Lata-Management Systemn
Feor

Relational Data Bases

By

David Harvey Scuse

A Thesis
Submitted to the Paculty of Graduate Studies
of the University cf Manitoba
in partial fulfillment of the requirements
for the deg:ee of

Doctor ©f Philcsophy

Department of Compﬁter Science
University of Mamnitoba
¥Winnipeg, Manitoba

May 1879

o
RN R sy

TF MAkTOR

A DATA-MANAGEMENT SYSTEM
FOR RELATIONAL DATA BASES

BY

DAVID HARVEY SCUSE

A dissertation submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY
©*1979

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this dissertation, to
the NATIONAL LIBRARY OF CANADA to microfilm this
dissertation and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this dissertation.

The author reserves other publication rights, and neither the
dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

Abstract

In this thesis, we define a data-management systen
which provides efficient data-management facilities in a
changing envircnment, The data-management sSysten is
designéd to support the relational view of data. The systenm
provides several facilities that are not found in current
data-management systems, both relational and non-relaticnal.

The data-management systenm is developed in four inde-
pendent sSubsysteas. The device subsystem manipulates the
pages on which the coﬁponents of a relation are stored. The
pages can be storsd, permanently and temporarily, on a
hierarchy of storage devices. The tuples of a relation are
stored c¢n logical rages which the storage subsysten maps
onto the physical pages manipulated by the device subsysten.
The storage subsystem provides the capability to roll back
the contents of a relation ty maintaining multiple copies of
tuples, In the access-path subsystem, a powerful access
path, the multiple-relation access path, is used to deter-
mine where tuples with given characteristics are stored. A
data-manipulation language which provides associative access
to tuples 1is supported ty the retrieval subsystem. The
retrieval subsyster translates the associative requests into

the necessary reQuests to the access-path subsysten.

ii

Acknowledgements

I would like +to thank Professors R. G. Stanton and
C. R. Zarnke for giving their time so freely in supervising
both this'thesis and the related reseaich. I would also
1like to thark Professors D. D. Cowan, R. S. D. Thomas, and
M. S. Dcyle for +the time spent reading the +thesis and
discussing improvements.

Finally, the financial assistance of the ©National
Research Council of Canada during the preparation of this

thesis is gratefully acknowledged.

iii

To Earbara

iv

Table cf Contents

ADStract & .+ 4 o 4 e 4 4 s e e . o
AcknowledgemEnts .. 4w 4 6 o o » 2 e
Table of Contents 45 2 4 & 2 2 o o »
Chapter 1: Lata-Management Systenms

1.7 Introductionr &+ 2 o o o o o
Data Management « o+ o = 2 »

1.

1.3 Basic Data ACCESS » 2 « » » »
1.4 Primary Key Data Access . . .
1.5 Data Base Management Systems

¢« o ¥ & .

Ed

»

« @

-

* & » & @

5.1 Hierarchical and RXetwcrk Models

1.6 Current Relational Systems .
»H5.1 INGRES . 4 2 o o s a »
2H5e2 ZETA 2 4 o o 2 s o o »
06 3 XRM » » » » » Kl » » » *
6.4 SYStel B & 4w 2 o = 2 o
T

E]
L]
hesis QVerview 2 . » « » »

2
3

4

5
1.
1.5.2 The Relational Data Modsl
6

1

1

1

1

7

¢« & & ¥ »

Te

Chapter 2: Device System . . .
2.1 Introduction . . .+ .+ . .
2.2 Device System . + 4 o = e
2.3 Page Reference Numbers .
2.4 Device Management Tables
2.5 Physical RecordsS .+ + & o =

[L] L] . e

Chapter 3: Storage System . . « «
3.1 Introduction .+ . & & ¢ o o

3.2 Storage-Structure Properties
3.3 Tuple Identifier Properties .
3.4 Tuple OrdeTing + + » » » s
3.5 Tuple FOrmMat « » o & o 2 2 »
3.6 Mapping to Physical Page . .
3.7 Logical PagesS . . s s o o s 2 e
3.8 PCINtETS o o 2 2 o v 2 s s
3.9 BASE and MOD FileS 4+ &+ » «

3.9.7 BASE-Page Format . . . »
3.9.2 MOD~Page FOrmat « « » = »
- 3,10 Data Base Integrity
3.70.7 Data Base RECOVErY . . .
3.10.2 Data Base Restoration .
3.70.3 Relation Consistency . .

»

@ & o &

L £) L] L L]

L]

[2NN T 2 I

L]

»

¢ & & &

« 4 & & & & B 4

s 8 & o &

L] . » -

6 ¥ e s

§ ¢ 8 s @

L] . . -

L [] . * L]

 » & &

. e ® 3§ L]

* » * L] *

»

e & ® ¥ # @

[*) L]

¢ & e & &

« & o & & 4§ ¥

§ & »

3.11 Relation Reorganization . - . « . »
3.12 Special RelaticOns v & o 4 o s » o
3.13 Storage-Management Tables . . o s a

Chapter 4: BAccess-Path SYSLEM o o & o 2 o »
4.7 Introduction o 4 4 4 4 5 4 4 o o o
B,2 Bccess FAthS o o 4 4 s = o s e a
4.3 Single~Attribute Access Path= s s e e

4.3.71 Primary-Key IRALX 4 o o o = » o

» 3.2 Secondary-Key Inde€xeS « o o 2 o

ulti-Attribute Access Paths

1 Combined TndexXes + 4 o » » » « o

2 Mcdified Conbined Index . . » .+

3 Boolean Algebra AtOBS + o o« = o

4 Multi-Attribute Heshing . « + o

5

b

i~y
*

mqmmn.&:r—:nnamc

Partitioning of Index Entries . .

. o @

.6 Partial Combined Indexes
ultiple-Relation Access-Paths . . .
gccess~Path Structure o + o o o » » =
aintenance of Access Paths .+ + + « &
Iimary=Key ACCESS o 2 2 2 o« s o o

]
i
4,
-4
4
q
4
|
A
H
P

o - g~
.

Chapter 5: Retrieval Systenm .
5,7 Introduction .+ « + » + = =
5.2 Associative Access . .

L]
L
-
»

» -

5.3 Relation Retrieval . + . .
5.3.1 Single~-Tuple Processing .
5.3.2 Multiple-Tuple Processing .
52323 QUVOLAS 4 4 o 2 o » s = =

L - * L 3 L]
.
[}

5.3.4 CcuntsS . 4 4 4 w0 s s s a0 . .
5.% Relation Modification . « « &+ & & . a
5.3.7 Tuple Insertion « o« 2 « = » o » »
S«4,2 Tuple Deletion & 4 4 & % 2 2 » s
5.4,3 Tuple Modificatiod .+ &« + » & »+ o
5.5 Strategy Relatiol + 4 o o o 2 2 o o =

Chapter 6: Future Research and Conclusions
6‘ 1 Future Res’earch » » * & ®» & » » s 3 2
5.2 CORCLUSIONS &4 o 4 o 2 o 2 » 2 » o o =

Appendix I: Variable-Length Values

Appendix TII: SYNLAX 2 2 2 2 o o o 2 o o 2

ReferencCesS .+ « + o » 2 2 2 2 2 o = s » » 4

Table Of REICTENCES & o o 2 o 2 e % » s » =

& & @ & 6 @

® e ¢ @ W

L[]

. *] . .

1 » . £]

* L]

.

» - L[] '

. 73

. 74

79
79
80
84
+ 85
. 86
. 88
. 88
.~ 89
« 91

§ & »

. 98
»103
»105

.108
.108
»108
.105
.110
« 112
»115
- 117
»119
.119
» 120
<121
. 122

_« 125

»125
-« 1256

.129
»133
»135

-« 140

vi

Chapter 1

Chapter 1:_ _Data-Mapagement Systems

During the past 20 years, there has been a major change
in the data-management software provided for computer users.
Until recently, very primitive data-management software Was
provided and, freguently, +the wuser wrote his own data-
management routines; but, as the amount of data increased
and the underlying data structure became more complex, the
user had to write more sophisticated software. Gradually,
it was realized that it should not be the users' responsibi-
lity to provide data-management software; such software
should be part of the cperating system with which the user
interacts, 1In this chapter, we examine the growth of data
management from basic record-oriented access to complex data
base management systems which provide powerful data-

management facilities.

1.2 Data Managepent

The purpose of data-management systems is +to manage
large amounts of data., By large, we mean that there is more
data to be processed than can ccnveniently be stored in main‘
ﬁemory while the data are being processed. If this were not
true, the data <could be processed using standard in-core

technigques. Thus, we assumeé that only a small portion of

Data-Management Systems 1

Chapter 1

the data to be processed can be stored in main memory at a
given time; the rest ¢f the data are stored on a secondary
storage device. When necessary, the data-management rou-

tines transfer porticns, which are referred to as pagesn,

of the data between the secondary storage device and main
‘memory.

A colliection of pages stored on a secondary storége
device is referred to as a "data set?, Normally, many data

sets are stored on each device., The pages processed by a

user are cocllectively referred to as a "file”, & déta set
is a physical entity and a file is a logical entity. In
basic data-management systems, weach file is sté%ed iﬁ one
data set and each data set contains only one file, However,
in the rore complicated data-management systems, the pages

in a file may be stored cn several data sets and each data

set may contain pages from more than one file,
A "physical record" is the amcunt of data stored on a
secondaxy storage' device without any intervening device

timing/synchronization control information. In basic data-

management systems, a page consists of one physical record
but in mere ccmplicated systems, a page may consist of
several physical records., A "logical record” is the amocunt

of data reguired by the progranmmer. The data-management

system extracts 1logical records from the pages and returns

the logical records to the prcgrammer.

Data-Management Systems ‘ 2

Chapter 1

Currently, the real time required to transfer a page
between secondary storage and rain memory is several orders
of magnitude greater than the time required to process the
page. For example, on an IEM 3330 disk drive, approximately
30.0 milliseconds are reguired to move the access arm of the
disk tc¢ the reguired cylinder, approximately 8.4 millise-
conds are required for the reguired page to rotate under the
access arm, and then apprcximately 5.0 milliseconds are
required tc¢ transfer a #096~-byte page to main HEROTY
{IBN74b]. This average of 43.4 milliseconds is in contrast
to the maia memory cycle time of only 115 nanoseconds
(- 900115 milliseconds) on an IBM 370/158 [IBN74a]}. Thus, as
the size of data files grows frcm million-character files
towards billion-character files, it becomes increasingly
important that the number of pages transferred to ﬁain
memcry in order to proceés requests be as small as possible.
Executing extra instructicns in main memory is uosually
justified if it causes thée number of pages transferred to be
reduced., |

Records can be accessed by Yaddress" or by "key”. The
address of a record is a numeric value which identifies the
record by its position within the file. The Xey of a record
is a set of characters which identify the record ty value
instead of by position. There are two basic types of keys:

"pripary keys" and "secondary keys™. A primary key is a key

Data~Management Systems 3

Chapter 1

which uniquely identifies each record within a file and
wvhose value is normally used in determining the positicn of
the record within the file., A seccndary key is any key that
is not the primary key. The secondary key need nct be
unique, that 1is, more than one record may have the sanme
secondary-key value.

The person in charge of a data-management system is the
"data base administrator” (LEA). The DBA makes +the deci-
sions as to how da£a>are to be structured, such as which
access methods are to be uséd tc manipulate the data and the
type of storage devices to ke used., He is also responsible
for mcnitoring the perforrance of the system {occasionally
with the ﬁelp of system-generated statistics but +tco often
he must rely on his iptuition) and, if possible, making
ad justments to reduce any inefficiencies in the systen. In
the future, it should be possible to automate many of the
decisicns now made by the DEA but, currently, the DBA has a
very important =role in "tuning® the system so0 that it

operates as efficiently as possible.

The rtasic access methecds {such as IBH's BSAM, QB5AM,
BDAM [IBM7¢], and VSAN-ES [IBN73a]) provide the user with a
means of accessing records {both logical records and physic-
al records) as they are physically stored in a file. The

records can be prbcessed sequentially or randomly if the

Data~-Management Systenms 4

Chapter 1

user kncws ths address of the record. The access methods
normally provide such services as grouping several logical
records together into one physical record *{"blocking¥) in
order tc¢ increas€ the utilizaticn of the secondary storage
device, {For example, onrn an IBM 3330 disk drive, there is a
fixed device overhead of 135 bytes per physical record
regardless of the size of the physical record. If each
physical record contains one 80-byte logical record, then 61
logical reccrds can be stored on a track. However, if each
physical record contains éO 80-byte logical records, then
160 logical records can be stored on each track {IBM74b].)
Blocking alsc reduces the the number of I/0 reguests that
mast be made since several logical records are transferred
tosfrom main memory with each I/0 request. The use of the
basic access methods provides fast access to records with a
minimal amcunt cf CPU overhead.

One oOf the major disadvantages of using a basic access
method is that the user must be aware of all aspects of how
the records are stored. The systems programmer normally haé
no difficulty in manipulating the actual records in a file:
however, the applications programmer and the casual user
often find the intricacies of such low~level data access
difficult tc master. Such users may not make the suitable
choices when designing files and then must rewrite portions

of their programs when it becomes necessary to change +the

Data-ﬁanagement Systems 5

Chapter 1

file structure. It often takes these users several weeks to
create the file and write and debug their programs sc that
the records are accessed properly.

Ancther problém which tte user of a basic access method
must face is that reccrds can not be physically inserted
into or deleted from the middle of a file without rewriting
the entire file. 1If records must be inserted or deleted,
special routines to perform logical insertions/deletions on
the file must be written., If several programs access +this
file, then the special routines must be included in each
program and the user must ensure that any changes in the
routines are reflected in all copies of the routinés.

The benefits that are gained frem fast record access
using a basic access methcd are usually offset by the amount
of time required to design and maintain the ©programs which
access the reccrds, The basic access methods are best used
for files which have a very simple data structure and fron
which rIecords are not deleted and to which records are

inserted only at the end.

1.8 _Primary Key_Data_ Access

The primary-key access methods {such as IBN's ISAM
[IBM71] and VSAM-KS [IB¥73a]) are more powerful and casier
to use than the basic access methceds. Primary key access
methods permit the wuser to access records by the primary

key, a logical identifier, instead of by their addresses in

Cata-Management Systems 6

Chapter 1

the file. Primary key access methods also permit the user
to insert reccrds intc and delete records fron any position
in the file.

The primary-key access nmethod determines a record’s
physical 1lccation either by lSoking up its key in a
directory {or index) or by performing a transformation
{"hashing”) on the key. It then uses the equivalent of a
basic access method to retrieve the record. Insertions are
normally handled either by inserting the . rTecord in an
overflow area and adding a pointer to the inserted record or
by leaving scme unused reccrd locaﬁions throughout the file
{(called "distributed free space"), and then moving some of
the existing records to make rocm for the new record.

The primary-key access methcds require extra secondary
storage Space if an index is used and extra page accesses to
search the index. The access method is also larger than a
basic access method because it performs more fanctions for
the user. However, these disadvantages are offset by the
fact that it takes a user less time to write and debug a
program if a primary-key access method is used.

" The primary-key access methods provide good data-
management <facilities as lcng as the data structure of the
file remains relatively simple. However, as data structures
become more ccmplex, the primary-key access methods fail to

provide the nesded facilities. For example, as applications

fata-Management Systems 7

Chapter 1

become integrated, the data reguired by an application
program may be in records that are stored in several data
sets dinstead of in just cne data set. Instead of réading
one record and processing it, +the application programmer
must tTead 1records from several data sets and build a
composite data record before performing any processing.
Thus, the programmer becomes responsible not only for
processing data correctly, but also for building the reccrds

correctly.

1.5 _Data_Base Management Svstenms

In order to shift the responsibility for data manage-
ment tc the cperating system, ccmplex data-management sys-
tems, called "data base management systems® {bBMS*'s), are
being designed. {For the purpose of this thesis, we view
data base management systems only as sophisticated accéss
methods; other facilities prcvided by DBMS's such as the
control of on-line terminals are not discussed.}

The purpcse of a DBNMS is tc extract data from a pool of
data or "data tase", and return the data to the programmner.
The data regquested by a programmer are referred to as a
"segment"., 1A segment is a logical entity created by the
DBHMS fiom one or m@more 1ogical records in the data base.
Within 1imits, the definition of a segment can be changed
for each progranm,.

Physically, - the data in a data base may be stored in

Eata-ManagementvSystems 8

Chapter 1

more than one data set but only the DBMS need be concerned
with such details; the aprlication programmer is concerned
with the 1logical structure {segments) not the physical
structure ({records) of data. This separation of +the pro-
grammer from the method by which data are physically stored

is a major advance in data management.

1. 5.1 Hierarchical and Netuwcrk Models

The data models wused in mcst current DBMS's {such as
IBM's IMS [IBM75], Cincom's TOTAL [CINC74], MRI Systems®
SYSTEH 2000 [HMRI743, etc.) are of two basic types:
hierarchical models and network models. The hierarchical
nodel, as used in IMS, uses a tree structure to describe the
relaticnships between segments, For example, the hierarch-

ical structure

T

R

i A i
: I |
*
|

T 3 R}

1 i

* *

% *
f—_———""'? | e ——}
i B {] c i
e 3 E R, |

defines a "parent” segment, A, that has two child segments:
B and (. Normally, a parent segment is permitted tc have

more than cne cccurrence of each type of «child segmentz

fata-Management Systems 9

Chapter 1

this is & one-many relationship. {In the diagrams, one
asterisk is uscd to represent an x-one relationship and two
asterisks are used to represent an X-many relationship.)

Thus, the segment Ai might have as its children: Bi1, Bi2,

2+, Bim, and Ci1, Ci2, ..., Cin.
The network data model uses either a simple rlex

structure or a complex rplex structure to describe the

relationships between segments. The data structure

r——————" o
] a i i B | ﬂ
: N | : N ——
C % * |

1 i

i 3

b ?

|

*

.

I c
I

is an example of a simple plex structure of the type used in
TOTAL ([CINC74] in which both A and B are permitted to share

a ccmmen child, C; this is a many-cne relationship.

The structure

—————
| A H
| R

*

%

i

sk

%
g
| E]
: W -

Lata-Management Systems 10

Chapter 1

is an example of a complex plex structure: the segment B is
a child of A, but A is also a «child of B:; +this is a
many-many relationship. The ccaplex plex structure is
difficult tc ipplement directly, and so many DBHMSYs do no£
permit the direct use of ccrplex plex structﬁres.

Both the hierarchical and the network data models
describe the logical organization of segments in a data base
and the programmer must understand the segment structure in
a data base before he <can process the segments., For
example, in the hierarchical model, before a child segment
can be accessed, the corresponding parent segment must first
be accessed ({even though +the parent 'segment may not be
neaded) .

Processing a data base frequently involves searching
for specific parent segments and then examining some or all
of the segments? children, This +type of processing is
referred to by Bachman as "navigating® through a data base

{BACH73].

"This revolution in thinking is changing the programmer
from a stationary viewer of objects passing before him in
core into a mobile navigator who is able to probe and
travers¢ a data base at will."

While the procedure of navigating through a data base may be
easy for the experienced cprogrammer, it is often <quite

difficult for the 1less experienced programmer and almost

Data-Management Systenms "

Chapter 1

iﬁpossible for the casual user of +the data Dbase. {Inex-
perienced programmers Irequently do not retrieve all
required segments properly and may unknowingly delete the
wrong segments,) The actual users of the data are not able
to access the data directly and easily; instead, the
application programmer becomes an intermediary between the
user and his data.

Most DBMS's that use hierarchical or network models +o
describe the logical organization of data also use the same
structure tc store the data. Thus, once the daté are stored
in the ¢ata base, the data model can not ke changed unless
the data base is recreated by ccpying the data base and then
using the copy to <create a new version of the data base.
{This rrocess is referred to as "unloading™ and ®reloading™®
the data base.) If the data model is changed and the data

base is recreated, then prcgrams which access the data base

may have to be modified so that they use the new model of

the data. Some DBMS's, such as INS {IBM74c], permit the DBA
to define "logical data bases* which contain segment +types
defined in cther data tases but which are reordered to
present a different "view® cf the data for +the user. The
use of logical data bases permits greater flexibility in
defining the ways in which the user sees the data; hovwever,
the definition of a new lcgical data base is normally not

trivial {it may involve unlcading and reloading the existing

Lata-Management Systems 12

Chapter 1
data kase) and can be acccmpanied by ccmplicated rules as to
how segments are to be added, deleted, and modified. The
overall 1lack of flexibility in the logical data structure
prevents hierarchical and network data models from evclving

as the data and the uses of the data change.

1.5.2_Tte Relational Data Model

In 1970, Codd {CODD70] proposed a new model of data
called the relational data model. Codd believed that +the
user’s view of data should be independent of the manner in

"which data are physically stored. Codd's model presents an

abstract view c¢f data which does not directly define the
relaticnships between segments nor does it imply a specific
method of storing the data. The relational data model\
permits the auaser to view data as elements 3in a two-
dimensicnal table called a "Mrelation": each row in the
table is called a tuple and describes an entity; esach cclunmnn
in the table ié»called a dorain and describes an attribute
of ‘an entity, We refer to the value of a column as an
attribute value {although it 1is often referred +to 1as a
domain value).

Ccdd also defined the fcllowing properties of relations

{ CODD70].

Lata-Management Systens 13

Chapter 1

1. No two tuples in a relaticn are identical.

2. The ordering of tuples in a relation is not
significant. {Thecretically, the fact that tuples
are not ordered is important, but for most practic-
al applications, the user must be permitted to
define an ordering for the tuples processed.)

3. The ordering of «columns in a relation is not
significant.

4. Each attribute value is single-valued.

The notation used to describe a relation is

RELATICN{DOMAINT, DONAIN2, ..., DOMATND) .
For example, consider the data describing students enrolled
at a university., The domaisns in the relation might bes: S4%,
NAME, ADDRESS, AGE. Thus, the relation is defined as: |

S{S#, NAME, ADDRESS, AGE) .

g Each tuple in this relation describes a student and contains

one value for each of +the four domains. The relation
descrihes‘the students at the uniﬁersity.
In the relational data model, a key is a domain or set

of demains by which tuples are accessed, 2 key which

uniquely identifies the tuples within a relation is referred
to as a Mcandidate key". Cne of the candidate keys is

chosen as the primary key of the relation. a1l dcmains or

sets of dcmains are potentially keys that may be used to
access tuples.

In the relaticnal data model, +there are no explicit

Lata-tanagement Systenms 14

Chapter 1

relaticnships between relations as there are in the
hierarchical and network data mcdels, Instead of defining a
relaticiship {one-one, one-many, atc.) directly between two
relations, the relationship is defined implicitly by includ-
ing the same domain in two or more relations,. ‘The impor-
tance o©f the ipplicit definition of relationships is empha-
sized by Whitney [WHIT74].

"3 particularly important aspect of the relational data

structure is the use of implicit value links between tuples
~of relations to indicate relationships between tuple items.™

For example, the relations
S{S#, NAME, COL#) and COL{COL#, CNAME, DESCR)

are =not explicitly related but there is an implicit rela-
tionship between them since they have +the domain COL# in
CORMon, {We assume that within a data base, the use of the
same dcmain name in different relaticns dimplies that a
commpon domain 1is being referred to,} By defining relation-
ships implicitly, the user of the relational data model is
not limited +to already-defined 1logical structures. New
logical structures can be defined quite easily without the
problems inherent in +the hierarchical or network data
models,

In the relational data model, relations should be
defined =so that the amount of redundant data is minimizedf

{Formally, it is sufficient if the relations are in 3rd or

fata-Management Systenms 15

Chapter 1

4th° normal form. ©Normal forms are described, for examnple,
by Date {DATE77].) TFor example, in the relation
SC{S#%, NAME, ADDRESS, C#, DESCR)

which describes students and cocurses, the student's nampe and
address are repeated once for each course in which the
student is enrolled. The relaticn should be split intc the
equivalent relations

S{S#, NAME, ADDRESS)

C {C#, DESCR)

SC{S#, C¥)
in which the student's name and address occur only once.
The relation SC is a relation whose purpose is tc¢ link
together tugples in two other relations. Hierarchical and
networkX DBMS's both contain irnformation that is equivalent
to ihe information in the relation SC {in IHS, it is stored
in "lcgical child segments® {IEM74c) . In the hierarchical
and network data models, such informaticn is not normaily
available to the wuser; however, in the relational data
model, the information in SC is available to the user and
can be processed in the same manner as any other relation.
Such relaticns can be wused +c¢ define the equivalent of
hierarchical and network data structures in the relaticnal
data model.

The second majorvadvantage of using the relationai data

model is that it does not impose a specific physic%l

structure on the data, The data can be stored using a

fata-Management Systens 16

Chapter 1

hierarchical storage structure, a network storage structure,
or any cther convenient stcrage structure. (This lack of an
obvious physical structure for relationsc makes the choice by
the DBA of the structure used tc store each relation very
critical, In order tc aid the DBA, it is important that the
DBMS generate statistics which indicate how efficiently each
relaticn is stored.) With the relational data model, the
user is not expected to kncw how a particular type of tuple
should be accessed (for example, by accessing the parent
tuple first, as in the hierarchical model); +the user
requests a specific tauple or group of ‘tuples and the
relaticnal data base management system {RDBMS) determines a
way to access the tuple(s). Since the user no longer needs
to know the physical structure of the data in the relation,
it is possible to <change +the physical structure without
affecting the user,

Another advantage in using the relation data model is
that precise mathematical languages have been developed for
expressing queries against a relation. Two of the lan-
guages, the relational calculus and the relaticnal algebra,
have been shown tc be sufficient fer expressing any guery

{CODD72].

1.6 _Cuzrent_Relational Systems

In this section, we survey some of the major RDBMS's

that are currently being tested. The systems examined are

Data-Management Systenms 17

Chapter 1

intended tc be representative of relational systemns, but not
a ccmplete 1list, Only the 1low-level structures of each
system, such as the storage mechanism and any data I'2COovVery
mechanism, are examined; higher-level facilities, such as

the data-manipulation languages, are not examined.

1.6.1_INGRES

The Interactive Graphics and Retrieval Systemn {INGRES)
[STON76] 1is teing developed at the University of California
at Berkeley. INGRES is implemented on a PDP 11/40 machine
using the UNIX ocperating system. INGRES is being used to
examine the decomposition cf complex queries into queries
involving only one variatle, the support o¢f integrity
constraints by medifying gueries, and the manipulation of
data bases by casual users.

INGRES stores tuples on 512-byte pages; each relation
is stored in a seﬁarate data set. Both indexed and -hashed
access by primary key are provided: the index contains the
largest primary ey on each primary page; the hashing
functicen used with hashed access is a modulo-division
technigue, The internal identifier of a tuple {I1ID) <con-
sists c¢f a primary page number and an indirect-address
number within the page. Tuples are notAordered by §rimary
key within a rpage; so primary-key access involves searching
the page for the desired tuple. Pages are initially lcaded

to apprcximately 80 percent of capacity; when a primary page

Pata-fianagement Systenms 18

Chapter 1

pbecomes full, overflow vrages are chained tc the primary
page. The cverflow pages must be searched sequentially so
that lccating a tuple that is stored on an overflow page may
involve several ©page accesses. INGRES maintains secondary
indexes to provide access tc tuples by secondary key.

INGRES guarantees the dintegrity of each relational
calculus ccmmand {which ©norpally involves more than one
.INGRES_command) by using deferred updating, that 1is, by
saving all modified tuples in a deferred-update file until
.the entire relational calculus command has been processed;
then, the actnal modifications are made +to the tuples.
Should the system fail during the actual updating, INGRES
completes the coperation by reprocessing the deferred-update
file. In crder to roll back a relation to the state that it
had at an earlier time, INGRES must use a journal file +to
determine +the changﬁs made to the various tuples. {2
journal file contains‘a 1ist of all changes made to a data

base,)

ZETA is a RDBMS that is being developed at the
University of Toronto [BROD75]. It is written in PLI for
IBM machines with the 0,S. cperating system. ZETA is being
used to examine the efficiency of relational fepresentations
and a variety of user interfaces.

ZETA stores tuples in fixed-length pages; tuples are

Data-Management Systems 19

Chapter 1

always added to the end of a relation. The TID consists of
the +tuple's ssequence number within the relation. ZFETA
permits the user to «create new relations called *®"parks®
which «contain the TID's of tuples in another relation which
satisfy a gualificat;on. A wmark, itself, canrn also be
marked. A mark, however, is not kept up to date and s¢ pust
be recreated 1if the original relation changes. Secondary
indexes are being added to ZETA.

1.5.3_XRN

The Extended Relational Hemory System {XRH) [LORI74] is
being developed at the‘IBM Cambridge Scientific Center. XRM
is being used to test relational storage structures and toc
test languages designed for casual users of a data base.

XBM is built on top o©0f the Relational Memory {BH)
System which suprorts binary relations. Tuples are stored
in 40%6-byte pages; TID's consist of the page number and an
indirect-address number within the page. XRM uses hashing
to determine the page on which a tuple is stored. Within a
page, tuples are linked together in ascending order. XRH
also mwaintains secondary indexes to permit access by secon-

dary keys,

1.6.4 System E&

System R [ASTR76] is teing developed at the IBHM

Research Lab in San Jose, It is implemented on an TBM 37¢

Data-Management Systems 20

Chapter 1

machine using a special VM/370 operating system which is
modified tc permit data +to be shared by several virtual
machines. Syster R is being used to test autonmatic conéur-
rency control, recovery, and integrity, and the suppcrt of
high-level language interacticp with data bases. System R
has features in common with the DBNS ADABAS [SOFT74 1. |

System B stores relations in segments: a segmeﬁt is a
collection of pages which can, if necessary, be shared by
more than one relation. TID's consist of a page number and
an indirect-address onumber within the page. Pages are
allocated to segments frcwm a common page area and System R
uses a page map to map the logical page-number in a segment
to the physical page-nuamber in the file, When there ig not
enough room in a pace for a tuple, the tuple is placed in an
overflow page which is linked to the primary page. System R
avoids the rroblem in INGRES of searching several overflow
pages by storing a pointer in the primary page to each
overflo% turle on an overflcw page. Thus an overflcw tuple
can be retrieved with at most two data page accesses.

System R uses "images" {secondary indexes) tc provide
keyed access tc relations, One image in each relation may
be defined as "clustered", causing System R to use primary-
key ordering to store tuples., Tuples in different relations
can be joined together over a ccmmen value using the "link™®

facility: links create a parent-child hierarchy. Systenm R

Data-Nanagement Systenms 21

Chapter 1

uses TID's to link the tuples together., One 1link in each
relation may be defined as clustered, causing System R to
store tuples that are linked together as close as possible
to each other. The use of clustered links causes the number
of pages accessed to bhe reéucéd, The use of links provides
faster access tc tuples than the wuse of images, but the
addition or deletion of an image is much easier than the
additicn or deleticn of a 1ink since the maéipulation of
images does not cause data tuples to be modified.

System R uses an interesting technigue to maintain the
integrity of a relation while a group of +transactions is
being rrocessed. After making changes toc a page, the page
is written to a new location, not back on top of the old
version of the page. This pew location is recorded in a new
copy of the page-map tables. At the end of the group of
transaétions, System R has two page-map tables: the page-
map table in secondary storage indicates the state of the
relaticn betfore the changes were made; the page-map table in
main memory indicates the state of the relation after all
transactions are processed, By saving the new page-map
table toc secondary storage, the relation is brcught wup to
date; by not saving the page-map table, the relation is
rolled back to the state it had before the transactions wmere
processed., The use of this technique reguires System R to

have «ccomplete control of the I/0 facilities; an I/0 systen

Lata-Management Systems 22

Chapter 1
in which a file is considered to be an extension of +the
user's address space could not be used since System R rust
maintain contrcl of where pages are written. Once the
page-mafp tables are saved, if the relation must be rolled
back, Syster R must use the same technigue as INGRES to
restore a relaticn: processing the journal file in order to

. reverse all changes made.

1.7 _Thesis Qverview

As data-management systems become more complex; it is
important tc analyze not only the data-management system as
a whole, but, also, the facilities provided by the individu-
al subsystems within the data-management sSystem., In the
CODASYL report [CODA71] and the ANSI/X3/SPARC interin report
[ANSI75], an attempt is made to define standards for +the
sﬁbsystems of data-management systems. IBM's Data Indepen-
dent Access Model (DIAM) alsc defineé a generaligzed data-
management model {SENK?Z}, [SENK75], [SENK76]. Hosuever,
these reports tend to define general systems and do not
examine ‘throughly the specific problems encountered when
relatiocnal data base management systems are implemented.,

In this thesis, we define a data-management system in
terms of 1its necessary subsystenms, The data-management
system is designed specifically tc support the relational
view o¢f data but it could alsc be used to suppoert other

models of data. The data-management system is not based on

Data-Management Systenms 23

Chapter 1

an existing system; instead, the features required by a
relaticnal data base manégement system are examined and a
System that provides the necessary functions is developed.

The - data-management systen consists of four subsystenms
which are described in the tfollcwing four chapters. Fach
subsystem provides a service to the other subsystems but the
manner in which this service is performed is independent of
the other subsystems, Thus, it is possible tg Temove oOne
éubsystem and replace it with a different subsystem which
performs the same task but in a different manner. For
example, one subsystem stores ang retrieves tuples and only
that subsysten is permitted to manipulate stored tuples. If
necessary, the format of stcred tugples can be changed by
modifying cnly the one subsystenm,

The device system is the "lowest" of the four subsys-
tens. This system manipulates the pages used to store the
components of a relation. The pages may be moved from one
locaticn to another {within or between data sets) and it is
the responsibility cf the device system to be able to find a
particular page. The storage systen manipulates the tuples
within a page. Pages are retrieved by the device system agd
the storage system extracts the reqnired‘ tuples from the
page. The storage system alsc attempts to minimize problens
encountered when a relation must be rolled back to its state
at an earlier time by maintaining copies of the tuples in

\

Data-Management Systenms 24

Chapter 1

the relation, The access-path system is used to determine
where tuples with a given set of characteristics are stored.,
Access paths themselves ccnsist of tuples which are manipu-
lated by the storage systen. The access-path system is
designed sc that access paths can be created, modified, and
dgleted as easily as possible without having to change cther
portions o©f the systenm. The retrieval system is the
interface through which Irequests are made by users tc the
data~-management system., A simple data~manipulation language
{(DML) which permits users to access tuples associatively
instead of by 1location is defined. The retrieval systen
also determines how a particular request can be satisfied

efficierntly using the currently available access paths,

Lata-Management Systens 25

Chapter 2

Chapter 2: _Device_ System

2.1 Introduction

In this chapter, we develcp the device system of the
data-management system, This subsystem reads and writes the

pages tused by the storage systenm. The device systen

manipulates pages which may be distributed over data sets

and devices with differing characteristics.

The device system manipulates pages in data sets stored

N
on seccndary-storage devices, #%hen requested, the device
system reads a page intc main memory where it can be

manipulated by the storage systen. Pages are stored in main

memory in a "buffer pool", an areca of nmain memcry reserved

by the device system for pages. Normally, a buffer pool is
large enough to contain many pages at a given time, Fhen
the storage system reguests a rage, the device system first

determines whether or not the page is already in the buffer

‘pool, If the page is not in the buffer pool aand all of the
available lccaticns in the buffer pool are being used,' the

device system removes one cf the pages from the buffer pool

to make rocm for the required page. Normally, the page in
the buffer ©pool that has been least recently used is

selected for replacement., If the page has been modified, it

Device Systenm 25

Chapter 2

is written back to the corresponding data set before the new
page 1s read. {Thus, a page that is.modified by the storage
system is not necessarily saved inmediately; it is saved
when its Jlocation in the buffer pool is needad for another
page.) The device system uses a common buffer pool for all
data sets that are currently active. By sharing the
buffer~gcol locations among.data sets, the main memory used
by the bﬁffer pocl is ntilized more efficiently than if a

separate buffer pocl is allccated to each data set.

223 _Page_Reference_Numbers

The storage system reguests pages in a relation using a
"page reference number®™ {PEN). The PRN is a number tﬁat
unigquely identifies a page within a relation.

There are many page-addressing algorithms that can be
used for the PRN. Direct device-addresses such as the fall
disk address (MBBCCHHR), the relative track address {TTR),
and the relative record number (RRN) provide fast access to
the regquired page. Hoﬁever, the use of direct addresses has
the disadvantage that 3if a page must be moved, then all
references tc that page must be modified. To avoid having
to modify PRN's, indirect page addresses may be used. If
indirect addresses are used, the PRN contains a pointer into
a list of direct addresses instead of containing the direct
address itself. The 1list of direct page addresses used by

the device system is called the ™device management table®

Device Systen 27

Chapter 2

(DMT). Each entry in the DMT is a fixed length and contains
the direct address of a page. Since the DMNT entries are of
a fixed length, the PRN can be used as a subscript into the
puT, If it is necessary tc move a page, only the entry in
the DMT must be changed; the PRN itself need not be

modified.

2.4 _Device Management Tables

When storing a large relation, it may be convenient to
spread the pages over seversl data sets, For example, pages
which are freguently referenced could be stored on a fast
device while pages which are less frequently referenced
could be stored cn a slower device.

In order to indicate where a page is stored, each DHT
entry must contain not only the direct address of the page
within a data set but also the "data set reference number?®
{DSRN) of the data set on which the page is stored. The
data set reference number is a pointer to the description of
the data set within the device system. A page can be wmoved
within a data set by changing cnly its direct address or it
can be moved between daté sets by changing the DSERN and the
direct address, Only the entry in the DMT is modifed; the
PRN is never modified. The format of each entry in the DMT

is iillustrated in Figure 2.1.

Device Systen 28

Chapter 2

-
|
DSEN { Page Number

—_—d —

o otoss aaan

[

Figure 2.1 DMT Entry Format

In a c¢ata-management system, a page may temporarily be
stored in several different locations. For example, a page
may be permanently stored on a slow device, but, when the
page 1is referenced, the device system nmay temporarily
"stage™ the page to an intermediate, faster device. The
page may then be copied to the main memory buffer pool. It
the page is modified and then removed frém the’buifer'pool,
it is written back to the irtermediate device. The page 1is
copied Dback to the original d<vice when it is no lcnger
required. In order to suppert such a nmigration of pages,
the device systeﬁ permits entries in the {permanent) DMT to
point to temporary DMT's. The DSRN in +the permanent DNT
entry identifies the temporary DMT and the direct address in
- the permanent DMT eniry is a pointer into the temporary DMT.
Figure 2,2 illystrates how the entry in a permanent DMT can
point tc an entry in a temporary DNT which can roint to an
entry in arncther temporary IMT. Thus, the current locaticn

of the page being referenced is (4,5).

Device Systen 29

Chapter 2

PRYN
i
|
v
T T k] |
| I 2,3 | I o« o s |
i i T L S T ¥
i
|
by
{
]
v
¥ ¥ | ~ q4 R
i ! j 3,’? i » * » ’
i 1 <€ T A 31
i
i
r 3
]
]
v
¥] T E | 1
I 4,5 | i]
L T R 3 1. 3
|
i
¥

Current Location

Fiqure 2.2 Hierarchy of DMT's

The entry in the temporary DNT contains the current
location of the page, This current location is either an
asﬁual lecation {(direct address) or a pointer into another
temporary DHT. In addition tc the current location of a
page, each temporary DMT entry nust alsc contain the value
that was o¢riginally in the permanent DMT entry. Also, in

order tc be able to remove a tenmporary DMT entry, each

Device Systenm 30

Chapter 2

temporary DMT entry must contain a back pointer to the
corresponding DMT entry that pcints to the current entry.
If a back 1link is not includsd, then all active DMT's must
be searched fcr the reference tc¢ +the DMT entry +to be
deleted. Figure 2.3 1illustrates +the format of sach tem-
porary DMT entry. The rack 1link, ©previous value, and

carrent value all contain a DSRN and direct address.

-
Previous §| Current

Iocation | Location
1

Back
Link

i i o G
s o i 1

b oo st e

Figure 2.3 Temporary DMT Entry

The use of temporary DHEI'S :emoves the need for special
buffer-pcol tables; the ‘tuffer pool can be viewed as a
temporary dqta set., When the device systenm moves a page to
the buffer poecl, it modifiés the pointer in the correspond-
ing DHT to peint to the buffer-pocl DMT. Fhen it is
necessary to purge a page from the buffer pool, the page {(if
modified) dis written back to the location specified in the
current DMT entry, and the criginal DMT entry is changed to

point tc the new lccation.

2.2 _Physical Records

In order to rTeduce the cocmplexity of the storage
system, all pages in a relation are the same size. However,

the page size chosen for a relation may not be optimal for

Device Systenm 31

Chapter 2

all' devices on which the pages may be stored, To overconme
this problem, the device systen can break up a page into omne
or more physical records to provide better space utilization
on a particular device. These portions of a page are stored
contiguously on the device so that they can be processed in
one I/0 cperation, TFigure 2.4 illustrates how a page can be
viewed by the device system as consisting of twe physical

records.,

e
i PG - |
S
{
|
: | . 3
i |
i |
r———d——— re——d———y
} PR1 i } PR2 {
T | PR |

Figure 2.4 Segmenting a Page

If the page size for a relation is small, 'the device
system wmay store several pages in each physical record in
6rder to increase the number of pages that can be stored on
a particular device., Figure 2,5 illustrates how a physical
record can ke viewed by the device systenm as containing two

pages.

Device Systenm 32

Chapter 2

L o

1 Pe1 | "1 pe2 |
L.._._T___._ 4 E IV T— —d
| 1
]]

1 — —- 3
]
|
| ""J""'"_“l
{ PR |

| NCRERORSR |

Figure 2.5 Segmenting a Physical Record

This technique for the efficient utilization of device space

is an extension of the technique used in IBM's VSAHM {IB877 3.

Device Systen 33

Chapter 3

Chapter 3:__Siorage_System

T — o — . W S >

3.1 _Introduction

In this chapter, we developr the storage system of the

data-managemnent system. This system manipulates the tuples

in a rage., First, we <examine the facilities that the

storage system should provide. We then describe a storagse

structure which can be used to provide these facilities.

age-Structure Properties

o i "

In this section, we describe some of the properties we
would like to see in a storage structure. These properties
describe ideal storage structures which it may not be
possible to implement ccmpletely, but they give us a
standard which can be used to evaluate cther structures.

The amount o¢f secondary storage used to store a
relaticn should be minimized in crder to decrease the number
of pages accessed while processing requests., However, it is
often necessary to increase the amount of secondary storage
used 1in order to decrease +the response time for oh-lihe
applications. For example, adding indexes {as described in
Chapter 4) regquires extra storage but reduces the tctal
number of page accesses, Nevertheless, when data bases are
1érge, the «cost of storing the data is a major considera-

tion. One of the goals of the storage system is to reduce

Storage Systen 34

Chapter 3

the amcunt of unused space on each page thereby reducing the
amount of secondary storage space and increasing the amcunt
of data transferred in each page.

There should be no {or 1littlie) rédundant data in order
to avoid consistency problems when modifying tuples., For
example, if the data which describe a student are duplicated
in several tuples, then the RDBMS must reflect +the changes
made tc cne turple ih the other duplicate tuples. This often
requires extra pointers to link the duplicate tuples togeth-
er. (as 1illustrated by 1IMS in its support of logical data
bases by "physical pairing®™ [IBM74c]) which adds another
level of complexity Eo the storage system, Reducing the
amount ¢f redundant data alsc decreases +the amount of

secondary storage reguired to stcre the relation.

3.3 _Tuple Identifier Properties

In order to permit the storage system to access the
tuples in sach relation, each tuple is assigned an internal
identifier or address called a “tﬁple identifier® (TID). We
now examine scme of the properties that we would like TID's
to have., These prcperties are ideals and it may nect be
possible to satify all prorerties at once.

In order to be able to process tuples efficiently, the
TID should indicate where {if cnly approximately) the tuple
is stored physically. If an index 1is required in the

mapping between a TID and its lccation, then not only must

Storage Systenm 35

Chapter 3

the index Dbe searched each time that a tuple is retrieved
but +the 1index mnmust alsc be created, retrieved, and
maintained.

The TID =should not bind the tuple to a fixed location

if we are tc permit relations to change over a period of
time., Scme DB¥S*'s, such as INKS and TOTAL, use identifiers
which specify the exact physical location of data in the

data base. When physical identifiers are used, it is not

possible to reorganize portions of the data base in order to

meet performance standards.

As long as a tuple remains in a relation, its TID
should not <change. As we shall show in Chapter 4, the TID
of a tuple may be stored in many access paths. If we permit
a tuple’s TID to change, then all occurrences of that TID

must also bhe changed. In crder to avoid the problenms

created by changing a TID, the TID of each tuple should not
be changed as 1lcng as the tuple remains in its relation,
Another desired property of the TID is that for all

tuples i and J in a relatiom, if PKEYi < PKEYj then

TID1 < TIDJj {where PKEY 1is the primary key of a tuple).
This prcperty of TIDs can te used to reduce the number of
tuples that must be examined when processing complex queries

involving the primary key. If the TID's are ordered in the

salte manner as the primary keys, then a gquery that dinvolves

a range of primary keys can ke reduced to the simpler, but

Storage Systen 36

Chapter 3

egquivalent, query inveclving TIDs.

3.4 _Tuple DOrdering

There are three basic methcds that can be used to order
tuples in a relation: sorted crdering, hashed ordering, and
chrconclcgical ordering. Sorted ordering involves storing
tuples in primary-key order. Access to tuples by primary
key ncrmélly involves the wuse of a directory ({(which is
discussed in Chapter #), Scrted ordering permits the
seguential processing of a relaticn in ascending order of
primary key. Hashed ordering involves performing a trans-
formaticn on the primary key using a hashing function in
order to determine the positiocn of a tuple. The major
advantace of hashing is that access by primary key does not
involve +the use of a directory; however, while the relation
can be processed sequentially, the tuples are not returned
in ascending order of primary key. Also, if the hashing
functicr dces not distribute the tuples uniformly over the
space available for the relaticn, then storage space may be
aliocated but not used., Chronclegical ordering invclves
storing each new tuple at the end of the relation. This
method distributes tuples uniformly over the availakble space
with nc¢ unused space, but, again, tuples <c¢an not be
processed seguentially in piimary—key crder,

We shall assume that the tuples in most relations are

stored in scrted order. By chocsing the primary key wisely,

Storage Systenm 37

Chapter 3

it is possible to reduce or eliminate the sorting cf tuples
before +they are returned tc the user. Another reason for
storing tuplgs in sorted order is to pernit a query
optimizer to —reduce the scope of queries. When evaluating
complex gqueries which can not be resolved without scanning a
relaticn, 1f the query invclves the primary key, then a
query optimizer can reduce the scepe of the scan to the
subset of the relation invelving the required primary keys.

As 1is shown in Chapter #, the use of sorted ordering
also cavses a reduction in the size of an associated
primary-key directory. And, because the directory is small-
er, fTewer page accesses are required while processing the
dirsctory.

A final point in favour of sorted crdering is that the
number of page accesses is reduced if a query involves a
primary-key "locality of reference®.,. If reguests involve
tupies with similar primary keys then the number of page
accesses required to process the request is reduced since
the tuples reside cn the same or nearby pages.

In order tc provide a general storage system, the user
should, however, be permitted tc use hashed or chronological
ordering, Existing ©DBNS's use variocus combinations of
ordering., For example, ADABAS and ZETA use chronological
ordering while TOTAL and XEM use hashed ordering, Some

systems such as INMS and INGRES provide both sorted and

Storage Systenm 38

Chapter 3

hashed crdering.

In this and the following sections, we inﬁicate how the
storage systen manipulates tuples in order to ©provide the
properties described earlier.

The format of tuples in the storage system is very
simpie: each tuple contains a prefix and a data portion.
The tuple prefix contains the TID of\the tuple and various
status indicators. The data porticn of each tuple contains
the attribute values of +the tuple. {In Appendix I, we
indicate how the varicus portions of a tuple can be stored
efficiently.)

The status indicators in the tuple prefix are used to
indicate the various states of the tuple. Two of the states
that a turle can have are: active, deleted. As is
indicated later in this chapter, when a tuple is deletéd it
may not always be possible to remcve it immediately from its
relation, Until a tuple‘ ¢an be physically deleted, the
status indicator 1is wused to mark the tuple' as being
logically deleted. The other states can be used to indicate
"that a tuple was inserted, updated, etc., and are discussed
later in this chapter.

The attribute values in each tuple are always stored in
the same order; however, the storage system returns the

attribute values in the order specified by the user. Thus,

Storage Systenm 39

Chapter 3

the user need not be aware of the physical ordering of the
attribute values in a stored tuple.

Since the TID is not to bind a tuple to a physical
locaticn, the PRN can not be ussd as the TID. The primary
key is not chosen to be the TID because an index is raguired
to determine the physical lccation of the tuple with a given
primary key within a relation. If tuples are assigned
sequence numbers as they are inserted, then the TID does not
bind the tuple to a physical location. However, these TID's
do =not reflect the primary-key order. If the tuples are
sorted before being dinserted intc a vrelation, then the
sequence numbers do reflect the primary-key order. However,
when a tuple 4is inserted after the relation is initially
created, scme of the +tuples must be renumbered. This
violates the property that TID's should not be changed,

If the TID consists of two parts: an original sequence
number {or tuple number) and an insert number, the problenms
described akove are elinminated. The tuple numbér is
assigned to tuples inserted when the relation is created.
These tuples must be ordered by primary key before they are
inserted. For these tuples, the insert number is zero and
the tuple number is assigned segquentially beginning at one.
When a tuple is inserted at a later time and its primary key
‘is greater than the key of the tuple with TID {n.0) but its

key is less than the key of the tuple with TID {n+1.0), then

Storage Systen 40

Chapter 3

the new tuple is assigned a TID of. {n.m) where m > 0. This
scheme is similér to that used in MANTES [FERC78a] énd to
the Dewey decimal notation [KNOTT57. If we assume that
there is mno 1limit on the number of tuples that can be
inserted, then the TID satisfies our basic properties, {A

method of storing such TID'g is presented in Appendix I.)

3.6 Marring_to Physical Page

A\,

We now examine the process of determining a tuple's
physical lccation using the TID. We shall consider it
sufficient if the number of the page on which a tuple
resides can be determined; cnce a page 1is moved to main
memory, it can be searched very guickly for the desired
“tuple.

One method used to determine the physical page on which
a tuple resides is to maintain a dense index of TID'sS and
their associated pages, {2 dense index of TID's is an index
in which there is an index entry for each unigue TID. A
non-dense index of TID's contains index entries for only
some of the TID's.) This methcd has the advantage that all
or part of a relaticn can be reorganized; only +the index
must Dbe changed to reflect the new locations of the tuples,
This scheme is used quite syccessfully in ADABAS [SOFT74],
A second advantage of using a dense TID index is that as
tuple-usage patterns emerge, tuples that are frequently

accessed together can be stored on the sanme page. Such a

Storage Systen 41

Chapter 3

scheme has been examined by Hoffer [HOFF75].

The major disadvantage cf using a dense TID index is
that it reguires a large number of page accesses to process
the index before tuples can be processed. TFor example, if
approximately 1000 page nurbers can be stored in each index
page and there are N tuples in a relation, then N/1000 pages
are required to store the irdex. In a relation with several
miliion tuples, the size of such an index is prohibitively
large,. If a relation is processed randomly, the number of
index-page accesses may apprcach the number of data-page
accesses, |

The methcd used in the storage system to map TiD?s to
pages is to include a "logical page number™ in the TID. a
logical page number is a number that is assigned sequential-
ly, beginning at one, by the storage system to each "lcgical
page” as the rélation is Creatéd. The TID becomes

{logical-page number, tuple number.insert number)
where the tuple number is the tuple segquence number within a
page instead of within the erntire relation. This type of
TID is an extension of the TID used in INGRES {STON76] and

in System R {[ASTR76]. Since we assume that tuples are

. initially 1oaded in ascending order of primary key, the TID

reflects the primary-key order.
For reasons which are explained later in this chapter,

the PRN is not used as the logical bage number, However,

Storage System 42

e b o
Sapy St %
S MANITOBA A

Chapter 3

since the PRN is required in order to be able to access a
page, the storage system maintains a "storage management
table”™ {S5MT) which <contains the PRN of each logical rpage.,
The SMT contains an entry for each logical page in a
relaticn. 1In the following sections, additional information
is added ﬁo gach entry in the SHT.

This TID reflects tke primary-key ordering but it
violates the property that =no extra page accesses be
required when retrieving a tuple since the SMT must be
accessed, However, the SMT’s are small compared with the
number of tuples that can be referenced since each entry in

the SMT defines the lccaticn of all tuples in a page.

3.7_Logical_Pages

———

A majo; rroblem with including a page number in the TID
is that at scne time, there will probably be too many tuples
to fit cn the page to which they have Dbeen assigned. At
that time, it would be convenient to be able to increase the
size of the page, but it is normally not possibtle to extend
a physical rage cnce the data set is created. To get around
this problem, if a (logical) page is togc large to be stored
on one physical page, the storage system splits the lcgical
page intc’ "lcgical page segments" which are stored on
physical pages, The tuples within a logical page are
ordered by TID sc that the tuples within and among logical~-

page segments are properly crdered., In order to avoid =xtra

Storage System 43

Chapter 3

1/0 requests {as are required in INGRES and System R) when
accessing the segments of a logical page, the entry for a
logical page in the storage-management tables is modified to
point to a 1list of special logical-page-segment entries,
Each special entry contains a PREN and the maximum TID +that
is in the segment on that physiéal page. Thus, by modifying
only the storage-management takles, the storage system can
extend a logical page to any size. As long as the TID of
the desired +tuple is %nown, only one data I/0 request is
required to find the segment ¢n which the tuple is stored.

A few entries at the end of each SHT page are left
empty for use when a logical page is split into two or more
Segments., Ey storing the split-page entries on the same SHT
bage as thke original SHT entry, extra SNT-page accesses are
not reguired when processing a split logical page.

The storage system allccates space for a logical page
only when the space is required, If a 1logical pages is
small, then the logical page is stored on the same physical
page as other small logical pages. Thus, the storage systen
attempts to minimize the nusber of physical pages on which a
relation is stored and tc maximize the amount of data

transferred duting each I/0 request.

Storage Systenm 44

Chapter 3

The format of each physical page is shcwn in Fiqure

Page Ccntrcl Information

Logical Page #1

Logical Page #2

Free Space

Logical Page Index

1O i s s Mt i s e W M G A s G i e it s sl
u.u..uhw;hummudh“m“dh—u.—.“_-“d

Figure 3.1 Physical Page Format

At the beginning of a physical page is a small amount of
page ccntrcl information. The page control information
contains system information such as the npumber of logical
pages 1in the physical gpage. Follewing the page control
information are the logical pages. The standard method of
allocating <£free space is to store the free space either at
the end of each logical page or at the end of the physical
page, However, some 1logical rpages, after the ipnitial
changes, may not b& modified sc the free space allocated té
them 1s wasted. If the free space is storaed at the end of

the physical page instead of at the end of each logical

Storage Systenm 45

Chapter 3

page, it can be shared by all logical pages in the physical
page. However, when tuples are moved within a page, all
Tollowing 1logical pages ©pust also be moved., In order to
reduce the amrcunt of data wmcvement within a page, the
storage system keeps a small amount of free space within
€ach logical page and the remainder of the free space at the
end of each physical page. Thus, a small number of changes
can be made to a logical page without having to move the
other 1lcgical pages. ¥hen the_free space within a 1logical
page is exhausted, some extra free space is made available
from the physical-page free-space area. If there is nc free
space at the end of the physical page, the storage systenm
attempts to find some by taking free space from the octher
logical pages in the.physical rage.,

The logical page index at the end ¢f a physical page
identifies each of the lcgical pages in the physical page
and contains the displacement of the logical page within the
physical page. 1In crder tc determine where a tuple 1is
stored on a physical page,v the 1logical page index is
Searched to determine the poesition of the logical page and

then the logical page itself is searched for the tuple,

Storage Systenm 46

Chapter 3

The format of a logical page is shown in Figure 3,2.

Page Contrcl Information

Free Space

Taple Index

(G O o s o s s S i
i R USRI SN R

Figqure 3.2 Lcgical-Page Format

#t the beginning of each logical page is a small amount of
Page control information which contains information such as
the amount of free space in the logical page., The tuples in
the 1logical page are stcred in ascending order of TID
following the ©page contrcl information. Following the
tuples 1is the free space for the lcgical page and follcwing
the free space is a "tuple index®. The tuple index is used
to reduce the time required to find a tuple in a page. The
tuple index contains pairs of TID's and pointers: the
pointer contains the displacement within the logical page of
a group of 5-10 tuples; the TID is the largest TID in the
group of tuples. Thus, the tuple index is a non-dense index
into the tuples in a logical page. The tuple index takes up
little rccm ccmpared with the number of bytes of data in a

logical page.

Storage Systenm 47

Chapter 3

Tuples are inserted intc a logical page in ascending
order By TID. Thus, inserting a tuple causes the tuples
with higher TID's *o be moved towards the end of the page
and deleting a tuple causes the tuples with higher TID's to
be moved tcwards the beginning of the page. Insertions and
deleticns also cause the turle index to be modified. The
free-space area at the end of the logical page contracts or
expands as tuples are inserted or deleted, However, all
pointers within a 1logical page are displacements from the
beginning of the logical page, not from the beginning cf the
physical page. Thus, a logical page can bpe moved without
having to <change any of the pcinters within the page; only
the pointer in the logical-page iﬁdex is changed,

If a relation is stored using hashed ordering, the use
of 1lcgical pages provides a natural method for resclving
collisions. The hashing functicn generates the lcgical page
number for each tuple and the storage system orders the
tuples by primary key within the logical page. {By ordering
the tuples.by primary key within a logical page, even though
the tuples are not ordered within the relation, the time
required to find a tuple in a page is reduced,)' If few
tuples are stored\ in a lcgical page, storage space is not
wasted by allocatin¢ an entire thysical page to the logical
page; 1instead, the storage system stores several small

logical pages in the same rphysical page. The storage systen

Storage System 48

Chapter 3

do=s not alliccate space for a lcgical page until tuples are
stored in the page® so the hashing function does not have to

distribute turles cover all rossible logical pages,

3.8_Pointers

The storage system pernits the user to define not only
normal dcmains din a tuple but also "pointer domains", A
pointer dcmain is a domain which contains a pdinter {TiD) to
“another tuple. A pointer dcmain is used to provide fast
low-level access to asscociated tuples. The user of the
system is not aware of the existance of pointer domains
since ttey are a performance-criented feature.

If a domain is defined as a pointer, then the storage
system, if reguested, retrieves both the primary tuplev and
any sutordinate tuples and then concatenates the tuples,

For exanple, the tuple structure

primarys R1(%1, TID, D4, D5)

i

i

i

v

secondary: R2{Dd2, D3)

causes the tuple R1{D1, 52, L3, D4, D5) to be returned to
the user, The process of retrieving subordinate tuples is
recursive: one subordinate tuple can point to another

subordinate tugple. If such a conmposite tuple is to be

‘modified, the storage system saves the TID's of all subor-

Storage Systenm 43

Chapter 3

dinate tuples in order tc be able %o make the necessary
changes to the component tuples efficiently,

An interesting ccﬁseguence of using a pointer in the
data portion of a tuple is that a relation can be sélit into
t¥e o©or more parts without the user's.beiﬁg aware of the
split. This technique is proposed by Severance {SEVET76b].
For example, in order tc increase the number of tuples that
can be stored on a rage, each tuple in a relation <could be
split into two parts, The first part of each tuple contains
the dcmains of the tuple that are most fregquently used plus
the TID of the second part c¢f the tuple. ¥hen a tuple is
accessed, if crly the first rart of the tuple is required(
then the primary tuple is returned to the user. If both
parts are required, the corresponding secondary tuple is
also retrieved automatically by the storage system. For
example, 1in the student relaticn, the student's previous
academic history is not needed during most processing of the
relation., Thus, it could reasonatly be stored in a second
relaticn and retrieved c¢nly when necessary. The storage
system makes this division of the relation invisible to the
-user; each user scspecities the domains regquired for his
processing and the storage system retrieves the secondary
information when necessary.

Pcinter domains can alsc be used to replace key domains

in order to provide faster access to associated tuples.

Storage System 50

Chapter 3

This technique was first proposed by fsichritzis {TsSIc74)]
and [1IS5IC75]. However, the 1replacement of a key by a
pointer must not be visible tc the user. Thus, if the user
accesses the key dcmain, the storage system must also
retrieve the associated tuple in crder to make the key value
available, TIf sufficient space is available, both the key
value and the equivalent pointgr value could be stored in

each turple,

3.3 _BASF_and_MNOD _Files

In order to guarantee the integrity of a relation as
changes are made to it, the tuples in a relation are stored
in two files. When a relation is initially loaded {or when
it is reorganized) all tuples are placed in a file called
the "BASE" file. This file {except during a Teorganization
of the relation) is never nodified. When a tuple is
modified, the modified version cf the tuple is stored in a
second file, called a YMOD" file. ¥%hen a tuple is inserted
after the relation is created, it is also placed in the MOD
file., 'When a tuple is deleted, a copy of the tuple 1is
placed in the MOD file and its status indicator is set to
indicate that the tuple is logically deleted., It is the
responsibility of the storage system to be able to find a
tuple regardless of which file it is stored in. The user of
the relation need not be aware that the tuples are stored in

tvo files: the storage system makes it appear as though

Storage Systenm 51

Chapter 3

only one file is used to store the tuples.

The BASE and MOD file concept is very powerful and has
been examined recently by Severance {SEVE76a}l, The two
major areas where MOD files simplify the work of the RDBHS
are in the maintenance c¢f system inteqgrity and in the
management of free space.

Cne of the wmajor prchblems facing the designers of
DBMS's 1is keeping the data in a data base secure from both
system failures and prograrzing errors. In order to wmini-
mize the time required to recover from a failuyre, most
DBMS's provide both a backup facility to create a copy of
the contents of a data base at a given time and a logging
facility to write a copy of all changes made to ‘the data
base ¢n a journal file. To recreate a data base, the backup
file and the dHournal file are rerged to produce an up-to-
date copy of the data base. Creating a backup copy of a
large data base can be very expensive due to the number of
1/0 reguests, Alsc, users must normally be locked out of
the data base while it is being backed up; thus, the data
base may not be available for a substantial period of time.
However, using BASE and MOD files, +the backup problen
becomes much more manageable. Since the BASE file is never
modified, it is necessary to create only one backup copy of
the BASE file (and this copy is made when the BASE file is

created). The MOD file is similar to the journal file since

Storage Systenm 52

Chapter 3

it contains changes made to the data base after a given
point in time., If the MOD file is small compared with +the
BASE file, fhen recreating it after a failure is not as
great a rrchlem as recreating the entire file,

In additionbto being able to recreate a data base after_
a system failure, it is alsc necessary to be able to recover
data lost dune to programming errors. For example, an
application programmer might accidentally delete a portion
of a data base. In a DBMS such as INS [IBM74c], the data
are physically deleted from the file. However, when BASE
and MOT files are used, the +tuples are not physically
deleted; instead; the status indicator is used to mark the
tuples as lcgically deleted. To restore tuples accidentally
deleted, only the status indicators need to be reset.

The use of MOD files alsc makes +the data base nmore
secure during the testing phase of a new operating system or
2 =new version of the RDBMS. Traditionally, when testing a
program, it is necessary tc create a copy of the data base
and Tun the test programs against tﬁe copy. Then, the test
version and the production version of +the data ©base are
compared to ensure that they are the same., However, if BASE
and MOD files ka:e used, Dany programs can share the BASE
file but maintain different versions of the MOD file. This
process Ttreduces the amount of dujrlication required during

testing. This technigue can also be used to permit students

Storage Systenm 53

Chapter 3

to share a data base in an educational environment. Each
student has his cwn MOD file tut shares the BASE file with
the other students, If a student wishes to start again with
the original data hase,lhe has crly to <create a new MOD
file,

A& major advantage of BASE and MOD files is that since
the BASE file is pever modified, it is not necessary to
leave any free space in it., The only free space is left in
the MOD file. We assume that the ratio of the number of
tuples in the MOD file to the numﬁer of tuples in the BASE
file is small sc the management of free Space becomes much
easgier.

One of the interesting conseguences of using a MOD file
is the wease with which historical data can be stored. 1In
many DBMS's {such as IMS), a percentage of distributed free
space is left 1in each ?age when the data base is created,
However, with thistorical data arianged in chronological
order, free space is necessary only in that part of the file
kthat.ccntains data relating tc the current year. Thus, if a
large percentage of free space is left in each rage, much of
the stcrage space allocated tc the file is never us=2d; but,
if little free space is left, performance suffers when many
inserticns are wmade in ‘the pages containing the current
year's data. However, when BASE and MOD files are used, the

previous years!' data are stcred in the BASE file {with no

Storage Systen 54

Chapter 3

free srpace) and the current year's data are stored in the
MOD file where free space is automatically maintained. At
the end of each year after all changes are made to the
current year's data, the relaticn is reorganized: the
current 7year’s data are moved into the BASE file, The next
year's data are then stored in the empty MOD ’file. {The
reorganizaticn of a relation is discussed later in this
chapter.)

A somewhat unusual use of MOD files is tc support
updating o©of seguential files. If a data base is always
processed seguentially, it is much cheaper to store it on a
tape instead of a direct-access storage device. When
changes are made to the data base, they are saved in the MOD
file. This technigue eliminates having to Tewrite the tape
file for o©nly a few changes, When sufficient changes
accumulate in the MCD file, the MOD file can be merged with
the tape £ile tc create a new tape file.

If a relation is extremely vclatile, it could be stored
entirely in a MOD f£ile. Thus, the use of a MDD file without
a corresponding BASE file provides conventional access to
the file, but the advantages of using both a BASE file and a
MOD f£ile are no longer present,

There do exist two disadvantages when BASE and MOD
files are used, The first is that when a tuple'in the BASE

file is modified or deleted, a ccpy of that tuple is added

Storage Systen 55

Chapter 3

to the HOD file; thus, extra storage is required. 'Normally,
this eit:a stecrage is offset by the reduction in free space
required to store the file using BASE and MOD files.

A more serious problem is that using a MOD file causes
the number of page accesses to increase. When a tuple is
requested, the storage system does not know whether the
tuple is in the MOD file or in the BASE file., If it is
assumed that the tuple is in the BASFE file, the tuple
retrieved_ Bay nct be up to date since a modified versicn of
it could be in the MOD file. TIf the MOD file is accessed
first and the tuple is not there, then an additional page
access 1is required to retrieve the tuple from the BASE file,

There are several technigques which can be used t§ avoid
Ydouble-file accesses”, accessing first the MOD file and
then the EASE file to retrieve a record that is in the BASE
file. One technigue involves using a dense index which
contains the location of every tuple in a relation. The
pointer for each tuple would pcint into the BASE file or
into +the MOD file. However, the use of a dense TID index
was examined earlier in this chapter and found to réquire
too much seccondary storage. Severence [SEVE76a], based on
work by Blocm {BLGC70], describes a ”filterg that can be
used to indicate (approximately) in which file a tuple is
stored. The filter is a bit map associated with a relation,

Initially, all ;he bits in the filter are set to Zero. When

Storage Systen 56

Chapter 3

a tuple is added to the MOD file, its TID is hashed {using
one or more hashing functicns) and the bits in the filter
indicated by the result of the hashing function are set to
1's. Then, when searching for a tuple, its TID is hashed
and the corresponding bits in the filter are examined. It
all of the bits are 1's, then the tuple is probably in the
MOD file, If any of the bits are not 1's, then the tuple
must be in the BASE file, The size of the filter, the typ=
and numker cf hashing functions, and the number of changes
made to +the file determine the number of 1-bits in the
filter. As the number of 171-bits in the Ffilter “increases,
the probability of a double-page access increases. If the
filter is large enough and the hashing functions are uniforn
over the filter, then it is ©possible to eliminate most
double-file accesses., Severence shows that with a 3125-byte
filter and three hashing functiocns, it is possikle to reduce
the ©precbability of double-file accesses in a file with 10
million tuples to at worst 0.1 with an average of 0.0333,
There are several disadvantages to using the filter in
the method rroposed by Severence, The first disadvantage is
that for a large data base, the filter may be too large to
fit on one page., This adds an extra level of complexity +to
the storage system which must keep the filter in main memory
while a relation is being processed. Ancther problem with

the filter is that nmodifications to a relation are assumed

Storage System 57

Chapter 3

to be uniform over the entire relation. However, inr many
data bases, changes involve a "lccality of reference®, +that
is, there may be many changes tc a small, coﬁtiguous area of
the data tase. These changes Still affect the filter for
the entire relation, and, as more changes are mada, the
number of 1-bits in the filter increases, causing the number
of double-file accesses to increase. A final problem is
that a relation can not be partially reorganized\ without
recreating the entire filter (which would mean reading all
MOD pages)., With a large relation, it may be too time-
consuming t¢ 1eorganize the entire relation at one time;
instead, the reorganization should be performed page by
page. But, having to recreate the filter after each page
reorganization makes it too expensive to perform a partial
reorganizaticn,

To avoid these problems, the storage(system maintains
an individual filter for each icgical page. Since there are
not many tuples per page, the filter can be guite small. By
maintaining a filter for each page, the total space reguired
for the filter is increased but the filter becomes much
easier to manipulate and changes made to one page do not
affect double-file accesses on any other page. Also, it is
possible +to perform a partial reorganization of a relaticn
since cnly the filters for the recrganized pages must be

recreated, In order to eliminate an extra I/0 request to

Storage Systenm 58

Chapter 3
-

process the filter, the filter is stdred in the storage-
management tables and is extracted with the other SHT
information for the requested page. Each SMT entry for a
logical pége ccntains the TID filter and two PRN's {one PRN
points to the associated BASE page; the other PRN points to
the associated MOD page). Figure 3.3 illustrates the use of

the SMT when aénessing a logical page.,

TID
]
|
v
: T ¥y=-7T 3
SMT] I | i i
£ A 1 1 3

1

|
Filtery j(Filter

Bits off} §Bits on

3 i

-
!

¥ 1
] |
|]
v v

[. - s ot Sroias)
b i ont mmae M —— v aisiinc o)
b e it i i s S i, w2l

BASE Page \ MOD Page

Figure 3.3 Access to a Logical Page

3.9.1 _EBEASE-Page_Format

When a relation is <c¢reated, the tuples are inserted

into the BASE rpages in ascending crder cf primary key. The

Storage System 59

Chapter 3

size of each BASE logical page is, for convenience, normally
chosen to be size of a physical Fage. Tuples are stored in
each BASE page until the page can not hold any more tuples.
At that time, the logical page number is increased by one
and the tuples are stored in the next BASE page. The = only
free space left in each page is an amount too small to

permit a tuple to be stored in it.

32 8.2 _M0OD-Page Format

The MOD file contains changes made to a relation after
the BASE file was loaded, The storage system stores as many
HOD pages on each physical page as possible. MNOD pages that
are not used are not allocated space; instead, the entry in
the storage-management table indicates that the MOD page
does not exist, The storage system automatically extends a
MOD éage that becomes too large to fit on a physiéal page
and notes the locations o©f +the page sSegments in the
storage-management takle,

As each tuple is placed inm the MOD file, its status
indicatcr is wused to indicate the purpose of the tuple. A
tuple'can be marked as deleted, modified, and inserted {for
tuples that are added to the relation after the relatiocn is
Ccreated). These three indicatcr values can be set in any
combination; for example, it is possible to mark a tuple as
inserted, thten modified, +then deleted, These indicator

values are used when the relation is reorganized and during

) Storage System 60

Chapter 3

the backup/recovery process.

.10

Data_ Baseg Inteqrity

We now examine additional functions provided by the
storage system tc ensure that the integrity of data in a
relaticr is maintained., The major areas of concern are:
recovering a <relation after the loss of data, restoring a
relation toc a previous state {(rollback}), and maintaining the
Telaticn in a ccnsistent state.

Tc the user, being able to recover lost data is
extremely important. In the event that data are lost {due
to system error/failure, vandalisnm, 2tc.), the RDBMS must be
able to recreate an up-to-date copy of the relation.

The restoration of a relation to its state at a
previous pecint in time is an easier task than having to
recover lost data. The reason for this is that we assume
that +the data in the relaticn are currently in the correct
format; the only thing regquired is to remove =some of the
changeé that have been made tc the relation. There are two
ma jor reasons for restoring a relation: a user has damaged
part c¢f the relation &by performing changes that were not
correct; a higher-level system has decided that some changes
made to the relation must Fte <rolled back {possibly cnly
temporarily).

Maintaining the dintegrity of a relatiocn 4is also

extremely important. Should the computer hardware, operat-

Storage Systen 61

Chapter 3

ing system, or data base management system fail, the RDBMS
must be able to restore a relaticn to a consistent state,
that is, thevstate the relaticn had either before a set of
transactions was processed cr after having ccmpleted the
entire set of transact;ons; the relation must not be left

with orly scme of the changes nade.

3,10.1 Data Base Recovery

Creating a backup copy of a large relation is normally
a very expensive task., First, the backup operation itself
is time-consuming and also uses many computer resources {the
channels to the device containing the current copy and to
the device containing the backui copy are monopolized by the
backup' process}. Secondly, during the backup operation it
is uswally necessary to restrict or forbid access to the
relaticn in order to create a consistent copy of the
relation, This means that many users of a relation are
locked out of the relation fer a period that may be as long
as several hours. Thus, the backup process is often
performed infrequently in order to minimize the amount of
time that the relation is not available to users.

By using MOD files, the g?orage system reduces the
problems associated with Creating a backup copy o¢f a
relaticen. Since the BASE file is never modified, it is
necessary to create a backmr copy of it only when it is

created. It is expected that the MOD file is gquite small

Storage System 62

Chapter 3

compared with the BASE file and so creating a backup copy of
a NOD file is much faster than creating a backup copy of an
entire relation. Severence [SEVE76a] refers to backing up a
file with 10 million tuples. To backup the entire file
takes approximately 6 hours while backing up the ¥OD file
after a week's changes at the rate of 100 changes- per hour
takes approximately two minutes, Thus, backup copies can be
created more freguently and the backup process does not
seriously restrict the use c¢f the relation.

The storage system alsc méintains a journal file w%hich
contains a ‘copy. of a turle before it is modified {"before
image®) and a copy of the tuple after it is modified {"after
image"). ©Each entry onvvthe jeournal file is also TMdate
stamped” in order to reccrd the day and tiﬁe on which the
change is made.

Creating a mnew copy of a relation is reasonably
straightforward. If the EASE file is still intact, then it
nea2d not be restored. (With scme devices, it is possible to
set them so that only read access is permitted; thus, the
file 1is prctected against everything but a hardware arror,)
In a very ipportant data base, the backup copy of the BASE
file. could be kept on a mountable direct-access volume so
that in order to restore the file, the only action reguired
is tco mount the backup volume in place of the damaged

volume., Next, the MOD file is restored. {If the backup

Storage Systenm 63

Chapter 3

copy of the MOD file is also kept on a mountable direct-
access velume, then restoring the backup copy requires only
that the vclume be mounted.) It is then necessary to scan
the journal file, searching for all after-images which apply
to the relation being restcred. {It 1is normally too
expensive to maintain a separate journal file for cach
relaticn; instead, one journpal file is maintained either for
all data bases or for each data base.) Since the entries on
the journal filé are date stamped, it is possible to create
a mnew copy of the relation as it existed at any point in

time after the backup copy was created.

3.10,.2 Data_Base Restoration

The stcrage system uses +twe methods to restore a
relaticon tc a previous state., The first involves processing
the Jjourmal file backwards {beginning at the mo;t—recent
entries) and applying the before-images to the relation in
order to cancel the effect of changes pade to the relation.
This process, while not cverly time-consuming, involves
manipulating both the MOD file and the journal file,

The second method used to restore a relation inveclves
keeping before-images in the relation as well as in the
journal file. For each relation, a "direct recovery period?
{DRP) 1is defined. During this period, all versions of each
tuple are kept in the HMOD file. Then, if necessary, a

relaticr can be rolled tack to a previous state that is

Storage Systen bi

Chapter 3

within the current DRP yithout having to access the journal
file, Modificationé made to a relation during a DRP are
broken up into recovery units {(RU's) and each recovery unit
is assigned a recovery unit sequence number {RUSN). Special
commands are provided to the user to permit the definition
of a new recovery unit. At any pcint during a DRP, the user
can specify that a relation is to be rolled back to +the
state it bad at the beginning of a previous recoveryvunit'
within the current DRP., This rocllback causes changes @made
dﬁring that recovery unit and in all éubsequent recovery
units tc be removed,

In order to identify the changes made in each recovery
unit, the rTecovery-unit seguence number {RUSN) 4is added to
the prefix of each tuple in a MOD page. The format of each

tuple is illustrated in Figure 3.4,

Domain ...

+

]
TID]
i

ot e bonis ek

1

I
STATLS | RUSN

i

po -y
o i o

Figure 3.4 Tuple Format

The most recent version of a tuple is stored first, followed
by the earlier versions. By physiéally removing tuples
whose RUSN is greater than or equal to a specified RUSN, the
state of a relation is rolled back to the state it had at

the beginning of that recovery unit. In order to identify

Storage Systen 65

Chapter 3

the MOD rpages which ccontain changes, the storage~managepent
table also contains a recovery-unit sequence number for each
MOD pace,. If the same page is modified during several
recovery units, then +the highest recovery-unit seguence
number 1is recorded in the storage-management tablés. Thus,
by scanning only the storage-management tables and not +the
actual data rpages, the storage system can determine which
MOD pages contain tuples that must be removed during the
rollback pioccess. After removing tuples from a page, the
RUSN ‘in the storage-management tables for that page 1is set
to the largest RUSN remaining on the page. Since the
contents of a BASE page never Change, it is not necessary to
include an KUSN in each BAS¥-page tuple. 1Instead, the date
stamp on which the page was created is stored in each BASE
page.

When a DRP is defined for a relation, a date stamp is
added to the relation. FEach MOD page that is modified is
also given a date stamp, The current DRP can be ended and a
new DRP defined in three possible ways. The first method of
starting a new DRP is initiated automatically by the stcrage
system. FEach relation has defiped for it the length {in
days) of the DRP. When the current DRP expires, a new DRP
is autcmatically initiated by the storage system by changing
the date stamp in the relaticn. The second method of

starting a new DBEP is also initiated automatically by the

Storage System 5%

Chapter 3

storage system. For each relaticn, the number of extra
tuples that are permitted tc be stored in the MOD pages for
the current DRP is maintained. If +this number beccmes
greater than the wmaximur number of extra tuples permitted
for this relation, then the storage system initiates a new
DRP. Finally, there is a special storage-system command
which can be employed by a user toc cause a new DRP to be
initiated. Normally, this ccmmand is used only by a
higher-level system based on statistics that it keeps.

When a new DRP is initiated, all extra tuples saved
during the previous DRP are not immediately removed from the
MOD pages, Instead, the RUSN's in the storage-management
tables are set back tc zerc to indicate that the pages have
not Seen changed since the beginning of the new DRP. Later,
when a MOD page is accessed, the date stamp on the page is
com?area with the date stamp of the current DRP, If the
page's date .stamp is not within the current DRP, then all
extra tuples are removed frcm the rage and all recovery-unit
sequence numbers on the remaining tuples are set back +to
Zero. By delaying the removal of extra tuples after the
change of a DEP, extra I/0 operations are not reguired
during the <change from one DRP tc another. Thus, changing
the length of a DRP can be performed at any time since it
does not cause an immediate change in the actual storage

structure.

Storage System 67

Chapter 3

If it is decided that the expense of keeping previous
.versions of tuples in the MCD file for a particular relation
can not be justified, then by setting either the DRP length
Or the maximum number of extra tuples permitted during a DRP
to zerc, the user can indicate that previous versions of
tuples are not to be saved. Then, however, the only
possible way to roll back a relaticn is through the use of

the djournal file,

3. 10.3 Relation Consistency

Several methods «can be used to ensure the consistency
of a relation as it is being modified. At the beginning of
a Teccvery unit, a Prelation censistency” flag is set to
indicate that the relation is consistént for the previous
recovery unit but that a new recovery unit is beginning,
{The setting of this flag involves writing a record that
indicates that +the relation is about to be modified to
secondary‘stoxage. When the modifications are complete, the
record is modified to indicate the successful completion of
the reccver? unit., When the relation is next processed, the
record is retrieved in order to determine whether or not the
modificaticns wmade in the last rscovery unit were completsd
successfully. This is the strategy used quite successfully
in MANTES [FERC78b].) During the «recovery unit, if it
becomes necessary to save a page from the buffer foel back

to the file, £first the correspbnding page in the storage-

Storage Systen 68

Chapter 3

management table is saved, then the modified data page is
saved, If the stcrage-management table is not saved first,
then in the event of a system failure between the tinme that
the data page is saved and the time that the SNT page 1is
saved, the data page on disk contains modifications that are
not indicate¢d in the storage-management tables. Then, if
changes are rclled babk, the changes to the data page are
not processed, 1leaving +the relation in an inconsistent
state, Thus, before a data page can be written, it is
important tc save the corresponding storage-management table
entry.

| At the end of a recovery unit, the modified pages in
the storage-management +tables are saved first, then any
modified pages which remair in the buffer area are saved,
and finally the relation consistency flag is set to indicate
that the «current recovery urit completed successfully.
Should the system fail at any time before the final setting
of the flag, it is possible to tell +hat the current
recovery unit did not complete successfully. TIf necessary,
changes made to tﬁe relaticn during the aborted reCovery
unit can, using the storage-management tables, be rolled

back.

3.11 _Relation_Reorganizaticn

The reorganizaticn of a relation is one of the more

crucial operations. The purpcse of reorganizing a relation

Storage Systen 69

Chapter 3

is to move tuples in order tc provide faster access. For
example, the tuples in a MOD file can be merged with the
tuples 1in the corresponding FASE file toc create an updated
BASE file and an empty MOD file.,

There are two main types of reorganization: a partial
reorganization where the turles in a relation are moved fron
one page ‘to another but TID's are not changed, and a
complete récrganization where tuples are moved and the TID's
are reassigned., A partial reorganization does not affect
any other relaticns since +the TID's are not changed. A
complete recrganization causes other relations which use the
TID's in the reorganized relaticn to be updated with the new
TiD's,

Performing a partial reorganization can be divided into
parts based on the three types of tuples in the MOD file.

It a tuple is marked as inserted and deleted, it can be
removed from the MOD file. If a tuple is marked as deleted
but =nct inserted, the corresponding tuple in the BASE file
is removed.,‘This operation causes some space to be freed in
.the BASE page, . -

If a tuple is marked only as médified, then the
corresyponding tuple in the BASE file is replaced. This
operaticn does not cause the amocunt of free space in the
BASE page to change unless the 1length of the tuple was

changed.

Storage Systenm 70

Chapter 3

If a tuple is marked as inserted but not deleted, then
inserting it irtc the corresponding BASE page reguires some
free space, If sufficient fSrace is made available by sone
deleticns, then the tuple can be moved to the BASE cage.
However, the storage system can nct rely on £here being
sufficient deletions to nmake rocm for all insertions. If
there is not enough free Srace in the BASE page to store all
insertions, the fallgwing strategy is used by the storage
system, First, all deletions and modifications for a page
are performed. . Then, as many inserted tuples as possible
are moved to the BASE page and the number of tuples still in
the HNMOD page is determined. If only a few tuples remain,
they are left in the HOD page. Hepefully, +there will be
rocm for them din +the EASE page the next time that the
relaticn is reorganized. If many tuples still remain, +then
the BASE page is extended by splitting it intc two or more
segments. The SMT antry for the BASE page 1is modified to
point to the list of entries for the logical page segments
50 that the required BASE-page segment can be located with
only one data I/0 request,

During a partial Tecrganization, as a pair of BASE and
MOD pages is reorganized, access to +those rages 1is not
permitted. Access to the remainder of the relaticn, howev-~
er, may be permitted.

During a reorganization, if sufficient tuples are

S5torage Systen 71

Chapter 3

deleted, it may be possible to take some or all of the
segments of a segmented BASE page and merge them dintc one
segment. After the reorganization of a pair of BASE and MOD
pages, the <filter in the storage-management tables is
recreated to reflect the new ccntents of the MOD page.,

A complete reorganizaticn of a relation causes +the
relaticr to be recreated, The entire relation is loaded
into a new EASE file so that each BASE page fills a physical
page. TID's ({with their insert numbers equal to Zero) are
reassigned. As each tuple is inserted, its previous and new
TID's are recorded inm a special file, After the loading is
complete, all other relaticns that contain references {pcin-
ters) to the reorganized relaticn are nmodified using the
special file ©f o0ld and new TID's. During the conmplete
reorganization of a relation, it is necessary -to lock out
all access to the relation being reorganized., This implies
that relaticns that reference the relation being reorganized
mest alsc be locked.

Normally, the complete reorganization of a relation
would <rarely be necessary. Since the storagé‘system maxi-
mizes the amount of data stored on each physical page ({by
storing small logical pages on the same physical page) and
minimizes the number of page accesses required {through the
use of 1logical page segments and the storage-management

tables), the complete reorganization of a relation would not

Storage Systenm 72

Chapter 3

necessarily improve the stcrage structure of +the relation.
However, a complete reorganization of a relation is neces-
sary if the definition of the primary key of the relation is
changed and the TID is to teflect the new primary-key order.
During such a reorganizaticn, the relation must be sorted by

the new primary key before it is relocaded.

3,12 Spscial Relations

A type of data that has nct yet been examined is the
description of relations and their component domains. Each
relation in the system is described and its description is
stored in a relaticn that contains a descripticn of all
relatigns: the Yrelation relation®, Each tuple in this
relaticn ccntains the descripticn ofl a relation. The
description of a relation consists of information such as
the relaticn pame, fhe names o©f the data sets on which the
relaticn is stored, the names c¢f the domains which make. up
the relation,v etc, The tuple describing a relation also
contains system information such as the date stamp o©f the
current DEP, the number of tuples in MOD pages, the number
of tuples in BASE rpages, the number of extra tuples 3in HOD
pages, the relation-consistency flag, etc. Similarly, the
description of =ach dcmain is stored in a "domain relation®.
The casval user is not permitted to access +these relations
~but the DBA and the RDBMS itself can access these relations

in order to add, delete, ané modify relations and to extract

Storage System 73

Chapter 3

the definition of a relaticn. These data can be processed
using the normal tuple-manipulation routines, so it is not
hecessary tc write special routines in crder to be abls to
process the relation and domain descripticons. A conseguence
of storing relaticn descriptions in a relation is that each
relation can {internally) te uniquely identifieds: by its

TID in the relation Telaticr.

3213 _Storage-Management Tables

In this section, we summarize the information that is
stored in the storage-management tables since the tables are
of major imrortance in the storage systen,

For each page, the storage-management table entry
contains: the page reference number of the BASE page, the
page refereﬁce number of the correspoading MOD page {which
is zero if there is no such page), the TID filter, and the
BAXiMUm recovery-unit sequence number within the current
direct recovery period for the MOD page. The format of each

entry in the SMT is illustrated in Figure 3.5.

PRY PRNX

! kN
BASE |} MOD
i Filter RUSN
E |

-T

TID | HMAX.
i
Pl

o e s 4
bl s i v

P s ek g

Figure 3.5 SMT Entry fdrmat‘

{In Chapter 4, we describe additicnal information that may

be addsd to the storage-management tables in order to permit

Storage Systenm 74

i
i
i
|
!
i
i
|
i

Chapter 3

the efficient prccessing cf tuples by primary key.)

If a logical page is stored in more than one segment,
the PRN of the page is rTeplaced bty a pointer into a list of
entries., There is one entry for each logical page segment
and each entry contains the maximum TID on the segment and
the PRN of the segment.

For each relaticn, the number of entries on each page
of the storage-management tables and the size of each table
entry are fixed. Thus, the logical page number can be uysed
as a subscript into the storage-management tables. The size
of each field in each SNT entry for a particular relation is
fixed but the size may vary from relation to relation.
Thus, in small files, the PEN's may be represented in tuo
bytes while in larger files, three or four bytes may be
required for each PBERN. If necessary, the storage-management
tables can ke reorganzied ip corder to change the size of an
entry or to change the number of entries on each page in the
storage-management tables.

With the definition of the storage-management tables,
we have created a secgnd level cf indirect page addresses
since the DNT (device management table) used by the device
system also uses indirect page addresses. .However, in the
interests of efficiency, the SMT and the permanent DMT for a
relaticn are merged intc one table. The PRN*s in the SMT,

are replaced by the device addresses in the DMT. The

- Storage Systenm 75

b

Chapter 3

storage system then requests pages by device address instead
of PRN. It is still be possible for the device address to
point tc an entry in a temporary DMT instead of to an actual
device. However, since both the device system and the
storage system access the merged table, the two systems are

no longer independent.

Storage Systenm 16

Chapter 4

Chapter 4: _Access-Path System

A — i A - . T .

In this chapter, we develop the access-path system of
the data-management system, First, we examine access paths
in general. Then, we indicate which access paths provide

the most power for relaticnal data bases.

4.2 Access_Paths

The purpeose of an access path is to provide access te
tuples in relations. For example, if a user wishes to know
which students received "A" grades, one or more access paths
are used to determine which tuples satisfy this
qualificatiocsn.

A key domain is a domain by which access to tuples is
permitted, and access paths are defined for key domains.
{(Theoretically, in the relational data model, all domains
are key domains, but, for practical applications, it may be
too expensive to permit access to tuples by aill domains.
Thus, a subset of the dcmains may be designated as key
‘domains.) Key domains are either unique or not unigque
within a zrelation, Candidate Xkeys are unigque within a
relaticr sincé they unigquely identify each tuple. Secondary
keys may be either unigue or not unigque.

Hsiao and Harary [HSIA70] define three basic ‘types of

Access~Path Systenm 77

Chapter 4

access paths: sequential scans, 1links, and directories.
Other access paths are usually ccmbinations of these three
basic paths. A sequential scan involves examining each
tuple in a subset of a relation. The sequential scan is
quite fast 1if the tuples examined are all on the same page
or a very small number of pages. The scan becomes expensive
if it invclves accessing many pages in the relation.

A 1ink is a pcintef from one tuple to another. The two
tuples may be in the same cor ﬁifferent relations. A 1link
may be us=d to éieate a chain of related‘tuples: the first
tuple in the chain is linked to the seccnd tuple, the second
tuple is linked to the third tuple, etc, These related
tuples <can be accessed quickly and efficiently by the
storage systen.

A directory {or index) contains qualifiers and a 1list
of the tuples which satisfy each qualifier, Each gualifier
contains a key value by which +tuples are accessed. The
gualifiers are always disjoint (the attribute value in a
4spe¢ific tuple can satisfy cnly one of the qualifiers). The
qualifiers are either "dense"™ {all key-values currently in
‘use are Stored in the directory) or "non-dense” {only sonme
of the key vaiues are stored in the directory). A directory
is used because it is ncrmally mnuch smaller than the
associated relaticn, and sc can be searched much faster than

the relation.

Access~-Path Systen 78

Chapter 4

One of the major ccnsiderations vwhen defining the
access paths to be used in a RDEMS is that, for a particular
relaticn, the access paths will probably have to be modified
at some time. There are two reasons for this. The first is
that initially the wrong chcice of access paths may be made.
Only after usage patterns emerge <an it be dJdeternmined
whether or not the initial choice was a good one. Secondly,
usage patierns themselves change and access paths that once
were suitable may become unsuitable, Thus, it is important
that the TBA ke ablé to add, deléte, and modify access paths
as necessary without having to0 unload and reload +the

relaticn itself.

4,3 _Single-Attribute Access Paths

In this section, we examine "single attribute“l access
paths, that 4is, access paths that are used ﬁhen processing
queries with ocnly one attribute in the gualifier, For
example, gualifiers of the form

{PART-NUMBER = 'WRENCH?!)

can be process<d using a single-attribute access path.

4.3.1 Primary-Key_Index

A primary-key dindex contains entries in the index for
some or all of the primary keys 3in a relation, If +the
relaticn is ordered by primary key, then the index need only

contain entries of the form:

Access-Path Systenm 79

Chapter 4

<KEY, PAGE#>
where KEY is the highest primary key on a page and PAGE# is
the logical rage number of that page. When searching such a
non-dense primary-key index, the search is continued until
an index entry with a key that is greater than or equal to
the required kej is found. Then, the correponding page is
read and 1is searched for the tuple. This type of access
path uses both a directory and a seguential scan. The
advantage o©f the non-dense rrimary-key index is that there
is only one indeX entry per.page instead of one entry per
tuple. This reduction of the number of index entries
required results in a much smaller index than is otherwise
possible. The major disadvantage of primary-key indexes is
that the relaticn itself nust be examined in order +to

determine whether or not a particular tuple exists.

4,3.2_Sccondary-Key_Indexes

There are many different types of secondary-key inde-
XS, We shall examine the two most common types of
secondary-key index: the multilist and the inverted list.

In the ({tasic) multilist, there is an index entry for
each unique secondary-key value in a relation. Each 1index
entry is of the form

<KEY, TID> .

if a particular secondary key is not unique, then the tuples

with that seccndary key are linked together in a chain which

Access~Path Systenm 80

Chapter 4

starts at the index entry. The format of a multilist is

illustrated in Figure 4.1.

r————="r"
INDEX i RKEY | |
i ...__....J.T.ﬂ
|
i
B ——
i
]
v
79 3
RELATICN | | TUPLE i
-l.,rj.___ s ¥
| :
i L
v
B - 3
i | TUPLE] 5
Led 3 ;
!
]
v

™
} | TUPLE
P :

Figure 4,1 Multilist

This type of index uses a directory and a link. The major

disadvantage of the multilist is that links are stored in

the relation. Thus, in order to obtain the TID's of alil
tuples with a specific =secondary key, it is necessary to

access both the index and the relation. This process

beccmes very expensive if several such <chains must be
followed in order to find the intersection of +the 1lists.

Also, in c¢rder to update the index, it may be necessary to

Access—-Path Systenm 81

Chapter 4

modify part of the relation. Having to modify bLoth the
index and the relation creates consistency problems., For
example, if the index is modified but the relation is not
modified {due to a system error), then tuples that should be
included may be missing frem a chain or tuples that should
not be included may be present cn a chain. In c¢rder to
guarantee the integrity <¢f +the chains themselves, it is
normally necessary to maintain both forward and backwarad
links so +that if ocne 1link is destroyed, the chain can be
recreated Dby processing it frcm the other direction
[{HART77].

There are many other versions of the basic rultilist,
such as the cellular multilist, etc., bqt they all share
these fundamental disadvantages.

The inverted 1list is anothei type of secondary-key
index, Like the basic multilist, the inverted list alsc
contains one index entry for each unigue secondary-key valne
in a relation, However, each index entry is of the form

<KEY, TID-LIST>
where TID-LIST is a variable-length list of the TID's of all
tuples with the given secondary-key value. The format of an

inverted list is illustrated in Figure 4,2,

Access-Path Systen 82

Chapter 4

B et I N I e |
INDEX | KEY | | | |
AR S
I
111
; 1] 1 .
| i i
| i |
v Y i
r 3 Ll 3 [3
RELATICN | TUPLE i | TUPLE { { TUPLE i
1 - 3 1 3 i 1

Figure 4.2 1Inverted List

Because the inverted list contains more information than the
multilist, the inverted-1list index is larger and a search of
the 1index requires more time than a search of the corres-
ponding multilist, H§wever, the total amount of {index and
relaticn)\ space required is épproximately the same for both
the multilist and the inverted list. The major advantage of
the inverted list is that the access path and the data are
stored =separately so that it is not necessary to access the
relaticn itself when retrieving the list of tuples with a
given secondary key or when modifying the invérted list.
The' separaticn of access path from the data makes it
easier to mcdify the data structure as old access raths
beccme unnecessary and must be replaced by new access paths.
This type of 1logical reorganization is difficult when the
access raths are stored with the data. FQr example, in 1IMS

{IBM74c], to delete an access path {logical-child segment)

'Access-Path Systen 83

Chapter 4

from one data base to another data base and replace it with
another access path, it is necessary to unload the data base
and reload it with the new access path. For a large data
base, this process is very expensive, nct only because of
the CPU +time regquired tc perform the oreration, but also
because the data base is not available %o users during the

pperaticn,

4.4 Multi-Attribute Access Faths

Primary-key indexes and secondary-key indexes provide
fast access to tuples when a gquery refers to only one
attribute, However, 1if a gquery refers to more than one
attribute, then the processing becomes more complicated.
For example, if single-attribute access paths are used to
process

{PART-NUMBER="§JRENCH* ANL CDLODR=? BLUE?)

it is necessary to search the PART-NAME access path and the
COLOUR access path, and then take the intersection of the
two access-path TID lists, This process is expensive if the
individual TID 1lists are long but there are only a few
tuples in the intersectiocn of the lists. As the number of
attributes specified in a guery increases, the processing
becomes even more complicated.

In this section, we examine "pulti-attribute” access
paths:- access paths that can be used to process queries

which reference several attributes.

Access~-Path Systenm 84

A

Chapter 3

4.4,1 Ccmbined Indexes

A comkined index is a collection of indexes {inverted
lists) for a set of attributes [LUM70]. EBach index contains
a different orderiné cf the attributes so that all possible
attribute combinpaticns occcur at the 1éft "of ones of the
indexes. For example, if a relaticn contains three domains
a4, B, and' C, which are all frequently used in the same
qualificatidn, then a combined index could be defined for
the +three attributes. One o¢f +the indexes would contain
entries of the form

<A, B, Cz TID-LIST> .
There is one entry in the index for each combinaticn of +the
three attributes. These entries are ordered first on the
BAY attribute, then on the ¥»gB® attribufe, aﬁd'finally cn the
PC" attribute. Queries of the forn
{A = 'x"' and B = 'y* and C = 13z?)
can be answered easily by searching this index. The index
can alsoc be used to answer gueries invelving the attributes
A and B, and gqueries invelving only the attribute A,
- However, in order +to be able to answer gqueries about the
other attribute combinations (3 and C, B and €, B, and C),
it is necessary to define twc mere indexes:
<B, €, 3: TID-LIST> and <C, A, B: TID-LIST> .

The three. indexes comprise the combined index. Thé three
versicns of the index are different only in the ordering of

/

Access~Path Systenm 85

Chapter 4

the indexXx entries; there is nc icgical difference in their
contents. With these three indexes, we can answer gueries
involving any combination of the attributes A, B, and €. 1In
general, if we wish to be able to index on N attributes,
then the combined index «contains C {N,K) {the number of
combinations of N elements, taking K elements at a time,
where K is the srmallest integer greater than or egual to
N/2) indexes [LUM707.

The advantage of a combined index is that only one
index must be searched in crder to evaluate a query
involving up to and inciluding the N indexed attributes.
However, there are two rmajor disadvantages to wusing a
combined index. The obviocus one is that a large amount of
storage is used to store the different versions of the
index, A second disadvantage is that when an attribute
value is modified, the change must be made in each version
of the_indexes. This is a major problem if attribute values

are modified fregquently.

4,4.2 Modified Combined Index

In this section, we ©present a modification cf the
combined index which eliminates the problem of having to
update each version of the index each time that a change is
made, In tke wmcdified combined indéx, there are still
sevyeral versions of the index keys but there is only one
copy of the TID 1iist for each attribute combination. Each

Access-Path Systenm 86

’

pE e A Y e A e

Chapter 4

index entry contains the attribute values and a pointer to a
"bhucket?, The bucket contains the list of TID's for that
attribute ccmbination. Thus, all indexes share a common set
of buckets. The format of the modified combined index is

shown in Figure 4,3,

T T T
i | |
| i i
1 3 3 g d
i1
i1
vy VvV Yy
r=—=—"""1
i TiD's |
{} for i
§<A,B,C>{
| I |

Figure #.3 Modified Combined Index

Since most nodifications to the index involve only changes
to the buckets, not to the index itself, only one <change
must be made to the modified index. The only time that the
indexes themselves are changed is when a new attribute
combination is added to +the relation. Then, the new
attribute ccmbination must be added to each index. When
attribute conmbipations are deleted from a relation, instead
of removing the index entries immediately, the index entries
are kept in the index and the bucket contains a null list of

TID's, Later, at a convenient tinme, Fhese unused entries

Access-Path Systenm 87

Chapter 4

are deleted from all of the indexes.

At the expense of one extra pointer for each attribute
combination in each index, the cverall size of the indexes
is reduced {since the TID 1lists are stored in only one
place) and the prcblem of having tc modify all versions of

the index sach time that a change is made is eliminated.

4.4.3 Boolean Algebra Atoms

Wcng and Chiang propose an index that consists of
disjoint atcms that "cover® a relation [WONG71]. The atoms
are Boclean expressions {involving the ¥ attributes) which
need never be brcken down. Associated with each atom is a
list of the tuples for which the expression in the atom is
true. Queries expressed in Boolean algebra are then broken
down 1into +the corresponding gueries involving the atoms in
the index. S5ince the atoms are disjoint, it is not
necessary to ‘take the intersecticn of any of the TID lists
in the index.

A major advantage of this method is +that +the Boclean
algebra atcoms «can be tailored to each rélaticn. For
example, if «certain attribute ccombinations always occur
together, then the combinations could be defined as atoms.
A disadvantage is that'taking an arbitrafy Boolean expres-
sion aﬁd hréaking_ it down into the corresponding atoms is

not necessarily trivial.

Access~Path Systen 88

Chapter 4

4.4.,% Multi-Attribute Hashing
Recthnie and Lezano define a method for muiti-attribute
retrieval which is based on hashing [ROTH74]. For each
tuple in a relation, each of the keyed attributes is hashed
with a {different) hashing functicn., The hashing produces a
set of values called the "characteristic tuple®. All tuples
with the same characteristic +tuple are then stored in a
"cluster®, {(In the storage system, a cluster would be a
logical page.) By wusing appropriate hashing functions,
tuples which are 1likely toc be accessed together can be
stored in the same or adjacent clusters.
| Two disadvantages of this technigue are that the tuples
are nc¢t ordered and that the storage of tuples is based on
the bhashing functions, If the bhashing functions are
changed, the wentire relation must be 1unloaded and then

reloaded,.

B.4.5 Partitioning of Index Entries

There have been many other propoéals in which the
problems of multi-attribute queries are examined: Bentley
and Finkel proposed quad trees and multidimensional search
trees [BENT74]; Huang prcpcsed data base graphs [HUANT3 3
Michaels proposed partitioned multi-attribute indexes
[MICHV6]; Yac proposed randcr 2-3 trees {YA078]. These
schemes and the others 31ready examined (modified combined

index, multi-attribute hashing, bcolean algebra atoms) that

Access-Path System 89

Chapter 4

use only one bucket for each attribute combination have a
major problem: hcw to partition the buckets so that access
by fewer than N attritutes does not reguire a large nunber
of index I/0 requests., For exanmple, suppose that we wish to
index on twc attributes A (with attribute values Ai: i=1,2,.
+«sN) and B {with attribute values Bj: 3=1,2,44.,8)., If
there is rocm on each page for K buckets, then P=N*M/K
bucket ©pages %re required. (¥We assume that most of the N*N
combinations cccur. For practical purposes, the number of
actual combinations may be much less than N*M.) Even though
the »npupber ¢f pages may be guvite large, access by both Ai
and Bj values is guite fast because there is only one bucket
for cach {Ai,Bj) combination. If the buckets are ordered on

the Ai values, then access Lty Ai alone is also fast since

the Al buckets are on the same or adjacent pages. Howsver,

if we try to access by a Bj value alone, the Bj buckets are
spread over the P pages and access by a Bj value invclves
accessing all (or almost all) P pages.

If the (Ai,Bj) combinations are distributed over the
bucket -Pages in the férm of a Latin square {Latin squares
are described, for example, by Street and Wallis {STRET7]y,
then it appears that most requests involving Ai or Bj
involve accessing SQRT{P) bucket rages. This number of i/0
requests is still unacceptably large.

The problem of partitioning the buckets becomes wmore

Access-Path System 1Y

Chapter 4

complex as the number cf attributes increases, thus increas-
ing the number of attribute comkinations. As the number of
bucket ©pages dincreases, the number of pages accessad while
processing a gquery involving a subset of ‘the possible

attributes also increases,.

¥e now summarize multi-attribute query processing and
indicate a preferred type cf index for processing multi-
attribute gueries,

The wuse of single-attribute indexes for each key
attribute 1is expensive if several keys are freguently
specified dip «c¢me query since the intersection of the TID
lists must be determined. The advantage of single-attribute
indexes is that each key appears in only one index so that
only one index must be modified when chaﬁéing a key value.

In the nulti-attribute indexes which use only one set
of buckets, the index rrovides fast retrieval when a query
is of the same form as the index entries. However, if a
guery invclves a subset of the indexed attributes, then many
index entries may have %o be accessed in order to satisfy a
query and amn excessive rnumber of page transfers may be
required if the index entries are not partitioned apprcpri-
ately. This type of index does provide good facilities‘for
update since a particular tuple appears En the TID 1list of

only one index entry{,

Access-Path Systen 91

Chapter 4

The ccmbined index provides fast retrieval whether all
attributes are specified or a subset of the attributes is
specified. In the case of partial attribute retrieval, the
TID 1lists are stored consecutively on the same or adjacent
pages thus minimizing +the rumber of pages accessed. The
disadvantage of using conbined indexés is that when an
attribute value is changed, added, or deleted, all versions
of thé index must be appropiately modified.

In order to provide fast access to tuples while
avoiding excessive update costs, the following hybrid scheme
is used in the access-rpath system to provide a multi-
attribute query capability. TInstead of using a full combi-
ned index with all regquired attributes, a "partial combined
index", several indexes each with a subset of the reguired
attributes is maintaingd. This idea was proposed by Mullin
[AULL71] and extended by Stcnebraker { STON74] and Berra and
Anderson [BERR77 1.

For example, suppose that we reguire an indeX on the &
attributes A, B, C, and D. The full ccmbined index contains

an index for each of the ccmbinations:
<3, E, C, D> <B, C, D, A> <C, Db, 4, B>
<D, 2, B, C> <A, C, B, D> <B, D, A, > ,
Any guery invclving any of the four keys can be resolved

using only one index access, but an update requires six

Access=-Path Systenm 92

A

Chapter 4

index accesses. Instead of using the full combined index,
the following partial combined index could be used.
<A, B> <B, 2> <C, D> <D, ©

This index provides retrieval with either one index access
or two index accesses plus the intersection of two TID lists
{an average of 1.60 accesses), aand update of a single
attribute valune with only two index accesses. Thus, the
_powei of the full conmbined index is available with 1little
extra work when retrieving values and at a significant
Saving when the index is modified. -

The partial combined index can be tailored +o each
relaticn and can be recreated as usage patterns change. For
example, the index sets

<iA, B> <B, C> <C, D> <D, A>
{(with averages of 1.47 accesses for retrieval and 2.0
accesses for update) and the index sets
<&, B, C> <B, C, D> <C, 4> <D>

{with averages of 1,40 accesses for retrieval and 2.25
accesses for wupdate) both provide the necessary facilities
to index on any combination of the attributes 4, B, C, and
D, but in a slightly different manner than the full combined
index. By mraintaining statistics oﬁ the combinations of
attributes used in gueries, the DBA can rearrange the
indexes as necessary in crder tc minimize the total number

of index accesses reguired, ¥For example, if most index

Access-Path Systenm 93

Chapter 4

requests are retrieval reguests, then a full combined index
could be used; while if mest index requests are update
requests, then single-attribute indexes on each attribute
could be used; ctherwise, an appropriate partial index could

be used,

4.5 Multiple-Relation_Access-Paths

In the previous sections, wue examined "single-relation"®
access paths: access paths that provide access to data
within one relation. In +this section, we indicate how
access raths for several relations can be combined intc omne
access path, the "hnltiple-relatinn“ access path, in order
to provide a more efficient access path, {A similar but
more restrictive ‘version of the multiple-relatidn %ccess
path has independently been defined by Hasrder {HAERTS].)

Access paths are normally defined for individual rela-
tions., However, if several relations in the same data base
have access paths defined for the sanme attribute, then the
access paths can be combined into one access path., For a
particular attribute, instead of defining one access path
for each relation in which the attribute is defined, a
"multiple~relation” access path is defined for the data
base. The pultiple-relation access path contains the infor-
mation that is ncrmally distributed over the individual
access paths and this access path isvshared by +the various

relations. For example, 1if it is necessary to define an

Access-Path System - 94

Chapter 4

access path for S5# in both the relation S and the relation
SC, a multiple relation access path can be defined. Each
entry in the mnmultiple-relation access path contains the
following information:
<S#: S~TID-LIST; SC-TID-LIST> .

The first 1list contains the TILD's of tuples in the relation
S with the given value of S#, and the second 1ist contains
the TID's of tuples in the relation SC with the given value
of S#. Both the lists of TID's may vary in length {however,
if S# is the primary key for the relation S, then there is
only one TIT in S-TID~-LIST for each value of S#). The
resulting access path is swmaller than the sum of +the two
individual access paths for S# since the keys {S# vailues)
are specified orly once, However, the +time required to
searck the access path may be slightly longer because the
access rath contains more information. |

An important reason for defining muitiple paths within
an access path is the infcrmation that can be inferred from
the access éath. For example, the access path on S# for the

relaticns S and SC permits the BRDBHS +0 determine which

students are or are not enrolled in at least one course, .

 The access rath also defines the relational algebra "join?”
of the relations S and SC on the domain S#. (The relational
algebra join of two «relations dis described by Date

{DATE77 1.)

Access-Path System' 95

Chapter 4

In general, we define a multiple-relation access rath
on a "major key", cne or mcre attributes in a data base for
which access paths are required, We can then define
individual paths tc specific relations within the access
path. For each path, a "minor key” may also be defined. A
minor key is one or mcre attributes which are nsed to
subdivide the list of T7ID's for each ma jor-key value, Each
access—-path 2ntry has the fcormat:

<major-key-value: path-entryi; path-entry2; ...>
where each path entry has the fcrmpat:

TIE—LIST=
or

minor-key-value: TID-LISTS ...

Tuples may be retrieved by specifying any number of the
left-mecst attributes in the madjor key and, optionally, the
minor key. If both the ma-jor key and +the minor key are
specified, then the list cf TID's associated with the given
major key/minor key pair is returned. If only the major key
is specified, then the lists of TID's associated with all of
the mincr keys for the given major key are returned. If
only the leftmost domains in the majer key are specified,
then the lists of TID's frcom all of the access-path entries
with the given rajor-key prefix are returned.

Depending on the number of entries with a particular

major-key prefix, it may be possible to process gueries din

Access-Path System 96

Chapter 4

which not all of the specified attributes are defined at the
left of the key, Por example, if the key
<K1,K2,K3,K4,K5>

is defined {the division of the key into major and minor
components is not significant), then queries involving X1,
K2, and K5 bat nct X3 or K4 can be evaluated by examining
all access-path entries that begin with the specified K1 and
K2 values, The reguired TID lists are no longer adjacent
but as 1long as the number of eﬁtries.with the given K1/K2
values is not large, the reguest can be sétisfied guickly.

Thke multiple-relation access path can be used to
implement a path 4in the partial index. For example, if a
path is required for <A, B, C>, the attributes A, B, and <
are divided to form a major, and, optionally,'a minor kevy.
Normally, A is chosen as the major key and B and C are the
mino; key; this ordering permits cther paths té be defined
in this access path for A, If A and B are chosen as the
major key, the access path can be shared only by paths wxhich
also use A and B as the major key; paths which use only A as
the major key must be defined in another access path.

The wuse of the multiple-relation access path does not
avoid the problem of having to maintain the different
combinations of the «combined index. The access path only
permits the merging of several access paths with a common

attribute prefix into one access path,

Access-Path Systen 97

Chapter 4

The multiple-relaticn access path could be extended to
a "data base" access path that contains all access paths for
a particylar data base, By adding a "type indicator?® ﬁo
each access-path eatry,'the entries for all access paths in
a data bkase could be merged dintc one large access path.
Access-path entries would then be accessed by key value and
type. The data Lase access path would contain fewer ‘pages
than the associated multiple-relation access paths but would
probably cause ‘the number of access-path pages examined

during the processing of a given request to increase,

4.6 _Access-Path _Structure

In this section, we describe +the structure of +the
access path which provides the foundation for the access~-
path system. The access path used by the access-path systen
is a directory that is designed sc that it counld be used for
any of the access paths described sarlier in this chapter,
One genéral set o©f routines 1is needed to extract the
contents of an access-path entry while specialized routines
for each <¢f the desired access paths are used to interpret
the access-path conéents.

In order to reduce +the number of access-path pages
examined while searching the access path, the access path is
structured in the form of a B-tree [KNUT73]. A B-tree, as
iliustrated in Fiqgure #.4, is a multilevel tree. The higher

levels of the tree are used only to reduce the number of

Access-Path Systenm a8

and the associated minor~key values and variable-length

Chapter 4

pages accessed befcre the desired page in the lowest level

of the tree is found.

="
i |
8 _...r._.r..!
11
i
T 4 ¢ 7
i |
i |
v v
F—="3 Ty
|] » e s i]
ty—y—vd Ly—r—v?
I [I
i1 [
r e i b e e i T 3 ’ L]
i i 1 | | i
| i] | 1 i
v Y v v v v
g 1T E] m=""3 T E I "
1 I lsae 1 I i P loss i
1 4 1 L 3 G M-~ - L 3 | A |

Figure 4.4 B-Tree

The lowest 1eve1‘of the access path contains the actual

access-path entries: +these entries contain major-key values

lists of TID's. ¥ith +this access-path format, it is

possible to define primary-key indexes, inverted lists,
combined indexes, etc. Each access-path entry is stored in

a tuple in an access-path relation.Axﬁy storing entries in

tuples, the storage system is used to retrieve, store,
delete, and insert entries for the access~path systen. The

access-path erntries are stored in ascending order of major

Access-Path Systenm 99

Chapter 4

key.

If the lcwest level cf the access path is stored -on
more than one page, then one Or more higher levels are added
to the access path tc form a B-tree.. Each entry in the
higher levels of the access path contains the highest key on
a page in the next lower level of the access path. and a
pointer +to that page. The prccess of adding higher levels
to the access path is continued until all the access~path
entries at the highest level can be stored in one page.,

In general, if there are N data pages in a relation and
K access-path entries <can be stored in each accesg-path
page, thenm the access path contains approximately

LOG (N) / LOG '{K}
levels {including the lowest level of the access path) » The
number of levels in the access path indicates the number of
access-path pages that must be examined when retrieving a
tuple. For example, if we assume that a relation contains

500,000 tuples, that 50 tuples can be stored on each data

\ page, and that 100 access-path entries can be stored on each

acceés-path page, then the access path is only +two levels
deep and sc a tuple can be located after examining only two
pages in the access path.

The fcormat of the access-path entries in the higher
levels cof the access path is

<XEY¥: TID> .,

Access-Path System 100

Chapter 4

The TID din the access-path entry points to +the first
access-path entry on the ccrrespending pagé at the next
lower level in the access path. The keys in the higher-
level access-path entries can be compressed both at the
beginning and at +the end as discussed in [BAYET77] and
[IBM73b]. For example, if the highest key on a page is

<74120, 100, T10>
and the lowest key on the next page is

<7426, 200, T5>
then the key "74120,100,710" can be compressed cn the right
to ®741w, 1f reguired, this key can also be compressed on
the left to remove the characters »74n, However, the number
of characters removed from the front of the key nmust be
included with +the key in order to be able to compare keys
correctly. This key is sufficient +to distinguish between
the twc lower-level pages. At the lowest level of the
access path, key compression is not used since it is
necessary tc kncw the exact value of the key.

The access-path retrieval routine returns the list of
tuples that ccntain a particular attribute combination. It
a request includes only the leading K keys, where X < N {N
is the number of attributes for which the access path is
defined), then the TID lists from several access-path
entries are merged and returned. For example, 1if access-

path entries cdntain:

Access-Path Systen 101

Chapter 4

<74120, 100, T1: TID3, TID10>
<74120, 100, 713: 1ID5, TID7, TIDI>

<74120, 200, T1: TID&>

then a request invclving the keys
<4120, 100>
retufns the TID 1list
TID3, Tip5, TIp7, TIDY, TID1O

and a regquest involving the the key

<74120>
returns the TID 1list

TID3, TID5, TID6, TID7, TIDY, TIDIO .

An extension that «could be made to the multi-level
access-path is the “Ygeneralized index"™ proposed by Held
{HELD75]. The generalized dindex 1is a‘combination of the
multi-level index and order-preserving functions. At each

!
level in the multi-level index, there is one index entry for

each page at the next lower level of the index. With an

order-preserving function, there is only one index entry for

the entire lcwer level {that index entry is the definition
of 'the function). Normally, it is noct possille to define

one order-pieserving functicn that can eliminate an entire

level in the index; so the generalized index combines
order-preserving functions and the nulti-level index. Ry

defining the appropriate functions, it should be possible to

Access-Path System 102

Chapter 4

reduée the opumber of higher-level index entries raquired,
In the worst case, the generalized index would be +the sane
as the egunivalent multi-level index. In the best case, the
generalized index would contain conly one order~-preserving

functicn,

4,7 Haiptenance_of Access Paths

We now examine the effects of modifying tuples in
relations. When a tupie is inserted in a <relation, ali
access paths for +that relation must be modified. This
involves either inserting a new actess-path entry or adding
the TID of the new tuple to an existing access-path entry.
If an attribute value is modified, then +the old attribute
value must Le removed frcm all of its access-path entries
and the new value nust ke added +to the corresponding
access-path entries, (It should be noted that it may be too
expensive to keep all access paths up to date. If an access
path 1is used infrequently, instead of updating it, it could
be marked as no longer up tc date. Then whén next needed,
it is recreated.)

Since access [paths are actuwally manipulated as rela-
tions, BASE and MOD files and DEP's can be used to maintain
the integrity cf access paths. Thus, a master copy of each
access path is stored in the RASE filé and all «changes are

made to the MOD file, When changes are made to a MOD page,

all copies of the access-path entry within the current

Access—-Path Systen 103

Chaéter 4

direct-recovery period are Xept in the page. If it is
necessary tc back out some of the changes in a relation, the
corresgpcnding access-path changes can also be backed out of
the access path quite easily. If & particular access path
is guite volatile, then it could be stored in only a MOD
file with a small (or no) direct-recovery period; the extra
storage required the multiple ccpies of tuples 1in the MOD
file is eliminated.

In a largg B-tree, if many changes are made to one area
of the +tree, it may be necessary to move some of the
access—-path entries to unused pages in crder to cieate the
space needed for +the changes, The moving of tuples can
cause the tree to beccome unktalanced, with some of the paths
in the tree being longer than others. Also, when entries
are moved frcm cne page +to aﬁbther, one or more higher
levels in the tree must be nodified to reflect the newvw
locaticn ofnthe moved entries and this may cause other
modifications to the tree. However, in the access-path
system, the depth of the access path never changes. When an
access-path entry is added cr modified and there is not
enough tree space for the change, the access-péth page is
automatically extended by the storage system {as described
in Chapter 3). Thus, the routines in the access~path system
are less complex than most directory~-manipulating routines

since they do nct have to perfernm reorganizations caused by

Access-Path Systen 104

Chapter 4

changes “Vrippling” up to hiqher 1levels. The advantages
gained are sisilar toc those gained in Held and Stonebraker's
"static. index"™ [HELD78] but without the disadvantage of not
being able tc modify the static index.

Since there are no pcinters into an access path, it is
possible to perform a complete reorganization of an access
path without affecting cther relations. This type of
reorganization is performed whenever it is convenient

instead of when it is necessary as in B-trees,

Primary-kéy access (using a non-dense index or a
hashing functicn) «c¢reates additional probiens for the
storage systen. The index or hashing function generates
only the number of the logical page on which the tuple is
stored, not the TID of +the tuple. In order to find the
tupie with the required primary key, the storage system nust
sequentially scan the tuples on the MOD page {which may be
stored in more than one logical-pagé segment) , and, if the
tuple is not found, the storage system must +then scan the
tuples on the BASE page (which may also be stored in more
than one logical-page segment)., In order to reduce the
number of page accesses regquired, the following information
could be added tc the storage-managemant tables to support
efficient primary-key access.,

To avoid accessing both the MOD file and then the BASE

Access~Path Systen 105

Chapter 4

file, a primary-key filter could be added to the storage-
management tables., This filter is used in the same way that
the TID filter is used: the primary key (or a portion of
it) is hashed and the Tesulting bit string is ccmpared with
the filter wvalue, If the two values match, then the tuple
may be in fhe MOD page; if they do not match, then the tuple
{if it exists) must be in the BASE page. There would be one
primary-key filter in the SMT for each MOD page.

To determine which logical-page segment contains the
required turle, when a page is extended, the highest primary
key on each logical-page segment could be included in the
SMT. Thus, splitting a page into segments does not affect
the efficiency of primary-key accesé since the regquired
-logical-page segment can be accessed with only one data I/0
reguest, ¥hen hashed access is used, even though a large
number of tuples may hash tc +the same logical page, the
storage system ensures that access to the reqguired logical-
page segment is still efficient.

The storage system cculd also include the highest
primary key of each group of tuples in the tuple ipdex .
stored at the end of each lcgical page. This extra
information would reduce the time required to find a tuple
in a pace when accessing the tuple by primary key.

The ability of the storage system to perform an

efficient =search of a - page DYy primary key can be used

Access~Path Systen 106

Chapter 4

effectively by the access-path system +*o retrieve access-
path entriss. Each access-path entry is stored in a tuple
with the major key of the entry used as the primary key.
Routines to search a page for a particular access-path entry
are not needed in the access-path system since the storage

system already provides the required function.

Access-Path Systen 107

Chapter 5

Chapter 5z Retrieval Systen

2:1_Intrcduction

In this chapter, we develcp the retrieval system ¢f the

data-management systen. First, we define a data~-

manipulation 1language (DML) vwhich <can be used to previde

associative access to the tuples in a relation. The
language is sufficiently powerful to be used by itself when
processing c¢ne relation at a time; however, it 1is designed
for wuse 1in implementing DML's such as the relaticnal
calculus or relaticnal algebra. We also examine how the

retrieval-system regquests are translated into the necessary

access-path-system and storage~system requests.

2s2_Associative_Access

One of the goals of the retrieval systemAis to free the
user frcm having tc know the details of how relations are
stored and the access paths that are available, The user
specifies a guery, defining what he wants, and the retrievai
system attempts to find the Vhest® {or only) method of
processing the gquery. There are several reasons for using
associative access to data. The major reason is that since
access paths are dynamic, the user probably does not know
{and shculd not be expected tc kncw) all of the access paths

that currently eiist, and, may make a poor choice if allcwed

Retrieval Systen 308

|
|
|
i
i
¢
1
|

Chapter 5

i
to choose the access paths directly. It is expected that
many users of the DHL are higher-level systems and these
systems should ict have to kncw which access paths arse
available for a given relaticn.

It 1is possible that scme requests can not be processed
without an extremely large amount of werk on the part ci the
retrieval system. For exanmple, it may be necessary to scan
a large relaticn one or more times in order to process a
particular query. It should be the responsibility of the
retrieval system to determine which requests are Yreason-
able” and which are not; this may require some knowledge of
the request or the user, For example, a very slow reguest
that is run only cnce a month is acceptable while the sanme
regﬁest is rejected {until extra access paths are added) if

it is run several times a day.

2.3 _Relation Retrieval

In this section, we describe the facilities available
for the associative retrieval of‘tuples in a single rela-
tion. The syntax of the retrieval-system commands is given
in Appendix 171, -

The gensral form of the retrieval statement is

RETRIEVE WHERE {qualifier) .
{In order fo keep the syntax of the statements as simple as
possible, it is assumed that the relation and domains being

processed have already been idertified to the systen.)

Retrieval Systen 109

Chapter 5

There are two types of gqualifiers: the ®single®
qualifier is a qualifier which is processed by examining the
tuples in a relaticn one tuple at a time; and the Tnultiplen
qualifier is a qualifier which 1is processed by examining
groups of turles ig a relaticn. 1In the following sections,

we exanine the formats of fhese two types of gualifiers.

We now examine queries that «can be processed by
examining each tuple individuwally. The simplest form of the
single qualifier is

Di relcp V9
where "Di" is-the domain being referenced and "relop" is one
of the relaticnal operators. ®y" is the value with which
the domain is compared; we refer to V" asg a "simple value®,
In most of the following examples, we use the gelational
operator "=% gsince it is the operator most commonly used.

Qualifiers can contain several expressions Jeined
together by the standard lcgical cperators (AND, OR, ©¥OT),
and the order in which expressiong are to be evaluated can
be indicated bty the use of §arentheses. Thus, the gqualifier

Di='V1?' AND Dj='v2"
is true if both subexpressicns are true.

The user may alsoc specify a "range value®™ for a domain.
A4 range value is defined by specifying the ninimum value in

-the range and the maximum value in the range. For example,

Retrieval Systen 110

Chapter 5

in the qualifier
Di = *yiiz1y2y
the tuple is accepted if the domain value 1is between ny

and ®V2" or equal to either value.

In order to make vranges as general as possible, we
adopt the fcllowing conventions: if the lower range value
is not supplied, the smallest possible value is assumed; if

the upper range value is not supplied, the largest possible

value is assumed, Thus, the gqualifier

Di = z22y2?
has the same effect as the qualifier

Di < w2
and the gualifier

1y

i
has the same effect as the gualifier
Di =2 w1
In order to select tuples with one of several attribute
values, the user can include a domain "value 1list® in an

expression. A value list ccnsists of any combination of

simple values and/or range values, separated by commas if
there is more than cone value. (#e assume that all elements

in the value 1list are mutuvally exclusive. If some elements

are not mutually exclusive, this may cause results to be
unpredictable.) For example, the qualifier

Di = 'y1r, 1y2

Retrieval Systenm 111

Chapter 5

causes the turle to be selected if Di is £qual to either of
the values specified, The qualifier
Di = *VIP20y21, Y37, vyghrasy5e, ayge

causes the tuple to be selected if Di is egqgual to any one of
thé eX¥rressions listed,

If twc or more domains are frequently referenced
together, they can be concatenated. The qualifier

"Di,Dj = 1y1r,1y2¢
is equivalent to the gualifier
Di=*V1*' AND Dij='V2' ,

When d<¢mains are concatenated, cach 2ntry in the value list
must ccptain the appropriate number of concatentated values,
The concatenaticn cf dcmains‘makes it much easier to specify
value lists, For example, the qualifier

Di,DJ = *Vil*,'V3i1? 1 'Vi2t,1y§2r, 1yi3v a3
is much simpler than the equivalent gqualifier without the

concatenaticn.,

923.2 Hultiple-Tuple Processing

The facilities described in the preceding secticn can
be provided by the retrieval system by examining tuples
indivi@ually, In this section, we examine multiple gquali-
fiers, gualifiers that can be used to examine sets of
tuples.

Freguently, the tuples in a relation contain an attri-

bute value that occurs in more than one tuple. At times, it

-

Retrieval Systen 112

e T T

Chapter 5

is convenient for the user to view such a relation as a
hierarchical structure. For example, the relation
SC{S#, C#, GRADE)

could be viewed as

Fo——————y o ————
| 5S#% i | cH { , -
tem 3 |

£ %

| |

1 i

* *

* *
Fm—————— 1 o ——————
| C# i iS4]
I e 3

{These are not the only hiérarchical relationships that can
be defined feor this relation.)

When viewing a relation as a hierarchy, the user can
ask such gquestions as "Which students are enrolled in
courses 74307 and 7430877, It is not possible to write one
single gualifier which permits the user to ask such gues-
tions. 1In general, the user may wish tc know which parents
contain «certain children. The notation used to define such
qualifiers is

Dp.Dc = {child value set}

where "Dp" is the parent domain, "Dc®™ is the child domain,

and the *"child valué set® is a value list. Both Dp and Dc

can be concatenated domains. The individual values 1in the
child value set can again be any combination of simple

values and range values. The gualifier which corresponds to

- Retrieval Systen 113

Chapter 5

"Which students are enrolled in bcocth 74307 and 743082" is
S#.C# = {*743071, 174308 .
The gualifier

S#.C# = {*7420072*74299", T74300' 77439913

illustrates the use of ranges in the child value set, The
qualifier is used to determine which students are taking at
least cne second-year course and at least one third-year
course in department vY74n,

When a child value set is processed, all of the tuples

in the child value set are returned for each gqualifying

parent. For example, given the tuples
100 74306 ‘ |
100 743¢7 v

100 743¢8
10C 74410

the qualifier
S#.C# = {*74307*, *74308'}
causes the tuples

100 74307
100 74308

to be returned.

In general, +the kevaluation of a gualifier which con-

tains a child set involves €xamining each parent domain and
determining whether or not all the children defined in the

valuae 1list occcur under the parent.

Retrieval Systen 114

Chapter 5

5.3.3 Quotas

In order to extend the power of the DML, wWe now
introduce f*guotas®, A guota is used to specify the exact
number of subexpressicns in a value list that must be true
for the entire expression to be true., A gqualifier written
with a quota can always be written 4in an egquivalent forn
without a quota, but the use of guotas frequently simplifies
the writting cf gualifiers., The general form of a quota is

Q{value list) .

The value list consists cof any ccmbinatisn of simple values
and range values,, The following gualifiers illustrate +the
use of guotas., For the gualifier

Q(2) {s#=1100, C#=1743071)
to be true, toth subexpressicns must be true. This gqualifi-
er could be rewritten as

S#=3100" ANT C#=174307% .
If the gualifier is changed to

Q{1) {S#=7100Q7, C#=174307")
then +the expression is true if éither subexpression is true
but both subexpressions are not true, To get the sanme
effect as uéing the logical operator OR, the guota must be
changed to Q{1:2) cor to Q{12). The expression is then true
if weither subexpression is true or if both subexrressions
are true.

The use of quotas is especially convenient in 1lists

Retrieval System 115

Chapter 5

~containing three o©r more subexpressicns, For example, the
gualifier

Q12:) {S#=71007, CT#="74307", GRADE='A’3‘
is expressed guite simply using gquotas. The eguivalent
expressicn withcnt quotas becomes much more complex,

{S#='100" AND (C#='74307' OR GRADE='a'))

OR {C#=174307* AND GRADE="3%") ,

If the guota Q{2:) in the previocus qualifier is changed to
Q{2), the eguivalent expression without a quota becomes even
more ccmplex {and unreadakle), requiring three 1logical
expressions, <ach containing three subexpressions.,

The use of guotas is also permitted in multiple
processing. The qualifier

S#.C# = {74307, 174308'}
can be rewritten as ‘
S#.C# = Q(2) {*743071, 7743087} .
The’qﬁalifier
S#.C# = Q(23) {*743C7", 1743087, 1744101}
specifies that a student is selected if he is enrolled in at
least two of the t@ree courses specified,

In general, gquotas used with child value =sets are
evaluated as fcllows. A counter is maintained for each of
the subexpressions in the value list., For each parent, each
child is examined; if a child satisfies a subexpression, the

counter for that subexpression is incremented. (e assumed

Retrieval Systen 116

Chapter 5

that all subexpressions in a value 1list are mutually
exclusive sc a child would satisfy only one =subexpression
and the evaluation of an expression would terminate as soon
as omne subexpression is found to be true. Thus, if
subexpressicns are not mutvally exclusive, only the counter
for the first true subexpressiocn is incremented.) After the
last child for a particular Farent is processed, the number
of <counters that are non-zero is determined. This value is
then compared with the quota value list, and, if thé value
matches one of the quota value list subexpressions, the

result of the expression is ®true®,

S5»3.4_Counts

The last addition to gualifiers in the DML is the
#count® parameter, Counts are used to define child-set
gueries which involve the onumber of children under each
parent, Queries such as "Which students received cnly A
grades?” can not be answered with the standard child-set
qualifiers or with gquotas.

The general form of the count paramexer is

C{true value list; false value list) .
Both the ‘"™true wvalue list" and the "false value list" are
value lists which can contain any ccmbination of simple
values and range values. The true list is used to specify
the number cof children that must satisfy the corresponding

domain value 1list for +the expression to be true, and the

Retrieval Systenm 117

Chapter 5

false list specifies the number of children that need not
satisfy tlke dcmain value list for the expression still té be
true, #e shall assume that if the true list or the false
list is not specified, then the count for that list may be
any value,

We now examine some gqgualifiers that wuse the count
parameter., The qualifier

S#.GRADE = C(1:) {4}
‘can be tsed to determine which students received at least
one A grade and any number cf grades that are not A's. The
gualifier

S#.GRADE = C{1: ;0) {'A"}

can be used to determine which students received only A
grades. The qualifier

S#.GRADE = C{;0) {'F'}
can be used to determine which students have not received
any F grades.

The use of counts with sets has an interesting side
result, If a user wishes to select a parent based on the
number of children the parent bas, then a count can be used
with a null child set if we adogt the convention that a null
child set is alyays true. For example, the gualifier

S#.C# = C(5:2) { }
Can be used to select students enrolled in at least 5

courses,

Retrieval Systenm 118

Do

Chapter 5

The processing of the count parameter is performed as
follows. For each parent, €ach child is examined. For each
child that satisfies the domain value list, a "true counter®
is incremented, For each child that does not satisfy the
domain value list, a "false counter” is incremented. Lfter
the last child is processed, the true count is compared with
the true value list and the false count is compared with the
false value 1ist, If &Loth values are within the defined
limits, then the expression is true; otherwise, the expres-

sicn is false.

S.4_Relaticn Mcodification

In the previous secticns, we examined the retrieval of
tuples in a relaticn; in this section, we show how tuples

can be inserted, deleted, and modified,

D.54.1 Tuple Insertion

The general form of the statement used to insert tuples

is
INSERT WITH (modifier)
where the “"pmodifier"™ has the same basic form as the
qualifier defined for tuple retrieval. For example, to
insert 'a tuple for student 100 in the SC relation, the
modifier
S#=*100* AND C#=174307' AND GRADE="3?

€an be svsed.,

Retrieval Systen 319

Chapter 5

When inserting a tuple, it is nzcessary to include at
least the vprimary-key domains since they uniguely identify
the tuple. For example, the modifier

S# = 100
is not complete when inserting a tuple in the relation 5C
because the course number is not . specified, {Codd has
examined the problem of dinserticns into a relation and
concludes that permitting insertiocns which specify a candid-
ate key that is not the primary key may permit duplicate
tuples to be inserted [CODD75].)

If several tuples are to be inserted at once, a child
value set can be included in the medifier. For example, the
modifier

| S#=7100*" AND S#.C#={*74307", *74308'3
can be used to insert two tuples in SC.

The use of gunotas and counts is not permitted in a
modifier since those parameters are used only when proces-
sing tuples that already exist.

Domains which are not given values in the insertion
statement are assigned "default values®, {A default value

for each domain is defined when the relation is defined.)

DFLETE WHERE({qualifier)

Retrieval Systenm 120

Chapter 5

where the qgualifier is the same as the qualifier defined for
tuple retrieval. For example, the qualifier

S#=1100' AND C#=1'74307?
can bs used to delete a tuple in the SC relation.

When deleting tuples, the primary-key domains dc not
need to be specified, For examrple, the gualifier

GRATE = 9F1
can be used to delete all tuples ih SC with a grade of F.

If a child value set is included in the qualifier of a
delete statement, for qualifying parents, the tuples in the
child value set are deleted. Fer example, the gualifier

S#.C# = Q(2) {*74307*, 1743081}
causes the tuples 74307 and 74308 to be deleted from
students enrclled in both ccurses. -The gualifier

S¥.C# = Q(1:) (1743077, 1743081}
causes 74307 and 74308 tuples to be deleted from students

2nrolled in =2ither course.

O»4.3 Tuple Modification

The general form of the statement used to modify tuples
is
REPLACE WHERE (qualifier) WITH (rodifierx)
where the gualifier indicat¢s the tuples to be modified and
the wcdifier specifies the new domain values for the tuples
to be modified. For example, the statement

REPLACE WHERE {S#=1'100" AND C#=2743071) WITH(GRADE='A")

Retrieval Systen 121

Chapter 5

can be used to change a student’s grade.

If not all cf the primary-key domains are specified,
then =several +tuples may be modified. For example, the
statement

REPLACE WHERE (S#='100") WITH{GRADE=*31")
causes all tuples for student 100 to be modified.
| If a primary-key domain is modified, then the old tuple
is deleted and a new tuple is inserted. For example, the
statement

REPLACE WHERE (S#='100' AND C#=178307") WITH{C#="74308")

causes the tuple "100,74307" +to0 be deleted and +the tuple
¥100,74308" tc be inserted, The domains not specified in
the wmcdifier are cépied from the deleted tuple to the new
tuple,

If a child value set is included in the gualifier of a
replace statement, for qualifying parents, all tuples in the
child value set are modified. For example, the statement

REPLACE WHERE(S#.C#={"74307*,?74308}) WITH{GRADE='A7)
causes all students enrolled in both 74307 and 74308 to be

given A grades in both courses.

225 _Strategy Relation

The most important part of the retrieval system 1is the
selecticn c¢f efficient access paths for each request. The
selecticn of access paths should be dynamic because the type

and number cf access paths vary with time. However, trying

Retrieval Systenm 122

Chapter 5

to determine dynamically the best set of access paths fcr a
particular request can itself be tinme csnsuming: Sc, in the
retrieval system, a ccmprcmise strategy is used. For each
relaticn, a special relaticn, called the strategy relation,
is maintained by the retrieval system. Each tuple in the
strategy relaticn contains a list of dcmain names and a set
of "paths™, Fach path contains the internal identifier of
an access path, the type cf the access path, and the names
of the domains used with the access path., When processing a
request, the retrieval system reduces the domains in the
request to a canonical form and then retrieves the asso-
ciated tuple frcm the strategy relation. The paths defined
in the strategy~r%1ation tuple are processed, from left to
right, until the desired turles are retrieved. For exanple,
to process the reguest
RETRIEVE WHERE(S#='100" AND GRADE='AY)

the strategy relaticn might indicate that a directory for S#
Can be used to establish a position at the first tuple for
student 100 and that a sﬁbsequent segquential scan can be
used to locate all of the tuples with an A grade,

The use of the strategy relation permits fast access to
tuples by predetermined paths; this technique is nmore
efficient than dynamically determining the best path for
each request, Yet, access raths can be added, deleted, ‘and

modified at any time as lcng as the strategy relation is

Retrieval Systen 123

Chapter 5

also modified to reflect the new access paths. The speed of
predetermined paths is provided with +the flexibility of
being able to change access paths at any time,

The sitrategy relation can also be used tc maintain
information on the frequency with which the various domain
combinations are wused if some extra domains are stored in
each strategy-relation tuple. One domain contains the date
on which the tuple was created and cther domains contain the
dates on which the tuple was most recently accessed for
retrieval, insertion, deletion, and modification, and the
nunber o¢f times that thevtuple was accessed for retrieval,
insertion, deletion, and mcdification. These dcomains can be
used when evaluating the access patterns for a relation.

When processing a reguest, if the nacessary entry is
not fcund 1in the strategy relation, then the zeqﬁest is
rejected. Thus, the use of the strategy relation permits
the DBEA toc prohibit certain reguests by not defining the
necessary entrieé in the strategy relation. Similarly, by
adding to the strategy relaticn a domain which defines the
ninimum number of days that must pass before a reguest can
be 1issued again, the ILEA can contrtol the freguency with

which expensive requests are issued.

Retrieval Systen 124

Chapter 6

Chapter 6:_ _Future Rescarct and Cconclusions

6.1 _Future Research

In this thesis, the foundation for a generalized
data=-management system has been defined. There are, houwev-
er, several functions of data-management systems that were
mentioned but not examined in detail. In this section, we
indicate some areas which deserve further examination.

We have assumed that the +tuning of a daté base is
performed by +the data base administrator. However, if the
hecessary statistics are maintained, it should be possibile
to have the data-management system itself perform much of
the tuning., For example, pages that are frequently accessed
together could be stored on the game data set; the length of
the direct-recovery period of a relation could be modified
as the vTate of access tc¢ +the relation increases or
decreases; the access paths for a data base could be
reorganized to suit current access patterns., The facility
to add and delete access paths based on predefined future
needs could also bev supplied. (For example, adding tem-
porary access paths at the end cf sach year could reduce the
access-path processing required by year-end summary pro=-
grams.) By adding such a tuning system, the data-management

system would be able to cverconme poor initial access-path

Future Research and Conclusions 125

Chapter 6

choices and provide the wuser with more efficient data-
management services,

Ancther problem that needs to be examined is that of
concurrent access to the data in a data base. Current
operating 'systems provide few facilities to aid the data=-
management system in sharing data among users., Consequeﬁt-
ly, the data-management system must contain a mechanisnm for
locking portions of a data Lase as changes ar2 made +to the
data base. The locking mechanism must maintain the integri-
ty of the data base when several users attempt to make
changes to the same area of the data base without prohibit-
ing access by users who wish to access a different area of
the data base. Such a locking mechanism is required in
order tc be able +to use data bases effectively. As more
data’are added to each data base, the number of users who
require access to the data increases. It is the responsibi-
lity of the data-management system {and the operating

system) to ensure that shared-data integrity is maintained.

b 2 Conclusions

In this thesis, we have defined a data-management
system that provides addressed access to pages and tuples,
keyed access to tuples using pre~-defined access paths, and
associative accesi to tuples, The device system manages the
pages in each relétion for the storage system. Through the

use of the device-management tables, pages may be moved from

Future BResearch and Conclusions 126

Chapter 6

one data set to another without affecting the user. The
ability to change the locaticn cf a page is dimportant in
large data bases where it is not economically practical to
store all pageé cn fast devices, Instead, the access
frequency of a page can be used to dete;mine where the page
is stored. The use ¢f teuporary device-management tables
provides a simple method of recoxding the current location
of a pag¢e as the page is moved frcm one location to another
during its processing.

The storage system wmanipulates the tuples stored in
relaticns. The storage system reduces the secondary storage
xeﬁuired for a Ielétion by storiﬁg the majority of the data
in a relation din a BASE file ({with no free space) and
storing changes to the 1relaticn in a -MOD file, The
stofage-management tables are used to define the'current
location of the BASE and MOD pages., Through +the wuse of
direct-recovery pericds, the storage system also prcvides
the facility to roll back groups of changes to a relation.
This facility is important in a multi-user environment where
.Changes made by cne user may have to be backed out in order
to preserve the integrity of the data base. The sterage
system 1s designed so that the use of BASE and MOD files and
~ DRP's <can be modified with a wminimal amount of reorganiza-
tion of the data base., Thus, as the users? requirenents

change, the facilities used may be changed.

Foture Research and Conclusions 127

[

Chapter 6

The access-path system provides a powerfﬁl access=-path
structure, the pultiple-relaticn access path, tc¢ support
keyed access to data. The multiple-relation access path
requires less storage and provides more information than the
equivalent single-relaticn access paths, By not storing
access-path links in the data portion of a relation, it is
easy to add, delete, and recrganize access paths.

The retrieval-system DML provides associative access to
the tuples in a relation. The use of the strategy relation
provides a convenient method for translating associative
queries intc the necessary keyed requests to the access=-path
system. The statistics that are kept in the strategy
rélaticn are used when changes must be made to the access-
pathvstructure to improve accesé to the data base,

The major goals in the design of the system were to
define a data-management system which provided both effi-
cient storagce cf data and rapid retrieval of aata and to
permit the user to change data-management facilities used as
his data-management needs change. Portions of the data-
management systen descéibed in this thesis have been imple-
mented and have been found to provide facilities at least as
powerful as {and in many cases, more powerful than) the

facilities gprovided by current data-management systems.

Future Research and Conclusions 128

Appendix I

Appendix_I:_ _Variable-Length Yalues

In this appenrdix, we indicate how tuples, domains, and
TID*'s can be stored efficiently as variable-length character
strings.

In most systems, variable-length character strings
contain a fixed-length prefix which contains the length of
the character string. Such fixed-length prefixes either
restrict the maximum length of a character string unneces-
sarily when too _small Oor wvaste storage space when npade
larger than is necessary in crder to permit the manipulation
of the occasional large character string. For exanmnple, if
the prefix is one byte, the maximun length of the associated
character string is 256 bytes. If the prefix is two bytes,
the maximum length of the character string is 65,536 bytes; a
‘however, for any string that is smaller than 256 bytes, one
byte of the prefix is wasted.

In order to utilize storage space as efficiently as
possible, variable-length prefixes can be used, The high~
order N bits of the prefix can be used to indicate the
iength of +the prefix. If all K bits are 1*s, then the
prefix is stored in two bytes; otherwise, the prefix is
stored in one byte. Table I.1 indicates the maximun lengths
that can be Trepresented in one- and two-byte prefixes for

various values of N.

Variable-Length Values 129

Appendix I

N 1-byte length 2-byte length
1 128 ’ 32,768
2 192 16,384
3 224 8,192
4 240 4,096

Table I.1 Variatle-Length Prefixes

#ith a variable-length prefix, the user is not restricted to
domains with a small maximum length nor penalized because
some dcmains may be quite long. The processing of the
prefix requires the executicn of extra instructions {appro~-
Ximately four Assembler language dinstructions on an IBHM
System 370) but this is a small price to pay considering the
added flexibility provided.

It would be unusuval to have tuples or domains whose
lengths could not be represented in two bytes., Howeyver, if
necessary, the size of the prefix can be increased +to any
size wusing the following strateqgy. The first N bits of the
first byte cof the prefix are divided into groups of bits
with lengths M1, M2, ... » If any of the first M1 bits are
0's, then the prefix is stored in one byte. 1If all cf the
first M1 bits are 1's and any of the next M2 bits are O's,
then the prefix is stored in twc bytes, If the next M2 bits
are alsc 1's but the next M3 are not all 1's, the prefix is

stored in three bytes. This process can be continued for as

~

Variable-Length Values 130

Appendix I

many bytes as necessary.

The TIT can not be manipulated as a simple variable-
iength «character string since +the TID actually contains
three values: the Fage number, the tuple number, and the
insert number. Instead, these values are manipulated indi-
vidually as variable-length values.

The page number and the tuple number can be stored with
the high-order ¥ bits indicating fhe number of bytes used to
represent the value, The remainder of the first byte and
any remaining bytes contain the actual value of the page or
tuple number, not the length of the value. Thus, page
nuombers and tuple numbers cof any magnitude can be repre-
sented efficiently.) |

An advantage of this representation of the page number
and tke turle number is - that two page numbers or tuple
numbers can be compared by comparing the stored representa;
tion of the numbers_ instead o¢f having to extract the
represented values.. For example, when a two-byte page
number 1is ccmpared ¥ith a one-byte page number, since the
1eading N bits of the two-byte value are all 1's while ‘the
leading N bits of the one-byte value ére not all 1's, the
two-byte value is designated as the larger value after only
the first N {or fewer) bits are examined.

If +the 1insert npumber is tc¢ be compared in its stored

Tepresentation, it should not be stored in the same manner

Variable~-Length Values 131

Appendix I .

as the page and tuple numbers since the insert number is a
left-justified value while the page and tuple numbers are
right-justified, {The fact that one insert number is stored
in more bytes than ancther insert number does not mean that
the first value is greafer than the second value.) Thus,
for two 1insert numbers to be compared efficiently, the
length of the value must not be at the front of +the value,
Instead, the 1last bit of eacﬁ byte can be used to indicate
whether or not there is ancther byte fcllowing the current
bytes if the 1last bit is not 1, then the current byte is
the last byte used to represent the valve; otherwise, there
is at 1least one more byte in the value. Using this method
of representation, insert numbers of any magnitude are
stored efficiently and can be compared in their stored
representation.

By storing the componerts of a TID adjacent to each
other 1in their natural order (page number, tuple number,
insert number), it is possible to compare TID's as character
strings without having to extract and compare each compeonent
of the TID. This ease of.ccmpaiison is dimportant in ‘both

the storagé system and the access-path systen.

Variable-Length Values 132

Appendix_II:

Agpendix 11

Syntax

<statementd>

<qualifier>

<modifier>

<mtexp2>

<mtlist>

<mtexp>

<stexp2>

<stexp>

explistd>

) 'Y

[

LY

(X3

(1)
e

i o]

EY)

ae 1] [[
e |f | L I ||

s s

e

aven 1}

RETRIEVE WHEIRF{ <gualifier>)
DELETE WHERE{ <gqualifier>)
INSERT WITH{ <modifier>)
REPLACE WHERE{ <gualifier>)
WITH{ <modifier>)

<stexp2>
<mtexp2>
<mtexpZ> AND <stexp2>

<stexp>
<ntexp>
<mtexp> AND <stexpd>

<parent-child> <relop> <mtlist>
{ <mtexgp2>)

{ <value-1list> }

Rcount> { <value-list> }
<count> { }

<guota> { <value-1list> }

<parent-child> <relop> { <value-list> }

{ <mtexpd>)

<stcl2>

<stexp2> AND <stcl2>

<steXxp2> OR <stcl2>

NOT <stexp2> : /
<guota> { <explist>)

<stcl>
<stexp> AND <stcld>

<stcl2>
<explist> , <stcl2>

Syntax

133

Appendix 11

<stcl2> 3= <steld>
] { <stexp2>)
<stcl> 2:= <domain-1ist> <relop> <value-list>
] { <stexp>) R
<count> ::= C{ <value-list> ; <value-list>)
i C{ <valupe-1list> ;)
I C{(; <value-list>)
<guota> 23= Q{ <value-list>)

<parent-child> :: <domain=-list> ., <domain-list>

<dcmain~-nanmned
<domaipn-list> , <domain-name>

<domain-list> =3

bl |}

<value>
<value-1list> , <valu=>

-

<value-list> H

<value>

(2]
[2]

<domain-valued>
<range-value>

= <Ldomain-valueD ﬁ <dcmain-value)
{ <domain-valued> :
i : <dcmain~valued>

{range-value> 123

<domain-value> :z <simple-value>

i <domain-value> , <simple-valued
<simple-value> :1:= <character-string> !

<relop> ::

I VAVAI

oo

;

<domain-name> 3= <character-string>

Syntax 134

ANSTIS

ASTRT6

BACHT73
BAYET7

BENT74

BERR77

BLOO70

BROD75

CINCT4

CODAT1

ANSI/X3/SPARC, "Study Group on Data Base Management
Systems”, Interim Report, ACM-SIGMOD FDT, Volume 7,
Number 2, 1975.

Astrahan, M. M., et al,, "System R: Relational
Approach to Database Management®, ACM-TODS, Volunme
i, Number 2, pp. 97-137, June 1976.

Bachman, C. W., "The Programmer as Navigator”,
CACM, Volume 16, Number 11, pp. 653-658, November
1973,

Bayer, R. and Unterauer, K., "Prefix B-Treeg®,
ACHN-T0DS, Volume 2, Number 1, PP 11-2¢, March
1977.

Bentley, J. 1. and Finkel, R. A., "Quad Trees A
Data Structure For Retrieval on Composite Keys?,
Acta Informatica, Vclume 4, pp. 1-9, Springer-

Verlag, New York, New York, 1974,

Berra, P. B. and Anderson, H. D., "Minimum Cost
Selection of Secondary Indexes For Formatted
Files”, ACM~-TODS, Volume 2, Number 1, DpPs 68-90,
March 1977,

Blocom, B. H., ™"Space/Time Trade-offs in Hash
Coding with Allowatle Errors"™, CACH, Volume 13,
Number 7, pp. #22-426, July 1970.

Brocdie, M. L. et al., "ZETA: 1A Prototype Eela-
tional Data Base Management Systenm¥, Technical
Report CSRG6-51, ©Department of Computer Science,
University of Torontc, Toronto, Ontarioc, 1975.

CINCCM Systems, "TCTAL/7 Reference Manual", CINCON
Systems Inc., Cincinnati, Ohioc, 1974,

CODASYL Ccomittee, M"CODADSYL Data Base Task group

Report”, Conference on Data Systems Languages, ACH,
New York, W¥ew York, April 1971.

References 135

€O0DD70

CoDD72

CODD75

DATET7

FERC78a

FERCT78bD

HAER78

HELDTS

HELD78

HDOFF75

Codd, E. F., "A Relational Mocdel of Data for Large
Shared Data Banks", CACH, Volume 13, Number 6, pp.
377-387, June 1970,

Codd, E. ¥F., "Relaticnal Completeness of Data Base
Suklanguages®, Ccurant Computer Science Series,
Volume 6, Database Systems, Prentice-Hall, Toronto,
Ontario, 1972.

Codd, E. F., ”Understanding Relations =~ TInstall-
ment 6", ACM SIGFDT, Volume 7, Number 1, pp. -4,
1975.

Date, C. J., ™An Introduction to Database Systems¥
Second Edition, Addision-Wesley, Don Mills,
Ontario, 1977.

Ferch, H. J., Neufeld, G. W., and Zarnke, C. R.,
"Mantes User Manual®™, Department of Computer
Science, University of Manitoba, Winpipeg, Manito-
ta, 1978,

Ferch, H. J., "The Design and Implementation cf a
Structured Indexed File System™, Ph.D. Disserta-
tion, Department cf Computer Science, University of
Manitoba, Winnipeg, Manitcba, 1978.

Haerder, T., "Implementing a Generalized Access-
Path Structure for a Relational Database Systemn®,
ACH-TODS, Volume 3, Number 3, pp. 285-298, sSep-
tember 1978, .

Held, G., "Storage Structures for Relatiocnal Data
Base Management Systems®”, Ph.D. Dissertation,
Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley,
California, 1975,

Held, &G. and Stonebraker, #., "R-Trees Re-
examined”, CACM, Vclume 21, Nunber 2, pp. 139-143,
February 1978.

Hoffer, J., YA Clustering Approach tc the Genera-
tiocn of Subfiles fcr the Design of a Computer Data
Base%, Ph,D. Dissertation, Department of Opera-
tions Research, Cornell University, Ithaca, New
York, 1975,

References 136

HSTA70

HUAN7T3

IBM71

IBM73a

IBN73b

IBNT4a

IBM74b
IB#M74c
IBMT75

IB§7s6
IBwm77

KNUT73

KNUTT5

Hsiao, D. and Harary, F., "A Formal System for
Informaticn Retrieval frocm Files®, CACH, Volume 13,
Number 2, pp. 67-73, February 1970.

Huang, J. C., "A Note on Information Organization
and Storage", CACM, Volume 16, Number 7, PP.
406-410, July 1973.

IBM, "IBMN System/360 Operating Systen: Indexed
Sequential Access Method, Progran Logic ManualY,
IBM Corp., GY28~-6618, 1971.

IB¥, "0S/VS Virtual Storage Access Method: Prc-
grammer's Guide", IBM Corp., 6C26-3818, 1973, .

IB®, "0S/VS Virtual Stcrage Access Method: Ortions
for Advanced Applicaticns"®™, IBN Corp., GC26-3819,
1973.

IBM, ™IBM System/370 Mcdel 158 Functional Charac-
teristics®, IBM Corp., GA22-7011, 1974,

IBM, "Reference Manual for IBM 3830 Storage Control
Model I and IBHM 3330 Disk Storage®, IBM Corp.,
GAZ6-1592, 1474, :

IBn, #"Information Management System/VYirtual
Sterage: System/Aprlication Design Guide™, IBM
Corp., SH20-9025, 1974,

iBsn, "Informaticn Management System/Virtual
Storage: General Information Manual®, IBM Corpa.,
GHZ0-1260, 1975.

IB¥, "0S5/VS2 MVS Data Management Services Guide?®,
IBM Corp., 6C26-3875, 1976,

IBM, "Planning for Enhanced VSAM under 0S/vsv, IBH
Corp., GC26-3842, 1977.

Knuth, D. E., "The Art of Ccmputer Programming,
Sorting and Searching®, Volume 3, Addison~-¥esley,
Don Mills, Ontario, 1973.

Knuth, D. E., "The Art of Computer Programming,
Fundamental Algorithms®, Volume 1, Second Edition,
Addison-Wesley, Dcn Mills, Ontario, 1975.

Ve
References 137

[}

LORI74

LUH70

BARTT7

MICHT®

MRIT7Y

HULL

ROTHT 4

SENKT2

SENK75

SERK76

Lorie, R. A.,, "XRM - An Extended {N~ary) Relation-~-
al Memory", IBM Cambridge Scientific Center, Cam-
bridge, Massachusetts, 6320-2095, 1974.

Lum, V. Y., "Multi-Attribute Retrieval With Combi-
ned Indexes™, CACM, Vclume 13, SNumber 11, ppes
66(0-655, November 1970.

Hartin, Jd., OCcmputer Data-Base Organization®
Second Edition, BPrentice-Hall, Toronto, Ontario,
1977.

Michaels, A., "Seccndary Indexes as Access MNodels
for Relational Data Base Systems"™, Ph.D. Disserta-

ticn, Department cf Ccmputer Science, Northwestern
University, Evanston, Illinois, 1976,

MRI Systems, ¥SYSTEM 2000 Reference Manuyal®™, MRI
Systems Corp., Austin, Texas, 1974,

Mullin, J. K., "Retrieval - Update Speed Tradeoffs
Using Combined 1Indices®, <CACM, Volunme 14, Number
12, pp. 7795-776, December 1971,

Rothnie, J. B. Jr. and Lozano, T., M™Attribute
Based File COrganization in a Paged Memory Environ-
ment", CACM, Volume. 17, Number 2, pp. 63~69,
February 1974,

Senkc, M. E., et al., "Concepts of a Data Indepen-
dent Accessing HNodel®, ACH-SIGFIDET ¥orkshop on
Data Description, Access and Control, pp. 349-362,
Denver, Colorado, November 1972.

Senkoc, M. E., "Specification of Stored Data Struc-
tures and Desired Cutput Results in DIAM II with
FOFAL"™, Proceedings of International Conference ¢n
Very Large Data Bases", pr. 557-571, Farmingham,
Massachusetts, ACF, New York, New York, September
1975, :

Sepkc, M. E, and Altman, E. B., "DIAM IXI and
Levels of Abstracticn, The Physical Device Level:
A General Model for Access Methods", Proceedings of
the Second International Conference on Very Large
Data Bases", pp. 79-94, Brussels, Belgium, North-
Holland Publishing Cc., New York, New York, Sep-
tember 19785,

References 138

SEVE7b6a

SEVE76L

SOFT74

STONTY

STON76

STRET77

TSICT4

I8IC75

WHIT74

HONGT1

YAQT78

Severence, D. G. and Lohman, G. #., "Differen-
tial Files: Their Application to the Maintenance
of Large Databases™, ACM-TODS, Volume 1, Number 3,
pp. 256-267, September 1976,

Severence, D. 6. and Eisner, M. J., "Mathematic-
al Techniques for Ffficient Record Segmentation in
Large Shared Databases", JACHM, Volume 23, Number 4,
pp. H19-635, Cctobker 1976,

Software AG, "ADAEBAS Introduction®, Software AG of
North America, Reston, Virginia, 1974,

Stcnebraker, M., ¥WThe Choice of Partial 1Inversions
and Combined JIndices", 1International Journal of
Computer and Informaticn Sciences, Volume 3, Number
2, pp. 167-188, Plenum Press, New York, New York,
1974,

Stonebraker, M,, et al.,, "The Design and Implemen-
tation ¢f INGRES®, ACM~-TODS, Volume 1, Number 3,
pp. 189-222, September 1976.

Street, A. and Wallis, W., "Combinatorial Theory:
An Introduction, Charles Babbage Research Centre,
St. Pierre, Manitcba, 1977.

Tsichritzis, D., "On Implementation of Relations™,
Technical Report CSRG6-35, Department of Computer
Science, University of Toronto, Toronto, Ontario,
May 1974,

Tsichritzis, D., "™LSL: A Link and Selector Lan-
guage®™, Technical Report CSRG-61, Department of
Computer Science, University of Toronto, Toronto,
Ontaric, November 1975.

Whitney, V. K., "Felational Data Management Imple-
mentation Technigques"™, Proceedings of ACHM-SIGMOD
Workshop on Data Description, Access and Control,
pp. 321-348, Ann Arbor, Michigan, May 1974,

Wong, E, and Chiang, T. C., "Canonical Structure
in Attribute Based File Organization®™, CACHM, Volume
14, Number 9, pp. 593-597, September 1971.

Yac, A., "On Randcom 2-3 Trees", Acta Informatica,

Volume 9, pp. 159-170, Springer-Verlag, New Ycrk,
New York, 1978.

References 139

Table_of References

IBM?I”b E £ i] » - » L] » * » » » » L] E d E * » £] » : 2 » * . *
IBUTLA 4 4 o o o o 2 o 2 3 o o s o o 5 = o = » o . v e
IB&76 f.v - E » » * » » » » » * * » * » » * £ J - 2] » * » »
IBM?B& » E J » » » - » - - » » E] E] » L] » » » » - - » » » »
IBE?ab » » » » » - » - » » L] E] - » » » . » £] - 2 » » » »

O W OOy U W W

IB ﬂ ? 1 » * » . - » * » * » Ed » » » » » » » R 4 » - » » » . e
IB M? 3 a » £ » » » L) - -» * - » » » L d - - EJ » LI 1 » » » » *
IBM?S » » » 2 L) . - » L4 L 2 * » » » * - £ d £l » Ed E] -* » - »
ci NC? a » » » » £ » L J » * » » L - » L » . » » » - L d » » »
ﬁR I? i‘i’ » » » » * - » » » » - * 8 » * » » » £ d - L d * L » »

EI NC—]Q *» » - - L] . - . L 4 » L » » » - » » - 2 » E I) . 10
BACH73 4 4 4 4 o 4 4 a4 s 4 5 2 4 o o 2 s e n 2 s e e 11
IBN74c T 3 a2 s s m . s s s »® B s s & 2+ 2 » s s e » = s » 12
CODDTO v 4 4 s v o 4 a v a m e w e e e e 4T
CODD?O A L e O T T P, o » 13
WHITT74 , . A T R L T 15
DATET?T7 . . * % B B s s 2 s s B 8 A s 8 A e . .m2 s 3w .» 16
IBH74C . + » » A R e T T T T 16
CODD72 s s s 2 s s s T B 2 @ B B e B A s s 2 8 ® s s s . 17
STONTSE 4 4 4 o o 4 s o 2 2 2 o o o 2 2 o » o »_ 2 e » s a 18
BROD75 LA e e e I R T e T T T T, 19
e
ASTR76 4 2 4 4 o 2 o 2 2 2 o 2 o o o s 2 s » o o » « s o« 20
SOFTTH 4 4 4 o o a o o 2 2 o 2 2 s 2 s o o o » s e s s 2. 21
CODATT & w4 4 4 4 o s 4 4 5 o 2 o o s o 2 o = o o« 2 o » 23 |
ANSITS A T R R T T T e 23 !
SENK72 e v s s a2 e A e L L I I S e, 23
SENK75 . . L A A L L e e 23
SENK76 A A e e S T T O L 23
IBMTT o o 4 s 4 5 2 2 2 s 2 2 o « o » s » o 2 2 2 o o 33
IBN74c A A e e L e I S . T T T S OO 35
FERC78a L S T L e L T . T ™ O, 41
KNTT75 M A e A L e T O L L S T S 41
SOFTT4 A A A e e R I I T T S S 41
HOFF75 . A T I R . T T L P, 42
STONTSH = 4 4 s 4 s 2 o o s o s o 2 2 = 2 o 2 o = o » » » U2

140

ASTR7E 4 s 4 4 4 o o s o o o » 2 o 5 o s » » + .
SEVE76b * % 2 2 2 2 3 B2 3 2 B3 B s s w2 » 3 o #® s a2 » » 5C
TSICTY 4 2 4 6 o & 2 2 % o 2 o 2 2 s o s « o » ¢ o » o+ 51
TSIC75 . . A e L e T L L T T 51
SEVE7HE v 4 4 v 4 4 o o 2 2 2 2 2 s s s s o = 4 s e s o+ 52
IBH7HC & v 4 o 4 ¢ o o 2 ¢ o o o o o o s 2 o o o o o o . 53
SEVETBA & v 4 4 4 o o s 5 2 2 2 s o« s o 2 2 s s o o4 . 56
BLOG70 . ., LA e L L R L T T 56
SEVETO2 & 4 5 4 o 5 2 s o o o s o 2 s o ».e 2 s a2 2 s+ » D3
FERCTBD 4 4 4 4 4 2 o o 2 o o o 5 o s 2 %2 o » s+ o+ . 88
ESIA?G 2 ® ® = a2 2 » ® 2 s 3 ® e & » * @& 3 e » . » » 77
MART77? . . R T T I e R T Y S O 82
IBMTHC 4 4 o 4 5 2 4 o o 5 s 2 2 s o o = » s o s 2 e @2 2 B3
LUN70 A T R T T 85
LU?‘E?G . o 8 =2 8 = - » & » .= o » » . * s » . = . 3 - » . 86
WONG7T1 . . A L I R T L 88
ROTETL A T R L e e T L T 89
BENTTH &4 4 v 6 4 e e 4 s s 4 5 2 s o 2 o o s s o o o o 4 89
HBUANT3 4 v v v v a e v m e e e m e e e g9
ﬂICH?ﬁ * . @ . e . ® * @) s @ . . * @ E 2 T . e » 89 r :
YADTB 4 s 4 4 s 2 2 4 2w a s e me e e e e . 89
STRE77 . A A T e T . T T 53¢
HOLLTT 4 4 s 6 0 6 o o s 5 2 3 o o » o 5 s 2 5 o o« o o . 92
STON74 . A A e S T e L T T 92
BERRTT & 4 4 s 4 4 s s s s 4 4 4 s o s 2 s s o o o w0 o 92
HAERTB 4 4 4o 4 4 o 2 4 2 s 2 o o o o 2 o s = » » » = » 94
DATETT &+ 4 4 e 4 s s o 2 s 4 o o vt e e g5
KNUT73 . . A T T e L e L T T 98
BAYETT & 4 6 o 4 s e e s s s e e e e e e e e e e, 101
IBM73D 4 4 4 4 4 4 o o 5 s 2 2 2 o 2 2 o 5 2 o o » = » 101
HELDTS o 4 ¢ 4 s 4 4 2 o o o o 2= 2 » » = » e s 2 2. s s = 102
HELD78 & 4 v 4 4 4 4 4 4 4 o o s s o s s s s s o s o 2105
CODDT5 & & v 4 e e et e e e e e e e e e e . . 120

141

