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In this thesis the controllability and obseryability of
RLC networks are j-nvestigated. The systematic formul-ation of
the stete eotr2f i6ns fOf RLC networks - wi th e.ânâci toi- r¡n'l l-ô-^õvrvrrÐ rvr tLlv vrrLU, vvrvr¿ vqyqvrvvr V\J_LUd.Bgù

and inductor currents chosen as state variabres. shows that

controllability and observability must be extended to include

improper systems if all cases are to be considered.

Sufficient conditions for controllability and observability,
based upon the position of input and output ports are derived.

It is shown that if a current source is placed in'oaral-le] with

each capacitive twig and. a volLage source in series with each

inductive fink, the network is always controllabfe. similarly,
if an output voltage is measured across each capacitive twig

and an output current is measured in each inductive rink. the

network is al-wavs ob servab le .

Sufficient conditlons for uncontrol]abilit.y and unobserv-

ability of networks with zero natural frequencies are also

given. Specifically, if a network, in which edges have been

included for the output variables, has capacitor-only cut-sets

and/or i-nductor-only loops, it i_s both uncontrollable and

unobservable.

A method of using transfer functions of a normal_ form

system to test for controllability and observability is given.

Topological formulae for a hybrid n-port are derived and used

to examine the controll-ability and observability of an RLC net-
work. An example is given to illustrate the procedure.
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desirable. Some work in this area has already been done

by Narraway t6l. He has shown that certain network topo-

logies, sp€cifical1y, capacitor-only cut-sets and./or induc-

tor-only loops are always uncontrolfable. He has also
proven Ehat it is possible for cR networks containinq

capacitor-only cut-sets and LG netrn¡orks containinE inductor-
only loops to be unobservable.

The maj_n pllrpose of this thesis is to obtain topo-
logical criteria for the control-lability and observability
of RLC networks.

In Chapter II we introduce the basic concepts of
controllability and observability and give the standard

methods of testing normal form systems for these properties.
a sr¡q j:am¡J-i n formuf ation of the state equations for RLC

networks is then given. This shows that normaf form sbate

equations are not always possibl-e if the choice of state
variables is limited to physical voltages and currents. The

tests for controfl-ability and observability are then extended

to include the improÞer case.

We begin Chapter III by showing that it is always

possible to make a network controllable and observabl_e if
complete freedom is given in the placement of input and

output ports. A seb of theorems then shows that s¡zstems

with zero natural frequencies are uncontrollabfe or unobserv-

able if the inputs or outputs are such that B and c. in
the state equations e satisfy certain conditions. These

2



theorems are then applied to RLC networks, and physica]
interpretations of the conditions imposed by B and c are
cri r¡an

rn chapter rv we show that certain transfer func-
tions may be used to test for control_lability and observ-

ability. A theorem is given which shows that cancella-
tions made in deLermining these transfer functions do not

lead to i-ncorrecL resufts. A derivation of the topol_ogical

formulae for bhe hybrid parameters of an n-port is al_so

given. The chapter concl_udes wj_th an example in which

the control-lability and observability of an RLC network

is determj-ned topologically.

?



CHAPTER II
CONTROLLABILITY AND OBSERVABILITY

AND ITS EXTENSION TO IMPROPER SYSTEMS

Thi s

nh -i I i 1--' ^ñ,'laurJI uJ c],lILl

s.r¡q. t.am Tho

netlvork and

chapter introduces the concepts of . control_l_-

observability of a linear, time-lnvariant
forruufation of the state equations of an RLC

svstems r^rhôsê StAte

also presented.

Cnnr.enfg and

theorv mar¡ hê found

and for linear graph
-^-Chan Lö1. Standard

1- l-' mnr, æh nr,l-v¿rr vqórrvuv.

some new theorems applicabl_e to networks or

equations are not in normal form are

tor-mi nnl ¡crr¡ ?ãçJAl"di no I i noqr, qr¡qf omr ut)ur uf rlb rJrru4r ÐJ D vçtlr

in Chen t5l or Zadeh and Desoer [t],
J-l-ra¡ærr ¡'r Qochrr ¡nj Raoj lTf O1rJ rri uuÐr¡q ol¡u rLççu t

mathemaLical symbolism is used

2.I CONTROLLABILITY AND OBSERVABILITY

The state variable representation of a system is
in itsel-f a very powerful- tool- in systems anal-ysis, but

it al-so l-eads to the very interesting qualitative prop-

erties of linear systems known as controllability and

nhqorr¡ohi-l i +.¡¡. These dual concepts owe their origin tov svrar vJ . rrr9Ðu uuql

R.E. Kal-man 1213,Ll), who was the first to correctly answer

the question: "Can any initial- state of a given dynamical

system be transferred to any desired s,í;ate in a finite
length of time by some control function?rr observability



asks: 'rCan the state of the sysbem be determined from a

knowledge of ihe control and output functions over a

fi ni J- a ''l anæ]_ 1-, Of time?rt The Studv of nô-1_ nnt I ct-ri I i +\,r¿rr¿uv rurróulr vr url[ç¿ f lrv u vuuJ vr uvr]ut'ul__Ld,urr_Lt/y

and observability answers these questions by giving neces-

sary and suffici-ent conditions which are dependent upon

the system parameLers.

Consider the normal- form state equations

y = Cx + Du (Z.f¡)

where ArBrC and D are nXn: nXrt: exn and qx¡ constant mat-

rices respectively, x is the nxl state vector, u is the

mxl- input vector and y is the qxl output vector. The

f^-l-ì^,.,ihæ 1^^^rr vr¿vvv1116 ,ooic definitions are adapted from Chen t5] .

The state equation ( 2.la) is said to be completely

state conLroflabl-e if, for any state *o at time 0 in the
nef ¡f ô qnâôô q-' i'lnr>¡-ø owi c tg a f inite time t >0 and an, vltçf v g^rD uD a r rIlI vg uf 

I

ì6ñ"+ .' +1^^L --i f I !-^^-^ ^ô-r_nput ürn I I that will transfer the state x^ to the zeroLU,1,1 _.1 o

state at the tlme L 1 . Obherwise the equation is said to
be uncontrollable.

The dynamical equation (2.I ) is said to be com-

n-l^f^-l*' ^+^r^pr-euery srare observable if , for any state *o à,t time O

in the state space Sn, bhere exists a finite time trtO
such that the knowledge of the inpub urn + I and the out-

Lvrt, ll
put VTn + I over the time intonrrrr l-n t ] suffices to

¡-:-1r L"t"l

determine the state *o. Otherwise the equation is said to

Ax+Bu

q

(2.la)



be unobservable.

These definitions are of littfe use in actually
testing a system. A complete set of theorems has there-
fore been developed to simplify the procedure. The most

commonly used methods, which are given in Chen [5], are

now stated.

The state equation (2.Ìa) is completely

state controllabfe if and only if either of the following
equivalent statements is true:
(a) The controflability matrix e has rank n.

a = [B,AB at-tg]

(b) The rows of (sI--A)-1g are linearly independent over
T-L

the field of compfex numbers.

The dynamical equation (Z.l) is completely state
observable if ancl only if either of the following equiv-
alenL statements is Lrue:

(a) The observability matrix P has rank n.

p = TnT nT.T oT(n-1).T.LU :A U t.".tt1 U J

(b ) The columns of C ( sI.^;A) -1 
""u l-inearly independent' n'

over the field of complex numbers.

Tn most of the literature the adverbs "completely"
and rrstatett are dronneri enrl the properties are simply

referred to as controll_abitity and observability.

6



2.2 SYSTEI4ATIC F'ORMULATION OF THE STATE EQUATIONS FOR
RLC NETI^IORKS

The assumption of a finite dimensional_ sysLem for
which state equations exist is implicit in tiri-s development

of control-fability and observability. rt is therefore
np,rlon1- ra ^^termine the conditions under which such e.-rrâ-yr 4svrr vv vvr rrrrlru v¡¡ç uvrruf, uf urlù uItuuJ-' wIll-uIl 5uull gqud._

tions exist" Bryant t9l has shown that the state vari-
abres for an RLC network with independent sources may be

chosen with the aid of a normal tree. A normal tree is
defined as a tree having as branches al-f of the independent

vo-Ltage sources, the maximum possible number of capacitors,
the minimum possibl-e number of inductors. and. none of the

independent current sources.

Following a procedure similar to thaL given by

MarLens l10l and Balabanian and Bickart [11], the state
equations can be constructed in the foll_owing way. Con-

sider a normal- tree . Ki-rchhof f 's current and voltaee l-aws

partitioned with respect to Lhe normaf tree yield

7.

KCL: QI = l-O ^.Ul- " -t'

where the subs cripts t and .R identlf y twig and link vari-
ables respectively. Because the subspaces associated with
B and Q are orthogonal lTf, that is, egT = o, we have

KVL: BV = [U,Bf ]

F"ltlf'l
t"i
LC

çz.za)

(2.2b)



TBo = -a- Substitution of this
II

and the element relationships

into equation (2.2) yj-elds

T7 ry T T _ \Z T7

'L oLtL tL ttut

If we partltion this equation and use Martens' notation,

where the subscripts VrCrGrf ,IrLrR and S denote twig:

voltage sources, câpacitances, conductances, reciprocal
i ndllel,anr:cs ' link: CU1.1. ent sollrces - i nflllct¡nnes r.csi r1--vurrveu, r vfrv Ðvur vço, ¿l¡suu uGljvçù, I çùIù u-

ances and elastances " we obtain

l'r 'il l'lln' 'C l-uC

orthogonality condition

\^ o o opv.

B.

0 R. 0
v.

0 0 þLn

000

(2 .3)

t^
| -rd
I
I

Ir-8
t-
I
I

i-a
I

I

| -k¿
I
j---
l^
lu
I

I

I^
IU
i
Ir0
I

I

IIn
t-

Qvs Qvn Qvl Qvr

Qcs Qcn Qcr, Qcr

T
VS

T
VR

T
VL

T
VI

rll
rìf 

^-ocs u

rìT ^T-kúnn -húnnUñ LrfT

/ìT ,-'T-ocl- -qGL

/rT ^T-ocr -oGr

(2.4)

o Qcn Qcr, Qcr

0 o Qrr, Qr r

whei.e n is the differentiaL nncr-etnr.y vIJUr øvvr .

0

0

^T-ofL

rìT-of r

0

pc.
-tJ

0

0

0 0

Gto

oþ'

= 0 (2.5)



El-imination of the

and IO produces the state

["f F;Ì ' 
-l 

[',, ',u| ['f F;l , I |",,*Hrz n.3 
.l 

[',-J

þ"._l--L' ';l ["T, 
H4f 

t".] 
-l_' 

'rl [ -nT+ 
"i,.'i,.J L""-J

l-l i rF m lt-l l- -l r-l
lut l lotir*ni, Hzu 

I ltt I lotrr*'r, Hz3 
| ltt Jl- l=l --r ll l+l r ll I

l_'"1 t -Hi¡ Pe rz*H3t_l l_"'l | -H)z psrr*H311 
["-]

undesired variables V^.V-.I' G', ' l''-s
equations in the following form:

where

T ^ _TLtt=Ls*Qir,LtQrr=tir

- ^T _ ^ -T
"22=afr'tQfr="zZ
t1 -.\^^T-^T"rr qvs'.q,wvs tl1

e zz = Ct*Qcsauaä= = ,'r,

o

Y ^ ,^ ^ ^Ttt'wcRt.q,wGR =

,^T
^.0-aGRñtaGR 

=

T' -loGL' oGL

T -I TIocr' *Gr

-^T
"rz = qfLttafr

Iftt -r -l
af

aa

(2 .6a)

^-^ñ^T9¡ ¡ - W.roU^k{^_t¿ vò x, f/ò
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"33 ovR' *vR

(2.6b)
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10.

-oïr*aärv-ro.ocuo$o

-aär*aärt-lq*ncnaäo

-tTTT 
- 

A O L^Lt34 - *VR' qCR

positive definite and hence

Tf

"t3 = -aïr*aärv-lqcocuaïo Hzu =

T' -lHtz = aälY 'Qcr

Hr4 = -aär*aä"t-tqoocuaäo

l-r n -1

| "i2 " It--tI o cT.l
I tal

Note that ÇZZ and La, are

nônqinørrlqr.+¡¡Õ\44s+ .

If we further define

I nrr nrul
Hr = 

!"iu ,r,*,ri

tt2

H" = [nÏr "'l" 
L-"T, n, uj

Itrt o-l

^. = I I' I o errl
r- --J

l-¡ n -l
I brn u I| ¿¿ |/\ =l I' I o ^--it_ . tlj

(2.7 a)

l- 
"r, "r3J

l--niu "i,l
f 'r, "e:ll"'-l
[nãr n¡¡_]

r'l
L""l

'",Ël -Â,-'^,,[;f

_t

^r 
- lp^r+Hr)

bhen equation (Z.e ) ¡ecomes

ut, 
2

TT -Ii'l
t'c
tT It-T I

l"l
Lu'l

TJ

-t
-/l 

ñ
t1

-A-'1

l={pl 
I

lI.-i

I
¡! I



i"'l
L'"1

= [Hu-n]n;lH,1
f'"-lI l+l-tttl

t"'l

It may appear at first that, by choosing the out-
puts as the complementary variabl_es of the inputs, we are

not considering the general case. This, however, is not
J-¡rra Tl1 Fa- avnmnl ^ ...^.^+ -^ri ^ur uç. rr , r uf example, I^Ie want a particular node-pair

voltage as an output, we can simply put a current source

between those two nodes, then write the state equations,

and, finally, 1et the val-ue of the current source be zero.

The voltage response at those termlnal-s is then the desired
arrf nrr# ..a-i ^Lour,uur, vartaol_e . One must be careful, however, that con-

trollability is not being investigated at the same time

since the removal of some of the sources in the method

described could l-ead to erroneous results.
The state equatlons of an RLC network with independ-

ent sources can,thereforerbe associated with the general

form

+ l-^-
-J

Fr -lt*Tl

-lln;]n,:n I 
t 

I

Y"l

rlr 
--t-^-^ *H 'l

4 2 7 2- rl
t""l

11.

(2.Tb)

This improper form reduces to the

form when there are no inducbor-current

Ax + B.u + B_ùtz

ux+uiu+u2uy=

( 2. Ba)

(2.8b)

standard normal-

source cut-sets



and no capacitor-voltage source roops. This can be seen

by observi-ng that, if QfI = 0 and QU, = 0, then Lr, = 0,

hZZ = 0, Çtf = 0, and ÇtZ = 0, and therefore

Lz = 0 and 
^3 

= 0

2.3 qQITROLLABILITY AND OBSERVABILTTY OF IMPROPER EQUATIONS

The possible occurrence of the

tlons in improper form as in (2.8) is
A simple transformatj_on

z=x-Bzu

can be used to give a nebr set of equations

in a pseudo-normaf form.

The source derivatives have been removed. from the

state equation but not from the oubput equation. This,
however, is not resbrictive since the output equation is
onry used in observability studies, in which case the

inputs can conveniently be chosen to be identically zero

and the equation can essentialry be considerecl in normal

form.

L2.

z,- Az+(ABz+Br)u

y=Cz+(CBz+Dr)u+Drù

svstêm sf.nf.a êñrrr-vYqu-

of some concern.

If we can show that controlfability and observability
are invariant with the transfor-m:ti nn ( ) .9) , then we can

use (2.10) to determine the eharacteristics of the physical

(2.9)

ç e. roa)

(2.10b)



state variabl-es of (z.g). The rest of this section is
devoted to this issue.

Lemma 2.1:

The sofution of i

A+x(t) = e^'(x(O)-Bzu(O)) +

PROOF:

It is well known t5l that the solution of equati_on

(2.Ia) is

^+ ¡t ^t+ -\x(t) = e^ux(o) + f ""\t-r) Brr(t)dr
io

ö

tt
I)o

The solution of ( 2.10.a)

^fz(t) = e^"2(O) +

x + Bru + 82ù is given by

^ 
( 1- -\e^\ '- " (AB2+Br)u(r)dr+Bzu(t)

However, z = x

equation yields

f1

Lemma 2.2:

If i = Ax + B,u + Brù (2.8a) is conLrollable,then
u¡rçaç Ç^_Lòuù, for any xr in S", a r[O,,,] with u(0) = u(T)

= 0 , such that x(0) = X' and x(T) = O

PROOF:

is

¡t
Iio

- Bru, and substÍtution
the desired result.

Lhere fore

A ( + -\e^\'-"(AB2+BI)u(t)dr

t{e will show how

the required condltions.
posibive number and let

into the previous

to construct

Let Tr be

'lo,Trl = o

â urn mr satisfying
lvrl I

an artibrary

. Then



hr¡ T,cmm:21 X

is controllabfe

sue-h f.hai. xlT )r\ \ L 
2 /

ìr = n rF*T.n rnl u, I

in the zero sta

(n
.I

I
5v

=

Afn
) = e^'lx( o)

here exists

0 with x(Tr)
qnrl f -ì ni J_ oz *,^*

thereafter.

>T
1-^Ug

a
I

\)I
t

IL

transfers any initial- state xr to the equilibrium state in
finite time T with u(0) = u(T) = 0.

Note that the lemma is equafty vafid if B, = 0,

bhat is., if we have a normal form system.

'Io,T] =

^T-= ""-'"r. Next, slnce (z.Ba)

ûr, T r, Tr r T, and finite,
Lt l tt 2)

AT.= e'-- 1x r . Finally , 1et

, and the system will stay

Therefore the input

û(r),
0,

T I <t1T2

otherwis e

Theorem 2.L:

The control_l_ability and observability of the dyna-

micaf equaLion (Z.A) is invariant under the transforma-

tlon (2.9) .

PROOF:

r4.

We wil-1 first show Lhe invariance of controll--
abitity. If ( 2. Ba) is controltabì-e, Lemma 2.2 shows that
ther.o or¿i qte f r^¡r ân\¡ w i r tnur¡eru v^rouù, -Lrr' o,rrJ ^1 _rrl S--, â uIOrT], T finite and

u( o) = u(T) = O, such that x( o) = x, and x(T) = 0 , br-rt

z(O) = x(O) - B2u(0) = x(o) = xl

z(T) = x(T) - Bru(T) = x(T)

and henc" ,IO,T] Lransfers z(0;=*,
( 2.10a) is al-so conLrollabfe. The

to z(T;=g proving that

converse fol-fows by



reversing the procedure.

The invariance of observabiriLy is easiry esta-
blished. Since observabitity is inrr¿¡1¿¡rt uncler the snec_

ific input used, let u(t) = 0. Then both equations are

1n normal form and in fact are identical. rt then forlows
that, if one is observable, so is the other.

we can now define controll-ability and observabi-lity
maLrices Qt and Pt respectivery, for improper systems and

give some appropriate theorems.

Theorem 2.2:

The state equation

state controflable if and

matrix Qr has rank n.

tÃ

PROOF:

From Theorem 2. r we know that ( z. Ba) is contror-r-
able if and only if (2.10a) is conLrolfable. However,

(2.10a) is controllable if and only if the rank of Q is n.

Q' = IABr*8,.,A'Br+ABr otBr+An-tur]

( 2. Ba) is compteLely

only if the conLroll-ability

\.¡le immediately see that a ancl Q' are identical and,

therefore, (2.8a) is controllable if and only if the rank

of Q' is n.

The dual- theorem for observability is given next.

nr¿ IAB2+B1 rA282+AB ], . . . rAtBr+An-18, J



Theorem 2.3:

The dynamical equation (2.8)

state observabfe j_f and only if the

matrix P t has rank n.

PROOF:

The proof folfows dj r,.arl r¡

the proof of Theorem 2.I.

We have now developed at1

to study the controllability and

proper and improper systems.

Tr rn rF m(^ I \ rrrpt = ta'- 
^-a' ^a\11-L-,/nL1v ,Ã v ). . . )-H. U I

Í c narmnl oto'l r¡-",,,1ì,

r¡l-¡qanr¡qhi'l i 1_r¡

10.

from the discussion in

of the necessary theory

observability of both



CHAPTBR III
TOPOLOGICAL CONDTTTONS ON THE CONTROLLABILITY

AND OBSERVABILITY OF RLC NBTI^IORKS

controÌ1ability and observability of an RLC network

may be tested by use of the theorems given in chapter rr.
rn this chapter, w€ show that this approach is not always

necessary if the topology of the network is known. suffi-
cienL conditions for controlfability and observability in
terms of type and pracement of input and output ports are de_

rlved. sufficient conditions for uncontrollability and un_

observability of networks having a zero eigenvalue are also glven.

3.1 SUFFICIENT CONDITIONS FOR CONTROLLABILITY AND
OBSERVABILITY OF RLC NETWORKS

rf we are given an arbitrary system with complete

freedom of access to all system variables, the question

arises: 'rwhat are the conditions under which the system

is always controllable and/or observable?rl A cfose exam_

ination of bhe control-labi1ity and observabiriLy matri_ces

of a proper system shows that, if B has rank n, the system

is controllab]e, and, if c has rank n, it is observabfe.
rn the improper system the equivalenL requirements are that
AB2+8, and C have rank n"

These controltability specifications imply that a

particular source distribution wilt always make the system

control-l-able. For RLC networks this situation has a simpte



solution as shown in the next theorem.

Theorem 3.1:

An RLC network with indenencientrrruvì/vrruuir u

trollable if there is a current source

each normal- tree branch capacitor and

series with each chord i-nductor.

PROOF:

Cons ider
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transpose of the right hand side of equation (2.5) is
no I onøei. 7.ê11() bUt beCOmeS f aì T T .ì^^..ì F ¡F mrrv rvr¡óur ¿çr ù but l¡ecomes L0 Jc* 0000 EL' 0 ]- Equation
(3.3) then becomes (pAr* Hr)x * FIru $ pAru = v or
on r r ì r¡q I on t I ¡¡v u¿çr¡ erJ

-l I -lpx = -^1 * FIrx-L^r 'H2,-L, ']

We now have a new network, defined by equation (3.4)

which meets the specifications outl-ined in the statement

of the theorem. The first term in the controlfability
matrix Q' is

AB - +B = -,\ -lH [-^ -1lt o I + t-A -]-rr n -f r-'-2 1 --1 --f L "1 rL2)vJ r L-lrl rI2rlll J

_ T^ -l-,, n -.1 -l -1-= L1\l -HrÂ, -Â, - Â, tH2r^t -]

. -tbecause A, * is an nxn nonsingular matrix, the rank of
ABr*8, is n, the rank of Qt is yr, and the network is con-

trollab l-e .

The result given in this bheorem ignores what woul-d

appear to be a simpfer method of obtaining complete con-

brollability. That would be to put a vottage source in
paralrel- with each twig capaciior and a current source

in series wibh each link inductor so thab the capacitor
voltages and inductor currents can be manipul_ated directly.
such direct conLrol is indeed posqlble. However, the state
equations previously wrj-tben for the network are no longer
valid, since the capacitor voltages and inductor currents
no longer qualify as state variabl-es. This is easily
demonstrateci by the f act that each new vor tase sôìrrce in

Þl
L]/J

- ptÂr-1

io

/\r,or F]
(¡.4)



the network must be put in the normal tree and hence the
capacì-tor in parall-e1 must be excf uded. similarly, al1
inductors in seri-es with current sources are no longer
chords of Lhe normaf tree. The control of these non-state
variables is of little interest.

The observability specifications, oo the other
hand, imply that a special- seL of output variables will
always make the system observabl-e.

Theorem 3.2:

An RLC network with independent sources is observ-
abl-e if the output ports are chosen so that there is a

voltage port in parallet with each normal_ bree branch

capacitor and a current port in serles wiLh each chord

inductor.

PROOF:

since r¡re are directly observing each staLe vari-
able, the Theorem is obvious.

20.

3.2 CONTROLLABIL]TY AND OBSERVABIL]TY OF THE ZERO NATURAL

rn the previous section we derived sufficient con-

ditions for the conLrollabllity and observability of RLC

networks. These conditions were in no way rel-ated to the

structure of the source-free system. rn this section we show

tlrat given an a priori knowledge of the exisLence of a zero

FREQUENCY



nalruraf frequency in the system, necessary conclitlons for
controllabilì ty and observability can be clerived. lrle shal-1,

however, find it more convenient to obtain sufficient con-

ditions for uncontrollability and unobservability rather
than necessary conditlons for conLrollabitity and observ_

ability. Consider now the foll-owins theorem:

Theorem 3.3:

The state equatlon (2.8a) ls uncontrollable if there
exists a non-zer o vector a such that, aTA=O, uTBr=0, or
equivalently, if the matrix [ArB 1] has rank l-ess than n.

PROOF:

From Theorem 2.2 the equation is controllabfe if
and only if Q' has rank n. ff there exists a / 0 such

TTthat a'A = 0 and a'8. = 0 then )

rTe, = [uT(aerr Br), aT(R2Br+ABr),...,uT(Rter+Rn-fer)J = o

2r.

Thereforerthe rows of Qt are dependent,proving that the

rank of Qt is less than n and the equation is uncontroll_-

h/e now show the equivalence of the two conditions.
TTTìIf atA = 0, a-8, = O, a / O, then a'¡A,BrJ = O and there-

fore the rows of [A,Br] are dependent, clear]y showing

that the rank of [ArB1] is less than n. The converse fol--
lows by reversing the procedure.



Corollary 3. f:

The state equal,ion ( 2.1a)

exists a non-zero vector a such

lently, if the maLrix [A,B] has

another equlvalent condition is
dependent.

PROOF:

The first part foltows directly from Theorem 3.3 ¡y
noting Lhat if Br=0 and Br=B equaLions (Z.fa) and (2.8a) are

idenbicaf.

To prove the second part, observe that if aTA=O, aTB=O,
Tr.alj, then a'x=O and bherefore the i.,i=rrz:... ¡[ are dependenL.

The converse follows immediatery by reversing the procedure

after noting that u and x are indepenclent.

some comments on this theorem are now in order. First
we see that A is singular and hence musL have one or more zero

eigenvalues. Furthermore r a is an eigenvector of AT assocj--

ated with the ze?o ei Eenr¡a'l-ue. It is well- known 1n circuit
theory that the observance of zeyo eigenvalues coincides with
the occurrence of capacibor-current source cut-seLs, capacitor
only cut-sets, inductor-voltage source roops and./oy inductor
only roops [11]. Half of the conditlons of the theorem are

therefore satisfied in any of the preceding situations. The

other condition is dependent upon the source distribution and,

in fact, it is shown in the next theorem that the inclusion of
capacitor-current source cub-sets and./or inductor-voltaee source

is unconLrol-lable if there
TTLhaL, a'A=Q, a-B=0, or equiva-

rank less than n. Furthermore,

Lhat the i* ,i=I12 r. . . ,n area-

)2



l-oops in the network is sufficient for aTB, = O.

'1'neorem J. 4 :

An RLC network is uncontrorl-able if it contains
any capacitor-only cut-sets and/or inductor_only loops.
PROOF:

If there is
rel-ationship exists

I^rhê 'l1ê a*t

be in the

êñrrâ'l-ì nn

- T T-
Lol tdZ J

I O cinno â. "t

normal tree
fr-nm llhrnl-onvrrsIJ ve¿

- T T-
lôLGI >42 J

a capacitor-only cut-set the fol-lowine

between the capacitor currenbs

l-r It*rì || "llr I = o

L "_t

t least one

TT^-.'-- +L. uù_Lrró u11

II we obta

However, since the chord currents of the norma] tree are

linearly independent variabl_es.we must have

l--n"lu

of the capacitors must

e fundamental cut-set
in

or equivalently

-T ^ Td] qcn = u' al

-Qcn -Qcr,

- .1. T_
Lot td2 I

Now consider

tï |

^ 
-'l I ùl-ocrl lr,lll"l¡tT I0 J l-Ll

lrr IL_J

[-n.t
Ilu

_(:) _o*CR *CL

Qcl, = o, urTect

= [o, arTerrl

-qcrl
I =o0l

o, urTecs - urT

Because âr I 0 and €r,



1S nonsingul_ar, à l0 Then

frI r -I
Tr rn l-"rta'A = [0 rar-Çrr) 

|

LO

f c Tr"T ^ T* ILo1 "14, -d-t "44i

Als o

= [a't{-Q.r*Q.ocuaäoY-lQcl), -urt(Q.oz-lqäo) r

o Ili'' n'ul

-,;l l_-"ïu "url

T_â bt =

=

-T
L0 ra,'0.-,1'aa

tu.tnïq , -a,tn]ul

Therefore, the network is unconLroftabfe by Theorem 3.3.

24.

i- -'r -'l f -'l

l-tri o llHtz "rqll.ll--l
L 
o -,;))l_-nïu 

"i,.1

= [a'r(-Qcr+Qcocuoflov-tn*, ),-a,t{Q.or-10$ol I

The proof for inducLor-only loops follows the same basic
procedure but uses the loop equatì-ons instead of the cut-
set equations.

Another way of stating this resul_t is to say that
cOntroll-abilit.v rênnir-oq r:nat there must be at least
one current source in each capacltor cut-seL and aL

least one voltage source in each inductor loop. The

exact number

undetermlned.

bound on the

of sources needed in either case is still
Theorem 3.f, however, places an upper

number required.



An al-ternate proof of rheorem 3.4 has been given

in a recent paper by Narraway t6l. The method used is not
based on the general- system theory results developed here,
but follows from a physicaf argument depending on the con-

servation of charge and flux linkages.

l{e nor^/ turn our attention to observability and pre-
senb the following theorem

Theorem 3.5:

The dynamical equatÍons (Z.I) anO (2.8) are unobserv_

abl-e if there exists a non-zero. vector a such that, aTAT = o,
T ^T rft rfìa*C* = 0, otr, equivalently, if the matrix [At,Ct] fras rank

l-ess than n.

PROOF:

From Theorem z "3 the equatlons are observabre if
and onl-y if P = Pr has rank n. rf there exists a l0 such

that 
"TAT 

= O and aTCT = O. then

2q

uTP = uTp, = ¡'TAT, uTATcT

Therefore the rows of P are depend,ent proving that the rank

of P is l-ess Lhan n and the equations are unobservable.

To show the equivalence of the two conditions, con-

sider the following:
Tn ^T^T ^ T-T r- T T--Ll' a-A- = 0, a-C- = 0, a l0 then a'[A',C'] = 0. F,urther-
more, the rows of [aT,cT] are dependent and hence the rank



^ -^T ^T-01' LA-,C-J is l-ess than n.

i nE the nrocedure.

Application of this result to RLC networks yiel_ds

bhe followinE theorem:

Theorem 3.6:

An RLC network, in which edges for the output varj_-

ables are included

if it contains any

only loops.

PROOF:

If there is

The converse fol_l_ows by revers-

+t^ñ+lJ¿ vVcù UIId.t/
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= [u,r(-Qcr+Qcocuoflov-]Q*r), u,t(QcnZ-toflol I

Ia,r( -Q."+Q.ocnoflov-tn.r) t;l L12,u,r(a.or-tqäol er]elr:

Therefore the network is unobservable.

The proof for lnductor-only loops foflows the same

basic procedure but uses the loop equations insLead of the
ñr'+ ^^+ ^n"^Èjcuu-ser equatl_ons.

An al-ternate statement of this theorem is as fol-
l-ows: A necessary condi-tion for observability is that there

is at least one output voltage in each capacitor cut-set
and at least one output current in each inductor loop.

Theorem 3.2 yields an upper bound on the number required.

Theorem 1.6 also represents a considerabfe gen-

eral-ization of a theorem given by Narraway t6l. He proved

that there exists a C / 0 such that RC and LG networks

containing zeyo eigenvaJ-ues are unobservable. He does

not interpret bhe meaning of the C derived. I¡le have

shown that the restriction to two element type networks

is not necessary and have essenLially given a C I 0

which makes the network observabl_e.

Al-ternate proofs of Theorems 3.4 and 3.6 are avail-
:hl o -ì n Annonrli v A rll¡or¡ afe Of intefeSf. qi nno lhor¡ fOll-OWf vD v oI¡¡vu uItçJ )

from the basic system theory results developed here but

do not require the symbolic formul-aLion of the state

4.7



+.i ^-^çq ua ururlù .

In addition,

iated with a

T-^f ^^r -i**le nhr¡qinçlr11ùUCd.U, ò_LIjIJI_

a method of constructing

zero eigenvalue of A is

âl-o"llmontq trô rrca¡lqf 6urlrultuù qa E uòuu.

an eigenvector assoc-

øi rzon

28.



TOPOLOGICAL CRITERIA FOR CONTROLLABTLTTY AND

OBSERVABILITY VIA NETWORK TRANSFER F'UNCTIONS

The formulation of the state equations of an RLC

network is often a l-abourious bask. 0n the obher hand.

the determination of network transfer functions is gener-

ally much easier. The establishment of controllability
and observabiliLy woul-d therefore be simpler if bhese

transfer functions could be used instead of the conven-

tional- P and Q matrices. The purpose of this chapter is
rn rlorro-ì nn crrnþ a method. Topological f ormul_ae are given

for the appropriate transfer functions and some examples

âFê npêaonfa¡l
v! vv

CHAPTER IV

4.1 CONTROLLABILITY AND OBSERVABILITY FROM NETWORK
TRANSFER FUNCTIONS

The method to be devel-oped in this secLion util-izes

the normal form state equations of the system. The pro-

cedure is, iherefore, restricted to those networks whose

physical staLe variables occur in normal form state
+i ^-^ mhi s I ack ofl crênêl"âl i tr¡ i s, eelrs.od hr¡ tho Ieclua ulor_rs . -r'r-_- gen-

eration of non-physical state variabfes in the process

of transforming an improper system into normaf form.

Such abstract state variables cannob be used in the trans-

fer functions of the network. In the foll-owins discus-

sions, we therefore limit our analysis to networks having



3o '

no capacitor-voftage source loops, and no inductor- currenL

source cuL-sets.

The method for controtfabitity uses the numerator

matrix of the transfer functlon matrlx from the inputs to
the sLate variabl-es. This transfer functlon maLrix can

be obtained from the state equations: R (s) = (sI -A)-]e-]n
t_= õC";Ladi ( sIn-A) lB .

The followlng theorem is a consequence of the con-

trollability matrix and the use of F'adeevars Method tll;
(also calted Souria-Frame Algorithm tll).

Theorem 4.1:

The n-dimensional, linear, time-invariant dynami_

cal equation

Y=Cx+

'iq n^mnloi-olr¡ SLate

Ax+

has rank n, where the set of matrices {H. }, i=0, l, . . . ,tr-f
are obtained from

Bu ( 4. ta)

Du (4.1b)

controll_able if and only if the maLrix

!-t!
Lrl

-t

Fl(s) - fI s-- * +
o

PROOF:

HH-]
^r^^1, ìJV - II_I

n-2flrs" * +. . .+ Hn_2s +

F-nnm nror¡i arrq ô^nairloncl-innc ulvf¿Ð

Il.,_t =[ad¡ ( sIr.,-A) JB.

we know that the



equation is controllabfe

matrix has rank n, that
tr^r -î-PLWI = PLfll.

P^cfñrrl.f.inlr¡ ll hvrvoulrrurufIJrJ bú uJ a

if and only

r" p[Q] = n

d_ r
IM

I
m

0

n
1L

d^r¿m

d_r
_Lm

I
m

0

if the controflability
. I¡Ie wifl prove that

ñ^hñi n¡'rr_l ¡-rlvrlòrl16qrGI

where I is
m

is a set of

= p [Q] and

pLH-l = n

R of the form:

?'l

dT
n-L m

rlTn-¿ m

dT
n-< m

J ttL

d-r1m

I
m

an mxm uniL mat

real- consLants.

thr= ên nâ1.i on is

lTwnanc ì nn ^f eR yieldS

LI1l

rix and {d. }.- a- -

Let H = QR,

controllab le

[8, (A+d]rm)8, { (A+Orrm)A+drrr}e

i ( { (n+olrm)A+d2rm}A+. . . ) A+dn_lrm}Bl

i=l 2 n-f**'+,

then p[H] = p[QR]

if and only if
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-rn-f

B

0
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0

0 ...
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[TorTr r... rTrr-]_]

0

:

0

B



and =Ion

Tt

T2

= A+d1I,n = ToA+dìIm

= (A+d1Im)A+drIm = TrA+d2Im

= ({(n+O I )A+,.1 r ln+ ln+-'t- m'"r/u2amJA-f ' ' ' /a+dn-llm = Tn-24*dn-l-It

Algorithm for the expansion of (sIrr-A)-1, shows

let the set {u,}, i=1,Z,...rh-f, be the coeffi-
the characteristic polynomial

T
II l- f

Ir¡.1^^"'^ I -

that if we

n-i ^--Ç-- ^+rUfgT]Uù UI

then

det(srr-,-A) = "t+dr"t-l*. . .*d.,_lr*d,.,

and

T(s) = ,o"t-t

H(s) = T(s)8.

trtr r r"f- lr o rm.ì Taê

?)

The observability of a linear, Lime-invariant

system, in terms of transfer functions, mâV be treated
in a similar fashion to the previous theorem on con-

trol-lability.
l¡le first augment the system of state equations

with the i-nclusion of an additionaf n-dimensional- input
vector v(t), chosen so that the state equations become

+ Tr=t-2 *...* Tn_z.*T.,_l = adj (sIr.-A)

^_^-H = H and p[H] = p[H] = ptal

Ax r [B,B]

^--rln^lUi( -r LD tD )

["l
LVI

["-l
LVI

( 4.2a)

(4.2b)



and û is nonsingutar.

If we set the original inputs equal to zero, and

assume no direct transmission, the Lransfer function from

the new inputs v to the outputs becomes

We can now give the dual to Theorem 4.1.

M(s) = C(sIn-A)-r

Theorem 4.2:

The n-dimensional,
mi a¡l 

^^r'¡{--ì ^'liu_uar equau.Lon

n=Ax+Bu+

B

is completery state observabl-e if and only if the matrix

û = I-lt T.M,T...".MT -l- o ' r n-,1 '

??

y=Cx+Du+

has rank n, where the set of matrices {trl_, }, i=0,1,. . . ,fl-f ,

are obtained from

I i nc:r. ti mo-i nr¡cøì nn1- ¡lr¡n^*--,_*r, _LilVd.r--Ld.I1t (tyild.-

By

UV

PROOF:

The proof follows the same basic

Theorem 4.1. We shall simply point out

where they occur.

The equation is observabl_e if and

B nônqinørrl¡r.-

steps as in

the differences

onlv if the rank



?¿1

of P is n. consicler M = nTpTô where R is as defined in
Theorem 4.l. Expansion of ¡t yielcls M = C-ô-B where Cd 1 ----- -d

is an nxn bl-ock diagonal- matrix with atl non-zero entries
equal to C, ar.¿ ô.T = frlr T q.T -r

r - o,tll " ' ,'I,.r--f l where the Ti,
i=011r... ril-l are defined in Theorem 4.f , F.rom Fad.eevars

Algorithmii{(s) =CT(s) B and thereforeû=M Finally,
since É and R are nonsingular

ptûl = p[M] = ptpl

This theorem estabtishes the use of a transfer
functlon matrix in testing for observabitity. A physicaf
interpretation is now needed if the method is to be of
use in RLC networks. rt was previously shown in chapter
rrr that if there is a current source in paraltel with
each capacitive twig, a voltage source in series with
each inductive li-nk, and no other sources, the state equa-

tion 1s i = Ax + 
^ltr 

The transfer function maLrix
from these augmented inputs Lo the outputs is then

Rr(s)= C(sIrr-A)-ll;r Since 
^r 

is nonsingular, this
transfer function meets the requirements of rheorem 4.2

and may therefore be used to test the observability of the

network.

The method of determining the sub-matrices or û

and M needs to be examined carefully. The correct entries
can easily be computed by any one of several network rhonr.r¡

methods.

The various procedures occasionally produce results



that appear to be different, although they are essentially
equivalent. This is due Lo unavoidabl_e pole-ze?o can-

cellations inherent in the computabional_ process ll2].
The next theorem proves that these disappearing

modes and therefore the actuaf method of computation is
not important in determlning the controffability or

observability of the system

Theorem 4 . 3:

If the numerator matrix G(s) of a transfer function
of an n-dimenslonar, linear, time-invariant system, has

a polynomial factor f(s) of degree r, that is,

G(s) = f(s) I((s)

then

p[GorGr r... rG.r_r] = p[KorKi r. .. rKn_r_l]

?q

PROOF':

G(s) = Ç s
o

bhen

f l0: r > 0
o

0r

f õ ^ õ -l
LLI^,U":... ¡LT^ | J

ô =û¡'r

| | ^^'l-. . . -r5L.T
n-¿

+...+f -s +
T_L

n-r-2 +...+

+Gn- _L

f)-r'

K q {1{ \n-T-¿ n-r-I'.

= tN .K .....K -l nT
v ¡ 1I-r -I
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e
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si-nce N and F', are nonsingular.
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The method of construction of I{ or M is now clear.
First compute all necessary transfer functions, then bring
them to a common denomi-naLor, and finally, if desired,
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discard any common numenator terms. Remoyal of these ,.

common 1,erms 1s not necessary, due bo Theorem 4.3, how-

ever,dropping any obvious terms wilf reduce the order of
the matrix and simptify the computation of the rank of
^^H or M. The test for controllability or observability
then conslsts of finding the rank or û o" û, respectively,
and comparing it to the dimension of the system

rt should be noted that this method is not restricted
to passive networks. The theory is general, and may

therefore be applied to any r-inear, time-invariant system

for which state equations in normar form exist and the

number of stabe variables can be found.

The dimension of the staLe space or the order of
compl-exity [11], as it is ca11ed in circuit theory, is
explicit if the state equations are known. However, if
we choose to use transfer functionsrwe are faced with the

computation of this quantity. The general probfem has

not yet been sol-ved l13], however, partial solutions are

availabl-e. The siLuation in RLC networks is known tlll
and is repeated here.

The order of complexity of an RLC network with
independent sources equals the totat number of reactive
el-ements, less the number of independenL circuits consist-
ing of capacitors onì-y or capacitors and vo]tage sources,

less the number of independent cut-sebs c.ônsistinø nf
inductors only or inductors and current sources.



This is equivalent to the construcbion of a normal-

tree as outlined in Chapter II.
The framework has now been provided to use trans-

fer functions to determine both controllability and

nhqarr¡rlri I i l-r¡ of a normal_ f orm system. This basic rela-u rtvr ¡tra! I vf ll¡ ÐJ ù vçrll .

tionship has previously been noted in other forms [5,14].
Chen t5l stabes that a system is controllable (observable)

if and only if the rows of ( sIr.-l) -]e ( columns of C ( sf rr-a) 
-1)

are rinearly independent over the fiel-d of complex numbers.

\¡/e now offer alternate proof s of these theorems that are

purely algebraic and are completely contained in the

complex frequency domain. Chen's proofs are based upon

the assumpLion that the Laplace transform is a one-to-one

linear operaLor.

Theorem 4.4:

38.

The state equation ( 4 . ta) ( ctynamical- equatlon ( 4. l) )

i c ô^mñ'j a1. ar r¡ stabe controllable ( observabl_e ) if and onlyvv¡¡r¡/rv vurJ Ð uquç vurtvr vJIGUac \ \-JtJÞu-L'v

if the rows of ( sIr.,-A) -le ( cotumns of C ( sf r.,-A) 
-1) are

linearly independenb over the field of complex numbers.

PROOF:

We wil-l- first prove the contrapositlve of the con-

troflability part of the theorem. As a preliminary, note
fLn| æi-'^- ;

m^
tJLld"v Brverr n, as defined 1n Theorem 4.1, xtH = O is equiv-

alent to the n simultaneous equatlons rTH. = O. i=0.1,ri u, I-u:f .r... ro

The rows of ( sI--A) -1g are linearly depenclent if and

only if the rows of H(s)=O(s)(sI--A)-18 are tinearly depend.ent



?O

ôTì añìri rrll ôn'--,eyurvaae,,IlV: there exists x I 0 such Lhat xTH(s) = O

tr'urthermore, this is equivalent to "tn, = 0, i=O rl, . . . ,il-f
T^or x'H = 0. Finally, x'H = O, x / 0 if and only if the

rank or Ê is less than n, and from Theorem 4.1 the theorem

is proved.
^' using M from Theorem 4.2, the proof for observability

fol-lows in a simil-ar manner after noting that the columns

^ ¡ t\l^T nf -1oI' u(srrr-A) * are dependent if and only if the col-umns of
t^ñ(^-r n\-¿n rU(sIn-A) -8, B nonsingular, are dependenL.

4.2 TOPOLOGICAL FORMULAB FOR A FIYBRID n-pORT

Consider the ]inear, time-invarianb n-port shown in
Figure 4.1" rf there exists a tree with v., as branches

and II as chords, then by superposition the network can

be characterized by the system of hybricl parameters ¡

lutl lnut Hw-l [ttJll=llll
L'u_l Lnr, "ru_] Lç_l

where V-rI-,rI-. and V-, are vectors of the norf. rrariehlsg.I' V' I V

Topological formulae for the entries of this matrix
can be derived from consideratlon of the toporogicar form-

ulae for two-ports; Mantens t15] has given such formulae.

Floweverrsince we choOse tO rrse simnì or. nçtaLion, the fol-
lowing discussion is necessary.

For the two-port shown in Figure 4.2, Seshu and

(4.4)
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FIGURE 4. I

where, W^ , is the sum of all two-tree aclmi ttance ni.oflLlgf g- a.b
with the "ut of vertices a in one connected part and the

set of vertices b in the other connected part, v is the

sum of al-l tree admittance products and ru is the sum of all
tree admittance products in the graph formed by short-
circuibing vertices r and rt and s and s r ]-16-l .

wrs 
,

topological formul_ae for
shorL-circuit admittance
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Equation 4.5

formulae for every

port. If we define
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superposition Theorem al-lows us to find the entries of (4.tr).
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rls

are

r^rhêrâê ¡ll ton¡logiCalformufae refer to netWork N,.

Let us now examine the denominator terms in eqlta-

tion (4.2): V is the tree-admittance product of Nri
li.) l.)

l^/'* ' . and !{'"' . are the two-tree admittance products of N rYrT', srs'
with T and T' , s and s ? in separate parts, respectively.
It is well known l7l that these quanbities can be com-

puted by short-circuiting bhe two separate parts and find-
ing the tree admittance products of the new network.

/ i"l I o ITherefore, W:- / = I¡l\"/ - V Similarly, it has been' "!:'].t 
'""ittshown t16l that IU(rs) may be found by short-circuitinø the

rS

can

i

d

m

c

r=s

U

E

T

c

(

T

h"IV
ST

AS

'l^
f,Õ.u

d

h..T IST

-J^

r=s
(4.7)



ll?tJ.

norts ând fi ndi ncr the trec edmi tt¡n na nr-odrrr"ts. t-hor-o f r¡navrvç oulufuuGtrug vlvuuuuù, ul.t u_1.çrutu,

lno\
llT\'"/ _ \T

The numerator term v(r) ar-so needs some expr-anation.

It i-s the tree proatuct

port T of Nr. This is
W"^ -^, of N ,.t. r.- t-

Equation ( 4.7)

lìt'v rsr

of the network formed by opening

the same as the two-tree product

D rS-ä-

I,\I"r rl
V

1^ttv vST

can now be written as

where al_l_ topological formul-ae refer to network Nr.

Before Lhe topologicar formulae developed 1n this
section can be applied to Theorems 4.r and 4.2, it must

be shown that the type and form of the transfer functions
needed are included in ( 4.4) .

rf we put a current source in parall-el- with each cap*

acitor i-n the normal- tree and a voltage source i_n seri_es

with each inductor in the normal cotree, a new normal bree

can be defined. This tree has as branches all- of the edges

of the ol-d normaf tree plus the voltage sources just added.

similarly, the new normal cotree contains the original normal

cotree plus the current sources just added. rt is now cfear

rrù -

lclD'"'rS

r=s

ĥ ,I VST l
.,.(rs)

V

I^l
"f1 ytl* ,'

V

^(s)rS
-v-

l'ì -"rr
ST

rls
( 4. B)

r=s



that both the original sources and the new sources

as excitations in (4.4) anO the transfer functions
by Theorems 4.1 and 4.2 are Lherefore included in
(4.4).

Theorems Lt.1 and 4.2 also require the transfer func-
tion matri-x be rational-. The topological formul_ae given

do not give such a rational- matrix directly. Howeveri mutti-
plication of both numerabor and denominator by the appropri-
ate power of s would yield the necessary result. The denom-

inators of the topological formulae are atr equar to the

sum of aff tree admittance producLs of N, . seshu and Reed

l7l show that this is equivalent to the determinant of the

node admittance matrix.

Martens t15l has shown that if this determinant is
multiplied by "tL, where rL is the number of inductors in
the network, and an appropriaLe scal-e factor K,is included,
the resulL is the characteristic polynomiat. This is shown

by d(s) = K "tL det Y., = ( ,"L V

4.3 ILLUSTRATIVE EXAMPLE

uu

^ ,. ^ 'l -i +a-.
I ud.rJ r J

t"êñrì i porl

êñlrâ1- i nn

Consider the network shown in Figure 4.3. The

normal- tree contains Cr, C2 and Rz.

Describe a port on each capacitive branch and

inscribe a port in the inductive chord" These additional-
ports, the input port and the outpub port are fabetl-ed as

in Figure 4 " 4. This is the n-port from which we wil_r compute
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the transfer functions necessary to determine the control_1_

ability and observability of the network. Application
of the topological formul-ae in (4.8) to network Np shown

i-n Figure 4.5 , yields:

lt̂lt¡ r

Lt'lr r
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Because there is only one inductor, multipry the

numerator and denominator of each of the above formula
by Ks. The H(s) and M(s) matrices defined in Theorems

4.1 and 4.2 are then obtained:
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The network is therefore always unobservable since
p[M] I n and the contro]labitity is dependent upon the

L1element val-ues. rf we sol-ve det Iî = 0 we obtain RrR, = c--2
Thus the network is uncontrorrable if and onry if
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The determination of ilre controffability and observ_

ability of a linear, time-invariant system is of major

importance. The various theorems and techniques presented

i-n this thesis augment the wer-r- known methods, especialry
for RLC networks.

The extensi-on of controllability and observability
to include improper sysLems all-ows the characteristics of
any set of valid state variabl-es to be examined. This

exLenslon is particularJ-y applicabte to RLC networks. fn
this case, the capacitor voltages and i'nductor currents
commonly used as state variables d.o not always produce

state equations in normal- form. These new results there-
fore permit us to study the physical state variables
instead of the abstract ones which must be used to obtain
state equations in the normal form.

The topological restrictions for controllabilicy
and observability based upon placement of input and output
ports are important, since they give insbant information
without calcufations of any kind. rf the network, with
edges incfuded for the output porbs, has a capacitor-only
cut-set and/or inductor-only loop, then it is immediately

both uncontrollable and unobservable and the general testing
procedures are not necessary. The method discussed. is

CHAPTER V

CONCLUSIONS
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appl-lcabIe onl-y to networks having one or more zero naturar
frequenci-es. The extensi-on to other modes appears to be

difficul-t, since there are no topological formu]ae avail-
abl-e for determination of the natural- frequencies of a

network

The method developed forusing transfer functions

to check for control-l-ability and observability is of major

interest. This procedure aIIows Lls to use topological
formulae lor the appropriate transfer funetions, and thus

obtain topological criterj-a for controllability and observ-

ability in RLC networks. The theory applies only to those

networks having normal form state equations. However,

since this is generally the case, the restriction is not
great. The appropriate transfer functions necessary for
the extension to improper networks can be deríved, but

they appear to be abstract and hence cannot be determlned

topologically

--t)E-l!,;Íi



Theorem A

An RLC network is
capacitor-only cub-sets

PROOF:

I¡/e will first prove the theorem for capacitor only
cut-sefs. The capacitors in the cut-set can be put into
the following three classifications :

1. Atl- of the capacitors are in the normal tree.
2. Any capacitors not in the norma] tree are in a capa-

cl_cor-only loop .

3. Any capacitors not in the normal tree are in a capa-

citor-vol_tage source loop.

The existence and unlqueness of this three-way cl_assifi-
cation may be proved as fol_Ìows.

The construction of the normaf tree necessitates
the inclusion of as many capacitors as possibfe. clearly
it may contaln all- capacitors; hence case l. rf one or
more capacitors are not in the normal Lree chosen, then

they must appear as tinks and, therefore, form loops with
sets of tree branches. The Lwigs in such loops must be

voltage sources or capacitors, for, if they were not, a

new normal tree could be defined by includlng the capacitor
l-ink and defeting one of the original twigs that r¡ras not a

capacitor or voltage source. This, however, is a contra-

APPENDIX A

uncontrollable if it contains any

and/or inductor-only loops .
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diction that the original tree was a normal_ tree. Hence,

any capacltors not in the normal tree must be 1n capacitor-
only or capacitor-voltage source loops; hence cases 2 and

3. This proves the three-way cl-assification.
rn each case Kirchhoffts current raw for the cut-

set yields i^ + i +...+ i^ = O, where r equals the- c' c, -c, -'

number of capacitors in the cub-set. This implies that
the derlvatives of the capacitor voltages are dependent.
mhô+ -i^r11A U tù

dv
c

/ìl
"l

dt

Al-so note that the state equations are generally in the

improper fo::m, i = Ax t Bru + Brù , in all cases.

I¿rle no\^r consid-er each case separatel-y.

1. since all of the capacitors are in a normal Lree,

their voltages are vafid state variables and (n.f)
becomes

cri-, + Cr*, +...+ c"i" = o

civ clvc- c
c'++/-r-^uZr...r U--=U

dt'dr

Therefore, a subset of the derivatives of the state
variabfes is dependent and, hence, the whofe set is
dependent.

The exlstence of capaciLor-only loops afl-ows us to
obtaln, via Kirchhoffts voltage law, a rinear depend-

ence of the capacitor link vol-tages in terms of the

capacitor twig voltages . Subsequently, from (A. l) ,

2

(A.1)



the l-inear dependence of a subset of the derivatives
of the network staLe variabf es is obtained, ai-:.C hence

the whole set fs dependent.

3 . I{irchhof f 's voltage l-aw around the capacibor voltage

source J-oop shows a dependence of the capacitor l_ink

voltages on the capacitor twig vol_tages and voltage

sources. Substitution into (A.f) yiel-ds an equation
-i nvol v-ì nø the derivatives of the sources and a subset

of the state variables. If we constrain the inputs

such thab ù = 0, the state equatlons reduce to
x = Ax + Brr, and the derivatives of the state vari-
ables are dependent.

In each of the three cases \^re have shown that if
ù = 0¡ the derivatives of the state variables are depend-

enb. Hence there exists a I O such that uTi = O, and

henc e

T- T_a*Ax+a-B.u=0 (A.2)
I

since the state variabfes and inputs are linearly depend-

ent, (A.Z) requires uTA = O and uTB, = O, and the network

is uncontrol-f abfe by Theorem 3.1.
l,{e shoufd note that the use of ù = O is not restrlc-

tive in any way. The equations are valid for all_ u. l,rle

simply choose this particular case in order to find a con-

di tj-on on the svstem mâtri-sss which are independent of
the form of the input.

¿)'



The inductor-onry loop case fofr_ows in a simir_ar
manner by considering Kirchhoff?s voltage l_aw for the
J-oop.

Theorem A.2:

An RLC network, in which edges fÒr the output vari-
abl-es are included in the network graph, is unobservable
if it contains any capacltor-only cut_seLs and/or inductor_
only J-oops.

PROOF:

consider a network havlng a capacitor-only cut-set
as shown in Figure A.t. rt is sufficlent to show that the
network is unobservable for a partlcular input and a par-
tlcul-ar initial- state . Choose the input u( t ) = 0 . Then.

the capacitive twig voltages and inductive l_ink currents
of a normal tree yield state equaLions in the normal_ form.

we now consider a specific initiaf state and show

that ib is afso a.sol-ution of the state equatlon. The

initial state is specified as fol-lows

At feasL one of the cut-set capacitors is a twig
in the normal Lree. Assume c, with the cut-set reference
def ined by the vottage of C ,, l-eL v^ = K,K >0, and f et thet1

other cut-set capacitive twig vol-tages be equal to K if
their reference 1s the same as the cut-set, and equal to
-K if the reference is opposite to the cut-set. Leb all-
other capacitive twig voltages and inductlve tink currents

qlJ



be zero.

When we say that this initial_ state is also a solu_

tion, we require that the val-ues of the state variabl-es

remain constant for all- future time. I¡/e must therefore,
modify the specifi-cation of the staLe previously given by

replacing equal by identically equal. To show thab this
state is also a solution, we must prove that Kirchhoffrs
voltage and current faws and Lhe element voltage-currenL

refationships are satisfied.
From the proof of rheorem 4.1, we know that all cap-

active links must be in capacitor-only loops and their
r¡ol 1'âcnêe ^nã l--ì near combinations of the c.ânâr.i ti rrc tr^r.'vvrvsövu qru J_l_Ilçd.I'(;UIl.lUl_Itd.UIUflö UI UIìe _ruJ-$

voltages. capacitive link voltages in N, or N, whlch form

loops entirely within these sub-networks must be ident-
ically zero by I{vL. capacitive l-ink voÌtages in N, o" N,

which form loops contaÍning any cut-set capacitive fink
volbages must also be identically zero slnce the loop

reference agrees with and disagrees with the cut-set refer-
ence an equal number of times. cut-set capacitive link
voltages must be K if their reference agrees with the cut-
set reference and -K if the reference is opposite to the

cut-set since the 1oop, which has reference bhe same as

f ha nânâ oi l¡ø ¡¡n-l f oæa n¡ai-vsrJavrvvr voltage, contains an odd number of the cut-

set capacitor twig voltages. similarly, since all inductive
twigs are in inductor-only cut-sets, af1 inductor currents
are identical-lv zero.

q6



l,Ie have shovJn that al-f capacitor voftâges and

inductor currents are constant. Hence, the efernent refa-
tionships demand that the complementary variabfes, thât
is, inducbor voltages and capacitor currents, are iden-
tically zero.

Because the cut-set capacitor currents are iden-

ticaffy zero, N, and N, can be considered âs btvo separate

unconnected networks. Furthermore, they essentiaffy
become completely reslstive and, hence, afl voftages and

currents are identicaffy zero, automatically satisfying
Kirchhoffts voftage and current faws as v¡e]l_ as Ohrn's l-aw

for the resistors,

Since x(0) is a constant non-zero solution ,

i(o) = Ax(0) = 0 and, furthermore, any responses in N,

or N2 are identlcafly zero. Thus Cx(O) = y = 0, The

netlork is then unobservable by Theorem 3.5, A simifar
discussion appfies for the case of inducbor-onl-y loops,

An lnteresting â.spect of this theorem is that it
gives a nethod of eonstructing an eigenvector of a zero

eigenvalue of A.
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