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Abstract

This thesis pro','ides a parallel, graph based approach to discover conservecl regìons

such as motifs ìn Protein sequences. The motif discover.v problem has gainecl lot of

significa'ce i'r biologlcal scìence o'er the past decade. Recently, r,arious approaches

have been used srrccessl,lll' to discor¡er motifs. some of theur are basecl on proba-

ìrilistic appr-oach and the otirers on a combinatorial approach. Tiris thesis rolìou,s a

graph-based approach to solve this problern, in partìcular. using the icìea of de Bruijr
gaphs The de Bruij'graph has been successfully arìoptecì i. rlìe past to solve prob-

lens such as locai multiple aligrment and DNA flagment assembly. The proposed

algorithni ha¡nesses the power of the de Bruìju graph to <ììscover the corse¡rred re-

gior.rs in a proteiìì sequence. The sequentia.l algorithm has z0% matcires of the rrotil.s

*ith the r'fEME and 65% patter'rratches with the Gibbs motif sampler. The algo-

rìthrn ìs redesigned and parallelized on the high perfbrma.nce computers a'ailable on

the Wcstern Canada Rese¡rr"h Grid (WestGricl). Perfbrmance analysis was urade on

a pure distributed memorl' luachine using o¡l¡' message passing ancì on a hybricl r¡a-

chinr: using shared and clistributed access space. Experiments shou,ed that the hyìrrid

i.rpÌementation runs 3 times a"s fast às the pure distributecì memorv implenentafion.
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Chapter 1

Introduction

A motif is â repeating pattern in a biologìcal sequence that is conser'ed clurirg the

process of evolutìon. \Iotif disco'ery is a'cry inportant problem in biology. It fincÌs

applications in DNA or protein sequence anaÌysis, cornprehenrìing disense suscepti-

bilitl, ard cliseasc cure. Numerous motif cliscover)' a.lgorithms have beel proposecl.

scientists have explored both combinatorial and probabilistic motif disco'ery ap-

proachcs. Yet, the quest for elficiert and faster algorithms continues.

Graph theory is plays an important role in computalional biologv 134]. Grapli_

based algorithrns provide a simple and quick solution to cornputationall-r, intensive

problems such as DNA {ragment assembly [22] ancì rnotif discor.ery. However, the

amount of literature a'aiìal¡le on motif discovery using graph algorithms is not pro-

portionaì to ibe potential of the graph-based algorithms.

Nlotif discovery/fi.ding is computatio'ally intensi'e. In the literature, r,ery lèu,

attempts have bee'made in designir.rg parallel aJgorithms for. this problern. In this

thesis, we develop a motif discovery algorìthm based on de Bnrijn graphs artd paral-

lelize this algo'ithm on a cluster. The algorithm has tu'o phases: graph construction

a'd graph tra'ersal phases. In the graph construction phase, as the name implies, a
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de Bruijn graph is constructed. The graph tra'ersal phase identifies thc motifs. Both

these phases are parallelized. Besides an efficient pa.rallel algorithm, the a¡chitecture

on rvhich the algorithrn is parallelized is crucial to the performance of the algorithm,

The graph co'struction phase rec¡uires sharcd address space rvhile the gra.ph tra'ersal

phase requires distributed access space. Therefore, rve have para.llelizetì the aigor.itìrm

on a hybrid architecture u'hich ha.rnesses the pou'er of the sharcd ancl distributed ac-

cess space. The hybrid a.rchitecturc is a clustcr of dual processor nodes available on

the \A¡estGrid consortium [27] (High perfbrrnance computing infrastructure available

across British columbia a'd Alberta). \4¡e exploìt fine grain parallclisrn r','ithin the

nocles and coarse grain parallelìslr ac¡oss uodes oI the cluster.

\\/e have lbund that orrr parallel a.lgorithm rvas successlil in mining signals lbr

a larger number of scquences and at a faster rate when compared to some popular

motif searching tools sucÌr as l\'IEl,IE 12]. The results of tl.re sequential algorithm are

pubìished ir the Bioìrlormatics and Life Science Computing svmposium fg]. The

next section explains few terms necessary fbr understanding the thesis. It is a short

journey fiom cell a¡chitecture to protein manufãctrrrìng.

1.1 Cell to Protein

Lifè begins in a cell. A single cell contains a copy of the genetic information. This

genetic i:rformation governs the growth, behaviour and reproduction of al organism.

A cell contains a nucleus (onl¡' preselrt il eukaryotic cells such as hunan cells) which

is the bullding block of the cell. Nucleus consists of .ucleoplasm, nucleoli and cajal

bodies. The nucleoplasm primarily consists of ch¡omatin. Chromatin is the base

nuclear material r¡'hich is responsible for the manufacture of chromosomes. Each

nucleus is made up of 23 pairs of cluomosomes_ Chromosomes a.re long strands of
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DNA (deox-vribo.ucleic acid) rvhich contain the genctic inforrnation that is required

fbr a cell to frr'ction. In 1953, \Àiatson and crìck founcì the currert st¡.cture of the

DNA, Figure 1.1 [29], which is a cloul¡le helix. Each DNA molecule consjsts of two

strands (or chai's) trvisted like a corkscreu' and linked togethcr by a pair of bases.

Tìrere are four ba-ses in DNA molecule, namely, adenine (A), guanine (G), cytosine

(C) and thymine (T). Adenine aln'ays forms a base pair rvith thvmine and guanine

forms a base pair rvith cytosine. Therefbre, the tr'.'o straucls of the DNA are linkecl

rvith either of the tt'o base pairs, AT or GC. DllA is macle up of genes (a human

Call

,a:!.::j
;' r r:.({ tí ii t{ Itrl! li: .{.i .¡i r'i

I / F Sl+,1 r2
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Figure 1.1: St¡ucture of DNA [29]

genome contains more than 30000 genes) also called a^s bìueprints. Each gene contains

data lbr the synthesis of a u'ique protein (a complex 3D structure present in aninal

and vegetable tissue) for the construction of the bod;, of an organism. proteins are

'::_;t ':,/

4..)-- '*'
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made up ol 20 difÌerert kinds of amino acids. \!'hile DNA is a 4 letter alphabet (A.

C, G ard T) a protein is a 20 letter alphabet. Tl.re ltrocess jt u,ìrìch DNA converts

to protcjns invoh'es t*o stàges: lr¿7¿scripfion ald tran.sLatiar¿. Il the transcriptiorr

stage, ân intermediate rcpresentàtion encodecl iu the Ribonucleic Acìd (RNA) makes

a replìcatiol of the protcin coding infonnation ol the gene ancl produces a singlc

stranded mRNA (stands for rlessenger ribonucleic acid). The rRNA also has fbur

bascs like the DNA I'ith T replaced by U (base Uracil). Then thc protein making

machinerv tr-anslates the mRNA into alt amino acid sequence of a protein. This

process of transforming a gene's information to protcins in called as gene expressi,on.

The tralscription (DNA to RNA) and trârslation (RNA to proteins) is the cenfral

dogm,a of nolecular biologv [16, 301.

l\,lotjls. also callecl as Tt-anscription Factor Bindìng Sites (TFBS), play a vitaì role

during the transcription stage in the regulation of thc gene cxpressiorrr . Ever.v gene

has a regulatorl' r'egion (regulatory sequence). The regulator¡' regior contâins trall-

scription fãctors (proteìns). The regulatory sequences along *'ìth the transcription

lãctors determile the stâte of the gene (either turn-on or- turn-ofi). Figute 1.2 [Z]

Presents regulàtory rcgions in prokayote and eukarvote genes. lf a cell gets iniected ln

an organisn, a specific imrnunity gene is turned-on. udrich produces proteins to cìlre

the jnfectecl cell. Every gene contains certain short strilgs callecì binding sites in the

regulatory region, t'hich are responsible for trrrning on such immulity genes. The

transcription factors unìte *ith these binding sites at so'eral locations. These sitr:s

wlrich contain (bind) the transcription factors are called motxls 116]. All ihese binding

lllorv much oI the gene's info¡marion should l¡e convertecl to proteins is done by the cell, thereby
regulating hhe gene expression. we can bhink of having a circuit, in the organism's body vhe¡e nocies
in []re ci¡cùit are geÐes connected by srvitches that reguìate tlle geDes. II a srvibcÌr is c]rarged in sone
lvay. the ci¡cuit also changes. Gcne regulaíion is one of ¿he rrell known ¡esearcb a¡eas in nrolecula¡
bìology.
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i:uk¡:,,'ttl qe ne

Figure 1.2: Transcripion Facto¡s ald Regulator¡, regions l7l

sites are about the same length. Horvever, they are not so easy to locate because thev

are buried in a l.ruge ar¡at, of characters. The next chapter explails DNA and protein

motifs. horv thev are representerì and wh-r, it is difäcult lo linrì motifs.

The pioneering t'ork of Pevzner ei al. 122] introduces tl.re application of graph

algorithm in r.arious biologicaì problems such as DNA fragment assembly anrì locaì

multiple sequence aììgnment. The next section discusses the motivation of this u,ork,

t;t

l¡i

lÈi
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1.2 Motivation

Pevzner et al, [22] eflectively use a de Bruijn graph in their DNA fragment assembler

EULER (assembles thc entire genonle sequence liom fìagnrents of DNA) to resolve

repeats2 in a genomic sequerìce (a secluencc rcpresenting the entire genonre). The au-

tltors constn:ct a. de Bruijn graplì that represents repeats in the fbrm of e<ìges. Al edge

u'ith llultiplicìty greater than one is treated as a repeât. The cle Bruijn glaph trans_

fbrn.rs all the edges rvith multiplicity grea.ter tha. one into a silìgÌe high,*,eight edge

(proportional to its multiplicìty), thus provrcling a clear s,av to resolve repeats. Ac-

cording to Pevzner et al. the graph-ba.sed approach ibr fragment assenbJy is quicker

and more eflicient than the trâditional o'erlap-lavout-consensus method [22]. DNA

lia.gmelrt assembly is not related to our rvork ilt any *,av. Ho*ever. the iclea to use

a de Bruijn graph for motif finding origilated front the research rvork of pevzner et

aì. Though a. rnotif and a repeat are entirely diflerent entities. the methocl that is

used lbr identifying repeats ìry Pevzner. et al. r:an be succcssfîlìy entplol,çd fbr motif

disco'ery too. Here, i'stead oT icle'tilyi'g rcpeats, rr-toÌe re¡retìtive. conse^.ed ancl

shoÌt patterns are jdentifìed. \,Iore r.ecently, Zhang artd \\ia ter-nr an [41] Iollowed a

similar approach for local multipJe aìignmelt of DNA sequences. Thc¡, h¿ys usecl the

de Bruijn gra¡th to build a cousensus sequence that conlains :nost of repeati'g anrl

coltservecl patterns (not necessarily motifs). Furtherrnore, they perfbrrn a local pair

n'ise alignnent to find subsequences of each sequence tlÌat nàtch rvith the consensus

pattern. As mentioned in their paper, motif discovery :s in fact, a subproblem of tl.re

multiple local alignment proìllem. Our work is profbundl¡, influetcecl bv the research

ellorts mentioned above. The only other researcher \\¡e are àl\¡are of who uses a de

zRepeaLs are replicas of a part or the enti¡e DNA sequence, rvhich ¿-re prcsent along rvith the
o¡igilrâl sequence.
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Bruijn graph lbr notif finding is Patwardhan [20]. patwardhan has cleveloped an

applicatìon fo¡ r¡otif discovery using messy de Bruijn graphs, u,hich is availablc on

the inteÌnet for testing purposes. Hov'c'er. Pat*ardhan,s u,ork does not study the

efliciencl' of the graph based algoritlim on a Parallel platfbrrl.

Problem Stateìnent: l,lotìf Discovery is an NP-compìete pr.oblern [1]. Owing to

the huge arlount oI sequencc data available. therc is a need lbr eflicjent comPutational

tcchniques to reduce the computational tìme fbr discovering motifs. The problen.r is,

though seriaì algoritl.rms are quite effir:ient i' discovering ..rotifs, they lâil rvhen s,e

need to fiud motifs of smallel length in huge arnount of clata. In such cases. the serial

algorith:r'rs eithcr take a verV long time and large ànìoullts of memor,r, or cornpletely

breakdo*n. I-Iencc u'e have considered a parallel versio. u'hich is capablc of findi.g

snaller and even less significant sig'als. and *'hich is caPal¡le of hanrìling the entire

genonic sequences. The parallel version is designed to ltreak thr: menorl, balrier and

o\ercome tlre ìssups l'itlr data sizc.

In this thesis, our focus is on clcveloping a graph baserì algorithm for motif clis,

coverl'and parallelizing the algorithm for lãst r-esults on a dàtâ slze lar-ger than few

thousand seqrrences. As nentionecl earìier in this thesis. graph algoritìrms algorithms

are f¿rst and easv to visrralize. The advantage of a de Bruijn graph is that it isolates

domains of similaritics. Hencc it is quìte eâsv to trace areas of similarities in thc

protein sequences. Further, the de Bruijn graph has an elegant u,ay of representing

the nodes and edges. Since every node represents a subsequence of a given sequence,

there is no need to maintain a separate dala structure to store the node positions.

etc.

\À/e have chosen to parallelize the gìven prob]em prima.ril)' because of the vast

amount of protein sequence data available for analysis. secondly. *'e identified regions

in orrr aìgorithm whicli are highly parallelizable- The serjal algorjthm sborvecl excellent
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peÌlormaììce ultlil the data size u'as about 15N,iB. Horvever, beyolcl that the algorithrn

failed to handle tl.rc huge amount of data, rìreleby yielclirrg undesired results. It has

succumbecì to the overpoÍ'ering computational intcnsity and insufÍcient memor¡,. The

parallel algorithm comes to rescue ir such situa.tions by overconi.g these lirnitàtions.

l{ence *e clìosc to port the serial algorithni to a parallel machine. The 
'ext sectiou

rvill explain thc contributions of this thesis.

1.3 Contributions of this Thesis

This thesis aims to perform motif discot'ery on a larger scale. Instead of perfbrmi;rg

motif discover¡, on a fèÌ' scquences or a lèr¡, hundred seqÌrences. I,e'ish to take it to
the genomic lo'el. This requires high perfbrmance parallel conputing.

Here are some cotìtributions to this thesis:

o Developlng an effìcient graph based algorithn for lilding rnotits

¡ Parallelizing the algorithn.r ol high pcrfor.rlance conputers for fast results on

large data sizes. Verv IjtNle work exìsts in the literature on parallel algorithms

fbr notif discoverv.

o Harnessilg the pou'er of the computer architecture and fir.rding a balance

tu'een shared and distributecl mentory machines. \Ä/e have implemeltecì

algorithm on a hybrid architectule, a. cluster of dual processor machines.

. Studying the performance of the seqr.rential anrì parallel algorithm.

o Comparìng the correctness of the results obtained fiom our algorithm with that

of populal softlvare such as tr'lEN,fE.

be-

the
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'rhe rest of thesis is orga.ìzed as fbllor'.'s: chapter' 2 presents notiis a:rcl r,arious

disco'erv approaches to clate. chapter 3 discusses the state-ol-the-art motif discor¡erl,

approaches. Chapter 4 presents par.allel computing àrclìitectures. Chapter b is a

cìiscussion on the prcr,ìous research efforts in parallel n:rotif discovery. Chapter 6

details both seq'entia.l and paralleì algorithm proposed in this thesis. Implementation

rnethodology and Rcsults ¿re dìscussed in chaptcr z. Fina.lly, concìusiorrs and lÏture

rvork are prescnted in Chapter 8.



Chapter 2

DNA and Protein Motifs

Tbis chapter explains the irnportance of moiifs in proteins. \\¡e vu'iìl briefly cliscuss

issues such as protein structures, the importance of sequence aliglment ar.rd rrotil

discovery in protein sttucture predictiotr.

2.1 DNA Motifs

In tire prer.ious chapter', rve described thc trauscrìptior.r ¡rrocess for a particular ge:te.

The process starts ìr¡' bìnding transcription fàctors (or proteins) ln speci{rc sites (calle<ì

bir.rding sites) in the pronroter region of the gene. A promoter region is a regiorì tlìât

helps to deternine the next occurrence of the gene. The transcriplion lãctors may

bind to sevcral binding sìtes. This r¡ay happen because a transcrìption factor may

control sevelal genes in the DNA sequence. The trarrscrìption factor has â conllon

DNA sequence ltattern and js of the same length. These conrtnolì sequence patteì.ns

ale ca.lled motiJs. The common sequence pattern lbr nost of the transcription fãctors

is unknorvn. Resea¡ch in the laboratories for finding notifs is greatly underr','ay in

molecul¿r biolog¡,. fI61vs !'sr, this is a time consuming task.

10
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2.7.1 What is the motif finding problem?

Transcriptio, fãctors co'trol several genes in the DNA seque''ce. If ole par-ticuìar

transcription Iactor controìs five genes (gene1, gene2. gene3, gene4, gene5) as sho*n

in Figure 2.1, then thcre are bìding sites in the promoter of the genes, r,here the

tÌanscription fãctor binds. suppose the promoter regions are also given. Tl.re proble'

nos' ìs to determine the binding sites of transcription fãctor and whether $,e u,ill be

able to lind them r.'ithout kror','ir.rg their locatÍon ir advance. If rve lind the bilcling

sites then *e should be able to fir:rd the transcription lactors. Note that the bincling

sites are simila.r to each othc' but not identicaì. Therefore, the problem is to fincl

a notif (common sequence pàttern) that represents bincling sites fbr an unkno'r,n

trar.rscription fãctor. The higìrlìghted regions in Figure 2.1 illustrate motifs ir â Droteir.ì

sequencc.

h.rÂ.orusr,w LA VALFsrlowpwsqvr.,{MìIYLAR Dcl¡mo¡¿l¡o
ÁJì,..{Vf -{4: ..AI ].j ]iPI.SW]LA VASF]rSF.IrI EIIEIüEIE
GsLtGAcürQ1LT Gt"¡tA M HTfARDïr,ry c,J,uRïLRANG AsMm cLïL
hTGRGLTYGSY\¿MEN¡N.UGILLL|TI,MWGATVITNLLSAIPYiGTTLWW i
GGFS VDKATLTIJTATH¡SLIIINAIV LVHLID S NS DK]PTMT TTiKDILGLLL

I{-TAILI] VI¡SPDLlGDPDNlTPAM HYTARNDI.]PLNTPPHTRS]PI{OG

GvLALirEllËUUlmrpLLHr sKQR slr.FR;s QCLFï',ILAÂNuILTW

Figure 2.1: l\'Iotifs in a proteil Scquence

2.7.2 How is a motif represented?

A motif can be represented as a Positio' \Äieight \,fatrix (plVX4), Hiclden \,larkov

lvlode.l (HN{14) [40] or as a consensus string. The p\4¡À{ and the string based repre_
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senta[Ìons are the mosl colnlllor] u'ays fbr expressing a niotìf. In a P\\¡À,f. given the

four bases A, c. G and r and string l. a matrix of size I ¡.4 is createrl u,here eac}i

slot ìr the matrix indicates the probabilit-r' of each base beìng in that column. For

exanple in Figure 2.2 [36]. the Probabilitv of ha.r'ing base A as the first letter is 0.1.

If S : AC AAT, then P(.9) (probabìtity of S) ìs 0.1 + 0.8 + 0.b * 0.1b * 0.1. lf rhis

probability is greater than â ccrtain tlrreshold ihen ìt is called a bind,ino slfe. In the
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Figure 2.2: Position \\¡eight \4atr-ix [36]

stri:rg bascd represcntation, a motil is represcnted as either a corìsensus sequence or a

r-egular expression. For examplc, over the alphaliet A.C.G.T. a fixecl length l :4 has

4r or 256 stri.gs of "cardiclate" notifls. ln this example, the enti¡e search space is

defined. As can be seen this is an exhaustìve procedure. There are other flexibllities

that can be introduced in the strinB based rePresentation. For example, rve can allo*

d nismatches, say d: 1, thetr the candidate motifìs. "AAAT,', .,AATA", "ATAA",

etc. are all matches to the molif , "AAAA,'. \\ie can construct â matrix representing

the entire candidate motifs. The mat'ix indicates the 
'uml¡er 

of times each base

(A,c,G and r) occurs at each position in the canclicrate notifs. Trre ba^ses that rrave

maximum frequency in each column fbrm the consensus sequence (or motif). lf the
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lrequcncy ol t*o l¡ases is equal ln â r¡ sequence. the' the motif can ha'e trvo r-cpre-

sentatioÌrs. For exanrple, the màtrix ln Figure 2.3 136] rcpresents trvo motifs na.mely

"ACGAC" or "ACTAC" as indicated by the last row in rire natrix (note that G ancl

? have same fiequency in column 3). The consensus string'oclel is an enumerative

algorithrn and is guaranteed to produce the optimizerì mocleì since every possible no-

til is considered. lt is an exhaustive search process. It can handle lengths of less than

l0 Tl.re running time of the model is, therefbrc, exponential. In this thesis. r,e rvill

use the cousensus string model.

Ftgure 2.3: N4atr-ix lor dcrjving Consensus Sequence [36]

2.L.3 Why is motif finding difficult?

Àfotil ìs like an encrvpted message ir a ìarge array of characters. \,Iotif searching

rvould har.e been easier il all tìre motif patterns r¡'cre exactl) tlìe same. Hou,ever, as

it can l¡e seen from Figure 2-1, all motifs are not exact replicas of each othe¡. Ther,

difTer bv at least two positions. The motifs patterns change because they undergo

mutations. ln addition to that thele is no standard deänition for a motif structure.

A motif can be of any length (usually up to 20 bases long). Thc huge amount of data
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available for analysis makes motif findlng even more clifficult.

Till norv v'e have discussed motif discovery in DNA sequences only. Horvever.

notif findi'g hâs tântamount importance in the three dimeusionaì proteins. The

fbllou'ing sectio. r'ill explain the structure of proteins. their importarce in biologv

and the application of motif djscoverv jn proteins.

2.2 Proteins

In a humar body, proteins account fbr tbe tissues, musclcs, the immune svstem ancl

numeÌous lunctions rvithin the cell. liot only in human beings. ìtut protcìns play a

vitaì role in the li{e cycìe of livilg organisms. Proteins are esscntìally rr¡anufactured

by 20 a:,ino acids. A human body makes fe* of those ami.ro acicls, rvhile other.

anino acids come fiom protein diet. Amilo acids are importart because they ìra'c

tìre ammunition to syntbesize proteins. Amino acìds are rcpresented bv aìl lerters in

tlre English alphabr:t except the lblÌou'ing "8, O, U, J , X,2,.. The arrangement of

amino acid sequerìce in proteins define their structure ald the functional properties.

2.2.L Structure of Proteins

Proteìns have 3 main structures namely: primarr,, secondary and the teÌtiârt, struc

tures.

The primarv structurc js just a single dimensional, linear amino acjcl sequence [1g].

Fjgure 2.4 [28] shorvs an example of a prinar)¡ structure of protein callcd L¡,s6711¡p 1231.

Lysozvne protects us fiom bacterial inlêctìon by rìestroying the cell rvalls of the bac-

teria. Lysoz¡.me is part of the human body and it is present in ìruman mucus anrl

tears. Hydrogen bonds among the amino acids in the primary structure result i, tlìe

secondary structuÌe of proteins [19]. In this phase, the strâight chains âre twisted to
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Lysozyme-primary protein structure

Figure 2.4: Prirnarv Stnrcture protein 
[2g]

form alph.-heiix (coil or spìr'al), beta-shccts or strancls and sometimes turns or lo.ps.

Alpha-helices and beta-sheets are shou'u in Flgure 2.5 lta]. The seconcìary stmcture

of proteins àre more stable ìu comparison to the printarï structure ol proteils. The

secondary structurc gives more strengtl.ì and flcxibilit-r' to the proteins. Alpha-ìrelices

can be found i'myosin (muscle protein). alpha-keratin (proteìn of hair). Beta-sheets

can be found in bela-keratin o¡ fibroin (protein fo,ucl in silk). This gi'es us an

idea of ho* strong the secondar¡. structures of proteins are. Tlrere is an intermediate

stage betu'een the secondary structure anrì the tertiary structure, know¡ as the super_

secondary structure. These structures are often treated synonymous with structural

motifs in proteins. we nou' knorv tlìat secondarv structure of proteins can have an
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alpha-helix. Srqrer-sccoldarl' structures âre à step ahead with nlore two or more thal
t*o alpha-helices. r'hicÌr may also include turn or- loops. Tertiary structure ol pro-

Figure 2.5; Secoldary Proteirr Structure [1,1]

teins are complete three dimensio.al proteins lbrmcd as à result of attriìctions bet*een

alpha-helices and beta-sheets in secordary structuì-es. \\¡hen tìre secondary structures

are fblded int{l three dimensional structures, thev beconre the tertiar¡, structute of

proteirs. Figure 2.6 lt5] ;s a 3D illustration of a protein callerì c'tochrome *ith fbur

helices The tertiaÌy structure determines the linction of protein. Though r,,'e lorow

that tertìar¡, structures are 3D. it is realll' jiffiqll¡ to predìct the actual structure

of proteins. The linear chaìn of amìno acitls (prina'v structure of protei's) deter-

mine the tertiarv structure of protei;rs. The codi'g inlbrrnation present in the DNA

encodes information for the primary stÌucture of proteins onl¡'. Hence. rve ca only

predict the tcrtiary structure of proteìns 1iom their primary structures [1g]. protein

structure prediction is one of the major research topics in Bioinformatics.
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Figure 2.6; Tertìary Protein Structure [15]

2.3 Protein Structure Prediction

Protcins can be classified on the basìs of simil¿rities i. their sequences anrl struc-

ture [19]. As discussed earlier, tìre 3D plotei' structure ca' be preclictecl äon its
arljno acid sequence. However, similaritf in sequences does not aìrvays reflect the

similar-it¡' in tlle structures anrì r'ice-versa. Actually the number of sequences out-

number the total rumber of structures n'hich are discovered to date, naking the

protein structure predictio'e'en more cliflicult. Therefore, the proteìn structure pre_

diction problem can be lbrmulated as: Given a si'gle-dimensional protein sequence,

can rve predìct its exact three-dimensional structural element (tertiàry structure)'i

Aboui 1000 protein farnilies have been identified. whose amino acid sequences

Cytochrome C
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share similarities. one of the leliabie u'ays to estal¡lish relatlonship l)etwcen Lwo pro

tein families is to find sirlilar scquences betu'een them. similar sequences nost ofien

imply same biochemical activity. same evoÌutionar¡, origin and structural simìlarit¡,.

sequence alignme.t is a popular approach fbr c'letecti.g similar regions in tu'o or

more sequences. There a¡e trvo methods fbr lterlbrning sequence alignment, namel¡,;

pair-r'ise sequencc alignmelt and multiple sequencc alìgnment.

2.3.1 Sequence Alignment

Pai¡-rvjse alignment is essentiallv alig.ing t*o sequences in t*o ro¡r's and fincling the

characters or sets of matching chara.cters. Tìrere arr: tu,o kinds ofpair-rvise alignmen¿s,

global alignmeut and local alignment. In global alig.ment sìllilarities between t*o
entire serluences arc desired. Henr:e tu'o l¡ig strings arecompared at a stretch. For-such

comparison the tu'o scquences shouìcl be almost sirrrilar. Herce globa.l alignment is

uscful t,hile comparilg t\\,o protein sequences of the same family (most of tl.re region

is conser'ed in Protein sequences). Local seque'cr: alignme't on the other hand.

locates l.righ deusit¡' ¿¡s¿s of sirnilaritv ancl ignores the regions that sho* Iess or no

sinilarity. It is quite usef'l to fir.rd regìons ol sin.rilarity in sequcnces that belong

to diflere.t fanilies (or species) but still have lêrv conservecl regions i' comrnon.

Figure 2.7 is an illustratjon of local alignment and global aliglment.

l'lrrliiple scque'ce Alignmc't (I'ISA) is alig'i'g more tiran tu,o sequences in such

a wa)¡ tha.t most common regìons in all the secluences are arra,ngerì ìn order. N,ISA

is more reliable than ihe paim'ise alignment because the pair-r,ìse sirrilarities do not

exhibil regions of r'.'eak-similarities betg'een sequences. Hence the similarities traced

by pair*'ise alignnents âre stâtisticall), less significant {161. Whereas in NISA, ma'y

comparisons are made simultaneously, thereby ajìorving to unearth'ery weakly sirnilar

t8
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MCGYYGNYYGGLGCGSYSl|| | t | |t
MC GYYCNYKCGMGCMSYS

Global Sequence Alignment

MKMCMVCGSYS||t
GNYYGGLGCGSYS

Local Sequence Alignment

Figure 2.7: Local and GJobal Sequence Aliglrnent

regrons.

All the alignnent procedures discrrssed until now use "score" to determine the

quality of alignment. Any alig'mcnt with best score is considerecì to be optimal

aligurnent. DJ'namic programmi'g algorithrns are consiclererì to give mathe.atically

most optimal solutio:r. The technique is to reuse the previous snlution ancl recursivelv

define the optimal value for evcry suì:-problcm. Finally an optimal solutiol is derivecl

lior¡ the partial solrrtiors at each stage. Dynamic algorithms can be appliecl for

globaì alignme't. Iocal aìignment and local nlultiple alignment. Tìre only drarvback

rvith these algorithrns is, they are suitable for hmite<ì data size. and hencc cannot be

appìied at a genomic lcvel.

There are tu,o approacires to perform nultiple sequerce alignment namely : global

muJtiple scquence alignment a.d local rnultiple sequence alignment. As mentioned

earlier. global \'fsA is an alignment that is performed on the entire sequcnces. pro-

CCMCGYY

l| |
MCGYY
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teins that belong to satne farnjly and have large scale sequencc sìmilarities are suital¡lc

for global ÀlsA one of the u'ell knorvn approacrres to perfbrm grobar \'tsA is prrgres-

siue, global alignm,en,t. Progressive alignment aclopts d¡,namic programrlìng ntetliod

for performing global NfsA. Here. the program starts aligni'rg most r-elated sequencesJ

and increme'tally adds ne* and ìess related seque'ces to the existìng alignment.

CLUSTAL\Ä¡ [38] is a popular globaì NISA program that adopts trre progrcssi'e align,

mellt technique.

Local multlple sequence alignment in protein sequences locates similar pâttcrns irì

a set of sequences. Tìrese patterns include "Blocks" a.d "\Jotils". ln the co'tcxt of

proteins, blocks are conserverì regions witl]out gaps anrì r,bich occur rvìthin a protcin

familv. |{6.o'svs¡, rnotils are conserved regions among a set of protcins. r,lrich rrav not

belo'g to the same lämily but can exhibit similar biochemical activitv. As is evidcnt.

motif cìiscovery/finding is a sub,problem oT local multìple alignu.relt.

In the context oI proteins, motifs are cither structural motils or seq,ence notif.s.

Structural notìfs are "folds" o' three climelsional structural elemerts [1g], These

three dimensional struct,res are forned as a rcsult of the combi¡ation of seconcl¿rry

structurcs. As discussed earljer- structural motifs are treatecl synon¡,mous l,ith super-

secondary structures. Thcl' are a combination of alpha-helices u,ith loops. rvhich cau

be arrangecì in a three-dimensional space. structural motifs are one ol tl:ose special

folds that occur in many proteins and r'hìch enable us to determine the biological

lìrnction of a protein. Finding structurar motifs is a 
'ery cìifrìcult problem. X-rav

crl'stallography is one ol the reliable experimental approaches. It is terv expcnsive

and time consuning. On the other hand, researchers are trying to clevelop programs

r¡'hicìr can output ar amino acid seque.ce for a structural motif and vice vcrsa.

R.ecalli'g the protein structure precliction problem (ca'u'e predict the 3D protei'

structure from a given amino acjd sequence?), sequence motifs also pìa¡, a vital role

'20
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ln proteiÌÌ structure plediction. As rlentionecl earljer, sec¡uelce motifis are conservecl

amino acid pâtterns. Thev arr: diflþrent from strucrural motifs. Sequelce .rotifs a¡e

inlportant because they help us ir cletermini'g the relatìo'ship among pr.otein fam-

ilies 119] The preserce of similar sequencc lrotils in clifferent protein ,'.ay indjcate

that t'he t*o proteils share the sarne evolutionary orlgin. ha'e similar biologicaì func-

tion ancì nlay be stt ucturally similarl. Filding the fãnily relatjonships amolg the

protcins is the key to nraking proteil structural predictions [1g].

2.4 Summary

h:r this chapter ,o'e cìiscusscd l¡oth DNA and proteln motil's. proteirr structure pre-

dictio' is a 
'ast topic. Though u'e covered ferv issues such a sequerce alignment.

and structure rnotif dlscovcry, our pr.ìnte fbcus is o¡ derir.ing the reJationship betryeen

sequence motìf discovcry anrì proteirr structure precìiction. \À¡e have also explainecl

hou' sequence motif cliscovcry is a sub.Problem of local rnultiple sequence aligrment.

In this thesis. r','e ha'e cleveloped a graPh-bascd algoritlrrn that tra.ces sequence mo-

tifs in protein sequcnces. The lbllo*i.g chapter *iìl discuss various sequence motif

finding/discovery tccJnìques. lt u,ill also give a description of the de Bruijn graph

construction.

21
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Chapter 3

Motif Discovery Approaches

This chapter attempts to explain some of the best-knorv. motif fincling algorìthms.

À{oi'if fìnding algorithms can be cla^ssified into the followi¡rg categories; probabilistic

and combìnatorial

3.1 Probabilistic Approach

Gibbs sa'rpling [10] a'd Expected x,f¿ximization (ENf) l13j are rlÌe t\.o staristical

computi'g algorithms tlìat use the probabiìistic models. soli*are packa.ges such as

Gil¡bs motif sampler [39]. AlignACE 1251, PhvloGibbs l3bl ancl Bioprospecior [18] use

Gibbs sampling strategy to find the tra.scription fãctor bindi'g sìtes. lvlE\,IE 12] is

a popular motif searching softrvare that uses the EÀ,I algolithm.

The ENI aìgoritìrm fi.ds the maximurn likelihood estinlâtes ol a probabilistic mo-

tif nodel. Gibbs sampling algorlthm uses a randomized sampli'g (probabilistic sam-

pììng) technique to identifv the motifs. The complete explanation of the EX,{ and the

Gìbbs algorithns is beyo.d the scope of this thesis. Also note that algorithms that

adopt the probabilistic approach (for exa'rple \,fEÀ,fE and Gibbs Sampler) detcct

22
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kno*n .'rotil's o.lv (the starting point of at leåst one motìl is k'orvn). Therefbre,

they are less successful in detecting pJa'rted motits 
'r,hose starting points àre rot

knorvn (subtle motif.s). In this thesis, rve intend to discover unknos,n motil pattens.

Therefore, rve do not adopt the probabilistic approach.

3.2 Combinatorial Approach

Anothel motif finding approach is the combiuatorial approacìr. The unclerlying pro_

cedure for algorithms such as TEIRESIAS [24], the R.andom project,ions 
[6]. Sp_

STAR [21], X4ULTIPROFILER [17], and \\¡INNO\VER l21l is a combinatoriat ap_

proach.

combinatorial motif algoritÌrns look for the pa¿terns tllat are exact or .earlv

exact matdres of the given motif (represented in a string pàttern). The combinatorial

alrproach ca' be explained as follorvs; Given a motif pattern and N scquences, each

sequence subdividecl into ry'* subsequences, tìre combinatorìaì approach trÍes to fin.l

the Flamming distance bet*een a.n). srrbsequeucc in the give. set of subseque'ces

with the given motìl pattern, The best rna.tch is the subsequence wìth thc least

Hamming distance fiom the given motif. In this section we r¡'ill give a brieï overvier,,,

oT the TEIR.ESIAS. SP-STAR, the Random projections, 
N,,f ULTIPROFILER a.ncl the

\ /INNO\Ã/trR algorithms.

TtrIRESIAS {5. 241 is a pattern enumeràtion algorithm. A pattern can be a set of

bases, r,,'hich nray cortain gaps or substitutions. TEIRESIAS is an exhaustive pa.ttern

search algorithrn tlìat enumerates longer pattcrns from a set of shorter pâtterns. con-

sider the follorr'ing pattern defincd by the user: ,,AGT.TCTC..GTC,'. Let ,S'denote

the alphabet (4, C, G and T fbr-a DNA sequence), every patter. should begin anrì

end with ârÌy letter defined in the alphabet S. The '.' is used as a don't care character
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tbat can be substituted b\'ànv lefteÌ fìom S. Therc are tu,o phases in tJre aJgorithm.

Tlre fìrst phase is called scanninq. The scanning phase identifies aìl the elen:rentar¡,

patterns with the specified number of non-u'ildcards in this examplc_ In this exam-

ple, "T.TCTC" and "CTCA.G" are valicl short pâttcms. Horvever, ,,AG.GG,, is not

a valid pattern in the given p¿ìttern. The secord pbase is callecì ¿o¡¿r.,olz t'on. The

convohrtion phasc combines the elenertarl' pafterrs ol¡tained from the fìrst phase

to get â longer r.alid pattern. lrr the above example the patterns ,,T.TCTC,, a.cl

"crcA.G" conbine to fbrrr "T.TCTCA.G". hr tlie sim ar rashion trre argorithm

tries to extend all vahd elementarl' patterns olì both sicles of the current pattern to

generate new Ìong pattcrns. The process r:ontinues urtil mor-e specific patterns that

satisly the user constrâi'rts are gererated. unlike tllc I,{E\IE and Gibbs sampling

algoriihms, rvhich find approxir'ate molif.s. the TEIRESIAS algorithm guarantees to

find the best and exact ',otil patteu. since TEIR.ESIAS is an exrraustive sea'cir

algorithm. in a l'orst-case scenario. it takes exponential time.

Pevzner ancl Sze 121] address a problem kno*n as Ih. l,tl otif Cha enge problem or

a Pltnter| moliJ problern. The challenge prollìem âttcmpts to fìnd an unkno¡r,n motif

(lengtlt = 15) rvith ai mosr 4'rismatches il a set ofsequerces eacrr oI rengtrr 600 bases.

such motifs are called subtle nlotil¡ r'hich are intractable by popular aJgorithrns

such as \4EN,IE. Gibbs motif sampler ancì the TEIRtrSIAS. \Vhereas, the Random

Projectio's aìgorithrn by Buhler and TomPa [6], Sp-S.tAR. N.,IULTIpROFILtrR and

t he \VINNO\À ER algorir hms sollc r he rìtallerrge prt.,l.-rle:rr.

Pevzner and sze [21] introduce the sP-srAR algorithrn to sol'e the challe'ge

problem. sP-STAR uses a scoring furctio' calred the utm-r.f-pars function to choose

an initial motif. After the initial motif ìs chosen, sp-srAR uses a loca.l improvement

heuristics to improve the lnitial motif. The local impro'ement stratcgy car emplo¡,

eithe¡ a consensus string strâtegy, or a Gibbs sampling stràteg)¡ to find all the sub_
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sequerces lhât rnaxìmize the scoring functior. sp-srAR sho¡r,s goorì perfbrmance

(returns correct motils) fbr scquences Jess or-equal to 800. Hos,ever, the perfbrmancc

degrades and sP-STAR genera.tes random notifs instead of the required motifs orce

the length of the sequence is ot'er 900.

Though SP-STAR successfirll¡' finds r,he (15.4) nrotili (that is, rnotifs of length

l5 *'ìth 4 mis'ratches). it rvas unsuccesslul fbr more subtle patte'rs such as thc (1g,

6) pat'terns. Buhlcr and rompa [6] provirìe a solution for tracking cliflicult planted

notifs such as (16.5) and (18.6) in t$'entv sequences eadr of length 2000 using ranrìom

projections. A proìection is achieved by partitiorring a sequence in a *av such that

all candidate motils are hashed into rz different buckets. The buckets that receive an

trnusualh' higher numlter of candidate rnotifs will have a hjgher probabìlit¡, to procluce

subtlc motifs. A local searching techniquc such as the Gibbs sampling technìq,e

or the \4El\tlE can be used on each bucket ro uneartll the clesired motif patterns_

similar to sP-srAR, the randon projections algorithm pro'iclcs a platlb'n for the

local searching aìgorithns to discover more subtle patterns. Hashing candiclate motils

into buckets rvill give better starting points for the local searching algorithms, thus

enabling thern to hit upon renote motifs rvlijch are generalJy missecl b1, other motif

findirg algorìthns.

To further push the lirnits of subtle motif disco'ery. lieich a.cl per.zner 
l1z] propose

the IIULTIPRoFILER algorithm. \'f ULTIPROFILFIR is based on an approach callerì

TIte Ertended, SampLe Driuen (ESD) approach. ESD approach tests suìlscquences

oìì iust à sample scquence without testing it on the entire da.ta range. First. ESD

approaclr tries to find/genelate ail the k-ne'ighbours) to a given substring in the gi'en

sarnple secluence. By generatjng all the À-neighbours2 for a gìven substring m. it

lIf two substrings dille¡ lìom each othe¡ by at n'ìo$t À nunrber of subsl,itutions/m.tarions.
'?tr{ULTIPROFILER actuaìlv restricrs tÌre ,t-neìghbourìiood to just 2k neigbbours fo¡ each sub-
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is likelv that q'e ha'e the 
'rutated fbrm of that substring in aìl other sequences.

upon comparison of n¿ *'ìth rhe À neighbours. it is eàsy to find u,hich base is o'er-

represeùted (occurring a lot of times) in each posltion, thereby drawing â consensus

pattern. Thus, the ESD app.oach estimâtes the initial motif. \,ÍULTIPROFILER

made t*o improven,erts io the ESD approach. First. \f uLTIpROFILER mairtâiìls

a dictionary ol the ,k nelghborrrs lbr e'ery substring. seconcìJy, it uses multi-positioÌral

profiJes A single positiona.l profile is.iust like a consensus matrix sho*n in Figurc 2.3.

A bi-positrolal profile is a matrix that contaìns the tu,o letters (such as a.a. ac. ag)

i' each cell ofthe first column a'd t*o positions (such as (1,2) (1,J)) in each cell

of the first rou'. The actral consensus patterns are cleduced using the rìictionarl,.

\'rlulti-posìtional profiles are enployerì to sepàråte the a.ctual patter.n lio'r the many

randonr words or noi,se nt the dictionar¡,. N,f ULTIPR.OFILER detects rnotifs that are

usuallv intra.ctable bv the Random Projections. lt has gìven 9g% ¡esults for cìetecting

(15,4) motifs from 20 sequelces each of lergth 3000.

Pevzner and Sze 121] propose a. graph basecl motif fi'ding algorithm caìlecl \\¡IN-

NowER [21 , 5]. Since the thesis is l¡asecr on a grap]r tÌreoreticar approach. r,r,e rvì

exp]ai' the \\¡ll\NO\;\iER algorithrn ìr detail. WINNOWER divicles each sequence

into subsec¡uences. It builds a multipartite graph using the subsequerces. Trvo ,,sim-

ilar" subsequences in different sequences have an edge. The motif finding problem

is reduced to finding cliques in the graph. The criques represert motifs. Trrereforc,

motif discoverv is clique discovery in the muìtipartite graph. wlNNo\ /ER algorithm

uses a technique that iterative]y removes edges that âÌe not part of any clique. The

final graph contains only cliques that represent motifs. A cìuster of cliques represents

a cluster of rnotifs,

2b
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The \\¡INNO\\¡ER algor-ithnt takes a set of unaliglecì sequences as input each

of length n. The user pror'ìdes the length (l) of ihe n.rotif requirecl alo.g *ith
the allorvable number oI rnismatches (d). Consìder S is a set ol sequences, S -
{sl, s2,.., s¡,}. Ever¡' seqrÌence s; is brokcn in a subsequence at every positiol .T r,here

i: j < (t1+ l) - 1. For exarnple. i{ the sequence length is 6. then 3 subsequences

each of length ,1 can be genereited. Therefbre, the total nunrbcr ol subsequcnces of

Icngth l that can bc genera,ted fiom a given sequencc oI lengtìr ?? are ?? + 1 - L Every

subseqrrence becones a'ertex of a graph. Trvo rrertices have an edge onlv rvhen the

hamming distance bct*eel them is at most trvice the ruml¡er of allo*ed mismatches.

so if d is the allo*ed number ol mism¿rtches in a seque.ce, then the number of actual

posltions *here the substr-ìngs in both vertices *ill cìiller is àt most 2d. Also. an

edge exists between t\\'o r.ertices onlv if the 'ertices are in two cliflerent scquenccs.

The edges represent the actua.l motif in questjon. Figure 3.1 136] and Figure 3.2 136]

illustrat'e gràph construction and edge filtering. upon co'struction of rl.re graph. the

¡trt¡acrl.tqal¡c tqàt¡(ÈaqÀ.ÄÀ6a,ttGGitiìtn¡tqîãqt¡cqi

arq;'r rtr,rar:,raacr,crc(r;rtt ¡(r ar [r].11r rr.Jrûr.t¡ f ar)

ù(ddLL0('rrdL(d¡rt( I r¡drtddt r gJdt!r(ÀA,\ql;wìt(lú.rur6r

qt':à¡ t.qaåà ÁÀr.,l.tt.tqÂtÐ¡rrI|'å¡ÀllÀ,À.ri.,Àtlû{tàl..¡

Figure 3.1: Cìique fbrmation [36]

algoritbm tries to locâte ìarge cliques in the graph. Accorclirrg to pevzner and sze

a de'se rnultipartite graph rvith sequence length of 600 produces as manv as 20.000
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alg¡r.00'Jrta.T0at,â0ÀÀ9,4É.ACGttGGGtâlà¡ t gga gi ñr !a tad

a I9¿C r TcAAIAAAâCGGC6GGT gC rrrrf cgùrrrr gngt.ìtrcr r ggg

qcaaIC ftcgåa(c aaQcT ga 0aa ltqqalgtcÀAAAtÁArGGaGr66cäc

g t( ddt(gadddàdc ggt ggdggd t t t c,\¡ÀÂ,trAGGG.r t tGqdc ( 0r t t

Figure 3.2: Cliques rvithout edges {36]

"spurious" edges (edges that are not part of any cJique, but still seem to be realistic

sìgnals to a motil). Locating a large cllque il the grapb is an Np-cornplete problem.

Therefbre, instead of ìocating cliques first, \ArlNNO\\/ER uses ¿ìn ilerative filtering

stràtegr¡ to prune all the spurious edges and un*arted ve'tices fio'r the graPh. l'
surlmary, \VINNOWER rvolks jn two steps. First, construct a graph rvith edges be_

tu'eeu substrings (verticcs) in diflcrent sequences and having a hammirg clistance of at

txrst 2d. Figure 3.1 [36] shorvs the graph construction with tlìe scquences, tl.re ecìges

connecting the sequences and thc cliques. The dotted linr:s represcnt spur.ious eclges

arncl sequences. Second. ideltifv the edges tlìât are not part of an¡, clìt¡.re and prune

tltcn. This step also ìnvolves locating and removìng unco:rnected vertices (rveak ver-

tices) Perforn the second step ìterativcl¡' u'til all the spurious ecìges are remo'ed

alcl onlv cliques remaìn, Figure 3.2 [36] shou,s the cliques a.fier etìge filtering.

\\/INNO\ /trR. is tested fbr fìnding motifs of lengtl.r 1S rvith 4 mismatcbes (15.4)

Ììr t\\'eìrtr scquences rvith 600 bases [21]. While other motif fìndilg sofiwa¡e tools

such as \,IE\4E and Gibbs Sampler failed to recognize significant motifs in such lo'g

sequences, \\¡INNo\4¡ER gave a per-formance of o'er s0% even lbr sequences of length

700 bases. Hot'e'er, \VII¡NOWER suffers from certain disach,antages. petzner and
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sze [21] state that \\lNNo\À:ÐR is à computatjonâllv intensive algorithm ancì recluires

substantial amount of tine and memory. lt requir-es lot of memory to store the -'alues

of the edges. Also a huge amount of time is spent on cletecting the spurious erìges.

Pevzner and Sze also indicate that \\¡INNO\\¡ER slo*s down for larger sa.rples of

sequence data.

Thc algorithms detailed so far are the nìost state-of-tìre-art ancl porverfïl motif

discovery algorithms designed to find suÌrtle motifs. Ou¡ algorithm has close rescm_

blances rvith the wlNNo\\¡ER strategy. rvhich is a.lso graph bascd. The similarity

l¡etq'een the graph used in tbe \Ä/INNOWER stràtegv and the de Bruij' graph is

that both l¡reak the sequences into or.erlapping suìr-sequences. Both consider subse-

quences (character strings) as ve¡tices. However, ìn the de Bruijn graph. un.like the

\ ¡INNO\\¡ER stì'âtegy, al edge exists between a'y trvo overlappi'g subsequences i.
the same sequeìlcc. Il a de BruÌjn graph since eve¡v l-tup.le is representecl ìn tl.re fbrm

of an edge. every repeating subsequence (in this case a motif) a.lso becones an eclgc,

Therefore, thc edges form the potentia.l sites fbr conserved regions. The following

section explains tlle construction of the cle Bruijn graph,

3.3 Construction of a de Bruijr¿ graph

A de Bruijn graph is a gr-aph whose verticcs are sLrbsequences of a given sequence and

rdrose edges indicate the o'erlappiug subsequences. consider tl.re lbllorvi.g sequence

ACCGTCT. Thc secluence can l¡e resolved i'to thc follou'ing fragments of length 4:

ACCG, CCGT. CGTC. and GTCT. Each fragment is called an l-tuple. An I - 1 tuple

is obtaincd by furiher liagnenting ea.ch l-tupìe. For example, ACC and CCG are I _ I

tuples of ACCC.'lhe I , 1 tupìes form the nodes of the cle Bruijn graph. An erlge

exits between a.n¡¡ t\l¡o I - 1 tuples and the edges represent the l-tuples_ Figure 3.3
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illustrates the 3-tuplc de Bruijn graph colìstruction for the sequence ACCGTCT

30
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Figure 3.3: Consiructio¡r of a de Brujn Graph
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Figurc 3.4: Gluìr.rg of R.epeating Edges

multiplcity of each eclge is lepresentcd ltl, u,r 
"O*" 

I'ith a rvcight. Initially every edge

gets a $'eight 1. In case t*o co'secutirre 
'ertices 

(r,ertices u'iih the specifierì overlap)

repeat, then the eclge nÌultiplicit]' is increased (in this case an increment in rveight

of the edge by 1). Similar to tlle stràtcgy employecl b¡, psv2¡s¡ et al. [22]. rve glue

the repeating edges thercby increasing the multipliciiy of one single edge as shor,,,n

in Figure 3.4. The conse¡vcd regions are most lìkeì¡, to rcside on tlle most repeatecì

edges, i.e., edges rvith greater 
'.rultiplicit¡' 

(rvhich ha'e greater rveight attached to

them).
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3.4 Summary

In this drapter. ¡'e pror,ìde the background r'.'ork on Probabilistic ancl combinatorial

approaches fbr the motif discovery. we explaìn the construction of the de Bruijn

graph uPon rvhìch this thesis is based. Imple'renti'g the de Bruijn graph on a parallel

platform is difficult because it is ba,sicallv a recursi'e graph. Thcreibre, there are a lot

ol deperdencies. so it is imPorta't to idertily regiols t'hich a¡e fit for paralìeìization.

The lbllou'ing chapter rvill provide an introcluction to paraììel computing.

31



Chapter 4

Parallel Computing Platforms

A seque'tiaì conpurer may take hou¡s or sometimes cìays to solve a. computationall¡,

intensi'e problem. Parallel computing comes to the rescue of such problenrs. parallel

processing allows multiple processors to work concurrertly to solve a time consumi g

problem lt oflèrs aclditional comp,ring resources such as cpu cycles a'tl menor¡r.

ln 1966 N'fichael J. Fly" [9] proposed a classìfìcation for parallel conrputing archi-

tectures popul¿ìrly knorvn as Flvnn's taxoìtollìy, Flylrn categorized parallel compulers

ìnto single Instruction si'glc Data (slsD). single lnstruction \,Iultiplc Data (slr.fD).

\'fultiple Instruction sìngle Data (À.flsD) and ÀfuJtiple Inst.rction N,fultìple D¿ìta

(\'llNlD) computers.

SISD sf'stems are essentially serial computers. OnJ¡' 6¡" instructio¡ ìs processerì

o' a single dâta streà''. Therelbre the least amou.t of concurrency is exhibited by

sISD computers. cìassica.l PCs and n'orkstations *ith si'gle cpu fa under this

c aiì cgor,\¡.

À.IISD is a set of processors acti'g on the sub-problems of a single problem. lt is

basically asyncÌrronous in nature and has very lìttle importance in tìre present scenario

of parallel computers.
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ln SI\'{D svste'rs(see Figure,l.i [ll]), a single i'struction is executecì on several

processing uniis (CPUs) [11]. Hou,ever. unlike SISD and \,llSD svster¡s, thc same

instruction is executed over'rrltiple data uuits. Ever¡. processing unit is indepe'dent

of each other. The svstem is synchronous in natu¡e a.ncl all t.he processing units are

contloìlecì by one globa] coltrol unii. sll.,ID is suitable to u,ork on clata structures

PÉ

[rlMD architeclure

Figure 4.1: Control Stnrcture of parallcl plâfforms fl1l

such as arra¡'s and vecto¡s. The dala can be equally shared among aÌl the proces-

sors. L'onsider the fbllowing addition application clil : a[i] + ò[z]. Lr this operatìon

processor 1cân take eleme'rts from i- 1to 10. pr-ocessor- 2 fion i: l0 to 20, etc.

slxtlD svstems do not sho* good perfbrmancc *'hen conclitional stateuents (such as

if, else) a.re used and also i'cases r¡'here clata cannot be distributecl cquallv among

all the processors [11]. co'sider a scenario s,here there is a co.ditional stâtement

such as "if.. else". ln the SI\,ID systems â single i'structio' shoulcl bc executed on

all the processors. In this case, i{ certain conclition is true one set of processors run

while others are idle and the same in ca^se of an else conditiolr.

SIN'ID systerns are increasingl¡' beconing obsolete because of the fbllorving factors:
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Extelsi.'c design *hich l€ads to €ireâtcr plocìuction times, poor resource utilizâtìorì

(all thr: Processor"s might'ot be utilizecl àt the sanìe time u,hen datâ size is not

unjform) and performalce highly depends on tlìe rature of the appiication.

NIIÀID is the nroclern dar. parallel computer. These st,stems are elegalrt both a.rchi_

tecturalll' and functionall¡'. several processing elements *,ork on diffêrent instructio'

sets ald rvork or diffèrent sets ol cìata simuìtaneoush'. There is no centralized con-

trol fb¡ all the processirg elen'ents. Figure 4.1 111] illustrates thc diflerence bet*,een

sl\lD and x{IIID systems. Exccution of tl.re tasks is 'ot neccssarilv s.ulchro.lors.

thus rnakìng the s]'stem vs¡1r flgviþls.

\\¡orkstation cl'sters, svmmetrrc r{urtiproccssor (sx4p) processors, grid comprrt-

ers and nost present day super corÌrputers fall urrder this càtcgorï. À'rost of trre \,I]N4D

nachines fall ìlto the lbllorving categor-ies: Sharecì ntcmory machi:tes alcì clistributcd

nemorv nachiles.

4.1 Shared Memorv Machines

As thc rame sr.rggests. sharecl memor)¡ 
''àchines 

ha'e a comnlo. arìrìress space rvìrich is

accessibìe to à set of pÌocessors. All the processors u'ork inclepe.dently rvhrÌe sharing

the same memorv location. Figure 4.2 illustrates the share metrrory aì-chitecture.

Shared rnemorf is classified into two models: Unifbrm \,Iemor1, Access (U\,f A) and

Non-Unilornl À,lemory Access (NU\44)

u\'lA machi.es have a set of processors *itrr identicar processing speerì a'rì hard-

t'are co'figuratìon. AIJ processors have equal âccess to memory. so..retìmes uN,lA

machines are also kno*'n as synmetrìc N,Iuitiprocessors (sx4ps). Explìcit communi-

càtion among the processors via message pâssing at the hard*are level is not requirecl

in the case of SN'IPs. Programming in SÀ4Ps is also quiie simple and owitg to the
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Figure 4.2: Shared \lemory Architecture [11]

gìoÌ.'al aLìdress sl)1.e. d¡la "hari:rg is \(.r) eâSJ.roo.

A netrvo¡k of S\{Ps lbrm a NU\,{A madrine, arso knorvn as thr: "clistributed sharetl

rnemory machi cs". ln these machines, nìe'norv access is not unilbrm. Sinr:e the

SN4Ps are conlectecì, one SN.IP cå.n access tìre merrrorl. of another S\,Íp. Horvevcr. the

access time is not unifbrm as it the case of UNIA nlachines.

The nrajor dìsadvantage of sharecl nrenor¡' macÌrines is their inal¡ìlity to sr:ale lor-

large nurlber of processors. S¡'nch.onizatiol among the tasks is the r-esponsibility

of the prog'amncr-. Herce it is quite important to use locks and criticaì sections i.
shared memor_r' programming.

4.7.7 Parallel Programming using OpenMp

Open\'IP is becoming a standard pr-ogramming language for shared memory machines.

It is a clirective based Application Programming Interface (ApI) rvhich allo*s pro-

gramming in C, C++, Fortra'and Jar.a. Apart fi.om compiler directivcs, the OpelrN4p

API consists of runtime routines and environment variabÌes 1,11. Using tìrese compo_
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'ents 
of thc APl. OpenX.,lP can collvert ¿i selial code *,ritten ìr C. C++, etc., irto a

pa.rallel code ore of the goals of opr:'\lP is to pror'ìde a standarcl lbr pr.ogramrling

on shared nenor¡, architectules.

All the ope.xlP directìr'es ârc *ritten along *ith tbe norrnal c*t or Fortrau

code. The progran, runs normallv i. the scrial format until a' openÀ.{p rììr.ective

is t¡acccì b'the compiler. E'ery openx{P di'ective fbllo*s certain lbrrnat. A typi-

cal open\'lP dircctive is as iollo*s: "pragmo. omp {directiue nantel[clauselclausel..l".

Ever¡' gp"n¡4p djrective is prccederì )x praqma ornp. If we want to create a parallel

region u'here ail thc processors palticipâi,c, lhen the appropriate directive is ,,paraì-

lel" The clause can be an "lF" clause. If cert¿ìin statement evaluates true. then the

set of openx'lP threacls are r:reated ir the parallel rcgion. This is follorvecl ìr), the

varìable list. Sharecl I'ariables are eclualll' accessible to all tlìe processor-s. private

'ariables 
are accessil¡le olly to the illrìi'idual Ìrrocessors accessing then. Here is an

exanple ol an OpenÀlP directir.e for. parallelizing a ,,lbr-loop": ,,pmtqma omp para,llel

Jor delault ( sha red, ) pri.u a,te ( i.. j. myu ario b le s ),' .

Programn.rirg usi'g opr:'N{P is casy because b-r' adcl ng lèr' paralleì cli¡ccti'es to

the serìaì code, r,,e cån convert a seriaJ program to a paralleÌ program. No explicit

communication atnong the processors is rcquired. Frgure 4.3 [4] illustrates a typical

fork-join modcl that is adopted ir.r ar openÀlP progran.ì. Tlie founclation of oper.rNfp

is on the conr:ept ol nulti-tlrrcading. Elery Qpsn¡1p program begi¡s r,,,ith a ,,mas_

ter tÌrread" 14]. The p.ogra. is essertiali-r' serial until a parallel openNlp compiler

directive ìs encounte'erì. o'cc a para)Ìel compiler clirectìr'e is seen, the open\lp
progràm forks into a set of tlrrcads. This r-egion is also knorvn as the parallei region,

Each thread is independentlv excculed b¡' a separate processor or shared among the

processors. once the threads are executed, they join into the master thread and the

program is again serial from that point.
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*ffiH*
{ parailet region} {parailet regionJ

Figure 4.3: For.k-Join model [4]

4.2 Distributed Memory Machines

A cluster of inle¡connecterl rvorkstatio's rvhich do not ha'e à collmor memory. but

have a local memory, can be called as Djst¡ibutecl ì,.lemory machjnes. In such al
archìtecture. explicit message passing among the processors is requirccl lbr commu-

nicâtiÕr. The.efbre, the ret$'olk bandrvidth ancl the netrvork topologv influence the

per-formance ol tlie parallcl algorithm to a large extent. The¡c are various topoìo-

gies suggested in tlle ljteratuÌe such as ìrus, trce, stâr. mesh, hypercube etc. lt is

very inportant to choose the right topologv basecl on tì.ìe iì.rteÌconnection among the

proccssing elements. Sìncc distributed memorv machinr:s rely on message passing

for comnunicatiou, netu'ork bandwiclth pla¡,s a vital role in the time takel lor the

arri'al of the ruessages. Fig,re 4.4 11r] gìr'es â pictuÌe of the cìistributed nremory

netu'ork. Scalabilitl' ìs the biggest advantage in djst¡ibuterl memor¡, systens. Evel_v

processor has its own local memory, there is no neecl to explicitlv synr:hronizc the

tasks. Parallel Virtual \4achine (PVÀ,I) and l4essa.ge passing lnterface are t¡l,o main

libraries for distributed memor)¡ machines. since u,e ira'c employed N4pl ì. o'r the-

sis, r'e rvould likc to explain fêrv features of À{pl. \lpl is the current standa¡d for

rnessage passing on homogeneous cluster of machines. \,IpI ìs portable as it can be
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Figure 4.,1: Distributed },{emory X'lodcl Il1]

run of'arious platfbrms (rvhich have àì in,plementation of l,{pì such as La'r-\,lpl)

without changing the source code 14]_ The pa,ralielism in \rtpl is completell, specifiecl

bl'the user. similar to openl,IP, I'IPI creates ìts orvn ¡rarallcJ enviro'ment *ithin a

progr¿ìm. \4¡ìthrn the envirorìment \4PI recognizes the total number of processors to

be usecl ¿urd assigns a rark for ea.ch processoì' startiÌìg from zero. Tìrc col.nlnunìcation

anong tbe processors from tÌris point rr,,ill be via their rank.

4.3 Hybrid Model

The hvbrid shared-distribul.ed-memorv model is clrrster of machines which can su¡t_

po.t both sharcd-mer¡ory and distributed memory mechanisms. Figure 4.b [4] iìJus-

trates a typical hybrid model. There is no partìcular Apl rvbich enables us to rv¡ite

hvbrìd programs. Ho*ever the pr-ograms should i.clucle directives frorn ApI,s *,hicl.r

support sha.ed and distributed p'ogramming. A cluster of sN'Ips is a goocì example

lbr a hybrid mocìel. As discussed earlier, S\,fp's are primarily sharecl menory ma_

chines. Hou,ever. r'here there is an interconrection among â set of S\4p,s thel. behar.e

just like a cluster of work stations *ith distributed memory. Hence a shared memorv

can be uscd for smaller tasks rvithin the nocle and for large scale parallelisrn, the
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nodes across tlle clusrer can l;e ulihzed. The hvl¡rid mocleì is the curre t ancl fr:ture

Figure ,1.5; Hybrid \4odel 14]

trend in paraìJel computing. lt hàs thc adrantages of distributed anrl sharcd mem-

or¡, nar:hines. Thc¡' are currentlv used il all Hìgh Perfbrmance Computing (HpC)

opeÌatioìrs.

4.4 Summary

ln this chapter r¡,e have discussed 
'arious 

parallel co'rputing trends. \\¡e have ex-

pìainecl the earì¡' sl¿5.1fi..¡.n of paralleì cornputers. All the morìern parallcl com-

puters belong to ihe NII\'lD class. \\¡e have discussed tlle advantages arcl clisadvar-

tages oI shared a'd distrib.ted neno.-v 
'odels. I. this thesis rve have aclopted a

Hybrid model. \\¡c have rsed the high perlbrrna'ce corn¡:uting facilitics available

on the \Ã/estgrid [27] co'sor-tiurn lbr our experine'ts. \4ie rvill explain more about

application of ihe hybrid moclel on the motif cljscovery problem in Chapter 6. The

next chapter will discuss previous research elJorts to parallelize thc nrotif discor.ely

problem.
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Chapter 5

Related Work: Parallel

Approaches to Motif Discovery

ln this chapter, r'e will describe the literature ard previous 
'esearch 

ellbrts that aclopt

parallel cornputing techniques lbr the nrotif fincling problen.r. software tools have been

deveioPed tbat apply parallelization to the graPh-based approach. \À/e rvill describe

parallel motif dìscovery tools such as ParaNfE\,{E [12j. Specificalh,, u,e nill elaborate

on trvo recent ltarallel motif discovery programs nameJy ,,l,lotif discover.l, tooJkit,' þ¡,

Baldlin et al. [3], and ParSec¡ bv Qin er al. [23].

Para\'fEN'IE is a parallel program fbr the N'rEx{E sofTrvare. Äs rve ha'e r'entionecì

earlier. x"lEl\,IÐ is based on a probabilistic approach that uses the Expected l,Iaxr-

nization (EÀ'I) algorithrn. E'er since N'IEI,IE has becornc a popular'rotif searclring

sofi*are. thc number of users accessing tlìe svsterìr simultaneously has increased.

Therefore. ME\4E rvas ported over to the 400-nodc Inter paragon Xp/s platfbrm

usi'g a parallel progr.amming language called tr4p++. The pa¡a\{E\4E is scalable

for up to 64 processors. The origi.al N,IE\{E has 4 Jor loops. pa¡aÀ,fE\,IE paralJelizes

tu'o out of lhe 4 Jor loops- Every job submitted by the uscr is assigned ro g nodes of
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the cluster, G¡undy et al. [12] state that Par-axlE\lE sho*s an efficiencv ol o'er 70%

even fbr large sequence datasets.

sutou et al, [37] propose a parallelization of a motif clisco'ery rlethocl cailed the

l\fodified Prefìxspar.r method. Prcfìxspar is a clata mining teclìrique usecl to ex-

tract lîequent patterns fiom a database. \,lodified prefixSpa' is a 
'ariation of the

original methorì designed for fäster pattenì extraction. To rerluce the con]putàtional

tine taken. the Nltodilied Prefìxspan method is paralÌerized o' g processors. The

parallelizatìon method adopts a dyna'ric loacl balarcing schernc. u,here thc ma-stcr

processor generâtes a job pool and each sla'e processor gcts dâta. fi.om the job pool.

E'ery slave processor extracts most fiequently repeatecl rlatterns. o.ce a slave pro

cessor r:ompletes its job, the master job generàtes morc jobs a.cl irserts them i'to
the job pool. sutou et al. state that tlìe parallcl 

'ersior 
of tìie À{ocliliecì prefixSpar.r

is 6 times Íaster in comparison to tlle serial versìor.

B¿.ldu'in et al. [3], de'elop a motif disco'cry tool ca ed A[otiJ Discoueru TooLktt.

The toolkit uses graph algorìthms to predict the gene reg,latio'sites. O\\,ing to tlìe

speed and elficic'c¡, of the graph algorithns u,hr:r cornpared to other 
'rotif 

fìncÌing

algorithms, the cle'clopels oi the toolkit clloosc to make extensive use of tech'iques

aPplied in stàte-ol-the art gra.Ph algorithms. To disr:over thc bincìing sites (rnotil.s)

in a larger sample ol dà.ta (the comprete gcnornic sequence, not .just rìxcd rength

sequences), the tooìkit inplements the graph algorith'.r on a cluster of honogencous

nodes,

There is strikillg similarity betr¡,een the I'orking mocìels of the \Ä¡INNO\\/ER algo

rjthm and the motif discovery toolhit. The toolkit reso[,es t[e unaligled ancl ar.bitrary

sequences into overlapping s'uì:sequences. each u'ith a fixecl iengtÌ.r. ìt co structs a

graph usilig the subsequences as vertices. To iclentif¡, the compìex interconner:ted

regions in thc graph (vertex cover) the toolkìt emplo¡,s the graph algorìthrns such
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¿s \\.INNO\\¡ER. J'he molif discovcrl' tool not only idcrtifìes c]usters ol urotifì. l¡ut

also l¡riilcìs motif models (P\\¡\'Is lepresenting the potentiaì rlotifs) lion.r the cluster

information.

During the graph cor.rstruction phase. the urotif discover¡' toolkit constaltly builds

a graph of lesser size and lorver density using â \¡ertex reduction technique called

kc'nteltzalion [31]. The final oJrtima.l graph is called the kernel. The parallelizatìo.

process bcglns aficr the kernel is built. The second phase calJed brazcåíng uses a

tÌce strì.rcture to pr-obe the sea.rch s¡',ace of the kernel. Tlie mâster processor contai s

a schedulel that resolves tlìe c'ltire ker'.el into indepencìent subtrees and distributes

the subtrees to the sla'e processors or à maÌìâger-\\¡orker basis (ioìrs are assignecl to

thc slave processors on clenand dynamjcallr,).

Qln et al. [23] d*'elop a pa.rallel rnotif searching tool ba.secl on a seria.l motif fincli'g

tool callccì Parsr:q lr7). Parsecl is not a graph-based nrotif fincìi'g aìgorithrn. par-seq

uses a query (r'hich is in the form of a regular expressiotr surìr as (,4G1?C)-). I,hich

incorporates biochenlic¿rl and structulal properties of the 
'rotifb u'hile rra.king the

n.rotil search.

Parseq [33] uses ar a.Pproximate scarch algorìthrn tlìat retu.ls the best charac-

ter stÌings l¡ased on tl:re regular-cxpression. The client provicìes the regular exprcssion.

For exanple thc expression (taken fron.r ParSeq Lìocune tâtion) ,,(,4Cf)OX10 
/h.dptd(>

0)" sta'ds lbr a clefìnite string ACT follorvcd bv a cllaracter stri'g rvith l0 arbìtrar¡,

characters. Thc character string sJrould posses hr-drophobicity scor-e bìgger than 0

according to l{vte/Doolitle score [31]. Eve¡y regul¿r expression generates a ceì.tail

¡umber of hits. Tbe querv can be changerì aùd be nade more specific to obtain nìore

accuråte nìotifs. PâÌseq rrorks as a filter that rvill lurthcr na¡r.ow clou,n the search.

Qin et al. [23] parallelize the serial ParSeq 1331. The search is parallelized on

c.lient-ser'er based a¡chitecture. The parallel search is pcrforrned on the se¡ver side.
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n'hile the client places the rr:quest usjng a c1uer1,. All the processors ol the serrrer

side access thc seque'ce database to search fbr the motifs. The search space in the

datal¡ase rs equalÌy divlded into r¿ cìru'ks for n Processors. Eacrr processor gets its

o*n chunk of sequcrces against u'hich they scarch for the motif Patter's. The parallel

'ersion 
of Parse<¡ is tested or a homoge'eous .ets'ork of 32 processors. ein et al. [33]

propose to implement ParSeq on a hcterogcneous letu,ork in future.

Parseq is an advanced motif sea'ching technique that is designecl to search for

mo¡e variable notifs thàt are associatccl u'ith certain biochemical properties. parseq

expects tlìe client to read the documentatio' for building the regula,r expressions

because all those detâils are onl1, specific to ParSeq. The number of hÌts purel¡,

depelcìs on the description of thc nrotif in the query. Il the clescription is inaccura.te,

then the querv will return too many matches. r,ìtich is apparently a loophole in the

sofïu'are.

5.1 Summary

our u'ork invol'es paralielization of a graph algorithm. we use protein ser¡ue'ces

rvith variable length ns test d¿ìta. Both tlie \À¡ll,¡No\\¡ER algorithm and the motif

discovery toolkit developed ìr¡'Balchvì'et aÌ. [3] clo'ot seem to consider a *eighted

g'aph. Also. they co'sider a. cliqrre or a 
'ertex co'er to represent motifs. We usecl a

directed rveighted de Bruijn graph instead, ancr in our algoritìrm. the edges represent

potential motifs, not the co.rplex inte¡connected structures, Trre follou,i'g cìrapter

rvill provide an outljne ol our parallel algorithnt.



Chapter 6

Sequential and Parallel Algorithm

In this chapter, our graph ba^secì algorithm is explainecl. The algorithm *,orks i'
two stàgcs. in the first stage the rìe Bruìjn g'aprr ìs corstr-uctecr as cxprained in trre
section 3.3 of chapler-3. The second stagc js the graph tr.art rsal stage.

6.1 Graph Construction

A de Bruijn graph is a graph whose vcl.tices alc subsequences ol a given scqueì.ìce

and r¡'hose edges indicate trre ovcrrapping suì:scquences. Initialv a protein sequcnce

is broken into a set of l-tuples. Each l-tuplc is again brokcn irìto à set, of l - 1_ tuples.

An edge joins two overlapping I - 1-tuples as shorvn in Figurc 3.3. The multiltlicit¡,

of the corresponding directed edgc increases *hc, successir,e 1 - l-tuples rvitrrin trre

samc sequence or i¡r a different sequence repcat. This correspo'ds to an ccìge gai'ing

a higher *eight. This procedure is krorvn as gruing of silnirar edges. Trre advantage

with such an ârrangement as stated ìry pevzner et al. [22] is that it is quite easy to
ìdentìfy different regions of similarit¡, aÌnoug a set of scquences. TÌrcse high rveight

edges fbrm potential sites fbr conserved regions. Note that ar trre sequences are not
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part ol onc glaph but rrrade of rnanv subgr.aplis. Everv sequence has it op¡ sul¡_

graph Hou'er.cr. rvhenever there are similar regions ìn trvo cìiflerent scquences. the

sub-graphs overlap. Thus. the dc Bruijl grapìr is a set of ove¡lapping sub-grapJrs as

shou'n in Figure 6.1. Every line in Fìgure 6.1 represents a scparâte sequeììce_

Figur.e 6.1: Sub-graph Ovcrlap in Sequences

6.2 Parallelization of Graph Construction

lnitiallv *e cleveloped a ìrierarchial scheme rvhere indivirìual notìcs rviÌl colst,ruct olìly

a portìo. of the grap]r arrrì the entire assenblv takes place on a single master node.

Though the rlethod looks feasible, r'"'e fbund that this method is high\, cumbersome.

\\''hile a feu' nodes do the graph construction. others remaûr iclle. ln fact rve endecl u¡r

perfbrmìng more loops than tìre nor'al ser-ial progÌam. Even though lhere is suffi-

cient room ibr lïrlher parallelization. r'e $'ere rìot able to exploit it using clistributecl

ûemorv naclìines. In order to extract maximum parallelism rvhile not keeping an¡,

nodes iclle, rve shifted to the hybrid model.

ln the hyblìd rnodel e'er.), node constructs its o$,n glàph. The colstruction is
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parallelized using multiple threads. The adjacenc¡' ljst used to stor.e the graph locìe

inlbrmation is uscd as a shared data structure. Each thread updates the sha¡ed data

structure individually. In such an arràngement, thc time taken to construct the u,hole

adjace'cy list is equ.Jll' sharecì among the shared memory threads, thereby exhibiting

finc grain parallelism. once the adjace'cy list is constructecÌ. the graph traversal is

pcrlorme,ì or: i:rclilidual tr,,l,.s u-iug mesrâgp pasring.

6.3 Graph Tlaversal

The ncxt stage is graph travcrsal. A hash table contains all the nocìes as its keys.

correspondi.g to c\¡ery node is its adjacent node and the ecige connecting them.

maintained i' the fb'¡ of an adjacenc¡' list. The set of graphs obtairecl lrom thc

graph corstruction procedure lbllorvccl abo'e are highly c.¡luectecì rvith numerous

cycles and thus messy. The aint is to identifl. the clense regions of the graph rvhere

the edges ha¡,'e a high rveigìrt. since thele ìs no si'gle path that covers all the nodes

or edges, the best ï'âv ìs to individuallv trayerse each sub-grapÌr. For every sequence

whose first node has an indegree zero bccomes the stâÌting point of the tr-aversal.

Hence rve'raintain a queue of nodes that ha'e a' indegree zero. \ÀIe use a recursìve

Depih First searcÌr (DFS) fbr perfbrrring tìre traversal. h orcler to avoid fälling

into an inlinite loop I'hen cvcles are encountered, the algorithm visits each node

just once. The correspondi'g 
'odes 

co.nected to a given node ard the u'eighis of

the edgcs connccting the nodes ale extracted from the hash table. After obtaini'g

the high rveight edges. the algorìthm fìÌst tries to locate the entire repeated regio'r

called as tbe "acti'e region". An active region is a higìr,rveight region *here a lot of

sequences coìncide upolì a particular consecutive edge set. In other rvords, an active

region ìs a regior that contàins consecutive edges that have repeated themselves. All
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the high weight edges need not represent motifs r¡ecause there is a f¿rìr charce fbr

them being repeats. Hence the search is for more pron-iirent edges. Therefore r,,,e

tried to identily edges that ìrave more u'eight in an acti'e regio'in comPalison to the

other edges. Figure 6 2 represents the active regions r,ìth some eclges havi'g Ìrigher

rveights tìian other. From the figure one can observe that BC a.cl cD have â greater

CD

Fìgure 6.2: Actìve Region

edge weìght in comparison to edges AB and AE in rì.ìc active regio'ABCDE. This

concept has actuallv rvorked in mi.ing desirable motifs liom tÌre scquences. Ho*ever

our algorithm faiìed to recognize motifs that clo not exactlï matr:h with each otìter,

for example \'ÍNPPPQF and IvICPPPeF (rvith the seconcr positio:r difïcring). Hence

*e ha'e sought to make cha.ges in the way the comparisou of / - 1 tuples is nacle

in the initial stages. our initial strategr lvas to look fbr straight 1- 1-tuple :latcbes.

Later, in order to find motif rvith slight mismatches. u,e i'troduce a par.metr:r called

distaucc, d. Tu'o I - l-tuples rvith hamming distance 1 rvill l¡e consiclerecl as one singlc

I 1-tuple. The .odes that follow will connect to the gìr,en I - 1-tuPle clepenclìng

on the hamming distance fiom the alreacìy col¡ectecl ¡orles. 'I'his $¡a)¡ $¡c u,ere able

to uneartl'r subtle or rveak motifs. The harnming disra.ce clepends o, the amount of

overlap of the I 1-tuples u'hich in turn depends on the ini¡ial motif le'gth chosen.

Therefore. a longer I - l-tuple (> 7) *' r have the rìistance paraneter set to 2 so that

the hamming distance bets,een any tu'o I - 1-tuples is 2. Herrce t*o nodes rvith a

hamming distancc <: 2 rvill be considered as similar nodes.
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6.4 Parallelization of Graph TYaversal

As explained above. graph tra'ersal mainlv in'oh'es tr.acing edges rvith higher than

certain threshold *eight. T}ris is a completelv i'dcpendert process rvhich t-loes not

have an1' dependercies. Therefore, the wrrore traversar o¡reration can be performcd

individualll' on diflerert proccssors. The graph is cxtremelv large o.*,i,g to the hrge

amount of tcst data. The grapli traversal corìsrrres a significant amount of tine when

perfbrmed on a singÌe processor. In thjs scenario a djstributecl memorl, :nac}rìne rvilì

be o1 greater help in comparison to a srrarcd memorv machine. Thìs is because, during

graph traver-saì edges may be shar-ecl by processors rec¡uiring constant sy'chronization

u'hich is costlt'. ln the distriì¡uted memory machine, the <ìata is distributerì a.mong

the processors and cach processor pe.lb'rs the trave'saì inclepe'dently ald through

message passi1ìg fbr sharing o1 irlbrmation. ln the graph traversaì, coarse-grainerì

parallelisrn is exploitccl- Thcrelbre, rve chose to parallelize the erti¡e traversal process

on a distributed nemort¡ machine.

we acìopl' a cl¡'nanic "manager-*'orker" liamervork to perfb.m the graprr tra'er-sal.

E'erv rode l¡'ilcls its o*n graph usi.g the shared rremory (tl.re process explaìncd

above) o'ce the graph is co'structed, the 'lnanager" builds the zero inclegree queue.

The size of the inclegree queue depends on the number of sequences. since the indegree

queue contains the starting points for the traversal, they form the rvork units fbr

the *orkc' processors. Thercfore, rvhe'ever the *,orker needs *ork. the manager

sends a chunk of zero ìndegree nodes. The rvorker processor performs the clepih

first search. tÌâces the high *'eight edges and identifies the potential sites. once the

process is complete. the u'o.ker sends the results back to tlle mânager and requests

for more *ork. The u'hole process is an on-demand process, thus making it entirerl.

d)'namic The na.ager filters the.epeated pote.tid sites and maintains a fi.al vector
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containirg all the potentìal motif,s. The rìaråger u,orker com'runicatio, continucs as

long as the zero i'deglee queue is rot enptv. \Vhel there is not e'ough nork. the

manâger setìds a terminàtìon signal to all the rvorker processors.

6.5 Summary

Identif.ving snaller 
'iotifs 

(le'gth <: 8)ancl less signilìcant motifs (motifs u,hìch cliffer

by more thar.r 2 positions) il a huge amount or <ìata is a herculean task. There are

two reasoìrs) list mo¡e nulrber of comparisous to be made {or motifs ress sigrìficant

motifs. TÌie problerl becomes u'orse rvhe. the le'gth of the motifs tha.t rve are looking

are small. I1 the sequence Jength is 100, the number of l_tuples of le'gth g *ill be

93 (100 - 8 * 1) .nd the nrurber of I l-tupìes is 1g6. If a data file contains more

t'han 10,000 sequences, the number of I - 1-tuples rvill be 19,gg6. Hence the number

of comparìsons to be .racle rvhììe looki'g fo' ecìges greater tl.ran a cert,àin weìght (in

the tra'crsal stage) rvill i'crease exporentiarlr,. Therefbre. it is ìmportant to use an

apprÕpriatc dàtâ structure (such as hash tablc) to store the 
'ode 

infbrmatÌon. The

next chapter describes the irnplcmerúation in nrorc cletajl.
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Chapter 7

Implementation and Result

Analysis

This chapter discusses the impJementatior a'cì resuits ol the aìgorithnr. The algo-

rithm is also tested agàinst the popular X,IENÍE fbr correctress.

7.I Implementation Platform for parallelization

The parallel aJgorithrn is i'rplenented on a. cluster rvhich belongs io the \\¡estgricl l2z].

\\¡estgrid is a resource plovider rvhìch atìopts a grid-enablerì sl¡stem to fàcilitât€ High

Perfo'mance Computing (HPC). Currently \\restgrid ìs the biggest resource pro'icler

in Canada encompassing about 14 educational institutions in 4 provinces.

cluste's of computers located in geograpliically cliflerent locations u,hen connectecl

to lbrm one massi'ely po*erful computer, wrrich is callecr as a "gricl". Drug design,

rveather forecast patterns, protein folding. earthquake sinulation ancl particle phvsics

experiments are some of the numerous appJications of the grid.

The \\¡estgrid consists of various clusters s'hich 
'ary 

in their- design and the 
'ature
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ol problems they are designed to handle. Fo. example. the nexus ¿lncì the co¡tex

group åt the u.iversity of Alberta arc share<ì memor'clusters. The gJacier is a 16g0-

plocessor Beowull cluster hosted by the University of Britisìi Colunbia. Hydra is a

'isualization 
facilitv hosred b¡'rhe Simor Fraser uni'ersity. Further infornation can

be fbr.rnd on the official \\¡estgrid u,ebsite [271.

\\¡c have chosen to implement our algorithm o. the gìacier cluster. Gìacier corsists

of 3 head nodes (a'ailable fbr the uscrs) ancl 840 lBx,l eserver Blaclecenter HS20

machines r¡,'ith clual 3.0 GHz Xeon prorr:ssors. E'ery nocìe has about 2 to 4 Gb of

meÌrorl¡. On glacier-, C++ is supported by portiand GrouP 7.0_2 (pgCC) Intel 9.1

(icc) GNU 3.2.3 (g++) corrpilers. Both Intel and portland gror¡; o{ compiìers are

arailable for co.rpilirrg N{PI pr-oglams. lntel com¡rilers are available fbr the openN4p

support.

we have emploved the Iltel compìlers to compile our hvbricl Ì)rogram. \Ä/e rverc

u'able to rrse the Portland group of co'pilers becausc uo explicit support fbr openxlp

u'as pror'ìded. Though other cJusters, such as nexus: did providc conpilers {br hybrid

programs. rve did lacc fèrv technical ìssues which are r.lot resoh.ecì to <1ate. An irnpor-

tànt Point to notice he¡c is rhat. though clusters na'pro'ide support ibr distributed

and sha¡ed menìorÏ collputing "individually", r,hen u,e mix both paradigms, many

technical issues arise. For exarnple. a shared memor)¡ clustcr such as ,,Corlex,' 
does

not have Ct-l support for OpenÀ,fP. Since u,e adopted advanced C++ data struc_

tures such as hashtables, vectors .nd Queue *'e hacl to explicitly pro'ide the location

of the STL (standald template librar¡,) io compìle the progranr. On glacier, u,e I,ere

able to compile and ml the progràm without anv problems.
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7.2 Sequential Results

The seque'tial algorithrrr is implcmented using Java and c++ running on a Lirux

platform. Initialìy the algorithm rvas tested or the DNA sequences thai belong to

the prokaryotic farnìly. The advartage *'itrr these sequences is that the1, have 
'erJ'

lo* or negligìble numbe' of repeats. ln addition to that, the comnron repeating

patterns in the prokaryotic scquenr:cs (the ,,TATA" pattcrns) are alre¿rdv knorvn.

upon successful initial testing *e testccì the algorithm on the protein sequences. \\¡e

chose to start off *ith the protcir responsible for rerlox (oxidatio' and reduction)

reactions called "cl'tochrome" [26. 32]. The irìitial testing began on just trventl,

sequences. r'ith the longest scquence being 577 nucleotides. Flor¡,ever. rve entled up

testing thc algorithm successlirllv on 15000 seqùences. ln thìs section, u,e rvill rlake

a comparison of our aìgorithrn wjth popular motil searching tools namely ,,X,{EN{E"

and the "Gibbs sampler". \\¡e could rìot conìpare our algor-ithm 
'r,ith 

patu'arclha.'

et al 's 120] sofi*are bccause the sofiware rìicl not provicle the approxinìate or cxact

runtime Tor a job. Tho,gh maì1y tools lor searching 
'rotils rvere a'ailable, u,e have

chosen N,IEÀ.ÍE and Gibbs sanpler becausc they p¡ovi¡le for testing both DNA and

protein sequeì.ìces. The onlv paÌaneter that ¡r'e ask the user to enter apart fiom the

sequence set is the expected length of cach ¡notif. Figure 7.1 shoq,s the comparison

anong the three algorithns. Both \LBÀ{E ancl Gibbs sampler have a character limit,

Tberefore- r,e could not test therr for ltorp tlì¿ju 30 protcjn sequences each averagûrg

200 nucleotides. clearl¡, 6¡¡ algorithn has a spced acl'artage over the other motif

discovery tools. This compariso. just gìves ar approximate picture of thc speecl

leveìs The next s¿ep is testi'g the accuracy of the results. The graph algorithm had

matched 70% of the motins *ith the À.'IE\IE ancl 65% of the patters rvith the Gibbs

motif sampler. Out of the first 10 motils (lergth : 8) retur.ned by X4EÀ.i8, it had
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Figure 7.1: Sequences Vs process Tjme

7 straight matches and tu'o partìal 
'ratches 

(rliflering b-r, one character). Analysig

shot s that motif length and allorverì Hamuting clistance are the lrrimar-¡, fãr:tors that

alTect the perlormance of my algorithm. A small cÌtar.rgc in the expectecl lcngth of a

iuple (motìf) rvìll brirrg drastic changc in the total i,i'e corsumccl. This is rluc to the

overlap of the subsequences in the graph. He'r:e, chargi'g the lerrgth of the motif

*ill affect the lc'gth of the I 1-t,ple. Therefole, smaller 1-tuples resuìt in a greater

nulnbel of nodes in the graPli. Seconcl. tbe Ha'rling distarrce also ba.s â great impact

on the performance bccause it is just an additional lc'el oT conlparison u,hich takes up

a lot of processirg tine. Horvever, the correct selection of Flarnming clistance l¡a-sed

on the or.erlap of subsequences *ill e'sure thc retrier,al of rveakcr motifs u¡hich are

otheru'ise neglected.

7.3 Performance analysis of the Hybrid model

The sequential version stands as a benchmark for all lurtÌrer tests o. the par-aìlel

rnachine. In comparison to the sequential algorithrn, the paralÌel version cal hanrlle

E

E
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''ore 
dàta. ln this scctiorr r','e ..'ill n.ì¿ke a conpàr'iso' of thc sequenrial. the plain

lf Pl a¡rd tl.re hvbrid model. \\¡c de'elop ìroth speed,p anrì rhe efficiency cur.ves fbr

the hvbrid model. Proteirs surìr as cvtochrome. Iieratin. Basigin. antì Neurothclin

*ere taken as rcst data. Ho'r's¡.e¡, this time we tried to extÌacr sequences at tlìe
geuomlc lcr.'el. The u'hole cytoclrrome is a.ì¡out tl0 \,lega Bytes. Jn the hybri<ì llorìel

*e provicìc a provisior to read 
'ruìtiple 

protci' sequence files. Each of thesc files is

conve¡ted into a binar' file u'hich cxcludes the ser¡uence headers a'd co'tâins just

the sequerces. Hence our progra., can read as much data a^s possibre ancr trlc user

just hàs to specily ihe file ltan.ies.

Figurc 7.2 is a conparison of the time taken b1, Hybrid and plaju À,lpl ncthocìs

on varving number of processofs r'.'ith constant data size (a0\,{B). As it is e'ident
fionr the graph. the hvìtr-id program runs alrnost 3 times as fast as the plain XIpl.

Figur-e 7.3 is a co:,parisolr of the serial, N,lpI ancl the Hybricl pro¡yams. R.om the

Figur-e 7.2: Conparison of Hvbrid ancl plain N,f pI prograrns

graph it can l¡e obsert ed tìlat the hvbrid progran cììd not perfbrm u,ell u,hen the clata

size *as small. I. fact \,IPI a.d the serial program sho*ed better pe'fbrmance until

the data size $'as âbout 15\'fB. Tlie hvbricr plogram consumes co.siderabre amount

of time in the graph constructjon parl where s¡,nchronization among the th¡eads is
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Figurc 7.3; Process tjntes of Serial. Hybrid an<ì plain tr,fpI

requirr:d. Ho*c'er this cleliciencv is comPensated as the rìata size is increases. Thougl.r

the sy'chronization time remâins constânt. mor-e data is shared arlong the threarìs.

thereby r"educìng the processing tine. The spccdup and eflìciency cu¡r.es for both

Figure 7.4: Speedup of Ì{vbrid

hybrid and \'lPl ¡:rograms are illustratecl in Figures Z_4 ard 2.5. lts quite clear

that the hvbrid progÌarn has showr better Perfbrmance than piai'r,{pl. Motif rength

a.d Hammirg distance still have tlie same el{ect o' the runtille of the program as

described above. In addition. the perfornance of the parallel program depends on

the fbllo*ing facto¡s: size of the l.degree vector, the numbe¡ of *orker processors,

a'd the size of the input file. The program ìs scalable fbr 32 processors. As seen

Hyb¡ld Model Speedup Curve

å,
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Efici€ncy Curve ol tñe Hyb¡¡d Progrãñ

I- igule 7.5: Effì, i¡lrcr C u r.r e¡

in Figure 7.4 the hvbrid progt àìtì shou's a steelr drop il speetlup when 64 proccssors

q'ere userl.

Apparertl¡'. increasi'g the nuurl;er of sla'c pror:essors ìtr.ì'gs about nore comnu_

'ication 
o'erhead- R.epcated tests ha'e shou'u that better specdup can be achievcd

*he. the progràm is run on 16 nodes (32 processors) usirg 
'ptim,m 

chunk size

(number ol nodes rvith ilclegrce zero) fbr each sìave proccssor.

7.4 Evaluation and Summary

In lhis section u'e u¡ill re'ierv our c'aluation procedures ar.rd the rùaJlengcs that rve

have lãced during the cvaluatìon phase.

For e'aluatior.l purposes. *'e need to choose paranìeters ¡r-rricrr are conlnron fbr

both serial and parallel versiolls of the algorithm. Thcrefole *e chose paralneters

such as data size (the number of se<lucnces). the cor-rectness oI the ¡csults ancì the

total runtime. we evaluated seria.l algorithm for all the tlìree paralìeters. In the case

of paraJlel algorithm, the accuracy of the motifs retu¡ncd coulcì onh, be compared *ith
our serial results. we rvere unable to compare accurao¡ agairst other parallel versions

because, none of the parallel motif discoverv tools that u'e mentionecl earlìcr in the
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chapter 5 u'er-e Iì'er:lv a'ailable on the *er¡ for restiug purrloscs. par.aNIE\IE 
[12] is

the orl' 
'rotif 

discover' tool rvhich has ¿r rver¡ appiicatìon lor testiug purposes, brrt

urfbrtunatelv clue to some techlicar reasons. trreir official *,errsite is currentr' not

availablc

Dlflèrcnt rrotil cliscoverv tools ha'e diflerent purposes. For example. ferv nrotif

discoverv tools a.re designcd to fiud sur¡tre nrotifis in DNA sequences. r'rrire otrrer

toois are dcsigned to find lì'ctional rlotifs to cìassify the protei' fãmilies. Therelbre

conparing the Ìurtinc of dif]èrent tooìs *ill ha'e rariations clependi'g on the kìncl

of notif.s being searchecì. The results sho*n in Figure 7.1 are only approximatc s¡tecd

comparisons.

To summarize our results, thc facto.s u'hich h¿r'e a profburd infìuencc o, the

perlbrrrancr: ol our paralleJ algorìthn a.re as fbllo*s; the desìred lc.gth of thc'rotif.
the total chunksize chosen ìty tlle master proccssor, the Hamrling distance (requirecl

to uneartlì subtle 
'rorìf,s). 

the rurnber of slave processors a.d the size of thc in¡:rut

file.

Thc next chapter n'ilì conclude this thesis rvith a lêrv clirections on thc frtrrre
'n'olk



Chapter 8

Conclusions and Future Work

In this thesis r¡'e shorv that the de Bruijn graph car accelerate the rate of discovering

motif.s by more th¿u 10 times. The graph based approacli ìs so porverful that even

rninute repetit'ions in sequenr:es are traced. upon optimizatiorìr we were able to scale

the aìgorithm to 20 
'odcs 

and handre about 1GB of ì'put cìata *itrr ease. The al-

gorithm based on de Bnrijn graphs had z0% rnatches of tìre motifs rvith the \,IEÌ',ÍE

and 65% pattern 
'natches 

rvith the Gibbs motil sa'rpìer. The secl.ential algorìthm

showed that motif length aucl allo*'ed Hamming distance are the pli..rary factors that

aflect the perfor'rance of the algorìthm. The algorithrn rvas re<ìcsig'ecl to be imple-

melted on a clusier ol parallel machines. Per-formarce anal¡,sis 1¡,s¡s macle on a pure

distributed nemolv ntacÌrine using only rlessage passing and on a þbrìd machine

using sharecì a'd distributcd acccss space. Experiments shou,ecl that the hybrid im-

plementation r-uns 3 times as fast as the pure distributed menory inplementation on

a data size of 40X'IB. The architecture on the gla.cier cìuster restricted us to onl¡r trvo

threads. In fîture, rve i'tend to .rn the algorithm on a cluster u,here each node has

more processors per node. \\¡e u'ould like to see ìT ìncleiulng the nunber of threads

n'ill have âny positjve eflect ol the perfolmance of the algorithm. Though our algo_
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Ìithn has the speed ad'artage, ìts accuracy ie'cr renlairs the sanre. paralelization

did not havc aìlt¡ eflect on the quality of motifs returned b¡, the algorithn_ There_

fore. flture u'ork consìsts of employing some good statisticar methocrs to fircr rvea.ker

pla'tecl motifs. our algorithm is not designed to sorve the nrotif cìrarÌenge probren.

but fer' ìmpr-ovements during trre node corlpariso. stage (r,rricrr incrudes generat-

irtg u'eaker pâtteìns and corrparirg *'itrr existing;rodes), rvirì certåirr-l, brighte'the
chances of solving tÌre plantcd motìf ploblem.
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