A PARALLEL GRAPH-BASED APPROACH FOR PROTEIN
SEQUENCE MOTIF DISCOVERY

Santan Challa

A dissertation submitted in partial satisfaction of the

requirements for the degree of
Master of Science

Department of Computer Science

Faculty of Graduate Studies
University of Manitoba

Copyright (© 2007 by Santan Challa

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
EE 13 3

COPYRIGHT PERMISSION

A PARALLEL GRAPH-BASED APPROACH FOR PROTEIN
SEQUENCE MOTIF DISCOVERY

BY
Santan Challa
A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitobz in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Santan Challa © 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to tend a copy of this thesis/practicum,
and to LAC’s agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a MSc thesis entitfed:

A Parallel Graph Based Approach for Protein Sequence Motif Discovery

submitted by:
Santan Challa

in partial fulfillment of the requirements for the degree of: MSc

Dr. Parimala Thulasiraman, Advisor

Dr. Michael Domaratzki
Computer Science

Dr. P. Shivkumar
Mathematics

Date of Oral Examination: August 10, 2007

The student has satisfactorily completed and passed the MSc Oral Examination.

Dy. Parimala Thulasiraman, Advisor

Dr. Michael Domaratzki
Computer Science

Dr. Dean Jin
Chair of MSc Oral

Dr. P. Shivkumar
Mathematics

(The signature of the Chair does not necessarily signify that the Chair has read
the complete thesis.)

Abstract

This thesis provides a parallel, graph based approach to discover conserved regions
such as motifs in protein sequences. The motif discovery problem has gained lot of
significance in biological science over the past decade. Recently, various approaches
have been used successfully to discover motifs. Some of them are based on proba-
bilistic approach and the others on a combinatorial approach. This thesis follows a
graph-based approach to solve this problem, in particular, using the idea of de Bruiim
graphs. The de Bruijn graph has been successfully adopted in the past to solve prob-
lems such as local multiple alignment and DNA fragment assembly. The proposed
algorithm harnesses the power of the de Bruijn graph to discover the conserved re-
glons In a protein sequence. The sequential algorithm has 70% matches of the motifs
with the MEME and 65% pattern matches with the Gibbs motif sampler, The algo-
rithm is redesigned and parallelized on the high performance computers available on
the Western Canada Research Grid (WestGrid). Performance analysis was made on
a pure distributed memory machine using only message passing and on a hybrid ma-
chine using shared and distributed access space. Experiments showed that the hybrid

implementation runs 3 times as fast as the pure distributed memory implementation.

ii

Acknowledgements

I would like to express my sincere gratitude to all who have contributed to complete
this thesis. I would like to thank my supervisor Dr. Parimala Thulasiraman for her
continuous guidance and encouragement to develop this work.

We acknowledge the partial support from Natural Science and Engineering Re-
search Council(NSERC) of Canada.

My sincere thanks to the management of Westgrid for allowing us to work on their
systems.

Finally, a profound gratitude goes to all of my family members who provided

continuous encouragement and emotional support to accomplish this endeavor.

1ii

Contents

1 Introduction

1.1 Cellto Protein
1.2 Motivation
1.3 Contributions of this Thests

DNA and Protein Motifs

21 DNAMotifs

2.1.1 What is the motif finding problem?

2.1.2 How is a motif represented?
213 Why is motif finding difficult? . . .
22 Proteins L.
2.2.1 Structure of Proteins
2.3 Protein Structure Prediction
2.3.1 Sequence Alignment
24 Summary L.

Motif Discovery Approaches

3.1 Probabilistic Approach

3.2 Combinatorial Approach

v

10
10
11
i1
13
14
14
17
18
21

22

3.3 Construction of a de Bruijn graph

34 Summary

4 Parallel Computing Platforms
4.1 Shared Memory Machines
4.1.1 Parallel Programming using OpenMP
4.2 Distributed Memory Machines
4.3 Hybrid Model

4.4 Summary ...

5 Related Work: Parallel Approaches to Motif Discovery

5.1 Summary ...

6 Sequential and Parallel Algorithm
6.1 Graph Construction.
6.2 Parallelization of Graph Construction
6.3 Graph Traversal
6.4 Parallelization of Graph Traversal

6.5 Summary

7 Implementation and Result Analysis
7.1 Implementation Platform for Parallelization
7.2 Sequential Results.
7.3 Performance analysis of the Hybrid model

7.4 Evaluation and Summary

8 Conclusions and Future Work

32
34
39
37
38
39

40
43

44
44
45
46
48
49

50

22

56

58

List of Figures

11

1.2

2.4
25
2.6

2.7

3.1

3.3

3.4

4.1

4.3

4.4

Structure of DNA (20 3
Transcripion Factors and Regulatory regions [7] 5
Motifs in a Protein Sequence 11
Position Weight Matrix {36] 12
Matrix for deriving Consensus Sequence [36] 13
Primary Structure Protein [28], 15
Secondary Protein Structure {14] 16
Tertiary Protein Structure [15] 17
Local and Global Sequence Alignment 19
Clique formation [36], 27
Cliques without edges [36] 28
Construction of a de Brujn Graph 30
Gluing of Repeating Edges 30
Control Structure of Parallel Platforms {11]. 33
Shared Memory Architecture [11] 35
Fork-Join model [4]o 37
Distributed Memory Model {11} 38

4.5

6.1
6.2

7.2
7.3
7.4
7.5

Hybrid Model 4] 39

Sub-graph Overlap in Sequences 45
Active Reglon 47
sequences Vs Process Time 33
Comparison of Hybrid and Plain MPI programs 54
Process times of Serial, Hybrid and Plain MP1 55
Speedup of Hybrid 08
Efficiency Curves 26

vii

Chapter 1

Introduction

A motif is a repeating pattern in a biological sequence that is conserved during the
process of evolution. Motif discovery is a very important problem in biology. It finds
applications in DNA or protein sequence analysis, comprehending disease suscepti-
bility and disease cure. Numerous motif discovery algorithms have been proposed,
Scientists have explored both combinatorial and probabilistic motif discovery ap-
proaches. Yet, the quest for efficient and faster algorithms continues.

Graph theory is plays an important role in computational biology [34]. Graph-
based algorithms provide a simple and quick solution to computationally intensive
problems such as DNA fragment assembly [22] and motif discovery. However, the
amount of literature available on motif discovery using graph algorithms is not pro-
portional to the potential of the graph-based algorithms.

Motif discovery/finding is computationally intensive. In the literature, very few
attempts have been made in designing parallel algorithms for this problem. In this
thesis, we develop a motif discovery algorithm based on de Bruijn graphs and paral-
lelize this algorithm on a cluster. The algorithm has two phases: graph construction

and graph traversal phases. In the graph construction phase, as the name implies, a

1

CHAPTER 1. INTRODUCTION 2

de Bruijn graph is constructed. The graph traversal phase identifies the motifs. Both
these phases are parallelized. Besides an efficient parallel algorithm, the architecture
on which the algorithm is parallelized is crucial to the performance of the algorithm.
The graph construction phase requires shared address space while the graph traversal
phase requires distributed access space. Therefore, we have parallelized the algorithm
on a hybrid architecture which harnesses the power of the shared and distributed ac-
cess space. The hybrid architecture is a cluster of dual processor nodes available on
the WestGrid consortium [27] (High performance computing infrastructure available
across British Columbia and Alberta). We exploit fine grain parallelism within the
nodes and coarse grain parallelism across nodes of the cluster.

We have found that our parallel algorithm was successful in mining signals for
a larger number of sequences and at a faster rate when compéred to some popular
motif searching tools such as MEME [2]. The results of the sequential algorithm are
published in the Bioinformatics and Life Science Computing symposium [8]. The
next section explains few terms necessary for understanding the thesis. It is a short

journey from cell architecture to protein manufacturing.

1.1 Cell to Protein

Life begins in a cell. A single cell contains a copy of the genetic information. This
genetic information governs the growth, behaviour and reproduction of an organism.
A cell contains a nucleus {only present in eukaryotic cells such as human cells) which
is the building block of the cell. Nucleus consists of nucleoplasm, nucieoli and cajal
bodies. The nucleoplasm primarily consists of chromatin. Chromatin is the base
nuclear material which is responsible for the manufacture of chromosomes. Each

nucleus is made up of 23 pairs of chromosomes. Chromosomes are long strands of

CHAPTER 1. INTRODUCTION 3

DNA {deoxyribonucleic acid) which contain the genetic information that is required
for a cell to function. In 1953, Watson and Crick found the current structure of the
DNA, Figure 1.1 [29], which is a double helix. Each DNA molecule consists of two
strands (or chains) twisted like a corkscrew and linked together by a pair of bases.
There are four bases in DNA molecule, namely, adenine (A), guanine (G), cytosine
(C) and thymine (T). Adenine always forms a base pair with thymine and guanine
forms a base pair with cytosine. Therefore, the two strands of the DNA are linked

with either of the two base pairs, AT or GC. DNA is made up of genes {a human

Eheomatn e Btiancs

Hydrnen
Doty

15

1% U] ral 2
o o i
,,;

v

DNA Double Hellx

~

Pairs of Chyomosomes
It o Human Cetl

Figure 1.1: Structure of DNA {29]

genome contains more than 30000 genes) also called as blueprints. Each gene contains
data for the synthesis of a unique protein (a complex 3D structure present in animal

and vegetable tissue) for the construction of the body of an organism. Proteins are

CHAPTER 1. INTRODUCTION 4

made up of 20 different kinds of amino acids. While DNA is a 4 letter alphabet (A,
C, G and T) a protein is a 20 letter alphabet. The process in which DNA converts
to proteins involves two stages: franscription and transiation. In the transcription
stage, an intermediate representation encoded in the Ribonucleic Acid (RNA) makes
a replication of the protein coding information of the gene and produces a single
stranded mRNA (stands for messenger ribonucleic acid). The mRNA also has four
bases like the DNA with T replaced by U (base Uracil). Then the protein making
machinery translates the mRNA into an amino acid sequence of a protein. This
process of transforming a gene’s information to proteins in called as gene expression.
"The transcription (DNA to RNA) and translation (RNA to proteins) is the central

dogma of molecular biology {16, 30].

Motifs, also called as Transcription Factor Binding Sites (TFBS), play a vital role
during the transcription stage in the regulation of the gene expression?. Every gene
has a regulatory region (regulatory sequence). The regulatory region contains tran-
scription factors (proteins). The regulatory sequences along with the transcription
factors determine the state of the gene {(either turn-on or turn-off}. Figure 1.2 [7]
presents regulatory regions in prokayote and eukaryote genes. If a cell gets infected in
an organism, a specific immunity gene is turned-on, which produces proteins to cure
the infected cell. Every gene contains certain short strings called binding sites in the
regulatory region, which are responsible for turning on such immunity genes. The
transcription factors unite with these binding sites at several locations. These sites

which contain (bind) the transcription factors are called motifs [16]. All these binding

"How much of the gene’s information should be converted to proteins is done by the cell, thereby
regulating the gene expression. We can think of having a circuit in the organism’s body where nodes
in the circuit are genes connected by switches that regulate the genes. If a switch is changed in some
way, the circuit also changes. Gene regulation is one of the well known research areas in molecular
biology.

CHAPTER 1. INTRODUCTION 5

[W OPE R
Priplearyat

o
5 : i
= ; H
X
Q| — T
.. Eriekri
|
s
L |
B
fed
=}
o
o
©
s
[
[P . " -
suaryote geneg
E e
@ |30 : ‘
w
c
2 ; 3 :
= i :
Q h
B2 5
3] i
oY
c
T
o
o

Figure 1.2: Transcripion Factors and Regulatory regions [7]

sites are about the same length. However, they are not so easy to locate because they
are buried in a huge array of characters. The next chapter explains DNA and protein

motifs, how they are represented and why it is difficult to find motifs.

The pioneering work of Pevzner et al. [22] introduces the application of graph
algorithm in various biclogical problems such as DNA fragment assembly and local

multiple sequence alignment. The next section discusses the motivation of this work.

CHAPTER 1. INTRODUCTION G

1.2 Motivation

Pevzner et al. {22] effectively use a de Bruijn graph in their DNA fragment assembler
EULER (assembles the entire genome sequence from fragments of DNA) to resolve
repeats® in a genomic sequence (a sequence representing the entire genome). The au-
thors construct a de Bruijn graph that represents repeats in the form of edges. An edge
with multiplicity greater than one is treated as a repeat. The de Bruijn graph trans-
torms all the edges with multiplicity greater than one into a single high-weight edge
(proportional to its multiplicity), thus providing a clear way to resolve repeats. Ac-
cording to Pevzner et al. the graph-based approach for fragment assembly is quicker
and more eflicient than the traditional overlap-layout-consensus method [22]. DNA
fragment assembly is not related to our work in any way. However, the idea to use
a de Bruijn graph for motif finding originated from the research work of Pevzner et
al. Though a motif and a repeat are entirely different entities, the method that is
used for identifying repeats by Pevzuer et al. can be successfully employed for motif
discovery too. Here, instead of identifying repeats, more repetitive, conserved and
short patterns are identified. More recently, Zhang and Waterman [41] followed a
similar approach for local multiple alignment of DNA sequences. They have used the
de Bruijn graph to build a consensus sequence that contains most of repeating and
conserved patterns (not necessarily motifs). Furthermore, they perform a local pair
wise alignment to find subsequences of each sequence that match with the consensus
pattern. As mentioned in their paper, motif discovery is in fact, a subproblem of the
multiple local alignment problem. Our work is profoundly influenced by the research

efforts mentioned above. The only other researcher we are aware of who uses a de

?Repeats are replicas of a part or the entire DNA sequence, which are present along with the
original sequence.

CHAPTER 1. INTRODUCTION 7

Bruijn graph for motif finding is Patwardhan [20]. Patwardhan has developed an
application for motif discovery using messy de Bruijn graphs, which is available on
the internet for testing purposes. However, Patwardhan’s work does not study the
efficiency of the graph based algorithm on a parallel platform.

Problem Statement: Motif Discovery is an NP-complete problem [1]. Owing to
the huge amount of sequence data available, there is a need for efficient compirtational
techniques to reduce the computational time for discovering motifs. The problem is,
though serial algorithms are quite efficient in discovering motifs, they fail when we
need to find motifs of smaller length in: huge amount of data. In such cases, the serial
algorithms either take a very long time and large amounts of memory or completely
breakdown. Hence we have considered a parallel version which is capable of finding
smaller and even less significant signals, and which is capable of handling the entire
genomic sequences. The parallel version is designed to break the memory barrier and
overcome the issues with data size.

In this thesis, our focus is on developing a graph based algorithm for motif dis-
covery and parallelizing the algorithm for fast results on a data size larger than few
thousand sequences. As mentioned earlier in this thesis, graph algorithms algorithms
are fast and easy to visualize. The advantage of a de Bruijn graph is that it isolates
domains of similarities. Hence it is quite easy to trace areas of similarities in the
protein sequences. Further, the de Bruijn graph has an elegant way of representing
the nodes and edges. Since every node represents a subsequence of a given sequence,
there is no need to maintain a separate data structure to store the node positions,
etc.

We have chosen to parallelize the given problem primarily because of the vast
amount of protein sequence data available for analysis. Secondly, we identified regions

in our algorithm which are highly parallelizable. The serial algorithm showed excellent

CHAPTER 1. INTRODUCTION 3

performance until the data size was about 15MB. However, beyond that the algorithm
failed to handle the huge amount of data, thereby yielding undesired results. It has
succumbed to the overpowering computational intensity and insufficient memaory. The
parallel algorithm comes to rescue in such situations by overcoming these limitations.
Hence we chose to port the serial algorithm to a parallel machine. The next section

will explain the contributions of this thesis.

1.3 Contributions of this Thesis

This thesis aims to perform motif discovery on a larger scale. Instead of performing
motif discovery on a few sequences or a few hundred sequences, we wish to take it to
the genomic level. This requires high performance parallel computing.

Here are some contributions to this thesis:

Developing an efficient graph based algorithm for finding motifs.

» Parallelizing the algorithm on high performance computers for fast results on
large data sizes. Very little work exists in the literature on parallel algorithms

for motif discovery.

e Harnessing the power of the computer architecture and finding a balance be-
tween shared and distributed memory machines. We have implemented the

algorithm on a hybrid architecture, a cluster of dual processor machines.

 Studying the performance of the sequential and parallel algorithm.

» Comparing the correctness of the results obtained from our algorithm with that

of popular software such as MEME.

CHAPTER 1. INTRODUCTION 9

The rest of thesis is organized as follows: Chapter 2 presents motifs and various
discovery approaches to date. Chapter 3 discusses the state-of-the-art motif discovery
approaches. Chapter 4 presents parallel computing architectures. Chapter 5 is a
discussion on the previous research efforts in parallel motif discovery. Chapter 6
details both sequential and parallel algorithm proposed in this thesis. Implementation
methodology and Results are discussed in Chapter 7. Finally, conclusions and future

work are presented in Chapter 8.

Chapter 2

DNA and Protein Motifs

This chapter explains the importance of motifs in proteins. We will briefly discuss
issues such as protein structures, the importance of sequence alignment and motif

discovery in protein structure prediction.

2.1 DNA Motifs

In the previous chapter, we described the transcription process for a particular gene.
The process starts by binding transcription factors (or proteins) in specitfic sites (called
binding sites) in the promoter region of the gene. A promoter region is a region that
helps to determine the next occurrence of the gene. The transcription factors may
bind to several binding sites. This may happen because a transcription factor may
control several genes in the DNA sequence. The transcription factor has a common
DNA sequence pattern and is of the same length. These common sequence patterns
are called motifs. The common sequence pattern for most of the transcription factors
is unknown. Research in the laboratories for finding motifs is greatly underway in

molecular biology. However, this is a time consuming task.

10

CHAPTER 2. DNA AND PROTEIN MOTIFS 11

2.1.1 What is the motif finding problem?

Transcription factors control several genes in the DNA sequence. If one particular
transcription factor controls five genes (genel, gene2, gene3, gened, gened) as shown
in Figure 2.1, then there are biding sites in the promoter of the genes, where the
transcription factor binds. Suppose the promoter regions are also given. The prohlem
now is to determine the binding sites of transcription factor and whether we will be
able to find them without knowing their location in advance. If we find the binding
sites then we should be able to find the transcription factors. Note that the binding
sites are similar to each other but not identical. Therefore, the problem is to find
a motif (common sequence pattern) that represents binding sites for an unknown
transcription factor. The highlighted regions in Figure 2.1 illustrate motifs in a protein

sequence.

MAGWSLWLAVAE.FSFWDPWSQVL)& "ARIGDADRGRAIFQ
ANFAVCHGIQADMINERFS@LLAVﬁﬁFHSFIDLPTP

0311 GACLIIGILTOLFLAMHY TAR Dviy GWLIRY LEANG ASMFFICLYL
HVGRGLY ¥ G8YMFTETWNIGILLLFTVMWGOATVITNLLS ATPYIGTTLVEWIW
GOFSVDKATLTRFF AFHFSLFFIITALVLVHLIDSNS DKIPFHPY ¥ TTKDILGLLL

MIFALLILVLFSPDLDGDPDNYTPAM_” YTARDDNPLNTPPHLRSIPIKL G
IPLLETSK QR SMLFRPFS QULFWILAANLLILTW

Figure 2.1: Motifs in a Protein Sequence

2.1.2 How is a motif represented?

A motif can be represented as a Position Weight Matrix (PWM), Hidden Markov

Model (HMM) [40] or as a consensus string. The PWM and the string based repre-

CHAPTER 2. DNA AND PROTEIN MOTIFS 12

sentations are the most cormmon ways for expressing a motif. In a PWM, given the
four bases A, C, G and T and string [, a matrix of size { * 4 is created where each
slot in the matrix indicates the probability of each base being in that column. For
example in Figure 2.2 {36], the probability of having base A as the first letter is 0.1.
It § = ACAAT, then P(S) (probability of) is 0.1 * 0.8« 0.5 % 0.15 % 0.1. If this

probability is greater than a certain threshold then it is called a binding site. In the

1 2 |3
0.5
04
04
05

)
05
0.3
0.1
0.1

e
it | e | o | o

B h
| L

e
£

ez e | e
| emn | mem | Res

.y

Figure 2.2: Position Weight Matrix [36]

string based representation, a motif is represented as either a consensis segquence or a
regular expression. For example, over the alphabet A,C.G, T, a fixed length [= 4 has
4% or 256 strings of “candidate” motifs. In this example, the entire search space is
defined. As can be seen this is an exhaustive procedure. There are other flexibilities
that can be introduced in the string based representation. For example, we can allow
d mismatches, say d = 1, then the candidate motifs, “AAAT”, “AATA") “ATAA”,
etc. are all matches to the motif, “AAAA”. We can construct a matrix representing
the entire candidate motifs. The matrix indicates the number of times each base
(A,C,G and T) occurs at each position in the candidate motifs. The bases that have

maximum frequency in each column form the consensus sequence (or motif). If the

CHAPTER 2. DNA anp PROTEIN MOTIFS 13

frequency of two bases is equal in any sequence, then the motif can have two repre-
sentations. For example, the matrix in Figure 2.3 [36] represents two motifs namely
“ACGACT or “ACTAC” as indicated by the last row in the matrix (note that & and
T have same frequency in column 3). The consensus string model is an enumerative
algorithm and is guaranteed to produce the optimized model since every possible mo-
tif is considered. It is an exhaustive search process. It can handle lengths of less than
10. The running time of the model is, therefore, exponential. In this thesis, we will

use the consensus string model.

+n

= G| 1] 2

~ ool
N | o] o e
LA L) = 4n

I || W] -

G or

.
-

I

.

Figure 2.3: Matrix for deriving Consensus Sequence [36]

2.1.3 Why is motif finding difficult?

Motif is like an encrypted message in a large array of characters. Motif searching
would have been easier if all the motif patterns were exactly the same. However, as
it can be seen from Figure 2.1, all motifs are not exact replicas of each other. They
differ by at least two positions. The motifs patterns change because they undergo
mutations. In addition to that there is no standard definition for a motif structure.

A motif can be of any length (usually up to 20 bases long). The huge amount of data

CHAPTER 2. DNA AND PrOTEIN MOTIFS 14

available for analysis makes motif finding even more difficult.

Till now we have discussed motif discovery in DNA sequences only. However,
motit finding has tantamount importance in the three dimensional proteins. The
following section will explain the structure of proteins, their importance in biology

and the application of motif discovery in proteins.

2.2 Proteins

In a human body, proteins account for the tissues, muscles, the immune system and
numerous functions within the cell. Not only in human beings, but proteins play a
vital role in the life cycle of living organisms. Proteins are essentially manufactured
by 20 amino acids. A human body makes few of those amino acids, while other
amino acids come from protein diet. Amino acids are important because they have
the ammunition to synthesize proteins. Amino acids are represented by all letters in
the English alphabet except the following “B, O, U, J, X, Z". The arrangement of

amino acid sequence in proteins define their structure and the functional properties.

2.2.1 Structure of Proteins

Proteins have 3 main structures namely: primary, secondary and the tertiary struec-
tures.

The primary structure is just a single dimensional, linear amino acid sequence [19].
Figure 2.4 [28] shows an example of a primary structure of protein called Lysozyme [28].
Lysozyme protects us from bacterial infection by destroying the cell walls of the bac-
teria. Lysozyme is part of the human body and it is present in human mucus and
tears. Hydrogen bonds among the amino acids in the primary structure result in the

secondary structure of proteins [19]. In this phase, the straight chains are twisted to

CHAPTER 2. DNA AnND PROTEIN MOTIFS 15

o
T

&

eRR

Lysozyme-Primary protein structure

Figure 2.4: Primary Structure Protein [28]

form alpha-helix (coil or spiral), beta-sheets or strands and sometimes turns or loops.
Alpha-helices and beta-sheets are shown in Figure 2.5 [14]. The secondary structure
of proteins are more stable in comparison to the primary structure of proteins. The
secondary structure gives more strength and flexibility to the proteins. Alpha-helices
can be found in myosin (muscle protein), alpha-keratin (protein of hair). Beta-sheets
can be found in beta-keratin or fibroin (protein found in silk). This gives us an
idea of how strong the secondary structures of proteins are. There is an intermediate
stage between the secondary structure and the tertiary structure, known as the super-
secondary structure. These structures are often treated synonymous with structural

motifs in proteins. We now know that secondary structure of proteins can have an

CHAPTER 2. DNA AND PROTEIN MOTIFS 16

alpha-helix. Super-secondary structures are a step ahead with more two or more than

two alpha-helices, which may also include turn or loops. Tertiary structure of pro-

By o A, ;
o

o~

Alpha Helix Anti-paraliel beta-sheet

Figure 2.5: Secondary Protein Structure |14

teins are complete three dimensional proteins formed as a result of attractions between
alpha-helices and beta-sheets in secondary structures. When the secondary structures
are folded into three dimensional structures, they become the tertiary structure of
proteins. Figure 2.6 [15] is a 3D illustration of a protein called cytochrome with four
helices. The tertiary structure determines the function of protein. Though we know
that tertiary structures are 3D, it is really difficult to predict the actual structure
of proteins. The linear chain of amino acids (primary structure of proteins) deter-
mine the tertiary structure of proteins. The coding information present in the DNA
encodes information for the primary structure of proteins only. Hence, we can only
predict the tertiary structure of proteins from their primary structures [19]. Protein

structure prediction is one of the major research topics in Bioinformatics.

CHAPTER 2. DNA AND PROTEIN MOTIFS 17

Protapurphyrin € with FeS*

Cytochrome C

Figure 2.6: Tertiary Protein Structure [15]
2.3 Protein Structure Prediction

Proteins can be classified on the basis of similarities in their sequences and struc-
ture [19]. As discussed earlier, the 3D protein structure can be predicted from its
amino acid sequence. However, similarity in sequences does not always reflect the
similarity in the structures and vice-versa. Actually the number of sequerices out-
number the total number of structures which are discovered to date, making the
protein structure prediction even more difficult. Therefore, the protein structure pre-
diction problem can be formulated as: Given a single-dimensional protein sequence,

can we predict its exact three-dimensional structural element (tertiary structure)?

About 1000 protein families have been identified, whose amino acid sequences

CHAPTER 2. DNA aND PROTEIN MOTIFS i8

share similarities. One of the reliable ways to establish relationship between two pro-
tein families is to find similar sequences between them. Similar sequences most often
imply same biochemical activity, same evolutionary origin and structural similarity.
Sequence alignment is a popular approach for detecting similar regions in two or
more sequences. There are two methods for performing sequence alignment, namely:

pair-wise sequence alignment and multiple sequence alignment.

2.3.1 Sequence Alignment

Pair-wise alignment is essentially aligning two sequences in two rows and finding the
characters or sets of matching characters. There are two kinds of pair-wise alignments,
global alignment and local alignment. In global alignment similarities between two
entire sequences are desired. Hence two big strings are compared at a stretch. For such
compazrison the two sequences should be almost similar, Hence global alignment is
useful while comparing two protein sequences of the same family (most of the region
is conserved in protein sequences). Local sequence alignment on the other hand,
locates high density areas of similarity and ignores the regions that show less or no
similarity. It is guite useful to find regions of similarity in sequences that belong
to different families (or species) but still have few conserved regions in common.

Figure 2.7 is an illustration of local alignment and global alignment.

Multiple Sequence Alignment (MSA) is aligning more than two sequences in such
a way that most common regions in all the sequences are arranged in order. MSA
1s more reliable than the pairwise alignment because the pair-wise similarities do not
exhibit regions of weak-similarities between sequences. Hence the similarities traced
by pairwise alignments are statistically less significant (16]. Whereas in MSA, many

comparisons are made simultaneously, thereby allowing to unearth very weakly similar

CHAPTER 2. DNA AnD PROTEIN MOTIFS 19

MCGYYGNYYGGLGCGSYS

AR

MC GYYCNYKCGMGCMSYS

Global Sequence Alignment

MCGYYCCMKMCMVCGSYS
L] U
MCGYYGNYYGGLGCGSYS

Local Sequence Alignment

Figure 2.7: Local and Global Sequence Alignment

regions.

All the alignment procedures discussed until now use “score” to determine the
quality of alignment. Any alignment with best score is considered to be optimal
alignment. Dynamic programming algorithms are considered to give mathematically
most optimal solution. The technique is to reuse the previous solution and recursively
define the optimal value for every sub-problem. Finally an optimal solution is derived
from the partial solutions at each stage. Dynamic algorithms can be applied for
global alignment, local alignment and local multiple alignment. The only drawback
with these algorithms is, they are suitable for limited data size, and hence cannot be
applied at a genomic level.

There are two approaches to perform multiple sequence alignment namely : global
multiple sequence alignment and local multiple sequence alignment. As mentioned

earlier, global MSA is an alignment that is performed on the entire sequences. Pro-

CHAPTER 2. DNA AND ProTEIN MOTIFS 20

teins that belong to same family and have large scale sequence similarities are suitable
for global MSA. One of the well known approaches to perform global MSA is progres-
swe global alignment. Progressive alignment adopts dynamic programming method
for performing global MSA. Here, the program starts aligning most related sequences,
and incrementally adds new and less related sequences to the existing alignment.
CLUSTALW {38] is a popular global MSA program that adopts the progressive align-
ment technique.

Local multiple sequence alignment in protein sequences locates similar patterns in
a set of sequences. These patterns include “Blocks” and “Motifs”. In the context of
proteins, blocks are conserved regions without gaps and which occur within a protein
family. However, motifs are conserved regions among a set of proteins, which may not
belong to the same family but can exhibit similar biochemical activity. Asis evident,
motif discovery/finding is a sub-problem of local multiple alignment,.

In the context of proteins, motifs are either structural motifs or sequence motifs.
Structural motifs are “folds” or three dimensional structural elements {19]. These
three dimensional structures are formed as a result of the combination of secondary
structures. As discussed earlier, structural motifs are treated synonymous with super-
secondary structures. They are a combination of alpha-helices with loops, which can
be arranged in a three-dimensional space. Structural motifs are one of those special
folds that occur in many proteins and which enable us to determine the biological
function of a protein. Finding structural motifs is a very difficult problem. X-ray
crystallography is one of the reliable experimental approaches. It is Very expensive
and time consuming. On the other hand, researchers are trying to develop programs
which can output an amino acid sequence for a structural motif and vice versa.

Recalling the protein structure prediction problem (can we predict the 3D protein

structure from a given amino acid sequence?), sequence motifs also play a vital role

CHAPTER 2. DNA AND ProTEIN MOTIFS 21

n protein structure prediction. As mentioned earlier, sequence motifs are conserved
amino acid patterns. They are different from structural motifs. Sequence motifs are
important because they help us in determining the relationship among protein fam-
ilies [19]. The presence of similar sequence motifs in different protein may indicate
that the two proteins share the same evolutionary origin, have similar biological func-
tion and may be structurally similar’. Finding the family relationships among the

proteins is the key to making protein structural predictions [19].

2.4 Summary

In this chapter we discussed both DNA and protein motifs. Protein structure pre-
diction is a vast topic. Though we covered few issues such a sequence alignment,
and structure motif discovery, our prime focus is on deriving the relationship between
sequence motif discovery and protein structure prediction. We have also explained
how sequence motif discovery is a sub-problem of local muitiple sequence alignment.
In this thesis, we have developed a graph-based algorithim that traces seqiuence mo-
tifs in protein sequences. The following chapter will discuss various sequence motif
finding/discovery techniques. It will also give a description of the de Bruijn graph

construction.

11t is not necessary that a sequence motif always codes the same super-secondary structure

Chapter 3

Motif Discovery Approaches

This chapter attempts to explain some of the best-known motif finding algorithms.
Motif finding algorithms can be classified into the foliowing categories: probabilistic

and combinatorial.

3.1 Probabilistic Approach

Gibbs sampling {10} and Expected Maximization (EM) [13} are the two statistical
computing algorithms that use the probabilistic models. Software packages such as
Gibbs motif sampler [39], AlignACE [25], PhyloGibbs [35] and BioProspector 18] use
Gibbs sampling strategy to find the transcription factor binding sites. MEME [2] is
a popular motif searching software that uses the EM algorithm.

The EM algorithm finds the maximum likelihood estimates of a probabilistic mo-
tif model. Gibbs sampling algorithm uses a randomized sampling (probabilistic sam-
pling) technique to identify the motifs. The complete explanation of the EM and the
Gibbs algorithms is beyond the scope of this thesis. Also note that algorithms that

adopt the probabilistic approach (for example MEME and Gibbs Sampler) detect

22

CHAPTER 3. MOTIF DISCOVERY APPROACHES 23

known motifs only (the starting point of at least one motif is known). Therefore,
they are less successful in detecting planted motifs whose starting points are not
known (subtle motifs). In this thesis, we intend to discover unknown motif patterns.

Therefore, we do not adopt the probabilistic approach.

3.2 Combinatorial Approach

Another motif finding approach is the combinatorial approach. The underlying pro-
cedure for algorithms such as TEIRESIAS [24], the Random Projections [6], SP-
STAR [21], MULTIPROFILER {17}, and WINNOWER [21] is a combinatorial ap-
proach.

Combinatorial motif algorithms look for the patterns that are exact or nearly
exact matches of the given motif (represented in a string pattern). The combinatorial
approach can be explained as follows: Given a motif pattern and N sequences, each
sequence subdivided into N* subsequences, the combinatorial approach tries to find
the Hamming distance between any subsequence in the given set of subsequences
with the given motif pattern. The best match is the subsequence with the least
Hamming distance from the given motif. In this section we will give a brief overview
of the TEIRESIAS, SP-STAR, the Random Projections, MULTIPROFILER and the
WINNOWER. algorithms.

TEIRESIAS [5, 24] is a pattern enumeration algorithm. A pattern can be a set of
bases, which may contain gaps or substitutions. TEIRESIAS is an exhaustive pattern
search algorithm that enumerates longer patterns from a set of shorter patterns. Con-
sider the following pattern defined by the user: “AGT.TCTC..GTC”. Let ‘S’ denote
the alphabet (A, C, G and T for a DNA sequence), every pattern should begin and

end with any letter defined in the alphabet S. The .’ is used as a don’t care character

CHAPTER 3. MOTIF DISCOVERY APPROACHES 24

that can be substituted by any letter from S. There are two phases in the algorithm.
The first phase is called scanning. The scanning phase identifies al] the elementary
patterns with the specified number of non-wildcards in this example. In this exam-
ple, “T.TCTC” and “CTCA.G” are valid short patterns. However, “AG.GG” is not
a valid pattern in the given pattern. The second phase is called convolution. The
convolution phase combines the elementary patterns obtained from the first phase
to get a longer valid pattern. In the above example the patterns “T.TCTC” and
“CTCA.G” combine to form “T.TCTCA.G". In the similar faghion the algorithm
tries to extend all valid elementary patterns on both sides of the current pattern to
generate new long patterns. The process continues until more specific patterns that
satisfy the user constraints are gemerated. Unlike the MEME and Gibbs sampling
algorithms, which find approximate motifs, the TEIRESIAS algorithm guarantees to
find the best and exact motif pattern. Since TEIRESIAS is an exhaustive search
algorithm, in a worst-case scenario, it takes exponential time.

Pevzner and Sze [21] address a problem known as the Motif Challenge Problem or
a Planted motif problem. The challenge problem attempts to find an unknown motif
(length = 15} with at most 4 mismatches in a set of sequences each of length 600 bases.
Such motifs are called subtle motifs which are intractable by popular algorithms
such as MEME, Gibbs motif sampler and the TEIRESIAS. Whereas, the Random
Projections algorithm by Buhler and Tompa [6], SP-STAR, MULTIPROFILER and
the WINNOWER algorithms éoive the challenge problem.

Pevzner and Sze [21] introduce the SP-STAR algorithm to solve the challenge
problem. SP-STAR uses a scoring function called the sum-of-pairs function to choose
an initial motif. After the initial motif is chosen, SP-STAR uses a local improvement
heuristics to improve the initial motif. The local improvement strategy can employ

either a consensus string strategy, or a Gibbs sampling strategy to find all the sub-

CHAPTER 3. MOTIF THSCOVERY APPROACHES 25

sequences that maximize the scoring function. SP-STAR shows good performance
{returns correct motifs) for sequences less or equal to 800. However, the performance
degrades and SP-STAR generates random motifs instead of the required motifs once

the length of the sequence is over 900.

Though SP-STAR successfully finds the (15.4) motifs (that is, motifs of length
15 with 4 mismatches), it was unsuccessful for more subtle patterns such as the (18,
6) patterns. Buhler and Tompa [6] provide a solution for tracking difficult planted
motifs such as (16,5) and (18,6} in twenty sequences each of length 2000 using random
projections. A projection is achieved by partitioning a sequence in a way such that
all candidate motifs are hashed into n different buckets. The buckets that receive an
unusually higher number of candidate motifs will have a higher probability to produce
subtle motifs. A local searching technique such as the Gibbs sampling technigue
or the MEME can be used on each bucket to unearth the desired motif patterns.
Similar to SP-STAR, the random projections algorithm provides a platform for the
local searching algorithms to discover more subtle patterns. Hashing candidate motifs
mto buckets will give better starting points for the local searching algorithms, thus

enabling them to hit upon remote motifs which are generally missed by other motif

finding algorithms.

To turther push the limits of subtle motif discovery, Keich and Pevzner [17] propose
the MULTIPROFILER algorithm. MULTIPROFILER is based on an approach called
the Ertended Sample Driven (ESD) approach. ESD approach tests subsequences
on just a semple sequence without testing it on the entire data range. First, ESD
approach tries to find/generate all the k-neighbours? to a given substring in the given

sample sequence. By generating all the k-neighbours? for a given substring m, it

'If two substrings differ from each other by at most & number of substitutions/mutations.
“MULTIPROFILER actually restricts the k-neighbourhood ta just 2k neighbours for each sub-

CHAPTER 3. MOTIF DISCOVERY APPROACHES 26

is likely that we have the mutated form of that substring in all other sequences.
Upon comparison of m with the k neighbours, it is easy to find which base is gver-
represented (oceurring a lot of times) in each position, thereby drawing a consensus
pattern. Thus, the ESD approach estimates the initial motif. MULTIPROFILER
made two improvements to the ESD approach. First, MULTIPROFILER maintains
a dictionary of the k-neighbours for every substring. Secondly, it uses multi-positional
profiles. A single positional profile is just like a consensus matrix shown in Figure 2.3.
A bi-positional profile is a matrix that contains the two letters (such as aa, ac, ag)
in each cell of the first column and two positions (such as (1,2) (1,3)) in each cell
of the first row. The actual consensus patterns are deduced using the dictionary.
Multi-positional profiles are employed to separate the actual pattern from the many
random words or noise in the dictionary. MULTIPROFILER detects motifs that are
usually intractable by the Random Projections. It has given 98% results for detecting

(15,4) motifs from 20 sequences each of length 3000.

Pevzner and Sze [21] propose a graph based motif finding algorithm called WIN-
NOWER |21, 5]. Since the thesis is based on a graph theoretical approach, we wil}
explain the WINNOWER algorithm in detail. WINNOWER divides each sequence
into subsequences. It builds a multipartite graph using the subsequences. Two “sim-
ilar” subsequences in different. sequences have an edge. The motif finding problem
is reduced to finding cliques in the graph. The cliques represent motifs. Therefore,
motif discovery is clique discovery in the multipartite graph. WINNOWER algorithm
uses a technique that iteratively removes edges that are not part of any clique. The
final graph contains only cliques that represent motifs. A cluster of cliques represents

a chuster of motifs.

string to save time.

CHAPTER 3. MOTIF DISCOVERY APPROACHES 27

The WINNOWER algorithm takes a set of unaligned sequences as input each
of length n. The user provides the length {I) of the motif required along with
the allowable number of mismatches (d). Consider S is a set of sequences, S =
{s1,89,..,sn}. Every sequence s; is broken in a subsequence at every position j where
i =j < (n+1)—1 For example, if the sequence length is 6, then 3 subsequences
each of length 4 can be generated. Therefore, the total number of subsequences of
length { that can be generated from a given sequence of length n are n+1—1[. Every
subsequence becomes a vertex of a graph. Two vertices have an edge only when the
hamming distance between them is at most twice the number of allowed mismatches.
So if d is the allowed number of mismatches in a sequence, then the number of actual
positions where the substrings in hoth vertices will differ is at most 2d. Also, an
edge exists between two vertices only if the vertices are in two different SeQUENCES.
The edges represent the actual motif in question. Figure 3.1 [36] and Figure 3.2 [36]

illustrate graph construction and edge filtering. Upon construction of the graph, the

ATAICLAITATAC CALAGAMGRAAGGT EGGG T ATAG b agagt ac s
ATOACTTCALT ABARL LT GUET O TETEC AT TTHAGTATE (1)
JLAGLE GUUAALLARPE L 041100 L0 LLARAALAAL GO AG LG

groaatcnanaaaac A OGANOAT TECAMARABAGAGATTHRIAC Tt

boread mgiials N P TR ESHYCS

C RPN _~:53j1;1]\; --------- PR \‘\fé;:

BT BT i e e

Figure 3.1: Clique formation [36]

algorithm tries to locate large cliques in the graph. According to Pevzner and Sze

a dense multipartite graph with sequence length of 600 produces as many as 20,000

CHAPTER 3. MoOTi¥ DISCOVERY APPROACHES 28

ATgACCQO0ATACTOATAGAAQABAGRT TRGGTAT ARt gOagTar gataa
ATQACTUCARTAARACOGGHGTYL TCLCCCPATTTEgAGLALELT LgyY
(CAATCOCGAACCAANCTAAGAATLGUATYTCAMMATAATGGAGTGGEAC

gtcaatcgaaaaaacggtygaggat LLEAMAAAAAGGGAT Legaccgett

B Ul sfe temuGAl BT e BT

Figure 3.2: Cliques without edges [36]

“spurious” edges (edges that are not part of any clique, but still seem to be realistic
signals to a motif). Locating a large clique in the graph is an NP-complete problem.
Therefore, instead of locating cliques first, WINNOWER uses an iterative filtering
strategy to prune all the spurious edges and unwanted vertices from the graph. In
summary, WINNOWER works in two steps. First, construct a graph with edges be-
tween substrings (vertices) in different sequences and having a hamming distance of at
most 2d. Figure 3.1 [36] shows the graph construction with the sequences, the edges
connecting the sequences and the cliques. The dotted lines represent spurious edges
and sequences. Second, identify the edges that are not part of any clique and prune
them. This step also involves locating and removing unconnected vertices (weak ver-
tices). Perform the second step iteratively until all the.spurious edges are removed

and only cliques remain. Figure 3.2 [36] shows the cliques after edge filtering.

WINNOWER is tested for finding motifs of Jength 15 with 4 mismatches (15,4)
in twenty sequences with 600 bases [21]. While other motif finding software tools
such as MEME and Gibbs Sampler failed to recognize significant motifs in such long
sequences, WINNOWER gave a performance of over 80% even for sequences of length

700 bases. However, WINNOWER suffers from certain disadvantages. Pevzner and

CHAPTER 3. MoTiF DISCOVERY APPROACHES 29

Sze [21] state that WINNOWER is a computationally intensive algorithm and requires
substantial amount of time and memory. It requires lot of memory to store the values
of the edges. Also a huge amount of time is spent on detecting the spurious edges.
Pevzner and Sze also indicate that WINNOWER slows down for larger samples of
sequence data.

The algorithms detailed so far are the most state-of-the-art and powerful motif
discovery algorithms designed to find subtle motifs. Qur algorithm has close resem-
blances with the WINNOWER strategy, which is also graph based. The similarity
between the graph used in the WINNOWER strategy and the de Bruijn graph is
that both break the sequences into overlapping sub-sequences. Both consider subse-
quences (character strings) as vertices. However, in the de Bruijn graph, unlike the
WINNOWER strategy, an edge exists between any two overlapping subsequences in
the same sequence. In a de Bruijn graph since every I-tuple is represented in the form
of an edge, every repeating subsequence (in this case a motif) also becomes an edge.
Therefore, the edges form the potential sites for conserved regions. The following

section explains the construction of the de Bruijn graph.

3.3 Construction of a de Bruijn graph

A de Bruijn graph is a graph whose vertices are subsequences of a given sequence and
whose edges indicate the overlapping subsequences. Consider the following sequence
ACCGTCT. The sequence can be resolved into the following fragments of length 4:
ACCG, CCGT, CGTC, and GTCT. Each fragment is called an [-tuple. Anl—1 tuple
is obtained by further fragmenting each {-tuple. For example, ACC and CCG are [1
tuples of ACCG. The I — 1 tuples form the nodes of the de Bruijn graph. An edge

exits between any two [— 1 tuples and the edges represent the [-tuples. Figure 3.3

CHAPTER 3. MOTIF DiSCOVERY APPROACHES 30

illustrates the 3-tuple de Bruijn graph construction for the sequence ACCGTCT. The

_{,./ Edge Weight

3 I e
(ACC Mozl CCG e CCT a6 TC Ml TCT)
Edge Name
Figure 3.3: Construction of a de Brujn Graph
A .
0 o
c !]
1 v
Single High
Hepeating Weight Edge -

Edges

Figure 3.4: Gluing of Repeating Edges

multiplicity of each edge is represented by an edge with a weight. Initially every edge
gets a weight 1. In case two consecutive vertices (vertices with the specified overlap)
repeat, then the edge multiplicity is increased (in this case an increment in weight
of the edge by 1). Similar to the strategy employed by Pevzner et al. [22], we glue
the repeating edges thereby increasing the multiplicity of one single edge as shown
in Figure 3.4, The conserved regions are most likely to reside on the most repeated
edges, l.e., edges with greater multiplicity (which have greater weight attached to

them}.

CHAPTER 3. MOTIF DISCOVERY APPROACHES 31
3.4 Summary

In this chapter, we provide the background work on probabilistic and combinatorial
approaches for the motif discovery. We explain the construction of the de Bruijn
graph upon which this thesis is based. Implementing the de Bruijn graph on a paralle]
platform is difficult because it is basically a recursive graph. Theretore, there are a lot
of dependencies. So it is important to identify regions which are fit for parallelization.

The following chapter will provide an introduction to parallel computing.

Chapter 4

Parallel Computing Platforms

A sequential computer may take hours or sometimes days to solve a computationally
intensive problem. Parallel computing comes to the rescue of such problems. Parallel
processing allows multiple processors to work concurrently to solve a time consuming
problem. It offers additional computing resources such as CPU cycles and memory.

In 1966 Michael J. Flynn [9] proposed a classification for parallel computing archi-
tectures popularly known as Flynn’s taxononiy. Flynn categorized parallel computers
into Singte Instruction Single Data (S1SD), Single Instruction Multiple Data (SIMD),
Multiple Instruction Single Data (MISD) and Multiple Instruction Multiple Data
(MIMD) computers.

SISD systems are essentially serial computers. Only one instruction is processed
on a single data stream. Therefore the least amount of concurrency is exhibited by
SISD computers. Classical PCs and workstations with single CPU fall under this
category.

MISD is a set of processors acting on the sub-problems of a single problem:. It is
basically asynchronous in nature and has very little importance in the present scenario

of parallel computers,

32

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 33

In SIMD systems(see Figure 4.1 [11]), a single instruction is executed on several
processing units (CPUs) [11]. However, unlike SISD and MISD systems, the same
Instruction is executed over multiple data units. Every processing unit is independent
of each other. The system is synchronous in nature and all the processing units are

controiled by one global control unit. SIMD is suitable to work on data structures

‘p[:" . R

pE: v 1Cantrol "L. e e R 1 11 A1t e
S oo
4 e
Va
A e 3 TOPE. T Z
s . PE. H «Control i
P z urie A =
Giobal [T £ B g
Control Unit . g ?:
£ £
.,] 3
i 15 a
] I
~, E z
/7 = PEPHH“‘ ‘
. PE, : I Py PN L S
“ S L 3
T tLooamit L
SIMD architecture MiMD architecture

Figure 4.1: Control Structure of Paralle] Platforms [11]

such as arrays and vectors. The data can be equally shared among all the proces-
sors. Consider the following addition application cfi] = a[i] + bli]. In this operation
processor 1 can take elements from i = 1 to 10. Processor 2 from ¢ = 10 to 20, ete.
SIMD systems do not show good performance when conditional statements (such as
if, else} are used and also in cases where data cannot be distributed equally among
all the processors [11]. Consider a scenario where there is a conditional statement
such as “if.. else”. In the SIMD systems a single instruction should be executed on
all the processors. In this case, if certain condition is true one set of Processors rumn
while others are idle and the same in case of an else condition.

SIMD systems are increasingly becoming obsolete because of the following factors:

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 34

Extensive design which leads to greater production times, poor resource utilization
(all the processors might not be utilized at the same time when data size is not
uniform) and performance highly depends on the nature of the application.

MIMD is the modern day parallel computer. These systems are elegant both archi-
tecturally and functionally. Several processing elements work on different instruction
sets and work on different sets of data simuitaneously. There is no centralized con-
trol for all the processing elements. Figure 4.1 111} illustrates the difference between
SIMD and MIMD systems. Execution of the tasks is not necessarily synchronous,
thus making the system very flexible.

Workstation clusters, Symmetric Multiprocessor {SMP) processors, grid comput-
ers and most present day super computers fall under this category. Most of the MIMD
machines fall into the following categories: Shared memory machines and distributed

memory machines,

4.1 Shared Memory Machines

As the name suggests, shared memory machines have a common address space which is
accessible to a set of processors. All the processors work independently while sharing
the same memory location. Figure 4.2 illustrates the share memory architecture.
Shared memory is classified into two models: Uniform Memory Access (UMA) and
Non-Uniforn: Memory Access (NUMA)

UMA machines have a set of processors with identical processing speed and hard-
ware configuration. All processors have equal access to memory. Sometimes UMA
machines are also known as Symmetric Multiprocessors (SMPs). Explicit communi-
cation among the processors via message passing at the hardware level is not required

in the case of SMPs. Programming in SMPs is also quite simple and owing to the

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 35

I CPU | | CPU } I CPU
"\ --/_: '.\\- -"/.' 7

Shared Memory

Figure 4.2: Shared Memory Architecture [11]

global address space, data sharing is very easy too.

A network of SMPs form a NUMA machine, also known as the “distributed shared
memory machines”. In these machines, memory access is not uniform. Since the
SMPs are connected, one SMP can access the memory of another SMP. However, the
access time i1s not uniform as in the case of UMA machines.

The major disadvantage of shared memory machines is their inability to scale for
large number of processors. Synchronization among the tasks is the responsibility
of the programmer. Hence it is quite important to use locks and critical sections in

shared memory programming.

4.1.1 Parallel Programming using OpenMP

OpenMP is becoming a standard programming language for shared memory machines.
It is a directive based Application Programming Interface (API} which allows pro-
gramming in C, C-++, Fortran and Java. Apart from compiler directives, the OpenMP

API consists of runtime routines and environment variables [4]. Using these compo-

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 36

nents of the API, OpenMP can convert a serial code written in C, CH+-+, etc., into a
parallel code. One of the goals of OpenMP is to provide a standard for programming
on shared memory architectures.

All the OpenMP directives are written along with the normal C+- or Fortran
code. The program runs normally in the serial format until an OpenMP directive
is traced by the compiler. Every OpenMP directive follows certain format. A typi-
cal OpenMP directive is as follows: “pragma omp [directive name/{clausefclause]..]”
Every OpenMP directive is preceded by pragma omp. If we want to create a parallel
region where all the processors participate, then the appropriate directive is “paral-
lel”. The clause can be an “IF” clause. If certain statement evaluates true, then the
set of OpenMP threads are created in the parallel region. This is followed by the
variable list. Shared variables are equally accessible to all the processors. Private
variables are accessible only to the individual processors accessing them. Here is an
example of an OpenMP directive for parallelizing a “for-loop”: “pragma omp parallel
Jor default(shared) private(i.j myvariables)”.

Programming using OpenMP is easy because by adding few parallel directives to
the serial code, one can convert a serial program to a parallel program. No explicit
communication among the processors is required. Figure 4.3 [4] illustrates a typical
fork-join model that is adopted in an OpenMP program. The foundation of OpenMP
is on the concept of multi-threading. Every OpenMP program begins with a “mas-
ter thread” [4]. The program is essentially serial until a parallel OpenMP compiler
directive is encountered. Once a parallel compiler directive is seen, the OpenMP
program forks into a set of threads. This region is also known as the parallel region.
Fach thread is independently executed by a separate processor or shared among the
processors. Once the threads are executed, they join into the master thread and the

program is again serial from that point.

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 37

master
ihread

e, s,
{ paraltel region } { parallet region }

Figure 4.3: Fork-Join model [4]

4.2 Distributed Memory Machines

A cluster of interconnected workstations which do not have a common memory, but
have a local memory, can be called as Distributed Memory machines. In such an
architecture, explicit message passing among the processors is required for commu-
nication. Therefore, the network hbandwidth and the network topology influence the
performance of the parallel algorithm to a large extent. There are various topolo-
gies suggested in the literature such as bus, tree, star, mesh, hypercube ete. It is
very important to choose the right topology based on the interconnection among the
processing elements. Since distributed memory machines rely on message passing
for communication, network bandwidth plays a vital role in the time taken for the
arrival of the messages. Figure 4.4 [11] gives a picture of the distributed memaory
network. Scalability is the biggest advantage i distributed memory systems. Every
processor has its own local memory, there is no need to explicitly synchronize the
tasks. Parallel Virtual Machine (PVM) and Message Passing Interface are two main
libraries for distributed memory machines. Since we have employed MPI in our the-
sis, we would like to explain few features of MPI. MPI is the current standard for

message passing on homogeneous cluster of machines. MPI is portable as it can be

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 38

PO deey | [ceu] bemon
- W "/—li———w

Interconnection Network

Figure 4.4: Distributed Memory Model {11]

run of various platforms {which have an implementation of MPI such as Lam-MPT}
without changing the source code [4]. The parallelism in MP1 is completely specified
by the user. Stmilar to OpenMP, MPI creates its own parallel environment within a
program. Within the environment MPI recognizes the total number of processors to
be used and assigns a rank for each processor starting from zero. The communication

among the processors from this point will be via their rank.

4.3 Hybrid Model

The hybrid shared-distributed-memory model is cluster of machines which can sup-
port both shared-memory and distributed memeory mechanisms. Figure 4.5 [4] illus-
trates a typical hybrid model. There is no pal.“ticuiar API which enables us to write
hybrid programs. However the programs should include directives from API’s which
support shared and distributed programming. A cluster of SMPs is a good example
for a hybrid model. As discussed earlier, SMP’s are primarily shared memory ma-
chines. However, where there is an interconnection among a set of SMP’s they behave
Just like a cluster of work stations with distributed memory. Hence a shared menmory

can be used for smaller tasks within the node and for large scale parallelism, the

CHAPTER 4. PARALLEL COMPUTING PLATFORMS 39

nodes across the cluster can be utilized. The hybrid mode! is the current and future

d network

Figure 4.5: Hybrid Model [4]

trend in parallel computing. It has the advantages of distributed and shared mem-
ory machines. They are currently used in all High Performance Computing (HPC)

operations,

4.4 Summary

In this chapter we have discussed various parallel computing trends. We have ex-
plained the early classification of parallel computers. All the modern parailel com-
puters belong to the MIMD class. We have discussed the advantages and disadvan-
tages of shared and distributed memory models. In this thesis we have adopted a
Hybrid model. We have used the high performance computing facilities available
on the Westgrid {27] consortium for our experiments. We will explain more about
application of the hybrid model on the motif discovery problem in Chapter 6. The
next chapter will discuss previous research efforts to parallelize the motif discovery

problem.

Chapter 5

Related Work: Parallel

Approaches to Motif Discovery

In this chapter, we will describe the literature and previous research efforts that adopt
parallel computing techniques for the motif finding problem. Software tools have been
developed that apply parallelization to the graph-based approach. We will describe
parallel motif discovery tools such as ParaMEME [12]. Specifically, we will efaborate
on two recent parallel motif discovery programs namely “Motif discovery toolkit” by
Baldwin et al. [3], and ParSeq by Qin et al. [23].

ParaMEME is a paralle]l program for the MEME software. As we have mentioned
carlier, MEME is based on a probabilistic approach that uses the Expected Maxi-
mization (EM) algorithm. Ever since MEME has become a popular motif searching
software, the number of users accessing the system simultaneously has increased.
Therefore, MEME was ported over to the 400-node Intel Paragon XP/S platform
using a parallel programming language called MP++. The ParaMEME is scalable
for up to 64 processors. The original MEME has 4 jor loops. ParaMEME parallelizes

two out of the 4 for loops. Every job submitted by the user is assigned to 8 nodes of

40

CHAPTER 5. RELATED WORK: PARALLEL APPROACHES TO MoTIiF DISCOVERY4]

the cluster. Grundy et al. [12] state that ParaMEME shows an efficiency of over 70%
even for large sequence datasets.

Sutou et al. [37] propose a parallelization of a motif discovery method called the
Moditied PrefixSpan method. PrefixSpan is a data mining technique used to ex-
tract frequent patterns from a database. Modified PrefixSpan is a variation of the
original method designed for faster pattern extraction. To reduce the computational
time taken, the Modified PrefixSpan method is parallelized on 8 processors. The
parallelization method adopts a dynamic load balancing scheme, where the master
processor generates a job pool and each slave processor gets data from the job pool.
Every slave processor extracts most frequently repeated patterns. Once a slave pro-
cessor completes its job, the master job generates more jobs and inserts them into
the job pool. Sutou et al. state that the parallel version of the Modified PrefixSpan
is G times faster in comparison to the serial version.

Baldwin et al. [3], develop a motif discovery tool called Motif Discovery Toolkit.
The toolkit uses graph algorithms to predict the gene regulation sites. Owing to the
speed and efficiency of the graph algorithms when compared to other motif finding
algorithms, the developers of the toolkit choose to make extensive use of technigues
applied in state-of-the art graph algorithms. To discover the binding sites {motifs)
in a larger sample of data (the complete genomic sequence, not just fixed length
sequences), the toolkit implements the graph algorithm on a cluster of homogeneous
nodes.

There is striking similarity between the working models of the WINNOWER algo-
rithm and the motif discovery toolkit. The toolkit resolves the unaligned and arbitrary
sequences into overlapping subsequences, each with a fixed tength. It constructs a
graph using the subsequences as vertices. To identify the complex interconnected

regions in the graph (vertex cover) the toolkit employs the graph algorithms such

CHAPTER 5. RELATED WORK: PARALLEL APPROACHES TO MOTIE DISCOVERY42

as WINNOWER. The motif discovery tool not only identifies clusters of motifs, but
also builds motif models (PWDMs representing the potential motifs} from the cluster
information.

During the graph construction phase, the motif discovery toolkit constantly builds
a graph of lesser size and lower density using a vertex reduction technique called
kernelizetion {31]. The final optimal graph is called the kernel. The parallelization
process begins after the kernel is built. The second phase called branching uses a
tree structure to probe the search space of the kernel. The master processor contains
a scheduler that resolves the entire kernel into independent subtrees and distributes
the subtrees to the slave processors on a manager-worker basis (jobs are assigned to
the slave processors on demand dynamically).

Qin et al. [23] develop a parallel motif searching tool based on a serial motif finding
tool called ParSeq [17]. ParSeq is not a graph-based motif finding algorithm. ParSeq
uses a query (which is in the form of a regular expression such as {AG|TC}*), which
mmcorporates biochemical and structural properties of the motifs while making the
motif search.

ParSeq (33} uses an approximate search algorithm that returns the best charac-
ter strings based on the regular expression. The client provides the regular expression.
For example the expression (taken from ParSeq documentation) “(ACT)@X 10 [hdpd{>
0)” stands for a definite string ACT followed by a character string with 10 arbitrary
characters. The character string should posses hydrophobicity score bigger than 0
according to Kyte/Doolitle score [31]. Every regular expression generates a certain
number of hits. The query can be changed and be made more specific to obtain more
accurate motifs. ParSeq works as a filter that will further narrow down the search.

Qin et al. {23] parallelize the serial ParSeq [33]. The search is parallelized on

client-server based architecture. The parallel search is performed on the server side,

CHAPTER 5. RELATED WORK: PARALLEL APPROACHES TO MOTIF DISCOVERY43

while the client places the request using a query. All the processors on the server
side access the sequence database to search for the motifs. The search space in the
database is equally divided into n chunks for n processors. Each processor gets its
own chunk of sequences against, which they search for the motif patterns. The parallet
version of ParSeq is tested on a homogeneous network of 32 processors. (Jin et al. [33]
propose to implement ParSeq on a heterogeneous network in future.

ParSeq is an advanced motif searching technique that is designed to search for
more variable motifs that are associated with certain biochemical properties. ParSeq
expects the client to read the documentation for building the regular expressions
because all those details are only specific to ParSeq. The number of hits purely
depends on the description of the motif in the query. If the description is inaccurate,
then the query will return too many matches, which is apparently a loophole in the

software,

5.1 Summary

Our work involves parallelization of a graph algorithm. We use protein sequences
with variable length as test data. Both the WINNOWER algorithm and the motif
discovery toolkit developed by Baldwin et al. 13] do not seem to consider a weighted
graph. Also, they consider a clique or a vertex cover to represent motifs. We used a
directed weighted de Bruijn graph instead, and in our algorithm, the edges represent
potential motifs;, not the complex interconnected structures. The following chapter

will provide an outline of our parallel algorithm.

Chapter 6

Sequential and Parallel Algorithm

In this chapter, our graph based algorithm is explained. The algorithm works in
two stages. In the first stage the de Bruijn graph is constructed as explained in the

section 3.3 of chapter 3. The second stage is the graph traversal sté.ge.

6.1 Graph Construction

A de Bruijn graph is a graph whose vertices are subsequences of a given sequence
and whose edges indicate the overlapping subsequences. Initially a protein sequence
Is broken into a set of I-tuples. Each I-tuple is again broken into a set of [— 1- tuples.
An edge joins two overlapping | — I-tuples as shown in Figure 3.3. The multiplicity
of the corresponding directed edge increases when successive | — I-tuples within the
same sequence or in a different sequence repeat. This corresponds to an edge gaining
a higher weight. This procedure is known as gluing of similar edges. The advantage
with such an arrangement as stated by Pevzner et al. [22] is that it is quite easy to
identify different regions of similarity among a set of sequences. These high weight

edges form potential sites for conserved regions. Note that all the sequences are not

44

CHAPTER 6. SEQUENTIAL AND PARALLEL ALCORITHM 45

part of one graph but made of many subgraphs. Every sequence has it own sub-
graph. However, whenever there are similar regions in two different sequences, the
sub-graphs overlap. Thus, the de Bruiin graph is a set of overlapping sub-graphs as

shown in Figure 6.1. Every line in Figure 6.1 represents a separate sequence.

@
%M>
o— o—o—

O__

Offﬁﬁf\o—o

Figure 6.1: Sub-graph Overlap in Sequences

6.2 Parallelization of Graph Construction

Initially we developed a hierarchial scheme where individual nodes will construct only
a portion of the graph and the entire assembly takes place on a single master node.
'Though the method looks feasible, we found that this method is highly cumbersome.
While a few nodes do the graph construction, others remain idle. In fact we ended up
performing more loops than the normal serial program. Even though there is suffi-
cient room for further parallelization, we were not able to exploit it using distributed
memory machines. In order to extract maximum parallelism while not keeping any
nodes idle, we shifted to the hybrid model.

In the hybrid model] every node constructs its own graph. The construction is

CHAPTER 6. SEQUENTIAL AND PARALLEL ALGORITHM 46

parallelized using multiple threads. The adjacency list used to store the graph node
information is used as a shared data structure. Each thread updates the shared data
structure individually. In such an arrangement, the time taken to construct the whole
adjacency list is equally shared among the shared memory threads, thereby exhibiting
fine grain parallelism. Once the adjacency list is constructed, the graph traversal is

performed on individual nodes using message passing.

6.3 Graph Traversal

The next stage is graph traversal. A hash table contains all the nodes as its keys.
Corresponding to every node is its adjacent node and the edge connecting them,
maintained in the form of an adjacency list. The set of graphs obtained from the
graph construction procedure followed above are highly connected with numerous
cycles and thus messy. The aim is to identifv the dense regions of the graph where
the edges have a high weight. Since there is no single path that covers all the nodes
or edges, the best way is to individually traverse each sub-graph. For every sequence
whose first node has an indegree zero becomes the starting peint of the traversal.
Hence we maintain a queue of nodes that have an indegree zero. We use a recursive
Depth First Search (DFS) for performing the traversal. In order to avoid falling
mto an infinite loop when cycles are encountered, the algorithm visits each node
Just once. The corresponding nodes connected to a given node and the weights of
the edges connecting the nodes are extracted from the hash table. After obtaining
the high weight edges, the algorithm first tries to locate the entire repeated region
called as the “active region”. An active region is a high-weight region where a lot of
sequences coincide upon a particular consecutive edge set. In other words, an active

region is a region that contains consecutive edges that have repeated themselves. All

CHAPTER 6. SEQUENTIAL AND PARALLEL ALGORITHM 47

the high weight edges need not represent motifs because there is a fair chance for
them being repeats. Hence the search is for more prominent edges. Therefore we
tried to identify edges that have more weight in an active region in comparison to the
other edges. Figure 6.2 represents the active regions with some edges having higher

weights than other. From the figure one can observe that BC and CD have a greater

Figure 6.2: Active Region

edge weight in comparison to edges AB and AE in the active region ABCDE. This
concept has actually worked in mining desirable motifs from the sequences. However
our algorithm failed to recognize motifs that do not exactly match with each other,
for example MNPPPQF and MCPPPQF {(with the second position differing). Hence
we have sought to make changes in the way the comparison of — 1 tuples is made
in the initial stages. Our initial strategy was to look for straight { — 1-tuple matches.
Later, in order to find motif with slight mismatches, we introduce a parameter called
distance, d. Two I —1-tuples with hamming distance 1 will be considered as one single
! — I-tuple. The nodes that follow will connect to the given [— 1-tuple depending
on the hamming distance from the already Connect‘ed nodes. This way we were able
to unearth subtle or weak motifs. The hamming distance depends on the amount of
overlap of the [— 1-tuples which in turn depends on the initial motif length chosen.
Therefore, a longer [— 1-tuple (> 7) will have the distance parameter set to 2 so that
the hamming distance between any two ! — 1-tuples is 2. Hence two nodes with a

hamming distance <= 2 will be considered as similar nodes.

CHAPTER 6. SEQUENTIAL AND PARALLEL ALGORITHM 48

6.4 Parallelization of Graph Traversal

As explained above, graph traversal mainly involves tracing edges with higher than
certain threshold weight. This is a completely independent process which does not
have any dependencies. Therefore, the whole traversal operation can be performed
individually on different processors. The graph is extremely large owing to the huge
amount of test data. The graph traversal consumes a significant amount of time when
performed on a single processor. In this scenario a distributed memory machine will
be of greater help in comparison to a shared memory machine. This is because, during
graph traversal edges may be shared by processors requiring constant synchronization
which is costly. In the distributed memory machine, the data is distributed among
the processors and each processor performs the traversal independently and through
message passing for sharing of information. In the graph traversal, coarse-grained
parailelism is exploited. Therefore, we chose to parallelize the entire traversal process

on a distributed memory machine.

We adopt a dynamic “manager-worker” framework to perform the graph traversal.
Every node builds its own graph using the shared memory (the process explained
above). Once the graph is constructed, the “manager” builds the zero indegree queue.
The size of the indegree queue depends on the number of sequences. Since the indegree
queue contains the starting points for the traversal, they form the work units for
the worker processors. Therefore, whenever the worker needs work, the manager
sends a chunk of zero indegree nodes. The worker processor performs the depth
first search, traces the high weight edges and identifies the potential sites. Once the
process is complete, the worker sends the results back to the manager and requests
for more work. The whole process is an on-demand process, thus making it entirely

dynamic. The manager filters the repeated potential sites and maintains a final vector

CHAPTER 6. SEQUENTIAL AND PARALLEL ALGORITHM 49

containing all the potential motifs. The manager worker communication continues as
long as the zero indegree gueue is not empty. When there is not enough work, the

manager sends & termination signal to all the worker processors.

6.5 Summary

Identifying smaller motifs (length <= 8)and less significant motifs (motifs which differ
by more than 2 positions) in a huge amount of data is a herculean task. There are
two reasons, fist more number of comparisons to be made for motifs Jess significant
motifs. The problem becomes worse when the length of the motifs that we are looking
are small. If the sequence length is 100, the number of I-tuples of length 8 will be
93 {100 — 8+ 1) and the number of { — I-tuples is 186. If a data file contains more
than 10,000 sequences, the number of [— 1-tuples will be 19,986. Hence the number
ol comparisons to be made while looking for edges greater than a certain weight (in
the traversal stage) will increase exponentially. Therefore, it is important to use an
appropriate data structure (such as hash table) to store the node information. The

next chapter describes the implementation in more detail.

Chapter 7

Implementation and Result

Analysis

This chapter discusses the implementation and resuits of the algorithm. The algo-

rithm is also tested against the popular MEMFE for correctness.

7.1 Implementation Platform for Parallelization

‘The parallel algorithm is implemented on a cluster which belongs to the Westgrid [27].
Westgrid is a resource provider which adopts a grid-enabled system to facilitate High
Performance Computing (HPC). Currently Westgrid is the biggest resource provider
in Canada encompassing about 14 educational institutions in 4 provinces.

Clusters of computers located in geographically different locations when connected
to form one massively powerful computer, which is called as a “grid”. Drug design,
weather forecast patterns, protein folding, earthquake simulation and particle physics
experiments are some of the numerous applications of the grid.

The Westgrid consists of various clusters which vary in their design and the nature

50

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS 5l

of problems they are designed to handle. For example, the nexus and the cortex
group at the University of Alberta are shared memory clusters. The glacier is a 1680-
processor Beowulf cluster hosted by the University of British Columbia. Hydra is a
visualization facility hosted by the Simon Fraser University. Further information can

be found on the official Westgrid website {27).

We have chosen to implement our algorithm on the glacier cluster. Glacier consists
of 3 head nodes (available for the users) and 840 IBM eServer BladeCenter HS20
machines with dual 3.0 GHz Xeon processors. Every node has about 2 to 4 Gb of
memory. On glacier, C++ is supported by Portland Group 7.0-2 (pgCC) Intel 9.1
(icc) GNU 3.2.3 (g++) compilers. Both Intel and Portland group of compilers are
available for compiling MPI programs. Intel compilers are available for the OpenMP

support.

We have employed the Intel compilers to compile our hybrid program. We were
unable to use the Portland group of compilers because no explicit support for OpenMP
was provided. Though other clusters, such as nexus, did provide compilers for hybhrid
programs, we did face few technical issues which are not resolved to date. An impor-
tant point to notice here is that, though clusters may provide support for distributed
and shared memory computing “individually”, when we mix both paradigms, many
technical issues arise. For example, a shared memory cluster such as “Cortex” does
not have C++ support for OpenMP. Since we adopted advanced C4++ data struc-
tures such as hashtables, vectors and Queue we had to explicitly provide the location
of the STL (standard template library} to compile the program. On glacier, we were

able to compile and run the program without any problems.

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS 52

7.2 Sequential Results

The sequential algorithm is implemented using Java and C++ running on a Linux
platform. Initially the algorithm was tested on the DNA sequences that belong to
the prokaryotic family. The advantage with these sequences is that they have very
low or negligible number of repeats. In addition to that, the common repeating
patterns in the prokaryotic sequences (the “TATA” patterns) are already known.
Upon successful initial testing we tested the algorithm on the protein sequences. We
chose to start off with the protein responsible for redox {oxidation and reduction)
reactions called “Cytochrome” [26, 32]. The initial testing began on just twenty
sequences, with the longest sequence being 577 nucleotides. However, we ended up
testing the algorithm successfully on 15000 sequences. In this section, we will make
a comparison of our algorithm with popular motif searching tools namely “MEME”
and the “Gibbs sampler”. We could not compare our algorithm with Patwardhan
et al.’s [20] software because the software did not provide the approximate or exact
runtime for a job. Though many tools for searching motifs were available, we have
chosen MEME and Gibbs sampler because they provide for testing both DNA and
protein sequences. The only parameter that we ask the user to enter apart from the
sequence set 1s the expected length of each motif. Figure 7.1 shows the comparison
among the three algorithms. Both MEME and Gibbs sampler have a character limit.
Therefore, we could not test them for more than 36 protein sequences each averaging
200 nucleotides. Clearly our algorithm has a speed advantage over the other motif
discovery tools. This comparison just gives an approximate picture of the speed
levels. The next step is testing the accuracy of the results. The graph algorithm had
matched 70% of the motifs with the MEME and 65% of the patters with the Gibbs

motif sampler. Out of the first 10 motifs (length = 8) returned by MEME, it had

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS 53

of Sequences Vs Process Time
100000 ;

1

16000

1000 e wMEmE

—aGitbe Mot |
Sampler

Our Algosithm

“Time in Milliseconds

5 10 2 30
Humber of Sequences i S ample Data

Figure 7.1: Sequences Vs Process Time

7 straight matches and two partial matches {differing by one character). Analysis
shows that motif length and allowed Hamming distance are the primary factors that
affect the performance of my algorithm. A small change in the expected length of a
tuple (motif} will bring drastic change in the total time consumed. This is due to the
overlap of the subsequences in the graph. Hence, changing the length of the motif
will affect the length of the I — 1-tuple. Therefore, smaller [-tuples result in a greater
number of nodes in the graph. Second, the Hamming distance also has a great impact
on the performance because it is just an additional level of comparison which takes up
a lot of processing time. However, the correct selection of Hamming distance based
on the overlap of subsequences will ensure the retrieval of weaker motifs which are

otherwise neglected.

7.3 Performance analysis of the Hybrid model

The sequential version stands as a benchmark for all further tests on the parallel

machine. In comparison to the sequential algorithm, the parallel version can handle

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS 54

more data. In this section we will make a comparison of the sequential, the plain
MP1 and the hybrid model. We develop both speedup and the efficiency curves for
the hybrid model. Proteins such as Cytochrome, Keratin, Basigin, and Neurothelin
were taken as test data. However, this time we tried to extract sequences at the
genomic level. The whole cytochrome is about 110 Mega Bytes. In the hybrid model
we provide a provision to read multiple protein sequence files. Each of these files is
converted infto a binary file which excludes the sequence headers and contains Just
the sequences. Hence our program can read as much data as possible and the user
just has to specify the file names.

Figure 7.2 is a comparison of the time taken by Hybrid and plain MPI methods
on varying number of processors with constant data size (40MB). As it is evident
from the graph, the hybrid program runs almest 3 times as fast as the plain MP],

Figure 7.3 is a comparison of the serial, MPI and the Hybrid programs. From the

Hybrid Vs Plain MP1

1600000 -
1400000
1200000 ; : T
‘m T S P
0000 B Y TS St L L
40000¢
200000

. L BRI Ry

8 16 az 40 &4
Number cf Processors

Time in Milkseconds

Figure 7.2: Comparison of Hybrid and Plain MPI programs

graph it can be observed that the hybrid program did not perform well when the data
size was small. In fact MPI and the serial program showed better performance until
the data size was about 15MB. The hybrid program consumes considerable amount

of time in the graph construction part where synchronization among the threads is

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS 55

Process Time Comparision at Constant Number of

Processors

10900000
= 1000000
£ 100000
E 10000 i~ Seriat
= |- PainMPl
£ 100 o
E
= 10

T

LLE: B 5 W15 X 4 8 n
Cala Sire

Figure 7.3: Process times of Serial, Hybrid and Plain MPI

required. However this deficiency is compensated as the data size is increases. Though
the synchronization time remains constant, more data is shared among the threads,

thereby reducing the processing time. The speedup and efficiency curves for both

[_ Hybrid Model Speedup Curve

.. © | —— Speedup of Hybrid
— | -=- Speedug ot MPI

Speedup
n

il 20 a 80 o]

Humbor of Processars.

Figure 7.4: Speedup of Hybrid

hybrid and MPI programs are illustrated in F igures 7.4 and 7.5. Its quite clear
that the hybrid program has shown better performance than plain MPL Motif length
and Hamming distance still have the same effect on the runtime of the program as
described above. In addition, the performance of the parallel program depends on
the following factors: size of the Indegree Vector, the number of worker DProcessors,

and the size of the input file. The program is scalable for 32 processors. As seen

CHAPTER 7. IMPLEMENTATION AND REsuLT ANALYSIS 56

Efticiency Curve of the Hybrid Program

2 Eficncy Corve Hybng
H - Efficiency Gurve MPI

Eftigiency
o
*

o

Kumber of Processors

Figure 7.5: Efficiency Curves

in Figure 7.4 the hybrid program shows a steep drop in speedup when 64 processors
were used.

Apparently, increasing the number of slave processors brings about more commu-
rication overhead. Repeated tests have shown that better speedup can be achieved
when the program is run on 16 nodes (32 processors) using optimum chunk size

(number of nodes with indegree zero) for each slave processor.

7.4 Evaluation and Summary

In this section we will review our evaluation procedures and the challenges that we
have faced during the evaluation phase.

For evaluation purposes, we need to choose parameters which are common for
both serial and parallel versions of the algorithm. Therefore we chose parameters
such as data size {the number of sequences), the correctness of the results and the
total runtime. We evaluated serial algorithm for all the three parameters. In the case
of parallel algorithm, the accuracy of the motifs returned could only be compared with
our serial results. We were unable to compare accuracy against other parallel versions

because, none of the parallel motif discovery tools that we mentioned earlier in the

ot
I

CHAPTER 7. IMPLEMENTATION AND RESULT ANALYSIS

Chapter 5 were freely available on the web for testing purposes. ParaMEME [12] is
the only motif discovery tool which has a web application for testing purposes, but
unfortunately due to some technical reasons, their official website is currently nat
availahle.

Different moti{ discovery tools have different purposes. For example, few motif
discovery teools are designed to find subtle motifs in DNA sequences, while other
tools are designed to find functional motifs to classify the protein families. Therefore
comparing the runtime of different tools will have variations depending on the kind
of motifs being searched. The results shown in Figure 7.1 are only approximate speed
COMparisons.

To summarize our results, the factors which have a profound influence on the
performance of our parallel algorithm are as follows: the desired length of the motif,
the total chunksize chosen by the master processor, the Hamming distance (required
to unearth subtle motifs), the number of slave processors and the size of the input
file.

The next chapter will conclude this thesis with a few directions on the future

worl.

Chapter 8

Conclusions and Future Work

In this thesis we show that the de Bruijn graph can accelerate the rate of discovering
motifs by more than 10 times. The graph based approach is so powerful that even
minute repetitions in sequences are traced. Upon optimization, we were ahle to scale
the algorithm to 20 nodes and handle about 1GB of input data with ease. The al-
gorithm based on de Bruijn graphs had 70% matches of the motifs with the MEME
and 65% pattern matches with the Gibbs motit sampler. The sequential algorithm
showed that motif length and allowed Hamming distance are the primary factors that
affect the performance of the algorithm. The algorithm was redesigned to be imple-
mented on a cluster of parallel machines. Performance analysis were made on a pure
distributed memory machine using only message passing and on a hybrid machine
using shared and distributed access space. Experiments showed that the hybrid im-
plementation runs 3 times as fast as the pure distributed memory implementation on
a data size of 40MB. The architecture on the glacier cluster restricted us to only two
threads. In future, we intend to run the algorithm on a cluster where each node has
more processors per node. We would like to see if increasing the number of threads

will have any positive effect of the performance of the algorithm. Though our algo-

b8

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 59

rithm has the speed advantage, its accuracy level remains the same. Parallelization
did not have any effect on the quality of motifs returned by the algorithm. There-
fore, future work consists of employing some good statistical methods to find weaker
planted motifs. Our algorithm is not designed to solve the motif challenge probiem,
but few improvements during the node comparison stage (which includes generat-
ing weaker patterns and comparing with existing nodes), will certainly brighten the

chances of solving the planted motif problem.

Bibliography

[

Tatsuya Akutsu, Hiroki Arimura, and Shinichi Shimozono. On approximation
algorithms for local multiple alignment. In RECOMB 20000 Proceedings of
the fourth annual international conference on Computational molecular biology,

pages 1-7, New York, NY, USA, 2000. ACM Press.

Timothy L. Bailey and Charles Elkan. Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. In The Second International
Conference on Intelligent Systems for Molecular Biology, pages 28-36, Stanford,
CA, USA, 1994. AAAT Press.

Nicole E. Baldwin, Rebecca L. Collins, Michacl A. Langston, Christopher T.
Symons, Michael R. Leuze, and Brynn H. Voy. High performance computational
tools for motif discovery. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium, Eldorado Hotel, Santa Fe, NM, USA, April
2004. IEEE.

Blaise Barney. Introduction to parallel computing. http://www.1llnl.gov/

computing/tuterials/openMP/, July 2007.

Brona Brejova, Chrysanne DiMarco, Tomas Vinar, Sandra Romero Hidalgo,

Gina Holguin, and Cheryl Patten. Finding patterns in biological sequences.

60

BiBLIOGRAPRHY 61

[6]

[10]

[13]

Technical Report CS-2000-22, University of Waterloo, December 2000.

Jeremy Buhler and Martin Tompa. Finding motifs using random projections.
In RECOMB 2001: Proceedings of the fifth annual international conference on
Computational biology, pages 69-76, New York, NY, USA, 2001. ACM Press.

Dr. Steven M. Carr. DNA: The Molecule Of Life. http: //www.mun . ca/biology/

scarr/4241F2_DNA . html.

Santan Challa and Parimala Thulasiraman. A graph based approach to discover
conserved regions in DNA and protein sequences. In AINA Workshops (1), pages
672-677, 2007.

Michael J. Flynn and Kevin W. Rudd. Parallel architectures. ACM Comput.

Sury., 28(1):67-70, 1996.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. Readings in uncertain reasoning, pages 452-472,

1990.

Ananth Grama, Anshul Gupta, George Karypis, and V ipin Kumar. Introduction

to Parallel Computing. Addison Wesley, USA, second edition, 2003.

William N. Grundy, Timothy L. Bailey, and Charles P. Elkan. ParaMEME:
a parallel implementation and a web interface for a DNA and protein motif

discovery tool. Bioinformatics, 12(4):303-310, June 1996.

H. O. Hartley. Maximum likelihood estimation from incomplete data. Biometrics,

14(2):174-194, June 1958.

BIBLIOGRAPHY 62

14

[15]

19)

[20]

J. Walshaw J. Cooper and Alan Mills. Alpha-helix and beta-sheets. http:
//swissmodel . expasy. org/course/text/chapterl.htm. Secondary structure

and backbone conformation.

J. Walshaw J. Cooper and Alan Mills. Tertiary protein structure and folds. http:
//swissmodel.expasy.org/course/text/chapter4.htm. Cytochrome with 4

Helices.

Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics Algo-

rithms. The MIT Press, USA, second edition, August 2004.

Uri Keich and Pavel A. Pevzner. Finding motifs in the twilight zone. Bioinfor-

matics, 18(10):1374-1381, April 2002,

Xiaole Liu, Jun S. Liu, and Douglas L. Brutlag. BioProspector: discovering
conserved DNA motifs in upstream regulatory regions of co-expressed genes.

Pacific Symposium on Biocomputing, pages 127-138, 2001.

David W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring

Harbor Laboratory Press, New York, USA, first edition, 2001,

Rupali Patwardhan, Haixu Tang, Sun Kim, and Mehmet M. Dalkilic. An approx-
imate de Bruijn graph approach to multiple local alignment and motif discovery
in protein sequences. VLDB 2006 Workshop on Data Mining in Bioinformatics:

Lecture Notes in Bioinformatics, 4316:158-169, September 2006.

Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle
signals in DNA sequences. In Proceedings of the Eaghth International Conference
on Intelligent Systems for Molecular Biology, pages 269-278, La Jolla, CA, USA,
2000. AAAI Press.

BIBLIOGRAPHY 63

[22]

[23]

[29]

[30]

Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An BEulerian path
approach to DNA fragment assembly. Proceedings of the National Academy of

Sciences of the United States, 98(17):9748-9753, August 2001,

Jun Qin, Simon Pinkenburg, and Wolfgang Rosenstiel. Parallel Motif Search
Using ParSeq. In Proceedings of the IASTED International Conference on Par-
allel and Distributed Computing and Networks (PDCN 2005), pages 601-607,
Innsbruck, Austria, February 2005. ATCA Press.

Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in hi-
ological sequences: The TEIRESIAS algorithm. Bioinformatics, 14(1):56-57,
February 1998.

Frederick P. Roth, Jason D. Hughes, Preston W. Estep, and George M. Church.
Finding DNA regulatory motifs within unaligned noncoding sequences clustered
by whole-genome mRNA quantitation. Nafure Biotechnology, 16(10):939-945,
1998.

Cytochrome P450 cysteine heme-iron ligand signature. http://www.expasy.

org/cgi-bin/nicedoc.pl?PDOCO00S].

Westgrid Canada Research Grid. http://wuw.westgrid.ca/home.html.

Lysozyme. http://users.rcn. com/jkimball .ma. ultranet/BiologyPages/L/

Lysozyme.html, December 2001. Primary Structure Protein.

Structure of DNA. http://www.merck. com/mmhe/sec01/ch002/ch002a.html,

February 2003.

Molecular biology. http://www.bioalgorithms.info /slides.htm, September 2005.

BIBLIOGRAPHY 64

[31]

[32]

[33]

[34]

[36]

[37)

(38]

ParSeq: A Software Tool for Searching Motifs with Structural and Bio-
chemical Properties in Biological Sequences. http://www-pr.informatik.uni-

tuebingen.de/parseq/, September 2005.

Cytochrome. http://en.wikipedia.org/wiki/Cytochrome, June 2006. Cy-

tochrome is a protein family.

Martin Schmollinger, Igor Fischer, Christiane N erz, Simon Pinkenburg, Friedrich
Gotz, Michael Kaufmann, Klaus-Jorn Lange, Rolf Reuter, Wolfgang Rosenstiel,
and Andreas Zell. ParSeq: searching motifs with structural and biochemical

properties. Bioinformatics, 20(9):1459-1461, February 2004.

Joao Carlos Setubal and Joao Meidanis. Introduction to Computational Molec-

ular Biology. PWS Publishing Company, Boston, USA, 1997.

Rahul Siddharthan, Eric D. Siggia, and Erik van Nimwegen. Phylogibbs: A gibbs
sampler incorporating phylogenetic information. PLoS Computational Biology,

1(7):534-556, December 2005.

Wing-Kin Sung, Tan Yee Fan, Neo Shi Yong, and Wang Gang. Combinatorial
methods in bioinformatics, Lecture 10: Motif Finding. http://www.comp.nus.

edu.sg/-ksung/cs5238/2004Seml/note/note, taking_list. htm, 2004.

Toshihide Sutou, Keiichi Tamura, Yasuma Mori, and Hajime Kitakami. Design
and implementation of parallel modified prefixspan method. In Iniernational

Symposium on High Performance Computing, volume 2858, pages 412-422, 2003.

Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTALW:

improving the sensitivity of progressive multiple sequence alignment through

BIBLIOGGRAPHY 65

sequence weighting, position-specific gap penalties and weight matrix choice.

Nucleic Acids Research, 22(22):4673-4680, September 1994,

(39] William Thompson, Eric C. Rouchka, and Charles E. Lawrence. Gibbs recur-
sive sampler: finding transcription factor binding sites. Nucleic Acids Research,

31(13):3580-3585, 2003.

[40] Tetsushi Yada, Yasushi Totoki, Masato Ishikawa, IKiyoshi Asai, and Kenta Nakai.
Automatic extraction of motifs represented in the hidden markeov model from a

number of DNA sequences. Bioinformatics, 14(4):317-325, 1998.

[41] Yu Zhang and Michael S. Waterman. An Eulerian path approach to local multiple
alignment for DNA sequences. Proceedings of the National Academy of Sciences

of the Uniled States of America, 102(5):1285-1200, February 2005.

