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ABSTRACT

In this thesis the controllability and observability of
RLC networks are investigated. The systematic formulation of
the state equations for RLC networks, with capacitor voltages
and inductor currents chosen as state variables, shows that
controllability and observability must be extended to include
improper systems i1f all cases are to be considered.

Sufficient conditions for controllability and observability,
based upon the position of input and output ports are derived.
It is shown that if a current source is placed in parallel with
each capacitive twig and a voltage sourée in series with each
inductive 1link, the network is always controllable. Similarly,
if an output voltage is measured across each capacitive twig
and an output current is measured in each inductive link, the
network is always observable.

Sufficient conditions for uncontrollability and unobserv-.
abllity of networks with zero natural frequencies are also
given. Specifically, if a network, in which edges have been
included for the output variables, has oapacitqr—only cut-sets
and/or inductor-only loops, it is both uncontrollable and
unobservable.

A method of using transfer functions of a normal form
system to test for controllability and observability is given.
Topological formulae for a hybrid n-port are derived and used
to examine the controllability and observability of an RLC net-

work. An example is given to illustrate the procedure.
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desirable. Some work in this area has alfeady.been done

by Narraway [6]. He has shown that certain network topo-
logies, specifically, capacitor-only cut-sets and/or induc-
tor-only loops are always uncontrollable. He has also
proven that it is possible for CR networks containing
capacitor-only cut-sets and LG networks containing inductor-
only loops to be unobservable.

The.main purpose of this thesis is to obtain topo-
logical criteria for the controllability and oObservability
of RLC networks.

In Chapter II we introduce the basic concepts of
controllability and observability and give the standard
methods of testing normal form systems for these properties.
A systematic formulation of the state equations for RLC
networks is then given. This shoWs that normal form state
equations are not always possible if the choice of state
variables is limited to physical voltages and currents. The
tests for controllability and observability are then extended
fo include the improper case.

We begin Chapter III by showing that it is always
possible to make a network controllable and observable if
complete freedom is given in the placement of input and
. output ports. A set of theorems then shows that systems
with zero natural frequencies are uncontrollable or unobserv-
able if the inputs or outputs are such that B and C, in

the state equations, satisfy certain conditions. These



theorems are then applied to RLC networks, and physical
interpretations of the conditions imposed by B and C aré
given.

In Chapter IV we show.fhat certain transfer func-
tions may be used to test for controllability'and observ-
ability. A theorem is given which shows that cancella-
tions made in determining these transfer functions do not
lead to incorrect results. A derivation of the topological
formulae for the hybrid parameters of an n-port is also
given. The chapter boncludes with an example in which
the controllability and observability of an RLC network

is determined topologically.



CHAPTER IT
CONTROLLABILITY AND OBSERVABILITY

AND ITS EXTENSION TO IMPROPER SYSTEMS

This chapter introduces the concepts of .controll-
ability and observability of a linear, time-invariant
system. The formulation of the state equations of an RLC
network and some new theorems applicable to networks or
systems whose state equations are not in normal form are
also presented.

ancepts and terminology regarding linear systemA
theory may be found in Chen [5] or Zadeh and Desocer [1],
and for linear graph theory in Seshu and Reed [7] or
Chan [8]. Standard mathematical symbolism is used

throughout.

2.1 CONTROLLABILITY AND OBSERVABILITY

The state variable representation of a system is
in itself a very powerful tool in systems analysis, but
it also leads to the very interesting qualitative prop-
erties of linear systems known as controllability and
observability. These dual concepts owe ftheir ofigin to
R.E. Kalman [2,3,4], who was the first to correctly answer
the question: "Can any initial state of a given dynamical
system be transferred to any-desired state 1n a finite

length of time by some control function?" Observability



asks: "Can the state of the system be determined from a
knowledge of the control and output functions over a
finite length of time?" The study of controllability

and observability answers théée questions by giving neces-
sary and sufficient conditions which are depehdent upon
the system parameters.

Consider the normal form state equations

Ax + Bu ' (2.1a)

5
Il

Cx + Du (2.1b)

<
Il

where A,B,C and D are nxn, nxm, gxn and gxm constant mat-
rices respectively, x is the nxl state vector, u is the
mx1l input vector and y is the gx1 output vector. The
following basic definitions are adapted from Chen [5].

The state equation (2.la) is said to bé completely
state controllable if, for any state X, at time 0 in the
state space S", there exists a finite btime t >0 and an
input u[O,tlj that will transfer'the state Xé to the zero
state at the time t,. Oftherwise the equation is said to
be uncontrollable.

The dynamical equation (2.1) is said to be com-
pletely state observable if, for any state X at time O
in the state space»Sn, there exists a finite time t,>0

such that the knowledge of the input u and the out-

, [0,8,]
put Vro .t ]‘over the time interval [0,t;] suffices to
27

determine the state X, Otherwise the equation is said to



be unobservable.

These definitions are of little usé in actually
festing a system. A complete set of theorems has there-
fore been developed to simplify the procedure. The most
commonly used methods, which are given in Chen [5], are
now stated.

The state equation (2.1a) is completely
state controllable if and only if either of the following
equivalent statements is true:

(a) The controllability matrix Q has rank n.
Q = [B,AB,...,A" 18]

(b) The rows of (sIn—A)_lB are linearly independent over
the field of complex numbers.
The dynamical equation (2.1) is completely state
observable if and only if either of the following equiv-
alent statements is true:

(a) The observability matrix P has rank n.

p = cT,a%cT,. .. aT(n-1)

¢’y
(b) The columns of C(sInTA)—lare linearly independent
over the field of complex numbers.
In most of the literature the adverbs "completely"

and "state" are dropped and the properties are simply

referred to as controllability and observability.



2.2 SYSTEMATIC FORMULATION OF THE STATE EQUATIONS FOR
RLC NETWORKS

The assumption of a finite dimensional system for
which state equations exist is implicit in this development
of controllability and observability. It is therefore
prudent to determine the conditions under which such equa-
tions exist. Bryant [9] has shown that the state vari-
ables for an RLC network with independent sources may be
chosen with the aid of a normal tree. A normal tree is
defined as a tree having as branches all of the independent
voltage sources, the maximum possibie number of capacitors,
the minimum possible number of inductors, and none of the
independent current sources.

Following a procedure similar to that given by
Martens [10] and Balabanian and Bickart [11], the state
equations can be constructed in the following way. Con-
sider a normal tree. Kirchhoff's current and voltage laws

partitioned with respect to the normal tree yield

KCL: QI = [Q,,U] r12“ =0 (2.2a)
KVL: BV = [U,B.] [V,] =0 (2.2b)

where the subscripts t and & identify twig and link vari-
ables respectively. Because the subspaces associated with

B and Q are orthogonal [7], that is, QBT = 0, we have



Bf = —Q? . Substitution of this orthogonality condition

and the element relationships

VQ = ZQIQ It = YtVt (2.3)
into equation (2.2) yields
7 -
Z, - Q I
LT o8 IS (2.14)

If we partition this equation and use Martens' notation,
where the subscripts V,C,G,[,I,L.,R and S denote twig:

voltage sources, capacitances, conductances, reciprocal -
inductances; link: current sources, inductances, resist-

ances and elastances, we obtain

F%SR 0O 0 0 E-Qgs -ty O 0 ) I

0 Ry 00 i_QgR Qg %R O I

0 0 pbg O i“QgL 0%, -9 —Q?L I

o 0 00 i A -9t far -Orp | |
————————————————— TS ——— R A N )
s Yyr Oy Wyr 1O 0 0 0 Yy
s %r Ycr Yot E'O pPCy 0 0 Ye

1
O Qgr 9r, Y % 0 0 Gg O Y
0 0 g 9rp 0 0 0 %Tt 'r

where p 1ls tThe differential operator.



Elimination of the undesired variables VG’VF’IS

and IR produces the state equations in the following form:

R T el T

PI, . Bir O ) [Fin Hay|Ig| |Bi1 O | |PBiptHy,  Hig T
PV o e ~Hyy Tyul | Ve K > "ng pg§2+H§u Vyr
(2.6a)
}fu pLL +HT H., II- -;L tH..  H ) iI_
I 127075 ol I, ootton - Hpg I
= . + . (2.6b)"
I, S “Hys P68y gLl |Vy
where
By = Lytppl Oy = BYy bio = Q?LLtQPI L, = T3
Boo T Q?ILtQTI = 5,
€17 = AysCyOys = 613 815 = g% s ¢, = S
22 ~ Ct+chCngs = &5,
T - Gt+QGRG£QgR =¥ G, =Ry
2 = R2+QgRRtQGR =z R, = 0p
fyq = QgLY—lQGL = 1,
Mo = QgIY—ngI ='H22
Hyy = Qupd@hy = Hig

_ ~-1.T T
Hyy = Qop% "Qgg = Hyy
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T -1 R N | T
Hio = QqpY "Qqrp Hog = =Qup+Qg1Y "Qup0, QA

T T -1 T _ T T -1 T
H13 7 “Oyptart 9er%eSvr Mo = 901t g0y 9p

= Q.2 gl

T :
VR QCR

T -1 T
Qe Q6T QG Qcr H

HlM 34

Note that 622 and Lll are positive definite and hence
nonsingular.

If we further define

P11 O | B, 0
Lo 0 %0 be t o Gﬁ%_
By 0] Hyp Hyy]
= H. =
’ 0 g ' :ng Hyy |
Hyp Hyg CH], oyl
S s T T
oy Hay 13 Hay
. Hpp Hpg]
q _“Hg3 33

T ]
L L -1 I
P = —Al_lH-l - Al EpA2+H2]
e e "y
[T, T I
L I I
_ 1 -1 -1 (2.7a)
- _Al H, v _Al H2 v =Ny A,p '
| C| V| VV
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1 T —1 L T -1 1
= [H3"A2A1 H ] + [H -ATA_"H ]
T 1 7 A 2 1 2 i ‘
v c V)
T -1 T
+ [A AT, Ip . (2.7p)
Vy

It may appear at first that, by choosing the out-
puts as the complementary variables of the inputs, we are
not considering the general case. This, however, is not
true. If, for example, We want a particular node-pair
voltage és an output, we can simply put a current source
between those two nodes, then write the state equétions,
and, finally, let the value of the current source be zero.
The voitage response at those terminals is then the desired
output variable. One must be careful, however, that con-
trollability is not being investigated at the/same Time
since the removal of some of the sources in the method
deséribed could lead to erroneoﬁs results.

The state equations of aﬁ RLC network with independ-
ent sources can, therefore,be associated with the general

form

bde
i

Ax + Blu + B,u (2.8a)

<
il

Cx + D,u + D,u (2.8b)

This improper form reduces to the standard normal

form when there are no inductor-current source cut-sets
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and no capacitor-voltage source loops. This can be seen

by observing that, if QFI = 0 and QVS = 0, then ng =0,
522 = Q, Gll = 0, and 912 = 0, and therefore
A, =0 and A, = 0

2.3 CONTROLLABILITY AND OBSERVABILITY OF IMPROPER EQUATIONS

The possible occurrence of the system state equa-
tions in improper form as in (2.8) is of some concern.

A simple transformation
z = x - B,u : (2.9)

can be used to give a new set of equations

N
It

Az + (AB, + B,)u . (2.10a)

Cz + (CB, + D,)u + D,u (2.10b)

&g
1l

in a pseudo-normal form.

The source derivatives have.been removed from the
state equation but not from theioutput'equation. This,
however, is not restrictive since the output equation is
only used in observability studies, in which case the
inputs can conveniently be chosen to be identically zero
and the equation can essentially be»considered in normal
f'orm.

If we can show that controllability and observability
are invariant with the transformation (2.9), then we can

use (2.10) to determine the characteristics of the physical
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state variables of (2.8). The rest of this section is

devoted to this issue.

Lemma 2.1:
The solution of x = Ax + B,u + B,U is given. by

Lt

x(6) = " (x(0)-B,u(0)) + J AT (4B 4B Ju()de+B, u(s)
o .
PROOF:
It is well known [5] that the solution of equation
(2.1a) is

€
x(t) = eAtx(o) + f eA(t-T) Bu(t)drt
0o

The solution of (2.10a) is therefore

v
z(t) = eAtz(O) + f eA(t"T)(AB2+Bl)u(T)dT
o

However, z = x - B,u, and substitution into the previous

equation yields the desired result.

Lemma 2.2:
If x = Ax + B u + B,u (2.8a) is controllable,then

. . n
there exists, for any X, in S

, a u[O,T] with u(Q) = u(T)
= 0 , such that x(0) = x, and x(T) = 0
PROOF:

We will show how to construct a u[O,T] satisfying

the required conditions. Let T, be an artibrary

positive number and let u =0 . Then
[o,T,]
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by Lemma 2.1, x(T,) = eATlx(O) = eATlxl. Next, since (2.8a)

~

is controllable, there exists u T,>T, and finite,

[r,,T,]°

such that x(T,) = 0 with x(T,) = e"Tix . Finally, let

u =0, T >T, and finite, and the system will stay
[TZ 3T] 2

in the zero state thereafter. Therefore the input

a(t), T,<t<T,

u -
o,T] 0 , otherwise

transfers any initial state x, to the equilibrium state in
finite time T with u(g) = u(T) = 0.
Note that the lemma is equally valid if B, = O,

that is, 1f we have a normal form system.

Theorem 2.1:

The controllabilify and observability of the dyna-
mical equation (2.8) is invariant under the transforma-
tion (2.9). |
PROQF:

We will first show the invariance of controll-
ability. If (2.8a) is controllable, Lemma 2.2 shows that
there exists, for any X, in Sn, a u[O,T]’ T finite and

u(o) = u(T) = 0, such that x(0) = x, and x(T) = 0 , but

1l
il

z(0) = x(0) - B,u(o) = x(0) = x,

It
It

z(T) x(T) - Bzu(T) x(T) = 0
and hence Urg 7] transfers z(0)=x:; to z(T)=0 proving that
>

(2.10a) is also controllable. The converse follows by
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reversing the procedure.

The invariance of observability is easily esta-
blished.  Since observability is invariant under the spec-—
ific input used, let u(t) = 0. Then both equations are
in normal form and in fact are identical. It then follows
that, if one 1s observable, so is the other.

We can now define controllability and -observability
matrices Q' and P' respectively, for improper systems and

give some appropriate theorems.

Theorem 2.2:

The state equation (2.8a) is completely
state controllable if and only if the controllability

matrix Q' has rank n.

Q' = [AB,+B ,A%B,+aB, ,...,A"B,+a""1p ]

PROOF:
From Theorem 2.1 we know that (2.8a) is controll-
able if and only if (2.10a) is controllable. However,

(2.10a) is controllable if and only if the rank of Q is n.

1

— 2 n i
Q = [AB,+B ,A’B,+AB ,...,A"B,+A" "B ]

We immediately see that Q and Q' are identical and ,
therefore, (2.8a) is controllable if and only if the rank
of Q' is n.

The dual theorem for observability is given next.
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Theorem 2.3:

The dynamical equation (2.8) is completely
state observable if and only if the observability

matrix P' has rank n.

pr = [of,a%cT, .. aT(n-1) T

PROOF:

The proof follows directly from the discussion in
the proof of Theorem 2.1.

We have now developed all of the necessary theory
to study the controllability and observability of both

proper and improper systems.



CHAPTER ITII
TOPOLOGICAL CONDITIONS ON THE CONTROLLABILITY

AND OBSERVABILITY OF RLC NETWORKS

Controllability and observability of an RLC network
may be tested by use of the theorems given in Chapter II.
In this chapter, we show that this approach is not always
necessary if the topology of the network is known. Suffi-
cient conditions for controllability and observability in
terms of typé and placement of input and output ports are de-
rived. Sufficient conditions for uncontrollability and un-

observability of networks having a zero eigenvalue are also given.

3.1 SUFFICIENT CONDITIONS FOR CONTROLLABILITY AND
OBSERVABILITY OF RLC NETWORKS

If we are given an arbitrary system with complete
freedom of access to all system variables, the question
arises: "What are the conditions under which the system
is always controllable and/or observable?" A close exam-
ination of the controllability and observability matrices
of a proper system shows that, if B has rank n, the system
is controllable, and, if C has rank n, it is observable.
In the improper system the equivalent requirements are that
ABz+Bl and C have rank n.

These controllability specifications imply that a
particular source distribution will always make the system

controllable. For RLC networks this situation has a simple
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solution as shown in the next theorem.

Theorem 3.1:

An RLC network with independent sources is con-
trollable if there 1s a current source in parallel with
each normal tree branch capacitor and a voltage source in
series with each chord inductor.

PROOF:
Consider a network with some arbitrary source dis-

tribution. The state equation is then
X = Ax + B,u + B,u ’ (3.1)

or from Chapter II

-1 -1
1 ] ;1 Hyu - ph;

Aru . (3.2)
Alternatively, this may be expressed in the form
(pA,+H )x + Hy,u + pA,u = 0 . (3.3)

If we now augment the network with an additional

n-dimensional input vector

v = EL
I

by putting a current source in parallel with each branch
capacitor, referenced so that it opposes the capacitor
current in the cut-set equaﬁions, and a voltage source in
series with each chord inductor, referenced so that it

opposes the inductor voltage in the loop equations, the
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transpose of the right hand side of equation (2.5) is

no longer zero but becomes [0 JCT 0000 ELT O]T Equation
(3.3) then becomes (pA1+ Hl)x + Hyu + pA,u = v or
equivalently |

= =/ -1 H LA —1H ~A “l] u [A -1 ‘ LINERD
px = =4, 1 XLy 271 vi T Pl Az5001 ] (3.

We now have a new network, defined by equation (3.4)
which meets the specifications outlined in the statement
of the theorem. The first term in the controllability

matrix Q' is

= -1 -1 -1 -1
ABZ+B1 = —A1 Hl[—A1 Az’O] + [=A, Hy A, ]
B -1 -1 1 -1
= [A1 HlA1 A, - A TH ,Al ]
Because Al_l is an nxn nonsingular matrix, the rank of

AB2+B1“is n, the rank of Q' is n, and the network is con-
trollable.

The result given in this theorem ignores what would
appear to be a simpler method of obtaining complete con-
trollability. That would be to put a voltage source in
parallel with each twig capacitor and a current source
in series with each 1link inductor so that the capacitor
voltages and inductor currents can be manipulatgd directly.
Such direct control is indeed possible. However, the state
equations previously written for the network are no longer
valid, since the capacitor voltages and inductor currents
no longer qualify as state variables. This is easily

demonstrated by the fact that each new voltage source in



20.

the network must be put in the normal tree and hence the
capacitor in parallel must be excluded. Similarly, all
inductors in series with current sources are no longer
chords of the normal tree. The control of these non-state
variables 1s of little interest.

The observability specifications, on the other
hand, imply that a special set of output variables will

always make the system observable.

Theorem 3.2:

An RLC network with independent sources is observ-
able if the output pofts are chosen so that there is a
voltage port in parallel with each normal tree branch
capacitor and a current port in. series with each chord
inductor.
PROOF:

Since we are directly observing each state vari-

able, the Theorem is obvious.

3.2 CONTROLLABILITY AND OBSERVABILITY OF THE ZERO NATURAL
FREQUENCY :

In the previous section we derived sufficient con-
‘ditions for the controllability and observability of RLC
networks. These conditions were in no way related to the

structure of the source-free system. 1In this section we show

that given an a priori knowledge of the existence of a zero
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natural frequency in the system, necessary conditions for
controllability and observability can be derived. We shall,
however, find 1t more convenient to obtain sufficient con-
ditions for uncontrollability and unobservability rather
than necessary conditions for controllability and observ-

ability. Consider now the following theorem:

Theorem 3.3:

The state equation (2.8a) is uncontrollable if there
exists a non-zero vector a such that,'aTA=O, aTBl=O, or
equivalently, if the matrix [A,B,] has rank less than n.
PROOF:

From Theorem 2.2 the equation is controllable if
and only i1f Q' has rank n. If there exists a # 0 such

that aTA = 0 and aTB1 = 0 then .,

aTQ' = [aT(AB2+ Bl), aT(A2B2+AB1),...,aT(AnB2+An~lBl)] =0

Therefore, the rows of Q' are dependent, proving that the
rank of Q' is less than n and the eqguation is uncontroll-
able.

We now show the equivalence of the two conditions.
If aTA =0, aTB1 = 0, a # 0, then aT[A,Blj = 0 and there-
fore the rows of [A,Blj are dependent, clearly showing

that the rank of [A,Bl] is less than n. The converse fol-

lows by reversing the procedure.
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Corollary 3.1:

The state equation (2.l1a) is uncontrollable if there
exists a non-zero vector a such that, aTA=O, aTB=O, or equiva-
lently, if the matrix [A,B] has rank less than n. Furthermore,
another equivalent condition is that the ii,i=1,2,...,n are
dependent.

PROOF:

The first‘part follows directly from Theorem 3.3 by
noting that if BZEO and B1=B equations (2.la) and (2.8a) are
identical. |

To prove the second part, observe that if aTA=O, aTB=O,
a#0, then aTk=O and therefore the ki,i=l,2,...,n are dependent.
The converse follows immediately by reversing the procedure
after noting that u and x are independent.

Some comments on this theorem are now in order. First
we see that A is singular and hence must have one or more zero
eigenvalues. Furthermore, a is an eigenvector of AT associ-
ated with the zero eigenvalue. It is well known in circuit
theory that the observance of zero eigenvalues coiﬁcides with
the occurrence of capacitor-current source cut-sets, capacitor
only cut-sets, inductor-voltage source loops énd/or inductor
only loops [11]. Half of the conditions of the theorem are
therefore satisfied in any of the preceding situations. The
other condition is dependent upon the source distribution and,

in fact, it is shown in the next theorem that the inclusion of

capacitor-current source cut-sets and/or inductor-voltage source
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loops in the network is sufficient for aTB1 = 0.

Theorem 3;4:

An RLC network is uncontrollable if it contains
any capacitor-only cut-sets and/or inductor-only loops.
PROOF :

If there is a capacitor-only cut-set the following
relationship exists'between the capacitor currents

T T
la, " ,a

where al'# 0, since at least one of the capacitors must
be in the normal tree. Using the fundamental cut-set

equation from Chapter II we obtain

_ T

T D ‘ch ‘QCR _QCL ‘QCI 'IR
[a,",a," ] T =0

U 0 0 0 L

II-‘

However, since the chord currents of the normal tree are

linearly independent variables,we must have

“Yes %er 9cp et
T T _
la, ,a, ] =0
LU 0 0 0o |
or equivalently
T _ T _ T _ T _ T
817 8cp T 0> 21 Qg = 0, 8,7Q0p = 0, 3, Qg = 2,
Now consider aT = [0, a Te ] Because a, # 0 and 6
: > 1 722 1 22
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is nonsingular, a # 0 . Then
I R R P H
11 11 14
T, _ T
a' A= [0,a,6.,.]
b2l 0 —eZtl-uT H
‘ 221 14 ha
_ T..T T
= lay Hyy, -a, iy
T -1.T

Il

T T -1
La, (=0T Q0r0QR" "Qgr)» —2, (QggZ "Qgp)]

= 0
Also
~BT1 0 || H H
. T 11 12 13
# By = 102078550 ) [ I
22| ey 34
~ T T T T
= [a, qu, -a; ng]

[alT(—QCI+QCRG2QgRY—1QGI)’_aIT(QCRZ_ngR)]

1l

= 0
Therefore, the network is uncontrollable by Theorem 3.3.
The proof for inductor-only loops follows the same basic
procedure but uses the loop equations instead of the cut-
set equations.

Another way of stating this result is to say that

controllability requires that there must be at least
one current source in each capacitor cut-set and at
least one voltage source in each inductor loop. The
exact number of sources needed in either case is still
undetermined. Theorem 3.1, however, places an upper

bound on the number required.
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An alternate proof of Theorem 3.4 has been given
in a recent paper by Narraway [6]. The method used is not
based on the general system theory results developed here,
but follows from a physical argument dépending on the con-
servation of charge and flux linkages.

We now turn our attention to observability and pre-

sent the following theorem.

Theorem 3.5:

The dynamical equations (2.1) and (2.8) are unobserv-

able if there exists a non-zero vector a such that, aTAT = 0,

aTCT = 0, or, equivalently, if the matrix [AT,CT] has rank
less than n.
PROOF:

From Theorem 2.3 the equations are observable if
and only if P = P! hasvrank n. If there exists a # 0 such

that a'A’ = 0 and a'CT = 0, then

T T.T TAT(n—l)CT

a’P = a'pr = [aTaT, aTaTcT, ... .2 1=0

Therefore the rows of P are dependent proving that the rank
of P is less than n and the equations are unobservable.

To show the equivalence of the two conditions, con-
sider the following:
1r a™at = 0, aTcT = 0, a # 0 then a7[aT,cT] = 0. Further-

more, the rows of [AT,CT] are dependent and hence the rank
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of [AT,CT] is less than n. The converse follows by revers-
ing the procedure.
Application of this result to RLC networks yields

the following theorem:

Theorem 3.6:

An RLC network, in which edges for the output vari-
ables are included in the network graph, is unobservable
if i1t contains any capacitor-only cut-sets and/or inductor-
only loops.
PROOF:

If there is a capacitor-only cut-set, Theorem 3.4

proves that there exists a,,a,, a, # 0, such that

T T T T T
a, QCR\= 0, a; QCL =0, a, QCI = 0, a; QCS =a, .
Now consider aT = [0, alT]
S
Hyp -Hyyll-Bq7 O
T T T
a“A” = [0,a "] _
! nr H 0 ¢t
1 Py 22
ToT -1 T -1
[-a,"Hyyby] 5 —anTHyCo5 ]
~ T . T -1 -1 T -1.T . -1
= L2, (Qgp ~QoplQgrY "Qqp )Ry »-a1(Qpg2 YR €55
=0
Also
...:]_ —
o g My -Hyylisgp OBy, 0
T.T T
a’C” = [0,a,7] T A el -1 T
| Moy Hgu] [Fay Huyl] O Cap]| O S1p
_ T T T T T -1 T ~1.T
= La, s ay eyl - Doy Ty B kg5, 8, T Hy 65580 5]
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- T T -1 T 1.7 .-
T PR -1 T “1T L -1,T
- Las (SQeptQg0GRY "Qup)B1] Brosay (Qppl TQpp)65567,]

CR” 722712

Therefore the network is unobservable.

The proof for inductor-only loops follows the same
basic procedure but uses the loop equations instead of the
cut-set equations.

An alternate statement of this theorem is as fol-
lows: A necessary condition for observability is that there
is at least one output voltage in each capacitor cut-set
and at least one output current in each inductor loop.
Theorem 3.2 yields an upper bound on the number required.

Theorem 3.6 also represents a considerable gen-
eralization of a theorem given by Narraway [6]. He proved
that there exists a C # 0 such that RC and LG networks
containing zero eigenvalues are unobservable. He does
not interpret the meaning of the C derived. We have
shown that the restriction to two element type networks
1s not necessary andvhave essentially given a C # 0
which makes the network observable.

Alternate proofs of Theorems 3.4 and 3.6 are avail-
able in Appendix A. They are of interest since they follow
from the basic system theory results developed here but

do not require the symbolic formulation of the state
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equations. Instead, simple physical arguments are used.
In addition, a method of constructing an eigenvector assoc-—

iated with a zero eigenvalue of A is given.



CHAPTER IV
TOPOLOGICAL CRITERIA FOR CONTROLLABILITY AND

OBSERVABILITY VIA NETWORK TRANSFER FUNCTIONS

The formulation of the state equations of an RLC
network is often a labourious task. On the other hand,
the determination of network transfer functions is gener-
ally much easier. The establishment of controllability
and observability would therefore be simpler 1f these
transfer functions could be used instead of the conven-
tional P'and Q matrices. The purpose of this chapter is
to develop such a method. Topological formulae are given
for the appropriate transfer functions and some examples

are presented.

4.1 CONTROLLABILITY AND OBSERVABILITY FROM NETWORK
TRANSFER FUNCTIONS

The method to be developed in this section utilizes
the normal form state equations of the system. The pro-
cedure 1s, therefore, restricted to those networks whose
physical state variables occur 1in normal form state
equations. This lack of generality is caused by the gen-
eration of non-physical state variables in the process
of transforming an improper system into normal form.

Such abstract state variables cannot be used in the trans-
fer functions of the network. In the following discus-

sions, we therefore 1limit our analysis to networks having
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no capacitor-voltage source loops, and no inductor- current
source cut-sets.

The method for controllability uses the numerator
matrix of the transfer functioﬂ matrix from the inputs to
the state variables. This transfer function matrix can
be obtained from the state equations: Rl(s) = (sIn~A)—lB

= a(%y[adj(sln—A)]B.

The following theorem 1s a consequence of the con-

trollability matrix and the use of Fadeeva's Method [1];

(also called Souria-Frame Algorithm [1]).

Theorem 4.1:

The n-dimensional, linear, time-invariant dynami -

cal equation

X = Ax + Bu , (4.1a)

y = Cx + Du | (4.1b)

is completely state controllable if and only if the matrix

Ho= [H H, .0 ]
has rank n, where the set of matrices'{Hi}, i=0,1,...,n-1
are obtained from
H(s) = H s+ + H‘sn—Z +...+H .s + H =[adj(sI_-A)]B.
0 1 e n-2 n-1 n

PROOF:

From previous considerations we know that the
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equation is controllable if and only if the controllability
matrix has rank n, that is p[Q] = n . We will prove that
olQ] = p[H],.

Postmultiply Q by a nonsingular R of the form:

-
Im dllm dEIm dn—lIm
0 Im dllm dn—2Im
0 0 Im dn—3Im
R =
0 0 Im dlim
0 0 I
m
L i
where Im is an mxm unit matrix and {di}, i=1,2,...,n-1,

is a set of real constants. Let H = QR, then p[H] = p[QR]
= p[Q] and the equation is controllable if and only if
o[H] = n

Expansion of QR yields

H o= [B,(A+d,T J)B, {(A+d,I )A+d,I }B,...,
{({(a+d I )A+d,I JA+...) A+dn_11m}Bj
B 0 0
~ |0 B
= T )
0 0 B

where T = [T _,T
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and T =1
o n

3
H

A+da I =T A+d I
1'm (@ 1™m

=
11

(A+dllm)A+dZIm = T1A+d21m

-
|

({(A+d T DA+, T }A+..)A+d (T = T A+d I

n-1 = -1"m n-2 n-1"m

Fadeeva's Algorithm for the expansion of (sIﬁ—A)‘l, shows
that if we let the set'{di}, i=l,2,...,n-1, be the coeffi-

clents of the characteristic polynomial

det(sIn—A) = sn+dlsn—l+...+d s+d.

then

T(s) = Tos + T.s +...+ T S+Tn— = adJ(SIn—A)

and H(s) = T(s)B.
Furthermore, H=H8 and o[H] = o[H] = 0[Q]

The observability of a linear, time-invariant
system, in terms of transfer functions, may be treated
in a similar fashion to the previous theorem on con-
trollability.

We first augment the system of state equations
with the inclusion of an additional n-dimensional input

vector v(t), chosen so that the state equations become

Ax + [B,B] [$J (4.2a)

[
i

<
]

Cx + [D,D] [3} (4.2b)
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~

and B 1s nonsingular.

If we set the original inputs equal to zero, and
assume no direct transmission, the transfer function from
the new inputs v to the outputs becomes

M(s) = C(sIn—A)_l B

We can now give the dual to Theorem 4.1.

Theorem 4.2:

The n-dimensional, linear, time-invariant dyna-

mical equation

A

Ax + Bu + By B nonsingular

5 e
I

Cx + Du + Dv

<
i

is completely state observable if and only if the matrix

w= T T,
has rank n, where the set of matrices {Mi}, i=0,1,...,n-1,
are obtained from
M(s) = M s™ M s™ %L 4N _s4M = Cladj(sI ~A)IB.
o) 1 n-2 n-1 n

PROOF:

The proof follows the same basic steps as in
Theorem 4.1. We shall simply point out the differences
where they occur.

The equation is observable if and only if the rank
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of P is n. Consider M = RTPTB where R 1s as defined in

Theorem 4.1. Expansion of M yilelds M = CdTlB where Cd
is an nxn block diagonal matrix with all non-zero entries

T _ Tw T T
= [TO,Tl,...,Tn_lj where the Ti’

equal to C, and 61
i=0,1,...,n-1 are defined in Theorem 4.1. From Fadeeva's
Algorithm M(s) = CT(s) B and therefore fi = f . Finally,
since B and R are nonsingular

o[M] = p[M] = p[P]

This theorem establishes the use of a transfer
function matrix in testing for observability. A physical
interpretation is now needed if the method is to be of
use in RLC networks. It was previously shown in Chapter
ITI that if there is a current source in parallel with
each capacitive twig, a voltage source in series with
each inductive 1link, and no other sources, the state eqgua-
tion is x = Ax + Azlv . The transfer function matrix
from these augmented inputs to the outputs is then
R,(s)= C(sIn—A)‘lA:l . Since A, is nonsingular, this
transfer function meets the requirements of Theorem 4.2
and may therefore be used to test the'observability of the
network.

The method of determining the sub-matrices of ﬁ
and ﬁ needs to be examined carefully. The correct entries
can easily be computéd by any one of several network theory

methods.

The various procedures occasionally produce results
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that appear to be different, although they are essentially
equivalent. This 1is due to unavoidable pole-zero can-
cellations inherent in the computational process [12].

The next theorem proves that these disappearing
modes and therefore the actual method of computation is
not important in determining the controllability or

observability of the system.

Theorem 4.3:

If the numerator matrix G(s) of a transfer function
of an n-dimensional, linear, time-invariant system, has

a polynomial factor f(s) of degree r, that is,

G(s) = f(s) K(s)

then
p[GO,Gl,...,Gn_l] = p[Ko’Kl"°"Kn~r—1]
PROQF:
_ n-1 n-2
G(s) = G_s + G s +. +SGn_2 + Gn—l
_ r r-1
= (f s° + f s oot E s+ )
n-r-1 n—-r—2
(K s + K s Fooot K Los F K9
fo Z0; r >0
then
(G ,c G .1 =[K ,K 17T
27y >“n-1 0’1 >ne-r-1

Or G =KF



where:
£ I 0
o' m
flIm fo
£ Im fr—l

is the mnxm(n-r), Ki

unit matrix.

Partition F

Fl is m(n-r) square and nonsingular, thus p[F]

I
1

:
2

and by elementary row

NG

o[NGT ]

olG]

since N and B

F
N p

p[ﬁj

1]

1

2
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and Gi are nxm and Im is the mxm

, then G

operations
K* ={ I]KT
0 1

T

are nonsingular.

T

-

K

p[NFlKT]. and, therefore,

m(n-r)

The method of construction of H or M is now clear.

First compute all necessary transfer functions, then bring

them to a common denominator, and finally, if desired,
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discard any common numerator terms. Removal of these
common terms is not necessary, due to Theoren 4.3, how-
ever,dropping any obvious terms will reduce the order of
the matrix and simplify the computation of the rank of

ﬁ or ﬁ. The test for controllability or observability
then consists of finding the rank of ﬁ or ﬁ, respectively,
and comparing it to the dimension of the system.

It should be noted that this method is not restricted
to passive networks. The theory is general, and may
therefore be applied to any linear, time-invariant system
for which state equations in normal form exist and the
number of»state variables can be found.

The dimension of the state space or the order of
complexity [11], as it is called in circuit theory, is
explicit if the state equations are known. However,if
we choose to use transfer functions,we are faced with the
computation of this quantity. The general problem has
not yet been solved [13], however, partial solutions are
available. The situation in RLC.networks is known [11]
and 1s repeated here.

The order of complexity of an RLC network with
independent sources equals the total number of feactive
elements, less the number of independent circuits consist-
ing of capacitors only or capacitors and voltage sources,
less the number of independent cut-sets consisting of

inductors only or inductors and current sources.
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This is equivalent to the construction of a normal
tree as outlined in Chapter II.

The framework has now been provided to use trans-
fer functions to determine both controllability and
observability of a normal form system. This basic rela-
tionship has previously been noted in other forms [5,14].
Chen [5] states that a system is controllable (observable)
if and only if the rows of (sIn—A)_lB (columns of C(sIn—A)—l)
are linearly independent over the field of complex numbers.
We now offer alternate proofs of these theorems that are
purely algebraic and are completely contained in the
complex frequency domain. Chen's proofs are based upon
the assumption that the Laplace transform is a one-to-one

linear operator.

Theorem 4.4:

The state equation (4.la) (dynamical equation (4.1))
is completely state controllable (observable) if and only
if the rows of (sIn—A)—lB (coluﬁns‘of C(sIn—A)_l) are
linearly independent over the field of complex numbers.
PROOF:

We will first prove the contrapositive df the con-
trollability part of the theorem.v As a preliminary, note

TH = 0 is equiv~

that given H, as defined in Theorem 4.1, x
alent to the n simultaneous equations XTHi =0, 1=0,1,...,n

The rows of (sIn—A)—lB are linearly dependent if and

only if the rows of H(s)=d(s)(sIn—A)—lB are linearly dependent
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Oor,equivalently, there exists x # 0 such that XTH(s) =0

Furthermore, this is equivalent to XTHi = 0, 1=0,1,...,n-1

or xTﬁ = 0. Finally, xTﬁ = 0, x # 0 if and only if the
rank of ﬁ is less than n, and from Theorem 4.1 the theorem
is proved.
Using‘& from Theorem 4.2, the proof for observability .
follows in a similar manner after noting that the columns

of C(sIn-A)_l are dependent if and only if the columns of

C(sIn—A)_lB, B nonsingular, are dependent.

.2 TOPOLOGICAL FORMULAE FOR A HYBRID n-PORT

Consider the linear, time-invariant n-port shown in
Figure 4.1. 1If there exists a tree with VV as branches
and II as chords, then by superposition the network can

be characterized by the system of hybrid parameters;

V1 Ayr Byy | [ 11
= (. 4)
Ly frr 0 Hpy ) | Wy
where VI’IV’II and VV are vectors of the port variables.

Topological formulae for the entries of this matrix
can be derived from consideration of the topological form-
ulae for two-ports; Martens [15] has given such formulae.
However,since we choose to use simpler notation, the fol-
lowing discussion is necessary.

For the two-port shown in Figure 4.2, Seshu and
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FIGURE 1.1

Reed [7] have given the following topological formulae for

the open-circuit impedance and the short-circuit admittance

parameters.
W ' W ., =W et W .
z - I,r y =z - _rs'.r's rs,r's ” _ _85,8
rr v > "rs Tsr v 7 Tss v
(4.5)
W - W
_ 8,8 _ _ rs',r's rs,r's! _ r,r!
_2 . b B _—2
Ypp > Jps Tgr T > Ygs T
LU LU LU

where, Wa,b is the sum of all two-tree admittance products
with the set of vertices a in one connected part and the

set of vertices b in the other connected part, V 1s the

sum of all tree admittance products and LU is the sum of all
tree admittance products in the graph formed by short-

circuiting vertices r and r' and s and s' [16].
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Equation 4.5 can be used to derive a topological

formulae for every possible network function of the two-

port. -If we define Drs = wrs,r‘s' - Wrs',r's then
v D v D
v Wr o ’IP v
Sl > I__
S=0 S=0
Ty Los I _ Peg
\Tl: = ~———~——2U -;I_:; = w ' (4-6)
Vo | V__ 555
S=0 5=0
V. W , I W '
L = L. . S = Lol
Ir v ’VS rU
I__ V-
S=0 r=0

This class of network functions used in conjunction with the
Superposition Theorem allows. us to find the entries of (4.4),

To make the notation less cumbersome, we define a
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set of standard terminations as follows: all V ports are

short-circuited, all I ports are open-circuited.

terminations define a new

network Nl.

When we find it

necessary to use a termination other than that defined as

a standard termination, we shall append a superscript,

denoting the port in question, to the topological formula.

For example,if port k is a V port and is open-circuited

(k)

instead of short-circuited, D .
r rs

The formula for (4.4) can now be given:

D(r)
rs

hy v = €D

r W
5 r,r'

where all topological formulae refer to network N, .

s would become D

_plrs)
rs
ZU( rs )
V(P)
w(T)
r,r
_pis)
rs

w(s),
S,s

r#s

r=s

(4.7)

Let us now examine the denominator terms in equa-

tion (4.7): V is the tree-admittance product of N,;

w(r)'
r,r

and Wésé, are the two-tree admittance products of N,
> . L

with r and r', s and s' in separate parts, respectively.

It is well known [7] that these quantities can be com-

puted by short-circuiting the two separate parts and find-

ing the tree admittance products of the new network.

Therefore, Wé

shown [16] that zyutrs)

P gls)
, T 5,8

Similarly, it has been

may be found by short-circuiting the
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ports and finding the tree admittance products, therefore,
sulrs) -y
(r)

The numerator term V also needs some explanation.
It is the tree product of the network formed by opening

port r of N,. This is the same as the two-tree product

Drs . _D(rs)
7 r#s 7 TES
hy ¢ = hy v (4.8)
sTr Wr - s r wr .
G r=s ——lv—— r=s
h = h =
str v I Ir vV

where all topological formulae refer to network N, .

Before the topological formulae developed in this
section can be applied to Theorems 4.1 and 4.2, it must
be shown that the type and form of the transfer functions
needed are included in (4.4).

If we put a current source in parallel with each cap-
acitor in the normal tree and a voltage source in series
with each inductor in the normal cotree, a new normal tree
can be defined. This tree has as ‘branches all of the edges
of the old normal tree plus the voltage sources Just added.
Similarly, the new normal cotree contains the original normal

cotree plus the current sources just added. It is now clear
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that both the original sources and the new sources qualify

as excitations in (4.4) and the transfer functions required
by Theorems 4.1 and 4.2 are therefore included in equation

(..

Theorems 4.1 and 4.2 also require the transfer func-
tion matrix be rational. The topological formulaée given
do not give such a rational matrix directly. However, multi-
plication of both numerator and denominator by the appropri~
ate power of s would yield the necessary result. The denom-
inators of the topological formulae afe all equal to the
sum of all tree admittance products of le Seshu and Reed
[7] show that this is equivalent to the determinant of the
node admittance matrix.

Martens [15] has shown that if this determinant is
multiplied by snL, where np, 1s the number of inductors in
the network, and an appropriate scale factor K,is included,
the result is the characteristic polynomial. This is shown

by d(s) = K s"L det Yo=K sTL v

4.3 ILLUSTRATIVE EXAMPLE

Consider the network shown in Figure 4.3. The

normal tree contains C,, C, and R,.

2
Describe a port on each capacitive branch and
inscribe a port in the inductive chord. These additional

ports, the input port and the output port are labelled as

in Figure 4.4. This is the n-port from which we will compute
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the transfer functions necessary to determine the controll-
ability and observability of the network. Application
of the topological formulae in (4.8) to network N;, shown

in Figure 4.5, yields:

. _P2u Mg nior m Wupr iy GG, - Oyl

v, I, Ty s -
-1
. _ Dys W43’413' ~ W43,,4,3 87T GG, 6,+8C,G,+C, T,
Valo g v v
(1) (1) (1)
. R S S e Wipyige  =(8C1C0,T#C,G Ty +C,6,T )
II’IA‘ Vv v v
= —_D25 = w2532'5' B w25'>2'5 =
h T 0
Vs’ 2 v \'
-1
n - D35 _ w35,3'5' B w35',3'5' _ 8 TG,T;+8G,C +C T,
VS’I?’\ v vV v
(1)
b 2150 _Misiisr T Mg s m800T,
VS’VI A2 v v

Because there is only one inductor, multiply the
numerator and denominator of each of the above formula
by Ks. The H(s) and M(s) matrices defined in Theorems

4.1 and 4.2 are then obtained:

- . - - .
0 G,G,-C,T, 0
H(s) = K cG, s°+K | G,G,+C,T, s+K | T,G,
~C,C,T, [ =C16,T,-C,6 T 0
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0 0 0
M(s) = K G,C, 82+K C.r, s+K G,
0 -G,C, T, 0
L. - - _J L. .
H = C.G, G;G,+C, T, Fle
—CICZT1 —ClGlfl—CzGlTl _O
0 G,C, 0
ﬁ = 0 C,T, ‘Gzczrl
0 G,T, 0
det H = —P1G2(0102F1><G1G2_C2P1)
2.2 2
= —T1G201C2G1+F13G20102
det M = 0

The network is therefore always unobservable since

p[M] # n and the controllability is dependent upon the

=

~ 1
element values. If we solve det H = 0 we obtain RiR, = &= .

CZ
Thus the network is uncontrollable if and only irf
L
1

RiR, = 5;



CHAPTER V

CONCLUSIONS

The determination of the controllability and observ-
ability of a linear, time-invariant system is of major
importance. The various theorems and techniques presented
in this thesis augment the well known methods, especially
for RLC networks.

The extension of controllability and observability
to include improper systems allows the characteristics of
any set of valid state variables to be examined. This
extension is particularly applicable to RLC networks. In
this case, the capacitor voltages and inductor currents
commonly used as state variables do not always produce
state equations in normal form. These new results there-
fore permit us to study the physical state variables
instead of the abstract ones which must be used to obtain
sfate equations in the normal form.

| The topological restrictions for controllability
and observability based upon placement of input and output -
ports are impbrtant, since they give instant information
without calculations of any kind. If the network, with
edges included for the output ports, has a capacitor-only
cut-set and/or inductor-only loop, then it is immediately
both uncontrollable and unobservable and the general testing

procedures are not necessary. The method discussed is
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applicable only to networks having one or more zero natural
frequencies. The extension to other modes appears to be
difficult, since there are no topologicél formulae avail-
able for determination of thevnatural frequencies of a
network.

The method developed forusing transfer functions
to check for controllabilityvand dbservability is of major
interest. - This procedure allows us-to-use topological
formulae for the appropriate transfer functions, and thus
obtain topological criteria for controllability and observ-
ability in RLC hefworks.» The theory applies only to those
"networks‘having normal form staﬁe equations. However,
since this is generally the case, the restfiction is not
great. The appropfiate transfer functions necessary for
the exfension to improper networks can be derived, but
they appear to be abstract and hence cannot be determined

topologically.




APPENDIX A

Theorem A

An RLC network is uncohtrollable i1f it contains any
capécitor—only cut-sets and/or inductor-only loops.
PROOQF:

We will first prove the theorem for capacitor only
cut-sets. The capacitors in the cut-set can be put. into
the following three classifications:

1. All of the capacitors are in the normal tree.

2. Any capacitors not in the normal tree are in a capa-
citor;only loop. |

3. Any capacitors not in the normal tree are in a capa-
citor-voltage source loop.

The existence and uniqueness of this three-way classifi-

cation may be proved as follows.

The construction of the normal tree necessitates
the inclusion of as many capacitors as possible. Clearly
it may contain all capacitors; hénce Case 1. If one or
more capacitors are not in the normal tree chosen, then
they must appear as links and, therefore, form loops with
sets of tree branches. The twigs in such loops must be
voltage sources or capacitors, fof, if they were not, a
new normal tree could be defined by including the capacitor
link and deleting one of the original twigs that was not a

capacitor or voltage source. This, however, is a contra-
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diction that the original tree was a normal tree. Hence,
any capacitors not in the normal tree must be in capacitor-
only or capacitor-voltage source loops; hence Cases 2 and
3. This proves the three-way classification.

In each case Kirchhoff's current law for the cut-

set ylelds iC + iC +.. .+ ic = 0, where r equals the
1 2 r

number of capacitors in the cut-set. This implies that
the derivatives of the capacitor voltages are dependent.
That is |

av, av, av

¢, —+¢C, —=+...+ ¢, —L =0 (A.1)
Soat dt dt

Also note that the state equations are generally in the
improper form, x = Ax + B.u + Bzﬁ , in all cases.
‘We now consider each case separately.
1. Since all of the capacitors are in a normal tree,
thelr voltages are valid state variables and (A.1)

becomes

Therefore, a subset of the derivatives of the state
variables is dependent and, hence, the whole set is
dependent.

2. The existence of capacitor-only loops allows us to
obtain, via Kirchhoff's voltage law, a linear depend-
ence of the capacitor link voltages in terms of the

capacitor twig voltages. Subsequently, from (A.1),



53.

the linear dependence of a subset of the derivatives
of the network state variables is obtained, and hence
the whole set is dependent.

3. Kirchhoff's voltage law around the capacitor voltage
source loop shows a dependence of the capagitor link
voltages on the capacitor twig voltages and voltage
sources. Substitution into (A.1l) yields an equation
involving the derivatives of the sources and a subset
of the state variables. If we constrain the inputs
such that u = 0, the state equations reduce to
x = Ax + B,u, and the derivatives of the state vari-
ables are dependent.

In each of the three cases we have shown tﬁat ifr

U = 0, the derivatives of the state variables are depend-

ent. Hence there exists a # 0 such that aTk = 0, and

hence

aTAx + aTBlu = 0 (A.2)

Since the state variables and inputs are linearly depend-
ent, (A.2) requires aTA = 0 and aTBl = 0, and the network
1s uncontrollable by Theorem B.i.

We should note that the use of U = 0 is not restric-
tive in any way. The eqguations are valid for all u. We
simply choose this particular case in order to find a con-
dition on the system matriqes which are independent of

the form of the input.
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The inductor-only loop case follows in a similar
manner by considering Kirchhoff's voltage law for the

loop.

Theorem A.2:

An RLC network, in which edges ®r the output vari-
ables are included in the network graph, is unobservable
if it contains any capacitor-only cut-sets and/or inductor-—
only loops.

PROOF:

Consider a network having a capacitor-only cut-set
as shown in Figure A.1. It is sufficient to show that the
network is unobservable for a particular input and a par-
ticular initial state. Choose the input u(t) = 0. Then
the capacitive twig voltages and inductive link currents
of a normal tree yield state equations in the normal form.

We now consider a specific initial state and show
that it is also a solution of the state equation. The
initial state is specified as follows.

At least one of the cut-set capacitors is a twig
in the normal tree. Assume C, with the cut-set reference
defined by the voltage of C,, 1etzvcl= K,K>0, and let the
other cut-set capacitive twig voltages be equal to K if
their reference is the same as the cut-set, and equal to
-K if the reference is opposite to the cut-set. Let all

other capacitive twig voltages and inductive link currents
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be zero.

When we say that this initial state is also a solu-
tion, we require that the values of the state variables
remain constant for all future time. We must therefore,
modify the specification of the state previously given by
replacing equal by identically equal. To show that this
state 1s also a solution, we must prove that Kirchhoff's
voltage and current laws and the element voltage-current
relationships are satisfied.

From the proof of Theorem A.l, we know that all cap-
active links must be in capacitor-only loops and their
Voltages'are linear combinations of the capacitive twig
voltages. Capacitive link voltages in N, or N2 which form
loops entirely within these sub-networks must be ident-
ically zero by KVL. Capacitive link voltages.in Nl or N2
which form loops containing any cut-set capacitive link
voltages must also be identically zero since the loop
reference agrees with and disagrees with the cut-set refer-
ence an equal number of times. vCut—set capacitive 1link
voltages must be K if their reference agrees with the cut-
set reference and -K if the reference is opposite to the
cut-set sincevthe loop, which has reference the same as
the capacitor voltage, contains ah odd number of the cut-
set capacitor twigvvoltages. Similarly, since all inductive
twigs are 1n inductor-only cut-sets, all inductor currents

are identically zero.
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We have shown that all capacitor voltages and
inductor currents are constant. Hence, the element rela-
tionships demand that the complementary variables, that
is, inductor voltages and capacitor currents, are iden-
tically =zero. |

Because the cut-set capaciltor currents are iden-
tically =zero, N, and N, can be considered as two separate
unconnected networks. Furthermore, they essentially
become completely resistive and, hence, all voltages and
currents are identically =zero, automatically satisfying
Kirchhoff's voltage and current laws as well as Chm's law
for the resistors.

Since x(0) is a constant non-zero solution ,
x(0) = Ax(0) = 0 and, furthermore, any responses in N,
or N, are identically zero. Thus Cx(0) =y = 0. The
network 1is then unobservable by Theorem 3.5. A similar
discussion applies for the case of inductor-only locops.

An interesting aspect of this theorem is that it
gives a method of constructing an eigenvector of a zero

eigenvalue of A,



FIGURE A.1

NETWORK CONTAINING CAPACITOR ONLY CUT-SET
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