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rn this thesis, the two-magnon excitation spectra of an

alternating ferrimagnetic chain are calculated and then

anaryzed. Both the spins and bonds of the chain are permitted
to alternate in the general formar-ism. This is followed
by intense study of a variety of special cases. A direct
analytic approach is used to trace the bound state branches

while a real-space rescaling approach is used to cal_culate
the two-magnon densitíes of states. The latter approach is
particularily useful- for studying continuum states. The

significance of any special features detected in the spectra
is discussed.
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From the time of the ancient Greeks up untÍl early

twentieth century, magnetism had long served as a puzzle-

rnent to men and rvomen of science. But thanks to the "quantum

revol-ution" of the l-920's, and in particular the work of

Heisenberg IHE] and Dirac IDI], \^re now understand how

spontaneous magnetizatíon arises in solids. Spontaneous

rnagnetization is the direct resul-t of interactions between

atoms that are quantum mechanical in origin. These inter-

actions are a consequence of the contraints placed on

electronic wavefunctions by the Pauli Exctrusion principle.

The Pauli principle requi-res that lravefunctíons describi-ng

systems of electrons (or more generally fermions) are anti-

symmetric under exchange of both spatial and spin coordinates

of any el-ectron pair. As a result, the relative spin ori-

entatíon of the electrons can influence the el-ectrostatic

energy of the system. It is possible to ecpress the effect

of the Pauli principle by interactions which can be described

by operators of the form

Chapter t

INTRODUCTTON

where õ. and
l_

atomic sites.

S..S.l-l

õ.
J

are spin operators corresponding to different

íli (1.1)



To better understand. this effect we consider the simple

example of a hydrogen moIecule or in other words a two-

electron system. The Hamiltonian describing this system

can be written

't
r

¿m

where the indices l- and 2 label the spatial coordinates of

the two el-ectrons and r' is the distance separating the

two electrons. (For convenience we have set the fundarnental

constants h and n..O equal to unity.) Clearly (1.2) is

invariant under exchange of electron spatial coordinates

so the two-el-ectron spatial wavefunction must have definite

symmetry. We find a splitting in the energy l-evels of the

systern depending on whether this spatial wavefunction is

symmetric or antisymmetric under exchange. From the Pauli

principle, if the spatial wavefunction is symmetric, then

the corresponding two-el-ectron spin \^ravefunction must be

antisymmetric and více versa. Hence the forernentioned

splitting can be said to depend on whether the two-el-ectron

spin wavefunctíon is a singlet state (i.e., antisymmetric)

or a triplet state (i.e., symmetric).

The singlet and triplet spin states are both eigenstates

of the total- spin operators lS-12 = lS- - '), r-Tr r-.- rS2l- with corres-

ponding eigenvalues S2T : 0 and S1 = 2 respectively. It

,,, I-ñ ,3+v(r) +v(2).*
"72

)

(r.2)



therefore foll-ows that the energy splitting can be described

in terms of the eigenvalues of this operator. However the

operator 2(õ1.92) differs from lSrl' by only a constant

term so it Ís equally valid to express the energy splitting

in terms of eigenval-ues of õr-3r. rt can be expticitly

shown (see Srnart tSMl) that this energy splitting or

"exchangie energy" for the hydrogen molecule can be written

aH = -Jõ-.õ^t¿

where J is a function of electrostatic force between electrons

and is often referred to as the "exchange integral". Because

of the strength of the electrostatic force relative to

magnetic dipole interactions, the latter can be neglected.

Now suppose we extend the previous result to a lattice
a

of atoms, each with magnitude of spin S. :;. Then the

total energiy arising from the effect of the Pauli principle

can l¡e described by the following operator which was origi-

nally proposed by Dirac tDIl but is commonly referred to as

the "Heisenberg exchange Hamil-tonian" :

HCIS

We also want to

and S. I S. as wouldal
one val-ence el-ectron.

I ,r. .3..S..",. r'l l_ -t
LFJ

(1.3)

aI

be

fow for the possibi

the case for atoms

However the simple

(1.4)

litv that S. ' I-^'- - -i 2

with greater than

result of (f.3)



depended crucially on the

general spin magnitudes we

cated polynomial in õr.õr.

where d = 2 minimum (sl,s2). The coefficients

J(0),J(1) r... r"(d) can be regarded as being analogous to

the coefficients of an electromaginetíc multipole expansion.

This is because both sets of coefficients are consequences

of interactions between extended distributions.

We justify the precise form of (1.5) as foll-ows. If

the "exchange HamiltonÍan" is to remain rotationally invari-

ant, then so must each individual "exchange operator"

describing the interaction between two spins. So if we

assume rotational invariance then each exchange operator

must be a tensor operator of rank zero or in other words

a scalar. From quantum theory of angular momenta (see

IVatanabe tMl) any scalar operator acting on the direct

product space of two spins g1 and õ, can be written as a

linear combination of polvers of 3r.Sr. Furthermore, the

dimension of the subspace spanned by these operators is

equal to the number of possible eigenvalues of I 5rl where

3, : õ, + õr. since sT = { (sr+sr), (s L+s2-f ) ,..., (lsr-s2 l) }

the dímension of this scalar subspace is d*I where

d - 2 minimum (S1,S2). Hence it is redundant to expand

fact 51 =

expect to

In other

õ _ r"2 2'
obtain

words,

For more

a more compli--

we expect

-(d) ,¡ .õ \d" t"1 "2'
(r.s)

4.



scalar operators in powers of õ. -3., in excess of d.I¿

So a more general version of (1.4) valid for spins

of arbitrary magnitude is given by

tJ-
II _

where the index p runs from I to 2 minimum (Si,Sj). Note
rì

that we have neglected the constant terms (S.,.S-)" as we'r- l'
are always free to add or subtract a constant to the Hamil-

tonian without changing its physical nature.

Reconsider the Heisenberg exchange Hamiltonian (1.4).

In ord.er for the exchange interaction to occurr the wave-

functions of the interacting electrons must certainly

overlap. Hence the exchanqe coefficients 
"ij 

depend on

(among other factors) tfre degree of overlap of the ith and
.rhj-^'electrons. So it follows that 

"lj 
is a function of tij

(the separation between the ith and jth 
"lectrons) such that

the magnitude of J. , decreases rapidly as rij increases. So

it is not an unrealistic approximation to assume these inter-

actions are significant between nearest neighbours on1y. Idith

this approximatíon the Heisenberg exchange Hamil-tonian becomes

rtLL
ilj p

¡fP) r3.r-l 1
3.1Pf

(1.6)

ll=
HETS

where for each atom (i) we

atoms (i+61. For the sake

I I J. . "9..3? ? .l-rr+Ò l-lo i+6

sum over all

of simplicity

neares t-neighbour

we further restrict

(L -7)



ourselves to the case of a one-d.imensional l-attice or in

other,words, a linear chain of atorns. Then the Heisenberg

exchangie HamíItonian further reduces to

H__HE]-S

Note that the extension of subsequent results to two or

three dimensional lattices is in rnost cases straightforward

but tedious. The further simplifying case of a uniforinly

spaced chain of identical atoms gives

ç
L
i "i,i*r3i'3r*r '

T\rI__ -u , ù'HCIS + L.l_

For the case of a uniform chain with nearest neighbour

interactions onJ-y, the more general exchange Hamiltonian

of (1.6) similarily reduces to give

6.

.õ"i+1

fl= Ii

Although most related literature deals with the case of a

uniform homogeneous system, in this thesis we allow for the

possibility of an "alternating chain". By this we mean

a chain composed of two non-identical sublattices, each of

which itself is uniform and homogeneous. Generalizíng (f.I0)

for an alternating chain gives

2S

I. J(P) (õ..3r*r)P
P=r

(1.8)

S. _ S V i
l_

(r. e)

S. = S V i
l_

(1.r0)



H--
N/2
I

n=1

where the total- number of atoms N is an even integer and we

assume St < S without loss of generality. This is the form

of the exchange Hamil-tonian which wil-1 be studied in the

subsequent chapters of this thesis. It can be said to

describe an alternating ferrimagnetic chain.

Unless otherwise mentioned we will be considering the

lirnit of an infinite chain. This implies periodic boundary

conditions such that for every n,

2s'-i. 
"{n) 

(õ;".3rr,*r)n * 
"jn) 

(32r,*r.5å.,*z)p
p=r

tår, : S' -rd S2rr*l = S V n (1.1f)

õl õlo2n - o2.r+N '

s2.r*1 : s2tr*l-*N

These boundary conditions insure translational invariance

such that the unit cell of repetition contains two atoms.

Before proceeding it should be mentioned that we neglected

to consíder a number of factors which are often of importance

in real materials. These incl-ude anisotropic spin exchange,

singJ-e-ion anisotropies and the effect of an external magnetic

field. For instance, if all these factors \^/ere taken into

account for a nearest-neighbour uniform chain, then the

exchange Hamiltonian (f.10) would become

( I. I2a)

(r.12b)



H- Ii

2q

I. r (P) t'sfsf*, +
p=r

where:

Ii

2S

I o(P) (s?)P
^IP=¿

spin exchange r-s

h is a measure of

which is assumed

z-directíon

o 
(n) are measìlres

ßr{rl*, + vsfsl*, tP

For the sake of simplicity, these factors will- not be con-

sidered in this thesis. It Ís however a straightforward

process to extend our formalism to include any or all of

these effects.

I^le next examine some general features of the Hamiltonian

of interest (1.11) beginning with the ground state. It is

instructive to first consider the ground state for the spe-
lcific case of a uniform chain with Si = ;, L. For this

case we refer to the simpler Heisenberg exchange Hamiltonian

of (1.9). If J > 0 then clearly the most favourable (lowest

energy) state occurs when all spins are parallel. Assuming

magnetization is along the z-direction then this is a state

with either all spins "flipped up" (i.e., Sî: * | t il

or efse al-l- spins "flipped d.own" (i.e., S? : - | v i) . IfL¿

J < 0 then the corresponding ground state is not so simple"

^,h)s:?LI

anisotropicifalB/t

the external rnagnetic field

to be orientated along the

of single-ion anisotropy

(r.13)



Antí-parall-el spin paÍrs are obviously favourable but the

"intuitive" choice of ground state (spins flipped up alter-

nating with spins flipped down) is not an eigenstate of the

Hamiltonian. The actual J < 0 ground state (first calculated

by Bethe tBEl) turns out to be rnuch more complicated.

In general, for a magnetic material consisting of

identical atoms on translatíonally equivalent sites r w€

categorize it as either a ferromagnet or an antiferromagnet.

This depends on whether paralle1 or antj-parallel alignment

of adjacent spins is favoured. So for the previously dis-

cussed uníform Heisenberg chainrJ > 0 and J < 0 correspond

to ferromagnetíc and antiferromagnetic chains respectively.

Now reconsider the alternating chain with general

magnitudes of spin. This is an example of a ferrimagnetic

system. (A magnetic material is referred to as a ferri-

magnet if it is composed of non-equivalent atoms or non-

equivalent subl-aLtices or both.) In general, the ground

state of such systems cannot be explicitly calculated. For

(1.11) tfre ground state depends on what vafues are assigned

to the set of exchange coefficients JJp) (i = I,2,
l_

p = I,2r... r25'). In some cases of (l-.11) parallel- arrange-

ments of adjacent spins are favoured. Hence the lowest

energy state occurs when all spÍns are afigned along a conmon

direction with maximum projection in that direction. (For

o



instance, if the direction of magnetization is taken as the

negative z-direction, then for such cases the ground state

occurs when 
";i 

= -Sr .rd Sãrr+f - -S y n.) ThÍs state

having maximum alignment of spins is referred to as the

"ferromagnetic state" and systems for which this is the

ground state are said to exhibj-t ferromagnetic behaviour.

For other cases of (1.1-1), the values of the exchange

coefficients will be such that antiparall-eI arrangements of

neighbouring spins are favoured. For these cases the ferro-

magnetic state lies híghest in energy and the corresponding

systems is said to exhibit antiferromagnetic behaviour. The

ground state of such systems is generally incalculable.

There will also be cases of (1. tl) for which it is uncl-ear

whether the chain tends towards ferromagnetic or antiferro-

magnetic interactions. For these cases the ferromagnetic

state lies neither highest or lowest in energy and the

corresponding ground state is (generally) incalculable.

If we are to proceed to study the energy spectra of the

Hamil-tonian (1.1I) \^/e require a starting point. In other

wordsr we require an explicit expression for the ground

state. Because the ferromagnetic state (al1 spins aligned

with maximurn projection) is the simplest eigenstate of (1.I1)

we have chosen to only eonsid.er systems in which this is the

ground state. The direction of magnetization is arbitrarily

taken as being along the negative z-direction. For the

10



remainder of this thesis it is to be understood that the

parameters of the Hamiltonían (1.11) may only be varied. in

such a way that all other states have positive energy rela-

tive to the ferromagnetic state. In subsequent dj-scussion,

the term ferromaginetic chain will imply such cases whereas

the term antiferromagnetic chain will imply that the signs

of all the exchange coefficients have been reversed so that

the ferromagnetic state l-ies highest in energy (although

technically a ferrimagnetic chain is neither a ferromagnet

nor antiferromagnet).

Now that we have established the ground state of the

exchange Hamil-tonian (1.11) as being ferromagnetic the next

features to consíder are the low-Iying excited states. But

first note that because of the rotational invariance of the

Hamil-tonian, tl.' i= a good quantum number where

11.

N/2
rlo, = 

-'i-. 
G;:, * s"zn*t)

n:,L

By good quantum number we mean that H operating on a state

of definite tl., gives back a state having the same defínite

value of tl., associated with it. Consequentlyr w€ can

partially diagonai-ize the Hamiltonian by grouping its

eígenstates into subspaces labelIed by the various values of

tlo". These vafues of tlo, range in integral steps from

(1" 14)



l\1

- ï (s+s') to 0. (The subspaces with tlo, ranging from I to
ì.'T+ ; (S+S I ) are redundant because in this model the positive

and negative z-directions are energetically equivalent. )

Note that the subspace labelled by tl., = - ï (S+S ' ) contains

only the ferromagrnetic ground state.

Again it is instructive to first consider the states

of the uniform Heisenberg chain (f.9) with Si = å o t.

Since the ground state (a11 spi-ns flipped down) has the most

negative value of tl., associated with it (tlo, : )l
we first consíder the subspace of eígenstates l-abelled by

nzN,tSõOf = ;*f. Any state ín this subspace can be written

as a linear combination of states having all but one spin

parallel. In other words, íf lOt represents the ground

state then the excited states in this particular subspace

can be written as línear combinations of the states

l1', 12r,...,11¡> where lj'= sllo'. (sl = s]+is{ is thel' I J f
quantum raising operator corresponding to the jth site.)

Because of the translational invariance of the Harnil-tonian

we can be even more explicit. By way of Bloch theorern tAMl

we can write

L2.

HH"í= l,þx' = E (K) lq,*>

where:

By using the explicit form of

| úra' : IKIÌÌ r

lm>

the Hami.Itonian (1.9) and

(r.15)



applying the well--known properties of quantum spin operators

[SAK] we obtain the result

E (K) = E0 + 2Js i"2 f\l

where EO is the ground state energy. A plot of this dis-

persion is given in Fi-gure (1.1) . Note that the periodic

boundary conditions (L-J-2) restrict unique val-ues of the

wavevector K to those in the first Bril-l-ouin zone

f lxl < ¡) . Hence we obtain a "band." of energies with minimum

energy at K = 0 coinciding rvith the giround state. Because

of the plane wave nature of these excitations they are

referred to as spin waves. They are also referred to as

magnons, this l-atter name reflecting that they represent

quanta of magnetic excitation.

lJext consider the subspace of excited states labelled
zNby SõOf = ;*2. Any state in this subspace can be written

as a linear combÍnation of states having all but two spins

paralIel. Alternatively, such states can be regarded as a

pair of interacting spin waves and hence are referred to as

two-magnon excitations. The corresponding dispersion relation

l-3

(1. 16 )

(as derived

now the sum of the wavevectors describing the two individual

magnons or in other words the "total \^/avevector". Along with

the contÍnuous spectrum of states there is an isolated curve

in Figure (L.Z) corresponding to a bound state (that is a

Mattís [M]) is shown in Figure (L-2). K is
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state l-ocalized in the neighbourhood of an attractive inter-

action) .

The subspace of states labelled by tlO, = - Ï*,
corresponds to three-magnon excited states, the subspace

of states label-Ied by tl., : - ï * n corresponds to four-

magnon excitecl states, and so on. rft" ) - magnon excitations

include the hi-ghest lying excj-ted state which is the ground

state of the corresponding antiferromagnetic chain (,1 < 0).

It is expected that the dispersion relations get increasingly

complicated as the number of magnons increases.

Now reconsider the exchange Hamiltonian of interest

(1.11) describing the aJ-ternating ferrimagnetic chain with

ferromagnetic airound state. As j-n the previous exam.ple

the various excited states can be categorized as being one-

magnon excitations, two-magnon excitations, three-magnon

excitations, etc...., depending on the vafue of SfiO, asso-

ciated with the states in question. For an m-maginon exci-

tation the correspondíng eigenvalue is Sz^n^ = - + (S+S') + m.'I'Ot' ¿

The m-magnon dispersion relation or spectrum is generally

much more complicated than it would be for the previously

discussed uniform Heisenberg chain. For instance, the one-

maginon spectrum of the alternating chain contains a two

branch dispersion curve. The second branch arises as a

result of having two atoms in the unit cell of repetition.

The two-magnon spectrum generally has three isolated energy

Ì6.



continua and as many as six bound state branches (as will

be shown in the chapters ahead).

Both the one and two-magnon spectra of a ferrimagnetic

chain with ferromagnetic Around state can be solved for

exactly, regardless of how otherwise general the model is.

However, the m-magnon spectra for m > 3 are generally in-

soluble, âs these correspond to many body problems. Unfor-

tunately, it is the arbitrary m-magnon problem that is of

greatest interest because solving this leads directly to the

ground state and low-lying excitations of the more interesting

antiferromagnetic modeI. However, there are special cases

of (1.11) for which the arbítrary m-magnon probl-em can be

solved exactly and hence the complete excitation spectra

can be obtained. Such cases are referred to as completely

integrable models ISU2]. The previously discussed uniform

Heisenberg chain with S = l t= a completely integrable
¿

model tBEl.

The focus of this thesis is on solving the two-rnagnon

problem of an alternating ferrimagnetic chain with ferro-

magnetic around state. Yet nost real life magnetic rnaterials

possess antiferromagnetic interactions, so as mentioned above

ít is the arbitrary m-magnon problem which is of primary

interest. So why do we bother to study the two-rnagnon

excitations with such dil-igence? Because by examining the

features of the two-magnon spectra for a wide variety of

77.



cases it may be possible to identify special cases correspon-

ding to completely integrable models. ft has been shown

that such models typically have special features in their

m-magnon spectra tCKl.

For instance, consider the uniform chain exchange

Hamiltonian (1.10). It has been conjectured by Hal-dane

Iuar,] that the corresponding m-magnon spectra have bound

state branches with range over p = minimum (mr25) consecutive

Brillouin zones in the extended zone scheme. In general,

these branches enter the energy continua (where they are

no longer true bound states) and are discontinuous at

Brillouin zone boundaries. Haldane further conjectured

that for integrable models only, these branches are both

real and. continuous across p Brillouin zones. This implies

that completely integrable models of (1.10) can be identified

by studying the two-magnon spectra for cases in which the

bound state branches stay completely outside the continua

and have no gaps at the first Brillouin zone boundary.

Such studies were made successfully by Chubukov and Kveschenko

tCKl and by Southern et al [SLL]. Simil-ar studies of two-

magnon spectra for alternating chains may lead to the identi-

fication of additional integrable cases, hence motivating our

research.

In this thesis we wifl- try to identify possible candi-

18.



dates for compl-ete integrability. This will be done by

studying the spectral nature of two-magnon excitations of

an alternating ferrimagnetic chain. Hence we require a

method (or methods) for rigorously solving the two-magnon

problem of an exchange interaction system. A rather well-

knorvn technique, commonly used in solving muÌti-magnon (and

analagous) problerns is the "Bethe ansatz" approach, originated

by Bethe in 1931- tBEl. This approach was first apptied to

the uniform Heisenberg exchange Hamiltonian (1.9) with
IS = ;. By assuming periodic boundary conditions and then

making use of translational- invari-ance, Bethe was able to

rnake an "ed.ucated guess" to the form of the m-magnon wave-

function. As a result, he succeeded in completely diagonal-

ízíng the Hamiltonian. As it turns out, the Bethe ansatz

(or suitable generalization) can be used to solve for the

complete set of states for essentially any Hamil-tonian repre-

senting a completely integrable system tSU2l. (Such systems

occur not only in magnetism but a wide range of physical

problems " But virtually all known integrable cases correspond

to systems confíned to one dimension i-n space or time. )

Consequently, the Bethe ansatz can be used to solve the

arbitrary m-maginon spectra (and hence the complete antí-

ferromagnetic probl-em) of any spin exchange system which

corresponds to a completely integrable model_" However the

Bethe ansatz is not applicable to systems of limited inte-

l-9.



grability and therefore not suitable for studying general

models such as (1.11).

Since a system is integrable only if it can be solved

using the Bethe ansatz, this approach can also be used as

a means of identifying integrable models. Another technique

which can be used for the purpose of identifying such models

is the quantum inverse scattering method, as has been done

by Takhtujan tTl and Babujian tBABl. However, using such

tedious methods for the purpose of identifying integrable

cases of a general system is a massive undertaking. It is

much preferable to have criteria to apply beforehand which

indicates which particular cases are the most likely candi-

dates for sol-vability by these methods. Special features

of the two-magnon spectra is one such criteria.

We now focus on methods for solving the two-magnon

problem which can be used independent of the integrability

of the system. One such method which we refer to as the

"analytic approach" (for lack of a better name) entails

solving the one-magnon problem beforehand and then describing

the two-magnon problem as an interaction between pairs of

one-magnon states or spin v,/aves. Such an approach has been

used previousÌy by Fukuda and hTortis [FW] and Hanus IHA]II.

An approach with a similar philosophy but formalized in

terms of Green's functions \,vas initiated by Dyson [DY] and

later developed by Wortis [IriO]. Approaches such as these are

advantageous in their easy applicability to a wide range of

20.



magnetic systems. The dimensionality of the lattice,

presence of anisotropies, and the range of interaction are

of little concern when applying such methods. The Green's

function formalism is generally favourable because a system's

spectral properties are easily extractabl-e once these

functions are known. However using the "Green's function

approach" usually requires performing a cumbersome fourier

transform so that the results are expressed in real-space

(rather than reciprocaJ--space) coordinates.

An alternative technique, which we refer to as the

"scaling approach", is based upon the j-deas of real--space

rescaling methods. Such methods \^/ere used originalty in

the study of critical phenomena [NL] but are applicable to

a wide range of problems. Such an approach was shown to

be effective in the study of exchange l{amiltonians (and

more generally tight-binding Hamil-tonians) by Southern et

aI. ISKL], ISKA]. This approach entails constructing a

transformation on a system of equations which elininates

a fraction of the variables whÍ]e leaving the form invariant.

This technique has the advantages that the one-magnon

problem need not be solved beforehand and the real-space

Green's functions can be calculated directly. Unfortunately,

the scaling approach is limited to systems describing one-

dimensional l-attices.

2I.



rn our study of the alternating ferrimagnetic chain we

have chosen to use two of the previously discussed approaches,

anal-ytíc and. scalirg, in solving for the two-magnon excitatj_on

spectra. The two methods complement one another in that
the former provides an efficient process for cataloguing
bound states while the l-atter provides a more detaired
account of the two-magnon spectra. This includes the rera-
tive contribution of states both inside the energ:y continua
(i.e., scattering states) and the bound states outside.
chapter 2 of thís thesis develops the general formal_ism

of the one- and two-magrron problems and discusses how the

analytic approach leads to the bound state solutions. chap-

ter 3 discusses the scaling approach and then develops the

formalism necessary for applying this method to the two-

magnon probrem. chapter 4 of this thesis uses the formalism

and cal-culations of the previous two chapters to study the

two-magnon spectral results for a number of i-nteresting
cases. chapter 5 summarizes the resurts of the thesis.
Particul-ar attention is paid to what spectral features (if
any) may lead to the indentification of previously unknown

cases of completely integrable systems.

I''tre conclude thís introductory chapter by noting the

existence of an arternate viewpoint to the two-magnon

problem. This viewpoínt stems from experimental studies

22



of tlo-r¿agnon Raman scatteríng. Such light scattering

experíments are most appropriate ín the study of three-

dimensional- antiferromagnets. Although a detailed under-

standing of such systems has not been possible, quite good.

agreement with experimental- results has been achieved by

using rather approximate calcul-ations. Raman scattering

has been a motivatíng factor in previous two-magnon research

at the University of Manítoba" Loly et al-. have intensively

studied ferromagnets in one, two, and three dimensions tLOl

including single-ion anisotropy tLSl and next-nearest-neigh-

bour effects tBLl. Fundamental to the Raman scattering

concern has been the profíle of the two-magnon continuum

(i.e., densities of states) with the bound states being of

secondary concern cornpared with studies of integrable one-

dimensional models.

23"



In this chapter we will develop the formal-ism necessary

in solving the two-magnon problem of an alternating ferri-

magnetic chain as described by the spin exchange Hamiltonian

of (1.1I) . A direct analyti-c approach will be used to

first solve the one-magrnon problem and then expand the

interacting two-magnon states in terms of non-interacting

spin \^/aves. A method for locating bound state solutions

will be discussed in detail.

2.L One-Magnon Formalism

Chapter 2

GENERAL FOR¡{ALISM

Recall the Hamiltonian (1.11) under study:

24.

N/2 23'
H - - 

-Î" -i 
r"{n) (õå,-,-3rr,*rlp*"jn)(õzr,*r.3;r,*r)pt

n:r P=I 
e.L)

where lJ is a large even integer

3å., .rd 32rr*1 are spin operators such that

Sår, : S' .rd S2rr*1 = S V n

SI < S

"Ín' 
ana ;jp) (p = L,2, . . . ,2s') represent the

interactions between neighbouring spins that

alternate in strength along the chain



Also recall that we assume

(L.L2) and that the ground

is the ferromagnetic state

the negative z-directj-on.

Hl0t = nolo>

where the ground state energy EO is given by

periodic boundary conditions

state IOt of this Hamiltonian

with all spins aligined along

Consequentlyr wê can ivrite

Eo

since 
"ri = -S' and Slrr*, = -S V n .

N
2

2s' 
{'rinl

-aP=r

Alternati-vely, the Hamiltonian (2.I) can

terms of parameters related to eigenvaluesin

tor S.S'. If J - S * S', then

25

* 
"jn)) 

(ss'

S. S' =L
2

1=-2

The various eigenvalues for S.S' are given by substituting

for the possibte quantum numbers of 3 which range from

(S+S' ) to ls-S'l i-n integral steps. If we tet À*

(m : 0,I,...,25') d.enote the eigenvalues of õ.3' in descen-

ding order, then

)p

rl512 l3l2 lõ'l2l

tJ(J+1) - S(S+1) - S'(S'+1)l

(2 -2)

.t
^-:lm¿

(2 .3)

be

of

described

the opera-

(s+s'-m) (s+s'-m+I) - s(s+I) - s'(s'+f )l

SS' - m (s+s' )+i

(2.4)

m (m-l) (2.s)



l{e further define

2!'
o 
(i) = 'i JJp)-ma p:f

^ 
(i)

\r
rn

The n-magnon problem involves only the 
"Ít' 

with m = I,2,... 'n.
This is regardless of what values are assigned to the

generally larger number of 
"Jn) 

parameters. ActualIy,

the n-magnon problem can be described by exactly 2rt' exchange

parameters where n' is the minimum of n and 23'. Further-

more, if we restrict all retevant c.Íi) to non-negative
m

values only then ive are assured of a ferromagnetic ground

state. Because of these conveniences we will use the G(i)
m

parameters whenever possible in describing our subsequent

results. Note that the ground state energy (2.3) is given by

øji) - n 
rrl

Àp
m

ì-1t.t m

i - I12¡ m: 0rIr...r2S' (2.6a)

i - L,2ì rn : I,2,...,25t (2.6b)

26-

trVe now consider the one-magnon excited states. That

is, the simultaneous eigenstates of the Hamil-tonian (2.I)

and the total spin operator tl., (1.14) such that the

corresponding eigenvalue of tlo' has been incremented by

exactly one unit from its minimal ferrornagnetic value of
l\1

- ; (S+S') . First note that states with all but one spin

Eo N
2 ,nJt' * ná') t (2.7)



parallel are not eigienstates of the Harn^iltonian and hence

are not one-magnon states. (This can be shown explicitly

by applying the well--known properties of quantum spin oper-

ators tSAKl. For further discussion, refer to Appendix A.)

Instead we find that the deviation in spin resulting in a

one-magnon state must be shared by all spin sites. In

other words, a one-magnon state is a "collective excitation".

The set of states having all but one spin parallel do

however span the eigenspace of sloT corresponding to eigen-
z

value ï (S+s') +1. So it fol-Iows that any one-magnon

state can be written as a linear combination of all such

single spin deviation states. Therefore a general expression

for the one-magnon wavefunction I Vr-t can be written as follows

27-

N/2
I {,, ' = I. larnl2n, * .2rr*f I zn+t ' ln= _L

where: I j t ís the state in which aII spins are alligned

wÍth maximum projection along the negative

z-direction except at the jth site where if j is

even S." = -S'+1 and if j is odd, Si = -S+l;)"1
a-: is some yet unknown amplitud.e measuringl-
the contribution of the state I j t to the total

one-magnon wavefunction .

Next, consider the Schrödinger equation:

(2 .8)



H lú1' : ("t * Eo) 
I

where t EI is the

relative

Since the states lIt, 12r,..., ln> form a complete (and

hence orthonormal-) set rve can obtain equations relating the

various amplitudes uI,u2

(2.I) into (2.9) and then equating the coefficients of each

given state. The details of this procedure are given in

Appendix A. The resul-ting equations reÌating the "one-magnon

amplitudes" are as fol-l-ows:

ú1t

one-magnon excitation energy measured

to the ground state energy.

ter-s tc{rl*"j') ) 1.r,, = -/Ss-- t"jt'.rr,*, * "Í'' rrr,-r_

tEl-s' ("jtl*"Í2))t.r,r*, = -/ss-- t"Ít'rrr, * ":') uzn*2

Notice that both of these equations involve 
"Át' 

for m

onlyr âs expected.

Because of the similarity of these equations (2.10

those obtained for phonons on a diatomíc chaim [AM] we

predict plane wave sol-utions of the form

2B

(2 -e)

u2n : cre

i-2rr+t : Ée

where k is a real number referred

Because of the periodíc boundary

values of k are restricted to the

2ínk

(2n+1)k

I (2.10a)

I . (2.10b)

l
-L

(2.Ila)

(2.1lb)

to as the wavevector.

conditions, aIl- unique

range t- i,i which is

)to
can



referred to as the first Brillouin zone. Substituting (2. I1)

into (2.10) leads to a pair of homogeneoì.ts equations with

unknowns q and ß. Satisfying the secular determinant leads

to a quadratÍc expression for the single-magnon excitation

energy Er. Solving this expression for the dispersion

relation gives

E1 (ri) I
2

+

or al-ternatively

(s+s ' I tc{]) *"J') I

n, (k, u) =

where u takes

I
z

(2.12)

29

"*ï

At : /ss-r t"lt)"tik +

on the values

/ J---- 1,/4A'A +t':'

D1D_'

D - (s-s')tcjl)*cjzl,

(s+s' I tc{l) *"J') I

The index p 1abeIs the two branches of the one-magnon dis-

persi-on curve as shown in Figure (2.I). In analogy with

phonons on a diatomic chain the upper branch is referred

to as "optic" and the lower branch is referred to as "acoustic"

tI and where

c{2)"+it<,

(2.13)

we have defined

(2.:..4a)

(2 -r4b)

(2 .l-Ac)
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Note that in general there is a non-zero gap between the

two branches at the Brillouin zone boundary (k = .,r/2).

This gap vanishes only if both S : S, ânr' ^(1) ^Q)rrl'=tlare

satisfied. These two conditions do not necessarily describe

a uniform chain since 
"jt' 

ana cj2) (* = 2,3,...,2s,) are

yet unspecified.

2.2 T\n¡o-Maqnon Formalism

The next l-evel- in the "hierarchy" of excited states

corresponds to the subspace of two-magnon excitations.

These are the simultaneous eigenstates of the Hamiftonian

(2.I) and the total spin operator tl., (1.14) such rhat the

eigenvalue of SfiO, has been incremented by exactly two units

from the ground state value. By explicit calcuration (refer

to Appendix A for more detaíls) we see that neither states

with single spin deviations on two separate sites nor states

with two spin devíations on a single site are eigenstates

of the Hamiltonian. Hence, such "two spin deviation states"

do not correspond to two-magnon excitations.

However, the states that are two spin deviations away

from the ferromagnetic ground state do form a set which

spans the eígenspace of sloT corresponding to eigenvalue
\1

; (S+Sr ) + 2. So it follows that we can expand the two-

magnon wavefunction lVr, in the basj-s of two spin devi-ation

states. Doing so gives the following general expression:
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lvr' =
N/2 N/2

"1, *1, 
I t2., 

,2ml2n ' 2m' * u2n ,2mrLl 2n , 2m+1>

n<m

* t2.r-l,2^l2n-L'2m' * t2.r+r-,2m*1 l zn+r, 2m+J-> J

(2.Is)

li,jt (i . j) is the state differing from the

ground state lOt by single spin deviations at
both the ith and jth sites

lj,jt is the state differing from lOr by two spin

deviations at the jth site only

a. (i < -il is some yet unknown amplitudeLtf

measuring the contribution of the state I i, j t

to the total_ two-magnon wavefunction.

where:

and where the four possible configurations of spin excitation
pairs (even-even, even-odd, odd-even, odcl-odd) have been

segregated to insure complete generarity. Note that sites
with magnitude of spin s' (or s) = | "-r, support at rnost a
single spin devíation. As a resurt, states such as l2n,2n>
-l'tif S' : i and l2n+f,2n*L> if S : |... unphysical. Tech_

nically these unphysical states should be omitted from the
summation but we will soon see that including them does not
create a problem.

Now consider the two-magnon schrödinger equation:

32
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where! E- is the two-magnon excitation energy measured
¿

relative to the ground state energy EO .

As in the one-magnon problem we derive equations relating

the various amplitudes by explicitly substituting for the

Hamiltonian and general form of wavefunction and then equa-

ting the coefficients of each basis ket. The details of

this derivation are given in Appendix A while only the re-

sults are presented here.

The equations for the "two-magrron amplitudes" can be

grouped into two sets. One set involves only amplitudes

with spin deviations separated by at l-east two sites while

the other set involves amplitudes with spin deviations on

same or neighbouring sites. Since the range of interaction

is limited to nearest-neighbours we refer to the former

set as the "non-interacting equations " and the latter set

as the "interacting equationsl'. The non-interacting equations

are as follows:

)'>
-J -' -

(a-D) u2n,2m = -/Ss-r- t"jt) (.2r, 
,2mrL * .2.r*t-,2*

* 
"Í') 

(tz.r 
,2m-1 + a2n-r,2m) l

er2r,- r,2m : - /Ss-r- , 
"Jt 

) (urn_, ,2^ * .2r,_1, 2m+l)

. ^(2) ,* Gì-' (a2n,2^ * -2r,-rr2m-l) l

(2 .I7 a)

(2 . L7b)



* 
"j') 

(trrr-r,2m*r * t2r, 
,2m+2) 

) Q 'rlc)

( r¿+D) r2r,+1 ,2m+r = - /SET t 
"{t 

) (^2., ,2m*r + a2n+r 
, 2m)

' ^(zt* Gì-' (urn*r.,2m*r * t2.,*l 
,2m+2) I Q 'r7d)

where m t nr D is given by (2.L4c), and where we have defined

n:E2 2r-.

Meanwhile the interacting equations are as fo1lows:

l'z uslt2r, ,2n = --J+'trr, ,2n*r oj?)"r',- r,2n

o tt'tr.r* L,2n+r o"' urn-L,2n-r Q 'L9a)

llz-. (1) l.2.,-r ,2n = -.j''.rrr-, ,2n-L ,[?) urn,rn

34-

'Æs-r "{t"-2.,-r ,2n*r * u2n-2,2n) Q'Lgb)

lEr-'r "' turn , 2n+r = - tJt ) .2.r*r- ,2n*L t j1' trr,, ,.,
(')\y'ss' Gì-'t u2n,2n+2 * -2.,-1 ,2n+r1 Q 'L9c)

loz-us' lt2n*1,2n*r : -tÁt' trn ,2n*r - *Á') t2r,*r ,2n-'2

(2.18)



\,rhere \,üe have defíned

o_ = =-4-' [ (2s,"S S+S -r

(r)
T= (s+s' ) "jt)

-r) (c{r)*cf2)>*(rs-1) ( c[t) *"tzl

. sr+=T t (s-s ' )2 c(2)

+ (2s-1) (2s '-t'tc[2) I

^ 
(i) /T2s-:fl sr's s+s'-l

. (i)a=

and where 0S, and tJÌ) are obtained by interchanging S and

Sr while r(2) is obtained by interchanging superscripts (1)

and (2) . As expected, the non-interacting equations involve

o.rry cfl) .r,a c{2) while the interacting equations invol-ve

"jt' 
and 

";') 
as wetl-. However, 

"Ít) 
with m > 2 are not

required anywhere in the two-magnon problem. Note that if
ISr : i , then the amplitude a2n,2n represents an unphysical-

'l

state (and similarily for .2.,+1 ,2n*L if S = ; ). However,

we see from the interacting equations that the unphysical

amplitude a2n,2n completely decouples from all other two-

magnon amptitudes since .Á+' , *J?' , 
^ 

(1) , -r,a ¡ (2) alt
vanish if S' : ,. Because of this complete decouplíng,

unphysical amplitudes are not a concern in the subsequent

formal-ism.

ffi.^(i)

r (s-s'l c{íl

\-s Lt \çv Lt 
f 1:\ffiLu1

35.

) I (2.20a)

+ (2s'-r) cji) t, i =

- "jt) ,

(2.20b)

i - I,2

L,2 (2.20c)

(2.20d)



l{e proceed by first attempting to sol-ve the set of

non-interactj-ng equations (2.L7) . Since this set of equa-

tíons describes a syste¡n of two non-interacting spin waves,

it should be possible to solve these equations with a simple

product of one-maginon plane waves. Hence rve choose to write

the two-magnon amplitudes as fol-lows:

2ink- 2imk^
a^^:0et"¿¿nt¿m

a^=ße¿Tt-!, ¿m

u2nr2m+l- : Ye

^ i 
(2n+1) k,

t2rr+f ,2m*1 = 0e

i (2n-1) k, zirnk2
e

2ink, i (2m+1) kr'2e

36

where: k. and k^ are the wavevectors of the two indi-l_¿

vidual one-maginon states which form the non-

interacting two-magnon state

Substitutíng (2.2L) into the non-interacting equations

(2.L7) results in the following 4x4 matrix eigenvalue

equation:

i (2rn+1) k,

o ' ß, \ t 6 are generally non-equal cornplex

coefficients corresponding to the four possible

configurations of spin deviation pairs.

(2.2Ia)

(2.2rb)

(2.2Ic)

(2.2rd)



CI-D

A;

A;

0

!

^1
0

0

n2

where A, and A, are defined by (2.L4a) with wavevector k

e)

0

CI

^r-

replaced ¡y kt and k, respectively. The secular deterninant

for this matrix equation is quartic in energy (EZ or equiva-

lent1y A) and is as follows:

0

_+u2
!

^r
0+D

0

ß

Y

ô

a4 n2o2 zn2rlorl'+

=0

By solving for a2 (via quadratíc formula) and then substi-
tuting Q = I'r-28 iL can be shown that

where:

11

+ i le, I

.) -L 
-tL| - ft.A.' lJlAi

EZ = EI (k,, ur) * E2(kr, v2)

where E, (k,, u, ) is the one-magnon excitation energy as

lAz

2_

(j

(2.22)

specified by (2.13). Consequently, the two-rnagnon excitation

energy is simply equal to the sum of the excitation energies

for two non-interacting magnons. The two indices tI, u, which

labef the branches of the single magnon dispersion curves

take on the values tl- independently. Next, we will see that

these indices also serve as l-abels for the two-rnagnon energy

spectn:rn.

12t

larl2 12 = o

= I,2)

(2.23)

(2.24)



The two-magnon energy spectrum is taken as the E,

versus I( plane where K : k'+k2 is the total wavevector.

Because of periodic boundary conditions (1.12) all unique

values of K can be confined to the first Brillouin zone

f lxl < r/2) . If we restrj-ct oursel-ves (for the time being)

to real val-ues of k, and k' then all spectral points fall

within three distinct "energy continua" as shown in Figure

(2.2). These continua are a direct consequence of (1) the

two-magnon excitation energy being the sum of one-magnon

excitations and (2) the energy gap that separates the two

branches of the one-magnon dispersion curve for all- values

of rvavevector.

A different continuum arises for each possible pairing

of one-magnon dispersion branches. For instance, the lowest

of the three continua is due to the pairing of two acoustic

branches. By this we mean all- spectral points inside this

parti cular continuum sati sfy E, = El (kl , -1) * El (k 
Z, -L) f or

real values of k, and kr. Hence this continuum is referred

to as "acoustic-acoustic" (A-A) and is labeJ-1ed by

ul = v2 : -1. The uppermost continuum is due to the pairing

of two optic branches and therefore is designated as

"optic-optic" (O-O¡ and labelled by ul = ..2: +1. The middle

continuum results from the pairing of an optic branch with

an acoustíc. Hence this continuurn is two-fold degenerate,

38.
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being labelled by either u1 = *1, v2 - -1 or !l = -L, rr2 = +1.

It is referred to as the "mixed-mode" continuum. IrIe will_

see a little later that these continua boundaries can be

solved for explicitly.

Once we have specified E' kI, and krr \¡/ê can solve

for the non-interacting wavefunction (to within an arbitrary

phase factor) as follows. Fron (2.22) we have a linear

homogeneous system with unknowns u I ß, ! t and ô. Any three

of these coefficients can be sol_ved in terrns of the fourth

and the magnitude of the fourth is fixed by normalization.

Choosing to solve in terms of 6 leads to the following

refations:

40.

ç¿2+on- ¡e, ¡ 
2- 

la,

-n2-¡n+ I orl' -lorl'

2A- A^1¿

l'l

Y:

Since we now know at 3, \r ô (to within a phase) we can

explicitly solve for the amplitudes (2.2L) and hence we can

solve the complete non-interacting wavefunction.

-n2-on- lor- l' *¡er12

I

2A;a

2A1 0

(2.25a)

(2 "2sb)

(2.25c)



magnon wavevectors kt and k, or alternatively we can labe1

with total wavevector K and relative wavevector q where

q = (k'-k) /2. Total wavevector K describes the center of

mass motion and hence is restrj-cted to being a real quantity.

However relative wavevector q is free to be real or complex

valued. So in general, kt and k, are complex quantities

with imaginary parts that are equal in magnitude and opposite

in sign.

We can labe1 this wavefunction by the individual-

i{e can rewrite the secular deterrninant equation (2.2)

in terms of K and q by sutstituting for ai and aj Q.LAa)

and then using k, = K/2+q and k, = K/2-g. The result is

as follows:

4r.

a4 o2 ç2 4ss'02 t ref r) , z + rcQ) )2

+ zell)cj )"o= (K) cos (2q) I

t 4ss'"{t' c{2 ) =i., (K) sin (2q) 12 = o

This equation can be re-expressed as a quadratic polynomial

with respect to cos(2q,). Solving this quadratic yields:

cos(2q) = # [-c¿2cos(x)
4ss'G{1)Gj )=i,,2 (x)

(2.26)

DQsin (K)

(2

l
J

727)



Careful examination of this result reveals that for a gíven

spectral point (K,82) there are four allowed val-ues of rela-

tive wavevector q. These four values are generally complex

and non-degenerate" For each of the four allowed q values

there is a corresponding "eigenvector" as specified by (2.2I)

and (2.25). Once we have specified K and E, then any linear

combination of these four corresponding eigenvectors is a

sol-ution of the non-interacting equations (2 .17) .

As previously discussed, the real values of ka and k,

and hence the real values of q occur in three distinct regj-ons

of the two-magrnon spectral plane which are referred to as

energy continua. (Since K = kr*k2 i, reaI, q = (kL-k)/2

is real if and only if both k, and k, are real.) So it follows

that the boundaries of these continua can be solved for

explicitly by examíning the preceding equation (2.27 ) for

conditions that allow q to be real. A detailed discussion

on calculating these boundaries is fully documented in

Appendix B. Also from this appendixr w€ find that the spectral

plane can be divided into a set of regiions such that the

nature of the allowed val-ues of q varies from region to region.

The various spectral regions are identified in Figure (2.3) .

In regions I, III, and V all four allowed values of q must

be cornplex whereas in regions II, IV, and VI at least two

of the four values must be real. These even numbered regions

are of course the energy continua. Note that regions II and

42



3

2

u)t-
o
t-
IU

43.

0

0.0

FIGURE 23 : Two-mognon spectrol regions for on olternoiing
f errimognetìc choin ( S=S'=1 /2; bonds olternote in strength by
f octor of 2 ). Energy is in units of stronger exchonge coef ficent.
Solid lines indicote both continuo boundories ond internol
sìngulorities. Doshed lines seporote regions III ond V.

4.4 0.8

K

1.2 1.6



IV are separated by an internal van Hove singularity which

occurs in the O-O and A-A continua. These singiularities do

not occur at small values of K but originate at a special

value of wavevector which we denote by Kc (see Appendix B

for details).

Consider solutions of the non-interacting equations

corresponding to spectral points (K,82) in the odd numbered

spectral regions (i.e., outside the energy continua). As

previously mentioned, all four allowed values of relative

wavevector must be complex valued. In fact, the four allowed

val-ues always occur in two pairs such that each pair has equal

and opposite imaginary parts. The two pairs are degenerate

if and only if the spectral point lies on the curve separating

regions IIT and V (again refer to Appendix B) . Suppose lre

rewrite the amplitudes in (2.2L) by substituting k, =l t q.
2

For instance (2.2Ia) becomes a^ ^ = o.i (n+m)K"-2i (m-n)q
¿r\ | ¿m

It is now apparent that Imag (q) > 0 results in an exponen-

tially increasing solution white Imag(q) < 0 results in an

exponentially decreasing solution (since m t n).

Recall- that we are only considering the limit of an

infinite chain as implied by the periodic boundary conditions.

In this limit, exponentially growing solutions are unphysical

and hence must be rejected. Consequently, \^/e must always

reject two of the four allowed values of rel-ative wavevector
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q in regiions outside the energy continua. Both surviving

values of q have Imag (q) < 0 and therefore the corresponding

eigenvectors are exponentially decaying. That is, the

corresponding two-maginon ampli-tudes must decay exponentially

in magnitude as the separation between spin deviations

increases. Therefore, solutions..outside of the energy continua

are always localízed (in rel-ative real coordinate space) .

In the complete interacting problern, such localized solutions

outside of the energy continua are referred to as bound states.

Next consider sol-utions of the non-interacting equations

corresponding to even numbered spectraì- regions or in other

words inside the energy continua. Here we find that at

l-east two of the four allowed values of relative wavevector

are real valued while the remaining two values of q are

either both real or both complex. Real values of q occur in

pairs with equal magnitudes and opposite signs while complex

values of q occur in pairs with equal and opposite imaginary

parts. As previously discussed, the complex values of q

r,vith positive imaginary parts must be rejected. This is to

avoid unphysical, exponentially growing sorutions. The real

val-ues of q wirl have correspondi-ng eigenvectors that are

strictly plane wave solutions while the surviving complex

val-ue of q (ir there is one) will have a corresponding eigen-

vector that is exponentially decaying.
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Recall that any linear combination of eigenvectors

corresponding to allowed values of relative wavevector is

an acceptable solution of the non-interacting problem. There-

fore, solutions inside the energy continua generally have

both plane wave and exponentially decaying components. In

the complete interacting problem, these solutions can be

regarded as pairs of plane waves whose amplitdues are dis-

torted by the j-nteraction between one-magnon states. Hence

solutions inside the energy continua are referred to as

scattering states. Note that it is possible to have spectral

points inside the continua where the exponentially decaying

component dominates over the plane \^rave components of the

two-magnon wavefunction. For such points the solution is

effectively local-ized (in relative real_ coordinate space) .

Such localized solutions insj-de of the energy continua are

referred to as resonant states.

Up until now, our study of the two-magnon problem has

focussed on the non-interacti-ng equations (2.l-7) while

neglecting the interacting equations (2.I9). To summarize,

for each given spectral point there are two to four allowed

values of refative wavevector which correspond to physically

allowed solutions. Any linear combination of the eigen-

vectors corresponding to these allowed values is a valid

sol-ution of the non-interacting problem. However, the actual

sol-ution of the complete two-magnon problem must satisfy
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both the interacting and non-interacting sets of equations.

One way of determining the actual two-magnon wavefunction is

to express the non-interacting solution in its most general

form and then determine what particular combination of eigen-

vectors (if any) satisfies the complete set of interacting

equations (2.19). In other wordsr w€ treat the interacting

equations as "constraints", similar in philosophy to Lagrange

multiplier problems.

As one might expect, there is always a non-trivial

solution for any spectral point inside an energy continua
(although nodes are possíble) . Meanwhile, outside of the

continua there are non-vanishing solutions occuring onry for

special combinations of K and Er. So the ,'typical" two-magnon

spectra consists of three distinct scattering state continua

along with a few isol-ated bound state l:ranches.

47.

2.3 Bound State Solutions

In principle, we can use the formalism of the preceding

sections to evaluate afl of the various two-magnon amplitudes

at any given spectral point. Consequently, the preceding

formalism can be used to calculate the comprete two-magnon

wavefunction. Such cal-cul-ations would entail using (2.2L) ,

(2.25) , and (2.27 ) to obtain the most general solution of

the non-interacting problem and then using the set of inter-

acting equations (2.19) as constraints. This turns out to



be a rather cumbersome process whereas the same information

can be obtained in much more elegant fashion by using the

scaling approach (as will be discussed in the chapter to

fol-low) . On the other hand, the preceding formalism does

provide a very useful and convenient method for analytically

locating the bound state solutions throughout the spectral

plane.

The procedure used in detecting bound state solutions

is as follows. For any spectral point (K,82) outside of the

energy contínua we know there are exactly two allowed values

of relative wavevector which correspond to physically acceptable

sorutions. These are the two solutions of (2.27) rvith negative

imaginary parts. (Recal1 that the other two solutions must

have positive imaginary parts and hence resul_t in unphysical

exponentially growing sol-utions. ) We will denote these two

physically allowed values of relative wavevector as q and q.

We know that for either one of these values (say q) that the

non-interacting equations (2.L7) are solved by

48

Ia^ ^ i cr.e¿ft I zm

a-._ ì ^ = u.i (n+m-L) Ke-iq (2m-2n+1)
¿Tt- L, ¿m

a^ = .r"i (n+m*%)Ke-iq (2m-2n+I)*2n,2m+1 I u

â = o.i (n+m+l) K"-iq (2m-2n)
"2n+I,2rt*I

(n+m)K"-iq (2m-2n) (2 .2Ba)

(2.28b)

(2.28c)

(2.28d)



where the relatíve values of the coefficients e7 ß, \t 6 are

given expl-icitly by (2.25). Now suppose \^ie generalize these

expressions for the two-magnon amplitudes to include both q

and Ç. In other words \Áte norúr express the wavefunction as a

l-inear combination of non-interacting eigenvectors corres-
ponding to q and Ç respectively. If ;, E, l, and ã are the

coefficients corresponding to q then we can write

âr- ,* = "i 
(n+m) KIco"-iq ( 2m-2n) + oã"-iÇ {zm-2n) , e.29a)¿ntzm

ã:ô*2n-I 
,2m

A:õ*2n,2m+1

49"

i (n+m-%) *t"ß.iq (2m-2n+1) *

-2.r+r ,2m-,l = "i 
(n*m+r)^t"0.-iq(2n-2n) * no"-iÇ 1zm-zn) ,

(2.2ed)

where c and D are arbitrary comprex constants. However these

expressions (2.29) are still not sufficiently general. Iite

must al-low for the possibility that ampritudes with two spin

deviations on the same site are unphysical and hence can

vanish independently of the other amplitudes. So (2.29a)

and (2.29d) are restricted to the cases m > n only and when

m = n these then becorne

(2 -29b)
i (n+m+L)*tar"-iq (2m-2n+1) + ¡i.-iq (Zm-Zn*1) 

J

(2.29c)

D ße''1
(2m-2n+1) 

,

â : ^i2ny-2n,2n '[coo + Do;]

u2n+r,2n*r = ti (2n+1)^t 
to u * Dc ô l

(2.30a)

(2.30b)



where CO and DO are arbitrary constants that are generally

different from C and D. (One could argue that these expres-

sions are still not sufficiently general. For instance,

one might write u2n_I,2n and arrr,2n*I in terms of C, and Dt

generally different from C and D. However there is no

obvious motivation for doing so. Furthermore, the results

obtained using the amplitudes as given by (2.29) and (2.30)

agree conclusj-vely with the resul-ts of the scaling approach,

in all cases. And the scaling approach makes no assumptions

regarding the form of solution.)

Direct substitution of the amplitudes given by (2.29)

and (2.30) into the interacting or constraint equations

(2.19) results in the following 4x4 matrix equation:
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co

Do

c

D

W

where

=0

wlr: a(Er-or) + ô(A(l-)e+iK

tOlZ = o(Er-Or)

I{r: = ßoé?)"-tx/2"-rq

+ ô(o(1).+ix

+ o 
(2).-ix,

+ o 
(2 ).-ix,

(2.31)

(2 .32a)

(2 .32b)

(2 .32c)



I{:_¿ = etj?)e-íK/2e-iq * .,'.Jl)"+tx/2"-iQ

w2L = ".J?) e+íK/2 + u.J') e-íK/z

*zz = ;rj?) e+iK/2 * o oj2) "-ix/z

wZS : o'Æ37 "jt)"-i^/2"-2íq 
+

+ 6vßFr c(r)e+íKl2

" 
(1) 

"-ix 
/2e-2íq +

+ õ /sET G,1) e+íR/2

wZq : "'ÆSì-

w:r = otrll) e-iK/2 + utJt) e+iK/z

*32 = ;.j}) e-iK/2 + õ.Jt) e+íK/2

5l_ .

g (Ez-. (1) ).-iq

-2ioe

g@z-. (r) )"-iq

-¿LOe

(2.32d)

W33 : s/ssT 
"Í')"*i*/2"-2iq 

+ y (Ez-. (1) ¡"-ie

+ o /5sT 
"jt) "-i^/2"-2iq

(2.32e)

(2 .32f )

r{:¿ = ã /ssì- 
"Í') "*i* 

/2 e-zíq +

+ ã /5sT GQ) e-iw/2

(2.32g)

w¿l = o(¡(1)e-iK + o(2)"+iK¡ + o(Ez-or,)

(2.32h)

(2.32í)

i tnr-' (2) 
¡ "-ia

-2\ae

(3.32j)

(2.32k)

(2 .32 L)

(2.32m)



wqz = Cl (A (1) eíK + o 
(2).+íK¡ 

+

w¿: = eojzl "+íx/2u-iq

\{4+ = u*J') "+tx/2"-iq * t.Jt, "-ix/2"-tq .

Clearly a non-trivial- solution of the wavefunction requires

that the secular determinant of this matrix equation vanishes.

Therefore locatíng bound state solutions for a given system

requires a numerical scanning of regions T, III, and V of

the spectral plane for points satisfying detlW] : 0.

In our researchr we used the above method to locate

the complete set of two-magnon bound states for a number of

special cases of the Hamiltonj-an (2.I) . These results will

be presented and discussed in Chapter 4 of this thesis. As

hinted earlier, analysís of scattering state soluti-ons wiII

be left to the real-space rescaling approach discussed in

the following chapter.

6 (E2-os') Q.32n)
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In this chapter we will consider a real--space rescaling

treating of the two-magnon problem of an alternating ferri-

magnetic chain. tr^Ie will begin by discussing the scaling

approach with respect to a more general problem. I¡Ie wilt

then consider the system of interest. In particular, we show

how the scaling approach leads to the two-magnon Green's

functions and consequentÌy the two-magnon rocal densities of

states.

Chapter 3

REAL-SPACE RESCALING FORMALTSM

3.1 General Method

The basic concept underlying the scaling approach is

as follows. Given a system of linear equations with a large
(and possibly infinite) number of degrees of freedom, then

a special transformation is constructed. This transformation

¡nust el-iminate a fraction of the degrees of freedom while

leaving the form of the equations invariant. The so-called

"scaling transformation" is then iterated until only a singte

degree of freedom remains. The "finaI" equation can be used

to describe the properties of the sysLern local to the remain-

ing degree of freedom. rt should be noted that the origÍnal

equations generally require a high degree of symmetry for

such an approach to be feasible.
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The scaling transformation is essentially a three

step proced.ure. If we regard each degree of freedorn as a

site on a lattice then these steps are as foll-ows:

(I) elimination of some fraction of the sites

(2) renormalization of the parameters in the ne\â/

equations so that these equations have the same

form as the originals

(3) rescal-ing of the distance between sites (and

relabelling sites if necessary) so that the trans-

formation may be reapplied to the reduced system.

If the original equations describe the mutual interactions

of the various lattice sites, then the renormalized parameters

are essentially the "effective" interactions between the

remaining sites.

!tre choose one site never to be eliminated and identify

this one as the origin. If we etiminate a fraction

(f-I) /f of t.lne sites for any one transformation then the

overal-l- process is said to have a scaling factor of f. For

a one-dimensional l-attice in which the origin is labeIIed
^rhas the O--- sj-te then a scaling transformation of factor f

would eliminate the sites labetled by tL,!2,... tt (f-I) ,t (f+I) ,. " "

After elimination the distance between remaining sites would

be rescaled b1z a factor L/f. Figure (3.1) depicts a schematic

ÍIlustration of this procedure for scaling factor f - 2.

The elimination process can be (perhaps) better under-

stood by considering the Schrödinger equation of an arbi-

54.
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trary system:

HÚ : EtJl

where: H Ís a known NxN matrix (typically N * -)

: Eísascalar

el-ements are that which satisfy the equation.

Suppose after arranging the elements of .1, in some appropriate

order (and re-arranging the rows and columns of H accordingly)

that we partition p into two "subvectors" ú, and þ2 of dimen-

sions .l and N-n, respectively. Then we can write

: ü is an N-dimensional column vector whose

Httút*Htzþz-¡ú1

Hztvt+Hzzþz-nþ2

where H- - are the submatrices of the appropriately partitionedr_l

matríx H (gij has d.imensions n. *nj). Eliminating \þ2 from

(3.2) gives

56.

Hrt-úr * 
'LzL 

(E-Hz z)-rlzrúrl - E{,1

or alternatively

Hirúr - Eúr-

(3.1)

Notice that we have succeeded in eliminating a fraction

where Hif : Hff * HI2(E-HZ Z)-IHZ..

( 3 .2a)

(3.2b)

(3.3)

(3"¿)



n2/N of the variables without changing the form (only the

dímensionality) of the original equations. Once we have

appropriately relabelled the elements of r!, we can repartition

and el-irninate the same fraction of varibles and continue

in this manner indefinitely. Note that the f = 2 scaling

transformation depicted in Figure (3.1) would correspond to

having all even sites in úf and all odd sites in \)2.

!r/e can also use the arbitrary system to illustrate how

the scaling approach leads to the Green's functions of the

system under study. If we add an inhomogeneous term to the

Schrödinger equation then we can write

[E-H]G = Z

where:

57

Z is a normalized N-dimensional column vector

with only one non-zero entry

G is an N-dimensional- column vector whose

el-ements satisfy the inhomogeneous equation.

If we partition the vector G into two subvectors Gt

and GZ such that the "element of interest" coincides with

Gt then we can write

[B-Htf ]Gt - H'ZGZ : rl_

[E-H2 Z)GZ HZtGt = ZZ

(3.s)

( 3 .6a)

(3.6b)



where H-- and Z: (i,j = I,2) are obtained by appropriatelyr-l l
partitioning lI and Z. Eliminating GZ from these equations

gives

tE-Hirlcl:

where t Hif

- ol.L\

Suppose this transformation is iterated (always keeping the

element of interest in the subvector of surviving elements)

unti] the limit Hr, -+ Q is attaÍned. Then ín this limit

H.: , : H,- r HJ:) (3.8a)^^1t_ ^^1r ^'r f

ot o - o (*)Zí = Zt = ,i' (3.8b)

oltf

= Htt * 
^'.r.(E-Hz )-IHZ.

= ZL * ,L2(E-HZ Z)-IrZ .

and so

58.

If the element of interest is the ith element of G and the

non-zero element of the inhomogeneous term is the jth element

of Z (these labels are with respect to the original equations

(3.5)) then it follows that

Gr = rE "{î)r-lzj

(3.7)

where the right-hand

the Green's function

side is defined as the

G (E+io+) (see Economou

(3.e)

(3.r0)

. .thi, j -" element of

tEl) . As is



convention, a small ímaginary part (iO+) has been added to

the energy E to insure that the inverse of E-H is well defined

(H ís assumed to be Hermitian and hence has only real eigen-

values). It is to be understood by our choice of notation

that we are considerÍng the limiting case in which the

imaginary part goes to zero from the positive side. To

summarize:

ci j (E-H+io+) : tE-H 
( -) 1i ) +io+ )-r z(-) (i , j )

where, lt (-) (i)

tonian

el-ement
l-lz z' '(í,

vector
rhthe j'

59.

is the limit of the partitioned Hamil-

if the e]ement of interest is the ith

Before proceeding to discuss the two-magnon problem

a technical point should be mentioned. If the dimensionality

of the "degree of freedom" lattice is greater than one then

the elimination procedure causes the effective range of inter-

action to increase und.er iteration [SKL]. Hence, for such

systems the scaling transformation must be made valid for an

arbitrary range of i-nteraction. Consequently, the analytic

construction of the scaling transformation becones an extrernely

tedious problern. Fortunatefy, the two-magnon problem for a

quantum spin chain maps to a one-dimensional degree of freedom

j ) is the limit of the partitioned column

Z if the corresponding non-zero entry is

el-ement.

(3.rr)



lattice or in this case relative coordinate lattice. (It

is relative coordinates between excited spin sites which

l-abel- the degrees of freedom in multi-magnon problems. )

However, for the arbitrary m-magnon problem of a quantum

spin chain the dimensionality of this relative coordi-nate

lattice is m-I. Hence, there are immediate difficulties in

extending the subsequent formalism to the m-magrron problem

for any m > 3.

3.2 Two-Maqinon Analysis

We now proceed to

ca1ly to the two-magnon

netic chaín. Recall- (2

equation. This can be
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H' lú2, = nrlú2,

where: Ht = H

apply the scaling approach specifi-

problem of an alternating ferrimag-

.i-6) , the two-magnon Schrödinger

rewritten as

(3.12 )

and where the Hamj-ltonian H and the ground state energy EO

are as defined in (2.I) and (2.3) respectively. Afso reca.l_l_

(2.L5) the general expression for the two-magnon wavefunction

Ea'0

N/2
lþr' : I- n=l

+

N/2
I

m:1
[-2.r,2m12n,2m' * t2.,-1,2^l2n-r,2^'

a2n,2m+Ll2n ' 2m+ft * t2n*f,2m+ll 2n+L,2m*L>) .

(3-13)



In Chapter 2 we derived two sets of coupled equations re-

lating the various two-magnon amplitudes .i, j. These were

referred to as the non-interacting equations (2.17 ) and the

interacting equations (2.l-9). These two sets effectively

describe the complete interacting two-magnon problem for our

system of interest.

Each two-magnon amplitude .i, j is labelled by two

different coord^inates corresponding to sites along the chain

where the spins are excited. Because of the alternation

in both bond and spin along the chaín, there are four possible

"configurations" of these coordinate pairs; even-evenr

odd-even, even-odd, and odd-odd. Hence there are four

different categories of amplitudes. Each of these can be

expressed in terms of a center of mass coordiate (í+j) /2

and a relative coordinate j-i as follows:
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1 - ,., (l) ,, (l)o2n ,2m '2 1m-n ) 
v 2n+2m

,, (2) _, (2)o2n-r,2m - '2 (m-n) +ru2n+2m-r

__ (
â : ll'*2n,2m+l "2

a^ ,.,(4) \i(4)
¿n+L, ¿m+L '2 (m-n ) 

u 
2n+2m+2

Because of translational- invariance

3) ..(3)
(m-n) +I v2n+2m+I

(3.14d)

it follows from Bloch

(3.14a)

(3.14b)

(3.14c)



theorem tAMl that the center of mass components can be expressed

as plane waves. Hence (3.14) becomes

,, (1) ^iK ( 2n+2m) /2o2n,2m "2 (m-n) =

â : n(2) ^ix 
( 2n+2m-L) /2*2n-I,2m "2 (m-n) +1"

A : Tr 
(3 ) ^íK 

(2n+2m+L) /2"2n,2m+1 "2 (m-n) +1"

A : rr (4 ) ^iK (2n+2m+2) /2*2n+f ,2m*I "2 (m-n) -

which is actually a generalization of formalism used originatly

by Fukuda and l{ortis [FI¡i] as well- .as by Boyd and calraway tBCl.
Note that K ís the total wavevector as defined in Chapter 2-

Using the notation of (3.1-5) , both the non-interacting

and the j-nteracting sets of two-magnon equations can be re-

expressed in terms of the "rel-ative coordinate amplitudes"

uJj' (r = 0,L,2t...i j = L,2,3,4) . Furthermore, if we define

the four-component vector:
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(3.15a)

(3.rsb)

u2t =

uil)¿r
.. (2)
u2r+L

..(3)u2t+L

.. (4 )U^2T

(3.15c)

then both sets of equations

(3.Isd)

T : OtIr2,

can be expressed

(3.16)

rn very concase



4x4 matrix form. The non-interacting equations (2.L7 ) can

be written as follows:

MU2r=vpu2t*2+v^u2t-2

where:

f¿ - D ,ß- 42) "-ix/z 6r- 
"{t) "+Ix/2

ÆSt 
"1r, "+1x/2 a o

lvl =
ÆS'Et, "-ix/z o

o ,ÆFr 
42) e+rK/2 ,Æ, cQ) e-rrV2

v = -/ss--p

r>0
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c(r) e-lK/2 o o 6(r) "+iv12
GQ) e+íR/2 o o cQ) e-lK/2

0000

0000

v : -/SSì-m

(3.17)

0

'Æs' 42) e-W2

,ßr- 4t) e+tIV2

n+D

And the interacting equations (2.L9) are now given by the

following:

MOUO = UnU, (3.21)

where:

o 
"{t) 

e+íK/2 GQ) e-iK/2 o

00

00
o 

"jt) 
e-ir/2 GQ) e+tw/2 o

(3.18)

00

00

(3.]e)

. (3.20)



(to)rr = E2 os

(ooo)rz = r!?) "-ixtz

lrao)r3 = ojl).*ixzz

(ro)r¿ = o(1)"+ix + o(2)"-ix

(Mo)2r_ = o!?)u+ixtz

(to)22:82 r(1)

(Mo) 23 : o

64.

(Mo)24: aQ)e-iK/z

(3.22a)

(Mo) 3r- =

(3.22b)

(Mo):2 : o

^ 
(L) 

^-íK/2

(3.22c)

(tO): 3 : E2 - r(2)

(3.22d)

(ooo ) :¿ = *é1) .*ixlz

(3.22e)

(Mo)¿1 = O(1)"-ix + A(2)e+íK

(3.22f)

(3.22s)

(3.22h)

(3.22í)

(3.22i)

(3.22k)

(3.22 L)

(3.22m)



@o) qz

(Mo ) ¿:

(to)¿ 4 = E2 os,

where all parameters in the preceding matrices are as defined

in Chapter 2 (see (2.6\, (2.I4), (2.18), (2.20)). So surnmarizingz

M'UO = UnU,

Each vector or unit cell U2, can be regarded as the rth

site on a semi-infinite linear lattice. Note that interactions

only exist between nearest-neighbour tattice sites. If we

*u2t : vpu2r*2 * v^u2t-2 r = 1'2'3""

eliminate alternate sites starting with U2 from (3.23) then we

obtain the following set of "transformed" equations:

65-

(3.22n)

-tMOU. = Upt *[VpU4 + VmU.]

(3.22o)

MU^ =vM-ftvu^ +vu^ I¿rp-p¿r+4m¿Y

(3.22P)

or alternatively:

(3.23a)

-l+ V_M *[V^U._- + V_-U-__ ,] r = 2r4,6,...mp¿rm¿r-+
(3.24b)

(3.23b)

(3.24a)



Móuo = uiun

where we have

*'u4r = viu¿r*¿

Mó=Mo-"no't-lt'*

de fined

-] -'tM'=}4-VMTV VM-Vpmmp

* våu¿t-¿

Vt=p
-lVM.Vpp

-lVt =VM'Vmmm

r = Lr213,

Notice that the primed parameters in (3.25) describe the

effective interaction between next-nearest-neighbours.

lJow suppose we relabel the surviving vectors in (3.25)

66.

such that u4, * t2r. Then in terms of the renormalized (primed)

parameters the new set of equatíons (3.25) have exactly the same

form as the originals (3.23) . However, in (3.25) exactly one

hal-f of the degrees of freedom (i.e., vectors) have been elimi-

nated. Hence, this elimination corresponds to a f - 2 scaling

transformatj-on" rf we add a smal-l- imaginary part to the energy

Ez (so that al-l inverses are wel-l- defined) and iterate this

transformation then we find that v' and vfi both approach zero.

So we eventually obtain the limiting result

(3.25a)

(3.2sb)

(3 .26a)

(3.26b)

(3 -26c)

(3.26d)



rJ-)uo = o .

rn this limít the "motion" of the vector or unit cerr uo has

been completely decoupled from the motion of al-l other vectors.

bie can obtain a similariry decoupled equation for the

vector U, as follows. First, eliminate al-ternate sites starting
with U0 f rom (3.23 ) to gj-ve the foÌtowing:

Lru2 : vpM-ltunuu * t*u2l + vmM;ltunur l

MU^ = V M-1[\zs p -'pu2=*4 * v*u2=l

If we relabel the surviving vectors in (3.28) such that
u2= * u( 2s-2) /2 then we can write

úouo = Vnu, (3.29a)

+ vmM-lltnur= * v*u2=_4], s = 3,5,7,. -. (3.28b)

67-

úuzt = ipu2t*2 * V*u2r-2 T = r'2'3""

where we have defíned

(3.27)

Mo -1 -'r_ M - V M *V _ V M^'Vp m mu p

M:M-v¡l-lv vl"I-lvpmmp

_'t
V =VM'Vppp

(3.28a)

(3.29b)

(3.30a)

(3.30b)

(3.30c)



V
m

The newly transformed set of equations (3.29 ) has exactly the

same form as the original set (3.23) so we can now iterate

with the "original" transformation described by (3.26). The

limiting result will be a decoupled equation analagous to (3.27)

except now it is the rnotion of the unit cell U, which has been

decoupled.

_l
=VM- V

m

A decoupled equation can similarily be obtained for any

of the unit cells U2, (r : 0,L,2,... ) by using sone appropriate

combination of the previous two scaling transformations (des-

cribed by (3.26) and (3.30)) . To avoid confusion, we l-et
1-ì

Md ' (2r) denote the limiting matrix obtained when decoupling

the uni-t cell labelled by r. Note that each such matrix is

the projection of the operator Er-H' in the subspace spanned

by { lur(l) ,,lu}?)*r,,luli}r' ,lu;x),\.
It follows from the formalism in Section 3.1 that we can

use these transformations to evaluate the two-magnon Green's

functions. ütre define the i,jth element of the local two-magnon

Green's functions as follows :

68.

(3.30d)

c)f tn., + io+,x) = .uj:' 
I

The eval-uation of the elements of GZr(EZ+iO+,K) requires

L,j: I,2,3,4¡ r = 0,I,2,

f

E2+iO'-H '
uj7)' ,

(3 . 31)



adding an appropriate inhomogeneous term to each of the equations

in the set (3.23) and then iterating the transformation(s)

so that the motion of the corresponding unit celI Ur, has

been decoupled.

For instance, suppose we want to evaluate cf, tnr+io+,x)

, j = L12,3,4) . Fírst consider the inhomogeneous version

(3.23) in its most general form

(i

of

M.UO = UnU,

where each 22, is a four-component column vector. Under the

scaling transformation described by (3.26) (i.e., that which

eliminates alternate sites starti-ng with U) the form of

(3.32) remains invariant provided the inhomogeneous terms

are renormalized as fol-l-ows:

MU2t : vpu2t+2 * v^u2r-2 + z2t' r : r'2'3' "'

69.

fa,"0

zó = zo+vp[-rz2

qt q I -1L), = ,2, + Vpl4 'Z2r*2 * V*t 'Z2r_2 r = 2,4,6,... (3.33b)

To calculate the particular elernent G1'j we must set all
U

22, = 0 except for ZO. Meanwhil-e Z0 must have a non-zero

entry in the jth row only. I{e then iterate the scaling

transformation which yíeì-ds the limiting result

(3.32a)

(3"32b)

(3.33a)



ooj-) to l

"1U

"l
^3to

,)

,)

,j

,j

Since all 22, = 0 except ZO it folfows from (3.33) that the

inhomogeneous terms are invariant under this scaling transfor-

mation for any number of iterations. Consequently

Gå

¡'rj
Â"2f
urj

unj

(This invariance is actually a direct consequence of the

range of interaction between unit cells being l_imited to

nearest neighbours only [SKL]. If the unit cells separated

by two or more sites coul-d directly interact then we would

have to calculate ,:-' explicitly.) From (3.34) and (3.35)
+we can solve for any el-ement of G0 (E2+iO' ,K) by simply in-

where: 6.- is the Kronecker delta.r-l

70

(3.34)

verting the limiting matrix uj-) tol.

nL, f
"o (Ez + io+,x) = tuj*) tol I

(3.3s)

-1

i, j

In other words,

(3.36)



In similar fashÍon

"ri') @z + io+,K¡

Recall that each matrix *j-) tZ=l is a representation of Er-H'

where Hr = H-80. Since the Hamiltonian H' is hermitian,

adding a small imaginary part io+ to the excitation energy

insures that the inverse of any such matrix is well defined.

Therefore, the two-magnon Green's functions are well- defined

quantities.

we can obtain

= t¡,1{-) er) l

3.3 Local Densities of States

Various spectral and thermodynamic information about a

system can be extracted from that system's Green's functions.

The two-magnon Green's functions, as described in the previous

section, will be used to extract the focal- densities of states.

For an arbitrary system we define the local densities

of states p (E) as fol-Iows'n'

the more general result

-l

írj
r = 0rLr2,

7L.

(3.37)

on (E)

where:

= ð(E - E.,)

The l-ocal densities of states can be

the diagonal el-ements of the system'

Economou tEl). This relation is as

E* is the energy eigenvalue of then

ô (X) is the one-dimensional Dirac

(3.38)

rhn state

delta function

shown to

s Green t s

fol-Iows:

be related to

functions (see



pn (E)

ferrimagnetic chain. It follows from (3.39) that the ima-

Now consider the two-mag'non problem for an alternating

I
= 'tÍ

ginary part of each diagonal Green's function element

c)Jrtnr+io+,K) (r = 0,L,2,...¡ ) = L,2,3,4) measures the l-ocal

densities of states corresponding to a specific configuration

of spin excitations. For instance, Imagl 
"]n 

t measures the

local- densities of states for a pair of spin excitations

separated by two sites such that both occur at odd sites

along the chain. Similarily we can obtain measures of the

l-ocal densities of states for any of the four categories of

configurations (even-even, odd-even, even-odd, odd-odd) and

for any number of sites separating the excitations. All we

require is knowing Imag[ 
")ll 

which can be calculated for all

r and j usíng the formulism of Section 3.2.

The significance of the two-magnon l-ocal densities of

states is that such calculations provide a direct measure

of the relative contribution of any two spin deviation state

to the complete two-magnon wavefunction. For i-nstance,
LL ( L\ImaglG;-l directly measures lU)-'1, the magnitude of the

correspondÍng relative coordinate amplitude. In other words,
¿.4

Imagl 
";= 

] directly measures I -i, j I tor any i and j which

satisfy j-i : 2 such that both i and j are odd. And recafl

that the two-maginon amplitude uí,j is a measure of the contri-

bution of the two spin deviatíon state I i, j t to the two-maginon

rmag[.n lc 1n + io+) ln> J

72.
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\^/avefunction. So Imagl Ctal directly measures the contribution"z
of any state li,jt such that j-i:2 and both i and j are od.d.

In Chapter 2 we distinguished between two very different

types of solutions to the two-magnon problem. These were

bound states and scattering (i.e. , continuurn) states. t{e

find that this difference in solutions is manifested in the

local densities of states. First consider the bound state

solutions. Such states are spectrally isolated from all other

non-trivÍal states and hence rnake a sirrple delta function

contribution to the densities of states. These delta functions

can also be regarded as corresponding to real-valued poles

in the Green's functions. That is, poles which coincide with

the real--axís in the complex energy plane. Actually, because

of the small- imaginary part added to the energy to insure

convergence, these poles occur slightly off the real axis"

Consequently, these bound state contributions are not true

delta functions but rather have a finite width proportional

to e (magnitude of imaginary part) and a finite height propor-

tional to L/r.

Meanwhile the scattering state sol-utions are not spectrally

ísolated but instead lie inside a continuum of states. Be-

cause of the infinitesj-mal1y close proximity of neighbouring

continuum states, the various delta function contributions

to the densities of states must overlap. So the overall

contribution of a continuum of scattering states is not a
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series of delta functions but rather a "band" of finite height

whi-ch extends over the entire spectral region corresponding

to the continuum. (This is analagous to a wavepacket which

spreads and flattens as more and more waves are added so that

any one h/ave gradually loses its identity while inside the

packet. ) This effective spreadíng of density of state contri-

butions inside the continuum can also be attributed to poles

in the Green's functions moving off the real axis. That is,

for a spectral point (R,82) inside of a continua the corres-

ponding pole in the Green's functions wil-l occur at a complex

energy val-ue E2+íf where I 10.

Suppose a cornplex valued pole in the Green's function

hasare1ative1ysma].].imaginarypart(i.e.,lrl<<

is finite). Such an occurrence manifests itsel-f as a Lorentzian

shaped "bump" in a continuum region of the local densities of

states tI{Hl. Such bump or peak-Iike structures have a width

proportional to f and a height proportional to I/f and are

commonly referred to as resonant peaks. The corresponding

"resonant states" are expected to be related to our previous

defínition of a resonant state (Chapter 2) . This was a state

localized in relative coordÍnate space due to an exponentially

decaying factor but (unlike bound states) falls inside a

continuum region where the states are generally plane \dave

in nature" Resonant states can often be regarded as bound

74.



states that have lost theÍr "identity" upon entering a

scattering continuum.

Recall that both bound state solutions and continuurn

boundaries are easily solved for by way of the analytic
approach of Chapter 2. Hence r wê are rnost interested in
using calculations of the two-magnon densities of states for

the purpose of identifying resonant states inside the continua.

We expect that resonant states (like bound states) decay

exponentially as relative coordinate between spin excitations

increases. This is because we expect resonant states to be

dominated by a factor exp[-iqr] where r is the re1ative

coordinate and q is the relative wavevector for which we know

Im(q) < 0. Therefore, resonant state (as well as bound state)

contributions to the local Censities of states are most pro-

minent in cases where relative coorCinate between spin exci-

tations is small. As a result, it is most informative to

calculate the Green's function elements 
";j 

(j : L,2,3,4)

which describe the states with spin excitations on same or

neighbouring sites. The results of such calculations are

discussed in Chapter 4.

75.

We concl-ude this chapter by discussing a technical but

pertinent point, the size of the imaginary part added to the

two-magnon excitation energy. Recal_l that this imaginary

component is added to insure that al-t inverted matrices are



well defíned. This in turn insures that the overall limiting

process of iterating the scaling transformation is converg'ent.

In the preceding formal treatment we have denoted this imagi-

nary component by io+ and in doing so have implied an infinitesi-

mally small magnitude. FormaJ-ly, this is sufficient for

convergence to occur; however, in practice the number of

iterations allowed is restricted by the computing facilities

availabl-e. So in practice, the size of this imaginary compo-

nent is not such a trivial- consid.eration.

The actual- computing procedure for calculating cjj--- *--^r -0
(j = I,2,3,4) entai-ls adding a smal-I imaginary ie to the

excitation energy and then iterating the scaling transformation
(3.26) until the matrices V; and V' effectively vanish. By

effectively vanish we mean that the sum of the absol-ute values

of their entries drops below some preselected tolerance Ieve1"

Once this fevel- is reached the resul-ting matrix lli is inverted

to give the elements of the desired Green's function. We

found that for spectral points outside the energy continua

that no more than six iterations were required for convergence

and the number of iterations was independent of (. However

for spectral points inside of the energy conLinua, the smaller

the value of e the greater the nur'.ù:er of iterations required.

To understand this rel_ation between the number of itera-

tions required and the magnj-tude of the imaginary component

(e ) first note that convergence occurs only if V; -+ Q. I{hat
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is siginificant is that the matrix Vi describes the effective

interaction between the OLh unit cel1 and the (z*) th unit

cell- where x i-s the corresponding number of iterations.

Equivalently ít can be said that V' describes the extent of

the solution in relative coordinate space. Consider solutions

inside the continua. If € : 0 then such solutions always

have a pure plane wave component (since at least two values

of relative wavevector q are real). Since plane waves have

infinite extent, Vå cannot vanish even in the l-imit x -> æ.

However, for e I 0, then each plane wave component is effe-

tively multiplied by an exponentially decaying factor since

complex energy implies complex wavevector. This decaying

factor limits the extent of the solution in relative coordi-

nate space thereby J-nsuring that Vf vanishes after a sufficient

number of iterations. Furthermore, the larger the val_ue of

€ | the stronger the decaying factor and hence the fewer

iterations required- for convergence. Meanwhile, solutions

outside the energy continua must already have a strong expo-

nentially decaying factor (since all val-ues of q are complex)

and therefore convergence occurs irrespective of €.

Rapid convergence inside the energy continua is the

motivation for making e large; however, there is a conflicting

rnotivation for < to be made small. rf we plot loca] densities

of states versus Ez then the resolution of these plots gets

77



worse as € increases. This can be understood by considering

a typical resonant peak. As previously discussed the width

of such a peak depends on f where E2 + if is the corresponding

complex pole in the two-magnon Green's functions. However

if e 10, then this pole is actual-ly given by EZ+if (e)

(that is, f is no longer a fixed value but instead varies

as a function of the imaginary part added to energy). Typi-

cally we choose e to be srnall enough so that f(e) : I and

hence the pole remains close to its "true" location. However

íf e is allowed to become too large, then it is easy to see

how the resonant structure in the l-ocal densities of states

can become distorted. Note that for bound states f - 0,

so the width of bound state peaks is directly proportional

to €.

To summarize, we must adjust the value of e (magnitude

of the imaginary energy component) until a satisfactory com-

promise is found between resolution of densities of states

and rate of convergence inside the continua. We eventually

decided upon € = 1"10-5. For thÍs val-ue we found that

20-25 iterations were needed to achieve convergence insicle

the continua regions. Alternatively, v/e can decrease the

number of iterations required by increasing the scaling factor

of the transformation. Recall that we use a scaling factor

f - 2. However any increase in f would require anal_ytic

construction of a new and more complicated set of transfor-

mation equations.
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fn this chapter we wil-l use the techniques formulated

in Chapters 2 and 3 to study the two-magnon spectra for a

variety of special cases of the alternating ferrimagnetic

chain. Section 4.1 of this chapter focuses on the bound

state solutions of the two-magnon problem. This section uses

the direct analytic approach of Chapter 2 Lo determine the

complete set of bound states for each special case of interest.

section 4.2 of this chapter applies the real-space rescalingi

approach of Chapter 3 to obtain additional- j-nformation re-

gard.ing scattering states inside the continua. such informa-

tion is obtained vÍa local densities of states calculated

for fixed values of total wavevector. Section 4.3 displays

the various spectra referred to in the prior sections.

The number of different systems we are potentially abl_e

to examine is endless as we are free to independently vary

six parameters of the Hamil-toni-an (2.I). These parameters

are s, s', 
"jt' , ":') , ";t' , .,.a cj2). ro help in classi-

fication of the various cases to be studied we define the

Chapter 4

RESULTS
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following "relative" parameters :

r(i) = c:í)/c,])

b = cl2) 7"ttl

i - L,2 (4.la)

(4.rb)



È - n ,^(I)E2:82/Gi-'. (4.1d)

The ratios r(i) describe the form of the interactions between

neighbouring spi-ns. (But note that unless Sr < l- then r(1)

and rQ) do not completely specify these interactions. These

require specification of c(i) for al-l m = L,2,...,25' .) The
m

ratio b measures the degree of bond alternation whj-Ie the

difference AS rneasures the degree of spin alternation. The

ratio EZ, which we refer to as the reduced energy, reflects

that the parameter 
"{t) 

ca.r be used to scale the excitation

energy. fn fact al-l energy scales in Section 4.3 will be in

units of 
"jt' 

or "red.uced energy units". Note that we only

consider cases in which b, r(1), ..d r(2) are greater than

or equal to zero to insure a ferromagnetic ground state.

Before proceeding we note that if S ' = , , then the

unphysicaÌ amplitudes a2n,2n decouple completely from aII

other amplitudes in the interacting equations (2.L9) . Fur-

thermore, the equations involving the physical anplitudes

and hence all physical results are independent of 
"jt) 

and

AS = S Sr > 0

80"

(4.lc)

^(2)u2

form of the Hamj-ltonian to that of Heisenberg exchange.

This is expected because setting S' = | restricts the

(By Heisenberg exchange we mean that the spin-spin interaction

is described in terms of linear exchange operators (3r.õj,t

only. Generally, Heisenberg exchange requires setting



^ (i)(J=
m

if sr =

namely

"jt' ror i
1
7 then \aie

b and AS-

4.L Bound States

Case (a) S t

= I,2 and

need only

This is the case of a uniform Heisenberg chain with spin

magnitude S = + . The corresponding Hamiltonian has already

been discussed somewhat in Chapter I (refer to equation (1.9) ) .

Recal-l that this is a completellz integrable system which can

be solved using the Bethe ansatz approach tBEl. The two-magnon

spectrum (see Figure (I.Z) in Chapter 1) contains a single

energy continuum along with a single bound state branch lying

completely below the continuum for all_ K. We know from

quantum mechani-cal theory that there must be at least one

bound state for alf values of K as this is a one-dimensional

problem tLLl. The binding energy between continuum and bound

state ís largest at the Brillouin zone boundary (K : r) and

smal-l-estatK=0.

To help in understanding of nonuniform cases it is in-

formative to consider the spectrum of this uníform chain

when plotted in the reduced Brillouin zone lxl t + (i.e., the

Brillouin zone for any arternating chain). The bound state

branch is folded back at K = r/2 so that it now consists of

both an upper part which lies entirely inside the continuum

m = Lr2, . .. ,25' .) Consequently

specify two other parameters,

=, ^s = o b=f
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and a lower part which

for all K. Note that

reduced Brill-ouin zone

of the branch overlaps

state for al-l K as its

Case (b)

lies entirely outsíde the continuum

these t\^/o parts are degienerate at the

boundary. Although the upper portion

the continuum it remains a true bound

"character" has not been al-tered.

I'üe now consider the alternating bond Heisenberg chain

with uniform spin magnitude S = , . Because of the alter-

ôr - Iù -T

nation in bond strength the single energy continuum of the

previous (uniform) case now spJ-its into three distinct con-

tinua. In order of increasing energy, these are acoustic-

acoustic (A-A), mÍxed-mode, and optic-optic (O-O) . Each of

these continua has at least one associated bound state be-

neath it (the A-A continuum has two) . The t\^/o-magnon spectrum,

depicting bound state branches and continuum boundaries, is

shown in Figure (4.1) for b : l.2'
The bound state structure bel-ow the A-A continuum is

AS=0 bll

B2

similar in form to that of the uniform case (when plotted

in the red-uced Bril-louin zone) except now there is a non-zero

gap at K = r/2 between the upper and lower branches. It has

been shown that this gap vanishes linearty with the difference

l--b IBLS]. Also, the character of the state associated with

the upper branch has been altered in that it is now a resonant

state while inside the continuum. The lower branch does



however remain a true bound state for all K. rtd binding

energy is smallest at K:0 and largest at K = r/2.

The bound state branch below the mixed continuum remains

a true bound state for a1r K with binding energy small_est

at K : n/2 and largest at K = 0. The bound state branch

below the o-o continuum corresponds to a resonant state for
small values of K until Ít emerges from the contj-nuum to become

a true bound state at large K values. Both of these "new',

bound states undergo a changie in character in crossing from

spectral region rrr to spectral- region v, here referring to
the regions as labell-ed in Figure (2.3). This change in
character is a direct consequence of the two alrowed values

of rel-ative wavevector q being degenerate at the boundary

between these regions (see Appendix B for detairs). rn

region rrr, the imaginary parts of the two allowed q values

are di-fferent while in region v they are equal (with real
parts different) . rn all subsequentry examined cases, bound.

states lying inside the contÍnuum gaps exhibited similar
behaviour -

o?

Case (c)

tr{e now consider the alternating bond Heisenberg chain

with uniform spin of magnitude s ' +. (Note that if s > 1¿

then this may or may not be a true Heisenberg chain as aji)
m

m: 3,4,..",25 have not been specified.) The bound state

AS=0 S r+ bll r(1)=rQ)=1



spectrum for thís case is shown in Figure (4.2¡ where we have
tchosen b = 7 and S : l. This spectrum is qualitatively

similar to that of the prior case (S = | alternating bondz

chain) except for an additionar bound state branch l-ocated

between the mixed-mode and o-o continua. This branch is

isolated from both continua for all K. we presume that this

bound state is absent in the spin s = I ".=" r:ecause it is-¿
associated with two spin deviations on the same spin site and

hence is unphysicar for s : I onry. since the magnitude of
both spins in the unit cerl has been incremented from s : I

2

to S: L, one might expect a total of two "new" states. That

ís, a totaf of two states that are both unphysical in the
Is = f alternating bond case. This suggests the rikelihood of

a state inside one of the continua and hence resonant for

all values of K.

Increasing the magnitude of spin above S = l- or varying
b (provided b I 0 or 1) does not change the qualitative form

of the spectra shown forS = 1 andb =+" However, ifwe
scale energy values by s, then the relative binding energy

of each of the five bound states decreases as s increases.

This is expected since s -> @ corresponds to the cl-assicaf
l-imit at which poi-nt the bound states must be absorbed into
their respective continua. The bound state midway between

the mixed and o-o continua approaches the r-atter in the

large S lini-t.
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If we set b = I then we obtain the case of a uniforrn

Heisenberg chain with S t +. The spectrum corresponding
¿

to this case is qual-itatively similar to the spectrum for
case (a) (uniform Heisenberg chain with S = 'rl . However

'ì

when S t * there is known to be a resonant state inside the¿

continuum, corresponding to an unphysical state when S - 1) - 7.
This resonant state can be forced out of the continua by

including a single-ion anisotrophy term in the Harnil-tonian

tPP].

Case (d)

This corresponds to a chain with

alternating bond strength, .ra Cjl) :

ficance of this last condítion can be

the set of interacting equations (2.L9

fol-lows:

AS=0

B5

S r+

lEz - s (l+b) l-2r, ,2n = -SIa2n+1 ,2n*r * bt2.r-r ,2n-Lf

r(1):rQ) =o

t lz - 2slu2n_I ,2n =

tEz- 2sbJarr, ,2n]r

uniforrn spin, generally

":" 
: o' rhe sisni-

seen by considering

) which are now as

clearly all the amplitudes with two spín deviations on

lEt- S(1+b) l-2.r*1 ,2n*r = -sIt2rr,2., * bu2n*2,2n+21

-sIt2rr-1 ,2n+L * u2n-2,2n)

= -sbluz,-,2n*2 * u2n-L,2n+rf

(4.2a)

( 4 .2b)

( 4 .2c)

(4.2d)

the



same site have decoupled from alr other amplitudes. The

same was true ín cases (a) and (b); however in those cases

the decoupled amplitudes were unphysical since S = S, : I .2'
For larger values of S we expect the decoupled amplitudes

with two spin deviations on the same site to describe physical

bound states.

vüe can obtain explicit analytic expressions for these

same site bound states as fol-lows. substitute for the ampri-

tudes in (4.2a) and (4.2d) with the general forms given by

(2.30) . We then obtai-n the following:

c0{t Ez- s(1+b) ls + tse+iK/2 + sbe-iK/2lut

* D0 {lE2 - S (1+b) l0 +

86.

c0{t se-iK/2 + sbe+iK/' lo + lEz-s(t+b) lð }

* D0 { tSe-iK/2 + sb"+ix/2 lã + lEz - s (1+b)

The secular determinant of this linear homogeneous system

is as follows:

Et 2s(r +Ð Ez + s2t (t+b )2 - t -b2 - 2bcos (2K) l

Solving for the two-magnon excitation energy gives

pair of bound state dispersíon curves:

lse+íR/2 +sbe-iK/2lej: o (4.3a)

ni:cl')rtr+br /Ñt

lð Ì-0 (4.3b)

=0

the following

(4 .4)

(4.s)



both of which d.escribe states wíth

single site.

The set of equations Ínvolving amplitudes with spin

deviations on different sites ((4.2b), (4.2c), and the non-

interacting equations (2.r7)) is formally identical to the

set of equations obtained for case (b). Hence if we sca]e

energy by a factor 23 then the bound states and enerqy

continua are identical to those of the spin s : I arternating
bond case except for the two additional bound state branches

as described by (4.5). The comprete spectrum, three continua
and al-l six bound state branches, is shown in Figure (4.3)

lfor b = i and s = 1. Notice that the bound states for spin
deviations on the same site (i.e., E; ano ej) rie entirely
inside the A-A continuum and mixed-rnode continuum respectively.
Yet, these are true bound states for all values of K because

of the cornplete decoupling that occurred. However, if we

al-lowed spin to al-ternate or ret eji) take on non-zero
(albeit sma1l) values then this decouplinq woulC be broken

and the two additionaf bound states would become resonant
states inside the continua.

rf we set b = l- then we have a uniform chain with s r !'2
and r(1) = r(2) = 0. rn this case we obtain a scar-ed- spectrum

identical to that of case (a) (uniform chain with s = t7l

except for an additÍonal bound state tying entirely inside
the single continuum. Because of the complete decoupling,

two spin deviations on a

87.



thís

tion

is

is
a true bound state for all K and

given by

Ee : n"lt)s=i"2 tf¡

where we have assumed the fulf Bril-l-ouin zone representation

f lxl < n). In spite of simil-arities to case (a) , this is
generally not a completery integrable system. This is because

the remaining' values of cji) (* = 3,4,...,25) are yet unspe-m

cified. The exception occurs when s = 1 because in this
case' all exchange coefficients have been specified. rn

fact, the unÍform chaÍn with S = f -rra Cji) = 0 is a specialz

case of a family of completely integrable systems tSUll which

are known as schrödinger exchange operators tscHl. using

our notation these correspond to

the dispersion rela-

^(i)(J=

m

Case (e)

BB

This case describes a chain with generally alternating
spins, generally alternating bonds, -na cj1) = 

"Í', 
:0.

For s = sr = I this corresponds to a biquadratic exchange

Hamiltonian. (By this we mean the spin-spi-n j-nteraction is
described in terms of quadratic exchange operator= {31 .ãjrt
only.) Regardless of S and S,, if 

"jt) 
: 

":', = 0 rhen

both branches of the one-nagnon dispersion rel_ation (2.]'2)

r - (-1)m_-__z-

Sr , +

(4 .6)

i - I,2; m: 0,I,

r(i) + @ i = Lr2

,2s (4.7)



must vanish for all K. For the two-magnon problem it imrne-

diately follows that all three energy continua must also

collapse to zero energy for all values of K. These "corrapsed.

continua" make this a very special case.

From (2-27) we see that cos(2q) is infinite and conse-

quently the relative wavevector q must have an infinite ima-

ginary part. El-iminating those values of q corresponding
to unphysical (exponentially growing) sol_utions means that
all acceptabre values of q have a negative and infinite
imaginary part. Fro¡n (2.29) and (2.30) it is evident that
afl amplitudes, except those rvith spin deviatíons on same or
adjacent sites, must vanish due to an exponentialJ_y decaying

factor. using this simplification along with Bloch theorem

we can express the four interacting equations (2.19 ) in terms

of only four unknown amplitudes. These are equivalent to the

retative coordinare amplirudes uát,, u:t, , uÍr,, uJn, as

defined by (3.15). The secular determínant for this sytem

is as fol-lows :

89.

* 
"2re)L) "(z)

Solving this quartic

bound state aL E, = 0

(2s-1) (2s'-t)
(s+s' -:Ð2

equation we find

for a]l K (Í.e. ,

| (2s+2s ' -1 )2-rtss' 
"o= 

2 (tr) l

a two-fold degenerate

inside the collapsed

=0
(4. B)



continua for al-l K) and two additional bound state branches

with dispersion rel-ations given by

The simplicity of the two-magnon spectra for this model

is physically justifiabte in that the two-magnon states are

in some sense equívalent to the "normal" spin waves of other
rnodels. rn thís model, the spín excitation pairs are strictly
localized to same or adjacent sites and hence behave as a

single entity propogati_ng along the chain.

Now consider the even more special case of a uniform

chain with 
"jt' 

= cj2) = 0. rn this case there are only two

bound state branches. one is degenerate with the collapsed

continuum and one is given by

_ (2s:Ð_(i2+'-1) 
"lr) "lr) f es+2s , _r)2 _ 4ss,"o=2 (K

90

EB = "jt) t 
(2s-r) + 4ssi n2 r\l r .

Although E" is only a singre branch Ín the furl Brirl-ouin
zone (lKl . n), this bound state folds back at K = n/2 in the

reduced zone scheme flxl < "/2). The dispersion relations
for these two reduced zone branches are as follows:

)l
(4.

1-
-2

e)

+
l_'B "jt" 

(4s-l) t 2scos (K) l

(4.10)

(4. rr)



so for a uniform chainr we find that nj and E" are degenerate

at the reduced BríÌlouin zone boundary. This degeneracy

along with the overall simpricity of the model suggests the

possibility of a completely integrable systern. The uniform

chain with s - 1 ana cjl) = 
"{'' 

= 0 is in fact a special
case of a family of completely integrable systems tBBl

origínarly studied by Parkinson Ipen.l . rn our terrninology

these are given by

Case (f)

suppose we consider chains with uniform spin only. Then

the two previous cases can be interpreted as being extreme

or limiting cases of. al-ternating bond system in which we

are free to vary the ratio r = r(1) - rQ) from zero to
infinity. rf r = 0 we obtain case (d) whereas if r diverges

we obtain case (e) . IrIe anticipate that any intermediate

value of r corresponds to a system which is appropriately
intermediate between these two extreme cases. rn general,

the intermediate systems should have rnore complicated spectra
since complete decoupling between sets of ampritudes occurs

only in the limiting cases. one such intermediate case \^/as

already disucssed in case (c) where r = 1 (i.e., the Heisen-
berg case).

= "jÈ1. = o

9L

^S=0
S r+

t,
J

= Ir2

blr r(1) = rQ)

(4.L2)



For case (d) we identífy a total of six distinct bound

state branches. I{e can also consider case (e) as having six

bound states such that four of these are degenerate with the

collapsed continua. We know there are four such states

associated with the collapsed continua from examining the

spectra with r

mediate case (O < r < -) should also have six associated

states. These could be true bound states but are generally

resonant states for some (or alt) va1ues of K. Furthermore,

we expect this number of six bound or resonant two-magnon

states to appfy to any chain with some degree of alternation

associated with it. However if S' = I or e : qt - I, t S = S' = i, then

one or two of these states ivould be unphysical.

The sj-x bound/resonant states of any intermediate case

in this model can be considered to have "evolved." from the

bound states of either of the two limiting cases. Irie can

illustrate this evolution with a few choice examples. For

each of these examples we will set S = I 1and.b = T. However

varying these two parameter does not alter the qualitative

form of the spectra provided S ' I and b I 0,1.

Figure (4.4) shows the bound state spectrum for the case
lr: 
=. 

Notice the similarity with case (d) (r = 0) except
5

now the states inside the A-A and rnixed-mode continuum must

be resonant states due to broken decoupling. The state inside

the A-A continuum apparently emerges from the top of the
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continuum at large values of K where it is a true bound

state again. The state inside the mÍxed continuum will

similarily emerge but not until r = 0.7. This state first

emerges at small val-ues of K.

Recall Figure (4.2¡ which shows the two-magnon spectrum

for the Heisenberg case r T = 1. By fol-lowing the spectral

evol-ution from r = 0 to r : 1 we can make the foll-owing obser-

vations regarding the Heisenberg case. The "extra" bound

state between the mixed and O-O continua (refer to case (c) )

is now identified as having evolved from the bound state

inside the mixed continuum at tr = 0. The bound state inside

the A-A continuum at r = 0 evolves into the bound state bel-ow

the mixed continuum at r : 1. Meanwhile the bound state

originally beneath the mixed continuum (when r = 0) gradually

rises up into the mixed continuum as r is increased. At

T: I, this state is presumably a resonant state for aI1 K.

Recall from case (c) that such a resonant state had been

predicted using a dÍfferent line of reasoning.

Finally consider Figure (4.5) which depicts the bound

state spectrum for the intermediate case r = 2. This case

is interesting in that all six bound/resonant states are

observed as being true bound states for at least some val-ues

of K. As r -) æ the two bound states above the O-O contínuum

evolve into the non-trivial states ef, while the other four

states are dragged along with the collapsing continua. Note

o2



that the upper of. the two branches beneath the A-A continuurn

has emerged outside the top of this continuum at small values

of K.

Case (g)

Thi-s case corresponds to a system with uniform spin,

alternating bond, 
"1" 

= 0, ana cjl) = O. This is another

system which can be regarded as being intermediate between

the two systems described in cases (d) and (e). Here the

alternating chain is composed of two sublattices, each of

which corresponds to one of the previously described cases.

(For S = I thís would correspond to pure biquadratic exchange

alternating with Schrödinger exchangie along the chain.)

since 
"l'' 

= 0 the one-magnon dispersion rel-ations reduce to

Et = 0 and E, = 2sG{1) for al-l i(- consequently, the two-

magnon energy continua all have z'ero width and coincide with

Ez = 0, E2: 2SGj1), and E, : 4SG{1).

From (2.27 ) we see that cos(2q) has a zero in the deno-

mínator. However cos (2q) does not necessarily diverge as

the numerator of this expression may also vanish. In fact,

the roots of the numerator coincide exactly with the three

collapsed energy continua. Therefore, how we choose to take

the l-imit 
":" 

-+ 0 becomes a crucial factor in properly

evaluating the allowed values of relative wavevector q.

(Note that we did not have a similar crisis in case (e) where

both 
"lt' 

and 
"1" 

vanish. rn this case the denominator of

AS=0 S,, r(r) : o
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(2.27) will always go to zero more rapidly than the numerator

and hence cos (2q) diverges for all Er. )

To avoid the use of "nasty" limit taking procedures !,/e

turn to the scaling formal-ism (Chapter 3) which does not

require explicit calculation of relative wavevector. The

scaling formalism is particularily convenient for this case

because both Vl = V^pl-lV^ and Vj = V M-IV* are exactly zeropppmm
(M, Vp, V* as defined in (3.18-3.20)). Hence the scalíng

transformation described by (3.26 ) converges after only one

iteration. This rapid convergence can be justified as fol-lows.

From (2.27 ) we lcnow that lfmag(q) I even if not infinite, must

still be very large. Hence any bound state solution must

decay very rapidly to zero as rel-ative coordinate between

spin deviations increases. Vr and V' describe the effectíve

range of interaction j-n rel-ative coordinate space so it follows

that both of these matrices should vanish after a minimal

number of iterations.

oq

Since V: : 0 we know from (3.23) that there is no effec-p

tive interaction between unit cell UO and unit cell U4. How-

ever V- I 0, so we know from (3.23) that there is a direct
P

interaction taking place between unit cel-Is UO and U, as well

as between U2 and Un. The only possible explanation of these

two resul-ts is the following. Amplitudes describing spin

deviations separated by zero, one, or trvo sites have completely

decoupled from al-l other two-magnon amplitudes. It therefore

fol-l-ols from the formalism of Chapter 3 that bound states



corresponding to spin

less can be obtained

where:

and where M,

Substitution

dettui J : 0

deviations separated by two

from the secular equation

Mó=Mo-vnu-rv*

ata+2r"jt) t2{n3 * n2c}') n-ns) + a4s2"Ít, , e)2) 
"o=2 

tx)

M0, Vp, V* are defined by (3.18-3.20) and (3.22) -

and sir.rplífication leads to the following result:

Recal-l from (2.L8) that e : E2 - 2SG(I) .

solutions are given by

+ zs2 rcll'r'",') es-l-+4sin'(*) ) Ì : o

sites or

(I) EZ:0 twice

rt)(2) E2 = 2scì

(3) roots of the cubic { } in (4.L4)
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At least three of the bound states are degenerate with the

co]-lapsed continua but because of the complete decoupring

these remai-n true bound- states for all- values of K. Notice

the total of six bound states. This coincides with the

number predicted for any al_ternating chain (see case (f) ) .

Now consider the amplitudes describing spin deviations

separated by greater than two sites. For energies not

coinciding with the colJ_apsed continua we know that

(4.13)

So the bound state

- "jt)I
(4.r4)



lrmag(q) | -+ æ. So from (2.29) these amplitudes must vanish

outside of the continua due to an exponentially decaying

factor. consequently, such amplitudes have non-trivial solu-

tions only at the collapsed continua energies of E, : 0,

2scjr), 4sG{]) .

The complete two-magnon spectrum (three collapsed

continua and three non-degenerate bound states) Ís shown in
Figure (4.6) for S = 1 and .(2) î(2)"2 '1

Case (h)

This case describes an arternating spin Heisenberg chain

with uniform bonds. Note that if s' > r then this may not

be a true Heisenberg chain since 
"Ítr, 

m: 3r4,...,25,, are

yet unspecified. Al-so note that íf S, = ', then all physical-

amplitudes are independent of 
":') 

-.ra cj2) and so r(1) and
(2\r'-' need not be specified.

First consi-der the specific case with Sr = | and S = 1.

The corresponding bound state spectrum is shown in Figure

(4.7) . This spectrum is very similar to that of case (b) ,

namely the alternating bond Heisenberg chain with uniform
Ispin S = ;. This similarity suggests that the means by

which alternation is íntroduced into the otherwise uniforrn

Heisenberg system is relatively umimportant. rn both cases

there are four bound state branches such that two are below

the A-A continuum and one is below each of the others. The

AS>0
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onl-y qualitatíve difference between the two spectra is the

form of the bound state branch lying immediately below the

mixed continuum. In the alternating spin Heisenberg case
'ì

(with S' = i and S = 1) this branch is "connected" to the A-A¿

continuum at K = 0 whereas for the al-ternating bond Heisenberg

case no such connection occurs.

Next consider the alternating spin, uniform bond Heisen-

berg chain with S' - l- and S = + . The corresponding bound

state spectrum for this case is shorvn in Figure (4.8). This

spectrum is quaritatively very similar to that obtained for
I

S t = -; , S = 1. Notice that the connecti-on between bound¿

state branch and A-A continuum upper edge has remained intact.

Now consider the bound state spectrurn for the spin combination
_l?S' = i and S = ; . This is shown in Figure (4 -9). Again

the spectrum is very similar to that obtained for S' : L2'|
S: I, except now the connection between bound. state and A-A

continuum has been broken.

We find that all- combinations of S and S' (S' < S) in

the arternating spin, uniform bond Heisenberg chain resul-t

in simil-ar spectra to those shown in Figures (4.7-9). For

all combinations of non-equal spin magnitudes there are four

observable bound state l¡ranches such that two are below the

A-A continuum and one ís below each of the other continua.
(The rel-ative binding energy of each of these branches d.oes

decrease as spin magnitudes increase but this is expected
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since S -+ æ is the classícal limit.) Vlhether

is a K : 0 connection between bound state and

upper edge depends strictly on the difference

tudes. The K = 0 reduced energy of the bound

the mixed continuum is empírically given by

6g(K=0) :2lS +S' ll

while the reduced energy of the A-A continuum upper edge

analjrtically given by (see Appendix B)

and so at K = 0,

or not there

A-A continuum

in spin magni-

state below

Hence this connection occurs in the uniform bond rleisenberg

chain if and only if AS = +. We also find that any d.egree

of bond alternation (b I 1) or any deviation from the Heisen-
Ii ìberg case (r'-' I 1) results in the breaking of this connection

regardless of AS. Furthermore, such deviations from the

99.

uniform bond Heisenberg case generally resul-t in more compli-

cated spectra.

The connection between "mixed-mode" bound state and A-A

continuum upper edge may be an important spectral feature "

When it occurs the bound state branch forms a "bridge" between

two otherwíse isolated continua. I{orvever the physical signi-

) + 4(s-s')2)\ (4.16)

(4.rs)

is

(4.17)



ficance (if any) of such a spectral feature is so far unclear.

!{e do know that the occurrence of this feature requires that

^s 
= +, b - L, u.rrd r(l) = r(2) = I all must be satisfied.

The only obvious simplification in the two-magnon problem

tc--- - r^ ^^\ \ (1) (2)when AS = i i= (from (2.20)) r ' = r' ' = 0S, . Consequentty,

three of the diagonal entries in the matrix MO (3.22) are

degenerate. If r(1) : rQ) = l- then the only obvious simpli-

fication is (from (2.20)) A(l) = L(2) = 0. As a result, there

is a partíal decoupling in the interacting equations (2.L9)

between arnplitudes with two spin deviations on the same even

site and amplitudes with two spin deviations on the same odd

site. The two-magnon problem obviously simplifies when bond

strength is uniform (n = 1) . What remains unclear Ís how

these various simplifications are related when they occur

simultaneously.

There is another point of interest regarding the alter-

nating spin, uniforn bond Heisenberg chain. First consider

the interacting equations (2.I9) for any case in which Sr :

Because of the decoupling of the unphysical amplitudes (i.e.

those amplitudes wíth two spin deviations on the same even

site) there is an unphysical solution given by

10c

E2 = 2stcjl) + c|2) t

So it foll-ows that increasing S' from 'r t" a larger value

t
7'
f

(4.18)



should result in an additional bound (or resonant) state

whrichr is physically varid. I{e have previousry observed this

to happen for the alternating bond, uniform spin Heisenberg

chain, as d.iscus:sed in cases (b) and (c) for S' = ] ard Sr , ,
respectively. However for the arternating spin, uniform bond

Heisenberg chain we always observe exactly four bound states,

independent of the size of s t . Therefore an "extra" resonant

state is anticipated in those cases for which S, , + . The

presence of such a state wirl be considered in the following

section.

4.2 Local- Densities of States

In Chapter 3 we formalized a technique for evaluating

the rocal density of states at any two-magnon spectral point
(K,82) of an alternating ferrimagnetic chain. Each l_ocal_

densities of states cafculation is obtained from a response

function descríbíng two spin excitations arranged in a parti-

cuÌar configuration along the chain. A given configuration

is specified by
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(1) the nurnber of sj-tes separating the excitations or

in other words the rel_ative coordinate r
(2) if r is even; the type of spin sÍtes that are excited

(each spin site is labelled by either S or S') ;

if r is odd; the type of bonds connecting the

excited sites (each bond is described by either
^ (r) ^(2\c;-' or GÀ-', m : I,2)



Vle found it most convenient to express these results by plot-

ting local density of states versus excitation energ;y for a

fixed value of total wavevector. The value of K is varied in

intervals across the Briflouin zone, thereby giving a series

of plots extending over the entire spectral plane (or what-

ever region we are interested in) .

Using the methods described in Chapter 3, it is possible

to calculate local densities of states with respect to spin

excitations separated by any distance along the chain. However

we usually restricted our cafculations to spin excitations

on same or neighbouring sites only. Cal-cul-ations corresponding

to greater separation of spin excitations are generally re-

dundant. Also, bound and resonant states become harder to

identify in the local- densities of states as this separation

increases. This is because such states are dominated by

exponentially decaying factors of the form exp[-lrmag(q) lrl
where r is the rel-ative coordinate. Furthermore, the plane

\^/ave component of the scattering (continuum) states oscillates

more rapidly as separation increases due to a factor

exp[+iReal (q) r]. So the larger the separation the more nodes

in the corresponding densities of states. These nodes compli-

cate the pJ-ots making the "true" resonant states harder to

id.entífy. For an example of this latter effect consider

Figure (4.10) which shows the local- densities of states for

(a) two excitations on the same site and (b) two excitatíons

L02.



separated by ten sites (we are considering a uniform spin

chain with S = l so \¡/e do not have to specify whether the

excitations take place on even or odd spin sites).

Using Figure (4.IOa) as an example of a "typical" den-

sities of states plot we can ill-ustrate the various spectral

Ínformation which is easily extracted by way of this method.

First, consider the scattering state continua. Generally,

these are identifiable as extended regions of non-vanishing

density of states. Here, the A-A continuum ranges from 0.2

to 1.6 reduced energy units (reu), the mixed continuum ranges

from 2.3 to 3.7 reu, and the O-O continuum ranges from 4.5

to 5.8 reu. Next, consider the bound state solutions. These

appear in the plots as very sharp peaks outside the continua

regions. fn Figure (4.10a) three bound states are observed

at 0.2, 2.3, and 4.0 reu. Finally, consid.er the resonant

state solutions. These appear ín the plots as peaks inside

of the continua regions. The relative sharpness of such

peaks depends on the particular state and. value of K.

Although resonant peaks are the most interesting features of

these plots, identifying an inner-contínuum structure as being

resonant or not is often a subjective classification. I{ence,

such identifications must be made with caution. Candidates

for resonant peaks in Figure (4.10a) are located near L.4 reu

and near 3.3 reu. We observe in Figure (4.10b) that one of

the bound states (4.0 reu) has vanished and both resonant
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states have dissípated.

is justified.

Because of the subjectivity in classifying resonances

such eval-uations are best made by "tracing" said peak across

the Brillouin zone to see if it persists, sharpens, shifts,

fades, etc. When studying a particul-ar case we usually exa-

mine local- densities of states for at l-east five different

val-ues of K. However in our subsequent discussions we only

display the results for K = 0, r/4, and Tr/2 for the sake of

economizíng space. IVe do however calculate (and present)

the local densj-ties of states with respect to both same site

and nearest-neighbour spin excitations. Both are included

because often a particular confíguration will- not be sensitive

to all of the bound and resonant states occuring at a given

value of K. There are four possible configurations corres-

ponding to excÍtations separated by one or zero sites so there

are generally four dístinct plots for each val_ue of K. These

are referred to as "even site" (two spin excitations on same

St sÍte), "odd site" (two spin excitations on same S site),

"strong bond" (excitatíons separated by a bond described by

"l!'r,, 
and "weak bond" (excitations separated by a bond

described by 
"12)"rl 

. rn cases of uniform spin the first twoL, Z'

plots are degenerate while for uniform bond chains the latter

two are clegenerate. If S' = | afr.r, the even site plot is

unphysical.

Hence, our choice of plots to study
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Case (a)

This ís the case of an al-ternating bond, uniform spi-n

Heisenberg chain with spin magnitude S , ,. Here we choose

to study S = I and b = | although any S' I ana b I 0,1 wilt

give results that are qualitativellz similar. This special

case was initially discussed in case (c) of Section 4.1 and

the bound state spectrum is depicted in Figure (4.2) . The

loca1 densities of states are shown in Figure (4.11) for

K - 0, Figure (4.L2) for K = r/4, and Figure (4.13) for

K - r/2. For each K value the results are plotted for (a)

same site spin excitations, (b) spin excitations separated

by a strong bond, and (c) spin excitations separated by a

weak bond.

Recall there are a total of five bound state branches

for this case, only three of which are true bound states

AS=0 S rt, bll (1) = r(2) = I
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for al-l- vafues of K. These three (the lower of the two belorv

the A-A continuum, the state below the mixed continuum, and

the lower of the two below the O-O continuum) are identifiable

as sharp peaks at all values of K. The upper bound state

bel-ow the O-O continuum is only identifiable in plots with

K t K.r rvhere I(" is the value of rvar¡evector at ¡¡¿hich the internal

singularity origi-nates in O-O and A-A continua. (See Appendix

B for detailed discussion.) Here K" = t/3. Strangely

enoughr v/ê observe no resonant behaviour j-n the O-O continuum

whenK<K c



The upper bound state beneath the A-A continuum is only

identifiabl-e as a bound state peak in plots with K near or

at r/2. For all smaller values of K there is a resonant

peak in the A-A continuum which appears to correspond to this

bound state. At K : 0 this resonant state is observed as a

relatively broad peak near the top of the continuum. As K

increases the peak graduarly sharpens rvhile moving d.ownwards

through the continuum. Near K = Tr/2 the peak eventual-ly

"pops" out of the continuum becoming a true bound state.

Ifhat is most interesting is the behaviour of this peak rela-

tive to the van Hove internal singularity insíde the A-A

continuum. (necall from Chapter 2 that this singularity

does not exist for small values of K but first occurs at K : K.

where it coincides with the upper edge of the A-A continuum.

As K further increases the singurarity moves d.ownwards until

it coincides with the lower edge at K = r/2.) The resonant

state remains beneath this síngularity for all_ K t K". That

is, the resonant state ís unable to "cross-over" the singu-

larity from spectral region II to spectraJ_ region IV (refer

to Figure (2.:)). Consequently, the state is pushed downwards

and eventually out of the continuum as the singularity pro-

gresses towards the l_ower edge.

Recall from Section 4.L (case (f)) that a totat of six

distinct bound/resonant type states are anticipated for an

aÌternating chaín with no unphysical amplitudes. Up til_l
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now v/e have only identified five such states for this case.

So we now look for states that are resonant for all values

of K. The only possibility is the peak in the mixed-mode

continuum. This is a very broad structure at K = r/2 winích

graduall-y narrows as K decreases. However the entire con-

tinuum narrows as K goes to zero so this is not a well-defined

resonant structure. Yet ín case (f) of Section 4.1 we did

predict a resonant state occurring inside the mixed continuum.

There is a rather sharp peak at the top of the A-A

continuurn in the K = r/2 plots that has not yet been accounted

for. This peak actually occurs for all K r K" but it does

not correspond to a resonant state. Rather it corresponds to

a divergence in the density of states at the continuum edge

while inside spectral region IV. This is a common feature

of most cases we examined and is probably attributed to the

system under study being one-dimensional tAMl. The lower

end of the O-O continuum also tends to sharpen while inside

spectral region IV, however here the effect is usually not

as predominant.

LO7 .

Case (b) 
^S 

= 0 S'l b l lz

Thís is a special case of the uniform spín, alternating

bond chain such that c(i)- I ,.-(i) 'i 1

2 ; Gì-' , i - L,2. As usual we

consider the resurts for b : I ana s = l. The bound state



spectrum for this system was originally discussed ín case

(f) of Section 4.L and is displayed in Figure (4.4). The

l-ocal- densities of states are shown in Figures (4.r4) , (4.15) ,

and (4.16) for K = 0, ,/4, and r/2 respectively. For each

K value the resul-ts are plotted for (a) same site excitations,
(b) spin excitations separaLed by a strong bond, and (c) spin
excitations separated by a weak bond.

rn this case there are five bound state branches, onry

two of which are bound states for al-l- val-ues of K. These

two (the rower of the two states bel-ow the A-A continuum

and the state directly below the mixed continuum) are identi-
fiabl-e as sharp peaks for al-l val-ues of K. The bound state
bel-ow the o-o continuum is not identifiable at small values

of K, either as a bound state or resonant state.

The upper bound state below the A-A conti-nuum shows

similar behaviour to its counterpart in case (a) . At K = 0

it is a broad peak in the middre of the continuum (near 0.6

reu) . As K increases the peak gradualry sharpens and when K

increases past K" (again K" = ¡/3) the peak is pushed down-

wards, seemingly unable to cross-over the internal singurarity.
The state ís finalty forced out of the continuun near K = r/2.
The bound state directly above the A-A continuum (at large
values of K) afso originates as a resonant peak inside the

A-A continuum. At K = 0 this state corresponds to the resonant
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peak at the upper end of the continuum (near 1.5 reu). This

peak sharpens as K increases and at K = K. it leaves the

continuum, becoming a true bound state. Notice that this

state's emergence from the continuum coincides exactly with

the appearance of the internal singularity. So this reso-

nant state (Iike the previously discussed one) is effectively

forced out of the A-A continuum by its inability to cross-

over the internal singularity.

Unlike case (a), there is a very well defined resonant

structure ínside the mixed-mod.e continuum for a1l- values of

K. At K : r/2 there is a relatively sharp peak near 2.2 reu

and the peak continues to sharpen as K d.ecreases. The corres-

ponding resonant state is probably related to the decoupled

bound state inside the mixed continuum *h.r t(I) = TQ) = 0.

Because of thÍs resonant state we are able to identify a total

of six distinct bound and resonant states which is th" number

expected for any al-ternating chain with S I , + .

109.

Case (c)

We now consider the alternating spin, uniform bond Heisen-

berg chain with S' = + . This model was originally discussed
2

in case (h) of Section 4.1 with the bound state spectra shown

in Figures (4.7) and (4.g) for AS : I ana 
^S 

: t respectively.

Here we will- examine the l-ocal densities of states for AS = I2

õt 1
2 ^s/0 b=1



(i.e., S = 1). Increasing AS breaks the special connection

between A-A contÍnuum and bound state at K : 0 but otherwise

gives qualitativeJ-y similar results. The focal d.ensities of

states are shown in Figures (4.I7), (4.18), and (4.L9) for

K - 0, r/4, and r/2 respectively. For each K value the

results are included for (a) two spin excitations on the sarne

odd site, and (b) two spin excitations on neighbouring sites.
(Remernber, two spín excitations on the same even site is

unphysical if sr = l- I2. r

In this case there are four bound state branches only

two of which are bound states for all values of K. These

two (the rower of the two states below the A-A continuum and

the state below the mixed continuum) are identifiable as

sharp peaks for all- values of I{. As in the previous two cases

the bound state belol the o-o continuum is not identifiable

at small values of K either as a resonant state or ìcound

state. Also as in the previous two cases, the upper bound

state below the A-A continuum starts off at small- val-ues of

K as a resonant state inside this continuurn. As before, the

corresponding resonant peak gradually sharpens and. moves

downwards as K increases, eventually emerging near K = r/2.

Because of the unphysical_ state corresponding to two

spin deviations on a s ' = * =ite we only expect five distinct2

bound or resonant states for this case. However, besides
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the four states already mentíoned the only other resonant

structure is a very broad peak in the mixed-mode continuum.

SimilariJ-y to case (a) this ís not a well defined resonance

even though it sharpens as K decreases (due to continuum

collapsing at K : 0. ) The overall similarity of these

results to that of case (a), the alternating bond Heisenberg

chaj-n, suggests the mechanism for alternation (bond or spin)

is relatívely unimportant.

Case (d)

Finally we consider the alternating spin, uniform bond

Heisenberg chain with Sr , t. This system was originally

discussed in case (h) of Section 4. 1 and the bound state

spectra is shown in Figure (4.8) for S' = L, S = + The

loca1 densities of states are shown for these same spin magni-

tudes in Figures (4.20), (4.2L), and (4.22) for K = 0, r/4,

and r/2 respectively. For each K val-ue the resul-ts are con-

sidered for (a) two spin excitations on the same even site,

(b) two spin excitations on the same odd site, and (c) spin

excitations on adjacent sites. As for case (c) , increasingi

AS breaks the connection betrveen mixed-mode bound state and

A-A continuum upper edge but otherwise gives qualitatively

simíl-ar results -

Sr , +

Itl_.

AS>0 b-l r(r) = rQ) : l_

The bound state below the O-O continuum is now identi-

fiable for all values of K but otherwise there are no signi-



ficant differences between these results and those obtained

for case (c) . This ís surprisíng because when S I = + there

is a decoupled unphysical state (4.18). Hencer wê expect a

corresponding physícal state (either bound or resonant) to

arise when Sr is increased to a larger val-ue. However no

additional bound or resonant states are evídent in any of the

loca1 densities of states for this case. Since fewer bound

states implies a simpler system, this result now suggests

that al-ternation of bond strength is a more severe "distur-

bance" than alternation of spin magnitude. So an alternating

spin system is (possibl-y) a more 1íkely candidate for complete

integrability.

4.3 T\uo-Maqnon Spectra

In this section we present Figures (4.1) to (4.22)

inclusive. These are the two-magnon bound state spectra

and two-magnon l-ocal densities of states referred to in the

previous sections. In all proceedíng figures, energy is in

units of "Jt'.

tL2-
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In this thesis we studied the two-magnon excitations of

an alternating ferrimagnetic chain. We only considered

systems in which the qround state is ferromagnetic and in

which the spín-spin jnteractions are restrícted to being

isotropic, rotationally invariant, and between nearest

neighbours. However we did al-l-ow for systems in which spin

rnagnitude and/or spin exchange interactions could alternate

along the chain. Both the strength and the form of these

interactions could be allowed to alternate.

Chapter 5

SUMMARY

of the two-magnon problem. The first of these methods involved

a direct analytic approach. This approach allowed us to solve

for the complete set of bound state branches and continua

boundaries for any system conforming to our model. The

second method used a real-space rescalj-ng approach to solve

for the two-magnon Green's functions. Using these response

functions the local densities of states could be calculated

throughout the trvo-rnagnon spectrum. Together, these two

techniques provided an efficient means of assessing both

bound and scattering state contributions to the two-magnon

b/ave f unction .

T\,vo dÍstinct methods \^/ere used for obtaining sol-utions

t_35



Using the above methods r w€ studied the two-magnon

spectral properties of a number of specíal cases of the

alternating ferrimagnetic chain. These cases included

various uniform, alternating bond, and alternating spin

systems. For some of these cases we were able to use the

analytic approach to deríve explicit expressions for the

bound state dispersion relations. However in general, these

bound state dispersion branches were generated using an exact

numerical procedure. The scaling approach provided additional

information regarding the relative contribution of states

ínside the scattering continua. This included the spectraÌ

locality of resonant state solutions.

Besides enhancingi our understanding of two-magnon spectra

and how these spectra rel-ate for different cases, there was

an additional motivation in my research. This was the

possible identífication of completely integrabJ-e systems.

Such systems are of particular interest because the arbitrary

m-magnon problem can be solved using the Bethe ansatz approach

tBEl. As a result, it is possible to calculate the complete

energy spectrum of integrable systems, independent of the

choice of ground state.

The two-magnon spectra were checked for "special features"

which might índicate complete integrabilíty. In particular

rnre checked for cases which satisfy Haldane's críteria [HAL].
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(Haldane conjectured that the m-magnon bound state branches

of completely integrable models are both real and continuous

across minimum (m,25) Brillouin zones of an extended zone

scheme.) However the only cases \^/e identified were uniform

chains already known to correspond to families of completely

integrable systems tISl, IBB], tSUfl.

I{e did manage to observe a special feature in the two-

magnon spectra for alternati-ng spin, uniform bond Heisenberg

chains when spins on adjacent sites differed in magnitude
lby exactly ;. In these spectra, we identified a bound state

branch which forms a connection between two otherwise isolated

continua. Furtheïmore, the scaling approach revealed alter-

nating spin Heisenberg chains as having relatively simple

spectra when compared to their alternating bond counterparts.

tr\ie conclude that the uniform ]:ond Heisenberg chain with spin

magnitudes differin g by I t= a possible candidate for solution

by a Bethe ansatz approach.

Although we restricted our study to relatively simple

(one-dimensional and isotropic) lattices such systems are

not too far removed from the "real worid". Layered materials

exhibiting quasi-one-dimensional character can often be

described in terms of spin exchange interactions I RRR] . In

fact, there is recent interest in metal ion arrays which can

be described by isotropic exchange interactions alongi an

al-ternating chain IDCG], IJVL], ISCD]. Such real systems
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generally have an antiferromagnetic nature, stressing the

importance of searching for completely integrable models.

Both the scaling and anafytic formalisrn of this thesis

can be easily extended to the study of chains with anisotropì-c

interactions or to the study of chains with longer range

interactions or both. The analytic approach can also be

extended to the study of higher-dimensional lattices. Unfor-

tunately, the scaling method is essentÍalIy fimited to use

in one-dimensional problems. Vühen applied to higher climen-

sional systems the effective range of interaction between

lattÍce sites increases as the scaling transformation is

íterated. Hence, using the scaling approach to study two-

or three-dimensional- lattices would require construction of

a transformation valj-d for any range of interaction. Such

a transformatíon generally cannot be formulated.

A further extension of the scaling formalism could be

to study the three-magnon problem of alternating ferrimagnetic

chains. We know that for most cases the three-magnon problem

is insol-ubl-e and the scaling approach particularily fails

because of the previously described problem in studying

higher-dimensional systems. (Whereas the two-magnon problem

of a ferrimagnetic chain maps to a semi-infinite chain in

relative coordinate space, the corresponding three-magnon

problem maps to a semi-infinite wedge. That is, the three-

magnon problem maps to a two-dimensional tight-bj-nding r'lode1.)

However we anticipate for special cases (such as completely
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integrable models) that there is sufficient decoupling in

the three-magnon interacting equations so that the scaling

approach can be directly applied. Along with knorvn integrable

nodels the alternating spin, uniform bond Heisenberg chain

woul-d be a possible candidate for such studies.
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In Chapter 2 of this thesis \,ì/e presented, without proof ,

the sets of equations determining the various one- and two-

magnon amplitudes. (That is, the amplitudes needed in des-

cribing the one- and two-magnon wavefunctions. ) In this

appendix we wil-l consider the expricit derivation of these

results.

we wil-l begin by discussing some general properties of
the spin exchange operators which make up the Hamiltonian of
interest (2.L). We fol]ow this with the derivation of the

pair of equations (2-10) which determine the one-maginon ampli-
tudes a.. Finarty, we wil] derive the sets of equationsf
(2.17) , (2.L9) which determine the two-magnon amplitudes

â.'-i, i < j. In the process of these derivations we wil_ILJ

also show that singre spin deviation states lit and two spin
devíatÍon states li,jt are not eigenstates of the Hamiltonian.

A.l- General

APPENDIX A

LAC .

First consider the operators ivhich comprise the Hamil-

tonian of interest (2.L). These are

1.. r¡õt õ 
- 

n 2a¡Ào 2n'o2n+l -2.r-2rr+ l

I
=

2

lI _

-2.r" 2.t

tåltä"*r +

-,
t_ I

c c'"2n" 2n+L

c ucu
"2n"2n+r

* t)itl^*, (4.l-a)



õ õ I 
-"2n*1 "2n*2

where: n = Ir2,

chain )

IIere we are using the usual definition of quantum raisi-ng

and lowering operators: Sl = sxt isY. The subsequent deri-

vations require knowing the effect of these operators (4. I)

on the various one and two spin deviation states. (Devia-

tions are always assumed to be with respect to the ferromag-

netic around state which has all spins alÌigned with maximum

projection along the negative z-d.irection.)

Any m deviatíon state can be expanded as a product of N

kets such that each ket is an eÍgenket of spin localized at

a specific site along the chain. In other words, an m

deviation can be expressed by

I
T

-! l_

s )n+tszn+z

l\Ï
, !: (N is the number of sites on

't 
- 

11
,Lt' 2 "2n+I"2n+2 * sã.,*rs )i.,

T4T.

| "t tt IoZ, z

where íf t is odd

(A.Ib)

the

sf,l"uru: oulou'

loutn

sil"u'

og = {-s'-s+l'

= @ lautl>u

I o* tro

,+S]

(a. z)

(4.3a)

(A.3b)

(4.3c)



and where íf r, ís even

s'u"lourn = crulout

l4
su= lou>n

og = {-str-s'+1 ,---t+s'}

(4.3) and (4.4) follow directly from the usual quantum spin

(i.e., angular momenta) commutation relati-ons ISAK]. Further-

morer we assume that spin operators corresponding to different

sites commute. As a result, a given ket lo*rs is independent

of al-l spin operators not corresponding to the l,th site-

Using this notation we can write the ferromagnetic ground

state as follows:

r42.

A single spin deviation state such that the deviation occurs

on an arbitrary even site can be written

lo' : l-s'rl-s''2

(4.4a)

(A.4b)

(A.4c)

I znt = I -s'r I -s' '2

A two spin deviation state such

on different sites labelled by

written

| -s'N_t | -s' 'u

| 2n ,2m+I>

| -s'zrr_t | -s' +t'2r, I -s'2rr+r

: l_s'rl-s'

that the deviations occur

2n and 2m*1 (m t n) can be

(A.s)

| -s' t2*l -s+rt2rn+r | -s' t 2m+2

| -srz.r_t | -s' +trzr, | -s, 2n+L

I ar
lr

(A.6 )

I -s'rN -

(A. 7)



A two spin deviation state such that

on the same arbítrary odd site can be

l2n+f ,2rt*I> = l-Srf l-S'12

And so on.

To il-l-ustrate the effect of the operators in (4.1) on

the various one and two spin deviation states we consid-er

the following "sample calculation" :

both deviations occur

written

l-s' t2rrl-s+zr2n+rl-s' t2.,*2 - -. l-s' rN
(A. B)

3å,.'3rr,*t l2n ' 2m+L>

Since each spin operator acts only on the ket corresponding

to its specific site, to evaluate (4.9) it is sufficient
to know how the operators on the right-hand side effect the

kets l-S'+lrr' and l-ttr.r*r_. From (4.3) and (4.4) we can

write

srjt-s'*trr,-, = / l-s'+r+r,r'

r43.

_t
'2

ll

sr. sr.r *]

la o+ SZlSS.,,*t)l2n,2m*L>, m > n.

,1,2 l- J
c c'
" 2n" 2n+r

ATîsr=Tl l-s+z, rn

(A. e)

(4.10a)



t_
srr, | -s'*lt2', I-s '+l--ltrr.,

= ,æT l_s , ,2r,

t_
s^'l-sr+1>^ =¿Ít' ¿n

sir,+r | -s'zn+r =

= /7s | -s+r r2rr+l-

szn+r l-st2r,+l = o

(-s '+1) l-s'*lr2r,

/ry

s|n*t l-s'2n+1 = -sl-sr2n+r

The following expressions are equivalent to those in (4.10):

l+.
sr,., 12n...' = /TOsr=Tl l2n,2n-..> (4.11a)
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| -s+r t 2r,*1

I

s^- I zn. .¿n'

t?
s^" l2n. .zlt '

(A.10b)

(Ä..10c)

+ct"2n+rt " "

Ib2n+l l " '

(A. r0d)

: lTs l2n+1...'

nzlo2n+f l''

(4. 10e )

>:0

(A.10f)

¡l

(A.1lb)

(A.1tc)

(A. 11d)

(A.1le)

(A.1rf )



\,,ihere "..." al-lows for the possibility of additional spin

deviations provided they do not occur at the site acted on

by the indicated operator. Using (4.fl) we can nov¡ evaluate

(4.9) as follows:

3å.,. Srr-r*1 I 2., ,2mlr, : , trit szr,+r | 2n, 2m+t > J

. I 4;tsj.,+r | 2n, 2m+t> J . 
";"^ts'zn*tl 

2n, 2m+1> I

Similar calculations as (A.12) lead to the following

catalog of results (where i, j I 2n,2n+I) :

!r -ã li'= ss'lí' (A.t3a)"2n "2n+I

'l t-L 'l .- l-

= i s2;i0l + -, /25 Sr,rl2n,2n+L,2m*1>

+ (-s) s2; l2n,2m+L>

L45.

= /Ss-- l2n+r ,2mrl> + s (s'-1) l2n ,2m*I> .

(A. 12 )

Sjr,.õrrr*rlzn' = s(s'-1) l2n' + /Ss-¡- l2n+1,

õår-r.3rrr*, l2n+t> = s' (s-t) l2n+t> + /s-sT lzn'

õårr.õr.,*a li, j' : ss' li,i'

(A. r3b)

(e.13c)

(A. 13d)



3å,.,-3rrr*rl2n,i> = s(s'-1) l2n,j, + /Ss-- l2n+L,i> (A.13e)

Sjrr-3r.r*rl2n+1,i' = s'(s-1) l2n+1,i> + /Ss-'- lzn,i> (4. 13f)

3år.r.õrrr*rli,2n' = s(s'-1) lí,2n' + /ssr- li,zn+l' (4.13g)

õår..ãrr,*rli,2n+1> = s'(s-t) li,2n+l' + /Ssì- lí,zn> (A.t3h)

õj,-r-õrr,*r l2n,2n> - g(s'-2) l2n,2n, + /lGsr:Tl- l2n,2n+r>

(A. 13i )

ãårr.Szrr+t l2n,2n+I> : (s-I) (s'-1) lzn ,2nir> * 'Æ17s-:T)- l2n,2n>

+ 'ÆÏl2s:ll- lZn+r ,2n*L' (4.13 j )

L46.

õjrr-õr.r*rlzn+r r2nrr> = s'(s-2) l2n+1 ,2n-rL>

+ /S-ï-@S:fl- l2n, 2n+L>

An analgous set of relations is similarily obtained for the

operator õz.r*t -ã )n*2.

A.2 One-Magnon Amplitudes

From (4.13) we now know the effect of the operator

õår.r.32.,*1 o* all single spin deviation states. We can express

these resufts in matrix form as follows:

(A.13k)



( så.' ' sz.r+1)

where A is an NxN matrix

lr'
t^
lL'

:

A^ ^ i S(S'-l-)¿nt¿n

o2n,2n+I = A2rr+l ,2n 
: /ssT-

A2n+1 ,2n+r = s' (s-1)

otherwise:

['"l

l;'l
L',,'J

such

Ll 
*'

_A

that

f\. . or-l r-l

where: ô

r47 .

It follows

SS'

(A. 14 )

rl

t:tha

is the Kronecker delta function

(3å.''õrn*r) n

Since

any p

IKRE]

ttlr'l llr'.tl.12'l -n l l"t-¡tt.tt
.ll..tt-ttl*'_j Ll*'

(4.15a)

^

=

is a symmetric matrix we can

2,3,... by applying standard

For arbitrary p we find

(A.1sb)

(A. t_5c)

(A. rsd)

easily

linear

evaluate AP for

algebraic technique

(A. 16 )



or.P, ^.Pp Ð ^0ton1
2nr2n - S + S-1-

tP ^Pn2nr2n*f - ^2n+l ,2n -

¡p srf + r'^T
^2n+l-,2n*I - - + S-Ï--

otherwise:

where from

of 3.õ' in
From

P " .Pu. . ^^rl l_l u

/ss-r- rrf - rlt
S+S

(2.5) 
^* 

(m = 0,1, .

descending order.

(Ä'.16) and (4.17) ive

I4B.

2s' 
- (p)

L a't
-fp:1

where:

(Ä'.17a)

(3irr. ãr.,*, ) n

. . ,25') denotes

(A.17b)

IÀ=
¿Tl , ¿n

can obtain the

Ir'
lz,

lÑ'

(A.l7d)

the eigenvalues

(a.17c)

n, r, /^ ^(I)^2nr2n+L - ^2n+I ,2n - YÞÞ tl-

, , nár,

[l t'

nl
-f\

* ,nÍt,
S+S

nln2n+I ,2n*I -

li-l¿,

following result:

l*' j

tno(t) + s'n{t)
S+S

(A.18)

(4.19a)

(A.r9b)

(4.19c)



r49.

(A.19d)

(2 .6) .ined inparameters q (i) ..ra c 
(í) are as def

m

resul-t we can obtain the following:

2s' [l r*' I
nl,_ 

'ri') r3;,,'õ2.,*r," 
Li 

,-.r,_l

B r,{tI-r"{t) 6s-- 
"(1)l¿ v:l_

[i*- c{r r } nJ. r -s' "Íl
m=1-,\ +f¿r...r2.

-l 

[t'*' I
)_l 

lt 
,**t '_l

(A.20)

= urjnott)

otherwise:

N/2 2s' ,-\ [¡r**t'J
I " I. "jn' rõrr,*, .õå,.,*r) n 

In:tplt ' 
llzm+z'_]

[N

: lï 'J2) 
-,' "i" /sE- 

"{2 
) 

I i-' 
,-."1

['2"'- "j2' ] rJ'r -'"J''_l 
L, 

zn+2,)

Recal-I from 1Z.t) the Hamiltonian of interest:

N/2 25'
H - - l-- 

-i r"Ín' ,õå,.,-32.,*r)P
n:1 p=I

+ rjnl (32.,*r .ã)n*z)Pl .

1a. z 1)

A: .rJ

the

this

N/2
I

n=l

where

From

(A.22)

And similaríly we find



Clearly (4.20) and (A.2I) are all that is required to expli-

citly write down the representation of the Hamil-tonian in

the basis of single spin deviatj_on states. If we let

H' - H -EO where E0 is the ground state energy (2.7) then

we obtain the follorving:

H' l2m+r> = s' (cjll*"j') ) lz^+r' - /sr t"lt) ¡r*,

Note that we have now explicitly shown that single spin devia-

tion states are not eigenstates of the Hamiltonian.

Now consíder the one-magnon Schrödinger equation (2.9) .

This can be written

150

"{') | 2m-r>

s'lúr' : ntlú1,

Substituting for the general form of the

(2. B) gives

* "{') ¡z^*z,t .

N/2
I. (Er-H')[arr., l2n' +

n:,L

Using the resul-ts of (4.23)

and obtain the following:

(4. 2 3a)

(A.2 3b)

-2r,+1 lzn+t>J : o

we can eliminate

(A.24)

one-magnon wave function

(A' 25)

H' f rom (4.2 5 )



N/2 (I { /ss--
n=l \ "!" urnlzn-l' + i (Er-s ("lt) *"1') ) )'z'

* 
"{t) 

¿Ss- .2.,+11 l2n' + t (Er-s' ("{t' *"Í') ) ).2,-,+r

tl I t)\ I+ el-/ /ssr u2nf lzn+I' + *GsT 
"ì'' urn*rlz"+zr¡ = 0

(A.26)

The single spin deviation states {lft,l2r,...,lNt} form

an orthogonal set (this can ,be seen by explicitly calculating

.i I j t, i I j, with both states expressed as the product of N

kets as ín (4.2)). Consequently, the coefficient of each

state in (A.26) must vanish independently. To determine

the coefficients of the states lZmt and lZm+t> v/e need only

consider the terrns in which the summation index n takes on

values m, mtI. EquatÍng both of these coefficients to zero

gives is the following expressions:

151.

tEr-s ("jt) *":') ) tu.r* + /SsT ,"jt''r**r_ *":t).r*-r_, = 0 (A .27a)

tEr-s' ("Ít'*"j') ) l.r**, + /SsT t"{t) -r**cj2) -r**rt = 0 (4.27b)

And these are the one-magnon amplitude equations as reported

in (2.f0) of Chapter 2.

4.3 Two-Maqnon Amplitudes

From (4.13) we know the effect of the operator õl-.3.-"2n "2n+L



on all two spin deviation states. We can summarize these

results using matrix notation as foll-ows:

õå,-,'õr,.,*r I i,i' : L I i, i'

cl .c"zTt "2n+l Ir

Ir

cl .e"2Ít "2n+I

2ntj>

2n*L,

where

I = ,[,'"j'l [lr"
| 2n ,2n>

l2n ,2n+L>

lzn+r,2n*r>

í,) I 2n,2n+L

L = SS'

Il> I

I,

r, j ,_l

2n,2n

2n,2n

2n*L,

+

I

I

I

r52.

l-s {s'-r)
Irvr- |

I /õõ t
l-v >¡

-N

j I 2n,2n*I

+l>

2n*L>

N_

Clearly the effect of the operator (õår-r.3r.,*r)P o.r two spÍn

deviatj-on states is described by the matrices LP, MP, and

r¡P. Since the matrices L, M, and N are all symmetric r,¡/e can

easily evaluate LP, MP, and ttrP for any p = 2,3,4,... by

applying standard linear algebra techniques tKRE-l For

arbitrary p the results are as foll-ows:

/ss-r 
I

s' (s-r) 
I

(A'.2 Ba)

(A.2Bb)

/Sl2s.=Tl-

(s-r) (s'-1)

/srTZsTl

(A.2Bc)

_i___l/s, (2s-1) 
|

s' (s-2 ) -.]

(A'.29a)

(A.29b)

(A.29c)



rp - .pL - ^o

¡4P =
I li' ^å

-t

(s+s') 
|

L/ssî

(*P)rr = (2s'-l-)s'of, + (2s'-1)sof

* srf

rrf - rf r

(*P)22 = ass'of, + (s-s'¡2

(uP)33 : (2s-t)so3 + (2s-r)s'o! + (2s'-t)s'o!

/ssr- (^3 -

srf; + r'^l

(np)rz : (*P)zr = 'ÆlzE-r:ll- t2s'of,+ (s-s')oT- (2s-1l"ll
(A.3of )

^T,]
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(xP ) z: : (NP) :z

"T+

+ (2s-1)so!

(Ä'.30a)

(wP) :r = (NP)r¡

where

(2S-l) (2S'-1¡oP
2

(A.30b)

= /Srf2s-I1- tzsof - (s-s')oI - i€s'-r)o5l
(A.30s)

Ðo'
m

2

= ÀP lt (Àm ñ-^)c-u
e.lm

and from our previous definition of À* (2.5) note that

(4.30c)

ffir"å-

(A.30d)

_1
I

v-

(4. 30e )

Doi + olt

ITr = 0 rI12

(A.30h)

(A.31)



Ào = ss'

Àt = SS'

x2 = ss'

25'
Next consider the operator I_ ;fp) f 3;,.,.õrr,*r)n

P=l-

effect of this operator on

described by the following

2s'
L', = 

-i r{n) ¡e
P=l-

2sl
Mr = -t rin)tn

P=1

25'
N'! = -i rjn)*n.

P=l-

ts4.

two spin deviation states

matrices:

rn terms of the parameters 
"*t' 

ana n 
(i)

are as follows:

L, = no,t)

(4.32a)

(A.32b)

(e.32c)

The

IS

Mt =

t'no(t'*tn{t'
S+S

(4.33a)

,ãt-vùù ^ (r)t1

(2.6) these

(A.33b)

/ss- Gj1)

tnJt' *t'njt'

(4.33c)

matrices

S+S

(A'.34a)

(A.34b)



*i, : no(t) tçS=al t (2s'-rt 
"{1) 

* (2s-t) "jt) , (4.34c)

*åz = nJt) - t5;$ -11 t (s-s' l2ef rl + (2s-l) (2s'-rl 
"jr) I (4.34d)

Nå: = nott' - rgfiar t (2s-1) "lt) * ( 2s'-rl "jr) r 
(4.34e)

*ïz = Når = /STær:TT tg;$=al t-(s-s'lefrl + (2s-rl"j1) I
(A.34f )

Nå: = Nåz = /s-r-1zs:Tl- tg.-$=at t (s-s') "Ít) * 
(2s'-r) "jt) ,

(A.3ag)

*år = Ni: = /m r$-alt"{t' -"|;1)1. (4.34h)

Next consid.er the operator e = 
*l'- 2T' 

(3å,.,. õzrr*r) P. using
n=l p=I

the prevíous set of results (4.34) rve can determine the

effect of the operator on the varíous two spin deviation

states. Doing so gives the following relations (where m t [) :

alzt",2m, = tä nJl) - 2sc{L) tlzs-,2m>

I55.

+ /ss-r 
"jt' ,lzn.+t,2m> r l2t,2m+L,¡ (4.35a)

alzt-r,2m, = tï nát) - (s+s')"{t' ,lzt-t,2m,

+ /ssr 
"{t' , lzr"-2,2m> * lzn-t,2m*1>) (4.35b)



al2Lr2m*r> = ,ï nJt' - (s+s,) 
"jt) llre.,2m+r>

/'r \+ /Ss-- 
"ì'' 

( lzr"+t,2m*L> + l2r.,zmr) (A.35c)

elzn.+t,2m*7> - ,ï nott' zr'"jl) tlzr+r,2m*r>

/'l \+ /SsT cl'' (12L,2m*t> * lzt+t,2mr) (a.35d)

o l2m-r ,2m, : ,Ï nJt' (s+s,) 
"jt) I lz*-r ,2m,

¡/l \+ ,/SST 
"ì-, 

( lZm-Z ,2m, + lZm-f ,2m*1>) (A.35e)

ol2m,2m*L> - t(Nt2)sJI) * Når)lzm,2m*r>

* Niz l2m,2m, * Nå3lz*+f ,2m*I>

a I 2m ,2m, : r tfl sjl) * *ir )l2m,2n>

156.

* tiz l2m,2m+L' * *å, lZ*+t,2m*l' (A. 35g)

el2m+r t2ml-L> = r tfløji) * *år1 l2m+r,2m*t>

* Nå 3 I z* ,2m*L' * *å, I zm, 2m> . (A.. 35h)

Using the preceding results (4.35) as well_ as the

analagous set of results with respect to the operator

S2.r*1.S)n+Z we can now write down the representation of the

Hamiltonian (A.22) in the basís of two spin deviation states.

(A.3sf)



ff we again let H' - 
" - "0 

then we obtain the following

where (m > L) z

H' 12 e-¡2m> = 2s (cÍ1' * 
"{') I lz s.,2m>

t)\
'Æs. "ì'' 

(12n",2m-L, + lzt"-t,2m') (4.36a)

H' 12 e.-L ,2m> = (s+s , I tcjl) * 
"l') I lz e"-L ,2m>

,Æs-r 
"jt 

) , lz n +t ,2m, + lz t ,2m+r ,¡

I57 .

1t\/Ss' 
"ì''(l 

2e"-L,2m*r> * l2*,2m+2r¡ (A.36c)

H' l2r*1,2m*f> = 2s' (cJr) * 
"Í') I lrr*1,2m*t>

1l \/ssT 
"ì'' 

( lz t"+t, 2m*1 > + lz t" ,zmr¡

'Æß-r- "Í'' , lzr+2,2m*r> + lzn+t,2m+2>) (4.36d)

H'lzm-t ,2m, = ' 
(t) 

l2m-L,2m> rj?) l2m,2m> .Jt, l2m-r ,2m-L>

/r I,/SSt 
"ì', 

( l2m-2 ,2m, + lZm-f ,2m+1>) (A. 36e)



H'l2m,2m*t> = . (') l2m,2m*L'- .J+) lr*,2m, - rJt' l2m+r,2m*t>

/sST cì-' ( l2m-f ,2rn*1> * l2m,2n+2>) (4.36f )

u'12m,2m, : orl2m,2m, - rjl) t2m,2m*r'-.J?) ¡z*-r ,2m,

-¡ (1) 
l2m+r,2rn*r> - o 

(') 
| 2m-L,2m-r> (A.36g)

H'l2m+t,2m+r> = 0r,l2m+r,2m+r'- rJt) lr*,2m*1'- aJ') lz*+r,2m+l2>

o 
(t) 

| 2m,2m> o 
(') 

| 2m+2,2m*2' (a,.36h)

where : l.rm : L,2,..., + (9. . m)

and where the parameters r (Í) , 0s, tJt' , A 
(í) are as defíned

in (2.20) . Notice that we have now explicitly shown that
two spin deviation states are not eigenstates of the Hamiltonian.

IJow consider the two-rnagnon Schrödinger equatíon (2.L6) .

This can be written
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u' lþZ> - E2lrt'r, .

Substituting for the general form of the two-rnagnon wave-

function (2.15) gives

N/2 N/2
I, I. (Ez-H') [arr. ,2^12n,2m, * .2rr_l ,2ml2n,2m-L>n=l m=l
nsm

* u2n,2m*rl2n',2m+rt * t2.r*r,2m+1 l2n+r',2m*1>J = 0

(A.38)

(A.37)



Using the results of (4.36) we can eliminate H' from (4.38) .

This gives an expression analagous to (A.26) of the one-magnon

problem, except much more complicated.

The two spin devíation states { liit li < j¡ í,j = I,2,.-

..,NÌ form an orthogonal set. (As for the single spin devia-

tion states this can be shown explicitfy by using the formalism

of Section 4.1.) Consequently, the coefficient of each state

in (Ä..38) must vanish independently. To determine the coeffi-

cients of the states l2r,2s, , lZr-t,2sr, l2r,2s+Ir, l2r*I,2s*I>
we need only consider the terms in which the summation indices

take on the values n: Tt r tl and m: sr s ll- such that

n < m. For any r 4 sr equating the coefficíents of each

of these four states to zero results in the set of four

non-interacting equations (2.L7) . Meanwhile, if r : s then

equating the coefficients gives us the four interacting

equation s (2. 19 ) .
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fn Chapter 2 we found that the two-magnon spectrum for

an alternatíng ferrimagnetic chaj-n contains three distínct

energy continua. In this appendix we will solve explicitly

for the spectral curves which describe the various continua

boundaries.

The approach used here will be to consider the conditions

required for rel-ative wavevector q to take on real values.

This l-eads to the continua boundaries because q can only be

real- valued if the corresponding spectral point (K,82) lies

inside one of the three continua. (As discussed in Chapter 2

q = (kf-kZ)/2 where rmag(kr) - -Imag(kZ). So q e R. only if

k1,k2 e fR and k.,k2 are real only inside the continua.) An

al-ternative approach would be to use the secul-ar determinant

equation (2.23), to solve for the turning points of excitation

energy E, as a function of q [KRU].

Recall the expression (2.27 ) for cos (2q) as a function

of energy EZ and total wavevector I(, which we obtained

directly from the two-magnon dispersion relation. V'ie no\i,/

rewrite (2.27 ) in a more conveníent form:

APPENDTX B
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cos (2q) :

where

-Q2cos t^1,
psin2 (x)

(B.1)



Q = E2 2B

F - 4ss'I tc{rl, z + rc(2) )2t * o2

P - ars'cjl' 
"J''

and where parameters 
"Jt', 

B, and D are defined in equations

(2.6), (2.LAa), and (2.LAc) respectively. There are four

(generally different) values of q which satisfy (B.l) once

E2 and K (and alI other parameters) have been set. In general

all four of these allowed q values are complex. However at

least two all-owed values must be real provided that both

cos (2q) is real- and lcos (2ø) I < 1. If either of these criteria

is viol-ated then all four values of q will have non-zero

imaginary parts. Note that cos (2q) will be real provided

that the square root on the right-hand side of (B.I) has a

posítive argument.

A continuum boundary separates regions of the spectral

plane for which real values of q do and do not exist. So it

follows that any point on a continuum boundary satisfies one

of the following two conditions:

16l_

(8.2a)

(8.2b)

(8.2c)

(1)

(2)

cos(2q) = tl

n4 n2¡'sin2 (x) + p2sin4 (r) = o ,

lcos(2q) | < l-

and

(8.3)

(8. 4a)

(8. 4b)



Consider condition

(8.1) equal to À (where

lpsin2 (K) + n2cos (r)

Square both sides and rearrange (using 
^2 

= +1):

-n4sin2 (x) + ç2lzÀpcos (K)

(f). If we set the right-hand side

À = tl) then we obtain

The factor c2sin2 (x) is independent of À and hence has no

bearing on the reality of q. So this condition becomes

=r l

n2sin2 (x) to2 - 2ÀPcos (K) Fl = o

Q : +t2PÀcos(K) + Fl'î

+ ¡'lsin2 (x) = o

L62.

where:

Each of the four spectral curves described by (8. B)

tential continuum boundary. In order of increasing

these spectral curves are as fol-lows:

E2 (K) : 2B [¡' + 2Pcos (K)]\

e, (K) : 2B tF - 2Pcos (K) lL

À = +1

(B.s)

(8.6)

E2 (K) = 2B

E2 (K) = 2B

(8.7)

+ t F 2pcos (K) l%

+ Lr' + 2Pcos (K) lZ

(8. B)

is a po-

energy

(8. 9a)

(8. eb)

(8.9c)

(8. ed)



Subsequent discussíon will refer to these curves as

E. (K) = trri where v = ârbrcrd respectively. It is important¿v
to note that all sections of these curves do not necessariJ-y

correspond to continuum boundaries. Suppose there is a loca1

extrema (i.e.r vorì Hove singularity) in the expression for

cos (2q) whích lies inside a continuurn region. Such an inter-

nal- singularity (if it exists) must satisfy condition (1)

and hence will coincide with at l-east one of these curves for

some range of K.

Now consider condition (2) . The first part of this

condition (B.4a) is a quadratic equation in a2 . Solving gives

Each of the four spectral curves described

potential contínuum boundary. In order of

these curves are as fo]lows:
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E2 (K) = 28 sin (K)

E2 (K) : 2B sin (K)

E2(K) = 2b +

E2ß) = 2B +

(8. 10 )

by (8.f0) is a

increasíng energy

l,-p;gl'"
t---r-l
l,-p;p)'"
l-lL2_l

lr.-r7-n7l'l---2-l

sin (K)

sin (K)

(e.11a)

(8.llb)

(e.11c)

(B. r]d)



Subsequent discussion will refer to these curves as E2 (K) = Zu

where v = a,b,c,d respectively. Note that each of these

spectral curves can only describe a continuum boundary when

the second. part of condition (2) (namely (8.4b) ) is also

satisfied. That is, the curve E2 (K) = ,u corresponds to a

continuum boundary only for values of K in which I cos (24) I < l-

Ís satisfied along the curve.

tr^ie can consider the second part of

fol-lows. f f we substitute (8.10 ) back

cos(2q) : - "";J*' [¡'t F-a?l

Choosing the plus sign in (8.12) (in front of the square root)

gives Lhe value of con (2q) for points along the curves Zu

and ZU while choosing the minus sign gives the value of

cos (2q) for points along the curves Zb and Zc. Regardless

of whether we choose the plus or minus sign, cos (2q) will

take on a finite absolute value at K = 0 and rvil-l gradually

decrease in magnitude as we move across the Brillouin zor.e

untíI cos(2q) = 0 at K: r/2. If the minus sign is chosen

then it can be shown that lcos(2A) | < 1 at K = 0 and hence

lcos (2ø) | < 1 is satisfied for all- K. However if the plus

sign is chosen then it can be shown that I cos (2q) I > 1 at

K - 0. As a resuJ-t, lcos(2U) I < I only for K r K" where K.

is some specíal value of total wavevector. I{e can solve for

K" by choosing the plus sign and then equating the right-hand

L64

condition (2) as

into (8.1) we obtain

(8. 12 )



side of (8.L2) with -1

K

To summarize, E2 (K) = ,b and E, (K) : Z" are continuum boun-

daries for all values of K whereas E2 (K) : Zu and E, (K) = Zð,

are continuum boundaries only for K t K".

The special value of wavevector denoted by K" has addí-

tional signifícance. At this point in the Bril-louin zone

we find that Wb = Zu and W. : Zd. Further investigation

revears that for K t K", then E2 (K) = wb and E, (K) : tr{" both

l-ie inside energy continua. Hence for K r K. these two

spectral curves correspond to internal- van Hove singularities

rather than continuum boundaries.

trrle know from Chapter 2 that there are three distinct

contínua (optim-optic, mixed-mode, and acoustíc-acoustic)

so there must be six continua boundaries. Appropriately,

we have indentified six distinct expressions for continua

boundaries at any given value of K. ff we order these boun-

daríes in energy and match them up with the appropriate continua

then we have the following correspondence:

: ARCos {--
Lu*

c
2Pl_l

/u2 -av2 l

Solving for K = K" giives

l-65.

(8. 13 )

I.

)

acoustic-acoustic lower boundary,

acoustic-acoustic upper boundary,

') mixed-mode lower boundary

E2

"2

(x) =w

(K) =
a

Itoo

l,\C
bEr(K) = Z

K

K

Kc

K



4

5

Mixed-mode

optic-optic

A plot of these continua boundaries is shown in Figure (2.2)
r ^(1) L ^(2)forS= S'=1, ci*'=1ci

ff we plot all eight spectral curves given by (8.9)

6. optic-optic upper boundarlr

upper boundary

Iower boundary

and (8.11) continuously across the Brillouin zone then the

resulting EZ versus K spectral plane is separated into eleven

distinct regíons. In Figure (2.3) we have plotted all eight

curves (for s = sr = å,"jt' =T"!", and the resurting

regions are tabelled in the same manner as by Krupennikov

in his study of the alternating Heisenberg chain [KRU]. The

significance of these spectral regions is that the "nature"

of the allowed values of relative wavevector q depends upon

which particular region is under consideration. (By nature'

v/e mean the distribution of the four allowed values of q Ín

the complex plane.) As a result, the nature of solution of

the two-magnon problem varies from region to region.

Ez

E1"2

(K)

(K)

z.
D

(vt
lc
ì-lrd
W.

d
E2 (I() =
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K<K c

K>K c

Notice that the regions l-abelled by odd numerals (I,

fff, V) are all- outside the energy continua while those la-

belled by even numerals (II, IV, VI) are al-I inner continuum

regions. It is obvious (from Chapter 2) that crossingi over a

continuum boundary should change the nature of sol-ution. fn

crossing from region II to region IV we do not l-eave the
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continuum in question (either A-A or o-o). However the nature

of solution generally changes as a result of crossi-ng over an

internal- van Hove síngularity. In crossing from region III

to region V we do not leave the continua gap in question.

However the nature of sofution generally changes because of

a degeneracy on the curve separating these two reqíons. For

spectral points on this curve the square root in (8.1) vanishes

and hence there are only trvo al-lowed va.l-ues of q rather than

four.
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