THE UNIVERSITY OF MANITOBA DEVELOPMENT OF A MICRO SCALE SIMULATION MODEL OF TRAFFIC FLOW ON A SELECTED SECTION OF PEMBINA HIGHWAY IN THE CITY OF WINNIPEG by MICHAEL E. GAUTHIER ## A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION DEPARTMENT OF ACTUARIAL AND BUSINESS MATHEMATICS WINNIPEG, MANITOBA May, 1973 ### ABSTRACT One of the main problems facing transportation planners in large urban centres today is that of coping with the existing road systems. Very few are the instances when a city can afford to destroy the old road system and its immediate environment to clear a path for a new transportation belt in a congested or semi-congested area of the city. Planners must instead find the optimal manner of using the present road system and, if necessary, expanding the road in a manner involving the least cost for the maximum benefits. Due to the financial constraints imposed on city budgets, the planners must only implement changes which have a guaranteed beneficial effect. A simulation model can aid in the planning of these changes by implementing the changes in a computer run and studying the resulting congestion. Whether the changes be ones of varying the existing signal lengths or adding a lane to the road, the model is a more economical manner of studying the effects of change rather than by real life implementation. ### **ACKNOWLEDGMENTS** I would like to thank the Transportation Development Agency of the Ministry of Transport for their financial support in the form of a Fellowship Award, Mr. J. Kohut of The City of Winnipeg Transportation Planning Department for information furnished in terms of data and technical advice and Dr. T.S. Major for the time he devoted to this project. I would also like to thank Miss H. Conway for the many hours she devoted to typing this thesis and Mr. P. Gauthier for his assistance in the preparation of the diagrams and graphs. ## TABLE OF CONTENTS | Abstract | i | |--|---------| | Acknowledgments | ii | | Table of Contents | iii | | List of Tables | iv | | List of Figures | v | | List of Graphs | vi | | List of Diagrams | vii | | | 7 | | Introduction | 1 | | Description of Model Zone | 4 | | Description of Computer Based Simulation Model | 13 | | Variations of the Computer Based Simulation Model | 48 | | Analysis of Results of the Computer Simulation Runs | 52 | | Verification of Results | 75 | | Potential Refinement of the Simulation Model throug
Mathematical Sub-Models | h
79 | | Conclusion | 102 | | Bibliography | 104 | | Annondix | 107 | | Appendix A | 113 | | Appendix B | 119 | | Appendix C | | | Appendix D | 180 | | Appendix E | 208 | # LIST OF TABLES | A | Travel Time Between Intersections | | 37 | |-----|---|------|----| | В | Percentage Turning At Each Intersection | | 38 | | C.1 | Signal Times Present | | 39 | | C.2 | Signal Times Shortened | | 40 | | C.3 | Signal Times Lengthened | | 41 | | D | Interarrival Times of Automobiles | | 42 | | E.1 | Expected Waiting Times Run No. 1 - 10 | | 61 | | E.2 | Expected Waiting Times Run No.11 - 20 | | 62 | | E.3 | Expected Waiting Times Run No.21 - 29 | | 63 | | | Index for Tables E.1, E.2, E.3 | 64 - | 72 | # LIST OF FIGURES | 1. | Space-Time | Diagram | for | Pembina | Northbound | 100 | |----|------------|---------|-----|---------|------------|-----| | 2. | Space-Time | Diagram | for | Pembina | Southbound | 101 | # LIST OF GRAPHS | 1. | E[W] vs PGC | | |----|--|----| | | Morning Rush Hour | | | | Pembina Southbound at Point Road-Windemere | 73 | | | | | | 2. | E[W] vs PGC | | | | Morning Rush Hour | | | | Point Road | 74 | ## LIST OF DIAGRAMS | 1. | Map of Model | Zone | 8 | |----|---------------|-------------------------------|----| | 2. | Flowchart of | Pembina-Stafford Intersection | 43 | | 3. | Map of Model | Zone Showing Queue Locations | 65 | | 4. | Flowchart of | Expanded Simulation Model | 98 | | 5 | Formation and | Maintenance of Data Base | 99 | Development of a Micro Scale Simulation Model of Traffic Flow on a Selected Section of Pembina Highway in The City of Winnipeg ### Introduction: This thesis is composed of two main parts each of which deals with the development of a simulation model of traffic flow on a selected section of Pembina Highway. The first section deals with a computer based model which is written in the General Purpose Simulation System, GPSS, subroutine package on The University of Manitoba IBM 360/60 computer installation. The purpose of this computer based simulation model is to demonstrate the utility of such a model in planning changes in an existing road system such as the selected section of Pembina Highway. Changes in the lengths of traffic signals or in the configuration of the road can be tested by means of modification to the computer model as will be described later in the thesis. Traffic planners can then run the model with the changes introduced in order to study their effects without going to great expense or possible inconvenience to the users of the road. Despite the shortcomings of the model as it is presented in this paper in terms of practical use, it does point out the manner in which such a model may satisfy the needs of traffic planners to have a tool to experiment with possible changes at a particular intersection or series of intersections on an existing road system. In the first part of the thesis a number of changes in signal times, as well as in the size of the road, are tested by means of the computer simulation model and their effects in terms of queue lengths and waiting times are analysed. The computer based model of the thesis is referred to as a micro scale model. This term is used to describe the general orientation of the model as not being one of a large grid citywide transportation networks, which is the normal situation modelled, but instead a localized series of city blocks being analysed. The model is concerned with the traffic at one intersection and how it affects the congestion at the next intersection, rather than with the more classical problems of origin-destination studies. Whereas the first section of the thesis deals with the computer based simulation model which is constrained by the fact that it is computer based, the second section deals with the potential refinement of the simulation model through the use of mathematical sub-models which would alleviate the constraints. These models could be used in the main simulation model to increase its flexibility and make it more representative of the actual traffic flow on the selected section of Pembina Highway. This flexibility would be in terms of introducing hourly, daily and seasonal variations in traffic levels. The expanded simulation model would also be more representative of the actual traffic flow since it would be able to account for non-signalized as well as signalized intersections, car following theory and other factors not included in the presented simulation model. Through the use of the simulation model potential changes in the road system can be evaluated in terms of shorter waiting times or decreased queue lengths. The improvements then must be considered in relation to the relative cost of each potential change and other socioeconomic factors. However, it is not the purpose of this thesis to propose an optimal strategy to follow in the planning of future expansion and/or modification to the selected section of Pembina Highway. The purpose of this thesis is to present two models of the traffic flow on the selected section of Pembina Highway which could be used, with proper refinement, in the making of such a plan. Description of the Model Zone: Pembina Highway is a major artery in the road system of the southern portion of The City of Winnipeg. It serves as virtually the only link between the City's centre core and the outlying communities of Fort Garry, Fort Richmond, Parc La Salle, Saint Norbert and The University of Manitoba Campus. Due to the presence of the University and also large scale housing developments nearby, Pembina Highway has the unique feature of a bi-directional rush hour occurring twice a day. That is, the morning and afternoon rush hour traffic is not primarily travelling northwards and southwards respectively but has a high volume in both directions during both rush hours. This bi-directional rush hour imposes constraints on the adoption of several common combatants to the rush hour problem, such as, synchronized light changes or variable numbers of lanes of traffic. The selected portion of Pembina Highway in its present form is found mapped out in Appendix A, while the same portion with a proposed lane addition is found in Appendix B. There is a centre island or median upon the entire length of the model zone as is the case for most of Pembina Highway. There are at present three southbound lanes of traffic, one of which is used as a parking lane during non-rush hours south of Windemere. There are also three northbound lanes up to Jubilee, of which one is used as a parking lane during non-rush hours south of Merriham. There are two northbound lanes from the Jubilee exit to south of Harrow where the road is divided into five lanes, two of which are for traffic turning left. The southernmost intersection in the model zone is that of Pembina-MacGillivray-Oakenwald. At this intersection Pembina has one green light for northbound and southbound traffic to proceed through, there are no turning restrictions; northbound Pembina has a left turn storage lane and southbound Pembina has a right turn yield. Oakenwald has no turning restrictions and its own green light; similarly, MacGillivray has no turning restrictions and its own green light. There are five minor intersections before the next major crossing at
Pembina-Point Road-Windemere. There is a no left turn restriction on northbound Pembina and although both northbound and southbound Pembina use the same green light, southbound Pembina has a left turn storage lane and flashing green light. Point Road has a right turn yield and uses the same green light as Windemere, neither street has any turning restrictions. There are three minor intersections before the Jubilee interchange, route 125 on the map. Northbound Pembina has a traffic signal at the Jubilee entrance, while the remaining interfaces between Pembina and Jubilee are standard exits and merges. The Pembina and Jubilee traffic is restricted in its ability to make turns by the semicloverleaf configuration of the intersection of the two streets. The next intersection is Pembina-Harrow where the northbound Pembina traffic cannot turn right at anytime and cannot turn left from 7:00 a.m. to 9:00 a.m. and 4:00 p.m. to 6:00 p.m. Pembina southbound traffic cannot turn left and Harrow traffic must turn right and also stop first. The next and most northerly intersection is Pembina-Stafford where the northbound Pembina traffic is broken down into five lanes, three straight and two turning left. Southbound Pembina cannot turn left and Stafford traffic must turn right. The Pembina northbound left turning lane shares a green light with the Stafford traffic, while the Pembina southbound and remaining northbound traffic have their own green lights. As earlier mentioned the traffic at rush hours on Pembina Highway is heavy in both northerly and southerly directions. Therefore, the signal times at Pembina-Stafford change to the same sequence for morning or afternoon rush hours. At Pembina-Point Road-Windemere and Pembina-MacGillivray-Oakenwald the times are constant throughout the day, while at Pembina-Jubilee there are three signal times, one for morning rush hour, non-rush hour and afternoon rush hour. Snow clearance along the selected section of Pembina Highway is excellent and thus all lanes are functional throughout the year. Within the model zone there is no housing immediately along Pembina Highway and thus traffic is generated from sattelite population densities. Due to the road structure in the area the traffic from these locations is handled mainly by the feeder routes, which are a part of the major intersections, and not by the minor roads along the selected section of Pembina Highway. Description of the Computer Based Simulation Model: The computer based simulation model consists of a General Purpose Simulation System GPSS programme which is written for the IBM 360/65 installation at The University of Manitoba. Rather than dealing with a detailed description of the programme, this section of the thesis will concentrate on the more general features of the programme and refer the reader to Appendix C for a detailed listing of one variation of the programme and Appendix D for the corresponding flowchart. Since the simulation programme was written in GPSS it would perhaps be beneficial to give a brief summary of the various transactions available in GPSS and used in the programme. Please refer to the first page of Appendix D for a listing of the transactions and their corresponding block symbols used in the flowchart found in the same Appendix. The ADVANCE block is used to delay the progress of a transaction through the system. Within this simulation programme the ADVANCE block is used for two main purposes, to delay the change in a signal light, that is, to simulate the length of a red or green signal light at a particular intersection and to delay the advancement of an automobile through the road system, that is, to simulate the time taken for an automobile to depart from an intersection or the travel time between intersections. The length of the delay is specified in one of two ways, either as a constant value which does not change from transaction to transaction, or as a value which does vary to a certain extent from transaction to transaction. The former type of ADVANCE block has only one value specified, while the latter has two values, a mean and a modifier. The DEPART block serves to remove a transaction from the queue specified in the block itself. In this simulation programme the DEPART block is used to simulate an automobile leaving a lineup at an intersection and proceeding into the traffic flow. the movement of a transaction through a system. A GATE block can be one of two types, GATE LR and GATE LS, depending upon whether the gate is considered to be initially in a reset or set state. This state, when coupled with the corresponding LOGIC block, will determine whether a transaction may pass through the gate, be sent on some specified alternate path or placed in a pushdown delay chain until the state of the GATE is changed by a corresponding LOGIC block. In this simulation GATE blocks are used in two areas which are closely related. In the signal control subroutines GATE blocks are used to determine the path of a transaction to be one of entering an ADVANCE block for the length of a red or green traffic light. Within the traffic simulation portion of the programme GATE blocks, corresponding to LOGIC blocks found in the signal control subroutines, are used to simulate the delay in an automobile caused by a red light and the possibility of an automobile to proceed through a green light. The GENERATE block is the most fundamental block of any GPSS programme. This block is used to create transactions at specified intervals. Just as in the ADVANCE block these intervals may be of some constant value or may vary somewhat from transaction to transaction. In the former case one number is specified as the standard interarrival time or time between transactions, while the latter both a mean and a modifier is specified. In addion to these attributes a specification can be given in the GENERATE block as to the number of transactions to be created within one run of the GPSS programme. This last feature is used in the signal control subroutines where only one transaction is used to perform the switching function for one set of signals. The GENERATE block is also used throughout the programme to simulate the introduction of automobiles at varying time intervals into the road system from the side roads and at the southern and northern extremities of the selected section of Pembina Highway. The LOGIC block operates as a switch in a GPSS programme. Whenever a transaction passes through a LOGIC block depending upon its nature, the switch is placed in a set state, a reset state or is inverted into the state opposite from which it was in, that is, set to reset or vice versa. These three types of LOGIC blocks are indicated as LOGIC S, LOGIC R and LOGIC I respectively. As mentioned earlier the LOGIC blocks in this simulation programme correspond to GATE blocks found both in the signal control subroutines and in the main traffic simulation area. A LOGIC block which is in a reset state will result in a corresponding GATE LR to be in an open state and a GATE LS to be in a closed state. As indicated by the simulation programme found in Appendix C, the QUEUE block is the principal block used to gather information in this simulation. A QUEUE block gathers information about a transaction or a number of transactions while they are being held in the block. Unlike most blocks in GPSS a transaction does not leave a QUEUE block automatically but must be removed by means of a DEPART block. In this simulation QUEUE block serves two principal functions; they simulate the lineup of automobiles in various lanes of an intersection and they simulate an automobile crossing an intersection. The second function of the QUEUE block is present in this programme for mainly internal purposes in that an automobile wishing to enter a traffic flow from a yield, or by a right turn on a red light, can check to see if the intersection is free before entering the traffic flow. The first function of the QUEUE block is to accumulate statistics which are used in the analysis of the computer simulation and in the building of the mathematical model. The RESET block in a GPSS programme sets the relative clock to zero, the maximum contents of the QUEUE blocks to the current contents and the total entry count of the QUEUE blocks to the current contents. The purpose of the RESET block is to be able to commence the tabulation of statistics in a system from some point in time when the system is fully active and closer to representing reality than its initial In this simulation programme the RESET block is encountered after the system has been operative for 1800 seconds or one-half hour. This figure was reached by considering the maximum travel time of one automobile through the system to be in the region of five to ten minutes so that the initial automobile generated at one extremity would be through the entire system as would many of those following. That is, all QUEUE blocks would be in 'normal' The RESET block prevents the accumulation of statistics or QUEUE blocks which are only accepting arrivals from side road inputs into the main traffic flow and not from continuing traffic along the main route. The START block determines the length of the simulation run by indicating the number of termination counts which are to be encountered before ending the run. Every termination count reduces the value specified in the START block by one. Once the value is depleted the run is terminated and either a RESET block or END block is encountered. The function of the RESET block has been mentioned earlier and that of the END block is to exit from the GPSS system. In this simulation programme there are two START blocks, START 18 and START 72. The first run, as earlier mentioned, is to initialize the entire system before collecting statistics, while the second run is the simulation of a period of 7200 seconds or two hours during which statistics are collected. A TERMINATE block is
used to remove a transaction from the system. If a TERMINATE block has a value specified in it this value will be entered into the termination count whenever a transaction enters that TERMINATE block. In this simulation the TERMINATE block is used in two ways, first as a part of the simulation timer where a value of one is specified and also throughout the model where no value is specified. The later use of the TERMINATE block is meant to represent automobiles turning off Pembina Highway or leaving the selected section of Pembina Highway at either extremity. The TEST block is used to determine the path of a transaction through the system by means of comparing the relationship between the values of the contents of two other blocks or one block and some specified value. The comparison can consist of less than, L, less than or equal, LE, equal, E, not equal, NE, greater than, G, or greater than or equal, GE. The TEST block can allow a transaction through if the condition of the block is satisfied, if not, send the transaction along on an alternate path if one is specified or place it in a pushdown delay chain. In this simulation the TEST block is used to determine if there is room in a storage lane, is an intersection empty and is there room on the other side of an intersection for an automobile to proceed. The TRANSFER block is also used to change the path of a transaction in the system. The TRANSFER block can be of an unconditional mode in that all transactions follow one specified path, that is, proceed to a certain specified block, or a fractional selection mode in that a proportion of transactions go to one specified block while the remainder go to another. In this simulation the fractional mode is used to simulate the proportion of automobiles turning off Pembina Highway or onto Pembina Highway from a side road. The unconditional mode is used to have transactions leaving an intersection all enter the traffic flow to the next intersection. However brief this summary of the principal blocks used in the GPSS programme has been, it is hoped that it will be of some use in understanding the following description of an individual intersection and then of the linking of a series of intersections. The intersection which will now be described in detail is that of Pembina Highway and Stafford Street. The intersection is depicted in two parts of the computer listing found in Appendix C. The first portion of the listing which concerns this intersection is that of the signal control subroutine called STAFFORD SIGNALS and which consists of blocks thirty through thirty-nine. The GENERATE block creates one transaction and only one. This transaction passes through a LOGIC I block, which in the case of the first pass and all odd numbered passes, places the LOGIC switch labelled STA in a set position. transaction proceeds to the GATE LS block which in the case of this pass is open due to the LOGIC labelled STA being in a set position and thus the transaction enters the ADVANCE 16 block where it is held for sixteen seconds. While the transaction is being held in this ADVANCE block it is simulating the length of the Pembina Highway northbound traffic's red light. Next, the transaction passes through the LOGIC S block which sets the LOGIC switch labelled STB. Following this it enters an ADVANCE block where it is held for twenty-eight seconds, this is to simulate the occurrence of a straight through green arrow from Pembina Highway northbound traffic. Once the twenty-eight seconds have elapsed the transaction enters the TRANSFER block where it is directed back to the LOGIC I block which it proceeds through. In the case of the second pass and all even numbered passes the LOGIC switch labelled STA is placed in a reset condition. Next the transaction approaches the GATE LS block but since the corresponding LOGIC switch labelled STA is in a reset position the transaction takes the alternate route where it enters an ADVANCE block and is held for a variable length of time in a region specified by a means of fifty-three and a modifier of two seconds. This represents the length of a green light for Stafford traffic and Pembina Highway northbound traffic turning onto Stafford. The two ADVANCE blocks earlier mentioned combine to simulate the length of the green light for Pembina Highway southbound. Next the transaction passes through a LOGIC R block which resets the LOGIC switch labelled STB. The main purpose of this signal control subroutine and of the other three signal control subroutines is to co-ordinate the changes in the states of the various LOGIC switches which correspond to the various GATE blocks found in the main traffic simulation model. The second portion of the computer listing which applies to the Pembina Highway and Stafford intersection consists of blocks 304 through 374. This area of the computer programme is simulating the traffic flow at the intersection. All transactions referred to are representing automobiles in the road system which have either been created at earlier intersections or are created at the intersection being studied. The first block which is encountered by a northbound transaction is a TRANSFER block using a fractional selection mode. The block directs fifty-six percent of the time to remain on Pembina Highway and forty-four percent of the time to turn onto The figures used in this fractional mode TRANSFER block, as is the case with all such blocks in the programme, were found through analysis of historical traffic counts for the intersections being simulated. Next the traffic turning onto Stafford is considered, the transactions enter a TEST block which serves to decide which lane the transaction will enter. The decision is based solely on which lineup or QUEUE length is shorter. As a result of the TEST block the traffic enters either QUEUE 12 or QUEUE 26, both of which represent a left turn lane from Pembina Highway onto Stafford. While statistics are being collected on a transaction in the QUEUE, the transaction is attempting to pass through a GATE LR block which corresponds to the LOGIC switch STA once the switch is in a reset state as determined in the signal control subroutine, the transaction may proceed through the GATE and enter an ADVANCE block for one second to represent departure time in terms of a driver's and an automobile's reaction time. Statistics are then no longer kept about that transaction in the QUEUE block since a DEPART block is encountered. The transaction then enters a OUEUE block from which it is immediately removed by a DEPART block. This is to simulate traffic in the actual intersection and would be checked to be equal to zero before an automobile could make a right turn on a red light from Pembina southbound onto Stafford if such a turn were permitted. Finally, the transaction enters a TERMINATE block and is removed from the system since it has left the selected section of Pembina Highway. The traffic remaining on Pembina is simulated by blocks 321 through 335. A transaction arrives at the first block from the fractional selection mode TRANSFER B block earlier mentioned. This transaction enters a TEST block to determine the shortest QUEUE length, next it enters that QUEUE and awaits the GATE LS block to be opened by the LOGIC switch labelled STB to be in a set condition. Next the transaction enters a one second ADVANCE block after which it is removed from the QUEUE and passes through the Pembina Highway northbound intersection before being removed from the system. The simulation of southbound traffic, both on Pembina Highway and from Stafford, is somewhat different from the northbound cases. One of the main differences is that the transactions are being created just before the intersection. In the case of rush hour conditions the Pembina Highway southbound traffic has a transaction created by a GENERATE block every four seconds with a one second modifier, that is, every four plus or minus one second. the transactions enter a transfer block where ten percent of the time they take the outer lane. The remaining transactions enter a battery of TEST blocks in order to determine which of the three available traffic lanes have the shortest QUEUE length. The transactions then enter the preferred QUEUE and attempt to proceed through the GATE LS which is open when the LOGIC switch labelled STA is in a set condition. Once the transaction passes the GATE it enters a TEST block to determine if the corresponding QUEUE at the next intersection is backed up all the way to the present intersection. Due to the manner in which transactions select the shortest QUEUE length this condition of congestion implies that all lanes are equally or very nearly equally backed up. Next the transaction enters the one second ADVANCE block after which it is removed from the QUEUE and passes through the intersection. The curb lane has a percentage of its transactions terminate thus simulating automobiles turning off Pembina Highway. The remaining transactions in the curb lane and all transactions in the other two lanes are transferred to an ADVANCE block which simulates the travel time to the next intersection. The Stafford traffic, like the Pembina Highway southbound traffic and also like all side roads in the simulation, creates transactions just before the intersection. Also like all side roads in the simulation, except those with right turn lanes or yields, the traffic on Stafford is considered to be in one OUEUE. The GENERATE block creates transactions which enter a QUEUE block, they then attempt to pass the GATE LR block which is open when the LOGIC switch labelled STA is in a reset condition. Next a check is made if there is room to turn onto Pembina Highway, that is, if the QUEUES at the next intersection do not stretch all the way back to Pembina Highway and Stafford. A one second ADVANCE block is encountered afterwhich statistics are no longer collected for the transaction at that QUEUE. The
transaction then passes through the intersection and enters the southbound traffic flow by means of an ADVANCE block to simulate the travel time. Although as can be seen from the maps in Appendices A and B, the computer listing in Appendix C and the GPSS flowchart in Appendix D, each intersection has unique characteristics in terms of the number of side roads, the signal control systems and the possibility of land expan-However, despite these differences there are a number of general characteristics shared by all the intersections. The previous description of one intersection points out these characteristics, the manner in which a transaction takes the lane with the shortest QUEUE length, the way the GATE blocks in conjunction with the signal control subroutines simulate the traffic signals, the manner in which a departure time in terms of driver's and automobile's reaction time is included, the way in which traffic turning off or onto Pembina Highway is accounted for and, also, the way congestion at the next intersection is considered. As previously stated, a description of a series of intersections will now be given. This description will be much more general than the previous one for an individual intersection. The major logic flow will be described rather than the path of an individual transaction. This policy has been adopted to avoid any further repetition to what has already been stated. This description will follow the pattern of the simulation programme itself in that it will first consider the northbound Pembina Highway from the southern extremity to the northern extremity of the selected section of Pembina Highway and then the southbound traffic on Pembina Highway passing through the model zone. Pembina Highway traffic is generated just south of the Pembina Highway-MacGillivray-Oakenwald intersection. The traffic then enters a left turn storage lane, the curb lane, or one of the two straight through lanes depending upon the number of automobiles in the left turn storage lane. When the traffic signal is green, that is, the GATE is open, traffic will proceed northbound on Pembina Highway, then turn right onto Oakenwald and TERMINATE from the system or wait for the western half of the intersection to be clear and turn left onto MacGillivray and TERMINATE from the system. Oakenwald traffic is broken down into a right turning lane and a straight through lane which also accounts for left turning traffic. The right turn lane will turn when the light is green or when the intersection is clear on a red light. This is determined by a TEST block which checks if QUEUE 2 which represents the intersection is clear. The traffic in the other lane awaits the Oakenwald green light and then terminates after leaving the QUEUE. The MacGillivray traffic is considered to enter one QUEUE after being created. Once the GATE is open the MacGillivray traffic, like that of Pembina Highway and Oakenwald, checks to see that there is room to enter the traffic flow leading to the intersection. All traffic entering this northbound traffic flow enters a fifty-nine second ADVANCE block to simulate travel time between intersections. These travel times were arrived at by empirical observations at different times during the day. Following this ADVANCE block traffic is once again broken down into various lanes depending upon the percentage of traffic turning right and on the QUEUE lengths for the northbound traffic. When the GATE is open for Pembina Highway northbound traffic the transactions leave the QUEUES after a one second delay one after another until the GATE closes once again. Point Road traffic has a right turn yield which involves a TEST block used to determine if the intersection is free before a transaction proceeds into the northbound traffic flow. Southbound and straight through traffic must check by means of a TEST block that one is not in another's way after passing through the GATE block. Furthermore, southbound traffic must check that it may turn without colliding with any Windemere traffic. Similarly, Windemere traffic encounters several TEST blocks of the same nature. Before testing for a right turn on red light, a transaction must have no transactions in the QUEUE before it, also before making a left turn onto Pembina Highway northbound, a TEST block is encountered to assume that there are no straight through Point Road automobiles in the intersection. Traffic which is proceeding onto Point Road from Windemere must check to see that no automobiles waiting to make a left turn onto Pembina Highway northbound are blocking its path. The northbound transactions generated by Pembina Highway northbound traffic, Point Road right turning traffic and Windemere left turning traffic enter a forty-one second ADVANCE block to represent travel time up to the Jubilee exit where 20.6 percent of the traffic turns off onto Jubilee and leaves the system. The remaining transactions enter a ten second advance before checking for the shortest QUEUE lengths and once in the QUEUES wait for the GATE to open, thus simulating a green signal light. The Jubilee traffic also await the opening of its GATE and then enters the same northbound traffic flow as the Pembina Highway northbound traffic. The transactions in this flow enter a twenty-six second ADVANCE block before reaching the Harrow intersection. In non-rush hours nine percent of the transactions enter a QUEUE to turn left onto Harrow. The transactions in this QUEUE check to see if the western side of the Pembina Highway-Harrow intersection is open; if so, after a one second departure they proceed across the intersection and out of the system. The transactions which remained on Pembina Highway entered a seven second ADVANCE before being separated by a TRANSFER block into traffic turning onto Stafford and traffic remaining on Pembina. The transactions in each case TEST for the shortest QUEUE lengths and then attempt to pass through their respective GATE, afterwhich they enter a one second ADVANCE block before leaving the QUEUE block, passing through the intersection and terminating. The southbound Pembina Highway and Stafford south-bound traffic have already been described in terms of their activities at the actual intersection. Following the intersection the transactions enter an eight second ADVANCE block. Following this 1.1 percent of the transactions terminate and the remainder proceed into the southbound traffic flow. Southbound traffic is also generated from Harrow Street where it enters a QUEUE, then by means of a TEST block checks to see that the intersection is open and, if so, after a one second ADVANCE block leaves the QUEUE and enters the southbound traffic flow already mentioned. The transactions in this flow enter a twenty-seven second ADVANCE block to simulate the travel time before the Jubilee exit where 23.7 percent of the transactions TERMINATE. The remaining transactions enter a ten second ADVANCE block after which they are joined by transactions created by the Jubilee southbound traffic. Then the transactions enter a thirty-three second ADVANCE block followed by a series of TRANSFER and TEST blocks which place 2.6 percent of the traffic in the curb lane, 2 percent in a left turn storage lane and the remainder in the lane with the shortest QUEUE length. Next the standard procedure for straight through traffic of waiting for the GATE to open, checking for future congestion, allowing for traffic to turn off and the use of one second ADVANCE blocks representing departure time is followed. The left turning traffic checks to see that the GATE is open and if there is no oncoming traffic before crossing the intersection and terminating oncoming traffic is delayed after the opening of the GATE by means of a flashing green light for the southbound traffic. The remaining transactions as well as other southbound transactions generated from Point Road and Windemere enter a sixty-one second ADVANCE block to represent the travel time. The transactions are then assigned to various QUEUES by means of a series of TRANSFER and TEST blocks. The transactions turning right do not reach the signals since they TERMINATE from the system by means of a right turn yield. The left turning traffic blocks the centre lane due to the lack of a left turn storage lane. However, this has little effect on that lane's QUEUE length due to the manner in which transactions are placed in the shortest QUEUE. Once the transactions are in their respective QUEUES they wait for the GATE to be opened representing a green signal light. In the case of left turning traffic they TEST for the eastern side of the intersection to be clear before terminating. The centre lane traffic checks that no left turning traffic is blocking its way and, if not, proceeds in the standard fashion before terminating just beyond the intersection. Throughout the foregoing description of the computer based simulation model a number of assumptions used in the formation of the model were referred to directly or indirectly. These assumptions were made in order to make the programme more manageable or were imposed as a result of the constraints placed on the programmer using GPSS. A brief listing of the key assumptions used in the programme will now be given. As earlier mentioned the geographic layout in the area bordering on the selected section of Pembina Highway is of such a nature that a high dependence is placed on feeder routes connecting Pembina Highway and the population pockets rather than a series of small side roads leading from a population area onto Pembina Highway. It is due to this higher use of feeder routes that the role of side roads has been deemphasized. Therefore, in the simulation model, due to size constraints imposed by GPSS, it was assumed that the effects of such non-signalized side roads to be negligible and thus were not accounted for in the programme. A simulation of the effect on that traffic flow of Pembina Highway
of automobiles entering from such side roads would have required a large expansion of the simulation programme which was already at its limit in terms of core usage. A second assumption which was made in the programme was that an automobile approaching an intersection would choose the rightmost lane if it were to turn right, the leftmost lane if it were to turn left and the lane with the shortest queue length if it were to proceed on the same road after the intersection. This decision process was adopted for the sake of simplicity in developing the programme. As a result of this method of having automobiles choose their lane of travel it was possible to study the waiting times at a representative queue for each direction of travel at an intersection, rather than attempting to collect data for all queues which would not be permissible in GPSS due to the number of queues. A third key assumption is that the start up or reaction time before departure for an automobile leaving a queue is a constant value of one second. This assumption was made in light of the fact that in a real life situation the first car has a much greater delay time than the final cars in the queue and that each car in the queue has a proportionately lesser delay time. was also taken into account that the expected queue lengths based on preliminary runs were always found to have a value of less than ten automobiles. These two facts, decreasing leaving time and short queue lengths, indicated that an assumption of a constant departure time would give a close enough approximation of reality in the computer simulation. An expansion of the delay time to being dependent on an automobile's position in the queue would have necessitated a reduction in other areas of the programme. The fourth fundamental assumption made in the computer simulation model is that of all cases having a standard travel time between intersections. This assumption was used for the sake of simplicity in developing the programme. Without the addition of a linear car following delay subprogramme within the model a randomly distributed series of travel times could result in automobiles "passing" one another in the same lane or two automobiles arriving in a queue at the same instant. Therefore, in order to avoid these problems without developing a simulation subprogramme for linear car following delays, which would be of the magnitude of another thesis, a constant travel time was introduced. In addition to these key assumptions a number of minor ones were also made. These consisted of assuming an automobile to make a right turn on a red light where permissible, if it were the first automobile in the queue and the intersection were empty. A similar assumption in terms of the intersection being empty and the automobile being first in the queue was made for automobiles entering from a yield lane or a side road with a stop sign. Throughout the description of the computer simulation I have been rather vague about the numerical inputs used in the simulation programme. This was done in order to keep the description as general as possible. A complete listing of the numerical values for the various simulation runs representing different times of day and varying conditions can be found in tables A, B, C.1, C.2, C.3 and D which follow this section of the thesis. #### TABLE A #### TRAVEL TIME BETWEEN #### INTERSECTIONS * #### IN SECONDS # NORTHBOUND | MacGillivray-Oakenwald & Point Road-Windemere | 59 | |---|----| | Point Road-Windemere & Jubilee Exit | 41 | | Jubilee Exit & Jubilee Entrance | 10 | | Jubilee Entrance & Harrow | 26 | | Harrow & Stafford | 7 | | | | | SOUTHBOUND | | | Stafford & Harrow | 8 | | Harrow & Jubilee Exit | 27 | | Jubilee Exit & Jubilee Entrance | 10 | | Jubilee Entrance & Point Road-Windemere | 33 | | Point Road-Windemere & MacGillivray-Oakenwald | 61 | ^{*} Based upon empirical observations taken at three different times in one week. Road conditions varying from wet to dry. Total number of observations for each travel time was 9. TABLE B PERCENTAGE TRAFFIC TURNING ### AT EACH INTERSECTION * | | Left | Right | |--------------------------------|------|-------| | Pembina-MacGillivray-Oakenwald | | | | Pembina Southbound | 1.0 | 19.9 | | Pembina Northbound | 9.4 | 1.7 | | MacGillivray Eastbound | 60.1 | 30.8 | | Oakenwald Westbound | 44.7 | 27.7 | | Pembina-Point Road-Windemere | | | | Pembina Southbound | 7.2 | 2.6 | | Pembina Northbound | N/A | 1.0 | | Point Road Westbound | 12.5 | 79.8 | | Windemere Eastbound | 80.2 | 9.7 | | Pembina-Jubilee | | | | Pembina Northbound | N/A | 20.6 | | Pembina Southbound | 23.7 | N/A | | Pembina-Harrow | | | | Pembina Northbound | 9.0 | N/A | | Pembina Southbound | N/A | 1.0 | | Pembina-Stafford | | | | Pembina Northbound | 44.0 | N/A | | Pembina Southbound | N/A | 1.0 | | | | | ^{*} Based upon historical traffic counts over the past five years supplied by The City of Winnipeg Transportation Planning Department. Total number of traffic counts for each intersection was 12. TABLE C.1 SIGNAL TIMES AT EACH INTERSECTION # PRESENT CONDITIONS * | | Morning | Mid-Day | Afternoon | |---|---------|---------|-----------| | Pembina Green at
MacGillivray-Oakenwald | 63 | 63 | 63 | | Oakenwald Green | 13 | 13 | 13 | | MacGillivray Green | 18 | 18 | 18 | | Pembina Green at
Point Road-Windemere | 56 | 56 | 56 | | Pembina Southbound
Flashing Green at
Point Road-Windemere | 12 | 12 | 12 | | Point Road & Windemere
Green | 27 | 27 | 27 | | Pembina Northbound Green
at Jubilee | 57 | 37 | 73 | | Jubilee Green | 22 | 23 | 27 | | Pembina Northbound Red at Stafford | 16 | 19 | 16 | | Pembina Northbound No
Turning Green at Stafford | 28 | 15 | 28 | | Pembina Northbound and
Stafford Green | 53 | 28 | 53 | ^{*} Based upon empirical observations over the course of one week. Observations at 8:30 A.M., 12:30 P.M. and 5:30 P.M. Total number of observations for each time of day at each intersection was 30. TABLE C.2 SIGNAL TIMES AT EACH INTERSECTION # SHORTENED CYCLE * | | Morning | Mid-Day | Afternoon | |---|---------|---------|-----------| | Pembina Green at
MacGillivray-Oakenwald | 32 | 32 | 32 | | Oakenwald Green | 7 | 7 | 7 | | MacGillivray Green | 9 | 9 | 9 | | Pembina Green at
Point Road-Windemere | 28 | 28 | 28 | | Pembina Southbound
Flashing Green at
Point Road-Windemere | 6 | 6 | 6 | | Point Road-Windemere Green | 14 | 14 | 14 | | Pembina Northbound Green at Jubilee | 29 | 19 | 37 | | Jubilee Green | 11 | 12 | 14 | | Pembina Northbound Red at Stafford | 8 | 10 | 8 | | Pembina Northbound No
Turning Green at Stafford | 14 | 8 | 14 | | Pembina Northbound and
Stafford Green | 27 | 14 | 27 | ^{*} Found by taking one half of Table C.1 Values TABLE C.3 SIGNAL TIMES AT EACH INTERSECTION #### LENGTHENED CYCLE * | | Morning | Mid-Day | Afternoon | |---|---------|---------|-----------| | Pembina Green at
MacGillivray-Oakenwald | 95 | 95 | 95 | | Oakenwald Green | 20 | 20 | 20 | | MacGillivray Green | 27 | 27 | 27 | | Pembina Green at
Point Road-Windemere | 84 | 84 | 84 | | Pembina Southbound
Flashing Green at
Point Road-Windemere | 18 | 18 | 18 | | Point Road-Windemere
Green | 41 | 41 | 41 | | Pembina Northbound
Green at Jubilee | 86 | 56 | 110 | | Jubilee Green | 33 | 35 | 41 | | Pembina Northbound
Red at Stafford | 24 | 29 | 24 | | Pembina Northbound
No Turning Green at
Stafford | 42 | 23 | 42 | | Pembina Northbound and Stafford Green | 80 | 42 | 80 | ^{*} Found by Taking one and one half of Table C.1 Values TABLE D INTERARRIVAL TIMES OF AUTOMOBILES # FOR EACH TRAFFIC GENERATION POINT # PRESENT POPULATION */EXPANDED POPULATION ** | | Morning | Mid-Day | Afternoon | |--|-------------|-----------|-------------| | Pembina Northbound
at MacGillivray- | | | | | Oakenwald | 4,2/3,2 | 4,1/3,1 | 3,1/2,1 | | Oakenwald | 33,12/25,9 | 43,9/32,7 | 35,12/26,8 | | MacGillivray | 19,12/14,9 | 12,1/9,1 | 7,2/5,2 | | Point Road | 22,20/17,15 | 40,5/30,4 | 27,3/20,2 | | Windemere | 30,13/23,10 | 98,5/74,4 | 38,26/29,20 | | Jubilee Northbound | 7,2/5,2 | 16,2/12,2 | 11,2/8,2 | | Pembina Southbound | | | | | at Stafford | 4,1/3,1 | 5,0/4,0 | 4,1/3,1 | | Stafford | 8,1/6,1 | 13,2/10,2 | 4,1/3,1 | | Harrow | 17,9/13,7 | 16,3/12,2 | 9,1/7,1 | | Jubilee Soutbound | 9,4/7,3 | 20,2/15,2 | 14,8/11,6 | ^{*} Based upon historical traffic counts obtained from The City of Winnipeg Transportation Planning Department. Total number of traffic counts for each intersection was 12. ^{**} Based upon reducing the interarrivals by taking threequarters of their former value. LEGEND OF BLOCK SYMBOLS (USED IN THE GPSS FLOWCHART) | | ADVANCE BLOCK | |---------------|--| | | DEPART BLOCK | | | GATE BLOCK, CONNECTOR CONTAINS INDE | | | GENERATE BLOCK | | | LOGIC BLOCK, CONNECTOR CONTAINS INDEX MAIN BLOCK CONTAINS FUNCTION | | | QUEUE BLOCK | | | RESET BLOCK | | | START BLOCK | | | TERMINATE BLOCK | | | TEST BLOCK | | | TRANSFER BLOCK | | | INFORMATION PATH | | Marine Marine | יו ייי א כייע או אי נייע או אי פייע | # PEMBINA NORTH BOUND TRAFFIC TURNING ONTO STAFFORD PEMBINA NORTH BOUND TRAFFIC ANIBHAT ON PEMBINA # PEMBINA SOUTH BOUND TRAFFIC APPROACHING STAFFORD # STAFFORD SOUTH BOUND TRAFFIC Variations of the Computer Based Simulation Model: In order to simulate the traffic flow on the selected section of Pembina Highway at different times of day and under varying conditions, a number of modifications to the programme had to be implemented. These modifications were of many different forms ranging from the mere changing of the mean and modifier values of certain
GENERATE or ADVANCE blocks to the rewriting of entire sections of the programme. This section of the thesis will deal with the general nature of the variations and give some idea of the type of modifications used to simulate the road system at different times of day and under varying conditions of population, signal lengths and road size. The primary programme simulated the selected section of Pembina Highway in the mid-day time period, that is, without the no stopping 7:00 a.m. to 9:00 a.m. and 4:00 p.m. to 6:00 p.m. being in effect and under present conditions, that is, with the historically based values for the GENERATE statements as found in Table D and similarly for the ADVANCE statements used in the signal subroutines as found in Table C.1. Next a series of runs to simulate varying signal light lengths along the road system. Throughout all these runs the GENERATE values were those based on the historical data. These runs made use of the values found in Tables C.2 and C.3 for the ADVANCE blocks in the signal control subroutines in the following manner. The Pembina Highway times were lengthened, that is, the first, fourth, fifth, seventh, tenth and eleventh values of the middle column of Table C.3 were used in the appropriate ADVANCE blocks. The next run consisted of using the Pembina Highway times for Table C.2 with all other times being those of Table C.1. This simulated the shortening of the length of the signals on Pembina Highway. Then the effect of lengthening of the side road signal times was simulated by using the second, third, sixth, eight and ninth values of the middle column of Table C.3, while using the Table C.l values for the remaining ADVANCE blocks. Next the side road times were shortened by using the Table C.2 values. Following this a run was made with Pembina Highway times lengthened, Table C.3, and side road times shortened, Table C.2. Then both sets of signal times were shortened and finally both lengthened using all Tables C.2 and C.3 values respectively. Following this series of runs the signal times were returned to their original values of Table C.1. The next situation which was simulated was that of an expanded road system under mid-day conditions. A number of individual QUEUES had to be added to the programme at the Pembina-MacGillivray-Oakenwald intersection for both Pembina northbound and southbound traffic; similarly at the Pembina-Point Road-Windemere intersection and for northbound traffic only at the Pembina-Jubilee intersection. The programme was then run with the present population levels for the GENERATE blocks and the present signal times for the ADVANCE blocks of the signal control subroutines. After this run the GENERATE statement values were changed to those of a higher population as found in Table D. Next the programme was modified to represent rush hour conditions with the removal of one QUEUE for north-bound Pembina Highway traffic at the Pembina-Jubilee intersection and southbound traffic at the Pembina-Point Road-Windemere intersection. These lane changes, just as in the modifications for mid-day expansion, involved the changing of values in certain TEST blocks or rewriting certain decision systems in the programme. With this restructured programme the morning and afternoon rush hours were simulated under present conditions of traffic levels and signal lengths, under the conditions of varying signal lengths in the same pattern as outlined for the mid-day and in the case of the morning rush hour with the present signal lengths and the GENERATE block values for higher traffic levels as found in Table D. Once again the programme had to be restructured in order to simulate the rush hour conditions on an expanded road system. This was accomplished by adding a QUEUE for northbound and southbound traffic at the Pembina-MacGillivray-Oakenwald and Pembina-Point Road-Windemere intersections and also for northbound traffic only at the Pembina-Jubilee intersection. Then by the use of the appropriate values from Table C.1 and Table D. both morning and afternoon rush hours were simulated with the present traffic levels and traffic signal lengths. These were the final runs made with the simulation model and a copy of the programme in this state is presented in Appendix C. The rush hours could not be simulated with the increased traffic levels or the expanded road system since the computer core allocated to GPSS would have been exceeded. The same problem prevented any simulation of the afternoon rush hour with the higher traffic levels. An analysis of the results of these various computer runs follows. Analysis of Results of the Computer Simulation Runs: The complete set of results for the computer simulation runs can be found in Appendix E to this thesis. One copy of this appendix is available upon request. Due to the size of this appendix, well over seven hundred and fifty pages, this section will present a summary of the main effects on traffic flow, in terms of expected waiting times brought about by varying the conditions on the selected section of Pembina Highway. The previous section of the thesis outlined the various simulation runs which were made to represent varying conditions along the selected section of Pembina Highway. Among those variations were ones concerned with changing the lengths of traffic signals on either Pembina Highway or the side roads. It is the results of these runs which will now be discussed. The relationship which will be mentioned is that concerned with the percentage of a traffic light cycle, red plus green, which is green. This percentage can be looked upon as PGC = $\frac{G}{R} \times 100$ where G and R represent the length of $\frac{G}{R} \times \frac{G}{R} = \frac{G}{R} \times 100$ a green and red light respectively. It was found through trial runs that in order to gain the full effect of changes in PGC and cycle length on the delay at an intersection the two factors should be changed in conjunction with one another. Two major trends were investigated, that of decreasing the PGC while increasing the cycle length and decreasing the PGC while decreasing the cycle length. The resulting effects of these changes on traffic flow in terms of expected waiting time, E[W], were studied for each intersection at various levels of input, see Tables E.1, E.2 and E.3. The results of these various runs were found to be consistent for all intersections and at all levels of input used. What is meant by the results being consistent is not that the E[W] were all found to have the same values but, instead, that the trends in E[W] versus PGC relationships with shortening the light cycle and increasing PGC and with lengthening the light cycle and increasing PGC were found to be consistent for all intersections and at all input levels. An example of these trends is given on Graph 1 found at the end of this section. Although the results of the computer simulation runs are limited to three points for each curve and thus cannot be used for the formulation of strict quantitative results, the trends exhibited in the results are consistent with the traffic flow characteristics at an intersection. A general formulation of the type of relationships exhibited by the curves is that of a modified negative exponential function such as, $$E[W] = e^{-f(PGC,C)}$$ where PGC is the percentage of cycle green, C is the cycle length, f(PGC,C) is a function of both the PGC and the cycle length. As mentioned the results do not permit the formulation of strict quantitative results in terms of further defining the function f(PGC,C) which is an integral part of the main function in that it reveals the manner in which PGC and C determine E(W) through their own interrelationships. The results do indicate that the policy which would lead to minimizing the delay or E(W) at an intersection when only one direction of travel is considered would be one of increasing PGC while shortening the traffic signal cycle length. It must be noted that this policy is related to only one direction of traffic being considered. However, the purpose of any intersection is to provide a means of controlling traffic flows which cross one another Therefore, in addition to considering the at some point. effects of any policy regarding signal cycle lengths on traffic travelling in one direction, the effects on side road traffic must also be studies. An increasing PGC on one direction will result in decreasing the PGC for the cross road direction. Since the better method of increasing PGC for the main road, in terms of lowering E(W), would be to do so while shortening the cycle length, the side road would be found to have a decreasing PGC with the cycle length being shortened. This factor will lead to increasing the E[W] on the side road, while decreasing the main road E[W]. Graph 1 represents the E[W] versus PGC for southbound Pembina traffic at Point Road, while Graph 2 represents the E[W] versus PGC for Point Road traffic at Pembina. It can be seen from these two graphs that by increasing the PGC for Pembina Southbound from the present value of 72 to 83 the E[W] drops from 6 to 3, or by fifty percent and the Point Road E[W] increased from 26 to 32, or by twenty three percent, since the PGC decreases from 26 to 17 because PGC on Pembina southbound plus PGC for Point Road equals one hundred. The purpose of this analysis, just as that of the thesis, is not to point out the ideal signal times to be implemented. There are a number of policy questions, such as should the road serving the immediate community or the main artery serving travellers through the community receive priority in terms of shortest delay, which must be answered when a decision is being made to set the time lengths. This analysis was given in order to point out the usefulness of a computer simulation model to analyse the effect of various signal lengths or the delay of automobiles at an intersection. Several factors, as well as the percentage
change in delay, must be taken into account before a decision would be made regarding the length of the signal cycles or PGC values at an intersection. The E[W] value which is increasing must not become so large a value that drivers will disobey the signal lights from sheer frustration of waiting so long. effect of changes at one intersection upon the traffic behaviour at the next intersection must also be considered. There would be little use in minimizing E[W] at one intersection if in so doing the E[W] at a following intersection was increasing at a rapid rate. are also questions regarding load factor of an intersection and the theoretical versus practical usage rate of an intersection which would have to be answered. number of these factors will be considered in more detail later in the thesis. The object of this thesis is not to consider these various factors and thus not to find an optimal signal cycle or PGC for the intersections on the selected section of Pembina Highway. However, the computer simulation model does point out how such a simulation programme can determine the effect of decisions made in light of factors such as those just mentioned on the actual traffic flow, whether it be in terms of the average queue length at an intersection or the average delay at an intersection as was the case in this model. The benefit of this result can be best appreciated if one considers the high cost of obtaining data on the delay at an actual intersection and the tremendous value that such data would have in making a decision concerning the signal cycle of a particular intersection. Aside from the usefulness of a computer simulation model for evaluating the effect of changes in signal cycles in terms of queue lengths, delay times and other measures of performance for an intersection's behaviour, the model has also brought out two results regarding the capacity of the selected section of Pembina Highway. first result is in regard to the present road experiencing a higher level of traffic than that which it is now serving. It was found that the degree of congestion at the signalized intersection in terms of E[W] did not increase proportionately when the interarrival times of automobiles being generated into the system were taken as 3/4 of the historically based levels. It can be stated that the ${\tt E[W]}$ values were at almost the same levels with either traffic levels. The most plausible explanation for this phenonemon is that the present light cycles are longer than the traffic levels require. Although the computer model does not explictly indicate that traffic flows through the system in groups or platoons of automobiles, the manner in which the bulk of traffic arriving at an intersection is made up of automobiles travelling along the main road which could only depart from the previous intersection during certain specific periods coupled with the constant travel time between intersections has resulted in the traffic flowing in groups through the system. Increasing the traffic volume could have resulted in one of two events, either the groups or platoons would be larger in size and, therefore, take longer to flow through the intersection, or else the entire platoon would not have been able to pass through the intersection causing a build-up in congestion with the arrival of each new platoon. This aspect of platoons will be explored in some detail in the mathematical model to follow. It is only presented here as a quantitative argument to point out how the present light cycles are longer than the present traffic volumes need and, in fact, long enough to handle the increased traffic levels. The result of the simulation model with higher traffic levels indicate that traffic signal capacities are considerably longer than the demands the present traffic level places upon them where the signal capacity is the number of automobiles, or size of platoon, which may proceed through the intersection during one green light. The second computer simulation result regarding capacity is concerned with the aspect of increasing the size of the main road. It was found that in terms of E[W] there was no noticeable change in overall traffic congestion when the simulation model was expanded to represent the selected section of Pembina Highway with a one lane expansion along all of its route, except when passing under the two overhead crossings immediately north of Jubilee. At some intersections at certain times of the day the E[W] values were lower with the expanded road, however, at other intersections and/or different times the values were the same or even somewhat greater with the expanded road. However, there were only six out of forty-two observations where the change in E[W] was greater than ten percent and of these six most values were very small so that a change of l in E[W] resulted in a twenty-five or thirty-three percent change from the initial value. This result demonstrates first of all how a computer simulation model is able to evaluate a decision such as road expansion in terms of its effect on traffic flow in the same manner as the PGC and cycle length decisions could be evaluated. This result also shows how road expansion on its own is not a guaranteed solution to reducing the delay of automobiles at an intersection. Road expansion decisions must be made in light of numerous other factors including the signal light decisions, intersection capacities, how frequently is the road congested and so on. It must be noted that a simulation model, such as the one developed in this thesis, cannot be considered to be an all inclusive method of making decisions in the area of traffic engineering but rather can be used as a tool to aid the engineer in reaching a decision. This simulation model has demonstrated the manner in which a model can aid in evaluating potential choices of PGC and cycle length, decisions on road expansion or evaluating the effect on the present road system of greater traffic volumes. A computer simulation model which could actually be used in making decisions regarding changes in a road system would have to be much more refined in terms of traffic engineering concepts than the model presented here. However, the purpose of this thesis is to point out how a simulation model could be used in traffic planning decisions and not to build a model which could be used in its present state to make such decisions. In both this section of the thesis and the one describing the computer simulation model, reference was made to a number of assumptions used in the formulation of the programme and some of the programme's shortcomings in terms of representing the actual traffic flow. The last section of the thesis will attempt to take some of these factors into account by outlining how a series of mathematical models could be used to refine the simulation model. TABLE E.1 EXPECTED WAITING TIMES E[W] | | RUN NO. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-------|-----------|----|----|----|----|----|----|----|----|----| | QUEUE | | | | | | | | | | | | A | 12 | 12 | 14 | 21 | 5 | 5 | 6 | 19 | 12 | 13 | | В | 25 | 34 | 11 | 22 | 25 | 41 | 13 | 32 | 23 | 23 | | С | 32 | 46 | 16 | 32 | 32 | 47 | 17 | 47 | 33 | 31 | | D | 12 | 13 | 10 | 16 | 8 | 10 | 7 | 19 | 12 | 12 | | E | 26 | 42 | 11 | 22 | 32 | 44 | 13 | 37 | 24 | 33 | | F | 25 | 41 | 10 | 25 | 29 | 47 | 13 | 37 | 27 | 27 | | G | 4 | 3 | 6 | 7 | 2 | 2 | 2 | 5 | 4 | 5 | | Н | 22 | 36 | 10 | 19 | 25 | 39 | 12 | 33 | 23 | 22 | | I | 13 | 16 | 10 | 15 | 10 | 13 | 7 | 18 | 11 | 13 | | J | 2 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | 2 | 2 | | K | 25 | 38 | 12 | 25 | 25 | 38 | 12 | 38 | 26 | 25 | | L | 11 | 13 | 9 | 14 | 9 | 11 | 6 | 16 | 11 | 11 | | M | 6 | 6 | 8 | 13 | 3 | 3 | 3 | 11 | 6 | 6 | | N | 6 | 6 | 8 | 13 | 3 | 2 | 4 | 12 | 8 | 7 | TABLE E.2 EXPECTED WAITING TIMES E[W] | | RUN NO. | . 11 | 12 | 13 | 14 | 15 | 16 | . 17 | 18 | 19 | 2.0 | |-------|---------|------|----|----|----|----|----|-------|----|----|-----| | QUEUE | | | | | 12 | | ±0 | -1. / | Τ0 | エフ | 20 | | | | | | | | | | | | | | | A | | 5 | 3 | 7 | 8 | 2 | 2 | 3 | 6 | 13 | 13 | | В | | 22 | 42 | 11 | 23 | 28 | 43 | 15 | 34 | 22 | 23 | | С | | 33 | 48 | 17 | 33 | 32 | 47 | 16 | 48 | 33 | 32 | | D | | 6 | 7 | 8 | 13 | 4 | 4 | 4 | 8 | 11 | 15 | | E | | 27 | 32 | 9 | 23 | 32 | 62 | 10 | 47 | 23 | 29 | | F | | 33 | 44 | 10 | 21 | 31 | 44 | 11 | 40 | 27 | 29 | | G | | 5 | 4 | 8 | 11 | 3 | 2 | 3 | 7 | 6 | 6 | | H | | 13 | 21 | 6 | 10 | 14 | 24 | 7 | 19 | 13 | 13 | | I | | 10 | 13 | 11 | 14 | 6 | 10 | 6 | 18 | 10 | 12 | | J | | 4 | 3 | 6 | 5 | 2 | 2 | 3 | 5 | 4 | 4 | | K | | 10 | 17 | 3 | 10 | 10 | 18 | 3 | 17 | 10 | 13 | | L | | 11 | 12 | 10 | 13 | 6 | 8 | 6 | 16 | 11 | 11 | | M | | 7 | 5 | 9 | 13 | 3 | 2 | 4 | 10 | 7 | 7 | | N | | 5 | 5 | 7 | 10 | 2 | 2 | 3 | 11 | 5 | 6 | TABLE E.3 EXPECTED WAITING TIMES E[W] | | RUN NO. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |-------|---------|----|----|----|----|----|----|----|----|----| | QUEUE | | | | | | | | | | | | A | | 13 | 12 | 14 | 21 | 6 | 6 | 7 | 21 | 14 | | В | | 22 | 35 | 12 | 21 | 23 | 40 | 11 | 35 | 24 | | С | | 32 | 48 | 18 | 32 | 32 | 48 | 17 | 48 | 33 | | D | | 14 | 14 | 11 | 27 | 7 | 8 | 7 | 13 | 12 | | E | | 29 | 33 | 10 | 19 | 27 | 55 | 14 | 36 | 27 | | F | | 26 | 44 | 11 | 21 | 29 | 43 | 12 | 36 | 25 | | G | | 4 | 3 | 7 | 8 | 2 | 2 | 3 | 6 | 6 | | Н | | 28 | 46 | 12 | 24 | 32 | 50 | 15 | 41 | 27 | | I | | 15 | 15 | 10 | 19 | 10 | 14 | 7 | 16 | 12 | | J | | 3 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | 2 | | K | | 25 | 38 | 12 | 25 | 25 | 38 | 12 | 38 | 24 | | L | | 11 | 13 | 9 | 14 | 8 | 11 | 6 | 16 | 11 | | M | | 8 | 6 | 9 | 12 | 3 | 2 | 4 | 10 | 5 | | N | | 7 | 6 | 8 | 13 | 3 | 3 | 4 | 10 | 5 | #### INDEX FOR # TABLES E.1, E.2, E.3 - QUEUE A Pembina northbound traffic at MacGillvray Oakenwald - B Oakenwald traffic - C MacGillivray traffic - D Pembina northbound traffic at Point Road Windemere - E Point Road traffic - F Windemere traffic - G Pembina northbound traffic at
Jubilee - H Jubilee traffic - I Pembina northbound traffic turning onto Stafford - J Pembina northbound traffic - K Pembina southbound traffic to Stafford - L Stafford traffic - M Pembina southbound traffic to Point Road Windemere - N Pembina southbound traffic at MacGillivray Oakenwald #### MORNING RUSH HOURS ## Present Traffic Levels: - Run No. 1 Present signal lengths - 2 Pembina green signal lengths increased - 3 Pembina green signal lengths decreased - 4 Side road green signal lengths increased - 5 Side road green signal lengths decreased - 6 Pembina green signal lengths increased and side road green signal lengths decreased - 7 Pembina and side road green signal lengths decreased - 8 Pembina and side road green signal lengths increased ## Increased Traffic Levels: 9 Present signal lengths #### Present Traffic Levels: 10 Road expanded by one lane, present signal lengths ## MID-DAY ## Present Traffic Levels: - Run No. 11 Present signal lengths - 12 Pembina green signal lengths increased - 13 Pembina green signal lengths decreased - 14 Side road green signal lengths increased - 15 Side road green signal lengths decreased - Pembina green signal lengths increased and side road green signal lengths decreased - 17 Pembina and side road green signal lengths decreased - 18 Pembina and side road green signal lengths increased - 19 Present signal lengths on expanded road # Higher Traffic Levels: 20 Present signal lengths on expanded road #### AFTERNOON RUSH HOUR ## Present Traffic Levels: | | Run | No. | 21 | Present | signal | lengths | |--|-----|-----|----|---------|--------|---------| |--|-----|-----|----|---------|--------|---------| - 22 Pembina green signal lengths increased - 23 Pembina green signal lengths decreased - 24 Side road green signal lengths increased - 25 Side road green signal lengths decreased - Pembina green signal lengths increased and side road green lengths decreased - 27 Pembina and side road green signal lengths decreased - Pembina and side road green signal lengths increased - 29 Present signal lengths on expanded road ## Verification of Results: The results that were obtained through the various simulation runs were verified in two different ways. First the results of any typical run were investigated in terms of what confidence intervals could be associated with the resulting expected waiting times of automobiles at the various intersections which were simulated. Next the qualitative nature of the results were looked over by members of The City of Winnipeg Engineering Department to see if they portrayed the actual situation which would occur in the event of the changes being made. The representative queues of automobiles on Pembina Highway will now be listed, along with their estimated $\sigma_{\widetilde{X}}$, that is, their standard deviation of E(W) for every 2nd interval of a series of 24 five minute intervals, divided by the square root of 12. | | | \overline{X} | (estimated) | |------------|-----------------|----------------|-------------| | Northbound | at MacGillivray | .50 | seconds | | Southbound | at MacGillivray | .66 | | | Northbound | at Point Road | .85 | | | Southbound | at Point Road | .52 | | | Northbound | at Jubilee | .78 | | | Northbound | onto Stafford | .74 | | | Southbound | at Stafford | .59 | | | Northbound | at Stafford | .28 | | If we wish the results to be reliable within two seconds, that is, the E(W) to be within two seconds at a 98% confidence level than 2.33 $T_{\overline{\chi}}=2$ or $T_{\overline{\chi}}=2/2.33=.86$ seconds. Since the estimates of $T_{\overline{\chi}}$ are all less than .86 seconds it can be said that the results are within 2 seconds at a 98% confidence level. The $T_{\overline{\chi}}$ values were not presented for the side road queues because the number of transactions recorded differ from the number of automobiles simulated per lane on the side roads due to the combination of several lanes into one, the presence of yields and right turns on red lights. The Pembina Highway queues which were used represent a lane in the centre of the traffic flow which is not affected by these factors. The second step in the verification of results involved going down to the City Engineers and speaking with them about the results which were obtained regarding the effect of expected waiting times or changing the traffic signals, the traffic volume and road capacity. The Engineers who were interviewed expressed confidence in the results in that the trends exhibited in the graphs regarding signal light changes were what should be expected, as were the tabular results regarding changing traffic volumes or road capacities. Since the road had been set up in terms of capacity and signal systems for a higher volume of traffic, double that which was experienced on the road at the time of the change, the results of signals being of over capacity and so on were what the engineers would expect. The length of the expected waiting time at intersections in terms of number of traffic signal cycles at rush hours as compared to at non-rush hours were considered to be in line with what presently occurs at the intersections under the present conditions along this section of Pembina Highway. Having heard about the capacity of the road by being much larger than present traffic volume a selected intersection of the model zone was isolated from the remainder of the programme and given higher traffic levels than were possible with the complete programme. The intersection chosen was that of Pembina-MacGillivray-Oakenwald. Six different traffic volumes were simulated for the intersection for morning rush hour conditions, that is, the no stopping zones are in effect. The runs and the resulting expected waiting times were as follows, | Traffic
Volume | | | | | |--------------------------------|----------------------------|----------------------------|---------------------------|------------------------| | as a % of
Present
Volume | Pembina
North-
bound | Pembina
South-
bound | MacGillivray
Eastbound | Oakenwald
Westbound | | 100% | 12 | 6 | 32 | 21 | | 125% | 13 | 7 | 33 | 24 | | 150% | 15 | 8 | 35 | 26 | | 200% | 18 | 10 | 37 | 28 | | 250% | 32 | 25 | 46 | 35 | | 400% | 95 | 45 | 248 | 150 | It can be seen from these results that the capacity of the road does accommodate traffic up to a certain level, in this instance, approximately 200% of the present traffic volumes. Above this level the expected waiting times at the various intersections increase at an exorbitant rate so that the E(W) fall in the range of eight times the presently experienced ones. These results tend to verify the qualitative statements regarding the capacity of the road system made by the engineers interviewed. Potential Refinement of the Simulation Model Through Mathematical Sub-Models: The purpose of this section of the thesis is to study possible refinements of the computer based simulation model in order to make it more flexible in terms of applicability and more realistic in terms of simulating the traffic flow on the selected section of Pembina Highway. There are four main factors which will be considered in this section of the thesis, forecasting of traffic levels, non-signalized side road effects, car following theory and synchronization of signal lights at the various intersections. Rather than developing mathematical formulations for each of these factors, use will be made of existing theories on the subjects in order to describe them. Once each has been described a general statement as to where in the simulation model the actual sub-model or theory could be used and also to what extent it would improve the model will be given. This approach has been taken since the focus of this thesis has been on the development of the simulation model earlier presented and this section is included to indicate the areas in which the computer simulation model can be refined to better represent the actual traffic flow. The first factor which will be discussed is concerned with the forecasting of traffic levels at input points, feeder routes and the extremities of the main road in the road system. The presented simulation model makes use of traffic levels, in terms of interarrival times, which are based on rather sparse data. It is due to this lack of data that the model was run to simulate three parts of the day, morning rush hour, mid-day and afternoon rush hour, with the traffic levels remaining constant during a particular simulation run. If a good deal more data than was available could be obtained it would be possible to simulate the traffic flow for a great many more times of the day, some of which would lead to peak traffic volumes. This expanded data base which would be in the form of hourly figures of interarrival times of automobiles or in some form which could be converted to interarrival times with observations for each weekday and season, would be used in the following manner. Assume that there are n hourly observations h in a day, j daily observations d in a week, k weekly observations w in a season and I season observations s in a year, then by means of a moving-average method the variations in traffic levels caused by the time of day could be calculated. First n hour W.A. Spur and C.P. Bonini, Statistical Analysis for Business Decisions, Richard D. Irwin, Homewood, Illinois, 1967 pp. 502-532. moving averages would be calculated and then compared to the observed value of the (n/2) - 1 hour from the first hour included in the moving average. That is, $\frac{h_1 + h_2 + \dots + h_n}{n}$ would be compared to $$\frac{h_1}{2} + \frac{n}{2} - 1$$ and $\frac{h_2 + \dots + h_n + h_{n+1}}{n}$ would be compared to $\frac{h}{2} + \frac{n}{2} - 1$ observations, etc. Note: A.n/2 must be an integer and thus fractional values must be rounded off. B.n + 1 is the first hour's observation for the second day. Next the h observation is divided into the corresponding moving average, thus
giving a percentage value. Through the computation of moving averages over several days a number of percentage values for each hour of the day are computed. The modified mean of each of these series of percentages for a particular hour are found by averaging all values in the series except the highest and lowest in order to minimize the effect of irregular factors. Finally, each modified mean is multiplied by 100 n/(sum of the modified means). The resulting percentages are the modifying means for each hour of the day which are used to transform a standard interarrival time to one representing a particular hour of the day. The same procedure is followed to obtain modifiers for the day of the week and seasonal variations or interarrival times. Although the method of determining the time of day, day of week or seasonal variations on the traffic levels is quite straightforward as presented here, it is also a very expensive process. The expense is in terms of obtaining and tabulating the data necessary to calculate the modifiers. The main purpose of a forecasting model, such as the one outlined above, or more sophisticated ones, namely Census Method II or Exponential Smoothing is greater flexibility. This flexibility is in terms of being able to simulate the traffic flow, not only for the three discrete time points in a day, but to be able to simulate for each hour in a day. In addition to this hour of day flexibility, the forecasting model would also enable simulation of the traffic flow to take into account variations for the day of the week and season. Through the use of such a forecasting model the simulation model would become more realistic in that it would be simulating the traffic flow without assuming the morning rush hour traffic levels do not vary from one hour to another and that all traffic levels are the same from day to day or season to season for any particular rush hour. The next area of improvement which will be discussed is that of a traffic flow or car following sub-model. As earlier mentioned the computer based simulation chose to adopt a constant travel time for all automobiles travelling between the same two intersections. This procedure was followed for the sake of ease in building the model and also due the size constraint imposed upon the computer simulation model by the GPSS language. A review of the theories advance in regard to traffic flow, or more specifically car following, indicates that their application would be very limited in regard to the present simulation model which is mainly concerned with traffic congestion or potential congestion. The theory advanced by Chandler, Herman and Montroll² as well as that advanced by Herman, Montroll, Potts and Rotherty³ are chiefly concerned with stability in the traffic flow on lengthy uninterrupted sections of a road. This stability is in reference to an even or uniform flow of automobiles with respect to speed, spacing, acceleration and deceleration. When instability arises in the traffic flow it can be of two forms as pointed out by Lee⁴, local or asymptotic R.E. Chandler, R. Herman and E.W. Montroll, <u>Traffic Dynamics</u>: <u>Studies in Car Following</u>:, "Operations Research", Vol.6,1958 ³R. Herman, E.W. Montroll, R.B. Potts and R.W. Rotherty, Traffic Dynamics: Analysis of Stability in Car Following, "Operations Research", Vol. 7,1959. ⁴G. Lee, <u>A Generalization of Linear Car Following Theory</u>, "Operations Research", Vol. 14,1966 Local instability refers to the lack of response of a following car to the movements of the leader and thus resulting in a collision, while asymptotic instability is a chain reaction of a lead car action with increasing amplitude until a collision occurs somewhere down the line. Lee's paper is chiefly concerned with the development of equations which upon solution express a following vehicle's speed as a function of the lead vehicle's time history of relative speed. This aspect of vehicular speed is a very important point of traffic studies on major road systems with reference to analyzing causes of accidents. However, the inclusion of such theory in the model formulation of the selected section of Pembina Highway would not be worthwhile when comparing the slight changes in arrival rates at an intersection with the cost of accumulating statistics on driving behaviours that would be required and the large expansion in the simulation model in terms of building new subroutines which would be compatible with the main programme's language and which could perform integration and differentiation. Although the aforementioned theory tends to constrain the presented simulation model, the theories presented by Chandler, Herman and Montroll and by Herman, Montroll, Potts and Rotherty have some features which would be of use in the refining of the simulation model. The features which are being referred to are those concerned with the spacing of automobiles in the traffic flow. The spaces between the automobiles which could be referred to as intergaps are of great value when considering traffic delayed at non-signalized crossings of the main road. Chandler, Herman and Montroll present a method⁵ of calculating these intergaps by actually calculating the position of the n'th automobile relative to a moving scale on which the lead and/or following automobile's position is also calculated. The rule given is as follows:- $$X_{n-1} = X_{n} + b + TV_{n} + L_{n-1}$$ (1) where X_i is the position of the i'th vehicle. The distance between X_n and X_{n-1} vehicles is then $$X_{n-1} - X_{n} = b + TV_{n} + L_{n-1}$$ (2) where b is the distance between vehicles at rest. \boldsymbol{V}_{n} is the velocity of the n'th vehicle T is the time constant relating to the areas driving habits in terms of distance allowed for a given number of miles per hour - e.g., 10 feet for each 10 miles per hour. $T \approx 10$ ft/(14 ft/sec) \approx 2/3 of a second. L_n is the length of the vehicle n. In terms of the selected section of Pembina Highway a formula such as the one presented above could be used to calculate the ⁵R.E. Chandler, R. Herman and E.W. Montroll, op.cit. expected intertraffic gaps in heavy traffic. The information which would be needed is a distribution of the speed of automobiles in heavy traffic, the distance between automobiles at rest and the length of vehicles. All three items could be easily obtained through studies of traffic flows, overhead photos of a grid intersection and survey of automobile specifications. One additional piece of information which would be needed and which would be the most difficult to obtain is that of the distance versus speed factor that drivers follow. This information would be needed to obtain a value for T. Therefore, even though the aspect of a linear car following model is not highly suited to the simulation model, a small portion of the theory behind the model can be used to determine the size of gaps between automobiles. These gaps will be now shown to be an important factor in the expansion of the simulation model to one including non-signalized as well as signalized side roads. The purpose of the simulation model is to represent the delays or congestion on the selected section of Pembina Highway. In order to fully represent these delays the simulation model must take into account the non-signalized as well as signalized intersections. A number of theories or models have been developed for the situation of a non-signalized intersection on a main road. In most cases these models have been developed for the situation of a single lane main highway with a continuous traffic flow, whereas the selected section of Pembina Highway is a multilane road with non-continuous traffic flow due to the presence of signal control systems at numerous locations along its path. The traffic flow is non-continuous in the sense that the automobiles travel in groups or platoons due to the characteristics of a signal control system and due to the rather short distances between the signalized intersec-The former factor causes the traffic on the main road, which is the main component of the traffic flow, to only pass through the intersection during specified periods and the latter prevents the cars from being able to spread out into a continuous flow before grouping together at the next intersection. Despite the fact that the traffic flow is not the same as that accounted for in the papers by ${\rm Haight}^6$, Oliver and ${\rm Brisbee}^7$, Weiss 8 and Weiss and Maradudin 9 , they do point out R.A. Haight, <u>Mathematical Theories of Traffic Flow</u>, Academic Press, New York, 1963. ⁷R.M. Oliver and E.G. Brisbee, Queueing for Gaps in High Flow Traffic Streams, "Operations Research" Vol. 10,1962 ⁸G.H. Weiss, <u>The Intersection Delay Problem with Correlated</u> Gap Traffic Streams, "Operations Research", Vol. 10, 1962. ⁹G.H. Weiss and A.A. Maradudin, <u>Some Problems in Traffic Delay</u> "Operations Research", Vol. 10, 1962. the theory involved in formulating a model for side road traffic delay at non-signalized intersections based on the theory of gap acceptance. In the paper by Weiss two equations are presented which could be used to determine the mean delay time incurred upon an automobile which arrives on a side road at a non-signalized intersection at time t = 0. They are $$\overline{t} = \int_{0}^{\infty} t \left[a_{0}(t) + 1 - \overline{\alpha}_{0} \ \alpha(t) \right] dt + \overline{t}_{0}$$ (3) $$\overline{t} = \int_{0}^{\infty} t \left[a_{o}(t) + 1 - \overline{a}_{o} \ \alpha(t) \right] dt + \overline{t}_{o} \qquad (3)$$ $$\overline{t}_{o} = \frac{1}{\overline{a}} \int_{0}^{\infty} t \left[\overline{a} \ \gamma_{o}(t) + (1 - \overline{a}_{o}) \ \gamma(t) \right] dt \qquad (4)$$ $$\alpha_o(t) = \varphi_o(t) \propto (t) \rho(t) \eta(t)$$ $$\alpha(t) = \varphi(t) \propto (t) \rho(t) \eta(t)$$ (5) $$- \approx (6)$$ $$\overline{\alpha} = \int_{-\infty}^{\infty} \alpha(x) \varphi(x) dx \tag{6}$$
$$\overline{\alpha}_0 = \int \alpha(x) \, \varphi(x) \, dx \tag{8}$$ φ (t)-density fnc.that gap is of length t. $$\varphi_o(t) = \left(\frac{1}{\omega}\right) \underline{\Phi}(t) \tag{9}$$ $$\mathcal{M} = \int_{-\infty}^{\infty} \chi \, \varphi(x) \, dx \quad \text{mean headway}$$ (10) $$\mathbf{E} = \int \varphi(\mathbf{x}) d\mathbf{x}$$ probability gap is t or greater (11) probability of leaving intersection with a gap of length t present probability of looking for a second gap when first was of length t $$\eta(t) = \int \varphi(\pi) \, q(t, \pi) \, d\pi \tag{12}$$ probability that an acceptable gap is followed by an even more acceptable one. $$\varphi(t, x)$$ probability that gap x in length is more desirable than gap t in length $$\varphi_{c}(t) = \varphi_{c}[1 - \alpha(t)]$$ $$\varphi(t) and $$\Upsilon(t) = \varphi[1-\alpha(t)]$$ (14) It can be seen from these equations that in order to calculate the delay at a non-signalized intersection a good deal of data would be needed in terms of the probability of specific gap sizes occuring, the probability of drivers entering the traffic flow given specific gap sizes and so Some of this data could be found by means of the forth. studies earlier mentioned in relation to equations 1 and 2, while other probability densities, such as the probability densities of turning down a gap of length t or the probability densities of entering the traffic flow upon the occurrence of a gap of length x, would have to be calculated from information gained through studies in driver behaviour. It should also be noted that the above calculations are designed to find out the mean delay time of an automobile arriving at an intersection at time equal to zero with a continuous flow. Modifications would have to be made to the equations to find results in terms of a noncontinuous flow of traffic which is the situation in the model zone. The necessary changes would involve a complete reworking of certain equations so as to introduce the possibility of no traffic on the main road, that is, between platoons or groups of automobiles, or for the gap sizes within the platoons at different times of the day such as rush hours or non-rush hours. Despite the increased complexity involved in introducing the delays at non-signalized intersections in the simulation model the benefit of having a complete simulation of the selected section of a specific road sector would make the expansion worthwhile. However, due to the size of the task in introducing these side road delays in terms of collecting data to derive the necessary probability densities and the amount of work involved in formulating the basic simulation model this aspect of the model will be given as a direction in which the model must be expanded to become more realistic. Another factor which could be considered in the simulation model is that of synchronization of traffic signals along the road system. This synchronization could result in entire platoons of automobiles being able to travel through the selected section of Pembina Highway without having to stop for a red light at a signalized intersection. It has been previously mentioned that an inhibiting factor in the synchronization of the signal lights along the selected section of Pembina Highway was the bi-directional nature of the rush hour traffic. One manner of studying the idea of traffic signal synchronization is by graphical analysis whereby the road system is presented in a space-time diagram. This method is employed in a paper by $Little^{10}$. Through such a diagram it is possible to determine the maximum bandwidth, a factor related to the size of a platoon, able to pass uninterrupted by red lights along the road system. examples of such time space diagrams follow this section of the thesis, figures 1 and 2. Since the rush hour traffic on the selected section of Pembina Highway is bidirectional it would be ideal to be able to have a large bandwidth, that is, greater than one-half of the green light at each intersection, to be able to move through the system in both directions. The two space time diagrams given are representative of the presently used signal system on Pembina Highway in terms of signal lengths during morning rush hours. The space time diagrams propose a sequencing of signals at each intersection on the selected section of Pembina Highway. The sequencing proposed consists of setting the signal controls at each intersection so that at some time = 0 the Pembina signals at MacGillivray turn red, those at Point Road turn green for southbound by beginning to flash, those at Jubilee turn red and the Pembina northbound straight through green arrow just turns green. time = 0 the signal controls at each intersection would ¹⁰ J.D.C. Little, The Synchronization of Traffic Signals, "Operations Research", Vol. 14, 1966 operate with their standard cycle lengths. It was assumed that the traffic in a platoon would travel at a constant speed between two signalized intersections and that this speed would be lower in areas of reducing number of lanes from Point Road to Jubilee and Jubilee to Stafford for northbound traffic. It was further assumed that the speeds of traffic in the less congested and more congested sectors of the road in terms of number of lanes would be taken as 27 and 24 miles per hour respectively. With the use of these assumptions, the distances between the intersections and the signal times at each intersection, figures 1 and 2 were drawn. An attempt was made at using two values of bandwidths b and b' which were 40 and 30 seconds respectively. It goes without question that the higher the value of the bandwidth the better the situation in that larger platoons in terms of more automobiles will be able to flow through the system. It was found that a bandwidth of b was too large to be handled at Jubilee for northbound traffic and at MacGillivray for southbound traffic. The b' bandwidth was found to be able to flow through all intersections smoothly without encountering any red lights. This study into the synchronization of signal lights appears to suggest that a policy of synchronizing the signal lights on the selected section of Pembina Highway would help to alleviate congestion at the intersections. However, it must be remembered that the proposed synchronization was based on the assumption of constant speed, below the speed limit, no hesitation in a platoon when approaching a signalized intersection which will only be turning green upon the platoon's arrival, the presence of empty queues at an intersection where the platoon arrives and that a platoon is of such a size that it only takes 30 seconds to cross an intersection. Further inspection points out a number of problems which would tend to interfere with the ideal operation of the synchronization of the signal system. First is that traffic does not travel at a constant rate in rush hour conditions; it travels as quickly as it safely can and thus shows a good deal of fluctuation, second is that a platoon will show some hesitation on the part of a certain number of its members when approaching an intersection where the light has not yet turned green and, third, the most important problem that is encountered is that queues will not always be empty at a signalized intersection when a platoon comes upon it. This third factor arises from various causes, side road inputs into the traffic system between platoons, oversized platoons arriving at a critical intersection, one which can only handle the 30 second platoon and platoons arriving too early at an intersection. the first cause of inputs from side roads into the traffic system between platoons will have an effect on platoons which arrive at the start of a green light such as northbound ones at Jubilee, or southbound ones at Stafford or Point Road. The extent to which these inputs effect the traffic flow is dependent upon the size of the inputs. At the Jubilee intersection it can be expected to be quite severe since one of the inputs is very high, Point Road, and there are only two queues at Jubilee. There is also the possibility of the side road traffic following the platoon through a green light and thus not causing a queue to block the next platoon. This possibility exists as a result of the signal cycles along the selected section of Pembina Highway not being used to their capacity as pointed out in the section of the thesis analyzing the results of the computer runs. However, there will still be a certain number of automobiles arriving from side road inputs on a red light and queuing up in the path of the next platoon. When the platoon arrives it will be delayed by the start up time of the queued automobiles and of its own automobiles which were slowed down. will take up a certain part of the green light and quite possibly result in an inability to have the entire platoon clear the interesection. This will leave a queue at the intersection which supplemented by side road inputs will impede the way of the next platoon. In the event of an oversized platoon arriving at a critical intersection with an empty queue, such as southbound at MacGillivray, a certain portion of the platoon will be unable to clear the intersection. This will result in a queue forming up for the next green light. This factor would not have a severe effect on the next platoon provided the built up queue could be cleared in the portion of the green light preceding the arrival of the platoon. However, it would result in a larger queue awaiting the platoon at an intersection along the route designed to have a platoon arrive at the beginning of a red signal. The third factor of platoons arriving too early at an intersection would result in a delay time for the platoon in excess of that incurred by the awaiting queue. This situation could develop at Jubilee if a northbound platoon arrived 10 seconds early which is possible as can be seen from figure 1 where the b width bandwidth's left
hand solid line arrives for the last 10 seconds of the red signal. It should be noted that the first and third factors have a high likelihood of occurring at Jubilee which would result in heavy queue build ups at the intersection. The idea of a signal synchronization model could be introduced into the computer simulation model by means of co-ordinating the phase in which the signal control subroutines commence operation. However, due to the fact that the two main factors leading to problems in the synchronization have been overlooked in many respects during the programme, uneven traffic speed and inputs from all side roads, a simulation model presenting a synchronized light system would perhaps be closer to representing the ideal traffic flow than the real life one. In addition to the forecasting model, traffic flow model, non-signalized side road delay model and traffic signal synchronization model, the computer simulation model could have been expanded to also include other factors, such as, varying traffic speeds, load factor, theoretical capacities of intersections and other factors related to traffic engineering. This section of the thesis has presented a series of models which could be added to the computer simulation model so as to refine its ability to simulate the real life situation on the selected section of Pembina Highway. Diagram 4 at the end of this section of the thesis is a flowchart of the expanded simulation model showing the manner in which the various sub-models would be related to one another. The numbers listed with the various sub-models are the pages of the thesis where the sub-models can be found in their expanded form. A flowchart of the necessary data formation and maintenance system required to operate the expanded simulation model is given in Diagram 5 at the end of this section. This data base is the same one that was outlined earlier when the forecasting, car following and non-signalized side road delay models were discussed. \$ W7397107 ONI A INOZ TIGOM 530 3HL NI 77LLS ON グベロノコフラショフロロ 234 CISITANDISTAON AZILLOND 68'882 TIOON HOLLOTSYTLM NOLLOSSAJZMI GIZZITUNDIS-NON WIY GSELTUNDIS NON ひゅうき すロック じゃし トロマシヒナ 58 B 75001 DAMAGTTON WY E9 Z5 2 7300W フェンロロ ベロレイチフロロノ5 NOMERTALUS YZZAJUD 371101407 Kg KEI NOLLDISWILNI 57611228 2133822 CIRRITUNIUS Y LV LV LV LO 20 NOILYTOUS TETOW NOIZYTOMS T8 '08 2 BY COMPONER 7300H SNUSTOJEO 57411886 21884XL 2134441 0404 3018 YO NOILY70WS 18'082 7300W 9NUSW23Y0Y DISTARY ONDS WINN TERMOLY NOISENTAINS JONANJINIAM ONA NOITAMAOL MORNING RUSH HOUR NORTHBOUND TRAFFIC ON PEMBINA SPACE-TIME DIAGRAM STAFFORD. JUBILEE LINE INDICATES POINT ROAD. MACGILLIVARY -400 TIME IN SECONDS - 100 - FIGURE 1 101 - MORNING RUSH HOUR SOUTHBOUND TRAFFIC ON PEMBINA SPACE-TIME DIAGRAM FIGURE 2 ## Conclusion: This thesis has presented a study on the development of a micro-scale simulation model for a selected section of Pembina Highway. This study was conducted in two ways. First a computer based simulation model written in GPSS was developed and used to simulate the traffic flow on Pembina Highway under varying conditions of signal lengths, traffic volumes and road structure. Through these simulation runs it was found that the capacity of the signal systems in the model zone were above the traffic volumes and that by increasing the percentage green per cycle, while decreasing the cycle length the expected delay of automobiles at signalized intersections would be reduced. It was also concluded that the present road was not being used to capacity in terms of the simulated traffic volumes and thus an expansion of the road system in terms of a lane expansion would not be a sure method of reducing the congestion at the signalized intersections of the road system. The second part of the study was devoted to four models, forecasting, traffic flow, non-signalized intersection traffic delays and signal synchronization, which could be added to the main simulation model. The merit of each model in terms of added complexity versus cost versus benefit was looked into. The purpose of this section of the thesis was to propose paths which could be followed in the refinement of the simulation model. It was found that the forecasting model would be a great asset despite the high cost of data collection, the traffic flow model would be of use in part, the side road delay model would definitely refine the simulation model despite the increased complexity involved and the signal synchronization model would be of questionable merit due to some of the assumptions made in the main computer simulation model. Perhaps the most important conclusion of the thesis is that it serves to point out the great number of problems and side issues involved in the simulation of a complex situation such as a traffic engineering problem concerning the traffic flow on a major artery. ### BIBLIOGRAPHY - Chandler, R.E., Herman, R., and Montroll, E.W., "Traffic Dynamics: Studies in Car Following", Operations Research, Vol. 6, 1958. - Chaudry, M.L., "Some Queueing Problems with Phase Type Servers", <u>Operations Research</u>, May-June 1966 - Darrock, J.N., Newell, G.F., Morris, R.W.J., "Queues for a Vehicle Actuated Traffic Light", Operations Research, Vol. 12, 1964. - Dick, R.S., "Some Theorems on a Single Server with Balking", Operations Research, Nov.-Dec. 1970. - Ehrenfeld, S., Ben-Tuvia, S., "The Efficiency of Statistical Simulation Procedures", Technometrics, Vol. 4, 1962. - Emshoff-Sisson, "Design and Use of Computer Simulation", MacMillan, 1970. - Greenberg, H., "An Analysis of Traffic Flow", Operations Research, Vol. 7, 1959. - Haight, F.A., "Mathematical Theories of Traffic Flow", Academic Press, New York, 1963. - Herman, R., Montroll, E.W., Potts, R.B. and Roherty, R.W., "Traffic Dynamics: Analysis of Stability in Car Following", Operations Research, Vol. 7, 1959. - Johnson, M.B., "Some Theory of Urban Transportation", North-West, 1963. - Lee, A.M., "Applied Queueing Theory", St. Martins Press, 1966. - Lee, G. "A Generalization of Linear Car Following", Operations Research, Vol. 14, 1966. - Little, J.D.C., "The Synchronization of Traffic Signals", Operations Research, Vol. 14, 1966. - Mohanty, S.G., Jain, J.L., "On Two Types of Queueing Processes Involving Batches", Canadian Operational Research Society Journal, 1970. - Oliver, R.M., and Brisbee, E.F., "Queueing for Gaps in High Flow Traffic Streams", Operations Research, Vol. 10, 1962. - Parzen, E., "Stochastic Processes", Holden-Day, 1962. - Prigogine, I., and Herman, R., "Kinetic Theory of Vehicular Traffic", American Elsevier, New York, 1971. - Sagi, G., "Theoretical Traffic Volume and Timing Studies", Traffic Engineering, 1960. - Sagi, G.S., and Campbell, L.R., "Vehicle Delay at Signalized Intersections", Traffic Engineering, 1969. - Sanders, L.R., "Probability Functions for Waiting Time in Single Channel Queues with Emphasis on Simple Approximations", Operations Research, Vol. 9, 1961. - Soaty, T., "Elements of Queueing Theory", McGraw-Hill, 1961. - Spur, W.A., and Bonini, C.P., "Statistical Analysis for Business Decisions", Richard D. Irwin, Homewood, Illinois, 1967. - Stidhan, S., Jr., "On the Optimality of Single Server Queueing Systems", Operations Research, June-July, 1970. - Sykes, J.S., "Simplified Analysis of an Alternating Priority Queueing Model with Setup Times", Operations Research, Nov.-Dec. 1970. - Tackas, L., "Introduction to the Theory of Queues", Oxford University Press, 1962. - Tackas, L., "Two Queues Attended by Single Server", Operations Research, Vol. 16, 1968. - Wagner, H.M., "Principles of Management Science", Prentice-Hall, 1970. - Weiss, G.H., "The Intersection Delay Problem with Correlated Gap Acceptance", Operations Research, Vol. 14, 1966. - Weiss, G.H. and Maradudin, A.A., "Some Problems in Traffic Delay", Operations Research, Vol. 10, 1962. - Young, J.P., "Control of Multiple Channel Queueing Systems with Parallel Input Systems", Operations Research, Vol. 14, 1966. ## APPENDIX A MAP OF THE SELECTED PORTION OF PEMBINA HIGHWAY IN ITS PRESENT FORM ## APPENDIX B MAP OF THE SELECTED PORTION OF PEMBINA HIGHWAY WITH PROPOSED LANE EXPANSION Ī # APPENDIX C GPSS SIMULATION PROGRAM FOR MORNING RUSH HOUR CONDITIONS ON SELECTED PORTION OF PEMBINA HIGHWAY WITH PROPOSED LANE EXPANSION | 0 | вьоск | | | e namen er side tre produce syndrythydd sir ei far i sy'r | and high the said designation to the said sa | CARD | de la como de la composição de la como | |----------------|------------|--|--------------------------
--|--|--|--| | | NUMBER | ≭LCC
≉ | OPERATION SIMULATE | 4,8,C,D,E,F,G | COMMENTS | NUMBER | ◎ | | 0 | | A
B | QTABLE
QTABLE | 1,1,10,10 | | 2 | | | | | C | QTABLE | 3,1,10,10
4,1,10,10 | | 3
4 | ~ | | (9) | | 0
E | QTABLE
QTABLE | 5,1,10,10
7,1,10,10 | | 5 | 0 | | • | | F | QTABLE | 3,1,10,10 | | 6
7 | • | | (2) | | G
H | QTABLE
QTABLE | 9,1,10,10
11,1,10,10 | | 8 | | | | | | QTABLE | 12.1,10,10 | | | | | • | | J
K | QTABLE
QTABLE | 14,1,10,10
16,1,10,10 | | 11 | • | | • | | t. | QTABLE | 17,1,10,10 | | 12
13 | | | 0 | | N
N | QTABLE
QTABLE | 18,1,10,10
19,1,10,10 | | 14 | • | | a | 1 | | GENERATE | 100 | | 15
16 | | | 0 | 2 | * MACG | TERMINATE
ILLIVARY SI | L
GNALS | | 17 | | | • | 3 | | GENERATE | 1,0,0,1 | | 18
19 | | | 6 | 4
5 | LMA | LOGIC I
GATE LS | MAA
MAA+PPM | | 20 | 6 | | 0 | 6
7 | * * | ADVANCE | 63,2 | | 21
22 | | | 150 | 8 | RPM | TRANSFER
ADVANCE | ,LMA
13,2 | | 23 | ₩ | | 0 | 9
10 | | LOGIC S
ADVANCE | MAB | | 24
25 | | | 16 <u>18</u> 0 | 11 | | LOGIC R | 18,2
MAB | | 26
27 | 0 | | • | 12 | A COINT | TRANSFER'
TROAD SIGN | ,LMA | And the second of o | 28 | w: | | . 400 | 13 | | GENERATE | 1,0,0,1 | | 29 | 0 | | · (3) | 14
15 | LPR | LOGIC I
GATE LS | PRA
PRA,GPR | | 31 | • | | | 16 | | ADVANCE | 12 | | 32
33 | | | 8 | 17
18 | | LOGIC S
ADVANCE | PPB 56,2 | | 34 | | | • | 19 | | LOGIC R | PRB | | 35
36 | 9 | | 0 | 20
21 | GPR | TRANSFER ADVANCE | *LPR
27.2 | | 37 | e e e e e e e e e e e e e e e e e e e | | | 2.2 | * 010.11 | TRANSFER | ,LPR | and the second of o | 38
39 | | | 0 | 23 | | EE SIGNALS
GENERATE | 1,0,0,1 | | 40 | | | | 24
25 | | LOGIC I
GATE LS | JU8 | | 41
42 | • | | | 26 | | ADVANCE | JUB,JUG
57,2 | | 43
44 | | | | 27
28 | | TRANSFER ADVANCE | +LJU
22+2 | · · · · · · · · · · · · · · · · · · · | 45 | | | 0 | 29 | | TPANSFER | ,LJU | | 46
47 | | | | 30 | | ORD SIGNALS
GENERATE | S
1,0,0,1 | | 48 | | | 0 | 31 | LST | FOSIC I | STA | | 49
50 | 0 | | _ | . 32
33 | F - 1000 cm 1 - 100 gr - 150 cm - 100 gr | GATE LS | STA,STG | en comment of the com | 51 | | | 0 | 34 | | LOGIC S | STB | | 52
53 | . | | | 35
35 | | ADVANCE
TRANSFER | 28
.LST | | 54 | | | 0 | | | = : | | | | . 🔞 | | | | | | and a standard or application or application of the standard or application o | | and the second of o | | | (3) | | | | | | | 3 | | _ | | | | | | | Q) | | 0 | | | | | | | © | | | | | | | | | 49 | | | 37 | STG | ADVANCE | 53,2 | the state of s | معاد والإن المائية المائية المائية | |---|----------
--|---------------------|--|--|------------------------------------| | | 38 | 310 | LOGIC R | \$13 | 56
57 | | | | 39 | * 0511 | TRANSFER | ,LST | 58 | | | | 40 | # PLM | GENERATE | RAFFIC GENERATION APPROACHING MACGILLIVARY—OAKENWALD | 59 | | | • | 41 | The state of s | TRANSFER | .017,TES2,GCN | 60 | | | | 42 | | TRANSFER | .094, TES1,0RN | 61 | | | | 43 | TES1 | TEST L | Q1,Q20,TET2 | 62
63 | | | | 44
45 | | TEST G | 041,01,7573 | 64 | | | | 45
46 | | TEST L
TRANSFER | 957,01,00M | 65 | | | | 47 | TFT2 | TEST L | | 66 | | | | 48 | | TEST L | 057,020,6AN | 67 | | | | 49 | | TRANSFER | ,TET4 | 68 | | | | 50 | | TEST L | 057,041,TTT2 | 69
70 | | | | 51 | TET4 | QUEUE | 57 | 71 | | | | 52
53 | | GATE LS | MAA | 72 | | | | 54 | | TEST L
ADVANCE | 1 | 73 | · ••• | | | 55 | | DEPART | 57 | 74 | | | | 56 | | QUEUE | 2 | 75 | | | | 57 | | DEPART | 2 | 76
77 | | | | 58 | | TRANSFER | , NBA | 78 | | | | 59 | TIT2 | QUEUE | [81] | 79 | | | | 60
61 | | GATE LS
TEST L | MAA | 80 | | | | 62 | | ADVANCE | 242,K70
1 | 81 | | | | 63 | | DEPART | 41 | 82 | | | | 64 | | 00805 | 2 | 83 | | | | 65 | 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DEPART "" | | 84 | | | | 66 | | TRANSFER | , NBA | 85
86 | | | | 67 - | € CN | QUEUE | | 87 | | | | 68
69 | | GATE LS | MAA | 88 | | | | 70 | | TEST L
ADVANCE | 05,K70
1 | 89 | | | | 71 | | DEPART | | 90 | | | | 72 | | TRAMSFER | .C34, NEX1, TEA | 91 | | | | 73 | NEXI | QUEUE | 2 | 92
93 | | | | 74 | | DEPART | 2 | 94 | | | | 75
76 | 0.414 | TRANSFER | , N34 | 95 | | | | 77 | CAN | QUEUE
GATE LS | 20
MAA | 96 | | | | 78 | | TEST L | 923 • K70 | 97 | | | | 79 | | TEST L | 922,K7 | 98 | | | | 80 | | ADVANCE | | 99 | | | | 31 | | DEPART | 20 | 100 | | | | 82 | | QUEUE | 4 | 102 | | | | 83
84 | | DEPART | 2 | 103 | | | | 85 | C BN | TRANSFER
QUEUE | | 104 | | | | 86 | 4 014 | GATE LS | M A A | 105 | | | | 87 | | TEST E | 021.80 | 106 | | | | 8.8 | | ADVANCE | 1 | 107
108 | | | | 89 | | DEPART | 22 | 108 | | | | 90 | | QUEUE | 21 | 110 | | | | 91
92 | TEA | DEPART
TERMINATE | | 111 | | | | 16 | 164 | CAMENALE | | 112 | <i>a</i> | | | | | والمستندي والمنافظ والمتعاولة والمتعاولة والمتعادية وال | - | |----------|----------|---------------------------|-------------------------------------|---|--|----------| | 0 | 93 | ≠ CAK! | ENWALD W.B. | TRAFFIC CENERATION | 113 | • | | | 93
94 | | GENERATE
TRANSFER | 33,12 | 114 | C. | | | 95 | NEVA | | • 277, NEX2, NEX3 | 115 | | | | | NEXZ | CUEUE | 3 | 116 | R | | | 96
97 | | GATE LR | MAA | 117 | • | | @ | | | GATE LR | MAB | 118 | | | | 98 | | ADVANCE | 1 | 119 | | | | 99 | | DEPART | 3 | 120 | Ø. | | <u>_</u> | 100 | | QUEUE | 2 | 121 | | | 0 | 101 | | DEPART | 2 | 122 | _ | | | 102 | TEB | QUEUE | 21 | 123 | Ø. | | ~ | 103 | | DEPART | 21 | | | | 9 | 104 | | TERMINATE | | 124 | _ | | | 105 | NEX3 | QUEUE | 35 | 125 | • | | _ | 106 | | TEST L | 35,K70 | 126 | | | 9 | 107 | | TRANSFER | 30TH, NEX4, NEX5 | 127 | | | | 108 | NEX4 | GATE LR | AAA | 128 | @ | | _ | 109 | | GATE LR | MAS | 129 | _ | | ð | 110 | NEX6 | ADVANCE | 1 | 130 | | | | 111 | | DEPART | 35 | 131 | 0 | | | 112 | | TRANSFER | •NGA | 132 | • | |) | 113 | NEX5 | TEST E | 02 t KO | 133 | | | • | 114 | 11177 | TRANSFER | • NEXS | 134 | € | | - | | # NACC | THE TWADY F | 8. TRAFFIC GENERATION | 135 | • | | 3 | 115 | T 1466 | GENERATE | C. FRATE IV GENERALIUN | 136 | | | r | 116 | | | 19+12 | 137 | 6 | | | 117 | | QUEUE | 4 | 138 | e e | | ı | | | GATE LR | MAA | 139 | | | | 118 | | GATE LS | 488 | 140 | , | | | 119 | | TEST GE | 95,K73,XYZ3 | 141 | (| | | 120 | | TEST GE | 923,×70, XYZ3 | 142 | | | | 121 | | TEST GE
 042,K70,XYZ3 | | | | | 122 | | TEST L | ე59,⊀7ე | 143 | • | | | 123 | XYZ3 | ADVANCE | | 144 | | | | 124 | | DEPART | Ŷ. | 145 | | | | 125 | | QUEUE | 21 | 146 | • | | | 126 | * | DEPART | 21 | 147 | | |) | 127 | | TRANSFER | .601,TEC,NBA | 148 | | | | 128 | TEC | TERMINATE | | 149 | (| | | | * PEMR | INA N.A. TP | AFFIC APPROACHING POINT ROAD-WINDEMERE | 150 | ` | | | 129 | NAA | ADVANCE | TO APPRIAGHING PUINT ROAD-WINDFMERE 59 | 151 | | | | 130 | | TRANSFER | OLO TECH OFF | 152 | 6 | | | 131 | TECA | TEST L | | 153 | • | | | 131 | 1632 | | | 154 | | | | 133 | | TEST G | 942,95,TAT3 | 155 | • | | | | | TEST L | 958,05,CEN | 156 | É | | | 134 | | TRANSFER | , TAT4 | 157 | | | | 135 | | TEST L | Q23,Q42,TAT3 | 158 | * | | | 136 | | TEST L | 058,023,00N
•TAT4 | 159 | € | | | 137 | | TRANSFER | 7 171 1 7 | 160 | | | | 138 | | TEST L | 958,942,TTT4 | | _ | | | 139 | TAT4 | QUEUE | 58 | 161 | € | | | 140 | | GATE LS | PRA | 162 | | | | 141 | | GATE LS | ogg | 163 | | | | 142 | | TEST GE | NO WOLLTAND | 164 | 6 | | | 143 | | TEST GE | 024,K84,TAT5 | 165 | ` | | | 144 | | TEST L | 243,K84 | 166 | | | | 145 | | ADVANCE | | 167 | 6 | | | 146 | | | | 168 | C | | | 140 | | DEPART | 58 | 169 | | | | | | | | *** | • | | | | of American communication | 400 400 1800 000 pr 10, at 2000 000 | | | • | | | | - | | | | | | | | | | | | 200 | | | | | | | | 0 | | | | | | | | | | | | | | \cdot | | | | | | | | | | ~ | | | 147
148 | | QUEUE | 170 | | | |----|------------|-----------|------------|--|------|---| | | 149 | | DEPART: | 5
171 | | | | d | 150 | 777/ | TRANSFER | 172 | | | | 9 | | | QUEUE | 173 | | | | ** | 151 | | GATE LS | 374 | | | | | 152 | | GATE LS | 175 | | | | • | 153 | | TEST GE | - Q9 + K8 4 + SS S1 | | | | | 154 | | TEST GE | 177 | | | | | 155 | | TEST L | 143,458 | | | | ł | 156 | \$551 | AD VAINCE | 170 | | | | | 157 | | DEPART | 42 | | | | | 158 | | QUEUE | 121 | | | | | 159 | | DEPART | 6 182 | | | | | 150 | | TRAMSFER | . NBC 183 | | | | | 161 | ÇEN | QUEUE | | | | | | 162 | | GATE LS | 9 ₈₄ | | | | | 163 | | GATE LS | 185 | | | | | 164 | | TEST GE | 99 KE4-TAT9 | | | | | 165 | | TEST GE | 024.484.7479 | | | | | 166 | | TEST L | 243.7424 | | | | | 167 | TATO | ADVANCE | 189 | | | | | 168 | , , | DEPART | 5 190 | | • | | | 169 | | TRANSFER | | | | | | 170 | NCV7 | QUEUE | .990, TEA, NEX7 | | | | | 171 | NEXT | | 193 | 6.0° | | | | | | DEPART | 3 | | | | | 172 | 25 | TRANSFER | +N8C | | | | | 173 | QUN | QUEUE | 4.04 | | | | | 174 | | GATE LS | 2K4 | | | | | 175 | | GATE ES | 100 | | | | | 176 | | TEST GE | 924,K34,TAT6 | | | | | 177 | | TEST GE | | | | | | 173 | | TEST L | (37)034,15
043,484 | | | | | 179 | TAT6 | ADVARCE | 201 | | | | | 180 | | DEPART | 202 | | | | | 181 | | QUEUE | 6 293 | | | | | 182 | | DEPART | 204 | | | | | 183 | | TRANSFER | NBC 205 | | | | | 184 | TEE | TERMINATE | 206 | | | | | | ax ECIN | T POAC M P | TRAFFIC GENERATION 207 | | | | | 185 | . (014 | GENERATE | 208 | | | | | 186 | | | 22,20 | | | | | 187 | Kirking ! | TRANSFER | • (98, NEY6, NEY7 | | | | | | NEY/ | QUEUE | 38 | | | | | 188 | | TEST L | 77,564 | | | | | 189 | | TEST E | 46, 313 | | | | | 190 | | ADVANCE | 214 | | | | | 191 | | DEPART | 38 | | | | | 192 | | TRANSFER | ,NBC 215 | | | | | 193 | | TRANSFER | .620, NEY9, NEY9 | , | | | | 194 | NEY8 | QUEUE | 30 211 | | | | | 195 | | TEST L | 037. K70 | | | | | 196 | | GATE LR | 219 | | | | | 197 | | TEST E | 161.80 | | | | | 198 | | ADVANCE | 221 | | | | | 199 | | DEPART | 39 | | | | | 200 | | OHELIC | 223 | | | | | | | | 61 | | | | | 201 | | | 225 | | | | | 202 | | TRANSFER | +SBE 226 | | | | | | | | 220 | ¥. | | | | | | | | | | | | | | | and the control of th | Øs. | 0 | 203 | NEY9 | QUEUE | 7 | | | | | 227 | The second secon | W. W. L. BERGE WILLIAM ST. | |-------------|-------|-----------|---------------------------------------|---|--|--|-------------------|------|------------
--|----------------------------| | | 204 | | GATE LR | PRA | | | | | 227
228 | | | | atrix. | 205 | | TEST F | 939,KO | | | | | | | | | (3) | 206 | | ADVANCE | 1 | | | | | 229 | | | | | 207 | | DEPART | 7 | | | | | 230 | | | | | 208 | | QUEUE | 6 | | | | | 231 | | | | ® | 209 | | DEPART | 6 | | | | | 232 | | | | • | 210 | | QUEUE | 51 | | | | | 233 | | | | | 211 | | DEPART | 51 | | | | | 234 | | | | ® | 212 | | TERMINATE | | | | | | 235 | | | | W | 212 | w 1 7 NO | THERE E D | | | | | | 236 | | | | | 212 | W W TIMES | amere E.B. | TRAFFIC GENERATIO | N | | | | 237 | | | | AD. | 213 | | GENERATE | 30,13 | | | | | 238 | | | | (3) | 214 | | TRAMSFER | .C97, NEX9, NEY1 | | | | | 239 | | | | | 215 | | TRAMSFER | .802, NEY4, NEY5 | | | | | 240 | | | | _ | 216 | NE%5 | QUEUF | 3 | | | | | | | | | (3) | 217 | | GATE LR | PRA | | | | | 241 | | | | | 218 | | TEST 6 | 036.40 | | | | | 242 | | | | | 219 | | TEST E | 137,40 | | | | | 243 | | | | a | 220 | | ADVANCE | 1 | | | | | 244 | | | | -Ju- | 221 | | DEPART | | | | | | 245 | | | | | 222 | | | 8 | | | | | 246 | • | | | () | | | 00605 | 61 | | | | | 247 | | | | 0 | 223 | | DEPART | 61 | | | | | 248 | | | | * | 224 | | QUEUE | 6 | | | | | 249 | | | | _ | 225 | | DEPART | 6 | | | | | | | | | 9 | 226 | | TERMINATE | | | | | | 250 | | | | | 227 | NEY1 | 0115016 | 36 | | | | | 251 | | | | | 228 | | TEST L | Q19,K70 | | | | | 252 | | | | 0 | 229 | | TRANSFER | BOTH, NEY2, NEY3 | | | | | 253 | | | | ~ | 230 | MEVO | TEST E | | | | | | 254 | | | | | | 14612 | | Q61,K0 | | | | | 255 | | | | 20 | 231 | | ADVANCE | 1 | | *** | ****** | | 256 | | | | 0 | 232 | | DEPART | 36 | | | | | 257 | | | | | 233 | | TRANSFER | ,SBE | | | | | 258 | | | | _ | 234 | NEY3 | GATE LR | PPA | | | | | | | | | <u></u> | 235 | | 40 VANCE | 1 | | | | | 259 | | | | | 236 | | DEPART | 36 | | | | | 260 | | | | | 237 | | QUEUE | 61 | | | | | 261 | | | | 3 | 258 | | DEPART | 61 | | | | | 262 | | | | | 239 | | TRANSFER | | | | | | 263 | | | | | 240 | NEV | | +SBE | | | | | 264 | | | | 3 | | 14 E T 4 | QUEUE | 37 | | | | | 265 | | | | 139 | 241 | | GATE LR | PRA | | | | | 266 | | | | | 242 | | TEST L | 724,K84 | | | | | 267 | | | | _ | 243 | | TEST E | Q6 • K0 | | | | **** | | | | | P | 244 | | ADVANCE | 1 | | | | | 268 | | | | | 245 | | DEPART | 37 | | | | | 269 | | | | | 246 | | QUEUE | 61 | | | | | 270 | | | | 9 | 247 | | DEPART | 61 | | | | | 271 | | | | - | 248 | | TRANSFER | | | | | | 272 | | | | | .6 40 | | INANAPEK | , MBC | 1909 I I I I I I I I I I I I I I I I I I | . New real control of the | | | 273 | | | | A . | 240 | * PEMSI | INA N.B. II | RAFFIC APPROACHING | JUBILEE EXIT | | | | 274 | | | | 9 | 249 | NBC | AUVANCE | 41 | | | | | 275 | | | | | 250 | | TRANSFER | .794.TEI,NBE | | | | | 276 | | | | _ | 251 | TEI | TERMINATE | | | | | | | | | | 9 | | * PEMBI | NA M.R. TE | RAFFIC APPROACHING | JUSILEE ENTRANCE | | | | 277 | | | | | 252 | NRE | ADVANCE | 10 | I I I I I I I I I I I I I I I I I I I | | | | 278 | | | | | 253 | | TEST L | 09,024,7775 | | we were a second of the second of the second | The second second | | 279 | | | | 9 | 254 | | TEST L | 043,09,TTT6 | | | | | 280 | | | | W | 255 | TITO | | | | | | | 281 | | | | | | 1117 | QUEUE | 43 | | | | | 282 | • • • | | | 36 | 256 | | GATE LS | JUB | | | | | 283 | | | |) | | | | | | | • | | رن | · · · · · · · · · · · · · · · · · · · | Annex exercise constraint constraints and a constraint constraints. | the second of the second of the second | the second secon | | | | | | |) | | | | | | | | | | | | | - | | | | | | • | | | | | | | | | | | • | • | | | | | | | | | | | | | 9 | 257 | TEST L | 127,442,7777 | | |---|-----|---|--
--| | | 253 | TEST L | 112-K53 | 284 | | | 259 | TEST L | 926,K53 | 285 | | | 260 | TRANSCE | | 286 | | 7 | 261 | | , 1113 | 287 | | | | TITT TEST L | 228,K53 | | | | 262 | TEST L | 014,K53 | 288 | |) | 263 | TITE ADVANCE | 1 | 289 | | | 264 | DEPART | 4.3 | 290 | | | 265 | QUEUE | 10 | 291 | |) | 260 | DEPART | 10 | 292 | | | 267 | | | 293 | | | | TRANSFER | •N8F | | | | 268 | TITS TEST L | 724,043,1119 | 294 | | | 269 | TRANSFER | , GEN | 295 | | | 270 | TTT6 QUEUE | 9 | 296 | | | 271 | . GATE LS | | 297 | | | 272 | | JUB | 298 | | | | TEST L | 923,K53 | 299 | | | 273 | TEST L | 014 , K53 | | | | 274 | ADVANCE | in professional from the control of | 300 | | | 275 | DEPART | | 301 | | | 276 | QUEUE | 10 | 302 | | | 277 | | | 303 | | | | DEPART | 10 | 304 | | | 278 | TRANSFER | , NBF | | | | 279 | GEN QUEUE | 24 | 305 | | | 280 | GATE LS | Jub | 306 | | | 281 | TEST L | 927,K42 | 307 | | | 282 | TEST L | | 308 | | | 233 | | 012,K53 | 309 | | | | TEST L | 026, K53 | = -: | | | 284 | ADVANCE | | 310 | | | 285 | DEPART | 24 | 311 | | | 286 | QUEUE | 10 | 312 | | | 287 | DEPART | | 313 | | | | | 10 | 314 | | | 288 | TRANSFER | →NBF | | | | | * JURILEE N.B. 1 | AFFIC GENERATION . | 315 | | | 289 | GENERATE | 7,2 | 316 | | | 290 | QUEUE | 11 | 317 | | | 291 | | | 318 | | | | GATE LR | 30B | | | | 292 | TEST L | 027,K42,7ZZ1 | 319 | | | 293 | TEST GE | 212,K53,XY72 | 320 | | | 294 | TEST GE | 226,K53,XYZ2 | 321 | | | 295 | ZZZI TEST GE | | 322 | | | 296 | | 029,K53,XYZ2 | 323 | | | | TEST L | 714, 453 | 324 | | | 297 | XYZZ ADVANCE | t <mark>i t</mark> arangan kanggalang ang manggalang menggalang kanggalang ang menggalang kanggalang kanggalang kanggalang ka | | | | 298 | DEPART | 11 | 325 | | | 299 | QUEUE | 10 | 326 | | | 300 | DEPART | 10 | 327 | | | 301 | | | 328 | | | | TRANSFER | •N8F | | | | 3 | * PEMBINA N.B. T | AFFIC APPREACHING HARROW | 329 | | | 302 | NBF ADVANCE | 26 The second of the first of the second | 330 | | | , | * PEMBINA N.R. T | ASFIC DIRECTIONAL BREAKDOWN | 331 | | | 303 | NEG ADVANCE | 7 | 332 | | | 304 | | | 333 | | | | TKANSEER . | .55C,NBH,RRI | 334 | | | × | F PEMBINA N.B. T | AFFIC TURNING ONTO STAFFORD W.B. | | | | 305 | NBH TEST L | 712,726,¢6N | 335 | | | 306 | TEST E | 227,K2,36N | 336 | | | 307 | onent | 12 | 337 | | | 308 | | | 338 | | | | GATE LR | STA | 339 | | | 309 | ADVANCE | 1 | | | | | | | 340 | | | | | | | | | | 11 - 17440-00-0 (1.700-00-00-00-00-00-00-00-00-00-00-00-00- | And the second s | | | | | | | the first of the control cont | | | | | | | | | | | · | | | | | | | | | | | | | | Park Palacet Survey and park server and a server server and a server of the | and design and an experience which | أثله كسيادليس | |------------|-------------|------------------------|--------------|--|---|------------------------------------|-----------------| | (| 310 | | DEPART | 1? | | | CEPTON TO SERVE | | - | 311 | | ฉบสนัก | 13 | 341 | | | | | 312 | | | | 342 | | | | (3) | | | DEPART | 13 | 343 | | | | 99 | 313 | | TERMINATE | | 344 | | | | | 314 | SEN | CARACE | 26 | | | | | | 315 | | GATE LR | STA | 345 | | | | | 316 | | ADVANCE | 1 | 346 | | | | • | 317 | | DEPART | 26 | 347 | | | | | 318 | | | | 348 | | | | | | | QUEUE | 13 | 349 | | | |) | 319 | | OEPART | 13 | | | | | | 320 | | TERMINATE | | 350 | | | | | | ※ PEMS | SINA N.B. TS | AFFIC REMAINING ON PEMBINA | 351 | | | |) | 321 | NEI | TEST LE | 014,023,089 | 352 | | | | | 322 | 1,02 | QUEUE | | 353 | | | | | | | | 14 | 354 | | | | | 323 | | GATE LS | \$78 | 355 | | | | | 324 | | ADVANCE | 1 | | | | | | 325 | | DEPART | 14 | 356 | | | | | 326 | The second contract of | QUEUE | 15 | 357 | | | | | 327 | | | | 358 | | | | | | | DEPART | 15 | 359 | | | | | 328 | | TERMINATE | | 360 | | | | | 329 | CHN | QUEUE | 28 | | | | | | 330 | | GATE LS | ŜTB | 361 | | | | | 331 | |
ADVANCE | 1 | 362 | | | | | 332 | | DEPART | | 363 | | | | | | | | | 364 | | | | | 333 | | QUEUE | 15 | 365 | | | | | 334 | | DEPART | 15 ` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | | | | | | 335 | | TERMINATE | | 366 | | | | | | # DEMA | | AFFIC GENERATION | 367 | | | | | 226 | . ((1.3 | | | 368 | | | | | 336 | | GENERATE | 4,1 | 369 | | | | | 337 | | TRANSFER" | •010, TES4, DAS | 370 | | | | | 339 | TES4 | TEST L | 016,029, TES5 | | | | | | 339 | | TEST L | 116,7330,085 | 371 | | | | | 340 | QAS | OUEUE | 16 | 372 | | | | | 341 | WHO | | | 373 | | | | | | | GATE LS | STA | 374 | | | | | 342 | | TEST L | 019,K136 | | | | | | 343 | | ADVANCE | | 375 | | | | | 344 | | DEPART | 16 | 376 | | | | | 345 | | QUEUE | | 377 | | | | | | | | 13 | 378 | | | | | 346 | | DESVEL | 13 | 379 | | | | | 347 | | TRANSFER | AAT, GEZ, CIC. | | | | | | 348 | TAB | TERMINATE | | 380 | | | | | 349 | | TEST L | 120 020 085 | 381 | | | | | | , L 3 / | | 129,030,085 | 382 | | | | | 350 | | QUEUE | 29 | 383 | | | | | 351 | | GATE LS | STA | | | | | | 352 | | TEST L | 931,K136 | 384 | | | | | 353 | | ADVANCE | 1 | 385 | | | | | 354 | | DEPART | | 386 | | | | | | | | 29 | 387 | | | | | 355 | | QUEUE | | 388 | | | | | 356 | | DEPART | 13 | | | | | | 357 | | TRANSFER | • SBA | 389 | | | | | 358 | QBS | QUEUE | 30 | 390 | | | | | 359 | . 200 | GATE LS | | 391 | | | | | | | | STA | 392 | * | | | | 360 | | TEST L | 055,K136 | 393 | | | | | 361 | 2222 | ADVANCE | | | | | | | 362 | | DEPART | 30 | 394 | | | | | 363 | | | 13 | 395 | | | | | 364 | | | | 396 | | | | | 30 4 | | DEPART | 13 | 397 | the control of co | Pa ! | } | THE PERSON NAMED IN COLUMN | | entraction of the second second | inconfiguració está de está de la filosoficia dela filosoficia dela filosoficia de la filosoficia de la filosoficia dela filosoficia dela filosoficia de la filosoficia dela filosoficia de la filosoficia dela filosoficia dela fil | alitauliti er olukurina sidoki | San San Arthur | |------------|----------------------------|---|---------------------------------|--|-----------------------------------|--| | 3 | 365 | TRANSFER .SBA | | no server makes a decistralista in | PARTICIPATION STATEMENT OF STREET | This termination of | | Ĭ | _ | * STASSORY S.S. TRASSIC GENERATION | 378 | | | 0 | | | 366 | GEMERATE 8,1 | 399 | | | - | | (0) | 367 | | 400 | | | | | | 369 | GATE IP STA | 401 | | | @ | | | 369 | | 402 | | | *** | | Ø | 370 | | 403 | | | | | - | 371 | YZX1 ADVANCE 1 | 404 | | | (2) | | | 372 | DEPART 17 | 405 | | | *352 | | 0 | 373 | QUEUE 13 | 406 | | | | | - | 374 | DEPART 13 | 407 | | | @ | | | | * PEMBIMA S.B. TRAFFIC APPROACHING HARROW | 408 | | | 40 | | <i>(</i>) | 375 | SEA ADVANCE 9 | 409 | | | | | - | 376 | TRANSFER .011,SB8,T4C | 410 | 44.0 | * | 0 | | | 377 | TAG TERMINATE | 411 | | | ************************************** | | 0 | J | * FARROW S.3. TRAFFIC GENERATION | 412 | | | | | 3 | 378 | GENERATE 17,9 | 413 | | | (8) | | | 379 | SUEUE 40 | 414 | | | dis. | | 0 | 380 | TEST E 925,K9 | 415 | 1 10 10 | | | | 4 | 391 | | 416 | | | 6 | | | 382 | | 417 | | | W. S. | | 6 | 383 | | 418 | | | | | - T | 384 | DEPART 40
Seb queue 25 | 419 | • | • | 9 | | | 385 | | 420 | | | 684 | | 6 | رور | UEPARI 25 | 421 | - | ~ | | | ' | 386 | * PEMBINA S.B. TRAFFIC APPROACHING JUBILEE EXIT | 422 | | | 0 | | | 387 | ADVANCE 27 | 423 | | | All a | | a | 338 | TRAINSFER -237,SBX,TAD | 424 | | | | | All I | סרכ | TAD TERMINATE | 425 | | | _ | | | 200 | * JUBILEE S.B. TRAFFIC GENERATION | 426 | | | • | | 0 | 389
390 | SUX ADVANCE 10 | 427 | | | | | 907 | 390 | TRANSES SSC | 428 | | | | | | | GEMERATE 9,4 | 429 | | | 0 | | · 🚳 | 392 | SBC ADVANCE 33 | 430 | | | | | 60 | 303 | * PEMBINA S.B. TRAFFIC APPROACHING POINT ROAD-WINDEMERE | 431 | | | • | | | 393 | TRANSFER .026,TES6,QCS | 432 | | | (3) | | @ | 394 | TES6 TEANSFER .CBO, TES7, ONS | 433 | | | | | 33 | 395 | QDS QUEUS 32 | 434 | | | _ | | | 396 | GATE LS PRA | 435 | | | ® | | @ | 397 | . TEST E 96,KO | 436 | | | | | 6 | 398 | ADVANCE 1 | 437 | | | | | | 399 | DEPART 32 | 438 | | | 6 | | @ | 400 | TERMINATE | 439 | | | | | • | 401 | TEST L Q59,K60,TBT2 | 440 | | | _ | | | 402 | TEST L 059,031,TBT2 | 441 | | | (3) | | _ | 403 | TEST L 059,018,1813 | 441 | | | | | . | 404 | TEST L 059,055,0MS | 442
443 | | | | | | 405 | TRANSFER , TBT1 | 443
444 | | | 0 | | <i>€</i> | 406 | TBT2 TEST L 231,019,TBT3 | 444
445 | | | | | @ | 407 | TEST L 031,055,0MS | 445 | | | | | | 408 | TRANSFER .QES | 440 | | | • | | • | 409 | TET3 TEST L 018,055,6MS | 448 | | | | | @ | 410 | TRANSFER ,QCS | 448
449 | | | _ | | | 411 | TBT1 QUEUE 59 | 449
450 | | | | | _ | 412 | GATE LS 1 PRA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | (3) | 413 | TEST L Q60,K70 | 451 | | | | | | 414 | ADVANCE 1 | 452 | | | (9) | | _ | 415 | DEPART 59 | 453 | | | | | (2) | | | 454 | | | | | | | | | | | (3) | | | | | | | | | | 9 | | | | | | | | | | | | | | ® | | | | | | | | - 1 | | 4 5 | | | | | | بمارين ويحفظ أصباع | |--------------|------------|---------|---------------------|---------------------------------------|--|---| | ୀ (| 9 416 | | TRANSFER | ,S8E | | AND | | | 417 | 240 | QUEUE | 55 | 455 | 0 | | 1 | 418 | | GATE LS | PPA | 456 | | | | 9 419 | | TEST L | 244,K70 | 457 | _ | | 4 | 420 | | ADVANCE | 1 | 458 | € | | 1 | 421 | | DEPART | 55 | 459 | | | ୀ (| 422 | | TRANSFER | , SBE | 460 | | | 3 | 423 | QES | QHEUE | 31 | 461 | @ | | 3 | 424 | | GATE LS | овд | 462 | | | ી હ | 425 | | TEST L | 033,K70 | 463 | | | - 13
- 13 | 426 | | TEST L | 032,K7 | 464 | ଦ | | 1 | 427 | | ADVANCE | 1 | 465 | | | 36 | 428 | | DEPART | 31 | 466 | | | - 13
18 | • 429 | | QUEUE | 51 | 467 | ® | | 3 | 430 | | DEPART | 61 | 468 | | | 8 | 431 | | TRANSFER | , SBE | 469 | | | Ä | 432 | QCS | QUEUE | 18 | 470 | © | | - Si | 433 | 19.0 | GATE LS | ARG | 471 | | |] (3 | 434 | | TEST L | Q19.K70 | 472 | | | 3 | 435 | | ADVANCE | 1 | 473 | • | | 1 | 436 | | DEPART | 18 | 474 | | | 10 | 437 | | TRANSFER | .948,TAF,NEX8 | 475 | | | 3 | 433 | NEX8 | QUEUE | 61 | 476 | • | | 1 | 439 | | DEPART | 61 | 477 | | | 1 0 | 440 | | TRANSFER | ,S3E | 478 | | | d) | 441 | TAF | TERMINATE | | 479 | © | | | 442 | Sec | ADVANCE | 51 | 480 | _ | | ୍ଜି 🚳 |) | ≠ PEMB | INA S.B. TE | RAFFIC APPROACHI | ING MACGILLIVARY-DAKENWALD 481 | | | - († - T | 443 | | TRANSFER | .010, TFS8, OGS | | 0 | | 20 | 444 | TES8 | TRAMSFER | .252, TES9, OHS | 483 | - | | | 445 | | TEST L | 260,033,TCT2 | 484 | | | | 446 | | TEST L | 060,010,TCT3 | 485 | () | | Ž. | 447 | | TEST L | 960,944,8883 | 486 | | | i () | 448 | | TRANSFER | ,TCT1 | 487 | | | 4 | 449 | TCT2 | TEST L | 033,010,TCT3 | 468 | 0 | | ¥ _ | 450 | | TEST L | 233,044,8883 | 489 | | | <i>]</i> 🐠 | 451 | | TRANSFER | ,065 | 490 | | | 3 | 452 | TCT3 | TEST L | 019,044,8883 | 491 | @ | | _ | 453 | | TRANSFER | ,QIS | 492
493 | | | 0 | | TCT1 | QUEUE | 50 | 493
494 | _ | | 3 | 455 | | GATE LS | MAA | 495 | @ | | 1 _ | 456 | | ADVANCE | I | 496 | | |] 🔞 | | | DEPART | 60 | ************************************** | _ | | 4 | 458 | | QUEUE | 21 | 498 | ₩ | | | 459 | | DEPART | 21 | 499 | | | 9 @ | 450 | | TERMINATE | | 500 | • | | 3 | 461 | \$\$\$3 | CHERE | 44 | 501 | | | | 462 | | GATE LS | MAA | 502 | | | 3 es | 463
464 | | ADVANCE | 1 | 503 | o | | 4 | 465 | | DEPART | 4.4 | 504 | V F | | 9 | . 466 | | QUEUE | 21 | 505 | | | 1 👁 | 467 | | DEPART
TERMINATE | 21 | 506 |
@ | | á | 463 | 240 | TRANSFER | · · · · · · · · · · · · · · · · · · · | 507 | € | | 0 | 469 | | | .504,QIS,TAI | 508 | | | | 470 | QIS | QUEUE
GATE LS | 19
MAA | 509 | a | | 3 | 471 | | | | 510 | (B) | | 0 | 711 | | ADVANCE | 1 | 511 | | | | | | | | | 0 | | 1 | | | | | | 1 | | 0 | | | | | | | | -co- | | | | 1.0 | | a | | 4 | | | | | | • | | 9 | | | | | | ž | | 472 | an at heighting the wife | | Maria Cara Cara Cara Cara Cara Cara Cara | | onionia della di | |--|--------------------------|--|---|--|------------------| | ### 1 | 4 | 72 | DEPART | 19 | | | 476 052-8T 21 1 152-1012 31 114 1152 1152 1152 1152 1152 1152 1152 | | | | 31 | (| | 475 141 TERRITORE 33 914 914 917 914 917 914 917 918 918 919 918 918 918 918 918 918 918 | | | | | , | | # 76 | | | | | | | ### Out 15 14 15 16 17 17 17 17 17 17 17 | | | | 515 | | | A79 | | | | 516 | • | | 478 | | | GATE LS | ************************************** | | | 479 0.05 0.07 37 38 218 38 218 38 38 38 38 38 38 38 38 38 38 38 38 38 | | | | 020.085.015 | | | 431 | | | | 22 | (| | 441 TEST & 12.40 402 ADVENUE 1 | | | | | | | 442 AWAYSE (AV) 483 DEPART 1A 522 484 TERRITATE 524 485 OKS TIRST 5 334 KD 525 487 AUSKARL 1 520 488 OUTER 21 527 499 TERRITATE 520 499 TERRITATE 520 499 TERRITATE 520 5304F 18 5314 5314F 72 533 5344 5345 5346 72 533 | | | | 34 520 | | | ### DEPART ### 522 ### 523 ### 524 ### 524 ### 524 ### 524 ### 524 ### 524 ### 524 ### 524 ### 524 ### 525 ### 526 ### | | | | 521 | | | 946 FEST C 334,00 524 485 OK TEST C 334,00 524 486 ANVANCE I | | | | 1 5.2 | | | ### 187 C 524 494 CQ 524 494 CQ 495 | | | | | | | 495 OK5 FEST 6 234-K9 225 440 AJVANCE 1 526 447 UPPAPT 33 526 449 OKE FEST 6 320 449 TEACHTAIL 1 520 5581 SSAT 52 533 5581 72 533 5581 72 533 5584 538 | | | TERMINATE | 523 | | | 487 AVANUE 1 923 925 924 925 925 925 925 925 925 925 925 925 925 | | | | | | | ### PERAPT 37 526 483 | | | | | | | 488 | | | | 526 | | | 499 | | | | 55 | | | 499) TERMYNTE | | | QUELLE | | | | FEMT 1 19 | 4.8 | 3 | DEPART | 223 | | | STAPT 19 PESET 510KT 72 532 END 536 | | | | 529 | | | 511 | . / | - | | 530 | | | \$1 A81 72 532 533 534 534 534 534 534 534 534 534 534 | | | | | | | 533
534 | | | | F 2 2 | | | | | | START | | | | | | | FND | 533 | | | | | | | 534 | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | • | • | | | | | | | | | 4 | | | | | the state of the second state | • | (| | | | en entre i de la companya della companya della companya della companya de la companya de la companya della comp | Contraction of the Contraction | | • | 9 | (| | | | | | | | | | | | | | * | • | | | | | | | | | | (| the state of s | 4 | | | | | | | , | (| | | | The second second second | The second section of the second section is a | 6 | € | | | | | mane a la distribuir | | · · | 6 | 6 | | <u> </u> | | and or the state of o | e de la companya l | مل شاورستاه الشاكات | The second of the second | Market Roman | enditorie dece | الله فالمنافظ المدما لله | ويستان والدوين والموادية و | and the second section of the section is | | and the specific of specif | والأوالية والمالية والمحاورة والمتعادلة والم | |------------|--|--|--|---------------------|--------------------------|--------------|----------------|--------------------------|--|--|---
--|--| | 0 | BLOCK NUMBER | SYMBOL | REFERE | NCES B | Y CARD N | UMBER | | | | | | | Ø | | ania. | | | | | | | | | | | | | • | | (9) | | | | | | | | | | | • | | | | | 21 | GPR
JUG | 32 | | | | | | | | | | W. | | 0 | 24
24 | 106
106 | 43
45 | 47 | | | | | | | | | | | - | 4 | LMA | 23
37 | 28 | | | | | | | | | Q | | a | 14 | LPR | 37 | 39 | | | | | | | | | | | S | 31
129 | LST
NBA | 55 | 58 | 0.5 | | | | | | | | 6 | | | 249 | NBC | 78
172 | 86
183 | 95
195 | 104
206 | 133
216 | 149 | | | | | • | | 0 | 252 | NBE | 276 | 100 | 190 | 205 | 216 | 273 | | | | | _ | | • | 302 | MBE | 254 | 3 0 5 | 315 | 329 | | | | | | | 6 | | D | • 303 | NBG
NBU | | | | | | | | | | | | | W. | 305
321 | MBH
NBI | 334
334 | | | | | | | | | | | | | 73 | NEX1 | 92 | | | | | | | | | | ~ | | 9 | 95 | NEX2 | 115 | | | | | | | | | | • | | | 105
108 | NEX3 | 115 | | | | | | | | | | • | |) | 113 | NEX4
NEX5 | 128
128 | | | | | | | | | | | | | 110 | NE X6 | 135 | | | | | | | | | | @ | | } | 170 | NEX7 | 192 | | | | | | | | | | | | | 438 | MEX8 | 476 | | | | | | | | | | • | | | 215
227 | NE X 9
NE Y I | 239 | | | | | | | | | | G. | |) | 230 | NEY2 | 239
254 | | | | | | | | | | | | | 234 | NEY3 | 254 | | | | | | | | | | Ø | | | 240 | NEY4 | 240 | | | | | | | 4 | | | | |) | 216 | NEY5 | 240 | | | | | | | | | | C | | | 193
187 | NEY6 | 210
210 | | | | | | | | | | 'ii | | | 194 | NEY8 | 210 | | | | | | | | | | | | i | 203 | NEY9 | 217 | | | | | | | | | | 9 | | | 76 | CAN | 3.6 | | | • | | | | | | | , | | 1 | 340
85 | ORN . | 370 | | | | | | | | | | • | | | 358 | QBS | 62
372 | 382 | | | | | | | | | 40 | | 1 | 67 | CCN | 61 | 65 | | | | | | | | | • | | | 432 | 00.5 | 432 | 449 | | | | | | | | | • | |) | 173
395 | 00 S | 159
433 | | | | | | | | | | | | | 161 | OEN | 153 | 156 | | | | | | | | | 6 | | | 423 | QE S | 447 | 100 | | | | | | | | | | | | 279 | QFN | 256 | | | | | | | | | | • | | * | 314
476 | QGN
QGS | 336
483 | 337 | | | | | | | | | 8 | | | 329 | OHN | 483
353 | 491 | | | | | | | | | | | | 468 | CH S | 484 | | | | | | | | | | • | | | 469 | 012 | 453 | 508 | | | | | | | | • | | | | 479 | QJS
OVS | 518 | | | | | | | | | | 0 | | | 485
417 | OK S
QM S | 518
443 | 446 | 448 | | | | Company of the company of the company | | | | W | | | 8 | RPM | 21 | 770 | 770 | | | | | | | | _ | | | 3/5 | SB A | 330 | 390 | 398 | | | | | | | | 0 | | ; | 384 | S88 | 411 | 0 | | | A Committee of the Comm | 15 FT - 11 TO FREE TO SELECT | 65 | | | | | | | | | | | | | | | • | and the state of t | البا وبدوانكات فيتحاث الانوانال فالمتاه | فالايانون وخالفة والدون وتحقيقه فالمقافل أو وخالفة الانتفاقية | والمرابع والم | o de la companya del companya de la companya del companya de la co | |-------------|--|---|---
--|--| | | 392 SBC 428
442 SBE 226 | 258 264 | 455 461 | 470 479 | 6 | | 9 | 369 S8X 424
156 SSS1 176
461 SSS3 487 | 177 | 100 401 | 410 419 | © | | 0 | 37 STG 51
348 TAB 390 | 490 492 | en e | | - ', | | 0 | 377 TAC 411
388 TAD 424
441 TAF 476 | | | | © | | 0 | 475 TAI 508
135 TAT2 154
138 TAT3 155 | 158 | | | ٩ | | 0 | 139 TAT4 157
145 TAT5 165
179 TAT6 199 | 160
166
200 | | | 0 | | 0 | 167 14T9 187
411 TBT1 444
406 TBT2 44C | 188 | * * · . | • | © | | 0 | 409 TBT3 442
454 TCT1 488 | 445 | | | • | | | 452 TCT3 486
92 TEA 92 | 439
192 | | | 0 | | 0 | 102 TEB
128 TEC 149
184 TEE | | | | 0 | | 0 | 251 TEI 276
43 TES1 62
42 TES2 61 | er i | | | ٧ | | 0 | 131 TES3 153
338 TES4 370
349 TES5 371 | ` | | | 6 | | 0 | 394 TES6 432
401 TES7 433 | | | | • | | 0 | 444 TESR 463
445 TES9 464
47 TET2 63 | | | | 0 | | 0 | 50 TET3 64
51 TET4 66
59 TTT2 7C | 67
69 | | | • | | 0 | 150 TTT4 161
268 TTT5 290
270 TTT6 281 | | | en e | ٥ | | 0 | 261 TTT7 284
263 TTT8 287
255 TTT0 255 | | | | 0 | | 0 | 297 XYZ2 321 | 322 323
142 143 | | | 9 | | • | 295 ZZZ1 320
361 ZZZ2 | | | | | | Ø | the first of the state s | | • | en e | 0 | | 0 | and the second s | | | | | | 0 | | | | | 6 | | (3) | | | | | 0 | | | | | | | n f | | والمنافقة المالية | The state of s | | |-------------------|--|-----------| | 0 | TABLE SYMBOLS AND CORRESPONDING NUMBERS | | | 9 | | • | | (| 1 | | | 9 | 4 D
5 E
6 F | • | | () | 7 G
8 H
9 T | 0 | | _ | 10 Ј
11 к | 0 | | ٩ | 12 L
13 M
14 N | 0 | | 0 | · | 0 | | | | 0 | | 0 | | | | 0 | | | | 0 | | | | @ | | | | ٩ | | | | (| | | | 0 | | • | | 9 | | 0 | | _ | | 6 | | (| | • | | (2) | | . • | | 9 | | • | | 0 | | • | | 0 | | © | | sa. | | | | | | • * * . • | | | LOGIC SWITCH SYMBOLS AND CORRESPONDING NUMBERS | | |---|--|---| | 9 | | | |) | 1 MAA 2 MA6 | , | | , | 3 PRA
4 PRB | | | | 6 STA
7 STB | 1 | | | | , | Ģ | ``` 0 GTABLE 0 QTABLE 3 1 10 10 3 QTABLE 4 1 10 10 1 GTABLE 5 1 10 10 0 5 OTABLE 10 10 6 QTABLE 8 10 10 (GTABLE 9 10 10 0 CTABLE 8 11 10 10 OT 48LE 12 10 10 0 10 QTABLE 14 10 10 (3) 11 QTAPLE 16 10 10 OTABLE 12 17 1 10 10 0 13 OTABLE 1.3 10 10 0 14 QTAPLE 19 10 1 GENERATE 100 0 2 TERMINATE 1 * MACGILLIVARY SIGNALS 1 3 GENERATE 1 o 0 0 4 LOGICI 1 5 GATE LS В ADVANCE 6 63 2 ٩ 7 TRANSFER (8 ADVANCE 13 9 LOGICS 2 0 10 ADVANCE 13 ٩ 11 LOGICE 12 TRANSFER ٩ * PCINT RUAD SIGNALS GENERATE 1 13 14 LOGICI 3 15 GATE LS 3 2.1 (1) ADVANCE 16 12 17 LOCICS 1.8 POMANGE 56 2 0 19 LOGICE 4 20 TRANSFER 14 0 ADVANCE 21 2 22 TRANSFER 0 14 # JUBILFE SIGNALS (23 GENERATE 1 J 0 24 FUGICI (3) 25 GATE LS 2.3 6 ADVANCE 26 57 2 27 TRANSFER (1) 24 28 ADVANCE 22 2 0 29 TRANSFER 24 * STAFFORD SIGNALS 0 30 GENERATE 1 (1) 31 LUGICI 6 6 32 GATE LS 6 37 33 ADVANCE 16 Ð 34 LOGICS 7 35 0 ADVANCE 36 TRANSFER 31 37 ADVANCE 53 0 38 LOGICE 39 TRANSFER * PEMBINA N.B. TRAFFIC GENERATION APPROACHING MACGILLIVARY-DAKENMALD 40 GENERATE 4 0 TRANSFER 41 .017 42 42 TRANSFER .094 43 8.5 43 TEST L Q 1 020 47 () 44 TEST G 041 0: 50 1 45 TEST L Q57 01 47 0 ``` ``` IEST L 241 50 TEST L 257 223 76 49 TRANSFER 5.1 50 TEST L 941 59 51 OUELE 57 52 GATE LS 0 53 TEST L 258 K70 1 54 ADVANCE 1 55 DEPART 57 (3) 56 QUELE 0 57 DEPART TRANSFER 58 129 (59 41 QUEUE 60 GATE LS 1 61 TEST L Q42 K70 - 0 62 ADVANCE 0 63 DEPART 41 64 QUELE 0 65 DEPART 2 (1) 66 TRANSFER 127 67 QUEUE 1 (68 GATE LS 0 69 TEST L Q5 K70 70 ACVANCE 1 (71 DEPART (3) TRANSFER ·034 73 92 73 QUEUE 0 74 DEPART 75 TRANSFER 129 76 CUELE 3 77 GATE LS 1 78 TEST L 023 K 70 79 TEST L 022 K. 7 0 80 ADVANCE 1 81 DEPART 20 82 QUEUE 83 DEPART (3) 84 TRANSFER 129 35 QUEUE 2.2 (3) 86 GATE LS 1 0 97 TEST F 021 ΚO 83 ACVANCE 1 39 DEPART 22 90 QUEUE 21 91 DEPART 21 92 TERMINATE (1) * DAKENWALD W.B. TRAFFIC
GENERATION 93 GENERATE 33 12 (P) 94 TRANSFER .277 95 105 (95 QUEUE 96 GATE LR 1 97 CATE LR (4) 98 ADVANCE 99 DEPART 100 QUEUE" (3) 101 DEPART QUEUE 102 21 103 DEPART (2) 104 TERMINATE 105 2000E 35 0 106 TEST L Q5 K7) 3 107 TRANSFER BOTH 103 113 108 GATE LR ٩ 109 GATE LR 2 (2) 110 ADVANCE ``` ``` 112 TRANSFER 129 113 TEST F Q2 KO 114 TRANSFER 0 110 * MACGILLIVARY E.B. TRAFFIC GENERATION 115 GENERATE 19 12 116 QUELE 4 4 117 GATE LR 1 0 118 GATE LS 2 119 TEST GE Q5 K70 123 0 120 TEST GE 023 K70 123 121 TEST GE 042 K70 123 122 TEST L 058 K70 (1) 123 ACVANCE 1 124 DEPART 4 125 QUELE 21 (2) 125 DEPART 21 (3) 127 TRANSFER .601 129 129 128 TERMINATE (1) * PEMBINA A.R. TRAFFIC APPROACHING POINT ROAD-WINDEMERE (1) 129 ADVANCE 59 13) TRANSFER .010 131 161 0 131 TEST L Q5 023 135 942 95 138 132 TEST G 05 161 139 133 TEST L Q58 Q5 ③ 134 TRANSFER 0 135 TEST L 023 Q42 138 136 TEST L Q58 Q23 173 0 137 TRANSFER 139 138 TEST L 958 042 [150 139 QUEUE 53 140 GATE LS 3 141 CATE LS 4 142 TEST GE Q 9 K84 145 0 143 TEST GE 024 K 84 145 144 TESTL 943 K 8 4 145 ADVANCE 0 1 DEPART 146 5.3 QUELE 147 6 143 DEPART 149 TRANSFER 240 150 QUELE 42 3 151 GATE LS (152 GATE LS 153 TEST GE K84 156 0.9 154 TEST GE Q24 K84 156 (3) 155 TESTI Q43 K58 155 ADVANCE 1 157 DEPART 4.2 €³ 153 QUEUE 6 159 DEPART 6 163 TRANSFER 249 161 QUELE 162 GATE LS 3 163 GATE LS (164 TEST GE K84 157 09 TEST GE 165 024 K94 167 166 TEST L 043 K84 167 ADVANCE 1 163 DEPART TRANSEER .990 92 QUELE 6 DEPART 6 169 6 170 (3) 171 172 TRANSFER 249 (173 GUEUE 23 174 GLTF IS ``` ``` 176 TEST GE 8,94 177 TEST GE 0.0 K 8 4 179 173 TEST L 043 K 2 4 179 ADVANCE 1 180 DEPART 23 131 QUELE 182 DEPART 6 183 TRANSFER 249 184 TERMINATE * PCINT ROAD W.B. TRAFFIC GENERATION 0 185 GENERATE 22 20 186 TRANSFER .798 193 137 QUELE 3.3 0 133 TEST L 03 K84 139 TESTE 03 ΚO 190 ACVANCE 191 DEPART 33 192 TRANSFER 0 193 TRANSFER .620 194 203 (3) 194 QUELE 39 195 TEST L 033 K70 196 GATE LR 3 9 197 TEST E 061 ΚĐ 193 ADVANCE 1 DEPART 199 39 3 200 QUELE 61 201 DEPART 61 (1) 202 TRANSFER 442 (3) 203 QUEUE 204 GATE LR 3 205 TEST E Q39 K O 206 ADVANCE 1 207 DEPART 208 QUELE 0 209 DEPART 210 QUEUE 61 0 211 DEPART 61 0 212 TERMINATE * WINDEMERS E.B. TRAFFIC GENERATION 213 GENERATE 30 13 (3) 214 TRANSFER .097 215 227 215 TRANSFER .802 240 216 216 QUELE 8 217 GATE LR 3 218 TEST E Q36 KO 219 TEST E 037 KO 0 220 ACVANCE 1 221 DEPART 222 QUELE 61 () 223 DEPART 51 224 QUELE 6 225 DEPART 6 0 226 TERMINATE 227 QUELE 35 223 TEST L (019 K70 W 0 223 TRANSFER BOTH 230 234 230 TEST E 061 KO 231 ADVANCE 1 232 DEPART 36 233 TRANSFER 442 234 CATE LR @ 235 ADVANCE 1 214 OF PART 34 3 231 OHLLE 61 233 DEPART 51 ``` ``` 240 QUELE 241 GATE LR 3 242 TEST L Q24 K84 . 243 TEST E Q6 KO 244 ADVANCE 1 245 DEPART 37 245 QUEUE 61 0 247 DEPART 61 243 TRANSFER 247 * PEMBINA N.B. TRAFFIC APPROACHING JUBILEE EXIT 249 ADVANCE 41 250 TRANSFER .794 251 252 251 TERMINATE * PEMBINA N.B. TRAFFIC APPROACHING JUBILEE ENTRANCE 252 ADVANCE 10 0 253 IEST | 09 024 268 1 254 TEST L 043 09 270 255 QUELC 43 256 GATE LS 5 257 TEST L 027 K42 251 253 TEST L Q12 K53 1 259 TEST L 026 K53 260 TRANSFER 263 261 TEST L Q28 K53 262 TEST L 014 K53 263 ADVIANCE 1 264 DEPART 43 (3) 265 OUELE 10 265 DEPART 10 TRANSFER 267 302 263 TEST L 024 043 255 269 TRANSFER 270 270 QUELE 9 0 271 GATE LS 5 . 272 TEST L 928 K53 273 TEST L Q14 K53 (274 ADVANCE 1 275 DEPART 9 276 QUELE 10 277 DEPART 10 273 TRANSFER 302 279 QUELE 0 280 GATE LS 5 281 TEST L Q27 K42 282 TEST L Q12 K53 0 283 TEST L Q26 K53 284 ADVANCE 1 24 285 DEPART (1) 236 QUELE " 10 287 DEPART 10 288 TRANSFER 302 * JUBILEE N.B. TRAFFIC GENERATION 289 GENERATE 7 2 290 QUELE 11 291 GATE LR 5 292 TEST L Q27 K42 295 293 TEST GE 012 K53 297 294 TEST GE Q26 K53 297 295 TEST GE Q38 K53 297 296 TEST L 014 297 ADVANCE 1 298 DEPART 1.1 299 QUELF 10 300 DEPART 10 301 TEAKSEE ``` ``` 302 ADVANCE * PEMBINA N.B. TRAFFIC DIRECTIONAL BREAKDOWN 303 ADVANCE 7 304 TRANSFER .560 305 321 0 * PEMBINA N.B. TRAFFIC TURNING ONTO STAFFORD W.B. 305 TEST L 012 026 314 (1) 305 TEST E Q27 KO 314 307 QUELE 1.2 308 GATE LR 6 309 ADVANCE 0 1 310 DEPART 1.2 13 311 QUELE 312 DEPART 13 3 TERMINATE 313 314 QUELE (3) 315 GATE LR 6 0 316 ADVANCE 1 317 DEPART 2.5 318 QUEUE 0 13 319 DEPART 1.3 320 TERMINATE * PEMBINA N.P. TRAFFIC REMAINING ON PEMBINA 0 0 321 TEST LE 014 023 329 322 QUEUE 14 0 323 GATE LS 7 324 ADVANCE 1 325 DEPART 14 326 QUEUE (1) 15 1 327 DEPART 15 328 TERMINATE 329 QUEUE (۹ 330 GATE LS 331 ADVANCE 1 (3) 332 DEPART 23. 4 333 QUELE 15 334 DEPART 15 335 TERMINATE (1) (2) * PEMBINA S.B. TRAFFIC GENERATION 336 GENERATE 4 1 337 TRANSFER .010 333 340 (3) 338 TEST L 016 029 349 339 TEST L 016 030 358 340 OUEUE 0 1.6 341 GATE LS 6 342 TEST L Q18 K136 343 ADVANCE 1 0 344 DEPART 16. 345 QUEUE 1.3 346 DEPART 13 347 TRANSFER .010 375 348 348 TERMINATE 0 349 TEST L 029 030 358 350 QUEUE 23 351 GATE LS 6 352 031 K136 TEST L 4 353 ADVANCE 1 354 DEPART 23 355 QUEUE 13 (356 DEPART 1.3 357 TRANSFER 0 353 QUELE 1 359 GATE LS 6 360 TEST L 055 K136 (361 ADVANCE 1 362 DEPART 30 ``` ``` 364 DEPART 0 365 TRANSFER 375 * STAFFORD S.B. TRAFFIC GENERATION 366 GENERATE 8 1 367 QUELE 17 368 GATE LR 0 369 TEST GE 018 K116 371 370 TEST L '031 K116 371 ADVANCE 1 (372 DEPART 17 373 QUELE 1.3 374 DEPART 13 • * PEMBINA S.B. TRAFFIC APPROACHING HARROW 375 ADVANCE 8 376 TRANSFER .011 384 377 377 TERMINATE 0 * MARROW S.B. TRAFFIC GENERATION 373 GENERATE 17 9 1 379 QUELE 40 380 TEST E 025 KC 381 TEST L Q18 K105 8 382 ADVANCE 1 (3) 383 DEPART 40 384 QUELE 25 0 385 DEPART 25 * PEMBINA S.R. TRAFFIC APPROACHING JUBILEE EXIT 386 ADVANCE 27 0 337 TRANSFER .237 389 388 388 TERMINATE * JUBILEE S.B. TRAFFIC GENERATION 0 389 ADVANCE 10 0 390 TRANSFER 392 391 GENERATE 9 392 ADVANCE 33 (1) * PEMPINA S.B. TRAFFIC APPROACHING POINT ROAD-WINDEMERE 393 TRANSFER .026 394 432 0 394 TRANSFER .080 401 395 (3) 395 QUELE 3.2 396 GATE LS 3 ' (397 TEST E Q6 K0 (2) 3 3 3 ADVANCE 1 399 DEPART 32 400 TERMINATE (401 TEST L Q59 K60 406 402 TEST L Q59 Q31 406 0 403 TEST L Q59 Q19 409 1 404 TEST L Q59 Q55 417 405 TRANSFER 411 031 013 406 TEST L 409 407 TEST L Q31 Q55 417 408 TRANSFER 423 409 TEST L 018 055 417 TRANSFER 410 432 411 QU 5 U E 59 0 GATE LS 412 3 ~ 413 TEST L Q60 K70 414 ACVANCE 1 415 DEPART 59 416 TRANSFER 442 417 QUEUE 55 0 GATE LS 3 413 0 419 TEST L Q44 K 70 420 ADVANCE 1 0 421 DEPART 55 1 422 TRANSFER 44? ``` ``` GATE LS 424 1 425 TEST L Q33 K70 425 TEST L Q32 K7 427 ADVANCE 1 (4) 423 DEPART 31 423 QUELE 61 (3) 430 DEPART 61 431 TRANSFER 442 432 QUELE 18 433 GATE LS 3 434 TEST L 019 K70 435 ADVANCE 1 1 436 DEPART 13 0 437 TRANSFER .948 441 438 433 QUEUE 61 (1) 439 DEPART 61 4 442 440 TRANSFER 441 TERMINATE (P) 61 442 ADVANCE * PEMBINA S.B. TRAFFIC APPROACHING MACGILLIVARY-DAKENWALD 443 TRANSFER .010 444 476 @ 444 TRANSFER . 252 445 468 0 445 TEST L Q60 Q33 449 446 TEST L 060 010 452 (447 TEST L 060 944 461 443 TRANSFER 454 TEST L 449 023 919 0 452 450 TEST L 033 044 461 (3) 451 TRANSFER 476 452 TEST L 019 044 (453 TRANSFER 467 (3) 454 QUEUE 60 455 GATE LS 1 456 ADVANCE 1 0 457 DEPART 60 453 QUELE 2.1 459 DEPART 21 0 460 TERMINATE 461 QUEUE 462 GATE LS 1 (3) 463 ADVANCE 1 464 DEPART 0 465 QUELE 21 0 DEPART 466 21 467 TERMINATE 0 468 TRANSFER .504 469 475 469 QUEUE 17 i 470 GATE LS 0 471 ADVANCE 1 472 DEPART 19 473 QUEUE 21 0 474 DEPART 0 475 TERMINATE 476 QUEUE 33 The statement of st 477 GATE LS 0 478 TRANSFER .020 485 479 479 DEPART 3.3 (3) 480 QUEUE 34 0 481 TEST E 02 KO 482 ADVANCE 1 0 DEPART 483 34 0 484 TERMINATE 485 TEST F Q34 K0 (3) 486 ADVANCE 1 427 OFDAGE ``` 489 DEPART 21 490 TERMINATE START 13 **()** 0 | | | THE PERSON NAMED OF PE | A PART OF THE | والهوافية يتحقون الهاء والمستناعة فالمام | Ballo de la capación de | | | ويتري فواله والمتنافقة المتنافقة المتنافقة | National State of Sta | The secretary and the second | | ويويه والمتافقة والمتافقة المتافقة المتافقة المتافقة المتافقة المتافقة المتافقة المتافقة المتافقة المتافقة المت | يهمر صميدينا فست | والمراجعة والمناوعة والمناوعة | Action County is a superior of the county | and the second s | |---|------------
--|--|--|-------------------------|-------------|-------------|--|--|------------------------------|-----------|---|------------------|-------------------------------|--
--| | 3 | BLOCK | IVE CLOCK | | 1800 ABS0 | | LOCK | 1800 | | | | | | | | | | | 9 | 1 | CURPENT
0 | TOTAL
18 | 8L6CK (| OPRENT
O | TOTAL
18 | BLOCK
21 | C CUPRENT | TOTAL | BLOCK
31 | CURRENT | TOTAL | | CUPRENT | TOTAL | | | | 2 | 0 | | 12 | 0 | 18 | 22 | | 18 | 32 | | 38
38 | 41
42 | | 455 | | | | 3 | 0 | 1 | 1.3 | 0 | 1 | 2 3 | _ | 1 | 33 | | 19 | 42 | | 445
415 | | | | 5 | C
C | 38
38 | 14
15 | 0 | 38 | 24 | _ | 46 | 34 | · 0 | 19 | 44 | - | 32 | | | | 6 | 0 | 19 | 16 | 0 | 38
19 | 25 | | 46 | 3.5 | - | 19 | 45 | | 32 | | | | 7 | ō | 19 | 17 | o
o | 19 | 26
27 | | 23 | 36 | | 19 | 46 | 0 | | | | | 8 | 1 | 19 | 1.8 | ć | 19 | 28 | | 23
23 | 37 | _ | 19 | 47 | | 383 | | | | 9 | 0 | 18 | 1 9 | . 0 | 19 | 29 | | 22 | 38 | | 13 | 48 | • | 38 , | | | | 10 | 0 | 18 | 20 | C | 19 | 30 | | 1 | 40 | - | 18
455 | 49
50 | | 0
345 | | | | | CURPENT | TOTAL | вьоск с | UPRENT | TOTAL | פוטכג | CURRENT | JATOT | D1 004 | CURRENT | | | • | 34) | | | | 51 | | 29 | 51 | 0 | 315 | 71 | | 42 | 81 | CURRENT 0 | TOTAL | | CUPRENT | TOTAL | | | | 52 | | 22 | 6.2 | 0 | 315 | 72 | | 42 | 82 | | 38
38 | 91 | | 30 | | | | 53
54 | 0 | 29 | 6.3 | 0 | 315 | 73 | | 40 | 83 | | 38 | 92
93 | | 33 | | | | 54
55 | . 0 | 29 | 64 | 0 | 315 | 74 | | 40 | 84 | _ | 38 | 93 | 0 | 53
53 | | | | 56 | 0 | 29
29 | 55
66 | 0 | 315 | 75 | _ | 40 | 85 | | 30 | 95 | - | 23
42 | | | | 57 | 0 | 29
29 | 66
57 | ე
0 | 315 | 76 | • | 38 | 86 | | 30 | 96 | | 42 | | | | 58 | č | 29 | 5 <i>t</i>
6 8 | 0 | 42
42 | 77
78 | | 38 | 87 | - | 30 | 97 | 0 | 42 | | | | 59 | · · · · · · · i | 316 | 59 | . 0 | 42
42 | 78
79 | ~ | 38 | 88 | • | 30 | 9.8 | - | 42 | | | | 60 | 0 | 315 | 70 | ő | 42 | 80 | - | 38
38 | 89 | - | 30 | 99 | - | 42 | *1 | | | 81 DCV | CURRENT | TOTAL | 01.00 = | | | | • | | 90 | 0 | 30 | 100 | 0 | 42 | | | | 101 | CORRENT | TOTAL
42 | BLOCK C | O
DESENT | TOTAL | | CURRENT | T OT AL | | CURRENT | TOTAL | BLCCK | CURRENT | TOTAL | | | | 102 | ő | 42 | 112 | 0 | 11
11 | 121 | | 0 | 131 | | 460 | 141 | 0 | 66 | | | | 103 | 0 | 42 | 113 | | 5 | 122
123 | | 0 | 132 | | 75 | 142 | 0 | 66 | | | | 104 | 0 | 42 | 114 | Ö | . 5 | 124 | - | 88 | 133 | - | 74 | 143 | 0 | 0 | | | | 105 | 0 | 11 | 115 | Ö | 92 | 125 | | 88 | 134 | | 0 | 144 | 0 | 0 | | | | 106 | 0 | 11 | 116 | ő | 92 | 126 | 0 | 88
88 | 135 | _ | 385 | 145 | 0 | 66 | | | | 107 | 0 | 11 | 117 | 4 | 92 | 127 | 0 | 38
88 | 136
137 | - | 92 | 146 | 0 | 66 | | | | 108 | 0 | 6 | 118 | 0 | 3.8 | 128 | 0 | 39 | 138 | - | 0
294 | 147 | 0 | 66 | | | | 109 | 0 | 6 | 119 | 0 | 3.3 | 129 | 18 | 4.82 | 139 | • | 68 | 148
149 | 0 | 66 | | | | 110 | О | 11 | 120 | 0 | 0 | 130 | 0 | 464 | 140 | _ | 66 | 150 | 0
2 | 66
226 | | | | | CURRENT | TOTAL | BLOCK CU | JPRENT | TOTAL | BLOCK | CURRENT | TOTAL | BLOCK | CURRENT | TOT | | | | | | | 151 | С | 224 | 161 | 2 | 78 | 171 | 0 | 75 | 181 | CORRENT | TOTAL | | CUPPENT | TOTAL | | | | 152 | 0 | 224 | 162 | 0 | 76 | 172 | ő | 75 | 182 | 0 | 90
90 | 191 | 0 | 54 | | | | 153 | 0 | 224 | 163 | 0 | 76 | 173 | 2 | 92 | 183 | 0 | 90
90 | 192
193 | 0 | 54 | | | | 154
155 | 0 | 0 | 16.4 | 0 | 76 | 174 | 0 | 90 | 184 | 0 | 0 | 193 | 0 | 23 | | | | 156 | 0 | 0
224 | 155 | 0 | o | 175 | 0 | 90 | 185 | Ö | 77 | 195 | n | 7 | | | | 157 | 0 | 224 | 16.6
16.7 | 0 | 0 | 176 | 0 | 90 | 186 | 0 | 77 | 196 | 0 | 7 | | | | 159 | o | 224 | 168 | 0 | 76
76 | 177 | 0 | 0 | 187 | 0 | 54 | 197 | n | 7 | | | | 159 | ŏ | 224 | 169 | . 0 | 76 | 178
179 | 0 | . 0 | 188 | 0 | 54 | 198 | 0 | 7 | | | | 160 | 0 | 224 | 170 | 0 | 75 | 179 | 0
0 | 90
90 | 189
190 | 0 | 54
54 | 199 | 0 | 7 | | | | BLOCK (| CURRENT | TOTAL | BLOCK CU | IDDENT | TOTAL | | | | | | ⊅4 | 200 | 0 | 7 | | | | 231 | 0 | 7 | 21.1 | 0 | TOTAL
16 | | CURRENT | TOTAL | | CURRENT | TOTAL | BLOCK | CURRENT | TOTAL | | | | 202 | ō | 7 | 21.2 | C | 16 | 221
222 | 0 | 38 | 231 | 0 | 4 | 241 | 0 | 17 | | | | 203 | О О | 16 | 21.3 | 0 | 59 | 223 | 0 | 38 | 232 | 0 | 4 | 242 | 0 | 17 | | | | 204 | 0 | 16 | 21.4 | Ö | 59 | 224 | 0 | 38
. 3 8 | 233 | 0 | 4 | 243 | 0 | 17 | | | | 205 | 0 | 16 | 215 | ō | 55 | 225 | 0 . | 38 | 234 | 0 | 0 | 244 | 0 | 17 | | | | 206 | 0 | 16 | 21.6 | Ō | 33 | 226 | ő | 38 | 235
236 | 0 | 0 | 245 | 0 | 17 | | | | 207 | 0 | 16 | 21.7 | 0 | 38 | 227 | 0 | .50
4 | 236 | 0 | 0 | 246 | 0 | 17 | | | | 208 | 0 | 16 | 218 | 0 | 38 | 228 | ŏ | 4 | 238 | 0 | 0 | 247 | 0 | 17 | | | | | | 16 | 219 | . 0 | 3.8 | 229 | Ö | 4 | 239 | 0 | | 248 | 0 | 17 | | | | 209 | 0 1 | | | | | | | | | | | | | | | | | | .0 | 16 | 22.0 | Ö | 3.9 | 230 | Ö | 4 | 240 | 0 | 0
17 | 249
250 | 3 | 526
523 | | | | 209 | .0 | | | 0 | | 230 | | | 240 | | | 250 | 9 | 526
523 | | | | 3 0 | | 417 | 253 | | 223 | 273 | 0 | 83 | 283 | 0 | 110 | 20.2 | | the state of the state of the state of | AND PERSONAL PROPERTY. | |---------|---------------------------------------|------|------------------|-------------|---------|-------|--------|---------|-------|---------|---------|------------|------------|-----------|--|------------------------| | 254 | | | 8.3 | 26.4 | 0 | 223 | 274 | | 83 | 284 | 0 | 110 | 293 | 0 | 2 5 3 | | | 255 | 1 | | 224 | 26.5 | 0 | 223 | 275 | | 83 | | - | 110 | 294 | 0 | 0 | | | 256 | 0 | | 223 | 25.5 | 0 | 223 | 276 | | - | 285 | 0 | 110 | 295 | 0 | 0 | | | 257 | . 0 | | 223 | 267 | ŏ | 223 | 277 | | 83 | 286 | 0 | 110 | 296 | 0 | 0 | | | 258 | 0 | | 223 | 26.8 | ő | 334 | | 0 | 83 | 287 | 0 | 110 | 297 | 0 | 2 5 3 | | | 259 | | | 223 | 26.9 | | | 278 | 0 | 83 | 288 | 0 | 110 | 298 | 0 | 253 | | | 260 | | | | | 0 | 110 | 279 | 0 | 110 | 289 | 0 | 253 | 299 | ő | 253 | | | 200 | 9 | | 223 | 270 | С | 83 | 280 | 0 | 110 | 290 | 0 | 253 | 300 | 0 | | | | 01.36 | | | | | | | | | | | v | 2,7,5 | 300 | U | 2 5 3 | | | | CURREN' | T () | DIAL | BLCCK | CHERENT | TOTAL | BLOCK | CURRENT | TOTAL | BLOCK | CURRENT | TOTAL | 01.00 | | | | | 301 | | | 253 | 31.1 | 0 | 112 | 321 | 0 | 3 59 | 331 | | TOTAL | | CURRENT | TOTAL | | | 302 | 14 | | 669 | 31.2 | 0 | 112 | 322 | ő | | | 0 | 128 | 341 | 0 | 82 | | | 303 | 12 | | 655 | 313 | 0 | 112 | 323 | | 231 | 332 | 0 | 128 | 342 | 0 | 32 | | | 304 | 0 | | 643 | 31.4 | ŏ | 172 | | 0 | 231 | 333 | 0 | 128 | 343 | 0 | 32 | | | 3) 5 | | | 284 | 315 | _ | | 324 | 0 | 231 | 334 | 0 | 128 | 344 | 0 | 82 | | | 306 | - | | 112 | | 0 | 172 | 325 | 0 | 231 | 335 | 0 | 128 | 345 | ŏ | 82 | | | 307 | | | | 31.6 | 0 | 172 | 326 | 0 | 231 | 336 | 0 | 453 | 346 | 0 | | | | | | | 112 | 317 | 0 | 172 | 327 | 0 | 2.31 | 337 | Ö | 453 | 347 | | 82 | | | 308 | | | 112 | 31.9 | 0 | 172 | 328 | ō | 231 | 338 | 0 | 449 | | 0 | 82 | | | 309 | | | 112 | 31.7 | G | 172 | 329 | Ō | - 128 | 339 | - | | 348 | 0 | . 1 | | | 310 | 0 | | 112 | 3 20 | 0 | 172 | 330 | 0 | 128 | | 0 | 78 | 349 | 0 | 371 | | | | | | | | - | | 220 | V | 170 | 340 | 0 | ន 2 | 350 | 1 | 86 | | | BLOCK | CURRENT | · To | TAL | BLOCK | CUPRENT | TOTAL | 91.00% | CHARENT | TOT | 2 | | | | | | | | 351 | 0 | | 85 | 361 | 0000000 | | | CURRENT | TOTAL | | CURRENT | TOTAL | BLOCK | CURPENT | TOTAL | | | 352 | Ö | | 85 | | - | 234 | 371 | 0 | 223 | 381 | 0 | 106 | 39 1 | 0 | 197 | | | 353 | | | | 36.2 | 0 | 234 | 372 | 0 | 223 | 382 | 0 | 106 | 392 | 22 | | | | | | | 85 | 36.3 | 0 | 2.24 | 373 | 0 | 223 | 383 | ō | 106 | | | 797 | | | 354 | 0 | | 8.5 | 36.4 | 0 | 294 | 374 | 0 | 223 | 384 | 0 | | 393 | 0 | 775 | | | 35.5 | 0 | | 85 | 36.5 | 0 | 234 | 375 | 7 | 673 | 385 | _ | 765 | 394 | 0 | 755 | | | 356 | O | | 85 | 356 | 0 | 223 | 376 | ó | | | 0 | 765 | 395 | 1 | 66 | | | 357 | 0 | | 35 | 367 | Ö | 223 | | _ | 666 | 386 | 7 | 765 | 396 | 0 | 65 | • | | 358 | i | | 285 | 368 | 0 | | 377 | 0 | . 7 | 387 | 0 | 758 | 397 | 0 | 65 | | | 359 | · · · · · · · · · · · · · · · · · · · | | 284 [~] | | _ |
223 | 378 | . 0 | 1 0 6 | 388 | 0 | 156 | 398 | 0 | 65 | | | 360 | 0 | | | 36.9 | 0 | 223 | 379 | 0 | 106 | 389 | 2 | 602 | 399 | 0 | | | | 200 | U | i | 284 | 370 | 0 | . 0 | 380 | 0 | 1 06 | 390 | ō | 600 | 400 | - | 65 | | | 01.06:: | C110 0 51 | | | | | | | | | | 9 | 300 | 400 | 0 | 65 | | | | CURRENT | TO: | | | CUPRENT | TOTAL | BLOCK | CURRENT | TOTAL | BLOCK | CURRENT | TOTAL | DI 00:: | | | | | 401 | 0 | 6 | 589 | 411 | 2 | 81 | 421 | 0 | 357 | | | TOTAL | | CUPRENT | TOTAL | | | 402 | 0 | (| 689 | 412 | 0 | 79 | 422 | 0 | | 431 | 0 | 94 | 441 | 0 | 6 | | | 4)3 | Č. | | 83 | 413 | . 0 | 73 | | | 357 | 432 | 3 | 171 | 442 | 14 | 703 | | | 404 | ō | | 81 | 41.4 | | | 423 | 3 | 97 | 433 | 0 | 168 | 443 | 0 | 639 | | | 405 | 0 | | | | C | 79 | 424 | 0 | 94 | 434 | 0 | 168 | 444 | ő | 681 | | | | - | , | 18 | 41.5 | 0 | 79 | 425 | 0 | 94 | 435 | ō | 168 | 445 | 0 | | | | 406 | . 0 | | 505 | 416 | 0 | 79 | 426 | 0 | 94 | 436 | ő | 168 | | | 5 3 7 | | | 407 | 0 | | 115 | 417 | 3 | 360 | 427 | ō | 94 | 437 | 0 | | 446 | 0 | _ 96 | | | 408 | 0 | | 97 | 418 | 0 | 357 | 428 | ō | 94 | 438 | | 168 | 447 | 0 | 94 | | | 409 | 0 | 4 | :93 | 419 | 0 | 357 | 429 | o o | | | 0 | 162 | 448 | 0 | 94 | | | 410 | 0 | 1 | 151 | 420 | ő | 357 | | • | 94 | 439 | 0 | 162 | 449 | 0 | 411 | | | | | • | | 14.0 | J | ١٧٧ | 430 | 0 | 94 | 440 | 0 | 162 | 450 | 0 | 150 | | | BLGCK | CURRENT | TOT | r A I | BLOCK | CURRENT | TOTAL | | | | | | | | | • • • • | | | 451 | 0 | | | | | TOTAL | | CURRENT | TOTAL | BLOCK (| CURRENT | TOTAL | BLOCK | CURRENT | TOTAL | | | | | | 106 | 461 | 2 | 216 | 471 | 0 | 172 | 481 | 0 | 2 | 7 L 17 C A | Conn Carl | TOTAL | | | 452 | 0 | | 63 | 46.2 | О | 214 | 472 | 0 | 172 | 482 | Ô | | | | | | | 453 | 0 | | 91 | 463 | 0 | 214 | 473 | ő | 172 | | | 2 | | | | | | 454 | 1 | | 94 | 464 | ō | 214 | 474 | 0 | | 483 | 0 | 2 | | | | | | 455 | 0 | | 93 | 455 | ő | 214 | | | 172 | 484 | 0 | 2 | | | | | | 456 | õ | | 93 | 466 | 0 | | 475 | 0 | 262 | 485 | 0 | 110 | | | | | | 457 | 0 - | | | | • | 214 | 476 | 2 | 114 | 486 | 0 | 110 | | | | | | | | | 93 | 467 | 0 | 214 | 477 | 0 | 112 | 487 | ō | 110 | | | | | |
458 | | | 93 | 46.8 | 0 | . 174 | 478 | 0 | 112 | 488 | ő | | | | | | | 459 | 0 | | 93 | 459 | 3 | 175 | 479 | . 0 | 2 | 489 | | 110 | | | W + - | | | 460 | 0 | | 93 | 470 | 0 | 172 | 480 | ő | 2 | 490 | 0 | 110
110 | (1) | all sections | | | |--------------|---|----------| | ® | LOGIC SWITCH — SET (OR) STATUS
SWITCH NR | • | | 0 | STB | 0 | | 0 | | | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | • | | 0 | | • | | 0 | | ₩ | | 0 | | Ø | | ® | | (3) | | • | | (| | 6 | | @ | | Ø | | | | 0 | | • | | 6 | | ® | | • | | 0 | | | | (| | ® | | | | © | | 0 | | • | | 0 | | | | 9 | | | | 3 | | • | | m . | | 0 | | | | _ | | | QUEUE | MAXIMUM
CONTENTS | AVERAGE | TOTAL | ZERO | PERCENT | AVERAGE | \$AVERAGE | TABLE | CURRENT | | | |---|----------|---------------------------------------|------------------|--------------|-------------|-----------|------------|------------|--------|------------|-----|---| | | 1 | CHAIENIS | CONTENTS
•233 | FNTPIES | ENTRIES | ZEROS | TIME/TRANS | TIME/TRANS | NUMBER | CORRENT | | | |) | 2 | ī | • 0-30 | 42
464 | 464 | •0 | 12.380 | 12.380 | 1 | or Arrents | | | | | 3 | 3 | . 586 | 42 | 404 | 100.0 | •000 | .000 | | | | | | | 4 | 5 | 1.494 | 92 | | • 0 | 25.142 | 25.142 | 2 | | | | | | 5 | 4 | • 650 | 78 | | •0 | 29.239 | 29.239 | 3 | 4 | | | | | 6 | 1 | •000 | 509 | 509 | 100.0 | 15.012 | 15.012 | 4 | 2 | • | | | | 7 | 2 | .218 | 16 | 20 9 | | .000 | •000 | | | | | | | 8 | . 3 | .571 | 38 | | •0 | 24.562 | 24.562 | 5 | | | * | | | 9 | 5 | .217 | 83 | | •0 | 27.078 | 27.078 | 6 | | | | | | 10 | 1 | • 555 | 659 | 669 | .0 | 4.722 | 4.722 | 7 | | | | | | 11 | 9 | 3.195 | 253 | 00.9 | 100.0 | •000 | •000 | | | | | | | 12 | 8 | .672 | 112 | | •0 | 22.743 | 22.743 | 8 | | | | | | 13 | • 1 | •000 | 958 | 05.3 | .0 | 10.803 | 10.803 | 9 | | | | | | 14 | 6 | •293 | 231 | 958 | 100.0 | .000 | •000 | | | | | | | 15 | ĭ | •000 | 359 | 350 | .0 | 2.324 | 2.324 | 10 | | | | | - | 16 | | 1.091 | 32 | 359 | 100.0 | .000 | .000 | = | | | | | | 17 | 6 | 1.389 | | | •0 | 23.951 | 23.951 | 11 | | | | | | 13 | 5 | ·456 | 223 | | .0 | 11.215 | 11.215 | 12 | | | | | | 19 | 4 | •400
•400 | 171 | | • 0 | 4.807 | 4.807 | 13 | 3 | | | | | 20 | 3 | | 175 | | •0 | 6.274 | 6.274 | 14 | 3 | | | | | 21 | و
1 | •353 | 38 | | • 0 | 16.736 | 16.736 | • • | , | | | | | 22 | | •0.00 | 749 | 749 | 100.0 | .000 | •000 | | | | | | | 23 | | •122 | 30 | | • 0 | 7.366 | 7.366 | | | * | | | | 24 | 2
5 | .736 | 92 | | • () | 14.413 | 14.413 | | 2 | | | | | 25 s | | •263 | 110 | | •0 | 4.390 | 4.390 | | 2 | | | | | | 1 | .000 | 765 | , 765 | 100.0 | •000 | •000 | | | | | | | 26 | 8 | • 390 | 172 | | •0 | 9.319 | 9.319 | | | | | | | 23 | 5 | .176 | 128 | | .0 | 2.476 | 2.476 | | | | | | | 29 | 5 | 1.265 | 86 | | .0 | 26.488 | 26.488 | | | | | | | 30 | . 5 | 1.564 | 235 | | • f) | 9.880 | 9.880 | | 1 | | | | | 31 | 5 | .344 | 97 | | •0 | 6.391 | | | 1 | | | | | 32 | 4 . | •169 | 66 | | .0 | 4.621 | 6.391 | | 3 | | | | | 33 | 4 | .412 | 114 | 2 | 1.7 | | 4.621 | | 1 | | | | | 34 | 1 | -001 | 2 | *- | •0 | 6.517 | 6.633 | | 2 | | | | | 3.5 | 1 | .013 | ιī | | •0 | 1.000 | 1.000 | | | | | | | 36 | 1 | • 102 | 4 | | | 2.131 | 2.181 | | | | | | | 37 | 2 | .178 | 17 | | •0 | 1.000 | 1.000 | | | | | | | 3.8 | 1 | •029 | 54 | | •0 | 18.941 | 18.941 | | | | | | | 39 | ī | .084 | 7 | | • 0 | 1.000 | 1.000 | | | | | | | 40 | 1 | .058 | 106 | | •0 | 21.714 | 21.714 | | | | | | | 41 | 3 | •603 | 316 | | • 0 | 1.000 | 1.000 | | | | | | | 42 | 5 | •914 | 226 | | •0 | 3.436 | 3.436 | | 1 | | | | | 4 3 | 6 | • 416 | 224 | | • 0 | 7.283 | 7.283 | | 2 | | | | | 44 | 5 | •612 | 216 | | •0 | 3.343 | 3.343 | | ī | | | | | 55 | 5 | .614 | 360 | | •0 | 5.106 | 5.106 | | 2 | | | | | 57 | 2 | •207 | | | •0 | 3.074 | 3.074 | | 3 | | | | | 58 | · · · · · · · · · · · · · · · · · · · | e are c | 29 | | • C | 12.862 | 12.862 | | , | | | | | 59 | ™
./. | .569 | 68 | | • 0 | 15.088 | 15.088 | | 2 | ** | | | | 60 | , | • 2 5 5 | 81 | | •0 | 5.679 | 5.679 | | 2 | | | | | 61 | 4 | • 347 | 94 | | .0 | 6.659 | 6.659 | | ۷ | • • | | | | | I
TIME (TO 1 :: 0 | .000 | 334 | 334 | 100.0 | •000 | •000 | | 1 | | | | | PHYEKAGI | = TIMEZIKANS | = AVERAGE TI | MEZTRANS EXE | CLUDING ZER | O ENTRIES | | • 500 | | | , | **(3)** |) | TABLE A
ENTRIES IN TABLE
42 | MEAN ARG | UMENT
2.380 | STANDARD DEVIAT | ION | SUM OF ARGUMENTS | | 6 | |----------|--
--|---|----------------------------|---------------------------|--|------------------------|----------| | | UPPE3 r | OB SERVED | PER CENT | CUMULATIVE | CUMULATIVE | 520.000
MULTIPLE | NON-WFIGHTED DEVIATION | • | |) | LIMIT FF
1
11 | REQUENCY
9
12 | 0F TOTAL
21.42
28.57 | PERCENTAGE
21.4
49.9 | REMAINDER
78.5
50.0 | OF MEAN
.ORO | FROM MEAN
-1.099 | Ø. | |) | 21
31 | 10
10 | 23.80
23.30 | 73.8
97.6 | 26.1 | .888
1.696
2.503 | 133
.832
1.797 | _ | | | REMAINING FREQUENCIES A | ARE ALL ZERO | 2.38 | 100.0 | •0 | 3.311 | 2.763 | • | | | | | | | | | | • | | | | | | | | | | • | | | | | | | | | | 6 | | | | | | | | | | © | | | The street Street of the Committee C | | | | | | | _ | | | | | • | | | | | © | | | A Committee of the second t | | | | | | | • | | | | | | | | | | C | | | · · · · · · · · · · · · · · · · · · · | | | | | | | @ | | | | | | | | | | @ | | | | | | | | | | • | | | THE RESERVE AS A CONTRACT OF THE PARTY TH | and the state of the special state of the st | ere er | | | en e | | • | | | | | | | | | | • | | | The state of s | ************************************ | | . w. | | | | 0 | | | | | | | | | | • | | | | | | | | | | ® | | * * | ante i de la companya de la company | With the Section of the Control t | | | | | | • | | | | | | | | | | 9 | | | e commence de la commencia | The state of s | | | - e e e e | | | ۵ | | | | | | | | | | • | | | | | | | | | | _ | | - | NTRIES IN TABLE
42 | - MEAN / | 25.142 | STANDARD DEVIATION 19. | FION 5 | SUM OF ARGUMENTS
1056.000 | NON-WEIGHTED | | |----|--|--|---------------------------------------|---------------------------------------|------------------------------|-------------------------------|--------------------------------|--| | | FIMIT
1 | OBISERVED
FREQUENCY
6 | PER CENT
OF TOTAL
14.28 | CUMULATIVE
PERCENTAGE
14.2 | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | | | 11
21
31 | 6
10
3 | 14.28
23.30
7.14 | 28.5
52.3
59.5 | 85.7
71.4
47.6
40.4 | .039
.437
.835
1.232 | -1.230
720
211 | | | | 41
51
61 | | 19.04
4.76
14.28 | 78.5
83.3
97.6 | 21.4
16.6
2.3 | 1.630
2.028
2.426 | .298
.808
1.317
1.827 | | | RE | 71
EMAINING FREQUENCIE | ES ARF ALL ZE | 2•38
80 | 100.0 | •0 | 2.823 | 2-336 | | | | e e e e e e e e e e e e e e e e e e e | the section of se | | | | | | | | | | | | | | | | | | | en e | | | | | | | | | | | | , | | | | | | | | The second se | The state of s | | · · · · · · · · · · · · · · · · · · · | | | | | | | | e e e e e e e e e e e e e e e e e e e | and the common the same of | n de la companya l | e e e e e e e e e e e e e e e e e e e | | | | | | | ٠. | | | | | | | | | | | The second control of | 1997 Marines, and employing the strong pro- | ar en en en en | e e e e e e e e e e e e e e e e e e e |) | TABLE C
ENTRIES IN TABLE
98 | MEAN ARG | SUMENT
18.534 | STANDARD DEVIAT
24. | 10N St
687 | JM OF ARGUMENTS
2511.000 | NON-WEIGHTED | | |-------
--|--|-------------------------------|---|---------------------------------|----------------------------------|--|--| | | UPPER
LIMIT
1
11 | OBSERVED
FREQUENCY
24 | PFR CENT
OF TOTAL
27.27 | CUMULATIVE
PERCENTAGE
27.2 | CUMULATIVE
REMAINDER
72.7 | MULTIPLE
DF MEAN
•035 | DEVIATION
FROM MEAN
-1.115 | | | | 21
31
41 | 8
8
11
6 | 9.39
9.39
12.50
6.31 | 36.3
45.4
57.9
64.7 | 63.6
54.5
42.0
35.2 | .385
.735
1.086 | 710
305
.099 | | | | 51
61
71
81 | 10
9
3 | 11.36
10.22
9.09 | 76.1
86.3
95.4 | 23.8
13.6
4.5 | 1.436
1.787
2.137
2.488 | .504
.910
1.315
1.720 | | | | REMAINING FREQUENCIE | S ARE ALL ZERO | 4.54 | 100.0 | • 0 | 2.838 | 2-125 | | | | | | | | • | | | | | | | e de la companya l | | | | | | | | | *** | The second secon | n nagama ya ista i managani ka i ka ista i i i i i i i i i i i i i i i i i i i | • | | | | | | | | | | | | | | | | | | mana and a second secon | *************************************** | | | | | | | | | | | | | | | | | | ***** | week en | | | | | | | en e | | | | | | | | | | | and the second of o | | en e | | | en e | | | | | | | | | | | | | | en de la companya de
La companya de la co | en voer state en en anne en | | | | | | | | | · | | | | | | | | | (| TABLE D
ENTRIES IN TABLE
76 | MEAN AR | GUMENT
15.223 | STANDARD DEVIATION 12.87 |)N SU | M OF ARGUMENTS
1157.000 | NON-WEIGHTED | | @ | |----------|--|-----------------------------------|---|-------------------------------|---------------------------------|--|----------------------------------|---|----------| | 3 | UPPER
LIMIT
I
11 | OBSERVED
FREQUENCY
25
11 | PER CENT
OF TOTAL
32.89 | PERCENTAGE
32.8 | CUMULATIVE
REMAINDER
67.1 | MULTIPLE
OF MEAN
•065 | DEVIATION
FROM MEAN
-1.104 | · | • | | 3 | 21
31
41
REMAINING FREQUENCI | 10
22
8 | 14.47
13.15
23.94
10.52 | 47.3
60.5
89.4
100.0 | 52.6
39.4
10.5
.0 | .722
1.379
2.036
2.693 | 327
.448
1.224
2.001 | | 6 | |) | | TO ARE PLE PIN | , | | | | | | • | |) | er e e e e e e e e e e e e e e e e e e | | | | | | | | 6 | |) | | | | | | | | | € | | | A CONTRACTOR OF THE STATE TH | | | | | | | | • | | | | | • • | | | | | | © | | | | | • | | | | | | • | | | The second secon | | | | | | | | • | | | | | | | | | | | • | | | The second secon | | | | | | | | | | | | | | | | | | | 0 | | | A CONTROL OF THE CONT | | * - * * * * * * * * * * * * * * * * * * | | | en e | | | 6 | | | | | | | | | | | 0 | | | | | | | | | | | . @ | | * | | | | | | | | | • | | | | | | | • | | | | • | |) | TABLE F
ENTRIES IN TABLE
16 | MEAN ARGI | MENT
- 562 | STANDARD DEVIATI | | UM OF ARGUMENTS
393.000 | NON-WEIGHTED | | |---
---|--|-------------------------------------|--|--|--|--|--| | , | UPPER
LIMIT
1 | DBSERVED
FREQUENCY
3 | PER CENT
OF TOTAL
19.75 | CUMULATIVE
PERCENTAGE
18.7 | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | | | 11
21
31 | 3
1
2 | 18.75
6.25
12.50 | 37.5
43.7
56.2 | 81.2
62.5
56.2
43.7 | .040
.447
.854
1.262 | -1.159
667
175 | | | | 41
51
61
REMAINING FREDUENCI | 1 2 | 25.00
6.25
12.50 | 81.2
87.5
100.0 | 18.7
12.5 | 1.669
2.076
2.483 | .316
.809
1.301
1.793 | | | | AC MINING TREGUENCY | ES ARE ALE ZERU | | | | | 20,70 | | | | e e e e e e e e e e e e e e e e e e e | - C. (1988) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) (1984) | The second of th | | | | | | | | | | | | | | | | | | | - | to the second of | The second secon | | | | • | | | | | | | | | | | | | | | Market 8 (8) - \$100 - 101 - 102 - 102 - 103
- 103 - 10 | The district of the second sec | tion to the Australia and Australia | e e e e como de la | en e | e de servicio de la compansión de la compa | and the second s | | | | | | | | | | | | | | en de la composiçõe de la | The state of the same s | | the state of s | | And the second of the second | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | The state of s | | | | | the state of the state of | e e e e e e e e e e e e e e e e e e e | | | | | | | | | | | | | | | | | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | and the second second | | | | | | | and the second section of the second second | 1 ~ | | Company of the Compan | and the second | and the same of the section s | in the second second | |------------|--|--|--|--
--| | | TABLE F ENTRIES IN TABLE MEAN ARGUMENT 38 27.078 | STANDARD DEVIATION 21.312 | SUM OF ARGUMENTS
1029.000 | NON-WEIGHTED | 0 | | | UPPER OBSERVED PER CENT
LIMIT FREQUENCY OF TOTAL | | IMULATIVE MULTIPLE | DEVIATION | • | | 0 | 1 8 21.05
11 4 10.52 | PERCENTAGE R
21.0
31.5 | EMAINDER OF MEAN 78.9 .036 | FROM MEAN
-1.223 | · · · · · · · · · · · · · · · · · · · | | 0 | 21 4 10.52
31 5 13.15 | 51.5
42.1
55.2 | 68.4
57.8
-775
44.7
1.144 | 754
285 | | | 0 | 41 8 21.05
51 3 7.89
61 3 7.89 | 76.3
84.2 | 23.6
1.514
15.7
1.883 | •183
•653
1•122 | • | | | 61 3 7.89 71 3 7.89 REMAINING FREQUENCIES ARE ALL ZERO | 92.1
100.0 | 7.8 2.252
.0 2.621 | 1.591 | 0 | | 9 | | | | | • | | 0 | | • | | | _ | | 8 | | | | | @ | | | | | | | • | | 0 | | | | | @ | | 0 | | | | | | | • | | | | | • | | 0 | | | | | • | | | and the second s | | | | 6 | | 9 | | | | | © | | 9 | | | | | | | 0 | The second secon | | | | • | | | | | | | • | | | | | | | 0 | | 0 | | | | | | | 0 | | | | | • | | (3) | · · · · · · · · · · · · · · · · · · · | | | | • | | | | • | | | © | | (3) | | | | | • | | • | | | | | The same of sa | | 6 | | | | | • | | | | | | | ₹ | | 0 | TABLE G
ENTRIES IN TABLE MEAN ARE
33 | GUMENT
4.722 | STANDARD DEVIAT | TION St. | JM OF ARGUMENTS
392.000 | CETHELEH-NON | | 0 | |----------|--|-------------------------------|--|---------------------------------|---------------------------------|-------------------------------|---|---| | 0 | UPPER ORSERVED
LIMIT FREQUENCY
1 53 | PER CENT
OF TOTAL
63.95 | CUMULATIVE
PERCENTAGE
63.8 | CUMULATIVE
REMAINDER
36.1 | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | 9 | | Ø | 11 16 21 11 31 3 REMAINING FREDUENCIES ARE ALL ZERO | 19.27
13.25 | 83.1
96.3
100.0 | 16.8
3.6 | •211
2•329
4•446
6•563 | 571
.963
2.498
4.032 | • | • | | © | ACE ZEN | | | | | | | • | | 0 | o | | | | | | | 9 | | ® | The second secon | | | | | | | 9 | | • | * . | | | | | | | 0 | | © | and the second s | | | | | | | 0 | | ® | | | | | | | | 0 | | D | | | | | | | | • | | 3 | | | | | | | | 0 | | -
D | | | | | | | | 0 | | -
3 | | | | | | | | 0 | |) | and the second comment of the second | | | | | | | 0 | | 3 | | | | | | | | • | |)
} | | | e e e | * | | | | 0 | |)
) | | | | | | | | • | | y
 | | | en e | er er er er er er alle er er | | | | 0 | | | | | | | | | | 0 | | | | | | | | | | 0 | |) | | | | | | | | 0 | | 1 | | | | | | | | _ | | • | TABLE !! | | and the second s | der de la constitución con | |----------|--|--
--|--| | ® | ENTRIES IN TABLE MEAN ARGUMENT 253 22.743 | STANDARD DEVIATION
19.187 | SUM OF ARGUMENTS 5754.000 NON-WEIGHTED | • | | 8 | UPPER OBSERVED PER CENT LIMIT FREQUENCY OF TOTAL 1 67 26.48 | CUMULATIVE CUMULATIVE PERCENTAGE REMAINDER 26.4 73. | E MULTIPLE DEVIATION R OF MEAN FROM MEAN | ⊚ | | • | 11 28 11.06
21 36 14.22
31 32 13.04
41 33 13.04
51 31 12.25 | 37.5 62.
51.7 48.2
64.8 35.
77.8 22. | 4 | @
• | | ® | 51 31 12.25
61 25 9.88
REMAINING FREQUENCIES ARE ALL ZERO | 90.1 9.8 | 2.242 1.472 | • | | 0 | | | | 0 | | • | | | | • | | 9 | | | | • | | • | | | | 0 | | 0
 | | | | • | | 9 | | | | 0 | | | | | tan di kacamatan kacamatan di ka | * | | 3 | | and the second of o | | • | | • | | | | • | | | en de la companya | | | • | |) | | | | • | | ħ | | | | | | | TABLE IN TABLE | MEAN AR | RUMENT
LC.803 | STANDARD DEVIATION 14.25 | on s | UM OF ARGUMENTS
1210.000 | NON-MEIGHTED | | |---|--|--|--------------------------------
--|---------------------------------|--|------------------------|--| | | UPPER
LIMIT
1
11 | OR SERVED
FREQUENCY
62 | PER CENT
OF TOTAL
55.35 | PERCENTAGE
55.3 | CUMULATIVE
REMAINDER
44.6 | MULTIPLE
OF MEAN
•092 | DEVIATION FROM MEAN687 | | | | 21
31
41 | 13
9
9 | 11.60
8.03
3.03
12.50 | 66.9
74.9
83.0
95.5 | 33.0
25.0
16.9
4.4 | 1.018
1.943
2.869
3.795 | .013
.715
1.416 | | | | REMAINING FREQUENC | TES ARE ALL ZERG | 4.46 | 100.0 | .0 | 4.720 | 2.117
2.819 | | | | ٠ | | | | | | | | | | | en e e ez ez ez ez ez ez | | | | | | | | | | | | | | | | | | | The state of s | The state of the state of the state of | | | | | | | | | | • | | | | | | | | ٠ | and a second | Maria de la compania del compania de la compania de la compania del compania de la del la compania del la compania de del la compania del la compania de la compania del | | | | | | | | | | | | | | | | | | | to the transfer of the same | · West Transmission of the state stat | The second secon | | | | | | | | | • | | | | | | | | | | and the second service service services and the second services services are services as the second are services as the second services are services are services as the second services are services are services as the second services are services are services as the second services are service | mile a service of a service of the personnel of the service | The state of s | | en e | | | | 1 0 | TABLE J | radigo es casal del como apo los acidentes finas aportad radigos do a casa que la delicidad | والمتعارض والمتع | The state of the section sect | ing the product of the best of the party of the best of the party t | |----------|--|---|--
--|--| | | ENTRIES IN TABLE MEAN ARGUMENT | STANDARD DEVIATION 3.769 | SUM OF ARGUMENTS
537.000 | NON-WEIGHTED | • | | | UPPER OPSERVED PER CENT
LIMIT FREQUENCY OF TOTAL
1 230 86.58 | | MULATIVE MULTIPLE
EMAINDER OF MEAN | DEVIATION
FROM MEAN | ** | | | 11 13 5.62
21 18 7.79
REMAINING FREQUENCIES ARE ALL ZERO | 92.2
100.0 | 13.4
7.7
.0
9.033 | 351
2.301
4.954 | • | | 0 | and the state of t | | | | • | | 0 | | | | | • | | 0 | en e | | | | • | | 0 | | | | | 8 | | • | | | | | • | | 0 | | | | | | | 0 | | | | | | | 0 | | | | | • | | • | | | | | ® | | ③ | | | | | • | | (3) | | | | | • | | • | | | | | • | | • | | | | | 0 | | 0 | | | | | • | | © | | | | | • | | | | | | | • | | 0 | | | | | @ | | | | | | | | | (() | TABLE K
ENTRIES IN TABLE
82 | MEAN ARG | UMENT
3.951 | STANDARD DEVIATION 15.17 | DN S | UM OF ARGUMENTS
1964.000 | NON-WEIGHTED |
© | |-------------------|--|---------------------------------------|------------------------------|---------------------------------------|---------------------------------|-----------------------------|---|--------------| | 8 | LIMIT
LIMIT
I | OBSERVED
PREQUENCY
7 | PER CENT
OF TOTAL
8.53 | CUMULATIVE
PERCENTAGE
8.5 | CUMULATIVE
REMAINDER
91.4 | MULTIPLE
OF MEAN
•041 | DEVIATION FROM MEAN -1.512 | 0 | | 0 | 11
21
31
41 | 18
14
10 | 21.95
17.07
12.19 | 30.4
47.5
59.7 | 69.5
52.4
40.2 | .459
.876
1.294 | -1.512
853
194
.464 | ତ | | ® | SI
REMAINING FREQUENCIE | 17
16
FS ARE ALL ZERO | 29.73
19.51 | 80.4
100.0 | 19.5
.0 | 1.711
2.129 | 1.123
1.762 | 0 | | 0 | | | | | | | | 0 | | 0 | | | | | • | | | 0 | | 0 | | | | | | | | • | | (6)
(8) | | | | | | | | 0 | | 9 | ti e e e e e e e e e e e e e e e e e e e | | | | | | | 0 | | o | we consider the second | | | | | | | • | | © | n e e e e e e e e e e e e e e e e e e e | · · | | | | | | 0 | | | The last of la | | | | | | | • | | • | | | | | | | | • | | ()

() | | · · · · · · · · · · · · · · · · · · · | | e e e e e e e e e e e e e e e e e e e | | | | • | |) | | | | | | | | • | |)
) | | | | | | | | 0 | | 3 | e e e | | | , | | | | ® | | • | | | | | | | er en | 0 | | J | | | | | | | | ^ | | 0 | TABLE L | | Carrier is and because a secretary on secre | ambilita e kirib ir ek limen ani kirib. | | | A STATE OF THE PROPERTY | ريد ويونسو بهنوي فط جد ب | and the construction of the construction of | وقور والمارية والمساود | |-------------
--|--|--|--
--|--|--|--------------------------|---|------------------------| | (3) | ENTRIES IN TABLE
223 | MEAN AR | GUMENT
11.215 | STANDARD DEVIAT | 110M SU
980 | M OF ARGUMENTS
2501.000 | NON-WEIGHTED | | | • | | | UPPER | OBISERVED
FREQUENCY | PER CENT
OF TOTAL | CUMULATIVE
PERCENTAGE | CUMULATIVE
REMAINDER | MULTIPLE | DEVIATION | | 4- | 0 | | (| 1
11
21 | 119
25
23 | 53.36
11.21 | 53.3
64.5 | 46.6
35.4 | OF MEAN
• 089
• 980 | FROM MEAN
730
015 | | | 0 | | 0 | 31
41 | 26
24 | 10.31
11.65
10.76 | 74.8
86.5
97.3 | 25.1
13.4
2.6 | 1.872
2.764 | •699
1•415 | | | 6 | | • | 51
REMAINING FREQUENCI | ES ARE ALL ZER | 2 (0 | 100.0 | .0 | 3.655
4.547 | 2.130
2.845 | | | | | (3) | a | | | | | | | | | 0 | | ® | the second of th | the state of the second st | | | | | | | | 0 | | | | | | | | | | | | 0 | | © | en e | · same · , , | | | | | | | | ® | | (9) | | | | | | | | | | © | | 0 | | | | | | | | | | _ | | 0 | and the second s | The state of s | • . | | | | | | | • | | • | • | | | | | | | | | • | | | The second secon | a Charles of Experience States and Automorphy and Automorphy and | · · · · · · · · · · · · · · · · · · · | | | | | | | 0 | | ٥ | | | | | | | | | | © | | 0 | | | | | | | | | | 0 | | 0 | | | The second of th | | | Section 1997 and 1997 | | | | @· | | • | | | | | | | | | | 0 | | 9 | and the second s | The state of s | | the second second | | | | | | 0 | | | | | | | | | | | | 0 | | • | | | | | | | | | | • | | 0 | | | | and the second of o | A Common and the Comm | entropy of the same sam | en e | | | • | | () | | | | | | | | | | • | | 3 | The state of s | en i i de sprime rederroy grandersses in a service and proper the decision of | the second second second second second | to the second second second second | the transfer of the second of | | | | | • | | | And the second of o | And the second of o | | | | | | | | • | | ী | The second of th | | | | | | | | | | | | TABLE M
ENTRIES IN TABLE
168 | MEAN ARG | UMENT
4.535 | STANDARO DEVIAT | ION
984 | SUM OF ARGUMENTS | | | 0 | |--
--|--|----------------------------|--|---------------------------------|---|-------------------------------|--|----------| | 9 | Upseg | | | | | 762.000 | NON-WEIGHTED | | • | | 0 | . LIMIT
1
11 | OB SERVED
FREQUENCY
121
21 | DF TOTAL
72.02
12.50 | CUMULATIVE
PERCENTAGE
72.0
84.5 | CUMULATIVE
REMAINDER
27.9 | MULTIPLE
OF MEAN
•220 | DEVIATION
FROM MEAN
506 | | 0 | | © | 21
31
REMAINING FREQUENCE | 14
12 | 8.33
7.14 | 92.8
100.0 | 15.4
7.1
.0 | 2.425
4.629
6.834 | •925
2•357
3•789 | | 0 | | ٥ | | | | | | | | | @ | | 9 | | | | | | | | | © | | 6 | | | | | | | | | • | | • | | | | | | | | | ® | | 0 | | | | | | | | | | | | | er oeros and annual contract of the o | | | | | | | • | | • | | | | | | | | | © | | 0 | and the second s | The second secon | | | | | | | 0 | | ©
@ | | | | | | | | | 0 | | 8 | The second secon | Parallel of the second control of a second s | | ••••••• | | er i en | | | 0 | | 0 | | | | | | | | | ® | | •••••••••••••••••••••••••••••••••••••• | | e de constituir de la c | | the section of se | | en e e e e e e e e e e e e e e e e e e | | | 0 | | * | | | | | | | | | 0 | | • | er en man en somme en me seu en | | | | | er e en | | | • | | a | | · ••• | | | | | | | • | | 9 | | | | | | | | | 0 | | • | | | | | | | | | 0 | 0 0 0 () (3) 0 0 0 (3) (2) START 72 | 0 | RELATIVE CLOCK | 7 200 A B SOLUTE CLUCK | and the state of t | ter annabeset. Italiening the option in the | to the state of th | | | | |--------------|--|--
--|---|--|--------------------|-------------------|--------------| | | BLOCK COUNTS
BLOCK CURRENT TOTAL | | 9000 | | | | (| 0 | | 9 | 1 0 7 | 2 11 0 77 | BLOCK CHRRENT
21 1 | | CK CURRENT TOTA | | TOTAL | | | | 2 0 7; | ,, | 22 0 | 76 | 31 0 14
32 0 14 | | 1805
1772 | 0 | | 9 | 4 0 150
5 0 150 | 3 14 0 152 | 23 0
24 0 | | | 4 43 0 | 15 3 3 | | | | 6 1 77 | 7 16 0 76 | 25 0
26 1 | 183 | 35 0 7 | 4 45 0 | 128
128 | 0 | | 10 | 7 0 76 | 5 17 0 76 | 27 0 | 91 | | 74 45 0
74 47 0 | 0 | _ | | 0 | 9 0 77 | 7 19 0 76 | 28 0
29 0 | | 38 0 7 | 4 48 0 | 149 | • | | | | 78 | 30 0 | | 39 0 7
40 0 180 | | 0
1306 | (D) | | 0 | BLOCK CURRENT TOTAL 51 0 112 | | BLOCK CURRENT | | CK CURRENT TOTA | L BLOCK CURRENT | TOTAL | W. | | | 52 0 112
53 0 112 | 62 0 1175 | 71 0
72 0 | | 81 0 14
82 0 14 | 9 91 0 | 189 | | | • | 54 0 112 | 64 0 1195 | 73 0
74 0 | 154 | 83 0 14 | 9 93 0 | 198
219 | | | - The second | 55 0 112
56 0 112 | | 75 0 | 154 | 84 0 14
85 0 18 | | 219 | D | | 0 | 57 0 112 | 67 0 151 | 76 0
77 0 | | 86 013 | 9 96 0 | 1 64
1 64 | | | | 59 0 1194 | | 78 0
79 0 | 149 | 88 0 18 | | 164
164 | D | | 0 | 60 0 1195 | 70 0 161 | 30 0 | | 89 0 189
90 0 189 | | 164 | _ | | | BLOCK CURRENT TOTAL | The second section of the second seco | BLOCK CUPRENT | TOTAL BLOC | | | 164 | D | | | 132 0 164 | | 121 0
122 0 | 0 13 | 31 0 187 | | TOTAL 250 | | | 0 | 103 0 164
104 0 164 | 113 0 44 | 123 0 | 0 13
383 13 | | 2 142 0 | 250 | 19 | | | 135 0 55 | 115 0 290 | 124 0
125 0 | 3 83 13
3 83 13 | 34 0 (| 144 0 | 0
0 6 | a | | 0 | 106 0 55
107 0 55 | 116 1 380
117 0 379 | 126 0 | 383 13 | 3.5 0 3.90 | | 250
250 | 1 | | | 108 0 11
109 0 11 | 113 0 393 | 127 0
128 0 | 383 13
154 13 | - | 147 0 | 250 | 0 | | 0 | 110 0 55 | 119 0 383
120 0 0 | 129 17
130 0 | 1894 13 | 0 248 | 149 0 | 250
250 | | | | BLOCK CURRENT TOTAL | BLOCK CUPPENT TOTAL | • | - | 270 | 150 0 | 958 | ١ | | 9 | 151 0 960
152 0 960 | 161 0 309 | BLOCK CURRENT
171 0 | TOTAL BLCC
309 18 | K CURRENT TOTAL 1 0 382 | occor contin | TOTAL | - | | @ | 153 0 960 | 163 0 311 | 172 0
173 0 | 309 18 | 2 0 382 | 192 0 | 250
250 | 1 | | ₩. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 164 0 311
165 0 0 | 174 0 | 382 18 | | | 58 | | | (1) | 156 0 960
157 0 960 | 166 0 0 | 175 0
176 0 | 382 189
382 186 | - 200 | 195 0 | 27 | ' | | ~ | 158 0 960 | 167 0 311
168 0 311 | 177 0
178 0 | 0 18 | 7 0 250 | 196 0
197 0 | 27
27 | . [| | (3) | 159 0 960
160 0 960 | 169 0 311
170 0 309 | 179 0 | 0 188
382 189 | ¥ 200 | 198 0
199 0 | 27 | | | | BLOCK CURPENT TOTAL | Di Ody | 180 0 | 382 190 | 0 250 | 200 0 | 27
27 @ | | | © | 201 0 27 | BLOCK CUPRENT TOTAL .
211 0 31 | BLOCK CURRENT
221 0 | | K CURRENT TOTAL | BLOCK CURRENT | TOTAL | ř | | • | 202 0 27
203 0 31 | 212 0 31 | 222 0 | 168 231
168 232 | 2 0 23 | 241 0
242 0 | . 44 | 1000 | | ® | 204 0 31 | 214 0 235 | 223 0
224 0 | 168 233
168 234 | 3 0 23 | 243 0 | 44 | Š | | 6 | 206 0 31 | 21 5 0 212
21 6 0 15 8 | 225 0
226 0 | 168 235 | 5 0 0 | 244 0
245 0 | 44
44 | | | 0 | 207 0 31
203 0 31 | 217 0 168 | 227 0 | 168 23 <i>6</i>
23 237 | | 246 0 | 44 | t Levis | | 0 | 209 0 31 | 219 0 169 | 228 0
229 0 | 23 238
23 239 | 3 0 0 | 248 0 | 44
44 | er in market | | *** | | 223 0 168 | 230 0 | 23 240 | | 249 12
250 0 | 2195 | Colonia | | 0 | BLOCK CURRENT TOTAL 251 0 445 | BLOCK CUPPENT TOTAL | BLOCK CUPRENT | TOTAL BLOCK | COURRENT TOTAL | | | ř. | | | 4 10 | $\mathcal{D}(0)$ and $\mathcal{D}(0)$ | 171 | 27.1 | | BLOCK CURRENT | TOTAL | Ê | . But But Sand Sand Sand والمناو والمالية والمالية والمالية والمالية | MESTINGEN | والمنافقة المنافقة المنافقة | e) characteristic (natively) | <u> بىن نىدى دۇرۇرى دۇرۇرى دۇرۇرى</u> | A CONTRACTOR OF THE PARTY TH | | and the constitution of | parallel delicity and trail ex- | institution and the | an all all and a second | | | | | | | | |------------|-----------------------------|------------------------------|---------------------------------------
--|---------------------------------------|-------------------------|---------------------------------|---------------------|------------------------------|------------------------|---------|-------|----------|--------------------------------|-----------------------------|------------------------------------| | 6 | 253 | | 1715 | 26.3 | 0 | 900 | 2 7 3 | O. | ىيىنىدىنى قاقىلىدىد.
3 43 | درضون میانداند.
283 | | 464 | | والمعارضة والمتعادضة المتعادضة | siadawa wa sansi asalah was | or the second second second second | | 9 | 254 | ο | 243 | 264 | 9 | 609 | 274 | 0 | 343 | 284 | 0 | | 293 | 0 | 1324 | | | | 255 | 0 | 503 | 26.5 | 0 | 909 | 275 | | 343 | | - | 464 | 294 | c | 0 | 0 | | | 256 | 0 | 9)9 | 26.6 | 0 | 909 | 276 | | | 285 | 0 | 464 | 295 | 0 | 0 | | | 6 | 257 | О | 909 | 26.7 | 0 | 939 | 277 | | 343 | 286 | 0 | 464 | 296 | 0 | 0 | | | | 258 | Э | 909 | 26.8 | 0 | 1372 | | _ | 3 43 | 287 | 0 | 464 | 297 | 0 | 1024 | 6 | | | 259 | 0 | 939 | 25.9 | | | 278 | | 3 43 | 288 | 0 | 464 | 298 | 0 | 1024 | W | | (| 260 | ŏ | | | 0 | 464 | 279 | | 464 | 289 | 0 | 1025 | 299 | o o | 1024 | | | VALV. | 200 | U | 909 | 270 | 0 | 343 | 280 | 0 | 454 | 290 | 1 | 1025 | 300 | 0 | | _ | | | 0.1.00.0 | c | | | | | | | | | - | 102) | 200 | U | 1024 | • | | <i>a</i> | | CURRENT | TOTAL | BECCK | CURRENT | TOTAL | BLCCK | CUPPENT | TOTAL | BLOCK | CURRENT | TOTAL | 01.054.6 | | | | | 0 | 301 | 0 | 1024 | 311 | 0 | 432 | 321 | 0 | 1528 | 331 | | | BLOCK C | | TOTAL | | | | 302 | 17 | 2740 | 31.2 | Ü | 432 | 322 | õ | 994 | | 0 | 534 | 341 | 0 | 3 2 1 | 9 | | | 303 | 0 | 2737 | 31.3 | · · · · · · · · · · · · · · · · · · · | 432 | 323 | - | | 332 | 0 | 534 | 342 | 0 | 321 | | | @ | 304 | 0 | 2749 | 314 | ő | 739 | | 0 | 994 | 333 | 0 | 534 | 343 | 0 | 321 | | | ~ | 305 | ΰ | 1221 | 31.5 | | | 324 | 1 | 394 | 334 | 0 | 534 | 344 | 0 | 321 | 0 | | | 306 | 0 | 492 | | Ç | 739 | 325 | 0 | 993 | 335 | 0 | 534 | 345 | ő | 321 | | | Ø. | | | | 31.6 | 0 | 739 | 326 | 0 | 993 | 335 | 0 | 1801 | 346 | - | | | | ③ | 367 | 0 | 482 | 31.7 | ŋ | 739 | 327 | 0 | 993 | 337 | 0 | | | 0 | 321 | | | | 308 | 0 | 482 | 31.8 | 0 | 739 | 328 | Õ | 993 | 338 | _ | 1801 | 347 | 0 | 321 | () | | _ | 309 | 0 | 48.2 | 31.9 | 0 | 739 | 329 | 0 | | | 0 | 1785 | 348 | 0 | 4 | * | | 0 | 310 | 0 | 482 | 32.0 | ő | 739 | | | 534 | 339 | 0 | 306 | 349 | 0 | 1479 | | | - | - | = | | 446 54 | J | 124 | 330 | С | 534 | 340 | 1 | 322 | 350 | 2 | 349 | Ø | | | מורכע י | CURRENT | TOTAL | 01.00 !! | C1100 =: = | | | | | | | | | | 3.,, | | | 9 | | | _ | | CUPRENT | TOTAL | BLOCK | CURRENT | TOTAL | BLOCK (| URRENT | TOTAL | BLOCK C | HDDENT | TOTAL | | | *39 | 351 | 0 | 348 | 36 1 | 0 | 1129 | 371 | 0 | 8 96 | 381 | 0 | _ | | | TOTAL | _ | | | 352 | 0 | 348 | 36.2 | 0 | 1129 | 372 | Ô | 896 | 382 | 0 | 425 | 391 | 0 | 8 0 3 | • | | _ | 353 | Ü | 348 | 363 | ·) | 1129 | 373 | Ö | | | - | 425 | 392 | 20 | 3140 | - | | () | 354 | 0 | 343 | 364 | 0 | 1129 | | - | 876 | 383 | 0 | 425 | 393 | 0 | 31 42 | | | | 355 | 0 | 348 | 36.5 | | | 374 | 0 | 896 | 384 | 0 | 3094 | 394 | 0 | 3083 | • | | | 356 | 0 | 348 | | 0 | 1129 | 375 | 1 | 26 90 | 385 | 0 | 3094 | 395 | ő | 245 | 493 | | 9 | | | | 36.5 | 0 | 816 | 376 | 0 | 2696 | 386 | 10 | 3094 | 396 | 0 | | | | 400V | 357 | 0 | 348 | 36.7 | 0 | 896 | 377 | 0 | 27 | 387 | 0 | 3091 | | | 246 | _ | | | 358 | 2 | 1130 | 368 | 0 | 896 | 378 | Õ | 425 | 388 | • | | 397 | 0 | 246 | 0 | | _ | 359 | 0 | 1129 | 36.9 | . 0 | 896 | 379 | 0 | | | 0 | 752 | 39.8 | 0 | 246 | | | 3 | 360 | 0 | 1129 | 370 | ő | 0 | - | - | 425 | 389 | 4 | 2339 | 399 | 0 | 246 | | | | - | | | 5.0 | 1,1 | U | 380 | 0 | 425 | 390 | 0 | 2337 | 400 | 0 | 246 | @ | | | SENCK C | THRRENT | TOTAL | B1 00 2 | CHOOSE | TOT | | | | | | | | ** | 2.10 | . 🐷 | | 0 | 431 | 0 | | | CURRENT | TOTAL | | CURRENT | TOTAL | BLOCK C | URRENT | TOTAL | BLOCK C | HPRENT | TOTAL | | | 0.9 | | | 2833 | 41 I | 0 | 346 | 421 | 0 | 1452 | 431 | 0 | 403 | 441 | 0 0 | | _ | | | 402 | 0 | 2833 | 41.2 | Û | 348 | 42.2 | Ö | 1452 | 432 | 1 | | | | 31 | ® | | m | 403 | U | 348 | 413 | 0 | 343 | 423 | õ | 400 | 433 | | 701 | 442 | 17 | 29 25 | | | 0 | 434 | 0 | 343 | 41.4 | O | 348 | 424 | Ö | | | 0 | 703 | 443 | 0 | 2922 | | | | 405 | 0 | 346 | 415 | ő | 348 | | - | 403 | 434 | 0 | 703 | 444 | 0 | 2891 | 60 | | | 406 | Ô | 2490 | 416 | 0 | | 425 | 0 | 403 | 435 | 0 | 703 | 445 | 0 | 2208 | V237 | | (3) | 407 | ő | 449 | 417 | | 348 | 426 | 0 | 403 | 430 | 0 | 703 | 446 | Ö | 387 | | | | 408 | 0 | | | 1 | 1450 | 427 | 0 | 403 | 437 | 0 | 703 | 447 | 0 | 372 | | | | | | 400 | 41.8 | 0 | 1452 | 428 | 0 | 4.03 | 438 | Ö | 672 | 448 | | | • | | _ | 439 | 0 | 2041 | 41.7 | O | 1452 | 429 | 0 | 403 | 439 | 0 | | | 0 | 369 | | | @ | 410 | 0 | 642 | 420 | 0 | 1452 | 430 | 0 | 403 | | - | 672 | 445 | O | 1821 | | | | | | | | - | ~ * * * * | 770 | U | 403 | 440 | 0 | 672 | 450 | 0 | 5 8 8 | • | | | BLOCK C | UNRENT | TOTAL | BLOCK O | CURRENT | TOTAL | 01.06:: | C110000. | | | | | | | · · · · · · | 439 | | (2) | 451 | 0 | 414 | | | TOTAL | | CURRENT | T OT AL | BLOCK C | URRENT | TOTAL | BLOCK CI | PREMT | TOTAL | | | WW. | 452 | 0 | | 461 | 0 | 1046 | 471 | 0 | 730 | 481 | 0 | 5 | 20 5 G 1 | | TOTAL | _ | | | | | 1248 | 462 | 0 | 1043 | 472 | 0 | 730 | 482 | ő | 5 | | | | @ | | €D. | 453 | 0 | 379 | 463 | 0 | 1048 | 473 | 0 | 730 | 483 | . 0 | | | | | | | () | 454 | 0 | 369 | 46.4 | 0 | 1048 | 474 | 0 | 730 | | | 5 | | | • | | | | 455 | 0 | 370 | 46.5 | Š | 1043 | 475 | 0 | | 484 | 0 | 5 | | | * | ® | | | 456 | 0 | 370 | 465 | ő | | | - | 1065 | 485 | 0 | 442 | | | | W.V | | ® | 457 | ō | 370 | | | 1048 | 476 | 0 | 445 | 486 | 0 | 442 | | | | | | - | 458 | 0 | | 467 | 0 | 1048 | 477 | 0 | 447 | 487 | 0 | 442 | | | | _ | | | | | 370 | 463 | 0 | 683 | 478 | 0 | 447 | 488 | ő | 442 | | | | ® | | æ. | 459 | υ | 370 | 45 7 | 0 | 727 | 479 | 0 | 5 | 489 | . 0 | | | | | | | (3) | 460 | 0 | 370 | 470 | 0 | 730 | 480 | Õ | 5 | | | 442 | | | | | | | | | | • | ** | | -7 U U | v | פ | 490 | 0 | 442 | | | | 6 | | | | | | | | | | | | | | | | | • | ACA, | | @ | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | | , | | 0 | LOGIC SWITCH — SET (ON) STATUS SWITCH UR NR | rate en | |----------|--|---| | 0 | MAD JUB STB THE THE NR NR NR NR NR NR | Ø | | 0 | | | | 0 | | © | | 0 | | • | | a | | 0 | | 3 | | 0 | | | | • | | 0 | | • | | 9 | | 0 | |) | | • | | 9 | | | |) | | • | | D | | 9 | |) | | 0 | |) | | • | |) | | • | | | | 0 | |) | | © | |) | | • | | | en de la composition de la composition
La composition de la | 8 | | ! | | | | | | • | | | | • | | 9 | QUEUE
1 | MAXIMUM
CENTENTS | A VERAGE
CONTENTS | TOTAL
ENTRIES | ZERO
ENTRIES | PERCENT
ZEKOS | AVERAGE
TIME/TRANS | \$AVERAGE
TIME/TRANS | TABLE
NUMBER | CURRENT
CONTENTS | | nanderine provincia all'es de l'elle préside de l'elle | |---|--------------------------------|---|------------------------|------------------|-----------------|------------------|-----------------------|-------------------------|-----------------|---------------------|--------|---| | Þ | 1 2 | 3 | .230
.000 | 161
1774 | 1774 | .0
100.0 | 12.552
.000 | 12.552 | 1 | COMIENTS | | | | | 3 | | •530
1•626 | 154
384 | | .0 | 23.274
30.502 |
23.274
30.502 | 2 | | | | | | 5
6 | 5
1 | •523
•000 | 311
2100 | 2100 | 100.0 | 12.125 | 12.125 | 3
4 | 1 | | | | | 7
8 | 2
4 | .140
.623 | 31 | 2.100 | •0 | .000
32.580 | -000
32-580 | 5 | | | | | | 9 | 6 | .237 | 168
343 | | •0
•0 | 26.738
4.976 | 26.708
4.976 | 6
7 | | | | | | 10
11 | 1
11 | .000
3.074 | 2740
1025 | 2740 | 100.0 | .000
21.599 | .000 | | | | 4 | | | 12
13 | 9 | •875
•000 | 422 | 22.5 | •0 | 13.074 | 21.599
13.074 | · 8 | 1 | | | | | 14 | 6 | .294 | 3915
994 | 3915 | 100.0 | .000
2.135 | .000
2.135 | 10 | | | | | | | | .an
1.119 | 1527
322 | 1527 | 100.0 | .000 | .000 | | 1 | | | | | 17
18 | 7
6 | 1.383 | 896 | | •0 | 25.043
11.113 | 25.043
11.113 | 11
12 | 1 | | | | | 19 | 9 | •595
• 7 42 | 704
730 | | •0
•0 | 6.105
7.323 | 6.105 | 13 | 1 | | • | | | 20
21 | 3
1 | •351
•000 | 149 | 220/ | .0 | 17.006 | 7.323
17.006 | - 14 | | | , | | | 22 | 4 | •183 | 3326
189 | 3326 | 100.0 | •900
6•984 | .000
6.934 | | | ······ | | | | 23
24 | 5
6 | .630
.317 | 392
464 | | • 0 | 11.584 | 11.884 | | | | | | | 25 | 1 | .000 | 3094 | 3094 | .0
100.0 | 4.922
.000 | 4.922
.000 | | | | | | | 26
28 | 9
5 | 1.194
.182 | 739
534 | | • ()
• () | 10.759 | 10.759 | | | | | | | 29
30 | 5 | 1.294 | 350 | | •0 | 2.455
26.637 | 2.455
26.637 | | 2 | | | | | 31 | 5 | 1.599
.462 | 1131
403 | | .0 | 10.181
8.265 | 10.181
8.265 | | 2 | | | | | 32
33 | 3
8 | •173
•557 | 246
447 | 2 | .0 | 5.081 | 5.081 | | | | | | | 3.4 | 1 | •000 | 5 | 3 | •6
•0 | 8.979
1.000 | 9.040
1.000 | | | | | | | 35
36 | 1 | .019 | 55
23 | | .0 | 2.490 | 2.490 | | | | | | | 37
38 | 2 | .177 | 1, 4 | | • 0 | 1.000
29.068 | 1.000
29.068 | | | | | | | 39 | ? | -034
-112 | 250
27 | | .0
.0 | 1.000
29.925 | 1.000
29.925 | | | | | | | 40
41 | $\frac{1}{3}$ | .059 | 425
1195 | | • 0 | 1.000 | 1.000 | | | | | | | 42 | 5 | .814 | 960 | | •0
•0 | 3.566
6.112 | 3.566
6.112 | | | | | | | 43
44 | 7
8 | • 455
• 75 0 | 900
1048 | | .0 | 3.605 | 3.605 | | | | | | | 55
57 | 5 | • 753 | 1453 | | •0 | 5.154
3.735 | 5.154
3.735 | | 1 | | | | | 58 | | .190
.428 | 250 | | •0 | 12.276
12.351 | 12.276 | | . | • | | | | 59
60 | 5
7 | .398
.484 | 348
370 | | •0 | 8.241 | 12.351
8.241 | | | • | | | | 61 | 1 | .000 | 1345 | 1345 | 100.0 | 9.429
.000 | 9.429
.000 | | | | , , | | | ⊅4VERAG | E TIME/TRANS | = AVERAGE TI | ME/TRANS EX | CLUDING ZER | O ENTRIES | - 0 0 0 | • 000 | | | | 4 | | | mention were a requirement and | to the second | | • | | | | | | | | ٠. | | | | | | | | | | | | | | • | | | | | | | | | | | | | | ` | | | | | | | | | | | | | | @ | | | | ** 1500 | . I thereads | | | | | | | | | _ | | | | | | | | | | | | | | (| () | - wateren | armounted second material recognistic and recognistic constitutions of the amount of recognistic and recognistic constitutions. | | water to have been also as a second second second | and State and American | | | | |-----------|--|--|---|--|------------------------|--|----------| | 0 | TABLE A ENTRIES IN TABLE MEAN ARGUMENT 161 12.552 | STANDARD DEVIAT | ION
316 | SUM OF ARGUMENTS
2021.000 | NON-WEIGHTED | and the same field that is a second distribution of the same same same same same same same sam | 0 | | 9 | UPPER OBSERVED PER CENT
LIMIT FREQUENCY OF TOTAL | CUMULATIVE
PERCENTAGE | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | 0 | | 1 | 1 31 19.25
11 43 29.31
21 46 29.57 | 19.2
49.0
77.6 |
80.7
50.9
22.3 | .079
.876
1.672 | -1.240
166 | | 0 | | .0 | 31 35 21.73
41 1 .62
REMAINING FREQUENCIES ARE ALL ZERO | 99.3
100.0 | .6 | 2.469
3.266 | •906
1•980
3•053 | | 0 | | 0 | | | | | | | 0 | | 9 | | | | | | | @ | | 9 | | | | | | | 0 | | 0 | | | | ٠. | r wa | | ® | | 0 | and the second of o | | | | | | - | | 0 | | | | | | | 0 | | © | the control of co | | | | | | 0 | | 3 | | | | | | | 0 | | | The second secon | | | | | | @ | | ③ | | | | | | | 0 | | • | | | | | | | • | | ٩ | | | | | | | • | | 0 | | | | | | | 0 | | | | entro de la composición del composición de la co | | | | | _ | | ® | • | | | | | | 0 | | | | and the second of o | manager and the second of the second | and the second s | | | 9 | | ۵ | | | | | | · | 0 | | | | | | | | ÷ | 0 | | | | | | | | | • | | <u> </u> | | | | | | | ľ | | TABLE PENTRIES IN TABLE 164 | MEAN AF | RGUMENT
23.274 | STANDARD DEVIATION 21.1 | | UM OF ARGUMENTS
3817.000 | NON-WEIGHTED | The second secon | |--|--|--|----------------------------------|---------------------------------|--|------------------------------|--| | UPPER
LIMIT
1 | , OBSERVED
FREQUENCY
35 | PER CENT
OF TOTAL
21.34 | CUMULATIVE
PERCENTAGE
21.3 | CUMULATIVE
REMAINDER
78.6 | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | | 11
21
31 | 33
26
14 | 20.12
15.35
8.53 | 41.4
57.3
65.8 | 78.6
58.5
42.6
34.1 | .042
.472
.902
1.331 | -1.051
579
107
.364 | | | 41
51
61
71 | 14
15
23
4 | 8.53
9.14
14.72
2.43 | 74.3
83.5
97.5
100.0 | 25.6
16.4
2.4 | 1.761
2.191
2.620 | .836
1.308
1.780 | | | REMAINING FREQUENCE | ES APP ALL ZER | 0
 | • 0 | 3.050 | 2.252 | | | | | | | • | | | | | e de la companya | Communication of the second control s | | | | | | | | | | | | | | | | | en e | |
And the second s | | and the second s | | · | ······································ | | | | | | | | | | * | | | to the second se | | | | | | | | | * *** · · | | | | | | | | | 0 | TABLE C | Talistone di Service do Mario di La | and a street of the liberty was a second | the state of the second st | والمستعددة | والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد | | and the state of t | |------------|--|--|--|--|---|---|--
--| | | ENTRIES IN TABLE 383 | MEAN AR | GUMENT
31.031 | STANDARD DEVIATIO | | SUM OF ARGUMENTS | | | | 0 | UppER | OB SERVED | PER CENT | 25.1 | | 11985.000 | NON-WEIGHTED | | | 0 | 1 | FREQUENCY 82 | OF TOTAL
21.40 | CUMULATIVE
PERCENTAGE
21.4 | CUMULATIVE
REMAINDER
78.5 | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | ₩ | | 0 | 11
21
31 | 40
43
44 | 10.44
11.22
11.48 | 31.8
43.0
54.5 | 68.1
56.9 | •032
•354
•676 | -1.192
795
398 | 6 | | () | 41
51
61 | 34
37 | 8.37
9.66 | 63.4
73.1 | 45.4
36.5
26.8 | •998
1•321
1•643 | 001
.395 | • | | | 71
81 | 43
35
25 | 11.22
9.13
6.52 | 84.3
93.4
100.0 | 15.6 | 1.965
2.288 | .792
1.189
1.586 | 0 | | 0 | REMAINING FREQUENCIES | | | 100.0 | •0 | 2.610 | 1.983 | • | | 0 | | | | | • | | | _ | | 9 | | | | | | | | ⊗ | | 0 | to the second | energy and a second | | | | | | • | | • | | | | | | | | • | | | en e | | | | | | | • | | 0 | | | | | | | | # | | 9 | | | | | | • | | • | | 9 | en e | the state of the state of the state of | | | | | | • | | ۵ | | | | | | | | 0 | | | The state of s | Professional Control of the State Sta | **** | | | | | @ | | • | | | | | | | | • | | | | | | | | | | 42 | | 9 | The first of the second | en e | | | | | | • | |) | | | | | | | | © | | | The state of s | | | the management of the second | **** | 2 | | • | | , | | | | | | | to the second of | 0 | | | | | | | | | | | |) | en in the second of | A STATE OF THE STA | | | * * * * · · | | | • | |) | | | | | | | | • | | | | | | | | | | | | 0 | TARE C | and the second section of the second section of the second section of the second section of the second section | | entre de la | elikaiseksi vasulensi kennelin kiris, kusu ishigi C. kaik (k. 1. cora dili bet | |--|--|--|--|---|--| | 6 | ENTRIES IN TABLE MEAN ARGUMENT 311 12.170 | STANDARD DEVIATION 12.792 | SUM DE ARGUMENTS
3785.000 | NON-WEIGHTEN | • | | ************************************** | UPPER ORSERVED PER CENT
LIMIT FREQUENCY OF TOTAL
1 145 46.62 | CUMULATIVE CUMULAT PERCENTAGE REMAIN | TIVE MULTIPLE
IDER OF MEAN | DEVIATION FROM MEAN | 0 | | 8 | 11 27 8.58
21 49 15.75
31 64 20.57 | 55.3
71.0 | 63.3
64.6
903
86.9
1.725
8.3
2.547 | 873
091
.690 | • | | 0 | 41 26 8.36 REMAINING FREQUENCIES ARE ALL ZERO | 100.0 | 8.3
.0 2.547
3.368 | 1.471
2.253 | • | | 9 | | | | | • | | 9 | | • | | | • | | 0 | | | | | © | | D | | | | | 0 | |) | | | | | • | |) | | | | | • | | þ | | e e | • | | 0 | |) | | | | | • | | | | | en e | | 0 | |)
) | | | | | • | | | | | | | • | | ı | | | | | • | | | the same of sa | | Commence of the th | | © | | | | | | | @ | | • | | | | | 9 | | , | | | | | 640 | | يانينيادوا فيلة الاصلينات
ا | والمناوية والمناص والمناوية والانتهان والمنافية والمنافية والمناطقة والمناطقة والمناوية والمناوي | Name to desire the state of | | and the second of o | | |--------------------------------
--|--|---|--|--| | 0 | TABLE E ENTRIES IN TABLE MEAN ARGUMENT 31 32.580 | STANDARD DEVIATION | SUM OF ARGUMENT | . S | e de la come de me constante exeminado como contente como medio de la como de del productivo de la como dela como de la como dela como de la como dela como de la com | | 0 | UPPER OBSERVED PER CENT | 22.875
CUMULATIVE CUM | 1010.00
JLATIVE MULTIPLE | DEVIATION OG DEVIATION | • | | 0 | 1 5 16.12
11 3 9.67 | 16.1
25.8 | MAINDER OF MEAN
83.8 .030
74.1 .337 | FROM MEAN
-1.380
943 | • | | 0 | 31 5 16.12
41 3 9.67 | 32.2
48.3
58.0 | 67.7 .644
51.6 .951
41.9 1.258 | 506
069
368 | • | | 0 | 61 2 6.45 | 80.6
87.0
100.0 | 19.3 1.565
12.9 1.872
.0 2.179 | .805
1.242 | © | | 0 | REMAINING FREQUENCIES ARE ALL ZERO | | 2.114 | 1.679 | • | | 0 | | | | | • | | 0 | | | | Ten es | | | 0 | The second of th | | | | | | 9 | | | | | - | | 0 | | | | | 6 | | 0 | | | | | • | | • | | 4 | | | • | | @ | | | | | • | | © | er en | e ere er | e e e e e e e e e e e e e e e e e e e | | • | | 0 | | | | | © | | () | en e | | | | © | | 0 | | | | | ③ | | | | | and the second of the second of the second of | and the second s | • | | (a) | | | | | Ø | | © | | man en | | | • | | * | | | | | • | | 6 4 | | | | | ************************************** | | ٩ | TABLE F
ENTRIES IN TABLE
168 | | UMENT
5.708 | STANDARD DEVIAT | 10N St
500 | JM OF ARGUMENTS
4487.000 | NON-MEIGHTED | and the state of t | |--------
--|--|--|---|------------------------------|-----------------------------|------------------------|--| | 3 | TIAIL
Noses | OP SER VED
FRE CUENCY
43 | PER CENT
UF TOTAL
23.57 | CUMULATIVE
PERCENTAGE
28.5 | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | | 9 | 11
21
31 | 17
14
21 | 10.11
8.33
12.50 | 38.6
47.0
59.5 | 71.4
61.3
52.9
40.4 | .037
.411
.786 | -1.093
668
242 | | |) | 41
51
61 | 14
17
19 | 8.33
10.11
11.30 | 67.8
77.9
89.2 | 32.1
22.0
10.7 | .1.160
1.535
1.909 | •182
•608
1•033 | | |) | REMAINING FREQUENCIES | 18
S ARE ALL ZERO | 10.71 | 100.0 | .0 | 2.283
2.658 | 1.459
1.884 | | | • | | | | | | | | | |) | | | | | | | | • | |) | | en e | | | | | | (| | 1 | | | | | | | | (| | | en e | The second secon | | | | | | 6 | | | | | · | | | | | . (| | | | the second of the second | | | | | | | | | | | | | | | | • | | | and the second of o | CONTRACTOR SECURITION | | | | | | • | | | | | | | | | | • | | | | Anne miles who see | | to the transfer of the contract | | | | © | | | | | | | | | | • | | ** *** | | | the second of th | territoria de la composición de la comp | to the second of the second | | | 0 | | | | | | | | | | @ | | | to the second | en e market da di agrico di c | | | | | | 0 | | | | | | | | | | 0 | | 9 | TABLE G | en e | one in the second state of the second se | Ning (Salasharia Maria Maria Salasharia Sala | en distribution mentional l'infrance annue per le conseque de l'annue de la conseque conse | and become after the second and a contract of | |----------
--|--|--|--|--|--| | | ENTRIES IN TABLE MEAN ARGUMENT 343 4.976 | STANDARD DEVIATION 6.257 | : | SUM OF ARGUMENTS
1707.000 | NOV USTOUTED | • | | 0 | UPPER 08 SEPVED PER CENT
LIMIT FREQUENCY OF TOTAL
1 208 60.54
11 78 22.74 | CUMULATIVE CUPERCENTAGE F | MULATIVE
REMAINDER
39.3 | MULTIPLE
OF MEAN
-200 | NON-WEIGHTED DEVIATION FROM MEAN635 | • | | 0 | 21 49 14.28 | 83.3
97.6
100.0 | 16.6
2.3
.0 | 2.210
4.219
6.229 | •962
2•560
4•158 | ◎ | | 0 | REMAINING FREQUENCIES ARE ALL ZERO | | | | 4.138 | © | | 0 | | | | | | ® | | 3 | and the second of o | | | | | • | | O | | | | | | • | | 0 | the second secon | | | | | • | | 0 | | | | | | • | | 0 | en e | | | | | • | | 0 | | | | | | • | | 8 | | | | en e | | • | | 0 | | | | | | • | | 0 | | | | | | • | | 0 | | | | | | • | | ® | | | | | | • | | 0 | | | | | | P | | 0 | The second secon | | 11.5 M 1 7.5 L 2.5 L 2.5 L 2.5 L | e and the second of | | 9 | | • | | | | | | • | | | | | | en e | | • | | ი
ი | | | | | | • | | 1,⊹-ar | | | | | * | _ (| | | TABLE H
ENTRIES IN TABLE
1024 | MEAN ARC
2 | UMENT
1.619 | STANDARD DEVIA | TION SU
-937 | IM OF ARGUMENTS
22138.000 | NON-WEIGHTED | | |-----
--|--|--|--|---|--|--|--| | *** | UPPER
LIMIT
I | OR SERVED
FREQUENCY
293 | PER CENT
OF TOTAL
28.61 | CUMULATIVE
PERCENTAGE
28.6 | CUMULATIVE
REMAINDER
71.3 | MULTIPLE
OF MEAN
• 046 | DEVIATION
FROM MEAN | | | | 11
21
31
41 | 129
130
132
130 | 12.50
12.69
12.39
12.69 | 41.1
53.8
66.6 | 58.8
46.1
33.3 | •508
•971
1•433 | -1.088
560
032
.495 | | | | 51
61
REMAINING FREQUENCIE | 125 | 12.20 | 79.3
91.6
100.0 | 20.6
8.3
.0 | 1.896
2.359
2.821 | 1.023
1.551
2.079 | rue. | *5 | | | | | | | • · · · · · · · · · · · · · · · · · · · | er er er en | | | | • | | | | | | | | | | | | | | | ti i ti i ti i ti i ka manana makana a sa | | | er e een een een een een een een een een | en e | e e e e e e e e e e e e e e e e e e e | | | | | | | | | · | The Art Are an appropriate the property of the second seco | | en a company and | · · · · · · · · · · · · · · · · · · · | on the transfer of the second | · Control of the Cont | en e | | | | | | | | | | | | | | | the state of the system | | | The second second second second second | | | | | A SECTION OF THE PROPERTY OF | a description of the second | ومعادن والمعادن والمتناع في المعادد والمعادد وال | -Older Hall St. on Associated and Associated | and the second second second second | International Contraction Contraction | | | |------------------------------
--|--|--|--|---------------------------------------|--|----------| | 0 | TABLE I ENTRIES IN TABLE MEAN ARGUMENT 432 13.074 | STANDARD DEVIATION
13.785 | | M OF ARGUMENTS 6302.000 | NCN-WEIGHTED | nist and he were new white some with the last to he with the mention | 6 | | 0 | UPPER OBSERVED PER CENT LIBIT FREQUENCY OF TOTAL 1 197 40.87 | PERCENTAGE F | JMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | @ | | 9 | 11 75 15.76
21 76 15.76 | 40.8
56.6
72.4 | 59.1
43.3
27.5 | •076
•841
1•606 | 875
150
.574 | | 0 | | 0 | 31 59 12.24
41 59 12.24
51 15 3.11
REMAINING FPEQUENCIES ARE ALL ZERO | 84.6
96.8
100.0 | 15.3
3.1
.0 | 2.370
3.135
3.900 | 1.300
2.025
2.751 | | ٥ | | | TO THE STATE OF THE ALL ALL ALL ALL | | | | | • | 0 | | • | and the second of o | | | | | | • | | 0 | | | | | Ne ve | | • | | | | | | | · | | • | | 0 | | | | | | | • | | 0 | | | | | | | @ | | • | | | | | | | 0 | | ;
© | | | | • | | | 0 | | | | | | | | | 0 | | | en e | | | | | | • | | 9 | | | | | | | ® | | 0 | | | | | | | . 🚳 | | (| | | 44 . 4 | The section of se | | | | | 0 | | | | | | | a | | 0 | | the second of | Communication of the second | | et communication of the second | the way will be an in the | • | | 0 | | | | | | | 0 | | 0 | | | | | was the same to be a second | | • | | 0 | | | | | | | . • | | | | | | | | | | | 0 | TABLE J | وي في من المن المن المن وفي ومن المن المن المن المن و الاستخداد في المن المن المن المن المن المن المن وهو المن | en anno contribute e confesso di loca i confesso di librica i con di librica i con di librica i con di librica | krije i daznako ko dekista i silaki dan napoznako ki | · 中國的國際 | | en de la marcia de la casa c | | |-----------
--|--|--|--|------------------------------|----------------------------|---|---| | | ENTRIES IN TABLE | MEAN ARGUMENT
2.136 | STANDARD DEVI | AT ION
3.402 | SUM OF ARGUMENTS
2122.000 | NON-WEIGHTED | | 0 | | | UPPER LIMIT | OBSERVED PER CENT
FREOJENCY OF TOTAL | CUMULATIVE | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION | | ⊕ | | 0 | 1
11
21 | 864 87.00
74 7.45
55 5.53 | 87.0
94.4 | 12.9
5.5 | •467
5•147 | FROM ME AN
334
2.604 | | • | | 0 | REMAINING FREQUENCI | ES ARF ALL ZERO | 100.0 | .0 | 9.827 | 5.544 | | 0 | | 9 | | | | | | | | • • • • • • • • • • • • • • • • • • • | | 0 | | | | | | | | | | | to the second se | en el maria de la compania de la co | | | | | | © | | 0 | | | | | | | | 0 | | | the second second second second | and the control of th | | | | | | • | | | | | | | | | | 0 | | • | en e | errore and the second s | | | | | | 0 | | 0 | | | | | | | | • | | 6 | | | | | • | | | 0 | | 0 | | The second secon | | | | | | يونت (عقب | | 0 | | | | | | | | ® | | 0 | er er en | one of the second secon | | | | | | | | 0 | | | | | | | | • | | | The second secon | the second secon | | | | | | 0 | | | | | | | | | | 0 | | 0 | | | and the second of o | 1 M | | | | 0 | | 0 | | | | | | | | 0 | | 0 | | | | | | | | @ | | () | *** | | | | | | | - K. C. | | (| | | | | | | | © | | and the ball of the | | | Paraisona kantiki kirina ana ki | and the second s | ender oder over a | | | | |---------------------|--
--|---------------------------------|--|---------------------------------|---------------------------------------|--|--| | 0 | TABLE K
ENTRIES IN TABLE
321 | MEAN ARI | GUMENT | STANDARD DEVIATI | ON S | SUM OF ARGUMENTS | والمنافية ومناطقة فلندوز والمنافزة والمنافزة والمنافزة والمنافزة والمنافزة والمنافزة والمنافزة والمنافزة المنافزة المناف | en e | | (9) | UPPER | OBSERVED | 25.087 | 14.8 | 24 | 8053.000 | NON-WEIGHTED | | | • | | FRE QUENCY
16 | PER CENT
OF TOTAL
4.98 | CUMULATIVE
PERCENTAGE
4.9 | CUMULATIVE
REMAINDER
95.0 | MULTIPLE
OF MEAN
•039 | DEVIATION
FROM MEAN
-1.624 | • | | 0 | 21
31 | 67
58
52 | 20.87
18.06
16.19 | 25.8
43.9
60.1 | 74.1
56.0
39.8 | .438
.837
1.235 | 950
275
398 | | | 0 | 41
51
REMAINING FREQUENCIES | 56
72
S ASE ALL ZERD | 17.44
22.42 | 77.5
100.0 | 22.4 | 1.634 | 1.073
1.748 | • | | ٨ | ø | | | | | | | • | | 0 | en e | 10 | | | | | | @ | | 0 | | | | | | | | ◎ | | @ | the control of co | | | | | | | • | | 0 | | | | | | | | • | | 9 | ** | The second second second | | | | | | • | | 3 | | | | | | | | • | | | | error or control of the t | | | | | | • | | 9 | | | | | | | | • | | 9 | | | | | | | | • | | D | | | | | | | | • | | • | | | | | | | | • | | • | A Commence of the second secon | and the control of the state | | ere | | | | • | | ð | | | | | | | • | • | |) | • (1.) | | | e en | | | | | |) . | | | | | | | | • | | } | | | | | | e e e e e e e e e e e e e e e e e e e | · · · - · · · | • | | è | | · | | | | | | | | | | | | | | | and the second s | - | | 9) | ENTRIES IN TABLE MEAN AR
896 | GUMENT
11.113 | STANDARD DEVIA | TION
.046 | SUM OF ARGUMENTS
9958.000 | MON-MEIGHTED | | |------------
--|-------------------------------|--|-------------------------|---|--|-------| |) | UPPER OF SERVED
LIMIT FREQUENCY
1 489 | PER CENT
OF TOTAL
54.57 | CUMULATIVE
PERCENTAGE
54.5 | CUMULATIVE
REMAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | |) | 11 93
21 96
31 93 | 10.37
10.71
10.37 | 54.9
64.9
75.6
86.0 | 45.4
35.0
24.3 | •089
•989
1•889 | 720
008
.703 | | |) | 41 91
51 34
REMAINING FREQUENCIES ARE ALL ZER | 10.15 | 96.2
100.0 | 13.9
3.7
.0 | 2.7 89
3. 689
4. 588 | 1.415
2.127
2.839 |
• | |) | ė | | | | | | | | | the control of the second sec | | - | | | | | | 1 | | | | | | | | | - | and the second | | en en la | •• | | | | | | | | | | | | | | | The second secon | | | | | | | | | • | | | | | | | | | A Committee of the Comm | | | | | | | | | | | | | | | | | | the state of s | er en en en en en en en | er e e e e e | · | | | | | | | | | | | | | | | and the second s | | e e e | | | | | | | | | | | | | | | 3 | and the second s | | | | | to the state of th | | | | | | | | | | | | | | | | | en e | · · · · · · · · · · · · · · · · · · · | , | | | | | | | | | | | 0 | TABLE M | eta | n ann ann aireann agus an aireann an ann an | | | and the same of th | milder track desired a montant of the section of | de de la companya | |--|--|--|--|----------------------
--|--|--|--| | 0 | ENTRIES IN TABLE
703 | MEAN ARGUMENT
6.197 | STANDARD DEVIATION
8.621 | St | JM OF ARGUMENTS
4357.000 | NON-WEIGHTED | | 0 | | 0 | UPPER OBS
LIMIT FREC
1 | SERVED PER CENT
QUENCY OF TOTAL | PERCENTAGE RE | MULATIVE
MAINDER | MULTIPLE
OF MEAN | DEVIATION
FROM MEAN | | © | | ************************************** | 11
21 | 468 66.57
74 10.52
75 10.66 | 66.5
77.0
87.7 | 33.4
22.9
12.2 | •161
1•774 | 602
.557 | • | • | | 0 | REMAINING FREQUENCIES ARE | 86 12.23
F ALL ZERO | 100.0 | .0 | 3.388
5.001 | 1.716
2.876 | • | • | | 9 | | | | | | | | 0 | | 0 | | | | | | | | 0 | | 8 | | | | | | | | © | | 0 | | | | | | | | _ | | ® | and the second of o | | | | | | | • | | ® | | | | | | | | • | | | the second control of | | | | | | | 0 | | | | | | | | | | 0 | | | | | | | e e e | | | 0 | | @ | | | | | | | | • | | 0 | The second control of | | | | | | | • | | 0 | | | | | | | | • | | 0 | | | | | | | | 0 | | 0 | | to management and the second of o | | | the second secon | | | | | 0 | | | | | | | | | | ** | | er e | | | erenke modern modern kommune | | | 0 | | © | | | | | | | | • | | | The state of s | | e emercial contraction and accompany | | e e se e e e e e e e e e e e e e e e e | | | 0 | | | | | | | | | | • | | <i>®</i> | | | | | | | | 1 | | • | TABLE N
ENTRIES IN TABLE
172 | MEAN AR | GUMENT
6.331 | STANDARD DEVIATION 9.5. | 014 S | SUM OF ARGUMENTS | | والمستقيلة والمستقيدة والمستقيدة والمستقيدة والمستقيدة والمستقيدة والمستقيدة والمستقيدة والمستقيدة والمستقيدة | © | |----------|--|--
---|--------------------------|-----------------------------------|-----------------------------------|---------------------------------------|---|----------| | 9 | FIAIT
UpeEd | OBSERVED
FREQUENCY | PER CENT
OF TOTAL | CUMULATIVE
PERCENTAGE | CUMULATIVE | MULTIPLE | NON-WEIGHTED DEVIATION | | • | | (S) | 1
11
21 | 122
12
15 | 70.93
6.97
6.72 | 70.9
77.9
86.6 | REMAINDER
29.0
22.0
13.3 | OF MEAN
•157
1•737
3•316 | FPOM MEAN
559
-489 | | 0 | | 9
9 | 31
41
REMAINING FREQUENCI | 20
3
FS ARE ALL ZERO | 11.62
1.74 | 98.2
100.0 | 1.7 | 4.896
6.475 | 1.538
2.587
3.635 | | 0 | | D | • | | | | | | | | © | | D. | | | | | | | | | 9 | | . | | | | | | | | | 0 | | | | en e | | | | | | | 0 | |)
D | | | | | | | | | • | | | | 2 | | | | | | | 0 | | | | | | | | | | | 0 | | | | | | | | • | | | 0 | | | | | | | | | | | 9 | | | · · · · · · · · · · · · · · · · · · · | er e | | | | | | | 0 | |) | | | | | | | | | • | | | The second secon | Note the superiors and detailed and an arrangement of the superior supe | e transcription of the second | | | | | | 0 | |) | | | | | | | | | 0 | | | ······································ | er e de la companse d | | | | | | | • | |) | | | | | | | | | 0 | | •. | | A SAME OF A SAME OF THE O | | | | | | | 0 | |) | 10 m | | | | | | · · · · · · · · · · · · · · · · · · · | | 0 | |) | | | | | | | | | | | 0 | TABLE
ENTRIES | N
IN TABLE
730 | MEAN ARC | T.335 | STANDARD DEVIA | ATION
9.882 | SUM OF ARGUMENTS
5355.000 | NON-WEIGHTED | |---|------------------|---------------------------|--|---|---|--|------------------------------|--| | | REMAININ | LIMIT 1 1 1 1 2 1 3 1 4 1 | OB SERVED FREQUENCY 428 127 62 95 18 CIES ARE ALL ZERO | PER CENT
OF TOTAL
58.63
17.39
8.49
13.01
2.46 | CUMULATIVE
PERCENTAGE
58.6
76.0
84.5
97.5
100.0 | CUMULATIVE
REMAINDER
41.3
23.9
15.4
2.4 | | DEVIATION
FROM MEAN
641
.370
1.382
2.394
3.406 | • 1 #### APPENDIX D FLOWCHART OF GPSS PROGRAM FOR MORNING RUSH HOUR CONDITIONS ON SELECTED PORTION OF PEMBINA HIGHWAY WITH PROPOSED LANE EXPANSION ### LEGEND OF BLOCK SYMBOLS (USED IN THE GPSS FLOWCHART) | | ADVANCE BLOCK | | |---|--|----------| | | DEPART BLOCK | | | | GATE BLOCK, CONNECTOR CONTAINS
MAIN BLOCK CONTAINS INITIAL ST | S INDEX, | | | GENERATE BLOCK | | | | LOGIC BLOCK, CONNECTOR CONTAINS
MAIN BLOCK CONTAINS FUNCTION | INDEX, | | | QUEUE BLOCK | | | | RESET BLOCK | | | | START BLOCK | | | | TERMINATE BLOCK | | | | TEST BLOCK | | | | TRANSFER BLOCK | | | | INFORMATION PATH | | | - | TRANSACTION PATH | | GPSS FLOWCHART SIMULATION TIMER ### MACGILLIVARY SIGNALS ### POINT ROAD SIGNALS ### STAFFORD SIGNALS ### PEMBINA NORTH-BOUND TRAFFIC -APPROACHING MACGILLIVARY OAKENWALD #### PENBINA NORTH BOUND TRAFFIC QUEUES AT MACGILLIVARY OKENWALD ### PEMBINA NORTH BOUND TRAFFIC APPROACHING POINT ROAD-WINDEMERE #### PENBINA NORTH BOUND TRAFFIC QUEUES AT POINT ROAD - WINDENERE # PEMBINA NORTH BOUND TRAFFIC APPROACHING JUBILEE EXIT #### PENEINA NORTH BOUND TRAFFIC AT JUBILEE ## JUBILEE NORTH BOUND TRAFFIC ### PEMBINA NORTH BOUND TRAFFIC APPROACHING HARROW ### PEMBINA NORTH BOUND TRAFFIC TURNING ONTO STAFFORD PEMBINA MORTH BOUND TRAFFIC #### PEMBINA SOUTH BOUND TRAFFIC APPROACHING STAFFORD # STAFFORD SOUTH BOUND TRAFFIC ### PENBINA SOUTH BOUND TRAFFIC APPROACHING HARROW; INCLUDING HARROW SOUTH BOUND TRAFFIC ### PEMBINA SOUTH BOUND TRAFFIC APPROACHING POINT ROAD WINDEMERE PEMBINA SOUTH BOUND TRAFFIC AT POINT ROAD WINDEMERE PEMBING MACGILLINARY- OAKENWALD PEMBINA SOUTH BOUND TRAFFIC AT MACGILLIVARY #### APPENDEX E #### CONTENTS Qtable Index Queue Index #### Found in Volume II Morning Rush Hour Simulation Runs Mid-day Simulation Runs Afternoon Rush Hour Simulation Runs #### QTABLE INDEX | QTABLE | QUEUE | QUEUE REPRESENTS TRAFFIC IN ONE OF LANES | |--------|-------|---| | A | 1 | Northbound on Pembina at MacGillivray-Oakenwald | | В | 3 | Oakenwald Westbound Traffic | | С | 4 | MacGillivray Eastbound Traffic | | D | 5 | Northbound on Pembina at Point Road-
Windemere | | E | 7 | Point Road Westbound | | F | 8 | Windemere Eastbound | | G | 9 | Northbound on Pembina at Jubilee | | H | 11 | Jubilee Northbound | | I | 12 | Northbound Pembina Turning Onto Stafford | | J | 14 | Northbound Pembina Remaining on Pembina | | K | 16 | Southbound on Pembina at Stafford | | L | 17 | Stafford Southbound | | M | 18 | Southbound on Pembina at Point Road-Windemere | | N | 19 | Southbound on Pembina at MacGillivray-Oakenwald | #### QUEUE INDEX | QUEUE | REPRESENTS | |-------|--| | 1 | N.B. Pembina at MacGillivray-Oakenwald | | 2 | East Intersection Pembina-Oakenwald | | 3 | Oakenwald Westbound Traffic | | 4 | MacGillivray Eastbound Traffic | | 5 | N.B. Pembina at Point Road-Windemere | | 6 | East Intersection Pembina-Point Road | | 7 | Point Road Westbound Traffic | | 8 | Windemere Eastbound Traffic | | 9 | N.B. at Jubilee | | 10 | Intersection Pembina-Jubilee | | 11 | Jubilee Northbound Traffic | | 12 | N.B. Pembina Turning Onto Stafford | | 13 | West Intersection Pembina-Stafford | | 14 | N.B. Pembina Passing Stafford | | 15 | East Intersection Pembina Stafford | | 16 | S.B. Pembina at Stafford | | 17 | Stafford Southbound Traffic | | 18 | S.B. Pembina at Point Road-Windemere | | 19 | S.B. Pembina at MacGillivray-Oakenwald | | 20 | N.B. Pembina at MacGillivray-Oakenwald | | 21 | West Intersection Pembina-MacGillivray | | 22 | Left Turn Storage Lane PEMbina at MacGillivray | | 23 | N.B. Pembina at Point Road Windemere | | 24 | N.B. Pembina at Jubilee | - West Intersection Pembina-Harrow - N.B. Pembina Turning Onto Stafford - N.B. Pembina Turning Onto Stafford - 28 N.B. Pembina Passing Stafford - 29 S.B. Pembina at Stafford - 30 S.B. Pembina at Stafford - 31 S.B. Pembina at Point Road-Windemere - 32 Left Turn Storage Lane Pembina S.B. at Windemere - 33 S.B. Pembina at MacGillivray-Oakenwald - 34 Left Turning S.B. Pembina at MacGillivray - Oakenwald Right Turn Lane at Pembina - 36 Windemere Traffic Turning Right - 37 Windemere Traffic Turning Right - Right Turn Yield Point Road at Pembina - 39 Point Road Left Turning Traffic - 40 Harrow Southbound Traffic - 41 N.B. Pembina at MacGillivray-Oakenwald - 42 N.B. Pembina at Point Road-Windemere - N.B. Pembina at Jubilee - 44 S.B. Pembina at MacGillivray-Oakenwald - 55 S.B. Pembina at Point Road-Windemere - N.B. Pembina at MacGillivray-Oakenwald - N.B. Pembina at Point Road-Windemere - 59 S.B. Pembina at Point Road-Windemere - 60 S.B. Pembina at MacGillivray-Oakenwald - 61 West Intersection Pembina-Windemere