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A SimplWed Scattering Synthess Method for LC Ladder Fiiters 

Zhiwei Zhou 

ABSTRGCT 

This thesis is devotd to the presentation of a simplified synthesis method and its 

application in the development of a computer program for the synthesis of LC ladder net- 

works. The approach developed in the thesis is based on scanering ûansfer matrix theury 

which does not seem to have been applied directly to ladder synthesis before. 

The most important part of this thesis is the detemination of a scattering synthesis 

strategy for choosing the sequence of transmission zeros. A synthesis strategy was devel- 

oped by W. F. GBttlicher for application to the traditional synthesis procedure. Gottlicher 's 

method, presented in his thesis. is adapteâ as the basis of the scattering smtegy. In addi- 

tion. this thesis introduces a set of simplified scattering calculations by appmpriately mod- 

iQing the detoils of Gonlicher's strategy. The simplified scattering algorithm involves 

only calculation of the reflectance and the delay at a transmission zero and at zero or infin- 

ity. For multiple transmission zeros et zero or infinity, the second and third denvatives of 

polpomials g and h at zero or infinity are reguired in addition. 

The main results are given in Chapter 3. In that chapter, the derivation of the scattering 

charactetization for al1 of the circuits and realization details of the modified strategy are 

presenteâ. In Chapter 4, the flowgraph of the simplified scattering LC ladder filta synthe- 

sis program together with several design examples is pnxnted. 

The thesis concludes with a surnmary and rewmmendations. 
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Chapter 1 

INTRODUCTION 

An LC filter is a lossless transmission network consisting of only inductors and 

capaciton. In normal operations, a doubly teminateci two-port network as shown in Fig. 1- 

1 (a) can be considered as an LC ladder filter. The specific ladder topology is shown in Fig. 

1 - 1 (b). 

Fig. 1 - 1 (a) rcsistively terminated losslcss two pott; 
(b) resistivel y terminated ladder structure. 

Historically, L C ludderjïlters have pplayed an important role in the design of transmis- 



sion networks (filters). The availability of lossless resonance in an LC filter allows its 

impedance to have extremely rapid changes of magnitude and phase with changes in fre- 

quency. Accordingly with this outstanding topological property, we cm constmct a two- 

port network with very steep slopes between passbands and stopbands, and secies or paral- 

le1 resonance can be used to block transmission of certain frcquencies completely, al1 in a 

network. which dissipatcs no power itselE 

Lossless ladder filters are a popular structure in the field of digital signal processing. 

The low coefficient sensitivity and the simplicity of the structure make it suitable for con- 

structing high quality digital filters [1],[2],[3]. For example, low sensitivity wave digital 

filters c m  be designed by using LC ladder filters as reference filters[3]. Active filters are 

heavily based on LC ladders for their design simulation[4]. The LC ladder concept has 

also been successfùlly applied to switcheâ-capacitor filter networks[5]- [7] as well as to 

microwave impeâance-matching networks[8]. Many monolithic switched capacitor L C 

ladder filters have been fabricated. It is obvious that LC ladders will continue to play an 

important roll in many areas of communication circuits, especially in the applications at 

higher fiequencies (f  > 100 kHz) where the operation of filtering devices becornes less 

than perfect [9]. 

Most of the discussions of LC ladder filtm in the literanire is b a d  on the original 

design technique given by Darlington[lO], Cauer[ll- 141, Baâet[15- 161, etc., which can be 

stated as follows: starting h m  a driving-point impedance of an LC two-port netwotk or 

some other quivalent charactnization, extract low-order realizable lossless subnetworks. 

Each subnetwork realizes a particular transmission zero. The mechanics of extracting a 

subnetwork gmerally depends on the name of the transmission zero king extracted. 



Afler each extraction step is completed, the mainder impedance is obtained. The whole 

process is repeated until the remainder impeùance is exhausted. 

An alternative approach to cascade network synthesis was intduced by Belevitch 

[17-2 11, which uses wave quantities for signal variables. The cascade decomposition of 

Belevitch 5 method can be accomplished by factoring the scattering transfer matrix. We 

should note that the representation of the scattering transfer matrix requires only three 

pol ynomials, - refemeû to as Belevitch 's representation, and the synthesis based on the 

scattering matrix is applicable to both the analog and digital domains. Hence. the scatter- 

ing transfer matrix is a better tool for ladder network synthesis[22]. 

The main aim of this thesis is mainly to present a simplified scattering synthesis 

method and its application in the development of a computer program for synthesis of LC 

ladder networks. The new approach is based on scattering transfer matrix theory which 

does not seem to have been applied directly to ladder synthesis before. The first step in 

this synthesis procedure requires the detemination of a scattering synthesis strategy for 

choosing the sequence of transmission zero extractions. Gottlicher's synthesis strategy 

[23) was developed for application to the traditional synthesis procedure. Gottlicher's 

method, presented in his thesis. is adapted as a basis for the scattering strategy. This thesis 

introduces a set of simplified scattering calculations by appropnately modifjmg 

Gottlicha's strategy in detail. The simplified scattering aigorithm involves only calcula- 

tion of the reflectance and the delay at a transmission zero and at zero or infinity. For mul- 

tiple transmission zeros at zero or infinity, the second and thûd derivatives of polynomiais 

g and Ii at zero or infinity are also requircd. 

In this thesis, the zen, or ptoâuct of factors reprrsmtation for a polynomial is used to 



achieve the rquired numerical accuracy. The synthesis equations are fonnulated in order 

to facilitate computer programming. All of the rquired techniques are included in the 

attached comprehensive LC ludder filter synthesis program. 

In Chapter 2, we present the basic scattering theory, then briefly describe the proper- 

ties of the reflectance and the retum group delay of lossless, real, two-port networks that 

pertain to the synthesis problem. Belevitch s representation theory is very important in this 

chapter and the rest of thesis which fonns a minimal set of necessary and sufficient condi- 

tions for a lossless scattering matrix to be realizable. Since Jarmasz's thesis [22] has made 

great contribution for a simplified synthesis algorithm of cascade network synthesis, his 

minimal characterization of the 1 st- and 2nd- order elementary reciprocal sections is 

adopted as part of the basis of our simplified ladder scattering algorithm. 

The main results are given in Chapter 3. In that chapter, the rationale for using a spe- 

citic synthesis stnitegy as the back-ôone for the simplified scattering ladder synthesis strat- 

egy is described. The derivation of the scattering characterization for al1 of the circuits and 

realization details in Gottlicher's strategy are presented. 

In Chapter 4. the flowgraph of the simplified scattering LC ladder filter synthesis pro- 

gram together with several design examples is presented. Finally, in Chapter 5, the final 

conclusions and recornrnendations are given. 



Chapter 2 

BASIC THEORY OF CASCADE NETWORK SCATTERING 

SYNTHESIS 

2.1 Introduction 

As is known. the scattenng matrix, whose entries are the scattering coefficients. exist 

for any passive two-port network. They are particularly usefùl in the description of power 

transfer under practical terminating conditions. therefore they are used exclusively in filter 

approximation theory. 

This chapter deals mainly with the basic scattering theory of lossless and real two-port 

networks, which involves Belevizch 's representation and the scattering properties of loss- 

less two-port networks. A very useful spthesis algorithm called the simplified scattering 

algorilhm[22] is descnbed bnefly in the following section. 

Finally, we use tables to describe a set of scattering characteristics of the elementary 

reci procal sections. 

2.2. Basic scattering theory 

A lossless two-port ladder network with port refemices R I  . R2 i s  show in Fig. 

2.1 .(a). A natural way of characterizing such a two-port is the use of nomalized scattering 

variables 



Y,  + R i / ,  V ,  - Ri l ,  Ai = Bi = i = 1,2 (2.1.1) 
2A 'pi 

which are known as the incident and reflectd power waves, respectively[24]. 

Fig. 2.l(a) A lossless two-port network inserted between resistive terminations 
(b) its wave variable equivalent 

There are two useful groupings of the scattenng variables: 



where S, T are 2 x 2 matrices referred to as the scatteering and transfer matrix, respec- 

tively. For the resistive tenninations show in Fig. 2.1, the entnes of the S matrix- called 

the scattering coej?icients - can be defined as the ratio of a reflected signal to an incident 

signal under the condition of zero incident signal at the other port. Specifically, using 

(2.1.1) and Fig. 2.1, we have 

where 2, and ZI are the input driving- point impedances at ports 1 and 2. respectively. 

As denoted by (2.1 .3). SI ,&) is called the input (output) reflectance, and it is the ratio 

of reflected to incident signals at the input (output) port, when the output(input) port is ter- 

minated in its retérence resistance. Similarly, S2, (&) is called a forward (reverse) tram 

mittance and it is the ratio of the power delivered to the load to the maximum power 

available fiom the source at the input (output) port, under the nfmnce terminating condi- 

tion. 

A signifiant and practical simplification in the characterization of lossless two-port 

networks was achieved by Belevitcb who showed that the scattering coefficients can be 



expressed using only three polynomials and a unimodular constant. He proved that for 

real. realizable and lossless two-port networks. matrices in (2.1.2) necessady take on the 

following forms: 

where the polynomialsJ g and h satisfy the following necessary and sufficient conditions: 

1 .  Polynomirlsf; g and h are real polynomials in some complex frequency varia- 

ble. ix., each of them satisfies4 P (s) is real for s real'. and the subscript asterisk 

denotes paraconjugation. i.e.. for a real polynomial f. (s) = f (-s) . which is also 

retèrrcd to as Hunvit: conjugation. 

2. g (s) is a Hicnvitr polynomial. i.e. al1 its zeros lie in the open left-hand plane 

(Res < O ). 

3. a is a unimodular constant (either - 1 or - 1)  for real two-ports. For reciprocal 

two-ports, a is specified by the ratio f/f.. whereas for nonreciprocal two-ports it 

can take on either value independently. 

4. The polynomials g, h and f are related by 

gg. = hh* +//. 

which is the analytic continuation of the Feldtkeller equation. 

Note the Feldtkellerequationcan be written as 1 = 1:12 + 1j2, ifs  = j ~ .  

Cleatly, the Belevitch's representation is not violateci if polynomialsj; g, h are multi- 

plied by a sarne real constant K. It is convenient to choose K in such a way that, e.g. eitha 



g or f is monic (leading coefficient qua1 to unity), in which case the polynomials/: g and 

h satisfying Beleviich's Representation become unique; the resuiting representations (2.1.4 

a, b) are referred to as canonic forms, 

Given the canonic forms (2.1.4 a, b), the Feldtkeller equation can clearly display the 

complementary nature of the scattering coefficients as follow : 

a) Both the transmittwce//g and the retlectance hig are bounded reai functions. 

because these functions sntis@ the real bounded necessary and sufficient conditions: 

.f h (i) - (s) and - ( s )  is real for s real; 
k? g 

( i i )  g is Huntic; 

(iii) following from the Fefdikeller equation, it is obvious that 

f b) Zeros of polynomial f are called transmission zeros. In addition, if - + O with 
g 

order n as s + =, there is said to be an nsh order transmission zero at m .  It follows from 

the Feldikeller equation and the fact that al1 polynomials are real that 

which is equivalent to N'a = d a + h W )  =*, 
g U N  g tiw 

for a = O or a = i t  

c). A function defined by 



will be referred to as the delay. Now, we present the important charactenstic of delay as 

follows, which was proved by Jmasz[22]: 

The delay evaluated at s = jo such that f (jo) = O.  is real, positive, and equal to 

the return group delay defined by .r (o) : = Ev { In 6 (s) - [ ( h  Il'}$ =," - 

El' Ms) 1 =,(,, . 

For a function which is the quotient of two real polynomials the even part of the hnc- 

tion. when evaluated at s = jo, is the sarne as the real part of the value of the function at 

s = jo . It follows that d ÿo) = t (a) . 

2.3 Scattering Synthesis of Cascade Nehvor b 

The main goal of filter synthesis is to split up an overall network characterization into 

a sequence of low-order sections. The problem of coscade network synthesis mounts CO 

factorking the transfer matrix Tinto a product Tu T b ,  with each factor conesponding to a 

realizable transfer matrix. The following discussion follows the derivations given by Jar- 

masz[22]. 

The transfer matrices of lossless two-port networks Na and Nb are given by 



A cascade connection of two lossless two-ports Nd and Nb is shown in Fig. 2.2. 

Fig. 2.2 Cascade comection of N, and NI, 

At a direct interconnecting port 5, = V l b .  Izii = - I l b  and with R,  = R b ,  it fol- 

laws that .4 = B and B I ,  = A , ,  , which implies that the transfer matrix for the corn- 

bined network is given by 

An important property of two-porc networks arranged in a cascade can be s m  by 

examining the signal flowgraph representation of the ascade comection as shown in 

Fig.2.3. 

At a transmission zero s = s, of N a ,  we have fa ( s a )  = O which, together with the 

assumption that A2 = O ,  means that the only path 60m the input terminal A ,  to B, is 



'a sa4 through the branch with the multiplier - . It follows that for A ,  = e , we have 
g a  

4 h h a  - s = - ( s u )  = - (s,) . For a reciprocal two-port N, we also have 6. ( s a )  = 0 .  
A ,  g g , 

and both trammittances that couple to 4 are zero, thus leaving Nb completely decoupied 

%om N d .  In this case, we can show that we also have d (s , )  = du (s , )  [22]. We state this 

property in the form of Fis. 2.3: 

Fig.2.3 Cascade signal Rowgraph representation 

The values of the reflectance p and delay d functions of a lossless two-port network 

evaluated at a transmission zero of the Grst member of a cascade are qua1 to the corre- 

sponding values of that member, Le. 

= :pa (3,) where fa (s , )  = O (2.3.5) 

and 



where f . ( s u )  = fu ( s a )  = O 
Q 

From(2.3.2) we have Tb = T;' T which yields 

For partial removal o f  a mtnsmission zem at 0, whereJ f" are monic. 

Therefore, the cascade decomposition problem essentially reduces to the operation of 

torcing the factor \J,. to appear in both numerators of expressions in (2.3.7a.b). More 

aven by (2.3.7a.b) are polynomials, gb is realizable (Hurwitz), and deg hbs deg gb . 

Fettweis has den~onstrated that a canonic decomposition solution always exists [25].  

Moreover, the solution is unique and can be performed minimally, i.e 

deg g = deg g, + deg gh . 

2.4 Cascade Synthesis of Lossless Wo-Ports with jo- axis 'lirnsrnission 

Zeros 

There are thm cases of transmission zeros on the ja -axis that must be considered: 

1 .  s = O. tn this case, 



2. s = fjo,, In this case, 

fu = s' + O$, fJ". = (s' + o;)' and aa = 1 ; 

3. s = m, In this case, 

2 
f, = d , ,  and f J .  = da . 

a 

In the above cases, case 3 is treateû as case 1 by using the mapping s + 1 /s which 

maps s = 00 to s = 0 .  

For case I and case 3. note that Eq.(2.3.7) becomes 

Therefore, for the denominator to divide the numerator, one must have 

h p, (O)  = - ( O )  = - (O)  = p 
8, g 

But fiom the Feldrkeller equation a (O )  = h: 
4 

h, - (O)  at the transmission zero s = 0 .  
g, 

In addition, one must have 

The Feldtkeller equation i s  used to obtain the sarne result h m  a consideration of the 

equation for g, . 



Similarly for case 2, 

and, consequentl y. 

= !! (îjo,) = p (i-jo,) . and 
g 

The Feldrkeller equation is again used to obtain the same result from a consideration 

of the equation for g b .  Note: also, as can easily be veaified, the values for s = jo, and 

s = -jo, are the same. 

Formulas for the calculations of delay using polynomials in factored form (product 

representation) are derived in Appendix 1. 

The extraction and recomputation steps for cascade synthesis of lossless two-ports with 

jo - axis transmission zeros is depicted in Fig. 2.4. 



Fig.Z.4 Flowpph  representation of the basic extraction step for cascade synthesis of loss- 
l a s  two-ports with j o - axis transmission zeros 

2.5 The minimal characterization of the elementary reciprocal sections 

In this section, al1 of the minimal characterizations of the I st- and 2nd- order elemen- 

tary reciprocal sections were ongindly derived by Jarmasr [22]. The minimal scattering 

characterizations are described in tables. the scattering polynomialsj; g and h use only a 

minimal (canonic) set of parameters. The minimal set for al1 cases includes the location of 

the transmission zero (o, ) that the section realizes, the value of the refîectance (p )at the 

transmission zero, and, for reciprocal sections, the value of the delay (d) at the transmis- 

sion zero. 



Table 1 : Section Type 1 

m . .  m n  * *  C 



Table 3: Section 'Qpe 3 

Table 4: Section Qpe 4 



Tabk 5: Section Qpe 5 

Table 6: Section Qpe 6 



Chapter 3 

THE SIMPLIFIED SCATTERING SYNTHESIS 

STRATEGY 

3.1 Introduction 

A ladder network is composed of canonic sections of degrees one and two; we will cal1 

them elementary sections. That the realizablity as a ladder depends on the transmission 

zero sequence will be illustrated with an example. The necessary and sufficient conditions 

for the realization sequence are not known. Gottlicher [23] developed a strategy for choos- 

ing a sequence which has proven to be successful in a wide range of filter designs. For this 

purpose he combineâ elementary sections into 24 circuits in order to check the realizabil- 

ity conditions for two successive transmission zeros. The transmission zero with the max- 

imum number of potential successors is then chosen for realization. If several transmission 

zems have the some number of successors. a realizability measure is introduced to decide 

which transmission zero should be realized first. The realizability measun detemines the 

margin by which the realizability condition at zero or infinity for the successor transmis- 

sion zero is satisfied. The successor transmission zero with the smdlest margin is chosen. 

nie realizability measure will be described more precisely in the following. The equations 

for detmining the potential transmission zero successors and the comesponding realiza- 

bility measures for the 24 circuits will be presented in the form of tables. The 24 circuits 



are subdivided into eight classes, A to H. 

In addition, four circuits not included by G~ttlicher, in his tables, because the realiza- 

bility of the first section is not affected by the second section are included in Tables 3 1 - 34. 

niese four circuits are included in this thesis because of the way in which the compu- 

ter program is structured. 

3.2 An example to üî~strate the necessity for a synthesis strategy 

The following exarnple illustrates that the realizabilty of a ladder network with posi- 

tive elements depends on the sequence of transmission zero extractions. 

Givcn 

It is readily verified that these polynomials satisQ the condition for a lossless, passive 

two-port. There are six potential transmission zero sequences: 

( O 9 j l , ~ 2 )  , (O$,jU , t i L O , j 2 )  , ( K j 2 , o )  , ( j Z O * j l )  , ( j 2 * j l ,  O) 

There is a transmission zero at s = O and p (O)  = 1 , d (O) = 2 ,  implying that a 

series capacitor (see Table 3) can be removed. Realizability requires that 

C 2 Co = = I . nie values of the reflectancc at the transmission z m s  s = j 1 and 
2 

s = j 2  are -j and +j, respectively. Thus to realize s = j l  , a capcitance C = 1 (see Eq. 



1 
(3.3.1 1 )) must be removed while for s = j2  , C = -- . Therefore the sequence (O, j 1 )  is 

2 

realizable while (O, j 2 )  is not. In fact, it can verified that (O, j 1, j 2 )  is realizable and 

yields the circuit shown. 

The remaining sequences begin either with j 1 or j2 and p (j 1 ) = -j , 

p ÿ2) = j t il . It follows that neither the circuit ofTable 5 nor that of Table 6 can be 

removed. Theretore the only sequence that can be realized as a ladder is (0, j 1. j 2 )  . 

Fig. 3.1 Example circuit 

It is known that the number of transmission zero sequences is m! where m is the 

number of transmission zeros. When m is large, checking al1 the sequences is impractical. 

We require a strategy for choosing a sequence as there are no necessary and sufficient con- 

ditions for choosing an appropriate sequence. Many researchns[ 1 O],[ 1 7],[22],[26] aied to 

develop simple solutions for ladder na1 ization. The famous Fujisa wu condition [26] has 

given a meihod, but it cm only be applied to mid-series or mid-shunt low-pass ladder filter 

designs. The strategy from Gôttlicher's thesis[23] appears to be best available for a range 

of filter designs, such as lowpass, highpass, bandpass and double bandpass fi lters. 



3.3 Derivation of the scattering synthesis strategy 

From Jamrsz's thesis[22], we know that if p ÿoi) = f 1 , for jo, equal to 00, O or 

jiu, , we can completely remove the transmission zero at O ,  0, or jo, . The section type 

will be one of the types fiom the tables in chapter 2. However if p ($O,) .L f 1 at a trans- 

mission zero jw, (a, + 0, - ) a paniai removai of a transmission zero at O or = is neces- 

sary. 

In Gottlicher's strategy, eight circuit classes make up the basic structure for ladder 

synthesis. Among the eight classes, four of them include a partial removal of a transmis- 

sion zero at O or - and a complete removal of a transmission zero at joo . These are da- 

ignated classes A, C, E. G. In order to develop the scattering synthesis strategy. the 

necessary equations are derived in this section. 

As is known. the reflectance has a close relation with the driving-point impedance. 

Therefore the denvation starts from the basic driving-point impcdance as well as the dnv- 

ing-point admittance. 

The driving-point impecîance, admittance and their derivatives in tenn of scattering 

piirameters can be written as follows: 

(3.3.1) 

At a transmission zero, s = joo 



where a = Lp (ioo) 

and 

The single elernents, an inductor L or a capacitor C. required for the paitial removal of 

a transmission zero. s = joi, can be detemineâ as follows: 

where ai = Lp (io,) 

Substituting equation (3.3.7) into equation(3.3.4), we have 



L = 
1 

a, tan (ai /2)  

t hen 

and substituting equation (3.3.10) into equation (3.3.5), we have 

Next. scattenng characteristics are derived for four circuits which are the first sec- 

tions of Gottlicher's circuits which have been subdivided into 8 classes: A.B,C, D, E, F, G, 

H. 

Class A: a partial removal of a transmission zen> at O (p ( O )  = I ) and complete removal 

of e transmission zero at jo, 

Fig. 3.2 The topology of the first section of a circuit class A 

1% 
Since pa ÿo,) = p ÿo,) = e , according to equations (3.3.4) and (3.3.7), a par- 



tial removal of a transmission zero at s = O with an inductance L = 
1 

o, tan (ai/2) ' 

where a, = Lp uo,) , yields Y Uo,) = Y, Vu,) = O and the corresponding reflect- 

ance p ( j~ , )  = +l . 

For admittance K we have 

Substituting equaiions (3.3.3) and (3.3.8) into (3.3.12), gives a set of formulas for the 

complete removal of a section type 5 ,  that is capacitor Cl and inductor L I .  

d W,) - tan (ai/2) 
C, = 

I 
1 2 0 ,  , L i = - -  7 

4 ~ 0 s -  (ai/2) O; C,  

and ai = Lp Uo i )  

d (O)  The realizability condition for class A is L 2 Lo = - , where L, corresponds to a 
2 

complete removal of a transmission zero at O with a shunt inductor. 



Ctiss C: a partial removal of a transmission zero ai O (p (O) = - 1  ) and complete 

removal of a transmission zero at jo, 

I z 1 Z I  

Fig. 3.3 The topology of the first section of class C 

la, 
Since pu ÿo,) = p Uw,) = e , according to equations (3.3.9) and (3.3.1 l), the 

-tan (ai/2) 
partial rernoval of a transmission zero at s = O with a capacitance C = 9 

0; 

where a, = Lp ÿo,) , yields Z Va,) = 2, ÿo,) = O . and the corresponding 

For the irnpedance 2. we have 



1 1 where Z ,  = sLi + - and ai2 = - s q  L A  

1 - L i + -  1 = 2Li  
ds ds 2 

s = jo, Oi C 

Substituting equations (3.3.2) and (3.3.1 1 )  into equation (3.3.13 a). we get a complete 

removal of section 6, that i s  inductor L, and capacitor $ . 

The realizability condition is C 2 Co = . where Co corresponds to a complete 
L 

removal of a transmission zero at O with a series capacitor. 

Since the derivation for Class E is similar to class A, and that for Class G is similar to 

Class C, we omit them and only present the results. 

Clrcs E: partial removal of a transmission zero at = (p (-) = - 1 ) and complete 

removal of transmission zero at jo, 



Fig. 3.4 The topology of the first section of a circuit class E 

-tan (a,/2) 
The capocitance C = where a, = Lp (io,) 

Oi 

The complete removal of a section type 5, capacitor 

d lia, tan (a1/2) 
C, = 7 + , inductance Li = - 1 

4cos- (a , /2)  20, 0, $ 

2 The realizability condition is O < C 5 C, = - , where C, corresponds to a corn- 
d (-) 

plete removal of a transmission zero at = with a shunt capacitor. 

Clrsr C: partial removal of a transmission zero ( p ( O )  = 1 ) at m and complete removal 

of transmission zero at jw, 



Fig. 3.5 The topology of the first section of a circuit class G 

The series inductance L = i , where ai = Lp (jai) . 
o,tan (ai /2)  

The complae removal of a section type 6.  inductance 

- L, - - 
1 

4sin' (a, /2)  Zo, tan (a,/2) 

1 capacitance C, = - i s  

oTL,  

2 The realizability condition is O < L S L, = - , L, corresponds to a complete 
'f (4 

removal of a transmission zen, at - with a series inductor. 

Moreovei-, Gottlicher[23] has shown that L, > L, and Co s C, implying that for a 

given oj not both Classes A and G are realizable and not both Classes C and E are realiz- 

able.Furthennore, Gottlicher introduced a realizability measure, RM, which measuns the 

margin of realizability; there are four cases: 



3.4 Realizablity conditions of Gottlicher circuits in term of scattering 
parameters 

In this section the realizability condition for Go~licher's circuits are present in the 

form of tables, and the circuit sections are design4 by the type numbers fiom Chapter II. 

For example, 4 3 - 4 3  circuit denotes the connection of elementary section types 4,5,4,5. 

The realizability conditions are for a squence of two successive transmission zeros, a,, 

of. Thus for a given oi the number of potential successor a, can be detennined with 

these conditions. Then. the CO, with the maximum number of successors is chosen. If sev- 

eral transmission zeros have the same number of potential successon, the one with the 

smallest realizability measure, RM, is chosen. After the chosen transmission zero is 

removed. the process is repeated for the remaining transmission zeros until al1 the trans- 

mission zeros have been realized. 

The subscript R is used to indicate the remaining circuit after the first transmission 

zzro has been removeci, 

A sarnple calculation of the realizability conditions using circuit 4-5 1 6 will now be 

given. The results for the remaining circuits are presented in Table 7-34. 

Circuit 4-5-14 has a transmission zero at O and p (O) = - 1 . Thus a shunt induct- 

ance can be removed. L, = (se [22]). 2 

To realize the finite transmission zero ai, 

where ai = L p  Uoj)  (see (3.3.8)) 

must be extracted first. 



For realizability L I  2 LU > O so that the remaining inductance is nonnegative. The 

L I  measure of realizability, RM, i s  defined as RM = - 2 1 . 
L0 

For the second section a partial removal of the transmission zero at is used. 

At s = the circuit behaves as shown: 

Fig. 3.6 

Therefore L R _  = 
1 

l / L /  l /L l  * 

Define L I ,  = 
1 , where a, = Lp ÿo,) (see Eqs. (3.3.4) and (3.3 $8)) 

q t a n  m,/a 

At the transmission zero s = JU, , the input admittance (see Table 9) 



2, is the impedance of the parallel comection of Li and C, . 

Realizability requires that O <_ L, - <_ L,_ so that L, - is nonnegative and so that the 

remaining inductance atter the removal of L, - is also nonnegative.The realizability meas- 

LR- ure, RM, is defined sis RM = - 2 1 . 
? 

The calculation of d ,  (0) and d,  ( O )  in the case of double zeros ai O and - is given 

in Appendix I I .  



Table 7: Circuit 4-3-43 

Class A F 
Circuit- 1 

p ( O )  = - 1, Tr.Zeros = (o,, a,) 



Class A 

Table 8: Circuit 4-5-33 

3 (0) = - 1, p (-) = - 1, Tr.Zeros = (CO,, O,) 

L 
Realizablity: L 2 Lo > O. RM = - 2 L 

Lo 

CR., Realizability: O < C S CR., , RM = - 2 1 C 



Table 9: Circuit 4-5-1-6 

Circui t 3  r 

- I 
Realizability: L, 2 L,, > O.  RM = - 2 1 

Lo 

LR- Realizability: O < L2 5 LRm , RM = - 2 1 L, 



Table 10: Circuit 4-33  

Class B p (O) = - 1, Tr.Zeros = (O, o,) 

L Realizability: O < Lo 5 L RM = - 2 1 
4% 

-tan(a,/2) 1 
C = +- a, = Lp Va,) 

O, O,ZL 

C Realizability: O < CRO 5 C, RM = - 2 I 
' R O  



Table 11: Circuit 4-2-5 

p (0) = 4, p (-) = -1 ,  Tr.Zeros = (O, o,) 

L Realizability: O c L, S L, RM = - 2 1 
L O  

C m  Realizability: O < C 5 C, , RM = - 2 1 
C 



Table 12: Circuit 4-1-6 

Realizability: O c Lo 5 L , RM = 1 2 I 
Lo 

LR- Realizability: O < L ,  I L,, , RM = - 2 1 
L2 



Table 13: Clrcult 3-6-3-6 

Class C 

Circuit-7 

1 d u o , )  
L, = - 1 -- 1 Cl = 7 

2o,C, sin' (ai/2) O,- L ,  

Realizability: O < Co 5 C, , RM = 2 1 
c,, 

C2 Realizability: O < CRO S C, , RM = - 2 1 
* 

' R O  



Table 14: Circuit 3-6-2-5 

Class C 

- - - pp pp 

p(0 )  = l , p ( - )  = - 1 ,  Tr.Zeros = ( o p , )  

Cl Realizability: O < Co < Cl , RM = - 2 I 
Co 

L~.. Realizability: O < C, CR_ RM = - 2 1 c, 



Table IS: Circuit 3-6-1-6 

Class C 

C 
Realizability: O < Co S C. RM = - 2 1 

Co 

LR- Realizability: O < L S LRI, RM = - 2 1 L 



Class D 

Tabk 16: Chcuit 3-4-5 

p (0) = 1. Tr.Zeros = (O, a,) 

C Realizability: C 2 Co > O ,  R M = - 2 I 
cn 

L 
Realizability: O < LRO 5 L , RM = - 2 I 

LRO 



Table 17: Circuit 3-2-5 

p (0) = 1. p (m) = -1,  Tr.Zeros = (O, 61,) 

--- 
Cl, Cl 

CR- Realizability: O < CL S CR_, RM = - 2 1 
C2 



Table 18: Circuit 3-1-6 

1 Class D 

Circuit 12 r 
Sect ion-i 

Section-T 

p ( O )  = 1, p ( 0 0 )  = 1 ,  Tr.Zeros = (O, a,) 

L Realizability: O < Co 5 C , RM = - 2 1 
c,, 

LR, Realizability: O < L 5 LRm, RM = - 2 1 
t 



Table 19: Circuit 2-9-1-5 

Class E p ( O )  = - 1. p ( 0 0 )  = - 1, T d e r o s  = (CO,, O,) 

Lam 
Rcalirability: O I C S C,, RM = - 2 1 

C 

L Realizability: O < LRO S L ,  RM = - 2 1 
RO 



Table 20: Circuit 2 5 1-45 

Realizability: O < C, I Cm, RM = - 2 1 
Cl 

Realizability: O < CRO 5 C2 , RA4 = If. 2 I 
' R O  



Table 21: Circuit 2-5-2-5 

Circuit 15 r 

'-00 Realizability: O < C, S C,, RM = - 1 1 
Cl 

L ~ -  Realizability: O < Cl I CR, , RM = 7 2 I 



Table 22: CLrcuit 2-4-5 

Class F 

cm, Realizability: O < C I Cm, RM = - 2 1 
C 

L Realizability: L 2 L,, RM = - 2 1 
Lo 



Table 23: Circuit 2-3-6 

Realizability: O < CI 5 Cm, RM = - 2 I 
C,  



Table 24: Circuit 2-1-6 

Circuit- 18 T 

LR- Realizability: O < L S L,, , RM = - 2 1 
L 



Table 25: Circuit 1-6-4-5 

p ( w )  = 1, p ( O )  = -1,  Tr.Zeros = (ai, wT) 

L m  Reolizability: O < L S Lm. RM = - 2 1 
L I  

o, tan (at/2) 

Realizability: O c Lm S L2, RM = L2 G~~ 



Table 26: Circuit 1-6-3-6 

L, 
Realizability: O < L 5 L, , RM = - 2 I L 

C Realizability: O < CRO 5 C RM = - 2 1 
CR, 



Circuit 2 1 

Table 27: Circuit 161-6  

p (-) = 1. Tr.Zeros = (a,, CO,) 

Lw 
Realizability: O < L I  5 L,. RM = - 2 1 

L, 

LR- Realizability: O c L2 S L,, . RM = - 2 1 L, 



Table 28: Circuit 1-4-5 

Class H 

Circui t 2 2  

p (m)  = 1. p (0) = - 1, T d e r o s  = (m. a,) 

L ,  
Realizability: O < L I  I Lm , RM = - 2 1 

L I  

L2 Realizability: O < LRO i L?. RM = - 2 I 
RO 



Table 29: Chcuit 1-3-6 

C = 
I 

7 , a, = Lp (jo,) 
CO,-L - a,/ ( tan (a,/2) ) 

C 
Realizability: O < CRO < C, RM = - 2 1 

' R O  



ïable 30: Circuit 1 2 5 

Circui t-24 r 
L, 

Realizability: O < L 5 L,. RM = - 2 1 L 

C = 
1 

7 * a, = Lp Va,) 
o,'L - O,/ (tan (a,/2) ) 

%- Realizability: O < C S CR,, RM = - 1 1 C 



TabIe 3 1 : Circuit 4-5-3-6 

p (O )  = - 1, Tr.Zec.0~ = (CO,, O,) 

L Realizability: O < L, 5 L , RM = - 2 1 
L" 

C Realizability: O < CR* S C, R M  = - 2 1 
' R O  



Table 32: Circuit 3-6-4-5 

C Realizability: O < Co 5 C , RM = - 2 I 
Co 

L Realizability: O < LR, <; L RM = - 2 1 
RO 



Table 33: Chcuit 2-5-1-6 

Class E 

- - . 

p ( w )  = -1 ,  Tr.Zeros = (a,, u,) 

cm0 
Realizability: O < C S C, , RM = - 2 I 

c,, 

LR- Realizability: O < L S LR, RM = - 2 1 
L 



Tabk 34: Circuit 1 6 2-5 

1 duo , )  
L, = - 1 

- L / 2  C 1 = 7  
sin' ( a1/2) o ~ - L ~  

Lao 
Realizobility: O < L S L, . RM = - 2 1 L 

CR- Realizability: O < C I C,, RA4 = - 2 I C 



Chapter 4 

SYNTHESIS PROCEDURE AND EXAMPLES 

4.1 Introduction 

In this chapter, an operational flowgraph of the ladder scattenng synthesis program is 

presented to illustrate the operational procedure of the simplified synthesis smtegy. The 

details of the synthesis program are in Appendix(1V):Scarttenng Synthesis Program List- 

ing. 

ln the rernaining section, four examples, which are a 7Lorder lowpass a 14th-order 

very nmow bandpass, a 10th-order highpass and a 13korder double namw bandpass 

filter are presented. to dernonstrate the effectiveness of the scattering synthesis algorithm 

and the simplified synthesis strategy. Finally, there a n  additional examples in Appen- 

dix(1l [):Additional Examples. 

4.2 Flowgraph of synthesis operation 

Figure 5 below illustrates the flow of operations in the scattering synthesis program. 

Note îhat Tr.zem in figure 5 is a seqwnce of sorted transmission zeros, which lists trans- 

mission zeros as a sequence of O first, followed by the positive imaginary parts in order of 

inmasing magnitude and then finally infinity. The successor checking accounts for the 24 



Gottlicher circuits plus 4 additional circuits in Tables 3 1-34. If two sections of any circuit 

satisfy Realizability-r >= 1 and realitabiltyj >= 1, then a successor for the circuit is 

counted. The additional successors checking accounts for four additional circuits corre- 

sponding to transmission zeros at O and m. Since Giittlicher ignored them for successor 

checking, an additional checking algorithm to make the strategy applicable to a wider 

range of circuits is developed . 

Gottlicher didn't present his synthesis program in any papers nor did he give a pro- 

gram listing in his thesis. The new scattering program was developed independently. For 

the extraction process; the implementation of Eqs. (2.3.7a,b,c,d) used a zero finding pro- 

gram. which was developed by Dr. (3.0. Martens, as the part of the procedure of calculat- 

ing polynomials (,,, g6, ho at each step. 



INPUT sigma,f, g, h 
i 

SORT Tr. zems 

CHECK 
al1 succcssor classes from Tr.zcro 1 to n 

CHECK 
additional succcssors 

SELECT 
1 ihe 2eros which have maximum numbcr of wcccsron 1 

SELECT 
a zero from abovc zcros which has minimum Realizablitys 

EXTMCT 
the class matching abovc zero 

REMOVE 
the extractcd Tr. zero n + n - 1 

PUT cxtractd paramctm and section type into List 
then recalculate sigma, gb, hb, /b 

Fig. 5 



4.3 Example of a 7th - order lowpass filter 

The first design example is taken h m  'Handbook of  filter synthesis'[27]. The input 

scattering polynomials are the results of cascade analysis. The subqrogram for cascade 

analysis was written by (3.0. Martens; it multiplies the transfer matrices of the elementary 

sections together. This example shows that the simplified scattenng synthesized circuit is 

almost exactly the same as the Initial circuit. 

Zeros of f I Zeroi of h 

Constant Multiplier = 1 .O ( Constant Multiplier = -2.2655 178 l5209827etO4 

1 Constant Multiple = 2.2655 178 15209827e+04 1 



Table 35: Initial Circuit Parameten of the Fint Example 

Extracted 
Section 
TYPC 

2 

Transmission 
Zero 

- 3 

Initial Parrmeters 

I 

C 1 =9.5507OOOOûûûûûûe-O 1 



Table 36: Syntbesis Results of the Flnt Exampk 

Extracteci 
Section 
5 p c  

The errors between the computer synthesized element values and initial circuit values 

- -  - 

Extrrcted 
transmission 

Zero 

3 - 

are in the range l e-06 to 1 e-08. These di fferences are quit small. 

Synthesized Parameters 

C 1 =9.55066350878 1705e-01 

The Figures below show the attenuation responses and the circuit diagram. The trans- 

2 former terminated in a IR resistor can be replaced by a resistor with R = n . 

Fig 4.3.1 Circuit of the 7th - order lowpass filter 



Attenuation 

Fig 4.3.2 

Fig 4.3.3 



4.4 Erample of a lothsrder double baadpass Alter 

The second exarnple was taken from Gottlicher's thesis[23] p.76, where it was usai as 

an example for Gottlicher's synthesis technique. Here it is used to demonstrate that the 

synthesis results of the new syntheses program are very close to Gottlicher's results. 

Note: for this exmple, the network polynomial are defineci in the following three 

tables. Figure 4.42  and Figure 4.4.3 present the anenuation and ripple of the synthesized 

network. 

Zeros o f f  

+j3.79765 1952 1633 
-j3.79765 1952 1633 
+j4.1823250304382 
-j4.1823250304382 
+j8. IO72461 790375 
-j8.107246 1790375 
+j9.5956464786 104 
-j9.5956464786104 

Zeros of h 

Constant Multiplier = 1 .O t Constant Multiplier = 
-0.498570 1 65066665Oe-O 1 

1 Constant Multiplia = 4.98570 1650666650e-0 1 



Tabk 37: Synthnls Rcrult of Second Eximple 

Extracted 
Section 

Extricted 
TransmirsionZ Syathalzed Pirimeters 

TYPC 

2 

ero 

3 Cl = 1.740136161453164e-O1 



Table 38: Cottiicher 's results 

Extrrcted 
Section 

Extracted 
Transmission 

Initiai Parameters 

L4 = 1.947 18772 13520460e- 1, 
C6 = 2.9360038 1459279 1 Se- 1, 

TYP 

2 

The errors between the scattering spthesizeâ element values and Gottlicher' tech- 

Zero 

3 1 Cl = 1.7401361614532064e-1, 

nique are in the range 1 e-O 1 5 to 1 e-0 1 6. Note that a transformer teminateci in a 1 S2 resis- 

2 tor c m  be replaced by a resistot with R = n 

Fig. 4.4.1 Circuit of 1 0th-order double bandpass filter 



Attenuation 

Ripple 

Fig 4.43 



4.5 Eximple o f  a 9thsrder bigbpass filter 

The third example is taken from Gottlicha's thesis [23] p.7 1 . The exampie shows that 

the simplified scattering synthesis method can be used not only to synthesize lowpass and 

bandpass filters. but also highpass filters. i.e. it can be used for any type of ladder filters. 

The exmple also shows that the synthesis result is very close to the initial circuit. The 

error behveen the two of thern is in the range o f  I e-O11 to 1 e-012. 

Zeros o f f  

O 
O - 4.4452593 18396255e-0 1 i 
O + 4.4452593 1 8396255e-0 1 i 
0 - 7.67506743 147 628 1 e-O 1 i 
O + 7.67506743 147628 1 e-O 1 i 
0 - 9.3279847020284 16e-0 1 i 
O + 9.3279847020284 16e-0 1 i 
0 - 9.934899672309 18 1 e-O 1 i 
O + 9.934899672309 18 1 e-0 l i 

Zeros o f  b I 

1 Constant Multiplia = 4.972 1 1089687739ûe-02 1 



1 Constant Multiplier = 1.001 23533 13 168 1 l tM0 

Table 39: The Synthesh Result of Tbird Example 

Extnrteâ 1 Ertrartd 1 
Section Transmission Syathesized Parameters 

SP 
3 

Zero 

3 C 1 = 2.238970563476569e+ûû 



Table 40: Initial Circuit of Third Emmpk 

Note: a transfomer tenninated 

Section 
TYP 

L 

3 

in a 1 S2 resistor can be replaccd by a resistor with 

'> 

P = n ' .  

Ttansmissioii 
Zero 

3 

Fig. 4.5.1 Circuit of %-order highpass filter 

Circuit Parameters 

C = 2.2397056347662290e-toO 



Attenuation 
120- 1 r 1 



4.6 Exrmpk of a 13th-order Double brndprss Alter 

This exemple was chosen to show the numerical robustness of the synthesis algorithm. 

since the exmple contains two nanow passbands very close together which makes this 

design very sensitive to roundoff error accumulation during synthesis. 

Zeros of f 

0.0000000000000000000*0 
+8.54 1732662824284 1 I lOe- l i 
-8.54 1732662824284 1 1 l Oe- l i 
+7.55 14740727 1582661 lOe-li 
-7.55 14740727 1 58266 1 1 Oe- l i 
+ 1 .OS5OO 174 1 O860 1 Oî39WOi 
- 1 .O55OO 1 74 1 O860 1 0239Oc+Oi 
+6.539066433 18293758 IOe-1 i 
-6S39066433 18293758 lûe-1 i 
+ 1.1000007 1976673 145 1 WOi 
-l.lOoû7l976673 MlOetOi 

I Constant Mul ti pl iet = 9.999999999999999999Oe- 1 

Constant Multiplia = - 1.2452084287204495370ct2 



Constant Multiplier = 1.2452084287204495370e+2 

Extracted 
Section 
TYP- 

Tabk 41 : Syntbesis Results of  Third Exampk 

Extracted 
Transmission 

Zero 

Syntheslzed Parameten 



Table 41 : Synthesis Results of  Tbird Example 

Extracted 
Section 
5 ~ 3  

Extracted 
Transmission 

Zero 

Syntbesized Parameters 

Note: the trmsfonner terminated in a 1 Q resistor may be repiaced by a resistor with 
3 

Fig. 4.6.1 13th-order double bandpass lilter 



Fig. 4.6.2 



Chapter 5 

CONCLUSIONS 

The synthesizing of lossless ladderflers has been studied for more than 50 years. The 

most compact and efficient method of cascade synthesis is based on the transfer scattering 

matrix. The rnost difficult part of any method is the selection of the transmission zero 

scquence. if the number of zero sequences is large. Gottlicher[ZI] proposed a strategy to 

solve the problem a tèw years ago. However, he only applied his strategy to a traditional 

synthesis procedure, and did not publish his program for implementing it. 

In this thesis, a simplified scattenng synthesis rlgonthm was developed for the realiz- 

ability calculations of i-i ladder circuit (including the determination of circuit elements and 

sections). A program which combined a simplified scattering synthesis algorithm and G6t- 

tlicher's synthesis strategy to perform synthesis of lossless two-port ladder networks was 

written. It has been shown that the new scattering algorithm is able to determine the net- 

work element values with a high degree of accuracy. The new program has also been 

found to be numericall y robust and relative1 y immune to roundoff m r  accumulation. 

The stnitegy adapted fiom Gottlicher's thesis has proven to be effective for a range of 

filter designs From lowpass. very narrow band bandpass to double bandpass filters and 

highpass filters. 
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DERIVATIVES OF POLYNOMIALS IN PRODUCT 

REPRESENTATION 

Let y be polynomial in proâuct represention: 

where K is the constant factor and r ,  are the zeros. 

n 

Iny = Ink + ln ( p  - 2 , )  

r = l  



A t p  = O .  with - , + O .  

j t i  

The pantities - - (O)  ' - (O)  ' - (O)  will be ddined in ternis of the mapping 
(O)  ' j (O)  ' j (O)  



Similarly 

and 



DERIVATION OF THE DELAY OF THE SECOND SECTION 

The delay of the second section of two at a double transmission zero. s = 0 ,  of a circuit 

such as circuit 3 4 5  is obtained as follows: 

The polynomials g, and h, are determined by Eqs. (2.2.7 a. b). The polynomials 

f,. g,, h, of the first section are of the form [22] 

f U = s . a , = - l , g , = s + a . h , = ~ a , e = i l , a =  1 B 

Let 

&, = af~o,g-a, ha, h = (s - a )  g + EU h 

Therefore. since gb must be a polynomial, 

Similarly, let hb = g,h-hag = (s + a )  h-eag, 



and since h ,  must be a polynomial. 

1 h, ( O )  = ;A, ( 0 )  . 

for the second section at s = 0 ,  

Then substituting (3) and (7)  into (9) 

obtain 

Using ( 1 )  and ( 5 )  in ( 10) get 

gb (0) h,  ( 0 )  - gb (O) + € h b  (O) 
d,(O) = --- - 

g,(W h,(O) g, ( 0 )  

From (3) and ( 1) 

and using ( 1 i ) 

also fiom (4) and ( 1 ) 



Similarly fiom (8) and ( 5 )  

Substituting the above into (12) the expression for dR ( O )  yields 

- 1 m+h- 2 (go W ) ) )  
- 4 0 )  -4 g(O) h ( O )  3 m )  g ( 0 )  M O )  

The corresponding result for the delay of a second section with a double transmission 

zero at s = = is obtained by using the mapping s + 1 /s (sec Appendix 1), Then 



ADDITIONAL EXAMPLES 

3.1 Additional example of a 10 degree narrow bandprss filter129, p.3871 

--- 

Zeros off 

O 
O 
O 

O - 7.650520500976998e+O 1 i 
O + 7.6SOS2OKMIW6998e+O 1 i 
O - 8.2783953 1 O845262e+Ol i 
O + 8.2783953 lO84526Se+Ol i 
O - 1.4664433984290 1 WO2i 
O + 1.4664433984290 18e+02i 

1 Constant Multiplier = 1 .-O0 1 

I Constant Multiplier = 3.622380046693072e-01 



I Constant Multiplier = -3.62238ûû46693063e-O 1 1 

Synthesizeâ Parimeters 
Exttacted 

Section 
5 P -  

Extracteâ 
Transmission 

Zero 



Attenuation 



3.2 Additional example of  a 14 degree very narrow bandpiss lilter from Cottlicber 

h 

O 1 L2 L 1 L3 4 

Zeros of f 

+j*8.992424 18 1 e- I ; 
-j *8.992424 1 8 1 e- I ; 
+j*9.0048258 Me- 1 ; 
-j *9.OO48X8 19e- I ; 
+j*8.9962 10097~- 1 ; 
-j *8.9%2 10097e- 1 ; 
+j*g.OO 1039903e- 1 ; 
-j *9.OO 1039903e- 1 ; 
+j*8.99675 l863e- 1 : 
-j18.99675 1863e-1; 
+j*9.00498 137e- I ; 
-j *9.OOO498 1 37e- 1 ; 

Constant Multiplia = 1 .O 

I ( ; ( 

zeros of h 

+8.9986249 1 942- 1 ; 
-8.9986249 19e- 1 ; 

+j * 8.997450966e- 1 ; 
-j *8.997450%6e- I ; 
+jt8.9977 14358e-I ; 
-jt8.9977 14358e-1; 
+j*8.998270474e-1 ; 
-jt8.998270474e- 1 ; 
+j 8.998979526e- I ; 
-j *8.998979526e- 1 ; 
+j * 8.99953564îe- 1 ; 
-je8.999535642e- 1 ; 
+j *8.999799OMe- 1 ; 
-j 8.999799034e- 1 

Constant Multiplier = - 
3 .O3562236584 19e3 

..' ;( 

LI  j C l  
c2 7: 

c5 
'3 Cl 1 

O L - 

Fig.A.3.1.3 Circuit of a 10 degree narrow bandpass filter 



Constant Multiplier = 3.03562236584 19e+3 

Table 42: Cottlicher's Eximpk Rnult 

Extracted 
Section 
npo 

3 

Extrrctd 
Transmission 

Zero 

2 

Syntbesized Pirimeten 

, 1 

Cl=1.2431093862131 19et00 



Table 42: Gottlicber's Example Result 

Extracted 
Section 
Types 

Fig. A.3.2.1 Circuit of a 14 degree very narrow bandpass filter 

Extracted 
Transmission 

Zero 

3 

Syntbesized Parameters 

L4= 3.892655802479963ei04 
C8=3.17420387255 1 133e-05 



Attenuation 

Fig. A.3.2.2 

W 

Fig. A.3.2.3 



APPENDIX-IV 

SCATTERING SYNTHEISIS PROGRAM LISTING 

Main implementation program: 
format long e 
[gO,f,g,h] = CancelCommonZeros(f,g,h); 
[NoO,NoZeros.Noinf,Tr_zeros] = sortzeros(f,g,h); 
n = length(Tr-zeros); 
circuit-list = []; 
Parameters-list = []; 
while n > O 
disp('No0 = '), disp(N00); 
disp('Noinf = '), disp(Noinf); 
disp('Tr-zeros= ' ), disp(Tr-zeros); 
n = length(Tr2eros); 
successor-list = [] ; 
Er-m-i = []; 
NoOfSuccessors~i = []; 
Rr-mj = [] ; 
zero-i = []; 
for i = 1 :n 
wi = Tr-zeros(i) 
dispt 'i-loop'); 
disp('i='), disp(i); 
wi = Tr-zeros(i) 
successor-1 ist = [il; 
R L m j  = []; 
[parl, par2. Li, Ci,class, C-RI = classrithm(wi, NoO, Noinf, g, h) 
successor-li st l = AddationSuccCheck-class(C-R,class, NoO, Noinf); 
successor~list = [successor-list, successorJist 1 1; 
Rr-mJ = additionalR~iCheck(successor~1ist) 
if class -= '1' 
for j= 1 :n 
wr = Tr-zeros(i) 
ifwr-=wi&ww-=O&wr-=inf 
[realizability-i,rralizability_r] = circuitrithm(par I ,par2,Li,Ci,class,wi,wr,NoO,Noinf,g,h) 
[successor~list2,RrRrm j I ] = SuccessorCheck(rcalizability_i,rdizabili~-rd) 
successor-list = [successor_list,successor_listî]; 
Rr-mJ = [ Rr-mJ , Rr-m j 1 ] 
end 
end % i l m p  finished 



disp('successor~1ist = '); disp(successorJist) 
x = ien~(successor~list)-I ; 
ifx>O 
NoOtSuccessors~i = [NoOtSuccessors-i, x] 
[miniRrj ,y]  = min( Rr-mJ); 
Rr-m-i = [Rr-m-i ; mini-Rrj] 
zero-i = [ zero-i;Tr-zeros(i)] 
else 
Kr-mJ = additionalR~iCheck(successor~list) 
Rr-m-i = [ R h  ; Rr-m j ] 
zero-i = [ zeroj; Tr-zeems(i j] 
end 
el se 
disp(' no macth circuit') 
end 
end 
% i-loop finished 
[ mini-RrJ, order]= Selectmaxinum( NoOfSuccessors_i.Rrmi): 
disp('FinaC zeroj='), disp(zeroj(order)); 
wi = zero_i(order); 
[parl, par2, Li, Ci, class]= classrithm(wi, NoO, Noinf. g, h) 
sigma-b = sigma; 
fb=c 
gb = g; 
hb = h; 
Li = real(Li); 
Ci = real(Ci); 
[SecTypeNos, Parameters. sigma-b. tb, gb, hb]=class-rernove(par1. par2, Li, Ci, class. 
wi, sigma-b, tb, gb, hb); 
circuit-hst = [circuit-list , SecTypeNos] 
Parameters-list = [Parameters-list; Parameters] 
sigma = sigmgb; 
f = fb; 
g = gb; 
h = hb; 
nom-diff=Feldtkella-prdRep(f,g,h); 
disp('Feldtkel1er check n o ~ d i f F ' ) , d i s p ( n o ~ d i f f )  
[NoO, NoZeros. Noinf, Trjeros] = sortzems(f, g, h) 
n = length(Tr-zeros) 
ifn<= 2 
break 
end 
end 
ifn = 2 & (No0 = 1 1 Noinf= 1 ) 
disp( 'This is stage n = 2'); 



wi = selectzero(NoO,Noinf,Tr-zeros, n); 
[parl , par2, Li, Ci, class] = classrithm(wi, NoO, Noinf, g, h) 
sigma-b = sigma; 
fb = f; 
gb = g; 
hb = h; 
[SecTypeNos, Parameters, sigma-b, fb. gb, hb] = class-remove(par1, par2. Li, Ci, class, 
wi, sigma-b, tb, gb, hb); 
end 
circuit-list = [circuit-list, SecTypeNos]; 
Parameters-list = [ParametersJisi; Parameters]; 
sigma-b = sigma; 
f = tb; 
g = gb: 
h = hb; 
nomdi  ff = FeldtkellergrodRep( f.g,h); 
disp(' Feldtkeller check nomi_difF'),disp(no~dif'f) 
[NoO, NoZeros, Noinf, Tr-zcros] = sortzeros(f. g, h); 
ri = length(Tr-zeros); 
end 
ifn == 1 
w i = Tr-zeros( 1 ); 
[parl, par?. Li, Ci. circuit] = Ladderithm(wi, NoO, Noinf, g, h); 
sigma-b = sigma; 
fb = f; 
gb = g; 
hb = h; 
[SecT)qxNos, Parameters, sigma-b, tb, gb, hb] = Ladder-Remove(par1, par?, Li, Ci. cir- 
cuit, wi, sigma-b, tb, gb, hb) 
circuit-list = [circuit-liis, SecTypeNos]; 
Parameters-list = [PararnetmJist; Parameters]; 
sigma-b = sigma; 
f =  fb; 
g = gb; 
h = hb; 
nomi_difT = FeldtkellergrodRep(f, g, h); 
disp(' Feldtkeller check norm-difP),disp(nomdiff); 
[NoO, NoZeros, Noinf, Tr-zeros] = sortzeros(f, g, h ); 
n = length(Tr- zeros); 
end 
ifn == O 
n = transformer(g, h) 
circuitJist = [circuitlist , O]; 
Pa~ameters~llist = [ParametersJist; n]; 
end 



disp('fina1 circuit Type ='), disp(circuitlist) 
disp('fina1 Parameters = '), disp(Pararneters_list) 
Save SecParFile l circuit-list Parameters-list 

Addational Succseor Checkhg 
function successor = AddationSuccCheck(C-R, circuit. NoO, Noinf') 
if (circuit = 19 1 circuit == 20 1 circuit = 2 1 ) 
if (C-R = 1 & ((Noinf > 2) 1 ( (Noinf = 2) & ( NoO>O ) ) )) 
successor = inf: 
elseif (C-R == O & ((Noinf >= 1 ) 1 ( (Noinf == I ) & ( NoO>O ) ) )) 
successor = int'; 
elseif (C-R == l & ((No0 --- 1 )  1 ( (Noinf > 1 )  & ( No0 > l ) ))) 
successor = 0; 
elseif (C-R == O & (No0 >= 1))  
successor = 0; 
else 
successor = 999; 
end 
elseif (circuit == 1 1 circuit == 2 1 circuit == 3) 
if (C-R = 1 & ((No0 > 2) 1 ( (No0 == 2) & ( Noinf > 0 ) ))) 
successor = O; 
elseif (C-R == O & ((No0 > 1 ) 1 ( (No0 == 1 ) & ( No0 > O ) ))) 
successor = 0; 
elseif (C-R == l & ((Noinf == 1 ) 1 ( (No0 > 1 )  & ( Noinf > I ) ))) 
sdccessor = inf; 
elseif (C-R == O & (Noinf > 0)) 
successor = inf; 
else 
successor = 999; 
end 
elseif (circuit == 1 3 1 circuit = 1 4 ( circuit = 1 5) 
if (C-R = 1 & ((Noinf > 2) 1 ((Noinf = 2) & ( No0 > O )))) 
successor = inf; 
elseif (C-R == O & ((Noinf >= 1 ) 1 ((Noinf = 1 ) & ( No0 > O )))) 
successor = inf; 
elseif (C-R == 1 & ((No0 = 1) 1 ( (Noinf > 1) & ( No0 > 1 ) ))) 
successor = 0; 
elseif C-R = O & (No0 > 0 ) 
successor = 0; 
else 
successor = 999; 
end 
elseif (circuit == 7 1 circuit = 8 1 circuit = 9) 
if(C-R= 1 &((Nd)>2)1( (Noû=2)&(Noinf>O)))) 
successor = 0; 



elseif (C-R == O & ((No0 > 1)  1 ( (No0 == 1) & ( Noinf > O ) ) )) 
successor = 0; 
elseif (C-R == 1 & ((Noinf = 1 ) 1 ( (No0 > 1 )  & ( Noinf > 1 ) ))) 
successor = inf; 
elseif (C-R == O & (Noinf > O)) 
successor = inf; 
else 
successor = 999; 
end 
else 
sxcessor = 999; 
end 

Realizabiliîy Checking 
fùnction [reolizability_i,realizability-r]=circuit- 
rithm(par 1 ,par2, Li,Ci,class,wi,w,NoO,Noinf,g,h) 
reflectance = refl-at-sjrodRep(wr, g, h); 
delay = DelayRefl-prodRep(wr, g, h): 
alpha = angle(reflectance); 
omiga-r = imag(wr): 
omiga-i = imag(wi); 
C-R = 1; 
if Noinf > O 
rho-at-in f = reflat-inqg, h); 
delay-at-inf = delay-inf(g, h); 
Cinf = 21 delay-at-innf 
Linf = delay-atJn82: 
end 
ifNo0 > O 
rho-at-O = rho-at-zero(h. g ) ; 
delay-O - Delay At-û(g,h); 
CO = delay-O /2; 
LO = 21deiay-O ; 
end 
number = class; 
if nurnber -= class 
switch n u m k  
case {'A') 
Lro = 1 /(( 1 /par 1 )-( i Ipar2))-i-i; 
Lr = 14 omiggr*tan(alpha/2)) 
L2 = 1 /(( 1 /Lr)-( 1 Ipar2)) - (Li/( 1 -(omigarlomig~i)~2)) 
realizability-i= par2Ipar 1 ; 
realizability-r = LZLro; 
if realizability-i >= ( 1 - l e-8) & rea1izability-r >= ( I - 1 e-8) 
disp(' circuit = 1') 



realizabil ity-i= par2/par 1 ; 
realizability-r = LZ/Lro; 
else 
C R  = O; 
end 
if (C-R - O) 
if (rho-at-inf < O) & (Noinf > O) 
disp(' circuit = 2') 
Cinf = 21 delay-at-inf; 
Cr = -tan(alpha/2)/omiga-r; 
Crinf = i i(( l i l id)-(  i ;Ci)); 
CI = l/(omiga-r"2*par2); 
C2= II(Ci-l/(omiga+f2*Li)); 
C3 = 1 /(C 1 +Cr); 
C= 1 /(C3 - C2); 
realizabil i ty-i= par21par 1 ; 
realizability-r = Crinf/C; 
elsei€'(C-R =- O) & (rho-at-inf > O) & (Noinf > O) 
disp(' circuit = 3') 
Linf = 2/ delay-at-inf; 
Lr = 1 /tan(alpho/2)lomiga-r; 
Lnnf = 1 /(( 1 /Lro)-( l /par?)); 
L I =  l/(I/Lr - Ilpar?); 
LZ= 1 /( I /Li-(omiga_r"2*Ci)); 
Ls= LI -L2; 
realizability-i= par21par l ; 
realizability-r = LrinULs; 
end 
end 
case f b B ' )  
Cr0 = delay-0/2; 
Cr = -tan(alphn/2)lomiga-r; 
C2 = 1 i(omiga-r^2 *par2); 
Cs= Cr+C2; 
redizability-i= par2/par l ; 
realizability-r = CdCro; 
if realizability-i >=( 1 - 1 e-8) & realizability-r >= ( 1 - 1 e-8) 
disp(' circuit = 4') 
realizability_i= par21par 1 ; 
realizability-r = CdCro; 
else 
C-R = O; 
end 
if C-R == O & Noinf > O & rho-at-inf < O 
disp(' circuit = 5') 



delay-at-i n f = delay-inqg, h); 
Cinf = Udelay-at-in fi 
C 1 = 1 /(omiga-r"2*par2); 
C2= tan(alphal2)lomiga-r; 
C = C 1 -C2; 
realizability-i= par2/parl ; 
realizability-r = CinVC; 
e!seif C-R == O & Noinf > 0 & rho-atinf > O 
disp(' circuit = 6') 
delay-at-inf = delay-inf(g,h); 
Linf = 21 delay-atint:, 
Lrinf = 1 /(( 1 /Lino-( 1 Ipar2)); 
Lr= 1 /tan(alpha/2)/omiga_r; 
Ls = l/(l/Lr - llparl); 
realizability-i= par2/parl ; 
realizability-r = LnnîlLs; 
end 
case { ' C ' )  
Cro = il(( 1 /par 1 )-( 1 1parZ))-Ci; 
Cr = -tan(alpha/2)/omiga-r; 
C 1 = 1 /Cr - l IparZ; 
C2 = Ci/( 1 - (omiga-r/0rniga+i)~2); 
Cs=  lK1 -C2; 
realizability-i= part/par l ; 
realizabili ty-r = C K r o ;  
if realizability-i >= ( I - l e-8) & realizabilitw >= ( 1 - l e-8) 
disp(' circuit = 7') 
realizability_i= parîlpar l : 
realizability-r = Cs/Cro; 
else 
C-R = O; 
end 
if C-R == O & Noinf > 0 & rho-at-inf < O 
disp(' circuit = 8') 
Cinf = 21 delay-atjnf; 
Cnnf = l/((i/Cinf)-(Vpar2)); 
Cr = -tan(alpha/2)/omiga~; 
C 1 = I /Cr - 1 Ipar2; 
C2 = Ci/( 1- (omiga~/omiga-i)~2); 
C = 1 x 1  - C2; 
realizability-i= par2lpar 1 ; 
realizability-r = Cnnf/C; 
elseif C-R = O & Noinf > O & ho-at-inf > O 
disp(' circuit = 9') 
Linf = Udelay-at-inf; 



Lnnf = 1 /(( 1ILint)-( 1 /Li)); 
Lr = 1 /tan(alpha/2)/omiga-r; 
L I = 1 /(Lr + l i(ornigar"2 *par2)); 
L 1 1 = 1 /((omigaJ"2)*Ci); 
L2 = l/(Li-Lll); 
Ls  = 1/(L 1 -L2); 
realizability-i= par2/parl ; 
realizability-r = LnnWLs; 
end 
case {'D' 1 
&-A CO-db-A t-O-proJRep(g,h); 
Lro = db-AtJY2; 
Lr  = 1 /tan(alpha/Z)iomiga-r; 
Lp = Lr + 1 l(omiga-r"2*par2): 
reali zabil i ty-i= par2/par 1 : 
realizability-r = Lp/Lro; 
if realizability-i >=( 1 - I e-8) B realizability-r >= ( 1 - 1 e-8) 
disp(' circuit = 10') 
realizability-i= par21par l ; 
realizability-r = LpjLro; 
else 
C R  = 0; 
end 
if C-R == O & Noinf > O & rho-at-inf c O 
disp(' circuit = 11 ') 
Cinf = 2/delay-atinf 
Cnnf = 1 /(( 1 /Cint)-( 1 /par 1 )) 
Cr = -tan(alpha/2)Iomiggr 
Cp = l/(l/Cr - l/parl) 
realizabili ty-i= par2Ipar 1 
realizability-r = CnnfICp 
elseif C-R - O & Noinf > O & rho-at-inf > O 
disp(' circuit = 12') 
Linf = Udelay-at-inf; 
Lnnf =Linfi 
Lr = l /(omiggrstan(alpha/2)); 
Ls = Lr +li(omig~r"2*parl); 
rcalizability-i= par2/parl ; 
realizability_r = LrinWLs; 
end 
case ('E') 
Cinf = Udelay-a~inf; 
Cnnf = i /( I /(Cinf - par2) - 1 /Ci); 
Cr = -tan(alpha/2)lomiga~ 
C 1 = 1 /(Cr - par2); 



C 1 1 = 1 /(Ci*( 1 - (omiga-iIomiga~)*2)); 
Cp = l/(Cl - CI 1); 
realizability-i= par l /par2 ; 
realizability-r = Crinf/Cp: 
if realizability-i >=( 1 - 1 e-8) & realizability-r >= ( 1 - 1 e-8) 
disp(' circuit = 15') 
real izability-i= par I /par2 ; 
realizability-r = CrinfICp; 
else 
C-R = O; 
cnd 
if C-R == O 
if rho-at-inf < O & No0 > O & rho-at-O < O 

disp(' circuit = 13') 
LO = delay-O/?; 
LrO =LO - Li; 
Lr = 1 ~(omiga-r* tan(alpha/2)); 
Lp = 1 /( 1 /LI + (omiga-rYpar2)) + 1 /Ci/(omiga-r"2 - omiga-iA2); 
realizability-i= par l /par2 ; 
realizability-r = Lp/Lrû; 
elseif rho-at-inf < O & No0 > O & rho-at-O > O 
disp(' circuit = 14') 
Cin f = Zldelay-at-innt: 
CO = delay-O/Z; 
Crû = CO - par2; 
Cr = -tm(alpha/2)/omiga-r; 
Cl = l/(Cr - par2); 
C 1 1 = 1 /Ci/( 1 - (omiga-iA2)/(omiga-P2)); 
Cs = l/(Cl - Cl 1); 
realizability_i= par 1 /par2 ; 
realizability-r = CdCrO; 
end 
end 
case ('F'} 
Cinf = 2/delay-at-inf; 
db-AtInf = db-AtlnfgrodRep(g,h); 
Lrinf = 2/db-Atlnf; 
L 1 = omiga-rTpar 1 ; 
Lr = 1 Iomiga-r/tan(alpha/2); 
Ls = 1 /(L 1 + I /Lr); 
realizability-i= par1 /par2 ; 
realizability~ = LrinVLs; 
if tealizability-i >=( I - l e-8) & realizability_i >= ( 1 - 1 e-8) 
Cisp(' circuit = 18') 
realizability_i= parl/par2 ; 



realizability-r = LrinVLs; 
else 
C-R = O; 
end 
if C-R == O 
if No0 > O & rho-at-O < O 
disp(' circuit = 16') 
delay-at-inf = delay-inqg,h); 
delay-0 = DelayAt_O(g,h); 
Cinf = 2/deIay-at-inC 
LO = deiayJb2; 
Lr = 1 /(omiga~+tan(alpha/2)); 
Lp = 1 /(( 1 /Lr)+omiga-r"2*par I ); 
realizability_i= par l /par2 ; 
realizability-r = Lp/LO; 
elseif C-R = O & No0 > O & rho-at-0 > O 
disp(' circuit = 17') 
Cinf = Zldelay-at-inf; 
CO = delay-012; 
Cr = -tan(alpha/Z)lomiga-r; 
Cs =Cr-par l ;  
realizability-i= par 1 /par2 ; 
realizabili ty-r = CsKO; 
end 
end 
case ('(3') 
Linf = Zdelay-at-int 
Lr = 1 /(orniga~*tan(alpha/2)); 
Lrl = II(Linf - par2); 
Lrl 1 = [/Li; 
Lrinf = 1 /(Lr 1 -Lr 1 1 ); 
LI = l/(Lr - par2); 
L I 1 = 1 /Li/( 1 - (omiga-ilomiga-r)"2); 
Ls = ll(L1 - LI 1); 
realizability-i= par 1 /par2 ; 
realizability-r = LrinOLs; 
if realizability-i >=( 1 - 1 e-8) & realizability-r >= ( 1 - 1 e-8) 
disp(' circuit = 2 1 ') 
realizability-i= par1 /par2 ; 
realizability-r = LrintïLs; 
else 
C-R = 0; 
end 
if C-R == O 
if No0 > O & ho-at-O < O 



disp(' circuit = 19') 
LO = delay-012; 
Lro = LO - par2; 
Lr = 1 /(omiggr*tan(alpha/2)); 
L I = 1 /(Lr - par2); 
L 1 l = 1 /Li/( 1 - (omiga-ilorniga-r)*2); 
Lp = I / (  LI - LI 1); 
realizability-i= par l /par2 ; 
realizability-r = LpILro; 
elseif C R  == O & No0 > O & rho-at-O > O 
dispv circuit = 20') 
CO = delay-0/2; 
Cr0 = CO - Ci; 
Cr = -tan(alphn/2)/omiga-r; 
C 1 = 1 /(omiga-r"2*par2 + 1 /Cr); 
C 1 1 = Ci/( 1 - (0miga-r/orniga-i)~2); 
C s = C l  -C11; 
realizability-i= par l ;par2 ; 
realizability-r = Cs/Cro: 
end 
end 
case ('H'} 
db-Atlnf = db-AtInfqrodRep(g,h) 
Crinf = 2/db-Atlnf; 
Cr = -tan(alpha/2)/omiga-r; 
C 1 = (omiga-f2)'par 1 ; 
Cp = l/(Cl + IlCr); 
realizability_i= par 1 /par2 ; 
realizability-r = CnntïCp; 
if realizability-i >=( 1 - l e-8) & realizability-r >= ( 1 - 1 e-8) 
disp(' circuit = 2 1 ') 
realizability-i= par 1 /par2 ; 
realizability-r = CrinfKp; 
else 
C-R = 0; 
end 
if C-R == O 
if No0 > O & rho-at-O < O 
disp(' circuit = 22') 
delay-O = DelayAt-qg'h); 
LO = delay-012; 
Lm= LO-parl; 
Lr = 1 /(omiga~*tan(alpha/2)); 
Lp = Lr-parl; 
realizability-i= par1 /par2 ; 



realizability-r = Lp/Lro; 
elseif C-R == O & No0 > O & rho-at-O > O 
disNb circuit = 23') 
Crû = delay-012; 
Cr = -tan(alphd2)/omiga-r; 
C 1 = omigafl*par  1 ; 
Cs = 1 /(C 1 + 1 /Cr); 
realizability-i= par 1 /par2 ; 
realizability-r = Cs/CrO; 
end 
end 
case ( ' 1 ' )  
realizability-i= 999; 
realizability-r = 999; 
end 
end 
hinction [f, g, h. sigma] = çhain(fa, ga, ha, sigma-a, fb, gb, hb, sigma-b) 
% [f,g,h, s i p r ]  = chain retums the polynomials 
% f. g, h and the constant signa for a chain connection of 
?/O two-ports Na and Nb 
?/O the polynomials are row vectors of coefficients in descending order 
signa = signa-assigrna-b; 
f = conv(fa,tb); 
h = sigm;~a*lower-star(ga); 
h = polyadd(conv(h.hb),conv(ha.gb)); 
g = sigma-a*lower-star(ha); 
g = polyadd(conv(g,hb),conv(ga.gb)); 

Remove circuit class 
tùnction [SecTypeNos, Pararne- 
tewsigrna-b, tb,gb,hb]=classsrernove(par 1 .par2,Li.Ci,class,wi,sigm~b.tb,gb,hb) 
switch class 
case {'A') 
C-R = 0; 
Tr-zeros = wi; 
L = par2; 
[SecTypeNos 1 ,Parameters 1 ,sigma-b,fb,gb,hb] = 
Removes hunt-L3(L,Tr-zeros,C-R,sigmgb,fb.g,hb) 
L = Li; 
C = Ci; 
Tr-zeros = wi; 
C-R = I; 
[SecTypeNos2.Parametns2,sigmaab,gb.hb] = 
Remove~Series~Secti~nZ(L,C,Tr~zet~s,C~R,si~~b,~,gb,hb) 
Parameters = [ Parameters 1 ;Parameters2], 



SecTypeNos = [SecTypeNos 1 ,SecTypeNosZ] 
case {'B'} 
C-R= 1 ;  
Tr-zeros = wi; 
L = parl; 
[SecTypeNos,Parameters,sigma_b,fb,gb,hb] = 
RemoveS hunt-L-2(L,Tr-zeros,C-R,sigma-b, fb,gb,hb) 
case ('C') 
C-R = 0; 
Tr-zeros = wi; 
c = par2; 
[SrcTypeNos 1 ,Parameters 1 ,sigma-b,tb,gb.hb] = 
RemoveScries-C-2(C,Trrzeros,C-R,sigme_b,fi,gb,hb) 
L =  Li; 
C = Ci; 
Tr-zeros = wi; 
C-R = 1 ;  
[SecTypeNos2,Parmeters2,sigma_b,tb.gb,hb] = 
Remove-S hunt~Section2(L,C,Tr~zeros,CCR~si~, hb) 
Parameters = [ Parameters 1 ;ParametersZ], 
SecTypeNos = [SecTypeNos 1 .SecTypeNosZ] 
case ('D') 
C-R = 1 ;  
Tr-zeros = wi; 
C = parl; 
[SccTypeN~s.Parameters,sigma~b,gb,hb] = 
RemoveSeries~C~2(C,Tr~zeros,CCR,sigmgb,~,hb) 
case {'E') 
C-R = 1; 
Tr-zeros = wi; 
C = par2; 
[SecTypeNos 1 .Parameters 1 ,sigma-b, fb,gb,hb] = 
R emoveShunt~C~2(C,Tr~zeros,C~R,sigmgb,fb,gb,hb) 
C-R = I; 
Tr-zeros = wi; 
L = Li; 
C = Ci; 
[SecTypeNos2,Parameters2,sigmgb,fb,gb,hb] = 
Rmove~S~es~Section2(L,C,TrRnnove_Senes_Section2(L,C,Trjcros,C_R.sizero~,CCR,si~~b,~,gb,hb) 
Parameters = [Parameters 1 ;Parameters2], 
SecTypeNos = [SecTypeNos 1 ,SecTypeNosZ] 
case {'F') 
C-R = 1; 
Tr-zeros = wi; 
C=parl; 



[SecTypeNos,Parameters,sigma-b,gb,hb] = 
RemoveShunt~C~2(C.Tr~zeros,CCR,sigmab, fb,gb,hb) 
case {'G'} 
C-R = 1; 
Tt-zeros = wi; 
L = par2; 
[SecTypeNos 1 ,Parameters 1 ,sigrna-b+fb,gb.hb] = 
RemoveSmies~L~2(L,Tr~zeros,C~R,sigmgb,tb,gb,hb) 
C-R = 1 ;  
T ~ z e r o s  = wi; 
L = Li; 
C = Ci; 
[SecTypeNos2, Parameters2,sipa8b+fb,gb,hb] = 
Rmove~Shunt~Sec~io~(L,C.Tr~zeros,C~R,si~a~b,~,gb,hb) 
Parameters = [ Paramet ers 1 ; Parameters2 ] , 
SecTypeNos = [SecTypeNos 1 .SecTypeNos2] 
case {'H'} 
C-R = 1: 
Trzeros = wi; 
L = parl; 
[SecTypeNos,Parameters,sigma,b,hb] = 
RemoveSe~es-L-2(L,Tr-zeros,C~R,sigmgb,tb,gb,hb) 
end 

function [SecTypeNos,Paranieters,sigmaab+fb,gb,hb] = Remove-Series-Section2 
(L,C,Tr~zeros.C~R,sigma~b,tb,gb.hb 
[fa,ga,ha,sigma_aj=serie~-Shw1tSection2(C, L) % prodRep version 
if C_R== 1 
[ s i g m ~ b , f b , g b , h b ] = R e m o v e S e c t i o n ~ a ( s i ~ , g b , h b ) ;  
%remove section a 
end 
SecTypeNos=[5]; 
Parameters=[L;C]; 

hinction [SecT~Nos,Paramaers,sigmgb,fb,gb,hb] = 
Remove~Shunt-Section2(L9C,Tr~eros,C-R,si~~b,h,gb,hb) 
[ fa,ga,ha, sigmga]=scries_ShwiiSection2(C, L) % prodRep version 
if C-R== 1 
[sigma-b,~,gb,hb]=RmoveSection-a(sigm;1,a,fa,ga,ha,si~~b,fb,gb,hb); 
%remove section a 
SecTypeNos=[SecTypeNos,5]; 
Parameters=[Pmeters;L;C]; 



[fa,ga,ha, sigma-a]=shunt-SeriesSectionî(C, L) % prodRep version 
O/~iSp(~*ll++l+**'); 
Wisp('sigrna-a='), disp(sigma-a); 
Wisp(' fa='), disp( fa); 
?/disp('ga='). disp(ga); 
% fb=f-FromTrZeros(Tr-zeros); 
if C-R== 1 
[ ~ i g m a ~ b , f b . g b . h b ] = R e m o v e S e c t i o n ~ a ( s i ~ , g b ,  hb); 
%remove section a 
end 
SecTypeNos=[6]; 
Parameters=[ L;C]; 

Function [sigrn~b.tb,gb,hb]=RemoveSection-a(sigmkaa,f~g,h) 
% remove section a 
sigma-b=sigma*sigma-a; 
% gb=(gaeg-ha*h)/fafa2 
a=lower-stargrodRep(ga); % prodRep version 
a=polyMulgrodRep(a,g); 
b=lower-star-grodRep(ha); 
b=polyMulgrodRep(b,h); 
b( 1 )=-b( 1 ); 
c= l O wcr-stargrod Rep(fa); 
c=pol yMulgrodRep(c, fa); 
%a,b,c, 
%p 1 =poly AddqrodRep(a,b) 
gb=Zeros~a~Plus~b~c(ab.c); 
% determines teros of p=(a+b)/c given:cl(a+b)d=real(d); 
% hb=(gah-hag)/sigma-afafa* 
a=polyMulgrdRep(ga*h); 
b=polyMulgrodRep(ha.g); 
b( 1 )=-b( 1 ); 
c=lower-stargrodRep( fa); 
c=polyMuljrodRep(c,fa); 
c( 1 )=c( 1 )*sigmga; 
%a,b,c, 
% if lrngth(c)==3 
% Save TestFilel a b c 
% end 
% p2=polyAddgrodRep(a,b) 
hb=Zems-a-Plus-bec(% b,c); 
% detemiines zeros of p=(a+b)/c given:cl(a+b)d=real(d); 
tol= 1 e- 12; 
[g,a,b] = CancelCommonElem~f~f,tol); % removes the common elcments 



function [SecTypeNos,Parameters,sigma8b,gb.hb] = 
RemoveSeriesdC-2(C,Tr-zeros~CCR,sigmaBb9fb,gb~hb) 
[fa,ga.ha, sigma-a]= series_C_Section2(C); % prodRep version 
%fb= f_FromTrZeros(Tr-zeros); 
if C-R== 1 
[sigma-b, fb,gb, hb]=RemoveSection-a(~igma~a~fa~ga~ha,sigm~b~fb~gb, hb); 
O/Orernove section .a 
else 
[sigma-b, tb,gb,hb]=PartiallyRemoveSection~a(sigma~a~fa.ga.ha,si~a~b,!b,gb~hb); 
% pctrtially rernove section a 
end 
SecTypeNos=[3]; 
Pararne t ers= [CI: 

function [SecTypeNos.Pararneters.sigrna_b,h,gb,hb] = 
RernoveSeties~L~2(L,Tr~zeros.C~R,sigtn~b,tb.gb,hb) 
[fa,ga*ha. sigma-a]=senes-L_Section2(L); % prodRep version 
% tb= f-FromTrZeros(Tr-zeros ) ; 
[sigm~b,fb,gb.hb]=RemoveSectio~a(sigm~a~fii,ga, ha,sigma-b*fb,gb, hb); 
%remove section a 
SecTypeNos=[ 1 ] ; 
Pararneters=[L]; 

function [SecTypeNos.Parameters.sigma_b,fb,gb,hb] = 
RemoveS hunt-C-2(C,Tr-zmos,C-R,sigma_b, fb,gb*hb) 
[ fa,ga. ha. sigma-a]=parallel-C_Section2(C); % prodRep version 
% tb= f-FromTrZeros(Tr-zeros); 
[sigma-b. tb.gb. hb]=RemoveSection~a(sigmgfa,ga.ha,sigma~b.fb,gb.hb); 
%remove section a 
SecTypeNos=[2]; 
Paramet ers= [Cl; 

function [SecTypeNos,Parameters.sigmsi.b,gb,hb] = 
RemoveShunt~L~2(L.Tr~zeros,C~R,sigm~b, tb.gb,hb) 
[fa,ga,ha, sigmaa]=paralleI-L-SectiorQ(1); % prodRep version 
%fb=f-FromTrZeros(Tr~ems); 
if C-R== 1 
[sigmgb,fb,gb.hb]=RemoveSectio~a(si~~a,fa,ga,h~sipa-b,fb,gb,hb); 
%remove section a 
else 
[si~ab,fb.gb,hb]=PartiallyRemoveSectio~a(sigm~a,fa,ga,ha,sigm~b,fb,gb,hb); 
% partially remove section a 
end 



function [f,g,h, sigma] = series-C-Section(C) 
% [f,g,h. sigma] = series-C-Section(C) retums the polynomials 
% t', g, h and the constant sigma for a series C-Section 
% the polynomials are row vecton of coefficients in descending order 
% the input is the pararneter C 
f-[1 O]; 
g=[ 1 1 /(2*C)]; 
h=[ 1 / ( P C ) ] ;  
sigrna=- 1 ; 

function [f,g,h, sigma] = senes-C-SectionZ(C) 
% [f,g,h, signa] = series-C-Section(C) r e m s  the polynornials 
% f, g, h and the constant sigma for a senes C-Section 
% the polynomials are column vecton of constant factor and followed by zeros 
% the input is the parameter C 
F [ l  ; O]; 
g=[ 1 ; - 1 /(2*C)]; 
h=[ 1  /(2*C)]; 
sigma=- 1 : 

fonction [ f,p, h. sigma] = series-L-Section( L) 
% [f,g,h, sigma] = series-C-Section(L) returns the polynomials 
% f, g, h and the constant sigma for a senes L-Section 
% the polynomials are row vectors of coefficients in descending order 
% the input is the piirameter L 

+[i 1; 
g=[L/2 11; 
h=[L/2 O]; 
sigrna= 1 ; 

function [f,g,h, sigma] = series-L-Section2(L) % prodRep version 
% [f,g,h, sigma] = series-L+Section(L) retums the polynomials 
% f, g, h and the constant sigma for a series L Section 
% the polynomials are column vectors of constant factor and followed by zeros 
% the input is the pararneter L 
d=2/L; 
+[I l ;  
g=[ l  /d; -dl; 
h=[l/d; O]; 
sigma= 1 ; 



fûnction [f.g,h, sigma] = series-ShuntSection(C. L) 
% [f,g,h, sigma] = senes-ShuntSection(C, L) r e m s  the polynomials 
% f. g, h and the constant sigma for a series ShuntSection (parallel resonance) 
% the polynomials are row veciors of coefficients in descending order 
% the input is the parameters C and L which are in parallel 
fyl O l/(L*C)]; 
g=[l 1I(Z8C) l/(L*C)]; 
h=[1/(2*C) O]; 
sigma= 1 ; 

function [successor~list 1 ,Rr-rnj 1 ] = SuccessorCheckl(realizabiiitytYi,realizabiIity-r, cir- 
cuit. No0,Noinf j) 
successor~list 1 = []; 
Rr-mJ 1 = [] ; 
if realizability-i == 1 1 realizability-i == ( 1 - 1 e- 1 O) 
C-R = 1; 
elseif realizability-i -= I 1 realizability-i -= ( 1 - 1 e- 10) 
C R  = O; 
end 
successor=AddationSuccCheck(C~R,circuit, No0,Noint); 
disp(' successor= ' ), disp(successor) 
if successor == O 1 successor == inf 
successor~list 1 = [successor-list 1,  successor]; 
else 
successor~list 1 = [successor~list 1 1; 
end 
if realizability-i >= (1-le-IO ) & realizability-r >= (1-le-IO ) 
successor~list 1 = [successor-list 1,  j]; 
Rr-mi I = [ Rr-mJ l ;realirability-r]; 
else 
successor~list 1 = [successorJist 1 1; 
Rr-mJ 1 = [ Rr-mJ 1 : 99 1; 
end 

function [Eg,h,si~ma]=Transfomer(n) 
% f. g, h sigma are constants 
% the input is the parameter n 
f=[ 11; 
g=[(nA2+ 1 )ln/2]; 
h=[(nA2- 1 )lnl2]; 
sigma= 1 ; 




