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A Simplified Scattering Synthesis Method for LC Ladder Filters
Zhiwei Zhou

ABSTRACT

This thesis is devoted to the presentation of a simplified synthesis method and its
application in the development of a computer program for the synthesis of LC ladder net-
works. The approach developed in the thesis is based on scattering transfer matrix theory
which does not seem to have been applied directly to ladder synthesis before.

The most important part of this thesis is the determination of a scattering synthesis
strategy for choosing the sequence of transmission zeros. A synthesis strategy was devel-
oped by W.F. Géttlicher for application to the traditional synthesis procedure. Gottlicher's
method, presented in his thesis, is adapted as the basis of the scattering strategy. In addi-
tion, this thesis introduces a set of simplified scattering calculations by appropriately mod-
ifying the details of Gottlicher’s strategy. The simplified scattering algorithm involves
only calculation of the reflectance and the delay at a transmission zero and at zero or infin-
ity. For multiple transmission zeros at zero or infinity, the second and third derivatives of
polynomials g and 4 at zero or infinity are reguired in addition.

The main results are given in Chapter 3. In that chapter, the derivation of the scattering
characterization for all of the circuits and realization details of the modified strategy are
presented. In Chapter 4, the flowgraph of the simplified scattering LC ladder filter synthe-
sis program together with several design examples is presented.

The thesis concludes with a summary and recommendations.
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Chapter 1

INTRODUCTION

An LC filter is a lossless transmission network consisting of only inductors and
capacitors. [n normal operations, a doubly terminated two-port network as shown in Fig. |-

1(a) can be considered as an LC ladder filter. The specific /ladder topology is shown in Fig.
1-1(b).

Lossless LC
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Fig. 1-1 (a) resistively terminated lossless two port;
(b) resistively terminated ladder structure.

Historically, LC ladder filters have played an important role in the design of transmis-



sion networks (filters). The availability of lossless resonance in an LC filter allows its
impedance to have extremely rapid changes of magnitude and phase with changes in fre-
quency. Accordingly with this outstanding topological property, we can construct a two-
port network with very steep slopes between passbands and stopbands, and series or paral-
lel resonance can be used to block transmission of certain frequencies completely, all in a
network, which dissipates no power itselt.

Lossless ladder filters are a popular structure in the field of digital signal processing.
The low coefficient sensitivity and the simplicity of the structure make it suitable for con-
structing high quality digital filters [1],[2],{3]. For example, low sensitivity wave digital
filters can be designed by using LC ladder filters as reference filters[3]. Active filters are
heavily based on LC ladders for their design simulation[4]. The LC ladder concept has
also been successfully applied to switched-capacitor filter networks(5]- [7] as well as to
microwave impedance-matching networks(8]. Many monolithic switched capacitor LC
ladder filters have been fabricated. It is obvious that LC /ladders will continue to play an
important roll in many areas of communication circuits, especially in the applications at
higher frequencies (/> 100 kHz) where the operation of filtering devices becomes less
than perfect[9].

Most of the discussions of LC ladder filters in the literature is based on the original
design technique given by Darlington[10], Cauer{11-14), Bader{15-16}, etc., which can be
stated as follows: starting from a driving-point impedance of an LC two-port network or
some other equivalent characterization, extract low-order realizable lossless subnetworks.
Each subnetwork realizes a particular transmission zero. The mechanics of extracting a

subnetwork generally depends on the nature of the transmission zero being extracted.



After each extraction step is completed, the remainder impedance is obtained. The whole
process is repeated until the remainder impedance is exhausted.

An alternative approach to cascade network synthesis was introduced by Belevitch
[17-21], which uses wave quantities for signal variables. The cascade decomposition of
Belevitch s method can be accomplished by factoring the scattering transfer matrix. We
should note that the representation of the scattering transter matrix requires only three
polynomials, - referred to as Belevitch ‘s representation, and the synthesis based on the
scattering matrix is applicable to both the analog and digital domains. Hence, the scatter-
ing transfer matrix is a better tool for ladder network synthesis{22].

The main aim of this thesis is mainly to present a simplified scattering synthesis
method and its application in the development of a computer program for synthesis of LC
ladder networks. The new approach is based on scattering transfer matrix theory which
does not seem to have been applied directly to ladder synthesis before. The first step in
this synthesis procedure requires the determination of a scattering synthesis strategy for
choosing the sequence of transmission zero extractions. Gottlicher's synthesis strategy
[23] was developed for application to the traditional synthesis procedure. Gottlicher’s
method, presented in his thesis, is adapted as a basis for the scattering strategy. This thesis
introduces a set of simplified scattering calculations by appropriately modifying
Géttlicher’s strategy in detail. The simplified scattering algorithm involves only calcula-
tion of the reflectance and the delay at a transmission zero and at zero or infinity. For mul-
tiple transmission zeros at zero or infinity, the second and third derivatives of polynomials
g and 4 at zero or infinity are also required.

In this thesis, the zero or product of factors representation for a polynomial is used to



achieve the required numerical accuracy. The synthesis equations are formulated in order
to facilitate computer programming. All of the required techniques are included in the
attached comprehensive LC ladder filter synthesis program.

In Chapter 2, we present the basic scattering theory, then briefly describe the proper-
ties of the reflectance and the return group delay of lossless, real, two-port networks that
pertain to the synthesis problem. Belevitch § representation theory is very important in this
chapter and the rest of thesis which forms a minimal set of necessary and sufficient condi-
tions for a lossless scattering matrix to be realizable. Since Jarmasz’s thesis [22] has made
great contribution for a simplified synthesis algorithm of cascade network synthesis, his
minimal characterization of the |st- and 2nd- order elementary reciprocal sections is
adopted as part of the basis ot our simplified ladder scattering algorithm.

The main results are given in Chapter 3. In that chapter, the rationale for using a spe-
cific synthesis strategy as the back-bone for the simplified scattering ladder synthesis strat-
egy is described. The derivation of the scattering characterization for all of the circuits and
realization details in Gottlicher’s strategy are presented.

In Chaprer 4. the flowgraph of the simplified scattering LC ladder filter synthesis pro-
gram together with several design examples is presented. Finally, in Chapter 5, the final

conclusions and recommendations are given.



Chapter 2

BASIC THEORY OF CASCADE NETWORK SCATTERING
SYNTHESIS

2.1 Introduction

As is known, the scattering matrix, whose entries are the scattering coefficients, exist
for any passive two-port network. They are particularly useful in the description of power
transfer under practical terminating conditions, therefore they are used exclusively in filter
approximation theory.

This chapter deals mainly with the basic scattering theory of lossless and real two-port
networks, which involves Belevitch s representation and the scattering properties of loss-
less two-port networks. A very useful synthesis algorithm called the simplified scattering
algorithm(22] is described briefly in the following section.

Finally, we use tables to describe a set of scattering characteristics of the elementary

reciprocal sections.

2.2. Basic scattering theory

A lossless two-port ladder network with port references R, , R, is shown in Fig.

2.1.(a). A natural way of characterizing such a two-port is the use of normalized scattering

variables
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which are known as the incident and reflected power waves, respectively[24).
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Fig. 2.1(a) A lossless two-port network inserted between resistive terminations
(b) its wave variable equivalent

There are two useful groupings of the scattering variables:
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where S, T are 2 x 2 matrices referred to as the scattering and transfer matrix, respec-
tively. For the resistive terminations shown in Fig. 2.1, the entries of the S matrix- called
the scattering coefficients — can be defined as the ratio of a reflected signal to an incident

signal under the condition of zero incident signal at the other port. Specifically, using

(2.1.1) and Fig. 2.1, we have

S __Bl _zl‘Rl
he A—l . ) Z,+R
4,=0
s B Z, - R,
22-“—24 _0‘22+R2
s _ B, RV,
4, . R,E,
A, = -
12 - ‘4_2 o - R—IEZ (2.1.3)

where Z, and Z, are the input driving- point impedances at ports | and 2, respectively.
As denoted by (2.1.3), §,,(S.,) is called the input (output) reflectance, and it is the ratio
of reflected to incident signals at the input (output) port, when the output(input) port is ter-
minated in its reference resistance. Similarly, S, (§,,) is called a forward (reverse) trans-
mittance and it is the ratio of the power delivered to the load to the maximum power
available from the source at the input (output) port, under the reference terminating condi-
tion.
A significant and practical simplification in the characterization of lossless two-port

networks was achieved by Belevitch who showed that the scattering coefficients can be



expressed using only three polynomials and a unimodular constant. He proved that for
real, realizable and lossless two-port networks, matrices in (2.1.2) necessarily take on the

following forms:

I O - a ] h
s= Lt r= 1987 @.1.4ab)
g|f -ch. floh. g
where the polynomials /. g and 4 satisfy the following necessary and sufficient conditions:

1. Polynomials £, g and A are real polynomials in some complex frequency varia-
ble, i.e., each of them satisfies' P (s) is real for s real’, and the subscript asterisk
denotes paraconjugation, i.e., for a real polynomial f, (s) = f(-s) . which is also
referred to as Hurwitz conjugation.

2. g (s) is a Hurwitz polynomial, i.e. all its zeros lie in the open left-hand plane
(Res<0).

3. ¢ is a unimodular constant (either -1 or -1) for real two-ports. For reciprocal
two-ports, G is specified by the ratio f/f, , whereas for nonreciprocal two-ports it

can take on either value independently.
4. The polynomials g, 4 and fare related by

88. = hh. +[ff, (2.1.5)

which is the analytic continuation of the Feldtkeller equation.

2
l] , ifs = jo.
4

2
Note the Feldtkellerequationcanbe writtenas 1 = |é +

g

Clearly, the Belevitch’s representation is not violated if polynomials £, g, / are multi-

plied by a same real constant K. It is convenient to choose K in such a way that, e.g. either



g or f is monic (leading coefficient equal to unity), in which case the polynomials /. g and
h satisfying Belevitch’s Representation become unique; the resulting representations (2.1.4
a, b) are referred to as canonic forms.

Given the canonic forms (2.1.4 a, b), the Feldtkeller equation can clearly display the
complementary nature of the scattering coefficients as follow:

a) Both the transmittance f/g and the refiectance A/g are bounded real functions,

because these functions satisfy the real bounded necessary and sufficient conditions:
() [(s) and ﬂ(s) is real for s real;
g g

(i1) g is Hurwitz,

(iii) following from the Feldrkeller equation, it is obvious that

U0 | <, |£Q9451 —eo < ()< 00 (2.1.6).2.1.7)
gUw) gjw)

b) Zeros of polynomial fare called transmission zeros. In addition, if é — 0 with

. . th ..
order n as s = oo, there is said tobe an n order transmission zero at o= . It follows from

the Feldtkeller equation and the fact that all polynomials are real that

| = |k 'w)r (2.1.8)
g (o)
which is equivalentto  1U®) - J&_,A0@) _ 2.1.9)
gw) g(jo)
for a=0 or o=z

c). A function defined by



d(s):= [ln(f)]F%(s) -%(s) (2.1.10)

will be referred to as the delay. Now, we present the important characteristic of delay as

follows, which was proved by Jarmasz[22]:

The delay evaluated at s = j such that f(jw) = 0, is real, positive, and equal to

the return group delay defined by t(w): = Ev{ [ln(‘% (s) )] } =

Dl 0]
Evid(s)}, .,
For a function which is the quotient of two real polynomials the even part of the func-

tion, when evaluated at s = ja, is the same as the real part of the value of the function at

s = jw. It follows that d (j®) = T(®) .

2.3 Scattering Synthesis of Cascade Networks
The main goal of filter synthesis is to split up an overall network characterization into

a sequence of low-order sections. The problem of cascade network synthesis amounts to

factorizing the transfer matrix T"into a product T, T, , with each factor corresponding to a

realizable transfer matrix. The following discussion follows the derivations given by Jar-

masz(22].

The transfer matrices of lossless two-port networks N, and N, are given by
{BlJ _ l caga- ha A20]= T Aza
a *
Al '/;‘ oaha' £, Bza BZa

10



B,,| _ 1|%8, ho| |4, _ r. (42 2.3.1)
A, Jo o,k gb| |8, ° B,

A cascade connection of two lossless two-ports N, and N, is shown in Fig. 2.2.

A B2 App B,
— — > —_—
O——» -— 5} . —O
N.| R, T Ry N
O— O— -——O
-+ - -« -+—
B, Az Bib Az

Fig. 2.2 Cascade connectionof N, and N,

At a direct interconnectingport V, = V., [, , = -/, and with R = R, it fol-

lowsthat 4, = B,, and B, = A,,, which implies that the transfer matrix for the com-

bined network is given by

iy ["g' "] (2.3.2)

where o =00,, f=/f,, g= gagb+caha.hb, h = hagb+oaga.hb (23.3)

An important property of two-port networks arranged in a cascade can be seen by

examining the signal flowgraph representation of the cascade connection as shown in

Fig.2.3.

At a transmission zero s = s, of N, we have f (s,) = 0 which, together with the

assumption that 4, = 0, means that the only path from the input terminal 4, to B, is

11



h
through the branch with the multiplier — . It follows that for 4 | = e , we have

]

Zf(s“) = g(sa) = j(sa) . For a reciprocal two-port N, we also have /, (s,) = 0,
Q
and both transmittances that couple to N, are zero, thus leaving N, completely decoupled

from N . In this case, we can show that we also have d (s,) = d,(s,) [22] We state this

property in the form of Fig. 2.3:

2 A
Ay g, g, B,
O ® D—eH—0
h o b o,
ga g 2 gb gb
B, ‘ Az
O D@ - o
tha o,h
g, g,

Fig.2.3 Cascade signal flowgraph representation

The values of the reflectance p and delay d functions of a lossless two-port network

evaluated at a transmission zero of the first member of a cascade are equal to the corre-

sponding values of that member, i.e.

h
pls,): = g(sa) = g—a(sa) =:p,(s,) where f (s,) =0 (23.5)

s,) —%(sa) = ‘gg—“(s,,) -5 (sp) =, (s,) (23.6)

12



where fa'(s") =f,(s) =0

From(2.3.2) we have T, = T;l T which yields

h-h o5~ h th
hb = ga__-a_g‘ gb = ga_gL (2'3.7a.b)
oafafa' faf;l‘
For partial removal of a transmission zero at 0, where £, /. are monic.
h-h &—h .h
- Bl - Sl e (2.3.7 cd)

b~ —ar_ > &
Ga[ u® b f a*
Therefore, the cascade decomposition problem essentially reduces to the operation of

torcing the factor /,f, . to appear in both numerators of expressions in (2.3.7a,b). More
formally: given {o.f g, A} .find {G,,/.g,.h,} suchthat(2.2.3)holds, #, and g,

given by (2.3.7a,b) are polynomials, g, is realizable (Hurwitz), and deg h bs deg g b

Fettweis has demonstrated that a canonic decomposition solution always exists [25].

Moreover, the solution is unique and can be performed minimally, i.e

degg = degg +degg, .

2.4 Cascade Synthesis of Lossless Two-Ports with jo-- axis Transmission
Zeros

There are three cases of transmission zeros on the j -axis that must be considered:

1. s = 0. In this case,

13



f,=ds, ff.=-d's ando, = -1;

2d.s = tjw,, In this case,

4

2 2 2 2\
fa=s+0)0,fafd.=s+mo and 6, = 1 ;

3.5 = oo, In this case,

f,=d,andff.=d}.

In the above cases, case 3 is treated as case | by using the mapping s = 1/s which
mapss = e tos = 0.
For case | and case 3, note that Eq.(2.3.7) becomes

=guh—hug 8,8~ h oh
33 & T 53—

b 5 2
d,s -d's

Therefore, for the denominator to divide the numerator, one must have

0. (0) = 250y = A0y = 0(0) and £ (0) = "(0)
4 g g h . g

a a

g . h
But from the Feldrkeller equation h—“ (0) = g-" (0) at the transmission zero s = 0.

a [’]
In addition, one must have
g h. ‘
d, (0) =(_“._f.J =(&_%) = d(0)
g, a/ic 290 g s=0

The Feldtkeller equation is used to obtain the same result from a consideration of the

equation for g, .

14



Similarly for case 2,

gah—hag _ gacg"ha.h

: e B 1. 2\2
s tw, s+,

h,
and, consequently,

h h
P, (L0, = g—“(ijwn) = 2 (Ho,) = p(Ha,), and

[

g h g' h'
da(i.,m()) = _a_h_a = (--Fj = d(:t]mu)
£a a’| . tja, g s = 3,

The Feldikeller equation is again used to obtain the same result from a consideration
of the equation for g, . Note: also, as can easily be verified, the values for s = jw, and
s = —jw, are the same.

Formulas for the calculations of delay using polynomials in factored form (product
representation) are derived in Appendix I.
The extraction and recomputation steps for cascade synthesis of lossless two-ports with

jw- axis transmission zeros is depicted in Fig. 2.4.

15
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— % 5
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O lf—————0O
{p,d,} {Pydy}

Fig.2.4 Flowgraph representation of the basic extraction step for cascade synthesis of loss-
less two-ports with j- axis transmission zeros

2.5 The minimal characterization of the elementary reciprocal sections
In this section, all of the minimal characterizations of the 1st- and 2nd- order elemen-

tary reciprocal sections were originally derived by Jarmasz [22]). The minimal scattering

characterizations are described in tables, the scattering polynomials /, g and 4 use only a

minimal (canonic) set of parameters. The minimal set for all cases includes the location of

the transmission zero (@, ) that the section realizes, the value of the reflectance (p )at the

transmission zero, and, for reciprocal sections, the value of the delay (d) at the transmis-

sion zero.

16



Table 1: Section Type 1

f=d
g=s+d
h==s YYYYY)
p=1 o

Table 2: Section Type 2
f=d
g=s+d o o
h = -5
G =1

C=2/d ==

>0

1?7




Table 3: Section Type 3

Table 4: Section Type 4

Q =0 ™
[}
&
4

o

L=d/2

o

18




Table 5: Section Type §

2 2
f=s5s+a,
2,2 W
g=s +[-{§+(l)0 L=4/(d0)0-)
e T
=2
7 o—{, }—o
c =1 C=d/4
d>0
> o .
p =1
Table 6: Section Type 6
2 2
f=s +w,
2 2 2
A A o o
=2 )
h= L=d/4
o-! C=4/dw;
d>0 o o
p=_

19




Chapter 3

THE SIMPLIFIED SCATTERING SYNTHESIS
STRATEGY

3.1 Introduction

A ladder network is composed of canonic sections of degrees one and two; we will call
them elementary sections. That the realizablity as a ladder depends on the transmission
zero sequence will be illustrated with an example. The necessary and sufficient conditions
for the realization sequence are not known. Géttlicher [23] developed a strategy for choos-
ing a sequence which has proven to be successful in a wide range of filter designs. For this
purpose he combined elementary sections into 24 circuits in order to check the realizabil-
ity conditions for two successive transmission zeros. The transmission zero with the max-
imum number of potential successors is then chosen for realization. If several transmission
zeros have the same number of successors, a realizability measure is introduced to decide
which transmission zero should be realized first. The realizability measure determines the
margin by which the realizability condition at zero or infinity for the successor transmis-
sion zero is satisfied. The successor transmission zero with the smallest margin is chosen.
The realizability measure will be described more precisely in the following. The equations
for determining the potential transmission zero successors and the corresponding realiza-

bility measures for the 24 circuits will be presented in the form of tables. The 24 circuits

20



are subdivided into eight classes, A to H.
In addition, four circuits not included by Gattlicher, in his tables, because the realiza-
bility of the first section is not affected by the second section are included in Tables 31- 34.
These four circuits are included in this thesis because of the way in which the compu-

ter program is structured.

3.2 An example to illustrate the necessity for a synthesis strategy

The following example illustrates that the realizabilty of a ladder network with posi-
tive elements depends on the sequence of transmission zero extractions.

Given
f= s(sz+ l)(sz+4) = S +55 +4s

3
g = s5+2s4+gs +12—3s2+6s+2

h = 54—%53+§s2+2s+2.

-

[t is readily verified that these polynomials satisfy the condition for a lossless, passive
two-port. There are six potential transmission zero sequences:
(0,51,52),(0,52,j1),(1,0,52) ,(j1,42,0) , (2,0,51), (j2,/1,0) ..

There is a transmission zeroat s = 0 and p (0) = 1, d(0) = 2, implying thata
series capacitor (see Table 3) can be removed. Realizability requires that

Cc2C, = d—(zgl = | . The values of the reflectance at the transmission zeros s = jl and

s = j2 are -j and +j, respectively. Thus to realize s = j1, a capacitance C = 1 (see Eq.
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(3.3.11)) must be removed while for s = j2,C = —%.Therefore the sequence (0,/1) is

realizable while (0, 2) is not. In fact, it can verified that (0,/1,,2) is realizable and
yields the circuit shown.

The remaining sequences begin either with jl orj2 and p (1) = -/,
p (j2) =/ # £l . It follows that neither the circuit of Table 5 nor that of Table 6 can be

removed. Theretore the only sequence that can be realized as a ladder is (0,/1,,2) .

12
14 —C)
o 4 .

N

12

o Tl o

Fig. 3.1 Example circuit

It is known that the number of transmission zero sequences is m! where m is the
number of transmission zeros. When m is large, checking all the sequences is impractical.
We require a strategy for choosing a sequence as there are no necessary and sufficient con-
ditions for choosing an appropriate sequence. Many researchers[10),(17],{22],[26] tried to
develop simple solutions for ladder realization. The famous Fujisawa condition [26] has
given a method, but it can only be applied to mid-series or mid-shunt low-pass ladder filter
designs. The strategy from Géttlicher’s thesis[23] appears to be best available for a range

of filter designs, such as lowpass, highpass, bandpass and double bandpass filters.
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3.3 Derivation of the scattering synthesis strategy

From Jarmasz’s thesis[22], we know that if p (jw,) = %I, for jw, equal to , 0 or
j, , we can completely remove the transmission zero at «, 0, or jw, . The section type
will be one of the types from the tables in chapter 2. However if p (jo,) # 21 at a trans-
mission zerojw; (, # 0, %) a partial removai of a transmission zero at 0 or o 1s neces-

sary.
In Gottlicher’s strategy, eight circuit classes make up the basic structure for ladder

synthesis. Among the eight classes, four of them include a partial removal of a transmis-

sion zero at 0 or « and a complete removal of a transmission zero at jw), . These are des-

ignated classes A, C, E, G. In order to develop the scattering synthesis strategy, the
necessary equations are derived in this section.

As is known, the reflectance has a close relation with the driving-point impedance.
Therefore the derivation starts from the basic driving-point impedance as well as the driv-
ing-point admittance.

The driving-point impedance, admittance and their derivatives in term of scattering

parameters can be written as follows:

z=g_t_h=l_+_e
g-h

l-p
dz _ g-hlg+h)-rmlg-n] _ -2(h/g)(§-%)
“ (g_h)z (l—-h/g)2
33.1)

At a transmission zero, s = j@,
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i)

R d(jm
:ii_z - — 1% - (2’ o) 332)
s = o, (1_4“) 2sin” (@/2)
where a = £p (jo,)
Y = &___’1 = .I;E
g+ l+p
. . h(g' h')
p3id - AR
dy _ (g+h)(g —d~ (g—h)[g +hJ - 28
ds g+hn’ (1+h/g)’
and
2!“(§-’l)
ay g Hl e __dUey
= = — = - (33.3)
s = a, ([ _e’“)' 2¢cos " (a/2)

The single elements, an inductor L or a capacitor C, required for the partial removal of

a transmission zero, s = j@,, can be determined as follows:

Z(jw) 3.349)
L= =
Jjo,
Y (jo,
c = 1Ue) (3.3.5)
JO;

. _ Z(jo) -1 _jm,.L-l _ e,

Since p-zumj)+l -jm,.L+l=°|pl_1=°p_e , (3.3.6)
l+ 'm« j(l, .

Z(w) = —PUL) _1+e / (3.3.7)

-pGw) | _J% wn(e/2)
where o, = £p (jo,)

Substituting equation (3.3.7) into equation(3.3.4), we have
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l
= — 338
L o, tan (a,/2) ( )

l-Y(o) 1-joC

- ja'
1+Y(o) T +jm,C=°|pl =l=p=e (3.3.9)

Similarly, p =

then
1-p (jw. _ e
YU(!)') = pU ') = 1-¢ = —jtan ((!‘/2) (3.3.10)

and substituting equation (3.3.10) into equation (3.3.5), we have

—tan (0,/2)

= —— 3.
C y (3.3.11)

]
Next, scattering characteristics are derived for four circuits which are the first sec-

tions of Géttlicher's circuits which have been subdivided into 8 classes: A.B,C,D, E, F, G,

H.
Class A: a partial removal of a transmission zero at 0 (p (0) = 1) and complete removal

of a transmission zero at jw,

S
o- Li -0
1¢
N
EL Ci R = #
e r ———

Fig. 3.2 The topology of the first section of a circuit class A

jo

Since p, (j©,) = p (o) = € ', according to equations (3.3.4) and (3.3.7), a par-
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. .. . . |
tial removal of a transmission zero at s = 0 with an inductance [ = ———m—ewenv-
®,tan (ot,/2)

where o, = £p (jo,) ,yields Y(jo,) = Y, (j®,) = 0 and the corresponding reflect-

ance p (jw,}) = +1.

For admittance Y, we have

=1, 1 _ 1. f where ¥ = sC,+ —-
sL l+l sL 1+, ! tosL,
Y‘
+yy iy 2t ar,
+ Y)Y = —
Since & = =L 4 ds _'ds  _Zl,_ 45 ndwithel = -4
dS 2 2 2 2 d L C
s L (1+7) sSL(1+7) 1
dyY
ad -2, -1 __L (3.3.12.a)
§ 5 =0, (!)l-L‘ cdas s =ja, 2(!)[1.

Substituting equations (3.3.3) and (3.3.8) into (3.3.12), gives a set of formulas for the

complete removal of a section type 5, that is capacitor C, and inductor L.

d(o, t /2
ve) _wnlesd) o, | (3.3.12b, c)

C = L=
2
i

acos’(a/2) 2O, wlC,

’ ’

where d (jo) = (3§~%) and o, = £p (jw,)

5= j,
The realizability condition for class Ais L2 L. = 949 where L d
e realizability condition for class A is L 2Ly = =5, where L, corresponds to a

complete removal of a transmission zero at 0 with a shunt inductor.
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Class C: a partial removal ot a transmission zero at 0 (p (0) = -1) and complete

removal of a transmission zero at j,

o——|c( o
= by
. .

Z Z,

Fig. 3.3 The topology of the first section of class C

fa

Since p_ (j®,) = p(iw) = ¢ ", according to equations (3.3.9) and (3.3.11), the

) o ] ) —tan (a,/2)
partial removal of a transmission zero at s = 0 with a capacitance C = ————

w,

A

where o, = £p (jo,) ,yields Z(jo,) = Z, (jw,) = 0 .and the corresponding

p(w) = -1.

For the impedance Z, we have

92,4,
+ 7)) e — 7 o
dz _ -_l+(l ) ds Lds
s ¢ (1+2)°
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where Z. =
i [}
dZ. ] dZ. 1
= ___:——’ =L 4 ——=2L
ds ' 2C ds s =jo, ’ O)I-ZC ‘
L, =394 1 (3313 2)
-y, 20C

Substituting equations (3.3.2) and (3.3.11) into equation (3.3.13 a), we get a complete

removal of section 6, that is inductor L, and capacitor C,.

djo
L - U’ ;)[ . l —. C, - _j_ (3.3.13bc)
4sin [-2-') ?.u),tan(-z-") oL,

(0) . where C,, corresponds to a complete

The realizability condition is C2 C, = d 5

removal of a transmission zero at 0 with a series capacitor.

Since the denvation for Class E is similar to class A, and that for Class G is similar to

Class C, we omit them and only present the results.

Class E: partial removal of a transmission zero at e (p (=) = —1) and complete

removal of transmission zero at j,
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| Li ~

l It -
1AM
Ci

CT R = #

Fig. 3.4 The topology of the first section of a circuit class E

) -tan (a,./2) )
The capacitance C = — where o, = £p (jw,)
i

The complete removal of a section type 5, capacitor

d(jw,) tan (a,/2)
+

, inductance L‘. T —

" 4cos’(as2) 2O ©;C,
The realizability conditionis 0< C< C_ = ‘% , where C_ corresponds to a com-

plete removal of a transmission zero at e with a shunt capacitor.

Class G: partial removal of a transmission zero (p (o) = 1) at «o and complete removal

of transmission zero at j,
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Fig. 3.5 The topology of the first section of a circuit class G

The series inductance ; - 1 . where a = Zp(w,).
w,tan (a,/2)

The complete removal of a section type 6, inductance

L - dUm‘.) _ l
i 4sin2(ai/2) 2m,tan (0,/2)

capacitance C, = ——.

WL,
The realizability conditionis 0<L<L_ = 737) , L, corresponds to a complete

removal of a transmission zero at « with a series inductor.

Moreover, Gottlicher{23] has shown that L, > L and C > C_ implying that for a

given ®; not both Classes A and G are realizable and not both Classes C and E are realiz-

able.Furthermore, Goéttlicher introduced a realizability measure, RM, which measures the

margin of realizability; there are four cases:

L

T

C

L
= P = —
RM LO_I,RM CZI.

zl,RM=§-al.RM=
0
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3.4 Realizablity conditions of Gattlicher circuits in term of scattering
parameters

In this section the realizability condition for Gottlicher’s circuits are present in the
form of tables, and the circuit sections are designed by the type numbers from Chapter I1.

For example, 4_5_4_5 circuit denotes the connection of elementary section types 4,5.4,5.

The realizability conditions are for a sequence of two successive transmission zeros, w,,
@, . Thus for a given w; the number of potential successor @, can be determined with

these conditions. Then, the @, with the maximum number of successors is chosen. If sev-

eral transmission zeros have the same number of potential successors, the one with the
smallest realizability measure, RM, is chosen. After the chosen transmission zero is
removed, the process is repeated for the remaining transmission zeros until all the trans-
mission zeros have been realized.

The subscript R is used to indicate the remaining circuit after the first transmission
zaro has been removed.

A sample calculation of the realizability conditions using circuit 4_5_1_6 will now be

given. The results for the remaining circuits are presented in Table 7-34.
Circuit 4_5_1_6 has a transmission zero at 0 and p (0) = -1. Thus a shunt induct-

ance can be removed. L, = d(0) (see [22)).

2

To realize the finite transmission zero ©,,

1

Lo tan (a,/2) where a; = £p (jo,) (see(3.3.8))

must be extracted first.
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For realizability L, 2 L, > 0 so that the remaining inductance is nonnegative. The

L
measure of realizability, RM, is defined as RM = L—‘ 21,
0
According to Eqs.(3.3.12 b, ¢)
d(jo,)
¢ = 3 - 12 v L= +
4cos (0,/2) 2wL, 0 C,

i !

For the second section a partial removal of the transmission zero at o is used.

_ 2
L= =) (see [22])

At s = oo the circuit behaves as shown;

Lg -
L —> L)
R =1 §
O O-
Fig. 3.6
Therefore LR = I_/—Z—-LT/-L_
- - |

1

Define th = W.

where a0, = Zp (jo,) (see Eqgs. (3.3.4) and (3.3.8))

At the transmission zero s = jw,, the input admittance (see Table 9)

Y( = =
LR I R T A AT REST

where
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Z; is the impedance of the parallel connection of L; and C;.

Then
L. = | _Z,.(i(ot)
2 Z(jw,) ©
/] £Y% -1/L, o
J O,
/L, -1/L, o_\?
o,

Realizability requires that 0 < L, < L, so that L, is nonnegative and so that the

remaining inductance after the removal of L, is also nonnegative.The realizability meas-

L
ure, RM, is defined as RM = TR: 21.
2

The calculation of d; (0) and dj, (=) in the case of double zeros at 0 and < is given

in Appendix [1.
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Table 7: Circuit 4_5_4_5§

Class A p(0) =-1,TrZeros = (0, ®;)
Circuit_1
S~ -
O- L; Lt jb——0
e e
Ci Ct
h—l L2
o —0
Section_i _ d(0)
L, = =
- l .
L= @,tan (@,/2) <P Uw,)
d(jm)
Cf:% zU — - lv L:':—;_
cos (@,/2) 2w;L, ®, C,
L
Realizability: L, 2L,>0 RM = L— 21
0
Section_1 !

bro = 7T oL,

_ |
'* " o tan (a,/2)
_ 1 Li
bLy= =7 2
It Ll - (/)

o, = £p (jo,)

L,

Realizablity: L, 2L, >0, RM = r— 21
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Table 8: Circuit4_5_3_5

ClassA | p(0) =-1,p () =-1,Treros = (0, ®,)
Circuit_2
" . PN
o Li Lk | —o0
L j— I¢
Ci Ct
JL TC
O-
Section_i d(0)
Ly = ==
2
= _._._l__ = ;
o,tan (0;/2) o = <pUe)
djw,)
Ca = % 'a(, ' - l1 Lt’ = —;_-
cos (a,/2) 2L 0 C
Realizablity: L2 L,>0, RM = £ 21
0
Section_t 2
— C -
= d(e=)
Cp !

=~ 1/C_-1/C,

—tan (a./2) )
= —_— 0, = £pay)

C =
A _ic, .- !
2 1t 2. \2
o, L C,- l/(th,)
C o
Realizability: 0<C<Cg,, RM = < 21
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Table 9: Circuit 4_5_1_6

ClassA | 5(0) = -1,p(w) = +1, Tr.Zeros = (®, ®,)
— —
Circuit_3
v
Li L. -0
¢ L
1A} 2
Ci Lt
Ly
I~
o —O
Section_i _d(0) _ 1 = ;
Ly 7 L ® tan (a,/2) @ = LpUe)
d(jw,)
szi " lz L= —
cos (a,;/2) 2w,L, w, C,
: L
Realizability: L, 2L,>0, RM = T 21
0
Section_T [ = 2
= d(=)
L = ___l____ = __._l._ o, = ép (J(.!))
Re M/L_-1/L; "' @ tan(a,/2) °F t
1 L,
(17L,) - (1/L)) ]_(&T
(0,-
. vy LReo
Realizability: 0<L,sS L, ,RM = Tz-z 1
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Table 10: Circuit4_3_6

Class B p(0) =-1,TrZeros = (0,w,)
Circuit_4
O- [ O
C
i L‘
I
o) : O
Section_i d(0)
L=1L,= =5
. L
Realizability: 0<L <L RM = L—Zl
0
Section_t | (g'(O) L) 2 (g' (0) 4 (0) ))
R d(0) g(0) h(0) 3d(0)\g(0) A(0)
_ dp(0)
RO ~ 2
-tan (o, /2) Ll 2o ()
= a, = £p (o
('ot mtzL T 4
S C
Realizability: 0< Cpo < C,RM = — 2|
Cro
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Table 11: Circuit 4_2_S

Class B p(0) =-1,p () =-1,TrZeros = (0, ®,)
Circuit_5
mm—
o , ke |
J_ {¢
Ct
[.3 Cr]\
O— : -0

Section_i d(0)

L=1L,= =

. g L
Realizability: 0<L <L, RM = T 21
0
Section_t 2
— C =
= d()
~tan (a_/2)
= -~ hd + 21 a, = ép Umt)
T w L 4
. C,
Realizability: 0<C<C_,RM = vl 21
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Table 12: Circuit4_1_6

Class B p(0) =-1,p() =1,TrZeros = (0,®,)
Circuit_6
o -
L2
Ju L
Ct
(o,
Section_li L o=L,- d(0)
2
. e L
Realizability: 0< Ly< L, RM = T 21
0
Section_t 2
e L =
®  d(x)
L e —_l_—
Re /L -1/L,
- | _ .
Lie = o tan(a,/2) O <pyey)
_ l
LTI
L. L
p oye LRw
Realizability: 0< L, <L, _, RM = L_z 21
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Table 13: Circuit 3_6_3_6

Class C p(0) = 1,Treros = (0, ®,)
| ———— —
Circuit_7
o———t—T—¢
Ci &)
i Lt
T C; Ct
G
Section_i ( a‘.)
_tan —
_d(0) _ 2
Cy = = C, = —_“)i
d(jjw)
L:' = % b ‘ —‘) IC Cl = —IT-
sin"(a,72) <95 oL
oy C,
Realizability: 0< Cy<C,, RM = ol 21
n
Section_1 _ 1 _
Cro 1/7Cy-1/C, ¢
—tan(a./2)
C = e———
It “)i
C.
C, = ! - T
17C .- 1/C, L (i‘
;
ey g C,
Realizability: 0<Cpy<C,, RM = ==21
- Cro
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Table 14: Circuit 3_6_2_58

Class C p(0) =1,p() =~1,Tr.Zeros = (0, w,)
Circuit_8 -
¥ —
o——if S E—
1¢{
Cy 1%
i e Ct
Crm
-
o 4 o)
Section_i
_d(0) _ —tan (o./2) _ _
Co=—=5 €=~ m’_l o = 2plw)
| diw) 1 o
4. 2 T2 G = =
sin” (o,/2) 20,C, L,
s C,
Realizability: 0< C < C,, RM = ol 21
0
Section_t c. - | c. - —tan (a,/2) )
k= " T7C-17C, CuT T, - %t 4pUed
C,
C2 = l - : 2
1/C,.~1/C, '“Fﬂ
w,
C

Realizability: 0<C,<Cp, RM = < 21
2
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Table 15: Circuit 3_6_1_6

ClassC | p(0) =1,p(e) =1,Tr.Zeros = (0, ®,)
3=
Circuit_9
o {¢ N O
C L
L Lt
T Ci ‘I‘Ct
o, . -O
Section_i d(0)
Cy = 5
-tan (@, /2) _
I e
]
1 dyw) l o
=33 -— G =
sin” (a,/2) 2,C O, L,
N C
Realizability: 0< C, < C, RM = ol 21
n
Section_1 1

Ly = ————
Re /L - 1/L,

1

©” aan (o) % T PUY

_ 1
L |/(th+l/(meD—l/(Li(l- (m,./(o,)z))

Ly,
T

Realizability: 0<L <L, ,RM = 21

42




Table 16: Circuit 3_4_5

Class D p(0) =1,TrZeros = (0, ®,)
Circuit_10
e
o—¢ Lt |—o
C ¢
Ct
FL
O— O
Section_i c=c, = d(f)
e _C
Realizability: C2C;>0, RM = o 21
n
Section_1

d(0)
d, (0)
LRO = R2

g0) h(0) 3d(0)" g(0)

l 1 .
L= + , 0 = £p(j,)
w,tan (0, /2) mtl c T

Realizability: 0< Ly SL, RM = 7= 21

RO

de(0) = l (8 (0) +h (0) 2 (g (0) 4 (0)

h (0)

)
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Table 17: Circuit 3_2_8

ClassD | p(0) =1,p (o) =~I,Treros = (0,®,)

|

— S
— e

Circuit_11

o——{¢

_ d(0)
Co =35

Section_i
0

0

Is

Realizability: C, 2C,>0, RM = c.2
n

1

|
17C_-1/C,

tan (@,/2) ‘
—— % T Zp jw,)
T

1

Section_t
— CRw -

Cp =

Clt

Nj—

Realizability: 0< C, < C, ., RM =




Table 18: Circuit3_1_6

Realizability: 0< L £ Ly .RM = T 21

Class D P(0) =1,p(=) =1,TrZeros = (0, w,)
Circuit_ 12
o -{¢ . o
C L
Lt
I~
O -0
Section_i
c=c, =40
e C
Realizability: 0<C,<C, RM = C—,zl
]
Section_t 2
L, =L = ——
| 1
= t—=— 0 = Lp (e,
@, tan (0. /2) (oiC T t
Lp.
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Table 19: Circuit2_5_1_5

Class E p(0) =-1,p(e) ==-1,Tr.Zeros = (w, ®,)
Circuit_13
»—
O— Tl Lt
i ¢ °
Ci Cr
cH jL
o -0
Section_i c P c -tan (0,/2) Lot
= d(e) , % = cPUe)
d(jm)
c - %_T(’__'__._g L = —_
cos”(a,/2) o, C,
Cﬂ
Realizability: 0< C<C_, RM = Yol 21
Section_1 d(0) l L
Ly = 5 Lpo = Lo-L; L= - :

I N
't " Gan(ay2) % T “PUL)

L)

Realizability: 0< Lpy<L, RM =
Lo

/L, + 0 C l_[ﬁJz
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Table 20: Circuit 2_5_1_6

ClassE | p(0) = 1,p () =-1,TrZeros = (0, @)
Circuit_l14
L-
i —
I¢ ¢
‘ pl Ca
i
&) L
T -
(o !
Section_i c ) c - ~tan (0,/2) o
= d(e) ! w, @ = <Py
d(jw,) C
C‘ = 5—’(,_‘_—_31. Li = +
cos” (a,/2) o, C,
C.
Realizability: 0 < C,sC,,RM = ol 21
t
Section_Tt _d(0) -
Co - T CRO - Co'Cl
_ 1
€= — _ ]
NEaE
m'f
-tan (. /2) )
It - w » Oy = ép Umt)

T

c
Realizability: 0< Cpo<C,, RM = == 21
CRO
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Table 21: Circuit2_8_2 §

Class E (p) (e0) =1, Tr.Zeros = (0, )
Circuit_ 15
- . vy
Li Lt
¢ Ira
1A} 1A)
| Ci Cr
C]T C2 P
o
Section__i c 2 . -tan (o,/2) 00
=T a7 T, T uT AU
d(jm,) C
C‘ = %_’_U‘_._—.gi. Li = __l,.
cos'(a,/2) 0, C
. C,
Realizability: 0<C, S C_, RM = ok 21
1
Section_1
_ 1
Ce = 1/(C_-C)) -1/C,
—tan (a./2) _
Cit - T‘ a = ép(/mt)
c, = !

2

e ]

C
Realizability: 0<C, € Cy,,, RM = %’ 21
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Table 22: Circuit 2_4_5

Class F P(0) ==-1,p(e) ==1,TrZeros = (=, )
Circuit_16
M
o Lt }—0
16
Ct
C o~ L ;
o -0
Section_i a 2
c=C_-= 7()
. C.
Realizability: 0 < C<C_, RM = ral 21
Section_t [ = d(0)
0 T
- 1 _ .
L= y o, = Zp(ja,)

o tan (a./2) + m,ZC

Realizability: L L, RM = £21
0
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Table 23: Circuit 2_3_6

Class F p(0) = 1,p () ==1,TrZeros = (o, )
Circuit_17
o f ¢
c Lt
(o
Section_i c -cC = 2
= Tl d(ee)
C,
Realizability: 0<C, <C_, RM = T2 21
1
Section_t _d(0)
C, = =5
Cro = G- C,
—lan(at/2)
2T T, &

1

G
Realizability:0< Co < C,, RM = == 21
Cro
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Table 24: Circuit 2_1_6

Class F p (=) =-1,TrZeros = (o, 0,)
Circuit_I18
o UL O
L
Lt
C
T ™
O- i O
Section_i c-c. - 2
d (o}
C.
Realizability: 0<C<C_, RM = Vel 21
Section_t

dR(°°)

| (g'(oouh’(w)_ 2 (gm(w)_h"(m)

T d(=)\g(w) k(=) 3d(=)\ g(=) k()
2

L =

Ren dﬁ(“)

L= ! o, = £p (o)

2 ]
. tan (ut/Z) + o, C

L
Realizability: 0< LS Ly, RM = =21

)
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Table 25: Circuit 1_6_4_5

Class G p(=) =1,p(0) =-1,TrZeros = (0, )
Circuit_19
Lt
vy -
O S —0
L it
1 LA
Ié Li C,
o T
[
O o]
Section_i [ = 2 { = l o = Zo(o)
 d(e) ' otan(o,/2)" 7 pU®,
d(jw,)
L = %""'5&""’-‘[‘1/2 C = +
sin” (a,/2) L,
Lﬂ
Realizability: 0<L <L _, RM = — 2|
|
Section_t [ = d (0)
0 2
Lpo = Ly-L,

- 1 - .
't @ tan (0, /2) ' @, = £pUa)

n
. |2
1/ (L-L)) -|/{Li[l-[;:]ﬂ

L
Realizability: 0< Lpo S L,, RM = ;=21
RO

L, =
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Table 26: Circuit 1_6_3_6

C =

£|.€

0 L-0/ (tan (0,/2)) | _[

Realizability: 0< Cpy €C, RM = ~— 2 |
CRO

]2
1
i

ClassG | P() =1,p(0) = 1,TrZeros = (0, ,)
Circuit_20
O————m— ¢ 0o
L
L,‘ Lt
T Ci ]‘Ct
(o i i -0

Section |
ection_i [ = 2

= d(%)

- | _ .
o;tan (a,/2) "’ o = <p o)
d(jw,)
L:=%"_a("—""l'/2 C,.=—|,—-
sin” (a,/2) 'L,
: L,

Realizability: 0<L<L_, RM = TZI
Section_1t _d(0) -

Co"‘"z- Cro = Co=C,

| C:'
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Table 27: Circuit 1_6_1_6

Class G p(ee) =1, TrZeros= (0, W,)
Circuit 21
o LT —{T M -0
Ly L
i Lt
T I
o . -0
Section_i [ = 2 [ = 1 @ = Zp(jo)
= d(e) ' otan(o/2) pU
d(jo)
= %_’L_L‘/g C = +
sin” (0,/2) W, L,
L“
Realizability: 0<L,sL_, RM = T 21
1

- !
= 1/(L,-L)-1/L,
1

i
Section_t L,

L, =
1/ (Ly-L,) - I/(L,.( | —(

L, A= —
't o tan (a,/2)

Realizability: 0< L, <L, , RM

)

! o, = £p(ja,)
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Table 28: Circuit 1_4_8

Class H p(e) =1,p(0) = -1, TrZeros = (o, W)
Circuit_22
ST
O—onrmm. Lt
L, J](
Ct
L2
O-
Section_i . L 2
TS
L,
Realizability: 0<L,<L_ ,RM = T 21
!
Section_t _d(0) _
Ly = y ' Lpo = Lo-L,

LI W—L,.at= ép([(ot)

L
e _
Realizability: 0 < LpoSL,,RM = L_RO 21
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Table 29: Circuit 1_3_6

0 'L - @/ (tan (0.,/2))

Realizability: 0< Cpo S C, RM = ~— > |
CRO

ClassH | p(e) =1,p(0) =1,TrZeros = (>, Q)
E = == ——— |
Circuit_23
O e PP ¢ -0
L C
Ly
T
O— ——-O0
Section_i 2
- L= = —2r
= d(e)
L“
Realizability: 0O<L<L_, RM = A 21
Section_t _d(0)
Cro = =5
1 .
C = Lo, = Zpm,)
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Table 30: Circuit 1_2_S§

Class H

p () =1,TrZeros = (=, ,)

——
Circuit_24

do(o) = = (g ()  h (=) _ 2 (g (=) _h_(=)

ST,
O— mm Lt ——o0
L ¢
1t
_l. Ct
C T
o O
Section_i 2
- L =1 = ——r
= d(e)
L
Realizability: 0<L<L_, RM = A 21
Section_t

T d(e)\g(o)  h(w) 3d(e)\ g(ee)

C = 3 » 0, = £p (Jo,)
o, L-0/(tan(a/2))

c

C

Realizability: 0< C< Cp, RM 21

h (o)

)
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Table 31: Circuit4_5_3_6

Class A

p(0) =-1,Treros = (m‘., a,)

Circuit_25

4

Section_i

d(0)
3

d(j(n)‘.) 1

2 2
cos (ai/2) 2‘”1’ L

o, = Lp(jm,)

Ly

L, 3

l
C =3

Realizability: 0<L,<L, RM = LL 21
0

Section_t

g (0) h(0) _2 (g"w) _h(0)

|
4 (0) d(m(gw) 0 3d(0)

_ —tan(at/Z)

= m ,a1=

T

= )
Limt

(012
_._i
C

Realizability: 0 < CRO SC,RM = - 21
RO

ll+
C+—
w, L

£(0)

Lp(ja,)

h(0)

)
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Table 32: Circuit 3_6_4_5

dp(0) = l{g(0)+h(0)_ 2

g (0) h (0)

d(0)\ g(0) #h(0) 3d(0)

_ dg (0) |
RO ~ 2
L= ' -
l + C:'mt

Realizability: 0 <Ly <L RM 21

- L
Lgo

(

g(0)

h(0)

e T mttm(ag/z) at ) ép (Jmt)

Class C p(0) =1,TrZeros = (®, ®,)
Circuit_26
re )
o—i¢ il
1A}
L; C
JL ‘
T
O O
Section_i d0 ,
cC=¢C,= (2) a, = £p(jw)
djjm)
L,=}‘ ’U, _ l2 Ci=+
sin” (0,/2) 2,C WL,
T _C
Realizability: 0<C;sC, RM = C—Z l
0
Section_t

)
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Table 33: Circuit 2_5_1_6

Class E p (=) =-1,TrZeros = (0, ®,)
Circuit_27
M | S
L S Vo)
i¢ L
Ci Lt
C
1 [
(o : 4 O
Section_i )
- C=C_ = =—
= d(eo)
1 dyo) ¢ 1 :
CimT 3 L=z o= 4ue)
cos (a,./2) o, C
. C.
Realizability: 0< C<C_, RM = ron 21
]
Section_1T

dg (o) ' (3 (c0) () _ 2 (3 () _h_(=)

T d(=)\g(w) k(%) 3d(=)\ g(=) k(=)
_ - = ;
Lpe = dq () 't @ tan (0,/2) o, = £pUay)

L=

l _ L
| 2 . 2
It (l)i
LR,,

Realizability: 0<L<L, RM = A 21

)




Table 34: Circuit1_6_2_S

Class G

p () =1,TrZeros = (W, mt)

Circuit 28

]

-
L~
l_.
ﬂﬁ: ~

Section_i B 2 : .
L=Ll.= 3= a=42p00)
d(jw,)
L, = %—,U—’-—L/2 c = —
sin” (@,/2) oL,
LW
Realizability: 0<L<L_, RM = T 21
Section_t

l (g'(oo)+h'(oo)_ 2 (g”(oo)_h"(oo)
d()\g(w) h(e) 3d(oo)\ g(eo)  h(oo)
2 B tan((xt/?.) _ ‘

= dg(e) It —T a, = Zp(ju,)

dR(°'°) =

)

6t




Chapter 4

SYNTHESIS PROCEDURE AND EXAMPLES

4.1 Introduction

In this chapter, an operational flowgraph of the ladder scattering synthesis program is
presented to illustrate the operational procedure of the simplified synthesis strategy. The
details of the synthesis program are in Appendix(IV):Scarttering Synthesis Program List-
ing.

In the remaining section, four examples, which are a 7th_order lowpass, a 14th_order
very narrow bandpass, a 10th_order highpass and a 13th_order double narrow bandpass
filter are presented, to demonstrate the effectiveness of the scattering synthesis algorithm
and the simplified synthesis strategy. Finally, there are additional examples in Appen-

dix(I11):Additional Examples.

4.2 Flowgraph of synthesis operation

Figure S below illustrates the flow of operations in the scattering synthesis program.
Note that Tr.zero in figure 5 is a sequence of sorted transmission zeros, which lists trans-
mission zeros as a sequence of O first, followed by the positive imaginary parts in order of

increasing magnitude and then finally infinity. The successor checking accounts for the 24
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Gottlicher circuits plus 4 additional circuits in Tables 31-34. If two sections of any circuit
satisfy Realizability_t >= | and realizabilty_i >= 1, then a successor for the circuit is
counted. The additional successors checking accounts for four additional circuits corre-
sponding to transmission zeros at 0 and o . Since Gattlicher ignored them for successor
checking, an additional checking algorithm to make the strategy applicable to a wider
range of circuits is developed .

Gattlicher didn’t present his synthesis program in any papers nor did he give a pro-
gram listing in his thesis. The new scattering program was developed independently. For
the extraction process; the implementation of Eqs. (2.3.7a,b,c,d) used a zero finding pro-

gram, which was developed by Dr. G.O. Martens, as the part of the procedure of calculat-

ing polynomials f,, g,, h, at each step.
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START

INPUT sigma, /. g, h

(]

SORT Tr. zeros

CHECK
all successor classes from Tr.zero | ton

Y

CHECK
additional successors

CHECK
all of realizabilty_i and realizabilty_r from tr.zero 1 to n|

Y

SELECT
the zeros which have maximum number of successors

Y

SELECT
a zero from above zeros which has minimum Realizablity T

Y

EXTRACT
the class matching above zero

|

REMOVE
the extracted Tr.zero n—n-1|

]

PUT extracted parameters and section type into List
then recalculate sigma, gb,Ab,

-

Fig. S



4.3 Example of a 7th - order lowpass filter

The first design example is taken from ‘Handbook of filter synthesis’[27]. The input
scattering polynomials are the results of cascade analysis. The sub_program for cascade
analysis was written by G.O. Martens; it multiplies the transfer matrices of the elementary
sections together. This example shows that the simplified scattering synthesized circuit is

almost exactly the same as the Initial circuit.

Zerosof f Zerosof h

0

- 2.857407769783873e+00i 8.115548680831247¢-07 - 4.460089180626319¢-011

+2.857407769783873e+00i 8.115548681134951e-07 + 4.4600891806263 19¢-011i
- 3.522738278781446e+00i 1.649129595881117e-06 - 7.921507705628069¢-01i

+3.522738278781446e+00i 1.649129595575480e-06 + 7.921507705628071e-01i
-6.256515729188977e+00i | -6.682035666221775e-07 - 9.765437183518240e-01i
+6.256515729188977¢+00i | -6.682035665827198e-07 + 9.765437183518240e-01i

Constant Multiplier = 1.0 { Constant Multiplier = -2.265517815209827¢+04

Zerosof g

—_—

-4.591209891487081¢-01
-4.034702590631772¢-01 - 4.947063833824538e-011i
-4.034702590631772¢-01 + 4.947063833824538¢-01i
-2.642020156420269¢-01 - 8.686097136900197¢-01i
-2.642020156420273¢-01 + 8.686097136900197e-011
<9.027018114299958¢-02 - 1.061594504814765¢+00i
-9.027018114299956¢-02 + 1.061594504814765¢+00i

Constant Multiple = 2.265517815209827¢+04
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Table 35: Initial Circuit Parameters of the First Example

Extracted | Transmission Initial Parameters
Section Zero
Type

2 2 C1=9.55070000000000e-01

5 2 L 1=1.357060000000000e+00
C2=5.938000000000000e-02

2 1 C3=1.829240000000000e+00

S 1 L2=1.50593000000000¢e-02
C4=8.133000000000000e-02

2 3 C5=1.859160000000000¢+00

5 3 L3=1.415330000000000e+00
C6=1.805000000000000e-02

2 4 C7=9.947700000000000e-01

0 n=1




Table 36: Synthesis Results of the First Example

Extracted Extracted

Section transmission Synthesized Parameters
Type Zero |
[ 2 2 C1=9.550663508781705¢-01
5 2 L1=1.357060685661019¢+00

C2=5.937996999798778e-02

2 1 C3=1.829241170131920e+00
5 1 L2=1.505929963621951¢e+00

C4=8.133000196465101e-02
2 3 C5=1.859158810744358¢e+00

5 3 L3=1.415329350716419¢+00
C6=1.805000828045333¢-02

C7=9.947736662902097¢-01
0 n=9.999999980314569¢-0

o
&

The errors between the computer synthesized element values and initial circuit values
are in the range 1e-06 to 1e-08. These differences are quit small.
The Figures below show the attenuation responses and the circuit diagram. The trans-

. . . : . : 2
tormer terminated in a 1Q resistor can be replaced by a resistor with R = n".

SR v N
L1 . L2 i L3 o

j—'é; i ol | 1
1T T T

Fig 4.3.1 Circuit of the 7th - order lowpass filter
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4.4 Example of a 10th-order double bandpass filter

The second example was taken from Géttlicher’s thesis(23] p.76, where it was used as
an example for Géttlicher’s synthesis technique. Here it is used to demonstrate that the
synthesis results of the new syntheses program are very close to Géttlicher’s resuits.

Note: for this example, the network polynomial are defined in the following three

tables. Figure 4.4.2 and Figure 4.4.3 present the attenuation and ripple of the synthesized

network.

Zerosof f

Zerosof h

+j3.7976519521633
-j3.7976519521633
+j4.1823250304382
-j4.1823250304382
+j8.1072461790375
-j8.1072461790375
+j9.5956464786104
-j9.5956464786104

+1.1101147226189
-j1.1101147226189
+j2.5149508819034
-2.5149508819034
+j5.4340982707213
-5.4340982707213
+j6.4975498890500
-j6.4975498890500.
+§7.1733180423423
-j7.1733180423423

Constant Multiplier = 1.0

Constant Multiplier =
-0.4985701650666650e-01

Zerosof g

-1.7876151244885e+0+)1.6159314309630
-1.7876151244885¢e+0-)1.6159314309630
-3.6763823759864¢-1+j2.8650486112076
-3.6763823759864¢-1-j2.8650486112076
-3.0073851664895¢-1+j5.2869317126282
-3.0073851664895¢-1-j5.2869317126282

-5.3273576223205¢-1+)6.5654852839711

-5.3273576223205e-1-j6.5654852839711

-1.4823326106441¢-1+j7.2533696252984
-1.4823326106441e-1-j7.2533696252984

Constant Multiplier = 4.985701650666650¢-01
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Table 37: Synthesis Result of Second Example

Extracted Extracted

Section | TransmissionZ Synthesized Parameters
Type ero
2 3 | Cl=1740136161453164¢-01
5 3 L1 =15.120801448542150e-02
C2 =2.971086811600974¢-01
2 1 C3 =2.052464027414657¢-01

5 1 L2 =2.118322383047013e-01
C4 =3.273238305840209e-01

2 6 C5 = 1.008336430570272e-01
1 2 L3 =17.129921653638890e-02
6 2 L4 = 2.936003814592684¢-01

C6 = 1.947187721352081e-01
1 4 LS = 1.457240083360081e-01
6 4 L6 = 8.558450153643192¢-02

C7 = 1.268984728563485¢-01
l 5 L7 =1.705468927590102e-01

0 n = 8.499557648489602¢-01
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Table 38: Gottlicher’s results

Extracted Extracted
Section Transmission Initial Parameters
Type Zero

2 3 Cl1 =1.7401361614532064e-1, B

5 3 L1 =5.1208014485419314e-2,
C2=29710868116011217e-1,

2 ] C3 =2.0524640274146579¢-1,

5 ] L2 =2.1183223830470498e-1,
C4 = 3.2732383058401975e-1,

2 6 CS = 1.0083364305702435e-1,

| 2 L3 = 7.1299216536390986e-2,

6 2 L4 = 1.9471877213520460e-1,
C6 = 2.936003814592791 Se-1,

| 4 LS = 1.4572400833600455e-1,

6 4 L6 = 8.5584501536433197¢-2,
C7 = 1.2689847285634740e-1,

1 5 L7 = 1.705468927590102e-01

0 n = 8.499557648489813e-01,

The errors between the scattering synthesized element values and Géttlicher’ tech-

nique are in the range le-015 to 1e-016. Note that a transformer terminated in a [ resis-

tor can be replaced by a resistor with R = n”.

ClT
&

——

Ll | 2
—|<l—-_|_ —j— [ Ll s b
Cy C

2

L

O

C4 CST ::-4 (L:e n!\él
6‘|‘ 7‘]‘

Fig. 4.4.1 Circuit of 10th-order double bandpass filter
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4.5 Example of a 9th-order highpass filter

The third example is taken from Gattlicher’s thesis [23] p.71. The exampie shows that
the simplified scattering synthesis method can be used not only to synthesize lowpass and
bandpass filters, but also highpass filters, i.e. it can be used for any type of ladder filters.
The example also shows that the synthesis result is very close to the initial circuit. The

error between the two of them is in the range of te-0l1 to 1e-012.

Zerosof f

0

0 - 4.445259318396255e-01i
0 +4.445259318396255¢e-01i
0-7.675067431476281e-01i
0+ 7.675067431476281e-01i
0-9.327984702028416e-01i
0 +9.327984702028416e-011
0-9.934899672309181e-01i
0 +9.934899672309181e-01i

Zerosof h

—— ——
-9.999999999999842¢-01
0-1.107453247258636e+00i
0+ 1.107453247258636e+00i
0 - 1.183857348269596¢e+00i
0 + 1.183857348269596e+00i
0 - 1.483843704828418e+00i
0+ 1.483843704828418¢+00i
0 - 3.47890070989901 1 e+00i
0 + 3.47890070989901 | e+00i

Constant Multiplier = 4.972110896877390e-02
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Zerosof g

-8.989380085020487¢-01
-2.638866145524699¢-02 - 1.066729187133896e+00i
-2.638866145524699¢-02 + 1.066729187133896e+00i
-1.132820520451316e-01 - 1.082133830649153e+001
-1.132820520451316e-01 + 1.082133830649153e+00i
-3.524680991850715e-01 - 1.090990909372980e+001
-3.524680991850715e-01 + 1.090990909372980e+00i

-9.240297112440859¢-01 - 7.578008332506821¢e-011
-9.240297112440859¢-01 + 7.578008332506821¢-01i

Constant Multiplier = 1.0012353313168!1e+00

Table 39: The Synthesis Result of Third Example

Extracted Extracted
Section Transmission Synthesized Parameters
Type Zero
3 3 Cl1 =2.238970563476569e+00
6 3 Ll = 1.083889906338712e+00
C2=1.566211572103117e+00
3 4 C3 =8.396973284224715¢_01
6 4 L2 = 1.087913229964595¢+00
C4 =1.056404132604849¢+00
3 5 CS5 =1.071553811228406e+00
6 5 L3 = 1.745991282969497e+00
C6 =5.802711214231960e-01
3 2 C7 =9.578308585564244¢-01
6 2 L5 =9.149947990371583e-01
C8 = 5.530790044950940e+00
3 1 C9 =2.7493683321421 5e¢+00
0 n = 1.050956440285585¢+00
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Table 40:

Initial Circuit of Third Example

Section Transmission Circuit Parameters
Type Zero
# C =2.2397056347662290e+00
6 3 L = 1.0838899063387248e+00
C =1.5662115721030977e+00
3 4 C =8.3969732842247713e-01
6 4 L = 1.0879132299645808e+00
C =1.05640413260486280e+00
3 5 C =1.0715538112283772¢-01
6 5 L = 1.7459912829694775¢e+00
C =5.8027112142320258e-01
3 2 C =9.57830858556434350e-01
6 2 L=9.1499479903714853¢-01
C = 5.5307900449509995¢+00
3 1 C =2.74936833213782e+00
0 R =1.1045094393777478e+00

Note: a transformer terminated in a 12 resistor can be replaced by a resistor with

5
R =n".
O———¢ e
Cy C3 Cs Cr Co
1 L> 3 L4 n E :

Fig. 4.5.1 Circuit of 9th-order highpass filter
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4.6 Example of a 13th_order Double bandpass filter
This example was chosen to show the numerical robustness of the synthesis algorithm,
since the example contains two narrow passbands very close together which makes this

design very sensitive to roundoff error accumulation during synthesis.

Zerosof f

0.0000000000000000000c+0
+8.5417326628242841110e-1i
-8.5417326628242841110e-1i
+7.5514740727158266110e¢-11
-7.5514740727158266110e-1i
+1.0550017410860102390e+0i
-1.0550017410860102390¢+01
+6.5390664331829375810e-1i
-6.5390664331829375810e-1i
+1.1000007197667314510e+0i
-1.1000007197667314510e+0i

Constant Multiplier = 9.9999999999999999990e- |

Zeros of h
=
1.0393603099708103560e-2+9.7020960853994034160¢-11

1.0393603099708103560e-2-9.7020960853994034 160¢-1 i
-6.9313688630879318330e-4+8.9347815387796735330e- 11
-6.9313688630879318330¢-4-8.9347815387796735330¢-1i
4.6647193568119437060¢-3+1.0053725224416203320e+0i
4.6647193568119437060¢-3-1.0053725224416203320e+0i

1.2370427303532437690e-1+9.7364119532050673720e-1i

1.2370427303532437690e-1-9.7364119532050673720e- 1 i
-3.0010052987973729090e-3+8.2831707667499913750e- 1 i
-3.0010052987973729090e-3-8.2831707667499913750e- 1 i
-1.1964530378812893150e-3+7.9292778070077049510e-1i
-1.1964530378812893150e-3-7.9292778070077049510e-1i

2.0062483958225394260¢+0

Constant Multiplier = -1.2452084287204495370¢+2
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P=__.—=

Zerosof g

-6.3778903751858034430e-3+1.0067811743044370120e+0i
-6.3778903751858034430¢-3-1.0067811743044370120¢+0i
-1.8837190918357579150e-2+9.7063218199708776430e- i
-1.8837190918357579150e-2-9.7063218199708776430e- 1
-8.0603320802101033770e-3+8.9174212829057177040¢- 11
-8.0603320802101033770e-3-8.9174212829057177040¢-11
-1.2377951632034852470¢-1+9.7346722454075431470c¢- 11
-1.2377951632034852470e-1-9.7346722454075431470e-1i
-4.1768592662198689060¢-3+8.2851078749159945270e- 11
-4.1768592662198689060e-3-8.2851078749159945270¢- 11
-1.8039362666104829550e-3+7.9281197113245449440¢-1i
-1.8039362666104829550e-3-7.9281197113245449440e- 1i
-2.0062458250484903240¢+0

Constant Multiplier = 1.2452084287204495370e+2

Table 41: Synthesis Resuits of Third Example

Extracted Extracted
S'le\'ctil; Transmission Synthesized Parameters

ype Zero

3 2 Cl1 =1.226745607243308e+00

6 2 L1 = 1.408970076061800e+00
C2=1.659841929912941¢+00

2 5 C3 = 4.381434440642106¢-01

5 S L2 =4.651907237340155e-01
C4=1.931357192689231e+00

3 3 CS5 = 3.424255480954451¢-01

6 3 L3 =6.942119446285880e+00
C6 = 2.526064565875787¢-01
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Table 41: Synthesis Results of Third Example

Extracted Extracted
Section Synthesized Parameters
Types Transmission
pe Zero
- — — = —f
3 4 C7 =1.736345147370902¢+00
6 4 L4 = 7.183946830752446e+00
C8 = 1.907853138817627e-01
2 7 C9 = 3.828189542526473e+00
l 6 LS = 7.026259267737013e-01
6 6 L6 =1.126650151161485e+00
Cl10=17.335419949111991¢-01
3 1 Cl1 =2.336879787985904¢-01
1 8 L7 = 5.23847270508 1 596e+00
0 n=4.066775133853233e-01

Note: the transtormer terminated in a 1€ resistor may be replaced by a resistor with

4

R =n".
e PO,
o—{¢ L H
Ci, l —{— C¢ § Cg Ciy
! Cs L33 ia

1T

o7 o ]

Ls

n

£

Fig. 4.6.1 13th_order double bandpass filter
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Chapter §

CONCLUSIONS

The synthesizing of lossless ladder filters has been studied for more than 50 years. The
most compact and efficient method of cascade synthesis is based on the transfer scattering
matrix. The most difficult part of any method is the selection of the transmission zero
sequence, if the number of zero sequences is large. Gottlicher[22] proposed a strategy to
solve the problem a few years ago. However, he only applied his strategy to a traditional
synthesis procedure, and did not publish his program for implementing it.

In this thesis, a simplified scattering synthesis algorithm was developed for the realiz-
ability calculations of a /adder circuit (including the determination of circuit elements and
sections). A program which combined a simplified scattering synthesis algorithm and Got-
tlicher’s synthesis strategy to perform synthesis of lossless two-port ladder networks was
written. [t has been shown that the new scattering algorithm is able to determine the net-
work element values with a high degree of accuracy. The new program has also been
found to be numerically robust and relatively immune to roundoff error accumulation.

The strategy adapted from Gottlicher’s thesis has proven to be effective for a range of
filter designs from lowpass, very narrow band bandpass to double bandpass filters and

highpass filters.



LIST OF REFERENCES

[i] L. T. Bruton, “Low sensitivity digital ladder filters,” IEEE Trans. Circuits Syst., vol.
CAS-22, pp. 168-176, Mar.1975.

[2] D.A. Vaughan-Pope and L.T. Bruton, *Transfer function synthesis using generalized
doubly terminated two-pair networks,” IEEE Trans. Circuits Syst., vol. CAS-24, pp.
79-88, Feb.1977.

(3] A. Fettweis, “*Digital filters related to classical filter networks,” Arch. elek. Ubertra-
gung, vol. 25, pp. 79-89, Feb. 1971.

(4] L.Haritantis, A.G.Constantinides, and T. Deliyannis, *Wave active filters,” Proc.
Inst.Elec.Eng., vol. 123, pp. 676-682, july 1976.

[5] G.M. Jacobs, D.J.Allstot, R.W.Bruton, and P.R. Gray, “Design techniques for MOS
switched capacitor ladder filters,” IEEE Trans. Circuits Syst., vol. CAS-25, pp. 1014-
1021, Dec.1978.

[6] K. Martin, “/mproved circuits for the realization of switched-capacitor filters,” |IEEE
Trans. Circuits Syst., vol. CAS-27, No. 4, pp. 237-244, Apr.1980.

[7] R.D. Davis and T. N. Trick, “Optimum design of lowpass switched-capacitor ladder
Silters,” 1IEEE Trans. Circuits Syst., vol. CAS-27, NO. 6, pp. 522-527, June 1980.

[8] G.L. Mattaei, L. Young, and E.M.J.Jones, “Microwave Filter, Impedance-Matching
Networks and Coupling Structures,” New York, NY: McGraw-Hill, 1964.

[9] Schaumann, Ghausi, Laker, ‘Design of Analogy Filter: Passive, Active RC, Switched-
Capacitor’, New Jersey: Prentice Hall, 1990.

(10] Darlington, S.: ‘Synthesis of reactance 4-poles,’ J. Math. Phys., 1939, 18, pp.257-353

82



[11] Cauer, W.:" Ausgangssetig leerlaufendes Filter’, Elektr. Nachrichten-Technik, 1939,
16, p.161.

[12] Cauer, W.:' Frequenzweichen konstanten betriebswiderstandes’, ibid., 1939, 16,
pp-96-120.

[13] Cauer, W.:'Vierpole mit vorgeschriebenem Dampfungsverhalten’, Telegr.-, Fem-
sprech-, Funk- und Fernsehtechnik, 1940, 29, pp. 185-192 and 228-235.

(14] Cauer, W.: *Theorie der linearen Wechselstromschaltungen’, (Akademische Verlags-
gellscchaft, Leipzig, 1941)

(15] Bader, W.. * Polynomvierpole mit vorgeschriebener Frequenzabhangigkeit’, Arch.
Elektrotech., 1940, 34, pp. 181-209.

(16] Bader, W..’Kopplungsfreie Kettenschaltungen’, Telegr.-, Fernsprech-, Funk-und
Fernsehtechnik, 1942, 31, pp. 77-189.

[17] Belevitch, V.:'Fundmental results and outstanding problems of network synthesis’,
Tijdschr. Ned. Elektron.- & Radiogenoot., 1953, 18, pp. 33-51.

[18] Belevitch, V.:'Topics in the design of insertion loss filters’, IRE Trans., 1955, CT-2,
pp. 337-346.

[19] Belevitch, V.:'Classical network theory’ San Francisco:Holden Day, 1968.

[21] Belevitch, V.:'Transmission losses in 2n-terminal networks’, J. Appl. Phys., 1968,
19,pp. 636-638.

{22] Jarmasz, M. R.: Ph.D. Thesis: ‘4 simplified synthesis of lossless two-port wave digital
and analog filters’, Electrical and Computer engineering of University of Manitoba,
1990.

(23] Gottlicher, W. F.: Ph.D. Thesis: ‘Beitrage zur Rechnergestutzten Synthese Verlust-

83



freier Zweitore’(‘ Contributions to computer aided synthesis of lossless two ports’),
Technical Faculty ot the University of Erlangen-Niimberg, 1983.

[24] Beletvitch, V.: ‘Classical Network Svnthesis’, San Francisco, CA: Holden-day, 1968.

[25] A Fettweis, “Cascade synthesis of lossless two-ports by transfer matrix factoriza-
tion,” in Network Theory, R.Boite, Ed. London, England: Gorden & Breach, 1972,
pp.43-103.

(26] T.Fujisawa, “Realization theorem for mid-series or mid-shunt low-pass ladders with-
out mutual induction,” IRE Trans. Circuit theory, vol. CT-2, pp. 320-325, 1955.

[27] A.L.Zverev, “Handbook of Filter Synthesis”, John Wiley and Sons, Inc., 1967.

[28] G.O Martens, private communication.

(29] M.Hasler and J.Neirynck, “Electric Filters”, Dedham MA:Artech House. Inc., 1986.

84



APPENDIX_1{28]

DERIVATIVES OF POLYNOMIALS IN PRODUCT
REPRESENTATION

Let y be polynomial in product represention:

where X is the constant factor and z, are the zeros.

n
v=k[Tw-2

n
Iny = Ink+ 2 in(p-2)
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Atp = 0. withz, 20,

'v(O) Z

lll._.

v (0) _
v(0) ,g-“; 22,

J®i

v (0) _ YOy (o),

¥ (0); o (1,1
V) 1(0) ¥(0) 2 2[_+7J

The guantities < ((3)) 7 (((()))) B ((00)) will be defined in terms of the mapping

y(s) = s"y( % ), and evaluatedat s = 0.

A

v (s) —sv( )“kn(l-—s‘

i=1
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APPENDIX_II [28]

DERIVATION OF THE DELAY OF THE SECOND SECTION

The delay of the second section of two at a double transmission zero, s = 0, of a circuit
such as circuit 3_4_S5 is obtained as follows:

The polynomials g, and 4, are determined by Egs. (2.2.7 a, b). The polynomials

/8, h, of the first section are of the form [22]

_ _ _ _ _ _ 1
f,=s.6,=-l.g,=s+ah, =€ae=12tla =3
Let
g, = cuga,g—caha,h = (s—a)g+eah (1)
g
theng, = -é’. (2)
§2
Therefore, since g, must be a polynomial,
R A, 1.”
8,(0) = 0,8,7(0) =0,and g, (0) = 5£,(0), (3)
’ _ l.wo
g,(0) = i& (0) . 4)
Similarly, let h, = g, h-h g = (s + a) h-eag, (5)
hs
then h, = ?, (6)



and since 4, must be a polynomial.

~

hs(0) = 0,k (0) = 0,and h, (0) = 5h,(0), (7

Nt —

1y (0) = 2hy (0). (8)

Also, g,(0) = €h (0) and g(0) = €h(0),and,
for the second sectionat s = 0,
8,(0) = -eh, (0). 9)
Then substituting (3) and (7) into (9)
obtain
£,"(0) = —eh, (0) (10)

Using (1) and (5) in (10) get

al g (0) -en"(0) ) = g (0) +eh (0) (an
g, (0) h, (0) g, (0) +eh, (0)

d 0) = - =

#(9) g,(0) h,(0) g, (0) (12)

From (3) and (1)

£,(0) =32, 0) = g 0) -2 @ -en"(0) )

and using (11)
£,(0) = %{g’(O)-eh'(O)J

also from (4) and (1)
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£,(0) = 32, (0) - 32 (0) -g(g"m)-eh'“(o))
Similarly from (8) and (5)

SPPIR IR al - o
hy(0) = ghy (0) = 5k (0) +g(h (0)-e¢”(0) )

Substituting the above into (12) the expression for dp (0) yields

g (0) +eh (0) - 2;"(g"(O)—eh"(O) )

dp(0) = - -
g (0)-€h (0)

»r

g (0) h (0)
£(0)  h(0) )) (13

_ (g'(0)+h'(0)_ 2 (
d(0)\ g(0)  h(0) 3d(0)

' ' 0) A (0
where d(0) _g(0) h(0) _8 0 A, (0)

a— =d=
g(0) h(0) g,(0) A, (0)

!
a
The corresponding result for the delay of a second section with a double transmission

zeroat s = oo is obtained by using the mapping s — 1/s (see Appendix I), Then

g, () h, ()

d. () = -

r () gy () ()

_ (g h o) 2 (g () K () .
d(eo)(g(oo)+h(w) 3d(m)(g(oo) 7 (=) )) (4

")k (o0 (@) h, ()
here d (00) = 8(2) A (=) _&a _Na —d (o
where d(=) = g Th=) g A=) el




APPENDIX_III

ADDITIONAL EXAMPLES

3.1 Additional example of a 10 degree narrow bandpass filter[29, p.387]

Zeros of [

0

0

0
0 - 7.650520500976998¢+011
0 + 7.650520500976998¢+011
0 - 8.278395310845262e+01i
0 + 8.278395310845262¢+01i
0 - 1.466443398429018e+02i
0 + 1.466443398429018e+02i

Constant Multiplier = 1.000000000000000e+00

Zerosof g

-1.305635283009075¢+00 - 8.857486966284060e+01i
-1.305635283008548¢e+00 + 8.857486966284121e+01i
-5.171259714118013e+00 - 9.171247862133175e+01i
-5.171259714120635¢+00 + 9.171247862133356e+01i
-1.154464095851323e+01 - 1.017389940775243e+02i
-1.154464095851688e+01 + 1.017389940775251e+02i
-1.321527139456090e+01 + 1.212757790850019¢+02i
-1.321527139456280¢+01 - 1.212757790850039¢+02i
-4.155982758248053¢+00 + 1.334035248550387e+02i
-4.155982758249002¢+00 - 1.334035248550406¢e+02i

Constant Multiplier = 3.622380046693072e-01
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Zeros of h

2.392342793163219¢-02 - 8.977054805964822¢e+011
2.392342792997965¢e-02 + 8.977054805964920e+01i
-3.634134037965850e-02 + 9.381252535585607e+01i
-3.634134037677358e-02 - 9.381252535586262¢+01i
1.237961726745460e-02 + 1.040165844324301e+02i
1.237961725173895e-02 - 1.040165844324377e+021
6.319825149501135€-03 - 1.193211466853977e+02i
6.319825146139234e-03 + 1.193211466854135¢+02i
-7.365216812956254e-03 + 1.297900952753172e+02i
-7.365216807858941¢e-03 - 1.297900952753203e+02i];

Constant Multiplier = -3.622380046693063e-01

Extracted Extracted
Section Transmission Synthesized Parameters
Types Zero
————— — ———————
4 5 L1=1.152169023847305e-02
5 5 L2 =2.580144206266234¢-03
Cl = 5.655404827591382¢-02
2 6 C2 =1.984798761641732¢-02
5 6 L3 =9.662716992380181¢-04
C3 =4.812493218695149¢-02
4 4 L4 =1.067943442242621e-03
5 4 LS =8.569568045495478¢-04
CS = 1.993696754526694¢-01
4 3 L6 =1.293810962856785¢e-04
3 2 C6=7.217677857655482¢-01
4 1 L7 = 1.081953767866160e-05
2 7 C7 =7.825526922564519¢+00
0 n = 6.003737526020636¢-02
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Fig.A.3.1.3 Circuit of a |0 degree narrow bandpass filter

3.2 Additional example of a 14 degree very narrow bandpass filter from Gaéttlicher

[23, p.167|

Zerosof

zeros of h

+j*8.992424181e-1;
-)*8.99242418le-1;
+j*9.004825819¢-1;
-j*9.004825819¢-1;
+j*8.996210097e-1;
-1*8.996210097¢-1;
+j*9.001039903e-1;
-j*9.001039903e-1;
+)*8.996751863¢-1:
-1*8.996751863¢-1;
+)%9.000498137¢-1;
-j*9.000498137¢-1;

+8.998624919¢-1;

-8.998624919¢-1;

+)*8.997450966e-1;
-)*8.997450966¢-1
+)*8.997714358e-1;
-j*8.997714358e-1;
+)*8.998270474¢-1;
-)*8.998270474e-1;
+)%8.998979526e-1;
-j*8.998979526e-1;
+)*8.999535642¢-1;
-j*8.999535642¢-1;
+)*8.999799034e-1;
-j*8.999799034e-1

Constant Multiplier = 1.0

Constant Multiplier = -
3.0356223658419¢+3




Zerosof g

-1.1552342827076¢-5+)*8.997702115084 1e-1;
-1.1552342827076e-5-j*8.997702115084 1¢-1;
-1.9199339335190e-5+j*8.9982635148176e-1;
-1.9199339335190e-5-j*8.9982635148176e-1;
-1.9199339335362¢-5+)*8.9989864851824e-1;
-1.9199339335362¢-5-)*8.998986485 1 824e-1;
-1.1552342827346e-5+)*8.9995478849159%¢-1;
-1.1552342827346e-5-j*8.99954788491 59%-1;
-3.4936618244783¢-6+)*8.9998092104884e-1;
-3.4936618244783¢-6-j*8.9998092104884e-1;
-3.4936618243715¢-6+j*8.9974407895116e-1;
-3.4936618243715¢-6-1*8.99744078951 | 6e-1
-8.9969779610465¢-1;
-9.0002721784407e-!

Constant Multiplier = 3.0356223658419¢+3

Table 42: Gaéttlicher’s Example Result

Extracted Extracted
Section Transmission Synthesized Parameters
Types Zero

2 C1=1.243109386213119¢+00

2 L1=8.339440764800440¢e+01
C2=1.482891931645905¢-02

7 C3=1.031680570710744¢+01

7 L2=1.081403245069809¢-02
C4=1.140411789152826e+02

6 C5=1.503764263763107¢-01

6 L3=1.230049253982286e-01
C6=1.003441651568025¢+01

3 C7=4.971255378129980e-03
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Table 42: Gaéttlicher’s Example Result

Extracted Extracted
Section Transmission Synthesized Parameters
Types Zero |
6 3 L4=3.892655802479963e+04
C8=3.174203872551133e-05
3 4 C9=7.212175170884430e-02
6 4 L5=7.686259777041075¢+03
C10=1.607361110579601e-04
2 5 C11=4.781154172707520e-01
5 5 L6=4.243800714668578e-03
C12=2.908787034256589%¢+02
3 l C13=1.238011120145088e-01
2 8 C14=1.728893365246930e-01
0 n=2.023483129611001e+00
Ci C7 Qg Ci3
N S —— R
o— L L3~ HéT—e L6 1
T T
Li G ¢ G La4d Ls Ci2

Fig. A.3.2.1 Circuit of a 14 degree very narrow bandpass filter
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APPENDIX_IV

SCATTERING SYNTHEISIS PROGRAM LISTING

Main implementation program:

format long e

(80,f,g,h] = CancelCommonZeros(f,g,h);

[NoO,NoZeros,Noint, Tr_zeros] = sortzeros(f.g,h);

n = length(Tr_zeros);

circuit_list = [];

Parameters_list = [];

whilen>0

disp(‘NoO = *), disp(No0);

disp(‘Noinf = *), disp(Noinf);

disp(‘ Tr_zeros="), disp(Tr_zeros);

n = length(Tr_zeros);

successor_list = [];

Pr_m_i =[);

NoOfSuccessors_i = [];

Rr_m_i =[],

zero_i = [];

fori=l:n

wi = Tr_zeros(i)

disp(‘i-loop’);

disp(‘i="), disp(i);

wi = Tr_zeros(i)

successor_list = [i];

Rr_m_j =(];

[parl, par2, Li, Ci,class, C_R] = classrithm(wi, No0, Noinf, g, h)
successor_list] = AddationSuccCheck_class(C_R,class, NoO, Noinf);
successor_list = [successor_list, successor_listl ];

Rr_m_j = additionalR_iCheck(successor_list)

if class ~=I"

for j=1:n

wr = Tr_zeros(j)

if wr ~= wi & wr ~= 0 & wr ~= inf
[realizability_i,realizability_r] = circuitrithm(parl ,par2,Li,Ci,class,wi,wr,NoO,Noinf,g,h)
[successor_list2,Rr_m_j1] = SuccessorCheck(realizability_i,realizability_r.j)
successor_list = [successor_list,successor_list2];

Rr_m_j = [Rr_m_j, Rr_m_j1]

end

end % _loop finished
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disp(‘successor_list = '); disp(successor_list)

x = length(successor_list)-1;

ifx>0

NoOfSuccessors_i = [NoOfSuccessors_i, X]
[mini_Rr_j,y] = min( Rr_m_j);

Rr_m_i = [Rr_m_i ; mini_Rr_j]

zero_i = [ zero_i;Tr_zeros(i)]

else

Rr_m_j = additionalR_iCheck(successor_list)
Rr_m_i=[Rr_m_i;Rr_m_j]

zero_1 = [ zero_1;Tr_zeros(1)]

end

else

disp(‘ no macth circuit’)

end

end

% i_loop finished

[ mini_Rr_i, order]= Select_maxinum( NoOfSuccessors_i,Rr_m_i);
disp(‘Final_ zero_i="), disp(zero_i(order));

wi = zero_i(order);

[parl, par2, Li, Ci, class]= classrithm(wi, NoO, Noinf, g, h)
sigma_b = sigma;

="

gb =g

hb = h;

Li = real(L1);

Ci = real(Ci).

[SecTypeNos, Parameters, sigma_b, fb, gb, hb]=class_remove(parl, par2, Li, Ci, class,
wi, sigma_b, fb, gb, hb);

circuit_list = [circuit_list , SecTypeNos]
Parameters_list = [Parameters_list; Parameters]
sigma = sigma_b;

f=fb;

g =gb;

h =hb;

norm_diff=Feldtkeller_prodRep(f.,g,h);
disp(‘Feldtkeller check norm_diff="),disp(norm_diff)
[No0, NoZeros, Noinf, Tr_zeros] = sortzeros(f, g, h)
n = length(Tr_zeros)

ifn<= 2

break

end

end

ifn==2& (No0O == 1| Noinf==1)

disp( 'This is stage n = 2°);



wi = selectzero(NoO,Noinf, Tr_zeros, n);

[parl, par2, Li, Ci, class] = classrithm(wi, NoO, Noinf, g, h)
sigma_b = sigma;

fb=f

gb=g;

hb = h;

[SecTypeNos, Parameters, sigma_b, fb, gb, hb] = class_remove(parl, par2, Li, Ci, class,
wi, sigma_b, tb, gb, hb);

end

circuit_list = [circuit_list, SecTypeNos];

Parameters_list = {Parameters_list; Parameters];

sigma_b = sigma;

f=1tb;
g =gb:
h = hb;

norm_diff = Feldtkeller_prodRep(f.g,h);
disp(*Feldtkeller check norm_diff="),disp(norm_diff)
[No0, NoZeros, Noinf, Tr_zeros] = sortzeros(f, g, h);
n = length(Tr_zeros);

end

ifn==1

wi = Tr_zeros(!);

[part, par2, Li, Ci, circuit] = Ladderithm(wi, NoO, Noinf, g, h);
sigma_b = sigma;

fo=f;

gb=g;

hb = h;

[SecTypeNos, Parameters, sigma_b, fb, gb, hb] = Ladder_Remove(parl, par2, Li, Ci, cir-
cuit, wi, sigma_b, fb, gb, hb)

circuit_list = lcircuit_list, SecTypeNos];
Parameters_list = [Parameters_list; Parameters];
sigma_b = sigma;

f=tb;

g = gb;

h =hb;

norm_diff = Feldtkeller_prodRep(f, g, h);
disp(‘Feldtkeller check norm_diff="),disp(norm_dif¥);
[NoO, NoZeros, Noinf, Tr_zeros] = sortzeros(f, g, h );
n = length(Tr_zeros);

end

ifn==

n = transformer(g, h)

circuit_list = [circuit_list, 0);

Parameters_list = [Parameters_list; n);

end
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disp(‘final circuit Type ="), disp(circuit_list)
disp(‘final Parameters = ‘), disp(Parameters_list)
save SecParFilel circuit_list Parameters_list

Addational Succseor Checking

function successor = AddationSuccCheck(C_R, circuit, NoO, Noinf)
if (circuit == 19| circuit == 20| circuit == 21)

if (C_R==1 & ((Noinf > 2) | ( (Noinf==2)& (N00>0))))
successor = inf,

elseif (C_R == 0 & ((Noinf >= 1) | ( (Noinf==1) & (No0>0))))
successor = int’,

elseif (C_R==1& (NoO==1)|( (Noinf> 1) & (No0>1))))
successor = 0;

elseif (C_R == 0 & (No0 >= 1))

successor = 0;

else

successor = 999;

end

elseif (circuit == | | circuit == 2| circuit == 3)

it (C_R==1& ((No0>2)|( (NoO==2)& (Noinf>0))))
successor = 0;

elseif (C_R==0& ((No0> 1) |( (No0==1)& (No0>0))))
successor = 0;

elseif (C_R == 1 & ((Noinf==1) | ( (NoO > 1) & ( Noinf>1))))
successor = inf’,

elseif (C_R == 0 & (Noinf > 0))

successor = inf;,

else

successor = 999;

end

elseif (circuit == 13| circuit == 14| circuit == 15)

if (C_R == 1 & ((Noinf > 2) | (Noinf == 2) & ( No0 > 0))))
successor = inf’,

elseif (C_R == 0 & ((Noinf >= 1) | (Noinf == 1) & ( No0 > 0))))
successor = inf},

elseif (C_R==1& ((No0 == 1) | ( (Noinf>1) & (No0>1))))
successor = 0;

elseif CR=0& (No0>0)

successor = 0;

else

successor = 999;

end

elseif (circuit == 7| circuit == 8| circuit ==9)

if (C_LR==1 & ((No0>2)|( (No0==2) & (Noinf>0))))
successor = 0,
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elseif (C_R==0& ((No0>1)|( (NoO==1)& (Noinf>0))))
successor = 0;

elseif (C_R == 1 & ((Noinf==1) | ( (No0 > 1) & ( Noinf>1))))
successor = inf;,

elseif (C_R == 0 & (Noinf > 0))

successor = inf;,

else

successor = 999;

end

else

successor = 999,

end

Realizability Checking

function [realizability_i,realizability_r]=circuit-
rithm(parl,par2,Li,Ci,class.wi,wr,NoO,Noinf,g,h)
reflectance = refl_at_s_prodRep(wr, g, h);

delay = DelayRefl_prodRep(wr, g, h)

alpha = angle(reflectance);

omiga_r = imag(wr),

omiga_i = imag(wi);

C_R=1;

if Noinf > O

rho_at_inf = refl_at_inf{g, h);

delay_at_inf = delay_inf{g, h);

Cinf = 2/ delay_at_inf;

Linf = delay_at_int/2;

end

ifNo0 >0

rho_at_0 = rho_at_zero(h, g);

delay_0 = DelayAt_0(g,h);

CO = delay_0 /2;

LO = 2/delay_0 ;

end

number = class;

if number == class

switch number

case {"A’}

Lro = t/((1/parl)-(1/par2))-Li;

Lr = i/( omiga_r*tan(alpha/2))

L2 = 1/((1/Lr)-(1/par2)) - (Li/(1-(omiga_r/omiga_i)"2))
realizability_i= par2/par]| ;

realizability_r = L2/Lro;

if realizability_i >= (1-1e-8) & realizability_r >= (1-1e-8)
disp(‘ circuit=1")
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rcalizability_i= par2/parl ;
realizability_r = L2/Lro;

clse

CR=0;

end

if (C_LR==0)

if (rho_at_inf < 0) & (Noinf > 0)
disp(* circuit =2°)

Cinf = 2/ delay_at_inf;

Cr = -tan(alpha/2)/omiga_r;
Cninf = 1/(1/Cinf)-(1/C));
Cl= l/(omiga_r"2*par2);
C2= 1/(Ci-1/(omiga_r"2*Li)),
C3 = 1/(C1+Cr);
C=1/(C3-C2),
realizability_i= par2/parl ;
realizability_r = Crinf/C;
elseif (C_R == 0) & (rho_at_inf > 0) & (Noinf > 0)
disp(* circuit = 3")

Linf = 2/ delay_at_inf;

Lr = l/tan(alpha/2)/omiga_r:;
Lnnf = 1/((1/Lro)-(1/par2)),
Li= U(1/Lr - }/par2);

L2= 1/ 1/Li-(omiga_r"2*Ci))
Ls= L1-L2;

realizability_i= par2/parl ;
realizability_r = Lrinf/Ls;

end

end

case {‘B’}

Cro = delay_0/2;

Cr = -tan(alpha/2)/omiga_r;
C2 = |/(omiga_r"2*par2),
Cs= Cr+C2;

realizability_i= par2/parl ;
realizability_r = Cs/Cro;

if realizability_i >=(1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 4’)
realizability_i= par2/parl ;
realizability_r = Cs/Cro;

else

CR=0;

end

if C_R==0& Noinf> 0 & rho_at_inf<0
disp(* circuit=15")
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delay_at_inf = delay_inf(g,h);
Cinf = 2/delay_at_inf;

Cl= |/(omiga_r"2*par2),

C2= tan(alpha/2)/omiga_r;
C=CI1-C2;

realizability_i= par2/parl ,
realizability_r = Cinf/C;

elseif C_R == 0 & Noinf> 0 & rho_at_inf >0
disp(' circuit =6°)

delay_at_inf = delay_inf{(g,h);
Lint = 2/ delay_at_int}

Lrinf = 1/((1/Linf)-(1/par2));

Lr= l/tan(alpha/2)/omiga_r,

Ls = 1/(1/Lr - l/parl);
realizability_i= par2/parl ,
realizability_r = Lrinf/Ls;

end

case {‘C’}

Cro = 1/((1/parl)-(1/par2))-Ci;

Cr = -tan(alpha/2)/omiga_r;

Cl = 1/Cr - |/par2;

C2 = Ci/1- (omiga_r/omiga_i)"2),
Cs=1/C1-C2;

realizability_i= par2/parl ;
realizability_r = Cs/Cro;

if realizability_i >= (1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 7°)
realizability_i= par2/par! ;
realizability_r = Cs/Cro;

else

C_R=0

end

if C_R ==0 & Noinf>0 & rho_at_inf<0
disp(* circuit = 8')

Cinf = 2/ delay_at_inf;

Crinf = 1/((1/Cinf)-(1/par2)),

Cr = -tan(alpha/2)/omiga_r,

Cl = l/Cr - /par2;

C2 = Ci/(1- (omiga_r/omiga_i)"2);
C=1/Cl-C2;

realizability_i= par2/parl ,
realizability_r = Crinf/C;

elseif C_R == 0 & Noinf> 0 & rho_at_inf>0
disp(‘ circuit =9°)

Linf = 2/delay_at_inf;
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Lrinf = 1/((1/Linf)-(1/Li));

Lr = 1/tan(alpha/2)/omiga_r;

Lt = 1/(Lr + 1/(omiga_r"2*par2));
L11 = 1/((omiga_r"2)*Ci);

L2 = 1/(Li-L11);

Ls= /(L1 -L2);

realizability_i= par2/parl ;
realizability_r = Lrinf/Ls;

end

case {'D’}
db_Al_0=db_At_0_prodRep(g,h);
Lro = db_At_0/2;

Lr = l/tan(alpha/2)/omiga_r;

Lp = Lr + 1/(omiga_r"2*par2),
realizability_i= par2/parl .
realizability_r = Lp/Lro;

if realizability_i >=(1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 10°)
realizability_i= par2/parl ,
realizability_r = Lp/Lro;

else

C_R=0;

end

if C_R == 0 & Noinf > 0 & rho_at_inf< 0
disp(* circuit = 11°)

Cinf = 2/delay_at_inf

Crinf = 1/((1/Cinf)-(1/parl}))

Cr = -tan(alpha/2)/omiga_r

Cp = 1/(1/Cr - l/parl)
realizability_i= par2/parl
realizability_r = Crinf/Cp

elseif C_R == 0 & Noinf> 0 & rho_at_inf >0
disp(* circuit = 12")

Linf = 2/delay_at_inf;

Lrinf =Linf;

Lr = 1/(omiga_r*tan(alpha/2));
Ls = Lr +1/(omiga_r"2*parl);
rcalizability_i= par2/parl
realizability_r = Lrinf/Ls;

end

case {‘E’}

Cinf = 2/delay_at_inf;

Crinf = 1/( 1/(Cinf - par2) - 1/Ci);
Cr = -tan(alpha/2)/omiga_r;

C1 = /(Cr - par2);
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Cl11 = 1/(Ci*(1- (omiga_i/omiga_r)"2)).
Cp=I/ACl1-Cll),
realizability_i= parl/par2 ;
realizability_r = Crinf/Cp;
if realizability_i >=(1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 15")
realizability_i= parl/par2 ;
realizability_r = Crinf/Cp;
else
C_R=0;
end
ifC_R ==
ifrho_at_inf<0 & No0 >0 & rho_at_0<0
disp(* circuit = 13°)
LO = delay_0/2;
Lr0=L0- Li;
Lr = l/(omiga_r*tan(alpha/2));
Lp = I/(1/Lr + (omiga_r"2*par2)) + 1/Ci/(omiga_r"2 - omiga_i"2);
realizability_i= parl/par2 ;
realizability_r = Lp/Lr0;
elseif rho_at_inf <0 & NoO >0 & rho_at 0>0
disp(* circuit = 14")
Cinf = 2/delay_at_inf;
C0 = delay_0/2;
Cr0 = CO - par2;
Cr = -tan(alpha/2)/omiga_r;
C1 = 1/(Cr - par2);
Cl11 = 1/Ci/(1- (omiga_i"2)/(omiga_r"2)),
Cs=1/(Cl -Cl1);
realizability_i= parl/par2 ;
realizability_r = Cs/Cr0,
end
end
case {‘F’}
Cinf = 2/delay_at_inf’,
db_AtInf = db_AtInf_prodRep(g,h);
Lnnf = 2/db_AtInf;,
L1 = omiga_r*2*parl;
Lr = 1/omiga_r/tan(alpha/2);
Ls=1/(L1+ l/Lr);
realizability_i= parl/par2 ;
realizability_r = Lrinf/Ls;
if realizability_i >=(1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 18°)
realizability_i= parl/par2 ;
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realizability_r = Lrinf/Ls;

else

C_R=0;

end

ifC_R ==

ifNo0 >0 & rho_at_0<0
disp(‘ circuit = 16")
delay_at_inf = delay_inf{g,h);
delay_0 = DelayAt_0(g,h);
Cinf = 2/delay_at_int;

L0 = delay_0s2;

Lr = 1/(omiga_r*tan(alpha/2));
Lp = L/((l/Lr)+omiga_r"2*parl),
realizability_i= parl/par2 ;
realizability_r = Lp/LO0;

elseif CR==0& No0>0 & rho_at 0>0
disp(* circuit=17")

Cinf = 2/delay_at_inf;

CO0 = delay_0/2;

Cr = -tan(alpha/2)/omiga_r;
Cs =Cr - parl;
realizability_i= parl/par2 ;
realizability_r = Cs/CO;

end

end

case {'G’}

Linf = 2/delay_at_inf;

Lr = l/(omiga_r*tan(alpha/2)),
Lrl = l/(Linf - par2);

Lrll = l/Li;

Lrinf= 1/(Lrl -Lrl1);

L1 = 1/(Lr - par2),

L1l = I/Li/(1- (omiga_i/omiga_r)"2),
Ls=1/L1-LI11);
realizability_i= parl/par2 ;
realizability_r = Lrinf/Ls;

if realizability_i >=(1-1le-8) & realizability_r >= (1-le-8)
disp(* circuit = 21")
realizability_i= parl/par2 ;
realizability_r = Lrinf/Ls;

clse

C_R=0;

end

if C_R==

if NoO >0 & rho_at_0<0
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disp(* circuit = 19°)

LO = delay_0/2;

Lro=L0 - par2;

Lr = 1/(omiga_r*tan(alpha/2));

L1 = 1/(Lr - par2),

L11 = I/Li/(1- (omiga_i/omiga_r)"2);
Lp=1/(L1-LIl);

realizability_i= parl/par2 ;
realizability_r = Lp/Lro;

elseif CR==0& No0 >0 & rho_at_ 0>0
disp(" circuit = 207)

CO0 = delay_0/2;

Cro=C0-Ci;

Cr = -tan(alpha/2)/omiga_r;

Cl = 1/{omiga_r"2*par2 + 1/Cr),
Cl1 = Ci/(1- (omiga_r/omiga_i)"2).
Cs=Cl1-Cll;

realizability_i= pari/par2 .
realizability_r = Cs/Cro;

end

end

case {‘H"}

db_AtInf = db_Atinf_prodRep(g,h)
Crinf = 2/db_AtInf;

Cr = -tan(alpha/2)/omiga_r.

Cl = (omiga_r"2)*parl;
Cp=1/ACI + 1/Cr);
realizability_i= parl/par2 ,
realizability_r = Crint/Cp;

if realizability_i >=(1-1e-8) & realizability_r >= (1-1e-8)
disp(* circuit = 21")

realizability_i= parl/par2 ;
realizability_r = Crint/Cp,

else

C_R=0;

end

ifC_R ==

if NoO > 0 & rho_at_0<0

disp(* circuit = 22°)

delay_0 = DelayAt_0(g,h);

LO = delay_0/2;

Lro=L0- parl;

Lr = 1/(omiga_r*tan(alpha/2));
Lp=Lr-parl;

realizability_i= parl/par2 ;
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realizability_r = Lp/Lro;

elseif C_R ==0& No0 >0 & rho_at 0>0

disp(‘ circuit = 23°)

Cr0 = delay_0/2;

Cr = -tan(alpha/2)/omiga_r;

Cl = omiga_r"2*parl;

Cs = 1/(C1 + 1/Cr),

realizability_i= parl/par2 ;

realizability_r = Cs/Cr0;

end

end

case {‘I'}

realizability_i= 999;

realizability_r = 999;

end

end

function [f, g, h, sigma) = chain(fa, ga, ha, sigma_a, fb, gb, hb, sigma_b)
% [f.g.h, sigma] = chain returns the polynomiais

% f, g, h and the constant sigma for a chain connection of
% two-ports Na and Nb

% the polynomials are row vectors of coefficients in descending order
sigma = sigma_a*sigma_b;

"= conv(fa,tb);

L = sigma_a*lower_star(ga);

h = polyadd(conv(h.hb),conv(ha,gb));

g = sigma_a*lower_star(ha);

g = polyadd(conv(g,hb),conv(ga,gb));

Remove circuit class

tunction [SecTypeNos,Parame-
ters,sigma_b,tb,gb,hbj=class_remove(part,par2,Li,Ci,class,wi,sigma_b,fb,gb,hb)
switch class

case {*A’}

C_R=0;

Tr_zeros = wi;

L = par2;

[SecTypeNos|,Parameters|,sigma_b,fb,gb,hb] =
RemoveShunt_L_2(L,Tr_zeros,C_R,sigma_b,fb,gb,hb)

L =Li

C=Ci;

Tr_zeros = wi;

CR=1I;

[SecTypeNos2,Parameters2,sigma_b,fb,gb,hb] =
Remove_Series_Section2(L,C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
Parameters = [Parameters|;Parameters2),
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SecTypeNos = [SecTypeNos1,SecTypeNos2]

case {‘B’}

C_R=1;

Tr_zeros = wi;

L = parl;

[SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
RemoveShunt_L_2(L,Tr_zeros,C_R,sigma_b,fb,gb,hb)
case {‘C'}

C_R=0;

Tr_zeros = wi;

C = par2;

[SecTypeNos! ,Parameters|,sigma_b,fb,gb,hb] =
RemoveSeries_C_2(C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
L =Li;

C=Cy

Tr_zeros = wi;

C_R=1;
[SecTypeNos2,Parameters2,sigma_b,fb,gb,hb] =
Remove_Shunt_Section2(L,C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
Parameters = [Parameters | ;Parameters2],

SecTypeNos = [SecTypeNos1,SecTypeNos2)

case {‘D’}

C_R=1;

Tr_zeros = wi;

C = parl;

[SecTypeNos,Parameters,sigma_b,fb,gbhb] =
RemoveSeries_C_2(C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
case {‘E’}

CR=1;

Tr_zeros = wi;

C = par2;
[SecTypeNos|,Parameters|,sigma_b,fb,gb,hb] =
RemoveShunt_C_2(C.Tr_zeros,C_R,sigma_b.fb,gb,hb)
C_R=1;

Tr_zeros = wi;

L =Li;

Cc=Ci

[SecTypeNos2,Parameters2,sigma_b,fb,gb,hb] =
Remove_Series_Section2(L,C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
Parameters = [Parameters | ;Parameters2],

SecTypeNos = [SecTypeNos1,SecTypeNos2]

case {'F’}

CR=1;

Tr_zeros = wi;

C = parl;
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[SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
RemoveShunt_C_2(C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
case {‘G’}

CR=1;

Tr_zeros = wi;

L = par2;
[SecTypeNos|,Parametersl,sigma_b,fb,gb,hb] =
RemoveSeries_L_2(L,Tr_zeros,C_R,sigma_b,fb,gb,hb)
CR=1;

Tr_zeros = wi;

L =Li;

C=0Ci;

[SecTypeNos2,Parameters2,sigma_b,fb,gb,hb] =
Remove_Shunt_Section2(L,C.Tr_zeros,C_R,sigma_b,fb,gb.hb)
Parameters = [Parameters |;Parameters2],

SecTypeNos = [SecTypeNos1,SecTypeNos2]

case {'H’}

C_R=1;

Tr_zeros = wi;

L = parl;

[SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
RemoveSeries_L_2(L,Tr_zeros,C_R,sigma_b,fb,gb,hb)
end

function [SecTypeNos,Parameters,sigma_b,fb,gb,hb] = Remove_Series_Section2
(L.C.Tr_zeros,C_R,sigma_b,tb,gb,hb
[fa,ga,ha,sigma_a]=series_ShuntSection2(C, L) % prodRep version

it C_R==
[sigma_b,fb,gb.hb]=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
%remove section a

end

SecTypeNos=(5];

Parameters=(L;C];

function [SecTypeNos,Parameters,sigma_b,fb,gb.hb] =
Remove_Shunt_Section2(L,C,Tr_zeros,C_R,sigma_b,fb,gb,hb)

[fa,ga,ha, sigma_a]=series_ShuntSection2(C, L) % prodRep version

if C_R==
[sigma_b,fb,gb,hb]=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
%remove section a

SecTypeNos={SecTypeNos,5];

Parameters=[Parameters;L;C];

function [SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
Remove_Shunt_Section2(L,C,Tr_zeros,C_R,sigma_b,fb,gb,hb)
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{fa,ga,ha, sigma_a]=shunt_SeriesSection2(C, L) % prodRep version
O/odisp(‘ ERSBEEeE S ‘);

%disp(‘sigma_a="), disp(sigma_a);

%disp(‘fa="), disp(fa);

%disp(‘ga="). disp(ga);

%fb=f_FromTrZeros(Tr_zeros);

if C_R==
[sigma_b,fb,gb,hb]=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
%remove section a

end

SecTypeNos=[6];

Parameters=[L.C);

function [sigma_b.fb,gb,hb]=RemoveSection_a(sigma_a,fa,ga,ha sigma.f,g,h)
% remove section a

sigma_b=sigma®*sigma_a;

% gb=(ga*g-ha*h)/fafa*

a=lower_star_prodRep(ga); % prodRep version
a=polyMul_prodRep(a,g);

b=lower_star_prodRep(ha);

b=polyMul_prodRep(b,h);

b(1)=-b(1):

c=lower_star_prodRep(fa);

c=polyMul_prodRep(c,fa);

%a,b,c,

%p 1 =polyAdd_prodRep(a,b)
gb=Zeros_a_Plus_b_c(a.b.c);

% determines zeros of p=(a+b)/c given:cj(a+b)d=real(d):
% hb=(gah-hag)/sigma_afafa®*
a=polyMul_prodRep(ga,h);

b=polyMul_prodRep(ha,g);

b(1)=-b(1);

c=lower_star_prodRep(fa);

c=polyMul_prodRep(c,fa);

c(1)=c(1)*sigma_a,

%a,b,c,

% if length(c)==

% save TestFilel abc

% end

% p2=polyAdd_prodRep(a,b)
hb=Zeros_a_Plus_b_c(a,b,c);

% determines zeros of p=(a+b)/c given:c|(a+b)d=real(d);
tol=1e-12;

[g,a,b] = CancelCommonElems(fa,f,tol); % removes the common elements

112



fb=[1:b];

function [SecTypeNos,Parameters,sigma_b,tb,gb,hb] =
RemoveSeries_C_2(C,Tr_zeros,C_R,sigma_b,fb,gb,hb)

[fa,ga,ha, sigma_a]= series_C_Section2(C); % prodRep version
%fb=f_FromTrZeros(Tr_zeros);

if C_R==
[sigma_b,fb,gb,hb]=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
%remove section a

else
[sigma_b,tb,gb,hb]=PartiallyRemoveSection_a(sigma_a,ta,ga,ha,sigma_b,tb,gb,hb);
% partially remove section a

end

SecTypeNos=[3];

Parameters=[C];

function [SecTypeNos.Parameters,sigma_b,fb,gb,hb] =
RemoveSeries_L_2(L,Tr_zeros.C_R,sigma_b,fb,gb,hb)

[fa,ga,ha, sigma_a]=series_L_Section2(L); % prodRep version
%fb=t_FromTrZeros(Tr_zeros);
(sigma_b,fb,gb.hb]=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b.fb,gb,hb);
%remove section a

SecTypeNos=[1];

Parameters=(L];

function [SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
RemoveShunt_C_2(C,Tr_zeros,C_R sigma_b,fb,gb,hb)

[fa,ga.ha, sigma_a)=parallel_C_Section2(C); % prodRep version
%Itb=t_FromTrZeros(Tr_zeros);
[sigma_b.fb.gb,hb]=RemoveSection_a(sigma_a,fa,ga ha,sigma_b,fb,gb.hb);
%remove section a

SecTypeNos=(2];

Parameters=[C];

function [SecTypeNos,Parameters,sigma_b,fb,gb,hb] =
RemoveShunt_L_2(L,Tr_zeros,C_R,sigma_b,fb.gb,hb)

[fa,ga,ha, sigma_a]=parallel_L_Section2(L); % prodRep version
%fb=f_FromTrZeros(Tr_zeros);

if C_R==
[sigma_b,fb,gb,hbj=RemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
%remove section a

else
[sigma_b,fb,gb,hb]=PartiallyRemoveSection_a(sigma_a,fa,ga,ha,sigma_b,fb,gb,hb);
% partially remove section a

end
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SecTypeNos=[4];
Parameters=[L];

function [f.g,h, sigma] = series_C_Section(C)

% (f.g.h, sigma] = series_C_Section(C) returns the polynomials

% t, g, h and the constant sigma for a series C-Section

% the polynomials are row vectors of coefficients in descending order
% the input is the parameter C

f=[1 0};

g=[1 1/(2*C)];

h=[1/(2*C)];

sigma=-1;

function [f,g,h, sigma) = series_C_Section2(C)

% [f.g,h, sigma] = series_C_Section(C) retums the polynomials

% f, g, h and the constant sigma for a series C-Section

% the polynomials are column vectors of constant factor and followed by zeros
% the input is the parameter C

t=(1; 0},

g=[1; -1/(2*C)};

h=[1/2*C)];

sigma=-1;

function [f,g,h, sigma] = series_L_Section(L)

% [f.g,h, sigma] = series_C_Section(L) returns the polynomials

% f, g, h and the constant sigma for a series L-Section

% the polynomials are row vectors of coefficients in descending order
% the input is the parameter L

=[1};
g=[L/2 1];
h=[L/2 0];
sigma=1.

function (f,g,h, sigma) = series_L_Section2(L) % prodRep version

% [f.g,h, sigma] = series_L_Section(L) returns the polynomials

% f, g, h and the constant sigma for a series L Section

% the polynomials are column vectors of constant factor and followed by zeros
% the input is the parameter L

d=2/L;

f=(1];

g=[1/d; -d};

h=(1/d; 0J;

sigma=1;
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function [f,g,h, sigma] = series_ShuntSection(C, L)

% [f.,g,h, sigma)] = series_ShuntSection(C, L) returmns the polynomials

% f, g, h and the constant sigma for a series ShuntSection (parallel resonance)
% the polynomials are row vectors of coeflicients in descending order

% the input is the parameters C and L which are in parallel

t=[1 0 1/(L*C)];

g=[1 1/(2*C) 1/(L*C)];

h=[1/(2*C) 0];

sigma=1;

function [successor_listl ,Rr_m_ji ] = SuccessorCheck2(realizability_ realizability_r, cir-
cuit, NoO,Nointf, j)
successor_listl = [];

Rr_m_jl =[];

it realizability_i == 1 | realizability_i == (1-le-10)
CR=1;

elseif realizability_i ~= | | realizability_i ~= (1-1e-10)
C_R=0(;

end

successor=AddationSuccCheck(C_R,circuit, No0,Noinf);
disp(*successor="), disp(successor)

if successor == 0 | successor == inf

successor_list] = [successor_list!, successor];

else

successor_listl = [successor_listl];

end

if realizability_i >= (1-1e-10 ) & realizability_r >= (1-le-10)
successor_listl = [successor_listl, j);

Rr_m_jl = [ Rr_m_jl ;realizability_r];

else

successor_list]l = [successor_listl];

Rr_m_jl =[Rr_m_jl:99];

end

function [f,g,h,sigmal=Transformer(n)
% f, g, h sigma are constants

% the input is the parameter n

t=[1];

g={(n"2+1)/n/2];

h=[(n"2-1)/n/2];

sigma=1;
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