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ABSTRACT

Bearing capacity coefficients for shallow footings placed on cohesionless

slopes are computed using stress-characteristic solutions. The rrbasic differ-

ential equationsn which are obtained by combining the equations of equiÏ-

brium with the Coulomb yieldcriterion, are solved using a numerical proce-

dure. This procedure is based on a finite difference approximation of the

equations and was first proposed by Sokolovskji (1960), and improved by

Graham (1968), A special computer programme taking jnto account the

effect of the slope on the boundary conditions was developed. The angle

of shearing resistance of the soil was taken as being constant throughout

the failing domain. The program incorporates some of the general subroutines

of Hovan (1985). The solution assumes that the soil is rigid-plastic and thus

does not take into account any volume strains prior to failure.

The shape of the elastic wedge beneath the footing is considered to in-

fluence the ultimate bearing capacity significantly and it is therefore modelled

in the analysis.

The results obtained from the analysis are compared with available large scale

field data and other existing theoretical solutions. The bearing capacity coefficients

computed using the method developed in this thesis range f¡om 0.64 to L.35 tirnes

the experimental values.
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CHAPTER 1

INTRODUCTION

A number of engineering structures, €.g, - structures placed

on benches cut into slopes, retaining wa1ls, bridge piers, etc. -

require their foundations to be placed on sloping ground. Highway

overpass bridges, in particular, frequently require approach fills

in the vicinity of 10 m (30 feet) high, It is common in these cases

to terminate the fill in a slope face dropping down to the underpass

level. Foundations for the end spans of the bridge are often more

economical if they are placed in the filI and not excavated or piled

to underlying strata. Apart from the obvious economic advantage,

there is usually also, an improved level of performance (Shields et

al 1980) . Supporting the end sglans in the approach fill can signi-

ficantly reduce the severe road maintenance problems that arise

when the fills and bridge decks settle by different amounts,

Various theories are available to the design engineer for estimating

the bearing capacity of a footing on a slope. As noted by Bauer et

al (1981), all these theories give different answers and most theories

are applicable only to a footing located right at the crest of a slope,
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Because of the uncertainties of the theories, bridge designers adopt

a conservative approach, and tend to utilize pile support or other

deep foundations for the abutments. In many cases, this approach

may not be the most economical solution (Felio and Bauer, 1-984).

As noted by Bauer and Mowafy (1985), it is economica-lly advanta-

geous to locate the footing as close as possible to the edge of the

embankment and to make the slope as steep as possible in order to

keep the bridge span to a minimum length.

Several researchers (for example Vesic, 1973; De Bee¡, L965), note that the primary

framework for design involves both the determination of ultimate loads, as well as

the analysis of settlements to ensure that the foundations fulfill their intended function

f¡om a structural as well as functional viewpoint.

The particular problem of estimating settlements of foundations

located on granular slopes is complicated and not fully understood.

At the present time the tendency is to use complicated finite element

techniques to study the settlement behaviour of footings located on

granular media, e.g. Bauer (1982), Selvadurai et al (1984), Mowafy

(1984), Bauer and Mowafy (1985), Since such tools are not readily



3.

available to all design engineers, relÍable estimates of settlements cannot readity be

made. As a resuit, estimation of the ultimate bearing capacity still constitutes the

primary framework for desigrr. It would therefo¡e be hetpful to have dthe present

time, a simple bearing capacity solution which gives reliable results.

This thesis is concerned only with the bearing capacity aspect of the stability

problem. Economy in design can be achieved if the ultimate bearing capacity can

be accurately determined.

Ultimate bearing capacity of footings is commonly determined by making

use of the principle of superposition. That is, the influence of self-weight

in the failure zone and surcharge on the free surface are assessed separately

and then added together. This thesis uses an alternative approach by Meyer-

hof (1951) which combines both effects into a single dimensionless factor.Nyq,

The bearing capacity is thus expressed as e,, = 1/2 B VNrn.

(Notation is summarized at the beginning of the thesis on pages vii to viü ).

However in contrast with the theoretical method used by Meyerhof , the

thesis uses the method of stress-characteristics (Graham 1968), and deve-

lops a soundly based analysis for. the capacity of shallow footings near the

crest of slopes, It compares the new theoretical results with existing
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theories and with available field data.

In the analysis, the solution for failure loads starts from a Rankine

rectilinear plastic zone exiting the slope below the footing, The geo-

metry and stress conditions in this zone are statically determinate. The

back surface of this zone was then used as the starting boundary for a

radial transition zone that extends backwards into the slope, and up-

wards towards the footing. Available information and photographic

evidence concerning the shape of the failure zone was stud.ied in order

to arrive at realistic assumptions concerning the distorted shape of the

domain for the analysis.

It is well known that sand behaviour cannot be adequately described

by a straight coulomb-Mohr strength envelope. That is, the coulomb-

Mohr envelope flattens with increasing stress, resulting in a variable

angle of shearing resistance dependent on stress level (Graham and Hovan,

(1985). However, the present analysis considers only a constant Q solu-

tion because at this stage of understanding the mathematical modelling of the problem,

further complexity is unwarranted.

In Chapter 2, the most common existing theories are described and

reviewed. Chapter 3 summarises the theory of the basic stress charac-

teristic solution and deveiops the boundary conditions resulting from
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the presence of a slope close to the footing. Chapter 4 presents an

analytical study of the shape of the elastic zone immeöately beneath

the footing. Chapter 5 considers the special case of a footing at the

crest of the slope, and describes the parametric study of the problem

that has been conducted using a specially developed computer program,

and presents the results for this case. Chapter 6 describes the païa-

metric study and presents the results for the more general case of

footing located away from the crest of the slope'

Results, discussions and comparison with other theories and ex-

perimental data follows in Chapter 7, Topics for further research and

conclusions are presented in Chapter B.

Appendix 1 contains a listing and typical output of the main com-

puter program.



CHAPTER 2

REVIEW OF EXISTING THEORIES FOR TIü BEARIT{G

CAPACITY OF FOOTINGS ON SLOPES

2.L II{TRODUCTION

At present there are at least nine theories which can be used

to predict the bearing capacity of a footing placed within close prox-

imity of a slope. As noted by Bauer et al (1981) all these theories

give different answers and most are appticable only to footings loc-

ated with one edge right at the crest of the slope. This chapter

briefly describes the most commonly available theories and comments

on their usefulness and the assumptions made in their development.

Comparisons between these existing theories and the new solution

developed in this thesis are discussed in Chapter 7'

Prior to describipg the distinctive features of each of the bear-

ing capacity theories, it is necessary to place thet¡ in perspective

by díscussing their similarities, and the generaL framework within

which bearing capacity theories are commonly developed'

All of the commonly used theories utilize the concept of rrperfect

plasticity, that is failure is assumed to occur with large sca-le contin-

uous straining after zero initial displacement. That is, the behaviour

is assumed to be rrrigid-plastictr.
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Chen and Davidson (1973) suggest that the techniques used

to deternnine the collapse load can be dívided into three princi-

pal groups utilizing respectively :

i) the stress characteristic or slip line rnethod,

ii) the limit analysis method"

üi) the limit equilibrium method

This grouping is maintained in the ensuing discussions' It will

however be evident later that the fundamental approach of the latter

two methods are similar. They both start with an assumed failure

surface or failure mechanism, Each method then employs a differ-

ent approach to determine the stresses satisfying static equilibrium

at the instant of impending failure. The methods wili nowbe reviewed

in turn,

The stress characteristic method combines the Coulomb-l¡lohr yield

criterion with the equations of static equilibrium to give a set of hyper-

bolic differential equations of plastic equilibrium , trtlhen taken together

with the stress boundary conditions for a given problem, the equations

can be used to investigate the stresses in the soii beneath the footing

at the instant of impending plastic florv (Sokolovskü 1960), In problem

solving, it is often convenient to transform this set of equations to
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curvilinear co-ordinates whose directions at every point in the yield-

ing region coincide with the directions of failure or the slip plane.

These slip directions are known as slip lines in physical modelling

or stress characteristics in mathematical modelling.

Kotter (1903) was the first to derive these stress characteristic

equations for the case of plane deformations. prandtl (1920) subse-

quently obtained a closed form solution to these equations for a footing

on a weightless soil possessing both cohesion and friction. The impor-

tant inclusion of soil weight into the analysis considerably complicates

the mathematical solution . Sokolovskü (1960) adopted a numerical pro-

cedure based on a finite difference approximation of the stress charac-

teristic equation, Graham (1967 ,1-974) made a significant improvement

to the sokolovskii solution by including a better approximation of the

effects of stress variation along the slip lines,

Graham and Stuart (1971) suggested that this method is superior to

the other methods since it offers the opportunity of investigating a wider

range of boundary and field assumptions. In particular it permits more

realistic modelling of the sand properties (see for example, Graham and

Hovan, 1985). This form of analysis wÍli be used in the theoretical solu-.
tion derived in Chapter 3,
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The second type of analysis, namely limit analysis, is based on the

upper and lower bound limit theolems of Drucker et al (1952), These

theorems were developed for an elastic perfectly plastic material with

pn associated flow rule.

The lower bound theorem of limit analysis states that if a distri-

bution of stress over the domain in question can be found which satis-

fies the equations of equilibrium., the stress boundary conditions and

the yield criterion, the load associated with this stress condition is less

than or at best equal to the true ultimate load.

The upper bound theorem statesrrif the power of the external load is greater than

or equal to the rate of internal energy dissipation associated with a kinematically

admissible velocity field, then the load must be greater than o¡ at best equal to the

true ultimate or limit load" (Chan, 1975). The upper bound theorem may also be stated

as follows: if a kinematically admissible velocity field can be found., uncontained

plastic flow must impend, or have taken place previously.

By suitable choice of stress and velocity fields, the above upper and

lower bound theorems enable the requÍred collapse load to be bracketed.
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The limit equilibrium method has been the most commonly used method

for obtaining approximate solutions for bearing capacity. It can be best

described as depending on a quasi-static analysis or approximations to

the slip line fields. It generally entails using an assumed failure sur-

face comprising various simple shapes, for example plane, circular or

logarithmic spiral. To allow an equation of equilibrium to be written

for bearing capacity determination (or indeed for other classes of pro-

blems such as slope stabitity) it is necessary to make sufficient assumptions about the

stress distribution within the soil domain bounded by the failure surface so that the

analysis becomes determinate in terms of resultant forces or moments. This method

(and indeed all three of these methods) gives no consideration to soil kinematics, or

to the displacements preceeding failure.

All available theories for determining the bearing capacity of foot-

ings on slopes fal] within the general framework of one of the three

methods outlined above. The methods by Meyerhof (1gs7); Mizuno

(1960); Kovalev (1964); Brinch Hansen (1920); Giroud and rran vo

Nhiem (1971); chen (197s); Bowres (192b); Bowtes (Lg77); Kusakabe

(1981); will'now be discussed in turn. They are presented in the

chronological order based on the publication date.
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2.2 Meyerhof's (1957)

Meyerhofrs method is a limit equilibrium method. His original theory

which was developed for ler¡el ground (Meyerhof , 1951) was a modification

of the earlier Terzaghi (1943) solution. The failure mechanism based on

logarithmic spirals used by Terzaghi is shown on Fig, 2.1. He assumed

that the soil of depth D above the level of the foundation base manifests

itself only by its weight, and offers no support to the foundation loads

through its shearing resistance. In his development of this analysis.

Meyerhof assumed that the failure surface extends right of the surface

(Fig.2.2) . He includes in his analysis an rrequivalent free surfaceil

subjected to rrequivalent free surface stressesrr, (Fig. 2,2).

The solution for footings on a slope uses a development of the same

procedure (Fig. 2.3). In this case, the weight of the soil wedge AEF

in Fig. 2,2is replaced by the equivarent stresses po and so normal and

tangential, respectively to the equivalent free surface AE.

It is not clear from the literature whether Meyerhof included the

influence of the soil on the upslope side of the foundation when cal-

culating the ultimate bearing capacity,
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FIGURE 2 . 3: MBYERHOF FAILURE MECHANISM FOR A FOOTING

ON A SLOPE (after Meyerhof 1gS7) ,
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2.3 Mizuno (1960)

Mizuno et al ( 1960) calculated the bearing capacity of a slope of

cohesionless soi-l under a uniform load acting upon its horizontal top.

The method employed is a limit equilibrium method. The analysis is

similar in principle to the case of a footing on a horizontal surface

presented earlier by Mizuno (1-948, 1953), which is about the same

time that Meyerhof published his theory concerning the ultimate bear-

ing capacity of foundations on level ground (Meyerhof , 1951-). It is

therefore reasonable to assume that the work of Meyerhof and Mizuno

was carried out independent of each other. This is in fact evidenced

by the completely different approaches adopted by the authors to the

analysis of the bearing capacity problem.

Mizuno et al, assume that at the instant of failure, a wedge of active

earth pressure is formed directly below the load, while a region of pass-

ive earth pressure is formed adjacent to the slope (Fig. 2.4) . The bound-

ary of the passive pressure region is determined from the Mohr's circle

(Fig. 2,5) as a fraction of the slope angle and the angle of internal fric-

tion S of the soil.

By considering the static equilibrium of the elastic wedge, the stress

acting on the wedge at the instant of failure is calculated, as a function
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of the ultimate load, the wedge geometry and the unit weight of the soil,

Similarly, by considering the static equilibrium of the region of passive

pressuré adjacent to the slope, the stresses on the boundary BD (Fig. 2.4)

are calculated,

The transition region, which is defined as the region between the

active and passive pressure regions, as described above, is then divi-

ded into a series of small wedges having equal vertex angles. If the

stresses on one side of any of the wedges and the length of that side

ãre hrown, then the stresses on the other as weII as its length can be determined

from the equilibrium conditions of the wedge. The shape of the stiding surface is thus

also generated f¡om the equilibrium conditions.

The bearing capacity is determined by first assuming a value for the

stress distribution on the boundary of the elastic wedge beneath the

footing, which is a multiple of the unit weight of the soil and hatf the

footing breadth. Then, starting from this assumed value the stresses

on the dividing lines between the wedges and the sliding surface are

calculated as outlined above. The initaily assumed value is then adjusted

until the stresses on the last wedge coincides with the passive earth

pressure. Since the apex angle of the transition zone as a function of
the slope angle is known, then the srope angre corresponding to the

calculated value is determined.
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The authors present their results in the form of curves of the

dimensionless bearing capacity coefficient N , , plotted against

the slope angle, for various va-lues of ô ranging from 1-5 degrees

to 40 degrees.

The analysis does not account for the embedment depth of the

footing or the distance between the shoulder of the slope to the

edge of the footing. The results are therefore applicable only to

footings sitting at the top of a slope with one edge at the crest

of the s1ope.

2.4 Kovalev (1964)

Kova.levrs method for the determination of the bearing capacity of a

footing on a slope can best be described as a limit equilibrium method.

He developed a simplified shape of the slip lines generated using

Sokolovskü stress characteristic rnethod and used this simplified shape

to obtain an approximate estimate of the ultimate bearing capacity of

the soil. It is worthy of note that Kovalevrs expressed rationale for

using a simplified failure surface is to avoid the great amount of cal-

cr¡lations required for solving the basic differentiat equations, and

determination of the stip line field for the variety of combinations of

slope angle and soil shear strength parameters. Although such an
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argument may have been valid at the time when the paper was first

published, the availability of the digital computer has substantialry

changed matters. It is now possible to carry out a series of such

calculatíons with little human effort and at relatively low cost and in

a very short time.

Kovalevrusing the approach of sokovskü (i-960), treats the bearing

capacity problem as being identical to a slope stabiJity problem with

a surcharge at the crest of the slope. It is obvious that this approach

does not take into account the important effect of the interaction bet-

ween the soil and the base of the footing. In fact, the footing load

is simply treated as an artificar surcharge. A typical slip line fi.e1d

generated using this approach is shown on Figure 2.6. This diagram

shows that the slip line field continues right up to the base of the foot-

ing on the horizontal ground surface.

The simplified failure surface considered by Kovalev for a surface

footing is shown on Figure 2.7. He states that it was based on actual

stress characteristic fields for tc, þ', soils with s varying between 30 and

40 degrees. The proposed failure surface consists of two parts: a straight
line section 'abtinclined at an angle r 14 - ó12 to the sloping ground sur_

face, and, a circular segment'M' with centre O'(Figure 2.2).
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FIGURE 2.6: TYPICAL SLIP LINE FIELD BASED ON SOKOLOVSKII SOLUTION

FIGURE 2,7i KOVALEVIS FAILURE IUECHANISM FOR A FOOTING ON A SLOPE
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The centre of the circular segment is found by ensuring that the rupture

line meets the ground sirrface at the 'rstatically correct anglet'of r la +q¡2.

The statically correct angle is the angle at which a rupture line intersects

a boundary so that statical equilibrium conditions at the point of inter-

section are fully satisfied.

Although it is not explicitly acknowledged by Kovarev, he makes use of

Kotterrs equation to determine the state of stress along the assumed rupture

line and subsequently the ultimate bearing capacity of the footing,

Kotters equation relates the limiting state of stress on a rupture 1ine,

to two variables, namely, the resultant stress o, and the angle 0 between

the rupture line and the horizontal (Kotter, 1903).

The equation may be expressed as

do -2otan0 de =-y çqs0

ds ds cosQ

By combining Kotterrs equation with the known boundary conditions, e.g.

the known staticälly correct angle where the rupture line meets the surface,

Kovalev determined the verticar stress at the base of the footing.

2.7
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This is expressed as

P' =41 YB+C1c

where y, B , and c have the same usage as elsewhere in the thesis

(see pages vi to vü for a definition of the notation used) , and

At and c t are coefficients depending on the soil properties Q and the

problem geometry i,e. o.

comparing Equation 2,2 to the commonly used expression for bear-

ing capacity of a surface footing (D = 0).

Q,_, '= 112 B y Ny * 
"N"

2.3

we note that

At = Ny/z, 
and

c. - NIC

Kovalev indicates that the maximum difference between the results

obtained by his proposed method, and those obtained by solving the

basic differential equations numerically is LZ%.
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Thus far, we have only discussed the case of a surface footing.

The case of a shallow footing, that is, one placed at small depth in

the soil was also studied by Kovalev. The soil layer above the base

of the footing is treated as a uniform surcharge which is in turn re-

solved ínto two components perpendicular and parallel respectively

to the surface of the slope (Figure 2.8),

The analysis assumes that the failing domaÍn can be divided into

two zones as shown on Figure 2.9.

The approximate slidin g surface for this case, like the case of sur-

face footing, is considered to consist of a straight line portion and a

circular arc. (Figure 2.L0). The straight line portion cuts the slopes

surface at an angle of e + c - ô. The angle c is defined in Figure 2.9

and from Mohr circle considerations, its value is given by

o= 112 {r 12 - arc sin ( sin e / sin O ) - e+O}

Again by applying Kotterrs equation, Kova-lev obtained a solution

for the bearing capacity coefficients N., and Nn. For this case N" was

not determined since only cohesionless soil was aonsidered,
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FIGURE 2,8: UNIFORM SURCHARGB ON A SLOPE
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The important case of a footing with its leading edge located away

from the crest of the slope was not addressed' As noted earlier,the

analysis is based on the assumption that the bearing capacity of a

footing on a slope is identical to the problem of stabiüty of a slope with

a surcharge placed at the crest. This approach is here considered to be

too simplistic since it does not take into account the important effect of

the soil-footing interaction. This view agrees with the view point of

Giroud et al (1971) who have indicated diagramatically (Figure z.LL)

that the load that can be supported by a footing at the top of a sym-

metrical embankment is greater than the weight of soil required to trans-

form the embankment into a triangle.

2.5 Brinch Hansen (1970)

In 1-961, Brinch Hansen published rrA General Formula for Bearing

Capacity (Hansen, 1"961) 'r. This publication does not give a Inewr met-

hod for bearing capacity determination, but generalizes the Terzaghi

(1943) bearing capacity formula to take into account the dimensions,

shape and depth of the footing, as well as the inclination and eccentri-

city of the foundation load. This was done by multiplying each term of

the Terzaghi formuta with a shape, depth and inclination factor The

general equation was then written as

o =1128 N s d i +vD N s d i +c N s d i-¡uyYyyYqqqqcccc
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The method employed by Brinch Hansen in determining the new

factors is semi empiricar. For example, with respect to Nr, Brinch

Hansen states that Meyerhof's values are too high while those of

Lundren and. Mortenson are too low. Reasoning that the correct value

of N^,, must be between these two varues he gives a rbetterr approxima-
Y

tion of the N.rvalue as N, = 1.8 (*n - 1) tan 0.

Approximate formulae are also presented for the factors s,d and i.

Ïn 1970 Brinch Hansen published "A Revised and Extended Formula

for Bearing capacity (Hansen (1g20). In this paper, two other factors

were added to account for base inclination and ground inclination. The

ground inclination factor was intended to apply to the case of a footing

located close to a slope, The failure mechanism assumed for calculation

of the new factors b and g Ís shown on Figure z.rz. The facto¡s gn and

g, are given as

g =go=(1-0,5tana)5
v

For a horizontal footing b, = f . Hence setting the terms which are

not applicable to unit, Brinch Hansenrs formula can be written as

Qr=tl?ByNyBy* yD *qBqdq.. ...2.4
For a shallow footing, that is 0r DilB), and with þ ranging from s0 to

45 degrees d^ varies within the relatively narrow range of 1. j. to L.B.q
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Taking an average value of l.2rEquation 2 can be rewritten as

qu = LlZ E¡y Ny gy + 1.2 yD *n gq

The equivalent Meyerhof bearing capacity factor Nrn based on this method can

therefore be expressed as

N -N s +2.4 DN sYq Y"Y E- q"q

As noted previously, the Brinch Hansen method is not a rnewr method for

determination of bearing capacity. It is essentia.lly a semi-empirical method

based on Terzaghi's analysis which allows for þreater flexibility with respect

to practical application s .

2.6 Giroud and Tran-Vo-Nhiem (1-971)

These authors developed a bearing capacity theory for a footing

placed at the top of an embankment which slopes equally on either side of

the foundation (Figure 2.L1).The slope starts right at the edge of the

footing, The method employed in determining the bearing capacity co-

efficients, is essentially a limit equilibrium method. It is assumed that a

rigid wedge which is symmetrical about the centre line of the foundation,

is forned beneath the footing, The bearing capacity coefficient, is ob-

tained as a function of the wedge angle, the angle of internal friction of the

soil Q, and a thrust coefficient bn the surface OS, (Figure 2.13). This is

done by considering the equilibrium of the wedge oslorand equating the

vertical thrust force on os, due to the soil in the dihedrat sros, to the

sum of load onthe footing and weight of soil in the wedge OS1O1.
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The thrust coefficient defines the stress distribution of OS,

which is assumed to be triangular with a value of zero at O, that

is, theslope of the triangular stress distribution is the thrust co-

efficient, The authors refer to the coefficient as the coefficient of

passive earth pressure. This term is considered to be misleading

since the coefficient is not in fact the 'rcoefficient of passive earth

pressurerr as it is commonly used in traditional Soii Mechanics. The

term thrust coefficient is preferred, and is used in the ensuing dis-

cussion.

The authors state that the va.lue of the thrust coefficient is de-

duced after determining the network of characteristics in the dihe-

dral OSTSZ by a finite-difference method. No further details of the

urethod are given. For any given values of þ and o, the value,of

o, which yields a minimum Ny is determined. This value is taken

to be the value for use in design,

The authors also present an approximate method of determining

the bearing capacity coefficient in the instance when the leading edge

of the footing is located some distance away from the crest of the slope,
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It consists of first determining the trequivalent sloperr, which is

defined as the slope starting from the foundation which gives the

same bearing capacity as that of the real soil mass, (Figure 2,t4).

The method is based on the assumption that the failure mechanism

in the actual soil medium, and in the fictitious medium is the same.

The bearing capacity factors are listed in tables for a range of

cx, from 0 to 50 degrees, and S from 0 to 50 degrees,

2.7 Chen (1975)

Chen (1975) obtained the bearing capacity of a footing on a slope

of cohesionless soil using the so-called "limit analysisrr method. chen

states that this method enables a definite statement to be made about

the collapse load without carrying out a ste¡by-step elastic plastic analysis. The

analysis employs the upper bound limit theorem to generate an approximate solution

to the bearing capacity problem. The soil is modelled as an elastic-perfectly plastic

material which obeys the associated flow rule, They physical validity of this flow

rule is however questionable (Graham, 1968).

however questionable (Graham lgGB) .

The analysis is a modification of the solution for a shatlow footing

on level ground (Chen, tg75). For horizontal ground the failure mech-
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anisms utilized in the analysis are the Prandtl and HiIl mæhanism (Fig-

ures 2.15 and 2.1-6 respectively). For sloping ground, the area bef

(Figure 2,1,5) is set equal to zero and the angle which'ebtmakes with

the horizontal is taken as being negative in the analysis. These condi-

tions therefore represent the case of a footing on a slope,

In accordance with the upper bound theorem of limit analysis, the

power of the external loads is equated with the rate of internal energy

dissipation for the assumed failure mechanism. For a soil possessing

both cohesion and friction, Chen divides the radial shear zone into a

series of small triangles (Figure 2,1,5) in order to compute the rate of

energy dissipation in this region. The triangles are assumed to translate as rigid bodies

in directions that make an angle g wÍth the slope of the local segment of cd. The

rate of energy dissipation is obtained as a function of the soil cohesion and the relative

velocity between the two adjacent soil masses, that is, the soil in the failure zone

and the soil outside the zone.

For cohesionless soil, Chen assumes that the rate of internal energy

dissipation is zero. On this basis, it is therefore only necessary to cal-

culate the rate of external work done. External poweï or work done is

contributed by gravity forces and the footing load. The bearing capa-

city factor of the soil is this determined from the expression resulting

from equating the rate of externa-l work to zero.
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The analysis is carried out for both the Prandtl and HÍIl mec'

hanisms, and the absolute minimum value of Ny is obtained. The

results presented by Chen (1975) apply only for the case of a foot-

ing at the top of a berm which slopes equally on either side,

2.8 Bowles (1975)

Bow1es (1975) proposed a graphical method for the determination

of the bearing capacity of a footing on a slope, which he states is a

modification of Brinch Hansents (1966) equilibrium method. Reference

to the original Brinch Hansen publications (1957 and L966) (see Section

2.5J. indicates that he approximates the limiting rupture line to a

circurar arc (Figure 2,L7) , static equilibrium conditions are then

applied to determine the components N and T of the internal stresses

in the circle, and the moment M, , as a function of the problem geo-

metry and the stresses on the assumed rupture line. use is then made

of Kotterrs equation, and the known boundary stresses to determine

the stresses along the rupturre surface, and hence the unknowns N,

T and }4p. Simple static equilibrium considerations can then be applÍed

to determine the ultimate bearing capacity.

The graphical procedure developed by Bowres is presented in
principle in Figure 2.78,
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FIGURE 2.17: BRINCH HANSBNIS CIRCULAR RUPTURE

SURFACE (after Brinch Hansen 1966)
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It consists essentially of drawing the system to scale, and using a graphical procedure

to construct the presumed failure surface which is comprised of a circular arc and

a straight line. The weight of the soil in the different segments of the failing mass

are then computed. The frictional resistance to sliding Ís computed from the weights,

and static equilibrium conditions are supplied to dete¡mine the bearing capacity.

The only aspect of this method which is similar to the rrso-calledrl

equilibrium method of Brinch Hansen ( 1966) is that a segment of the

failure surface assumed to be circular.

The method used for determination of the ultimate load is not the

direct application of Kotterrs equation, but considers only simple

static equilibrium of the system. Furthermore, the validity of a circular

failure surface is questionable since it does not conform to the surface

observed in experimental work,

Lee (i.978) has computed the bearing capacity factor *rn ("" defined

by Meyerhof, 1951) using Bowles's (L975) method for a cohesionless sahd

with Q = 35o and Q = 40o with footings located up to 58 from the crest of

the slope, with depths ranging from 0 - 38 . A slope with a gradient of

L vertical to 2 hortzontal was considered
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2.9 Bowles (1977)

The method proposed by Bowles like the one described in Section

2.8 is also graphical procedure. It is based on an assumed failure

surface consisting of a log-spiral and a straight line which is con-

sistent with that used by Terzaghi (1943). In contrast to Terzaghi;s

solution however, the base angle is assumed to be equal to rl4 + þ12,

value same as that assumed by Meyerhof , (1-957). As such, the pro-

posed method does not involve any novel approaches to solving the

problem, or any attempt to provide a more soundly based analysis

The assumed failure mechanism is shown on Figure 2.t9,

For a general soil , that is, one possessing both cohesion and friction ,

revised bearing capacity factors Nt" and Nrn were determined by comparing

the geometries of the case under consideration with that of a footin g on

leve1 ground,

For example , Nt" is given by
Nt" = N" Ll-

Lo

Lo is the length of the surface rcbderin Figure 2,20 and L, is the length

of the surface tcbdet in Figure 2,I9.
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Similarly, N'q is given bY

Nt = N A-q q r where Ao and A,
Ao

are the shaded aïeas in Figure 2.20 arrd 2.19 respectively.

Bowles states that the bearing capacity factor Ny requires no modi-

fication for slope effects because it depends on the wedge t6þ¿t (Figure

2.I9), It assumes therefore that the shape of the wedge is also not

modified by slope effects. In contrast, the ana-lysis considered later

in this thesis is based on the hypothesis that the shape of the elastic

wedge is fundamentally influenced by the effect of the slope.

When the area A, is glreater than Ao, Bowles (t977) proposed that

N'^ be taken as being equal to N^, ThÍs is based on the understandingqq
that the bearing capacity of a footing influenced by a slope will be less

than that of footing on level ground.

In order to compare Bowles (1977) bearing capacity factors with

Meyerhof' (1g57) values, Lee (1978) combined the former bearing capa-

city factors as follows:-

N -N +2D Nr dYqY;qq
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Lee (197B and 1981) calculated the Nrnvalues based on Bowlesrs method

for $ = 35o and ô = 40o and a slope with a gradient of l verticaJto 2

horizontal for footings located at distances up to 5B for the crest of the

slope, and depths up to 3B deep.

2,L0 Kusakabe et al (1981)

The method employed by these authors to determine the bearing

capacity of a footing on a stope is a limit analysis technique using the

upper bound theorem. The solution considers the failure mechanism

shown on Figure 2,21, It consists of a triangular region immediately

beneath the footing which is an active wedge, and a rupture line which

consists of a logarithmic spiral and a straight line exiting at the toe of

the slope

The authors state only that a straight line connects with the logari-

thmic spiral smoothly and passes through the inclined surface of the slope.

No further details of the failure mechanism are presented. From the geometry of

the problem, and the upper bound theorem a relationship is derived for bearing

capacity by equating the rate of internal energy dissipation to the rate of external work.
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The authors present a number of charf'g giving bearing capacity for

various combinations of the problem variables, namely the slope angle,

the footing distance from the edge of the slope, the slope height (as

a multiple of the foundation width), the strength parameters c, and ô of the soil.

The authors have not considered the particular case of cohesionless soil which is addres-

sed in this thesis. However, their results are quite comprehensive and therefore poten-

tially of practical significance.

The general features of the analysis is similar to that used by Chen

(1975). That is, a failure mechanism is assumed, and the rate of inter-

nal energy dissipation is equated to the externaL work done for the assum-

ed mechanism. The resulting equation yields a relationship for Ny which is

function of 0 , the apex angle of the radial transition zone BEC (Figure

2.2L) and the area of quadrilateral ABEF. The angle Q is defined for

a given problem. The angle BEC and the area of the quadrilateral ABEF

are determined from the geometry of the assumed faílure mechanism, The

accuracy of the solution is therefore dependent upon how well the assumed

failure surface models the actual soil behaviour.
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2.IL Summary

In Sections 2.2 to 2.1-0 nine methods which are presently available for

determination of the bearing capacity of a footing on a slope have been out-

lined. The methods employed in developing the theories are limit equili-

brium and limit analysis methods. Comparison of the results of the theories

is presented in Chapter 7. However, it is evident from the forçgoing dis-

cussion that despite the relatively large number of theories which have been

advanced over the last three decades, there is as yet no theory which analyses

all the special features of the problem in an attempt to provide a realistic

estimate of the ultimate bearing capacity'

In contrast to the solution developed in this thesis, all of the existing

theories require assumptions to be made with respect to the shape of the

failure surface. Additionally, it is not clear whether the downslope failure

surface direction is carefully treated in some of the solutions (e.g . Kusakabe,

1981),

At least tþree of the theories,(Giroud, Chen and Mlzuno et aI) consider

only the case of a footing located at the crest of an embankment which slopes

equally on either side, The limited practical application of this solution

is immediately obvious. Another method (Kovalev) considers the bearing

capacity problem to be identical to a slope stability problem, and hence does

not include the important effect of soil-footing interaction. The basis for
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the failure mechanisms proposed by Bowles is not cIear. AdditionalJy,

none of the methods consider how the soil on the upslope side of the

footing influence the ultimate bearing capacity. These aspects are

considered in this study in orderto develop a soundly based analysis

for the problem.
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CHAPTER 3

THE STRESS CHARACTERISTIC METHOD

3.1 INTRODUCTION

The stress characteristic method involves the integration by a

numerical procedure of known boundary conditions to unknown

boundary stresses in a field or domain in which the strength pro-

perties are defined everywhere, At failure, the soil beneath a

footing is stressed to its limiting or yield condition. The CoulomÞMohr yield criterion

is assumed to appty in the failing region.

sokolovskü (1965) developed the stress characteristic method

to compute the stresses beneath the footing at failure. The numer-

ical accuracy of the basic method was improved by Graham (1968).

For convenience, the development of the numerical procedure is

briefly outlined here, following the approach given by Graham. The computer proglam

is based on the work of Hovan (1985) but has involved a significant amount of re-
programming for the particular question being examined.

3,2 THEORY

Points in a two dimensional plastic field are defined in terms of
physical plane co-ordinates x and z where the positive z axis is or_

iented vertically downwards (in the direction of gravity) to simplify
the resulting differential equations (Figure g,1) ,
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FIGURE 3.1: GENERAL SYSTEM OF COORDINATES
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A soil .element in this two dimensional field whích is about to fail,

must al.so be in a state of plastic equilibrium. The stresses in a soil

element in a state of plastic or limiting equilibrium are considered to

be controlled by the Coulomb-Mohr failure criterion.

The criterion is stated as follows:

k =c + orrtan0

For cohesionless soil, c = o so the equation can be written as

k =o' tanÓ ,g.z
Effective stresses have not been indicated by the normalr superscript but are

assumed throughout.

Figure 3. 2 shows the direction of the major principal stress, 01

in a typical soil element, inclined as an angle ü to the z - axis. The

slip lines s, and s, arong which failure will occur are inclined at an

angle U = ( Tt 14 - Q|ZT to the direction of o 1, The Mohrrs

circle representation of this state of stress is shown in Figure 3.3.

From the Mohr' circle ,

o-
oo \ =o ( 1+ sin þ cos 2rfl)
x

3,1

and,

,*, = osinôsin2ú 3.3.

A two dimensÍonal soil element which is just about to fail, must
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satisfy the equations of sratic eguilibrium.
âo ârx + -xz -0
âx à z

â o ìT
---z +--x3 = y .,3.4àz âx

The unit weight of the soil is considered to be the only body

force.

It is convenient to express these equations in dimensionl.ess terms by substituting

3. 3a

x= xrlg., 
"= t, /9. o=o, ill andt =tr&f, The parameterl, is called the scale parameter

o¡ characteristic length. y is the unit weight of the soils and xr, zr,or, andrr are

dimensional real parameters. DimensionÌess parameters have been used throughout

the rest of the analysis. Euqations 3.3 and 3.4 may be rewritten in dimensionless

form as

x
^ Ì = o (1 i sin ó cos 2 rl)

z

r___= o sin ó sin 2 úxz
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and

âo â'rz+xz=I

àz â x

âo ât'"x + "kz = 0

âx à z 3. 4a

Substitution of Equations 3.4a into 3.3a gives

3_q ( 1 +cos 2 rJ.r sin ô ) + ðo (sin 2 rf sin 0 )

ðz âx

- 2 o sin ô ( sin z ip !_V - cos 2q, _Qj_) - 1

òz ðx

and,

âo (1- cos 2 ipsin 0 ) + ðo (sin 2r! sin 0 )

ðx ðz

-2osin 0(sin2p âr'|,, +cos2rþ N) = o

ðx âx

Equations 3. 5 are statically determinate but cannot in general

be integrated in closed form because they are non-linear. Closed

form solutions can be obtained for special cases with the simplifying

assumption for exampleó = 0, or y = 0 (Wu, 1966; Grgham 1968),

3,5
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Sokolovskii suggested using the following logarithmic transformations

to simplif! the equation

x =&40
2tan0

E - X + q/

n =x - Ú

Substitution of these new variables into Equations 3.5 gives after

mathematical manipulation the follawing equations

dn = a -tan(rþ-u) ârl ðn gë
+

dz âx ðx dz

dg =b-tan(qr+U)ãE-ðE dx ._3.6-t-

dz ðx ãx dz

where,

a = sin ( ú + u)

2o sin ôcos (r!-u)

and,

þ =-sin(ü - u)

2 o sin Q cos (r!+url

For any line in the physcial plane with slope dx = tan (ú I U),
*

the last two terms of Equations 3.6 are equal and opposite, and there-

fore cancel, The stress field can now be described by two families of
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slip lines

= a for slip lines S, with slope dx
ú

=tan(ú-u)

and,

for slip lines S, with slope Êë = t"r, (rl +U)
dz

3.7

From the Mohr circle (Figure 8,3) it can be seen that the two

lines through the pole having inclinations of (ú I U) are in the

directions of the slip lines s, and sz h the physical field. That is,
the solved system in rogarithmic stress space provides a set of srip

lines or a slip line field whose positions are known in the physical
( x, z) plane.

The values of the four parameters x, z,atr/.r, describing a point p

in a plastic field are found by solving Equations 8,7 along each of
the characteristics through the point, To provide a definite integrar,
two previously known points, one lying on each of the characteristics
must be available. In Figure 3.4 the new point c lies on the inter_
section of the S, Iine from point B (x,z,o,rf,,)B with the S, line from
point A (x,2, o,ú)A.

Rewriting Equations 3,7 in finite differences form yierds

-q!-
dz

dE =btz
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FIGURE 3,4: COMPUTATION OF A NEW POINT C FROM KNOWN

POINTS A AND B.

Ð (xzcrrf)
r.to^



54,

Lz 2 osin Q cos (rf + U)

Af =a= sin(rl+U) 3.8
Aq 2o sin Qcos(tf -u)

As a first approximation, the assumptions are made that the slip

line AC and BC in Figure 3.4 are straight, and that they have direc-

tions of (tlO + U) and (Úe - Lr ) at C respectively.

The slip line throúgh A has the gradient

dx=
d,z 

tan(PA+u)

therefore,

*C- "O - (. zC- re) tan ( üe + U)

Similarly, for the slip line through B , we have

rC - xB = ( ," - ,'n) tan ({"- P)

Solving f,or xa and zC gives

tc = ¡B * ('"-'g) tan (ÚB - u )

,C= 
",""f 

f¡ t-*U-áOtan(üe*u)+xo
tan ( úg- u) - tan (rlo + u)
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From Equations 3,8

Ec = EA - (zC - ,e) sin ( rl.i - u)

2 oO sin 0 cos (qr + Ul

nC = lB * (r, z") sin ( il +u)

2 o" sin þ cos (rl, - U)

From E and n , the values of o and r/.r can be computed from the
CCCC

following expressions by reversing the log-transform.

oC =exp {tanþ(E+n)}

and,

% =tlL (E-n)

The simple form of the finite difference relations given is very

approximate since no account is taken of the curvature of the slip

lines between the known point A and B, and the new point c. The

accuracy of the solution was improved by sokolvskü (1960) by substi-

tuting 712 ( úe * ü") and 1,12 ( h * üC) for rl.,O and rl,"respectively

once the initial value of rf.r has been determined. This process is con-
c

tinued until the value of rf from two successive iterations converge to
c'

an acceptable tolerance. This is the so-called rr rf iteration'r method

(Graham, 1968). The sorution is much improved by the additional

substitution oA,B = 112 (o"* oA,B) for oo and g andcarrying out

3.9
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the iterative process until the o values conveïge to a specified

tolerance. This method is the so-calIed tt o, ü iteration" method,

which was proposed by Graham (1968).

3.3 DETERMINATIONS OF THE SLIP LINE FTELD

The computation begins at a boundary where the parameters

x,z,o and rf are known .

In this work, the known boundary is the edge of the passive zone

beneath the sloping surface (Figure 3.5) which Graham (1966) has

shown to have straight slip lines when the magnitude of the surface

loading is zero (Figure 3,5) .

If point O (Figure 3.6) is taken as the origin of the adopted system

of physical co-ordinates the slip line field in the transition zone consists

of two families of characteristics.

1, a set of curved radial lines originating from point O,

2, a set of spiral lines intersecting the radial lines in turn at

an angle of 2U = rl2 - þ

Point Ois a unique point in the field, at which there is a sudden jump

in the values of o and rf when moving from right to left say, through
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Pole 0

FIGURE 3,5: TYPICAL SLIP LINE FIELD IN TTTE PASSIVE
ZONE BENEATH A STRESS FREE SLOPE.
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FIGURE 3.6: TYPICAL SLIP LINE FIELD IN TRANSITION ZONE
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O. The value of r! describing the direction of the major principal

stress is fixed at the beginning and end of the transition zone by

the physical formulation of the problems as outlined in Sections 3.4

and 3,5. This means that if undergoes a total change of say Àp

at O. The slip lines themselves have no physical reality, but only

describe the directions of slipping at any point in the field. The

radial lines can therefore be specified in number by dividing. Arf

into a suitable number of intervals , each corresponding to a sepa-

rate member of the radial family. The parameters X and Z are con-

stant and fixed at O by the formulation of the problem, and each

radial line has a different, arbitrarily selected value of rJ.r and

hence o along the inner limiting member of the spiral family,

surrounding O at an infinitesimally small distance, The assump-

tion is made that close to O, self weight forces do not affect the

stress distribution. Hence, the values of o predicted for a

weightless material are considered to be applicable around the inner

limiting spiral curve (Graham 1966). Thus, if the boundary of the

uniquely defined zone forming the initial radial line has values of o"

and !.r. at O, the value of o. on the j.th radial line having ü = ü, at O,

will be given by

oj = oi, exp {2tan ô ( Uj - ifi) }
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Points determined in this way provide the second set of known

boundary conditions required to begÍn the computation. The com-

putation of the entire field is then routine using the numerical pro-

cedure outlined in Section 3.2 above. The computation of the slip line

field is carried out until the end boundary where the failure stresses

are to be evaluated is reached.

Since point O (Figures 3. 5 and 3.6) is a singular point of the slip-

line field, it represents a point of discontinuity in the mathematical

solution of the basic equations. At stress levels equal to zero, the

logarithmic transformations that are involved in the solution tend to

infinity. In order to handle this problem, Graham (1968) introduced

a surcharge term, in the computation of the slip line fie1d, that allows

the logarithmic stress range to remain finite. The effect of the sur-

charge term is then reduced by 'shrinking' the field by a factor of

10 n , where n is the number of scale reductions necessary to eli-

minate the effect of the surcharge to an acceptable tolerance. It is
important to note that this scale reduction process does not itself

introduce any scale effects since all computations are carried out in

dimensionless terms. The present study has retained this procedure

for handling the singularity at point O.
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3.4 THE INITIAL BOUNDARY CONDITION

It is necessary to determine values of the pararneters x,z,o

and r! on the starting boundary, that is the edge of the rectili¡ear

passive zone in order to begin computation of the stress characteristic

field.

The parameter x is the horizontal distance from the point o (Figure

3.6) .

The coordinate z is the depth of soil from the sloping ground surface to the boundary

of the passive zone (Figure 3.6). The inclination of the passive zone boundary is a

function of the angle úr, the value of r! in the passive zone.

z is also a function of rl,i and is given by

z=x 't 1 
-tanuÌ

tan (!.'r-p )

The value of if.r. is determined from the Mohr circle of Figure s,7

and is given by

2Úi = T-û,-sirr-1 (sincr/sinÔ)
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FIGURE 3.7:

/ \¡
POLE Ü

MOHR CIRCLE SHOWING STRESS CONDITION IN THE
UNIQUELY DEFINED ZONE AT TFTE SURFACE OF THE
SLOPE.
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The value of o is also determined from the Mohrts circle as,

o = L.O+Z
1+sinScos2tf,t.

where 1.0 is a surcharge term assumed fo¡ the present to be constant along the

free surface of the slope.

3.5 THE END BOUNDARY CONDITION

For a footing on level ground, it is generally assumed that an

elastic wedge of soil is trapped beneath the footing and that failure

consists of two symmetrical zones flowing outwards from the centre

line.

The en'd,boundary in the stress fierd computation is normally

taken as the lower edge of the elastic wedge for example by Graham

and Stuart (1971), Suppiah (1981) and Hovan (1985). This boundary

is also a slip line and is inclined at an angle of ó with the footing base.

For the case of a footing on sloping ground the elastic wedge is

not symmetrical about the centre line of the base of the footing.

The analytical sclution to its precise geometry however has never been addressed

nor defined in any of the existing theories. This thesis addresses that problem. A
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study of the shape of the elastic wedge and the determination of a likely shape for

use in the computations is presented in Chapter 4. It is important to note that the

inclination and conditions along this boundary have significant effect on the com-

puted bearing capacity.

Vertical stresses on the two lower boundaries of the wedge are calculated from

the stress characteristic solution, and then expressed as the dimensionless parameter

N
Yq

3.6 OTHER INFUT PARAMETERS

In order to facilitate the computations, ottrer parameters must be

carefully chosen, These are discussed below.

3.6, L Scale Parameter .0

All the variables throughout the computation of the stress charac-

teristics were expressed in dimensionless terms, that is they were

written o = o, I y9", x= xrlg-, , = rr/0, where .Q, is a scale para-

meter used to convert the real physical plane dimensional parameters

o , x, z, into dimensionless ones for computationa_l purposes, and vice-

versa. The scale parameter g was chosen as the horizontal component of the edge

of the passive zone (Figure 3.6).
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3.6.2 Number of Spiral and RadiaL Lines

It has become also customary in stress characteristic solutions to

use ten spiral and twenty radial lines (e.9, Graham 1968 and Hovan

1985). As noted by Hovan (1985), a higher number of spiral and

radial lines would improve the accuracy only slightly. It would also

lengthen the computation time. This thesis uses ten spiral and twenty

radial lines for all the computations.

3.7 VALIDITY OF THE CO}4PUTER PROGRAM

The numerical accuracy of the results produced by the basic com-

puter program was established by computine N, for a footing on level

ground for a series of Q values from 30 to 42 degrees.

The computation values were compared with the results obtained

previously by Graham and Stuart (1971), and Hovan (1gBSl. These

results are summarized in Table 3.1.

The computed N",. values agree very closely with those of Graham

and Stuart, and compare within -1. g% and + 0.2%, These differences

in N.,, may arise from iugltity different procedures fo¡ integrating
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the pressure distributions for determining the failures [oads.

Graham used esséntially semi-graphical procedures, whereas

more recent approaches by Suppiah (1984), Hovan (1-985) and

the author use numerical procedures. The results also compare

reasonably well with those obtained by Hovan (1985) except at

high þ välues where the N, values differ by about 1L%. The

reason for this discrepancy is not known. It should be noted

that this favourable comparison with N, values for surface

footings on horizontal grounds does not however confirm the

validity of the new EDGPA subroutines written by the Author.
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0

angle

N
v

Graham 6 Stuart

N
v

Hovan

N
Y

Author

30

32

34

35

36

3B

40

42

22,4

3L. 4

45. 0

54. 5

65. 0

96.0

1-43. 0

21,6,0

23.L7

31,,25

45.60

69.20

98. 90

L47.90

242.97

2L.97

31.29

44.93

54.03

65.14

95, L4

142.09

2L4.65

TABLE 3.1. CHECK ON

PROGRAM

ON LE\ÆL

NUMERICAL ACCURACY OF THB COMPUTER

- colrPARrsoN .QF Ny VALUES FOR A FOOTTNG

GROUND.
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CHAPTER 4

THE SHAPE OF THE TRAPPED ELASTIC WEDGE

4.1 INTRODUCTION

Vesic ( 1973) in his extensive review of the ultimate bearing capacity

of shallow foundations on level ground concluded that the stress and de-

formation pattern under compressed areas is such that it always leads to

the formation of single wedges immediately beneath the footing' The

roughness of the footing base was deduced to have little effect on the

bearing capacity as long as the applied externaL loads remained vertical.

In their recent paper on model tests of bearing capacity problems in a

centrifuge, Kimura et aI (1985) state that their current experimental ob-

servations concur with the analytical theories suggesting a single wedge

failure mechanism regardless of the roughness of the failure footing base,

This means that the 'rPrandtl type'r failure mechanism and not the rrHill type"

mechanism is the likely failure type (Figures 2.1-5 and 2.1,6).

For footings on level ground this wedge of soil is commonly assumed

to be symmetrical about the centre line of the footing and have a base

angle of S to 45 + +12 degrees. Graham and Stuart (L97L) and Hovan

(1-9851 used a base angle of þ degrees in their "þ - wedge'r analyses,
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B

B l2 B l2

FIGURE 4.1: STRESS DISTRIBUTION AND TRAPPED WEDGE FOR A

FOOTING CLOSE TO A SLOPE

STRESS DISTRIBUTION
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The case of a footing close to the c¡est of a slope with one side (A) adjacent to

level ground (Figure 4.1) is however more complex. Because of its physical geometry,

the problem is clearly asymmetrical. The stability of such a footing will be influenced

by the reduced support available on the side with the slope. It can be expected that

the ultimate bearing capacity will be reduced from the level-ground case. Failure

will commence in the weakest region of the foundation soil, that is, in soil adjacent

to the slope, and will propagate inwards towards the footing. The overall behaviour

of the soil in the failing domain to either side of the centre line of the footing is not

yet fully understood. However, it can be reasonably expected that if the foundation

is constrained to move downwards vertically, then displacement of the soil mass will

occur on both sides of the footing.

The earliest known experimental investigation of the behaviour of foot-

ings on slopes was reported by Peynircioglu (1948). This work indicated

among other things that the trapped elastic wedge beneath the footing is

probably not symmetrical about the centre line of the footing base. As

mentioned in section 3.5, the lower edges of this wedge form the end

boundary for the stress characteristic solution. It is therefore necessary

that their location should be carefully modelled if the stresses acting on them are

to be determined accurately. Various analytical models for determining the shape

of the wedge are studied in this Chapter.
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4,2 Photographic Evidence For the Shape of the Wedge

Experiments that indicate the shape of the trapped wedge for footings located

close to slopes have been reported by Peynircioglu (1948), Mizuno et al. (1960), and

Giroud and T¡an-Vo-Nhiem ( 1971). The recentiy reported work of Kimura et al.

(1985) based on model tests in a centrifuge also provides limited information on the

shape of the slip lines at failure.

Peynircioglu carried out small scale tests on two types of sand in a

glass box with dimensions 55 x 33 x 26 cm. The physical properties of

the sands are summarized on Figure 4.2. The movement of the sand

particles during the loading process was recorded by means of time ex-

posure photography. Although.the friction between the sand and the

sides of the glass box obscures the development of the failure zotre, some

important conclusions can be drawn from the observations, these are as

follows:-

(1-) It is very clear that the trapped wedge beneath the

footing is asymmetrical, and that the base angle or on

the side nearest the slope is less than n/4 + þ12.
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SOÉ PROPERTY st s2

Specific Gravtty

Unit Weight in the loosest state

Unit Weight in the densest state

Porosity in the loosest state

Porosity in the densest state

Angle of lnternal frictlon

2. 61.3

1.405 t/ms

1. 584 t /m3

46,2%

39, 3t

3Bo

2. 591

1.385 t/ms

1.61.0 t/mg

46. 5%

37.9t

360

FIGURE 4.2 PROPERTIES

( 1948)

OF THE SANDS USED BY PEYNIRCIOGLU
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(.2) The greater the slope inclinatÍon, the greater

is the asymmetry of the wedge.

A summary of the relevant results of this work is shown in Table 4.1, which also shows

a summary of the experimental works of Giroud t1g71) and Kimura (1ggS) and compar_

isons of these results with the models developed later in this chapter.

Mizuno (1960) studied the problem with the aid of smaII, two-dimension-

al model where the soil is represented by small cylindrical bamboo sticks,

5 mm in diameter. They reported good agreement between the observed

slip lines and a failure zone calculated by assuming a symmetrical soil

wedge with a base angle of rl4 + þlZ. This is in direct contradiction

to the observations by Perni¡cioglu (1948) described previously, The

reasons for this apparent discrepancy are not known.

Giroud and Tran-Vo-Nhiem (1971) carried out their experiments

with a two dimensional model similar to that used by Mizuno et al (i.960)

but used duralumin rods to represent the soil medium. The soil movement and failure

mechanism were observed by means of both a camera attached to the moving footing

and by a fixed camera. The results clearly indicate than an asymmetrical wedge is

formed beneath the footing and that this asymmetry increases with the inclination of

the slope. The base angle of the wedge immediately adjacent to the slope ur, (FiE.

4.1) is obse¡ved to be less thann/4 + þlZ. The results in general agree with those

of Peynircioglu (1948) and the pertinent details are summarized on Table 4.g.
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4.3 Analytical Study Of The Shape Of The Trapped Elastic Wedge

4.3.1 Introduction

In this section four different models for the shape of the wedge are

developed and analysed. For a footing with its edge at the crest of the

slope, the geometry of the wedge is a function of the slope angle o, and

the angle of internal friction Q of the soil. The variables which define the

shape of the wedge are the x'l x, ratio, urg and ur, (Figure 4,1-), These

variables are mutually dependent and can be expected to vary with the

basic parameters a and Q . The models which are developed all start

from the premise that the left base angle of the trapped wedge is equal

to 0 (Figure 4.3), That is, when failure occurs it will do so simultaneous-

ly to both sides of the footing, with failure zones of different sizes ex-

tending to both the slope surface on the right in Fig , 4,3 and to the hori-

zontal ground surface on the left. As mentioned previously in Section

4. 1. the base angle of the trapped wedge is normally taken as being equal

to 0 in the stress characteristic solution for footings on level ground. The

development of the models is now described in turn.

4,3,2 Development of Model 1

The stress on the boundary AB (Figure 4,3J of the rectilinear pas-

sive zone adjacent to the slope is determinate (Graham 1968). Its value
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FIGURE 4.3 BASIC ASSUMPTIONS

OF MODEL 1..

FOR THE DEVELOPMENT



77

was determined in Section 3.3 and is given by

o.¡ =x; {tlltan(r[*- U)] -tans]. 1
trtr

1+sinQcos2r!.

At the start of the extreme spiral at B bounding the failing soil mass,

6, = f.ilt/tan ( ú.__ - u)l - tan crÌ, 11 '11

1 + sin Q cos âf.,

In the region close to O (Figure 4,4) where the effect of self weight

can be neglected, the stress on the ¡th radial line is given by

oj = oi exp (2 Aü tan 0)

If this can be applied to the entire failing mass (and this is strictly

correct only if the entire domain is weightless) then

oj, =.Q, {[ l-ltan (il.ro - u)ì - tan cr. ].exp (2 L\þ tan ó)

( 1+ sinô cos 2þ¡r)

4.t

¿.)

4,3

4.4

The verical stress or, "t point C is therefore

o.rr=9{[ 11tan (r/.rrr-u)] -tan a] {r+sin Ocgs 2þ*}
{L+sinQcos2þir}

. exp{ 2 tanó (ú - V )}
fr tr 4.5
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FIGUBE 4,4. NUMBERING SEQUENCE FOR

EMANATING FROM O.

THE RADIALS
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AS

{r - cl - ,irr-l(sin o/sin ó) }

and can be expressed as

4.7

The value of orrras expressed in Equation 4.5 is thus a function of

0r, 0 and Q,

It is clear that good mathematical modelling should not introduce a

stress discontinuity at any intermediate point on the footing base, Hence

there can only be one value for the stress at point M (Figure 4,1) , The

Model 1 analysis assumes that the vertical stress o-r, "t 
point M decreases

linearly to zero at D, the left edge of the footing. The rate of stress de-

crease to D obtained from a surface footing calculation will define the loc-

ation of the left edge of the footing. This establishes the value of xUlxr,

that is, the skewness of the elastic wedge,

Since we have assumed that the failure surfaces are logarithmic spirals

then the length *, h Fig. 4. 3. is

The value of Vi, was determined in Section 3.4. and is a function of

It is expressed

rr. = LlZ'tr

The parameter üf, ir a function of ut,

{," =ûr -t¡14-ö12'rr r

*, = 0 cos or/ {sin (úi, - u) } . exp {0, tan ó } 4.8
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From the physical geometry of the wedge

x^=x tano.tY"TT 4,9

tan þ

By combining Equation 4, B and 4.9, the following expression for

x ^ is obtained.
v.

If we further assume that the rate of stress decrease to rDr is in

accordance with the TerzagH Ny value (here called Nyt) for a fu1ly

roUgh þ wedge, then
4.1r

This is also based on the assumption that the failure surface is a

logarithmic spiral.

substitution of Equation 4.10 into Equation 4.1L yieids

I cos t¡r
^r sin (ú.- - uJ tan 0' '1r

, exp {0, tan 0 } 4. 1_0

. exp {0, tan 0 } Nyr ,., '.4.1'2

ov.Q, =2 *[NyT

(\"v[ = [ 2cosu.r,

sin (il.ri, U ) tan ö
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Equations 4.5

M as functions

and 4,12 therefore

of u.rr. As noted

provide values for

earlier, to avoid a

the stress at point

discontinuity:

- 
Iìvr vy, 4. 16

The resulting expression can be solved for o, provided that o and Q

are defined. It was solved by computer by assuming an initial value for

o_ and determining the resulting o--- and o--., va-Iues. These valuesr - vr vy,'

were compared to determine whether the absolute difference met a speci-

fied tolerance that is (oo, - orr.q,) 1oru.0.0L. If this tolerance was ex-

ceeded, then r¡_ was adjusted until the conve¡gence criterion was met.'r
Using this procedure, uir was computed for values of Q ranging for 30

to 45 degrees and values of cx ranging from L0 degrees to (ö - 5) degrees.

for each 0 considered.

4,3.3 Results From Model L

The results showing the computed values of o, and x Ul 
x, are summar-

ized in Table 4.2. Also shown i¡ this table, is the eccentricity of the

apex of the asymmetrical wedge which is defined on Figure 4,1. It is

a relative measure of the skewness of the wedge and gives a more con-

venient quantitative measure of the asymmetry than the parameter .xni xr,

Table 4,?'shows that tlrc value of retvaries within the range of .02 B to

.35 B as cy varies from L0 to 40 degrees,
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ô

( de gree s)

O¿

( de grees)
T

( degrees)
'g"

( degrees)

*g,l ",
let

(x1lB )

3ß

35

40

45

5.0
10.0
i5.0
20.0
25,0

10. 0
r.5, 0
20.0
25.0
30.0

r_0.0
1_5.0
20.0
25.0
30 .0
35,0

1_0,0
L5. 0
20,0
25,0
30 .0
35. 0

40.0

30.0
27 .4
22.0
L6.9
1,2.4

33.2
26. 8

20,7
15,4
11.0

36. 7
29,6
22.9
16.9
1,2 ,1
8.4

41_. 5

33,0
26. 3

i,9, 6

14.0
9. B

6.6

30. 0- 30.0
30, 0
30 .0
30 ,0

35. 0
35. 0
35. 0
35,0
35, 0

40 ,0
40,0
40.0
40 .0
40. 0
40 ,0

45 ,0
45. 0
45, 0
45. 0
45, 0
45 ,0
45. 0

1.0
0. s0
0, 70
0.53
0. 38

0,93
0,72
0,54
0.39
0.28

0 .89
0,68
0,50
0, 36
0.26
0.17

O, BB

0,70
0. 49
0, 36
0.25
0.17

0. 0-

{0.02
0.08
0.15
0 ,22

0,02
0,08
0.15
0 ,22
0.28

0,03
0.09
0.1.7
0.23
0.29
0.35

0.03
0,0B
0.17
0 ,23
0,30
0,35

TABLE 4,2 SUMMARY oF CALCULATED x^ I x AND crr VALUES FoR.LTT
MODEL 1,
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From Table 4,2, it is immediatery obvious that the skewness of
the trapped wedge, as represented by both * g,l*, and g is rargely

independent of the varue of o, Average values of e and x*/x, for
a given cx are summarized on Table 4.2.The variation of e with s,

and xnlx, with o are shown on Figures 4.5 and 4.6respective1y.

These graphs also show results from further l\{odels 2 to 4 rvhich

were also examined. Both the curves for Model 1, (Figures 4.5 and 4.6) indicate that
the asymmetry or skewness of the wedge becomes more pronounced as the slope

inclination increases. Figure 4.6 is basically a repetition of Figure 4.b, but is repro-
duced because of its usefurness in the rater numericar work.

The general trends resulting from thjs solution agree quantÍtatively with those

obtained from the experimental observations by Peynircioglu (1948), and Giroud

and T¡an-Vo-Nhiem (19Z 1).

The variation of t^r, with a for various p angles is shown on Figure 4.7. These curves

are useful for determining ur, values which define the finat boundary in the N, cal-
culations, which will be described in Chapter S.

From the above analysis, the approximate shape of the trapped erastic

wedge òan be determined for any combination of Q and o. However, when
..
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SLOPE ANGLE

cl
(degrees)

ECCENTRICITY OF

WEDGE rel
1(xB:)

" g.l *,

10

15

20

25

30

35

40

0. 026

0.08

0. L6

0.225

0.29

0. 35

0. 50

.90

,70

52

,37

28

1,7

TABLE 4.3 A\IERAGE VARIATION OF ret AND , xUlx] WITH

TclTBASED ON MODEL 1.

Note: The values of rer and x g,l*r quoted above are the arithmetic

means of the values shown on Table 4,2 for any specified

value of o .
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rgr 0.30

0. 10

0,os

10 20

VARIATION OF re'

0

4.5

V Model L

O lr,rodel 2

@ Ivtodel 3
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not valid for o, >þ

. .30 40s toegreesJ
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!
X

xts

0

FIGURE 4.'6

10 20 30 40
cl (degrees)

VARIATION OF x"lx WITH crv-T

' 50 60

FOR MODELS 1 TO 4.

VModel 1

O ttlodel Z

@ uodel 3

.ô Model 4
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comparisons were made between experimental and theoretical values of

N^., the agreement was not acceptable. Further models (2 to 4) were
Y

then developed to improve the level of agreement. These are described

in the foliowing sections.

4.3.4 Development Of Model 2

This model is simiiar in several respects to Model 1, It starts from the

same premise that the left base angle of the wedge is equal to ô. It also

computes the vertical stress ro_rrrat point M on the base of the footing by

starting with the known stress on the edge of the rectilinear passive zone

adjacent to the slope and computing the stress on the end boundary, i.e.

the lower right edge AC of the elastic wedge by assuming that the stresses

in the transition zone are related by the expression.

oj = oi exp ( 2 Ailtan ó)

The difference between Mode1s 1 and 2 is that o_r,. ir computed in-
dependently by assuming a logarithmic spiral st¡ess distribution in the failing domain

on the left rather than the Terzaghi distribution and then computing the vertical

stress on the end boundary (Figure 4.3) which was defined by a base angle O, as a

function of o I
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The resulting expression for o--" is- vv,

úvg" = x'sin u exp { 3 ¡iP tan Q }

cos Q (1-sin0 ) ( 1+ sinö cos 2U ) 4.L7

where

x" sin ov-- r . exp { - t, tan 0} .......4.i.8
tan Q { sin (üi, - p) }

By equathg orrl,(Equation 4.t7) to o.r, (Equation 4.5 ) an expression

which cclntains the single unknown o, is obtained. This was solved using

the iterative procedure outlined in Section 4.3.2,

4, 3,5 Results From Model 2

' The values of the computed parameters defining the geometry of the

wedge are summarized on Tables 4.4 and. 4. 5, The variation of ur, with o

for þ angles varying from 30 to 45 degrees is shown on Figure 4.8.

The general trends which resulted from Model 1 are also observed for

Model 2. That is, the degree of asymmetry of the trapped wedge Íncreases
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ô

( de grees)

c[

( degrees)
r

( degrees)

,,Q,

( degrees)

xtxg.' r
lgr

(" !J
B

30

35

40

45

5

1_0

15
20
25

10
1_5

20
25
30

10
15
20
25
30
35

L0
i_5

20
25
30
35
40

26,2
21,, B
17.2
13.0
9.4

25.1
19. 7
L4.7
70,7
7.5

28. B

22. 4
16. 6
11, I
B,3
5.6

32.7
27 ,5
18. I
L3. 3

9,2
8.2
4,1"

30.0
30.0
30. 0
30. 0
30,0

35, 0
35, 0
35, 0

35.0
3s. 0

40, 0
40.0
40,0
40 .0
40,0
40 ,0

45. 0

45, 0
45. 0

45, 0
45,0
45. 0
45. 0

0,85
0.69
0,54
0. 40
0.29

0.67
0. 51
0.37
0.27
0, 1"9

0.66
0.49
0, 36
0,25
0 ,1.7
0. 11

0. 64
0.52
0.34
0.24
0.16
0. 10
0.07

0.04
0,09
0, 15
0.21
0 ,27

0.10
0. r_6

0,22
0.28
0. 34

0.10
0.17
0.23
0. 30
0 ,35
0. 40

0.11
0. 15
0. 25
0.31
0,36
0. 41
0.43

TABLE 4. 4 SUMMARY OF CALCULATED \. 1u, AND ur, VALUES

BASED ON MODEL 2,
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SLOPE ANGLE

ct
( degrees)

ECCENTRICITY OF

WEDGE rer

(x 1/B)

" g,l*t

1_0

L5

20

25

30

35

40

0.096

0. 15

0,22

0.29

0.35

0.40

0, 43

0. B0

0.53

0. 68

0. 26

0. 17

0. 10

0.L7

TABLE 4. 5 AVERAGE VARIATION OF ter AND' x'l xrt WITH

I 6¡i I BASED ON MODEL 2.

Note : The values of tet and r xnlxrt quoted above are the arithmetic

means of the values shown on Table 4.3 for ahy specified

value of ct,
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as a increases. However, the estimated amount of skewness as measu¡ed by e and

*Ll*, of the wedge varies by a significant amount between the two models.

4. 3. 6 Development of Model 3

The feature of this model which is different from the two presented

previously is that the stress ov.tat M (Figure 4.1) calculated by work-

ing from the left is calculated using the N, values of Graham and Stuart

(S971) That is ovg = , tn *r"

The simplifying assumption of a log-spiral shaped failing domain applied

for Models 1 and 2 is no longer used. This means that the effect of soil

weight is now partly accounted for in the analysis.

Equation 4,12 can therefore be written as

^2cosr¡'vL= 1' - --- -r N yG , exp {0, tan ó } 4. 19

sin (ü¡ _ u) tan 6

o___ is given by Equation 4. 5.vï

The expression resulting from equating oo'. (Equation 4, g) to oyl

(Equation 4. L9) is again solved for u¡ using the iterative procedure out-

lined above (Section 4,9,2) .
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4.3.7 Results From Model 3

The calculated values .of o,. and \,1n, are summarised on Tables 4.6

and 4.7. The results are presented graphically on Figures 4.5, 4,6 and 4.g.

In general, it is observed that the estimated eccentricity of the wedge is

intermediate between the values computed using Model 1 and 2 respect-

ively (Figures 4.5 and 4.6).

4,3. B Development of Model 4

The approach to the formulation of Model 4 is considered to be much

more rigorous than tho se discussed previously and will form the principal

basis for subsequent calculations. In this case the approach starts from

the 'freef ground surface (DF in Fig. 4.1) and works towards the right.

It combines the stress characteristic fietds obtained for a footing on

level ground with those obtained for a footing at the top of an embank-

ment sloping equally on eÍther side. This provides a solution for the

condition where the footing is seated at the crest of a slope with level

ground on the left side (Figure 4.L) , The model is arranged so that it
ensures there is no stress discontinuity along the footing base.
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0

t degrees)

cI

(degrees)

Lr)r
(degrees)

UJ

9"

( degrees)
'.,.lot

let

t*lu r

30

35

40

45

5

10
15
20
25

10
15
20
25
30

10
15
20
25
30
35

10
15
20
25
30
35
40

30 .0
25. 5
20,4
15. 6
LL.4

29.3
23,3
t7,7
13.0
9.1

31. 6
25,0

13.6
9.6
6.5

36. 1
32,2
2L,6
15. 5
10.8
7.4
4.9

30.0
30. 0
30 .0
30 .0
30.0

35. 0
35.0
35. 0

35. 0
35. 0

40.0
40. 0

40.0
40. 0
40.0
40.0

45. 0
45. 0
45.0
45. 0
45. 0

45. 0
45. 0

1.0
0.82

,0.64
0.48
0. 35

0.80
0.62
0.46
0.33
0.23

0.73
0. 56
0.50
0.29
0,20
0.14

0. 73
0.63
0. 40
0. 28
0.19
0.13
0.08

0.00
0.05
0. 11
0. 17
0,24

0.05
0,L2
0. 18
0,25
0. 31

0. 0B
0.14
0,L7
0.27
0. 33
0. 38

0.08
0.L2
0.27
0.28
0. 34
0. 38
0.42

TABLE 4, 6 SUMMARY
MODEL 3,

OF CALCULATED 
^g.l 

*, AND ur, VALUES BASED ON
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SLOPE ANGLE

CT

( degrees)

ECCENTRTCITY OF

WEDGE ret

(x 1/B )

x"lxy,T

10

15

20

25

30

35

40

0,07

0.11

0.1,7

0. 25

0. 33

0.38

0.42

0.75

0.64

0,49

0. 33

0. 20

0,14

0.097

TABLE 4.7 VARIATION OFTeTAND *g.l*, WITHrcrr

BASED ON MODEL 3.

Note: The values of rer and x" /x quoted above are the arithmeticy,T

means of the values shown on Table 4.5 for any specified

value of c¿,
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The model employs the stress characteristic solution to obtain the

shape of the trapped wedge and does not presuppose a failure surface.

In this respect it is superior to the models considered previously.

Irl Mode1 4, the stress characteristic solution for the a = 0 condition

(that is for a footing on level ground) is employed to determine the

stress orr,["r well as the length *.q, (Figure 4.10) This ensures that the

effect of soil weight in the failing domain is accounted for in the analysis.

The length z^is also determined, since
L

z,=x-tanóv" v,

The next stage of the modelling consisted of working from the sloping grcund

surface, that is, the right hand side of Figure 4.10, and using the stress characteristic

solution developed in Chapter 3, to determine the base angle ur, for which the stress

ou, = ou' and ,L = ,, simultaneously. These conditions ensured that the¡e is no

stress discontinuity beneath the footing or physical discontinuity on the trapped

wedge.

The procedure for doing this consists of computing the slip line field and hence

Nyo (thich is proportional to o*) for'specified values of O ., c and urr. The values of
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Q considered, ranged 'rom 30 to 45 degrees in intervals of 5 degrees and q from 10

degrees toô-5 degrees. For each combination of 6 andc, or was varied. through

a range of values 
"nU \o computed for each value of r,r, considered. A typical

variation of N with o, is shown on Figure 4.L1. This Figure shows that as r¡_Ya -o--- ---- -- *r
decreases, Nro, 

"nd 
therefore ou, increases. A schematic illustration of t\þ phen-

omenon is shown on Figure 4.12. It is the¡efore evident that there must exist a

unique value of rrr, for which ou, = ou, and ,r= 
"L 

simultaneously. In order to obtain

this o, value, the computed ou, and z, values were combined with the initially defined

z, and ou, values to give to ratio of ou, to oug and z, to zr. By interpolation between

the calculated values of the ratio, the exact values of c,r, for which the ratios are

equal to 1.0 was determined. The geometry of the elastic wedge was therefore obtained.

4.3,I Results of Model 4

The geometry of the wedge computed using Model 4 is summarized on

Tables 4. B to 4. 9. The resutts show similar trends to those obtained from

Models 1to 3' A plot of the variation of tet with roris shown on Figure 4,b

while the variation of ur, with a o, is shown on Figure 4.L3 Model 4 predicts

a higher degree of skewness of the elastic wedge than Models 1to 3 inclusive,
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0

( degrees)

0

( degrees)

t
( degrees)

'g"
( de grees)

xnlx, lal
-q

c"f I

30

35

40

45

10
15
20
25

1.0

15
20
25
30

10
15
20
25
30
35

10
15
20
25
30
35
40

20.0
1,4.7
10.5
6.7

23,5
1.7.7
1,2 ,7
8.5
5.3

29.0
2t.0
15, 0
10, 5

6.8
4.0

31. 5

26,0
18,0
12.5
B,0
5.0
4.2

30, 0
30 .0
30 ,0
30,0

35.0
35, 0

35.0
35.0
35.0

40
40
40
40
40
40

0

0

0

0

0

0

45, 0
45. 0

45. 0
45. 0
45. 0
45.0
45,0

0,63
0.41
0,31
0 ,1,7

0. 60
0,43
0, 31
0.19
0,13

0. 66
0. 46
0.32
0.2L
0. L3
0,05

0.60
0.43
0 ,32
0 .21.
0, 13
0.09
0.07

0.63
0.4I
0. 31
0.17

0.60
0.43
0,31
0.19
0.13

0,10
0,18
0.26
0. 33
0,38
0,45

0.13
0. 20

0,26
0.33
0.38
0 .42
0. 43

TABLE 4,'8 SUMMARY ÔF CALCULAÎED *r"l*, AND o, VALUES BASED

ON MODEL :4,



1 03.

SLOPE ANGLE

C){,

( degrees)

ECCENTRICITY OF

WEDGE ret

(x 1/B)

* g.l *,

10

15

20

25

30

35

40

0.L2

0.20

0.26

0. 33

0, 38

0 .44

0 .44

0. 62

0, 43

0. 31

0. 20

0. L3

0.07

0.07

TABLE 4. I VARIATION OF re' AND *9"1 *, WITH r c¿ r

BASED ON MODEL 4.

Note: The values of retand *g,l*, quoted above are the

arthimetic means of the values shown on Table 4.7

for any specified value of q. .
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4.4. Validity Of The Models And Comments On The Assumptions

Made in Their Formulation

A series of assumptions had to be made to allow development of the models for

dete¡mining the shape of the trapped wedge beneath the footing. These now require

further amplification, explanation and comment. For this discussion, Models 1 to 3

are treated together since the basic assumptions utilised in thei¡ formulation are

essentially similar. The main assumptions incorporated in the formulation of Models

1 to 3 are as follows:-

( 1) The sand medium was assumed to be weightless.

(2) The value of oU in Fig. 4.1- was taken to be

equal to the angle of internal friction of the soil 0.

(3) It was assumed that plastic straining and displacement

of the faited masses on either side of the centre line of

the footing take place simultaneously,

Assumption 3 applies to all of the models, that is to Model 4

as well as to Models 1 - 3.

4.4.1, Assumption L

This assumption is common in both the limit equilibrium and limit

analysis approaches to the bearing capacity problem (Chapter 2). It uses

failure mechanisms based on logarithmic spirals (which are strictly correct

only for weightless materials) , and adapts them to produce estimates of
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the bearing capacity of sands with self-weight, Such approximate

mechanisms provide estimated bearing capacity which compare favour-

ably with stress characteristic solutions which do not presuppose the

failure surface (Graham and Stuart: 197L), It might therefore be con-

cluded at first sight, that the shapes of the failure mechanisms for

sands with and wlthout self-weight are not significantly different.

In the development of Models 1to 3, a weightless medium was assumed

only for the purpose of determining an approximate shape for the trap-

ped elastic wedge, It should be noted that the effect of the soil weight

is included in subsequent calculations of bearing capacity,

4,4.2 Assumption 2

It is intuitively expected that, since the external soil boundary is

on the left side of the footing (Figure 4,1) then the failure mechanism

in this vicinity should approximate or converge to those which corr.ês-

pond to a footingon level ground, that is, a 0 wedge may be expected

beneath the left edge of the footing.

The experimental evidence to support this assumption is limited.

However, the evidence that is available indicates that the assumption

is reasonable. A summary of the values oï measuled in experimental
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testing programs is presented on Table 4.1 (pg. 74). It can be deduced that the ratio

of observed to theo¡etical values of o, varies within the relatively narrow range of

0.95 to L.35. More experimental data would be helpful to further substantiate this

hypothesis.

4,4,3 Assumption 3

The manner in which failure progresses through the sand from the

region which is obviously the weakest, that is, the region closest to

the slope, into the more stable regions beneath the footing is not comp-

letely known. The problem is further complicated by its physical asy-

mmetry.

The assumption of simultaneous failure to both sides of the footing

is associated with the assumption that the soil behaviour is rigid-plastic

(Figure 4,L4) that is, negligible volume change is assumed prior to failure,

Graham (1968) and Hovan (1985) suggested that the idea of associating a reiatively

incompressible material such as a medium dense sand with rigid-plastic behaviour

does not alter the basic validity of the stress-characteristic solution. This assump-

tion is justified so long as the footing is forced to move downwards vertically, and

is not free to rotate.
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Whether the footing is constrained to move downward or rotates

as failure is induced will depend on the rigidity of the connections

between the footing and the superstructure and the nature of the

structural connections of the superstructure,

Small scale model tests Ín general do not try to simulate the rlgidity of the

superstmcture. In fact they generally have free joints. Footings will the¡efore tend

to move in the direction of least resistance. As a result, footings will tend to rotate

and produce a failure mechanism which does not show any slip line fields in the

stronger region, or the region close to the level ground. In actual structures such

as bridges, the superstructure may be rigid or semi-rigid. In such cases the footing

can be expected to have some constraint and to move vertically downwards, thereby

inducing failure to both sides of the sand mass simultaneously. This thesis considers

only footings which move vertically downwa¡ds with failu¡e zones extending on both

sides of the footing.

4,5 Comparison Of The Models

Figures 4.5 and 4.6 indicate that the amount of eccentricity of the

wedge predicted by the models for any value of s is in the following

ascending order of magnitude: Model L, Model 3, Model 2,Model 4.

That is, Model L predicts the smallesi amount of eccentricity, while

Model 4 predicts the highest eccentricity (Figure 4,14) .
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The suitability of any model for subsequent use in the determination

of the bearing capacity coefficient should be assessed on the basis of the

following two criteria

(i) The validity of the assumptions used in the analysis

and the rigour of the theory.

(ü) The levei of agreement between the theoretical results,

and the available experimental observations.

As noted in Section 4.3.8 Model 4 is by far the most rigorous in terms of the assumlr

tions upon which it is based. It considers a faÍlure mechanism which is considered to

be the most realistic of the four that have been studied. At best, Models 1 to 3 are

approximations to the likely failure mechanism. Hence from the point of view of

criterion (i), Model 4 is the preferred model.

With respect to criterion (ii), Table 4.1 (p. 74), which compares the results from

all the models, clearly shows that the best agreement observed and theoreticalxrlx,

ratios is obtained for Model 3, while Model 1- gives the best agreement between observed

and theoretical o- values. No firm conclusions can be drawn from these deductionsr
since they are not consistent. Furthermore, the amount of experimental data which

is available is quite limited.
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On the basis of criterion l- therefore Model 4 is the preferred model.

sorne analyses are also carried out using Model 1 since it provides a

rrlower boundrt solution. It should perhaps be emphasized that the basis

of comparison at this stage is with the geometry of the base wedge based

on photographic evidence, It is well known for example, (Graham, j-968)

that displacement (or strain) fields are much more difficult to model than

loads or displacements, A later Section (Chapter Z) will compare theoreti-

cal predictions of N.,, with experimental values.
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CHAPTER 5

FOOTING LOCATED AT THE CREST OF A SLOPE

PARAMETRIC STUDY AND RESULTS

5.1 TNTRODUCTION

The main variables which influence the bearing capacity of a footing

at close proximity to a slope are the angle of internal friction of the soil, Q,

the slope angle, o , the footing depth, D, and the d.istance, H, from the

crest of the slope to the edge of the footing. In this Chapter, we are con-

cerned only with the case of a footing located at the crest of a slope, that is H = 0.

The case of a footing located away from the crest, is presented in Chapter 6. It is
convenient to no¡malize the parameter D by dividing it by the footing breadth B.

That is, it is expressed as the dimensionless parameter D/8. Analyses to determine

the bearing capacity factor were carried out using Modet 4 developed in Chapter 4

for p ranging from 30 to 45 degrees and c ranging from 10 degrees to (0 -S) degrees

for each value of f considered. This thesis is concerned only with shallow footings

hence analyses were done for 0.0 s D/B < 1.0.

5.2 SURFACE FOOTIN GS

In addition to ttre parameters which define the soil (0) and slope geo_

nretry (s) , the input parameters which are required for determination of the

bearing capacity for the case under consideration, are those which define the
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geometry of the trapped elastic wedge in Chaper 4. That is, the ratio

of n.*/r, and the value of or. These parameters are in fact secondary

parameters since they depend on þ and o. The values were obtained from

Figures 4.6 and 4.13.

As outlined in Chapter 3, the surface footing, or zero surcharge condi-

tion is simulated by introducing a surcharge into the computation initially

(Figure 5.1) and then enlarging the zone of computation until the assumed surcharge

has no significant effect on the computed bearing capacity (Graham, 1968).

Using this method, and the computed shape of the wedge for Model 4 as

outlined in Chapter 4, bearing capacity factors were calculated for ó ranging

from 30 to 45 degrees and o from 1-0 to (ô - 5) degrees. The resutts are

shown graphically on Figure 5.2a.

5,3. SHALLOW FOOTIN GS

The addition of an artificial surcharge to the ground surface is an ex-

pedient mathematical procedure for handting the stress discontinuity at point

O (Figure 5,1) . The surcharge can also be considered to be real and to have

the same effect as embedding the footing beneath the surface. The procedure

for obtaining the bearing capacity factor which was alluded to in the preceding

section involves diminishing the surcharge effect in a series of steps until its

effect is negtigible, The intermediate steps can however yield N^.- values cor-"Yq
responding to different depths of embedment . However,.as noted by Graham
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Surcharge = yD

FIGURE 5.1- - EMBEDMENT DEPTH 'D' TREATED AS A SURCHARGE
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and Stuart (1971), the convergence from the Nrn to the N, value is quite

rapid. As a result, it was not possible to obtain a complete rangu of Nyq

values corresponding to the required range of D/B values between 0 and 1-.

The limited results obtained using this approach are sL,lown on Table S.1

AIso shown on Tabte 5.1-. are values of Nyq obtained using the method out-

lined below. The values obtained from the latter nethod are generally iower

than those obtained using the scale reduction method. The values obtained using

the procedure outlined below range from 56-1 07 % of those obtained using the scale

reduction method.

The other procedure used for computing the bearing capacity factor

consisted of treating the embedment depth D as a surcharge (Figure s,1).

The parameters o and V on tTæ ttequivalent free surfacetr OrC were then

calcuiatedfrom the Mohrrs circle (Figure 3.7) This means that the effect

of the surcharge was included as both a vertical stress and shear stress

along O'C. The gotverning equation for obtaining o is

L,0 + 2

1+sinQcos2p.

Since the values of the parameters x,z,o and r! are known for all points

along O'C, then using the procedure outlined in Section 3, the entire slip

line field in the region between the equivalent free surface and the edge of

the passive zone could be computed.
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TABLE 5,1 SUMMARY OF N - VALUES FOR FOOTTNG AT THE CREST OF
Yq

A SLOPE

- Nyq FROM Lst SCALE REDUCTION.

0

( degrees)

0,

( degrees)

D/B N
Yq

from scale

reduction -
(i)

}I
Yq

equivalent
free surface
method ( 2)

(2) ,
I
(1)

Io

30

35

35

35

40

40

40

40

40

45

45

45

45

10

L0

15

20

10

15

20

25

30

1.0

L5

20

35

0.21.

0. 31

0. 29

0.25

0.44

0. 43

0. 39

0.34

0.26

0. 69

0,65

0.6L

0. 56

39.9

1_08. 1

82.6

57 .5

290, 5

232.1

1_66. 2

1L0. 3

67 .4

L001. 0

742.6

538.9

372,9

24

64

56

45

1,70

1_ 60

130

9B

72

56:0

480

410

330

60

59

6B

7B

59

69

aõto

B9

1.07

56

65

76

BB



1L 9.

The entire computation starting from calculation of the parameters x , z,

o and { on the boundary O'C and determination of the siip line field was done

using a specially written subroutine EDGPA3. A typical plot of the stip line field

in this region is shown on Figure 5.4. The remainder of the slip line field up to the

base of the footing and hence the bearing capacity factor was then computed using

the basic program.

The complete set of results for cr varying from r-0 to (ó - b) degrees, Q

from 30 to 45 degrees and D/B=O,28, 0.s0, 0,7s and j..0 are shown on

Figures 5,2 and 5.3.
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FIGURE 5. 4: TYPICAL SLIP LINE FIELD FOR UNIFORM SUR-

CHARGE ON SLOPE
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CHAPTER 6

FOOTING LOCATED AWAY FROM THE CREST

OF THE SLOPE _ PARAMETRIC STUDY AND

RESULTS

6.L INTRO DUC TION

In addition to the variables ó, cx and D which influence bearing capa-

city (Chapter 5), this chapter is particularly concerned with the influence

of H, (the distance from the crest of the slope to the edge of the footing).

It has been found convenient to normalize the.Darameters D and H, by divi-

ding them by the footing breadth B. That is, they are expressed as the

dimensionless parameters DiB and H/B respectively, Since only shallow

footings were considered, analyses were carried out for 0S D/B S 1.0.

The range of H/B values tested depended on the size of the zone within

which the bearing capacity is influenced by the presehce of the slope.

At large values of H /B , the failure zone extends to the ground surface

as if the slope were not present, This phenomenon is discussed further

in Section 6.3. The maximum range considered was 0 S H/B S 9.0.

6,2 THE EQUIVALENT SLOPE

The concept of an trequivalent

to determine the bearing capacity

(Figure 6. 1). The procedure for

in this thesis is outlined below,

sloperr was used by Giroud and Vo-Nhiem

of a footing located away from a slope

determining the equivalent slope, used
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FIGURE 6.1 DEFINITION OF EQUIVALENT SLOPE

4Ho
9"

FIGURE 6,2 DETERMINATION OF THE ''SIZEI' OF THE FAILING DOMAIN.

quivalent
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consicler FÍgure 6.2 which shows the case of a footing located at

the crest of a slope. The distance t.cris taken as the characteristic

length and establishes the scale of the computation. Fromsimple geo-

metry, we obtain the following expressions for zo and Ho respectively.

,D = f, { sin,(a+ e) sin (?u -e) + sin ecos ( rI+ u) }
cos(a+e) sin(2V-e-) .....6.1

and

Ho -ß {1+sit-tesin(rl+U) } ......6.2
cos (a + e) sin (2V- e)

Once r9' is chosen or established by the analyst, all the quantities on the

right hand side of Equatlons 6.1 and 6,2 are known or can be specified since,

frorr the geometryof Figure 6.2,e is givenby e=tl2 - o- ú+U.

It was therefore possible to calcul.ate z, and HO values for any combination

of ,l , cr and H. These parameters define the rsíze' of the failure domain and

the equivalent sbpe angle c', since c,' = tan-l {zrltH + HD) } (figure 6.1).

ti.3 THE CRITICAL CREST OFFSET Hc

It is now postulated tþat as the footing is moved further away from the

crest of the siope that is, as H is increased (Figures 6.3a,b,c) both zO

and HO also decrease until they become zero at some critical value H"

¡
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(Figure 6,3c). This means that when H=H" the effect of the slope

on the bearing capacity is not non-existent. For the case of a footing

located at a distance H from the crest, where 0 <H < H" the equivalent

slope angle is defined in Figure 6.1 as

crr =tan-1 {zol(H+HD) } .......6.3

An estimate of the distance H" was obtained from the work of Suppiah

(1981) . Suppiah considered interfering footings and developed Figure 6.4

which gives an indication of minimum spacing between footings for zero interference.

This can also be considered a measure of the 'tsizet' of the fialing domain. We can

think of the slope as Itinterferingrr with the slip line field as long as the footing is

located at a distance from the crest which is smaller than the "sizefi of the failing

domain. The values of H" deduced from Srppiahts work are presented in Table 6.1.

TABLE 6.1 ESTIMATED H" VALUES (after Suppiah, 1981)

It should be noted that edge to edge spacing is used in this thesis while Suppiah

used centre to centre spacing for his parameter S.

ANGLE OF INTERNAL
FRTCTTON 0

( de grees)

L,2B
2.08
2,78
3. 58
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b. ¡l DEFINITION OF THE FAILURE ZONE FOR O < H < H

The manner Ín which zO and HO reduces to zero as H/B varies from

zero to Hc/B is not known precisely. However, intuition suggests that

the slope effect would be greater near to the slope, and would reduce as

the clistance from the slope increases. That is, the rate at which z O de-

creases as H/B increases would be slow at first, but would increase as

H /ts increases. However , at this time , there is no definite observational

nor scÍentific basis for modelling the way in which zO varies. At this

stage therefore , it is considered satisfactory to assume simply a linear

relationship betwee, 2D and H/8. Using the values of z O calculated

from Equation 6.L and the H"/B values from Table 6.1, curves showing

the relationship between zO and H/B for various values of Q and a have

been prepared. These are shown on Figure 6"5.

Ii is also reasonable to assume that as H /B increases from 0 to Hc , that

is, as the footing is moved away from the crest of the slope, the elastic

wedge changes from the asymmetrical shape developed in Chapter 4, to a

symmetrical Q wedge for a footing on level ground as utilised by Graham

and Stuart (1971), Since there is no observatíona] evidence currently avail-

able. it is again assumed that the parameters defining the geometry of the
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the wedge, that is, r.,.r. and x g"l*,

0 to H", Graphical representation

6,6. These figures were used to

use in the subsequent analyses.

6.5 PARAMETRIC STUDY AND

13L ,

vary linearly as H /B varies from

of the linear plots is shown on Figure

obtain intermediate values of xUlx, for

RESULTS

6, S, L Surface Footings

For this case, the triangular surcharge on the equivalent free surface

OrC (Figure 6,7. ) was treated as an equivalent uniformly distributed sur-

charge. Fromthe geometry, the equivalent uniformly distributed surcharge

is given by
I

b = Hsina'12

Using the subroutine EDGPA3 (Chapter 5) which computes the slipline

field in the region between the equivalent free surface and the edge of the

passive zone, and the main program, the entire slipline field was calculated

for various va-lues of H/El, o and Q. The maximum value of H/B for a

given Q, corresponds to that obtained from Table 6.1. g values were from

30oto 45o anC o values from L()oto iO - S)o.

6 . 5. 2 Shallow Footings

For each value of þ and o and specified val.ues of H/8, the values of zO and

HO were determined from Equations 6.L and 6"3 respectively, and the equivalent

slope angle calculated from Equation 6.3.
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FIGURE 6.7: EQUIVALENT SURCHARGE FOR A SURFACE FOOTING
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In order to set the sca-le of the faílure domai¡ and to simplfy i,he programming,

the set back from the crest of the slope to the edge of the footing,(H) was set

to be equal to 1-.0, The distance H * HD was then expressed as n, (Figure

6.8). The value of n = 1.0 corresponds to the case of a footing at the point of
ttzero slope interferencerr. Larger values of tntcorrespond to moving the foot-

ing further towards the crest of the slope. Based on the problem geometry

(Figure 6.L and 6.8), it was possÍble to determine values of n for the range

of 0, cr and H/B values being considered. For a given 0 tnt was found to

vary over a very narrow range for different values of a as indicated on Figure 6.9,

that is, rnr was not very sensitive to changes in a, for a given 6. A plot of the average

value of rn'against H/B for p = 45o is shown on Figure 6.9. The paramete¡rn' being a

ratio of distances and therefore a dimensionless quantity was found to be more useful

than having to specify values of H", z O and H in the analyses.

The next step in the analysis involves computing the stresses on the equiv-

alent free surface OtC. The vertical stress at any point OrC is equal to yd..

(Figure 6.1). The value of o and rþ on OrC can therefore be determined from

the Mohrrs circle (Figure 6.10). These parameters are as follows'

6v

1+ sin Q cos 2tl)

and,

6,3

2þ= r- e-sin-1 (sine/sin0)
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FIGURE 6. 10 MOHRIS CIRCLE FOIR
FREE SURFACE.

STRESSES ON EQUIVALENT
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FIGURE 6. 11 TYPICAL SLIP LINE

EQUIVALENT SLOPE

FIELD IN THE REGION

AND PASSI\¡E ZONE,
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The stress on O'C and the slip line field in the region between the equiv-

alent free surface and the edge of the passive zone was then computed using

the subroutine EDCPA2. This subroutine also computes the slip line field

in the region between the equivalent surface and the edge of the passive zone,

A typical result of the siip line field is shown on Figure 6.11. The main

program was then used to compute the bearing capacity factor and the re-

mainder of the slip üne field, This analysis also yields a value for the

footingwidthB.

Different embedment depths were then simulated by adding an artifical

surcharge which was a known multiple of B, (that is 0.258, 0,508, 0,758,

and 1.08) to the ground surface. The stresses on O'C were in this case computed

by adding the true triangular surcharge to the artificial surcharge.

Values of N
Yq

D/B = 0.0 to 1.0.

Table 6.1.

were calculated for 0 = 30o to 45o, c = 10 to (O-5) degrees and

The range of H/B values analysed depends on 6 and are shown on

The results are presented in the form of graphs of Nrn vs cl and are

shown on Figures 6, L1 to 6.1-6,
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CHAPTER 7

COMPARISON OF RESULTS WITH OTHER THEORIES

AND LARGE SCALE TEST RESULTS

7,T INTRODUCTION

In this Chapter the results developed in this thesis and presented in Chapters 5

and 6 are compared with those from the existing available theories, and with available

large scale test results. The large scale test results consist of work done by the Geo-

technical Group at the University of Ottawa in L977 and 1978. Tests were done in a

box 15.0 m long 2.0 m wide and 2.2m high. Footing sizes were 0.3 m and 0.6 m wide.

All tests were done for a slope angle of 26.5 degrees.

7,2 COMPARISON OF RESULTS WITH EXISTING THEORIES

As noted in Chapter 2, most of the existing theories consider oniy the

case of a surface footing at the crest of a slope. This condition is therefore

used as the basis for the subsequent comparisons. The comparisons are

made for a Q of 40 degrees and are shown graphically on Figure 7,L.

Figure 7.1 shows that for the location considered, in general, the Author's results

for N _ are higher than those from most of the other existing theorÍes which cover
Yq

a large range of Nvq values. Bgcause of the limitations outlined in Chapter 2 and

the significant scatter indicated in Figure 7.1, no furthe¡ comparison with theoretical

results is considered he¡ein. The remainder of the Chapter is concerned with compar-

ison between the Authorts results and the results of large scale testing (Shields et

aL., L977).
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7.3 COMPARISON OF RESULTS WITH LARGE SCALE TEST RESULTS

The method of presentation of N, 
n 

values first proposed by Shields et aI., 1977

and shown in Figures 7.2 and 7.3 is used as the basis for comparison of the results.

Figure 7.2 compares the Nrn values computed by the Author with the Nrn values

obtained by Shields et al. for compact sand (p triaxial = 37o). The theoretical values

for Q = 37o have been interpolated between the values of O = 35o and O = 40o presented

earlier.

The Figure shows that for any given depth, the Nrn values obtained by the Author

are higher than those obtained by Shields. A more detailed comparison is made in

Table 7.1. This Table represents the case of compact sand with the following proper-

ties as indicated by Shields et al.

6 triaxial

6 triaxial + 10 %

6 plane strain

6 shear box

= 37o

= 41-o

= 45o

= 45o

Tab1e 7.1 indicates that there is reasonable agreement between the theoretical

and experimental ¡esults for 6 equal to the triaxial value. That is, (N., 
n 

-theoretical)

,,*rn -experimental) varies from 1.20 to 1.35. For ô equal to Q trÍaxial plus 10 %,

(a common approxÍmate method fo¡ converting from triaxial S to plane strain ó ),

the ratio varies from 2.61 to 3.33.
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Table 7.2 presents comparisons for a dense sand with the following properties;

4 triaxial = 4Io

Q triaxial+10% =45o

4 plane strain = 4Bo

6 shear box = 50o

Again it is found that good agreement between the theo¡etical and experimental

values is obtained for 0 = p triaxial. The value of the ratio (N., -theoretical)/

(N- --experimental) ranges from 0.64 to 1-.30. If the plane strain value is used, the- Yq

ratio ranges f¡om 1.40 to 2.50.

Although the plane strain f would normally be expected to yield theoretical bear-

ing capacity values which agree mo¡e closely with the experimental values, (Graham

and Stuart, 1971), this is not the case for the theory presented he¡e. Use of the plane

strain 6 -angle would seriously overestimate the bearing capacity.
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CHAPTER B

CONCLUSIONS AND FURTHER RESEARCH

8.1 CONCLUSIONS

Bearing capacity coefficienrt * 
rn 

have been calculated for footings at close prox-

imity to a slope. The results are presented in the form of graphs of N., 
n 

vs c for 0

angles ranging from 30 to 45o, 0.0 < D/B < 1.0 and H/B values from 0 to 3.08, (Figures

5.2, 5.3 and 6.11 to 6.1,7). The results agree within 64-160% (ave¡age LL5%), with

experimental values of Nrq when the triaxial value of 6 is used. Calculation of Ntq

using stress characteristics required an estimation of the shape of the trapped elastic

wedge beneath the footing. This shape was modelled in the analysis.

8.2 FURTHER RESEARCH

It is well loown that the value of Q varies with stress level because of the curva-

ture of the Moh¡ envelope. This thesis takes no account of varying stress levels in the

failing domain that is, a constant p analysis was done. The solution could be improved

by carrying out a variable-6 analysis (Graham and Hovan 1986).

The effect of scale (footing size) on the bearing capacity factor if considered in

the analysis could also fu¡ther refine and improve the results. This would then need

model tests using a centrifuge, and work of this type is currently projected at the

Laboratoire Centrale des Ponts et Chaussees, France. It would also need additional

laboratory testing to charactertze the sand in the way used in the analysis.

The proposed model for determination of the shape of the trapped elastic wedge
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needs to be confirmed by a comprehensive programme of testing, preferably large

scale testing. In addition, further confidence in the theory may be established by

a programme of experimental work to determine the Nrn values for various combina-

tions of ô and a.
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APPENDIX 1.

LISTING OF COMPUTER PROGRAM
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30.
3t.

33,
34
36.
36,
3?,
34.
39,
38. I
39 .2
40.
4t.

LO0P, OR REHOlE SLOCX STATEHEXIS
42.
43.
44 -

48.
44.
41 .
41.
ag.
EO,
6t.
42.
53.
Ë4.
sË.
66.
s?.
54.
BS.
BO.
61.

63.
84.
65.
46.

1-64.

3A
lg

40
4l
42
4l
ÁÁ

READ. L. X
tF (ABSfBETA),LE. o,oootl BetAto.oool

c
C IHIÍIALISAIIOII
c

CAL L HËAD I I{
PPtH'f 425

32s FoRr{AT(' r', / / / / / / / / / / / / / / lzoxl
PRlltf ,'pRtPf .'

¡tE
ôa
47
¿a
a9
60
6t
62
53

Ê
c

64
6E
66
s1
E6
6€
GO
GI
Ê2
G3
s4
86
66

7A
78
go
8l
¿2
a3
EI
8B

g6
8?

ga

60

00

9l

6?.
64.
8g.
?o.
11.
72 -

7t.
?4.
73 -

7e.
77 .

?a.
?0,
EO,
tt.
42.
43.
E4.
EE.
ô6.
86. :
a1 .

aa.
90.
90.
81.
42.
93.
e 4.
e E.
t8.
B?.
8t.
8g,
too.
tot.
to2.
tot.
t04.
roE.
r06.
to7.
toa.
toB.
Ito.
fft,
112.
rt3.
t1¡t.
tt6.
tlg.
tr?.
tta.
ttt.
t 20.
121 ,

122.
r23.
lz4.
t2E.
r28.
121 ,

t2a.
t ?0 .

I SO.
t!t.

PRI'IT,'
PRtt¿1, ',

PR,II'I, '
PRIXl,'
PRtrT,'
PRIXï,'.
PRITT,'
PRITT,'
PRIXI,'

L I | 40
O0 3 l31,Ll

P ( t ) so
e(l)to

3 CO¡IIÈUE

¡ fIIE PROGRAH EOilPUIgS lHE FAILURE L¡IIES
r FOR A FOOIIÈG A1 T}IE IOP OF A SLOPE II
I EOHESIONLËSS SOIL. lHE COIilPUlATIOI¡
. PRESE¡IS A FEÀfURS WHICH CO'iSISTS OF
. lRAPP¡ÈG lHE FAILURE LTXES AROUXD IHE
t POLE 8Y THPLEMEÍTI}IG YARIOUS SCALÊ
t REDUClIOHS WIIH A DIHt'tTSHIIIC SURCHARGE "I EFFECf
a ¡ ¡ a r ¡ rt¡ t ¡r¡ t¡ t ¡ ¡ r ¡¡ a raûa! r ¡û ûû r û ¡ r a ¡ r û r û a ¡ ,

PHt ¡PBt¡Pt,/ltO.
8e1a! BEIArPI/llo.
DE!1A! OELlA¡Pl/r6O.
ALPHA¡ÀLPHAIPI/I!O.
EÞS I LO.EPS ¡ Lg.P I / I go.
CsPHI.cos(PHtl
aIPHl !stÈf Pxt I
11{PHI.fAt¿fPHll

c
c

81 BBD¿O
c23ô66?48

68 ACE ÊOllTtl¡UE
c

6S CALL ÈÞCÞA2
c
c

70 Ll¡ao
71 Ll(¡40

c
E

72 DO
?3 D0
7a

'E7ø
7t

c23¡t58740

I t: I ¡ lo
2 J.2,LK
xf¡,Jlro.o
zft,J)'o.o
slcHAfl,Jl¡o,o
Pstf¡,Jlto.o

2 COHTII'UE
I CoìtltPUE

D0 tot trtt,Lt
D0 so? JÊt,LK

xlt,J)'o.o
l(I,J)to.o
9lCl,lÂfl,Jl.o.o
Pstll,.Jl¡o.o

c2t4E87AEgo2 c0ltt I tiuE
00 r c0xl t xuE

c
Ci t

c
ÊaLL POICO¡l

APIrL-l

FtRSl ltt4E Co¡rPU1A?l0B

c¡o

c
c
c
c



9?
83
o4

46O CßC+1
PRtNt 22,C

22 FOR¡IAÍ t 'r' .,1 f / /25X.
1

2
3
4
g
6

SCALE ITERATIOH CE¡.I3.

REGULAR DOMAI}¡

t35,
t36.
f 37.
t38,
139.
t40.
t4l.

L00P, OR REI,tOTE BLOcK slÂlEt'lE¡¡lS
142 .
r 43,
144.
!¿6.
t¡16.
147 .

t48.
r49.
160,
tËt.
lE2.
t 53.
t 54 .

rE5.
t66.
167 .

t 5t.
l ES .

t 60.
t6t,
162.
t 63.
164.
l6Ë .

I86.
r 8?.
I ga.
t 6s .

170.
1?1.
172 -

! ?3 .
t?4.
I ?S .

t?6.
la1 ,

Ita.
t 7s .
I to.
t6r.
142.
M.
144 .
t 46.
tE6.
rE7.

LOOP, OR REHOlE BLOCK SIAlÊTETTS
I AE.
I ôB .
I ôO.
19l,
192,
tt3.
ts4.
tg5.

132
I l!
t3¡

/26X ,
/2sx ,
/25X ,
/2sx,
/ zSX. ,
/zsx ,

9E IF f C. EO. r Ì lHEt¿ D0
IETSIOH. OTHER COMPIIERS TAY HOl ÀLLOW IF-II{ÊII.ELSE, DO CASE, STRUCTURED
96 RADIX+I
97 WBO
9A ELSE DO
99 RAOIK+SP¡

loo W!SPI-|
rol ExD tF
102 D0 too JÊt,RAo
ro3 IF(COHÎRo .ÈO, !) GO t0 63
to4 PRIll1,' .

ros PRtlll.' .

106 PR¡NI,''
fO? PRll¡T ¡ll,J
to8 PRtl¿f 39
tOE 33 FORHÂÎf lox,' ¡.'t¡')
ltO 4l FORHAÎllox,'JÈ'.13)
III PRItr? 19

'I t2

I t3

t14
!15
ll6
tt?
t t8
I f 0
120
121
122
123
124

t 25
c

126 x(t,J)! Ix
t27 Z(t,Jls zz
l2a sIGtAf t.Jrt StltÄ
f 2s PS I f I . J I ! PSS t
l3o P(ttÊ PP
r3r O(r)s eo
r32 ?5 CoXtttlUE
133 ËO GO 10 5r
r34 Sr lF(COXTRO.EO. t) c0 10 tOO
lls tF(J.E0.r) ÍHEN
TEXSIOfl' OTHER COHPILERS TAY NOl ALLOW IF-IHEX.ELSE, DO CÂSE, SIRUcTURED
136 PRIXI tS
131 D0 AO I¡2,r
't38 CALL RESOUTÍ ¡,t)
r 38 ûO COÍt I taUE
I4O ELSE
r4r c0 lo too
142 EßD tF
t43 too coxltlluÊ

c23466749
ts FoRÂ^tl/,1 11x,,x, ,t3x,'z'. f!x, ,stcHA,, r tx,,psI,

r ,rtx,,P,,4x,'e"/l
Et coNftfluE

g
IF(J,EQ. tl G0 10 60
DO 7E II3,L

xr! xf ¡-t.J)
Ztr z(t-t,J)
s¡cxAf¡SIGHA(l-t,.J)
PS I I r PS ¡ ( t - r , J )
X2! x(¡,J-t)

.22! Z(t.J-t)f- s¡cuaz.stcl¡a( r, J- ! )
PST2.PSIfI,J.II
E!o

c
c

CALL TUPl

144
r46
ta6
t47
t{a
t49
t 50
151
ls2
r63

154
t5E
t56
I E?
rE8
tE9
t Go
t61
r 82
163
't 64
t 8E
186
t 6?
184
r E9

t?o
t?r
172
t?3
tt4
I?E
t?6
177

174

t 79
I go
t8r
ta2

t 3l
I E4
1r5
rt8
t8?
iga
Its
t00
t0t
192
f0l

t84

195
188
1e1
196
lÈ0

re6.
t 07.
19a.
t 0g .
200.
20t,
202 ,

203 -

20e.
20s .

208.
207 .
206.
20s .
2to.
2rt.
2t2-
2tt.
214 -

2tÊ.
2t8.
217 .
2tE,
2la,
220 .

221 ,

222 ,

223 ,

z2a.
zzÉ .
228 -

227 .
zza .
228 .
2to.
2l I .

2t2 .
233.
2!4.
2tE.
236.
237 .
23t.
2!0.
2¡¡O.
211 -

242.
243.
2aa.
2aE.
?aa.
247 .
2a¿.
240,
250,
2Er.
282 .

263.
2ga .

268.
298.
2É7.
26C,
260.
280.
2ø1.

c
c
c

END OF RECULAR RADIAL ZO}¡E COIiPUIAlION

¡Ftco|tlRo .Eq. rlGo To 6?
ÞRIltT.' '
PRtl¡T.. '
PRIHT.' '
PRtrt 26

26 FOR}'A1f I IX.'RADIAL ZOI{E CO}IPUIATIOfl COHPLETED' I
PRtll1 26

26 F0RMAll llX, ¡.'.¡r"'¡r"¡rt¡.rt¡.t...r.s's'r.'J
PRITl 6?ô

6?E FORtdAtf.t'.////26X,' COMpUIATtON 0F THE EXTRA DOXAIX',
1 //2ÉX,' ...t.t ¡¡r¡r..¡ss¡t,)

g? Êofl7tltuE
H'2
J!RAD

3OO HtH+l

Hl!H+l
tFlcolllRo .Ee. rl Eo To Ga
PRtHt, ' .
PRI}IT,' '
PR¡I'1,' '
PRI¡tl ¡t?,J.H

47 FORHAI I loX. , J¡' , I!. Ex.
PRtllt 6s

68 FOR¡lÂlf lox,'¡r.¡¡',5x,
PRt¡t t3

Bô COtal I t¡UÊ

xr'x(H-t'J'l)
Zt¡ZlH'l,J'1)
SIGHAT !Sl EtlÀ( H- I, J- I I

PSlt.PSl(H-1.J-tl
x2¡¡(H,J-tl
:2¡z(H,J-ll
PSt2¡PSIfH,J-tt
g¡Gl,lÂz ¡S I GtAl H. J- t I
CALL EIIDPl

xl8.Jl'Ix
z ( H, J I . Z2
sl6xA(H,Jl.SlHA
Þs¡lri,J¡¡PSst

lF(Hi .G1. L¡ CO 10 lr?
Do 260 ¡¡Ht.L

xtt x(t-f ,J¡
zl¡ ?(t-t,J)
StG¡lA1¡ SIGHA(I-t,J)

PSlts Psl(I-t,J)
I2s If t,J-r,
tzs tf t,J-tl
9lGtlÀ2t gtE¡lA( t. J- I I
Psl2' Ps¡(I,J-ll
E¡o

CAL I ¡UP1

! ( t , J I É xx
z(l,Jl¡tz
stctlA(t,.rl. StMA
ÞsI(I,r,)! Pgl¡
P f r , t PP

'FlRSl SPTRALT' , t3 )

c

c



c so r L ltÂss e35 .

t t"t '

" 
t"t '

¡so REAL PHt 638'
¡9I COHHOI PHI,BETA, DELÌA,TOL,CO}IVC, SIZE' ALPHÂ,EPSILO 839.
r32 tl¡TEGÈR r.K,C 84O.
1S3 COMHOfl L,K,E 841
r94 RÊAL XX.ZZ,SIIIA,PSSI,PHHI ê42.
¡9s col{xoN /1ala/ x I , x2, xx, 21 ,22,Z2,Pllïl 543.
ts6 coHMoN /111t/ SIEHAl.StGtlAz,SttáA 644.
¡87 COHHOII /lElE/ PSrf, PS!2,PSSI 64E.
408 COHMOH /lOlO/ PI, sHPHI, CSPHI 646.
{g9 t HfEcER PP, QO, CDTIRO Ê44 '
EOO COHHOI /OU t / PP, QQ, COHTRo 644 .

Ëo t REAL MU 64s
Eo2 CoMMoH ttu, PH t P, PH r T 650
Ëo3 REAL x(40,¿o) ,z(Ào,4ol ¡slol,lAl4o.4o),Pst(40,4ol 861.
5O4 COHMOI¡./LALA/ X,Z,SI6HA,PSI 852.
sos trfEcER Pf ¡ol.q(4o¡ 653.
506 REAL EHOPST 064.
601 REAL ZI6¡|A2,PZI2,SU}'|2.DIFF2,CSSUM2 66s.
5O8 REAL B,XT,F,U,PHHHI ÊEB.
5Og rHÌsGER t, J 867.
5ro COHHON /LOLO/ P,Q 664.
Ëtr cotHox I|PSI,E,HD 65S.
st2 coM¡loN /rEw/ csPsr,HoR.aHc 8SO.

t t"t '
6t3 PPll 462'
514 eesl 663'
Els Sr¡iA!(src)'tÂl+stÊn^21/2 564.
5t6 3Ol ENDPSI¡I,IU+BETO aa".
51? 3oS PSSIIEIDPS¡ 686'
5rg 3o2 zlcHA2:(stExat+3rcllA2l/2. a6?.
Ë!s Pz!2'lPSSt+PSr2)/2. 551.
B2ô sul't2Èsttl(Pzl2+Hu, 569.
Ë21 DIFF2:SrxfPzI2-HUl 670
522 csSUH2.COSfP2r2+)aU) 6?1.
S23 BÊ-t,rlDrFF2) /l2..ZtcltA2'SHPHlrCSsuH2) 872.
s24 tF{aBslBEla) .Ll. o.oool) BEfalo.oool s?3.
625 ZZEZI¡TAX(BEIA¡-X|-22¡SUìI2/CSSUIi2+X2 E7¡¡'
526 zz.2z/lf^LlBEfal-(sul'12/cssul{2)) 6?5.
827 Xt.ALOGfStGHÀzÌ/(2-rlAX(PHI))+PSr2+BtlZZ-Z2l 87Ê
Eza FtEXp(2.r1Ar(PHtl.(Xl-PSSrll 477.
529 u.À8s((F-stxa)/Fl 8?9.

c 67S.
930 tF tu.LE.1oL) C0 lo 301 6ao.

t t"t '
E3I SIHATF 882.
832 PP. PP+ I 3E3 .

ç 6t4.
833 tFÍPÞ-loo¡ 3o2,3o2,¡ol gô8.

c234667E 646 '
634 3o3 XXtXr+(zz-Zr l.fAÈ(BElA) 647.
s3s tF (colllRo .Eo. ll 60 10 26 6aa.
836 PRTXT 13, XX,2Z,SIìIA,PSSI,PP,qO 6as.
s!? r3 FORMAT(t1X,Fr2.S.SX,Fl2.E,3X,El5.E,3X,Fl2'a,EX,lô,rX,14) aeo.
E3f pRttt 306 691.
63S 306 FORHATI.+',, 682.

I 8S3.
2 BOUXDATY', ato.

E4o 26 cotlttluE 89Ë'
64 I RÉluRll 6Ê6 '
Eaz ErD 8É?.

s 68ô.
Crr¡r¡rrrt.rt r.r¡..r.¡tttt 699'
C ?OO.

16 5.

643 SUAROUTIXE EOGEÞA ?O1'
C 7o2.
C ?o3.
C THtS SUBROUTTXE COHPUIES STGHA FOR EACIJ SPECIFIEO POITT ?O4.
C AI IHE EDGE OF lHE REEfTLIIIEAR PASSIYE 2OIIE ?O5.
6 ?06.

844 REAL pH¡ 1o7.
s4s coxt'toN PH t , !E14, DELla, loL . cor¿vc, s I 2E, aLPHA, EPS I LO 7oô .

546 ttitEGER L, K, C ?o9.
s4? coHMox L, K, c ?lo.
6¿8 REAL XX,ZZ,STMA,PSSI,PHHI 7II.
54S COMMOH /IATA/ X ! , X2. XX ,21 ,22,22, PHH I 7 t2.
B60 COMMOIJ ,/lrrl/ STGHAI.STGHA2.S¡'íA 7l:.
Esr coÁMo,¡ /fEÍE/ PSrl, PS¡2, PSSI ?l¡.
Ë52 COIIHOI /Ìoro/ Pt,SllPH¡ , gSPHI 716.
953 !ñTEEER PP,QQ.CO¡¡TRO ?16.
Es4 REAL HU 1 17 -

sEs COHMON l.lU.PHtP,PHIf ?lE.
556 REA! X(40,¿OÌ, Z(40,40).SIGtaAlaO, aO¡,PSt laO,40) ?19.
6s? coHHoH /LALA/ X,Z.3tgt{A,PSl 72o'
BES ¡¡¡IEGER P(4O),qlAO) 72t'
EEg ¡¡TEcsR cc,¡,J 722.
860 REAL Dt,ltuz,¡st¡ta 72t.
EGr COI'n'to¡ /LoLo/P,e 124.
862 COl.tHOl¡ HPSI , E, HD ?28.
963 REÀL xps ¡ 126.
Ë64 COHHOT /r¡EW/ CSPS t . HOR, AtlG 727 '

C 7ZA.
C 721.

66a rF(c.Eo. o)fltElt 7lo.
xlENStOx¡ OTHER COIIPtLERS tlAY HoT ÂL!OW IF-lHEx-ELSE, DO CAsE, gIRUCTUREÞ LOOP, OR

666 CClz ?31.
6E? C¡t 732-
É6E ELSE ?31.
569 CCsr ?14.
E?o EHD IF tl6.
B?l Þo 2r rtcc,L 738.
¿72 HU¡PI/4. -"Hl/z. 717.
873 rrc1atr( là?sr/z- t-(MUl ¡ 7lt.
E?. 2(r,r)rx(r.rl.(r./1lr-1al¡(alPHAll 718.
E?6 S rHA! ( r - o.Z I t , r ) I / ( L + (AßPH r.CSÞS t I I ?aO.
876 sl6HAt r. r I ¡SIHA ?41 .

611 psr(r,rlr(pt-arPHA-(aRstr(stx(aLPHA¡/stxtPHIllrl/2. 742.
6?A ¡F(ALPHA .GT. O.OITHEH ?43.

T'E'.StO'¿¡ OTHER COMPILERS HAY I¡OI ALLOW tF-IHER-ELSE. DO CASE. STRUClUN,ED IOOP. OR

E?9 z(t,r)rz(I,rl+(x(¡,lt.TAl¡(AIPHÂ)l 7aa.
5ôo sLsE ?'E'
Eôf co to 2, 7¡48.
882 eHÞ IF 147 '
6rs 2t Coxlt}tue ?48.
6t4 RElURlt 7aA-

C2r¿66?r 7gO.
EAE SND tll.

C ?82.
c¡raraaaarra3rû¡.ar¡4asaûû!rûa¡¡tsr¡r¡rrr¡a!.¡rtatta¡Û¡ÛtaaÛt8r¡!ÙÛÛ 7Bl.
t 

""0 
'

c2!¡tE8?A ?EE.

Rgx0lE BLOCK 9lÂlEl,lEìlÎs

BA6
BA7
6A8
EA8
õ80
58 |
882
503

788.
787 ,

7EA.
?99.
?go.
?3t,
7ê2,
763.

sulRoul¡l{E PPLAllE
REAL PHI
gOM¡,IOfl PH¡, BË1A, ÞELîA, 1OT. COHVû,S T ZE, ALPHA, EÞEt LO
I}IlEGER L¡K.C
c0HM0N t,x,c
REAL XX. Z¡,SI¡IA, PASI,PH}II
Cotlr,tOx /lÂ1A/ xl,x2,xx, 21,22,22.P)tllr
C0l.lÈlON /l¡tI/ ElCt Al,SIOltA2,gll4A

REHOlE BLOCK SlAIEI{ET¡1S



343 PfJ): PP
s8.¡ A(JIE OO

c234667a
345 3ss COIÍt'lUE

c gal cuLAf I olt 0F a E0ultoaRY P0 t ltT
c

¡483
4a4

oaE
¡46
447
aar

605.
506.
60?.
608.
609.gto.
5tl.
Ë12.
6f3.
El4,
ai6.
Ër6.
Er7.
Er6.
6ts.
620,
62r,
622,
823.
624.
625.
Ë26.
E2?,
629.
É2A .

830.
s3 t .

Ê32,

614 .

635.
536.
63?,
634.
E3S.
5AO,
64 | .

942 -

Ea!.
844.
645.ga6.
647.
64r.
849.
860.
651.
aE2.
853.

664.
656.
566.
657.
364.
Ë6S.
660.
E6l.
862.
683.
664.
885,
666.
Ë67.
E6a.
869.

E?O,
B7 ! ,

872,
673.
5?ô.
6?6.
B?8.
871 ,

E7a,
E?9,
6ao.
6A r .

É82.
6t3.
6A¿.
6tE.
aa6.
647.
ECA.
648.
590.
ag I .
582.
633.
Eg6.
c95.
la8.
597.
B8a.
488.
too.
60I .

602.
go3.
to4.
606.
go6.
907.
EOA.
to9.
8to.
8t t.
8r2.
ôrs.gr4.
ttE.
Et8.
tt7.
att.
8r¡.
820.
82 t .
922 .

!2r.
¡24.
t2E.
928.
e21 .
a2a .
62e .

8lo.

al f ,

432,gl3.
gs4.

3A6
387
348
38S
190
!s 1

ta2
393

304

395
38 6

347
394
39S
400
¿lo f
402
{o3

404
¡to5
406
407

404
409
4to

ô1t
412
4t3
at4
¡t6
4r6
4t7
418
4t9
420

421
a22
423
42Ã
426
42É
421
424
425
¿30
¡¡31
432
433
434
43S
4t6

437
43t
4t9
440
44 t
a42
a¡3
414
Õ¡6

a
c

44€
447
a4a
44S
450
4E r 201
4Ê2
as3
¡64
485
4EE
¿6?
aEl
463
4 60
¿8t
aÊ2
463
¿94
caE
468
467
¡t6E
ao9
4?O
471

c
4r2
¡ttl
414
476
4?8

xt! x(l,Kl
z1! z(t,Kl
STG¡IAI' SIGFIA(I,K)

PS¡18 PSI(1,K)
x2. x(2,K)
22. 212,K,
slCtlA2! St6ìlA(2.K)
PSr2È ÞStf2,Kl

CALL EIDPl

2-|¡D SP I RAL WI IH IHE LASf POITT:

l6
6É

suERoultHE ¡uPl
REAL PHI
coHHoN ÞHI,BEfA,0ELTA,TOL.COXyG,StZE,ALPHA,EpS¡LO
I I'ÏEGER L, R, C. È
cottMox L,K,c
REAL XX.:Z,Str4A, PSSt.ÞAHI
cot{Mo¡¡ /ÍATA/ xr,x2,xx.21,î.2,2z,pHHt
coHMoP /TIr¡l StCHÂr,S¡GHÂ2,StXA
coHMoH ,/TETEl PStl ¡ PSI2, PSSt
coMMoH /foro,/ PI,5trPHt.csPHt
ItrTEGER PP, QO, COtrlRO
EOMMOX /OUrl PP, OQ. COt¿1R0
REAL HU
COHMON ¡IU,PH¡P,PHIT
REAL X f 40, 40 ¡, Z f 40, aO ) . S rEHA ( ¿O. 40 ì, pS I { 4o. 4ô )
COMìIOX /LAIÀ/ T.Z.g¡GHA, P5I

477
{?g
479
aao
aå I
aa2

¡18I
c
c
c

TNlEGER P(4o),ef .ol
REAL ZICMAt, 2IGtaÂ2, P¡l r, PII2,SUHt,9Ur,t2
REAL DtFFr, DIFF2, CS0tF r . CSSUr,t2
REAL A. t, EÎA, X 1 . F. G, U, Y
¡XTEGER I,J
REAL TXPHI.PHHHI
coHHor /LoLo/ P,Q

coHMo¡ flPst,E.flD
COHXOH ,/flEW/ CSPS I . HOR, Af,G

S tl.lA! ( S tGìlA t +5 I GÀlÀ2 ),/2.
PSSt !(PSt1+?Slzl/2.
PP. T

Qo. I
l,tu¡P¡/4,-Pxt/2.
z¡cHAr ! IsIHA+s¡cHAl ) /2.
Z ¡ CtA2 s I S ¡llA+S I ûtA2 I /2.
PZl l!(PSSI+PsIr)/2.
PZI2! (PSSI+PSl2)/2.
sutar.srt¡lPzt t+HU)
SUH2TSIB(pZI2+ilU)
O¡FFlsSIXfPZll-HUl
O I FF2 ! S I t¡ ( P Z I 2 - tlu I
CSDIFI!C0s(PZll-xU)
CSSUM2 ! C0s t PZt 2+lrlu )
a !suHt / I 2 . ¡ z t Eira r ¡sxPH t ¡ cso I F I )
at - 1 . r ( Dt FF2 I / l2..2tCÅA?ûSHÞr{t.CSSUX2 }

zz ¿ z 1.0 I F F | / csD I F r - z2.sut't2/cs3uM2 - x r +x2
ZZ¿ Z2/ l9lFF I / CsD t F I - SUll2./CSSUI'12 )
TXPHttIAX(PHt I
Ef a¡at0c ( s IGxÄ1 ),/ ( 2..tLPHt ) -est t +¡" ¡ 2¡.2 ¡ ¡
x I ¡AL OG ( 5 I 6HÀ21 / l2 ,.ltaPHt ! +PS ¡ Z+B¡ I 3t - 22 !
FTEXP ( f X¡+ETAI'T¡PHI )
or(xt-ETAl./2.
u¡ABs( (F-stxAl/F)
v.ABs( lG-pssrr./G)

rFlY.6T. U) 60 rO 202
tF(u .!8. 101¡ GO ÌO 20!
SIHA'F
PPIPP+I
tFIPF- rO0l 20r,20r,201

c23408?a9
2O2 tF(V .LE. lOLl CO 10 2o3

FASITC
oQ'oQ+t
tF(ee- rool zot,zot,zot

2O3 IX.Xr+l ¡t-It t'DIFFt,/CSDIpt
lI ¡ ( xx+x2+ ( z2-ZZl.gul{z/CSSUH2 ) /2 .

c
¡F(E .EO. r¡ c0 t0 t6
PRrr¡? r3, xx, zu,stxa,PaS!.PP,oe

c23¡¡68?E
t3 FOR¡|AÎ( 1 IX,? 12.8,!X,Ft2.ô,3I,ErA. 8,3X,7t2. g,AI, r{. tX. r4l
I6 COTlITUE

RElUR'I
t¡D

c
C¡¡ûattaû¡atta¡tttrtûrrattaEat!!û¡rasraatrtaraûûtsaaaû¡3tarûûû*E
c

SUBROUItflE EltDPl

1HI9 SUSROUlIIIE CALCULAÎES CO'IOIItOTS AT A ¡EW BOUHDARY
P0til1 PRoit a xllowN toultDARy pottJl adD a pottaT wttHtfl tHE



554 Cgt'lltlox llB.l,e/ PSII.Þslz,Pssl 764.
6e,s c0nMox,/1010/ Pt,saPHr,csPHI 76s.
596 INIEGER PP,OQ,CONTRO 766.
s97 COHHOfl /OUr./ PP.Oo, COflTRO 7Ê7.
sg8 RÊaL ],tu 768.
609 coHHoH tau,PH¡P.PHtt 760,
600 REAL X(40,40!, Z(¿O,4O),SIGHAf40.40l ,PSI (4o,4O) 77O.
601 coMHoH /LALÀ/ X,Z,SIOMA,PS¡ 771.
GOz ¡¡¡TEGER P{COl,Ol4o) 772.
603 REAL PHIPLI,PHIPL2 173.
so4 coHMoN ,/10L0,/ P, Q 7a4 ,

6OE ÊOHMOX HPS I , E, HÞ 175 .

806 COl.lMoN /XEW/ CSPSI,HoR.AI{6 77Ê,
c 771 .

E 17A.
Ao? PHllrPHl 779.
604 PHIPLT:!2.4328 780.
609 ÞH!PL23!6. 78r.

c aaz.
Ero lF(PHll .Ll. PHTPLT) GO l0 ro ?a3,
6fr IF(ÞHIT .GT. PHTPL2) GO lO 20 7A¿,

c ra6 -

ê12 PHIP!1.6S67.A!OCÍPH!T)-2.3362 ?A6.
613 PHIP¡EXP(PHIPI 181.
BI4 PHIP'PHIP'P¡/IôO ?88,
6tE GO rO 16 ?C9.

c2t4s67a too.
616 to PXIPIPHIT 79t.
617 PXrPlPHtPsPI/raO. 192.
6rg 60 lo tB ?gt.

c2!4557A ?94.
618 20 PHrP:|.2944¡ALOC(PHIT)-I.OO2 ?86.
GzO PHIP¡EXPÍPHIP) 786.
621 PHIPIPHIPIPI,/|AO a31.
e2z 60 r0 ls 798.

c ?88.
423 36 RETURX 800,

c Eor.
s24 ErD AO2.

c...r¡¡¡3.t3r rrt¡r¡t¡tr¡rr ao3.
c ao4.
c aos.

1_6 6.

6'2Ê

626
e27
g2 a
628
630
a3 |
Ê32
633
E3ô
G35
536
637
G38
G39
6¡O
641
è42
643
844

6B f
6s2
6s3
654
685
G56
GE?
85t
8Eg
I80
88 r
862
8G3
684
985
466
a8?
a5a
489
e70
87t
472

87t
a?4

c
976
8? g
477

87A
g?g
cEo
8Et
692
883
844
Eag
g¡8
8r7
t8ö
3t9
t¡o
g8 |
482
Be3
604
gEB
888

6g?
Êgg
gs0

ôo6.
ao7.
aoa.
aos.
tto.
tt l.
tt2.
8t3.
ôt4.
at6.
at6.
61?.
0tE.
6t8,
62õ.
621 .

422.
c23 .

c24.
125.
82A.
627.
828.

at9.
aco.
a4l .

t42.
t43.
ca¡¡.
aa6,
s46,
a41 .
aoa.
&49.
aao.
tE I .
as2.
t53.
as4.
465.
aE6.
aE7.
8ÉE.
a6t.
460.
a6 t .
aa?,
t83.
t04,
ta6.
tG6.
E8?.
88E.
tt9.
8?O.
ô7 t .

872 -g7!.
874.
676.
476,
977 -

a7a.
a?g.
ago.
8tr.
aaz.
oat.
ot¿.
a8g.
aa6.
gE?.
aåa.
ta8.
ato.
t8 t ,
482.
a0t.

c
c
c

suER0ul¡¡E REsoul(a,8)

REAL PH I
COI'lM0x PHl, BETA. DELlA, 1OL, C0NVG, S I ZE, ALPHÂ, ePS I L0
TIIIECER L,K,C
COHMON L,K,C
REAL XX, Z2,SIHA,PSS¡,PHHI
coHMoN /tAlA/ X r , X2, XX, Z1 , 22, ZZ,PHXt

colrMofl ,/ltttl stGHAt,stGHA2,srHA
CO),ll'lON /lerE/ PS t f , Ps I2, Pss I
COl.ttotl /1o1o/ PI,SlPHl,csPHl
INIECER PP,QQ,CONTRO
coHroì /0u t / PP, QQ, corTRo
REAL HU
COHHOH MU,PHIP,PHIl
RSA! X ( 40, 40 ), 2 t 40, 4O l,S I G).tA ( 40, ¿O ), PS t ( 40, 40,
COlllloti /LALA/ X, :,SlGMA,PSl
ItllEcER A,A

INTECER P(ôO).A(aO)
coHHot¡ /L0to/ P,o
col{Mox HPs I . E, HÞ

a46

646
6¿1

E4a
449

coMtrox /riEw,/ csPst,HoR.axc 82s.
c a30.pRIN'l 20. X I A, B ) , Z(A, B ) ,St6HA(A, B ) , pSI f A, E L p (Al , q(Âl ' 631 .

20 FORilÂTf I lX,Fl2.6,3X,Ft2. E, E18.5,rX,F12.6.6X. t4, tX, I4) 632.
c 833.

RElURil ôta.gtD a35.
c t36.
Cr¡rrr¡ ¡r¡ r¡.arr¡¡t.¡¡.r¡r .¡ ¡ ¡.¡¡¡r¡..r.r. 837.
cc a3E.

860 6UAR0UÎ¡¡¡E l¡GAllA(RAD)
c

REAL PHI, HOR, OFFS, O, BEEU¡Y,HPRII,IE
COHHOX PHI, BETA, DELlA. 1OL, CONYG,SI ZE, ALPHA, EPSI LO
I HlECÊR t, r(, C

COHHOH L, X, C
REAL XX, ZZ, S I¡IA, PSS ¡ . PHH I
col'lMoN /1A1A/ X I , X2, rX.21 ,22,ZZ,"XHl
COIIMON,/1Tf I,/ S¡GMÂI,S¡GHA2,SIMA
coHM0x ./lETEl PS r r , PS I 2, PSS I
Eot'lM0x /TOT0/ PI,SflPHI,CSÞHI
IXTEEER PP, OQ, COI¡IROgorHoH /out/ PP,oQ,ÊoxlR0
REAL TU
çol{Hox tau,PH¡P,PHIl
REÀL X ( 40, 40 I . Z f aO. 40 t,S ¡ cHA( 40, ¿O l, PS I ( 40, ¡¡O)
COHHOÈ /LALA/ X. Z,SIGMA,PS¡
IITlECER P(401,a(ôO)
REAL C0SPS I, S ¡XAv f 30 ), TCAXHA, F, g,SOtaHE, RAl I O

IXIEGSR II IRAD, I'J'TI'RADT,RAD!
coliMol¡ /LoLo,/ P, Q
coltMoN ltPs r , E. HD
Êo¡{t{ox /¡Ew/ cBPs I , HoR, af,c
COHHO¡¡ /KAYO,/ IEÞ,HgQUIV,ÞOILES,HPRIHE,GEL

¡ADItRAD+l-2
RAOSIRAÞ+L.I

I rO
H¡O
J¡RAD.2

czl4687A8
¿ H¡H+l

Jt¡r+ l
trt+1
PEr(H,Jtr2.rPStfH,Jl
CosPsI!cos(FS¡lx,J))
Psl f H, J),Psr ltt,Jl /2.

g¡HÀv t t ) rs t GHA( H, ¡, ). Í | +sflPHt rcogP6¡ !
tF(H .Lf , L t C0 10 ¡r

PRIllI 87O,Str4AY( I !
8?O FORÅ^'îl/ / / /20X,'ArHAYr¡ 

"ErE.E'PRtXl 0tO,g¡t{av( rol
80o PgR'l,^Î1 / / / lao|,'atHAYL.',E16.61

1.2
H.2
JTRÀÞ
¡GAilHATO,O
EOHÈ{ErO'O
ÂRgAlrO.O

6 t.¡+t
c2!o66789

HtB.l
J¡¡r+l
3oHilE ¡ f 9tHAV ( t - l | +5t¡lAV ( ¡ I l./2.



ioo
701
702
103
704
?os
706
707
?ot

?os
?10
111
712
?13
714

c
?r6
116

c
111
714
?lg
120
72t

c
122

7 24
125

72Ê
a
c

727
726
729
?30
73 r
732

714
?35
?36
?3?
?3r
739
140
?41
142
7 43
744
746

7AÊ

c
c

494.
495.
496.
as7.
847. I
a9E.
800,
80!.
902.
803.
ôo4.
oos.
go6.
807.
go8.
BO9 ,

810.
E|t.
012.
0't3,
9t5,
at6.
Dl?.
423.
924 .

92Ê.
a27 -

82E.
Ê29.
830.
831.
932.
933.
934.

435.
836.
€3?.
83t.
939.
840.
8¡t.
942.
943.
a44.
045.
t4G.
84?.
s¡4.
o4s.
9EO.
8E l ,
882.
963.
sE4.
086.
886.
957.
968.
959.
9GO.
961.
062.
063,
sg4.
06s.

soMME EsoHMEr ( x ( H. J ) - x f H- I . J- r ) t
AREAI !AREA.I+SOI'IME

L1!L
rFlt .Lf . Lt¡ Go l0 6
AREAI.ABSIAREAI )
B!XlL,RAD1)
fL !o. ao!B
ArXL+a
EDILES!AB5fB}

c23496789
A?8 COHÏIRUE

tt

Cr. 13. û r r ¡.. û t. Ê r.. ! ¡ a r. a¡ aû

c
c23466?88

AREÂz8 ( BDI LES 'AgS ( X ( L, RAD I ) , I 'S tHAY { I O ) 'O. E

AREA ¡ AREA I +AREA2
ItCÂHMA. I¡GAMHA+AREA
RAlt0: t./BDILES¡¡2
NGAMMA: IIGAI{MATRATIO32.

PRIIIl TO.IIGATMA
FORMAIf ', 1 

" 
/ / / I / / / /20x,',xGAilHA: ,, F8. q )

BE(BDlLEs'slzE)/fx(1, I ) )
PRINÏ I2.B
FORtA^f ( / / / / /20X¡',BREADIH È',,F8.4!
OsGEL
DßO/gDtLES

PRIXl tt,0
FoRt'lÀr ( / / / / / / / /2ox,' D /e.',Fs. 4,
RElURX
El¡0

SUËROUf I NE PAICOR

REAL PH I
COMMOT PHI, BETA, DELTA, IOL, COXVG.S ¡ ZE, ALPHA, EPSIIO
INTE6ER L, K, C
coHMofl L.K,C
REAL XX, ZZ,SIMA. PSSI,PHHI
coMMofl /ta1a,/ x1,x2,xx, 21,22.22,PHH1
COHMo¡l /?¡TIl s¡Gl.lAl,S¡Cl.lA2. StHA
coMMo¡¡ /1Ë1Èl PS I r , PS t 2, PSS I
cot'lMoH /1010./ Pt,sliPH¡.csPHl

¡ }¡TEGER PP, EQ, COIIfRO
REA L I.tU
Colttlolt lU, PH¡ P, PHII
REAL X I 40, 40 l, Z f 40, ¿O !,S I GHA I aO, 40 ¡, PS I f 40, ôO t
COHHOX /LÂLA/ X,Z,3IGTA,PSI
tr¡lËcER Pf 40l.el¿o)
cot'tMolt /LoLo/ P.Q
goMMot{ t¿Ps I , E. HD

REAL TPS I
Col.lHDN /flEw/ csPs I , HOR, AllG

REAL EX,lIN

a4U.?l/4.-PHl/2.
EX!NPSI/2.HU
Ex!ÌAl¡(EXl

to

12

7 41
?48
749

?so Do !3 I È2, L
751 TI¡3EX/g.

c234È67E0
182 x(l,llE1¡¡r(t-ll

92365Ê?t
?53 33 goltllXuÊ
?54 RÊTURX
?E5 E'.D

c
c

786 SUBROUÎTI¿E EDCPA2

as7
?5a
?89
?go
?6r
742
?63
764
?85
?66
?67
?6ô
?6S
170
171
772
773
174
7?E
776
771
77è
710
760

REAL PHI.ËPSILO,ALPHA,FIRP9¡,COSPSt
EOHHOX PH I, AElA, DELTA, f OL, COI'VG. S I ZE. ALPHA. ÊPS I LO
INIEûER H,Ê
c0HH0N L, K, C
REAL I.T

REAL rX, ZZ,Sll{À,ÞSSt,PHHl
c0MH0Ìt /la1a/ xr,x2.lx, zl,22,zz,PHHl
C0Htlol /1Ill,/ S¡CHAl,SlCllA2.Sll.lA
EoHHor /1EfÈ,/ PS I r , P3 I 2, PSS I
coxH0R /1010/ PI,st¡PHI.CSPHt
coHHoÈ /ou¡/ PP,eQ,co¡¡1Ro
I ÍIEGER PP. OC
REAL T'U
COI{HOfl MU,PHIP,PHIT
RsaL r { ôO. 40 L Z ( 40, ¿O ),S r Gr'rA( 40, ¿o l, PS r f ôo, 40 |
c0Hllof /LALA/ x, z.srclla,PsI
lxlEGER W,Hl,W2,1.J
tr¡rEcER Pf 40r.o(40,
coHlrol¡ /L0L0,/ P,Q
ÈEAl l.toR
coHHox ./iler9,/ csPs I , HoR, al¿G
REÀL DIF, Dt,II¡PHI, ENII

coxHota ¡Ps t . E, BD
coxx0ß /KAy0/ 8eD, HeeutY, Bo I Lgs, ItFRIHE. GEL

c
c

486.
a8?.
86e .

989.
870.
E7t.
a72 -

a73.
B?4,
g7E.

c

c
c

9?6,
911 .

9?a.
s?s.
sao.
0t I .gt2.
0ô3.
0ôr.
9tE.
ga6.
9E?.
9AA.
aa3.
oÊo.
0t ! .
g¿2.
ge l.
¡04.
g0E.
086.
8t?.
EIE.
988.
tooo.
toot.
foo2.
foo3.

7A I
782

c

oo4.
oo5.
oo6 .
oo?,
ooô .
oog .

oto.
ot I .
o12.
ott,
ot¡¡,
ot6.
orÊ.
or?.
ota.
ol8.

lø?o.
1021 .

1022.
to2!.
to2l. t
I 02/¡ .
lo2E.
to26.
1027 .

1026.
lo2B -

a ¡ xEP ¡ ô I t{ ( EPs t L o I
lAHEPtlAt¡(gPStLO,

?8t HrÊ
?aa x{ t, t l.o
?t6 HoR¡r,o
7t8 DO AOO tr2.t{
747 Strl-t
?aa x I I. t I ! I (w.wt +lloR/6. o

c2l4B6?A9
?t8 EOO CotaltlluE

c
780
791
792
?8S
?04
?OE
798
751
?84

E
?t9
800

ELl¡¡2.O14
Hl ¡tl+l
0O Eol I tHl, lO
xf t, t t!xlH,tll+( (l-Ht¡(e]rr¡-1, l/f H-21 )

aot co¡¡ttlruE
tF(EED .Gf . ol GO 10 680
zfl,ll¡lHoR/lo.lt2.o
Z ( f o, I o Ì . f ttoR/ 10. t t 2. o

aa0 col¡t I ltuE

DO 8O2 lr2,H
Zf l, llr (xtt, ¡lslaxgPl+f Zl l, I ¡ I


