COMPUTATION OF BEARING CAPACITY COEFFICIENTS FOR SHALLOW FOOTINGS ON COHESIONLESS SLOPES USING STRESS - CHARACTERISTICS

BY
MARTIN ANDREWS

A thesis
 presented to the University of Manitoba in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in
 CIVIL ENGINEERING

Winnipeg, Manitoba
(c) ANDREWS, Martin, 1986

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a ēte accordēe à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se reserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE
(C) 1986

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

Bearing capacity coefficients for shallow footings placed on cohesionless slopes are computed using stress-characteristic solutions. The "basic differential equations" which are obtained by combining the equations of equilibrium with the Coulomb yield criterion, are solved using a numerical procedure. This procedure is based on a finite difference approximation of the equations and was first proposed by Sokolovskii (1960), and improved by Graham (1968). A special computer programme taking into account the effect of the slope on the boundary conditions was developed. The angle of shearing resistance of the soil was taken as being constant throughout the failing domain. The program incorporates some of the general subroutines of Hovan (1985). The solution assumes that the soil is rigid-plastic and thus does not take into account any volume strains prior to failure.

The shape of the elastic wedge beneath the footing is considered to influence the ultimate bearing capacity significantly and it is therefore modelled in the analysis.

The results obtained from the analysis are compared with available large scale field data and other existing theoretical solutions. The bearing capacity coefficients computed using the method developed in this thesis range from 0.64 to 1.35 times the experimental values.

ACKNOWLEDGEMENTS

I wish to express my thanks to Dr. J. Graham for his unwavering guidance and encouragement throughout the development of this thesis, my employers for granting me the opportunity to pursue this course of study, and my wife who has been a constant source of inspiration.

Thanks are also due to Ingrid for her assistance in translating papers written in French, to Roseanne for typing the initial draft, and Sybil for typing the final draft of this thesis.

TABLE OF CONTENTS

PAGE
ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF SYMBOLS vi
LIST OF TABLES viii
LIST OF FIGURES ix
CHAPTER
1 INTRODUCTION2 REVIEW OF EXISTING THEORIES FOR THEBEARING CAPACITY OF FOOTINGS ONSLOPES
2.1 Introduction 6
2.2 Meyerhof (1957) 11
2.3 Mizuno (1960) 14
2.4 Kovalev (1964) 17
2.5 Brinch Hansen (1970) 25
2.6 Giroud \& Tran Vo-Nheim (1971) 28
2.7 Chen (1975) 30
2.8 Bowles (1975) 34
2.9 Bowles (1977) 38
2.10 Kusakabe et al 1981 41
2.11 Summary 43

3 THE STRESS CHARACTERISTIC METHOD

3.1 Introduction
 45

3.2 Theory 45
3.3 Determination of the Slip Line Field 56
3.4 The Initial Boundary Condition 61
3.5 The End Boundary Condition 63
3.6 Other Input Parameters 64
3.6.1. Scale Parameter \& 64
3.6.2 Number of Spiral and Radial 65
3.7 Validity of the Computer Program 65

THE SHAPE OF THE TRAPPED ELASTIC WEDGE
4.1 Introduction 68
4.2 Photographic Evidence for the Shape
of the Wedge
4.3 Analytical Study of the Shape of the
Trapped Wedge
4.3.1 Introduction 75
4.3.2 Development of Model $1 \quad 75$
4.3.3 Results from Model $1 \quad 81$
4.3.4 Development of Model 28
4.3.5 Results from Model $2 \quad 89$
4.3.6 Development of Model $3 \quad 93$
4.3.7 Results from Model 3
4.3.8 Development of Model 4 94
4.3.9 Results from Model 4101
4.4 Validity of the Models and Grounds on
the assumptions made in their Form -
ulation
4.4.1 Assumption 1 .. 106
4.4.2 Assumption $2 \quad 107$
4.4.3 Assumption $3 \quad 108$
4.5 Comparison of the Models 110
5 FOOTING LOGATED AT THE CREST OF A SLOPE-PARAMETRIC STUDY AND RESULTS
5.1 Introduction 114
5.2 Surface Footings 114
5.3 Shallow Footings 115
6. FOOTING LOCATED AWAY FROM THE CREST OF THE SLOPE - PARAMETRIC STUDY AND RESULTS
6.1 Introduction 123
6.2 The Equivalent Slope 123
6.3 The Critical Crest Offset H_{C} 125
6.4 Definition of the Failure Zone for $0<H<H$ 129
6.5 Parametric Study and Results
6.5.1 Surface Footing 131
6.5.2 Shallow Footing 131
7. COMPARISON OF THE RESULTS WITH OTHER THEORIES AND LARGE SCALE TEST RESULTS
7.1 Introduction 146
7,2 Comparison of Results with existing theories 146
7.3 Comparison of Results with Large Scale test Results 148
8. CONCLUSIONS AND FURTHER RESEARCH
8.1 Conclusions 154
8,2 Further Research 154
REFERENGES 156
APPENDIX
Listing of Computer Program 161

LIST OF SYMBOLS

$a-\sin (\psi+\mu) /((2 \sigma \sin \phi \cos (\psi-\mu)$
$\mathrm{b}-\quad-\sin (\psi-\mu) /((2 \sigma \sin \phi \cos (\psi+\mu))$
B - Footing breadth

D - depth of footing
e - eccentricity of elastic wedge
H - Set back of footing from crest of slope

1 - scale parameter
m - number of radial lines
n - number of spiral lines
$\mathrm{N}_{\gamma \mathrm{q}^{-}}$bearing capacity coefficient
q - ultimate bearing pressure
x - coordinate axis
y - coordinate axis
z - coordinate axis
α - slope angle
$\xi \quad X+\psi$
ε - inclination of the equivalent slope
ϕ - angle of shearing resistance
$\gamma-\quad u n i t$ weight \cdot of soil
$\eta-x-\psi$
$\mu-\pi / 4-\phi / 2$, the angle between the slip lines and the major principal stress direction
σ - normal stress
τ - shear stress
ω - base angle of elastic wedge
$x-(\ln \sigma) / 2 \tan \phi$

- inclination of major principal stress to the vertical axis (counterclockwise positive)

Subscripts

```
ave - average
f - at failure
H - horizontal
i - initial
\ell - - left side
max - maximum
min - minimum
n - normal (to the plane of application)
ps - plane strain
r - right side
tx - triaxial
v - vertical
1,2,3 - principal (stresses)
```

3.1 Numerical Accuracy of Computer Program - Comparison of $\mathrm{N}_{\text {- }}$ values for a footing on level ground 67
4.1 Comparison of Models 1-4 with Photographic Evidence 74
4.2 Summary of X_{ℓ} / X_{r} and ω_{r} Values -
Model82
4.3
Average Variation of e and $\mathrm{X}_{\ell} / \mathrm{X}_{r}$ withα - Model 184
4.4 Summary of X_{ℓ} / X_{r} and ω_{r} Values - Model 2 90
4.54.74.84.95.1
Model 291
4.6 Summary of X_{ℓ} / X_{r} and ω_{r} Values - Model 3 95
Variation of e and $\mathrm{X}_{\ell} / \mathrm{X}_{x}$ and c_{i} - Model 3 96
Summary of X_{ℓ} / X_{r} and ω_{r} Values - Model 4 102
Variation of e and $\mathrm{X}_{\ell} / \mathrm{X}_{\mathrm{r}}$ with α - Model 4 103
Summary of $\mathrm{N}_{\gamma q}$ Values for a Footing at the 118Crest of the Slope
6.1 Estimated H_{C} Values 127

$$
7.1
$$

7.1 Comparison of Results - Compact Sand 152

$$
7.2
$$

7.2 Comparison of Results - Dense Sand 153

2.1	Terzaghi Failure Mechanism For a Footing on Level Ground	
2.2	Meyerhof Failure Mechanism For a Footing on Level Ground	12

2.3 Meyerhoff Failure Mechanism For a Footing on a Slope 13
2.4 Mizuno Et Al Failure Mechanism For a Footing on a Slope 15
2.5 Mohr's Circle Used by Mizuno to Determine Boundary Conditions 15
2.6 Typical Slip Field Based On Sokolovskii Type Solution 19
2.7 Kovalev's Failure Mechanism for a Surface Footing on a Slope 19
2.8 Uniform Surcharge On a Slope 23
2.9 Division of the Failing Domain into Two Zones (Kovalev) 23
2.10 Kovalev's Failure Mechanism for a Shallow Footing on a Slope 24
2.11 Comparison of Bearing Capacity Program with Slope Stability Problem, (After Giroud). 24

2.12
Brinch Hansen's Failure Mechanism for a Footing on a Slope 27
Giroud's Method for Determination of N_{γ} 27Determination of the "Equivalent Slope" for aFooting Located Away From the Crest of theSlope, After Giroud31
The Prandtl Failure Mechanism 33
The Hill Failure Mechanism 33
Brinch Hansen's Circular Rupture Surface 35
Bowles (1975) Graphical Procedure For Deter- mination of Bearing Capacity 37
Bowles (1977) Failure Mechanism 37
Footing on Horizontal Ground 40
Kusakabe Et Al Failure Mechanism 40
General System of Co-ordinates 46
Sign Convention 46
Mohr Circle For Failure Condition 48
Computation of a New Point C from known Points A and B 53
Typical Slip Line Field In the Passive Zone beneath a Stress Free Slope 57
Typical Slip Line Field in the Transition Zone 58
Mohr Circle Showing Stress Condition In theUniquely Defined Zone at the Surface of theSlope62

4.1	Stress Distribution and Trapped Wedge for a Footing Close To a Slope	69
4.2	Properties Of the Sands Used By Peynircioglu	72
4.3	Basic Assumptions For the Development of	
	Model 1	76
4.4	Numbering Sequence for the Radials Emmanating from O	78
4.5	Variation of e with α for Models 1 to 4	85
4.6	Variation of $\mathrm{X}_{\ell} / \mathrm{X}_{r}$ with α for Models 1 to 4	86
4.7	Variation of ω_{r} with α for Model 1	87
4.8	Variation of ω_{r} with α for Model 2	92
4.9	Variation of ω_{r} with α for Model 3	97
4.10	Development of Model 4	99
4.11	Typical Variation of $\mathrm{N}_{\gamma \alpha}$ with ω_{r}	100
4.12	Schematic Illustration of the Variation of $N_{\gamma \alpha}$ with ω_{r}	104
4.13	Variation of ω_{r} with α (Model 4)	105
4.14	The Rigid Plastic Soil Model	109
4.15	Comparison of the Predicted Shape of the	
	Trapped Wedge for Models 1 to 4 .	111
5.1	Embedment Depth 'D'	116
5.2	$\mathrm{N}_{\gamma q}$ vs α - Footing at Grest	120
5.3	$\mathrm{N}_{\gamma q}$ vs α - Footing at Crest	121
5.4	Typical Slip Line Field for a uniform surcharge on a slope	122

6.1 Definition of Equivalent Slope 124
6.2 Determination of the size of the failing domain 124
6.3 The effect on the slip line of Moving the footing away from the slope 126
6.4 Effect of Footing Spacing on Bearing Capacity 128
6.5 Plots of Z_{D} vs H / B 130
6.6 Plots of X_{ℓ} / X_{r} vs H / B 132
6.7 Equivalent Surcharge for a surface footing 133
6.8 Simplification of the Problem for Programming 135
6.9 Plot of n vs H / B 136
6.10 Mohr's Circle for Stress on an Equivalent Free Surface 137
6.11 Typical Slip Line Field in the region between the equivalent slope and passive zone 138
6.12 $\mathrm{N}_{\gamma q} \quad$ vs α (Surface footing) 140
6.13 $\mathrm{N}_{\gamma \mathrm{q}}$ vs α (Shallow footing) 141
6.14 $N_{\gamma q}$ vs α 1426.156.17$\mathrm{N}_{\gamma \mathrm{q}}$ vs α143
6.16 $N_{\gamma q}$ vs α 144$\mathrm{N}_{\gamma \mathrm{q}} \mathrm{vs} \alpha$145
7.1 Comparison of Results with Existing Theories 147
7.2Contours of $N_{\gamma q}$ Values - Compact Sand149
7.3Contours of $N_{\gamma q}$ Values - Dense Sand150

CHAPTER 1

INTRODUCTION

A number of engineering structures, e.g. - structures placed on benches cut into slopes, retaining walls, bridge piers, etc. require their foundations to be placed on sloping ground. Highway overpass bridges, in particular, frequently require approach fills in the vicinity of 10 m (30 feet) high. It is common in these cases to terminate the fill in a slope face dropping down to the underpass level. Foundations for the end spans of the bridge are often more economical if they are placed in the fill and not excavated or piled to underlying strata. Apart from the obvious economic advantage, there is usually also, an improved level of performance (Shields et al 1980). Supporting the end spans in the approach fill can significantly reduce the severe road maintenance problems that arise when the fills and bridge decks settle by different amounts.

Various theories are available to the design engineer for estimating the bearing capacity of a footing on a slope. As noted by Bauer et al (1981), all these theories give different answers and most theories are applicable only to a footing located right at the crest of a slope.

Because of the uncertainties of the theories, bridge designers adopt a conservative approach, and tend to utilize pile support or other deep foundations for the abutments. In many cases, this approach may not be the most economical solution (Felio and Bauer, 1984). As noted by Bauer and Mowafy (1985), it is economically advantageous to locate the footing as close as possible to the edge of the embankment and to make the slope as steep as possible in order to keep the bridge span to a minimum length.

Several researchers (for example Vesic, 1973; De Beer, 1965), note that the primary framework for design involves both the determination of ultimate loads, as well as the analysis of settlements to ensure that the foundations fulfill their intended function from a structural as well as functional viewpoint.

The particular problem of estimating settlements of foundations located on granular slopes is complicated and not fully understood. At the present time the tendency is to use complicated finite element techniques to study the settlement behaviour of footings located on granular media, e.g. Bauer (1982), Selvadurai et al (1984), Mowafy (1984), Bauer and Mowafy (1985). Since such tools are not readily
available to all design engineers, reliable estimates of settlements cannot readily be made. As a result, estimation of the ultimate bearing capacity still constitutes the primary framework for design. It would therefore be helpful to have at the present time, a simple bearing capacity solution which gives reliable results.

This thesis is concerned only with the bearing capacity aspect of the stability problem. Economy in design can be achieved if the ultimate bearing capacity can be accurately determined.

Ultimate bearing capacity of footings is commonly determined by making use of the principle of superposition. That is, the influence of self-weight in the failure zone and surcharge on the free surface are assessed separately and then added together. This thesis uses an alternative approach by Meyerhof (1951) which combines both effects into a single dimensionless factor. $\mathrm{N}_{\gamma \mathrm{q}}$. The bearing capacity is thus expressed as $\quad q_{u}=1 / 2 B \gamma N_{\gamma q}$. (Notation is summarized at the beginning of the thesis on pages vii to viii).

However in contrast with the theoretical method used by Meyerhof, the thesis uses the method of stress-characteristics (Graham 1968), and develops a soundly based analysis for the capacity of shallow footings near the crest of slopes. It compares the new theoretical results with existing
theories and with available field data.

In the analysis, the solution for failure loads starts from a Rankine rectilinear plastic zone exiting the slope below the footing. The geometry and stress conditions in this zone are statically determinate. The back surface of this zone was then used as the starting boundary for a radial transition zone that extends backwards into the slope, and upwards towards the footing. Available information and photographic evidence concerning the shape of the failure zone was studied in order to arrive at realistic assumptions concerning the distorted shape of the domain for the analysis.

It is well known that sand behaviour cannot be adequately described by a straight Coulomb-Mohr strength envelope. That is, the CoulombMohr envelope flattens with increasing stress, resulting in a variable angle of shearing resistance dependent on stress level (Graham and Hovan, (1985). However, the present analysis considers only a constant ϕ solution because at this stage of understanding the mathematical modelling of the problem, further complexity is unwarranted.

In Chapter 2, the most common existing theories are described and reviewed. Chapter 3 summarises the theory of the basic stress characteristic solution and develops the boundary conditions resulting from
the presence of a slope close to the footing. Chapter 4 presents an analytical study of the shape of the elastic zone immediately beneath the footing. Chapter 5 considers the special case of a footing at the crest of the slope, and describes the parametric study of the problem that has been conducted using a specially developed computer program, and presents the results for this case. Chapter 6 describes the parametric study and presents the results for the more general case of footing located away from the crest of the slope.

Results, discussions and comparison with other theories and experimental data follows in Chapter 7. Topics for further research and conclusions are presented in Chapter 8.

Appendix 1 contains a listing and typical output of the main computer program.

C HAPTER $\quad 2$

REVIEW OF EXISTING THEORIES FOR THE BEARING CAPACITY OF FOOTINGS ON SLOPES

2.1 INTRODUCTION

At present there are at least nine theories which can be used to predict the bearing capacity of a footing placed within close proximity of a slope. As noted by Bauer et al (1981) all these theories give different answers and most are applicable only to footings located with one edge right at the crest of the slope. This chapter briefly describes the most commonly available theories and comments on their usefulness and the assumptions made in their developinent. Comparisons between these existing theories and the new solution developed in this thesis are discussed in Chapter 7.

Prior to describing the distinctive features of each of the bearing capacity theories, it is necessary to place them in perspective by discussing their similarities, and the general framework within which bearing capacity theories are commonly developed.

All of the commonly used theories utilize the concept of "perfect" plasticity, that is failure is assumed to occur with large scale continuous straining after zero initial displacement. That is, the behaviour is assumed to be "rigid-plastic".

Chen and Davidson (1973) suggest that the techniques used to determine the collapse load can be divided into three principal groups utilizing respectively :
i) the stress characteristic or slip line method,
ii) the limit analysis method.
iii) the limit equilibrium method

This grouping is maintained in the ensuing discussions. It will however be evident later that the fundamental approach of the latter two methods are similar. They both start with an assumed failure surface or failure mechanism. Each method then employs a different approach to determine the stresses satisfying static equilibrium at the instant of impending failure. The methods will now be reviewed in turn.

The stress characteristic method combines the Coulomb-Mohr yield criterion with the equations of static equilibrium to give a set of hyperbolic differential equations of plastic equilibrium. When taken together with the stress boundary conditions for a given problem, the equations can be used to investigate the stresses in the soil beneath the footing at the instant of impending plastic flow (Sokolovskii 1960). In problem solving, it is often convenient to transform this set of equations to
curvilinear co-ordinates whose directions at every point in the yielding region coincide with the directions of failure or the slip plane. These slip directions are known as slip lines in physical modelling or stress characteristics in mathematical modelling .

Kotter (1903) was the first to derive these stress characteristic equations for the case of plane deformations. Prandtl (1920) subsequently obtained a closed form solution to these equations for a footing on a weightless soil possessing both cohesion and friction. The important inclusion of soil weight into the analysis considerably complicates the mathematical solution. Sokolovskii (1960) adopted a numerical procedure based on a finite difference approximation of the stress characteristic equation. Graham $(1967,1974)$ made a significant improvement to the Sokolovskii solution by including a better approximation of the effects of stress variation along the slip lines.

Graham and Stuart (1971) suggested that this method is superior to the other methods since it offers the opportunity of investigating a wider range of boundary and field assumptions. In particular, it permits more realistic modelling of the sand properties (see for example, Graham and Hovan, 1985). This form of analysis will be used in the theoretical solution derived in Chapter 3 ,

The second type of analysis, namely limit analysis, is based on the upper and lower bound limit theorems of Drucker et al (1952). These theorems were developed for an elastic perfectly plastic material with an associated flow rule

The lower bound theorem of limit analysis states that if a distribution of stress over the domain in question can be found which satisfies the equations of equilibrium, the stress boundary conditions and the yield criterion, the load associated with this stress condition is less than or at best equal to the true ultimate load,

The upper bound theorem states "if the power of the external load is greater than or equal to the rate of internal energy dissipation associated with a kinematically admissible velocity field, then the load must be greater than or at best equal to the true ultimate or limit load" (Chan, 1975). The upper bound theorem may also be stated as follows: if a kinematically admissible velocity field can be found, uncontained plastic flow must impend, or have taken place previously.

By suitable choice of stress and velocity fields, the above upper and lower bound theorems enable the required collapse load to be bracketed.

The limit equilibrium method has been the most commonly used method for obtaining approximate solutions for bearing capacity. It can be best described as depending on a quasi-static analysis or approximations to the slip line fields. It generally entails using an assumed failure surface comprising various simple shapes, for example plane, circular or logarithmic spiral. To allow an equation of equilibrium to be written for bearing capacity determination (or indeed for other classes of problems such as slope stability) it is necessary to make sufficient assumptions about the stress distribution within the soil domain bounded by the failure surface so that the analysis becomes determinate in terms of resultant forces or moments. This method (and indeed all three of these methods) gives no consideration to soil kinematics, or to the displacements preceeding failure.

All available theories for determining the bearing capacity of footings on slopes fall within the general framework of one of the three methods outlined above. The methods by Meyerhof (1957); Mizuno (1960) ; Kovalev (1964) ; Brinch Hansen (1970) ; Giroud and Tran Vo Nhiem (1971) ; Chen (1975) ; Bowles (1975) ; Bowles (1977) ; Kusakabe (1981); will now be discussed in turn. They are presented in the chronological order based on the publication date.

2.2 Meyerhof's (1957)

Meyerhof's method is a limit equilibrium method. His original theory which was developed for level ground (Meyerhof, 1951) was a modification of the earlier Terzaghi (1943) solution. The failure mechanism based on logarithmic spirals used by Terzaghi is shown on Fig. 2.1. He assumed that the soil of depth D above the level of the foundation base manifests itself only by its weight, and offers no support to the foundation loads through its shearing resistance. In his development of this analysis. Meyerhof assumed that the failure surface extends right of the surface (Fig.2.2). He includes in his analysis an "equivalent free surface" subjected to "equivalent free surface stresses". (Fig. 2.2).

The solution for footings on a slope uses a development of the same procedure (Fig. 2.3). In this case, the weight of the soil wedge AEF in Fig. 2.2 is replaced by the equivalent stresses p_{o} and s_{o} normal and tangential, respectively to the equivalent free surface AE.

It is not clear from the literature whether Meyerhof included the influence of the soil on the upslope side of the foundation when calculating the ultimate bearing capacity.

FIGURE 2.1 TERZAGHI FAILURE MECHANISM FOR A FOOTING ON LEVEL GROUND

FIGURE 2.2 MEYERHOF FAILURE MECHANISM FOR A FOOTING ON LEVEL GROUND

FIGURE 2.3: ME YERHOF FAILURE MEC HANISM FOR A FOOTING ON A SLOPE (after Meyerhof 1957),

2. 3 Mizuno (1960)

Mizuno et al (1960) calculated the bearing capacity of a slope of cohesionless soil under a uniform load acting upon its horizontal top. The method employed is a limit equilibrium method. The analysis is similar in principle to the case of a footing on a horizontal surface presented earlier by Mizuno $(1948,1953)$, which is about the same time that Meyerhof published his theory concerning the ultimate bearing capacity of foundations on level ground (Meyerhof, 1951). It is therefore reasonable to assume that the work of Meyerhof and Mizuno was carried out independent of each other. This is in fact evidenced by the completely different approaches adopted by the authors to the analysis of the bearing capacity problem.

Mizuno et al, assume that at the instant of failure, a wedge of active earth pressure is formed directly below the load, while a region of passive earth pressure is formed adjacent to the slope (Fig. 2.4). The boundary of the passive pressure region is determined from the Mohr's circle (Fig. 2.5) as a fraction of the slope angle and the angle of internal friction ϕ of the soil.

By considering the static equilibrium of the elastic wedge, the stress acting on the wedge at the instant of failure is calculated, as a function

FIGURE 2.4: MIZUNO ET AL FAILURE MECHANISM FOR A FOOTING ON A SLOPE (after Mizuno et al 1960)

FIGURE 2.5: MOHR CIRCLE USED BY MIZUNO TO DETERMINE BOUNDARY CONDITIONS (after Mizuno et al 1960)
of the ultimate load, the wedge geometry and the unit weight of the soil. Similarly, by considering the static equilibrium of the region of passive pressure adjacent to the slope, the stresses on the boundary BD (Fig. 2.4) are calculated.

The transition region, which is defined as the region between the active and passive pressure regions, as described above, is then divided into a series of small wedges having equal vertex angles. If the stresses on one side of any of the wedges and the length of that side are known, then the stresses on the other as well as its length can be determined from the equilibrium conditions of the wedge. The shape of the sliding surface is thus also generated from the equilibrium conditions.

The bearing capacity is determined by first assuming a value for the stress distribution on the boundary of the elastic wedge beneath the footing, which is a multiple of the unit weight of the soil and half the footing breadth. Then, starting from this assumed value the stresses on the dividing lines between the wedges and the sliding surface are calculated as outlined above. The initally assumed value is then adjusted until the stresses on the last wedge coincides with the passive earth pressure. Since the apex angle of the transition zone as a function of the slope angle is known, then the slope angle corresponding to the calculated value is determined.

The authors present their results in the form of curves of the dimensionless bearing capacity coefficient N_{γ}, plotted against the slope angle, for various values of ϕ ranging from 15 degrees to 40 degrees.

The analysis does not account for the embedment depth of the footing or the distance between the shoulder of the slope to the edge of the footing. The results are therefore applicable only to footings sitting at the top of a slope with one edge at the crest of the slope.

2.4 Kovalev (1964)

Kovalev's method for the determination of the bearing capacity of a footing on a slope can best be described as a limit equilibrium method. He developed a simplified shape of the slip lines generated using Sokolovskii stress characteristic method and used this simplified shape to obtain an approximate estimate of the ultimate bearing capacity of the soil. It is worthy of note that Kovalev's expressed rationale for using a simplified failure surface is to avoid the great amount of calculations required for solving the basic differential equations, and determination of the slip line field for the variety of combinations of slope angle and soil shear strength parameters. Although such an
argument may have been valid at the time when the paper was first published, the availability of the digital computer has substantially changed matters. It is now possible to carry out a series of such calculations with little human effort and at relatively low cost and in a very short time.

Kovalev, using the approach of Sokovskii (1960), treats the bearing capacity problem as being identical to a slope stability problem with a surcharge at the crest of the slope. It is obvious that this approach does not take into account the important effect of the interaction between the soil and the base of the footing. In fact, the footing load is simply treated as an artifical surcharge. A typical slip line field generated using this approach is shown on Figure 2.6. This diagram shows that the slip line field continues right up to the base of the footing on the horizontal ground surface.

The simplified failure surface considered by Kovalev for a surface footing is shown on Figure 2.7. He states that it was based on actual stress characteristic fields for ' c, ϕ ', soils with ϕ varying between 30 and 40 degrees. The proposed failure surface consists of two parts: a straight line section 'ab' inclined at an angle $\pi / 4-\phi / 2$ to the sloping ground surface, and, a circular segment 'bd' with centre O^{\prime} (Figure 2.7).

FIGURE 2.6: TYPICAL SLIP LINE FIELD BASED ON SOKOLOVSKII SOLUTION

FIGURE 2.7: KOVALEV'S FAILURE MECHANISM FOR A FOOTING ON A SLOPE

The centre of the circular segment is found by ensuring that the rupture line meets the ground surface at the "statically correct angle " of $\pi / 4+\phi / 2$. The statically correct angle is the angle at which a rupture line intersects a boundary so that statical equilibrium conditions at the point of intersection are fully satisfied.

Although it is not explicitly acknowledged by Kovalev, he makes use of Kotter's equation to determine the state of stress along the assumed rupture line and subsequently the ultimate bearing capacity of the footing.

Kotters equation relates the limiting state of stress on a rupture line, to two variables, namely, the resultant stress σ, and the angle θ between the rupture line and the horizontal (Kotter, 1903).

The equation may be expressed as

$$
\begin{array}{ll}
\frac{\mathrm{d} \sigma}{\mathrm{ds}}-2 \sigma \tan \phi & \frac{\mathrm{~d} \theta}{\mathrm{~d} s}=-\gamma \frac{\cos \theta}{\cos \phi}
\end{array} \ldots \ldots \ldots .2 .1
$$

By combining Kotter's equation with the known boundary conditions, e.g. the known statically correct angle where the rupture line meets the surface, Kovalev determined the vertical stress at the base of the footing.

This is expressed as

$$
p^{\prime}=A_{1} \gamma B+C_{1} c
$$

where γ, B, and c have the same usage as elsewhere in the thesis (see pages vi to vii for a definition of the notation used), and A_{1} and C_{1} are coefficients depending on the soil properties ϕ and the problem geometry i.e. α.

Comparing Equation 2.2 to the commonly used expression for bearing capacity of a surface footing ($D=0$).

$$
\mathrm{q}_{\mathrm{u}}=1 / 2 \mathrm{~B} \gamma \mathrm{~N} \gamma+\mathrm{cN}_{\mathrm{c}} \ldots \ldots \ldots \ldots 2.3
$$

we note that

$$
\begin{aligned}
& \mathrm{A}_{1}=\mathrm{N}_{\gamma / 2} \text {, and } \\
& \mathrm{C}_{1}=\mathrm{N}_{\mathrm{c}}
\end{aligned}
$$

Kovalev indicates that the maximum difference between the results obtained by his proposed method, and those obtained by solving the basic differential equations numerically is 12%.

Thus far, we have only discussed the case of a surface footing. The case of a shallow footing, that is, one placed at small depth in the soil was also studied by Kovalev. The soil layer above the base of the footing is treated as a uniform surcharge which is in turn resolved into two components perpendicular and parallel respectively to the surface of the slope (Figure 2.8).

The analysis assumes that the failing domain can be divided into two zones as shown on Figure 2.9.

The approximate sliding surface for this case, like the case of surface footing, is considered to consist of a straight line portion and a circular arc. (Figure 2.10). The straight line portion cuts the slopes surface at an angle of $\varepsilon+\alpha-\phi$. The angle α is defined in Figure 2.9 and from Mohr circle considerations, its value is given by

$$
\alpha=1 / 2\{\pi / 2-\operatorname{arc} \sin (\sin \varepsilon / \sin \phi)-\varepsilon+\phi\}
$$

Again by applying Kotter's equation, Kovalev obtained a solution for the bearing capacity coefficients N_{γ} and N_{q}. For this case N_{c} was not determined since only cohesionless soil was considered.

FIGURE 2.8: UNIFORM SURCHARGE ON A SLOPE

FIGURE 2.9: DIVISION OF THE FAILING DOMAIN INTO TWO ZONES (after Kovalev 1964)

FIGURE: 2.10: FAILURE MEG HANISM FOR A SHALLOW FOOTING ON A SLOPE (after Kovalev 1964)

FIGURE 2.11: COMPARISON OF THE BEARING CAPACITY PROBLEM WITH THE SLOPE STABILITY PROBLEM (after Giroud 1971).

The important case of a footing with its leading edge located away from the crest of the slope was not addressed. As noted earlier, the analysis is based on the assumption that the bearing capacity of a footing on a slope is identical to the problem of stability of a slope with a surcharge placed at the crest. This approach is here considered to be too simplistic since it does not take into account the important effect of the soil-footing interaction. This view agrees with the view point of Giroud et al (1971) who have indicated diagramatically (Figure 2.11) that the load that can be supported by a footing at the top of a symmetrical embankment is greater than the weight of soil required to transform the embankment into a triangle.

2.5 Brinch Hansen (1970)

In 1961, Brinch Hansen published "A General Formula for Bearing Capacity (Hansen, 1961)". This publication does not give a 'new' method for bearing capacity determination, but generalizes the Terzaghi (1943) bearing capacity formula to take into account the dimensions, shape and depth of the footing, as well as the inclination and eccentricity of the foundation load. This was done by multiplying each term of the Terzaghi formula with a shape, depth and inclination factor . The general equation was then written as

$$
q_{u}=1 / 2 B_{\gamma} N_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma}+\gamma D \quad N_{q} s_{q} d_{q} i_{q}+c \quad N_{c} s_{c} d_{c} i_{c}
$$

The method employed by Brinch Hansen in determining the new factors is semi empirical. For example, with respect to N_{γ}, Brinch Hansen states that Meyerhof's values are too high while those of Lundren and Mortenson are too low. Reasoning that the correct value of N_{γ}, must be between these two values he gives a 'better' approximation of the N_{γ} value as $N_{\gamma}=1.8\left(N_{q}-1\right) \tan \phi$.

Approximate formulae are also presented for the factors s, d and i.

In 1970 Brinch Hansen published "A Revised and Extended Formula for Bearing Capacity (Hansen (1970). In this paper, two other factors were added to account for base inclination and ground inclination. The ground inclination factor was intended to apply to the case of a footing located close to a slope. The failure mechanism assumed for calculation of the new factors b and g is shown on Figure 2.12. The factors g_{q} and g_{γ} are given as

$$
g_{\gamma}=g_{q}=(1-0.5 \tan \alpha)^{5}
$$

For a horizontal footing $b_{\gamma}=1$. Hence setting the terms which are not applicable to unit, Brinch Hansen's formula can be written as

$$
q_{u}=1 / 2 B_{\gamma} N_{\gamma} g_{\gamma}+{ }_{\gamma} D N_{q} g_{q} d_{q} \ldots \ldots \ldots .2 .4
$$

For a shallow footing, that is $0 \leq \mathrm{D}_{\dot{\mathrm{f}}} \leq \mathrm{B}$), and with ϕ ranging from 30 to 45 degrees d_{q} varies within the relatively narrow range of 1.1 to 1.3 .

FIGURE 2.12: FAILURE MECHANISM FOR A FOOTING ON A SLOPE (after Brinch Hansen 1970).

FIGURE 2.13 N_{γ} DETERMINATION (after Giroud 1971)

Taking an average value of 1.2 , Equation 2 can be rewritten as

$$
\mathrm{q}_{\mathrm{u}}=1 / 2 \mathrm{~B} \gamma \mathrm{~N}_{\gamma} \mathrm{g}_{\gamma}+1.2 \gamma \mathrm{D} \quad \mathrm{~N}_{\mathrm{q}} \mathrm{~g}_{\mathrm{q}}
$$

The equivalent Meyerhof bearing capacity factor $N_{\gamma q}$ based on this method can therefore be expressed as

$$
\mathrm{N}_{\gamma \mathrm{q}}=\mathrm{N}_{\gamma} \mathrm{g}_{\gamma}+2.4 \frac{\mathrm{D}}{\mathrm{~B}} \mathrm{~N}_{\mathrm{q}} \mathrm{~g}_{\mathrm{q}}
$$

As noted previously, the Brinch Hansen method is not a 'new' method for determination of bearing capacity. It is essentially a semi-empirical method based on Terzaghi's analysis which allows for greater flexibility with respect to practical applications.

2.6 Giroud and Tran-Vo-Nhiem (1971)

These authors developed a bearing capacity theory for a footing placed at the top of an embankment which slopes equally on either side of the foundation (Figure 2.11). The slope starts right at the edge of the footing. The method employed in determining the bearing capacity coefficients, is essentially a limit equilibrium method. It is assumed that a rigid wedge which is symmetrical about the centre line of the foundation, is formed beneath the footing. The bearing capacity coefficient, is obtained as a function of the wedge angle, the angle of internal friction of the soil ϕ, and a thrust coefficient on the surface OS, (Figure 2.13). This is done by considering the equilibrium of the wedge $\mathrm{OS}_{1} \mathrm{O}^{\prime}$ and equating the vertical thrust force on $O S$, due to the soil in the dihedral $\mathrm{S}_{1} \mathrm{OS}_{2}$ to the sum of load on the footing and weight of soil in the wedge $\mathrm{OS}_{1} \mathrm{O}_{1}$.

The thrust coefficient defines the stress distribution of OS_{1} which is assumed to be triangular with a value of zero at O, that is, the slope of the triangular stress distribution is the thrust coefficient. The authors refer to the coefficient as the coefficient of passive earth pressure. This term is considered to be misleading since the coefficient is not in fact the "coefficient of passive earth pressure " as it is commonly used in traditional Soil Mechanics. The term thrust coefficient is preferred, and is used in the ensuing discussion.

The authors state that the value of the thrust coefficient is deduced after determining the network of characteristics in the dihedral $\mathrm{OS}_{1} \mathrm{~S}_{2}$ by a finite-difference method. No further details of the method are given. For any given values of ϕ and α, the value of ω_{r} which yields a minimum $N \gamma$ is determined. This value is taken to be the value for use in design.

The authors also present an approximate method of determining the bearing capacity coefficient in the instance when the leading edge of the footing is located some distance away from the crest of the slope.

It consists of first determining the "equivalent slope", which is defined as the slope starting from the foundation which gives the same bearing capacity as that of the real soil mass, (Figure 2.14). The method is based on the assumption that the failure mechanism in the actual soil medium, and in the fictitious medium is the same.

The bearing capacity factors are listed in tables for a range of α from 0 to 50 degrees, and ϕ from 0 to 50 degrees.

2.7 Chen (1975)

Chen (1975) obtained the bearing capacity of a footing on a slope of cohesionless soil using the so-called "limit analysis" method. Chen states that this method enables a definite statement to be made about the collapse load without carrying out a step-by-step elastic plastic analysis. The analysis employs the upper bound limit theorem to generate an approximate solution to the bearing capacity problem. The soil is modelled as an elastic-perfectly plastic material which obeys the associated flow rule. They physical validity of this flow rule is however questionable (Graham, 1968).
however questionable (Graham 1968).

The analysis is a modification of the solution for a shallow footing on level ground (Chen, 1975). For horizontal ground the failure mech-

FIGURE 2.14: DETERMINATION OF THE "EQUIVALENT SLOPE" FOR A FOOTING LOCATED AWAY FROM THE CREST OF THE SLOPE (after Giroud 1971).
anisms utilized in the analysis are the Prandtl and Hill mechanism (Figures 2.15 and 2.16 respectively). For sloping ground, the area bef (Figure 2.15) is set equal to zero and the angle which 'eb' makes with the horizontal is taken as being negative in the analysis. These conditions therefore represent the case of a footing on a slope.

In accordance with the upper bound theorem of limit analysis, the power of the external loads is equated with the rate of internal energy dissipation for the assumed failure mechanism. For a soil possessing both cohesion and friction, Chen divides the radial shear zone into a series of small triangles (Figure 2.15) in order to compute the rate of energy dissipation in this region. The triangles are assumed to translate as rigid bodies in directions that make an angle ϕ with the slope of the local segment of cd. The rate of energy dissipation is obtained as a function of the soil cohesion and the relative velocity between the two adjacent soil masses, that is, the soil in the failure zone and the soil outside the zone.

For cohesionless soil, Chen assumes that the rate of internal energy dissipation is zero. On this basis, it is therefore only necessary to calculate the rate of external work done. External power or work done is contributed by gravity forces and the footing load. The bearing capacity factor of the soil is this determined from the expression resulting from equating the rate of external work to zero.

FIGURE 2.15: THE PRANDTL FAILURE MEC HANISM

FIGURE 2.16: THE HILL FAILURE MEC HANISM

The analysis is carried out for both the Prandtl and Hill mechanisms, and the absolute minimum value of $\mathrm{N} \gamma$ is obtained. The results presented by Chen (1975) apply only for the case of a footing at the top of a berm which slopes equally on either side.

2.8 Bowles (1975)

Bowles (1975) proposed a graphical method for the determination of the bearing capacity of a footing on a slope, which he states is a modification of Brinch Hansen's (1966) equilibrium method. Reference to the original Brinch Hansen publications (1957 and 1966) (see Section 2.5 J . indicates that he approximates the limiting rupture line to a circular arc (Figure 2.17). Static equilibrium conditions are then applied to determine the components N and T of the internal stresses in the circle, and the moment M_{R}, as a function of the problem geometry and the stresses on the assumed rupture line. Use is then made of Kotter's equation, and the known boundary stresses to determine the stresses along the rupture surface, and hence the unknowns N, T and M_{R}. Simple static equilibrium considerations can then be applied to determine the ultimate bearing capacity.

The graphical procedure developed by Bowles is presented in principle in Figure 2.18.

FIGURE 2.17: BRINCH HANSEN'S CIRCULAR RUPTURE SURFACE (after Brinch Hansen 1966)

It consists essentially of drawing the system to scale, and using a graphical procedure to construct the presumed failure surface which is comprised of a circular arc and a straight line. The weight of the soil in the different segments of the failing mass are then computed. The frictional resistance to sliding is computed from the weights, and static equilibrium conditions are supplied to determine the bearing capacity.

The only aspect of this method which is similar to the "so-called" equilibrium method of Brinch Hansen (1966) is that a segment of the failure surface assumed to be circular.

The method used for determination of the ultimate load is not the direct application of Kotter's equation, but considers only simple static equilibrium of the system. Furthermore, the validity of a circular failure surface is questionable since it does not conform to the surface observed in experimental work.

Lee (1978) has computed the bearing capacity factor $N_{\gamma q}$ (as defined by Meyerhof, 1951) using Bowles's (1975) method for a cohesionless sand with $\phi=35^{\circ}$ and $\phi=40^{\circ}$ with footings located up to $5 B$ from the crest of the slope, with depths ranging from $0-3 B$. A slope with a gradient of 1 vertical to 2 horizontal was considered.

$$
\begin{aligned}
& \theta_{1}=45^{\circ}+\phi / 2 \\
& \theta_{2}=45^{\circ}-\phi / 2 \\
& \phi=\text { INTERNAL FRICTION ANGLE } \\
& B=\text { FOOTING WIDTH } \\
& \mathrm{D}=\text { FOOTING FOUNDING LEVEL }
\end{aligned}
$$

FIGURE 2.18: GRAPHICAL PROCEDURE FOR BEARING CAPACITY DETERMINATION (after Bowles 1975).

FIGURE 2.19: BOWLES (1977) FAILURE MECHANISM (after Lee 1978).
2.9 Bowles (1977)

The method proposed by Bowles like the one described in Section 2.8 is also graphical procedure. It is based on an assumed failure surface consisting of a log-spiral and a straight line which is consistent with that used by Terzaghi (1943). In contrast to Terzaghi;s solution however, the base angle is assumed to be equal to $\pi / 4+\phi / 2$, value same as that assumed by Meyerhof, (1957). As such, the proposed method does not involve any novel approaches to solving the problem, or any attempt to provide a more soundly based analysis The assumed failure mechanism is shown on Figure 2.19.

For a general soil, that is, one possessing both cohesion and friction, revised bearing capacity factors $\mathrm{N}_{\mathrm{C}}{ }^{\text {and }} \mathrm{N}^{\prime}{ }_{\mathrm{q}}$ were determined by comparing the geometries of the case under consideration with that of a footing on level ground.

For example, $\mathrm{N}_{\mathrm{C}}{ }^{\text {is }}$ given by

$$
\mathrm{N}_{\mathrm{C}}^{\prime}=\mathrm{N}_{\mathrm{c}} \frac{\mathrm{~L}_{1}}{\mathrm{~L}_{\mathrm{o}}}
$$

L_{0} is the length of the surface 'cbde' in Figure 2.20 and L_{1} is the length of the surface 'cbde' in Figure 2.19.

Similarly, N_{q} is given by

$$
\mathrm{N}_{\mathrm{q}}^{\prime}=\mathrm{N}_{\mathrm{q}} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{\circ}} \quad \text { where } \mathrm{A}_{\circ} \text { and } \mathrm{A}_{1}
$$

are the shaded areas in Figure 2.20 and 2.19 respectively.

Bowles states that the bearing capacity factor N^{γ} requires no modification for slope effects because it depends on the wedge 'cba' (Figure 2.19). It assumes therefore that the shape of the wedge is also not modified by slope effects. In contrast, the analysis considered later in this thesis is based on the hypothesis that the shape of the elastic wedge is fundamentally influenced by the effect of the slope.

When the area A_{1} is greater than A_{0}, Bowles (1977) proposed that $\mathrm{N}^{\prime}{ }_{\mathrm{q}}$ be taken as being equal to N_{q}. This is based on the understanding that the bearing capacity of a footing influenced by a slope will be less than that of footing on level ground.

In order to compare Bowles (1977) bearing capacity factors with Meyerhof (1957) values, Lee (1978) combined the former bearing capacity factors as follows:-

$$
N_{\gamma q}=N_{\gamma}+\frac{2 D}{B} \quad N_{q}^{\prime} d_{q}
$$

LEGEND

ϕ a INTERNAL FRICTION ANGLE
$\theta_{1}=45^{\circ}+\phi / 2$
$\theta_{2}=45^{\circ}-\phi / 2$
FIGURE 2.20: FOOTING ON HORIZONTAL GROUND

FIGURE 2.21: FAILURE MECHANISM FOR FOOTING ON A SLOPE (after Kusakabe et al 1981)

Lee (1978 and 1981) calculated the $\mathrm{N}_{\gamma q}$ values based on Bowles's method for $\phi=35^{\circ}$ and $\phi=40^{\circ}$ and a slope with a gradient of 1 vertical to 2 horizontal for footings located at distances up to 5 B for the crest of the slope, and depths up to $3 B$ deep.
2.10 Kusakabe et al (1981)

The method employed by these authors to determine the bearing capacity of a footing on a slope is a limit analysis technique using the upper bound theorem. The solution considers the failure mechanism shown on Figure 2.21. It consists of a triangular region immediately beneath the footing which is an active wedge, and a rupture line which consists of a logarithmic spiral and a straight line exiting at the toe of the slope.

The authors state only that a straight line connects with the logarithmic spiral smoothly and passes through the inclined surface of the slope. No further details of the failure mechanism are presented. From the geometry of the problem, and the upper bound theorem a relationship is derived for bearing capacity by equating the rate of internal energy dissipation to the rate of external work.

The authors present a number of charts giving bearing capacity for various combinations of the problem variables, namely the slope angle, the footing distance from the edge of the slope, the slope height (as a multiple of the foundation width), the strength parameters c, and ϕ of the soil. The authors have not considered the particular case of cohesionless soil which is addressed in this thesis. However, their results are quite comprehensive and therefore potentially of practical significance.

The general features of the analysis is similar to that used by Chen (1975). That is, a failure mechanism is assumed, and the rate of internal energy dissipation is equated to the external work done for the assumed mechanism. The resulting equation yields a relationship for $\mathrm{N} \gamma$ which is function of ϕ, the apex angle of the radial transition zone BEC (Figure 2.21) and the area of quadrilateral ABEF. The angle ϕ is defined for a given problem. The angle BEC and the area of the quadrilateral ABEF are determined from the geometry of the assumed failure mechanism. The accuracy of the solution is therefore dependent upon how well the assumed failure surface models the actual soil behaviour.

In Sections 2.2 to 2.10 nine methods which are presently available for determination of the bearing capacity of a footing on a slope have been outlined. The methods employed in developing the theories are limit equilibrium and limit analysis methods. Comparison of the results of the theories is presented in Chapter 7. However, it is evident from the foregoing discussion that despite the relatively large number of theories which have been advanced over the last three decades, there is as yet no theory which analyses all the special features of the problem in an attempt to provide a realistic estimate of the ultimate bearing capacity.

In contrast to the solution developed in this thesis, all of the existing theories require assumptions to be made with respect to the shape of the failure surface. Additionally, it is not clear whether the downslope failure surface direction is carefully treated in some of the solutions (e.g. Kusakabe, 1981).

At least three of the theories, (Giroud, Chen and Mizuno et al) consider only the case of a footing located at the crest of an embankment which slopes equally on either side. The limited practical application of this solution is immediately obvious. Another method (Kovalev) considers the bearing capacity problem to be identical to a slope stability problem, and hence does not include the important effect of soil-footing interaction. The basis for
the failure mechanisms proposed by Bowles is not clear. Additionally, none of the methods consider how the soil on the upslope side of the footing influence the ultimate bearing capacity. These aspects are considered in this study in order to develop a soundly based analysis for the problem.

CHAPTER 3

THE STRESS CHARACTERISTIC METHOD

3.1 INTRODUCTION

The stress characteristic method involves the integration by a numerical procedure of known boundary conditions to unknown boundary stresses in a field or domain in which the strength properties are defined everywhere. At failure, the soil beneath a footing is stressed to its limiting or yield condition. The Coulomb-Mohr yield criterion is assumed to apply in the failing region.

Sokolovskii (1965) developed the stress characteristic method to compute the stresses beneath the footing at failure. The numerical accuracy of the basic method was improved by Graham (1968). For convenience, the development of the numerical procedure is briefly outlined here, following the approach given by Graham. The computer program is based on the work of Hovan (1985) but has involved a significant amount of reprogramming for the particular question being examined.

3.2 THEORY

Points in a two dimensional plastic field are defined in terms of physical plane co-ordinates x and z where the positive z axis is oriented vertically downwards (in the direction of gravity) to simplify the resulting differential equations (Figure 3,1).

FIGURE 3.1: GENERAL SYSTEM OF COORDINATES

FIGURE 3.2 SIGN CONVENTION

A soil element in this two dimensional field which is about to fail, must also be in a state of plastic equilibrium. The stresses in a soil element in a state of plastic or limiting equilibrium are considered to be controlled by the Coulomb-Mohr failure criterion.

The criterion is stated as follows:

$$
\tau_{f}=c+\sigma_{n} \tan \phi \quad \ldots \ldots \ldots .3 .1
$$

For cohesionless soil, $c=0$ so the equation can be written as

$$
\tau_{f}=\sigma_{n} \quad \tan \phi \quad \ldots \ldots \ldots \ldots .3 .2
$$

Effective stresses have not been indicated by the normal ' superscript but are assumed throughout.

Figure 3.2 shows the direction of the major principal stress, σ_{1} in a typical soil element, inclined as an angle ψ to the z - axis. The slip lines S_{1} and S_{2} along which failure will occur are inclined at an angle $\mu=(\pi / 4-\phi / 2)$ to the direction of σ_{1}. The Mohr's circle representation of this state of stress is shown in Figure 3.3. From the Mohr circle,

$$
\left.\sigma_{\mathrm{z}}^{\sigma_{\mathrm{x}}}\right\}=\sigma(1 \pm \sin \phi \cos 2 \psi)
$$

and ,

$$
{ }^{\tau} \times{ }_{z}=\sigma \sin \phi \sin 2 \psi \quad \ldots \ldots \ldots \ldots .3 .3 .
$$

A two dimensional soil element which is just about to fail, must

FIGURE 3.3. MOHR CIRCLE FOR FAILURE CONDITION
satisfy the equations of static equilibrium.

$$
\begin{aligned}
& \frac{\partial \sigma_{z}}{\partial x}+\frac{\partial \tau_{x z}}{\partial z}=0 \\
& \frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{x z}}{\partial \cdot x}=\gamma
\end{aligned}
$$

$$
\text { } 3.4
$$

The unit weight of the soil is considered to be the only body force.

It is convenient to express these equations in dimensionless terms by substituting $\mathrm{x}=\mathrm{x}_{\mathrm{r}} / \ell, \mathrm{z}=\mathrm{z}_{\mathrm{I}} / \ell, \sigma=\sigma_{\mathrm{r}}$ i ℓ and $\tau=\tau_{\mathrm{r}} / \mathrm{l} \ell$. The parameter ℓ is called the scale parameter or characteristic length. γ is the unit weight of the soils and x_{r}, z_{r}, σ_{r}, and τ_{r} are dimensional real parameters. Dimensionless parameters have been used throughout the rest of the analysis. Euqations 3.3 and 3.4 may be rewritten in dimensionless form as

$$
\sigma_{x}^{\sigma_{x}}=\sigma(1 \mp \sin \phi \cos 2 \psi)
$$

$$
\tau_{x z}=\sigma \sin \phi \sin 2 \psi \quad \ldots \ldots \ldots . .3 .3 a
$$

and

$$
\begin{aligned}
& \frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{x z}}{\partial x}=1 \\
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x z}}{\partial z}=0 \quad \ldots \ldots \ldots \ldots \ldots .4 a
\end{aligned}
$$

Substitution of Equations 3.4a into 3.3a gives

$$
\begin{gathered}
\frac{\partial \sigma}{\partial \mathrm{z}}(1+\cos 2 \psi \sin \phi) \quad+\frac{\partial \sigma}{\partial \mathrm{x}}(\sin 2 \psi \sin \phi) \\
-2 \sigma \sin \phi\left(\sin 2 \psi \frac{\partial \psi}{\partial \mathrm{z}}-\cos 2 \psi \frac{\partial \psi}{\partial \mathrm{x}}\right)=1
\end{gathered}
$$

and,

$$
\begin{gathered}
\frac{\partial \sigma}{\partial \mathrm{x}}(1-\cos 2 \psi \sin \phi)+\frac{\partial \sigma}{\partial \mathrm{z}}(\sin 2 \psi \sin \phi) \\
-2 \sigma \sin \phi\left(\sin 2 \psi \frac{\partial \psi}{\partial \mathrm{x}}+\cos 2 \psi \cdot \frac{\partial \psi)}{\partial \mathrm{x}}=0\right.
\end{gathered}
$$

Equations 3.5 are statically determinate but cannot in general

 be integrated in closed form because they are non-linear. Closed form solutions can be obtained for special cases with the simplifying assumption for example $\phi=0$, or $\gamma=0$ (Wu, 1966; Graham 1968).Sokolovskii suggested using the following logarithmic transformations to simplify the equation

$$
\begin{aligned}
& x=\frac{\ln \sigma}{2 \tan \phi} \\
& \xi=x+\psi \\
& \eta=x-\psi
\end{aligned}
$$

Substitution of these new variables into Equations 3.5 gives after mathematical manipulation the following equations

$$
\begin{align*}
& \frac{d \eta}{d z}=\mathrm{a}-\tan (\psi-\mu) \frac{\partial \eta}{\partial \mathrm{x}}+\frac{\partial \eta}{\partial \mathrm{x}} \cdot \frac{\mathrm{dx}}{\mathrm{dz}} \\
& \frac{d \xi}{d z}=\mathrm{b}-\tan (\psi+\mu) \frac{\partial \xi}{\partial \mathrm{x}}+\frac{\partial \xi}{\partial \mathrm{x}} \cdot \frac{\mathrm{dx}}{\mathrm{dz}}
\end{align*}
$$

where,

$$
a=\frac{\sin (\psi+\mu)}{2 \sigma \sin \phi \cos (\psi-\mu)}
$$

and,

$$
\mathrm{b}=-\frac{-\sin (\psi-\mu)}{2 \sigma \sin \phi \cos (\psi+\mu)}
$$

For any line in the physcial plane with slope $\frac{d x}{d z}=\tan (\psi \mp \mu)$,
the last two terms of Equations 3.6 are equal and opposite, and therefore cancel. The stress field can now be described by two families of
slip lines

$$
\begin{align*}
& \frac{d \eta}{d z}=a \text { for slip lines } S_{1} \text { with slope } \frac{d x}{d z}=\tan (\psi-\mu) \\
& \text { and, } \\
& \frac{d \xi}{d z}=b \text { for slip lines } S_{2} \text { with slope } \frac{d x}{d z}=\tan (\psi+\mu)
\end{align*}
$$

From the Mohr circle (Figure 3.3) it can be seen that the two lines through the pole having inclinations of ($\psi \overline{+} \mu$) are in the directions of the slip lines S_{1} and S_{2} in the physical field. That is, the solved system in logarithmic stress space provides a set of slip lines or a slip line field whose positions are known in the physical (x, z) plane.

The values of the four parameters x, z, σ, ψ, describing a point P in a plastic field are found by solving Equations 3.7 along each of the characteristics through the point. To provide a definite integral, two previously known points, one lying on each of the characteristics must be available. In Figure 3.4 the new point C lies on the intersection of the S_{1} line from point $B(x, z, \sigma, \psi,)_{B}$ with the S_{2} line from point A $(x, z, \sigma, \psi) A$.

FIGURE 3.4: COMPUTATION OF A NEW POINT C FROM KNOWN POINTS A AND B.

$$
\begin{align*}
& \frac{\Delta \xi}{\Delta \mathrm{z}}=\mathrm{b}=-\frac{\sin (\psi-\mu)}{2 \sigma \sin \phi \cos (\psi+\mu)} \\
& \frac{\Delta \eta}{\Delta \mathrm{z}}=\mathrm{a}=\frac{\sin (\psi+\mu)}{2 \sigma \sin \phi \cos (\psi-\mu)}
\end{align*}
$$

As a first approximation, the assumptions are made that the slip line AC and BC in Figure 3.4 are straight, and that they have directions of $\left(\psi_{A}+\mu\right)$ and $\left(\psi_{B}-\mu\right)$ at C respectively.

The slip line through A has the gradient

$$
\frac{d x}{d z}=\tan \left(\psi_{A}+\mu\right)
$$

therefore,

$$
x_{C}-x_{A}=\left(z_{C}-z_{A}\right) \tan \left(\psi_{A}+\mu\right)
$$

Similarly, for the slip line through B, we have

$$
x_{C}-x_{B}=\left(z_{C}-z_{B}\right) \tan \left(\psi_{B}-\mu\right)
$$

Solving for X_{C} and z_{C} gives

$$
\begin{aligned}
& x_{C}=\underline{x}_{B}+\left(z_{C}-z_{B}\right) \tan \left(\psi_{B}-\mu\right) \\
& z_{C}=\frac{B_{B} \tan \left(\psi_{B^{-}}^{-\mu}-x_{B}-\bar{z}_{A} \tan \left(\psi_{A}+\mu\right)+x_{A}\right.}{\tan \left(\psi_{B}-\mu\right)-\tan \left(\psi_{A}+\mu\right)}
\end{aligned}
$$

From Equations 3. 8

$$
\begin{align*}
& \xi_{C}=\xi_{A}-\frac{\left(z_{C}-z_{A}\right) \sin (\psi-\mu)}{2 \sigma_{A} \sin \phi \cos (\psi+\mu)} \\
& \eta_{C}=\eta_{B}+\frac{\left(z_{C}-z_{B}\right) \sin (\psi+\mu)}{2 \sigma_{B} \sin \phi \cos (\psi-\mu)}
\end{align*}
$$

From ξ and η_{C}, the values of σ_{C} and ψC can be computed from the following expressions by reversing the log-transform.

$$
\begin{aligned}
& \sigma_{C}=\exp \{\tan \phi(\xi+\eta)\} \\
& \text { and, } \\
& \psi_{C}=1 / 2(\xi-\eta)
\end{aligned}
$$

The simple form of the finite difference relations given is very approximate since no account is taken of the curvature of the slip lines between the known point. A and B, and the new point C. The accuracy of the solution was improved by Sokolvskii (1960) by substituting $1 / 2\left(\psi_{A}+\psi_{C}\right)$ and $1 / 2\left(\psi_{\mathrm{B}}+\psi_{\mathrm{C}}\right)$ for ψ_{A} and ψ_{C} respectively once the initial value of ψ has been determined. This process is continued until the value of ψ from two successive iterations converge to an acceptable tolerance. This is the so-called " ψ iteration" method (Graham, 1968). The solution is much improved by the additional substitution $\sigma_{A, B}=1 / 2\left(\sigma_{C}+\sigma_{A, B}\right)$ for σ_{A} and σ_{B} and carrying out
the iterative process until the σ values converge to a specified tolerance. This method is the so-called " σ, ψ iteration" method, which was proposed by Graham (1968).

3.3 DETERMINATIONS OF THE SLIP LINE FIELD

The computation begins at a boundary where the parameters $\mathrm{x}, \mathrm{z}, \sigma$ and ψ are known.

In this work, the known boundary is the edge of the passive zone beneath the sloping surface (Figure 3.5) which Graham (1966) has shown to have straight slip lines when the magnitude of the surface loading is zero (Figure 3.5).

If point O (Figure 3.6) is taken as the origin of the adopted system of physical co-ordinates the slip line field in the transition zone consists of two families of characteristics.

1. a set of curved radial lines originating from point O.
2. a set of spiral lines intersecting the radial lines in turn at an angle of $2 \mu=\pi / 2-\phi$

Point O is a unique point in the field, at which there is a sudden jump in the values of σ and ψ when moving from right to left say, through

Pole 0

FIGURE 3.5: TYPICAL SLIP LINE FIELD IN THE PASSIVE ZONE BENEATHA STRESS FREE SLOPE.
58.

FIGURE 3.6: TYPICAL SLIP LINE FIELD IN TRANSITION ZONE
O. The value of ψ describing the direction of the major principal stress is fixed at the beginning and end of the transition zone by the physical formulation of the problems as outlined in Sections 3.4 and 3.5. This means that ψ undergoes a total change of say $\Delta \psi$ at O. The slip lines themselves have no physical reality, but only describe the directions of slipping at any point in the field. The radial lines can therefore be specified in number by dividing $\Delta \psi$ into a suitable number of intervals, each corresponding to a separate member of the radial family. The parameters X and Z are constant and fixed at O by the formulation of the problem, and each radial line has a different, arbitrarily selected value of ψ and hence σ along the inner limiting member of the spiral family, surrounding O at an infinitesimally small distance. The assumption is made that close to 0 , self weight forces do not affect the stress distribution. Hence, the values of σ predicted for a weightless material are considered to be applicable around the inner limiting spiral curve (Graham 1966). Thus, if the boundary of the uniquely defined zone forming the initial radial line has values of σ_{i} and ψ_{i} at O, the value of σ_{j} on the j.th radial line having $\psi=\psi_{j}$ at 0 , will be given by

$$
\sigma_{j}=\sigma_{i} \cdot \exp \left\{2 \tan \phi\left(\psi_{j}-\psi_{i}\right)\right\}
$$

Points determined in this way provide the second set of known boundary conditions required to begin the computation. The computation of the entire field is then routine using the numerical procedure outlined in Section 3.2 above. The computation of the slip line field is carried out until the end boundary where the failure stresses are to be evaluated is reached.

Since point O (Figures 3.5 and 3.6) is a singular point of the slipline field, it represents a point of discontinuity in the mathematical solution of the basic equations. At stress levels equal to zero, the logarithmic transformations that are in volved in the solution tend to infinity. In order to handle this problem, Graham (1968) introduced a surcharge term, in the computation of the slip line field, that allows the logarithmic stress range to remain finite. The effect of the surcharge term is then reduced by 'shrinking' the field by a factor of 10 n , where n is the number of scale reductions necessary to eliminate the effect of the surcharge to an acceptable tolerance. It is important to note that this scale reduction process does not itself introduce any scale effects since all computations are carried out in dimensionless terms. The present study has retained this procedure for handling the singularity at point O.

3.4
 THE INITIAL BOUNDARY CONDITION

It is necessary to determine values of the parameters $\mathrm{x}, \mathrm{z}, \sigma$ and ψ on the starting boundary, that is the edge of the rectilinear passive zone in order to begin computation of the stress characteristic field.

The parameter x is the horizontal distance from the point O (Figure 3.6).

The coordinate z is the depth of soil from the sloping ground surface to the boundary of the passive zone (Figure 3.6). The inclination of the passive zone boundary is a function of the angle ψ_{i}, the value of ψ in the passive zone.
z is also a function of ψ_{i} and is given by

$$
z=x \cdot\left\{\frac{1}{\tan \left(\psi_{i}-\mu\right)}-\tan \alpha\right\}
$$

The value of ψ_{i} is determined from the Mohr circle of Figure 3.7. and is given by

$$
2 \psi_{i}=\pi-\alpha-\sin ^{-1}(\sin \alpha / \sin \phi)
$$

FIGURE 3.7: MOHR CIRGLE SHOWING STRESS CONDITION IN THE UNIQUELY DEFINED ZONE AT THE SURFACE OF THE SLOPE.

The value of σ is also determined from the Mohr's circle as,

$$
\sigma=\frac{1.0+\mathrm{Z}}{1+\sin \phi \cos 2 \psi_{i}}
$$

where 1.0 is a surcharge term assumed for the present to be constant along the free surface of the slope.

3.5 THE END BOUNDARY CONDITION

For a footing on level ground, it is generally assumed that an elastic wedge of soil is trapped beneath the footing and that failure consists of two symmetrical zones flowing outwards from the centre line.

The end boundary in the stress field computation is normally taken as the lower edge of the elastic wedge for example by Graham and Stuart (1971), Suppiah (1981) and Hovan (1985). This boundary is also a slip line and is inclined at an angle of ϕ with the footing base.

For the case of a footing on sloping ground the elastic wedge is not symmetrical about the centre line of the base of the footing. The analytical sclution to its precise geometry however has never been addressed nor defined in any of the existing theories. This thesis addresses that problem. A
study of the shape of the elastic wedge and the determination of a likely shape for use in the computations is presented in Chapter 4. It is important to note that the inclination and conditions along this boundary have significant effect on the computed bearing capacity.

Vertical stresses on the two lower boundaries of the wedge are calculated from the stress characteristic solution, and then expressed as the dimensionless parameter $\mathrm{N}_{\mathrm{Yq}}{ }^{\circ}$

3.6 OTHER INPUT PARAMETERS

In order to facilitate the computations, other parameters must be carefully chosen. These are discussed below.

3.6.1 Scale Parameter \&

All the variables throughout the computation of the stress characteristics were expressed in dimensionless terms, that is they were written $\sigma=\sigma_{r} / \gamma \ell, \quad \mathrm{x}=\mathrm{x}_{\mathrm{r}} / \ell, \mathrm{z}=\mathrm{z}_{\mathrm{r}} / \ell$, where ℓ is a scale parameter used to convert the real physical plane dimensional parameters $\sigma, \mathrm{x}, \mathrm{z}$, into dimensionless ones for computational purposes, and viceversa. The scale parameter ℓ was chosen as the horizontal component of the edge of the passive zone (Figure 3.6).

3.6.2 Number of Spiral and Radial Lines

It has become also customary in stress characteristic solutions to use ten spiral and twenty radial lines (e.g. Graham 1968 and Hovan 1985). As noted by Hovan (1985), a higher number of spiral and radial lines would improve the accuracy only slightly. It would also lengthen the computation time. This thesis uses ten spiral and twenty radial lines for all the computations.

3.7 VALIDITY OF THE COMPUTER PROGRAM

The numerical accuracy of the results produced by the basic computer program was established by computing N_{γ} for a footing on level ground for a series of ϕ values from 30 to 42 degrees.

The computation values were compared with the results obtained previously by Graham and Stuart (1971), and Hovan (1985). These results are summarized in Table 3.1.

The computed N_{γ} values agree very closely with those of Graham and Stuart, and compare within -1.9% and $+0.2 \%$. These differences in N_{γ} may arise from slightly different procedures for integrating
the pressure distributions for determining the failures loads. Graham used essentially semi-graphical procedures, whereas more recent approaches by Suppiah (1984), Hovan (1985) and the author use numerical procedures. The results also compare reasonably well with those obtained by Hovan (1985) except at high ϕ values where the N_{γ} values differ by about 11%. The reason for this discrepancy is not known. It should be noted that this favourable comparison with N_{γ} values for surface footings on horizontal grounds does not however confirm the validity of the new EDGPA subroutines written by the Author.

ϕ angle	N_{γ} Graham q Stuart	N_{γ} Hovan	N_{γ} Author
30	22.4	23.17	21.97
32	31.4	31.25	31.29
34	45.0	45.60	44.93
35	54.5	-	54.03
36	65.0	69.20	65.14
38	96.0	98.90	95.14
40	143.0	147.90	142.09
42	216.0	242.97	214.65

TABLE 3.1 GHECK ON NUMERICAL ACCURAGY OF THE COMPUTER PROGRAM - COMPARISON OF N_{γ} VALUES FOR A FOOTING ON LEVEL GROUND.

CHAPTER 4

THE SHAPE OF THE TRAPPED ELASTIC WEDGE

4.1 INTRODUCTION

Vesic (1973) in his extensive review of the ultimate bearing capacity of shallow foundations on level ground concluded that the stress and deformation pattern under compressed areas is such that it always leads to the formation of single wedges immediately beneath the footing. The roughness of the footing base was deduced to have little effect on the bearing capacity as long as the applied external loads remained vertical. In their recent paper on model tests of bearing capacity problems in a centrifuge, Kimura et al (1985) state that their current experimental observations concur with the analytical theories suggesting a single wedge failure mechanism regardless of the roughness of the failure footing base. This means that the "Prandtl type" failure mechanism and not the "Hill type" mechanism is the likely failure type (Figures 2.15 and 2.16).

For footings on level ground this wedge of soil is commonly assumed to be symmetrical about the centre line of the footing and have a base angle of ϕ to $45+\phi / 2$ degrees. Graham and Stuart (1971) and Hovan (1985) used a base angle of ϕ degrees in their " ϕ - wedge" analyses.

FIGURE 4.1: STRESS DISTRIBUTION AND TRAPPED WEDGE FOR A FOOTING CLOSE TO A SLOPE

The case of a footing close to the crest of a slope with one side (A) adjacent to level ground (Figure 4.1) is however more complex. Because of its physical geometry, the problem is clearly asymmetrical. The stability of such a footing will be influenced by the reduced support available on the side with the slope. It can be expected that the ultimate bearing capacity will be reduced from the level-ground case. Failure will commence in the weakest region of the foundation soil, that is, in soil adjacent to the slope, and will propagate inwards towards the footing. The overall behaviour of the soil in the failing domain to either side of the centre line of the footing is not yet fully understood. However, it can be reasonably expected that if the foundation is constrained to move downwards vertically, then displacement of the soil mass will occur on both sides of the footing.

The earliest known experimental investigation of the behaviour of footings on slopes was reported by Peynircioglu (1948). This work indicated among other things that the trapped elastic wedge beneath the footing is probably not symmetrical about the centre line of the footing base. As mentioned in Section 3.5, the lower edges of this wedge form the end boundary for the stress characteristic solution. It is therefore necessary that their location should be carefully modelled if the stresses acting on them are to be determined accurately. Various analytical models for determining the shape of the wedge are studied in this Chapter.

4.2 Photographic Evidence For the Shape of the Wedge

Experiments that indicate the shape of the trapped wed ge for footings located close to slopes have been reported by Peynircioglu (1948), Mizuno et al. (1960), and Giroud and Tran-Vo-Nhiem (1971). The recently reported work of Kimura et al. (1985) based on model tests in a centrifuge also provides limited information on the shape of the slip lines at failure.

Peynircioglu carried out small scale tests on two types of sand in a glass box with dimensions $55 \times 33 \times 26 \mathrm{~cm}$. The physical properties of the sands are summarized on Figure 4.2. The movement of the sand particles during the loading process was recorded by means of time exposure photography. Although the friction between the sand and the sides of the glass box obscures the development of the failure zone, some important conclusions can be drawn from the observations, these are as follows:-
(1) It is very clear that the trapped wedge beneath the footing is asymmetrical, and that the base angle ω_{r} on the side nearest the slope is less than $\pi / 4+\phi / 2$.

SOIL PROPERTY	S_{1}	$\mathrm{~S}_{2}$
Specific Gravity	2.613	2.591
Unit Weight in the loosest state	$1.405 \mathrm{t} / \mathrm{m}^{3}$	$1.385 \mathrm{t} / \mathrm{m}^{3}$
Unit Weight in the densest state	$1.584 \mathrm{t} / \mathrm{m}^{3}$	$1.610 \mathrm{t} / \mathrm{m}^{3}$
Porosity in the loosest state	46.2%	46.5%
Porosity in the densest state	39.3%	37.9%
Angle of internal friction	38°	36°

FIGURE 4.2 PROPERTIES OF THE SANDS USED BY PEYNIRCIOGLU (1948)
(2) The greater the slope inclination, the greater is the asymmetry of the wedge.

A summary of the relevant results of this work is shown in Table 4.1, which also shows a summary of the experimental works of Giroud (1971) and Kimura (1985) and comparisons of these results with the models developed later in this Chapter.

Mizuno (1960) studied the problem with the aid of small, two-dimensional model where the soil is represented by small cylindrical bamboo sticks, 5 mm in diameter. They reported good agreement between the observed slip lines and a failure zone calculated by assuming a symmetrical soil wedge with a base angle of $\pi / 4+\phi / 2$. This is in direct contradiction to the observations by Pernircioglu (1948) described previously. The reasons for this apparent discrepancy are not known.

Giroud and Tran-Vo-Nhiem (1971) carried out their experiments with a two dimensional model similar to that used by Mizuno et al (1960) but used duralumin rods to represent the soil medium. The soil movement and failure mechanism were observed by means of both a camera attached to the moving footing and by a fixed camera. The results clearly indicate than an asymmetrical wedge is formed beneath the footing and that this asymmetry increases with the inclination of the slope. The base angle of the wedge immediately adjacent to the slope ω_{I} (Fig. 4.1) is observed to be less than $\pi / 4+\phi / 2$. The results in general agree with those of Peynircioglu (1948) and the pertinent details are summarized on Table 4.9.

AUTHOR	α degrees	ϕ degrees	$\omega^{\text {见 }}$					ω_{r}					$\mathrm{x}_{\mathrm{l}} / \mathrm{x}$ r				
			$\begin{array}{\|l\|} \hline(4) \\ \text { OBS } \end{array}$	M1	M2	M3	M4	$\begin{aligned} & \text { (4) } \\ & \mathrm{OBS} \end{aligned}$	M1	M2	M3	M4	$\begin{aligned} & (4) \\ & \text { OB S } \end{aligned}$	M1	M2	M3	M4
Peynircioglu1948	6.8	36	34.1	36.0	36.0	36.0	36.0	26.0	(3)	(3)	(3)	(3)	0.72	(3)	(3)	(3)	((3)
	12.9	38	43.8	38.0	38.0	38.0	38.0	32.0	31.0	23.7	26.8	23.2	0.65	0.77	0.61	0.70	0.51
	17.7	36	39.5	36.0	36.0	36.0	36.0	25.0	23.5	17.0	20.5	15.5	0.54	0.61	0.43	0.56	0.36
Giroud et al 1971	15	26	35.0	26.0	26.0	26.0	26.0	27.0	22.7	15.5	19.0	-	0.63	0.70	0.53	0.64	0.44
Kimura et al 1985	30	49	65	49.0	49.0	49.0	49.0	70	(3)	(3)	(3)	(3)	>1.0	0.26	0.17	0.22	0., 13

4.3 Analytical Study Of The Shape Of The Trapped Elastic Wedge

4.3.1 Introduction

In this section four different models for the shape of the wedge are developed and analysed. For a footing with its edge at the crest of the slope, the geometry of the wedge is a function of the slope angle α, and the angle of internal friction ϕ of the soil. The variables which define the shape of the wedge are the x_{ℓ} / x_{r} ratio, ω_{ℓ} and ω_{r} (Figure 4.1). These variables are mutually dependent and can be expected to vary with the basic parameters α and ϕ. The models which are developed all start from the premise that the left base angle of the trapped wedge is equal to ϕ (Figure 4.3) . That is, when failure occurs it will do so simultaneously to both sides of the footing, with failure zones of different sizes extending to both the slope surface on the right in Fig. 4.3 and to the horizontal ground surface on the left. As mentioned previously in Section 4.1.the base angle of the trapped wedge is normally taken as being equal to ϕ in the stress characteristic solution for footings on level ground. The development of the models is now described in turn.

4.3.2 Development of Model 1

The stress on the boundary $A B$ (Figure 4.3.) of the rectilinear passive zone adjacent to the slope is determinate (Graham 1968). Its value

FIGURE 4.3 BASIC ASSUMPTIONS FOR THE DEVELOPMENT OF MODEL 1.
was determined in Section 3.3 and is given by

$$
\sigma_{i}=x_{i}\left\{\left[1 / \tan \left(\psi_{i r}-\mu\right)\right]-\tan \alpha\right\} \cdot \frac{1}{1+\sin \phi \cos 2 \psi_{i r}}
$$

At the start of the extreme spiral at B bounding the failing soil mass,

$$
\sigma_{i}=\ell\left\{\left[1 / \tan \left(\psi_{\mathrm{ir}}-\mu\right)\right]-\tan \alpha\right\} \cdot \frac{1}{1+\sin \phi \cos 2 \psi_{\mathrm{ir}}}
$$

In the region close to O (Figure 4.4) where the effect of self weight can be neglected, the stress on the $\mathrm{j}^{\text {th }}$ radial line is given by

$$
\sigma_{j}=\sigma_{i} \exp (2 \Delta \psi \tan \phi)
$$

If this can be applied to the entire failing mass (and this is strictly correct only if the entire domain is weightless) then

$$
\begin{gathered}
\sigma_{j r}=\ell\left\{\left[1 / \tan \left(\psi_{\mathrm{ir}}-\mu\right)\right]-\tan \alpha\right\} \cdot \exp (2 \Delta \psi \tan \phi) \\
\cdot \frac{1}{\left(1+\sin \phi \cos 2 \psi_{i r}\right)}
\end{gathered}
$$

\qquad
The verical stress $\sigma_{v r}$ at point C is therefore

$$
\begin{array}{r}
\sigma_{\mathrm{vr}}=\ell\left\{\left[1 / \tan \left(\psi_{\mathrm{ir}}-\mu\right)\right]-\tan \alpha\right\} \frac{\left\{1+\sin \phi \cos 2 \psi_{\mathrm{fr}}\right\}}{\left\{1+\sin \phi \cos 2 \psi_{\mathrm{ir}}\right\}} \\
\cdot \exp \{2 \tan \phi(\psi-\psi)\} \\
\mathrm{fr} \underset{\mathrm{ir}}{ }
\end{array} .
$$

FIGURE 4.4. NUMBERING SEQUENGE FOR THE RADIALS EMANATING FROMO.

The value of $\psi_{i r}$ was determined in Section 3.4, and is a function of α. It is expressed as

$$
\psi_{\mathrm{ir}}=1 / 2\left\{\pi-\alpha-\sin ^{-1}(\sin \alpha / \sin \phi)\right\}
$$

The parameter $\psi_{f r}$ is a function of ω_{r} and can be expressed as

$$
\psi_{f r}=\omega_{r}-\pi / 4-\phi / 2
$$

The value of $\sigma_{V r}$ as expressed in Equation 4.5 is thus a function of ω_{r}, α and ϕ.

It is clear that good mathematical modelling should not introduce a stress discontinuity at any intermediate point on the footing base. Hence there can only be one value for the stress at point M (Figure 4.1). The Model 1 analysis assumes that the vertical stress $\sigma_{v r}$ at point M decreases linearly to zero at D, the left edge of the footing. The rate of stress decrease to D obtained from a surface footing calculation will define the location of the left edge of the footing. This establishes the value of x_{ℓ} / x_{r}, that is, the skewness of the elastic wedge.

Since we have assumed that the failure surfaces are logarithmic spirals then the length x_{r} in Fig. 4.3. is

$$
x_{r}=\ell \cos \omega_{r} /\left\{\sin \left(\psi_{i r}-\mu\right)\right\} . \exp \left\{\theta_{r} \tan \phi\right\} \ldots \ldots \ldots .4 .8
$$

From the physical geometry of the wedge

$$
\begin{aligned}
& x_{\ell}=x_{r} \tan \omega_{r} \\
& \text {......... } 4.9 \\
& \tan \phi
\end{aligned}
$$

By combining Equation 4.8 and 4.9 , the following expression for x_{ℓ} is obtained.

$$
x_{\ell}=\frac{\ell \cos \omega_{r}}{\sin \left(\psi_{i r}-\mu\right) \tan \phi} \cdot \exp \left\{\theta_{r} \tan \phi\right\} \ldots \ldots . \ldots .4 .10
$$

If we further assume that the rate of stress decrease to ' D ' is in accordance with the Terzaghi N_{γ} value (here called $\mathrm{N}_{\gamma \mathrm{T}}$) for a fully rough ϕ wedge, then

$$
\sigma_{\mathrm{v} \ell}=2 \mathrm{x}_{\ell} \mathrm{N}_{\gamma \mathrm{T}}
$$

This is also based on the assumption that the failure surface is a logarithmic spiral.

Substitution of Equation 4.10 into Equation 4.11 yields

$$
{ }_{v \ell}^{\sigma_{V}=\ell} \frac{2 \cos \omega_{r}}{\sin \left(\psi_{i r}-\mu\right) \tan \phi} \cdot \exp \left\{\theta_{r} \tan \phi\right\} N_{\gamma T} \ldots . .4 .12
$$

Equations 4.5 and 4.12 therefore provide values for the stress at point M as functions of ω_{r}. As noted earlier, to avoid a discontinuity :

$$
\sigma_{v r}=\sigma_{v \ell}
$$

The resulting expression can be solved for ω_{r} provided that α and ϕ are defined. It was solved by computer by assuming an initial value for ω_{r} and determining the resulting $\sigma_{V r}$ and $\sigma_{V \ell}$, values. These values were compared to determine whether the absolute difference met a specified tolerance that is $\left(\sigma_{v r}-\sigma_{v \ell}\right) / \sigma_{r v}<0.01$. If this tolerance was exceeded, then ω_{r} was adjusted until the convergence criterion was met.
Using this procedure, ω_{r} was computed for values of ϕ ranging for 30 to 45 degrees and values of α ranging from 10 degrees to $(\phi-5)$ degrees. for each ϕ considered.

4.3.3 Results From Model 1

The results showing the computed values of ω_{r} and x_{ℓ} / x_{r} are summarized in Table 4.2. Also shown in this table, is the eccentricity of the apex of the asymmetrical wedge which is defined on Figure 4.1. It is a relative measure of the skewness of the wedge and gives a more convenient quantitative measure of the asymmetry than the parameter $x_{\ell} /{ }^{\prime}{ }_{r}{ }^{\prime}$ Table 4.2 shows that the value of ' e ' varies within the range of .02 B to . 35 B as α varies from 10 to 40 degrees.
82.

$\begin{gathered} \phi \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \alpha \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \omega_{r} \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \omega_{\ell} \\ \text { (degrees) } \end{gathered}$	$\mathrm{x}_{\ell} / \mathrm{x}_{r}$	$\begin{aligned} & \text { ' } e^{\prime} \\ & (\mathrm{x} 1 / \mathrm{B}) \end{aligned}$
30	5.0	30.0	30.0	1.0	0
	10.0	27.4	30.0	0.90	0.02
	15.0	22.0	30.0	0.70	0.08
	20.0	16.9	30.0	0.53	0.15
	25.0	12.4	30.0	0.38	0.22
35	10.0	33.2	35.0	0.93	0.02
	15.0	26.8	35.0	0.72	0.08
	20.0	20.7	35.0	0.54	0.15
	25.0	15.4	35.0	0.39	0.22
	30.0	11.0	35.0	0.28	0.28
40	10.0	36.7	40.0	0.89	0.03
	15.0	29.6	40.0	0.68	0.09
	20.0	22.9	40.0	0.50	0.17
	25.0	16.9	40.0	0.36	0.23
	30.0	12.1	40.0	0.26	0.29
	35.0	8.4	40.0	0.17	0.35
45	10.0	41.5	45.0	0.88	0.03
	15.0	33.0	45.0	0.70	0.08
	20.0	26.3	45.0	0.49	0.17
	25.0	19.6	45.0	0.36	0.23
	30.0	14.0	45.0	0.25	0.30
	35.0	9.8	45.0	0.17	0.35
	40.0	6.6	45.0		

TABLE 4.2 SUMMARY ÓF CALCULATED $x_{\ell} / \mathrm{x}_{\mathrm{r}}$ AND ω_{r} VALUES FOR MODEL 1.

From Table 4.2, it is immediately obvious that the skewness of the trapped wedge, as represented by both x_{ℓ} / x_{r} and e, is largely independent of the value of ϕ. Average values of e and x_{ℓ} / x_{r} for a given α are summarized on Table 4.2. The variation of e with α, and x_{ℓ} / x_{r} with α are shown on Figures 4.5 and 4.6 respectively . These graphs also show results from further Models 2 to 4 which were also examined. Both the curves for Model 1 (Figures 4.5 and 4.6) indicate that the asymmetry or skewness of the wedge becomes more pronounced as the slope inclination increases. Figure 4.6 is basically a repetition of Figure 4.5, but is reproduced because of its usefulness in the later numerical work.

The general trends resulting from this solution agree quantitatively with those obtained from the experimental observations by Peynircioglu (1948), and Giroud and Tran-Vo-Nhiem (1971).

The variation of ω_{r} with α for various ϕ angles is shown on Figure 4.7. These curves are useful for determining ω_{r} values which define the final boundary in the N_{γ} calculations, which will be described in Chapter 5.

From the above analysis, the approximate shape of the trapped elastic wedge can be determined for any combination of ϕ and α. However, when

SLOPE ANGLE		
α (degrees)	ECCENTRICITY OF WEDGE ' e^{\prime} $\left(\mathrm{x} \frac{1}{\mathrm{~B}}\right)$	$\mathrm{x}_{\ell} / \mathrm{x}_{\mathrm{r}}$
10	0.026	.90
15	0.08	.70
20	0.16	.52
25	0.225	.37
30	0.29	.26
35	0.35	.17
40	0.50	

TABLE 4.3 AVERAGE VARIATION OF 'e'AND ' $x_{\ell} / x_{r}^{\prime}$ WITH ' α ' BASED ON MODEL 1.

Note: The values of ' e ' and x_{ℓ} / x_{r} quoted above are the arithmetic means of the values shown on Table 4.2 for any specified value of α.
85.

FIGURE 4.6 VARIATION OF x_{ℓ} / x_{r} WITH α FOR MODELS 1 TO 4.

FIGURE 4.7. VARIATION OF ω_{r} WITH α MODEL 1.
comparisons were made between experimental and theoretical values of N_{γ}, the agreement was not acceptable. Further models (2 to 4) were then developed to improve the level of agreement. These are described in the following sections.

4.3.4 Development Of Model 2

This model is similar in several respects to Model 1. It starts from the same premise that the left base angle of the wedge is equal to ϕ. It also computes the vertical stress ' $\sigma_{V r}$ 'at point M on the base of the footing by starting with the known stress on the edge of the rectilinear passive zone adjacent to the slope and computing the stress on the end boundary, i.e. the lower right edge $A C$ of the elastic wedge by assuming that the stresses in the transition zone are related by the expression.

$$
\sigma_{j}=\sigma_{i} \exp (2 \Delta \psi \tan \phi)
$$

The difference between Models 1 and 2 is that $\sigma_{v r}$ is computed independently by assuming a logarithmic spiral stress distribution in the failing domain on the left rather than the Terzaghi distribution and then computing the vertical stress on the end boundary (Figure 4.3) which was defined by a base angle ϕ, as a function of ω_{r}.

The resulting expression for $\sigma_{v \ell}$ is

$$
\sigma_{v \ell}=\frac{x_{\ell} \sin \mu \exp \{3 \Delta \psi \tan \phi\}}{\cos \phi(1-\sin \phi)(1+\sin \phi \cos 2 \mu) \quad \ldots \ldots \ldots .17}
$$

where

$$
x_{\ell}=\frac{\sin \omega_{r}}{\tan \phi\left\{\sin \left(\psi_{\text {ir }}-\mu\right)\right\}} \cdot \exp \left\{-\theta_{r} \tan \phi\right\} \ldots \ldots .4 .18
$$

By equating $\sigma_{v \ell}$ (Equation 4.17) to $\sigma_{v r}$ (Equation 4.5) an expression which contains the single unknown ω_{r} is obtained. This was solved using the iterative procedure outlined in Section 4.3.2.

4.3.5 Results From Model 2

The values of the computed parameters defining the geometry of the wedge are summarized on Tables 4.4 and 4.5. The variation of ω_{r} with α for ϕ angles varying from 30 to 45 degrees is shown on Figure 4.8. The general trends which resulted from Model 1 are also observed for Model 2. That is, the degree of asymmetry of the trapped wedge increases

$\begin{gathered} \phi \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \alpha \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \omega_{r} \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \omega_{\ell} \\ \text { (degrees) } \end{gathered}$	$\mathrm{x}_{\ell} /{ }^{\mathrm{x}}{ }_{\mathrm{r}}$	$\begin{gathered} \text { ' } e^{\prime} \\ \left(\mathrm{x} \frac{1}{\mathrm{~B}}\right) \end{gathered}$
30	5	26.2	30.0	0.85	0.04
	10	21.8	30.0	0.69	0.09
	15	17.2	30.0	0.54	0.15
	20	13.0	30.0	0.40	0.21
	25	9.4	30.0	0.29	0.27
35	10	25.1	35.0	0.67	0.10
	15	19.7	35.0	0.51	0.16
	20	14.7	35.0	0.37	0.22
	25	10.7	35.0	0.27	0.28
	30	7.5	35.0	0.19	0.34
40	10	28.8	40.0		
	15	22.4	40.0	0.49	0.17
	20	16.6	40.0	0.36	0.23
	25	11.9	40.0	0.25	0.30
	30	8.3	40.0	0.17	0.35
	35	5.6	40.0	0.11	0.40
45	10	32.7	45.0	0.64	0.11
	15	27.5	45.0	0.52	0.15
	20	18.9	45.0	0.34	0.25
	25	13.3	45.0	0.24	0.31
	30	9.2	45.0	0.16	0.36
	35	6.2	45.0	0.10	0.41
	40	4.1	45.0	0.07	0.43

TABLE 4.4 SUMMARY OF CALCULATED x_{l} / x_{r} AND ω_{r} VALUES BASED ON MODEL 2.

SLOPE ANGLE		
α (degrees)	EGGENTRIC ITY OF WEDGE 'e' (x 1/B)	$\mathrm{x}_{\ell} / \mathrm{x}_{\mathrm{r}}$
10	0.096	0.80
15	0.15	0.53
20	0.22	0.38
25	0.29	0.26
30	0.35	0.17
35	0.40	0.10
40	0.43	0.17

TABLE 4.5 AVERAGE VARIATION OF 'e'AND' $x_{\ell} / x_{r}^{\prime}$ WITH ' $\alpha:$ ' BASED ON MODEL 2.

Note: The values of 'e' and ' x_{ℓ} / x_{r} ' quoted above are the arithmetic means of the values shown on Table 4.3 for any specified value of α.

FIGURE 4.8: VARIATION OF ω_{r} WIT H α MODEL 2
as α increases. However, the estimated amount of skewness as measured by e and x_{ℓ} / x_{I} of the wedge varies by a significant amount between the two models.

4.3.6 Development of Model 3

The feature of this model which is different from the two presented previously is that the stress $\sigma_{v \ell}$ at M (Figure 4.1) calculated by working from the left is calculated using the N_{γ} values of Graham and Stuart (1971) That is $\sigma_{V \ell}=2 \mathrm{x}_{\ell} \mathrm{N}_{\gamma G}$

The simplifying assumption of a log-spiral shaped failing domain applied for Models 1 and 2 is no longer used. This means that the effect of soil weight is now partly accounted for in the analysis.

Equation 4.12 can therefore be written as

$$
\left.\sigma_{V \ell}=\ell^{2 \cos \omega_{r}} \frac{N_{\gamma G} .}{\sin \left(\psi_{\text {ir }}-\mu\right) \tan \phi} \exp \quad \theta_{r} \tan \phi\right\}
$$

σ_{vr} is given by Equation 4.5.

The expression resulting from equating $\sigma_{v r}$ (Equation 4.5) to $\sigma_{v l}$ (Equation 4.19) is again solved for ω_{Y} using the iterative procedure outlined above (Section 4.3.2).

4.3.7 Results From Model 3

The calculated values of ω_{r} and X_{l} / x_{r} are summarised on Tables 4.6 and 4.7. The results are presented graphically on Figures 4.5, 4.6 and 4.9. In general, it is observed that the estimated eccentricity of the wedge is intermediate between the values computed using Model 1 and 2 respectively (Figures 4.5 and 4.6 .

4.3.8 Development of Model 4

The approach to the formulation of Model 4 is considered to be much more rigorous than tho se discussed previously and will form the principal basis for subsequent calculations. In this case the approach starts from the 'free' ground surface (DF in Fig. 4.1) and works towards the right.

It combines the stress characteristic fields obtained for a footing on level ground with those obtained for a footing at the top of an embankment sloping equally on either side. This provides a solution for the condition where the footing is seated at the crest of a slope with level ground on the left side (Figure 4.1). The model is arranged so that it ensures there is no stress discontinuity along the footing base.
95.

(degrees)	α (degrees)	$\begin{gathered} \omega_{r} \\ \text { (degrees) } \end{gathered}$	ω (degrees)		$\begin{aligned} & \prime e^{\prime} \\ & \left(x \frac{1}{B}\right) \end{aligned}$
30	5	30.0	30.0	1.0	0.00
	10	25.5	30.0	0.82	0.05
	15	20.4	30.0	-0.64	0.11
	20	15.6	30.0	0.48	0.17
	25	11.4	30.0	0.35	0.24
35	10	29.3	35.0	0.80	0.05
	15	23.3	35.0	0.62	0.12
	20	17.7	35.0	0.46	0.18
	25	13.0	35.0	0.33	0.25
	30	9.1	35.0	0.23	0.31
40	10	31.6	40.0	0.73	0.08
	15	25.0	40.0	0.56	0.14
	20		40.0	0.50	0.17
	25	13.6	40.0	0.29	0.27
	30	9.6	40.0	0.20	0.33
	35	6.5	40.0	0.14	0.38
45	10	36.1	45.0	0.73	0.08
	15	32.2	45.0	0.63	0.12
	20	21.6	45.0	0.40	0.21
	25	15.5	45.0	0.28	0.28
	30	10.8	45.0	0.19	0.34
	35	7.4	45.0	0.13	0.38
	40	4.9	45.0	0.08	0.42

$\begin{array}{ll}\text { TABLE 4. } 6 & \begin{array}{l}\text { SUMMARY OF CALCULATED } \\ \text { MODEL } 3 .\end{array}\end{array}$

SLOPE ANGLE		
α	ECCENTRICITY OF (degrees) (x 1/B)	x_{ℓ} / x_{r}
10	0.07	
15	0.11	0.75
20	0.17	0.64
25	0.25	0.49
30	0.33	0.33
35	0.38	0.20
40	0.42	0.14

TABLE 4.7 VARIATION OF ' e^{\prime} AND x_{ℓ} / x_{r} WITH ' α ' BASED ON MODEL 3.

Note: The values of ' e^{\prime} and x_{ℓ} / x_{r} quoted above are the arithmetic means of the values shown on Table 4.5 for any specified value of α.

FIGURE 4.9: VARIATION OF ω_{x} WITH α (MODEL 3)

The model employs the stress characteristic solution to obtain the shape of the trapped wedge and does not presuppose a failure surface. In this respect it is superior to the models considered previously.

In Model 4, the stress characteristic solution for the $\alpha=0$ condition (that is for a footing on level ground) is employed to determine the stress $\sigma_{v \ell}$ as well as the length x_{ℓ} (Figure 4.10) This ensures that the effect of soil weight in the failing domain is accounted for in the analysis. The length z_{ℓ} is also determined, since

$$
\mathrm{z}_{\ell}=\mathrm{x}_{\ell} \tan \phi
$$

The next stage of the modelling consisted of working from the sloping ground surface, that is, the right hand side of Figure 4.10, and using the stress characteristic solution developed in Chapter 3, to determine the base angle ω_{r} for which the stress $\sigma_{v r}=\sigma_{v \ell}$ and $z_{\ell}=z_{r}$ simultaneously. These conditions ensured that there is no stress discontinuity beneath the footing or physical discontinuity on the trapped wedge.

The procedure for doing this consists of computing the slip line field and hence $\mathrm{N}_{\gamma \alpha}$ (which is proportional to σ_{vr}) for specified values of ϕ, α and ω_{r}. The values of
99.

FIGURE 4.11: TYPICAL VARIATION OF $\mathrm{N}_{\gamma \alpha}$ WITH ω_{r}.
ϕ considered, ranged rom 30 to 45 degrees in intervals of 5 degrees and α from 10 degrees to $\phi-5$ degrees. For each combination of ϕ and α, ω_{r} was varied through a range of values and $\mathrm{N}_{\gamma \alpha}$ computed for each value of ω_{r} considered. A typical variation of $N_{\gamma \alpha}$ with ω_{r} is shown on Figure 4.11. This Figure shows that as ω_{r} decreases, $N_{\gamma \alpha}$, and therefore $\sigma_{v r}$ increases. A schematic illustration of this phenomenon is shown on Figure 4.12. It is therefore evident that there must exist a unique value of ω_{r} for which $\sigma_{V r}=\sigma_{V \ell}$ and $z_{r}=z_{\ell}$ simultaneously. In order to obtain this ω_{r} value, the computed $\sigma_{v r}$ and z_{r} values were combined with the initially defined z_{ℓ} and $\sigma_{v \ell}$ values to give to ratio of $\sigma_{v r}$ to $\sigma_{v \ell}$ and z_{r} to z_{ℓ}. By interpolation between the calculated values of the ratio, the exact values of ω_{r} for which the ratios are equal to 1.0 was determined. The geometry of the elastic wedge was therefore obtained.

4.3.9 $\underline{\text { Results of Model } 4}$

The geometry of the wedge computed using Model 4 is summarized on Tables 4.8 to 4.9. The results show similar trends to those obtained from Models 1 to 3. A plot of the variation of ' e ' with ' α ' is shown on Figure 4.5 while the variation of ω_{r} with $a \alpha$, is shown on Figure 4.13 Model 4 predicts a higher degree of skewness of the elastic wedge than Models 1 to 3 inclusive.

$\begin{gathered} \phi \\ \text { (degrees) } \end{gathered}$	$\begin{gathered} \alpha \\ \text { (degrees) } \end{gathered}$	$\underset{\text { (degrees) }}{\omega_{r}^{\omega_{r}}}$	$\begin{gathered} \omega_{\ell} \\ \text { (degrees) } \end{gathered}$	$\mathrm{x}_{\ell} / \mathrm{x}_{\mathrm{r}}$	$\begin{gathered} { }^{\prime} e^{\prime} \\ \left(\mathrm{x} \frac{1}{\mathrm{~B}}\right)^{8} \end{gathered}$
30	10	20.0	30.0	0.63	0.63
	15	14.7	30.0	0.41	0.41
	20	10.5	30.0	0.31	0.31
	25	6.7	30.0	0.17	0.17
35	10	23.5	35.0	0.60	0.60
	15	17.7	35.0	0.43	0.43
	20	12.7	35.0	0.31	0.31
	25	8.5	35.0	0.19	0.19
	30	5.3	35.0	0.13	0.13
40	10	29.0	40.0	0.66	0.10
	15	21.0	40.0	0.46	0.18
	20	15.0	40.0	0.32	0.26
	25	10.5	40.0	0.21	0.33
	30	6.8	40.0	0.13	0.38
	35	4.0	40.0	0.05	0.45
45	10	31.5	45.0	0.60	0.13
	15	26.0	45.0	0.43	0.20
	20	18.0	45.0	0.32	0.26
	25	12.5	45.0	0.21	0.33
	30	8.0	45.0	0.13	0.38
	35	5.0	45.0	0.09	0.42
	40	4.2	45.0	0.07	0.43

TABLE 4.8 SUMMARY OF CALCULATED x_{ℓ} / x_{r} AND ω_{r} VALUES BASED ON MODEL : 4.

SLOPE ANGLE	ECGENTRICITY OF	$\mathrm{x}_{\ell} / \mathrm{x}_{\mathrm{r}}$
(degrees)	WEDGE 'e'	
10	(x 1/B)	
15	0.12	0.62
20	0.20	0.43
25	0.26	0.31
30	0.33	0.20
35	0.38	0.13
40	0.44	0.07
	0.44	0.07

TABLE 4.9 VARIATION OF 'e'AND x_{ℓ} / x_{r} WITH ' α ' BASED ON MODEL 4.

Note: The values of ' e^{\prime} and x_{ℓ} / x_{r} quoted above are the arthimetic means of the values shown on Table 4.7 for any specified value of α.

$$
\begin{gathered}
\omega_{r 1}>{ }_{r 2}>\omega_{r 3} \\
N_{\gamma 1}<N_{\gamma 2}<N \gamma 3
\end{gathered}
$$

FIGURE 4.12: SCHEMATIC ILLUSTRATION OF THE
VARIATION OF $N_{\gamma \alpha}$ WITH ω_{r}

FIGURE 4.13: VARIATION OF ω_{r} WITH α (MODEL 4)

4.4. Validity Of The Models And Comments On The Assumptions Made in Their Formulation

A series of assumptions had to be made to allow development of the models for determining the shape of the trapped wedge beneath the footing. These now require further amplification, explanation and comment. For this discussion, Models 1 to 3 are treated together since the basic assumptions utilised in their formulation are essentially similar. The main assumptions incorporated in the formulation of Models 1 to 3 are as follows:-
(1) The sand medium was assumed to be weightless.
(2) The value of ω_{ℓ} in Fig. 4.1 was taken to be equal to the angle of internal friction of the soil ϕ.
(3) It was assumed that plastic straining and displacement of the failed masses on either side of the centre line of the footing take place simultaneously,

Assumption 3 applies to all of the models, that is to Model 4 as well as to Models 1 - 3 .

4.4.1 Assumption 1

This assumption is common in both the limit equilibrium and limit analysis approaches to the bearing capacity problem (Chapter 2). It uses failure mechanisms based on logarithmic spirals (which are strictly correct only for weightless materials), and adapts them to produce estimates of
the bearing capacity of sands with self-weight. Such approximate mechanisms provide estimated bearing capacity which compare favourably with stress characteristic solutions which do not presuppose the failure surface (Graham and Stuart: 1971), It might therefore be concluded at first sight, that the shapes of the failure mechanisms for sands with and without self-weight are not significantly different. In the development of Models 1 to 3 , a weightless medium was assumed only for the purpose of determining an approximate shape for the trapped elastic wedge. It should be noted that the effect of the soil weight is included in subsequent calculations of bearing capacity.

4.4.2 Assumption 2

It is intuitively expected that, since the external soil boundary is on the left side of the footing (Figure 4.1) then the failure mechanism in this vicinity should approximate or converge to those which correspond to a footing on level ground, that is, a ϕ wedge may be expected beneath the left edge of the footing.

The experimental evidence to support this assumption is limited. However, the evidence that is available indicates that the assumption is reasonable. A summary of the values ω_{r} measured in experimental
testing programs is presented on Table 4.1 (pg .74). It can be deduced that the ratio of observed to theoretical values of ω_{ℓ} varies within the relatively narrow range of 0.95 to 1.35 . More experimental data would be helpful to further substantiate this hypothesis.

4.4.3 Assumption 3

The manner in which failure progresses through the sand from the region which is obviously the weakest, that is, the region closest to the slope, into the more stable regions beneath the footing is not completely known. The problem is further complicated by its physical asymmetry.

The assumption of simultaneous failure to both sides of the footing is associated with the assumption that the soil behaviour is rigid-plastic (Figure 4. 14) that is, negligible volume change is assumed prior to failure.

Graham (1968) and Hovan (1985) suggested that the idea of associating a relatively incompressible material such as a medium dense sand with rigid-plastic behaviour does not alter the basic validity of the stress-characteristic solution. This assumption is justified so long as the footing is forced to move downwards vertically, and is not free to rotate.

FIGURE 4.14: THE RIGID PLASTIC SOIL MODEL

Whether the footing is constrained to move downward or rotates as failure is induced will depend on the rigidity of the connections between the footing and the superstructure and the nature of the structural connections of the superstructure.

Small scale model tests in general do not try to simulate the rigidity of the superstructure. In fact they generally have free joints. Footings will therefore tend to move in the direction of least resistance. As a result, footings will tend to rotate and produce a failure mechanism which does not show any slip line fields in the stronger region, or the region close to the level ground. In actual structures such as bridges, the superstructure may be rigid or semi-rigid. In such cases the footing can be expected to have some constraint and to move vertically downwards, thereby inducing failure to both sides of the sand mass simultaneously. This thesis considers only footings which move vertically downwards with failure zones extending on both sides of the footing.

4.5 Comparison Of The Models

Figures 4.5 and 4.6 indicate that the amount of eccentricity of the wedge predicted by the models for any value of α is in the following ascending order of magnitude: Model 1, Model 3, Model 2, Model 4. That is, Model 1 predicts the smallest amount of eccentricity, while Model 4 predicts the highest eccentricity (Figure 4.14).

The suitability of any model for subsequent use in the determination of the bearing capacity coefficient should be assessed on the basis of the following two criteria
(i) The validity of the assumptions used in the analysis and the rigour of the theory.
(ii) The level of agreement between the theoretical results, and the available experimental observations.

As noted in Section 4.3.8 Model 4 is by far the most rigorous in terms of the assumptions upon which it is based. It considers a failure mechanism which is considered to be the most realistic of the four that have been studied. At best, Models 1 to 3 are approximations to the likely failure mechanism. Hence from the point of view of criterion (i), Model 4 is the preferred model.

With respect to criterion (ii), Table 4.1 (p. 74), which compares the results from all the models, clearly shows that the best agreement observed and theoretical x_{ℓ} / x_{r} ratios is obtained for Model 3, while Model 1 gives the best agreement between observed and theoretical ω_{r} values. No firm conclusions can be drawn from these deductions since they are not consistent. Furthermore, the amount of experimental data which is available is quite limited.

On the basis of criterion 1 therefore Model 4 is the preferred model. Some analyses are also carried out using Model 1 since it provides a "lower bound" solution. It should perhaps be emphasized that the basis of comparison at this stage is with the geometry of the base wedge based on photographic evidence. It is well known for example, (Graham, 1968) that displacement (or strain) fields are much more difficult to model than loads or displacements. A later Section (Chapter 7) will compare theoretical predictions of N_{γ} with experimental values.

CHAPTER 5

FOOTING LOCATED AT THE CREST OF A SLOPE PARAMETRIC STUDY AND RESULTS

5.1 INTRODUCTION

The main variables which influence the bearing capacity of a footing at close proximity to a slope are the angle of internal friction of the soil, ϕ, the slope angle, α, the footing depth, D, and the distance, H, from the crest of the slope to the edge of the footing. In this Chapter, we are concerned only with the case of a footing located at the crest of a slope, that is $\mathrm{H}=0$. The case of a footing located away from the crest, is presented in Chapter 6. It is convenient to normalize the parameter D by dividing it by the footing breadth B . That is, it is expressed as the dimensionless parameter D/B. Analyses to determine the bearing capacity factor were carried out using Model 4 developed in Chapter 4 for ϕ ranging from 30 to 45 degrees and α ranging from 10 degrees to ($\phi-5$) degrees for each value of ϕ considered. This thesis is concerned only with shallow footings hence analyses were done for $0.0 \leqq \mathrm{D} / \mathrm{B}<1.0$.

5.2 SURFACE FOOTIN GS

In addition to the parameters which define the soil (ϕ) and slope geometry (α), the input parameters which are required for determination of the bearing capacity for the case under consideration, are those which define the
geometry of the trapped elastic wedge in Chaper 4. That is, the ratio of x_{ℓ} / x_{r} and the value of ω_{r}. These parameters are in fact secondary parameters since they depend on ϕ and α. The values were obtained from Figures 4.6 and 4.13.

As outlined in Chapter 3, the surface footing, or zero surcharge condition is simulated by introducing a surcharge into the computation initially (Figure 5.1) and then enlarging the zone of computation until the assumed surcharge has no significant effect on the computed bearing capacity (Graham, 1968).

Using this method, and the computed shape of the wedge for Model 4 as outlined in Chapter 4, bearing capacity factors were calculated for ϕ ranging from 30 to 45 degrees and α from 10 to ($\phi-5$) degrees. The results are shown graphically on Figure 5.2a.

5.3. SHALLOW FOOTINGS

The addition of an artificial surcharge to the ground surface is an expedient mathematical procedure for handling the stress discontinuity at point O (Figure 5.1). The surcharge can also be considered to be real and to have the same effect as embedding the footing beneath the surface. The procedure for obtaining the bearing capacity factor which was alluded to in the preceding section involves diminishing the surcharge effect in a series of steps until its effect is negligible. The intermediate steps can however yield $N_{\gamma q}$ values corresponding to different depths of embedment . However,. as noted by Graham

FIGURE 5.1 - EMBEDMENT DEPTH 'D' TREATED AS A SURCHARGE
and Stuart (1971), the convergence from the $N_{\gamma q}$ to the N_{γ} value is quite rapid. As a result, it was not possible to obtain a complete range of $\mathrm{N}_{\gamma \mathrm{q}}$ values corresponding to the required range of D / B values between 0 and 1 . The limited results obtained using this approach are shown on Table 5.1 Also shown on Table 5.1. are values of $N_{\gamma q}$ obtained using the method outlined below. The values obtained from the latter method are generally lower than those obtained using the scale reduction method. The values obtained using the procedure outlined below range from $56-107 \%$ of those obtained using the scale reduction method.

The other procedure used for computing the bearing capacity factor consisted of treating the embedment depth D as a surcharge (Figure 5,1). The parameters σ and ψ on the "equivalent free surface" $O^{\prime} C$ were then calculated from the Mohr's circle (Figure 3.7) This means that the effect of the surcharge was included as both a vertical stress and shear stress along $O^{\prime} C$. The governing equation for obtaining σ is

$$
\sigma=\frac{1.0+z}{1+\sin \phi \cos 2 \psi_{i}}
$$

Since the values of the parameters x, z, σ and ψ are known for all points along $O^{\prime} \mathrm{C}$, then using the procedure outlined in Section 3, the entire slip line field in the region between the equivalent free surface and the edge of the passive zone could be computed.

| ϕ | (degrees) | (degrees) | | |
| :---: | :---: | :---: | :---: | :---: | :---: |

TABLE 5.1 SUMMARY OF $\mathrm{N}_{\gamma q}$. VALUES FOR FOOTING AT THE CREST OF A SLOPE.

- $\mathrm{N}_{\text {Yq }}$ FROM 1st SCALE REDUCTION.

The entire computation starting from calculation of the parameters x, z, σ and ψ on the boundary $O^{\prime} C$ and determination of the slip line field was done using a specially written subroutine EDGPA3. A typical plot of the slip line field in this region is shown on Figure 5.4. The remainder of the slip line field up to the base of the footing and hence the bearing capacity factor was then computed using the basic program.

The complete set of results for α varying from 10 to ($\phi-5$) degrees, ϕ from 30 to 45 degrees and $D / B=0.25,0.50,0.75$ and 1.0 are shown on Figures 5.2 and 5.3.

FIGURES 5.2: PLOT OF $N_{\gamma q}$ vs α FOOTING AT THE CREST OF THE SLOPE.

FIGURE $5.3 \mathrm{~N}_{\gamma q}$ vs α FOR A FOOTING AT THE CREST OF A SLOPE

FIGURE 5.4: TYPICAL SLIP LINE FIELD FOR UNIFORM SURCHARGE ON SLOPE.

CHAPTER 6

FOOTING LOCATED AWAY FROM THE CREST OF THE SLOPE - PARAMETRIC STUDY AND RESULTS

6.1 INTRODUCTION

In addition to the variables ϕ, α and D which influence bearing capacity (Chapter 5), this chapter is particularly concerned with the influence of H, (the distance from the crest of the slope to the edge of the footing). It has been found convenient to normalize the parameters D and H, by dividing them by the footing breadth B. That is, they are expressed as the dimensionless parameters D / B and H / B respectively. Since only shallow footings were considered, analyses were carried out for $0 \leqq D / B \leqq 1.0$. The range of H / B values tested depended on the size of the zone within which the bearing capacity is influenced by the presence of the slope. At large values of H / B, the failure zone extends to the ground surface as if the slope were not present. This phenomenon is discussed further in Section 6.3. The maximum range considered was $0 \leqq H / B \leqq 3.0$.

6.2 THE EQUIVALENT SLOPE

The concept of an "equivalent slope" was used by Giroud and Vo-Nhiem to determine the bearing capacity of a footing located away from a slope (Figure 6.1). The procedure for determining the equivalent slope, used in this thesis is outlined below.

FIGURE 6.1 DEFINITION OF EQUIVALENT SLOPE

FIGURE 6.2 DETERMINATION OF THE "SIZE" OF THE FAILING DOMAIN.

Consider Figure 6.2 which shows the case of a footing located at the crest of a slope. The distance ' ℓ ' is taken as the characteristic length and establishes the scalle of the computation. Fromsimple geometry, we obtain the following expressions for z_{D} and H_{D} respectively.

$$
z_{D}=\ell\left\{\frac{\sin (\alpha+\varepsilon) \sin (2 \mu-\varepsilon)+\sin \varepsilon \cos (\psi+\mu)\}}{\cos (\alpha+\varepsilon) \sin (2 \mu-\varepsilon)}\right.
$$

and

$$
H_{D}=\ell \frac{\{1+\sin \varepsilon \sin (\psi+\mu)}{\cos (\alpha+\varepsilon) \sin (2 \mu-\varepsilon)}
$$

Once ' ℓ ' is chosen or established by the analyst, all the quantities on the right hand side of Equations 6.1 and 6.2 are known or can be specified since. from the geometry of Figure 6.2, ε is given by $\varepsilon=\pi / 2-\alpha-\psi+\mu$.

It was therefore possible to calculate z_{D} and H_{D} values for any combination of p, α and H. These parameters define the 'size' of the failure domain and the equivalent slope angle α^{\prime}, since $\alpha^{\prime}=\tan ^{-1}\left\{z_{D} /\left(H+H_{D}\right)\right\}$ (Figure 6.1).

6.3 THE CRITICAL CREST OFFSET Hc

It is now postulated that as the footing is moved further away from the crest of the slope that is, as H is increased (Figures 6.3a.b,c) both Z_{D} and H_{D} also decrease until they become zero at some critical value H_{C}

(b) Footing at a distance H from crest

(c) Footing at a distance H_{c} from crest

FIGURE 6.3 THE EFFEGT ON THE SLIP LINE FIELD OF MOVIN G THE FOOTING AWAY FROM THE SLOPE
(Figure 6.3c). This means that when $H \geqq H_{c}$ the effect of the slope on the bearing capacity is not non-existent. For the case of a footing located at a distance H from the crest, where $0<H<H_{c}$ the equivalent slope angle is defined in Figure 6.1 as

$$
\alpha^{\prime}=\tan ^{-1}\left\{z_{D} /\left(H+H_{D}\right)\right\} \quad \ldots \ldots .6 .3
$$

An estimate of the distance H_{c} was obtained from the work of Suppiah (1981). Suppiah considered interfering footings and developed Figure 6.4 which gives an indication of minimum spacing between footings for zero interference. This can also be considered a measure of the "size" of the fialing domain. We can think of the slope as "interfering" with the slip line field as long as the footing is located at a distance from the crest which is smaller than the "size" of the failing domain. The values of H_{c} deduced from Suppiah's work are presented in Table 6.1.

ANGLE OF INTERNAL FRICTION ϕ (degrees)	
	$\mathrm{H}_{\mathrm{C}} *$
35	1.2 B
40	2.0 B
45	2.7 B
	3.5 B

TABLE 6.1 ESTIMATED H_{c} VALUES (after Suppiah, 1981)

* It should be noted that edge to edge spacing is used in this thesis while Suppiah used centre to centre spacing for his parameter S.

FIGURE 6.4 EFFECT OF FOOTING SPACING ON BEARING CAPACITY (after Suppiah 1981)
6. 4 DEFINITION OF THE FAILURE ZONE FOR $0<\mathrm{H}<\mathrm{H}_{\mathrm{C}}$

The manner in which Z_{D} and H_{D} reduces to zero as H / B varies from zero to $\mathrm{H}_{\mathrm{C}} / \mathrm{B}$ is not known precisely. However, intuition suggests that the slope effect would be greater near to the slope, and would reduce as the distance from the slope increases. That is, the rate at which $Z_{D} d e-$ creases as H / B increases would be slow at first, but would increase as H / B increases. However, at this time, there is no definite observational nor scientific basis for modelling the way in which z_{D} varies. At this stage therefore, it is considered satisfactory to assume simply a linear relationship between $\frac{z}{D}$ and H / B. Using the values of z_{D} calculated from Equation 6.1 and the H_{c} / B values from Table 6.1 , curves showing the relationship between Z_{D} and H / B for various values of ϕ and α have been prepared. These are shown on Figure 6.5.

It is also reasonable to assume that as H / B increases from 0 to H_{C}, that is, as the footing is moved away from the crest of the slope, the elastic wedge changes from the asymmetrical shape developed in Chapter 4 , to a symmetrical ϕ wedge for a footing on level ground as utilised by Graham and Stuart (1971). Since there is no observational evidence currently available. it is again assumed that the parameters defining the geometry of the

Note: The values on the curves are values of α.

FIGURE 6.5 PLOTS OF ${ }^{2}$ D vs H/B
the wedge, that is, ω_{r} and x_{ℓ} / x_{r} vary linearly as H / B varies from 0 to H_{C}. Graphical representation of the linear plots is shown on Figure 6.6. These figures were u sed to obtain intermediate values of x_{ℓ} / x_{r} for use in the subsequent analyses.

6.5 PARAMETRIC STUDY AND RESULTS

6.5.1 Surface Footings

For this case, the triangular surcharge on the equivalent free surface $O^{\prime} \mathrm{C}$ (Figure 6.7.) was treated as an equivalent uniformly distributed surcharge. From the geometry, the equivalent uniformly distributed surcharge is given by

$$
b^{\prime}=H \sin \alpha^{\prime} / 2
$$

Using the subroutine EDGPA3 (Chapter 5) which computes the slipline field in the region between the equivalent free surface and the edge of the passive zone, and the main program, the entire slipline field was calculated for various values of $H / B, \alpha$ and ϕ. The maximum value of H / B for a given ϕ, corresponds to that obtained from Table 6.1. ϕ values were from 30° to 45° and α values from 10 to $(\phi-5)^{\circ}$.

6.5.2 Shallow Footings

For each value of ϕ and α and specified values of H / B, the values of z_{D} and H_{D} were determined from Equations 6.1 and 6.2 respectively, and the equivalent slope angle calculated from Equation 6.3.

Note: The values on the curves are values of α.
FIGURE 6.6 PLOTS OF $\mathrm{x}_{\ell} / \mathrm{x}_{r}$ vs H / B

FIGURE 6.7: EQUIVALENT SURCHARGE FOR A SURFACE FOOTING

In order to set the scale of the failure domain and to simplfy the programming, the set back from the crest of the slope to the edge of the footing (H) was set to be equal to 1.0 . The distance $H+H_{D}$ was then expressed as n. (Figure 6.8). The value of $n=1.0$ corresponds to the case of a footing at the point of "zero slope interference". Larger values of ' n ' correspond to moving the footing further towards the crest of the slope. Based on the problem geometry (Figure 6.1 and 6.8), it was possible to determine values of n for the range of ϕ, α and H / B values being considered. For a given ϕ ' n ' was found to vary over a very narrow range for different values of α as indicated on Figure 6.9, that is, ' n ' was not very sensitive to changes in α, for a given ϕ. A plot of the average value of ' n ' against H / B for $\phi=45^{\circ}$ is shown on Figure 6.9. The parameter ' n ' being a ratio of distances and therefore a dimensionless quantity was found to be more useful than having to specify values of $\mathrm{H}_{\mathrm{C}}, \mathrm{Z}_{\mathrm{D}}$ and H in the analyses.

The next step in the analysis involves computing the stresses on the equivalent free surface $O^{\prime} C$. The vertical stress at any point $O^{\prime} C$ is equal to γd_{i}. (Figure 6.1). The value of σ and ψ on $O^{\prime} G$ can therefore be determined from the Mohr's circle (Figure 6.10). These parameters are as follows.

$$
\sigma=\frac{\sigma_{v}}{1+\sin \phi} \cos 2 \psi \quad \ldots \ldots \ldots .6 .3
$$

and,

$$
2 \psi=\pi-\varepsilon-\sin ^{-1}(\sin \varepsilon / \sin \phi) \ldots \ldots .6 .4
$$

FIGURE 6.8 SIMPLIFICATION OF THE PROBLEM FOR PROGRAMMING

FIGURE 6.9 PLOT OF n vs H / B
137.

FIGURE 6.10 MOHR'S CIRCLE FOR STRESSES ON EQUIVALENT
FREE SURFACE.

FIGURE 6. 11 TYPICAL SLIP LINE FIELD IN THE REGION BETWEEN EQUIVALENT SLOPE AND PASSIVE ZONE.

The stress on $O^{\prime} C$ and the slip line field in the region between the equivalent free surface and the edge of the passive zone was then computed using the subroutine EDCPA2. This subroutine also computes the slip line field in the region between the equivalent surface and the edge of the passive zone. A typical result of the slip line field is shown on Figure 6.11. The main program was then used to compute the bearing capacity factor and the remainder of the slip line field. This analysis also yields a value for the footing width B.

Different embedment depths were then simulated by adding an artifical surcharge which was a known multiple of B, (that is $0.25 \mathrm{~B}, 0.50 \mathrm{~B}, 0.75 \mathrm{~B}$, and $1.0 B$) to the ground surface. The stresses on $O^{\prime} C$ were in this case computed by adding the true triangular surcharge to the artificial surcharge.

Values of $N_{\gamma q}$ were calculated for $\phi=30^{\circ}$ to $45^{\circ}, \alpha=10$ to ($\phi-5$) degrees and $D / B=0.0$ to 1.0. The range of H / B values analysed depends on ϕ and are shown on Table 6.1.

The results are presented in the form of graphs of $N_{\gamma q}$ vs α and are shown on Figures 6.11 to 6.16.

Note: Read in conjunction with Table 6.1
FIGURE 6. $12 \mathrm{~N}_{\gamma \mathrm{q}}$ vs α (SURFACE FOOTING)

Note: Read in conjunction with Table 6.1.

FIGURE 6. $14 \mathrm{~N}_{\gamma \mathrm{q}}$ vs α

Note: Read in conjunction with Table 6.1

FIGURE 6.15 $N_{\gamma q}$ vs α

		$\mathrm{H} / \mathrm{B}=0$	0.5	$\mathrm{D} / \mathrm{B}=$	$=0.25$
	1000	-		,	
	100				
		-			
$\mathrm{N}_{\gamma \mathrm{q}}$					
		$\phi=30$,			
	10			\bigcirc	
	0	- 1	02	20	$30 \quad 40$
			(deg	grees)	

Note: Read in conjunction with Table 6.1

FIGURE 6. $16 \mathrm{~N}_{\gamma \mathrm{q}}$ vs α

Note: Read in conjunction with Table 6.1

FIGURE 6.17 $\mathrm{N}_{\gamma \mathrm{q}}$ vs α

7.1 INTRODUCTION

In this Chapter the results developed in this thesis and presented in Chapters 5 and 6 are compared with those from the existing available theories, and with available large scale test results. The large scale test results consist of work done by the Geotechnical Group at the University of Ottawa in 1977 and 1978. Tests were done in a box 15.0 m long 2.0 m wide and 2.2 m high. Footing sizes were 0.3 m and 0.6 m wide. All tests were done for a slope angle of 26.5 degrees.

7.2 COMPARISON OF RESULTS WITH EXISTING THEORIES

As noted in Chapter 2, most of the existing theories consider only the case of a surface footing at the crest of a slope. This condition is therefore used as the basis for the subsequent comparisons. The comparisons are made for a ϕ of 40 degrees and are shown graphically on Figure 7.1.

Figure 7.1 shows that for the location considered, in general, the Author's results for $N_{\gamma q}$ are higher than those from most of the other existing theories which cover a large range of $\mathrm{N}_{\gamma q}$ values. Because of the limitations outlined in Chapter 2 and the significant scatter indicated in Figure 7.1, no further comparison with theoretical results is considered herein. The remainder of the Chapter is concerned with comparison between the Author's results and the results of large scale testing (Shields et al., 1977).

LEGEND

- Author
\triangle Chen
- Mizuno
- Meyerhof

■ Giroud
n Bowles 1975
A Kovalev
(] Brinch Hansen

FIGURE 7.1 COMPARISON OF RESULTS FROM THIS THESIS WITH EXISTING THEORIES.

7.3 COMPARISON OF RESULTS WITH LARGE SCALE TEST RESULTS

The method of presentation of $N_{\gamma q}$ values first proposed by Shields et al., 1977 and shown in Figures 7.2 and 7.3 is used as the basis for comparison of the results.

Figure 7.2 compares the $N_{\gamma q}$ values computed by the Author with the $N_{\gamma q}$ values obtained by Shields et al. for compact sand (ϕ triaxial $=37^{\circ}$). The theoretical values for $\phi=37^{\circ}$ have been interpolated between the values of $\phi=35^{\circ}$ and $\phi=40^{\circ}$ presented earlier.

The Figure shows that for any given depth, the $N_{\gamma q}$ values obtained by the Author are higher than those obtained by Shields. A more detailed comparison is made in Table 7.1. This Table represents the case of compact sand with the following properties as indicated by Shields et al.

ϕ triaxial	$=37^{\circ}$
ϕ triaxial $+10 \%$	$=41^{\circ}$
ϕ plane strain	$=45^{\circ}$
ϕ shear box	$=45^{\circ}$

Table 7.1 indicates that there is reasonable agreement between the theoretical and experimental results for ϕ equal to the triaxial value. That is, ($\mathrm{N}_{\gamma \mathrm{q}}$-theoretical) $/\left(N_{\gamma q}\right.$-experimental) varies from 1.20 to 1.35 . For ϕ equal to ϕ triaxial plus 10%, (a common approximate method for converting from triaxial ϕ to plane strain ϕ), the ratio varies from 2.61 to 3.33 .

$$
\begin{array}{ll}
& N_{\gamma q} \text { AUTHOR } \\
\mathrm{N}_{\gamma q} & \text { SHIELDS(EXPEKIMENTAL) }
\end{array}
$$

FIGURE 7.2 CONTOURS OF $N_{r q}$ VALUES IN COMPACT SAND

FIGURE 7.3 CONTOURS OF $\underset{Y q}{ }$ VALUES IN DENSE SAND

Table 7.2 presents comparisons for a dense sand with the following properties;

ϕ triaxial	$=41^{\circ}$
ϕ triaxial $+10 \%$	$=45^{\circ}$
ϕ plane strain	$=48^{\circ}$
ϕ shear box	$=50^{\circ}$

Again it is found that good agreement between the theoretical and experimental values is obtained for $\phi=\phi$ triaxial. The value of the ratio ($\mathrm{N}_{\gamma \mathrm{q}}$-theoretical)/ ($\mathrm{N}_{\gamma \mathrm{q}}$-experimental) ranges from 0.64 to 1.30 . If the plane strain value is used, the ratio ranges from 1.40 to 2.50 .

Although the plane strain ϕ would normally be expected to yield theoretical bearing capacity values which agree more closely with the experimental values, (Graham and Stuart, 1971), this is not the case for the theory presented here. Use of the plane strain ϕ-angle would seriously overestimate the bearing capacity.

TABLE 7.1 COMPARISON OF RESULTS - COMPACT SAND.

H/B	D/B	$\begin{equation*} N_{\gamma q} \tag{1} \end{equation*}$ SHIELDS	$N_{\text {rq }}$ AUTHOR		(2)/(1)	(3)/(1)
			$\varphi=41^{\circ}$	$\varphi=45^{\circ}$		
0.0	0.0	100	64	140	0.64	1.40
0.0	0.5	120	140	300	1.16	2.50
0.0	1.0	150	176	320	1.17	2.13
1.0	0.0	120	100	200	0.83	1.67
1.0	0.5	150	148	300	0.98	2.00
1.0	1.0	180	196	380	1.09	2.11
2.0	0.0	150	148	260	0.98	1.73
2.0	0.5	175	208	350	1.19	2.00
2.0	1.0	200	260	450	1.30	2.25

TABLE 7.2 COMPARISON OF KESULTS - DENSE SAND

CHAPTER 8

CONCLUSIONS AND FURTHER RESEARCH

8.1 CONCLUSIONS

Bearing capacity coefficients $\mathrm{N}_{\gamma \mathrm{q}}$ have been calculated for footings at close prox-
 angles ranging from 30 to $45^{\circ}, 0.0<\mathrm{D} / \mathrm{B}<1.0$ and H / B values from 0 to 3.0 B , (Figures $5.2,5.3$ and 6.11 to 6.17). The results agree within $64-160 \%$ (average 115%), with experimental values of $N_{\gamma q}$ when the triaxial value of ϕ is used. Calculation of $N_{\gamma q}$ using stress characteristics required an estimation of the shape of the trapped elastic wedge beneath the footing. This shape was modelled in the analysis.

8.2 FURTHER RESEARCH

It is well known that the value of ϕ varies with stress level because of the curvature of the Mohr envelope. This thesis takes no account of varying stress levels in the failing domain that is, a constant ϕ analysis was done. The solution could be improved by carrying out a variable- ϕ analysis (Graham and Hovan 1986).

The effect of scale (footing size) on the bearing capacity factor if considered in the analysis could also further refine and improve the results. This would then need model tests using a centrifuge, and work of this type is currently projected at the Laboratoire Centrale des Ponts et Chaussees, France. It would also need additional laboratory testing to characterize the sand in the way used in the analysis.

The proposed model for determination of the shape of the trapped elastic wedge
needs to be confirmed by a comprehensive programme of testing, preferably large scale testing. In addition, further confidence in the theory may be established by a programme of experimental work to determine the $\mathrm{N}_{\gamma \mathrm{q}}$ values for various combinations of ϕ and α.

REFERENCES

Bauer, G.E. (1982) "Finite Element Analysis Of Footings In Granular Approach Fills" Proceedings, 4th Int. Conf. on Numerical Methods in Geomechanics, Edmonton, Canada (1982) Vol $2 \mathrm{pp} .741-747$.

Bauer, G.E., Shields, D.H., Scott, J.D. (1978). "Final Report On The Bearing Capacity of Footings on Compacted Approach Fill.

Bauer, G.E. and Felio, G.Y. (1984). "Movements Of A Bridge Abutment" 3rd International Conference on Ground Movements and Structures, UWIST, Cardiff, 9-12 July 1984.

Bauer, G.E., and Mowafy, Y.M. (1985) "A non-linear Finite Element Analysis of Reinforced Embankments Under External Loading" Proceedings 5th International Conf. on Numerical Methods in Geomechanics, Nagoya, Japan, April 1-5,1985.

Bauer, G.E. Shields, D.H., Scott, J.D., Gruspier, J.E. (1981) "Bearing Capacity Of Footings In Granular Slopes" Proceeding 10th Int. Conf. on Soil Mech. and Foundation Eng. Stockholm 1981, Vol. 2 pp . 33-36.

Biarez, J, Burel, M, Wack, B. (1961) "Contribution A L'Etude De La Force Portante Des Fondations. Proc. 5th ICSMFE V1, pp 603-609.

Bowles, J.E. (1975), "Spread Footings" Foundation Engineering Handbook edited Winterhorn and Fang. New York, Van Nostrand Reinbold Co.
Bowles, J.E. (1977) "Foundation Analysis and Design" 2nd Edition, McGraw Hill Publishing Co.

Bozozuk, M (1978) "Bridge Foundations Move" Transportation Research Record 678"Tolerable Movement of Bridge Foundations, Sand Drains, K-Test, Slopes, Culverts, pp. 17-21.

Brinch Hansen, J. (1957) "The Internal Forces In a Circle of Rupture" Danish Geotechnical Institute Bulletin No, 2

Brinch Hansen, J. (1961) "A General Formula For Bearing Capacity" Danish Geotechnical Insitute, Bulletin No. 11.

Brinch Hansen, J. (1965) "The Philosophy of Foundation Design" Design Criteria, Safety Factors And Settlement Limits" Proceedings of a Symposium held at Duke University, April 1965, pp 9-13.

Brinch Hansen, J. (1966) "Comparison of Methods for Stability Analysis" Danish Geotechnical Institute - Bulletin No. 21.

Hansen, J (1970) "A Revised and Extended Formula For Bearing Capacity" Danish Geotechnical Institute Bullettin No. 28.

Chen, W.F. and Davidson, H.L. (1973) "Bearing Capacity Determination By Limit Analysis" Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM6, June 1973, pp. 433-449.

Chen, W.F. (1975) "Limit Analysis and Soil Plasticity" Developments in Geotechnical Engineering 7, Elsevier Scientific Publishing Company.

De Beer (1965) "Bearing Capacity and Settlement of Shallow Foundations on Sand" Proceedings of a Symposium held at Duke University, April 1965, Edited by A.S. Vesic.

De Beer, E.E. (1970) "Experimental Determination of the Shape Factors and Bearing Capacity Factors of Sand" Geotechnique 20 No. 4 pp. 387-411.

Dembicki, E, Odrobinski, W., Mrozek, W. (1981) "Bearing Capacity of Subsoils under Strip Foundations". Proceedings 10th Int. Conf. on Soil Mechanics and Foundation Eng. Stockholm 1981 Vol. 2 pp 91-94.

Felio, G.Y and Bauer, G.E, (1984) "Monitoring and Performance of A Bridge Abutment" International Conference on Case Histories in Geotechnical Engineering UMR, SDt. Louis, Missouri, U.S.A. May 6-11, 1984.

Graham, J. (1968) "Plane Plastic Failure in Cohesionless Soils". Geotechnique 18 pp. 301-316.

Graham, J. (1974) "Plasticity Solutions to Stability Problems in Sand" CGJ Vol. 11, No. 2 May 1974, pp 238-247.

Graham, J., Raymond, G.P., Suppiah, A. (1984) "Bearing Capacity of Three Closely Spaced Footings on Sand." Geotechnique 34, No. 2 pp. 173-182.

Graham, J. and Stuart, J.G. (1971) "Scale and Boundary Effects in Foundation Analysis." JSMFD ASCE, Vol. 97 No. SM 11, Nov. 1971.

REFERENCES (3)

Graham, J. and Hovan, J.M. (1985) "Stress Characteristics for Bearing Capacity in Sand Using A Critical State Model" Presented at Canadian Congress of Applied Mechanics, June 1985.

Giroud, J. P. and Tran Vo-Nhiem (1971) "Force Portante D'une Foundation Sur Une Pente". Annales de L'Institut Technique du baitment et des Travanx Publics Supplement No. 283-284, July, Aug, 1971.

Gorbunon-Possadov, M.I. (1965) "Calculations for the Stability Of a Sand Bed By A Solution Combining The Theories Of Elasticity and Plasticity." Proc. 6th ICSMFE Montreal, V2 pp. 51-55.

Habib, P. (1985) "Effet D'Echelle Et Surfaces De Clissement. Revue francaise de geotechnique No. 31, pp. 5-10.

Hovan, J.M. (1985) "Computation of Bearing Capacity and Passive Pressure Coefficients in Sand Using Stress-Characteristics and Critical State". A thesis presented to U.M. in partial fulfilment for degree of M.Sc.

International Road Federation (1984) "Limit States Design For Highway Bridges" Geotechnical Considerations". 10th IRF World Meeting, Rio de Janerio, October 1984.

Kimura, T., Kusakabe, O., Saitoh, K., (1985) "Geotechnical Model Tests Of Bearing Capacity Problems In a Centrifuge" Geotechnique 35 ,No. 1 pp. 33-45.

Kovalev, I.V. (1964) "De La Resistance Ultime De Foundations Limitees Par Un Talus" Traduction du russe; extrait du recueil des travaux de LIIZLT, fascicule 225, " Nekotorye vo prosy tonnele - i mostostroeniy " Leningrad, URSS (1964) Traduction francaise effective par L.C.P.C., Paris 1973.

Kuskabe, O., Kimura, T., Yamaguchi, H. (1981) "Bearing Capacity of Slopes Under Strip Loads On The Top Surfaces" Soils and Foundations Vol. 21 No. 4 Dec. 1981, Japanese Society of Soil Mechanics and Foundation Engineering.

Lebegue, Y. (${ }^{(973 \text {) }}$ "Essais De Fondations Superficielles Sur Talus" Proceedings 8th ICSMFC Vol. 4.3 pp 313.

REFERENCES (4)

Lee, I. W-Y (1978) "Bowles Bearing Capacity Factors For Cohesionless Soils" Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Applied Science, Dept. of Civil Engineering, University of Ottawa, Ontario, Canada, January 1978.

Lee, I, W-Y (1981) "Determination of Bearing Capacity Factors For Cohesionless Slopes" Hong Kong Engineer, November 1981.

Lundgren, H, and Mortensen, K. (1953) "Determination by the Theory of Plasticity of the bearing capacity of continuous footings on sand." Proceedings 3rd Int. Conf. Soil Mechanics and Foundation Eng. Vol. 1, Zurich 1953.

Meyerhof, G.G. (1951) "The Ultimate Bearing Capacity Of Foundations" Geotechnique 2, (4) pp. 301-32.

Meyerhof, G.G. (1985) "The Ultimate Bearing Capacity of Foundations On Slopes" Proceedings 4th International Conference on Soil Mechanics and Foundation Engineering, London 1957, Vol pp. 384-386.

Meyerhof, G.G. (1963) Some Recent Research On The Bearing Capacity Of Foundations" CGJ Vol. 1 No. 1 September 1963.

Meyerhof, G.G. (1984) "Safety Factors and Limit States Analysis In Geotechnical Engineering" CGJ Vol. 21 (1984) pp. 1-7.

Mizuno, T. (1948) "On The Bearing Power Of Soil In A Two-Dimensional Problem" Proceeding 2nd International Conference of Soil Mechanics and Foundation Engineering, Rotterdam Vol. 3, pp.44-46.

Mizuno, T. (1953) "On The Bearing Power Of Soil Under A Uniformly Distributed Circular Load" Proceedings 3rd International Conference S.M.FE, Zurich, Vol. 1, pp. 446-449.

Mizuno, T,. Tokumitsu, Y and Kawakami, H. (1960) "On The Bearing Capacity Of A Slope Of Cohesionless Soil" Soils and Foundations Vol. 1, No. 2 November 1960. Japanese Society of Soil Mechanics and Foundation Engineering,

Mowafy, Y. (1984) "Reinforced Soil Embankment subjected to Surface Loading" Ph.D Thesis Proposal, Department of Civil Engineering, Carleton University, Ottawa, Canada, November 1984.

REFERENCES (5)

Myslivec, A., Kysela, Z., (1978) "The Bearing Capacity of Building Foundations" Elsevier Scientific Publishing Co.

Mizuno, T., Tokumitsu, Y., Kawakami, H. (1960) "On the Bearing Capacity of a Slope of Cohesionless Soil". Soils and Foundations Vol. 1 No. 2 Nov. 1960, pp. 30-37.

Peynircioglu, H. (1948) "Test On Bearing Capacity of Shallow Foundations On Horizontal Top Surfaces Of Sand Fills and the Behaviour Of Soils Under Such Foundations" Proceedings 2nd IC SMFE Rotterdam, V3 pp. 144-205.

Selvadurai, A.P.S. Nicholas, T.J., Bauer, G. "Finite Element Analysis of Load-Settlement Behaviour of Foundations near Slopes" Final Report to Ontario Joint Transportation and Commuications Research programme - ProjectO-1.

Shields, D.H., Scott, J.D., Bauer, G.E., Deschienes, J.H., Barsvary, A.K. (1973) "Bearing Capacity of Foundations Near Slopes" Proceeding 9th International Conference on Soil Mechanics and Foundation Engineering, Moscow 1973, V pp. 715-179.

Shields, D.H., Deschienes, J.H., Scott, J.D., Bauer, G.E. (1979) "Advantages of Founding Bridge Abutments On Approach Fills."
Sokolovski, V.V. (1960) "Statics of Soil Media" Butterworths Scientific Publications, London, England.

Suppiah, A (1981) "Interference of three parallel, strip Surface Footings On Sand". A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science.

Tenier, P., Morlier, P. (1982) "Influence De Surcharge Concentrees Sur La Stabilite Des Talus" CGJ Vol. 19, 1982.

Terzaghi, K. (1943) "Theoretical Soil Mechanics" John Wiley and Sons Inc.

Vesic, A.S. (1973) "Analysis of Ultimate Loads of Shallow Foundations" JSMFD ASCE Vol. 99, No. SM 1, January 1973.
161.

APPENDIX 1.

LISTING OF COMPUTER PROGRAM


```
M,
```



```
700
SOMME = SOMME* (X(H,J)-K(H-1,J-1))
    L:&
LIEL
```



```
            B=x(L,RADI)
        MLEO.BOEB
            BEXL+B
        BEXL+B
C23456789
        878 CONTINUE
CONTINUE 
            AREA = AREA1+AREA2
            AREA=AREA1+AREAZ
    NGAMMA=NGAMMA+AREA
            NGAMMA = NGAMMA#RATIO#2.
c
PRINT 10,NGAMMA 
PRINT 1O,NGAMMA ////2OX.'WGAMMA= .FE.4)
    c 10 FORMATI'1'./////////2OX.'
    PRINT 12,B
    12 PRINTH12,B
            D=GEL
    c
```



```
11 PRINT 11,0
            RETURN
    C*****
C**
C23456789
894.
895.
2
897.9
703
705
706
708
709
7111
715
717
26
727
N
730
732
734
736
737
740
742
743
745
A.
##N
750
751
752
753
754
755

```

C
Clol
c
REAL PHI,EPSILO, ALPHA,FIRPSI, COSPSI
REAL PHI,EPSILO,ALPHA,FIRPSI,COSPSSI
COMMONPPHI,B
REAL M
REAL XX,ZZ,SIMA,PSSI,PHMI
COMMON /TATA/ X1,X2,XX,2:,Z2,ZZ,PHHI
COMMON /TITI/ SIGMAI,SIGMAZ,SIMA
COMMON/TETE/ PSII,PSI2,PSSI
COMMON /TOTO/ PI,SNPHI,CSPHI
COMMON /OUI/PPP,OQ,CONTRO
INTEEER PP.OQ
REAL MU
COMMON MU,PHIP,PHIT
REAL X(40,40),2(40,40),SIGMA(40,40),PSI(40,40)
REAL X(40,40), Z(40,40),SIGMA
INTEGER W,H1,W2,I,J
INTEGER P(4O),O(40)
COMMON /LOLO/ P,O
REAL HOR
COMMON /NEW/ CSPSI,HOR, ANG
REAL DIF,DI,TNPHI,ENN
COMMON NPSI,E,HD'
COMMON /KAYÓ/ GED,HEOUIV, BDILES,HPRIME,GEL
c
SINEP=EIM(EPSILO)
H=6
H=6
H=
00800 I=2,H
WEI-1
X(I,I)=X(W,H)+HOR/5.O
C2345678.
REAL PHI COMMON PHI, BETA, DELTA,TOL,CONVG,SIZE,ALPHA,EPSILO
COMMEN PHI,BE
INTEGER L,K,C
REAL XX,ZZ,SIMA,PSSI,PHHI
COMMON /TATA/ X1,X2,XX,Z:22,ZZ,PHHI
COMMON /TITI/ SIGMAI,SIGMAZ,SIMA
COMMON/TITI/ SIGMAI,SIGMAZ,
COMMON /TETE/ PSII,PSI2,PSSI
COMMON /TOTO/ PI,SNP
INTEGER P
NTEGER MU
COMMON MU,PHIP,PHIT
COMMON MU,PHIP,PHIT
REAMOX(AO,4O), X,ZO,SIGMASIGMI
COMMON /LALA/, XIZ:5
INTEGER P(4O),O{4O
COMMON /LOLO/ P,
COMMSN NPSI
REAL NPSI
c REALEX,TIN
c
c SUEROUTINE PAXCOR
REAL PHI
c
MU=PI/4/-PHI/2.
MU2PI/4;-PHI
EX=TAN(EX)

```
```

 94.
 SOMEA1IAREA + SOMME
 FORMATI
    ```

```

7.'
EMO
EX=TAN(EX) (ry% 062,
c

```
```

