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Abstract

The first part of this thesis focuses on quasi-Newton methods. Broyden’s method is a

quasi-Newton method which is used to solve a system of nonlinear equations. Almost all

convergence theory in the literature assumes existence of a root and bounds on the non-

linear function and its derivative in some neighbourhood of the root. All these conditions

cannot be checked in practice. The motivation of this work is to derive a convergence

theory where all assumptions can be verified, and the existence of a root and its superlin-

ear rate of convergence are consequences of the theory. The theory is simple in the sense

that it contains as few constants as possible. The method of Broyden-Fletcher-Goldfarb-

Shanno (BFGS) is also a quasi-Newton method for unconstrained minimization. Also, all

known convergence theory assume existence of a solution and bounds of the function in a

neighbourhood of the minimizer. We generalize a convergence theory where all assump-

tions are verifiable and existence of a minimizer and the superlinear convergence of the

iteration are conclusions.

In a continuation of this part, we consider Perry nonlinear conjugate gradient (NCG)

method and scaled memoryless BFGS method. These methods represent important schemes

for solving large-scale unconstrained optimization problems. Only the basic versions of

these methods without line search are considered. We show local superlinear convergence

assuming hypotheses which can be verified in practice.

In the second part of this thesis, space-time spectral methods are considered. Spectral

methods solve ordinary differential equations (ODEs) and partial differential equations

(PDEs) numerically with errors bounded by an exponentially decaying function of the

number of modes when the solution is analytic. For time dependent problems, almost all

focus has been on low-order finite difference schemes for the time derivative and spectral

schemes for spatial derivatives. Spectral methods which converge spectrally in both space



and time have appeared recently. In this thesis it is shown that a Chebyshev spectral collo-

cation method of Tang and Xu [71] for the heat equation converges exponentially when the

solution is analytic. We also derive a condition number estimate of the method. Another

space-time Chebyshev collocation scheme which is easier to implement is proposed and

analyzed. We also present space-time spectral collocation methods for the Schrodinger,

wave, Airy and beam equations. In particular, fully spectral convergence and a condition

number estimate are shown for Schrodinger and wave equations. Numerical results verify

the theoretical results, and demonstrate that the space-time methods also work for some

common nonlinear PDEs (Allen–Cahn, viscous Burgers’, Sine–Gordon, nonlinear diffusion,

KdV, Kuramoto–Sivashinsky and Cahn–Hilliard equations).
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1

Introduction

In first part of this thesis, consisting of Chapters 2 and 3, superlinear convergence of

quasi-Newton methods based on assumptions about the initial point is considered. It is

well known that the classical Newton’s method to solve a nonlinear system of equations

converges quadratically if the initial guess is close enough to a solution. One drawback of

this theory is that the solution is unknown apriori. Kantorovich’s version of this theory

only makes assumptions about the initial point and the existence of a solution and the

rate of convergence are consequences of the theory [15].

Another disadvantage of the classical Newton’s method is that the Jacobian matrix

must be formed at every iteration. In practice, the matrix may not be available analytically

or its formation may be very expensive. Quasi-Newton methods are designed so that it

is relatively inexpensive to compute an approximation to the Jacobian matrix at every

iteration. The first and most important contribution is due to Broyden [10], where the

matrix approximation from one iteration to the next one can be calculated by a rank-one

update. Assuming existence of a root, local convergence of the basic method as well as

global convergence of a version with line search are known. See, for instance [24] or [52].

This thesis also addresses the problem of unconstrained minimization of a smooth

function f : RN → R. The most popular class of methods for small or medium value
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of N is the BFGS method and its variations. While the approximation of the Broyden’s

method applied to solve the nonlinear system ∇f = 0 is, in general, non-symmetric, the

corresponding approximation of the BFGS method is symmetric. Again, local conver-

gence of the basic method and global convergence of a version with line search have been

shown [57], [22].

On the other hand, the classical conjugate gradient method was designed to solve a

system of linear equations with a symmetric positive definite (SPD) matrix, or equiva-

lently, to find the minimizer of a quadratic objective function with a SPD Hessian. Many

variations of the method have been proposed to solve the minimization problem for a

general nonlinear function. See [52], for instance. Nonlinear conjugate gradient (NCG)

methods are particularly attractive for high-dimensional problems because the memory

requirement of the algorithms are O(N). We study the symmetric scaled Perry NCG

method ([56]) primarily because, under appropriate assumptions ([77]), it can be consid-

ered as a quasi-Newton method with a SPD approximate Hessian (a rank-2 perturbation

of the identity) at every iteration.

The method of BFGS approximates the Hessian at every iteration, freeing the user

from defining the (exact) Hessian. Unfortunately, the method requires O(N2) storage and

is not feasible for large-scale problems. The memoryless BFGS ([52]) is the BFGS method

except that the approximate Hessian is a rank-2 pertubation of the identity matrix. Thus

its storage requirement is O(N) and it is attractive for large problems. It is memoryless in

the sense that the previous approximation of the Hessian is replaced by the identity. Scaled

memoryless BFGS methods ([2]) are those where the approximate Hessian is replaced by a

scalar multiple of the identity to reduce the condition number of the approximate Hessian.

The main thrust of the first part of this thesis is to give superlinear local convergence of

the methods of Chord, Broyden, BFGS, memoryless BFGS as well as Perry NCG method

where all assumptions are made in some region about the initial iterate and hence are

verifiable. We shall refer to this as Kantorovich-type assumptions. We show existence

2



of a root or minimizer and superlinear local convergence of these methods without using

line search and assuming only conditions about a neighbourhood of the initial point.

Following [15], we try to construct a convergence theory with as few constants as possible.

In the second part of this thesis, consisting of Chapters 4 and 5, space-time spectral

methods for solving time dependent PDEs are considered. Spectral methods have been

used successfully to solve elliptic PDEs for many decades. If the solution is analytic, the

numerical solution converges exponentially as a function of the number of spectral modes.

For time dependent PDEs, the most common approach is to use low-order finite difference

approximation of the time derivative and spectral approximation of the spatial derivatives.

This is not ideal since the time discretization error overwhelms the spatial discretization

error.

In [49], a Legendre spectral collocation method in both space and time based on the

work of Tang and Xu [71] was proposed for the heat equation. The method was shown to

converge spectrally when the solution is analytic. A condition number estimate of O(N4)

was derived, where N is the number of spectral modes in each direction. A second space-

time method, which is easier to implement and has similar performance was also proposed

and analyzed.

The main purpose of second part of this thesis is to demonstrate spectral convergence

and O(N4) condition number estimate for a Chebyshev spectral collocation method. Al-

though much of the basic framework of the theory for the methods based on the two

different orthogonal polynomials are similar, the analysis for the Chebyshev case is much

more difficult because of the presence of a singular weight function. In this work, a simpli-

fied eigenvalue analysis paves the way for a condition number estimate of the Chebyshev

space-time method and a similar analysis for other canonical linear PDEs.

In the remainder of this introductory chapter, an outline of the thesis is given. In

Chapter 2 we give a simple local convergence theory for the Chord’s method for a system

of nonlinear equations using Kantorovich-type hypotheses. This is followed by local super-

3



linear convergence of Broyden’s and BFGS method using Kantorovich-type assumptions.

For the latter, we introduce a norm which depends on the iteration number to estimate

the difference between inverses of the approximate and exact Jacobians. This idea may

be applicable in other situations.

In Chapter 3, local superlinear convergence of the symmetric scaled Perry NCG method

is given using Kantorovich-type assumptions. This is followed by an analogous theory for

a generalized scaled memoryless BFGS method.

In the Chapter 4, the space-time spectral convergence of the Chebyshev spectral col-

location method of Tang and Xu for the 1D heat equation is established. The condition

number of the method is shown to be O(N4). A similar space-time spectral collocation

method which is easier to implement for more general PDEs and which exhibits nearly

identical characteristics is proposed and analyzed. Some simple iterative schemes for two

nonlinear PDEs (Allen–Cahn and viscous Burgers’ equations) are briefly discussed and

some numerical experiments in MATLAB are shown to confirm the theoretical results.

In the Chapter 5, a space-time Chebyshev spectral collocation method for the 1D

Schrodinger, wave, Airy and beam equations are introduced. A condition number esti-

mate of the method for Schrodinger and wave equations is shown. Basically, the condition

number is bounded by a multiple of the condition number of the spectral approxima-

tion of the associated spatial differential operator. Also some simple iterative schemes

for four nonlinear PDEs (Sine–Gordon, nonlinear diffusion, KdV, Kuramoto–Sivashinsky

and Cahn–Hilliard equations) are briefly discussed. Numerical experiments in MATLAB

confirm the theoretical results.

Finally in Chapter 6, we summarize and offer some open problems and directions of

future work.
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2

Quasi-Newton methods, Chord’s,

Broyden’s and BFGS methods

In this chapter we establish superlinear convergence of a class of quasi-Newton methods

without applying line search and by using Kantorovich-type hypotheses. Existence of a

solution is a consequence of the theory.

2.1 Introduction

Let Ω be an open set in RN . Given a smooth F : Ω → RN , the problem of interest is

to find x∗ ∈ Ω so that F (x∗) = 0. A classical method to solve this problem is Newton’s

method. Given an initial guess x0 ∈ Ω for the root of the function, Newton’s method

produces a sequence of iterates {xn} defined by:

xn+1 = xn − F ′(xn)−1F (xn), n ≥ 0,

where F ′(xn) is the Jacobian matrix evaluated at xn. Any method that replaces the

exact Jacobian F ′(xn) with an approximation is a quasi-Newton method. Most practical
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algorithms for finding a zero of F are given by

xn+1 = xn − A−1
n F (xn), n ≥ 0,

where An is a sequence of nonsingular matrices. The main work here is to derive a conver-

gence theory for quasi-Newton methods where all assumptions can be verified and existence

of a root is a consequence of the theory. Also, the theory should have as few parameters

as possible. Before deriving the general convergence theorems for these methods, we will

need to discuss rates of convergence.

Definition 2.1. Assume {xn} ⊆ RN converges to x∗. {xn} converges superlinearly to x∗

if and only if either xn = x∗ for all sufficiently large n or xn 6= x∗ for n ≥ n0 and

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖

= 0.

Throughout this chapter and next, let ‖·‖ denote the Euclidean vector or matrix norm

and Br(x) denote the open ball of radius r with center at x. Recall that for any N × N

matrix A, ‖A‖2
F = ∑

i,j a
2
ij , and ‖A‖ ≤ ‖A‖F ≤

√
N‖A‖. The following theorem gives

simple assumptions for quadratic convergence of Newton’s method.

Theorem 2.2 (Dennis and Schnabel, 1996, [24]). Suppose F : RN → RN is C1. Assume

F (x∗) = 0 for some x∗ ∈ RN . Suppose F ′(x∗) is invertible and there are some positive

constants α, β and r such that ‖F ′(x)−1‖ ≤ α for all x ∈ Br(x∗), ‖F ′(x)−F ′(y)‖ ≤ β‖x−y‖

for all x, y ∈ Br(x∗), and αβr < 2. If ‖x0 − x∗‖ ≤ r, then the Newton’s iteration is well

defined, convergent to x∗ and

‖xn+1 − x∗‖ ≤ αβ
‖xn − x∗‖2

2 , ∀n ≥ 0.

The above theorem assumes the existence of a solution and a bound on the initial error,

which are both unknown, in general. Another convergence result for Newton’s method was
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introduced by L. Kantorovich [41]. It makes no assumption about the existence of a root.

It proves that if F ′(x0) is nonsingular, F ′ is Lipschitz continuous in a region containing

x0, and the first step of Newton’s method is sufficiently small, then there must be a root

in this region, and also it is unique.

Theorem 2.3 (Ciarlet, 2012, [16]). Let Ω be an open convex subset in RN and x0 ∈ Ω.

Suppose F : Ω → RN is C1(Ω) and F ′(x0) is invertible. Assume there is some r > 0

satisfying three hypotheses:

i) Br(x0) ⊂ Ω,

ii) ‖F ′(x0)−1F (x0)‖ ≤ r/2,

iii) ‖F ′(x0)−1(F ′(y)− F ′(x))‖ ≤ ‖y − x‖/r for all x, y ∈ Br(x0).

Then

i) F ′(x) is invertible for each x ∈ Br(x0),

ii) every Newton’s iterate xn ∈ Br(x0), n ≥ 0,

iii) xn → x∗ ∈ Br(x0), where F (x∗) = 0,

iv) ‖xn − x∗‖ ≤ 2−nr for all n ≥ 0,

v) x∗ is the only zero of F in Br(x0).

Note that all assumptions of the above theorem are about x0 and so verifiable. Further-

more, the existence of a solution is a consequence of the theorem. So the above theorem

can be used to demonstrate that a given nonlinear system has a solution.

While Newton’s method converges quadratically near the solution, it requires the for-

mation of the Jacobian which can sometimes be expensive and impractical. Broyden in

[10] suggested an algorithm for finding a solution of a system of nonlinear equations where

no Jacobian information is needed. For a function F : RN → RN , the Broyden’s method

is defined by

xn+1 = xn − A−1
n F (xn), n ≥ 0,

7



where

An+1 = An + F (xn+1)sTn
‖sn‖2 ,

sn = xn+1 − xn and A0 is a given, invertible matrix and x0 ∈ Ω is an initial guess.

In practice, A0 can be taken as I or F ′(x0) if it is invertible. In [11] it is shown that

the iterates converge superlinearly provided that x0 and A0 are sufficiently close to the

quantities that they approximate.

Theorem 2.4 (Broyden, Dennis and Moré, 1973, [11]). Let F be differentiable in Br(x∗),

an open ball about a root x∗. Assume that there are some positive constants β and γ so

that ‖F ′(x∗)−1‖ ≤ β and ‖F ′(x) − F ′(y)‖ ≤ γ‖x − y‖ for all x, y ∈ B. Suppose x0 ∈ B

and A0 satisfies

‖A0 − F ′(x0)‖+ 2γ‖x0 − x∗‖ ≤ (8β)−1.

Then the iterates {xn} given by Broyden’s method are well defined and converge super-

linearly to x∗.

We remark that An does not converge to F ′(x∗) in general.

Notice that almost all works in convergence theory of Broyden’s method have been done

by using assumptions of existence of a solution and a bound on ‖x∗−x0‖ and ‖F ′(x∗)−A0‖.

Dennis in [21] has proposed a Kantorovich-type analysis (assumptions based only on the

initial guess x0 and A0) for Broyden’s method. With F ′(x0) nonsingular, F Lipschitz

continuous in a region containing x0, and assuming three constants δ, β and η, such that

‖F ′(x0)− A0‖ ≤ δ, ‖A−1
0 ‖ ≤ β, ‖A−1

0 F (x0)‖ ≤ η,

local convergence of this method has been proved but without superlinear convergence.

In our work, we reduce the number of constants to one and demonstrate superlinear con-

vergence.
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In optimization, quasi-Newton methods can be applied for finding local minima of

multi-variable functions. Suppose we want to find a local minimum point x∗ ∈ RN of

f : RN → R so that ∇f(x∗) = 0 and Hessian matrix D2f(x∗) is an N × N SPD matrix.

Using Newton’s method:

xn+1 = xn −D2f(xn)−1∇f(xn), n ≥ 0,

this iteration converges quadratically provided that x0 is sufficiently close to x∗. WhenN is

large, Newton’s method may not be efficient because of the need to form the large Jacobian

matrix at every iteration. One possibility is to use Broyden’s method. Unfortunately, the

approximate Jacobian in Broyden’s method is, in general, non-symmetric, in contrast to

the symmetric D2f(x). Assume x0 ∈ Ω, A0 is a SPD matrix. The BFGS iteration for

finding a local minimum is given by

xn+1 = xn − A−1
n ∇f(xn), n ≥ 0,

where a rank-two Jacobian update is given by

An+1 = An + yny
T
n

yTn sn
− Ansns

T
nAn

sTnAnsn
,

for any n ≥ 0, where sn = xn+1− xn and yn = F (xn+1)−F (xn). If yTn sn > 0 in each step,

the BFGS approximate Jacobian An+1 stays SPD [52].

BFGS method with line search is globally convergent for convex functions. The analysis

is based on early work by Powel [57] and Dennis and Moré [22]. Suppose that the starting

point is sufficiently close to the solution x∗ and that the initial Hessian approximation is

sufficiently close to F ′(x∗). Then BFGS with line search converges superlinearly.

Theorem 2.5 (Nocedal and Wright, [52], Chapter 6). Let Ω be an open convex set in RN

and f : Ω → R be twice continuously differentiable. Let x∗ ∈ Ω so that ∇f(x∗) = 0 and

9



D2f(x∗) is SPD. Suppose there is some positive constant m so that it is a lower bound

for all eigenvalues of D2f(x) for all x ∈ Ω. Assume that

‖D2f(x)−D2f(y)‖ ≤ L‖x− y‖,

for some positive constant L and all x, y ∈ Ω. Let {xn} be the sequence produced by the

BFGS method with line search and xn 6= x∗ for all n. Then xn → x∗ superlinearly.

Again the main assumption is existence of a solution x∗, which is an unknown quantity

in general. Line search enables the algorithm to be globally convergent.

The aim here is to show superlinear convergence of Chord’s, Broyden’s and BFGS

methods without applying line search and by using Kantorovich-type hypotheses. Part

of the attraction of this theory is that the number of constants has been reduced, in the

spirit of [16].

In the remainder of this chapter, in Section 2.2, some lemmas are given that are nec-

essary in the proof of theorems and propositions. In Section 2.3 local superlinear conver-

gence of Chord’s method is given using Kantorovich-type assumptions. This is followed

by an analogous theory for superlinear convergence of Broyden’s and BFGS method in

Sections 2.4 and 2.5.

2.2 Preliminaries

The following lemmas are needed in the proof of theorems coming in the next sections.

Lemma 2.6. Let A,B be SPD, then

‖AB‖2 ≤ ‖A2B2‖.

Proof. Define inner product 〈x, y〉 = xTA−1 y. It is well known that AB is self adjoint

with respect to this inner product and is positive definite. Let λmax(M) be the maximum
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eigenvalue of matrix M , then

λmax(AB) = max
y 6=0

〈ABy, y〉
〈y, y〉

= max
y 6=0

yTBy

yTA−1y
.

Since λmax(A2B2) ≤ ‖A2B2‖, it follows that

‖AB‖2 = ‖AB(AB)T‖ = ‖AB2A‖ = max
x 6=0

xTAB2Ax

xTx
= max

y 6=0

yTB2 y

yTA−2y
= λmax(A2B2) ≤ ‖A2B2‖.

Lemma 2.7 (Sherman and Morrison, 1949, [23], Lemma 4.2). Let u, v ∈ RN and assume

A ∈ RN×N is nonsingular. Then A+uvT is nonsingular if and only if σ = 1+vTA−1u 6= 0.

If σ 6= 0, then

(A+ uvT )−1 = A−1 − (1/σ)A−1uvTA−1.

Lemma 2.8 (Dennis and Moré, 1977, [23], Lemma 8.5). Let u, v be vectors so that

uTv 6= 0. Then

∥∥∥∥∥I − uvT

vTu

∥∥∥∥∥ = ‖u‖‖v‖
|vTu|

.

Lemma 2.9 (Dennis and Schnabel, 1996, [24], Theorem 3.1.4). Let A be a square matrix

and ‖I − A‖ < 1. Then A is invertible and

‖A−1‖ ≤ 1
1− ‖I − A‖ .

Lemma 2.10 (Dennis and Moré, 1996, [23], Lemma 3.2). Let u, v be non-zero vectors so

that ‖u− v‖ ≤ λ‖u‖ for some λ ∈ (0, 1). Then

1−
(

uTv

‖u‖‖v‖

)2

≤ λ2.
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2.3 Chord’s method

The Chord’s method to solve the nonlinear system F (x) = 0 is given by the iteration

xn+1 = xn − A−1F (xn), n ≥ 0,

where x0 is an initial guess and A = F ′(x0) is invertible. The Chord’s method is Newton’s

iteration except that the Jacobian is fixed at A for all n. This is an alternative to Newton’s

method because the Jacobian is formed only once in the beginning. The drawback is that

the convergence is only linear. Below is a local convergence theory using Kantorovich-type

assumptions.

Theorem 2.11. Let Ω be an open set in RN and F : Ω → RN be continuously differ-

entiable on Ω. Given x0 ∈ Ω. Suppose A = F ′(x0) is non-singular. Assume for some

r ∈ (0, 1) that Br(x0) ⊂ Ω, ‖A−1F (x0)‖ ≤ (1− r)r and

‖A−1(F ′(v)− F ′(w))‖ ≤ ‖v − w‖, v, w ∈ Br(x0).

Let {xn} be the iterates of the Chord’s method. Then xn → x∗ ∈ Br(x0), where F (x∗) = 0.

Let en = xn − x∗. Then ‖en‖ ≤ rn+1, n ≥ 0. Furthermore, x∗ is the unique zero of F in

Br(x0).

Proof. Let sn = xn+1 − xn. We claim by induction that xn+1 ∈ Br(x0) and ‖sn‖ ≤

(1− r)rn+1, ∀n ≥ 0.

The base case n = 0 holds trivially since s0 = −A−1F (x0) and so by hypothesis,

‖s0‖ ≤ (1− r)r < r. This also shows that x1 ∈ Br(x0). Assume that the claims hold for

n− 1. We show that they also hold for n.

By the Mean Value Theorem, there is some ξ along the line joining xn and xn−1 so

12



that F (xn)− F (xn−1) = F ′(ξ)sn−1. By the induction hypothesis,

‖sn‖ = ‖A−1F (xn)‖ = ‖A−1
(
F (xn)− F (xn−1)

)
− sn−1‖

≤ ‖
(
A−1F ′(ξ)− I

)
sn−1‖ = ‖A−1

(
F ′(ξ)− F ′(x0)

)
sn−1‖

≤ ‖ξ − x0‖ (1− r)rn ≤ (1− r)rn+1.

Since xn+1 − x0 = ∑n
j=0 sj, it follows that ‖xn+1 − x0‖ ≤

∑n
j=0(1 − r)rj+1 < r, or xn+1 ∈

Br(x0). For any non-negative p, we have xn+p+1 − xn = ∑n+p
j=n sj, and so

‖xn+p+1 − xn‖ ≤ (1− r)
n+p∑
j=n

rj+1 ≤ rn+1.

This implies that {xn} is a Cauchy sequence and so it must converge to some x∗ ∈ Br(x0).

Also, taking p→∞,

‖en‖ ≤ rn+1.

Consequently, A−1F (xn) = −sn → 0. This shows that F (x∗) = 0.

Let x̂ be any zero of F in Br(x0). Define ên = xn − x̂. We show ‖ên‖ ≤ rn+1 by

induction. The base case is trivial. Suppose the claim is true for n. There is some ξ in

between xn and x̂ so that F (xn)− F (x̂) = F ′(ξ)(xn − x̂). Then

ên+1 = xn+1 − x̂ = xn − A−1F (xn) + A−1F (x̂)− x̂ = ên − A−1F ′(ξ)ên.

Therefore

‖ên+1‖ ≤ ‖A−1
(
F ′(x0)− F ′(ξ)

)
‖ ‖ên‖

≤ ‖x0 − ξ‖ rn+1 ≤ rn+2.
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As a result,

‖x∗ − x̂‖ ≤ ‖x∗ − xn‖+ ‖xn − x̂‖ ≤ 2rn+1 → 0. (2.1)

Hence x∗ = x̂.

2.4 Broyden’s method

In Newton’s method we need to form the Jacobian F ′(xn) at every iteration, which may be

computationally intensive, or may not be available analytically. Broyden in [10] devised an

approximate Jacobian which can calculated from the approximate Jacobian of the previous

iteration by a rank-one update. Given x0 ∈ Ω and an invertible initial approximate

Jacobian A0 the algorithm is

xn+1 = xn + sn, sn = −A−1
n F (xn), n ≥ 0,

An+1 = An + F (xn+1)sTn
‖sn‖2 .

Using classical assumptions (existence of a solution x∗ and bounds on F and F ′ in a

neighbourhood of x∗), local superlinear convergence and global convergence of the method

with line search are known. See, for instance, [24] or [52].

Since x∗ is not known apriori, the assumptions cannot be checked in practice. The

purpose of this section is to give a local superlinear convergence of Broyden’s method

using Kantorovich-type assumptions.

We are now ready to show local convergence of Broyden’s method, which will be

followed by a proof of superlinear convergence. Our technique of proof combines the elegant

Newton-Kantorovich theory with only one constant (Theorem 7.7.5 in [15]) and the local

convergence of Broyden’s method ([24]). Note that [21] has shown a local Kantorovich-type

convergence result, but without superlinear convergence.
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Theorem 2.12. Let Ω be open in RN , F : Ω → RN , F ∈ C1(Ω), x0 ∈ Ω and A0

invertible. For some 0 < r ≤ 1/2 assume Br(x0) ⊂ Ω and

‖F ′(x0)−1F (x0)‖ ≤ ξr2, (2.2)

‖F ′(x0)−1(F ′(u)− F ′(v))‖ ≤ η‖u− v‖
r

, ∀u, v ∈ Br(x0), (2.3)

‖I − F ′(x0)−1A0‖ ≤ dr, (2.4)

where ξ, η and d are positive constants dependent on r (to be defined later). Then Broy-

den’s iteration {xn} is well defined and exactly one of the following cases holds,

(i) F (xn) = 0 for some n ≥ 0.

(ii) Broyden’s method converges to a unique zero of F in Br(x0).

Proof. Define G(y) = F ′(x0)−1F (y). By this definition, F (x∗) = 0 if and only if G(x∗) =

0, zeros of F are zeros of G and also G′(y) = F ′(x0)−1F ′(y), G is differentiable as F is.

Define

B0 = F ′(x0)−1A0, y0 = x0,

yn+1 = yn + tn, tn = −B−1
n G(yn), n ≥ 0,

Bn+1 = Bn + G(yn+1)tTn
‖tn‖2 .

Assume F (xn) 6= 0 for all n ≥ 0. First we show that ∀n ≥ 0, yn = xn and Bn =

F ′(x0)−1An. We use mathematical induction for proving these statements. Basic step

is true obviously, y0 = x0 and B0 = F ′(x0)−1A0, by using definition. Let xn = yn and

Bn = F ′(x0)−1An, for some positive integer n, then we need to show xn+1 = yn+1 and

Bn+1 = F ′(x0)−1An+1. Notice that:

tn = −B−1
n G(xn) = −(F ′(x0)−1An)−1F ′(x0)−1F (xn)

= −A−1
n F ′(x0)F ′(x0)−1F (xn) = −A−1

n F (xn) = sn,
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therefore tn = sn and also yn+1 = yn + tn = xn + sn = xn+1. By definition of Bn+1 we get:

Bn+1 = Bn + G(xn+1)tTn
‖tn‖2 = F ′(x0)−1An + F ′(x0)−1F (xn+1)sTn

‖sn‖2

= F ′(x0)−1(An + F (xn+1)sTn
‖sn‖2 ) = F ′(x0)−1An+1.

Furthermore, it is easy to show that by using assumptions of the theorem,

‖G(x0)‖ ≤ ξr2;

‖G′(u)−G′(v)‖ ≤ η‖u− v‖
r

, ∀u, v ∈ Br(x0) .

Also two following claims are really useful.

Claim 1. ‖G′(u)−1‖ ≤ 1
1− η‖x0 − u‖/r

, for all u ∈ Br(x0).

We have G′(x0) = F ′(x0)−1F ′(x0) = I, therefore for u ∈ Br(x0),

‖I −G′(u)‖ = ‖G′(x0)−G′(u)‖ ≤ η‖x0 − u‖
r

< η.

If we assume η < 1, then by using Lemma 2.9, G′(u) is invertible and

‖G′(u)−1‖ ≤ 1
1− ‖I −G′(u)‖ ≤

1
1− η‖x0 − u‖/r

.

Claim 2. ‖G(u)−G(v)−G′(v)(u− v)‖ ≤ η‖u− v‖2

2r , for all u, v ∈ Br(x0).

‖G(u)−G(v)−G′(v)(u− v)‖ =
∥∥∥∥∥
∫ 1

0

(
G′(tu+ (1− t)v)−G′(v)

)
(u− v)dt

∥∥∥∥∥
≤ ‖u− v‖

∫ 1

0
‖G′

(
tu+ (1− t)v

)
−G′(v)‖dt

≤ η‖u− v‖
r

∫ 1

0
‖t(u− v)‖dt

= η‖u− v‖2

r

∫ 1

0
t dt = η‖u− v‖2

2r .
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Claim: There are some positive constants α, µ and β dependent on r (to be defined later),

such that for n ≥ 0,

3. ‖xn − x0‖ ≤ r(1− rn);

4. ‖G(xn)‖ ≤ ξ rn+2;

5. ‖G′(xn)−Bn‖ ≤ αr;

6. G′(xn) is invertible and ‖G′(xn)−1‖ ≤ µ;

7. Bn is invertible and ‖B−1
n ‖ ≤ β;

8. ‖sn‖ ≤ rn+2.

In following the proof of these claims is given by using mathematical induction. Basic

step for Claim 3 is trivial. By definition of B0, it is invertible thus s0 is well defined and

x1 exists. Also ‖G′(x0) − B0‖ = ‖I − F ′(x0)−1A0‖ ≤ dr ≤ αr, if we choose α such that

d ≤ α. By assumption ‖G′(x0)−1‖ = 1, let µ ≥ 1, so we get: ‖G′(x0)−1‖ ≤ µ. In addition

‖I −B0‖ = ‖I −F ′(x0)−1A0‖ ≤ dr. If we assume dr < 1, then ‖I −B0‖ < 1 and by using

Lemma 2.9

‖B−1
0 ‖ ≤

1
1− ‖I −B0‖

≤ 1
1− dr .

So by assuming β ≥ 1
1− dr , we have ‖B−1

0 ‖ ≤ β. Also ‖s0‖ = ‖ − B−1
0 G(x0)‖ ≤

‖B−1
0 ‖‖G(x0)‖ ≤ βξr2 ≤ r2, by assuming βξ ≤ 1. Then we assume all of the statements

are true for some integer n ≥ 1, we will show they hold for n+ 1.

Claim 3. Since Bn is invertible by hypothesis of induction, xn+1 exists and

‖xn+1−x0‖ ≤ ‖xn+1−xn‖+‖xn−x0‖ ≤ rn+2 + r(1−rn) = r(1−rn(1−r)) ≤ r(1−rn+1),

since r ≤ 1/2. ‖xn+1 − x0‖ ≤ r(1− rn+1) ≤ r, and also xn+1 ∈ Br(x0).
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Claim 4. We have sn = −B−1
n G(xn) , so G(xn) = −Bnsn. Then

‖G(xn+1)‖ = ‖G(xn+1)−G(xn) +G(xn)‖ = ‖G(xn+1)−G(xn)−Bnsn‖

= ‖G(xn+1)−G(xn)−G′(xn)sn + (G′(xn)−Bn)sn‖

≤ ‖G(xn+1)−G(xn)−G′(xn)sn‖+ ‖(G′(xn)−Bn)sn‖

≤ η‖sn‖2

2r + αr‖sn‖ = ‖sn‖(
η‖sn‖

2r + αr) (2.5)

≤ rn+2 ( ηr
n+2

2r + αr)

≤ rn+3 (η + α) ≤ ξrn+3,

if we assume η + α ≤ ξ. Then ‖G(xn+1)‖ ≤ ξ rn+3, as we need.

Claim 5. Observe that

‖G′(xn+1)−Bn+1‖ =
∥∥∥∥∥G′(xn+1) +G′(xn)−G′(xn)−Bn −

G(xn+1)sTn
‖sn‖2

∥∥∥∥∥
≤ ‖G′(xn+1)−G′(xn)‖+

∥∥∥∥∥G′(xn)−Bn −
G(xn+1)sTn
‖sn‖2

∥∥∥∥∥. (2.6)
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Consider the second term of this inequality, we could write it as:

G′(xn)−Bn −
G(xn+1)sTn
‖sn‖2 = G′(xn)−Bn −

(
G(xn+1)−G(xn) +G(xn)

)
sTn

‖sn‖2

= G′(xn)−Bn −

(
G(xn+1)−G(xn)

)
sTn

‖sn‖2 − G(xn)sTn
‖sn‖2

= G′(xn)−Bn −

(
G(xn+1)−G(xn)

)
sTn

‖sn‖2 + Bnsns
T
n

‖sn‖2

= G′(xn)−Bn −
∫ 1

0
G′( (1− t)xn + txn+1 ) sns

T
n

‖sn‖2 dt+ Bnsns
T
n

‖sn‖2

= G′(xn)−Bn +
∫ 1

0

(
G′(xn)−G′( (1− t)xn + txn+1 )

)
sns

T
n

‖sn‖2 dt

−
∫ 1

0
G′(xn) sns

T
n

‖sn‖2 dt+ Bnsns
T
n

‖sn‖2

= (G′(xn)−Bn)(I − sns
T
n

‖sn‖2 )

+
∫ 1

0
[G′(xn)−G′((1− t)xn + txn+1)] sns

T
n

‖sn‖2 dt.

Therefore:

∥∥∥∥∥G′(xn)−Bn −
G(xn+1)sTn
‖sn‖2

∥∥∥∥∥ ≤ ‖G′(xn)−Bn‖
∥∥∥∥∥I − sns

T
n

‖sn‖2

∥∥∥∥∥
+
∫ 1

0
‖G′(xn)−G′( (1− t)xn + txn+1 )‖‖sn‖‖s

T
n‖

‖sn‖2 dt

≤ ‖G′(xn)−Bn‖+
∫ 1

0

η‖xn − [(1− t)xn + txn+1]‖
r

dt

≤ ‖G′(xn)−Bn‖+
∫ 1

0

tη‖sn‖
r

dt

≤ ‖G′(xn)−Bn‖+ η‖sn‖
2r .
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Substitute this in inequality (2.6) we get:

‖G′(xn+1)−Bn+1‖ ≤ ‖G′(xn+1)−G′(xn)‖+ ‖G′(xn)−Bn‖+ η‖sn‖
2r

≤ η‖sn‖
r

+ ‖G′(xn)−Bn‖+ η‖sn‖
2r

= 3η‖sn‖
2r + ‖G′(xn)−Bn‖

≤ 3η
2r (‖sn‖+ ‖sn−1‖+ . . .+ ‖s0‖ ) + ‖G′(x0)−B0‖

≤ 3η
2r
(
rn+2 + rn+1 + . . .+ r2) + dr

≤ 3ηr
2
(1− rn+1

1− r
)

+ dr ≤ 3ηr + dr ≤ αr,

if we choose α such that α ≥ 3η + d.

Claim 6. By using Claim 3, we have ‖xn+1 − x0‖ ≤ r(1 − rn+1) ≤ r, and also xn+1 ∈

Br(x0). Then by using Claim 1, G′(xn+1) is invertible and

‖G′(xn+1)−1‖ ≤ 1

1− η‖xn+1 − x0‖
r

≤ 1
1− η .

Define µ = 1
1− η > 1. Then ‖G′(xn+1)−1‖ ≤ µ as we need.

Claim 7. Notice that:

G′(xn+1)−1Bn+1 = I +G′(xn+1)−1
(
Bn+1 −G′(xn+1)

)
, (2.7)

and

‖G′(xn+1)−1(Bn+1 −G′(xn+1))‖ ≤ ‖G′(xn+1)−1‖ ‖Bn+1 −G′(xn+1)‖ ≤ µαr.
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Assume µαr < 1, then G′(xn+1)−1Bn+1 is invertible which means Bn+1 is invertible and

∥∥∥∥∥
(
I +G′(xn+1)−1 (Bn −G′(xn+1) )

)−1∥∥∥∥∥ ≤ 1
1− ‖G′(xn+1)−1

(
Bn+1 −G′(xn+1)

)
‖

≤ 1
1− µαr .

From (2.7), B−1
n+1 =

(
I +G′(xn+1)−1 (Bn −G′(xn+1))

)−1

G′(xn+1)−1,

‖B−1
n+1‖ ≤

∥∥∥∥∥
(
I +G′(xn+1)−1

(
Bn+1 −G′(xn+1)

) )−1∥∥∥∥∥ ∥∥∥G′(xn+1)−1
∥∥∥ ≤ µ

1− µαr .

Let β = max{ 1
1− dr ,

µ

1− µαr}, then ‖B
−1
n+1‖ ≤ β. Notice that

µ

1− µαr = 1
1− η − αr = 1 + η + αr

1− η − αr > 1,

so β > 1.

Claim 8. Since Bn+1 is invertible, sn+1 is well defined and

‖sn+1‖ = ‖ −B−1
n+1G(xn+1)‖ ≤ ‖B−1

n+1‖‖G(xn+1)‖ ≤ βξrn+3 ≤ rn+3,

since βξ ≤ 1.

Therefore by using mathematical induction we have the results. By using Claim 8 we

could say {xn} is a Cauchy sequence lying in Br(x0). Given p, q ≥ 0 we have:

‖xp − xp+q‖ ≤
p+q−1∑
k=p
‖xk+1 − xk‖ ≤

p+q−1∑
k=p

rk+2 < r2
∞∑
k=p

rk = rp+2

1− r ≤ rp+1,

since r ≤ 1
2 ⇒

1
1− r ≤

1
r
, therefore {xn} converges to a point x∗ ∈ Br(x0). By using

the fact that G is a continuous function and ‖G(xn)‖ ≤ ξrn+2 , it follows that G(x∗) = 0,

which implies F (x∗) = 0. By taking q → ∞ and p = n in the above calculation we get
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‖xn − x∗‖ ≤ rn+1. Let en = xn − x∗, then we have ‖en‖ ≤ rn+1. Observe that x ∈ Br(x0).

Now for proof of uniqueness, let x̂ be any other zero of F in Br(x0). Then we could show

that ‖ên+1‖ ≤
‖ên‖

2 for all n ≥ 0, where ên = xn − x̂. Notice that:

ên+1 = xn+1 − x̂ = xn + sn − x̂ = xn −B−1
n G(xn)− x̂

= B−1
n Bn ên +B−1

n

(
−G(xn) +G(x̂)

)
= B−1

n

(
Bn −G′(xn)

)
ên +B−1

n

(
−G(xn) +G(x̂) +G′(xn)ên

)
.

Therefore:

‖ên+1‖ =
∥∥∥∥∥B−1

n

(
−G(xn) +G(x̂) +G′(xn) ên + (Bn −G′(xn)) ên

)∥∥∥∥∥
≤

∥∥∥B−1
n

∥∥∥ ∥∥∥∥∥
∫ 1

0

(
G′(xn)−G′(x̂+ t ên)

)
ên dt+ (Bn −G′(xn) ) ên

∥∥∥∥∥
≤ ‖B−1

n ‖ ‖ên‖
(∫ 1

0
‖G′(xn)−G′(x̂+ t ên) ‖dt+ ‖Bn −G′(xn) ‖

)

≤ ‖B−1
n ‖ ‖ên‖

(∫ 1

0

η‖xn − x̂− t ên ‖
r

dt+ ‖Bn −G′(xn) ‖
)

≤ ‖B−1
n ‖ ‖ên‖

(η‖ên‖
2r + ‖Bn −G′(xn) ‖

)
.

Since x̂ , xn ∈ Br(x0) then ‖ên‖ ≤ 2r, then by using above inequality, we have

‖ên+1‖ ≤ β ‖ên‖
(η‖ên‖

2r + αr
)
≤ β(η + α)‖ên‖ ≤

1
2‖ên‖,

if we assume β(η + α) ≤ 1
2 . So we have ‖xn − x̂‖ ≤

1
2n . Therefore,

‖x̂− x∗‖ ≤ ‖x̂− xn‖+ ‖xn − x∗‖ ≤
1
2n + rn+1.

Let n → ∞ to obtain the uniqueness result. Now assume r ≤ 1
2 and η = 1

6(2 + r) , the
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constants in the proof of this claims could be chosen as:

d = 1 + 3r
6(2 + r)2 , ξ = 11 + 7r

6(2 + r)2 , β = 3(2 + r)2

11 + 7r , µ = 12 + 6r
12 + 11r , α = 3 + 2r

2(2 + r)2 . (2.8)

The calculations for finding the constants are given in Appendix A. This completes proof

of the theorem.

We now consider an example which illustrates that the constants in the above theorem

cannot be arbitrary. Consider N = 1 with Ω = (0.1, 1) and F (x) = x. Clearly this

trivial example has no solution in Ω. Take, for instance, x0 = 0.2. Then for any r <

0.1, Br(x0) ⊂ Ω, Assumption (2.2) of the theorem reads ‖x0‖ ≤ ξr2, which cannot be

satisfied for ξ = (11 + 7r)(2 + r)−2/6. It is not claimed that this value of ξ is optimal, but

it must be sufficiently small.

Next, consider another 1D example with Ω = (−1, 1) and F (x) = x(x + 2). The only

trouble occurs at x = −1 because F ′(−1) = 0. We check the hypotheses of the above

theorem for this simple example. Consider r = 0.05. Using (2.8), the inequality (2.2) is

equivalent to x0 ∈ [−0.0011, 0.0012], while the inequality (2.3) becomes x0 ≥ −0.3850,

which is less stringent than (2.2). Finally, (2.4) is equivalent to 1.5439(x0 + 1) ≤ A0 ≤

2.0046(x0 + 1). Note that the lower bound is positive and, in conjunction with (2.2),

guarantees convergence of the iteration to the root 0.

Next we show superlinear convergence of Broyden’s method. The proof follows closely

that of Theorem 8.2.2 in [24].

Theorem 2.13. Assume the hypotheses of Theorem 2.12. Then Broyden’s method con-

verges superlinearly to a unique zero of F in Br(x0).
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Proof. By Theorem 2.12, the iterates xn defined by

B0 = F ′(x0)−1A0, x0, A0 given, invertible,

xn+1 = xn + sn, sn = −B−1
n G(xn), n ≥ 0,

Bn+1 = Bn + G(xn+1)sTn
‖sn‖2 ,

converge to x, a zero of F in Br(x0), where G(z) = F ′(x0)−1F (z). Assume that F (xn) 6= 0

for all n ≥ 0. Therefore we have:

‖en‖ ≤ rn+1,

‖G(xn)‖ ≤ ξrn+2,

‖En‖ ≤ αr,

‖G′(xn)−1‖ ≤ µ,

‖B−1
n ‖ ≤ β,

where en = xn − x∗ , En = Bn −G′(xn), and the positive constants are given by (2.8).

Claim: ∀n ≥ 0,

1. ‖en+1‖ ≤
‖en‖

2 ;

2. ‖En+1‖ ≤ ‖En‖+ 3η
r
‖en‖.

Claim 1. First notice that:

en+1 = xn+1 − x∗ = xn + sn − x∗ = en −B−1
n G(xn) = B−1

n Bnen +B−1
n (−G(xn) +G(x∗))

= B−1
n

(
Bn −G′(xn)

)
en +B−1

n

(
−G(xn) +G(x∗) +G′(xn)en

)
.
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Then we have:

‖en+1‖ =
∥∥∥∥∥B−1

n

(
−G(xn) +G(x∗) +G′(xn) en + (Bn −G′(xn)) en

)∥∥∥∥∥
≤

∥∥∥B−1
n

∥∥∥ ∥∥∥∥∥
∫ 1

0

(
G′(xn)−G′(x∗ + ten)

)
en dt+ (Bn −G′(xn) ) en

∥∥∥∥∥
≤ ‖B−1

n ‖ ‖en‖
(∫ 1

0
‖G′(xn)−G′(x∗ + ten) ‖dt+ ‖Bn −G′(xn) ‖

)

≤ ‖B−1
n ‖ ‖en‖

(∫ 1

0

η

r
‖xn − x∗ − ten ‖dt+ ‖Bn −G′(xn) ‖

)

≤ ‖B−1
n ‖ ‖en‖

(∫ 1

0

η ‖en‖
r

(1− t) dt+ ‖Bn −G′(xn) ‖
)

≤ β ‖en‖
(η‖en‖

2r + αr
)
≤ β ‖en‖

(ηrn
2 + αr

)
≤ β(η + α)‖en‖ ≤

‖en‖
2 .

Notice that we are using the fact that for any n we have ‖en‖ ≤ rn+1 and also by definition,

β(η + α) = βξ = 1
2 .

Claim 2. For any n ≥ 0 we have:

En+1 = Bn+1 −G′(xn+1) = Bn + G(xn+1)sTn
‖sn‖2 −G′(xn+1)

= Bn −G′(xn) + G(xn+1)sTn
‖sn‖2 +G′(xn)−G′(xn+1)

= En(I − sns
T
n

‖sn‖2 ) + (G(xn+1)−G(xn) )sTn
‖sn‖2 + Ensns

T
n

‖sn‖2 + G(xn)sTn
‖sn‖2 +G′(xn)−G′(xn+1),

but G(xn) = −Bnsn, so we have:

En+1 = En(I − sns
T
n

‖sn‖2 ) + (G(xn+1)−G(xn)−G′(xn)sn )sTn
‖sn‖2 +G′(xn)−G′(xn+1). (2.9)
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Consider the second term of the right-hand side of this equality:

‖ G(xn+1)−G(xn)−G′(xn)sn ‖ ≤
∫ 1

0
‖
(
G′(t xn+1 + (1− t)xn)−G′(xn)

)
sn ‖dt

≤
∫ 1

0

η‖t xn+1 + (1− t)xn − xn ‖ ‖sn‖ dt
r

≤ η‖sn‖
r
‖xn+1 − xn‖

∫ 1

0
t dt

≤ η‖sn‖
2r

(
‖xn+1 − x∗‖+ ‖xn − x∗‖

)
≤ η‖sn‖

2r
(
‖en+1‖+ ‖en‖

)
.

Therefore,

‖ G(xn+1)−G(xn)−G′(xn)sn ‖ ≤
η‖sn‖

2r
(
‖en+1‖+ ‖en‖

)
≤ η‖sn‖

r
‖en‖, (2.10)

and

‖En+1‖ ≤ ‖En‖+ ‖ G(xn+1)−G(xn)−G′(xn)sn ‖ ‖sTn‖
‖sn ‖2 + ‖G′(xn)−G′(xn+1)‖

≤ ‖En‖+ ‖ G(xn+1)−G(xn)−G′(xn)sn ‖
‖sn ‖

+ η
‖xn+1 − xn‖

r

≤ ‖En‖+ η

r
‖en‖+ η

r

(
‖en+1‖+ ‖en‖

)
= ‖En‖+ 3η

r
‖en‖.

Claim:

3. There is some positive integer m so that for all n ≥ m, ‖G(xn)‖ ≥ ‖en‖
4‖G′(xn)−1‖

;

4.
∥∥∥∥∥En(I − sns

T
n

‖sn‖2

)∥∥∥∥∥
F

≤ ‖En‖F −
1

2‖En‖F
‖Ensn‖2

‖sn‖2 for all n ≥ 0;

5. ‖Ensn‖
‖sn‖

→ 0 as n→∞.
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Recall from (2.5),

‖G(xn+1)‖ ≤ η‖sn‖2

2r + αr‖sn‖,

and also

G(xn+1)−G(xn) = G′(xn)sn +
∫ 1

0

(
G′(t xn+1 + (1− t)xn)−G′(xn)

)
sndt.

Then,

‖G(xn)‖ ≥ ‖G′(xn)sn‖ − ‖G(xn+1)‖ − η

r

∫ 1

0
t‖sn‖2dt

≥ ‖sn‖
‖G′(xn)−1‖

− ‖G(xn+1)‖ − η

2r‖sn‖
2

≥ ‖sn‖
‖G′(xn)−1‖

− η‖sn‖2

r
− αr‖sn‖

≥ ‖sn‖
( 1
‖G′(xn)−1‖

− η‖sn‖
r
− αr

)
.

Notice that ‖en+1‖ ≤ ‖en‖/2, and so

‖en‖
2 ≤ ‖en‖ − ‖en+1‖ ≤ ‖sn‖ ≤ ‖en+1‖+ ‖en‖ ≤ 2‖en‖,

leading to,

‖G(xn)‖ ≥ ‖en‖2
( 1
‖G′(xn)−1‖

− 2η‖en‖
r

− αr
)
. (2.11)

Since ‖en‖ → 0, there is some m so that for all n ≥ m,

‖en‖ ≤
r

4η‖G′(xn)−1‖
− αr2

2η .
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Then we get

2η‖en‖
r

+ αr ≤ 1
2‖G′(xn)−1‖

,

by substituting this in the equation (2.11) we have,

‖G(xn)‖ ≥ ‖en‖
4‖G′(xn)−1‖

.

Claim 4. For any matrix E and vectors u and v, it can be easily proved that:

‖E + uvT‖2
F = ‖E‖2

F + 2vTETu+ ‖u‖2‖v‖2.

The above identity with u = −Ensn and v = sn/‖sn‖2 for any n ≥ 0 gives

∥∥∥∥∥En − Ensns
T
n

‖sn‖2

∥∥∥∥∥
2

F

= ‖En‖2
F −
‖Ensn‖2

‖sn‖2 ,

consequently

∥∥∥∥∥En
(
I − sns

T
n

‖sn‖2

)∥∥∥∥∥
F

=
(
‖En‖2

F −
‖Ensn‖2

‖sn‖2

)1/2

≤ ‖En‖F −
1

2‖En‖F
‖Ensn‖2

‖sn‖2 ,

using the inequality (a2 + b2)1/2 ≤ a− b2/(2a) for any a ≥ b > 0.

Claim 5. By using (2.9), (2.10) and (2.11),

‖En+1‖F =
∥∥∥∥∥En

(
I − sns

T
n

‖sn‖2

)∥∥∥∥∥
F

+
∥∥∥∥∥ (G(xn+1)−G(xn)−G′(xn)sn )sTn

‖sn‖2

∥∥∥∥∥
F

+‖G′(xn)−G′(xn+1)‖F

≤ ‖En‖F −
1

2‖En‖F
‖Ensn‖2

‖sn‖2 + 3η
r

√
N‖en‖,
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or

‖Ensn‖2

‖sn‖2 ≤ 2‖En‖F ( ‖En‖F − ‖En+1‖F + 3η
r

√
N‖en‖)

≤ 2
√
Nαr( ‖En‖F − ‖En+1‖F + 3η

r

√
N‖en‖).

Summing over n from 0 to m for any m, we obtain

m∑
n=0

‖Ensn‖2

‖sn‖2 ≤ 2
√
Nαr( ‖E0‖F − ‖Em+1‖F + 3η

r

√
N‖e0‖

m∑
n=0

1
2n )

≤ 2
√
Nαr( ‖E0‖F + 3η

r

√
N‖e0‖ ).

Since ‖E0‖F ≤
√
Ndr and ‖e0‖ ≤ r,

m∑
n=0

‖Ensn‖2

‖sn‖2 ≤ 2N(dr + 3η)αr.

Take m→∞ to conclude that

lim
n→∞

‖Ensn‖2

‖sn‖2 = 0.

This completes the proof of Claim 5. Now from the Broyden’s iteration, for any n ≥ 0,

0 = Bnsn +G(xn) = Ensn +G′(xn)sn +G(xn).

Therefore,

−G(xn+1) = Ensn +G′(xn)sn −G(xn+1) +G(xn),

leading to

‖G(xn+1)‖
‖sn‖

≤ ‖Ensn‖
‖sn‖

+ ‖G
′(xn)sn −G(xn+1) +G(xn)‖

‖sn‖
≤ ‖Ensn‖
‖sn‖

+ η

r
‖en‖ ,
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by (2.10). By using Claim 5, we have

lim
n→∞

‖G(xn+1)‖
‖sn‖

≤ lim
n→∞

‖Ensn‖
‖sn‖

+ η

r
lim
n→∞

‖en‖ = 0.

By Claim 3, for n big enough,

‖G(xn+1)‖
‖sn‖

≥ 1
4‖G′(xn+1)−1‖

‖en+1‖
‖sn‖

≥ 1
4µ
‖en+1‖
‖sn‖

≥ 1
4µ

‖en+1‖
‖en‖+ ‖en+1‖

.

Let cn = ‖en+1‖/‖en‖. Therefore,

0 = lim
n→∞

‖G(xn+1)‖
‖sn‖

≥ 1
4µ lim

n→∞

‖en+1‖
‖en‖+ ‖en+1‖

= 1
4µ lim

n→∞

‖cn+1‖
1 + ‖cn+1‖

.

This implies that limn→∞ cn+1 = 0, which is superlinear convergence.
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Appendix A

This appendix provides the mathematical calculations for finding the constants in the

proof of Theorem 2.12. The relations among the constants are given by:

1. η < 1 and dr < 1,

2. ξ ≥ η + α,

3. α ≥ 3η + d ,

4. µ = 1
1− η ,

5. µαr < 1 ,

6. β = max{ 1
1− dr ,

1
1− η − αr} ,

7. βξ ≤ 1,

8. β(η + α) ≤ 1
2 .

By using condition 3. we have α > d and so

β = max{ 1
1− dr ,

1
1− η − αr} = 1

1− η − αr .

Let ξ = η + α and βξ = 1
2 so that

β = 1
2ξ = 1

2(η + α) .

Thus

1
1− η − αr = 1

2(η + α) ⇒ α = 1− 3η
2 + r

, ξ = ηr − η + 1
2 + r

, β = 2 + r

2(ηr − η + 1) .

Note that ηr − η + 1 > 0, if η < 1
1− r . Define

d = α− 3η − 2η
2 + r

= 1− 11η − 3ηr
2 + r

.

We need to be sure that d > 0. It is sufficient to consider

0 < η < min{ 1
11 + 3r ,

1
1− r} = 1

11 + 3r .
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Notice that by the expression of ξ, α, β and d we have,

µαr < 1 if and only if η < 1
1− r , which is true;

1− dr = 2 + 11ηr + 3ηr2

2 + r
> 0 ⇒ dr < 1;

β(η + α) = βξ = 1
2 .

In summary, with r ≤ 1
2 , we be could choose η = 1

6(2 + r) , therefore

d = 1 + 3r
6(2 + r)2 , ξ = 11 + 7r

6(2 + r)2 , β = 3(2 + r)2

11 + 7r , µ = 12 + 6r
12 + 11r , α = 3 + 2r

2(2 + r)2 .
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2.5 BFGS method

Let Ω be an open set in RN and a smooth f : Ω → R. The problem is to find a

local minimum of f in Ω. Of course, one can simply apply Broyden’s method to the

nonlinear system F (x) = ∇f(x) = 0. However, in general, the approximate Jacobian in

Broyden’s method is not symmetric, clearly not an ideal situation since the exact Jacobian

is symmetric. There are many ways to obtain a quasi-Newton Broyden’s method where

the approximate Jacobian is symmetric. The most popular is the method of BFGS. Given

x0 ∈ Ω and SPD initial approximate Jacobian A0, the iteration is:

sn = −A−1
n F (xn),

xn+1 = xn + sn, (2.12)

yn = F (xn+1)− F (xn), (2.13)

An+1 = An + yny
T
n

yTn sn
− Ansns

T
nAn

sTnAnsn
, (2.14)

for any n ≥ 0. Notice that consecutive approximate Jacobians differ by a rank-two matrix.

Local superlinear convergence and global convergence for BFGS with line search with

classical assumptions are known. The analysis is based on early work by [57] and [22]. It

assumes that the starting point is sufficiently close to the solution x∗ and that the initial

Hessian approximation is sufficiently close to F ′(x∗). We will now show convergence of

the BFGS method using Kantorovich-type assumptions.

Theorem 2.14. Let Ω be an open set in RN , f : Ω → R and f ∈ C2(Ω). Let F (x) =

∇f(x) and F ′(x) = D2f(x). Assume x0 ∈ Ω and Br(x0) ⊂ Ω for some 0 < r ≤ 1/2.

Suppose there are positive constants m ≤ 1 and M such that for any z ∈ RN and

x ∈ Br(x0),

m‖z‖2 ≤ zTD2f(x)z ≤M‖z‖2.
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Also

‖F ′(x0)− 1
2F (x0)‖ ≤ ar2, (2.15)

‖F ′(x0)− 1
2
(
F ′(u)− F ′(v)

)
F ′(x0)− 1

2‖ ≤ η‖u− v‖√
r

, ∀u, v ∈ Br(x0), (2.16)

where a and η are positive constants dependent on r (to be defined later). If r is sufficiently

small (satisfies (2.35)), then the BFGS iteration {xn} with A0 = F ′(x0) is well defined

and exactly one of the following cases holds,

(i) F (xn) = 0 for some n ≥ 0.

(ii) {xn} converges to a unique zero of F in Br(x0).

Proof. First notice that by given assumptions of the theorem, m ≤ ‖F ′(x)‖ for all x ∈

Br(x0), especially ‖F ′(x0)−1‖ ≤ 1
m
.

Let G(ξ) = F ′(x0)− 1
2F (F ′(x0)− 1

2 ξ). Observe that G(ξ∗) = 0 if and only if F (x∗) = 0,

where x∗ = F ′(x0)− 1
2 ξ∗. Since F ′(x0) 1

2 is invertible,

G(ξ∗) = F ′(x0)− 1
2F (F ′(x0)− 1

2 ξ∗) = 0 ⇔ F (F ′(x0)− 1
2F ′(x0) 1

2x∗) = F (x∗) = 0.

Also we have:

G′(ξ) = F ′(x0)− 1
2F ′x(F ′(x0)− 1

2 ξ)F ′(x0)− 1
2 .

We apply BFGS method for G(ξ). First notice that

G′(ξ0) = F ′(x0)− 1
2F ′(F ′(x0)− 1

2 ξ0)F ′(x0)− 1
2 = F ′(x0)− 1

2F ′(x0)F ′(x0)− 1
2 = I.
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Define B0 = G′(ξ0) = I and ξ0 = F ′(x0) 1
2x0. Then for n ≥ 0,

tn = −B−1
n G(ξn),

ξn+1 = ξn + tn,

zn = G(ξn+1)−G(ξn),

Bn+1 = Bn + znz
T
n

zTn tn
− Bntnt

T
nBn

tTnBntn
.

Assume F (xn) 6= 0 for all n ≥ 0. We apply mathematical induction for proving ξn =

F ′(x0) 1
2xn and Bn = F ′(x0)− 1

2AnF
′(x0)− 1

2 for all n. Basic step holds trivially. Assume

these statements are true for some positive integer n, then

ξn+1 = ξn + tn = F ′(x0) 1
2xn + F ′(x0) 1

2 sn

= F ′(x0) 1
2 (xn + sn) = F ′(x0) 1

2xn+1.

Notice that by using induction hypothesis,

tn = −B−1
n G(ξn) = −

(
F ′(x0)− 1

2AnF
′(x0)− 1

2
)−1

F ′(x0)− 1
2F (F ′(x0)− 1

2 ξn)

= −F ′(x0) 1
2A−1

n F (F ′(x0)− 1
2 ξn) = −F ′(x0) 1

2A−1
n F (xn) = F ′(x0) 1

2 sn.

Furthermore

zn = G(ξn+1)−G(ξn) = F ′(x0)− 1
2 (F (xn+1)− F (xn)) = F ′(x0)− 1

2yn,

then by using definition for Bn+1, we obtain

Bn+1 = F ′(x0)− 1
2AnF

′(x0)− 1
2 + F ′(x0)− 1

2
yny

T
n

yTn sn
F ′(x0)− 1

2 − F ′(x0)− 1
2
Ansns

T
nAn

snAnsn
F ′(x0)− 1

2

= F ′(x0)− 1
2
(
An + yny

T
n

yTn sn
− Ansns

T
nAn

sTnAnsn

)
F ′(x0)− 1

2 = F ′(x0)− 1
2An+1F

′(x0)− 1
2 .
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By using assumptions of the theorem, it is not difficult to show, ‖G(ξ0)‖ ≤ ar2,

‖G(ξ0)‖ = ‖F ′(x0)− 1
2F (F ′(x0)− 1

2 ξ0)‖ = ‖F ′(x0)− 1
2F (x0)‖ ≤ ar2.

In the following, we use assumptions of theorem to give two important properties of G(ξ).

Let

ρ = mr.

Claim 1. ‖G′(ω)−G′(τ)‖ ≤ η
√
ρ
‖ω − τ‖ for all ω, τ ∈ Bρ(ξ0).

For any ω, τ ∈ Bρ(ξ0), there are u, v ∈ Br(x0) such that u = F ′(x0)− 1
2ω and v = F ′(x0)− 1

2 τ .

By (2.16),

‖G′(ω)−G′(τ)‖ = ‖F ′(x0)− 1
2F ′(F ′(x0)− 1

2ω)F ′(x0)− 1
2 − F ′(x0)− 1

2F ′(F ′(x0)− 1
2 τ)F ′(x0)− 1

2‖

= ‖F ′(x0)− 1
2
(
F ′(u)− F ′(v)

)
F ′(x0)− 1

2‖

≤ η√
r
‖u− v‖ ≤ η√

r
‖F ′(x0)− 1

2‖‖ω − τ‖

≤ η√
mr
‖ω − τ‖ ≤ η

√
ρ
‖ω − τ‖,

since ‖F ′(x0)− 1
2‖ ≤ 1√

m
. This completes the proof of Claim 1.

Claim 2. ‖G(ω)−G(τ)−G′(τ)(ω − τ)‖ ≤ η

2√ρ‖ω − τ‖
2 for all ω, τ ∈ Bρ(ξ0).

Using Claim 1,

‖G(ω)−G(τ)−G′(τ)(ω − τ)‖ =
∥∥∥∥∥
∫ 1

0

(
G′(tω + (1− t)τ)−G′(τ)

)
(ω − τ)dt

∥∥∥∥∥
≤ ‖ω − τ‖

∫ 1

0
‖G′

(
tω + (1− t)τ

)
−G′(τ)‖dt

≤ ‖ω − τ‖
∫ 1

0

η
√
ρ
‖tω + (1− t)τ − τ‖dt = η

2√ρ‖ω − τ‖
2,

establishing Claim 2.

Claim: There are some positive constants ζ, µ, γ and β dependent on ρ (to be defined

later), such that for n ≥ 0,
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3. ‖ξn − ξ0‖ ≤ ρ(1− ρn);

4. ‖G(ξn)‖ ≤ ζρn+2;

5. G′(ξn) is invertible and ‖G′(ξn)−1‖ ≤ µ;

6. Bn is invertible and ‖G′(ξn)−1 −B−1
n ‖ ≤ γρ(1− ρn);

7. ‖B−1
n ‖ ≤ β;

8. ‖tn‖ ≤ ρn+2.

Notice that if ‖ξn − ξ0‖ ≤ ρ(1− ρn), then ‖xn − x0‖ ≤
√
mr(1−mnrn) < r since m ≤ 1.

Thus xn ∈ Br(x0) and ξn ∈ Bρ(ξ0). Also ‖tn‖ ≤ ρn+2 results in ‖sn‖ ≤ rn+2.

Now we prove Claims 3 to 8 by using induction. The base case for Claim 3 is trivial.

Since ‖G(ξ0)‖ ≤ ar2, assume ζ ≥ a/m2, then ‖G(ξ0)‖ ≤ ζρ2. (Note that all additional

assumptions on constants in this proof are summarized at the beginning of Appendix 2.)

Also ‖G′(ξ0)−1‖ = ‖I‖ = 1. Let µ ≥ 1, then ‖G′(ξ0)−1‖ ≤ µ. By assumption B0 = I, so

it is invertible and by choosing β ≥ 1, the base cases for Claim 6 and 7 are satisfied. Also

‖t0‖ = ‖ −B−1
0 G(ξ0)‖ = ‖G(ξ0)‖ ≤ ζρ2 ≤ ρ2, if we require ζ ≤ 1.

Next, assume all of the statements are true for some integer n ≥ 1, we will show they hold

for n+ 1.

Claim 3. Since Bn is invertible by hypothesis of induction, ξn+1 exists and

‖ξn+1 − ξ0‖ ≤ ‖ξn+1 − ξn‖+ ‖ξn − ξ0‖ ≤ ρn+2 + ρ(1− ρn) = ρ(1− ρn(1− ρ)) ≤ ρ(1− ρn+1),

since ρ ≤ 1
2 . This completes the proof of Claim 3. Moreover ‖ξn+1 − ξ0‖ < ρ, so ξn+1 ∈

Bρ(ξ0).

Claim 4. We first show that there is a constant α such that

‖G′(ξn)−Bn‖ ≤ αρ.
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By the induction hypothesis,

‖I −B−1
n ‖ ≤ ‖I −G′(ξn)−1‖+ ‖G′(ξn)−1 −B−1

n ‖

≤ ‖G′(ξn)−1‖ ‖G′(ξ0)−G′(ξn)‖+ ‖G′(ξn)−1 −B−1
n ‖

≤ µη
√
ρ(1− ρn) + γρ(1− ρn).

By assuming γ̂ = µη+γ√ρ, we get ‖I−B−1
n ‖ ≤ γ̂

√
ρ. Let λj, 1 ≤ j ≤ N be eigenvalues of

B−1
n . Therefore |1−λj| ≤ γ̂

√
ρ for all 1 ≤ j ≤ N . Also ‖Bn‖ = max1≤j≤N

∣∣∣∣∣ 1
λj

∣∣∣∣∣ ≤ 1
1− γ̂√ρ ,

assuming γ̂√ρ < 1. Then

‖G′(ξn)−Bn‖ = ‖G′(ξn)(G′(ξn)−1 −B−1
n )Bn‖

≤ ‖G′(ξn)‖ ‖G′(ξn)−1 −B−1
n ‖ ‖Bn‖ ≤

µγ

1− γ̂√ρ ρ ≤ αρ,

by assuming µγ

1− γ̂√ρ ≤ α.

Now we proceed to prove Claim 4 by using induction. By definition, tn = −B−1
n G(ξn).

Use Claim 2 to get

‖G(ξn+1)‖ = ‖G(ξn+1)−G(ξn)−G′(ξn)tn +G′(ξn)tn −Bntn‖

≤ ‖G(ξn+1)−G(ξn)−G′(ξn)tn‖+ ‖(G′(ξn)−Bn)tn‖

≤ η‖tn‖2

2√ρ + αρ‖tn‖ = ‖tn‖(
η‖tn‖
2√ρ + αρ)

≤ ρn+2 ( ηρ
n+2

2√ρ + αρ) ≤ ρn+3 (η√ρ+ α).

If we assume η√ρ+ α ≤ ζ, then ‖G(ξn+1)‖ ≤ ζρn+3, as we need for Claim 4.

Claim 5. By Claim 1,

‖I −G′(ξn+1)‖ = ‖G′(ξ0)−G′(ξn+1)‖ ≤ η
√
ρ
‖ξn+1 − ξ0‖ ≤ η

√
ρ.
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Assume η√ρ < 1, then by using Lemma 2.9 , G′(ξn+1) is invertible and

‖G′(ξn+1)−1‖ ≤ 1
1− η√ρ.

Define

µ = 1
1− η√ρ, (2.17)

then ‖G′(ξn+1)−1‖ ≤ µ, which is Claim 5.

Claim 6. First, there is some ξ̃ between ξn and ξn+1 so that

tTnzn = tTn (G(ξn+1)−G(ξn)) = tTnG
′(ξ̃)tn > 0,

since D2f and hence G′ is SPD in a neighbourhood of the initial point. Hence Bn+1

is invertible and, in fact, SPD. Take any k satisfying 0 ≤ k ≤ n. By using Sherman-

Morrison-Woodbury formula,

B−1
k+1 = B−1

k + tkt
T
k

zTk tk
(1 + zTk B

−1
k zk

zTk tk
)− B−1

k zkt
T
k + tkz

T
k B
−1
k

zTk tk
.

Define

Pk = I − tkz
T
k

tTk zk
,

then,

B−1
k+1 = PkB

−1
k P T

k + tkt
T
k

tTk zk
.
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For brevity let B = G′(ξk). After some calculations,

B−1 −B−1
k+1 = B−1 − PkB−1

k P T
k −

tkt
T
k

tTk zk

= Pk(B−1 −B−1
k )P T

k −
(tk −B−1zk)tTk + tk(tk −B−1zk)TP T

k

tTk zk
.

Define the following norm which depends on the iteration number k ≥ 0:

‖X‖k = ‖G′(ξk)1/2X G′(ξk)1/2‖F ,

for any arbitrary matrix X ∈ RN×N . Observe that

‖B−1 −B−1
k+1‖k ≤ ‖Pk(B−1 −B−1

k )P T
k ‖k + ‖(tk −B

−1zk)tTk ‖k
tTk zk

+ ‖tk(tk −B
−1zk)TP T

k ‖k
tTk zk

.

(2.18)

Below we will find estimations for each term of this inequality. For the first term,

‖Pk(B−1 −B−1
k )P T

k ‖k = ‖B
1
2PkB

− 1
2B

1
2 (B−1 −B−1

k )B 1
2B−

1
2P T

k B
1
2‖F

≤ ‖B
1
2PkB

− 1
2‖2 ‖B−1 −B−1

k ‖k

= ‖B
1
2 (I − tkz

T
k

tTk zk
)B− 1

2‖2 ‖B−1 −B−1
k ‖k

=
∥∥∥∥∥I − (B 1

2 tk)(B−
1
2 zk)T

(B 1
2 tk)T (B− 1

2 zk)

∥∥∥∥∥
2

‖B−1 −B−1
k ‖k

=
(
‖B 1

2 tk‖ ‖B−
1
2 zk‖

(B 1
2 tk)T (B− 1

2 zk)

)2

‖B−1 −B−1
k ‖k.

For the last line we used Lemma 2.8. Define

w = (B 1
2 tk)T (B− 1

2 zk)
‖B 1

2 tk‖ ‖B−
1
2 zk‖

≤ 1, (2.19)
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so we obtain

‖Pk(B−1 −B−1
k )P T

k ‖k ≤
1
w2‖B

−1 −B−1
k ‖k. (2.20)

Consider the second term of the inequality (2.18),

‖(tk −B−1zk)tTk ‖k
tTk zk

= ‖B 1
2 (tk −B−1zk)tTkB

1
2‖F

tTk zk

= ‖B 1
2 (tk −B−1zk)‖‖B

1
2 tk‖

tTk zk

= 1
w

‖B 1
2 tk −B−

1
2 zk‖

‖B− 1
2 zk‖

. (2.21)

Similarly for the last term of (2.18),

‖tk(tk −B−1zk)TP T
k ‖k

tTk zk
= ‖B 1

2 tk(tk −B−1zk)TP T
k B

1
2‖F

tTk zk

=
‖B 1

2 tk
(
B

1
2 tk −B−

1
2 zk

)T
B−

1
2P T

k B
1
2‖F

tTk zk

≤ ‖B 1
2 tk‖‖B

1
2 tk −B−

1
2 zk‖‖B−

1
2P T

k B
1
2‖

tTk zk

= 1
w2
‖B 1

2 tk −B−
1
2 zk‖

‖B− 1
2 zk‖

. (2.22)

For finding an estimation for the right-hand side of this inequality, notice that B = G′(ξk),

tk −B−1zk = tk −B−1
(
G(ξk+1)−G(ξk)

)
= tk −G′(ξn)−1

(
G(ξk+1)−G(ξk)−G′(ξk)tk

)
− tk

= −B−1
∫ 1

0

(
G′(ξk + τtk)−G′(ξk)

)
tkdτ.

Therefore by Claim 1,

‖B
1
2 tk −B−

1
2 zk‖ ≤

η

2√ρ‖B
− 1

2‖‖tk‖2. (2.23)
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Since zk = G(ξk+1) − G(ξk) = G′(ξ̃)tk for some ξ̃ between ξk+1 and ξk, it follows that

tk = G′(ξ̃)−1zk and

‖tk‖ = ‖G′(ξ̃)−1‖‖zk‖ ≤
M

m
‖zk‖ ⇒

1
‖zk‖

≤ M

m‖tk‖
,

‖zk‖ = ‖B 1
2B−

1
2 zk‖ ≤ ‖B

1
2‖‖B−

1
2 zk‖,

1
‖B− 1

2 zk‖
≤ ‖B

1
2‖

‖zk‖
≤ M ‖B 1

2‖
m‖tk‖

. (2.24)

(2.23) and (2.24) together imply:

‖B 1
2 tk −B−

1
2 zk‖

‖B− 1
2 zk‖

≤ Mη

2m√ρ‖B
− 1

2‖‖B
1
2‖‖tk‖. (2.25)

By using the assumptions of the theorem, m
M
≤ ‖G′(ξ)‖ ≤ M

m
for any ξ ∈ Bρ(ξ0). This

implies ‖B‖‖B−1‖ = ‖G′(ξk)‖‖G′(ξk)−1‖ ≤ (M
m

)2. Now choose η such that ηM
2

m2 ≤
√

2 ,

and define

Λ = ηM2
√

2m2
≤ 1. (2.26)

Then

ηM

2m√ρ‖B
− 1

2‖‖B
1
2‖‖tk‖ ≤

ηM2

2m2√ρ
‖tk‖ = Λ√

2ρ‖tk‖ ≤
ρ3/2
√

2
≤ 1√

2
. (2.27)

From Lemma 2.10,

1− w2 ≤ Λ2‖tk‖2

2ρ ≤ 1
2 ,

so w2 ≥ 1
2 and

1
w2 = 1 + 1− w2

w2 ≤ 1 + 2ρ
3/2
√

2
Λ√
2ρ‖tk‖ = 1 + Λρ‖tk‖. (2.28)
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Combining all estimates (2.20), (2.21) and (2.22), followed by an application of (2.27),

(2.28) and (2.25), inequality (2.18) becomes

‖B−1 −B−1
k+1‖k ≤

1
w2‖B

−1 −B−1
k ‖k + 2

w2
‖B 1

2 tk −B−
1
2 zk‖

‖B− 1
2 zk‖

≤ (1 + Λρ‖tk‖) ‖B−1 −B−1
k ‖k +

√
2(1 + Λρ‖tk‖)

Λ
√
ρ
‖tk‖. (2.29)

Notice that for any arbitrary matrix X ∈ RN×N ,

‖X‖k+1 = ‖G′(ξk+1) 1
2 X G′(ξk+1) 1

2‖F

= ‖G′(ξk+1) 1
2G′(ξk)−

1
2 G′(ξk)

1
2 X G′(ξk)

1
2 G′(ξk)−

1
2G′(ξk+1) 1

2‖F

≤ ‖G′(ξk+1)G′(ξk)−1‖‖X‖k.

In last line we have used Lemma 2.6. Observe that,

G′(ξk+1)G′(ξk)−1 = (G′(ξk+1)−G′(ξk) +G′(ξk))G′(ξk)−1 = (G′(ξk+1)−G′(ξk))G′(ξk)−1 + I,

therefore by Claim 1,

‖G′(ξk+1)G′(ξk)−1‖ ≤ 1 + ‖G′(ξk+1)−G′(ξk)‖ ‖G′(ξk)−1‖ ≤ 1 + ηµ
√
ρ
‖tk‖, (2.30)

so we obtain

‖X‖k+1 ≤ (1 + ηµ
√
ρ
‖tk‖) ‖X‖k,

Define κ = 1 + ηµ
√
ρ
‖tk‖. Therefore ‖X‖k+1 ≤ κ‖X‖k. Notice that from (2.17)

κ = 1 + ηµ
√
ρ
‖tk‖ ≤ 1 + ηµρk+3/2 ≤ 1 +

η
√
ρ

1− η√ρ = µ.
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From the inequality (2.29),

‖B−1 −B−1
k+1‖k+1 ≤ κ(1 + Λρ‖tk‖) ‖B−1 −B−1

k ‖k +
√

2κ Λ
√
ρ

(1 + Λρ‖tk‖) ‖tk‖,

so

‖B−1 −B−1
k+1‖k+1 − ‖B−1 −B−1

k ‖k ≤ (κ− 1 + κΛρ‖tk‖) ‖B−1 −B−1
k ‖k +

√
2κ Λ
√
ρ

(1 + Λ)‖tk‖

≤ ( ηµ√
ρ
‖tk‖+ κΛρ‖tk‖) ‖B−1 −B−1

k ‖k +
√

2κ Λ
√
ρ

(1 + Λ)‖tk‖

≤
(

( ηµ√
ρ

+ κΛρ) ‖B−1 −B−1
k ‖k +

√
2κ Λ
√
ρ

(1 + Λ)
)
‖tk‖.

Notice that B = G′(ξk), by adding and subtracting G′(ξk+1),

‖G′(ξk+1)−1 −B−1
k+1‖k+1 − ‖G′(ξk)−1 −B−1

k ‖k ≤ ‖G′(ξk+1)−1 −G′(ξk)−1‖k+1

+
(

( ηµ√
ρ

+ κΛρ)‖B−1 −B−1
k ‖k +

√
2κ Λ
√
ρ

(1 + Λ)
)
‖tk‖.(2.31)

Also by Lemma 2.6 and (2.30)

‖G′(ξk+1)−1 −G′(ξk)−1‖k+1 = ‖G′(ξk+1)−1G′(ξk)G′(ξk)−1 −G′(ξk+1)−1G′(ξk+1)G′(ξk)−1‖k+1

= ‖G′(ξk+1)−1 (G′(ξk)−G′(ξk+1)) G′(ξk)−1‖k+1

= ‖G′(ξk+1) 1
2G′(ξk+1)−1 (G′(ξk)−G′(ξk+1)) G′(ξk)−1G′(ξk+1) 1

2‖F

≤ ‖G′(ξk+1)− 1
2‖‖G′(ξk)−1G′(ξk+1) 1

2‖
√
Nη
√
ρ
‖ξk+1 − ξk‖

≤ ‖G′(ξk+1)− 1
2‖‖G′(ξk)−

1
2‖
√
‖G′(ξk)−1G′(ξk+1)‖

√
Nη
√
ρ
‖ξk+1 − ξk‖

≤
√
κNηµ
√
ρ
‖tk‖.
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Then by substituting this in (2.31)

‖G′(ξk+1)−1 −B−1
k+1‖k+1 − ‖G′(ξk)−1 −B−1

k ‖k

≤
(√

κNηµ
√
ρ

+ ( ηµ√
ρ

+ κΛρ) ‖B−1 −B−1
k ‖k +

√
2κ Λ
√
ρ

(1 + Λ)
)
‖tk‖.

From the induction hypothesis, ‖B−1 − B−1
k ‖k ≤ γρ(1 − ρk) ≤ γρ. Take the sum from

k = 0 to k = n and using Claim 8 to obtain

‖G′(ξn+1)−1 −B−1
n+1‖n+1 − ‖G′(ξ0)−1 −B−1

0 ‖0

≤
(√

κNηµ
√
ρ

+ ( ηµ√
ρ

+ κΛρ)γρ+
√

2κ Λ
√
ρ

(1 + Λ)
)
ρ2

n∑
k=0

ρk.(2.32)

Notice that G′(ξ0) = B0 = I, so ‖G′(ξ0)−1 −B−1
0 ‖0 = 0.

‖G′(ξn+1)−1 −B−1
n+1‖ ≤ ‖G′(ξn+1)−1 −B−1

n+1‖F

= ‖G′(ξn+1)− 1
2G′(ξn+1) 1

2 (G′(ξn+1)−1 −B−1
n+1) G′(ξn+1) 1

2G′(ξn+1)− 1
2‖F

≤ ‖G′(ξn+1)−1‖‖G′(ξn+1)−1 −B−1
n+1‖n+1.

Use inequality (2.32) to obtain,

‖G′(ξn+1)−1 −B−1
n+1‖ ≤ ‖G′(ξn+1)−1‖

[√
κNηµ
√
ρ

+ ( ηµ√
ρ

+ κΛρ)γρ+
√

2κ Λ
√
ρ

(1 + Λ)
]
ρ2

n∑
k=0

ρk

≤ µ

[√
κNηµ+ (ηµ+ κΛρ3/2)γρ+

√
2κΛ(1 + Λ)

]
ρ3/2

n∑
k=0

ρk

≤ µ2(
√

2µNη + (η + ρ3/2)γρ+ 2
√

2)ρ3/2
n∑
k=0

ρk,

since Λ ≤ 1, κ ≤ µ and η ≤
√

2 due to (2.26). Notice that ρ ≤ 1
2 , then

n∑
k=0

ρk = 1− ρn+1

1− ρ ≤ 2(1− ρn+1).
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Therefore by assuming ρ such that 4µ2(
√
µN + γρ+

√
2)√ρ ≤ γ,

‖G′(ξn+1)−1 −B−1
n+1‖ ≤ 4µ2(

√
µN + γρ+

√
2)ρ3/2(1− ρn+1) ≤ γρ(1− ρn+1).

This concludes the proof of Claim 6.

Claim 7. From Claim 6,

‖B−1
n+1‖ ≤ γρ+ ‖G′(ξn+1)−1‖ ≤ γρ+ µ.

Define β ≥ γρ+ µ, then ‖B−1
n+1‖ ≤ β, which is Claim 7.

Claim 8. By using definition,

‖tn+1‖ = ‖ −B−1
n+1G(ξn+1)‖ ≤ ‖B−1

n+1‖‖G(ξn+1)‖ ≤ βζ ρn+3,

assume βζ ≤ 1, then ‖tn+1‖ ≤ ρn+3, establishing Claim 8.

Therefore by using mathematical induction we have the results. A consequence of

Claim 8 is that {ξn} is a Cauchy sequence lying in Bρ(ξ0). Given p, q ≥ 0,

‖ξp − ξp+q‖ ≤
p+q−1∑
k=p
‖ξk+1 − ξk‖ ≤

p+q−1∑
k=p

ρk+2 < ρ2
∞∑
k=p

ρk = ρp+2

1− ρ ≤ ρp+1.

Therefore {ξn} converges to a point ξ∗ ∈ Bρ(ξ0). By using the fact that G is a continuous

function and ‖G(ξn)‖ ≤ ζρn+2, it follows that G(ξ∗) = 0, which implies F (x∗) = 0, where

x∗ = F ′(x0)− 1
2 ξ∗. By taking q →∞ and p = n in the above calculation, ‖ξn− ξ∗‖ ≤ ρn+1.

Let en = xn − x∗ and σn = ξn − ξ∗, then

‖σn‖ ≤ ρn+1, ‖en‖ ≤ rn+1.

Notice that ξ∗ ∈ Bρ(ξ0) and x∗ ∈ Br(x0).

For proof of uniqueness, let ξ̂ be any zero of G in Bρ(ξ0) corresponding to a root x̂ of
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F in Br(x0). Below we show that ‖σ̂n+1‖ ≤
‖σ̂n‖

2 for n ≥ 0, where σ̂n = ξn − ξ̂. Notice

that:

σ̂n+1 = ξn+1 − ξ̂ = ξn + tn − ξ̂ = ξn −B−1
n G(ξn)− ξ̂

= B−1
n Bn σ̂n +B−1

n

(
−G(ξn) +G(ξ̂)

)
= B−1

n

(
Bn −G′(ξn)

)
σ̂n +B−1

n

(
−G(ξn) +G(ξ̂) +G′(ξn)σ̂n

)
.

By Claim 2,

‖σ̂n+1‖ =
∥∥∥B−1

n

(
−G(ξn) +G(ξ̂) +G′(ξn)σ̂n + (Bn −G′(ξn))σ̂n

)∥∥∥
≤ ‖B−1

n ‖ ‖σ̂n‖
(η‖σ̂n‖

2√ρ + ‖Bn −G′(ξn)‖
)
. (2.33)

Since ξ̂ , ξn ∈ Bρ(ξ0) then ‖σ̂n‖ ≤ 2ρ, then by using above inequality, we have

‖σ̂n+1‖ ≤ β ‖σ̂n‖
(η‖σ̂n‖

2√ρ + αρ
)
≤ β (η√ρ+ αρ) ‖σ̂n‖ ≤ β(η + α

√
ρ)‖ σ̂n‖ ≤

1
2‖ σ̂n‖,

if we assume β(η + α
√
ρ) ≤ 1

2 . Therefore ‖ξn − ξ̂‖ ≤
1
2n and

‖ξ̂ − ξ∗‖ ≤ ‖ξ̂ − ξn‖+ ‖ξn − ξ∗‖ ≤
1
2n + ρn+1.

Let n→∞ to obtain the uniqueness result. Let

√
ρ <

η

96
√

2(
√
N + 1)

, η < min
{√

2m2

M2 ,
1
6

}
. (2.34)

with the former inequality equivalent to

r <
η2

18432(
√
N + 1)2m

. (2.35)
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Define the constants as

µ = 1
1− η√ρ, (2.36)

γ = 24
√

2(
√
N + 1)√ρ, (2.37)

β = γρ+ µ = 24
√

2(
√
N + 1)ρ√ρ+ µ, (2.38)

ζ = 1
2β = 1

2(γρ+ µ) , (2.39)

α = 4γ = 96
√

2(
√
N + 1)√ρ, (2.40)

a = m2

2(γρ+ µ) . (2.41)

The calculations for finding constants are given in Appendix B. This completes proof of

the theorem.

In classical proofs of global convergence of this method, the minimum is assumed to

exist and a fixed, so-called, BFGS norm can be used to estimate the difference between

the approximate and exact Jacobians for all iterates. In our setting, in the proof of Claim

6, the minimum is not known apriori, hence requiring a norm which changes with each

iteration. We believe that this technique is applicable in more general contexts.

While the above theorem assumes uniform convexity of f , it does not follow that

the iterates converge to a minimum x∗ where F (x∗) = 0. Consider the simple example

N = 1, Ω = (0.1, 1) and f(x) = x2/2. Clearly f has no critical point in Ω. Take, for

instance, x0 = 0.2. Then for any r < 0.1, (2.16) becomes x0 < ar2, which cannot be

satisified for a defined by (2.41). Again, we do not claim that this value of a is optimal,

but it must be taken sufficiently small to guarantee existence of minimum x∗ which is a

critical point of f . Continuing with the same example, except define Ω = (−1, 1), then

A0 = 1, m = M = 1, ρ = r, and we can take η = 0.1, leading to

µ = 1
1− 0.1

√
r
, γ = 48

√
2
√
r, a = 1

2
(
(1− 0.1

√
r)−1 + 48

√
2r3/2

) .

48



Inequality (2.15) becomes ‖x0‖ ≤ ar2, while (2.16) holds trivially. The theorem correctly

states that the BFGS iterates converge to the unique minimum superlinearly.

We remark that in assumption (2.16), we assumed r−1/2 dependence on the right-hand

side. Initially, we assumed r−1 dependence as in the theorem for Broyden’s method, but

were unable assign values to constants (similar to (2.36) to (2.41)) so that all required

inequalities are satisfied.

Following closely [52], we prove superlinear convergence of the BFGS method by

Kantorovich-type assumptions.

Theorem 2.15. Assume the hypotheses of Theorem 2.14. Then BFGS method converges

superlinearly to a unique zero of F in Br(x0).

Proof. By Theorem (2.14), the iterates ξn defined by

tn = −B−1
n G(ξn),

ξn+1 = ξn + tn,

zn = G(ξn+1)−G(ξn),

Bn+1 = Bn + znz
T
n

zTn tn
− Bntnt

T
nBn

tTnBntn
.

converge to ξ∗, unique zero of F inBρ(ξ0), where ρ = mr andG(ξ) = F ′(x0)− 1
2F (F ′(x0)− 1

2 ξ).

Consequently xn converges to x∗ = F ′(x0)− 1
2 ξ∗ the unique zero of F (x) in Br(x0). Assume

that F (ξn) 6= 0 for all n ≥ 0. So ξn 6= ξ∗. Also we have:

‖G′(ξn)−Bn‖ ≤ αρ,

‖G′(ξn)−1 −B−1
n ‖ ≤ γρ(1− ρn),

‖G′(ξn)−1‖ ≤ µ,

‖G(ξn)‖ ≤ ζρn+2,

‖B−1
n ‖ ≤ β,

‖tn‖ ≤ ρn+2,

‖σn‖ ≤ ρn+1,

where σn = ξn − ξ∗, and the positive constants α, β, γ, µ, ζ are given by equation (2.36)
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to (2.41). Using exactly the same technique as in the previous theorem to show ‖σ̂n+1‖ ≤

‖σ̂n‖/2, we could prove that ‖σn+1‖ ≤
1
2‖σn‖. Let B = G′(ξ∗) and

t̃n = B
1
2 tn, ỹn = B−

1
2yn, B̃n = B

1
2BnB

1
2 .

Define

cos θ̃n = t̃Tn B̃nt̃n

‖t̃n‖‖Ãnt̃n‖
, q̃n = t̃Tn B̃nt̃n

‖t̃n‖2 M̃n = ‖z̃n‖
2

z̃Tn t̃n
, m̃n = z̃Tn t̃n

‖t̃n‖2 .

Using BFGS update formula, it follows that

B̃n+1 = B̃n + z̃nz̃
T
n

z̃Tn t̃n
− B̃nt̃nt̃

T
n B̃n

t̃Tn B̃nt̃n
.

For any SPD matrix S define ψ(S) = trace(S)− ln detS. Notice that ψ(S) > 0 and

ψ(B̃n+1) = Trace(B̃n) + M̃n −
q̃n

cos2 θ̃n
− ln det B̃n − ln m̃n + ln q̃n

= ψ(B̃n) + (M̃n − ln m̃n − 1) + (1− q̃n

cos2 θ̃n
+ ln q̃n

cos2 θ̃n
) + ln cos2 θ̃n. (2.42)

Also,

zn −Btn = zn −G′(ξ∗)tn =
∫ 1

0

(
G′(ξn + tnτ)−G′(ξ∗)

)
tndτ,

or

z̃n − t̃n = B−
1
2

∫ 1

0

(
G′(ξn + tnτ)−G′(ξ∗)

)
B−

1
2 t̃ndτ,

Therefore

‖z̃n − t̃n‖ ≤ ‖B−
1
2‖2‖t̃n‖

∫ 1

0
‖G′(ξn + tnτ)−G′(ξ∗)‖dτ ≤ η

√
ρ
‖B−1‖‖t̃n‖‖σn‖.

50



By the assumption of theorem, m
M
≤ ‖G′(ξ)‖ ≤ M

m
for any ξ ∈ Bρ(ξ0), therefore

‖z̃n − t̃n‖
‖t̃n‖

≤ c̃‖σn‖, c̃ = mη

M
√
ρ
. (2.43)

Consequently

(1− c̃σn)‖t̃n‖ ≤ ‖z̃n‖ ≤ (1 + c̃σn)‖t̃n‖. (2.44)

Square (2.43) and use the above inequalities to get

(1− c̃σn)2‖t̃n‖2 − 2z̃Tn t̃n + ‖t̃n‖2 ≤ ‖z̃n‖2 − 2z̃Tn t̃n + ‖t̃n‖2 ≤ c̃2σ2
n‖t̃n‖2,

or

z̃Tn t̃n ≥ (1− c̃σn)‖t̃n‖2,

Therefore

m̃n = z̃Tn t̃n
‖t̃n‖2 ≥ (1− c̃σn). (2.45)

Combine this inequality and (2.44) to obtain

M̃n = ‖z̃n‖
2

z̃Tn t̃n
≤ (1 + c̃σn)2

(1− c̃σn) .

Since σn → 0, there is some constant c ≥ c̃ such that for all sufficiently large n,

M̃n ≤ 1 + cσn. (2.46)

For large enough n, c̃σn < 1/2 and so

ln(1− c̃σn) ≥ −c̃σn
1− c̃σn

≥ −2c̃σn,
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apply this for (2.45) to get

ln m̃n ≥ ln(1− c̃σn ≥ −2c̃n > −2cσn.

By using above inequality and (2.46) in (2.42) we have

0 < ψ(B̃n+1) ≤ ψ(B̃n) + 3cσn + ln cos2 θ̃n +
[
1− q̃n

cos2 θ̃n
+ ln q̃n

cos2 θ̃n

]
.

Sum over n to arrive at

∞∑
n=0

(
ln 1

cos2 θ̃n
+
[
1− q̃n

cos2 θ̃n
+ ln q̃n

cos2 θ̃n

])
≤ ψ(B̃0) + 3c

∞∑
n=0

σn <∞,

since σn → 0 by the last theorem. The term inside the square brackets is non-positive and

since ln cos−2 θ̃n ≥ 0, it follows that

lim
n→∞

ln 1
cos2 θ̃n

= 0 = lim
n→∞

[
1− q̃n

cos2 θ̃n
+ ln q̃n

cos2 θ̃n

]
,

implying that

lim
n→∞

cos2 θ̃n = 1 = lim
n→∞

q̃n. (2.47)

Therefore

lim
n→∞

‖B− 1
2 (Bn −B)tn‖2

‖B 1
2 tn‖2

= lim
n→∞

‖(B̃n − I)t̃n‖2

‖t̃n‖2

= lim
n→∞

‖B̃nt̃n‖2 − 2t̃Tn B̃nt̃n + ‖t̃n‖2

‖t̃n‖2

= lim
n→∞

q̃2
n

cos2 θ̃n
− 2q̃n + 1 = 0.
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Since B id SPD, it follows that

lim
n→∞

‖(Bn −B)tn‖2

‖tn‖2 = 0.

This is sufficient to show ξn → ξ∗ superlinearly. Let tNn = −G′(ξn)−1G(ξn) denote the

Newton’s step. Then

‖tn − tNn ‖ = ‖G′(ξn)−1(G′(ξn)tn +G(ξn))‖

= ‖G′(ξn)−1‖ ‖(G′(ξn)−Bn)tn‖

≤ µ

(
‖(G′(ξn)−B)tn‖+ ‖(B −Bn)tn‖

)

≤ µ

(
η

ρ
‖σn‖‖tn‖+ ‖(B −Bn)tn‖

)
.

Then

lim
n→∞

‖tn − tNn ‖
‖tn‖

≤ µ

(
lim
n→∞

η

ρ
‖σn‖+ lim

n→∞

‖(B −Bn)tn‖
‖tn‖

)

≤ µ

(
lim
n→∞

‖(B −Bn)tn‖
‖tn‖

)
= 0.

Therefore

‖σn+1‖ = ‖ξn + tn − ξ∗‖

≤ ‖ξn + tNn − ξ∗‖+ ‖tn − tNn ‖

≤ ‖ξn + ξNn+1 − ξn − ξ∗‖+ ‖tn − tNn ‖

≤ ‖ξNn+1 − ξ∗‖+ ‖tn − tNn ‖,

where ξNn+1 denotes the next iteration after ξn by using Newton’s step. Since Newton’s

53



method converges quadratically in a neighborhood of ξ∗, then

‖σn+1‖
‖σn‖

≤
‖ξNn+1 − ξ∗‖+ ‖tn − tNn ‖

‖σn‖

≤
‖eNn+1‖
‖σn‖

+ ‖tn − t
N
n ‖‖tn‖

‖tn‖‖σn‖

≤ C‖eNn ‖2

‖σn‖
+ ‖tn − t

N
n ‖‖tn‖

‖tn‖‖σn‖

≤ C‖σn‖+ 2‖tn − t
N
n ‖

‖tn‖
,

since eNn = ξn − ξ∗ = σn and ‖tn‖ ≤ 2‖σn‖. Therefore

lim
n→∞

‖σn+1‖
‖σn‖

= C lim
n→∞

‖σn‖+ 2 lim
n→∞

‖tn − tNn ‖
‖tn‖

= 0.

This proves superlinear convergence.
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Appendix B

This appendix provides the mathematical calculations for finding the constants in proof

of Theorem 2.14. The relations among the constants could be summarized as:

1. ρ = mr ≤ 1
2 and m ≤ 1,

2. η < min
{√

2m2

M2 ,
1
6

}
,

3. a ≤ m2ζ,

4. µ = 1
1− η√ρ ,

5. 4µ2(
√
µN + γρ+

√
2)√ρ ≤ γ,

6. γ̂ = µη + γ
√
ρ and γ̂√ρ < 1,

7. µγ

1− γ̂√ρ ≤ α,

8. β ≥ max{γρ+ µ, 1},

9. βζ ≤ 1,

10. η + α ≤ ζ ≤ 1,

11. β(η + α) ≤ 1
2 .

By assuming the value of the constants µ, γ, β, ζ, α and a as defined in (2.36) to (2.41),

we need to show that Conditions 1 to 11 could be fulfilled if

√
ρ <

η

96
√

2 (
√
N + 1)

, and η < min
{√

2m2

M2 ,
1
6

}
< min

{√
2m2

M2 ,
1

5 +√ρ

}
.

Notice that by the last assumption,

η <
1

5 +√ρ < 1, (2.48)

and also

√
ρ <

η

96
√

2 (
√
N + 1)

<
1
8 <

1−
√

2/3
η

. (2.49)

Therefore

(1− η√ρ)2 − 4ρ√ρ > (1− η√ρ)2 − 1
2 >

2
3 −

1
2 = 1

6 .
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Use this and definition of γ given by (2.37).

γ = 24
√

2 (
√
N + 1)√ρ ≥ 24 (

√
µN +

√
2)√ρ ≥

4 (
√
µN +

√
2)√ρ

(1− η√ρ)2 − 4ρ√ρ,

since by assumption (2.49), we have µ ≤ 2. Thus Condition 5 is satisfied. By definition

of β and ζ given by (2.38) and (2.39), Conditions 8 and 9 are satisfied trivially. Observe

that (2.49) implies that

γ = 24
√

2 (
√
N + 1)√ρ < η

4 . (2.50)

Moreover,

γρ <
ηρ

4 <
η
√
ρ

4 ≤
√
ρ

20 = η
√
ρ

1
20 η

≤ η
√
ρ
( 1

4η −
1

1− η√ρ
)

(2.51)

≤ 1
2 −

η
√
ρ

1− η√ρ. (2.52)

In last two lines we applied (2.48) and (2.49). Since η√ρ ≤ 1, from (2.51),

γρ <
1
4η −

1
1− η√ρ, (2.53)

which results in ζ − η > η and therefore by using (2.50)

α = 4γ < η < ζ − η. (2.54)

So Conditions 10 and 11 are satisfied. Also from (2.52)

γρ <
1
2 −

η
√
ρ

1− η√ρ, (2.55)
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which results in 1− γ̂√ρ > 1
2 , and

µγ

1− γ̂√ρ < 2µγ ≤ 4γ = α. (2.56)

Thus Conditions 6 and 7 hold. Finally by using relations between constants and definition

of a in (2.41), Condition 3 is satisfied.
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3

Quasi-Newton methods, NCG and

scaled memoryless BFGS methods

In this chapter we demonstrate local superlinear convergence of the symmetric scaled Perry

NCG method and generalized scaled memoryless BFGS method by using Kantorovich-type

assumptions.

3.1 Introduction

The nonlinear conjugate gradient (NCG) method is one of the most famous methods for

solving unconstrained optimization problem,

minimize f(x),

where f : RN → R is at least continuously differentiable. It generates a sequence {xn} by

using the iterative scheme

xn+1 = xn + αndn for n ≥ 0, (3.1)
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where αn > 0 is the step length obtained by using some line search and dn ∈ RN is the

search direction generated by

dn+1 = −gn+1 + βndn, (3.2)

where gn denotes F (xn) = ∇f(xn) and βn is a scalar parameter. The initial search

direction is given by d0 = −g0. Typically, dn is a descent direction, i.e., gTn dn < 0. The

step length αn is chosen to give a substantial reduction of the objective function. One way

is exact line search, which finds a global minimizer of the function φ defined by

φ(α) = f(xn + αdn), α > 0.

A more practical method applies an inexact line search to identify a step length that

satisfies some adequate rules. A popular one is the Wolfe conditions,

f(xn + αndn) ≤ f(xn) + c1αng
T
n dn,

g(xn + αndn)Tdn ≥ c2g
T
n dn,

with 0 < c1 < c2 < 1. The first condition is called Armijo condition and assures sufficient

decrease in the objective function and it is not enough by itself to ensure reasonable

progress in a given algorithm. The second condition is called curvature condition. The

strong Wolfe conditions require αn to satisfy:

f(xn + αndn) ≤ f(xn) + c1αng
T
n dn, (3.3)

|g(xn + αndn)Tdn| ≤ c2|gTn dn|, (3.4)

with 0 < c1 < c2 < 1. In the second condition, we modify the curvature condition to force

αn to lie in a broad neighborhood of a local minimizer.
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Some well known formulas for NCG parameter are βFRn , introduced by Fletcher and

Reeves [28], βHSn , given by Hestenes-Stiefel [66], βPRn proposed by Polak and Ribiere [52],

βCDn introduced by Fletcher [27], βLSn proposed by Liu and Storey [47] and βDYn given by

Dai and Yuan [19]:

βFRn = ‖gn+1‖2

‖gn‖2 ,

βCDn = −‖gn+1‖2

gTn dn
,

βHSn = gTn+1yn
dTnyn

,

βLSn = −g
T
n+1yn
gTn dn

,

βPRn = gTn+1yn
‖gn‖2 ,

βDYn = ‖gn+1‖2

dTnyn
,

where yn = gn+1−gn. For global convergence of these methods with line search see [1], [33],

[58], [59], [64], [82]. In order to accelerate efficiency of NCG methods, some authors tried

to redefine them as quasi-Newton method by using secant conditions and search direction

of the quasi-Newton method [3], [18], [56], [75], [81]. These methods do not necessarily

generate descent directions. This can be overcome by enforcing sufficient restricting secant

conditions. The well developed machinery of the latter methods have been used to analysis

convergence of the formulas. For a complete survey on development on sufficient descent

NCG method see [51] and the references therein.

In order to obtain a more efficient algorithm for large scale problems, memoryless

BFGS method and self-scaling memoryless BFGS method are introduced. The purpose

of these methods is to improve the condition number of the successive approximations to

the inverse Hessian matrix. For more work on this topic see [3],[4], [5], [43].

The main purpose of this chapter is to extend the idea of using Kantorovich-type as-

sumptions for showing superlinear local convergence of the symmetric scaled Perry NCG

method and also generalized scaled memoryless BFGS method. Existence of the minimizer

and the superlinear convergence are deductions of the theory. Following [15], we try to

construct a simple theory with as few constants as possible.

We make the following assumptions on the objective function.

Assumption 3.1. Let Ω be an open set in RN , f : Ω → R and f ∈ C2(Ω). Let
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F (x) = ∇f(x) and F ′(x) = D2f(x). Assume x0 ∈ Ω and Br(x0) ⊂ Ω for some 0 < r ≤

1/2. Suppose there are positive constants m ≤ 1 ≤ M such that for any z ∈ RN and

x ∈ Br(x0),

m‖z‖2 ≤ zTD2f(x)z ≤M‖z‖2.

Also, assume

‖F (x0)‖ ≤ ζr2,

‖F ′(u)− F ′(v)‖ ≤ L‖u− v‖, ∀u, v ∈ Br(x0),

where ζ and L are positive constants.

It should be emphasized that existence of a minimizer of f in Ω does not follow from

Assumption 3.1. For instance, take N = 1, f(x) = x2/2, Ω = (0.1, 1), x0 = 0.3, r = 0.1

and ζ ≥ 30. Then Assumption 3.1 holds and clearly f has no minimum in Ω.

Lemma 3.2 (Dennis and Schnabel 1996, [24], Lemma 4.1.12). Let Ω be an open convex

set in RN , f : Ω→ R and f ∈ C2(Ω). Let F (x) = ∇f(x). If for all u, v ∈ Ω, there is some

positive constant L such that

‖F ′(u)− F ′(v)‖ ≤ L‖u− v‖,

then

‖F (u)− F (v)− F ′(v)(u− v)‖ ≤ L

2 ‖u− v‖
2.

In Section 3.2, local superlinear convergence of the symmetric scaled Perry NCG

method is given using Kantorovich-type assumptions. Existence of the minimizer and

the superlinear convergence are deductions of the theory. This is followed by applying a
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similar analysis for a generalized scaled memoryless BFGS method in Section 3.3.

3.2 Symmetric scaled Perry NCG method

Some authors consider conjugate gradient methods as special types of quasi-Newton meth-

ods, leading them to define a new conjugacy condition for general twice continuously dif-

ferentiable objective functions. Perry in [56] tried to combine the second-order information

of the objective functions in NCG method to accelerate it, leading to the Perry conjugacy

condition. In order to minimize a strictly convex quadratic function f(x) = 1
2x

TAx− bTx,

where A is SPD matrix, the linear conjugate gradient method generates a search direction

that satisfies the conjugacy condition,

dTi Adj = 0, ∀i 6= j.

Assume that f is twice continuously differentiable, define the secant condition and the

quasi-Newton condition by, respectively,

Bn+1sn = yn and Bn+1dn+1 = −gn+1,

where Bn+1 is a symmetric approximation matrix to the Hessian F ′(xn+1), yn = gn+1− gn

and sn = xn+1 − xn = αndn. We have:

dTn+1yn = dTn+1Bn+1sn = (Bn+1dn+1)T sn = −gTn+1sn.

Now define the Perry conjugacy condition by

dTn+1yn = −gTn+1sn.
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This idea to define the conjugacy condition for general objective functions is due to Perry

[56]. Dai and Liao [18] suggested the following generalization,

dTn+1yn = −ηn gTn+1sn, (3.5)

where ηn is a nonnegative parameter. Then by substituting this in (3.2) we have,

βPn = gTn+1(yn − ηn sn)
dTnyn

, (3.6)

which is called the scaled Perry NCG parameter. By employing the scaled Perry NCG

parameter (3.6) in (3.2) and doing simple algebraic calculations, we obtain the search

direction

dn+1 = −
[
I − sny

T
n

sTnyn
+ ηn

sns
T
n

sTnyn

]
gn+1 ≡ −Q̂n+1gn+1.

Observe that Q̂n+1 is non-symmetric.

One symmetric scaled Perry NCG approximation to the inverse Hessian is

Qn+1 = I − sny
T
n + yns

T
n

sTnyn
+ ηn

sns
T
n

sTnyn
. (3.7)

[78] showed that if ηn >
yTn yn
sTnyn

, then Qn+1 is SPD and so dn+1 = −Qn+1gn+1 is a descent

direction. The same paper gave a proof of global convergence of the symmetric scaled

Perry NCG method using the Wolfe line search for general functions whose level set with

respect to the initial iterate is bounded.

Notice that by selecting

ηn = 1 + yTn yn
yTn sn

, (3.8)

in (3.7), we recover the memoryless BFGS method [52].
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Below we give a proof of local convergence of the symmetric scaled Perry NCG iteration

using Kantorovich-type assumptions. We first offer a basic convergence theory for this

class of NCG methods using the above assumptions where F ′(x0) = I. This assumption

assures that there is a positive constant r0 sufficiently small such that for r ≤ r0 and all

x ∈ Br(x0),

m‖z‖2 ≤ zTD2f(x)z ≤M‖z‖2,

for any z ∈ RN and in which m,M are positive numbers. This result comes from the

continuity of eigenvalues under small perturbations [42]. However we assume the above

inequalities explicitly in order to find explicit values for the constants which appear in the

following theorems. We also have a parallel theory in which the assumption F ′(x0) = I is

generalized to F ′(x0) is SPD. To obtain a convergence theory, we make a simple change of

variable leading to modified NCG algorithm. Also we take the simplest version without

line search for a range of ηn leading to a positive definite Qn+1. With initial guess x0 and

Q0 = I, the iteration is given by

xn+1 = xn + sn, sn = −QnF (xn), n ≥ 0, (3.9)

with the next approximation of inverse Hessian, Qn+1, given by (3.7).

Theorem 3.3. Suppose that Assumption 3.1 holds with ζ given by (3.24) and L satisfies

(3.23). Assume F ′(x0) = I. If r satisfies (3.23), then the NCG iteration {xn} defined by

(3.7) and (3.9) for all ηn satisfying (3.18), is well defined and either F (xn) = 0 for some

n ≥ 0 or {xn} converges to a unique zero of F in Br(x0).

Proof. We prove following result by using induction on n ≥ 0.

Claim 1. There are some positive constants γ and α dependent on r (to be defined later),

such that for n ≥ 0,
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(i) ‖xn − x0‖ ≤ r
3
2 (1− rn);

(ii) ‖I −Qn‖ ≤ γr, Qn is invertible and ‖I −Q−1
n ‖ ≤ αr;

(iii) ‖F (xn)‖ ≤ ζrn+2;

(iv) ‖sn‖ ≤ rn+2.

The base case for Claims (i), (ii) and (iii) are trivial. Also if ζ ≤ 1, the base case for Claim

(iv) holds.

Next, assume all of the statements are true for some integer n ≥ 1, we will show they hold

for n+ 1.

Claim (i). Since Qn exists, so does xn+1 and

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖ ≤ rn+2 + r
3
2 (1− rn) = r

3
2 (1− rn(1−

√
r)) ≤ r

3
2 (1− rn+1).

In last inequality we have assumed r ≤ 3−
√

5
2 , therefore r ≤ 1 −

√
r. Moreover we have

‖xn+1 − x0‖ < r, so xn+1 ∈ Br(x0).

Claim (ii). Notice that there is some x̃ between xn and xn+1 so that

sTnyn = sTn (F (xn+1)− F (xn)) = sTnF
′(x̃)sn > 0,

since F ′ is SPD in a neighborhood of the initial point. It has recently been proved in [78]

that Qn+1 has N − 2 eigenvalues equal to 1 and two other eigenvalues λ+ and λ− satisfy

0 < λ− < λ+, if ηn >
yTn yn
sTnyn

, which results in Qn+1 being SPD. The symmetric scaled Perry

NCG update formula (3.7) could be simplified as

Qn+1 − I = sn((ηn − 1)sn − yn)T + (sn − yn)sTn
sTnyn

.

Therefore

‖I −Qn+1‖F ≤
‖sn((ηn − 1)sn − yn)T‖F

sTnyn
+ ‖(sn − yn)sTn‖F

sTnyn
. (3.10)
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Also notice that,

‖(sn − yn)sTn‖F
sTnyn

= ‖sn − yn‖‖sn‖
sTnyn

= 1
w

‖sn − yn‖
‖yn‖

,

where w ≡ sTnyn
‖sn‖ ‖yn‖

≤ 1. Moreover

‖((ηn − 1)sn − yn)sTn‖F
sTnyn

= ‖(ηn − 1)sn − yn‖‖sn‖
sTnyn

= 1
w

‖(ηn − 1)sn − yn‖
‖yn‖

.

Therefore

‖I −Qn+1‖F ≤
1
w

(‖sn − yn‖
‖yn‖

+ ‖(ηn − 1)sn − yn‖
‖yn‖

)
. (3.11)

For finding an estimation for the first term of this inequality, notice that F ′(x0) = I and

sn − yn = sn −
(
F (xn+1)− F (xn)

)
= −

(
F (xn+1)− F (xn)− F ′(x0)sn

)
.

Now let σn = xn − x0 and σ̂n = max{‖σn+1‖, ‖σn‖}. Then,

‖sn − yn‖ = ‖F (xn+1)− F (xn)− F ′(x0)sn‖

=
∥∥∥ ∫ 1

0

(
F ′(xn + τsn)− F ′(x0)

)
sn dτ

∥∥∥
≤ ‖sn‖

∫ 1

0
‖F ′(xn + τsn)− F ′(x0)‖ dτ

≤ L‖sn‖
∫ 1

0
‖τ(xn+1 − x0) + (1− τ)(xn − x0)‖ dτ

≤ L

2 ‖sn‖
(
‖σn+1‖+ ‖σn‖

)
≤ Lσ̂n‖sn‖. (3.12)

Also notice yn = F (xn+1) − F (xn) = F ′(x̃)sn for some x̃ between xn+1 and xn, it follows

that sn = F ′(x̃)−1yn and

‖sn‖ ≤ ‖F ′(x̃)−1‖‖yn‖ ≤
‖yn‖
m

⇒ 1
‖yn‖

≤ 1
m‖sn‖

. (3.13)

66



Then (3.12) and (3.13) together imply:

‖sn − yn‖
‖yn‖

≤ Λσ̂n, (3.14)

where Λ ≡ L

m
. Next to find an estimation for 1

w
, notice that by Claim 1(i), σ̂n ≤ r

3
2 , and

‖sn − yn‖ ≤ Λσ̂n ‖yn‖ ≤ Λr 3
2 ‖yn‖.

Choose L such that Λ = L

m
≤ 1

2 , then by using Lemma 2.10,

1− w2 ≤ Λ2σ̂2
n ≤ Λ2r3 ≤ 1

2 , (3.15)

so w2 ≥ 1
2 and

1
w
≤ 1
w2 = 1 + 1− w2

w2 ≤ 1 + 2Λ2σ̂2
n ≤ 1 + Λσ̂2

n. (3.16)

For finding an estimation for the second term of the inequality (3.11), notice that

(ηn − 1)sn − yn = (ηn − 1)sn − (F (xn+1)− F (xn))

= −(F (xn+1)− F (xn)− F ′(x0)sn
)

+ (ηn − 2)sn.

Then by same procedure applied in proof of (3.12),

‖(ηn − 1)sn − yn‖ ≤
(
Lσ̂n + |ηn − 2|

)
‖sn‖. (3.17)

In the following we define a restriction on ηn to find a bound for |ηn − 2|. Let ηn be such

that

min{2, 2yTn yn
yTn sn

} ≤ ηn ≤ max{2, 2yTn yn
yTn sn

}. (3.18)
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We show below that ηn must satisfy the following inequality

|ηn − 2| ≤ 2(1 + Λσ̂2
n)Lσ̂n. (3.19)

If y
T
n yn
yTn sn

> 1, then inequality (3.18) becomes

2 ≤ ηn ≤
2yTn yn
yTn sn

,

and

|ηn − 2| = ηn − 2 ≤ 2(y
T
n yn
yTn sn

− 1) = 2y
T
n (yn − sn)
yTn sn

≤ 2 ‖yn‖ ‖sn − yn‖
yTn sn

= 2
w

‖sn − yn‖
‖sn‖

≤ 2(1 + Λσ̂2
n)Lσ̂n.

In the last line we have applied inequalities (3.12) and (3.16). If y
T
n yn
yTn sn

≤ 1, then by

assumption (3.18),

2yTn yn
yTn sn

≤ ηn ≤ 2,

and with similar calculations as before,

|ηn − 2| = 2− ηn ≤ 2(1 + Λσ̂2
n)Lσ̂n.

Applying inequality (3.19) in (3.17), we obtain

‖(ηn − 1)sn − yn‖ ≤ Lσ̂n(3 + 2Λσ̂2
n)‖sn‖.
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Then by inequality (3.13),

‖(ηn − 1)sn − yn‖
‖yn‖

≤ Λσ̂n(3 + 2Λσ̂2
n).

Apply this, (3.14) and (3.16) in inequality (3.11) to get

‖I −Qn+1‖F ≤ Λσ̂n(4 + 2Λσ̂2
n)(1 + Λσ̂2

n) ≤ (2 + r3)(1 + r3)r 3
2 .

In the last line we have used the fact that by Claim 1(i), σ̂n ≤ r
3
2 and Λ ≤ 1

2 . Let

γ ≥ (2 + r3)(1 + r3)
√
r, then

‖I −Qn+1‖ ≤ ‖I −Qn+1‖F ≤ γr. (3.20)

Next, we show that there is a constant α, such that

‖I −Q−1
n+1‖ ≤ αr. (3.21)

By (3.20), ‖I − Qn+1‖ ≤ γr. Let λj, 1 ≤ j ≤ N be eigenvalues of Qn+1. Therefore

|1−λj| ≤ γr for all 1 ≤ j ≤ N . Also ‖Q−1
n+1‖ = max1≤j≤N

1
λj
≤ 1

1− γr , assuming γr < 1.

Then

‖I −Q−1
n+1‖ = ‖(I −Qn+1)Q−1

n+1‖ ≤ ‖I −Qn+1‖ ‖Q−1
n+1‖ ≤

γr

1− γr ≤ αr,

by assuming γ

1− γr ≤ α.

Claim (iii). Now we proceed to prove Claim (iii) by using induction. By definition,
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sn = −QnF (xn), therefore,

‖F (xn+1)‖ = ‖F (xn+1)− F (xn)− F ′(x0)sn + F ′(x0)sn −Q−1
n sn‖

≤ ‖F (xn+1)− F (xn)− F ′(x0)sn‖+ ‖(I −Q−1
n )sn‖

≤ Lr
3
2‖sn‖+ αr‖sn‖ = r(L

√
r + α)‖sn‖ ≤ (L

√
r + α)rn+3.

If we assume L
√
r + α ≤ ζ, then ‖F (xn+1)‖ ≤ ζrn+3, as we need.

Claim (iv). Notice that from (3.20), we have ‖Qn+1‖ ≤ 1 + γr. Define β ≥ 1 + γr, then

‖sn+1‖ = ‖ −Qn+1F (xn+1)‖ ≤ ‖Qn+1‖‖F (xn+1)‖ ≤ βζ rn+3.

Assume βζ ≤ 1, then ‖sn+1‖ ≤ rn+3.

Therefore by using mathematical induction we have shown Claim 1. A consequence of

Claim 1(iv) is that {xn} is a Cauchy sequence lying in Br(x0). Given p, q ≥ 0,

‖xp − xp+q‖ ≤
p+q−1∑
k=p
‖xk+1 − xk‖ ≤

p+q−1∑
k=p

rk+2 < r2
∞∑
k=p

rk = rp+2

1− r ≤ rp+1.

Therefore {xn} converges to a point x∗ ∈ Br(x0). By Claim 1(iii), F (x∗) = 0. Take q →∞

and p = n in the above calculation to get ‖xn − x∗‖ ≤ rn+1. Let en = xn − x∗ then

‖en‖ ≤ rn+1. (3.22)

For proof of uniqueness, let x̂ be any other root of F in Br(x0). Then we could show that
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for any n ≥ 0, we have ‖ên+1‖ ≤ r‖ên‖, where ên = xn − x̂:

‖ên+1‖ = ‖xn+1 − x̂‖ = ‖xn + sn − x̂‖ = ‖xn −QnF (xn)− x̂‖

= ‖QnQ
−1
n ên +Qn

(
− F (xn) + F (x̂)

)
‖

≤ ‖Qn‖
∥∥∥(Q−1

n − F ′(x0)
)
ên +

(
F ′(x0)− F ′(xn)

)
ên +

(
− F (xn) + F (x̂) + F ′(xn)ên

)∥∥∥
≤ ‖Qn‖ ‖ên‖

(
‖Q−1

n − I
∥∥∥+ ‖F ′(x0)− F ′(xn)‖+

∫ 1

0
‖F ′(xn)− F ′(x̂+ ênτ) ‖dτ

)

≤ ‖Qn‖ ‖ên‖
(
‖Q−1

n − I‖+ L‖xn − x0‖+ L

2 ‖ên‖
)
.

Since x̂ , xn ∈ Br(x0) then ‖ên‖ ≤ 2r. By the above inequalities,

‖ên+1‖ ≤ β(α + L
√
r + L)r‖ên‖ ≤ β(α + 2L)r‖ên‖ ≤ r‖ên‖,

if we assume β(α + 2L) ≤ 1. Therefore ‖xn − x̂‖ ≤ rn+1 and consequently

‖x̂− x∗‖ ≤ ‖x̂− xn‖+ ‖xn − x∗‖ ≤ 2rn+1.

Let n → ∞ to obtain the uniqueness result. We remark that it is possible to give an

alternative proof of uniqueness using uniform convexity of f on Br(x0).

Let

√
r ≤ 1

19 , and L ≤ min{m2 ,
1
3 − 6

√
r}, (3.23)

then the constants could be selected as

γ = 6
√
r, β = 1 + 6r

√
r, (3.24)

ζ = 1
1 + 6r

√
r
, α = 12

√
r.

The calculations for finding the constants are given in Appendix C. This completes the
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proof of theorem.

Theorem 3.4. Suppose that all hypotheses of Theorem 3.3 hold. Then the NCG iteration

defined by (3.9) with ηn satisfying (3.18) converges superlinearly to the unique zero of F

in Br(x0).

Proof. By Theorem 3.3 the iteration {xn} defined by (3.9) for F (x) converges to x∗, the

unique zero of F in Br(x0). Assume that F (xn) 6= 0 for all n ≥ 0 and so xn 6= x∗. Also

assume constants r and L satisfy (3.23), then for all n ≥ 0,

‖I −Qn‖ ≤ γr,

‖I −Q−1
n ‖ ≤ αr,

‖F (xn)‖ ≤ ζrn+2,

‖sn‖ ≤ rn+2,

‖Qn‖ ≤ β,

‖en‖ = ‖xn − x∗‖ ≤ rn+1.

The positive constants α, γ, ζ and β are given by (3.24). Also since xn+1 ∈ Br(x0), it

follows ‖F ′(xn+1)−1‖ ≤ 1
m
. Furthermore, it could be shown that ‖en+1‖ ≤ r‖en‖ by using

the same technique as in Theorem 3.3 to show ‖ên+1‖ ≤ r‖ên‖ for all n ≥ 0. The rest of

the proof follows almost exactly as in Theorem 6.6 of [52].

Now we relax the requirement that F ′(x0) = I. The simple trick is to make a change

of variables so that in the new coordinates, the initial Hessian is the identity. The scaled

symmetric Perry NCG method is not invariant under this change, and so the iteration is

modified appropriately so that the basic theory is still applicable.

More precisely, assume F ′(x0) is SPD. Define A = F ′(x0)−1/2, f̃(x̃) = f(Ax̃) and

x0 = Ax̃0. Then F̃ ′(x̃0) = I, where F̃ (x̃) = ∇̃f(x̃). Define the new update formula for the

approximate inverse Hessian by

Qn+1 = A2 − sny
T
nA

2 + A2yns
T
n

sTnyn
+ ηn

sns
T
n

sTnyn
, n ≥ 0, (3.25)

Q0 = A2 and suppose

min{2, 2yTnA2yn
yTn sn

} ≤ ηn ≤ max{2, 2yTnA2yn
yTn sn

}. (3.26)
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Theorem 3.5. Suppose that Assumption 3.1 holds such that F ′(x0) is SPD and ‖I −

F ′(x0)‖ ≤ cr, where c is a nonnegative constant. With ζ, L, c dependent on r and r

sufficiently small, the NCG iteration {xn} defined by (3.9) and (3.25) for all ηn satisfying

(3.26), is well defined and converges superlinearly to a unique zero of F in Br(x0).

Proof. Let A = F ′(x0)−1/2. It can easily be shown that for all n ≥ 0, the following

hold: xn = Ax̃n and Qn = AQ̃nA, where x̃n and Q̃n denote the symmetric scaled Perry

NCG iterates and inverse Hessian approximations for the function F̃ (x̃). The previous

convergence theory can be applied to f̃ . For an arbitrary matrix M define the norm

‖M‖∗ = ‖A−1MA−1‖F .

Since ‖ · ‖∗ is a norm equivalent to ‖ · ‖, there is some positive constant c′ such that

‖M‖ ≤ c′ ‖M‖∗ for all M . Then by inequality (3.20) we have a positive constant γ such

that

‖F ′(x0)−1 −Qn+1‖ = ‖A2 − AQ̃n+1A‖ ≤ c′‖A2 − AQ̃n+1A‖∗ = c′‖I − Q̃n+1‖F ≤ c′γr.

Furthermore

‖I −Qn+1‖ ≤ ‖I − F ′(x0)−1‖+ ‖|F ′(x0)−1 −Qn+1‖

= ‖F ′(x0)−1‖‖I − F ′(x0)‖+ ‖|F ′(x0)−1 −Qn+1‖ ≤ ( c
m

+ c′γ)r.

By assuming γ̂ = c

m
+ c′γ, we get ‖I −Q−1

n+1‖ ≤ γ̂r. Let λj, 1 ≤ j ≤ N be eigenvalues of

Qn+1. Therefore |1−λj| ≤ γ̂r for all 1 ≤ j ≤ N . Also ‖Q−1
n+1‖ = max1≤j≤N

∣∣∣∣∣ 1
λj

∣∣∣∣∣ ≤ 1
1− γ̂r ,

assuming γ̂r < 1. Then

‖F ′(x0)−Q−1
n+1‖ = ‖F ′(x0)(F ′(x0)−1 −Qn+1)Q−1

n+1‖

≤ ‖F ′(x0)‖ ‖F ′(x0)−1 −Qn+1‖ ‖Q−1
n+1‖ ≤

Mγr

1− γ̂r ≤ αr,
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by assuming Mγ

1− γ̂r ≤ α.

Proof of other claims are the same as in Theorem 3.3 and will be omitted here. Superlinear

convergence comes from Theorem 3.4.
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Appendix C

This appendix provides the mathematical calculations for finding the constants in the

proof of Theorem 3.3. The requirements among constants are given by:

1. r ≤ 3−
√

5
2 ,

2. L ≤ m
2 ,

3. γ ≥ (2 + r3)(1 + r3)
√
r,

4. γr < 1 and α ≥ γ
1−γr ,

5. L
√
r + α ≤ ζ ≤ 1,

6. β ≥ 1 + γr,

7. βζ ≤ 1,

8. β(α + 2L) ≤ 1.

First let γ = 6
√
r and β = 1 + γr. Therefore requirements 3 and 6 hold. Now let

√
r ≤ 1

19 , then γr ≤
1
2 and with this restriction

γ

1− γr ≤ 2γ.

Let α = 2γ, then requirement 4 is satisfied. Furthermore, γr ≤ 1
2 results in 2

3 ≤
1

1 + γr
.

Next choose L such that L ≤ 1
3 − 6

√
r. Since r ≤ 1

19 , then L stays positive and also

2L ≤ 2
3 − 2γ. Then

α = 2γ ≤ 2
3 − 2L ≤ 1

1 + γr
− 2L = 1

β
− 2L,

and requirement 8 holds.

Now let ζ = 1
β
, then requirement 7 holds. Notice that by the last inequality, ζ ≥ α+2L ≥

α+L
√
r, and also β ≥ 1, requirement 5 holds. All together it is enough to choose

√
r ≤ 1

19
and

L ≤ min{m2 ,
1
3 − 6

√
r},
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then the constants could be selected as

γ = 6
√
r, β = 1 + 6r

√
r,

ζ = 1
1 + 6r

√
r
, α = 12

√
r.
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3.3 Generalized scaled memoryless BFGS method

Recall the BFGS iteration for finding a root of F (x) is given by

xn+1 = xn + sn, sn = −A−1
n F (xn),

An+1 = An + yny
T
n

yTn sn
− Ansns

T
nAn

sTnAnsn
,

for any n ≥ 0, where yn = F (xn+1)−F (xn), x0 is an initial guess and A0 is a SPD matrix. If

yTn sn > 0 in each step, the update matrix stays SPD and also by using Sherman-Morrison-

Woodbury formula, the inverse of update matrix is given by

A−1
n+1 = A−1

n + sns
T
n

yTn sn
(1 + yTnA

−1
n yn

yTn sn
)− A−1

n yns
T
n + sny

T
nA
−1
n

yTn sn
. (3.27)

Recently scaled quasi-Newton methods have been introduced for improving the perfor-

mance of the BFGS update. The purpose of these methods is to improve the condition

number of the approximation to the inverse Hessian. In each iteration A−1
n is replaced by

θnA
−1
n , where θn > 0 is a scaling parameter. Two well-known scaling parameters are given

by Oren and Luenberger [54]:

θOLn = sTnAnsn
yTn sn

, (3.28)

and by Oren and Spedicato [55]:

θOSn = yTn sn
yTnA

−1
n yn

. (3.29)

In the memoryless BFGS method, the matrix A−1
n in the update formula (3.27) is replaced

by the identity matrix,

Ĥn+1 = I + sns
T
n

yTn sn
(1 + yTn yn

yTn sn
)− yns

T
n + sny

T
n

yTn sn
. (3.30)
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The method is called memoryless in the sense that it removes the need to store an ap-

proximation of the inverse Hessian matrix at each step. We remark that the memoryless

BFGS method is the scaled symmetric Perry NCG method with ηn obeying (3.8) which

also satisfies (3.18). Hence our convergence theory in Section 3.2 covers the memoryless

BFGS method.

If we replace A−1
n by θnI in (3.27), the method is called scaled memoryless BFGS:

Hn+1 = θnI + sns
T
n

yTn sn
(1 + θn

yTn yn
yTn sn

)− θn
yns

T
n + sny

T
n

yTn sn
. (3.31)

The scaling parameters (3.28) and (3.29) could be written as

θOLn = sTnsn
yTn sn

, (3.32)

θOSn = yTn sn
yTn yn

. (3.33)

Define the generalized scaled memoryless BFGS method by (3.31) with

θn = κ
sTnsn
yTn sn

, (3.34)

for a range of values of κ in some neighbourhood of 1 to be specified later. Note that the

Oren-Luenberger version of the scaled memoryless BFGS method corresponds to κ = 1.

We focus on this particular value since [52] mentions that the other choice given by (3.33)

yields poorer performance.

Below we give a proof of convergence of the generalized scaled memoryless BFGS

method without line search, and using Kantorovich-type assumptions. With initial guess

x0 and H0 = I, the generalized scaled memoryless BFGS iterations are given by

xn+1 = xn + sn, sn = −HnF (xn), n ≥ 0, (3.35)
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with the next approximation of the inverse Hessian, Hn+1, given by (3.31), and θn is the

scaling parameter given by (3.34).

Theorem 3.6. Suppose that Assumption 3.1 holds and F ′(x0) = I. If r and L are

sufficiently small (satisfy (3.55) and (3.56)), then the generalized scaled memoryless BFGS

iteration {xn} defined by (3.35) is well defined and either F (xn) = 0 for some n ≥ 0 or

{xn} converges to a unique zero of F in Br(x0).

Proof. First we present some properties of the scale parameter θn = κ
sTnsn
yTn sn

. Let

1− Lr 3
2 ≤ κ ≤ 1 + Lr

3
2 . (3.36)

By assuming Lr 3
2 ≤ 1

2 , then |1− κ| ≤ Lr
3
2 and 1

2 ≤ κ ≤ 3
2 .

Now define σn = xn − x0, σ̂n = max{‖σn+1‖, ‖σn‖} and Λ = L

m
.

Claim 1. If σ̂n ≤ r
3
2 and Λ ≤ 1

2 , then,

0 < θn ≤
2(1 + 4Λr3)

m
; (3.37)

|1− θn| ≤ 2Λ(1 + 4Λr3)r 3
2 ; (3.38)

|1− θ−1
n | ≤ 4MΛ(1 + 4Λr3)r 3

2 . (3.39)

Notice that there is some x̃ between xn and xn+1 so that

sTnyn = sTn (F (xn+1)− F (xn)) = sTnF
′(x̃)sn > 0,

since F ′ is SPD in a neighborhood of the initial point. So θn stays positive. Also in same

way as we proved (3.13), ‖yn‖ ≥ m‖sn‖ and

θn = κ
sTnsn
sTnyn

≤ 2‖sn‖2

sTnyn
= 2 ‖sn‖‖yn‖

sTnyn

‖sn‖
‖yn‖

≤ 2
mw

, (3.40)
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where w ≡ sTnyn
‖sn‖ ‖yn‖

≤ 1. Also we observe that

|1− θn| =
|yTn sn − κsTnsn|

yTn sn
= |(yn − κsn)T sn|

yTn sn
≤ ‖yn − κsn‖‖sn‖

yTn sn
= 1
w

‖yn − κsn‖
‖yn‖

. (3.41)

Notice that by the same procedure applied in the proof of (3.12) in Theorem 3.3,

‖yn − κsn‖ ≤ (Lσ̂n +
∣∣∣1− κ∣∣∣)‖sn‖ ≤ 2Lr 3

2‖sn‖,

leading to

‖yn − κsn‖
‖yn‖

≤ 2Λr 3
2 . (3.42)

Note Λ ≤ 1
2 , now apply Lemma 2.10 and use the same calculations as we used in proving

(3.15) and (3.16) to obtain

1
w
≤ 1
w2 ≤ 1 + 4Λr3. (3.43)

Substitute (3.42) and (3.43) in (3.41),

|1− θn| ≤ 2Λ(1 + 4Λr3)r 3
2 . (3.44)

Also apply (3.43) in (3.40) to obtain

0 < θn ≤
2(1 + 4Λr3)

m
,

Similarly ‖yn‖ ≤ ‖F ′(x̃)‖‖sn‖ ≤M‖sn‖ and therefore

θ−1
n = yTn sn

κ‖sn‖2 ≤
2‖yn‖
‖sn‖

≤ 2M‖sn‖
‖sn‖

= 2M. (3.45)
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So by using this and (3.44) we obtain

|1− θ−1
n | = θ−1

n |1− θn| ≤ 4MΛ(1 + 4Λr3)r 3
2 . (3.46)

Claim 2. There are some positive constants γ and α dependent on r (to be defined later),

such that for n ≥ 0,

(i) ‖xn − x0‖ ≤ r
3
2 (1− rn);

(ii) ‖θnI −Hn‖ ≤ γr, Hn is invertible and ‖θ−1
n I −H−1

n ‖ ≤ αr;

(iii) ‖F (xn)‖ ≤ ζrn+2;

(iv) ‖sn‖ ≤ rn+2.

Proof of the claims is by induction on n ≥ 0. The base case for Claim (i) is trivial. Also

σ̂0 ≤ r2 ≤ r
3
2 . Apply Claim 1, let γ ≥ (1 + 2r3)

√
r and α ≥ 2M(1 + 2r3)

√
r, then the

base case for Claim (ii) is true. Since ‖F (x0)‖ ≤ ζr2, base case for Claim (iii) holds. Also

by assuming ζ ≤ 1, base case for Claim (iv) holds. Next, assume all of the statements are

true for some integer n ≥ 1, we will show they hold for n+ 1.

Claim (i). Since Hn exists, so does xn+1 and

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖ ≤ rn+2 + r
3
2 (1− rn)

= r
3
2 (1− rn(1−

√
r)) ≤ r

3
2 (1− rn+1).

In last inequality we have assumed r ≤ 3−
√

5
2 , therefore r ≤ 1−

√
r. Moreover ‖xn+1 −

x0‖ < r, so xn+1 ∈ Br(x0).

Claim (ii). [5] has shown that Hn+1 has N − 2 eigenvalues equal to θn and two other

eigenvalues λ+ and λ− satisfy 0 < λ− ≤ θn ≤ λ+, which results in Hn+1 being SPD.
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Define Pn = I − sny
T
n

sTnyn
, then from (3.31),

Hn+1 − θnI = (sn − θnyn)sTn + sn(sn − θnyn)TP T
n

sTnyn
.

Therefore

‖θnI −Hn+1‖F ≤
‖(sn − θnyn)sTn‖F

sTnyn
+ ‖sn(sn − θnyn)TP T

n ‖F
sTnyn

. (3.47)

Consider the first term of this inequality,

‖(sn − θnyn)sTn‖F
sTnyn

= ‖sn − θnyn‖‖sn‖
sTnyn

= 1
w

‖sn − θnyn‖
‖yn‖

, (3.48)

where w = sTnyn
‖sn‖ ‖yn‖

. Similarly for the second term of (3.47), use Lemma (2.8) to get

‖sn(sn − θnyn)TP T
n ‖F

sTnyn
≤ ‖sn‖‖sn − θnyn‖‖Pn‖

sTnyn
= 1
w2
‖sn − θnyn‖
‖yn‖

. (3.49)

Substitute (3.48) and (3.49) in inequality (3.47), we obtain:

‖θnI −Hn+1‖F ≤
2
w2
‖sn − θnyn‖
‖yn‖

. (3.50)

For finding an estimation for this inequality, notice that F ′(x0) = I and

sn − θnyn = sn − θn
(
F (xn+1)− F (xn)

)
= −θn

(
F (xn+1)− F (xn)− F ′(x0)sn

)
+ (1− θn)sn.
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In following we use (3.12), (3.37), (3.39) and (3.43) to obtain

‖sn − θnyn‖ ≤ θn(Lσ̂n + |1− θn|)‖sn‖

≤ 2(1 + 4Λr3)
m

(Lr 3
2 + 2Λ(1 + 4Λr3)r 3

2 )‖sn‖

≤ 2Λ(1 + 4Λr3)(1 + 2(1 + 4Λr3)
m

)r 3
2‖sn‖.

Therefore since ‖yn‖ ≥ m‖sn‖,

‖sn − θnyn‖
‖yn‖

≤ 2Λ (1 + 4Λr3)
m

(1 + 2(1 + 4Λr3)
m

)r 3
2 . (3.51)

Applying this and (3.43) in (3.50), we obtain

‖θnI −Hn+1‖F ≤ 2
w2
‖sn − θnyn‖
‖yn‖

≤ 4Λ (1 + 4Λr3)2

m
(1 + 2(1 + 4Λr3)

m
)r 3

2

≤ 2(1 + 2r3)2

m
(1 + 2(1 + 2r3)

m
)r 3

2 .

Let γ ≥ 2(1 + 2r3)2

m
(1 + 2(1 + 2r3)

m
)
√
r, then

‖θnI −Hn+1‖ ≤ ‖θnI −Hn+1‖F ≤ γr. (3.52)

Next, show that there is a constant α, such that

‖θ−1
n I −H−1

n+1‖ ≤ αr. (3.53)

By (3.45) and (3.52) we have, ‖I − θ−1
n Hn+1‖ ≤

γr

θn
≤ 2Mγr. Let λj, 1 ≤ j ≤ N be

eigenvalues of θ−1
n Hn+1. Therefore |1 − λj| ≤ 2Mγr. Also ‖θnH−1

n+1‖ = max1≤j≤N
1
λj
≤
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1
1− 2Mγr

, assuming Mγr <
1
2 . Then

‖H−1
n+1‖ ≤

1
θn(1− 2Mγr) ≤

2M
1− 2Mγr

.

Therefore

‖θ−1
n I −H−1

n+1‖ ≤
‖H−1

n+1‖
θn

‖Hn+1 − θnI‖ ≤
4M2γr

1− 2Mγr
≤ αr,

by assuming 4M2γ

1−Mγr
≤ α.

Claim (iii). By definition, sn = −HnF (xn), then

‖F (xn+1)‖ = ‖F (xn+1)− F (xn)−H−1
n sn‖

≤ ‖F (xn+1)− F (xn)− F ′(x0)sn‖+ |1− θ−1
n |‖sn‖+ ‖(θ−1

n I −H−1
n )sn‖

≤ Lr
3
2‖sn‖+ 4MΛ(1 + 4Λr3)r 3

2‖sn‖+ αr‖sn‖

≤ (Lr 3
2 + 2M(1 + 2r3)r 3

2 + αr)rn+2 ≤ (L
√
r + 4M

√
r + α)rn+3.

If we assume L
√
r + 4M

√
r + α ≤ ζ, then ‖F (xn+1)‖ ≤ ζrn+3, as we need.

Claim (iv). Notice that from (3.52), we have ‖Hn+1‖ ≤ θn(1 + 2Mγr) ≤ 2(1 + 2r3)
m

(1 +

2Mγr). Define β ≥ 2(1 + 2r3)
m

(1 + 2Mγr), then ‖Hn+1‖ ≤ β. By using definition,

‖sn+1‖ = ‖ −Hn+1F (xn+1)‖ ≤ ‖Hn+1‖‖F (xn+1)‖ ≤ βζ rn+3.

Assume βζ ≤ 1, then ‖sn+1‖ ≤ rn+3.

Therefore by using mathematical induction we have shown Claim 2. A consequence of

Claim 2(iv) is that {xn} is a Cauchy sequence lying in Br(x0). Given p, q ≥ 0,

‖xp − xp+q‖ ≤
p+q−1∑
k=p
‖xk+1 − xk‖ ≤

p+q−1∑
k=p

rk+2 < r2
∞∑
k=p

rk = rp+2

1− r ≤ rp+1.
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Therefore {xn} converges to a point x∗ ∈ Br(x0). According to Claim 2(iii), F (x∗) = 0.

By taking q →∞ and p = n in the above calculation, ‖xn− x∗‖ ≤ rn+1. Let en = xn− x∗

then

‖en‖ ≤ rn+1. (3.54)

For proof of uniqueness, let x̂ be any other root of F in Br(x0). Then we could show that

for any n ≥ 0, we have ‖ên+1‖ ≤ r‖ên‖, where ên = xn − x̂.

‖ên+1‖ = ‖xn+1 − x̂‖ = ‖xn + sn − x̂‖ = ‖xn −HnF (xn)− x̂‖

= ‖HnH
−1
n ên +Hn

(
− F (xn) + F (x̂)

)
‖

≤
∥∥∥Hn(H−1

n − θ−1
n I)ên + (θ−1

n − 1)Hnên
∥∥∥

+
∥∥∥Hn(F ′(x0)− F ′(xn))ên +Hn

(
− F (xn) + F (x̂) + F ′(xn)ên

)∥∥∥
≤ ‖Hn‖

(
‖H−1

n − θ−1
n I‖ ‖ên‖+

∣∣∣θ−1
n − 1

∣∣∣ ‖ên‖)
+‖Hn‖

(
‖F ′(x0)− F ′(xn)‖ ‖ên‖+ ‖ − F (xn) + F (x̂) + F ′(xn)ên‖

)
≤ ‖Hn‖ ‖ên‖

(
‖H−1

n − θ−1
n I‖+

∣∣∣θ−1
n − 1

∣∣∣+ ‖F ′(x0)− F ′(xn)‖+
∫ 1

0
‖F ′(xn)− F ′(x̂+ ênτ) ‖dτ

)

≤ ‖Hn‖ ‖ên‖
(
αr + 2M(1 + 2r3)r 3

2 + Lr
3
2 + L

2 ‖ên‖
)
.

Since x̂ , xn ∈ Br(x0) then ‖ên‖ ≤ 2r, the above inequality reduces to

‖ên+1‖ ≤ β
(
α + 4M

√
r + 2L

)
r‖ên‖.

If we assume β(α + 4M
√
r + 2L) ≤ 1, then ‖ên‖ ≤ rn+1 and

‖x̂− x∗‖ ≤ ‖x̂− xn‖+ ‖xn − x∗‖ ≤ 2rn+1.
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Let n→∞ to obtain the uniqueness result. Now assume

√
r ≤ m3

792M2 , (3.55)

and

L ≤ m

12 −
64M2

m2

√
r − 2M

√
r. (3.56)

The constants used in the proof of this theorem could be selected as,

γ = 16
m2

√
r, β = 4

m
(1 + 32M

m2 r
√
r), (3.57)

ζ = m3

4m2 + 128Mr
√
r
, α = 128M2

m2

√
r.

The calculations for finding the constants are given in Appendix D. This completes proof

of the theorem.

Theorem 3.7. Suppose that all hypotheses of Theorem 3.6 hold. Then the generalized

scaled memoryless BFGS iteration defined by (3.35) converges superlinearly to the unique

zero of F in Br(x0).

Proof. By Theorem 3.6 the iterate {xn} defined by generalized scaled memoryless BFGS

method for F (x) converges to x∗, the unique zero of F in Br(x0). Assume that F (xn) 6= 0

for all n ≥ 0 and so xn 6= x∗. Also assume constants r and L satisfy (3.55) and (3.56),

then

‖I −Hn‖ ≤ γr,

‖I −H−1
n ‖ ≤ αr,

‖F (xn)‖ ≤ ζrn+2,

‖sn‖ ≤ rn+2,

‖Hn‖ ≤ β,

‖en‖ = ‖xn − x∗‖ ≤ rn+1.

The positive constants α, γ, ζ and β are given by (3.57). Also since xn+1 ∈ Br(x0),

‖F ′(xn+1)−1‖ ≤ 1
m
.
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Furthermore, it could be shown that ‖en+1‖ ≤ r‖en‖ by using the same technique as in the

Theorem 3.6 to show ‖ên+1‖ ≤ r‖ên‖ for all n ≥ 0. The rest of the proof follows almost

exactly as in Theorem 6.6 of [52].

Let us consider the case when F ′(x0) 6= I but is SPD. Define A = F ′(x0)−1/2, f̃(x̃) =

f(Ax̃) and x0 = Ax̃0. Then F̃ ′(x̃0) = I, where F̃ (x̃) = ∇̃f(x̃). It can be shown that

the method defined by (3.35) is not invariant under this change. Define the new update

formula for the approximate inverse Hessian by

Hn+1 = A2θnI + sns
T
n

yTn sn
(1 + θn

yTnA
2yn

yTn sn
)− θn

yns
T
nA

2 + A2sny
T
n

yTn sn
, n ≥ 0, (3.58)

H0 = A2 and

θn = κ
sTnA

2sn
yTn sn

. (3.59)

Theorem 3.8. Suppose that Assumption 3.1 holds such that F ′(x0) is SPD and ‖I −

F ′(x0)‖ ≤ cr, where c is a nonnegative constant. With ζ, L, c dependent on r and r

sufficiently small, the generalized scaled memoryless BFGS iteration {xn} defined by (3.35)

and (3.58) for all θn satisfying (3.59), is well defined and converges superlinearly to a unique

zero of F in Br(x0).

By doing some calculations it can easily be shown that for all n ≥ 0, xn = Ax̃n and

Hn = AH̃nA, where x̃n and H̃n denote the generalized scaled memoryless BFGS iteration

and update formula for inverse Hessian approximation for the function F̃ (x̃). The proof

of this theorem follows from that of Theorems 3.6–3.7 and will be omitted here.
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Appendix D

This appendix provides the mathematical calculations for finding the constants in the

proof of Theorem 3.6. The requirements among constants are given by

1. r ≤ 3−
√

5
2 ,

2. Lr 3
2 ≤ 1

2 and L ≤ m

2 ,

3. γ ≥ max{(1 + 2r3)
√
r,

2(1 + 2r3)2

m
(1 + 2(1 + 2r3)

m
)
√
r},

4. Mγr <
1
2 and α ≥ max{2M(1 + 2r3)

√
r,

4M2γ

1− 2Mγr
},

5. α + 4M
√
r + L

√
r ≤ ζ ≤ 1,

6. β ≥ 2(1 + 2r3)
m

(1 + 2Mγr),

7. βζ ≤ 1,

8. β(α + 4M
√
r + 2L) ≤ 1.

First notice that (1 + 2r3)
√
r ≤ 2(1 + 2r3)2

m
(1 + 2(1 + 2r3)

m
)
√
r and also 1 + 2r3 ≤

√
2 for

r ≤ 1
2 . Let γ = 16

m2
√
r, and notice that by assumption of theorem m ≤ 1, therefore

2(1 + 2r3)2

m
(1 + 2(1 + 2r3)

m
)
√
r ≤ 4

m
(1 + 2

√
2

m
)
√
r ≤ 16

m2

√
r = γ.

Then requirement 3 holds. Let β = 4
m

(1 + 2Mγr), so requirement 6 is also satisfied.

Now notice that M ≥ 1 by assumption of theorem, 2M(1 + 2r3)
√
r ≤ 4M2γ

1− 2Mγr
. Notice

that requirements 4 and 8 together give bounds for α:

4M2γ

1− 2Mγr
≤ α ≤ m

4(1 + 2Mγr) − 4M
√
r − 2L.
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Now choose r such that

√
r ≤ m3

792M2 , (3.60)

We could show by some calculation that this assumption implies

√
r <

m3

24(32M2 +m2M) . (3.61)

Also results in
√
r ≤ m2

64M , which gives Mγr ≤ 1
4 , therefore

4M2γ

1− 2Mγr
≤ 8M2γ and also

m

6 ≤
m

4(1 + 2Mγr) . Let α = 8M2γ and choose L such that

L ≤ m

12 −
64M2

m2

√
r − 2M

√
r. (3.62)

The right-hand side of this inequality is positive by (3.61). Also from (3.62),

α = 8M2γ = 128M2

m2

√
r ≤ m

6 − 4M
√
r − 2L ≤ m

4(1 + 2Mγr) − 4M
√
r − 2L.

Therefore requirements 4 and 8 hold. Let ζ = 1
β
, then requirement 7 is fulfilled. By the

last inequality, ζ ≥ α+ 4M
√
r + 2L ≥ α+ 4M

√
r + L

√
r and also β ≥ 1, so requirement

5 also holds. Notice that by assuming (3.60) requirement 1 is fulfilled and also by (3.62)

requirement 2 holds since

L ≤ m

12 −
64M2

m2

√
r − 2M

√
r ≤ m

2 ≤
1
2 .
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All together by choosing r and L such that inequalities (3.60) and (3.62) are fulfilled, then

the constants satisfying requirements 1 to 8 could be selected as,

γ = 16
m2

√
r, β = 4

m
(1 + 32M

m2 r
√
r),

ζ = m3

4m2 + 128Mr
√
r
, α = 128M2

m2

√
r.
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4

Space-time spectral collocation

method

In this chapter a Chebyshev collocation method in both space and time based on the

work of Tang and Xu [71] is analyzed for the heat equation. The method is shown to

converge spectrally when the solution is analytic. A condition number estimate of O(N4)

is derived, where N is the number of spectral modes in each direction. Also a second space-

time method, which is easier to implement and has similar performance is proposed and

studied. Two nonlinear PDEs, viscous Burgers’ and Allen–Cahn are successfully solved

numerically, hinting that these methods are also effective solvers for nonlinear PDEs.

4.1 Introduction

Spectral methods apply global smooth functions to approximate solutions of ODEs and

PDEs. Its main advantage is that for analytic solutions of elliptic differential equations, the

rate of convergence is an exponential function of the number of basis functions used. For

problems with periodic boundary conditions, trigonometric functions can be used as basis

functions, and for other boundary conditions, Legendre or Chebyshev polynomials could

be used as basis functions, which are eigenfunctions of singular Sturm Liouville problems

91



[62]. Spectral collocation is the most popular spectral method for non-periodic functions.

This method seeks an approximate solution to a given PDE (ODE) and collocates the

equation at a set of interior collocation points.

For time dependent PDEs, the most common approach is to use low order finite dif-

ference approximation of the time derivative and spectral approximation of the spatial

derivatives. This is not ideal since the time discretization error overwhelms the spatial

discretization error. Among the first works on space-time spectral methods for PDEs with

periodic boundary conditions include [68] and [67]. Other references include [63], [46], [80],

[79], [69], [70] and the references therein. These works use collocation based on Gaussian

quadrature in time and collocation based on Gauss-Lobatto quadrature in space.

One drawback of these space-time spectral methods is that time stepping is no longer

possible. The unknowns for all times must be solved simultaneously. This presents a

serious problem for PDEs in three spatial dimensions and is particularly onerous for non-

linear PDEs. It should be made clear that due to the spectral convergence, many fewer

unknowns are needed compared to finite difference/element schemes for the same error

tolerance. An early work on spectrally accurate ODE solvers is [37].

See [17], [26], [32], [40] and references therein for works attempting to overcome the

sequential nature of time discretization schemes. Boundary value methods are stable

solvers of initial value problems that achieve spectral-like convergence rates. See, for

instance, [12] and [45] for two recent contributions. Spectral deferred correction methods

are another class of ODE solvers with spectral convergence. See [25] and [14] for two

representative publications. See [31] for a good survey of algorithms which are parallel in

time. Excellent references on the theory and practice of spectral methods include [7], [9],

[13], [29], [30], [35], [36], [38], [62] and [72].

In Section 4.2 we summarize the notation that will be necessary in the description

of the method. In Section 4.3, we demonstrate the space-time spectral convergence of a

method of Tang and Xu for the 1D heat equation. In Section 4.4, we propose a similar
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space-time spectral collocation method for more general PDEs. Following this we discuss

some simple iterative schemes for two nonlinear PDEs (Allen–Cahn and viscous Burgers’

equations) in Section 4.5 . In Section 4.6, some numerical experiments in MATLAB are

shown to confirm the theoretical results. We include an appendix which facilitates a

condition number estimate of the methods.

4.2 Basic notation and preliminaries

In this thesis, let Mm,n denote the space of real (R) or complex (C) matrices of size m×n.

Let aij denotes the (i, j)th entry of A ∈ Mm,n. Let In denotes the n × n identity matrix.

For an n× n matrix M , let [M ] denote the (n− 1)× (n− 1) matrix obtained from M by

deleting the last column and row, while [[M ]] denotes the (n−2)× (n−2) matrix obtained

from M by deleting the first and last columns and rows. For any complex number a, its

complex conjugate is denoted by ā and its real and imaginary parts are denoted by <a and

=a, respectively. For any matrix M , let MT and M∗ denote the transpose and complex

conjugate transpose of M , respectively. Let Λ(M) denote the spectrum of M. Let | · |2

denote the vector/matrix 2-norm and | · |∞ denote the vector ∞-norm. For any vector v,

denote by diag(v) the diagonal matrix whose diagonal entries are elements of v.

Definition 4.1. The Kronecker (tensor) product of the matrix A ∈ Cp,q with the matrix

B ∈ Mr,s is defined as

A⊗B =


a11B · · · a1qB

... ... ...

ap1B · · · apqB

 .

For basic properties of Kronecker product see, for instance, [39]. Two well known and

useful theorems are given below.

Theorem 4.2 ([39], Theorem 4.2.12). Let A ∈ Mm,m and B ∈ Mn,n. Furthermore, let
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λ ∈ Λ(A) with corresponding eigenvector x, and µ ∈ Λ(B) with corresponding eigenvector

y. Then λµ is an eigenvalue of A⊗B with corresponding eigenvector x⊗y. Any eigenvalue

of A⊗B arises as such a product of eigenvalues of A and B.

It follows directly that if A ∈ Mm,m and B ∈ Mn,n are positive (semi) definite matrices,

then A⊗B is also positive (semi) definite.

Theorem 4.3 ([39], Theorem 4.4.5). Let A ∈ Mm,m and B ∈ Mn,n. Furthermore, let

λ ∈ Λ(A) with corresponding eigenvector x, and µ ∈ Λ(B) with corresponding eigenvector

y. Then λ + µ is an eigenvalue of (In ⊗ A) + (B ⊗ Im) with corresponding eigenvector

y⊗ x. Any eigenvalue of (In⊗A) + (B⊗ Im) arises as such a sum of eigenvalues of A and

B.

Definition 4.4. For any matrix A ∈ Mm,n define

vec(A) = (a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn)T .

In other words, the columns of A are stacked on top of each other to make a vector a of

length mn, or A is the matrix representation of a.

The Kronecker product can be used to present linear equations in which the unknowns

are matrices. One such example is:

AX + Y B = C. ⇔ (I ⊗ A) vec(X) + (BT ⊗ I) vec(Y ) = vec(C).

Finally, for matrices X ∈ Mn,n, Y ∈ Mm,m and z ∈ Mmn, recall that (X ⊗ Y )z =

vec(Y ZXT ), where vec(Z) = z, the vector representation of Z.

Fix a positive integer N . Let PN denote the space of polynomials of degree at most

N in x for a fixed t and degree at most N in t for a fixed x. Let x0, . . . , xN denote

the Chebyshev Gauss-Lobatto nodes with x0 = 1, xN = −1 and xj descending zeros of

T ′N(x), where 1 ≤ j ≤ N − 1 and TN is the Nth Chebyshev polynomial. The Chebyshev
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Gauss-Lobatto nodes along the t axis are denoted by {tj}. Let

xh =


x1

...

xN−1

 , th =


t0
...

tN−1

 .

Note that xh excludes both boundary points, while th excludes only the initial point −1.

For 0 ≤ j ≤ N , let `j be the Lagrange interpolant, a polynomial of degree N , of xj so that

`j(xk) = δjk. Recall that the Chebyshev pseudospectral derivative matrixD ∈ R(N+1),(N+1)

has entries

Djk = d`k(xj)
dx

, 0 ≤ j, k ≤ N.

Let dh = D(0 : N−1, N), the first N entries of the last column ofD. Define the Chebyshev

interpolation operator as usual, for any continuous u,

INu =
N∑
j=0

u(xj)`j. (4.1)

The following is an important property of Chebyshev quadrature: for any polynomial v of

degree at most 2N − 1,

∫ 1

−1
v(x)w(x) dx =

N∑
k=0

v(xk)ρk, w(x) = 1√
1− x2

, (4.2)

where {ρk} is the set of weights associated with Chebyshev Gauss-Lobatto quadrature.

Let Wh be the (N + 1)× (N + 1) diagonal matrix whose diagonal entries are {ρk}.

Denote the weighed L2 norm of a continuous function v on Ω := (−1, 1)2 by

‖v‖ :=
(∫

Ω
|v(x, t)|2w(x)w(t)dxdt

)1/2
.
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Also, define the corresponding discrete norm

‖v‖N :=
 N∑
j,k=0

ρjρk|v(xj, tk)|2
1/2

.

It is well known (inequality (5.3.2) in [13], for instance) that the weighed L2 and discrete

norms are equivalent for all polynomials v of degree at most N :

‖v‖ ≤ ‖v‖N ≤ 2‖v‖. (4.3)

Notice that throughout this chapter and next, C, c denote positive constants whose values

may differ at different occurrences, but are independent of N .

4.3 Heat equation

We treat the simplest case where the spatial and temporal domains are both (−1, 1).

This is no loss of generality since this can always be accomplished by a simple change of

variables. Consider the linear heat equation

ut = uxx + f(x, t), on (−1, 1)2, (4.4)

with boundary conditions u(±1, t) = 0 and initial condition u(x,−1) = u0(x). We seek a

numerical solution u ∈ PN at t = 1.

Fix an integer N ≥ 2. We first derive the space-time Chebyshev spectral collocation

method of [71]. Write

`k(t) =
N∑
q=0

αqkTq(t), 0 ≤ k ≤ N. (4.5)

Let

ck =


2, k = 0;

1, otherwise.
dk =


2, k = 0, N ;

1, otherwise.

96



It is not difficult to show that

αqk =


2

Ncqdk
cos qkπ

N
, 0 ≤ q < N ;

(−1)k
Ndk

, q = N.

(4.6)

For any real t, define

uh(t) =


u(x1, t)

...

u(xN−1, t)

 , fh(t) =


f(x1, t)

...

f(xN−1, t)

 .

A semi-discrete approximation of the heat equation is

u′h(t) =
N∑
k=0

(
Auh(tk) + fh(tk)

)
`k(t), uh(−1) = u0h, (4.7)

where A = [[D2]] and u0h is the initial data evaluated at the vector of interior Chebyshev

Gauss-Lobatto points xh; i.e., u0h = u0(xh). Note that at the collocation point tj for

0 ≤ j < N ,

u′h(tj) = Auh(tj) + fh(tj), (4.8)

precisely the system of collocation equations.

Using (4.5), it follows that

u′h(t) =
N∑

q,k=0

(
Auh(tk) + fh(tk)

)
αqkTq(t).

Integrating in time from −1 to tj for some 0 ≤ j < N , we obtain

uh(tj)− u0h =
N∑
k=0

(
Auh(tk) + fh(tk)

) α0k(tj + 1) +
α1k(t2j − 1)

2 +
N∑
q=2

αqk

(
Tq+1(tj)
2(q + 1) −

Tq−1(tj)
2(q − 1) −

(−1)q
q2 − 1

) .
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In the above, we used the identity

Tq(t) =
T ′q+1(t)
2(q + 1) −

T ′q−1(t)
2(q − 1) , q ≥ 2,

The system can be represented as

uh(tj) = A
N−1∑
k=0

Bkjuh(tk) + gj, 0 ≤ j < N, (4.9)

where for 0 ≤ k ≤ N ,

Bkj = α0k(tj+1)+
α1k(t2j − 1)

2 +
N∑
q=2

αqk

cos
(
(q + 1)πj/N

)
2(q + 1) −

cos
(
(q − 1)πj/N

)
2(q − 1) − (−1)q

q2 − 1

 ,
and

gj =
N∑
k=0

Bkjfh(tk) +BNjAu0h + u0h.

We record the following identity for future reference:

Bkj =
∫ tj

−1
`k(t) dt =

N∑
q=0

αqk

∫ tj

−1
Tq(t) dt. (4.10)

Let Vh, Gh ∈ R(N−1)×N be the matrices whose jth column is uh(tj) and gj, respectively,

0 ≤ j < N . Then the system becomes

Vh = AVhB +Gh, (4.11)

where B ∈ RN×N with entries Bkj, 0 ≤ k, j ≤ N −1. Let vh = vec(Vh), gh = vec(Gh) and

A = (IN ⊗ IN−1)− (BT ⊗ A).

Then (4.11) is equivalent to Avh = gh.

We begin with some preliminary results. The first two state that BT is a discrete
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integration operator in two different senses: it exactly integrates polynomials of degree at

most N evaluated at the collocation points, and its inverse differs from [D] by a rank-one

matrix. These facts are hardly surprising because of the way B was derived in (4.9).

Lemma 4.5. Let N ≥ 1 and v be a complex polynomial of degree at most N so that

v(−1) = 0. Then

BTv(th) =
∫ th

−1
v(t) dt.

Proof. The proof is exactly the same as that for the Legendre case. See [49]. We reproduce

the proof for the convenience of the reader. Since v(−1) = 0, we may write

v(t) =
N∑
k=0

v(tk)`k(t) =
N−1∑
k=0

v(tk)`k(t) =
N−1∑
k=0

N∑
q=0

v(tk)αqkTq(t),

using (4.5). For 0 ≤ j < N ,

∫ tj

−1
v(t) dt =

N−1∑
k=0

N∑
q=0

v(tk)αqk
∫ tj

−1
Tq(t) dt =

N−1∑
k=0

v(tk)Bkj,

by (4.10). This proves the lemma.

Lemma 4.6. Let N ≥ 1. Then BT − [D]−1 is a rank-one matrix.

Proof. Let {ak} be arbitrary complex constants so that

u(t) =
N∑
k=0

akt
k, u(−1) = 0.

Define uh = u(th). Let 1 be the vector of all ones. By the above lemma,

[D]BTuh = [D]
∫ th

−1

N−1∑
k=0

akt
k dt+ [D]

∫ th

−1
aN t

N dt

=
N−1∑
k=0

akt
k
h + aN

N + 1[D]
(
tN+1
h − (−1)N+11

)

= uh + aN

(
[D]
N + 1

(
tN+1
h + (−1)N1

)
− tNh

)
.
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Thus [D]BT − IN is a rank-one matrix which depends on aN , but is independent of all

other aj, 0 ≤ j < N .

The third lemma says that when applied to an analytic function evaluated at the

collocation points, the quadrature error is exponentially small.

Lemma 4.7. Let N ≥ 1 and z be analytic so that z(−1) = 0. Then

∣∣∣∣BT z(th)−
∫ th

−1
z(t) dt

∣∣∣∣
2
≤ cN1/2e−CN ,

where c depends on z but is independent of N .

Proof. Let L denote the quantity on the left-hand side of the inequality of the lemma.

Then

L =
∣∣∣∣[BT (INz)(th)−

∫ th

−1
(INz)(t) dt

]
+
∫ th

−1
(INz − z)(t) dt

∣∣∣∣
2

≤ 0 + 2
√
N ‖INz − z‖L2(−1,1)

≤ cN1/2e−CN .

Note that the term inside the square brackets is zero due to Lemma 4.5, while the last

inequality is a Chebyshev interpolation error estimate for analytic functions. See (5.45)

in [48], for instance.

The following results are needed to estimate the condition number of the method. The

proof of the first one, one of the main technical results of this section, is postponed to the

appendix.

Proposition 4.8. Let N ≥ 1. The real part of every eigenvalue of BT is positive.

Lemma 4.9. Let N ≥ 1. Then |BT |2 ≤ c, a positive constant independent of N .
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Proof. Let zh be an unit N -vector so that |BT zh|2 = |BT |2. Let z be a polynomial of

degree at most N so that z(−1) = 0 and zh = z(th). By Lemma 4.5,

|BT zh|22 =
∣∣∣∣∫ th

−1
z(t) dt

∣∣∣∣2
2

=
N−1∑
k=0

(∫ tk

−1
z(t)w1/2(t) · w−1/2(t) dt

)2

≤
N−1∑
k=0

∫ tk

−1
z2(t)w(t) dt

∫ 1

−1

√
1− t2 dt

≤ πN

2

∫ 1

−1
z2(t)w(t) dt

≤ πN

2 |[W 1/2
h ] zh|22 ≤ c.

The penultimate inequality is due to the equivalence of the discrete and weighed L2 norms

(4.3), while the last inequality follows from the fact that the weights satisfy ρk ≤ cN−1

for all k.

The next lemma is well known; see inequality (7.3.5) in [13], for instance.

Lemma 4.10. Let N ≥ 2. Then the eigenvalues of − [[D2]] are real, bounded below by c

and above by CN4, where c and C are positive and independent of N .

Lemma 4.11. Let N ≥ 2 and u be a function analytic in some open set in the complex

plane containing the real interval [−1, 1] and u(±1) = 0. Let A = [[D2]], where D is the

Chebyshev pseudospectral derivative matrix. Then

|(Au(xh)− u′′(xh))|∞ ≤ cN3e−CN .

Proof. Recall the definition of the interpolation operator in (4.1). Observe that (INu)′′(xh) =

Au(xh). The result follows from the estimate ([61])

|(INu− u)′′(xh)|∞ ≤ cN3e−CN .
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For any t, define the error vector

eh(t) = uh(t)− u(xh, t),

where u is the solution of the heat equation (5.1) and uh is the solution of (4.7). For

0 ≤ k < N ,

e′h(tk) = u′h(tk)− ut(xh, tk)

= Auh(tk) + f(xh, tk)−
(
uxx(xh, tk) + f(xh, tk)

)
= Auh(tk)− Au(xh, tk) + Au(xh, tk)− uxx(xh, tk)

= Aeh(tk) + r(tk),

where r(tk) = Au(xh, tk)− uxx(xh, tk).

Let Eh := Eh(th) be the long vector consisting of the vectors eh(tk) for k = 0 to N − 1

stacked one on top of the other. Similarly define R̃h as the long vector consisting of vectors

r(tk):

Eh =


eh(t0)

...

eh(tN−1)

 , R̃h =


r(t0)
...

r(tN−1)

 . (4.12)

The system e′h(tk) = Aeh(tk) + r(tk) for all k can be more compactly represented as

E ′h(th) = (IN ⊗ A)Eh + R̃h.

Applying BT ⊗ IN−1 on both sides leads to

Eh = (BT ⊗ A)Eh + (BT ⊗ IN−1)R̃h + δ,
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where δ is a long vector with matrix representation Φ. Let Φj be the jth row of Φ.

According to Lemma 4.7, |Φj|2 ≤ cN1/2e−CN . The above equality can also be written as

AEh = Rh, Rh = (BT ⊗ IN−1)R̃h + δ. (4.13)

See (4.11).

Theorem 4.12. Let N ≥ 2 and λ be an eigenvalue of A. Then

1 ≤ |λ| ≤ cN4.

Proof. Let (vh, λ) be an eigenpair of A. Then it follows from (4.13) that (λ − 1)vh =

−(BT ⊗ A)vh, or

λ− 1 = γjµk, (4.14)

where γj is some eigenvalue of BT and µk is some eigenvalue of −A. The lower bound

|λ| > 1 follows from Proposition 4.8 and Lemma 4.10.

From (4.14), an upper bound of |λ| follows from Lemmas 4.9 and 4.10:

|λ| ≤ 1 + |γj|µk ≤ 1 + cN4.

We are able to derive the same upper bound of the eigenvalue magnitude using the

technique of [49], but not the lower bound. The technique employed here is much simpler

conceptually because the analysis reduces to an eigenvalue analysis of BT and A.

Assume that A is diagonalizable so that there are diagonal G and invertible X so that

A = XGX−1. Let W = [Wh] ⊗ [[Wh]]. By rescaling X if necessary, it can be assumed

that |W 1/2X−1W−1/2|2 = 1. For any vector x, define the norm ν(x) = |W 1/2X−1x|2. The

presence of the factorW 1/2 is so that ν scales approximately like the L2 norm of a function
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in space and time whose values are X−1x at the collocation points. Theorem 4.12 says

that |λ| ≥ 1 for any eigenvalue λ of A. Hence |G−1|2 ≤ 1. Since XGX−1Eh = Rh, it

follows that

W 1/2X−1Eh = (W 1/2G−1W−1/2)(W 1/2X−1W−1/2)(W 1/2Rh) = G−1(W 1/2X−1W−1/2)(W 1/2Rh).

From Lemma 4.11, we know that if u is analytic, then |r(tj)|∞ ≤ cN3e−CN for every

0 ≤ j < N . Therefore

ν(Eh)2 ≤ |G−1|22 |W 1/2X−1W−1/2|22 |W 1/2|22 |Rh|22

≤ 2c
N

|BT |22

N−1∑
j=0
|r(tj)|22

+
N−1∑
j=0
|Φj|22


≤ 2c

N

cN
N−1∑
j=0

c2N6e−2CN +
N−1∑
j=0

cNe−2CN


≤ cN7e−2CN .

In the above, we used Lemma 4.9 and the fact that |M1 ⊗ M2|2 = |M1|2|M2|2 for any

matrices M1,M2.

Theorem 4.13. For any integer N ≥ 2, let u be the solution of the heat equation (5.1).

Assume that u(x, t) is separately analytic in each variable. Let uh be the solution of (4.9)

and Eh be the long error vector defined in (4.12). Then

|W 1/2Eh|2 ≤ cN3.5e−CN .

Proof. In case A is diagonalizable, the analysis above gives

ν(Eh) ≤ cN3.5e−CN .

If A is not diagonalizable, then there is some sequence An converging to A so that An =
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XnGnX
−1
n for some diagonal Gn and invertible Xn so that |W 1/2X−1

n W−1/2|2 = 1. For

any vector x, define

ν(x) = sup
n≥1
|W 1/2X−1

n x|2.

Now proceed as before with Gn and Xn replacing G and X, respectively. Then take

n→∞ to obtain, again,

ν(Eh) ≤ cN3.5e−CN .

The result of the theorem now follows from the first of the following inequalities:

c |W 1/2x|2 ≤ ν(x) ≤ |W 1/2x|2, x ∈ RN(N−1).

The second inequality is easy to show:

ν(x) = sup
n≥1
|(W 1/2X−1

n W−1/2) (W 1/2x)|2 ≤ |W 1/2x|2.

To show the first inequality, recall that the Chebyshev weights satisfy:

c1

N
≤ ρj ≤

c2

N
, 0 ≤ j ≤ N.

Let Λmax(M) and Λmin(M) denote the largest and smallest eigenvalues ofM , respectively.

It is not difficult to see that

Λmin(W ) ≥ c2
1

N2 , Λmax(W ) ≤ c2
2

N2 .

Let σ(M) denote the smallest singular value of a matrix M . It is well known that
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σ(M1M2) ≥ σ(M1)σ(M2). Combine above inequalities to obtain

ν(x) ≥ |(W 1/2X−1
1 W−1/2)W 1/2x|2

≥ σ(W 1/2X−1
1 W−1/2) |W 1/2x|2

≥ σ(W 1/2)σ(W−1/2)σ(X−1
1 ) |W 1/2x|2

≥ c
Λmin(W 1/2)
Λmax(W 1/2) |W

1/2x|2

≥ C |W 1/2x|2.

This completes the proof of the theorem.

We remark that for f ∈ PN and fh, the long vector of f evaluated at the collocation

points,

(∫ 1

−1

∫ 1

−1
|f(x, t)|2w(x) dx w(t) dt

)1/2
≤ |W 1/2fh|2 ≤ 2

(∫ 1

−1

∫ 1

−1
|f(x, t)|2w(x) dx w(t) dt

)1/2
,

using the equivalence of weighed L2 and discrete norms. This is the main reason for

measuring the error in the discrete norm.

To measure the difficulty to solve a linear system with coefficient matrix M , we some-

times use the spectral condition number, defined by

κ(M) = maxλ∈Λ(M) |λ|
minλ∈Λ(M) |λ|

,

where Λ(M) is the spectrum ofM . Using the result of Theorem 4.12, it is easy to estimate

the spectral condition number of the space-time spectral collocation method.

Corollary 4.14. Let N ≥ 2. Then

κ(A) ≤ cN4.

Now we mention a direct solver for (4.11) based on the method of Bartels and Stew-

106



art [6]. Consider the Schur decompositions A = QTQ∗ and B = PSP ∗, where P and Q

are unitary and S and T upper triangular. Define Y = Q∗VhP . A direct calculation shows

that (4.11) becomes

T−1Y − Y S = T−1Q∗GhP.

Since T−1 is upper triangular, the method of Bartels and Stewart can be used to solve for

Y . Note that the complexity of this method is O(N3). The algorithm of Golub, Nash and

van-Loan [34] can also be used in place of that of Bartel and Stewart.

4.4 Another space-time spectral collocation method

for the heat equation

We now give an alternate space-time spectral numerical method for the solution u ∈ PN

of the heat equation (5.1). The spectral equations are

(IN+1 ⊗D)uh = (D2 ⊗ IN+1)uh + fh,

where uh and fh are the vectors of u and f , respectively, evaluated at the collocation

points. (The order of the variables is different from that of the first method for historical

reasons.) Of course, since uh vanishes at the nodes along the boundary x = ±1 and the

initial value of u is known at t = −1, it is sufficient to solve for the unknowns ûh, which

is uh deleting the components corresponding to boundary points and initial points. The

resulting spectral equations are

(IN−1 ⊗ [D])ûh = ([[D2]]⊗ IN)ûh + f̂h − (u0h ⊗ dh),

where f̂h is fh removing the components corresponding to boundary points and initial

points. The last term accounts for the contribution of the initial condition and is present
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because the last row and column of D have been deleted. The linear equation to be solved

becomes

Ahûh = f̂h − (u0h ⊗ dh), Ah = (IN−1 ⊗ [D])− ([[D2]]⊗ IN). (4.15)

Let vec(Uh) = ûh and vec(Fh) = f̂h−(u0h⊗dh). Here Uh and Fh are N×(N−1) matrices.

Then the above equation is equivalent to the Sylvester equation [D]Uh − Uh [[D2]]T = Fh.

This matrix system can be solved in O(N3) operations by the algorithm of Bartels and

Stewart.

Let us see if there is any relation between this formulation and (4.11). Recall that

A = [[D2]]. If the two methods are equivalent, that is, they yield the same matrix equation

and, of course, have the same solution (under exact arithmetic), then Vh = UT
h . Taking the

transpose of the second system results in Vh[D]T−AVh = F T
h or Vh−AVh[D]−T = F T

h [D]−T .

Unfortunately, from Lemma 4.6, [D]−T is not the same as B (this can also be verified by

an explicit computation for small values of N) and so the two methods are different.

In general, the second method is easier to implement for more complicated PDEs.

In one sentence, the two methods differ in that the discrete heat equation is integrated

analytically in time for the method of (4.11). For the PDE utt + a(x, t)ut = uxx + f , for

instance, it is non-trivial to perform the time integration analytically. On the contrary,

the code for the second method is really no more difficult than that for the wave equation.

Next we state two useful results, the first of which is a sharpening of a result proved

in [65] in the context of stability theory of a linear hyperbolic PDE. The sharper result

is not needed in this paper, but is crucial in the upcoming work in the next chapter. Its

proof is postponed to Appendix E.

Proposition 4.15. Let N ≥ 1. The real part of every eigenvalue of [D] is positive and

bounded away from zero.

Lemma 4.16. Let N ≥ 1 and λ be an eigenvalue of [D]. Then |λ| ≤ cN2.

Proof. An upper bound for the magnitude of an eigenvalue of D is well known and is
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also cN2. Its proof is very similar to the proof of this lemma which is included here for

completeness.

Let vh be an eigenvector corresponding to λ and v be the unique polynomial of degree at

most N so that v(−1) = 0 and v(th) = vh. Note that [D]vh = λvh and [D]vh = v′(th), with

the latter due to the fact that v is a polynomial of degree at most N and the action of [D]

on v(th) gives its derivative exactly at the collocation points. It follows that v′(tj) = λv(tj)

for 0 ≤ j < N and so
N∑
j=0

v′(tj)v(tj)ρj = λ
N∑
j=0
|v(tj)|2ρj.

Note that the above two terms corresponding to j = N are both zero since v(−1) = 0.

Since Chebyshev quadrature is exact for polynomials of degree at most 2N − 1, the left-

hand side is equal to the integral

∫ 1

−1
v′vw ≤

√∫ 1

−1
|v′|2w

√∫ 1

−1
|v̄|2w ≤ cN2

∫ 1

−1
|v|2w,

with the last inequality due to an inverse estimate (see (5.5.4) in [13], for instance). Thus

|λ| =

∣∣∣∫ 1
−1 v

′v̄w
∣∣∣∑N

j=0 |v(tj)|2ρj
≤ cN2

∫ 1
−1 |v|2w∑N

j=0 |v(tj)|2ρj
≤ CN2

by the equivalence of the discrete and weighted L2 norms.

The theorem below states that the spectral condition number of the discrete spectral

differentiation operator scales like O(N4).

Theorem 4.17. Let N ≥ 2. Let Ah be the Chebyshev spectral collocation matrix defined

above associated with polynomials PN . Then

κ(Ah) ≤ CN4.

Proof. Let {γj} be the set of eigenvalues of [D] and {µj} be those of − [[D2]]. From (4.15),
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it follows that for some j, k,

λ = γj + µk.

From Proposition 4.15 and Lemma 4.10, <γj, µk ≥ c for some positive constant c inde-

pendent of N . Hence <λ ≥ 2c, which implies that |λ| ≥ 2c. From Lemmas 4.16 and 4.10,

it follows that

|λ| ≤ CN2 + cN4 ≤ C1N
4.

Combine the above two inequalities to obtain

κ(Ah) ≤ cN4.

The convergence analysis is very much similar to the one in the previous section. Let

v be analytic in a region in the complex plane containing the real interval [−1, 1] and

v(−1) = 0. Let 0 ≤ k < N and εk = (v − INv)′(tk). From [61], it is known that

|εk|∞ ≤ cN2e−CN . Observe that

v′(tk) = (INv)′(tk) + (v − INv)′(tk)

=
(
[D] (IN)v(th)

)
k

+ εk

=
(
[D] v(th)

)
k

+ εk.

Recall the error equation

e′(tk) = Ae(tk) + r(tk), 0 ≤ k < N,

where r(tk) = Au(xh, tk) − uxx(xh, tk). Let 1 ≤ j ≤ N − 1 and ej(tk) refer to the jth
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component of e(tk) and define

ej(th) =


ej(t0)

...

ej(tN−1)

 ,

and

Eh =


e1(th)

...

eN−1(th)

 , R̃h =


r1(th)

...

rN−1(th)

 .

Note that these vectors are the same as those defined in (4.12) except for a different

ordering. Then from the previous calculation, we have

([D]ej(th))k + εjk = e′j(tk) = (Aeh(tk))j + rj(tk),

where |εjk|∞ ≤ cN2e−CN , or

AhEh = Rh := R̃h − ε,

where ε is a long vector formed by stacking together vectors εj = [εj0, . . . , εjN−1]T . Using

exactly the same analysis as before, the following convergence result can be shown.

Theorem 4.18. For any integer N ≥ 2, let u be the solution of the heat equation (5.1).

Assume that u(x, t) is separately analytic in each variable. Then

|W 1/2Eh|2 ≤ cN3.5e−CN .

4.5 Nonlinear PDEs

The purpose of this section is to show that it is very simple, in a few lines of code, to adapt

the above methodology to solve some of the most common nonlinear PDEs with spectral
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space-time convergence. We shall consider only two examples: Allen-Cahn equation and

Burgers’ equation.

4.5.1 Allen-Cahn equation

The Allen-Cahn equation is

ut = uxx + au(1− u2) + f(x, t), on (−1, 1)2,

with initial condition u(x,−1) = u0(x) and homogeneous Dirichlet boundary conditions.

Here a is a positive constant. A spectral scheme based on the second space-time collocation

method of the previous section is

(IN+1 ⊗D)uh = (D2 ⊗ IN+1)uh + a(uh − u3
h) + fh,

where u3
h is the vector whose jth component is the cube of the jth component of uh.

Deleting the known boundary and initial values, the final scheme reads

[
(IN−1 ⊗ [D])− ([[D2]]⊗ IN)− aI

]
ûh + aû3

h = f̂h − (u0h ⊗ dh).

This nonlinear system can be solved using the simple iteration (k ≥ 0)

[
(IN−1 ⊗ [D])− ([[D2]]⊗ IN)− aI + a diag((û(k)

h )2)] û(k+1)
h = f̂h − (u0h ⊗ dh).

We don’t claim that this is the most efficient method or any convergence property, but

that it is really very simple to implement and appears to work well.
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4.5.2 Viscous Burgers’ equation

Let ε > 0. Consider the 1D viscous Burgers’ equation

ut + uux = εuxx + f(x, t), on (−1, 1)2,

with boundary conditions ux(±1, t) = 0 and initial condition u(x,−1) = u0(x). We choose

the Neumann boundary conditions to demonstrate that the space-time method also works

for boundary conditions other than Dirichlet type. We seek a numerical solution u ∈ PN

at t = 1. The spectral equations are

(IN+1 ⊗D)uh + 1
2(D ⊗ IN+1)u2

h = ε (D2 ⊗ IN+1)uh + fh.

Because the initial value of u is known at t = −1, it is sufficient to solve for the unknowns

ûh, which is uh deleting the components corresponding to the initial points.

Let M be D2 except that the first and last rows of M are the first and last rows of D,

defined to enforce the Neumann boundary conditions. The resulting spectral equations

are

(ĨN+1 ⊗ [D]) ûh + 1
2(D̃ ⊗ IN) û2

h = ε (M ⊗ IN) ûh + ĝh,

where ĝh is f̂h − (u0h ⊗ dh) except that those entries corresponding to x = ±1 are set to

zero, ĨN+1 is IN+1 except the first and last diagonal entries are zeros, and D̃ is D except

the first and last rows are replaced by a row of zeros. The nonlinear equation to be solved

becomes

ABûh + 1
2(D̃ ⊗ IN) û2

h = ĝh, AB = (ĨN+1 × [D])− ε (M ⊗ IN).

A simple iteration to solve the above system is (k ≥ 0)

(
AB + diag

(
(D̃ ⊗ IN) û(k)

h

))
û

(k+1)
h = ĝh.
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Figure 4.1: Convergence of Chebyshev collocation method (left) A, (right) Ah for the heat
equation.

See [74] for an analysis of a similar space-time spectral method for Burgers’ equation.

4.6 Numerical Results

We implemented a very simple Chebyshev collocation MATLAB program. First consider

the heat equation

ut = uxx + f,

with boundary conditions u(±1, t) = 0 and initial condition u(x,−1) = u0(x). Take f so

that the exact solution is u(x, t) = ex+t sin(πt/2) sin πx. For the method of Tang and Xu,

spectral convergence is clearly illustrated in the left figure of Figure 4.1. Note that the

error Eh is O(10−14) at N = 18 which corresponds to a system with 306 unknowns. The

spectrum of the discrete heat operator A for the case N = 60 and a plot of the spectral

condition numbers as a function of N are shown in Figure 4.2. The corresponding figures

for the second method Ah are shown in the right figure of Figure 4.1 and Figure 4.3.

Now we move onto nonlinear PDEs. For both nonlinear PDEs, we take as initial guess

the zero function and use the iteration defined in the previous section for each nonlinear
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Figure 4.2: Spectrum (left) and spectral condition number (right) for the heat operator
A.

0 1 2 3 4 5 6 7

x 10
5

−400

−300

−200

−100

0

100

200

300

400

heat

10
1.1

10
1.3

10
1.5

10
1.7

10
1

10
2

10
3

10
4

10
5

N

heat

 

 

κ (A
h
)

c N
4

Figure 4.3: Spectrum (left) spectral condition number (right) for the heat operator Ah.

115



4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

N

E
rr

o
r

u
t
 = u

xx
 + a (u − u

3
) + f

4 6 8 10 12 14 16 18 20
10

−15

10
−10

10
−5

10
0

N

E
rr

o
r

u
t
 + u u

x
 = ε u

xx
 + f

Figure 4.4: (left) Convergence of Chebyshev collocation method for the Allen-Cahn equa-
tion. (right) Convergence of Chebyshev collocation method for Burgers’ equation.

PDE. Consider first the Allen-Cahn equation

ut = uxx + a(u− u3) + f(x, t),

with homogeneous Dirichlet boundary conditions. Take a = 0.5 and f so that the exact

solution is u(x, t) = ex+t sin πx. See the left figure of Figure 4.4 for the convergence.

The stopping criterion of the iteration is that the infinity norm of the difference of two

successive iterates is not more than 10−12. For all values of N ≥ 8 tested, the number of

iterations decreases monotonically from 48 to 37.

Next consider the viscous Burgers’ equation

ut + uux = εuxx + f(x, t),

with boundary conditions ux(±1, t) = 0 and initial condition u(x,−1) = u0(x). Take ε = 1

and f so that the exact solution is u(x, t) = et cos(πx). With a zero initial guess, spectral

convergence is clearly illustrated in Figure 4.4, the right figure. For all values of N ≥ 8

tested, it takes between 24 and 38 iterations to solve the nonlinear system with the same

stopping criterion as above.
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Figure 4.5: Convergence of 2D heat equation. The error is the maximum error at the final
time t = 1.

It is straightforward to extend the methods to two spatial dimensions. As an illus-

tration, take f so that the solution of the 2D heat equation ut = ∆u + f on the spatial

domain (−1, 1)2 is

u(x, y) = ex+y+t+1 sin πx sin πy.

The convergence for the second method of Section 4.5 is given in Figure 4.5.
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Appendix E

In this appendix, we prove Propositions 4.8 and 4.15.

First, the following preliminary result due to [65] is useful. Since no proof was given

there, we include one here for completeness.

Lemma 4.19. Let N ≥ 1. If f = ∑4N−1
k=0 bkTk for some complex constants bk, then

N∑
j=0

ρjf(tj) =
∫ 1

−1
f(t)w(t)dt+ πb2N .

Proof. Using the definition of f ,

N∑
j=0

ρjf(tj)−
∫ 1

−1
f(t)w(t)dt =

N∑
j=0

ρj
4N−1∑
k=0

bkTk(tj)−
∫ 1

−1

4N−1∑
k=0

bkTk(t)w(t)dt

=
2N−1∑
k=0

bk

[
N∑
j=0

ρjTk(tj)− bk
∫ 1

−1
Tk(t)w(t)dt

]

+b2N

[
N∑
j=0

ρjT2N(tj)−
∫ 1

−1
T2N(t)w(t)dt

]

+
4N−1∑

k=2N+1, k even
bk

[
N∑
j=0

ρjTk(tj)−
∫ 1

−1
Tk(t)w(t)dt

]

+
4N−1∑

k=2N+1, k odd
bk

[
N∑
j=0

ρjTk(tj)−
∫ 1

−1
Tk(t)w(t)dt

]

:= S1 + S2 + S3 + S4.

S1 = 0 since Chebyshev-Gaussian quadrature is exact for any polynomial of degree at

most 2N − 1. Using the identity

2TmTn = Tm+n + T|m−n|, (4.16)
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T2N = 2T 2
N − 1 follows immediately. Then for the term S2,

N∑
j=0

ρjT2N(tj)−
∫ 1

−1
T2N(t)w(t)dt =

N∑
j=0

ρj(2T 2
N(tj)− 1)−

∫ 1

−1
(2T 2

N(t)− 1)w(t)dt

= 2
 N∑
j=0

ρjT
2
N(tj)−

∫ 1

−1
T 2
N(t)w(t)dt

−
 N∑
j=0

ρj −
∫ 1

−1
w(t)dt


= 2

(
π − π

2

)
− 0 = π.

In the above, the definition of the Chebyshev Gauss–Lobatto points tj = cos(jπ/N) has

been used to evaluate the penultimate sum:

N∑
j=0

ρjT
2
N(tj) =

N∑
j=0

ρj cos2
(
N cos−1

[
cos

(
πj

N

)])
=

N∑
j=0

ρj cos2(πj) =
N∑
j=0

ρj =
∫ 1

−1
w(t)dt = π.

Therefore S2 = πb2N .

For S3, assume k = 2N + 2p, for 1 ≤ p ≤ N − 1. Then

N∑
j=0

ρjT
2
N+p(tj) =

N∑
j=0

ρj cos2
(

(N + p)πj
N

)
=

N∑
j=0

ρj cos2
(
πj + p

πj

N

)
=
∫ 1

−1
T 2
p (t)w(t)dt.

From (4.16), T2N+2p = 2T 2
N+p − 1, and so

N∑
j=0

ρjT2N+2p(tj)−
∫ 1

−1
T2N+2p(t)w(t)dt =

N∑
j=0

ρj(2T 2
N+p(tj)− 1)−

∫ 1

−1
(2T 2

N+p(t)− 1)w(t)dt

= 2
 N∑
j=0

ρjT
2
p (tj)−

∫ 1

−1
T 2
p (t)w(t)dt

−
 N∑
j=0

ρj −
∫ 1

−1
w(t)dt


= 0.

Consequently, S3 = 0.
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Finally assume k = 2N + 2p+ 1 for 0 ≤ p ≤ N − 1. Then

N∑
j=0

ρjT2N+2p+1(tj) =
N∑
j=0

ρj cos
(

(2N + 2p+ 1)πj
N

)

=
N∑
j=0

ρj cos
(

(2p+ 1)πj
N

)

=
∫ 1

−1
T2p+1(t)w(t)dt = 0,

since T2p+1 is an odd function. By the same reason,

∫ 1

−1
T2N+2p+1(t)w(t) = 0.

Therefore

N∑
j=0

ρjT2N+2p+1(tj)−
∫ 1

−1
T2N+2p+1(t)w(t)dt = 0,

implying that S4 = 0. This completes the proof.

Next we give a proof of Proposition 4.15. As mentioned before, it is a slight improve-

ment of a result due to [65] in a different context. The technique of proof is directly

relevant to a proof of Proposition 4.8.

Proof of Proposition 4.15. Let λ be an eigenvalue of [D] and v be a polynomial of degree

N so that v(−1) = 0:

v =
N∑
k=0

akTk, (4.17)

where ak are complex numbers. Suppose v satisfies the ODE

v′(t) = λv(t) + λaN
N

(1− t)T ′N(t). (4.18)

Note that the left-hand side of the above equation is a polynomial of degree N − 1, while
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the first term on the right-hand side is a polynomial of degree N . The second term on the

right-hand side is a polynomial of degree N and has a constant factor chosen so that the

right-hand side is a polynomial of degree N − 1. Observe that

v′(tj) = λv(tj), 0 ≤ j < N. (4.19)

When 0 < j < N , this is because T ′N(tj) = 0 by definition of the Chebyshev–Lobatto

points. When j = 0, then t0 = 1 and the equality is obvious. (4.19) is equivalent to the

relation

[D]v(th) = λv(th).

Using (4.17), equate the coefficient of tN−1 on both sides of (4.18) to obtain

aN−1 = 2aN
(
N

λ
− 1

)
. (4.20)

Note that λ 6= 0 since, otherwise, from (4.18) and the initial condition v(−1) = 0, it follows

that v ≡ 0 and so v(th) is the zero vector which cannot be an eigenvector. If aN = 0, then

the left-hand side of (4.18) is a polynomial of degree one less than that on the right-hand

side, which is impossible. Henceforth assume aN 6= 0.

Let β ∈ (0, 1) whose value will be determined later. Now multiply equation (4.19)

by ρj(1 − tj)(1 + βtj)v(tj) and then add the result to the complex conjugate of (4.19)

multiplied by ρj(1− tj)(1 + βtj)v(tj) and then sum to obtain

N∑
j=0

ρjf(tj) = 2R
N∑
j=0

ρj(1− tj)(1 + βtj)|v(tj)|2 := C1R, (4.21)

where f(t) = (1 − t)(1 + βt)(|v|2)′(t) is a polynomial of degree 2N + 1 and λ = R + iS

for real R, S. Note that we can extend the above sums to j = N because both terms

corresponding to j = N vanish. Note also that C1 is positive since, otherwise, v(tj) = 0

for 1 ≤ j ≤ N . From (4.18), v′(tj) = 0 for 1 ≤ j ≤ N and these conditions imply that
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v ≡ 0. In particular v(th) = 0 and so it cannot be an eigenvector.

The goal is to show that the left-hand side of (4.21) is positive. Toward that end, write

the left-hand side as F + E, where

F =
∫ 1

−1
f(t)w(t) dt, E =

N∑
j=0

ρjf(tj)− F.

After an integration by parts and some algebra,

F =
∫ 1

−1

1− β + βt+ βt2

1 + t
|v(t)|2w(t) dt.

It is easy to see that 1 − β + βt + βt2 ≥ c, a positive constant for β ∈ (0, 4/5). Let

v(t) = z(t)
√

1 + t, where z is continuous on [−1, 1] since v(−1) = 0. Thus

F ≥ c
∫ 1

−1
|z(t)|2w(t) dt =: C2.

Write

f(t) =
2N+1∑
k=0

bkTk(t),

for some coefficients bk. Then from Lemma 4.19, E = πb2N . Thus F + E ≥ C2 + πb2N .

Since the leading coefficient of Tk is 2k−1 and the coefficient of tk−1 of Tk is zero, it

follows that the coefficient of t2N of f is 22N−1b2N , which is equal to the coefficient of t2N

of the polynomial

−2<
(
aNaN−1

)
(TN−1TN)′ βt2 − 2(1− β)|aN |2TNT ′N t.

From (4.17),

b2N22N−1 = −22N−2<
(
aNaN−1

)
(2N − 1)β − 22N−1|aN |2(1− β)N,
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or

b2N = −β<
(
aNaN−1

)2N − 1
2 − |aN |2(1− β)N.

Substitute (4.20) to get

b2N = |aN |2
(
−βN(2N − 1) R

|λ|2
+ β(2N − 1)− (1− β)N

)
. (4.22)

Now (4.21) becomes

C1R = E + F ≥ C2 + πb2N .

Substitute (4.22) into the above to obtain

(
C1

π
+ |aN |

2βN(2N − 1)
|λ|2

)
R ≥ C2

π
+ |aN |2

(
β(3N − 1)−N

)
.

For any value of β satisfying
N

3N − 1 < β <
4
5 ,

it is possible to deduce (
C1

π
+ 2 |aN |2N2

|λ|2

)
R ≥ C3, (4.23)

for some positive constant C3 independent of N . It can be concluded that R > 0.

To show that R is bounded away from zero, first note that from (4.17), for 0 ≤ k ≤ N ,

ak ‖Tk‖2
0,w =

∫ 1

−1
vTkw, ‖u‖2

0,w =
∫ 1

−1
u2w,

leading to

|ak| ≤
‖v‖0,w ‖Tk‖0,w

‖Tk‖2
0,w

< 1,

if we assume the normalization ‖v‖0,w = 1. From (4.20), it follows that

|aN−1|2 = 4
∣∣∣∣Nλ − 1

∣∣∣∣2 |aN |2,
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or
|aN |2N2

|λ|2
= |aN−1|2N2

4 |N − λ|2 <
1

4
∣∣∣∣∣1− λ

N

∣∣∣∣∣
2 = 1

4
[(

1− R

N

)2
+ S2

N2

] . (4.24)

If N = 1, then [D] = 1/2 = R. Henceforth, assume N ≥ 2. If R > 1, then we are done.

Otherwise, assume R ≤ 1. Then (4.24) becomes

|aN |2N2

|λ|2
<

1

4
(

1− 1
N

)2 ≤ 1,

since N ≥ 2. Inserting this inequality in (4.23) yields immediately that R ≥ C4, a positive

constant independent of N . 2

Finally we prove the remaining proposition.

Proof of Proposition 4.8. When N = 1, 2, the eigenvalues of BT are 1 and (1 ± i/
√

3)/2,

respectively, and they have a positive real part. Henceforth, assume N ≥ 3. Suppose

{ak} is a set of complex constants so that

v =
N∑
k=0

akTk, v(−1) = 0, (4.25)

‖v‖0,w = 1 and satisfies

∫ t

−1
v(τ)dτ = λv(t) + aN

N(N + 1)(t2 − 1)T ′N(t), (4.26)

for λ an eigenvalue of BT . Note that the coefficient aN/(N(N + 1)) on the right-hand side

of (4.26) has been chosen so that the coefficients of TN+1 on both sides of (4.26) agree. It

is easy to check that BTv(th) = λv(th). Using the identity

∫ t

−1
Tk(τ)dτ = 1

2

(
Tk+1(t)
k + 1 −

Tk−1(t)
k − 1

)
+ (−1)k+1

k2 − 1 , k ≥ 2,

and on equating the coefficients of TN , TN−1 and TN−2 on both sides of (4.26), we obtain
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(details will be given later)

aN−1

2N = λaN , (4.27)
aN−2 − aN
2(N − 1) = λaN−1 −

aN
2(N + 1) , (4.28)

aN−3 − aN−1

2(N − 2) = λaN−2. (4.29)

(4.26) evaluated at t = tj reads

∫ tj

−1
v(τ)dτ = λv(tj), 0 ≤ j ≤ N. (4.30)

Let β ∈ (0, 1) whose value will be determined later. Multiply (4.30) by ρj(1 − tj)(1 −

βtj)v(tj) and then add the result to the complex conjugate of (4.30) multiplied by ρj(1−

tj)(1− βtj)v(tj) and then sum to obtain

N∑
j=0

ρjf(tj) = 2R
N∑
j=0

ρj(1− tj)(1− βtj)|v(tj)|2 := C2R, (4.31)

where

f(t) = (1− t)(1− βt)
(∣∣∣∣∫ t

−1
v(τ)dτ

∣∣∣∣2
)′
,

is a polynomial of degree 2N + 3, R = <λ and C2 is positive. Note that each term

corresponding to j = N in (4.31) vanishes since v(−1) = 0. Write

f(t) =
2N+3∑
k=0

bkTk(t),

for some complex bk. By applying Lemma 4.19,

∫ 1

−1
f(t)w(t)dt+ πb2N = C2R.
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After an integration by parts, the above becomes

∫ 1

−1

1 + β − βt− βt2

1 + t

∣∣∣∣∫ t

−1
v(τ)dτ

∣∣∣∣2w(t)dt+ πb2N = C2R. (4.32)

Use (4.25), (4.27), (4.28), (4.29) to obtain (details will be given later)

b2N = 1
2<(aNaN−1)

(
1
N

+ 1
N + 1

)
(4.33)

−(1 + β)
4

[
<(aNaN−2)

(
1

N − 1 + 1
N + 1

)
+ 1
N
|aN−1|2 −

1
N − 1 |aN |

2
]

+β8

[
<(aNaN−3)

(
1

N − 2 + 1
N + 1

)
+ <(aN−1aN−2)

(
1

N − 1 + 1
N

)

−<(aNaN−1)
(

1
N − 2 + 1

N − 1

)]

−(1 + β)|aN |2
(

cN+1

(N + 1)2N + cN
(N + 1)2N−1

)

+β<(aNaN−1)
(

cN+1

(N + 1)2N+1 + cN
N2N−1 + cN−1

(N + 1)2N−1

)
.

Here ck = −2N−3N is the second leading coefficient of Tk:

Tk(t) = 2k−1tk + ckt
k−2 + · · · , k ≥ 2. (4.34)

Substitute the expression for b2N into (4.32) to obtain

∫ 1

−1

1 + β − βt− βt2

1 + t

∣∣∣∣∫ t

−1
v(τ)dτ

∣∣∣∣2w(t)dt+ S1 = (S2 + C2)R, (4.35)

where

S1 = π
(1 + β)

4
N − 1

(N + 1)2 |aN |
2 + π

(1 + β)
4

N − 1
N(N + 1) |aN−1|2

−π(1 + β)
(

cN+1

(N + 1)2N + cN
(N + 1)2N−1

)
|aN |2 > 0,

126



S2 = πS3|aN |2 + πβ

2
(2N − 1)(N − 2)

N(N + 1) |aN−1|2

−2πβN |aN |2
[

cN+1

(N + 1)2N+1 + cN
N2N−1 + cN−1

(N + 1)2N−1

]
,

and

S3 = −4βN(2N − 1)(N − 1)
N + 1 R2 + 4(1 + β) N2

N + 1R−
3β
2

1
(N + 1)2 −

2N + 1
N + 1 .

Note that the last term of the expression for S2 is positive since ck < 0 and the coefficient

of |aN−1|2 is positive. Note also that the integral on the left-hand side of (4.35) is positive

for β ∈ (0, 1). Hence the remaining goal is to choose β so that S3, a quadratic in R, is

positive. Toward that end, the maximum of S3 occurs at

R = 1 + β

2β
N

(2N − 1)(N − 1) ,

with maximum value

(1 + β)2

β

N3

(2N − 1)(N2 − 1) −
3β
2

N

(N + 1)2 −
2N + 1
N + 1 .

Hence we require

(1 + β)2

β

N3

(2N − 1)(N − 1) −
3β
2

N

N + 1 > 2N + 1.

Notice that for N ≥ 3,

N2

(2N − 1)(N − 1) >
1
2 ,

3
N + 1 < 1.
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Assume β < 1/3, then 1 + β > 4β and

(1 + β)2

β

N3

(2N − 1)(N − 1) −
β

2
3N
N + 1 > 16βN 1

2 −
1
2βN = 15

2 βN.

Therefore it is enough to choose β so that

4N + 2
15N < β <

1
3 .

With this choice of β, it follows from (4.35) that R > 0.

Next we supply some details of the above calculations. First we prove (4.27)-(4.29).

Apply (4.25) in (4.26) to obtain

N∑
k=0

ak

∫ t

−1
Tk(τ)dτ = λ

N∑
k=0

akTk(t) + aN
N(N + 1)(t2 − 1)T ′N(t). (4.36)

The left-hand side of this equation is

N∑
k=0

ak

∫ t

−1
Tk(τ)dτ = aN

∫ t

−1
TN(τ)dτ + aN−1

∫ t

−1
TN−1(τ)dτ + aN−2

∫ t

−1
TN−2(τ)dτ

+aN−3

∫ t

−1
TN−3(τ)dτ + · · ·

= 1
2aN

[
TN+1

N + 1 −
TN−1

N − 1

]
+ 1

2aN−1

[
TN
N
− TN−2

N − 2

]

+1
2aN−2

[
TN−1

N − 1 −
TN−3

N − 3

]
+ 1

2aN−3

[
TN−2

N − 2 −
TN−4

N − 4

]
+ · · ·

= aN
2(N + 1)TN+1 + aN−1

2N TN +
(

aN−2

2(N − 1) −
aN

2(N − 1)

)
TN−1

+
(

aN−3

2(N − 2) −
aN−1

2(N − 2)

)
TN−2 + · · · . (4.37)
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The second term on the right-hand side of (4.36) is

aN
N(N + 1)(t2 − 1)T ′N(t) = aN

(N + 1)(t2 − 1)
[
T ′N(t)
N
−
T ′N−2(t)
N − 2 + T ′N−2(t)

N − 2 −
T ′N−4(t)
N − 4 + T ′N−4(t)

N − 4

]

= aN
(N + 1)2(t2 − 1)

[
TN−1 + TN−3 + T ′N−4(t)

2(N − 4)

]

= aN
(N + 1)

[
2t2TN−1 + 2t2TN−3 − 2TN−1 − 2TN−3 + · · ·

]

= aN
(N + 1)

[
t
(
TN + TN−2

)
+ t

(
TN−2 + TN−4

)
− 2TN−1 − 2TN−3 + · · ·

]

= aN
(N + 1)

[
1
2
(
TN+1 + TN−1 + TN−1 + TN−3 + TN−1 + TN−3

+TN−3 + TN−5
)
− 2TN−1 − 2TN−3 + . . .

]
.

So the right-hand side of (4.36) becomes

λ
N∑
k=0

akTk(t) + aN
N(N + 1)(t2 − 1)T ′N(t)

= λaNTN(t) + λaN−1TN−1(t) + λaN−2TN−2(t) + . . .

+ aN
(N + 1)

[
1
2
(
TN+1 + 3TN−1 + 4TN−3 + · · ·

)
− 2TN−1 − 2TN−3 + · · ·

]

= aN
2(N + 1)TN+1 + λaNTN(t) +

[
λaN−1 −

aN
2(N + 1)

]
TN−1(t)

+λaN−2TN−2(t) + . . . . (4.38)

Therefore by equating coefficients of equations (4.37) and (4.38), we arrive at (4.27)-(4.29).
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Next we show that the following equalities follow from (4.27)-(4.29):

1
2N<(aN−1aN) = R |aN |2, (4.39)

1
2(N − 1)<(aN−2aN−1) = R

(
|aN−1|2 + 2N

N2 − 1 |aN |
2
)
, (4.40)

1
N − 1<(aN−2aN) =

(
8NR2 + 2

N2 − 1

)
|aN |2 −

1
N
|aN−1|2, (4.41)

1
N − 2<(aN−3aN) =

(
32N(N − 1)R3 +

[
4

N + 1 + 2N
N − 2

]
R

)
|aN |2

−6(N − 1)
N

R |aN−1|2. (4.42)

Observe that (4.39) follows directly from (4.27). From (4.28),

1
2(N − 1)aN−2 = λaN−1 + 1

N2 − 1aN .

Use this equation and (4.27) to arrive at (4.40) and

1
N − 1<(aN−2aN) = λaN−1aN + λ̄aN−1aN + 2

N2 − 1 |aN |
2. (4.43)

Also from (4.27)

1
N
|aN−1|2 = λaNaN−1 + λ̄aNaN−1. (4.44)

Add (4.43) and (4.44) and use (4.39) to recover (4.41). The following equations follow

from (4.29) and (4.27), respectively:

1
N − 2<(aN−3aN) = λaN−2aN + λ̄aN−2aN + 1

N − 2<(aNaN−1), (4.45)

and

1
N
<(aN−1aN−2) = λaNaN−2 + λ̄aNaN−2. (4.46)
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Add (4.45) and (4.46) to get

1
N − 2<(aN−3aN) + 1

N
<(aN−1aN−2) = 4R<(aNaN−2) + 1

N − 2<(aNaN−1).

Combine the above, (4.39), (4.40) and (4.41) to get (4.42).

Finally we derive the expression for b2N . Apply (4.25) and doing some calculations,

v̄
∫
v + v

∫
v̄ = 2|aN |2

(
TN

∫
TN
)

+ 2|aN−1|2
(
TN−1

∫
TN−1

)
+2<(aNaN−1)

(
TN

∫
TN−1 + TN−1

∫
TN

)

+2<(aNaN−2)
(
TN

∫
TN−2 + TN−2

∫
TN

)

+2<(aNaN−3)
(
TN

∫
TN−3 + TN−3

∫
TN

)

+2<(aN−1aN−2)
(
TN−1

∫
TN−2 + TN−2

∫
TN−1

)
+ · · ·

= |aN |2
(
TN

[
TN+1

N + 1 −
TN−1

N − 1

])
+ |aN−1|2

(
TN−1

[
TN
N
− TN−2

N − 2

])

+<(aNaN−1)
(
TN

[
TN
N
− TN−2

N − 2

]
+ TN−1

[
TN+1

N + 1 −
TN−1

N − 1

])

+<(aNaN−2)
(
TN

[
TN−1

N − 1 −
TN−3

N − 3

]
+ TN−2

[
TN+1

N + 1 −
TN−1

N − 1

])

+<(aNaN−3)
(
TN

[
TN−2

N − 2 −
TN−4

N − 4

]
+ TN−3

[
TN+1

N + 1 −
TN−1

N − 1

])

+<(aN−1aN−2)
(
TN−1

[
TN−1

N − 1 −
TN−3

N − 3

]
+ TN−2

[
TN
N
− TN−2

N − 2

])
+ · · · ,
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where · · · denotes remaining parts in the expansion. By (4.34),

v̄(t)
∫ t

−1
v(τ)dτ + v(t)

∫ t

−1
v̄(τ)dτ

= <(aNaN−1)
(

1
N

+ 1
N + 1

)
22N−2t2N (4.47)

+
[
<(aNaN−2)

(
1

N − 1 + 1
N + 1

)
+ 1
N
|aN−1|2 −

1
N − 1 |aN |

2
]
22N−3t2N−1

+
[
<(aNaN−3)

(
1

N − 2 + 1
N + 1

)
+ <(aN−1aN−2)

(
1

N − 1 + 1
N

)

−<(aNaN−1)
(

1
N − 2 + 1

N − 1

)]
22N−4t2N−2

+|aN |2
(
cN+1

N + 12N−1 + cN
N + 12N

)
t2N−1

+<(aNaN−1)( cN+1

N + 12N−2 + cN
N

2N + cN−1

N + 12N)t2N−2 + · · · .

Then

f(t) =
(
1− (1 + β)t+ βt2

)(
v̄(t)

∫ t

−1
v(τ)dτ + v(t)

∫ t

−1
v̄(τ)dτ

)

= <(aNaN−1)
(

1
N

+ 1
N + 1

)
22N−2t2N

−(1 + β)
[
<(aNaN−2)

(
1

N − 1 + 1
N + 1

)
+ 1
N
|aN−1|2 −

1
N − 1 |aN |

2
]
22N−3t2N

+β
[
<(aNaN−3)

(
1

N − 2 + 1
N + 1

)
+ <(aN−1aN−2)

(
1

N − 1 + 1
N

)

−<(aNaN−1)
(

1
N − 2 + 1

N − 1

)]
22N−4t2N

−(1 + β)|aN |2
(
cN+1

N + 12N−1 + cN
N + 12N

)
t2N

+β<(aNaN−1)
(
cN+1

N + 12N−2 + cN
N

2N + cN−1

N + 12N
)
t2N

= 22N−1b2N t
2N + · · · ,

where b2N is given by (4.33). 2
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5

Space-time spectral Chebyshev

collocation method for linear PDEs

In this chapter a space-time Chebyshev spectral collocation method for some canonical

linear PDEs including the Schrodinger, wave, Airy and beam equations is demonstrated.

Fully spectral convergence as well as a condition number estimate will be given for the

Schrodinger and wave equations. Numerical experiments verify the theoretical results,

and further demonstrate that these methods can also solve common nonlinear PDEs such

as a nonlinear reaction diffusion, Sine–Gordon, KdV, Kuramoto–Shivashinsky and Cahn–

Hilliard equations.

In Section 5.1, we propose a space-time Chebyshev collocation method, the, so-called,

second method in Section 4.4, for the 1D Schrodinger, wave, Airy and beam equations. We

demonstrate condition number estimate of the method for Schrodinger and wave equations

in Section 5.2. We discuss Spectral convergence of the proposed method in Section 5.3. In

Section 5.4, we briefly discuss some simple iterative schemes for some common nonlinear

PDEs. Numerical experiments in MATLAB are shown in Section 5.5, confirming the

theoretical results.
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5.1 Linear PDEs

In Section 4.4 we considered the linear heat equation

ut = uxx + F (x, t) on (−1, 1)2,

with boundary conditions u(±1, t) = 0 and initial condition u(x,−1) = u0(x). The

following space-time Chebyshev collocation method was proposed,

(IN+1 ⊗D)uh = (D2 ⊗ IN+1)uh + fh,

where

uh =


u(xh, t0)

...

u(xh, tN)

 , fh =


F (xh, t0)

...

F (xh, tN)

 .

Of course, since uh vanishes at the boundary x = ±1 and the initial value of u is known at

t = −1, it is sufficient to solve for the unknowns ûh, which is uh deleting the components

corresponding to boundary points and initial points. The resulting spectral equations are

(IN−1 ⊗ [D])ûh = ([[D2]]⊗ IN)ûh + f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the (interior spatial) collocation points and f̂h is fh remov-

ing the components corresponding to boundary points and initial points. The last term

accounts for the contribution of the initial condition and is present because the last row

and column of D have been deleted. The linear equation to be solved becomes

Ahûh = f̂h − (u0h ⊗ dh), Ah = (IN−1 × [D])− ([[D2]]⊗ IN).

In the following, we consider other common linear PDEs in applications: Schrodinger,
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wave, Airy and beam equations. We treat the simplest case where the spatial and tem-

poral domains are both (−1, 1). This is no loss of generality since this can always be

accomplished by a simple change of variables.

5.1.1 Schrodinger equation

The linear Schrodinger equation is

ut = iuxx + F (x, t), on (−1, 1)2,

with boundary conditions u(±1, t) = 0 and initial condition u(x,−1) = u0(x). Here

i =
√
−1. We seek a numerical solution in PN at t = 1. The spectral equations are

Asûh = f̂h − (u0h ⊗ dh), As = (IN−1 ⊗ [D])− i ([[D2]]⊗ IN), (5.1)

which are very similar to those for the heat equation.

5.1.2 Wave equation

Consider the linear wave equation

utt = uxx + F (x, t), on (−1, 1)2,

with boundary conditions u(±1, t) = 0 and initial conditions u(x,−1) = u0(x) and

ut(x,−1) = u1(x). We seek a numerical solution in PN at t = 1. First write the PDE as

a first order system for v = [v1, v2]T := [u, ut]T

vt =

 0 I

∂xx 0

 v +

0

F

 , v(±1, t) = 0, v(x,−1) =

u0(x)

u1(x)

 .
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For j = 1, 2, let vjh be the vector of vj evaluated at the collocation points. The spectral

equations in matrix form are

IN+1 ⊗D 0

0 IN+1 ⊗D


v1h

v2h

 =

 0 IN+1 ⊗ IN+1

D2 ⊗ IN+1 0


v1h

v2h

+

 0

fh

 ,

where fh is F evaluated at the collocation points. Again, since the solution vanishes at

the boundary and the initial values are known, it is only necessary to solve for a subset of

those values. Using the ˆ notation to denote vectors stripping away those corresponding

to boundary and initial points, the spectral equations are

IN−1 ⊗ [D] 0

0 IN−1 ⊗ [D]


v̂1h

v̂2h

 =

 0 IN−1 ⊗ IN

[[D2]]⊗ IN 0


v̂1h

v̂2h

+

 0

f̂h

−
u0h ⊗ dh

u1h ⊗ dh

 ,

where u0h and u1h are u0 and u1 evaluated at the interior collocation points. From the

first equation, it follows that

v̂2h = (IN−1 ⊗ [D]) v̂1h + (u0h ⊗ dh).

Substitute this into the second equation to get, after some algebra, the final spectral

equation

Awv̂1h = f̂h−
(
u0h⊗ ([D] dh)

)
− (u1h⊗ dh), Aw = (IN−1⊗ [D]2)− ([[D2]]⊗ IN). (5.2)

5.1.3 Airy equation

Consider the Airy equation

ut + uxxx = F (x, t), on (−1, 1)2,
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with boundary conditions u(±1, t) = 0 = ux(1, t) and initial condition u(x,−1) = u0(x).

We seek a numerical solution in PN at t = 1. The spectral equations are

(IN+1 ⊗D)uh + (D3 ⊗ IN+1)uh = fh,

where fh is the vector of F evaluated at the (spatial and temporal) collocation points.

Of course, since uh vanishes at the boundary x = ±1 and the initial value of u is known

at t = −1, it is sufficient to solve for the unknowns ûh, which is uh deleting the com-

ponents corresponding to boundary points and initial points. Let us define the spectral

approximation of the third derivative, taking into account the boundary conditions.

Let Y = Y (x) be a polynomial so that Y (±1) = 0 = Y ′(1). Let Z vanish at ±1 so

that Y (x) = (1 − x)Z(x). Note that Y clearly satisfies all the boundary conditions. A

simple calculation leads to

Y ′′′(x) = (1− x)Z ′′′(x)− 3Z ′′(x). (5.3)

It should be clear now that a spectral approximation of the third derivative satisfying the

three boundary conditions is

B := (C [[D3]]− 3 [[D2]])C−1, (5.4)

where C is an (N − 1)× (N − 1) diagonal matrix whose diagonal entries are 1− xj, 1 ≤

j ≤ N − 1. The resulting spectral equations are

(IN−1 ⊗ [D])ûh + (B ⊗ IN)ûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the (interior spatial) collocation points and f̂h is fh removing

the components corresponding to boundary points and initial points. The linear equation
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to be solved becomes

Aaûh = f̂h − (u0h ⊗ dh), Aa = (IN−1 ⊗ [D]) + (B ⊗ IN). (5.5)

5.1.4 Beam equation

Finally, consider the fourth order beam equation

utt + uxxxx = F (x, t), on (−1, 1)2,

with boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x,−1) = u0(x)

and ut(x,−1) = u1(x). We seek a numerical solution in PN at t = 1. As before, we write

the PDE as a first order system for v = [v1, v2]T := [u, ut]T ,

vt =

 0 I

−∂xxxx 0

 v +

0

F

 , v(±1, t) = 0, v(x,−1) =

u0(x)

u1(x)

 .

Using the same notation as before, the spectral equations in matrix form are

IN+1 ⊗D 0

0 IN+1 ⊗D


v1h

v2h

 =

 0 IN+1 ⊗ IN+1

−D4 ⊗ IN+1 0


v1h

v2h

+

 0

fh

 .

Again, the components of vjh along the boundary and initial points must be removed.

However, it is not as simple as before since Neumann boundary conditions must also

be imposed. There are at least three ways to do this. One is to impose the boundary

conditions explicitly as constraints, as in spectral tau methods. A second approach to

approximate the fourth derivative is to write Y (x) = (1−x2)Z(x), so that Y automatically

satisfies the boundary conditions if Z vanishes at the boundary. Then

Y ′′′′(x) = (1− x2)Z ′′′′(x)− 8xZ ′′′(x)− 12Z ′′(x). (5.6)
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The spectral approximation of the fourth derivative, taking into account of the boundary

conditions, is

B := (C [[D4]]− 8X [[D3]]− 12 [[D2]])C−1, (5.7)

where C and X are (N − 1) × (N − 1) diagonal matrices with diagonal entries 1 − x2
j

and xj, respectively. See, for instance, [72]. Another approach, suggested in [48], gives a

symmetric matrix approximation of the fourth derivative accommodating the boundary

conditions. There is no particular advantage in the current application since the discrete

time derivative is not symmetric. This last approach appears to only work for Legendre

collocation and not for Chebyshev collocation. For these reasons, we apply the second

approach.

The spectral equations for v̂jh, which is vjh removing the variables corresponding to

boundary and initial points, become

IN−1 ⊗ [D] 0

0 IN−1 ⊗ [D]


v̂1h

v̂2h

 =

 0 IN−1 ⊗ IN

−B ⊗ IN 0


v̂1h

v̂2h

+

 0

fh

−
u0h ⊗ dh

u1h ⊗ dh

 .

From the first equation, it follows that

v̂2h = (IN−1 ⊗ [D]) v̂1h + (u0h ⊗ dh).

Substitute this into the second equation to get the final spectral equations:

Abv̂1h = f̂h −
(
u0h ⊗ ([D] dh)

)
− (u1h ⊗ dh),

where

Ab = (IN−1 ⊗ [D]2) + (B ⊗ IN). (5.8)
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5.2 Condition number estimates

In this section, we estimate the condition number of the spectral approximations of the

various differential operators. The theorem below states that the spectral condition num-

bers of the discrete spectral operators scale like those of the corresponding elliptic parts.

Recall that the result κ(Ah) ≤ CN4 for the heat equation has already been shown in [49]

for the Legendre case and in Section 4.4 for the Chebyshev case.

Theorem 5.1. Let N ≥ 2. Let As be the Chebyshev spectral collocation matrix defined

by (5.1) and λ be any eigenvalue of As. Then

c ≤ |λ| ≤ CN4.

Consequently

κ(As) ≤ CN4.

Proof. From (5.1), λ = γ+ iµ, where γ is some eigenvalue of [D] and µ is some eigenvalue

of − [[D2]]. Write γ = γr + iγi, where γr and γi are real. From Lemmas 4.5, 4.16 and 4.10,

γr ≥ c, |γ| ≤ cN2 and c ≤ µ ≤ CN4 for some positive constants c, C independent of N .

Thus

|λ|2 = γ2
r + (γi + µ)2 ≤ c2 + (cN2 + CN4)2 ≤ C1N

8,

and

|λ|2 ≥ c2,

or equivalently,

c ≤ |λ| ≤ CN4, κ(As) ≤ CN4.

Theorem 5.2. Let N ≥ 2. Let Aw be the Chebyshev spectral collocation matrix defined
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by (5.2) and λ be any eigenvalue of Aw. Then

c ≤ |λ| ≤ CN4.

Consequently

κ(Aw) ≤ CN4.

Proof. From (5.2), it follows that

λ = γ2 + µ,

where γ = γr + iγi is an eigenvalue of [D] and µ is an eigenvalue of − [[D2]]. A calculation

yields

|λ|2 = γ4
r + 2µγ2

r + 2γ2
rγ

2
i + (µ− γ2

i )2 ≥ γ4
r + 2µγ2

r ≥ c,

by Lemmas 4.5 and 4.10. Using Lemmas 4.16 and 4.10, it follows that

|λ| ≤ c2 + CN4.

Thus

c ≤ |λ| ≤ CN4, κ(Aw) ≤ CN4.

In following, we present a couple of useful technical results followed by another one

which is directly needed for an estimate of the condition number of the Airy spectral

operator.

Lemma 5.3. Let u ∈ H1
w(−1, 1) and v ∈ H1

0,w(−1, 1). Then

∣∣∣∣∫ 1

−1
u′(vw)′

∣∣∣∣ ≤ 2 ‖u′‖ ‖v′‖.

141



Proof. The proof follows from a direct calculation:

∣∣∣∣∫ 1

−1
u′(vw)′

∣∣∣∣ =
∣∣∣∣∫ 1

−1
u′ (v′w + vw′)

∣∣∣∣
≤

∣∣∣∣∫ 1

−1
u′v′w

∣∣∣∣+ ∣∣∣∣∫ 1

−1
u′vxw3

∣∣∣∣
≤ ‖u′‖ ‖v′‖+ ‖u′‖

(∫ 1

−1
v2x2w5

)1/2

≤ ‖u′‖ ‖v′‖+ ‖u′‖
(∫ 1

−1
v2(1 + x2)w5

)1/2

≤ ‖u′‖ ‖v′‖+ ‖u′‖ ‖v′‖ = 2 ‖u′‖ ‖v′‖.

The last inequality follows from a simple calculation. See (5.61) in [48], for instance.

Lemma 5.4. Let v ∈ H1
0,w(−1, 1). Then

∫ 1

−1

v2w

(1− x)2 ≤
8
3 ‖v

′‖,
∫ 1

−1

v2w

(1− x2)2 ≤
2
3 ‖v

′‖2.

Proof. For x ∈ (−1, 1), it is easy to see that (1 + x)2 ≤ 4, leading to

1√
1 + x

≤ 4
(1 + x)5/2 .

Using the above inequality and a Hardy-type inequality (inequality (13.4) in [7], for in-

stance), ∫ 1

−1

v2

(1− x2)5/2 ≤
2
3‖v

′‖2,

it follows that

∫ 1

−1

v2w

(1− x)2 =
∫ 1

−1

v2

(1− x)5/2 (1 + x)1/2 ≤ 4
∫ 1

−1

v2

(1− x2)5/2 ≤
8
3 ‖v

′‖2.

The second inequality of this lemma is exactly the Hardy-type inequality above.

Proposition 5.5. Let N ≥ 2 and B be defined in (5.4). Suppose λ is any eigenvalue of
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B. Then

|λ| ≤ CN6.

Proof. Let vh be an eigenvector of B corresponding to λ. Let ζ ∈ PN so that ζ(±1) = 0

and ζ(xh) = M−1vh, where M is diagonal with entries of the form 1− xj. Define v(x) =

(1− x)ζ(x) ∈ PN+1. Note that v(xh) = Mζ(xh) = vh. Now

λv(xh) = λvh = Bvh =
(
M [[D3]]− 3 [[D2]]

)
ζ(xh) = v′′′(xh)

by (5.3). Observe that v(±1) = 0 = v′(1). By a direct calculation, v′′′ = −3ζ ′′+(1−x)ζ ′′′.

With these results,

λ
N∑
j=1

|v(xj)|2
(1− xj)2 ρj =

N∑
j=1

v′′′(xj)
v(xj)

(1− xj)2 ρj

λ
N∑
j=1
|ζ(xj)|2ρj =

N∑
j=1

(
− 3ζ ′′(xj) + (1− xj)ζ ′′′(xj)

) ζ(xj)
1− xj

ρj

λ
N∑
j=0
|ζ(xj)|2ρj = −3

N∑
j=1

ζ ′′(xj)ζ(xj)
1− xj

ρj +
N∑
j=1

ζ ′′′(xj)ζ(xj)ρj

= −3
N∑
j=0

ζ ′′(xj)ζ(xj)
1− xj

ρj − 3ζ ′′(1)ζ ′(1) ρ0 +
N∑
j=0

ζ ′′′(xj)ζ(xj) ρj.

In the first sum of the last equality on the right-hand side, the term j = 0 is taken in the

sense of a limit since there is division by zero.

Next we estimate the boundary term. Let ζ(x) = (1−x)ξ(x) with ξ ∈ PN−1. It follows

that ζ ′(1) = −ξ(1) and ζ ′′(1) = −2ξ′(1). By the trace inequality and Lemma 5.4,

|ζ ′(1)|2 = |ξ(1)|2 ≤ c(N − 1)‖ξ‖2 = c(N − 1)
∫ 1

−1

|ζ|2w
(1− x)2 ≤ CN‖ζ ′‖2.

Similarly, invoking the inverse estimate in addition to the other inequalities,

|ζ ′′(1)|2 = 4 |ξ′(1)|2 ≤ c(N − 1)‖ξ′‖2 ≤ CN5‖ξ‖2 ≤ CN5‖ζ ′‖2.
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The boundary term can now be estimated directly:

|ζ ′′(1)ζ ′(1)| ρ0 ≤ CN5/2‖ζ ′‖CN1/2‖ζ ′‖ π

2N = cN2‖ζ ′‖2 ≤ CN6‖ζ‖2.

Finally, the magnitude of the eigenvalue can be estimated using Lemmas 5.3 and 5.4

and the fact that integration can be evaluated exactly for any integrand of degree 2N − 1

or lower:

|λ|
N∑
j=0

ζ2(xj)ρj ≤ 3
∣∣∣∣∣
∫ 1

−1

ζ ′′ζ̄w

1− x

∣∣∣∣∣+
∣∣∣∣∫ 1

−1
ζ ′′′ζ̄w

∣∣∣∣+ CN6‖ζ‖2

≤ 3 ‖ζ ′′‖
(∫ 1

−1

ζ̄2w

(1− x)2

)1/2

+
∣∣∣∣∫ 1

−1
ζ ′′(ζ̄w)′

∣∣∣∣+ CN6‖ζ‖2

≤ cN2‖ζ ′‖ ‖ζ ′‖+ c ‖ζ ′′‖‖ζ̄ ′‖+ CN6‖ζ‖2

≤ CN6‖ζ‖2.

In the last two lines, the inverse estimate has been invoked several times. It follows from

the equivalence of the discrete and weighed L2 norms that |λ| ≤ CN6.

We remark that It should be possible to show lower bounds using Proposition 4.15 and

Lemma 4.16.

Theorem 5.6. Let N ≥ 2. Let Aa be the Chebyshev spectral collocation matrix defined

by (5.5) and λ be any eigenvalue of Aa. Then

|λ| ≤ CN6.

Proof. From (5.5), it follows that

λ = γ2 + µ,

where γ = γr + iγi is an eigenvalue of [D] and µ is an eigenvalue of B defined in (5.4).
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Using Lemma 4.16 and Proposition 5.5, it follows that

|λ| ≤ CN6.

Next, we present a lemma which is needed for an estimate of the condition number of

the beam spectral operator.

Lemma 5.7. Let N ≥ 2 and B be defined in (5.7). Suppose λ is any eigenvalue of B.

Then

λ ≤ CN8.

Proof. Let vh be an eigenvector of B corresponding to λ. Let ζ ∈ PN so that ζ(±1) = 0

and ζ(xh) = M−1vh, where M is diagonal with diagonal entries of the form 1−x2
j . Define

v(x) = (1− x2)ζ(x) ∈ PN+2. Note that v(xh) = Mζ(xh) = vh. Now

λv(xh) = λvh = Bvh =
(
M [[D4]]− 8X [[D3]]− 12 [[D2]]

)
ζ(xh) = v′′′′(xh)

by (5.6). Observe that v(±1) = 0 = v′(±1). By a direct calculation, v′′′′ = −12ζ ′′ −

8xζ ′′′ + (1− x2)ζ ′′′′. With these results,

λ
N−1∑
j=1

|v(xj)|2
(1− x2

j)2 ρj =
N−1∑
j=1

v′′′′(xj)v(xj)
(1− x2

j)2 ρj

λ
N−1∑
j=1
|ζ(xj)|2ρj = −12

N−1∑
j=1

ζ ′′(xj)ζ(xj)
1− x2

j

ρj − 8
N−1∑
j=1

xjζ
′′′(xj)ζ(xj)
1− x2

j

ρj +
N−1∑
j=1

ζ ′′′′(xj)ζ(xj) ρj

λ
N∑
j=0
|ζ(xj)|2ρj = −12

N∑
j=0

ζ ′′(xj)ζ(xj)
1− x2

j

ρj − 8
N∑
j=0

xjζ
′′′(xj)ζ(xj)
1− x2

j

ρj +
N∑
j=0

ζ ′′′′(xj)ζ(xj) ρj

+3π
N

(
ζ ′′(−1)ζ ′(−1)− ζ ′′(1)ζ ′(1)

)
+ 2π
N

(
ζ ′′′(−1)ζ ′(−1)− ζ ′′′(1)ζ ′(1)

)
.

Let ζ(x) = (1− x2)ξ(x) with ξ ∈ PN−2. Using a similar technique as before, we estimate
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the boundary terms:

|ζ ′(±1)|2 = 4 |ξ(±1)|2 ≤ CN‖ζ ′‖2, |ζ ′′(±1)|2 = |2ξ(±1) + 4(±1)ξ′(±1)|2 ≤ CN5‖ζ ′‖2,

and

|ζ ′′′(±1)|2 = |6ξ′(±1) + 6(±1)ξ′′(±1)|2 ≤ CN9‖ζ ′‖2,

leading to a final upper bound of all boundary terms of CN8‖ζ‖2.

For the final estimate of the eigenvalue, again use Lemmas 5.3 and 5.4 and the fact that

the integration can be evaluated exactly by summation since the integrand is of degree at

most 2N − 1 to get

|λ|
N∑
j=0
|ζ(xj)|2ρj ≤ 12

∣∣∣∣∣
∫ 1

−1

ζ ′′ζ̄w

1− x2

∣∣∣∣∣+ 8
∣∣∣∣∣
∫ 1

−1

xζ ′′′ζ̄w

1− x2

∣∣∣∣∣+
∣∣∣∣∫ 1

−1
ζ ′′′′ζ̄w

∣∣∣∣+ CN8‖ζ‖2

≤ 12 ‖ζ ′′‖
(∫ 1

−1

|ζ|2w
(1− x2)2

)1/2

+ 8 ‖ζ ′′′‖
(∫ 1

−1

|ζ|2w
(1− x2)2

)1/2

+
∣∣∣∣∫ 1

−1
ζ ′′′(ζ̄w)′

∣∣∣∣+ CN8‖ζ‖2

≤ CN2‖ζ ′‖2 + CN4‖ζ ′‖2 + ‖ζ ′′′‖ ‖ζ ′‖+ CN8‖ζ‖2

≤ CN8‖ζ‖2.

By the equivalence of the discrete and weighed L2 norms, |λ| ≤ CN8.

We remark that It should be possible to show lower bounds using Proposition 4.15 and

Lemma 4.16.

Theorem 5.8. Let N ≥ 2. Let Ab be the Chebyshev spectral collocation matrix defined

by (5.8) and λ be any eigenvalue of Ab. Then

λ ≤ CN8.
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Proof. From (5.8), it follows that

λ = γ2 + µ,

where γ = γr + iγi is an eigenvalue of [D] and µ is an eigenvalue of B defined in (5.7).

Using Lemma 4.16 and Proposition5.7, it follows that

|λ| ≤ CN8.

5.3 Spectral Convergence

In this section, we discuss space-time spectral convergence of our method for the Schrodinger

and wave equations.

Theorem 5.9. Let u be the solution of the Schrodinger equation. Assume u is separately

analytic in each variable. Let N ≥ 2 and ûh be the solution of (5.1). Define the error

vector Eh as the difference of u evaluated at the collocation points and ûh. Then

|W 1/2Eh|2 ≤ cN3.5e−CN .

The proof of spectral convergence for the Schrodinger equation is almost identical to

that of the heat equation in Section 4.4 and is omitted. What is perhaps surprising is

that the method of proof is so similar despite the fact that this PDE is dispersive and has

completely different properties from those of the heat equation which is diffusive.

Theorem 5.10. Let u be the solution of the wave equation. Assume u is separately

analytic in each variable. Let N ≥ 2 and v̂1h be the solution of the space-time method

with matrix defined by (5.2). Define the error vector Eh as the difference of u evaluated
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at the collocation points and v̂1h. Then

|W 1/2Eh|2 ≤ cN4.5e−CN .

Proof. Define

uh(t) =


u(x1, t)

...

u(xN−1, t)

 , fh(t) =


f(x1, t)

...

f(xN−1, t)

 .

A semi-discrete approximation of the wave equation is

u′′h(t) =
N∑
j=0

(
Auh(tj) + fh(tj)

)
`j(t), uh(−1) = u0h, u

′
h(−1) = u1h,

where A = [[D2]]. Hence

u′′h(tk) = Auh(tk) + fh(tk), 0 ≤ k ≤ N − 1.

Define the error function eh(t) = uh(t)− u(xh, t) with components ej(t) = (eh(t))j. Using

the above equation, it is easy to see that the error satisfies, for 0 ≤ k ≤ N − 1,

e′′h(tk) = Aeh(tk) + r(tk), r(tk) = Au(xh, tk)− uxx(xh, tk). (5.9)

For any analytic z such that z(−1) = 0, recall the definition of the interpolant

INz(t) =
N−1∑
j=0

z(tj)`j(t).

For 0 ≤ k ≤ N − 1,

z′(tk) = (INz)′(tk) + ε̃k =
(
[D](INz)(th)

)
k

+ ε̃k =
(
[D]z(th)

)
k

+ ε̃k, (5.10)
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where ε̃k = (z − INz)′(tk) satisfies

|ε̃k| ≤ cN2e−CN

according to [61]. Take z(t) = ej(t) in (5.10), observing that ej(−1) = 0, then

e′j(tk) =
(
[D]ej(th)

)
k

+ ε1jk, (5.11)

where |ε1jk| ≤ cN2e−CN . Next take z(t) = e′j(t) in (5.10), noting that e′j(−1) = 0, then

e′′j (tk) =
(
[D]e′j(th)

)
k

+ ε2jk, (5.12)

where |ε2jk| ≤ cN2e−CN . Considering (5.9) together with (5.11) and (5.12), we have

(
[D]ej(th)

)
k

+ ε1jk = (e′h(tk))j, (5.13)(
[D]e′j(th)

)
k

+ ε2jk = (Aeh(tk))j + rj(tk), (5.14)

where residual vectors rj(th) = Au(xj, th)− uxx(xj, th). Define the long vector

R̃h =


r1(th)

...

rN−1(th)

 ,

and

Eh =


e1(th)

...

eN−1(th)

 ,
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in vector notation, the equations (5.13) and (5.14) are

(IN−1 ⊗ [D])Eh = E ′h − ε1, (IN1 ⊗ [D])E ′h = (A⊗ IN)Eh + R̃h − ε2,

where ε1, ε2 are long vectors formed by stacking together vectors [epj0, . . . , εpj,N−1]T for

p = 1, 2 and 1 ≤ j ≤ N − 1; and each component of E ′h has the form e′j(tk). Combine

these two equations to obtain

AwEh = Rh := R̃h − ε2 − (IN−1 ⊗ [D])ε1.

Using Lemma 4.16 and the above estimates, it follows that |R|∞ ≤ cN4e−CN . Apply the

result of Theorem 5.10 and proceed as in Section 4.4 to get the desired error estimate.

5.4 Nonlinear PDEs

The purpose of this section is to show that it is simple, in a few lines of code in the spirit of

[72], to adapt the above methodology to solve some of the most common nonlinear PDEs

with spectral space-time convergence. In [49] and in Section 4.4 we had considered the

Allen-Cahn equation and Burgers’ equation. We now look at some other nonlinear PDEs.

5.4.1 Nonlinear reaction diffusion equation

Consider

ut = uxx + λeu + f(x, t), on (−1, 1)2,

with initial condition u(x,−1) = u0(x) and homogeneous Dirichlet boundary conditions.

Here λ is a positive constant. The spectral scheme is

(IN+1 ⊗D)uh = (D2 ⊗ IN+1)uh + λeuh + fh,
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where fh is f evaluated at collocation points. Deleting the known boundary and initial

values, the final scheme reads

[(IN−1 ⊗ [D])− ([[D2]]⊗ IN)] ûh − λeûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the interior collocation points. This nonlinear system can be

solved using the simple iteration (k ≥ 0)

[(IN−1 ⊗ [D])− ([[D2]]⊗ IN)] û(k+1)
h = λeû

(k)
h + f̂h −

(
u0h ⊗ dh

)
.

5.4.2 Nonlinear Schrodinger equation

Consider

iut = −uxx + |u|2u+ f(x, t), on (−1, 1)2,

with initial condition u(x,−1) = u0(x) and homogeneous Dirichlet boundary conditions.

The spectral scheme is

i(IN+1 ⊗D)uh = −(D2 ⊗ IN+1)uh + |uh|2uh + fh,

where fh is f evaluated at collocation points. Deleting the known boundary and initial

values, the final scheme reads

i[(IN−1 ⊗ [D]) + ([[D2]]⊗ IN)] ûh − |ûh|2ûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the interior collocation points. This nonlinear system can be

solved using the simple iteration (k ≥ 0) with relaxation:

i[(IN−1⊗[D])+([[D2]]⊗IN)] ũ(k+1)
h −|û(k)

h |2ũ
(k+1)
h +f̂h−

(
u0h⊗dh

)
, û

(k+1)
h = ũ

(k+1)
h + u

(k)
h

2 .
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5.4.3 Sine–Gordon equation

The Sine–Gordon equation is

utt = uxx + sin u+ F (x, t), on (−1, 1)2,

with initial conditions u(x,−1) = u0(x) and ut(x,−1) = u1(x) and homogeneous Dirichlet

boundary conditions. The spectral scheme is

(IN+1 ⊗D2)uh = (D2 ⊗ IN+1)uh + sin uh + fh.

Deleting the known boundary and initial values, the final scheme reads

[(IN−1 ⊗ [D]2)− ([[D2]]⊗ IN)] ûh − sin ûh = f̂h −
(
u0h ⊗ ([D] dh)

)
− (u1h ⊗ dh).

This nonlinear system can be solved using the iteration (k ≥ 0)

[(IN−1 ⊗ [D]2)− ([[D2]]⊗ IN)]û(k+1)
h = sin û(k)

h + f̂h −
(
u0h ⊗ ([D] dh)

)
− (u1h ⊗ dh).

5.4.4 KdV equation

The KdV equation is

ut + uux + uxxx = F (x, t), on (−1, 1)2,

with initial condition u(x,−1) = u0(x) and boundary conditions u(−1, t) = 0 = u(1, t) =

ux(1, t). The spectral scheme is

(IN+1 ⊗D)uh + diag(uh)(D ⊗ IN+1)uh + (D3 ⊗ IN+1)uh = fh.
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Let B be the spectral third derivative (5.4) defined for the Airy operator. The final system,

removing the known boundary and initial values, becomes

[(IN−1 ⊗ [D]) + (B ⊗ IN)]ûh + diag(([[D]]⊗ IN)ûh)ûh = f̂h − (u0h ⊗ dh).

This can be solved using the iteration (k ≥ 0)

[(IN−1 ⊗ [D]) + (B ⊗ IN)]û(k+1)
h + diag(([[D]]⊗ IN)û(k)

h )û(k+1)
h = f̂h − (u0h ⊗ dh).

5.4.5 Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky equation reads

ut + uxxxx + uxx + uux = F (x, t), on (−1, 1)2,

with initial condition u(x,−1) = u0(x) and homogeneous Dirichlet boundary conditions.

The scheme is then

(
(IN−1 ⊗ [D]) + (B + [[D2]])⊗ IN)

)
ûh + 1

2([[D]]⊗ IN) û2
h = f̂h − (u0h ⊗ dh).

This nonlinear system can be solved using the iteration (k ≥ 0)

(
(IN−1⊗ [D]) + (B + [[D2]])⊗ IN)

)
û

(k+1)
h + diag

(
([[D]]⊗ IN) û(k)

h

)
û

(k+1)
h = f̂h− (u0h⊗ dh).

5.4.6 Cahn-Hilliard equation

The Cahn-Hilliard equation is

ut − (−uxx + u3 − u)xx = F (x, t)
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with initial condition u(x,−1) = u0(x) and boundary conditions

ux(±1, t) = 0 = uxxx(±1, t).

The full scheme, using Legendre space-time collocation, is

(
(IN+1 ⊗D) +

(
(D4 +D2)⊗ IN+1

))
uh − (D2 ⊗ IN)u3

h = fh.

Let B = W−1DTWD, where W is the diagonal matrix whose diagonal entries are the

weights of the collocation scheme. It is known ([48]) that −B is a spectral approximation

of the second derivative for functions whose derivative vanishes at the boundary. The

spectral equations for ûh, the entries of uh removing the initial values, become

(
(IN+1 ⊗ [D]) + (B2 −B)⊗ IN)

)
ûh + (B ⊗ IN) û3

h = f̂h − (u0h ⊗ dh).

This nonlinear system can be solved iteratively. Let D̃ be D except that the first and

last rows are replaced by a row of zeroes. This is a spectral approximation of the first

derivative for functions whose derivative vanish at the boundary. There are several ways

to discretize (u3)xx = 2uu2
x + u2uxx. We attempted two, one of which worked, but not the

other. The simple scheme

(
(IN+1 ⊗ [D]) + (B2 −B)⊗ IN)

)
û

(k+1)
h − 6 diag

(
(D̃ ⊗ IN)û(k)

h

)2
û

(k+1)
h

+3 diag(û(k)
h )2(B ⊗ IN)û(k+1)

h = f̂h − (u0h ⊗ dh),
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did not seem to converge. The following iteration with relaxation does seem to work

(k ≥ 0):

(
(IN+1 ⊗ [D]) + (B2 −B)⊗ IN)

)
ũ

(k+1)
h − 6 diag(û(k)

h )diag
(
(D̃ ⊗ IN)û(k)

h

)
(D̃ ⊗ IN)ũ(k+1)

h

+3 diag(û(k)
h )2(B ⊗ IN)ũ(k+1)

h = f̂h − (u0h ⊗ dh),

û
(k+1)
h = ũ

(k+1)
h + u

(k)
h

2 ,

where u0h is the initial data evaluated at all spatial collocation points. It is beyond the

scope of this thesis to discuss convergence theories of the schemes in this section.

5.5 Numerical Results

We implemented a very simple space-time Legendre and Chebyshev collocation method

for each PDE discussed in this paper in MATLAB. Results for the Chebyshev case are

reported below. Almost identical results hold for the Legendre case and they are not given.

The convergence for the Schrodinger equation

ut = iuxx + f,

with boundary conditions u(±1, t) = 0 and initial condition u(x,−1) = u0(x). Take f so

that the exact solution is u(x, t) = ex+t sin(πt/2) sin πx. Spectral convergence is clearly

illustrated in the left figure of Figure 5.1. The error is the largest error of the numerical

solution at the Chebyshev nodes at the final time t = 1. Note that the error is O(10−14)

at N = 18 which corresponds to a system with 306 unknowns.

The convergence of the Chebyshev collocation method for the wave equation

utt = uxx + f,
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Figure 5.1: Convergence of Chebyshev collocation method for the Schrodinger (left) and
wave (right) equations.
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Figure 5.2: Convergence of Chebyshev collocation method for the Airy (left) and beam
(right) equations.

with boundary conditions u(±1, t) = 0 and initial conditions u(x,−1) = u0(x) and

ut(x,−1) = u1(x) can be found in the right figure of Figure 5.1. Here we take f so

that the exact solution is the same as above.

For the Airy equation

ut + uxxx = f,

with boundary conditions u(±1, t) = 0 = ux(1, t) and initial condition u(x, 0) = u0(x),

with the same exact solution as before, spectral convergence of the space-time Chebyshev

collocation method is shown in the left figure of Figure 5.2.
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Figure 5.3: Spectrum (left) and spectral condition number (right) for the Schrodinger
operator As.

Next, consider the beam equation

utt + uxxxx = f,

with clamped boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x,−1) =

u0(x), ut(x,−1) = u1(x). Take f so that the exact solution is ex+t sin(πt/2) sin2(πx), the

spectral convergence of the Chebyshev collocation method can be seen in the right figure

of Figure 5.2.

The spectrum of the various spectral Chebyshev operators for the case N = 60 and

plots of the spectral condition numbers as functions of N are shown in Figures 5.3, 5.4,

5.5, 5.6.

Now we move onto nonlinear PDEs. For all nonlinear PDEs, we take as initial guess

the zero function and use the iteration defined for each nonlinear PDE. The iteration is

stopped whenever the infinity norm of the difference of two consecutive iterates are smaller

than ε = 10−13. Consider first the nonlinear reaction diffusion equation

ut = uxx + λeu + f,
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Figure 5.4: Spectrum (left) and spectral condition number (right) for the wave operator
Aw.
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Figure 5.5: Spectrum (left) and spectral condition number (right) for the Airy operator
Aa.
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Figure 5.6: Spectrum (left) and spectral condition number (right) for the beam operator
Ab.
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with homogeneous boundary conditions. Take λ = 0.5 and f so that the exact solution is

u(x, t) = ex+t cos(πx/2). See the left figure of Figure 5.7 for the convergence.

Next consider the nonlinear Schrodinger equation

iut − uxx + |u|2u = f,

with homogeneous Dirichlet boundary conditions. Take f so that the exact solution is

u(x, t) = ex+t sin(πx). See the right figure of Figure 5.7 for the convergence.

Next consider the Sine–Gordon equation

utt = uxx + sin u+ f,

with homogeneous Dirichlet boundary conditions. Take f so that the exact solution is

u(x, t) = ex+t sin πx. See the right figure of Figure 5.8 for the convergence.

Consider first the KdV equation

ut + uux + uxxx = f,

with boundary conditions u(±1, t) = 0 = ux(1, t). Take f so that the exact solution is

u(x, t) = cos(x− t) (x− 1)2(x+ 1). See the left figure of Figure 5.8 for the convergence.

Next, consider the nonlinear Kuramoto-Sivashinsky equation

ut + uxxxx + uxx + uux = f,

with clamped boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x,−1) =

u0(x). Take f so that the exact solution is ex+t sin2(πx), the spectral convergence of the

Chebyshev collocation method can be seen in the left figure of Figure 5.9.
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Figure 5.7: Convergence of Chebyshev collocation method for the nonlinear reaction dif-
fusion equation (left) and nonlinear Schrodinger equation (right).
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Figure 5.8: Convergence of Chebyshev collocation method for the KdV (left) and Sine–
Gordon (right) equations.

Finally, consider the Cahn-Hilliard equation

ut + uxxxx + uxx − (u2)xx = f,

with boundary conditions ux(±1, t) = 0 = uxxx(±1, t) and initial conditions u(x,−1) =

u0(x). Take f so that the exact solution is cos(t) cos(πx), the spectral convergence of the

Chebyshev collocation method can be seen in the right figure of Figure 5.9. This PDE

was the most difficult to solve. The stopping criterion was reduced to ε = 10−9.
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Figure 5.9: Convergence of Chebyshev collocation method for the Kuramoto-Sivashinsky
(left) and Cahn–Hilliard (right) equations.
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6

Conclusion and future work

In Chapter 2 we have given a local superlinear convergence theory for the solution of

a system of nonlinear equations by the basic Broyden’s method and the minimizer of a

nonlinear function by the BFGS method using Kantorovich-type assumptions, i.e., where

all assumptions are about the initial iterate and its neighbourhood. The main point is

that the assumptions can be verified in practice. Also, our theories are simple in the sense

that they contain as few constants as possible.

In a continuation of Chapter 2, in Chapter 3 we have given a local superlinear con-

vergence theory for the solution of the problem of finding a local minimum of a nonlin-

ear function by using Kantorovich-type assumptions. The symmetric scaled Perry NCG

method and generalized scaled memoryless BFGS method are considered. Our theories

are simple in the sense that they contain as few constants as possible.

There are many other directions for further research in this area. For instance, the

Jacobian matrix for a nonlinear system or the Hessian in the case of unconstrained mini-

mization may be sparse or may have a special structure. [77] has a convergence theory for

quasi-Newton methods which maintain the sparsity or special structure. A similar result

using Kantorovich-type assumptions would be desirable. Another possible future work is

to relax the condition that the Jacobian matrix about the initial point is non-singular, or
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the condition that the Hessian of the objective function is positive definite. See [20] for

some early work in this direction. Next, two convergence theories for functions, which are

not smooth can be found in [60] and [44]. It would be desirable to extend these results

for the case of Kantorovich-type assumptions. Smale gives an amazing convergence of

Newton’s iteration where all assumptions are at the initial iterate - no assumption is nec-

essary in a neighbourhood about the initial iterate. See Chapter 8 in [8]. This theory has

been extended to a secant method in [76]. It appears to be an open problem whether this

theory carries over to the methods of Broyden and BFGS. Also we have only considered

the Perry nonlinear conjugate gradient method. There are many other classes of nonlinear

conjugate gradient methods that can be examined. They may require a different technique

of proof if they are not of the quasi-Newton type.

In Chapter 4, we have shown that the space-time Chebyshev collocation method of

Tang and Xu [71] converges spectrally in both space and time for the heat equation.

The condition number of this method is shown to be bounded by O(N4). We have also

proposed another space-time spectral collocation which is easier to implement and has

similar characteristics as the first one. Some simple numerical experiments verify the

theoretical results. Numerical results for the viscous Burgers and Allen–Cahn equations

demonstrate the potential of this method for nonlinear PDEs.

In Chapter 5, we have also extended our analysis for other standard linear PDEs

(Schrodinger, Airy, wave and beam equations) and conducted numerical experiments for

common nonlinear PDEs (nonlinear diffusion, KdV, Sine–Gordon, Kuramoto–Shivashinsky

and Cahn–Hilliard) with similar results. It is remarkable that space-time spectral methods

work so well for these different classical PDEs with different features: diffusion, dispersion,

nonlinear advection, etc.

Although we have only considered one spatial dimension, the method generalizes to

the spatial domain (−1, 1)d immediately for d ≥ 1. Also, the implementation of the collo-

cation method for general linear variable coefficient PDEs with standard linear boundary
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conditions is quite straightforward. The most glaring problem of our method is that the

unknowns at all intermediate times are solved simultaneously. For a PDE in d space di-

mensions, the method requires the numerical solution of a discrete problem with Nd+1

unknowns, where N is the number of unknowns in each dimension. While direct solvers

based on 1D matrix factorization (Bartel-Stewart or other similar algorithms) work well

for 1D and 2D problems, it is desirable to come up with more efficient solvers for 3D

problems. One potential method is to use, for instance, the backward Euler method to

solve the discrete heat equation at the collocation points in time. This gives a good initial

guess to the solution of either (4.11) or (4.15). Then an iterative method can be used to

improve the accuracy. The original work [71] used a simple Gauss–Seidel iteration, which

unfortunately does not converge here and is also too expensive. Krylov subspace methods

are natural candidates but they do not work well without a good preconditioner. See, for

instance, [32], [40] and [50] for multigrid accelerators. Another promising method is the

full multigrid method. Yet another avenue of research is to reduce the ill-conditioning of

the matrices. See [73] for work in this direction. Space-time ultraspherical methods ([53])

are worthy of investigation, as are space-time methods for delay differential equations.

Space-time methods are extremely robust methods which converge spectrally for most

standard linear PDEs with standard boundary conditions. However without more sophis-

ticated algorithms to speed up the linear algebra, space-time spectral methods are not

faster than existing state-of-the-art algorithms.
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