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Abstract

In the study of partial di↵erential equations (PDEs) one rarely finds an analytical solution. But

a numerical solution can be found using di↵erent methods such as finite di↵erence, finite element,

etc. The main issue using such numerical methods is whether the numerical solution will converge

to the “real” analytical solution and if so how fast will it converge as we shrink the discretization

parameter .

In the first part of this thesis discrete versions of well known inequalities from analysis are used

in proving the convergence of certain numerical methods for the one dimensional Poisson equation

with Dirichlet boundary conditions and with Neumann boundary conditions.

A matrix is monotone if its inverse exists and is non-negative. In the second part of the thesis

we will show that finite di↵erence discretization of two PDEs result in monotone matrices. The

monotonicity property will be used to demonstrate stability of certain methods for the Poisson and

Biharmonic equations. Convergence of all schemes is also shown.

This thesis surveys known techniques to analyze numerical schemes.There are no original results

demonstrated in the thesis other than proofs of monotonicity of several schemes.
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Chapter 1

Introduction

In the modern world humans rely heavily on mathematical models to build, design and predict

the outcome. Many mathematical models use partial di↵erential equations (PDEs) to describe a

certain system, such as the Navier-Stokes equations used to describe the flow of air around a wing.

Nevertheless, even if we are given the PDE that describes a system, a “real” or exact solution is

an elusive idea since it is usually impossible to find analytically. Thankfully, we have numerical

methods that create numerical schemes to find the numerical solution of the system.

One of the oldest numerical methods is the finite di↵erence (FD) method. The idea behind it

is simple. Let us assume, for simplicity, that the domain is a rectangle. Set up a rectangular grid

on the domain with a constant grid size h. Using finite di↵erences to approximate derivatives at

grid points, we end up with a finite system of equations to solve for the unknowns at the grid points.

Using analysis we can show that as the step size h becomes smaller, i.e we use more points, the

numerical solution will converge to the analytical solution. In the second chapter of the thesis dis-

crete inequalities equivalent to well known inequalities from analysis such as the Poincaré-Friedrichs

and Poincaré inequalities will be proven. Afterwards the terms stability, consistency and conver-

gence will be defined with respect to numerical schemes. Two numerical schemes solving the 1D case

of the Poisson equation once with Dirichlet boundary conditions and once with Neumann boundary

conditions will be introduced. Using the discrete inequalities proven in the beginning of the chapter

we will demonstrate that the numerical schemes converge and at what rate they converge.

In the third chapter a family of matrices called monotone matrices will be introduced, such

matrices are defined as matrices whose inverse is non-negative. The chapter also contains five

equivalent conditions for a matrix to be monotone although many more can be found in [1]. Mono-

tone matrices arise in many areas in mathematics, economy, engineering and scientific computing.
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For example, in mathematics monotone matrices occur in the study of finite Markov chains in the

field of probability theory. Even though the chapter is very short, its purpose is mainly to introduce

the reader to monotone matrices which play an important role in showing stability of numerical

schemes in later chapters.

In the fourth chapter, two monotone fourth order numerical schemes solving the 2D Poisson

equation with Dirichlet boundary conditions will be defined. Unlike the previous schemes from the

second chapter these schemes are fourth order meaning they converge faster to the solution. The

first scheme has a structure such that for points next to the boundary we use the second order

scheme from the first chapter and for interior point we use a fourth order scheme. Even though we

use second order scheme next to the boundary, because there are so few points the overall conver-

gence is still fourth order. The second scheme introduced in the chapter is proven to be monotone as

well and using that property stability is proven. The restriction operator on the domain ”samples”

a function and turns it into a vector. In order to show fourth order convergence for this scheme a

modified restriction operator is used.

In the fifth chapter a numerical scheme from [2] solving the 1D biharmonic equation will be

introduced. It is a more complex scheme as it involves many steps all of which are shown and

explained. As done before, monotonicity of the scheme is proven and later it is used in the proof of

stability. Using the techniques from previous chapters a proof of first order convergence is shown,

although in [2] a proof of fourth order convergence is shown using a di↵erent method.

Overall the thesis surveys known techniques to analyze numerical schemes.There are no original

results demonstrated in the thesis other than proofs of monotonicity of several schemes. At the end

of the thesis there is a page with all symbols used throughout the thesis and the first page where

they appeared.



Chapter 2

Discrete Inequalities and

Applications

2.1 Discrete Identities and Inequalities

In this chapter, we state well-known identities and inequalities for smooth functions, followed by

the corresponding identities and inequalities for discrete functions. Their proofs follows those of

the continues case. Throughout this thesis the terms c, c1, c2 represents a positive constant whose

value might change in di↵erent places. For any positive integer N , let h = 1
N . We denote the vector

[v0, ...., vN ] by vh. We define two finite di↵erence schemes for approximating the derivative at a

point i:

�hvi =
vi+1 � vi

h
,

��hvi =
vi � vi�1

h
.

We now define three norms that will be used extensively later, given vh 2 RN+1.

The `1 norm, |vh|1 = max
i

|vi|.

The `2 vector norm, |vh|2 =

 
NX

i=0

v2i

!1/2

.

The discrete `2 norm, |vh|h = h1/2|vh|2.

4
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The first fundamental theorem of calculus states that, given a function v(x) such that v0 is

continuous on L2(0, 1), then

Z 1

0
v0(x)dx = v(1)� v(0).

Proposition 2.1. [First discrete fundamental theorem of calculus] For 1  i  N ,

h
iP

j=1
��hvj = vi � v0.

Proof. Note that,

h

iX

j=1

��hvj = h

iX

j=1

vj � vj�1

h
=

iX

j=1

(vj � vj�1)

= (v1 � v0) + (v2 � v1) + .....+ (vi�1 � vi�2) + (vi � vi�1)

= vi � v0.

The second fundamental theorem of calculus states that, given v a continuous function on a closed

interval I with 0 2 I, and x any point in I, then,

d

dx

Z x

0
v(⌧)d⌧ = v(x).

Proposition 2.2. [Second discrete fundamental theorem of calculus]. Define

Vi = h
iP

j=0
vj, for 0  i  N . Then,

��hVi = vi, 1  i  N.

Proof. For 1  i  N

��hVi =
Vi � Vi�1

h
=

1

h

 
h

iX

j=0

vj � h

i�1X

j=0

vj

!
=

iX

j=0

vj �
i�1X

j=0

vj = vi.

Definition 2.3. We say v 2 H1
0 (0, 1) if v, v

0 2 L2(0, 1) and v(0) = v(1) = 0.
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Given v 2 H1
0 (0, 1), then:

sup
x2[0,1]

|v(x)|2  1

⇡

✓
1

⇡
+ 2

◆ 1Z

0

v0(x)2dx.

We wish to prove a discrete version of the above inequality.

Proposition 2.4. Suppose v0 = 0 = vN . Then,

|vh|1  2�1h1/2|�hvh|2.

Proof. Assume 0  j  N . Then we have,

v2j = (1� jh)v2j + jhv2j

= (1� jh)h2

����
j�1X

i=0

vi+1 � vi
h

����
2

+ jhh2

����
N�1X

i=j

vi+1 � vi
h

����
2

 (1� jh)h2
j�1X

i=0

✓
vi+1 � vi

h

◆2

·
j�1X

i=0

12 + jhh2
N�1X

i=j

✓
vi+1 � vi

h

◆2

·
N�1X

i=j

12

= (1� jh)h2
j�1X

i=0

✓
vi+1 � vi

h

◆2

j + jhh2
N�1X

i=j

✓
vi+1 � vi

h

◆2

(N � j)

=
N � j

N

j

N2

j�1X

i=0

✓
vi+1 � vi

h

◆2

+
j

N

N � j

N2

N�1X

i=j

✓
vi+1 � vi

h

◆2

=
j(N � j)

N3

j�1X

i=0

✓
vi+1 � vi

h

◆2

+
j(N � j)

N3

N�1X

i=j

✓
vi+1 � vi

h

◆2

=
j(N � j)

N3
|�hvh|22. (2.1)

Hence,

v2j  j(N � j)

N3
|�hvh|22

=
4j(N � j)

4N3
|�hvh|22

=
N2 � (N � 2j)2

4N3
|�hvh|22

 N2

4N3
|�hvh|22

= 2�2h|�hvh|22.

Taking square root of both sides, and since the inequality holds for all j,

|vh|1  2�1h1/2|�hvh|2. (2.2)
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The Poincaré-Friedrichs inequality states that if v 2 H1
0 (0, 1), then:

1Z

0

v(x)2dx  1

⇡2

1Z

0

v0(x)2dx.

Proposition 2.5. [Discrete Poincaré-Friedrichs inequality]We consider a vector vh so that v0 =

0 = vN and as before h = 1/N . Then:

|vh|2  6�1/2|�hvh|2.

Proof. We will use inequality (2.1) proven in the previous proposition. We have

|vh|22 =
NX

j=0

v2j


NX

j=0

j(N � j)

N3
|�hvh|22

=
|�hvh|22
N3

NX

j=0

j(N � j)

=
|�hvh|22
N3

 
N

NX

j=0

j �
NX

j=0

j2

!

=
|�hvh|22
N3

 ✓
N

N2 +N

2

◆
�
✓
1

3
N3 +

1

2
N2 +

1

6
N

◆!

=
|�hvh|22
N3

 
N3

2
+

N2

2
� N3

3
� N2

2
� N

6

!

=
|�hvh|22
N3

 
N3

6
� N

6

!

 |�hvh|22
N3

 
N3

6

!

=
|�hvh|22

6
.

We have shown,

|vh|22  6�1|�hvh|22.

Taking square root of both sides,

|vh|2  6�1/2|�hvh|2. (2.3)
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The Poincaré inequality states that given v 2 H1(0, 1) with zero average i.e.
1R

0
v(x) = 0, then there

exists a constant C, depending only on 1, so that.

1Z

0

v(x)2dx  C

1Z

0

v0(x)2dx.

We shall now prove the discrete Poincaré inequality in one dimension.

Proposition 2.6. [Discrete Poincaré inequality], Assume the vector vh has zero average i.e,
NP
j=0

vj = 0. Then |vh|2  2�1/2|�hvh|2.

Proof. Let ui = vi � v0 then u0 = 0.

First we prove a small inequality to assist with the proof; assume 1  i  N . We have,

u2
i = h2

�����

i�1X

j=0

uj+1 � uj

h

�����

2

 h2
i�1X

j=0

✓
uj+1 � uj

h

◆2

·
i�1X

j=0

1

= i · h2
i�1X

j=0

✓
uj+1 � uj

h

◆2

 i · h2
N�1X

j=0

✓
uj+1 � uj

h

◆2

.

Since the inequality above holds for all i,

N�1X

i=0

u2
i  h2

N�1X

i=0

i
i�1X

j=0

✓
uj+1 � uj

h

◆2

 h2
N�1X

j=0

✓
uj+1 � uj

h

◆2

·
N�1X

i=0

i

= h2
N�1X

j=0

✓
uj+1 � uj

h

◆2
N(N � 1)

2

 h2N
2

2

N�1X

j=0

✓
uj+1 � uj

h

◆2

=
1

2

N�1X

j=0

✓
uj+1 � uj

h

◆2

.

We have proved that for the vector uh we have defined, we have

N�1X

i=0

u2
i  1

2

N�1X

i=0

✓
ui+1 � ui

h

◆2

.
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Now we switch back to the original vector vh and get the inequality,

N�1X

i=0

(vi � v0)
2  1

2

N�1X

i=0

✓
vi+1 � vi

h

◆2

.

We expand the left side of the above inequality,

N�1X

i=1

(vi � v0)
2 =

N�1X

i=1

v2i � 2v0

N�1X

i=1

vi + (N � 1)v20

=
N�1X

i=0

v2i � 2v0

N�1X

i=1

vi + (N � 2)v20

=
N�1X

i=0

v2i � 2v0(�v0 � vN ) + (N � 2)v20

=
NX

i=0

v2i � v2N + 2v20 + 2v0vN + (N � 2)v20

=
NX

i=0

v2i + v2N + 2v0vN + v20 � 2v2N + (N � 1)v20

=
NX

i=0

v2i + (v0 + vN )2 � 2v2N + (N � 1)v20

�
NX

i=0

v2i � 2v2N + (N � 1)v20 .

We have shown,
NX

i=0

v2i � 2v2N + (N � 1)v20  1

2

N�1X

i=0

✓
vi+1 � vi

h

◆2

.

Now we define a new vector wi = vi � vN Using the same operations as before, we get the similar

inequality,
N�1X

i=0

w2
i  1

2

N�1X

i=0

✓
wi+1 � wi

h

◆2

.

Substituting vector wi with vi � vN we get,

N�1X

i=0

(vi � vN )2  1

2

N�1X

i=0

✓
vi+1 � vi

h

◆2

.

Expanding the left side of the inequality similarly as before we get

NX

i=0

v2i � 2v20 + (N � 1)v2N  1

2

N�1X

i=0

✓
vi+1 � vi

h

◆2

.

Adding the two inequalities we get

2
NX

i=0

v2i + (N � 3)[v20 + v2N ] 
N�1X

i=0

✓
vi+1 � vi

h

◆2

.
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Clearly for N � 3 we can conclude

NX

i=0

v2i  1

2

N�1X

i=0

✓
vi+1 � vi

h

◆2

or,

|vh|22  1

2
|�hvh|22.

We will now prove the inequality for N = 1 and N = 2.

When N = 1,

h = 1, since we require 0 average on vh and v0 + v1 = 0 so we get,

|�hvh|22 = (v1 � v0)
2

= v20 � 2v0v1 + v21

= v20 + 2v20 + v20

= 4v20

= 2(v20 + v21)

= 2|vh|22.

When N = 2,

h = 1
2 , and v0 + v1 + v2 = 0 since we require 0 average on vh.

|�hvh|22 =

✓
v1 � v0
1/2

◆2

+

✓
v2 � v1
1/2

◆2

= 4[(v1 � v0)
2 + (v2 � v1)

2]

= 4[v20 � 2v0v1 + v21 + v21 � 2v1v2 + v22 ]

= 2v20 + 2v21 + 2v22 + 2v20 + 6v21 + 2v22 � 8v0v1 � 8v1v2

= 2(v20 + v21 + v22) + 2v20 + 6v21 + 2(v0 + v1)
2 � 8v0v1 � 8v1[�(v0 + v1)]

= 2(v20 + v21 + v22) + 2v20 + 6v21 + 2(v0 + v1)
2 � 8v0v1 + 8v1v0 + 8v21

= 2(v20 + v21 + v22) + 2v20 + 14v21 + 2(v0 + v1)
2

� 2(v20 + v21 + v22)

= 2|vh|22.

The inequality holds for N = 1 and N = 2 and for N � 3, thus we have proven that for all N ,

|vh|2  2�1/2|�hvh|2. (2.4)
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Hardy’s inequality says that if v 2 H1
0 (0, 1), then there is some positive constant c such that

Z 1

0

v2(x)

d(x)2
dx  c

Z 1

0
(v0(x))2dx,

where d(x) is the minimum distance to the boundary, i.e., d(x) = min(x, 1� x).

Proposition 2.7. [Discrete Hardy’s inequality]. Suppose v0 = 0 = vN . Then

N�1X

j=1

v2j
h2min2(j,N � j)

 4|�hvh|22.

Proof. We shall prove a small inequality which we will use later for proving the proposition.

If ai � 0 define Ai =
iP

j=1
aj , then

NX

i=1

✓
Ai

i

◆2

 4
NX

i=1

a2i . (2.5)

We begin by demonstrating two inequalities which will be used in the proof.
✓
Ai

i

◆2

=

✓
ai +

Ai

i
� ai

◆2

 2a2i + 2

✓
Ai

i
� ai

◆2

= 4a2i �
4aiAi

i
+

2A2
i

i2
. (2.6)

Also,

�2Aiai = �(2Ai � ai)ai � a2i

= �(Ai +Ai�1)(Ai �Ai�1)� a2i

= �(A2
i �A2

i�1)� a2i

 �(A2
i �A2

i�1) (2.7)

Using the two inequalities (2.6) and (2.7) on (2.5) we get,

NX

i=1

✓
Ai

i

◆2

 4
NX

i=1

a2i � 4
NX

i=1

aiAi

i
+ 2

NX

i=1

✓
Ai

i

◆2

 4
NX

i=1

a2i � 2
NX

i=1

A2
i �A2

i�1

i
+ 2

NX

i=1

✓
Ai

i

◆2

= 4
NX

i=1

a2i � 2

✓
A2

1

1
+

A2
2

2 · 3 + ...+
A2

n�1

(n� 1)n
+

A2
n

n2

◆
+ 2

NX

i=1

✓
Ai

i

◆2

 4
NX

i=1

a2i � 2
NX

i=1

A2
i

i(i+ 1)
+ 2

NX

i=1

✓
Ai

i

◆2

 4
NX

i=1

a2i .
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Now we start the proof of the discrete Hardy’s inequality. First we state a simple equality:

v2i = h2

����
iX

j=1

vj � vj�1

h

����
2

, 1  i  N.

We sum the first
⌅
N�1
2

⇧
indices. Using (2.5)

⌅
N�1

2

⇧
X

i=1

v2i
h2i2



⌅
N�1

2

⇧
X

i=1

����
iP

j=1

vj�vj�1

h

����
2

i2



⌅
N�1

2

⇧
X

i=1

iX

j=1

�� vj�vj�1

h

��2

i2

 4

⌅
N�1

2

⇧
X

i=1

✓
vi � vi�1

h

◆2

.

We get, ⌅
N�1

2

⇧
X

i=1

v2i
h2i2

 4

⌅
N�1

2

⇧
X

i=1

✓
vi � vi�1

h

◆2

. (2.8)

Now we sum the last
⌅
N�1
2

⇧
� 1 indices.

N�1X

i=
⌅

N�1
2

⇧
+1

v2i
h2(N � i)2

=

N�
⌅

N�1
2

⇧
�1X

i=1

v2N�i

h2i2


N�
⌅

N�1
2

⇧
�1X

i=1

4

✓
vN�i+1 � vN�i

h

◆2

= 4
NX

i=
⌅

N�1
2

⇧
+1

✓
vi � vi�1

h

◆2

.

We get,
N�1X

i=
⌅

N�1
2

⇧
+1

v2i
h2(N � i)2

 4
NX

i=
⌅

N�1
2

⇧
+1

✓
vi � vi�1

h

◆2

. (2.9)

Adding (2.8) and (2.9) together we get the discrete Hardy’s inequality,

N�1X

i=1

v2j
h2min2(i, N � i)

 4
NX

i=1

✓
vi � vi�1

h

◆2

. (2.10)
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Given v, v0 2 L2(0, 1) we can get the inequality

sup
x2[0,1]

v(x)2  c

1Z

0

(v(x)2 + v0(x)2)dx.

where c is a positive real number independent of v and v0.

Proposition 2.8. [Inequality between the discrete infinity norm and the discrete H1 - norm]. We

have,

|vh|21  2hp
5� 1

|vh|2H1 , where |vh|2H1 = |vh|22 + |�hvh|22.

Proof. Assume that,

|vh|21 = v2k, and min
0iN

v2i = v2m, where 0  k,m  N.

Without loss of generality assume m  k. Let ✏ be any positive number. Then

|vh|21 = v2k = v2m + h

k�1X

i=m

v2i+1 � v2i
h

= v2m + h

k�1X

i=m

✓
vi+1 � vi

h

◆
(vi+1 + vi)

 v2m + h

 k�1X

i=m

✓
vi+1 � vi

h

◆
vi+1 +

k�1X

i=m

✓
vi+1 � vi

h

◆
vi

�

 v2m + h


1

2✏

k�1X

i=m

✓
vi+1 � vi

h

◆2

+
✏

2

k�1X

i=m

v2i+1 +
1

2✏

k�1X

i=m

✓
vi+1 � vi

h

◆2

+
✏

2

k�1X

i=m

v2i

�

 h

NX

i=0

v2i + h


1

2✏

N�1X

i=0

✓
vi+1 � vi

h

◆2

+
✏

2

NX

i=0

v2i +
1

2✏

N�1X

i=0

✓
vi+1 � vi

h

◆2

+
✏

2

NX

i=0

v2i

�

= h


1

✏

N�1X

i=0

✓
vi+1 � vi

h

◆2

+ (1 + ✏)
NX

i=0

v2i

�

For (2.8) to hold we require,

1 + ✏  2p
5� 1

and
1

✏
 2p

5� 1
.

For the inequalities above to hold we find that,

✏ =

p
5� 1

2
.

Choosing such ✏ will give the smallest constant and prove the proposition.

|vh|21  2hp
5� 1

 NX

j=0

v2j +
N�1X

j=0

✓
vj+1 � vj

h

◆2�
.
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For any v 2 H1(0, 1) define,

kvk2 =

Z 1

0
v0(x)2dx+ v(0)2 + v(1)2.

It is known that k · k is equivalent to the H1 norm.

We will prove a discrete version of the inequality above.

Proposition 2.9. We have,

|vh|2H1  2(|vh|⇤H1)2, where (|vh|⇤H1)2 =
v20 + v2N

h
+ |�hvh|22.

Proof. Assume 0  i  N . For any ✏ > 0,

v2i = v20 + h

i�1X

j=0

v2j+1 � v2j
h

= v20 + h

i�1X

j=0

✓
vj+1 � vj

h

◆
(vj + vj+1)

= v20 + h

i�1X

j=0

vj

✓
vj+1 � vj

h

◆
+ h

i�1X

j=0

vj+1

✓
vj+1 � vj

h

◆

 v20 +
h

2


✏

i�1X

j=0

v2j +
1

✏

i�1X

j=0

✓
vj+1 � vj

h

◆2�
+

h

2


✏

i�1X

j=0

v2j+1 +
1

✏

i�1X

j=0

✓
vj+1 � vj

h

◆2�

 v20 +
h

2


✏

i�1X

j=0

v2j + ✏

i�1X

j=0

v2j+1 +
2

✏

i�1X

j=0

✓
vj+1 � vj

h

◆2�
.

We get,

v2i  v20 +
h

2


✏

i�1X

j=0

v2j + ✏

i�1X

j=0

v2j+1 +
2

✏

i�1X

j=0

✓
vj+1 � vj

h

◆2�
. (2.11)

Similarly, from the fact that

v2i = v2N � h
N�1X

j=i

v2j+1 � v2j
h

,

we can get

v2i  v2N +
h

2


✏

N�1X

j=i

v2j + ✏

N�1X

j=i

v2j+1 +
2

✏

N�1X

j=i

✓
vj+1 � vj

h

◆2�
. (2.12)
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Adding (2.11) and (2.12) we get,

2v2i  v20 +
h

2


✏

i�1X

j=0

v2j + ✏

i�1X

j=0

v2j+1 +
2

✏

i�1X

j=0

✓
vj+1 � vj

h

◆2�

+ v2N +
h

2


✏

N�1X

j=i

v2j + ✏

N�1X

j=i

v2j+1 +
2

✏

N�1X

j=i

✓
vj+1 � vj

h

◆2�

= v20 + v2N +
h

2


✏

N�1X

j=0

v2j + ✏

N�1X

j=0

v2j+1 +
2

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�

 v20 + v2N +
h

2


✏

NX

j=0

u2
j + ✏

NX

j=0

v2j +
2

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�

= v20 + v2N +
h

2


2✏

NX

j=0

v2j +
2

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
.

Dividing by two we get the inequality,

v2i  v20 + v2N
2

+
h

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
. (2.13)

Notice that inequality (2.13) is independent of i, we will use this property to prove the original

proposition.

NX

i=0

v2i = v20 +
NX

i=1

v2i

 v20 +

 
v20 + v2N

2
+

h

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�! NX

i=1

1

 v20 +

 
v20 + v2N

2
+

h

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�! 1

h

=
(2h+ 1)v20 + v2N

2h
+

1

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
.

We can change index i to j on the left side of the inequality for simplicity,

NX

j=0

v2j  (2h+ 1)v20 + v2N
2h

+
1

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
. (2.14)

Similarly, from the fact that

NP
i=0

v2i = v2N +
N�1P
i=0

v2i ,

we can get
NX

j=0

v2j  v20 + (2h+ 1)v2N
2h

+
1

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
. (2.15)
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Adding (2.14) and (2.15) together, we have

2
NX

i=0

v2i  (2h+ 2)v20 + (2h+ 2)v2N
2h

+ ✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2

.

Dividing by two we get the inequality,

NX

i=0

v2i  (h+ 1)v20 + (h+ 1)v2N
2h

+
1

2


✏

NX

j=0

v2j +
1

✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
.

Moving the `2 norm term from the right side to the left we get,

✓
1� ✏

2

◆ NX

j=0

v2j  (h+ 1)(v20 + v2N )

2h
+

1

2✏

N�1X

j=0

✓
vj+1 � vj

h

◆2

.

From that we may get,

NX

j=0

v2j 
✓
1� ✏

2

◆�1 (h+ 1)(v20 + v2N )

2h
+

1

2✏

N�1X

j=0

✓
vj+1 � vj

h

◆2�
.

In order to get the desired inequality constant we require,

h+ 1

2

✓
1� ✏

2

◆�1

 2 and
1

2✏

✓
1� ✏

2

◆�1

 1.

We can get this constant when ✏ = 1 and h  1 (which holds in the general case), so the inequality

becomes,

NX

j=0

v2j  2
v20 + v2N

h
+

N�1X

j=0

✓
vj+1 � vj

h

◆2

.

Adding |�hvh|22 to both sides we get,

NX

j=0

v2j +
N�1X

j=0

✓
vj+1 � vj

h

◆2

 2


v20 + v2N

h
+

N�1X

j=0

✓
vj+1 � vj

h

◆2�
. (2.16)
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For a smooth function f on [0, 1] we cannot bound
R 1
0 f 0(x)2dx in terms of

R 1
0 f(x)2dx by a constant

independent of f . For example if we take the function f(x) = sin(nx) the derivative is f 0(x) =

n · cos(nx), and we can easily see that as n grows so will the bounding constant of the inequality.

Therefore it cannot be independent of f . However, such an inequality is possible in the discrete

case with a constant depending on h. These so called inverse inequalities are useful in estimating

the condition numbers of discrete di↵erential operators, as in the following results some of which

can be found in [7].

Proposition 2.10. [Inverse estimates]. We have,

(a) |�hvh|2  2h�1|vh|2.

(b) |�hvh|1 
p
2h�1|vh|2.

(c) |�hvh|1  2h�1|vh|1.

Proof.

(a) We have,

|�hvh|22 =
N�1X

j=0

✓
vj+1 � vj

h

◆2

=
1

h2

 
N�1X

j=0

v2j+1 � 2
N�1X

j=0

vj+1vj +
N�1X

j=0

v2j

!

=
1

h2

 
NX

j=0

v2j � v20 � 2
N�1X

j=0

vj+1vj +
NX

j=0

v2j � v2N

!

=
1

h2

 
2

NX

j=0

v2j � (v2N + v20)� 2
N�1X

j=0

vj+1vj

!

=
1

h2

 
2

NX

j=0

v2j � (v2N + v20)� 2
N�1X

j=0

vj+1vj + 2
NX

j=0

v2j � 2
NX

j=0

v2j

!

=
1

h2

 
4

NX

j=0

v2j �
"
v2N + v20 + 2

NX

j=0

v2j + 2
N�1X

j=0

vj+1vj

#!

=
1

h2

 
4

NX

j=0

v2j �
"
v2N + v20 +

NX

j=1

v2j + v20 +
N�1X

j=0

v2j + v2N + 2
N�1X

j=0

vj+1vj

#!

=
1

h2

 
4

NX

j=0

v2j �
"
2(v20 + v2N ) +

N�1X

j=0

v2j+1 +
N�1X

j=0

v2j + 2
N�1X

j=0

vj+1vj

#!

=
1

h2

 
4

NX

j=0

v2j �
"
2(v20 + v2N ) +

N�1X

j=0

(vj+1 � vj)
2

#!

 4

h2

NX

j=0

v2j .



18

We proved,

|�hvh|22  4h�2|vh|22.

Taking the square root of both sides we have proved,

|�hvh|2  2h�1|vh|2. (2.17)

(b) Assume that the infinity norm occurs at index k. Then

|�hvh|21 = maxj

✓
vj+1 � vj

h

◆2

=
1

h2
(vk+1 � vk)

2

=
1

h2
(v2k+1 + v2k � 2vk+1vk)

=
1

h2
(2(v2k+1 + v2k)� (2vk+1vk + v2k+1 + v2k))

=
1

h2
(2(v2k+1 + v2k)� (vk+1 + vk)

2)

 2

h2
(v2k+1 + v2k)

 2

h2
|vh|22.

Taking the square root of both sides,

|�hvh|1 
p
2h�1|vh|2. (2.18)

We can see the inequality is sharp if we choose the vector vh = (�1, 1, 0..., 0).

(c) Note that from (b),

|�hvh|21  2

h2
(v2k+1 + v2k)

 4

h2
|vh|21.

Taking the square root of both sides,

|�hvh|1  2h�1|vh|1. (2.19)

We can see the inequality is sharp if we choose the vector vh = (�1, 1, 0, ..., 0).
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2.2 Second Order Numerical Schemes for the 1D Poisson

equation

When we wish to solve a partial di↵erential equation there is no guarantee we can find an analytical

solution so we create a numerical scheme that mimic the continues operator and since we trans-

formed the continues problem into a discrete one we can use numerical methods to approximate

the solution. For a finite di↵erence numerical scheme to be successful it needs to be convergent,

which is relatively easy to prove if we know a scheme is stable and consistent. We now define each

of those terms with respect to the Poisson equation.

Consider the simplest finite di↵erence scheme with a uniform grid size h

��⇤
huh = fh = Rhf,

where (��⇤
h) is any finite di↵erence discretization of the laplacian and Rh is the restriction operator

on ⌦h that ”samples” a function such as f on ⌦h and converts it into a vector. As in the previous

chapter the term c is a positive constant independent of u and h.

Definition 2.11. The term k · k⇤
Cr(⌦)

is defined as,

kuk⇤
Cr(⌦)

= max
|↵|=r

sup
x2⌦

|D↵u(x)|,

where D↵u represent a derivative of u of order r, with ↵ a multi index such that r = |↵| = ↵1+↵2.

For example, if ↵ = (3, 1) then D↵u represents the fourth derivative uxxxy.

While || · ||⇤
Cr(⌦)

is not a norm, it is a useful quantity in the analysis of finite di↵erence schemes.

Definition 2.12. The discretization (��⇤
h) is said to be consistent of order r if

|�⇤
hRhu�Rh�u|1  ckuk⇤

Cr+2(⌦)
hr, for u 2 Cr+2(⌦), where u = 0 on @⌦.

Definition 2.13. The `2 norm of a matrix A is defined as |A|2 = sup
x 6=0

|Ax|2
|x|2 .

Definition 2.14. The discretization (��⇤
h) is said to be stable with respect to | · |2 if |(�⇤

h)
�1|2 is

bounded independently of h.

Definition 2.15. Given the scheme ��⇤
huh = Rhf for solving the Poisson equation ��u = f

with boundary condition u = 0 on @⌦, we say (��⇤
h) to be convergent of order r if

|Rhu� uh|1  ckuk⇤
Cr+2(⌦)

hr.

Definition 2.16. The condition number of a numerical scheme represented as a square non-

singular matrix A is defined as:

(A) = |A�1|2|A|2.

In the next two subsections we use the inequalities of the last section to show convergence of the

finite di↵erence schemes.
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2.2.1 Solving the 1D Poisson Equation with Dirichlet Boundary Condi-

tions.

Consider the boundary value problem on domain ⌦ = (0, 1):

�u00 = f on (0, 1) with u(0) = 0 = u(1).

Consider the simplest finite di↵erence scheme with a uniform grid size h

��huh = fh = Rhf.

Since u(0) = 0 = u(1) we only need to find ui for 1  i  N � 1.

We define the grid as

⌦h =

⇢
ih, 1  i  N � 1

�
.

For 1  i  N � 1 the equivalent (N � 1)⇥ (N � 1) matrix to the discretization grid is simply,

��h =
1

h2

2

666666664

2 �1

�1 2 1
. . .

. . .
. . .

�1 2 �1

�1 2

3

777777775

. (2.20)

Theorem 2.17. The �h scheme is second order consistent with respect to | · |1.

Proof. For 1  i  N � 1, ui = u(xi) can be expanded using Taylor’s theorem,

ui±1 = ui ±
dui

dx
h+

d2ui

dx2

h2

2
± d3ui

dx3

h3

6
+

d4u(⇠±)

dx4

h4

24
,

for some ⇠± 2 ⌦. Adding the two equalities above we get

ui+1 + ui�1 = 2ui +
d2ui

dx2
h2 +

d4u(⇠±)

dx4

h4

12
.

By rearranging the terms we get

�2ui + ui+1 + ui�1

h2
� d2ui

dx2
=: E, and kEk⇤

C4(⌦)
 ckuk⇤

C4(⌦)
h2,

where c is a positive constant. Since we chose any 1  i  N � 1 we may conclude that,

|�hRhu�Rh�u|1  ckuk⇤
C4(⌦)

h2. (2.21)
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Theorem 2.18. The �h scheme is second order convergent with respect to |·|1, |·|h, and convergent

of order 3
2 with respect to | · |H1 and | · |⇤H1 .

Proof. Let eh = Rhu� uh. It is easily seen that e0 = 0 = eN . Now we prove a summation by parts

equality. Note that,

�h2eTh�heh =
N�1X

i=1

ei(2ei � ei�1 � ei+1)

=
N�1X

i=1

e2i �
N�1X

i=1

eiei�1 +
N�1X

i=1

e2i �
N�1X

i=1

eiei+1

=
N�1X

i=0

e2i � 2
N�1X

i=0

ei+1ei +
N�1X

i=0

e2i+1

=
N�1X

i=0

(ei+1 � ei)
2.

We can summarize the summation by parts equality as

�eTh�heh = |�heh|22.

From that we may get the inequality,

|�heh|22  |eh|2|�heh|2.

Using (2.3) we get

|�heh|22  1

6
|�heh|2|�heh|2,

|�heh|2  1

6
|�heh|2,

or

|�heh|h  1

6
|�heh|h. (2.22)

Since �heh = �hRhu�Rh�u, from (2.21) can write,

|�heh|1  ckuk⇤
C4(⌦)

h2.

Clearly,

|�heh|2  N1/2|�heh|1  h�1/2ckuk⇤
C4(⌦)

h2.

From the above equality we can see that

h1/2|�heh|2  ckuk⇤
C4(⌦)

h2.
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We may conclude that,

|�heh|h  ckuk⇤
C4(⌦)

h2.

Plugging that into equation (2.22) we get

|�heh|h  ckuk⇤
C4(⌦)

h2.

Using Proposition 2.5, again we can bound |eh|h as follows,

|eh|h  1

6
|�heh|h  ckuk⇤

C4(⌦)
h2. (2.23)

In addition, using (2.2) we can bound |eh|1 as follows,

|eh|1  2�1h1/2|�heh|2 = 2�1|�heh|h  ckuk⇤
C4(⌦)

h2. (2.24)

Equations (2.23) and (2.24) are proofs that the scheme �h is convergent of second order with

respect to | · |h and | · |1 respectively.

We wish to prove now that the scheme is convergent with respect to the discrete H1 norm and

the equivalent H1 norm from equation (2.16).

(|eh|⇤H1)2 =
e20 + e2N

h
+

N�1X

j=0

✓
ej+1 � ej

h

◆2

.

As was stated before, e0 = 0 = eN , giving us

|eh|⇤H1 =

N�1X

j=0

✓
ej+1 � ej

h

◆2�1/2

= |�heh|2

= h�1/2|�heh|h

 h�1/2ckuk⇤
C4(⌦)

h2

= ckuk⇤
C4(⌦)

h3/2.

We have shown that

|eh|⇤H1  ckuk⇤
C4(⌦)

h3/2. (2.25)

Using (2.16) we can see that,

|eh|H1 
p
2|eh|⇤H1  ckuk⇤

C4(⌦)
h3/2.

These demonstrate that

|eh|H1  ckuk⇤
C4(⌦)

h3/2. (2.26)

We can easily see that equations (2.25) and (2.26) prove that the scheme �h is convergent of order

3/2 with respect to | · |⇤H1 and | · |H1 respectively.
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Theorem 2.19. The condition number of the �h scheme is at most 2
3h2 .

Proof. In order to estimate the condition number of �h, we need to estimate |�h|2 and |��1
h |2.

Let uh be a vector such that u0 = 0 = uN .

It is easily seen that �huh = ��h(�huh). Using inequality (2.17) twice, we get

|�huh|2  2

h
|�huh|2  4

h2
|uh|2.

Using the minimax characterization for eigenvalues we may conclude that

|�h|2  4

h2
. (2.27)

Applying (2.3) on the summation by parts we have shown previously we get,

uT
h (��h)uh = |�huh|22 � 6|uh|22.

Therefore the smallest eigenvalue of (��h) is �min � 6. Since (��h) is symmetric

|��1
h |2  1

6
.

Now we can estimate the condition number using the | · |2 norm,

(�h) = |��1
h |2|�h|2  1

6
· 4

h2
=

2

3h2
.

Since �h is a symmetric positive definite tridiagonal Toeplitz matrix we can know the values of all

of its eigenvalues explicitly,

�i = ↵� 2
p

�� cos

✓
a

N
⇡

◆
, a = 1, 2, ..., N � 1.

↵ represents the value on the main diagonal, � the value on the upper diagonal and � the value on

the lower diagonal. We also know that |�h|2 will be equal to its largest eigenvalue and |��1
h |2 will

be equal to the inverse of its smallest eigenvalue. Using that we find the condition number to be

(�h) ⇡
4

h2⇡2
.
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2.2.2 Solving the 1D Poisson Equation with Neumann Boundary Con-

ditions.

Consider the Poisson equation

�u00 = f on (0, 1) with u0(0) = 0 = u0(1).

Given that f has zero average and letting u be the unique solution with zero average, we define the

o↵set grid as

e⌦h =

⇢✓
i+

1

2

◆
h, 0  i  N � 1

�
.

For 1  i  N � 2 the discretization is simple, but at the boundaries the discretization requires

points that do not exist , i.e. u 1
2�1 and uN� 1

2+1. For those we use the Neumann boundary

conditions,

0 = u0(0) ⇡
u1/2 � u�1/2

h

and so we get

u�1/2 = u1/2. (2.28)

Similarly from the second boundary condition we get

uN�1/2 = uN+1/2. (2.29)

Let us define the discretization matrix to be,

��(3)
h =

1

h2

2

666666664

1 �1

�1 2 �1
. . .

. . .
. . .

�1 2 �1

�1 1

3

777777775

.

The scheme was taken from [7] using the same notation. Note that ��(3)
h is singular with a one-

dimensional null space given by scalar multiples of 1, where 1 represents a vector of ones.

Let V = {uh 2 RN,
PN

i=1 ui = 0} and Ah : V �! V , defined by Ahuh = (��(3)
h )uh for uh 2 V .

Then Ah is invertible on V .
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Theorem 2.20. The Ah scheme is stable and |A�1
h |2  1

2 .

Proof. First we prove a summation by parts equality to be used later. Let uh 2 V and uk = ui+ 1
2
.

We have,

�h2uT
hAhuh =

N�2X

i=1

uk(2uk � uk�1 � uk+1) + u 1
2
(u 1

2
� u 3

2
) + uN� 1

2
(uN� 1

2
� uN� 3

2
)

=
N�2X

i=1

uk(uk � uk�1) +
N�2X

i=1

uk(uk � uk+1) + u 1
2
(u 1

2
� u 3

2
) + uN� 1

2
(uN� 1

2
� uN� 3

2
)

=
N�2X

i=1

u2
k �

N�2X

i=1

ukuk�1 +
N�2X

i=1

u2
k �

N�2X

i=1

ukuk+1 + u2
1
2
� u 1

2
u 3

2
+ u2

N� 1
2
� uN� 1

2
uN� 3

2

=
N�2X

i=0

u2
k �

N�1X

i=1

ukuk�1 +
N�1X

i=1

u2
k �

N�2X

i=0

ukuk+1

=
N�2X

i=0

u2
k �

N�2X

i=0

ukuk+1 +
N�2X

i=0

u2
k+1 �

N�2X

i=0

ukuk+1

=
N�2X

i=0

u2
k � 2

N�2X

i=0

ukuk+1 +
N�2X

i=0

u2
k+1

=
N�2X

i=0

(uk+1 � uk)
2

=
N�1X

i=0

(uk+1 � uk)
2.

From the above equality we can see that

|�huh|22 = uT
hAhuh. (2.30)

Using the discrete Poincaré inequality (2.4) we obtain,

2|uh|22  uT
hAhuh,

leading to the conclusion

|A�1
h |2  1

2
. (2.31)
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Theorem 2.21. The Ah scheme is second order consistent.

Proof. Let u be any smooth function with zero average and R̃h be the restriction to ⌦̃h. In order

to show consistency we simply need to prove that

|AhR̃hu� R̃h�u|h  ckuk⇤
C4(⌦)

h2.

For 1  i  N � 2, using the previous notation where k = i + 1/2, uk = u(xk) can be expanded

using Taylor’s theorem,

uk±1 = uk ± duk

dx
h+

d2uk

dx2

h2

2
± d3uk

dx3

h3

6
+

d4u(⇠±)

dx4

h4

24
,

for some ⇠± 2 ⌦. Adding the two equalities above we get

uk+1 + uk�1 = 2uk +
d2uk

dx2
h2 +

d4u(⇠±)

dx4

h4

12
.

By rearranging the terms we get

�2uk + uk+1 + uk�1

h2
� d2uk

dx2
= E, and kEk⇤

C4(⌦)
 ckuk⇤

C4(⌦)
h2, (2.32)

where c is a positive constant. Since we chose any 1  i  N � 2 we may conclude that the

inequality is true for all those indices. We now need to prove the inequality for the boundaries.

Let us start with the left side boundary

u 1
2±1 = u1/2 ±

du1/2

dx
h+

d2u1/2

dx2

h2

2
±

d3u1/2

dx3

h3

6
+

d4u(⇠±)

dx4

h4

24
,

for some ⇠± 2 ⌦. Adding the two equalities above we get

u3/2 + u�1/2 = 2u1/2 +
d2u1/2

dx2
h2 +

d4u(⇠±)

dx4

h4

12
.

Using equation (2.28) and rearranging the terms we get

�u1/2 + u3/2

h2
�

d2u1/2

dx2
= E, and kEk⇤

C4(⌦)
 ckuk⇤

C4(⌦)
h2, (2.33)

where c is a positive constant.

We now check the right side boundary

uN� 1
2±1 = uN� 1

2
±

duN� 1
2

dx
h+

d2uN� 1
2

dx2

h2

2
±

d3uN� 1
2

dx3

h3

6
+

d4u(⇠±)

dx4

h4

24
.

Following a similar procedure as the left side boundary and using equation (2.29) we get

�uN� 1
2
+ uN� 3

2

h2
�

d2uN� 1
2

dx2
= E, and kEk⇤

C4(⌦)
 ckuk⇤

C4(⌦)
h2. (2.34)

where c is a positive constant.
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Adding the three inequalities (2.32), (2.33) and (2.34) together demonstrates that the scheme is

consistent, i.e.

|AhR̃hu� R̃h�u|1  ckuk⇤
C4(⌦)

h2.

Theorem 2.22. The Ah scheme is convergent with respect to the norms | · |h, | · |H1 , | · |⇤H1 , | · |1.

Proof. Let

��u = f, Ahuh = R̃hf, eh = R̃hu� uh.

Since Aheh = AhR̃hu� R̃h�u we can write,

|Aheh|1  ckuk⇤
C4(⌦)

h2. (2.35)

From Theorem 2.21 we know the scheme is consistent with respect to | · |1. It can be easily seen

that

|Aheh|h = h1/2|Aheh|2  h1/2 · h�1/2|Aheh|1  ckuk⇤
C4(⌦)

h2,

demonstrating that the scheme is consistent with respect to | · |h as well, i.e.

|Aheh|h  ckuk⇤
C4(⌦)

h2. (2.36)

Now we can demonstrate that the scheme is convergent.

For that we need to show that |eh|h  ckuk⇤
C4(⌦)

h2; we have

|eh|h = |(Ah)
�1Aheh|h

 |A�1
h |h|Aheh|h

= |A�1
h |2|Aheh|h

 1

2
ckuk⇤

C4(⌦)
h2

 ckuk⇤
C4(⌦)

h2.

Using (2.31) and (2.36) above we have proven that,

|eh|h  ckuk⇤
C4(⌦)

h2. (2.37)

Demonstrating that the scheme Ah is convergent of second order with respect to | · |h.
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We will demonstrate that �(3)
h uh is equivalent to ��h(�huh) and we will use the matrix representa-

tion to show that. Let us first find �hvh on the interior points,

1

h
[u3/2 � u1/2, ..., uN�1/2 � uN�3/2].

Applying the Neumann boundary condition we get,

�huh =
1

h
[0, u3/2 � u1/2, ..., uN�1/2 � uN�3/2, 0].

Notice that after applying the boundary condition, �huh has (N + 1) components. If we wish to

write �h in a matrix representation we get an (N + 1)⇥N matrix:

�h =
1

h

2

666666664

0 0

�1 1
. . .

. . .

�1 1

0 0

3

777777775

.

We apply the normal backwards discrete derivative as we defined it before, i.e.

��h(�huh) =
1

h2
[(u3/2 � u1/2)� 0, (u5/2 � u3/2)� (u3/2 � u1/2), ...

..., (uN�1/2 � uN�3/2)� (uN�3/2 � uN�5/2), 0� (uN�1/2 � uN�3/2)]

=
1

h2
[�u1/2 + u3/2,�2u3/2 + u5/2 + u1/2, ...,�2uN�3/2 + uN�1/2 + uN�5/2, uN�3/2 � uN�1/2].

We can easily see that ��h(�hvh) has (N) components Putting ��h in matrix form we can easily

see that it is required to be an (N)⇥ (N + 1) matrix,

��h =
1

h

2

666666664

0 1

�1 1
. . .

. . .

�1 1

�1 0

3

777777775

.

Notice that if we multiply matrix ��h by �h we get a (N ⇥N) matrix which is exactly �(3)
h ,

���h(�h) = � 1

h2

2

666666664

0 1

�1 1
. . .

. . .

�1 1

�1 0

3

777777775

2

666666664

0 0

�1 1
. . .

. . .

�1 1

0 0

3

777777775

=
1

h2

2

666666664

1 �1

�1 2 1
. . .

. . .
. . .

�1 2 �1

�1 1

3

777777775

= ��(3)
h .

This gives us,

��h(�h) = �(3)
h . (2.38)
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We wish to prove now that the scheme is also convergent with respect to the discrete H1 norm and

the equivalent H1 norm from equation (2.16). We have

(|eh|⇤H1)2 =
e21/2 + e2N�1/2

h
+

N�2X

j=0

✓
e(j+1/2)+1 � ej+1/2

h

◆2

 |eh|22
h

+ |�heh|22

 |eh|2h
h2

+
1

6
|�(3)

h eh|22


|A�1

h |2h|�
(3)
h eh|2h

h2
+

1

6
|�(3)

h eh|22

=
|A�1

h |22|�
(3)
h eh|2h

h2
+

1

6h
|�(3)

h eh|2h


|�(3)

h eh|2h
2h2

+
1

6h
|�(3)

h eh|2h

=
2

3h2
|�(3)

h eh|2h.

In order to get the above inequality we have used inequalities (2.3), (2.38) and (2.31). Taking the

square root of both sides and using the fact the scheme is consistent we can show that,

|eh|⇤H1  ckuk⇤
C4(⌦)

h. (2.39)

Using inequality (2.16) we can easily see that,

|eh|H1  2|eh|⇤H1  ckuk⇤
C4(⌦)

h.

We have proven that,

|eh|H1  ckukC4(⌦)h. (2.40)

Using inequality (2.8) we can see that

|eh|1 

s
2hp
5� 1

|eh|H1  ckukC4(⌦)h
3/2.

We can get the inequality,

|eh|1  ckukC4(⌦)h
3/2. (2.41)

Equations (2.39), (2.40) and (2.41) are proofs that the scheme �(3)
h is convergent of first order with

respect to | · |⇤H1 and | · |H1 respectively and order 3/2 convergent with respect to | · |1.
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Theorem 2.23. The condition number of the Ah scheme is at most 2
h2 .

Proof. In order to find the condition number using the | · |2 norm we need to estimate |Ah|2.
If we apply inequality (2.17) to (2.30) we get,

uT
hAhuh = |�huh|22  4

h2
|uh|22, uh 2 V.

From that we may conclude that

|Ah|2  4

h2
.

Now we can bound the condition number,

(Ah) = |A�1
h |2|Ah|2  1

2
· 4

h2
=

2

h2
.

Another method of finding a bound on |Ah|2 is by eigenvalue perturbation.

Eigenvalue Perturbations. Let �1 � �2 � ... � �n be the eigenvalues of a Hermitian A 2 Rn⇥n,

and suppose that A is perturbed by a Hermitian matrix E with eigenvalues ✏1 � ✏2 � ... � ✏n to

produce B = A+ E which is also Hermitian. Let �i be the eigenvalues of B, If �1 � �2 � ... � �n

then,

max
i

�i  max
i

�i + ✏1.

A proof of the above theorem is available on page 551 in [3]. Let Eh be a (N +1)⇥ (N +1) matrix

defined as

Eh =
1

h2

2

666666664

�1 0

0 0 0
. . .

. . .
. . .

0 0 0

0 �1

3

777777775

.

We can easily see that �(3)
h = (h0)2

h2 �h0 +Eh, where �h0 is the scheme defined in 2.20 with grid size

of (N+2) points. If we denote �i, �i and ✏i denote the eigenvalues of �
(3)
h , �h0 and Eh respectively.

From (2.27) we can find that,

max
i

�i 
4

(h0)2
.

It is easily seen that ✏1 = 0. From that we can find,

max
i

�i 
(h0)2

h2

4

(h0)2
+ 0 =

4

h2
.

As we stated before, |�(3)
h |2 = max

i
�i.

Now we can estimate the condition number,

(Ah) = |A�1
h |2|Ah|2  1

2
· 4

h2
=

2

h2
.



Chapter 3

Monotone matrices

In this chapter I will introduce a family of matrices called monotone matrices, some equivalent

conditions for monotonicity will be introduced in this chapter as well. There are more equivalent

conditions for monotonicity that are not introduced but can be found in [1]. In chapter four and

five we will use the fact (after we prove it of course) that the numerical schemes are monotone to

prove stability.

Definition 3.1. A vector v is said to be v > 0 when all entries are nonnegative and at least one

element is positive.

Definition 3.2. A vector v is said to be v � 0 when all entries are positive.

Definition 3.3. A vector v is said to be v � 0 when all entries are nonnegative.

Definition 3.4. A matrix M is said to be M � 0 when all entries are nonnegative.

Definition 3.5. A real square matrix M is said to be monotone if Mv � 0 implies v � 0.

31
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From the definition of a monotone matrix one can claim the following:

Claim 3.6. A monotone matrix is non-singular.

Proof. Given a monotone matrix M and vector v, assume there is v 6= 0 such that Mv = 0. Then

M(�v) = 0 as well. Since M is monotone, if Mv = 0 we can conclude v � 0. Taking the equation

M(�v) = 0 we can conclude (�v) � 0.

The only possible vector obeying both inequalities is v = 0, a contradiction to the assumption. We

have proved that the only solution of the equation Mv = 0 is the trivial solution v = 0, and from

that we can conclude that the matrix M is non-singular.

Claim 3.7. Suppose that M is non-singular and real. Then M is monotone i↵ (M�1)ij � 0 8i, j.

Proof. (() Assume that (M�1)ij � 0 and Mv � 0. Then

0  (M�1)(Mv) = v, so v � 0; hence M is monotone.

()) Assume that M is monotone. Let ej denote jth standard unit vector.

Since M is non-singular 9v such that Mv = ej � 0.

As M is monotone, v � 0. But v is just the jth column of M�1.

It now folllows that M�1 � 0.
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Claim 3.8. A matrix M is monotone if and only if there exists matrix R such that B = M + R is

monotone, B�1R � 0 and ⇢(B�1R) < 1, where ⇢ denotes the spectral radius.

Proof. ()) Assume that M is monotone. Choose R = 0, the null matrix. We get,

B = M + 0 = M .

Clearly,

B�1 = M�1 � 0, B�1R = 0 � 0, ⇢(B�1R) = 0 < 1.

(() Suppose R to be a matrix such that B = M +R is monotone, B�1R � 0 and ⇢(B�1R) < 1.

We can see that,

M = B �R = B(I �B�1R).

We now state two well known results.

Let A be an N ⇥N matrix such that ⇢(A) < 1. Then,

lim
j!1

Aj = 0, (3.1)

and,

(I �A)�1 =
1X

j=0

Aj . (3.2)

We are given ⇢(B�1R) < 1, using (3.2) we get,

(I �B�1R)�1 =
1X

j=0

(B�1R)j .

From (3.1) we know this sum will converge, we may conclude

M�1 = (I �B�1R)�1B�1.

and since we are given that B�1R � 0 we conclude,

(I �B�1R)�1 =
1X

j=0

(B�1R)j � 0

Since we know B is monotone, B�1 � 0. Thus,

M�1 = (I �B�1R)�1B�1 � 0.

Using Claim 3.7 we conclude that M is monotone.
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Claim 3.9. A matrix M is monotone if and only if there exists a monotone matrix B � M and a

vector x � 0 such that Mx � 0.

Proof. (() We will use Claim 3.8 to show the above claim is true. Let us define matrix R = B�M ,

since B � M we may conclude R � 0. Since B is monotone we know B�1 � 0, using that we can

find B�1R � 0. We already have two of the conditions for monotonicity from claim (3.8), all we have

left to show is that ⇢(B�1R) < 1. Let us define matrix C = B�1R = B�1(B�M) = I�B�1M � 0.

We prove now that,

⇢(C)  max
i

(Cx)i
xi

.

Let,

C̃ =

2

664

1
x1

. . .

1
xn

3

775C

2

664

x1

. . .

xn

3

775 � 0.

The spectrum of C̃ is the same as matrix C, ⇤(C̃) = ⇤(C).

Notice,

c̃ij =
1

xi
cijxj .

By the Gershgorin circle theorem,

⇤(C̃) ⇢
[

i

Bri(c̃ii), ri =
X

i 6=j

c̃ij ,

where Br(x) is the ball of radius r with centre x. Using the above,

⇢(C̃)  max
i

c̃ii + ri = max
i

ciixi

xi
+
X

i 6=j

cijxj

xi
= max

i

(Cx)i
xi

.

Remembering ⇤(C̃) = ⇤(C),

⇢(C)  max
i

(Cx)i
xi

.

We now prove ⇢(C) < 1,

⇢(C)  max
i

(Cx)i
xi

= max
i

[(I �B�1M)x]i
xi

= 1�min
i

(B�1Mx)i
xi

< 1.

We have a monotone matrix B such that, B�1R � 0 and ⇢(B�1R) < 1. Using (3.8) we conclude

M is a monotone matrix.

()) Given a monotone matrix M , let us define matrix B = M , clearly B is a monotone matrix. We

define a vector x = M�11, and we can easily see x � 0 since by Claim 3.7 M�1 � 0 and no entire

row of M�1 can have 0 otherwise M�1 is not invertible. We calculate Mx = M(M�11) = 1 � 0.

Given a monotone matrix M we have found a monotone matrix B � M and a vector x � 0 such

that Mx � 0.
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Claim 3.10. Suppose that for the real square matrix M , Mii > 0 and Mij  0 for every i 6= j. If M

is irreducible and diagonally dominant where at least in one row it is strictly diagonally dominant,

then M is monotone.

Proof. The matrix M can be written as

M = sI �B,

where Bi,j � 0 and s > ⇢(B).

Such an s exists since the matrix M is irreducible and strictly diagonally dominant in one of the

rows. We can write

M = sI �B = s

✓
I � B

s

◆

then

M�1 =
1

s

✓
I � B

s

◆�1

.

Let us define A = B
s , so that ⇢(A) < 1. Now the equality becomes

M�1 =
1

s
(I �A)�1

Applying (3.2) we get,

M�1 =
1

s
(I �A)�1 =

1

s

1X

j=0

Aj =
1

s

1X

j=0

✓
B

s

◆j

From (3.1) we know this sum will converge and since Bi,j � 0 and s > 0 we can conclude that

M�1 =
1

s

1X

j=0

✓
B

s

◆j

� 0.

Hence M is a monotone matrix by Claim 3.7.

Claim 3.11. A matrix M is monotone if and only if there exist monotone matrices B1 and B2 such

that

B1  M  B2.

Proof. ()) If M is monotone, let B1 = M and B2 = M . It can be easily shown B1 and B2 are

monotone since B�1
1 = B�1

2 = M�1 � 0.

Given a monotone matrix M we found two monotone matrices B1 and B2 such that B1  M  B2.

(() If B1 = M , then we conclude immediately M is monotone.

If B1i,j  Mi,j , let v be a vector defined as v = B�1
1 1 � 0 where 1 represents a vector where all

entries are 1. Therefore B1v = 1. We find, 0 < 1 = B1v  Mv.

We have found a vector v � 0 such that Mv � 0 and a monotone matrix B2 � M .

Using Claim 3.9 we conclude M is monotone.
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Claim 3.12. Suppose that Lh is a monotone matrix so that whenever vh � 0 and |vh|1 = 1 there

is some positive constant ↵ such that Lhvh � ↵1 for all h 2 (0, 1). Then |L�1
h |1  ↵�1 for all

h 2 (0, 1).

Proof. Since the matrix Lh is monotone, we know that L�1
h � 0. Let vh � 0 so that |vh|1 = 1.

From Lhvh � ↵1 and L�1
h � 0 we can get,

vh � ↵L�1
h 1.

Taking the infinity norm we get the inequality,

|vh|1 � |↵L�1
h 1|1.

Using |vh|1 = 1 we get,

1 � ↵|L�1
h 1|1. (3.3)

Using L�1
h � 0 and the definition of infinity norm of a matrix we get the equality,

|L�1
h 1|1 = |L�1

h |1. (3.4)

Applying (3.4) on (3.3) gives us,

1 � ↵|L�1
h |1.

Dividing both sides by ↵ gives us the desired result,

|L�1
h |1  ↵�1.

Claim 3.13. Consider the PDE Lv = f with v vanishing on the boundary and finite di↵erence

scheme Lhvh = fh := Rhf . Assume Lh satisfies the hypotheses of claim 3.12.

Let E(v) := RhLv � LhRhu be the consistency error for any smooth function v vanishing on the

boundary. We claim that |vh �Rhv|1  |E(v)|1↵�1.

Proof. We have

|vh �Rhv| = |L�1
h Lhvh �Rhv| = |L�1

h RhLv �Rhv| = |L�1
h RhLv � L�1

h LhRhv|

= |L�1
h (RhLv � LhRhv)|  |L�1

h |1|RhLv � LhRhv|1 = |L�1
h |1|E(v)|1

 |E(v)|1↵�1.
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Claim 3.14. The matrix (��h) defined in (2.20) is a monotone matrix.

Proof. We first prove that (��h) is irreducible. Let us define a matrix A defined as,

A��h =

8
<

:
0 (��h)ij = 0

1 (��h)ij 6= 0
.

We can see matrix A��h will be,

A��h =

2

666666664

1 1

1 1 1
. . .

. . .
. . .

1 1 1

1 1

3

777777775

.

We can treat matrix A��h as the adjacency matrix of a directed graph, which will be the associated

graph of the matrix (��h).

We wish to prove now that (��h) is irreducible. It is well known that if the directed graph of a

matrix is strongly connected then it is irreducible.

If we set all N vertices in a line we can easily see that they all are connected to their nearest

neighbours. Clearly, one can move from from any vertex to any other vertex on the line.

Thus we may conclude that the matrix (��h) is irreducible.

We can easily see that (��h) is a diagonally dominant matrix, strictly diagonally dominant in

the first and last row, and (��h)ii > 0 and (��h)ij  0 for every i 6= j.

Using Claim 3.10 we can conclude that (��h) is a monotone matrix.
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Theorem 3.15. The scheme ��h is stable and |��h|1  1
8 .

Proof. We wish to show that,
|���1

h fh|1
|fh|1

=
|uh|1
|fh|1

 1

8
.

We now define the vector wh = [w1, w2, ..., wn�1]T ,

where,

wi =
(ih)(1� ih)

2
,

and the function,

w =
x(1� x)

2
0  x  1.

We consider w as a function and wh the discretization of it, defined as wh = Rhw. We now show that

��hwh = 1. By simple calculation we can see that ��w = 1 and 1��hwh = Rh�w��hRhw = 0,

since we have shown the consistency error involves fourth derivatives of w, which vanish. This proves

the claim ��hwh = 1.

It is easily seen that |wh|1  1
8 . Now,

��h(|fh|1wh + uh) = |f |11+ fh � 0.

Since ��h is monotone,

|fh|1wh + uh � 0.

From here we have,

�uh  |fh|1wh  |wh|1|fh|11  1

8
|fh|11. (3.5)

Similarly,

��h(|fh|1wh � uh) = |f |11� fh � 0.

Since Sh is monotone,

|fh|1wh � uh � 0.

From here we find that,

uh  |fh|1wh  |wh|1|fh|11  1

8
|fh|11. (3.6)

Combining (3.5) and (3.6) we get

|uh|1  1

8
|fh|1.

We conclude

|���1
h |1  1

8
. (3.7)

Using the monotonicity property of ��h we have proved the scheme to be stable.



Chapter 4

Fourth Order Numerical Schemes

for the 2D Poisson Equation

In this chapter we will define two fourth order numerical schemes for the 2D Poisson equation, both

of this numerical schemes can be found in [7] and previous work on the first scheme can be found

in [6]. As now we work with the 2D case we will use the notation of block matrices. These schemes

are well known, although the fact that they are monotone was not used to demonstrate stability

previously. Throughout this chapter the term c represents a positive constant whose value might

change in di↵erent places.

4.1 The ��̂h scheme

Unlike the two previous schemes, ��̂h uses nine points to estimate the Laplacian. This creates a

problem for points adjacent to the boundary, which can be easily solved by using the second order

scheme ��h for those points.

We denote the interior of a unit square 2D discretization to be,

⌦h =

⇢✓
ih, jh

◆
, 1  i, j  N � 1

�
,

and we denote the boundary points as,

@⌦h =

⇢
(0, ih), (1, ih), (ih, 0)(ih, 1), 1  i  N � 1

�
.

We define ⌦h = ⌦h [ @⌦, and notice ⌦h does not include the corners.

39
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Given the boundary condition that uh = 0 on @⌦h we define the matrix,

��̂h =
1

12h2

2

66666666666664

M⇤ �12I

M1 M2 M1 I⇤

I⇤ M1 M2 M1 I⇤

. . .
. . .

. . .
. . .

. . .

I⇤ M1 M2 M1 I⇤

I⇤ M1 M2 M1

�12I M⇤

3

77777777777775

.

Here we have,

M⇤ =

2

666666664

48 �12

�12 48 �12
. . .

. . .
. . .

�12 48 �12

�12 48

3

777777775

, M1 =

2

666666664

�12

�16
. . .

�16

�12

3

777777775

.

M2 =

2

66666666666664

48 �12

�16 60 �16 1

1 �16 60 �16 1
. . .

. . .
. . .

. . .
. . .

1 �16 60 �16 1

1 �16 60 �16

�12 48

3

77777777777775

and I⇤ =

2

666666664

0

1
. . .

1

0

3

777777775

.

The matrix I represents the identity matrix. All block matrices M⇤, M1, M2, I and I⇤ are

(n� 1)⇥ (n� 1).
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Let us define ⌦0
h as the set of points P 2 ⌦h that has all nearest neighbours of P in ⌦h, leaving

points in ⌦h\⌦0
h be those with at least one neighbour in @⌦. For point P 2 ⌦h\⌦0

h points we use

the 2D version of the scheme ��h introduced in chapter one. We can split how ��̂h acts at a

point P into two cases

(��̂h)(P ) =

8
<

:
(��h)(P ) if P 2 ⌦h\⌦0

h

(��(4)
h )(P ) if P 2 ⌦0

h

Where ��h and ��(4)
h have the molecules

��(4)
h =

1

12h2

2

66666664

1

�16

1 �16 60 �16 1

�16

1

3

77777775

, ��h =
1

h2

2

664

�1

�1 4 �1

�1

3

775 .

Below is a figure demonstrating how the grid is separated into three layers. First layer is the

boundary @⌦ denoted by filled circles where we are given that the solution u = 0, the second layer

is ⌦h\⌦0
h denoted by triangles adjacent to @⌦ where we use the second order scheme ��h, last is

the third layer ⌦0
h denoted by empty circles where we apply the fourth order scheme (��(4)

h ).

�@⌦,

�⌦h\⌦0
h,

�⌦0
h.
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Theorem 4.1. The scheme ��̂h is fourth order consistent in the interior.

Proof. One can see that for points P 2 ⌦h\⌦0
h the scheme (��̂h) reduces to the scheme (��h),

thus we get second order consistency for those points.

|�̂h(Rhu)�Rh�u|1,⌦h\⌦0
h
 ckuk⇤

C4(⌦)
h2. (4.1)

Where c is an independent constant. We now prove that for points P 2 ⌦0
h the scheme is fourth

order consistent

Let ui,j = u(xi,j) such that xi,j 2 ⌦o
h. Expanding using Taylor’s Theorem we get,

ui±1,j = ui,j ±
@ui,j

@x
h+

@2ui,j

@x2

h2

2
± @3ui,j

@x3

h3

6
+

@4ui,j

@x4

h4

24
± @5ui,j

@x5

h5

120
+

@6u(⇠±)

@x6

h6

720
,

for some ⇠± 2 ⌦h. After simplification we get,

�2ui,j + ui+1,j + ui�1,j �
@4ui,j

@x4

h4

12
� @2ui,j

@x2
h2 = E1h

2 where |E1k⇤C6(⌦)
 ckuk⇤

C6(⌦)
h4. (4.2)

Expanding using Taylor’s Theorem again jumping 2 steps we get,

ui±2,j = ui,j±
@ui,j

@x
(2h)+

@2ui,j

@x2

(2h)2

2
± @3ui,j

@x3

(2h)3

6
+
@4ui,j

@x4

(2h)4

24
± @5ui,j

@x5

(2h)5

120
+
@6u(⇠±)

@x6

(2h)6

720
,

for some ⇠± 2 ⌦h. After simplification we get,

@4ui,j

@x4
h4 =

3

4


� 2ui,j + ui+2,j + ui�2,j �

@2ui,j

@x2
4h2 � E2h

2

�
where |E2k⇤C6(⌦)

 ckuk⇤
C6(⌦)

h4.

(4.3)

Plugging (4.3) into (4.2) and simplifying we get,

�30ui,j + 16ui+1,j + 16ui�1,j � ui�2,j � ui+2,j

12h2
� @2ui,j

@x2
= E3 where kE3k⇤C6(⌦)

 ckuk⇤
C6(⌦)

h4.

Adding a similar equation for the second y derivative we get the desired result,

|�̂hRhu�Rh�u|1,⌦0
h
 ckuk⇤

C6(⌦)
h4. (4.4)
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Theorem 4.2. The matrix ��̂h is a monotone matrix.

Proof. In the following proof we will use Claim 3.9. We can easily construct the matrix B by

multiplying two monotone matrices. Let

B1 =

2

666666664

8I

�I⇤ B⇤
1 �I⇤

. . .
. . .

. . .

�I⇤ B⇤
1 �I⇤

8I

3

777777775

, B2 =

2

666666664

B⇤
2 �I

�I B⇤
2 �I

. . .
. . .

. . .

�I B⇤
2 �I

�I B⇤
2

3

777777775

,

where,

B⇤
1 =

2

666666664

8

�1 8 �1
. . .

. . .
. . .

�1 8 �1

8

3

777777775

, B⇤
2 =

2

666666664

8 �1

�1 8 �1
. . .

. . .
. . .

�1 8 �1

�1 8

3

777777775

.

Using the same idea as in Claim 3.14 one can see the matices B1 and B2 are irreducible, applying

Claim 3.10 shows matrices B1 and B2 are monotone, meaning their inverses are non-negative.

Defining B = B1B2, we get B�1 = B�1
2 B�1

1 � 0 from Claim 3.7. Hence B is monotone as well.

By calculating the matrix B one can see ��̂h  1
12h2B. We have

B =

2

66666666666664

8B⇤
2 �8I

�I⇤B⇤
2 �B⇤

1 B⇤
1B

⇤
2 + 2I⇤ �I⇤B⇤

2 �B⇤
1 I⇤

I⇤ �I⇤B⇤
2 �B⇤

1 B⇤
1B

⇤
2 + 2I⇤ �I⇤B⇤

2 �B⇤
1 I⇤

. . .
. . .

. . .
. . .

. . .

I⇤ �I⇤B⇤
2 �B⇤

1 B⇤
1B

⇤
2 + 2I⇤ �I⇤B⇤

2 �B⇤
1 I⇤

I⇤ �I⇤B⇤
2 �B⇤

1 B⇤
1B

⇤
2 + 2I⇤ �I⇤B⇤

2 �B⇤
1

�8I 8B⇤
2

3

77777777777775

,

where,

8B⇤
2 =

2

666666664

64 �8

�8 64 �8
. . .

. . .
. . .

�8 64 �8

�8 64

3

777777775

, �I⇤B⇤
2 �B⇤

1 =

2

666666664

�8

2 �16 2
. . .

. . .
. . .

2 �16 2

�8

3

777777775

.
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Note that, B⇤
1B

⇤
2+2I⇤ =

2

66666666666664

64 �8

�16 68 �16 1

1 �16 68 �16 1
. . .

. . .
. . .

. . .
. . .

1 �16 68 �16 1

1 �16 68 �16

�8 64

3

77777777777775

and I⇤ =

2

666666664

0

1
. . .

1

0

3

777777775

.

Matrix I represents the identity matrix. All block matrices are (n� 1)⇥ (n� 1).

We now define the vector wh = [w1,1, w2,1, ..., wn�1,1, w1,2, w2,2, ..., wn�1,2, ...wn�1,n�1]T ,

wi,j = ih(1� ih)jh(1� jh).

Notice that vector wh = Rhw, where

w = x(1� x)y(1� y) 0  x, y  1.

Notice wh does follow the boundary conditions, we can easily see that ��w = 2y(1�y)+2x(1�x),

which is strictly positive on the domain 0 < x, y < 1. Since the consistency error for points P 2 ⌦0
h

involve sixth order derivative which vanish we can conclude that (��̂hwh)P2⌦0
h
= ��w � 0.

For points P 2 ⌦h\⌦0
h the consistency error involves the fourth derivatives which do not vanish.

For those points we can show, by direct computation, that (��̂hwh)P2⌦h\⌦0
h
� 0.

We found a monotone matrix B such that B � (��̂h) and wh � 0 such that

(��̂h)wh � 0, thus by Claim 3.9 we have shown that (��̂h) is monotone.
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Theorem 4.3. The scheme (��̂h) is fourth order convergent.

Proof. We wish to show that |Rhu� uh|1  c
�
kuk⇤

C6(⌦)
+ kuk⇤

C4(⌦)

�
h4 where c is an independent

constant. To prove that we will use the discrete Green’s Function. Let us first define the inner

product for two vectors x and y

< x, y >h:=
NX

i=0

xiyi.

It is well known that Green’s Functions can be used to solve partial di↵erential equations. We now

define a discrete analog. Let the values of the discrete Green’s function for (��̂h) be Ĝh(P,Q)

defined as:

��̂T
h Ĝh(P, ·) = h�2�(P, ·),

Ĝh(P,Q) = 0 on @⌦h.

In the above, the point P 2 ⌦ is fixed, and,

�(P,Q) =

(
1 for P = Q

0 for P 6= Q

It should be noted that due to the monotonicity of the scheme, the discrete Green’s function is

non-negative.

Let eh = Rhu� uh. Then

|eh(P )| =h2|eTh (��̂h)
TG(·, P )|

 h2 max
Q2⌦0

h

|(�̂heh)Q|
X

Q2⌦0
h

Ĝh(P,Q)

+ h2 max
Q2⌦h\⌦0

h

|(�̂heh)Q|
X

Q2⌦h\⌦0
h

Ĝh(P,Q).

We have shown that,

|eh(P )|  h2 max
Q2⌦0

h

|(�̂heh)Q|
X

Q2⌦0
h

|Ĝh(P,Q)|+ h2 max
Q2⌦h\⌦0

h

|(�̂heh)Q|
X

Q2⌦h\⌦0
h

|Ĝh(P,Q)|. (4.5)

In [7] page 17 equation (1.20) it is shown that,

h2
X

Q2⌦0
h

Ĝh(P,Q) =< Ĝ(P, ·), 1 >h
1

8
. (4.6)

In [6] Lemma 3.3 it is shown that,

X

Q2⌦h\⌦0
h

Ĝh(P,Q)  2. (4.7)

Even though equation (4.7) was proven in [6] Lemma 3.3 for (��̂h), a similar proof can be made

to show it is true for (��̂h)T .
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Applying (4.6) and (4.7) in (4.5) we get,

|eh(P )|  1

8
max
Q2⌦0

h

|(�̂heh)Q|+ 2h2 max
Q2⌦h\⌦0

h

|(�̂heh)Q|.

Applying the consistency results from (4.1) and (4.4) we get the desired result, i.e.

|Rhu� uh|1  c


kuk⇤

C6(⌦)
+ kuk⇤

C4(⌦)

�
h4. (4.8)

Theorem 4.4. The scheme ��̂h is stable, with |(��̂h)�1|1  c.

Proof. Theorem 4.3 demonstrated the scheme is fourth order convergent. Using a well known result

that a consistent convergent scheme is stable, we get that there is a constant c independent of h

such that |(��̂h)�1|1  c.
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4.2 The ��̃h scheme

We will use the standard 2D grid as defined in the ��̂h discretization.

Given the boundary condition that uh = 0 on @⌦h we use the scheme,

��̃h =
1

6h2

2

666666664

T E

E T E

. . .
. . .

. . .

E T E

E T

3

777777775

,

where,

T =

2

666666664

20 �4

�4 20 �4
. . .

. . .
. . .

�4 20 �4

�4 20

3

777777775

and E =

2

666666664

�4 �1

�1 �4 �1
. . .

. . .
. . .

�1 �4 �1

�1 �4

3

777777775

.

Both T and E are (n� 1)⇥ (n� 1). The molecule of ��̃h is

��̃h =
1

6h2

2

664

�1 �4 �1

�4 20 �4

�1 �4 �1

3

775 .

Theorem 4.5. The matrix ��̃h is a monotone matrix.

Proof. Doing the same steps as in Claim 3.14 we can show ��̃h is irreducible.

We can easily see that (��̃h) is a diagonally dominant matrix, strictly diagonally dominant in the

first and last row in every block, (��̃h)ii > 0 and (��̃h)ij  0 for every i 6= j.

Using Claim 3.10 we can conclude that (��̃h) is a monotone matrix.
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Theorem 4.6. The scheme �̃h is stable and |�̃�1
h |1  4.

Proof. For any matrix A of size n⇥ n we define the quantities,

ri(A) =
nX

j=1

ai,j , i = 1, ..., n

r⇤(A) = min
1in

ri(A), r⇤(A) = max
1in

ri(A).

From [8] we know that if A is a monotone matrix and D is a positive diagonal matrix , then

1

r⇤(AD)
|D|1  |A�1|1  1

r⇤(AD)
|D|1, provided that r⇤(AD) > 0.

We define a block diagonal matrix D of the form,

D =

2

666666664

D1

D2

. . .

Dn�1

Dn

3

777777775

where Dk =
p
k · I.

and where I is the identity matrix with size (n� 1)⇥ (n� 1). For proving the stability of ��̃h we

are only interested in the upper bound, i.e

|�̃�1
h |1  1

r⇤(��̃hD)
|D|1.

Since D is diagonal, multiplying the scheme by D will simply multiply each column of ��̃h by the

corresponding diagonal entry of D. Due to the structure of ��̃h and D we can prove all row sums

are positive and decreasing. If we take the sum of any non-corner row k of �6h2�̃hD we get,

(20
p
k � 4

p
k � 4

p
k � 4

p
k + 1� 4

p
k � 1�

p
k + 1�

p
k + 1�

p
k � 1�

p
k � 1).

After simplifying we get

6(2
p
k �

p
k + 1�

p
k � 1).

To prove this is always positive and decreasing we treat it as a continuous function for x � 2,

f(x) = 2
p
x�

p
x+ 1�

p
x� 1.

By simplifying the function we can get,

f(x) =
2

(
p
x+

p
x� 1)(

p
x+

p
x+ 1)(

p
x+ 1 +

p
x� 1)

.
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Clearly f(x) is always positive and the horizontal asymptote is y = 0. All we need to prove now is

that it is always decreasing using the derivative.

f 0(x) = �
p
x(
p
x+ 1 +

p
x� 1)

p
x
p
x2 � 1(

p
x+

p
x� 1)(

p
x+

p
x+ 1)(

p
x+ 1 +

p
x� 1)

.

Clearly the derivative is always negative. We have proven that for x � 2, f(x) is always positive

and decreasing, thus it is also true for the discrete case.

One should be able to see that the minimum row sum will not happen in the last block but rather

in the block before it since in the last block we subtract fewer elements from the diagonal entry.

For the same reason as above, the minimum in every block will happen in a non-corner row.

Now can we find r⇤(��̃hD), which happens at any non-corner row in the (n� 1) block. We have

r⇤(�̃hD) =
1

6h2
(20

p
n� 1� 4

p
n� 1� 4

p
n� 1� 4

p
n� 4

p
n� 2�

p
n�

p
n�

p
n� 2�

p
n� 2)

=
1

h2
(2
p
n� 1�

p
n�

p
n� 2)

=
1

h2

2

(
p
n� 1 +

p
n� 2)(

p
n� 1 +

p
n)(

p
n+

p
n� 2)

.

Now we can find the upper bound. Note that

|�̃�1
h |1  1

r⇤(��̃hD)
|D|1

=
1

1
h2

2
(
p
n�1+

p
n�2)(

p
n�1+

p
n)(

p
n+

p
n�2)

·
p
n

= h2 (
p
n� 1 +

p
n� 2)(

p
n� 1 +

p
n)(

p
n+

p
n� 2)

2

p
n

 h2 (
p
n+

p
n)(

p
n+

p
n)(

p
n+

p
n)

2

p
n

 h2 8n
3/2

2

p
n

 h2 · 4n2

= 4.

We have found a constant upper bound on |�̃�1
h |1 proving it is stable, i.e.

|�̃�1
h |1  4. (4.9)
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Theorem 4.7. The scheme �̃h is fourth order consistent.

Proof. We begin by following the same steps as before where c is an independent constant ,using

Taylor’s Theorem. Let ui,j = u(xi,j) be such that xi,j 2 ⌦h. Expanding using Taylor’s Theorem

we get,

ui±1,j = ui,j ±
@ui,j

@x
h+

@2ui,j

@x2

h2

2
± @3ui,j

@x3

h3

6
+

@4ui,j

@x4

h4

24
± @5ui,j

@x5

h5

120
+

@6u(⇠±)

@x6

h6

720
,

for some ⇠± 2 ⌦h. After simplification we get,

�2ui,j +ui�1,j +ui+1,j =
@2ui,j

@x2
h2+

@4ui,j

@x4

h4

12
+E1h

2 where kE1k⇤C6(⌦)
 ckuk⇤

C6(⌦)
h4. (4.10)

Doing the same for the second y derivative we get,

�2ui,j +ui�1,j +ui+1,j =
@2ui,j

@y2
h2+

@4ui,j

@y4
h4

12
+E2h

2 where kE2k⇤C6(⌦)
 ckuk⇤

C6(⌦)
h4. (4.11)

We can see that unlike before, we use the corners for the ��̃h scheme. We apply Taylor’s Theorem

for multivariable functions at the corners, where k1, k2 = ±1.

ui+k1,j+k2 =ui,j +


@ui,j

@x
k1 +

@ui,j

@y
k2

�
h+


@2ui,j

@x2
k21 + 2

@ui,j

@x@y
k1k2 +

@2ui,j

@y2
k22

�
h2

2
+


@3ui,j

@x3
k31 + 3

@3ui,j

@x2@y
k21k2 + 3

@3ui,j

@x@y2
k1k

2
2 +

@3ui,j

@y3
k32

�
h3

6
+


@4ui,j

@x4
k41 + 4

@4ui,j

@x3@y
k31k2 + 6

@4ui,j

@x2@y2
k21k

2
2 + 4

@4ui,j

@x@y3
k1k

3
2 +

@4ui,j

@y4
k42

�
h4

24
+


@5ui,j

@x5
k51 + 5

@5ui,j

@x4@y
k41k2 + 10

@5ui,j

@x3@y2
k31k

2
2 + 10

@5ui,j

@x2@y3
k21k

3
2 + 5

@5ui,j

@x@y4
k1k

4
2 +

@5ui,j

@y5
k52

�
h5

120
+


@6ui,j

@x6
k61 + 6

@6ui,j

@x5@y
k51k2 + 15

@6ui,j

@x4@y2
k41k

2
2 + 40

@6ui,j

@x3@y3
k31k

3
2 + 15

@6ui,j

@x2@y4
k21k

4
2+

+ 6
@6ui,j

@x@y5
k1k

5
2 +

@6ui,j

@y6
k62

�
h6

720
.

(4.12)

Combining (4.10),(4.11) and all four possibilities of (4.12) we get,

�̃hRhu = Rh�u+
h2

12
Rh�

2u+
h4

72


1

5

✓
@6u

@x6
+

@6u

@y6

◆
+

@6u

@x4@y2
+

@6u

@x2@y4

�
, (4.13)

where the h4 terms are evaluated at some point in ⌦h. Thus the �̃h scheme is second order

consistent. To prove it is fourth order consistent we have to modify the restriction operator Rh.
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Let us define the new restriction operator as a (N � 1)2 ⇥ (N � 1)2 matrix,

R̃h =
1

12

2

664

1

1 8 1

1

3

775 =

2

664 1

3

775+
1

12

2

664

1

1 �4 1

1

3

775 .

For example (R̃huh)ij = uij +
1
12 (ui+1,j + ui�1,j � 4ui,j + ui,j+1 + ui,j�1).

Notice that, R̃hu = Rhu+ h2

12�hRhu, from which we may conclude that,

R̃h�u = Rh�h +
h2

12
Rh�

2u+ E, where kE3k⇤C6(⌦)
 ckuk⇤

C6(⌦)
h4. (4.14)

Using (4.14) in (4.13) we get,

�̃hRhu = R̃h�u� E3 +
h4

72


1

5

✓
@6u

@x6
+

@6u

@y6

◆
+

@6u

@x4@y2
+

@6u

@x2@y4

�
.

Since E3 involves sixth order deriatives, when we take the infinity norm the h4 terms will be included

in E. Thus we may conclude,

|�̃hRhu� R̃h�u|1  ckuk⇤
C6(⌦)

h4. (4.15)

We have proven the scheme to be fourth order consistent.

Theorem 4.8. The scheme ��̃huh = R̃hf is fourth order convergent.

Proof. We wish to show |Rhu� uh|1  ckuk⇤
C6(⌦)

h4.

We have,

|Rhu� uh|1 = |(��̃�1
h )(��̃h)(Rhu� uh)|1

 |� �̃�1
h |1|� �̂h(Rhu� uh)|1.

 4|� �̃hRhu� R̃hf |1

= 4|� �̃hRhu+ R̃h�u|1.

Using (4.15), we may conclude the desired result showing the scheme is fourth order convergent.

i.e.,

|Rhu� uh|1  ckuk⇤
C6(⌦)

h4.



Chapter 5

Fourth Order Numerical Schemes

for the 1D Biharmonic Equation

All the numerical schemes showed before were used to solve the Poisson equation. The numerical

scheme to solve the biharmonic equation defined in this book was developed in [2], they have done

an extensive analysis of the scheme in the book. We introduce the biharmonic equation defined as:

�2u = f.

Since only the 1D case will be shown here we can rewrite the equation as,

d4u

dx4
= f with boundary conditions u(0) = u(1) = u0(0) = u0(1) = 0.

Since u(0) = 0 = u(1) we only need to find ui for 1  i  N � 1.

We define the grid as

⌦h =

⇢
ih, 1  i  N � 1

�
.

We denote v = u0, the first derivative of u. This scheme requires a detailed explanation as to how

it is constructed. Let xi = ih for 0  i  N , and uh be a vector with entries ui = u(xi).

We define two new finite di↵erence schemes for approximation of the first and second derivative

respectively at point ui

�⇤hui =
ui+1 � ui�1

2h
, and �2hui =

ui+1 � 2ui + ui+1

h2
.

Let us take a fourth order polynomial,

Q(x) = a0 + a1(x� xi) + a2(x� xi)
2 + a3(x� xi)

3 + a4(x� xi)
4.

In order for Q(x) to fit the given vector uh and vh we require,

Q(xi�1) = ui�1, Q(xi) = ui, Q(xi+1) = ui+1, Q0(xi�1) = vi�1, Q0(xi+1) = vi+1.

52
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Under the conditions above, Q(x) has a unique solution,

a0 = ui,

a1 =
3

2
�⇤hui �

1

4

⇥
vi+1 + vi�1

⇤
,

a2 = �2hui �
1

2
�⇤hvi,

a3 =
1

h2

�
�⇤hui � vi

�
,

a4 =
1

2h2

�
�⇤hvi � �2hui

�
.

We can approximate then d4u
dx4 by taking the fourth order derivative of Q(x),

✓
d4u

dx4

◆

i

'
✓
d4Q

dx4

◆

i

= 24a4 =
12

h2

�
�⇤hvi � �2hui

�
:= �

(4)
h ui. (5.1)

We found that the approximation �
(4)
h uh depends on both uh and vh, and we wish to estimate using

only uh. For that we need to find the relationship between uh and vh. An intuitive way of doing it

is setting vi = a1. This gives us,

vi =
3

2
�⇤hui �

1

4

⇥
vi+1 + vi�1

⇤
, 1  i  N � 1

or
1

6
vi�1 +

2

3
vi +

1

6
vi+1 = �⇤hui, 1  i  N � 1. (5.2)

Combining all we have shown, we can now find a discrete solution for the biharmonic equation

using the scheme,

�
(4)
h ui = f(xi), 1  i  N � 1, (5.3)

�⇤hui =
1

6
vi�1 +

2

3
vi +

1

6
vi+1, 1  i  N � 1, (5.4)

u0 = uN = v0 = vN = 0. (5.5)

As we have done before, we wish to use a matrix representation for the scheme.

The operator �⇤h is equivalent to the matrix
1

2h
K, (5.6)

where K is defined as,

K =

2

666666664

0 1

�1 0 1
. . .

. . .
. . .

�1 0 1

�1 0

3

777777775

.
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Equation (5.2) can be represented as 1
2hKuh = 1

6Pvh and after simplification we get

vh =
3

h
P�1Kuh, (5.7)

where matrix P is defined as,

P =

2

666666664

4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 4

3

777777775

.

It is easy to find that,

|P |1 = 6. (5.8)

The matrix representation of �2h is � 1

h2
T, (5.9)

with T defined as

T =

2

666666664

2 �1

�1 2 �1
. . .

. . .
. . .

�1 2 �1

�1 2

3

777777775

.

The matrix T should be familiar, as it is (�h2�h), defined in (2.20) to solve the 1D case of the

Poisson equation with Dirichlet boundary conditions.

The matrix representation of (5.1) is given by combining (5.6), (5.7), (5.9) as follows:

Sh =
12

h2


1

2h
K

3

h
P�1K �

✓
� 1

h2
T

◆�
.

Simplifying the above we get,

Sh =
6

h4


3KP�1K + 2T

�
. (5.10)

Notice that K and P commute almost everywhere except the corners, and by simple calculation it

can be shown that,

PK �KP =

2

666666664

�2

0
. . .

0

2

3

777777775

. (5.11)



55

We define an operator �h on uh,

�hui =
1

6
ui�1 +

2

3
ui +

1

6
ui+1, 1  i  N � 1. (5.12)

We will refer to �h as the Simpson operator, and its matrix representation is 1
6P .

Lemma 5.1. Given a vector uh satisfying the boundary conditions, then

�h�
(4)ui = �2h�

2
hui 2  i  N � 2.

Proof. Using (5.4) we can establish the relationship

�⇤hui = �hvi, 1  i  N � 1. (5.13)

As noted above the matrix representation for �h is P
6 . We may also observe that P = 6I�T where

I is the identity, and we may conclude that,

�h =
P

6
= I � T

6
= I +

h2

6
�2h. (5.14)

From (5.11) we can establish that for 2  i  N � 2,

�⇤h�hui =
K

2h

P

6
ui =

P

6

K

2h
ui = �h�

⇤
hui. (5.15)

We now investigate the e↵ect of taking �h�
(4)
h at the interior points. We have

�h�
(4)
h ui =

1

6
�
(4)
h ui�1 +

2

3
�
(4)
h ui +

1

6
�
(4)
h ui+1, 2  i  N � 2. (5.16)

From (5.1) we see that,

�
(4)
h ui =

12

h2

�
�⇤hvi � �2hui

�
, (5.17)

and applying that to (5.16) we get,

�h�
(4)
h ui =

1

6
�
(4)
h ui�1 +

2

3
�
(4)
h ui +

1

6
�
(4)
h ui+1 (5.18)

=
12

h2

✓
1

6
�⇤hvi�1 +

2

3
�⇤hvi +

1

6
�⇤hvi+1

�
�

1

6
�2hui�1 +

2

3
�2hui +

1

6
�2hui+1

�◆
. (5.19)

Investigating the first term we get,

1

6
�⇤hvi�1 +

2

3
�⇤hvi +

1

6
�⇤hvi+1 = �h�

⇤
hvi

= �⇤h�hvi

= �⇤h�
⇤
hui

=
1

4h2
(ui�2 � 2ui + ui+2), 2  i  N � 2.

In the above we have used (5.13) and (5.15). We got,

1

6
�⇤hvi�1 +

2

3
�⇤hvi +

1

6
�⇤hvi+1 =

1

4h2
(ui�2 � 2ui + ui+2), 2  i  N � 2. (5.20)
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Applying the definition of �2h to the second term in (5.19) we get,

1

6
�2hui�1 +

2

3
�2hui +

1

6
�2hui+1 =

1

6h2
(ui�2 + 2ui�1 � 6ui + 2ui+1 + ui+2), 2  i  N � 2. (5.21)

Plugging (5.20) and (5.21) in (5.19) we get for 2  i  N � 2,

�h�
(4)ui =

1

h4
(ui�2 � 4ui�1 + 6ui � 4ui+1 + ui+2) = �2h�

2
hui. (5.22)

Theorem 5.2. The scheme Sh is fourth order consistent in the interior and first order on the near

boundary points.

Proof. From Lemma 5.1 we know that

�h�
(4)ui = �2h�

2
hui 2  i  N � 2.

We expand the term �2h�
2
h using Taylor series. We begin by,

ui±1 = ui ±
dui

dx
h+

d2ui

dx2

h2

2
± d3ui

dx3

h3

6
+

d4ui

dx4

h4

24
± d5ui

dx5

h5

120
+

d6u(⇠±)

dx6

h6

720
,

for some ⇠± 2 ⌦h. Adding the two equalities above and simplifying we get

�2hui =
d2ui

dx2
+

d4ui

dx4

h2

12
+

d2u(⇠±)

dx6

h4

360
. (5.23)

Applying �2h to (5.23) at the interior points for 2  i  N � 2, we get after simplification,

�h�
(4)
h ui = �2h�

2
hui =

d4ui

dx4
+

d6ui

dx6

h2

6
+ E1, and kE1k⇤C8(⌦)

 c1kuk⇤C8(⌦)
h4. (5.24)

Now we expand the term �h
d4ui
dx4 around the interior points 2  i  N � 2,

�h
d4ui

dx4
= (I +

h2

6
�2h)

d4ui

dx4

=
d4ui

dx4
+

d6ui

dx6

h2

6
+ E2, and kE2k⇤C8(⌦)

 c2kuk⇤C8(⌦)
h4.

We have shown that,

�h
d4ui

dx4
=

d4ui

dx4
+

d6ui

dx6

h2

6
+ E2, where kE2k⇤C8(⌦)

 c2kuk⇤C8(⌦)
h4. (5.25)

Taking the | · |2 norm of the di↵erence between (5.24) and (5.25) gives us the desired result, namely

�����h�
(4)ui � �h

d4ui

dx4

����
2

 ckuk⇤
C8(⌦)

h4, 2  i  N � 2. (5.26)

We will now work on the consistency errors of near boundary points. We will demonstrate the

error at u1, as the proof for the error at uN�1 is similar. Below, the terms c, c1, c2 are positive
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independent constants

We set �(4)h u0 = (d
4u0
dx4 ). Using the definition of �h�

(4)
h we get

�h�
(4)
h u1 � �h

d4u1

dx4
=

✓
2

3
�
(4)
h u1 +

1

6
�
(4)
h u2

◆
�
✓
2

3

d4u1

dx4
+

1

6

d4u2

dx4

◆
(5.27)

=
2

3

✓
�
(4)
h u1 �

d4u1

dx4

◆
+

1

6

✓
�
(4)
h u2 �

d4u2

dx4

◆
. (5.28)

Using the boundary condition u0 = v0 = 0 and Lemma 10.1 on page 152 of [2] we get,

�⇤hv1 =
v2
2h

=
d2u1

dx2
+

d4u1

dx4

h2

6
+R1, where kR1k⇤C5(⌦)

 c1kuk⇤C5(⌦)
h3, (5.29)

as well as,

�2hu1 =
d2u1

dx2
+

d4u1

dx4

h2

12
+R2, where kR2k⇤C5(⌦)

 c2kuk⇤C5(⌦)
h3. (5.30)

Plugging (5.29) and (5.30) into the definition of �(4)h from (5.17) we get,

�
(4)
h u1 =

12

h2

�
�⇤hv1 � �2hu1

�
=

d4u1

dx4
+R3, where kR3k⇤C5(⌦)

 ckuk⇤
C5(⌦)

h.

We have shown that,

�
(4)
h u1 �

d4u1

dx4
= R3, where kR3k⇤C5(⌦)

 ckuk⇤
C5(⌦)

h. (5.31)

Following the same steps, inequalities (5.29), (5.30) and (5.31) can be applied to point u2,that is

�
(4)
h u2 �

d4u2

dx4
= S3, where kS3k⇤C5(⌦)

 ckuk⇤
C5(⌦)

h. (5.32)

Plugging (5.31) and (5.32) into (5.28) we get the desired result, i.e.

|�h�
(4)
h u1 � �h(

d4u1

dx4
)|2  ckuk⇤

C5(⌦)
h. (5.33)

As stated before, a similar estimate can be made at uN�1, i.e.

|�h�
(4)
h uN�1 � �h(

d4uN�1

dx4
)|2  ckuk⇤

C5(⌦)
h. (5.34)
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From [2] page 163 equation 10.87 we find
���P

6

��1��
2
 3, applying that to equations (5.26), (5.33)

and (5.34) we get:

for 2  i  N � 2,

�����
(4)ui �

d4ui

dx4

����
2

=

����(�
�1
h )

✓
�h�

(4)ui � �h
d4ui

dx4

◆����
2

 |(��1
h )|2

�����h�
(4)ui � �h

d4ui

dx4

����
2

 3

�����h�
(4)ui � �h

d4ui

dx4

����
2

 ckuk⇤
C8(⌦)

h4.

For i = 1 and i = N � 1, following similar steps we get

|�(4)h u1 � (
d4u1

dx4
)|2  ckuk⇤

C5(⌦)
h,

|�(4)h uN�1 � (
d4uN�1

dx4
)|2  ckuk⇤

C5(⌦)
h.

If we wish to write a consistency error equation involving all points, we would have to take the

lowest estimate which happens at the boundary points, we may conclude that

|�(4)h uh � (
d4uh

dx4
)|2  ch(kuk⇤

C5(⌦)
+ kuk⇤

C8(⌦)
). (5.35)

If we use the | · |h we get,

|�(4)h uh � (
d4uh

dx4
)|h  ch3/2(kuk⇤

C5(⌦)
+ kuk⇤

C8(⌦)
),

and using similar notation as with previous schemes, the above becomes

|ShRhu�Rh�
2u|h  ch3/2(kuk⇤

C5(⌦)
+ kuk⇤

C8(⌦)
), (5.36)
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Theorem 5.3. The matrix Sh is a monotone matrix

Proof. By personal correspondence with Haggai Katriel, who is working with Matania Ben-Artzi,

one of the authors of [2] I acquired a preprint result for the explicit formula for the solution. For

1  i  N � 1

ui =
h

6

 i�1X

k=1

(xi � xk)
3fk + x2

i

N�1X

k=1

(1� xk)
2(2(1� xi)xk + xk � xi)fk

�
, (5.37)

where ui = u(xi). We can rewrite it as,

ui =
h

6


(1� xi)

2
i�1X

k=1

x2
k(2xi(1� xk) + xi � xk)fk + x2

i

N�1X

k=i

(1� xk)
2(2xk(1� xi) + xk � xi)fk

�
,

(remembering that xi = ih, from which we can see, that 1� xi = xN�i).This gives us,

ui =
h

6


x2
N�i

i�1X

k=1

x2
k(2xixN�k + xi � xk)fk + x2

i

N�1X

k=i

x2
N�k(2xkxN�i + xk � xi)fk

�
. (5.38)

In other words, defining

Mik =
h

6
x2
N�ix

2
k(2xixN�k + xi � xk), 1  k  i  N � 1, (5.39)

and using (5.39) we can rewrite (5.38) as,

ui =
i�1X

k=1

Mikfk +
N�1X

k=i

Mkifk. (5.40)

Equation (5.40) can be written as

uh = Mhfh. (5.41)

We now show all elements of the matrix Mh are nonnegative.

Without loss of generality we take the lower triangular part of Mh, Mik where 1  k  i  N � 1.

From (5.39),

Mik =
h

6
x2
N�ix

2
k(2xixN�k + xi � xk)

=
h

6
x2
N�ix

2
k(2(ih)(N � k)h+ ih� kh)

=
h

6
x2
N�ix

2
k(2ih

2(N � k) + h(i� k))

�0.

In the above we have used that k  i  N � 1. From (5.41) it is easy to see that matrix Mh is

in fact S�1
h , and since we have shown matrix Mh � 0 we can conclude that so is S�1

h � 0. Using

Claim 3.7 we conclude Sh to be monotone.
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Theorem 5.4. The scheme Sh is stable and |S�1
h |1  1

384 .

Proof. We wish to show that,
|S�1

h fh|1
|fh|1

=
|uh|1
|fh|1

 1

384
.

We now define the vector wh = [w1,1, w2,1, ..., wn�1,1, w1,2, w2,2, ..., wn�1,2, ...wn�1,n�1]T ,

where,

wi,j =
(ih)2(1� ih)2

24
,

and the function,

w =
x2(1� x)2

24
0  x  1.

We consider w as a function and wh the discretization of it, defined as wh = Rhw. We now show that

Shwh = 1. By simple calculation we can see that (�)2w = 1 and 1�Shwh = Rh(�)2w�ShRhw = 0,

since we have shown the consistency error involves fifth and eighth derivatives of w, all of which

vanish. This proves the claim Shwh = 1.

It is easily seen that |wh|1  1
384 . Now,

Sh(|fh|1wh + uh) = |f |11+ fh � 0.

Since Sh is monotone,

|fh|1wh + uh � 0.

From here we have,

�uh  |fh|1wh  |wh|1|fh|11  1

384
|fh|11. (5.42)

Similarly,

Sh(|fh|1wh � uh) = |f |11� fh � 0.

Since Sh is monotone,

|fh|1wh � uh � 0.

From here we find that,

uh  |fh|1wh  |wh|1|fh|11  1

384
|fh|11. (5.43)

Combining (5.42) and (5.43) we get

|uh|1  1

384
|fh|1.

We have proved the scheme to be stable and

|S�1
h |1  1

384
. (5.44)
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Theorem 5.5. The scheme Sh is convergent.

Proof. We wish to demonstrate the scheme is convergent with respect to the | · |h and the infinity

norms. Using (5.44) and (5.36) we obtain

|Rhu� uh|h = |S�1
h Sh(Rhu� uh)|h

 |S�1
h |h|Sh(Rhu� uh)|h.

 1

384
|ShRhu�Rhf |h

 ch3/2(kuk⇤
C5(⌦)

+ kuk⇤
C8(⌦)

).

As before, the term c is a positive constant independent of u. We have shown convergence of order

3/2 in the | · |h,
|Rhu� uh|h  ch3/2(kuk⇤

C5(⌦)
+ kuk⇤

C8(⌦)
).

We can also show convergence of first order in the infinity norm, since

|Rhu� uh|1  |Rhu� uh|2

= h�1/2|Rhu� uh|h

 h�1/2ch3/2(kuk⇤
C5(⌦)

+ kuk⇤
C8(⌦)

)

 ch(kuk⇤
C5(⌦)

+ kuk⇤
C8(⌦)

).



Chapter 6

Conclusions

There are many ways to show a numerical scheme is convergent. Throughout this thesis we have

established a scheme is consistent using Taylor series expansion and proved it is stable. Many

methods exist to show stability but we have focused mainly on using the fact that the matrix of

the scheme is monotone and applying the properties of monotone matrices.

The scope of this thesis is limited to five numerical schemes, two for for the 1D Poisson equa-

tion, two for the 2D Poisson equation and one for the Biharmonic equation. No work previously

has used that the numerical schemes introduced in chapters three and four are monotone to prove

stability. The ideas in this thesis can be expanded to some other numerical schemes.

Unfortunately, establishing whether a matrix of a scheme is a monotone matrix or not could be

di�cult or simply impossible since it might even be false. Nevertheless, in cases where a scheme is

proven to be monotone it could be a powerful tool to assist in showing stability and subsequently,

convergence.
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This page includes all notation used in the thesis and on what page they appeared first.

�h � forward finite di↵erence scheme to approximate the first derivative. p2

��h � backward finite di↵erence scheme to approximate the first derivative. p2

| · |1 � `1 norm for vectors. p2

| · |2 � `2 vector norm. p2

| · |h � discrete `2 norm. p2

H1
0 (o, `) � Soboloev space. p3

| · |H1 � discrete H1norm. p11

| · |⇤H1 � a norm equivalent to the discrete H1 norm. p12

�⇤
h � a general scheme approximating the laplacian operator. p17

Rh � restriction operator. p17

k · k⇤
Cr(⌦)

� a quantity used in proving consistency of numerical schemes. p17

(M) � condition number. p17

⌦ � problem domain. p18

⌦h � discrete domain applied in ch1.2.1. p18

�h � specific scheme approximating the laplacian operator applied in ch1.2.1. p18

⌦̃h � discrete domain applied in ch1.2.2. p22

�(3)
h � specific scheme approximating the laplacian operator applied in ch1.2.2. p12

v > 0 � all entries of vector v are nonnegative and at least one element is positive. p29

v � 0 � all entries of vector v are positive. p29

v � 0 � all entries of vector v are nonnegative. p29

M � 0 � all entries of matrix M are nonnegative. p29

⇢(M) � spectral radius. p31

�̂h � specific scheme approximating the laplacian operator applied in ch3.1. p37

�(4)
h � nine point approximate for the laplacian used inside �̂h. p39

�̃h � specific scheme approximating the laplacian operator applied in ch3.2. p46

R̃h � Special restriction operator used in ch3.2. p50

�⇤h � central finite di↵erence scheme to approximate the first derivative. p51

�2h � central finite di↵erence scheme to approximate the second derivative. p51

�
(4)
h � scheme approximating the fourth derivative. p52

Sh � specific scheme approximating the biharmonic operator applied in ch4. p53

�h � Simpson operator used in ch4. p54

1 � vector of ones. p22
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