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Abstract

In the study of partial differential equations (PDEs) one rarely finds an analytical solution. But
a numerical solution can be found using different methods such as finite difference, finite element,
etc. The main issue using such numerical methods is whether the numerical solution will converge
to the “real” analytical solution and if so how fast will it converge as we shrink the discretization

parameter .

In the first part of this thesis discrete versions of well known inequalities from analysis are used
in proving the convergence of certain numerical methods for the one dimensional Poisson equation

with Dirichlet boundary conditions and with Neumann boundary conditions.

A matrix is monotone if its inverse exists and is non-negative. In the second part of the thesis
we will show that finite difference discretization of two PDEs result in monotone matrices. The
monotonicity property will be used to demonstrate stability of certain methods for the Poisson and

Biharmonic equations. Convergence of all schemes is also shown.

This thesis surveys known techniques to analyze numerical schemes.There are no original results

demonstrated in the thesis other than proofs of monotonicity of several schemes.



Contents

1 Introduction

2 Discrete Inequalities and Applications
2.1 Discrete Identities and Inequalities . . . . . . . . . . . . ... ... ..
2.2 Second Order Numerical Schemes for the 1D Poisson equation . . . . . . . .. .. ..
2.2.1 Solving the 1D Poisson Equation with Dirichlet Boundary Conditions. . . . .
2.2.2  Solving the 1D Poisson Equation with Neumann Boundary Conditions.

3 Monotone matrices

4 Fourth Order Numerical Schemes for the 2D Poisson Equation
4.1 The —Ah scheme . . . . . . .. e e
4.2 The —Ah scheme . . . . . . .. e

5 Fourth Order Numerical Schemes for the 1D Biharmonic Equation

6 Conclusions

31

39
39
47

52

62



Chapter 1

Introduction

In the modern world humans rely heavily on mathematical models to build, design and predict
the outcome. Many mathematical models use partial differential equations (PDEs) to describe a
certain system, such as the Navier-Stokes equations used to describe the flow of air around a wing,.
Nevertheless, even if we are given the PDE that describes a system, a “real” or exact solution is
an elusive idea since it is usually impossible to find analytically. Thankfully, we have numerical

methods that create numerical schemes to find the numerical solution of the system.

One of the oldest numerical methods is the finite difference (FD) method. The idea behind it
is simple. Let us assume, for simplicity, that the domain is a rectangle. Set up a rectangular grid
on the domain with a constant grid size h. Using finite differences to approximate derivatives at

grid points, we end up with a finite system of equations to solve for the unknowns at the grid points.

Using analysis we can show that as the step size h becomes smaller, i.e we use more points, the
numerical solution will converge to the analytical solution. In the second chapter of the thesis dis-
crete inequalities equivalent to well known inequalities from analysis such as the Poincaré-Friedrichs
and Poincaré inequalities will be proven. Afterwards the terms stability, consistency and conver-
gence will be defined with respect to numerical schemes. Two numerical schemes solving the 1D case
of the Poisson equation once with Dirichlet boundary conditions and once with Neumann boundary
conditions will be introduced. Using the discrete inequalities proven in the beginning of the chapter

we will demonstrate that the numerical schemes converge and at what rate they converge.

In the third chapter a family of matrices called monotone matrices will be introduced, such
matrices are defined as matrices whose inverse is non-negative. The chapter also contains five
equivalent conditions for a matrix to be monotone although many more can be found in [1]. Mono-

tone matrices arise in many areas in mathematics, economy, engineering and scientific computing.



For example, in mathematics monotone matrices occur in the study of finite Markov chains in the
field of probability theory. Even though the chapter is very short, its purpose is mainly to introduce
the reader to monotone matrices which play an important role in showing stability of numerical

schemes in later chapters.

In the fourth chapter, two monotone fourth order numerical schemes solving the 2D Poisson
equation with Dirichlet boundary conditions will be defined. Unlike the previous schemes from the
second chapter these schemes are fourth order meaning they converge faster to the solution. The
first scheme has a structure such that for points next to the boundary we use the second order
scheme from the first chapter and for interior point we use a fourth order scheme. Even though we
use second order scheme next to the boundary, because there are so few points the overall conver-
gence is still fourth order. The second scheme introduced in the chapter is proven to be monotone as
well and using that property stability is proven. The restriction operator on the domain ”samples”
a function and turns it into a vector. In order to show fourth order convergence for this scheme a

modified restriction operator is used.

In the fifth chapter a numerical scheme from [2] solving the 1D biharmonic equation will be
introduced. It is a more complex scheme as it involves many steps all of which are shown and
explained. As done before, monotonicity of the scheme is proven and later it is used in the proof of
stability. Using the techniques from previous chapters a proof of first order convergence is shown,

although in [2] a proof of fourth order convergence is shown using a different method.

Overall the thesis surveys known techniques to analyze numerical schemes.There are no original
results demonstrated in the thesis other than proofs of monotonicity of several schemes. At the end
of the thesis there is a page with all symbols used throughout the thesis and the first page where
they appeared.



Chapter 2

Discrete Inequalities and

Applications

2.1 Discrete Identities and Inequalities

In this chapter, we state well-known identities and inequalities for smooth functions, followed by
the corresponding identities and inequalities for discrete functions. Their proofs follows those of
the continues case. Throughout this thesis the terms c, ¢1, co represents a positive constant whose

value might change in different places. For any positive integer N, let h = % We denote the vector

[voy ..., n] by vp. We define two finite difference schemes for approximating the derivative at a
point ¢:
Vig1 — V;
Opv; = lTlv
Vi — Vi1
5_pv; = ZTZ

We now define three norms that will be used extensively later, given v, € RV*1,

The ¢, norm, |vh|oo = max |v;].
3

The ¢ vector norm, lop |2 = (Z v?) _
i=0

The discrete £5 norm, |vp | = h1/2|vh|2.



The first fundamental theorem of calculus states that, given a function v(x) such that v’ is

continuous on L?(0,1), then

1
/ v'(z)dz = v(1) — v(0).
0
Proposition 2.1. [First discrete fundamental theorem of calculus] For 1 <i < N,

3
h Z 5—hvj =v; —Ug-
Jj=1

Proof. Note that,

%

hzz:(sfh'l}j = hi: Lh% = Z(Uj — ’Ujfl)
j=1 j=1

j=1
= (’Ul — ’Uo) + (’UQ — ’Ul) + .. + (Ui—l — ’1)7;_2) -+ (’Ui — Ui—l)

= V; — V9.
O

The second fundamental theorem of calculus states that, given v a continuous function on a closed

interval I with 0 € I, and x any point in I, then,
d x
@/0 o(T)dT = v(x).

Proposition 2.2. [Second discrete fundamental theorem of calculus]. Define

K3
Vi=h) vj, for0<i<N. Then,
j=0

Proof. For 1 <i< N

Vi—Vio
e

S =

% i—1 i i—1
(DITED SRS S SR
Jj=0 Jj=0 j=0

J=0

Definition 2.3. We say v € H}(0,1) if v,0" € L?(0,1) and v(0) = v(1) = 0.



Given v € Hi(0,1), then:

1
1/1
sup |v(x)]? < = ( + 2) /v'(m)Qdm
z€[0,1] ™ \T ;

We wish to prove a discrete version of the above inequality.
Proposition 2.4. Suppose vg =0 =vy. Then,

[Uh]so < 271RY2 (6102
Proof. Assume 0 < j < N. Then we have,

vJQ- =(1 —jh)vf— +jhv]2-

j—1 N—-1 2

2
= (1= jh)h?| 3o S 4| YD S
i=0 i=j
Jj—1 v 0\ 2 Jj—1 N-1 v, 2 N-1
i+1 — Ui ) i+1 —
<(1—;h)h22<+h> : 12+yhh22< a ) 212
i=0 i=0 i=j
Il 2 N
Y <+h> j+ iy (+h) (V- 5)
i=0 i=j
. -1 .
_N—J J % Vi41 — V4 ] JNl Uz+1 ?
“voexTr ) Ty e 2
j—1 . N-1
_](N_])jz Vi+1 Vi 2+.](N_.7) Z Vi+1 — U
IE — h N3 Py h
(N
Hence,
(N —J)
vy < S |ounl3
4 (N —j)
= W\éhvh@
N2 — (N —2j)?
= s b

2

2
< mwhvhb
= 2_2h|5hvh|§.

Taking square root of both sides, and since the inequality holds for all j,

Vhoe < 27 B2 (810 2. (2.2)



The Poincaré-Friedrichs inequality states that if v € H}(0,1), then:

1 1

1
2 2
v(z)*de < — v'(z)*dw.
0 0

Proposition 2.5. [Discrete Poincaré-Friedrichs inequalityl We consider a vector vy, so that vg =
0 =wvyn and as before h =1/N. Then:

[unl2 < 6712|804 ]a.

Proof. We will use inequality (2.1) proven in the previous proposition. We have

N
onl3 =Y 0]

§=0
N .
JIN —3)
S Z N3 ‘(5h’l}h|2
=0
N
XUNE: )
eI
j=0
N N
|05 vn3 , o
il DS ED DY
7=0 7=0
|61vR|3 N2+ N 1., 1 5, 1
— N — [ =N N -N
N3 2 g TN
_ nonlz (N ON?ONTON?ON
I 2 2 3 2 6
_ nunl3 (N® N
N3 6 6
< [Ononl3 [ N?
- N3 6
_ |onvnf3
6

We have shown,

luals < 67 |0kvnl3-

Taking square root of both sides,

|vnl2 < 671/2|6pvn)2. (2.3)



1

The Poincaré inequality states that given v € H'(0,1) with zero average i.e. [v(z) = 0, then there
0

exists a constant C, depending only on 1, so that.

1 1
/v(w)zdeC’/v’ z)?
0 0

We shall now prove the discrete Poincaré inequality in one dimension.
Proposition 2.6. [Discrete Poincaré inequality], Assume the vector v, has zero average i.e,

N
> v; =0. Then |vpla < 2_1/2\%%\2-
)

Proof. Let u; = v; — vy then ug = 0.

First we prove a small inequality to assist with the proof; assume 1 < i < N. We have,

2 _ g2 Uj+1 — Uy
u;y =h Z .
=0
i—1 u w\2 i—1
2 j+1 — %5
<uy (M) o
7=0 7=0
i—1
Uit
= hQZ( 7+ >
j=0 h
N—-1
SZ h2 <u]+1_uj>
j=0 h

i=0 i=0 j=
N-1 2 N-1
< B2 (UJ+1 - “J) i
7=0 =0
N-1
— B2 u]-i-l Uy N(N -1
2
7=0
o N—
N WUig1 — Us
< B2 i+ J
<y 3 ()

N-—-1 2
:1 (“jﬂ—“j)
2 2 I

b

We have proved that for the vector u; we have defined, we have

N-1 2
2 o 1 Ujp1 — Uy
R h '

K2

N-1

.
Il
o



Now we switch back to the original vector v;, and get the inequality,

N-1 1]\/'—1 v v 2
el Vit — Ui \"
> -wf <3 Y (M

=0 =0

We expand the left side of the above inequality,

N-1 N-1 N-1
Z(w—vo)Q = va — 2ug Z v; + (N — 1)}
i=1 i=1 i=1
N-1 N-1
= va—%OZvi—f—(N—Q)vg
i=0 i=1
N-1

N
= va — V3 + 203 + 2vgun + (N — 2)vd
=0
N
= va + 0% + 2upun + V2 — 20% + (N — 1)v?
=0
N
= va + (vo +vn)? = 20% + (N — 1)v]
=0

?

v? — 203 + (N — 1)v3.

WE

i=0
We have shown,
N N1 0\ 2
2 2 2 i+1 — U;
=0 =0
Now we define a new vector w; = v; — vy Using the same operations as before, we get the similar

inequality,



10
Clearly for N > 3 we can conclude

N N-1 2
Sorsgy (M)

=0

l\D\»—l

or,
1
luls < 5\5hvh|§-

We will now prove the inequality for N =1 and N = 2.

When N = 1,

h =1, since we require 0 average on v, and vy + v1 = 0 so we get,

|6honl3 = (v1 — vo)®
=02 — 2upvy + v?
= vl + 208 +vd
= 41)(2)
=2(v 4+ v})
= 2|vp 3.

When N = 2,

h = %, and vg + v1 + v9 = 0 since we require 0 average on vy,.

2 2
2 (V1 — "o V2 — U1
ol = (M%) + (")

= 4[(vy — vo)? + (vg — v1)?]

= 4[v2 — 2vgv + v? + v} — 20V + V3]

= 202 4 20} + 203 + 207 + 6V} + 203 — Svguy — Svivy

= 2(v8 4+ v} + v3) + 202 + 6vE + 2(vo + v1)? — Svevr — 8vy[—(vo + v1)]
2(v0 + v1 +v3) + 211(2) + 61)% + 2(vo + v1)2 — 8vgv1 + 8vivy + 81}%

2)
2(v3 4 v + v3) + 202 + 14v] + 2(vp + v1)?
> 2(vg + vi +v3)

= 2|Uh|2.
The inequality holds for N =1 and N = 2 and for N > 3, thus we have proven that for all IV,
|’Uh|2 < 2_1/2|5h11h|2. (2.4)

O



Hardy’s inequality says that if v € HE(0,1), then there is some positive constant ¢ such that

ZTZS?“ScA?um»w%

where d(z) is the minimum distance to the boundary, i.e., d(z) = min(z,1 — z).
Proposition 2.7. [Discrete Hardy’s inequality]. Suppose vo =0 =vy. Then

N—-1 2

S 4|5hvh|§~

J
¢ WPmin®(j,N = j)

Proof. We shall prove a small inequality which we will use later for proving the proposition.

1
If a; > 0 define A, = > aj, then
j=1

N A2 N
(%) =iz
=1 =1

We begin by demonstrating two inequalities which will be used in the proof.

A2 A, 2
(3) = (% -a)
(3 1

= 4a? izi
Also,
—2A;a; = —(24; — a;)a; — a?
= —(Ai + Ai)(A — A) — af
-
< (47 - AL)

Using the two inequalities (2.6) and (2.7) on (2.5) we get,

N Az 2 N N zAz N Az 2
z() <4§_;2_4§_; +2§_;<)

=1

=1 =1 =1
N N 2
A2 A2 A2 A2 A;
—4 2_of 2Ly 72 4 ‘el o T 2 ]
;al (1 +2~3+ Jr(n—l)nJrn2 * ; i

N ) N A2 N Ai 2
<4)dt-2) iy +ad ()

- = -
§4Za§.

=1

11

(2.6)
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Now we start the proof of the discrete Hardy’s inequality. First we state a simple equality:

i 2
B D e B R R
=
We sum the first { —1 | indices. Using (2.5)

LN;IJ LN;IJ 21: Vi —Vi—1 ’
v? < j=1
h2i2 — 12

i=1 i=1
& gy
< 3

We get,

2
vy Vi — Vj—1
L <4 . 2.8
h%i2 = ( h ) (28)
N-1

Now we sum the last L 5 J — 1 indices.

= 'U2 . v LN;J - UN—;
Z hQ(N—i)Q - Z h242
Z:LNglJJrl i=1
N-| 27 ] 2
UN—i+1 — UN—4
< % a(mee)
N . » 2
o 7 — Ui—1
S < B >
Z:LN;1J+1

We get,

N-1 ’U-2 N Vi — Vi1 2
Z hz(NZ_ i)2 <4 Z ( : hl_ ) : (29)
=[5 =2

Adding (2.8) and (2.9) together we get the discrete Hardy’s inequality,

N— 2
Vi — Vi—1
< 4 . 2.10
g h2mm2 —1) Zzl ( ) ( )
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Given v,v" € L?(0,1) we can get the inequality

1

2 212
wzl[t}?l]v(x) < co/(v(x) +v'(x)*)dx.

where c is a positive real number independent of v and v’.

Proposition 2.8. [Inequality between the discrete infinity norm and the discrete H' - norm]. We

have,

2h
Jon3 S\/5_1|vh|?pa where  [vn[3p = [val3 + [6hvn 3.

Proof. Assume that,

lop|2, =vi, and min v =02, where 0 < k,m < N.
0<i<N

Without loss of generality assume m < k. Let € be any positive number. Then

k—1 UQ ’02
2 _.2_ .2 it1 — Y5
|Uh|oo*1’k*”m+hi:ZmT
k=1 "
=02 +h < th 1>(v2+1 + v;)
k=1 " k=1 "
< 2 h 1+1 7 ; +1 — Ug ;
<] 3 (e 2 (25
= s \2 ¢kl = v kel
< 2 hl= i+1 7 € 2 L i+1 — Ug € 2
N LNl N LNl " XN
< h 2 h . 1+1 7 < 2 L 1+1 7 < 2
St en[g X (M) # gt e g 3 (M) r5 2
=0 =0 1=0 =0 1=0
LNt Viet — v; 2 N ,
=nl=> | +(1+e)) 0
i=0 i=0
For (2.8) to hold we require,
1 2
14+e< and - <
5—-1 e " V5-1

For the inequalities above to hold we find that,

€ =

2

Choosing such € will give the smallest constant and prove the proposition.

onl2, < —20 iv2+Ni§ vy =0y
h S o1 ]:0] 2 - )
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For any v € H'(0, 1) define,
1
ol = | v/ (@)Pde+ (0) + (1)
0

It is known that || - || is equivalent to the H* norm.

We will prove a discrete version of the inequality above.

Proposition 2.9. We have,

2 2
2 ol )2 b « 2 _ Yo TN 5o |2
o < 2l s where (Junlin)? = 2+
Proof. Assume 0 < i < N. For any € > 0,
i—1 2 2
2 2 Uit1 Y
2 _ 3 W
=) S
7=0
Ly v
2 i+1 — Uj
:U°+h2( ) J>(“j+vj+1)
7=0
ks v v =1 v v
_ 2 Y1 T Y5 ) j+1 — Y5
_y0+hzvj<h >+hZU”+1(h )
7=0 7=0
= 15 70 0\ 2 = 1 70 0\ 2
2 2 j+1 — Y5 2 j+1 — Y5
<”0+2[€Z% +€Z<h) } +2[€Z%+1+62(h ) }
J=0 J=0 §=0 i=0
i—1 i—1 i—1
h 2 v v
2 2 2 +1
SUOH[E KRR ( T ) }
7=0 7=0 7=0
We get,
= i—1 9 izl /o 0\ 2
1 —
vi2<v§+2{62vj2-+ezv]2-+1+e (j 3 J) } (2.11)
j=0 §=0 §=0
Similarly, from the fact that
N-1 v2+1 v
2 J J
= —h
U5 Un Z I )
j=t
we can get
B Nl N-1 g N=1 /0 e
1 —v;
vfév?v+2{e_ e Vit T <Jh])] (2.12)
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Adding (2.11) and (2.12) we get,

7=0
N-1 N-1 g N=1 /) v
2 2 J+1 — Y
+UN+2|:€Z’UJ+€ZU]-+1+6 ( h )]
Jj=i Jj=t Jj=1
B N-l N-1 g N=1 /o v
_UO+UN+§ GZU?—FG U?+1+€Z(J+1h J>:|
7=0 =0 =0
Wi N N o N=1 /N2
§U§+U]2V+§ EZU?-I-EZU?-F* (]Hh]>}
L j=0 §=0 € =0
- N N-1 2
h 2 Vjp1 — U
=vf R+ 5|2 ) vf 4 - (J“hj> }

Dividing by two we get the inequality,

v WA [ZH Z(”J“ )] (213)

Notice that inequality (2.13) is independent of 4, we will use this property to prove the original

proposition.

N N
2 2
O s
=0

N N-1 2
(2h + 1)1}(2) + U]2V 1 2 1 Vjt1 — Vj
= et )
7=0

We can change index i to j on the left side of the inequality for simplicity,

N 2 2 N N-1 2

2 (2h -+ 1)’[}0 + ’UN 1 2 1 Uj+1 — Uj
D et X ) | (2.14)
7=0 7=0 7=0

Similarly, from the fact that

2 _ .2
v =+ ) v,
1=0 1=0

we can get

N N N-1 2
+(2h+1)0% 1 1 it1— Uj
Z h)”NJFQ{GZUJZJFE (”J+1h”3> ] (2.15)
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Adding (2.14) and (2.15) together, we have

N N-1 2
2h + 2)v2 + (2h + 2)v3 1 Vjt1 — Uj
2y < ChE2h e 3 (P
~ 2h o €= h
Dividing by two we get the inequality,
N N N-1 2
S0 < (h+1)vg + (h + 1)} +1[62v2+1 (Uj+1_vj>:|
1 — 7 .
pard 2h 2 = €= h

Moving the ¢ norm term from the right side to the left we get,

N N-1 2
(h+1)(vg +0v%) 1 Vjt1 — Uj
(1 )Z i by ()

=0 =0

From that we may get,

Zv (1_)_1[(h+1)(21;§+v12v) +21j‘1<vj+1h—vj>2].

J=0

In order to get the desired inequality constant we require,

h+1 e\ ! 1 e\ !
1-&) <2 “(1-f) <
T2 ( 2) <2 and 2e< 2> =

We can get this constant when e = 1 and h < 1 (which holds in the general case), so the inequality

becomes,
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For a smooth function f on [0, 1] we cannot bound fol (z)%dz in terms of fo x)%dx by a constant
independent of f. For example if we take the function f(z) = sin(nz) the derivative is f'(x) =
n - cos(nz), and we can easily see that as n grows so will the bounding constant of the inequality.
Therefore it cannot be independent of f. However, such an inequality is possible in the discrete
case with a constant depending on h. These so called inverse inequalities are useful in estimating
the condition numbers of discrete differential operators, as in the following results some of which

can be found in [7].

Proposition 2.10. [Inverse estimates]. We have,
(a) [0nvnla < 207 oplo.

(b) [6nvnloe < V2R Hupo.

(¢) 16nvnloo < 207 Hup]oo-

Proof.
(a) We have,
= v:\?
|Onvnl3 = = ]>
Jj=0 h
1 N-1 N—1 N—1
= h2< UJQ+1 -2 Z V4105 + Z vf)
7=0 3=0 =0
1 N N-1 N
:hZ<Z’U]2—’08—QZUj+1’UJ+ZUJQ U]2V>
j=0 j=0 =0
1 N N—-1
- (2Zv? NESES )
j=0 7=0
1 N N—-1 N N
- }L2<2ZU12' — (VR +03) =2 ) v +2) vr - 22@?)
=0 3=0 7=0 =0
1 N r N N—1
_ m(4zv5 g reay ey %vjb
J=0 L 3=0 5=0
1 N [ N N-1 N-1
7=0 L j=1 =0 =
1 N i N-1 _
h2<4zv§ 2(v3 +v¥) + v§+1+zv +2ZUJ+1%D
Jj=0 L j=0 j=0
1 & [ N-1
= ﬁ (421}]2 — 2(1}8 + ’U]QV) + (Uj+1 — Uj)2]>
j=0 L 7=0

IN
e
=

S



We proved,

[6hvnl3 < 4h™2[un3.

Taking the square root of both sides we have proved,
|5hvh|2 < 2h71|’0h|2.

(b) Assume that the infinity norm occurs at index k. Then

2
(Onon 2, = maz; (M)

h
= %(Uk-&-l —vp)?
= ﬁ(“iﬂ + Vg — 20k 410k)
- %(2(1’/34-1 +v7) — (20p110k + Viq + 7))
= %(2("’/34-1 +07) = (kg1 + ve)?)
< ﬁ(vz-ﬂ +v?)
< lonl3

Taking the square root of both sides,
10h VR |00 < V2R up o

We can see the inequality is sharp if we choose the vector v, = (—1,1,0...,0).

(¢) Note that from (b),

0hva |2 < 5 (V41 + VR)

Taking the square root of both sides,

\5hvh\oo < 2h71|vh|oc~

We can see the inequality is sharp if we choose the vector v, = (—1,1,0,...,0).
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2.2 Second Order Numerical Schemes for the 1D Poisson
equation

When we wish to solve a partial differential equation there is no guarantee we can find an analytical
solution so we create a numerical scheme that mimic the continues operator and since we trans-
formed the continues problem into a discrete one we can use numerical methods to approximate
the solution. For a finite difference numerical scheme to be successful it needs to be convergent,
which is relatively easy to prove if we know a scheme is stable and consistent. We now define each
of those terms with respect to the Poisson equation.

Consider the simplest finite difference scheme with a uniform grid size h
—Ajup = fp=Rnf,

where (=A%) is any finite difference discretization of the laplacian and Ry, is the restriction operator
on 2, that ”samples” a function such as f on 2 and converts it into a vector. As in the previous

chapter the term c is a positive constant independent of u and h.

Definition 2.11. The term | - is defined as,

ull? gy = max sup [D%u(z)],
D al=r en |
where D*u represent a derivative of u of order r, with o a multi index such that r = |a| = a1 + as.

For example, if o = (3,1) then D*u represents the fourth derivative ugzyy.

While || - || is not a norm, it is a useful quantity in the analysis of finite difference schemes.

()
Definition 2.12. The discretization (—A}) is said to be consistent of order r if

ArRpu — Ry Auloe < c||ul|fnh™s  for uwe C™T2(Q),  where u =0 on 0.
h cr+2(Q

)

|Az|z
EIP

Definition 2.13. The ¢ norm of a matriz A is defined as |A|a = sup
x#0

Definition 2.14. The discretization (—A}) is said to be stable with respect to |- |2 if |(A}) 7 2 is
bounded independently of h.

Definition 2.15. Given the scheme —Ajun, = Ry f for solving the Poisson equation —Au = f

with boundary condition u =0 on R, we say (—A}) to be convergent of order r if

|Rru — up|oo < cHu||*CT+2(§)hr.

Definition 2.16. The condition number of a numerical scheme represented as a square non-
singular matriz A is defined as:

K(A) = [A7 2| Al
In the next two subsections we use the inequalities of the last section to show convergence of the

finite difference schemes.



20

2.2.1 Solving the 1D Poisson Equation with Dirichlet Boundary Condi-

tions.
Consider the boundary value problem on domain Q = (0,1):
—u" =f on (0,1) with w(0)=0=u(l).
Consider the simplest finite difference scheme with a uniform grid size h
—Apup = fn = Ruf.

Since 4(0) = 0 = u(1) we only need to find u; for 1 <i < N — 1.
We define the grid as
Q) = {z’h, 1§i§N—1}.

For 1 <i < N —1 the equivalent (N — 1) x (N — 1) matrix to the discretization grid is simply,

A, = — . (2.20)

Theorem 2.17. The Ay scheme is second order consistent with respect to | - |oo-

Proof. For 1 <i < N — 1, u; = u(x;) can be expanded using Taylor’s theorem,

%h n d?u; fﬁ d3u; hf3 du(&F) h74
dx dz? 2 dz3® 6 dzt 247

Ui+l = Uy £

for some £+ € Q. Adding the two equalities above we get

d2ui
dxz?

dtu(€*) h*

h? .
+ det 12

Uit1 + ui—1 = 2u; +

By rearranging the terms we get

—2’U,Z —|— ’LLZ'+1 + U;—1 d2ui % %
2 - da2 =:E, and ”EHC4(§) < CHU||C4(§)h27

where ¢ is a positive constant. Since we chose any 1 <i < N — 1 we may conclude that,

|ApRpu — RpAuloe < c\|u||*c4(§)h2. (2.21)
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Theorem 2.18. The Ay, scheme is second order convergent with respect to |-|0o, |*|n, and convergent

of order 2 with respect to |- |1 and |- [}

Proof. Let e, = Rpu — up. It is easily seen that eg = 0 = ey. Now we prove a summation by parts

equality. Note that,

2. T 2 :
—h €n Aheh = ei(Qei —€;—1 — €i+1)
i=

N-1 N-1 N-1 N-1
2 2
= E e, — g e;e;_1+ E e, — g €;€it1
=1 i=1 =1 =1
N-1 N-1 N-1
2
= e; —2 €i+1€; + €ii1
=0 1=0 =0
N-1
2
=) (eir1—€)
=0

We can summarize the summation by parts equality as
—eF Apen = [0nenl.
From that we may get the inequality,
[Onenl3 < lenla| Anenls.

Using (2.3) we get

1
Onenls < 6|5h€h\2|Ah€h|2,

1
|0nenla < E\Ah€h|27

or

1
|onen|n < 6‘Aheh|h~ (2.22)

Since Apep, = ApRpu — RpAu, from (2.21) can write,
* 2
‘Ah8h|oo < CHUHC4(§)h .

Clearly,
[Anenlz < N2 Anenloo < h72¢]ull s b

From the above equality we can see that

RY2| Apenls < c||u||é4(§)h2.
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We may conclude that,
|Ah6h|h < CH“”Z@(ﬁ)hQ-

Plugging that into equation (2.22) we get

[onenln < cllull g g)h*.

Using Proposition 2.5, again we can bound |ep|;, as follows,
1 *
|eh|h < 6|6h6h‘h < CHU||C4(§)h2. (223)
In addition, using (2.2) we can bound |e, |~ as follows,
len]oo < 2_1h1/2|(5h8h|2 = 2_1|6h€h|h < C||UH*C4(§)h2. (2.24)

Equations (2.23) and (2.24) are proofs that the scheme A} is convergent of second order with
respect to | - |, and | - |« respectively.
We wish to prove now that the scheme is convergent with respect to the discrete H' norm and

the equivalent H' norm from equation (2.16).

+
7=0

x N2 60+6N - e]+1_ey ’
(lenln)” = :

As was stated before, eg = 0 = ey, giving us
N-1 eir] —e 271/2
. —e;
=[5 (5
§=0
= |dnenl2
K2 |8enn
< h—1/2c|\u||*c4@h2
= cllullfum B
We have shown that
‘eh|H1 < C||uHc4(Q h3/2 (225)

Using (2.16) we can see that,
lenlinn < V2enliyn < clluliye ¥

These demonstrate that

len|m < C||UH*C4(§)h3/2' (2.26)

We can easily see that equations (2.25) and (2.26) prove that the scheme Ay, is convergent of order

3/2 with respect to | - [};, and |- |1 respectively. O
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Theorem 2.19. The condition number of the Ay scheme is at most 3%

Proof. In order to estimate the condition number of Ay, we need to estimate |Ap|2 and |A;1|2.

Let uy, be a vector such that ug =0 = up.

It is easily seen that Apup = 5_p(dpup). Using inequality (2.17) twice, we get
2 4

Apuplz < =[0punle < —lupz2-

[Anls < 2 [onunle < 5l
Using the minimax characterization for eigenvalues we may conclude that

4
A < 1. (2.27)

Applying (2.3) on the summation by parts we have shown previously we get,

up (—An)un = [Spunls > 6lunl3.

Therefore the smallest eigenvalue of (—Ap) i Apin > 6. Since (—Ay) is symmetric

—

1A 2 < =

(=}

Now we can estimate the condition number using the | - |2 norm,

4 2

1
—1
H(Ah) = ‘Ah |2|Ah|2 < 6 . ﬁ = 32

O

Since Ay, is a symmetric positive definite tridiagonal Toeplitz matrix we can know the values of all

of its eigenvalues explicitly,

Ai = a — 24/ B cos (X[T(), a=1,2,...,N—1.

« represents the value on the main diagonal, 8 the value on the upper diagonal and vy the value on
the lower diagonal. We also know that |Ay|s will be equal to its largest eigenvalue and |A; |, will
be equal to the inverse of its smallest eigenvalue. Using that we find the condition number to be

4

K(Ap) ~ et



24

2.2.2 Solving the 1D Poisson Equation with Neumann Boundary Con-

ditions.

Consider the Poisson equation
—u”"=f on (0,1) with «(0)=0=4d/(1).
Given that f has zero average and letting v be the unique solution with zero average, we define the

ﬁh:{(z’+;>h,0<i<N—1}.

For 1 < i < N — 2 the discretization is simple, but at the boundaries the discretization requires

offset grid as

points that do not exist , i.e. (W and uy_1,. For those we use the Neumann boundary

conditions,
Up/p — U_
0=1u(0)~ 2yz2 T B2
h
and so we get
U_l/g = U1/2. (228)
Similarly from the second boundary condition we get
UN_1/2 = UN+1/2- (229)
Let us define the discretization matrix to be,
S -
-1 2 -1
3 _ 1
A = s
-1 2 -1
- _1 1 -

The scheme was taken from [7] using the same notation. Note that —AELB) is singular with a one-
dimensional null space given by scalar multiples of 1, where 1 represents a vector of ones.

Let V ={u, € RN, N w; =0} and Ay : V — V, defined by Apup, = (—AP )y, for uy, € V.
Then Ay, is invertible on V.



Theorem 2.20. The A, scheme is stable and |A; |2 <

1
5-

25

Proof. First we prove a summation by parts equality to be used later. Let u;, € V and up = u; 41

We have,
N—2
2. T
—huy, Apup, = g ug (2up — Ug—1 — Upt1) —i—u%(u% —uz
i=1
N—2 N-2

i=1
N-2 N-1 N-1 N-2
2 2
= up — UpUk—1 + Uy — Uk Uk 41
i=0 i=1 i=1 i=0
N-2 N-2 N-2 N-2
2 2
= E Uy, — UpUk+1 + E Ukl — E Uk Uk 41
=0 i=0 i=0 i=0
N-2 N-2 N-2
2 2
= g up — 2 UpUk41 + E Ukt
1=0 =0 i=0
N-2
2
= > (upy1 — ug)
i=0
N-1
2
= (uk+1 — uk) .
i=0

From the above equality we can see that

\5huh|§ = uZ:Ahuh.

Using the discrete Poincaré inequality (2.4) we obtain,

2|uh|§ < U%Ahuh,

leading to the conclusion

( Uy_1 —Un_
uz) tuy_1(uy_1 —uy_3)

= E ui - E UpUk—1 + E ui — g UpUk+1 + ui — u%u% + u?v_
2
i=1 i=1 i=1

N

2

IU/N

(2.30)

(2.31)
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Theorem 2.21. The A;, scheme is second order consistent.

Proof. Let u be any smooth function with zero average and Ry, be the restriction to €. In order

to show consistency we simply need to prove that

|Athu - RhAUhL S C||UH*C4(5)}L2

For 1 < i < N — 2, using the previous notation where k =i + 1/2, u;, = u(zy) can be expanded
using Taylor’s theorem,

e — 2 L %h d?uy, fﬁ d3uy, hi’ d*u(€t) h74
REL = TR T dz? 2 dz3 6 dzt 247

for some £+ € Q. Adding the two equalities above we get

d?uy, d*u(€F) bt
1=2 h? —.
Up41 + Up—1 Ug + dn? + 12
By rearranging the terms we get
—2uy + Uk4+1 + Uk—1 dzuk " " 2
- ~SE B and Bl < el h (2.32)

where ¢ is a positive constant. Since we chose any 1 < ¢ < N — 2 we may conclude that the

inequality is true for all those indices. We now need to prove the inequality for the boundaries.

Let us start with the left side boundary

d2u1/2 }E N d3u1/2 h;” d*u(€F) bt

h v
+ dz? 2 dz3 6 dzt 24’

du1/2
= +
Uiy = U1/2 "

for some £+ € Q. Adding the two equalities above we get

Puy 5 dru(EF) b
dz? o+ det 12

U3/2 + U,l/z = 2U1/2 +

Using equation (2.28) and rearranging the terms we get

—U1/2 + Uug/2 d2u1/2 _ . i} )
h? B dz? o E’ and ”EHC4(§) < c||u||c4(§)h s (233)

where c is a positive constant.
We now check the right side boundary
2 3
duy—y,  Fux-yn?  duv g hP o dhu(e) pt
dx dz? 2 dz® 6 dz* 24

Uy_1i1 =Uy_1 F
Following a similar procedure as the left side boundary and using equation (2.29) we get

—uy_1 tuy_sz dzuN*%fE
h2 o da?2

and [ Ell% ) < cllullf g h® (2.34)

where c is a positive constant.
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Adding the three inequalities (2.32), (2.33) and (2.34) together demonstrates that the scheme is

consistent, i.e.

P, D * 2
|ApRpu — RpAu|oo < c||u|\c4(§)h )

O
Theorem 2.22. The Ay, scheme is convergent with respect to the norms |- |n, |- |1, |- 51, |- oo
Proof. Let
—Au=f, Apup= Rhf, en = Ryu — up,.
Since Apep, = ApRpu — RpAu we can write,
|Anen|oo < c||u||*c4@)h2. (2.35)

From Theorem 2.21 we know the scheme is consistent with respect to | - |oo. It can be easily seen

that
| Anenln = 1% | Apenlz < B2 B7V2| Apenoo < cllullf gk,

demonstrating that the scheme is consistent with respect to | - |5 as well, i.e.
|Aheh|h < C||UH*C4(ﬁ)h2 (236)

Now we can demonstrate that the scheme is convergent.
For that we need to show that |ep|, < c||qu,4(ﬁ)h2; we have
lenln = [(An) ™" Anenln
< |A; M nlAnenn

= |A;, 2| Anenln

IN

* 2
§C||u||c4(§)h

h2.

IN

CH””Z«L(@)
Using (2.31) and (2.36) above we have proven that,
|eh|h < CH“HZ@(ﬁ)hZ (237)

Demonstrating that the scheme Ay, is convergent of second order with respect to | - |.



28

We will demonstrate that Agg)uh is equivalent to d_(dpup) and we will use the matrix representa-

tion to show that. Let us first find §,vp, on the interior points,

1
E[U?,/z —U1/25 -y UN-1/2 — uN—3/2]’

Applying the Neumann boundary condition we get,

1
dpup = E[()’Us/z —U1)2, - UN—1/2 — UN—3/2,0].

Notice that after applying the boundary condition, dpuy has (N + 1) components. If we wish to

write dp, in a matrix representation we get an (N + 1) x N matrix:

O0p = —
-1 1
0 O

We apply the normal backwards discrete derivative as we defined it before, i.e.

5—h(5huh) = ﬁ[(u?,/Q - U1/2) -0, (U5/2 - U3/2) - (U3/2 - U1/2)7

) (UN—1/2 - UN—3/2) - (UN—3/2 - UN—5/2)70 - (UN—1/2 - UN—3/2)]

1
= -5 [~u12 +uz/2, —2us3)9 + Us/a + U2, —2UN_3/2 F UN_1/2 T UN_5/2, UN_3/2 — UN_1/2]-

2
We can easily see that d_,(dpvp) has (N) components Putting d_p in matrix form we can easily

see that it is required to be an (N) x (N + 1) matrix,

This gives us,

—_

1
-1
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We wish to prove now that the scheme is also convergent with respect to the discrete H' norm and

the equivalent H! norm from equation (2.16). We have

(‘€h|*Hl)2 _ M +N 2 <6(J+1/2)+1 — 6]+1/2>2
7=0
2
e
<18 415
enl? 1
= ';;'h +gla enls
A5 HN%w 1
< Mg ali | Siaes
AT BIAD el 1
= %4_ ?‘Ag)ehﬁ
3
M i|A(3)€ |2
- 2h? h €hln
3)
3h2‘A( h|h

In order to get the above inequality we have used inequalities (2.3), (2.38) and (2.31). Taking the

square root of both sides and using the fact the scheme is consistent we can show that,

|€h|}<_11 < CHUH*CAL(ﬁ)h
Using inequality (2.16) we can easily see that,

lenlm < 2leplin < C”u”*cz;(ﬁ)h

We have proven that,

lenlm < cllullcag)h

Using inequality (2.8) we can see that

2h
|%usuﬁ:ﬂ%ms¢wm@m“

lenloo < el cagmyh®

We can get the inequality,

(2.39)

(2.40)

(2.41)

Equations (2.39), (2.40) and (2.41) are proofs that the scheme Af) is convergent of first order with

respect to | - |1 and |- |1 respectively and order 3/2 convergent with respect to | - |oo.

O
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Theorem 2.23. The condition number of the Ay scheme is at most %

Proof. In order to find the condition number using the | - |2 norm we need to estimate |Ap|s.

If we apply inequality (2.17) to (2.30) we get,

4
ugAhuh = |5huh|§ < ﬁ|uh\§, up, € V.

From that we may conclude that
4
‘Ah‘g S th .

Now we can bound the condition number,

1 4 2
1
K(Ap) = |4} 2| Anl2 < SR AR

Another method of finding a bound on |Ay|s is by eigenvalue perturbation.

Eigenvalue Perturbations. Let A\ > Ay > ... > )\, be the eigenvalues of a Hermitian A € R"*",
and suppose that A is perturbed by a Hermitian matrix F with eigenvalues €; > €3 > ... > ¢, to
produce B = A + E which is also Hermitian. Let 3; be the eigenvalues of B, If 51 > 52 > ... > S,
then,

miaxﬁi < miax)\i + €.
A proof of the above theorem is available on page 551 in [3]. Let Ej be a (N +1) x (N + 1) matrix
defined as

-1
0O 0 O

We can easily see that A;LS) = (71/2)2 Apr + Ep, where Ay is the scheme defined in 2.20 with grid size

of (N+2) points. If we denote §;, A; and ¢; denote the eigenvalues of AEL?’ ), Ay and Ej, respectively.
From (2.27) we can find that,

4
miaX )\i S W
It is easily seen that ¢; = 0. From that we can find,
()% 4 4
As we stated before, |A§L3)|2 = max f3;.
Now we can estimate the condition number,
1 4 2
_ -1 —
K(An) = [Ay 2| Anl2 < SR SRR



Chapter 3

Monotone matrices

In this chapter I will introduce a family of matrices called monotone matrices, some equivalent
conditions for monotonicity will be introduced in this chapter as well. There are more equivalent
conditions for monotonicity that are not introduced but can be found in [1]. In chapter four and
five we will use the fact (after we prove it of course) that the numerical schemes are monotone to

prove stability.

Definition 3.1. A wvector v is said to be v > 0 when all entries are nonnegative and at least one

element s positive.

Definition 3.2. A wvector v is said to be v > 0 when all entries are positive.
Definition 3.3. A vector v is said to be v > 0 when all entries are nonnegative.
Definition 3.4. A matriz M is said to be M > 0 when all entries are nonnegative.

Definition 3.5. A real square matrix M is said to be monotone if Mv > 0 implies v > 0.

31
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From the definition of a monotone matrix one can claim the following:

Claim 3.6. A monotone matrix is non-singular.

Proof. Given a monotone matrix M and vector v, assume there is v # 0 such that Mv = 0. Then
M(—v) = 0 as well. Since M is monotone, if Mv = 0 we can conclude v > 0. Taking the equation
M (—v) = 0 we can conclude (—v) > 0.

The only possible vector obeying both inequalities is v = 0, a contradiction to the assumption. We
have proved that the only solution of the equation Mv = 0 is the trivial solution v = 0, and from

that we can conclude that the matrix M is non-singular. O
Claim 3.7. Suppose that M is non-singular and real. Then M is monotone iff (M~1);; > 0 Vi, j.

Proof. (<) Assume that (M~1);; > 0 and Mv > 0. Then
0 < (M~1)(Mv) =v, sov > 0; hence M is monotone.

(=) Assume that M is monotone. Let e; denote j*™ standard unit vector.
Since M is non-singular Jv such that Mv =e; > 0.
As M is monotone, v > 0. But v is just the jth column of M~1.

It now folllows that M ~1 > 0. O
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Claim 3.8. A matrix M is monotone if and only if there exists matrix R such that B = M + R is

monotone, B~'R > 0 and p(B~'R) < 1, where p denotes the spectral radius.

Proof. (=) Assume that M is monotone. Choose R = 0, the null matrix. We get,
B=M+0=M.
Clearly,

B l'=M"1>0, B''R=0>0, p(B7'R)=0<1.

(<) Suppose R to be a matrix such that B = M + R is monotone, B~1R > 0 and p(B~'R) < 1.

We can see that,
M =B—-R=B(I-B'R).

We now state two well known results.

Let A be an N x N matrix such that p(A) < 1. Then,
lim A7 =0,
j—o0

and,

e .
(I-A)'=) A
§=0
We are given p(B~'R) < 1, using (3.2) we get,

(I-B 'R~ = i(B_lR)j.
j=0

From (3.1) we know this sum will converge, we may conclude
M~ =(I-B'R)"'B”.
and since we are given that B~'R > 0 we conclude,

(I-B 'Ry = f:(B‘lR)j >0
j=0

Since we know B is monotone, B~ > 0. Thus,
Mt'=(I-B'R)™'B*'>0.

Using Claim 3.7 we conclude that M is monotone.
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Claim 3.9. A matrix M is monotone if and only if there exists a monotone matrix B > M and a

vector x > 0 such that Mx > 0.

Proof. (<) We will use Claim 3.8 to show the above claim is true. Let us define matrix R = B— M,
since B > M we may conclude R > 0. Since B is monotone we know B! > 0, using that we can
find B~'R > 0. We already have two of the conditions for monotonicity from claim (3.8), all we have
left to show is that p(B~'R) < 1. Let us define matrix C = B"'R= B Y (B-M)=1-B~'M > 0.

We prove now that,

) s €2
Let,
% 7
C = c >0

- x
Tn "

The spectrum of C' is the same as matrix C, A(C') = A(C).

Notice,
1

61 = —CijjTj.
J x; I3

By the Gershgorin circle theorem,

AC) UB” (Ei), =Y &y

i£j
where B, (z) is the ball of radius r with centre x. Using the above,
p(C) < max é&; 4 r; = max Gty Z S max (Cx)l
i % ZT; — X ? Zq
i#£j
Remembering A(C) = A(C),
Cz)i
p(C) < max (Cz)
) iz
We now prove p(C) < 1,
i I-B'M i B'M i
p(C) < max (Ca) = maxu =1- m_inﬁ < 1.
i x; i X i Tq

We have a monotone matrix B such that, B~™'R > 0 and p(B~'R) < 1. Using (3.8) we conclude
M is a monotone matrix.
(=) Given a monotone matrix M, let us define matrix B = M, clearly B is a monotone matrix. We
define a vector z = M 11, and we can easily see 2 > 0 since by Claim 3.7 M~! > 0 and no entire
row of M~! can have 0 otherwise M~ is not invertible. We calculate Mx = M(M~'1) = 1> 0.
Given a monotone matrix M we have found a monotone matrix B > M and a vector z > 0 such
that Mx > 0.

O
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Clatm 3.10. Suppose that for the real square matrix M, M;; > 0 and M;; < 0 for every i # j. If M
is irreducible and diagonally dominant where at least in one row it is strictly diagonally dominant,

then M is monotone.

Proof. The matrix M can be written as
M = sl — B,

where B; ; > 0 and s > p(B).
Such an s exists since the matrix M is irreducible and strictly diagonally dominant in one of the
rows. We can write

MzsI—st(I—B)
s

-1
M1:1<I—B> .
S S

Let us define A = 2 5o that p(A) < 1. Now the equality becomes

M= 1(I —A)!
S

then

Applying (3.2) we get,

From (3.1) we know this sum will converge and since B; ; > 0 and s > 0 we can conclude that
1~ (B’
M~ == =] >o.
DIOE

Hence M is a monotone matrix by Claim 3.7. O

Claim 3.11. A matrix M is monotone if and only if there exist monotone matrices By and Bs such
that
By <M < Bs.

Proof. (=) If M is monotone, let By = M and By = M. It can be easily shown By and By are
monotone since By ' = Byt = M~ > 0.

Given a monotone matrix M we found two monotone matrices By and By such that B; < M < Bs.

(<) If By = M, then we conclude immediately M is monotone.
If By, ; < M;j, let v be a vector defined as v = B;'1 > 0 where 1 represents a vector where all

entries are 1. Therefore Byv = 1. We find, 0 < 1 = Biv < Mw.

We have found a vector v > 0 such that Mv > 0 and a monotone matrix By > M.

Using Claim 3.9 we conclude M is monotone. O
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Claim 3.12. Suppose that L, is a monotone matrix so that whenever v, > 0 and |vj|oc = 1 there
is some positive constant a such that Lyv, > ol for all b € (0,1). Then |L;'|o < a™! for all
h e (0,1).

Proof. Since the matrix Lj; is monotone, we know that L,:l > 0. Let vy, > 0 so that |vp|e = 1.

From Ljv, > ol and L,:l > 0 we can get,
vp > aLgll.
Taking the infinity norm we get the inequality,
[Unloo > oLy 1|0

Using |vp]eo = 1 we get,
1> alL; '] (3.3)

Using L,:l > 0 and the definition of infinity norm of a matrix we get the equality,
1Ly oo = L5 (3.4)

Applying (3.4) on (3.3) gives us,
1> alL oo

Dividing both sides by « gives us the desired result,
1L o <ot
O

Claim 3.13. Consider the PDE Lv = f with v vanishing on the boundary and finite difference
scheme Lpvy, = fr := Ry f. Assume L satisfies the hypotheses of claim 3.12.
Let E(v) := RpLv — L, Rpu be the consistency error for any smooth function v vanishing on the

boundary. We claim that |v, — Rpv|eo < |E(v)]oca™ .
Proof. We have
lvn — Rpv| = |L; ' Lyvy, — Rpo| = |Ly 'Ry Lv — Rpv| = |Ly ' R,Lv — Ly ' Ly Ry v

= Ly (RuLo — Ly Rpo)| < Ly oo RuLo = L Rpv|oo = |Lj oo E(0)]0o

< |E(v)|ooa_1.
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Claim 3.14. The matrix (—Ap) defined in (2.20) is a monotone matrix.

Proof. We first prove that (—Ap) is irreducible. Let us define a matrix A defined as,

0 (=Ap)i;=0
N ( h)ig .

1 (=An)iy #0

We can see matrix A_a, will be,
o -
11 1
A_p, =

1 1 1

L 1 1_

We can treat matrix A_a, as the adjacency matrix of a directed graph, which will be the associated
graph of the matrix (—Ay).

We wish to prove now that (—Ap) is irreducible. It is well known that if the directed graph of a
matrix is strongly connected then it is irreducible.

If we set all N vertices in a line we can easily see that they all are connected to their nearest

neighbours. Clearly, one can move from from any vertex to any other vertex on the line.

Thus we may conclude that the matrix (—Ap) is irreducible.

We can easily see that (—Ap) is a diagonally dominant matrix, strictly diagonally dominant in

the first and last row, and (—Ap);; > 0 and (—Ay);; < 0 for every i # j.

Using Claim 3.10 we can conclude that (—Ap) is a monotone matrix. O
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Theorem 3.15. The scheme —Ay, is stable and | — Ap|oo < é,

Proof. We wish to show that,
A il Junde _ 1

[frlo  Ifnleo = 8
We now define the vector wy, = [wy, wa, ..., w,_1]7T,
where, _ _
w0 = (zh)(lzf zh)’
and the function,
w = M 0<x< 1.

2

We consider w as a function and wy, the discretization of it, defined as wy, = Rpw. We now show that
—Apwy, = 1. By simple calculation we can see that —Aw =1 and 1-Apw, = RpAw—ApRyw =0,
since we have shown the consistency error involves fourth derivatives of w, which vanish. This proves
the claim —Apwy, = 1.

It is easily seen that |wp|eo < 5. Now,

1
1.
—Ap(|frlocwn + urn) = |floocl + fr > 0.

Since —A}, is monotone,

| floown + up > 0.

From here we have,

1
—Up S |fh|oowh S ‘wh|oo|fh‘oo]- S 7|fh‘oo]- (35)
8

Similarly,

—An(|fnlocwn —un) = |flool — fn > 0.

Since S}, is monotone,

| frloown — up, > 0.

From here we find that,

1
un < | frloown < |Whloo| frleol < §|fh|oo]-- (3.6)

Combining (3.5) and (3.6) we get
1
We conclude
1 1
= At < 5 (37)
Using the monotonicity property of —Aj, we have proved the scheme to be stable. O



Chapter 4

Fourth Order Numerical Schemes

for the 2D Poisson Equation

In this chapter we will define two fourth order numerical schemes for the 2D Poisson equation, both
of this numerical schemes can be found in [7] and previous work on the first scheme can be found
in [6]. As now we work with the 2D case we will use the notation of block matrices. These schemes
are well known, although the fact that they are monotone was not used to demonstrate stability
previously. Throughout this chapter the term c¢ represents a positive constant whose value might

change in different places.

4.1 The —Ah scheme

Unlike the two previous schemes, —A}, uses nine points to estimate the Laplacian. This creates a
problem for points adjacent to the boundary, which can be easily solved by using the second order
scheme — Ay, for those points.

We denote the interior of a unit square 2D discretization to be,

Qh:{<ihajh)7 1SZ?]SN_1}7

and we denote the boundary points as,

oy, = {(O,ih), (1,ih), (ih,0)(ih,1), 1<i< N — 1}.

We define Q, = Qp, U 09, and notice Q;, does not include the corners.

39
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Given the boundary condition that u, = 0 on 0€;, we define the matrix,

M* —12]
M, M, M, I*
r M, M, M, I*

A 1
_Ah:12h2 R .
I* M, My M, I*
I* My, M, M
I —121 M* |
Here we have,
48 —12 | [—12 ]
12 48 —12 ~16
M* = . M=
12 48 —12 ~16
I ~12 48 | I ~12]
[48  —12 1
~16 60 —16 1 [0 |
1 -16 60 —16 1 1
My = . . and [" =
1 -16 60 —16 1 1
1 -16 60 —16 I 0)
~12 48 |

The matrix I represents the identity matrix. All block matrices M*, My, Ms, I and I* are

(n—1)x(n—-1).
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Let us define QY as the set of points P € €2, that has all nearest neighbours of P in Qy, leaving
points in 2,\Q) be those with at least one neighbour in 9. For point P € 9,\Q) points we use
the 2D version of the scheme —A, introduced in chapter one. We can split how —A,, acts at a

point P into two cases
N —Ap)(P if P e Q,\Q
(~Bupy = ) A
(—=A7)(P) if Pel

Where —Aj, and —Agl) have the molecules

i X ]
~16 -1
A§L4)—121h2 1 —-16 60 —16 1], —Ah=% -1 4 -1
—16 -1
L 1 .

Below is a figure demonstrating how the grid is separated into three layers. First layer is the
boundary 92 denoted by filled circles where we are given that the solution v = 0, the second layer
is 2,\ Q) denoted by triangles adjacent to 92 where we use the second order scheme —Ap,, last is

the third layer Q9 denoted by empty circles where we apply the fourth order scheme (—AE:”).

oo o—0Q,
A~ A*Qh\ﬂ(}zn
o—QY.
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Theorem 4.1. The scheme —A}, is fourth order consistent in the interior.

Proof. One can see that for points P € Q,\Q9 the scheme (—A;) reduces to the scheme (—Ay),

thus we get second order consistency for those points.

|Ah(RhU) - RhAu|oo,Qh\Q?L < C||U\|Z~4(§)h2- (4.1)

Where c is an independent constant. We now prove that for points P € Q9 the scheme is fourth
order consistent

Let u; j = u(z; ;) such that z; ; € Qf. Expanding using Taylor’s Theorem we get,

32um hj 837,%7]' h,3 847,%7]' h4 85711'7]' E 86’&(5:‘:) h,6

s
= -
Wity S T T T e T o 6 et 24 0xd 120 | 026 7200
for some £+ € Q). After simplification we get,

84111'7]' h74 _ 82ui7j h2
Ox* 12 Ox?

—2u 5 + Uig1,5 + Uim1,j — = Eh? where |E1||*CG(§) < c||uH’&,6(§)h4. (4.2)

Expanding using Taylor’s Theorem again jumping 2 steps we get,

6ui,j

ox

82um~ (2h)2 83ui,j (2h)3 84’&1"]' (2h)4 i85ui7j (2h)5 Bﬁu(gi) (2h)6

2h
(2h)+ ox? 2 ox3 6 oxt 24 0x5 120 ox6 720

Uito,j = Ui =+

for some £+ € Qy,. After simplification we get,

%h‘l—% —2u; ;Ui s + Uy '—%4}12—19 h?|  where |Es||fg e < cllulte o h?
art " T4 BT RS RS T g2 ? 2llos@) = Wles@™
(4.3)
Plugging (4.3) into (4.2) and simplifying we get,
*30’&1‘,3‘ + 16U1‘+17j + 16u1-_17j — Uj—2,5 — Ui42,5 (92’11,1‘,]‘ % % 4
372 ~ o2 - E; where ”E3”C6(§) < C”“ng(ﬁ)h .

Adding a similar equation for the second y derivative we get the desired result,
|ApRpu — RhAu\oo)Qt})l < C||UH*CG(§)h4. (4.4)

O
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Theorem 4.2. The matrix —Ah 1S a monotone matriz.

Proof. In the following proof we will use Claim 3.9. We can easily construct the matrix B by

multiplying two monotone matrices. Let

81 By -1
-I* B -I* I B -I
By = , Ba= )
-I* B -I* -1 B} -I
I 81 | I -1 Bj]
where,
[ 8 | (8 -1 |
-1 8 -1 -1 8 -1
Bi = , By =
-1 8 -1 -1 8 -1
I 8 | I -1 8|

Using the same idea as in Claim 3.14 one can see the matices By and Bs are irreducible, applying
Claim 3.10 shows matrices B; and By are monotone, meaning their inverses are non-negative.

Defining B = By By, we get B~' = By 'By! > 0 from Claim 3.7. Hence B is monotone as well.

By calculating the matrix B one can see —A, < ﬁB. We have
853 —8I
—I"B5 — Bf BiB;+2I* —-I"B5 - D7 I*
I* —I"B5 — B BiBs+2I* —-I"B; - D7 I*
B =
I* —I"B5 — BYf BiBs+2I* —-I"B;—DBf I*
I* —I"B5; —BY BiB;+2I* —-I"B;— DB}
L —81 883
where,
(64 —8 ] -8 ]
-8 64 -8 2 =16 2
8B; = , —I"B;— B =
-8 64 -8 2 —-16 2
i -8 64 ] i —8]
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[ 64 -8
16 68 —16 1 [0
1 -16 68 —16 1 1
Note that, BiB3+2I" = and " =

1 -16 68 —-16 1
1 =16 68 —16
-8 64

Matrix I represents the identity matrix. All block matrices are (n — 1) x (n — 1).

We now define the vector wy = [W1 1, W2 1, v, Wn—1,1, W1,2, W22, ooy Wy—1 2, - Wp—1n—1]
w; ; = ih(1 — ih)jh(1 — jh).
Notice that vector wy, = Rpw, where
w=z(l-z)y(l—y) 0<z,y<L

Notice wy, does follow the boundary conditions, we can easily see that —Aw = 2y(1—y)+2z(1 —z),
which is strictly positive on the domain 0 < z,y < 1. Since the consistency error for points P € Q%
involve sixth order derivative which vanish we can conclude that (—Ahwh) Peq? = —Aw > 0.

For points P € 9,\QY the consistency error involves the fourth derivatives which do not vanish.

For those points we can show, by direct computation, that (—Ahwh)PEQh\Ql}) > 0.

We found a monotone matrix B such that B > (—Ah) and wy, > 0 such that
(=Ap)wy, > 0, thus by Claim 3.9 we have shown that (—Aj) is monotone. O
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Theorem 4.3. The scheme (—Ah) is fourth order convergent.

Proof. We wish to show that [Ryu — up|ee < c([|ul| h* where c is an independent

ge(ﬁ) + ||u||*c4(ﬁ))
constant. To prove that we will use the discrete Green’s Function. Let us first define the inner

product for two vectors x and y
N

< X,Y >pi= Zil?z.%
i=0

It is well known that Green’s Functions can be used to solve partial differential equations. We now

define a discrete analog. Let the values of the discrete Green’s function for (—Ay) be G, (P, Q)
defined as:

_A%jGAh(P7 ) = h_26(P7 ')a
Gh(P,Q)=0 on 8Qy.

In the above, the point P € 2 is fixed, and,

1 for P=Q

§(P’Q):{0 for P#Q

It should be noted that due to the monotonicity of the scheme, the discrete Green’s function is
non-negative.
Let e, = Rpu — up,. Then

len(P)| =h®lef, (~=An)TG(-, P)|

< h® max |(Anen)o| > Gu(P,Q)
Qe QeN?

+ h? mQaXQO|(Aheh)Q| > Gu(PQ).
QEa\D, Qeam\Y

We have shown that,

len(P)] < h* max |(Aren)o| Y 1Gu(P, Q)| +h* max |(Anen)ol Y Gu(PQ). (4.5)

Qen? e Qe ocoma
In [7] page 17 equation (1.20) it is shown that,
A . 1
WY Gu(P,Q) =< G(P,-),1 >,< 5 (4.6)
QeNY
In [6] Lemma 3.3 it is shown that,
S o<z (1)

QeL\QY

Even though equation (4.7) was proven in [6] Lemma 3.3 for (—A}), a similar proof can be made

to show it is true for (—Ap)7T.
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Applying (4.6) and (4.7) in (4.5) we get,

1 - )
P) <= A 2h? A )
len(P)| < 3 gggé [(Anen)ql| + QGIS?<<92 [(Anen)ol

Applying the consistency results from (4.1) and (4.4) we get the desired result, i.e.

Rut = unloe < | ull e gy + 1l gy [ (48)

Theorem 4.4. The scheme —Ay, is stable, with |(—Ap) ™ |s < c.

Proof. Theorem 4.3 demonstrated the scheme is fourth order convergent. Using a well known result
that a consistent convergent scheme is stable, we get that there is a constant ¢ independent of h
such that [(=Ay) ! < c

O



4.2 The —Ah scheme

We will use the standard 2D grid as defined in the — A}, discretization.

Given the boundary condition that u, = 0 on 0, we use the scheme,

S ]
E T E
“Bi=g ,
E T E
L E T_
where,
20 —4 | 4 1
—4 20 -4 1 -4 -1
T = and FE =
—4 20 -4 1 4
I 4 20 I 1

Both T and E are (n — 1) x (n — 1). The molecule of —A, is

) -1 -4 -1

A= — | —
h 672 4 20 4
-1 -4 -1

Theorem 4.5. The matriz fAh 18 a monotone matriz.

Proof. Doing the same steps as in Claim 3.14 we can show —A}, is irreducible.

47

-1

We can easily see that (fAh) is a diagonally dominant matrix, strictly diagonally dominant in the

first and last row in every block, (—Ah)ii > 0 and (—Ah)ij < 0 for every i # j.

Using Claim 3.10 we can conclude that (—Ah) is a monotone matrix.
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Theorem 4.6. The scheme Ay, is stable and IA; oo < 4.

Proof. For any matrix A of size n x n we define the quantities,

n
’I“Z(A) =Zai,j, 7 = 1,...,n
7j=1

r«(4) = min r;(A), r*(4A) = max r;(A).

1<i<n 1<i<n

From [8] we know that if A is a monotone matrix and D is a positive diagonal matrix , then

|D|oe < |A7 o < |D|s, provided that r.(AD) > 0.

1 1
r*(AD) r«(AD)

We define a block diagonal matrix D of the form,
Dy

D,
D= where ﬁk:ﬁ~f.

anl

Dy,

and where I is the identity matrix with size (n — 1) x (n — 1). For proving the stability of —A}, we
are only interested in the upper bound, i.e

1

A oo € ——
T*(fAhD)

Do
Since D is diagonal, multiplying the scheme by D will simply multiply each column of —Ay by the
corresponding diagonal entry of D. Due to the structure of —Aj, and D we can prove all row sums

are positive and decreasing. If we take the sum of any non-corner row k of —6h2ALD we get,

Q0VEk —4VE —aVE—4aVEk+1 - 4VE—-1-VE+1-VEk+1-Vk—1-VEk—1).

After simplifying we get

6(2Vk —Vk +1—Vk—1).

To prove this is always positive and decreasing we treat it as a continuous function for = > 2,
fl@) =2V —Ve+1-Vo—1.

By simplifying the function we can get,

2

fle) = (Vz+vVr—D(z+Ve+ D)V +1+Vr—1)




49

Clearly f(x) is always positive and the horizontal asymptote is y = 0. All we need to prove now is

that it is always decreasing using the derivative.

B Ve(Ve+1+va —1)
VIVaE =1y + Ve — DV + vz F Dz + 1+vVz —1)

Clearly the derivative is always negative. We have proven that for x > 2, f(z) is always positive

f'(x) =

and decreasing, thus it is also true for the discrete case.
One should be able to see that the minimum row sum will not happen in the last block but rather
in the block before it since in the last block we subtract fewer elements from the diagonal entry.

For the same reason as above, the minimum in every block will happen in a non-corner row.

Now can we find 7,(—Aj, D), which happens at any non-corner row in the (n — 1) block. We have

r*(AhD)*L(QO\/nfl74¢n7174\/n7174f74\/n7 —Vn—vn—vn—2-vn-2)

~ 6h?
:%(2\/71— —vVn—+vn-2)
1 2

:ﬁ(\/n—1—|—\/n—2)(\/n—1—|—\/ﬁ)(\/ﬁ—|—\/n—2)'

Now we can find the upper bound. Note that

ol I — T
’I’*(—AhD)
1

= : \/ﬁ

7 (M+m>(w«%1+m<ﬁ+m>
(Wil Vi (W L)Vt Vi)
=h 5 vn
< RVt ﬁ)(x/ﬁ; Vvn)(vn + \/ﬁ)\/ﬁ

3/2

8n
< h?
- 2

< h?-4n?

Vvn

=4.
We have found a constant upper bound on |A,;1|Oo proving it is stable, i.e.

Ao < 4. (4.9)
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Theorem 4.7. The scheme Ay, is fourth order consistent.

Proof. We begin by following the same steps as before where c is an independent constant ,using
Taylor’s Theorem. Let u; ; = u(x;;) be such that z; ; € Q. Expanding using Taylor’s Theorem

we get,

62ui7j hiz + 83ui7j h3 84ui7j h4 + 85ui7j Ls 86u(§i) h6

6ui7jh+ n-
ox ox2 2 oz3 6 ozt 24 ox® 120 0x8 720’

Uit1,j = Uij £

for some £+ € Q. After simplification we get,

62Ui 1 84’112' 'h4 % %
s b+l S B where (| By < cllulfom k! (4.10)

—2u; 5+ U1t U1 =

Doing the same for the second y derivative we get,

0%u; *u, j h* . .
ayi] h? + 8y4’JE+EQh2 where || Ex g0 ) < cHu||CG(§)h4. (4.11)

=2 5+ U1 U1 =

We can see that unlike before, we use the corners for the —Aj scheme. We apply Taylor’s Theorem

for multivariable functions at the corners, where k1, ko = +1.

ou; Ou; ; 0y j ou; ; 0w 5] h?
itk ks =i Ly + —Lko|h Lok 2l 2| —
Wit ky,j+ke =UWij + o 1+ oy 2} +[ 22 1+ D20y 1ko + 0y 205 +
[O3u; ; Dy j Dy j Dy 5] h3
2k + 3 2L kS ky + 3 —"L k1 k3 2 3 —
oz 1 0x20y ! 2+ O0xoy2 " 2t oy3 "% 6 *
_341%,3' 4 84ui7j 3 84ui,j 2,2 641%7]‘ 3 84ui7j 4 h4
gy ki +48x38yk1k2 + 68x28y2 kiks + 43x8y3 kiks + By kQ} ot
[0%u; ; u; u; u; uy u; h?
LY+ 5oL Ky + 105 = kYRS + 105520 kikS + 55 —"2 kiky k3|
| Jxd 1 oztoy ! 2+ ox30y? 2t 9220y3 1 2+ oxoyt ! 2+ dyd 2120
[0%u; ; O, O, B, - O,
SRS 4+ 65 —=2L kT kg + 15— =L kTkS 4+ 4052 kikS + 155521 kik;
| 026 ! + 0x59y 2t dztoy? 2 dx30y3 2t Ox20yt ! 2t
iy 5 uy 4] RS
6L hiks 2Lk | oo
+ 0xoys 2 + Oyb 2} 720
(4.12)
Combining (4.10),(4.11) and all four possibilities of (4.12) we get,
~ h? R*[1(0%u  O5u %u %u
ApRyu= RpAu+ —RpANu+ — |- 5 + = 4.13
hitht RAUE ATt {5 <8x6 * 8y6> 0xtdy? * dz20y* |’ (4.13)

where the h* terms are evaluated at some point in Q,. Thus the Ah scheme is second order

consistent. To prove it is fourth order consistent we have to modify the restriction operator Rj,.
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Let us define the new restriction operator as a (N — 1) x (N — 1)? matrix,

1 1
- 1 1
R = — = —_— —
=19 1 81 1 +12 1 4 1
1 1

D 1
For example (Rhuh)ij = U4y + ﬁ(ui+1,j + Ui—1,5 — 4ui,j + Uq, 541 + ui,j,l).

Notice that, Rou = Rpu + %Athu, from which we may conclude that,

B, h2 * *
RnAu = RyAp + ERhAQu +E, where |[|E3][7eq < cHu||Cs(§)h4. (4.14)
Using (4.14) in (4.13) we get,
N ~ RAT1 (0% 0% 5u u
ApRpu=RpAu—Es+ — || ==+ 5= .
htn het st 72 [5 (3x6 + 6y6> 0xtoy? * 0x20y*

Since E3 involves sixth order deriatives, when we take the infinity norm the h* terms will be included

in E. Thus we may conclude,

|ApRpu — Ry Aufse < cllull&e (4.15)

4
(ﬁ)h .

We have proven the scheme to be fourth order consistent.

Theorem 4.8. The scheme —Ahuh = Rhf s fourth order convergent.

Proof. We wish to show |Rpu — up|e < C‘|u||*ce(§)h4~

We have,

|Rnu — unlos = [(—A; ) (= An)(Rpu — un)|s
< | = A7 ool = An(Rnu— un)|oo
<4 — ApRyu— Ry fls
=4|— ALRpu + RhAu\oo.

Using (4.15), we may conclude the desired result showing the scheme is fourth order convergent.
ie.,
h*.

‘Rhu - uh|0<> < CH“”ZS(@)



Chapter 5

Fourth Order Numerical Schemes

for the 1D Biharmonic Equation

All the numerical schemes showed before were used to solve the Poisson equation. The numerical
scheme to solve the biharmonic equation defined in this book was developed in [2], they have done

an extensive analysis of the scheme in the book. We introduce the biharmonic equation defined as:

A%y = f.
Since only the 1D case will be shown here we can rewrite the equation as,
d4
dT;f = f with boundary conditions u(0) = u(1) = u'(0) = v/(1) = 0.

Since 4(0) = 0 = u(1) we only need to find u; for 1 <i < N —1.
We define the grid as
Qh:{ih, 1§i§N—1}.

We denote v = v/, the first derivative of u. This scheme requires a detailed explanation as to how
it is constructed. Let z; = ih for 0 < i < N, and uy, be a vector with entries u; = u(z;).
We define two new finite difference schemes for approximation of the first and second derivative

respectively at point wu;

Ui41 — Ui—1
2h ’
Let us take a fourth order polynomial,

Uit1 — 2U; + Uiyl
h? '

opu; = and diu; =

Q(z) = ao + ar(z — ;) + ag(x — x;)* + az(x — ;) + as(z — z;)*.
In order for Q(x) to fit the given vector uj and v, we require,

Qzi1) =uic1, Qi) =w;, Qmiy1) =uir1, Q' (wi—1)=vi—1, Q' (Tit1) = vit1.

92
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Under the conditions above, Q(z) has a unique solution,

ag = Ujg,
3 1
ar = 552%‘ 1 (Vi1 +vica],

1 *
Ao = 5;211,% - *5;[01',
2
1

az = ﬁ(éfbuz - Uz'),
1 *
a4 = ThQ((sh’Ui — 5,21U1)

d*u

We can approximate then 9-¢ by taking the fourth order derivative of Q(x),

d4u d4Q 12 % 2 (4)
<d$4)i ~ (dm4>z = 24a4 = ﬁ(dhvi — 5hui) =0y Uy (5.1)
We found that the approximation 5,(14)uh depends on both uy, and vy, and we wish to estimate using
only ujp. For that we need to find the relationship between uj and vy. An intuitive way of doing it

is setting v; = a;. This gives us,

3 1
’Uizi(szui—z[vi-&-l‘i‘vi—l]v I<i<N-1
or
1 2 1 . .
glim1 T gl T gl = opui, 1<i<N—1. (5-2)

Combining all we have shown, we can now find a discrete solution for the biharmonic equation

using the scheme,

5Pu; = fla;), 1<i<N-1, (5.3)

L1 2 1 .
Oopu; = 6’1}1‘_1 + gvi + E’Ui_;,_l, 1<i< N -1, (54)
Uug = uny = vg = vy = 0. (5.5)

As we have done before, we wish to use a matrix representation for the scheme.

1
The operator ¢; is equivalent to the matrix %K , (5.6)
where K is defined as,
0 1
-1 0 1




54

Equation (5.2) can be represented as ﬁK Up = %th and after simplification we get

vp = %P‘lKu;“ (5.7)
where matrix P is defined as, i )
4 1
4 1
P=
1 4 1
L 4_
It is easy to find that,
|P|so = 6. (5.8)
. . 2 . 1
The matrix representation of 0; is — ﬁT : (5.9)
with T defined as
P -
-1 2 -1
T =
-1 2 -1
i -1 2

The matrix T should be familiar, as it is (—h?A}), defined in (2.20) to solve the 1D case of the

Poisson equation with Dirichlet boundary conditions.

The matrix representation of (5.1) is given by combining (5.6), (5.7), (5.9) as follows:

1211 3 1
= | -K-P'K-(--=T]||.
Sh hQ[Qh h ( h2 )}

Simplifying the above we get,
6 _
Sh=17 {3KP 1K+2T]. (5.10)

Notice that K and P commute almost everywhere except the corners, and by simple calculation it

can be shown that,

-2

PK — KP = . (5.11)
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We define an operator op on uy,

1 2 1 .
opuy = —ui—1 + -u; + s, 1<i<N-—1. (5.12)
6 3 6
We will refer to o), as the Simpson operator, and its matrix representation is %P.

Lemma 5.1. Given a vector uy satisfying the boundary conditions, then
ondWu; = 6262u; 2<i< N -—2.

Proof. Using (5.4) we can establish the relationship

Opu; =opv;, 1<i<N-—1. (5.13)
As noted above the matrix representation for oy, is %. We may also observe that P = 61 —T where
I is the identity, and we may conclude that,
P T h?
- - T4l .14
on = 6 % Oh (5.14)
From (5.11) we can establish that for 2 <i < N — 2,
KP PK

Opopu; = = op0pU;. (5.15)

2h 6"~ 6 an"

We now investigate the effect of taking Uhégl) at the interior points. We have

1 2 1
om0, = 65,(;‘)%-_1 + 56,(14)% + 6524)“”1’ 2<i<N-2 (5.16)
From (5.1) we see that,
12
and applying that to (5.16) we get,
1 2 1
ahé,(f)ui = 6624)1%71 + 5(5}(14)167, + 65}(14)ui+1 (518)
12 /11 2 1 1 2 1
= ﬁ < |:65;;”UZ‘_1 + g(s;’l)z + 65;Ui+1:| — |:652Ui_1 + géiul + 65}2Lu1'+1:| ) (519)

Investigating the first term we get,
66hvi_1 + géhvi + 65h’0i+1 = O'h(sh’l)i
= 5;0’h’l)i
= m(uif2 —2u; +uig2), 2<i<N -2
In the above we have used (5.13) and (5.15). We got,

1., 2, 1., 1 .
6(5,11)7;71 + géhvi + 65h0i+1 = m(ul;g — 2u; + ’u,‘+2)7 2<i<N-2. (520)
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Applying the definition of 67 to the second term in (5.19) we get,
1, 2, 1, 1 ,
65hui71 + géhui + 6(5hui+1 = @(Uz‘fz + 2u;—1 — 6u; + 2uip1 Fuipe), 2<i<N-—2. (5.21)

Plugging (5.20) and (5.21) in (5.19) we get for 2 <i < N — 2,
1
0h5(4)ui = ﬁ(ui_g — 4Uz’—1 + 6’UJZ - 4’UJZ‘+1 + Ui+2) = 5%5}%11,2 (522)
O

Theorem 5.2. The scheme S}, is fourth order consistent in the interior and first order on the near

boundary points.
Proof. From Lemma 5.1 we know that
ondWu; = 6262u; 2<i< N -2
We expand the term 6762 using Taylor series. We begin by,
@h N d?u; h?2 dBu; B dfu; b n d®u; h®  dSu(¢r) LG

de " dr? 2 T dad 6 dr* 24 dad 120 1 da® 720
for some ¢+ € Q,. Adding the two equalities above and simplifying we get

Ui+l = Uy £

d?u;  dug h? dPu(Er) h74

S2u; = — : 5.23
WU T2 T et 12 da® 360 (5:23)
Applying 67 to (5.23) at the interior points for 2 <i < N — 2, we get after simplification,
4 6 2
(4) _ £2¢2 o d Uj d Uj h * * 4
onby, Ui = 03 05u; = e + 56 +E;, and HE1HCS(§) < 01||u|\08(ﬁ)h . (5.24)
Now we expand the term oy, ‘g;ﬁf around the interior points 2 < i < N — 2,
du; h? . d*u;
C=(I+—0)—
Th gt (r+ 6 ) dz?
d4ui dﬁui h2 * * 4
= + 76 6 + FE5, and ||E2||CS(§) < cz||u||cg(§)h .
We have shown that,
d4ui d4ui d6ui h,z % % 4
Ot = i + 56 + E5, where HEchg(ﬁ) < 02||uHcg(ﬁ)h . (5.25)

Taking the | - |2 norm of the difference between (5.24) and (5.25) gives us the desired result, namely

d*u;
By — g 2t * 4 ; —
o0\ Mu; — oy, aat |, < c||u||cs(§)h , 2<i<N-2 (5.26)
We will now work on the consistency errors of near boundary points. We will demonstrate the

error at uq, as the proof for the error at uy_1 is similar. Below, the terms ¢, ¢, co are positive
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independent constants

We set 624)1;0 = (d —). Using the definition of ahéh we get

4 4 4
(4) B d U1 - 2 (4) (4) . zd Ul ld U9 5 27
ondy ur — on o = <35 L+ 5 > <3 1+ g (5.27)
2 (4) d U1 1 (4) d4U2
- 3<5h w = g (0 e - ). (5.28)

Using the boundary condition uy = vg = 0 and Lemma 10.1 on page 152 of [2] we get,

Vg Puy d*ug B2

djor =g = + o + R where [|Ri]gs g < crflull s gk (5.29)
as well as,
d2u1 d Uy h2
2, _ 3
djug = 22 T d 1o + Ry, where ||RQ||Co @ < 62||u||co h”. (5.30)

Plugging (5.29) and (5.30) into the definition of 5,(14)fr0m (5.17) we get,

5}(L )u1 = ﬁ((Shvl — 5,%u1) = d 4 + R3, where ||R3||C5(§) < cHu||C5(§)h.
We have shown that,
(4) tuy * *
o, ur — —— = R3, where ||R3||05(§) < c||u||cs(ﬁ)h. (5.31)

Following the same steps, inequalities (5.29), (5.30) and (5.31) can be applied to point ug,that is

4 d u * *
5Py =5 where IS5 < cllulfs - (5.32)

Plugging (5.31) and (5.32) into (5.28) we get the desired result, i.e.

4
4 d U1 *

jondyur = on(— )2 < clfull o g b (5.33)
As stated before, a similar estimate can be made at uy_1, i.e.

4
d*un_1
dx?t

65 un 1 — on( o < cllullfa gy - (5.34)



From [2] page 163 equation 10.87 we find |(g)*1|2 < 3, applying that to equations (5.26), (5.33)
and (5.34) we get:

for2<i< N —2,

4
‘5(4)% )

d*u;
1 4 i
at |, = (o, )<0h5( Ju; — o da?4> ,
_ d4ui
< (o Dla|ond™u; — on ot |,

<3

4,
o dMu; — o d u;

h
dx?t

2
S c||u||*08(ﬁ)h4

For i =1 and i = N — 1, following similar steps we get

d4
|5§L4)U1 . ( U

D)1z < cllulza b

diupn_
4 N—-1 *
08 un—1 = (7l < elful o

If we wish to write a consistency error equation involving all points, we would have to take the
lowest estimate which happens at the boundary points, we may conclude that

d4
|(5,(14)uh . ( Up

o < el + Nl
If we use the |- |, we get,

(5.35)
(4) d4’LLh 3/2 * *
|6h Un — (W)lh <ch (HUHCS(ﬁ) + Hu||08(§))7
and using similar notation as with previous schemes, the above becomes
|Sthu - RhA2u|h < Chs/Q(”uH*CS(ﬁ) + ||u||*08(ﬁ))a (5'36)

o8
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Theorem 5.3. The matriz Sy, is a monotone matrizc

Proof. By personal correspondence with Haggai Katriel, who is working with Matania Ben-Artzi,
one of the authors of [2] I acquired a preprint result for the explicit formula for the solution. For

1<i<N-1

i—1 N-1
h
U; = 6[};(%% fr +9€ ;; lka 1$1)$k+$k$z)fk] (5-37)

where u; = u(z;). We can rewrite it as,

i—1 N-1
{ 1—x; 2Zm (224( l—xk)+xl—xk)fk+$ Z(l—a:k)z(Qa:k(l—J:,-)—!—ack—mi)fk],
k=1 k=i

(remembering that z; = ¢h, from which we can see, that 1 — x; = xx_;).This gives us,

i1 N-1
h
Uu; G[mN szk (2z;xN— k-l—xl—wk)fk-i-xQZa:N w2z — Z—i—xk—ml)fk} (5.38)
k=i
In other words, defining
h
My, = gay @i Quien - +x; —ap), 1<k<i<N-—1, (5.39)
and using (5.39) we can rewrite (5.38) as,
i—1 N-1
wi =Y Mixfi+ > My fy. (5.40)
k=1 k=i
Equation (5.40) can be written as
Up = thh~ (541)

We now show all elements of the matrix M} are nonnegative.
Without loss of generality we take the lower triangular part of My, M;; where 1 <k <i< N —1.
From (5.39),

h
My, :gx?vfixi(%cix]v,k +x; — ag)
—EQ 2(2(ih)(N — k)h + ih — kh
=R (2(ih)(N — k)b + i — k)
h

:gx%v,ixi(%h?w — k) +h(i —k))
>0.

In the above we have used that k¥ < ¢ < N — 1. From (5.41) it is easy to see that matrix M, is
in fact S;l, and since we have shown matrix M), > 0 we can conclude that so is S;l > 0. Using

Claim 3.7 we conclude S}, to be monotone. O
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Theorem 5.4. The scheme Sy, is stable and |S; oo < 57

Proof. We wish to show that,
S fuloo _ lunloo _ 1

[flso  |faloo — 3847
We now define the vector wp = [le, W2,1 vy Wn—1,1, W1,2, W22, ..., Wp—1,2, ...wn_l,n_l]T,
where,

ih)%(1 — ih)?
P
24
and the function,
2 1— 2

24
We consider w as a function and wy, the discretization of it, defined as wy, = Rpw. We now show that

Spwy, = 1. By simple calculation we can see that (A)?w = 1 and 1—S,w;, = Ry (A)?w—S,Ryw = 0,
since we have shown the consistency error involves fifth and eighth derivatives of w, all of which

vanish. This proves the claim Spwy, = 1.

1
384" 1\10\7\77

Su(|frlocwn +un) = |flool + frn > 0.

It is easily seen that |wp|co <

Since S}, is monotone,

| frloown + up > 0.

From here we have,

1
—un < | frloowWn < |Wh|oo|frlocl < %7|fh|w1- (5.42)

Similarly,
Sh(lfnlocwn —un) = |flocl = frn 2 0.
Since S}, is monotone,
| faloown — up > 0.

From here we find that,

1
Up < | frloown < |Whloolfrlool < @|fh|ool- (5.43)

Combining (5.42) and (5.43) we get

1
[Up]oo < @|fh|oo

We have proved the scheme to be stable and

1

i U g
19 e < 384

(5.44)
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Theorem 5.5. The scheme Sy, is convergent.

Proof. We wish to demonstrate the scheme is convergent with respect to the | - |5 and the infinity

norms. Using (5.44) and (5.36) we obtain

\Rhu —uplp = |S;15h(Rhu — uh)|h

1S5 k| Sk (Ruw — up)|h-
1

384

< Ch3/2(

IN

IN

|ShRru — Ry fln
el + el )
As before, the term c is a positive constant independent of u. We have shown convergence of order

3/2 in the | - |p,

|Rpu — up|p < Ch3/2(||u‘|*cs(§) + HUHZ‘S@))

We can also show convergence of first order in the infinity norm, since

|Rhu — Uploo < |Rpu — upl2
= h71/2|Rhu - uh|h

< B2l g+ el )

< ch([[ullgs gy + 1ullgs )
@ @



Chapter 6

Conclusions

There are many ways to show a numerical scheme is convergent. Throughout this thesis we have
established a scheme is consistent using Taylor series expansion and proved it is stable. Many
methods exist to show stability but we have focused mainly on using the fact that the matrix of

the scheme is monotone and applying the properties of monotone matrices.

The scope of this thesis is limited to five numerical schemes, two for for the 1D Poisson equa-
tion, two for the 2D Poisson equation and one for the Biharmonic equation. No work previously
has used that the numerical schemes introduced in chapters three and four are monotone to prove

stability. The ideas in this thesis can be expanded to some other numerical schemes.

Unfortunately, establishing whether a matrix of a scheme is a monotone matrix or not could be
difficult or simply impossible since it might even be false. Nevertheless, in cases where a scheme is
proven to be monotone it could be a powerful tool to assist in showing stability and subsequently,

convergence.

62
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This page includes all notation used in the thesis and on what page they appeared first.

On
d_n

|'|<>o

forward finite difference scheme to approximate the first derivative. p2
backward finite difference scheme to approximate the first derivative. p2
{~ norm for vectors. p2

{5 vector norm. p2

discrete £ norm. p2

Soboloev space. p3

discrete H'norm. pll

a norm equivalent to the discrete H' norm. pl2

a general scheme approximating the laplacian operator. pl7

restriction operator. pl7

— a quantity used in proving consistency of numerical schemes. pl17

condition number. pl7

problem domain. pl18

discrete domain applied in ch1.2.1. pl8

specific scheme approximating the laplacian operator applied in chl.2.1. pl8
discrete domain applied in chl.2.2. p22

specific scheme approximating the laplacian operator applied in ch1.2.2. pl2
all entries of vector v are nonnegative and at least one element is positive. p29
all entries of vector v are positive. p29

all entries of vector v are nonnegative. p29

all entries of matrix M are nonnegative. p29

spectral radius. p31

specific scheme approximating the laplacian operator applied in ch3.1. p37
nine point approximate for the laplacian used inside A,. p39

specific scheme approximating the laplacian operator applied in ch3.2. p46
Special restriction operator used in ch3.2. p50

central finite difference scheme to approximate the first derivative. p51
central finite difference scheme to approximate the second derivative. p51
scheme approximating the fourth derivative. p52

specific scheme approximating the biharmonic operator applied in ch4. p53
Simpson operator used in ch4. pb4

vector of ones. p22
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