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Abstract

The recently found (Ff)* center, an F§ center with divalent-impurity doping, has
potential practical laser applications and also an unknown atomistic configuration.
A simulation, based on unrestricted Hartree-Fock quantum-cluster calculations, is
carried out to investigate the ground-state atomistic and electronic configsurations
of this center, and to test a proposed model for it. In order to avoid the complex-
ity of this center, a simplified single-electron quantum-cluster model is employed,
with effective shell-model short-range potentials derived from all-electron quantum-
cluster calculations. For all configurations studied, an F-center like ground state is
found. The interpretation of different configurations for this eenter is discussed with
respect to stabilizing energies. T'wo configurations obtained are more favorable than
the proposed model. In the present work, the F-center and the Ff-center ground

states are also examined.
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With the help of highly-developed computational techniques and facilities nowadays,
theoretical calculation of the electronic properties of point defects in ionic crystals
has been making a great deal of progress in recent years, along with the experiments
which are always essential to this fleld. Among those defects mostly studied, the
F-type centers in alkali halides have attracted particular interest because of their
roles in laser application. Ordinary F-type center lasers have poor stability and low
quantum efficiency at room temperature, and therefore are mostly unsuitable for
laser application. The recently found (F§)* center, a divalent impurity-doped Fi
cenfer, shows dramatically improved room temperature stability and higher quan-
tum efficiency. The investigation of this center points to an imminent and promising
future for producing a practical laser device.

A theoretical simulation of the (F§)” center in the crystal lattice NaF has been
carried out in this thesis to further investigate a model recently proposed for this
center. It is hoped that the present work would either provide a better insight
into the nature of the (F7)* center, or set up a proper starting point for future
research on it. Unlike ordinary F-type centers, which usually have symmetrical and
fairly compact structures, the (F3)* center has a more complicated structure with
low symmetry, and is spread out over several atomic sites. Furthermore, experi-

ments to date indicate that it is not yet clear what the true configuration is for



this center. Usually, point defect calculations in ionie crystals are based on the
quantum-mechanical cluster treatment, However, for the (F§)* center, this can be
impractical, because investigating the proposed model requires considering a variety
of different configurations, each one leading to very large quantum-cluster calcula-
tions. For computer simulation of this center, considerably simplified treatments are
required. For this purpose, a model consisting of a single-electron quantum cluster
with effective classical potentials is proposed in this simulation.

Chapter 2 gives a brief review of some F-type centers and their properties. Also,
the laser effects and some applications of these centers are presented. We hope that
this could serve two purposes. The first is to serve as an introduction for students
who are new to the field of point defects in solids, especially F-type centers in ionic
crystals. The second is to provide a fundamental background for the present work.

In chapter 3, a general model for electronic defect calculations without our sim-
plifying consideration is introduced. This includes mainly two aspects: the Hartree-
Fock self-consistent field method, and the shell model, for quantum-mechanical and
classical treatments of crystals, respectively. In section 3.3, the computer program
ICECAP and its methodology are briefly presented, combining a Hartree-Fock clus-
ter and a shell-model lattice consistently.

Chapter 4 contains the major results of our research, including the simplified
model we have used and all preliminary work needed for applying the model to the
principal problem. First, the single-electron model for simulating the (F]}* center
is presented in section 4.1. Then in the next three sections, under the guantum-
mechanical many-electron cluster treatment, we investigate the F and the FJ cen-
ters, and derive the effective classical short-range potentials, using the mathematical
and physical models described in chapter 3. Specifically, the Mg?>*-F~ potential is
derived in section 4.2; the results of the F- and Fi-center ground states are pre-

sented and discussed in section 4.3; and in section 4.4, the short-range potentials



are derived for interactions between F-type centers and ions. In the last section of
chapter 4, based on all the work in the previous sections, we apply the simplified
single-electron model to the central problem, the (Fi )" center, analyzing a variety
of possible configurations. The results are listed and discussed in some detail. The
interpretation of different configurations in terms of stabilizing energies is also given
in this section.

Finally, the conclusions of the present work are given, and proposals for future

work are discussed in chapter 3.



The phenomenon of coloration in alkali halide materials, which have the rock-salt
structure, can be traced back to about a century ago. But only after Pohl and
coworkers, in the thirties, first observed the coloration in KBr by heating the crystal
at 600°C in potassium vapor [1], did it attract serious attention. Since then, the
coloration in ionic crystals has been under extensive investigation. It was found to
be due to the point defects, which were named color centers, or F centers (after a
German word, Farben) by Pohl et al [1]. At first, the focus was mainly on the F
center, but later other F-type centers were found. Seitz first proposed F-aggregate-
center models [2] based on a hypothesis in which the double vacancy was assumed to
have high mobility. The study of F-type centers has become more important since
the last decade, because they have been found to have laser application. It is not the
purpose of this thesis to track the whole history of F-type centers. In this chapter,
we shall only mention some basic points, which are directly related to our present
work. The interested reader may refer to the books of Fowler [3], Stoneham [4], and

Farge and Fontana [5]. For another review of F-type centers, also see reference [6].

2.1 F Centers in Alkali Halides

The F center, which is an electron trapped in an anion vacancy (see figure 2.1),

has been found to have an optical absorption band, called F absorption band or F
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band, and an emission band which is widely separated from the F band. Both of
them are nearly of gaussian shape. In KBr [3], for instance, at 4 K, the F band is
centered at 2.06 eV with a half-width of 0.16 eV. The corresponding emission band is
located 1.14 eV away, at .92 eV, and has a half-width of 6.22 €V, Similar behaviors
have been observed in most alkali halides, except for cesium halides {3, 7). The
optical cycle, the complete excitation /de-excitation process, of F centers consists of
four subprocesses (see, for reference, Mollenauer and Pan [8]): (i) first, a photon is
abscrbed and the electron is excited into the absorption band from the ground state;
(ii) then, the electron decays nonradiatively into the relaxed-excited state; (iil) this
is followed by luminescence from the relaxed-excited state to the unrelaxed ground
state; (iv) finally, the cycle is completed by another nonradiative decay back to the
relaxed ground state. The most common physical model for the F band was that
an electron is trapped by a three-dimensional potential well with a quasi-spherical
symmetry. Then, the quantum states of the F center could be described by spherical
harmonics, namely Is, 2s, 2p etc. In the ground state, the electron is well confined
in the vacancy. Therefore, for the F-absorption band, it would be a 1s-2p transition.

This was followed by an empirical relation, the Mollwo-Ivey law [9],
Ep =17.7¢" "% (2.1)

where, Ep, in units of eV, is the maximum F band energy for various alkali halides,
and @, in Angstrém, is the perfect nearest anion-cation spacing. This relation shows
good agreement with experiments [5]. However, no similar relation has been found
for the emission band. This is thought probably because, in the emission process, the
electron is not confined in the vacancy, but is more diffuse, moving in a Coulomb
field with an effective mass m™ and an effective dielectric constant ¢, [10]. The
Mollwo-Ivey law for the F band implies that there is a close relation between the

dominant energies and lattice geometry [11].



The I' center is of particular importance because it has a relatively simple strue-
ture, and it is the prototype of a variety of other color centers which can be cbtained
through F-center aggregation. For instance, with a nearest-neighbor host cation sub-
stituted by another alkali ion of smaller size, the F center becomes an F 4 center,
which has been found to have an important laser application that we shall discuss
later. Two adjacent F centers form an Fy center, formerly called M center, and
further, if the Fy center traps only one electron, it is an F§ center, formerly called
M™ center, which is one of the focuses in the present work. Actually, the F center is
not so easily studied. Its high-symmetry structure makes many physical measure-
ments either difficult or even impossible. Another feature of the F center is that its
coloration fades quickly at room temperature [3, 6]. Thus the hope for laser action
in the ¥ center is poor. F-center aggregates have therefore been counsidered, espe-
cially the impurity-doped ones. As with pure F-center aggregates, they will have

the decreasing symmetry when defect size is increased during aggregation.

2.2 F-center Lasers

Laser operation has been found in many alkali halides [10, 11]. They are continuously
tunable within a range from 0.8 pm to 4 pm (0.4 — 1.0 eV). Notice that the dye
laser covers a range from the visible region to 1 pm, and on the other side, the Pb
tunable diode laser is only good starting from 3 pm to longer wavelengths [10]. The
very narrow linewidth of the F-center lasers also makes them valuable candidates
for high-resclution spectroscopy [3, 10]. Another advantage is that F-center lasers
have power output A{F;,, — P,,) with low threshold P, and high slope efficiency
A such that they are very effective [11]. However, most of them cannot be turned
into practical laser products since they are only stable at low temperature. Usually
at room tfemperature, the laser effects disappear completely. One reason is that

their relaxed excited states are too close to the conduction band (~ 0.1 eV [3, 10]).




Thus, thermal energy can easily raise the electron into the conduction band from
the excited state. Until now, the only commercialized laser hased on the F-center
mechanism is the Burleigh FCL™™ laser, which provides continuous wave-tunable
output from 2.2 pm to 3.8 pm with lnewidth 1.5 GHz (single frequency 1 MHz)
and output power 3 — 20 mw (2 - 15 mw). However, it is still unstable at room
temperature.

The F 4 center we mentioned earlier has been reviewed by Liity {12]. In this center
(see figure 2.1), with a nearest-neighbor host cation replaced by a smaller impurity
alkali ion, the F-center’s O; symmetry is reduced to Cj,, which partially removes
the triple degeneracy of the F band. In the F 4 center, there are two polarized p-like
transitions: one, named F 41, is along the direction of the impurity ion; and the other,
named F 49, which is twofold degenerate, is perpendicular to that direction. Two
types of F4 center have been found. Type I F, centers, for example in KCl:Na™t,
have properties similar to those of the ¥ center. For type II F, centers, which
include the well-known center in KCLLiT, the emission band is broadly separated
from the absorption band to the low-energy range and has a very narrow half width
in comparison with those of F and F4 type I emissions. Experiments show that
type II F4 centers cannot be easily ionized either by applying electric field or by
increasing temperature. It was concluded by Liity that there exists a considerably
larger gap between the conduction band and the excited state of the type II Fy
center than for the F center and the type I F, center. These distinct behaviors
favor the type II ¥4 center for laser application. Indeed, the first, and for a quite
long period of time the only laser effect in F-type centers was observed in KCL:LiT
by Fritz and Menke [6, 12].

Laser action from the FJ center has been investigated extensively for a long
time {3]. The most recent developments have been reported in references [13], [14]

and [15]. The F3 center (see also figure 2.1) is an ionized Fy center, with an atom-



istic configuration of Dy, symmetry, oriented along the [110] direction. It has two
absorption bands: one much like the F-center absorption band, and the other a low-
energy band, which is not in the range of any other band of the F-type centers [15].
The F3 center offers effective laser output with a range from 0.9 — 2 ym and nearly
100 % quantum efficiency [11, 13], and it was suggested by Mollenauer [13] to be
suitable for practical laser products. However, the FJ center is also unstable for
continuous laser action. Its laser effects degrade very fast (reported from 15 min-
utes to several hours) at room temperature [15, 13]. Hofmann et al thought that
the easy separation between two adjacent repelling anion vacancies (in NaF) could

be one reason for this behavior.

2.3 The (F])* Centers in NaF

Improving the stability of the F-type-center laser operation at room temperature
has been a long-time goal for researchers in this field. Although a great deal of effort
was made, there was no significant improvement achieved until Mollenauer recently
reported the discovery of a new kind of Fi-like center [16]. This center, named
(F3)* by Mollenauer, was found in rock-salt NaF doped with divalent impurities
such as Mn®**, Cr®t or Ni%t ions. It shows continuous wave-tunable laser effects
with desirable quantum efficiency, and more important, much enhanced stability
for several months at room temperature. Shortly later, Eisele et al carried out an
investigation of (FJ)* centers in alkaline earth impurity-doped NaF [17]. It was
found that in NaF doped with Mg®t and Ca®*, (F§)* centers have even higher
slope efficiencies (44 %) and lower threshold pump powers (30 mw and 45 mw,
respectively) than those of the Mn?*-doped (F§)* center (24 % and 85 mw). They
also have better stability at room temperature than the (F)* center in NaF: Mn?*,
These properties distinguish the (F)* centers from the other F-type centers found

so far.
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The (F§)* center is a modified FJ center, with a nearby divalent cation. It is not
clear yet what the true mechanism is in its stabilization process, but experiments
show that the (F§)* center has almost the same absorption and emission bands (peak
position, band shape and range) no matter what impurity is doped in NaF, and it
is evident that the impurity plays a key rule in this process (whether as a stabilizer
or as an electron trap is unknown) [17]. Consequently, this leads to investigation
of the atomistic structure of the (F3)* center. One of these attempts is the work
of Hofmann and collaborators [15], in which they performed both experiments and
theoretical simulations on the (F7)* centers and obtained results similar to those of
Mollenauer and Eisele ef al. Hofmann et al then proposed a model for the atomistic
structure of (FJ )" center. They also analyzed the F§ center in the same host crystal
since, on the one hand, this center is laser active itself, and on the other, it can
provide useful information to compare with the (F3)* center, due to the apparently
close relation between two centers. Because our present work was initiated by the

work of Holmann et al, we briefly summarize their principal results below:

1 For the FJ center in its ground state, in which an excess electron is equally
shared by two anion vacancies, they found that most of the electron density is
concentrated on the two Na¥ and four F~ ions in the plane between the two
F~ vacancies. They inferred that the F§ center has a more compact ground

state than that for the F center.

2 For the (Fi)* center, they found that its ground-state structure is much like
a single-vacancy F center rather than like the two-vacancy F3 center. The

excited (F7)* state looks like that of a FJ center.

3 1t is still unknown what the true configuration is of the dipole formed by the
Nat vacancy and divalent impurity in the {F§)* center. However, from their

experimental results and simulation, Hoftnann et al considered the case where

11



the divalent cation is not adjacent to the Na™ vacancy but dissociated. They
also assumed that the Nat vacancy sits at the nearest-neighbor position of

both anion vacancies of the FJ center.

The objective of the present work is to further test the model of Hofmann et
al. The previcus work by Mollenauer and Eisele et al suggested that the atomistic
structure of the (F3)* center, especially the impurity configuration, would be a
decisive point in the process of investigating the nature of the stability of this center.
In the present work, we perform a series of simulations in a systematic way, using
the ICECAP methodology, which is based on the unrestricted Hartree-Fock seli-
consistent field method with a shell-model lattice, to investigate both atomistic
and electronic structures of the (F3)* center. We consider Mg?*-doped NaF, since
previous investigations [15, 16, 17] have shown that the (FJ§)* centers in NaF with

different impurity doping display quite similar properties.
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In this chapter, we shall introduce the mathematical method and physical model
used in the present work. In order to simulate a defect in the crystal lattice and
investigate its physical properties, we look at the problem from a combination of
quantum-mechanical and classical points of view. This is simply because only taking
into account one of them will be either impractical or unrealistic. In section 3.1, we
shall present the Hartree-Fock approximation method which is often used for the
guantum-mechanical treatment of electronic problems. For this method, many text
books and articles can be found (see, for example, reference [18]). Therefore, we
only give a brief outline and general discussion. In section 3.2, we shall introduce
the shell model which concerns a classical treatment of the crystal lattice. Those
are two main concepts of the present work. In the last section, we summarize the

program ICECAP which we have used in this simulation.

3.1 Hartree-Fock Self~-Consistent Field Method

Generally, we are dealing with a many body problem when studying the nature of
a defect in crystals. The alkali halide crystal lattice is an array containing cations
and anions, consisting of nuclei and electrons. To desecribe such a system, the
Hamiltonian will be very complicated, since many different kinds of motions and

interactions are involved. Consequently, proper approximations are needed.

13



First, under the Born-Oppenheimer approximation, the static lattice approxima-
tion, the crystal can be seen as an array of ions with nuclel fixed at their lattice
points and electrons which are moving in a potential field. If this is applied, the
kinetic energy of nuclei can be dropped off from the Hamiltonian. Suppose there
are N electrons and M nuclei in the crystal. Then the Hamiltonian of the system
can be written as,

N M Z

T3V Y e N e Y i ()

— 1]
where, r; and R; are electron and nuclear position vectors, respectively; and Z;
are nuclear charges. The first term in equation (3.1) is the electron kinetic en-
ergy operator; and the other three terms are energy operators for electron-nuclear,
electron-electron, and nuclear-nuclear Coulomb interactions.

In equation (3.1), we have used atomic units, in which the Planck’s constant 7,
the electronic charge e and the mass m are all set to unity. The energy is in units
of Hartree, or a.u., and distance is in Bohr radius ap. We shall use these units

throughout this work. Explicitly, we have,

1 Hartree = 2 Rydberg = 27.2 eV
ag = 0.529 Angstrom.

Like in most quantum-mechanical problems, the next step we should follow is solve
the Shrédinger equation with respect to the wave function ¥ which describes the
whole system in a specific state. For a static lattice, consider the time-independent

non-relativistic Shrodinger equation,
H¥¢ = F¥ (3.2)

where, the Hamiltonian H is represented by equation (3.1}, and E is the energy
eigenvalue of H associated with the state ¥ of the system. Thus we first explore the

nature of the solution ¥. If we choose a complete orthonormal set of basis functions

14



&;, denoted |@; >, then the solution &, denoted |¥ >, can always be expanded as,
I’\? >= ECJ@: = (33)

where C; =< &;|¥ > are the expansion coefficients of ¥ in terms of the basis set @;.
For the N-electron problem, with the requirement of the Pauli exclusion principle,
it turns out that each ®; must be in the form of a Slater determinant, which is an
antisymmetric product of N independent single-particle functions.

In the Hartree-Fock approximation, the basic idea is that one assumes that ¥

only contains one single Slater determinant. Therefore, denoted ¥’ now, we have,

d1(x1)  ¢a(x1) - dn(x1)

o = (| A ) o dnlx)

(3.4)
¢1(;{N) go(xn) -+ dn(xw)

where, (N1)~1/2 is a normalization factor; x; represents both spatial coordinates ¥

and spin coordinates s;; and ¢;, ¢ = 1,2,---, N, is a set of N orthonormal single-

particle basis functions. At this stage, one can solve Shridinger’s equation (3.2)

variationally by substituting equation (3.4). Now, our problem becomes finding a

set of single-particle basis functions which satisfies the variational principle,

-5-%;[< W|HY >] =0 (3.5)

Le. < U'|H[¥ > is a minimum. It is easy to see that this is still a quite difficult
procedure to follow. Under the constraint that all the spin orbitals |¢; > in a given
single Slater determinant are orthonormal to each other, and with normalization of
', the variational principle leads to the single-particle Fock equation (for detail,

see reference [18]),

Fdﬁg = et-q_')i (36)

where, F' is the Fock operator, and ¢, ¢ = 1,2, -, V, are its eigenvalues, or Fock

energies, with respect to the Fock state ¢;. In equation (3.6), the Fock operator is

15




in the form,

—wvg Z —%—/dxpx %) fd.& % sl - | TP (%, %)
(3.7)

where, P(x,x') is the interchange operator which operates on spatial-spin coordi-
nates x and ¥, and p(x,%x’) is the Fock-Dirac one-particle density operator which

can be writien as,
p(x,x) = z | () >< @u{x)| (3.8)

In the single-particle Fock operator, equation (3.7), the last term is called the ex-
change interaction, due to exchanging spatial-spin coordinates between x and %'
Since the Fock operator depends on its own eigenfunctions, the Fock equation (3.6)
can only be solved iteratively. We rearrange equation (3.7), by putting the third

and fourth terms together, as,
Z f d|r |} f d"6(x" %)L = P, x")]p(x, x") (3.9)

Now in equation (3,9), the last term is called the seli-consistent field because it
represents the “ field ” which is seen by the ith electron and results from the N — 1
others. In order to solve the Fock equation, one first chooses an initial trial wave
function and substitutes it into equation (3.9) to get a corresponding “ field .
Then by solving equation (3.6), one obtains a new wave function. Following this
routine repeatedly, one can make the self-consistency satisfied, and find the final
eigenfunctions as well as the energy eigenvalues of the Fock operator. Apparently,
there are many solutions that we can have, It all depends on how we choose the
spin orbitals which construct the initial wave function.

Usually, twe types of spin orbitals have been used. Oue is the restricted spin
orbitals and the other is the unrestricted spin orbitals. In both of them, each spin

orbital can be written in the form,

Ps(%:) = &:(ri)mi(ss) (3.10)
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where, ¢;(r;) is the spatial orbital and n;(s;) is the spin eigenfunction. For the
restricted spin orbitals, the spatial orbital ¢:(r;) must satisfy the requirement of
double occupancy. That is, for each ¢;(x;), there are two 7;(s;)’s assigned — spin up
and down. Therefore, IV electrons in the system will fill up only N/2 spatial orbitals
provided NV is even. In the case of the unresiricted spin orbitals, the requirement is
that each spatial orbital can only take the product with one of the spin eigenfunctions
—— gpin up or down. This means that for spin up and spin down states, spatial
orbitals may be different. These two different types of spin orbitals define two
different methods — restricted and unrestricted Hartree-fock approximations.
Basically, there are two advantages in favor of the unrestricted Hartree-Fock
method over the restricted regarding the cluster calculation: one is that the chem-
ical bonds can dissociate properly; and the other is that electrons having opposite
spins are allowed to correlate to each other [19]. Our present work is based on the
unrestricted Hartree-Fock self-consistent field method. We shall see this point in
section 3.3, where some further considerations, such as choosing the basis sets, will
be given and in chapter 4, where we shall present specifically the problem we are
studying and give the results. In the next section, however, we shall first introduce
another approximation needed in our work — the shell model, which treats the crys-
tal lattice classically, and therefore can be seen as complementing the unrestricted

Hartree-Fock self-consistent field method 1n the present work.

3.2 Shell Model

The shell model was first developed by Dick and Overhauser {20} for classical treat-
ment of the ionic crystals, which consist of polarizable cations and anions with
opposite charges. This model has been used successfully to evaluate many physical
properties of the ionic erystals and provides good agreements with the experimental

results [23].
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In the shell model, the short-range interactions among ions are considered pairwise
and they can be described in terms of several parameters. Each ion with fotal charge
{J is assumed to consist of two parts: a rigid shell with charge ¥, and a rigid core with
charge (¢ —Y). The mass of the ion is carried entirely by the core, and so the shell is
considered massless. The shell and core of an ion are coupled harmonically through
a spring such that the potential energy of the short-range interaction between them

can be written as,

ofx) = ske’ (3.11)

where & is the force constant and x is the shell-core separation. The short-range
interactions between two ions are considered to act between their shells. In the
original work of Dick and Overhauser, these interactions were also described in
a harmonic form like equation (3.11). However in later work, it was found that
they are better represented in the form of the Buckingham potential [23], which is

anharmonic,

wz C
V(r)= Be % — 5 (3.12)

where r is the shell-shell distance between two ions and p is the range constant.
In equation (3.12), the first term represents the Born-Mayer repulsive interaction
that is usually interpreted as overlap interaction between two ions; and the second
term is the Van der Waals attractive interaction which results mostly from the
correlation, or dispersion, effects [23]. All the ions, as peint charges, experience
Coulomb interactions with other ions. Therefore, in the shell model, we can use
parameters &k, ¢J, ¥, B, p and C to describe the whole crystal classically, Many
physical properties can be evaluated, such as elastic constant, dielectric constant,
equilibrium configuration etc.

This model is of particular importance for the present work. One reason, as we
mentioned earlier, is that it is not practical to treat the whole crystal quantum-

mechanically. On the other hand, we also cannot treat the defect problem in a fully
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classical way. Therefore, we can say that this model makes it practical for us to
simulate a guantum-mechanical defect cluster embedded in the crystal lattice. The
other reason is that it also makes it possible for us to further employ a simple model
for investigating more complex defect problems, such as the (F3 )" center. We shall

see this point in chapter 4.

3.3 ICECAP: Unrestricted Hartree-Fock
Embedded-Cluster Computation

In this section, we describe the program used in the present work. This program,
ICECAP, has been very successful in many point-defect calculations. The features
of the program are fully discussed by Vail [22]. Here, we only describe some main

points related to the present work.

3.3.1 Cluster Model

In the ICECAP method, the unrestricted Hartree-Fock self-consistent field method
is used for the reason mentioned earlier in section 3.1. A defect cluster is chosen to
include the excess electrons of the defect and ions perturbed both electronically and
atomistically by the defect. All of these electrons and ions will be treated gquantum-
mechanically by the unrestricted Hartree-Fock self-consistent field approximation.
At the same time, we consider the cluster embedded in an infinite classical crystal
lattice described by the shell model, in which the 1on-ion interaction is represented
by the Coulomb potential and the shell-model short-range potential. The latter has
the Buckingham form of equation (3.12).

Under the unrestricted Hartree-Fock self-consistent field approximation, the spin
orbitals can be described by equation (3.10), in which spin eigenfunction n;(s;) has
either spin up or down. The way we solve the Fock equation (3.6) is still variational.

We first have to choose the spatial orbitals ¢;{r). Generally, we can expand ¢;{r) in
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terms of a linear combination of atomic orbitals yp(r},
¢i(r) = 3 cra(r) (3.13)
k=1

where, n is the number of atomic orbitals and ¢, are expansion coefficients. In
equation (3.13), yp(r) are chosen to be gaussian-type functions {(called primitive
functions), since they are both computationally convenient and well localized. More

specifically, we have,
x(r) = Neexp(—anlr — By ¥ (&) (3.14)

where, ¢} is the exponential coefficient of the gaussian function, N}, is the normal-
ization factor, and Y™ is a spherical harmonic with angular dependence §i. We
can see from equation (3.14) that the gaussian function is localized at the site R;.
Therefore, the molecular orbital ¢;{r) depends on a set of parameters oy, (I, m, j}
and coefficients ¢;;. By substituting equations (3.13) and (3.14) into the Fock equa-
tion {3.6) while changing oy and ¢; variationally, one could obtain the solution of
the Hartree-Fock wave function by minimizing the total energy. This energy can be

expressed in the form of the following three parts,
Ere=FEoc+ Egp+ Ernr (3.15)

where, E¢ is the Hartree-Fock cluster energy, Eg is the environment, or embedding
lattice, energy, and Eyyr is the interaction energy between cluster and its environ-
ment. It is worth mentioning that the number of gaussian primitive functions, n, is
also an important factor in this procedure. Its minimum is the number of electrons
in the defect cluster. In principle, increasing n will bring higher accuracy. How-
ever, it also tremendously increases the computer time for the calculation due to
the Hartree-Fock quantum cluster treatment. It is a practical question when one
should stop raising n. It is also often impractical to variationally determine the ay,

since sometimes it means an unpredictable amount of computer time. Therefore in
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practice, one usually takes the oy from some other work. In the present work, the
op and contraction coefficients are taken from Huzinaga [32]. The whole procedure
mentioned so far in this section will be explicitly illustrated in section 4.2, where
the ground states of the F and FJ centers are studied.

Actually, some other aspects of the cluster model of the ICECAP method are not
mentioned here. For instance, one might ask how an embedded quantum cluster
can fit with an embedding classical shell-model lattice. It raises the problem of the
cluster-lattice boundary conditions, mainly ion-size effect, i.e. the electronic struc-
ture of the embedding ions. This is completely ignored in the classical treatment
of the embedding region. In ICECAP, this problem is dealt with by a procedure
called Kunz-Klein localizing potential [21}. In the present work, we do not introduce
the Kunz-Klein localizing potential. The effects among ions are taken into account
by the shell model. Also, in our calculations, we do not include the correlation
correction, which may be introduced into ICECAP to improve on the Hartree-Fock
approximation. For details of the Kunz-Klein localizing potential and correlation

correction, see, for example, reference [22].

3.3.2 The ICECAP Program

ICECAP, standing for Ionic Crystal with Electronic Cluster: Automatic Program,
was developed in 1984 [24, 25] to carry out calculations of point and cluster defects
in alkal halide crystals. It was designed as a user-friendly program with a highly-
illustrative keyword-based input data format. ICECAP offers many options which
make it suitable for a variety of applications. For instance, one can use it to simulate
a defect cluster, which could be either a very complex impurity defect or a point
defect with comparatively simple structure, like an F center. One also can use
ICECAP for the perfect crystal. A variety of electronic and atomistic properties

can be provided by ICECAP calculations.
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The ICECAP program is constructed mainly from two other programs, namely
HADES and UHF. HADES — Harwell Automatic Defect Examination System [28]
— deals with an infinite crystal lattice containing a defect by using only the shell
model. It can be used for many different types of the crystals and defects, with
various choices of the form of the ion-ion short-range potentials., In the present
work, the lattice geometry is FCC and the short-range potentials are chosen to be
the Buckingham type (see equation (3.12)). In the HADES program, the crystal
is divided into two regions — region I (inner region} and region II {outer region).
Region I includes the defect cluster and a certain number of the neighboring ions.
Its radius should be specified by the user. Region Il extends to the entire infinite
crystal. In the lattice relaxation process, HADES consistently and explicitly varies
the core and shell coordinates of ions in region I to minimize the total energy un-
til the equilibrium configuration is reached. Meanwhile, it treats the region II in
the continuum approximation, i.e. electrostatic approximation. The lattice polar-
ization is also taken into account. The region I is chosen by assigning a specific
number of ions in the input data. The program will then determine the radius of
region I accordingly. HADES provides many useful properties of the crystal, such
as the shell-model energy Ey, elastic and dielectric constants, equilibrium atomistic
configuration, and so on. On the other hand, the UHF program — Unrestricted
Hartree-Fock, which was developed by Kunz et al [22] — treats the defect cluster
region quantum-mechanically. Several requirements must be satisfied before UHF
runs. We first have to specify the characteristics of the defect cluster. This includes
its chemical structure and electronic features. Specifically, we must tell the program
the nuclear charges and positions in the cluster, and the interactions between the
cluster and the lons in the embedding crystal lattice. The basis sets also have to be
specified. This means that the parameters (I, m, j) in equation (3.14) should be

assigned proper values. One also can use other options such as Kunz-Klein localizing
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potential (see section 3.3.1). UHF then determines the energy eigenvalues ¢; and
eigenvectors ¢; in equation (3.6} as well as the Hartree-Fock energy E¢ in equation
(32.13). It also provides a lot of other information about the electronic properties of
the defect cluster, such as spin, Mulliken populations, multipole moments, and so
forth.

In ICECAP, HADES and UHF are linked together along with the other auxiliary
programs to complete the calculation automatically. For each cycle, first the charge
distribution in the cluster is estimated and represented as point charges, HADES
then fixes the defect cluster and relaxes the surrounding lattice by moving the shell
and core positions of the neighboring ions, with polarization taken into account, to
reach the minimum of the HADES energy Fy. Then, UHF is applied to the cluster
to obtain the minimized Hartree-Fock cluster energy Ee and wave function ¥/ in
terms of the electronic configuration while optimizing the coefficients cy;. Note that
corresponding to each step in the variation of the cluster atomic positions, UHF
also performs a minimization. In doing so systematically and consistently, the final
minimization of the total energy is reached.

Practically, in the ICECAP program, the total energy Ey is evaluated in a slightly
different way than in equation (3.15). The HADES energy Fy is the classical shell-
model energy for the whole lattice, in which the classical Coulomb energy Wy and
the short-range interaction energy Wy for the cluster are already included in the
Hartree-Fock cluster energy Fe. Therefore, these two parts are subtracted out from

Ey when calculating the total energy E;. That is, equation (3.15) now becomes,
Er=Ec+ Ejyp + Eyg —We — Ws (3.16)

So far, we have only given a general outline of the ICECAP program. More
specific features will be seen when particular problems are discussed in the next

chapter.
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Up to now in the previous chapters, we have given the general mathematical formulae
and physical models as the background of the present work. In this chapter we
shall further explore the particular methods and considerations that we need to
accomplish our task. We shall also give the results of the calculations and discuss

them in detail.

4.1 One-Electron Model for the (¥])* Center

The (F5)* center has a more complicated structure than other F-type centers do.
We have not yet scen any theoretical investigation conecerning the properties of the
(F3)* center, although some experimental work has been done.

The (F§)* center consists of an FJ center and an Mg®*+-Vy,, dipole. The FJ center
is formed by two adjacent anion vacancies. For the ground state of the (F3)* center,
Hofmann et al proposed a planar model in which the Mg?*-V'y, dipole points away
from the F§ center and is split (see figure. 2.2), with the cation vacancy staying
at the nearest-neighbor position of both anion vacancies, and the excess electron
localized in the anion vacancy which is closer to the doubly charged impurity cation
(Mg**).

In order to investigate thoroughly the correctness of the Hofmann model and set

up a firm foundation for further theoretical study of properties of the (F3)* center,
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one should counsider other possible electronic and atomistic configurations, compar-
ing their energies with each other and with the Hofmann model in a systematic
way. However, the structure of the (F3)* center is so complicated that to use the
full power of the ICECAP methodology (see section 3.3), with adequate guantum
clusters, would be prohibitively time consuming for us. For instance, even if we only
simulate the Hofmann model, which is planar, not only shall we have a cluster with
very low symmetry which is €y, but also we will be dealing with a fairly large cluster,
which includes two anion vacancies (an F§ center), one cation vacancy (Vi ), one
doubly charged cation defect (Mg?") and at least their eighteen nearest-neighbor
ions, of which half are Na® and half F~. This cluster will contain 191 electrons. To
determine the energy of a single configuration with that many electrons, and with
self-consistently relaxed lattice, is a very large calculation. In addition, to complete
the study of the structural model for the (F3)* center, many other configurations
need to be taken into account.

Therefore, to make this simulation more practical, but at the same time not lose
too much its validity, we consider a more efficient and simpler model for the (F3)*
center, Once again, using the Hofmann configuration as an example, we consider a
gquantuim-mechanical cluster that consists only of the trapped excess electron. All
the ions of the crystal, including the Mg?t impurity, are described by the shell
model. Thus we shall have to deal only with a one-electron quantum-mechanical
problem. Obviously, this one-electron model will significantly reduce the amount of
calculation. However, before we apply this model to the simulation, there are some
other important points which must be considered.

First of all, it is necessary to determine the shell-model short-range potentials.
Many defect calculations in ionic materials [27, 28] have indicated that the quality
of the potentials used to model the crystal lattice is a major concern in calculating

the defect energy with high accuracy. In other words, we should be very careful in
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dealing with these potentials.

Generally, there are two kinds of potentials in our (F§)" center problem. The first
is the interionic potentials. Most of them, such as those for Nat-Nat, Na*-F~ and
F~-F~ interactions, are the ionic potentials of the host crystal which can be obtained
from previous study [30, 31]. In the present work, the parameters of these potentials,
B,C and p in equation (3.12), have been taken from Catlow et al [30]. The only
exception is the potential for interaction between the Mg?* impurity and ions of
the host crystal. Because Mg?t is a tightly bound cation, it is usually assumed
to be unpolarizable. That is, in the shell model, we see it as a point charge, or
only as a core without a shell. For the same reason, we also neglect the interaction
between the Mg*t and its second nearest-neighbor ions, namely Nat. As for the
interaction between Mg?* and F~, MgFs does not have the rock-salt structure like
our host crystal NaF, and its nearest-neighbor lattice spacing is totally different
from that for NaF. The way we determine the Mg?™-F~ short-range potential is by
using the ICECAP method. That is, we put Mg?t in a cluster that includes its six
nearest-neighbor F~ ions, and carry out an embedded quantum-mechanical cluster
calculation. We will come back to this point in the next section.

The second kind of potential must express the F-center interactions with Na™v
and I'™ ions, as well as with the Mg®* impurity. Although there has been a variety
of quantum cluster calculations involving F-type centers in alkali halides, they do
not consider the equivalent pairwise classical potentials of the F center-ion inter-
actions. In the present work, we assume that F center-ion short-range potentials
have the Buckingham form. Then we determine these potentials from large embed-
ded quantum-mechanical cluster calculations. We will discuss this in more detail in
section 4.4.

We also investigate the possibility of scaling the F center-Na™ potential to apply

it to the F center. When this is found to fail, new potentials are derived for FJ-ion
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interactions. There remains the question of the compatibility of these derived F- or
Fj-center potentials with the varying configurations studied for the (F3)* center.

This point will be discussed in section 4.5.

4.2 Short-range Potential: NaF: Mgt

In this section, we shall derive the Mg?T-F~ short-range potential. The method is
originally from Pandey and Vail, who have used it for hydrogen anions in MgO [29].

Because we have ignored the polarization and second nearest-neighbor interac-
tion of the Mg®*, we now only have to take an (Mg?"){F~)g cluster (see figure 4.1},
which has 70 electrons treated quantum-mechanically in the UHF-SCF cluster cal-
culation, to derive the nearest-neighbor short-range Mg?*-F~ interaction by using
the ICECAP program. The basic idea in this method is that we use a shell-model
cluster to simulate the corresponding Hartree-Fock quantum cluster. Both of them
are embedded in the identical classical NaF shell-model crystal. We first assume
that in NaF, the Mg?* cation interacts with its six nearest-neighbor F~ anions simi-
larly as it does in MgF5, following equation (3.12) which is of the Buckingham type.

Equation (3.12) can be re-written as,

C

V(B,C,p;r) = Be 5 — & (4.1)

We are going to determine B, C and p by varying ». Further, we let
Ey(r) = Ex(r) — 6V(Bo, Cy, po; ) + 6V(B,C,pir) + k (4.2)

where, F;(r) is the ICECAP (total) energy, Eg(r) is the shell-model energy, which
we will call the HADES energy because it is calculated by the HADES program [26],
By, Cp and pqg are the short-range parameters for Mg?+-F~ interaction for MgF,, and
k is a renormalization factor. Note that HADES is part of ICECAP, so we just take

the HADES energy from the ICECAP output, and do not have to run it separately.

27



OOOOO
O@0.0
OO OO
QQ.O
DOOOO

Figure 4.1: The nearest-neighbor cluster for NaF: Mg?*
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Table 4.1: Parameters of the Buckingham short-range potentials for Nalf crystal:
taken from Catlow et al [30].

B (eV) p(A) C (eVAY)

Na® - F~ 1594.2 0.2555 0.0
Na* - Nat 7895.4 0.1709 11.68
FT-FT 1127.7 0.2753 11.68

To get a fit for the parameter set B, C, p and k from equations (4.1) and (4.2), we

define a new function,

fi(B)Cap)k) =0 (43)

with

fi = Er(ri} — Eg(r;) + 6V (Bo, Cy, po; 1) — 6V(B,C,p;7ri) — k (4.4)
where, ¢ = 1,2 3,4, corresponding to four different r values which we need to solve
equation (4.3) for B, p, C and k.

In the calculations, actually we have taken five r values, to fit the potential more
accurately about the equilibrium position. We compress and enlarge the cluster
through moving its six nearest-neighbor F~ ions inward and outward about the
equilibrium positions in the range of 20 percent of the perfect lattice spacing. Then
we have five equation (4.3)’s in terms of r;, where r; = 0.80a, ro = 0.85¢a, r3 = 0.90a,
rs = 0.95a and r5 = 1.00a. Notice that a is the perfect lattice spacing of the NaF
crystal, being taken as 2.295 A. The parameters of the shell-model potentials of
the host crystal are taken from reference [30], shown in table 4.1. Gaussian basis
sets for Mg*™ and F~ are obtained from Huzinaga [32], both of them with (43/4)
contraction. For Mg?*, actually we have used the free Mg set. The basis sets are
shown in tables 4.2 and 4.3.  We judge the fit obtained by solution of equation (4.3)
by considering

5= AP, (4.5

and require s < 1072 (eV)2. In table 4.4, we list the energies E; and Ey calculated
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Table 4.2: Contracted basis set for Mg?t: taken from the free Mg (43/4) set
of Huzinaga [32]. The exponential coefficient ¢ is in Bohr atomic

units ag 2.
Orbital & Contraction
1s 1894.178400006 0.0188745
285.51327000 0.1310931
64.27509500 0.4577635
17.10119200 0.5308957
25 25.82549500 —{.0885017
2.38817270 0.5838364
0.81051998 0.4933946
2p 50.71731100 (.0403941
11.43098500 0.2236495
3.23696950 0.5120981
0.92860588 0.4443718

Table 4.3: Contracted basis set for F: taken from the free F~ (43/4) set
of Huzinaga [32]. The exponential coefficient « is in Bohr
atomic units a5,

Orbital s Contraction
Is 1040.66250000 0.0192338
156.68433000 0.1333205
35.11987900 0.4609976

9.29325510 0.5266653

73 13.98919800 —(.0797469
1.16228750 {.5838895

0.32317716 0.5075939

Zp 16.10617300 8.0523561
4.14631680 0.2585270

1.07208680 0.5082607

(0.23984997 (0.4634154
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Table 4.4: ICECAP energy E; and HADES energy Ey for the (Mgt )(F )4 cluster:
both are in units of eV. The separation of Mg?* and F~, », is in units of
NaF nearest-neighbor spacing.

T E_r EH
0.80 —21629.42 —14.47
0.85 —21630.65 -~15.54
0.90 —21630.74 —-15.69
0.95 —21630.05 —15.16
1.00 —21628.88 —-14.13

Table 4.5: The parameters of the Mg®"-F~ shell-model interaction:
a. taken from Mackrodt and Stewart [31] for MgFs.
b. derived from cluster calculation.

B (eV) p (A) C (eVAS)
a 4378.43 0.22614 0.4393
b 24671.69 0.1847 0.0

with ICECAP for the (Mg?t)(F~)s cluster embedded in the relaxed NaF shell-
model lattice. The equilibrium nearest-neighbor distance for this cluster is found
to be 0.89 a. In the fitting, we find that we can only get the best fit with C = 0
(if € # 0, we have very large s). This means that the Mg** cation interacts with
the host '~ anions in the form of the Born-Mayer potential. In table 4.5, we give
the results from the fitting, together with the Mg?*-F~ interaction parameters for
MgF, taken from reference [31], for comparison.

From table 4.5, one can see that the short-range interaction between the Mg?*
impurity and its nearest-neighbor F™ anions in NaF is quite strong, but the range

of the interaction is slightly shorter than that in MgF,.

4.3 F and FJ Centers: Ground States

We now analyze the F and Fj centers, which are two basic elements of cur (F§)*

problem. In this section, we determine the basis sets and equilibrium configurations
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of these two centers in their ground states in NaF. In the next section, we shall
derive the short-range potentials between each of them and host ions, as well as the

F center-Mg?* potential.

4.3.1 The F Center

The work of Pandey and Vail [29] indicates that in MgQ, although the F center
is fairly well localized in the anion vacancy, its wave function is relatively diffuse.
They found that the defect’s properties are sensitive to the defect basis sets and
lattice relaxation. In our analysis for the F center in NaF, we first consider a
nearest-neighbor (Nat)g(F center) cluster (see figure 4.2) to determine the F-center
basis set. Then we enlarge it to a second nearest-neighbor (Na®)g(F~)12(F center)
cluster (see figure 4.3) and optimize the the F-center basis set in this cluster. These
two clusters have the same symmetry. There are 61 quantum-mechanical electrons
in the former case but 181 in the latter. Finally, we calculate the equilibrium
configurations of the second nearest-neighbor defect cluster embedded in the NaF
shell-model crystal.

To determine the F-center primitive functions in NaF, we need the exponential
coefficients o of its gaussian-type orbitals. We keep the F center basis set uncon-
tracted throughout our work. In the nearest-neighbor (Na¥)s(F center) cluster, we
have taken the F center orbital to be of s type. We estimate an initial value of «
using following equation,

R = (2a)71? (4.6)

where, [2, in units of NaF perfect lattice nearest-neighbor spacing, is the range of
the orbital. If we let B = 0.5 a, we obtain « approximately with the value of
0.1 a3?, where ag is the Bohr atomic radius. For the six nearest-neighbor Na™
ions, we use the free Nat basis set from Huzinaga [32], with (43/4) contraction,

shown in table 4.6. We execute a series of UHF-SCF cluster calculations by using
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Figure 4.2: The nearest-neighbor cluster for the F center in NaF
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Table 4.6: Contracted basis set for Na™: taken from the free Nat (43/4) set
of Huzinaga [32]. The exponential coefficient o is in Bohr atomic

units ag>.
Orbital e Contraction
is 1562.63160000 0.0192363
235.88220000 0.1329879
53.172206000 0.4600791
14.15975900 0.5269627
75 21.42552200 —0.0856725
1.93426680 0.5778588
(0.62799346 0.5024330
Z2p 38.80258600 06.0427562
8.67551940 0.2304547
2.41015550 0.5105285
0.65992043 0.4488300

ICECAP program, while keeping six Na® neighbors at their perfect lattice positions
and varying « of the F-center basis set to minimize the total energy. Table 4.7 gives
the results from these calculations, including the optimized a and total energy.
Then we add a second s orbital to the F-center basis set and perform the same
calculations. We fix a,; at 0.08 aj 2 while varying a,s to obtain minimized total

energy. In table 4.8, we give the results of these calculations. In comparison with

Table 4.7: Total energy E, in units of eV, calculated for the (Na™)4(F center) cluster:
with the F-center (1/0) set and the Nat {43/4) set (see table 4.6). The
exponential coefficient a of the F-center basis set is in Bohr atomic units

ao_g.
o E
(.10 —26354.44
0.08 —26354.48
0.08 —26354.48
0.0872976 ~26354.501

1 Optimized values
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Table 4.8: Total energy E, in units of eV, calculated for the (Na't)g(F center) cluster:
with the F-center {11/0} set and the Na™ (43/4) set (see table 4.6). The
exponential coeflicient « is in Bohr atomic units ag 2. The w;, for the
F-center basis set is fixed at 0.08.

[ i
0.20 —26354.52
0.10 —-26354.53
0.06 —26354.51
0.1351180 —26354.537

1 Optimized values

Table 4.9: Contracted Na 3s orbital: taken from the free Na (433/4) set
of Huzinaga [32]. The exponential coeficient ¢ is in Bohr
atomic units ag %

Orbital e Contraction
3s 0.52440000 —0.1133903
(0.05407000 0.7008421

0.021060060 0.3743411

the case of a single s orbital, we see that adding a second s orbital to the F-center
basis set only lowers the total energy about 0.03 eV.

Another key point that we want to know is whether the F-center electron is mainly
localized at the center of the vacancy, or is occupying the Na 3s orbitals. Many
previous investigations on the F-center electronic properties assumed the former.
To investigate this, it is necessary to add the 3s orbital to the Na™ basis set and
see where the excess electron tends to go by looking into the Mulliken populations
from the ICECAP calculation. In order to make this simple and still comparable
with the calculations done without the Na 3s orbital, we do not use the complete
Na {433/4) basis set, which is also available from reference [32], but only add its
3s orbital to the NaT (43/4) set. Table 4.9 lists this Na 3s orbital basis set. We
only carry out one single calculation for the purpose of comparison. We use the

F-center {1/0) basis set at the vacancy. The total energy lowering from the extra
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Table 4.10: Mulliken populations calculated for the (Na™)g(F center) cluster:
with the Nat (43/4) and {433/4) basis sets. For the F-center {1/0)
basis set, ¢ is taken to be 0.09.

Na™ (43/4) basis set Nat (433/4) basis set
spin up total spin up total
F center 1.0006 1.0069 (.8834 0.8913
Natls 1.6000 2.0000 (.999¢ 1.9998
Na*2s 1.6000 1.9997 0.9992 1.9981
Nat3s - - 0.0213 0.0228
Nat2p 1,0000 1.9992 0.9994 1.9982
1,0000 2.0000 0.9998 1.9996
1,0000 2.0000 0.9998 1.9996

Na 3s orbital 1s 0.22 eV. In table 4.10, we give the Mulliken populations from both
Na* (43/4) and Na (433/4) basis sets. We see that with the Na 3s orbital available,
the excess electron still shows a strong tendency to stay at the vacancy site. The
Na 3s orbital only reduces the Mulliken population of the spin up state of the excess
electron at the center by 12 percent, of which each of the six nearest Na™ neighbors
is responsible for 2 percent. The total population at the center is also reduced by
about the same amount. So, introducing the Na 3s orbital does not result in much
charge transfer from the defect center to its six nearest Na™ neighbors.

From all of above, we believe that for the present simulation on the F center in
NaF, there is no need for including the second F-center s orbital or the Na 3s orbital.
It is sufficient to use only the F-center (1/0) and the Na™ (43/4) basis sets for our
further cluster calculations.

We are now in a position to analyze the ground state properties for the F center in
the second nearest-neighbor cluster. In this quantum cluster (see figure 4.3), we use
the Na't (43/4) contractions (see table 4.6) for the six nearest-neighbor Na* ions and
the F~ (43/4) contractions {see table 4.3) for the twelve second nearest-neighbor F~

ions. In order to investigate the distortion field and the equilibrium configurations of
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Table 4.11: Minimized total energy Ey, for the ground state of the F center
in the second nearest-neighhor cluster: corresponding to the F-
center-nearest-neighbor ion distance d; and the F-center-second-
nearest-neighbor ion distance da, both in units of perfect lattice
nearest-neighbor spacing a, and the optimized exponential coef-

ficient a.

dy (a) dy (a) a (ag?) E; (eV)

0.70 1.41 0.176986%8 —58784.56
0.90 1.41 0.1141181 —5b8794.31
1.007 1.41 £.0940154 —58795.14
1.10 1.41 0.0773169 ~b58794.28
1.2¢ 1.41 0.0555198 —58792.00
1.00 1.31 0.0857267 —58793.46
1.00 1.36 0.0949671 —58794.74
1.00 1.40% $.0941722 —58795.16
1.00 1.41 0.0940154 —58795.14
1.00 1.46 0.0930410 ~58794.31
1.00 1.51 0.0925192 —58793.01

1 Equilibrium position for the nearest-neighbor ions
I Equilibrium position for the second nearest-neighbor ions

the defect crystal, we shall compress and enlarge the cluster by varying the nearest-
neighbor and second nearest-neighbor positions. This is a similar procedure as in the
previous section for deriving the Mg®*-F~ potential, but here at every position we
optimize the exponential coefficient & by varying it to get the minimized total energy
of the defect latiice. First, we fix the second nearest-neighbor F~ positions and move
the nearest-neighbor Na* ions. We compress the cluster by 30 percent and enlarge it
by 20 percent of the perfect lattice spacing. Then, the nearest-neighbor Na™¥ ions are
held at their perfect lattice positions and the F~ ions are moved inward and outward
by about 7 percent. We choose the large displacements so that the results can be
used in the next section to derive effective potentials. Table 4.11 gives the minimized
total energies and corresponding optimized @’s in terms of the different F center-ion

distances. The equilibrium distances of the nearest-neighbor ions and of the second
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Table 4.12: Mulliken populations for the ground state of the F center:
second nearest-neighbor cluster.

Spint up total
I center 1.6000 1.6128
Natls 1.0000 2.0000
Nat2s 1.0000 1.9998
Nat2p 1.0000 1.9961
1.0000 2.0000
1.0000 2.0000
F~1s 1.0000 2.0000
F~2s 1.0000 1.9999
F=2p 1.0000 1.9998
1.0000 1.9998
1.0000 2.0000

nearest-neighbor ions are also presented. We find the nearest-neighbor equilibrium
positions almost at their perfect lattice positions (displaced inward 0.0001 a) and
the second nearest-neighbor equilibrium positions slightly inward (0.01 a) from their
perfect positions. The total relaxation energy of these displacements is only 0.02 V.
In table 4.12 we show the Mulliken pepulations obtained for this second nearest-
neighbor cluster. Only (—0.01) electron charge is found to transfer into the defect
center from the neighboring ions. In conclusion, we find that, although the F center
is quite flexible and polarizable, in this high-symmetry ground-state configuration,
it is strongly localized in the defect center and produces negligible distortion. These

properties may not prevail, however, in lower-symmetry states,

4.3.2 The FJ Center

We now explore the FJ center ground state. This center has a lower symmetry (Dyp)
than the F center because it consists of two vacancies along the [110] direction.

If we still consider a second nearest-neighbor cluster as before, it will contain 10
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nearest-neighbor Na™ ions and 18 second nearest-neighbor F~ ions, with a total of
281 quantum electrons. Such a large, low-symmetry cluster would be very time-
consuming to analyze using ICECAP. Thus we consider a nearest-neighbor cluster
(see fig 4.4}, which only consists of 10 Na™ ions and 101 quantum electrons.

The procedure of analyzing the F§ ceater is almost the same as that we used
earlier for the F center. We first keep the nearest-neighbor Na™ ions at their perfect
lattice positions and optimize the FJ center basis set. Then the parameters of the
basis set are fixed at the optimized values and we vary the nearest-neighbor positions
to minimize the total energy of the defect lattice. At the same time, the HADES
part of ICECAP relaxes the rest of the lattice and deterinines the ion positions.
There are three inequivalent sets of nearest neighbors. For each set, we vary the
positions of these nearest-neighbor ions in a systematic way. For instance, we take
one step outward in one direction, say x, and then take several steps(inward and
outward) one by one in the other two directions, namely y and z. Next we move
the x position again. When we obtain the relaxed configuration and corresponding
minimized total energy of the defect lattice, we keep the nearest-neighbor ions at
their relaxed positions and re-optimize the basis set. Iterating this, we get the finally
relaxed lattice configuration and the minimized total energy of the defect lattice.

In this calculation, we use the same basis set for the Nav ions as before. For
the FJ center, there are two possibilities to be considered. One is that, with the
F-center electron shared between two vacancies, it may be necessary to add a 2p
gaussian orbital to the F-center (1/0) basis, to have a (1/1) basis set. The other
is with the F-center electron at the saddle point, the 1s and 3d orbitals will need
to be considered, giving a (1/0/1) basis set. Table 4.13 shows the results for these
two cases. There are only coordinates for three nearest-neighbor ions shown in the
table since all ten can be sorted into these three groups. In table 4.14 we give the

Mulliken populations from the (1/1) set calculation.  Table 4.15 is for the case
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Table 4.13: The ground-state results for the FJ center in nearest-neighbor cluster:
minimized total energy Ey (eV), relaxation energy AF (eV), optimized
o (ag?), relaxed F center distance d (@) and nearest-neighbor coordi-
nates of the relaxed configuration =, y, z (a), for basis set (1/1) at the

two vacancies, and for basis set (1/0/1) at the saddle point (origin).

O Gy Qg By AFE d Y z

(1/1) 009 011 - —4393545 0.34 1.33 0.35 —0.55 0.00
0.48 1.55 0.00

(.49 0.49 1.05

(1/6/1) 0.13 ~ 0.09 —43834.63 0.35 - 0.50 —0.50 0.00
0.50 1.55 0.00

0.50 0.56 1.08

Table 4.14: Mulliken populations for the F§ center with (1/1) basis set

in each vacancy, unrelaxed and relaxed configurations.

Unrelaxed Relaxed
Orbital spin up  total spin up  total
F center s 0.4603 0.4688 0.4676 0.4735
F center 2p 0.0291 0.0363 0.0239 0.0298
0.0291  0.0363 0.0239  0.0298
0.0070  0.0139 0.0058 0.0114

Table 4.15: Mulliken populations for the F3 center with (1/0/1) basis set
at the saddle point, unrelaxed and relaxed configurations.

Unrelaxed Relaxed

Orbital spin up  total spin up  total
I center Is 0.6413 0.6495 0.6115 0.6190
F center 3d (.1218 0.1283 0.1276 0.1334
0.1218 0.1283 0.1276 0.1334

0.0797 0.0845 0.1009 0.1036

0.0585 0.0622 0.0634 0.0564

0.0065 0.0128 0.005% 0.0116

{.0065 0.0128 0.0058 0.0116
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of the (1/0/1) set. From these tables, it can be seen that for both cases, the defect
lattice gains almost the same amount of energy lowering (0.34 ~ 0.35 eV) through
lattice relaxation. However, for the {1/1) set, the total energy of the defect lattice is
about 0.82 eV lower than that for the {1/0/1) set. In the case of the (1/1) set, two
saddle-point ions are spread cut by about 5 percent of the nearest-neighbor lattice
spacing in both x and y directions. The remaining 8 nearest-neighbor ions are also
moved out by 5 percent in only one direction (x, y or z). The centers of the two
lobes of the F-center wave function move closer to each other by about 6 percent.
In conclusion, the Fj-center electron is split between the two vacancies, rather
than localized at the saddle point. Because of the net positive charge, the nearest
neighbors are forced outward by 5 to 7 percent of the perfect lattice nearest-neighbor
distance. From table 4.14, we see about (~0.09) charge transfer into the center from
its nearest neighbors, with about (—0.14) charge in overlapping p-type orbitals from

the two vacancies.

4.4 Classical Potentials for the F-type Centers

Before we can start investigating the (FT)* center using the one-electron model,
we must obtain all the short-range potentials for interactions between the F-type
centers and ions in the crystal. First we derive the F center-host ion potentials.

In the previous section, we have calculated the total energies of the defect lattice
in terms of the different nearest-neighbor and second nearest-neighbor distances as
well as the optimized exponential coefficient « (see table 4.11), where the nearest-
neighbor and second nearest-neighbor ions were included in the quantum-mechaniecal
cluster. Now, we consider the quantum cluster to consist only of the F-center elec-
tron trapped in the defect vacancy. This will have ICECAP treat the § nearest-
neighbor cations and 12 second nearest-neighbor anions as shell-model ions rather

than quantum-mechanically. We take the same nearest-neighbor and second nearest-
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neighbor distances as in the many-electron cluster calculations and keep each «
corresponding to each distance at its optimized value as determined in the many-
electron (large cluster) case. In this way, we can have 5 one electron energles (£, )
corresponding to 5 large cluster energies (we still call them Fr). The latter are taken
from table 4.11, and one-electron energies are shown in table 4.16. We assume that
the potentials have the Born-Mayer form (see equation {3.12)) and derive them by
fitting the coefficients B and p. However, we then obtain results with s > 1072, Af-
ter carefully analyzing the data, we carry out another fit in terms of the Buckingham

potential (see equation (4.1)). For this caleulation, equation (4.2) becomes
Ey(r) = Ere(r) + 6V(B1,Ch, p151) + 12V(Bs, Ca, p2;m2) + K (4.7)

where subscripts 1, 2 are referring nearest-neighbor and second nearest-neighbor in-
teractions, respectively. This time, the convergence criterion for s is fully satisfied.
The fitting results are given in table 4.17. It can be seen that the Born-Mayer inter-
actions between the F center and the host ions are much like the ion-ion interaction,
but the attractive forces are much stronger. The repulsive interaction between the
F center and second nearest F~ neighbors is stronger, and longer-ranged, than that
between the F center and the nearest-neighbor Na™ ions.

Next, we determine the interactions between the F3 center and the host ions.
We still assume a form of pairwise short-range potential. However, we first consider
simply scaling the potentials that we have just obtained for the F center. From the
symmetry and the work we reported in the previous section, we assume that the FJ
center is formed by two adjacent F centers, each containing only half an electron,
and we therefore scale the point charge they share and the short-range parameters
B and C for the F center by 0.5, but keep p unchanged. Then, we perform a one-
electron calculation using ICECAP and vary the distance between two half F centers

to find the minimized total energy in the relaxed lattice configuration. If the scale
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Table 4.16: One-electron energy Fy. for the F-center ground-state calculations:
corresponding to the F center-nearest-neighbor ion distance r; and
the F center-second-nearest-neighbor ion distance ry, both of which
are in units of perfect lattice nearest-neighbor spacing a, as well as
the exponential coefficient a.

r (a) 7 (a) a {a;*®) Eie (eV)
0.70 1.41 0.1769869 7.28
0.90 1.41 0.1141181 3.22
1.00 141 0.0940154 2.94
1.10 1.41 0.0773169 3.75
1.20 141 0.0555198 5.49
1.00 1.31 0.0957267 4.50
1.00 1.36 0.0949671 3.43
1.00 1.41 0.0940154 2.94
1.00 1.46 (.0930410 3.42
1.00 1.51 0.0925192 4.35

Table 4.17: The parameters of the F center-Nat and the F center-F~ potentials:
derived from the many-electron quantum-cluster calculations.

Interaction B {eV) g (A) C (eVAS)
F center-Na™ 4493.82 0.27484 212.198
E center-F~ 7272.47 0.37117 2073.114
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Table 4.18: The parameters of the F§-host ion potentials: obtained from 0.5 scaled
notential parameters for F center-host ion short-range interactions (see
table 4.17) with p kept unchanged.

Interaction B (eV) p (A) C (eVAY)
F5-Na* 2246.91 0.27484 106.099
Fi-F~ 3636.24 0.37117 1036.557

Table 4.19: One-electron results for the FJ center with the F-center potentials
scaled by 0.5, F-center basis set (1/1): minimized total lattice en-
ergy Ei. (eV), relaxation energy AE (eV), optimized o (ag?), re-
laxed F center distance 4 {a) and nearest-neighbor coordinates of
the relaxed configuration z,y, z (a).

g a, E,, AFE d z Y z
0.09 011 —488 0.11 1.27 050 -—0.50 0.00
0.50 1.51 0.00
0.50 0.50 1.01

we have chosen is physically correct, the one-electron result should provide a lattice
configuration and variations of the total energy with nearest-neighbor distances
which are close to the 101-electron (nearest-neighbor quantum cluster) results. The
scaled potential parameters are shown in table 4.18. The calculated total energy,
nearest-neighbor positions and equilibriuin F-center distance are given in table 4.19.
Comparing the one-electron results with those of the 101-electron calculation in
table 4.13, we see that the nearest-neighbor relaxations differ significantly in the
two cases. This indicates that the short-range potentials we used for the F¥ center
by scaling 0.5 are not correct. We then explore the possibility of other scales. Even
though we do obtain a one-electron lattice configuration very close to the many-
electron one for F center-Na™ scaling of 0.68 and F center-F~ scaling of 0.5, we
are still not satisfied with the variation of the total energy with nearest-neighbor
distances, which is completely different from the result in the many-electron case.

Finally, we have therefore had to re-derive the F§-host ion potentials. We keep the

46



Table 4.20: One-electron and 101-electron results for re-deriving the F§-Nat
potential parameters: one-electron total energy Fy. (eV), many-
electron total energy Ej (eV), F center distance d (@} and nearest-
neighbor position coordinates d; (a).

Eye By d di  dy  dg  dy s
—1.77 —43935.42 1.33 053 049 153 06.48 1.63
—1.61 —43935.45 1.33 0.55 049 1.55 0649 105
—1.35 —430635.36 1.33 0.57 0.4% 1.57 049 1.07

Table 4.21: The short-range parameters for the F5-Na¥ and the F center-Mg?™
interactions in NaF.

Interaction B (eV) p (A) C (eVAS)
FJ-Nat 914.36 0.27484 12.476
F center-Mg?* 16.07 1.2201 0.0

scale for the F center-F~ potential at 0.5 since we believe that it is less important,
and we only re-derive the F center-Na™ potential. From table 4.13, it can be seen
that in the many-electron calculation, the equilibrium lattice relaxation has three
of the five independent nearest-neighbor position coordinates relaxed by 5 percent,
while the other two, dy and dy4, are hardly displaced at all. Then fixing d» and dy
at 0.5 distance between the two half F centers as found for equilibrium relaxation,
we carry out several large-cluster and one-electron ICECAP calculations, varying
the other d’s as a single variable. We fix the exponential coefficients o, and «a, at
the values found earlier for the Fj center-Na™ interaction, and determine B and C
by fitting the two total-energy curves. The results are shown in table 4.20. From
these data, following the same procedure for determining the potential parameters
before, we obtain the new parameters for the F§-Na't potential, which are given in
table 4.21.

The last shori-range potential needed for our (F§ )*-center analysis is the F center-

Mg?** interaction in NaF. For this purpose, we consider a guantum cluster (see
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Figure 4.5: The nearest-neighbor eluster for deriving F center-Mg?" interaction
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Table 4.22: Many-electron results for the (Mg?™){F~)5(F center}(Na')s cluster:
total defect lattice energy Er (eV), and optimized o (a;?) in terms
of the different F center-Mg?* distances d (a).

d g Qp Er
0.90 0.100 0.12 -40902.41
0.95 00905 0.11 -—40902.55
1.06 0.090 0.10 -—40902.62
1.5 0.090 0.10 -—40902.63
1.10 0.090 0.09 —40902.57

figure 4.5), in which the F center and Mg** cation are at nearest-neighbor positions
to each other, and they are surrounded by 5 nearest-neighbor Nat and 5 nearest-
neighbor ¥~ ions. This requires a relatively large cluster calculation due to both
the number of the electrons (111) in the cluster and the gaussian primitive wave
functions involved. For Na®, F~ and Mg?t, we use (43/4) basis set, taken from
tables 4.6, 4.3 and 4.2, respectively. For the F center, a (1/1) set is used. We
minimize the total energy by varying the F center-Mg?t distance in the range of 10
percent nearest-neighbor spacing inward and outward, at the same time optimizing
the exponential coeflicients a of the F-center basis set at each step. Then, several one
quantum-electron calculations are carried out at the same F center-Mg?* distances,
maintaining the optimized a values found in the large-cluster calculations. The
results of the total energy and « are shown in table 4.22. The potential parameters
obtained from fitting are listed in table 4.21. It turns out that the interaction
between the F center and Mg®t impurity in NaF has the Born-Mayer form with
weak repulsive force but quite long range in comparison with Na®-F center and F~-
¥ center interactions. So it may or not be that important for some configurations

in our investigation on the (Fj)* center later in the next section.
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4.5 One-Electron Results for the (F])* Center

In the previous sections of this chapter, we have analyzed the F-center and the Fj -
center ground states. We have also obtained the short-range classical potentials for
interactions between the F-type centers and ions, as well for the Mg?t-F~ interaction
in NaF. These provide us with a good foundation to investigate a mumber of possible
configurations of the (F§)* center by using the one-electron model, which treats only
the excess electron trapped in the F§ center quantum-mechanically and all the ions,
including the Mg?*t impurity, by the shell model. In the present investigation, we
select out some possible configurations and compare them, including the Hofmann
model, using the one-electron model to predict the most stable configuration.

In their work, Hofmann et al considered the case that for the Mgt doped (Fj)*
center in NaF, the Mg?t. V' dipole, in which Mg?* and V', are dissociated, and the
F§ center are coplanar. In the present work, we concentrate mainly on some planar
configurations and a few nonplanar ones. Specifically, in addition to the Hofmann
model (see figure 2.2), we consider 7 planar configurations and 3 nonplanar ones,
which are shown in figures 4.6 to figure 4.15. We label all these configurations from
1 to 11, starting from the Hofmann model. They include every case with V', at
the nearest-neighbor position of both anion vacancies, including the dipole split to
a distance of 2 a. Our coordinate system is shown in figure 4.6, with two anion
vacancies at (—1,0,0) and (0,1,0), labeled as site a and site b, respectively. In the
calculation, the short-range parameters for the host ion-ion interactions are taken
from table 4.1, and for the Mg?*-F~ interaction from table 4.5. The parameters for
interactions between the F-type centers and ions are obtained from tables 4.17, 4.18
and 4.21. Note that for the F-type center-Na™ interaction, there are two possibilities.
One is that in a symmetrical configuration, the excess electron is shared equally by

two vacancies, so the short-range parameters for the FJ-Na' interaction (table 4.21)
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should be used. Also, we should use the F-center (1/1) basis set for this case. The
other is when the electron is localized at one of the two vacancies, for which we
should use the potential for the F center-Nat interaction (table 4.17) and the F-
center (1/0) basis set.

We first carry out a one-electron ICECAP calculation for each of these 11 config-
urations, using the proper potentials and basis set. Then for those with low-lying
total energles, we further minimize their total energies by relaxing the centers of the
electron orbitals. Table 4.23 summarizes the results from these calculatious. In the
first column, we list the labels for all 11 atomistic configurations. The sublabels, a
and b, refer to two different electronic configurations, in which the excess electron is
localized at vacancy center a or b (see figure 4.6) in a symmetry-broken configura-
tion. For a symmetric configuration of the ions, such configurations 2, 5 and 11, we
also calculate one of these two cases to test the energy lowering due to the symme-
try breaking. The next two columns give the V', and Mg?t atomic positions. The
fourth column is the total ICECAP energy and the fifth gives the energy lowering
obtained from the relaxation of the F-center basis set centers. Column six is the
Mulliken population. Note that for center a or b localization, we have Py = 1, but
for the cases in which the excess electron is equally shared by two centers, we have
Py = 0.5 for both of them. The following three columns show the same physical
properties as column 4, 5 and 6 except that they are for the calculations with a
reduced region 1. This is required because, for the three nonplanar configurations,
we have encountered a problem due to the lower symmetries, and been forced to
reduce the size of region I. Region II is also modified correspondingly. To gain a
better comparison among all the configurations, we have redone the calculations
for the planar cases in the reduced region. Comparing the results for the different
region sizes, we see no significant changes except for configurations 2 and 5, both of

them having symmetrical configurations, Nevertheless, these two cases are not that



Figure 4.6: The {F§)* center: configuration 2
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Figure 4.9: The (F3)* center: configuration 5
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Figure 4.11: The {FJ)" center: configuration 7
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Figure 4.12: The (F1)* center: configuration 8
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Figure 4.13: The (F1)* center: configuration 9
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Figure 4.14: The (F$)* center: configuration 10
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Figure 4.15: The (FJ)* center: configuration 11
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Table 4.23: Results for the one-electron model of the (F)* center: 11 configurations.

The VM position Xyt and Mg?* position Xjpg2+ are in units of the
perfect NaF lattice spacmg a. Ey {(eV) is the total ICECAP energy with
unrelaxed positions of the F-center basis set centers. AFE (eV) is energy
lowering due to the relaxation of the basis set center distance, which is
in units of a. Py is the Mulliken population and Region I refers to a
small region in which the HADES part of ICECAP relaxes the positions
of all ions independently to minimize the total energy Ey.

Region I(35 ions)  Region I{30 ions) Relaxed Basis

No. Xyl Kug+ E; AE Py E; AFE Py Set Position

la= 0,0,0 020 -14.96 0.03 1.0 -14.85 1.0 1.05,0.00,0.00

b 00,0 020 -—14.85 1.0 —14.85 1.0

2 0,00 11,0 -1238 027 05 -1098 0.5 0.11,0.92,0.00
0.92,0.11,0.00

26 000 110 1489 003 1.0 -14.88 1.0 1.05,0.00,0.00

3a 000 110 -12.17 1.0 —-12.17 1.0

3b 0,00 110 -1381 1.0 —13.81 1.0

4a  0,0,0 2,00 - -

4b 0,00 2,00 —1347 1.0 —13.47 1.0

5 0,00 1,10 ~7.63 0.5 —6.09 0.5

50 000 1,10 -10.48 1.0 —10.48 1.0

6a 11,0 020 -—14.25 1.0 —14.25 1.0

6b 1,70 020 -—-1544 000 1.0 —1544 1.0 0.00,1.01,0.00

7a 1,10 2320 —14.07 1.0 —14.07 1.0

7 1,10 230 -—-1479 000 1.0 -14.79 1.0 1.00,1.50,0.00

8 110 1,10 -—14.03 1.0 —14.02 1.0

8 110 1106 -1533 000 1.0 -15.33 1.0 0.01,1.00,0.60

%2 0,0,0 1,01 -

9 0,00 1,01 —13.46 1.0

i0a 0,0,0 1,01 —14.76 0.04 1.0 71.05,0.00,0.00

10b 0,00 1,01 —14.55 1.0

11 0,00 00,2 ~12.19 0.5

ila 0,0,0 00,2 —14.67 0.02 1.0 1.05,0.00,0.00
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important since they have higher total energies in any case. The last column gives
the positions of the basis-set centers corresponding to the minimized total energy
through cluster relaxation. In the table, the dash line ‘-’ means there is no valid
ICECAP (or HADES) calculation available.

From table 4.23, several important points can be seen immediately. First, if we
sort these 11 configurations into two groups in terms of their Mg impurity positions
related to the anion-vacancy centers, the group with Mg?® impurity at nearest-
neighbor positions, including configuration 3, 4, 5 and 8, has higher energies than
the other group, which contains configuration 1 {(the Hofmann), 2, 6, 7, 8, 10 and 11.
This is because the anion vacancies actually behave as positively charged objects
due to the loss of negative charge, and therefore repel the net positively charged
Mg?t impurity. The second point concerns the electronic structure of atomistic
configurations with the Na* vacancy in an unsymmetrical position relative to the
two anion vacancies. We put the excess electron at each anion vacancy center, a
and b, alternatively. The electron prefers to localize at the center which is farther
away from the negatively charged Na' cation vacancy {configuration 6, 7 and 8).
The third point is about symmetry breaking. It occurs in configurations 2, 5 and
11. We can see that for these configurations, when we break the symmetry by
forcing the excess electron to localize at one of the anion vacancies, the total energies
(unrelaxed) are lowered by 2.51 eV, 2.85 eV and 2.48 eV, respectively. This means
that the symmetry-broken configurations are always preferred, producing single-
vacancy localization for the excess electron. This agrees with the observation of
Hofmann et al,

Table 4.23 also tells us that, for the group of configurations 1, 2, 6, 7, 8, 10 and 11,
the difference of the relaxed total energy (E; — AF) between the two configurations
with the highest energy (—14.69 eV in 1la) and the lowest energy (—15.44 eV in

6b) is 0.75 eV. Within such a small energy span, there are seven configurations, of
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which the Hofmann model has the third lowest energy but it is only higher than the
second by 0.37 eV and lower than the fourth by 0.07 V. It would be quite difficult
to compars them experimentally. Even for theoretical analysis and simulation, our
methods cannot be assumed te be reliable to such a level of accuracy. In order to
get a better understanding of the results we have obtained for these configurations,
in table 4.24 we list seven of them with the low-lying relaxed total energies, and
calculate their energy differences AE and accumulated energy differences relative
to the lowest total energy (6b). We also calculate the corresponding temperatures
in respect to these energies. From the table, it can be seen that although the en-
ergy differences are very small, the characteristic temperatures are spread out over
a range of thousands Kelvin. This indicates that even though these configurations
have very close total lattice energies, it is quite hard for them to convert thermally
from omne to another. Considering the room temperature approximately as 300 K, it
corresponds to about 0.026 eV. We may not say that our simulation is accurate for
the total energies within 0.03 eV. But we believe that it does give the correct trend,
or ordering, about the energy differences for these configurations. We see that the
narrowest energy difference, between 10a and 7b {0.007 eV), is still corresponding to
a temperature slightly higher than liquid nitrogen temperature (77 K}. The stabliza-
tion energy between the lowest- and second lowest-energy configurations, namely 6b
and 8b, 15 calculated to be 0.106 eV, which corresponds to a temperature of 1230 K.
Thus at room temperature, ~ 300 K, one would not expect significant conversion
from 6b to 8b. We caution, however, that both of these configurations, having lower
energies than the Hofmann model, are from a class of configurations that we have
not fully investigated. These are the ones with the V}vq at (—1,—1,0), including case
7, which is of higher energy. It will be important to learn from future work whether
there are still lower-energy configurations in this class, and also in the class with the

e at (=1,0,1). Furthermore, the characteristic temperature for conversion from
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Table 4.24: The {(F§)*-center ground state: configurations with low-lying energies.
Ey {eV) is the total ICECAP energy with relaxation of the F-center
hasis set centers. AK, in units of eV, is the energy difference between
one and the next, starting from lowest energy configuration 6h. 3 AE
(eV) is the accumulated energy difference related to the 6b. The charac-
teristic temperature T' (K) corresponds to 3, AF and the Boltzmann’s
constant kp = 8.6171 x 1075 (eVK™1).

No. Er (eV) AE (eV) L AE (eV) T =3 AE/kg (K)
&b —15.436 - - -
8b ~15.330  0.106 0.106 1230
la ~14.987  0.352 0.449 5211
2a ~14.918  0.069 0.518 6011
10a —14.798  0.120 0.638 7404
7b ~14791  0.007 0.645 7485
1la ~14.693  0.098 0.743 8622

ground-state configuration to that of second-lowest energy will be of crucial interest.
Also, to test the one-quantum-electron approach we have employed in the present
simulation, we have to carry out several large quantum-cluster calculations and see
whether they produce the similar ordering and energy differences. Certainly, inves-
tigating the physical nature of this center is not limited to the total lattice energy
itself. A variety of research work has suggested that the cation impurity is playing
an important role in improving the stability of the (F3 )*-center laser action in alkali
halide crystals.

Two principal conclusions follow from this work. One is that there appears to
be configurations of lower energy than that of the Hofmann model for the (F)*
center. The other is that, for all configurations studied so far, the excess electron, in
the {F§)* center in NaF:Mg in its ground state, localizes in a single anion vacancy,
rather than in the characteristically symmetric two-vacancy configuration of the Fy
center. This result is in agreement with the experimental coneclusion of Hofmann et

al.



Sonclusions

Using many-electron unrestricted Hartree-Fock embedded quantum clusters, the
ground states of the F and FJ centers in NaF were studied; and the classical effective
short-range potentials for the Mg?*-F~ interaction, as well for the F-type center-ion
interactions in NaF:Mg were derived. For the F-center ground state, we found that
the center is, as expected, well localized in the center of the defect vacancy, and
the displacements of its neighboring ions are negligible (section 4.3.1, tables 4.11).
The charge transfer from the neighboring ions to the center is also very small, about
(—0.01) electron charge (see table 4.12). In the case of the F center, its ground state
with the excess electron equally shared between two anion vacancies was examined
(section 4.3.2). The distortion field is fairly large, with 10 nearest neighbors forced
out by 5 — 7 percent of the lattice spacing (table 4.13). The charge transfer from the
neighboring ions into the center is (—0.09) electron charge, with {—0.95) charge in
the s orbitals and (—0.14) charge in the overlapping p orbitals of the two vacancies
(table 4.14). The Mg?*-F~ short-range interaction (table 4.3), taken to be the Born-
Mayer type, has a strong repulsive force but fairly short range. Table 4.17 shows
that the short-range interactions between the F center and host ions can be fitted by
the Buckingham potential, although they were found to be uncharacteristic of ions,
with extremely strong attractive forces (large coefficients C'). In contrast, the F

center-Mg?T interaction is found to have the Born-Mayer form with weak repulsive
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force but very long range (p = 1.22 A). The effective potentials between the FF
center and host ions were also derived (section 4.4). Their behaviors are in good
agreement with the results of many-electron quantum-cluster calculations.

The investigation of the atomistic and electronic structures of the (F§)* center
was carried out on the basis of the one-electron quantum-cluster model, using the
effective short-range potentials (section 4.5). In all configurations, the F-center like
single-vacancy localization was found for the (FJ)"-center ground state. This agrees
with the conclusion of Hofmann et al. Seven low-lying-energy configurations (fig-
ures 2.2, 4.6, 4.10, 4.11, 4.12, 4.14, 4,15) are listed in table 4.24 and are discussed
in terms of characteristic temperature. Two configurations {6b and 8b) with lower-
lying energles than that of Hofmann model were found. The stabilization energies
seem to prevent conversion between different configurations at room temperature.
This strongly indicates that there probably exist other configurations, which are
more favorable as the atomistic model for the (F§)* center than the Hofmann con-
figuration, particularly since configurations 6b and 8b belong to a class which has
not been completely investigated.

Finally, we conclude that the single-electron model for the (F§)” center has suc-
cessfully reduced the amount of work needed for investigating such a complicated
center. Furthermore, the present work points to future investigation. First, using
one-electron quantum-cluster simulation, other configurations should be studied to
obtain all the low-energy configurations. Then for a restricted group, many-electron
guantum-cluster simulation can be carried out to predict the stable configuration of

the (F3 )" center.
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