TRANSIENT IMPEDANCE DISPLAY UNIT

by

JIHAD M. A. RASHID

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Science
in
Electrical Engineering

Winnipeg, Manitoba, 1983

(c) JIHAD M. A. RASHID, 1983 June 29, 1983

TRANSIENT IMPEDANCE DISPLAY UNIT

BY

JIHAD M.A. RASHID

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

6 1983

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

To:

Miss Layalee K. Rashid with LOVE

ACKNOWLEDGMENTS

The author wishes to acknowledge his true indebtedness to professor GLEN SWIFT for suggesting the topic and never failing, father style, guidance and support during work on this thesis. Many thanks to professor MAURICE YUNIK, his many suggestions and assistance were of great importance.

The author would like to thank Dr. DOUG CHAPMAN of Manitoba Hydro and professor FRED ZEILER of department of applied mathematics for examining this thesis.

In addition the author would like to express his gratitude to all technical staff in the electronics shop for their help and in particular for Mr. Ken Biegun for building the final design version and the continuous assistance.

Manitoba Hydro and NSERC financial aid is appreciated.

ABSTRACT

In this thesis it is attempted to design an Impedance display device capable of providing a visual display, on an oscilloscope screen, the trajectories of the 60-Hz transient impedance seen at a relaying point during a power system swing. A digital approach is adopted using the Motorola Inc. MC6802 microprocessor. The design is built and tested on a simulated one machine versus infinite bus power system.

CONTENTS

ACKNOW	VLEDGMI	ENTS		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
ABSTRA	ACT .			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
Chapte	er																				pa	ge
I.	INTRO	DUCTI	ON	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
II.	POWER	SWIN	IGS	ANI) PI	ROTI	ECI	ΊV	Æ	RE	LA	ΥI	NG		•	•	•	•	•	•	•	4
	Po	ntrod Powe wer S mbine	er S Swin	yst ig I Syst	em	Re	lay on	ir R-	ng -X	on di	R aq	-X ra	D m:	ia	gr •	an •	1:	•	· on	•	•	4 9 14 21
T T T	TRANS	_	R-X:		י אררו	 E D	· TSI	• >T.7	• 4 Y	·	• IT	• • D	· ES	·	·	•	•					
III.																						
	Dı	splay Inpo	ut/((tem	Outp Ciro Dec	out cui	Si ts: ina	gna	al nd	C c	onc • •mc	iit	10 • M	nı lap	nç	•	•	•					26
	Di	MC6 A/D spla	and	Coni	nec /A So	tio Cha ftw	n: ra	ct e	er: De:	ist	ic in:	S	ar	nd	W	r	in	•	•	•	•	33 36 41
		Pea Sin	k-P e-c	Sub	rou	tin	e:			•		•	•	•	•	•	•	•	•	•		41
		Res	ist	Sub anc	rou e-R	tin eac	e ta	nc	e (ca:	lci	1ء	at:	i o	n I	Ro	ut	in	e •	•	•	44 47
IV.	COMPL	JTATI	ON	TEC	HNI	QUE	A	ND	E.	RRO	OR	Αì	1A]	LY	SI	S	•	•	•	•	•	51
	Co	/D an omput nase rror	ati	ona le	l e	rrc	rs Vo	: lt	a a	• /(cu:	rre	• en:	t ·	Co	ns	ta	nt	s:	•	•	58
v.	DEVI	CE TE	STI	NG	ANI	CA	\LI	BR	TAS	10	N I	PR(OC:	ED	UR	E	•	•	•	•	•	61
	De	evice	te	sti	ng	and	d r	es	ul	ts	: re		•	•	•	•	•	•	•	•	•	61 70

VI,.	CONCLUSIO	ONS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	74
Appen	dix																			pa	ige
Α.	BIBLIOGRA	APHY .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	76
В.	SOURCE P	ROGRAM	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
c.	OBJECT P	ROGRAM	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	91

† *

Chapter I

INTRODUCTION

Since many protective relays work on the principle of sensing the current and voltage at a relaying point and calculating the 60-Hz impedance seen in a particular direction, it is useful to plot system apparent impedance as seen by the relay on an impedance plane. A visual display of this instantaneous impedance trajectory on an oscilloscope screen, along with relay characteristics, gives a better understanding of system performance. From these trajectories the difference between normal, fault, and swing conditions can be detected.

When a power system "swings", the apparent impedance seen by a distance relay can be mis-interpretted as a fault condition and cause an undesired trip. A distance relay should be capable of discriminating between fault and power swing conditions. It is necessary too that the relay is set for the maximum expected steady-state loading. A power system apparent impedance along with an ohmic type of protective relay characteristic gives a complete picture of system behaviour under swing conditions.

The impedance diagram in Figure 1.1 shows two generators at the ends of a transmission line swinging with respect to

each other. The locus of the apparent impedance as seen by a relay at point A is shown in dotted line. Point L on this locus represent the normal steady-state loading of the system. As instability develops and one generator (A) swings ahead of the other generator (D), this point will drift along a trajectory defined by the ratio of generators voltages, say $\rm E_A/E_D=1.1$. A distance relay located at A may interpret the swing as a fault, and to avoid this, out-of-step blocking can be employed. Conversely, a relay may be used to detect an unstable condition. This is called an out-of-step tripping relay shown in Fig. 1.1.

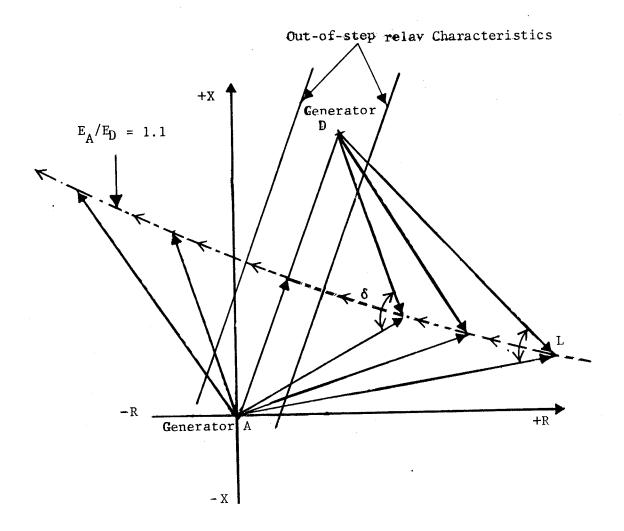


Fig. 1.1 Swing ohm trajectory on impedance plane

Chapter II

POWER SWINGS AND PROTECTIVE RELAYING

2.1 INTRODUCTION TO POWER SYSTEM STABILITY:

Instability of a power system comes about as a result of attempting to transfer power from one location to another in excess of the system capability. This system capability is known as stability limit and is dependent on the source voltage levels, the impedance between the sources and sine of the electrical angle between these voltages assuming all resistances and saliency can be ignored. The steady-state limit can be expressed in mathematical form for a two machine system as:

$$P_{\text{max.}} = \frac{E_s \cdot E_r}{x}$$
 Watt2.1

where the symbols have the following meanings:

 P_{\max} . is the maximum power transfered

E is the sending end generator internal voltage (line to line volts)

is the receiving end generator internal voltage (line to line volts)

Equation 2.1 gives the maximum power transfer for the basic system shown in Figure 2.1 and this is for the condition where the angle between sending and receiving end voltages is ninety degrees. This equation can be generalised to give the system power transfer capability

$$P = \frac{E_s \cdot E_r}{X} \cdot \sin(\delta) \cdot \dots \cdot 2.2$$

where δ is the angle of separation between E_s and E_r .

Plotting this power versus the angle of separation gives us a very useful power-angle curve as shown in Figure 2.2. It is often used in preliminary power system stability studies.

Stability studies are usually classified into three types depending upon the magnitude and nature of disturbances. These three types are transient, dynamic, and steady-state stability studies.

Transient stability studies are aimed at determining if the system will remain in synchronism and survive a major disturbance. Major disturbances can be classified as transmission system faults, line switching, loss of generating units, or sudden load changes.

Dynamic and steady-state stability studies are aimed at the stability of the locus of essentially steady-state operating points of the system. The distinction between these three types comes in the degree of detail used to model the system machines. Dynamic and steady-state stabilities are

essentially the same. Steady state problems use a simple generator model which treats the generator as a constant voltage source. But in dynamic stability problems the turbine-governing system and the excitation system along with a synchronous machine model which provides for variation in flux-linkages in machine air-gap is used. The nonlinear differential algebraic equations for the system can be replaced by a set of linear equations which are then solved to determine whether the set of machines will remain in synchronism following small disturbances from the operating point.

Transient stability studies are undertaken more often reflecting their greater importance in practice. They involve, in detail, large disturbances which do not permit the linearization of system non-linear differential and algebrate equations which must be solved by a step-by-step procedure or direct methods. Transient stability problems can be categorized into two categories:

- First-swing category which is based on a simple machine model without representation of control systems. The time period under study is usually the first few seconds following system faults.
- 2. Multi-swing category which takes into account a representation of machine control systems and more complex machine models to reflect its proper behaviour. The time period under study extends usually to a longer period than that for the other two types.

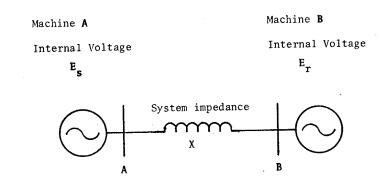


Fig. 2.1 Basic two machine system

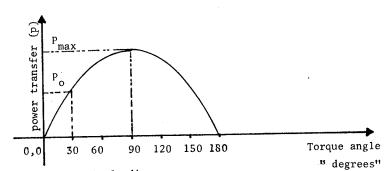
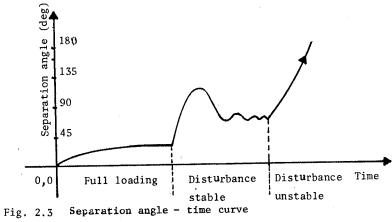



Fig. 2.2 Power - Angle diagram

As was stated before, to show whether a set of machines will remain in synchronizm after a disturbance or not, a solution of the differential equations has to be investigated.

The fundamental equation which governs the rotational dynamics of these synchronous machines in stability studies, called the swing equation, is of second order and can be written in the form 9

where the symbols have the following meanings:

H = stored kinetic energy in megajoules at sync.
speed divided by machine rating in MVA

- J is the total moment of inertia of the rotor masses in Kg-m
- $\boldsymbol{\omega}_{S}$ is the machine synchronous speed in mechanical radians per second
- $_{\rm S_m}$ is machine three phase rating MVA
- is the rotor angular displacement in units consistent with $^{,\omega}{}_{\rm S}$, e.g. radians.
- is the mechanical input power to the machine shaft less rotational losses.
- $P_{\rm e}$ is the electrical power crossing machine air-gap
- P_a is the accelerating power, that is, the unbalance

between electrical and mechanical power.

The aforementioned second-order differential equation can be written as two first order differential equations

$$\frac{2H}{\omega_{s}} \frac{d\omega}{dt} = P_{m} - P_{e}$$

$$\frac{d\delta}{dt} = \omega - \omega_{s}$$

$$2.5$$

When the swing equation is solved we obtain the expression for δ as a function of time. A graph of this solution is called the swing curve of the machine. Inspection of these swing curves for all machines in the system will yield whether the machines will remain in synchronism after a disturbance or not. A typical swing curve is shown in Figure 2.3

2.1.1 Power System Relaying on R-X Diagram:

Practical system economics and reliability demands that more and more dependance be placed on system relaying. Because of this increased dependence on relay performance, relays using multiple operating quantities were developed. These operating quantities are voltage, current and phase angle. One advantage of these three operating quantities is that relay characteristics as well as power system conditions can be plotted on the same R-X diagram from which system and relay behaviour can be predicted and analyzed.

These relays are known as ohmic relays. In order to understand the operating characteristics of these relays we must look into the torque-producing components, namely:

- Current component: Torque is proportional to square of current.
- Voltage component: Torque is proportional to square of voltage.
- 3. Voltage and current product component: Torque is proportional to current-voltage product times a function of the angle between them.
- 4. Control spring torque.

The general torque equation for an ohmic relay can be written in the form?

Torque(T) =
$$\pm K_1 \cdot E^2 \pm K_2 \cdot I^2 \pm K_3 \cdot E \cdot If(\gamma, \theta) \pm K_4$$
2.7

The conventions adopted for this equation are

- 1. Positive torque for contact closing.
- 2. Constants K_1 . K_2 , K_3 and K_4 are independent relay constants.
- 3. Spring torque, $K_{\underline{A}}$, is assumed to be constant.
- 4. Operating quantities voltage (E), current (I) and θ the phase angle between them, are supplied to the relay.

With proper choice of relay constants and associated signs, different types of relay elements can be developed. Some of these are tabulated in Table 2.1

Table 2.1 Ohmic relay elements and their torque equations

Relay Type	Choice of Constants	Torque Equation
Directional element	$K_1 = K_2 = K_4 = 0$ $f(\gamma, \theta) = \sin(90 + \gamma - \theta)$	$T = K_3.E.I.sin(90+\gamma-\theta)$
Reactance relay	$K_1 = K_4 = 0$, K_2 positive $f(\gamma, \theta) = \sin \theta$ K_3 negative	$T = K_2.I^2 + K_3.I^2.X$
Impedance element	$K_3 = K_4 = 0; K_1 > 0; K_2 > 0$	$T = K_2 \cdot I^2 - K_1 \cdot E^2$
Directional element with volt. restraint	$K_2 = K_4 = 0; K_1 > 0; K_3 > 0$ $f(\gamma, \theta) = \sin(90 + \gamma - \theta)$	$T = K_3.E.I.sin(90+\gamma-\theta)$ $-K_1.E^2$

The characteristics of these relays are shown on the R-X diagram in Figure 2.4. It should be noted that the directional element is not an ohmic element in the usual sense, although its characteristics may be conveniently shown on an R-X diagram. one advantage of the R-X diagram is that it displays the same characteristics inspite of voltage variations due to different system faults or for the same fault under different system conditions.

The last item in table 2.1, the directional element with voltage restraint, uses the torque equation

$$T = K_3.E.I.\sin(90+\gamma-\theta) - K_1.E^2$$
 2.8

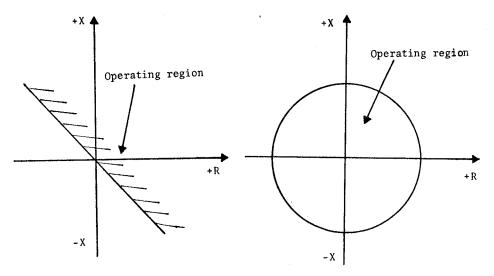
Where y is the angle of maximum torque

Positive torque will be developed i.e. relay operation, under the condition

$$K_3.E.I.\sin(90+\gamma - \theta) > K_1.E^2$$
 2.8a

If we set the equality condition, i.e. operate-restraint condition, we get

$$K_{3} \cdot E \cdot I \cdot \sin(90 + \gamma - \theta) = K_{1} \cdot E^{2}$$
 2.8b

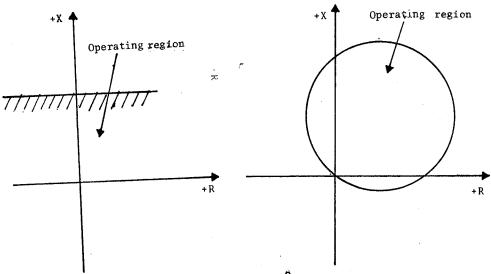

I.
$$sin(90+\gamma-\theta) = \frac{K_1}{K_3}$$
 .Ε 2.8c

Using the fact that the impedance between a fault location and the relaying point as seen by the relay is

$$Z = \frac{E}{I}$$

$$Z = \frac{K_3}{K_1} \sin(90+\gamma-\theta) \qquad \dots \qquad 2.8d$$

Inspecting this last equation we see that a positive contact closing torque will be realized whenever the term on the right hand side is greater than the left hand side. This equation, when plotted on an R-X diagram, is shown in Figure 2.4d. This simple plot does not depend on any parameters of operating quantities but defines the operating characteristics for all values of E, I and phase angle θ .


a) Directional relay charact

 $T = E \times I \times \sin(150 - \theta)$

(γ= 60 degrees)

c) Impedance relay characteristics

$$z = \sqrt{K_2 / K_3}$$

b) Reactance relay element

 $\chi = \kappa_2 / \kappa_3$

d) 600 Mho relay charac.

 $Z = K_3/K_1 \sin(150 - \hat{\theta})$ $(\gamma = 60 \text{ degrees})$

Fig 2.4 Ohmic elements characteristics on R-X diagram

2.2 POWER SWING LOCUS ON R-X DIAGRAM:

An analysis of the characteristics of different types of relay elements has been explained on the R-X diagram. A better understanding of the whole power system and relaying system will be accomplished if both systems are plotted on one diagram. From this plot the locus of the ohmic value seen by a distance relay during power swings will give an accurate insight into the performance of the relaying system. To show the swing locus on the R-X diagram the two machine system and transmission line representation shown in Figure 2.5 will be used.

For power flow from point A to point D, the voltage at point A will lead the voltage at point D. The total current will lag E_{AD} by the angle of the total impedance between these two points. For a fixed torque angle δ (the angle between equivalent source voltages), the apparent impedance seen from point A will fall on a circle which is defined by this given torque angle. A particular impedance point on this circle is entirly dependent on the ratio of voltage magnitudes at points A and D. Figure 2.5b shows the swing locus for the system and can be determined geometrically as shown in reference 3 Appendix III. The centre of this circle is the vector AO with magnitude

and

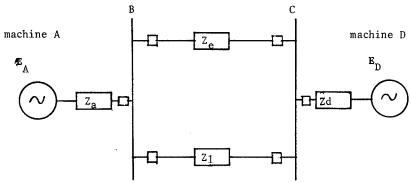


Fig 2.5a example system

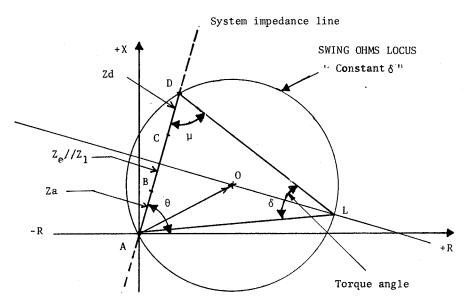


Fig 2.5b

Fig 2.5 Swing ohms locus on R-X diagram

$$Arg(\overline{AO}) = \theta_{-90+\delta}$$

where

 θ = is the phase angle between E & I

 δ = is the torque angle

The vector \overline{AL} , which represents the load ohms as seen from point A, has the magnitude and angle as a function of the torque angle, to be:

$$\overline{AL} = \frac{\overline{AD}.\sin \mu}{\sin \delta}$$
 2.11

and

$$Arg(\overline{AL}) = \theta + \delta + \mu - 180 \qquad 2.12$$

where μ is given by

Equation 2.13 shows us how point L on the circle diagram will behave for different source voltage ratios. Assuming that torque angle remains constant, the left hand term in equation 2.13 will increase for increasing $\frac{E}{D}/E_A$ ratio and, therefore, the angle will be decreasing which results in point L moving clockwise along the Swing Circle.

To show how the apparent impedance moves on the R-X diagram due to line switching, the system shown in figure 2.5a will be used. Assume this system was initially running at synchronous speed with $E_A/E_D=1.1$, $P=P_0$ and $\delta=30$ degrees. From the $P=\delta$ curve of Figure 2.6b the maximum

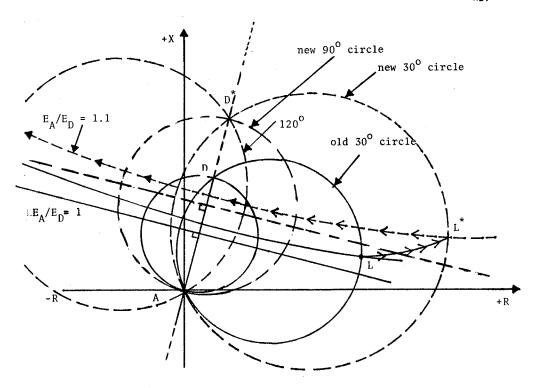
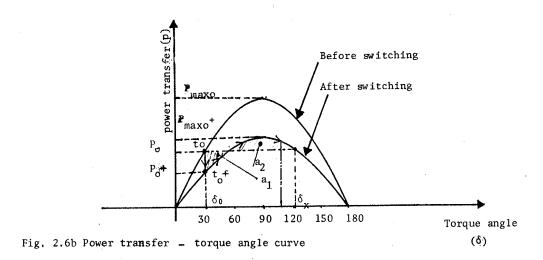



Fig. 2.6a Apparent impedance locus on R-X diagram

steady-state power transfer before switching line \mathbf{z}_{L} ($\mathbf{t} < 0$) is equal to \mathbf{P}_{maxo} .

At the first instant of switching, the impedance between points A and D has increased to AD*. This means that the power transfer capability is reduced and is shown as ${}^{p}_{o}^{+}$. The difference in power, ${}^{p}_{o}^{+} - {}^{p}_{o}^{-}$, is the accelerating power which accelerates the rotor and the rotor angle advances to say δ_{x} . For the machine to stay in synchronism, area's all and all have to be equal according to the equal are criterion:

$$\int_{\delta_0}^{\delta_x} (P_m - P_e) d\delta = 0$$

where $P_{m} - P_{e}$ is the accelerating power.

If the equal-area criterion cannot be satisfied, this means that $\delta_{\rm x}$ goes beyond about 120 (typically) and the machine goes unstable. As is seen on the R-X diagram, the original operating condition is the point L corresponding to t=0 or (Power = P_0). After line switching the new operating point is L* which corresponds to the same voltage ratio (1.1) and torque angle (30 degrees), but the electrical power output is P_0^+ . As the torque angle advances towards $\delta_{\rm x}$, point L* moves along the circle $E_{\rm A}/E_{\rm D}=1.1$ as shown by the arrows on Figure 2.6a. If the system goes unstable, this point crosses the approximate transient stability limit circle, then it continues advancing till it crosses the system impedance line at $\delta_{\rm x}=180$ degrees where machine A will be 180 degrees out of phase with machine D.

In a general case, if the angular separation of the two machines is maintained constant while varying the voltage ratio, the apparent impedance will follow a circle which passes through both points A and D with their centers on the perpendicular bisector of the system impedance line with radii and offsets determined by the various values of this voltage ratio. This family of circles is shown in dashed lines in Figure 2.7. Another set of circles can be constructed by holding the voltage ratio constant while varying the angular separation. This new family of circles is all centred on the system impedance line with radii and offsets determined by the voltage ratio and shown in solid line in It should be noted that these two families of Figure 2.7. curves are orthogonal. For full details and mathematical derivation of these curves, the reader is advised to see Note too an interesting circle which is cenreference 4. tred at the system impedance centre and passes through both points A and D. For any value of voltage ratio, the apparent impedance of the system must pass through this circle as the separation angle reaches and passes 90 degrees which is the approximate steady-state stability limit.

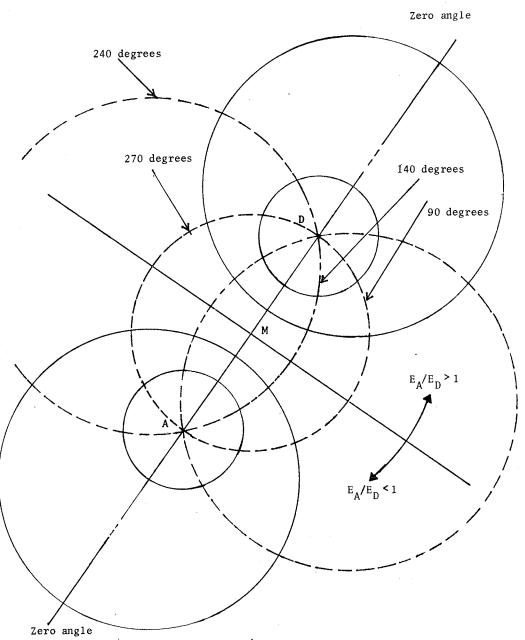


Fig. 2.7 General impedance diagram 4

2.3 COMBINED SYSTEM AND RELAY CHARACTERISTICS ON R-X:

In order to use the R-X diagram effectively and for better understanding of total system behavior, both relay characteristics and how the system apparent impedance will vary as system conditions vary, i.e. as system machines go out of step, must be shown on the same diagram. In order to accomplish this, Figure 2.8 will be used. On this figure, only the approximate steady-state stability limit circle, i.e. 90 degree separation circle and the approximate transient stability limit, i.e. 120 degree separation circle, and the swing line for the special case where voltage ratio $\mathbf{E}_{\mathbf{A}}/\mathbf{E}_{\mathbf{D}}=1$ are shown. On the same figure, a portion of the system impedance line between stations 1 and 2 is to be protected. First zone instantaneous trip protection for 80 per cent of the line is provided by a mho element.

We have seen that the system apparent impedance follows a definite curve during an out-of-step condition or power swing. This particular curve is dependent on the voltage ratio and intersects the system impedance line at 180 degrees. Let us consider at one instant the system was carrying an interchange of loading equivallent to point L shown on Figure 2.8. A fault on the line portion 1-2 will result in a change of impedance from point L to point F on the line in practically zero time. On the other hand, during the first few swing cycles for an out- of-step condition, the apparent impedance drifts along the curve $\mathbf{E}_{\mathbf{A}}/\mathbf{E}_{\mathbf{D}}=1$

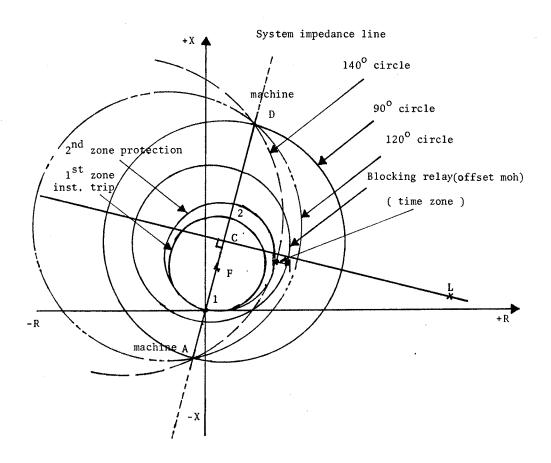


Fig. 2.8 Combined system and relay characteristics on R-X diagram

relatively slowly as compared to the fault case. If the offset mho element was set up to block the first and second zones of the mho relay, these elements would not trip as long as the out-of- step condition progressed from the initial separation condition to a 90 degree to 120 degree separation to any point inside the blocking element in a time which exceeds a predetermined minimum time. This shows that the blocking element has to pick up before the first and second zone trip element with a sufficient time for the auxiliary relays to operate. But if this time is not enough or if both the blocking and tripping elements pick up at the same time, blocking will not be realized. This time delay has to be sufficiently large to allow for the fastest swings anticipated and yet be practical to avoid unnecessary tripping.

Since practical system operation and system conditions do occasionally force the system to go out-of-step, tripping relays must detect the out-of-step condition and take the necessary measures. The basic distinction of an out-of-step condition can be realized by the fact that the apparent impedance, as seen from any one point in the system, changes from a point to the right of the system impedance line to a point on this line to a point to the left of the system impedance line. This sequence applies for power transfer from point A to point D as the machine at point A advances ahead of machine D. Another characteristic of an out-of-

step condition is that the aforementioned apparent impedance change takes place over a finite period of time which is long as compared to impedance change associated with a fault An ohmic relay which will recognize these discondition. tinctive characteristics can be a relay with two reactance Each element has an angle of maximum torque perelements. pendicular to the system impedance line, and an operating characteristic parallel to the system impedance line with an adjustable offset for pick-up setting selection. requirement for these settings is that the relay should opknow this erate for the fastest slip cycle expected. To maximum slip would involve various system parameters and should be based on a transient stability study of the system A second requirement for these setunder consideration. tings is that the relay characteristics should cover the system impedance plot on the R-X diagram. This means that any fault on the system should fall between the relay characteristics.

Chapter III TRANSIENT IMPEDANCE DISPLAY UNIT DESIGN

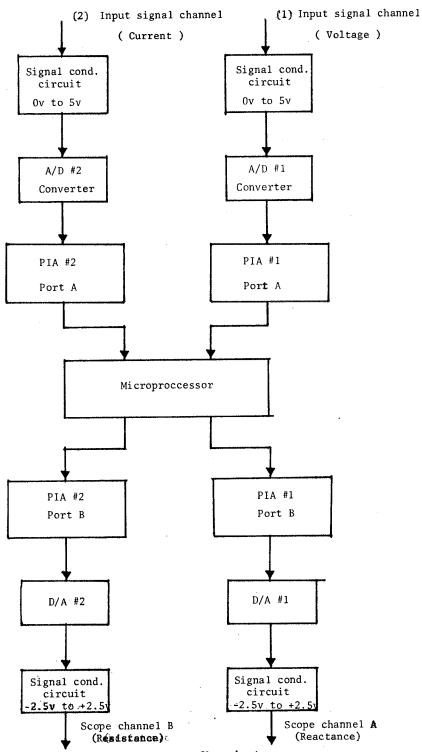
3.1 <u>DISPLAY UNIT HARDWARE DESIGN:</u>

The transient impedance display unit is a microprocessor based device which is capable of calculating the apparent impedance seen at a relaying point using readily available input signals. These signals are a voltage signal proportional to the line voltage and a second voltage proportional to the current in that phase. The apparent impedance is outputed in the form of a voltage signal proportional to line resistance and another voltage signal proportional to the line reactance. Applying the resistance equivalent voltage to the horizontal channel of an oscilloscope and the reactance equivalent voltage signal to the vertical channel, the apparent impedance seen at the relaying point can be displayed on the oscilloscope screen

The central processing unit is the Motorola Inc. type MC6802 microprocessor. Most of the other supporting chips such as the peripheral interfacing adapters ,decoder, digital to analog and analog to digital converters are either manufactured by Motorola or National Semiconductors Inc. The main reason behind this choice is the availability of the supporting equipment and facilities such as a main computer

system crossassembler and a diagnostic emulator used for system software development and system debugging.

Fig. 3.1 shows the device hardware function flow chart. It shows two almost identical circuitry used for both voltage and current input signal channels with differences in the design of signal conditioning circuits. The voltage signal is derived from the BICEPS machine line voltage through a potential transformer that provides a 6.3 V secondary voltage. The current signal is derived from the same phase through a 33 ohms resistor connected across the secondary terminals of a current transformer wired to the same line at the same point.


3.1.1 Input/Output Signal Conditioning Circuits:

The analog to digital converter chosen in this design is the ADC0804 manufactured by National Semiconductor Inc. The electrical specifications state that for a +5V DC power supply to this chip, the input range will be 0V to +5V. This comes about as a result of two on-chip diodes which are tied to each analog input terminal, $V_{\rm in}(+)$ and $V_{\rm in}(-)$. For a zero differential input signal at $V_{\rm in}(-)$ and $V_{\rm in}(-)$ the output code will be

[0000 0000]

and for diferential input = V_{cc} digital output code will be

[1111 1111]

-Fig. 3.1 System hardware function flow chart

To achieve this OV to +5V analog input range the input signal conditioning circuit shown in figure 3.2a is designed. As was mentioned earlier, the available signal from the BICEPS line potential transformer is 6.3 $V_{\rm rms}$ or -8.9V to +8.9V peak-to-peak. For the output of the operational amplifier (op-amp) to be OV to +5V, the feedback resistance to the input resistance ratio will be

$$\frac{R_2}{R_1} = -\frac{V_0}{V_{in}} = \frac{5}{17.82}$$
3.1

or

$$R_2 = 0.28 R_1$$
3.2

and to bias the signal

$$R_3 = 2.0 R_2$$
3.3

Selecting the input resistance \mathbf{R}_1 to be equal to

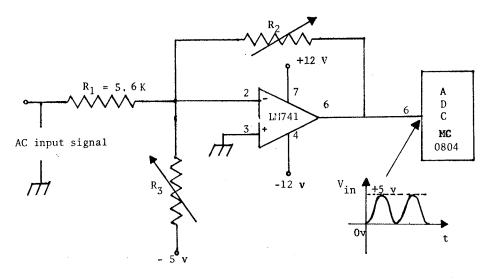
$$R_1 = 5.6 \text{ K} \Omega$$

will yield

$$R_2 = 1.57 \text{ K }\Omega$$
 $R_3 = 3.14 \text{ K }\Omega$

Similar arguments apply to the current signal derived from the current transformer

$$\frac{R_2}{R_1} = -\frac{V_0}{V_{in}} = \frac{5}{8}$$


$$R_2 = 0.625 R_1$$
3.4

and setting

$$R_3 = 2 R_2$$

Selecting the input resistance to be

a) Input signal conditioning

b) output signal conditioning

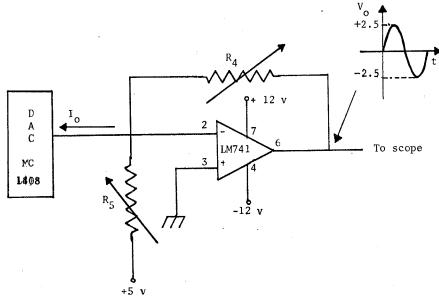


Fig. 3.2 Input/Output signal conditioning circuit

$$R_1 = 5.6 k\Omega$$

yields

 $R_1 = 3.5 k\Omega$

 $R_3 = 7.0 k\Omega$

3.1.2 System Decoding and Memory Map

The Decoder/Demultiplexer chosen for system decoding is This decoder chip is shown Texas Instrument type SN74S138. in Figure 3.3 and provides partial address decoding using only three of the high order address lines Al3, Al4, and The decoder accepts these three binary inputs, which A15. are wired to chip select terminals A, B, and C. When enabled by proper signals on the input enable terminals, it provides one of eight mutually exclusive active low outputs (Y0-Y7) dependent on the conditons at the three select inputs as shown in Table 3.1. The chip enable terminals are Terminal Gl is always high (+5 V), connected as follows: G2B terminal is connected to ground and terminal G2A is wired to the processor VMA and E terminals through a NAND As a result of this partial decoding gate type DM74LSOON. scheme, table 3.2 and memory map Table 3.3 are constructed to show all on board chips and the address to which each one will respond.

Table 3.1 Partial decoding function table

Inputs					· · · · · · · · · · · · · · · · · · ·							
					Outputs							
G1	G2*	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Н	L	L	L	L	L	Н	Н	Н	Н	Ħ	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	H	Н	Н	Н	L .	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

 $G2^* = G2A + G2B$

H = high level

L = low level

Table 3.2 On board chips addresses

Chip Name	Chip Addre s s
. PIA #1	\$ D000-D003
PIA #2	\$ E000-E003
EPROM #1	\$ F000 -F7FF
EPROM #2	\$ F800-F F FF
RAM	\$ C000 -C 7FF

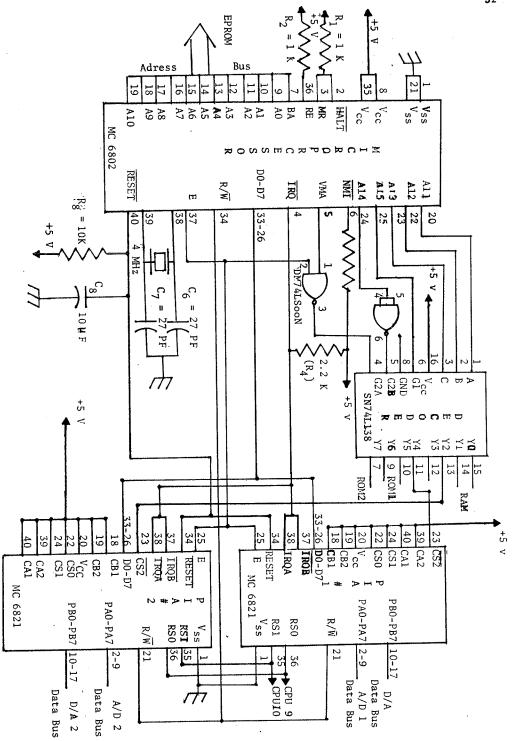


Fig. 3.3 System wiring diagram

Table 3.3 Memory map for transient impedance display unit

	Memory Location
Reset Vector	\$FFFF,\$FFFE
EPROM #1	\$F000 - \$F7FF
EPROM 2	\$F800 - \$FFFF
PIA #2	\$E000 - \$E003
PIA #1	\$D000 - \$D003
RAM	\$C000 - \$C7FF
Not used	All others

3.1.3 MC6802 Microprocessor and Peripheral Connection:

The MC6802 is an eight bit microprocessor. A detailed block diagram, programming model of the processing unit and pin assignment diagrams are given by the (manufacturer Motorola Inc.) in the appropriate data manual. Some of the features in this microprocessor chip are:

- 1. an on-chip internal clock oscillator and driver,
- 2. a 128x8 on-chip RAM located at hex addresses \$0000 to \$007F with the top 32 bytes having memory retention capability by utilizing the standby power supply,
- 3. sixteen lines unidirectional address bus, and
- 4. an eight line bidirectional data bus.

The programming model for this processor shows that the MPU has three 8-bit registers, two accumulators, one condition code register, and three 16-bit registers called 1) index register, 2) programme counter, and 3) stack pointer. All are vailable for use by the programmer. The two 8-bit accumulators are used to hold operands and the results of the arithmetic logic unit, ALU. The condition code register contains eight bits of information and only the two highest order bits are not used and set to ones, the other six bits are used as testable condition codes for the conditional branch instructions. Bit number four is the interrupt mask in this condition code register.

The 16-bit index register stores sixteen bits of memory address for the index mode of memory addressing. The programme counter is a 2-byte (eight bit each) register that points to the current program instruction. The stack pointer is a 2-byte (eight bit each) register that contains the address of the next available location in the stack for use.

Figure 3.3 shows the pin connection and wiring diagram of this microprocessor interfaced to two peripheral devices and a decoder. This figure shows that the HALT line is not used and, therefore, set in the high state for the interrupts to be serviced. Memory ready is also set high indicating that the clock seen at the ENABLE terminal E operates in the normal condition or unstretched. A 4MHz crystal is connected to pins 38 and 39 and because of the divide-by-four circui-

try inside the chip, gives an operating clock frequency of lMHz. The $\overline{\text{IRQ}}$ input is wired to terminals 37 and 38 on both PIAs. A low level on this input requests that an interrupt sequence be generated in the chip. The processor will first complete the current instruction before it responds to the interrupt request. At this time, if the interrupt mask bit is not set, the processor will start the interrupt sequence.

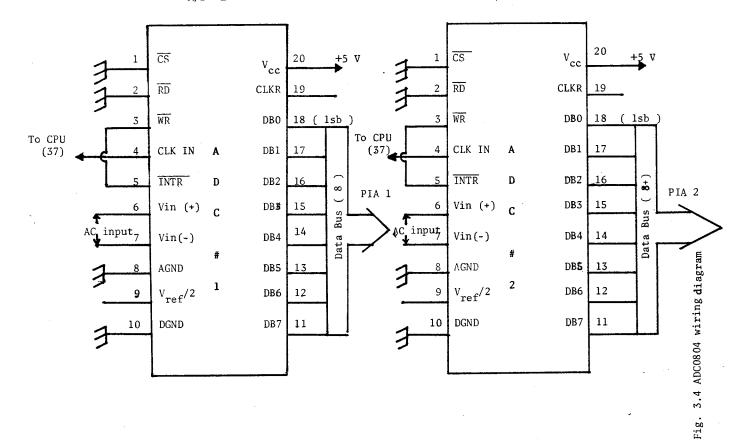
The RESET terminal is wired to the RESET terminal on each PIA. When this line is low, the MPU is inactive and the information in all the registers will be lost. When this terminal goes high, the MPU begins the restart sequence by executing a routine to initiate the processor from its reset state. For the restart, the last two memory locations (hex addresses \$FFFE and \$FFFF) will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset for the MPU to be interrupted by IRQ line.

Two peripheral interfacing adapters manufactured by Motorola Inc. type MC6821 are shown in fig.3.3. These adapters will appear to the microprocessor as memory locations. The processor will read a digital word from the input register and write a digital word into the output register under program control. The input digital word is equivalent to the analog input into the A/D converter and the output digital word is equivalent to the analog output from the D/A converter. For a complete discussion of this PIA diagram,

initialization and control lines discription, the reader is advised to see reference 8 pages 212-231.

3.1.4 A/D and D/A Characteristics and Wiring:

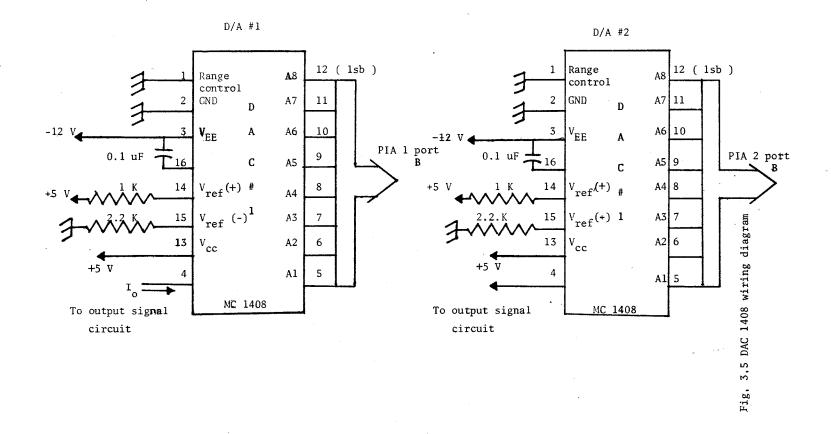
Figure 3.4 shows the wiring diagram for the ADC0804 chosen for this application. This A/D can appear like a memory location or an I/O port to the microprocessor and no interfacing logic is needed other than the chip select \overline{CS} terminal. Block diagram and electrical specifications with the maximum ratings are given by the manufacturer (see reference 6).


This converter works on the successive approximation principle. It accepts an analog input signal, $v_{\rm in}$ at the input terminal and provides a corresponding digital output signal according to the equation

$$M \equiv \begin{bmatrix} v_{in} \\ v_{ref} \end{bmatrix}$$

where ${
m ^V}_{
m ref}$ is the reference voltage applied to ${
m ^V}_{
m ref}/2$ terminal. The brackets indicate that M is the closest approximation to within the resolution of M. In binary approximation form

$$M = \frac{V_{in}}{V_{ref}} \approx \left[a_1 \ 2^{-1} + a_2 \ 2^{-2} + \dots + a_n \ 2^{-n} \right]$$


This equation shows that the output signal M is a binary approximation of the voltage ratio

The A/D data bus (DBO-DB7) is wired to the PIA, port A, data bus. Because the PIA is already memory mapped by the processor and the data lines are connected to the processor data bus under program control, both terminals CS and RD are connected to ground.

The A/D Converter is clocked using the clock in microporcessor by connecting the CLK IN terminal MC6802 directly to the E terminal on the processor. By virtue of this connection the CLKR terminal is left floating since the internal circuitry will generate the required clock by using the built-in clock oscillator. Terminal WR is connected to INTR terminal. This connection with \overline{CS} connected to ground makes the A/D run in the free-running mode. start- up under all possible conditions an external WR write pulse is required during the first power-up cycle. starting process is accomplished by having $\overline{\text{CS}}$ and $\overline{\text{WR}}$ terminals simmultanously low which gives the internal clock signal combined with the internal starting flip-flop circuit, START F/F, the responsibility of the start-up process.

The digital-to-analog converter used is the Motorola DAC1408. Figure 3.5 shows the wiring diagram for this converter. The input is an 8-bit digital word via the (A1-A8) input lines connected to the PIA port B data bus. This digital word is the result of the CPU mathematical calculations representing the resistance and reactance seen by the impedance display device. Specifications and

characteristics issued by the manufacturer, reference 6, state that the reference amplifier input current must always flow into V (+) regardless of the reference voltage poreflarity. This terminal,14, is therefore tied to the reference voltage +5V DC. The reference terminal, V $_{\rm ref}$ (-), is tied to ground through 2.2k $_{\Omega}$ resistor.

Output voltage is obtained by connecting the output terminal pin 4, which provides a current signal going into the converter, to the output signal conditioning circuit shown in Figure 3.2b. This circuit uses an operational amplifier with a feedback resistor \mathbf{R}_4 . This configuration keeps the output of the MCl408 at ground potential and the operational amplifier can generate a positive voltage limited only by its power supply. The magnitude of the output voltage is dependent on the digital input and given by the equation:

$$V_{o} = \frac{V_{ref}}{R_{14}} \cdot R_{4} \cdot \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{256} \right]^{volts}$$

where:

[Al A2 ... A8] is the digital input $V_{\rm ref}$ is the reference voltage at Pin 14 R_{14} is the resistance connectedd to Pin 14 R_4 is the feedback resistor accross the op-amp.

A detailed analysis of the output signal and the converter accuracy is given in Chapter 4.

3.2 DISPLAY UNIT SOFTWARE DESIGN:

The analog input to the A/D converter is a voltage signal 0V to +5V. This A/D converter puts out a digital word \$00 to \$FF. The zero-crossing of the input signal to the signal conditioning circuit is the same as the +2.5V value of the input signal to the A/D converter which is equivalent to digital word \$80 at the output of A/D converter. A software program was developed to calculate the resistance, reactance and their locations on the R-X diagram. This programme is stored in a two (2K-byte each) EPROM memory chips wired and decoded as shown in fig. 3.6

3.2.1 Peak-Picking and Phase Shift Calculation Subroutine:

Figure 3.7 is the flow chart for this subroutine. It starts with initializing the peripheral interphace adapters at the starting address \$F000. Port A in each PIA is initialized as an input register and port B as an output register. The input register contains the instantaneous digital word equivalent to the analog input signal. Whenever the processor detects a change from $v_{\rm in} < \$80$ to $v_{\rm in} \ge \$80$ it will be interpretted as zero-crossing and continue to check for current signal zero-crossing by detecting the change in $v_{\rm in} < \$80$ to $v_{\rm in} \ge \$80$. During the time of looking for a current-zero, a counter is incremented by 1 for each time the processor branches back to check for current-zero. The number in this counter, N, is a Hex number equal to the phase

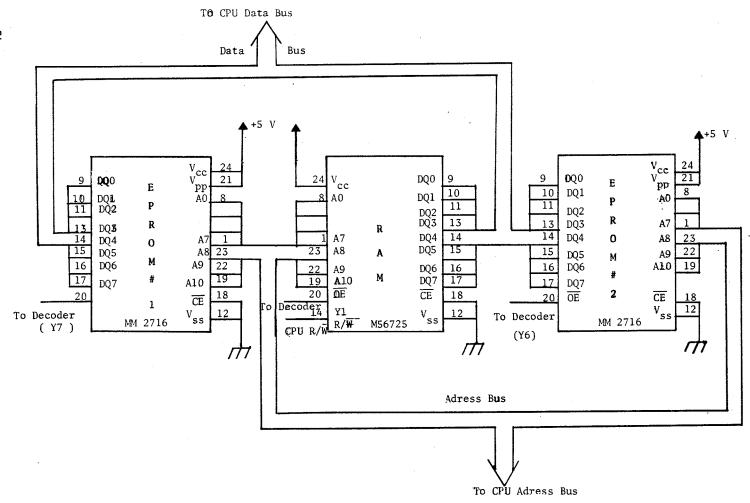


Fig. 3.6 EPROM and RAM wiring diagram

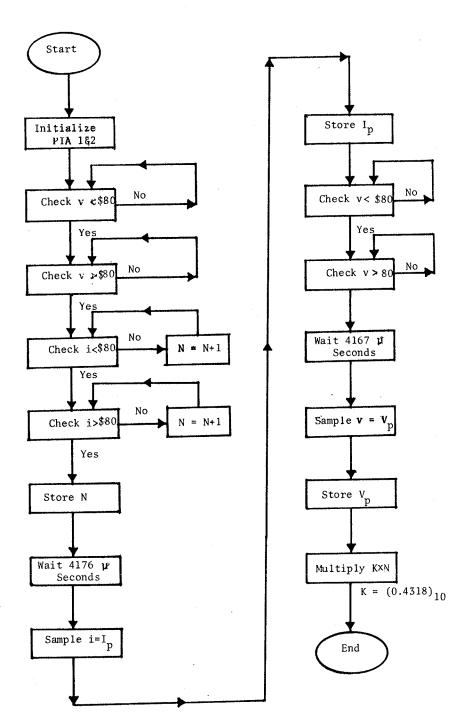


Fig. 3.7 Peak-picking and phase shift calculation routine

shift in number of laps. After the current-zero is detected the phase shift is stored and then the processor waits for 4167 μ seconds (equivalent to 90 degrees) by multiple looping in a specified loop then samples and stores the PIA #2 input register to give the current peak.

The processor then follows similar steps to find the voltage signal peak. The phase shift measurment is then multiplied by a constant to give the equivalent value in degrees. A list of important addresses used by this subroutine follows:

PIA #1 input register	\$D000
PIA #1 output register	\$D002
PIA #2 input register	\$E000
PIA #2 output register	\$E002
phase shift in degrees	\$CA02, \$CA03
voltage peak value	\$CA10
current peak value	\$CA09

After the processor calculates the three variables (current, voltage, and phase shift) it executes the sine-cosine calculation subroutine.

3.2.2 Sine-cosine the Phase Shift Angle Subroutine

The algorithms of these subroutines are shown in Figures 3.8 and 3.9. The main idea behind the sine-cosine routine is that the processor keeps subtracting 90 degrees from the phase shift angle and continuously checking for carry bit set. When the carry bit set is detected it branches to

Fig. 3.8 Sin/Cos phase shift angle calculation

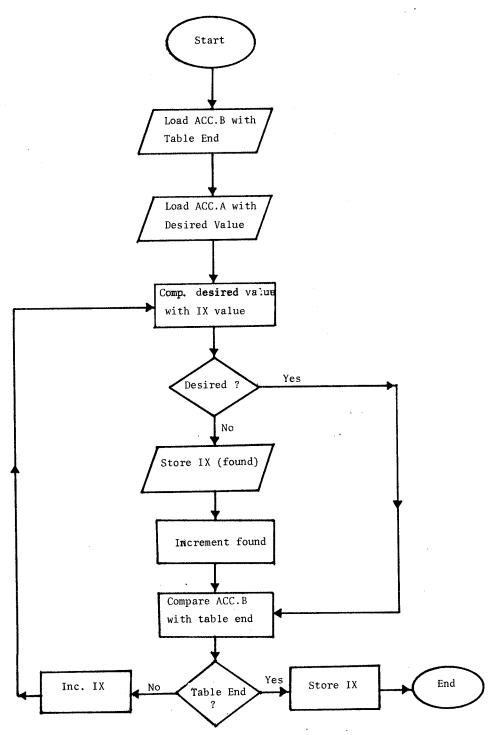


Fig 3.9 Table search flow chart

execute the table search routine where it calculates the sine and cosine of the phase angle. The signs are identified by setting the first bit in the corresponding flag registers as shown below:

Sign of Sine/cosine	Angle location	R - X Flag
cosine negative	second quad.	\$CA3B
cosine negative	third quad.	\$CA3C
sine negative	third quad.	\$CA3D
sine negative	fourth quad.	\$CA3E

3.2.3 Resistance-Reactance Calculation Routine

Figure 3.10 is a flow chart for the impedance calculation RTN. The program starts by reading the current I_p and imposing a minimum value of \$20, then multiply this Ip by 4. The processor then reads the voltage V_p . If V_p is equal to zero, the resistance and reactance values are forced to \$00 and outputed in PIA #1 and PIA #2 output registers otherwise it tests R-X flag to do either resistance or reactance calculations: $V_p = \frac{V_p \cdot \cos \theta}{p}$

R = $\frac{V_{p} \cdot \cos \theta}{I \cdot 4}$ $X = \frac{V_{p} \cdot \sin \theta}{I \cdot 4}$

The sign of the R and X is determined by the subroutine shown in figure 3.11. The processor starts by putting a limit on maximum R and maximum X to be equal \$7F. Then it checks the sign of sine/cosine and implements the logic given in the following table.

Logic table for sign of R & X in four qudrants

lst quad.	2nd quad.	3rd quad	4th quad	1	ogic		
yes				R+ =	\$80	+	R
				X+ =	\$80	+	X
	yes			R- =	\$80	-	R
				X+ =	\$80	+	x
		yes		R- =	\$80	-	R
				x- =	\$80	-	X
		No. 400 400	yes	R+ =	\$80	+	R
				X- =	\$80		x

Where R and X are the previously calculated values and R+, X+, R-, X- are the adjusted values with corresponding signs.

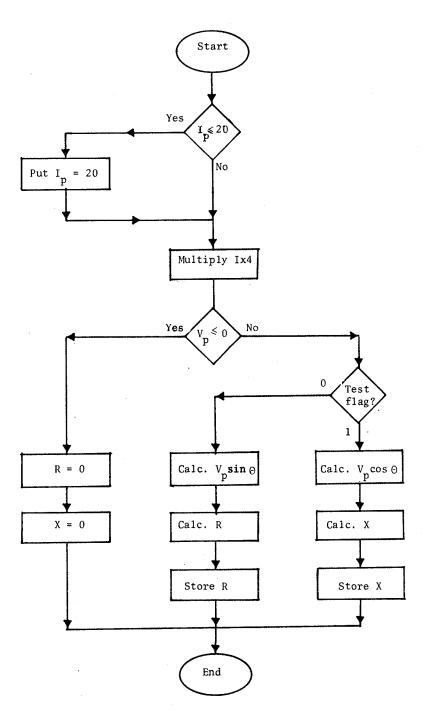
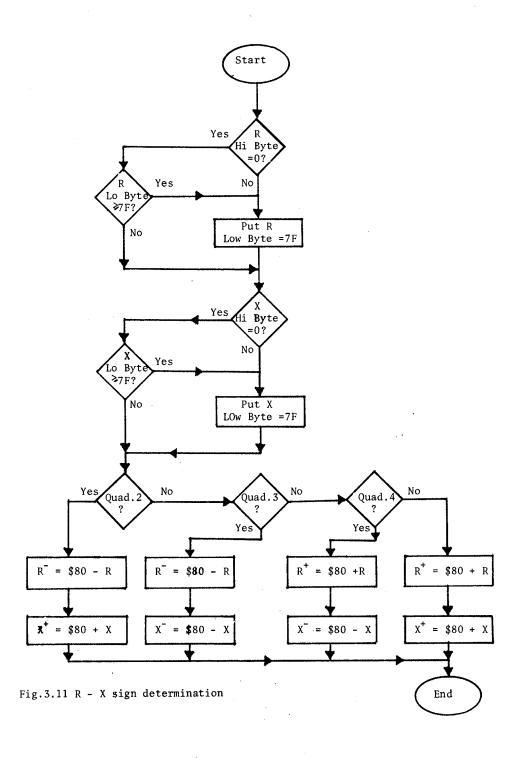



Fig. 3.10 Impedance calculation routine flow chart

Chapter IV

COMPUTATION TECHNIQUE AND ERROR ANALYSIS

The device is designed to work on a 60 Hz system, with no harmonic content or dc offset, by accepting two voltage signals with the following ranges:

$$V_{in}(v) = -8.9v \text{ to } +8.9v$$

$$V_{in}(i) = -4v \text{ to } +4v$$

As was mentioned before, these signals are conditioned to have the ranges

$$V_{in}(v) = 0v \text{ to } +5v$$

$$V_{in}(i) = 0v \text{ to } +5v$$

The BICEPS (The Basic instrumental controllable Electrical Power system) machine rating is;

Full load line current = 0.33 Amps

Line voltage = 120 Volts

Full load power = 40 Watt/phase

From these ratings we get

Impedance at full load = 364Ω

For a maximum short circuit current = 5 I _{f.1}.

$$Z_{\min} = 72 \Omega$$

under light load condition $I = \frac{1}{4} I_{f.1}$.

$$Z_{\text{max}} = 1454 \Omega$$

The impedance range is $z_{\min} < z > z_{\max}$ from which the resistance and reactance are calculated.

$$R = Z \cos \theta$$

$$X = Z \sin \theta$$

Sources of errors can be classified into two categories. The first category is component errors, mainly A/D and D/A converter errors. The second category is computational errors as a result of multiplication and division routines, sine table approximations and phase shift calculations.

4.1 A/D AND D/A CONVERTER ERRORS

Since the A/D terminal $V_{\rm in}(+)$ is grounded and the reference terminal is floating, the zero digital code will need no adjustment and will be equivalent to zero analog input. Also the full digital code, \$FF, will be equivalent to +5V analog input and no adjustment is needed. Manufacturers specification gives a full scale error of $\frac{\pm 1}{4}$ LSB at a clock frequency of lMHz.

Quantization errors are inherent in all digitization techniques. For A/D converters the minimum quantization error is the smallest increment of analog voltage to which the output signal can be approximated. This quantization error is given by

$$\Delta V_{q} = \frac{V}{r^n}$$

where

V is the analog input voltage,

r is the radix (r=2 for binary system), and

n is the number of digits (n=8 bits).

This will give the LSB bit a weight of

LSB =
$$\Delta V_q = \frac{5v}{2^8} = 19.53 \text{ mV}$$

Another type of error is the sampling error. This arises from the fact that an A/D converter will look at the input signal for a short interval and leave it for a much longer time. In a general case, to minimize sampling error, a sinsoidal analog input is restricted in its maximum frequency by the relation

$$f \leq \frac{\Delta V}{V_p \cdot \Delta T}$$

where:

 $v_{_{\mathrm{D}}}$ is the peak input signal,

 ΔT is the aperture time of the converter, and

 ΔV is the resolution voltage.

Since the processor has a clock period of 1 μ sec, the time taken by this converter to count from 2 0 to 2 8 is

conversion time = T_c = $1\mu sec \times 2^8$

The conversion rate is therfore

$$f_c = \frac{1}{T_c}$$

= 3906 conversions per second.

For a 60 Hz analog input the conversion rate is thus

$$f_c = 65 \text{ conversions/cycle.}$$

From this conversion rate we can say that the sampling error for the A/D converter is negligible.

The D/A converter output is a current signal
$$I_0 = K \left(\frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \dots + \frac{A_8}{256} \right)$$
 Amps

$$I_0 = K \times A$$
 Amps.

where:

$$K = \frac{V_{ref}}{R_{14}}$$

 $K = \frac{V_{ref}}{R_{14}}$ is the most significant bit MSB

is the least significant bit LSB

is either 1 or 0 Α

is the resistance connected to the converter at pin 14

In this design, these components were choosen to have values

$$R_{14} = 1 K$$

$$v_{ref} = +5v$$

$$K = 5m Amp$$

The output current and voltage conversion is accomplished by the output signal conditioning circuit shown in Figure 3.2.

$$V_0 = K \cdot A \cdot R_{14}$$
 volts

The output current for a digital word (00) is = 0 A and for a digital word (FF) is approximately 2 mA.

$$I_0 = 0.005 \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{256} \right)$$
 Amps

Trim pots R_4 and R_5 on figure 3.2b are used for final adjustment to give a scaled output voltage to be

The accuracy test done by the manufacturer on this converter showed that the accuracy is within $\pm \frac{1}{2} LSB$ at 25 degrees C at full scale output current.

4.2 <u>COMPUTATIONAL ERRORS</u>:

Computational errors can be classified into the following three different types;

- 1) Errors in the phase angle calculation process where the phase angle in number of clock cycles has to be converted into degrees in hexadecimal number.
- 2) Errors due to the sine/cosine of the phase angle calculation. All entries in the look-up table are approximated to one byte long hexadecimal number. This approximation has an appreciable effect for angles between 84 to 90 degrees.
- 3) Errors resulted from the two-byte by two-byte divide routine.

Divide subroutine contributes largely to the total accumulated error in resistance and reactance calculation. This contribution is a function of the dividend and the divisor magnitudes. The quotient part of the division result is outputed to the D/A converter only and the remainder is discarded. The effect of discarding the remainder can be shown in an example. Assume that the input voltage is fixed at a value \$7F and in phase with the input current signal for illustrative purposes. For a current signal magnitude equal to \$30, the calculated impedance will be,

$$R = \left(\frac{\$7F}{\$30}\right)_{16} = \left(\frac{128}{48}\right)_{10}$$

$$R = \left(2.66\right)_{10}$$

$$X = 0$$

The divide routine will discard 0.666 and retain the quotient 2. The maximum R can be calculated by knowing the minimum allowed value of current signal which is equal to \$20,

$$R_{\text{max}}$$
 = $(\frac{\$7F}{\$20})_{16}$ = $(\frac{128}{32})_{10}$

This value represents the maximum scale. The discarded value, 0.666, in the previous calculation gives an error of

% of full scale =
$$(\frac{0.66}{4})_{10}$$
 = 16.65 %

By taking different magnitudes of the divisor, I, table 4.1 is constructed to show the percentage error in R calculations. It shows too that the maximum error occurs at minimum value of divisor and is equal to 21.9%, The effect of this error can be reduced by multi-precision division calculation.

Table 4.1 Error in impedance due to division calculation
Subroutine

Input I	Imp	pedance	% error of
Hex value	Quotient	Remainder-	full scale
\$20 \$21 \$22 \$23 \$24 \$25 \$26 \$27 \$28 \$30 \$35 \$40 \$50 \$60 \$70 \$80	43333333333222111 \$	0.0 0.878 0.765 0.657 0.5555 0.459 0.368 0.282 0.20 0.122 0.666 0.415 0.462 0.60 0.333 0.143 0.0	21.9 % 19.1 % 16.4 % 13.9 % 11.5 % 9.2 % 7.0 % 5.1 % 16.66% 10.37% 11.50% 15.0 % 8.3 % 3.5 % 0.0 %

Note: Remainder is listed in base 10

4.3 PHASE ANGLE, PEAK VOLTAGE/CURRENT CONSTANTS:

To calculate the peak values of both current and voltage signals, a voltage zero is detected first then the processor looks for a current zero by looping in a specified loop. During this looping process the processor keeps incrementing a counter by one count for each lap till a current zero is detected. The number stored in the counter, N, is the measure of the phase shift . The processor then waits for a period of 90 degrees by looping in a timing loop for 346 times. This constant is calculated by knowing the number of instructions, the time needed to execute each instruction in the loop and the processor clock period. The processor then will read the PIA #2 input register which will contain the peak value of the current signal. To calculate the voltage peak, the processor will look for the next voltage zerocrossing and waits a time equivalent to 90 degrees as it did for the current signal except that the constant will be 231.

Since the processor is running at lMHz frequency, the clock period is 1 sec, and for a 60 Hz system the count (N) in number of laps can be changed into degrees as follows:

θ = constant x N.

To complete one lap (one increment in N) the processor needs 20 seconds: calculated by knowing the number of instructions in this loop and the number of clock cycles needed to execute each instruction.

Since

$$\frac{46.3 \ \mu \ \text{sec/ degree}}{20 \ \mu \ \text{sec /degree}} = 2.31$$

the phase angle = $0.4319 \times N$, in degrees In hexadecimal form,

$$(0.4319)_{10} = (0.6E90)_{16}$$

Therefore

$$(\theta)_{10} = (0.6E90)_{16} N$$

After the phase angle is calculated, the sine and cosine are found out by the table look-up method.

A sine table for the phase angle was constructed and written into memory for angles beteen $(0)_{10}$ to $(90)_{10}$ degrees, $(00)_{16}$ to $(5\text{A})_{16}$, in 1 degree increments which makes the table length equal to (5A) entries. This table is located at address \$F100 to F15A. The sine of any angle can be obtained by going to that location. To calculate the cosine of the same angle the processor calculates

$$\cos \theta = \sin (90 - \theta)$$

by using the same table. As was stated in Chapter 3, the sign of sine/cosine is indicated by setting a corresponding "R-X flag " register for each quadrant.

4.4 ERROR AVERAGING TECHNIQUE:

of the sources of computational errors discussed earlier contributes to the total error in the output signal. This total error was found to be an unacceptable percentage of the total output signal. Therefore, an output signal averaging subroutine was developed. This routine performs the duty of filtering the errors resulting from the computation process before outputing the resistance and reactance values to the peripheral device. This duty is accomplished by av-During the device starteraging 8 samples of calculation. ing process and after a reset signal a stack of 16 consecutive values, 8 for average resistance calculation and 8 for average reactance calculation, is cleared and the first sample of R and X is divided by 8 using the logic shift-right instruction three times. This first sample is stored in the stack and the PIA output register. The processor then loops back to calculate the second sample. After 8 samples have been added, the processor outputs the stack sum to the PIA to give the average value of 8 calculations.

After the processor obtains the first sample in the next cycle, it subtracts the oldest one from the total sum of the stack and adds the new one to both the stack and the stack sum for outputing.

Chapter V

DEVICE TESTING AND CALIBRATION PROCEDURE

To determine the accuracy and performance of this device two different types of tests were performed. In the first test the device was subjected to steady state-conditions and in the second test, to transient conditions.

5.1 DEVICE TESTING AND RESULTS:

In the first test two steady-state signals where applied at the input terminals V and I with amplitudes $\pm 8.9~V_{p-p}$ at 60-Hz and $\pm 4~V_{p-p}$ at 60-Hz respectively. When the device was reset and running, the output resistance and reactance where observed on a two channel oscilloscope as a function of time and shown in figures 5.1a and 5.1b. These figures show that when the device is reset ,t=0, the output R and X are zero and start increasing in eight steps to their full values. This is the result of the 8-samples averaging routine mentioned in Chapter 4. The length of each step is the time taken by the program to detect the V and I zero crossing and performing the calculation cycle. This time (t_s) is equal to

 $t_s = 0.2 \times 0.2 \text{ sec/div}$

= 0.04 seconds

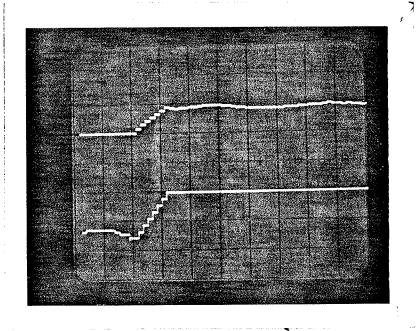


Fig. 5.1a

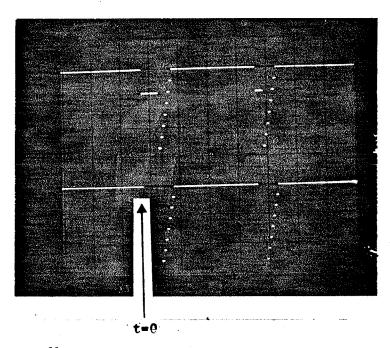
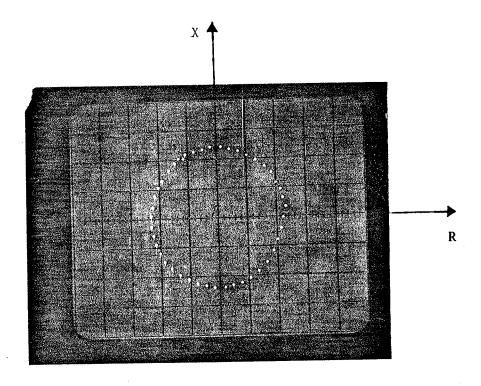



Fig. 5.1b

Figure 5.2a shows a plot of R versus X for 60-Hz input voltage signal and a 60.4-Hz input current signal. difference in frequency is to simulate continuously variable The amplitude of both signals is constant. phase shift. The plot in figure 5.2b is an n-sided polygon. The reason for not being a circle is that the phase shift does not vary fast enough for the program to calculate new values for R and X and keep on outputing the same values till a new set of calculations are made. Another reason is the number saturation due to the multiplication and division subroutines. The effect of these sources of errors appears in fig.5.2d where the flat sides in the outermost distorted circle are due to number saturation and the limitation imposed on the minimum current signal to be \$20. Figure 5.2c shows R and X versus time plot were flat peaks are due to the same reasons.

In the second test, the device was connected to the BICEPS machine as shown in figure 5.3. The current and voltage transformers are connected to phase 2. Line switching transients were created by switching the line length from 1.5pu to 2.75pu. This is accomplished by using a switch, not shown in the figure, to change line length to one of four different pre-set line lengths. As was explained in chapter 2, the power transfer capability of the system will decrease by switching off one of the lines in fig. 2.5a.

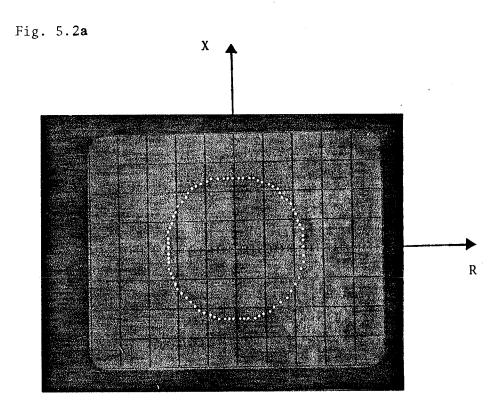


Fig. 5.2b

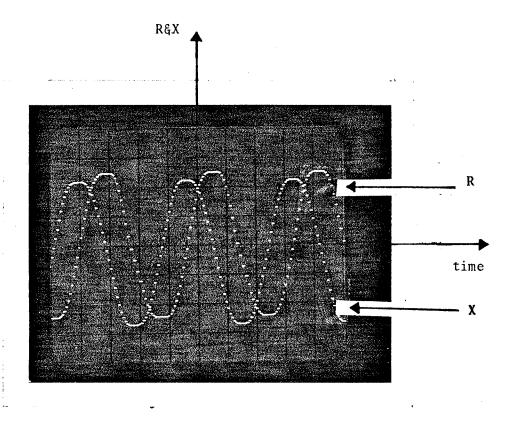


Fig. 5.2c

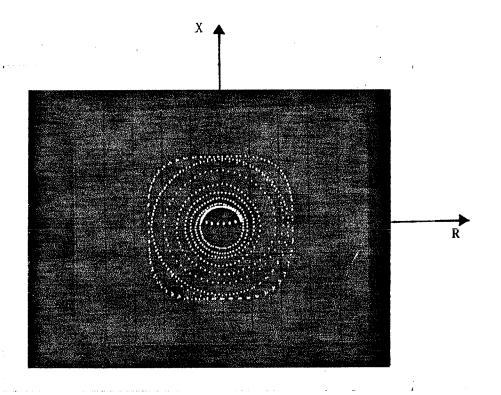


Fig 5.2d

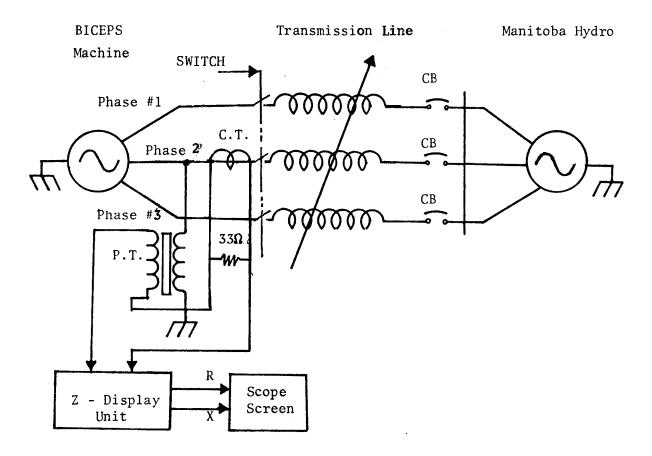


Fig. 5.3: Transient test connection on the BICEPS machine

Following the same argument, the generator was loaded to 0.65pu at a line length of 1.5pu. The corresponding system operating point on the impedance plane is shown in figure 5.4a at point t=0. After line switching to 2.75pu, the operating point was oscillating along the dotted curve as shown and finally stabilized at t=t . Each dot on this curve corresponds to one R and X calculation. Generator loading was increased to 0.68pu at line length of 1.5pu. After switching to 2.75pu, the system was stable with the operating point oscillating along the dotted locus as shown in Figure 5.4b.

To obtain an unstable transient, the generator was loaded to 0.75pu at line length =1.5pu. By switching to 2.75pu line length, the impedance locus was displayed on the scope screen as shown in Figure 5.5b in dotted line. The area shown by the 'unstable' sign indicates that the impedance display device could not generate the proper impedance locus. A smooth curve as shown on Figure 2.6a is the desired target. An 8-sample averaging routine was developed, to filter out the accumulated calculation error, and the device was tested one more time. One effect of this routine is to slow down the device response, a penalty for obtaining smooth curves under steady-state tests as shown in Figures 5.2c and 5.3a.

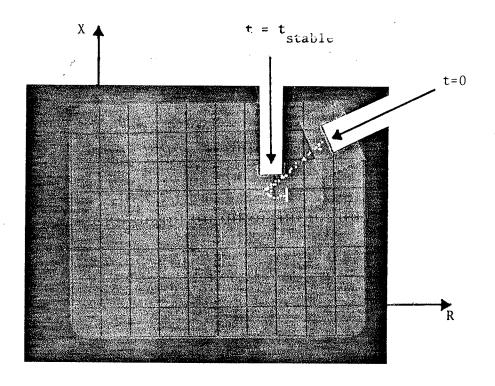
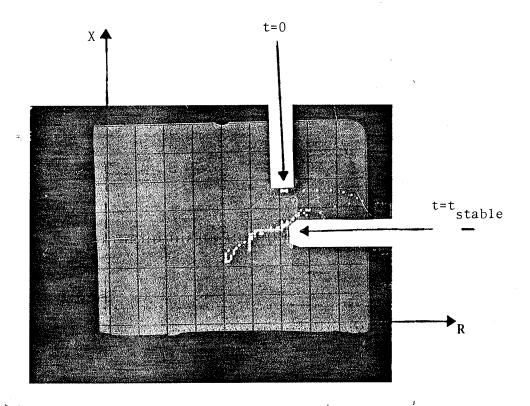



Fig. 5.4a Stable transient (p = .65 pu)

F.ig. 5.4b Stable transient (p = .68 pu)

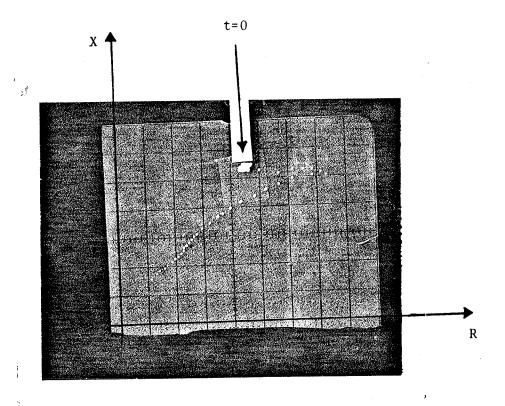


Fig 5.5a

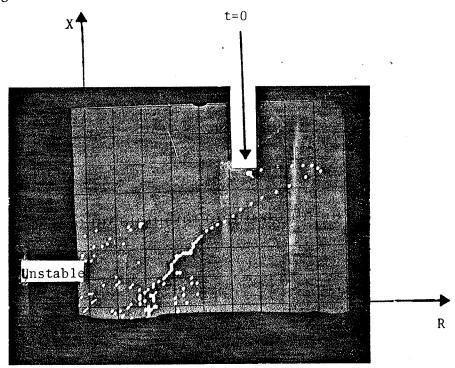


Fig. 5.5b Unstable power swing

5.2 DEVICE CALIBRATION PROCEDURE:

To calibrate the device, apply input sinusoidal voltages at the specified terminals analog input (V) and analog input (I) in Fig. 5.6. The analog input voltage range is -8.9 < V < +8.9 volts and the analog input current signal is -4 < V <+4 volts. The input signal conditioning circuits adjust these signals to the range accepted by the A/D converters 0 < V < +5 Volt).

Trim pots TR3 and TR7 are used for signal biasing. Trim pots TR2 and TR6 are used to adjust operational amplifier gains.

The following steps are recommended for troubleshooting and device calibration:

- 1. This device runs on 5V DC and 12V DC. Test power supply circuit in Figure 5.1b for noise and ripple_free power supply
- 2. Apply a full scale 60 Hz analog voltage signal (-8.9v to +8.9v) to terminal Analog input (v) in figure 5.la. A biased signal, (0v to +5v) should appear on terminal #6 on the A/D converter #1. If not, check the input signal conditioning circuit #1.
- 3. Apply a full scale 60 Hz analog current signal (-4v to +4v) to terminal Analog input (i). A biased signal (0v to +5v) should appear at terminal #6 on the A/D converter #2. If not, check the input signal conditioning circuit #2.

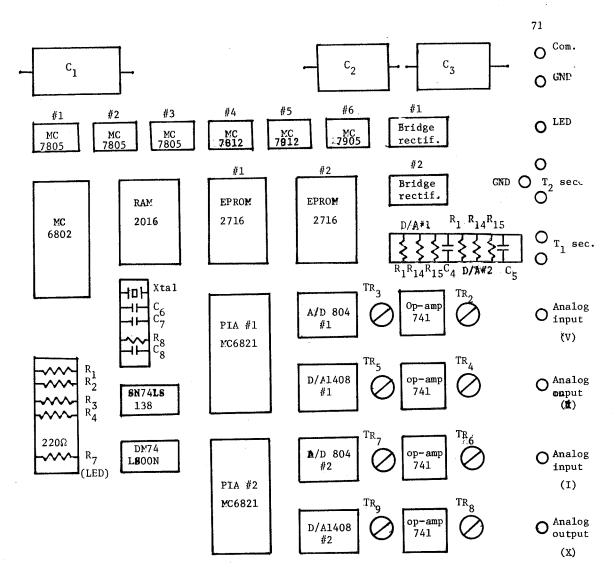


Fig. 5.6a Impedance display unit board layout

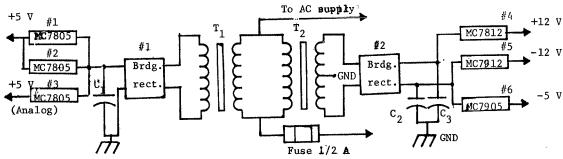


Fig. 5.6b power supply circuit

- 4. The microprocessor runs at a lMHz frequency. This can be checked from terminal E by using an oscilloscope. The same clock signal shoul appear at pin 25 on PIAs #1 and #2, if not, check the crystal circuit.
- 5. For Chip selection and software changes, the Diagnostic Emulator should be used as follows:
 - a) Connect the emulator Probe into the microprocessor socket.
 - b) Switch Emulator ON. RESET and CLK indicators should be off; otherwise check the RESET or Crystal circuit as required.
 - c) With the RAMOVERLAY switches in the OFF position the Emulator display should read \$F000 otherwise check decoder circuit.
 - d) When all above points are properly checked and corrected as required, decoding of the peripheral devices #1 and #2 should be tested as follows:

First: initialize both PIAs as shown in the software program. Call memory locations \$E000 and \$D000 on the address display. Pressing the Emulator EXAM key the DATA readout should give the digital word for each analog input. If not, check PIAs and A/D converters.

Second: call memory locations \$E002 and #D002 and push \$FF in each. A scope at Analog output (R) and analog output (X) on Fig. 5.6a should read +2.5 volt,

if not, check PIAs and the output signal conditioning circuits for adjustments.

Third: Into the same memory locations, \$E000 and \$D000, push \$7F, adjust trim pots TR4 and TR8 to obtain a zero volt output on the scope.

6. Apply the analog input signals (I) and (V) to the device vice then press the Emulator RUN key, the device should run giving the calculated resistance and reactance. If the device does not run repeat steps 1 through 6.

Chapter VI

CONCLUSIONS

- 1. This device is capable of computing and displaying, in real time, the impedance seen at a point in a power system.
- 2. Tests under steady-state conditions with simulated phase shift indicate that the device is able to generate a smooth impedance locus in spite of the errors accumulated during the R and X calculation process (mainly in the divide routine where the remainder of the division is discarded).
- 3. Stable transient tests on a model power system resulted in an acceptable swing locus, but the error was appreciable during an unstable transient test. Filtering out this error by an 8-sample averaging routine was effective in smoothing out the impedance locus but resulted in degraded dynamic response.

In light of these results, the author would like to recomend the following to enhance the device performance and duties:

- 1) Develope a software algorithm to plot the actual relay characteristics on the oscilloscope screen possibly by using the existing hardware.
- 2) Optimize the device performance by implementing multiprecision divide and multiply calculations.

3) Design a digital read-out using the existing software algorithm as an enhancement to the BICEPS teaching tool.

Appendix A

BIBLIOGRAPHY

- 1) Ronald L. Krutz, "Microprocessors And Logic Design," John Wiley & sons, Inc. 1980
- 2) General Electric, "Use of R-X diagram in relay works," switchgear puplications, GET - 2230b, 1966
- 3) W.A. Elmore, "Fundamentals of out-of-step Relaying," Westinghous electric Corporation, Relay - Instrument division, January 1979.
- 4) Edith Clarke, "Impedances seen by relays during power swings with and without faults," AIEE Transactions, Vol. 64, 1945, pp 372-384
- 5) Herbert Brunner, "Introduction to Microprocessors,"
 Resto puplishing company, INc. 1981
- 6) National Semiconductors, " Data Conversion Acquisition Databook," 1980
- 7) Joseph D. Greenfeild, William Wray, "Using Microprocessors and Microcomputers: The 6800 Family," John Wiley & sons, 1981.
- 8) A.R. vanC. Warrington, "Protective Relays: Their Theory
 And Practice volume two," John Wiley & sons 1978
- 9) William D. Stevenson, Jr., "Elements of power systems,"
 McGraw-Hill Book company, 1982
- 10) L.M. Wedepohl, " Polarized Mho Distance Relays, New

- approach to the analysis of practical characteristics," IEE PROC. Vol 122, No. 3, March 1965
- 11) Lance A. Leventhal, " Introduction to Microprocessors
 Software, Hardware, Programing,"
- 12) Motorola Incorporation, "Linear Interface Integrated Circuits," 1979

```
SO OS OCCO 48 44 52 1B

$1 13 FOOC CE OC 04 FF 00 00 CE FF 04 FF DO 02 CE OC 04 FF ES

$1 13 FOOC CE OC 04 FF 00 00 CE FF 04 FF DO 02 CE OC 04 FF ES

$1 13 FOOC CE OC 05 FF 04 FF EO 02 FE FA 10 7F CS $1 8F 00 3A

$1 13 FOOC 08 7C CS $1 85 CS $1 $1 17 28 F3 8E FA 02 FE FA ES

$1 13 FO3O 00 B5 DO 00 81 FA 08 2B 02 20 F8 85 DO 00 B1 FA 1F

$1 13 FO3O 00 B5 DO 00 F1 FA 08 2B 02 20 F8 85 DO 00 B1 FA 1F

$1 13 FO5C 08 01 01 09 08 ED 00 0F 1 FA 08 2B 02 02 F5 FF CA 02 FE FA DS

$1 13 FO5C 08 01 01 09 08 ED FC F8 ED 00 F1 FA 08 2B 02 02 FF FA DS

$1 13 FO5C 08 01 01 09 08 ED FC F8 ED 00 F1 FA 08 2B 02 02 FF FA DS

$1 13 FO5C 08 01 01 09 08 ED FC F8 ED 00 F1 FA 08 2A 02 FC F8 ED

$1 13 FO5C 08 61 FA 08 2B 02 20 F5 B8 DO 00 B1 FA 08 2A 02 20 11

$1 13 FO5C 08 FF FE FA 04 01 02 08 08 ED 00 B1 FA 08 2A 02 20 11

$1 13 FO5C 08 FF FE FA 04 01 DS 08 08 ED 00 B1 FA 08 CD 08 7 CA 03 DS

$1 13 FO5C 08 FF FE FA 04 01 DS 08 CB FF CC 02 B8 CA 02 B7 CC 03 D1

$1 13 FO5C 08 FF FE FA 04 01 FD 00 B8 CC 08 B7 CA 03 F8 18

$1 08 FOSC CC 08 F7 CA 02 FE F4 00 4E

$2 SB 03 0000 FC
```

MOTORDLA MESSAM CROSS-ASSEMBLER

PAGE 1

MOBSAM IS THE PROPERTY OF MOTOROLA SPD. INC

MOTORDLA MESOO CROSS ASSEMBLER, RELEASE 1.3 MODIFIED IAMC VER: 1.0

```
NAM PEAKPICK
DRG SFOOO
  C0002 F000
 C0002
00003
00004
C0008
00008
                                                                                     PEAK PICKING ROUTINE & PHASE ANGLE CALCULATION
00007
00008
00009
00010 F000 CE 0004
00011 F003 FF D000
00012 F005 CE PF04
00013 F005 FF D002
00014 F00C CE 0004
00015 F00C CE 0004
00015 F012 CE FF04
00017 F015 FF E002
00018 F018 FF E002
00018 F018 FF E002
00019 F018 FF C881
00020 F018 FF C881
00020 F018 F0 C881
00021 F020 08 INK
00022 F021 7C C881
00023 F024 85 C851
00024 F027 81 7
  00008
                                                                                                                     #$04
$000
#$FF04
$D002
#$000
#$FF04
$E002
$FA10
$C861
0, X
                                                                                                LDX
STX
LDX
STX
                                                                                                                                                           INIT. Pla2 INPUT REGISTERS
LDAD IND. REG. WITH MEX SPFO
INIT. PIA2 DUTPUT REGISTERS
LOAD IND. REGISTER WITH MEX.
INIT. PIA1 INPUT REGISTERS
LOAD INDEX REGISTER WITH SPFO
INIT. PIA1 OUTPUT REGISTERS
LDAD IX WITH STARTING ADDRESS
                                                                                                LDX
STX
LDX
STX
LDX
                                                                                                                                                               CLEAR BYTE COUNT
CLEAR LOCATION INDICATED BY I
                                                                                              CLR
                                                                          CLEAR
                                                                                                   INC SCS61
LDA A $CS61
CMP A #$17
BM1 CLEAR
                                                                                                                                                                INCREMENT COUNTER
LOAD ACC.A WITH COUNT VALUE
                                                                                                                                                               BRANCH TO CLEAR REST OF TABLE
```

```
| OCCUPATION | COCCUPATION | C
```

P A.P C. MOTOROLA MESSAM CROSS-ASSEMBLER

PAGE 2

00055 F06D B5 D000 P1A2V1 LDA A SD000 CD056 F070 B1 FA08 CMP A SFA05 CDMPARE INST. VALUE OF V WITH 00057 F073 28 02 BMI P1A2V2 D0058 F075 20 F5 BMI P1A2V2 LDA A SD000 CMP A SFA06 CDMPARE INST. VALUE OF V WITH 00058 F075 20 F6 BRA P1A2V2 BRANCH ALWAYS LDAD ACC.A WITH INST. VALUE OF V WITH 00058 F075 20 F6 BRA P1A2V2 BRANCH ALWAYS LOAD ACC.A WITH INST. VALUE OF V WITH 00058 F075 20 F6 BRA P1A2V2 BRANCH IV V > SA0 BRANCH IV V

```
00070 F08D B7 CA0A
00071 F080 &8 8E
00072 F085 C8 80
00074 F085 C8 80
00074 F087 F7 CC02
00075 F08A 86 CA02
00077 F08D 87 CC03
00077 F08D 87 CC03
00078 F08D 87 CC03
00078 F08A 87 C004
00080 F08A 87 CA03
00081 F08A 87 CA03
00082 F08F F CA03
00083 F08F F CA03
00084 F08F 7 E F400
00085 F000
00087 F000 0001
00088 F400 0001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SCAOA
#SEE
SCCOO
SCCOO2
SCCOO3
SCCOO3
SCCOO4
SCCOO3
SCCOO5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STORE MAX. VALUE OF V
LOAD ACC.A WITH A CONSTANT SE
INITIALISE MUL2RTH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      JUMP TO SINCOS SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ORG
RMB
ORG
RMB
END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                $ F D O O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MUL2RT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          $F400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SINSTR
                        00010
                  SYMBOL TABLE
            BIGIN
STX1
44 52
144 52
1C 7F CA 42
48 25
F1 F0 CO 27
F1 F1 F0 CO 27
F1 F0 CO 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PIA2VH FO3B
PIA2V1 FO8D
SINSTR F400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              18 FAD 38 FAD 38 FAD 38 CA 37 CA 20 B 7 CA 20 B 7 CA 20 CA 20 CA 20 CA 21 C CA 21 C CA 21 C CA 21 C CA 20 CA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        OTFA2A28547A807510AEF2E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7AC7108D8AB07AA1EDC8E7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C17CBOCBC17OO11F57C7FC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 07FABAF252C5103707AFA32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7FAD807781AD187A7AC84C7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C17C2CC2F380FC001FCBBC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7FA3022007EADCA777033ACCAA11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       7C3F24F82F0F17C3FA8103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         27C157AA208891AC6A7A781
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13FACESAA10SAA5ADDASA0AA1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3102097765070000878118
```

13 F550 13 F570 13 F550 13 F550 13 F550 08 F550 03 0000 DO 38 F6 F5 CA FA 00 AA 70 B7 CA CA 08 10 25 7C F3 43 7E 87 14 CA A1 F5 CA F8 24 F7 00 58 12 CA 8D 28 3E 88 41 F5 CA 85 CA 1A 43 10 5A F7 F6 58 06 7C CA F7 80 EE CA 12 CA FF FF 38 87 17 CA FF 7C CA 86 43 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 9 C 6 40 24 BD BO CA FE E1 CA 60 43 F7 0E 27 88 CA CA 86 04 5A 24 43 7E

PAGE

MESSAM IS THE PROPERTY OF MOTOROLA SPD. INC COPYRIGHT 1974 TO 1976 BY MOTOROLA INC

MOTOROLA MESSAM CROSS-ASSEMBLER

MOTOROLA M6800 CROSS ASSEMBLER, RELEASE 1.3 MODIFIED IAME VER: 1.0

00001					NAM			NE																			
00002	F400				DRG			40																			
00003																		٠.									
00004				*		• •			• • •		••	• •	•	••	• •		••	•	••	•••	•	* *			••		
												_				_											
00005					E - CO:		NE	FR	W 2 E	2 11	1 5	Ţ	Α.	NG	L		3 U		10	U	1	N					
00008				*																							
00007					****	• •	* * *		* * *		••	• •		* *	* *		• •	• •	* *	* *			*	* *	* *		
00008	_		_																								
00008	F400	8 E	FACZ	SINSTR	LDS			AO			1 N	11	11	A L	1 5	E	s	T /	A C	ĸ	•	0 1	H.	TE	R		
00010		F 6	FAOD		LDA	8		AO																			
00011	F405	F 7	CAOF		STA	8		:AO			5 T				DC									Æ	S)		'IX
	F409	75	CAGE		CLR			: AO			CL	E.A	R	М	E.	10	R٧	- 1	L Q	C	١T	1 0	N				
00013		7 F	CA 13		CLR			: A 1		i	CL	E/	\₽	M	E١	10	RY	- 1	LO	CA	١T	1 (N				
	FAOF	7 F	CAIC		CLR		3 (A 1	C	- 1	C٤	E s	R	M	EN	10	RY		LO	CA	T	3 6	N				
00015	F412	75	CAID		CLR		\$ (A 1	Ð	- 1	C٢	E A	R	M	EN	10	R Y	- 1	LO	CA	T	1 0	N				
00016	F415	7.5	CAIE		CLR		\$ 0	A 1	E		CL	E A	R	M	EN	10	RY		LD	CA	IT	1 8	IN				
00017	F418	7 F	CAIF		CLR		\$ 0	A 1	F	- 1	C٤	EA	l R	M	EN	10	RY	ł	LO	CA	١T	3 6	N				
00018	F418	7 F	CA24		CLR		\$ 0	: A 2	4		CL	24	R	\$	18	Æ	- c	05	S 1	NE		LC	101	P	FL	AC	i
00019	F41E	7 F	AEAG		CLR		\$ 0	EA:	A		CL	E A	R	R	E S	1	s t	A	N C	E	-		E	A C	TÄ	NC	: E
00020	F421	75	CA38		CLR		\$ 0	A3		- 1	C L	Ē 4	R	s	EC	: .	οu	AI	DR	Δħ	17	2	D	8 1	NE		LA
00021	F424	7#	CASC		CLR		30	EA:	Ē																		
00022	F427	7 .	CABD		CLR		3.0	A3	D																		
00023	F424	7 F	CASE		CLR			EA3																			
00024	F42D	7.5	CASE		ELR			Δ3																			
00025	F430	7#	CA42		CLR		5.0	44	2																		
00026	F433	86	CAOZ	SUBBO	LDA	Δ		ΔO			10	ΔΕ		3.6	e.	Δ	w		7 14	(M 1	16	ы		TE
00027	F436	87	CAOS		STA	Ā		ÃO					ŧΕ							FÌ							E)
00028	F438	F 6	CAOS		LDA			AO																DW			
00028	F43C	F 7	CAOC		STA	ě		AO					E							FÌ					8 7		
00030	F43F	BD	F 8 4 9		JSR			82			jü							RA							7 I		
00031	F442	25	20		BCS			BÉ							ı			Gi			š	7					RE
00031	2				3		3 (~ "		-	- T		7	• -		× 17	• •			3	•	•	,0	9	E G	

```
STORE COSINE SO DEGREES
                                                                                                                                                                                                                                                                                                                  STORE SINE SO DEGREES
JUMP TO IMPEDANCE RTN
RE-INITIALISE SUBTRACT ROUTIN
                                                                                                                                                                                                                                                                                                                 RE- INITIALISE SUBTRACT ROUT!
SAVE ANGLE VALUE FOR PUTURE U
BRANCH TO SUBTACT SO DEGREES
LOAD ACC.A WITH PHASE ANGLE (
                                                                                                                                                                                                                                                                                                                 JUMP TO SUBTRACT ROUTINE
            . . .
                3 N 03
                                                                                                                         MOTOROLA MESSAM CROSS-ASSEMBLER
      OOOSS F48F B1 FAOO
OOOSS F48E 2 27 02
OOOST F48E 20 24
OOOSS F48E F5 CA12 ZER01
OOOSS F48E F1 FAOO
OOOSO F48E 27 02
OOOSS F48E 51 FAOO
OOOSS F48E 57 CA17
OOOSS F48E 57 CA18
OOOSS F48E 57 CA18
OOOSS F48E 57 CA18
OOOSS F48E 57 CA18
OOOSS F48E 55 CAAA JUMP
OOOSS F48E 55 CAAA JUMP
OOOSS F48E 55 CAAA JUMP
OOOSS F48E 75 CA3B
OOOTS F4AT 7E CA3B
OOOTS F4AD F5 CA12
                                                                                                                                                                                          CMP A SFAOO
BEGO ZERO1
BRA B SCA12
CMP B SCA10
BEO ANG180
BEO ANG1
                                                                                                                                                                                                                                                                                                              PHASE ANG. [ 80 C ANGLE C 180
                                                                                                                                                                                                                                                                                                                FLAG FOR COSINE IS NEGATIVE
                                                                                                                                                                                                                                                                                                              RE- INITIALISE SUBTRACT ROUT!
                                                                                                                                                                                                                                                                                                              RE- INITIALISE SUBTRACT ROUTI
SAVE ANGLE VALUE FOR FUTURE U
00077 F488 20 03
00078 F488 01
00078 F488 01
00080 F488 01
00081 F488 80
00082 F488 25 54
00083 F4C0 86 CA11
00085 F4C8 27 02
00085 F4C8 27 02
00086 F4C8 27 02
00088 F4C0 F1 FA00
00080 F4D0 27 02
00090 F4D0 27 02
00100 F4E0 87 02
00100 F4E0 87 02
00100 F4F0 27 02
00100 F500 7 02
00111 F507 F7 02
00113 F500 F7 02
00114 F50C F7 02
0114 F50C F7 02
                                                                                                                                                                                            BRA
                                                                                                                                                                                                                                 SUB270
                                                                                                                                                                                            NOP
NOP
NOP
                                                                                                                                                                                      270 ( ANGLE
                                                                                                                                                                                                                                                                                                           SIN 270 DGREES IS NEGATIVE
                                                                                                                                                                                                                                                                                                           RE- INITIALISE SUBTRACT ROUT!
                                                                                                                                                                                                                                                                                                           RE - INITIALISE SUBTRACT ROUT
Save angle value for future u
Jump to subtract routine
                                                                                                                                                                                                                                                                                                           ANGLE . 360
                                                                                                                                                                                         BRA
CLR
STA
COM
                                                                                                                                                                                                                                  $CA17
                                                                                                                                                                                          STA P SCA 18
     ...
                                                                                                                  MOTOROLA MESSAM CROSS-ASSEMBLER
  00115 F50F 7E F300
00116 F512 2C 21
00117 F514 7C CA3D FLAG2
00118 F517 7C CA3C
00118 F51A F5 CAAB
                                                                                                                                                                                                                               SF300
NEWCYL
SCA3D
SCA3C
SCA3E
                                                                                                                                                                                      BRA
INC
INC
LDA
                                                                                                                                                                                                                                                                                                        BRANCH TO NEW CYCLE
SET FLAG, SIN IS NEGATIVE, 3R
SET FLAG, COS IS NEGATIVE, 3R
```

```
OO120 F81D F7 CA12 STA 8 SCA12
OO121 F820 7E F83A
OO122 F823 7C CA3E FLAG3 INC SCA3E
OO123 F826 7C CA3E LDA 8 SCA3F
OO124 F52E F8 CAAC
OO125 F82C 86 8A
OO126 F82E 10 SBA
OO127 F82F 87 CA12
OO128 F835 4F OO130 F836 AS
OO131 F837 7F CA24
OO132 F83A 88 CA12
OO133 F83A 88 CA12
OO133 F83A 88 CA12
OO134 F83A 88 CA12
OO134 F83A 88 CA12
OO135 F83A 88 CA12
OO134 F83A 88 CA12
OO135 F83A 88 CA12
OO136 F83A 88 CA12
OO137 F83A 88 CA12
OO138 F83A 88 CA12
OO138 F83A 88 CA12
OO139 F83A B8 CA12
                                                                                                                                                                      SET PLAG, SIN IS HEGATIVE, 4T
SET PLAG MAY BE NOT NEEDE
                                                                                                                                                                       PUSH VALUE IN ACC.A INTO C.C. INCREMENT SIN-COS FLAG
JUMP TO START A NEW CYCLE
CLEAR CARRY BIT
LOAD ACC. A WITH DATA IN SCAOC
LOAD ACC. B WITH DATA IN SFAOB
ACC. A - SCAOF
                                                                                                                                                                        SUBTRACT WITH CARRY, ACC.B -
                                                                                                                                                                        RETURN FROM SUBROUTINE
                                                                                                                                                                        LOAD ACC.B WITH END OF TABLE
LOAD IX WITH SIN-COS TABLE ST
LOAD AAC.A WITH DESIRED VALUE
                                                                                                                                                                        SCA41 CONTAINS SINE THE ANGLE
                                                                                                                                                                        INCREMENT INDEX REGISTER
                                                                                                                                                                        WAIT
                                                                                                                                                                        INCREMENT SIN-COS FLAG
                                                                                                                                                                        LOAD ACC.A WITH PHASE
SCA43 CONTAINS DESIRED VALUE
JUMP FOR SIN-TABLE SEARCH
TEST IF SCA24 CONTAINS ZERO
BRANCH TO STORE COSINE ANGLE
LOAD ACC.A BY SINE PHASE ANGLE
                                                                                                        STA 8 SCA17
                                                                                                                                                                        STORE SINE PHASE ANGLE IN MUL
                                                                 MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                                               PAGE 4
  O0175 F5AO 80 CA43 SUB A SCA43
O0176 F5A3 B7 CA43 STA A SCA43
O0177 F5AB 7C CA24 INC SCA24
O0178 F5A3 BD F580
O0179 F5AC FF CA43 COSAGL STX OCA44
O0180 F5AF F6 CA44
O0181 F5B2 F7 CA18 STA B SCA44
O0181 F5B2 F7 CA18 STA B SCA44
O0182 F5B5 7E F300
O0183 O0184 F4O0
O0185 F4O0 O001 SINSTR RMB 1
O0188 O0182 F4O0 O001 SINSTR RMB 1
O0188 F4O0 O001 SINSTR RMB 1
O0187 END
                                                                                                                                                                        INCREMENT $CA24
JUMP TO SIN TABLE ROUTINE
STORE COSINE PHASE ANGLE
LOAD ACC.8 WITH COSINE PHASE
STORE PHASE ANGLE
JUMP TO IMPEDANCE RYN
                                                                                                        ZERO
ZERO 1
ZERO 2
FLAG2
SINTB 1
                                                     SUBSO F433
SUB180 F477
SUB270 F488
ANG380 F507
SINTBL F560
ANGLE2 F58A
                                                                                                                                                             ANGSO F455
ANG180 F490
ANG270 F4D4
FLAG3 F523
SINTB2 F572
COSAGL F5AC
    SINSTR F400
SUBEND F471
BR270 F4AA
ZER03 F4FD
                                                                                                                                     F44E
F486
F4CA
F514
F588
F58D
                                                                                                                                                                                                                88180
                                                                                                                                                                                                                JUMP
BR350
NEWCYL
SINTB3
```

180 C PHASE SHIFT C 270

```
SO O6 0000 48 44 52 18

S1 13 F300 88 CA O8 80 FA O8 25 88

S1 13 F310 87 CB O1 85 04 87 CB O2

S1 13 F330 52 F8 CB O4 F7 CA 53 70

S1 13 F330 CB O1 F8 CA 54 F7 CB O2

S1 13 F340 50 F8 CB O4 F7 CA 51 72

S1 13 F350 88 CA OA 80 FA O8 25 18

S1 13 F350 A0 F8 CB O3 F7 CA 50 85

S1 13 F350 A0 F8 CB O3 F7 CA 50 85

S1 05 F370 7E F0 28 FD

S9 O3 0000 FC
                                                                                                     B1
BD
CA
BD
F3
B7
CB
                                                                                                                                       03
CB
B6
CB
14
CB
                                                                                                                                                86 PA
03 87
CA 17
03 87
F7 CB
01 80
                                                                                                                                                                 OB 88
CA F9
87 8A
CA C8
O2 O5
FD 1E
                                                                                                              08
A0
27
A0
F8
54
                                                                                                                               22
88
12
86
CA
87
CA
  1
                                                  MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                    PAGE 1
                              MSSSAM IS THE PROPERTY OF MOTOROLA SPD. II
Copyright 1974 to 1976 by Motorola Inc
                              MOTOROLA MB800 CROSS ASSEMBLER, RELEASE 1.3
Modified Lamc Ver: 1.0
     00001
                                                                                              IMPED2
SF300
    00002 F300
00003
00004
                                                          * IMPEDANCE CALCULATION SUB-RTN
     00005
     00006
     00007
  00008
00008
00011 F300 B$ CAO$ IMPED LDA A $CAO$
00011 F303 B0 FAO8
00012 F306 25 88 CMP A $FAO8
00013 F308 B1 FAO8
00014 F300 B5 FAO8
00015 F310 B5 FAO8
00015 F310 B7 CB01 MINIM STA A $CB01
00015 F310 B7 CB01 MINIM STA A $CB01
00017 F313 B7 CB02 JRM 11 LDA A $CB01
00018 F315 B7 CB02 JRM 11 LDA A $CB01
00020 F318 B5 CB03 LDA A $CB03
00021 F318 B5 CB03 LDA A $CB03
00022 F321 F5 CB04 LDA B $CB03
00024 F327 T0 CB02 STA A $CB03
00024 F327 T0 CASA LDA B $CB03
00025 F326 BC CA17
00027 F32F B7 CB01 STA A $CB03
00028 F335 F7 CB02 STA B $CB02
                                                                                                                           LOAD ACC.A WITH I - MACC.A CONTAINS I PEAK
                                                                                                                           COMPARE I PEAK WITH $20
                                                                                                                           PUSH $20 AS I - MINIMUM
Initialise muliath
                                                                                                                           JUMP TO MULIRTH
LOAD HIH BYTE
INITIALISE DIVIDE RTH
                                                                                                                           LOAD WITH LOW BYTE
                                                                                                                           TEST PLAG FOR FOR RESISTANCE
                                                                                                                           LOAD WITH SIN PHASE ANGLE
                                                                                                                           LOAD WITH V - PEAK
 LOAD ACC. B WITH COS PHASE ...
                                                                                                                          BRANCH TO STOP, SOME THING IS
  90048 F370 7E F0
.0050
90051 F380
00052 F380 0001
00053 FDA0
00054 FDA0 0001
                                                                                            $F340
                                                       DIVIDE RMB
ORG
MULIRT RMB
                                                                                             SPDAO
  ---
1 11P D
                                               MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                 PAGE 2
  00056
                                                                           END
 SYMBOL TABLE
```

MINIM F310 DIVIDE F380 JUMP1 F313 MULIRT FDAO

IMPEDI F327 RESIST F344

```
08 0000 48 44 82 18
13 F380 88 FA 02 F8 CA 51
13 F380 88 01 37 38 34 30
13 F380 01 28 04 81 11 28
13 F380 04 80 02 A2 01 24
13 F3C0 04 80 03 84 01 88
13 F3C0 70 CA 30 F7 CA 31
03 0000 FC
                                                                                                              37 86
86 01
F5 A7
07 EB
02 6A
CA 32
7E F3
                                                                                                                                                                                    #A
4C
04
20
31
0C
                                                                                                                                                                                                           AS OO CA
O2 89 87
O3 8F 81
OD 88 58
32 33 8E
CA 3A 28
                                                                                                                                      EA
80
00
02
00
F7
27
                                                                                                                                                  50
01
A5
A9
28
CA
7E
                                                                                                                                                              38
28
03
01
E6
33
F2
                                                                                                                                                                         PE 08 E8 0C 31 20 80
                                                                  MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                                             PAGE 1
                                     MESSAM IS THE PROPERTY OF MOTOROLA SPD. II COPYRIGHT 1974 TO 1878 BY MOTOROLA INC
                                     MOTORDLA MESOO CROSS ASSEMBLER, RELEASE 1.3
Modified lamc ver: 1.0
                                                                                                       MAM DIVIDE ORG $F30
    00001
00002 F380
  00002
00003
00004
00005
00005
                                                                                                   SYSTEM DIVIDE SUBROUTINE
 00005
00007
00008
00007
00010 F380 BE FA02
00011 F383 FE CA51
00012 F388 37
00013 F387 BE CA50
00014 F38A 35
00015 F38E FE FA08
00015 F38E AE OO
00017 F380 ES O1
00018 F382 37
00018 F382 37
00020 F384 34
00021 F385 30
00022 F386 BE O1
00024 F380 BE O1
00025 F380 BE O1
00025 F380 BE O1
00026 F380 BE O1
00027 F380 BE O2
00027 F387 BE O2
00027 F387 BE O2
00028 F380 BE O2
00028 F381 BE O4
                                                                          B DIVIDE LDS SPA02
LDA B SCA51
PSH B
LDA A SCA50
PSH A SCA50
PSH A SCA50
PSH B
LDA A X
LDA B 1, X
PSH B
PSH B
DES TSX
LDA A #01
TST 1, X
BMI DIVB
DIVA INC A
                                                                                                                                                                     INITIALISE STACK POINTER
LOAD ACC.B WITH DIVIDEND LOW
PUSH DIVIDEND LOW BYTE INTO $
                                                                                                                                                                    PUSH DIVIDEND HIGH BYTE INTO LDAD SPACE BY SCA , AND SPACE LOAD ACC.A WITH DIVISOR HI-BY LOAD ACC.B WITH DIVISOR LOW B PUSH DIVISOR INTO STACK (HIGH DECREMENT STACK POINTER STORE STACK POINTER IN INDEX
                                                                                                        TST
SM1
INC
ASL
ROL
BMI
CMP
BNE
                                                                                                                                                                     BRANCH IF MINUS
                                                                            DIVA
                                                                                                                      A
                                                                                                                    2,X
1,X
DIVB
A #017
DIVA
                                                                                                                                                                     ARITHMETIC SHIFT LEFT
ROTATE RIGHT
00031 F3A7 A7 00
00032 F3A8 A8 03
00033 F3A8 E8 04
00034 F3AB EF 04
00035 F3AF EF 04
00036 F3B1 E0 02
00037 F3B3 A2 07
00038 F3B5 24 07
00038 F3B5 24 07
00041 F3B8 00
00041 F3B8 00
00042 F3BC 20 01
00043 F3BC 20 01
00044 F3C1 88 03
00046 F3C1 88 03
00046 F3C1 88 03
00047 F3C5 E6 02
00048 F3C7 5A 00
00048 F3C7 5A 00
00049 F3C9 25 E6
00550 F3C8 21
00051 F3CC 31
00052 F3CC 31
00053 F3CC 33
                                                                                                      SAVE COUNT
                                                                                                                                                                     DIVISOR TOO LARGE
                                                                                                                                                                     SET CARRY
                                                                                                                             4,X
3,X
1,X
2,X
0,X
DIVC
                                                                                                        DEC
BNE
INS
INS
INS
PUL A
PUL B
                                                                                                                                                                     INCREMENT STACK POINTER TO CL
  ...
1 D V D
                                                                MOTOROLA MESSAM CROSS-ASSEMBLER
 00088 F3D0 7D CA3A
00086 F3D3 27 08
00087 F3D8 B7 CA33
00088 F3D8 F7 CA33
00088 F3D8 F7 CA33
00080 F3D0 7C CA3A
00081 F3E0 B7 CA30
00082 F3E3 F7 CA30
00082 F3E3 F7 CA30
00083 F3E6 7E F327
00064 F3E9 7E F250
00085 F327
00088 F327
                                                                                                      TST
BEQ
STA A
STA 8
BRA
INC
STA A
STA B
JMP
                                                                                                                    SCAJA
RESIS
A SCAJ2
S SCAJ3
SIGNER
SCAJA
A SCAJO
B SCAJ1
IMPED 1
SF280
                                                                                                                                                                     CHECK FLAGE : ZERO
                                                                                                                                                                     STORE SYSTEM REACTANCE
                                                                                                                                                                     STORE SYSTEM RESISTANCE
                                                                                                       JMP
                                                                                                        ORG
                                                                                                                             SF327
                                                                            IMPEDI RMB
   00088
  SYMBOL TABLE
```

DIVIDE F380 DIVA DIVE F38F RESIS

F39C F3DD

DIVE F3A7 DIVC F381 SIGNXR F3E9 IMPED1 F327

DIVD

F3BE

```
SO OS OCCO 48 44 52

$1 13 F250 B1 FA OC

$1 13 F270 F4 B8 CA

$1 13 F280 F6 CA 31

$1 13 F280 F6 CA 31

$1 12 F280 B0 CA 31

$1 12 F280 CA 32 B7

$1 13 F280 CA 32 B7

$1 13 F280 CA 32 B7

$1 13 F280 CA 32 F7

$1 13 F280 CA 31 F7

$8 03 0000 FC
                                                                   18730173DACCBC
                                                                                                                             33 20 05
88 7F 87
CA 38 27
FB CA 33
FB FA 08
28 7D CA
FA 08 FB
88 CA 31
                                                                                                                                                            F1
CA
14
F7
B0
3E
CA
FB
                                                                                                                                                                      FA
31
88
CA
CA
27
31
CA
                                                                                                                                                                                          22
08
08
20
F0
B8
CA
B7
                                                                            07
81
PA
CA
27
31
33
PA
33
                                                                                      86
FA
OC 1
14
F7
B7
OE
7E
                                                                                                 7F
00
22
F6
86
CA
CA
F6
                                                                                                          87
F1
FA
33
FA
                                                                                                                    CA
97
7D
08
08
20
F6
08
                                                                                                                                                                                 OC
20
FA
33
31
14
F7
                                                          MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                PAGE 1
 1
                                  MESSAM IS THE PROPERTY OF MOTOROLA SPD. I
COPYRIGHT 1974 TO 1976 BY MOTOROLA INC
                                                                                                                                                                        INC.
                                   MOTOROLA MESOO CROSS ASSEMBLER, RELEASE 1.3
                                                                    MODIFIED IAMC VER: 1.0
                                                                                           NAM
Org
     00001
00002 F280
    00002
00003
00004
00005
00005
                                                                                  RESISTANCE - REACTANCE SIGN DETERMINATION
   00008
                                                                                                                                                  BRANCH TO CHECK LOW - BYTE
                                                                                                                                                 CHECK QUOTIENT LOW - BYTE : $
                                                                                                                                                 BRANCH IF C + Z + O
                                                                                                                                                   TEST IF COSINE IS NEGATIVE BRANCH TO TEST THIRD QUADRANT
    00029 F280 B0 CA31
00030 F283 87 CA31
00031 F288 F8 FA08
00032 F288 F8 EA33
00032 F288 F8 CA33
00034 F298 F2 CA3
00036 F2A1 70 CA3D SIGN3
00036 F2A4 27 14
00037 F2A8 88 FA08
00038 F2A8 68 FA08
00038 F2A8 68 FA08
00038 F2A8 F6 FA08
00038 F2A8 F6 FA08
00040 F2A8 F0 CA33
00041 F288 27 CA31
00042 F288 F7 CA33
00043 F288 20 28
00044 F28A 70 CA3E SIGN4
00045 F28F F6 FA08
00045 F28F F6 FA08
00047 F2CE F8 CA33
00048 F2CE F6 FA08
00050 F2CE F8 FA08
                                                                                           SUB A SCA31
STA A SCA31
LDA B SFA08
ADD B SCA33
BRA FINISH
TST BEO SIGN4
LDA A SFA08
SUB A SCA33
STA A SCA33
STA A SCA33
STA A SCA33
STA BRA FINISH
TST SCA3D
SUB A SCA33
STA A SCA33
                                                                                                                                                  R- = $80 - R
OUTPUT RESISTANCE TO D/A CONV
                                                                                                                                                   DUTPUT REACTANCE TO D/A CONVE
                                                                                                                                                  TEST FOR SIGN IN THIRD OUDRAN
                                                                                                                                                  R- = $80 - R

X- = $80 - X

OUTPUT RESISTANCE TO D/A

OUTPUT REACTANCE TO D/A

JUMP FOR NEW CYCLE

TEST FOR SIGN IN FOURTH OUADR

BRANCH TO TEST FOR FIRST OUAD
                                                                                            LDA A SFAOS
SCA33
SCA33
SCA33
SCA33
SCA33
SCA31
                                                                                                                                                   x- = $80 - X
                                                                                                                                                   R+ = $80 = R
Dutput resistance to D/A CONV
    1 5 G+R8
                                                            MOTORCLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                  PAGE 2
      00055 F2D8 BE CA31
00056 F2DC FB CA33
00057 F2DF B7 CA31
00058 F2E2 F7 CA33
00059 F2E5 7E F1SC FINISH
                                                                                            ADD A SCA31
ADD 8 SCA33
STA A SCA31
STA B SCA33
JMP SF15C
                                                                                              END
       SYMBOL TABLE
       SIGN F260
HIBYTE F280
TINISH F2E5
```

```
OS 0000 48 44 52 18
13 FDAO CE 08 F7 CB 00 F8 CB 01 4F 74 CB 02 24 01 18
12 FDBO 78 CB 04 7A CB 00 26 F1 B7 CB 03 F8 CB 04 38
03 0000 FC
                                                                                                                                                           PAGE 1
                                              MOTORDLA MESSAM CROSS-ASSEMBLER
                          MESSAM IS THE PROPERTY OF MOTOROLA SPD. II
Copyright 1874 to 1876 by Motorola Inc
                          MOTORDLA M6800 CROSS ASSEMBLER, RELEASE 1.3
MDD1F1ED 1AMC VER: 1.0
  00001
00002 FDA0
00003
                                                                                         MULIRTN
SFDAO
  00004
00005
00005
                                                                    MULTIPLY RTN
  00008
 00008
                                                      MULIRT LDA B
                                                                                                                    PUT OB IN B REGISTER
SAVE SHIFT COUNT (08)
LOAD MULTIPLICAND INTO ACC.B
CLEAR A
SHIFT MULTIPLIER RIGHT
GO TO SKIP 1 IF CARRY CLEAR
ADD ACC.'S
SHIFT PRODUCT MS BYTE RIGHT
SHIFT PRODUCT MS BYTE RIGHT
DECREMENT COUNT
BRANCH IF NOT O
LF O DONE. STORE MS BYTE
LOAD ACC.B WITH PRODUCT LS BY
                                                                        STA B SCBOOLDA B SCBO1
CLR A
LSR SCBO2
BCC SKIP1
                                                                        BCC SKIP1
ABA
ROR A
ROR SCB04
DEC SCB00
BNE SCB02
LDA B SCB04
RTS
                                                                          END
   00025
   SYMBOL TABLE
MULIRT FDAO SKIP2 FDAS SKIP1 FDAF
SO 05 0000 48 44 52 18
S1 13 FD00 7F CC 05 7F CC 08 7F CC 07 7F CC 08 88 CC 02 F6 2F
S1 13 FD10 CC 04 F7 C8 01 87 C8 02 8D FD AO F7 CC 08 87 CC 20
S1 13 FD20 07 86 CC 02 F6 CC 03 F7 C8 01 87 C8 02 8D FD AO DE
$1 13 FD30 FB CC 07 F7 CC 07 89 00 87 CC 08 86 CC $1 13 FD40 01 F7 CB 01 87 CB 02 8D FD A0 FB CC 07 $1 13 FD50 88 CC 08 87 CC 08 80 00 87 CC 05 $1 13 FD50 F6 CC 03 F7 CB 01 87 CB 02 8D FD A0 FB $1 02 FD50 F6 CC 03 F7 CB 01 87 CB 02 8D FD A0 FB $1 0C FD70 CC 06 89 CC 05 87 CC 05 39 89 CC 05 03 0000 FC
                                                                                                                                        04 F8
F7 CC
86 CC
CC 06
                                               MOTOROLA MEBSAM CROSS-ASSEMBLER
                                                                                                                                                             PAGE 1
                            MESSAM IS THE PROPERTY OF MOTOROLA SPD. I
Copyright 1874 to 1876 by Motorola Inc
                            MOTOROLA M6800 CROSS ASSEMBLER, RELEASE 1.3
MODIFIED IAMC VER. 1.0
```

```
00034 FD47 BD FDA0
00035 FDAA FB CC07
00036 FD4D F7 CC07
00037 FD50 BB CC06
00032 FD53 B7 CC06
00040 FD58 B5 00
00040 FD58 B5 00
00041 FD50 B7 CC05
00042 FD50 B6 CC01
00043 FD50 B6 CC01
00044 FD50 B7 CC05
00044 FD80 FF CC02
00045 FD86 B7 CB00
00047 FD86 B7 CB00
00047 FD86 B7 CC06
00048 FD87 B7 CC06
00048 FD87 B7 CC06
00049 FD78 B7 CC06
00050 FD78 B7 CC05
00051 FD78 B7 CC05
                                                                                                                                             JSR MULIRTH
ADD 8 PROMLS
STA 8 PROMLS
STA A PROMHS
LDA A #00000
STA A PROMHS
LDA A MULDHS
LDA B MULTDI
STA B MULTDI
JSR MULTRI
JSR MULTRI
JSR MULTRI
JSR MULTRI
STA A PROMHS
STA B PROMHS
STA A PRODHS
STA A PRODHS
STA A PRODHS
                                                                                                                                                                                                                                      PRODUCT HIGH BYTE
                                                                                                         ORG
MULDHB RMB
                                                                                                                                                                                SCC01
                                                                                          MOTOROLA MESSAM CROSS-ASSEMBLER
1 MSL RAN
                                                                                                                                                                                                                                                                                                                  PAGE
 00085 CC02 0001
00086 CC03 0001
00087 CC04 0001
00088 CC08 0001
00080 CC07 0001
00081 CC08 0001
00081 CC08 0001
00082 CB01
00082 CB01
00083 CB01 0001
00084 CB02 0001
00085 FDA0
00088 FDA0 0001
                                                                                                        MULDLE RMS
MULRLE RMS
MULRLE RMS
PRODMS RMS
PROMUS RMS
PRODLE RMS
ORG
MULTDI RMS
MULTRI RMS
MULTRI RMS
MULTRI RMS
MULTRY RMS
MULTRY RMS
END
                                                                                                                                                                                $CB01
                                                                                                                                                                                 SPDAO
    SYMBOL TABLE
    MULDHS CCO1
PROMHS CCOS
MULIRT FDAO
                                                                         MULDLB CCO2
PROMLB CCO7
                                                                                                                                              MULRHE CCOS
PRODLE CCOS
                                                                                                                                                                                                                   MULRLB CCO4
MULTD1 CBO1
```

```
0 08 0000 48 44 52 18

1 07 F18C FE C9 70 88 EE

1 13 F18C C8 87 C9 70 88 BE 87 C9 71 F8

1 13 F17C C9 51 88 C8 40 F6 C9 58 10 F8

1 13 F18C F8 CA 23 54 84 54 F7 C9 88 88

1 13 F18C F8 C9 58 18 87 C9 4C 7F C9 82

1 13 F18C F8 C9 58 18 87 C9 4C 7F C9 82

1 13 F18C F8 C9 58 58 28 10 F 27 02 20

1 0D F18C 4C F7 D0 02 87 E0 02 7E F0 28

8 03 0000 FC
                                                                                                                                                                                                                                                                                      CA 31 84 84 84 F7 28
C8 81 18 87 C9 4D 88
C8 4C P8 C8 60 10 78
A8 01 7C C8 82 A7 CD
SF 88 C9 4D P8 C8 1C
OA
    1
                                                                                                                        MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                                                                                                                                                                                                                      PAGE 1
                                                                      M68SAM IS THE PROPERTY OF MOTOROLA SPD. INC. COPYRIGHT 1974 TO 1876 BY MOTOROLA INC
                                                                       MOTOROLA MEROO CROSS ASSEMBLER, RELEASE 1.3
MODIFIED IAMC VER: 1.0
           00001
00002 F18C
00003
00004
                                                                                                                                                                                         NAM
GRG
                                                                                                                                                                                                                                AVERAGE 1
SF15C
           00005
00005
00007
00008
                                                                                                                                                                          R - X ERROR FILTERING RTN & SAMPLES
    LDX $C870

LDA A #SC8

STA A $C870

LDA A #SSE

STA A $C871

LDA B $C831

LSR B

LSR B

LSR B

LSR B

SSA B $C981

LDA A $C840

LDA B $C850

SSA B $C850

SSA B $C850

SSA B $C850

SSA B $C850

LDA B $C850

SSA B $C850

LDA B $C850

LSR B

L
           00008
                                                                                                                                                                                                                                                                                                           Push $5E into $C871
Get R - lest celc,
divide R by 2
                                                                                                                                                                                                                                                                                                        Save R/S
Det R oldest sample
Get R last output
subtr. old. sample
Get newest sample
Add to R - out
Store R - out
Get Last X calc.
Divide by 2
                                                                                                                                                                                                                                                                                                                        save X - Sample
Get X - last outp.
Get X oldet samples
  SBA
LDA B $C959
ABA
STA A $C94C
CLR $C982
LDA A $1, X
INC $C982
STA A $2, X
DEX
LDA A $C962
CMP A #SOF
BEQ DUTPUT
BRA SHIFT
LDA A $C94D
                                                                                                                                                                                                                                                                                                                     subt. oldest samples
get newest sample
Add to X - out
Save X - out
clear sample cnt.
                                                                                                                                                                                                                                                                                                                                      incr
                                                                                                                                                                                                                                                                                                                                                 finish 16 samples
                                                                                                                                                                                                                                                                                                                                    R - output
X - output
new cycle
1 ASE2A E
                                                                                                                  MOTOROLA MESSAM CROSS-ASSEMBLER
```

END

SHIFT FIRA OUTPUT FIRE CYCLE FOZE

00055

SYMBOL TABLE

```
08 0000 48
13 F200 00
13 F210 48
13 F220 88
13 F240 88
13 F240 FC
13 F260 FC
13 F400 00
13 F100 00
13 F110 10
13 F120 20
13 F130 30
13 F140 40
0E F150 50
                                                                                                 52 18
08 0D
4F 53
8F 83
6F 85
EA EC
FD FE
CF FF
DD 02 03
12 13
22 23
32 33
82 53
44
48
88
50
4A
01
11
21
31
41
                                                                                                                                                                        18 1F
60 64
8D A1
CF D2
FO F2
FF FF
01 SA
                                                                                                                                                                                                                                                                                                    39
7C
85
DF
F3
                                                                                                                                                                                                                                                                                                                      3E 42
80 84
88 88
E2 E4
FA FB
                                                                                                                                    12 18
57 5C
98 8A
CA CC
ED EF
FE FF
OO E7
                                                                                                                                                                                                                                                                                                                                                          E7
90
88
A8
9D
                                                                                                                                                                                                             24
88
84
D4
F3
FF
                                                                                                                                                                                                                                                                  31
74
AE
DB
F7
D0
20
                                                                                                                                                                                                                                                                                    35
78
82
DE
F8
F2
7F
                                                                                                                                                                                                                              2C
70
AB
D9
F6
FF
$2
                                                                                                                                                                          06
16
26
36
48
58
                                                                                                                                                                                                             08
18
28
38
48
                                                                                                                                                                                                                                                  0A
1A
2A
3A
4A
5A
                                                                                                                                                                                                                                                                  08
18
28
38
48
                                                                                                                                                                                                                                                                                                     00
10
20
30
40
                                                                                                                                                                                                                                                                                                                       OE
1E
2E
3E
4E
                                                                                                                                                                                                                                                                                                                                         OF
1F
2F
3F
4F
                                                                                                                                                                                                                                                                                    0C
1C
2C
3C
4C
                                                                                                                                       04
14
24
34
44
54
                                                                                                                                                        05
15
25
35
45
55
                                                                                                                                                                                            07
17
27
37
47
                                                                                                                                                                                                                                09
18
29
39
48
                                                                                                     MOTOROLA MESSAM CROSS-ASSEMBLER
                                                                                                                                                                                                                                                                                                                                                 PAGE 1
                                                          MESSAM IS THE PROPERTY OF MOTOROLA SPD. I COPYRIGHT 1974 TO 1876 BY MOTOROLA INC
                                                            MOTOROLA MESOO CROSS ASSEMBLER, RELEASE 1.3
MODIFIED IAMC VER: 1.0
       00001
00002 F200
00003
00004
                                                                                                                                                                                                   CONST
SF200
       00008
00008
00007
00008
                                                                                                                                              SINE - COSINE TABLE CONSTANTS
      00008
00010 F200 00
F201 04
F202 08
F203 0D
F204 12
F205 18
F207 17
F208 28
F207 17
F208 28
F208 28
F208 28
F209 28
F209 38
F200 38
F200 38
F200 38
F200 38
                                                                                                                                                                                                    $00,$04,$09,$00,$12,$16,$18,$1F,$24,$28
                                                                                                                                                                                                    $2C,$31,$35,$39,$3E,$42,$46,$48,$4F,$83
                                        F20F 42
F2101 448
F2111 4483
F2112 483
F2113 55
F2116 68
F2116 68
F2118 73
F218 73
F218
                                                                                                                                                                                                      $57,$50,$60,$64,$68,$60,$70,$74 120
         00012
                                                                                                                                                                                                     $78,$70,$80,$84,$88,$88,$8F,$93,$96,$9A
         00013
                                                                                                                                                                  FCB
                                                                                                                                                                                                      $90,841,844,848,848,84E,882,885,888,888
         00014
                                                                                                                                                                                                                                                                                                                                                    PAGE 2
     1 CINST
                                                                                                         MOTORGLA MERSAM CROSS-ASSEMBLER
                                           F22D 85
F22E 88
F22F 88
F23O 8E
F231 C1
F232 C4
F233 C6
F234 CA
F235 CC
F236 CC
F237 D2
F238 D4
F238 D7
                                                                                                                                                                                                       $8E,$C1,$C4,$C6,$CA,$CC,$CF,$D2,$D4,$D7
```

FAOC 7F
FAOD 84
FAOF 70
FAOF 00
FAIT 4A

CO023 F100
CO024 F100 00
F101 01
F102 02
F103 03
F104 04
F105 05
F100 00
F108 08
F100 00
F101 11
F112 12
F113 13

CO028 F114 14
F115 15
F116 18
F117 17
F118 18
F119 18
F119

```
F128 28
F128 20
F128 20
F128 28
F127 27
F130 30
F121 31
F128 32
F131 32
F132 32
F133 34

1 C|H3T MOTORDLA MESSAM CROSS-ASSEMBLER PAGE A

F135 28
F136 38
F137 37
F138 38
F138 48
F148 48
F148
```

Object Programme

```
PEAKPICK
SFOOO
  PEAK PICKING ROUTINE & PHASE ANGLE CALCULATION
                                                      LDX
STX
LDX
STX
                                                                                                     #$04
$D000
#$FF04
                                                                                                                                                                               INIT. PIA2 INPUT REGISTERS
LOAD IND. REG. WITH MEX. SFF04
INIT. PIA2 DUTPUT REDISTERS
LOAD IND. REGISTER WITH MEX. SO04
INIT. PIA1 INPUT REGISTERS
LOAD INDEX REGISTER WITH SFF04
INIT. PIA1 DUTPUT REGISTERS
LOAD IX WITH STATTING ADDRESS { $C84A }
CLEAR SYTE COUNT
CLEAR SYTE COUNT
                                                                                                  #SFF04
$D002
#S004
$E000
#SFF04
$E002
$FA10
                                                      LDX
STX
LDX
STX
                                                        LDX
                                                                                                     $C961
0, X
                                                                                               $C#61
$C#61
#$17
CLEAR
$FAO2
$FAO0
$DOO0
                                                                                                                                                                                INCREMENT COUNTER
LOAD ACC.A WITH COUNT VALUE
                                                        INC
                                                        LDAA
                                                                                                                                                                            BRANCH TO CLEAR REST OF TABLE
INITIALISE STACK POINTER ( SCFFF )
CLEAR INDEX REGISTER
LOAD ACC. A WITH INST. VALUE OF V
COMPARE ACC. A WITH INST. VALUE OF V
COMPARE ACC. A WITH HEX. $80
BRANCH IF MINUS
BRANCH ALWAYS
LOAD ACC. A WITH INST VALUE OF V
COMPARE ACC. A WITH HEX. $80
BRANCH BACK. FOR V CHECK
LOAD ACC. B BY INST. VALUE OF I
COMPARE VALUE OF 1 WITH HEX. $80
BRANCH 1F MINUS
INCREMENT INDEX REGISTER
BRANCH ALWAYS
LOAD ACC. B W)TH INST. VALUE OF I
COMPARE VALUE OF I WITH $80
BRANCH ALWAYS
LOAD ACC. B W)TH INST. VALUE OF I
COMPARE INST. VALUE OF I WITH $80
BRANCH TO STORE VALUE OF (N)
INCREMENT N... N:N+1
BRANCH ALWAYS
STORE VALUE OF (N)
LOAD IND REG BY $0154
 BIGIN LDS
LDX
  PIAZVL LDAA
                                                                                                  $D000
$FA08
PIA2VL
PIA2VL
$FA08
PIA1IL
PIA2VH
$E000
$FA08
PIA1IH
PIAZVL LDAA
CMPA
BMJ
BRA
PIAZVH LDAA
CMPA
  BPL
BRA
P1A111 LDA8
CMPB
                                                        BM;
INX
                                                                                                   PIATIL
SECOO
SPACE
STX1
                                                        BPL
INA
                                                        BRA
STX
LDX
NOP
                                                                                                     PIA11H
SCA02
SFA06
                                                        NDP
                                                                                                                                                                                  DECREMENT INDEX. REGISTER
DECREMENT IND REGISTER
BRANCH TO DECREMENT IX LOOP
  DEX1
                                                                                                                                                                               LOAD ACC.B WITH 'I' MAX
STORE MAX. VALUE OF 1
LOAD ACC.A WITH INST VALUE OF V
COMPARE INST VALUE OF V WITH $80
BRANCH TO CHECK V386C
BRANCH ALWAYS
LOAD ACC.4 WITH INST. VALUE OF V
COMPARE INST. VALUE OF V WITH $80
BRANCH ALWAYS
LOAD INDEX REGISTER WITH $0E7
NO OPERATION
DECREMENT INDEX REGISTER
DECREMENT INDEX REGISTER
DECREMENT INDEX REGISTER
BPL
BRA
LDX
NOP
  LDX1
DEX2
                                                      DEX
DEX
DEX
BNE
LDAL
                                                     DEX DEX BNE DEX 2 | DAM STAD STAD SCC02 | DAM SCC02 | DAM SCC03 | STAB SCC04 | STAB SCC05 | STAB
                                                                                                                                                                            LOAD ACC.A WITH V MAX.
STORE MAX VALUE OF V
LOAD ACC.A WITH A CONSTANT $6E
INITIALISE MULZRIN
                                                                                                                                                                                            JUMP TO SINCOS SUBROUTINE
                                                        ORG
                                                                                                     $F000
 MULZRTN RMB
ORG
SINSTR RMB
END
```

```
SINE-COSINE PHASE SHIFT ANGLE SUBROUTINE
#FA02
#FA0D
#CA0F
#CA0F
#CA13
#CA10
#CA16
#CA17
                                                                INITIALISE STACK POINTER
                                                               STORE SDO ( N=SO DEGREES) FIXED DATA
CLEAR MEMORY LOCATION
CLEAR SINE-COSINE LOOP FLAG
CLEAR SEC. QUADRANY COSINE FLAG
                                    AEA38
BEA38
SEA38
DEA38
                                    SCASE
                    CLR
CLRAA
LDAAB
LDAB
STAB
STAB
BCAA
                                   $CA3E
$CA3F
$CA42
$CA02
$CA08
$CA03
                                                                LOAD ACC A WITH ( N HIGH BYTE )
STORE PHASE SHIFT (HIGH BYTE) IN SUBRTN
LOAD ACC B WITH ( N LOW BYTE)
STORE PHASE SHIFT (LOW BYTE) IN SUBRTN
JUMP TO SUBTRACT SUBROUTINE
BRANCH IF ANGLE IS < 90 DEGREES
                                   SUB22
SUBEND
SCA11
SFA00
                    CMPA
                    BEO
BRA
LDAB
CMPB
BEO
                                   ZERO
BR180
SCA12
SFA00
ANGSO
                    BRA
                                     BR180
                   CLRA
STAA
COMA
STAA
 ANG 90
                                   SCAIS
                                                                STORE COSINE SO DEGREES
                                                                STORE SINE SO DEGRÉES
JUMP TO IMPEDANCE RTN
RE-INITIALISE SUBTRACT ROUTINE
                                   SCA17
                                    $CA17

$F300

$CA08

$CA00

$CA00

$CA00

$UB18

$CA00

$UB18

$UB18

$UB2
                     JMP
                   STAA
LDAB
STAB
STAB
 BB 180
                                                                RE- INITIALISE SUBTRACT ROUTINE
SAVE ANGLE VALUE FOR FUTURE USE
BRANCH TO SUBTACT 90 DEGREES
LOAD ACC.A WITH PHASE ANGLE (N)
                    BRA
 SUBEND LDAA
JMP
SUB180 JSR
                                                                 JUMP TO SUBTRACT ROUTINE
                   BCS JUMP
LDAA $CA11
CMPA $FA00
BEQ ZERD1
BRA BR270
LDAB $CA12
CMPB $FA00
BEQ ANG180
                    BEQ
BRA
LDAB
CMPB
BEQ
BRA
                                     BR270
 BRA
ANG 180 CLRB
STAB
COMB
STAB
INC
JMP
                                    $[A18
$[A38
$F300
$[AAA
#$5A
                                                                JMP TO IMPEDANCE RTN
PHASE ANG. ( 90 < ANGLE < 180 )
                    LDAB
LDAA
SBA
INC
                                       SCASE
                                                                   FLAG FOR COSINE IS NEGATIVE
                                    ANGLE
SCAOB
SCA12
SCAOC
SCAAB
                     JMP
  BR270
                    STAA
LDAB
STAB
STAB
                                                                 RE- INITIALISE SUBTRACT ROUTINE
                                                                 RE- INITIALISE SUBTRACT ROUTINE
SAVE ANGLE VALUE FOR FUTURE USE
BRANCH TO SUBTRACT SO DEGREES
                    BRA
NOP
NOP
                                     SUB270
                     NOP
                                    SUB22
FLAG2
SCA11
SFA00
ZERD2
BR350
                    JSR
BCS
LDAA
CMPA
BEQ
BRA
 SU8270
                    LDAB
CMPB
BEQ
BRA
                                     SCA 12
SFA00
ANG 270
BR350
  ZERO2
                                                                 270 < ANGLE
  ANG270
                    STAA
                                     SCAIS
                    STAAA
STMA
STAA
INC
JMP
ADAB
STAB
STAB
JSC
BC
                                    $CA17
$CA3D
$F300
$CA08
$CA0C
$CAAC
$CAAC
$UB22
FLAG3
$CA11
$FA00
                                                                 RE- INITIALISE SUBTRACT ROUTINE
  .....
                                                                 RE - INITIALISE SUBTRACT ROUTINE
SAVE ANGLE VALUE FOR FUTURE USE
JUMP TO SUBTRACT ROUTINE
                     L DAA
CMPA
                                                                    ANGLE : 360
```

```
BEC
BRAD
LDAD
DEC
BEC
BEC
BRAD
STAB
CDMB
STAB
JMP
BRA
                                                                                                                                                                            ZERD3
NEWCYL
$CA1Z
$FAOO
ANG38O
NEWCYL
                                                                                                                                                                            $CA17
                                                                                                                                                                   SCA18
SFJOO
NEWCYL
SCAJD
SCAJD
SCAJE
SCA12
ANGLE2
SCAJE
SCAJF
SCAAC
#85A
    FLAG2 | INC
I I INC
I INC
I I INC
I INC
I I I INC
I I INC
I I I INC
I INC
I I INC
I I I INC
I I INC
I I I INC
I I INC
I I I INC
I I INC
                                                                                                                                                                                                                                                                                                                 BRANCH TO NEW CYCLE
SET FLAG, SIN 15 NEGATIVE, 3RD QUADRANT
SET FLAG, COS 15 NEGATIVE, 3RD QUADRANT
                                                                                                                                                                                                                                                                                                                 180 C PHASE SHIFT C 270
                                                                                                                                                                                                                                                                                                                 SET FLAG, SIN IS NEGATIVE, 4TH QUADRANT
SET FLAG MAY BE NOT NEEDED ?
                                                                                                                                                                   SCA12
Angle2
                                                                                                                                                                                                                                                                                                               PUSH VALUE IN ACC.A INTO C.C.R. INCREMENT SIN-COS FLAG
                                                                                                                                                                            SCA24
                                                                                             CLR
LDAA
STAA
LDAB
STAB
JMP
CLC
                                                                                                                                                                        SCA24
SCA12
SCA03
SCA11
SCA02
SUBBO
                                                                                                                                                                                                                                                                                                             JUMP TO START A NEW CYCLE
CLEAR CARRY BIT
LDAD ACC.A WITH DATA IN SCAOC
LDAD ACC.B WITH DATA IN SFAOB
ACC.A - SCAOF
SUBTRACT WITH CARRY, ACC.B - SCAOE
       SUB22
                                                                                                  LLDAB
SUBAB
SUBAB
STAB
RTS
NOP
                                                                                                                                                                        SCAOE
SCAOF
SCAOE
                                                                                                                                                                        SCA12
SCA11
                                                                                                                                                                                                                                                                                                                 RETURN FROM SUBROUTINE
                                                                                                    NOP
                                                                                                                                                                     #SDO
SFACE
SCA43
OO, X
SINTB2
       SINTBL LDAB
LDX
LDAA
SINTB1 CMPA
                                                                                                                                                                                                                                                                                                             LOAD ACC.B WITH END OF TABLE
LOAD IX WITH SIN-COS TABLE STARTING ADDRESS
LOAD AAC.A WITH DESIRED VALUE OF ANGLE
    BNE
LDX
STX
RTS
SINTB2 CMPB
                                                                                                                                                                          #SFF,X
SCA40
                                                                                                                                                                                                                                                                                                                           SCA41 CONTAINS SINE THE ANGLE
                                                                                             BEQ
INX
JMP
                                                                                                                                                                        EBTHIZ
                                                                                                                                                                                                                                                                                                                        INCREMENT INDEX REGISTER
                                                                                                                                                                            SINTBI
                                                                                           JMP
WAI
INC
INC
LDAB
LDAA
    SINTB3
FLAGI
                                                                                                                                                                        SCA3B
SCA24
SCAAA
#85A
                                                                                                                                                                                                                                                                                                                        INCREMENT SIN-COS FLAG
ANGLEZ LDAAA JSR TST AAA JSR TST LDAAE LDAAE STAAA JINC STAAA STAAAA STAAA STA
                                                                                                                                                                        SCA 12
SCA 123
SCA 123
SCA 123
SCA 124
COCA 17
#SCA 23
SCA 23
SCA 242
                                                                                                                                                                                                                                                                                                                      LOAD ACC.A WITH PHASE
SCA43 CONTAINS DESIRED VALUE
JUMP FOR SIN-TABLE SEARCH
TEST IF SCA24 CONTAINS ZERD
BRANCH TO STORE COSINE ANGLE
LOAD ACC.A BY SINE PHASE ANGLE
STORE SINE PHASE ANGLE IN MULIRTN
                                                                                                                                                                                                                                                                                                                        INCREMENT SCA24
JUMP TO SIN TABLE ROUTINE
STORE COSINE PHASE ANGLE
LOAD ACC.B WITH COSINE PHASE ANGLE
STORE PHASE ANGLE
JUMP TO IMPEDANCE RTN
                                                                                                                                                                            $F400
    SIPSTR
                                                                                             RMB
                                                                                               END
```

```
IMPEDANCE CALCULATION SUB-RTN
                             $CA08
$FA08
CHECK
$FA08
MIN1M
$FA08
$CB01
#$04
                LDAA
SUBA
BCS
CMPA
                                                     LOAD ACC.A WITH 1 - MA
 IMPED
                                                     COMPARE 1 PEAK WITH $20
               CMPIAAAAA AABB LSTATE
                                                     PUSH $20 AS 1 - MINIMUM
INITIALISE MULTRTN
                             JUMP TO MULIRTH
LOAD HIH BYTE
INITIALISE DIVIDE (
LOAD WITH LOW BYTE
 IMPED 1
                                                       TEST FLAG FOR FOR RESISTANCE OR REACTANCE
                STAA
LDAB
STAB
                                                        LOAD WITH SIN PHASE ANGLE
                                                       LOAD WITH V - PEAK
                             SCBO2
MULIRT
SCBA50
SCBA51
DICAFO1
DICAFO1
SCBAO1
SCBAO6
SCBAO6
SCBAO6
SCBAO6
SCBAO6
                STAB
JSR
LDAA
STAA
LDAB
STAB
                LDAB
STAB
LDAA
SUBA
 RESIST
                                                     LOAD ACC. B WITH COS PHASE ANGLE
SUBA
BCS
STAA
STAA
JSR
LDAB
STAB
LDAA
STAA
JMP
CHECK JMP
                             SFAOS
CHECK
SCA54
SCBO1
MUL1RTN
SCBO3
SCA50
                                                     BRANCH TO STOP, SOME THING IS WRONG? SOTRE V PEAK
                             SCBO4
SCA51
DIVIDE
SFO2B
DRG
DIVIDE RMB
                              $F380
ORG
MULIRTN RMB
                END
                              DIVIDE
SF380
              SYSTEM DIVIDE SUBROUTINE
DIVIDE LDS LDAB PSHB LDAA LDAB PSHB PSHB PSHB DES TSX LDAA
                                                     INITIALISE STACK POINTER
LOAD ACC.B WITH DIVIDEND LOW BYTE
PUSH DIVIDEND LOW BYTE INTO STACK
                              SCAS 1
                             SCASO
                                                     PUSH DIVIDEND HIGH BYTE INTO STACK LOAD SFAOD BY SCA , AND SFAOD BY SC5 LOAD ACC.A WITH DIVISOR HI-BYTE LOAD ACC.B WITH DIVISOR LOW BYTE PUSH DIVISOR INTO STACK (LOWBYTE) PUSH DIVISOR INTO STACK (HIGH BYTE) DECREMENT STACK POINTER STORE STACK POINTER IN INDEX REG.
                             $FA09
X
1,X
              #01
1,X
DIVB
                                                        BRANCH IF MINUS
                             2, X
1, X
DIVB
W017
DIVA
0, X
4, X
2, X
1, X
DIVD
2, X
                                                        ARITHMETIC SHIFT LEFT
ROTATE RIGHT
DIVE
                                                         SAVE COUNT
DIVE
                                                            CLEAR CARRY
                              DIVE
DIVD
                             4 . X
3 . X
1 . X
2 . X
                                                              ADJUST DIVISOR
                 ROR
```

```
DEC
BNE
INS
INS
INS
PULA
                                                                O,X
Divc
                                                                                                                                  INCREMENT STACK POINTER TO CLEAN UP
                                      PULB
TST
BEQ
STAA
STAB
                                                                SCA3A
RESIS
SCA32
SCA33
SIGNXR
SCA3A
SCA30
SCA31
IMPED
                                                                                                               CHECK FLAGE : ZERO
                                                                                                                   STORE SYSTEM REACTANCE
STORE REACTANCE HIGH BYTE
                                     BRA
INC
STAA
STAB
JMP
      RESIS
                                                                                                                        STORE SYSTEM RESISTANCE
      SIGNER JMP
                                                                     $F260
      ORG
IMPEDI RMB
                                                                     $F327
                                      END
                                                                SIGNER
                                      ORG
                                                                SF 260
                       RESISTANCE - REACTANCE SIGN DETERMINATION
  SIGN
                                                                                                              CHECK QUOTIENT HIGH BYTE . ZERD BRANCH TO CHECK LOW - BYTE
                                   CMPA SFACO
                                                                                                                  STORE $7F UPPER LIMIT ON RESISTANCE VALUE
                                                                                                                  CHECK QUOTIENT LOW - BYTE = $7F
BRANCH IF C + Z = 0
                                                                                                             TEST IF COSINE IS NEGATIVE
BRANCH TO TEST THIRD QUADRANT SIGN
                                                                                                             R. = $80 - R
Dutput resistance to D/A Converter
                                                                                                             X+ : $80 + X
OUTPUT REACTANCE TO D/A CONVERTER
                                                             SCA33
SCA33
                                                           SIGNS TST
BEO
LDAS
LDAS
SUBA
SUBA
STAA
STAB
                                                                                                            TEST FOR SIGN IN THIRD QUDRANT
                                                                                                                R- : $80 - R
X- : $80 - X
OUTPUT RESISTANCE TO D/A
OUTPUT REACTANCE TO D/A
JUMP FOR NEW CYCLE
TEST FOR $1GN IN FOURTH QUADRANT
BRANCH TO TEST FOR F1RST QUADRANT
                                  BRA
TST
BEQ
LDAA
SUBA
  SIGNA
                                                                                                                 X- : 880 - X
                                   STAA
                                                           $CA33
8FA38
8CA31
FIN1SH
$FA08
$FA08
$CA33
$CA33
$CA33
$CA33
$CA33
                                    LDAR
                                  ADDS
STAB
BRA
LDAA
                                                                                                                 R+ : $80 : R
OUTPUT RESISTANCE TO D/A CONVERTER
                                    LDAR
                                  ADDA
ADDB
STAA
STAB
                                                                                                                     R+ : $80 + R
X+ : $80 + X
  FINISH JMP
                                          END
                                  NAM MULIRTH
DRG SFDAO
                         MULTIPLY RTH ONE BYTE . ONE BYTE
| MULIRTN | LDAB | #508 | STA | 8 $C800 | LDA | 8 $C801 | CLR | A | SKIP2 | LSR | $C802 | SKIP1 | ABA | SKIP1 | ROR | ABA | SKIP1 | ROR | SC804 | CB05 | LDAB | RTS | SC804 | RTS | SC80
                                                                                                        PUT OS IN S REGISTER
SAVE SHIFT COUNT (OS)
LOAD MULTIPLICAND INTO ACC.B
CLEAR A
SHIFT MULTIPLIER RIGHT
GO TO SKIP 1 IF CARRY CLEAR
ADD ACC.'S
SHIFT PRODUCT MS BYTE RIGHT
SHIFT PRODUCT REG.LS BYTE
DECREMENT COUNT
BRANCH IF NOT O
IF O DONE. STORE MS BYTE
LOAD ACC.B WITH PRODUCT LS BYTE
                                 RTS
                                 END
```

```
MULZRTN
$FD00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CLEAR PRODUCT REGISTER HIGH BYTE
CLEAR PRODUCT REGISTER MIDDLE HIGH BYTE
CLEAR PRODUCT REGISTER MIDDLE LOW BYTE
CLEAR PRODUCT REGISTER LOW BYTE
LOAD ACC.A WITH MULTIPLICAND LOW BYTE
LOAD ACC.B WITH MULTIPLIER LOW BYTE
STORE MULTIPLICAND IN MULTIPLIER
JUMP TO MULTIPLIER
JUMP TO MULTIPLIER
STORE PRODUCT LOW BYTE
STORE PRODUCT MIDDLE LOW BYTE
LOAD ACC.A WITH MULTIPLICAND LOW BYTE
LOAD ACC.A WITH MULTIPLICAND LOW BYTE
LOAD ACC.B WITH MULTIPLIER HIGH BTYE
                                                                                                                                                                                      RRRRAARAAAAAABA BBAAAABBA BBAAAAABBA BBAAA BBAAA BBAAA BBAAA BBAAAABBA BBAAABBA BBAAABABA BBAAABABA BBAAABA BBAAABBA BBAAABBA BBAAABBA BBAAABA BBAAABA BBAAABA BBAAABA BBAAABA BBAABA BBAAABA BBAABA BBA
                                                                                                                                                                                                                                                                                                                                                     PRODUCT TRIP
PRODUCT TRIP
PRODUCT TRIP
PRODUCT TRIP
PRODUCT TRIP
MULLTRE MULLT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRODUCT REGISTER HIGH SYTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LOAD ACC. B WITH MULTIPLICAND HIGH BYTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PRODUCT HIGH BYTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RETURNE FROM JSR
                                                                                                                                                                                               ORG
MULDHB RMB
MULRHB RMB
MULRHB RMB
PRODHB RMB
PRODHB RMB
PROMHE RMB
PRODLB RMB
MULTD1 RMB
MULTD1 RMB
ORG
MULTR1N RMB
                                                                                                                                                                                                                                                                                                                                                     $C801
                                                                                                                                                                                          END
```

```
$C970
#$C9
$C970
#$5E
$C971
$CA31
                         PUSH SSE INTO $C871
GET R - LAST CALC.
DIVIDE R BY 2
                                                                                      SAVE R/8
GET R OLDEST SAMPLE
GET R LAST DUTPUT
SUBTR. OLD SAMPLE
GET NEWEST SAMPLE
ADD TO R - OUT
STORE R - DUT
GET LAST X CALC.
DIVIDE BY 2
                        SBA
LDAB
ABA
STAA
LDAB
                                               $C951
                                              $C$4D
$CA33
                         LSRB
LSRB
LSRB
STAB
LDAA
LDAA
                                                                                      SAVE X - SAMPLE
GET X - LAST DUTP.
GET X DLDEST SAMPLES
SUBT. DLDEST SAMPLES
DET NEWEST SAMPLE
ADD TO X - DUT
SAVE X - DUT
CLEAR SAMPLE CNT.
INCR. IX
                                              $C959
$C940
$C960
                CLR
LDAA
INC
STAA
DEX
LDAA
CMPA
SHIFT
                                              $C$62
#$OF
DUTPUT
SH1FT
$C$4D
$C$4C
$D002
                                                                                       FINISH 18 SAMPLES
                        BEC
BRA
LDAA
LDAB
STAB
                                                                                          R - OUTPUT
X - OUTPUT
NEW CYCLE
                         ORC
                                              $F028
CYCLE RMB
                        END
Nam
Drg
                                              CONST
SF200
             SINE - COSINE TABLE CONSTANTS
                                             $00,$04,$08,$00,$12,$16,$18,$1F,$24,$28

$2C,$31,$35,$38,$3E,$42,$46,$48,$4F,$53

$57,$$C,$80,$64,$68,$6C,$70,$74

$76,$7C,$0C,$84,$68,$62,$70,$74

$9D,$A1,$A4,$A2,$A8,$AE,$82,$65,$82,$86

$8D,$A1,$A4,$A2,$A8,$AE,$82,$65,$82,$88

$8E,$C1,$C4,$C6,$C6,$CC,$CF,$D2,$D4,$D7

$D8,$D8,$D8,$DF,$DF,$E2,$E4,$E5,$E2,$E4,$E5

$ED,$EF,$F0,$F2,$F3,$F5,$F6,$F7,$F8,$F9

$FA,$F8,$FC,$FD,$FD,$FE,$FE,$FF,$FF,$FF

$FF,$FF,$FF,$F0

$PA00

$00,$00,$CF,$FF,$F0,$E7,$61,$E6,$E0
                        FCB
                        END
```