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.41¡stract

The recently found (Ff)* center, am Ff center with clivale ut-impurity doping, has

potential practical laser applications and also an unklown ato¡nistic configuratioir.

.4 simulation, basecl on unrestricted Hartree-Fock quantum-cluster calculations, is

carried out to investigate tÌre ground-state atomistic and electronic configurations

of this center, and to test a proposed model for it. In order to avoid the cornplex-

ity of this center, a simplified single-electrou cluantum-cluster model is enployed,

with effective shell-model short-rarge poteltials derived from all-electlon quantum-

cluster calculations. For all configurations studied, an F-center lihe ground state is

found. The interpretation of different configurations for this center is discussed with

respect to stabilizing energies. Two configurations obtained are more favorable than

thc proposed model. In the present work, the F-centei'ald the Ff-center grouncl

states are also examined.
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With the help of highly-developed computational techniques and facilities nolvadays,

theoretical calculation of the electronic properties of point defects in ionic crystals

has been making a great deal of progress in recent years, alolg with the experiments

which are always essential to this field. Among those clefects mostly studied, the

F-type celters in alkali halides have attracted particular interest l¡ecause of thcil

roles in laser application. Ordinary F-type center lasers have poor stability and low

quaütun cfficiency at room temperatule, and therefore are mostly unsuitable for

laser application. The recently found (Fl-)- center, a divalett impurity-dopcd Ff

center, shows dranatically improved room temperatule stability ancl higher quan-

tum efficiency. Tlie ilvestigatior of this center points to an imminent atd prorlising

future for producing a practical laser device.

A theorctical simulation of the (Ff). center in the crystal lattice NaF has bcen

carried out in this thesis to further investigate a model recently proposed for this

center. It is hoped that the present work rvouÌd either provide a better insight

into the nature of the (Fl')- center, or set up a proper starting poiut for future

lesearch or: it. {.Jnlike oldinary F-type celters, wliicli usually have syinmetrical and

fairly compact stluctures, the (Ff)- centel has a more complicated structure with

low symmetry, and is spread out oveL several atomic sites. Furthermore, experi-

ments to date indicate that it is not yet clear what tlie true configuration is for



this center. Usually, poitt defect caiculations in ionic rr]¡stàls are based on the

quantrin-meciranical clustel treatmert, Howevcr, for the (F])" ceuter, this can be

impracticai, because ilvestigating the irro¡roseci model lequires consi<iering a varicty

of clifferent configuratiols, each one leading to very lalge quantum-cluste¡ calcula-

tions. For computer siinulaiion of this center, consiclerably sirnplified treatments are

required. For this purpose, a rnodel consisting of a single-electron quautum clusr"er

witli efi'ective classical potentials is proposed in this simulation.

Chapter 2 gives a brief review of some F-type centers and theil pro¡rerties. Also.

the laser effects and some applications of tlÌese centers a¡e pÌeseüted. We hope that

this could serve two purposes. Thc first is to selve as an introduction for students

who aÌe new to the fre1d of point defects in solids, especially F-type centers in ionic

crystals. The second is to provide a fund¿mental bachground for the present wolli.

In chapter 3, a general model for clectronic defect calculations without our sin-

plifying 
"oortduration 

is introduced. This includes mainly two aspects: the llartree-

Foch self-consistcnt field method, and the shell model, for quantum-mechanical and

classical tr-catments of crystals, respectively. In section 3.3, the computer ptograrlr

ICÐCAP and its methodology are briefly presented, combining a Hartree-Fock clus-

ter aud a shell-model lattice consistently.

Chapter 4 contains the major results of our research, including the simplified

model ï/e have used and all prelirninary work reeded for applying the model to the

principal problem. First, the single-electron model for simulating the (Ff)" center

is ¡rresented in section 4.1. Then in the next three sections, unde¡ tl're quantum-

nechairical many-electron cluster treatment, we investigate the F arrd the Ff cen-

ters, and derive the effective classical sho¡t-range potentials, using the mathematical

ànd physical models described in chapter 3. Specifically, the Mgz+-p- poteutial is

derived ir section 4.2; the results of the F- and Ff-center ground states a,re prc-

sented and discussed iu section 4.3; and in section 4.4, the short-range potentials



åre deïived for itteractiols between F-type centers a¡rd ions. In the la.st sectior of

chapter 4, ba"sed ou a1l the i¡¡orl., in the previots sectiots, n'e apply the sirrplified

singie-electron model to the central problem, tlie (F'f )" center, aoalyzing à \.ariety

of ¡rossible configurations. The resuits are listed aircl discussed in some detail. Tire

interpretation ol ciiffere¡rt configurations in ierms of stabiiizing energies is aiso given

in this section.

Fiually, tire conclusions of the preselt work are giveo, and proposals for future

r¿ork are discussed in chapter 5.
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The phenomenon of coloration in a,lkali halide materials, which have the rocli-salt

structure, can be traced bach to about a century ago. But only after Pohl and

cou'orkers, in the thirties, flrst observed the coloration in KBr by heating the crystal

at 600"C in potassiurn vapor [1], did it attract serious ¿ttention. Since then, tìrc

coloration in ionic crystals has been under extensive investigation. It was found to

be due to the point defects, which were named color centers, or F centers (after a

Germau word, Farben) by Pohl et al [1]. At first, the focus was mainly on the F

center, but later other F-type centers were found. Seitz fir'st proposed F-aggregate-

center models [2] based on a hypothesis in which t]re double vacancy was assumed to

have ì:righ mobility. The study of F-type centers has become more important since

the last decade, because thcy have been found to have la^ser- application. Ii is not the

purpose of this thesis to track the whole history of F-type centers. In this chapter,

we shall only mention some basic points, which are directly related to oi.rr present

wo¡li. Tlie interested reader may refer to thc boolis of Forvler [3], Stolehaur [4], and

Farge and Fontana [5]. For another review of F-type centels, also see reference [6].

2"L F' Ceraters ica Alkali Fãaåides

The F center, whicir is an electron trapped in an anion vacancy (see figure 2.1),

has been fouud to have an optical absorption band, called F absorptior bancl or F





baud, and an emission band wilich is *'ideiy separated fro¡n the F l¡atd. Both of

then.r a¡e nearly of gaussian shape. In KBr [3], for instance, at 4 K, the F band is

centered at 2.û6 eV with a h¿lf-wi<lth of û.16 eV. The corresponcling emission bald is

iocated 1.14 eV awày, at û.92 eV, and has a half¡vidth af. A.22 eV. Si¡uilar behaviors

have beer observed in most alkali halides, except for cesium halicles [3, 7]. The

optical cycle, the complete excitation/de-excitation process, of F centers coilsists of

four subprocesses (see, for reference, Mollenauer and Pan [8]): (i) first, a photon is

al¡sorl¡ed and the electron is excited into thc ¿rbsorption band fron the ground state;

(ii) then, the electron decays nonradiativeÌy into the relaxed-excited state; (iii) this

is followed by luminescence from the relaxed-excited stàtc tû the unrelaxed groun<l

state; (iv) finally, the cycle is cornpleted by another nonradi¿tive decay back to the

relaxed ground state. The most cou'unon physical model for the F band was that

an electron is trapped by a three-dirnensional potential well with a quasi-spherical

synnetry. Then, the qua,ntum states of the F center could be described by spherical

harmonics, naûÌely ls, 2s, 2p etc. In the ground state, the electron is well confined

in the vacancy. Therefore, for the F-absolption band, it would be a 1s-2p transitiot.

Tliis w¿s followed by au empirical relation, the Mollwo-Ivey law [9],

Er = 17.7a-r'Ba (21)

where, ð¡, in units of eV, is the maximum F band energy for various alkali halides,

and û, in Angström, is the perfect lealest anion-caiion spacing. This relation shows

good âgl'eelnent with experiments [5]. llowever, no similar lelation has beel found

for the emission band. This is thought probably bccausc, in the ernission process, the

electroû is not coufincd in the vacancy, but is more diffuse, noving in a Couloml:

field with an effective mass m* and ar-L effective dielectric constant e* if 0]. The

It{ollwo-Ivey law for the F band implies that there is a close relation betw-ec* the

dominant energies and lattice geometry [11].



The F center is of particuiar importance Ì¡ecause it has a relatively sirnple struc-

ture, and it is the protctype of a rariety of other coior centers rvhich can l¡a obtailed

through F-ccuter âggregâtiorr. For instance, with a nearest-neigirbor host cation sull-

stituted by another alkali ioir of smaller size, the F center becomes an F¿ center,

rvhich has been found to h¿vc an irnportant laser application that we shall discuss

later. Two adj acent F centers form an F2 center) formerly called fu{ centcr, ancl

further, if the F2 center traps only one electron, it is an Ff center, formerly called

M+ center, which is o¡re of the focuses in the present N'ork. Actually, the F center is

not so ea^sily studied. Its high-symmetry structure makes many pliysical rrea^sure-

merts either difficult or even impossible. Another feature of the F ceuter is that its

coloration fades quickly at room temperature [f, 0]. fnus the Ìrope for laser action

in the F center is poor. F-center aggregates have thercfore been considei'ed, espe-

cially the impurity-doped ones. ,{s with pure F-center aggregates, they will have

the decreasing symmetry when defect sizc is increascd during aggregation.

2.2 F *ce¡-lûer í.,a.sers

Laser operation has been found in many alkaÌi halides [10, 11]. They ale coniinuously

tunable within a range from 0.8 ¡rm to 4 pn $.4 1.0 eV). Notice that the d1'e

laser covers a range fron the visible region to I ¿lm, and on the other side, the Pb

tunable diode laser is only good starting from 3 pm to longer wavelengths [10]. The

very narrow linervidth of the F-center lasers also malies them valuable candidates

for high-resolution spectroscopy [3, t0]. Arrother advantage is that F-center la-sers

have power output ,A(Pr" - P,¡ ) with lorv threshold Pr¡, and high slo¡re efficiency

,4 such that they are very effective [11]. ]iowever, most of them can¡rot be turned

into practical laser products silce they are only stable at low temperature. Usually

ât rooÐr ternperature, the laser effects disappear completeiy. One ¡eason is tirat

their relaxed excited states ale too close to the conduction band (- 0.1 eV [3, 10]).



Thus, thermal energy can easìly raise the electron into the conduction band fi'om

thc excited state. Uirtil now, the only con:merciaiized laser based on the F-center

mechanistn is the Burleigh FCL?'M la,ser, which provides corrtinuous wave-turable

outprit from 2.2 gn to 3.3 ¡lm wiih linewidih i.S GlIz (singie frequelcy i NlHz)

and output porver 3 - 20 rnw (2 - i5 mw). llowever-, it is still unstable at room

ternper-ature.

The F¿ center we mentiored earlier has been reviewed by Lüty [12]. In this center

(see figure 2.1), witli a nearest-neighbor host cation replaced by a smaller impurity

alkali ion, the F-center's O/¿ symmetry is reduced to Ca,,, which partialiy removes

the triple degeneracy of the F band. In the Fr center, there are two polarized p-like

transitions: one, narned F¡1 , is along the direction of thc impurity ion; and the other,

named F,a2, which is twofold degenerate, is perpendicular to that direction. Two

types of Fl center have been found. Type I F¡ ccuters, for example in I{Cl:Na+,

have properties simila,r to those of the F ccnter. For tvpe II F¿ centers, which

include the well-known center in I{C1:Li+, the emission band is broadly separated

from the absorption band to the low-energy range and has a very narlow half width

in comparison with those of F and F,a type I emissions. Experiments show that

type II F¡ centers canuot be easily ionized either by applying electric freld or by

increasing temperâture. It was concluded by Lüty th¿t the¡e exists a coirsiderably

largcr gap between the conductioir band and the excited state of the type II F¡

center than for the F center ând the type I Fn center. These distinct behaviors

favol the type II F1 center for laser application. Indeed, the first, and for a quite

long period of time the only laser effect iû F-type centers was observed iu tr(Cl:Lir

b]' Fritø ånd Menke [6, 12].

Laser action from the Ff centel iras been investigated extensively for a loug

time l3]. The most recent der,elopments have been reported in references [13], [14]

and [15]. The Ff center (see also figure 2.1) is al ionized F2 center, rvith an atorn-



istic configulatiat al Ð2¡, symìDctry, oriented aloirg the [i1û] direction. It iras two

absorption bards: oue much like the F-center absorptiol bald, and the other a iou.

energy band, which is ¡rot in the range of any other band of the F-type ceirters [15].

The Ff center offers effective laser output wiih a range frorn 0.9 2 ¡lm and neally

100 % quantum efficiency t11, 13], and it was süggested by Mollenauer ltS] tc le

suitable for practìcal laser products. However, the Ff center is also unstablc for

continuous laser action. Its laser effects degrade very fast (,-eportcd from 15 min-

utes to ser.eral hours) at room temperature [15, 13]. Hofmarur et aJ tliought that

the easy separation bctween two adjacent repelliirg anion vacancies (in NaF) could

be one reason for this behavior.

2"ß T'ere (F'f)- Centers i.ru TSaÞ"

Itrproving the stability of the F-type-center lase¡ operation at room temperature

has becn a long-time goal for researchers in this field. Although a great deal of effort

was made, there was no siglificant improvement achieved until Mollenauer recettly

reported the discovery of a new kind of Ft-like center [16]. This center, named

(pl). ¡V Mollenauer, was fould in rock-salt NaF doped with divalent impuritics

such as Mn2+, Cr2* or Ni2+ ions. It shows continuous wave-tunable laser eflccts

with desirable quantum efficienc¡ and more impoltant, much enhanced stability

for sevelal months at room temperature. Shortly later, Eisele eú al carlied out an

investigalion of (Ff)" centers iir ¿llc¡.line ealth inpurity-doped NaF [17]. it was

found that in NaF doped with Mg2+ and Ca2+, (Ff )- centers have even higher

slope efficiencies (aa %) au<1 lower thleshold pump powers (30 nu' and 45 mw,

respectiirely) than tirose of the N4n1+-cìoped (Ff )" certer (2,å % and 85 llw). They

also have better stability at room temperature than the (Ff )- center in NaF: Mn2+.

These properties distinguish the (Ff)" centels frorn the other F-type ceutcrs found

so f¿¡.
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Figure 2.2: llofmann ilodel for the Mg2+ dopcd (Ft')- ce¡rter in NaF
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The (F;). center is a mo<ìified Ff ceuter, with a nearby divaleat cation. It is not

ciear ¡,'ct v¡hat the tlue mechapisn is in its stabiiization ilrocess, but expeiiments

show that the (Ff)- cenier lias aÌmosi the same absorption and ernission bands (¡reak

positíon, baird shape and range) no matter what impurity is doped in NaF, and it

is evident that the impurity plays a key ¡uie in this process (whether as a stabilizer

or as aü electron trap is unknown) [17]. Consequertly, ihis leads to iirvestigation

of the atomistic structure of the (Ff)- ce¡rter. One of these âttempts is the work

of Hofmann and cóllaboratols [15], in which they performed both experiments anci

theoretical simulations on the (Fl ). centers and obt¿ined results similar to those of

Mollenauer and Ðisele et al. llofi¡ann et aJ tlien proposed a model for the aton-ristic

structure of (Ff )- center. They also analyzed the Ff center in the same host crystal

since, on the one hand, this center is laser active itself, and on the othel, it can

provide useful information to compare with tlie (Ff )- center, due to the apparently

close relation between two centers. Because our present worli was initiated by the

worli of l{ofinanr eú aJ, rve briefly summarize their principal tesults below:

1 For the Fi' center in its ground state, in which an excess electron is equally

shared by two anion vacancies, they found that most of the electron density is

concentlated on the two Na+ and fou¡ F- ions in the plane lletweer the two

F- vacancies. They inferred that the Ff ceuter has a more cotnpact gróund

state than that for the F center.

2 For the (Ff). center, they fould that its ground-ståte stlucture is much like

a siûgle-vacancy F certer rather than like the two-\'acàûcy F{ center. The

excited (F{). state lootris lilce that of a Fl- center.

3 It is still unkno$¡n what the true configuration is of the dipoÌe formed by the

1{a+ vacancy and dii,alent impur-ity in the (Ff )- center'. However, fi'om their

experimental results and simulation, Hofinann eú a.l considered the case where

l1



the divalent cation is not adjacent to the Na+ vâcancy but dissociated. They

¿lso assumed that the Na+ r'acancy sits at the nearest-neigirbor positiol of

both anion vacancies of the Ff, center.

The objective of the present woi'k is to further test i;he ¡nodel of Hofinann eú

aJ. The previous work by Mollenauer and Eisele et aJ suggcsted that thc atomistic

structure of the (Ff )- celter-, especially the impurity corfiguration, would be a

decisive pÕint in the process of investigating the nature of tlie stability of this center.

In the present work, we perform a series of simulations in a systcmatic way, using

the ICÐCAP methodology, 'which is based or the unrestricted Hartree-Fock self-

consistent freld rnethod with a shell-rnodel lattice, to investigate both atomistic

and electronic structures of the (Ff)" center. We consider Mg2+-doped NaF, since

previous investigations [15, 16, 17] have sho¡¡'n that the (Ff)- centers in NaF *'ith

different impurity doping display quite sinilar properties.

12
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In this chapter, we shall irtroduce the mathematical rnethod and physical rnodel

uscd in the present work. In order to simulate a defect in the crystal lattice and

investigate its physical properties, we look at the problen fi'om a combilation of

quantum-mechairic¿l ard classical poirrts of view. This is simply because only taking

irto account one of them will be either irnpractical ol unrealistic. In section 3.1, we

shall plesent the Hartlee-Fock approximation method which is often used for the

quantum-mechanicai treatment of electronic probÌems. For this method, uany text

books and articles can be found (see, for example, reference [18]). Therefore, we

only give a l¡rief outÌine and general discussion. In section 3.2, we shall introduce

the shell model which concerns a classical treatment of the crystal lattice. Those

are two main conccpts of the present work. In the last section, we sul¡malize the

program ICÐCAP which we have used in this simulation.

&"3. Ë{arÉree-F'ock Se}fl-C@rasisteã}.t F'ie}d þfethod

Generally, n'e are dealing s¡ith a many body problem when studying the nature of

a defect in crystals. The alk¿ii halide crystal lattice is an array containing cations

and aniols, colsisting of nuclei ancl elcctrons. To descril¡e such a system, the

Harniltonian rvill be very complícated, since manlr diÍt'erent kinds of motions and

interactions are involved. Consequently, proper approxirnations ale ireeded.

13



First, under the Eorn-Ûppenheime¡ approximation, the static ia,ttice apixoriina-

tion, the crj'stal can be seen as a.n e.rrày of ions with nuclei fixed at theil laitice

points and electrons whiclL are mor'ìng in a potential fleld. ii this is applied, the

kinetic energy of nuciei can be dropped of f¡om the l{amiltonian. Suppose there

are ly' electrons and .À1 nuclei in the crystal. Then the Flamiltonian of the system

can be ¡¡'ritten as,

N'Nìlo.NN"iMM
Lr- \- I ç22 \- \- ¿j .I\-\- l-- ¿:z'n ^-¿-ãvi-¿-¿-t* 

-: 
-) ) i---------------- +;)-)- rÞ-r-Él (3.1i

; - ; ; r.i-H.,1 27V lr¡-ri'l 2TTltLi-d,'l

where, r¿ and Ri are electron and nuclear position vectors, respectívely; and Z3

a¡e nuclear charges. The first term in equation (3.1) is the electro¡r kinetic en-

ergy operator; and the othel three terrns ¿re energy operâtors for electi'on-nuclear,

electron-electron, and nuclear-nuclear Coulomb interactions.

In equation (3.t), we have used atomic units, in which the Planck's constant ñ,,

the electronic charge e and the mass m are all set to unity. Thc cncrgy is in units

of Hartree, or a.u., and distance is in Bohr i'adius a6. We shall use these units

throughout this work. Explicitly, we have,

1 Hartree - 2 lìydberg : 27.2 eV
¿o : 0.529 -dngström.

Like in most quantum-mechanical problems, the next step we should follow is solve

the Slirödinger equation with respect to the wave function ü which describes tlie

whole system iu a specific state. For a static lattice, consider the time-independent

non-¡elativistic Shrödinger equation,

Hþ-EÚ \J.z )

where, the }lamiltonian I{ is represented by equation (3.1), and ð is ihe energy

eigenvalue of -ff associated with the state ü of the system. Thus rve first explore the

nature of the solution ü. If we choose â, cornplete orthotrormal set of basis functions

14



Õ¿, denoted f@r >, then the solution û, denoted lù >, can always be expaiided as,

lv >: [û,1Õ; > (3 3)

rvhere C =< Õ;lü ) are the expansion coefücieirts of ü in telms of the basis set @¡.

For the ld-electron problem, with ihe requirement of the Fauli exciusion principle,

it turns out that each Õr must be in the form of a Slater determi¡rant, rvhich is au

antisymmetric product of Iy' independent single-particle functions.

Iu the llartr¿e-Fock approximation, the basic idea is that one assumes that tÞ

only contains one single Slater determinant. Therefore, denoted ù' now, we have,

d¡(xr)
d¡(xz)

(3.4)

ds(x¡v) " d¡r(x¡¡)

where, (1ül)-1l2 is a normalizatiol factor; xr represents both spatial coordinates r;

and spin coordirates s;i and þ;, i - 1,2, '.' , /ú, is a set of lf orthonormal single-

particle basis functions. At this stâge, one can solve Shrödinger's equation (3.2)

variationally by substituting equation (3.4). Now, our problem becones finding a

set of single-palticle basis functions r¡'hich satisfies the variational principle,

tþ'

fr[. *'l"l*'t]- o (3.5)

i.e. < ú'lfflü' ) is a rnirimum. lt is easy to see that this is still a quite difficult

procedure to foliorv. Under the constraint that all the spin crbitals lþ¿ > in a given

single Slater deiermina,nt are orthonormal to each other, and with normalization of

ü/, the variational principle ieads to the single-particle Fock equation (for- detail,

see refer-ence [18]),

Fó; : e;ö¡ (3.6)

wlrere, F is the Fock operator, and e¿, r - 1,2, ..,l'I, are its eigeirvalues, or Fock

energies, ¡¡'ith respect to the Fock state þ¿. Iu equation (3.6), the Fock operator is
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in the form,

_ .! lJ I.- Þ I

J=r ¡

+ { rlx'p(x' .x')lr - r'l-r - { ,l*'ptr' .o¡1, - o'l-'P(x. N')'.j ---''"'-- "- -| 
J

(3 7)

rvliere, P(x,x') is the interchange operator which opelates on spatial-spin coordi-

nâtes x and x', and p(x, x') is ihe Fock-Ðirac one-particle density operator whicir

can be written as,
¡f

p(x,xt) : Ð løo(*) >< dr(x')l (3.8)

In the single-particle Fock operator, equation (3.7), the last term is called the ex-

change intcraction, due to exchanging spatial-spin coordinates bctwecn x and xt.

Since the Fock operator depends on its own eigenfunctions, the Fock equation (3.6)

can only be solved iteratively. We rearrange equation (3.7), by putting the third

and fourth terms together, as,

lMv
r: - 

rç22 \- ¿i ,.1¿o,¡o-",1-r Ido,,ò¡o,',o,¡¡1-p1x.x,,)]p1x,.x,,.¡ 13.9;r --õ" -/tln_n.lÎJu^rr ¡r J -^",^,^
' j=l

I'iow in equation (3.9), the last term ís called the self-consistent field because it

represents the " field " rvhich is seen by the ith electron and lesults from the ,¡{ - 1

others. In order to solve the Fock equation, one first chooses an initial tlial wave

function and sul¡stitutes it into equation (3.9) to get a conesponding " ficld ".

Then by solving equation (3.6), one obtains a rre\ry wave futction. Following this

routine repeatedly, oire can make the self-consistency satisûed, ald find the final

eigenfunctions as well as the ener-gy cigenvalues of the Fock operator. Apparently,

there are many solutions that we can have. It ail depends on how we choose the

spin orì:itals which coirstruct the initial wave function.

Usually, two types of spin orbitals hav-e been used. Olie is the resiricied spin

or'l¡itals and the other is the unrestricted spin orbitals. trn both of tÌrem, each spin

orbital can be w'ritten in the form.

ó¿(x¿) - dr(u)r7¿(s¿)

1b

(3.10)



where, l¿(r¿) is the spatial orbital and r7¿(s¡) is the spin eigenfunctiort. Fo¡ the

restrictc¡d spin orbitals, the spatiai orbital {¡(r¿) rnusi satisfy the reqriirenent ol

double occupancy. That is, for each qi(r';), there are two 4¡(s¡)'s assigned -- spin up

and dowr. Therefore, .l'I electrons in the system n'ill fill up only Nf 2 spatial orbitals

providcd ld is even. trn the case of the unrestricted spin orbitals, the requiremeni is

that each spatial orbital can olly take the product witli one ofthe spin eigenfunctions

- spin up or down. This means that for spin up and spin down siates, spatial

orbiials may be different. These two different types of spin olbitals define two

differ-ent methods - restricted and unrestrictcd Hartree-fock approxinations.

Basically, there are two advantages in favor of the uurestricted Hartree-Fock

method over the restricted regalding the cluster calculation: one is that the chem-

ical bonds can dissociate properly; and the othel is that electrons having opposite

spins are allowed to correl¿te to each other [t0]. Our present work is based on the

ulrestrictcd }lartree-Fock self-consistent field method. We shall see this point in

section 3.3, where soine further consider-ations, such as choosing the basis sets, rvill

be given and in chapter 4, where we shall prcscnt specifically the problem rn'e are

studying and give the lesults. In the next section, however, t'e shall first introduce

another approximation needed in our work - the shell model, which treats the crys-

tal lattice classically, and therefore cau be seeu as complenenting the unrestricted

Hartree-Fock self-consistent field mcthod in the present work.

&.2 Shell &,4odeã

The shell ¡nodeì was first developed by Dick and Overhauser [20] for classical treat-

ment of the ionic crysials, which consisi; of polarizable c¿tiorts and anions with

opposite charges. This model has been used successfully to evaluate many physical

properties of the ionic cry'stals and provides good agreements with ihe exireriruenlal

results [23].
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In the sireiÌ modei, the short-rairge ir,rteractions anong ions are consideled pairwise

anC they can be clescribecl in terms of sever¿l pararleters. Ðach ion lrith total charge

Ç is assumed to cor.sist of two parts: a rigid shell with charge 1¡, and arigicl core with

chargc (Ç - V). The mass of the ion is carried ertirely by the core, and sc the shell is

considered massless. The shell and core of an ion are coupied harmonicaily tirrough

a spring such that the potential energy of the short-range interaction between them

can be written as,
1

u( r\ - 11,:.x2
2

(3.11)

where À is the force constant and r is the shell-core separation. The short-rairge

interactions between two ions are considered to act between their shells. In the

original worh of Ðick and Overhauser, these interactions weÌe also described in

a halmonic form like equation (3.11). However in later work, it was found that

the5' ¿¡s better represented in the form of the Buckingham potential [23], which is

anharmoric,
,L7

V(r\=,Be p- 
^ro

(3.12)

where r is the shell-shell distance between two ions ald p is the range constâ.nt.

In equation (l.fZ), ttre first term reprcscnts the Born-Mayer repulsive interaction

that is usually interpreted as overlap interactioir between two ions; and the second

term is the Van der Waals attractive interaction which results mostly from tlÌe

correlation, or dispersiou, effects 123]. All the ions, as point charges, experience

Coulomb interactions with other ions. Therefore, in the shell ilodel, we can use

parameters k, L 1',, .&, p and C to describe the whole crystal classically. Many

physical properties can be evaluated, such as elastic corstart, dieiectric constant,

equilibrium confi guration etc.

This ilodel is of particular importance for the present work. One reason, as we

r¡entioted earlier, is thai it is noi practical to treat the whole crysial quantum-

mechanically. On the other hand, we also cannot treat the defect problem in a fully
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classical rvay. Therefore, $,¡e ra,n say that this rrodel tn¿kes it practicai for us to

siuulate a quantum-rnecl:anic¿i defect cluster embedded in the crystal latticc. Tlle

othel reaso¡r is that it also makes it possibie for us to further empÌoy a simple noclei

for investigating more cornplex deíect problems, such as the (ff ). center. We shail

see this point in chapter 4.

&"S åCKü,&P: {Jvaresûnåcted Fåantree*F*oc}e

Evm.hedded* ülarste¿' Corxapuûatåore

In this section, we describe the program used iu the present work. This program,

ICECAP, has been very successful in many point-defect calculations. Thc features

of the program are fully discussed by Vail [22]. Here, we only describe somc rtain

points lelated to the present work.

S.&"1- Cl¡.¿ster &4odel

In the ICÐCAP method, the unrestricted Hartree-Fock self-consistent field method

is used for the reason mentioned earlier in section 3.1. A defect cluster is chosen to

include the excess electrons of tire defect and ions perturbed both eiectronically and

atomistically by the defect. .4.11 of these electrons and ions will be treated quanturn-

rnechanically by the unrestricted Hartree-Fock self-consistent ûeld approxi¡nation.

At the same time, we considel the cluster ernbedded in an infinite classical crystal

lattice described by the shell model, in which the ion-ion interaction is represented

by the Coulomb potential and the sirell-model sholt-raûge potential. The latter has

tbe Buckingham folm of eqtation (3.12).

Under the unrestricted Hartree-Fock self-consistent field approximation, the spin

orbitals can be described by equation (3.1û), in which spin eigenfunction ?¿(s¿) has

either spin up or down. The way we solve the Fock equation (3.6) is still variational.

X\¡e fir'st have to choose the spatial orbitals ç5;(r). Gencrally, we cau expand þ¿(r) in
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terms of a iinear cor¡rbination ol atoinic orbitals ¡¡(r),

ø,(") : Ð cr¿r¡(r) (3.13)
À=1

where, n is the ¡rumber of atomic o¡bitals and úÀr àre expansion coefficients. It

equation (3.t3), X¡(r) are choset to be gaussian-type füuctions (called primitir,e

functions), since they are both computationally convcnient and well localized. tr4ore

speciflcally, rve have,

xÈ(r) - Nketp(-ar,lv -Rjl'z)lj-(ftj) (3.14)

where, rr¡ is the exponeirtial coefflcient of the gaussian function, À¡¡ is the normal-

ization factor, and !- is a spherical harmonic with angular dependence 0. We

can see from equation (3.14) that the gaussiau function is localized at the site R¡.

Tlrerefore, the molecular orbital þ;(n) depends on a set of parametels a¡, (1,m, j)

and coeficierts c6¿. By substituting equations (3.13) and (3.14) into the Fock equa-

tiou (3.6) while changilg ûÈ and cÈ¿ variationally, one could obtain the solution of

the Hartree-Fock wave function by rninimizing the total energy. This energy can be

expressed in the forrn of the following three parts,

Et=EclEp*E¡¡¡7 (3.15)

where, E¿: is the Hartree-Fock cluster energy, -Ð¿ is the environment, or embedding

lattice, energy, and.Ð¡¡7 is the interaction energy between clustel and its envilon-

ment. It is u'orth mentioning that the nurnber of gaussian primitive functions, r't, is

also an important factor in this procedure. Its minimum is tlLe number of electlons

in the defect cluster. In prilciple, ilcleasing n will briirg higher accuracy. How-

ever, it also tremendously increases the computer tir¡e for the calculation due to

the llartree-Fock quantun cluster treatmeut. It is a practical questiol when ole

should stop raising n. It is also often irnpractical to variationally determine the cr¡,

since sometimes it means an unpredictable ¿mount of computer time. Therefore in
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practice, one usuàily takes the a¡ from some other work. trn tire plesent worir, the

aÈ and contraction coefficietts ai-e taken froin l{uzinaga [32]. The s'hoie prccedrre

mentioned so far in this section wiii be explicitly illustrafed in scction 4.2, where

thc ground st¿tes of tlle F and F{ cênters àre studied.

Actually, some other aspects of the cluster model of the iCÐCAF method are not

mentioned here. For instance, one might asli how an embedded quantum cÌuster

can fit with an ernbedding cl¿rssical sliell-model lattice. It raises the proÌ:lem of the

cluster-lattice bourdary conclitions, maiuly ion-size effect, i.e. the electronic struc-

ture of the embedding ions. Tliis is completely ignored in the classical treatment

of the e¡nbedding region. In ICECAP, this problem is dealt with by a procedure

called l{unz-Iilein localizing potential [21]. In the present work, we do not intloduce

the liunz-I{lein localizing potential. The effects among ions are taken into account

by tl-re shell rnodel. Also, in our calculations, we do not include tire correlation

correction, which may be introduced into ICECAP to improve on the Hartree-Fock

apploximation. For details of the Kunz-Klein localizilg poteltial and correlation

correction, see, for example, reference [22].

3.3.2 T'Ïae ÏCECAF Fnognaam

ICÐCAP, standing for lonic Crystal with Ðlectronic Cluster: Automatic Program,

was developed in 1984 124,25] to carry out calculations of point and cluster defects

in alkali lialide crystals. It was designed as a user-fi'iendly plogram with a highly-

illustrative keywold-based input data fornat. ICECAP offers n-rany options which

make it suitable for a variety of applications. For instance, one can use it to simulate

a defect cluster, which could be either a very complcx inpuritSr defect ol a point

defect rvith comparatively simple structure, lilce an F center. One also can use

iCECAP for the perfect crystal. A variety of electronic a.nd ato¡nistic properties

can be provided by ICECAP calculations.
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The ICÐC.åP Þrûgram is constlucted mainly froin two otirer proglams, nainely

HADES and UITF. !f,Å"ÐÐS Hariueli .4ttornatic Ðefect Ðxa,mination System [26]

- deals rvith an infinite crystal lattice containing a defect by using oniy the shell

inodel. It can be used for many different types of the crystals and defects, with

various choices of the form of the ion-ioir short-range potentials. In the present

¡¡'ork, the lattice geomeiry is FCC and the short-range potentials are chosen to be

the Buckingharn type (see equation (3.12)). in the HAÐES progràm) the crystal

is divided into two regions - region tr (inirer region) and region II (outer region).

Region I includes the defect cluster and a ccrtain nuurber of the ueighboling ions.

Its radius should be specificd by the user. Region II extends to the entire infinite

crystai. Iu the lattice relaxation pr-ocess) HA.DES consistently and explicitly valies

the core and shell coor<linates of ions in legion I to ilinimize the total ellergy un-

ti1 the equilibriurn configuration is reached. Meanwhile, it treats the region II in

the contiruum approximation, i.e. electrostatic approximation. The lattice polar-

ization is also taken into account. The region I is chosen by assigning a specific

numbe¡ of ions in tlie input data. The program will then determine the radius of

region I accordingly. HADÐS provides many useful properties of the crystal, such

as the shell-rnodel energy E¡, elastic and dielectric constants, eqlrilibrium atomistic

configuration, and so on. On the othe¡ hand, the UHF program - Unrestricted

Hattree-Fock, which was developed by l{unz et aI l22l - treats the defect cluster

regior quaütum-rnechanically. Several requirements must l¡e satisfied befole UHF

runs. l,Ve first have to specify the characteristics of the defect cluster. This ilcludes

its chemical structure and electronic features. Specificall¡.., we must tell the program

the nuclea¿- charges and positions in the cluster, and the interactions betrveen thc

cLuster and the ions in the eml¡edding crystal lattice. The l¡asis sets also have to be

specified. This means that the parameters a¡(l,m, j) in equation (3.14) should be

assigncd proper values. One also can use other options such es Kunz-Klein localizing
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pûtertial (see section 3,3.X). UHF then detcrmines the encrgy eigerivaliles e¿ and

eigenr.ectors þ¿ in equaticn (3.6) e.s *'eil as the Hartree-Focli energy ð6 in ecluation

(3.15). it also provides a lot of othe¡ inforrnatiot about the electro¡ric properties of

the defect cluster, such as spin, fufuiliken popuiations, üultipole mon-ìerlis) and so

forth.

In ICÐC-AP, I{ADES and UHF are linlied together along with the other auxiliarl,

programs to complete the calculation automatically. For each cycle, first tlie charge

distribution in the cluster is estimate<l ârd rcilr-oseüted as point charges, HADES

then fixes the defect cluster and rel¿rxes the surrounding lattice by noving the sheÌl

and core positions of the neighboring ions, with poÌarization taken iuto account, to

reach the minimum of the HADÐS energy .Ð¡¡. Thel, UHF is applied to the cluster

to obtain the minirnized Hartree-Fock cluster energy Es aïrd wave furction ú/ in

telms of the electronic configuration while optimizing the coefficients c¡¿. Note that

corresponding to each step in the vari¿tion of the cluster atornic positions, UHF

also performs a minimization. In doing so systematically and consistently, the flnal

minilnization of the total energy is reached.

Practically, iu the ICÐCAF progràm, the total energy -Ð¡ is evaluatcd in a slightly

diffcrcnt way than in equatior (3.15). The ¡{ADES energy .Ð¡¡ is the classical shell-

model erergy for the whole laftice, in which the classical Coulomb energy I4lo arrd

the short-range interaction energy I4ls for the cluster are already included in tlie

Hartree-!'ock cluster energy .Ð¿:. Therefore, tÌrese two pa,rts are subtracted out from

.Ð¡¡ wìren calculating the total erergy .Ðr. That is, equation (3.15) now becom.es,

Et : Ec * ðr¡,rr * E¡¡ - Ws - Wg (3.16)

So far, we have only given a general outline of the ICECAF program. IVtrore

specific features will l¡e seen a'hen particular problems a¡e discussed in the uext

chapter.
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Up to now in the previous chapters, we have given the general mathematical formulae

and physical models as the backglound of the present worh. Il this chapter we

shall further explore the particular methods and considerations that n'e need to

accourplish our task. We shall also give the results of the calculations and discuss

thern in detail.

4"L One-Eleatrom TVlodel for the (F.f)- Ceruter

The (Fl-)- center has a more complicatcd structure than other F-type centers do.

trÃ/e have not yet seet any theoretical investigation concerning the properties of the

(Ff)- center, although some experirnental work has been done.

The (Fj ). center consisl,s of an Ff center and an Mg2+'V"" dipole. The Ft' ceuter

is forned by two adjacent anion vacancies. For the ground state ofthe (F/-). center,

Hofmann et al proposed a planar rnodel in which the n¿S'*.Vr" dipole points away

fronr tlre Ff center ald is split (see figure. 2.2), witlt the cation vacancy staying

at the nearest-neighbor position of both anion vacancies, alrd the excess electron

locaiized in the anion \¡acancy which is closer to the doubly <fralged impurity cation

(Mst*).

ïu order io investigate tiroloughly ¡he correciness of tire Hofmann ¡r:odei and set

up a firm foundatiou for further theoretical study of properties of tire (Fl-). center,



one slìoulcl cûrsider otircr possible electronic and atornistic configurations, compår-

ing tireil energies v'ith each other ard rvith tire lIofür¿na rlodel i¡¡ a. systematic

way. Ho*€ver' the structrile of the (Ff ). center is so complicated thai to use tÌre

full porver ol ihe ÏCECAP meihodology (see section 3.3), with âdequâte quantúm

ciustci's, would be prohibitiveiy time consuming for us. For instance, even if we only

simulate the l{ofi¡ann model, which is planar, not o¡lly shall we ha','e a cluster with

very low symmetry which is C1, but also we will be dealing with a fairly large cluster,

which includes two anion vacancies (an Ff center), one cation vàcâncy (V¡"), one

doubly charged cation defect (Mg2+) and at least their eighteen nearest-neighbor

iols. of rvÌrich half are Na+ and half F-. This cluster will contain 191 electrons. To

determine the enelgy of a single configuratiou with that nany electrons, and with

self-consisteutly rclaxed lattice, is a very large calculation. hi addition, to complete

the study of the structural model for the (F{)- center, many other corflgurations

need to be taken into account.

Therefore, to make this sinulation iaore practical, ltut at the same time not lcse

too much its validity, we consider a more efficient and simpler model for the (Ff ).

center. Once again, using the Hofmann conflguration as an example, we consicler a

quantutn-rnechanical cluster that consists only of the trapped excess electron. All

the ions of the crystal, including the Mg2+ irnpurity, are descrilled by the shell

model. Thus we shall have to deal only with a one-electrol quantum-mechanical

problem. Obviously, this one-electron model will significantly teduce the amount of

calculation. However, before we apply this model to the simulation, there are some

other important points which must be colsidered.

First of all, it, is ilecessary to detei'mine the shell-ilodel short-rànge pôtentials.

Many defect calculations in ionic materials 127, 281 have indicated that the qualiiy

of the potentials used to model the crystal lattice is a major concerrr in calculating

the dcfect energy with high accuracy. In other lvords, tve should l¡e very careful in
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dealing with these potentials.

Gererally, there are Ërvo kinds of porentrais in ou (F{)' center problem. T}re first

is the interionic potentials. kiost of them, srch as those for l'[a+-l{a+, Na+-F and

F--F- intcractiûrs, <ìre the iolic potentials ofthe host crystal which can bc obt¿ined

from ¡rrcvious study [30, 31]. In the prcscnt work, thc pararneters of these potentiais,

8, C and p in equation (3.12), have beeu t¿hea from Catlow eú al [30]. The olly

exceptior. is the potential for interaction between the X,{g:+ impurity and ions of

the host crystal. Because \dg2+ is a tightly bound cation, it is usually assur:-red

to be unpolarizable. That is, in the sliell model, we see it as a point charge, or

only as a core without a shell. For thc same reâson, we also reglect the interaction

between the Mg2+ and its second nearest-neighbor ions, namely Na+. As for the

interaction between Mg2+ aird F-, MgF2 does not have the rock-salt structure like

our host crystal NaF, and its near-est-ncighbor lattice spacing is totalÌy dilferent

from that for NaF. The way we determine the Mgz+-p- short-range poteutial is by

using tlìe ICÐCAP method. That is, we put Mg2+ in a cluster that includes its six

nearest-neighbor F- ions, and carry out an ernbedded quantum-mechanical cluster

calculation. 1Ã/e will come back to this point in the next sectiou.

The second liiud of poteltiâl must express the F-center interactions with Na+

and F- iors, as well as with the Mg2+ impurity. Although there has been a variety

of quantun cluster calculations involving F-type centers il alkali halides, they do

not consider the equivalent pain¡/ise classical potentials of the F center-ion inter-

actious. Il the plesent rn'orli, we assune th¿t F center-ion shoi't-range potentials

ìrave the Buckingharn form. Then rve determine these potentials fi-om large embed-

ded quairtuin-mechanical cluster calculatio¡rs. lVe will discr¡ss this i¡r mole detail in

section 4.4.

\4'e also investigate the possibility of scaling the F celter-Na+ poteltial to apply

it to the Ff cenÉer. lVhen this is found to fail, uew potentials âre derivcd for-Ff-ion
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iuteractions. There remains the question of the cornpatibiiity of these cierived F- or

F|-cclter potentials rvith the varying conflguratio¡rs studied for the (Ff)- center.

This point wiil be discussed in sectioir 4.5.

4"2 Shorû*nam&e WØtewLtåaL: NaF'; fulgt*

In this section, v¿e shall derii'e the Mgz+-O- short-range potential. The rnethod is

originally from Pandey and Vail, who have used it for hydrogen anions in \ag0 [29].

Fecause we have ignored the polarizaiion and second nearest-neighbo¡ interac-

tioir of the Mg2+, we now only havc to take air (Mg'?+)(F-)6 clustcr (scc figure 4.1),

which has 70 electrons treated quantum-mcchanically iu the UHF-SCF cluster cal-

culation, to derive the nearest-neighbor short-range Mg2+-p- interactiou by using

the ICECAP program. The basic idea in tliis method is that we use a shell-model

cluster to sirnulate the corresponding Hartree-Foch quantum cluster. Both of them

are embedded il the identical classical NaF shell-nodel crystal. We first assume

that in NaF, the Mgz+ cation interacts with its six nearest-neighbor F- anions simi-

lar'ly as it does in MgF2, following equation (3.12) which is of the Buckingham type.

Equation (3.12) can be re-written as,

V(8, C, p; r) : ss-i C
".ti

(1.1)

\'Ve are going to determine B, C and p by varying r. Further, we let

E¡(r) : Eaþ-) - 6V(Bo,Co., pa; r) + 6i/(4, C, p;r) + k (+.2)

where, -Ð¡(r) is the ICÐCAP (total) energy, E¡¡(r) is thc shell-model energy, rvhich

u'e wiil call the I{ADES energy because it is caiculated by tire }I-ADÐS program [26],

Ë6, C6 and p¡ are the short-range parameters for Ìr'{gz+-p- interaction for \{gF2, and

& is a renormaiization factor. Noie that HAÐÐS is part of ICÐCAF, so rve just take

the IIADES energy frorn the ICECAP output, and do not have to run it separately.
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Figure 4-1: The nearest-neighbor cluster for NaF: Mg2+



TaÌ:le 4.1: Fa¡¿metels of the Euckingham short-rarge ¡rotentials for NaF crystal:
taket f¡om Catlow eú aJ [3û].

ll (eV) p (A) ú. (evA')

Na+
F-

D_

- Nal-
F_

r594.2
7895.4
rt27.7

û.2555
0.1709

U.U

11 .68

r 1.68

To get a fit fol the pararnetel set ts, C, p and fr lrom equations (4.1) and (4.2), we

defrne a irew function,

f;(B,C,p,k): a (4 3)

with

l; : Etlr¡) - En(r,)-t6v(Bs,c6,p¡;r;) -6v(B,c,ptrt) - k (4.1)

wlrere, í : I,2,3,4, correspon<1irg to four different r values wÌrich we need to solve

equation (4.3) for B, p, C and k.

In the calculations, actually we have taken five r values, to fit the potential more

acculately about the equilibrium position. .\Ve 
compress and ellarge the clustcr-

through moving its six nearest-neighbor F- iols inward and outward al¡out the

equilibrium positions in the lange of 20 percent of the perfect lattice spacing. Then

we have flve equation (4.3)'s in terms of r¿, whcr€ 11 : 0.80¿, rz : 0.85¿¿, r'¡ : 0.90r¿,

r¿ = 0.954 and 15 = 1.00a. Noticc that o is the perfect lattice spacirg of the NaF

crystalr being taken as 2.295 Ã. The parameters of the shell-model potentials of

the host crystal ale taken f¡om reference [30], shown in table 4.1. Gaussian basis

seis for \tig2+ and F- are obtained from }luzinaga [32], both of theil with (a3/a)

contraction. For Mg2+, actuallS, we have used the free \4g set. The l¡asis sets ale

sirown il tables ,1.2 and 4.3. We judge the fit obtained by solution of equation (4.3)

by consideling
5

s = ¿ l/il-,
i

(+ 5)

and lequire s ( 10-2 (eV)2. In table 4.4, we list the energies E1 atd E¡¡ calculated
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a'able 4.2: Oontracted basis set for Mg2+: talen froin the free l.{g (a3/a) set
cf Huzinaga [32]. The exponential coefficient ¿r is it Bohr atonlic
ulllts ¿ro '.

Orbital a Contraction

285.51327000 0.1310931
64.27509900 A.4577639
i7.10119200 0.5308957

2s 25.82549500 -0.0885017
2.3981727t 0.5838364
0.81951998 0.4933946

2p 50.71731100 0.0403941
11.43098500 0.2236495
3.23696950 0.5120981
0.92860588 0.4443718

Table 4.3: Contracted basis set for F-: take¡r f'-om the free F- (43/4) set
of Huzinaga [32]. T]rc exponertial coefficient a is in Bohr
atomic units a[2.

Orbital d Contraction

156.68433000 0.1333205
35.11987900 0.4609976
9.29325510 0.5266653

2p

13.98919800
r-16228750
a.323L77r0

19.1û617300
4.14631680
1.07208680
0.23984997

-0.0797469
û.5838995
0.5075939

û.0523561
0.2585270
0.5082607
0.4634154

30



TaT,Ie 4.4: ICECAF enei-gy Ð¡ ald H.4ÐES enelgy .Ð1¡ foi the (hrIg'?+)(F-)6 clusier:
both are in units of eV. The separation of Mg2+ and F-. r, is in units ol
lda,b-' nearest-neighbor spacing.

r Et Ð¡¡
L8W
û.85
0.90
0.95
1.00

- 15.69

- 15.16

- 14.15

-21630.69
-2rffi4.71
-2r630.05
-21628.88

Table 4.5: The parameters of the Mg2+-F- shell-model interaction:
a. taken from Mackrodt and Stewart [31] for MgF2.
b. derived frorn cluster calculation.

4378.43
21671..69

0.22614 0.4393
0.1"847 0.0

witli ICÐCAP for the (Mg2+)(F-)6 cluster embedded in the rolaxed NaF shell-

model lattice. The equilibrium nearest-neighbor distance for this cluster is fould

to be 0.89 a. In thc fitting, we fin<l that we can only get the best fit with C - 0

(1f C + 0, we have very large s). This means that the Mg2+ cation interacts with

thc host F- anions in the forn of the Borl-Mayer poteirtial. In table 4.5, we give

the results froln the fitting, together with the fuIgz+-a- interaction paralreters fot

\4gF2 tahen from reference [31], for conparison.

From table 4.5, one cân see that the short-range interaction between the Mg2+

impurity and its nearest-neighbor F- anions in NaF is quite strong, but the range

of the irteraction is slightly shorter than that in MgF2.

4"S F amd Þ'f üerater:s: Gr:rtnffid States

We now analyze ihe F and Ff ceirters, r'hich are trl'o ba^sic clements of ouL (Ff )-

problem. In this sectiol, we determine the basis sets and equilibriurn configurations
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of tirese ¿wo ceûters in their ground states in l'[aF. fu the next sectìon. we shall

derive the short-range potentials betr¡een each of them ald host ions, a.s rr'cll as the

F cen'cer-\4g2+ potential.

4"&.1 Tlae F Ce¡rter

The $'ork of Pandey and Vail [29] indicates that in MgO, although the F cente¡

is fairly rvell localized in the anion vacancy) its wave function is relatively diffuse.

They found that the defect's properties are sensitive to the defect basis sets and

lattice relaxation. In our analysis for the F center in l'{aF, we first consider a

nearest-neighbor'(Na+)6(F center) cluster (see figure 4.2) io deiermine the F-center

basis set. Then we enlarge it to a second nearest-neighbor (Na+)6(F-)12(F center)

cluster (see figure 4.3) ancl optimize the the F-center basis set in this cluster. These

two clusters have the same symmetry. There are 61 quantum-rnechanical electrons

in the former case but 181 in the latter. Finally, \Ã'e calculate the equilibrium

configurations of the second uearest-neighbor defect cluste¡ embedded il the NaF

shell-model crystal.

To determine the F-center primitive functions in NaF, s'e need the exponeutial

coefficients a of its gaussian-type orbitals. We keep the F center basis set uucon-

tracted throughout our work. Il the nearest-neighbor (Na+)6(F center) clustet, we

have taheir the F center orl¡ital to be of s t¡pe. We estimate an initial value of a

using following equation,

R: (2s¡-ttz (4.6)

where, Il, iu units of NaF perfeci lattice nearest-neighbor spacing, is the lange of

the o¡bi'.,al. trf v'e let Ã : 0.5 o, we obtain a approximately with the r,a1ue of

0.1 o[2, rvhere c6 is the Eohr atomic radirs. For the six nearest-neighbor Na+

ions, we use the fi'ee Na+ basis set from Huzinaga [32], w;th (43/4) contraction,

shown in table 4.6. \\Ie execute a series of UHF-SCF cluster calculations by using



Figure 4.2: The nearest-neighbor cluster for the F center in NaF



TaÌ:1e 4.6: Cortracted l¡a"sis set for Na+: taken fror¡ the free Nâ+ (43/4) set

of Huzinaga [32]. Tbe exponential coefficiett a is iu Bcllr aton:ic
.. _tunrts a0 -.

ûrbital & L,,.ontraction

1s 1562.63160000 0.0192363
235.88220000 0.1329870
53.17220000 û.4600791
14.1597590û t.5269627

2L.42552204 -0.0856725
1.93426680 0.5778588
û.62799346 0.5024330

38.80258600 t.0427562
8.67551940 0.2304547
2.41015550 0.5105285
0.65992043 0.4488300

ICECAP program, while keeping six Na+ neighbors at theil pelfect lattice positions

and varying a of the F-center basis set to minimize the total energy. Table 4.7 gives

the results from these calculations, including the optimized o and total energy.

Theu rve add a secoud s orbital to the F-center basis set and perform the same

calculations. We fix a,1 at 0.08 ø[2 wliile varying a,2 to obtain minimizecl total

energy. In taÌ:le 4.8, we give the results of thcse calculations. In comparisoir witir

Ta'ble 4.7: Total energy E, itunitsof eV, calculated for the (Na+)6(F center) cluster:
with the F-center (1/0) set and the Na+ (a3/a) set (see table 4.6). Tlic
exponential coefficient a of the F-ce¡rter basis set is in Eolu atomic units
A6".

2s

2p

E
0.10
û.û9
0.08
0.0872976

-26354.44

-26354.48
-26351.50 i

t Optiraized values
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Table 4.8: Total energy ð, in units of eV, calcuiated for the (Na+)5(F ceì1ter) ciuster
with the F-center (11/0) set and the lia- (a3/4) set (see table a.6). The
expcnential coefÉci¿nt a is in Bol:rr atomic utits c;2. TLc a1" fol the
F-center basis set is fixed ¿t 0.08.

û.10
0.06
0.1351180

the case of a single s orbital, we see that adding a second s orbital to the F-center

basis set only lowers the total energy about 0.03 eV.

Alother- key point that we want to know is whether the F -ccnter electrorr is mainly

localized at the center of tlìe vacancy, or is occupying tlie Na 3s orbitals. Nlany

previous investigations on the F-certer electronic propcrties assumed the former.

To investigate this, it is necessary to add the 3s orbital to the Na+ basis set and

see wher-e the excess electron tends to go by looking into the Mulliken populations

from the ICEC-AP calculation. In older to make this simple and still compara,ble

with the calculations done v¡ithout the l{a 3s orbital, we do not use the complete

Na (a33/+) ba,sis set, which is ¿lso available from reference [32], but olly add its

3s o¡bital to the Na+ (a3/a) set. Table 4.9 lists this Na 3s orbitai basis set. \,Ve

olly carry out one single calculation for the Ðurpose of comparison. \Ã/e use the

F-center (1/0) basis set at the våcancy. The total energy lowering from the extra

&2s E
u2a -2635L52

-26354.53
-26354.51
-26351.531

t Optimized values

TabÌe 4.9: Contracted Na 3s orbital: taken from the free l{a (433/4) set
of lluzinaga [32]. The exponentiai coefficient ¿r is in Bohr
atornic units ag-2.

Orbital a Contraction

0.05407000
0.02106000

0.7008421
0.37434t1
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Table 4.10: Muiliken poptlations caicuia.ted for the (Na+)6(F center) cluster:
rvith the ltta- (a3/ ) and (a33/a) i:asis sets. For the F-center (1/û)
basis sei, ¿r is t¿ken to l¡e û.û9.

Na+ (a3/4) basis set Na+ (a33/a) basis set
spin up totaluÐ total

F ce¡rter

Na+1s
Na+2s
1\ ar3s
Na+2p

i.00ûû 1.û069

1.0000 2.0000
1.0000 1.9997

1,0000 1.9992
1,0000 2.0000
i,0000 2.0000

0.883,r û.8913

0.9999 1.9998

0.9992 1.9981

0.0213 0.0228
0.9994 1.9982
0.9998 1.9996
0.9998 1.9996

Na 3s orbital is 0.22 eV. I¡r table 4.10, we give thc Mulliken populations from'both

Na+ (a3/a) and \la (433/4) basis sets. We see that with the Na 3s orbitai available,

the excess electron still shows a strolg tendency to stây ât the vacancy site. The

Na 3s orìrital only reduces tlie Mullikeu population of the spin up state of the excess

electlon at the center by 12 percent, of which each of the six nearest Na+ neighbors

is responsible for 2 percent. The total population at the center is also reduccd by

about the same amoullt. So, introducing the Na 3s orbital does not result in much

charge transfer frorn the defect center to its six nearcst Na* neighbors.

From all of above, we believe that for the present simulatiou on the F center iÌ1

NaF, ihere is no need for including the second F-center s orbital or the Na 3s orbital.

Ii is suficient to use only the F-center (1/0) and the Na+ (43/4) basis sets for oul

fulthcr cluster calculations.

We are now in a position to analyze the ground state propelties for the F center in

the second nearest-neighbor cluster. Il this quantum cluster (see figure 4.3), we use

the Na+ (43/4) contr-actiors (see table 4.6) for the six nearest-neighbor Nar iors aird

the F- (a3/a) cortractions (see table 4.3) for the tv¡eive second nearest-neighbor F-

ions. In o¡der to iuvestigate the distoriion field aud the equilibriun colfiguratious of
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Figure 4.3: The second nearest-neighbor cluster for the F center in NaF



Tabie 4.11: L4ini¡nized totai erergy .Ð¡, ior the ground state of the F center
ir tire second nearest-neighbor cluster: correspotdilLg tc ihe F-
center-nearest-neighbor ion distance d1 and the F-center-second-
Èeârest-neighbor ion distairce d2, both in units of perfect latiice
nearest-neighbor spacing a, and the optimized exponential coef-
ficient a.

ù (a) dz (a) a (al1 Et (eV)
0.70 1.41 0.1769869 -58784.56
0.90
1.00t
1.10
\.zll

1.00
1.00
1.00
1.00
1.00
1.00

i.41
L.4L

1.41

i.4i

1.31

1.36

1.401

L.4L

1.46
1.51

0.1141181
0.0940154
0.0773169
0.0555198

û.0957267
0.0949671
0.094r722
0.094015,r
0.0930410
0.0925192

-58794.3i
-58795.14
-58794.28
-58792.0û

*58793.46

-58794.74
-58795.16
-58795.14
-58794.31
-58793.01

Equilibriurn position for the nearest-neighbor iols
Equilibrium position for the second nearest-neighbor ions

the defect crystal, we shall compress and enlarge tÌre cluster by varying the nea¡est-

neighbor and second nearest-neighbor positions. This is a similal plocedule asin the

previous section for deriving the Mgz+-¡r- potential, but here at every position we

optimize the ex¡ronential coefficient a by varying it to get the minimized total energv

ofthe defect lattice. First, we fix the second nearest-neighbor F- positiors and inove

the near-est-neighbor l{a+ ions. We cotrlpress the ciuster by 30 percent and enlarge it

by 20 percent ofthe perfect lattice spacing. Then, the nearest-neighbor Na* ions are

held at tl:eir pelfect lattice positions and the F- ions are .moved inward and outward

by about 7 percent. \Ã/e choose the lalge displacements so th¿i the results can be

used in the next section to derive effective potertials. Table 4.11 gives the minimized

total energies and corresponding optimízed a's in terms of the different F center-ion

distances. The equilibrium distances of the nearest-neighbor ions and of the second
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Table 4.12: Mulliken populations for the grounrl state of the F center:
second qearest-neighbor cluster.

spin up total
F center

Na+ 1s

Na+2s
Na+2p

t, ls
F-2s
F-2p

1.0000 1.0 i 28

.0000 2.000û

.0000 1.9998

.0000 1.999i

.0000 2.0000

.0000 2.0000

1.0000 2.0000
1.0000 1.9999
1.0000 1.9998
r.0000 1.9998
1.0000 2.0000

learest-neighbor ions ale also presented. We fincl the nearest-neighbol equilibrium

positions almost at theil perfect lattice positions (displaced inward 0.0001 a) and

thc sccold nearest-neighbor equilibrium positions slightly inward (0.01 a) frorn their

pcrfcct positions. The total relaxation energy ofthese displacements is only 0.02 eV.

Il table 4.12 we show the Mulliìien populations obtained fol this second ûearest-

neighbor cluster. Only (-0.01) elect¡or charge is found to transfer into the defect

center from the neighboring ions. In conclusion, u'e find that, although tire F center

is quite flexible and polarizable, in this higli-symmetry ground-state configuration,

it is strongly localized in the defect ceuter and produces negligible distortion. These

propertics ma ¡ not plevail, however, in lower-symmetry states.

4.&"2 The F'/' Ce¡aÈer

\4,¡e norv explore the Ff center ground state. This ceuter has a lower symmetry (D2¡)

than the F certer because it consists of two vacancies along the [110] direction.

If we still consider a second nearest-neighbor cluster as before, it s'ill contain 10
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nearest-neigh]lor Na+ ions and 18 second nearest-neighbor F- ions, with ¿ tot¿l oí

281 ciuantum electrous. Such a large, low-s3'mntetry ciuster would ire very time-

consurning to analyze using ICÐCAF. Thus we colsider a tearest-neigh'l¡or cluster

(see ág 4.4), which only co¡rsists of 10 lJa- ions and 101 c¡uantum electrors.

The procedure of analyzing the Ft' center is ahnost the same as that ¡¡'e usecl

eÐlier for the F center. We first keep the nearest-neighbor Na+ ions at their ¡rerfcct

latticc positions and optirnize the Frr center basis set. Then the parameters of the

basis set are fixed at the optimized values and we vary the nearest-neighbor positiors

to minimize the total energy of the defect lattice. .At the same time, the HADES

pari of ICtrCAP relaxes the rest of the lattice and detei'inines the ion positions.

There are three inequivalent sets of nearest neighÌ:ors. For each set, we vary the

positions of these nearest-reighbor ions in a systematic way. For instauce, u'e talie

one step outward in one direction, say x, arrd then take several steps(inward and

outward) one by ore in the othet two directions, narnely y and z. Next \Me rnove

the x position again. When we obtail the relaxed conflguration and corresponding

minimized total energy of the defect lattíce, we keep the nearcst-neighbor ions at

their relaxed positions and re-optimize the basis set. lterating this, we get the finalÌy

relaxed lattice configuration and the minimized total energy of the defect lattice.

In this calculation, we use the sarrre l¡asis set for the Na+ ions as 
'before. 

For

the Ff center, there ale two possibilities to be considered. One is that, rvith the

F-center electron shared between two vacancies, it may be necessary to acld a 2p

gaussian orbital to the F-center (1/0) basis, to have a (1/1) basis set. The other

is with the F-center electror at the saddle point, the 1s and 3d orbitals rvill need

to be considerecl, giving a QlAlt) basis sct. Table 4.13 shows the results for tÌrese

two cases. There are only cooldilates for three neat'est-neighbor ions shown in the

lablc since all ten can be sorted ínto these three groups. In table 4.14, rve give tire

Mulliken populations from the (1/l) set calculation. Table 4.15 is for the case
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Table,l.13: The ground-state resrlts for tire Fi center in tearest-neighbor cluster:
mininized total euer-gy ð¡ (eV), relaxation energy Áð (eV), optirnized
a (a¡2), relaxed F center distancc d (a) and nearest-neighbor coordi-
nates of the relaxed coûfiguration x, y, z (a), fo¡ basis sei (1/1) at the
two vacancies, arLd for basis set (1lAlI) ¿t the sa.ddle point (origin).

a"era¿EtL.Ed,rAz
(rl1) 0.09 0.11 -43935.45 0.3,r 1.33 0.55 -0.55 0.00

QltlL) 0.i3 0.09 -43831.63 0.35

0.49 1.55 0.00
0.49 0.49 1.05

0.50 -0.5û û.00
0.50 1.55 0.00
0.50 0.50 1.08

Table 4.14: Mulliken populations for the F2F ceûter with (1/1) basis set
in each vacancy, unrelaxed ald relaxed configurations.

Unrelaxed Relaxed
Orbital spin up total spin up total

F center ls 0.4609 0.4688 0.4676 0.4735
F centcr 2p 0.0291 0.0363 0.0239 0.0298

0.0291 0.0363 0.0239 0.0298
0.0070 0.0139 0.0058 0.0114

Table 4.15: Mullilçcn populations for the Ff center- with (i/0/1) basis set
at the saddle poirt, untelaxed and relaxed configurations.

IJnreìaxed Relaxed

F center ls 0.6413 0.6495 0.6115 0.6190
F center 3d 0.1218 0.1283 0.1276 0.1334

0.1218 0.1283 4.1276 0.1334
0.0797 0.0845 0.i009 0.1056
0.0585 A.0622 0.0534 0.0564
0.0065 0.0i28 0.0059 0.0116
û.0065 0.û128 t.0059 0.01i6
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oí the (1/û/1) set. From these tables, it can be seen that for both cases, ihe defect

iattice gains airnost the sånle à lourt of ertergv lorvering (û.34 - 0.35 eV) ihrough

iattice ¡elaxation. However, for the (1/1) set, i,he total ener-gy of the defect lattice is

aboui û.82 eV lower than that foi tLre (1/0/i) set- In ¿he case of the (1/1) sei, twc

saddle-poirt ions are spread out by about 5 perceni of the nearest-neighbor lattice

spacing in both x and y directions. The remainíng B nearest-neighbor ions are also

moved out by 5 percent in only one direction (x, y or z). The cetters of the two

lobes of the F-center wave function move closer to each other by about 6 pelcent.

In conclusion, the Ff-celter electron is split between the two vacancies, rather

than localized at the sa<ldle point. Because of the net positive charge, the nearest

neighbors ale forced outward by 5 to 7 percent of the perfect lattice nearest-neighbor'

distance. From table 4.14, we see al¡out (-0.09) charge transfer into the celtel from

its nearest neighbors, with about (-0.14) charge in overlapping p-type orbitals from

the two vacancies.

4.4 Classicaå trote¡rtials fon the F *type Ce¡aters

Before we can start investigating the (Ff )- center using the one-electror model,

we must obtain all the short-range potentials for interactions between the F-type

ceirters and ions in the crystal. First we derive the F center-host ion potentials.

In tire previous section, we have calculated the total eirelgies of tÌre defect lattice

in terms of the different nealest-neighbor and second nearest-neighbor distances as

well as the optimized exponential coefficient a (see table 4.11), where the nearest-

neighbor and second nearest-neighbor ions were included iir the quantum-me<ìranic¿l

cluster. Now, we consider the quantum cluster to consist oirly of the F-center elec-

tron trapped in the defect vacaocy. This will h¿ve ICECAP trea,t the 6 rearest-

neighbor cations and 12 secold nearest-neighbor anio¡rs as shell-model iors rather

than quantum-mechanically. !\¡e talie thc samc nearest-neighbor and second nearest-
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neìgllbor distances a"s in the many-electron cluster caicul¿tions ancl keep each c

colresponcling to each distance at its opti¡nized value a.s determined in the nany-

electlon (large citster) case. It this wa1', we can har.e 5 ote eiectron energies (,Ð1")

corresponding to 5 large cluster energies (nre still call them E¡). The latter are taken

from table 4.1tr, and one-electron energies are shown in table 4.16. X&¡e assume that

thc potentials have the Born-Mayer form (see equation (3.12)) and derive them by

fitting the coeffrcients E and p. However, we then obtain results with s ) 10-:. Af-

tel carefully analyzing the data, we carry out another fit ir terms of the Bucliingham

poiential (see equation (a.i)). For this calculation, equation (4.2) becomes

E¡(r) : E1.Q) + 6v(R1,C1, p¡r1) + 12v(82,C2, p2;r2) + k (4.7)

where subscripts 1, 2 are referring nearest-neighbor and second nearest-ncighbor in-

teractions, respectively. This time, the convergence criterion for s is fully satisfied.

The frtting results are given in table 4.17. It cal be seen that the Born-Mayer inter-

actions between the F center and the host ions are much lilie the ion-ion interactior,

but the attractive forces are much stronger. The repulsive interactiol between the

F center and seconcl nearest F- neighbors is stlonger, and longer-ranged, than that

between the F ceuter and the nearest-neighbor Nal ions.

Next, we determiue the interactions between the Frl center and the host ions.

We still assume a forrn of pairwise short-range potential. However, we first corsider

siml:ly scaling the potentials that rve have just obtaiued fo¡ the F center. Fron the

symmetry and the work r,l'e reported in the previous section, we assume that the Ff

center is folmed by two adj acent F centers, each containing only half au electron,

and we therefore scale the poilt charge they share and the short-range par'âmeters

ß and C for the F center by 0.5, but keep p unchanged. Then, we perform a one-

electron calculation using ICÐCAP and vary the disiance between tN'o haÌf F centers

to fird the minimized total energy in the relaxed lattice conflgulation- If the scalc
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Table 4.16: Ore-electron enelgy Ð1" for the F-center ground-state calculations:
corr-esponding to the F center-nearest-neighbor ion distance 11 and
the F center-second-nearest-neighbor ion distance 12, both ol which
are in units of perfect lattice nearest-neiglibor spacing 4,, as well a,s

the exponeirtial coefficiett a.

0.70 1.41 0.1769869 7.29

0.1141181 3.22
0.0940154 2.94

0.90 1.41

1.00 1.41

1 .10 1.4i
1.20 1.41

0.0773169
0.0555198

0.0957267
0.0949671
0.0940154
0.0930410
0.0925192

1.00

1.00

r.00
r.00
1.00

1.31

1.36

1.41

l.4b
r.5i

5.49

4.50

Ð ô,1

3.42
4.35

Table 4.17: The parameters of the F center-Na* ¿nd thc F ceuter-F- potentials:
derived from the rnany-electron quantum-cluster calculations.

i¡ cenl,er-f 7272.47 A37!t7 2073.rL4



Table 4,18: The parameters of the F 2i-host ion potentials: obta:ined from Û.5 scaled

polential ¡ralametcrs for F center-host ion shori-range interactiors (sce

table 4.17) with p kept unchanged.

Interaction A (et/) p(A) {/ (eVÀ")

Ff -F. 3636.24 A37Lr7 1036.557

Table 4.19: One-electi'on results for the Ff center with the F-center poter-rtials

scaled by 0.5, F-center basis set (1/1): rnininiized total lattice en-

ergy.E1" (eV), r'ela-xatior eucrgy Â-Ð (eV), optimized a (o;2), re-
laxed F center distance d (ø) aud ircarest-neighbor coordinates of
the relaxed configuration x,y,z (a).

a"arEt.A.Edxyz
0.09 0.i1 -1.88 0.11 r.27 0.54 -0.50 0.00

0.50 1.51 0.00

0.50 0.50 1.01

we have chosen is physically conect, the one-electron result should provide a lattice

configuration and variations of the total energy with nearest-leighbor distances

which are close to the 1O1-clectron (nearest-neighbor quanturn cluster) results. The

scalcd potentiai pararneters are shown in table 4.18. The calculated total energy,

nearest-neighbor positiors and equilibrium F-centcr dist¿nce are given in tal¡le 4.19.

Comparing the one-electron results with those of tlie 1Ol-electlol calculation in

table 4.13, we see that the nearest-neighbor relaxations diffel significantly in the

two cases. This indicates that the short-range potentials we used for the Ff center

by scaliug 0.5 are not correct. We then explore the possíbility of other scales. Even

though we do obtain a one-electron lattice configuration very close to the many-

electrol one for F center-Na+ scaling of 0.68 and F center-F- scaling of 0.5, N'e

are still not satisflcd with the variation of the total energy with nearest-neighbor

distances, which is completel¡' different from the resuit in the man;r-eiectron case.

Finally, we have therefore had to re-derive ttre Flr-host ion potentials. We lieep the
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Tat¡le 4.20: One-electron and 1û1-electron resuiis for re-cierivilg ihe Fi-Na-
potentia"l paraaeters: one-eiectron total energy 81" (eV), nairl'-
electron totai cnergy ð¡ (eV), F center distance d (4,) and aearest-
neighbor positiot coordinates d, (a).

-1.61 -43935.15 1.33 0.55 0.49 1.55 0.49 i.05

-1.35 -43935.36 1.33 0.57 0.49 1.57 0.49 1.47

Table 4.21: The short-range pararreters for the Ff-Na+ and the F center-Mg2+
interactions in Ì'JaF.

Interaction B (eV) p (A) Ú) (e\¡4")

F certer-Mg2+ 16.07 1.2201 0.0

scale for the F center-F- poteltial at 0.5 since we l¡elieve that it is less important,

and we only re-derive the F center-Na+ potential. Flom table 4.13, it can be seen

that in tlie many-electron calculation, the equilibrium lattice lela"xatior has three

of the five indepeirdent uearest-leighbor position coordinates relaxed by 5 percelt,

¡¡'lrile tlre other two, d,2 and d,a, are hardly displaced at all. Then frxing d2 and da

at 0.5 distance between the two half F centers as found for equilibrium relaxation,

'we càÌry out several lalge-cluster and one-electron ICÐCAF calculations, varying

the other d's as a single variable. We fix the exponertial coefficients a, and ao at

the vaiues found earlier for the Ff center-Na+ interaction, and detelmine B and C

by frtting the two total-energy curves. Thc results arc shown ir table 4.20. Flom

these data, following the same procedure for determining the potential parâ"rrreters

befole, we obtain the new parameters for the Ff-Na+ potential, which ar-e given in

table 4.21.

The last short-range potential needed for our (Ff)*-center aualysis is the F celter-

Mg2+ iltclaction in NaF. For this purpose, we consider â quantum cluster (see
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Figure 4.5: The nearest-neighbor cluster for deriving F center-Mg2+ irtelactiolr
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Tahle 4.22: \tlany-eiectron results for the (fulg'+)(F-)5(F ccnter)(i{a+)s cluster:
total defect latiice energy & (uV), arid optiruizeci c (o,;2) ìn telms
of the clifferent F center-Mg2+ distances d (a).

us E¡
0.90 0.100 0.12 -40902.41
0.95 0.095 0.11 -40902.55
1.00 0.09û 0.10 -40902.62
1.05 0.090 0.i0 -40902.63
1.10 0.090 0.09 -40902.57

figure 4.5), in which the F center and Mg2+ c¿tion are at near-est-neighbor positions

to each other, and ihey are surrounded by 5 nearest-leiglibor Na+ aird 5 nearest-

neighbor F- ions. Tliis rectruires a relatively largc cluster calculation due to both

the number of the elect¡ons (111) in the cluster and the gaussian primitive rvave

functions involved. For Na+, F- ald Mg2+, we use (43/4) basis sct, t¿rltcn from

tables 4.6, 4.3 and 4.2, respectively. For the F center, a (1/1) set is uscd. We

minimize the total energy by varying the F center-Mg2+ distancc in the r-ange of 10

percent nearest-neighboi' spacing inward and outward, at the same time optimizing

the exponential coefficients a ofthe F-certer basis set at each step. Then, several one

quantum-electron calculatio[s are calried out at the same F center-Mg2+ distalces,

maintaining the optimized ¿v values found in the large-clustcr calculations. The

results of the total energy and o are shown iir t ab1e 4.22. The potential parameters

obtained from fittilg are listed in table 4.2L. It turns out that the interaction

betx'een the F center and fuIg2+ inpulity in NaF h¿¡-s the Borl-Mayer form with

u,eak repulsive force but quite long range iir comparison with Na+-F ceûter and F--

F center interactíons. So it rnay or not 'be that irnportant for some coufigurations

in our ínvestigation on the (Ff)- ccnter later in the next section.
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4.ffi ûme*ElecÈroc-å Eå.esuååts for Èhe {F f }- CeEaÈeä"

In the plevious sections of this chapter, ¡'e have analyzecì the F-ccntcr ancl the F]'-

cerrter ground states. We irave also obtained the sholt-range ciassical potentials for

iuteractions between ihe F-type centers and ioirs, as rveÌlfor the lvfg2+-p- interaction

in NaF. These provide us with a good foundation to investigate a numbci' of possible

7ñ+ \+
conflgurations of the (Fi)* celter by using the oue-electron mode1, which treats olly

the excess electron trapped in the Ff center quantum-mechanically and all the ions,

including the Mg2+ impurity, by the shell model. In the prcsent investigation, we

select out some possible configurations and compare thera, including the Hofrnann

rnodel, using the one-electron model to predict the most stable configuration.

Il thcir u'ork, Hofmann eú ¿] considered the case that for the Mg2+ doped (Ff )-

celter il NaF, the Mg2+.\lr" dipole, in which Mg2+ and Vr" are dissociated, and the

Fl- center are coplanar'. Il the plesent worh, we concentrate mainly ol soure planar

configurations and a few nonplauar ones. Specifically, in addition to tllc Hofinann

model (see figure 2.2), we considcr 7 planar configurations and 3 nonplanar oues,

which are shown in figules 4.6 to flgure 4.15. We label all these configurations from

1to 11, starting fi-om the Hofilann model. They inclucle every case with V/¡¡" at

thc nearest-neighbor positiol of both anion vacancies, including the dipole split to

a distance of 2 ¿. Our coordinate systcm is shown in figure 4.6, with t$'o anion

vacancies at (-1,0, û) and (0,1,0), labeled as site a and site b, respectively. Irr the

calculation, the short-range ¡rarameters for the host ion-ion ilteractions are taken

frou table 4.1, and for the Mg2+-p- intelactior frorn table 4.5. The parameters for

intcractions between the F-type centers and ions are obtained fi'oil tables 4.17,4.18

ard 4.2I. Note that for the F-type center-Na* iuteraction, there are two possibilities.

One is that in a symmetrical configuration, ihe excess electron is shared equally by

two vacaucies, so the short-range parameters for the F|-Na+ inter-action (talte +.Zt)
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slioulci 1¡e nsed. Aiso, we shorild use the F-center (1/i) basis set for this case. The

other is when tìre electron is loc¿lized ¿t ote of the two vacancies, fo¡ n'hich rve

should use ihe potential for the F center-I'Ja+ interactio¡¡ (table 4.17) ¿ircl ihe F-

center (1/0) basis set.

We ñrst carry out a one-electron ICÐCAP caicul¿tion for each of these 11 config-

urations, using the proper potentials and basis set. Thel for those with loiv-lying

total cncrgies, we further minimize their total energies by relaxing the centers ofthe

electron orbitals. Tablc 4.23 summarizes the results from these calculatiols. In the

first column, we list the labcls for all 11 atomistic configurations. The sublabels, a

and b, refer to two different electronic configurations, in rvhich the excess electron is

localized àt vâcancy center a or b (see figuie 4.6) in a symmetry- brolieu configura-

tiou. For a symmetric configuration of the ions, such coufigurations 2, 5 and 11, we

also calculate one of these two cases to test the energy lowering due to tlte syrnrne-

try breaking. The next two columns give the V¡. ald Mg2+ atornic positions. The

fourth column is the total ICÐCAP enelgy and the fifth gives the euelgy lowering

obtained from the relaxation of the F-center basis set centers. Column six is ihe

Ivlulliken population. Note that for center a or b localization, we have P¡¡ : 1, but

for the cases in which the excess electron is equally sharcd by two centers, we have

P¡¡ : 0.5 for both of them. The following three columns sÌrow the same physical

properties as coLumn 4, 5 and 6 except that they are for the calculations with a

reduced region I. This is required because, for the three nonplanar configulatious,

rve hal.e eircoultered a problem due to the lot'er symmetries, and been forced to

reduce the size of region I. Region II is also inodified correspoudiugly. To gain a

bettel conparison a!1loÌ1g all the configuratiot.rs, we have reclone the c¿lculations

for thc planar cases in the reduced region. Cornparing the results for the dilÏerent

region sizes, we see no significant changes except for configurations 2 ald 5, both of

then having symrnetrical configurations. Nevertheless, these two cases are not that
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Figure 4.9: The (Ff )' ccnter: configuration 5
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Figule 4.13: The 1Ff)" ccntcr: configulatioir 9
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Figure 4.14: The (Ff )- certer: confrguration 10



Figure 4.1õ: The (Ff). center: configuration 11



Table4.23: R.esults for the one-electron modclofthe (Ff)* center: 11 configurations,
The Vî" position :{yi . ànd Mg2+ position x¡rs2+ are in units of the

perfect blaF iattice spacing o. ð¡ (eV) is the totai ICÐCÀP energy wìtir
unrelaxed positions of the F-center basis set centers. ÅE (eV) is energy
lowering due to the relaxation of the basis set centcr distance, w{rich is

ir¡ units of a. P¡¡ is the Mullilien population and Region I lefers to a
small region in which the HADÐS part oí ICÐC.{P relaxes tire positions
of all ions independently to minimize thc total energy -Ð¡.

Itegion I(35 ions) Region I(30 ions) ReÌaxed Basis
No. x,,, xv.,- --Et L.E Pu -E;--- LE--PM Sct Position

1a 0,0,0 0,2,0 -14.96 0.03 1.0 -14.95 1.0 1.05,û.00,0.00

1b 0,0,0 0,t,0 -14.85 1.0 -14.85 1.0

2 0,0,0 1,I,0 -12.38 0.27 û.5 -10.98 0.5 0.11,0.92,0.00
0.92,0.11,0.00

2a 0,0,0 1,T,0 -14.89 0.03 1.0 *14.88 1.0 1.05,0.00,0.00

3a 0,0,0 T,I,0 -12.17 1.0 -12.17 1.0

3b 0,0,0 T,I,0 -13.81 1.0 -13.81 1.0

4a 0,0,0 2,0,0
4b 0,0,0 2,0,0 -13.47 1.0 -13.47 1.0

5 0,0,0 T,1,0 -7.63 0.5 -6.09 0.5
5b 0,0,0 1,1,0 -10.48 1.0 -10.48 1.0

6a 1,I,0 0,2,0 -14.25 1.0 -14.25 1.0

6b T,I,0 0,2,0 -15.44 0.00 i.0 -L5.4'1" 1.0 0.00,1.01,0.00

7a 1,T,0 2,2,a -L4.07 1.0 -74.07 1.0

7b T,T,t 2,2,a -14.79 0.00 1.0 -14.79 1.0 1.00,1.50,0.00

Ba I,î,0 1,T,0 -14.03 1.0 -14.02 1.0

Bb i,T,O 1,1,0 *15.33 0.00 1.0 -15.33 1.0 0.01,1.00,û.00

9a 0,0,0 f,0,1
9b 0,0,0 1,0,1 -13.46 1.0

10a 0,0,0 1,0,1 -L4.76 0.04 1.0 1.05,0.00,0.00
10b 0,0,0 1,0,1 -14.55 i.0

11 0,0,0 0,0,2 -12.19 0.5
1la 0,0,0 0,0,2 -14.67 0.02 1.0 1.05,0.00,0.00



inportant sirice they have higher total energies in any case. ?he l¿'st columu gives

the positions of the basis-set centers correspouding to the minimized toial energy

through cluster relaxaïiou. Il the tabÌe, tiic dasl¡ line'-' ineans thelc is uo valid

ICÐCAP (or F{-4DÐS) calculation availablc.

From table 4.23, ser''eral important poitts calr be seen immediately. First, if ive

sort tÌrese 11 configurations iirto two groups iu ierms of their Mg2+ impurity positions

related to the anion-vacarcy centers, the group with Mg2+ impurity ât nearest-

neighbor positions, including confrguration 3, 4, 5 and 9, has higher eirergies tÌran

the otlrer group, rvhich coirtains conflguration 1 (the Hofmann),2,6,7, B, 10 arcl 11.

This is because the aniol vacaucies actualÌy behave as positively charged objects

due to the loss of negativc charge, and therefore repel the net positively charged

Mg2+ impurity. The second point concerns the electronic stlucture of atornistic

configurations with the Na+ vacancy in an unsymmetrical position relative to the

two anion vacancies. We put the excess electron at each auion vacâncy celter, a

and b, alternatively. The electron prefers to localize at the center wliich is farther

away from the negatively charged Na+ cation vacâncy (configuration 6, 7 and 8).

The thir-d point is about symmeiry breaking. It occurs in configurations 2, 5 and

11. \\¡e can see that for these configulations, when we breah the symmetry by

forcing the excess electron to localize at ole of the anion vacancies, the total energies

(unrelaxed) are lowered by 2.51 eV,2.85 eV and 2.48 eV, respectively. This neans

that ihe symmetry-broken colfigurations ale always pleferred, producing single-

våcâncy localization for the excess electroir. This agrees with tire observ¿tion of

Hofinanr ef a.l.

Table 4.23 also tells us that, fol the gr-oup of colfigurations 1, 2, 6, 7, 8, 1Û and 11,

the difference of the relaxed total energy (Et - LE) between the two configur-ations

with the highest energy (-14.69 eV in 11a) and the lowest energy (-15.44 eV in

6b) is 0.75 eV. Within such a small energy span, there are seveu conflgurations, of
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which the Ë{ofmanr modei h¿"s the third lorvest euergy but it is only higher than the

second b5' û.37 eV and lower th¿n the fourth by 0.û7 eV. It worrid be cluite difÊcult

to compâre them experiinentally. Ðven for theoretical aaalysis anrl simulation, our

nethods cannot be assumed to be reliable to such a level of accuracy. In order tc

get a better understanding of the results we hal'e obiained for these conflgurations,

in tal¡le 4.24 we list seven of them witli the low-lying relaxed total encrgies, and

calculate their energy differences Å.Ð atd accumulated energy differences relative

to the lowest total energy (6b). We also calculate the corresponding temperatures

in rcspcct to these energies. From the table, it can be seen that although the en-

ergy diferences å,re very small, the characteristic temperatures are splead out over

a range of thousands Kelvin. This indicates that even though these configurations

have very close total lattice energies, it is quite hard for them to convert thermaÌly

from one to another. Considering the room temperature approximately as 300 K, it

corresponds to about 0.026 eV. We may not say that our simulation is acculate for

the total energies within 0.03 eV. But ¡ve believe that it does give the correct tlendj

or ordering, about the energy differences fol these configurations. lVe see that the

narrowest energy difference, between 10a and 7b (0.0û7 eV), is stiil corresponding to

a temperature slightly higher than liquid nitrogen tempera,ture (77 K). The stabliza-

tiol energy between tlie lowest- ald second lowest-energy configuratiors, namely 6b

and 8Ìr, is calculatecl to be 0.106 eV, which cortesponds to a temperature of 1230 K.

Thus at room tetnper-ature, - 300 I{, one would not expcct significant conversion

from 6b to Bb. We cautioû) however, that both of these coufigurations, having lower'

energies than the Hofiuann model, are from a class of configurations that we have

not fully investigated. These are tlle ones with the V"" at (-t, -1,0), including case

7, which is of higher enelgy. It will be important to learn from future u'orlc whether

thele are still lower-energy configurations in this clãss, ånd also in the class witli thc

V'r" at (-1,0, 1). Furthermore, tire characteristic tcmperatule for convelsion frorn
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Table,l.24: The (F{)*-center grotnd state: colfigurations with low-lying etergies.

-Ð¡ ("V) is the total ICECAP euergy rvith rclaxatiou of the F-center
basis set centers. Å-Ð, in units of e\¡, is the enelgy difference Ì:ctween
one and tire next, starting fi'om lowosi energy coirfiguration 6b. f, ÀE
(eV) is the accumulated energy difference related to thc 6b. The ch¿r¿c-
teristic temperature ? (K) corresponds to X Àð ancl the Eoltzmann's
cûnstant À¡ = 8.617i x 10-5 (eVK-l).

No. ð¡ (eV) AÐ (eV) ! ÀE (eV) 'l' : Ð LE lkB (b\)
tr l)

Bb
1a
2z

10a

7b
i1¿

0.106
û.449
0.518
0.638
0.645
0.743

1230
5211
60i 1

7404
7485
8622

- 1ð.4Ju

-15.330 0.106

-14.987 0.352

-14.918 0.069

-i4.798 0.120

-14.79L 0.007

-14.693 0.098

ground-state configuration to that of secoud-lowest energy will be of clucial interest.

Also, to test the one-quantum-electron approach we have employed in the preselt

simulation, n'e have to carry out several large quantum-cluster calculations and see

¡¡'hether they produce the simila¡ ordering and energy differences. Certainly, inves-

tigating the physical nature of this center is not limited to the total lattice energy

itself. A variety of research work has suggested that the cation irnpurity is ¡rlaying

an important role in imploviirg the stability of the (Ff)--center laser actior in alkali

halide crystals.

Two principal conclusioirs follow from this work. One is that there appears to

be configurations of lo\l'er energy than that of the Hofmann model for the (Ff)*

center. The other is that, for all configurations studied so far, the cxccss electron, iir

the (Ff)- center in ltraF:Mg in its ground state, localizes in a single anì.on vacanc¡

rather than in the chalacteristícally syrnmetric two-vacancy configuration of the Ff

centel. This result is in agreement with the experiinental conclusiol of Hofilann eú

al.
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Usilg ilany-elect¡on unrestricted Hartree-Fock embedded quattum clustels, the

ground states of the F and Ff ceuters in NaF were siudied; and the classical effective

short-range potentials for thc Mgr+-p- interaction, as well for the F-type center-ion

interactiors ir NaF:\4g u'ere derived. For the F-center ground stâ.te, we founcl tha,t

the center is, as expected, r'ell localized in thc center of the defect vacancy, and

the displacements of its neighboring ions are negligible (section .1.3.1, tabÌes 4.11).

The charge transfel from the neighboring ions to the center is also very small, about

(-0.0i) electron charge (see table 4.12). In the case ofthe Ff center, its glourd state

with the excess electron equally shared betr¡'een two anion vacancies was examined

(section 4.3.2). The distortion field is fairÌy 1arge, with 10 nearest neighbors forced

out by 5 - 7 percent of the lattice spacing (table 4.13). The chai:gc transfer from the

neighboring ions into the center is (-0.09) electron charge, with (-0.95) charge in

the s orbitals and (-0.1a) charge in the overlapping p orbitals of the two vacancies

(talle +.r+). The Mgz+-p- short-range interaction (table 4.5), takel to bc the Boru-

lvlayer type, has a strong repulsivc force but lairly short range. Table 4.17 shows

that the short-range intelactions between the F center and host ions can be frtted by

thc Buckingham potential, although thel' $'s¡s found to be uncharacteristic of ions,

with extreme\r strong altractive forces (large coefrcients C). In conirast, the F

center-l,Ig2+ interaction is found to have tlie Born-Maycr form with weak repulsive

bb



force 
-but very Ìong range (p : L.22 Ì"). The efective potentials between thc F{

center and host ions were aiso deriveci (section 4.4). Their beh¿viors ar-e in good

agreerleut with the ¡esults of many-electron qüaetuü1-cluster calcuiations.

The investigation of the atoinistic aud electronic structures of ttre (Ff )- center

was carried out on the basis of the oire-eÌectron quantum-cluster model, using the

effective short-range potentials (section 4.5). In all coufigurations, the F-center lilie

single-vacancy localizatiou was fould for the (Ff)"-center ground state. This agrees

with the concÌusion of Hofm¿nn eú al. Seven low-lyûrg-eneigy configulations (fig-

ures 2.2,4.6, 4.10, 4.L7, 4.72, 4.I4, 4.I5) are listed in table 4.24 ancl are discussed

in terrns of characteristic temperature. Two configurations (6b and Bìt) with lower-

lying energies than that of Hofmann model were found. The stabilization euergies

seerl to prevent convcrsion between different configurations â,t roonl temperature.

This strongly indicates that therc probably exist other confrgurations, which arc

r¡ore favorable as the atomistic model for the (Ff ). center than the Hofmann con-

figuration, particularly since configurations 6b and 8b belong to a class rvhich has

not been completely investigated.

F inally, we conclude that tlie single-eiectron inodel for the (Ff ). center has sr¡c-

cessfully reduced the amoult of worh needeil for iuvestigating such a coinplicated

ceuter. Furthermore, the present work points to future investigation. First, using

one-electron quantun-cluster simulation, other configurations should be studied to

obtain all the low-energy configurations. Then for a restricted group, many-clectron

quantum-cluster simulation can be carried out to predict the stable configuratiol of

the (Ff )" center.
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