 0.0021 0.0057 0.1341 yes
mindpf 0.2318 0.2181 0.7776 no

is greater than the reference probability, the averages of the two groups are
not significantly different.

Table 4.3 shows the results of ¢-test for each parameter. In this particular
analysis, 5 % significance level is used as a reference.

The t-test result for df0 shows a significance level less than 5 %. This
means the mean of df0 from normal and pathological speakers are signifi-
cantly different at more than 95 % significance level. Figure 4.4 shows that
data from normal and pathological speakers are separated with means of
1.0655000 and 1.8491538 for normal and pathological speakers respectively.
Notice that df0 for pathological speakers is almost twice the value for nor-
mal speakers. Hence it is recommended to use df0 as a feature to distinguish
normal and pathological speakers.

The ¢-test result for fpg shows a significance level greater than 5 %.

A visual inspection on figure 4.5 will show that data from both groups are
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mixed together. It is difficult to classify a data with given f0 and fpq. Hence
this parameter is not relevant in classifying normal or pathological speakers.

Degree of hoarseness, dh, is another good feature to distinguish between
normal and pathological speakers. The t-test result shows the difference
between the mean of dh of both groups are significantly different at more
than 95 % confidence level. As shown in figure 4.6, it can be seen that the
value for normal speakers are lower than from pathological speakers.

T-test results for fdlt show that the means of fdit of normal and patho-
logical speakers are different at more than 95 % confidence level. This sug-
gests that fdit is a good distinguishing feature between the two groups.
However in figure 4.7 it is shown that some data from pathological speak-
ers is located in the normal region. Thus despite the high confidence level
that the means of fdlt of the two groups are different, this parameter is not
recommended to be used as a distinguishing factor by itself.

Results for fdpf shows that the mean of fdpf of the two groups are
different at more than 95 % confidence level. However visual investigation
on figure 4.8 shows that the data is mixed and scattered. It is difficult to
classify a data given fO and fdpf. Hence this method is not recommended
to be used as a feature.

T'-test for minima perturbation factor, a2pq, shows that the mean of
a2pq of the two groups are different at less than 5 % significance level. This

suggests that a2pg is a good distinguishing feature. As shown in figure 4.9,
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this parameter is good especially in the high value of average minima. The
data from normal and pathological speakers are separated as the value of
minavg increases. This suggest that better separation is obtain when the
sample has high value of minima.

T'-test result for mindlt is similar to result for a2pg. This result shows
that the means of the two groups are significantly different at more than
95 % confidence level. This is true especially for high value of minavg. For
a lower value of minavg, the behaviour of this parameter is not known since
there is no available data for this range.

T'-test result for mindpf shows that the means of mindpf are not dif-
ferent at 5 % significance level. This result agrees with a visual inspection
on the correlation between mindpf and minavg as shown in figure 4.11. It

is shown that it is difficult to separate the data between the two groups.

4.4 Discussion

From the analysis, it is shown that df0, dh, a2pq, and mindlt could be used as
features in classifying normal and pathological speakers. Other parameters,
namely fpg, fdit, fdpf, and mindpf are not recommended to be used as
features in the classification.

The elementary statistical analysis was done to show the function of
method and system developed in this thesis. However it was not meant as a

.complete pattern recognition or classifier. Further analysis might be needed
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to perform such a task.
New parameters might be derived and calculated using the system. For

example one might be interested in calculating the Walsh transform of the

signal instead of using Fourier transform [35].
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Chapter 5

VLSI Implementation of
Autocorrelation Function

As described in the previous section, the speed of the system suffers from the
large amount of calculation needed to calculate the autocorrelation function.
Center and infinite clipper reduces the number of computations drastically.
However the number of calculations is still dependant upon the speed of the
computer used to perform the calculation.

Specially designed hardware might improve the performance of the sys-
tem. In this chapter, a VLSI implementation of autocorrelation function is
presented. The implementation is done in a systolic array structure since it
provides a method of parallel or pipe-line processing [3] and the autocorrela-
tion function has a regularity which is suited to be implemented as a systolic
array.

Tes’cabili’vcy plays an important role in designing an integrated circuit (IC).

The designer might want to test or pinpoint the error should the IC fail to
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Table 5.1: Representation of the encoded value in 2-bit binary

Value of X | Binary Rep.
0 00
1 01
-1 10

work. The regularity of the implementation allows testing method with scan

techniques, such as Level Sensitive Scan Design (LSSD) or Scan Path.

5.1 Canonic VLSI Implementation of Auto-
correlation Function

Implementation of autocorrelation function as a digital VLSI circuit is rel-
atively straight forward since the signal is encoded with center and infinite
clipper into three levels, namely -1,0,and 1. These values can be represented
in a 2-bit binary format as shown in table 5.1.

The block diagram of the cannonical implementation is shown in fig-
ure 5.1. The operation is carried out serially by shifting the incomming data
one by one and adding or subtracting the result register R(m).

The autocorrelation function is defined as :

N-m-1
R(m) = % z_;) z(n)z(n + m) (5.1)

To calculate a specific lag m, it takes (N — m) operations. Therefore
the total number of operations required to calculate autocorrelation function

with initial M; and final lag M is :
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X(n)

R(m)

multiplier

delay m

Figure 5.1: Block diagram of canonic implementation

N.operation

where:

N
M;
My

(Aff - M; + 1)(2]\[ — A/ff — A/.[,)
9

4

= the number of data
= Initial lag
= final lag

If one operation requires two memory reads, one multiplication, one

addition, and one memory store, then on an IBM PC XT with 4.77 MHz

it will take (2 - 10 4+ 70 + 3 + 10) = 103 clock cycles or 2.16 msec. For

N = 1024, M; = 40, and M; = 200 the number of operation required is

145544 or 3 seconds on the IBM. For a 90 K file this would take 4.5 minutes.

5.2 Implementation as a Systolic Array

Systolic array is an alternative choice of a regular design [23]. Since auto-

correlation function has a regular structure, implementation as systolic array

is an attractive implementation. Figure 5.2 shows the block diagram of this
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Figure 5.2: Block diagram of systolic array autocorrelation function chip

approach.

As shown in figure 5.2, this approach is similar to the canonic implemen-
tation, except that the results for all lags (M; through M;) are available at
the same time. This is done by replicating the processing block. The num-
ber of these blocks depends on the initial and final lag. With this approach,
the number of operations required is only N, and it does not depend on the
choice of initial and final lag.

The trade-off of this implementation is an increase in the number of

-components which means an increase in chip area. However since the com-
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Table 5.2: Truth table of the multiplier

yly0

x1x0 |00 01 11 10
00 106 00 00 00
01 060 01 xx 10
11 00 xx xx xx
10 {00 10 xx 01

plexity of the circuit is not high, and the structure is regular, the designing
process can be simplified.

The general description of the circuit is as follows. The incoming sig-
nal, encoded in -1, 0, and +1, is fed into a delay block and multiplier. The
delay blocks are implemented with D-flipflops. The incoming signal is then
multiplied with the delayed signal using a 2-bit multiplier, which is imple-
mented as a combinatorial circuit as shown in figure 5.3. The output of the
multiplication is accumulated in result register R, which is implemented as
up-down counters. The counter will count up if the output of the multiplier
is 1, or the LSB is 1, and will count down if it is -1, or the MSB is 1. The
output of result register R is then multiplexed to get one parallel output of

a particular lag.
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Figure 5.3: Multiplier

5.3 Implementation in VLSI using Cadence
Design System

Implementation in VLSI was done by designing the chip using a Cadence
Design System. It allows the IC designer to enter the design in a schematic
level or the exact physical layout. Physical layout can be generated auto-
matically if the design is entered in the schematic level. Cadence also allows
hierarchical design, which means a library can be built in schematic level
based on some standard cells.

SILOSII and APLSIM were used as circuit simulators. The simu-
lation was do.ne to check the design before it is fabricated. Most of the

simulation was done with SILOSI] since at that time the standard cells did
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not have SPICE representations which are required by APLSIM.

Some parts of the circuit were tested with APLSIM by extracting the
transistors from the actual physical layout. However this simulation was
limited by the size of the circuit APLSIM can handle in a non-hierarchical

environment [28].

5.4 Circuit Structures

The highest level of the schematic, shown in figure 5.4, is almost identical
to the block diagram shown in figure 5.2. The autocorrelation with delay 1
pulse contains multiplier, delay 1 pulse, and R(M) as in figure 5.2.

The symbols in this schematic represent another circuit or schematic
representation. For example the delay 5 pulses is constructed of 10 D-flip
flops, shown in figure 5.5. By using this top down design methodology,
modification can be done easier. For example if the exact layout of the AND
gate must be modified, or if the up-down counter needs modification, the final
schematic representation will be the same, the modification is done only on
the schematic level. However if the layout representation of one standard cell
1s changed then placement and routing must be done again.

On the first block, the input signal, y0 (LSB) and y1 (MSB), is connected
to a delay line which will delay the signal 5 clock cycles. The input and the
output are connected to the first block of autocorrelation function. The

output of the autocorrelation function is the number of matching found so
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Figure 5.4: The top level of the autocorrelation chip
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far for the lag equal to 5. The output of this autocorrelation function is then
multiplexed with the output of the other block, which in this case has a lag
equal to 6.

In the actual implementation the counter, which will be used to count
the number of matchings, is implemented as eight-bit counter. Therefore the
number of matching must be between -127 and +127. Input signal must be 2
bits as described in table 5.1, i.e. after it goes through the center and infinite
clipper. The length of the input is chosen so that the number of matching
does not exceeding 127, otherwise the result will be incorrect.

The initial lag was chosen as five clocks, using the delay 5 pulses block.
To get different inital lag, the circuit must be modified internally or by adding
a delay line outside the chip. Five pulses was chosen to make debugging using

short input possible.

5.5 Discussion

The final result shows that for a large number of lags the actual physical
layout requires a large area so that they can not be implemented in one chip.
This problem is solved by parting the design into several chips.

Furtunately this solution is not difficult since the next chip is actually
exactly the same as the first chip. The difference is that in the first chip the
delay 5 pulses is used to get the initial lag, which is 5 pulses, whereas in the

next chips the delay 5 pulses is by-passed. The connection can be done by
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connecting the outputs of the delay 5 pulses block; namely dly! and dly0; to
the 20 and 21 of the first autocorrelation block. This connection can be done
from the pin outside the chip.

Connection to the next chip is done by connecting dz! and dz0 of the
first chip to 2 and 20 of the second chip. This cascading can be repeated
until the final lag is reached.

The number of the autocorrelation block represents the number of au-
tocorrelation functions that will be evaluated. The outputs of the autocor-
relation blocks are multiplexed so that only the outputs of one particular lag

or one particular autocorrelation block will be observed.

5.6 Testability

Testability plays an important role in designing an integrated circuit. The
regularity of this kind of implementation allows testing method with scan
techniques, such as Level Sensitive Scan Design (LSSD) or Scan Path. The
circuit then becomes testable.

Several testing approaches have been developed to make a circuit testable [34].
Scan Path is an attractive method for testing the ACF chip since it has a
considerable number of latches. By configuring the latches into a Scan Path
or LSSD scheme or chaining the latches into one or several long chains, the
circuit becomes more observable. Testing techniques, such as Built-In Logic

Block Observation (BILBO), Linear Feedback Shift Register (LFSR), Cellu-
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lar Automata (CA) then can be implemented.

In this implementation, all flip-flops are connected in one big chain. By
doing this, the value of all the flip-flops can be shifted out. This is a simple
implementation of scan techniques. The scan is done by pulling the ”scan”
pin high, and the data will be scanned out, or scanned in by inputting the

data into "data in” or ”scan in” pin.
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Chapter 6

Conclusion

As the price of personal computers or workstations drops and the perfor-
mance improves, personal computer applications will continue to expand. In
this thesis an application of the computer in signal processing and medical
is presented. In particular the computer is used to process speech signal in
order to find some parameters that can be used to determine the condition
of a speaker.

Pitch period detection is one of the most important analysis in speech
signal processing. It is also one of the most difficult tasks. A method of
pitch detection using simple time domain and modified autocorrelation is
presented. The method was tested and it works well.

A system for analysis of voice of speakers with neurological diseases
was developed. Some hardware, namely ADC board and low-pass filters
were developed and added to an IBM PC XT in order to sample the speech

signals.
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Several speech parameters were calculated from the sampled signals.
While some parameters do not show a significant difference between normal
and neurological speakers, others show a significant difference. These pa-
rameters are deviation in fundamental frequency (df0), degree of hoarseness
(dh), minima perturbation factor (¢2pq), and shimmer of minima (mendlt).

Speed was the major concern in the implemented system which suffers
from a large volume of computation. As the price of DSP chips and custom
VLSI goes down, the hardware may become useful in future application. As
a start, the autocorrelation function was implemented using Cadence System
Design. This tool allows hierarchical and schematic level, which is useful in

reducing the design time.

Future Work

Some new personal computers or workstations, such as NeXT and Sun
Sparcstation, are equipped with DSPs chip and/or ADC boards. This opens
the possibility for a researcher, clinician, or doctor to sample and analyze
the speech of a patient directly on his or her computer. Although current
ADCs on these machines are of low quality and do not meet our standard, it
is becoming a new standard in new computers. Future personal computers
might have even better ADCs.

Although DSP is not required in our implementation, it certainly will

‘help the performance of the system. This will reduce the time required to
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calculate the autocorrelation function.

Some new parameters, such as Walsh spectrum of the speech signal,
might be calculated and observed. These new parameters might provide
better separation of normal and neurological speakers.

As the verbal behaviour of neurological speakers is better understood,
a complete pattern recognition system might be developed based on method
described in this thesis. This system will be a useful tool for clinicians and

doctors in determining the condition of a patient.
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Appendix A

Raw data

The following is a description of the raw data. Name that ends with 707
is from a normal speaker, "2” is from neurological speaker, and ”3” is from

laryngeal speaker.

Table A.1: Description of speakers

Name disease

flher2 hydrocephalus

flhrn2 hydrocephalus

hiper2 alzheimer and hydrocephalus
hyper2 alzheimer and hydrocephalus
jofat2 hydrocephalus

palac2 normal pressure hydrocephalus
palak? normal pressure hydrocephalus
rooru2 alzheimer

schum2 hydrocephalus at young age
sicum2 hydrocephalus at young age
wisan2 idiopatic hydrocephalus
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Table A.2: Raw data 1

Name f0sr dfo fpq minavg a2pq
burah0 192.51 1.215812 1.914362 819.84 1.422382
felex0 175.91 1.251609 1.364899 970.3 1.385834
felix0 163.43 0.908288 0.317916 542.67 1.950793
jadia0 118.9 0.833531 0.503033 860.13 1.784244
norml0 195.13 0.726269 0.693414 955.22 1.361687
tafik0 217.84 1.263707 0.047807 856.32 1.084254
tufik0 168.9  1.541563 1.22478 1085.14 2.02559
washa0 211. 0.781884 1.37295 960.57 0.748991
flher2 201. 1.834957 2.120975 332.66 2.072873
flhrn2 200.47 1.562617 1.07775 236.95 1.258117
hiper2 195.25 1.95544 1.149894 480.18 1.47439
hyper2 203.76 2.361424 2.344201 606.45 1.575336
jofat2 179.11 1.63416 0.987044 915.92 3.311933
palac2 136.28 1.471267 0.641293 833.88 2.643964
palak? 141.31 1.190995 0.597177 898.51 4.194314
rooru2 175.36 1.866866 1.674377 999.2 4.037556
schum2 201.05 2.642883 2.303004 505.28 2.016344
sicum2 199.04 2.021521 1.985757 330.26 1.693771
wisan2 165.45 2.417578 0.702811 1033.82 3.163351
lipavd 245.41 2.422256 1.444645 326.33 3.439832
majand 230.52 1.416128 0.9023 343.7 1.085832
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Table A.3: Raw data 2

Name dh fdlt fdpf mindlt mindpf

burah0 .681345 1.49 59.8 4.62 65.71
felex0 .341629 1.26 52.5 3.77 68.5

felix0 .323084 1.03 45.28 10.04 61.26
jadia0 .631873 1.53 46.38 4.68 65.22
norml0 .273421 1.15 41.29 3.46 58.38
tafik0 .242202 1.47 51.12 2.84 61.22
tufikO0 .525404 1.63 52.10 4.85 63.32
washaO .132649 1.23 41.31 1.98 52.34
flher2 .71646 2.54 62.28 19.7 73.46
flhrn2 1.443649 1.52 49.53 8.8 66.46
hiper2 1.634409 2.29 55.16 8.35 63.79
hyper2 1.455609 5.08 61.04 8.24 62.96
jofat2 .732237 1.33 47.11 7.85 64.62
palac2 0.874761 1.37 49.47 4.45 57.89
palak2 0.707296 3.46 51.11 7.07 68.89
rooru2 .927996 2.56 57.2 10.26 67.9

schum2 1.196439 6.77 58.25 10.87 60.57
sicum2 .669619 3.3 54.27 13.55 65.85
wisan2 1.515498 1.74 55.19 6.95 62.34
lipav3 ©5.4215 7.41 56.67 15.96 57.33
majan3 .638058 2.19 60.52 5.21 69.43
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Appendix B

Average of all parameters

Table B.1: Parameter average for each group

Parameter group0 group2 group3
fOsr 180.4525  181.643636 237.965
dfo 1.065333 1.905428 1.919192
fpq 0.929895  1.416753 1.173472
minavg 881.27375 652.100909 335.015
az2pq 1.470472  2.494723 2.262832
dh 0.393951  1.079452 3.029779
fdlt 1.34875 2.905455 4.8

fdpf 48.7225 54.600909 58.595
mindlt 4.53 9.644545 10.585
mindpf 61.99375 64.975455 63.38
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Appendix C

Hardware

C.1 Sample and hold

-5V

)

(analog)

logic input—4
(pin 12
74L804)

SAMPLE AND HOLD (LF3984)

1.V+ 5.QUTPUT

2. OFFSET 6. HOLD TIME
3.INPUT 7.GND

4. V- 8. LOGIC INPUT

Figure C.1: Sample and hold
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C.2 Low-pass filter

VDD

Figure C.2: Pre-ampifier
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Figure C.3: Low-pass filter 1
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Figure C.4: Low-pass filter 2
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C.3

Clock
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74L81%92 7458192

Sampling Clock

Figure C.5: Sampling clock
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C.4 Analog to Digital Converter

to LS04
+HV— 1 §TS 28— (below)
gng— 2 27 BD7
{305 26 BD6
BAo—t 4 25 BDS
BIOW—2{ 5 24 BD4
6 23 BD3
HoV— 7 22 BD2
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gnd— 9 20 BDO
B i LR
qoy— 1 18
&] 12 17
— 13 16 |-
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Sampie & Hold _____]
1 20
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