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ABSTRACT

In this thesis, the two—magndn excitation spectra of an
alternating ferrimagnetic chain are calculated and then
analyzed. Both the spins and bonds of the chain are permitted
to alternate in the general formalism. This is followed
by intense study of a variety of special cases. A direct
analytic approach is used to trace the bound state branches
while a real-space rescaling approach is used to calculate
the two-magnon densities of states. The latter approach is
particularily useful for studying continuum states. The
significance of any special features detected in the spectra

is discussed.
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Chapter 1

INTRODUCTION

From the time of the ancient Greeks up until early
twentieth century, magnetism had long served as a puzzle-
ment to men and women of science. But thanks to the "quantum
revolution" of the 1920's, and in particular the work of
Heisenberg [HE] and Dirac [DI], we now understand how
spontaneous magnetization arises in solids. Spontaneous
magnetization is the direct result of interactions between
atoms that are quantum mechanical in origin. These inter-
actions are a consequence of the contraints placed on
electronic wavefunctions by the Pauli Exclusion principle.
The Pauli principle requires that wavefunctions describing
systems of electrons (or more generally fermions) are anti-
symmetric under exchange of both spatial and spin coordinates
of any electron pair. As a result, the relative spin ori-
entation of the electrons can influence the electrostatic
energy of the system. It is possible to &press the effect
of the Pauli principle by interactions which can be described

by operators of the form
S.-.S. i#3] (1.1)

where gi and §j are spin operators corresponding to different

atomic sites.




To better understand this effect we consider the simple
example of a hydrogen molecule or in other words a two-
electron system. The Hamiltonian describing this system
can be written

2
_ 1 2 1 2 e
H = > vl > v2 + V(1) + v{2) + T (1.2)

12
where the indices 1 and 2 label the spatial coordinates of

the two electrons and r is the distance separating the

12
two electrons. (For convenience we have set the fundamental
constants h and 4ne . equal to unity.) Clearly (1.2) is

0
invariant under exchange of electron spatial coordinates

so the two-electron spatial Qavéfunction must have definite
symmetry. We find a splitting in the energy levels of the
system depending on whether this spatial wavefunction is
symmetric or antisymmetric under exchange. From the Pauli
principle, if the spatial wavefunction is symmetric, then
the corresponding two-electron spin wavefunction must be
antisymmetric and vice versa. Hence the forementioned
splitting can be said to depend on whether the two-electron
spin wavefunction is a singlet state (i.e., antisymmetric)
or a triplet state (i.e., symmetric).

The singlet and triplet spin states are both eigenstates
[2

of the total spin operators |S = {§I-+§2]2 with corres-

ponding eigenvalues S% = 0 and Sé

T

il

2 respectively. It



therefore follows that the energy splitting can be described
in terms of the eigenvalues of this operator. However the

operator 2(S -§2) differs from |§ 2 by only a constant

1 il

term so it is equally valid to express the energy splitting

~

in terms of eigenvalues of S, -S It can be explicitly

1
shown (see Smart [SM]) that this energy splitting or

-
"exchange enexrgy" for the hydrogen molecule can be written

AH = -JS, -§S

1°55 (1.3)

where J is a function of electrostatic force between electrons
and is often referred to as the "exchange integral". Because
of the strength of the electrostatic force relative to
magnetic dipole interactions, the latter can be neglected.

Now suppose we extend the previous result to a lattice
of atoms, each with magnitude of spin Si = %. Then the
total energy arising from the effect of the Pauli principle
can be described by the following operator which was origi-

nally proposed by Dirac [DI] but is commonly referred to as

the "Heisenberg exchange Hamiltonian":

H = ) J..S.-S.. (1.4)

We also want to allow for the possibility that Si > %

and Si # Sj as would be the case for atoms with greater than

one valence electron. However the simple result of (1.3)



depended crucially on the fact Sl =8, = %. For more

general spin magnitudes we expect to obtain a more compli-

cated polynomial in 51-52. In other words, we expect
_ _{0),y 2,0 _ (1) ,x .zl _ _ (@) ,z .z ,d
AH = -J (Sl SZ) J (Sl SZ) .o J (Sl SZ)
(1.5)
where d = 2 minimum (Sl’SZ)’ The coefficients
J(O),J(l),...,J(d) can be regarded as being analogous to

the coefficients of an electromagnetic multipole expansion.
This is because both sets of coefficients are conseguences
of interactions between extended distributions.

We justify the precise form of (1.5) as follows. If
the "exchange Hamiltonian" is to remain rotationally invari-
ant, then so must each individual "exchange operator"
describing the interaction between two spins. So if we
assume rotational invariance then each exchange operator
must be a tensor operator of rank zero or in other words
a scalar. From quantum theory of angular momenta (see
Watanabe [WA]) any scalar operator acting on the direct
product space of two spins S, and §2 can be written as a

1

linear combination of powers of §l-§2. Furthermore, the

dimension of the subspace spanned by these operators is

equal to the number of possible eigenvalues of |S where

ol
1), (I8y-8, D)

ST = Sl-+82. Since ST = {(Sl+82),(Sl+S2

the dimension of this scalar subspace is d+1 where

d = 2 minimum (51’82)' Hence it is redundant to expand




scalar operators in powers of S -82 in excess of d.

1

So a more general version of (1.4) valid for spins

of arbitrary magnitude is given by

H=- ] I J§§’<§i-§j>9 (1.6)
i#j p
where the index p runs from 1 to 2 minimum (Si,Sj). Note

that we have neglected the constant terms (§i-§j)0 as we

are always free to add or subtract a constant to the Hamil-
tonian without changing its physical nature.

Reconsider the Heisenberg exchange Hamiltonian (1.4).
In order for the exchange interaction to occur,thé wave-
functions of the interacting electrons must certainly

overlap. Hence the exchange coefficients Jij depend on

th

(among other factors) the degree of overlap of the i and

jth electrons. So it follows that Jij is a function of r..

1]
th and.jth electrons) such that

(the separation between the i
the magnitude of Jij decreases rapidly as rij increases. So
it is not an unrealistic approximation to assume these inter-

actions are significant between nearest neighbours only. With

this approximation the Heisenberg exchange Hamiltonian becomes

y g g, .8, (1.7)
§

HHeis i,i+8°1 Ci+s

H- o~

where for each atom (i) we sum over all nearest-neighbour

atoms (i+é). For the sake of simplicity we further restrict



ourselves to the case of a one-dimensional lattice or in
other words, a linear chain of atoms. Then the Heisenberg

exchange Hamiltonian further reduces to

~

1 1+l i Si+l' (1.38)

il
Her~1

HHeis

Note that the extension of subsequent results to two or
three dimensional lattices is in most cases straightforward
but tedious. The further simplifying case of a uniformly

spaced chain of identical atoms gives

Hueis = 9 g S;°S; 41 S, =8 Vi. (1.9)
For the case of a uniform chain with nearest neighbour
interactions only, the more general exchange Hamiltonian

of (1.6) similarily reduces to give

i+l)p i L (1.10)

28 (p) =~
-y 7 P8, -8
g i
i p=1
Although most related literature deals with the case of a
uniform homogeneous system, in this thesis we allow for the
possibility of an "alternating chain". By this we mean
a chain composed of two non-identical sublattices, each of
which itself is uniform and homogeneous. Generalizing (1.10)

for an alternating chain gives



N/2 28" N

n=1 p=1

2

s
It
|

1§ ~ L
on "Son+1 on+1""2n+2

where the total number of atoms N is an even integer and we
assume S' < S without loss of generality. This is the form
of the exchange Hamiltonian which will be studied in the
subsequént chapters of this thesis. It can be said to
describe an alternating ferrimagnetic chain.

Unless otherwise mentioned we will be considering the
limit of an infinite chain. This implies periodic boundary

conditions such that for every n,

Sén - Sén+N’ (1.12a)

S2n+l - S2n+l+N ° (1.12b)

These boundary conditions insure translational invariance
such that the unit cell of repetition contains two atoms.
Before proceeding it should be mentioned that we neglected
to consider a number of factors which are often of importance
in real materials. These include anisotropic spin exchange,
single—-ion anisotropies and the effect of an external magnetic
field. For instance, if all these factors were taken into
account for a nearest-neighbour uniform chain, then the

exchange Hamiltonian (1.10) would become




25
- -V (p) XX Ya¥ 2.2 P
H = % pzl J LSSy BSIS Ly Y vSiS 4]
25 ) .,
-1 I o shHP - n ] st (1.13)
i p=2 i

where: spin exchange is anisotropic if a # B # vy
h is a measure of the external magnetic field
which is assumed to be orientated along the
z—direction

D(p) are measures of single-ion anisotropy .

For the sake of simplicity, these factors will not be con-
sidered in this thesis. It is however a straightforward
process to extend our formalism to include any or all of
these effects.

We next examine some general features of the Hamiltonian
of interest (1.11) beginning with the ground state. It is
instructive to first consider the ground state for the spe-
cific case of a uniform chain with Si = %—V i. For this
case we refer to the simpler Heisenberg exchange Hamiltonian
of (1.9). If J > 0 then clearly the most favourable (lowest

energy) state occurs when all spins are parallel. Assuming

magnetization is along the z-direction then this is a state

with either all spins "flipped up" (i.e., Si = +_% v i)
or else all spins "flipped down" (i.e., Si = - % v i). If

J < 0 then the corresponding ground state is not so simple.




Anti-parallel spin pairs are obviously favourable but the
"intuitive" choice of ground state (spins flipped up alter-
nating with spins flipped down) is not an eigenstate of the
Hamiltonian. The actual J < 0 ground state (first calculated
by Bethe [BE]) turns out to be much more complicated.

In general, for a magnetic material consisting of
identical atoms on translationally equivalent sites, we
categorize it as either a ferromagnet or an antiferromagnet.
This depends on whether parallel or éntiparallel alignment
of adjacent spins is favoured. So for the previously dis-
cussed uniform Heisenberg chain,J > 0 and J < 0 correspond
to ferromagnetic and antiferromagnetic chains respectiveiy.

Now reconsider the alternating chain with general
magnitudes of spin. This is an example of a ferrimagnetic
system. (A magnetic material is referred to as a ferri-
magnet if it is composed of non-equivalent atoms or non-
equivalent sublattices or both.f In general, the ground
state of such systems cannot be explicitly calculated. For
(1.11) the ground state depends on what values are assigned
to the set of exchange coefficients Jép) (i = 1,2,
p=1,2,...,28"). 1In some cases of (1.11) parallel arrange-
ments of adjacent spins are favoured. Hence the lowest

energy state occurs when all spins are aligned along a common

direction with maximum projection in that direction. (For




10.

instance, if the direction of magnetization is taken as the
negative z-direction, then for such cases the ground state
occurs when Séi = -3' and S§n+l = -S ¥V n.) This state
having maximum alignment of spins is referred to as the
"ferromagnetic state" and systems for which this is the
ground state are said to exhibit ferromagnetic behaviour.

For other cases of (1.11), the wvalues of the exchange
coefficients will be such that antiparallel arrangements of
neighbouring spins are favoured. For these cases the ferro-
magnetic state lies highest in energy and the corresponding
systems is said to exhibit antiferromagnetic behaviour. The
ground state of such systems is generally incalculable.
There will also be cases of (1.11) for which it is unclear
whether the chain tends towards ferromagnetic or antiferro-
magnetic interactions. For these cases the ferromagnetic
state lies neither highest or lowest in energy and the
corresponding ground state is (generally) incalculable.

If we are to proceed to study the energy spectra of the
Hamiltonian (1.1l) we require a starting point. 1In other
words, we require an explicit expression for the ground
state. Because the ferromagnetic state (all spins aligned
with maximum projection) is the simplest eigenstate of (1.11)
we have chosen to only consider systems in which this is the
ground state. The direction of magnetization is arbitrarily

taken as being along the negative z-direction. For the
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remainder of this thesis it is to be understood that the
parameters of the Hamiltonian (1.11) may only be varied in
such a way that all other states have positive energy rela-
tive to the ferromagnetic state. In subsequent discussion,
the term ferromagnetic chain will imply such cases whereas
the term antiferromagnetic chain will imply that the signs
of all the exchange coefficients have been reversed so that
the ferromagnetic state lies highest in energy (although
technically a ferrimagnetic chain is neither a ferromagnet
nor antiferromagnet).

Now that we have established the ground state of the
exchange Hamiltonian (1.11) és being ferromagnetic the next
features to consider are the low-lying excited states. But

first note that because of the rotational invariance of the

Hamiltonian, SéOT is a good gquantum number where
z N/2 'z z
Spor = il (Spn * Sop41) - (1.14)

By good quantum number we mean that H operating on a state

of definite SéOT gives back a state having the same definite

value of S;OT associated with it. Consequently, we can

partially diagonalize the Hamiltonian by grouping its
eigenstates into subspaces labelled by the various values of

z z ..
STOT‘ These values of STOT range in integral steps from
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(s+8') to 0. (The subspaces with S; P ranging from 1 to

0

(S+S') are redundant because in this model the positive

RN

and negative z-directions are energetically equivalent.)

Note that the subspace labelled by S$OT = - g (S+S') contains

only the ferromagnetic ground state.

Again it is instructive to first consider the states

of the uniform Heisenberg chain (1.9) with Si = % v i.

Since the ground state (all spins flipped down) has the most
. z . . . z _ _ N

negative value of STOT associated with it (STOT = 2)

we first consider the subspace of eigenstates labelled by

S;OT = - §~Fl. Any state in this subspace can be written

as a linear combination of states having all but one spin
parallel. In other words, if |0> represents the ground
state then the excited states in this particular subspace
can be written as linear combinations of the states

|1>, |2>,...,|N> where |j> = s;.“|0>. (s;.r = s’j<+isij’ is the
quantum raising operator corresponding to the jth site.)
Because of the translational invariance of the Hamiltonian

we can be even more explicit. By way of Bloch theorem [AM]

we can write

Helsle = E(K)IwK>
where ly_ > = 1 ) e TEm (1.15)
K N
N m

By using the explicit form of the Hamiltonian (1.9) and
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applying the well-known properties of quantum spin operators

[SAK] we obtain the result

E(K) = E, + 2Jsin” (5) (1.16)
where EO is the ground state energy. A plot of this dis-
persion is given in Figure (l.1l). Note that the periodic

boundary conditions (1.12) restrict unique values of the
wavevector K to those in the first Brillouin zone
(|K] < 7). Hence we obtain a "band" of energies with minimum
energy at K = 0 coinciding with the ground state. Because
of the plane wave nature of these excitations they are
referred to as spin waves. They are also referred to as
magnons, this latter name reflecting that they represent
quanta of magnetic excitation.

Next consider the subspace of excited states labelled
by S;OT = - §~+2. Any state in this subspace can be written
as a linear combination of states having all but two spins
parallel. Alternatively, such states can be regarded as a
pair of interacting spin waves and hence are referred to as
two-magnon excitations. The corresponding dispersion relation
(as derived Mattis [M]) is shown in Figure (1.2). K is
now the sum of the wavevectors describing the two individual
magnons or in other words the "total wavevector". Along with

the continuous spectrum of states there is an isolated curve

in Figure (1.2) corresponding to a bound state (that is a
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Energy

FIGURE 11: One—magnon dispersion relation for a uniform Heisenberg
chain ( S=1/2 ). Energy is in units of exchange integral J .




15.

FIGURE 12 : Two—magnon dispersion relation for a uniform Heisenberg
chain ( S=1/2). Energy is in units of exchange integral J . Shaded
region indicates the continuum.-The bound state is indicated by a solid
curve.



16.

state localized in the neighbourhood of an attractive inter-

action).

The subspace of states labelled by S;OT = —"§~+3

corresponds to three-magnon excited states, the subspace

z

of states labelled by STOT

= - §~+4 corresponds to four-
magnon excited states, and so on. The gn-magnon excitations
include the highest lying excited state which is the ground
state of the corresponding antiferromagnetic chain (J < 0).
It is expected that the dispersion relations get increasingly
complicated as the number of magnons increases.

Now reconsider the exchange Hamiltonian of interest
(1.11) describing the alternating ferrimagnetic chain with
ferromagnetic ground state. As in the previous example

the various excited states can be categorized as being one-

magnon excitations, two-magnon excitations, three-magnon

2

excitations, etc...., depending on the value of STOT asso-
ciated with the states in question. For an m-magnon exci-
tation the corresponding eigenvalue is S;OT = - g-(S+S') + m.

The m-magnon dispersion relation or spectrum is generally
much more complicated than it would be for the previously
discussed uniform Heisenberg chain. For instance, the one-
magnon spectrum of the alternating chain contains a two
branch dispersion curve. The second branch arises as a
result of having two atoms in the unit cell of repetition.

The two-magnon spectrum generally has three isolated energy
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continua and as many as six bound state branches (as will
be shown in the chapters ahead).

Both the one and two-magnon spectra of a ferrimagnetic
chain with ferromagnetic ground state can be solved for
exactly, regardless of how otherwise general the model is.
However, the m-magnon spectra for m 2 3 are generally in-
soluble, as these correspond to many body problems. Unfor-
tunately, it is the arbitrary m~-magnon problem that is of
greatest interest because solving this léads directly to the
ground state and low-lying excitations of the more interesting
antiferromagnetic model. However, there are special cases
of (1.11) for which the arbitrary m-magnon problem can be
solved exactly and hence the complete excitation spectra

can be obtained. Such cases are referred to as completely

integrapble models [SU2]. The previously discussed uniform
Heisenberg chain with S = %—is a completely integrable
model [BE].

The focus of this thesis is on solving the two-magnon
problem of an alternating ferrimagnetic chain with ferro-
magnetic ground state. Yet most real life magnetic materials
possess antiferromagnetic interactions, so as mentioned above
it is the arbitrary m-magnon problem which is of primary
interest. So why do we bother to study the two-magnon
excitations with such diligence? Because by examining the

features of the two-magnon spectra for a wide variety of
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cases it may be possible to identify special cases correspon-
ding to completely integrable models. It has been shown
that such models typically have special features in their
m~magnon spectra [CK].

For instance, consider the uniform chain exchange
Hamiltonian (1.10). It has been conjectured by Haldane
(HALJ] that the corresponding m-magnon spectra have bound
state branches with range over ¢ = minimum (m,2S) consecutive
Brillouin zones in the extended zone scheme. In general,
these branches enter the energy continua (where they are
no longer true bound states) and are discontinuous at
‘Brillouin zone boundaries. Haldane further conjectured
that for integrable models only, these branches are both
real and continuous across p Brillouin zones. This implies
that completely integrable models of (1.10) can be identified
by studying the two-magnon spectra for cases in which the
bound state branches stay completely outside the continua
and have no gaps at the first Brillouin zone boundary.
Such studies were made successfully by Chubukov and Kveschenko
[CK] and by Southern et al [SLL]. Similar studies of two-
magnon spectra for alternating chains may lead to the identi-
fication of additional integrable cases, hence motivating our
research.

In this thesis we will try to identify possible candi-
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dates for complete integrability. This will be done by
studying the spectral nature of two-magnon excitations of

an alternating ferrimagnetic chain. Hence we require a
method (or methods) for rigorously solving the two-magnon
problem of an exchange interaction system. A rather well-
known technique, commonly used in solving multi-magnon (and
analagous) problems is the "Bethe ansatz" approach, originated
by Bethe in 1931 [BEJ]. This approach was first applied to
the uniform Heisenberg exchange Hamiltonian (1.9) with

S = 5 . By assuming periodic boundary conditions and then
making use of translational invariance, Bethe was able to
make an "educated guess" to the form of the m-magnon Wave—
function. As a result, he succeeded in completely diagonal-
izing the Hamiltonian. As it turns out, the Bethe ansatz

(or suitable generalization) can be used to solve for the
complete set of states for essentially any Hamiltonian repre-
senting a completely integrable system [SU2]. (Such systems
occur not only in magnetism but a wide range of physical
problems. But virtually all known integrable cases correspond
to systems confined to one dimension in space or time.)
Consequently, the Bethe ansatz can be used to solve the
arbitrary m-magnon spectra (and hence the complete anti-
ferromagnetic problem) of any spin exchange system which
corresponds to a completely integrable model. However the

Bethe ansatz is not applicable to systems of limited inte-
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grability and therefore not suitable for studying general
models such as (1.11).

Since a system is integrable only if it can be solved
using the Bethe ansatz, this approach can also be used as
a means of identifying integrable models. Another technique
which can be used for the purpose of identifying such models
is the quantum inverse scattering method, as has been done
by Takhtujan [T] and Babujian [BAB]. However, using such
tedious methods for the purpose of identifying integrable
cases of a general system is a massive undertaking. It is
much preferable to have criteria to apply beforehand which
indicates which particular cases are the most likely candi-
dates for solvability by these methods. Special features
of the two-magnon spectra is one such criteria.

We now focus on methods for solving the two-magnon
problem which can be used independent of the integrability
of the system. One such method which we refer to as the
"analytic approach" (for lack of a better name) entails
solving the one-magnon problem beforehand and then describing
the two-magnon problem as an interaction between pairs of
one-magnon states or spin waves. Such an approach has been
used previously by Fukuda and Wortis [FW] and Hanus [HAN].
An approach with a similar philosophy but formalized in
terms of Green's functions was initiated by Dyson [DY] and
later developed by Wortis [WOJl. Approaches such as these are

advantageous in their easy applicability to a wide range of
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magnetic systems. The dimensionality of the lattice,

presence of anisotropies, and the range of interaction are

of little concern when applying such methods. The Green's
function formalism is generally favourable because a system's
spectral properties are easily extractable once these
functions are known. However using the "Green's function
approach" usually requires performing a cumbersome fourier
transform so that the results are expressed in real-space
(rather than reciprocal-space) coordinates.

An alternative technique, which we refer to as the
"scaling approach", is based upon the ideas of real-space
rescaling methods. Such methods were used originally in
the study of critical phenomena [NL] but are applicable to
a wide range of problems. Such an approach was shown to
be effective in the study of exchange Hamiltonians (and
more dgenerally tight-binding Hamiltonians) by Southern et
al. [SKL], [SKA]. This approach entails constructing a
transformation on a system of equations which eliminates
a fraction of the variables while leaving the form invariant.
This technique has the advantages that the one-magnon
problem need not be solved beforehand and the real-space
Green's functions can be calculated directly. Unfortunately,
the scaling approach is limited to systems describing one-

dimensional lattices.
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In our study of the alternating ferrimagnetic chain we
have chosen to use two of the previously discussed approaches,
analytic and scaling, in solving for the two-magnon excitation
spectra. The two methods complement one another in that
the former provides an efficient process for cataloguing
bound states while the latter provides a more detailed
account of the two-magnon spectra. This includes the rela-
tive contribution of states both inside the energy continua’
(i.e., scattering states) and the bound states outside.
Chapter 2 of this thesis develops the general formalism
of the one- and two-magnon problems and discusses how the
analytic apprdach leads to the bound state solutions. Chap-
ter 3 discusses the scaling approach and then develops the
formalism necessary for applying this method to the two-
magnon problem. Chapter 4 of this thesis uses the formalism
and calculations of the previous two chapters to study the
two-magnon spectral results for a number of interesting
cases. Chapter 5 summarizes the results of the thesis.
Particular attention is paid to what spectral features (if
any) may lead to the indentification of previously unknown
cases of completely integrable systems.

We conclude this introductory chapter by noting the
existence of an alternate viewpoint to the two-magnon

problem. This viewpoint stems from experimental studies
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of two-magnon Raman scattering. Such light scattering
experiments are most appropriate in the study of three-
dimensional antiferromagnets. Although a detailed under-
standing of such systems has not been possible, quite good
agreement with experimental results has been achieved by
using rather approximate calculations. Raman scattering

has been a motivating factor in previous two-magnon research
at the University of Manitoba. Loly et al. have intensively
studied ferromagnets in one, two, and three dimensions [LO]
including single-ion anisotropy (LS] and next-nearest-neigh-
bour effects [BL]. Fundamental to the Raman scattering
concern has been the profile of the two-magnon continuum
(i.e., densities of states) with the bound states being of
secondary concern compared with studies of integrable one-

dimensional models.
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Chapter 2

GENERAI, FORMALISM

In this chapter we will develop the formalism necessary
in solving the two-magnon problem of an alternating ferri-
magnetic chain as described by the spin exchange Hamiltonian
of (1.11). A direct analytic approach will be used to
first solve the one-magnon problem and then expand the
interacting two-magnon states in terms of non-interacting
spin waves. A method for locating bound state solutions

will be discussed in detail.

2.1 One-Magnon Formalism

Recall the Hamiltonian (1.11) under study:

N/2 287 (P) (v .& P (Pp) = 3 p
= - ¥ . . '
H R T C 7 Py DA PR CPINE P MU L
n=1 p=1
(2.1)
where: N is a large even integer
~, ~ ]
S2n and 82n+l are spln operators such that
1] P | -—
S2n = S' and 82n+l =S ¥V n
: S8' <8
J{p) and Jép) (p = 1,2,...,28"') represent the

interactions between neighbouring spins that

alternate in strength along the chain .
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Also recall that we assume periodic boundary conditions
(1.12) and that the ground state |0> of this Hamiltonian
is the ferromagnetic state with all spins aligned along

the negative z-direction. Consequently, we can write
H|0> = EO[0> (2.2)

where the ground state energy E, is given by

0

28"
E =-3 7 (3P 4 gPlggnP (2.3)
0 2 1 2
p=1
since S'z = -S' and sZ = -5 V¥V n
2n 2n+1 -

Alternatively, the Hamiltonian (2.1) can be described

in terms of parameters related to eigenvalues of the opera-

tor S:S'. If J =S + §', then
-8 = 201317 - |81% - (81
= % [J(J+1l) - S(S+1) - S'(s'+1)]. (2.4)

The various eigenvalues for $-S' are given by substituting
for the possible quantum numbers of J which range from
(S+S') to |S-S'| in integral steps. If we let A

(m = 0,1,...,28") denote the eigenvalues of S-S' in descen-

ding order, then

>
Il

% [ (S+S'-m) (S+S'-m+1l) - S(S+1) - S'(S'+1l)]

SS' - m(S+S') + %—m(m—l) . (2.5)

Il
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We further define

(1) 28’ (p),p
g = ) J.5 i=1,2; m=0,1,...,28" (2.6a)
m i m
p=1
(1) (1)
gt - %0 "5m i = 1,2; m=1,2 2S' (2.6b)
™ - X - 1 = 14 ;M= 1&gy g -
0 m
The n-magnon problem involves only the G(l) with m = 1,2,...,n.

m

This is regardless of what values are assigned to the

(p)

generally larger number of Ji parameters. Actually,

the n-magnon problem can be described by exactly 2n' exchange

parameters where n' is the minimum of n and 238°'. Further-

(1)

0 to non-negative

more, if we restrict all relevant G
values only then we are assured of a ferromagnetic ground

state. Because of these conveniences we will use the G£l)

parameters whenever possible in describing our subsequent

results. Note that the ground state energy (2.3) is given by
(9" +99 ") - (2.7)

We now consider the one-magnon excited states. That

is, the simultaneous eigenstates of the Hamiltonian (2.1)

Z

TOT (1.14) such that the

and the total spin operator S

corresponding eigenvalue of S; has been incremented by

oT
exactly one unit from its minimal ferromagnetic value of

- %-(S+S'). First note that states with all but one spin
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parallel are not eigenstates of the Hamiltonian and hence

are not one-magnon states. (This can be shown explicitly

by applying the well-known properties of quantum spin oper-

ators (SAX]. For further discussion, refer to Appendix A.)

Instead we find that the deviation in spin resulting in a

one-magnon state must be shared by all spin sites. 1In

other words, a one-magnon state is a "collective excitation”.
The set of states having all but one spin parallel do

oT corresponding to eigen-

however span the eigenspace of Sg
value - g (s+s') +1. So it follows that any one-magnon
state can be written as a linear combination of all such

single spin deviation states. Therefore a general expression

for the one-magnon wavefunction |wl> can be written as follows:

N/2

[vy> = Z la, l2n> + a, . ]2n+1>] (2.8)
n=1

where: |j> is the state in which all spins are alligned

with maximum projection along the negative
z-direction except at the jth site where if j is
even S%z = -8'+1l and if j is odd, S? = —-G+1;

: aj is some yet unknown amplitude measuring
the contribution of the state |j> to the total

one-magnon wavefunction.

Next, consider the Schrodinger equation:
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H|¢l> = (El-FEO)|¢l> (2.9)

where: El is the one-magnon excitation energy measured

relative to the ground state energy.

Since the states |1>, |2>,...,|N> form a complete (and
hence orthonormal) set we can obtain equations relating the

various amplitudes a;,a by substituting (2.8) and

2;...,aN
(2.1) into (2.9) and then equating the coefficients of each
given state. The details of this procedure are given in

Appendix A. The resulting. equations relating the "one-magnon

amplitudes" are as follows:

_ (1) | ~(2) - ; (1) (2) '
[E,-S(G;7"+G;" ") Ja, = -VSS8' [G ayn41 Y617 ay, 11 (2.10a)
_ar (1)~ (2) - _ 7 (1) (2)
[E,-8"(G{7"+G; )]a2n+l = -v88' [G; "a, +G;""a, ,,]. (2.10b)
Notice that both of these equations involve Gél) form = 1

only, as expected.
Because of the similarity of these equations (2.10) to
those obtained for phonons on a diatomic chaim [AM] we can

predict plane wave solutions of the form

_ 2ink
ay, = ae (2.11la)

i(2n+l)k

= Be (2.11b)

fon+1

where k is a real number referred to as the wavevector.
Because of the periodic boundary conditions, all unigque

values of k are restricted to the range [- %, %] which is
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referred to as the first Brillouin zone. Substituting (2.11)
into (2.10) leads to a pair of homogeneous equations with
unknowns o and 8. Satisfying the secular determinant leads
to a quadratic expression for the single-magnon excitation
enerqgy El' Solving this expression for the dispersion

relation gives

' (1) - (2)
(S+8") (G, +6; )

N

El (K) =

i-%./(S+S'52(G{l)+G(2))2—lGSS'Gil)

1 G

or alternatively

/ant A" +p? (2.13)

E)(k,u) =B + &

where u takes on the values *1 and where we have defined

A* = /557 [G{l)eiik + G£2)e$ikj (2.14a)
1 . (1) (2)

B = 3 (s+s') (¢ +c(?)) (2.14b)

D = (s—s')<G{l)+G{2)). (2.14¢)

The index u labels the two branches of the one-magnon dis-
persion curve as shown in Figure (2.1). In analogy with
phonons on a diatomic chain the upper branch is referred

to as "optic" and the lower branch is referred to as "acoustic".
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1.5

1.0

Energy

0.5]

0.0 ——— U S —
0.0 0.4 0.8 1.2

FIGURE 2.1 : One—magnon dispersion relation for an alternating
ferrimagnetic chain ( S=$'=1/2 ; bonds alternate in strength by
factor of 2 ). Energy is in units of stronger exchange coefficent.
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Note that in general there is a non-zero gap between the

two branches at the Brillouin zone boundary (k = w/2).

This gap vanishes only if both S = S' and G{l) = sz) are
satisfied. These two conditions do not necessarily describe
a uniform chain since Gél) and Géz) (m = 2,3,...,28") are

yet unspecified.

2.2 Two-Magnon Formalism

The next level in the "hierarchy" of excited states
corresponds to the subspace of two-magnon excitations.
These are the simultaneous eigenstates of the Hamiltonian

(2.1) and the total spin operator S;O (1.14) such that the

T

eigenvalue of Sé has been incremented by exactly two units

OT
from the ground state value. By explicit calculation (refer
to Appendix A for more details) we see that neither states
with single spin deviations on two separate sites nor states
with two spin deviations on a single site are eigenstates

of the Hamiltonian. Hence, such "two spin deviation states"
do not correspond to two-magnon excitations.

However, the states that are two spin deviations away

from the ferromagnetic ground state do form a set which

spans the eigenspace of SEOT corresponding to eigenvalue
- g (s+8') +2. So it follows that we can expand the two-

magnon wavefunction [¢2> in the basis of two spin deviation

states. Doing so gives the following general expression:
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N/2 N/2
lv,> = Z ; [a2n’2m|2n,2m> + a2n’2m+ll2n,2m+l>
n=1 m=1
n<m
+ a2n—l,2ml2n_l’2m> + a2n+l,2m+l|2n+l,2m+l>]
(2.15)
where: [i,j> (i < j) is the state differing from the

ground state |[0> by single spin deviations at
both the ith and jth sites

|3,3> is the state differing from |0> by two spin
deviations at the jth site only

: a (1 £ j) is some yet unknown amplitude

i,3
measuring the contribution of the state |i,j>

to the total two-magnon wavefunction.

and where the four possible configurations of spin excitation
pairs (even-even, even-odd, odd~even, odd-odd) have been
segregated to insure complete generality. Note that sites
with magnitude of spin S' (or S) = % can support at most a

single spin deviation. As a result, states such as |2n,2n>

if s' = %—and |2n+1,2n+l> if § = %—are unphysical. Tech-
nically these unphysical states should be omitted from the
summation but we will soon see that including them does not
create a problem.

Now consider the two-magnon Schrodinger equation:

H[q)2> = (E2 + EO) ]lp2> (2.16)
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where: E2 is the two-magnon excitation energy measured
relative to the ground state energy EO’

As in the one-magnon problem we derive equations relating
the various amplitudes by explicitly substituting for the
Hamiltonian and general form of wavefunction and then equa-
ting the coefficients of each basis ket. The details of
this derivation are given in Appendix A while only the re-
sults are presented here. |

The equations for the "two-magnon amplitudes" can be
grouped into two sets. One set involves only amplitudes
with spin deviations separated by at least two sites while
the other set involves amplitudes with spin deviations on
same or neighbouring sites. Since the range of interaction
is limited to nearest-neighbours we refer to the former
set as the "non-interacting equations" and the latter set
as the "interacting equations'". The non-interacting equations

are as follows:

_ _ _/3aTt (1)
(@=D)ay, op = ~VSST L6177 (ayy oni1 * @041, 2m
+ cl?) 4 +a )1 (2.17a)
1 2n,2m-1 2n-1,2m
_ _Jjaar (1)
@50 1,2m = 7YSST LG (ag, 5 o t @n-1, ome1)
+ gl2) + a (2.17b)

1 (@on on on-1,2m-1) -
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(1)
—_ _/ T
Q8 omel = TVSS' LG (agy o T @opn41, 2mel)
+ G(z) (a + a )] (2.17c)
1 2n-1, 2m+1 2n, 2m+2 .
_ _JEET (1)
(9+D)ay 11 omer = ~VSST [Gy™ (ap, oni1 * 2on41, 2m)
+ cL2) (4 + a )7 (2.17d)
1 2n+2,2m+1 2n+1,2m+2 :

where m > n, D is given by (2.l14c), and where we have defined
Q =E, - 2B. (2.18)

Meanwhile the interacting equations are as follows:

(1) (2)

[Ey=0gdasn,0n T ~%s7 23, 2n+1 ~ %' 22n-1,2n
_ L) . (2)
B Ay, onel T 4 @po1,2n-1 (2-193)
_ (1) _ _.(2) _ . (2)
[Ey-t "7 Jayn 1,20 = % 2@n-1,2n-1 ~ %' 22n,2n
- /557 ¢ (4 + a 1 (2.19b)
1 2n-1,2n+1 2n-2,2n -
_.(2) _ _ (1) (1)
(Ey=71 7" Jay) on+1 = % 22n+41,2n+1 ~ %s' 22n,2n
/557 c{?)a + a 1 (2.19¢)
1 2n,2n+2 2n-1,2n+1 .
. _ _. (1) _ . (2)
[Ey=0g11a)041, 2n41 ®s "@on,2n+1 T %s @2n+1,2n+2
- 52 NS (2.19d)

qon+2,2n+2 22n,2n
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where we have defined

- S - (1) ,~(2) _ (1), ~(2)
bg = sye o1 {(2s l)(Gl +Gq (28 l)(G2 +G, Y1 (2.20a)
(1) _ iy (L) 1 _ary 2+(2)
+ (25-1) (28" -1) 64?01 (2.20b)
(1) _ /(2s -1)s" 1y (1) . (1) —
g = e [ (S-S )Gl + (28 l)G2 1, i = 1,2 (2.20c)
(i) _ v/ss"™(2s-1) (258'-1) (i) (1) .
A = ST 5V -1 [Gl - G, ] i=1,2 (2.204)
and where Ogr and @é%) are obtained by interchanging S and
(2) (1)

S' while 7
(2)

is obtained by interchanging superscripts

and As expected, the non-interacting equations involve

(1) and G£2) while the interacting egquations involve

1
Gél) and Géz) as well. However, Gél)

only G
with m > 2 are not

required anywhere in the two-magnon problem. Note that if

St = i, then the amplitude a
2

state (and similarily for a

2n,2n represents an unphysical

: 1
2n+1,2n+1 if s = 5 ). However,

we see from the interacting equations that the unphysical

amplitude a completely decouples from all other two-

2n,2n
magnon amplitudes since @é}), @é%), A(l), and A(2) all
vanish if S' = %. Because of this complete decoupling,

unphysical amplitudes are not a concern in the subsequent

formalism.
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We proceed by first attempting to solve the set of
non-interacting equations (2.17). Since this set of equa-
tions describes a system of two non-interacting spin waves,
it should be possible to solve these equations with a simple
product of one-magnon plane waves. Hence we choose to write

the two-magnon amplitudes as follows:

2inkl 2imk2

a2n,2m = gpe e (2.21a)
i(2n—l)kl 2imk2

an-1,2m = Be e (2.21b)
2inkl i(2m+l)k2

a2n,2m+l = Ye e (2.21c)

i(2n+l)kl i(2m+l)k2
a2n+l,2m+l = §e e (2.214d)

where: kl and k2 are the wavevectors of the two indi-
vidual one-magnon states which form the non-
interacting two-magnon state
a, B, v, 8§ are generally non-equal complex
coefficients corresponding to the four possible

configurations of spin deviation pairs.

Substituting (2.21) into the non-interacting equations
(2.17) results in the following 4x4 matrix eigenvalue

equation:
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~ + + - -
Q-D Al A, 0 1fe
a7 0 0 A; 8
_ L =0 (2.22)
A, 0 Q Ay ||y
0 A ) o+D | | 8]

where Ai and Ag are defined by (2.14a) with wavevector k
replaced by kl and k2 respectively. The secular determinant
for this matrix equation is quartic in energy (E2 or equiva-

lently Q) and is as follows:

4 2.2 2 2 2
Q- - 9°D° - 2@ [|Al[ + A, 7]
2 2.2 _
+ [fa| |a,[¢17 =0 (2.23)
2 + - :
here: |A.|° = A.A. =1,2) .
where | ]| 5B (3 )

By solving for QZ (via quadratic formula) and then substi-

tuting @ = E2—2B it can be shown that

E2 = El(klrul) + Ez(klez) (2-24)
where El(kj,uj) is the one-magnon excitation energy as
specified by (2.13). Consequently, the two-magnon excitation

energy is simply equal to the sum of the excitation energies

for two non-interacting magnons. The two indices My which

H2
label the branches of the single magnon dispersion curves
take on the values *#1 independently. Next, we will see that

these indices also serve as labels for the two-magnon energy

spectrum.
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The two-magnon enerqgy spectrum is taken as the E2
versus K plane where K = kl+k2 is the total wavevector.
Because of periodic boundary conditions (1.12) all unique
values of K can be confined to the first Brillouin zone
(|K| < n/2). If we restrict ourselves (for the time being)

to real values of k, and k then all spectral points fall

1 27
within three distinct "energy continua" as shown in Figure
(2.2). These continua are a direct consequence of (1) the
two-magnon excitation energy being the sum of one-magnon
excitations and (2) the energy gap that separates the two
branches of the one-magnon dispersion curve for all values
of wavevector.

A different continuum arises for each possible pairing
of one-magnon dispersion branches. For instance, the lowest
of the three continua is due to the pairing of two acoustic
branches. By this we mean all spectral points inside this
particular continuum satisfy E2 = El(kl,—l) + El(kz’_l) for
real values of kl and k2' Hence this continuum is referred

to as "acoustic~acoustic" (A-A) and is labelled by

My Hy = —-1. The uppermost continuum is due to the pairing

of two optic branches and therefore is designated as

"optic-optic" (0-0) and labelled by My = = +1. The middle

Mo

continuum results from the pairing of an optic branch with

an acoustic. Hence this continuum is two-fold degenerate,
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FIGURE 2.2 : Two—magnon energy continua for an alternating
ferrimagnetic chain ( S=5'=1/2 ; bonds alternate in strength by
factor of 2 ). Energy is in units of stronger exchange coefficent.
Shaded regions indicate the three continua.
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being labelled by either My = +1, My = -1 or My = -1, My = +1.
It is referred to as the "mixed-mode" continuum. We will

see a little later that these continua boundaries can be
solved for explicitly.

Once we have specified E2, k and k2, we can solve

17
for the nqn—interacting wavefunction (to within an arbitrary
phase factor) as follows. From (2.22) we have a linear
homogeneous system with unknowns a, B8, vy, and §. Any three
of these coefficients can be solved in terms of the fourth

and the magnitude of the fourth is fixed by normalization.

Choosing to solve in terms of § leads to the following

relations:
a?+po- |2, |2~ |2, |?]
o = — S (2.25a)
2A1 A,
—92—D9+]A112~|A2l2
B = = 8 (2.25Db)
28,9
—QZ—DQ—|A1[2+[A2]2
y = = 8 (2.25c)
2a; 0

Since we now know a, B, vy, § (to within a phase) we can
explicitly solve for the amplitudes (2.21) and hence we can

solve the complete non-interacting wavefunction.
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We can label this wavefunction by the individual
magnon wavevectors kl and k2 or alternatively we can label
with total wavevector K and relative wavevector g where
g = (kl—kz)/Z. Total wavevector K describes the center of
mass motion and hence is restricted to being a real quantity.
However relative wavevector g is free to be real or complex
valued. So in general, kl and k2 are complex quantities
with imaginary parts that are equal in magnitude and opposite
in sign.

We can rewrite the secular determinant equation (2.2)

+

in terms of K and g by sutstituting for A and a (2.14a)

2
and then using kl = K/2+q and k2 = K/2—q.l The result is
as follows:
o - p%0? - 4sste’rc{1)? + (6{P)?
+ ZG{l)G{Z)cos(K)cos(2q)]
- [4SS'G£1)G{z)sin(K)sin(Zq)]2 = 0. (2.26)

This equation can be re-expressed as a quadratic polynomial

with respect to cos(2q). Solving this quadratic yields:
cos (2q) = (li 2 5 [—Q2cos(K)
4SS'Gl Gl sin” (K)
]
+ Vlo?-4s5' (6] sin(x)) Am?-455" (61 sin(x)) 231~ (Dasin (x)) 2|

(2.27)

VSN



Careful examination of this result reveals that for a given
spectral point (K,Ez) there are four allowed values of rela-
tive wavevector g. These four values are generally complex
and non-degenerate. For each of the four allowed g values
there is a corresponding "eigenvector" as specified by (2.21)
and (2.25). Once we have specified K and E, then any linear
combination of these four corresponding eigenvectors is a
solution of the non-interacting equations (2.17).

As previously discussed, the real values of kl and k2
and hence the real values of g occur in three distinct regions
of the two-magnon spectral plane which are referred to as
energy confinua. (Since K = kl+k2 is real, q = (kl—kz)/z

is real if and only if both k, and k2 are real.) So it follows

1
that the boundaries of these continua can be solved for
explicitly by examining the preceding equation (2.27) for
conditions that allow g to be real. A detailed discussion

on calculating these boundaries is fully documented in

Appendix B. Also from this appendix, we find that the spectral
plane can be divided into a set of regions such that the

nature of the allowed values of g varies from region to region.
The various spectral regions are identified in Figure (2.3).

In regions I, III, and V all four allowed values of g must

be complex whereas in regions II, IV, and VI at least two

of the four values must be real. These even numbered regions

are of course the energy continua. Note that regions II and



43.

FIGURE 2.3 : Two—magnon spectral regions for an alternating
ferrimagnetic chain ( S=S$'=1/2 ; bonds alternate in strength by

factor of 2 ). Energy is in units of stronger exchange coefficent.
Solid lines indicate both continug boundaries and internal

singularities. Dashed lines separate regions Il and V.
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IV are separated by an internal van Hove singularity which
occurs in the 0-0 and A-A continua. These singularities do
not occur at small values of K but originate at a special
value of wavevector which we denote by Kc (see Appendix B
for details).

Consider solutions of the non-interacting equations
corresponding to spectral points (K’EZ) in the odd numbered
spectral regions (i.e., outside the energy continua). As
previously mentioned, all four allowed values of relative
wavevector must be complex valued. In fact, the four allowed
values always occur in two pairs such that each pair has equal
and opposite imaginary parts. The two pairs are degenerate
if and only if the spectral point lies on the curve separating
regions III and V (again refer to Appendix B). Suppose we

rewrite the amplitudes in (2.21) by substituting kl =5 % q.

2
el(n+m)Ke—21(m—n)q

For instance (2.2la) becomes a = q
2n,2m

It is now apparent that Imag(g) > 0 results in an exponen-

tially increasing solution while Imag(g) < 0 results in an

exponentially decreasing solution (since m > n).

Recall that we are only considering the limit of an
infinite chain as implied by the periodic boundary conditions.
In this limit, exponentially growing solutions are unphysical

and hence must be rejected. Consequently, we must always

reject two of the four allowed values of relative wavevector
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g in regions outside the energy continua. Both surviving
values of g have Imag(g) < 0 and therefore the corresponding
eigenvectors are exponentially decaying. That is, the
corresponding two-magnon amplitudes must decay exponentially
in magnitude as the separation between spin deviations
increases. Therefore, solutions.outside of the energy continua
are always localized (in relative real coordinate space).
In the complete interacting problem, such localized solutions
outside of the energy continua are referred to as bound states.
Next consider solutions of the non-interacting equations
corresponding to even numbered spectral regions or in other
words inside the energy continua. Here we find that at
least two of the four allowed values of relative wavevector
are real valued while the remaining two values of g are
either both real or both complex. Real values of q occur in
pairs with equal magnitudes and opposite signs while complex
values of q occur in pairs with equal and opposite imaginary
parts. As previously discussed, the complex values of g
with positive imaginary parts must be rejected. This is to
avoid unphysical, exponentially growing solutions. The real
values of g will have corresponding eigenvectors that are
strictly plane wave solutions while the surviving complex
value of g (if there is one) will have a corresponding eigen-

vector that is exponentially decaying.
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Recall that any linear combination of eigenvectors
corresponding to allowed values of relative wavevector is
an acceptable solution of the non-interacting problem. There-
fore, solutions inside the energy continua generally have
both plane wave and exponentially decaying components. 1In
the complete interacting problem, these solutions can be
regarded as pairs of plane waves whose amplitdues are dis-
torted by the interaction between one-magnon states. Hence
solutions inside the energy continua are referred to aé
scattering states. ©Note that it is possible to have spectral
points inside the continua where the exponentially decaying
component dominates over the plane wave components of the
two-magnon wavefunction. For such points the solution is
effectively localized (in relative real coordinate space).
Such localized solutions inside of the energy continua are
referred to as resonant states.

Up until now, our study of the two-magnon problem has
focussed on the non-interacting equations (2.17) while
neglecting the interacting equations (2.19). To summarize,
for each given spectral point there are two to four allowed
values of relative wavevector which correspond to physically
allowed solutions. Any linear combination of the eigen-
vectors corresponding to these allowed values is a valid
solution of the non-interacting problem. However, the actual

solution of the complete two-magnon problem must satisfy
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both the interacting and non-interacting sets of equations.
One way of determining the actual two-magnon wavefunction is
to express the non-interacting solution in its most general
form and then determine what particular combination of eigen-
vectors (if any) satisfies the complete set of interacting
equations (2.19). In other words, we treat the interacting
equations as "constraints", similar in philosophy to Lagrange
multiplier problems.

As one might expect, there is always a non-trivial
solution for any spectral point inside an energy continua
(although nodes are possible). Meanwhile, outside of the
continua there are non-vanishing solutions occuring only for
special combinations of K and E,. So the "typical" two-magnon
spectra consists of three distinct scattering state continua

along with a few isolated bound state branches.

2.3 Bound State Solutions

In principle, we can use the formalism of the preceding
sections to evaluate all of the various two-magnon amplitudes
at any given spectral point. Consequently, the preceding
formalism can be used to calculate the complete two-magnon
wavefunction. Such calculations would entail using (2.21),
(2.25), and (2.27) to obtain the most general solution of
the non-interacting problem and then using the set of inter-

acting equations (2.19) as constraints. This turns out to
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be a rather cumbersome process whereas the same information
can be obtained in much more elegant fashion by using the
scaling approach (as will be discussed in the chapter to
follow). On the other hand, the preceding formalism does
provide a very useful and convenient method for analytically
- locating the bound state solutions throughout the spectral
plane.

The procedure used in detecting bound state solutions
is as follows. For any spectral point (K,E2) outside of the
energy continua we know there are exactly two allowed values
of relative wavevector which correspond to physically acceptable
solutions. These are the two solutioﬁs of (2.27) with negative
imaginary parts. (Recall that the other two solutions must
have positive imaginary parts and hence result in unphysical
exponentially growing solutions.) We will denote these two
physically allowed values of relative wavevector as g and g.
We know that for either one of these values (say ) that the

non-interacting equations (2.17) are solved by

e1(n+m)Ke—1q(2m—2n)

a2n,2m = (2.28a)
a2n—1,2m - Bei(n+m—%)Ke—iq(2m—2n+l) (2.28Db)
a2n,2m+1 _ Yei(n+m+1/2)Ke—iq(2m—2n+l) (2.28¢)

_ dei(n+m+l)Ke—iq(2m--2n) (2.284)

Qon+1,2m+l
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where the relative values of the coefficients o, 8, vy, § are
given explicitly by (2.25). ©Now suppose we generalize these
expressions for the two-magnon amplitudes to include both g
and g. 1In other words we now express the wavefunction as a
linear combination of non-interacting eigenvectors corres-
ponding to g and i respectively. If &, E, ;, and_g are the

coefficients corresponding to g then we can write

a - el(n+m)K[cde—1q(2m—2n) + Dae—lq(2m—2n)] (2.29a)
2n,2m
_ _i(n+m-%)K iq (2m-2n+1) - ig(2m-2n+1)
qon-1,2m = © (Cge + DBe J |
(2.29p)
__i(n+m+%)K -ig(2m=-2n+1) - -ig(2m-2n+1)
a2n,2m+l = e [Cye + Dye
(2.29c¢)
_ im4m+tl)X -ig (2m-2n) - —-ig(2m-2n)
@on+l,2m+l = © [Cée + DSe 1
(2.294)
where C and D are arbitrary complex constants. However these

expressions (2.29) are still not sufficiently general. We
must allow for the possibility that amplitudes with two spin
deviations on the same site are unphysical and hence can
vanish independently of the other amplitudes. So (2.29a)
and (2.29d) are restricted to the cases m > n only and when

m = n these then become

i2nkK

a2n,2n = e [Coa + Doa] (2.30a)

i (2n+l1)K

a2n+l,2n+l = e [Cod + D06] (2.30b)
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where CO and DO are arbitrary constants that are generally
different from C and D. (One could argue that these expres-
sions are still not sufficiently general. For instance,

and a

one might write a in terms of C, and D,y

2n-1,2n 2n,2n+l1 1
generally different from C and D. However there is no
obvious motivation for doing so. Furthermore, the results
obtained using the amplitudes as given by (2.29) and (2.30)
agree conclusively with the results of the scaling approach,
in all cases. And the scaling approach makes no assumptions
regarding the form of solution.)

Direct substitution of the amplitudes given by (2.29)

and (2.30) into the interacting or constraint equations

(2.19) results in the following 4x4 matrix equation:

W -0 (2.31)

where
Wi = a(Bymeg) + 5 (s PeK 4, (2) 71K (2.32a)
Wi, = a(E,-0g) + 5(sHe™K 4 () 71K, (2.32b)
W13 = B@é?)e_iK/ze—iq + y@é%)e+iK/2e—iq (2.32¢)
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(2.324)

(2.32e)

(2.32f)

(2.329)

(2.32h)

(2.321)

(3.327)

(2.32k)

(2.32 1)

(2.32m)
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_ -, (1) _ixK (2) +iK =

W42 = g (A e + A e ) + cS(E2 eS.) (2.32n)

W, = pold)etiK/2mia (1) -iK/2 -iq (2.320)
43 S S

W44 = E@éz)e+lK/2e—lq + ;®él)e_lK/2e_lq . (2.32p)

Clearly a non-trivial solution of the wavefunction requires
that the secular determinant of this matrix equation vanishes.
Therefore locating bound state solutions for a given system
requires a numerical scanning of regions I, III, and V of
the spectral plane for points satisfying det[W] = 0.
| In our research, we used the above method to locate
the complete set of two-magnon bound states for a number of
special cases of the Hamiltonian (2.1). These results will
be presented and discussed in Chapter 4 of this thesis. As
hinted earlier, analysis of scattering state solutions will
be left to the real-space rescaling approach discussed in

the following chapter.
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Chapter 3

REAL-SPACE RESCALING FORMALISM

In this chapter we will consider a real-space rescaling
treating of the two-magnon problem of an alternating ferri-
magnetic chain. We will begin by discussing the scaling
approach with respect to a more general problem. We will
then consider the system of interest. In_particular, we show
how the scaling approach leads to the two-magnon Green's
functions and consequently the two-magnon local densities of

states.

3.1 General Method

The basic concept underlying the scaling approach is
as follows. Given a system of linear equations with a large
(and possibly infinite) number of degrees of freedom, then
a special transformation is constructed. This transformation
must eliminate a fraction of the degrees of freedom while
leaving the form of the equations invariant. The so-called
"scaling transformation" is then iterated until only a single
degree of freedom remains. The "final" equation can be used
to describe the properties of the system local to the remain-
ing degree of freedom. It should be noted that the original
equations generally require a high degree of symmetry for

such an approach to be feasible.
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The scaling transformation is essentially a three
step procedure. If we regard each degree of freedom as a
site on a lattice then these steps are as follows:
(1) elimination of some fraction of the sites
(2) renormalization of the parameters in the new
equations so that these equations have the same
form as the originals
(3) rescaling of the distance between sites (and
relabelling sites if necessary) so that the trans-
formation may be reapplied to the reduced system.
If the original equations describe the mutual interactions
of the various lattice sites, then the renormalized parameters
are essentially the "effective" interactions between the
remaining sites.
We choose one site never to be eliminated and identify
this one as the origin. If we eliminate a fraction
(f-1)/f of the sites for any one transformation then the
overall process 1s said to have a scaling factor of f. For
a one-dimensional lattice in which the origin is labelled
as the Oth site then a scaling transformation of factor £
would eliminate the sites labelled by #1,#2,...,+(f=1),x(f+1),... .
After elimination the distance between remaining sites would
be rescaled by a factor 1/f. Figure (3.1) depicts a schematic
illustration of this procedure for scaling factor f = 2.
The elimination process can be (perhaps) better under-

stood by considering the Schrodinger equation of an arbi-
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FIGURE 3.1: Schematic illustration of the scaling procedure
(f=2). The first step eliminates the odd sites. The second
step rescales all distances by a factor 1/2. The third step
relabels the surviving sites.




56.

trary system:

Hy = Ey (3.1)

where: H is a known NxN matrix (typically N - =)
: E is a scalar
: ¢ is an N-dimensional column vector whose

elements are that which satisfy the equation.

Suppose after arranging the elements of y in some appropriate
order (and re-arranging the rows and columns of H accordingly)
that we partition y into two “subvectors" wl and vy of dimen-

sions n, and N-n., respectively. Then we can write

1 1
Hygvy * Hypvy = By (3.2a)
Hzlwl + H22¢2 = sz (3.2b)

where Hij are the submatrices of the appropriately partitioned
matrix H (Hij has dimensions nixnj). Eliminating vy from

(3.2) gives

-1

Hyqoy + HypU(E-Hy,) "Hygoy ] = Evy (3.3)
or alternatively
Hllwl = Ewl (3.4)
where H!. = H + H,, (E~H )_lH
11 11 12 22 21 °

Notice that we have succeeded in eliminating a fraction
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n2/N of the wvariables without changing the form (only the
dimensionality) of the original equations. Once we have
appropriately relabelled the elements of wl we can repartition
and eliminate the same fraction of varibles and continue
in this manner indefinitely. Note that the f = 2 scaling
transformation depicted in Figure (3.1) would correspond to
having all even sites in wl and all odd sites in wz.

We can also use the arbitrary system to illustrate how
the scaling approach leads to the Green's functions of the
system under study. If we add an inhomogeneous term to the

Schrodinger equation then we can write

LE-H]G = Z (3.5)

where: Z is a normalized N-dimensional column vector
with only one non-zero entry
G is an N-dimensional column vector whose

elements satisfy the inhomogeneous equation.

If we partition the vector G into two subvectors Gl

and G2 such that the "element of interest" coincides with

Gl then we can write

[E*Hll]Gl - H12G2 = Zl (3.6a)

[E~H22]G2 - HZlGl = Z2 (3.6b)
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where Hij and Zj (i,7 = 1,2) are obtained by appropriately

partitioning H and Z. Eliminating G, from these equations

gives

[E—Hll]Gl = Zl (3.7)
-1
. 1 = —
where: Hll Hll + glz(E H22) H2l
. g1 = _ -1
: Zl = Zl + le (E H22) 22 .

Suppose this transformation is iterated (always keeping the
element of interest in the subvector of surviving elements)

until the limit H -~ 0 is attained. Then in this 1limit

12

H!'. = H = H(w) (3.8a)
11 11 11 -

gt = g = g() (3.8b)
1 1 1 :

and so
— R ) I B )
Gl = [E Hll ] Zl . (3.9)

th element of G and the

If the element of interest is the i
non-zero element of the inhomogeneous term is the jth element
of Z (these labels are with respect to the original equations
(3.5)) then it follows that

1
E-g+iot

[E-—H{;)-+i0+]_lz

)

= <i

{ |j> (3.10)

where the right-hand side is defined as the i,jth element of

the Green's function G(E+iO+) (see Economou [E]). As is
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convention, a small imaginary part (iO+) has been added to

the energy E to insure that the inverse of E-H is well defined
(H is assumed to be Hermitian and hence has only real eigen-
values). It is to be understood by ocur choice of notation

that we are considering the limiting case in which the

imaginary part goes to zero from the positive side. To
summarize:
G, (E-H+io") = re-u ™) (1) +i0t 1712 %) (4, 9) (3.11)

()

(i) is the limit of the partitioned Hamil-
th

where: H
tonian if the element of interest is the i
element

: Z(w)(i,j) is the limit of the partitioned column
vector Z if the corresponding non-zero entry is

the jth element.

Before proceeding to discuss the two-magnon problem
a technical point should be mentioned. If the dimensionality
of the "degree of freedom" lattice is greater than one then
the elimination procedure causes the effective range of inter-
action to increase under iteration [SKL]. Hence, for such
systems the scaling transformation must be made valid for an
arbitrary range of interaction. Consequently, the analytic
construction of the scaling transformation becomes an extremely
tedious problem. Fortunately, the two-magnon problem for a

gquantum spin chain maps to a one-dimensional degree of freedom
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lattice or in this case relative coordinate lattice. (It
is relative coordinates between excited spin sites which
label the degrees of freedom in multi-magnon problems.)
However, for the arbitrary m-magnon problem of a quantum
spin chain the dimensionality of this relative coordinate
lattice is m~1l. Hence, there are immediate difficulties in
extending the subsequent formalism to the m-magnon problem

for any m 2 3.

3.2 Two-Magnon Analysis

We now proceed to apply the scaling approach specifi-
cally to the two-magnon problem of an alternating ferrimag-
netic chain. Recall (2.16), the two-magnon 3chrodinger

equation. This can be rewritten as

H'[y,> = E (3.12)

2lvy>

where: H' = H - EO

and where the Hamiltonian H and the ground state energy EO

are as defined in (2.1) and (2.3) respectively. Also recall
(2.15) the general expression for the two-magnon wavefunction:

N/2 N/2

lv,> =} ] [a
2 n=1 m=1 2n

2m[2n,2m> + a |2n-1, 2m>

2n-1,2m

14

+ a2n,2m+ll2n,2m+l> + a2n+l,2m+llzn+l’2m+l>]'

(3.13)
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In Chapter 2 we derived two sets of coupled equations re-
lating the various two-magnon amplitudes ai,j' These were
referred to as the non-interacting equations (2.17) and the
interacting equations (2.19). These two sets effectively
describe the complete interacting two-magnon problem for our
system of interest.

Each two-magnon amplitude ai,j is labelled by two
different coordinates corresponding to sites along the chain
where the spins are excited. Because of the alternation
in both bond and spin along the chain, there are four possible
"configurations" of these coordinate pairs; even-even,
odd-even, even-odd, and odd-odd. Hence there are four
different categories of amplitudes. Each of these can be

expressed in terms of a center of mass coordiate (i+3j)/2

and a relative coordinate j-i as follows:

@n,2m Ué%;—n)véii2m (3.14a)
42n-1,2m ~ Ué%&—n)+1véiizm~l (3.14b)
%on, 2m+l Ué%é_n)+lvéi12m+l (3.14c)
4on+1,2m+l Ué%;_n)véiizm+2 (3.144)

Because of translational invariance i1t follows from Bloch
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theorem [AM] that the center of mass components can be expressed

as plane waves. Hence (3.14) becomes
%2n,2m Ué%;—n)eiK(2n+2m)/2 (3.15a)
on-1,2m ~ Ué%;—n)+1eiK(2n+2m_l)/2 (3.15Db)
T——— Ué%;_n)+leiK(2n+2m+l)/2 (3.15¢)
Gon+1,2m+l Ué%é-n)eiK(2n+2m+2)/2 (3.15d)

which is actually a generalization of formalism used originally
by Fukuda and Wortis [FW] as well as by Boyd and Callaway {BC].
Note that K is the total wavevector as defined in Chapter 2.
Using the notation of (3.15), both the non-interacting
and the interacting sets of two-magnon equations can be re-
expressed in terms of the "relative coordinate amplitudes"

Uéj) (r =0,1,2,...; 3J =1,2,3,4). Furthermore, if we define

the four-component vector:

~ (1) =
U2r

5(2)
u,, = 2r+l r=0,1,2,... (3.16)

(3)
U2r+l

(4)
_U2r

then both sets of equations can be expressed in very concise
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4x4 matrix form. The non-interacting equations (2.17) can

be written as follows:

MU2r = VpU2r+2 + VmUZr—Z r >0 (3.17)
where:
I Q-D /BST Gl(z)e"iK/2 /G5 G{l)e+iK/2 0 i
/35 ciz) HEK/2 Q 0 /a5 G1 ) 1K/2
M:
@EF_Gfl -iK/2 0 a §§T-gl +1K/2
L 0 vSs! C{Z)e+iK/2 /SST G:fl)e’iK/2 Q+ D
(3.18)
i 0 0 0 0 i
) G{l)e-iK/Z 0 0 G{l)e+iK/2
V. = -/S3° . . (3.19)
G(2)e+1K/2 0 0 G(2)e—1K/2
1 1
i 0 0 0 0 ]
o o (1) J+ik/2 c(2) ~1iK/2 0
1 1
0 0 0 0
V.= -/S8° . (3.20)
m 0 0 0 0
o G{l)e—iK/z G{Z)e+iK/2 0]

And the interacting equations (2.19) are now given by the

following:
M,U, = V_U (3.21)
P

where:




M) 44
(M)

0°12

(M) 13
My) 14
My) 21
M) 52
(M) 23
(My) 24
(Mg) 37
(My) 3
(M) 33

(M) 34

(M) 41

2 S

(2) -1iK/2
@S,
cD(l) +iK/2
S L
A(l)e+iK +

E2 - T
0
(2) -ix/2
s
(1) -iK/2
@S,
0
E2 - T(Z)
®(l)e+iK/2
S
A(l>e_lK +

64.

(3

(3

(3.

(3.

(3

(3

(3

(3

(3

.22a)

.22Db)

22¢c)

224d)

.22e)

.22%)

.22qg)

.22h)

.221)

.225)

.22k)

.22 1)

.22m)
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. (2) +iR/2
(MO)42 = @S e (3.22n)
_ (1) _-ik/2
(MO)43 = ¢S e (3.220)
(MO)44 = E2 - es, (3.22p)

where all parameters in the preceding matrices are as defined

in Chapter 2 (see (2.6), (2.14), (2.18), (2.20)). So summarizing:
MOUO =V U2 (3.23a)
MU r=1,2,3,... . (3.23b)

2r va2r+2 * vaZr—Z

Each vector or unit cell U2r can be regarded as the rth
site on a semi-infinite linear lattice. Note that interactions
only exist between nearest-neighbour lattice sites. If we
eliminate alternate sites starting with U, from (3.23) then we

obtain the following set of “transformed" equations:

_ -1
MOUO = VpM [VpU4 + VmUOJ (3.24a)
MU, =V M_l[V U + v U, ]
2r P p 2r+4 m 2r
+ vV M'l[v U + V. U ] r=2,4,6
m p 2r m 2r-4 rermrnes

(3.24Db)

or alternatively:
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MOUO =V U4 (3.25a)
M U4r = VpU4r+4 + VmU4r~4 r =1,2,3,... (3.25b)
where we have defined
M =M. - VMV (3.26a)
0 0 P m : :
v -1 -1
M=M-VM ™V - VMV (3.26Db)
p n m p
. -1
V! =V M"™vy (3.26¢)
p P p
. -1
V! = VM V. (3.264)
m m m

Notice that the primed parameters in (3.25) describe the
effective interaction between next-nearest-neighbours.

Now suppose we relabel the surviving vectors in (3.25)
such that U4r - U2r‘ Then in terms of the renormalized (primed)
parameters the new set of equations (3.25) have exactly the same
form as the originals (3.23). However, in (3.25) exactly one

half of the degrees of freedom (i.e., vectors) have been elimi-

nated. Hence, this elimination corresponds to a £ = 2 scaling
transformation. If we add a small imaginary part to the energy
E

5 (so that all inverses are well defined) and iterate this
transformation then we find that Vé and Vﬁ both approach zero.

So we eventually obtain the limiting result
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My =0, (3.27)

In this limit the "motion" of the vector or unit cell UO has
been completely decoupled from the motion of all other vectors.
We can obtain a similarily decoupled equation for the

vector U2 as follows. First, eliminate alternate sites starting

with U, from (3.23) to give the following:

0
MU, = VM I[VU + VU ]+ vM v ] (3.28a)
2 P p 6 m 2 m 0 p 2
MU, =V M“l[v U + V.U, ]
2s P p 2s+4 m 2s
1

+ V.M “[V.U +
m

pUzs * VUpggdr 8 = 3,5,7,... (3.28b)

If we relabel the surviving vectors in (3.28) such that

U > U(2s—2)/2 then we can write

2s
MoUpy = VU (3.29a)
MUpr = VpUspsn + VUno r=1,2,3,... (3.29b)
where we have defined
—_ _ "'l "‘l
M,=M-VM™V_ - VM~V (3.30a)
0 p m mo p
M=M-VM™V - VM-V (3.30Db)
m m p

vV = va \% (3.30c)




68.

T o= vMiv . (3.30Q)
m m ,

The newly transformed set of equations (3.29) has exactly the
same form as the original set (3.23) so we can now iterate

with the "original" transformation described by (3.26). The
limiting result will be a decoupled equation analagous to (3.27)

except now it is the motion of the unit cell U, which has been

2
decoupled.

A decoupled equation can similarily be obtained for any

of the unit cells U2r (r = 0,1,2,...) by using some appropriate

combination of the previous two scaling transformations (des-

cribed by (3.26) and (3.30)). To avoid confusion, we lét

()
0

the unit cell labelled by r. Note that each such matrix is

M (2r) denote the limiting matrix obtained when decoupling

the projection of the operator EZ—H' in the subspace spanned

2) (3) (4)
r+l 2r+1 2r )

It follows from the formalism in Section 3.1 that we can

1
by ([ull)>, jul2l s i) s
use these transformations to evaluate the two-magnon Green's

functions. We define the i,jth element of the local two-magnon

Green's functions as follows:

i,3 . _ (1) 1 ‘ (3)
G,'’(E, + 10 ,K) = <U U >,
2r 2 2r E2+i0+—H' 2r

i,j=1,2,3,4; r=0,1,2,.... (3.31)

The evaluation of the elements of Gzr(E2+iO+,K) requires
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adding an appropriate inhomogeneous term to each of the equations
in the set (3.23) and then iterating the transformation (s)
so that the motion of the corresponding unit cell Usr has
been decoupled.
For instance, suppose we want to evaluate GéJ(E2+iO+,K)

(i, =1,2,3,4). First consider the inhomogeneous version

of (3.23) in its most general form

MOUO = VpUZ + ZO (3.32a)

MU r=1,2,3,... (3.32b)

2r = YpY2r+2 T VpUsr-o

where each Z2r is a four-component column vector. Under the
scaling transformation described by (3.26) (i.e., that which

eliminates alternate sites starting with U the form of

2)
(3.32) remains invariant provided the inhomogeneous terms

are renormalized as follows:

o _
Zy = 2, + va Z, (3.33a)
zZ! =2 + v MLy + v M1y r=2,4,6 (3.33b)
2r 2r p 2r+2 m 2r-2 PRSI :

To calculate the particular element Gé’j we must set all

Z2r = 0 except for ZO. Meanwhile ZO must have a non-zero

entry in the jth row only. We then iterate the scaling

transformation which yields the limiting result
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- lrj-
Gg
2,3

m{=) (o) %0 o= g () (3.34)
0 G3,j 0 :

0
4,7

__GO J.J

Since all er = 0 except ZO it follows from (3.33) that the

inhomogeneous terms are invariant under this scaling transfor-

mation for any number of iterations. Consequently

6lj
SA.
2=, 2] (3.35)
0 0 5
37
651
where: 6ij is the Kronecker delta.

(This invariance is actually a direct consequence of the
range of interaction between unit cells being limited to
nearest neighbours only [SKL]. If the unit cells separated

by two or more sites could directly interact then we would

()
0

we can solve for any element of GO(E2+iO+,K) by simply in-

(=)

have to calculate 2 explicitly.) From (3.34) and (3.35)

verting the limiting matrix MO (0). In other words,
i, .+ () -1
GO’ (E2 + i0 ,K) = [MO (0) 1 (3.36)

i,J
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In similar fashion we can obtain the more general result

. -1

GZ;I:_"](EZ + iO+,I) = [Méw) (Zr)] ' r = 0,1,2’... (3.37)
1,7

()
0

Recall that each matrix M (2r) is a representation of E2~H'

where H' = H—EO. Since the Hamiltonian H' is hermitian,
adding a small imaginary part iO+ to the excitation energy
insures that the inverse of any such matrix is well defined.

Therefore, the two-magnon Green's functions are well defined

quantities.

3.3 Local Densities of States

Various spectral and thermodynamic information about a
system can be extracted from that system's Green's functions.
The two-magnon Green's functions, as described in the previous
section, will be used to extract the local densities of states.

For an arbitrary system we define the local densities

of states pn(E) as follows
pn(E) = §(E - En) (3.38)

where: En is the energy eigenvalue of the nth state

: 6(X) is the one-dimensional Dirac delta function

The local densities of states can be shown to be related to
the diagonal elements of the system's Green's functions (see

Economou [E]). This relation is as follows:
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pn(E) = - % Imagl<n|G(E + iO+)ln>] . (3.39)

Now consider the two-magnon problem for an alternating
ferrimagnetic chain. It follows from (3.39) that the ima-
ginary part of each diagonal Green's function element
+iO+,K) (r =0,1,2,...; jJ = 1,2,3,4) measures the local

c’

J
2r(E

2
densities of states corresponding to a specific configuration
of spin excitations. For instance, Imag[Gg4] measures the
local densities of states for a pair of spin excitations
separated by two sites such that both occur at odd sites
along the chain. Similarily we can obtain measures of the
local densities of states for any of the four categories of
configurations (even-even, odd-even, even-odd, odd-odd) and
for any number of sites separating the excitations. 2All we
require is knowing Imag[Ggg] which can be calculated for all
r and j using the formulism of Section 3.2.

The significance of the two-magnon local densities of
states is that such calculations provide a direct measure
of the relative contribution of any two spin deviation state
to the complete two-magnon wavefunction. For instance,

(4)1
2 7

Imag[G34] directly measures |U the magnitude of the

corresponding relative coordinate amplitude. In other words,

Imag[Gg4] directly measures ]ai jl for any i and j which
I

satisfy j-i = 2 such that both i and j are odd. And recall

that the two-magnon amplitude a; i is a measure of the contri-
14

bution of the two spin deviation state [i,j> to the two-magnon
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wavefunction. So Imag[G§4J directly measures the contribution
of any state |i,j> such that j-i = 2 and both i and j are odd.

In Chapter 2 we distinguished between two very different
types of solutions to the two-magnon problem. These were
bound states and scattering (i.e., continuum) states. We
find that this difference in solutions is manifested in the
local densities of states. First considexr the bound state
solutions. Such states are spectrally isolated from all other
non-trivial states and hence make a simple delta function
contribution to the densities of states. These delta functions
can also be regarded as corresponding to real-valued poles
in the Green's functions. That is, poles which coincide with
the real-axis in the complex energy plane. Actually, because
of the small imaginary part added to the energy to insure
convergence, these poles occur slightly off the real axis.
Consequently, these bound state contributions are not true
delta functions but rather have a finite width proportional
to ¢ (magnitude of imaginary part) and a finite height propor-
tional to 1/e.

Meanwhile the scattering state solutions are not spectrally
isolated but instead lie inside a continuum of states. Be-
cause of the infinitesimally close proximity of neighbouring
continuum states, the various delta function contributions
to the densities of states must overlap. So the overall

contribution of a continuum of scattering states is not a
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series of delta functions but rather a "band" of finite height
which extends over the entire spectral region corresponding

to the continuum. (This is analagous to a wavepacket which
spreads and flattens as more and more waves are added so that
any one wave gradually loses its identity while inside the
packet.) This effective spreading of density of state contri-
butions inside the continuum can also be attributed to poles
in the Green's functions moving off the real axis. That is,
for a spectral point (K,Ez) inside of a continua the corres-
ponding pole in the Green's functions will occur at a complex

energy value E, +iT where T # 0.

2
Suppose a complex valued pole in the Green's function
has a relatively small imaginary part (i.e., |Tr| <« E, but T
is finite). Such an occurrence manifests itself as a Lorentzian
shaped "bump" in a continuum region of the local densities of
states [WH]. Such bump or peak-like structures have a width
proportional to T' and a height proportional to 1/T and are
commonly referred to as resonant peaks. The corresponding
"resonant states" are expected to be related to our previous
definition of a resonant state (Chapter 2). This was a state
localized in relative coordinate space due to an exponentially
decaying factor but (unlike bound states) falls inside a

continuum region where the states are generally plane wave

in nature. Resonant states can often be regarded as bound
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states that have lost their "identity" upon entering a
scattering continuum.

Recall that both bound state solutions and continuum
boundaries are easily solved for by way of the analytic
approach of Chapter 2. Hence, we are most interested in
using calculations of the two-magnon densities of states for
the purpose of identifying resonant states inside the continua.
We expect that resonant states (like bound states) decay
exponentially as relative coordinate between spin excitations
increases. This is because we expect resonant states to be
dominated by a factor expl-igr] where r is the relative
coordinate and g is the relative wavevector for which Qe know
Im(g) < 0. Therefore, resonant state (as well as bound state)
contributions to the local densities of states are most pro-

minent in cases where relative coordinate between spin exci-

tations is small. As a result, it is most informative to
calculate the Green's function elements Gaj (3 = 1,2,3,4)

which describe the states with spin excitations on same or
neighbouring sites. The results of such calculations are
discussed in Chapter 4.

We conclude this chapter by discussing a technical but
pertinent point, the size of the imaginary part added to the
two-magnon excitation energy. Recall that this imaginary

component is added to insure that all inverted matrices are
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well defined. This in turn insures that the overall limiting
process of iterating the scaling transformation is convergent.
In the preceding formal treatment we have denoted this imagi-
nary component by io* and in doing so have implied an infinitesi-
mally small magnitude. Formally, this is sufficient for
convergence to occur; however, in practice the number of
iterations allowed is restricted by the computing facilities
available. So in practice, the size of this imaginary compo-
nent is not such a trivial consideration.

The actual computing procedure for calculating ng
(J = 1,2,3,4) entails adding a small imaginary ie¢ to the
excitation energy and then iterating the scaling transformation
(3.26) until the matrices Vé and V& effectively vanish. By
effectively vanish we mean that the sum of the absolute values
of their entries drops below some preselected tolerance level.
Once this level is reached the resulting matrix Mé is inverted
to give the elements of the desired Green's function. We
found that for spectral points outside the energy continua
that no more than six iterations were required for convergence
and the number of iterations was independent of ¢. However
for spectral points inside of the energy continua, the smaller
the value of ¢ the greater the number of iterations required.

To understand this relation between the number of itera-

tions required and the magnitude of the imaginary component

{¢) first note that convergence occurs only if Vé - 0. What
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is significant is that the matrix Vé describes the effective
interaction between the Oth unit cell and the (2X)th unit
cell where x is the corresponding number of iterations.
Equivalently it can be said that Vé describes the extent of
the solution in relative coordinate space. Consider solutions
inside the continua. If ¢ = 0 then such solutions always
have a pure plane wave component (since at least two values
of relative wavevector g are real). Since plane waves have
infinite extent, Vé cannot vanish even in the limit x -+ .
However, for ¢ # 0, then each plane wave component is effe-
tively multiplied by an exponentially decaying factor since
complex energy implies complex Qavevector. This decaying
factor limits the extent of the solution in relative coordi-
nate space thereby insuring that Vé vanishes after a sufficient
number of iterations. Furthermore, the larger the value of
€, the stronger the decaying factor and hence the fewer
iterations required for convergence. Meanwhile, solutions
outside the energy continua must already have a strong expo-
nentially decaying factor (since all values of g are complex)
and therefore convergence occurs irrespective of «¢.

Rapid convergence inside the energy continua is the
motivation for making ¢ large; however, there is a conflicting
motivation for ¢ to be made small. If we plot local densities

of states versus E2 then the resolution of these plots gets
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worse as e increases. This can be understood by considering
a typical resonant peak. As previously discussed the width

of such a peak depends on T where E, +il is the corresponding

2
complex pole in the two-magnon Green's functions. However

if € # 0, then this pole is actually given by E2-+ir(e)

(that is, T is no longer a fixed value but instead_varies

as a function of the imaginary part added to energy). Typi-
cally we choose ¢ to be small enough so that I'(e¢) = T and
hence the pole remains close to its "true" location. However
if ¢ is allowed to become too large, then it is easy to see
how the resonant structure in the local densities of states
can become distorted. Note that for bound states T = 0,

so the width of bound state peaks is directly proportional

to €.

To summarize, we must adjust the value of ¢ (magnitude
of the imaginary energy component) until a satisfactory com-
promise is found between resolution of densities of states
and rate of convergence inside the continua. We eventually
decided upon ¢ = lxlO_S. For this value we found that
20-25 iterations were needed to achieve convergence inside
the continua regions. Alternatively, we can decrease the
number of iterations required by increasing the scaling factor
of the transformation. Recall that we use a scaling factor
f = 2. However any increase in f would require analytic

construction of a new and more complicated set of transfor-

mation equations.
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Chapter 4

RESULTS

In this chapter we will use the techniques formulated
in Chapters 2 and 3 to study the two-magnon spectra for a
variety of special cases of the alternating ferrimagnetic
chain. Section 4.1 of this chapter focuses on the bound
state solutions of the two-magnon problem. This section uses
the direct analytic approach of Chapter 2 to determine the
complete set of bound states for each special case of interest.
Section 4.2 of this chapter applies the real-space rescaling
approach of Chapter 3 to obtain additional information re-
garding scattering states inside the continua. Such informa-
tion is obtained via local densities of states calculated
for fixed values of total wavevector. Section 4.3 displays
the various spectra referred to in the prior sections.

The number of different systems we are potentially able
to examine is endless as we are free to independently vary
six parameters of the Hamiltonian (2.1). These parameters

(2) (2)
5.

are S, S', G{l), Gl ’ Gél), and G To help in classi-

fication of the various cases to be studied we define the

following "relative" parameters:

i=1,2 (4.1la)

! /6l (4.1Db)
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AS =S8 - S'" 20 (4.1c)
_ (1)
£, = E,/Gy77 . (4.14)
The ratios r(l) describe the form of the interactions between
neighbouring spins. (But note that unless S' < 1 then r(l)
and r(z) do not completely specify these interactions. These
require specification of G(l) for all m = 1,2,...,28'.) The

m

ratio b measures the degree of bond alternation while the
difference AS measures the degree of spin alternation. The

ratio 52, which we refer to as the reduced energy, reflects

(1)
1

energy. In fact all energy scales in Section 4.3 will be in
(1)
1

that the parameter G can be used to scale the excitation

units of or "reduced energy units". Note that we only

(1) (2)

consider cases in which b, r , and r are greater than

or equal to zero to insure a ferromagnetic ground state.
1

Before proceeding we note that if S' = 5 then the
unphysical amplitudes a5n . 2n decouple completely from all
14
other amplitudes in the interacting equations (2.19). Fur-

thermore, the equations involving the physical amplitudes

and hence all physical results are independent of Gél) and
Géz). This is expected because setting S' = % restricts the

form of the Hamiltonian to that of Heisenberg exchange.

(By Heisenberg exchange we mean that the spin-spin interaction
1

is described in terms of linear exchange operators (gi-gj)

only. Generally, Heisenberg exchange requires setting
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Gél) = G{l) for i = 1,2 and m = 1,2,...,2S5'.) Consequently
if 8' = % then we need only specify two other parameters,

namely b and AS.

4.1 Bound States

1

Case (a) 8' = > 45 =0 b =1
This is the case of a uniform Heisenberg chain with spin
magnitude S = % . The corresponding Hamiltonian has already

been discussed somewhat in Chapter 1 (refer to equation (1.9)).
Recall that this is a completely integrable system which can
be solved using the Bethe ansatz approach [BE]. The two-magnhon
spectrum (see Figure (1.2) in Chapter 1) contains a single
energy continuum along with a single bound state branch lying
completely below the continuum for all K. We know from
quantum mechanical theory that there must be at least one
bound state for all values of K as this is a one-dimensional
problem [LL]. The binding energy between continuum and bound
state is largest at the Brillouin zone boundary (K = w) and
smallest at X = 0.

To help in understanding of nonuniform cases it is in-
formative to consider the spectrum of this uniform chain
when plotted in the reduced Brillouin zone [K]| < % (i.e., the
Brillouin zone for any alternating chain). The bound state

branch is folded back at K = /2 so that it now consists of

both an upper part which lies entirely inside the continuum
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and a lower part which lies entirely outside the continuum
for all K. ©Note that these two parts are degenerate at the
reduced Brillouin zone boundary. Although the upper portion
of the branch overlaps the continuum it remains a true bound

state for all K as its "character" has not been altered.

Case (b) S' = % AS = 0 b #1

We now consider the alternating bond Heisenberg chain
1
5 -

nation in bond strength the single energy continuum of the

with uniform spin magnitude S = Because of the alter-
previous (uniform) case now splits into three distinct con-
‘tinua. In order of increasing energy, these are acoustic-
acoustic (A-3A), mixed-mode, and optic-optic (0-0). Each of
these continua has at least one associated bound state be-
neath it (the A-A continuum has two). The two-magnon spectrum,
depicting bound state branches and continuum boundaries, is
shown in Figure (4.1) for b = %.

The bound state structure below the A-A continuum is
similar in form to that of the uniform case {(when plotted
in the reduced Brillouin zone) except now there is a non-zero
gap at K = 1/2 between the upper and lower branches. It has
been shown that this gap vanishes linearly with the difference
1-b [BLS]. Also, the character of the state associated with
the upper branch has been altered in that it is now a resonant

state while inside the continuum. The lower branch does
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however remain a true bound state for all K. Its$ binding
energy is smallest at K = 0 and largest at K = n/2.

The bound state branch below the mixed continuum remains
a true bound state for all K with binding energy smallest
at K = n/2 and largest at K = 0. The bound state branch
below the 0-0O continuum corresponds to a resonant state for
small values of K until it emerges from the continuum to become
a true bound state at large K values. Both of these "new"
bound states undergo a change in character in crossing from
spectral region III to spectral region V, here referring to
the regions as labelled in Figure (2.3). This change in
character is a direct consequence of the two allowed values
of relative wavevector g being degenerate at the boundary
between these regions (see Appendix B for details). In
region III, the imaginary parts of the two allowed g values
are different while in region V they are equal (with real
parts different). 1In all subsequently examined cases, bound
states lying inside the continuum gaps exhibited similar

behaviour.

Case (c) AS = 0 S > % b #1 r(l) = r(2> =1
We now consider the alternating bond Heisenberg chain

with uniform spin of magnitude S > %. (Note that if S > 1

then this may or may not be a true Heisenberg chain as Gél)

m = 3,4,...,25 have not been specified.) The bound state
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spectrum for this case is shown in Figure (4.2) where we have
chosen b = %-and S = 1. This spectrum is qualitatively
similar to that of the prior case (S = %-alternating bond
chain) except for an additional bound state branch located

between the mixed-mode and 0-0 continua. This branch is

isolated from both continua for all K. We presume that this

bound state is absent in the spin S = % case because it is
associated with two spin deviations on the same spin site and
hence is unphysical for S = %-only. Since the magnitude of
both spins in the unit cell has been incremented from S = %

to S = 1, one might expect a total of two "new" states. That
is, a total of two states that are both unphysical in the

S = % alternating bond case. This suggests the likelihood of
a state inside one of the continua and hence resonant for

all values of K.

Increasing the magnitude of spin above S = 1 or varying

b (provided b # 0 or 1) does not change the qualitative form
1
5 -

scale energy values by S, then the relative binding energy

of the spectra shown for S = 1 and b = However, if we
of each of the five bound states decreases as S increases.
This is expected since S » « corresponds to the classical
limit at which point the bound states must be absorbed into
their respective continua. The bound state midway between
the mixed and 0-0 continua approaches the latter in the

large S limit.
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If we set b = 1 then we obtain the case of a uniform

Heisenberg chain with S > %. The spectrum corresponding

to this case is qualitatively similar to the spectrum for

case (a) (uniform Heisenberg chain with S = %J. However

when S > % there is known to be a resonant state inside the

continuum, corresponding to an unphysical state when S = %.

This resonant state can be forced out of the continua by
including a single-ion anisotrophy term in the Hamiltonian

(PP].

LD

Case (d) AS = 0 S > = r =

N H

This corresponds to a chain with uniform spin, generally

(1)
2

ficance of this last condition can be seen by considering

alternating bond strength, and G = G£2) = 0. The signi-

the set of interacting equations (2.19) which are now as

follows:
Loy =8I ay, on = "SM3n41 o0+ ¥ Pagn-1,2n-17  (4-22)
[52'-2S]a2n—l,2n - _S[aZn—l,2n+l + a2n—2,2n] (4.2b)
[EZ-zsb]aZn,2n+l - _Sb[aZn,2n+2 * a2n—l,2n+l] (4.2¢)
ey = S(HB)Jay 4y oner = TSLagy o P30 onupl - (4.20)

Clearly all the amplitudes with two spin deviations on the
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same site have decoupled from all other amplitudes. The
same was true in cases (a) and (b); however in those cases

the decoupled amplitudes were unphysical since S = S' = 5 -

For larger values of S we expect the decoupled amplitudes
with two spin deviations on the same site to describe physical
bound states.

We can obtain explicit analytic expressions for these
same site bound states as follows. Substitute for the ampli-
tudes in (4.2a) and (4.2d) with the general forms given by

(2.30). We then obtain the following:

+iK/2 -iK/2

CO{[gz-S(1+b)]a + [Se + Sbe 18}

+ Dy{le, - S(1+b) Ia + rse™R/2 Lane ™K/ 2950 L g (4,34

_lK/2-+Sbe+lK/2]

CO{[Se o + [gz-5(1+b)]5}

-1iK/2 +iK/2

il

+ Dy{lse + Sbe To + [g2-5(1+b)15} 0. (4.3b)

The secular determinant of this linear homogeneous system

is as follows:

2

g5 - 25(1+b) e, + S2[(14b)% =1 - b2 - 2bcos (2K) ] = 0 .  (4.4)

Solving for the two-magnon excitation energy gives the following

pair of bound state dispersion curves:

= Gl(l)su + b+ /l+b%+2bcos (2K) ] (4.5)

o+
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both of which describe states with two spin deviations on a
single site.

The set of equations involving amplitudes with spin
deviations on different sites ((4.2b), (4.2c), and the non-
interacting equations (2.17)) is formally identical to the
set of equations obtained for case (b). Hence if we scale
energy by a factor 2S5 then the bound states and energy
continua are identical to those of the spin S = % alternating
bond case except for the two additional bound state branches
as described by (4.5). The complete spectrum, three continua
and all six bound state branches, is shown in Figure (4.3)
for b = % and S = 1. Notice that the bound states for spin

. . . . - + . .
deviations on the same site (i.e., E_ and EB) lie entirely

B

inside the A-A continuum and mixed-mode continuum respectively.
Yet, these are true bound states for all values of K because

of the complete decoupling that occurred. However, if we
(1)
2

(albeit small) values then this decoupling would be broken

allowed spin to alternate or let G take on non-zero

and the two additional bound states would become resonant

states inside the continua.

If we set b = 1 then we have a uniform chain with S > %
and r(l) = r(z) = 0. 1In this case we obtain a scaled spectrum
1

identical to that of case (a) {(uniform chain with § = 7)

except for an additional bound state lying entirely inside

the single continuum. Because of the complete decoupling,
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this is a true bound state for all K and the dispersion rela-

tion is given by

E, = 4Gl(l)sSin2 (121) (4.6)

where we have assumed the full Brillouin zone representation
(|K|] < 7). 1In spite of similarities to case (a), this is
generally not a completely integrable system. This is because

the remaining values of G(l)

- (m = 3,4,...,28) are yet unspe-

cified. The exception occurs when S = 1 because in this
case, all exchange coefficients have been specified. 1In

fact, the uniform chain with S = 1 and G = 0 is a special

(1)
2
case of a family of completely integrable systems [SUl] which
are known as Schrodinger exchange operators [SCHJ]. Using

our notation these correspond to

This case describes a chain with generally alternating

(1) _ ~(2) _
1 = Gl = 0.

For S = 8' = 1 this corresponds to a biquadratic exchange

spins, generally alternating bonds, and G

Hamiltonian. (By this we mean the spin-spin interaction is

described in terms of quadratic exchange operators (§i-§.)2

J
(1) (2)
1 1

both branches of the one-magnon dispersion relation (2.12)

only.) Regardless of S and S', if G = G = 0 then
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must vanish for all X. For the two-magnon problem it imme-
diately follows that all three energy continua must also
collapse to zero energy for all values of K. These "collapsed
continua" make this a very special case.

From (2.27) we see that cos(2q) is infinite and conse-
quently the relative wavevector g must have an infinite ima-
ginary part. Eliminating those values of g corresponding
to unphysical (exponentially growing) solutions means that
all acceptable values of g have a negative and infinite
imaginary part. From (2.29) and (2.30) it is evident that
all amplitudes, except those with spin deviations on same or
adjacent sites, must vanish due to an exponentially decaying
factor. Using this simplification along with Bloch theorem
we can express the four interacting equations (2.19) in terms

of only four unknown amplitudes. These are equivalent to the

(2) (3) (4)
1 Y Uy

defined by (3.15). The secular determinant for this sytem

relative coordinate amplitudes U(l) U as

is as follows:

(1) (2)

E, - E (G 5

+ G ) (2S +28' - 1)

(1) (2) (25—1)(25'”1) [(28+25'*l)24 'COSZ(K)] = 0 .

+ E G
252 % (5+5'-1)°

(4.8)

Solving this quartic equation we find a two-fold degenerate

bound state at E2 = 0 for all K (i.e., inside the collapsed
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continua for all K) and two additional bound state branches

with dispersion relations given by

25+28'-1

2
2 (1) 4 g(2),

£ _ (1) (2)
Ep = ( )(G2 -FGZ ) % (G2 5

25428'-1, 2
(=20

_ (25-1) (25'-1) 2 €

(S+s'-1)

Gél)Géz)[(25+28'—l) -—4SS'cosz(K)]]

(4.9)

The simplicity of.the two-magnon spectra for this model
is physically justifiable in that the two-magnon states are
in some sense equivalent to the "normal" spin waves of other
models. In this model, the spin excitation pairs are strictly
localized to same or adjacent sites and hence behave as a
single entity propogating along the chain.

Now consider the even more special case of a uniform

{l) = G{Z) = 0. In this case there are only two

chain with G
bound state branches. One is degenerate with the collapsed

continuum and one is given by

E, = Gél)[(ZS—l) + 45sin2(§)], (4.10)

‘Although EB is only a single branch in the full Brillouin
zone (|X| < m), this bound state folds back at K = n/2 in the
reduced zone scheme (|K| < n/2). The dispersion relations

for these two reduced zone branches are as follows:

+ _ (1)
E, = G

5 [ (45-1) = 25cos(X)]. (4.11)



So for a uniform chain, we find that Eg and Eg are degenerate

at the reduced Brillouin zone boundary. This degeneracy
along with the overall simplicity of the model suggests the

possibility of a completely integrable system. The uniform

(1) (2)
1

chain with S = 1 and G = G = 0 is in fact a special

1
case of a family of completely integrable systems [BB]
originally studied by Parkinson [PAR]. In our terminology

these are given by

(1) _ (1) _ _oL(1)y
Gyl =Gy, = ... =Gygly =0
i=1,2 (4.12)
(1)
Gyg # 0
Case (f) AS = 0 S > % b # 1 r(l) _ r(2)

Suppose we consider chains with uniform spin only. Then
the two previous cases can be interpreted as being extreme
or limiting cases of alternating bond system in which we
are free to vary the ratid r = r(l) = r(2) from zero to
infinity. If r‘= 0 we obtain case (d) whereas if r diverges
we obtain case (e). We anticipate that any intermediate
value of r corresponds to a system which is appropriately
intermediate between these two extreme cases. 1In general,
the intermediate systems should have more complicated spectra
since complete decoupling between sets of amplitudes occurs
only in the limiting cases. One such intermediate case was
already disucssed in case (c¢) where r = 1 (i.e., the Heisen-

berg case).
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For case (d) we identify a total of six distinct bound
state branches. We can also consider case (e) as having six
bound states such that four of these are degenerate with the
collapsed continua. We know there are four such states
associated with the collapsed continua from examining the
spectra with r >> 1 but finite. So it follows that any inter-
mediate case (0 < r < =) should also have six associated
states. These could be true bound states but are generally
resonant states for some (or all) values of K. Furthermore,
we expect this number of six bound or resonant two-magnon
states to apply to any chain with some degree of alternation
associated with it. However if 8§' = % or S = §' = %, then
one or two of these states would be unphysical.

The six bound/resonant states of any intermediate case

in this model can be considered to have "evolved" from the

bound states of either of the two limiting cases. We can

illustrate this evolution with a few choice examples. For
each of these examples we will set S = 1 and b = %. However

varying these two parameter does not alter the qualitative

form of the spectra provided s » % and b # 0,1.

Figure (4.4) shows the bound state spectrum for the case

U

r = Notice the similarity with case (d) (r = 0) except
now the states inside the A-A and mixed-mode continuum must
be resonant states due to broken decoupling. The state inside

the A-A continuum apparently emerges from the top of the
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continuum at large values of K where it is a true bound
state again. The state inside the mixed continuum will
similarily emerge but not until r = 0.7. This state first
emerges at small values of K.

Recall Figure (4.2) which shows the two-magnon spectrum
for the Heisenberg case, r = 1. By following the spectral
evolution from r = 0 to r = 1 we can make the following obser-
vations regarding the Heisenberg case. The "extra" bound
state between the mixed and 0-0 continua (refer to case (c))
is now identified as having evolved from the bound state
inside the mixed continuum at r = 0. The bound state inside
the A-A continuum at r = 0 evolves into the‘bound state below
the mixed continuum at r = 1. Meanwhile the bound state
originally beneath the mixed continuum (when r =0) gradually
rises up into the mixed continuum as r is increased. At
r = 1, this state is presumably a resonant state for all K.
Recall from case (c) that such a resonant state had been
predicted using a different line of reasoning.

Finally consider Figure (4.5) which depicts the bound
state spectrum for the intermediate case r = 2. This case
is interesting in that all six bound/resonant states are
observed as being true bound states for at least some values
of K. As r » « the two bound states above the 0-0 continuum
evolve into the non-trivial states E. while the other four

B

states are dragged along with the collapsing continua. Note



that the upper of the two branches beneath the A-A continuum
has emerged outside the top of this continuum at small values

of XK.

Case (qg) AS = 0 S > % r(l) =0 r =
This case corresponds to a system with uniform spin,

(2) (1)
1 2

system which can be regarded as being intermediate between

alternating bond, G = 0, and G = 0. This is another

the two systems described in cases (d) and (e). Here the
alternating chain is composed of two sublattices, each of
which corresponds to one of the previously described cases.
(For s = 1 this would correspond to pure bigquadratic exchange

alternating with Schrddinger exchange along the chain.)

(2)
1

El = 0 and El = 2SG{1) for all K. Consequently, the two-

magnon energy continua all have zero width and coincide with

_ (1) _ (1)
5 = ZSGl , and E2 = 4SGl .

From (2.27) we see that cos(2q) has a zero in the deno-

Since G = 0 the one-~magnon dispersion relations reduce to

E, =0, E

minator. However cos(2g) does not necessarily diverge as
the numerator of this expression may also vanish. In fact,
the roots of the numerator coincide exactly with the three

collapsed energy continua. Therefore, how we choose to take

(2)
1

evaluating the allowed values of relative wavevector g.

the limit G + 0 becomes a crucial factor in properly

(Note that we did not have a similar crisis in case (e) where

(1) (2)

both Gl and Gl vanish. In this case the denominator of
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(2.27) will always go to zero more rapidly than the numerator

and hence cos(2q) diverges for all E2.)

To avoid the use of "nasty" limit taking procedures we
turn to the scaling formalism (Chapter 3) which does not
require explicit calculation of relative wavevector. The

scaling formalism is particularily convenient for this case

because both V! =V M_l 1
p p

(M, Vp, Vm as defined in (3.18-3.20)). Hence the scaling

Vp and V& = VmM~ vV, are exactly zero
transformation described by (3.26) converges after only one
iteration. This rapid convergence can be justified as follows.
From (2.27) we know that |Imag(qg)| even if not infinite, must
still be very large. Hence any.bound state solution must

decay very rapidly to zero as relative coordinate between

spin deviations increases. Vé and V& describe the effective
range of interaction in relative coordinate space so it follows
that both of these matrices should vanish after a minimal
number of iterations.

Since Vé = 0 we know from (3.23) that there is no effec-
tive interaction between unit cell UO and unit cell Uy - How-
ever Vp # 0, so we know from (3.23) that there is a direct
interaction taking place between unit cells U, and U, as well

0
as between U2 and U4. The only possible explanation of these
two results is the following. Amplitudes describing spin
deviations separated by zero, one, or two sites have completely

decoupled from all other two-magnon amplitudes. It therefore

follows from the formalism of Chapter 3 that bound states
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corresponding to spin deviations separated by two sites or

less can be obtained from the secular eguation

det[Mé] =0 (4.13)

where: M! = M, - V M_lv
0 0 P m

and where M, MO' Vp’ Vm are defined by (3.18-3.20) and (3.22).

Substitution and simplification leads to the following result:

Q[Q+2SG1(1) ]2{93 + 92G2(2) (1-48) + 9482G](_l) (G2(2)cosz(K) - Gl(l))

+ 252 (G{l))262(2) (25-1+4sin® (X))} = 0 . (4.14)

Recall from (2.18) that o = E2-28G£l). So the bound state

solutions are given by

(1) E

Il

2 0 twice

Il

2sc{t)

(2) E, 1

(3) roots of the cubic { } in (4.14) .

At least three of the bound states are degenerate with the
collapsed continua but because of the complete decoupling
these remain true bound states for all values of K. Notice
the total of six bound states. This coincides with the
number predicted for any alternating chain (see case (f)).
Now consider the amplitudes describing spin deviations
separated by greater than two sites. For energies not

coinciding with the collapsed continua we know that
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|Imag(g)| » ». So from (2.29) these amplitudes must vanish
outside of the continua due to an exponentially decaying
factor. Consequently, such amplitudes have non-trivial solu-
tions only at the collapsed continua energies of E2 = 0,
1) (1)

1 -

ZSG(

1 45G

The complete two-magnon spectrum (three collapsed
continua and three non-degenerate bound states) is shown in

Figure (4.6) for § = 1 and Gi2) = cl?).

Case (h) AS > 0 b =1 r(l) = r(z) =1

This case describes an alternating spin Heisenberg chain
with uniform bonds. Note that if S' > 1 then this may not

be a true Heisenberg chain since Gél), m= 3,4,...,28', are

yet unspecified. Also note that if §' = l-then all physical

2
amplitudes are independent of Gél) and Géz) and so r(l)

_(2)

and

need not be gpecified.

First consider the specific case with S' = %—and s = 1.

The corresponding bound state spectrum is shown in Figure
(4.7) . This spectrum is very similar to that of case (b),
namely the alternating bond Heisenberg chain with uniform
spin S = %. This similarity suggests that the means by
which alternation is introduced into the otherwise uniform
Heisenberg system is relatively umimportant. In both cases

there are four bound state branches such that two are below

the A-A continuum and one is below each of the others. The
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only qualitative difference between the two spectra is the
form of the bound state branch lying immediately below the

mixed continuum. In the alternating spin Heisenberg case

(with s' = % and S = 1) this branch is "connected" to the A-A
continuum at K = 0 whereas for the alternating bond Heisenberg

case no such connection occurs.

Next consider the alternating spin, uniform bond Heisen-

berg chain with S' = 1 and S = %. The corresponding bound

state spectrum for this case is shown in Figure (4.8). This

spectrum is qualitatively very similar to that obtained for

S' = %, S = 1. Notice that the connection between bound

state branch and A-A continuum upper edge has remained intact.

Now consider the bound state spectrum for the spin combination

S' = % and S = %w This is shown in Figure (4.9). Again
the spectrum is very similar to that obtained for s8' = %,
S = 1, except now the connection between bound state and A-A

continuum has been broken.

We find that all combinations of S and S' (S' < S) in
the alternating spin, uniform bond Heisenberg chain result
in similar spectra to those shown in Figures (4.7-9). For
all combinations of non-equal spin magnitudes there are four
observable bound state branches such that two are below the
A-A continuum and one is below each of the other continua.
(The relative binding energy of each of these branches does

decrease as spin magnitudes increase but this is expected
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since S » o 1is the classical limit.) Whether or not there
is a K = 0 connection between bound state and A-A continuum
upper edge depends strictly on the difference in spin magni-
tudes. The K = 0 reduced energy of the bound state below

the mixed continuum is empirically given by

3

(K = 0) = 2[S + 8' - 2] (4.15)

&R

while the reduced energy of the A-A continuum upper edge is

analytically given by (see Appendix B)

gC(K < Kc) = 2(8+S') - [8S8S'(l-cos(K)) + 4(S—S‘)2];5 (4.16)
and so at K = 0,
gC(K = 0) = 48' . (4.17)

Hence this connection occurs in the uniform bond Hdeisenberg
1

chain if and only if AS = 5 - We also find that any degree
of bond alternation (b # 1) or any deviation from the Helisen-
berg case (r(i) # 1) results in the breaking of this connection
regardless of AS. Furthermore, such deviations from the
uniform bond Heisenberg case generally result in more compli-
cated spectra.

The connection between "mixed-mode" bound state and A-A
continuum upper edge may be an important spectral feature.

When it occurs the bound state branch forms a "bridge" between

two otherwise isolated continua. However the physical signi-
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ficance (if any) of such a spectral feature is so far unclear.

We do know that the occurrence of this feature requires that

AS = %, b =1, and r(l) = r(z) 1 all must be satisfied.

The only obvious simplification in the two-magnon problem

when AS = % is (from (2.20)) T(l) = T(z) = eS' . Consequently,
three of the diagonal entries in the matrix MO (3.22) are
degenerate. If r(l) = r(z) = 1 then the only obvious simpli-
fication is (from (2.20)) A(l) = A(z) = 0. As a result, there

is a partial decoupling in the interacting equations (2.19)
between amplitudes with two spin deviations on the same even
site and amplitudes with two spin deviations on the same odd
site. The two-magnon problem obviously simplifies whén bond
strength is uniform (b = 1). What remains unclear is how
these various simplifications are related when they occur
simultaneously.

There is another point of interest regarding the alter-
nating spin, uniform bond Heisenberg chain. First consider
the interacting equations (2.19) for any case in which s' = %.
Because of the decoupling of the unphysical amplitudes (i.e.,
those amplitudes with two spin deviations on the same even

site) there is an unphysical solution given by

(1)

(2)
5 + G, 1. (4.18)

E, = 28[6G

So it follows that increasing S' from % to a larger value
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should result in an additional bound (or resonant) state
which is physically valid. We have previously observed this

to happen for the alternating bond, uniform spin Heisenberg

N

chain, as discussed in cases (b) and (c¢) for S' = % and S' >

respectively. However for the alternating spin, uniform bond
Heisenberg chain we always observe exactly four bound states,
independent of the size of S'. Therefore an "extra" resonant
state is anticipated in those cases for which S' > %. The

presence of such a state will be considered in the following

section.

4.2 Local Densities of States

In Chapter 3 we formalized a technique for evaluating
the local density of states at any two-magnon spectral point
(K’EZ) of an alternating ferrimagnetic chain. Each local
densities of states calculation is obtained from a response
function describing two spin excitations arranged in a parti-
cular configuration along the chain. A given configuration

is specified by

(1) the number of sites separating the excitations or
in other words the relative coordinate r
(2) 1if r is even; the type of spin sites that are excited
(each spin site is labelled by either S or S'):
if r is odd; the type of bonds connecting the
excited sites (each bond is described by either

G(l) or G(z), m=1,2).
m m
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We found it most convenient to express these results by plot-
ting local density of states versus excitation energy for a
fixed value of total wavevector. The value of K is varied in
intervals across the Brillouin zone, thereby giving a series
of plots extending over the entire spectral plane (or what-
ever region we are interested in).

Using the methods described in Chapter 3, it is possible
to calculate local densities of states with respect to spin
excitations separated by any distance along the chain. However
we usually restricted our calculations to spin excitations
on same or neighbouring sites only. Calculations corresponding
to greater separation of spin excitations are generally re-
dundant. Also, bound and resonant states become harder to
identify in the local densities of states as this separation
increases. This is because such states are dominated by
exponentially decaying factors of the form expl-|Imag(q) |r]
where r is the relative coordinate. Furthermore, the plane
wave component of the scattering (continuum) states oscillates
more rapidly as separation increases due to a factor
explxiReal(g)rl. So the larger the separation the more nodes
in the corresponding densities of states. These nodes compli-
cate the plots making the "true" resonant states harder to
identify. For an example of this latter effect consider
Figure (4.10) which shows the local densities of states for

(a) two excitations on the same site and (b) two excitations
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separated by ten sites (we are considering a uniform spin
chain with S = 1 so we do not have to specify whether the
excitations take place on even or odd spin sites).

Using Figure (4.10a) as an example of a "typical" den-
sities of states plot we can illustrate the various spectral
information which is easily extracted by way of this method.
First, consider the scattering state continua. Generally,
these are identifiable as extended regions of non-vanishing
density of states. Here, the A-A continuum ranges from 0.2
to 1.6 reduced energy units (reu), the mixed continuum ranges
from 2.3 to 3.7 reu, and the 0-O continuum ranges from 4.5
to 5.8 reu. Next, consider fhe bound state solutions. These
appear in the plots as very sharp peaks outside the continua
regions. In Figure (4.10a) three bound states are observed
at 0.2, 2.3, and 4.0 reu. Finally, consider the resonant
state solutions. These appear in the plots as peaks inside
of the continua regions. The relative sharpness of such
peaks depends on the particular state and value of XK.
Although resonant peaks are the most interesting features of
these plots, identifying an inner-continuum structure as being
resonant or not is often a subjective classification. Hence,
such identifications must be made with caution. Candidates
for resonant peaks in Figure (4.10a) are located near 1.4 reu
and near 3.3 reu. We observe in Figure (4.10b) that one of

the bound states (4.0 reu) has wvanished and both resonant




104.

states have dissipated. Hence, our choice of plots to study
is justified.

Because of the subjectivity in classifying resonances
such evaluations are best made by "tracing" said peak across
the Brillouin zone to see if it persists, sharpens, shifts,
fades, etc. When studying a particular case we usually exa-
mine local densities of states for at least five different
values of K. However in our subsequent discussions we only
display the results for K = 0, /4, and n/2 for the sake of
economizing space. We do however calculate (and present)
the local densities of states with respect to both same site
and nearest-neighbour spin excitations. Both are included
because often a particular configuration will not be sensitive
to all of the bound and resonant states occuring at a given
value of K. There are four possible configurations corres-
ponding to excitations separated by one or zero sites so there
are generally four distinct plots for each value of K. These
are referred to as "even site" (two spin excitations on same
S' site), "odd site" (two spin excitations on same S site),
"strong bond" (excitations separated by a bond described by

Gil;), and "weak bond" (excitations separated by a bond
14

(2)

described by Gl 2). In cases of uniform spin the first two
14

plots are degenerate while for uniform bond chains the latter

two are degenerate. If S' = % then the even site plot is

unphysical.
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Case (a) AS = 0 s > % b # 1 r(l) = r(2) =1

This is the case of an alternating bond, uniform spin

Heisenberg chain with spin magnitude S > %. Here we choose
to study S = 1 and b = %-although any S > % and b # 0,1 will

give results that are qualitatively similar. This special
case was initially discussed in case (c¢) of Section 4.1 and
the bound state spectrum is depicted in Figure (4.2). The
local densities of states are shown in Figure (4.11) for
K = 0, Figure (4.12) for K = w/4, and Figure (4.13) for
K = n/2. For each K value the results are plotted for (a)
same site spin excitations, (b) spin excitations separated
by a strong bond, and (c) spin excitations separated by a
weak bond.

Recall there are a total of five bound state branches
for this case, only three of which are true bound states
for all values of K. These three (the lower of the two below
the A-A continuum, the state below the mixed continuum, and
the lower of the two below the 0-0 continuum) are identifiable
as sharp peaks at all values of K. The upper bound state
below the 0-0O continuum is only identifiable in plots with
K > KC, where KC is the wvalue of wavevector at which the internal
singularity originates in 0-0 and A-A continua. (See Appendix
B for detailed discussion.) Here KC = n/3. Strangely
enough, we observe no resonant behaviour in the 0-0 continuum

when K < KC.
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The upper bound state beneath the A~A continuum is only
identifiable as a bound state peak in plots with K near or
at n/2. For all smaller values of K there is a resonant
peak in the A-A continuum which appears to correspond to this
bound state. At K = 0 this resonant state is observed as a
relatively broad peak near the top of the continuum. As K
increases the peak gradually sharpens while moving downwards
through the continuum. Near K = 1/2 the peak‘eventually
"pops" out of the continuum becoming a true bound state.
What is most interesting is the behaviour of this peak rela-
tive to the van Hove internal singularity inside the A-A
continuum. (Recall from Chapter 2 that this singularity
does not exist for small values of K but first occurs at K = K
where it coincides with the upper edge of the A-A continuum.
As K further increases the singularity moves downwards until
it coincides with the lower edge at K = n/2.) The resonant
state remains beneath this singularity for all K > K- That
is, the resonant state is unable to "cross-over" the singu-
larity from spectral region II to spectral region IV (refer
to Figure (2.3)). Consequently, the state is pushed downwards
and eventually out of the continuum as the singularity pro-
gresses towards the lower edge.

Recall from Section 4.1 (case (f)) that a total of six
distinct bound/resonant type states are anticipated for an

alternating chain with no unphysical amplitudes. Up till
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now we have only identified five such states for this case.

So we now look for states that are resonant for all values

of K. The only possibility is the peak in the mixed-mode

continuum. This is a very broad structure at K = n/2 which

gradually narrows as K decreases. However the entire con-

tinuum narrows as K goes to zero so this is not a well-defined

resonant structure. Yet in case (f) of Section 4.1 we did

predict a resonant state occurring inside the mixed continuum.
There is a rather sharp peak at the top of the A-A

continuum in the K = 7/2 plots that has not yet been accounted

for. This peak actually occurs for all K > KC but it does

not correspond to a resonant state. Rather it corresponds to

a divergence in the density of states at the continuum edge

while inside spectral region IV. This is a common feature

of most cases we examined and is probably attributed to the

system under study being one-dimensional [AM]. The lower

end of the 0-O0 continuum also tends to sharpen while inside

spectral region IV, however here the effect is usually not

as predominant.

case (b) AS = 0 s>§_. b # 1 r(l)zr@):é_

This is a special case of the uniform spin, alternating

{l), i =1,2. As usual we

and S

bond chain such that Gél)= %

1. The bound state

consider the results for b =

N ®
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spectrum for this system was originally discussed in case
(f) of Section 4.1 and is displayed in Figure (4.4). The
local densities of states are shown in Figures (4.14), (4.15),
and (4.16) for K = 0, n/4, and ©/2 respectively. For each
K value the results are plotted for (a) same site excitations,
(b) spin excitations separated by a strong bond,and (c) spin
excitations separated by a weak bond.

In this case there are five bound state branches, only
two of which are bound states for all values of K. These
two (the lower of the two states below the A-A continuum
and the state directly below the mixed continuum) are identi-
fiable as sharp peaks for all values of K. The bound state
below the 0-O0 continuum is not identifiable at small values
of K, either as a bound state or resonant state.

The upper bound state below the A-A continuum shows
similar behaviour to its counterpart in case (a). At K = 0
it is a broad peak in the middle of the continuum (near 0.6
reu) . As K increases the peak gradually sharpens and when K
increases past KC (again Kc = n/3) the peak is pushed down-
wards, seemingly unable to cross-over the internal singularity.
The state is finally forced out of the continuum near K = =/2.
The bound state directly above the A-A continuum (at large
values of K) also originates as a resonant peak inside the

A-A continuum. At K = 0 this state corresponds to the resonant
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peak at the upper end of the continuum (near 1.5 reu). This
peak sharpens as K increases and at K = Kc it leaves the
continuum, becoming a true bound state. Notice that this
state's emergence from the continuum coincides exactly with
the appearance of the internal singularity. So this reso-
nant state (like the previously discussed one) is effectively
forced out of the A-A continuum by its inability to cross-
over the internal singularity.

Unlike case (a), there is a very well defined resonant
structure inside the mixed-mode continuum for all values of
K. At K = n/2 there is a relatively sharp peak near 2.2 reu
and the peak continuesAto sharpen as K decreases. The corres-
ponding resonant state is probably related to the decoupled

(1) _ ()

bound state inside the mixed continuum when r = 0.

Because of this resonant state we are able to identify a total
of six distinct bound and resonant states which is the number

expected for any alternating chain with S' > %.

Case (c¢) S' = %~ AS # 0 b =1

We now consider the alternating spin, uniform bond Heisen-

berg chain with s§' = %. This model was originally discussed

in case (h) of Section 4.1 with the bound state spectra shown

in Figures (4.7) and (4.9) for AS = % and AS = 1 respectively.

Here we will examine the local densities of states for AS = %
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(i.e., S = 1). 1Increasing AS breaks the special connection
between A-A continuum and bound state at K = 0 but otherwise
gives qualitatively similar results. The local densities of
states are shown in Figures (4.17), (4.18), and (4.19) for
K =20, n/4, and /2 respectively. For each K value the
results are included for (a) two spin excitations on the same
odd site, and (b) two spin excitations on neighbouring sites.
(Remember, two spin excitations on the same even site is
unphysical if s' = 5 .)
In this case there are four bound state brancheé only
two of which are bound states for all values of K. These
two (the lower of the two states below the A-A continuum and
the state below the mixed continuum) are identifiable as
sharp peaks for all values of K. As in the previous two cases
the bound state below the 0-0 continuum is not identifiable
at small values of K either as a resonant state or bound
state. Also as in the previous two cases, the upper bound
state below the A-A continuum starts off at small values of
K as a resonant state inside this continuum. As before, the
corresponding resonant peak gradually sharpens and moves
downwards as K increases, eventually emerging near K = 7/2.
Because of the unphysical state corresponding to two
spin deviations on a S' = L site we only expect five distinct

2

bound or resonant states for this case. However, besides
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the four states already mentioned the only other resonant
structure is a very broad peak in the mixed-mode continuum.
Similarily to case (a) this is not a well defined resonance
even though it sharpens as K decreases (due to continuum
collapsing at K = 0.) The overall similarity of these
results to that of case (a), the alternating bond Heisenberg
chain, suggests the mechanism for alternation (bond or spin)

is relatively unimportant.

Case (d) s' > AS > O b =1 r = r(z) =1

NS1R

Finally we consider the alternating spin, uniform bond
1

Heisenberg chain with s' » 5 - This system was originally
discussed in case (h) of Section 4. 1 and the bound state
spectra is shown in Figure (4.8) for S' =1, S = % . The

local densities of states are shown for these same spin magni-
tudes in Figures (4.20), (4.21), and (4.22) for K = 0, n/4,
and /2 respectively. For each K value the results are con-
sidered for (a) two spin excitations on the same even site,
(b) two spin excitations on the same odd site, and (c) spin
excitations on adjacent sites. As for case (c), increasing
AS breaks the connection between mixed-mode bound state and
A-A continuum upper edge but otherwise gives qualitatively
similar results.

The bound state below the 0-0 continuum is now identi-

fiable for all values of K but otherwise there are no signi-




112.

ficant differences between these results and those obtained
for case (c). This is surprising because when S' = % there
is a decoupled unphysical state (4.18). Hence, we expect a
corresponding physical state (either bound or resonant) to
arise when S' is increased to a larger value. However no
additional bound or resonant states are evident in any of the
local densities of states for this case. Since fewer bound
states implies a simpler system, this result now suggests
that alternation of bond strength is a more severe "distur-
bance" than alternation of spin magnitude. So an alternating
spin system is (possibly) a more likely candidate for complete

integrability.

4.3 Two-Magnon Spectra

In this section we present Figures (4.1) to (4.22)
inclusive. These are the two-magnon bound state spectra
and two-magnon local densities of states referred to in the
previous sections. In all proceeding figures, energy is in

units of G{l).
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FIGURE 4.1: Two—magnon spectrum for an alternating bond Heisenberg
chain ( S=S'=1/2 b=1/2). Regions bounded by solid curves are continua.

Dashed lines separate spectral regions Il and V. Crosses indicate bound
state branches.
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FIGURE 4.2 : Two—magnon spectrum for an alternating bond Heisenberg
chain (S=S'=1 b=1/2 ). Regions bounded by solid curves are continua.

Dashed lines separate spectral regions Il and V. Crosses indicate bound
siate branches.
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FIGURE 4.3 : Two—magnon spectrum for an alternating bond chain with
r(1)=r(2)=0 (S=S'=1 b=1/2 ). Regions bounded by solid curves are
continua. Dashed lines indicate bound states for spin deviations on the

same site while crosses indicate bound states for spin deviations on
different sites.
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FIGURE 4.4 : Two—magnon spectrum for an alternating bond chain with
r(1)=r(2)=1/5 (S=S=1 b=1/2). Regions bounded by solid curves
are continua. Dashed lines separate spectral regions IIl and V. Crosses
indicate bound state branches.
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FIGURE 4.5 : Two-magnon spectrum for an alternating bond chain with
r(1)=r(2)=2 (S=S=1 b=1/2). Regions bounded by solid curves are
continua. Dashed lines separate spectral regions IIl and V. Crosses
indicate bound state branches.
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FIGURE 4.6 : Two—magnon spectrum for an alternating bond chain with
r(1)= and r(2)=0 (S=S=1). Solid lines are collapsed continua and
crosses indicate bound state branches.
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FIGURE 4.7 : Two—magnon spectrum for an alternating spin Heisenberg
chain ( $=1/2 S=1 b=1). Regions bounded by solid curves are continua.

Dashed lines separate spectral regions Il and V. Crosses indicote bound
state branches.
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FIGURE 4.8 : Two—magnon spectrum for an alternating spin Heisenberg
chain ($'=1 S=3/2 b=1). Regions bounded by solid curves are

continua. Dashed lines separote spectral regions III and V. Crosses
indicate bound state branches.
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FIGURE 4.9 : Two—magnon spectrum for an alternating spin Heisenberg
chain ( $=1/2 S=3/2 b=1). Regions bounded by solid curves are

continua. Dashed lines separate spectral regions IIl and V. Crosses
indicate bound state branches.
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FIGURE 4.10: Local densities of states for (a) two spin
deviations on the same site and (b) two spin deviations
separated by ten sites for an alternating bond Heisenberg
chain (S=S'=1 b=1/2) at K=PIL/4.
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@ b

Densily of Slles

ol

Denshi)ty of lales

0

Densﬁy 0f Staes

o

124.

i
3
E eme—
O 1 = = -3 =4 <
Ermnergy
Cead
E
]
O 1 = = -} (=1 «s
FEresrcgy
(@ =/

E L\/\ f‘\
O 1 = =2 -y (=1 L =1
Ernesrcgy

Cc=D

FIGURE 4.12:

deviations (a) on the same site

Local densities of states for two spin

(b) separated by a

strong bond and (c¢) separated by a weak bond for an
alternating bond Heisenberg chain (S=S'=1 b=1/2)

at K=PI/4.




0 A

Densrioly of Slles

ot

Denshi)ty of Slales

W

Dmsi)ly of Stales

o

125.

ErmnergagyN

Cad

Erheesrg)

<o

|

-1 = = -3 = =
Ermnergy

CcD

FIGURE 4.13: Local densities of states for two spin
deviations (a) on the same site (b) separated by a

strong bond and (c) separated by a weak bond for an

alternating bond Heisenberg chain (S=S'=1 b=1/2)

at K=PI/2.




&
]
-3 -
cro
>
<S8 ]
o 3
e
<
=
S > o
—_—
=5
D
< 3
o - L
o 1 = = -t &
Emnerg)y
cad
= o
-y
<
<> 3T
——
P ==
gz 3
[ e }
1
° s (T
o 1 = = - 8 =
Ermerga)y
=P/
& 1
-y
<>
.=
==
<o 3 A
R
L3
P
;g;g "
-+ 3
O - - ;
(=} 1 = = - (=3
Ernergy
CcD

FIGURE 4.14: Local densities of states for two spin
deviations (a) on the same site (b) separated by a strong
bond and (c) separated by a weak bond for an alternating

bond chain with r(1)=r(2)=1/5 (S=S'=1

b=1/2) at K=0.




127.

0 A

Densi)ly of Stles

<
_
—

Demhi)ry of Slates

O 1 == = -y [ —4 [ =3
Ermercy
(@ =D
&
P
<
=
==
o 3 7
vl
<
— 1
—t= =
1 3
o -1 = 3 -3 s =
Ermnergy
D

FIGURE 4.15: Local densities of states for two spin
deviations (a) on the same site (b) separated by a strong
bond and (c) separated by a weak bond for an alternating
bond chain with r(1)=r(2)=1/5 (S=S8'=1 b=1/2) at K=PI/4.



Denshi)ly 0 gla!es »

o

A

W

Dmsﬁy of Slales

o

W

Densj)ly of Stales

Y

128.

3 A

o 1 = = -1 s r-3
Ernergy
C&eaad

i

o 1 = = - s -
Ernergy
([ =P

o 1 = = < s =
Ernaergy
CcD

FIGURE 4.16: Local densities of states for two spin

deviations (a) on the same site

(b) separated by a strong

bond and (c) separated by a weak bond for an alternating

bond chain with r(1l)=r(2)=1/5

(S=8'=1 b=1/2) at K=PI/2.




129.

5 1
4 7
2
£ 37
o
=}
>
Z =]
S
11
o_: - A
O 1 =2 3 - s S
Energy
ad
5-
4 ]
o ]
=2 ]
S8 3
o ]
K=
="
£ 2
[
LE
] o TTTT————
O + 4 . ;
o 1 2 3 - 3 5 (=]
Energy
b)

FIGURE 4.17: Local densities of states for (a) two spin
deviations on the same odd site and (b) two spin deviations
on adjacent sites for an alternating spin Heisemberg chain
(s'=1/2 $S=1 b=l) at K=0.




130.

s_.
4_
2
= 3]
w 4
=]
o
o=
£=1
1_4
o s .
O 1 =2 3 4 5 S
Energy
a)d
S ]
4
<
=2
8 37
oD
S
=
$ 21
= ]
1_
O +— -
o 1 2 3 « 5 S
Energy
(bl

FIGURE 4.18: Local densities of states for (a) two spin
deviations on the same odd site and (b) two spin deviations

on adjacent sites for an alternating spin Heisenberg chain
(s'=1/2 S=1 b=1) at K=PI/4.




0

Densily of States

0

Density of States
N

N

131.

O 1 b= 3 4 s (=]
Enoergy
Ca)d
] JN
(@] 1 =2 3 < 5 S
Energy
(bl

FIGURE 4.19: TLocal densities of states for (a) two spin
deviations on the same odd site and (b) two spin deviations
on adjacent sites for an alternating spin Heisenberg chain
(s'=1/2 S=1 b=l) at K=PI/2.




132.

&
]
]
-
<
=22
=
<o 3
D i
>
—
e = 7]
< ]
9> 1
[ s |
1
o
o 1 p~=4 3 -3 5 [ =] re (=4 L —4 10O
Ernergy
Cead
&
-3
=
=3
oo 3
——
[ -
%’2_‘
]
[ e )
e
o -
o 1 = =3 -3 [ =3 < el L =3 = 10
Ernesrgy
koD
&
-3 -]
<>
= E
== ]
o 3
D :
L v 4 1
= =
-4 3
o - - . -
o 3 = = -3 & (=1 Ve E =3 = A0
Ernarg)y
D

FIGURE 4.20: Local densities of states for two spin

deviations (a) on the same even site (b) on the same odd

site and (c¢) on adjacent sites for an alternating spin
Heisenberg chain (S'=1 S=3/2 b=1) at K=0.




133.

.
I3
A=
e 2 By
<q> T.0O
S O A
<UD a.s ]
A g
O o7 ]
=—o.6
=22 o.65
S o-a
. Q.33
O.==2
(@ oy By
O.O -
o -1 = = -3 (<= [ <3 > = L =] 310
Ernerg)y
CeaD
-y
€ =
<3
—
<o
——ae
< =
2 4]
3
] \
o o ———
O -1 = = -3 = « e =s L=~ TO
ErnesrgyN
oD
& o
<
<> 3
a> 3
== 3
ro 3
——
<
]
e =
T
o 1 g
o 1 = 3= -3 = < e s R =] 10O
Eresrcy
CcD

FIGURE 4.21: Local densities of states for two spin
deviations (a) on the same even site (b) on the
same odd site and (c¢) on adjacent sites for an
alternating spin Heisenberg chain (S'=1 S=3/2 b=1)
at K=P1/4.




Densl of Stales

Densty of Sates

Densly of Sales

N b

)

| IR TRURETY SR PTNUN,

134.

10

10

Rl = = 3 (=3 S 7 = 9
Ernercg)y
CcD

FIGURE 4.22: Local densities of states for two spin
deviations (a) on the same even site (b) on the same odd
site and (c) on adjacent sites for an alternating spin
Heisenberg chain (S'=l1 S=3/2 b=l) at K=PI/2.

pl=)




Chapter 5

SUMMARY

In this thesis we studied the two-magnon excitations of
an alternating ferrimagnetic chain. We only considered
systems in which the ground state is ferromagnetic and in
which the spin-spin Interactions are restricted to being
isotropic, rotationally invariant, and between nearest
neighbours. However we did allow for systems in which spin
magnitude and/or spin exchange interactions could alternate
along the chain. Both the strength and the form of these
interactions could be allowed to alternate.

Two distinct methods were used for obtaining solutions
of the two-magnon problem. The first of these methods involved
a direct analytic approach. This approach allowed us to solve
for the complete set of bound state branches and continua
boundaries for any system conforming to our model. The
second method used a real-space rescaling approach to solve
for the two-magnon Green's functions. Using these response
functions the local densities of states could be calculated
throughout the two-magnon spectrum. Together, these two
techniques provided an efficient means of assessing both
bound and scattering state contributions to the two-magnon

wavefunction.



136.

Using the above methods, we studied the two-magnon
spectral properties of a number of special cases of the
alternating ferrimagnetic chain. These cases included
various uniform, alternating bond, and alternating spin
systems. For some of these cases we were able to use the
analytic approach to derive explicit expressions for the
bound state dispersion relations. However in general, these
bound state dispersion branches were generated using an exact
numerical procedure. The scaling approach provided additional
information regarding the relative contribution of states
inside the scattering continua. This included the spectral
locality of resonanf state solutions.

Besides enhancing our understanding of two-magnon spectra
and how these spectra relate for different cases, there was
an additional motivation in my research. This was the
possible identification of completely integrable systems.

Such systems are of particular interest because the arbitrary
m—magnon problem can be solved using the Bethe ansatz approach
[BE]. As a result, it is possible to calculate the complete
energy spectrum of integrable systems, independent of the
choice of ground state.

The two-magnon spectra were checked for "special features"
which might indicate complete integrability. In particular

we checked for cases which satisfy Haldane's criteria [HALJ.
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(Haldane conjectured that the m-magnon bound state branches
of completely integrable models are both real and continuous
across minimum (m,2S) Brillouin zones of an extended zone
scheme.) However the only cases we identified were uniform
chains already known to correspond to families of completely
integrable systems [IS], [BBJ], [SUll.

We did manage to observe a special feature in the two-
magnon spectra for alternating spin, uniform bond Heisenberg
chains when spins on adjacent sites differed in magnitude
by exactly %. In these spectra, we identified a bound state
branch which forms a connection between two otherwise isolated
continua. Furthermore, the scaling approach revealed élter—
nating spin Heisenberg chains as having relatively simple
spectra when compared to their alternating bond counterparts.
We conclude that the uniform bond Heisenberg chain with spin
magnitudes differing by % is a possible candidate for solution
by a Bethe ansatz approach.

Although we restricted our study to relatively simple
(one-dimensional and isotropic) lattices such systems are
not too far removed from the "real worid". Layered materials
exhibiting quasi-one~dimensional character can often be
described in terms of spin exchange interactions [RRR]. 1In
fact, there is recent interest in metal ion arrays which can

be described by isotropic exchange interactions along an

alternating chain [DCG], [JVL], [SCD]. Such real systems
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generally have an antiferromagnetic nature, stressing the
importance of searching for completely integrable models.

Both the scaling and analytic formalism of this thesis
can be easily extended to the study of chains with anisotropic
interactions or to the study of chains with longer range
interactions or both. The analytic approach can also be
extended to the study of higher-dimensional lattices. Unfor-
tunately, the scaling method is essentially limited to use
in one-dimensional problems. When applied to higher dimen-
sional systems the effective range of interaction between
lattice sites increases as the scaling transformation is
iterated. Hence, using the scaling approach to study two-
or three-dimensional lattices would require construction of
a transformation valid for any range of interaction. Such
a transformation generally cannot be formulated.

A further extension of the scaling formalism could be
to study the three-magnon problem of alternating ferrimagnetic
chains. We know that for most cases the three-magnon problem
is insoluble and the scaling approach particularily fails
because of the previously described problem in studying
higher-dimensional systems. (Whereas the two-magnon problem
of a ferrimagnetic chain maps to a semi-infinite chain in
relative coordinate space, the corresponding three-magnon
problem maps to a semi-infinite wedge. That is, the three-
magnon problem maps to a two-dimensional tight-binding model.)

However we anticipate for special cases (such as completely
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integrable models) that there is sufficient decoupling in

the three-magnon interacting equations so that the scaling
approach can be directly applied. Along with known integrable
models the alternating spin, uniform bond Heisenberg chain

would be a possible candidate for such studies.
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APPENDIX A

In Chapter 2 of this thesis we presented, without proof,
the sets of equations determining the various one- and two-
magnon amplitudes. (That is, the amplitudes needed in des-
cribing the one~ and two-magnon wavefunctions.) In this
appendix we will consider the explicit derivation of these
results.

We will begin by discussing some general properties of
the spin exchange operators which make up the Hamiltonian of
interest (2.1). We follow this with the derivation of the

pair of equations (2.10) which determine the one-magnon ampli-

tudes aj. Finally, we will derive the sets of equations
(2.17), (2.19) which determine the two-magnon amplitudes
aij’ 1 < j. In the process of these derivations we will

also show that single spin deviation states |i> and two spin

deviation states |i,j> are not eigenstates of the Hamiltonian.

A.l1 General

First consider the operators which comprise the Hamil-

tonian of interest (2.1). These are
g1 .38 = o XX 'yaV¥ 'z2.2
SZn S2n+l S2n52n+l + S2n52n+l + S2n82n+l
I T 1 J'=at 'z.2
7 Son on T3 S2n82n+l + S2n82n+l (A.la)
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~ ~ 1 .+ ‘- 1 .- '+ z 'z
= = -
Son+1"%2n+2 = 7 Son+152n+2 T 3 Son+18on+2 T Son+15an+2
(A.1Db)
where: n = 1,2,..., g—(N is the number of sites on the

chain) .

Here we are using the usual definition of guantum raising
and lowering operators: s = s¥: isY. The subsequent deri-
vations require knowing the effect of these operators (A.1)
on the various one and two spin deviation states. (Devia-
tions are always assumed to be with respect to the ferromag-
netic ground state which has all spins alligned with maximum
projection along the negative z-direction.)

Any m deviation state can be expanded as a product of N
kets such that each ket is an eigenket of spin localized at

a specific site along the chain. 1In other words, an m

deviation can be expressed by

!al>l|a2>2 oo [a2>2 .o IaN>N (A.2)
where if 2 is odd
Szla > = o, la, > (A.3a)
L L R L 2 -
i —_—
syla,>, = VS(8+I)-a, (o *1) la, 1>, (A.3b)
a, = {-§,-S+1,...,+S} (A.3c)
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and where if 2 1is even

Szzla2>£ = azlag> (A.4a)
'+

S, |%>2 = /ST(8T+1) -a, (e, 1) [a x1>, (A.4b)

a, = {-8',-S'"+1,...,+8"}. (A.4c)

(a.3) and (A.4) follow directly from the usual quantum spin
(i.e., angular momenta) commutation relations [SAK]. Further-
more, we assume that spin operators corresponding to different

is independent

of all spin operators not corresponding to the ch site.

sites commute. As a result, a given ket |u£>2

Using this notation we can write the ferromagnetic ground

state as follows:
[0> = |=8> |=8">, ... [=8>g [=S"> - (A.5)

A single spin deviation state such that the deviation occurs

on an arbitrary even site can be written

2> = =851 [=8">, .. [=8>5, g [=8T4Loy [=82p ) .en 2872
(A.6)
A two spin deviation state such that the deviations occur
on different sites labelled by 2n and 2m+l (m > n) can be
written
|20, 2m41l> = [-8>) =8>, oo [=8>y g [=8THL, [=5v, 4 -
el — 1 _at
-8 >2m| S+l>2m+ll S Tom+2 Tt -5 N

(A.7)
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A two spin deviation state such that both deviations occur

on the same arbitrary odd site can be written

[2n+1,2n+1> = |-s>,[-5">,

e. |-s'>, |-s+2> ]—s'>N

(A.8)

—at
on | 2n+1175 o040 <o
And so on.
To illustrate the effect of the operators in (A.l) on
the various one and two spin deviation states we consider

the following "sample calculation”:

S! -8 |2n,2m+1> = [& s.7s2 +Lg ~g?
2n “2n+l ! 2 "2n"2n+l 2 "2n"2n+1l

'‘z..z
+ Szn82n+l]|2n,2m+l>, m>n. (A.9)

Since each spin operator acts only on the ket corresponding
to its specific site, to evaluate (A.9) it is sufficient

to know how the operators on the right-hand side effect the

—' —
kets |-S +1>,  and | §>, ,1- From (A.3) and (A.4) we can
write
l+_v — T [t Y ARY-N] = _at
SZn‘ S'+l>, = /ST(sT+I)-(-s"+1) (-5'+2) |-s +1+1>,
= V/2(2S8'-1) |-s+2> (A.10a)

2n
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L
- = JE —_at Rl | —
Sy l=S'+l>, = /ST(ST+I)-(-S7+1) (-S7) |-s'+1-1>,
— t -
= V258" |-s'>, (A.10b)
s'zl—s'+l> = (-S'+1) |-S'+1> (A.10c)
2n 2n 2n
.
52n+l]—s>2n+l = /S(S+1)-(-S) (-S+1) |—s+1>2n+l
= V25 |-s+l>, ., (A.104)
S2n+1[—S>2n+l =0 (A.10e)
Z = — —
Son+1!787n41 = “S1=8>5 4 - (A.10£)

The following expressions are equivalent to those in (A.10):

'+

82n|2n...> = ¥2(2S"-1) |2n,2n...> (A.lla)
"-—  —d

Sonl2n...> = /257 |...> (A.11b)
'z

82n|2n > = (=S'+1) |2n...> (A.1llc)

ST |...> = /75 |2n+l...> (A.11d)
2n+1'° " T :

82n+l!'°'> =0 (A.1lle)

sZ . ]...> = -8 > (A.11f)
2n+1'" "¢ T :
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where "..." allows for the possibility of additional spin
deviations provided they do not occur at the site acted on
by the indicated operator. Using (A.l1l) we can now evaluate
(A.9) as follows:

'+
2n

~

~ l —
¥ - = —
SonSonsyl2n 2mil> = 58, 1S, |20, 2m+l>]

1

1 ot 'z
+ 5 8,085 41120, 2m41>7 + 5,0

zZ
2n (S5n4q 20, 2m+l>]

L s'*ro7 + L /28 s.7|2n,2n+1, 2n041>
2 72n 2 2n ! !

]
Z
+ (—5)52n|2n,2m+1>

/SST |2n+1,2m+1> + S(S'-1) |2n,2m+l> .
(A.12)
Similar calculations as (A.12) lead to the following

catalog of results (where i,]j # 2n,2n+l):

Sy -8, ,qli> = ss'[i> (A.13a)
gén-§2n+ll2n> = S(S'-1) |2n> + /S5' |2n+l> (A.13b)
83 Sy,41 120+1> = 8" (s-1) |2n+1> + VEST [2n> (A.13c)
§én-§2n+lli,j> = ss'|i, 3> (A.134)




§én-§2n+l|2n,j> = S$(s'-1)|2n,3j> + VSS' |2n+1,3> (A.13e)
§én'§2n+l|2n+l,j> = S'(s-1) |2n+1l,j> + VS5" |2n,j> (A.13f)
S8y *S,,411is20> = S(S'-1) |i,2n> + /SST |i,2n+l> (A.139)
83,8, 4q|1s2041> = 87 (s-1) |i,2n+1> + /EST |i,2n>  (A.13h)
838,47 12n,20> = s(s'-2) [2n,2n> + Y§(257-1) |2n,2n+l>
(A.13i)

83,8y 41 120,20+1> = (S-1) (S'~1) |2n,2n+1> + /S(25'-1) |2n,2n>

+ /S7(25-1) |2n+1,2n+1> (A.1375)
§én-§2n+1|2n+l,2n+l> = S'(S-2) |2n+1,2n+1>

+ /S'(2S-1) |2n,2n+1> (A.13k)

An analgous set of relations is similarily obtained for the

~

.at
operator 82n+l 82n+2'

A.2 One-Magnon Amplitudes

From (A.13) we now know the effect of the operator
N' .N . . . .
S2n 82n+l on all single spin deviation states. We can express

these results in matrix form as follows:
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-] 1]

- |2> |2>

(SZn‘SZn+l) . = A . (A.14)
s >

where A is an NxN matrix such that

AZn,Zn = S{(s'~1) (A.1l5a)

= = T
Pon,2n+1 = Bon+1,2n T VSS (A.15b)
= 1 _
A2n+l,2n+l = 8'(s-1) (A.15¢)
otherwise:
A.. = 6.. 88" (A.15d)
1] 17
where: 6ij is the Kronecker delta function .
It follows that:
’l> ll>—‘
~ o~ D |2> o |2>
(85n"Son+1) A Rl B (A.16)
N> N>
I I C

Since A is a symmetric matrix we can easily evaluate aP for
any p = 2,3,... by applying standard linear algebraic technigque

[KRE]. For arbitrary p we find




oo P_,P
/SS (AO A5

1

1, P p
Ap _ S XO-FSXl
2n,2n S + §!
p — AP —
Aon,2n+1 = Pon+1,2n
P 11 P
Ap _ SAO-FS Al
2n+l1,2n+1 S + S°
otherwise:
AP = 5. 3P
1j ij 0
where from (2.5) Am (m = 0,1,.

of §:S' in

From

25"
)
p=1

where:

A2n,2n -

t
A2n,2n+1

|
Aon+l,2n+1l

descending order.

(A.16) and

(P) (3. .a
Jl (s S

2n "2

1
51

.. s28")

S + s
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(A.17a)

(A.17b)

(A.17c)

(A.174)

denotes the eigenvalues

(A.17) we can obtain the following result:

)P
n+l

(

+Sgl

1>

2>

| N>

1)

:A'

SgO

S + S

2n+1,2n

1),

= /SS'" G

il

1
51 gV

S +

S 1

1>

2>

x>

(1)

1

(A.18)

(A.19a)

(A.19Db)

(A.19c)
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otherwise:
(1)
' =
Aij Ging (A.19d)
where the parameters g£l) and Gél) are as defined in (2.6).

From this result we can obtain the following:

N/2 28" () ~. | 2m>
z 2 le (Sén°52n+l)p
n=1 p=1 | 2m+1>
N (1) _-(1) + ~(1)
_ |z 99~ ~SGy /SST Gy | 2m>
v ~ (1) N (1) _ara(1)
/SS Gy 5 95 ~S'Gy ]2m+l>_
m=1,2,...,5. (A.20)
And similarily we find
N/2 28! 2m+
§ % Jép)(szn+1 S5 ne2) T .
n=1 p=1 | 2m+2>
N (2) o nl2)  jaar (2) ) ]
5 9 §'Gy /5SS Gy | 2m+1 >
= (A.21)
- ~(2) N (2) _.~(2)
VssT Gy 5 99 ~SGy | 2m+2 >
Recall from (2.1) the Hamiltonian of interest:
N/2 2S'
_ ' (P) o, . P
H= Z ; [Jl (SZn 52n+l)
n=1 p=1
(P) > ey P
I Bt Sone) (A.22)
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Clearly (A.20) and (A.21) are all that is required to expli-
citly write down the representation of the Hamiltonian in
the basis of single spin deviation states. If we let

H' = H-—EO where B,y is the ground state energy (2.7) then

we obtain the following:

H' |2m> = S(G{l)+G{2)|2m> - V/SS' [G{l)|2m+l>

+ G{2)|2m—l>] (A.23a)

H'|2mt+l> = S'(G{l)+G{2))[2m+l> - /8ST EG{l)l2m>

+ G£2)12m+2>]. (A.23b)

Note that we have now explicitly shown that single spin devia-
tion states are not eigenstates of the Hamiltonian.
Now consider the one-magnon Schrodinger equation (2.9).

This can be written

H'[wl> = Eliwl>. (A.24)

Substituting for the general form of the one-magnon wavefunction

{(2.8) gives

N/
z (E —H')[a2n[2n> + a

1 l|2n+l>] =0. (A.25)

2
n=1 2n+

Using the results of (A.23) we can eliminate H' from (A.25)

and obtain the following:
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N/2

L

{/§§T‘G{2)a2n[2n—1> + 1E-s el 4elPya,

n=1

(1)

+ G{l)/SS' a 1|2n> + [(E,-S'(Gy +G£2)))a

2n+1 2n+1
+ ¢ vEsT a 1|2n+1> + /SS7 c{?) 4 ]2n+2>] =0
1 2n 1 “2n+1 / )
(A.26)

The single spin deviation states {|1>,|2>,...,|N>} form
an orthogonal set (this can be seen by explicitly calculating
<i|j>, 1 # j, with both states expressed as the product of N
kets as in (A.2)). Consequently, the coefficient of each
state in (A.26) must vanish independently. To determine
the coefficients of the states |2m> and |2m+1l> we need only
consider the terms in which the summation index n takes on
values m, mtl. Equating both of these coefficients to zero

gives is the following expressions:

(1) N C I

1 2omi17C agpopd =0 (A.273)

(1) . (2) o
[El—S(Gl +Gy ) Ja m+/ss [G

2m

(1), (2)

= (1) (2) _
1 6y )]a2m+l-+/ss e a, +G a2m+2] = 0 (A.27b)

_at
[E)-S" (G 1 %ontCy

And these are the one-magnon amplitude equations as reported

in (2.10) of Chapter 2.

A.3 Two-Magnon Amplitudes

S
From (A.13) we know the effect of the operator 82n 82n+l




on all two spin deviation states.

We can summarize these

results using matrix notation as follows:

~

én-82n+l|i,j> = []i,j> i,j # 2n,2n+1
- |2n, 3> |2n, 3>
.S =M , j # 2n,2n+l
D2t o1, 9 |2n+1,3>
- - - _
|2n,2n> |2n, 2n>
nSopsq | 12ns2n+1> = N||2n,2n+1>
|2n+1,2n+1> |2n+1,2n+1>
where
= 8§
{S(S'—l) /887
| /SST S'(s-1)
S(s'-2) /S(257-1) 0
= |/5(257-1) (s-1) (s'-1) /ST (25-1)
0 /ST (25-1) S'(8-2)
a1 .a P
Clearly the effect of the operator (S2n S2n+l)
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(A.28a)

(A.28b)

(A.28c)

(A.29a)

(A.29Db)

(A.29c)

on two spin

deviation states is described by the matrices Lp, Mp, and

NP,

easily evaluate Lp, Mp, and N® for any p = 2,3,4,... by

applying standard linear algebra techniques [KRE ]

arbitrary p the results are as follows:

Since the matrices L, M, and N are all symmetric we can
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P = g (A.30a)

s'ay + sab /88T (5 -ab)
_ 1
~ (S+sT)

' p_,P P v, P
/SST (Ag = A])  SAg+S'A]

(A.30b)

p - v 1 P " _ P _ P
(N®) 4 = (25'-1)S'oy + (28'-1)So} + (25-1)So5 (A.30c)
p V—— 1 p ot 2 p _ v p
(N¥) ,, = 48S'oq + (S-S') 707 + (25-1) (2S'-1)0} (A.304)
p — -— p _— L p T _ |p
(N¥) 53 = (28-1)Soj + (28-1)S'o] + (25'-1)S'05 (A.30e)
p = p = ¥ v v P —at P _ _ D
(N )12 = (N )21 = v5(28'-1) [2s oo+ (S-S )Ol (2s 1)02]
(A.30f)
P = (), = /s (@s-17 P_ (a_atyoP _ (og1_1y4P
(NF) 53 = (W) 5, = /8T (25-1) [2Soy - (5-8')o0j - (25'-1)05]
(A.30q9)
P = (P = T 55= = P_ P, P
(N°) 5 = (N°) ;5 = VBST(25-1) (25'~1) Loy - o] +03] (A.30h)
where
p p 2 -1
Om = m T O Ay) m=0,1,2 (A.31)
2=0
L#m

and from our previous definition of Am (2.5) note that
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AO = SS' (A.32a)

Al = 88' - (8+s") | (A.32b)

Az = 88' - 2(S+S') + 1. (A.32¢)
220 (P . =

Next consider the operator pzl le (Sén's2n+l)p‘ The

effect of this operator on two spin deviation states is

described by the following matrices:

28! (p)
A P (A.33a)
p=1
28! ()
mo= 3PP (A.33b)
p=1
28! (p)
nto= ) 3PP (A.33c)
p=1
In terms of the parameters Gél) and gél) (2.6) these matrices
are as follows:
[ o= gél) (A.34a)
s1g L) 4gq )
0 1 /g7 gl
S+S! 1
M' = (A.34Db)
Sg(l)+slg(l)
VSS'! Gl S+S! J
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R ¢ S Py (1) (D)
NI, = g5 - (gggr=p [(28'-1)G6 7 + (25-1)G,7 ] (A.34c)
Ny, = gél)-—(g:é%:T)E(S—S')zGil)4—(28—1)(28'-1)G§l)] (A.34d)
v (1) S’ (1) ' (1)
Ny = 957 =~ (gzgr—p [(28-1)6 7" + (28'-1) G ] (A.34e)
Vo Nt = JEPETOY 1 Cra—aty (1) _ (1)
Ni, = Nj; = /S(257-1) (gggr—p) [-(8-8")G;7" +(25-1)G,™" ]
(A.34f)
v Nt = JaTT5ETT 1 ey~ (1) - (1)
Ny, = Ni, = V87(25-1) (ggv—p) [(8-8")Gy7 " +(28'-1)G,7" ]
(A.349)
e g — 1 (1) _ (1)
Ny, = Ny = /BET(25-1) (25°-1) (ggv—p) LG G, 1. (A.34n)
N/2 28"
Next consider the operator Q = nzl pzl (Sén'82n+1)p' Using

the previous set of results (A.34) we can determine the

effect of the operator on the various two spin deviation

states. Doing so gives the following relations (where m > ¢):
Q[22,2m> = [g gél)-ZSGil)]|2£,2m>
+ /857 ol (2041, 2m> + |20, 2mt1>) (A.35a)
0l2e-1,2m> = (3 gl - (s+s)6 M 1]20-1, 2>
v vasT oY) (122-2,2m> + |22-1,2m+1>)  (A.35Db)

1




(1)

N
Ql2¢2,2m+l> = (5 94

- (s+s16 M) 7]20, 2me1s

+ /887 Gil)(|2£+l,2m+l> + [22,2m>)

Q0l22+41,2m+1> = [%—gél) - 2S'G£l)3|21+1,2m+1>

+ VGS' G{l) (|22,2m+l> + |22+l,2m>)

ol2m-1,2m> = (5 gf" - (s+sn1cM 7201, 2m>
+ V/SS! G{l)(IZm—2,2m> + |2m-1,2m+1>)
N-2, (1 ,

Ql2m,2m+l> = [(_f—)gé - N22]|2m,2m+l>

+ Ni2]2m,2m> + Né3[2m+l,2m+l>

N-2, (1 ,
Q]Zm,2m> = [(——Z———)go( ) + NllJIZm,2m>

+ Ni2!2m,2m+l> + N§l|2m+l,2m+l>

Q|2m+1,2m+l> = [(B:%)g(l) + N!,J|2m+1l,2m+1>
2 0 33
+ Né3[2m,2m+l> + NélIZm,2m>.

Using the preceding results (A.35) as well as the

analagous set of results with respect to the operator

~
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(A.35¢)

(A.35d)

(A.35e)

(A.35f)

(A.359)

(A.35h)

.an : .
82n+l S5h4p WE can now write down the representation of the

Hamiltonian (A.22) in the basis of two spin deviation states.
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If we again let H' = H-—EO then we obtain the following

where (m > 2):

' 2e,2m> = 25 (6l + 6l?)) |20, 2m5

/SST G{l)(]22+l,2m> + [22,2m+1>)

G5T 62 (120,2m-1> + [22-1,2m>) (A.36a)

(s+s*) (7 + ¢/*)) 20-1,2m0>

H'|22-1,2m> 1

/57 a\P (122-2,2m> + [22-1,2m415)

- /857 &%) (]24,2m> + [20-1,2m-15) (A.36b)

(1)

(2)
1 + 6y ) [22,2m+1>

H'|2g,2m+1> = (S+S') (G
/SS" G{l)(]22+l,2m+l> + |22,2m>)

- /857 c{?)(22-1,2m41> + [22,2mi25)  (A.36c)

25t 6\ 7+ c{?)) 2041, 2me1s

H'|[22+1,2m+1> 1

- /88" G{l)(|2g,2m+1> + |22+1,2m>)

AR G{Z)([22+2,2m+l> + |2241,2m+2>) (A.364)

H'|[2m-1,2m> = T(l)|2m—l,2m> - @é?)|2m,2m> - @éz)IZm—l,Zm—l>

- v557 oY (J2m-2,2m> + |2m-1,2m415) (A 36e)
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H'|2m, 2m1s =« %) [2m, 2me1s - ol fom, 2ms - o0 2m1, 2 s

- V/S§S? G{Z)([2m~l,2m+l> + [2m,2m+2>) (A.361)
H'|2m,2m> = |2m 2m>-—®( |2m, 2m+l>-—¢(2)[2m—l,2m>
s I 2mr1, 2me1s - 03 2m-1, 2m-1 (A.369)

H' [2m+1, 2m+l> = es,|2m+l,2m+l>-®él)|2m,2m+l>-—®é2)|2m+l,2m+2>

- oW 2m,2ms - 243 2n42, 2mt2 (A.36h)
N
where: L,m=1,2,..., 5 (2 < m)
and where the parameters r(l), es, @él), A(l) are as defined
in (2.20). Notice that we have now explicitly shown that

two spin deviation states are not eigenstates of the Hamiltonian.
Now consider the two-magnon Schrodinger equation (2.16) .

This can be written

H'|w2> = E (A.37)

o lvy>

Substituting for the general form of the two-magnon wave-

function (2.15) gives

N/2 N/2
} ) (E,-H")[a |2n,2m> + a _ |2n,2m-1>
n=1 m=1 2 2n,2m 2n-1,2m
n<m
tAgn, amey 20 2mEL> Ay g [2041 2010 = 0

(A.38)
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Using the results of (A.36) we can eliminate H' from (A.38).
This gives an expression analagous to (A.26) of the one-magnon
problem, except much more complicated.

The two spin deviation states {]ij>|i < j; i,3 = 1,2,..
..,N} form an orthogonal set. (As for the single spin devia-
tion states this can be shown explicitly by using the formalism
of Section A.l.) Consequently, the coefficient of each state
in (A.38) must vanish independently. To determine the coeffi-
cients of the states |2r,25>, |2r-1,2s>, |2r,2s+1>, |2r+l,2s+1>
we need only consider the terms in which the summation indices
take on the values n = r, r 1 and m = s, s *1 such that
n < m. For any r < s, equating the coeffiéients of each
of these four states to zero results in the set of four
non-interacting equations (2.17). Meanwhile, if r = s then
equating the coefficients gives us the four interacting

equations (2.19).
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APPENDIX B

In Chapter 2 we found that the two-magnon spectrum for
an alternating ferrimagnetic chain contains three distinct
energy continua. In this appendix we will solve explicitly
for the spectral curves which describe the various continua
boundaries.

The approach used here will be to consider the conditions
required for relative wavevector g to take on real values.
This leads to the continua boundaries because g can only be
real valued if the corresponding spectral point (X,Ep) lies
inside one of the three continua. (As discussed in Chapter 2
q = (kl—kz)/Z where Imag(kl) = —Imag(kz). So g ¢ Ronly if
kl'kZ e R and kl,k2 are real only inside the continua.) An
alternative approach would be to use the secular determinant
equation (2.23), to solve for the turning points of excitation

energy E, as a function of g [KRU].

2
Recall the expression (2.27) for cos(2g) as a function
of energy E2 and total wavevector K, which we obtained

directly from the two-magnon dispersion relation. We now

rewrite (2.27) in a more convenient form:

_ —0%cos (1) /ot -0%Fsin® () +p%sin® (¥)

5 (B.1)
Psin” (K)

cos (2q9)

where
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Q = E2 - 2B (B.2a)
F o= 4SS'[(G{1))2 + (G{Z))zj + D2 (B.2Db)
_ v~ (1) L (2)
P = 488 Gl Gl (B.2¢c)
(1)

and where parameters G

. B, and D are defined in equations

(2.6), (2.14a), and (2.14c) respectively. There are four
(generally different) values of g which satisfy (B.1l) once

E2 and K (and all other parameters) have been set. In general
all four of these allowed g values are complex. However at
least two allowed values must be real provided that both

cos (2q) is real and |cos(2g)| < 1. 1If either of these criteria
is violated then all four values of g will have non-zero
imaginary parts. Note that cos(2q) will be real provided

that the square root on the right-hand side of (B.l) has a
positive argument.

A continuum boundary separates regions of the spectral
plane for which real values of g do and do not exist. So it
follows that any point on a continuum boundary satisfies one
of the following two conditions:

(1) cos(2q) = =1 (B.3)

4

2)  o% - 9%Fsin®(x) + P%sin®(x) = 0, and (B.4a)

lcos (2q) | < 1. (B.4b)
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Consider condition (l1). If we set the right-hand side

(B.1l) equal to A (where A = *1) then we obtain

APsin? (K) + 92cos (K) = +/o%-a%Fsin? (K) + P%sin® (K) . (B.5)
Square both sides and rearrange (using Az = +1):

~2%sin? (k) + 9%[2APcos (K) + Flsin®(K) = 0 (B.6)
or

0%sin® (K)[0° - 2APcos (K) - F] = 0 . (B.7)

The factor stinz(K) is independent of A and hence has no

bearing on the reality of g. So this condition becomes
1
Q = +[2PXcos (K) + FJ1* (B.8)
where: A = x1.

Each of the four spectral curves described by (B.8) is a po-
tential continuum boundary. In order of increasing energy

these spectral curves are as follows:

EZ(K) = 2B - [F + 2Pcos(K)];5 (B.9%a)
E2(K) = 2B - [F - 2Pcos(K)];i (B.9b)
EZ(K) = 2B + [F - 2Pcos(K)]1/2 (B.9c)

EZ(K) = 2B + [F + 2PCOS(K)]%. (B.9d)
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Subsequent discussion will refer to these curves as

E2(K) = Wv where v = a,b,c,d respectively. It is important
to note that all sections of these curves do not necessarily
correspond to continuum boundaries. Suppose there is a local
extrema (i.e., von Hove singularity) in the expression for
cos (2q) which lies inside a continuum region. Such an inter-
nal singularity (if it exists) must satisfy condition (1)

and hence will coincide with at least one of these curves for

some range of K.

Now consider condition (2). The first part of this
condition (B.4a) is a quadratic equation in 92. Solving gives
2 sinZ(K) 2 2
Q" = ———5———-[F + VFT - 4P7 7J. (B.10)
Each of the four spectral curves described by (B.1l0) is a
potential continuum boundary. In order of increasing energy
these curves are as follows:
] /2 2—1/2
E, () = 2B - sin(x) | TE 24P (B.1la)
L -
) /2 2-%
E,(K) = 2B - sin (k) | T F 2P (B.11b)
B Ty
/2 217
E,(K) = 2b + sin(k) | T2 20 (B.11c)
. —
i / 2 2 6
E,(K) = 2B + sin(x) | T 2F (B.114)
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Subsequent discussion will refer to these curves as EZ(K) = Zv
where v = a,b,c,d respectively. Note that each of these
spectral curves can only describe a continuum boundary when
the second part of condition (2) (namely (B.4b)) is also
satisfied. That is, the curve E2(K) = ZV corresponds to a
continuum boundary only for values of K in which [cos(2q)] < 1
is satisfied along the curve.

We can consider the second part of condition (2) as

follows. If we substitute (B.1l0) back into (B.l) we obtain

—
cos (2q) = - 99%‘,5)— [F + /F° - 4p%7 . (B.12)
Choosing the plus sign in (B.12) (in front of the square root)

gives the value of con (2q) for points along the curves Za
and Z4 while choosing the minus sign gives the value of

cos (2q) for points along the curves Z._ and Zc. Regardless

b
of whether we choose the plus or minus sign, cos(2q) will
take on a finite absolute value at K = 0 and will gradually
decrease in magnitude as we move across the Brillouin zone
until cos(2q) = 0 at K = n/2. If the minus sign is chosen
then it can be shown that |[cos(2g)]| < 1 at K = 0 and hence
|cos(2q) | < 1 is satisfied for all K. However if the plus
sign is chosen then it can be shown that |cos(2g)]| > 1 at

K = 0. As a result, |cos(2q)| < 1 only for K > K, where K_

is some special value of total wavevector. We can solve for

KC by choosing the plus sign and then equating the right-hand
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side of (B.12) with -1. Solving for K = Kc gives

K_ = ARCOS 22 | (B.13)
F+VF2—4P2
To summarize, E2(K) = Zb and E2(K) = ZC are continuum boun-
daries for all values of K whereas E2(K) = Za and EZ(K) = Zd

are continuum boundaries only for K > KC.
The special value of wavevector denoted by Kc has addi-
tional significance. At this point in the Brillouin zone

we find that W, = Z and Wc = Z Further investigation

b ar

reveals that for K > Kc’ then EZ(K) = Wb and E2(

lie inside energy continua. Hence for K > KC these two

K) = W_ both
C

spectral curves correspond to internal van Hove singularities
rather than continuum boundaries.

We know from Chapter 2 that there are three distinct
continua (optim-optic, mixed-mode, and acoustic-acoustic)
so there must be six continua boundaries. Appropriately,
we have indentified six distinct expressions for continua
boundaries at any given value of K. If we order these boun-
daries in energy and match them up with the appropriate continua

then we have the following correspondence:

1. acoustic-acoustic lower boundary, EZ(K)==W

2. acoustic-acoustic upper boundary, EZ(K)== Wb K < KC
Z K > K
c o)

3. mixed-mode lower boundary EZ(K)==Zb
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4. Mixed-mode upper boundary EZ(K) = Zb

5. optic-optic lower boundary EZ(K) = (W K < KC
Zd K > KC

6. optic-optic upper boundary EZ(K) = Wd'

A plot of these continua boundaries is shown in Figure (2.2)

1 (1) _ 1 .(2)
31 G =367 -

If we plot all eight spectral curves given by (B.9)

for s = ' =

and (B.l11l) continuously across the Brillouin zone then the
resulting E, versus K spectral plane is separated into eleven

distinct regions. In Figure (2.3) we have plotted all eight

_ 1 (1Y _ 1 .(2)
=536 =356

regions are labelled in the same manner as by Krupennikov

curves (for § = §' ) and the resulting
in his study of the alternating Heisenberg chain [KRUJ]. The
significance of these spectral regions is that the "nature"
of the allowed values of relative wavevector g depends upon
which particular region is under consideration. (By nature,
we mean the distribution of the four allowed values of g in
the complex plane.) As a result, the nature of solution of
the two-magnon problem varies from region to region.

Notice that the regions labelled by odd numerals (I,
ITI, V) are all outside the energy continua while those la-
belled by even numerals (II, IV, VI) are all inner continuum
regions. It is obvious (from Chapter 2) that crossing over a
continuum boundary should change the nature of solution. In

crossing from region II to region IV we do not leave the
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continuum in question (either A-A or 0-0). However the nature
of solution generally changes as a result of crossing over an
internal van Hove singularity. In crossing from region III

to region V we do not leave the continua gap in question.
However the nature of solution generally changes because of

a degeneracy on the curve separating these two regions. For
spectral points on this curve the sguare root in (B.l) vanishes
and hence there are only two allowed values of g rather than

four.
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