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ABSTRACT

Bearing capacity coefficients for shallow footings placed on cohesionless
slopes are computed using stress-characteristic solutions. The "basic differ-
ential equations" which are obtained by combining the equations of equili-
brium with the Coulomb yield criterion, are solved using a numerical proce-
dure. This procedure is based on a finite difference approximation of the
equations and was first proposed by Sokolovskii (1960), and improved by
Graham (1968). A special computer programme taking into account the
effect of the slope on the boundary conditions was developed. The angle
of shearing resistance of the soil was taken as being constant throughout
the failing domain. The program incorporates some of the general subroutines
of Hovan (1985). The solution assumes that the soil is rigid-plastic and thus

does not take into account any wvelume strains prior to failure.

The shape of the elastic wedge beneath the footing is considered to in-
fluence the ultimate bearing capacity significantly and it is therefore modelled

in the analysis.

The results obtained from the analysis are compared with available large scale
field data and other existing theoretical solutions. The bearing capacity coefficients
computed using the method developed in this thesis range from 0.64 to 1.35 times

the experimental values.
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CHAPTER 1

INTRODUCTION

A number of engineering structures, e.g. - structures placed
on benches cut into slopes, retaining walls, bridge piers, etc. -
require their foundations to be placed on sloping ground. Highway
overpass bridges, in particular, frequently require approach fills
in the vicinity of 10 m (30 feet) high. It is common in these cases
to terminate the fill in a slope face dropping down to the underpass
level. Foundations for the end spans of the bridge are often more
economical if they are placed in the fill and not excavated or piled
to underlying strata. Apart from the obvious economic advantage,
there is usually also, an improved level of performance (Shields et
al 1980). Supporting the end spans in the approach £ill can signi-
ficantly reduce the severe road maintenance problems that arise

when the fills and bridge decks settle by different amounts.

Various theories are available to the design engineer for estimating
the bearing capacity of a footing on a slope. As noted by Bauer et
al (1981), all these theories give different answers and most theories

are applicable only to a footing located right at the crest of a slope.



Because of the uncertainties of the theories, bridge designers adopt
a conservative approach, and tend to utilize pile support or other
deep foundations for the abutments. In many cases, this approach
may not be the most economical solution (Felio and Bauer, 1984).

As noted by Bauer and Mowafy (1985), it is economically advanta-
geous to locate the footing as close as possible to the edge of the
embankment and to make the slope as steep as possible in order to

keep the bridge span to a minimum length.,

Several researchers (for example Vesic, 1973; De Beer, 1965), note that the primary
framework for design involves both the determination of ultimate loads, as well as
the analysis of settlements to ensure that the foundations fulfill their intended function

from a structural as well as functional viewpoint.

The particular problem of estimating settlements of foundations
located on granular slopes is complicated and not fully understood,
At the present time the tendency is to use complicated finite element
A_techniques to study the settlement behaviour of footings located on

granular media, e.g. Bauer (1982), Selvadurai et al (1984), Mowafy

(1984) , Bauer and Mowafy (1985). Since such tools are not readily



available to all design engineers, reliable estimates of settlements cannot readily be
made. As a result, estimation of the ultimate bearing capacity still constitutes the
primary framework for design. It would therefore be helpful to have atthe present

time, a simple bearing capacity solution which gives reliable results.

This thesis is concerned only with the bearing capacity aspect of the stability
problem. Economy in design can be achieved if the ultimate bearing capacity can

be accurately determined.

Ultimate bearing capacity of footings is commonly determined by making
use of the principle of superposition. That is, the influence of self-weight
in the failure zone and surcharge on the free surface are assessed separately
and then added together. This thesis uses an alternative approach by Meyer-
hof (1951) which combines both effects into a single dimensionless factor.NYq
The bearing capacity is thus expressed as Ay = 1/2 B YNYq.
(Notation is summarized at the beginning of the thesis on pages vii to wviii ).

However in contrast with the theoretical method used by Meyerhof, the
thesis uses the method of siress-characteristics (Graham 1968), and deve-
lops a soundly based analysis for the capacity of shallow footings near the

crest of slopes. It compares the new theoretical results with existing



theories and with available field data.

In the analysis, the solution for failure loads starts from a Rankine
rectilinear plastic zone exiting the slope below the footing. The geo-
metry and stress conditions in this zone are statically determinate. The
back surface of this zone was then used as the starting boundary for a
radial transition zone that extends backwards into the slope, and up-
wards towards the footing. Available information and photographic
evidence concerning the shape of the failure zone was studied in order
to arrive at realistic assumptions concerning the distorted shape of the

domain for the analysis.

It is well known that sand behaviour cannot be adequately described
by a straight Coulomb-Mohr strength envelope. That is, the Coulomb-
Mohr envelope flattens with increasing stress, resulting in a variable
angle of shearing resistance dependent on stress level (Graham and Hovan,
(1985). However, the present analysis considers only a constant ¢ solu-
tion because at this stage of understanding the mathematical modelling of the problem,

further complexity is unwarranted.

In Chapter 2, the most common existing theories are described and
reviewed. Chapter 3 summarises the theory of the basic stress charac-

teristic solution and develops the boundary conditions resulting from



the presence of a slope close to the footing. Chapter 4 presents an
analytical study of the shape of the elastic zone immediately beneath
the footing. Chapter 5 considers the special case of a footing at the
crest of the slope, and describes the parametric study of the problem
that has been conducted using a specially developed computer program,
and presenfs the results for this case. Chapter 6 describes the para-
metric study and presents the results for the more general case of

footing located away from the crest of the slope.

Results, discussions and comparison with other theories and ex-
perimental data follows in Chapter 7. Topics for further research and

conclusions are presented in Chapter 8.

Appendix 1 contains a listing and typical output of the main com-

puter program.



CHAPTER 2

REVIEW OF EXISTING THEORIES FOR THE BEARING
CAPACITY OF FOOTINGS ON SLOPES

2.1 INTRODUCTION

At present there are at least nine theories which can be used
to predict the bearing capacity of a footing placed within close prox-
imity of a slope. As noted by Bauer et al (1981) all these theories
give different answers and most are applicable only to footings loc-
ated with one edge right at the crest of the slope. This chapter
briefly describes the most commonly available theories and comments
on their usefulness and the assumptions made in their developuent.
Comparisons between these existing theories and the new solution

developed in this thesis are discussed in Chapter 7.

Prior to describing the distinctive features of each of the bear-
ing capacity theories, it is necessary to place them in perspective
by discussing their similarities, and the general framework within

which bearing capacity theories are commonly developed.

All of the commonly used theories utilize the concept of "perfect"
plasticity, that is failure is assumed to occur with large scale contin-—
uous straining after zero initial displacement. That is, the behaviour

is assumed to be "rigid-plastic".



Chen and Davidson (1973) suggest that the techniques used
to determine the collapse load can be divided into three princi-

pal groups utilizing respectively :

i) the stress characteristic or slip line method,
i) the limit analysis method.

1ii) the limit equilibrium method

This grouping is maintained in the ensuing discussions - It will
however be evident later that the fundamental approach of the latter
two methods are similar. They both start with an assumed failure
surface or failure mechanism. Each method then employs a differ-
ent approach to determine the stresses satisfying static equilibrium
at the instant of impending failure. The methods will nowbe reviewed

in turn,.

The stress characteristic method combines the Coulomb-Mohr yield
criterion with the equatinns of static equilibrium to give a set of hyper-
bolic differential equations of plastic equilibrium . When taken together
with the stress boundary conditions for a given problem, the equations
can be used to investigate the stresses in the soil beneath the footing
at the instant of impending plastic flow (Sokolovskii 1960). In problem

solving, it is often convenient to transform this set of equations to



curvilinear co-ordinates whose directions at every point in the yield-
ing region coincide with the directions of failure or the slip plane.
These slip directions are known as slip lines in physical modelling

or stress characteristics in mathematical modelling .

Kotter (1903) was the first to derive these stress characteristic
equations for the case of plane deformations. Prandtl (1920) subse-
quently obtained a closed form solution to these equations for a footing
on a weightless soil possessing both cohesion and friction. The impor-
tant inclusion of soil weight into the analysis considerably complicates
the mathematical solution . Sokolovskii (1960) adopted a numerical pro-
cedure based on a finite difference approximation of the stress charac-
teristic equation. Graham (1967, 1974) made a significant improvement
to the Sokolovskii solution by including a better approximation of the

_effects of stress variation along the slip lines.

Graham and Stuart (1971) suggested that this method is superior to
the other methods since it offers the opportunity of investigating a wider
range of boundary and field assumptions, In particular. it permits more
realistic modelling of the sand properties (see for example, Graham and
Hovan, 1985) . This form of analysis will be used in the theoretical solu- -

tion derived in Chapter 3.



The second type of analysis, namely limit analysis, -is based on the
upper and lower bound limit theorems of Drucker et al (1952), These
theorems were developed for an elastic perfectly plastic material with

an associated flow rule.

The lower bound theorem of limit analysis states that if a distri-
bution of stress over the domain in question can be found which satis-
fies the equations of equilibrium, the stress boundary conditions and
the yield criterion, the load associated with this stress condition is less

than or at best equal to the true ultimate load.

The upper bound theorem states "if the power of the external load is greater than
or equal to the rate of internal energy dissipation associated with a kinematically
admissible velocity field, then the load must be greater than or at best equal to the
true ultimate or limit load" (Chan, 1975). The upper bound theorem may also be stated
as follows: if a kinematically admissible velocity field can be found, uncontained

plastic flow must impend, or have taken place previously.

By suitable choice of stress and velocity fields, the above upper and

lower bound theorems enable the required collapse load to be bracketed.



10.

The limit equilibrium method has been the most commonly used method
for obtaining approximate solutions for bearing capacity. It can be best
described as depending on a quasi-static analysis or approximations to
the slip line fields. It generally entails using an assumed failure sur-
face comprising various simple shapes, for example plane, circular or
logarithmic spiral. To allow an equation of equilibrium to be written
for bearing capacity determination (or indeed for other classes of pro-
blems such as slope stability) it is necessary to make sufficient assumptions about the
stress distribution within the soil domain bounded by the failure surface so that the
analysis becomes determinate in terms of resultant forces or moments. This method
(and indeed all three of these methods) gives no consideration to soil kinematics, or

to the displacements preceeding failure.

All available theories for determining the bearing capacity of foot-
ings on slopes fall within the general framework of one of the three
methods outlined above. The methods by Meyerhof (1957); Mizuno
(1960) ; Kovalev (1964) ; Brinch Hansen (1970) ; Giroud and Tran Vo
Nhiem (1971); Chen (1975); Bowles (1975); Bowles (1977) ; Kusakabe
(1981) ; will naw be discussed in turn. They are presented in the

chronological order based on the publication date.
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2.2 Meyerhof's (1857)

Meyerhof's method is a limit eqﬁi]ibrium method. His original theory
which was developed for level ground (Meyerhof, 1951) was a modification
of the earlier Terzaghi (1943) solution. The failure mechanism based on
logarithmic spirals used by Terzaghi is shown on Fig. 2.1. He assumed
that the soil of depth D above the level of the foundation base manifests
itself only by its weight, and offers no support to the foundation loads
through its shearing resistance. In his development of this analysis.
Meyerhof assumed that the failure surface extends right of the surface
(Fig.2.2) . He includes in his analysis an "equivalent free surface"

subjected to "equivalent free surface stresses". (Fig. 2.2).

The solution for footings on a slope uses a development of the same
procedure (Fig. 2.3). In this case, the weight of the soil wedge AEF
in Fig. 2.2 is replaced by the equi’ilalent stresses p, and s, normal and

tangential, respectively to the equivalent free surface AE.

It is not clear from the literature whether Meyerhof included the
influence of the socil on the upslope side of the foundation when cal-

culating the ultimate bearing capacity.
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FIGURE 2! TERZAGHI FAILURE MECHANISM FOR A FOOTING
ON LEVEL GROUND

N and N

(a) c q (b) N

FIGURE 2.2 MEYERHOF FAILURE MECHANISM FOR A FOOTING
ON LEVEL GROUND
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ON A SLOPE (after Meyerhof 1957),
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2.3 Mizuno (1960)

Mizuno et al (1960) calculated the bearing capacity of a slope of
cohesionless soil under a uniform load acting upon its horizontal top.
The method employed is a limit equilibrium method. The analysis is
similar in principle to the case of a footing on a horizontal surface
presented earlier by Mizuno (1948, 1953), which is about the same
time that Meyerhof published his theory concerning the ultimate bear-
ing capacity of foundations on level ground (Meyerhof, 1951). It is
therefore reasonable to assume that the work of Meyerhof and Mizuno
was carried out independent of each other. This is in fact evidenced
by the completely different approaches adopted by the authors to the

analysis of the bearing capacity problem.

Mizuno et al, assume that at the instant of failure, a wedge of active
earth pressure is formed directly below the load, while a region of pass-
ive earth pressure is formed adjacent to the slope (Fig. 2.4). The bound-
ary of the passive pressure region is determined from the Mohr's circle
(Fig. 2.5) as a fraction of the slope angle and the angle of internal fric-

tion ¢ of the soil.

By considering the static equilibrium of the elastic wedge, the stress

acting on the wedge at the instant of failure is calculated, as a function
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of the ultimate load, the wedge geometry and the unit weight of the soil.
Similarly, by considering the static equilibrium of the region of passive

pressure adjacent to the slope, the stresses on the boundary BD (Fig. 2.4)

are calculated,

The transition region, which is defined as the region between the
active and passive pressure regions, as described above, is then divi-
ded into a series of small wedges having equal vertex angles. If the
stresses on one side of any of the wedges and the length of that side
are known, then the stresses on the other as well as its length can be determined
from the equilibrium conditions of the wedge. The shape of the sliding surface is thus

also generated from the equilibrium conditions.

The bearing capacity is determined by first assuming a value for the
stress distribution on the boundary of the elastic wedge beneath the
footing, which is a multiple of the unit weight of the soil and half the
footing breadth. Then, starting from this assumed value the stresses
on the dividing lines between the wedges and the sliding surface are
calculated as outlined above. The initally assumed value is then adjusted
until the stresses on the last wedge coincides with the passive earth
pressure. Since the apex angle of the transition zone as a function of
the slope angle is known, then the slope anglé correspanding to the

calculated value is determined.
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The authors present their results in the form of curves of the
dimensionless bearing capacity coefficient N v plotted against
the slope angle, for various values of ¢ ranging from 15 degrees

to 40 degrees.

The analysis does not account for the embedment depth of the
footing or the distance between the shoulder of the slope to the
edge of the footing. The results are therefore applicable only to
footings sitting at the top of a slope with one edge at the crest

of the slope.

2.4 Kovalev (1964)

Kovalev's method for the determination of the bearing capacity of a
footing on a slope can best be described as a limit equilibrium method,
He developed a simplified shape of the slip lines generated using
Sokolovskii stress characteristic method and used this simplified shape
to obtain an approximate estimate of the ultimate bearing capacity of
the soil. It is worthy of note that Kovalev's expressed rationale for
using a simplified failure surface is to avoid the great amount of cal-
culations required for solving the basic differential equations, and
determination of the slip line field for the variety of combinations of

slope angle and soil shear strength parameters. Although such an
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argument may have been valid at the time when the paper was first
published, the availability of the digital computer has substantially
changed matters. It is now possible to carry out a series of such
calculations with little human effort and at relatively low cost and in

a very short time.

Kovalev, using the approach of Sokovskii (1960), treats the bearing
capacity problem as being identical to a slope stability problem with
a surcharge at the crest of the slope. It is obvious that this approach
does not take into account the important effect of the interaction bet -
ween the soil and the base of the footing. In fact, the footing load
is simply treated as an artifical surcharge. A typical slip line field
generated using this approach is shown on Figure 2.6. This diagram
shows that the slip line field continues right up to the base of the foot-

ing on the horizontal ground surface.

The simplified failure surface considered by Kovalev for a surface
footing is shown on Figure 2.7. He states that it was based on actual
stress characteristic fields for 'c, ¢! soils with ¢ varying between 30 and
40 degrees. The proposed failure surface consists of two parts: a straight

line section 'ab' inclined at an angle 7 /4 - ¢ /2 to the sloping ground sur-

face, and, a circular segment 'bd' with centre O' (Figure 2.7).
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FIGURE 2.7¢ KOVALEV'S FAILURE MECHANISM FOR A FOOTING ON A SLOPE
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The centre of the circular segment is found by ensuring that the rupture
line meets the ground surface at the "statically correct angle" of 7/4 +¢/2.
The statically correct angle is the angle at which a rupture line intersects
a boundary so that statical equilibrium conditions at the point of inter-

section are fully satisfied.

Although it is not explicitly acknowledged by Kovalev, he makes use of
Kotter's equation to determine the state of stress along the assumed rupture

line and subsequently the ultimate bearing capacity of the footing.

Kotters equation relates the limiting state of stress on a rupture line,
to two variables, namely, the resultant stress o, and the angle © between

the rupture line and the horizontal (Kotter, 1903).

The equation may be expressed as
do - 20 tan ¢ db =- vy cos

ds ds cos ¢

By combining Kotter's equation with the known boundary conditions, e.g.
the known statically correct angle where the rupture line meets the surface,

Kovalev determined the vertical stress at the base of the footing.
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This is expressed as

p' =AlyB+Clc

where v, B, and c have the same usage as elsewhere in the thesis
(see pages Vi to Vil for a definition of the notation used), and
A1 and C 1 are coefficients depending on the soil properties ¢ and the

problem geometry i.e. a.

Comparing Equation 2.2 to the commonly used expression for bear-

ing capacity of a surface footing (D = 0).

qu'=1/ZByNy+cNC ...... ....2.3
we note that

Al ;;Nylz, and

C,q =N,

Kovalev indicates that the maximum difference between the resulis
obtained by his proposed method, and those obtained by solving the

basic differential equations numerically is 12%.
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Thus far, we have only discussed the case of a surface footing.
The case of a shallow footing, that is, one placed at small depth in
the soil was also studied by Kovalev. The soil layer above the base
of the footing is treated as a uniform surcharge which is in turn re-
solved into two components perpendicular and parallel respectively

to the surface of the slope (Figure 2.8).

The analysis assumes that the failing domain can be divided into

two zones as shown on Figure 2.9.

The approximate sliding surface for this case, like the case of sur-
face footing, is considered to consist of a straight line portion and a
circular arc. (Figure 2.10). The straight line portion cuts the slopes
surface at an angle of ¢ + o - ¢. The anglea is defined in Figure 2.9

and from Mohr circle considerations, its value is given by

a=1/2{m/2-arcsin (sine/sin ¢ ) - e+ ¢}

Again by applying Kotter's equation, Kovalev obtained a solution
for the bearing capacity coefficients NY and Nq For this case Nc was

not determined since only cohesionless soil was gonsidered.
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FIGURE 2.9: -DIVISION OF THE FAILING DOMAIN INTO TWO ZONES
(after Kovalev 1964)
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The important case of a footing with its leading edge located away
from the crest of the slope was not addressed. As noted earlier, the
analysis is based on the assumption that the bearing capacity of a
footing on a slope is identical to the problem of stability of a slope with
a surcharge placed at the crest. This approach is here considered to be
too simplistic since it does not take into account the important effect of
the soil-footing interaction. This view agrees with the view point of
Giroud et al (1971) who have indicated diagramatically (Figure 2.11)
that the load that can be supported by a footing at the top of a sym-
metrical embankment is greater than the weight of soil required to trans-

form the embankment into a triangle.

2.5 Brinch Hansen {(1970)

In 1961, Brinch Hansen published "A General Formula for Bearing
Capacity (Hansen, 1961)". This publication does not give a 'new' met-
hod for bearing capacity determination, but generalizes the Terzaghi
(1943) bearing capacity formula to take into account the dimensions,
shape and depth of the footing, as well as the inclination and eccentri-
city of the foundation load. This was done by multiplying each term of
the Terzaghi formula with a shape, depth and inclination factor . The

general equation was then written as

=1/2B N s d i +yD N ' :
dy YYSY YIY Y qsqdq1q+c Ncscdclc,



The method employed by Brinch Hansen in determining the new
factors is semi empirical. For example, with respect to Ny’ Brinch
Hansen states that Meyerhof's values are too high while those of
Lundren and Morteﬁson are too low, Reasoning that the correct value
of Ny, must be between these two values he gives a 'better' approxima-

ti f the N_val sN_ =1.8 (N_-1) tan ¢.
ion o e YVa ue a ¥ { q ) ¢
Approximate formulae are also presented for the factors s,d and i.

In 1970 Brinch Hansen published "A Revised and Extended Formula
for Bearing Capacity (Hansen (1870). In this paper, two other factors
were added to account for base inclination and ground inclination. The
ground inclination factor was intended to apply to the case of a footing

located close to a slope. The failure mechanism assumed for calculation

of the new factors b and g is shown on Figure 2.12. The factors gq and

gY are given as

g =g =(1~0.5tanoa)5
v q

For a horizontal footing bY = 1. Hence setting the terms which are

not applicable to unit, Brinch Hansen's formula can be written as

q,=1/2B DN g d .....o.... 2.4

Y Y qa-q g
For a shallow footing, that is 0< DinB’) , and with ¢ ranging from 30 to

N +
y By

45 degrees dq varies within the relatively narrow range of 1.1 to 1.3.

286,



FIGURE{Z. 12: FAILURE MECHANISM FOR A FOOTING
ON A SLOPE (after Brinch Hansen 1970).

FIGURE 2,13 ‘NY DETERMINATION (after Giroud 1971)
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Taking an average value of 1.2,Equation 2 can be rewritten as

=1/2By N +1.2 yYD N
q, =1/2By N g/ Y g

qQ -q

The equivalent Meyerhof bearing capacity factor NYq based on this method can
therefore be expressed as

N =N_g_ + 24DN g
Yq Y °y 5 4°4

As noted previously, the Brinch Hansen method is not a 'new' method for
determination of bearing capacity. It is essentially a semi-empirical method
based on Terzaghi's analysis which allows for greater flexibility with respect

to practical applications.

2.6 Giroud and Tran-Vo-Nhiem (1971)

These authors developed a bearing capacity theory for a footing
placed at the top of an embankment which slopes equally on either side of
the foundation (Figure 2.11).The slope starts right at the edge of the
footing. The method employed in determining the bearing capacity co-
efficients, is essentially a limit equilibrium method. It is assumed that a
rigid wedge which is symmetrical about the centre line of the foundation,
is formed beneath the footing. The bearing capacity coefficient, is ob-
tained as a function of the wedge angle, the angle of internal friction of the
soil ¢, and a thrust coefficient on the surface 0S, (Figure 2.13). This is
done by considering the equilibrium of the wedge OSIO' and equating the

vertical thrust force on 0S, due to the soil in the dihedral 81082 to the

sum of load on the footing and weight of soil in the wedge 0S,0,.

171
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The thrust coefficient defines the stress distribution of OS1

which is assumed to be triangular with a value of zero at O, that

is, theslope of the triangular stress distribution is the thrust co-
efficient. The authors refer to the coefficient as the coefficient of
passive earth pressure. This term is considered to be misleading
since the coefficient is not in fact the "coefficient of passive earth
pressure " as it is commonly used in traditional Soil Mechanics. The
term thrust coefficient is preferred, and is used in the ensuing dis-

cussion.

The authors state that the value of the thrust coefficient is de-
duced after determining the network of characteristics in the dihe-
dral 08182 by a finite-difference method. No further details of the
method are given. For any given values of ¢ and o, the value: of

W, which yields a minimum Ny is determined. This value is taken

to be the value for use in design.

The authors also present an approximate method of determining
the bearing capacity coefficient in the instance when the leading edge

of the footing is located some distance away from the crest of the slope.
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It consists of first determining the "equivalent slope", which is

defined as the slope starting from the foundation which gives the
same bearing capacity as that of the real soil mass, Figure 2,14).
The method is based on the assumption that the failure méchanism

in the actual soil medium, and in the fictitious medium is the same.

The bearing capacity factors are listed in tables for a range of

o from 0 to 50 degrees, and ¢ from 0 to 50 degrees.

2.7 Chen (1975)

Chen (1975) obtained the bearing capacity of a footing on a slope
of cohesionless soil using the so-called "limit analysis" method. Chen
states that this method enables a definite statement to be made about
the collapse load without carrying out a step-by-step elastic plastic analysis. The
analysis employs the upper bound limit theorem to generate an approximate solution
to the bearing capacity problem. The soil is modelled as an elastic-perfectly plastic
material which obeys the associated flow rule. They physical validity of this flow

rule is however questionable (Graham, 1968).

however questionable (Graham 1968) .

The analysis is a modification of the solution for a shallow footing

on level ground (Chen, 1975). For horizontal ground the failure mech-
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FIGURE 2.14: DETERMINATION OF THE "EQUIVALENT SLOPE"
FOR A FOOTING LOCATED AWAY FROM THE
CREST OF THE SLOPE (after Giroud 1971).
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anisms utilized in the analysis are the Prandtl and Hill mechanism (Fig-
ures 2.15 and 2.16 respectively). For sloping ground, the area bef
(Figure 2.15) is set equal to zero and the angle which 'eb' makes with
the horizontal is taken as being negative in the analysis. These condi-

tions therefore represent the case of a footing on a slope.

In accordance with the upper bound theorem of limit analysis, the
power of the external loads is equated with the rate of internal energy
dissipation for the assumed failure mechanism. For a soil possessing
both cohesion and friction, Chen divides the radial shear zone into a

series of small triangles (Figure 2.15) in order to compute the rate of

32,

energy dissipation in this region. The triangles are assumed to translate as rigid bodies

in directions that make an angle ¢ with the slope of the local segment of cd. The

rate of energy dissipation is obtained as a function of the soil cohesion and the relative

velocity between the two adjacent soil masses, that is, the soil in the failure zone

and the soil outside the zone.

For cohesionless soil, Chen assumes that the rate of internal energy

dissipation is zero. On this basis, it is therefore only necessary to cal-

culate the rate of external work done. External power or work done is
contributed by gravity forces and the footing load. The bearing capa-
city factor of the soil is this determined from the expression resulting

from equating the rate of external work to zero.
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The analysis is carried out for both the Prandtl and Hill mec-
hanisms, and the absolute minimum value of Nv is obtained. The
results presented by Chen (1975) apply only for the case of a foot-

ing at the top of a berm which slopes equally on either side.

2.8 Bowles (1975)

Bowles (1875) proposed a graphical method for the determination
of the bearing capacity of a footing on a slope, which he states is a
modification of Brinch Hansen's (1966) equilibrium method. Reference
to the original Brinch Hansen publications (1957 and 1966) (see Section
2.5). indicates that he approximates the limiting rupture line to a
circular arc (Figure 2.17). Static equilibrium conditions are then
applied to determine the components N and T of the internal stresses
in the circle, and the moment MR’ as a function of the problem geo-
metry and the stresses on the assumed rupture line. Use is then made
of Kotter's equation, and the known boundary stresses to determine
the stresses along the rupture surface, and hence the unknowns N,
T and M‘R' Simple static equilibrium considerations can then be applied

to determine the ultimate bearing capacity.

The graphical procedure developed by Bowles is presented in

principle in Figure 2.18,
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FIGURE 2.,17: BRINCH HANSEN'S CIRCULAR RUPTURE
SURFACE (after Brinch Hansen 1966)
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It consists essentially of drawing the system to scale, and using a graphical procedure
to construct the presumed failure surface which is comprised of a circular arc and

a straight line. The weight of the soil in the different segments of the failing mass
are then computed. The frictional resistance to sliding is computed from the weights,

and static equilibrium conditions are supplied to determine the bearing capacity.

The only aspect of this method which is similar to the "so-called"
equilibrium method of Brinch Hansen (1966) is that a segment of the

failure surface assumed to be circular.

The method used for determination of the ultimate load is not the
direct application of Kotter's equation, but considers only simple
static equilibrium of the system. Furthermore, the validity of a circular
failure surface is questionable since it does not conform to the surface

observed in experimental work,

Lee (1978) has computed the bearing capacity factor NYq (as defined
by Meyerhof, 1951) using Bowles's (1975) method for a cohesionless sand
with ¢ = 35° and ¢ = 40° with footings located up to 5B from the crest of
the slope, with depths ranging from 0 - 3B. A slope with a gradient of

1 vertical to 2 horizontal was considered.
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2.9 Bowles (1977)

The method proposed by Bowles like the one described in Section
2,8 is also graphical procedure. It is based on an assumed failure
surface consisting of a log-spiral and a straight line which is con-
sistént with that used by Terzaghi (1943) . In contrast to Terzaghi;s
solution however, the base angle is assumed to be equal to /4 + ¢/2,
value same as that assumed by Meyerhof, (1957). As such, the pro-
posed method does not involve any novel approaches to solving the
problem, or any attempt to provide a more soundly based analysis

The assumed failure mechanism is shown on Figure 2.19,.

For a general soil, that is, one possessing both cohesion and friction,
revised bearing capacity factors N'c and N'q were determined by comparing
the geometries of the case under consideration with that of a footing on

level ground.

For example, N'C is given by

L, is the length of the surface 'cbde' in Figure 2.20 and L1 is the length

of the surface 'cbde' in Figure 2.19.



39,

Similarly, N’q is given by

Al ,
9 9 - where A, and A
A 1

are the shaded areas in Figure 2.20 and 2.19 respectively.

Bowles states that the bearing capacity factor Ny requires no modi-
fication for slope effects because it depends on the wedge 'cba'(Figure
2.19)., It assumes therefore that the shape of the wedge is also not
modified by slope effects. In contrast, the analysis considered later
in this thesis is based on the hypothesis that the shape of the elastic

wedge is fundamentally influenced by the effect of the slope.

When the area A1 is greater than A,, Bowles (1977) proposed that
N'q be taken as being equal to Nq' This is based on the understanding
that the bearing capacity of a footing influenced by a slope will be less

than that of footing on level ground.

In order to compare Bowles (1977) bearing capacity factors with
Meyerhof' (1857} values, Lee (1978) combined the former bearing capa-
city factors as follows:-

N =N_+2D N'_ d
Yq Y — qa dg
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Lee (1978 and 1981) calculated the NYqvalues based on Bowles's method
for ¢ = 35° and ¢ = 40° and a slope with a gradient of 1 vertical to 2
horizontal for footings located at distances up to 5B for the crest of the

‘slope, and depths up to 3B deep.

2,10 Kusakabe et al (1981)

The method employed by these authors to determine the bearing
capacity of a footing on a slope is a limit analysis technique using the
upper bound theorem. The solution considers the failure mechanism
shown on Figure 2.21, It consists of a triangular region immediately
beneath the footing which is an active wedge, and a rupture line which
consists of a logarithmic spiral and a straight line exiting at the toe of

the slope.

The authors state only that a straight line connects with the logari-
thmic spiral smoothly and passes through the inclined surface of the slope.
No further details of the failure mechanism are presented. From the geometry of
the problem, and the upper bound theorem a relationship is derived for bearing

capacity by equating the rate of internal energy dissipation to the rate of external work.
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The authors present a number of charfs giving bearing capacity for
various combinations of the problem variables, namely the slope angle,
the footing distance from the edge of the slope, the slope height (as
a multiple of the foundation width), the strength parameters c, and ¢ of the soil.
The authors have not considered the particular case of cohesionless soil which is addres-
sed in this thesis. However, their results are quite comprehensive and therefore poten-

tially of practical significance.

The general features of the analysis is similar to that used by Chen

(1975). That is, a failure mechanism is assumed, and the rate of inter-

nal energy dissipation is equated to the external work done for the assum-
ed mechanism. The resulting equation yields a relationship for Ny which is
function of ¢ , the apex angle of the radial transition zone BEC (Figure
2.21) and the area of quadrilateral ABEF. The angle ¢ is defined for

a given problem. The angle BEC and the area of the quadrilateral ABEF
are determined from the geometry of the assumed failure mechanism. The
accuracy of the solution is therefore dependent upon how well the assumed

failure surface models the actual soil behaviour.
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2,11 Summary

In Sections 2.2 to 2.10 nine methods which are presently available for
determination of the bearing capacity of a footing on a slope have been out-
lined. The methods employed in developing the theories are limit equili-
brium and limit analysis methods. Comparison of the results of the theories
is presented in Chapter 7. However, it is evident from the foregoing dis-
cussion that despite the relatively large number of theories which have been
advanced over the last three decades, there is as yet no theory which analyses
all the special features of the problem in an attempt to provide a realistic

estimate of the ultimate bearing capacity.

In contrast to the solution developed in this thesis, all of the existing
theories require assumptions to be made with respect to the shape of the
failure surface. Additionally, it is not clear whether the downslope failure
surface direction is carefully treated in some of the solutions (e.g. Kusakabe,

1981),

At least three of the theories, (Giroud, Chen and Mizuno et al) consider
only the case of a footing located at the crest of an embankment which slopes
equally on either side. The limited practical application of this solution
is immediately obvious. Another method (Kovalev) considers the bearing
capacity problem to be identical to a slope stability problem, and hence does

not include the important effect of soil-footing interaction. The basis for
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the failure mechanisms proposed by Bowles is not clear.  Additionally,
none of the methods consider how the soil on the upslope side of the
footing influence the ultimate bearing capacity. These aspects are
considered in this study in order to develop a soundly based analysis

for the problem.
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CHAPTER 3

THE STRESS CHARACTERISTIC METHOD

3.1 INTRODUCTION

The stress characteristic method involves the integration by a
numerical procedure of known boundary conditions to unknown
boundary stresses in a field or domain in which the strength pro-
perties are defined everywhere. At failure, the soil beneath a
footing is stressed to its limiting or yield condition. The Coulomb-Mohr yield criterion

is assumed to apply in the failing region. _

Sokolovskii (1965) developed the stress characteristic method
to compute the stresses beneath the footing at failure. The numer-
ical accuracy of the basic method was improved by Graham (1968) .
For convenience, the development of the numerical procedure is
briefly outlined here, following the approach given by Graham. The computer program
is based on the work of Hovan (1985) but has involved a significant amount of re-

programming for the particular question being examined.

3.2 THEORY

Points in a two dimensional plastic field are defined in terms of
physical plane co-ordinates x and z where the positive z axis is or-
iented vertically downwards (in the direction of gravity) to simplify

the resulting differential equations (Figure 3.1),
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A soil element in this two dimensional field which is about to fail,
must also be in a state of plastic equilibrium. The stresses in a soil
element in a state of plastic or limiting equilibrium are considered to

be controlled by the Coulomb-Mohr failure criterion.

The criterion is stated as follows:

i
(2]
+
Q
o
job]
jn}
<

K

For cohesionless soil, ¢ = 0 so the equation can be written as

T =0, tan ¢ ..... v 3.2
Effective stresses have not been indicated by the normal ' superscript but are

assumed throughout.
Figure 3.2 shows the direction of the major principal stress, 6,

in a typical soil element, inclined as an angle Y to the z - axis. The
slip lines S1 and 52 along which failure will occur are inclined at an
angle u =( w/4 - ¢/2) to the direction of 0 ;. The Mohr's
circle representation of this state of stress is shown in Figure 3.3.
From the Mohr circle,

o

OZ}=0(1i:sin $ cos 2 )

X

and,

L = osin¢sin2¢y ..., 3.3.

A two dimensional soil element which is just about to fail, must



FIGURE 3.3.
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satisfy the equations of static equilibrium,

290

3x 3z

90 3T

2 + Xz =y 3.4
o2z 9-X

The unit weight of the soil is considered to be the only body

force.

It is convenient to express these equations in dimensionless terms by substituting
X= xrlz, z=1z_ /% 0= o, /R andt = rr/yf. The para-meterz is called the scale parameter
or characteristic length. y is the unit weight of the soils and X 2,0, andrr are
dimensional real parameters. Dimens_ionless parameters have been used throughout
the rest of the analysis. Eugations 3.3 and 3.4 may be rewritten in dimensionless

form as

o}
X
G}=0(1+sm<b00321p)
z
7. _.=0sin ¢ §in 2 ¢ O < 1

XZ



and
BGZ +8sz = 1
2z 3 X
80x + BTXZ = 0
9 x O Z i e 3.4a

Substitution of Equations 3.4a into 3.3a gives

90 (l+cos2¢ sin ¢ ) + 30 (sin 2y sin ¢ )

9z X

-20sin ¢ (sin2 ¥ 3y - cos2y 3y) =1
0z 9x

and,

90 (1-cos 2¢ysin ¢ ) + 30 (sin 2y sin ¢ )
ax - 02

- 2 osin ¢(sm2ww+coszw._a_1p) I o J O 3.5

09X X

Equations 3.5 are statically determinate but cannot in general

be integrated in closed form because they are non-linear. Closed
form solutions can be obtained for special cases with the simplifying

assumption for example¢ =0, or v =0 (Wu, 1966; Graham 1968).

50
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Sokolovskii suggested using the following logarithmic transformations

to simplify the equation

X = 2nc
2 tan ¢

E =x+1Y

n =X-1v

Substitution of these new variables into Equations 3.5 gives after

mathematical manipulation the follawing equations

dn _a -tan (yp-u) 37 on dx

+ .
dz 9 X o9x dz
d¢ = b-tan($+u) s e & dx 3.6
dz 9 X dx dz
where,
a= sin (Y +u)
20 sin ¢ cos (Y-1)
and,

b =-sin (- 1)

20sin ¢ cos (P+ud

For any line in the physcial plane with slope dx =tan (¥ +u),
dz

the last two terms of Equations 3.6 are equal and opposite, and there-

fore cancel. The stress field can now be described by two families of



slip lines
dn = a for slip lines S1 with slope dx =tan (¥ - )
dz dz
and,

d¢ = b for slip lines S2 with slope dx = tan (¢ +u)
dz dz

From the Mohr circle (Figure 3.3) it can be seen that the two
lines through the pole having inclinations of (Y + u) are in the
directions of the slip lines S1 and S2 in the physical field. That is,
the solved system in logarithmic stress space provides a set of slip
lines or a slip line field whose positions are known in the physical

( x, z) plane.

The values of the four parameters X,2,0,Y, describing a point P
in a plastic field are found by solving Equations 3.7 along each of
the characteristics through the point. To provide a definite integral,
two previously known points, one lying on each of the characteristics
must be available. In Figure 3.4 the new point C lies on the inter-
section of the S1 line from point B (X,z,o,w,)B with the S2 line from

point A (x,z,o,q))A

Rewriting Equations 3.7 in finite differences form yields

52,
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FIGURE 3,4: COMPUTATION OF A NEW POINT C FROM KNOWN
POINTS A AND B.
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A% _p= -sin (- )

Az 2 osin ¢ cos (Y + u)

An =a= sin(P+u ) i 3.8
Az 20 sin ¢ cos (¢~ u)

As a first approximation, the assumptions are made that the slip
line AC and BC in Figure 3.4 are straight, and that they have direc-

tions of (LPA + ) and (Y B~ M ) at C respectively.

The slip line through A has the gradient

Q(_ :tan(d)A+u)

dz

therefore,

X 7 X =(zC~ zA) tan(tpA+u)
Similarly, for the slip line through B, we have

Xg xg = ( 2y~ zg) tan (Yg- u)

Solving for x and z_gives
C C
X=3‘B+(ZC_ZB) tan[\pB—u)

zC= gptan (Vv g~ W - xp - z, tan (Y, + u) +xA

tan ( Vg~ u) - tan (IP,A +u)



From Equations 3.8

EC=EA—_(ZC—ZA)sin(w-u)

2 Tp sin ¢ cos (Y + u)

N~ =N +»(ZG_ZB] sin (¢ +1)

2 og sin ¢ cos (Y - u)

From £ and n , the values of 0 and ¢ can be computed from the
C C C C
following expressions by reversing the log-transform,

o, =exp {tan ¢ (E+n)}

and,

Y, =1/2 (& -1n)

C
The simple form of the finite difference relations given is very
approximate since no account is taken of the curvature of the slip
lines between the known point A and B, and the new point C. The
accuracy of the solution was improved by Sokolvskii (1960) by substi-
tuting 1/2 ( ot \lzc] and 1/2 ( iy + tpc) for ¥, and Y respectively
once the initial value of ¥y has been determined. This process is con-
tinued until the value of (\i from two successive iterations converge to
an acceptable tolerance. E:I‘his is the so-called " y iteration" method

(Graham, 1968). The solution is much improved by the additional

substitution ¢

AB 1/2 (o + O‘A’B) for Op and g and carrying out

C

55,
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the iterative process until the o values converge to a specified
tolerance. This method is the so-called " o, ¥ iteration" method,

which was proposed by Graham (1968).

3.3 DETERMINATIONS OF THE SLIP LINE FIELD

The computation begins at a boundary where the parameters

X,z,0 and ¢ are known .

In this work, the known boundary is the edge of the passive zone
beneath the sloping surface (Figure 3.5) which Graham (1966) has
shown to have straight slip lines when the magnitude of the surface

loading is zero (Figure 3.5).

If point O (Figure 3.6) is taken as the origin of the adopted system
of physical co-ordinates the slip line field in the transition zone consists

of two families of characteristics.

1, a set of curved radial lines originating from point O,
2. a set of spiral lines intersecting the radial lines in furn at

an angle of 2y =7/2- ¢

Point O is a unique point in the field, at which there is a sudden jump

in the values of o and ¥y when moving from right to left say, through



FIGURE 3.5: TYPICAL SLIP LINE FIELD IN THE PASSIVE
ZONE.BENEATH A STRESS FREE SLOPE.
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0. The value of y describing the direction of the major principal
stress is fixed at the beginning and end of the transition zone by
the physical formulation of the problems as outlined in Sections 3.4
and 3.5. This means that ¥ undergoes a total change of say Ay

at O, The slip lines themselves have no physical reality, but only
describe the directions of slipping at any point in the field. The
radial lines can therefore be specified in number by dividing Ay
into a suitable number of intervals , each corresponding to 'a sepa-
rate member of the radial family. The parameters X and Z are con-
stant and fixed at O by the formulation of the problem, and each
radial line has a different, arbitrarily selected value of y and
hence ¢ along the inner limiting member of the spiral family,
surroundiﬁg O at an infinitesimally small distance. The assump-
tion is made thaf close to O, self weight forces do not affect the
stress distribution. Hence, the values of o predicted for a
weightless material are considered to be applicable around the inner
limiting spiral curve (Graham 1966). Thus, if the boundary of the

uniquely defined zone forming the initial radial line has values of 0y
and wi at O, the value of O]. on the j.th radial line having ¢ = 1,1)]. at O,
will be given by

0 =gi.exp{2tan<b(w].~l,bi)}

58,



Points determined in this way provide the second set of known
boundary conditions required to begin the computation. The com-
putation of the entire field is then routine using the numerical pro-
cedure outlined in Section 3.2 above. The computation of the slip line
field is carried out until the end boundary where the failure stresses

are to be evaluated is reached.

Since point O (Figures 3.5 and 3.6) is a singular point of the slip~
line field, it represents a point of discontinuity in the mathematical
solution of the basic equations. At stress levels equal to zero, the
logarithmic transformations that are involved in the solution tend to
infinity. In order to handle this problem, Graham (1968) introduced
a surcharge term, in the computation of the slip line field, that allows
the logarithmic stress range to remain finite. The effect of the sur-
charge term is then reduced by 'shrinking' the field by a factor of
10 n , where n is the number of scale reductions necessary to eli-
minate the effect of the surcharge to an acceptable tolerance. It is
important to note that this scale reduction process does not itself
introduce any scale effects since all computations are carried out in
dimensionless terms. The present study has retained this procedure

for handling the singularity at point O.

60.



61,

3.4 THE INITIAL BOUNDARY CONDITION

It is necessary to determine values of the parameters x,z,0
and Y on the starting boundary, that is the edge of the rectilinear
passive zone in order to begin computation of the stress characteristic

field,

The parameter x is the horizontal distance from the point O (Figure

3.6).

The coordinate z is the depth of soil from the sloping ground surface to the boundary
of the passive zone (Figure 3.6). The inclination of the passive zone boundary is a

function of the angle \pi, the value of ¢ in the passive zone.

z is also a function of wi and is given by

1
- tanao }

tan (Y;-u)
The value of wi is determined from the Mohr circle of Figure 3.7 .
and is given by

2y, = T-o-sin L (sin o/ sin ¢ )
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FIGURE 3.7: MOHR CIRCLE SHOWING STRESS CONDITION IN THE
UNIQUELY DEFINED ZONE AT THE SURFACE OF THE
SLOPE.
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The value of o is also determined from the Mohr's circle as,

c = 1.0+ 12

1+sinq>cos:21pi

where 1.0 is a surcharge term assumed for the present to be constant along the

free surface of the slope.

3.5 THE END BOUNDARY CONDITION

For a footing on level ground, it is generally assumed that an
elastic wedge of soil is trapped beneath the footing and that failure
consists of two symmetrical zones flowing outwards from the centre

line.

The envd boundary in the stress field computation is normally
taken as the lower edge of the elastic wedge for example by Graham
and Stuart (1971), Suppiah (1981) and Hovan (1985). This boundary

is also a slip line and is inclined at an angle of ¢ with the footing base.

For the case of a footing on sloping ground the elastic wedge is
not symmetrical about the centre line of the base of the footing.
The analytical sclution to its precise geometry however has never been addressed

nor defined in any of the existing theories. This thesis addresses that problem. A
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study of the shape of the elastic wedge and the determination of a likely shape for
use in the computations is presented in Chapter 4. It is important to note that the
inclination and conditions along this boundary have significant effect on the com-

puted bearing capacity.

Vertical stresses on the two lower boundaries of the wedge are calculated from

the stress characteristic solution, and then expressed as the dimensionless parameter

N .
Yq
3.6 OTHER INPUT PARAMETERS

In order to facilitate the computations, other parameters must be

carefully chosen. These are discussed below.

3.6.1 Scale Parameter £

All the variables throughout the computation of the stress charac-
teristics were expressed in dimensionless terms, that is they were
written o = crr/ Y8, x= xr/SL, z = zr/SL, where £ is a scale para-
meter used to convert the real physical plane dimensional parameters
o, X, z, into dimensionless ones for computational purposes, and vice-
versa. The scale parameter 2 was chosen as the horizontal component of the edge

of the passive zone (Figure 3.6).
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3.6.2 Number of Spiral and Radial Lines

It has become also customary in stress characteristic solutions to
use ten spiral and twenty radial lines (e.g. Graham 1968 and Hovan
1985). As noted by Hovan (1985), a higher number of spiral and
radial lines would improve the accuracy only slightly. It would also
lengthen the computation time. This thesis uses ten spiral and twenty

radial lines for all the computations.

3.7 VALIDITY OF THE COMPUTER PROGRAM

The numerical accuracy of the results produced by the basic com-
puter program was established by computing NY for a footing on level

ground for a series of ¢ values from 30 to 42 degrees.

The computation values were compared with the results obtained
previously by Graham and Stuart (1971), and Hovan (1985). These

results are summarized in Table 3.1.

The computed NY values agree very closely with those of Graham
and Stuart, and compare within -1.9% and + 0.2% These differences

in NY may arise from éﬁghﬂy different procedures for integrating
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the pressure distributions for determining the failures loads.
Graham used essentially semi-graphical procedures, whereas
more recent approaches by Suppiah (1984), Hovan (1985) and
the author use numerical procedures. The results also compare
reasonably well with those obtained by Hovan (1985) except at
high ¢ values where the NY values differ by about 11%. The
reason for this discrepancy is not known. It should be noted
that this favourable comparison with NY values for surface
footings on hérizontal grounds does not however confirm the

validity of the new EDGPA subroutines written by the Author.



¢ NY Ny Ny
angle | Graham § Stuart Hovan Author
30 22.4 23.17 21,97
32 31.4 31.25 31.29
34 45.0 45,60 44,93
35 54.5 - 54,03
36 65.0 69.20 65,14
38 . 96.0 98,90 95,14
40 143.0 147.90 142.09
42 216.0 242.97 214,865
TABLE 3.1 - GHECK ON NUMERICAL ACCURACY OF THE COMPUTER

PROGRAM - COMPARISON OF "N'Y VALUES FOR A FOOTING

ON LEVEL GROUND.



CHAPTER 4

THE SHAPE OF THE TRAPPED ELASTIC WEDGE

4,1 INTRODUCTION

Vesic (1973) in his extensive review of the ultimate bearing capacity
of shallow foundations on level ground concluded that the stress and de-
formation pattern under compressed areas is such that it always leads to
the formation of single wedges immediately beneath the footing. The
roughness of the footing base was deduced to have little effect on the
bearing capacity as long as the applied external loads remained vertical.
In their recent paper on model tests of bearing capacity problems in a
centrifuge, Kimura et al (1985) state that their current experimental ob-

servations concur with the analytical theories suggesting a single wedge

failure mechanism regardless of the roughness of the failure footing base.

This means that the "Prandtl type" failure mechanism and not the "Hill type"

mechanism is the likely failure type (Figures 2.15 and 2.16).

For footings on level ground this wedge of soil is commonly assumed
to be symmetrical about the centre line of the footing and have a base
angle of ¢ to 45 + ¢/2 degrees. Graham and Stuart (1971) and Hovan

(1985) used a base angle of ¢ degrees in their "¢ - wedge" analyses,
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STRESS DISTRIBUTION

FIGURE 4.1: STRESS DISTRIBUTION AND TRAPPED WEDGE FOR A
FOOTING CLOSE TO A SLOPE
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The case of a footing close to the crest of a slope with one side (A) adjacent to
level ground (Figure 4.1) is however more complex. Because of its physical geometry,
the problem is clearly asymmetrical. The stability of such a footing will be influenced
by the reduced support available on the side with the slope. It can be expected that
the ultimate bearing capacity will be reduced from the level-ground case. Failure
will commence in the weakest region of the foundation soil, that is, in soil adjacent
to the slope, and will propagate inwards towards the footing. The overall behaviour
of the soil in the failing domain to either side of the centre line of the footing is not
yet fully understood. However, it can be reasonably expected that if the foundation
is constrained to move downwards vertically, then displacement of the soil mass will

occur on both sides of the footing.

‘The earliest known experimental investigation of the behaviour of foot-
ings on slopes was reported ‘by Peynircioglu (1948). This work indicated
among other things that the trapped elastic wedge beneath the footing is
probably not symmetrical about the centre line of the footing base. As
mentioned in Section 3.5, the lower edges of this wedge form the end
boundary for the stress characteristic solution. It is therefore necessary
that their location should be carefully modelled if the stresses acting on them are
to be determined accurately. Various analytical models for determining the shape

of the wedge are studied in this Chapter.
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4,2 Photographic Evidence For the Shape of the Wedge

Experiments that indicate the shape of the trapped wedge for footings located
close to slopes have been reported by Peynircioglu (1948), Mizuno et al. (1960), and
Giroud and Tran-Vo-Nhiem ( 1971). The recently reported work of Kimura et al.
(1985) based on model tests in a centrifuge also provides limited information on the

shape of the slip lines at failure.

Peynircioglu carried out small scale tests on two types of sand in a
glass box with dimensions 55 x 33 x 26 cm. The physical properties of
the sands are summarized on Figure 4.2. The movement of the sand
particles during the loading process was recorded by means of time ex-
posure photography. Although the friction between the sand and the
sides of the glass box obscures the development of the failure zone, some
important conclusions can be drawn from the observations, these are as
follows :~

(1) It is very clear that the trapped wedge beneath the
footing is asymmetrical, and that the base angle w,. on

the side nearest the slope is less than n/4 + ¢/2.



SOIL PROPERTY . S1 Sz
Specific Gravity 2.613 2,591

Unit Weight in the loosest state 1,405 t/m3 | 1.385t/m$
Unit Weight in the densest state 1.584 t/m3 | 1.610 t/m3
Porosity in the loosest state - 46,2% 46.5%
Porosity in the densest state 39,3% 37.9%
Angle of internal friction 380 36°

FIGURE 4.2 PROPERTIES OF THE SANDS USED BY PEYNIRCIOGLU

(1948)

72,
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(2) The greater the slope inclination, the greater

is the asymmetry of the wedge.

A summary of the relevant results of this work is shown in Table 4.1, which also shows
a summary of the experimental works of Giroud (1971) and Kimura (1985) and compar-

isons of these results with the models developed later in this Chapter.

Mizuno (1960) studied the problem with the aid of small, two-dimension-
al model where the soil is represented by small cylindrical bamboo sticks,
5 mm in diameter. They reported good agreement between the observed
slip lines and a failure zone calculated by assuming a symmetrical soil
wedge with a base angle of /4 + ¢ /2. This is in direct contradiction
to the observations by Pernircioglu (1948) described previously. The

reasons ' for this apparent discrepancy are not known.

Giroud and Tran-Vo-Nhiem (1971) carried out their experiments

with a two dimensional model similar to that used by Mizuno et al (1960)

but used duralumin rods to represent the soil medium. The soil movement and failure
mechanism were observed by means of both a camera attached to the moving footing
‘and by a fixed camera. The results clearly indicate than an asymmetrical wedge is
formed beneath the footing and that this asymmetry increases with the inclination of
the slope. The base angle of the wedge immediately adjacent to the slope w. (Fig.
4.1) is observed to be less than /4 +‘¢/2. The results in general agree with those

of Peynircioglu (1948) and the pertinent details are summarized on Table 4.9.
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4,3 Analytical Study Of The Shape Of The Trapped Elasﬁc Wédge

4,3.1 Introduction

In this section four different models for the shape of the wedge are
developed and analysed. For a footing with its edge at the crest of the
slope, the geometry of the wedge is a function of the slope angle o, and
the angle of internal friction ¢ of the soil., The variables which define the
shape of the wedge are the Xﬂ,/xr ratio, Wy and W, (Figure 4.1). These
variables are mutually dependent and can be expected to vary with the
basic parameters o« and ¢ . The models which are developed all start
from the premise that the left base angle of the trapped wedge is equal
to ¢ (Figure 4.3). That is, when failure occurs it will do so simultaneous-
ly to both sides of the footing, with failure zones of different sizes ex-
tending to both the slope surface on the right in Flig. 4,3 and to the hori-
zontal ground surface on the left. As mentioned previously in Section
4.1 the base angle of the trapped wedge is normally taken as being equal
to ¢ in the stress characteristic solution for footings on level ground. The

development of the models is now described in turn.

4,3.2 Development of Model 1

The stress on the boundary AB (Figure 4.3) of the rectilinear pas-

sive zone adjacent to the slope is determinate (Graham 1968). Its value
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FIGURE 4.3 BASIC ASSUMPTIONS FOR THE DEVELOPMENT

OF MODEL 1,
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was determined in Section 3.3 and is given by

o =X {[1/’can(1pir - u)l -tan o } . 1

1 +sind coszwir

......... 4,1
At the start of the extreme spiral at B bounding the failing soil mass,
oizz{[lltan(lpir~u)]-tan alt. 1
1+ sin ¢ cos 2%
......... 4,2

In the region close to O (Figure 4.4) where the effect of self weight

can be neglected, the stress on the jth radial line is given by

0].=oiexp(2 Ay tan ) 4,3

If this can be applied to the entire failing mass (and this is strictly

correct only if the entire domain is weightless) then

Oy = 2 {[ 1/tan (Y, -~ u)] - tan o Yexp (2 Ay tan ¢)

1

(1+ sin¢ cos prir)

The verical stress o at point C is therefore
vr

0, = £1[ 1/tan (b~ - tan o } {1+ sin ¢ cos 2 yg !

{1 + sin ¢ cos 2 wir}

.exp{2tan¢ (¢ - ¥ )}
fr 5 1 o 4,5
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FIGURE 4.4. NUMBERING SEQUENCE FOR THE RADIALS
EMANATING FROM O.
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The value of l,bir was determined in Section 3.4, and is a function of

o . It is expressed as

wir =1/2 {7w- o- sin_l(sin afsin o)} L. 4.8

The parameter wfr is a function of W, and can be expressed as

ler=wr~TT/4“¢/2 ......... 4.7
The value of Oy @8 expressed in Equation 4.5 is thus a function of

W, o and ¢.

It is clear that good mathematical modelling should not introduce a
stress discontinuity at any intermediate point on the footing base. Hence
there can only be one value for the stress at point M (Figure 4.1). The
Model 1 analysis assumes that the vertical stress Oy at point M decreases
linearly to zero at D, the left edge of the footing. The rate of stress de-
crease to D obtained from a surface footing calculation will define the loc-
ation of the left edge of the footing. This establishes the value of XSL/‘XI’

that is, the skewness of the elastic wedge.

Since we have assumed that the failure surfaces are logarithmic spirals

then the length X in Fig. 4. 3. is

x, = % cos wl_/ {sin (d)ir -u) }.exp {Br tan ¢} ...iiunnn, 4.8



From the physical geometry of the wedge

X, =X _ tan w
2 Y ro 4.9

tan ¢

By combining Equation 4.8 and 4.9, the following expression for

X is obtained.

% cos Wy . exp {er tan ¢} L.oiiiiiean 4,10

X,Q, =
sin (npir - u) tan ¢

If we further assume that the rate of stress decrease to 'D' is in
accordance with the Terzaghi NY value (here called NyT) for a fully

rough ¢ wedge, then

Ogg =2%, Nop e

This is also based on the assumption that the failure surface is a

logarithmic spiral.
Substitution of Equation 4.10 into Equation 4.11 yields

o
vei = % 2 cos w_

. exp {91_ tan ¢ }NYT
sin (. - ¥) tan ¢

80.
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Equations 4.5 and 4.12 therefore provide values for the stress at point

M as functions of W, As noted earlier, to avoid a discontinuity:

The resulting expression can be solved for w, provided thato and ¢
are defined. It was solved by computer by assuming an initial value for
W, and determining the resulting Oy and Oy g values., These values

were compared to determine whether the absolute difference met a speci-

fied tolerance that is (Ovr -0 /Orv< 0.01. 1If this tolerance was ex-

VSL)
ceeded, then w, was adjusted until the convergence criterion was met.
Using this procedure, w, was computed for values of ¢ ranging for 30

to 45 degrees and values of o ranging from 10 degrees to (¢ - 5) degrees.

for each ¢ considered.

4,3.3 Results From Model 1

The results showing the computed values of W, and X,Q,/VXI‘ are summar-
ized in Table 4.2. Also shown in this table, is the eccentricity of the
apex of the asym‘metrical wedge which is defined on Figure 4.1, It is
a relative measure of the skewness of the wedge and gives a more con-
venient quantitative measure of the asymmetry than the parameter X, /’xr
Table 4.2 shows that the value of 'e' varies within the range of .02 B to

.35 B as o« varies from 10 to 40 degrees.
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) o W, W, lexr 'e!
(degrees) (degrees) (degrees) (degrees) (x1/B)

30 3.0 30.0 30.0 1.8 0.0
10.0 27.4 © 80.0 0.80 0.02
15.0 22.0 30.0 0.70 0.08
20.0 16.9 30.0 0.53 0.15
25.0 12.4 30.0 0.38 0.22

35 10.0 33.2 35.0 0.93 0.02
15.0 26.8 35.0 0.72 0.08
20.0 20.7 35.0 0.54 0.15
25.0 15.4 35.0 0.39 0.22
30.0 11,0 35.0 0.28 0.28

40 10.0 36.7 40.0 0.89 0.03
15.0 29.6 40,0 0.68 0.09
20.0 22.9 40.0 0.50 0.17
25,0 16.9 40.0 0.36 0.23
30.0 12,1 40,0 0.26 0.29
- 35.0 8.4 40.0 0.17 0.35

45 10.0 41.5 45.0 0.88 0.03

: 15.0 33.0 45.0 0.70 0.08
20.0 26,3 45,0 0.49 0.17
25.0 19.6 45.0 0.36 0.23
30.0 14.0 45,0 0.25 0.30
35.0 9.8 45,0 0.17 0.35
40.0 6.6 45,0

TABLE 4.2 SUMMARY OF CALCULATED XQ/ Xr AND w, VALUES FOR

MODEL 1.,
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From Table 4. 2, it is immediately obvious that the skewness of
the trapped wedge, as represented by both x SL/Xr and e, is largely
independent of the value of ¢. Average values of e and XSL/Xr for
a given o are summarized on Table 4.2 .The variation of e with q,
and xz/xr with o are shown on Figures 4.5 and 4.8§ respectively.
These graphs also show results from further Models 2 to 4 which
were also examined. Both the curves for Model 1 (Figures 4.5 and 4.6) indicate that
the asymmetry or skewness of the wedge becomes more pronounced as the slope
inclination increases. Figure 4.6 is basically a repetition of Figure 4.5, but is repro-

duced because of its usefulness in the later numerical work.

The general trends resulting from this solution agree quantitatively with those
obtained from the experimental observations by Peynircioglu (1948), and Giroud

and Tran-Vo-Nhiem (1971).

The variation ofmI with o for various ¢ angles is shown on Figure 4.7. These curves
are useful for determining w, values which define the final boundary in the NY cal-

culations, which will be described in Chapter 5.

g

From the above analysis, the approximate shape of the trapped elastic
wedge can be determined for any combination of ¢ and o. However, when

-

b4
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SLOPE ANGLE ECCENTRICITY OF /&(r

a WEDGE 'e"
(degrees) (x % )

10 0.026 .90
15 0.08 .70
20 0.16 .52
25 0.225 . 37
30 0.29 .28
35 0.35 .17
40 0.50

TABLE 4.3 AVERAGE VARIATION OF 'e' AND 'XR/XI[ WITH

'a!' BASED ON MODEL 1.

Note: The values of 'e' and x glxr quoted above are the arithmetic

means of the values shown on Table 4. 2 for any specified

value of o .
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comparisons were made between experimental and theoretical values of
NY’ the agreement was not acceptable. Further models (2 to 4) were
then developed to improve the level of agreement. These are described

in the following sections.

4,3.4 Development Of Model 2

This model is similar in several respects to Model 1. It starts from the
same premise that the left base angle of the wedge is equal to ¢. It also
computes the vertical stress 'ovr'at point M on the base of the footing by
starting with the known stress on the edge of the rectilinear passive zone
adjacent to the slope and computing the stress on the end boundary, i.e.
the lower right edge AC of the elastic wedge by assuming that the stresses

in the transition zone are related by the expression.

o]. = 0; exp ( 2 Aytan ¢)

The difference between Models 1 and 2 is that Oyr is computed in-
dependently by assuming a logarithmic spiral stress distribution in the failing domain
on the left rather than the Terzaghi distribution and then computing the vertical
stress on the end boundary (Figure 4.3) which was defined by a base angle ¢, as a

function of W
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The resulting expression for Ou0 is

Oy = %8in uexp {3Aytan ¢ }
cos ¢ (1-sin¢ ) (1 +sindcos2u ) .vvirrnn.. 4,17
where
Xg =  sinwy . exp {- g tan ¢} ....... 4.18

tan ¢ { sin (tpil_ -u)}

By equating ovz(Equation 4.17) to Ty (Equation 4.5 ) an expression
which contains the single unknown , is obtained. This was solved using

the iterative procedure ocutlined in Section 4. 3.2.

4.3.5 Results From Model 2

The values of the computed parameters defining the geometry of the
wedge are summarized on Tables 4.4 and 4.5 The variation of Lpr with o
for ¢ angles varying from 30 to 45 degrees is shown on Figure 4.8.

The general trends which resulted from Model 1 are also observed for

Model 2. That is, the degree of asymmetry of the trapped wedge increases
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Iel
¢ o Wy ) o *r (x 1)
(degrees) (degrees) (degrees) (degrees) B
30 5 26.2 30.0 0.85 0.04
10 21.8 30.0 0.69 0.09
15 17.2 30.0 0.54 0.15
20 13.0 30.0 0.40 0.21
25 9.4 30.0 0.29 0.27
35 10 25,1 35.0 0.67 0.10
15 19.7 35.0 0.51 0.16
20 14,7 35.0 0.37 0.22
25 10.7 35.0 0.27 0.28
30 7.5 35.0 0.19 0.34
40 10 28.8 40.0 . 0.66 0.10
15 22.4 40.0 0.49 0.17
20 16.6 40.0 0.36 0.23
25 11,9 40.0 0.25 0.30
30 8.3 40.0 0.17 0.35
35 5.6 40.0 0.11 0.40
45 10 32.7 45,0 0.64 0.11
15 27.5 45,0 0.52 0.15
20 18.9 45.0 0.34 0.25
25 13.3 45,0 0.24 0.31
30 9.2 45,0 0.16 0.36
35 6.2 45.0 0.10 0.41
40 4.1 45,0 0.07 0.43
TABLE 4.4 SUMMARY OF CALCULATED % /~Xr AND W, VALUES

BASED ON MODEL 2,



SLOPE ANGLE ECCENTRICITY OF }{2/}(r
o WEDGE ‘e’
(degrees) (x 1/B)
10 0.096 0.80
15 0.15 0.583
20 0.22 0.38
25 0.29 0.26
30 0.35 0.17
35 0.40 0.10
40 0.43 0.17

TABLE 4.5 AVERAGE VARIATION OF 'e' AND! XQ'/'xr‘ WITH

''ar' BASED ON MODEL 2.

Note: The values of 'e' and 'xz/xr' quoted above are the arithmetic
means of the values shown on Table 4.3 for any specified

value of a.
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as o increases. However, the estimated amount of skewness as measured by e and

lexr of the wedge varies by a significant amount between the two models.

4,3.8 Development of Model 3

The feature of this model which is different from the two presented
previously is that the stress 0, at M (Figure 4.1) calculated by work-
ing from the left is calculated using the NY values of Graham and Stuart
(3971) That is Oygq =2 X, NyG
The simplifying assumption of a log-spiral shaped failing domain applied
for Models 1 and 2 is no longer used. This means that the effect of soil

weight is now partly accounted for in the analysis.

Equation 4.12 can therefore be written as

- 2 cos w
O =
vy~ & r NYG . .exXp {er tan ¢ } ... 4.19

sin (t,bir - y) tan ¢

Oy is given by Equation 4.5.

The expression resulting from equating Oy (Equation 4.5) to 941

(Equation 4.19) is again solved for w using the iterative procedure out-

lined above (Section 4.3.2).
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4,3.7 Results From Model 3

The calculated values .of W, and XQ/XT are summarised on Tables 4.6

94.

and 4.7. The results are presented graphically on Figures 4.5, 4.6 and 4.9.

In general, it is observed that the estimated eccentricity of the wedge is
intermediate between the values computed using Model 1 and 2 respect-

ively (Figures 4.5 and 4.6).

4,3.8 Development of Model 4

The approach to the formulation of Model 4 is considered to be much
more rigorous than tho se discussed previously and will form the principal
basis for subsequent calculations. In this case the approach starts from

the 'free' ground surface (DF in Fig. 4.1) and works towards the right.

It combines the stress characteristic fields obtained for a footing on
level ground with those obtained for a footing at the top of an embank-
ment sloping equally on either side. This provides a solution for the
condition where the footing is seated at the crest of a slope with level
ground on the left side (Figure 4.1). The model is arranged so that it

ensures there is no stress discontinuity along the footing base.
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1
¢ a w wz ) lexr e
tdegrees) (degrees) (degrees) (degrees) (x—lﬁ
30 5 30.0 30.0 1.0 0.00
10 25.5 30.0 0.82 0.05
15 20.4 30.0 0.64 0.11
20 15.6 30.0 0.48 0.17
25 11.4 30.0 0.35 0.24
35 10 29.3 35.0 0.80 0.05
15 23.3 35.0 0.62 0.12
20 17.7 35.0 0.46 0.18
25 13.0 35.0 0.33 0.25
30 9.1 35.0 0.23 0.31
40 10 31.6 40.0 0.73 0.08
15 25.0 40,0 0.56 0.14
20 40.0 0.50 0.17
25 13.6 40.0 0.29 0.27
30 9.6 40.0 0.20 0.33
35 6.5 40.0 0.14 0.38
45 10 36.1 45,0 0.73 0.08
15 32,2 45,0 0.63 0.12
20 21.86 45.0 0.40 0.21
25 15.5 45.0 0.28 0.28
30 10.8 45.0 0.19 0.34
35 7.4 45.0 0.13 0.38
40 4,9 45.0 0.08 0.42

TABLE 4. 6 SUMMARY OF CALCULATED xllxr AND W VALUES BASED ON

MODEL 3,



SLLOPE ANGLE ECCENTRICITY OF J(Q/Xr
o WEDGE 'e’

(degrees) (x 1/B)
10 0.07 0.75
15 0.11 0.64
20  0.17 0.49
25 0.25 0.33
30 0.33 0.20
35 0.38 0.14
40 0.42 0.097

TABLE 4.7 VARIATION OF 'e' AND lexr WITH'a' -

BASED ON MODEL 3.

Note: The values of 'e' and XSL/Xr quoted above are the arithmetic
means of the values shown on Table 4.5 for any specified

value of a,
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The model employs the stress characteristic solution to obtain the
shape of the trapped wedge and does not presuppose a failure surface.

In this respect it is superior to the models considered previously.

Id Model 4, the stress characteristic solution for the o = 0 condition
(that is for a footing on level ground) is employed to determine the

stress OV as well as the length Xy (Figure 4.10) This ensures that the

2
effect of soil weight in the failing domain is accounted for in the analysis.

The length z ,Q,is also determined, since

.= tan
zy = X, )

The next stage of the modelling consisted of working from the sloping grocund
surface, that is, the right hand side of Figure 4.10, and using the stress characteristic
solution developed in Chapter 3, to determine the base angle . for which the stress
Oyr = Oy and z g =% simultaneously. These conditions ensured that there is no

stress discontinuity beneath the footing or physical discontinuity on the trapped

wedge.

The procedure for doing this consists of computing the slip line field and hence

NYG (which is proportional to oyp) for'specified values of ¢ , a and Wy The values of
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¢ considered, ranged ‘'rom 30 to 45 degrees in intervals of 5 degrees and o from 10
degrees to¢ -5 degrees. For each combination of ¢ and o, W, was varied through

a range of values and Nya computed for each value of . considered. A typical
variation of NYOI with W, is shown on Figure 4.11. This Figure shows that as w,
decreases, NYa , and therefore Our increases. A schematic illustration of this phen-
omenon is shown on Figure 4.12. It is therefore evident that there must exist a

unique value of w, for which Sr= %y and z,. =2, simultaneously. In order to obtain
this W, value, the computed Cyy and zZ, values were combined with the initially defined
Z, and Sun values to give to ratio of Oy to Ty and zZ, to Zg - By interpolation between

the calculated values of the ratio, the exact values of w_ for which the ratios are

equal to 1.0 was determined. The geometry of the elastic wedge was therefore obtained.

4.3.9 Results of Model 4

The geometry of the ‘;vedge computed using Model 4 is summarized on
Tables 4.8 to 4.9. The results show similar trends to those obtained from
Models 1 to 3. A plot of the variation of 'e' with 'a' is shown on Figure 4.5
while the variation of w,. with a o, is shown on Figure 4.13 Model 4 predicts

a higher degree of skewness of the elastic wedge than Models 1 to 3 inclusive.
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d) a wr w,Q X,Q/X.r Iil
(degrees) (degrees) (degrees) (degrees) (X‘f;
30 10 20.0 30.0 0.63 0.63
15 14.7 30.0 0.41 0.41
20 10.5 30.0 0.31 0.31
25 6.7 30.0 0.17 0.17
35 10 23.5 35.0 0.60 0.60
15 17.7 35.0 0.43 0.43
20 12,7 35.0 0.31 0.31
25 8.5 35.0 0.19 0.19
30 5.3 35.0 0.13 0.13
40 10 29.0 40.0 0.66 0.10
15 21.0 40.0 0.46 0.18
20 15.0 40.0 0.32 0.286
25 10.5 40.0 0.21 0.33
30 6.8 40.0 0.13 0.38
35 4.0 40.0 0.05 0.45
45 10 31.5 45.0 0.60 0.13
15 26.0 45,0 0.43 0.20
20 18.0 45.0 0.32 0.26
25 12.5 45.0 0.21 0.33
30 8.0 45.0 0.13 0.38
35 5.0 45,0 0.09 0.42
40 4,2 45.0 0.07 0.43
TABLE 4.8 SUMMARY OF CALCULATED XR’/XI AND W, VALUES BASED

ON MODEL 4,




SLOPE ANGLE

ECCENTRICITY OF XQ,/XI'

o WEDGE ‘e’
(degrees) (x 1/B)

10 0.12 0.62
15 0.20 0.43
20 0.26 0.31
25 0.33 0.20
30 0.38 0.13
35 0.44 0.07
40 0.44 0.07

TABLE 4.9 VARIATION OF 'e' AND XJL/Xr WITH ' o'

BASED ON MODEL 4,

Note: The values of 'e' and xﬁ/)ir quoted above are the

arthimetic means of the values shown on Table 4.'7

for any specified value of o .
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4,4, Validity Of The Models And Comments On The Assumptions

Made in Their Formulation

A series of assufnptions had to be made to allow development of the models for
determining the shape of the trapped wedge beneath the footing. These now require
further amplification, explanation and comment. For this discussion, Models 1 to 3
are treated together since the basic assumptions utilised in their formulation are

essentially similar. The main assumptions incorporated in the formulation of Models

1 to 3 are as follows:-

(1) The sand medium was assumed to be weightless.

(2) The wvalue of w, in Fig. 4.1 was taken to be
equal to the angle of internal friction of the soil ¢,

(3) It was assumed that plastic straining and displacement
of the failed masses on either side of the centre line of
the footing take place simultaneously.

Assumption 3 applies to all of the models, that is to Model 4

as well as to Models 1 - 3.

4,4,1 Assumption 1

This assumption is common in both the limit equilibrium and limit
analysis approaches to the bearing capacity problem (Chapter 2). It uses
failure mechanisms based on logarithmic spirals (which are strictly correct

only for weightless materials), and adapts them to produce estimates of
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the bearing capacity of sands with self-weight, Such approximate
mechanisms provide estimated bearing capacity which compare favour-
ably with stress characteristic solutions which do not presuppose the
failure surface (Graham and Stuart: 1971)., It might therefore be con-
cluded at first sight, that the shapes of the failure mechanisms for
sands with and without self-weight are not significantly different.

In the development of Models 1 to 3, a weightless medium was assumed
only for the purpose of determining an approximate shape for the trap-
ped elastic wedge. It should be noted that the effect of the soil weight

is included in subsequent calculations of bearing capacity.

4,4.2 Assumption 2

It is intuitively expected that, since the external soil boundary is
on the left side of the footing (Figure 4.1) then the failure mechanism
in this vicinity should approximate or converge to those which corres-
pond to a footing on level ground, that is, a ¢ wedge may be expected

beneath the left edge of the footing.

The experimental evidence to support this assumption is limited.
However, the evidence that is available indicates that the assumption

is reasonable. A summary of the values W, measured in experimental
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testing programs is presented on Table 4.1 (pg. 74). It can be deduced that the ratio
of observed to theoretical values of w 0 varies within the relatively narrow range of
0.95 to 1.35. More experimental data would be helpful to further substantiate this

hypothesis.

4,4,3 Assumption 3

The manner in which failure progresses through the sand from the
region which is obviously the weakest, that is, the region closest to
the slope, into the more stable regions beneath the footing is not comp-
letely known. The problem is further complicated by its pﬁysical asy-

mmetry.

The assumption of simultaneous failure to both sides of the footing
is associated with the assumption that the soil behaviour is rigid-plastic

(Figure 4. 14) that is, negligible volume change is assumed prior to failure.

Graham (1968) and Hovan (1985) suggested that the idea of associating a relatively
incompressible material such as a medium dense sand with rigid-plastic behaviour
does not alter the basic validity of the stress-characteristic solution. This assump-
tion is justified so long as the footing is forced to move downwards vertically, and

is not free to rotate.
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Whether the footing is constrained to move downward or rotates
as failure is induced will depend on the rigidity of the connections
between the footing and the superstructure and the nature of the

structural connections of the superstructure.

Small scale model tests in general do not try to simulate the rigidity of the
superstructure. In fact they generally have free joints. Footings will therefore tend
to move in the direction of least resistance. As a result, footings will tend to rotate
and produce a failure mechanism which does not show any slip line fields in the
stronger region, or the region close to the level ground. In actual structures such
as bridges, the superstructure may be rigid or semi-rigid. In such cases the footing
can be expected to have some constraint and to move vertically downwards, thereby
inducing fajlure to both sides of the sand mass simultaneously. This thesis considers
only footings which move vertically downwards with failure zones extending on both

sides of the footing.

4,5 Comparison Of The Models

Figures 4.5 and 4.6 indicate that the amount of eccentricity of the
wedge predicted by the models for any value of o is in the following
ascending order o'f magnitude: Model 1, Model 3, Model 2,Model 4.
That is, Model 1 predicts the smallest amount of eccentricity, while

Model 4 predicts the highest eccentricity (Figure 4.14).
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The suitability of any model for subsequent use in the determination
of the bearing capacity coefficient should be assessed on the basis of the

following two criteria

(i) The validity of the assumptions used in the analysis
and the rigour of the theory.
(ii) The level of agreement between the theoretical results,

and the available experimental observations.

As noted in Section 4.3.8 Model 4 is by far the most rigorous in terms of the assump-
tions upon which it is based. It considers a failure mechanism which is considered to
be the most realistic of the four that have been studied. At best, Models 1 to 3 are
approximations to the likely failure mechanism. Hence from the point of view of

criterion (i), Model 4 is the preferred model.

With respect to criterion (ii), Table 4.1 (p. 74), which compares the results from
all the models, clearly shows that the best agreement observed and theoretical le X
ratios is obtained for Model 3, while Model 1 gives the best agreement between observed
and theoretical W, values. No firm conclusions can be drawn from these deductions

since they are not consistent. Furthermore, the amount of experimental data which

is available is quite limited.
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On the basis of criterion 1 therefore Model 4 is the preferred model.
Some analyses are also carried out using Model 1 since it provides a
"lower bound" solution. It should perhaps be emphasized that the basis
of comparison at this stage is with the geometry of the base wedge based
on photographic evidence. It is well known for example, (Graham, 1968)
that displacement (or strain) fields are much more difficult to model than
loads or displacements. A later Section (Chapter 7) will compare theoreti-

cal predictions of NY with experimental values.
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CHAPTER 5

FOOTING LOCATED AT THE CREST OF A SLOPE
PARAMETRIC STUDY AND RESULTS

5.1 INTRODUGCTION

The main variables which influence the bearing capacity of a footing
at close proximity to a slope are the angle of internal friction of the soil, o,
the slope angle, o , the footing depth, D, and the distance, H, from the
crest of the slope to the edge of the footing. In this Chapter, we are con-
cerned only with the case of a footing located at the crest of a slope, that is H = 0.
The case of a footing located away from the crest, is presented in Chapter 6. It is
convenient to normalize the parameter D by dividing it by the footing breadth B.
That is, it is expressed as the dimensionless parameter D/B. Analyses to determine
the bearing capacity factor were carried out using Model 4 developed in Chapter 4
for ¢ ranging from 30 to 45 degrees and o ranging from 10 degrees to (p -5) degrees
for each value of ¢ considered. This thesis is concerned only with shallow footings

hence analyses were done for 0.0 < D/B < 1.0.

5.2 SURFACE FOOTINGS

In addition to the parameters which define the soil (¢) and slope geo-
metry (o), the input parameters which are required for determination of the

bearing capacity for the case under consideration, are those which define the
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geometry of the trapped elastic wedge in Chaper 4. That is, the ratio
of lexr and the value of w, These parameters are in fact secondary
parameters since they depend on ¢ and o. The values were obtained from

Figures 4.6 and 4.13.

As outlined in Chapter 3, the surface footing, or zero surcharge condi-
tion is simulated by introducing a surcharge into the computation initially
(Figure 5.1) and thén enlarging the zone of computation until the assumed surcharge

has no significant effect on the computed bearing capacity (Graham, 1968).

Using this method, and the computed shape of the wedge for Model 4 as
outlined in Chapter 4, bearing capacity factors were calculated for ¢ ranging
from 30 to 45 degrees and o from 10 to (¢ - 5) degrees. The results are

shown graphically on Figure 5. 2a.

5.3. SHALLOW FOOTINGS

The addition of an artificial surcharge to the ground surface is an ex-
pedient mathematical procedure for handling the stress discontinuity at point
O (Figure 5.1). The surcharge can also be considered to be real and to have
the same effect as embedding the footing beneath the surface. The procedure
for obtaining the bearing capacity factor which was alluded to in the preceding
section involves diminishing the surcharge effect in a series of steps until its
effect is negligible. The intermediate steps can however.yield NYq values cor-

responding to different depths of embedment . However,.as noted by Graham
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FIGURE 5.1 - EMBEDMENT DEPTH 'D' TREATED AS A SURCHARGE



117,

and Stuart (1971), the convergence from the NYq to the NY value is quite

rapid. As a result, it was not possible to obtain a complete range of NYq

values corresponding to the required range of D/B values between 0 and 1.
The limited results obtained using this approach are shown on Table 5.1
Also shown on Table 5.1. are values of NYq obtained using the method out-
lined below. The values obtained from the latter method are generally lower
than those obtained using the scale reduction method. The values obtained using
the procedure outlined below range from 56-107% of those obtained using the scale
reduction method.

The other procedure used for computing the bearing capacity factor
consisted of treating the embedment depth D as a surcharge (Figure 5,1).
The parameters ¢ and ¢ on the "equivalent free surface"” O'C were then
calculated from the Mohr's circle (Figure 3.7) This means that the effect
of the surcharge was included as both a vertical stress and shear stress
along O'C. The gowverning equation for obtaining 0 is

1.0+ ¢

1+ sin ¢ cos zwi

g =

Since the values of the parameters x,z,0 and Y are known for all points
along O'C, then using the procedure outlined in Section 3, the entire slip
line field in the region between the equivalent free surface and the e‘dge of

the passive zone could be computed.
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D/B N N
¢ o vq | ‘Yg (2)/
(degrees) (degrees) from scale | equivalent (1)
:reduction - | free surface °
(1) method (2) ©
30 10 0.21 39,9 24 60
35 10 0.31 108.1 64 59
35 15 0.29 82.6 56 68
35 20 0.25 57.5 45 78
40 10 0.44 290.5 170 59
40 15 0.43 232.1 160 69
40 20 0.39 166.2 130 78
40 25 0.34 110.3 98 89
4p 30 0.26 67.4 72 107
45 10 0.69 1001.0 560 56
45 15 0.65 742.6 480 65
45 20 0.61 538.9 410 76
45 35 0.56 372.9 330 88

TABLE 5.1 SUMMARY OF NYq VALUES FOR FOOTING AT THE CREST OF
A SLOPE. '

- NYq FROM 1st SCALE REDUCTION.
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The entire computation starting from calculation of the parameters x, 2,
o and Y on the boundary O'C and determination of the slip line field was done
using a specially written subroutine EDGPA3. A typical plot of the slip line field
in this region is shown on Figure 5.4. The remainder of the slip line field up to the
base of the footing and hence the bearing capacity factor was then computed using

the basic program.

The complete set of results for o varying from 10 to (¢ - 5) degrees, ¢
from 30 to 45 degrees and D/B=0,25, 0,50, 0.75 and 1.0 are shown on

Figures 5.2 and 5.3.
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FIGURE 5.4: TYPICAL SLIP LINE FIELD FOR UNIFORM SUR-
CHARGE ON SLOPE. '
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CHAPTER 6

FOOTING LOCATED AWAY FROM THE CREST
OF THE SLOPE - PARAMETRIC STUDY AND
RESULTS

6.1 INTRODUCTION

In addition to the variables ¢, o and D which influence bearing capa-
city (Chapter 5), this chapter is particularly concerned with the influence
of H, (the distance from the crest of the slope to the edge of the footing) .
It has been found convenient to normalize the parameters D and H, by divi-
ding them by the footing breadth B. That is, they are expressed as the
dimensionless parameters D/B and H/B respectively. Since only shallow
footings were considered, analyses were carried out for 0< D/B £ 1.0.

The range of H/B values tested depended on the size of the zone within
which the bearing capacity is influenced by the presence of the slope.
At large values of H/B, the failure zone extends to the ground surface
as if the slope were not present. This phenomenon is discussed further

in Section 6.3. The maximum range considered was 0 £ H/B < 3.0.

6.2 THE EQUIVALENT SLOPE

The concept of an "equivalent slope" was used by Giroud and Vo-Nhiem
to determine the bearing capacity of a footing located away from a slope
(Figure 6. 1), The procedure for determining the equivalent slope, used

in this thesis is outlined below.
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FIGURE 6.2 DETERMINATION OF THE "SIZE" OF THE FAILING DOMAIN.
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Consider Figure 6.2 which shows the case of a footing located at
the crest of a slope. The distance '%' is taken as the characteristic
length and establishes the scale of the computation. Fromsirﬁple geo-
metry, we obtain the following expressions for zy and HD respectively.

zy =% {sin<{a+¢€) sin (3u - e) +sin ecos ( Y + yu) }

cos (a+¢€) sin (2p -€¢-) Lo

and

HD =2 {1+ sin esin (Y + u) }

cos (a+ g} sin (2p- €)

Once '%' is chosen or established by the analyst, all the quantities on the
right hand side of Equations 6.1 and 6.2 are known or can be specified since,

from the geometry of Figure 6.2,¢ is ’giiren‘ by e=7n/2-a-y¢+u.

It was therefore possible to calculate zD and HD values for any combination
of § , aand H. These parameters define the 'size' of the failure domain and

the equivalent slope angle o', since o = tan > {z/(H + Hp) } (Figure 6.1).

5.3 THE CRITICAL CREST OFFSET Hc

It is now postulated that as the footing is moved further away from the
crest of the slope that is, as H is increased {(Figures 6.3a,b,c) both Zn

and HD also decrease until they become zero at some critical value HC
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(a) Footing at crest

Hp, < Hp,

VA
z.D2 < D1

r\_/l H ot Hpy . T

—£D2
\

(b) Footing at a distance H from crest

(c) Footing at a distance HC from crest

FIGURE 6.3 THE EFFECT ON THE SLIP LINE FIELD OF MOVING THE
FOOTING AWAY FROM THE SLOPE
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(Figure 6.3c). This means that when H2 HC the effect of the slope
on the bearing capacity is not non-existent. For the case of a footing
located at a distance H from the crest, where 0 <H < HC the equivalent

slope angle is defined in Figure 6.1 as

o =tan_1{ ZD/(H + HD) ) S 6.3

An estimate of the distance HC was obtained from the work of Suppiah
(1981), Suppiah considered interfering footings and developed Figure 6.4
which gives an indication of minimum spacing between footings for zero interference.
This can also be considered a measure of the "size" of the fialing domain. We can
think of the slope as "interfering" with the slip line field as long as the footing is
located at a distance from the crest which is smaller than the "size" of the failing

domain. The values of HC deduced from Suppiah's work are presented in Table 6.1.

ANGLE OF INTERNAL
FRICTION ¢ H =*
(degrees) ¢
30 1.2B
35 2,0B
40 ‘ 2,7B
45 3.5B

TABLE 6.1 ESTIMATED Hc VALUES (after Suppiah, 1981)

* It should be noted that edge to edge spacing is used in this thesis while Suppiah

used centre to centre spacing for his parameter S.
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6.4 DEFINITION OF THE FAILURE ZONE FOR 0 <H < HC

The manner in which Zn and HD reduces to zero as H/B varies from
zexo to HC /B is not known precisely. However, intuition suggests that
the slope effect would be greater near to the slope, and would reduce as
the distance from the slope increases. That is, the rate at which Z, de-
creases as H/B increases would be slow at first, but would increase as
H/B increases. However, at this time, there is no definite observational
nor scientific basis for modelling the way in which Zp varies., At this
stage therefore, it is considered satisfactory to assume simply a linear
relationship between 2D and H/B. Using the values of Zp calculated

from Equation 6.1 and the HC /B values from Table 6.1, curves showing

the relationship between z_ and H/B for various values of ¢ and o have

D

been prepared. These are shown on Figure 6.5,

1t is also reasonable to assume that as H/B increases from 0 to HC, that
is, ag the footing is moved away from the crest of the slope, the elastic
wedge changes from the asymmetrical shape developed in Chapter 4, to a
symmetrical ¢ wedge for a footing on level ground as utilised by Graham
and Stuart (1971), Since there is no observational evidence currently avail-

able. it is again assumed that the parameters defining the geometry of the
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the wedge, that is, W and XQ/‘Xr vary linearly as H/B varies from

0 to Hc‘ Graphical representation of the linear plots is shown on Figure
6.6. These figures were used to obtain intermediate values of XQ/Xr for
use in the subsequent analyses.

6.5 PARAMETRIC STUDY AND RESULTS

6.5.1 Surface Footings

For this case, the triangular surcharge on the equivalent free surface
O'C (Figure 6.7.) was treated as an equivalent uniformly distributed sur-
charge. Fromthe geometry, the equivalent uniformly distributed surcharge

is given by

Using the subroutine EDGPA3 (Chapter 5) which computes the slipline
field in the region between the equivalent free surface and the edge of the
passive zone, and the main program, the entire slipline field was calculated
for various values of H/B, o and ¢. The maximum value of H/B for a
given ¢, corresponds to that obtained from Table 6.1. ¢ values were from

Q
30°to 45 and o values from 10 to {¢ - 5)°.

6.5.2 Shallow Footings

For each value of ¢ and o and specified values of H/B, the values of Zn and

HD were determined from Equations 6.1 and 8.2 respectively, and the equivalent

slope angle calculated from Equation 6. 3.
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In order to set the scale of the failure domain and to simplfy the programming,
the set back from the crest of the slope to the edge of the footing (H) was set
to be equal to 1.0. The distance H + Hpy was then expressed as n. (Figure
6.8). The value of n = 1.0 corresponds to the case of a footing at the point of
"zero slope interference". Larger values of 'n' correspond to moving the foot-
ing further towards the crest of the slope. Based on the problem geometry
(Figure 6.1 and 6.8), it was possible to determine values of n for the range
of ¢, aand H/B values being considered. For a given ¢ 'n' was found to
vary over a very narrow range for different values of ¢ as indicated on Figure 6.9,

that is, 'n' was not very sensitive to changes in a, for a given ¢. A plot of the average
value of 'n' against H/B for ¢ = 45° is shown on Figure 6.9. The parameter 'n' being a
ratio of distances and therefore a dimensionless quantity was found to be more useful

than having to specify values of HC, Zp and H in the analyses.

The next step in the analysis involves computing the stresses on the equiv-
alent free surface O'C. The vertical stress at any point O'C is equal to Ydi.
(Figure 6.1). The value of ¢ and ¥ on O'C can therefore be determined from

the Mohr's circle (Figure 6.10). These parameters are as follows -
)
o= v

1+sin ¢ cos 2y

and,

29 = - e—sin_l(sine/sinm R Y
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FIGURE 6.10 MOHR'S CIRCLE FOR STRESSES ON EQUIVALENT
FREE SURFACE.
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FIGURE 6. 11 TYPICAL SLIP LINE FIELD IN THE REGION BETWEEN
EQUIVALENT SLOPE AND PASSIVE ZONE.
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The stress on O'C and the slip line field in the region between the equiv-
alent free surface and the edge of the passive zone was then computed using
the subroutine EDCPA2, This subroutine also computes the slip line field

in the region between the equivalent surface and the edge of the passive zone.
A typical result of the slip line field is shown on Figure 6.11. The main
program was then used to compute the bearing capacity factor and the re-
mainder of the slip line field., This analysis also yields a value for the

footing width B,

Different embedment depths were then simulated by adding an artifical
surcharge which was a known multiple of B, (that is 0.25B, 0.50B, 0.75B,
and 1.0B) to the ground surface. The stresses on O'C were in this case computed

by adding the true triangular surcharge to the artificial surcharge.

Values of NY q were calculated for ¢ = 30° to 45°, a = 10 to (¢-5) degrees and
D/B = 0.0 to 1.0. The range of H/B values analysed depends on ¢ and are shown on

Table 6.1.

The results are presented in the form of graphs of NYq vs o and are

shown on Figures 6.11 to 6.18.
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CHAPTER 7

COMPARISON OF RESULTS WITH OTHER THEORIES
AND LARGE SCALE TEST RESULTS

7.1 INTRODUCTION

In this Chapter the results developed in this thesis and presented in Chapters 5
and 6 are compared with those from the existing available theories, and with available
large scale test results. The large scale test results consist of work done by the Geo-
technical Group at the University of Ottawa in 1877 and 1978. Teste;. were done in a
box 15.0 m long 2.0 m wide and 2.2 m high. Footing sizes were 0.3 m and 0.6 m wide.

All tests were done for a slope angle of 26.5 degrees.

7.2 COMPARISON OF RESULTS WITH EXISTING THEORIES

As noted in Chapter 2, most of the existing theories consider only the
case of a surface footing at the crest of a slope. This condition is therefore
used as the basis for the subsequent comparisons. The comparisons are

made for a ¢ of 40 degrees and are shown graphically on Figure 7.1.

Figure 7.1 shows that for the location considered, in general, the Author's results
for NYq are higher than those from most of the other existing theories which cover
a large range of NYq values. Because of the limitations outlined in Chapter 2 and
the significant scatter indicated in Figure 7.1, no further comparison with theoretical
results is considered herein. The remainder of the Chapter is concerned with compar-
ison between the Author's results and the results of large scale testing (Shields et

al., 1977).
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7.3 COMPARISON OF RESULTS WITH LARGE SCALE TEST RESULTS

The method of presentation of NYQ values first proposed by Shields et al., 1977

and shown in Figures 7.2 and 7.3 is used as the basis for comparison of the results.

Figure 7.2 compares the NYq values computed by the Author with the NYq values

obtained by Shields et al. for compact sand (¢ triaxial = 37°). The theoretical values

for ¢ = 37° have been interpolated between the values of 4 = 35° and ¢ = 40° presented

earlier.

The Figure shows that for any given depth, the N q values obtained by the Author
Y
are higher than those obtained by Shields. A more detailed comparison is made in
Table 7.1. This Table represents the case of compact sand with the following proper-

ties as indicated by Shields et al.

¢ triaxial = 37°
¢ triaxial + 10% = 410
¢ plane strain = 45°
¢ shear box = 45°

Table 7.1 indicates that there is reasonable agreement between the theoretical
and experimental results for ¢ equal to the triaxial value. That is, (NYq -theoretical)
/(N va -experimental) varies from 1.20 to 1.35. For ¢ equal to ¢ triaxial plus 10%,

(a common approximate method for converting from triaxial ¢ to plane strain¢),

the ratio varies from 2.61 to 3.33.

148.
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Table 7.2 presents comparisons for a dense sand with the following properties;

¢ triaxial =41°
¢ triaxial + 10% = 450°
¢ plane strain = 48°
¢ shear box = 50°

Again it is found that good agreement between the theoretical and experimental
values is obtained for ¢ = ¢ triaxial. The value of the ratio (NYq~theoretical)/
(NY ~experimental) ranges from 0.64 to 1.30. If the plane strain value is used, the

ratio ranges from 1.40 to 2.50.

Although the plane strain 9& would normally be expected to yield theoretical bear-
ing capacity values which agree more closely with the experimental values, (Graham
and Stuart, 1971), this is not the case for the theory presented here. Use of the plane

strain ¢ -~angle would seriously overestimate the bearing capacity.

151.
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H/8B D/B N (1)| N AUTHOR (2)/(1)}(3)/7(1)
Y4 14
SHIELDS | 9=379(2) ¢=41°(3)

0.0 0.0 24 29 64 1.21 | 2.67
0.0 0.5 45 58 140 1.29 | 3.1
0. 1.0 70 84 176 1.20 | 2.5
0.0

1.0 0.0 30 48 100 1.60 | 3.33
1.0 0.5 55 74 148 .35 | 2.69
1.0 1.0 75 100 196 1.33 | 2.61

TABLE 7.1

COMPARISON OF RESULTS -

COMPACT SAND.
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H/B D/8B Nyg (1] Nyg AUTHOR (2)/(1)) (3)/(1)
SHIELDS |9 =410 |o =45°
0.0 0.0 100 64 140 0.64 1.40
0.0 0.5 120 140 300 1.16 2.50
0.0 1.0 150 176 320 1.17 2.13
1.0 0.0 120 100 200 0.83 1.67
1.0 0.5 150 148 300 0.98 2.00
1.0 1.0 180 196 380 1.09 2.1
2.0 0.0 150 148 260 0.98 1.73
2.0 0.5 175 208 350 1.19 2.00
2.0 1.0 200 260 450 1.30 2.25

TABLE 7.2 COMPARISON OF KESULTS - DENSE SAND
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CHAPTER 8§

CONCLUSIONS AND FURTHER RESEARCH

8.1 CONCLUSIONS

Bearing capacity coefficients N q have been calculated for footings at close prox-
imity to a slope. The results are presented in the form of graphs of NY q vsa for ¢
angles ranging from 30 to 45°, 0.0 < D/B < 1.0 and H/B values from 0 to 3.0B, (Figures
5.2, 5.3 and 6.11 to 6.17). The results agree within 64-160% (average 115%), with
experimental values of NYq when the triaxial value of ¢ is used. Calculation of NYq

using stress characteristics required an estimation of the shape of the trapped elastic

wedge beneath the footing. This shape was modelled in the analysis.

8.2 FURTHER RESEARCH

It is well known that the value of ¢ varies with stress level because of the curva-
ture of the Mohr envelope. This thesis takes no account of varying stress levels in the
failing domain that is, a constant ¢ analysis was done. The solution could be improved

by carrying out a variable-¢ analysis (Graham and Hovan 1986).

The effect of scale (footing size) on the bearing capacity factor if considered in
the analysis could also further refine and improve the results. This would then need
model tests using a centrifuge, and work of this type is currently projected at the
Laboratoire Centrale des Ponts et Chaussees, France. It would also need additional

laboratory testing to characterize the sand in the way used in the analysis.

The proposed model for determination of the shape of the trapped elastic wedge
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needs to be confirmed by a comprehensive programme of testing, preferably large
scale testing. In addition, further confidence in the theory may be established by
a programme of experimental work to determine the NYq values for various combina-

tions of ¢ anda.
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APPENDIX 1.

LISTING OF COMPUTER PROGRAM



X(I,1)aX({W,W}*(BHE/D.0)

801 802 CONTINUE 1030.
. [4 1031,
802 DO 803 I:H1,10 1032,
803 2(1,1)}c(X(T1,I)sTANEP)-([{ENN-1.)/(H-2))*xTAN(ALPHA)=(1-H}) 1033,
1 +(2(10,10}) 1034 162
804 303 CONTINUE to3s . .
c 10386.
805 FIRPSI=PI-EPSILO-ARSIN{SIN{EPSILOD)/SIN{PHI}) 1037.
8o COSPSI=COS{FIRPSI) 1038.
807 DD 304 1:1,10 1039.
(11 SIGMA(I,1)=2{1,1)/(1.4{SNPHI1=COSPSI)) 1040.
C23456788 1041 .
809 8oa CONTINUE 1082.
c 1043 .
810 DD 811 1z2,H 1044.
811 2{1,1)=2(1,1)-{2(1,1)) 1045.
€23455788 1046.
812 811 CONTINUE 1047.
c 1048 .
3 1048.
813 DO 890 I:H1,9 1050.
814 Z(1,1)22(1,1)4(X{3,1)-X(H,B))*TAN(ALPHA)-(2(10,10)]} 1051,
815 gso CONTINUE 1052,
3 1083 .
816 z(1,1):0.0 1054 .
817 2(10,10)=(ENN-1.0)eTAN[ALPHA) 1055 .
c 1056.
C23456788 1057.
818 DO 807 I:1,10 1058.
818 PSI{1,1})=FIRPSI/2. 1058 .
820 807 CONTINUE 1060.
821 DD 806 J:=1,9 1061 .
822 w2:10-4 1062.
823 DO 305 I:1,W2 10683 .
c 1064 .
824 XtsX(I+d-1,1) 1065 .
825 X2eX(I+J,141) 1066.
[+ 1067.
826 SIGMA1:SIGMA(I+4J~1,1) 1068 .
827 SIGMAZ:SIGMA(I+J,141) 1068.
c 1070.
828 Z122{1+44-1,1) 1071.
828 22:2(144,141) 1072.
c 1073.
830 PSI1=PSI{I+J-1,1} 1074.
831 PS12:PSTI(1+d,1+1} 1075,
832 Ez1 1076.
c 1077.
833 CALL HUPT 1078.
c 1079.
834 X{I+d,3)exx 1080.
83s Z({1+d,1)z22 1081.
836 SIGMA{I+4J,1):=S1IMA 1082.
837 PSI(1+J,1):=PSSY 1083 .
€2385678 1084 .
838 8os CONTINUE 1085 .
839 8os CONTINUE 1086 .
c 1087.
830 PRINT 100 1088 .
841 100 FORMAY( *1°, ////// 10X, BOUNDARY OF THE PASSIVE 20NE’) 1088 .
842 PRINY 200 1090,
843 200 FORMAT(/// 14X,°X’,11X,*2’,10X,*SIGMA’, 14X, "PST* ) 1091.
c 1082,
aaa Do 808 1:1,10 1093,
8as caiLl RESOUT(I,1) 1084 .
84s soe CONTINUE 1085,
c 1006
8a7 PRINT 200 1087
[4 1088
sas DO 809 J=2,10 1099
849 PRINT 16,4 t100
C23456788 1101
850 16 FORMAT{//4X, "RADIAL ND’, 2X,13) 1102
851 Do 810 Izd, 10 1103
852 PRINT 15,X(1,0),2(1,J),SIGMA(I,J),PSI(1,J]) 1104
853 15 FORMAT(4X,F6.3,5X,F6.3,8X,F8.3,4X,F8.3) 1108
854 810 CONTINUE 1106
855 8os CONTINUE 1107
£23455789 1108
856 898 CONTINUE 1108
8857 RETURN 1110
852 END 1111,
4 1112,
€ 1113,
c 1114,
858 SUBROUTINE EDGPA3 1116,
c 1116.
c 1117,
c 1118,
¢ 1119,
EY-1) REAL PMI,EPSILO,ALPHA,FIRPSI, COSPSI 1120,
861 COMMDN PHI,BETA,DELTA,TOL,CONVG,SIZE,ALPHA,EPSILD 1121,
862 INTEGER H,E 1122,
as3 COMMON L ,K,C 1123,
864 REAL M 1124,
865 REAL XX,22,SIMA,PSSI,PHHI 11285,
868 COMMON /TATA/ X1,X2,XX,21,22,22,PHHI 1126.
867 COMMDN /TITI/ SIGMA1,SIGMA2,SIMA 1127,
(11 COMMON /TETE/ PSI11,PS12,PSSI 1128.
888 COMMON /TOTO/ PI,SNPHI, CSPHI 1129,
870 COMMON /DUI/ PP,QG,CONTRO 1130,
a7t INTEGER PP,Q0Q 1131
872 REAL MU 1132
873 COMMON MU,PHIP, PHIT 1133
874 REAL X{40,40),2(40,480),SIGMA{40,40),PS1{40,40) 1134
875 COMMON /LALA/ X,2,SIGMA,PSI 1135
876 INTEGER W, H1,W2,1,J 1136
877 INTEGER P(40),0(80) 1137
a7s COMMON /LOLD/ P,Q 1138
878 COMMON /NEW/ CSPSI,HOR,ANG 1139,
8so REAL DIF,DI,TNPHI,HD,HEQUIV,HPRIME 1180,
831 COMMON NPSI,E, HD 1141,
8a2 COMMON /KAYD/ BED,HEQUIV,BDILES,HPRIME,GEL 1182,
c 1143,
883 IF{BED .GT. ©) GO TO 767 1144,
884 SHE50.0 1146,
885 HD240.0 1148
aes HEQUIV*HD* (TAN(ALPHA) )= (1.~HD/(SHE*2.0)) 1147,
887 HPRIMEsHEQUIV 1188,
£23a88788 1149,
sss 767 CONTINUE 1180.
c 1161,
888 DO 71 Ir1,10 . 1182,
880 2{1,1}sHEQUIY 1163.
8s1 71 CORTINUE 1168
[ : 1166
882 X(t,5)z0.0 11686,
c 1157,
883 00 '72 112,10 1158.
854 Wel-y 1189.
898 1180,



€234567889 1161.

896 72 CONTINUE 1162.
c 1163.

ae7 FIRPSI:PI-ALPHA-ARSIN{SIN{ALPHA)/SIN(PHI)) 1164 .
X33 CSPSI1:COS(FIRPSI) 1165.
ses 0o 73 I=1,10 1166,
800 SIGMA(I,I1)=2(1,1}/(1.4(SNPHI=CSPST)]) 11867.
€23456788 1168.

901 73 CONTINUE 1169.
[ 1170
€23456789 1171

802 DO 74 Izx1,10 1172
803 PSI(1,3)=FIRPSI/2. 1173
04 74 CONTINUE 1174
c 1175

805 z(1,1):0.0 1178
c . 1177

806 Do 75 1s1,10 1178
807 Z(1,1)=X(1,1)*TAN{ALPHA) 1178
808 75 CONTINUE 1180
9808 £:1 1181
10 DO 76 Jr1,9 1182
811 w2:to-u 1183
812 DO 77 lc3,W2 1184
[+ 1188

913 XteX(I+J-1,1) t188
914 X2:X{I+d,1+1) 1187
. c 1188
. 918 SIGMA1ESIGMA(I+d-1,1) 1188
816 SIGMA2:SIGMA(I+d, 1414} 1180
c 1181

817 21:Z2(1+9-1,1) ttg2
818 22:2(1+d,1+1) 1183
c 1194

ERE ] PSIT+PSI(I+d-1,1) 1185
920 PSI2:PSI{I+J, 141) 1186
c 1167

821 CALL NUPT 1198
c 1188

822 X(I40,1)=2xX 1200
823 2(1+J,1)=22 1201
824 SIGMA{I+J,1)=SIMA 1202
925 PSI(I+4J,1)=PSSI 1203
: c23458678 1204
£23458678 1208

926 77 CONTINUE 1208
927 76 CONTINUE 1207
c 1208

928 PRINT 100 1208
£23456788 1210

829 to0 FORMAT{ 1‘,////// 10X, BOUNDARY OF THE PASSIVE ZONE') 1211
830 PRINT 200 1212
831 200 FORMAT(/// 14X,°X’,11X,*2° 10X, *SIGMA’, 14X, 'PSI’) 1213
c 12148

f932 0O 78 Is1,10 1215
913 CALL RESOUT(I,1) 1216
c€2345678 1217

934 78 CONTINUE 1218
[ 1218

935 PRINT 200 1220
c 1221

93¢ DO 78 J=2,10 1222
837 PRINT 16,4J 1223
€23356788 1224

e3s 16 FORMAT(//4X, RADIAL NO‘, 2X,13} 1225
83s 0O 80 1:J,10 1226
sa0 PRINT 15, X{I,4),2(1,J4),SIGMA(1,J),PS1(1,J} 1227.
(941 15 FORMAT{4X ,F6.3,56X,F6.3,5X,F8.3,4X,F8.3) 1228.
1228 .

842 80 CONTINUE 1230.
843 79 CONTINUE 1231,
€234667889 1232,

saa 898 CONTINUE 1233,
84s RETURN 1234,
848 END 1235.
c 1236.

c 1237.
CEESREXXETXTESLREITIE TS IXLAREISA LSRN E AL L IR TN LR R SIEI XXX EIE XXX XXX BERS RN X 1238 .

c 1239,

c INPUT DATA IS LISTED AS FOLLOWS 1240,

c PHI,DELTA,BETA,TOL,CONVEG,SIZE,ALPHA 1241,

c CONTROL 1242.

4 L,K 1243,

[ 1244 .

c 1245,

c 1246.

CRR RIS E AR R E SR AN EES YR AR ETNS DN EBCRUIRCIIFINEOIFRIRBESODS 1247,

c 1288,
SENTRY 1248 .



200
261

202

203
204

205

*EXTENSION®

208
207
208
208
210

211

212
213
214
218

216

217
218
218
220
221

SEXTENSIONx

222
223
224
22%

228
227

228
229

*EXTENSION®

e(I)= Qo

250 CONTIRUE
c
117 IF(H LT, L} GD TO 3
RAD1=RAD+L-2
PRINT,RAD1
c
£23456788

onrnOn nn

IF{BED .EQ. O) THEN DD
DTHER COMPILERS MAY NOY A
GEL=0.2
ELSE
GO 7D 878
END IF
8978 CONTINUE

CALL NGAMA{RAD)

DIF:{SIGMA{L,RAD1)-1
DIF:*DIF/SIGMA{L,RAD1
DIF:=ABS(DIF)

PRINT 200, SIGMA{L,R

C234567

(o N )

200 FORMATU////////20X, '%=s%

//720x%,
//720x,
//720x%,
/720x%x,
//720X%,

NHWN -

BED=BED+
Z{1,1)=BDILES*BED/4&
Z{10,10}=2(1,1)
GEL:2{1,1)

IF{BED .LE. &) THEN

OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DO CASE, STRUCTURED LOOP, OR REMOTE BLOCK STATEMENTS

Ge TO 888
ELSE
GO TO 888
END 1IF
£23456788
889 CONTINKUE
c
c
ME:5

IF{ME .EQ. 5) GO TO
IF(DIF .GT. CONVG) T

OTHER COMPILERS MAY NDT ALLOW IF-THEN-ELSE, DO CASE, STRUCTURED LOOP, DR REMDTE BLOCK STATEMENTS

o0

LLOW IF-THEN-ELSE, DD CASE, STRUCTURED LOOP,

O2SIGMA(2,RAD))
)

AD1) ,SIGMA[2,RAD),DIF,CONVG

EXCTEEELBAEASE LS LA EZAERLLNET *

‘w SIGMA{L,RAD+L-2):’ ,F12.5," ®~,
‘e SIGMA({2,RAD)=',F12.86, s,
‘x DIF:z’,FB.5, ' =,
‘e CONVG=‘ ,F8.5,°* =,

TEXE AT IICTIICIECEEIIITISSRTIIIIRSTEE )

777
HEN

262.
283 .
264.
2E5 .
2686 .
267,

267.1
267.11%

267,

267,
2B87.
2867.
287.
287.
267.
268.
289.
289,
288,
288,
270.
271.
272.
273.
274.
275.
2786.
277.
278.
279 .
280.
281.
282.
283.
284.
284 .
284.

287.
288.
289.
280,
291.
282,
29821,
284.
285.

12

OR REMOTE BLOCK STATEMENTS
267.1

1
2

163.

230 2{2,1)=:2{2,1}+-X(2,1)*TAN(EPSILD)
231 NPS1zPI1-EPSILO-{ARSIN{SINIEPSILO)/SIN(PHI))) 298.
232 CSPSI:COS{NPSI) 298
233 DO 80O I:=2,L . 300.
234 SIGMALT,1}=(2(1,1)-(X(I,1)sTAN(EPSILO)}-(2(2,1)))/{1.+{SNPHI 301.
1 *COS(PSI(1,1))1} 302.
2385 SIGMA{I,1)sSIGMA{I,1)+(SIGMA(L,1)/10.0) 3013.
238 SIGMA(]I,1)zSIGMA(T,1)}+{SIGMA(L,1)/%0.0} 304.
237 500 CONTINUE 30s5.
238 2(2,1)=22(2,1)+X(2,1)}*TAN(EPSILO) 306.
2338 KS:=K+5P1 307.
240 DO 510 J=2,KS 308.
2861 X{2,d)= (X{L,W+Jd})/10.0 308.
282 2{2,4): {Z{L,W+J))/10.0 310
243 SIGMA{2,d): (SIGMA(L,W+J))/10.0 311
244 PSI{2,J}:sPSI(L,Wed) 312
245 s10 CONTINUE 313
2486 PRINT 22,C 314
247 PRINT 27,X(2,RAD),2{2,RAD},SIGMA(2,RAD),PSI{2,RAD) 318
248 27 FORMAT(////10X,*X{2,RAD} =’ ,FE.2, 318
£2345678 317
1 //10% ,*2{2,RAD) =’ ,F5.2, 318
2 //10x ,'SIGMA(2,RAD) =" ,F12.8, 318
a /710X% L,'PSI{2,RAD)=’ F12.8//) 320
c 321
249 PRINT 30,C 322
250 30 FORMAT{ ‘1’ ,//////14%, *RESULTS OF FIRST SPIRAL AFTER ‘,13, 323
1 * SCALE REDUCTION’) 324
251 PRINT 18 328
c 328
252 DO 415 Jr1,RAD 327
253 CALL RESOUT(2,J) 328
254 418 CONTINUE 329
258 Go TO as0 330
c 331.
c 332.
258 ELSE 323
257 S0 TO 222 334
288 END IF 335
288 222 PRINT 333 335
260 333 FORMAT(1,//////20X, 3223522300000 2cRILLSSERIBERS 237
1 /20X, ‘% ®‘, 332
2 /20X,*%s END OF FINAL COMPUTATION =°, 339.
3 /20X, ‘% ZERO SURCHARGE CASE L 380
4 /20X, ‘= REGULAR RADIAL ZONE =, 341
8 /20X, ‘= LN 342
-3 /20X, ‘xeesxsnsessssseosannssnrssexn’//) 343
2861 DO 655 Jr2,RAD : 344
262 PRINT 880,4 345.
263 PRINT 881 386
2864 880 FORMAT(////10X,°J:’,13) 347.
268 891 FORMAT (10X, *‘sssns’) 3a8
266 PRINT 19 348
287 00 665 Iz1,L 360
288 CALL RESOUT(I,J) 351
2689 [-1:1:4 CONTINUE 352
270 111 CONTINUE 353
c 354
c ass
27 DO 587 Is1,L 356,
272 PRINT 883,11 367
273 PRINT 886 368
278 893 FORMAT(“1*,////10X, 1%’ ,13) 359
275 888 FORMAT{1OX, ‘zsxssx*) 380
278 PRIKT 19 361
277 DO 868 Jr2, RAD 382
278 CALL RESOUT(I,J) 362
279 [-3:1] CONTINUE asa
280 657 CONTINUE 385.
c 3886,
281 103 PRINT 104 387.
282 104 FDRMAT{ 20X, ‘czssssssssass’) 3es.
282 PRIKT 7685 369
284 k21 FORMAT(*1’,////4BX, ‘#2502 80etseeseneenecssssEs’, 370
1 /886X, 'z 5, 37
2 /48X, = EXTRA DOMAIN CREATED =, 372
3 /48X, ‘2 BY SCALE REDUCTIONS =’ 373
4 /85X, ‘= =, 374
B /45x,'tttttlttttttttttt:tt:t:ta'//) 376 .



£23456789 376.

288 77 CONTINUE 377.
286 sSTOP 378.
287 END .378.
c 380.

381.

Rt T TR EH LA RS IR S S TR TR IR T IV SIUS BTN TSRS AFEBITER RS RITEBETSaT IB2,

288 SUBROUTINE HEADIN 383.
289 REAL PHI 384.
280 COMMON PHI,BEYTA,DELTA,TOL,CONYG,SIZE,ALPHA,EPSILO 385.
281 INTEGER L ,K,C : 3a6.
282 COMMON L,K,C 387.
283 REAL XX,2ZZ,SIMA,PSSI,PHHI 388.
284 COMMDN /TATA/ X1,X2,XX,21,22,22,PHHI 389,
285 COMMON /TITI/ SIGMA1,SIGMA2,S5IMA 380.
2886 COMMDN /TETE/ PS11,PSI2,PSS] 391,
287 COMMDN /TOTD/ PI,SNPHI,CSPHI 382.
288 INTEGER PP,QQ,CONTRO 383.
288 COMMDN /QUI/ PP,QQ,CONTRO 394.
300 REAL MU 385,
301 COMMON MU ,PHIP ,PHIT 396.
302 REAL X{40,40),2(40,40),SIGMA{40,40),PS51(80,40)} 397,
303 COMMDN /LALA/ X,2,SIGMA,PSI 398.
304 INTEGER P{40),0(40) 399,
30sS COMMDN /LOLOD/ P,Q 400,
308 COMMON HNPS],E, KD 401.
307 COMMDN /NEW/ CSPS1,HOR,ANG 402,
4 403

14 404

308 PRINT 10,PHI BEYA,DELTA,TOL,CONVG,SIZE,ALPHA ,EPSILO, ANG 408 .
309 10 FORMAT(“1°,//////171/7710%,° PHI=®’ F5.1, 406 .
1 /710X . BEYA:‘ ,F5.1, 407,

2 /710X . DELTA:’ ,F5.1, 408 .

a //710x . TOL:' ,FT.85, 409 .

4 /710% .’ CONVG:" ,F7.5, ato.

5 /710X . SI12E:’,FE.3, at,

7 //10x% . ALPHA:L’ ,FE.1 412,

1 /710% . EPSILON:’ ,F5.1, a13,

1 /710X . EPS/ALPHA=' ,FE.2) 413,

o210 RETURN 414,
3N END 415.
. 416
XSS AR AR LN I N F LT LA C TR I LA XS ST LITILRES LA AR EEERNESSXCEREEERRBGEEE 417,

[ LRE]
£23456789 418 .

T 312 SUBRCOUTINE POLCOM 420,
c a21.

c THIS SUBROUTINE COMPUTES SIGMA AND PSI FOR AlL 822.

c POINTS AT THE POLE INCLUDING THE BOUNDARY POINT 423.

4 424

313 REAL PHI 428 .
aia COMMON PHI,BETA,DELTA,TOL,CONVG,SIZE,ALPHA , EPSILD 426 .
316 INTEGER L ,K,C 827.
318 COMMON L ,K,C 828 .
317 REAL XX,2ZZ,SIMA,PSSI,PHHI 429,
318 COMMON /TATA/ X1,X2,XX,21,22,2Z,PHHI 430,
319 COMMON /TITI/ SIGMAY ,SIGMA2,SIMA 431.
320 COMMON /TEYE/ PS11,PSIZ2,PSSI 432.
321 COMMON /TOTO/ P1,SNPHI,CSPHI 433,
322 INTEGER PP,QQ,CONTRD 834,
323 COMMON /0UI/ PP,QQ,CONTRO 435,
324 REAL MU 436,
325 COMMON MU, PHIP PHIT a437.
328 REAL X{40,40),2(40,80),SI1GMA{40,40),PS1{480,480} 438.
C 327 COMMON /LALA/ X,2,SIGMA,PSI 438 .
328 INTEGER P(40),Q(40) . 440.
228 INTEGER KK,K1,I,d 441,
330 REAL PSII,PSIF,INT,FIRSIG,FINSIG,TNPHI,FINPHI 442,
331 COMMDN /LOLD/ P,Q 443,
332 COMMON NPSI,E,HD 484,
333 COMMON /NEW/ CSPSI,HOR,ANG 445,
c 448,

c 247

334 PSITsPSI(1,1) 448,
a3s MUzP1/4.-PH1/2. 449,
£2345678 450,

336 400 PSIF:MU+BETA 451 .
c 452

337 4085 INT: (PSII-PSIF)/K 453 .
338 KKeK=1 464,
338 PRINT, L33
380 PRINT, 'S 2838 XSS e S RS XXX XX R LR RESAEZS S X XL XS LEXERB RS LR 4856.
341 PRINT,® 467,
342 PRINT, * POLE COMPT < > FIRST SPIRAL:{1,4) ‘ 458 .
. 383 PRINT,® 489 .
- 343 PRINT,  °* 260,
345 PRINT 148 as1,
345 PRINT,® 462,
347 DD 350 Jr2,K 483,
348 X(1,J)sx(1,1) 464,
348 201,J)2201,1) 4885
380 TNPRI=TAN{PHI) 486 .
351 FIRSIG:EXP{ALDG(SIGMA{1,J-1))+INT=2 oTNPHI) 487,
352 SIGMA(1,J)=FIRSIG 488,
as3 PSI{1,J)=PSI{1,J-1)-INT 489,
3548 PRINT 12,X(1,4),2(1,J),5IGMA(1,4),PSI{1,4]) 470,
C234B678 471,

ass 12 PORMAT(11X ,F8.5,3X,F8.5,E16.6,3X,F8.6) 472.
k13 380 CONTINUE 473,
367 PRINT,* * 474,
358 PRINT ,‘*2 20 00C2S8R B RIS 0ELA0RNEERBBERENEBCRETXTIEBESTBERIBE 8786,
120 E S L LS EE SRR LR S ERTEBEEKERBEES OOV IRENE SISO RT S ¢ 476,

389 IF (CONTRGO .EQ. 1) GO TO &8 477.
3s0 PRINT, * 478 .
361 PRINT, ¢ SECOND SPIRAL * 478.
362 PRINY,® * 480.
383 PRINTY 18 481,
C234B68 482,

384 18 FORMAT(////17X,°X*,13X,°2°,13X,*8SIGMA’, 12X, 'PSI"‘, 483,
1 17X, P’ ,8X,°Q/} 484 .

386 PRINT,’ * 485 .
k133 84 CONTINUE 488.
387 PRINT, 487,
388 DO 365 J22,K 488.
368 X1 x{1,4} 489 .
370 21 2{1,4) 480,
371 SIGMAT: SIGMA{1,J) 491,
272 PSIT: PSI(1,4d) 492.
373 X2 X(2,d-1) 483.
374 22 Z{2,J-1) . 4948 .
378 SIGMA2: SIGMA{2,u-1) 495 .
378 PSI2: PSI(2,4-1) 4986,
377 EsO 487.
T 498

378 CALL NUPT 4988 .
c 800

378 X(2,Jd)exx 801,
380 2(2,4)e22 502,
3z SIGMA(2,J)s SIMA y BO3.

382 PSI(2,d): PSSI 804 .



$J08 WATFIV 4.
, 4 5.
- c 5.
c 7.
c MAIN PRDGRAM 8.
c 8.
£23456788 10.
1 REAL PHI 11. 164'
2 COMMON PHI ,BETA,DELTA,TOL CONVG,SIZE,ALPHA ,EPSILD 12.
3 INTEGER L ,K,C,E 13.
4 COMMON L ,K,C 14.
5 REAL XX,ZZ,SIMA,PSSI, PHHI 18,
& COMMON /TATA/ X1,X2,%XX,21,22,27,PHH] 16.
7 COMMON /TITI/ SIGMA1,SIGMA2,SIMA 17.
8 COMMON /TETE/ PSI1,PS12,PS51 18.
8 COMMON /TOTO/ PI,SNPHI CSPH] t8.
10 INTEGER PP,QQ,CONTROD 20.
11 COMMON /OUI/ PP,QQ,CONTRO 21
12 REAL MU 22,
13 COMMON MU ,PHIP,PHIT 23.
14 REAL X{40,80}),2(40,40),51GMA(40,40),PSI1{40,40) 248
15 COMMON /LALA/ X,Z,SIGMA,PSI 25
16 INTEGER SPI,RAD,W,HK,H1,KS,L1,LK,I,d,RAD? 26
17 REAL DIF,DI,TNPHI 27.
18 REAL NY,FIRSIG 28
19 INTEGER P(40)},Q(40) 28 .
20 COMMON /LotR/ P,Q 30.
21 REAL NPSI,HOR,HEQUIV,BDILES, HPRIME 31.
22 INTEGER BED 32.
23 COMMON NPSI,E,HD 33.
24 COMMON /NEW/ CSPSI ,HOR,ANG 34.
28 COMMON /KAYD/ BED,HEQUIV,BDILES,6 HPRIME,GEL 36 .
c 36.
4 37.
26 PItARCOS(-1.} 38.
27 READ,PHI,DELTA,BETA,TOL,CONVG,SI2E, ALPHA 39 .
28 EPSILO:ALPHA®0 .62 38. 1
28 ANG=EPSILO/ALPHA 38.2
30 READ,CONTRO 40 .
31 IF{CONTRO .EQ. 1} THEN DO 81,
SEXTENSION* OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DD CASE, STRUCTURED LOOP, OR REMOTE BLOCK STATEMENTS
32 PRINT 43 82.
33 83 FORMAT( 1 ,////////20X, S22 222323TE3EXXTXXZIFTTLTERBER/ 43 .
1 /20X, > z’, LY
2 /20, = CONTROL=1 =, a5 .
3 /20%, L 46.
4 /20X, *x* PARTIAL RESULTS L a7T.
5 /20X, ‘= PRINTOUT L LY
€ 20X, ‘= =, 48 .
ki /20X, SEETEESXIZREXERXIRIEBATXEIREES ' ) 50,
34 ELSE 51.
3s GO TO 44 §2.
36 END IF 53.
37 44 CONTINUE 64 .
4 56 .
t 56
38 READ,L K 57.
39 IF (ABS(BETA) .LE. 0.0001} BETAx0.0001 58.
c 589 .
c INITIALISATION 80,
c 81.
40 CALL HEADIN 62.
a1 PRINT 825 63.
42 825 FORMAT(“1°,////////7777////20%) €4.
43 PRINT, * EYRERLIFALEAEETERFENTIZXRSERERNFEERAERXERTEREER / 65 .
a4 PRINT, z = €66.
45 = THE PROGRAM COMPUTES THE FAILURE LIRES =’ 67,
48 = FOR A FOOTING AT THE TOP OF A SLOPE IN = 68 .
&7 ® COHESIONLESS SDIL. THE COMPUTATION = €8 .
as % PRESENTS A FEATURE WHICH CONSISTS OF &’ 70.
49 %  TRAPPING THE FAILURE LINES ARQOUND THE =’ 71.
50 s POLE BY IMPLEMENTING VARIOUS SCALE L 72.
51 * REDUCTIONS WITH A DIMINISHING SURCHARGE =’ 73. -
52 %= EFFECT. ®’ 74.
53 EREEFXIEIXLAB NN IB XSRS EZLRIREBDGINBERNBRBIEBR T/ 75.
<
c
54 Licgo
1:3:1 DO 3 I=1,L1
56 P(i)=0
57 Qf1)s0
BB 3 CONTINUE
1:3:] PHIsPHI*P1/180.
€0 BETA:r BETAsPI/180.
81 DELTA: DELTAsPI/180.
62 ALPHAXALPHASPI /180,
€3 EPSILOZEPSILO®PI/180.
64 CSPHI=COS{PHI)
85 SNPHIESINI{PHI}
1] TNPHIZTAN{PHI)
c
c
87 BEDzO
C23456789
68 888 CONTINUE
4
88 CALL EDGPA2
[+
c
70 Liz&0
kAl LKs4o0
c
4
72 Do 1 I=v,10
73 DO 2 Js2,LK
74 X{1i,d)s0.0
78 z{1,4)50.0
78 sIGMa{I,J)z0.0 107
17 PsSI(I,Jd)r0.0 108
€23458789 108.
78 2 CONTINUE t10.
78 1 CONTINUE 111,
ao DO 601 I=11,L1 112,
81 DO 602 J=1,LK 113
g2 X(I1,d)s0.0 114
83 Z{1,J)s0.0 1186
84 SIGMA{I,J)s0.0 118,
85 Psiii,J)=0.0 ¥17.
£23456789 118
86 8o2 CONTINUE 110
87 go1 CONTINUE 120.
c 121
88 c=1 122
c 123
a9 CALL POLCOM 124
c 126
80 SPIsL-1 128
c 127
c FIRST TIME COMPUTATION 128
c 129
c 130
21 [41.] 131



o127

82 480 CsC+1 132,

83 PRINT 22,C 133,
94 22 FORMATI(“1°,////25X, ‘%2322 230t %2R EXIXRIEBRSIBIEBBEE 1324 .
1 /28X, ‘= . 135,
2 /25X,“* SCALE ITERATION Cs’,13,° s, 136.
3 /25%, ‘= 5, 137.
4 /25X,’% REGULAR DOMAIN s, 138.
s /28%,°’= 5, 139.
[ /25X, %258 REEXRECRCTTL BTG TESHER BB TZRAR Y ) 140.
98 IF( C.EQ.% } THEN DO 141.
TENSIONs OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DO CASE, STRUCTURED LOOP, OR REMOTE BLOCK STATEMENTS
133 RADzK+1 142,
87 wzo 183.
o8 ELSE DO 184.
88 RADEK*SPI 145,
100 WeSPI-1 146.
101 END IF 187,
102 00 100 Jr1,RAD 188
103 IF(CONTRD .EQ. 1) GO YO &3 149.
104 PRINT, "’ °* 150,
105 PRINT, * * 161,
106 PRINT, "’ °* 152.
107 PRINT 41,4 153.
108 PRINT 38§ 154.
109 38 FORMAT{10X,’' =zzsxs‘) 185,
110 41 FORMAT{10OX,‘ Jr’,13) 166.
111 PRINT 192 167.
C23456789 158.
112 18 FORMAT(// 17X,°X*,13X,°2’,13X,’°SIGMA’, 11X, *PSI" 159.
L1BX, P’ 4%, Q" , /) 160,
113 53 CONTINUE 181,
[ 182.
114 IF(J .EQ. 1) GO TO SO 163.
115 DO 75 1:3,1 168.
118 X1 X{I-1,J) 165.
117 Z1e 2{I-1,J) 166.
118 SIGMATISIGMA(I-1,4) 167.
119 PSIt*PSI(I-1,d) 168.
120 X2 X{I,d-1) 169 .
121 . 228 Z(1,9-1) 170.
122 £ SICMA2:SIGMA{L,J~1) 171,
123 PS12sPSI(I,d-1} 172.
124 Ez0 173.
c 174.
c 175.
125 CALL NUPT 176.
c 177.
128 X{1,d)= XX 178.
2{(1,d4)= 22 178.
‘128 SIGMA{I,Jd)r SIMA 180.
128 PSI{Y,J)sPSSI 181.
130 P{1): PP 182.
131 Q{1)= Q¢ 183.
132 15 CONTINUE 184 .
133 80 GO TO St 185.
134 51 IF(CONTRO .EQ. 1) GO TO 100 186.
138 IF(J.EQ.1) THEN

TENSION* OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DO CASE, STRUCTURED LODP, OR REMOTE BLOCK STATEMENTS
138 PRINT 18

137 DO 80 1Ix2,L 188.
138 CALL RESOUT{I,?!) 180.
139 80 CONTINUE 181,
180 ELSE 182,
141 GD TO0 100 183,
142 END IF 184 .
143 100 CONTINUE 185 .
c 196 .
< END OF REGULAR RADIAL 2ONE COMPUTATION 187 .
4 198 .
144 IF{CONTRO .EQ. 1}GD 7D 67 198 .
145 PRINT, * 200.
146 PRINT,* * 201.
147 PRINT,’ * 202,
148 PRINT 285 203 .
148 25 FORMAT( 11X, RADIAL ZONE COMPUTATION COMPLETED’) 204a.
150 PRINT 26 205.
151 26 FORMAYT{ 11X, ' * 5 ss2ass22sXX2LXIXXLCXRARRIRES ') 206.
152 PRINT 678 207.
163 678 FORMAT{‘tV‘,////25%X,’ COMPUTATION OF THE EXTRA DOMAIN', 208.
1 J/2BX,’ BRI EXRTEEREIETTEIETRLXASERRESE ) 208.
154 67 CONTINUE 210.
1685 H=2 211,
156 JezRAD 212.
187 300 HzH+i 213,
188 SrJd+ 214.
1889 KizH+1 2186.
. 1680 IF{CONTRD .EQ. 1) GO TO 68 216.
c181 PRINT, *© ° 217.
162 PRINT,* ¢ 218.
163 PRINT, " * 219,
164 PRINT 47,J,.H 220,
185 47 FORMAT[(10X,’Jz2’,13,6X, FIRST SPIRALs’,I3) 221.
186 PRINT 59 222.
167 58 FORMAT{ 10X, ’'sxzzs’ EX, '28RESRE8sessEeR’) 223.
188 PRINT 18 224,
169 88 CONTINUE 226,
c 228
170 X1=X(H~1,4-1) 227.
171 Z1sZ(H-1,J-1) 228.
172 SIGMA1:*SIGMA(H-1,d-1) . 229.
173 PSIt=PSI(H-1,J-1) 230.
174 X2eX(#H,d-1) 231,
176 22:82(H,d-1) 232.
1786 PSI2sPSI(H,J-1} 233,
177 SIGMA2:SIGMA(H,J-1) 234,
c 235
178 CALL ENDPTYT 236 .
c 237,
178 X{H,d)sxx . 238,
180 2(#,d)=22 238.
181 SIGMA(H,J)sSIMA 240.
182 PSI(H,J)=PSS] 261, .
c 242
183 IF{H1 .GT. L) GO TO 117 243,
184 DO 250 IszH1,L 244.
185 X1 X(1-1,4d) 285,
188 21 2(1-1,4) 248,
187 S1GMAts SIGMA(I-1,J) 247. .
128 PSI1s PSI(I-1,4) 248.
189 X2x X(1,d-1) 249 .
100 22 2(1,d-1) 2B60.
181 SI1GMA2: SIGMA(I,J-1) 261.
te2 PS12: PSI{I,Jd-1) 252.
183 Ex0 253 .
c 254
184 CALL NUPT 2565 .
c . 286 .
188 x{1,Jd}= %X 287.
198 Z(1,J}222 258.
187 SIGMA(1,J): SIMA 259.
108 PSI(I,J): PSS 280,

188 P{I)e PP 281.



c SOIL MASS 635,
4 . £36.
c 837.
180 REAL PHI 638 .
181 COMMON PHI,BETA, DELTA,TOL,CONVG, SIZE, ALPHA,EPSILO 639. 1(35_
182 INTEGER L,K,C 840.
193 COMMON L ,K,C 641,
384 REAL XX,22Z,SIMA,PSSI, PHHI 642,
395 COMMON /TATA/ X1,X2,XX,21,22,22,PHHI 643,
%96 COMMON /T1TI/ SIGMA1,SIGMA2,SIMA 844,
897 COMMON /TETE/ PS11, PSI12,PSSI 645,
LT COMMON /TOT0/ PI, SHPHI, CSPHI €46.
a89 INTEGER PP, QO, CODNTRO 847.
500 COMMON /DU!/ PP,QQ,CONTRO 648 .
EO1 REAL MU 648 .
502 COMMON MU,PHIP ,PHIT 65O .
503 REAL X{40,40),2{40,40),5S1GMA[40,40),PSI{40,40]) 651.
504 COMMON /LALA/ X,2,SIGMA,PSI 652.
508 INTEGER P{40},Q(40) 653.
506 REAL ENDPSI 854.
507 REAL 2IGMAZ2,PZ12,SUM2,DIFF2,CSSUM2 §55.
so8 REAL B,XI,F,U,PHHHI 656 .
5089 INTEGER 1,J §57.
510 COMMON /LOLD/ P,Q 658.
511 COMMON NPSI,E, HD 658 .
512 COMMON /NEW/ CSPSI,HOR,ANG 6E60.
: c 661
513 PPz 1 662 .
514 QQ:=1 663,
515 SIMAF{SIGMA1+SIGMAZ) /2. 564 .
516 301 ENDPSIEMU+BETA 865.
517 305 PSSI=ENDPSI 666 .
518 302 ZIGMA2:(SIGMA1+S1IGMA2)/2. 667.
518 P2312:={PSSI+PSI2)/2. 668 .
520 SUM2:SIN(PZI2+MU) 668 .
521 DIFF2:=SIN{PZI2-MU) 670,
522 CSSUM2:COS{PZI2+MU) 671,
523 Be-1.®(DIFF2}/{2.+21GMA2xSNPHI*CSSUM2) €72.
524 IF{ABS(BETA) .LYT. ©0.0001) BETA:0.0001 §73.
. 525 22:21sTAN(BETA)-X1-22*SUM2/CSSUM2+4X2 674.
. '828 22:2Z/(TAN(BETA)}- {SUM2/CSSUM2)) 575.
© 527 XI1:ALOG{SIGMA2} /(2. ¢TAN(PHI))+PSI2+B*(22-22) 876 .
528 FtEXP(2.*TAN(PHI)*(XI-PSSI)) 877.
‘529 UsABS((F-SIMA)/F) 678,
€ 678
530 1IF {U .LE. TOL) GO TO 303 680.
- c 681.
..531 SIMAEF 682,
832 PPPP+1 683.
c 684.
513 IF(PP-100) 302,302,303 685 .
2345678 686.
634 303 XX:X14(22-21)¢TAN[BETA) 687.
535 IF (CONTRO .EQ. 1) &8 TO 26 688 .
536 PRINT 13, XX,22,SIMA,PSS1,PP,QQ 6889 .
537 13 FORMAT{t11X,F12.8,3X,F12.8,3X,E15.6,3X,F12.8,8X,14,1X,14) 890,
538 PRINT 306 691.
639 306 FORMAT{"+‘,* €692,
1 893.
2 BOUNDARY') 694 .
540 286 CONTINUE 685 .
541 RETURN 6886,
542 END 657,
c 688 .
ctllltt(lllttlllltlllttlt'I‘ttllltlllttt‘tlIltttl'lxtll!'x‘ttll“!ll 699 .
c . 700.
543 SUBROUTINE EDGEPA 701.
; c 702
c 703,
c THIS SUBROUTINE COMPUTES SIGMA FOR EACH SPECIFIED POINT 704 .
c AT THE EDGE OF THE RECTILINEAR PASSIVE 20NE 705.
c 706
544 REAL PHI 707.
545 COMMON PHI,BETA,DELTA,TOL,CONVG,SIZE,ALPHA EPSILD 708.
548 INTEGER L ,K, € 708.
587 COMMON L,K,C 710.
548 REAL XX,Z2,SIMA,PSSI,PHHI 711,
548 COMMON /TATA/ X1,X2,XX,21,22,22,PHHI 712.
550 COMMON /TITI/ SIGMA1,SIGMA2,SIMA 713,
651 COMMON /TETE/ PSIt, PS12, PSSI 714,
552 COMMON /TDTO/ PI,SNPHI,CSPHI 7186,
£53 INTEGER PP,QQ,CONTRD 716.
.. 554 REAL MU 717.
11 COMMON MU,PHIP,PHIT 718,
5§56 REAL X(40,40),2(40,40),5IGMA{40,40),PS1{40,40) 719,
557 COMMON /LALA/ X,2Z,SIGMA,PSI 720.
€58 INTEGER P(40),0Q{40) 721.
11 INTEGER CC,I,d 722.
L. BBO REAL DI,NUZ,NSIMA 723.
"B61 COMMON /LOLO/P.,Q 724
582 COMMON NPSI,E,HD 725,
563 REAL NPSI 726.
564 COMMON /NEW/ CSPS1,HOR,ANG 727.
c 728.
c 729.
655 IF(C .EQ. O)THEN 730,
XTENSION®s OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DO CASE, STRUCTURED LOOP, OR REMOTE BLOCK STATEMENTS
556 cc:2 731,
567 Cs1 732.
563 ELSE 733.
569 ct:3 734.
870 END IF 735.
571 po 23 I:CC,L 736.
872 MUsPI/4.-PHI/2. 737.
573 TNeTAN({HPSI/2.)-(MU}) 738.
€74 Z{I,1)sX(1,1)8(1./TN-TAN(ALPHA)) 738.
676 SIMAs{1.0+42(1,1))/(1.+(SNPHI*CSPSL)) T40.
576 SIGMA{I,t)sSIMA 741.
577 PSIC1,1)c{PI~ALPHA-(ARSIN(SIN(ALPHA)/SIN{PHI})))/2. 742.
578 IF{ALPHA .GT. O.O)THEN 743,
XTENSION® OTHER COMPILERS MAY NOT ALLOW IF-THEN-BELSE, DO CASE, STRUCTURED LODP, OR REMOTE BLOCK STATEMENTS
579 2{1,1)=2(1,1)}+(X{1,1)eTAN(ALPHA)) 744,
580 ELSE 745 .
581 GO0 TO 23 746 . .
582 END IF 747,
633 23 CONTINUE 748.
584 . RETURN 748.
£2345878 760.
(133 END 761,
c 752.
Clt‘t“ltlt‘ll“!ttt‘t'lltt‘l"ltl'ltlttl_"“l“‘tt‘ltttttll.lt‘lt" 783.
[ 754
23485878 . 786 .
588 SUBROUTINE PPLANE 786,
587 REAL PHI . 787.
588 COMMON PHI,BETA,DELTA,TOL, CORVG,SIZE,ALPHA,EPSILO 758.
589 INTEGER L,K,C 759.
590 . COMMON L ,K,C 760.
691 REAL XX,22,SIMA,PSSI,PHHI 761.
592 COMMON /TATA/ X1,X2,XX,21,22,22, PHHI 762.

883 COMMON /TITI/ SIGMA1,SIGMAZ,SIMA 763.



383 PlJ)= pP 505,
384 Q{J)= Qo 506 .
£2345678 807.
388 355 CONTINUE 508.
[+ CALCULATION OF & BOUNDARY POINT . 509.
c 810.
388 X1z X(1,K)} 511.
387 z1: Z2{1,K) 812,
388 SIGMAl: SIGMA[1,K) 813,
389 PSItc PSI(1,K) 514,
380 X2: x(2,K) 515.
a9t 22: 2(2,K) 616.
382 SIGMA2: SIGMA(2,K]} 817,
3s3 PSI2: PSI{2,K} 518.
4 618
394 CALL ENDPT §20.
c 821
385 Kis Kt 522,
3886 X{2,K1}zXX 523,
287 z{2,K1}=22 824,
388 SIGMA({2,K1)=SIMA §25.
388 PSi{2,Kt)sPsSsS] 526.
400 P{K1)=PP 627.
401 Qixt}zoQ 628.
402 PRINT, " * §29.
403 PRINT, ‘#2823 2 3882222008230 S0 RRSBXBZAREEIRRTIBEIAIBALRRE £30.
I EXETLETENEERRETELITXIITIILTLLEIASESSTFESCATIRER T 7 531.
f408 PRINT, * 532,
405 PRINT, " * €33.
408 PRINTY,’ * §34.
407 PRINT, FINAL 2-ND SPIRAL WITH THE LAST POINT: 635
1 (2,K+1)° €36.
408 PRINT,* * 8§37.
408 PRINT, " * 6§38.
410 PRINT 11 €38,
c23458789 B&0O.
411 11 FORMAT{18X,’X’,10X,’Z’,10X, “SIGMA’ 99X, ‘PSI’,1BX, ‘P’ 4X,"Q") 841,
a12 14 FODORMAT{14X, X’ ,10X,’2’,10X, SIGMA’ 10X, °PS1"} 882,
413 PRINT,* * 543,
814 PRINT, " 544 .
418 DD 65 Jr1,K1 5465 .
4186 PRINT 16,%x{2,J},2(2,4),SIGMA(2,4),PSI(2,J),P(J),Q(J]} 646.
a1? 16 FORMAT(11X,F8.5,3X,FB8.5,E1E.5,3X,F8.5,9X,14,1X,14) 547,
418 65 CONTINUE 548 .
419 RETURN 548 .
420 END 550.
c 551.
XIS N E I XL R EE R LA F T AR L LR AR XL XA SRR RIS E S XL ERX LB RS ERKE L B852.
4 553.
421 SUBROUTINE NUPT 554,
422 REAL PHI B55.
423 COMMON PHI,BETA,DELTA,TOL,CONVG,S12E,ALPHA,EPSILD 856,
L3-2) INTEGER L ,K,L,E 557,
425 COMMON L ,K,C SE8.
4286 REAL XX,22,SIMA, PSSI,PHHI 669.
&427 COMMON /TATA/ X1,X2,XX,21,22,22,PHHI B&0.
428 COMMON /TITI/ SIGMA1 ,SIGMAZ ,SIMA E61.
428 COMMON /TETE/ PSI1, PSI2, PSSI 5862,
430 COMMON /TDTO/ P1,SNPHI,CSPHI §83.
431 INTEGER PP, 0@, CONTRO 584.
432 COMMON /0Ul/ PP, QQ, GONTRO 685,
433 REAL MU 866 .
434 COMMON MU,PHIP,PHIT 687,
435 REAL X{40,40),2{40,40),SIGMA(40,40),PSI{40,40) §68.
436 COMMON /LALA/ X,2,SIGMA, PSI 669.
437 INTEGER P(40),Q{&0) §70.
438 REAL 2ZIGMA1,Z2IGMA2,P2I1,P212,SUMI1,SUM2 571,
439 REAL DIFF1I1,DIFF2,CSDIF1,CSSUM2 572,
440 REAL A,B,ETA,X1,F,G,U,V 873.
441 INTEGER I,d 574.
442 REAL THNPHI,PHHHI 876.
a4a3 COMMON /LOLD/ P,Q B76.
saa COMMON NPS1,E,HD €77.
A4S COMMOR /NEW/ CSPSI,LHOR,ANG 878,
c 679,
c 680,
LXA] SIMA: (SIGMAI+SIGMAZ) /2. 681,
847 PSS] ={PSIt+PSIZ2)/2. 682.
448 PPz 583,
439 QO 684.
450 MUzPI/Aa.-PHI/2. 685.
451 201 ZIGMA1={SIMA+SIGMA1)/2. 68¢6.
452 ZIGMA2= {SIMA+SILMAZ) /2. 587.
453 PZ11z(PSS1I+PSI1)/2. 588.
454 P212:=(PSSI+PSI2)/2. 588 .
4585 SUMIESINIP2It1+MU) §80.
456 SUM2:SIN(PZI2+MU) 581,
487 DIFF1:sSIN(P2E1-MU) 582,
458 DIFF2:sSIN(P2I2-MU) 683,
458 CSPIF1sCOS{PZI1-MU) 884,
460 CSSUM2:COS(PZI2+MU) B8E.
461 A=SUM1/(2.*2]IGMA1sSNPHI®CSDIF1) ESE.
462 Br-1.* (DIFF2)/{2.%2IGMA2*SNPHI®CSSUM2} 697.
4563 Z2:21sDIFF1/CSDIF1-222SUM2/CSSUM2-X14X2 g88.
484 22:2Z/(DIFF1/CSDIF1-SUM2/CSSUM2) 6989,
485 TNPHIEtTAN(PHI) 600.
486 ETASALOG{SIGMA1]} /(2. *TNPHI)-PSI1+A8(22-21) §01.
487 XIsALOG(SIGMA2] /(2.5 TNPHI}+PSI2+B2(22-22]) 602.
488 FSsEXP({XI+ETA)STHNPHI) 603,
489 Ge(XI-ETA)/2. 604.
470 UzABS((F-SIMA)/F) 605 .
471 veABS{(G-PSSI)/G) 606,
c eo7
472 IF(Y .GT. U) GO TO 202 608,
373 IF(U .LE. TOL) GO TO 203 sog.
474 SIMAsF 810.
478 PPsPP+1 B11.
478 IF(PP-~100} 201,201,203 812.
ca3488788 613,
477 202 IF(vVv .LE. TOL) GO TO 203 614.
478 PSS51:GC 8185.
479 QR0 816.
LX:1-3 IF(QQ-100) 201,201,203 817,
a8 203 XX:X1+{22-21)sDIFF1/CSDIF1 618.
482 XX (XX+X2+{2Z2-22)sSUM2/CSSUM2)/2. 618.
4 820
483 IF{E .EQ. 1) GO TO 18 821.
484 PRINT 13, XX,Z2,SIMA,PSSI,PP,QQ 822.
€2346878 623,
488 13 FORMAT(11X,F12.8,3X,#12.8,3X,E16.5,3X,712.68,8X,14,1X,14) 824
486 16 CONTIKUE 825,
487 RETURN 828 .
488 END 827.
c 628.
CE BRI N e R s E IS E NS SR E SISO R ER BRI NSRRI NREREIREABABIBES 6209.
c 830.
489 SUBROUTINE ENDPT 831.
832.
c THIS SUBROUTINE CALCULATES CONDITIONS AT A NEW BOUNDARY 633.

c POINT FROM A KNOWN BOUNDARY PDINT AND A POINT WITHIN THE T 834,



584 COMMDN /TETE/ PSI1,PS12,PSSI 764,

505 COMMON /TOTO/ PI,SNPHI,CSPHI 765.
586 INTEGER PP,QQ,CONTRO 766.
587 COMMON /0Ul/ PP,QQ, CONTRO 767.
588 REAL MU 768. 1686.
588 COMMON MU,PHIP, PHIT 769.
600 REAL X(40,80),2{40,40),SIGMA{40,40),PSI(40,40) 770.
(1.3 COMMON /LALA/ X,2,SIGMA,PSI 771.
602 INTEGER P{40)},Q{40) 172,
603 REAL PHIPL1,PHIPL2 773,
604 COMMON /LOLD/ P,Q 774.
605 COMMON NPSI,E, HD . 775.
608 COMMON /NEW/ CSPSI,HOR,ANG 778.
c 777.
c 778.
607 PHIT:=PHI 779.
608 PHIPL1:=32.8328 780.
808 PHIPL2:35. 781.
c 782
610 IF(PHIT .LT. PHIPL1) GO TO 10 783.
611 IF(PHIT .GT. PHIPLZ) GO TO 20 784,
c : 788
€12 PHIP:1.66673ALDG(PHIT)-2.3362 788.
513 PHIPSEXP{PHIP) 787.
614 PHIP:PHIP2P1/180 788 .
6185 GO TO 3B 785 .
€23485678 780.
16 10 PHIPEPHIT 781.
617 PHIP:PHIPsPI/180. 792.
18 GO TO 35 783.
€2345678 794.
618 20 PHIP:1.2884%AL0OG{PHIT)-1.002 785.
620 PHIPSEXP(PHIP) 786.
621 PHIPSPHIP:P1/180 797.
622 GO TO 35 798.
c 788.
823 35 RETURN 8oo0.
[ 801 .
624 END 802.
CEEEZXA R RS S S LSRR E R XX S X XL RSN SS TR EBEEX S E LS LN XXEEXEFERRSXLERERSETXATXBRITES 803.
[ 8o4.
c 805.
625 SUBROUTINE RESOUT(A,B) 806 .
€ 807.
c soa.
c 809.
626 REAL PHI 810.
627 COMMON PHI,BETA,DELTA,TOL,CONVG,SI12E,ALPHA,EPSILOD 811,
628 INTEGER L,K,C 812,
628 COMMON L ,K,C 813,
630 REAL XX,22,SIMA,PSSI, PHHI 814,
631 COMMON /TATA/ X1,X2,XX,21,22,22Z,PHHI] 815.
632 COMMON /TITI/ SIGMA1,SIGMA2,SIMA 816.
633 COMMON /TETE/ PSI1,PSI2,PSSI 817.
€34 COMMON /TOTD/ PI,SNPHI,CSPHI si1s.
€35 INTEGER PP,QQ,CONTRD 818,
636 COMMON /OUI/ PP,QQ,CONTRO 820.
637 REAL MU 821.
638 COMMON MU,PHIP,PHIT 822.
639 REAL X(40,80),2(40,40),51GMA(40,40),PSI(40,40) 823.
640 COMMON /LALA/ X,Z,SI1GMA,PSI 824.
641 INTEGER A,B 825.
642 INTEGER P(40),Q(40) 826.
543 COMMON /LDLC/ P,Q 827.
644 COMMON WPS1, E, HD 828.
845 COMMON /NEW/ CSPSI,HOR,ANG 829 .
c 830
846 PRINT 20,X(A,B),2{A,B),SIGMA(A,B),PSI{A,B},P(A),c(A) - 831,
547 20 FORMAT{11X,F12.6,3X,F12.6,E16.5,3X,F12.6,6X,14,1X,14) 832,
c 833
648 RETURN 834.
649 END 835,
836
[ X R I 2 R R R R T T T T ) 837.
ce i 838.
850 SUBROUTINE NGAMA(RAD) 239,
c 8ao
651 REAL PHI,HOR,DFFS,D,HEQUIV, HPRIME 841,
652 COMMON PHI,BETA,DELTA,TOL,CONVG,SI2E,ALPHA,EPSILD 842,
653 INTEGER L ,K,C 243,
654 COMMON L ,K,C 8aa.
655 REAL XX,22,SIMA,PSSI,PHHI 845.
656 COMMON /TATA/ X1,X2,XX,21,22,2Z,PHHI 846,
657 COMMON /TITI/ S1GMA1,SIGMAZ,SIMA 847,
658 COMMON -/TETE/ PS11,PS12,PSSI 848,
659 COMMON /TOTO/ PI,SNPHI,CSPHI 8ag.
€80 INTEGER PP,QQ,CONTRO 850,
€81 COMMON /0U1/ PP,QQ,CONTRO 851.
662 REAL MU 852.
€63 COMMON MU, PHIP,PHIT 853,
664 REAL X(80,40)},2(80,40),SIGMA(40,480),PS1{40,480) 854.
B65 COMMON /LALA/ X,2,SIGMA,PSI 855
B66 INTEGER P{40),0(40) 856.
867 REAL COSPSI,SIMAV{30),NGAMMA,F , E,SOMME, RATID 857.
868 INTEGER L1,RAD,1,J,H,RAD1,RAD3 858.
(1] COMMON /LOLD/ P,Q 855,
70 COMMON HPSI,E,HD 860.
671 COMMON /NEW/ C5PS1,HOR,AKNG . 861.
672 COMMON /KAYD/ BED,HEQUIV,BDILES,HPRIME,GEL 862,
c 863
873 RAD1:RAD+L-2 884.
674 RAD3I*RAD*L-3 8E5.
c 866.
878 150 887.
878 H:O 888.
877 JERAD-2 8869.
€2345878% . 870.
s78 4 HeH+t 871.
8789 Jeget 872.
(11 Isie 873, .
881 PSI(H,J)t2.5PSI{H,J) 874
882 COSPSIsCOS(PSI(H,J)) 875
683 PSI{H,J)sPSI(H,J)/2. 876
B84 SIMAV{I)tSIGMA(H,J)*{1+SNPHI®COSPST) 877.
(111 IF{H .LT. L )} GO TO & 878.
[11] PRINT 670,5IMAY{1) 878. -
887 B70 FORMAT(////20X,'SIMAV1Is‘ E1B.&) 880.
888 PRINT 680,5IMAV(10) 881,
[13] 680 FPORMAT(////20X,'SIMAVLE’ ,E156.8) 882.
880 152 883,
891 He2 8s4a.
8982 J*RAD 885.
803 NGAMMA:O.O ase.
694 SOMME=0.0 887.
695 AREA130.0 B888.
(11 [ 1141 888.
€23458789 8go.
897 HIH+1 891.
(11 Jrded 892.

688 SOMMEs {SIMAV(I-1)+SIMAV(I))/2. ap3, '



700 SOMMEcSOMME={X{H,J)-X{H-1,0-1)) 894 .

701 AREA1:AREA1+SOMME ass.
702 Lis=tL 886.
703 IF(I .LY. L1} GO Y0 § 897.
704 AREA1:=ABS (AREA1) 887.1
705 B=X{L,RAD1) a98.
706 XLEC.BO®B 800.
707 BEXL+B 801.
708 BDILES:ABS(B) g02.

£23456788 803,

‘708 878 CONTINUE 804 .
710 AREAZ2= [BDILES-ABS(X{L,RAD1))}2SIMAV{10)=0.5§ 805 .
711 AREA=AREA1+AREA2 806.
712 NGAMMA:NGAMMA+AREA 807.
713 RATIO:1./BDILESs*2 508.
714 NGAMMA: NGAMMASRATIOS2. 803,
c 810

718 PRINT 10,NGAMMA . 211,
718 10 FORMAT (1’ ,////////20X, *HGAMMA=* ,FB.& ) g12.
c 813

717 B: (BDILES®SIZE)/(X(L,1)) 815,
718 PRINT 12,8 816.
718 12 FORMAT(/////20%, "BREADTH =’ ,F8.4) 817.
720 D=GEL 823.
721 0:zD/BDILES 824.
c 826

722 PRINT 11,D 827.
723 11 FORMAT(////////20X,'D/Bz* ,F8.4) 828 .
. .7248 RETURN 829.
728 END . 830.
(4233223323331 3 233333333133 13 1 1121 2312 2332279322 2T LY 931,

c 832,

[ 833.
£23456789 934.

726 SUBRCUTINE PAXCOR X1
[ 936,

c 937.

727 REAL PHI 93s.
COMMON PHI,BETA,DELTA,TOL,CONVG,SIZE,ALPHA EPSILOD 838,

INTEGER L,K,C 840.

COMMON L,K,C 941,

REAL XX,2Z,SIMA,PSSI,PHHI 8482,

COMMON /TATA/ X1,X2,XX,21,22,22,PHH] 843.

COMMON /TITI/ SIGMA1,SIGMA2,SIMA 844,

COMMON /TETE/ PS511,PS512,PSS1 945,

COMMON /TOTD/ PI,SNPHI,CSPHI 846,

INTEGER PP,QQ,CONTRO 847,

REAL My 948

COMMON MU,PHIP,PHIY [T

REAL X[40,40),2{40,40),SIGMA(40,40),P51{40,40) 950.

COMMON /LALA/ X,2,S51GMA,PSI 9s51.

INTEGER P{40),0{40) 952,

COMMON /LOLO/ P,Q 963,

COMMON NPSI,E,HD 854 .

.74 REAL NPSI 855.
748 COMMON /NEW/ CSPSI1,HOR,ANG 656.
c 557.

748 REAL EX,TIN €58,
c 858 .

c 960.

c 861.

747 MUEPI/4.~PHI/2. 962,
748 EX=NPST/2-MU 953,
7439 EXETAN(EX) 984.
c 865 .

750 DO 33 Y=2,L 866.
751 TINSEX/S. 887.
€23456728¢ 268.

752 X(I,1)}=TIN*(I-1) . 869 .
C2345678 870.

783 33 CONTINUE 871.
754 RETURN 872.
755 END 873.
c 874,

c 675.

756 SUBROUTINE EDGPA2 £76.
c 877.

c 878,

c 979 .

c 980.

757 REAL PHI,EPSILO,ALPHA,FIRPSI,COSPS! 881.
758 COMMON PHI,BETA,DELTA,TOL,CONVG,SIZE,ALPHA,EPSILD 982.
759 INTEGER H,E 083.
780 COMMON L ,K,C 984,
781 REAL M 885 .
L 782 REAL XX,22,SIMA,PSSI,PHHI 886.

T, 763 COMMON /TATA/ X1,X2,XX,21,22,2Z,PHHI 887.
764 COMMON /TIT1/ SIGMA1,SIGMA2,SIMA sss.
765 COMMON /TETE/ PSI1,PSI12,PSS1 8388.
766 COMMON /TOYO/ P1,SNPHI,CSPHI 890.
767 COMMON /0UI/ PP,QQ,CONTRO 891,
768 INTEGER PP,QQ 892.
768 REAL MU 893.
770 COMMON MU, PHIP,PRIT 2894.
771 REAL X{40,40),2{40,40),51GMA{40,40) ,PS1({40,40) 965.
772 COMMON /LALA/ X,2,5IGMA,PSI 096.
773 INTEGER W,H1,W2,1,J . 297.
774 INTEGER P{40},0(40) 9es.
778 COMMON /L0LO/ P,Q 999.
776 REAL HOR 1000.
777 COMMON /NEW/ CSPSI,HOR,ANG 1001.

;778 REAL DIF,DI,TNPHI,ENK . 1002.
778 COMMON NPSI,E,HD ’ 1003.
780 COMMON /KAYO/ BED,HEQUIV,BDILES,HPRIME, GEL 1004 .

c 1005 .
c 1006.
781 SINEPsSIN(EPSILO) 1007.
782 TANEPsTAN(EPSILD) 1008.
[ 1008 .
783 Heg 1030,
784 X{1,1)s0 1011,
788 HOR:1.0 1012,
7386 DO 800 I:2,H 1013,
787 wel-t 1014,
788 X(I,I}sX{W,W}+HOR/E.0 1015,
C2345678% 1016,
789 goo CONTINUE 1017,
c 1018.
780 ENNZ2,034 1018.
791 Histe1 . 1020.
782 DO 801 IzH1,10 1021,
783 X{I,3)eX(H,H)+({I-H}={BNN-1,.}/(H-2])) 1022,
794 801 CONTINUE 1023,
708 IF(BED .GT. O) GD TO 889 1023.1
798 Z{1,1)=[HOR/10.)52.0 1024 .
787 Z{10,10}=z{HOR/10,.}82.0 1025.
788 889 CONTINUE 1028 .
c 1027.
798 DO 802 1:2,H 1028.

800 Z{1,1)s(X{1,I)=TANEP}+{2(1,1)) 1028.



